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Abstract

In the underlying work we will point out conjectured connections between
Gabor frames and geometric properties of lattices.

The concept of Gabor frame is a certain kind of time–frequency represen-
tation method and as such underlying the uncertainty principles. This means
that the product of a signal’s length and its bandwidth cannot be arbitrar-
ily small. The heart of a Gabor representation is found in the short–time
Fourier transform (STFT), which includes the Fourier transform as special
case. Therefore, the signals will usually be functions of finite energy, i.e. will
be elements of the Hilbert space L2(Rd), though we will note that the setting
for the STFT can be extended by using so–called Banach–Gelfand triples.

The classical Fourier transform does not provide any information of the
points in time at which certain frequencies occur. The STFT tries to solve
this problem by using a so–called window function. Due to the uncertainty
principles mentioned before, good localisation in time yields to worse locali-
sation in frequency. The canonical window function therefore is a Gaussian
function as it uniquely minimises the uncertainty principle.

The STFT with respect to a given window function is a continuous time–
frequency representation, however, L2(Rd) is a separable Hilbert space and
hence, it should be sufficient to find a discrete way of representing the signal.
This issue is taken care of by the concept of Gabor frames. The idea is to
find a generating system for L2(Rd), consisting of translated and modulated
versions of the window function. The choice of the translations and modu-
lations creates a pattern in the so–called time–frequency plane Rd × Rd, a
concept similar to the concept of phase space know from the theory of ordi-
nary differential equations. This pattern is usually chosen to be a lattice in
the time–frequency plane, which can be represented by a 2d× 2d matrix.

A question still unanswered is whether good geometric properties of the
underlying lattice already provide better frame properties, i.e. stable and
fast reconstruction of the signal from its coefficients measured at the lattice
points. This is not even clear for the 1–dimensional Gaussian function and 2–
dimensional lattices yet. It is conjectured that for a 1–dimensional Gaussian
window the so–called hexagonal lattice provides the best choice for a Gabor
system, as the essential support of the ambiguity function, is a disc and the
hexagonal lattice uniquely provides the best setting of arranging discs in 2
dimensions.

We will start with some classical packing problems, which seem to be a
good choice for measuring geometric properties of a lattice and will return to
them at the end of this work, when we investigate Hamiltonian deformations
of lattices.
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Packing and Covering Problems

Arranging sets in regular patterns has struggled mathematicians for cen-
turies. In 1611 Johannes Kepler came up with the conjecture that in 3–
dimensional Euclidean space, there is no arrangement of equally sized balls,
which exceeds a density of π√

18
. This means that approximately 74% of

3–dimensional Euclidean space are used up by this arrangement. The con-
jecture became part of the 18th of Hilbert’s famous 23 problems [20] and
remained unsolved until 2005 when Thomas Hales’ proof was published [19].
In this first part we have a closer look at the classical sphere packing problem
in 2 dimensions and will ask for an optimal arrangement of ellipses in the
plane.

1 The classical Problems

The following section mainly relies on [7] and [30]. We start with the defi-
nition of a lattice in d–dimensional Euclidean space and will explain what a
packing and a covering is.

Definition 1.1. A lattice Λ in d–dimensional Euclidean space is a discrete
subgroup of Rd. An invertible matrix A ∈ Rd × Rd is called a generator
matrix for the lattice Λ, if

Λ = ΛA = A · Zd.

The generator matrix A is non-unique, in fact there are countably many
different matrices, generating the same lattice. An example in 2 dimensions
is given by the so-called integer lattice ΛI2, which is generated by the identity

matrix I2 =

(
1 0
0 1

)
, but also by the matrices

(
1 1
0 1

)
or

(
1 3
1 4

)
to

name two more of the infinitely many possibilities.

Definition 1.2. A family of subsets (Ωi)i∈I , with I being a countable set of
indices, is called a packing of Rd, if no point of Rd belongs to the interior of
two sets Ωi,Ωj when i 6= j, i.e.

Ω◦
i ∩ Ω◦

j = ∅ ∀i 6= j.

A packing is called lattice packing, if it is of the form (Ω+λ)λ∈Λ, where Λ is
a lattice.
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Definition 1.3. A family of subsets (Ωi)i∈I , with I being a countable set of
indices, is called a covering of Rd, if each point of Rd belongs to at least one
of the sets Ωi, i.e.

Rd =
⋃

i∈I
Ωi .

A covering is called lattice covering, if it is of the form (Ω + λ)λ∈Λ, where Λ
is a lattice.

Remark. The definitions given above do not necessarily ask for open sets in
order to have a packing or closed sets in order to have a covering. Let Ω be
the following subset of R2

Ω = {(x, y)T ∈ R2 | − 1/2 ≤ x < 1/2 ∧ −1/2 ≤ y < 1/2}

and let ΛI2 be the integer lattice. Then

(Ω + λ)λ∈ΛI2

is a lattice packing as well as a lattice covering.

In the given example, the packing and the covering are equal to each other
because of the choice of the set. If, instead, we want our sets to be spheres,
then a packing of the integer lattice is given by

(
B1/2(λ)

)
λ∈ΛI2

, balls of radius

1/2 centred at the lattice points and a covering is given by
(
B√

2/2(λ)
)
λ∈ΛI2

,

balls of radius
√
2/2 centred at the lattice points. These are actually the

“best” possible packing and covering that we can achieve for the integer
lattice using spheres. This brings us to some definitions which will allow us
to measure the quality of a lattice packing or lattice covering.

Definition 1.4. Let Λ = AZd be a d–dimensional lattice, generated by the
non-singular matrix A ∈ Rd × Rd. The volume of a lattice is defined by

vol(Λ) = | det(A)|.

Let (Ωp + λ)λ∈Λ be a lattice packing, then

ρ = ρΛA,Ωp
:=

vol(Ωp)

vol(Λ)

is called the packing density of Λ. Let (Ωc + λ)λ∈Λ be a lattice covering of
Rd, then

∆ = ∆ΛA,Ωc
:=

vol(Ωc)

vol(Λ)

is called the covering density of Λ.
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Subsequently we ill usually drop some of the indices if the context allows
for it.

Note that the packing and covering densities are only defined for a lattice
packing and a lattice covering. From Definitions 1.2, 1.3 and 1.4 it is clear
that the packing density fulfils

ρΛ ≤ 1

and that the covering density fulfils

∆Λ ≥ 1.

We want the packing as well as the covering density being close to 1.
As already mentioned above, for the integer lattice the radius rp leading to

the densest sphere packing is 1
2
and the radius rc giving the thinnest covering

is
√
2
2
. The corresponding densities are

ρI2 =
π

4
≈ 0, 7854, δI2 =

π

2
≈ 1, 5708.

For the so-called hexagonal lattice, which can be generated by the matrix

Hex =

(
1 cos(π/3)
0 sin(π/3)

)
,

the densities are closer to 1, as they are

ρHex =
π√
12

≈ 0, 9069, ∆Hex =
2π

3
√
3
≈ 1, 2092.

It is well-known and has already been proven by Gauss, that for dimension
d = 2 the latter densities are optimal and can only be achieved for the hexag-
onal lattice [7]. For a given lattice the sphere packing problem is optimally
solved by finding the shortest vector. A first attempt to find the shortest vec-
tor is to compare the lengths of the vectors given by the generating matrix.

For the integer lattice, deduced from the generating matrix I2 =

(
1 0
0 1

)
,

we quickly find out and verify that the shortest vector has length l = 1. From
this we can conclude that the largest possible radius for spheres which will
provide a packing is rp = 1/2. However, the matrix

A =

(
1 4
1 3

)
,
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is also a generator matrix for the integer lattice, as (4, 3)T−3·(1, 1)T = (1, 0)T

and 4 · (1, 1)T − (4, 3)T = (0, 1)T . This time we cannot read off the optimal
packing radius directly from the generator matrix. In this case it was rather
easy to find the shortest vector, but in general this problem is not easily
solvable at all. In order to find the optimal covering radius for dimension
d = 2, we would need to find the two shortest vectors and additionally take
care of the angle in between them. In other words we need to find two
points as close as possible to the origin with the restriction that the angle in
between the first point, the origin and the second point is acute. The sphere
that contains these 3 points has the optimal covering radius.

Remark. As we are interested in the density of a lattice, Definition 1.4 al-
ready shows the scale invariance of the solution to the packing and covering
problem. Therefore, we will use lattices of volume vol(Λ) = 1 and even more,
we will only use elements of SL2(R) = {A ∈ R2×R2 | det(A) = 1} as the de-
sired solutions are invariant under changing the orientation of the coordinate
system as well as rotations and reflections.

Remark. We see that already in the case of two dimensions the problem is not
always easy to solve, depending on how the generator matrix of the lattice is
given. The only thing easily computed is the volume of the lattice, which is
given by the absolute value of the determinant of the generator matrix and it
remains invariant under a change of basis. Anything else requires algorithms
which run-times grow exponentially in the dimension. Indeed, the problem
of finding the covering radius of an arbitrary lattice is known to be in the
class of NP-hard problems and the problem of finding the packing radius is
conjectured to be in this class [7].

A positive result, especially for low dimensions, is given by Lemma 1.6.

Definition 1.5. Let ΛA ⊂ Rd be a d–dimensional lattice. If for any arbitrary
vector v ∈ ΛA, v /∈ {v1, . . . , vd} the inequality ‖vi‖ ≤ ‖v‖ for i = 1, . . . , d
and 〈vi, vj〉 ≥ 0 for all (i, j) ∈ {1, . . . , d} × {1, . . . , d} hold true, we call the
matrix A = (v1, . . . , vd) a reduced basis for the resulting lattice.

Lemma 1.6. For every lattice ΛA ⊂ Rd generated by a matris A there exists
a matrix Ã such that Ã is a reduced basis for ΛA = ΛÃ.

Proof. See [7, p.40 ff].

Especially in low dimensions such a basis is usually found by using the
LLL-algorithm described by Lenstra, Lenstra and Lovász [22].

Remark. For further investigation and the rest of this work we are usually in-
terested in 2–dimensional lattices and may assume that the generator matrix
A = (v1, v2) is a reduced basis and that ‖v1‖ ≤ ‖v2‖.
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Figure 1: If copies of the circumsphere are centred at the points A,B and
C then they will intersect in exactly one point, namely U .

2 Packing and Covering of R2 with Ellipses

In the upcoming section we restrict ourselves to dimension d = 2. The issue
for the packing as well as the covering problem seems to be that the circle
does not fit as well into the integer lattice as it does into the hexagonal
lattice. We will describe construction rules for arbitrary lattices, that lead to
an optimal packing using ellipses. We will also see that the ellipse packing
problem already solves the ellipse covering problem and hence, we will only
be interested in the ellipse packing problem after that point. The idea is
based on the singular value decomposition, which is illustrated in Figure 2

The representation of the packing circle for the integer lattice is

[I2 ∗ v]T ∗ [I2 ∗ v] = r2I2,

12



Figure 2: Geometric illustration of the singular value decomposition.
Source: http://commons.wikimedia.org/w/index.php?title=File:Singular-

Value-Decomposition.svg&oldid=70177732,
[13]

where v =

(
x
y

)
and rI2 = 1/2.

Changing our integer lattice to the hexagonal lattice also changes our
coordinate system and the circle would be represented as

[Hex ∗ I2 ∗ v]T ∗ [Hex ∗ I2 ∗ v] = r2Hex, (2.1)

where Hex = (v1, v2) is a reduced basis for the hexagonal lattice and rHex =
1/2‖v1‖. The ellipse we retrieve from (2.1) has the same packing density as
the circle has for the integer lattice.

As our problem was the integer lattice as starting point, we now see how
to deal with this issue. We want the hexagonal lattice to have a circle as
best fitting ellipse. All we have to do is substituting I2 in (2.1) by Hex−1.

[
Hex ∗Hex−1 ∗ v

]T ∗
[
Hex ∗Hex−1 ∗ v

]
= r2Hex (2.2)

At first it may seem strange to write down (2.1) and (2.2) in that way.
But let us consider an arbitrary lattice ΛA. Then the best fitting ellipse is
retrieved by again simply substituting Hex−1 by A−1.

Theorem 2.1. Given any arbitrary lattice ΛA generated by the reduced basis
A, there exist ellipses E0 and Ẽ0, such that

ρA,E0 =
π√
12

≈ 0, 9069, ∆A,Ẽ0 =
2π

3
√
3
≈ 1, 2092.
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and such that E0 provides a lattice packing and Ẽ0 provides a lattice covering
for R2.

Proof. There are two alternative approaches to prove this statement. At first
let us have a look at (2.2), but this time for an arbitrary lattice ΛA where

A =

(
x1 x2

y1 y2

)
= (v1, v2)

is a reduced basis for ΛA and Hex =
√

2√
3
·
(

1 cos(π/3)
0 sin(π/3)

)
is a reduced

basis for the hexagonal lattice such that the volume of the hexagonal lattice

is equal to 1 and the optimal packing radius is given by rHex = 1
2

√
2√
3
. This

yields to [
Hex ∗ A−1 ∗ v

]T ∗
[
Hex ∗ A−1 ∗ v

]
= r2Hex (2.3)

which is equivalent to

vT ∗ A−1T ∗HexT ∗Hex ∗ A−1 ∗ v = r2Hex

⇔ vT ∗ A−1T ∗
(

2√
3

1√
3

1√
3

2√
3

)
∗ A−1 ∗ v =

1

4

2√
3

⇔ vT ∗ A−1T ∗
(

4 2
2 4

)
∗ A−1 ∗ v = 1

(2.4)

An alternative approach is achieved by explicitly constructing the packing
ellipse for the integer lattice. We rotate the whole lattice by 45 degrees, find
the ellipse which is centred at the origin, containing the points

(
0;±1/

√
2
)
,(

±1/(2
√
2); 1/(2

√
2)
)
and

(
1/(2

√
2);±1/(2

√
2)
)
. The problem of finding a

rotated ellipse in the integer case has been transformed to finding an non-
rotated ellipse in the so-called quincunx case as illustrated in Figure 3.

The equation of our ellipse is as follows.

b2 · x2 + a2 · y2 = a2 · b2

or
x2

a2
+

y2

b2
= 1

where a = 1/
√
2 and b = 1/

√
6. Written as matrix-vector equation we have

[( √
2 0

0
√
6

)
∗
(

x
y

)]T
∗
[( √

2 0

0
√
6

)
∗
(

x
y

)]
= 1

14
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Figure 3: We find the six points closest to the origin and construct an
ellipse which contains these points. Scaling the ellipse by 1/2 yields the

desired packing ellipse.

We define the dilation matrix Dil =

( √
2 0

0
√
6

)
and the rotation matrix

Rot =

(
1√
2

− 1√
2

1√
2

1√
2

)
. Then our equation for the rotated ellipse in the

integer lattice reads as follows.

[
Rot−1 ∗Dil ∗Rot ∗ v

]T ∗
[
Rot−1 ∗Dil ∗Rot ∗ v

]
= 1

By using the same idea as for equation (2.3), we retrieve

[
Rot−1 ∗Dil ∗Rot ∗ A−1 ∗ v

]T ∗
[
Rot−1 ∗Dil ∗Rot ∗ A−1 ∗ v

]
= 1 (2.5)

plugging in the values, we get

vT ∗ A−1T ∗
(

4 2
2 4

)
∗ A−1 ∗ v = 1 (2.6)

We have seen two equivalent approaches on how to construct an ellipse
which provides a candidate for an optimal packing. Next we want to show,
that the retrieved ellipse from Equation (2.6) really provides a packing by
using translates centred at the lattice points of ΛA.

