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Abstract

We investigate a specific aspect of a classical problem in the theory of holomorphic mappings between
real submanifolds in complex spaces. Poincaré observed that it is in some sense unlikely for two arbitrary
given real-analytic real submanifolds to find a holomorphic mapping which sends one into the other.
An interesting class studied in this direction is the class of Levi-nondegenerate submanifolds, which was
considered in the pioneering works of Cartan, Tanaka and Chern-Moser. Here the simplest examples
are Levi-nondegenerate hyperquadrics, which serve as models for Levi-nondegenerate hypersurfaces.
After Pinc¢uk’s and Alexander’s work dealing with the equidimensional case, Webster’s rigidity result
constitutes the first step in the study of immersions of spheres contained in complex spaces of different
dimensions. More precisely, Webster considered holomorphic maps from the sphere in C™ to the sphere
in C™*! for n > 3, and showed that all holomorphic mappings are equivalent to the linear embedding
with respect to the groups of automorphisms of the spheres. For n = 2 this rigidity fails and Faran
proved that there are four classes of holomorphic mappings from the sphere in C? to the sphere in C?
modulo equivalence. More recently, Lebl considered holomorphic mappings from the sphere in C? to the
hyperquadric of signature (2,1) in C3. In this case there are seven classes of holomorphic mappings up
to the biholomorphic equivalence mentioned before. With Lebl’s results the missing case of mappings
of Levi-nondegenerate hyperquadrics in dimension two and three was established.

The present work consists of two parts. In the first part we give a new proof of Faran’s and Lebl’s
results by means of a new CR-geometric approach and classify all holomorphic mappings from the
sphere in C? to Levi-nondegenerate hyperquadrics in C3. We use the tools developed by Lamel, which
allow us to isolate and study the most interesting class of holomorphic mappings. This family of so-
called nondegenerate and transversal maps we denote by F. For F we introduce a subclass A/ of maps
which are normalized with respect to the group G of automorphisms fixing a given point. With the
techniques introduced by Baouendi-Ebenfelt—Rothschild and Lamel we deduce a classification of N.
This intermediate result is of twofold importance: On the one hand, if we consider the transitive part
of the automorphism group of the hyperquadrics, we obtain a complete classification of F to show
Faran’s and Lebl’s results. On the other hand our classification of N allows us to prove new topological
results for F, which yield the second part of our work. We demonstrate that from a topological point
of view there is a major difference between the class of mappings of the spheres and mappings of the
sphere in C? to the hyperquadric with signature (2,1) in C3. In the first case F modulo the groups of
automorphisms is discrete in contrast to the second case where this property fails to hold. Furthermore
we study some basic properties such as freeness and properness of the action of G on F. Finally we
obtain a structural result for a particularly interesting subset of F using the real-analytic version of the

local slice theorem for free and proper actions.



Zusammenfassung

In dieser Arbeit untersuchen wir einen Aspekt eines klassischen Problems in der Theorie holomor-
pher Abbildungen zwischen reellen Teilmannigfaltigkeiten in komplexen R&umen. Poincaré bemerkte,
dass es in einem gewissen Sinne unwahrscheinlich ist, fiir zwei beliebig gegebene reell-analytische reelle
Teilmannigfaltigkeiten eine holomorphe Abbildung zu finden, welche die eine in die andere iiberfiihrt.
Unter diesem Gesichtspunkt wurde vor allem eine interessante Klasse, ndmlich Levi-nichtdegenierte
Teilmannigfaltigkeiten, von Cartan, Tanaka und Chern—Moser studiert. Als einfache Beispiele treten
hierbei Levi-nichtdegenerierte Hyperquadriken auf, die als Modelle fiir Levi-nichtdegenerierte Hyper-
flichen dienen. Nachdem Pin¢uk und Alexander den equidimensionalen Fall behandelt hatten, gelang es
Webster mit seinem Rigiditdtssatz Immersionen von Sphéren in komplexen Raumen unterschiedlicher
Dimension zu beschreiben. Webster betrachtete holomorphe Abbildungen zwischen der Sphére in C™
und der Sphire in C"*! fiir n > 3 und konnte zeigen, dass alle holomorphen Abbildungen #quivalent
zur linearen Einbettung sind beziiglich der Gruppen der Automorphismen der Sphéren. Fiir n = 2
gibt es keine solche Rigiditédt, denn Faran konnte zeigen, dass es vier Klassen von holomorphen Ab-
bildungen von der Sphére in C? und der Sphire in C3, modulo Aquivalenz, gibt. Kiirzlich studierte
Lebl holomorphe Abbildungen von der Sphire in C? und der Hyperquadrik mit Signatur (2,1) in C3.
Er bewies, dass es sieben Klassen von holomorphen Abbildungen beziiglich der vorher beschriebenen
biholomorphen Aquivalenz gibt. Dieses Resultat von Lebl vollendete die Klassifizierung holomorpher
Abbildungen zwischen Levi-nichtdegenerierten Hyperquadriken in den Dimensionen zwei und drei.

Die vorliegende Arbeit besteht aus zwei Teilen. Im ersten Teil wird ein ein neuer Beweis von Faran’s und
Lebl’s Resultat mittels eines neuen CR-geometrischen Zugangs gegeben. Wir klassifizieren alle holomor-
phen Abbildungen von der Sphire in C? und Levi-nichtdegenerierten Hyperquadriken in C3. Dazu wer-
den Resultate von Lamel verwendet, die es uns erlauben unsere Untersuchungen auf eine spezielle Klasse
von holomorphen Abbildungen einzuschrianken. Diese Familie von sogenannten nichtdegenerierten und
transversalen Abbildungen werden wir mit F bezeichnen. Fiir F geben wir eine Unterklasse A von Ab-
bildungen an, die, beziiglich der Gruppe G von Automorphismen welche einen gegebenen Punkt fixieren,
normalisiert sind. Vermoge der Techniken von Baouendi—Ebenfelt—Rothschild und Lamel erhalten wir
eine Klassifikation von N, welche von doppelter Bedeutung ist. Einerseits erhalten wir eine vollstandige
Klassifizierung von F und reproduzieren die Resultate von Faran und Lebl, wenn wir den transitiven
Teil der Automorphismen der Hyperquadriken verwenden. Andererseits erlaubt es unsere Klassifikation
von N neue topologische Resultate fiir F im zweiten Teil der Arbeit zu beweisen. Wir zeigen, dass es
von einem topologischen Standpunkt aus gesehen einen bedeutenden Unterschied zwischen der Klasse
der Abbildungen der Sphiren und der Abbildungen zwischen der Sphire in C? und der Hyperquadrik
mit Signatur (2,1) gibt. Im ersten Fall ist 7 modulo der Gruppen der Automorphismen diskret, im
Gegensatz zum zweiten Fall. Weiters studieren wir Eigenschaften wie Freiheit und Eigentlichkeit der
Aktion von G auf F. Schliefslich erhalten wir ein strukturelles Resultat fiir eine interessante Teilmenge
von F, bei dem wir eine reell-analytische Version des lokalen Slice-Theorems fiir freie und eigentliche

Aktionen verwenden.
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1 Introduction and Results

Poincaré [Poi07] asked whether for two given real-analytic real hypersurfaces in C2 one can find holo-
morphic mappings sending one into the other. He also gave an intuitive answer, originally for biholo-
morphisms, that for two given arbitrary real-analytic hypersurfaces in general it is in some sense unlikely
to find holomorphic mappings sending locally one hypersurface into the other. We also note that for
real-analytic mappings of real-analytic hypersurfaces Poincaré’s question is trivial by the real-analytic
Implicit Function Theorem.

Considerable work was done classifying Levi-nondegenerate hypersurfaces of CN, N > 2 up to biholo-
morphisms: In C2, this “biholomorphic equivalence problem” was solved by Cartan |Car33, Car32| and
for N > 2 by Tanaka [Tan62] and Chern-Moser [CM74].

In the class of strictly pseudoconvex hypersurfaces Poincaré’s question is answered by this classification
of Levi-nondegenerate hypersurfaces and results by Pin¢uk [Pin74] and Alexander [Ale74, Ale77|. They
proved that any holomorphic self-mapping of a strictly pseudoconvex hypersurface in CV is necessar-
ily an automorphism. This implies that a holomorphic mapping of two biholomorphically equivalent
strictly pseudoconvex hypersurfaces M, My € CV is given by the composition of the biholomorphism
sending M7 to M5 and an automorphism of Ms. Hence we note that the class of holomorphic mappings
between two arbitrary given strictly pseudoconvex hypersurfaces is small in some sense.

For N’ > N and a mapping H : CV — CN" we refer to the number N’ — N as codimension. If we
consider holomorphic mappings in high codimension the situation changes drastically. Here models
of Levi-nondegenerate hypersurfaces, i.e., hyperquadrics received reasonable attention. For k € N we
denote the hyperquadric SY of signature (k, N — k) in CV by

SkN = {(zl,...,zN) S cN: |21|2 +...+ |Z;€‘2 - |Z;€+1‘2 — .= |ZN|2 = 1}, (1.1)

and write SV := SY for the sphere in C. Studying holomorphic mappings of hyperquadrics it is
natural to introduce the following equivalence relation, see [Far82, §2] and [Leblla, sections 3.4-3.5]:

We consider the homogeneous model SkN of S,Iev given by

SN ={(z1,..,an,t) € CNH e 5P+ 4 |z =z P — . — |an P = [P = 0} (1.2)

Let us denote by SU(N — k,k + 1) the special unitary group with respect to the Hermitian form in
CN*! with signature (N — k, k + 1) induced by the quadratic form which occurs in (1.2). The group of
automorphisms of SQZ is SU(N — k,k+1)/K, where K is the subgroup of SU(N — k, k + 1) consisting
of diagonal matrices with all entries being equal to ¢ a (N 4 1)-root of unity, see e.g. [BER00, §2].

Let V C C¥ be an open neighborhood of p € SY. Any holomorphic mapping H : V — C¥ " which
satisfies H(V NSY) C Sﬁ/ can be identified with a CR-mapping H : V c CN*+1 — CN'*! for some
open neighborhood V of p e SkN satisfying H (V N S,JCV ) C SQ{' We say that two holomorphic mappings
H), Hy, which both satisfy H,, : CN > V,, — CN', where V,, is a neighborhood of p,, € SV, such that
H,,(V,, NSY) C Sfj, for m = 1,2, are equivalent if there exist matrices U € SU(N — k,k + 1) and
U' € SUN' — K,k +1) such that Hy, = U’ o H, o U. We give other ways of defining the equivalence



relation for holomorphic mappings of hyperquadrics in Definition 2.26, Definition 2.27 and Definition 6.3
below.

If N’ > 2N D’Angelo [D’A88| shows that there are infinitely many quadratic mappings from SV to
SM" which are not equivalent. In small codimensions the family of holomorphic mappings is less richer.
Webster [Web79] proved that for holomorphic mappings between the spheres in CY and CV*!, where
N > 3, there is only one equivalence class, namely the one containing the linear embedding. Faran
[Far86] and Huang [Hua99] extended this result to holomorphic mappings of SV to SN with N > 3
and N’ < 2N — 2. The case of mappings from SV to S?¥~1! for N > 3 is covered by Huang-Ji [HJ01],
where they show that there exist two classes of mappings which are not equivalent.

We would like to point out the study of Poincaré’s question in CV and CV "if N/ < N is trivial for
non-constant mappings of spheres, since there are none. This can be seen as in [Leblla, Proposition
3.1.4]: if we let N, N’ € N be arbitrary, p € S and U ¢ C" be an open and connected neighborhood
of p such that a holomorphic mapping H : U — CN satisfies H({U NSN) ¢ SV and p/ = H(p). Let
BY = {(z1,...,2n) € CN ¢ |z1]> + ... 4+ |2n|? < 1} denote the ball in CV, which possesses SV as its
boundary. Then H considered as a mapping H : U NBY — V N BY " for a sufficiently small open and
connected neighborhood V c CV " of p’ is a proper mapping, see [D’A93, Chapter 1, Lemma 1], which
implies that H~1(¢) is a compact subset of BY for ¢ € VNBY'. The Rank Theorem, see e.g. [Rud76,
Theorem 9.32|, yields that H~'(¢) is a complex variety at least of dimension N’ — N > 0.

The situation differs again if we consider holomorphic mappings between hyperquadrics with signature
((,N —¢) and (¢/,N' —¢') with 3 < N’ < N and 0 < N’ — ¢ < {. For this purpose we write
z=(z1,...,2y) € CY and let F: CN — CY’ be the holomorphic mapping given by

A (hl(Z), .. .,hN/_(/(Z),O, .., 0, 1,h1(z), ey hN/_g/(Z)),

for some holomorphic functions hj,j = 1,..., N’ — ¢'. Note that the constant 1 in the definition of F
occurs in the #-th component. Then F sends SY to S ". A similar construction works for the case
0 < N’ — ' =/ to obtain non-constant holomorphic mappings from SY to S} "

Moreover there are no holomorphic mappings from SY with N—¢ > 0 to S¥ ", since there are no complex
varieties contained in SN’

In order to discuss the case of holomorphic mappings between hyperquadrics in C? and C? in a more

detailed exposition we introduce the hypersurface S?, which for e = +1 is given by
St = {(z1,22,23) € C°: |21|* + |22 £ [23]* = 1},

so that S® = Si. In fact, S? and S? are the only Levi-nondegenerate hyperquadrics in C? and C3,
respectively, since every Levi-nondegenerate hyperquadric can be mapped biholomorphically to one of
these hypersurfaces as is well known, see e.g. the argument given in Remark 2.8 below.

Before we discuss the most interesting case of holomorphic mappings of S? to S? we briefly discuss the
cases of mappings from S? to S? and S? to S2. In the first case we refer to [BH05, Theorem 1.6, which
says that under equivalence the only holomorphic mappings in this case are linear embeddings or the

mapping is of the form z — (1, h(z), h(z)), for 2 € S* and some holomorphic function h. In the second



case, where we map S? to S?, there are no non-constant holomorphic mappings, as we argued above or
we can verify directly from the mapping equation.

Faran [Far82] classified holomorphic mappings between balls in C? and C? with certain boundary
regularity. Below we formulate the Main Theorem of [Far82] in terms of mappings between spheres

disregarding regularity issues.

Theorem 1.1 (Faran [Far82]). Let p € S%, U C C2? be an open and connected neighborhood of p and
F : U — C3 a non-constant holomorphic mapping satisfying F(U NS?) C S®. Then F is equivalent to

exactly one of the following maps:

(i) Fa(z,w) = (2, 2w, w?)
(iii) F3(z,w) = (2%, V22w, w?)
(iv) Fi(z,w) = (23,V3zw,w?)

Faran’s proof consists of giving a characterization of so-called planar maps from C? to C* which send
complex lines to complex planes and uses Cartan’s method of moving frames.

Cima—Suffridge [CS89] approached Faran’s Theorem via a reflection principle deduced in [CS83] by the
same authors, which contains some inconsistencies when using certain degeneracy conditions. More
recently Ji [Jil0] gave a new proof of Faran’s Theorem based on Huang’s study [Hua99] of the Chern—
Moser operator and several preceding articles [HJ01, Hua03, HJX06, CJX06]. In [Jil0] a small fixable
mistake in the case distinction leads to the wrong mapping at the very end of the article.

Lebl [Leb11b]| classified mappings sending S? to S2 , using a classification result for quadratic maps and

Faran’s approach:

Theorem 1.2 (Lebl [Lebl1b]). Let p € S?, U C C? be an open and connected neighborhood of p and
L:U — C3 a non-constant holomorphic mapping satisfying L(U N'S?) C S3. Then L is equivalent to
exactly one of the following maps:

(i) Li(z,w) = (z,w,0)

(i) La(z,w) = (2%, V2w, w?)
(i) Lo(zw) = (L%, %
. z2+\/52w+w27z,w2+27\/§w71,z27\/§zw+w27z
(IV) L4(Z,w) = (4 w2+z+\/§w_1 )
ﬁ(zwfiz),uﬂfﬁiuﬂrl,\/i(zw+iz)
(V) L5(Z)w) = ( u12+\/§iw+1 )
(vi) Lo(z,w) = Qensteidviutn)
’ - 32241
(vii) Lr(z,w) = (1,€(z,w),{(z,w)), for an arbitrary holomorphic function ¢ : C* — C

Let us now state our results and outline some intermediate steps in our work. The first and main part
of this work is to provide a new proof of Theorem 1.1 and Theorem 1.2. The following Theorem is

based on a very different approach than the one of Faran or Lebl and is independent of their proofs.

Theorem 1.3 (Main Theorem). Let p € S?, U C C? be an open and connected neighborhood of p and
H :U — C3 a non-constant holomorphic mapping satisfying H({U N'S?) C S2. Then H is equivalent to

exactly one of the following maps:



(i) Hi(z,w) = (z,w,0)
(i) Hj(z,w) = (2, Umstelieale 2)

2 2
(i) H5(z,w) = (27 R T

(423,(3(1—s)+(1+3 e)w?)w,v/3(1—e +2(1+s)w+(1—5)w2)z)

(iV) HZ(Z,U)) = 1+3e +3(1—e)w?

Additionally for e = —1 we have:
(v) Ho(z,w) = (ZE22 y, (/7mw): )

14v224w’ 0 14v224w
. (1-w)z,1+w—w?,(1+w)
(vi) Hg(z,w) = (== 1,2,32 v):)

(vil) Hr(z,w) = (1,h(z,w), h(z,w)) for some non-constant holomorphic function h : C* — C
Further, H3 s equivalent to Lz, Hy to Lg, Hs to Ly and Hg to Ls.

Before we give some more details and results for the proof of Theorem 1.3 let us mention some features
of our approach. One advantage of our chosen method is, that we prove Faran’s and Lebl’s result in a
unified manner, i.e., we treat mapping from S? — S? and S? — S? in the same way and use the same
techniques for both situations.

Another aspect of our proof is to be in some sense computationally effective, meaning that our technique
allows us to give explicit formulas for the automorphisms which bring an arbitrary mapping to one of
the mappings listed in the Main Theorem. Moreover we provide a list of biholomorphic invariants
associated to each mapping of the Main Theorem which also implies that all the maps in the Main
Theorem are not equivalent to each other. Thus we think we can provide a new proof of Faran’s and
Lebl’s results which is easier to verify and more elementary. Nevertheless our proof is long, technical
and features some huge computations.

Now we provide some details of our proof: We introduce the class F5, which consists of germs of
2-nondegenerate transversal mappings. These notions are defined below in Definition 3.6 and Defini-
tion 3.1 respectively. For this class we give a normal form and denote the set of normalized mappings by
N5. Then we prove a first local characterization in terms of automorphisms fixing a given point. The fol-
lowing theorem is formulated for holomorphic mappings in N5 from H? to H2, which are biholomorphic

images of S? and S2 except one point and defined below in Definition 2.4.

Theorem 1.4. The set N3 consists of the following mappings, where s > 0:

(z(1+icw), V222 w)
1—w? ’
(z —2es82% + i(s—sQ)zw + 25w272(22 + s2w2),w(1 —2esz—i(e —|—s2)w))

5 (z,w) = )
2’8( ) 1—2682’—i(6+52)w—4iszw—4552w2

Gi(z,w) =

3.5z w) = (1652+ 24izw + 8esw? + 1623 + 8ics2’w + 3(52 - 35)zw2 + 2isw?,
32e 2% — 8w? 4 1652 + 8i 22w — de szw? — 2iew?,
w(16e —8iw + 162° — 8ie szw — (57 +6)w2))

/(165—81w+ 1622 — 24ies2w — (932 + 175)1112 +32ie 22w + 1252w +4iw3).

Each map in N3 is not equivalent to any different map of Na with respect to automorphisms fizing 0.



For € = —1 we have the following picture of A5 according to Theorem 1.4:

3,0
2,0
Figure 1: Picture of N3 for e = —1
We choose certain values for s and define the following mappings:
gf(z,w) = G;O(Z,’LU), gg(’z?w) = G;,l/Q(z7w)7 gg(Z,’LU) = Gg,l(z7w)a (13)

Gi(z,w) = G5 o(z,w).

Non-isotropic automorphisms which we apply to the mappings G, ; allow us to reduce the parameter s

to finitely many values in the sense of the following theorem.

Theorem 1.5. Form =2,3 and 1 <k <4 let G5, ; be as in Theorem 1./ and G as in (1.3).
For e = +1 we have:

(i) For every s > 0 the mapping Gis is equivalent to Gy .

ii) For every s > 0 the mapping G7 _ is equivalent to G .

3,s 4

For e = —1 we have:

iii) For every 0 < s < % the mapping G5 , is equivalent to Gy .

2 2,8 1
iv) For every s > 1 the mapping G5, is equivalent to G; .
2 2,s 3
(v) The mappings G, ,G5 and G are pairwise not equivalent to each other.
vi) For every 0 < s # 2 the mapping G5 . is equivalent to G, and G5 5, =G, .
3,8 4 3,2 2

The mapping G5 is not equivalent to any of the mappings Gy.

The second part of our work, which is heavily based on the first part, deals with topological aspects
of holomorphic mappings in our setting to provide new and profound insights into the topological and
real-analytic structure of the set of holomorphic maps and the moduli space.

We denote the equivalence relation used in Theorem 1.3 by ~, then by Theorem 1.4 and Theorem 1.5

the following result holds true:

Theorem 1.6. The quotient space Fa [~ is discrete for e = +1 and not discrete for e = —1.



The above result was not known before and stands in contrast to the case of the group of germs of
real-analytic CR-diffeomorphisms fixing a point p € M, denoted by Aut,(M,p), for a germ of a real-
analytic CR-submanifold (M, p) in CV. Assuming some nondegeneracy conditions for certain (M, p) it
is shown that Aut,(M,p) admits a Lie group structure, see [BERI7|, [BER99a|, [BRWZ04], [Kow05],
[KZ05], [LMO7], [LMZ08] and [JL13].

Next we study the action of the group of automorphisms fixing a given point on the set of holomorphic
maps. Let us denote by G := Auto(H2,0) x Auto(H?,0), the direct product of the stability groups of
H? and H2 respectively, with elements g = (g1, g2) € G. We write F2 C JF for the set where the action
of G on F; given by G x Fo — Fa,(g1,92,h) — g1 oho g2_1, has only trivial stabilizers. Then the

following results holds:

Theorem 1.7. The mapping N : G X §2 — Fo given by
N(¢',¢,H)=¢' o Hoop™",

is a free and proper left action.

Based on this result we obtain the following result concerning the topological and real-analytic structure
of Fo, where II : §F» — 915 denotes the normalization map induced by the mapping N and 9y C N>

denotes a set of representatives of the quotient Fo /G:

Theorem 1.8. (i) If e = +1 then II : 2 — Fo /G is a real-analytic principal fibre bundle with
structure group G.
(ii) If e = —1 then locally §o is mapped to G x Mo via locally real-analytic diffeomorphisms. In

particular §o is not a smooth manifold.

This theorem allows us to obtain the following result for the different topologies we can associate to

My. All relevant notions are introduced in section 9.

Theorem 1.9. The quotient topology on Mo coincides with the induced topology of F2, which carries
the topology induced by the jet space J3(H2 H2).

We organize this work as follows: In section 2 we compute all relevant automorphisms and introduce the
precise notion of equivalence. The following section 3 introduces all biholomorphic invariants we use in
order to obtain a class F5 of interesting mappings, more precisely 2-nondegenerate transversal mappings.
For this class of mappings, we compute a normal form in subsection 4.1 and obtain N3 C Fa, the set
of normalized mappings with respect to the stability groups. We also discuss different suitable normal
forms with respect to the stability group and their effects on the classification. For A5 we compute
a jet parametrization in section 5 and after some desingularization it turns out that N5 consists of
one separated mapping and two one-parameter families of mappings, denoted by C; and C5. Then in
section 6 we use the non-isotropic part of the automorphism groups to see how the families C; and
Cs are recovered from finitely many normalized mappings. For this purpose we study mappings at
points, where the degeneracy is higher than at generic points in subsection 6.3. In section 7 we treat

the case of degenerate mappings such that we are able to complete the proof of the Main Theorem in



subsection 8.1. Finally in section 9 we consider topological questions related to Theorem 1.4, which
provides topological information about F5 as well as the quotient spaces. The main effort is to prove
that the application of the stability group gives a proper action on §2 and that 915 at least contains
some manifold structure.

