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Abstract

The main goal of this thesis is to find a relation between the Riemann-Hilbert

WKB problem and harmonic maps from the underlying manifold to Euclidean

buildings. The notion of a versal building associated to a spectral cover is intro-

duced. The harmonic map from a Riemann surface to this building encodes many

aspects of the geometry of the spectral cover; in particular the spectral network is

mapped to the singularities of the versal building.

There are two main conjectures in this thesis: (1) the versal building exists and

the metric on this building controls the asymptotic of the Riemann-Hilbert corre-

spondence; (2) the harmonic map to this building encodes the data to construct

a 3d Calabi-Yau category such that the Hitchin base is a submanifold of its space

of stability conditions. An algorithm to construct this category is provided for

locally finite spectral networks.

The main results are: (1) the existence of the universal building for a system of

ODEs considered by Berk-Nevin-Roberts is established; (2) a versal building ex-

ists for a further, more complicated example; (3) the algorithm to construct the

categories is applied in these examples and a relation to buildings is conjectured.
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Zusammenfassung

Das Ziel der vorliegenden Arbeit is es, eine Beziehung zwischen den asymptotis-

chen Eigenschaften des Riemann-Hilbert Problems und harmonischen Abbildun-

gen der zu Grunde liegenden Mannigfaltigkeit in Euklidische Gebäude zu finden.

Dabei wird das Konzept des zu einer spektralen Überlagerung gehörenden versalen

Gebäudes eingeführt. Viele interessante geometrische Eigenschaften der spektralen

Überlagerung können von der harmonischen Abbildung in dieses Gebäude abge-

lesen werden; insbesondere wird in dieser Arbeit argumentiert, dass das Bild des

spektralen Netzwerks in den Singularitäten dieses Gebäudes enthalten ist.

Die beiden Hauptvermutungen in dieser Arbeit sind die folgenden: (1) das versale

Gebäude existiert und die Metrik darauf bestimmt die Asymptotik der Riemann-

Hilbert Korrespondenz; (2) von der harmonischen Abbildung in das versale Gebäude

kann eine dreidimensionale Calabi-Yau Kategorie konstruiert werden, sodass die

Hitchin Basis eine Teilmannigfaltigkeit des Raums der Stabilitätsbedingungen auf

dieser ist. Ein Algorithmus, diese Kategorie zu konstruieren, wird für lokal endliche

spektral Netzwerke beschrieben.

Die Hauptresultate sind die folgenden: (1) Ein universelles Gebäude existiert für

ein System von gewöhnlichen Differentialgleichungen, das von Berk, Nevin und

Roberts betrachtet wurde; (2) das versale Gebäude existiert für ein weiteres, kom-

plizierteres Beispiel; (3) der Algorithmus zur Konstruktion der Kategorie wird in

zwei Beispielen angewandt und ein Zusammenhang zum versalen Gebäude wird

hergestellt.
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Chapter 1

Introduction

Portions of this chapter have appeared in [40] and have been submitted for publi-

cation to “Communications in Mathematical Physics”.

The original motivation for the work described in this thesis was to give a math-

ematical interpretation to the spectral networks recently introduced by physicists

[26]. These objects are closely related to BPS states which play a prominent role

in mathematics [44] and physics [55, 66]. Furthermore, there is a tight connection

to the theory of Stability Hodge Structures introduced by Kontsevich and Soibel-

man in [47].

The spectral networks mentioned above are certain combinatorial geometric struc-

tures that encode part of the geometry of the spectral cover associated to a point

in the Hitchin base B. In the case when

B = H0(X;K2
X)

for X a Riemann surface, they are the traces of the singularites of the leaf space

of the associated foliation on the Riemann surface, and can be used to construct a

three-dimensional triangluated Calabi-Yau category T for which B parametrizes

part of the stability conditions. For Hitchin systems of higher rank, spectral

networks come from the WKB problem of asymptotic analysis of the transport

matrices of singularly perturbed ordinary differential equations.

1
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1.1 Main results

Let X be a Riemann surface with universal cover X̃, E → X be a holomorphic vec-

tor bundle with norm ‖.‖ and ϕ ∈ End(E,E⊗Ω1
X) be a Higgs field. Furthermore,

suppose that ∇0 is a flat holomorphic connection on E, and let

∇t := ∇0 + tϕ

for t ∈ R+. The complex WKB problem concerns the question of the asymptotics

of the parallel transport operator TPQ(t) for ∇t from P ∈ X̃ to Q ∈ X̃ as a

function of t→∞. An interesting quantity that encodes (part of) this asymptotic

behavior is the WKB exponent

νWKB
PQ := lim sup

t→∞

1

t
log‖TPQ(t)‖ . (1.1)

In the paper [26], a procedure, called the non-abelianization map, for determining

the exponent in terms of spectral networks is described, which, in turn, are deter-

mined by the mulit-valued one-forms φ = (φ1, . . . , φr) which are the eigenvalues

of the Higgs field ϕ.

Instead of considering the WKB-exponent νWKB
PQ , we can also use an ultrafilter

ω to define an ultrafilter exponent νωPQ. Recent work of Parreau [58], building

upon previous work of Kleiner and Leeb [42], implies that νωPQ corresponds to the

distance between hω(P ) and hω(Q) for a map hω from X̃ to a Euclidean building

Coneω. The first main theorem is the following:

Theorem 1.1. The map hω is harmonic in the sense of Gromov-Korevaar-Schoen

with differential Re φ.

Furthermore, it is noticed that for any generic harmonic φ-map to a building,

the image of the spectral network is contained in the singularities of the building.

In that sense, the spectral network is contained in the traces on the Riemann

surface X of the singularities of the building (this does not characterize the spectral

network, however: there is a bigger subset Wext, the extended spectral network,

which contains additionally “backward-lines”, that maps to the singularities of

any building. At the moment, we do not know a complete characterization of the

spectral network in terms of buildings).

When trying to understand harmonic φ-maps to buildings, it is important to

determine the biggest subsets M ⊂ X̃ which map into single apartments. These

subsets are called “maximal abelian regions” or MARs, for short. We prove several

criteria for when a subset U ⊂ X̃ includes in a MAR M ⊂ X̃. A key-role in these
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criteria is played by the notion of a non-critical path: this is a path in X̃ such that

the real parts of the differential forms φ1, . . . , φr are distinct when pulled back to

this path, and thus can be put in an order. The criterion that will be used most

extensively is the following:

Proposition 1.2. Let P,Q ∈ X̃ and let ΩPQ be a region enclosed by two noncrit-

ical paths joining P and Q. Then any harmonic φ-map sends ΩPQ into a single

apartment.

We look closely at two basic examples: the first one is the most basic example, first

considered by Berk, Nevin and Roberts (BNR) [5] in which phenomena specific to

higher rank occur. More specifically, in this example a collision line contributes

to the WKB problem. We carefully analyse this example and prove the following

theorem:

Theorem 1.3. In the BNR example, there exists a universal harmonic φ-map

to a building Bφ. In particular, the map hω, depending on an ultrafilter, factors

through a folding map Bφ → Coneω which is an isometry on the image of X. Thus

the WKB and ultrafilter exponents are the same, and they are both given by the

GMN non-abelianization map.

The second example considered in detail is called the A1-example (so called be-

cause of the category T that it describes). It is the next most difficult WKB

problem that one can consider. We can again prove a theorem similar to Theorem

1.4, only replacing “universal” with “versal”.

Theorem 1.4. In the A1-example, there exists a versal harmonic φ-map to a

building Bφ. In particular, the map hω, depending on an ultrafilter, factors through

a folding map Bφ → Coneω which is an isometry on the image of X. Thus the

WKB and ultrafilter exponents are the same, and they are both given by the GMN

non-abelianization map.

In the context of this example, an algorithm which should produce the heart of a

bounded t-structure for a 3D CY category T is presented. It is applied to another

examples and is shown to agree with the expected category. Furthermore, an

interpretation in terms of certain singular edge lengths in a versal building Bφ is

conjectured.
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1.2 Motivation

It was suggested by Kontsevich and Soibelman [47] that the moduli space of stabil-

ity conditions of a Calabi-Yau triangulated category T should be viewed as part

of a “twistor family”. The fiber over 0 ∈ C should correspond to a “Dolbeaut

type moduli space” which should, in particular, come with a Hitchin-type fibra-

tion. The stability condition on T should come from a point in the base of this

fibration. It is expected that the Hitchin fibration fits into this picture. In order

to show that, it is necessary to construct a category and a stability condition on

it from a point in the base of the Hitchin fibration. In some examples, the spec-

tral networks of [26] have allowed one to construct such a category, but a general

construction is at present not known.

It was already noted, for example in [2, 5], that (extended) spectral networks play

an important role in the WKB analysis of singularly perturbed ODEs [69],[61],

[62] [17], [34], [25]. The WKB problem corresponds, in turn, to investigating a

neighborhood of infinity in the Hitchin and de Rham moduli spaces of flat con-

nections.

The construction of the category was carried out in detail by Bridgeland and Smith

[8], building upon [25], in the case when the structure group is SL2C. In this case,

the category can be interpreted as the Fukaya category of a certain conic bundle

[63], something that is also expected more generally [16]. For SL2C, a quadratic

differential corresponds to a harmonic map to an R−tree [72], namely the leaf

space of the foliation induced by the quadratic differential. Important pieces of

the Stability Hodge Structure can be related to the geometry of this tree. For

example, simple objects in the heart of the category correspond to “shortest edges

in the tree bounded by singular points” (at least in the case, where X is non-

compact). Rotating the quadratic differential φ2 by an angle θ to eiθφ2 leads to

deformations of the tree. When an edge degenerates to length zero under this

family of rotations, this corresponds precisely to the appearance of a BPS -state

and subsequently to a mutation of the tree. Furthermore, as shown by Simpson

in [61], the WKB exponent between two points P,Q ∈ X̃ is equal to the distance

of the corresponding leaves on this tree. Extending this picture to other structure

group was one central motivation for this thesis.

From this point of view, it seems natural to replace trees by Euclidean buildings.

Then, one would expect that a harmonic map to a Euclidean building corresponds

to a point in the Hitchin base. Constructing such a building for a given point

in the Hitchin base should be thought of as the analogue of constructing the leaf

space of a foliation. It should be noted that this passage from trees to buildings
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has already been suggested elsewhere in the literature [52].



Chapter 2

Buildings and metric spaces

Portions of this chapter have appeared in [40] and have been submitted for publi-

cation to “Communications in Mathematical Physics”.

2.1 Spherical and Euclidean buildings

Buildings were invented by Jacques Tits and nowadays have numerous applica-

tions ranging from geometry to group theory, Teichmüller theory and the WKB

approximation. Standard textbooks on the subjects are [1, 59]. The survey article

[60] also treats R-buildings that will be used in consequence.

Roughly speaking, buildings can thought of as (generalized) metric spaces that are

obtained by ”gluing together apartments” A. Depending on what type of buildings

we study, there are two types of apartments:

1. Spherical: an apartment is a spherical Coxeter complex, Sr−1

2. Affine: A ∼=met Rr

So, a spherical building is a generalized metric space (the metric takes values in Sr,

the symmetric group in r letters) that can be isometrically covered by apartments.

Similarly, an affine building is a metric space that can be isometrically covered by

charts Rr.

Before going into the technial details, we present some examples:

6
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Example 2.1 (Flag complexes). Let V be an n−dimensional vector space over a

field k, let W = (Sn, (12)(23), . . . , ((n − 1)n) be the Coxeter system, where Sn is

the symmetric group in n-letters and (ij), j = i+1 are (n−1) generators given by

consecutive transpositions (recall that a Coxeter system is a group W together with

a set of generators S, such that s2
i = eW for all s ∈ S and (sisj)

mij = eW for some

mij ∈ N ∪ {∞}). Then, associated with V is a spherical building B(V ) modelled

on W , whose chambers are complete flags 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V . Clearly,

an ordered basis (e1, . . . , en) gives rise to a flag in an obvious way, namely Vi =

spanj≤i{ej}. Given any σ ∈ Sn, we can permute the basis (eσ(1), . . . eσ(n)), thus

giving rise to other chambers. An apartment, by definition, is the set A{e1,...,en}

of all flags (or equivalently chambers) obtained by acting with all permutations

σ ∈ Sn on the given basis (e1, . . . , en).

Given two flags F1, F2 in an apartment A{e1,...,en} given by (eσ(1), . . . eσ(n)) and

(eη(1), . . . , eη(n)) for σ, η ∈ Sn, we define the distance from F1 to F2 as

d(F1, F2) = η−1σ ∈ Sn .

Roughly speaking, the building axioms require that (and are easy to check in this

example):

1. For any two flags F1, F2, we can define a distance by putting them inside a

common apartment A{e1,...en}.

2. This distance is independent of the specific apartment in which we measure

the distance.

If k is a finite field, then it is clear that there are only finitely many chambers in

B(V ) (as there are only finitely many elements in V ). Figure 2.1 shows a picture

of B(k3) for k = F2, the field of order two. In this picture, the chambers are the

edge joining two vertices. The apartments correspond to hexagons in the picture.

Thus, each apartment consists of six flags (which should be clear from the very

definition). Note that each apartment is topologically a sphere, the dimension of

which is called the rank of the building (which, in this example, is equal to one).

Example 2.2. A more complicated example arises as follows: let (K, ν) be a

discrete valuation ring with uniformizing parameter t and let O be the valuation

ring (for example, take K = k((t)) the ring of formal power series with its usual

valuation). Let V be an n-dimensional vector space over K. Recall that a lattice

L ⊂ V is a free O-submodule of rank n. The Bruhat-Tits building B(V,K) is

an affine building which is the geometric realization of a simplicial complex, the
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Figure 2.1: Building for F3
2

Figure 2.2: Building for SL(3,Q3
2)

k-simplices of which are flags of lattices of the form L0 ⊂ L1 ⊂ · · · ⊂ Lk ⊂ t−1L0.

Just like in the previous example, apartments are obtained by fixing a basis for V

and considering only those lattices “generated by the given basis” (for the precise

meaning of those words, the reader is referred to [1]). In Figure 2.2 one can see a

picture with K = Q2, and dim(V ) = 3. Note that in this picture, the tree should

actually extend to infinity in all directions.

Example 2.3. Even more generally, any metric tree T is an affine building of

rank one. In this case, the apartments are isometries R→ T .

Note that the set of singular points (i.e. the set of points p ∈ T such that no

neighborhood of p is contained in a single apartment) can become dense in a general

tree.

The most important example of such R-trees that will be considered in this thesis
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are the leaf spaces of quadratic differentials on a Riemann surfaces. Recall that a

quadratic differential φ2 on a Riemann surface X is a section of K⊗2
X . For a point

P ∈ X with φ2(P ) 6= 0, we can locally choose a square root λ =
√
φ2. Using λ we

can define a local coordinate z on X by

Q 7→
∫ Q

P

λ = z(Q) .

Then, we can define an S1 family of foliations, namely straight lines in the coordi-

nate z (for now take the foliation lines to have constant real part of z). Note that

the foliation is independent of the choice of square root.

More generally, the foliation can also be defined near a zero of φ2. In the case of a

simple zero of φ2 it looks as in Figure 2.3. The foliation lines are drawn in black.

Pulling back φ2 to the universal cover X̃, we can define an equivalence relation ∼
on X̃: P ∼ Q if and only if P and Q lie on the same leaf of the foliation. The set

of equivalence classes of this relation is the leaf space T , drawn in red in Figure

2.3. It comes naturally equipped with a metric, namely

d(l1, l2) = |Re

∫ Q

P

λ| . (2.1)

Here l1 and l2 are two leaves, P ∈ l1, Q ∈ l2. It is then immediate from the defini-

tion of the foliation that this is independent of the choice of representatives P,Q.

Furthermore, there is a canonical map h : X̃ → T , which is actually harmonic

[72], from the universal cover X̃ to this leaf space, mapping a point to the leaf it

lies on.

Note the following important features:

• The singular points of the tree correspond to the leaves emerging from zeros

of φ2. These zeros are also the points from which more than two foliation

lines emerge. These lines emerging from zeros of φ2 constitute the spec-

tral network for the case when the Hitchin base consists only of quadratic

differentials.

• When a foliation line connects two zeros of φ2, both these points map to

the same point of the leaf space. This correspond to an edge in the tree

degenerating to length zero on the one hand, and to a BPS state [25] on the

other hand.

For X a compact Riemann surface, the leaf space is in general not a simplicial

tree, i.e. the set of singular points is not necessarily discrete. In the case when
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Figure 2.3: Foliation near simple zero

X is a non-compact Riemann surface (corresponding to φ2 having poles), the leaf

space is simplicial.

The apartments in T are isometries R → T . Therefore, by (2.1) any φ2-non-

critical path γ maps to a single apartment. A φ2 non-critical path γ : [0, 1] → X̃

is a path on X̃ such that the tangent vector to γ is not tangent to a foliation, i.e

(Re γ∗λ) (t) 6= 0 ∀t ∈ [0, 1] .

Non-critical paths will also play an important role later in the case of spectral

covers of higher degree.

Example 2.4. One of the main examples of buildings that will be needed in this

thesis, is the asymptotic cone of a symmetric space. This example, that will play

a prominent role in WKB considerations, will be discussed in more details later,

when more technical details on buildings will have been presented.

After these motivating examples, we now turn to the formal definition of buildings.

The reader not familar with buildings should always keep the above examples in

mind. Our treatment here follows closely the review [60]. We start by writing

down the definition. The rest of this section is then devoted to explaining all the

terms appearing therein.

