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Abstract 

35 million people died due to the acquired immunodeficiency syndrome (AIDS) since 

the outbreak of the HIV pandemic. Despite intensive research, developing an immu-

nogen to induce broadly neutralizing antibodies (bnAbs) against HIV remains a chal-

lenge, although about 10 - 30 % of infected individuals develop bnAbs against HIV-1 

on average 2.5 years after infection. Two of them are 2F5 and 4E10, targeting the 

membrane proximal external region (MPER) of the transmembrane envelope protein 

(TM) gp41. Previous studies on the non-pathogenic retrovirus feline foamy virus 

(FFV) revealed immunogenic regions with a bipartite motif in its TM protein, gp48, 

equivalent to the locations of the 2F5 and 4E10 epitopes in HIV gp41. In order to use 

the FFV TM protein as HIV epitope scaffold, the 2F5 and 4E10 epitopes were inte-

grated into the full-length FFV Env backbone by replacing the equivalent sequences. 

After transfection of HEK293T cells, it could be shown that the chimeric FFV/HIV-1 

proteins are produced and released into the cell culture supernatants. Furthermore, 

the secreted material has properties typical for subviral particles (SVPs). This is in 

line with the finding that FFV Env protein expression is sufficient to induce budding in 

absence of any other FV proteins. In order to allow evaluation of the potential of 

those hybrid SVPs as HIV-1 vaccines by administration in a DNA-prime/SVP-boost 

regimen in rats, sufficient amounts were required. In the frame of this thesis, efficient 

protocols for large-scale production of SVPs were established. This was achieved by 

subcloning the respective sequences into retroviral transfer vectors and systematic 

optimization of transfection, virus production and concentration protocols to obtain 

high titer stocks of infectious vesicular stomatitis virus protein G (VSV-G) pseudo-

typed viruses. Transduction of various cell lines revealed CRFK cells as suitable pro-

ducer cells for the production of the intended SVPs. Immunoprecipitation of the native 

antigens with mAb 2F5 and mAb 4E10 demonstrated that the respective epitopes are 

accessible. Application of transmission electron microscopy using the method of 

negative staining confirmed successful SVP production which was further optimized 

by testing different commercially available expression media. First steps to scale up 

the production process using Corning® HYPERFlasks® have also been accom-

plished. The established protocols for large-scale production of hybrid FFV/HIV-1 

SVPs carrying the 2F5 and 4E10 epitopes allow testing the potential of a novel re-

combinant vaccine strategy against HIV-1 infections.  
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1 Introduction  

1.1 Human immunodeficiency virus-1  

1.1.1 HIV and AIDS 

Most likely, the acquired immunodeficiency syndrome (AIDS) was present in Africa 

for many decades. In 1981, it emerged in the human population as an outbreak of 

Pneumocystis carinii pneumonia among homosexual men in the United States [1]. 

AIDS is caused by the lentivirus HIV that belongs to the member of Retroviridae. The 

equivalent agent in apes and monkeys is the simian immunodeficiency virus (SIV). 

HIV is transmitted primarily by sexual intercourse, injection of infected blood or blood-

derived products and by mother-to-child transmission [2, 3].  

After an acute infection in which CD4+ T-cells are massively depleted in the genital 

tissue and the gut-associated lymphoid tissue (GALT), replication starts in resting 

CD4+ T-cells of the genital mucosa in the case of sexual transmission [4]. A chronic 

infection characterized by a progressively dying immune system follows [5].  

The first 10 days represent the initial phase or eclipse phase, when viral RNA is be-

low detection level in the blood circulation. It is followed by the acute phase which is 

characterized by high virus production in activated CD4+ T-cells (Figure 1) [6]. When 

control by the cellular immune system sets in, infection proceeds to an asymptomatic 

period in which CD4+ T-cell numbers slowly but steadily decline [3]. HIV-1 infection is 

associated by a chronic immune stimulation increasing T-cell turnover, production of 

pro-inflammatory cytokines and chemokines and activation of cytotoxic T-cells (CTLs) 

and polyclonal B-cells [5, 7]. As a consequence, the humoral immune response be-

gins to show weeks after infection, resulting in seropositivity. Together, CTL and anti-

body responses against HIV reduce the plasma viral load to a stable level, called the 

viral set point, at which patients are less infective than during the acute phase of in-

fection [8]. However, virus is never completely neutralized due to escape mutations of 

HIV. The asymptomatic phase can last from several months to more than 10 years 

before patients develop AIDS and finally die because of opportunistic infections with 

usually harmless pathogens [9].  
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Figure 1: Time course of a HIV infection [3] 

During the acute phase of infection, the plasma viral load is highest because of ongoing replication in 

CD4
+
 T-cells. A chronic infection of the immune system follows where CD4

+
 T-cells continually die. 

Weeks after infection, the plasma viral load is reduced to a stable level because cytotoxic T-cells are 

activated and the humoral immune system sets in. Patients develop antibodies against HIV and be-

come seropositive. However, escape mutations prevent complete clearance of HIV. The chronic 

asymptomatic phase can last more than 10 years before opportunistic infections occur due to AIDS.  

Since the beginning of the epidemic, approximately 70 million people have been in-

fected and 35 million have died of AIDS. In 2011, 1.7 million people died of AIDS-

related illnesses worldwide and about 34 million people were living with HIV that con-

stitutes 0.8 % of the world population (Figure 2). However, sub-Saharan Africa re-

mains most severely affected as nearly 1 in every 20 adults (4.9 %) lives with HIV 

which accounts for 69 % of the people living with HIV worldwide [10]. 

 

Figure 2: Worldwide prevalence of HIV [10] 
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1.1.2 Genome  

HIV is an enveloped single-stranded positive sense RNA virus with a genome of 9.5 

kb in length. Like all retroviruses, the genome encodes Gag (further cleaved into ma-

trix, capsid and nucleocapsid), Pol (cleaved into protease, reverse transcriptase and 

integrase) and Env (processed into gp120 and gp41) (Figure 3). 

 

Figure 3: HIV-1 genome organization [3] 

LTR: long terminal repeat, gag: group specific antigen, pol: polymerase, env: envelope protein, MA: 

matrix protein, CA: capsid protein, NC: nucleocapsid protein, PR: protease, RT: reverse transcriptase, 

IN: integrase, vif: viral infectivity factor, vpr: viral protein R, tat: transactivator of transcription, rev: regu-

lator of virion, vpu: viral protein U, gp120/41: glycoprotein120/41, nef: negative factor 

In addition, the HIV-1 genome encodes several accessory and regulatory proteins: 

Tat (trans-activator of transcription) increases the production of full length HIV-1 

mRNA transcripts that are packaged into viral particles. Transcriptional elongation is 

accomplished by binding to an RNA stem-loop structure (Tat activation region, TAR) 

at the 5’-terminus of the viral mRNA [11]. 

Rev (regulator of virion) facilitates the transport of unspliced viral mRNAs encoding 

Gag, Pol and Env from the nucleus to the cytoplasm by binding to the Rev-response 

element (RRE). It is responsible for regulating the switch from early transcription of 

regulatory proteins to late structural proteins [12]. 

Nef (negative factor) contributes to high viral loads and promotes activation of resting 

T-cells [13]. In uninfected bystander CD4+ T-cells it induces apoptosis [14, 15] and 

down-regulates CD4 and MHC-I. Therefore, infected cells can evade the immune 

system [16].  

Vif (viral infectivity factor) recruits ubiquitinating proteins to apolipoprotein B mRNA-

editing enzyme catalytic polypeptide 3 (APOPEC3G) and thereby predestines it for 
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proteasomal degradation [17]. Human APOPEC3G is a cytidine deaminase that in-

duces multiple C-to-U deaminations in minus-strands of HIV-1 proviral DNA derived 

from viral particles carrying that enzyme [18].  

Vpr (viral protein R) induces cell cycle arrest in G2 and apoptosis. Furthermore, it al-

lows entry of the viral pre-integration complex into the nucleus of non-dividing cells 

[19].  

Vpu (viral protein U) antagonizes tetherin which inhibits the release of fully assem-

bled virions at the cell membrane [20]. Additionally, it targets CD4 to proteasomes for 

degradation [21]. 

1.1.3 Replication 

Primary targets of HIV-1 are CD4+ T-cells [22] and cells of the macrophage and 

monocyte lineage [4]. Binding of gp120 to the CD4 receptor triggers conformational 

changes leading to the exposure of the CCR5 or CXCR4 co-receptor binding sites. 

Which co-receptor is actually bound depends on the amino acid sequence of the V3 

loop of the SU domain (gp120). Further conformational changes in gp41 lead to the 

six-helix bundle-formation that initiates the fusion of the cellular and viral membranes 

(Figure 4) [23]. 

 

Figure 4: HIV-1 entry [24] 

Gp120 binds the CD4 receptor that triggers conformational changes resulting in co-receptor binding. 

The V3 loop of SU plays a role at the decision between the co-receptors, CCR5 or CXCR4. The fusion 

peptide of gp41 inserts into the host membrane. The subsequent sex-helix bundle-formation of gp41 

brings the viral and host membrane into close proximity and induces them to fuse.  
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After release into the cytoplasm, active reverse transcriptase (RT) transforms the 

RNA genome into one pro-viral DNA copy (Figure 5). The provirus migrates into the 

host cell nucleus where it randomly integrates into the host cell genome. The cellular 

machinery transcribes the proviral DNA into spliced mRNAs for viral protein expres-

sion and into full-length single stranded RNA. Viral proteins and two copies of full-

length RNA are assembled to viral particles at the cell surface where they are re-

leased as immature and noninfectious virions [2]. Only after cleavage of Gag by viral 

protease, HIV particles acquire infectivity [25].  

 

Figure 5: Simplified replication cycle of HIV-1 [26] 

Binding of gp120 to CD4 receptor triggers the fusion process. After release of the viral RNA genome 

into the cytoplasm, reverse transcriptase produces proviral DNA that randomly integrates into the host 

cell genome. The cell machinery starts viral protein expression and the production of two full-length 

single stranded RNA copies. Virus particles are assembled at the cytoplasm membrane and bud as 

noninfectious virions. Viral protease cleaves Gag and thereby infectivity is acquired.  

Single HIV-1 particles (Figure 6) comprise an internal cone-shaped capsid (p24, CA) 

surrounded by a lipid membrane that is wrapped on a scaffold of matrix proteins 

(p17, MA). Approximately 15 trimers of gp160 (gp120 + gp41) form spikes on a single 

virion’s surface [27]. The lipid membrane originates from the virus-producing host 

cell. As a consequence, membrane proteins are embedded in the viral lipid bilayer. 

The CA contains two copies of the HIV RNA genome that are associated with the nu-

cleocapsid (p7, NC), reverse transcriptase and regulatory proteins Nef, Vif and Vpr.  
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Figure 6: Structure of a single HIV-1 virion [3] 

MA: matrix, NC: nucleocapsid, CA: capsid, RT: reverse transcriptase, Nef: negative factor, Vif: viral in-

fectivity factor, Vpr: viral protein R 

1.1.4 HIV-1 Env and broadly neutralizing antibodies against the MPER of gp41 

The 160 kD glycoprotein Env (gp160) is synthesized in the rough endoplasmic reticu-

lum (Figure 7A) and cleaved into gp120 (SU) and gp41 (TM) by a cellular furin prote-

ase in the Golgi apparatus [28, 29]. Gp120 and gp41 assemble into hetero-trimers 

and form spikes on the viral surface (Figure 7B).  
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A 

 

B 

 

Figure 7: HIV-1 Env (gp160) [30] and  a single HIV-1 Env spike [31] 

A) Gp160 consists of the surface protein gp120, the transmembrane envelope protein gp41 and the 

signal peptide (SP). Gp120 and gp41 are cleaved by furin protease at the furin site after transportation 

to the Golgi apparatus. Depicted are the different regions of gp120 and gp41. Gp120 comprises five 

constant regions (C1-5) and five variable regions (V1-5). The gp41 protein contains a fusion peptide 

(FP), two helical regions (HR1, HR2), a membrane proximal external region (MPER) and a transmem-

brane domain (TMD). B) 3-dimensional structure of a single heterotrimeric HIV-1 envelope spike con-

sisting of gp120 and gp41. The approximate locations of the 2F5 (red) and 4E10 (blue) epitopes in the 

viral spike are indicated.  

After binding of gp120 to CD4 and the co-receptor, conformational changes of gp41 

cause the fusion peptide to intrude into the host cell membrane (Figure 4). The N-

terminal helical region (NHR) and the C-terminal helical region (CHR) interact to form 

the six-helix bundle formation (Figure 4 and 8) where the viral and host cell mem-

branes are in close proximity, immediately before fusion.  

So far, the development of an effective HIV-1 vaccine remained unsuccessful. Antivi-

ral immune mechanisms fail to clear the virus, although neutralizing antibodies 

(nAbs) are induced weeks after infection [32]. The viral load is merely reduced to a 

lower stable level (viral set-point, Figure 1). This is due to the fact that the virus la-

tently infects memory T-cells by integrating into host chromosomes [7]. Another rea-
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son is the high mutation rate of HIV-1 that produces escape mutations [33]. Never-

theless, minimally accessible epitopes targeted by broadly neutralizing antibodies 

(bnAbs) exist and 10 - 30 % of infected patients even develop bnAbs [34, 35] on av-

erage 2.5 years after infection [36-38]. Targets of bnAbs are the glycan structure, the 

V2/V3 loop, the CD4 binding site of the SU domain or regions of the TM domain. The 

conserved membrane proximal external region (MPER) [39] contains the epitopes 

recognized by four such bnAbs: Z13, 10E8, 2F5 and 4E10 with a neutralization 

breadth of <20 %, 97 %, 48 % and 88 %, respectively [40]. The relative positions of 

the 2F5 (ELDKWAS) and 4E10 (WFNITNWLW) epitope sequences [41] in the MPER 

are depicted in Figure 8. They neutralize HIV-1 in different stages of infection by in-

teracting with fusion intermediates of gp41. Accordingly, neutralization by 2F5 and 

4E10 occurs mainly after receptor binding because their epitopes are undisclosed in 

free virions. Furthermore, binding of the 2F5 and 4E10 epitopes hinders membrane 

fusion [42-44]. 

 

Figure 8: Functional domains of gp41 (TM) and their conformational changes during infection 

[41, 45]  

The gp41 protein consists of the fusion peptide (FP), the fusion peptide proximal region (FPPR), the 

N-terminal helical region (NHR), the immunosuppressive domain (isu), Cys-Cys-loop (C-C), the C-

terminal helical region (CHR) and the membrane proximal external region (MPER). C-terminally of the 

MPER are the membrane spanning domain (MSD) and the cytoplasmic tail (CT). The conserved 

epitopes recognized by the broadly neutralizing antibodies 2F5 (ELDKWAS) and 4E10 (WFNIT-

NWLW) are located within the MPER. In order to facilitate the fusion of viral and host cell membranes, 

gp41 undergoes conformational changes including an interaction of the NHR and CHR. The so called 

six-helix bundle formation brings both membranes into close proximity initiating fusion pore formation.  
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The MPER is important for both, the fusion process of the viral and host cell mem-

branes [39, 46, 47] and for the incorporation of Env into virions [39] by a cholesterol 

binding domain at the C-terminal end of the MPER (LWYIK) [48]. The close proximity 

of the MPER and the viral membrane implies that 2F5 and 4E10 might interact with 

the viral membrane during neutralization, thereby turning it into a key component of 

both epitopes [41]. It was shown that 2F5 and 4E10 have a long complementarity de-

termining region (CDR-H3) [49-52] that may interact with the viral membrane [49, 51]. 

As the FPPR and MPER interact during infection (Figure 8), they play a crucial role in 

infectivity [46]. The FPPR supports epitope binding and thereby affinity of 2F5 [47]. 

Infection mainly occurs via mucosal transmission in pluri-stratified epithelium (e.g., 

vagina, exocervix, foreskin and anus). Dendritic cells are the first targets of HIV-1 be-

fore dissemination in the submucosa follows [4, 53]. Interestingly, peripheral blood 

mononuclear cells (PBMC) infected with HIV-1 produce virus that is internalized by 

epithelial cells and cross the epithelial barrier by transcytosis [54]. HIV-1 binds to epi-

thelial cells using the alternative receptor glycosphingolipidgalactosylceramide. This 

interaction is mediated by the ELDKWA epitope of 2F5 that is also recognized by 

some IgM or dimeric IgA antibodies induced against Env; such antibodies could block 

mucosal transmission of HIV-1 [54]. 

All attempts to induce 2F5- and 4E10-like antibodies by several immunization strate-

gies have been unsuccessful. Antibodies induced by immunization with recombinant 

antigens presenting the 2F5 and 4E10 epitopes in various protein scaffolds lacked 

broadly neutralizing activity [55-57]. The characteristics of 2F5 and 4E10 suggest that 

successful induction requires antigens with the respective epitopes presented in their 

natural conformation and in an environment that resembles fusion intermediates of 

the HIV-1 infection after receptor binding.  

1.2 Feline foamy virus 

1.2.1 Foamy viruses 

Foamy viruses (FV) belong to the subfamily of Spumaretrovirinae, a genus of Retro-

viridae family. FVs co-evolved with their natural hosts. They are endemic to most 

non-human primates, cat, cattle and horse [58]; man is not a natural host. In the 70s, 

prototype foamy virus (PFV) was isolated which was earlier known as human foamy 

virus (HFV). It shows high sequence homology to chimpanzee foamy viruses 
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(SFVcpz) suggesting zoonotic transmission from chimpanzee to humans [59-61], alt-

hough human-to-human transmissions remained undetected [59]. FV infections are 

persistent [62] but apathogenic in natural hosts as well as in humans [62]. This fact is 

in stark contrast to the virus’ high cytopathic nature in vitro where infection can end in 

the formation of multinucleated syncytia (cytopathic effect, CPE, Figure 9) followed 

by death of the target cells [63]. The apathogenicity is thought to be a result of inten-

sive evolutionary adoption of virus and its host [58]. 

 

Figure 9: Cytopathic effect (CPE) in 293T cells infected with feline foamy virus (picture kindly 

provided by Michael Mühle of the Robert Koch-Institute) 

Syncytia are framed in red. 

FVs are of great interest for the development of retroviral vector systems and gene 

therapies in view of several reasons. They continuously stimulate the immune system 

[64] because they persist in the host despite the presence of neutralizing antibodies 

and they exhibit a broad host range [65]. In addition to that, the genome of FVs offers 

a high packaging capacity. 9.2 kb of the wild-type SFVcpz-genome with 13.2 kb in 

size can be supplemented by transgenes [66].  

1.2.2 Feline foamy virus genome and Env 

Like in other complex retroviruses, the feline foamy virus (FFV) genome (11.7 kb) en-

codes, in addition to Gag, Env and Pol, accessory and regulatory proteins, as e.g. 

Bel1/2 and Bet (Figure 10). In contrast to other retroviruses, FV Gag lacks a mem-

brane-targeting signal. Budding and particle release is Env-dependent that impedes 
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the formation of virus-like particles (VLPs) [67-70]. Interestingly, FV Env contains 

structural features that allow release of capsid-less subviral particles (SVPs) similar 

in size and shape to VLPs [71].  

The Bel1 gene encodes transactivator (Tas) that binds to the internal promoter (IP) in 

env and the promoter in the 5’LTR. At lower concentrations, Tas binds the IP that has 

higher basal activity and thereby increases its own expression. Accumulation of Tas 

increases binding of the promoter in the 5’LTR which promotes gene expression of 

structural proteins. The positive feedback-loop regulated by Tas thereby allows the 

switch from early accessory to late structural gene expression [72-74]. Activation of 

the IP also induces the gene expression of bet. A splicing event that fuses the bel2 

ORF with the 5’end of the bel1 ORF produces bet. Studies showed that Bet protein 

inhibits APOPEC3 analogously to HIV-1 Vif [75, 76]. 

The envelope glycoprotein (Env) is translated from a single-spliced mRNA. The Env 

precursor molecule (gp130) (Figure 10) consisting of the surface (SU, gp80) and 

transmembrane envelope protein (TM, gp48) is targeted to the rough endoplasmic re-

ticulum by an N-terminal signal peptide.  

 

Figure 10: Feline foamy virus genome organization [77] 

LTR: long terminal repeat with unique 3’ and 5’ region (U3, U5) and repeats (R), gag: group specific 

antigen, pol: polymerase, PR: protease, RT/RH: reverse transcriptase-RNase H domain, IN: integrase, 

env: envelope, Elp: envelope leader peptide, SU: surface protein, TM: transmembrane envelope pro-

tein, IP: internal promoter, bet: between env and LTR. 

Different to orthoretroviruses, the envelope leader peptide (Elp) is not cleaved co-

translationally but remains attached to the full-length precursor molecule and is in-

corporated into virus particles [69, 70, 78]. Along its way through the secretory path-

way, Env is proteolytically cleaved at the furin-cleavage sites to Elp, SU and TM [69, 

70]. Only the SU-TM cleavage is essential for viral infectivity [79-81]. In addition, FV 

Env is N-glycosylated [79] at several sites. In the case of PFV, 14 to 15 potential gly-

cosylation sites have been predicted of which two conserved sites seem to be critical 
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for viral infectivity; N8 in gp80 and N13 in gp48 [82]. Similar to HIV Env, FV Env 

forms heterotrimeric spikes on the viral surface [63, 83]. By applying electron micros-

copy of negatively stained PFV particles, it was found that those spikes are densely 

ordered in hexameric rings covering the whole surface of a single virion [83].  