Our computations are carried out with Mathematica 7.0.1.0 [Wol08].



2 Preliminaries

We start this section with a well-known fact concerning the complezification of real-analytic equations,
see e.g. [D’A93, Chapter 1, Proposition 1]. For U C CV we introduce the set U consisting of the

conjugated elements of U.

Theorem 2.1 (Complexification). Let U C CV be open and connected and let F : UxU C CN xCN —
C be a holomorphic function such that F(z,%z) = 0 for all z € U, then F(z,x) =0 for all (z,x) € UxU.

Proof. First we set V := {(2,2) : 2 € U} C C* and choose coordinates (z,x) = (z +iy,u +iv) in
CN x CN. Then V = {(z,x) € C2V : x = z} such that V is given by 2N real defining functions

p2j+1('ray7uvv):u_xa OS]SN_lv

pa2j(x,y,u,v) =v+y, 1<j<N.
After linearly changing coordinates to (Z +1y,u +10) = (2, X) = ¢(z,x) = (i(x — 2), 2 + x) we have

52j+1(§§agvﬂva) :ga 0 S] SN—L
p2;(%,y,u,v) =v, 1<j<N.

as local defining functions for V. Our assumption F|y = 0 then becomes F(Z, @) = 0 for all (Z,7) € R2N
and F = F oo L. If we write F(Z,¥) = > a8 F.37°X" we have

0=F(@1u) =  Fopi®i,
a,p

which implies F,,3 = 0 for all a, 8, hence F,,3 = 0 and the claim is proved. O
Definition 2.2 (Normal coordinates). For n,n’ > 1 we denote by Z = (21,...,2,,w) € C*"! and
Z' = (Zw') = (2},...,2,,w') € C"*! coordinates in C"' and C™ *1 respectively.

We consider the complexification of a real-analytic hypersurface M C C**!, denoted by M, where we
write y := z and 7 := w. Coordinates (z,w) € C"! are called normal coordinates near 0, if there is
U c C**! a neighborhood of 0 such that

MN{UxU} = {(z7w,x,7) eUxU:w= Q(z,x,T)},
where ) : C™ x C™ x C — C is holomorphic in a neighborhood of 0 satisfying
T:Q(Z,O,T) :Q(O,X,T), w:Q(’ZaXaQ(XvZ,w))

Before we introduce our prototype example of hypersurfaces given in normal coordinates we need the

following definition.



Definition 2.3. For z,( € C" we define
(2, = 21C + oo+ 2kC — 26+1Ck+1 — - - — Znln, 2117 = (2, 2)&-
In C? we denote for ¢ = &1
(2,CQ)e = 211 + € 2202, |I2112 = (2, 2).

The standard real euclidean inner product in C™ is denoted by

(2,Q) = 21G+ oot 20Ca, 2117 = (2, 2).
Definition 2.4. For (z,w) € C"™! and k > % we define

pr(z,w, z,@) = Imw — [[2][},

and

]HIZJr1 = {(z,w) cC"™: pr(z,w, 2, 0) = 0}.
If k = n we write H"™! := H”_,. In C? and C?® we denote for ¢ = +1

H? :=={(z,w) € C*: Imw = |2|*},
H? ={(z",w") € C*: Imw' = |||},

€

; : 3 ._ 13
respectively. Further we write H* := H .

Remark 2.5. We also write py = (20, wo) = (roe' %, v +ird) € H2 with ry > 0,0 < 6y < 27 and vg € R
and identify H? with the subset $2 C R? given by

9% = {po = (ro,00,v0) € R* : 79 > 0,0 < by < 27,09 € R}, (2.1)

using a slight abuse of notation.

Definition 2.6 (Cayley-Transformation). We define the following biholomorphism T sending CV \
{zny = =1} to CV\ {2y = —i}:

TN(Zlv s aZN) = (Zlv e ZN—lai(l - ZN))/(l + ZN) (22)
The inverse Ty,' of Ty maps CV \ {zx = —i} to CV \ {zy = —1} and is given by:
T (21, 2n) = (221, o 2enon, 14 izN>/(1 —izn). (2.3)

Remark 2.7. Let M =S¥ be a hyperquadric with signature (k, N — k) from (1.1) given in coordinates
z=(z1,...,2nv) € CN and let p € M. Then we decompose CV = pt @ Cp, where p* = {v € CV :



{(p,)1, = 0}. In this decomposition we obtain new coordinates ¢ for M with (&;,...,&én_1) € pt and
én € Cp.

Let H:CN - CM bea holomorphic mapping defined in a neighborhood U of p € M with H({UNM) C
M’ and H(p) = ¢, where M’ = S{,\,ﬂ for some ¢/ € N. Then we decompose CV and CV’ with respect
to p and ¢’ as described above. If we consider H:=Ty oHo Tﬁl we possibly need to shrink U to
avoid the poles at —ip and —¢' respectively. Moreover in this coordinates H satisfies H (0) = 0 and
HUNHEY) c Hy 7L

Remark 2.8. We call a hypersurface M given by M = {z € CV : (2, Az) = 1}, where A is an N x N-
Hermitian matrix, Levi-nondegenerate if A has no zero eigenvalue. The signature of M is a pair of
natural numbers, the first one is the number of positive eigenvalues of A and the second one is the
number of negative eigenvalues of A.

Let M be a Levi-nondegenerate hyperquadric in C"*! with signature (k + 1,n — k) and fix py € M,
then M* := M \ {po} is mapped to HZH as follows: First we apply a linear change of coordinates to
M* such that M* is mapped into SZH for some k € N from (1.1). Then we map S according to
Remark 2.7 outside a point gy € SZ‘H, biholomorphically to HZH via T}, 41, where we may have to vary
the definition of T, by permuting the variables (z1, ..., zp4+1). Further if n = 2k we possibly need to

apply an automorphism of HZH of the form (z1,..., 20, W) = (Zht1, -y Zny 21y« -+ Zhy —W).

Definition 2.9 (Notation). (i) Let A : C**! — C be a holomorphic function given by h(z,w) =

Zaﬁ aapz®w?, defined near 0. We write for the complex conjugate of h

h(z,0) = h(z,w) = Y Gapz®w”.
a,B
For derivatives of h with respect to z or w we write

hyaws (0) = a!Blagg.

For n > 1, a holomorphic mapping H : C**1 — C"*! defined near 0 with components H =

(f1,---, far,g) is given by a power series as follows:
H < 5(0) «
H(z,w) = Zﬁ:%z wP,
where

Hzo‘wﬁ (O) = (flzo‘wﬂ (0)7 ceey fn’zo‘wﬂ (0)7 Gzowh (0)) .
(ii) For H = (fi,..., far,g) a holomorphic mapping of C"*! to C™'+1 near 0 we denote

flz”l wh1L (0) T flzan/wﬂn’ (0)
Alar, By s ans, Bur) = : : : (2.4)
fn’z”l wh1 (0) e fnfz"n’wﬂn’ (0)

10



(iii) Let H : C**1 — C"*1 be a holomorphic mapping defined at p € C**! and a € N**1. We denote
by ij the k-jet of H at p defined as

. olelH
jyH = < 574 () lal < k)

We denote by JI’f the collection of all k-jets at p. We write J;,“(M,p; M’,p") for the collection of
all k-jets at p of mappings, which send (M, p) C (CN,p) to (M',p')  (CN',p').

2.1 Tangent Spaces

In this section we follow [BER99b, §1.2]. Let Z = (z1,...,zn) € CV be coordinates in CV. We identify
CN with R?Y by setting z; = Re(z;) and y; == Im(z;) for 1 < j < N. Let M be a smooth real
submanifold of codimension d in CN. For p € M we let p = (p1,...,p4) : C¥ — R? be a smooth
real-valued mapping defined in a neighborhood U C C¥ of p such that M NU = {Z € U : p(Z) = 0}.
We write p(Z, Z) instead of p(Z) to indicate that p is in general not holomorphic.

We define the real tangent space T,C™ of CV at p by

0 0
T,CN = X:Zajﬁ?j +bja—yj :aj,b; €R . (2.5)
J=1 P
Then X € T,CV is called tangent to M at p if
op
(Xp)(p, P Za]a (p,P) ba (p,p) = 0. (2:6)

We write T, M for the real tangent space of M at p which consists of all real vectors X € T, p(CN which
are tangent to M at p. T, M is a 2N — d-dimensional real vector space.

If we allow a;, b; € C in (2.5) and (2.6) we obtain complex vector spaces denoted by CT,,C" and CT,,M
respectively. We introduce a real-linear mapping J : Tp(CN — Tp(CN

9
(')a;j
p

_9
8yj’
p

0

J -
y;
p

., 1<j<N. (2.7)

By linearly extending J to CT,CY we obtain a complex-linear mapping again denoted by J : CT,,CN —
CT,CN. We call the maximal subspace of T, M which is invariant under .J the complex tangent space
given by ToM = T,M N JT,M. As above we consider CTyM and extend J to an operator CT;M —
CTIy;M. Then we decompose CT7M into a direct sum of subspaces consisting of the eigenspaces of J

according to its eigenvalues +i. We set

V, = {X eCT,M: J(X)=—iX}, (2.8)
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to obtain CI;M =V, & V,. Then we can write CT,M = CiyM @& N, M, where N,,M is the orthogonal
complement of CT7M in CT},,M.

M is called CR-submanifold if the dimension of V, is locally constant. If M is a hypersurface, then
TyM is an N — 1-dimensional complex vector space for every p € M.

A smooth complex vector field X on U C M is a smooth mapping defined in an open neighborhood
U C M of p e M such that X(g) € CT,M for all ¢ € U. In coordinates a complex vector field X can

be expressed as follows:
N
0 .0
X :;aj(z,z)a—zj +bj(z7z)a—zj, (2.9)

where a;, b; are smooth complex-valued functions defined in U. Then according to the above decompo-
sition of CTjyM we can write tangent vectors v € V), as v = Z;V:l b, (p,ﬁ)a%j, which we refer to as an
antiholomorphic tangent vector. The space of antiholomorphic tangent vectors is denoted by TZ?J(CN .
Similar for so called holomorphic tangent vectors o, given by v = Zjvzl a; (p,ﬁ)a%j such that v € V,,
we denote the space of holomorphic tangent vectors by TH°C¥. Then we have V, = T®1CN N CT,M
and V, = TH°CN N CT,M.

If M is CR, then vector fields L with the property that L(p) € V, for p € M are called CR-vector fields.

2.2 Segre Sets

We need to introduce the so-called Segre sets, which arise in studying holomorphic mappings of real-
analytic submanifolds using a “reflection principle’-argument, as for example in the proof of Lemma 5.5
below. The definition is based on [BER99b, Proposition 10.4.1].

Definition 2.10 (Segre mappings). For M a real-analytic hypersurface in CV we choose normal coor-
dinates near 0 € M as in Definition 2.2. Let p € C™*! be sufficiently close to 0. We define

Uzl) :C" —» CHL v;(z) = (Z,Q(z,ﬁ)), (2.10)

the first Segre mapping U}] of M at p. Let £ > 2 then for 1 < j < £ we write 2/ = (z{, ., 20) e C" to
define

vf; :C — C L vﬁ(zl, o2 = (ZZ,Q(Z£,5£71(2€717 . ,21))), (2.11)

the ¢-th (iterated) Segre map vf, of M at p.

Definition 2.11 (Segre sets). Let £ > 1 and p € C"*! sufficiently close to M. We call the image of Uf;
the ¢-th Segre set Sf; of M at p.

Example 2.12. For the complexification of ]HIZ+1 we have

Q(27X7T) = Qk(Z7X>T) =T+ 2i<Z7X>k7 (2'12)

12



such that

Sy ={(z,0eC":zeC"}, (2.13)
S = {(z,2i<z,x>k) ceC'tl.z x¢€ (C"}, (2.14)

since @y, is defined on C?"+1,

To see the relevance of the Segre sets in the following theorem we introduce the generic rank Rk(F’) of
a mapping F as in [BERO3, §1]: Let F : (CV,0) — ((CN/, 0) be given by F' = (F4,..., Fn/), where each
F; : (CN,0) — (C,0) is a formal power series and write z = (21, ..., zy) for coordinates of CV. The
generic rank Rk(F) of F is defined as the largest number s € N such that there is an s x s-minor of the

Jacobi matrix %—f which does not vanish identically as a formal power series in z.

Theorem 2.13 ([BER03, Theorem 1.1]). Let M C CV be a real-analytic and generic submanifold of
codimension d with 0 € M. The following statements hold:
(i) The generic rank Rk (v{f) of vk is an increasing function of k > 1 and is independent of the choice
of holomorphic coordinates for CV and the defining function for M.
(ii) There exists ko € N with ko < d+ 1, such that

Rk(v}) = Rk(v}™),  Vj > ko,
and
Rk(v)™') < Rk(v}),  2<j< ko

(iii) The following statements are equivalent:
o M is of finite type at 0.
o Rk(v)°) =N.

Remark 2.14. Tf vf® is of generic rank N we note that the second condition in (iii) is equivalent to
the statement that S(}f“ contains an open set of CV, i.e., the Segre set provides a uniqueness set for
holomorphic functions.

If we consider the complexification of H*' € C"*!, then Rk(v}) = n and Rk(v3) = n + 1. The rank
is full outside of {(z,x) € C*" : z = 0}. Note that in order to get Rk(v3) = n + 1 it is enough to set
X2=-..=Xn=0in 8.

2.3 Automorphisms

Since automorphisms play a crucial role in our study of mappings of hyperquadrics we provide a rather
self-contained presentation of the computation of the well-known automorphism group Aut(Hy ™).

First we compute the infinitesimal CR-automorphisms of ]HIZ+1 as described in [Bel02, §2-3|, which
surveys the well-known method used in several previous works, e.g. in [Bel79]. Then we show a jet
determination result for isotropies of HZ‘H following the method introduced in [BER97], from which,

together with the infinitesimal CR-automorphisms, we are able to compute all isotropies of ]HIZ“.
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In this section we fix k,n € N, write M = ]HIZH and skip the subscript in Definition 2.4 for the defining
function of M. Moreover we are going to complexify p and write y = Z and 7 = w. We denote the set
of infinitesimal CR-automorphisms hol(M,0) by

n+1
hol(M,0) X = Z a;(Z :a; : (C"10) — C holomorphic, Re(X) is tangent to M near 0

As in [Sta91, Theorem 2.2, Corollary 2.4] we can show that hol(M,0) is a Lie algebra and germs of
flows of germs of vector fields in hol(M,0) generate germs of automorphisms of M.

We assign the weight 1 to the z-coordinate and weight 2 to the w-coordinate to turn hol(M,0) into a
graded Lie algebra. Then hol(M,0) is given by

hol(M,0) = € bol,,

m>—2

where hol,, (M, 0) contains all vector ﬁelds of hol(M,0) which are weighted homogeneous of order m.
Note that here ~ has weight —1 and 5~ has weight —2. The collection of weighted homogeneous vector

fields of order m is denoted by g,, and for X,, € g,,, we write

0 0
Xm = fm—&—l(sz)% + gm+2(z7w)%, (2.15)

where fi1(z,w) and gm42(z,w) are homogeneous polynomials of weighted order m + 1 and m + 2
respectively.

We compute hol,,(M,0) for —2 < m < 2 in the following manner: We let X,, € g,,, then X,, €
hol,,(M,0) if for p(z,w, x,7) a complexified weighted homogeneous defining function for (M, 0) there

exists a complex-analytic function A,,(z,w, x, T), weighted homogeneous of order m, such that

(me(z,mx, T) + Xmp(z, w, Xﬂ')) = Ap(z,w,x,7)p(z,w, X, T), (2.16)

N

for all (z,w, x,7) near 0.
On the other hand for m > —2 we let X,,, be given by (2.15) such that X,, € hol,,(M,0) if

Re(Xm)p|M =0 <:>’(_21<f7n+17 2>k + Im+2 — 2i<fm+1a z>k + gm+2) |M =0
<:>Re(igm+2 + 2<fm+17 2>k)’M =0.

Thus we give the following definition.

Definition 2.15. For H = (f,g) a holomorphic mapping from (C"*!,0) to (C"*!,0) we define the
Chern-Moser operator L for M as

L(f,g) = Re(ig + 2(f, 2)x)| ,,-

The following lemma is crucial when treating vector fields of weighted homogeneous order m > 3.
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Lemma 2.16 (Chern-Moser |[CM74]). Let H = (f,g) be a mapping from (C"T1 0) to (C**1,0). If

f(0) =g(0) = fzj (0) = 9z, (0) = fu(0) = gu(0) = 9z;z (0) = gu2(0) =0,
for 1 <j k<n-+1, then L(f,g) =0 has the unique solution (f,g) = 0.
Proof. See [CM74, Lemma 2.1]. O

We denote by I, j == Iy n—x the (n x n)-diagonal matrix with 1 in the first & diagonal entries and —1
for the rest of the diagonal and note that (z,{)x = (2, I, k().

Theorem 2.17 (Infinitesimal CR-Automorphisms of M). The space hol(M,0) of infinitesimal CR-

automorphisms of M is generated by the following vector fields:

e X =2 o X¢=(Hz &)
L X—l = <a> %> + 2i<d7z>k% o Xl = <b7 Z><Z, %> + %<b7 %>k + <b,z>w%
° X&z(z,%)—i—Qwa% ° X2:U)<Z,%>+U)23%,

where a,b € C" and H = (hgm)1<e,m<n € C™ x C™ satisfies

Ly '"H=—HI,, (2.17)

which means that H is a skew-Hermitian matriz with respect to the Hermitian form (z,() — (z,()k,
ie., (Hz,2), = —(z, HZ)}.

Proof. We note that if we consider (2.16) for m € {—2,—1} then A4,, = 0. We have X_5 = Aa% for
A € C, which implies A € R.

For X_; € g_; we write

0 0
X—l - <(1, 8z> + <b,Z>%7

where a,b € C™. In (2.16) all we have to consider are the coefficients of zj for 1 < j <n, which give

We note that for m > 0 there are no pure z-terms occurring as coefficients of 8% in X,,, since there are
none at the right-hand side of (2.16). Next for m = 0 we have 4g = A € R and

Xy = <Hz, a> +cwi,
0z

where H = (hyg)1<rs<n for hys,c € C. In (2.16) we have if we compare the coefficients of w, that ¢ = A

and if we consider for 1 < j < n the coeflicients of z;x; we obtain 2Re(hjj) = A. Hence we obtain Xé
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and the vector field Xy reduces to Xo = (Hz, %) with Re(h;;) =0 for 1 < j <n. The equation which
H has to satisfy is

k n n n kK n n n
Z Z hrsz'rXs - Z Z hrsZTXs + Z Z BrsZsX'r - Z Z BTSZSXT =0,

s=1r= s=k+1r=1 s=1r=1 s=k+1r=1
r# r#s r#S r#s

W =

which implies if r # s that

=—hs, {(rs):1<rs<k}U{(r,s):k+1<rs<n},

hys
Bps = her, {(r,s): k+1<r<n,1<s<k}U{(r,s):1<r<kk+1<s<n}

Then we note that we obtain the same system of equations if we consider the components of the equation
given in (2.17) resulting in the vector field X¢.

If m = 1 we have Ay(z,x) = >_7_; bjz; + bjx; for b; € C. Next we let a(z) = (a1(2),...,an(z)), where
for 1 < ¢ < n the function as(z) is a holomorphic polynomial in z of degree 2 with coefficients ay, € C

for « € N™ with |a] =2 and ¢(z) = Z?:l cjzj for ¢; € C. For X; € g; we let d € C" and write

0 0
X, = <a(z) + dw, 3z> + c(z)wa—w

On the right-hand side of (2.16) there are monomials z;z,,X; and z;xjxm for 1 < j,m < n, thus

ar(z) = zeae(2) == 2z¢ > 01 QumZm- If we compare z;x, in (2.16) we obtain for 1 < ¢ < n:

a(z) + ar(x) = A1(z,x),

hence agy, = by, for 1 < £, m < n. Considering wy; for 1 < j < n we obtain if j <k that d; = % and
if 7 > k we have d; = f%. Finally the coeflicients z;w for 1 < j < n show ¢; = b; to get X;, since the
remaining coefficients x;7 and z;7 do not give new equations.

If m =2 in (2.16) we have
As(z,w,x,7) = A(z) + Bw+ A(x) + Br,

where A(z) is a holomorphic polynomial of degree 2 in z. Further X5 € g, has the following form:

Xo = <c(z) + wd(z), (;Z> + (e(z)w + th)a%’

where ¢(z) is a holomorphic polynomial of degree 3 in z, d(z) is linear in z, e(z) a holomorphic polynomial
of degree 2in z and h € C. For o = (a1, ..., ) € N we write 2® = 27" - -- 25». Then the monomials
27 for |a| = 2 only occur on the right-hand side of (2.16) hence A(z) = 0. There are only monomials
involving w or 7 on the right-hand side of (2.16) which implies ¢(z) = 0. Since the terms involving z
on the right-hand side of (2.16) are of the form z;x; we obtain e(z) = 0. With the same argument
we obtain that d(z) = (d12z1,...,dnz,) where d; € C. Comparing wr shows B € R, w? gives h = B
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and the coefficients of z;wy; imply d; = B. The remaining coefficients 72 and z;X;T do not give new
equations and we obtain X5.
To treat the case m > 3 we apply Lemma 2.16 to obtain X, = 0, which finishes the proof. O

Definition 2.18. We denote the collection of local real-analytic CR-diffeomorphisms Aut(M,0) of
(M, 0) by

Aut(M,0) := {H : (C**',0) = C"*' : H holomorphic, H(M) C M,det(H'(0)) # 0},
and the group of isotropies or stability group Auto(M,0) of (M,0) by
Auto(M,0) = {H € Aut(M,0) : H(0) = 0}.

Elements of the subgroup of Aut(M,0) generated by the flows of the vector fields X_5 and X_; from

Theorem 2.17 are referred to as translations.

We prove the following well-known theorem ([Bel90]|, [ES97], [BER98]) with the approach as in [BER97],

where a more general result is shown. We follow the algorithm given in [BER97, §6].

Theorem 2.19 (Jet Determination for Auto(M,0)). If G,H € Auto(M,0) with j2G = j2H, then
G=H.

Proof. We let H = (f1,...,fn,9) € Autg(M,0). We use the notation introduced in the beginning
of subsection 2.3 and write (2,x) = Y_7_, 052;X;, where 0; = +1 for 1 < j < k and 0; = —1
for k+1 < 7 < n. Since H maps (M,0) to (M,0) we have the following equation after setting
w=7+2i(z,x):

g(ZaT + 21<Z7X>) - g(XaT) = 2izajfj(Z7T + 21<Z7X>)f](X7T) (218)
j=1
If we set x,7 = 0 we obtain g(z,0) = 0 such that we need to require det(f,(0)) # 0 and g,,(0) # 0.
We also write z = (z1,2) and x = (x1,x’). Our computations are devoted to prove the dependence of
H(z,2i0121x1) on jaH, since Remark 2.14 implies that H only depends on j2 H and the jet determi-
nation is proved.

Setting x’,7 = 0 in (2.18) we get

9(z,21i0121x1) = QiZajfj(z, 2icrlle1)fj(X1,O). (2.19)

j=1

In the remaining part of the proof we deduce the dependence of f;(z,2i0121x1) on joH. First we
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differentiate (2.18) with respect to z, for 1 < ¢ < n to obtain
9z, (2,7 +21(z, X)) + 2i00x09w (2, T + 2(2, X)) (2.20)
=203 03 F5067) (fine (507 + 2102, X0) + 21 0exe (37 + 2i(20)) )

If weset 2/ = 0,7 = —2i0121x1 in (2.20) and conjugate the result we deduce for 1 < ¢ < n the following

equation:
o0209-(x1,0 Z 0;fi(x, —2io121x1) (fm (x1,0) = 2i0e2e fjr (xa, 0)>7

hence the theorem follows if we prove the dependence of f;, fjy,, fj= and g, at (x1,0) on jZH since it

is possible to invert the matrix ((fjy, — 2i0424fj7)(xl70))j vy for (z,x1) € C**! near 0.