Definition 2.1. An affine building (resp. spherical building is a triple (B,F ,A)

consiting of a set B, a collection F of filters on B (called the facets of B) and a

collection A of subsets A of B called apartments, each endowed with a metric dA,

satisfying the following axioms
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1. For A ∈ A, let Fa := {σ ∈ F|A ∈ σ} be the set of filters contained in A.

Then for each apartment A, ((A, dA),FA) is isomorphic to a Euclidean (resp.

spherical) apartment.

2. For any two facets F , F ′ in F , there is an apartment A containing F̄ and

F̄ ′.

3. For any two apartments A and A′, their intersection is a union of facets.

For any two facets F, F ′ in A ∩ A′, there exists an isometry of apartments

A→ A′ that carries FA to FA′ and fixes F̄ and F̄ ′ pointwise.

Remark 2.2. From the definition above, it follows immediately that we can define

a distance between any two points in a building B: we can put them into a

common apartment by 2. Then, 3 tells us that this distance is well defined. The

triangle inequality follows as well, although this is not quite as obvious (we refer

the interested reader to [60]).

We now explain all the terms used in the definition above. We start with apart-

ments.

Let E be a Euclidean space, i.e. a real vector space V together with a non-

degenerate inner product. Let A be an affine space over V with the metric induced

by E. Then, an affine hyperplane in A is an affine subspace of codimension one.

A reflection of A is an isometry of order two whose fixed point set is an affine

hyperplane H. Note that for each affine hyperplane, there is a unique reflection

rH with fixed point set H (any hyperplane H through the origin defines a reflec-

tion by r : V = H ⊕ H⊥ → V, (h, a) 7→ (h,−a); now, take any p ∈ H, then

rH : v 7→ (v−p) 7→ r(v−p) 7→ r(v−p) +p, where r is the reflection about H−p).
The group Aff(A) of isometries of A is isomorphic to V o GL(V ). Then, for any

subgroup Waff ⊂ Aff(A), denote by Wlin its image in GL(V ). A subgroup Waff of

the group of affine isometries is called an affine refelection group if it is generated

by affine reflections such that Wlin is finite. Note that Wlin naturally acts on the

unit sphere S(E) = {v ∈ E|‖v‖ = 1} where ‖.‖ denotes the norm on E. We can

idenitify Wlin with its image in Wsph in the isometry group of S(E).

Now, let Waff be an affine reflection group, and let H be the collection of affine

hyperplanes H in A such that there exists a wH ∈ Waff with H the fixed point set

of wH . Denote by Hlin the collection of vector subspaces U = {v − w|v, w ∈ H}
and by Hsph the collection of subsets C ⊂ S(E) such that there exists H ∈ Hlin

such that C = H ∩ S(E). An affine Coxeter complex (resp. spherical Coxeter

complex ) is a pair (A,Waff ) consisting of an affine space A (resp. a sphere S(E)),

and an affine reflection group Waff (resp linear reflection group Wlin ' Wsph)

acting on A) (resp. S(E)). These Coxeter complexes are the basic buidling blocks
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of buildings. It is easy to check that an affine Coxeter complex (A,Waff ) is com-

pletely determined by the corresponding set of hyperplanes H (the same is true

for a spherical Coxeter complex).

Definition 2.3. Let Wlin be a linear reflection group acting on a Euclidean space

E. We identify Wlin with the spherical reflection group Wsph by restricting its

action to the unit sphere. Let Hlin and Hsph be as defined in the paragraph above.

Elements of Hlin and Hsph will be called walls. An open half apartment is a

connected component of the complement of a wall. Define an equivalence relation

on E (resp. S(E) by saying that x ∼ y if the set of open half apartments and walls

containing x coincides with the set of open half aprtments and walls containing y.

1. A vectorial facet is an equivalence class for the equivalence relation ∼.

2. The support of a facet is the intersection of walls containing it. The dimen-

sion of a facet is the dimension of its support as a manifold.

3. A facet maximal with respect to inclusion is called a Weyl chamber (or just

a chamber in the spherical case)

4. A panel is a facet whose support is of codimension one in E (resp. S(E)).

Definition 2.4. Let (A,Waff ) be an affine Coxeter complex given by a set of

reflection hyperplan H, the elements of which are called walls.

• A sector based at x in A is a subset of the form x + ∆, where ∆ is a Weyl

chamber in (E,Wlin).

• A germ of Weyl sectors based at x is an equivalence class of Weyl sectors

based at x for the following equivalence relation: S and S ′ are equivalent if

S ∩ S ′ is a neighborhood of X in S and S ′. The germ of a Weyl sector S at

x is denoted ∆xS.

• A half-apartment in A is the closure of an open half apartment.

• An enclosure in A is the intersection of a collection of half-apartments. The

intersection of enclosures is an enclosure. If Q ⊂ A then the intersection of

enclosures containing Q is called its hull, and denoted hull(Q). A subset Q

is said to be enclosed or Finsler convex if it is equal to its hull.

Let (A,Waff ) be an affine Coxeter complex withH the set of reflection hyperplanes

in A. Then it can be shown that Waff is a semi-direct product Waff ' Wlin o T

with T a translation subgroup of A. The affine Coxeter complex (A,Waff ) is
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called discrete if the translation subgroup T is a discrete subgroup of A; otherwise

it is called dense. In the case that (A,Waff ) is discrete, Ao
H := A − ∪H∈HH is

an open subset of A and the connected components of Ao
H are called alcoves or

chambers. The closures of the chambers tile the affine space. If the model space

for our building B is a discrete affine Coxeter complex, then the structure of the

building can be described completely in terms of these alcoves. When T is dense,

however, the set Ao
H is not well behaved and we need the notion of a filter to save

alcoves.

Definition 2.5. Let A be a set. A filter σ on A is a collection of subsets of A

satisfying the following conditions:

1. If P is in σ and P ⊂ Q then Q is in σ

2. If P and Q are in σ, then so in P ∩Q.

Example 2.5. Let Z ⊂ A. Define σZ := {Y ⊂ A|Z ⊂ Y }. Then σZ is a filter. A

filter is called principal if it is of the form σ{a} for some a ∈ A.

Example 2.6. Let X be a topologcail space and let x ∈ X. Then the collection Nx

of subsets of X containing a neighborhood of x is a filter on X which is different

from σ{x} in general.

Example 2.7. Let X be a set, and let F := {A ⊂ X|X −A is finite}. Then F is

filter on X, called the Frechet filter. Note that F is not contained in any principal

filter.

The set of filters forms a poset: one says that σ is contained in σ′, denoted as

σ ≤ σ′, if for all Z ∈ σ′ we have that Z ∈ σ. Subsequently, subsets Z ⊂ A will

often be identified with their corresponding filter σZ ; in particular we say that a

filter σ is contained in a set Z if σ ≤ σZ , i.e. if Z ∈ σ. An arbitrary subset Z ⊂ A

is the union of a family of filters {σα}α if each σα is contained in Z, and for each

x ∈ Z there exists an α such that σ{x} ≤ σα ≤ σZ . For example, a subset of a

topological space is open if and only if it is the union of a family of neighborhood

filters. The closure σ̄ of a filter σ in a topological space X is the collection of

subsets of X that contains the closure of a set in σ.

Definition 2.6. Let x be a point in a Coxeter complex A modelled on a Euclidean

space E, and let F be a vectorial facet in E. The facet σF,x associated to (x, F ) is

the filter defined by the following condition: Z belongs to σF,x iff it contains a finite

intersection of open half apartments and walls containing U∩(x+F ) for some open

neighborhood U of x in A. Let FA,W = {σF,x|x ∈ A, and F is a vectorial facet}.



Chapter 2. Buildings and metric spaces 14

The pair (A,F(A,W )) consisting of the metric space A together with the collection

of filters F(A,W ) is called the Euclidean apartment associated to (A,W ). A metric

space A endowed with a collection of filters F is called a Euclidean apartment if

it is isomorphic to (A,F(A,W )) for some affine Coxeter complex (A,Waff ).

Now we have explained all terms in the definition of a building. The next goal is

to study maps between buildings.

Definition 2.7. A (generalized) chamber system is a set X equipped with a family

F of filters on X. Let (X,F) and (X ′,F ′) be generalized chamber systems. A

morphism of chambers systems is a map f : X → X ′ such that for each filter σ ∈
F , we have that f∗(σ) ∈ F ′ (with f∗(Q) := {Q′ ⊂ X ′|f(Q) ⊂ Q′ for some Q ∈ σ}.

Definition 2.8. A pre-building (B,F , C) is a generalized chamber system (B,F)

that is the union of a collection C of sub-chamber systems called cubicles, each

cubicle C ∈ C being equipped with a metric dC , satisfying the following conditions:

1. Each cubicle (C, dC) is isomorphic to an enclosure in an aparment A (as a

chamber system and as a metric space)

2. For any two cubicles C and C ′, dC agrees with dC′ on C ∩ C ′.

Definition 2.9. Let (B,F ,A) and (B′,F ′,A′) be pre-buildings. A morphism of

generalized chamber systems f : B → B′ is an isometry of pre-buildings if it

restricts to a distance preserving map f |A : C → B′ for every cubicle C.

Suppose now that (B,F ,A) and (B′,F ′,A′) are buildings. Then f is

1. An isometry of buildings or strong morphism of buildings if it is an isometry

of pre-buildings.

2. A folding map or weak morphism of buildings if it has the following prop-

erty: for every apartment A ∈ B there exists a locally finite collection of

hyperplanes H such that f restricts to an isometry on the closure of each

connected component of A− ∪H∈HH.

We close this section by stating some properties of buildings that will be needed

in later chapters.

Proposition 2.10. Let B be an affine building with Weyl group W . Then the

follwoing hold:

1. Let S and S ′ be opposite sectors based at a common vertex. Then there is a

unique apartment A such that S ∪ S ′ ⊂ A.
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2. Let S be a sector in B, and let A1 be an apartment. Suppose that A ∩ S
is a panel in A1. Let H be a wall in A1 containing P . Then there exist

apartments A2 6= A3 such that A1 ∩Aj is a half-apartment and H ∪ S ⊂ Aj

for j = 2, 3.

3. Let x be a vertex in an affine building B, and let S and S ′ be sectors based

at x. Then there is an apartment A in B containing S and the germ ∆xS
′.

Proof. The reader is referred to [4, 57]

In this thesis, we restrict our buildings to have a “complete system of apartments”,

as this will be necessary for some arguments.

Definition 2.11. Let (B,F ,A) be an affine building. We weill say that (B,F ,A)

is a building with a complete system of apartments if for any other system of

apartments A′ with A ⊂ A′ we have A = A′.

Remark 2.12. One can easily show [57, 60] that any system of apartments A is

contained in a unique maximal one Ā. Thus, restricting to buildings with complete

systems of apartments is not really a restriction (compare this to restricting to

manifolds with a maximal atlas). A characterization of buildings with complete

apartments can be given as follows: suppose that A is isometric to the standard

apartment, and every bounded subset of A is contained in an apartment. Then A ∈
A. There is an even stronger characterization: a building has a complete system

of apartments if and only if every geodesic is contained in a unique apartment [57].

2.2 Asymptotic cones of symmetric spaces

Recall that a locally symmetric space is a Riemannian manifold M such that

for any p ∈ M there is an isometry of a neighborhood of p fixing p, and whose

derivative at p is the negative of the identiy. A locally symmetric space is called

a symmetric space if each sp can be extended to a global isometry of M . As a

reference for symmetric spaces, we refer to [31]; two surveys that cover the aspects

needed in this thesis are [35, 54].

Recall that the connected component G of the identity of the isometry group of a

Riemannian manifold M is a Lie group. It is an important theorem in the theory

of symmetric spaces that any symmetric space M is a homogeneous space for G,

i.e. M ' G/K where K denotes the isotropy group of a point p ∈M .

There is an involution σ of G induced by sP given by σ(g) = sPgsP , and a
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corresponding involution Ad(s) of the Lie algebra g of G. This involution induces

a decomposition g ' t+ p into eigenspaves of eigenvalue +1 and −1, respectively.

This decomposition is called the Cartan decomposition of g.

Of special importance to us are symmetric spaces of noncompact type, i.e. the

restriction of the Killing form to the −1 eigenspace p is negative definite.

Recall that a submanifold N ⊂ M is called totally geodesic if any geodesic that

intersects N at a point p ∈ N , and such that its tangent vector at p is tangent to

N , stays within N .

Definition 2.13. Let M be a symmetric space of non-compact type and N be

a totally geodesic submanifold. Then N is called a k-flat if it is isometric to Rk

with its Euclidean metric. An apartment in M is a flat maximal with respect to

inclusion.

Example 2.8. Let M = SLr/SU(r). This space can be identified with the space

of hermitian metric on Cr. The Cartan decomposition slrC ' sur + h (with h

being the set of Hermitian matrices) gives, by the exponential map exp : h → M ,

a diffeomorphism. This space is a symmetric space of non-compact type.

Furthermore, apartments A ⊂M correspond to maximal abelian subalgebras a ⊂ h

under the exponential map.

The following proposition shows that symmtric spaces share some properties with

buildings:

Proposition 2.14 ([54]). Let M be a Riemannian symmetric space. Then the set

A of apartments in M statisfies the following axioms:

1. For any two points p and q in M , there is an apartment containing p and q.

2. For any two apartments A and A′, their intersection is a closed convex set

of both. Furthermore, there is an isometry A→ A′ fixing A ∩ A′.

The following theorem by Kleiner and Leeb shows the precise relationship between

buildings and symmetric spaces.

Theorem 2.15 (Kleiner-Leeb). Fix an ultrafilter ω on N and M be a non-empty

symmetrc space of non-compact type. Then for any sequence p = {pn}n∈N of

base point in M , and any family of scale factors µ = {µn}n∈N, the asymptotic

cone Coneω(M, p, µ) is a thick affine building with a complete system of apart-

ments. Furthermore, if the Coxeter complex associated to M is (A,WAff ) then

Coneω(M, p, µ) is modelled on (A,Waff ).
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Now we want to explain what the notion of asymptotic cone means [49]. It arises

from taking the Gromov-Hausdorff limit of the symmetric space, a construction

which we will now explain.

Roughly speaking, the asymptotic cone of a metric space (X, d) is obtained by

“looking at X from infinity”. It is rather straigforward to define the asymptotic

cone of a convex subset X ⊂ Rn: Fix p ∈ X and consider the family of subsets

Xt = 1
t
X = {q ∈ Rn|t(q − p) ∈ X}. This gives a nested family of subsets

of Rn: for t1 ≤ t2, Xt2 ⊂ Xt1 . The asymptotic cone of X with respect to p is

Cone(X, p) :=
⋂
tXt.

Example 2.9. Let f : R→ R

f(x) =

−x3 if x ≤ 0

0 if x ≥ 0
,

let X = {(x, y) ∈ R2|y ≥ f(x)} and let p = (0, 0). Then Cone(X, p) = {(x, y)|x ≥
0, y ≥ 0}, but the tangent cone at p is the entire upper half plane.

For general metric spaces, (X, 1
n
d), n ∈ N cannot be realized as a nested sequence

of subsets. The precise construction of the asymptotic cone is to take an ultralimit,

which depends on an ultrafilter.

Definition 2.16 (Ultrafilters and ultralimits). An ultrafilter σ on a set A is a filter

on A this is maximal with respect to inclusion. Let ω be a non-principal ultrafilter.

Then we say that a family of points {xa}a∈A in a topological space X has ω-limit

x, limω xa = x, if for each neighborhood U of X, the set {a ∈ A|xa ∈ U} belongs

to ω.

The examples of interest to us will be A = N and A = R. Some basic facts about

ultrafilters are summarized in the following proposition [10, 51]:

Proposition 2.17. Let ω be a non-principal ultrafilter on N. Let (X, d) be a

metric space and let {xn}n∈N be a sequence in X. Then the following are true:

1. If {xn}n∈N is a bounded sequence in X, then it has an ω-limit in X.

2. If {xn}n∈N is a convergent sequence (in the sense of metric spaces), then

limω exists and limω xn = limn→∞ xn.

3. Let ω be a non-principal ultrafilter on R and let f : R → X be a bounded

map. Then limω f ≤ lim supt→∞ f(t)
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4. If limt→∞ f(t) exists, then we have limt→∞ f(t) = limω f = lim supt→∞ f(t)

A family of scale factors {µn}n∈N (or {µt}t∈R) is a sequence (or family) of positive

real numbers such that µn →∞ as n→∞ (or µt →∞ as t→∞).

Definition 2.18. Let (X, d) be a metric space, let {pn} be a sequence of points

in X and let {µn}n∈N be a family of scale factors. Fix a non-principal ultrafilter

ω on N. The asymptotic cone Coneω := Coneω(X, {pn}, {µn}) is the metric space

associated to the pre-metric space Cone′ω:

• the points of Cone′ω are sequence {xn} in X such that (1/µn)d(xn, pn) is

bounded.

• The metric is given by

dConeω({xn}, {yn}) = lim
ω

1

µn
d(xn, yn) .

Let (X, d) be a symmetric space of non-compact type and let dn = 1
µn
d. The

apartments of the symmetric space give rise to the apartments of the asymptotic

cone as follows: Let fn : A→ X by an apartment with fn(0) = pn. Then there is

an induced map [f ] : A→ Coneω, [f ](a) = {fn(a)}.

2.3 Vector valued distance

On symmetric spaces and buildings of rank > 1 it is possible to introduce a more

refined distance that takes values in a Euclidean space E, or more precisely in the

fundamental Weyl chamber C.
Let (A,Waff ) be a Coxeter complex, let Wsph denote the spherical part of Waff .