It is enough to solve this problem locally for 3 neighbouring points, which
are w.l.o.g. the origin and the points that are reached from the origin via the
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vectors v1 and v2 of which we assume that they provide a reduced basis for

ΛA. If we set E =

(
4 2
2 4

)
then our sets centred at the origin, (x1, y1)

T and

(x2, y2)
T have the following forms

E0 =
{
(x, y)T ∈ R2 | vT

(
A−1

)T E A−1v ≤ 1
}

(2.7)

Ev1 =
{
(x, y)T ∈ R2 | (v − v1)

T (A−1
)T E A−1 (v − v1) ≤ 1

}
(2.8)

Ev2 =
{
(x, y)T ∈ R2 | (v − v2)

T (A−1
)T E A−1 (v − v2) ≤ 1

}
(2.9)

Solving the system consisting of (2.7), (2.8), (2.9) leads to

E0 ∩ Ev1 =
(x1

2
,
y1
2

)T

Ev1 ∩ Ev2 =
(
x1 + x2

2
,
y1 + y2

2

)T

Ev2 ∩ E0 =
(x2

2
,
y2
2

)T
.

By using translations we conclude that (E0 + λ)λ∈ΛA
provides a lattice pack-

ing with ellipses for R2.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5
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−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4: A lattice with the packing ellipses from (2.7), (2.8) and (2.9). By
shifting the origin into other points we can repeat the whole process and

after countably many steps arrive at a lattice packing for R2.
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Next we will show that the packing density always is

ρA,E0 =
vol(E0)
vol(ΛA)

=
π√
12

≈ 0, 9069.

First we have to compute the area of the ellipse E0. If the ellipse is given as
the following set

E0 =
{
(x, y)T ∈ R2 | vT

(
A1
)T E A−1v ≤ 1

}

then the area is given by vol(E0) = det
(
(A1)

T E A−1
)−1/2

π. First we com-

pute

det
((

A1
)T E A−1

)
= det

(
A−1

)2
det (Hex)2 =

det(Hex)2

det(A)2
=

12

det(A)2

as E = HexT Hex. This leads to the packing density

ρ = ρA,E0 =
V ol(E0)
V ol(ΛA)

=

det(A)
det(Hex)

π

det(A)
=

π√
12

≈ 0, 9069 ∀A ∈ GL2(R).

Having done all the work for the ellipse packing, the covering is actually for
free. If we compare

ρHex =
π√
12

to ∆Hex =
2π

3
√
3
.

from the classical packing and covering problem using spheres, we see that
not only the densities are the most economic, but also that the quotient

qHex =
∆Hex

ρHex

=
4

3

has the lowest value for all possible lattices. Knowing that the packing
density for ellipses does not change, we can expect the same result for the
covering density. Taking into account that qHex actually also is the ratio of
the area of our spheres, namely

qHex =

V ol(BR)
V ol(ΛHex)

V ol(Br)
V ol(ΛHex)

=
V ol(BR)

V ol(Br)

where R and r are the covering and packing radii respectively for the hexag-
onal lattice. We expect our ellipses to behave in the same way as our spheres
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do in the hexagonal case. Therefore we take equation (2.6) and on the right-
hand side we plug in 4/3 instead of 1. The same we do for equations (2.7),
(2.8) and (2.9), we multiply the right-hand side only by 4/3. We end up with
the system

Ẽ0 =
{
(x, y)T ∈ R2 | vT

(
A−1

)T E A−1v ≤ 4

3

}
(2.10)

Ẽv1 =
{
(x, y)T ∈ R2 | (v − v1)

T (A−1
)T E A−1 (v − v1) ≤

4

3

}
(2.11)

Ẽv2 =
{
(x, y)T ∈ R2 | (v − v2)

T (A−1
)T E A−1 (v − v2) ≤

4

3

}
(2.12)

which has the unique solution

Ẽ0 ∩ Ẽv1 ∩ Ẽv2 =
(
x1 + x2

3
,
y1 + y2

3

)T

.

By using translation we get a full lattice covering of R2, which has covering
density

∆ = ∆A,Ẽ0 =
2π

3
√
3
.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
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Figure 5: An ellipse lattice covering can be constructed by scaling the
packing ellipses by the factor 2/

√
3.
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Lemma 2.2. The optimal density of a lattice packing (E+λ)λ∈Λ using ellipses

is ρ = ρΛ,E = π√
12

and the optimal density of a lattice covering (Ẽ + λ)λ∈Λ

using ellipses is given by ∆ = ∆Λ,Ẽ = 2π
3
√
3
. Hence, the optimal ratio is given

by q = ∆
ρ
= 4

3
.

Proof. A proof can be found in [34] and [29].

Remark. Comparing (2.4) and (2.6) we have seen that both approaches lead
to the same result. From Equations (2.4) and (2.6) we conclude that

[
Rot−1 ∗Dil ∗Rot ∗ A−1

]T ∗
[
Rot−1 ∗Dil ∗Rot ∗ A−1

]

=
[
Dil ∗Rot ∗ A−1 ∗ v

]T ∗
[
Dil ∗Rot ∗ A−1 ∗ v

]

=

(
4 2
2 4

)
,

which in combination with Equations (2.3) with (2.5) shows

Hex = rHex · R̃ot
−1 ∗Dil ∗Rot, (2.13)

with R̃ot =

(
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

)
, so we have found the singular value

decomposition of the generator matrix of the hexagonal lattice, up to a scaling
factor which is actually the packing radius. If we use any other orthogonal
matrix in Equation (2.13) instead of R̃ot we have a rotated version of the
hexagonal lattice, but still end up at Equation (2.6). In other words, in
order to retrieve the hexagonal lattice out of the integer lattice, we have to
rotate the integer lattice by 45 degrees, dilate our lattice with the dilation

matrix

( √
2 0

0
√
6

)
and rotate everything back by −60 degrees or any other

arbitrary angle in order to end up with a rotated version. In order to preserve
the volume we need to find a scaling factor, which gives the packing radius.

Remark. The solution of the (simultaneous) ellipse packing and covering
problem, for a given lattice, is not unique. The use of a reduced basis leads to
the least elliptic ellipses. In other words, the condition number of HexA−1,
A ∈ GL2(R), Λ = ΛA is closest to 1 if A is a reduced basis. Using any other

basis Ã also solves the packing as well as the covering problem in an optimal
way, but the the condition of the matrix Hex Ã−1 will be greater than the
condition number of HexA−1. This fact is illustrated in Figure 6. We will
use the condition number of HexA−1 as a measure of quality of a lattice.

The idea of using quadratic forms has often been used when investigating
the quality of lattices [7]. For a positive definite quadratic form Q, using
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Figure 6: An Ellipse packing for the integer lattice using the vectors
v1 = (1, 0)T and v2 = (3, 1)T as basis.

the inner product 〈x, y〉Q = xTQy instead of the standard Euclidean inner
product is an essential part in Voronoi’s reduction theory, finding Voronoi
polytopes and Delauney triangulation [30].

Remark. Assume A = (v1, v2) is a reduced basis for the lattice ΛA and M =(
a b
c d

)
∈ GL2(R). Then

vT1
(
A−1

)T
M A−1v1 = (1, 0)M(1, 0)T = a (2.14)

and
vT2
(
A−1

)T
M A−1v2 = (0, 1)M(0, 1)T = d (2.15)

and

(v1−v2)
T
(
A−1

)T
M A−1(v1−v2) = (1,−1)M(1,−1)T = a−b−c+d. (2.16)

If M =

(
1 1/2
1/2 1

)
, then the results of (2.14), (2.15) and (2.16) are all

equal to 1. This illustrates that using the reduced basis of the hexagonal
lattice is an essential part of Theorem 2.1.
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3 Diagonal Distortion

In this section we want to investigate the method of diagonal distortion
presented by Edelsbrunner and Kerber [8]. It is a method to systematically
create new lattices out of the integer lattice. Each point of the d–dimensional
integer lattice ΛId ⊂ Rd is mapped onto a new point in the resulting lattice
Λδ ⊂ Rd. The diagonal distortion is given by the mapping

Tδ : Rd × R → Rd

(x, δ) 7→ x+
δ − 1

d
·

d∑

i=1

xi ∗
−→
1 ,

(3.1)

with x ∈ Rd, δ ∈ R and
−→
1 ∈ Rd is the vector with 1 in each entry. A proof

that Λδ = Tδ(Z
n) is a lattice is given in [8]. As we are only interested in the

2–dimensional case, we can write our distortion mapping as

2Tδ : R2 × R → R2

(x, y, δ) 7→
(

x
y

)
+

δ − 1

2
· (x+ y) ·

(
1
1

)
(3.2)

x, y, δ ∈ R.

Lemma 3.1. Let 2Tδ be the diagonal distortion as described in (3.2). Let
Λδ = 2Tδ (Z

2) ⊂ R2 and let (Bδ + λ)λ∈Λδ
be the optimal lattice packing with

spheres for the lattice Λδ. Then the packing density is given by

ρ(δ) =





πδ
2
, for 0 ≤ δ ≤ 1√

3
π
8

(
δ + 1

δ

)
, for 1√

3
≤ δ ≤

√
3

π
2δ
, for

√
3 ≤ δ

(3.3)

Proof. The lemma as well as its proof can be found in [8].

We want to describe a lattice Λ of volume vol(Λ) = 1 via one of its gen-
erator matrices. Therefore, we reformulate (3.2) in the following, canonical
way.

Dδ : GL2(R)× R → GL2(R)

(v1, v2) 7→ (2Tδ(v1), 2Tδ(v2)) .
(3.4)

The results derived in [8] are for integer lattices of arbitrary dimension
as initial set of points. It is left as an open question to extend the approach
to more general initial sets of points.
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We want to investigate the above mentioned method for 2–dimensional
lattices and start with the 2–dimensional integer lattice ΛI2. We define the
matrix

Mδ :=
1√
δ
· Dδ (I2) =

1√
δ
·
(

1+δ
2

−1+δ
2−1+δ

2
1+δ
2

)
(3.5)

which we will call distortion matrix in the subsequent paragraphs.
It is easy to see that

det (Mδ) = 1

as we use 1/
√
δ as normalising factor. From (3.5) we also see that M1 = I2.

For δ =
√
3 and δ = 1√

3
we get rotated versions of the hexagonal lattice.

Indeed, we have M√
3 ∗M1/

√
3 = I2. This motivates the following definition

and lemma.

Definition 3.2. The distortion group DG2(R) is defined as

DG2(R) :=

{
Mδ ∈ SL2(R) |Mδ =

1√
δ
·
(

1+δ
2

−1+δ
2−1+δ

2
1+δ
2

)
, δ > 0

}
. (3.6)

Lemma 3.3. DG2(R) is a group and has the following properties. For Mδ ∈
DG2(R) the following holds:

M1 = I2, (3.7)

M−1
δ = M1/δ, (3.8)

Mδ1 ∗Mδ2 = Mδ1·δ2 (3.9)

This means that
Φ: R+ → DG2(R)

δ 7→ Mδ

is a group representation of the multiplicative group (R+, ·) on (DG2(R), ∗).

Proof. The proof is by straight forward computation and hence, is left to the
interested reader.

Still, we want to give a geometric, very intuitive explanation which is
illustrated in Figures 7 and 8. The way of optimally packing the integer
lattice with ellipses is not unique as the integer lattice remains invariant
under rotations by 90 degrees. This is not true for the (optimal) packing
ellipse. We see that taking the reciprocal distortion parameter 1/δ is the
same as using the distortion parameter δ followed by a rotation of 90 degrees.
This is the geometric interpretation of Equation (3.8).
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Figure 7: One possible arrangement of packing ellipses. Diagonal distortion
by the factor

√
3 leads to a rotated version of the hexagonal lattice.
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Figure 8: Another possible arrangement of the packing ellipses rotated by
90. The distortion factor 1/

√
3 leads to another rotated version of the

hexagonal lattice.
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Remark. Definition 3.2 can be extended in the following way.

D̃G2(R) =

{
Mδ ∈ SL2(R) |Mδ =

1√
|δ|

·
(

1+δ
2

−1+δ
2−1+δ

2
1+δ
2

)
, δ ∈ R\{0}

}
.

Then, Lemma 3.3 can be extended by replacing the multiplicative group
(R+, ·) by (R\{0}, ·). The geometric interpretation for negative distortion
parameter δ is that we first reflect the integer lattice with respect to the
second median and apply the diagonal distortion afterwards or vice versa.
It is easy to see that Definition 3.2 is still meaningful and that Lemma 3.3
still holds. However, there is no need for this more general setting as ΛMδ

=
ΛM−δ

.

Theorem 3.4. Let δ ≥ 1, Mδ be defined as above, E =

(
4 2
2 4

)
. The

eigenvalues of
(
M−1

δ

)T EM−1
δ are

λ1 = 2δ, λ2 =
6

δ
.

The corresponding eigenvectors σ1, σ2 are

σ1 =

(
1
−1

)
, σ2 =

(
1
1

)
.

The ratio of the eigenvalues is

λ =
λ1

λ2

=
δ2

3

and hence, the condition number of Hex∗M−1
δ is given by cond(Hex∗Mδ =

δ√
3

Proof.
(
M−1

δ

)T
= M−1

δ = 1√
δ
·
(

1+δ
2

1−δ
2

1−δ
2

1+δ
2

)
, hence

(
M−1

)T EM−1
δ =

1

δ
·
(

3 + δ2 3− δ2

3− δ2 3 + δ2

)

and therefore

det(E − λI2) =
(λ− 2δ)(λδ − 6)

δ

⇒ λ1 = 2δ, λ2 =
6

δ
, λ =

λ1

λ2
=

δ2

3
.
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It is easy to verify that

(
M−1

)T EM−1
δ ∗ σ1 = λ1 · σ1 =

(
2δ
−2δ

)

and (
M−1

)T EM−1
δ ∗ σ2 = λ2 · σ2 =

(
6/δ
6/δ

)
.

Hence, λ = λ1

λ2
= δ2

3
and the condition number is cond(Hex∗M−1

δ ) = δ√
3
.

Remark. Assuming that δ ≥ 1 is not a real restriction in Theorem 3.4. If we
replace δ by 1

δ
, then the case 0 < δ ≤ 1 is covered and hence, the condition

number of Hex ∗M−1
δ is given by cond(Hex ∗M−1

δ ) = 1/(
√
3 δ). Theorem

3.4 together with the result from this remark shows that ellipse packing
on a lattice generated by a matrix Mδ ∈ DG2(R) is optimally solved for
δ =

√
3 and δ = 1√

3
. Furthermore, Theorem 3.4 shows that the behaviour

of the optimal packing density of a distortion lattice described in Lemma
3.1 can be geometrically explained by the packing ellipse. For 2–dimensional
lattices that are generated from the integer lattice by diagonal distortion a
high packing density for spheres also means that the ellipse packing consists
of ellipses with little eccentricity and vice versa. This fact is illustrated in
Figure 9.