.....

First we set z,x’,7 =0 in (2.20) for each £ =1,...,n to obtain the following system:

o1X19w(0 :
' 10 © fi(x1,0)
. -7 (2.21)
: fu(x1,0
0 fn(x1,0)
where J denotes the following n x n-matrix
01(f12,(0) + 2io1x1/10(0)) -+ Onl(fnz (0) + 2i01X1 frw(0))
UlfIZQ (0) tee UnfnZQ (0)
J = : . ;
o1f1z, (0) e Onfnz, (0)

which is invertible for x; near 0. Thus from (2.21) it follows that f;(x1,0) depends on jiH for 1 < j < n.
Next we differentiate (2.20) with respect to x,, for 1 < m < n and set z, x',7 = 0 to get

n
OmZmOme _212(7]wa f] X1,0 ZU] (f]ze +210’251€X€fjw(0))fjxm()(1aO);

j=1

where we write &;; for the Kronecker delta. The fact that J is invertible implies that f;,, (x1,0) for
1 < j,m < n depends on jiH.
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If we differentiate (2.20) with respect to 7 and take z, x’, 7 = 0 we obtain

gzgw(o) + QIUZXZ51Z9w2 Z (szzw + Qi(szz(sufij (O)>

=2i Z 0j <sze (0) + 2102512X2fjw(0)> f_'jT(Xla 0)’

Jj=1

which determines f;,(x1,0) for 1 < j <n by j2H.
Finally we differentiate (2.18) with respect to 7 and set z, x’,7 = 0 to get

g‘r(XlaO):gw _2lzajfjw f] X1, )7

and the dependence of g,(x1,0) on ji H, which is the missing piece in the proof of the theorem. O

Theorem 2.20 (Automorphisms of M). Aut(M,0) is generated by the following mappings:

_o(z,w) = (z,w+7r) o H3(z,w) = (Uz,w)
. . z+bw,w
—1(zw) = (2 + a2,w +illall§ +2i(@ 2)x) o Hi(zw) = 1—2i<(5,z>k—il)|bHiw
i HO( ) (AZ,O’A ’LU) L] HQ(Z,U]) = %i;ﬂiﬂ

where o0 = £1,7,8,A € Rya,b € C" with A > 0 and U = (ugm)1<e,m<n € C" x C" satisfies
ol =Ul,; 'U, (2.22)

which says that U is a unitary matriz with respect to the Hermitian form (z,() — (z,()x, i-e., ||Uz||2 =
allz[%-

The case 0 = —1 only appears if n = 2k and we define the following automorphism m of M given by
m(z,w) == (T(2), —W) = (Zhtly-- s Zns 21y« -« 2k, —W), (2.23)

such that each matriz U satisfying (2.22) with 0 = —1 can be written as U = V o &, where the matriz
V' satisfies (2.22) with o = +1.

Remark 2.21. The real dimension of Aut(HZL) is (N + 1)2 — 1 and the real dimension of Auty(HL,0)
is N2 + 1. The real dimension of the group of translations of H} is 2N — 1.

Proof. The proof consists of two parts: In the first part we obtain some automorphisms from infinites-
imal CR-automorphisms. In the second part we compute all automorphisms by using some of the
isotropies we deduced in the first part of the proof. We take the notation as in the proof of Theo-
rem 2.19.

To obtain a mapping H,, or Hf, as in the statement of the theorem, we integrate the corresponding
vector field X,,, or X!, from Theorem 2.17. We use the notation for vector fields X,, € hol,, (M, 0) from
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(2.15). Then we have to solve for Hy,(t) = (zm(t), wn,(t)) : R — C™*! satisfying

with initial value (2,(0),w,,(0)) = (z,w) € M. Here we use the convention Y(t) = dl@it). Then the
solution H,,(t) is an automorphism of M depending on (z,w) € M for sufficiently small ¢ € R near 0
by the Fundamental Theorem of ODEs.

To obtain H_5 and H_; we integrate X o and X_; and reparametrize a € C™ for m = —1. Next H&
is obtained directly from X, after setting \ := e’. For X2 we integrate to obtain U = exp(Ht), where
H is the matrix from X¢ satisfying (2.17). Let us write H again for Ht. Then we have

exp (_tH) = eXp([nkaIn’k) =Ink eXp(H>In,k7

where we used (2.17) for the first and Iﬁﬁk = I, », which is the usual identity matrix in C”, and the

definition of the matrix exponential for the second equality. Next we have

exp (—'H) = (exp (tﬁ))_l = (exp (tH)>71 = (texp (H))il,

which shows if we set U = exp(H), that (*U)~! = I, xUI, 1 and (2.22) with o = +1 follows.

In order to integrate X; we have to reduce the following system of differential equations:

Z(t) = z(t) (b, 2(t)) + ==,  1<j<k

5(0) = 5O0.2(0) - 22, k+1sj<n,

w(t) = (b, z(t))w(t).

From the last equation we get (b, z(t)) = %, which we substitute into the other equations. For
1 < j £ n we multiply the j-th equation with b;. Then we sum up all the resulting n equations to
obtain
: wt) i
b, 2(t)) = (b, z(t)) —= + =||b t).

After again substituting the formula for (b, z(¢)) we obtain the equation

(@)“:_in?i’

which can be solved for w(t). The other components z;(t) can now be obtained from the equations

after the first substitution, which give H;. Finally integrating Xs directly gives Ha. This completes
the study of flows of infinitesimal CR-automorphisms of M and the first part of the proof.

In the second part of the proof we want to show the list of automorphisms in Theorem 2.20 is exhaustive.
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The transitive part of Aut(M,0) is given by H_5 and H_; due to dimensional reasons. In the remaining
parts of the proof we show that any given isotropy belongs to the group generated by H}, HZ, Hy and
Hs.

Let H € Auto(M,0) be given by H = (f,9) = (f1,-.., fn,g). We assign the weight 1 to z and 2 to w

and consider the weighted homogeneous expansion of H given by

H(va):ZHV(va)v HV:(ffv"'?frl:agu)v

v>1

where each H” is weighted homogeneous of order v with respect to (z,w). The mapping H has to

satisfy the same equation as in (2.18). Then we collect terms of weighted order x > 1 to obtain

g (2,7 +2i(z,x) = " (x, T) =21 ) 0 ( > f;(z,7+2i<z,x>)g(x,7)> . (2.24)
j=1

HtrV=kK

For the rest of the proof we investigate the cases k = 1,...,5. For kK = 1 we obtain ¢g(z,0) =0. If Kk =2
we set A = (a})1<i j<n, an invertible complex n x n-matrix, and write f'(z,w) = Az and g*(z, w) = bw,
where b € C\ {0}, then (2.24) becomes

n
b(r +2i(z,x)) — br = 212 o ala 2 Xm, (2.25)

which implies b € R\ {0} and after scaling the above equation with 1/|b| and setting cé? = a?/\/ |b,C =

(cF)1<jk<n We obtain the equation
oll2ll* = [|C=|?,

where o = sgn(b) = £1. We note that the scaling we performed corresponds to an application of an

isotropy S to M given by S(z,w) =

( z w

7 W)’ which is of the form as H{ in the theorem. The term

o in H} comes from the fact that o||z||? = Im(ow) in the above equation. The matrix C is of the form
as HZ in the theorem and satisfies (2.22). Thus after composing H with S and C~! we obtain that
H(z,w) = (z+0(2),w+ O(3)), where O(m) stands for terms in z, w of weighted order at least m > 1.
To see the last claims of the theorem one proceeds similar with 7 as we did with S and we note that
o = —1 can only occur if n = 2k, since the signature of the Hermitian form (z,¢) +— (z,¢) is invariant
under isomorphisms.

Next, for kK = 3 we take

n
fjl(za U)) = Zj, fJQ(Zaw) = Z aﬁngzm + bjwa gg(zaw) = ZC]‘ZJ‘U), (226)
j=1

1<<m<n

where afm,bj,cj € C, and plug them into (2.24). If we compare the coefficients of z;7 we obtain

cj = 2i0;b; and if we collect terms of the form z;x,xm Wwe obtain the following equation after removing
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the common factor o;z;:

n
0= a@™xxm+ Y 2i0kbexnx;,

1<t<m<n k=1

which implies that afm = 0 if both ¢,m # j and otherwise we have after conjugation

aﬁjZQiUgi)g, {< 7,
a?m = QiomBm, m > /.

Hence the weighted homogeneous expansion of H is of the following form

fj(z,w):zj 1+2i20'j6j2j —|—b]w—|—O(3),

Jj=1

g(z,w) = w 1+2i20j5jzj +O0(4).

j=1

The weighted homogeneous expansion of H; which we obtained in the first part of the proof gives the
same expansion for terms up to weighted order 2 for the first n components and weighted order 3 in
the last component. Thus H(H; '(z,w)) = (2 + O(3), w + O(4)), which is the form of H we assume in
the remaining cases k > 4.

For Kk = 4 we write

n
few)= 30 a5+ 3 0w, ghzw)=cw? + 3 dpw,
m=1 |8]=2

|a]=3

where af, b7, ¢,dg € C, and f}(z,w) as in (2.26). In (2.24) if we consider the coefficients of z*y; and

x?7 we obtain a$,dg = 0 for all @ € N® with |a| = 3,8 € N* with |3] = 2 and 1 < j < n. The coefficient
of 72 implies ¢ € R. Considering terms of the form z7x® with ||, |d| = 2 we end up after dividing by
(z,x) at the equation

n

C<ZaX> = Zaj Z b;'nz'ija

j=1 m=1

which implies b7" = 0 for j # m and ¢ = bg for 1 < j < n. Then the homogeneous expansion of H is

given by

fi(z,w) = z;(1 4+ cw) + O(4),
g(z,w) = w(l + cw) + O(5),

which is the same expansion as for Hy with s = ¢ € R, which we obtained in the first part of the proof
and hence H(H; '(z,w)) = (2 + O(4),w + O(5)).
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If K =5 we take in (2.24)

n
P =ant+ Y ews Y P =Y dat Y e
j=1

|| =2 |8l=4 lv[=2

where aj, b3, cf, d;,e, € C,and fjl(z, w) as in (2.26) which we plug into (2.24). If we consider coefficients
of terms of the form x7w for |y| = 2 we obtain e, = 0, terms of the form 27y, for |3 = 4 give cf =0
and coefficients of terms of the form z°x® for |§| = 2,|e| = 3 imply a; = 0. Then we immediately get
4, ¢° =0 and we have H(z,w) = (z +0(5),w+ 0(6)). Next we apply Theorem 2.19 to this mapping,
which gives H = idcn+1, hence we have found all elements of Aut(M,0) and the list in the statement

of Theorem 2.20 contains all elements of Aut(M,0), which completes the proof. O
We obtain the following corollary from Theorem 2.20:

Corollary 2.22. Let ¢ € Aut(M,0), then there exists a unique translation t and isotropy o of (M,0)
such that ¢ =too.

Proof. We let ¢ € Aut(M,0) with ¢(0) = p € M. According to Theorem 2.20 there exists a unique
translation ¢ with ¢(0) = p such that o := t~! o ¢ satisfies ¢(0) = 0 and is an automorphism of M, hence

o € Autg(M,0) is exactly one of the isotropies listed in Theorem 2.20, which implies ¢ =t o o. O

We set n = 1 in Theorem 2.20 to obtain the automorphisms of H2. We compose and reparametrize
isotropies and translations accordingly to obtain biholomorphic mappings given in the following defini-

tion.

Definition 2.23 (Automorphisms of H?). (i) We write RT := {z € R : 2 > 0}, denote the unit
sphere in C by S! := {e'? : 0 <t < 27} and set I' := R x R x S! xC. Then we parametrize
Auto(H2,0) via T’ and write for v = (\,r,u,c) € I':

(Au(z + cw), \2w)

oy(zw) = 1—2icz+ (r —i|c?)w’ (2.27)
(ii) We define for pg = (20, wo) € H? the following mapping which form the translations of H?:
tpe t HZ2 = H2  t(2,w) = (2 + 20, w + wp + 2i%2), (2.28)
with inverse given by
to P = HP, (2, w) = (2 — 20,w — Wo — 217%02). (2.29)

To get automorphisms of H? we set n = 2 in Theorem 2.20. We are going to describe how to parametrize
a b
U= ,
c d
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with complex components. We let I. be the 2 x 2-diagonal matrix with 1 in the first and ¢ in the second
diagonal entry. Then by Theorem 2.20 the matrix U is an automorphism of H? if UI.'U = oI, where
o = +1 if e = —1, which gives the following system

laf* + & b* = o,

|d]* + ¢l = o,

ac+ebd = 0.

The last equation says that (d,c) = a(a, —eb) for a € C and using the other two equations we obtain

|a| = 1. After some reparametrization we obtain

for |u| =1 and |a|* + ¢ |b|> = 0.

Definition 2.24 (Automorphisms of H2). (i) We define for 0 = £1 if e = —1
85270 = {a’ cC?: ||d)? = o*},
and let

wa) —eudl

U = ( Ez’l y 2, u eS', d = (d},d}) €S2, (2.30)
2 1

We set I” := RT x R x §' x82, x C? to parametrize Auto(H2,0) via IV and write for 4/ =

(N, r' o a ) el

W t(z'Jrc’w’),o)\’Qw’)
R TII Y ey Py ey

ol (2, w'): (2.31)

(ii) We define for pjy = (zf, wp) = (24", 24, wh) € H? the following mapping is a translations of H?:

t’;él CHE S HE, (W) = (2" + 20, w' + wh + 2i(Zg, 2')e). (2.32)

Py
with inverse given by
ty HE — H2, ty (s w") = (2 = zg, 0 —wj) —2i(z), 2').). (2.33)

Remark 2.25. For ¢ = —1 in the definition of U’ in (2.30) we emphasize that we also allow for |a}|? —

lab]|?> = —1. We define the following matrix V', which also belongs to the group of isotropies of H? , as
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follows:

by by 0
Vi=1 v, b, 0 |, (2.34)
0 0 -1
with [b]]2 — |b5]? = —1. If we take b} = 0 and set by, = 1 in V’ we obtain the following automorphism
7' of H? as in (2.23):
71'/(2’3,2/27’([}/) = (Zé,Zi,*w/). (235)

If we do not mention otherwise we take o = +1 in the definition of ¢’ and use 7’ separately.
Next, if we set aj = 0 in U’ of (2.30), we define the following automorphisms Us(v) and U}(vy,vs) of
H? and H? respectively:

V1 0 0
1/v 0
Us(v) = ( (/) ) ) , Ui(vi,ve) =] 0 v 0 |, Ui(v) = Uj (1171)2), (2.36)
0 0 1
where |v| =1 = |v1| = |v2| and we sometimes skip arguments in Us, U5 and Us.

2.4 Equivalence Relations

We distinguish if we apply isotropies or translations to mappings. Roughly speaking isotropies are easier
to work with, since they do not move points as translations. Composing a mapping with translations
may have the consequence that the resulting mapping does look different in a certain way if we move
the base point.

We are going to introduce families of mappings by composing a mapping with translations depending on
some parameter set Fy. Then for a mapping which is defined locally, Py depends on the neighborhood
where the mapping is defined. Since at some point we only treat mappings which are defined everywhere
in C? outside some complex-analytic set we only give definitions for this particular family of mappings.
In the case of composing mappings with isotropies we use the language of germs to have all parameters
of the isotropies available.

Definition 2.26 (Local equivalence). (i) Let G, H : (H?,0) — (H2,0) be germs of holomorphic map-

pings. We let (y,v") € T x I to define

H, i (z,w) = (0;, oHo UA,) (z,w) (2.37)
and

Oo(H) = {HW S (7,9) €T x F’}, (2.38)

which we call the isotropic orbit of H. We say G is isotropically equivalent to H if G € Og(H).
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(ii) We will refer to the elements of I' X I as standard parameters. In the case where we take standard
parameters (y,7') € I' x I'" such that o, = id¢2 and a;, = idgs, we say the standard parameters

are trivial.

For the first part of the next definition we follow [Hua99, Section 4] for mappings which are defined
everywhere on H?. In subsection 6.1 below we give an equivalence relation for mappings defined in an

open set of HZ2.

Definition 2.27 (Global equivalence). (i) Let U C C? be a neighborhood of H? such that H : U —
C3 is a holomorphic mapping with H(H?) C H2. Then we define for (z,w) € H? and py € H%:

Hig (2,10) =ty ) © H 0 1y, ) (2,0). (2.39)

(ii) Let H be as above, (z,w) € H? and (v,7") € T' x I". Then we define for py € H? the following
mapping:

Hpy (2, 0) = (‘7:/’ © tlf[(pg) oHoty, 0 ‘77) (z,w).

As above in the case where we take standard parameters (v,7') € I' x I'" such that o, = id¢2 and
crfy, = id¢s and pg = 0, we say the standard parameters and pg are trivial.

We note that if the standard parameters are chosen to be trivial in H,, , .- we obtain a mapping H,,
as given in (2.39) and for Hy .- we can use the notation as given in (2.37).

Letting po vary in H? and (7,7’) in T’ x I'” we consider the following definition in the sense of germs of
mappings Hp v~

(iii) We define the orbit of H as
O(H) == {Hpy v :po € H?, (v,7/) €T xT'}. (2.40)

For G : U — C3 a holomorphic mapping sending H? to H2 for U C C? a neighborhood of 0, we
say G is equivalent to H if G € O(H) after possibly shrinking U.
Definition 2.28 (Degree). For a rational, holomorphic mapping H : CV — cN given by H =
(P1,...,PnN/)/Q, where Py,..., Py, and @ are polynomial and complex-valued we say H is reduced
if P1,..., Py, and @ do not possess any common factor. Then the degree deg H of a reduced rational

map H is defined as

deg H = max((deg Py)g=1,.. .~ ,deg Q).
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3 First Properties

In this section we introduce the equation a mapping from H? to H2 has to satisfy and deduce some
basic properties to obtain some invariants of the mappings. From this we get a first, rough classification

of mappings as well as a class of mappings which we are going to study more extensively.

Assumption

According to Remark 2.7 and Definition 2.4 our starting point is for U € C? an open and connected
neighborhood of 0 we have given a mapping H : U — C3 with H({U NH?) C H? and H(0) = 0. The
components of H are denoted by H = (f,9) = (f1, f2, 9)-

The condition that H maps H? into H2 can be expressed via a so called mapping equation which is

given as follows:

Im(g(z,w)) = |fi(z,w)]* + €| fa(z,w) [, (3.1)

if Imw = |z|? for (z,w) € U. In order to work with such an equation in a more convenient way we

write (3.1) as
9z w) = (2, @) = 2i( (2, w) fi(5,0) + € folz,w) ol,0) ). (3:2)

if w—w=2izz. After expressing w in the last equation and plugging the result into (3.2) we apply

Theorem 2.1. By setting x := Z and 7 := w we obtain the following equation:

9,7 +2i20) = 906 7) = 21( i 7+ 2020f1 06 7) +2 Hle T H2i20R06T),  (33)

which holds for all (z, x, 7) € C? sufficiently close to 0. We refer to this equation as complezified mapping
equation.

Some easy facts can be deduced directly from (3.3): If we evaluate at (z,x,7) = (2,0,0) we obtain
g(z,0) = 0. Moreover differentiating (3.3) with respect to z and y and evaluating the result at 0 we

have
9 (0) = f12(0) fix (0) + € £2:(0) fax (0) = | f1(0)* + | fo= (0) %, (3-4)
which implies g,,(0) € R.

3.1 Transversality of Mappings

This section is devoted to introduce a well-known first-order biholomorphic invariant for mappings.

Definition 3.1 (Transversality). Let M c CV and M’ ¢ CN' be real-analytic, real hypersurfaces and
U C CV be a neighborhood of p € M. A holomorphic mapping H : CN¥ — CV" with HUNM)cC M

27



is called transversal to M’ at H(p) if
/ Ny _ N’
ThpyM' + dH(T,C") = Ty C . (3.5)

Remark 3.2. (i) In view of (3.5) it is easy to observe that transversality is invariant under biholomor-
phic changes of coordinates: Let H be a mapping as in Definition 3.1. We assume w.l.o.g. that
p=0and H(0) = 0. Let ¢ and 9’ be biholomorphisms of C¥ and CN sending (M,0) to (M,;B)
and (M’,0) to (M’,ﬁ) respectively. For the induced mapping H= W'oHoyp !t : (]\A/[/,ﬁ) — (]\A/f’,ﬁ)
we consider (3.5). Then we note that T M’ and dﬁ(T,—,;(CN) are related to Ty M’ and dH (ToC™) via
the Jacobian matrix of v’ ,which shows that H is transversal to M’ at P’, hence again transversal.

(ii) When dealing with submanifolds there also exists the notion of the so called CR-transversality of
a mapping H. We use the notation from subsection 2.1 and let M C CV and M’ c CV " be real-
analytic real submanifolds of codimension d and d’ respectively and H a holomorphic mapping
sending locally M to M'. Let p € M, then H is called CR-transversal to M’ at H(p) if

Ty M+ dH(Ty°CN) = T30 '
It can be shown that a mapping of real submanifolds which is CR-transversal is transversal in
the sense of Definition 3.1, if we allow for submanifolds instead of hypersurfaces in this definition.

The converse is in general not true, but if we deal with mappings of hypersurfaces these notions
coincide, see [ER06, §5].

We give some characterizations for transversality of a mapping which will be useful for our purpose.

Lemma 3.3 ([ER06, Theorem 5.2]). Let (M,p) € CNT' and (M',p') ¢ CN'*! be germs of con-
nected, real-analytic, real hypersurfaces given in coordinates Z = (z1,...,2n+1) € CNTL and 7/ =
(2, 2 g) € CN'*Y by p and o' defining functions for M and M’ respectively. Let H : (M,p) —
(M',p") be a germ of a holomorphic mapping. Then the following statements are equivalent:

(i) H is transversal to M at p’.

(ii) There exists a holomorphic function A : (C*N+2 p) — C such that the following equation holds:

P (H(Z),H(Q)) = A(Z,O)p(Z,¢), (3.6)

with A(p,p) # 0.
(iii) If we choose normal coordinates as in Definition 2.2 with p =p' = 0 we have %(O) #0.

Proof. To prove the lemma we first change to normal coordinates (z,w) = (21, ..., 2y, w) € CN*1 and
(2, w') = (2,,..., 2}, w') € CN'*1 centered at p = p/ = 0 as in Definition 2.2 and write H = (f,g) =
(fiy---y [Ny g) + (M,0) — (M’,0). By Remark 3.2 H is transversal to M’ at 0 if and only if H is
transversal to M’ at p'.

To prove the lemma we set p = p’ = 0 and show (i) < (iii) and then we prove (ii) < (iii). The first

equivalence is proved by verifying what (3.5) means under the assumptions of the lemma. For this
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purpose we write
CToM = CTEM & NoM =Ty ' M & Ty M & NoM, (3.7)

where we use the definitions from subsection 2.1 such that

Ty'M = <8,3 =1, .,N> NCTyM,
5'zj C
T M = <6_,] =1, .,N> NCTyM,
8Zj C
o 9
M={—+ =
No <8w * 8w>(C

Using (3.7) and since M is of hypersurface type we have
CT,CN = CToM + JCToM = CToM @ JNoM. (3.8)

Note that an analogous decomposition holds if we replace M by M’. Next we complexify M and M’

and if we use (3.8), the definition of transversality from (3.5) is equivalent to
CToM' + dH(JNyM) = CT,CN', (3.9)

where we take coordinates (z,w,z,w) € CNT! x CN*1 and (2/,w’,7,@w') € CN'+1 x CN'*1 for the
complexification of M and M’ respectively, where (z,w) € CN*! and (2/,w’) € CN'*! are normal
coordinates for M and M’ respectively. Then % - % € JNoM corresponds to the vector N :=
(0,1,0,—1) € CV x C x CV x C. Since we are working with normal coordinates we can deduce similar
to (3.4) that g—Z(O) is a real matrix and g(z,0) = 0.