Among most FVs, a KKXX di-lysine motif in the C-terminal cytoplasmic domain of TM 

is conserved [84]. It was shown that in PFV, the KK-motif functions as an endoplas-

mic reticulum retrieval signal (ERRS) because it retains Env in the endoplasmic retic-

ulum from the Golgi network in the absence of other viral proteins [85]. PFV Env 

ERRS mutants show augmented syncytia formation probably due to increased 

transport of Env to the plasma membrane [85, 86].  

Additionally, it was shown that PFV Env is ubiquitinated at five lysine residues locat-

ed in the N-terminal part of its envelope leader peptide. Those ubiquitination sites 

seem to be nonessential for FV particle-release but obviously affect SVP-release in a 

negative way. This was shown by lysine-to-arginine mutations of all five ubiquitination 

sites that resulted in enhanced SVP-release by more than 10-fold [87, 88].  

1.3 Goal of this thesis 

As mentioned above, some HIV-1 infected patients develop neutralizing antibodies 

(nAbs) 2 to 3 years after infection [36-38]. From some infected individuals, even anti-

bodies with broadly neutralizing activity could be isolated. Two of those antibodies 

are 2F5 and 4E10 that bind epitopes in the MPER [41]. Different vaccine strategies 

were tested for induction of 2F5- and 4E10-like antibodies but all attempts remained 

without success.  

It is still unclear which factors are essential for successful induction of nAb. Studies 

suggest that the unusually long CDR3s of 2F5 and 4E10 interact with lipids of the vi-

ral membrane [49, 51], in addition to their respective epitope sequences (Figure 8). 

That characteristic implies that the natural conformation of the 2F5 and 4E10 

epitopes and positioning close to a lipid membrane play a substantial role in antigen-

icity. Besides, the long CDR3s, 2F5 and 4E10 were shown to be highly mutated in 

the frame work regions (FWR) of the variable regions. The FWRs maintain the struc-

tural integrity of the complementarity determining region (CDR) loops and are thus 

critical for broadly neutralizing activities and breadths of bnAbs [89]. As a conse-

quence, mutations in the FWR are rarely tolerated and rather selected against [90, 
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91]. This suggests that long affinity maturations are necessary for nAbs to become 

broadly neutralizing.  

In a previous study, sera of animals that were immunized with recombinant feline 

foamy virus (FFV) transmembrane envelope protein (gp48) protein and domestic cat 

sera were screened for antibodies against gp48 [92]. Analysis by use of ELISA and 

immunoblotting showed that FFV positive sera contained antibodies with reactivity 

against gp48. Epitope mapping revealed that the reactivity of antibodies in the im-

munized animals was predominantly against the glycosylated cysteine-rich domain 

(Figure 11) [84, 92]. In contrast, naturally infected cats contained antibodies preferen-

tially recognizing epitopes in the FPPR and MPER (Figure 11). Most of the epitopes 

located in the MPER are arranged similarly to the bipartite motif constituted by the 

2F5 and 4E10 epitopes in HIV-1 gp41, as depicted above in Figure 8.  

 

Figure 11. Antigenic regions in the FFV TM detected by epitope mapping of sera from animals 

that were immunized with the FFV TM and naturally FFV-infected domestic cats [92] 

The schematic of the FFV TM is shown on the top. Indicated are the fusion peptide (FP), the fusion 

peptide proximal region (FPPR), the membrane proximal external region (MPER), the membrane 

spanning domain (MSD), the cysteines (C) and predicted glycosylation sites (Y). Detected epitopes 

are depicted in dark blue boxes (immunized animals) and grey boxes (naturally infected cats). Anti-

bodies induced in naturally infected cats target the FPPR and MPER, whereas antibodies in sera from 

the immunized animals mainly recognized epitopes in the cysteine-rich domain and FPPR.  

According to the mentioned characteristics of FFV Env and the bnAbs 2F5 and 4E10, 

the idea came up to use the FFV Env as a scaffold for the 2F5 and 4E10 epitopes. 

The strategy was to replace the adjacent immunogenic regions in the FFV MPER 

with the 2F5 and 4E10 epitope sequences. The fact that FFV Env is released as sub-
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viral particles (SVPs) would turn chimeric FFV/HIV-1 SVPs into ideal immunogens 

because immunogenic reactions against other viral proteins, e.g. FFV Gag [93, 94], 

would thus be excluded. Such an antigen would also have the advantage that the 

2F5 and 4E10 epitopes would be placed in close proximity to a lipid environment just 

like in their natural context.  

This project was based on previous work carried out by my supervisor Michael 

Mühle, in close cooperation with Anne Bleiholder and Martin Löchelt at the German 

Cancer Research Center in Heidelberg. Bleiholder generated hybrid FFV/HIV-1 Env 

expression plasmids that carry the 2F5 and 4E10 epitopes [95]. In her PhD thesis 

she described the characterization of the hybrid FFV/HIV-1 Env proteins by means of 

expression, processing, recognition by mAb 2F5 and mAb 4E10 and their ability to 

promote marker gene transfer (Figure 12A-C) [95]. The MPER1 and MPER2 con-

structs promoted hybrid FFV/HIV-1 Env protein expression and processing as shown 

by detection of gp130, gp48 and a cell lysate-associated form of gp48 (TMCL) (Figure 

12A). In contrast to gp48, TMCL is truncated and  partly glycosylated that also ex-

plains their differential electrophoretic mobility  [95]; processed gp48 runs above, 

while TMCL runs below 50 kDa. Immunoprecipitation of hybrid FFV/HIV-1 MPER1 and 

MPER2 proteins by mAb 2F5 and mAb 4E10 showed that the respective epitopes are 

accessible (Figure 12B). Furthermore, Bleiholder showed that chimeric FFV/HIV-1 

MPER1 and MPER2 proteins did not allow marker gene transfer (Figure 12C). That 

characteristic prevented them for the generation of replication competent FFV/HIV-1 

chimeras for prolonged antigen delivery that could permit antibody affinity maturation. 

However, FFV EnvG2 and hybrid FFV/HIV-1 MPER1 and MPER2 proteins were re-

leased as SVPs (Figure 12D) that turned them into interesting antigens for immuniza-

tion studies. Bleiholder started with the establishment of protocols for the large-scale 

production of SVPs by transiently transfecting HEK293T cells with the pBC EnvG2 

and hybrid pBC FFV/HIV-1 MPER1 and MPER2 expression plasmids. Unfortunately, 

she was able to purify only low yields of SVPs (180-440 ng) from the supernatants 

[95]. For immunization studies in rats, amounts in µg-scale would be necessary.  
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A 

 

B 

 

 

C D 

 

Figure 12. Characterization of hybrid FFV/HIV-1 Env and hybrid FFV/PFV MPER Env protein [95] 

A) Immunoblot of HEK293T cell lysates transiently transfected with pBC EnvG2 and hybrid pBC 

FFV/HIV-1 MPER1 and MPER2 expression constructs (see section 4.1) and hybrid FFV/PFV MPER 

expression constructs (irrelevant for this project), as indicated. Detection of antigens was performed 

with goat348 α-TM serum [92]. All recombinant proteins were expressed and processed as shown by 

the detection of gp48 and TM
CL

. MPER1 protein was stronger expressed and cleaved by furin prote-

ase than MPER2 protein. B) Immunoprecipitates of MPER1 and MPER2 proteins from HEK293T cell 

lysates applied to immunoblotting. Immunoprecipitation was with mAb 2F5 or mAb 4E10, as indicated. 

Detection of antigens was performed with goat348 α-TM serum [92]. CL: cell lysate; W4: fourth wash-

ing fraction; IP: immunoprecipitate. The 2F5 and 4E10 epitopes are accessible, since both hybrid 

FFV/HIV-1 Env proteins were immunoprecipitated by both antibodies. C) Titration of marker gene 

transfer particles (MGT) on CRFK cells. EnvG2 served as positive control. Fusion incompetent HIV-1 

MPER1 and MPER2 proteins were unable to mediate MGT. Also shown are functional PFV hybrids (ir-

relevant for this project). D) Immunoblot of subviral particles released by HEK293T cells transiently 

transfected with pBC EnvG2 and hybrid pBC FFV/HIV-1 MPER1 and MPER2 expression constructs 

(see section 4.1), as indicated. Detection of antigens was performed with goat348 α-TM serum [92]. 

The suffixes (A) and (B) indicate different clones. Chimeric FFV/HIV-1 MPER1 and MPER2 SVPs 

were released with reduced efficiency in comparison to EnvG2 SVPs. PFV FPPR1 and MPER SVP-

releases are also indicated (irrelevant for this project).  
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The goal of this project (Figure 13) was to establish efficient protocols for large-scale 

production of chimeric FFV/HIV-1 MPER SVPs to allow testing of their potential to in-

duce neutralizing antibodies against HIV-1 in rats. This should be done by transduc-

ing target cells with retroviral vectors in order to allow stable expression of Env. For 

this purpose, the recombinant FFV/HIV-1 MPER1 and MPER2 sequences [95] 

should be first subcloned into a retroviral vector. Then protocols for efficient pseudo-

typing with vesicular stomatitis virus protein G (VSV-G) should be established. There-

fore, additives in various concentrations should be screened for increasing virus pro-

duction. In order to generate transduced cells stably producing SVPs, a suitable tar-

get cell line and optimal infection conditions should be found. Native chimeric 

FFV/HIV-1 SVP antigens should then be tested for the accessibility of the 2F5 and 

4E10 epitopes for the respective antibodies. Electron microscopy should be applied 

to confirm release of SVPs. Finally, different serum-free expression media should be 

tested for optimal large-scale production and purification of SVP antigens.  

 

Figure 13. General workflow 
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2 Materials   

2.1 Equipment 

Avanti™ J-20XP, centrifuge 
 

Beckman Coulter 

Beaker glasses 10 ml, 50 ml, 100 ml, 500 ml Schott Duran 

Charlotte  2-125 µl Vistalab Technologies 

Chemocam 
 

Intas 

CO2-Incubator MCO-20AIC 
 

Sanyo 

Electrophoresis chamber 
 

Biorad 

Eppendorf centrifuge 5415D 
 

Eppendorf 

Eppendorf Mastercycler proS 
 

Eppendorf 

Eppendorf MiniSpin® 
 

Eppendorf 
Eppendorf Research®, 
variabel 

10 µl, 20 µl, 100 µl, 200 µl, 1000 µl Eppendorf 

Eppendorf Research®, 
multi-channel 

30-300 µl Eppendorf 

Erlenmeyer flasks 50 ml, 100 ml, 500 ml, 1 l, 5 l Schott Duran 

FACSCalibur™  BD Biosciences 

Finnpipette® 50-300 µl Thermo Scientific 

Fluorescence microscope, Axiovert 100M 
 

Zeiss 

Glas flasks 50 ml, 100 ml, 500 ml, 1 l Schott Duran 

Glas pipettes  5 ml, 10 ml Hirschmann 

Guava PCA analysis system  Millipore 

Heraeus Multifuge 1S-R Centrifuge 
 

Thermo Scientific 

HeraSafe, sterile bench 
 

Thermo Scientific 

JA-25.50, rotor 
 

Beckman Coulter 

Labotect Inkubator C200 
 

Labotect 

Light microscope 
 

Hund Wetzlar 

Multiskan™ GO UV/Vis microplate spectrophotometer 
 

Thermo Scientific 

Mx30005P™, Real-time PCR-cycler 
 

Stratagene 

Nalgene™ Cryo 1 °C Freezing Container 
 

Thermo Scientific 

NanoDrop® 
 

peqLab 

Neubauer chamber 
 

Celeromics 

Optima™L-100K, Ultracentrifuge 
 

Beckman Coulter 

pH meter 
 

IKAMAG RET 

PIPETMAN® Classic P2, P10, P20, P100, P200, P1000 Gilson 

Pipette boy accu-jet® pro 
 

BrandTech Scientific 

SDS electrophoresis chamber 
 

CBS Scientific 

Shaker, GFL® 3016 
 

GFL 

SW32, rotor for ultracentrifuge 
 

Beckman Coulter 

SW41, rotor for ultracentrifuge 
 

Beckman Coulter 

Thermomixer comfort  
 

Eppendorf 

Transilluminator system and software 
 

Biorad 

Type19, rotor for ultracentrifuge 
 

Beckman Coulter 

Vortexer, Reax top 
 

Heidolph Instruments 

Water bath 
 

Memert 
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2.2 Consumables 

Cell culture flasks T-25, T-75, T-160 Techno Plastic Products 

Cell scraper  
 

Techno Plastic Products 

Centrifuge tubes 14 x 89 mm Beckman Coulter 

Centrifuge tubes 25 x 89 mm Beckman Coulter 

Corning® HYPERFlask® 
Cell Culture Vessels  

Corning Life Sciences 

Cryotube™ vials 1.5 ml, 1.8 ml Nunc™ 

Eppendorf tubes 1,5 ml, 2 ml Eppendorf 

Falcon tubes 15 ml, 50 ml Techno Plastic Products 

Nitrocellulose membrane 0.2 µm GE Healthcare 

Plastic pipettes 1 ml, 2 ml, 5 ml, 10 ml, 25 ml Techno Plastic Products 

Sterile filter  Stericup-Filter 0.22 µm; 0.45 µm Millipore 

Tissue culture dishes 10 cm, 15 cm Techno Plastic Products 

Tissue culture plates 6-, 12-, 24-, 48- or 96-well Techno Plastic Products 

2.3 Chemicals 

2-mercaptoethanol Carl Roth 

Acrylamide Carl Roth 

Adenosin triphosphate (ATP) Thermo Scientific 

Agarose Carl Roth 

Ammoniumpersulfat (APS) Carl Roth 

Ampicillin Carl Roth 

Benzonase Novagen 

Big Dye ABI 

Blasticidin S hydrochloride Sigma-Aldrich 

BSA New England Biolabs 

dNTPs Thermo Scientific 

ECL (Enhanced chemiluminescence) Thermo Scientific 

EDTA Serva 

Ethanol Carl Roth 

Ethidium bromide Sigma-Aldrich 

Fetal Calf Serum Biochrom 

Geniticinsulfat (G418)-Lösung Carl Roth 

Glycerin Carl Roth 

Glycin Carl Roth 

Guava® ViaCount® reagent Millipore 

HEPES Biochrom 

Isopropanol Carl Roth 

L-Glutamine Biochrom 

Methanol Carl Roth 

Milk powder, low fat Carl Roth 

Nuclease-free water QUIAGEN 

Orange Loading Dye Thermo Scientific 

Penicillin/Streptomycin Biochrom 

Polybrene Sigma-Aldrich 

Polyethylene glycol 6000  Carl Roth 
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Polyethylenimine (PEI) Sigma-Aldrich 

Protease inhibitor Roche 

Rabbit serum Sigma-Aldrich 

Sodium butyrate Sigma-Aldrich 

Sodium chloride Carl Roth 

Sodium dodecyl sulfate (SDS) Carl Roth 

Sodium hydroxide Carl Roth 

Tetramethylethylenediamine (TEMED) Carl Roth 

Tricine Carl Roth 

Tris Carl Roth 

Tris-HCl Carl Roth 

Trypsin Invitrogen 

Tween 20 Carl Roth 

Valproic acid Sigma-Aldrich 

Protein G Seqharose™ 4 Fast Flow GE Healthcare 

2.4 Kits 

DNeasy® Blood & Tissue Kit (250) QIAGEN 

In-Fusion® HD Cloning Plus Clontech 

Invisorb® Spin DNA Extraction Kit (250)  Invitek 

Invisorb® Spin Plasmid Mini Kit Two (250)  Invitek 

Nucleobond® AX  Macherey-Nagel 

One Step RT-PCR Kit QIAGEN 

Pierce™ BCA Protein Assay Kit Thermo Scientific 

Plasmid Midi/MaxiKit QIAGEN 

RNeasy® Mini Kit (250) QIAGEN 

2.5 Buffers and solutions 

2.5.1 SDS-PAGE and immunoblotting 

10x Anode buffer 242 g/l Tris, pH 8.9 

10x Cathode buffer 121 g/l Tris, 179 g/l tricin, 10 g/l SDS, pH 8.25 

Transfer buffer 48 mM Tris, 35 mM glycin, 20 % methanol, 0.03 % SDS 

Stripping buffer 
92 % [v/v] H2O, 6.25 % [v/v] 1 M Tris-HCl pH 6.7, 2 % [w/v] 
SDS, 0.7 % [v/v] 2-mercaptoethanol 

SDS-Gel buffer 36.3 % [w/v] Tris, 1.5 % [v/v] 20 % SDS, pH 8.4 

Blocking solution 3 % [w/v] low-fat milk powder, 1 % rabbit serum, PBS-Tween 20 

Washing solution, PBS-
Tween 20 

0.05 % [v/v] Tween 20 

SDS-sample buffer 
50 mM Tris-HCl, 12 % glycerol, 4 % SDS, 5 % 2-
mercaptoethanol, 0.01 % Coomassie Brilliant Blue G-250 



 
 Materials 

 

   

 
Page 20 

 

  

2.5.2 Agarose gel-electrophoresis 

Tris-acetate-EDTA (TAE, 50x) 2 M Tris, 50 mM EDTA, 1 M acetate 

2.5.3 Lysis buffers 

SDS-lysis buffer 1 % SDS, 1x PBS 

RIPA-buffer 
50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 % NP-40, 0.5 % Sodi-
umdeoxycholat, 0.1 % SDS, 5 mM EDTA, 1x Protease Inhibitor 
Cocktail 

2.5.4 Other buffers 

10x Fast Digest Buffer Green Thermo Scientific 

Buffer HS2, for HotStart Taq DNA-Polymerase Sengenetic 

Buffer C, for AccuProof DNA-Polymerase Sengenetic 

Phusion® GC Reaction Buffer New England BioLabs 

6x Orange Loading Dye Thermo Scientific 

2.6 Protein and DNA ladders 

Gene Ruler 1 kb DNA Ladder, Ready-to-use Thermo Scientific 

O'Gene Ruler™  DNA Ladder Mix, Ready-to-use Thermo Scientific 

peqGOLD Protein Marker IV PEQLAB 

2.7 Enzymes 

2.7.1 Restriction enzymes 

All restriction enzymes were purchased from Thermo Scientific as Fast Digest-

enzymes. 

Restriction enzyme Recognition site (5' - 3') 

ApaI GGGCC^C 

BamHI G^GATCC 

Bsu36I CC^TNAGG 

EcoRI G^AATTC 

MunI C^AATTG 

NotI GC^GGCCGC 

PdmI GAANN^NNTTC 

SalI G^TCGAC 

XbaI T^CTAGA 
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2.7.2 Polymerases 

AccuProof DNA Polymerase Sengenetic 

Clone Amp HiFi PCR Premix Clontech 

Hot Start Taq DNA-Polymerase Sengenetic 

Pfu DNA-Polymerase Thermo Scientific 

Phusion® Hot Start HD flex New England BioLabs 

AmpliTaq Gold® with GeneAmp® Roche 

2.7.3 Other enzymes 

In-Fusion® HD Enzyme Premix Clontech 

Klenow-Fragment Thermo Scientific 

Shrimp alkaline phosphatase (SAP) Thermo Scientific 

T4 DNA-Ligase Thermo Scientific 

T4 Polynucleotide kinase (PNK) Thermo Scientific 

Benzonase Novagen 

2.8 Primers 

The primers were designed with gene maps and synthesized by Eurofins MWG Op-

eron. 

Primer Sequence (5'-3') 

FFV EnvG2 fwd ATA GCG GCC GCA TGG AAC AAG AAC ATG TGA TG 

FFV EnvG2 rev 
TAT GTT TAA ACC TAG TGA TGG TGA TGG TGA TGT 
TGG TCC TTC TTC 

FFV TMH fwd AGG CAT TCA TGC CTT TTG GAT TCT 

FFV TMH rev CTT CAA AAT ACC CGG AAG AAG GAC CAA 

TM seq fwd TGG AAA TGG AAC TGG TTC AGA CTG C 

FFV Int sequencing primer rev GTC ACC TTG TAA GGA ATG CAG G 

FFV SU rev TGA ATT AGT CAC CTG CCA GCT TAA 

FFV FP rev GCC TAA GCC TGC CTC TTG TAT CCT TCT TA 

Elp1 fwd 
TGG AAT GCT CAC CGA CAA CTA CAG CGA CTT 
CAG TCG ACT CAT 

Elp1 rev 
TTC CAT CCA TTC CCG CAG GGT CAT CAC ATG TTC 
TTG TTC CAT 

Elp2 fwd 
CCA GAG CGG GTA CCT TTG CGA ATG AGG ATG 
CGA TAT AGA TGT 

Elp2 rev 
TAC TAA AGG AAT ATC CTC AGG TAT GTC AAC ATG 
CAA CTC AGG 

PRE fwd TTC TGG GAC TTT CGC TTT CC 

PRE2 rev CAT GGA AAG GAC GTC AGC TT 

FFV Env Fusion1 
CAC TTA CAG GCG GCC GCG CCG CCA CCA TGG 
AAC AAG AAC ATG TGA 

FFV Env Fusion2 
TAA GAT GCT CGA ATT CCT AGT GAT GGT GAT 
GGT GAT GTT GGT CCT 
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2.9 Probe for real-time PCR 

PRE2 Probe fwd AAC TCA TCG CCG CCT GCC TTG 

2.10 Plasmids 

Plasmids Description Reference/vendor 

pLenti-GFP 
Modified version of the retroviral vector 
pLenti CMV GFP Puro (658-5). 