Then the subtraction map A× A→ E gives rise to a map

A× A→ (A× A)/Waff → E/Wsph .

Now, E/Wsph is the same a a fundamental domain for the action of Wsph on E;

thus we obtain a distance function ~d : A×A→ C̄. This is called the vector distance.

Definition 2.19. Let X be a symmetric space or an affine building, and let x, y be

points in X. In light of the definition of buildings and the properties of apartments

in symmetric spaces, we know that there exists an apartment A ⊂ X containing
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x and y. Define the vector valued distance ~d(x, y) to be the vector valued distance

computed in this apartment.

Remark 2.20. It is clear that this is well defined: in the case of buildings it follows

immediately from the definition, in the case of symmetric spaces, it follows from

the second property.

Remark 2.21. If X = G/K is a symmetric space, the vector valued distance is the

Cartan projection: recall that there is a Cartan decomposition G = KA+K. The

Cartan projection is the map log : A+ → C̄.

Example 2.10. Let X = SLr/SUr. Then the Cartan decomposition is as follows:

let T ∈ SLrC. Then T = UDV with U, V unitary and D diagonal with real entries.

If A,B ∈ X, and A = TB = UDV B then ~d(A,B) is the vector of logarithms of

the diagonal entries of D.

Proposition 2.22 (Parreau). Let M be a Riemannian symmetric space of non-

compact type, and let ~d denote its vector distance function. Let Coneω denote the

affine building obtained from M by passing to its asymptotic cone with respect to

some family of base points and scale factors, and an ultrafilter ω on N. Let [xn]

and [yn] be two points in Coneω. Then we have that

~dConeω([xn], [yn]) = lim
ω

~d(xn, yn) .

2.4 The harmonic map to the asymptotic cone

In [58], the action of a group G on the asymptotic cone leads to a (refined) distance

on G. In this section this construction is extended by replacing G with a groupoid.

This allows us to keep track of the points of the Riemann surface later.

A groupoid is a category all of whose morphisms are isomorphisms. A basic exam-

ple is the fundamental groupoid π≤1(X) of a topological space X. By definition,

the objects of π≤1(X) are the points of X and the set of morphisms between P,Q,

π≤1(P,Q), is the set of homotopy classes of paths from P to Q. When X carries

some additional geometric structure, the category of representations of π≤1(X),

can have a geometric interpretation. For example, if X is a smooth manifold,

then, by the Riemann-Hilbert correspondence, the category of representations of

π≤1(X) is equivalent to the category of flat vector bundles on X. This example

will be relevant for the WKB problem, but in this section we work with an abstract

groupoid Γ.
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Let Γ be a groupoid . Then a finite dimensional complex representation of Γ is

a functor ρ : Γ → VectC (here, VectC is the cateogry of finite dimensional com-

plex vector spaces). If dimC(ρx) = r for all x ∈ Ob(Γ), then we say that the

representation is of rank r. Denote by Rep(Γ, r) the set of all representations of

Γ of rank r equipped with a trivialization of
∧r ρ. A hermitian metric on ρ is the

datum of a hermitian metric hx for all ρx that is compatible with the trivialization.

Suppose that {µt} is a family of scale factors. Then we say that a map f : R→ R
is of exponential growth at infinity with respect to {µt} if there exist constants

C, η ∈ R such that |f(t)| ≤ C exp(ηµt) for t� 0. The set of function of functions

of exponential growth with respect to {µt} forms a ring with valuation, where

the valuation is the infimum over all η such that there exists a C with |f(t)| ≤
C exp(ηµt) for t� 0:

ν(f) := lim sup
t→∞

1

µt
log |f(t)| .

The valuation can be used to measure the growth rate of a family of representations

depending on a large parameter.

Definition 2.23. Let Γ be a groupoid and let ρ : R → Rep(Γ, r) be a family

of representations such that for each t ∈ R, h(t) is a hermitian metric on ρ(t).

Let ‖−‖t denote the operator norm on Hom(ρx(t), ρy(t)) associated to h(t). Let

{µt}t∈R be a family of scale factors. Then ρ is of exponential type with respect to

({h(−)}, {µt} = if for each arrow γ ∈ Γ, the function t 7→ ‖ργ(t)‖ is of exponential

growth.

Definition 2.24. Let Γ be a groupoid, and let ρ : R → Rep(Γ, r) be a family of

representations that is of exponential growth with respect to a family of metrics

h(t) and a family of scale factors µt. Let γ be an arrow in Γ. The exponent ν(γ)

with respect to (ρ, h, µ) is the number

ν(γ) = lim sup
t→∞

1

µt
log‖ργ(t)‖t .

The dilation spectrum of γ is the vector ~ν(γ) = (ν1(γ), . . . , νr(γ)) uniquely deter-

mined by the condition that
∑k

i=1 νi(γ) is the WKB exponent of γ with respect

to (
∧k ρ, h, µ) for each 1 ≤ k ≤ r.

An analogous definition can be made by replacing lim sup by a limit over an ul-

trafilter. Then the assumption that the family of representations is of exponential

type is no longer needed.
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Definition 2.25. Fix an ultrafilter ω on R whose support is a countable set, and a

family of scale factors {µt}. Let ρ : R→ Rep(Γ, r) be a family of representations,

and let γ be a morphism in Γ. The ultrafilter exponent of γ, denoted νωγ is defined

by the formula

νωγ = lim
ω

1

µt
log‖ργ(t)‖ .

One obtains similarly the ultrafilter dilation exponent ~νωγ .

Remark 2.26. For a single fixed arrow γ in Γ and a given k, it is possible to choose

the ultrafilter ω such that
∑k

i=1 ~ν
ωi, γ =

∑k
i=1 ~νi,γ. Indeed it suffices to choose

the ultrafilter subordinate to a subsequence which realizes the lim sup for the k-th

exterior power.

Example 2.8 may be restated as follows.

Lemma 2.27. Let Γ be a groupoid and ρ : R → Rep(Γ, r) be a family of repre-

sentations with trivialized determinant, and let h be a metric on this family. Let

γ ∈ HomΓ(x, y), and let ‖A‖t denote the operator norm of a morphism A : ρx → ρy

with respect to the metric hx(t) and hy(t). Define αt(γ) = (αt,1(γ), . . . , αt,r(γ)) re-

cursively by the formula
∑k

i=1 αt,k(γ) = log‖∧k ργ(t)‖. Then we have that
~d(ργ(t)∗(hx(t)), hy(t)) = αt(γ).

Proof. Let h and k be hermitian metric on an r−dimensional vector space, which

we think of as points in the symmetric space Met(V ). Choose a basis {ei} of ρy

that is orthonormal for both h and k - such a basis exists by the spectral theorem.

Let αi be such that‖ei‖k = eαi‖ei‖h. Order the ei such that α1 ≥ α2 ≥ · · · ≥ αr.

Then the vector distance between h and k is by definition ~d(h, k) = (α1, . . . , αr).

Now, let A : W → V be a linear operator such that k = A∗h
′ for some hermitian

metric h′ on W . By the definition, the operator norm ‖A‖ with respect to h′ and

h is

eα1 = sup
‖w‖h′=1

‖Aw‖h .

Since the eigenvalues of ‖∧k A‖ are computed from the k×k minors of A, we have

that

e
∑k
i=1 αi = sup

‖w‖h′=1

‖
k∧
Aw‖h .

Thus,
k∑
i=1

αi = log‖
k∧
A‖ .

By applying this discussion to the case where W = ρx, h
′ = hx(t), h = hy(t), V =

ρy, A = ρy(t), the lemma follows.
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Let (V, σ) be a complex vector space of dimension r that is equipped with a

trivialization ρ :
∧r V → C. Let Met(V, σ) be the set of hermitian metric on V

that are compatible with σ in the sense that the induced metric on
∧r V coincides

with the standard metric on C via σ. Observe that Met(Cn, σ) is canonically

isomorphic to SLrC/SUr, where σ is the trivialization given by the standard basis

vectors. Thus, we see that Met defines a functor from the groupoid of vector spaces

equipped with a volume form, to the groupoid of symmetric spaces of non-compact

type (with isometries as morphisms).

Let {µt} be a family of scale factors, and ω be an ultrafilter on R whose support

is a countable set. Then we can pass to the asymptotic cone levelwise where

the basepoint in each fiber Met(ρx) is given by the family of points hx(t). This

provides us with a family of functors

Coneω,µt ◦Met ◦ ρ(t) : Γ→M .

Here M is the category of metric spaces and isometries. By a theorem of Kleiner

and Leeb [42], this functor factors through the category of affine buildings and

isometries.

Put X := Ob(Γ), choose a basepoint x0 ∈ X, and let X̃ denote the set of pairs

(x, γ) where x ∈ X and γ : x0 → x. Note that Γ(x0, x0) acts on X̃ by composition

of paths. Let X̃Γ : Γ → Set be the functor defined by X̃Γ(x) equal to the set of

points in X̃ over x.

Definition 2.28. Define the asymptotic limiting map to be the natural transfor-

mation

hω : X̃Γ → Coneω,Γ

given by

hω(x)(x, γ) := [{γ∗hx0(t)}t∈R] .

The functor Coneω,Γ may be viewed as consisting of the affine building Coneω :=

Coneω,Γ(x0) together with the action of Γ(x0, x0) on it by isometries. The section

hω then corresponds to a Γ(x0, x0)-equivariant map

hω : X̃ → Coneω .

The following corollary of Proposition 2.22 and Lemma 2.27 says that the asymp-

totic limiting map computes the ultrafilter dilation exponents.

Corollary 2.29. Fix an ultrafilter ω on R whose support is a countable set, and

a family of scale factors {µt} Let ρ : R→ Rep(Γ, r) be a family of representations.
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Consider the asymptotic limiting map hω of Definition 2.28. For any points x, y ∈
Ob(Γ) and a morphism γ from x to y, ket x̃, ỹ be the source and target of any

lifting of the path to an arrow of X̃. Then

~dConeω(hω(x̃), hω(ỹ)) = ~νωγ .



Chapter 3

Spectral Covers and Buildings

Portions of this chapter have appeared in [40] and have been submitted for publi-

cation to “Communications in Mathematical Physics”.

The asymptotic propoerties of the Riemann-Hilbert problem studied in this thesis

are closely related to the Riemann surface of an associated meromorphic 1-form.

This Riemann surface is called the spectral curve and it gives rise to a ramified

cover of X.

3.1 Spectral and Cameral covers

In this section, we want to recall how to construct a spectral cover from a harmonic

map to a building, and to formulate the concept of universal buildings.

Let ϕ be a regular semisimple endomorphism of an n−dimensional complex vector

space V . It is well known that ϕ can be described in terms of spectral data, i.e.

a collection of lines {L1, . . . , Ln} (the one-dimensional eigen-spaces of ϕ) together

with a collection of complex numbers λi (the eigenvalues). We arrive at the notion

of a spectral curve Σ [3, 19, 32, 33] together with a line bundle on Σ by considering

a family of endomorphisms {ϕx}x∈X where X is a complex manifold and letting

ϕx additionally take values in a “coefficient object” K. Summarizing, we replace

the single endomorphism ϕ by a section ϕx ∈ H0(X,End(E) ⊗ K) and consider

the fiberwise diagonalization. In this thesis, we will content ourselves with the

situation in which dimC(X) = 1, G = SLrC and K is a line bundle on X (we

could actually restrict to K = ωX , the canonical bundle on X).

24
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Definition 3.1. Let K be a holomorphic line bundle on a smooth complex curve

X.

1. A K-valued spectral cover φ of X is a pair (π : Σ → X, i : Σ ↪→ tot(K)),

where π is a finite ramified cover and i : Σ ↪→ tot(K) realizes Σ as a closed

subscheme of the total space tot(K).

2. A K-valued Higgs coherent sheaf on X is a pair (E , ϕ) where E is a coherent

sheaf and ϕ is a section of End(E)⊗K such that ϕ ∧ ϕ = 0.

The spectral cover ϕ is called smooth if the spectral curve Σ is smooth. Subse-

quently, let p : tot(T ∗X)→ X be the natural projection and λ be the restriction of

the Liouville section λ = pdx to Σ, where p is the coordinate along the fiber and

x the coordinate along the base curve X.

We will sometimes write “φ = {φ1, . . . , φ3}” (where r is the degree the cover) in

order to emphasize that the spectral cover can be thought of as a multi-valued

one-form.

An important construction in the theory of Higgs-bundles is to associate a spectral

cover Σ to a Higgs-bundle (E , ϕ). This is done by associating to a K-valued Higgs

bundle its characteristic polynomial

charϕ := det(λid− ϕ) = λr + a1λ
r−1 + · · ·+ ar .

Here the coefficent ak is a section of the line bundle K⊗k. If (E , ϕ) is an SLr-Higgs

bundle, then a1 = Trϕ = 0. The zeros of the characteristic polynomial thus define

a spectral cover Σ. The map associating to a Higgs bundle its spectral cover is

called Hitchin map.

For the rest of this section, let G = SLrC and denote by W = Sr the Weyl group,

i.e. the symmetric group in r−letters. Furthermore, we fix a Cartan subalgebra

t ⊂ g = slr. In this case the space of characteristic polynomials can be identified

as
⊕r

i=2H
0(X,K⊗i).

Definition 3.2. Let X be a smooth complex curve, K a line bundle on X, and

let φ ∈ ⊕r
i=2H

0(X,K⊗i) be a point in the Hitchin base. The cameral cover

associated to φ is the cover πφ : Σφ → X defined by the following pullback square:
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Σφ tot(K ⊗ t)

X tot(
⊕r

i=2 K
⊗i)

φ̃

πφ

φ

σ

Here σ = (σ2, . . . , σr) are the elementary symmetric functions. We use that by

Newton’s theorem C[t]W ' C[σ2, . . . , σr], where C[t]W is the space of polynomials

in the Cartan algebra invariant under the adjoint action of the Weyl group.

Note that there is a tautological section φ̃ ∈ H0(Σφ, π
∗
φ(K ⊗ t)) defined by the

diagram. By fixing a linear coordinate system (x1, . . . , xr) on t we can identify φ̃

with an ordered sequence of differential forms φ̃ = (φ̃1, . . . , φ̃r) with
∑r

i=1 φ̃i = 0.

Thus, intuitively, one can think of the cameral cover as “orderings of the spectral

cover φ = {φ1, . . . , φr}”.

3.2 Harmonic maps to buildings

In this section we want to describe a mathematical object from which we can

produce a point in the Hitchin base. This object is a π1(X) equivariant harmonic

map h : X̃ → B, where X̃ is the universal cover of X. This construction was dis-

covered first in [39]. We start by defining differential forms (or rather appropriate

combinations thereof):

Definition 3.3. Let B be a rank r−1 affine building with Weyl groupWaff ' WnT
with T a subgroup of the translation group Rr, and let {f : A→ B}f∈A be an atlas

for B. A differential k-form η on an open subset U ⊂ B is a collection {ηf}f∈A of

k-forms on f−1(U) = A ' Rr−1 such that (g−1 ◦ f)∗ηg = ηf on f−1(g(A)∩U). Let

T ∗B be the sheaf on B whose sections on U are the differential 1-forms on U , and

by T ∗B,C its complexification.

Now, let (x1, . . . , xr) be an affine coordinate system on A such that {xi = xj} define

the reflection hyperplanes for the action of the Weyl group W . Let dx1, . . . , dxr de-

note the differentials of the coordinates. Then, for each 2 ≤ k ≤ r, σk(dx1, . . . , dxr)

is W−invariant and thus also invariant under the affine Weyl group. In conse-

quence, the differentials σk(dx1, . . . , dxr) give rise to a section

ξk ∈ H0(B, Symk(T ∗B,C)).
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Remark 3.4. Intuitively, one can think of the dxi as defining local one-forms, which,

however, are not globally well defined due to the action of the Weyl group. The

situation here is analogous to the case of spectral covers, where the one-forms

φ1, . . . , φr were not well defined, but the “set of one-forms” {φ1, . . . , φr} (i.e. the

spectral cover) is well defined.

Let X be a Riemannian manifold and let h : X → B be a map. We call a point

x ∈ X h-regular if there exists a neighborhood U of x such that h(U) is contained

in a single apartment. Denote by Xreg the set of h−regular points. Now, for a

differential form η on B, one can define a pullback h∗η which is a section of the

complexified cotangent bundle of X. This pullback is defined using an open cover

{Uα}α of Xreg for which h(Uα) ⊂ fα(A) for some apartment fα. Then h∗η is

determined by the requirement

(h∗η)|Uα = (f−1
α ◦ h)∗(ηfα) .

We will say that a map h : X → B to an R-building is harmonic if it is harmonic

in the sense of [48].

Lemma 3.5. Let X be a smooth complex curve, and suppose that h : X → B
is a harmonic map to a building. Let ξk be the harmonic symmetric tensor on B
given locally by ξk = σk(dx1, . . . , dxr). Then there is a unique holomorphic section

φk ∈ H0(X,ω⊗kX ) that restricts to h∗(ξk) on Xreg.

Proof. The idea is that, since h is a harmonic map, the complexified pullbacks

h∗(dxi) are locally defined harmonic 1-forms on Xreg whose (1, 0) parts are holo-

morphic. Thus h∗(ξk) is a holomorphic section of Symk(Ω1
X). Furthermore, since

the singularities of a harmonic map are in codimension 2, these holomorphic sec-

tions extend to all of X. For the details, see [39].

We now come to one of the key definitions.