To complete this part of the proof we consider the expression dH(JNyM) and compute the tangent
vector X = dH |opN as follows:

L) L) o0 0 2L(0)
(f.9.f.9) 0 22(0) 0 22(0)

X = (a(z,i,z,zga) (O)>N: 0 0o %) 2o o |~ —a%g(o) ’
0 0 0 220 ~1 —99(0)

which in normal coordinates is the following vector:

_ (%2 09,2 Of O g 0
X_<3w(0)82’+3w(0)8w’ prARPE aw(o)aw/>'

The part of X which is not in CTo M’ is given by @(0)(8‘2}, - %). Thus (3.9) is satisfied if and only

w

if %(0) = 0, which completes the proof of the equivalence of (i) and (ii).

29



Next we show (ii) < (iii): Since we have given normal coordinates near 0 we write

p(z,w,x,T) =w— Q(Za X7T)a
p/(’z/a ’UJ/, X/a 7_/) = wl - Q/(Z/a X/a 7-/);

where 7 = Q(2,0,7) = Q(0, x,7) and 7' = Q'(2/,0,7") = Q'(0, x’, 7). Because H maps M to M’ there
exists a nontrivial holomorphic function A : C2(N+1) — C such that

9(z,w) = Q'(f(z,w), f(x. 7),3(x. 7)) = Az, w, x, 7) (w — Q(2,X, 7)), (3.10)

for all (z,w,x,7) € C?*N*2 near 0. Then we differentiate the previous equation (3.10) with respect to
w and evaluate at 0. By the normality condition of @ and @' we have Q”,(0) = Q,(0) = 0 to obtain
9w (0) = A(0), which proves the equivalence of (ii) and (iii). O

Remark 3.4. (i) Lemma 3.3 shows that if H is not transversal to M’ at H(q) if and only if there
exists a holomorphic function A satisfying A(q,g) = 0. The set {g € M : A(q,q) = 0} defines
a proper, real-analytic subset of M and hence we say H is transversal to M’ outside a proper,
real-analytic subset of M if H is transversal to M’ at H(p) for some p € M. Otherwise we say H

is nontransversal.
(ii) Lemma 3.3 (iii) together with (3.4) shows that a transversal mapping H from H? to H2 is immer-

sive.

We see in the next proposition what happens if we study mappings from H? to H2. It turns out that

for € = —1 there are mappings which need not be transversal, in contrast to the case ¢ = +1.

Proposition 3.5 ([BER07, Theorem 1.1|). Let U C C2? be an open, connected neighborhood of 0 and
H : U — C3 a non-constant holomorphic mapping with H(U NH?) C H2. Then we have the following
two mutually exclusive statements:

(i) H is transversal to H3 outside a proper, real-analytic subset of U NH?2.

(ii) The mapping satisfies H(U) C H3.

Furthermore (ii) can only appear if e = —1.

Proof. By our assumptions there exists a holomorphic function a : C* — C such that

g(sz) - g(XaT) - 2i(f1(sz)f_1(X7T) +€f2(Z,’lU)f2(X,T)) = G(ZﬂUaX,T) (w -7 2iZX)7 (311)

for all (z,w,x,7) € C* near 0. We have the possibility that a = 0 to obtain (ii) for ¢ = —1, since if
e = 41 we would have H = 0. If a # 0 then we divide the function a sufficiently often by the defining
function of H? to obtain a holomorphic function A : C* — C satisfying

a(z,w, x,7) = A(z,w, X, 7)(w — 7 — 2iz2x)™, (3.12)

for m > 0 and Algz # 0. If m = 0 we are in the business of (ii) of Lemma 3.3 to obtain (i), since

the proper, real-analytic set of points ¢ € H? where H is not transversal to H2 at ¢ € H? is given by
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A(g, @) = 0 according to Remark 3.4 (i).

The rest of the proof consists of showing that m > 1 is possible only if ¢ = —1 and H satisfies the
property given in (ii). For this purpose we change coordinates to assume A(0) # 0, let m > 1 and
replace a in (3.11) by (3.12) to obtain

g(z,w) - g(X’T) - Qi(fl(sz).fl(XaT) + 5f2(z,w)f2(x,7)) = A(Z,’LU,X/I’)(U) - T 2iZX)k7 (313)

for k > 2 and A(0) # 0.

If we set x = 7 = 0 we obtain
g(z,w) = A(z,w,0,0)w",
and using this in (3.13) we get

A(Za wvovo)wk - A(Xa T, 0,0)Tk - Qi(fl(za w)f_l(XvT) + 5f2(27w)f_2(X77)) (314>
= A(z,w,x,T)(w -7 = 2izx)k,

Next we differentiate (3.14) with respect to z and x and evaluate at 0 to obtain

F12(0)f15(0) + € f2:(0) f2x (0) = 0, (3.15)

since k > 2.
For ¢ = +1 we obtain f.(0) = (f12(0), f2-(0)) = 0 and since we always have ¢.(0) = 0 as noted in
section 3, the rank of the Jacobian of H is at most 1, which means that H is not immersive. We
conclude that there is no non-immersive mapping if ¢ = 41 similar as in the proof of [Leb11b, Theorem
1.2] as follows: Having the rank of the Jacobian of H at most 1 means that outside a complex-analytic
set in U C C? the mapping H sends a neighborhood of p € C? into a complex 1-dimensional subset
of C3. Tt is possible to find p € H?, such that H sends an open neighborhood of p in H? to H? which
implies that there is no non-immersive H, since H? does not contain complex-analytic sets.

From now on we treat the case ¢ = —1. In view of (3.15) we say the vector f,(0) is trivial if at least
one of the components is 0. Hence if f,(0) is trivial we have that H is not immersive and we conclude
(ii) as in the proof of [Lebllb, Theorem 1.2]: We proceed as above where e = 41 and note that outside
a complex-analytic set in U C C? the mapping H sends a neighborhood of p € H? to a 1-dimensional
subset in C3. Then we observe that H maps a neighborhood V C C2 of p € H? into H?

—

since if the
image of H in H3 is less than two real-dimensional, then the preimage of such a point would give a
complex-analytic set in H? according to the rank theorem, which is not possible.

Let us assume f.(0) is nontrivial for the rest of the proof. Then we proceed by setting z = 7 = 0 in

(3.14), differentiate with respect to x and evaluate at y = 0 to obtain

—2i(f1(0,w) f15(0) — f2(0,w) fay (0)) = A, (0, w,0,0)w". (3.16)
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Differentiating (3.16) with respect to w and evaluating at 0 gives

F1(0)f1x(0) = f20(0) f2x (0) = 0, (3.17)

since k > 2, which implies the vector f,,(0) = (f1.(0), f2,,(0)) is a multiple of f.(0). At the end of the

proof we need the w*~!-coefficient in (3.16), which satisfies
Fraoe s 0)Fi(0) = Foui(0) For (0) = 0. (3.18)
Next we take z = xy = 0 in (3.14), differentiate with respect to 7 and evaluate at 7 = 0 to get
—2i(f1(0,w) f1(0) — f2(0,w) f2-(0)) = A,(0,w, 0, 0)w" — kA(0,w,0,0)w" . (3.19)
Then we differentiate (3.19) k — 1-times with respect to w and evaluate at 0 to obtain

=2i(frur-1(0)f17(0) = faur-1(0)f2-(0)) = —KLA(0). (3.20)

Since we already know from (3.17) that f,,(0) is a multiple of f,(0) we substitute f,(0) into (3.20) and
use (3.18) to obtain A(0) = 0, a contradiction. O

3.2 Degeneracy of Mappings

The next biholomorphic invariant we need is the well-known (finite) degeneracy for mappings. This in-
variant was used by among others Faran [Far82|, Cima—Suffridge [CS83] and Forstneri¢ [For89] to extend
proper holomorphic mappings, which are smooth up to the boundary of their domain, holomorphically

past the boundary. This section is based on [LamO1, Section 2.5].

Definition 3.6 (Degeneracy). Let M C CV and M’ c CVN " be generic, real-analytic submanifolds of
codimension d and d’ respectively and denote n :== N —d and n’ := N’ —d'. For p e M,p’ € M’ and
U c CN aneighborhood of p we let H : U — CN' be a holomorphic mapping satisfying H(UNM) c M.
We choose coordinates Z and Z’ centered at p and p’ for M and M’ respectively. In the complexification
of M and M’ we write ¢ == Z and (' := Z'. For p' = (p}, ..., ply) a defining function for M’ near p’ we
denote for 1 < j < d’ the complex gradient p’; ,,(Z’, Z') of p; with respect to Z’ by defining

op;(Z',¢') op'(Z', ¢
Phz (2 () = ( ]021 Y pa(zfvzc )) .

For Ly,...,L, a basis of CR-vector fields for M near p, as defined in subsection 2.1, and a =
(a1,...,a,) € N* we denote L* = L{'--- L. Then we define for k¥ > 0 and ¢ € M near p the
following vector spaces after possibly shrinking U:

Ej(g) == spang {L“p},z (H(2), H(Q)| 0< ol <k1<j< d’)} cc¥. @2y

(2,0)=(2:9)

Since for k > 0 the E},(q) form an ascending chain of vector spaces in CV ", there exists a minimal kg > 0
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such that Ej(q) = E} (q) for all k > ko and Ej _(q) & E}, (¢) in a neighborhood of ¢ € M. We set
s5(q) = N' — dimc Ej, (q),

called the degeneracy of H at q and H is called (ko, s(q))-degenerate at g € M.

If s = s(q) is constant in a neighborhood of p € M we say H is constantly (ko, s)-degenerate near p € M
and s is called constant degeneracy of H.

If for some ¢ € M we have s(q) = 0, then E; (q) = CV" which means that H is of constant degeneracy

s =0 near g and H is called kg-nondegenerate.

Lemma 3.7. Definition 3.6 is independent of the choices of a basis of CR-vector fields and the defining

function.

Proof. Let L= (Zl, cee Zn) be another basis of CR-vector fields for M, such that L= A(Z,¢)L for
an invertible matrix A(Z, () = (ajx(Z,()); k=1
combination of L? for |3| < |a|. Thus if we denote by E‘,; (¢) the subspace as given in (3.21) where we

n in a neighborhood of p € M. Then L is a linear

.....

use L instead of L, we obtain that Ej(q) consists of linear combinations of vectors in Ej(q). Hence if
we interchange roles of L and L we have Ej(q) = E}(q).

To see the independence of Definition 3.6 of the defining function we let p’ be another defining
function for M’. Then we have p'(Z’,¢") = B(Z',{")p'(Z',{’) for an invertible matrix B(Z',{’) =
(bjx(Z',¢"))j.k=1,...,ar near p’ € M'. For £ =1,...,d we compute

d’ d’
oz (Z',¢") = burz(Z', o (Z,C) + D bae( 2, ¢ ph 2 (Z', ).
k=1 k=1

Then in L5, 5, (H(Z),H(()) the first sum vanishes if we restrict to M and in the second sum we
obtain terms of the form Lﬁpzz,(H(Z), H(Q)) for |B] < |a|. Again if we write E,’C(q) for the subspace
given by (3.21) where we use p’ instead of p’, we obtain, after interchanging p’ and p’ in the previous
consideration, Ej(q) = Ej(q). O

Example 3.8. For U C C? an open set containing S? we consider the mapping Fy : U — S? of
Theorem 1.1 and choose coordinates Z = (z1,22) € C? and Z' = (21, 24, 2}) € C3. We write ( = Z and
¢’ = 7', such that S?, the complexification of S?, is given by p(Z,() = Z( — 1 and the complexification
of S? is given by p/(Z’,(') = Z'¢’ — 1. Then

P(2,0) = piy (F(2). F1(Q) = (61, V3G162. 63,

and we take L = zga%l - 218%2 as a basis for the CR-vector fields. We note that L¥¢ = 0 for k > 4 and

compute

{Le, L2, LPp} = {(322C12» V3(2262 — 21G1), —321422>7 (6236; —2V3212, 62%(2), (6'Z§a 0, _62%)} .
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Then the set for S?, where F} is 3-nondegenerate is given by

{(Z,¢) € 8% : det(yp, Lo, L*p) =0} = {(Z,¢) € 5% : (1¢, = 0).

In the following we show that the notion of degeneracy is invariant under biholomorphic changes of

. . !
coordinates in CV and CV'.

Lemma 3.9 ([Lam01, Lemma 14]). Definition 3.6 is independent of the choices of holomorphic coor-
dinates in CN and CN'.

Proof. Let ¥ and ¥’ be biholomorphisms of CV and CV l respectively, such that Z = U(Z) and
7= (Z') are holomorphic coordinates for M and M’ near p and ' respectively.

A change of coordinates in C"V has the consequence that the CR-vector fields L are mapped to L= v, L,
which form a basis of CR-vector fields for M. Similar as we did in the proof of Lemma 3.7 we can show
that E} () = Ej(q), where Ej(q) is obtained from (3.21) if we write H := Ho W1, use Z as coordinates
for M and L as a basis of CR-vector fields near D.

To show the invariance of a change of coordinates in CV' we have 7/(Z,(') == o/ (W'~1(Z"), ¥'~1({"))

as defining function for M’ and we compute for 1 < £ < d':

6\11171

oz ().

7,520 = (A0 HZ) DY) = ph (W THED) T

If we plug in H(Z) for Z' we set H := W'~' o H and note that the CR-vector fields of L annihilate

ag'g/l (H(Z)). Again we obtain E‘,'C(@) = E}(q) if we choose p’ in (3.21). O

In order to obtain a more global view on the concept of degeneracy we define the following degeneracy.
Definition 3.10. Let M ¢ CN and M’ ¢ CN' be generic, real-analytic submanifolds and U € CV be

a neighborhood of p € M. Let H : U — CV' be a holomorphic mapping satisfying HUNM) cCc M
and fix V' C U a neighborhood of p € M such that VN M C U. The number

sg(V) = min s(q),
qeVNM

is called generic degeneracy in V. C CN a neighborhood of p € M.

Note that H is of constant degeneracy sy (V') near p € V. The following lemma shows that H having

degeneracy sy happens generically in U.

Lemma 3.11 ([Lam01, Lemma 22|). Let M € CN and M’ c CN' be generic, real-analytic submanifolds
and U C CN a neighborhood of p € M. Let H : U — CN' be a holomorphic mapping satisfying
H({UNM) C M’ and fix V C U a neighborhood of p € M. Then H is constantly (ko, s (V))-degenerate
outside a proper, real-analytic subset of VN M for some kg € N.

Proof. In order to show the claim we prove that the set

X = {qGVﬂM:s(q)>sH(V)}§VmM’
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is a real-analytic subset in V by giving real-analytic defining functions for X. We go back to Defini-
tion 3.6 and define for 1 < £ < d' and 1 < k < N’ the following real-analytic functions:

ot k(Z.0) = ploy (H(Z). H(Q)). (3.22)

Being of constant degeneracy sy = sy (V) in VN M means the following: There exist t =ty = N’ —spy
multi-indices £, ..., 3" € N” and numbers my,...,m; € N with 1 < m, < d’ such that, after possibly

permuting components in Z’, the following vectors with real-analytic entries

0(2,0) = (L7 pm, 1 (2,0), o 1 o, o(Z,Q)) €T, 1< <t (3.23)

form a basis of C?. Since sy is the smallest possible degeneracy in V N M the set X of points ¢ € VN M,
where the degeneracy s(q) is bigger than sg is given by

X = {q ceVnM: det(vl(q,q‘)7...,vt(q,q_)) = 0},

which is a proper and real-analytic subset.

The number ky is given by the maximal length of the 5" for 1 < r <t from above. O

Lemma 3.11 shows if we take a smaller neighborhood W C V in Definition 3.10 then sy (V) = sg(W).

Hence we skip the argument in sy (V') and write sy from now on.

Remark 3.12. For nondegenerate mappings and mappings of degeneracy equal to 1 we can deduce jet
parametrizations which we are going to give in two of the following sections below. In the case of the
constantly 1-degenerate mappings we mention the following easy fact for this purpose:

In the proof of Lemma 3.11 we had for a mapping H of constant degeneracy s, that the vectors v; given
in (3.23) form a basis of C*, where t = N’ — s. We furthermore have that this set of vectors satisfies
the following equations: For any v € N* ¢t +1 <k < N’ and 1 < £ < d’ the determinant of the matrix

1 1 1
Lﬂ Pmq,1 e Lﬁ Pmy,t LB Pma,k
gt g ’ 5t ’ (3.24)
L Pmg,1 L Py, t L P,k
LYppy -+ LVpgy LYok

restricted to points in M vanishes.

Next we obtain bounds for the generic degeneracy sy and kg adapted to our setting.

Proposition 3.13 ([Lam01, Lemma 23-24]). Let U C C? be a neighborhood of p € H? and H : U — C?
a holomorphic mapping with components H = (f1, fa,9) and H(U NH?) C H2 which is transversal to
H2 outside a proper real-analytic subset of H2. There exists a proper, real-analytic subset X of U N H?>
such that after shrinking U and performing a change of coordinates in U\ X the following two mutually
exclusive statements hold:

(i) H is 2-nondegenerate, such that f1.(0)f2.2(0) — f2.(0)f1.2(0) # 0.

(ii) H is constantly (1,1)-degenerate, such that f1,(0)fo,1(0) — f2.(0)f1.+(0) =0, for all k > 2.
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Proof. By Lemma 3.11 we have (ko, sg)-degeneracy outside a proper, real-analytic subset of H2. By
Remark 3.2 and Lemma 3.9 after a change of coordinates we assume that 0 is a point where H is
constantly (ko, spr)-degenerate and transversal to H2. This change of coordinates is performed via
composing H with translations such that 0 gets mapped to a point ¢ where H is constantly (ko, s )-
degenerate and transversal to H2,

instead of H. At this point it is possible that we need to shrink U.

Before we give estimates for ky and sy we introduce some notation first:

Le., we consider the mapping t% o H ot from (2.28) and (2.33)

Let (Z,¢) = (z,w, x,7) and (Z', (") = (21, 25, w’, X}, X5, ') be coordinates of the complexification of H?
and H? and

P2 () = w =7 = 20(z21x) + € 2x5)

a defining function for the complexification of H2. A basis of (0,1)-vector fields of the complexification

of H? is given by

0 . 0
L'_@_ZIZE' (3.25)
Next we define for £ > 0
0e(Z,€) = Lrplp (H(Z), H(Q)) = LF (=21 filx.7), ~2ie ol 7). 1), (3.26)

and uy = vg(0,0). Further let us define the subspaces E}, = spanc{u,, : 0 <m < k}.

Then we have ug = (0,0,1) and ug = —2i(f1,¢(0), fay¢(0),0) for £ > 0. Since H is transversal at 0 we
have by Remark 3.4 (ii) uy # 0 such that uy and w; are linearly independent. Consequently E{ C Ej
and dimg Ej, > 2 for k > 1, which implies ko > 1 and 0 < sy < 1. We are left with two cases:

If sy =0, then kg > 2. In order to show kg = 2 we prove as in [BER99b, Lemma 11.5.4]

A(Z) = le(Z’ 0)f222 (Z7 0) - flz2 (270)f22(za 0) ?_é 07 (327)

which says that A vanishes on a proper, complex-analytic set of C. Since H? does not contain any
complex-analytic sets we obtain that H is 2-nondegenerate outside a proper real-analytic subset of
U N H? satisfying the linear independence condition in (i).
We show (3.27) by assuming the converse A = 0 and write

(fl(Z,O),fQ(Z,O)): Zakzk,Zbgzz ,

k>1 0>1

where (ay,be) = (f1.+(0)/k!, f2.¢(0)/€!). Then we have

A(z) = Z <Z_ k(m—k)(m—k—1) (akbm_k - am_kbk)> 28,

k=1
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Considering the coefficients z for o > 0 in A = 0 we inductively obtain that there exists Ay € C such
that (ag,br) = Ar(a1,b1) for all k > 2. This implies

(fl(z,0)7f2(270)) = (flz(o)a f2z(0))h(2)a

for some holomorphic function & : C — C. Then we have E{ = Ej for k > 2, hence ky = 1, a
contradiction.

Finally we consider the case sy = 1, where we must have dimc £}, = 2. This is already achieved
for k = 1, which means that H is (1,1)-degenerate outside a proper, real-analytic set of U N HZ.

Furthermore, since then F{ = E,’C for k > 2, we obtain the condition

flz(o)fQ,zk (0) - fQZ(O)flzk (0) = 07 Vk > 27 (328)
which completes the proof. O

Remark 3.14. We let H = (f1, f2,g) be as in Proposition 3.13. According to Definition 3.6 and (3.26)

we note that the set N of points in H?, where H is not 2-nondegenerate, is given by

N = {p e H?: LAP)L* fo(p) — LE:(0) L fi(p) = 0} .

Remark 3.15. The conditions for H given in Proposition 3.13 (i) and (ii) are invariant under applications
of isotropies or appropriate translations as in (2.37) or (2.39), if one assumes that the parameter
occurring in (2.39) belongs to a sufficiently small neighborhood of 0. Since translations are not needed

at this point of our investigations we will discuss them in a subsequent chapter in more detail.

3.3 Initial Classification and the Class F,

We are going to use the invariants we introduced in the previous section to obtain a first classification

of mappings.

Proposition 3.16. Let U C C? be an open and connected neighborhood of 0 and H : U — C? a non-
constant holomorphic mapping given by H = (f1, f2, g) with H(UNH?) C H2 and H(0) = 0. Then, after
possibly shrinking U, changing coordinates or composing H with automorphisms, one of the following
mutually exclusive statements holds:
(i) H is transversal to HZ and 2-nondegenerate at 0 and we can assume H(0) = 0, g,,(0) = | f1.(0)|*+
£ 1fa=(0)2 > 0 and f12(0) fo2(0) — fo-(0) f122(0) £ 0.
(ii) H is equal to the linear embedding (z,w) — (2,0, w).
(ili) For e = —1: H is a mapping of the form (z,w) — (h(z,w), h(z,w),0) for some non-constant
holomorphic function h : U — C with h(0) = 0.

Definition 3.17. We assign to the mappings from Proposition 3.16 (i) the following notation: For a
neighborhood U C C2 of 0 let us denote the set F»(U) of holomorphic mappings H = (fi, f2,g) with
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H(U NH?) C H2, which satisfy H(0) = 0, using the notation of (2.4)
A(1,052,0) = f12(0) f2:2(0) — f2:(0) f1.2(0) # 0 (3.29)
and
9w (0) > 0. (3.30)

We denote by F the set of germs H, such that H € F»(U) for some U C C? a neighborhood of 0.

Proof of Proposition 3.16. We apply Proposition 3.5 to obtain that either H is transversal to H2 outside
a proper, real-analytic set of U NH? or for ¢ = —1 we have H maps a neighborhood U C C? of 0 to H? .
We assume the first condition for H and apply Proposition 3.13, such that after performing a change of
coordinates via translations and possibly shrinking U as in the beginning of the proof of Proposition 3.13,
that H is transversal to H2 at 0 and either 2-nondegenerate or (1, 1)-degenerate near 0. By Lemma 3.3
transversality to H2 at 0 is equivalent to g,,(0) # 0. For ¢ = +1 by (3.4) we immediately have g,,(0) > 0.
If ¢ = —1 and we have g,,(0) < 0 we compose H with the automorphism 7" from (2.35).

If we assume H is transversal to H2 at 0 and 2-nondegenerate near 0, then we immediately obtain (i)
by (3.27) in the proof of Proposition 3.13.

If we assume H is transversal to H? at 0 and (1,1)-degenerate near 0 we also have the property which
is given in (3.28) and we refer to Theorem 7.2 in section 7 below to obtain (ii).