Addgene, Plasmid 17448 

pMDLg/pRRE 
Lentiviral vector carrying the HIV-1 structural 
genes gag and pol. 

Addgene, Plasmid 12251 

pRSV-Rev 
Lentiviral packaging plasmid encoding HIV-1 
Rev protein. 

Addgene, Plasmid 12253 

pMD2.G 
Envelope plasmid coding for the vesicular 
stomatitis virus protein G (VSV-G). 

Addgene, Plasmid 12259 

MP71-GPRE 

MP71-GPRE naturally contains a GFP and 
has the 856-bp woodchuck hepatitis virus 
post-transcriptional regulatory element 
(PRE) (GPRE). It is a retroviral vector with a 
murine myelo-proliferative sarcoma virus 
(MPSV) LTR and an improved leader se-
quence derived from murine embryonic stem 
cell virus (MESV).  

[96] 

pBC EnvG2, 

pBC MPER1, 

pBC MPER2 

FFV EnvG2, FFV EnvG2xHIV-1 MPER1/2 
sequences in pBC12 backbone. For details 
see section 4.1. 

[95] 

pCF7 
Codes for an infectious molecular clone of 
feline foamy virus. 

[97] 

pEGFP-N3 

Encodes an enhanced variant of GFP that is 
flanked by Kozak consensus translation initi-
ation sites for increased expression. A multi-
ple cloning site is incorporated between an 
immediate early CMV promoter and EGFP.  

Clontech 

Laboratories, Inc. 
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2.11 Antibodies and antisera 

2.11.1 Primary antibodies 

Antibody Dilution Reference/vendor 

mAb 4E10 1:20000 

The following reagent was obtained through the NIH 
AIDS Reagent Program, Division of AIDS, NIAID, NIH: 
HIV-1 gp41 Monoclonal Antibody (4E10) from Dr. 
Hermann Katinger. [98] 

mAb 2F5 1:20000 

The following reagent was obtained through the NIH 
AIDS Reagent Program, Division of AIDS, NIAID, NIH: 
HIV-1 gp41 Monoclonal Antibody (2F5) from Dr. Her-
mann Katinger. [99-101] 

mouse α-GFP HRP 1:1000 Santa Cruz,  SC9996 

mouse α-β-actin 1:5000 Sigma-Aldrich 

2.11.2 Antisera 

Antiserum Dilution Reference 

goat 348 α-FFV TM 1:1000 [92] 

rat 321-3 α-FFV TM 1:1500 [92] 

2.11.3 Secondary antibodies 

Antibody Dilution Vendor 

poly rabbit α-mouse HRP 1:3000 Dako 

poly rabbit α-human HRP 1:3000 Dako 

poly rabbit α-goat HRP 1:3000 Dako 

2.12 Media 

2.12.1 Media for bacteria 

Lysogeny broth (LB) 10 g/L tryptone, 5 g/L yeast extract, 100 mM NaCl, pH 7.0 

LB-medium for agar-plates 10 g/l NaCl, 10 g/l tryptone, 5 g/l yeast extract, 15 g/l agar 

S.O.C. Novagen 
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2.12.2 Media for cell cultures 

Medium Vendor/supplements 

Dulbecco's Modified Eagle Medium (DMEM) 

GE Healthcare 

Supplemented before use with: 10 % [v/v] 
FCS, 2 mM L-glutamine, 10 mM HEPES, 5 
mM penicillin/streptomycin 

Dulbecco's Modified Eagle Medium (DMEM), 
High Glucose (4.5 g/l) 

GE Healthcare 

Supplemented before use with: 10 % [v/v] 
FCS, 2 mM L-glutamine, 10 mM HEPES, 5 
mM penicillin/streptomycin 

EX-CELL® VPRO, Serum-Free Medium Sigma-Aldrich  

FreeStyle™ 293 Expression Medium Life Technologies 

HyClone™ SFM4HEK293™ Medium Thermo Scientific 

Roswell Park Memorial Institute medium 
(RPMI) 

GE Healthcare 

Supplemented with: 10 % [v/v] FCS, 2 mM L-
glutamine, 10 mM HEPES, 5 mM penicil-
lin/streptomycin 

2.12.3 Freezing media for eukaryotic cells 

Cell line Freezing medium 

Platinum-GP 70 % DMEM, 20 % FCS, 10 % DMSO 

C8166-45 RPMI with 83 % L-glutamine, 10 % FCS, 7 % DMSO 

CRFK 10 % DMSO in FCS 

FreeStyle™ 293-F Cells FreeStyle™ 293 Expression Medium with 10 % DMSO 

HEK293T 70 % DMEM, 20 % FCS, 10 % DMSO 

2.13 Prokaryotic strains 

Strain Genotype Vendor 

NovaBlue GigaSingles™ 
Competent Cells 

endA1 hsdR17 (rK12
– mK12

+) supE44 thi-1 
recA1 gyrA96 relA1 lac F′[proA+B+ la-
cIqZΔM15::Tn10] (TetR) 

Novagen 

Stellar™ Competent Cells 

F–, endA1, supE44, thi-1, recA1, relA1, gy-
rA96, phoA, Φ80d lacZΔ M15, Δ (lacZYA - 
argF) U169, Δ (mrr - hsdRMS - mcrBC), 
ΔmcrA, λ– 

Clontech 

Laboratories, Inc. 
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2.14 Eukaryotic strains 

Cell line Specification Vendor 

C8166-45 

C8166 cells are human umbilical cord 
lymphocytes that contain the poorly 
infectious HTLV-1CR virus; increased 
production of HTLV-1. Morphology is 
T-lymphoid. C8166 cells are cultured 
in suspension. 

The following reagent was 
obtained through the NIH 
AIDS Reagent Program, 
Division of AIDS, NIAID, 
NIH: C8166-45 (Cat# 404) 
from Dr. Robert Gallo. 

CRFK cells 
The CRFK cells are feline kidney 
cells with an epithelial morphology.  

ATCC 

FreeStyle™ 293-F Cells 

The 293F cell line that is derived from 
the 293 cell line is adapted to be 
grown as suspension cultures in se-
rum-free expression media (e.g., 
FreeStyle™ 293 Expression Medi-
um).  

Life Technologies 

HEK293T 

The human kidney cell-derived 
HEK293T cell line is adenovirus im-
mortalized and stably expresses 
large SV40 T antigen. HEK293T cells 
are used for transient transfection.  

ATCC 

Platinum-GP (Plat-GP) 

The Plat-GP is a 293T cell line-
derived retrovirus packaging cell line 
which stably expresses retroviral 
structure proteins (gag and pol) under 
blasticidin selection.  

Cell Biolabs, Inc. 

2.15 Software 

ClustalW2, EMBL-EBI Multiple sequence alignment 

DNASTAR Lasergene SeqBuilder Generation of sequence maps  

DNASTAR Lasergene SeqMan Pro Analysis of sequencing data 

Expasy translate tool 
Translation of nucleotide se-
quences into amino acid se-
quences 

Oligo Analyzer, Integrated DNA Technologies 
Tool for the analysis of designed 
primers.  
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3 Methods 

3.1 Molecular biological methods 

3.1.1 PCR for subcloning 

The DNA sequences of FFV EnvG2, FFV EnvG2 x MPER1 and FFV EnvG2 x 

MPER2 were PCR-amplified (Table 1) with the pBC EnvG2, MPER1 x pBC EnvG2 

and MPER2 x pBC EnvG2 expression plasmids [95] as templates. In order to allow 

subcloning into MP71-GPRE by homologous recombination, the primers FFV Env 

Fusion1 and FFV Env Fusion2 were designed to add 15 bp extensions 5’ and 3’ ho-

mologous to vector regions confining the GFP gene in MP71-GPRE. In addition, the 

primer FFV Fusion2 added a Histidine-Tag-encoding sequence 3’ of the amplicon.  

 

Table 1: PCR mix with CloneAmp HiFi PCR Premix  

Reagent Volume/amount 

 

Cycler conditions 

 CloneAmp HiFi PCR Pre-

mix 
12.5 µl 

 
95 °C, 5 min 

 
 

FFV Env Fusion1 7.5 pmol 
 

98 °C, 30 sec, denaturation 

30x FFV Env Fusion2 7.5 pmol 
 

55 °C, 15 sec, annealing 

Template DNA   100 ng 
 

72 °C, 20 sec, elongation 

Nuclease-free H2O ad 25 µl 
 

72 °C, 5 min 
 

3.1.2 Mutagenesis-PCR 

The mutations K10R, K20R, K24R, K45R and K48R were incorporated into the FFV en-

velope leader peptide (Elp) of gp48 (Figure 35) by performing two rounds of PCR 

(Table 2) and self-circularization. pBC EnvG2, MPER1 x pBC EnvG2 and MPER2 x 

pBC EnvG2 [95] served as templates. Before PCR, the primers Elp1 fwd, Elp1 rev, 

Elp2 fwd and Elp2 rev carrying the desired mutations were phosphorylated for 1 hour 

(Table 3) in order to allow subsequent self-circularization of the linear vector ampli-

cons.  
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Table 2: PCR mix with Phusion® Hot Start HD flex 

Reagent Volume/amount 

 

Cycler conditions 

 5x Phusion HF 25 µl 

 

98 °C, 30 sec 

Primer fwd-P 2.5 µl (10 pmol/µl) 

 

98 °C, 10 sec, denaturation 

35x Primer rev-P 2.5 µl (10 pmol/µl) 

 

55 °C, 15 sec, annealing 

dNTP 1 µl (10 mM) 

 

72 °C, 3 min, elongation 

Phusion® Hot Start HD flex 0.5 µl 

 

72 °C, 5 min 

 Template DNA  10 ng 

   Nuclease-free H2O ad 50 µl 

   
 

Table 3: Mixture for primer phosphorylation 

Reagent Volume/amount 

Primer (100 pmol/µl) 0.9 µl 

10x T4 PNK buffer A 0.9 µl 

10 mM ATP 0.9 µl 

T4 PNK 0.8 µl 

Nuclease-free H2O 5.5 µl 

3.1.3 Colony PCR 

Colony PCR was used to screen transformed bacteria for positive clones. For this 

purpose, single colonies were directly picked from an agar plate with a pipette tip. Be-

fore mixing with the PCR reaction mix (Table 4), the single clones were put onto a 

back-up plate.  

 

Table 4: PCR mix with Hot Start Taq DNA-Polymerase 

Reagent Volume/amount 

 

Cycler conditions 

 10 x buffer 1.5 µl 
 

94 °C, 10 min 

MgCl2 1.2 µl 
 

95 °C, 30 sec, denaturation 

25x dNTPs 0.3 µl (10 mM) 
 

52 °C, 30 sec, annealing 

5`-primer 0.3 µl (10 pmol/µl) 
 

72 °C, 1 min 20 sec, elongation 

3`-primer 0.3 µl (10 pmol/µl) 
 

72 °C, 5 min 
 

Hot Start Taq DNA-

Polymerase 
0.2 µl 

   

Template  single clone 
   

Nuclease-free H2O ad 15 µl 
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3.1.4 Reverse transcription-PCR (RT-PCR) 

After isolation of RNA from transfected cells, RNA transcripts were first reverse tran-

scribed to cDNA and subsequently amplified by RT-PCR (Table 5) using the 

OneStep RT-PCR kit from QIAGEN. Amplified cDNA was separated by 1 % agarose 

gel-electrophoresis. Finally, desired amplicons were extracted from gels and se-

quenced.  

3.1.5 Real-time PCR 

FFV EnvG2 or FFV/HIV-1 MPER1 or MPER2 virus titers were determined using real-

time PCR (Table 6, see section 4.4.1). In contrast to primer-to-template hybridization 

that is assisted by polymerase, probe-to-template hybridization lacks this support. In 

order to increase probe-to-template hybridization, elongation-temperature and an-

nealing-temperature were matched [102]. All PCR-runs were carried out with a 

Mx3005™ Real-time PCR cycler from Stratagene.  

 

Table 5: Reaction mix for RT-PCR (OneStep RT-PCR kit) 

Reagent Volume/amount 
 

Cycler conditions 
 

5x QIAGEN OneStep RT-PCR Buffer 5 µl 
 

50 °C, 30 min, reverse transcription 

dNTP Mix 2.0 µl 
 

95 °C, 15 min, initial PCR activation  

Primer fwd 0.3 µM 
 

94 °C, 1 min, denaturation 

50x Primer rev 0.3 µM 
 

50 °C, 1 min, annealing 

QIAGEN OneStep RT-PCR Enzyme Mix 1 µl 
 

72 °C, 1 min, extension 

Isolated RNA 1 pg - 2 µg 
 

72 °C, 10 min, final extension 
 

RNase-free H2O ad 25 µl 
   

Table 6: PCR mix for real-time PCR   

Reagent Volume/amount 
 

Cycler conditions  

10 x buffer 2.5 µl 
 

95 °C, 10 min 
 

50x 

MgCl2 25 mM 
 

95 °C, 30 sec, denaturation 

dNTPs 0.5 µl (10 mM) 
 

58 °C, 1 min, annealing and 

elongation 5`-primer, PRE fwd 0.5 µl (10 pmol/µl) 
 

3`-primer, PRE 2 rev 0.5 µl (10 pmol/µl) 
 

AmpliTaq Gold® with GeneAmp® 0.25 µl 
   

 

Genomic DNA 100 ng 
   

 

Nuclease-free H2O ad 25 µl 
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3.1.6 Subcloning with the In-Fusion® HD Protocol from Clontech 

The In-Fusion® system is for subcloning DNA sequences into target vectors based 

on homologous recombination (Figure 14) [103]. In order to allow homologous re-

combination with MP71-GPRE, PCR-amplification of the FFV EnvG2, FFV EnvG2 x 

MPER1 and FFV EnvG2 x MPER2 sequences was performed with primers that add-

ed 5’ and 3’ 15 bp extensions homologous to the MP71 regions flanking the eGFP 

sequence (see section 3.1.1.). The amplicons were introduced into MP71 in a single 

reaction (Table 7) which was incubated at 50 °C for 15 min. Subsequently, NovaBlue 

Giga Singles were transformed with the reaction mixtures. The following day, single 

colonies were picked for colony-PCR.  

 

Table 7: In-Fusion® HD mix 

Reagent Volume/amount 

PCR-product 50-100 ng 

linearized MP71 50-100 ng 

5x Fusion Enzyme Premix 2 µl 

Nuclease-free H2O ad 10 µl 
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Figure 14. In-Fusion HD work-flow overview [103] 

The EnvG2, EnvG2 x MPER1 and EnvG2 x MPER2 sequences were PCR-amplified using the primers 

FFV Env Fusion1 and FFV Env Fusion2 that added 5’ and 3’ 15 bp extensions homologous to linear-

ized MP71. After separation with 1 % agarose gel-electrophoresis, the desired amplicons were eluted 

from gel pieces by spin-column purification. In a single reaction, the sequences were introduced into 

MP71 by homologous recombination. Afterwards, NovaBlue Giga Singles were transformed with the 

reaction mixture.  
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3.1.7 Ligation and self-circularization 

T4 DNA ligase enzyme was used for self-circularization (Table 8) of linear plasmids 

that were amplified by mutagenesis-PCR. Reaction mixtures were incubated at 37 °C 

for 1 hour, before transformation into NovaBlue GigaSingles™ Competent Cells. 

 

Table 8: Self-circularization of a linear  vector amplicon 

Reagent Volume/amount 

Linear plasmid DNA  10-20 ng 

10x ligase buffer 2 µl 

T4 ligase (5 U/µl) 1 µl 

Nuclease-free H2O ad 20 µl 

3.1.8 Restriction digestion 

Restriction digestion of DNA was either performed for analytical or subcloning pur-

poses. All restriction enzymes were purchased as FastDigest enzymes from Thermo 

Scientific with 100 % activity in the universal FastDigest Buffer and FastDigest Buffer 

Green. Therefore, double-digestions in single reactions are possible, regardless of 

the enzymes used. For analytical control digests, FastDigest Buffer Green was ap-

plied because it allows direct loading of reaction mixtures onto agarose gels. Accord-

ing to the manufacturer, FastDigest enzymes are optimized to digest 1 µg DNA in 5 - 

15 min. For cloning purposes, reactions were incubated up to 1 hour at 37 °C to as-

sure complete digestion.  

3.1.9 Isolation of plasmid DNA from E.coli 

For isolation of plasmid DNA from E.coli, the Invisorb® Spin Plasmid Mini Kit Two 

(250), Plasmid Midi/MaxiKit or Nucleobond® AX was used. The procedure of isola-

tion was performed according to the protocols of the manufacturers.  

3.1.10 Isolation of genomic DNA from eukaryotic cells 

For isolation of genomic DNA from transduced cells, the DNeasy® Blood & Tissue Kit 

(250) from QIAGEN was used. The procedure of isolation was performed according 

to the protocols of the manufacturer. Genomic DNA was subjected to real time-PCR 

for determination of virus titers (see section 4.4.1). 



 
 Methods 

 

   

 
Page 32 

 

  

3.1.11 Isolation of RNA from eukaryotic cells 

For isolation of RNA from transfected cells, the RNeasy® Mini Kit (250) from QI-

AGEN was used. The procedure of isolation was performed according to the protocol 

of the manufacturer. Isolated RNA was subjected to reverse transcription-PCR.  

3.1.12 Determination of DNA concentrations 

Concentrations of purified DNA solutions were spectrometrically determined at 260 

nm with a NanoDrop® device from peqLab.  

3.1.13 Sequencing and analysis of cloned plasmid constructs 

Sequencing of cloned plasmid constructs was performed according to Sanger. In Ta-

ble 9 the amounts for a single sequencing PCR mix are shown. After PCR, reaction 

mixtures were handed over to the sequencing laboratory of the Robert Koch-Institute 

for compilation of the sequencing data. The obtained data were evaluated with the 

DNASTAR Lasergene SeqMan Pro software.  

 

Table 9: PCR mix for sequencing 

Reagent Volume/amount 

Primer 0.5 µl 

Big Dye 3.1 2 µl 

5x Buffer 1 µl 

Template DNA  150-300 µl 

Nuclease-free H2O ad 10 µl 

3.1.14 Agarose gel-electrophoresis 

DNA fragments were separated according to their lengths in 1 % agarose gels. Aga-

rose was dissolved in 1x TAE buffer by boiling in a microwave. After cooling the aga-

rose solution to a moderate temperature, 0.001 % (v/v) ethidium bromide was added 

to allow subsequent visualization of DNA fragments by exposure to UV light. Mixtures 

were poured into an electrophoresis chamber and incubated until full polymerization. 

Gels were placed in a gel apparatus containing TAE buffer. Before loading, DNA 

samples were mixed with 6x Orange Loading Dye. Separations were performed at 

130 V. Gels were visualized and documented with a transilluminator system and 

software from Biorad.  
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3.1.15 Extraction and purification of DNA fragments from agarose gels 

After gel-electrophoresis, DNA bands with the intended size were excised from gels 

under UV-exposure for visualization. DNA was extracted and purified from the gel 

slices using the Invisorb® Spin DNA Extraction Kit (250). The procedure of DNA puri-

fication was performed according to the protocol of the manufacturer.  

3.1.16 Transformation of competent bacteria 

For plasmid amplification, DNA was delivered into competent NovaBlue Gi-

gaSingles™ Competent Cells by heat shock. Competent bacteria kept at -80 °C were 

thawed on ice. 1 - 10 ng plasmid DNA or 10 µl self-circularization reaction mixture 

were added to 50 µl of bacterial suspension. After incubation on ice for 10 min, bac-

teria were heat shocked at 42 °C for 30 sec. and further incubated on ice for 2 min. 

Then 250 µl pre-warmed S.O.C.-medium were added. Before plating on agar-plates 

supplemented with ampicillin for positive selection, transformed bacteria were incu-

bated shaking at 37 °C for 10 min.  

3.1.17 Preparation of glycerol stocks of single clones for long-term storage 

Single colonies of positive clones were stored as glycerol stocks. For this purpose, 

900 µl of bacterial overnight-culture were mixed with 600 µl of 50 % sterile-filtered 

glycerol. Tubes containing bacterial suspensions were immediately put into liquid ni-

trogen. Finally, the stocks were stored at -80 °C. 

3.2 Cell cultural methods 

3.2.1 Thawing and establishing of eukaryotic cells 

Frozen cells in cryo-tubes stored in liquid nitrogen were thawed in a water bath. 

When only a small piece of ice was visible, cell suspensions were immediately trans-

ferred into fresh culture medium in order to mitigate toxic effects of the DMSO-

supplemented freezing medium. DMSO was completely removed by pelleting cells 

and discarding the supernatant. Cells were resuspended in fresh culture medium and 

seeded in cell culture flasks at an appropriate density.  
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3.2.2 Subculturing of cells 

About every second to third day, confluent adherent cell cultures (HEK293T, Plat-GP) 

or suspension cultures (293F, C8166) with a density of 1 x 106 - 3 x 106 cells/ml were 

split at ratios of 1:2 to 1:10, depending on the confluency or cell density of cultures. 

Suspension cultures were split by resuspending pelleted cells in an appropriate 

amount of culture medium and diluting the cell suspensions. Adherent cell cultures 

first had to be detached with trypsin. For this purpose, culture medium was removed 

and cells were washed with 10 - 15 ml 1x PBS. Subsequently, 2 - 5 ml trypsin/EDTA 

solution was added. Trypsin digest was incubated at 37 °C for up to 5 min until cells 

were floating. Cells were resuspended in culture medium and split at a desired ratio.  