Definition 3.6. Let X be a smooth complex curve, and let φ = (φ2, . . . φr) ∈
H0(X,ω⊗iX ) be a point in the SLrC Hitchin base. Let B be an affine building with

Weyl group WA ' W n T where W is the Weyl group of SLrC and T ⊂ Rr is a

translation group. A π1(X, x)-equivariant harmonic map h : X̃ → B is a harmonic

φ-map if π∗φk coincides with h∗ξk on Xreg for all k.

Remark 3.7. Intuitively, this means that the local forms dx1, . . . dxr are pulled

back to the 1-forms φ1, . . . , φr.
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3.3 The (uni)versal building

A crucial idea in this thesis is to reverse the construction of the previous section,

i.e. try to define a versal or universal building Bφ together with a harmonic map

X̃ → Bφ for any spectral cover φ such that the spectral cover associated to the

harmonic map to the building Bφ is the original spectral cover φ. Conjecturally,

this should even work in families: this means that there should be a space of

(uni)versal buildings such that the space of all harmonic maps to all buildings in

this space is isomorphic to the locus of smooth spectral covers.

Definition 3.8. Let X be a Riemann surface, B be a building and h : X̃ → B be

a map. The image of h, im(h), is the pre-building
⋃
A∈A hull(A ∩ h(X)) with the

pre-building structure induced from B.

Definition 3.9. With notation as above, a map hφ : X̃ → Bφ is a (uni)versal φ-

map if it is a harmonic φ-map and satisfies the following property: for any building

B with a complete system of apartments and with the same vectorial Weyl group,

and for any harmonic φ-map h : X̃ → B there exists (unique) a folding map of

buildings ψ : Bφ → B such that the following diagram commutes

X̃ Bφ

B

hφ

h
ψ

Example 3.1. In the case r = 2, i.e. when the Hitchin base consists of quadratic

differentials φ on X, the universal building is well known: it is the leaf space of

the foliation of φ on X̃ (see Example 2.3) , which is an R-tree T φ. The harmonic

φ-map in this case is given by the natural quotient map X̃ → T φ.

Example 3.2. If the cameral cover decomposes totally, the universal building is a

single apartment. It can also be determined in the neighborhood of a simple branch

point: locally it is given by trivalent tree times Rr−2. Therefore the interesting

phenomena appear near “collision points”, i.e. points in the building where such

trivalent singularities collide. This will examined later in examples.

Now, we can formulate one of the main conjectures of this paper:

Conjecture 1. Let X be a Riemann surface, and let φ be a smooth spectral cover

of X. Then there exists a (uni)versal φ-map hφ : X̃ → Bφ.
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The remark above shows the existence of the universal building for r = 2. In

the higher rank case, some evidence will be provided in Chapters 5 and 6, by

constructing examples.

3.4 Some properties of φ-maps

In this section, we develop some criteris for when a given region Ω ⊂ X is mapped

into a single apartment by a φ-map. The key-ingredient is the notion of a non-

critical path.

Definition 3.10. LetX be a Riemann surface and let φ = (φ2, . . . , φr) ∈ H0(X,ω⊗kX ).

Let γ : [0, 1] → X be a smooth path, and let ak : [0, 1] → C be the function

ak(t) = (γ∗(φk), ∂
⊗k
t ). Then we say that γ is a φ-non-critical path if the real parts

of the roots of the polynomial
∑

k ak(t)z
k are distinct for all t ∈ [0, 1].

Remark 3.11. Let “φ = {φ1, . . . , φr}” be the spectral cover. Then γ being a non-

critical path means that the real 1-form Re γ∗φ1, . . . ,Re γ∗φr are distinct. Thus,

we can reorder them and assume that Re γ∗φ1 > · · · > Re γ∗φr along γ.

Lemma 3.12. Let X be a Riemann surface, and let φ ∈ ⊕rk=2H
0(X,ω⊗kX ). Let

h : X → B be a harmonic φ-map, and let Xreg ⊂ X denote the locues where h is

regular. Let γ be a non-critical path in Xreg, and let s ∈ (0, 1). Then there exist

ε > 0, and sectors S+ and S− in B based at x := h(γ(s)) such that

1. The germs ∆xS
+ and ∆xS

− are opposite.

2. h(γ((s− ε, s]) ⊂ S− and h(γ([s, s+ ε)) ⊂ S+.

Proof. Since γ(s) is a regular point, there exists a neighborhood U of γ(s), a chart

f : A→ B (with A being the standard apartment on which B is modelled), and a

commutative diagram

U A

X B

h̃

f

h
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where h̃ is a differentiable map, and f(a) = x for some a ∈ A. Let (x1, . . . , xr) be

standard coordinates on the aparment A, and let {φ1, . . . , φr} be the one-forms of

the spectral cover. Since h is a φ-map, we may choose h such that h̃∗(dxi) = Re φi.

By continuity, there exists an ε > 0 such that γ(J) ⊂ U where J = (s− ε, s+ ε).

Let E be the Euclidean space on which A is modelled. For any y ∈ A, we can

identify the tangent space TyA with E. LetHlin be the set of reflection hyperplanes

in E for the vectorial part of the Weyl group of B. Identifying E with A via the

map v 7→ a+v, we may think of the xi as coordinates on E. With respect to these

coordinates, H is the set of hyperplanes {xi = xj}.
The condition that γ|J is φ-non-critical is equivalent to the condition that, for

all t ∈ J , (h̃ ◦ γ)∗(∂t) 6∈ H for any H ∈ Hlin. Since J is connected and ψ is

continuous, this implies that ψ(J) is contained in a single Weyl chamber C in E,

i.e. in a single connected component of E−⋃in∈Hlin H. Let Cop = {v| − c ∈ C} be

the opposite chamber. We have the corresponding sectors based at a: S+ = a+ C
and S−=a+Cop.
Let fi = xi ◦ h̃◦γ : J → R. Then the conclusion of the previous paragraph is that,

after reordering coordinates if necessary, we may assume that f ′1(t) > · · · > f ′r(t)

where f ′i is the derivative of fi. From the forumla

fi(t) = xi(a) +

∫ t

s

f ′i(t)dt

we see that (h̃ ◦ γ)(t) ∈ S+ (resp. (h̃ ◦ γ(t)) ∈ S−) for all t ∈ [s, s + ε) (resp.

t ∈ (s− ε, s]).

Lemma 3.13. Let X,φ be as in the Lemma above. Let J ⊂ R be an interval, and

let γ : J → Xreg be a non-critical path. Suppose that there is an apartment A ⊂ B
such that γ(J) ⊂ A. Let s ∈ J , x = h(γ(s)), and let J− = {t ∈ J |t ≤ s} and

J+ = {t ∈ J |t ≥ s}. Then

1. There is a pair of opposite sectors S+, S− in A such that γ(J−) ⊂ S− and

γ(J+) ⊂ S+.

2. For any t0 ∈ J− and t1 ∈ J+ we have

~d(y, z) = (~d(y, x) + ~d(x, z)

where y = h(γ(t0)) and z = h(γ(t1)). That is, x is in the Finsler convex hull

of y and z.

Proof. Only the second statement needs proof. It follows from the first statement.

Let C ′ be the Weyl chamber in E that contains z−x. Since S+ and S− are opposed,
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we have that x− y ∈ C ′. It follows that (z− y) = (z− x) + (x− y) ∈ C ′. Let w be

the element of the spherical Weyl group that carries C ′ to the fundamental Weyl

chamber C. Then, by definition of the vector distance, we have ~d(x, z) = w(z−x),
~d(y, x) = w(x− y) and ~d(y, z) = w(y− z). Since w(z − y) = w(z − x) +w(x− y),

the claim follows.

Lemma 3.14. Let X,φ be as in Lemma 3.12. Let J ⊂ R be an interval, and let

γ : J → Xreg be a non-critical path. Let s ∈ J , and let J− = {t ∈ J |t ≤ s},
and J+ = {t ∈ J |t ≥ s}. Suppose that there exist sectors S− and S+ based at

x := h(γ(s)) such that h(γ(J−)) ⊂ S− and h(γ(J+)) ⊂ S+. Then the germs ∆xS
−

and ∆xS
+ are opposite.

Proof. According to Proposition 2.10, there exists an apartment A ⊂ B containing

S+ and the germ ∆xS
−. Let S−A be the sector in A whose germ at x is ∆xS

−.

Then, by definition of germs, S−A ∩ S− is an open neighborhood of x in S−. It

follows that there exists an ε > 0 such that h(γ(s− ε, s]) ⊂ S−A . By Lemma 3.13,

S−A and S+ must be opposite sectors in A. Since ∆xS
−
A = ∆xS

−, it follows that

∆xS
− and ∆xS

+ are opposed.

We are now in a position to prove the main statements of this section:

Proposition 3.15. Let X be a Riemann surface, and let φ ∈ H0(X,ω⊗kX ). Let

h : X → B be a harmonic φ-map, and let Xreg ⊂ X denote the locus where h is

regular. Let I = [0, 1], and let γ : I → Xreg be a non-critical path. Then there

exists an apartment A ⊂ B such that im(h ◦ γ) ⊂ A.

Proof. Define a subset

K := {t ∈ I|there exists an apartmentA ⊂ B such that h(γ([0, t])) ⊂ A} ⊂ I

. We must prove that K = I. First, note that K 6= ∅: there exists an apart-

ment containing the point h(γ(0)), so we have 0 ∈ K. Furthermore, note that if

t ∈ K, and s ≤ t, then s ∈ K. We conclude that K is a non-empty interval. Let

t0 = sup K, and let Q := γ(t0). We must prove that t0 = 1. We will do so by

contradiction. So assume that t0 < 1.

Since γ(I) ⊂ Xreg, there is a neighborhood UQ of Q and an apartment AQ ⊂ B
such that h(UQ) ⊂ AQ. Passing to a smaller open set, if necessary, we may assume

that UQ ∩ γ(I) = γ(J) for some interval J containing t0.

Since t0 = sup K, and J is an open neighborhood of t0, there exists t1 ∈ J ∩K.

Let P = γ(t1). By definition of K, there exists an apartment AP ⊂ B such that
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h(γ([0, t1])) ⊂ AP . Applying Lemma 3.13, we conclude that there is a sector S−P
in AP based at x := h(P ) such that h(γ([0, t1]) ⊂ S−P .

Since h(γ(J)) ⊂ AQ, we can apply Lemma 3.13 again to conclude that there exist

opposed sectors S+
Q and S−Q in AQ such that h(γ(J−)) ⊂ S−Q and h(γ(J+)) ⊂ S+

Q .

Here J+ = {t ∈ J |t ≥ t1} and J− = {t ∈ J |t ≤ t1}. Note that the sectors S+
Q and

S−Q are based at x := h(P ).

From Lemma 3.14, it follows that the germs ∆xS
−
P and ∆xS

+
Q are opposed. Prop-

erty 1 of Proposition 2.10 states that there is a unique apartment containing a pair

of opposite sectors in a building. Let A be the unique apartment in B containing

S−P and S+
Q .

Since J+ contains an open neighborhood of t0 in [0, 1], and t0 < 1, there exists t2 >

t1 such that t2 ∈ J+, and hence there exists t2 > t0 such that h(γ([t1, t2]) ⊂ S+
Q .

Since h(γ([0, t1])) ⊂ S−P , and h(γ([t1, t2])) ⊂ S+
Q , we have that h(γ([0, t2]) ⊂ A.

Hence, t2 ∈ K. But t2 > t0 := sup K by construction, so we have a contradic-

tion.

Theorem 3.16. Let X,φ be as in the statement of the proposition. Let P and Q

be points in Xreg, and PPQ be the set of φ-non-critical path in Xreg starting at P

and ending at Q. Let ΩPQ =
⋃
γ∈PPQ imγ be the union the the images of elements

of PPQ. Then h(ΩPQ) is contained in the Finsler convex hull [h(P ), h(Q)]Fins of

h(P ) and h(Q). In particular, there exists an apartment containing h(ΩPQ).

Proof. Let R ∈ ΩPQ. By definition of ΩPQ, there exists a φ-non-critical path γ

starting at P and ending at Q such that R = γ(s) for some s ∈ I. By Proposition

3.15, there is an apartment A such that h(γ(I)) ⊂ A. So we can apply Lemma

3.13 to conclude that h(R) ∈ [h(P ), h(Q)]Fins.

We know that [h(P ), h(Q)]Fins is contained in the intersection of all apartments

containing both h(P ) and h(Q). Since this is a non-empty intersection, the proof

is complete.

Lemma 3.17. Let h : X → B be a harmonic φ-map, and let Xreg ⊂ be the set

of regular points of h. Let Z denote the ramification divisor of the spectral cover

defined by φ. Then for any R ∈ X − Z there exists a pair of points P,Q and two

paths γ, γ′ such that

1. γ and γ′ start at P and end at Q

2. γ−1 ◦ γ′ bounds a region D containing R that is topologically a disc

3. γ and γ′ are φ-non-critical and contained in Xreg
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Proof. First of all, note that the singular set X−XReg is given by the zeros of the

Hopf differential (see e.g. [14]). Since the Hopf differential on a Riemann surface

is holomorphic, the singular set is discrete.

Now letR ∈ X−Z. SinceR is not a ramification point, there exists a neighborhood

U of R on which we can write φ = (φ1, . . . , φr). Let Fij be the foliation on U

defined by Re (φi − φj) = 0. Then we can find a short curve γ0 : [−1, 1] → X

that is everywhere transversal to Fij, and such that γ0(0) = R (take, for example,

any vector v ∈ TRX that is not in any of the foliations. Fix a Riemannian metric

on X. Then there is an ε > 0 such that for |t| < ε the path t 7→ exp(tv) has the

required property).

Let P = γ0(−1) and Q = γ0(1). Let X be a vector field along γ0(I) that is

everywhere normal to dγ(∂t). Then for ε > 0 small enough the paths γ(t) =

expγ0(t)(εX (γ0(t))) and γ′(t) = expγ0(t)(−εX (γ0(t))) are non-critical, and satisfy

the requirements 1.,2. and 3. (here we have used the fact that the singularities

are discrete).

Lemma 3.18. Let h : X → B be a harmonic map from a Riemann surface X to

an affine building. Let D ⊂ X be a closed disc in X, and A be an apartment in

B. Suppose that h(∂D) ⊂ A. Then h(D) ⊂ A.

Proof. Consider the function f : B → R which associates to a point X its distance

from the apartment A, i.e. f(x) = d(x,A). Since B is non-positively curved,

and A is a convex subset, the function f is convex. Since h is harmonic, and f

is convex, f ◦ h is a subharmonic function on X (see [24] for a proof in the tree

case.) It vanishes on ∂D, since h(∂D) ⊂ A. It follows that f vanishes on D, i.e.

h(D) ⊂ A.

Proposition 3.19. Let h : X → B be a harmonic φ-map, and let Xreg ⊂ X be

the set of points at which h is regular. Let Z denote the ramification divisor of the

spectral cover defined by φ. Then X − Z ⊂ Xreg.

Proof. Let R ∈ X − Z. Then, by Lemma 3.17, there is a disc D containing R

such that ∂D = γ−1 ◦γ′, where γ, γ′ : I → Xreg are φ-non-critical paths. Applying

Theorem 3.16, we see that there is an apartment A in B such that h(∂D) ⊂ A.

Applying Lemma 3.18, we conclude that h(D) ⊂ A. This completes the proof.

3.5 Spectral networks and the universal building

Spectral networks (see [26]) are certain graphs on a Riemann surface that are

closely related to the geometry of the spectral cover. In this section, we want to
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define spectral networks and state the main conjecture relating spectral networks

to the singuarities of the universal building.

Let X be a Riemann surface and φ be a point in the SLrC Hitchin base. Denote by

λ the restriction of the Liouville one form on T ∗X to the spectral cover Σ associated

to φ. Let Σ2 = Σ ×X Σ be the set of pairs of points in the fiber of the spectral

curve. Let δλ := p∗1(λ) − p∗2(λ). For any phase θ we have a vector field Fθ on Σ2

dual to eiθδλ. It is singular along the ramification points but there are well-defined

outward paths (three of them at a simple branch point).

Definition 3.20. The (extended) spectral network of phase θ, Wθ (resp. W ext
θ ), is

the image in X of the smallest subset W 2 of Σ2 contating the branch points, and

closed under the following operations:

• flowing along the vector field Fθ in the positive direction (resp. in the positive

or negative directions);

• flowing along the outward paths starting from a branch point; and

• collisions: if y, z ∈ W 2 ⊂ Σ2 and p2(y) = p1(z) then w := (p1(y), p2(z))

should be in W 2, and we start to flow again from there.

One notes that for P ∈ W ext
θ there is a detour path [26] γ : [0, 1] → Σ such that

π(γ(0)) = π(γ(1)) = P and
∫
λ
∈ eiθR+.

Remark 3.21. Note that the extended spectral network contains, in addition to the

spectral networkWθ defined in [26], the lines starting at collision points, but going

in the opposite direction, and further collision lines generated by these “backward

lines”.

Let P be a branch point of Σ→ X. Locally, near P , the spectral networks looks

like in Figure 3.1: for every angle θ ∈ S1, we have three rays emerging from the

branch points (owed to the Z/2 monodromy of λ about the branch point).

Suppose that P1, P2 are distinct branch points. Then the spectral network curves

emerging from these different branch point may intersect. Denote by s1 and s2,

respectively, the spectral networks emerging from P1 and P2 (labelled by two

sheets (ij) and (jk) of the spectral cover, respectively). Now, assume that s1 and

s2 intersect at the collision point Q, see Figure 3.2. In this situation, there is a

collision line s3 starting at Q. The detour path γ corresponds to the green contour

in Figure 3.2.