To finish the proof we need to treat the case if ¢ = —1 and H maps a neighborhood U C C? to H3 .
Here the following mapping equation holds for all (z,w, x,7) € W for some neighborhood W c C* of 0:

g(Z,w) - g(X,T) - Qi(fl(zaw)fl(X7T) - f2(2’w)f2(x,7—)) = 0. (331)

Setting x = 0 = 7 we obtain g(z,w) = 0 such that (3.31) reduces to

fl(zaw)fl(X7T> = f2(sz>f2(X77_)7 (332)

for (z,w,x,7) € C* Next we either apply [D’A93, Chapter 3, Proposition 3| or we proceed as follows:
Differentiation of (3.32) gives | f1-(0)| = |f2-(0)|, | f1w(0)] = | fow (0)] and f1.(0) f1-(0) = f2.(0) f2,(0) = 0.
These equations together imply that the Jacobi matrix of H is of rank 1 near 0. This means at a generic
point py near 0 the mapping f : (z,w) — (f1 (z,w), fg(z,w)) sends a full neighborhood W of pg into
an irreducible complex- analytic curve C' of C2. We proceed as in the proof of [Leb11b, Theorem 1.2
and apply an automorphism of H? as U} from (2.36) to (z,w) — (f(z,w),0), such that the image of H
is contained in the complex variety given by {(2{,25,w’) € C?®: z{ = z5,w’ = 0}. Thus H is equivalent
to the map (z,w) — (h(z,w), h(z,w),0) for some holomorphic function h : C* — C with h(0) =0. O
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4 lIsotropical Equivalence of Mappings in F;

In this section we provide a normal form for mappings in the class F5, which was defined in Defini-
tion 3.17. Note that the conditions for H to belong to F3 given in Definition 3.17 are preserved if we
apply isotropies which are fixing 0 to H.

4.1 Normal Form N,

Proposition 4.1. Let H € Fy. Then there exist automorphisms o € Auto(H?,0) and o’ € Autg(H2,0)
such that H =o' o Hoo satisfies fI(O) =0 and the following conditions:

2(0) = (1,0,0) (V) Fruz(0) = |fru2(0)] > 0
«(0) = (0,0,1) (vi) Re@,g 0)) =0
(vii) Re(fas2,(0)) =0
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Definition 4.2. We refer to the equations given in Proposition 4.1 as normalization conditions. A
holomorphic mapping of F» satisfying the normalization conditions is called a normalized mapping.

The set of normalized mappings is denoted by N5.

Proof of Proposition 4.1. For H € F5 we proceed as follows: We normalize H in 6 steps. In each step
we apply certain isotropies to H in order to normalize some coefficients of H and to obtain a partial
normal form for H, which is used in the subsequent steps. At some points it is necessary to renormalize
to preserve some already achieved normalized coefficients of H.

We write H = (f, 9) = (f1, f2,9). We introduce the following notation: For k£ > 1, in the k-th step if we
apply isotropies o), € Autg(H?,0) and o}, € Auto(H2,0) we write Hy, := o}, 0 H,_1 00}, with components
Hy. = (f*,g%) = (fF, f¥,g*). We set Hy = H.

We start by defining H; = (NU'f, \%g), where ' > 0 and U’ is a 2 x 2-matrix as in (2.30). We

compute

Hy-(0) = (X (0} £2-(0) — € a fo- (0)), N (@ £1-(0) + @ £2-(0)),0),

9u(0) = X2g,(0).

Since we assume g,,(0) > 0 we can choose X > 0 to obtain gl (0) = 1, which gives one equation of (ii)

from our desired normalization conditions. Next we set

a = flx(o) I fQX(O
1= , :
9u(0)

~

to obtain by (3.4) that (a},a}) € 82, and f1(0) = (1,0), which is ().
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In the second step we apply the isotropy of HZ from (2.31) involving ¢’ = (c}, c5) € C? and define

(fll + chg, f3 + chg', 91)

T 121 fl +edhfl) —il|d]|2gt

HQI

We verify that Ha,(0) = (1,0,0) and ¢2/(0) = 1 and compute that f2(0) = (] + fi,(0),ch + f1,,(0)),
such that we can achive f2(0) = (0,0), which gives the normalization condition (ii).

Next we define

2 (ztcw,w) A2 (z4cw,w) 2 (ztcw,w) 2 (ztcw,w)
. (17 () + oo (i) 3 (ks ) o (=i
3z, w) = _
1_ 216f12 ( (z4cw,w) ) _j ‘é|292 ( (z4cw,w) )

)
1-2icz—i|c|?w 1—2icz—i|c|?w

(4.1)

where ¢,é € C. It holds that Hs,(0) = (1,0,0), Hs,(0) = (¢ + ¢,0,1), such that we need to set
¢ = —c to fulfill the normalization conditions from the previous steps. We note that the condition for
Hj from Definition 3.17 given by f7,(0)f3 .(0) — f3,(0)f 2(0) # 0 reduces to f3..(0) # 0, such that
[3.,(0) = cf2 .(0) + f3.,,(0), which implies that we can achieve (iv), i.e., f3.,,(0) = 0, for the remaining
steps.

In the fourth step we define

Ha(z,w) = (Xd’v’ F3(O\z, A2w), N f3 (A2, A2w), N2g% (A2, vw)) :

where A\, \' > 0 and |d'| = [v'| = 1. We compute Hy,(0) = (d'v'AN,0,0), Hy,(0) = (0,0, (AN)?) and
f4.,(0) = 0 and set v/ = 1/d" and X = 1/X such that all normalization conditions we obtained so far
are satisfied by Hy. Then we have fy ,(0) = Ad'f3 .(0) # 0 since Hy € F>. Hence we can find d’ and
A> 0 to get f1,(0) =2, which is (iii).

In the fifth step we define

Hi(z,w) = (¢ f (uz, w), & f3 (uz,w), g* (uz, w)),

where |u| = |[u/| = |¢/| = 1. We have Hs.(0) = (uwu'e’,0,0), Hs,,(0) = (0,0,1), f5 .(0) = 2¢’u* and
15.,(0) = 0. To preserve the so far obtained normalization conditions we set ¢/ = u? and v’ = 1/u3.
Then we calculate f? .(0) = f},2(0)/u, such that we can normalize f ,(0) > 0 with the standard
parameter u, which is (v).

In the last step we define

oo o T (ER) 7 (552) 0° (152))
1+rg? (%)

where r,7’ € R. Then we verify that all normalization conditions from the previous steps are satisfied
by Hg and we obtain that ¢%,(0) = —2(r +7') + ¢2.(0) and f5. (0) = —(2r + ') + f5 ., (0). Hence
we can find unique 7,7’ € R such that Re(¢%.(0)) = Re(f$,(0)) = 0. These conditions are the
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missing normalization conditions (vi) and (vii). The isotropies o € Auto(H?,0) and o’ € Auto(H2,0)
in the proposition consist of the appropriate composition of the isotropies we used in each of the 6

normalization steps. O

Remark 4.3. It is possible to obtain explicit formulas for the standard parameters of the isotropies
we used in the normalization procedure of Proposition 4.1. One possibility is to keep track of the
applications of isotropies in each step and each relevant coefficient in the previous proof. Alternatively
we consider H == ¢’ o H o o, where we use all standard parameters in o and ¢’ with the notation of
(2.27) and (2.31). Then we have to compute the coefficients of H we want to normalize and solve the

resulting equations for the standard parameters. The first equations are the following:

H.(0) = (mx ( “a‘:l iz'“/? ) < 2283 > ,0> = (1,0,0), (4.2)

Fo(0) = [wn [ 0 —eva ) (A0 F A0 +eufiz(0) ) yay2 ) o (4.3)
v a a HAGw (0) + Afaw(0) + cufo,(0) /' v '

= (07 0’ 1)7

which can be solved using (3.4) by

I flx(o) I f2X(O)
CEWLOT 2T w0 #4)
such that o’ = (af,a5) € 82, and we obtain
, —cufi2(0) = Af1w(0) , —cufa(0) = Afay(0) ;o 1
€ = )\gw(o) ’ Cy = /\gw(o) ’ A= \ gw(O)’ (45)

since we require A, g,,(0) > 0. For the following equations we use the notation for 2 x 2-determinants
of coefficients of H we introduced in (2.4). Then we use (3.4) as well as the formulas for the standard

parameters for a/, ¢’ and ) to obtain the following equation:

wu/ )\

forw(0) = Ju(0)?

(cugw(O)A(l, 0:2,0) + (g2 (0)A(0, 15 1,0) + g,y (0)A(1, 03 1, 1))) =0,  (4.6)

which has a unique solution ¢ € C, since g¢,,(0) > 0 and A(1,0;2,0) # 0, given by

__ AMezw(0)A(0,131,0) + 94 (0)A(1, 01, 1)) (47
‘= ugw(0)A(1,0;2,0) ' )

Then using the representations for a’, A" and equation (3.4):

~ B wdu' AA(1,0;2,0) B
L0 = —rgE =% (48)
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the unique solution is given by

5 = 2l£0)] , A(1,0;2,0)

2
_ 2l =05 4.
A(L02,0) T WAL 052,0)] )

since A(1,0;2,0) # 0. Then, using all the previously determined standard parameters, we compute
Frw2(0) = T (j3H)/u, where Ty (j¢H) € C is a real-analytic function in jgH, which does not depend
on u. Thus there is a  with |u| = 1 and 0 < Argu < 27, such that Frw? (0) = |f1w2 (0)] > 0. Finally we
consider the following coefficients, where A > 0 is given by (4.9)

Re(g,2(0)) = — 2r — 2r'Xg,,(0) + T2 (j3H) = 0, (4.10)
Re(faz20(0)) = — 2r — 1229, (0) + T3 (joH) = 0, (4.11)

where T5(j3H), T5(j3H) € R are real-analytic functions in j3H and j§H respectively and both do not

depend on 7 or 7/, we can uniquely solve for the real parameters r and r’.

Remark 4.4. (i) We need an explicit expression of | f,2(0)] for later purposes. To this end we either
consider the coefficient f? .(0) of H3 from (4.1) or we compute f1w2(0) of H from Remark 4.3,
using the definitions for @’ from (4.4), ¢/, X' from (4.5) and the equation from (3.4). In this case

we obtain the following term still containing some standard parameters:

=A(f1x(0)S1 + € f2,,(0)S2)
g (0)2 ’

]?le (O) =
where for £/ = 1,2 we have

Se = 22(92(0)feu(0) = gu(0) few2 (0)) + cud(gu2 (0) f2=(0) + 292(0) feu (0) — 290 (0) fezu (0))
+ 2220200 (0) fe: (0) — g (0) fez2(0)).

If we use the definition for ¢ from (4.7) we obtain the same formula as for the coefficient f3 ,(0)

of Hs, given by
—~ 23 9
J1u2(0) = ;S(joH),

where S (ng ) is an explicitly given, real-analytic function in j@H not depending on any standard

parameter. Then we have
| frw2(0)] = N°|S (55 H), (4.12)

and we note that in order to compute |f1,2(0)| it is only necessary to compute the standard
parameters a’, ¢/, X and c, \.

(ii) Further inspection of T5 in (4.11) shows that the coefficients of H at 0 of order 3 occurring in T3
are f,3(0) and H,2,,(0).

(iii) Uniqueness of the choice of isotropies in the proof of Proposition 4.1 or of the standard parameters
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in Remark 4.3 cannot be achieved in general, since for the latter case in the equation flwz (0) =
T (ng ) /u it may occur that T3 = 0. In this case the standard parameter u appears as a free

parameter. For a discussion concerning the stabilizer of mappings see Lemma 5.18 below.

Proposition 4.5. Let H € N3. Then necessarily the derivatives of H satisfy the following equations:

(i) fi:(0)=0 (k=2) (Vi) g:04(0) =0 (k=1)

(i) frew(0) =5 (vii) f1224(0) = 29.42(0)

(iii) Tm(gy2(0)) =0 (viil) fizw2(0) = 1 (=14 2Re(gus(0)))
(iv) Im(gy3(0)) = (ix) gz02(0) = 21| f102(0)]

(V) f2:3(0) = —=3i€ fi.2,(0)

Proof. The conditions are simply verified by differentiating (3.3) assuming the normalization conditions
given in Proposition 4.1. We list which coefficients we consider and normalization conditions we use.
Differentiation of (3.3) with respect to z and evaluating the result at (z,x,7) = (0,x,0) gives x =
f1(x,0) assuming the normalization conditions for the 1-jet of H at 0, hence (i) holds.

If we differentiate (3.3) twice with respect to 7 and evaluate the result at 0 we obtain, using H,,(0) =
(0,0,1), that Tm(g,2(0)) = 0, which is the statement of (iii). In a similar way we obtain (iv), when
differentiating three times with respect to 7.

Differentiation of (3.3) with respect to 7 and evaluating the result at (z,x,7) = (0,x,0) shows
g-(x,0) = 1, again by H,,(0) = (0,0, 1), which implies (vi).

To get (ii) we differentiate (3.3) twice with respect to z and x, evaluate at 0 and use H,(0) =
(1,0,0), fo.2(0) = 2 and g,2(0) = 0 = f1.2(0).

Differentiation of (3.3) twice with respect to z and once with respect to 7 and x and evaluating at 0
gives (vii) if we use f1,(0) = 0 = f2.,(0), H,2(0) = (0,2,0), H.(0) = (1,0,0) as well as (ii).

Taking derivatives of (3.3) three times with respect to z and twice with respect to x and evaluate at 0
we use H,(0) = (1,0,0), f1,2(0) = 0 and f5,2(0) = 2 to get (v).

If we differentiate (3.3) twice with respect to z and x and once with respect to 7, evaluate at 0 and use
H.(0) = (1,0,0), Hy (0) = (0,0,1), Hz(0) = (0,2,0), fiz0(0) = £, fo-us(0) = 0 and Re(fp.,,(0)) = 0,
we obtain (viii) according to (iv).

Finally, to obtain (ix) we differentiate (3.3) twice with respect to 7 and once with respect to z, evaluate
at 0 and use f1,(0) =0 = f1,(0). O

Remark 4.6. We summarize the conditions for the 3-jet of H € A5 at 0 by collecting the normalization

conditions from Proposition 4.1 and their consequences given in Proposition 4.5:

(i) H(0)=0 (vii) Ha(0) = (0,12¢[f142(0)[,0)

(ii) H.(0) = (1,0,0) (viii) H,2,(0) = (41]f102(0)],iIm(f2,2,,(0)),0)
(iii) H,(0) = (0,0,1) (ix) H,y2(0) = (i(—l+2Re(gw3(0)))7f2w2(0),
(iv) H.2(0) = (0,2,0) 2i|flw2(0)|)

(v) H..o(0) = (%5,0,0) _ , .

(49) Hos(0) = (s (0], £202(0),0) R )
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We would like to point out the differences to the normalization used in [Jil0, Lemma 2.2|, which is the
normalization obtained by Huang [Hua03, Lemma 3.2]. In Huang’s normal form a normalized mapping
H fulfills flwz (0) = 0 assuming the original mapping H satisfies f1,.,(0) # 0, which is a consequence of
having the so-called “geometric rank” equal to 1. The concept of this invariant is introduced in [Hua03,
Definition 2.1]. We note that here a mapping of geometric rank 1 is 2-nondegenerate at 0 if we consider
the normalized mapping in the sense of [Jil0] at the end of [Ji10, §3]. On the other hand if we start
with a mapping in N>, then the geometric rank is 1, since it is of the form as in [Ji10, Lemma 2.1] with
nontrivial condition (3) from [Jil0, Lemma 2.1].

Moreover in Huang’s normal form the coefficient j/’\gzw(()) is still present, which we require to be 0, since
in our considerations the standard parameter ¢ from Auto(H?,0) is linear in Foruw (0) and has a nonzero
coefficient, see (4.6).

4.2 Homeomorphic Variations of Normal Forms

In this section we investigate what happens, when we consider different admissible normal forms with
respect to isotropies. The question is then, how does the resulting normal form differ from N>, given
in Definition 4.27

Definition 4.7. For p € CV and p’ € CN" we denote by
H(p;p') = {H : (CN,p) — (CV',p') : H holomorphic},

the set of germs of holomorphic mappings from (CN,p) to ((CN',p’).
For (M,p)  CN and (M’,p') € CN' germs of real-analytic hypersurfaces we denote by

H(M,p; M',p") ={H € H(p;p') : HM NU) C M’ for some neighborhood U of p},

the set of germs of holomorphic mappings from (M, p) to (M',p") and denote H(M, p) := H(M,p; M, p).
Definition 4.8. For (M, p) C CV a germ of a real-analytic hypersurface we denote by

Auty (M, p) = {H € H(M,p) : |H'(p)| # 0},

the group of local automorphisms of (M, p) or the group of isotropies of (M, p) fixing p.
Remark 4.9. For G, H € H(M,p; M',p’) the relation G ~ H := 3(¢, ¢') € Aut, (M, p) x Aut, (M',p') :

G = ¢ o H o ¢~! defines an equivalence relation in H(M,p; M’,p'). The equivalence classes in

H(M,p; M',p’)/~ are denoted by [F]| :={G € H(M,p; M',p’) : G ~ F}.

Definition 4.10. (i) A proper subset N C F C H(M,p; M',p’) is called normal form for F, if for
each [F] € F/.., there exists a unique representative G € N'N[F]. We denote the mapping which
assigns to each H € F the representative G € N N[H| as 7 : F — N.

(ii) A normal form N for F is called admissible if m: F — N is continuous.

Remark 4.11. The uniqueness of the representative F € NN [F| in Definition 4.10 (i) is no restriction:

Assume we have another representative F' # G € N in the class [F], then G is equivalent to F', hence
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it suffices to choose only one element from the set of all representatives which belong to A/ N [F].
There exist admissible normal forms for F,, since Ay is an admissible normal form for F,. Thus for
any admissible normal form A there is a unique element H € N in each orbit of some — not necessarily

admissible — normal form N’. So we can always restrict ourselves to admissible normal forms.
The main theorem of this section is the following result for holomorphic mappings from H? to H?
belonging to F».

For the discussion which topology we associate to Ny we refer to the beginning of section 9.
Theorem 4.12. Let N be an admissible normal form for Fy. Then N is homeomorphic to Na.

Proof. Let us denote by 7 : Fo — N the continuous mapping as in Definition 4.10 (i). We note that
the class Ay from Definition 4.2 is an admissible normal form for F» as in Definition 3.17: For H € F
the standard parameters (v,7’) € T' x IV such that qbfy, o H o ¢, € N depends continuously on H, more
precisely on jg(H), as can be seen in Remark 4.3. In this case we denote the corresponding continuous

mapping by 7 : Fo — Na. Hence we have the following diagram:

Fa
PN
incl incly
N Na
(0

Figure 2: Diagram for admissible normal forms

The mapping incl : N' — F; is the inclusion mapping, which is given by incl(H) := H for all H € A and
analogously for incly. In the diagram v : N' — N5 is given as follows: Let H € N, then ¢)(H) :== F € N>,
where F' € NoN[H]. By the uniqueness of the choice of representatives in each orbit of elements of
N and N respectively and since both N' and N3 are normal forms, we obtain that ¢ is a bijective
mapping. Further since 1) = 75 oincl and ¢~! = 7 o incl, are compositions of continuous mappings, we

obtain that v is a homeomorphism. O

Example 4.13. Starting with N5 we can construct different admissible normal forms A as follows:
We fix a pair of isotropies (¢g, ) € Autg(H?,0) x Auto(H2,0) and consider the isotropies (¢, ¢’) €
Auto(H?2,0) x Auto(H?2,0) from the proof of Proposition 4.1 or Remark 4.3, such that m : Fo — N> is
given by mo(H) = ¢;’ oHo <j§, denoted by H. We define ¢ = q@o ¢o and ¢ == ¢ o (;3/, to obtain for any
F e F,,

¢ oFop=ghod oFodody=phoF ogpy,
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where F' € Ny. Hence we define
N = {¢60ﬁo¢o:ﬁ€Ng}.

Since ¢ and ¢’ depend continuously on F' € F», the mapping 7 : F» — N given by 7(F)=¢ oFo¢

is continuous, such that A is an admissible normal form.
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5 Mappings in N>
Let us recall Theorem 1.4.

Theorem 5.1. The set Ny consists of the following mappings, where we denote for H = (f1, f2,9) € Na
the parameter s == f1,2(0) > 0:

GS (2, w) = (22(2 Ficw), 422, 4w)/(4 —w?),
5.5(2,w) = (4,2 —4desz? +i(e —s?)zw + sw?, 42% + sPw? w4 — de sz —i(e +52)w))
/(4—4ssz—i(€+s2)w—2iszw —Es2u)2>7
G5z, w) = (2565 2+ 9612w + 64 sw? + 6423 + 641 sz%w — 3(3e —165%)2w” + 4i sw?,
256 2> — 16w” + 256s2° + 161 2°w — 16 £ szw” —icw®,
w(256¢ —32iw + 642 — 64ie szw — (e —|—16$2)w2)>

/(2565 321w+ 6422 — 1921 s2w — (17 +14ds2)w? + 321 22w + 24szw? + iw3).

Each mapping in Ns is not isotropically equivalent to any different mapping in N.
We write Gf, ; = (ffk’s, ffk)s,g,‘i)s) for the components.

Remark 5.2. (i) The mappings listed in Theorem 1.4 are equivalent to the mappings given in The-
orem 5.1 via an application of dilations: We either apply automorphisms of the form (z,w) —
(2z,4w) or (z,w) — (v/2z,2w). In the case of the degree-3-mapping we also scale the parameter
s by s — s/4.

(ii) Since G% are rational, these maps are globally defined. More precisely we denote the zero set of
the denominator of Gf in H? by Q5, which may depend on s. Then each of the above mappings
¢ is actually defined in V¢ := H?\Q5, and sends V¢ to H2. Note there is an open neighborhood

U;; of 0, which depends on s and is contained in V).
(iii) In the definition of mappings listed in Theorem 5.1, which depend on the parameter s > 0, we
could formally allow s € C. Then a small computation shows that we obtain mappings belonging

to F2 only if we assume s € R.

The family of mappings G5 ¢ in Theorem 5.1 is not of degree 3 for each s > 0: If we set ¢ = —1 and
s = 1/2 in G5 ; the denominator and the numerator of each component is divisible by 161 —8iz + w,

resulting in a mapping of degree 2, which coincides with G The following lemma shows that this

2,1/2
is the only possibility.

Lemma 5.3. The mapping G5 ; from Theorem 5.1 is of degree 2 if and only if e = —1 and s = % n

5
3,s°

Proof. The necessary direction can be verified directly. The other direction is proved as follows: We
let H denote an arbitrary rational mapping of degree 2 with H(0) = 0 defined in a sufficiently small
neighborhood U C C? of 0. We require H to be holomorphic in U. Then H is of the form H =
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(p1,Dp2,p3)/q, where for 1 < j < 3 the terms p; and ¢ are polynomials of degree 2 given by

pi(z,w) = a;z+ bjw + cj22 +djzw + eij,

q(z,w) =14 agz + bygw + caz? + dyzw + eqw?,

where each element of A, = {am,bm, c¢m,dm,em} is a complex number for 1 < m < 4. We denote by
A the collection of all A,,. If we compare the 3-jets of H and Gf ; and solve for the elements of A we

obtain

(162’ — 16s€ 2% + 5ie zw + 4sw?, 1622 —ewz,w(16— 16e sz — 3i€w))

H =
(2, w) 164+ 16esz+ 3icw + 8iszw + (1 + 8¢ s?)w?

Comparing the fi.3,,(0)-coefficients of H and G§ ; we find a solution if and only if ¢ = —1 and s = 1/2.

Then we observe with these choices the mapping H coincides with G ; /2 O

Remark 5.4. Clearly the formulas for G} ; depend on our choices for the normalization conditions
in Proposition 4.1, but we can say more: For mappings in Ms we prove Theorem 5.1 by only using
isotropies of the source and target hypersurface to obtain 2 families of mappings parametrized by a
nonnegative real number. In Theorem 4.12 we proved, that the picture we obtain from Theorem 5.1 is
intrinsic. More precisely we have shown that whenever we consider a reasonable normal form N, given
in Definition 4.10, then A is homeomorphic to N>. In particular, it is not possible to reduce to finitely
many mappings by considering only isotropies.