3.2.3 Determination of cell numbers and viabilities 

In order to define cell numbers and viabilities of cell suspensions, the Guava® 

ViaCount® assay from Millipore was used. For this purpose cell suspensions were 

prepared as described above. 20 µl cell suspension with unknown cell density were 

mixed with 180 µl Guava® ViaCount® reagent (1:10-dilution) in a 1.5 ml reaction 

tube. Subsequently, the tube was immediately placed in the retainer of the Guava 

PCA analysis system for analysis with the Guava ViaCount application of the Cyto-

Soft software. The Guava® ViaCount® assay differs between viable and dead cells. 

The Guava® ViaCount® reagent is composed of two different fluorescent dyes. Nu-

cleated cells are stained with a membrane-permeable DNA-binding dye, while dead 

cells are stained with a dye that can only penetrate membranes with impaired integri-

ty. The fluorescence signal emitted from the DNA-binding dye is detected by the pho-

tomultiplier 2 (PM2) of the Guava PCA analysis system. The dead cell stain is de-

tected by PM1. Each signal leads to a counted event if the corresponding forward 

scattered signal (FSC) intensity is appropriate for a nucleated cell [104]. Before data 

acquisition, the system settings were adjusted with the Guava ViaCount application. 

If necessary, the voltage settings were changed so that live and dead populations 

could be distinguished on the plots (PM1/FSC, PM2/PM1). The FSC threshold was 

moved to exclude cell debris from detected cells and the PM2 threshold was shifted 

to separate the live and dead cell populations. After data acquisition of standardly 

1000 events, the CytoSoft software calculated the viability and the cell density of the 

undiluted cell suspension considering the dilution factor.  
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3.2.4 Freezing cells 

For freezing cells, 2 ml of a cell suspension (up to 1 x 107 cells/ml) in freezing medi-

um were transferred into cryo-tubes. Then, tubes were put into a cryo-container 

which allows slow cooling of cells to -80 °C at a rate of -1 °C/min. The following day, 

tubes were transferred into liquid nitrogen for long-term storage. 

3.2.5 Transfection of cells 

Cells were transiently transfected using polyethylenimine (PEI). The day before trans-

fection, adherent cells were seeded to 30 % confluency. In order to find optimal trans-

fection conditions to produce virus, 0.5 µg, 1 µg or 2 µg plasmid DNA and various 

DNA/PEI-ratios were tested in parallel, as described in detail in section 4.2.1.  

For pseudotyping of MP71 vectors with vesicular stomatitis virus protein G (VSV-G), 

the packaging cell line Platinum-GP was co-transfected with MP71 expression plas-

mid and VSV-G-encoding vector; the relative amount was 2:1.  

VSV-G pseudotyped pLenti vectors were produced by co-transfection of HEK293T 

cells with pLenti expression plasmid and Gag/Pol-, Rev- and VSV-G-encoding plas-

mids; the relative amount was 5:3.75:1.5:1.  

Transfection mixtures were vigorously vortexed and evenly distributed onto cell cul-

tures after incubation at room temperature for 15 min. Culture media were replaced 5 

hours later. After additional 24 hours, culture media were supplemented with different 

amounts of histone deacetylase-inhibitors, valproic acid or Na-butyrate, in order to 

test their influence on transgene expression or virus production (see section 4.2.2).   

3.2.6 Transduction of cells 

The day before transduction, adherent cells were seeded to 20 - 30 % confluency. 

Suspension cultures were diluted to a density of 5 x 105 cells/ml at the time of trans-

duction. Concentrated virus was added to cultures. Different conditions for enhance-

ment of infection were tested by supplementation of media with 8 µg/µl polybrene, by 

centrifugation of infected cultures at 1000 g at 30 °C for 1 hour or by combination of 

both where polybrene was added before centrifugation (see section 4.3). Media were 

replaced 24 hours later to reduce toxic effects of polybrene.  
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3.2.7 Concentration of virus particles 

Cell culture supernatants were harvested 48 and 72 hours after transfection. After 

pooling both supernatants, they were centrifuged at 4000 rpm for 5 min and filtered 

through a 0.45 µm filter in order to remove residual cells and cell material. Virus was 

concentrated either by polyethylene glycol precipitation according to the protocol of 

Tiscornia et al. [105] or pelleted by centrifugation with an Avanti™ J-20XP centrifuge 

at 75500 g at 4 °C for 2 hours. Subsequently, culture media were quickly decanted. 

Tubes were incubated upside down on a filter paper to allow draining of residual liq-

uid. Dried virus pellets were resuspended in PBS as 50 - 100x concentrates of the 

initial cell culture supernatant. Viral concentrates were used for infection or stored at -

80 °C. 

3.2.8 Concentration of cell culture supernatants containing subviral particles 

Cell culture supernatants supposed to contain subviral particles (SVPs) were har-

vested 48 hours after transduction. Supernatants were centrifuged at 4000 rpm for 5 

min and filtered through a 0.45 µm filter in order to remove residual cells and cell ma-

terial. Cell-free supernatants were stored at 4 °C or applied to ultracentrifugation on a 

20 % sucrose/1x PBS cushion in a SW41, SW32 or Type19 rotors, depending on the 

volume of the supernatant. The volume of 20 % sucrose/1x PBS was one-fifth of the 

tube’s maximum liquid capacity. Centrifugation was performed at 28000 rpm (SW41, 

SW32) or 19000 (Type19) for 2 or 5 hours, respectively. Subsequently, culture media 

and sucrose cushions were decanted. Tubes were incubated upside down on a filter 

paper to allow draining of residual liquid. Dried pellets were resuspended in either 1x 

PBS containing protease inhibitor or sample buffer as 200 - 1000x concentrates of 

the initial cell culture supernatant. Concentrates were directly applied to SDS-PAGE, 

electron microscopy, immunoprecipitation or stored at 4 °C.  

3.2.9 Large-scale production of subviral particles 

Transduced cell cultures were first expanded into four T-160 flasks before large-scale 

production of subviral particles (SVPs). For further experiments, Corning® HYPER-

Flask® Cell Culture Vessels were applied to avoid space constraints in the incubator 

and allow easy handling of large amounts of cells. Therefore, transduced cell cultures 

were pooled and 1 x 107 cells were transferred into 500 ml of DMEM with high glu-

cose (DMEM HG). Each HYPERFlask® was completely filled with cell suspension. 
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After 48 hours, cell culture supernatants were harvested and stored at 4 °C or con-

centrated. Cells were washed with 100 ml of 1xPBS and detached by adding 50 ml 

trypsin solution. Before retrieval from HYPERFlasks®, 50 ml of fresh culture medium 

were added. 1 x 107 cells were transferred into 500 ml fresh DMEM HG to start an-

other round of large-scale production of SVPs.  

3.3 Biochemical and immunological methods 

3.3.1 Preparation of cell lysates 

Cell culture media were removed from transiently transfected HEK293T or Plat-GP 

cell cultures. Cells were washed once with 1x PBS and scraped from culture dishes. 

Cell suspensions were transferred to 1.5 ml reaction tubes and pelleted by centrifu-

gation. Supernatants were subsequently discarded. Suspension cells were directly 

pelleted in appropriate tubes to separate them from culture media. In order to de-

grade genomic DNA and other nucleic acids during lysis, 1 µl Benzoase was added 

to the cell pellets and incubated at 37 °C for 5 - 10 min. Cells were lysed with 100 - 

250 µl lysis buffer at room temperature for 5 - 10 min. Lysates were put on ice before 

proceeding with the Pierce™ BCA Protein Assay or stored at -20 °C.  

3.3.2 Determination of protein concentrations 

In order to determine protein concentrations of cell lysates, the Pierce™ BCA Protein 

Assay was applied. In 96-well plates, 4 µl sample per well were mixed with 200 µl of 

a 1:50-mixture of BCA Reagent B/BCA Reagent A. BCA standard dilutions and 

ddH2O served as reference solutions. All standards and samples were prepared in 

triplicate. Plates were incubated for 30 min at 37 °C before spectrometric measure-

ment at 562 nm using a Multiskan™ GO UV/Vis microplate spectrophotometer from 

Thermo Scientific.  

3.3.3 SDS-PAGE 

Proteins were separated according to their molecular weight by sodium dodecyl sul-

fate polyacrylamide gel-electrophoresis (SDS-PAGE) using 4 % stacking gels and 10 

% separation gels (Table 10). Protein samples (25 - 50 µg) were mixed with 10 µl 2x 

sample buffer before loading onto gels. Gel-electrophoresis was performed at 130 V. 
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Table 10: SDS-gels 

Reagent 4 % stacking gel 10 % separation gel 

SDS-Gel buffer 2 ml 5 ml 

ddH2O 3.2 ml 5 ml 

Acrylamide 0.8 ml 5 ml 

APS 100 µl 100 µl 

TEMED 10 µl 10 µl 

3.3.4 Immunoblot 

Proteins separated by SDS-PAGE were transferred onto nitrocellulose membranes 

by semi-dry blot transfer. Nitrocellulose membranes as well as gels containing sepa-

rated protein samples were equilibrated in transfer buffer before use. Two layers of 

filter paper were soaked with transfer buffer and placed onto the anode of the blotting 

chamber. Then one piece of wet membrane was put onto the filter paper, followed by 

the gel and another two layers of transfer buffer-soaked filter paper. The upper layer 

was supposed to be in direct contact with the cathode on top of the chamber. Finally, 

the blotting chamber was closed and transfer was performed at 20 V for 30 min. 

After transfer to a nitrocellulose membrane, bound antigens were detected immuno-

logically by specific primary antibodies or antisera and horseradish peroxidase-

coupled (HRP) secondary antibodies. For this purpose, unspecific binding sites were 

first blocked with blocking solution at room temperature for 1 hour. Afterwards, mem-

branes were incubated with primary antibody or antiserum diluted in 1.5 % milk in 1x 

PBS-Tween at room temperature for 1 hour. Unbound antibodies were removed by 

washing the membrane three times with washing solution shaking for 5 min. For de-

tection of bound antibodies, membranes were incubated with HRP-coupled second-

ary antibodies diluted in 1.5 % milk in 1x PBS-Tween at room temperature for 1 hour. 

Unbound antibodies were washed away with washing solution three times shaking for 

5 min. Membranes were covered with ECL solution for detection of bound HRP-

coupled secondary antibodies. Emitted light was visualized by a transilluminator sys-

tem and software from Biorad.  

3.3.5 Blot stripping 

To allow de novo immunoblotting of already probed nitrocellulose membranes, bound 

antibodies had to be removed first. For this purpose, membranes were incubated in 

stripping buffer under rotation at 60 °C for 1 hour. Subsequently, membranes were 
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washed three times for 5 min before subjecting them to another round of immunoblot-

ting.  

3.3.6 Immunoprecipitation of subviral particles 

Subviral particles (SVP) in concentrated cell culture supernatants were immunopre-

cipitated with Protein G Sepharose by GE Healthcare. For this purpose, 400 µl of 

Protein G Sepharose were twice washed with 1 ml 1x PBS and centrifuged at 1000 g 

for 3 min after each washing step. Residual liquid was completely removed. 80 µl 

drained Protein G Sepharose was supplemented with 165 µg mAb 2F5, mAb 4E10 or 

goat348 α-TM serum. Antibody-protein G complexes were incubated on an overhead 

shaker at room temperature for 45 min. Subsequently, complexes were washed twice 

with 1 ml 1x PBS and centrifuged at 1000 g for 3 min after each washing step. 

Drained antibody-protein G complexes were supplemented with 50 µl concentrated 

cell culture supernatant. 1 ml 1x PBS was added to antigen-antibody-protein G com-

plexes and incubated on an overhead shaker at 4 °C over night. The following day, 

complexes were washed four times with 1x PBS and centrifuged at 1000 g for 3 min 

after every washing step. Last washing fractions (W4) were saved as controls for 

immunoblotting. Drained complexes were supplemented with 60 µl sample buffer and 

boiled at 95 °C for 5 min in order to elute immunoprecipitated antigens. Antigen-free 

beads were removed by centrifugation at maximum speed for 10 min. Supernatants 

containing immunoprecipitated antigens were directly applied to SDS-PAGE.  

3.4 Negative staining electron microscopy 

Concentrated cell culture supernatants that were supposed to contain subviral parti-

cles were applied to transmission electron microscopy. Electron micrographs (Figure 

31) were generated and kindly provided by Michael Laue and Gudrun Holland of the 

Robert Koch-Institute.  

Samples were adsorbed to Pioloform-coated, carbon-stabilized and alcianblue-

treated copper grids. The adherent particles were washed three times with distilled 

water. After negative staining with 1 % uranyl acetate, the samples were analyzed 

using a transmission electron microscope (EM 902, Zeiss, Oberkochen, Germany) at 

80 kV and the images were taken using a slow scan CCD-camera (Proscan, Scheu-

ring, Germany).  
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4 Results  

4.1 Subcloning of the FFV EnvG2 and chimeric FFV/HIV-1 EnvG2 x MPER1 

and MPER2 DNA sequences into a retroviral vector 

The FV env gene sequence encodes a splice donor-acceptor pair (SD/SA) flanking 

the membrane-spanning domain (MSD) of the transmembrane envelope protein 

(gp48). By that splice event, tas and bet are generated, while the MSD is deleted. 

Excision of the MSD results in synthesis of soluble Env protein that is C-terminally 

truncated and not incorporated into the cellular membrane. Thereby, subviral particle 

(SVP) formation is impaired due to reduced expression of membrane-bound Env pro-

tein after transient transfection of HEK293T cells with pBCenv constructs coding for 

FFV Env protein [95]. In order to increase incorporation of Env protein into the cellu-

lar membrane, the active SD/SA-pair was knocked out by silent mutagenesis [95]. 

The corresponding expression construct, pBCenvΔSASD, promoted increased incor-

poration of Env protein into the membrane and secretion of SVPs [95]. Additionally, 

two unique restriction sites recognized by BspEI and SgrAI were silently introduced 

adjacent to the membrane proximal external region (MPER). Similarly, two unique re-

striction sites recognized by BlpI and Bst1107I flanking the fusion peptide proximal 

region (FPPR) were silently introduced. The new pBCenvΔSASD backbone with 

those additional restriction sites was designated pBC EnvG2 (G2 = generation 2). 

The pBC EnvG2 backbone was used to replace the adjacent immunogenic regions in 

the FFV MPER (Figure 11) by the HIV MPER which naturally carries the 2F5 and 

4E10 epitopes. Two expression constructs, MPER1 x pBC EnvG2 and MPER2 x pBC 

EnvG2 were cloned that differ by a three amino acid-shift (Figure 15). That was 

based on the idea that altering the position in the predicted alpha-helical domain 

might increase the accessibility of the 2F5 and 4E10 epitopes [95].  

For simplification, hybrid MPER1 x EnvG2 and MPER2 x EnvG2 will be referred to as 

MPER1 and MPER2, respectively, in the following sections.  



 
 Results 

 

   

 
Page 41 

 

  

 

Figure 15. Amino acid sequences of the wild-type FFV MPER and chimeric FFV/HIV-1 MPER1 

and MPER2 proteins generated by Anne Bleiholder [95] 

The first line shows the C-terminal part of FFV TM (grey) with the epitopes identified by FFV TM 

epitope mapping (red) and the N-terminal part of the membrane-spanning domain (green). Below, the 

FFV/HIV-1 MPER1 and MPER2 sequences with the integrated HIV MPER (blue) sequence naturally 

carrying the 2F5 and 4E10 epitopes (underlined) are displayed.  

The EnvG2, MPER1 and MPER2 expression constructs were characterized as de-

scribed in the introduction section (Figure 12) [95]. After transient transfection of 

HEK293T cells, the EnvG2, MPER1 and MPER2 proteins were expressed and pro-

cessed as shown by the detection of gp130, gp48 and cell lysate-associated TMCL. 

The presence of the 2F5 and 4E10 epitopes in the MPER1 and MPER2 chimeras 

was confirmed by immunoprecipitation with both antibodies. The EnvG2, MPER1 and 

MPER2 constructs did not allow marker gene transfer but were released into cell cul-

ture supernatants as SVPs.  

Two different retroviral transfer plasmids served as target vectors for the EnvG2 and 

hybrid MPER1 and MPER2 DNA sequences: MP71-GFP [90] and pLenti-GFP natu-

rally containing eGFP (Figure 16).  

MP71-GFP is optimized for strong protein expression in lymphotrophic cell lines [90]. 

Protein expression is promoted by an improved 5’LTR derived from murine embryon-

ic stem cell virus (Figure 16A) [96]. Transgene expression is enhanced by an intron 

sequence located 5‘ of the transgene sequence and flanked by a SD/SA-pair that as-

sists nuclear export of transgene mRNA. Protein expression is further increased by a 

woodchuck hepatitis virus post-transcriptional regulatory element (PRE) positioned 3‘ 

of the transgene sequence. The PRE acts in cis by accumulation of mRNA levels and 

inhibition of mRNA degradation in the cytoplasm [106, 107]. In order to produce 

MP71 replication-incompetent viruses, Platinum-GP packaging cells were co-

transfected with MP71 expression plasmids and pMD2.G coding for vesicular stoma-

titis virus protein G (VSV-G). Platinum-GP cells are grown in the presence of blasti-

cidin for selection of cells stably expressing gag and pol.  
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pLenti-GFP on the other hand, is a HIV-based lentiviral transfer plasmid [108]. In 

pLenti, protein expression is promoted by a strong CMV promoter (Figure 16B). Like 

MP71, pLenti also contains a PRE for increasing the steady-state level of transgene 

mRNA. Pseudotyping is enabled by a psi-packaging signal and further supported by 

the HIV-1 Rev-response element (RRE) which allows HIV-1 Rev-mediated transpor-

tation of viral mRNA to the cytoplasm. pLenti belongs to the 3rd generation packaging 

system that requires co-transfection of 4 plasmids in total for virus production [108]: a 

transfer plasmid (pLenti CMV GFP Puro (658-5)), an envelope plasmid (pMD2.G cod-

ing for VSV-G) and 2 packaging plasmids expressing Gag and Pol protein from one 

packaging vector (pMDLg/pRRE) and Rev protein from another (pRSV-Rev).  

 

A 

 

B 

 

Figure 16. Retroviral vector maps of unmodified MP71-GFP (A) and lentiviral pLenti with the in-

corporated FFV EnvG2 gene (B) 

LTR: long terminal repeat, SD: splice donor, SA: splice acceptor, eGFP: enhanced green fluorescent 

protein, PRE: post-transcriptional regulatory element, AmpR: prokaryotic ampicillin resistance selec-

tion marker, CMV: cytomegalovirus promoter sequence, RRE: Rev-response element, A2 site: A2-

cleavage site, His-tag: histidin-tag. Subcloning of the chimeric FFV EnvG2 sequences into MP71 was 

done by homologous recombination replacing the eGFP gene, while insertion into pLenti was 5’ of the 

eGFP gene sequence by restriction digestion and ligation (the pLenti expression constructs were kind-

ly provided by Kerstin Hoffmann from the Berlin-Brandenburg Center for Regenerative Therapies - 

Charité University Medicine).  
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Another feature of the pLenti system is the production of fusion proteins originating 

from the transgene sequence and the eGFP gene sequence linked via an A2-site 

(Figure 17). During processing by the cell machinery, the dipeptide is auto-cleaved at 

the A2-cleavage site generating FFV EnvG2, FFV/HIV-1 MPER1 or MPER2 protein 

and functional eGFP. As a consequence, the fluorescence signal emitted by eGFP 

directly correlates with transgene expression. 

The pLenti FFV EnvG2 and chimeric pLenti FFV/HIV-1 MPER1 and MPER2 expres-

sion plasmids were generated and kindly provided by Kerstin Hoffmann of the Berlin-

Brandenburg Center for Regenerative Therapies - Charité University Medicine.   

 

 

Figure 17. Principle of transgenic protein expression promoted by pLenti 

Transgenic FFV EnvG2 protein and eGFP are translated as a dipeptide that is later auto-cleaved at 

the A2-site. Therefore, the fluorescence signal of eGFP is proportional to transgene expression.  

4.1.1 Generation of MP71 FFV EnvG2 and chimeric MP71 FFV/HIV-1 MPER1 

and MPER2 expression plasmids 

Subcloning of the FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and MPER2 DNA 

sequences into MP71 was done by homologous recombination replacing the eGFP 

gene in MP71-GFP.  

For this purpose, MP71-GFP was linearized with the restriction enzyme EcoRI. To 

enable homologous recombination, the FFV EnvG2 and chimeric FFV/HIV-1 MPER1 

and MPER2 DNA sequences were PCR-amplified using the primers FFV Env Fu-

sion1 and FFV Env Fusion2. Those primers were designed to add 15 bp-extensions 

5’ and 3’ homologous to vector regions confining the eGFP gene in MP71-GFP. The 

pBC EnvG2, pBC MPER1 and pBC MPER2 expression plasmids [95] served as tem-

plates. After separation of the PCR mixtures by 1 % agarose gel-electrophoresis, the 

corresponding amplicons were extracted from gel slices. The linear amplicons were 
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introduced into MP71 in a single reaction utilizing the In-Fusion® Kit from Clontech 

(see section 3.1.6). Subsequently, the reaction mixtures were transformed into 

NovaBlue GigaSingles™ Competent Cells for cloning. The following day, random 

colonies were picked for colony-PCR. The primers FFV TMH fwd and FFV Int se-

quencing primer rev were used resulting in amplicons of the N-terminal part of the 

FFV TM sequence with 491 bp in size. Analysis with 1 % agarose gel-electrophoresis 

revealed that most of the colonies were positive for the amplicons (Figure 18A). Five 

clones of each construct (EnvG2, MPER1 and MPER2) were chosen for a control di-

gest with EcoRI that was supposed to cut in the MP71 vector region and the SU se-

quence of the FFV Env gene. Clones that revealed one fragment with 360 bp in 

length after separation by 1 % agarose gel-electrophoresis where considered positive 

(Figure 18B). Sequencing according to Sanger confirmed successful subcloning into 

MP71.  