The following argument shows that for SL3C, the extended spectral network maps

to the singularities of the building.
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Figure 3.1: Spectral Network near a branch point

Figure 3.2: Spectral Network near a collision point

As we will see later, the three spectral network lines emanating from a branch point

map to a reflection hyperplane in the building B. Furthermore, a neighborhood

of the branch point maps to T × R, where T is a trivalent tree (here the vertex

of the tree corresponds to the reflection hyperplane described above). Then, a

collision point maps to a point in the building at which two half-apartments are

attached along two distinct reflection hyperplanes to an apartment containing the

image of a neighborhood of the collision point. A straightforward calculation in

the link of this vertex shows that, in fact, the building must be singular along the

remaining third reflection hyperplane. This hyperplane, in turn, is the image of

the (forward and backward) collision line of the spectral network. Using this, one
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can argue that the image of the extended spectral network under any harmonic φ-

map is contained in the singularities of the building. In fact, we make the following

conjecture, for which some evidence is provided later:

Conjecture 2. Let X be a Riemann surface, and let φ be a spectral cover. Let

Wext be the extended spectral network associated to φ. Then the support of W̃ext

coincides with the inverse image of the singular set Bφ under the universal map

hφ : X̃ → Bφ.

Remark 3.22. At the moment, we do not know how to distinguish forward and

backward lines from harmonic maps to buildings. Due to this important distinction

in the physical description of N = 2 supersymmetric quantum field theories, and

in particular considering the different roles played by these lines in the description

of BPS states, this is an important direction of further investigation.



Chapter 4

Singular Perturbation Theory

Portions of this chapter have appeared in [40] and have been submitted for publi-

cation to “Communications in Mathematical Physics”.

4.1 Nonabelian Hodge Theory

Suppose that X is a Riemann surface and fix a point x0 ∈ X. Then the moduli

space of local systems comes in different forms:

• the Betti moduli space MB = Hom(π1(X, x0), SLrC)/SLrC;

• the moduli space of Higgs bundles, also called the Dolbeault moduli space

MDol = {(E , ϕ)}/S-equiv.;

• the de Rham moduli space of vector bundles with integrable algebraic con-

nections MDR = {(E ,∇)}/S−equiv.

Topologically all these three moduli space are isomorphic, and MB and MDR

are even complex analytically isomorphic. Algebraically, however, these three

spaces solve very different moduli problems. They are all noncompact and thus

investigating the asymptotic behavior of the homeomorphisms mentioned above is

an interesting problems.

For the Dolbeault moduli space MDol we have the Hitchin fibration MDol → Ar−1

which is a map of algebraic varieties. Due to the C∗ -action t : (E , ϕ) 7→ (E , tϕ) a

natural, compatible compactification presents itself: let M∗
Dol be the complement

of the nilpotent cone, i.e the inverse image of Ar−1−{0}. Then there is an orbifold
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compactification M̄Dol = MDol∪(M∗
Dol/C∗) = (MDol×A1)∗/C∗, where (MDol×A1)∗

is the complement if the nilpotent cone in MDol × {0}. This compactification was

discussed in [30] following the general method of [6, 7]. The Hitchin fibration

extends to a map M̄Dol → WPr−1 to a weighted projective space compactifying

Ar−1. The weights come from the different weights of C∗ on the different terms in

the characteristic polynomial of Higgs fields.

The de Rham moduli space can be compactified by the same procedure: one

starts to look at the family of λ-connections MHod → A1 whose fiber over 0 is

MDol and whose fiber over λ 6= 0 is MDR. Then we can again define M∗
Hod to

be the complement of the niplotent cone in MDol and take the orbifold quotient

M̄DR = M∗
Hod/C∗, which is compact. It fits into a fiberwise compactification

M̄Hod/A1 such that the family of divisors at infinity is well behaved. The divisors

at infinity are all the same, i.e. independent of λ : M̄DR −MDR = M∗
Dol/C∗. So

the structure at infinity is very similar to the structure at infinity of MDol.

4.2 The Riemann-Hilbert WKB Problem

From the discussion above, limiting points at infinity of MDR correspond to non-

nilpotent Higgs bundles and we can easily write down a family of connections

going out to infinity: choose a vector bundle E , a Higgs field ϕ and an initial con-

nection ∇0. Then we consider the family of connections, depending on a complex

parameter t ∈ C, defined by

∇t = ∇0 + tϕ . (4.1)

If (E , ϕ) is semistable and not in the nilpotent cone, then the limit point of this

family in the divisor at infinity is

(E , ϕ) ∈M∗
Dol/C∗ .

The Riemann-Hilbert WKB problem is the problem of finding the WKB exponents,

Definition 2.24, for a family (Et,∇t) of flat holomorphic vector bundles coming

from (4.1) (for an in-depth treatment of this question, see [61, 62]). The main new

aspect here is to give a geometric interpretation of the WKB exponents in terms

of harmonic maps to buildings.

For the sake of simplicity, we restrict ourselves to the situation where Et = E is

independent of the parameter t. A more general family will be of the form (Et,∇t)

defined for t in a disc around infinity. It will have a limiting point (E , ϕ) if the

vector bundles with λ = t−1 connection converge to (E , ϕ) in MHod. Then the
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resulting map from the disc to M̄DR will be transverse to the divisor at infinity.

The family of connections considered in [25] fit into this more general situation:

Gaiotto-Moore-Neitzke start with a harmonic bundle (E , ∂, ∂̄, ϕ, ϕ†) and consider

the holomorphic bundles Et = (E , ∂̄ + t−1ϕ†) which converge to (E , ∂̄) together

with the connections ∇t = ∂ + tϕ. So, as they vary the family of bundles, the

connections have as limit the Higgs bundle underlying the harmonic bundle. We

expect that this has the same behavior as the complex WKB problem.

4.3 The local WKB approximation

In this section, we state the result for the “local Riemann-Hilbert WKB problem”.

By this, we mean the problem of determining the growth rates of the parallel trans-

port operators for “sufficiently small” paths. The result is well known as “classical

WKB approximation”. For an in-depth discussion of this type of problem, see

[70]. The proof given here is tailored to our needs.

Suppose we have an r× r matrix of functions aij(x) for x ∈ (−c, c) ⊂ R. Suppose

t > 0 is a large real number, and ε and C are constants. Furthermore, suppose we

have estimates

Re a11(x) > εt+ Re aii(x)

for i = 2, . . . , r, and

|aij(x) > Ct1/2

for i 6= j.

For the moment, assume that a11(x) = 0 ∀x ∈ (−c, c). Then the first condition

says that Re aii(x) < −εt. This assumption will be removed later.

Let f ′(x) denote the derivative of f(x). Now, consider the ODE

f ′i(x) =
r∑
j=1

aij(x)fj(x) .

Let Fi(x) be the solution with initial conditions F1(0) = 1, Fi(0) = 0 for i ≥ 2.

For 2 ≤ i ≤ r, define Gi(x) := Fi(x)/F1(x). By differentiation, Gi(x) satisfies

G′i(x) =
F1(x)F ′i (x)− F ′1(x)Fi(x)

Fi(x)2

and thus

G′i(x) = ai1(x) +
r∑
j=2

aij(x)Gj(x)− a1j(x)Gj(x)Gi(x) .



Chapter 4. Singular Perturbation Theory 40

Now, put M(x) :=
∑r

i=2 |Gi(x)|2. We have that

M ′(x) = Re
r∑
i=2

G′i(x)Ḡi(x) =

= Re
∑
i

ai1(x)Ḡi(x) +
r∑
i=2

r∑
j=2

aij(x)Gj(x)Ḡi(x)− a1j(x)Gj(x)Gi(x)Ḡi(x) =

= Re
∑
i

ai1(x)Ḡi(x)+aii(x)|Gi(x)|2+Re

(∑
i 6=j

aij(x)Gj(x)Ḡi(x)−
∑
i,j

a1j(x)Gj(x)|Gi(x)|2
)
.

Now, we use that Re aii(x) < −εt and |aij(x)|Ct1/2. Furthermore,

|Gj(x)Ḡi(x)| ≤M(x)

as well as

|Gj(x)Gi(x)2|M(x)3/2 .

Thus, after possibly changing the constant, we obtain

M ′(x) ≤ −εtM(x) + Ct1/2(M(x)1/2 +M(x) +M(x)3/2) .

Assume that x is a point such that the inequality 1/2 ≤ M(x) ≤ 1 is satisfied.

Then, for t big enough

εt/2 > 3Ct1/2

which is equivalent to

t > (4C/ε)2 .

Thus, we conclude that

εtM(x) > Ct1/2(M(x)1/2 +M(x) +M(x)3/2) .

Therefore, for such x, M ′(x) < 0. Since M(0) = 0, it follows that M(x) ≤ 1/2 for

all x.

With M(x) ≤ 1/2 we obtain M(x)3/2 + M(x) ≤ 2M(x)1/2 and the estimates

becomes

M ′(x) ≤ −εtM(x) + Ct1/2M(x)1/2 .

Now, suppose that α ≤M(x) ≤ 2α. Then

−εtM(x) + Ct1/2M(x)1/2 < 0
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if εtα > Ct1/2α1/2 (for some C). Thus, M(x) ≤ α for all x. We can solve for α:

whenever

α > (Ct−1/2/ε)2

or equivalently α > C1t
−1, we get this condittion.

Therefore, we may finish by concluding that

M(x) ≤ C1t
−1

or

|G(x)| ≤ C2t
−1/2

for all x. In terms of the Fi, this means

|Fi(x)| ≤ C2t
−1/2|F1(x)|

for 2 ≤ i ≤ r.

Note that

F ′1(x) =
∑
j≥2

a1j(x)Fj(x) ,

which implies that we have

|F ′1(x)| ≤ C3|F1(x)|

by our previous estimate and |a1j(x)|Ct1/2. From the equation

d

dx
|F1(x)|2 = Re F ′1(x)F̄1(x)

we obtain

−C3|F1(x)|2 ≤ d

dx
|F1(x)|2 ≤ C3|F1(x)|2 .

Setting h(x) := log |F1(x)|2 we get

−C3 ≤ h′(x) ≤ C3 .

Therefore, for a small enough choice of c depending on our constants up to now

but independent of t, we have

− ln(2)/2 ≤ h(x) ≤ ln(2)/2
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for all x ∈ [0, c]. This gives

1/2 ≤ |F1(x)| ≤ 2

for x ∈ [0, c].

Proposition 4.1. Let avij(x) be a matrix depending on a parameter v ∈ V as well

as x ∈ [0, 1], and suppose that we have a real valued function v 7→ tv. Furthermore,

let ε, C, to be constants such that for all v ∈ V with tv ≥ t0, we have

Re avii(x) ≤ Re av11(x)− εtv i ≥ 2,

and

|avij(x) ≤ C(tv)1/2 i 6= j .

Let T v(x) be the fundamental solution matrix for the linear ODE defined by avij.

Define

αv(x) :=

∫ x

0

a11(x)dx .

Then there exists a small constant c (depending on ε), and a t1, such that for any

v ∈ V with tv ≥ t1 and any x ∈ [0, c] we have

1

2
eα

v(x)tv ≤ ‖T v(x)‖ ≤ Cre
αv(x)tv

and more precisely the same bound also holds for the upper left coefficient T v11(x).

Here Cr is a constant depending on r.

Proof. By multiplying the solution by e−α
v(x)tv it suffices to treat the case a11(x) =

0 which we now assume.

Suppose fi(x) is a solution with f1(0) = 1 and |fi(0)| ≤ 1. Proceed as before,

introducing gi(x) := fi(x)/f1(x). We again get

g′i(x) = ai1(x) +
r∑
j=2

aij(x)gj(x)− a1j(x)gj(x)gi(x) .

Again, put m(x) :=
∑r

i=2 |gi(x)|2. We have

m′(x) = Re
r∑
i=2

g′i(x)ḡi(x) =

= Re
∑
i

ai1(x)ḡi(x)+aii|gi(x)|w+Re

(∑
i 6=j

aij(x)gj(xḡi(x)−
∑
i,j

a1j(x)gj(x)|gi(x)|2
)
.
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Using as before Re aii ≤ −εt and |aij(x)| ≤ Ct1/2 for i 6= j together with

|gj(x)ḡi(x)| ≤ m(x)

and

|gj(x)gi(x)2| ≤ m(x)3/2 ,

we get after increasing the constant that

m′(x) ≤ −εtm(x) + Ct1/2(m(x)1/2 +m(x) +m(x)3/2) .

We have m(0) ≤ r. Consider a point x with r ≤ m(x) ≤ 2r. Then for t big

enough, the second term will have smaller size than the first term and we get

m′(x) ≤ 0. Therefore, m(x) ≤ r for all x.

Notice, in particular, that if f1(x) becomes very small then all of the fi(x) become

small. They cannot all go to zero, by considering the corresponding differential

equation on the determinant bundle which contains detT (x) to satisfy a linear

equation. This justifies the division by f1(x) so the gi(x) are well defined for all x.

Our discussion applies to the sum of the first and any other column of the transport

matrix. This gives the bound on the sizes of the other columns of the transport

matrix, since we have treated the first column previously. We conclude

‖T v(x)‖ ≤ Cr

which gives back the required estimate of the form

‖T v(x)‖Creα
v(x)tv

in the case a11 is arbitrary. The previous discussion provided the estimate

1

2
eα

v(x)tv ≤ T v11(x)

for x ∈ [0, c]. This completes the proof.

4.4 Dilation exponents

Let E be a C∞ vector bundle over X. Furthermore, let us consider an R+−family

of flat connections ∇t on E, and suppose we are also given a hermitian metric ht

on each Et.

We will now apply the general framework of maps from groupoids to asymptotic
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cones discussed in Chapter 2 to this geometric situation. Let Γ = π≤1(X) be the

fundamental groupoid whose objects are the points of X and whose morphisms

are homotopy classes of paths. Let us furthermore choose a basepoint x0 ∈ X, so

that we have a universal covering X̃.

Definition 4.2. Let X be a complex manifold, and let {(Et,∇t)}t∈R be a family

of holomorphic vector bundles on X equipped with integrable connections. Fix a

family of scale factors {µt} and a hermitian metric ht on Et.

1. The family {(Et,∇t)}t∈R is said to be of exponential type with respect to

(h, µ) if the associated monodromy representation if of exponential type in

the sense of Definition 2.23.

2. Suppose {(Et,∇t)}t∈R is of exponential type, and let γ be a path in X. Then

the WKB exponent (resp. WKB dilation spectrum) of γ with respect to

the family {(Et,∇t), ht, µt}t∈R is defined to be the exponent (resp. dilation

spectrum) of γ with respect to {Tt, h, µ}t∈R in the sense of Definition 2.24.

3. Given an ultrafilter ω, the WKB ultrafilter exponent of this family with

respect to ω is the ultrafilter exponent νω of the family of monodromy rep-

resentations T : R → Rep(π≤1(X), SLrC), defined in Definition 2.25. The

ultrafilter WKB dilation spectrum ~νω is defined similarly.

Thus, the WKB exponent is given by (1.1) from Chapter 1. The ultrafilter ex-

pression is given by the same expression replacing lim sup by the ultrafilter limit.

Furthermore, note that in the case of SL3, the dilation spectrum is uniquely de-

termined by the exponent of γ and its inverse path γ−1.

The main result in this chapter gives the construction of harmonic φ-maps to the

asymptotic Coneω. Let us use the following notations: Let (E ,∇0 + tϕ) be as in

(4.1), let ht = h be independent of t and let φ = charϕ be the associated point in

the Hitchin base, and write φ = (φ1, . . . , φr) locally. If γ is a path on X, consider

its lift γ̃ to the universal cover X̃ and denote its endpoints by P and Q respec-

tively. Recall that γ is φ-noncritical if the real parts of the differentials γ∗Reφi are

distinct for all t ∈ [0, 1]. Furthermore, let ω be an ultrafilter on R whose support

is a countable discrete set with limit +∞ and scale factors µt = t.

Theorem 4.3. With the above notations, we obtain a limiting map

hω : X̃ → Coneω

where Coneω is the asymptotic cone of Met(EP ) ' SLrC/SUr with respect to

(ω, {µt}). The following properties hold:
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1. if γ is any path, then for any ultrafilter ω the ultrafilter dilation spectrum is

the refined distance in the building:

~νωγ = ~dConeω(h(P ), h(Q)) .

2. if γ is a path such that the lim sup in the definition of WKB dilation spectrum

- for all exterior powers- are actual limits, then for any ultrafilter ω we

have ~νωγ = ~νγ (i.e. the ultrafilter WKB exponent coincides with the WKB

exponent). In particular

~νγ = ~dConeω(hω(P ), hω(Q)) .

3. if γ is a φ-noncritical path, then the previous condition holds: for any ultra-

filter ω we have ~νωγ = ~νγ.

4. the map hω maps a noncritical path into the Finsler convex hull of its end-

points {P,Q}, in particular into any apartment containing P and Q.

5. for any ultrafilter ω the limiting map hω is a continuous φ-map regular out-

side of the branch locus of φ, in particular it is a harmonic φ-map.

6. for an arbitrary path γ and any k, there is some choice of ultrafilter ω,

which might however depend on γ and k, such that (~νωγ )1 + · · · + (~νωγ )k =

(~νγ)1 + · · · + (~νγ)k. The terms are the highest components of the vectors in

order.

Proof. Note that the vector bundle (E ,∇t) determines a family of representations

ρ(t) : Γ → VectC. The family of metrics ht gives us a family of metrics on the

representations ρt. Using ∇t to transport back to a basepoint P , one may view ht

as a family of maps

ht : X̃ → Met(EP )

for t ∈ R, sending a homotopy class of paths γ to the metric Tγ(t)∗(hγ(0). Choosing

a basis of EP gives an identification Met(EP ) ' SLrC/SUr. Applying Definition

2.28, we obtain the asymptotic limiting map to a building

hω : X̃ → Coneω .