Moreover by Proposition 4.1 we observe that Theorem 5.1 gives a complete description of N3, such that
Fo = Uiz 00(GY)-

The proof of Theorem 5.1 is based on the following lemmas. After stating them, we show how Theo-
rem 5.1 is deduced from these lemmas.

In the first lemma we obtain a so called jet parametrization for H € N5 at 0 along the second Segre

set. In order to simplify our formulas we introduce the following notation:
Ape = flz"w’Z (0)7 By = f2z"“w£ (O)a Cre = G2kt (0)7 Dy := Dy, (51)

for k,¢ > 0 and D € {A, B,C}. In the list of coefficients of a mapping H € F, we gave in Remark 4.6,

there are still some unknown coefficients belonging to J;j. These remaining coefficients we denote by
j = (Az, By, Ba1, B12, A3, B3, C3, Az, Baa, Cga, A13, B13, C13, As, By, Cy) . (5.2)

We refer to the coefficients Dy, we listed in (5.2) as components of j. We set Ny := 16 and define the

following set:
J={jeCNo:4,>0,03 €R,By €iR} C CN. (5.3)
We consider j from (5.2) as variable for J ¢ CMo,

The following lemma is based on [Lam01, Proposition 25, Corollary 26-27].
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Lemma 5.5 (Jet Parametrization). Let H € Ny. Then there exists an explicitly computable, rational

mapping ¥ satisfying
H(z,2i2x) = ¥(z,x, ) (5.4)

for all (z,x) € C? sufficiently near 0. The formula for W is given in Appendiz A, where we scaled j € J

for simplification.

Remark 5.6. In order to compute ¥ in Lemma 5.5 we only need to assume the nondegeneracy of H,

but to simplify expressions we require H € N5.

The approach we take in the next lemmas follows the line of thought of [BER97, Proposition 2.11—
3.1,86]. The following two lemmas are Proposition 2.11 and Proposition 3.1 from [BER97] adapted to

our setting. We restrict to N3 to make computations easier to handle.

Lemma 5.7 ([BER97, Proposition 2.11]). There exists a C*-valued function ®(z,x,A), which is holo-
morphic in a neighborhood of 0 x 0 x Ji in C x C x J§ and a germ at 0 of a nontrivial function A(z),
such that for a fived Ao € J§, satisfying the normalization conditions from Proposition J.1, the following
equivalence holds:

There exists H € Ny with

ol H
( 0z« (0)> o] <4 o )

if and only if all of the following properties are satisfied:
(i) The map (z,w) — P (z, ﬁ,/\o) extends to a function ﬁAO (z,w), which is holomorphic in a full
neighborhood of 0 in C2.

" ol~lH
(i) We have ( S (0))|a\§4 = Ao.
(iii) We have Hp,(H?) C H2.
If (i), (ii) and (iii) hold, then the unique mapping H € Na, which satisfies (5.5) is given by H(Z) =

Ha,(2).

Proof. The proof is the same as in [BER97, Proposition 2.11] and uses the jet parametrization for
N C F from Lemma 5.5 instead of [BER97, Lemma 2.8]. O

It is possible to give conditions which are equivalent to (i), (ii) and (iii) of Lemma 5.7 by means of an

explicit system of equations.

Lemma 5.8 ([BER97, Proposition 3.1]). We use the notation as in Lemma 5.7. There exists a function
G(z, M), which is holomorphic in a neighborhood of 0 x J§ in C% x J§, such that Lemma 5.7 (i) holds
for a fized Ao € J§ if and only if ®(z, %,AO) = G(z,w,Ag).
The following equivalences also hold true:

(i) There exist functions ag, k € N, holomorphic in J§, such that Lemma 5.7 (i) holds if and only if

ax(Ao) =0 for k € N.
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(i) There exist functions by, 1 < k < K, holomorphic in J§, such that if Lemma 5.7 (i) is satisfied,
then Lemma 5.7 (i) holds if and only if bp(Ao) =0 for 1 <k < K.

(iii) There exist functions cy, k € N, holomorphic in Ji x J§, such that if Lemma 5.7 (i) is satisfied,
then Lemma 5.7 (iii) holds if and only if c; (Ao, Ag) = 0 for k € N.

Proof. The proof is the same as in [BER97, Proposition 3.1] and uses Lemma 5.7. O

The proof of Lemma 5.8 in [BER97, Proposition 3.1] explains how to obtain the equations for (i) — (iii)
of Lemma 5.8. By using the approach of [BER97, Proposition 3.1] we give the following lemma, which
guarantees that Lemma 5.8 (i) and (ii) hold. We give the resulting mappings here, instead of listing

the equations of (i) and (ii). We refer to this step as “desingularization”.

Lemma 5.9. Let H € Ny and U be given as in Lemma 5.5. If

Y(z,w) = \I/(z, i j) (5.6)

2iz’

is holomorphic for (z,w) € C% near 0 and jiv» = joH, then ¥ € {1,...,%s} is of at most degree
3 and depends on As, By, Ba1, Asa, Bas and Caa satisfying As > 0 and Re(Bg1) = 0, whenever these

parameters are present in . The concrete formulas for (Yi)k=1,.. .5 are listed in Appendiz C.

.....

Next we show Lemma 5.8 (iii), which gives condition (iii) of Lemma 5.8, based on [BER97, Proposition

3.1]. Again we give the resulting maps, instead of the defining equations.

Lemma 5.10. Let U C C? be a sufficiently small neighborhood of 0 and 1 € {t1,... 5} from
Lemma 5.9 satisfies »(UNH?) C H2. Then ¢ € {G5,G5 ., G5} from Theorem 5.1, where s == Ay > 0.

Next we describe how to prove Theorem 5.1 from the previously stated lemmas, which might also be

viewed as an easy proof of Lemma 5.7 and Lemma 5.8.

Proof of Theorem 5.1. Let H € Ny and U C C? be a sufficiently small neighborhood of 0. As in

Definition 2.4 we write
p(z,w,x,T) =w— T — 21z,
for a defining function of the complexification of H2. For the parametrization of S we write as in (2.12)
Q(z,x,7) =7+ 2izx,

such that the second Segre set S3 of H? at 0 is given as the image of v3(z, x) = (2,2iz2x), for (z,x) € U
by (2.14). Then a point (zg,wp) € U is contained in S if and only if for some y € C near 0 we have
wo = 21 zpX-

Since v¢ is of rank 2 outside of the complex variety

X ={(z,x)€U:2=0} CC?
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it follows that S3 contains an open set V C U \ X of C2. From Lemma 5.5 we know after scaling the
variable j € J from (5.2), that

H(’U(Q)(Z)X)) = \I/(Z’Xaj) = Z\I/ké(j)zkxza (57)
k.0

holds, where we have written ¥ in the Taylor expansion with coefficients W¥;,(j) € C* depending on
j € J. Then for (z,w) € V we have:

H(z,w)=H (v% (z, 2111?)) =V (z, %,j) = Z\T/aﬁ(j)zawﬁ, (5.8)
a,B

where ‘flag(j) € C3. On the right-hand side of (5.8) there may occur terms as w‘ /z¥o for ky > 0,
but since the left-hand side of (5.8) is required to be holomorphic in a neighborhood of 0, (5.8) yields

equations (I\/a@ (j) =0 for a < 0. Equivalently from (5.7), we obtain equations
q’kg(j) =0, 0> k. (59)

We examine these equations for j in the proof of Lemma 5.9 to end up with \I/(z, w/(21 z),j) being one
of 5 holomorphic mappings 151 (z,w),... ,125 (z,w), defined in a neighborhood of 0 and given in Appendix
C. Moreover (5.8) can only hold if

w

4 4 .
H(z,w) = jiw (2,5,
JoH (z,w) = jo¥( 2 212 J

) = Jitn(z,w),

for each 1 < k < 5. We carry out these computations in the last part of the proof of Lemma 5.9, which
yield H being one of the holomorphic mappings 1, ..., %5 according to Lemma 5.9 listed in Appendix
C.

Since we require H being a mapping of H? to H2 and j was an arbitrary variable in J so far, we have
to ensure 9y sends H? to H2 for 1 < k < 5. This last step is carried out in Lemma 5.10 and we end up
with the mappings G, G5 and G35 ; as in Theorem 5.1, where s = f1,,2(0). The last claim, that the

maps we listed in Theorem 5.1 are not isotropically equivalent is proved in Theorem 5.19 below. O

The rest of the section is devoted to the proofs of Lemma 5.5, Lemma 5.9 and Lemma 5.10 and to give

a jet determination result deduced from the jet parametrization.

5.1 Jet Parametrization

Proof of Lemma 5.5. We need to carry out the following steps: From the mapping equation we can
determine H along the germ of the second Segre set S2 of H? near 0 in terms of the 2-jet of H evaluated
along the germ of the conjugated version of the first Segre set Si = {(x,0) : x € C} of H? near 0.
In a similar way we obtain formulas for the 2-jet of H along S} depending on j € J. In both steps
it is essential that we assume 2-nondegeneracy. The resulting representation of H gives the desired

mappings ¥ depending on j. Now we present the detailed version of the proof.
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Using the notation as in the proof of Proposition 3.13 we start by computing
(I)T-Fl(zawa X7T) = LTpI(H(Za w)7H(XaT>)7 0 <r< 2a
to obtain
ch(Za w, X?T) = 9(27 w) - g(XvT) - 21(f1(2,w)f1(X,T) + 5f2(sz)f2(Xa T))7
(I)Q(Za w, X?T) = gX(Xa T) + 21Z§T(Xa T) - 2i(fl(sz)(flx(XaT) - 2iz.fl‘r(X7 T))
& falzw) (P06 7) = 20 2f20 (7)) ) (5.10)
(I)3(Za w, X, 7_) = gxz (X7 T) + 4iZ§XT(Xa T) + 422@7’2 (Xv T)
= 2i(f1(2w0) (frs 06 7) = 4i 21 (6 7) = 42212 (7))

+e fQ(Za w) (f2x2 (X: T) - 4izf2xT(Xa T) - 4Z2.f272 (Xa T))) .
We introduce the following variables for expressions which occur in ®; for 1 < j < 3:
(Z,¢) = (z,w,x,7) €C*,  (Z',{') = (H(z,w),H(x, 7)) € C°,

W (M H( )) cts
= — X, T S .
a¢” 1<181<2

By a slight abuse of notation we obtain ®;(Z,¢, Z’,{’,W) =0 for 1 < j < 3 when restricted to H?, i.e.,
setting Z = (2,7 + 2izx). Further if we write @ := (®1, P2, P3) we have

det <3(ZI)/ (O)) = g(JfQX(O)fIXQ (0) — le(O)f2X2 (0)) =—c#£0, (5.11)

since we assumed H € Ny C Fy. Hence we can explicitly solve the system given in (5.10) for Z’ near 0

as follows. We denote by B(z, x, 7) the matrix

o fiken) ehon) —3
Jix(67) = 2izf1r (X, 7) e(fox(x, ) = 212 for (x, 7)) 0
f_lx2 (XvT) - 4iZf1X7(X,T) - 4Z2f17'2 (Xa T) 5(.f_2xz (X»T) - 4iZf_2XT(XaT) - 422f272 (X?T)) 0

thus we have for all (z,x,7) € C3 near 0 the following identity

1 _g(XaT)
H(Z7T+2IZX) = iB_l(z?X’T) _gX(XvT)+2iZ§T(X7T) . (512)
=Gy (X, T) + 412Gy r (X, T) + 42%G,2(x, T)

If we evaluate (5.12) at 7 = 0 we obtain a formula for H along S2 depending on the 2-jet of H along

S¢. So to finish our computations we need to find formulas for j(2x O)Ef . To this end we introduce the
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vector field S tangent to H? defined as

0 0
Si=—4+—
ow + or’
such that S¥H(z,7 +2i2x) = Hyr (2,7 + 2izx) for k € N. Applying S and S? to (5.12) and setting
x = 0 and 7 = 0 we obtain formulas for H,(z,0) and H,z2(z,0) respectively, which are rational and

depend on j € J. After conjugating these expressions we obtain the components of j(2X O)H as rational

function of j, which consists of components of ji H, see (5.2).
The resulting mapping is denoted by ¥ and depends on j € J. In order to get rid of powers of 2 in

formulas we scale j as follows:

(A27BQaB12)A37B3a037A227B227A137B1370137A4aB47C4) = (513)
(@323121433303,4223221413313%14434@>

The numerator of the components of H are polynomials of highest degree (3,8) in (z,x) and are
homogeneous in z. The components of H have the same denominator, which is a polynomial of highest

degree (3,9) in (z, x). The complete expression is listed in Appendix A. O

5.2 Desingularization

We introduce the following relation:

)

Definition 5.11. For J;,J; C J from (5.3) we denote variables j; € J; and jo € Jy as in (5.2
respectively. We set Uy (z,x) = ¥(z, x,j1) and Uy(z, x) = ¥(z, X, j2), where ¥ is given in Lemma 5.5

We say that Uy is a special case of ¥y, if J; C Js.

More geometrically this means that the variety given by the defining equations for ¥, is contained in

the variety generated by the defining equations for Ws.

Proof of Lemma 5.9. As described in the proof of Theorem 5.1, in (5.7) we expand the mapping

\I/(z, x,j) from (5.4) into a power series
\I/(Z, Xv]) = Z \I}kf(j)zkxév
k.,
around 0. For the components we write
() = (o), W2e7), Whe)) € €,
and then we set
\I/kg(j) =0, ViI>k, (514)

as in (5.9), which are obtained by the expansion given in (5.8). These equations allow us to obtain
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conditions for j € J. Each solution of an equation from (5.14) corresponds to considering maps as in
(5.4), but instead j € J we have j € J', where J’ is a subvariety of J. This means that we gradually
restrict the space of possible mappings in F». In the following we describe which coeflicients W, we
consider and which components of j we can eliminate from equations given as in (5.14).

We start considering W3, = 0 = W1, = U3, = U}. which determine the following components of j:

A3 = - (614;) + 3€B12 — A2(6BQ + E(—?) + 03)))

2
Bz = 1i0(—1sisA§ +151 Ay B1o — 2B5(9e Boy +4i(—3+ C3)) + 31 A3(—3 4+ 6 By — 6ic Bay + 03)>
Ay = %(—3245A§ — 15A42(— ¢ Ay + 2Bys + & Cy3) + 5(—3€ Apa By +1 Bya + Bio(—6i By
+e(—6+4 C3)) + 32 B2C13) + Ao (—5i A1z + 301 Bay + 101 By C5 — 5e(6B3; + (—5+ C3)C3)
+51Cy + 3B3(44 4 48ie By — 18C5 + 151 Ca2)) + 3A3(—34 + 108 By — 28ie By + 28C3
- 151022))
By = 250 (30605,43 — 45€ B% + 2By (—40i Ays + 102 B2, + 51 By (—33 + 23Cs)

+ (=42 — 30Bas + T8C3 — 28C35) 4+ 401 Cy) + 180A3(— € Ago + Bia + £ C13)

+20A42(9e A2oBo +1iBig + 61 B12Bay + 2 B12Cs — 3B (B2 + 3¢ C13))

+ A3(601 A1 +900e B + 1501 By — 2901 B2 C3 4 (9 — 2483, + 60Bas — 106C5 + 61C3)
—60iCy + 12Bo(—79 — 117ie Boy + 63C5 — 651 Ca)) — 1243(—69 + 3302 By — 97i¢ By
£ 73Cs — 451Ca) + 240133022)

Then we consider U3, = 0 to obtain two cases, either

(i) Case A: By = 2642 (6Ag 4 5By +6iByy +£(3 — cg)), or

(ii) Case B: By = A%
Next we assume one of the expressions for By, or By respectively for W and consider another equation
from (5.14) in order to solve for further components of j in terms of the remaining elements. It turns out
that each of the remaining equations of the system given in (5.14) has more than one possible solution,
resulting in a case distinction, when we solve one equation. In Appendix B we give two diagrams of
this elimination process for case A and case B respectively. In these diagrams we keep track of all
the equations W,(j) = 0 we consider, which components of j we are able to determine and which
holomorphic expressions we obtain in the end. Now we describe the diagrams in a more detailed way:
Let us write v := (Ag, C3, Ba1, Cy, A13, B1s, C13, Asg, Baa, Cos). In case A U still depends on the vari-
ables v and By and in case B ¥ depends on the variables v and Bjs. Since both cases are treated
in the same way we write A for the set of the remaining variables in ¥ with components denoted by
(D1,...,D11).
Inductively we start considering equations ‘I/ie = 0, which determine further variables D,,,,..., Dy, €
A, where 1 < mj; < 11 for 1 < j < n. Each determined variable Dy, corresponds to a case Eys,. It
turns out that we have 0 < r < 7 and 1 < s; < 13, where r = 0 corresponds to the starting node from

case A or B. The notation for E,,, is chosen in a way such that the first index r indicates the number
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of nodes one has to pass in order to get from the starting node, i.e., case A or case B from above, to
E,s,.
Let us denote by E some already achieved case, starting with case A or case B. In the diagram such an

induction step is displayed as in the following Figure 3:

T =00

Ers.,
Dy,

n

Figure 3: Diagram for new cases

Now we take all parameters from the preceding cases of E,,, plug them into ¥ and denote the resulting
rational mapping by ¢(z, x). Then we have several possibilities:
(i) If ¢(z,5%;) is holomorphic near 0 we do not consider further equations. Then we have the
possibility that ¢ is a special case of a holomorphic mapping ¢’ from some other case, which is
indicated in Figure 4 or ¢ is not a special case of any of the occurring mappings in the diagrams,

which is indicated in Figure 5.

Figure 4: Diagram for special cases of holomorphic maps

ETS»L
1 D, =... ’<:>

Figure 5: Diagram for new holomorphic maps
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(ii) If p(2, 5%5) is not holomorphic, we either proceed with another induction step as shown in Figure 3
or we recognize that the mapping ¢ is a special case of a mapping " from some case Engr. We

indicate this situation as E,s, C E, g, which is shown in the following Figure 6.

Eyy. C Eprgn
v k2
Di = ...

Figure 6: Diagram for special cases of maps

The complete case distinction is carried out in Appendix B, where we denote the cases E.5, by “Ars;” and

“Brs;” for case A and B respectively. As mentioned above after at most 7 steps the process terminates,
w
2iz

that we obtain 5 rational, holomorphic mappings, which we denote by @k(z, w) for 1 < k <5, as can

which means, that after setting y = in ¥(z,x,Jj) we obtain a holomorphic expression. It turns out
be seen in the diagrams and is indicated in Figure 5. We point out that these mappings include all
H € N3 by construction. The formulas for 721\1@ are given in Appendix C.

We write ¢y, = (Ji,@%,{ﬁz) and proceed by verifying jio, = jAH. For some o, this allows us to
determine further parameters from (5.2). We also have to take into account, that we scaled j € J,
when we compare the coefficients of 12;6 and the initial coefficients of H. Whenever we have expressed
one component of j in terms of the remaining components we use this expression for the subsequent
computations.

First we treat ¢; and consider zZi”wd (0) = £ to obtain

C3 = 3(1 +2i6321).

Next we consider @%zzwz (0) = % to get

Then we inspect z//)\fzgwg (0) = % which gives
Cy = A3+ 18By; — 6ie(1 — B3)).

Verifying the normalization conditions we obtain Re(Ba;) = 0 and we end up with the mapping 11 as

claimed, which still depends on Bsi, Ao, Bogy and Cas and is given in Appendix C.

For 1’/;2 we start with considering ”LZJ\%ZU)2 (0) = % to obtain

A1z = —10Bs1 +ie(4+ Baa) 4+ Cy — 2ie Ax(Azg — Ci3) + 245(61 —Cha),
such that IZ2 is independent of Byy and C4. Then we compute Jg’zwg (0) = % to get
3 . .
Ciz = 3 (A22 + A3(2iBay +¢(4 — 1022)))-

The rest of the coefficients are already in the correct form and the normalization conditions give As > 0
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and Re(B21) = 0. The resulting mapping is denoted by 12, depends on As, Bay, Ass and Cos and is
given in Appendix C.

The maps zzk for k = 3,4,5 already satisfy jgik = jaH and by verifying the normalization conditions
we obtain for k = 3,5 that Ay > 0 and additionally for k¥ = 3 that Re(Bs1) = 0. Finally we denote
Vi = @k for k = 3,4,5. The mapping 13 depends on As, By and Bay, ¥4 on By and Cyo and ¥5 depends
on As and Cas. All these mappings are given in Appendix C. O

5.3 Reduction to One-Parameter-Families of Mappings

In order to achieve the normalization condition fi,2(0) € R for rational mappings H = (f1, f2,9) of a
certain form, instead of using the parameter u’ from Auto(H2,0), we mention a simple observation in

the following lemma.

Lemma 5.12. Let G5 be the following rational mapping of degree 2:

Gao(z,w) z(alz +ase” 1922 4 agzw + ase Cw?, by 2% + bye? 002, w(l+cre” 0+ CQw))/

(1 + dle_igz + dow + dze™ 102w + d4w2>,

where ag, by, co,di;, € C for 1 <k <4 and{=1,2, § € R and let G be a rational mapping of degree 3
of the following form.:

3i6, 2

G3(z,w) :(a162‘92 + ase? 2w + aze® 0w? + ay2® + ase'?

22w+ age? 0 zw? + a7e3‘9w3,

e 0 (brel 922 + bye3 w2 + b3z + byel? 22w + bse? 9 zw? + e Pw?),
w(cleQ’g + e 2 + c3e® 0w+ 427 + etz + 66621911}2))/
(6219 +d1e? 0w + do2? + dset 2w + dye? Ow? + ds2Pw + dge'  zw? + d762‘9w3>,

where ag, by, cm,dp EC for 1 < k<7, 1<f<6andl1<m<8, §cR.

Then, after setting v = e~ 1% in (2.36) and considering

Gy = Uj(v) o Gy o Up(v),

for k = 2,3, we obtain Gy, is independent of 0.

Proof of Lemma 5.10. We plug vy into the complexified version of the mapping equation (3.3) and
compare coefficients with respect to z,y and 7. We list the monomials z*x*7™ we consider in the
mapping equation and which of the remaining coefficients of H in 1, we are able to determine. Whenever
Bo1 is present in ¢, we write By; = iby1, where by € R. Moreover we recall that A, > 0.

We start with 91 in which we have the terms bo1, Ass, Bas and Cas. The coefficient of x272 yields
Coy = 0 and x73 gives Ags = 0. We write Byy = Re(Bay) + ilm(Bgs) to get from 74

Re(Bas) = 2(1 — 3ebay + b3y ).
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The coefficient of 79gives the following equation:
Im(Baz)? + 4b2, (1 — 2ebyy)” = 0.

Thus Im(Bss) = 0 and either by; = 0 or byy = £ /2. The first case by; = 0 results in G5 and from the

second case if by; = ¢ /2 we obtain G§ .

Next, we insert 19 into (3.3), which depends on Asg, by, Asg and Cay. The coefficient of 272 gives
Coy = 2ic A2,

and the coefficient of zx272 shows

Agy = 2(51 Agbay + 343).

2 2
The coefficient of 7* yields two cases: Either by = —% or by; = #.
- 2
Assuming the first case by; = —%, we obtain from the coefficient of 78 either A5 = 0, which results
in GY, or

14126 A3 + 4845 + 64¢ AS = 0,

which, since As > 0, has the only solution if we take ¢ = —1 and Ay = 1/2. This choice of parameters

gives G2_1/2'

2
In the second case by; = E'ZA"‘ we immediately obtain the mapping G35 ;, where we set s = Ay > 0.

If we handle 13, which depends on As, By and by, we first consider the coefficient of x272 in (3.3) to
get By = A2%. Then the coefficient of 74 yields two cases:

The first one is by = %. If we consider the coefficient of Y72 we obtain A, = 0 and thus the mapping
Gj.

. e+A?
The second case is by; = %

which again gives G5 ; after setting s = Az > 0.