 

A 

B 

 

Figure 18. Subcloning into MP71 

A) Colony-PCR for screening of positive clones. Colony-PCR mixtures were directly applied to 1 % 

agarose gel-electrophoresis. Clones resulting in amplicons with 491 bp in length were considered 

positive (+) for either MP71 EnvG2 or chimeric MP71 MPER1 or MPER2, respectively. B) EcoRI-

control digest of clones that were positive after colony-PCR. Digested clones with a 360 bp-insert were 

assumed to carry the EnvG2, MPER1 or MPER2 gene sequence. Finally, sequencing was applied to 

confirm subcloning into MP71. 
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4.1.2 Testing the FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and MPER2 ex-

pression constructs for protein expression 

After successful subcloning, all FFV EnvG2 and hybrid FFV/HIV-1 MPER1 and 

MPER2 expression plasmids (pBC, pLenti, MP71) were tested for transgene expres-

sion. Therefore, HEK293T cells were transiently transfected with 1 µg pBC (positive 

control), 1 µg MP71 or 2 µg pLenti expression plasmid (EnvG2, MPER1, MPER2), 2 

µg pCF7 (infectious molecular clone of FFV, positive control) or 1 µg pEGFP-N3 

(negative control) using PEI as transfection reagent (see section 3.2.5). Cell lysates 

were prepared 48 hours after transfection and equal amounts applied to immunoblot-

ting using goat348 α-TM serum for antigen detection (Figure 19). After blot stripping, 

hybrid FFV/HIV-1 MPER1 and MPER2 antigens were reprobed with mAb 2F5 or mAb 

4E10.  

All expression constructs (pBC, MP71, pLenti) promoted wild-type FFV EnvG2 and 

hybrid FFV/HIV-1 MPER1 and MPER2 protein expression and processing as shown 

by the detection of gp130 and furin-cleaved gp48. As described by Bleiholder et al. 

before [95], the chimeric MPER1 and MPER2 expression constructs showed reduced 

protein expression and processing in comparison to the EnvG2 expression plasmids. 

Goat348 α-TM serum also detected a cell lysate-associated form of gp48 (TMCL) of 

35 - 40 kDa in length. It was found that TMCL is glycosylated but yet absent in viral 

and subviral particles. This might be explained by a possible loss of the C-terminus 

including the membrane-spanning domain that serves as a membrane anchor [95].  

Gp130 and processed gp48 were running above the 130 kDa and 48 kDa marker 

bands that is an indication for proper glycosylation of Env [95]. In order to verify gly-

cosylation of EnvG2, MPER1 and MPER2 proteins expressed by the pBC constructs, 

Bleiholder et al. treated cell lysates of transiently transfected HEK293T cells with En-

doglycosidase H (EndoH) [95]. Deglycosylation decreased the molecular weight with 

the result that gp130 was running at approximately 130 kDa and gp48 below 50 kDa, 

respectively [95]. In this way, the reduced electrophoretic mobilities of untreated 

gp130 and gp48 were ascribed to glycosylation.  

The fact that hybrid FFV/HIV-1 MPER1 and MPER2 proteins were recognized by 

mAb 2F5 and mAb 4E10 indicates that the HIV-1 MPER peptide naturally carrying 

the respective epitopes is present in all chimeric constructs. In comparison to 

MPER2, binding of 2F5 to MPER1 was stronger. 2F5 was also able to detect pro-
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cessed MPER1 gp48 but not MPER2 gp48. Likewise, detection of MPER1 by 4E10 

was stronger compared to MPER2. In contrast to 2F5, 4E10 also allowed detection of 

MPER2 gp48. Detection of MPER2 protein by 2F5 or 4E10 was weakest when ex-

pression was promoted by the pLenti MPER2 expression construct.  

 

Figure 19. FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and MPER2 protein expressions are 

promoted by the pLenti and MP71 expression plasmids.  

1.6 x 10
5
 HEK293T cells were transfected with 1 µg pBC (positive control) [95] or MP71 expression 

plasmid (EnvG2, MPER1, MPER2), with 2 µg pLenti expression plasmid (EnvG2, MPER1, MPER2) or 

pCF7 (positive control) or 1 µg pEGFP-N3 as second negative control in addition to mock (no DNA). 

48 hours after transfection, cell lysates were prepared and analyzed by immunoblotting. Detection of 

antigens was performed either with goat348 α-TM serum, mAb 2F5 or mAb 4E10. Detection of β-actin 

with anti-actin antibody confirmed equal loading onto the SDS-gel. FFV EnvG2 or hybrid FFV/HIV-1 

MPER1 or MPER2 proteins were expressed and processed to different degrees, as shown by the de-

tection of gp130, gp48 and TM
CL

. The reduced electrophoretic mobilities of gp130 and gp48 in com-

parison to the 130 kDa and 55 kDa marker bands, respectively, indicated proper glycosylation. Chi-

meric MPER1 and MPER2 proteins were recognized by 2F5 and 4E10; whereas overall detection of 

MPER1 protein was stronger compared to MPER2 protein.  
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4.2 Establishment of efficient protocols for virus production 

In order to generate cell lines stably expressing FFV EnvG2 or hybrid FFV/HIV-1 

MPER1 or MPER2 protein, single-round viruses for transduction had to be produced. 

Above all, transduction efficiencies correlate with virus titers. Therefore, transfection, 

virus production and concentration had to be optimized. For all experimental proce-

dures, the parental vectors MP71-GFP and pLenti-GFP were used to allow an easy 

read-out based on the detection of the fluorescence signal emitted by GFP.  

4.2.1 Transfection optimization for virus production 

Viral titers primarily depend on transfection efficiencies. Therefore, different amounts 

of MP71-GFP or pLenti-GFP plasmid DNA (pDNA) and different concentrations of 

transfection reagent, polyethylenimine (PEI), were tested in parallel; the assay in-

cluded DNA/PEI-ratios of 1:1, 1:2, 1:4 and 1:8. In this project, viral MP71 or pLenti 

transgene mRNA was pseudotyped with VSV-G. The high tropism of VSV-G [109] 

would allow screening of various target cells in further experiments (see section 4.3 

and 4.5.1).  

Platinum-GP packaging cells or HEK293T cells were seeded in separate 12-well 

plates with 40 % confluency. The following day, cells were transfected with 0.5 µg, 1 

µg and 2 µg MP71-GFP or pLenti-GFP. Platinum-GP cells stably expressing gag and 

pol were co-transfected with MP71-GFP and pMD2.G (VSV-G) in a ratio of 2:1; 

whereas HEK293T cells were co-transfected with pLenti-GFP, pMDLg/pRRE (gag 

and pol), pRSV-Rev (rev) and pMD2.G (VSV-G) in a ratio of 5:3.75:1.5:1. The cell vi-

abilities were examined 48 hours after transfection (Figure 20A). Subsequently, cell 

lysates were prepared and analyzed by immunoblotting detecting GFP expression 

with α-GFP HRP antibody (Figure 20B). The unconcentrated cell culture superna-

tants were directly used for transduction of HEK293T cells to allow determination of 

the relative virus productions in dependence of the transfection efficiencies (Figure 

20C).  

The viability-assay of the transfected cells revealed increased dying at higher con-

centrations of PEI (Figure 20A). When transfection was performed with 2 µg pDNA 

that clearly requires more PEI for transfection (DNA/PEI), viabilities were drastically 

reduced at DNA/PEI-ratios of 1:4 and 1:8. Viabilities of Platinum-GP cultures were 

more considerably impaired by PEI.   
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Higher amounts of MP71-GFP DNA increased transfection efficiencies in Platinum-

GP cells as shown by stronger detection of GFP (Figure 20B). Detected GFP bands 

of Platinum-GP cell lysates were most distinct when transfection was with 0.5 µg, 1 

µg or 2 µg MP71-GFP and a DNA/PEI-ratio of 1:8, 1:4 or 1:2, respectively. In 

HEK293T cells, higher amounts of pLenti-GFP reduced the required concentration of 

PEI as shown by increased binding of GFP. Transfection with 2 µg pLenti-GFP and a 

DNA/PEI-ratio of 1:2 to 1:8  resulted in strongest GFP expression. 

Based on those results, transfections were carried out with 5 µg pDNA/1.6 x 106 cells 

and a DNA/PEI-ratio of 1:8 in further experiments on virus production.  
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A 

B 

C 

Figure 20. Screening transfection conditions for optimal virus production 

1.6 x 10
5
 Platinum-GP cells or HEK293T cells were co-transfected with different amounts of MP71-

GFP or pLenti-GFP plasmid DNA (pDNA), respectively, and vectors required for virus production. For 

transfection with polyethyleneimine (PEI), various ratios of DNA/PEI were tested in parallel, as indicat-

ed. A) Viabilities depend on the amount of transfected pDNA and the DNA/PEI-ratio used for transfec-

tion. 48 hours after transfection, viabilities were determined as described in the method section. The 

bars represent viabilities of Platinum-GP (blue) and HEK293T cells (green). Increasing concentrations 

of PEI reduced viabilities. Platinum-GP cultures were more sensitive to PEI than HEK293T cells. B) 

Transfection efficiencies depend on the amount of transfected pDNA and the DNA/PEI-ratio. 48 hours 

after transfection, cell lysates were prepared and analyzed by immunoblotting. Relative transfection ef-

ficiencies were assessed by detection of GFP with α-GFP HRP antibody. Detection of β-actin with an-

ti-actin antibody confirmed equal loading of the cell lysates. In the case of MP71, equal transfection ef-

ficiencies with 0.5 µg, 1 µg and 2 µg MP71-GFP pDNA could be observed when the DNA/PEI-ratios 

were 1:8, 1:4 and 1:2, respectively. Transfection with pLenti-GFP was most effective with 2 µg pDNA 

and a DNA/PEI-ratio of 1:2 to 1:8. C) Transduction efficiencies depend on the amount of transfected 

pDNA and the DNA/PEI-ratio used for virus production. 48 hours after transfection, supernatants were 

harvested. 250 µl or 50 µl of unconcentrated supernatant (SN) were used for transduction of HEK293T 

cells in a 96-well plate. 72 hours after infection, transduction efficiencies (GFP pos. %) were deter-

mined by FACS. GFP pos. % ≙ % of events with FITC-height > lg 1. The bars represent the values of 

one experiment that directly correlated with the rate of virus production. Infection with MP71-GFP or 

pLenti-GFP virus is indicated in blue or green, respectively. The best virus production was by transfec-

tion with 0.5 µg MP71-GFP or pLenti-GFP pDNA and a DNA/PEI-ratio of 1:8. 
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4.2.2 Testing additives for enhanced virus production 

For maximizing virus production, two histone-deacetylase inhibitors, Na-butyrate and 

valproic acid, were tested as supplements in cell culture media.  

For this purpose, 1.6 x 105 Platinum-GP or HEK293T cells per well of two 24-well 

plates were transiently transfected with 0.5 µg MP71-GFP or pLenti-GFP and a 

DNA/PEI-ratio of 1:8 (see section 4.2.1). 24 hours after transfection, the culture me-

dia were supplemented with 1, 2, 5, 10, 15, 20, 30 or 50 mM (final concentrations) 

Na-butyrate or valproic acid. Viral culture supernatants were harvested after further 

48 hours and 50 µl unconcentrated aliquots directly used to infect 1.6 x 105 HEK293T 

cells. Transduction efficiencies were measured by FACS 72 hours after infection 

(Figure 21).  

MP71-GFP and pLenti-GFP virus production correlated nonlinearly with the tested 

concentrations of Na-butyrate and valproic acid. Compared to Na-butyrate, valproic 

acid was less effective in enhancing virus production. A 1.7-fold increase of transduc-

tion efficiency could be obtained by infection with MP71-GFP virus produced in the 

presence of 2 mM Na-butyrate (Figure 21A). On the other hand, transduction effi-

ciencies by pLenti-GFP virus increased 4-fold after supplementation with 50 mM Na-

butyrate (Figure 21B).  

According to those results, 2 mM and 50 mM Na-butyrate were applied 24 hours after 

transfections for productions of MP71 and pLenti viruses, respectively.  
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B 

Figure 21. Testing Na-butyrate and valproic acid for increased virus production 

0.5 µg MP71-GFP or pLenti-GFP were PEI-transfected (DNA/PEI-ratio was 1:8) into 1.6 x 10
5
 Plati-

num-GP or HEK293T cells, respectively. 24 hours after transfection, Na-butyrate and valproic acid 

were added to the culture medium in various concentrations, as indicated. After further 48 hours, 50 µl 

of unconcentrated viral culture supernatant were used to infect 1.6 x 10
5
 293T cells. 72 hours after in-

fection, transduction efficiencies (% GFP positive cells) were determined by FACS. % GFP positive 

cells ≙ % of events with FITC-height > lg 1. The bars represent the values of one experiment that di-

rectly correlated with the rate of virus production. Mock: no DNA, w/o: no additive. A) A significant cor-

relation between production of MP71 virus and concentration of Na-butyrate or valproic acid was ab-

sent. The best virus production was achieved with 2 mM Na-butyrate that resulted in a 1.7-fold in-

crease of transduction efficiency. B) Valproic acid significantly enhanced the pLenti virus production 

when concentrations were 1 to 5 mM. However, 50 mM Na-butyrate led to best virus production as the 

transduction efficiency was 4-fold increased. 
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4.2.3 Testing methods to concentrate virus 

After having found optimal conditions for the production of MP71-GFP and pLenti-

GFP virus, two methods for concentrating virus were tested: polyethylene glycol 

(PEG) precipitation according to the protocol of Tiscornia et al. [105] and centrifuga-

tion. 

For this purpose, 1.6 x 107 Platinum-GP or HEK293T cells were transiently transfect-

ed with 26 µg MP71-GFP or pLenti-GFP and a DNA/PEI-ratio of 1:8 (see section 

4.2.1). Two days after transfection, 18 ml viral culture supernatants were harvested 

and filtered through a 0.45 µm filter. 7.5 ml cell-free supernatant were applied to PEG 

precipitation, 7.5 ml were centrifuged at 75500 g for 2 h and the residual 3 ml were 

stored at -20 °C. 150x virus concentrates were prepared by resuspending the respec-

tive pellets in 100 µl 1x PBS. 1.6 x 105 HEK293T cells in 24-well plates were infected 

with 10 µl unconcentrated cell-free viral supernatant or 10 µl virus concentrate ob-

tained by PEG or centrifugation. 48 hours after infection, the relative success of virus 

concentration was determined based on the transduction efficiencies measured by 

FACS (Figure 22).  

PEG precipitation seemed to be most suitable for concentrating MP71-GFP viruses 

since the transduction efficiency was approximately 13 % higher when compared to 

the centrifugation method. However, centrifugation was more promising for concen-

tration of pLenti-GFP virus because the transfection efficiency was 5 % higher in 

comparison to PEG precipitation.  

Those results did not show decisive differences between PEG precipitation and cen-

trifugation for virus concentration. Therefore, the method of centrifugation was ap-

plied in further experiments, since it is more feasible and yields virus pellets with 

higher purity [110].  

 



 
 Results 

 

   

 
Page 53 

 

  

 

Figure 22. Testing polyethylene glycol precipitation and centrifugation at 75500 g for virus 

concentration 

MP71-GFP or pLenti-GFP virus was produced by transfecting 1.6 x 10
7
 Platinum-GP or HEK293T 

cells with 26 µg MP71-GFP or pLenti-GFP, respectively, and a DNA/PEI-ratio of 1:8. 48 hours after 

transfection, viral culture supernatants were harvested. 7.5 ml of cell-free viral supernatant were ap-

plied to polyehtyleneglycol (PEG) precipitation or centrifuged at 75500 g for 2 h (Spin). Pelleted virus 

was resuspended in 100 µl 1x PBS. 1.6 x 10
5
 HEK293T cells were infected with 10 µl unconcentrated 

cell-free viral supernatant (SN) or virus concentrate, as indicated. 48 hours later, transduction efficien-

cies (% GFP positive) were determined by FACS. % GFP positive ≙ % of events with FITC-height > lg 

1. The bars represent the values of one experiment that directly correlated with virus titers.  Infection 

with MP71-GFP or pLenti-GFP virus is indicated in blue or green, respectively. Concentration of MP71 

virus by PEG precipitation was by 13 % more effective than centrifugation. On the other hand, pLenti-

GFP virus led to a 5 % higher transduction rate when centrifugation was applied.  

4.3 Optimization of retroviral infection 

Vectors pseudotyped with vesicular stomatitis virus protein G (VSV-G) have a broad 

host range [109]. However, infection rates may vary dependent on the target cell line. 

In order to find a target cell line that allows high transduction rates achieved by infec-

tion with VSV-G pseudotyped MP71 or pLenti virus, four different cell lines were test-

ed in parallel: 

 HEK293T cells that were used by Anne Bleiholder et al. for the production of 

subviral particles (SVPs) (Figure 12D) [95]. They served as a kind of reference 

cell line. 
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 293F cells that are suspension cells derived from 293 cells. They are adapted to 

be cultured in serum-free expression media (e.g., FreeStyle™ 293 Expression 

Medium). Their characteristics would be advantageous because transduced sus-

pension 293F cells would constitute a larger culture surface releasing SVPs into 

serum-free medium. This could significantly simplify purification of SVPs. 

 Lymphotrophic C8166 cells that are grown in suspension. That feature turns 

them into interesting target cells because transduced C8166 cells would consti-

tute a high culture surface releasing SVPs (see 293F cells). Furthermore, their 

lymphotrophic character could be advantageous when transduction was with 

MP71 vectors since MP71 is optimized for protein expression in lymphotrophic 

cell lines [96].  

 CRFK cells that are feline kidney cells. They were tested because main parts of 

the epitope scaffold/the SVPs originate from feline foamy virus (FFV). Expression 

of FFV Env protein could be increasingly promoted in CRFK cells due to possible 

evolutionary adaption of FFV to its natural host, the cat [58]. 

Additionally, four infection conditions were tested in parallel for further optimization of 

retroviral infection with MP71 and pLenti virus:  

 infection with concentrated virus 

 polybrene added to the medium (8 µl/ml) (PB) 

 spinoculation at 1000 g at 37 °C for 1 hour (Spin) 

 polybrene added to the medium (8 µl/ml) and spinoculation at 1000 g at 37 °C for 

1 hour (PB+Spin) 

For this purpose, 1.6 x 107 Platinum-GP or HEK293T cells were transiently transfect-

ed with 26 µg MP71-GFP or pLenti-GFP and a DNA/PEI-ratio of 1:8 (see section 

4.2.1). 48 hours after transfection, viral supernatants were harvested and filtered 

through a 0.45 µm filter. Virus was concentrated hundred-fold by centrifugation at 

75500 g for 2 h and resuspending the viral pellets in an appropriate volume of 1x 

PBS.  
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In order to test the four infection conditions mentioned above, 1 x 105 HEK293T, 

293F, C8166 or CRFK cells were infected with MP71-GFP or pLenti-GFP virus con-

centrate in 24-well plates. The volumes of virus concentrates were adapted so that 

estimated multiplicities of infections (MOI) were 1. One day after infection, the culture 

media were changed in order to mitigate toxic side-effects of polybrene. After further 

48 hours, FACS analysis of the transduced cells allowed comparison and evaluation 

of the infection conditions on the basis of the respective transduction efficiencies 

(Figure 23A) and mean fluorescence intensities (MFI) that indicate GFP expression 

per cell and correlate with integrated proviral copy numbers (Figure 23B).  

The highest transduction efficiencies and MFIs of HEK293T, C8166 and CRFK cells 

were obtained when PB + Spin was applied. However, MFIs of C8166 cells trans-

duced with MP71-GFP virus remained unaffected after assisted infection in any of the 

tested condition.  

Infection of 293F cells with MP71-GFP and pLenti-GFP virus resulted in diverse 

transduction efficiencies and MFIs, when compared to all other tested cell lines. Even 

though the transduction efficiency of MP71-GFP infection was increased by PB + 

Spin, MFIs could not be improved by any infection condition. As it was the case for 

the other cell lines, pLenti-GFP infection of 293F cells was more efficient than MP71-

GFP infection. However, neither polybrene nor spinoculation resulted in increased 

transduction efficiencies in 293F cells; only spinoculation elevated the MFI.  