4 Distortion of the rectangular Lattice

Throughout this section let us assume that δ, k ∈ R, δ, k ≥ 1. In the last
sections we created lattices by diagonal distortion, starting with the unit
vectors. Therefore, our resulting lattices inherited the property that the
generating matrix contained vectors of equal length. Hence, the next step
is to apply the method of diagonal distortion to a rectangular lattice Λ =
1√
k
· Z ×

√
k · Z with V ol(Λ) = 1. We define the distortion matrix for the

rectangular lattice in the following way.

Mδ,k := Md ∗
( 1√

k
0

0
√
k

)
=

1

2
√
k

( √
δ + 1√

δ
k(
√
δ − 1√

δ
)√

δ − 1√
δ

k(
√
δ + 1√

δ
)

)
.

Properties. For (δ, k) ∈ R+ × R+ we state the following properties of Mδ,k,
which are easily verified.

M1,1 = I2 (4.1)

Mδ1·δ2,k1·k2 = (Mδ1,1 ∗Mδ2,1) ∗ (M1,k1 ∗M1,k2) (4.2)

M1/δ,1/k = M−1
δ,1 ∗M−1

1,k (4.3)
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Figure 9: Starting from the integer lattice the packing density first gets
better until we are in the hexagonal case and decreases afterwards as δ

grows (red). The ratio of the axis of the packing ellipse behaves conversely.

We note that the order in Equations (4.2) and (4.3) is important. In (4.2)
the order can be changed within the brackets.

5 The problem of finding the shortest Vector

The main problem for the packing and covering problem always is to find a
reduced basis, i.e. finding vectors of shortest length. This problem is rather
easy to solve for Mδ,1, but if we have k > 1 we get into some trouble. The big
issue is that all of a sudden, arbitrary linear combinations of our generating
vectors may become shorter than the vectors contained in the matrixMδ,k>1.
Thus let us compare the norm of the first vector (which is by assumption not
longer than the second vector) to an arbitrary linear combination of the two
generating vectors.

For further investigations we set

v1 = v1(δ, k) =
1

2
√
k

( √
δ + 1√

δ√
δ − 1√

δ

)
, v2 = v2(δ, k) =

1

2
√
k

(
k(
√
δ − 1√

δ
)

k(
√
δ + 1√

δ
)

)
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and
Mδ,k = (v1, v2).

Let m ∈ Z\{0}, n ∈ Z, k ≥ 1. For growing δ there will be integer linear
combinations ‖−m · v1 + n · v2‖ which will provide the shortest vector in
the lattice. The minus sign is chosen on purpose and as by the following
computations we will see that we only need to consider points in the second
and fourth quadrant. The inequality

‖−m · v1 + n · v2‖ ≤ ‖v1‖
has the solutions

δ ≥
√
(kn +m)2 − 1√
1− (kn−m)2

(5.1)

and

δ ≤ −
√

(kn +m)2 − 1√
1− (kn−m)2

.

As we want the distortion parameter δ > 0, we are only interested in the
positive solution given by equation (5.1). The term under the root of the
numerator is non-negative if (kn +m)2 ≥ 1 and the denominator is defined
if (kn−m)2 < 1. This results in

m

n
− 1

n
< k <

m

n
+

1

n
for n > 0

respectively
m

n
+

1

n
< k <

m

n
− 1

n
for n < 0.

As k ≥ 1 by assumption, we see that the signs ofm and n have to be the same,
which means that only lattice points in the second and fourth quadrant have
the potential to get closer to the origin than the point which is reached from
the origin by v1. This seems quite reasonable, as we always push the points
further into the first and third quadrant. Hence, by symmetry with respect
to the origin, we may only have a look at points in the second quadrant.

We have seen, that for k ≥ 1 there are integers m,n such that

‖−m · v1 + n · v2‖ ≤ ‖v1‖,
but it is not guaranteed that there are no other linear combinations which
are shorter, i.e. there may exist integers j, i such that

‖−i · v1 + j · v2‖ ≤ ‖−m · v1 + n · v2‖ ≤ ‖v1‖,
for suitable δ.

For further investigations, it will be useful to think of m, n, i and j as
pairs of numbers, i.e. (m,n) and (i, j).
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Definition 5.1. Let v1, v2 ∈ R2. We say that an integer linear combination
has symbol (m,n) ∈ Z× Z and identify −m · v1 + n · v2 with (m,n). If

‖−i · v1 + j · v2‖ < ‖−m · v1 + n · v2‖.

holds, we call (i, j) shorter than (m,n) and will write ‖(i, j)‖ ≤ ‖(m,n)‖.

For δ = 1 the shortest symbol is always given by (1, 0) and (−1, 0) re-
spectively. Actually, setting (m,n) = (1, 0) in Equation (5.1) leads to an
indefinite expression. However, by rewriting (5.1) as

δ
√

1− (kn−m)2 =
√

(kn+m)2 − 1 (5.2)

and setting δ = 1, we see that the last equation holds for (m,n) = (1, 0) and
that (5.2) is a reinterpretation of (5.1). Alternatively, we could use (1, ε) in
Equation (5.1) and let ε tend to 0 and come up with δ = 1.

We also know that sgn
(
m
n

)
= 1 is a necessary condition for ‖(m,n)‖ ≤

‖(1, 0)‖. A simple calculation shows that ‖(m,n)‖ ≤ ‖(t ·m, t ·n)‖ for |t| ≥ 1.
From this we can conclude, that if we think of the pair (m,n) as the fraction
m
n
, this fraction has to be fully reduced, i.e. gcd(m,n) = 1. This means that

our problem has now turned into a number theoretical problem. Hence, in
the upcoming section we will take a short excursion into the field of number
theory, but before that we compare ‖(i, j)‖ to ‖(m,n)‖.

Lemma 5.2. Let

v1 =
1

2
√
k

( √
δ + 1√

δ√
δ − 1√

δ

)
, v2 =

1

2
√
k

(
k(
√
δ − 1√

δ
)

k(
√
δ + 1√

δ
)

)
.

Let m ∈ N\{0}, n ∈ N, k ≥ 1 and δ ≥ 1. If

‖(m,n)‖ < ‖(1, 0)‖

then
δ > 1

and for i ∈ N, j ∈ N and i
j
6= m

n

‖(i, j)‖ = ‖(m,n)‖

if, and only if

δ2 =
(i+ kj)2 − (m+ kn)2

(m− kn)2 − (i− kj)2
.
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Also,

‖(i, j)‖ < ‖(m,n)‖ ⇔ δ2 >
(i+ kj)2 − (m+ kn)2

(m− kn)2 − (i− kj)2

and

‖(i, j)‖ > ‖(m,n)‖ ⇔ δ2 <
(i+ kj)2 − (m+ kn)2

(m− kn)2 − (i− kj)2
.

Proof. The first part of the proof is obvious. If δ = 1, then ‖(1, 0)‖ ≤
‖(m,n)‖ for all (m,n) ∈ Z × Z, (m,n) 6= (0, 0) and the statement follows.
The rest follows by direct calculation and is left to the interested reader.

Remark. In [8, p.13] Edelsbrunner and Kerber state that the one-parameter
family introduced in Equation (3.1), contains the optimal lattices for covering
in dimension 2,3,4 and 5 and the optimal lattices for packing in dimension
2 and 3 but misses the optimal lattices in higher dimensions. They state
the open problem of extending their one-parameter family to a two or more
independent parameter family. For dimension d = 2 the matrices Mδ,k pro-
duce such a two-parameter family of lattices by identifying a lattice via the
generator matrix Mδ,k.

Φ: R+ × R+ → SL2(R)

(δ, k) 7→ Mδ,k

This family has the properties

Φ(1, 1) = I2

Φ(δ1δ2, k1k2) =
(
Φ(δ1, 1)Φ(δ2, 1)

)(
Φ(1, k1)Φ(1, k2)

)

Φ(1/δ, 1/k) = Φ−1(δ, 1)Φ−1(1, k)

which are equivalent to the properties described in (4.1), (4.2) and (4.3).

Remark. We state it as an open problem whether in dimension higher than 2
the problem can be solved in a similar way. In 3 dimensions for example, it
might be enough to divide the space into the x-y-plane, the y-z-plane and the
z-x-plane and have a distortion parameter in each of the planes. In addition,
using two more parameters (k1, k2) to cover the cases where the generating
vectors are of different lengths might already describe all possible geometric
aspects of three dimensional lattices.

We recall that the distortion matrix is given by

Mδ,k =
1

2
√
k

( √
δ + 1√

δ
k(
√
δ − 1√

δ
)√

δ − 1√
δ

k(
√
δ + 1√

δ
)

)
. (5.3)
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As already discussed, we are in the uncomfortable situation that as δ grows
the vectors contained in our matrix are no longer a reduced basis for our
lattice. In order to solve the packing problem, we need to find the shortest
vector in our lattice and the packing radius is given by half of the length
of this vector. Hence, we need to find integer linear combinations which
produce this vector from our two starting vectors v1 and v2.

Lemma 5.3. Let Mδ,k be the lattice generating matrix with 0 < k < ∞
fixed and let ṽ = ṽ(δ) be the shortest vector in the lattice. Then the packing
density is given by

ρk(δ) =
π

4
‖ṽ‖2. (5.4)

Proof. The packing radius is given by half of the Euclidean norm of the
shortest possible vector [7].

Lemma 5.4. Let Mδ,k be the lattice generating matrix with 0 < k < ∞ fixed
and let ρk(δ) be the sphere packing density of the lattice, then

lim
δ→∞

ρk(δ) = 0 ⇔ k ∈ Q. (5.5)

Proof. Let k = p′

q′
with p′, q′ ∈ Z\{0} fixed and sgn(p

′

q′
) = 1, then

lim
δ→∞

ρk(δ) = lim
δ→∞

π

4
‖(p, q)‖2

= lim
δ→∞

π

4

1

4k

∣∣∣∣∣

∣∣∣∣∣−p

( √
δ + 1√

δ√
δ − 1√

δ

)
+ qk

( √
δ − 1√

δ√
δ + 1√

δ

)∣∣∣∣∣

∣∣∣∣∣

2

= lim
δ→∞

π

4

1

4k

[(
(−p+ qk)

√
δ + (−p− qk)

1√
δ

)2

+

(
(−p+ qk)

√
δ − (−p− qk)

1√
δ

)2
]

= lim
δ→∞

π

4

1

2k

[
(−p+ q · k)2δ + (−p− q · k)21

δ

]

= lim
δ→∞

π

4

q

2p

[
(−p+ q

p′

q′
)2δ + (−p− q

p

q
)2
1

δ

]

If we pick p = t · p′ and q = t · q′, t ∈ R we get

lim
δ→∞

ρk(δ) = lim
δ→∞

π

4

q

2p

[
(−2p)2

1

δ

]

= lim
δ→∞

π

4

2pq

δ
= 0.
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Corollary 5.5. The norm of a linear combination of the vectors given by the
matrix Mδ,k tends to zero if, and only if, the symbol of the linear combination
represents the parameter k with 0 < k < ∞, i.e. if the symbol of the linear
combination is given by (p, q), then the norm of this linear combination tends
to zero if, and only if k = p

q
.

lim
δ→∞

‖(p, q)‖ = 0 ⇔ k =
p

q

Proof. See proof of Lemma 5.4.

Lemma 5.6. Let k ∈ N, k > 0 and δ ≥ 1. Then the packing density ρk(d)
of the lattice generated by the matrix Mδ,k is given by

ρk(δ) =

{
π
4
‖(1, 0)‖2, δ ≤

√
4k2 − 1

π
4
‖(k, 1)‖2,

√
4k2 − 1 ≤ δ

. (5.6)

Proof. We will show that

δ2 < 4k2 − 1 ⇒ ‖(1, 0)‖ < ‖(m,n)‖

for all m,n ∈ N and that

δ2 > 4k2 − 1 ⇒ ‖(k, 1)‖ < ‖(m,n)‖

for all m,n inN with m
n
6= k

1
.

We assume ‖(1, 0)‖2 > ‖(m,n)‖2. Then we have

(−1 + 0 · k)2δ + (1 + 0 · k)21
δ
> (−m+ n · k)2δ + (m+ n · k)21

δ
⇔ δ2 + 1 > (nk −m)2δ2 + (m+ nk)2

⇔ δ2
(
1− (nk −m)2

)
> (m+ nk)2 − 1

We have 3 cases to consider.
Case 1. If 1− (nk −m)2 < 0, we get

δ2 <
(m+ nk)2 − 1

1− (nk −m)2
< 0

which is not possible.
Case 2. If 1− (nk −m)2 > 0 we get

(nk −m)2 = 0
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which is only possible for k = m
n

which implies that m = k and n = 1 as
gcd(m,n) = 1 is necessary and k ∈ N. By Lemma 5.2 we know that

‖(k, 1)‖ < ‖(1, 0)‖ ⇔ δ2 >
√
4k2 − 1.

Case 3. If 1− (nk −m)2 = 0 is not possible as

δ2
(
1− (nk −m)2

)
> (m+ nk)2 − 1

would imply that
0 > (m+ nk)2 − 1.

But, we know that k ∈ N, k ≥ 1 and nk = m+ 1. Thus, 0 > (2m+ 1)2 − 1.
This shows that

δ2 < 4k2 − 1 ⇒ ‖(1, 0)‖ < ‖(m,n)‖.
Next, we show that

δ2 > 4k2 − 1 ⇒ ‖(k, 1)‖ < ‖(m,n)‖.
for all m

n
6= k

1
. We assume that

‖(k, 1)‖ ≥ ‖(m,n)‖
which is equivalent to

4k2 − 1 ≥ 4k2 − (m+ nk)2

(nk −m)2
≥ δ2

as (m+ nk)2 ≥ 1 and (nk −m)2 ≥ 1. Hence, the statement follows and the
packing density is given by Equation (5.6).

Remark. The author conjectures that Farey sequences and continued frac-
tions will help us to understand, how the sphere packing density will behave
for the lattices generated by Mδ,k for 0 < k < ∞ fixed and δ ≥ 1 growing.
Therefore, we will give some definitions from the field of number theory and
provide an example.

Definition 5.7. Let a0 ∈ Z, a1, . . . , an ∈ N \ {0}. We call

a0 +
1

a1 +
1

a2+
1

...+ 1
an

a finite regular continued fraction and will write [a0; a1, . . . , an].
By [a0; a1, a2, . . . ] we denote infinite regular continued fractions. We call

[a0; a1, . . . , ak] the k-th convergent. In the finite case we have the restriction
k ≤ n.
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Figure 10: The relevant points of the lattice M0,12/5 are marked in different
colors. The points marked black are “counterparts” of the two points

marked blue. For the plot we have scaled the lattice to have determinant
1
60

= 1
12·5 .

Definition 5.8. The Farey sequence Fn of order n is the ascending sequence
of fully reduced fractions between 0 and 1 whose denominators do not exceed
n.

Definition 5.9. The mediant p′′

q′′
of the fractions p

q
and p′

q′
is defined as

p′′

q′′
:=

p+ p′

q + q′
.