Treating ¢4, which depends on By and Cay, we proceed as follows: The coefficient of x?72 shows
Cyo = 2ie By and 14 gives By = % for t € R. In order to get rid of e'! in 14 we apply Uz(v) and U}(v)
from (2.36) as in Lemma 5.12 with

_it
2e” 2

T it o)

e st
to 14, which does not affect the normalization. The resulting mapping is G ;.

Finally we deal with 15 in which the terms As and Cos occur. We write Cos = Re(Caz) + iIm(Cas)
and consider the coefficient of x?72 to obtain Im(Cs2) = —1 and Re(C2) = 0. We end up with the

mapping G73 ; after setting s = Ay > 0, which completes the proof of the lemma. O
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5.4 Jet Determination

In this section we provide a jet determination result based on Theorem 5.1, with the consequence that
we do not need to consider all elements of the 4-jet of a mapping at 0 as in Lemma 5.5 when we compare

two mappings and would like to show that they coincide.

Corollary 5.13 (Jet determination for F»). Let U C C? be a neighborhood of 0 and H : U — C?
a holomorphic mapping. We denote the components of H by H = (f1, f2,9) and write f = (f1, f2).
Further let A be the collection of j2H and the coefficients f,2,,(0). If for Hy, Hy € Fo the coefficients

belonging to A coincide, we have Hy = Hs.

Proof. We note that A is the collection of the mappings G,G5  and G§ ; from Theorem 5.1. The
only parameter left in elements of Ny is s = f1,2(0). Let Hy, Hy € N, then we need to verify that if
the coefficients which belong to A coincide, this yields H; = Hs.

If s =0 in some H; or Hy, then the mappings H; and H, already differ considering the elements of A
if we look at the coefficients f5,,2(0) and fs,2,,(0).

If s # 0, the coefficient f1,2(0) yields that we may have G5, = G5, for some s,¢ > 0. According
to Lemma 5.3 this is only possible if and only if ¢ = s = 1/2 and ¢ = —1. In this case we have
Gy
H € F5 we need to compose H with isotropies according to Proposition 4.1. We see from the proof of

e G3_7 1/2° Next we note the following: In order to be able to apply Theorem 5.1 to a mapping

Proposition 4.1 and Remark 4.4 that the standard parameters used to normalize H precisely depend
on the elements of A as well as g.2,,(0) and f,s(0). To show the dependence of g.2,,(0) on 53 f we take
derivatives of (3.3) twice with respect to z and once with respect to 7 and evaluate at 0 to obtain

9:20(0) = 21 f122(0) Fru (0) + € fo-2(0) Fou (0)).

To get rid of the dependence of f,3(0) we consider the system of equations in (5.10) and set w = 7421 zx
and (x,7) = 0. Then due to the 2-nondegeneracy of H we can solve for f(z,0), which then depends on

elements of j2H. This completes the proof of the jet determination. O

Example 5.14. The following example shows that we cannot do better than Corollary 5.13 and have

to consider coefficients of order 3: For ¢ € R the family of mappings H; = (f1 ¢, fo.t,9:) given by

1+ (ie—t)w)z 222 w)
1—(ie+t)w "1—(ie+t)w’ )’

Hi(z,w) = <

sends H? into H? and has the property that j3H; is independent of ¢, but Re((fu)zzw(O)) = 4¢.
These mappings are all isotropically equivalent to G5 (2, w) by an application of isotropies of the form
(z,w) = (z,w)/(1 + tw) and (21, 2, w') — (21,25, w")/(1 — tw') and dilations (z,w) — (2z,4w) and
(21, 25, w') = (21/2,25/2, W' /4).
5.5 Isotropic Stabilizers

We need to introduce some notation concerning group actions.
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Definition 5.15. Let X be a set and G a group with unit element e. A (left) action o : G x X — X
of G on X is a map, which satisfies:
(i) ale,z) =« for all z € X,
(i) a(g1,a(gz,x)) = a(g192,2), for all g1,g92 € G and x € X.
We write a(g,2) =g -x for g € G and z € X.
The stabilizer stabg(z) of x is defined by stabg(z) = {g € G : g -« = z}. An action of G on X is

called free if for all x € X we have stabg(z) = {e}, i.e., all stabilizers are trivial.

Lemma 5.16. The mapping N : Auto(H2,0) x Auto(H?2,0) x Fo — Fo given by
N(¢' ¢, H)=¢' o Hop™ ",

is a left action.

Proof. For ¢, 2 € Autg(H?2,0), ¢, ¢h € Auto(H2,0) and H € F» we have to show that

N(d)/lagblaN(qbéaqSQvH)): N(d)/l o ¢/27¢1 © ¢)23H)'

Indeed, we have

N (¢4, d1, N(¢h, ¢2, H)) = N(¢},d1,¢h 0 Hopy')
= g0 (oo Hogy") ooy
= (¢ o ¢h) o Ho(d10¢a) " = N(¢ o ¢h,b10¢a, H),

which proves the claim. O

Definition 5.17. Let N be the action given in Lemma 5.16 and define G := Auto(H2,0) x Auto(H?,0).
For a mapping H € F» we call stabg(H) := stabg(H) the isotropic stabilizer for H.

We prove the following fact about the isotropic stabilizers of mappings in A5 from Theorem 5.1.
Lemma 5.18. We set £ = {G1,G5,G5,}. If H € N2\ E, then the isotropic stabilizer stabo(H) of

H s trivial. Furthermore we have stabo(G5) = stabo(G5 ) is homeomorphic to S' and stab(G§ o) is

homeomorphic to Zs.

Proof. Welet H = (f,g) = (f1, f2,9) € N> satisfy the conditions we collected in Remark 4.6. We write
5 = |frw2(0)] > 0,z = f2,2(0) € C and y = Im(f2,2,(0)) € R. By Corollary 5.13 we only need to
consider coefficients in j2H and f,2,,(0). We let (0/,0) € G with the notation from (2.27), (2.30) and

(2.31) respectively and consider the equation

oc'oHoo=H. (5.15)
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The coefficients of order 1, which are f,(0) and H,(0), are given as follows:

U Y(udN,0) = (1,0), (5.16)
U’ H(uc + Ay, Ay, AN) = (0,0,1). (5.17)

These equations imply X = 1/\,ab = ¢, = 0,0} = 1/(uv’) and ¢§ = —uc/A. Assuming these standard

parameters we consider the coefficients of order 2, which are f,2(0), H,,,(0) and H,2(0), given by:

(0,2u'u®\) = (0,2), (5.18)
. 2 .
(—r T 15; 2u'uPAe, 0> - <125,o,0) 7 (5.19)
(A(As + i uc) fu, u/ \(Nx + 2u*c?), —2(r + A*r')) = (s,2,0). (5.20)

The second component of (5.19) implies ¢ = 0. If we assume this value for ¢ we obtain for the third

order terms f,2,,(0) the following equation:
(4iuX’s, v A(—4r — 2X%r" +1X%y)) = (4is,iy). (5.21)

The second component of (5.18) shows A = 1. Furthermore we obtain from the third component of
(5.20) that 7 = —r and since from the second component of (5.18) we get v/u® = 1, we obtain from
the second component of (5.21) that » = 0. The equation from f,,2(0) given by w/u® = 1 uniquely
determines «’. The remaining equation from the first component of (5.20), which comes from the
coefficient f1,,2(0), is s/u = s.

If s > 0 we obtain that u = 1 and hence all standard parameters are trivial, which proves the first claim
of the lemma.

If s = 0, then H € &, since elements in £ are the only maps satisfying f1,,2(0) = 0 in the list of mappings
from Theorem 5.1. Tt is easy to check that the isotropic stabilizers of the maps G{ and G§ , consist
precisely of the isotropies o(z,w) = (uz,w) and o'(2}, 25, w') = (2] /u, 25 /u?,w') with |u| = 1. If we
consider G35 in (5.15), then we obtain that o(z,w) = (0z,w) and o’(z7, 23, w’) = (621, 25, w’), where

§ = &1, are the only elements of stabg(G§ ), which proves the last claim of the lemma. O

With a similar procedure as in the previous Lemma 5.18 we obtain the following result:

Theorem 5.19. Let G, H € N> and o € Auto(H?,0),0’ € Autg(H3,0) such that
oc’oHoo =G, (5.22)

then G = H. If G or H does not belong to £, then 0 = idc2 and ¢’ = idcs.

Remark 5.20. The above Theorem 5.19 says that the isotropic orbit of a given normalized map does

not intersect the isotropic orbit of a different normalized map.

Proof of Theorem 5.19. Let H = (f1, fa,9) and G = (f1, f2,§) be as in the hypothesis. In the same

way as in the proof of Lemma 5.18 we consider the equations (5.16) to (5.21) and solve for standard
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parameters. We write s == |f1,2(0)] > 0 and § := |f1,2(0)] > 0. As before a coefficient where the
left-hand side of (5.22) may differ from the right-hand side, is the w?-coefficient of the first component
of (5.22), which gives s/u = 3. Note that all standard parameters except u are uniquely determined.
We have to consider two cases:

If § > 0, then s > 0, which implies u = 1 is the only possibility. This gives 0 = id¢2 and ¢’ = id¢s and
hence G = H. The same conclusion holds if we assume s > 0.

If § = 0, then also s = 0 and from the equations (5.16)—(5.21) we obtain that G and H agree up to
order 3 such that Corollary 5.13 implies G = H. O
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6 Global Equivalence of Mappings in N>

In this section we prove the main parts of the Main Theorem by getting rid of the parameter s in The-
orem 5.1. For this purpose we compose the mappings Gfj, , with translations depending on a parameter
po to obtain mappings denoted by g,;po. These mappings are in general not elements of A5, hence we
have to renormalize, that means we have to compose Gi = with appropriate isotropies, such that we
end up with a normalized mapping, denoted by G;. Using Theorem 5.1 the mappings G; are again of
the form as G;S, with the difference that s = s(py) depends on the parameter py of the translations.
This new free parameter py suffices to completely reduce the one-parameter-family of mappings G, ; to

finitely many mappings.

6.1 Equivalence Revisited

We start by adapting Definition 2.27 for the global equivalence relation. The mappings G; are not
defined everywhere in H?. Composing G; with translations, depending on a parameter pg, lead to

restrictions of the parameter space for py.

Remark 6.1. We are dealing with mappings H : C? \ X — C? with X being a complex-analytic set
in C? and 0 € X. We denote by Y the proper, real-analytic set Y := H? N X. Then we suppose that
H(H?\Y) C H2 and H(0) = 0.

For p, py € H? we define

Hy,(p) = (thauy  H oty )(P): i 1 (p) £ (6.1)

for translations as in (2.28) and (2.33) respectively. For p € H? we set
Up ={q0 €H*\Y : £, (p) ¢ Y},

such that each U, is open in H? and 0 € U, if and only if p € Y. We denote by Y,, := H? \ U, such that
Yo=Y.

For V. C H?\'Y an open neighborhood of 0 the set U = [,y
neighborhood @) # W C U of 0. Thus if we write H(p,po) = Hp,(p) the domain of H consists of the

nontrivial set V' x U. Now the following definition makes sense.

U, contains an open and connected

Definition 6.2. Let X be a complex-analytic set in C? and 0 € X and denote by Y the proper, real-
analytic set Y := H2N X. Let H : C*>\ X — C3 be a holomorphic mapping, such that H(H?\Y) C H3
and H(0) = 0. Consider Z € V C H? and po € U C H? sufficiently small open and connected

neighborhoods of 0 from above. Then we define

Hyo(Z) = (tia(p0) © H 010 ) (Z) = (fropos Fopos 90 ) (2): (6.2)

From now on we consider H,, as germs of mappings and refer to py € U, depending on the neighborhood
V on which Hp, is defined, as admissible parameter of the translations.

In case we are dealing with the mappings G; from Definition 6.6, we write ( Tk pos f3k po g,‘i’po) for the
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components of ggm.
Since the mapping H,,, is fixing 0 for all admissible py such that, if we use Definition 2.26, we can apply
isotropies to Hp, .

Definition 6.3 (Equivalence revisited). Let H be as in Definition 6.2, 0, € Auto(H?,0) and ol €
Autg(Hg, 0) as in Definition 2.23 and Definition 2.24. Then for admissible py € H? we define

Hyy oy (Z) = (afy/ o t}l(m) oH oty o O',y> (7). (6.3)

We say a mapping F', defined in a neighborhood of 0, is equivalent to H, if there exist an admissible
po € H?, 0, € Auto(H?,0) and of, € Auto(HZ,0), such that F = H,, .+ after possibly shrinking the
neighborhoods involved. Analogous to (2.40) we define the orbit O(H) of H:

O(H) = {Hpofm/ :po € H? admissible, (y,7') € T x F/}. (6.4)

We write H = H,, ~~ and denote the components of H by H = (ﬁ,f;,@ If we have H = Gf we

write é; = (ffk, fgk, g,i) for the components.
Lemma 6.4. The relation defined in Definition 6.5 is an equivalence relation.

Proof. Throughout this proof we write oy, for isotropies and ¢, for translations of the according hyper-
surfaces, where k € N.

Reflexivity of the relation is clear, for symmetry we note that if G is equivalent to H, then we have
G =010ty 0 Hotyooy which we rewrite as H = tl_1 o 01_1 oGo 02_1 o tz_l. By Corollary 2.22 we write
(tl_1 001_1)_1 = t3 003 and 02_1 ot2_1 = t4 0 04, such that H:a;l otg1 oGotyoo0y,ie, He OG).
To show transitivity we proceed similar: Let G be equivalent to H and H be equivalent to F, i.e,
G=o010t10Hotyooe and H =030tgoFotysooy. Thus G = (010tio0o30t3)oFo(tyoos0tsoos)
and by Corollary 2.22 we write (o1 ot; o 03 0t3)"! =t50 05 and t4 0 04 0 t3 0 03 = tg 0 g, such that
G =05 oty! o Fotgoas, which shows G € O(F). O

In the next lemma we observe that the equivalence relation we give in Definition 6.3 covers the most

general case of an equivalence relation in our setting. More precisely we have the following result:

Lemma 6.5. For G, H € F» we write G € [H] if there exists ¢ € Aut(H?,0) and ¢/ € Aut(H2,0) such
that G = ¢' o Ho ¢~ L. If G € [H], then G is equivalent to H in the sense of Definition 6.3.

Proof. We let G,H € F» and ¢ € Aut(H?,0) and ¢’ € Aut(H2,0) such that G = ¢/ o Ho ¢~1. By
Corollary 2.22 we write ¢! =t 0 0y and ¢’ =ty 0 09, where for k = 1,2 o}, is an isotropy and t;, is

a translation. Hence we have
G=oc;'ot;'oHot; 0
= 0y 2 1001,

which means that G € O(H). O

We recall the mappings given in (1.3).
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Definition 6.6. Let G5 ((Z) and G5 ((Z) be as in Theorem 5.1.
We define

G1(2) = G5,0(2), G3(%) = G312(2), G3(2) = G3,(2),
Gi(2) = G5,9(2).

We denote the components of Gi by (f5,, 5. 95)-
Remark 6.7. (i) Throughout this section we only need G§(Z) and G5(Z) for e = —1. We define the

case € = +1 to keep the notation more consistent.

(ii) We would like to point out, that the value of s to define G{(Z), i.e., s = 3, depends on the choices
of our normalization conditions we made in Proposition 4.1 and how we scaled the elements of J
in (5.13), see also Theorem 4.12. It turns out that we would only need to require s > 3.

(ili) We recall the notation for $2 from (2.1) in Remark 2.8. We note that we apply unitary matrices
Uj(e=1%) and Uy(e™1%) to Gi p, as in Lemma 5.12 such that from now on we only need to deal
with Gf ,. which is now independent of 6y. Also we set 6y = vo = 0 in Gf , , which only depends

on rg > 0. This parameter will suffice to reduce to finitely many mappings.

Now we have introduced all relevant notions to recall and make Theorem 1.5 sensible.

Theorem 6.8. Form =2,3 and 1 <k <4 let an’s be as in Theorem 5.1 and Gi as in Definition 0.0.
The following statements hold if we use the equivalence relation of Definition 6.3:
For e = +1 we have:

(i) For every s > 0 the mapping G;s is equivalent to Gi".

(ii) For every s > 0 the mapping G;S is equivalent to G .
For e = —1 we have:

(iii) For every 0 < s < % the mapping G, ; is equivalent to Gy .
(iv
(v

(vi

For every s > % the mapping G5 ; is equivalent to Gy .

The mappings G; ,G5 and G5 are pairwise not equivalent to each other.

 — —

For every 0 < s # % the mapping G  is equivalent to G, and G3_1/2 =G,.
The mapping G is not equivalent to any of the mappings Gj,.

Remark 6.9. The equivalence relation of (6.3) gives a finer description of A5 and Theorem 6.8 shows
that N is given by finitely many orbits O(Gy).

The rest of this chapter is devoted to prove Theorem 6.8.

6.2 Admissible Sets for Translations

In this section we give the definition for the admissible sets for translations. We think of the mappings

G}, if we deal with H in the following considerations.

Definition 6.10. Let H from Definition 6.2 be given by H = P/Q, where P, (Q are polynomials such
that P(0) = 0 and Q(0) # 0. Let H,, =: Pp,/Qp, be given by (6.2). For fixed Z € H? we define the
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proper, real-analytic set
Du(Z) = {po € H? : Qy, (2) = 0},

and write Dy = Dg(0). If H = G§ we write Dy = D.
We take a closer look at rational mappings H,,, given by H,, = Pp,,/Qp,. We already know that H, is
defined in a sufficiently small neighborhood of 0 and makes sense. If we expand H), into a power series

around 0, all denominators of the Taylor coefficients consist of powers of @, (0). Hence Dy defines the
set Yy =Y from Remark 6.1. Since Dy = {p € H? : Q(p) = 0} we give the following Definition.

Definition 6.11. Let H from Definition 6.2 be given by H = P/Q, where P, (Q are polynomials such
that P(0) = 0 and Q(0) # 0. Then we define Ay as the set of admissible parameters for H or admissible
set of H by

Ap =H*\ Dy = {p € H*: Q(p) # 0}.

If H =G} we write Ay = Aj.
Next we give another observation, which provides some positivity condition if ¢ = —1.

Remark 6.12. The mappings H € F5 we are dealing with depend on e = £1. We write H = (f1, f2,9).
If we consider Hp, = (f1,py» f2.p0s 9po) @S in (6.2), then it may happen for some choices of py, that
9pow(0) < 0 if ¢ = —1, as pointed out in the proof of Proposition 3.16. In this remark we describe
explicitly which isotropies we need to apply to these mappings, such that the resulting mapping H=
( fi, fo, §) satisfies §,,(0) > 0. Consequently, if we consider H,, we can always restrict ourselves to
parameters of the translations pg, such that in H,,, we have g,,.,(0) > 0.

Let us denote by H~ = (f;, f5 ,g~) the mapping H, where we set ¢ = —1 and we have g, (0) < 0 and
by H* = (f{f, f7,97) the mapping H, where we set ¢ = —1 and we have g} (0) > 0. If we want to

normalize H~ as in Proposition 4.1 we first compose H~ with 7’ from (2.35), such that
H™=n'oH =(f.f;.9 )= (f . Jr.—97)

satisfies g, (0) > 0. For H* we keep the components as they are and write H* := H" with components
(j?fr, f;fg\"’) = (f{", fof, g™) for consistency.

For the normalization of H* we proceed as in the proof of Proposition 4.1 by first deriving the parameter
o/ = (a},ay) € §* , from U’ given in (2.30). For H¢ in order to satisfy the normalization condition
F£(0) = (1,0) we obtain the matrix U’¢ with standard parameters a’'¢ = (a}*,a}%) € §? ,. Since we
flipped f1 and f; in H~ we have that

I— I+
ap =ag,
- 1+
Gy =0ay,
such that |a]"|> — |ay |*> = —1, i.e.,, 0 = —1. Summing up the steps we carried out so far, we apply a

matrix V'~, as we defined in (2.34), to H~, which belongs to the group of isotropies of H? and is given
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by

ayt aft 0
Vit=1at a o |,
0 0 -1
and we apply a matrix V'* to H' given by
ayt abt 0
vit=1at &t o |,
0 0 1

such that V' *t(]?f, ]?27) = V’*t(]?fr, f;) Thus after this first normalization step the mappings agree
and we assume without loss of generality that the mappings H satisfies g, (0) > 0.

Definition 6.13. Let H from Definition 6.2 be given by H = (f1, f2,9). The real-analytic set Ny of
admissible points pg, such that H,,(Z) does not satisfy condition (3.29) from the definition for the class
Fa

Niz = {p0 € At : f1.02(0) fo.pz2(0) = fopy(0) f1 o2 (0) = 0. (6.5)

The proper, real-analytic set T of admissible points pg, where H,, (Z) does not satisfy condition (3.30)
is given by

Ty = {po € A : gpouw(0) = 0},
if we take into account Remark 6.12. We define
Sy =Ty UNgy, Wy =0SygNAg. (6.6)
If we deal with the mappings G; we write subscripts Sy and W and the same for Ny and Ty. If we

write S5 or S§, we set Sy = S5 = 0.

Remark 6.14. According to Proposition 3.5 and Proposition 3.13 it is possible to compose the mapping
with translations to obtain the conditions (3.30) and (3.29), which define the class F5. So we may
also exclude those points of H?, which belong to Ty or Ny, such that H,, as defined in Definition 6.2
satisfies (3.30) and (3.29).

The connection of Ny and Ty with the sets associated to H, where H is not 2-nondegenerate or

transversal is given in the following lemma.

Lemma 6.15. Let H from Definition 6.2 be given by H = (f1, f2,g). Let N denote the set of points
p € H? where H is not 2-nondegenerate at p and let T be the set of points ¢ € H? where H 1is not
transversal to H2 at H(q). Then N = Ny and T = Ty.

Proof. To show the first equality we note according to Remark 3.14 the set N where H = (f1, fo, g) is
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not 2-nondegenerate in H? is given by

N ={p = (p1,p2) € B2 5 (f12(0) + 2150 f100(p) ) (f22 () + 41 1 reulp) — 452 o (D))

(o @) + 2851 o (9) ) (fr22(P) + 4151 frzu(p) — 453 Fru () ) = 0.

Then if we consider H,, and compute Ny we obtain the same equation as the one defining IV above.
For the second equality we recall that the set T of p € H? where H is not transversal to HZ at H(p)
according to Lemma 3.3 is described in Remark 3.4. More precisely there exists a real-analytic function

A : C* — R satisfying
Im(g(z,w)) - (|f1(z, w)|* 4 ¢ |f2(z7w)\2) = A(z,w, Z, ) (Imw - |z\2), (6.7)

such that H is transversal to HZ at H(p) if and only if A(p,p) # 0. If we consider (6.7) for H,, with
admissible py € C? and evaluate at (z,w) = (0,0) we again obtain equation (6.7) but for the variable
po instead of p = (z,w). Thus by Lemma 3.3 (ii) < (iii) we have shown that for a mapping H as above
it holds that T'= T}y. O

6.3 Mappings of Higher (Non-)Degeneracy

In this section we want to see what happens if we translate mappings to points, where they are not
2-nondegenerate, i.e., where H,, ¢ F2. We already computed in Example 3.8, that Faran’s map Fj of
Theorem 1.1 is not 2-nondegenerate at 0, but 3-nondegenerate at 0. Using translations we provide some
examples of mappings of higher (non-)degeneracy at 0, which are then used in the following sections to

prove Theorem 6.8. This subsection concludes with a collection of some monomial maps.

Definition 6.16. Let H € F,. We call H deficient at p € H? if H is not 2-nondegenerate at p. We
refer to such p as deficient point for H. If H is 2-nondegenerate at p € H? we say H is nondeficient at

p, which we call a nondeficient point for H.
Remark 6.17. By Proposition 3.16 the set of deficient points is a proper, real-analytic subset of H?.

For a mapping H € F, we have the following possibilities: Either there exists p € H? such that H is
deficient at p or H is nondeficient everywhere in H?.