Infection optimization by adding polybrene to the medium (8 µl/ml) in combination 

with spinoculation at 1000 g at 37 °C for 1 hour led to highest transduction efficien-

cies and MFIs of 3 of the 4 tested cell lines. Therefore, PB+Spin was used for infec-

tion enhancement in further experiments.  
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A 

B 

Figure 23. Transduction optimization 

1 x 10
5
 HEK293T, 293F, C8166 or CRFK cells were transduced with concentrated MP71-GFP (blue 

bars) or pLenti-GFP (green bars, pL) virus as indicated. Estimated multiplicities of infections (MOI) 

were 1. Four infection conditions were tested in parallel: infection with concentrated virus, inf; infection 

in the presence of polybrene (8 µl/ml), PB; centrifugation at 1000 g at 37 °C  for 1 h, Spin; combination 

of polybrene (8 µl/ml) and centrifugation at 1000 g at 37 °C for 1 h, PB+Spin. 24 h after infection, the 

culture media were replaced. After a further 48 hours, transduced cells were analyzed by FACS. A) 

Transduction efficiencies (% GFP) in dependence of different infection conditions and cell lines. % 

GFP ≙ % of events with FITC-height > lg 1. The bars represent the values of one experiment. The 

highest transduction efficiencies of HEK293T, C8166 and CRFK cells after infection with MP71-GFP 

and pLenti-GFP virus were obtained when PB+Spin was used. 293F cells were the exception because 

the transduction efficiency with pLenti-GFP virus was highest when infection was performed with virus 

concentrate only. Infection of 293F cells with MP71-GFP virus was best when PB+Spin was used, but 

very inefficient when compared to transduction efficiencies of the other tested cell lines. B) Mean fluo-

rescence intensities (MFIs) in dependence of different infection conditions and cell lines. MFIs corre-

lated with average GFP expression per cell and multiple integrations of proviral DNA copies into the 

target genomes. MFI ≙ mean of FITC-heights > lg 1. AD: arbitrary units. The bars represent the values 

of one experiment. MFIs of pLenti-infected HEK293T, C8166 and CRFK cells were highest when 

PB+Spin was used. 293F cells transduced with pLenti-GFP virus resulted in highest MFI after centrif-

ugation. Infection with MP71-GFP virus led to higher MFIs of CRFK cells when compared to the other 

tested cell lines. Distinct increases in MFIs of MP71-infected 293F and C8166 cells after supported in-

fections could not be achieved. 
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4.4 Testing the established protocols for virus production and infection for 

applicability on the FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and 

MPER2 constructs 

4.4.1 Real-time PCR for determination of virus titers 

In order to determine virus titers of MP71- and pLenti-FFV EnvG2 and hybrid 

FFV/HIV-1 MPER1 and MPER2 viruses, real-time PCR was applied. Since all MP71 

and pLenti vectors incorporate the PRE into target genomes, a real-time PCR pro-

gram was established that amplifies a short sequence of the PRE (Figure 16). There-

fore, the probe PRE2 Probe fwd and the primers PRE fwd and PRE2 rev were de-

signed to bind a sequence with 142 bp in length within the PRE sequence. Several 

concentrations of MgCl2 were tested for optimizing the sensitivity of the real-time 

PCR. An optimal condition and program was found (see section 3.1.5) which allowed 

detection of down to 101 initial plasmid DNA (pDNA) copies within 35 PCR-cycles 

(CT) (Figure 24A).  

The established protocol for real-time PCR was used to deduce two correlation 

curves (Figure 24B and 25) needed for calculations of virus titers:  

 CT / log copies of pDNA 

 Transduction efficiency / proviral copies 

For this purpose, plasmid standard dilution series of MP71-GFP and pLenti-GFP 

pDNA with 106, 105, 104, 103, 102, 101 and 100 copies/3 µl were prepared. Real-time 

PCR amplification of the dilution series (Figure 24A) allowed establishment of the 

standard curve CT / log copies pDNA (Figure 24B) based on equation (1).  
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dk  copieslogCT  (1) 

CT 
Cycle threshold; defined as the number of cycles required for 
the fluorescence signal to cross the fixed threshold [111].  

k Gradient; change of CT-value per copies. 
copies Initial plasmid copy number 
d Regressor 

 

A 

B 

 

Figure 24. Real-time PCR of the MP71-GFP and pLenti-GFP dilution series 

Real-time PCR of MP71- or pLenti-GFP plasmid DNA dilution series with initial plasmid copy numbers 

of 10
6
 down to 10

0
 was performed as described in section 3.1.5. A) Analytical agarose gel-

electrophoresis of the real-time PCR-amplified pLenti-GFP and MP71-GFP dilution series. B) CT / log 

copy number-correlations of the MP71-GFP (blue) and pLenti-GFP (green) plasmid DNA dilution se-

ries.  

In order to establish the second calibration curve (transduction efficiency / proviral 

copies), transduction efficiencies and the corresponding CT-values of cells trans-

duced with MP71-GFP or pLenti-GFP virus had to be determined. As MP71-GFP and 

pLenti-GFP vectors lead to equivalent transductions (1 PRE/provirus), it was suffi-

cient to conduct only pLenti-GFP infections.  

For this purpose, 2.8 x 105 HEK293T cells were infected with 100 µl, 20 µl and 4 µl of 

unconcentrated cell culture supernatant containing pLenti-GFP virus with unknown ti-

ter. 72 hours after infection, transduction efficiencies were determined by FACS. Af-

terwards, 100 ng genomic DNA (gDNA) were applied to real-time PCR for determina-
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tion of the corresponding CT-values. Now, rearrangement of equation (1) to equation 

(2) allowed calculation of pLenti-GFP proviral copies integrated in 100 ng of trans-

duced gDNA.  

 

 
(2) 

 

Together with the transduction efficiencies obtained by FACS, the correlation be-

tween transduction efficiency and proviral copy number (Figure 25) based on equa-

tion (3) could be deduced.  

 

b
a copiespositive GFP %   (3)

 

% GFP positive Percentage of transduced cells. 
a Gradient; change of transduction efficiency per copies. 
b Exponent 
copies Proviral copy number (= copies proviral) 

 

 

Figure 25. Calibration curves obtained by real-time PCR with transduced genomic DNA 

The real-time PCR protocol was established for amplification of a short sequence of the PRE integrat-

ed into target genomes, regardless of the vector (MP71 or pLenti) used for transduction. Accordingly, it 

was sufficient to apply just pLenti-GFP infection for subsequent deduction of the MP71 as well as the 

pLenti calibration curves. Therefore, 2.8 x 10
5
 HEK293T cells were infected with 100 µl, 20 µl or 4 µl of 

unconcentrated pLenti-GFP viral culture supernatant with unknown titer. 72 hours after infection, 

transduction efficiencies (% GFP positive) were determined by FACS. % GFP positive ≙ % of events 

with FITC-height > lg 1. Genomic DNA was isolated and applied to real-time PCR for triplicate deter-

mination of proviral copies integrated. Finally, the correlations between transduction efficiencies (val-

ues of one experiment) and integrated MP71- or pLenti-GFP proviral copies (mean values) were es-

tablished as indicated.  
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In order to calculate virus titers of MP71 and pLenti FFV EnvG2 and hybrid FFV/HIV-

1 MPER1 and MPER2 virus concentrates, 3.2 x 105 HEK293T cells were infected 

with 1 µl virus concentrate of unknown titer. 72 hours after infection, 100 ng gDNA 

were applied to real-time PCR. The obtained CT-values were used to calculate the 

corresponding proviral copies integrated by applying equation (2). The respective 

transduction efficiencies were determined with equation (3). Finally, application of 

equation (4) revealed virus titers (infectious units per ml) of MP71 and pLenti FFV 

EnvG2 and hybrid FFV/HIV-1 MPER1 and MPER2 virus concentrates. 

1000
 virusof μl

100

GFP % corr.
number cell

ml / IU 

















 

(4) 

IU Infectious units 
corr. % GFP Corresponding transduction efficiencies calculated with equation (3).  
µl of virus Volume of virus concentrate used for infection. 
 
 

 

4.4.2 Applicability of the established protocols on the MP71-EnvG2 and pLen-

ti-EnvG2 constructs 

The MP71 and pLenti FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and MPER2 ex-

pression plasmids differ from the MP71-GFP and pLenti-GFP plasmids by approxi-

mately 2.3 kb and 3 kb in length, respectively. Furthermore, possible toxic side-

effects due to over-expression of transgenic FFV Env protein might arise. According 

to those facts, the protocols for virus production that were established with the MP71-

GFP and pLenti-GFP plasmids needed to be tested for applicability on the EnvG2 

and chimeric MPER constructs.  

For this purpose, 7 x 104 Platinum-GP or HEK293T cells were transfected with 125 

ng or 250 ng total amount of DNA comprising MP71-EnvG2 or pLenti-EnvG2 expres-

sion plasmid and plasmids required for virus production as described in detail in sec-

tion 3.2.5. To screen for optimal PEI-transfection, different ratios of DNA/PEI (1:1, 

1:2, 1:4, 1:6 and 1:8) were tested in parallel (as described for MP71-GFP and pLenti-

GFP in section 4.2.1). Cell lysates were prepared 48 hours after transfection and 

equal aliquots analyzed by immunoblotting using goat348 α-TM serum for antigen 

detection (Figure 26). 
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In general, transfection with 250 ng DNA and the DNA/PEI-ratio of 1:8 resulted in 

strongest EnvG2 protein expression. Transfection with MP71-EnvG2 required fewer 

amounts of DNA and PEI. EnvG2 protein expression and processing promoted by 

MP71 could be detected after transfection with 125 ng DNA and DNA/PEI-ratios of 

1:4 to 1:8, as shown by the detection of gp130, gp48 and TMCL (Figure 26A). Trans-

fection with pLenti-EnvG2 required more DNA for detectable EnvG2 protein expres-

sion. After transfection with 125 ng pDNA and DNA/PEI-ratios of 1:6 and 1:8, only 

weak expression of gp130 and uncleaved gp130-GFP could be detected. Although 

transfection with 250 ng DNA resulted in stronger detection of EnvG2 protein expres-

sion promoted by pLenti, clear bands of processed gp48 and TMCL were still absent 

(Figure 26B). EnvG2 gp130 and gp48 expressed by MP71 or pLenti were properly 

glycosylated as shown by lower electrophoretic mobilities compared to the 130 kDa 

and 55 kDa marker bands, respectively.  

 

A 

 

B 

 

Figure 26. Transfection optimization with the MP71-EnvG2 and pLenti-EnvG2 constructs 

7 x 10
4
 Platinum-GP cells or HEK293T cells were co-transfected with 125 ng or 250 ng DNA (MP71-

EnvG2 or pLenti-EnvG2 pDNA and plasmids required for virus production; see section 3.2.5). For 

transfection with polyethyleneimine (PEI) various ratios of DNA/PEI were tested in parallel, as indicat-

ed. 48 hours after transfection, cell lysates were prepared and analyzed by immunoblotting. Detection 

of antigens was performed with goat348 α-TM serum. A) Immunoblot of Platinum-GP cells transfected 

with MP71-EnvG2. 250 ng DNA transfected with a DNA/PEI-ratio of 1:8 gave the best transfection effi-

ciencies as indicated by stronger binding of gp130, gp48 and TM
CL

. The reduced electrophoretic mo-

bilities of gp130 and gp48 in comparison to the 130 kDa and 55 kDa marker bands, respectively, indi-

cated proper glycosylation. ns: non-specific detection. B) Immunoblot of HEK293T cells transfected 

with pLenti-EnvG2. 250 ng DNA transfected with a DNA/PEI-ratio of 1:8 resulted in best transfection 

efficiencies as shown by the detection of gp130 and uncleaved gp130-GFP. However, Env protein ex-

pression was too low to allow detection of processed gp48 and TM
CL

. The reduced electrophoretic 

mobilities of gp130, gp130-GFP and gp48 in comparison to the 130 kDa and 55 kDa marker bands, 

respectively, indicated proper glycosylation. ns: non-specific detection. 
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200 µl of unconcentrated viral supernatant obtained from the cultures transfected 

with 250 ng DNA were used to transduce 3.2 x 105 293T cells. 72 hours after infec-

tion, genomic DNA was isolated and used for real-time PCR. Virus titers (IU/ml) were 

determined as described in detail in section 4.4.1.  

Transfection with the MP71-EnvG2 and pLenti-EnvG2 expression plasmids in a 

DNA/PEI ratio of 1:8 resulted in best virus titers (Figure 27), just as it was previously 

the case for MP71-GFP and pLenti-GFP virus production.  

 

Figure 27. Virus titers of FFV Env expression vectors in dependence of DNA/PEI-ratios 

7 x 10
4
 Platinum-GP or HEK293T cells were transfected with 250 ng MP71-EnvG2 or pLenti-EnvG2 

and various DNA/PEI-ratios, as indicated, in order to find an optimal condition for virus production. 48 

hours after transfection, 200 µl of unconcentrated viral culture supernatant were used to transduce 3.2 

x 10
5
 293T cells. 72 hours after infection, virus titers were determined in triplicate by applying real-time 

PCR (see section 4.4.1). The mean values and standard deviations of one experiment are shown. The 

bars represent the MP71-EnvG2 (blue) and the pLenti-EnvG2 (green) virus titers. Transfection with a 

DNA/PEI-ratio of 1:8 resulted in highest virus titers. 

Those data indicated that the protocols for virus production established with the 

MP71-GFP and pLenti-GFP vectors are generally applicable for the MP71- and pLen-

ti-EnvG2 and MPER constructs; albeit, twice as much DNA is required for transfec-

tion.  
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4.5 Production of subviral particles 

4.5.1 Finding a suitable target cell line for stable FFV EnvG2 and chimeric 

FFV/HIV-1 MPER1 and MPER2 protein expression 

After having established protocols for the production of MP71 and pLenti viruses, a 

cell line that is most suitable for transduction and stable FFV EnvG2 and chimeric 

FFV/HIV-1 MPER1 and MPER2 protein expression needed to be found. In that ex-

periment, the HEK293T, 293F, C8166 and CRFK cell lines were screened because 

of their characteristics mentioned in section 4.3.  

For this purpose, 1.6 x 107 Platinum-GP or HEK293T cells were transfected with 26 

µg MP71- or pLenti-EnvG2, MPER1 or MPER2, MP71-GFP or pLenti-GFP and a 

DNA/PEI-ratio of 1:8. 24 hours after transfection, 2 mM or 50 mM Na-butyrate were 

added to the Platinum-GP or HEK293T cultures, respectively. After a further 24 

hours, viral culture supernatants were harvested. The Platinum-GP or HEK293T cul-

tures were provided with fresh culture medium supplemented with 2 mM or 50 mM 

Na-butyrate, respectively. 24 hours later (72 hours after transfection), viral culture 

supernatants were harvested again. The 48 and 72 hours-supernatants were filtered 

through a 0.45 µm filter. Virus was concentrated hundred-fold by centrifugation at 

75500 g for 2 h and resuspending the viral pellets in an appropriate volume of 1x 

PBS. Related 48 and 72 hours-virus concentrates were pooled and stored at -20 °C. 

Afterwards, 50 µl of concentrated MP71- or pLenti-EnvG2, MPER1 or MPER2 virus 

or MP71-GFP or pLenti-GFP virus (negative controls) were used for infection of 1.4 x 

105 293F, C8166, 293T or CRFK cells. Cell lysates were prepared 72 hours after in-

fection and applied to immunoblotting detecting antigens with goat348 α-TM serum. 

Cell lysates of cells earlier transfected with pCF7 served as positive control (Figure 

28).  

293F cells transduced with MP71- or pLenti-EnvG2, MPER1 or MPER2 virus ex-

pressed Env protein as shown by weak detection of gp130 (Figure 28A). The expres-

sion of gp130 and uncleaved gp130-GFP proteins by pLenti MPER1 and MPER2 

was very low. Processing of Env protein could not be shown, since gp48 and TMCL 

remained undetected. However, proper glycosylation of gp130 and gp130-GFP was 

indicated by their reduced electrophoretic mobility compared to the 130 kDa marker 

band.  
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Env protein expression in infected C8166 cells was completely absent (Figure 28B). 

Env protein expression was not promoted in pLenti-infected HEK293T cells. In con-

trast, MP71-infected HEK293T cells expressed EnvG2, MPER1 or MPER2 protein as 

shown by the detection of gp130 (Figure 28C). Expression of EnvG2 gp130 protein 

was stronger than MPER1 and MPER2 gp130 protein so that processing of EnvG2 

could also be shown as indicated by the detection of gp48 and TMCL. Furthermore, 

gp130 was running above the 130 kDa marker band, indicating proper glycosylation. 

However, the protein smear of processed EnvG2 might be a result of differential and 

incomplete glycosylation levels.  

CRFK cells transduced with MP71-EnvG2, MPER1 and MPER2 virus showed strong 

expression and processing of Env protein as indicated by detection of distinct protein 

bands of gp130, gp48 and TMCL (Figure 28D). Proper glycosylation of Env was veri-

fied by the presence of only low protein smear but sharp protein bands of gp130 and 

gp48 running above the 130 kDa and 55 kDa marker bands, respectively. Again, Env 

protein expression in pLenti-infected CRFK cells remained undetectable.  

Those results suggested that CRFK cells infected with MP71-EnvG2, MPER1 or 

MPER2 virus are most suitable for FFV Env protein expression when compared to in-

fected 293F, C8166 and HEK293T cells. Consequently, the MP71-transduced CRFK 

cultures were expanded for further experiments on subviral particle production.  
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Figure 28. Screening various cell lines for stable expression of FFV EnvG2 and chimeric 

FFV/HIV-1 MPER1 and MPER2 protein 

1.4 x 10
5
 293F, C8166, HEK293T or CRFK cells were infected with 50 µl of concentrated MP71- or 

pLenti-EnvG2, MPER1 or MPER2 virus or MP71-GFP or pLenti-GFP virus (negative controls) as indi-

cated. 72 hours after infection, cell lysates were prepared and analyzed by immunoblotting, along with 

cell lysates of pCF7-transfected cells as positive control. Detection of antigens was performed with 

goat348 α-TM serum. A) Immunoblot of transduced 293F cells. All constructs promoted FFV EnvG2 

and hybrid FFV/HIV-1 MPER1 and MPER2 protein expression as shown by the detection of gp130 

and uncleaved gp130-GFP encoded by the pLenti constructs. The reduced electrophoretic mobilities 

of gp130 and gp130-GFP in comparison to the 130 kDa marker band indicated proper glycosylation. 

Expression of processed gp48 and TM
CL

 was absent. ns: non-specific detection. B) Immunoblot of 

transduced C8166 cells. Expression by all MP71 and pLenti constructs was absent. C) Immunoblot of 

transduced 293T cells. Expression of FFV Env protein by the pLenti constructs was absent. All MP71 

constructs promoted FFV EnvG2 protein and hybrid FFV/HIV-1 MPER1 and MPER2 protein expres-

sion as shown by the detection of gp130. FFV EnvG2 protein was stronger expressed than MPER1 

and MPER2 proteins. Weak bands of processed FFV EnvG2 gp48 and TM
CL

 could be detected. The 

reduced electrophoretic mobilities of gp130 and gp48 in comparison to the 130 kDa and 55 kDa mark-

er bands, respectively, indicated proper glycosylation. ns: non-specific detection. D) Immunoblot of 

transduced CRFK cells. Expression of FFV Env protein by the pLenti constructs was absent. All MP71 

constructs promoted strong FFV EnvG2 and hybrid FFV/HIV-1 MPER1 and MPER2 protein expres-

sion and processing as shown by the detection of distinct bands of gp130, gp48 and TM
CL

. The re-

duced electrophoretic mobilities of gp130 and gp48 in comparison to the 130 kDa and 55 kDa marker 

bands, respectively, indicated proper glycosylation. 
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4.5.2 CRFK cells transduced with MP71-EnvG2, MPER1 and MPER2 virus re-

lease subviral particles 

CRFK cells that were transduced with MP71-EnvG2, MPER1 and MPER2 virus seem 

to be suitable for strong expression of FFV EnvG2 and hybrid FFV/HIV-1 MPER1 and 

MPER2 protein (Figure 28D). Next, they had to be tested for subviral particle-release 

(SVP).  

For this purpose, 8 ml cell culture supernatant of confluent CRFK cultures infected 

with MP71-EnvG2, MPER1 or MPER2 virus were harvested. The cell-free superna-

tants that were supposed to contain SVPs were applied to ultracentrifugation on a 20 

% sucrose cushion. The protein pellets were resuspended in 80 µl sample buffer and 

directly analyzed by immunoblotting, along with cell lysates of the corresponding 

transduced CRFK cells as positive controls. Goat348 α-TM serum was used for anti-

gen detection (Figure 29).  

In all supernatants of EnvG2, MPER1 or MPER2 protein-expressing CRFK cultures, 

processed and properly glycosylated gp48 was present as shown by the detection of 

sharp protein bands running above the 55 kDa marker band. EnvG2 protein was 

more abundant when compared to MPER1 and MPER2 protein; even precursor 

EnvG2 gp130 could be detected.  

Those results gave a first indication that CRFK cells transduced with MP71-EnvG2, 

MPER1 and MPER2 virus release SVPs into supernatants.  
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Figure 29. MP71-transduced CRFK cells release FFV EnvG2 and chimeric FFV/HIV-1 MPER1 

and MPER2 subviral particles into cell culture media 

Cell culture supernatants of confluent CRFK cultures transduced with MP71-EnvG2, MPER1 or 

MPER2 virus were harvested. 8 ml of cell-free supernatants were concentrated hundred-fold by ultra-

centrifugation on a 20 % sucrose cushion and analyzed by immunoblotting. Cell lysates of the corre-

sponding transduced CRFK cells served as positive controls. Detection of antigens was performed 

with goat348 α-TM serum. FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and MPER2 SVPs were re-

leased into the supernatants as shown by the detection of processed gp48. EnvG2 SVPs were strong-

er released than MPER1 and MPER2 SVPs that were present in equal amounts. The precursor gp130 

of EnvG2 protein was also detected. The reduced electrophoretic mobilities of gp130 and gp48 in 

comparison to the 130 kDa and 55 kDa marker bands, respectively, indicated proper glycosylation. ns: 

non-specific detection.  