Example. We give the following example without proofing the validity of the
statements. Assuming the correctness of the example, the packing density
for lattices derived by distorting a rectangular lattice is strongly connected
with continued fraction representation and convergents and hence, Farey
sequences.

We set k = 12/5 = [2; 2, 2] and inspect the lattice Mδ,k, i.e. we are
interested in the shortest vector.

As we can see in Figures 10 and 11 we only have to take points into
account which are relatively close to the second median. This is due to
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Figure 11: Zoom into the second quadrant of the lattice M1,12/5.

the fact that we push our points away from the diagonal. As we always
normalise our lattice to have determinant 1, the points move towards the
first median as they slide away from the second median. The green marker
gives us the first reference for the packing radius. The two blue markers are
the linear combinations (2, 1) and (5, 2) which interpreted as fractions have
the continuous fraction representation [2] and [2; 2], hence they are the two
convergents of k = 12/5 = [2; 2, 2]. The two points marked black have the
same distance from the second median as the their blue “counterpart”, but
their distance to the origin is of course greater, hence they do not play a
role for the packing problem. Still we should note that the symbols of these
linear combinations are (10, 4) (which is not fully reduced) and (7, 3). We
see that k is the mediant of (2, 1) and (10, 4), as well as of (5, 2) and (7, 3).
Now as δ grows, we will find that the linear combination (2, 1) will provide
the shortest vector. Distorting the lattice even more will lead to the result
that (5, 2) will be closest to the origin and finally (12, 5) will slide along the
second mediant and approach the origin, leaving no other points a chance
to provide a shorter vector. The packing density will behave as shown in
Figure 12. As done in [8] we can express the packing density as a piecewise
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function, depending on δ.

ρk(δ) =





π
4
· ‖(m0, n0)‖2, δ ≤

√
(m1+kn1)2−(m0+kn0)2

(m0−kn0)2−(m1−kn1)2

π
4
· ‖(mι, nι)‖2, Aι ≤ δ ≤ Bι

π
4
· ‖(m3, n3)‖2, else

where

Aι =

√
(mι + knι)2 − (mι−1 + knι−1)2

(mι−1 − knι−1)2 − (mι − knι)2

Bι =

√
(mι+1 + knι+1)2 − (mι + knι)2

(mι − knι)2 − (mι+1 − knι+1)2

k = 12/5, ι ∈ {1, 2} and

(m0, n0) = [ ] = (1, 0)

(m1, n1) = [2] = (2, 1)

(m2, n2) = [2; 2] = (5, 2)

(m3, n3) = [2; 2, 2] = (12, 5).

Remark. A strong indicator that Farey sequences and continued fraction rep-
resentation will be needed in order to understand which linear combination
of the vectors v1 and v2 provided by the distortion matrix Mδ,k will provide
the shortest possible vector is that both concepts provide a way of labelling
fully reduced fractions. Hence, this is also a proper way of labelling pairs of
numbers with greatest common divisor 1, which is a necessary condition for
solving the packing problem using integer linear combinations of v1 and v2.
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(a) The packing radius for growing δ.
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(b) The packing radius for growing δ with
logarithmic scale on the δ-axis.
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(c) Same as above but with larger range of
δ.
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(d) Same as above but with larger range
of δ. Again logarithmic scale on abscissa.

Figure 12: On the abscissa we have δ running and on the ordinate we have
the corresponding packing radius.
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Frame Theory

The following part mainly relies on [17]. The upcoming section 6 should be
seen as a short motivation for time-frequency analysis and the subsequent
sections, where we want to introduce Gabor frames.

6 The Short-Time Fourier Transform

The classical Fourier Transform tells us which frequencies occur in a signal
(function) in total, but we have no information at what time they occur and
at which amplitude. This is due to the fact, that we transform the whole
signal at once. The short-time Fourier transform (STFT) only considers
short time intervals and performs a Fourier transform of the signal in this
shorter interval. This is done by choosing an appropriate window function,
sometimes only called window, which cuts out pieces of the signal. Some
qualities one may expect from the window could be smoothness, fast decay
or even compact support, i.e. the window function should be well localised.

Remark. The Fourier transform has become a standard tool in mathemat-
ics as well as in most natural sciences such as physics, chemistry (see e.g.
[14]) and not least in engineering. Hence, we do not introduce the Fourier
transform and its practical properties. For details on the classical Fourier
transform see e.g. [15], [17] or [21]. The only thing we clarify about the
Fourier transform is the normalisation we use, i.e.

Ff(ω) = f̂(ω) =

∫

Rd

f(t)e−2πiω·t dt

and hence, Plancherel’s theorem takes the following form

‖f‖2 = ‖f̂‖2.

Definition 6.1 (Translation and Modulation Operators). For x, ω ∈ Rd we
define the operators

Txf(t) = f(t− x)

and
Mωf(t) = e2πiω·tf(t),

which we will call translation and modulation operator respectively. The
compositions of the form TxMω and MωTx are called time-frequency shifts.
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Note that the translation and modulation operator do not commute in
general, but that we have the following relation

TxMω = e−2πiω·xMωTx. (6.1)

From this we can immediately conclude that Tx and Mω commute if and only
if x · ω ∈ Z. Subsequently we will often use the notation π(λ) = π(x, ω) :=
MωTx with λ = (x, ω) ∈ R2d.

Definition 6.2 (Short-Time Fourier Transform). For a fixed, non-zero func-
tion g ∈ L2(Rd), called the window function, we can define the short-time
Fourier transform (STFT) of a function f ∈ L2(Rd) with respect to the
window function g as

Vgf(x, ω) =

∫

Rd

f(t)g(t− x)e−2πiω·t dt, for x, ω ∈ Rd. (6.2)

The definition was given for L2(Rd), but we will introduce a more general
setting for time-frequency analysis right away. For the following definitions
see also [9] and [10].

Definition 6.3. A weight function v is a non-negative, locally integrable
function on R2d. A weight function v on R2d is called submultiplicative, if

v(z1 + z2) ≤ v(z1)v(z2)

for all z1, z2 ∈ R2d. A weight function m on R2d is called v-moderate, if

m(z1 + z2) ≤ Cv(z1)m(z2)

for all z1, z2 ∈ R2d, C < ∞ and a weight function v.

Definition 6.4 (Modulation Space). Let m(x, ω) be a v-moderate weight
function on R2d, let 1 ≤ p, q ≤ ∞ and let g ∈ S(Rd) be a fixed, non-zero
window in the Schwartz space, then we can define a norm via

‖f‖Mp,q
m

=

(∫

Rd

(∫

Rd

|Vgf(x, ω)|pm(x, ω)p dx

)q/p

dω

)1/q

.

An element f ∈ S ′(Rd) belongs to the modulation space Mp,q
m (Rd) if its norm

is finite, hence, ‖f‖Mp,q
m

< ∞.

Remark. Standard weights on R2d are typically of polynomial type, e.g. (1+
|z|)s where z = (x, ω) or the equivalent weights (1+ |x|+ |ω|)s or (1+ |z|2)s/2.

38



Most often in this work we will use the standard Gaussian

g0 = 2d/4e−πx2

as our window function, as ‖g0‖L2 = 1.

Definition 6.5 (Feichtinger’s Algebra). Let g be the standard Gaussian and
consider the unweighted space M1,1

1 (Rd) = M1(Rd). Then

‖f‖S0
:= ‖f‖M1 = ‖Vgf‖L1.

The space of all functions f for which this norm is finite is called Feichtinger’s
Algebra and is usually denoted by S0(R

d). Hence we define S0(R
d) in the

following way.
S0(R

d) := {f ∈ L2(Rd) | ‖Vgf‖L1 < ∞}

Remark. Once S0 is defined in the above sense, the space remains invariant
under the choice of any other non-zero window g ∈ S0. The space is also
invariant under the Fourier transform, meaning that if f ∈ S0 then also
f̂ ∈ S0 with ‖f‖S0

= ‖f̂‖S0
. The same is true for time-frequency shifts of f ,

meaning MωTxf ∈ S0 for all (x, ω) ∈ R2d. Further on the Schwartz space S is
contained densely in S0. Consequently the dual space of S0 denoted by S ′

0 is
contained in S ′. By using so-called Banach-Gelfand triples, i.e. the Banach-
Gelfand triple (S0, L

2,S ′
0), we can extend the STFT and the inner product

from L2 to S ′
0, which is a (the) suitable space to do time-frequency analysis.

For further notes on Banach-Gelfand triples see ?? (reference needed).

Remark. Having extended the STFT and the inner product to S ′
0 by means

of Banach-Gelfand triples, we can write the STFT as defined in (6.2) in the
following compact form for all f ∈ S ′

0 and g ∈ S0 (w.l.o.g. we may think of
g as the standard Gaussian as mentioned above).

Vgf(λ) = 〈f, π(λ)g〉, λ = (x, ω) ∈ R2d. (6.3)

This generalises the definition of the STFT as given in Definition 6.2, where
we only defined the STFT for f, g ∈ L2(Rd).

Remark. Feichtinger’s Algebra S0 is the smallest meaningful setting for the
STFT whereas its dual space is the largest possible setting, meaning that the
STFT exists for all f ∈ S ′

0 if we choose a window g ∈ S0. However, we only
wanted to briefly mention this most general setting, but as we do not want
to go into technical details, e.g. extending the inner product, we will use a
slightly smaller space for further investigations, namely L2 ⊂ S ′

0 (w∗-dense)
and its dual which of course is also L2.
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Our next aim is to gain an inversion formula for the STFT. We start with
some preparations.

Theorem 6.6 (Orthogonality relations for the STFT). Let f1, f2,∈ L2(Rd)
and g1, g2 ∈ L2(Rd), then Vgjfj ∈ L2(R2d) for j = 1, 2 and the following
relation holds.

〈Vg1f1, Vg2f2〉 = 〈f1, f2〉〈g1, g2〉

Proof. A detailed proof can be found in [17, 3.2. p.42]. It makes use of
the fact that L1 ∩ L∞(Rd) ⊂ L2(Rd) densely and picks the windows from
this dense subspace. Then Parseval’s formula can be applied and Fubini’s
Theorem and the density argument from before complete the proof.

Corollary 6.7 (Inversion Formula for the STFT). Let g, γ ∈ L2(Rd) and let
〈g, γ〉 6= 0. Then for all f ∈ L2(Rd) we have

f =
1

〈g, γ〉

∫

R2d

Vgf(x, ω)MωTxγ dωdx. (6.4)

Proof. Again we will follow the proof as given in [17]. As a consequence
of Theorem 6.6 we know that ‖Vgf‖L2(R2d) = ‖f‖L2(Rd)‖g‖L2(Rd), i.e. Vgf ∈
L2(R2d). Consequently

f̃ =
1

〈g, γ〉

∫

R2d

Vgf(x, ω)MωTxγ dωdx

is well-defined in L2(Rd). Using 6.6 once more, we see that

〈f̃ , h〉 = 1

〈g, γ〉

∫

R2d

Vgf(x, ω)〈h,MωTxγ〉 dωdx

=
1

〈g, γ〉〈Vgf, Vγh〉 = 〈f, h〉.

Thus we know that f̃ = f and the proof is finished.

Remark. Once more one can think of both g and γ as the standard Gaussian.

7 Discrete Time-Frequency Representations:

Gabor Frames

This section mainly relies on [17] again as well as on [6].
In the previous section we have discussed how to recover a given function

from an expansion over an uncountable set of time-frequency shifts of given
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window functions g and γ. However, L2(Rd) is a separable Hilbert space
(see e.g. [31]) and hence, it is admissible to expect that it suffices to find
a countable set of time-frequency shifted windows in order to represent a
function f ∈ L2(Rd). A first attempt to achieve a discrete representation
of f could be to replace the integrals in the inversion formula (6.4) by a
Riemannian sum like

f =
∑

k∈Zd

∑

n∈Zd

ck,nTαkMβng

∑

k∈Zd

∑

n∈Zd

〈f, TαkMβnγ〉TαkMβng

for suitable windows (e.g. the Standard Gaussian) g, γ ∈ L2(Rd) and α, β > 0.
The special case g = γ = g0 = e−πx2

and α = β = 1 was investigated by
D. Gabor as early as 1946 (see [12]). Therefore expansions as above are
often referred to as Gabor expansions and the coefficients are called Gabor
coefficients. We will call the elements of the set {TαkMβng} time-frequency
atoms and a first observation yields, that these atoms are not orthogonal in
general. Hence the question arises in which sense the above series converges.
Another main part of this work will deal with the choice of the parameters
α and β, which are called the lattice parameters of the separable lattice
αZd × βZd.

Remark. Although many statements are formulated for Rd, we will mostly
focus on the special case d = 1. Hence, whenever this leads to simplifications
in the proofs, we will simply drop the dimension, even if we could formulate
the statement for dimensions higher than 1.

Definition 7.1. Let H be a separable Hilbert space. A labelled family
{ej ∈ H | j ∈ J}, with J being an index set, is called a frame, if there exist
constants 0 < A ≤ B such that for all f ∈ H

A‖f‖2 ≤
∑

j∈J
|〈f, ej〉|2 ≤ B‖f‖2. (7.1)

Any two constants A,B satisfying (7.1) are called frame bounds. If we can
choose A = B the frame is called tight.

Example.

• Any orthonormal basis is a tight frame with frame bounds A = B = 1.

• The union of two (not necessarily different) orthonormal bases is again
a tight frame, but with frame bounds A = B = 2.
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• The set resulting from adding L arbitrary unit vectors to an orthonor-
mal basis is a frame (not tight) with frame bounds A = 1 and B = L+1.
Note that if the L unit vectors form an orthonormal basis again, then
the frame is tight as A = B = 2, but still, according to the definition,
A = 1 and B = L+ 1 are also frame bounds.

As we can see already from these rather trivial examples, frames are a
generalisation of the concept of orthonormal bases. In general frames lack
orthogonality as well as linear independence. In fact we can think of a frame
as a basis with additional elements added. One can easily check, that E =
{ej | j ∈ J} has to span the separable Hilbert space H because otherwise
there exists an element f ∈ E⊥, thus A would have to be 0 in order to fulfil
(7.1) and hence E cannot be a frame by definition.

What we also see from the examples above is that the frame bounds
are not unique. The supremum over all lower frame bounds is usually called
optimal lower frame bound and analogously the infimum over all upper frame
bounds is called optimal upper frame bound. They are indeed frame bounds
and are the objects of interest further on. Hence, when we talk about upper
and lower frame bound, we can think of the optimal upper and lower frame
bound. The ratio Q = B/A of (optimal) upper and lower frame bound is
called the frame condition number. Clearly Q ≥ 1 with equality if and only
if the frame is tight.

Definition 7.2. Let H be a Hilbert space, {ej ∈ H | j ∈ J} be a labelled
family for some index set J . We define the analysis operator (or coefficient
operator) C by

Cf = {〈f, ej〉 | j ∈ J}, f ∈ H.

Let I ⊂ J finite. For a finite sequence c = (ci)i∈I , ci ∈ C we define the
synthesis operator (or reconstruction operator) D by

Dc =
∑

i∈I
ciei ∈ H.

The frame operator S is then defined on H by

Sf =
∑

j∈J
〈f, ej〉ej .