Corollary 2.29 gives the first property: ~νωγ = ~dConeω(h(P ), h(Q)). The second

property is clear: if a limit exists, then it is equal to the ultrafilter limit for any

ultrafilter.

By the local WKB approximation, for a sufficiently short noncritical path γ, the
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lim sup’s in the definition of the WKB dilation spectrum are limits, thus ~νγ = ~νωγ
and these are the vector distances between image points under hω. In the notation

of the lemma, this may be written as

~dConeω(hω(γ(0)), hω(γ(1)) = (α1, . . . , αr) .

Therefore, the image of γ̃ by hω goes into a single apartment. This just follows

from a fact about buildings: if x, y, z are three points with

~d(x, y) + ~d(y, z) = ~d(x, z)

then x, y, z are in a common apartment, with x and z in opposite chambers cen-

tered at y or equivalently, y in the Finsler convex hull of {x, z}.
We now show that if γ : [0, 1] → X̃reg is any (not necessarily short) noncritical

path, then hω ◦γ maps [0, 1] into a single apartment, and the vector distance which

determines the location in this apartment is given by the integrals:

~dConeω(hω(γ(0)), hω(γ(1)) = (α1, . . . , αr) .

Our path is covered by open intervals each of which go into a single apartment (as

a noncritical path in that apartment). Choose a sequence of points 0 = t1, . . . , tn =

1, so that each triple is in a single neighborhood. Then we show that the path

from t1 to ti is in a single apartment. Suppose we have done it up to ti−1. Then

there is also an apartment A′ containing γ([ti−2, ti]). Furthermore, the path here is

noncritical. Now, take the sector S in A which is based at x = γ(ti−1) and contains

the path up to there. Then, take the sector T in A′ which is based at x = γ(ti−1)

and contains the segment γ([ti−1, ti). The claim is that these two sectors have

germs at x which are opposite. Therefore, S ∪ T is in a single apartment A′′, and

now this one contains γ([t1, ti]) completing the induction step.

We now show that hω is regular outside of the branch locus of φ, continuous, and

its differential is Re φ. For regularity, argue as in Lemma 3.17. Let R be a point

that is not on the ramification divisor. Then one can find points P and Q and non-

critical paths γ and γ′ as in Lemma 3.17. We can furthermore arrange a homotopy

through non-critical paths from γ to γ′ that sweeps out a disc containing R. Now

arguing as in the proof of Theorem 3.16, we see that D is mapped into a single

apartment. Then, the map on this disc, into a single apartment, is given by the

integrals of the real parts of the 1-forms, because the integrals calculate the vector

distance. In particular, our map is a φ-map.

It follows, in particular, that hω is continuous outside of the ramification points.

Note however that hω is Lipschitz. Indeed, the WKB exponent satisfies νγ ≤ C|γ|,
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just from a basic estimate of ODE’s. The ultrafilter exponent is necessarily smaller

than the WKB exponent since the latter is a lim sup. The exponent can serve as

a Finsler metric on Coneω, so we get the Lipschitz property. That implies that hω

is continuous even at the ramification points. Now since hω is continuous, regular

outside a discrete set, with harmonic differential, it is a harmonic map [48].

The last statement of the theorem is obtained by choosing a sequence ti → ∞
realizing the lim sup in the definition of the exponent for the k-th exterior power,

and letting ω be an ultrafilter supported on this sequence. This completes the

proof of Theorem 4.3.

Definition 4.4. Fix an ultrafilter ω on R whose support is a countable set, and

a family of scale factors {µt}.

1. Let ρ : R→ Rep(Γ, r) be a family of representations, and let γ be a morphism

in Γ. The ultrafilter exponent of γ, νωγ is given by

νωγ = lim
ω

1

µt
log‖ργ(t)‖ .

2. Let X be a Riemann surface, and let (E ,∇0 + tϕ) be a family of integrable

connections on a fixed holomorphic vector bundle E (with trivialized determi-

nant connection). The WKB ultrafilter exponent of this family with respect

to the ultrafilter ω is the ultrafilter exponent of the family of monodromy

representations T : R→ Rep(π≤1(X), SLrC). One can define the ultrafilter

WKB dilation spectrum ~νω similarly.

The situation described above was described in [58]: the ultrafilter exponent of a

family of representations ρ : R→ Rep(Γ, r) is computed by the vector distance in

the asymptotic cone ~dConeω([ργ(t)]∗[hx(t)], [hy(t)]). We are mainly intereseted in

the geometric situation in which the family of representations actually comes from

a family of integrable connections tending to infinity. The main result, then, is

that the translation vector can be interpreted as the distance between two points

under a harmonic map.

So, let (E , ϕ) be a Higgs bundle of rank r on a Riemann surface X, let ∇0 be an

integrable connection on E , let h be a hermitian metric on E and fix a base point

P ∈ X. Then we can identify the universal cover X̃ with homotopy classes of

paths ending at P ∈ X, and we obtain a family of maps

ht : X̃ → Met(EP ) ,



Chapter 4. Singular Perturbation Theory 48

for all t ∈ R, sending γ to Tγ(t)∗(hγ(0)). If we choose a basis for EP , we get an

identification Met(EP ) ' SLrC/SUr.

The asymptotic cone of 4.3 is a very complicated object and it has to be: it

computes WKB exponents for all possible WKB problems. Thus, the theorem

above gives a characteization of the WKB exponents in terms of the geometry

of a building, but it does not take into account the specific geometric nature of

the problem (e.g. the spectral cover π : Σ → X). The (uni)versal building, on

the other hand, is constructed purely in terms of the spectral cover and uses, in

particular, the spectral network as a key ingredient.

Remark 4.5. If a (uni)versal φ-building exists, there there exist a (unique) folding

map of buildings g : Bφ → Coneω that makes the following diagram commute:

X̃ Bφ

Coneω

hφ

hω
ψ

In particular, this implies that the distance in the (uni)versal building Bφ computes

the WKB exponent: for two arbitrary points P,Q ∈ X̃, choose an ultrafilter ωPQ

that computes the WKB exponent. Then, the commutativity of the diagram above

implies the statement.



Chapter 5

The BNR Example

Portions of this chapter have appeared in [40] and have been submitted for publi-

cation to “Communications in Mathematical Physics”.

In the paper [5], Berk, Nevin and Roberts studied the Stokes phenomena for a

certain third order differrential equation. Their main discovery was that so-called

“new Stokes lines” have to be introduced in order to understand the Stokes phe-

nomena for higher order ODE’s. These new Stokes lines arise whenever two (or-

dinary or new) Stokes lines intersect and are needed to obtain consistent Stokes

matrices. Subsequently, the new Stokes lines have been investigated by several

authors and nowadays are called “virtual Stokes lines” [2, 34]. In the physics lit-

erature [26] they are called “collision lines”.

Let X = C with coordinate x and let p be the canoncial coordinate on the fiber

of the total space of the cotangent bundle tot(T ∗X → X) ' C2. The spectral cover

(or characteristic curve) for the differential equation in [5] is the affine variety

Σ = {(x, p) ∈ C2|p3 − 3p+ x = 0} ⊂ C2 .

The imaginary spectral network associated to Σ is shown in Figure 5.1. Note the

following features:

• There are two collision points, which, in fact, are connected via a backward

spectral network line (which is not shown in the figure)

• The spectral network curves divide X = C into 10 regions:

49
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Figure 5.1: Spectral Network

4 regions on the outside of the right of the collision line;

4 regions on the outside of the left of the collision line;

2 regions in the square whose vertices are the singularities and the col-

lisions; the two regions are separated by a backward line

The goal of this chapter is to construct the universal building Bφ, Definition 3.9,

for this spectral cover. This, in turn, will prove that the WKB dilation spectrum

for any generic Riemann-Hilbert WKB problem with Σ as spectral curve is ob-

tained as the vector distance in Bφ. Also, the spectral network, Definition 3.20,

can be seen as the preimage of the singularities of hφ : X → Bφ.

The differential equation associated to Σ is obtained by quantization: replace the

coordinate along the fiber in the cotangent direction by the differential operator

d/dx. In the example at hand, this gives the third order ordinary differential

equation (in general, this is not unique, since d/dx and multiplication by x do not

commute; in the case at hand, this is no issue)(
1

t3
d3

dx3
− 3

t

d

dx
+ x

)
f = Ptf = 0 .

In order to put this equation into the formalism of (4.1), one makes the following

redefinitions: let g = f ′, h = g′ and s ∈ H0(X,O3
X) be given by s = (f, g, h).

Then, it is easy to check that the differential equation Ptf = 0 is equivalent to the
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system of first order ordinary differential equations given by ∇ts = 0 with

∇t = d− t

 0 dx 0

0 0 dx

−xdx 3dx 0

 ,

a connection on O3
X .

In order to faciliate the following lenghty argument, a short outline is presented

here:

1. Identify so-called “maximal abelian regions” (MARs): these are maximal

subsets of X on which the local WKB approxiamation holds. Heuristic

methods (motivated by [26]) are used to construct these regions. For each

MAR Mi ⊂ X, there is an associated polytope Pi together with a map

Mi → Pi. This polytope is the convex hull of the image of the MAR under

a harmonic φ-map to A. Two such apartment Pi, Pj will be glued along the

image of Mi ∩Mj. The resulting pre-building Bφpre thus canonically comes

equipped with a map hpre : X → Bφpre. It turns out that the 0-dimensional

stratum of the singular locues of Bφpre consists of a single vertex {o}.

2. A building Bφ together with an isometry i : Bφpre → Bφ is constructed. This

building is a cone over a spherical building. This spherical building, in turn,

is constructed as the “free spherical building” generated by the link of {o}
in the pre-building.

3. In the third step, it is shown that i : Bφpre satisfies the following universality

property: let B be a building and let j : Bφpre ↪→ B be an isometric embedding.

Then there exists a unique folding map ψ : Bφ → B with ψ ◦ i = j.

4. In the final step, it is shown that for every φ-map h : X → B there is a

unique isometric embedding j : Bφpre → B with j ◦ hpre = h. This, in combi-

nation with the previous steps, shows immediately that Bφ is the universal

φ-building and that the WKB expoenents are computed by hφ : X → Bφ.

The key ingredients to Step 4 are showing, using Theorem 3.16, that each con-

nected component of the complement of the spectral network in Figure 5.1 maps

to a single apartment under any harmonic φ-map h. Then, general axioms of

buildings allows one to argue that each MAR, which is a union these regions, is

mapped into a single apartment. An important role is also played by the fact that
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both collision points are mapped to a single point under any harmonic φ-map.

The interior square consisting of the yellow regions in Figure 5.1 behaves in a

special way: under any harmonic φ-map it maps into a single apartment, with a

fold line along the “caustic” joining the two branch points. This phenomenon will

also be seen in the next chapter, where we present a more complicated example.

5.1 Maximal abelian regions and the pre-building

In this section, the first step of the outline above is carried out, namely the

pre-building Bφpre will be constructed using heuristic methods. We denote by

Waff = W n R2 the affine Weyl group with spherical part W = S3 and by

(A,Waff ) the standard appartment.

In figures 5.6-5.15 we see the gluing construction: the left hand side represents a

copy of X = C, while the right hand side represents a copy of the standard apart-

ment A. Furthermore, the colored regions are maximal abelian region (MARs);

the different colors correspond to the different connected components of the com-

plement of the spectral network.

Now, let us fix an MAR, say MAR1, Figure 5.6, and a local trivialization of the

cameral cover over this MAR. Then, we can pull-back the three tautological one-

forms from the cameral cover to the MAR to obtain three one-forms φ1, φ2, φ3.

After the choice of a basepoint P in the MAR, we obtain a map ψP taking values

in R2 defined by

Q 7→
(∫ Q

P

Re φ1,

∫ Q

P

Re φ2

)
.

The colored regions on the right hand side are the images of the corresponding

regions on the left hand side under this map.

Note that the map above actually suffices to recover the more natural map

Q 7→
(∫ Q

P

Re φ1,

∫ Q

P

Re φ2,

∫ Q

P

Reφ3

)
due to the relation

∑
i φi = 0.

As described in the outline, we “glue in a convex polytope” for each of the ten

MARs and identify points coming from the same point on X:

Bφpre =

(
10⊔
i=1

Pi

)
/ ∼
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where x ∼ y if x = hi(P ), y = hj(P ) where hi, hj are the maps corresponding to

the MARs i and j, respectively.

More formally, the construction can be described as follows:

Definition 5.1. Let πφ : Σφ → X be a cameral cover of a smooth algebraic curve

over C with Weyl group Sr. A subset U ⊂ X is φ-adapted if it is simply-connected

and if Σφ decomposes over U , i.e.

Σφ ×U X ' W × U

where W is the Weyl group. A locally finite cover {Uα}α of X is φ-adapted if all

pair-wise intersections of elements of the cover are φ-adapted, and the interiors of

the Uα cover the complement of the ramification locus of φ.

Let Uφ be the category whose objects are disjoint unions of φ-adapted sets in X,

and whose morphisms are inclusions. Note that the notion of φ-adaptedness is

not sufficiently fine to insure that a subset maps into a single apartment (e.g. a

neighborhood of a branch point minus a branch cut is φ-adapted, but does not

map into a single apartment). Therefore, we suppose that we have also chosen a

sieve, that is to say a subcategory Uab
φ ⊂ Uφ closed under taking subsets. We want

to keep “abelian regions” in mind, that is regions that are mapped into a single

apartment by any φ-map. At the moment, we do not have a general definition. In

this example, however, we will apply the criteria developed in Chaper 3 to prove

that the MARs mentioned above are abelian. Let Uab
φ be the sieve associated to

this covering.

Construction 5.2. Let πφ : Σφ → X be a cameral cover of a smooth algebraic

curve over C. Let Uab
φ be our sieve in the category whose objects are disjoint unions

of φ-adapted sets in X, and whose morphisms are inclusions. We are going to

define a coproduct preserving functior T on Uab
φ taking values in the category of

generalized chamber systems. On objects, T is defined by the formula

T (U) =

 ⊔
p∈π−1

φ (U)

{p} × hull(ψP (U))

 / ∼

where ∼ is given by two types of relations:

1. (p, v) ∼ (wp,w−1v) for all v, and for all p ∈ π−1
φ (U), and all w ∈ W .

2. (p, v) ∼ (q, ψπφ(q)(q) + v) whenever p and q are in the same connected com-

ponent of π−1
φ (U).
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We can define a pre-building Bφpre = Bφpre(Uab
φ ) associated to this sieve (i.e. open

cover) in the following way: let X be the union of the subsets in the φ-adapted

cover. As a chamber system, Bφpre is the coequalizer of the natural diagram:

T (V ×X V ) ⇒ T (V ) .

The cubicles in Bφpre are given by the images of the sets {p} × hull(ψP (U)) under

the natural projection T (V )→ Bφpre.

The following proposition is a straighforward consequence of the construction:

Proposition 5.3. Let {Uα}α be a φ-adapted cover of X, and suppose that for each

α there exists an apartment Aα such that h(Uα) ⊂ Aα. Suppose that the sieve Uab
φ

is finer than this covering. Then there exists a unique isometry of pre-buildings

that makes the following diagram commute:

X Bφpre(Uab
φ )

B

h

We obtain a pre-building that can be completed to a universal φ-building by

applying this construction to the φ-adapted cover consisting of MAR1-MAR10.

Definition 5.4. The BNR-pre-building Bφpre and the map hpre : X → Bφpre are

obtained by applying Construction 5.2 to the admissible cover U consisting of the

10 regions {MAR1, . . . ,MAR10} shown in Figures 5.6-5.15.

The goal of the remaining part of this section is to explain the heuristic methods

used to obtain the 10 regions MAR1-MAR10, the basis of which are WKB con-

siderations.

Let γ : [0, 1]→ X be a path with γ(0) = P, γ(1) = Q and let Wπ/2 the imaginary

spectral network. Let tk ∈ [0, 1] be such that γ(tk) ∈ Wπ/2. Then, one can define

a corresponding detour integral

Dk = Re

(∫ γ(tk)

P

φ1 +

∫ Q

γ(tk)

φ2

)
.

Here, φ1 (γ (tk)) = φ (γ′ (1)), φ2 (γ (tk)) = φ (γ′ (0)) with γ′ the path from Defini-

tion 3.20.
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Figure 5.2: Detour integral

A detour Dk is said to dominate along γ if Re (Dk) ≥ Re Ii = Re
∫
γ
φi, i = 1, 2.

Then, we say that two points P and Q are not simply WKB related by γ if there

is a detour Dk that dominates along γ. Otherwise, P and Q are said to be simply

WKB-related by γ.

Let U ⊂ X be connected. Then U is called an abelian region if for any path γ

whose image is contained in U , the endpoints are simply WKB-related by γ. If M

is maximal (with respect to inclusion) and abelian, it is called a maximal abelian

region (or MAR for short).

Remark 5.5. These detours are related to the ones defined in [26]: note that the

detour integral Dk can be rewritten as

Dk = Re

(∫ γ(tk)

P

φ1 +

∫
γ′
φ+

∫ Q

γ(tk)

φ2

)
(5.1)

with γ′ the path from Definition 3.20. The equation 5.1, however, makes sense

for spectral networks of all angels θ allowing us to define Dθ
k which is sketched in

Figure 5.2. Note, however, that spectral networks that differ by an angle of π are

equal (up to orientation). Thus, we have

Heuristic Proposition 5.6. Let γ : [0, 1] → X be a path. Then no detour

dominates along γ if and only if γ is homotopy equivalent to a path that does not

intersect two lines s1 6= s2 ⊂ Wπ/2 such that s1 is rotated into s2 as θ goes from

π/2 to −π/2.