4.5.3 Characterization of EnvG2, MPER1 and MPER2 subviral particles by im-

munoprecipitation 

In order to test MP71-transduced CRFK cells on release of functional subviral parti-

cles (SVPs), immunoprecipitation was applied. To allow verification that the 2F5 and 

4E10 epitopes are accessible on the surface of native MPER1 or MPER2 SVPs, mAb 

2F5 and mAb 4E10 were used for immunoprecipitation.  

For this purpose, cell culture supernatants of confluent CRFK cultures transduced 

with MP71-EnvG2, MPER1 or MPER2 virus were harvested. The cell-free superna-

tants that were supposed to contain SVPs were ultracentrifuged on a 20 % sucrose 

cushion. Subsequently, the protein pellets were resuspended in an appropriate vol-

ume of 1x PBS containing protease inhibitor for two hundred-fold concentration. The 

concentrates were directly applied to immunoprecipitation. For immunoprecipitation 

of FFV EnvG2 SVPs and antigens from pCF7-transfected HEK293T cells (positive 

control), goat348 α-TM serum was used. FFV MPER1 and MPER2 SVPs and 1x 



 
 Results 

 

   

 
Page 68 

 

  

PBS (negative control) were submitted to immunoprecipitation with mAb 2F5 or mAb 

4E10. After washing the antigen-antibody-protein G complexes, the last washing frac-

tions were saved as controls for immunoblotting. Immunoprecipitated antigens were 

eluted from protein G by boiling in sample buffer. Finally, equal aliquots of the saved 

washing fractions (W4) and the immunoprecipitates were analyzed by immunoblot-

ting (Figure 30). In order to avoid cross-reactivity of secondary antibodies, Rat321-3 

α-TM serum was used to detect immunoprecipitated EnvG2 SVPs; immunoprecipi-

tated MPER1 and MPER2 SVPs were detected with goat348 α-TM serum.  

Native EnvG2 SVPs present in concentrated supernatants were immunoprecipitated 

by goat348 α-TM serum as indicated by the presence of furin-cleaved and properly 

glycosylated gp48 running above the 55 kDa marker band (Figure 30A). Likewise, 

mAb 2F5 and mAb 4E10 were able to immunoprecipitate MPER1 and MPER2 as 

shown by the detection of processed gp48 (Figure 30B, C). Again, reduced electro-

phoretic mobility compared to the 55 kDa marker band, verified proper glycosylation 

of gp48. Immunoprecipitation with mAb 2F5 resulted in higher enriched MPER1 

SVPs in relation to MPER2 SVPs. In return, immunoprecipitation of MPER2 SVPs 

was more efficient with mAb 4E10. All three immunoprecipitations could be consid-

ered very specific since antigens were completely absent in all washing fractions. 

The results of immunoprecipitation indicated that CRFK cells transduced with MP71-

EnvG2, MPER1 and MPER2 virus release functional SVPs with accessible 2F5 and 

4E10 epitopes. 
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Figure 30. Immunoprecipitates of FFV EnvG2 and chimeric FFV/HIV-1 MPER1 and MPER2 sub-

viral particles 

Cell culture supernatants of confluent CRFK cultures transduced with MP71-EnvG2, MPER1 or 

MPER2 virus were harvested and concentrated two hundred-fold by ultracentrifugation on a 20 % su-

crose cushion. The concentrates were applied to immunoprecipitation. A) Immunoprecipitation of na-

tive FFV EnvG2 SVPs, 1x PBS (negative control) and a cell lysate of pCF7-transfected HEK293T cells 

(positive control) with goat348 α-TM serum. The immunoprecipitates (IP) and the fourth washing frac-

tions (W4) were analyzed by immunoblotting. Detection of antigens was performed with rat321-3 α-TM 

serum. FFV EnvG2 SVPs were immunoprecipitated by goat 348 α-TM serum as shown by the detec-

tion of gp48. The reduced electrophoretic mobility of gp48 in comparison to the 55 kDa marker band 

indicated proper glycosylation. B, C) Immunoprecipitation of hybrid FFV/HIV-1 MPER1 and MPER2 

SVPs and 1x PBS (negative control) with mAb 2F5 (B) or mAb 4E10 (C). The immunoprecipitates (IP) 

and the fourth washing fractions (W4) were analyzed by immunoblotting. Detection of antigens was 

performed with goat348 α-TM serum. Chimeric FFV/HIV-1 MPER1 and MPER2 SVPs were immuno-

precipitated by mAb 2F5 and mAb 4E10 as shown by the detection of gp48. MPER1 SVPs were more 

efficiently immunoprecipitated by mAb 2F5 than MPER2 SVPs (B); whereas MPER2 SVPs were high-

er enriched by mAb 4E10 than MPER1 SVPs (C). The reduced electrophoretic mobility of gp48 in 

comparison to the 55 kDa marker band indicated proper glycosylation. Immunoprecipitation was spe-

cific, since antigens were absent in all washing fractions. ns: non-specific binding 
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4.5.4 Transmission electron microscopy of concentrated cell culture superna-

tants supposed to contain subviral particles 

To further indicate that subviral particles (SVPs) are present in cell culture superna-

tants of CRFK cultures transduced with MP71-EnvG2, MPER1 and MPER2 virus, 

transmission electron microscopy was applied. 

For this purpose, MP71-transduced CRFK cultures (see section 4.5.2) were expand-

ed for SVP large-scale production in Corning® HYPERFlasks®. 500 ml cell-free su-

pernatants of confluent CRFK cultures that were supposed to release SVPs were 

harvested and ultracentrifuged on a 20 % sucrose cushion. Protein pellets were re-

suspended in 500 µl 1x PBS containing protease inhibitor. Concentrates were ana-

lyzed by Michael Laue and Gudrun Holland of the ZBS 4 (Advanced Light and Elec-

tron Microscopy) of the Robert Koch-Institute by negative staining electron microsco-

py (see section 3.4) (Figure 31).  

In general, two classes of particles were discovered in all samples. One class was 

more abundant, electron dense and about 100 nm in size. The other class was 

smaller in size (50 - 70 nm) with characteristic surface structures that resemble FV-

typical dense glycoprotein [83]. In order to demonstrate that one of those classes of 

particles are FFV SVPs, it would be necessary to apply electron microscopy after the 

method of immunogold-labeling utilizing, for example, goat348 α-TM serum, mAb 

2F5 or mAb 4E10.  
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Figure 31. Electron micrographs of concentrated subviral particle-like structures  

Supernatants of confluent CRFK cultures transduced with MP71-EnvG2, MPER1 or MPER2 virus 

were harvested and concentrated thousand-fold by ultracentrifugation on a 20 % sucrose cushion. 

FFV EnvG2 (A), FFV/HIV-1 MPER1 (B) and FFV/HIV-1 MPER2 (C). Two classes of particles could be 

found in all samples. One class was more abundant, electron dense and about 100 nm in size. The 

other class was smaller in size with characteristic surface structures that resemble glycoprotein.  
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4.5.5 Optimization of subviral particle production 

DMEM HG was used in the experiments so far. However, the presence of 10 % FCS 

in cell culture supernatants could hamper SVP purification. For that reason, CRFK 

cells transduced with MP71-EnvG2 virus were subcultured in various commercially 

available serum-free expression media:  

 DMEM HG, FCS-free 

 RPMI, FCS-free 

 FreeStyle™ 293 Expression Medium  

 HyClone™ SFM4HEK293™ Medium 

 EX-CELL® VPRO 

Transduced CRFK cells grown in standard DMEM HG with 10 % FCS served as ref-

erence culture. 48 hours after subculturing, cells were analyzed by means of viabili-

ties, expression and processing of EnvG2 protein and release of EnvG2 SVPs. The 

viability-assay revealed that HyClone™ SFM4HEK293™ Medium and EX-CELL® 

VPRO increased the cell viabilities 2.4- and 2.2-fold, respectively (Figure 32A).  

8 ml cell-free supernatants were concentrated by ultracentrifugation on a 20 % su-

crose cushion. The protein pellets were resuspended in 80 µl sample buffer. In addi-

tion, cell lysates of the corresponding cells were prepared. Concentrates and lysates 

were analyzed in parallel by immunoblotting using goat348 α-TM serum for antigen 

detection (Figure 32B).  

In comparison, all tested media promoted EnvG2 protein expression and processing 

to similar degrees. Nevertheless, HyClone™ SFM4HEK293™ Medium and EX-

CELL® VPRO resulted in highest SVP-release, as indicated by strong detection of 

processed and properly glycosylated gp48 in the respective concentrated cell culture 

supernatants.  
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Figure 32. Testing various serum-free expression media for the purpose of large-scale produc-

tion of subviral particles 

CRFK cells transduced with MP71-EnvG2 virus were subcultured in various serum-free (-) culture me-

dia as indicated: DMEM HG, RPMI, FreeStyle™ 293 Expression Medium, HyClone™ SFM4HEK293™ 

Medium or EX-CELL® VPRO. As reference served transduced CRFK cells cultured in DMEM HG 

complemented with 10 % FCS (+). A) Viabilities in dependence of the tested expression media. 48 

hours after subculturing, viabilities were determined as described in the method section. The individual 

viabilities were put in relation to the viability of the reference culture. The bars indicate the values of 

one experiment. In comparison, HyClone™ SFM4HEK293™ Medium was most supportive to cells 

since it resulted in a 2.4-fold increase of viability. B) FFV EnvG2 protein expression and FFV EnvG2 

subviral particle-release (SVP) in dependence of the tested expression media. 48 hours after subcul-

turing, the cell-free supernatants were concentrated hundred-fold by ultracentrifugation on a 20 % su-

crose cushion. The concentrates were analyzed by immunoblotting, along with cell lysates of the 

transduced CRFK cells grown in the respective media. Detection of antigens was performed with 

goat348 α-TM serum. Compared to all other tested media, HyClone™ SFM4HEK293™ Medium and 

EX-CELL® VPRO promoted FFV EnvG2 SVP-release decisively as shown by the dominant protein 

bands of processed gp48 in the concentrates. The reduced electrophoretic mobilities of gp130 and 

gp48 in comparison to the 130 kDa and 55 kDa marker bands, respectively, indicated proper glycosyl-

ation.  

Due to unknown characteristics about the stability of SVPs in cell culture superna-

tants, an additional experiment should reveal an optimal harvest time point. There-

fore, four CRFK cultures transduced with MP71-EnvG2 virus were established in Hy-

Clone™ SFM4HEK293™ Medium. In order to find an optimal harvest time point, cell 

culture supernatants were harvested 24, 48, 72 or 96 hours after subculturing, re-

spectively. 8 ml of the respective cell-free supernatants were concentrated by ultra-

centrifugation on a 20 % sucrose cushion.  The protein pellets were resuspended in 
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80 µl sample buffer and directly analyzed by immunoblotting using goat348 α-TM se-

rum for antigen detection (Figure 33). The cell lysates of the CRFK cells collected at 

the same time points as the corresponding cell culture supernatants served as refer-

ence.  

It turned out that harvesting the cell culture supernatants at different time points did 

not accumulate SVPs after 24 hours as shown by equal detection of gp48. However, 

enriched contaminants could be observed in the 96 hour-concentrate as indicated by 

the detection of TMCL running below gp48.  

 

Figure 33. Amount of subviral particles in cell culture supernatants at different time points 

CRFK cells transduced with MP71-EnvG2 virus were four times subcultured in HyClone™ 

SFM4HEK293™ Medium. 24, 48, 72 or 96 hours after subculturing, the respective cell culture super-

natants were harvested and applied to ultracentrifugation on a 20 % sucrose cushion for hundred-fold 

concentration. The concentrates were analyzed by immunoblotting, along with the corresponding cell 

lysates of the subcultured CRFK cells collected at the same time points as the respective cell culture 

supernatants. Detection of antigens was performed with goat348 α-TM serum. Harvesting cell culture 

supernatants at different time points revealed no accumulation or depletion of released subviral parti-

cles as shown by equal detection of gp48 in the respective supernatants. Gp130 and gp48 had re-

duced electrophoretic mobilities when compared to the 130 kDa and 55 kDa marker bands, respec-

tively, that is an indication for proper glycosylation.  

The results indicated that HyClone™ SFM4HEK293™ Medium as well as EX-CELL® 

VPRO are very suitable expression media for large-scale production of FFV SVPs. 

No change in the amount of SVPs could be observed after 24 hours of subculturing. 

In order to avoid accumulation of contaminants, supernatants should be harvested 

within 24 and 72 hours. One can conclude that MP71-transduced CRFK cells cul-

tured in HyClone™ SFM4HEK293™ Medium allow daily harvesting of SVP-

containing cell culture supernatants for the purpose of large-scale production.  



 
 Results 

 

   

 
Page 75 

 

  

4.5.6 Do lysine-to-arginine mutations in FFV Elp increase SVP-release? 

It is known that FV Env undergoes several post-translational modifications throughout 

cellular processing. Previous studies on PFV Env revealed five lysine residues (K14, 

K15, K18, K34 and K53) located in the N-terminal part of the envelope leader peptide 

(Elp) that are targets for ubiquitination (Figure 34A). Those ubiquitination sites are 

apparently responsible for limited subviral particle-release (SVP) since lysine-to-

arginine mutations of all five residues (R14, R15, R18, R34 and R53) increased SVP-

release more than 10-fold (Figure 34B) [87, 88]. 

 

A 

 

B 

 

Figure 34. Deletion of the ubiquitination sites in PFV Elp leads to increased subviral particle-

release [87, 88] 

A) PFV Env. LP: envelope leader peptide, h: hydrophobic region, SU: surface protein, FP: fusion pep-

tide, TM: transmembrane envelope protein, MSD: membrane spanning domain, K: lysine residue, R: 

arginine residue. Also shown are the approximate locations of the ubiquitination sites (K14, K15, K18, K34 

and K53) of the wild-type PFV LP (wt) and the inactivated ubiquitination sites (R14, R15, R18, R34 and 

R53) of the mutated PFV LP (ΔUbi). B) Relative influence of the deletions of the ubiquitination sites in 

the PFV LP on subviral particle-release (SVP). SVP-release is increased more than 10-fold after dele-

tion of all five ubiquitination sites.  

Whether FFV Elp also carries ubiquitination sites, is currently unknown. Based on the 

assumption that ubiquitination does happen in FFV Elp, deletion of presumptive 

ubiquitination sites might also increase FFV SVP-release. By checking the sequence 

of the N-terminal part of FFV Elp, five lysine residues could be found (K10, K20, K24, 

K45 and K48) (Figure 35). Those lysine residues were mutated to arginine using muta-
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genesis-PCR. The expression plasmids pBC EnvG2, MPER1 and MPER2 [95] 

served as templates and the K-to-R mutations were introduced by the primers Elp1 

fwd, Elp1 rev, Elp2 fwd and Elp2 rev. The expression plasmids carrying all five K-to-R 

mutations in the FFV Elp sequence were called pBC Elp-EnvG2, pBC Elp-MPER1 

and pBC Elp-MPER2.  

 

Figure 35. Amino acid sequences of PVF Elp wt, FFV Elp wt and FFV Elp ΔUbi carrying the mu-

tations K10R, K20R, K24R, K45R and K48R 

The upper amino acid sequence indicates the N-terminal region of the wild-type PFV Envelope leader 

peptide (Elp). PFV Elp naturally contains five lysine residues that are targets of ubiquitination (red K14, 

K15, K18, K34 and K53). Also shown are the N-terminal sequences of the wild-type FFV Elp and the mu-

tated FFV Elp ΔUbi. The five wild-type lysine residues (Ks) are highlighted in red, while the lysine-to-

arginine mutations (Rs) are depicted in blue.  

In order to test the impact of the mutated FFV Elp gene sequence on EnvG2 protein 

expression and SVP-release, 3 x 106 HEK293T cells were transfected with 15 µg 

pBC EnvG2, pBC Elp-EnvG2 or pCF7 Bet-His as positive control. 72 hours after 

transfection, two fractions of cell pellets were prepared to allow subsequent gene ex-

pression analysis by reverse transcription-PCR (RT-PCR) and immunoblotting.   

One fraction was used for investigation of Elp-EnvG2 gene transcription. Therefore, 

cellular RNA was isolated and applied to non-quantitative RT-PCR along with pBC 

EnvG2, pBC Elp-EnvG2 and pCF7 Bet-His plasmid DNA (pDNA) as positive controls. 

For amplification of the whole Env gene sequence, the primers FFV EnvG2 fwd and 

FFV EnvG2 rev were used. Figure 36A shows the cDNA-amplicons separated by 1 % 

agarose gel-electrophoresis. RT-PCR of isolated RNA resulted in two distinct ampli-

cons that were smaller than the single amplicons coming from the expression plas-

mids (pDNA). One of the two cDNA-amplicons obtained from the pCF7 Bet-His RNA-

isolate (positive control) was smaller in length than the respective cDNA-amplicons of 

EnvG2 and Elp-EnvG2 RNA-isolates. In comparison, transcription of the Elp-EnvG2 

gene seemed to be less promoted than EnvG2 gene transcription as shown by the 

faint detection of the Elp-EnvG2 cDNA-amplicons.  
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The second cell fraction was used for the preparation of cell lysates that were ana-

lyzed by immunoblotting working with goat348 α-TM serum (Figure 36B) for antigen 

detection. pBC Elp-EnvG2 promoted Elp-EnvG2 protein expression, processing and 

proper glycosylation as shown by the detection of gp130 and gp48 running above the 

130 kDa and 55 kDA marker bands. Elp-EnvG2 protein expression was reduced.  

In order to determine the impact of the five K-to-R mutations on SVP-release, the 

cell-free supernatants of the transfected HEK293T cultures were ultracentrifuged on 

a 20 % sucrose cushion. Subsequently, protein pellets were resuspended in an ap-

propriate volume of sample buffer for hundred-fold concentration and directly ana-

lyzed by immunoblotting (Figure 36C) using goat348 α-TM serum for antigen detec-

tion. In comparison to EnvG2 SVPs, lower amounts of Elp-EnvG2 SVPs were re-

leased into the supernatants as shown by the weaker detection of processed gp48.  

Those results indicated that the five lysine-to-arginine mutations incorporated into the 

N-terminal region of FFV Elp significantly decreased expression of Env protein. As a 

consequence, the release of Elp-EnvG2 SVPs was reduced when compared to 

EnvG2 SVPs. According to those observations, the pBC Elp-EnvG2, MPER1 and 

MPER2 expression plasmids were excluded from further experiments on SVP pro-

duction.  
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Figure 36. pBC FFV Elp-EnvG2 promotes reduced Env gene transcription, protein expression 

and subviral particle-release  

3 x 10
6
 HEK293T cells were transfected with 15 µg pBC EnvG2, pBC Elp-EnvG2 or pCF7 Bet-His 

(positive control). 72 hours after transfection, cells were pelleted and analyzed. A) Non-quantitative re-

verse transcription-PCR (RT-PCR) of EnvG2 and Elp-EnvG2 mRNA transcripts. RNA was isolated 

from the transfected cells and RT-PCR-amplified, along with pBC EnvG2, pBC Elp-EnvG2 and pCF7 

Bet-His plasmid DNA (pDNA) as positive controls. Amplified cDNA was applied to 1 % agarose gel-

electrophoresis. Two cDNA-amplicons were obtained with EnvG2, Elp-EnvG2 and pCF7 Bet-His RNA-

isolates that were smaller than the single amplicons of the expression plasmids. One cDNA-amplicon 

of the positive control pCF7 Bet-His RNA-isolate was smaller than the respective cDNA-amplicon of 

the EnvG2 and Elp-EnvG2 RNA-isolates. Transcription of the Elp-EnvG2 gene seemed to be weaker 

than EnvG2 gene transcription. B) EnvG2 and Elp-EnvG2 protein expression. Cell lysates of the trans-

fected HEK293T cells were prepared and analyzed by immunoblotting. Detection of antigens was per-

formed with goat348 α-TM serum. Env protein expression by pBC Elp-EnvG2 was lower compared to 

pBC EnvG2. The reduced electrophoretic mobilities of gp130 and gp48 in comparison to the 130 kDa 

and 55 kDa marker bands, respectively, indicated proper glycosylation. ns: non-specific detection. C) 

EnvG2 and Elp-EnvG2 subviral particles (SVP) released into the cell culture supernatants. Cell-free 

supernatants of the transfected HEK293T cultures were concentrated hundred-fold by ultracentrifuga-

tion on a 20 % sucrose cushion. Concentrates were analyzed by immunoblotting. Detection of anti-

gens was performed with goat348 α-TM serum. By comparison, lower amounts of Elp-EnvG2 SVPs 

were released into the cell culture supernatants. 
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5 Discussion 

5.1 Transfection optimization for high virus titers 

The experiments on transfection optimization confirmed findings of previous studies 

showing that the plasmid size is inversely correlated with the transfection efficiency 

[112] and thus detrimental to virus titers [113]. Additionally, the concentration of the 

transfection reagent plays a crucial role as indicated by the results of the screening 

for optimal transfection conditions (Figure 20). Actually, the outcome of that experi-

ment seemed to be contradictory on first sight. Higher amounts of MP71-GFP and 

pLenti-GFP pDNA (2 µg/1.6 x 105 cells) resulted in increased detection of GFP ex-

pression in the cell lysates (Figure 20B), but the highest virus titers were obtained 

with lower DNA-levels (0.5 µg/1.6 x 105 cells) (Figure 20C). This might be explained 

by the fact that 2 µg DNA required four-fold more transfection reagent, polyethylene-

imine (PEI). However, viabilities were drastically reduced at higher concentrations 

(Figure 20A) that is not quite surprising because PEI is known to inflict damages on 

cytoplasm membranes [114]. Transfection with 0.5 µg DNA per 1.6 x 105 cells and a 

DNA/PEI-ratio of 1:8 seemed to reflect a balanced compromise between the toxicity 

of PEI and the required DNA amount for virus production.  