Remark. In the upcoming section we will construct frames using window
functions. We will sometimes write Sα,β

g,γ or Sα,β
g = Sα,β

g,g or use parts of
this notation whenever we want to emphasize the dependence of the frame
operator on the window or lattice parameters.
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We state the following lemma summing up important properties of the
frame operator S without proof.

Proposition 7.3. Let {ej | j ∈ J} be a frame for H. Then the following
holds.

(a) The analysis operator C is a bounded operator from H to ℓ2(J) with
closed range.

(b) The analysis operator C and the synthesis operator D are adjoint to
each other. Hence, D extends to a bounded operator from ℓ2(J) to H.

(c) The frame operator S = C∗C = DD∗ = DC maps H onto H. It is a
positive invertible operator. Let 0 < A ≤ B be the frame bounds, then

AIH ≤ S ≤ BIH

where IH is the identity operator on H. For the inverse operator S−1

the following inequality holds

B−1IH ≤ S−1 ≤ A−1IH.

(d) The optimal frame bounds are given by

B = ‖S‖Op and A = ‖S−1‖−1
Op

where ‖.‖Op is the operator norm.

Proof. As mentioned we omit the proof. A proof can be found in [17, Prop.
5.1.1. p.86-87].

Remark. From 7.3 (c) we see that {ej | j ∈ J} is a tight frame if and only if
S = AIH, a multiple of the identity.

Corollary 7.4. Let {ej | j ∈ J} be a frame with frame bounds 0 < A ≤ B,
then the set {S−1ej | j ∈ J} is a frame with frame bounds 0 < B−1 ≤ A−1.
We call the latter frame the dual frame of the first frame (and vice versa).
For every f ∈ H we can find an expansion of the form

f =
∑

j∈J
〈f, S−1ej〉ej =

∑

j∈J
〈f, ej〉S−1ej. (7.2)

The convergence in equation (7.2) is unconditional in H for both sums.

Proof. See [17, Prop. 5.1.4., p.89].
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Note that the convergence in the above corollary is unconditional. This
is quite useful as we do not have to care about convergence questions when
relabelling our frame elements as well as when interchanging summation and
action of linear operators.

We are now equipped with the tools that we need in order to begin dis-
cretising our time-frequency representation and get a bit closer to the very
heart of this work.

Definition 7.5. Let g ∈ L2(Rd) be a (non-zero) window function and let
α, β > 0 be lattice parameters (for the separable lattice αZd×βZd). The set
of time-frequency shifted version of g,

G(g, α, β) = {TαkMβng | k, n ∈ Zd},

is called a Gabor system. If G(g, α, β) is a frame for L2(Rd), it is called a
Gabor frame or Weyl-Heisenberg frame. The Gabor frame operator is then
given by

Sf =
∑

k∈Zd

∑

n∈Zd

〈f, TαkMβng〉TαkMβng

=
∑

k∈Zd

∑

n∈Zd

Vgf(αk, βn)MβnTαkg.
(7.3)

In equation (7.3) we are in the comfortable situation that the order of the
time-frequency shifts is not important as the additional phase factor e−2πixω

resulting from TxMω = e−2πixωMωTx appears linearly and conjugate-linearly
and hence cancels. Also, due to the unconditional convergence of the frame
operator, the order of summation is of no importance. In Corollary 7.4 we
have seen how to expand f ∈ L2(Rd) using a frame and its dual. The next
proposition will do the same for Gabor frames and we will get an insight on
how the dual window looks.

Proposition 7.6. Let G(g, α, β) be a frame for L2(Rd). Then there exists a
window function γ ∈ L2(Rd) called the dual window to g, such that G(γ, α, β)
is the dual frame to G(g, α, β) and hence for f ∈ L2(Rd) we have the following
expansion

f =
∑

k∈Zd

∑

n∈Zd

〈f, TαkMβng〉TαkMβnγ

=
∑

k∈Zd

∑

n∈Zd

〈f, TαkMβnγ〉TαkMβng.
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The convergence is unconditional in L2(Rd) and further on we have the fol-
lowing inequalities

A‖f‖2L2 ≤
∑

k∈Zd

∑

n∈Zd

|Vgf(αk, βn)|2 ≤ B‖f‖2L2,

B−1‖f‖2L2 ≤
∑

k∈Zd

∑

n∈Zd

|Vγf(αk, βn)|2 ≤ A−1‖f‖2L2

Proof. By straight forward computation we see that the Gabor frame oper-
ator commutes with time-frequency shifts. Let f ∈ L2(Rd), r, s ∈ Zd, then

(TαrMβs)
−1 S TαrMβs f

=(TαrMβs)
−1
∑

k∈Zd

∑

n∈Zd

〈TαrMβsf, TαkMβng〉TαkMβng

=
∑

k∈Zd

∑

n∈Zd

〈f, (TαrMβs)
−1 TαkMβng〉 (TαrMβs)

−1 TαkMβng

=
∑

k∈Zd

∑

n∈Zd

〈f, Tα(k−r)Mβ(n−s)g〉Tα(k−r)Mβ(n−s)g

=Sf

after rearranging the indices which is not a problem because of the uncondi-
tional convergence of the sum. Note that the phase factor that should appear
following (6.1) as a result of interchanging translation and modulation can-
cels as it appears both linearly and conjugate linearly (we already used this
argument once in (7.3)). From this we can conclude that the inverse frame
operator S−1 also commutes with time-frequency shifts and thus the elements
of the dual frame are

S−1 (TαkMβng) = TαkMβnS
−1g.

We set γ = S−1g and call it the dual window to g. For the rest we refer to
Corollary 7.4 and [17].

As a corollary of the previous results we get

Corollary 7.7. If G(g, α, β) is a frame for L2(Rd) then the inverse frame
operator is given by

S−1
g f = Sγf =

∑

k∈Zd

∑

n∈Zd

〈f, TαkMβnγ〉TαkMβnγ,

where γ = S−1g ∈ L2(Rd) is the dual window to g.
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Proof. The proof follows by applying Proposition 7.6 and Lemma 7.3 (c).

As a conclusion from S−1
g = Sγ we get that the inverse frame operator is

already determined by the dual window γ. Combining that with Proposition
7.6 we know that a series expansion of f is given by

f =
∑

k∈Zd

∑

n∈Zd

Vgf(αk, βn)MβnTαkγ. (7.4)

This means that we can reconstruct our function f from samples of its STFT
with respect to g and the dual window γ on a discrete and countable set αZd×
βZd ⊂ R2d with coefficients in ℓ2(Z2d). Furthermore, we can conclude that it
is enough to solve the equation Sγ = g in order to gain the reconstruction in
(7.4) which saves us a lot of trouble, as we do not have to solve the general

equation Sf = f̃ for each f we want to reconstruct via samples of the STFT.

Remark. As a final remark in this section we want to mention that the frame
operator depends on the window g as well as on the lattice parameters α and
β. So far we only considered separable lattices of the form αZd × βZd. The
corresponding lattice generating matrix hence would be a diagonal matrix.
Consequently in the upcoming part of this work we will start working with
non-separable lattices. That are lattices which generating matrix is a shear
matrix (upper/lower triangle matrix). We will also restrict ourselves to the
case d = 1 and g = g0 mostly.

8 A Remark on the Frame Constants

As the heart of this work will be the experimental comparison of the Gabor
frame constants with window g0 and the geometry of the lattice in the time-
frequency plane, we should briefly mention why the frame constants are of
such big interest. The purpose of Gabor frames is to have a reconstruction
method which is more stable under the influence of disturbances compared
to orthonormal basis. This is due to the overcompleteness of the system,
hence losing coefficients (information) does not necessarily imply, that we
are not able to reconstruct our function (signal) up to a bearable error. We
will introduce the frame algorithm which can be found in [17]. It is described
as a more convenient and efficient way of iterative construction compared to
series expansions, which needs the calculation of the dual window, which is
not always easy.

Algorithm. Given a relaxation parameter 0 < λ < 2/B, we set δ =
max{|1− λA|, |1− λB|} < 1. We start with f0 ≡ 0 and define the recursion
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formula
fn+1 = fn + λS(f − fn),

where S denotes the frame operator and f the function (signal) we want to
reconstruct. Then limn→∞ fn = f with a geometric rate of convergence,

‖f − fn‖ ≤ δn‖f‖. (8.1)

Remark. The reason why the reconstruction works is that f1 = λSf and
hence contains the frame coefficients as input.

We omit the proof of the convergence of the above algorithm, and refer
the interested reader to [17]. We want to mention the following. If λ is small,
then δ is rather large (close to 1), which results in slow convergence as can
be seen from (8.1). If we want to choose the parameter λ in an optimal way,
we have to set λ = λopt =

2
Aopt+Bopt

, which yields to

δ =
Bopt − Aopt

Bopt + Aopt
=

Bopt

Aopt
− 1

Bopt

Aopt
+ 1

=
Q− 1

Q+ 1
,

where Q is the frame condition number as introduced in section 7. This
means that the convergence speed of the above algorithm also relies on good
estimates on the frame bounds, which is a cumbersome problem. Conse-
quently in [17] it is suggested to combine the algorithm with acceleration
methods from numerical analysis found in e.g. [16] or [18]. Note that for a
tight frame, the iteration process is finished within one step. As we will see
in the following sections, there have already been observations that better
properties in the geometry lead to better frame bounds and hence, faster and
more stable reconstruction of signals. Nevertheless, there is not much the-
ory yet, describing the connection between geometric properties and frame
constants.
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From Gabor Frames to

Geometry

9 The Ambiguity Function

The following definitions can be looked up in [17].

Definition 9.1. The cross-ambiguity function of a function f ∈ L2(Rd) with
respect to a function g ∈ L2(Rd) is defined as

Agf(x, ω) =

∫

Rd

f
(
t+

x

2

)
g
(
t− x

2

)
e−2πiωt dt

=eπiωx Vgf(x, ω).

If f = g we speak of the ambiguity function and write Af(x, ω).

Definition 9.2. We say a function f ∈ L2(Rd) is ε-concentrated on a mea-
surable set Ω ⊂ Rd, if

‖f − f ·1Ω‖ =

(∫

Rd\Ω
|f(x)|2 dx

)1/2

≤ ‖f‖ · ε.

If 0 ≤ ε ≤ 1/2 we call suppε(f) = Ω the essential support of f . Ω is called
exact support if ε = 0 can be achieved.

Example. As an example we will compute the ambiguity function of the 1-d
standard Gaussian g0 = 21/4e−πx2

.

Ag0(x, ω) =

∫

R

g0

(
t +

x

2

)
g0

(
t− x

2

)
e−2πiωt dt

=

∫

R

21/4e−π(t+x/2)221/4e−π(t−x/2)2e−2πiωt dt

=
√
2

∫

R

e−2π(t2+x2/4)e−2πiωt dt

=
√
2 e−π x2

2

∫

R

1√
2
e−πt2e

−2πi ω√
2
t
dt

=e−π x2

2 · 2−1/4 · ĝ0
(
ω/

√
2
)

=e−π x2

2 · 2−1/4 · g0
(
ω/

√
2
)

=e−π x2

2 e−π(w/
√
2)2

=e−
π
2 (x2+ω2)
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Here ĝ0 denotes the Fourier transform of the standard Gaussian, which
is again the standard Gaussian, i.e. ĝ0(ω) = g0(ω). A proof for the Fourier
invariance of g0 can be found in [17, Lemma 1.5.1., p.17]. As can be seen from
Figure 13, the ambiguity function Ag0 is radial symmetric and the essential
support can be chosen as a disc for some ε > 0.
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-1

0

1

0.0

0.5

1.0

(a) 3-d plot of the ambiguity function of
g0.
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(b) Contour plot of the ambiguity func-
tion of g0.

Figure 13: The ambiguity function of g0.

Remark. The ambiguity function determines a function up to a phase factor,
meaning that Af = A(cf) for some constant c with |c| = 1. This property
also shows up when we try to recover the function from its ambiguity function.
Similar to the above example, we interpret the ambiguity function as the
Fourier transform of t 7→ f(t+ x/2)f(t− x/2), where x ∈ Rd is fixed. Then,
by the inversion formula for the Fourier transform, we can write

f(t+ x/2)f(t− x/2) =

∫

Rd

Af(x, ω)e2πitω dω.

For t = x/2 we have

f(x) =
1

f(0)

∫

Rd

Af(x, ω)eπixω dω (9.1)

for suitable f , i.e. for all f ∈ S(Rd), f(0) 6= 0. As mentioned Af = A(cf),
hence we actually do not have a unique solution as cf with |c| = 1 also is a
solution of (9.1) (see [17, p. 61-62]).
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We note from Definition 9.1 that the ambiguity function is closely related
to the STFT. Indeed they only differ by a phase factor. Most often one is
interested in the energy density which we call the spectrogram of the function
f (with respect to the window g ∈ L2(Rd) with ‖g‖ = 1). The spectrogram
is then defined as specgf(x, ω) = |Vgf |2. Hence specgf = |Agf |2 and the
essential supports of Vgf and Agf are the same, as by Theorem 6.6 ‖Vgf‖ =
‖Agf‖ = ‖f‖‖g‖. Consequently we conclude from the earlier example that
the essential support of the STFT of the standard Gaussian in the time-
frequency domain is a disc.

The Heisenberg uncertainty principle states that a function f ∈ L2(Rd)
cannot be arbitrarily well-concentrated in the time and the frequency domain
at the same time. It is also well-known that the (possibly translated and mod-
ulated) Gaussian minimises the Heisenberg uncertainty relation uniquely.
Hence, the conclusion is admissible that discs are the right domain to mea-
sure concentration in the time-frequency plane for the Gaussian.

Another import criterion for a Gabor system is the redundancy. The re-
dundancy describes the overcompleteness of the Gabor system and will be
exactly defined in the subsequent work. In [1] Dörfler and Abreu also con-
jecture that for given redundancy red > 1 the condition number of a Gabor
frame with Gaussian window g0 is optimal for the hexagonal lattice. This
has already (partially) been observed by Strohmer and Beaver (see [28]). In
their paper they show up some relation between the essential support of the
ambiguity function of a signal f and classical lattice packing in applications.
They state a problem for orthogonal frequency-division multiplexing (OFDM)
an efficient technology for wireless data transmission (see [35]). Back in 2003
this method had applications in audio broadcasting, digital terrestrial TV
broadcasting and broadband indoor wireless systems (see [5] and [23]). In
[28] it is stated that the OFDM on rectangular time-frequency lattices is not
optimal and a more general approach, the lattice-OFDM (LOFDM) is pro-
posed, using general time-frequency lattices. Their numerical investigations
show that the hexagonal lattice provides a better frame condition number
than a rectangular lattice when using a Gaussian window. However, at the
time of this work, no proof is known for this conjecture.

10 Connecting Frames and Geometry

From here on we restrict ourselves to the case with dimension d = 1. In the
following we will investigate some connections between Gabor frames and
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the related lattice given by a matrix

M =

(
a 0
s b

)

which already provides a reduced basis for 0 ≤ s ≤ b.
First we have to extend the definition of the frame operator (Definition

7.5) a bit, as we now want to deal with non-separable lattices.