Remark 5.7. One has to to be careful when a spectral network line sweeps over a

branch point, see Figure 5.5.

We can read off an immediate consequence:
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Heuristic Corollary 5.8. Let M be an MAR. Then M is a union of connected

components of the complement of the imaginary spectral network.

Example 5.1. This example illustrates how MARs look like near branch points.

To this end, consider Figure 5.3. The following convention for spectral network

lines is used: a line that is labeled (ij), with one letter on each side of the line,

means that Re
∫ Q′
P ′

(φi − φj) > 0 if P ′ lies on the side containing i and Q′ is on

the side containing j. The branch cut is represented by the curly line.

In the case of Figure 5.3, P and Q are not simply WKB related by the red path:

the detour integral is computed as

Re

∫ R

P

φ1 + Re

∫ Q

R

φ2 = Re

∫ S

P

φ1 + Re

∫ Q

S

φ2 , (5.2)

where the equality is derived from Re
∫ S
R
φ1 = Re

∫ S
R
φ2, which, in turn, is a direct

consequence of the definition of spectral networks.

In order to determine if the detour domintaes, we have to compare it with both

Re
∫ Q
P
φ1,2:

Re

(∫ R

P

φ1 +

∫ Q

R

φ2

)
− Re

∫ Q

P

φ1 = Re

∫ Q

S

(φ2 − φ1) > 0 .

Also,

Re

(∫ R

P

φ1 +

∫ Q

R

φ2

)
− Re

∫ S

P

φ2 = Re

∫ R

P

(φ1 − φ2) > 0 .

Every pair of points on the red path lying between R and S (including R and S

themselves), on the other hand, are simply WKB-related by the corresponding piece

of the red path.

The next example is relevant for the BNR example.

Example 5.2. Consider Figure 5.4: again, we want to compare the detour D =∫ R
P
φ1 +

∫ Q
R
φ2 with I =

∫ Q
P
φ1. Note that

Re

∫ S

R

(φ1 − φ2) = 0 .

This follows from the fact the red contour can be deformed to the green contour.

Then, the differential form φ12 := Re (φ1−φ2) vanishes along I, IV and V, whereas

the contributions to the integral coming from II and III cancel each other. Then,

Re (D − I) =

∫ Q

R

φ12 =

∫ Q

S

φ12 > 0 .
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Figure 5.3: WKB exponents via spectral networks

Figure 5.4: Maximal Abelian Regions from spectral networks

Analogous computation can be repeated for the other detours.

The final conclusion, then, is that P and Q are not simply WKB related by the

red path (later, we will see that they are, in fact, not simply WKB related at all).

This can also be shown using the Heuristic Proposition (see Figure 5.5:).

By doing similar computations, we arrive at the MARs shown in Figure 5.6-5.15.

Now, we can apply the gluing construction to arrive at a pre-building Bφpre.
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Figure 5.5: Spectral Network for various angles θ

Figure 5.6: MAR1

Figure 5.7: MAR2
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Figure 5.8: MAR3

Figure 5.9: MAR4

Figure 5.10: MAR5
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Figure 5.11: MAR6

Figure 5.12: MAR7

Figure 5.13: MAR8
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Figure 5.14: MAR9

Figure 5.15: MAR10

5.2 Constructing the universal building

The goal of this section is to complete the pre-building Bφpre constructed in the

previous section to a building. We start with some technical lemmas:

Lemma 5.9. Let A+ be a closed half apartment in B bounded by a wall H, and

let S be a sector with vertex x such that S ∩H = P is a panel of S (in particular

x ∈ H), and such that the germ ∆xS is not contained in A+. Then S is opposite

to some sector S− of A+.

Proof. Let A be an apartment containing A+. Consider the link G of B at x.

This is a spherical building. Then (keeping only A and S), the situtation is as in

Figure 5.16, where S− ⊂ A+. From this it is clear that S has to be opposite to

S−; otherwise the girth would be less than six.
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Figure 5.16: Part of link near x

Lemma 5.10. Let A+, H, P and S be as in Lemma 5.9. Then there exists an

apartment containing A+ ∪ S.

Proof. Let A be an apartment containing A+ as a half-apartment. By Lemma 5.10,

we can use (1) from Proposition 2.10 to conclude that S and S− are contained in a

common apartment A′. Then P∪S− ⊂ A∩A′, thus A+ ⊂ A∩A′, by convexity.

Proposition 5.11. In the A2 case, suppose S1, S2, S3, S4 are sectors based at a

single point x, such that Si and Si+1 share a common face for i = 1, 2, 3. Suppose

that these successive common faces are distinct. Then S1, S2, S3, S4 are contained

in a common apartment.

Proof. We show this by induction on i. For i = 1 it is easy. Suppose i ≤ 4 and

we have shown it up to i − 1, that is to say we have an apartment A′ containing

S1, . . . , Si−1. These sectors satisfy the same adjacency condition within A′ from

which it follows that they are successive sectors arranged around the vertex x.

Now, R := Si ∩ Si−1 is the face of Si−1 which is different from Si−2 ∩ Si−1. Let H

be the half-apartment of A′ whose boundary contains R, and which contains Si−1.

Then, H contains S1, . . . , Si−1. Indeed, if some previous Sj were not in H then its

boundary would have to contain R. (Here is where we use i− 1 ≤ 3, to say that a

previous Sj cannot leave H along the other ray in ∂H.) Now apply the previous

lemma: we get an aprtment A containing H ∪ Si, so A contains S1, . . . , Si. This

completes the inductive step.

Now, the goal is to construct the universal building from Bφpre. Note that this has

a special vertex {o} which is the image of both collision points (it is the tip of the
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Figure 5.17: Link of Bφpre at {o}

Figure 5.18: Completion of 4 chambers to a hexagon

cones in Figure 5.6-5.15). The link G of Bφpre at this vertex {o} are the full lines in

Figure 5.17. Note that this is not a spherical building (e.g. the some grey lines are

not contained in a common apartment). Thus, we make the following construction:

Consider G as a bipartite graph (i.e. color the vertices black and white in an

alternating way). Then, define a new bipartite graph inductively as follows: take

G0 = G, for every sequence of 4 chambers which is not contained in a hexagon,

adjoin two new edges (see Figure 5.18 for the general idea and the dashed lines in

Figure 5.17 for the first step of the construction in the case at hand). Then, define

B8 =
∞⋃
n=0

Gn .

Proposition 5.12. There is a natural structure of a spherical building of type A2

on B8.
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Proof. This follows immediately from [1] Proposition 4.44. This proposition says

that a connected bipartite graph in which every vertex is the face of at least

two edges is a building if and only if it has diameter m and girth 2m for some

2 ≤ m ≤ ∞. Our case is that of m = 3.

Corollary 5.13. There is a natural structure of a building with Weyl group WoR2

on Bφ = Cone(B8), the cone over the spherical building B8. Here W = S3 is the

Weyl group of SL3C.

Proposition 5.14. The isomoetry of pre-buildings i : Bφpre → Bφ has the following

universal property: given any building B and an isometric embedding j : Bφpre ↪→ Bφ
there exists a unique folding map of buildings θ : Bφ → B such that the following

diagram commutes:

Bφpre Bφ

B

i

θ
j

Proof. The edges in the graph (spherical building) correspond to sectors in the

affine building Bφ. Therefore, the proposition follows from Corollary 5.13 and

Proposition 5.11.

5.3 The universal property and the WKB prop-

erty

The main theorem in this section is the following:

Theorem 5.15. Let h : X → B be a harmonic φ-map to a building. Then there

exists a unique folding map of buildings ψ : Bφ → B such that the following diagram

commutes:

X Bφ

B

hφ

ψ
h
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Furthermore, ψ restricts to an isometry on the image of hφ.

Proof. The first part of the theorem follows immediately from the universal prop-

erty for i : Bφpre → Bφ (Proposition 6.9), and the universal property of the map

hpre : X → Bφpre described in Propostion 5.17 below.

For the second part, observe that every pair of points in the image of hφ is al-

ready contained in a single apartment in the pre-building Bφpre (see Figure 5.17).

This implies that, restricted to the image of hpre, the inclusion Bφpre ↪→ Bφ is dis-

tance preserving in the BNR example. Thus, the statement that ψ restricts to an

isometry on the image of hφ also follows from Proposition 5.17.

Corollary 5.16. The map hφ : X → Bφ computes the dilation spectrum for any

WKB problem with spectral cover φ.

Proof. This follows immdediately from Theorem 4.3, Proposition 5.11 and Theo-

rem 5.15.

The goal in the rest of this section is to prove the universal mapping property for

hpre : X → Bφpre:

Proposition 5.17. Let B be a building, and let h : X → B be any harmonic

φ-map. Then there exists a unique isometry of pre-buildings ψ : Bφpre → B such

that the following diagram commutes:

X Bφpre

B

hpre

∃!ψ
h

The strategy for proving this proposition is the following: firstly, we will prove that

every connected component of the complement of the spectral network maps to

a single sector under any harmonic φ-map. Using Proposition 5.11 and Theorem

3.16 we see that the MARs in Figure 5.6-5.15 indeed map to single apartments.

This constructs the pre-building Bφpre.

Lemma 5.18. Let R0 denote the closure of the connected component of the com-

plement of the BNR spectral network that is at the center of the diagram (see

Figure 5.19). Let h : X → B be a harmonic φ−map to a building B. Then there

is a sector S in B such that h(U) ⊂ S.
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Figure 5.19: The caustic region

Proof. Let ε be a small positive number, let Pε = −2 + ε and Qε = 2 − ε, and

let Ωε := ΩPεQε be the region defined in Theorem 3.16. Then, by this theorem,

each of the regions Ωε is mapped into a single apartment. Since we can make ε

arbitrarily small, it follows that R0 is mapped into a single apartment A.

Since h is a φ-map, away from the ramification point we can choose coordiantes

on the apartment A such that dh = (φ1, φ2, φ3). It follows that the foliation lines

are the pullbacks of the hyperplanes defining the apartment. From this one easily

sees that R0 maps into the intersection of sectors Sl and Sr in A based at h(bl)

and h(br) respectively. Here bl is the branch point −2 and br is the branch point

2. Furthermore, the segments of the sepctral network lines that constitute the

boundary of R0 map to the bondaries of these sectors.

Lemma 5.19. Let h : X → B be a harmonic φ-map to a building. Let cu and cl

denote the collision points of the BNR spectral network. Then h(cu) = h(cl).

Proof. We know that the central yellow region maps to a single apartment. So to

prove the lemma it suffices to compute the integrals of the 1-forms along a contour

(that stays within the central region) from one collision point to the other. More

precisely, we can choose a section of the cameral cover over R0, and use this to write

φ = (φ1, φ2, φ3), and then integrate the real parts of the three 1-forms φ1, φ2, φ3

along a contour joining the collision points. It easily follows from the definition

of spectral networks and from the fact that
∑

i φi = 0 that this integral is indeed

(0, 0, 0). Thus, the vector distance between h(cu) and h(cl) is zero and the lemma

follows.

Remark 5.20. The proof of this lemma shows that, indeed h(x) = h(x̄) (where x̄

is the complex conjugate) for all x ∈ R0. In that sense the segment [−2, 2] ⊂ C is

a “fold-line” or caustic for all harmonic φ-maps.
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Figure 5.20: The foliation lines in a region

Lemma 5.21. Let R0, . . . , R9 denote the closures of connected components of the

complement of the BNR spectral network, and let h : X → B be a harmonic φ-map

to a building. Then there exist apartments A0, . . . , A9, and sectors Si ⊂ Ai such

that h(Ri) ⊂ Si. Furthermore, if two regions Ri and Rj are adjacent (in the sense

that their intersection contains an open segment in a spectral network curve), then

the corresponding sectors Si and Sj are adjacent in B, i.e. they share a panel.

Proof. We have already proven the lemma for R0. We will describe the proof for

one of the regions R1 through R8; the other cases are similar. Consider the region

R1 which contains the point q shown in Figure 5.21, and consider the points p and

r shown in the same figure (they lie on spectral network lines).

Apply Theorem 3.16 with P = p and Q = r. The interior of the region Upr

bounded by the two spectral network lines containing p and r on the one side, and

the thick red and thick black foliation lines on the other, does not contain any

singularities of h, by Proposition 3.19, since it does not contain any ramification

point. Using this, it is easy to see that ΩPQ, in the notation of Theorem 3.16

equals Upr. It follows that this entire region is mapped into a single apartment.

Since the inverse images of apartments are closed, the closure of this region also

maps to a single apartment. Thus, we see that the region R1 can be exhausted

by a family of compact sets, each of which maps to a single apartment. Since we

require our buildings to have a complete set of apartments (Definition 2.11), it

follows that the entire region R1 is mapped into a single apartment A. Arguing

exactly as in Lemma 5.19, we see that R1 must in fact be mapped to a single

sector S1 with vertex at h(cu).

Furthermore, the spectral network lines emanating from cu (resp. cl) map to panels

in the building based at h(cu). This immediately implies the last statement of the

lemma.
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Figure 5.21: The foliation lines in another region

Proof of Proposition 5.17. Let h : X → B be a φ-map. We claim that for each

MAR M in X, there exists an apartment A in B such that h(M) ⊂ A. The

proposition follows immediately from this claim and Proposition 5.3.

We now prove that claim. From Lemma 5.21 and 5.18 we see that every sequence

of “four adjacent region” on X is mapped to a sequence of four adjacent sectors

in the building under and φ-map. By Corollary 5.11 every such four sectors are

contained in a single apartment. Thus, we have shown that any harmonic φ-map

carries each of the MARs that consist of at most 4 of the regions R0 through R9

into a single apartment.

It remains to prove the claim for MAR3 and MAR4. Note that both of these

MARs contain the yellow region R0 at the center of the picture. Let us consider

one of these MARs, say MAR3. The argument for the other MAR is identical.

The argument of the previous paragraph shows that there is an apartment A such

that the complement of R0 in MAR3 is mapped to the union of four adjacent

sectors in A.

Let ε be a small positive number and let Pε = −2 + iε be a point just above

the branch point bl and let Qε = 2 + iε be a point just above the branch point

br. Apply Theorem 3.16 with P = Pε and Q = Qε. Then the region ΩPεQε (in

the notation of Theorem 3.16) intersects R0 in the shaded region shown in Figure

5.22. By Theorem 3.16, every point in this region is in the Finsler covex hull of

h(Pε) and h(Qε). Since h(Pε) and h(Qε) are containein A, it follows that the entire

shaded region is mapped into A. Since ε can be made arbitrarily small, and the

inverse images of apartments under continuous maps are closed we see that all of

R0 is mapped into A. Thus, the entire maximal abelian region MAR3 is mapped

into A. This completes the proof.

From the construction of Bφ, the following proposition is obvious:
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Figure 5.22: Showing that MAR3 is mapped into a single apartment

Proposition 5.22. LetWBNR denote the BNR spectral network, and letWext
BNR be

the extended spectral network, obtained as the union of the BNR spectral network

with the “backward collision line” (the vertical foliation line joining the collision

points). Let hφ : X → Bφ be the universal harmonic map. Then we have the

following:

1. The inverse image under hφ of the singular set of Bφ contains the spectral

network WBNR

2. The inverse image under hφ of the singular set of Bφ equals the extended

spectral network Wext
BNR

Remark 5.23. A point in a building is called singular if no neighborhood of it is

contained in an apartment.



Chapter 6

An example with a single BPS

state

Portions of this chapter have appeared in [40]

In this chapter we investigate the universal mapping properties of another spec-

tral cover. This example is, from some point of view, even simpler than the BNR

example considered in the last chapter, due to the fact that any pair of points lies

in a common maximal abelian region. From another point of view, however, this

example is more complicated because the versal building is not the affine cone over

a spherical building. Thus adding more apartments to satisfy the building axioms

becomes more complicated.

The setup is as follows: let X = A1
C with coordinate x and let p denote the

coordinate along the fiber of the cotangent bundle T ∗X
∼= A2

C. The spectral curve

Σ ⊂ T ∗X is given by the equation

p3 + 4px+ u = 0 .

Here, u ∈ C parametrizes the Hitchin base. The spectral network and the caustic

lines can be seen in Figure 6.1 for u = 1 and θ = π/3 (a caustic line consists of

points P ∈ X at which two (and thus three) foliation lines are tangent to each

other).

The strategy for investigating the universal mapping properties is as follows:

70
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Figure 6.1: Spectral network and caustic lines

1. Show that the regions (i.e. connected components of the complement of the

spectral network) containing the caustic lines map to single apartments

2. Prove that the complement of the regions containing the caustics maps to a

single apartment

3. Use Corollary 5.11 to show that any pair of points is contained in a common

maximal abelian region

A consequence of the mapping properties will be that for any harmonic φ-map

X → B, the extended spectral network maps to the singularities of B.

6.1 The universal mapping properties

We begin with item (1) of the outline from above:

Lemma 6.1. Let Ri, i = 1, 2, 3 be the regions in Figure 6.1 containing the caustic

lines, and let h : X → B be a harmonic φ-map. Then there exist apartments Ai

in B such that h(Ri) is contained in Ai.