The outcome of the experiment on the transferability of the transfection protocols on 

MP71-EnvG2 and pLenti-EnvG2 confirmed that the plasmid size is decisive for trans-

fection efficiencies (Figure 26). For comparison: MP71-GFP is ~ 6 kb and MP71-

EnvG2 is ~ 8.3 kb in length; while pLenti-GFP is ~ 8.4 kb and pLenti-EnvG2 is ~ 11.7 

kb in length. When the amount of transfected DNA was doubled, EnvG2 protein ex-

pression promoted by MP71-EnvG2 (Figure 26A) and pLenti-EnvG2 (Figure 26B) 

was significantly increased. Probably, transfection of pLenti-EnvG2 would even re-

quire more DNA. Transfection with 250 ng DNA increased detection of gp130 and 

uncleaved gp130-GFP but it was still low compared to EnvG2 protein expression 

promoted by MP71-EnvG2; processed gp48 was not expressed. Comparison of the 

MP71-EnvG2 and pLenti-EnvG2 virus titers (Figure 27) further verifies the hypothesis 

that larger proviral DNA leads to lower virus titers. However, one must consider that 

the MP71 and pLenti transfer plasmids belong to different packaging systems. In con-

trast to MP71-vectors, pLenti-vectors require co-transfection of three additional plas-

mids for virus production (see section 3.2.5). Since equal pDNA-levels were trans-
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fected for MP71- or pLenti virus production, comparatively lower pLenti virus titers 

could also be a result of less amount of pLenti-vector available for packaging.  

Nevertheless, the pLenti packaging system is optimized for virus production as indi-

cated by infections with pLenti-GFP virus. In the experiment on increasing virus pro-

duction with additives, transduction efficiencies after infections with pLenti-GFP virus 

were between ~ 10 to 45 % compared to ~ 3 to 5 % resulting from MP71-GFP virus 

infections (Figure 21). The efficiency of pLenti-GFP virus infection was further indi-

cated by the data obtained from transduction optimization through assisted infection; 

~ 70 to 100 % transduction efficiencies could be obtained (Figure 23A). Presumably, 

those results display the fact that the pLenti packaging system works with a protocol 

that is established and optimized for virus production. While the pLenti packaging 

system uses three plasmids expressing Gag, Pol and accessory proteins at prede-

fined ratios, MP71 virus production was performed with a packaging cell line. In this 

project, Platinum-GP cells were used which constantly express the packaging factors 

gag and pol at default rates. Accordingly, diverse transduction efficiencies between 

MP71- and pLenti-infected cell cultures are not surprising. Platinum-GP cells are also 

293 cells but, regarding their comparably reduced viabilities, it has to be added that 

they need to be grown under blasticidin-selection in order to maintain gene expres-

sion of gag and pol. Drug selection might constitute a substantial burden that could 

hamper virus production and increase their vulnerability to PEI (Figure 20). Further-

more, the cytotoxicity of VSV-G [115, 116] should also be taken into account of which 

comparatively higher amounts were applied for pseudotyping MP71-vectors (see sec-

tion 3.2.5).  

Interestingly, supplementation with Na-butyrate and valproic acid, that also have 

clear cytotoxic properties [117-119], showed to be supportive in virus production at 

completely different concentrations (Figure 21). Obviously, MP71-GFP and pLenti-

GFP virus production was less supported by valproic acid than Na-butyrate even 

though valproic acid was shown to be superior in promoting protein expression after 

transient transfection of 293 cells [120]. Additionally, virus production was non-linear 

with increasing concentrations of Na-butyrate or valproic acid. That might be ex-

plained by the fact that both chemicals interfere in biochemical pathways regulating 

the cell-cycle by directly and/or indirectly activating and/or de-activating several regu-

latory proteins [117, 119]. Therefore, it can be speculated that those diverse results 

are a phenomenon of biochemical homeostasis.  
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5.2 MP71-infection of CRFK cells seemed to be most suitable for the estab-

lishment of cell lines stably expressing EnvG2, MPER1 and MPER2 pro-

tein 

In a previous study, it was shown that polybrene and spinoculation enhance lentiviral 

transduction efficiencies [121]. Accordingly, it was not surprising that polybrene and 

spinoculation in combination resulted in enhanced infections as shown by the results 

of the transduction optimization experiments (Figure 23). As already mentioned 

above, infection with pLenti-GFP virus seems to be more feasible, presumably due to 

high virus titers. Infection of 293T, C8166 and CRFK cells with virus concentrate only 

resulted in transduction efficiencies between 80 and 100 %. Therefore, infection en-

hancement by polybrene and spinoculation was insignificant. In contrast, MP71-GFP 

virus infections could be considerably boosted by polybrene and spinoculation. Using 

polybrene or spinoculation alone resulted in 20 to 30 % increase of transduction effi-

ciencies in 293T, C8166 and CRFK cells. When polybrene and spinoculation were 

used in combination, the transduction efficiency in 293T cells could even be in-

creased by approximately 70 %.  

Efficacy of polybrene and spinoculation was further confirmed by determination of the 

mean fluorescence intensities (MFI) that were considered to correlate with multiple 

integrations of retroviral vectors (Figure 23B). MFIs in 293T, C8166 and CRFK cells 

could be increased by several 100 to 2000 arbitrary units (AU) when polybrene and 

spinoculation were used in combination during infection with MP71-GFP or pLenti-

GFP virus. However, a change of MFIs in C8166 cells after assisted infection with 

MP71-GFP virus could not be observed.  

Interestingly, the four tested infection conditions led to diverse results in 293F cells. 

Transduction with MP71-GFP virus could be improved by a maximum of 18 % when 

polybrene and spinoculation were used in combination. However, the highest trans-

duction efficiency with pLenti-GFP virus was achieved with virus concentrate only. As 

it was the case for C8166 cells, any of the tested conditions did not increase MFIs af-

ter infection with MP71-GFP virus; whereas MFI was significant higher after pLenti-

GFP virus infection with spinoculation. The results of that experiment showed that in-

fection efficiencies depend on the target cell line. Nevertheless, it was surprising that 

transduction of 293F cells was inconsistent with the infection rates of the other tested 

cell lines. 293F cells are 293 cells adapted to be grown in suspension but 293F cells 
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also tended to adhere onto the bottom of culture plates during incubation and 

spinoculation (data not shown). Accordingly, 293F cultures would rather resemble 

293T cultures. 293F cells are standardly grown in serum-free FreeStyle™ 293 Ex-

pression Medium. It can be speculated that some unknown factors supplemented to 

the medium are possibly detrimental to infections with VSV-G pseudotyped vectors. 

However, it has to be considered that the experiment and measurements were each 

conducted only once. Repetitions might allow more convincing insights on infections 

of 293F cells.  

Surprisingly, when infections were performed with MP71 FFV EnvG2 or hybrid 

FFV/HIV-1 MPER1 or MPER2 virus, 293F cells seemed to be more suitable com-

pared to C8166 cells (Figure 28A, B). While 293F cells showed weak expression of 

precursor gp130, Env protein expression was even entirely absent in C8166 cells. At 

least Env protein expression promoted by the MP71 expression vectors was ex-

pected because MP71 vector is optimized for protein expression in lymphotrophic cell 

lines like C8166 [96]. In comparison to both suspension cell lines, infections of the 

adherent 293T and CRFK cells with MP71 viruses were more effective (Figure 28C, 

D). Especially CRFK cells showed very strong Env protein expression. Presumably, 

MP71 virus titers were too low to obtain comparable transduction efficiencies in the 

suspension cell lines 293F and C8166; that would be in line with previous reports 

about transduction of suspension cells [122]. When infection was performed with 

pLenti FFV EnvG2 or hybrid FFV/HIV-1 MPER1 or MPER2 virus, 293F cells were the 

only cell line in the panel that showed Env protein expression. This and the fact that 

Env protein expression promoted by pLenti vectors was totally absent in adherent 

293T and CRFK cells (Figure 28C, D) are in stark contrast to transduction efficiencies 

obtained with pLenti-GFP virus (Figure 23). It has to be considered that the titer of 

pLenti EnvG2 virus was lower than the titer of MP71 EnvG2 virus (Figure 27). Pre-

sumably, the titers of pLenti viruses were too low for detectable transductions. An-

other reason for those observations could be possible degradation of the gp130-GFP 

fusion peptide. This cannot be excluded because gp130-GFP is more complex than 

gp130 expressed by the MP71 expression constructs. Misfolding might influence cor-

rect processing of the A2-site of gp130-GFP (Figure 17) and target the fusion peptide 

to proteasomal degradation.  
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5.3 Transduced CRFK cells release chimeric FFV/HIV-1 MPER1 and MPER2 

SVPs that are recognized by 2F5 and 4E10 

In her PhD thesis, Anne Bleiholder demonstrated distinct levels of FFV EnvG2 and 

FFV/HIV-1 MPER1 and MPER2 protein expression and subviral particle release upon 

transient transfection of HEK293T cells. Compared to MPER1 and MPER2 protein, 

release of EnvG2 protein into supernatants was greater promoted (Figure 12) [95]. In 

this project, her findings were confirmed by parallel transfection of HEK293T cells 

with the pBC, pLenti and MP71 EnvG2 and MPER expression constructs (Figure 19); 

although transduced CRFK cells revealed equal protein expression (Figure 28D, 29). 

Analysis of the supernatants obtained from the transduced CRFK cultures verified 

reduced MPER1 and MPER2 SVP-release (Figure 29). It was suggested that replac-

ing the respective DNA sequence in FFV TM with the HIV-1 MPER DNA sequence 

might result in mRNA transcripts with reduced stability or enhanced misfolding of Env 

protein which is subsequently targeted for degradation [95].  

Interestingly, detection of MPER1 protein expression with mAb 2F5 and mAb 4E10 

was stronger when compared to MPER2 protein, as it was already previously shown 

with mAb 2F5 [95]. In an earlier study it was demonstrated that 2F5 and 4E10 recog-

nize their respective epitopes in linear form after denaturation by SDS-PAGE [123-

125]. Thus, different detection of MPER1 and MPER2 protein was quite surprising, 

since both chimeras carry the very same HIV-1 MPER sequences. It can be specu-

lated that more stringent denaturing conditions would have been necessary in order 

to resolve unknown remaining secondary structures or dimerization products caused 

by the three amino acid shift that might reduce the accessibilities of both epitopes. 

However, mAb 2F5 and mAb 4E10 were able to bind the respective epitopes in na-

tive conformation as shown by immunoprecipitation. Both antibodies specifically rec-

ognized and precipitated MPER1 and MPER2 SVPs present in concentrated cell cul-

ture supernatants (Figure 30B, C). Successful immunoprecipitation thus confirmed 

the accessibility of the 2F5 and 4E10 epitopes on the surface of the released hybrid 

MPER1 and MPER2 SVPs that is key for binding by B-cell receptors. However, it 

should be mentioned that B-cell activation depends on activation by T-cells which 

are, in turn, activated by B-cells as antigen-presenting cells. B-cells introduce anti-

gens as small peptides bound to class II major histocompatibility complex proteins to 

T-cells [126]. Accordingly, T-cell receptors have to recognize the 2F5 and 4E10 
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epitopes in the absence of a lipid environment (see section 1.1.4 and 1.3) in order to 

allow successful induction of immune responses against the HIV-1 MPER.  

After immunoprecipitation of EnvG2 SVPs, the precursor protein gp130 was weakly 

detected (Figure 30A). By contrast, gp130 was completely absent in the MPER1 and 

MPER2 precipitates. It was previously demonstrated that FFV EnvG2 protein, unlike 

chimeric FFV/HIV-1 MPER1 and MPER2 proteins, mediates cell fusion upon transi-

ent transfection of 293T cells [95]. Fusogenic activities or cytopathic effects (CPE) 

(Figure 9) result in release of free gp130 protein due to cell lysis. Accordingly, 

Bleiholder’s findings would explain the detection of co-precipitated gp130. 

Negative staining electron microscopy of EnvG2, MPER1 and MPER2 SVP concen-

trates revealed two classes of particles present in concentrated cell culture superna-

tants (Figure 31). One class was more electron-dense and about 100 nm in size. The 

other class was smaller and had a surface with characteristics resembling glycopro-

tein. The member of the electron microscopy department assumed that the smaller 

particles are probably SVPs; whereas the larger particles would be too dense for 

SVPs which do not contain Gag. The morphological appearance of the larger parti-

cles thus suggests the presence of virus or virus-like particles (containing Gag and 

Env) in cell culture supernatants. As a matter of fact, it was previously demonstrated 

that CRFK cells produce an endogenous virus [127, 128]. Concerning immunization 

studies, it would be advantages to gain more insight on the characteristics of the 

larger particles before immunization because their presence in SVP concentrates 

could potentially influence the outcome of the immunization studies.  

5.4 Some expression media increase EnvG2 protein expression 

For the purpose of successful immunization studies using subviral particles (SVPs), 

several micrograms of antigen should be available in high purity. Hence, large-scale 

production of SVPs needed to be optimized in order to increase the yield after ensu-

ing purification. Different commercially available serum-free expression media were 

tested that should facilitate later large-scale production and purification. The results 

displayed in Figure 32 demonstrated significant support of culture viability together 

with high release of EnvG2 protein into supernatants by the application of HyClone™ 

SFM4HEK293™ Medium or EX-CELL® VPRO. In fact, viability was boosted 2.4- or 

2.2-fold by HyClone™ SFM4HEK293™ Medium or EX-CELL® VPRO, respectively. 
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As depicted in Figure 32B, EnvG2 protein expression was apparently only minimally 

stronger promoted by HyClone™ SFM4HEK293™ Medium or EX-CELL® VPRO, 

whereas processing even seemed to be reduced when compared to the other tested 

media. However, together with the strong detection of gp48 in the concentrated cul-

ture supernatants, it can be assumed that SVP-release was considerably enhanced. 

High concentration of gp48 in the supernatants due to fusogenic activity of EnvG2 

could be excluded, since no TMCL was detected [95].  

Harvesting cell culture supernatants at different time points revealed no accumulation 

of SVPs (Figure 33) that was different than expected. It is unclear if the HyClone™ 

SFM4HEK293™ Medium that was used for culturing the transduced CRFK cells 

leads to reduced stability of SVPs. Presumably, the boosted viability and SVP-

release by HyClone™ SFM4HEK293™ Medium is only short-term before cells even-

tually start dying. This would also explain the detection of TMCL in the 96-hour super-

natant (Figure 33). Accordingly, cell culture supernatants should be concentrated be-

tween 24 and 72 hours after subculturing. If the harvest time point is later, accumula-

tions of undesired TMCL occur.  

5.5 Lysine-to-arginine mutations in FFV Elp decrease subviral particle release 

Introduction of five lysine-to-arginine mutations (K-to-R) in the N-terminal region of 

the FFV envelope leader peptide (Elp) (Figure 35) clearly reduced EnvG2 protein ex-

pression (Figure 36). Those results indicated that the ubiquitination sites of PFV Elp 

are not conserved in FFV Elp. While deletion of the ubiquitination sites by K-to-R mu-

tations in PFV Elp increased PFV subviral particle (SVP) release (Figure 34), equiva-

lent mutations in the FFV Elp DNA sequence obviously decreased stability of Env 

mRNA transcripts (Figure 36A).  

Why RT-PCR with isolated RNA resulted in two amplicons is still unexplained (Figure 

36A). The primers that were used should allow amplification of the full-length Env 

gene sequence as demonstrated by parallel RT-PCR-amplification of the respective 

plasmids. Interestingly, even RNA from cells transfected with the infectious molecular 

clone of FFV (pCF7) led to two cDNA-amplicons. However, the smaller fragment of 

pCF7 was apparently shorter in length than the smaller fragments of EnvG2 or Elp-

EnvG2. Analysis of the respective cell lysates by immunoblotting proved that Env 

protein was still expressed and processed (Figure 36B). Sequencing revealed that 
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those amplicons partially correspond to the SU and the TM DNA sequences. Hence, 

the fact that pCF7 resulted in still two but one smaller cDNA-amplicon, could be due 

to the fact that pCF7 encodes unmodified Env; the SD/SA-pair of the Env gene se-

quence is deleted in pBC EnvG2 and pBC Elp-EnvG2 [95]. As a consequence, 

spliced mRNA transcripts of the EnvG2 gene encoded by pCF7 are actually expected 

to be shorter. Nevertheless, those results showed that R-to-K mutations in FFV Elp 

result in decreased SVP-release (Figure 36C) because of reduced EnvG2 protein 

expression (Figure 36A, B).  

5.6 Immunization studies will reveal the potential of hybrid FFV/HIV-1 SVPs to 

induce neutralizing antibodies against HIV-1 

In this project, an efficient protocol for the production of FFV-based subviral particles 

(SVPs) carrying the HIV-1 MPER sequence was established. The protocol is based 

on the strategy of generating cell lines stably expressing FFV EnvG2 or hybrid 

FFV/HIV-1 MPER1 or MPER2 protein after retroviral infection.  

The respective coding sequences were subcloned from the pBC EnvG2, pBC 

MPER1 and pBC MPER2 expression plasmids [95] into two different retroviral trans-

fer plasmids (MP71 and pLenti). Afterwards, generation of single-round viruses and 

infection of target cells was optimized. Stably transduced CRFK cells were then used 

to optimize the large-scale production of EnvG2, MPER1 and MPER2 SVPs. It was 

finally shown that the MPER1 and MPER2 SVPs carry the 2F5 and 4E10 epitopes 

that are accessible to the respective antibodies.  

Further experiments will give rise to efficient protocols for large-scale purification of 

SVPs. The antigens should be eventually confirmed by transmission electron micros-

copy using the method of immunogold-labeling. Final immunization studies utilizing 

the hybrid FFV/HIV-1 MPER1 or MPER2 SVP antigens in a DNA-prime/SVP-boost 

regimen will evaluate their potential for the induction of 2F5 and 4E10-like antibodies 

against HIV-1.  
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6 Zusammenfassung  

Durchschnittlich 2,5 Jahre nach einer HIV-Infektion entwickeln ungefähr 10 - 30 % 

der infizierten Patienten breitneutralisierende Antikörper. Zwei solcher Antikörper sind 

2F5 und 4E10, die die membrannahe externe Region (MPER) des transmembranen 

Hüllproteins gp41 binden. Studien haben ergeben, dass das nichtpathogene Retrovi-

rus feline foamy virus (FFV), ähnlich der 2F5 und 4E10-Epitope, ebenfalls immuno-

gene Regionen im membrannahen Bereich von TM (gp48) mit zweiteiliger Anord-

nung aufweist. Anders als bei anderen Retroviren, ist das FFV Env-Protein in der La-

ge sich ohne weitere Virusproteine als subviraler Partikel (SVP) von der Zytoplas-

mamembran abzuschnüren. In einer vorangegangen Arbeit wurden durch Ersetzen 

der äquivalenten Sequenzen die 2F5 und 4E10-Epitope in die FFV Env-kodierende 

Gensequenz eingefügt. Nach Transfektion von HEK293T-Zellen, wurden hybride 

FFV/HIV-1 SVPs, auf deren Oberfläche die 25F und 4E10 Epitope exponiert sind, in 

die Zellkulturüberstände abgegeben. Um jedoch deren Potential als Impfstoff gegen 

Infektionen durch HIV-1 mittels Immunisierungsstudien in Ratten bestimmen zu kön-

nen, sind größere Mengen dieser chimären SVP-Antigene erforderlich. Im Rahmen 

dieser Masterarbeit wurden effiziente Protokolle zur Großproduktion von SVPs etab-

liert. Zuerst wurden die entsprechenden Sequenzen in retrovirale Transfervektoren 

subkloniert. Um diese mit Vesicular stomatitis virus-Protein G zu pseudotypisieren, 

wurden anschließend die Produktion und das Konzentrieren von infektiösen Viren 

systematisch optimiert, um möglichst hohe virale Titer zu erhalten. Verschiedene 

Zelllinien wurden dann testweise für die Produktion von SVPs stabil transduziert, wo-

bei sich CRFK-Zellen als optimale SVP-Produzenten erwiesen. Nachdem durch Im-

munopräzipitation der Antigene mit den monoklonalen Antikörpern 2F5 und 4E10 ge-

zeigt wurde, dass die entsprechenden Epitope zugänglich sind, wurde die erfolgrei-

che SVP-Produktion mittels Transmissionselektronenmikroskopie nach "Negativkon-

trastierung“ bestätigt. Schließlich wurde die Produktion von SVPs nochmalig durch 

das Testen einer Reihe kommerzieller Expressionsmedien optimiert, wobei erstmals 

durch das Anwenden von Corning® HYPERFlasks® SVPs im größeren Maßstab 

produziert wurden. Durch die hier etablierten Protokolle für die Großproduktion von 

hybriden FFV/HIV-1 SVPs, die die 2F5 und 4E10 Epitope an ihrer Oberfläche prä-

sentieren, kann diese neuartige FFV-basierende rekombinante Strategie für ein Anti-

gen als potentieller HIV-Impstoff getestet werden.  
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