Definition 10.1. Given a window function g ∈ L2(R), a lattice Λ = MZ2

with M =

(
a 0
s b

)
and lattice parameters a, b, s > 0 and h, k ∈ Z, the set

of time-frequency shifted versions of g,

G(Λ) = G(g, a, b, s) = {TahMbk+shg},

is called a Gabor system. If G(g, a, b, s) is a frame for L2(Rd) we call it a
Gabor frame. The Gabor frame operator is of the form

Sf =
∑

h

∑

k

〈f, TahMbk+shg〉TahMbk+shg

=
∑

h

∑

k

Vgf(ah, bk + sh)Mbk+shTahg.

In order to be a frame, the system has to fulfil the frame condition

A ‖f‖2 ≤
∑

h

∑

k

|Vgf(ah, bk + sh)|2 ≤ B ‖f‖2

for some constants A,B > 0.

That was the easy part of changes we have to make if we want to in-
vestigate non-separable Gabor frames numerically. Even though we want to
think of our windows and signals as continuous functions in L2(R), there is no
possibility to implement algorithms to investigate these signals without dis-
cretising everything. First of all we cannot implement algorithms for signals
of infinite signal length. Hence we have to set a maximal signal length L ∈ N,
which means that our signals are no longer in L2(R), but in L2 ([0, L)), hence
periodic with period length L. In a next step we need to sample our function
as well as the window, meaning we can only consider information at certain
points (in time). We have to take numerical incorrectness and machine pre-
cission into account, e.g. in MATLAB R2012 the numerical precission, found
via the command
>> eps
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is approximately 2.2204 · 10−16. Hence, we decide for an ε ∈ [10−16, 10−12]
and set our signal and window function equal to 0 outside their essential sup-
ports. Depending on the choice of ε the essential support for the standard
Gaussian g0 lies within [−3, 3] ⊂ suppε(g0) ⊂ [−3.5, 3.5]. If we want to use
a Gaussian window for implementation, we now need to periodise and sam-
ple it. A ready-to-use toolbox which can deal with all the above mentioned
issues when implementing time-frequency analysis is the LTFAT (see [27]).
Depending on the chosen signal length, our window as well as the signal are
no longer functions within L2(R), but vectors in CL. Consequently we also
need a discrete form of the Fourier transform. We will now introduce the
DFT (Discrete Fourier Transform) very quickly. For more details see [24],
[25] or [26].

Definition 10.2. The DFT of a vector f ∈ CL is given by

f̂(k) =
1√
L

L−1∑

l=0

f(l)e−2πik·l/L, k = 0, . . . , L− 1. (10.1)

Similarly the inverse DFT is given by

f̌(k) =
1√
L

L−1∑

l=0

f(l)e2πik·l/L, k = 0, . . . , L− 1. (10.2)

Remark. Actually the above defined transform is the unitary DFT. The factor
1√
L
is usually not in the definition of the DFT, instead there is a factor 1

L

in the formula for the inverse DFT. However, using this normalisation is
appropriate for our goals, as we want Fourier invariance of the standard
Gaussian.

As the nodes in the DFT are chosen equidistant and the signals are of
finite length L, they can be mapped to the torus and hence the nodes corre-
spond to the unit roots. Using this fact, the DFT can be implemented in a
way such that the number of operations is reduced from the order of O(n2)
to the order of O(n log(n)) (see [26]). Algorithms using this fact are called
Fast Fourier Transform (FFT). The FFT is already a built-in function in
MATLAB R2012.

Definition 10.3. The redundancy of a (discrete) Gabor system G(Λ) is given
by L/ det(Λ).

The redundancy of a Gabor system measures how many times more co-
efficients are computed, than are at least necessary in order to reconstruct
a signal properly. Choosing a lattice in the time-frequency plane leading
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to the critical density L/det(Λ) = 1 cannot provide a Gabor systems with
good time-frequency concentration, i.e. not with a Gaussian window, by the
Balian-Low Theorem (see [11] and [17]). Hence good time-frequency concen-
tration leads to redundant systems. The more redundant the system, the
easier is the reconstruction, but the greater is the computational effort. This
means we have to choose between reconstruction precision and computational
effort. For our computations we will usually use a redundancy between 1.5
and 4.

We have now discussed almost all tools we need in order to start our
experiments. There is one final remark we want to make. When working
with discrete signals of finite length L, there are some restrictions to our
lattice Λ we have to make, namely that Λ has to be a subgroup of the cyclic
group ZL ×ZL as a necessary condition for G(Λ) being a frame. I.e. we have
the following proposition which can be found in [32].

Proposition 10.4. For every subgroup of Z2
L there exist unique a, b|L and

0 ≤ s ≤ b with s ∈ ab
gcd(ab,L)

Z, such that

Λ =

(
a 0
s b

)

with ΛZ2
L ⊂ Z2

L.

Loosely speaking, for a given signal length L and a chosen redundancy
red, there are only finitely many possible lattices, but not all of them will
lead to a proper Gabor system.

Example. We choose L = 144 and red ∈ {1.5, 2, 4}. For redundancy red =
1.5 we have 60 possible lattices. There are only 8 separable lattices (s = 0),
with

(a, b) ∈ {(2, 48), (4, 24), (6, 16), (8, 12), (12, 8), (16, 6), (24, 4), (48, 2)}.

The 52 non-separable lattices are generated by shearing the separable ones.
For red = 2 there are 195 possible lattices, 12 of them are separable and for
red = 4 we have 91 lattices, where 9 of them are separable. A MATLAB
routine generating all possible lattices for given signal length and redundancy
can be found at the database section at www.nuhag.eu.

Example. Let L = 144 and red = 1.5. We will now look at the 8 separable

lattices only, consisting of Λ =

(
a 0
0 b

)
, with

(a, b) ∈ {(2, 48), (4, 24), (6, 16), (8, 12), (12, 8), (16, 6), (24, 4), (48, 2)}.
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Clearly the last four lattices have the same geometric properties for sphere
packing and covering, as well as for ellipse packing, as their counterparts
within the first four lattices, as they can be retrieved from them by rotation
of 90 degrees and reflections. We start with comparing the ratio of the axis
of the best fitting packing ellipses. The ratio takes the following values

{27.7249, 6.9773, 3.1997, 2.0025, 2.0025, 3.1997, 6.9773, 27.7249}.
The routine used for computing these values can be found in the database
section at www.nuhag.eu. Next we compute the frame condition numbers,
which take the following values

{4.11 · 1010, 267.7458, 8.1616, 2.4379, 2.4379, 8.1616, 267.7458, 4.11 · 1010}
The frame condition numbers have been computed with a routine from the
LTFAT. In this very simple example, we can clearly see that bad geometric
properties of the lattice, result in bad frame constants. Hence we have to
ask ourselves whether this is a coincidence because of the simplicity of this
example or not. As a next step we take some shears into account.

We pick one of the two good lattices and fix a = 8 and b = 12 and take
the different possible shears s = 0, 2, 4, 6, 8, 10, 12 into account (note that a
shear by 12 is the same as not shearing the lattice). We start with the ratio
of the axis of the best fitting ellipses. They are as follows

{2.0025, 1.6582, 1.4054, 1.2990, 1.4054, 1.6582, 2.0025}.
The frame condition numbers are as follows

{2.4379, 2.2345, 1.8511, 1.6625, 1.8511, 2.2345, 2.4379}.
We see that the condition number as well as the ratio of the axis becomes
better, in the sense that they get smaller, when s starts running and after
we have reached s = b/2 they become worse again.

We will now proof some geometric properties, of which we will see in
the following examples, that they seem to carry over to the Gabor frame
properties. First we need the following lemma.

Lemma 10.5. Let f ∈ C1(R) be positive and g ∈ C1(R) be non-negative and
f(x)− g(x) 6= 0 ∀x ∈ R, then the following equivalence holds true.

(
f + g

f − g

)′
= 0 ⇐⇒

(
g

f

)′
= 0.

(
f + g

f − g

)′
< 0 ⇐⇒

(
g

f

)′
< 0.

(
f + g

f − g

)′
> 0 ⇐⇒

(
g

f

)′
> 0.
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Figure 14: We fix a = 8 and b = 12. On the abscissa we have s running.
Blue: Frame condition number. Red: Ratio of axis of best fitting ellipse.

Proof.

0 =

(
f + g

f − g

)′

⇔ 0 =
(f ′ + g′)(f − g)− (f + g)(f ′ − g′)

(f − g)2

⇔ 0 = g′f − f ′g

⇔ 0 =
g′f − gf ′

f 2

⇔ 0 =

(
g

f

)′

The same arguments can be used for the inequalities.

Remark. We could strengthen the assumption of g ∈ C1(R) being non-
negative to g ∈ C1(R) being positive and f(x)− g(x) 6= 0 ∀x ∈ R. Then we
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would have the equivalences

(
f + g

f − g

)′
= 0 ⇐⇒

(
g

f

)′
= 0 ⇐⇒

(
f

g

)′
= 0.

The same holds true for negative functions. However, we will only use the
weaker statement of g being non-negative.

Lemma 10.6. Let 0 < a ∈ R be fixed, 0 < b ∈ R, M =

(
a 0
0 b

)
. Let

E =

(
4 2
2 4

)
and define

E :=
(
M−1

)T ∗ E ∗M−1

as in Theorem 3.4. Let λ1, λ2 be the eigenvalues of E , such that λ1 ≥ λ2.
Then λ = λ1

λ2
takes the minimum for b = a.

Proof. E =

(
4
a2

2
ab

2
ab

4
b2

)
and the characteristic polynomial of E is of the form

pE(λ) = λ2 − trace (E) · λ + det(E).

The eigenvalues can now be computed by simply setting pE(λ) = 0. This
equation has the solutions

λ1,2 =
trace(E)±

√
trace(E)2 − 4 · det(E)

2
. (10.3)

In order to minimise λ = λ1

λ2
we make use of Lemma 10.5. We set

f(b) = trace(E)

and
g(b) =

√
trace(E)− 4 · det(E).

We leave it to the interested reader to verify that the assumptions of Lemma

10.5 are fulfilled. Hence we can find the critical points by setting
(

g
f

)′
= 0.

After simplification we have

g(b)

f(b)
=

√
a4 + b4 − a2b2

a2 + b2
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and consequently we get (again after simplification)

(
g(b)

f(b)

)′
=

3a2b(b− a)(b+ a)

(a2 + b2)
√
a4 + b4 − a2b2

= 0.

By assumption we have 0 < a and 0 < b, so the above equation reduces to

b2 = a2.

It is easy to see that
(

g
f

)′
is continuous on R+ (even on R). From the last

two equations we also see that
(

g
f

)′
< 0 for b < a and

(
g
f

)′
> 0 for b > a

which carries over to
(

f+g
f−g

)′
by Lemma 10.5. This shows that we have a

global minimum for b = a.

Lemma 10.7. Let 0 < a, b ∈ R be fixed, 0 ≤ s ≤ b, M =

(
a 0
s b

)
. Let

E =

(
4 2
2 4

)
and define

E :=
(
M−1

)T ∗ E ∗M−1

as in Theorem 3.4. Let λ1, λ2 be the eigenvalues of E , such that λ1 ≥ λ2.
Then λ = λ1

λ2
takes the minimum for s = b/2.

Proof. E =

(
4(b2−bs+s2)

a2b2
2a(b−2s)

a2b2
2a(b−2s)

a2b2
4a2

a2b2

)
and the characteristic polynomial of E

is of the form
pE(λ) = λ2 − trace (E) · λ + det(E).

The eigenvalues can now be computed by simply setting pE(λ) = 0. This
equation has the solutions

λ1,2 =
trace(E)±

√
trace(E)2 − 4 · det(E)

2
. (10.4)

In order to minimise λ = λ1

λ2
we make use of Lemma 10.5. We set

f(s) = trace(E)

and
g(s) =

√
trace(E)− 4 · det(E).

57



We leave it to the interested reader to verify that the assumptions of Lemma

10.5 are fulfilled. Hence we can find the critical points by setting
(

g
f

)′
= 0.

After simplification we have

g(s)

f(s)
=

√
a4 − a2(b+ s)2 − 3a2s2 + (b2 − bs + s2)2

a2 + b2 − bs + s2

and consequently we get (again after simplifying)

(
g(s)

f(s)

)′
=

−3a2b2(b− 2s)

(a2 + b2 − bs + s2)2
√

a4 − a2(b+ s)2 + 3a2s2 + (b2 − bs + s2)2
.

(10.5)
Hence the equation (

g(s)

f(s)

)′
= 0

has the solution
s = b/2.

The denominator of
(

g
f

)′
is positive for all s ∈ R, hence

(
g
f

)′
is continuous

on R. From equation (10.5) we compute that
(

g
f

)′
< 0 for s < b/2 and

(
g
f

)′
> 0 for s > b/2. By Lemma 10.5 the same is true for

(
f+g
f−g

)′
, which

shows that we have a global minimum for s = b/2.

Remark. We call a lattice generated by a matrix M =

(
a 0
b/2 b

)
a quin-

cunx. The last lemma shows that the quincunx is preferable over the separa-
ble (rectangular) lattice with same a and b from the geometric point of view.
The example above suggests, that it would be worth investigating whether
the same is true for Gabor frames.

Lemma 10.8. Let 0 < a ∈ R be fixed, 0 < b, 0 ≤ s ≤ b, M =

(
a 0
s b

)
.

Let E =

(
4 2
2 4

)
and define

E := M−1T ∗E ∗M−1

as in Theorem 3.4. Let λ1, λ2 be the eigenvalues of E , such that λ1 ≥ λ2.
Then λ = λ1

λ2
takes the minimum for the hexagonal lattice, meaning b = 2a√

3

and s = b/2 = a√
3
and λ = 1.
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Proof. E =

(
4(b2−bs+s2)

a2b2
2a(b−2s)

a2b2
2a(b−2s)

a2b2
4a2

a2b2

)
and the characteristic polynomial of E

is of the form
pE(λ) = λ2 − trace (E) · λ + det(E).

The eigenvalues can now be computed by simply setting pE(λ) = 0. This
equation has the solutions

λ1,2 =
trace(E)±

√
trace(E)2 − 4 · det(E)

2
. (10.6)

Analogously to the previous proofs of Lemmas 10.6 and 10.7 we set

f(b, s) = trace(E)

and
g(b, s) =

√
trace(E)− 4 · det(E).

It is easy to see that Lemma 10.5 holds for functions in more than 1 variable
for the partial derivatives of order 1, hence we can make use of it. As in the
proof of Lemma 10.7 we get

g(b, s)

f(b, s)
=

√
a4 − a2(b+ s)2 − 3a2s2 + (b2 − bs + s2)2

a2 + b2 − bs + s2
,

but now we have to take a look at the partial derivatives with respect to b
and s.

∂

∂b

(
g(b, s)

f(b, s)

)
=

−3a2b (a2 − b2 + s2)

(a2 + b2 − bs + s2)2

· 1√
a4 − a2(b+ s)2 + 3a2s2 + (b2 − bs + s2)2

(10.7)

∂

∂s

(
g(b, s)

f(b, s)

)
=

−3a2b2(b− 2s)

(a2 + b2 − bs+ s2)2

· 1√
a4 − a2(b+ s)2 + 3a2s2 + (b2 − bs+ s2)2

.
(10.8)

We already know the zeros of the expression in (10.8) as they are the same

as for (10.5) and so the only solution to the equation ∂
∂s

(
g(b,s)
f(b,s)

)
= 0 is given
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by s = b/2. The zeros of (10.7) lie on the hyperbola b2 − s2 = a2. In order
to have a local minimum (10.7) and (10.8) have to be 0 simultaneously. This

means we find a local minimum at
(

2a√
3
, a√

3

)
. By assumption λ1 = λ1(b, s) ≥

λ2 = λ2(b, s) and

λ(2a/
√
3, a/

√
3) =

λ1(2a/
√
3, a/

√
3)

λ2(2a/
√
3, a/

√
3)

= 1

and so this minimum has to be global. We also see that this solution is
unique for (b, s) ∈ R+ × [0, b].