Proof. Firstly, note that the caustic line is a spectral network line for a different

angle θ, namely θ = 0. This implies that it cannot be tangent to any of the

foliation lines for the angle θ = π/3. Thus, by Proposition 3.15, we know that it

maps to a single apartment.
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Figure 6.2: Caustic Region

Consider Figure 6.2. Here, the red and black lines are foliation lines starting at

a point on the spectral network. The corresponding image in R2 is shown on the

right hand side of Figure 6.2. Now, use Theorem 3.16 for P being the branch point

and Q being the intersection of the folitation line from above with the caustic to

show that the subset of R1 which lies to the left of the caustic maps to a single

apartment.

The same argument, however, can be applied to the subset of R1 that lies to the

right of the caustic. Thus the claim follows.

Lemma 6.2. The connected components of the complement of the spectral network

map to a single apartment.

Proof. We have argued for the regions R1,2,3 containing the caustic lines in the

previous lemma.

For the other regions, the claim follows easily from Theorem 3.16 together with

Figure 6.3. In this figure, the lines are geodesics.

With these lemmas, we can complete step (2) of the outline.

Lemma 6.3. Let M be the complement in C of R1 ∪ R2 ∪ R3 and let h : C → B
be a harmonic φ-map. Then h(M) is contained in a single apartment.

Proof. Firstly, note that Lemma 6.1 implies that the two boundary lines of Ri are

mapped to a single line in the building (see also Figure 6.2). Thus, the orange

sector and the pink sector in Figure 6.3 are neighboring.

Then, we can use Proposition 5.11 to show that both {g, r, p, o} and {r, p, o, b}
map to single apartments (here {g, r, p, o} means the union of the green, red, pink

and orange region in Figure 6.3; similarly for the other four sectors). This implies

that, for P ∈ M the map Q 7→ Re(
∫ Q
P
φ1,
∫ Q
P
φ2,
∫ Q
P
φ3) when restricted to either
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Figure 6.3: Other Regions

Figure 6.4

{g, r, p, o} or {r, p, o, b} computes the vector distance in B. The same argument

can, however, be made for sectors based at another vertex, see Figure 6.4. From

this figure it can in particular be seen that the distance between points in the blue

and the green sector from Figure 6.3 is given by integrating φi.

Arguing similarly for the remaining paris of points im M shows that the map

Q 7→ Re(

∫ Q

P

φ1,

∫ Q

P

φ2,

∫ Q

P

φ3)

indeed computes the right distances in B.
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Figure 6.5: MAR1

Figure 6.6: MARs

From the above lemma, together with Proposition 5.11, is is clear that the Max-

imal abelian regions are the colored regions in Figure 6.5, 6.6. This gives a good

picture of the universal pre-building Bφpre: it consists of an apartment Abase cor-

responding to the image of MAR1 together with three half-apartments attached

to Abase along the image of the spectral network lines emerging from branch points.

Note that any two point on X̃ are contained in a common MAR and thus the

image of X̃ in Bφpre is a metric space.

Theorem 6.4. Let hpre : X → Bφpre be the canonical map. Then

νWKB
PQ = d(h(P ), h(Q)) .

Proof. This follows immediately from the universal mapping properties of hpre.
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Figure 6.7: Link at collision point

We conclude this section with the following

Proposition 6.5. Let Wext
A1

be the extended spectral network. Then the image of

Wext
A1

is contained in the singularities of B for any harmonic φ-map h : X̃ → B.

Sketch of proof. Let Wbranch
A1

be the union of the spectral network lines emerging

from the branch points of the spectral cover. The images of these lines are precisely

the singularities of Bφpre.

Now, let us consider the link at the image of a collision point c ∈ X̃. The full black

lines correspond to the image under h of MAR1, the colored regions correspond

to the half apartments attached along the image of the spectral network lines.

Counting the distance between the red and yellow edges and recalling that the

link of B at h(c) is a spherical building, implies that the dashed lines have to

be there. Similarly, requiring that any two dashed lines have to be in a common

hexagon, implies that the dotted lines have to be there. The dotted lines, however,

are attached at the vertices that correspond to the collision lines. Thus the forward

and backward collision line emerging at c are mapped to the singular locus of B.

The same argument shows that the entire extended spectral network maps to the

singularities of B.

6.2 The versal building

In this section we will construct a versal building from Bφpre.

Let h : X̃ → B be a harmonic φ-map. Note that the image of Wext
A1

tiles the
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apartment Abase corresponding to the image of MAR1 by equilateral triangles. By

Proposition 6.5, the building B is singular along the lines of this tiling. The idea

for constructing a versal building is to “glue in” more such triangles, similarly to

the process for the BNR example. These triangles are added in such a way that

the resulting limiting object is a building. To enusre that, the following condition

is used [9]:

Proposition 6.6. Let X be a simply connected piecewise Eulcidean complex of

dimension r ≥ 2 such that the link at every point is a spherical building. Then X

is a Euclidean building.

Recall that a piecewise Euclidean complex is a polyhedeal cell complex together

with a complete, geodesic metric d such that each cell is isometric to a convex

polyhedral cell in Rn, and

d(x, y) = inf
γ
{l(γ)|γ is a path from x to y} .

We now give the construction of the versal building Bφ:

Construction 6.7. Let Bφpre be the pre-building consisting of Abase and three half-

apartments attached to it. Let ∆ ⊂ R2 be an equilateral triangle with the same side-

length as the grey triangle in Figure 6.5. Then we inductively add new triangles

with the same side lengths as ∆ at all points x for which the the link lk(x) is not

a spherical building, according to the rules drawn in Figure 6.8 (the figure can

be interpreted as follows: edges correspond to triangles, dashed edges correspond

to triangles which are added; dots correspond to reflection hyperplanes and ◦’s
correspond to newly added reflection hyperplanes):

1. If there are four consecutive sectors in lk(x) not contained in a hexagon, we

add two new triangles as in the left of Figure 6.8;

2. If there is a path of length three in lk(x) not contained in a hexagon and to

whose endpoints no new lines are added by rule 1., we add three new triangles

as in the middle of Figure 6.8;

3. If there is a path of length two in lk(x) not contained in a hexagon to whose

endpoints no new lines are added by rule 1. or rule 2., we add four new

triangles as in the right of Figure 6.8.

Let Bφ be the resulting simplicial complex with metric

d(x, y) = inf
γ

{∑
i

l(γi)|γ(0) = x, γ(1) = y, γi is contained in a single triangle ∆i

}
.
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Figure 6.8: Gluing construction

We now want to apply Proposition 6.6 to show that (Bφ, d) is a Euclidean building:

Proposition 6.8. Let Bφ be the simplicial complex obtained by applying Construc-

tion 6.7 to Bφpre. Then (Bφ, d) is a Euclidean building.

Proof. Firstly, note that Bφ is a piecewise Eucliean simplicial complex. Further-

more, we can assume that Bφ is simply connected; otherwise we take its universal

cover.

So, we need to show that the link of every point is a spherical building. Note that

at points that are not integer translates of the vertices of the grey triangle ∆ in

Figure 6.5 by vectors corresponding to edges of ∆ this condition is satisfied at

every step of the induction process: the link is either a hexagon or looks similar

to the one in Figure 6.9, possibly containing more (or less) half-apartments.

Thus, we only need to make sure that the links at points which are integer trans-

lates of the vertices of the grey triangle are spherical buildings. From the construc-

tion rules, it is clear that any two edges will be contained in a common hexagon.

So we just have to show that no cycles of length less than six are created.

For that, we want to understand how the link at an endpoint y of a newly added

triangle changes if we apply the induction step of Construction 6.7. There are

two possibilities: either y was not there before that step, in which case the link

at y consists of two segments; or if y was there before the induction step, we sim-

ply add some segments to the vertex corresponding to the reflection hyperplane

along which we glued the triangles. Thus the bipartite structure of every link is

preserved. The rules in Construction 6.7 applied to the link at y also preserves

this bipartite structure and so can only generate cycles of even length. Applying

rule 1. possibly several times will, then, put any pair of segments into a common

hexagon.
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Figure 6.9

Proposition 6.9. The canonical isomoetry of pre-buildings i : Bφpre → Bφ has the

following universal property: given any building B and an isometric embedding

j : Bφpre ↪→ Bφ there exists a folding map of buildings θ : Bφ → B such that the

following diagram commutes:

Bφpre Bφ

B

i

θ
j

Proof. Note that by Proposition 6.5, for all apartments of B we can define a tiling

by equilateral triangles of the same side length as the grey triangle in Figure 6.5.

Let Bi be the pre-building obtained after applying i inductive steps of Construction

6.7. For each Bi, we can define a (not necessarily unique) map θi : Bi → B as

follows: Let ∆i be a triangle that has been added at step i, i.e. ∆i ⊂ Bi, ∆i 6⊂ Bi−1.

For every newly attached boundary ∂ of some ∆i (corresponding to a new vertex

at the link at x where ∆i has been attached), we choose a corresponding vertex

in the link of θi−1(x) (corresponding to a choice of tangent vector for the image of

∂) such that the resulting map at the link of x is a folding map (when restricted

to the link of Bi−1 together with the triangles ∆i that were attached at step i).

Then, choose an entire segment, of the same length as the tiling triangle, with the

chosen vertex as tangent vector at the link of θi−1(x). This construction fixes the

image of two boundaries of ∆i , and thus, by convexity, the image of ∆i.

Theorem 6.10. Let h : X → B be a harmonic φ-map to a building. Then there

exists a folding map of buildings ψ : Bφ → B such that the following diagram

commutes:
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X Bφ

B

hφ

ψ
h

Furthermore, ψ restricts to an isometry on the image of hφ.

Proof. This is an easy consequence of the universal mapping properties together

with Proposition 6.9.

6.3 BPS states and stability condition

As mentioned in the introduction one of the main motivations for this work was

to understand BPS states and its relations to harmonic maps to buildings.

Recall that a BPS web is a subset of a spectral network of a special phase: it

consists of spectral network lines that can be lifted to a closed cycle γ ∈ H1(Σ,Z);

as an example consider the union of the red lines in Figure 6.10; the fact that it lifts

to a closed cycle in H1(Σ,Z) can easily be seen from Figure 6.11). Furthermore,

let us fix the point in the Hitchin base. Conjecturally this should fix a stability

condition on an appropriate 3d Calabi-Yau category. The semi-stable objects for

this stability condition should be all BPS webs of the spectral networksWθ for all

phases θ ∈ S1 [26] (actually one should also add the analogues of circles, which

have DT-invariant Ω = −2, in the SL2C case, but that is irrelevant for the current

example).

Let us note that from [26] we expect that the appropriate 3d Calabi-Yau category

T is the Ginzburg category associated to the quiver A1 = • (this is due to the fact

that, for any parameter u ∈ C of the Hitchin base, there is a single BPS state, see

Figure 6.10). This corresponds to the fact that

H1(Σ,Z) ' Z .

Interestingly, the period of the generator of H1(Σ,Z) is related to the side length

of the tiling triangle; the notation and the labels of the sheets of the spectral cover

is as in Figure 6.11:

From the definition of spectral networks, it follows immeditely that (with φij =

Re (φi − φj)) ∫ Q

P

φ13 =

∫ Q

P

φ23 =

∫ R

P

φ23 =

∫ R

P

φ21 =: l .
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Figure 6.10

Similarly, ∫ Q

P

φ13 =

∫ R

Q

φ13 =

∫ R

Q

φ12 = l .

Using coordinates (x, y) = Re (
∫
φ1,
∫
φ2), we obtain the following relations on

the side lengths of the grey triangle ∆ from Figure 6.5:

∆PQ
x = ∆PQ

y ∆QR
x = ∆QR

y + l ∆PR
x = ∆PR

y + l .

On the other hand:

l =

∫ Q

P

φ23 =

(∫ Q

P

+

∫ b1

Q

+

∫ Q

R

)
φ23 +

(∫ b2

R

+

∫ P

R

)
φ13 ,

since∫ Q

P

φ23 =

∫ Q

P

φ2 +

∫ P

Q

φ3 =

∫ Q

P

φ2 +

(∫ R

Q

+

∫ P

R

)
φ3 =

∫ Q

P

φ2 +

∫ R

Q

φ3 +

∫ P

R

φ1 .

Adding up the terms in the previous two equations we get

l = Re

∫
γ

φ ,

where γ is the lift of the BPS state from Figure 6.10 to the spectral cover.

To conclude this section we want to present an algorithm for A2 spectral covers,

in the context of this example, that allows us to deduce the quiver and thus the
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Figure 6.11

category. We switch from imaginary spectral networks to real spectral networks,

since this is the standard convention for stability conditions.

Construction 6.11. Let Σ → X be a SL3C spectral cover with locally finite

spectral network W. For any two collision points P,Q that are connected by a

spectral network line, say with labels (ij) and such that no other collision point

lies on this line between P and Q, we can associate a cycle γ ∈ H1(Σ,Z) as

follows:

Consider the two open chains on Σ whose two boundary points project to P and

Q respectively, and whose endpoints lie on the sheets i and k, k 6= j. Then join

these two open chains along the spectral network line connecting P and Q to form

the closed cycle γ whose orientation is chosen such that

Im

∫
γ

φ ≥ 0 .

Then, consider the set of all cycles obtained by this procedure and use the inter-

section form on Σ to compute an antisymmetric matrix. The corresponding quiver

is the one associated to this matrix.

Remark 6.12. In the example at hand, Construction 6.11 produces the cycle cor-

responding to the BPS state (which is, of course, no surprise since H1(Σ,Z) has

a single generator). The construction, however, also makes clear the relation be-

tween the central charge and the edge length, since the contribution to the integral

from the two open chains is zero. We will apply this algorithm in the next Chap-

ter as well, where the construction is less trivial, but still gives rise to the correct

answer.



Chapter 7

An example with two BPS state

In this chapter we treat another example which is quite general already: neither

is the pre-building describable as an affine cone over a spherical pre-building, nor

are any two points contained in a common maximal abelian regions. It even shows

some further phenomenon that we expect in general, namely that the extended

spectral network is dense in some regions.Due to these diffictulites we could not

yet complete this example and it is still ongoing research. In this chapter, we only

present some very preliminary results and speculations.

Let us start by describing the spectral cover we want to consider. As in the

previous chapters, let X = A1
C with coordinate x and let p denote the coordinate

along the fiber of the cotangent bundle T ∗X
∼= A2

C. We consider the spectral curve

Σ = {(x, p)|p3 + 3u1p+ (x2 + u2) = 0} ,

for u1, u2 ∈ C.

7.1 The universal mapping properties

In this section we want to investigate the universal mapping properties for har-

monic φ-maps for the spectral cover Σ→ X.

The spectral network together with the caustic lines is shown in Figure 7.1. No-

tice the following interesting behavior: there are backward spectral network lines

joining c1 and c2, and c3 and c4, respectively. Thus, if we cut out a region U ⊂ X

containing the branch point b1, b2 and the collision points c1, c2, we have the same

82
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Figure 7.1: Spectral network and caustic lines

situation as in the BNR example. Similarly, if we cut out a region containing b3, b4

and c3, c4 we also have the same situation as in the BNR building. Thus, this exam-

ple seems to “glue together two BNR buildings”. Since, in the end, any two points

need to be in a common apartment, this gluing process is of course very nontrivial.

Lemma 7.1. LetWA2 be the spectral network. If R ⊂ X̃ is a connected component

of the complement of WA2 and h : X̃ → B is a harmonic φ-map to a building B,

then there exists an apartment A ⊂ B such that h(R) ⊂ A.

Proof. The proof is again based on Theorem 3.16. Consider, for example the

sectors in Figure 7.2. It follows immeadiately from Theorem 3.16 that each of

them maps to a single apartment.

The argument for the regions containing the caustic lines is also the same as in

the BNR example.

This is only the very first step in investigating the mapping properties. We also

applied the procedure of Gaiotto-Moore-Neitzke which allows us to get distances

between points that are “farther away”. For some examples of these Maximal

Abelian Regions, see Figures 7.3, 7.4, 7.5.

We could not reach a complete understanding of the universal mapping properties

until now. Constructing a pre-building is hard due to the sheer number of maximal

abelian regions (21 were found until now, but there are probably more).
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Figure 7.2

Figure 7.3
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Figure 7.4

Figure 7.5
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7.2 Some speculations about the versal building,

BPS states and stability conditions

This example is already much more general than the two previous examples : the

extended spectral network is dense in some regions (for generic parameters u1, u2

defining the spectral cover Σ). Since the extended spectral network maps to the

singular locus of the building, we expect that the versal building Bφ is an honest

R-building, i.e. it cannot be described by a discrete translation group.

More specifically, looking at Figure 7.4 gives a good idea of what to expect: the

dark green rectangle is bounded by the image of spectral network lines. Since the

vertices of this rectangle correspond to collision points, there are new singularities

emerging from these collision points. These new lines will intersect the boundary

of the rectangle again, creating, again, new collision lines. If there is no rational

linear combination of the edge lengths of the rectangle, this process will continue

indefinitely, thus creating smaller and smaller “Weyl chambers”. So, in a sense,

this rectangle creates a “tiling” of the apartment by infinitesimally small “Weyl

chambers”.

From [26], we know what 3d-Calabi-Yau category T to expect: it should be the

Ginzburg category associated to the A2 quiver: • → •. This is due to the fact

that there are, depending on the parameters u1, u2 ∈ C, either two or three BPS

states. One is shown in Figgure 7.6. Another one connects the other two branch

points. The structure of the third one (which may or may not exists) is shown in

Figure 7.7, where the x’s are branch points and the •’s are collision points.

Note the following interesting feature: we can apply Construction 6.11 which also

gives us the corresponding cycles. Furthermore, it immediately gives an equality

between the imaginary part of the corresponding period and the side length of the

dark green rectangle of Figure 7.4. This is actually the kind of phenomeon that

we expect in general.
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Figure 7.6

Figure 7.7
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