Remark. As the axis ratio of the best fitting ellipse for the hexagonal lattice is
1 it is actually a sphere. By the above lemmas we also see that the hexagonal
lattice is the only lattice which can achieve a circle as best packing or covering
ellipse. However, this does not proof the optimality of the hexagonal lattice
for the sphere packing problem.

After Lemmas 10.6, 10.7 and 10.8 we know that for a fixed rectangular
lattice the condition number of the matrix describing the best fitting ellipse
becomes better if we start shearing the lattice and becomes optimal for s =
b/2. A shear s̃ > b/2 gives the same condition number as the shear b − s̃.
The optimal lattice would be given by the hexagonal lattice which we cannot
achieve in the discrete case, as a · b is never rational and hence can only be
achieved by an irrational signal length L which is not possible in the discrete
case. However, the longer the signal length L is, the closer we can get to the
hexagonal lattice, as we have more possibilities to choose a and b and can
find a ratio closer to

√
3/2.

Example. For this example we will choose a signal length L = 7200 and
redundancy red = 1.5. This gives us 3844 possible lattices. For each lattice
we compute the frame condition number and the ratio of the axes of the
packing ellipse. The MATLAB routines used for the computation can be
found in the database section at www.nuhag.eu.

We have computed all admissible lattices of signal length L = 7200 with
redundancy 1.5. For the comparison in Figure 15 the lattices which lead
to frames with condition number greater than 100000 have been discarded.
This leaves 3548 lattices out of 3844, so approximately 92.3% of all possible
lattices. For each lattice we plot a point in the plane, where the abscissa
coordinates are the solutions of the ellipse packing problem and the ordinate
coordinates are the corresponding frame condition numbers. In the figure
we put the ordinate to logarithmic scale. Let I be an index set and let Λi

be an admissible lattice for i ∈ I. For i ∈ I let qi be the solution of the
packing problem for lattice Λi and let Qi be the frame condition for the
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Figure 15: Comparison of the axes ratio of the packing ellipse on the
abscissa and the frame condition number for admissible lattices of signal
length 7200 with redundancy 1.5 and frame condition less than 100.

corresponding Gabor frame Gi = {Λi, g0}. Then Figure 15 suggests that
our data points (qi, log(Qi)) correlate in an almost linear way. Indeed the
correlation coefficient is 0.9992 and a hypothesis test done with the MATLAB
built-in routine suggests that the probability of getting a correlation as large
as this at random is 0.

For Figures 16 and 17 we have only taken a look at lattices which give
us a Gabor frame with condition number less than or equal to 10. Unfortu-
nately, it seems that the behaviour of the frame condition for relatively small
numbers cannot be described by axes ratio of the packing ellipse as easily
as in the case for relatively large condition numbers. If we denote the frame
condition by Q and the axes ratio of the packing ellipse by q, the example
suggests that

log(Q) = O(q).
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Figure 16: Comparison of the axes ratio of the packing ellipse on the
abscissa and the frame condition number for admissible lattices of signal

length 7200 with redundancy 1.5 and frame condition less than 10.
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Figure 17: Comparison of the axes ratio of the packing ellipse on the
abscissa and the frame condition number for admissible lattices of signal

length 7200 with redundancy 1.5 and frame condition less than 10,
logarithmic scale on ordinate.

63



Hamiltonian Mechanics

11 Classical Mechanics

The following part mainly relies on [2]. In this part, whenever we write x
we imply that x depends on time denoted by t, hence x = x(t). Also x is
usually a vector in Rd. Furthermore, we will make use of physicists notation

ẋ = d
dt
x and

. . . x = d2

dt2
x in the following part.

In classical (or Newtonian) mechanics the harmonic oscillator in its sim-
plest form is defined via

ẍ = −x. (11.1)

It describes the motion of a pendulum of mass m = 1 with only small
oscillations or a mass fixed to a spring hanging loosely from a ceiling, moving
gently up and down. More generally the equation for the harmonic oscillator
is given by

m · ẍ = −k · x (11.2)

which is derived by using a different scale. The number of cases where
classical mechanics can be applied reduces to conservative systems. These
are systems where a potential U(x) exists, such that

F = m · ẍ = −∂U

∂x
. (11.3)

Here F denotes the force acting on the particle x. The kinetic energy is
defined as

T =
1

2
〈ẋ, ẋ〉 (11.4)

and the total energy is defined as E = U + T . The most important role in
classical mechanics is certainly the conservation of energy.

Theorem 11.1 (Conservation of energy). Let x = x(t) ∈ Rd and let the
total energy of the system be described by

E(x, ẋ, t) = T (ẋ) + U(x). (11.5)

Then
d

dt
E = 0 (11.6)
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Proof.
d

dt
E(x, ẋ, t) =

d

dt
(T (ẋ) + U(x))

=
1

2
〈ẋ, ẍ〉+ 1

2
〈ẍ, ẋ〉+ 〈 ∂

∂t
U, ẋ〉

= 〈ẋ, ẍ〉 − 〈ẋ, ẍ〉
= 0

Another way of describing the motion of a particle in a mechanical system
is by means of Lagrangian mechanics. The motion is then describe in the so-
called configuration space or phase space, which is a differentiable manifold,
on which its group of diffeomorphisms acts. A mechanical system in La-
grangian mechanics is then given by a manifold and the so-called Lagrangian
function, a function on the tangent bundle of configuration space. The New-
tonian mechanics follow as a special case of Lagrangian mechanics. The
configuration space is then the Euclidean space and the Lagrangian function
is given by T − U , the difference between kinetic and potential energy.

12 Calculus of Variations

Let γ be a curve in Rd. By Cn([t0, t1],R
d) we denote the space of of n times

continuously differentiable curves in Rd, starting in γ(t0) and ending in γ(t1).
A mapping Φ from the space of curves into the field of real numbers is called
a functional. An example of a such a functional is the length functional.

Φ: C1([t0, t1],R
d) → R

γ 7→ Φ(γ) =

∫ t1

to

‖γ̇(t)‖ dt

Let h be a curvein Rd. A functional Φ is called differentiable if

Φ(γ + h)− Φ(γ) = F (h) +R(h, γ),

where F depends linearly on h and R(h, γ) = O(h2), meaning |h| < ε,
| d
dt
h| < ε ⇒ |R| < C ε2. F (h) is called the differential or variation of Φ and

h is called the variation of γ. An extremal of a function Φ(γ) is a curve γ
such that F (h) = 0 for all h. As a next step we want to derive a criterion
under which a curve γ is an extremal of a functional Φ.
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Theorem 12.1. Let L = L(x, ẋ, t) ∈ C2(R2d+1) and γ = {(t, x) : x =
x(t), t0 ≤ t ≤ t1}. If we define

Φ(γ) =

∫ t1

t0

L(x, ẋ, t) dt

then Φ is differentiable and its derivative is given by

F (h) =

∫ t1

t0

[
∂

∂x
L− d

dt

∂

∂ẋ
L

]
h dt +

(
∂

∂ẋ
L

)
h

∣∣∣∣
t1

t0

.

Proof. By direct calculation we have

Φ(γ + h)− Φ(γ) =

∫ t1

t0

[
L(x+ h, ẋ+ ḣ, t)− L(x, ẋ, t)

]
dt

=

∫ t1

t0

[
∂

∂x
Lh− ∂

∂ẋ
L ḣ

]
dt

︸ ︷︷ ︸
F (h)

+ O(h2)︸ ︷︷ ︸
R(h,γ)

.

Integrating by parts leads to

F (h) =

∫ t1

t0

[
∂

∂x
Lh− d

dt

∂

∂ẋ
L h

]
dt +

∂

∂ẋ
L h

∣∣∣∣
t1

t0

and the proof is complete.

The part
[

∂
∂x
L− d

dt
∂
∂ẋ
L
]
takes an important role in calculus of variations

as we will see in the next theorem.

Theorem 12.2. Let L = L(x, ẋ, t) ∈ C2(R2d+1 and γ = {(t, x) : x =
x(t), t0 ≤ t ≤ t1} with x(t0) = x0 and x(t1) = x1 fixed. Then γ is an
extremal of Φ(γ) =

∫ t1
t0

L(x, ẋ, t) dt if and only if
[
∂

∂x
L− d

dt

∂

∂ẋ
L

]
= 0. (12.1)

Equation (12.1) is called Euler-Lagrange equation of the functional Φ(γ).

Proof. We have to solve F (h) = 0 for all possible h that leave the endpoints
of the curve γ fixed. This means we have to solve

F (h) =

∫ t1

t0

[
∂

∂x
L− d

dt

∂

∂ẋ
L

]
h dt +

(
∂

∂ẋ
L

)
h

∣∣∣∣
t1

t0

= 0.

The part outside the integral is 0 as x0 and x1 are fixed, hence h(t0) = h(t1) =
0. As the integral must vanish for all possible h the the Euler-Lagrangian
equation (12.1) must be fulfilled.
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13 The Legendre Transform

We have introduced Newtonian as well as Lagrangian mechanics and have
mentioned that the former one is a special case of the latter one. Besides
these two formalisms we want to introduce a third one, which for classical
mechanics again predicts the same outcome as the former formalisms. In
order to come up with this formalism, which is called Hamiltonian mechanics,
we first have to introduce the Legendre transform of a convex function f .

Definition 13.1. Let f : I → R be a (strictly) convex, differentiable func-
tion, where I denotes an interval. Let p be a real number and y(x) = p · x
the straight line with slope p. We introduce the new function

F (x, p) := y(x)− f(x) = p · x− f(x),

where x = x(p). Then the function g(p) = F (x(p), p) with the additional
condition that ∂

∂x
F = 0 is called the Legendre transform of f(x(p)).

The Legendre transform describes a function not via pairs of points, but
via the slope and interception values of its tangent lines.

Example. Let f(x) = xα

α
and F (x, p) = p ·x−f(x), where x = x(p). In order

to have ∂
∂x
F = 0 it is necessary that ∂

∂x
f ≡ p. This means that xα−1 = p

which implies that x(p) = p
1

α−1 . Then the Legendre transform of f is given
by

g(p) = p · p 1

α−1 − p
α

α−1

α

= p
α−1+1

α−1 − p
α

α−1

α

= p
α

α−1 (1− 1

α
)

= p
α

α−1 (
α− 1

α
)

=
pβ

β

where β = α
α−1

or equivalently 1
α
+ 1

β
= 1.

Remark. This examples illustrates that the Legendre transform is involutive
(which we will not prove), meaning that if g is the Legendre transform of f ,
then f is the Legendre transform of g. Any two functions which are Legendre
transforms of one another are called dual in the sense of Young.
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14 Hamilton’s Equations

The Lagrange function if given by L = T−U where U is a potential as defined
in (11.3) and T is the kinetic energy as defined in (11.4). We want to describe
the evolution of system of n mass points by means of Lagrangian mechanics.
We introduce the generalised coordinates q = (q1, . . . , qn) in configuration
space and have q̇ = (q̇1, . . . , q̇n) as the generalised velocities. The functional∫ t1
t0

L(q, q̇, t) dt is called the action and further on the generalised momenta

are given by p = ∂
∂q̇
L and the generalised forces are given by ∂

∂q
L.

Theorem 14.1. The motions in a conservative field of the mechanical system
described in (11.3) coincide with the extrema of the functional

Φ(γ) =

∫ t1

t0

L(x, ẋ, t) dt,

where L = T − U is the Lagrange function and T = 1
2
m〈ẋ, ẋ〉 and U = U(x)

fulfils (11.3).

Proof. By Theorem 12.2 we know that extrema of the functional Φ have to
fulfil the Euler-Lagrange equation (12.1). The Euler-Lagrangian equation
takes the following form

d

dt

∂

∂ẋ

[
1

2
m〈ẋ, ẋ〉 − U(x)

]
− ∂

∂x

[
1

2
m〈ẋ, ẋ〉 − U(x)

]
= 0

⇔ d

dt
mẋ−

(
− ∂

∂x
U(x)

)
= 0

⇔ mẍ = − ∂

∂x
U(x).

In the above theorem we have used classical coordinates in Euclidean
space. If we use the generalised coordinates and velocities then the Euler-
Lagrange equation has the following form

d

dt

∂

∂q̇
L− ∂

∂q
L = 0

or using generalised momenta and forces we have

d

dt
p− ṗ = 0.
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The Lagrange equations are

ṗ =
∂

∂q
L

p =
∂

∂q̇
L,

(14.1)

where
L : Rd × Rd × R → R

L = L(q, q̇, t)

is the Lagrange function.
We have now prepared all necessary tools in order to introduce Hamilton’s

formalism. Hamilton’s equations also find applications in quantum mechanics
and convert the system (14.1) of Lagrange’s equations into a symmetric or
more precisely an antisymmetric form.

Theorem 14.2. Let the Lagrange function L = L(q, q̇, t) be convex with
respect to q̇. The system (14.1) is equivalent to the system of Hamilton’s
equations

ṗ = − ∂

∂q
H

q̇ =
∂

∂p
H

(14.2)

with H = H(q, p, t) = 〈p, q̇〉 − L(q, q̇, t) being the Legendre transform of L.
The function H is called Hamiltonian or Hamilton’s function.

Proof. See [2].

15 Liouville’s Theorem

Let (q, p) = (q1, . . . , qn, p1, . . . pn) be generalised coordinates in phase space.
The phase flow is the one-parameter group

ϕt : (q(0), p(0)) 7→ (q(t), p(t))

of transformations on the phase space with the following properties

ϕ0 = Id (15.1)

ϕt+s = ϕt ◦ ϕs (15.2)

(ϕt)−1 = ϕ−t, (15.3)
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where (q(0), p(0)) , (q(t), p(t)) are solutions of Hamilton’s system of equations
(14.2).

In the case of Hamiltonian mechanics we call the phase flow a Hamiltonian
flow. This flow has the property of preserving volume when applied on a set
in phase space.

Theorem 15.1. For the vector field ẋ = f(x) with divergence div(f) = 0
and a set Ω with volume vol(Ω) and phase flow ϕt we have

vol(ϕt(Ω)) = vol(Ω).

The divergence of the vector field is div(f) =
∑n

i=1
∂

∂x1
fi.

Proof. We look at the Taylor expansion of the flow (around 0).

ϕt(x) = x+ f(x) · t+O(t2)

The volume of the set Ω under the phase flow is given by

vol(ϕt(Ω)) =

∫

Ω

det

(
∂

∂x
ϕt(x)

)
dx.

For any matrix it is true that det (I − t · A) = 1 + trace(A) · t + O(t2) for
t → 0.

⇒ vol(ϕt(Ω)) =

∫

Ω

(
det

(
I +

∂

∂x
f(x) · t

)
+O(t2)

)
dx

=

∫

Ω

(
1 + trace

(
∂

∂x
f(x)

)
· t +O(t2)

)
dx

Therefore we get
d

dt
vol(ϕt(Ω)) =

∫

Ω

div(f) dx = 0

and hence,for divergence free vector fields the volume is preserved under the
flow.

Theorem 15.2 (Liouville). The Hamiltonian flow is volume preserving.

Proof. Hamilton’s equation in the compact form reads

(
ṗ
q̇

)
= f =

( − ∂
∂q
H

∂
∂p
H

)
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The divergence of f is given by

div(f) =
n∑

i=1

∂

∂pi
fi +

n∑

i=1

∂

∂qi
fi+n

=

n∑

i=1

∂

∂pi

(
− ∂

∂qi
H

)
+

n∑

i=1

∂

∂qi

(
∂

∂pi
H

)

= 0.

Hence, volume is preserved under a Hamiltonian flow by Theorem 15.1.

We want to state two more properties about Hamilton’s function.

Theorem 15.3. Let L = T − U be the Lagrangian function and let T be a
quadratic form, i.e. T = 1

2

∑n
i=1 aij q̇iq̇j, with aij = aij(q, t) and U = U(q).

Then the Hamiltonian gives the full energy, i.e. H = T + U .

Proof. The proof uses Euler’s Lemma on homogeneous functions of order
α and the fact that the values of a quadratic form f(x) and its Legendre
transform g(p) coincide at corresponding points, i.e. f(x(p)) = g(p). For a
full proof see [2].

Corollary 15.4. If H does not explicitly depend on t, then H is constant
for all t, or in other words, energy is conserved over time.

Proof.

d

dt
H =

∂

∂p
H · ṗ + ∂

∂q
H · q̇ + ∂

∂t
H = q̇ṗ− ṗq̇ +

∂

∂t
H =

∂

∂t
H.
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Hamiltonian Deformation of

Lattices

16 The Harmonic Oscillator and its Hamilto-

nian Flow

In section 11 we already introduced the harmonic oscillator via equation
(11.2) which was m · ẍ = −k · x. We have done all necessary preparations
in order to write the equations for the harmonic oscillator in the sense of
Hamiltonian mechanics. The Hamiltonian H is given by

H(q, p, t) =
p2

2m
+

mω2q2

2
(16.1)

and Hamilton’s equations read as follows

ṗ = − ∂

∂q
H = −mω2q

q̇ =
∂

∂p
H =

p

m

(16.2)

For simplification we assume m = 1. From Theorem 15.3 and Corollary
15.4 we already know that the Hamiltonian gives the full energy and that
in the case of the harmonic oscillator the energy does not change over time,
as t does not enter explicitly in the Hamiltonian. Another way of writing
equation (16.1) is the following

q2

a2
+

p2

b2
= 1, (16.3)

where a2 = 2H
ω2 and b2 = 2H , with H being interpreted as the total energy

of the system. It is easy to see that equation (16.3) describes an ellipse in
phase space with axis ratio a/b = 1/ω. A flow is given by

ϕ : R2 × R → R2

ϕ(q, p, t) = ϕt(q, p) =

(
cos(ωt) 1

ω
sin(ωt)

−ω sin(ωt) cos(ωt)

)
·
(

q
p

)
(16.4)

We start with the initial solution (q(0), p(0))T = (q0, p0)
T = (0, b)T . It

is clear that after a period of T = 2π we are back at our initial solution
as the trajectory is the closed ellipse defined by (16.3). We split the period
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Figure 18: The flow of the harmonic oscillator

into 6 equally distributed parts and look at the solutions. The next solution
after t = π/3 is then given by ϕπ/3(q0, p0)

T = (qπ/3, pπ/3)
T = (

√
3
2
a, 1

2
b)T . By

defining

M :=
(
ϕπ/3(q0, p0), ϕ0(q0, p0)

)
=

( √
3
2
a 0

1
2
b b

)

we have a matrix defining a lattice. As we want our lattice to have volume
1, we have the obstruction that

a · b = 2√
3
.

It is easy to verify that ϕk·π
3 (p, q) are lattice points of the lattice MZ2 for all

k ∈ Z. For the special case a = b = 1 we get the hexagonal lattice generated
by the matrix

Hex =

( √
3

2 0
1
2

1

)

with volume
√
3/2. We define

E =
(
Hex ·M−1

)T ·
(
Hex ·M−1

)
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which simplifies to

E =

(
3
4
b2 0
0 3

4
a2

)
.

By the obstruction on a · b = 2√
3
we get

E =

(
1
a2

0
0 1

b2

)

and this gives the quadratic form which defines the ellipse

(q, p) E (q, p)T = 1

or
q2

a2
+

p2

b2
= 1.

By construction we know that the six lattice points closest to the origin lie
on this ellipse. By scaling this ellipse properly we get a packing for M · Z2.
The packing ellipses have to meet half way between the lattice points, which
means that we have to scale the vectors of the generating matrix by 1/2.
This means that the area of the ellipse shrinks down to 1/4 of the original
size. By substituting 1 by 1/4 in the last equation we get the desired result.
Alternatively we can scale the left hand side by 4, which is the same as
multiplying E with a factor of 4.

P = 4 · E =
(
2 ·Hex ·M−1

)T ·
(
2 ·Hex ·M−1

)
= M−1T ·

(
4 2
2 4

)
·M−1.

By Theorem 2.1 this is the matrix used for the construction of the packing
ellipse for the lattice MZ2. This proofs that the above construction leads to
a packing.

Next we investigate the set Ω0 = {(q, p) ∈ R2 | 4q2

a2
+ 4p2

b2
≤ 1} centred at

the origin and its translates Ωξt,νt centred at (ξt, νt) = ϕt(q0, p0) for t = k · 2π
6
,

k = 0, . . . , 5. By Theorem 15.2 we know that volume is preserved under
a Hamiltonian flow. As this holds true for the ellipses as well as for each
fundamental domain of the lattice, we know that the density of the sets
Ωξt,νt does not change under the flow defined by (16.4). Also we know from
the theory of ordinary differential equations that trajectories cannot cross
under the given circumstances. This means that distinct points of distinct
sets stay distinct under the flow. We use the flow properties (15.1), (15.2)
and (15.3) in order to show that the ellipses keep their shape. We set

Mt =

(
cos(ωt) 1

ω
sin(ωt)

−ω sin(ωt) cos(ωt)

)
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and can then write the flow as ϕt(q, p) = Mt ·
(

q
p

)
= M̃t. We can write

M =
(
M̃π/3, M̃0

)
and E =

(
Hex ·

(
M̃π/3, M̃0

)−1
)T (

Hex ·
(
M̃π/3, M̃0

)−1
)

and hence, for m = 1, equations (16.1) and (16.3) are equivalent to the
following equation

(
Hex ·

(
M̃π/3, M̃0

)−1
(

q
p

))T

·
(
Hex ·

(
M̃π/3, M̃0

)−1
(

q
p

))
= 1.

(16.5)

The same holds true for

(
Hex ·

(
M̃π/3+s, M̃0+s

)−1
(

q
p

))T

·
(
Hex ·

(
M̃π/3+s, M̃0+s

)−1
(

q
p

))
= 1,

(16.6)

as
(
M̃π/3+s, M̃0+s

)−1
(

q
p

)
=
(
M̃π/3, M̃0

)−1

M−1
s

(
q
p

)
and M−1

s

(
q
p

)

is a solution to equations (16.1) and (16.3) by the definition of the flow.
Therefore, we see that equation (16.6) is equivalent to

(
Hex ·

(
M̃π/3, M̃0

)−1

M−1
s

(
q
p

))T

·
(
Hex ·

(
M̃π/3, M̃0

)−1

M−1
s

(
q
p

))
= 1,

(16.7)

or written in compact form

(
M−1

s

(
q
p

))T

· E ·
(
M−1

s

(
q
p

))
= 1. (16.8)

Hence, for m = 1, we have an equivalence between equations (16.1) and
(16.8), which proves that the packing ellipses keep their shape under the
given circumstances.

Figure 19 illustrates the process of the Hamiltonian deformation of a
lattice. We clearly see that the packing ellipses are preserved and that any
arrangement is optimal in the sense of the packing density.

Summing up the above results we get the following theorem.
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Figure 19: Hamiltonian deformation of a lattice via a Hamiltonian flow.
The red marks are lattice points, the blue ellipses give a packing. The black
ellipse is a flow line for the harmonic oscillator from which the blue ellipses
are derived by the scaling factor 1/2. The green ellipse is a flow line for a
different energy level of the harmonic oscillator, derived by the scaling the

black ellipse by the factor 3/2.

Theorem 16.1. For any given ellipse there are uncountably many possible
arrangements of translated copies of this ellipse leading to an optimal lattice
packing. Hence, there are uncountably many lattices which can be optimally
packed with the given ellipse and translated copies of it and these lattices can
be derived from a single lattice.

Proof. W.l.o.g. we may assume that the axes of our ellipse coincide with the
Cartesian axes. We denote the length of the first axis by ã and the length
of the second axis by b̃ and the ratio ã

b̃
= 1

ω
and the coordinate are denoted

by (q, p). Then the equation describing the ellipse is given by q2

ã2
+ p2

b̃2
= 1.

Setting a = 2ã =
√
2H/ω and b = 2b̃ =

√
2H we get back to equation (16.1)

for m = 1. The rest follows by the above given arguments of section 16.
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17 The Inverted Harmonic Oscillator

In section 11 we described the harmonic oscillator via the equationmẍ = −kx
(11.2), but did not specify the range of k. We implied that k is positive from
equation (11.1) and we mentioned that k is a scale factor. However, in
equations (16.1) and (16.2) we replaced k by ω2 and everything was clear,
but still, if we assume that k could take negative values then the scale would
be inverted and we get the equations for the inverted harmonic oscillator.
Speaking in terms of Hamiltonian mechanics the frequency ω is replaced by
iω and then the Hamiltonian H is given by

H(q, p, t) =
p2

2m
− mω2q2

2
(17.1)

and Hamilton’s equations read as follows

ṗ = − ∂

∂q
H = mω2q

q̇ =
∂

∂p
H =

p

m

(17.2)

For a more precise physical description of the inverted harmonic oscillator
and further applications see [3], [4] and [33]. We are now interested in the
flow of the inverted harmonic oscillator. For simplicity reasons we set m = 1.
The flow is then given by

ϕ : R2 × R → R2

ϕ(q, p, t) = ϕt(q, p) =

(
cosh(ωt) 1

ω
sinh(ωt)

ω sinh(ωt) cosh(ωt)

)
·
(

q
p

)
.

(17.3)

Instead of ellipses the trajectories are now hyperbolas. For the special
case ω = 1 the flow is given by

ϕ(q, p, t) = ϕt(q, p) =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
·
(

q
p

)
. (17.4)

We are now interested in the matrix given in equation (17.4). If we rewrite
the matrix using exponential functions instead of hyperbolic functions we

have

(
et+e−t

2
et−e−t

2
et−e−t

2
et+e−t

2

)
and by setting

√
δ = et this gives us the distortion

matrix

Mδ,k =
1

2
√
k

( √
δ + 1√

δ
k(
√
δ − 1√

δ
)√

δ − 1√
δ

k(
√
δ + 1√

δ
)

)
.
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Figure 20: The flow of the inverted harmonic oscillator with parameters
m = 1 and ω = 1.

as defined in (5.3) with k = 1. This shows the equivalence of the distortion
method presented in [8] and the Hamiltonian deformation of a lattice via the
flow of the inverted harmonic oscillator for m = 1 and ω = 1.
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[16] Karlheinz Gröchenig. Acceleration of the frame algorithm. IEEE Trans.
SSP, 41/12:3331–3340, 1993.
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Deutsche Zusammenfassung

In der zu Grunde liegenden Arbeit sollen vermutete Verbindungen zwischen
Gabor Frames und geometrischen Eigenschaften von Gittern aufgezeigt wer-
den.

Das Konzept der Gabor Frames ist eine spezielle Zeit-Frequenz Darstel-
lungsmethode und unterliegt als solche Unschärferelationen. Dies bedeutet,
dass das Produkt aus Signallänge und Bandbreite nicht beliebig klein wer-
den kann. Das Kernstück der Gabor Darstellungsmethode ist die Kurzzeit-
Fourier-Transformation, welche die Fourier-Transformation als Spezialfall ab-
deckt. Die zu untersuchenden Signale werden daher für gewöhnlich endliche
Energie haben, sind also Elemente des Hilbertraums L2(Rd). Durch die Ver-
wendung von Banach-Gelfand Tripeln ist es allerdings möglich den Defini-
tionsbereich der Kurzzeit-Fourier-Transformation zu erweitern.

Die klassische Fourier-Transformation bietet keine Information darüber,
zu welchen Zeitpunkten welche Frequenzen in einem Signal vorkommen. Die
Kurzzeit-Fourier-Transformation versucht diese Problem zu lösen, indem so-
genannte Fensterfunktionen verwendet werden. Auf Grund der erwähn-
ten Unschärferelationen führt gute Konzentration im Zeitbereich, zu einer
schlechteren Konzentration im Frequenzbereich. Die kanonische Wahl der
Fensterfunktion fällt daher auf eine Gauss Funktion, da diese allein die Un-
schärferelation minimiert.

Die Kurzzeit-Fourier-Transformation zu einer gegebenen Fensterfunktion
liefert eine stetige Zeit-Frequenz Darstellungsmethode, nachdem L2(Rd) aber
ein separabler Hilbertraum ist, sollte es eine diskrete Methode geben um ein
Signal darzustellen. Darum geht es beim Konzept der Gabor Frames. Die
Idee ist es ein Erzeugendensystem für L2(Rd) zu finden, welches aus mod-
ulierten Translaten der Fensterfunktion besteht. Die Auswahl der Translate
und Modulationen generiert ein Muster in der sogenannten Zeit-Frequenz
Ebene Rd × Rd, ein Konzept ähnlich dem des Phasenraums aus dem Gebiet
der gewöhnlichen Differentialgleichungen. Das Muster wird für gewöhnlich
in Form eines Gitters gewählt, welches durch eine 2d× 2d Matrix dargestellt
werden kann.

Es ist ungeklärt, ob gute geometrische Eigenschaften des verwendeten
Gitters zu guten Frames Eigenschaften führen, wie beispielsweise stabiler und
schneller Rekonstruktion des Signals aus Koeffizienten, welche an den Gitter-
punkten gemessen wurden. Das Problem ist bis heute noch nicht einmal für
ein eindimensionales Gauss Fenster und zweidimensionale Gitter gelöst. Es
wird vermutet, dass für das eindimensionale Gauss Fenster ein hexagonales
Gitter die beste Wahl für ein Gabor System bieten sollte, da der ε-Träger
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der Ambiguitätsfunktion eine Kreisscheibe ist und eine hexagonales Gitter
das ökonomischte Arrangement für Kreisscheiben bietet.

Als Maß für die geometrische Güte eines Gitters werden Lösungen von
Packungsproblemen verwendet und es werden Überlegungen angestellt, wie
sich diese unter Hamiltonschen Deformationen verhalten.
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