In the first case we consider H, and compose with isotropies fixing 0. Then we try to normalize
the resulting mapping according to some different normalization conditions than we introduced in
Proposition 4.1.

In the second case if H is nondeficient everywhere in H? we may try to normalize H with respect to
different normalization conditions as given in Proposition 4.1 by composing H with isotropies fixing
some appropriate point ¢ € H2. Here the mapping H belongs to F5 \ Na.

At this point we refer to Lemma 6.15, which gives another way how to find deficient points.

The following example gives a mapping, which is nondeficient everywhere:

Example 6.18. We consider the mapping H := G such that Ay = H?\ {(0,41)} is the admissible

set. Then we need to compute Ny, which is given by the following equation if we take py = (r9el%, vo +
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ir2),ro > 0,,600,v0 € R instead of (z,w):

(1+ivg+7r3)(14+wvo —ird)(1 —vo +1ir3)
)2

=0
(1+(r§ —iv0)?)? ’

which admits no solution in Ag.
In the following paragraphs we deduce some mappings of higher (non-)degeneracy at 0.

Example 6.19. For H := G we consider H,,. The admissible set Ay consists of points (0, +1) € H?
such that Ny = {qo € H? : g0 = (¢'%,1),6y € R}. We choose py = (1,i) in H,, to obtain that 0 is a
deficient point for H,,. We compose H), with isotropies fixing 0 which results in a mapping G := H ,
if we use the notation from Definition 6.3. We write G = (f, g) = (f1, f2,9) and consider the following

normalization conditions:

(i) fw(0)=(0,1) (iv) fuw2(0) = (0,0)
(ii) f1.2(0) = 22 (v) fiz20(0) =0
(iii) f120(0) =0 (vi) faus(0) =0

i .
c=3, 0,’1:\@1, aya=1, N=2 ==

and the rest trivially. After an application of the automorphism 7/ of H3 from (2.35) the resulting

mapping is equal to
(2 w) = (w, V2%, iw?).

We note that this mapping is (2, 1)-degenerate and not transversal at 0.

Example 6.20. For H = G| we consider H,,, where Ay = H2. Then we obtain Ny = {po = (2,41)}.
After composing H,, with elements of Auto(H2) and Auto(H?) we denote G := H, using the notation

from Definition 6.3. We impose the following normalization conditions when we write G = (f,g) =

(f1, f2,9):
(i) f-(0)=(1,0) (i )f2w2():

!
(ii) Gw(0) =(0,0,1) (v) guw2(0) =
(111) fzw(o) ( ) ( ) f2zw2(0)

They can be achieved if we take the following standard parameters except the trivial ones r, ¢}, " = 0:
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The resulting mapping is of the form

which is (1,1)-degenerate and transversal at 0.

Example 6.21. Next we consider the mapping H := G, , . For Hy, we find po = (v/3,31) € Ny and
then renormalize with respect to the same normalization conditions as in Example 6.20. The following

nontrivial standard parameters provide that H satisfies the above normalization conditions:

)\:3%’ u/:_l7 a&:M’ a’2:_1+1’ )\/: 34 , C/Qz_i,
2 2 202 2
to obtain the mapping
(z, 2w, w)
(7 w) = s (6.8)
which is (1,1)-degenerate and transversal at 0.
Remark 6.22. We note Example 6.20 and Example 6.21 show that the mapping
(z, zw, w)
}—) -
(Z7 'LU) 1 — ¢ w2 I
is equivalent to gl for e = +1 and to G , fore=-—1.
%7
Example 6.23. We let H = G_g and take Hp, to find ¢y = (32233521, 512;532“) € Ny NTy.

We apply isotropies fixing 0 to Hy, and denote the resulting mapping by G = (f,9) = (f1, f2,9). We

normalize the mapping according to the following conditions:

() fz(o):(]-v]-) ( ) flzw( ):0
(i) fuw(0) =(0,0) (V) 9u2(0) =2
(iii) f.2(0) = (0,0) (vi) flzwz(o =0

when we use the following standard parameters:

2+199i . 1223 Y 1276 — 32431, 11484 + 291871
Cc = —_—, = —_—, =, Co = ——,
28481/5 2048" 22304v/5 2 55760
, 30613535492 — 20104041651 i , 11384417567 — 3593306283 1 . 321697
a) = y Qg = — ) = 5
353339968+/3485 3533399681697 89
Y 538504992958 + 5444961894791 v 756545275
342480284921/5 ’ 32444416 °

and the remaining standard parameters are chosen trivially. The resulting mapping is of the form
2

(z,w) — <z Hiw 1w+w> . (6.9)
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This mapping is (1,1)-degenerate and not transversal at 0. If we apply translations [ 01 and t/ ;)1, where
po = (0,1) and ¢o = (0,0, 2), to the map from (6.9) we obtain

(2,w) — <z,§),1+w2>. (6.10)

w

Example 6.24. For H := G, we consider H,, to obtain that gy = (%, %) € Np. With this choice

for po we scale Hy, via dilations given by (z,w) — (v3z,3w) and (2}, 2}, w') (11z1 Lz 121w’

27 027 0 729
Then we compose the resulting mapping G = (f, g) = (f1, f2,9) with isotropies fixing 0 and we impose

the following normalization conditions:

(i) £2(0) = (0,V3) (iv) gw2(0) =0
(i) Gw(0) =(0,0,-3) (v) f1z20(0) =0
(ifl) f2eu(0) =0 (vi) f123(0) = 24

which are achieved if we take the following standard parameters:

/\,_3\/5 C,_3\/§1
11’ o8t g

14
c=1i, )\:§, aly = — a’2:75\/§

and the remaining parameters are chosen trivially. The resulting mapping is given by

(423, \/g(]- — wQ)Za _(3 + w2)w)
14 3w?

(z,w) —

)

which is 3-nondegenerate and transversal at 0.

Example 6.25. In this example we consider H = g4+ and again Hp,. Here we take po = (4(1 +
2v/2/3)1/2 16(1 + 2v/2/3) i) such that 0 is a deficient point for H,,. First we compose H,, with the
following dilations
(2,w) ((9 1 6v2)52,3(3 + 2\6)w),
(sl ((23 +20v2)2] (23 +20v/2)z, (1329 + 920\/§)w’> |

27 ’ 27 ’ 729

to remove some common factors. Then we compose the resulting mapping with isotropies fixing 0 and
denote this mapping by G. Next we consider the same normalization conditions as in Example 6.24
except we need to require G,,(0) = (0,0, 3) and use the following nontrivial standard parameters:

8v/2
c=(1+2)i, )\:T\[, W =1,

, (75v2—154) 5v/3(11 + 14v/2) , 3 /51
= = B R = — — =1 2
o o710 *2 271 AN =5V S 8V2,

o’ —211(3987 — 2760v/2) 2 o’ 451(40 — 23+/2)
1 1084y/2 T2 4336 '
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The resulting mapping is given by

(423,V3(1 + w?)z, (3 — w?)w)
1 — 3w? ’

(z,w) —

which is 3-nondegenerate and transversal at 0.

Remark 6.26. Example 6.24 and Example 6.25 show that the mapping

(423, V3(1 + cw?)z, (3¢ —w?)w)

6.11
1—3cw? ’ ( )

(z,w) =

is equivalent to G3. For € = +1 after applying the Cayley-Transformation to this mapping we obtain

the mapping Fj from Theorem 1.1 when we interchange the second and third component.

For the next mapping we cannot proceed as in the previous examples and we normalize differently at 0.
Example 6.27. We prove that H := Gis with 0 < s < 1/2 admits no admissible points, where H fails
to be 2-nondegenerate. For admissible points p = (rge' %, vy +ir2) € Ay the set Ny is given by

Ny ={p€ Ay : —dros+ e % (4+ (1 —3s*)(rd +ivy)) = 0,0 < s < 1/2}.

Splitting up the defining equation for Ny into real and imaginary part we obtain the following system:

cos(fp)  sin(fp) 4+ 73(1 - 3s%) dros '\ 0

sin(fg) — cos(6p) vo(1 — 3s%) 0 ’
which does not admit any solution for 0 < s < 1/2 and any p € H? and if s = 1/2 the solution of the
above system does not belong to Ag.

We set H := G, and compose H with isotropies fixing 0 to obtain the mapping H = (fl, fg,f]) We

consider the following normalization conditions at 0:

(i) ]EZ(O) = (1,0) (iv) flwz (0)=0
(H) Cjw (0) = (07 0, 1) (V) ng (9) =0
(iii) fo.2(0) = 2v2 (vi) Re(fi220(0)) =0

These conditions are achieved with the following nontrivial standard parameters

i
c=———=, A=+?2, XN=
22

which results in the following mapping given by

Sl

z(l—&—\@z—iw) z(ﬁz—iw)
(z7w)|—>< T+ V3s T VB ,w). (6.12)

We note that in contrast to the normalization conditions of Proposition 4.1 we have here flwz (0) =0,
but fo.(0) = —i and a different scaling of fa,2(0).
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Example 6.28. We complete this section by mentioning some monomial maps we have found during
our studies of mappings of hyperquadrics of C?> and C3. A monomial map is a mapping, with the
property that each of its components consists of monomials.

Additional examples of monomial mappings from S? — S? besides Ly and Lz of Theorem 1.2 are given

as follows:

w w w2 w?

(o) o L0 V22), <z,wm<\/§ > 1>,

which are both equivalent to G . Further there is an example of a monomial mapping of H? — H? of

degree 3 given by
(z,w) — (\/32@0,223,11}3) ,

which is equivalent to G, .

6.4 Renormalization

We introduce the following notation for some particular mappings:

Definition 6.29. We define

R (21 4icw) 227
Hi(zw) _< 1—iew ’1—i€w’w>’
H (2 0) = z(l—i—ﬂz—iw)’z(ﬂz—iw),w 7
1+ /22 14 V22
_ z 1+w?
H3 (Z,’LU) = <Z7’LU’ w >7
3 2 a2
He (2 w) = (423, V3(1 +ew?)z, (3e —w?)w)

We write 15, = (f5}, f51» 95)- The notation for sets associated to Gf from subsection 6.2 carries over to
the maps Hj,.
The mapping HJ is equivalent to G5 g, by scaling in C? and C? with the following maps:

(z,w) = (22, 4w), (21,25, w") = (21/2,2/2,w'/4).

The map #; is the one from (6.12), H; is the map (6.10) and K, is taken from (6.11).

We observe that each mapping H := H;, belongs to some orbit O(G), where G € N>, although H ¢
Fs. Nevertheless in this section we consider H,, for appropriate py € H?, such that H,, € Fa, see
Definition 6.13 and Remark 6.14. The sets Wy are given below. Then we normalize H,, € F> and
we consider mappings H = ﬁi from (6.3) and standard parameters of the isotropies according to
Proposition 4.1 to achieve H= (ﬁ, fg,@ € Ns. Applying Theorem 5.1 to ﬁ, the mapping H coincides

with one of the families of mappings Gy, , with the difference, that in this particular case s = s(po) is a
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function, depending on pg. We know from Theorem 5.1 and Proposition 4.1 that s = |J?1wz (0)] up to a
scaling factor.

In this section we compute the expressions s(pg) and some of the standard parameters which are needed
for this purpose. Then we analyze the image of the function s(pg) for appropriate py which allows to
determine the orbits of the mappings Hj,. Then the reduction of the one-parameter-families of mappings
G s and the proof of Theorem 6.8 is completed.

In the next proposition we list the sets Dj from Definition 6.10.

Proposition 6.30. Let Hj , ., where 1 < k < 4, be as in Definition 6.2 for the maps from Defini-
tion 6.29. Then for ¢ = +1 we have D = Df = and for e = —1 we compute the following nontrivial
sets Dy :

Dy ={po € H*:1+ivg —r§ =0},

Dy = {Po € 9% 1+ V2rpet? :0},

D3 = {py € H* 1 vg +ird =0},

Dy ={ro>0:1-3rj =0},
Proof. For ¢ = —1 the computations of D, and the nontriviality are straightforward. For e = +1 we
obtain DY = {po € H2: 1 —ivg+rd =0} =0 and Df = {rg >0:1+3r{ =0} =0. O

Proposition 6.31. Let Hj , , where 1 < k < 4, be as in Definition 6.2 for the maps from Defini-
tion 6.29. The sets N and T} from Definition 6.18 are given as follows:

Fore = +1:
N1+:{poeff:1+v8—21r§vo—r§=0},
T =0,
Nj:{TOZO:ro(l—ré):O},
T =0,
Fore=-1:
N =0,
Tl_:{poeAl_:l—Grg—i—vg—i—ré:O},
Ny =0,

T2_={p0€A2_26190+\/§T0(1+62i00)20},
Ng)_:{poeAg:rozo},
Tg_:{p()GA;:*l‘FUg‘FTé:O},
N;:{’I’()GAZZT(]:O},
T[:{TOGAZ:l—Mrg—l—rg:O}.
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Proof. It is straightforward to get the nontrivial sets N; and 7. To show the triviality of T,:' for
k=1,4 we write Hy := H;po with components (H{, H?, H?) and compute H}, (0):

14 67§ + vi + 75
DT R
3(1+4 1415 +7§)

(1+3r3)2

H3,(0)

H3,(0) =

To show triviality of NV, for k = 1,2 we note in Example 6.27 we have shown H := G;,s with0 <s<1/2
admits no admissible points, where H fails to be 2-nondegenerate. By Lemma 3.9 this must also hold

for H; and H,, since they are equivalent to G 5 and G, , respectively. O
' '3

Remark 6.32. According to Remark 6.12 we can assume the mapping H satisfies gipow(O) > 0,

z7170
which is given by the following expressions:

 14+6erd+vd+1g

{ 0) = 6.13
Gipgu (0) 1+2er2+03+rd’ (6.13)
_ 1+ v2rg(e” % 4 ¢l)

Gapew(0) = — =, (6.14)
(14 v2rge=100)(1 4 v/2rgeifo)

_ -1+ Ug + ré‘

)= — 9 0 6.15

gSpow( ) ’U(Q)—f—?"é ) ( )
3(e+14rd +e78)

Gipyu(0) = e (6.16)

(14 3erg)?
One can verify that these expressions make sense since we assume pg € W,

As already mentioned we apply Proposition 4.1 to obtain 7—72 € N> for some maps in order to compute
the coefficient flw2 (0) in the following lemma. For this purpose we provide explicit computations of

some of the standard parameters.

Lemma 6.33. Using the notation from (6.3), for 1 < k < 4 we set Hy == H}, and consider Hy with
components ffk = (flk,fék,ﬁk). Moreover in ﬁk we let pg € Wi C H2. If we assume ffk € Na, then

rs 2
Y5 (po) = M is given as follows:

rd(1+2erd + 03 +13)

S (po) = :
1(po) (1—2er34v3 +18)?
_ 1
22 (po): E’
= (7o) (1—v3)2+2(1 +v3)rs +r§
bo) = )
8 16r¢
L+ery)?(1—34ery +rf)?
Ei(po): ( O) ( 0 0)

1728r3(1 —erd)*

We write s (po) = /25 (po).

Proof. First we take a look at the expression fi,2(0) from Remark 4.4 for an arbitrary normalized
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mapping. In order to achieve fjxu2 (0) = |]?1sz (0)| we need to compute @’ = (a},a}),c = (¢}, ch), N
and ¢, A according to the formulas given in Remark 4.3. This is possible since we have for py € W that

Hy € F5. For each 1 < k < 4 we denote the corresponding standard parameters in H & by
a’;c = (a/llma’le) € 852,0'7 é;c = (c/1k7cl2k:) € CQ? )\;c > 07 C € C7 >\k > 07

where all of these expressions depend on pg. For k = 1,4 they further depend on ¢ = +1 and if k = 2,3
we set € = —1, but we suppress this dependence notationally. We denote the collection of these standard
parameters for a fixed k by Q. The parameters a), are given in (4.4) and ¢, as well as A}, are given in
(4.5). Then ¢y is computed according to (4.7) and A is of the form as in (4.9). All these expressions
in ©; are given in Appendix D for the mappings H,. We recall that H, is independent of 6, as we
described in Remark 6.7 (iii). We note that it is crucial to assume py € Wi such that the elements of
Q. make sense.
If we put all these parameters into flsz (0) we obtain

12

P (0) = 05,
up,

where S’ is a rational function in the coefficients of Hy at 0 up to order 2 according to Remark 4.4.

Thus, instead of computing wuy, explicitly at this point, we have

S (g H) I
(o) = B
which yields the expressions in the statement of the lemma. O

1
167

point of the renormalization map given by H + ¢’ o t}{(po) o H ot,, oo considered as a mapping from

N5 to Ns.

In order to achieve equivalence of G7, ; and Gy via choices of translations in s = sj, we restrict ourselves

Remark 6.34. It turns out that X5 is constant equal to which means the mapping G, is a fixed

to subsets of W which we give in the following Definition.

Definition 6.35. For ¢ = +1 we define:

Wit = {po € H* 1o =0=0p,0 <1y <1}, (6.17)
Wi = {ro €R* 10 << -1+ V3}, (6.18)
and the following sets for ¢ = —1:
Wl_:{p0€ﬁ22’1)0:0:00,0<7“0<*1+\/§}7 (619)
Wi = {po € H%:1v9=0=10p,0<rg <1} (6.20)
W, = {TOER+:TO>1,TO7E 2—}—\/3}. (6.21)
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If we write W5, we set Wi = 0.

Next we derive some properties of the functions 7.
Lemma 6.36. We set Rf := RT U {0} and define

Rf =R{, Ry =R{,

Ry =10,1/16), Ry =R\ [0,1/16], Ry =R{\ {1/16}.
Then 35, from Lemma 6.53 has the following properties:

(i) Forpo € Wi we have 0 < X (pg) < 1/16 and for po € W5 we have X3 (pg) > 1/16.
(ii) X% : Wi — R;, is a bijection fore = +1 ifk=1,4 and fore = -1 if k =1,3,4.

Proof. The first statement in (i) holds, since for pg € W, we have

_ 1 (1- 61"(2) + U(Q) + 1"8)2
by - — = — <0,
L (po) 16 16(1 + 27"8 + v% + 7“8‘)2

and the second statement, since for pg € W5 we have

_ 1 (1—v2 —rd)?
¥ ——=———"—>0.
3 (P0) = 7 64rg
To show (ii) we compute the derivatives of X7 restricted to W§ with respect to 79: Then we have 35 is
strictly increasing, Y3 is strictly decreasing in W; . The function Y] is strictly decreasing in W, and

3, is strictly increasing in W; . We note that X (v/2 + \/?:) =1/16. O

Since we only consider equivalence with respect to isotropies in Theorem 5.1 we give the following

lemma.

Lemma 6.37. Consider the mappings GY and G5 ; from Theorem 5.1. In the sense of Definition 6.3

the mapping G5 is not equivalent to G5 ¢ for any s > 0.

Proof. Let us denote H = G .
(f1, f2,§). Then we compute S for H from (6.6) given by

as in (6.2) with components (f1, f2, ) and H == G35, with components

S={po€n®: (4—v§ —2iverg +13)(2e +ivo +15) =0}.
Moreover we have for po € W = 0S N H?

4(4+45r3 + o2 +r§)

9w(0) = > 0. (6.22)

(4—03)" + 24 (4+03) + 73

Then for pg € W we have H € F» and we compute standard parameters to normalize the mapping
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according to Proposition 4.1. First we introduce the expression

R d+4derd+v3+r]
TV (- g2 254+ vg) + g

which is the square root of (6.22), such that the standard parameters for the normalization are given
by

¢y = — (44ry+2irdvy —v%)(cu(85+r8 —rg(6e+ivg) +4ivg —2ev] —ivd

—rg(12 — dicvg —v3)) + Arge'® (4i+devy +4ierd +ivd — 2rdvy —iré))
/(2)\(4— vg — 2irgug +19)(4 +derd +vi +r§)),

2rgelfo (4 —v¢ +2irdvg + ré) (cu(—4 + v +78) +iArget% (ivg — T%))

/
ch = ,
2 AMA—vE=2irdvg+ry)(4+4erd+ v +1rd)

1
Noi=—

AR
o = 8 —dicvg —12e7rd — 20 — 4irdvg +icvd — 61§ +erdvd +icrivo +erf
! uw/ R(4 — v3 + 2irdvg + r§)? ’
g AT
27 ww'R(4 — vg 4 2ir2vy + )2’

i Arge!fo

ci=

uw(2e+ivg +1r3)’

, (A= —2irdug+r3)A/A+ 02 +4erd +1
Cowd(24ievg +erd)(d— v — +2irdvg +1§)?’
A+ R +4erd+rd

= 5 .

A

The resulting normalized mapping is denoted by H e Na, according to Definition 6.3, and we want to
solve H = H. First we compare coefficients belonging to the 2-jet at 0. Using Remark 4.4 we have
.]?le (0) =0 and Fruw2 (0) = s/2, thus we need to require s = 0 such that the 2-jets of the mappings
at 0 coincide. Considering higher order derivatives we discover fzzzw(O) € R, depending on r and 7’
and is of the form as in (4.11). The standard parameter u is not present in the coefficient fgzaw(O), see
Lemma 5.18. On the other hand we have fs,2,,(0) = £ hence G and G5  are not equivalent for any
s> 0. O

Remark 6.38. We can also compute the remaining standard parameters in the normalization in the
proof of Lemma 6.37, which are given by
dr((A—vd)? + 24 +v3)rg +18)) +vo(—48 + 8vd + vi + 2(12 + v3)rd + 1)

T A4+ 02 +derd +r])? ’

Vo
1

Then if we compose G{ with translations and renormalize as in Definition 6.3, the resulting mapping is
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$, which again shows that O(G5) = Oy (GS).

The following Lemma is stated in [Mey06, Lemma 2.1].

Lemma 6.39. Let H € F, and ¢ € Aut(H2,0) and ¢/ € Aut(H3,0), then H := ¢/ o H o ¢ satisfies
degﬁ =deg H.

Proof. Let F: C2 — C3 be a reduced rational mapping of maximal degree k > 1 satisfying F'(0) = 0
and F = (f1, fa, f3)/p with p(0) # 0. Further let L : C> — C? and L’ : C® — C3 be linear rational
mappings satisfying L(0) = L’(0) = 0 which are given by L = (¢1,42)/q and L' = (¢}, ¢4, ¢4)/q" with
q(0),4'(0) # 0. Let F:=1L'oF oL, then we claim that deg F < deg F after removing common factors.
For convenience we write for coordinates z = (z1,22) € C2. Let h € {f1, f2, f3,p} and write with

mulitindex notation (z) = >, <), @a2®. Then we have

h(L(2)) = Z aaﬁ 1! Z aaq(2)*7100(2)® =

la k
) ()" o=

where each monomial of hy, is of maximal degree k. Note that F := F(L) satisfies ﬁ(O) = 0 and is of the
form F = ]?/ﬁ: (fl, ]?2, f;,)/ﬁ Hence if we consider the m-th component of F we have deg(fm/ﬁ) <k.
Let h € {Zl,l?g,@},, q} where we write /h\(z) = Elb’\Sl bsz”. Then we have

hr(2)

p(z

)

~ ()8 ~
h(F(z)) = Z bﬁ{((z))ﬁ = [% Z bm’)‘(z)lflﬁlf(z)ﬁ —

1Bl<1 1Bl<1

~—

where each monomial of hp is of maximal degree k. We set F = L'(F), which satisfies F(0) = 0
and is of the form F = (fi, fo, f;»,)/ﬁ Thus if we consider the m-th component of F we obtain that
deg(fm/P) < k, which proves the claim.

To prove the lemma let H € F5. Then from Theorem 5.1 it follows that there exists G € Ny with
2 < deg G < 3 and isotropies ¢ € Auto(H?,0) and ¢’ € Autg(H?2,0) such that H = ¢/ o Go. In
particular H is a rational mapping of some degree m. Hence by the above claim we obtain m < deg G.
If we rewrite the representation of H by G, ie., G = /"' o H oy~ !, we get deg G < m, which shows
deg H = deg G.

If we let H be as in the hypothesis and H as in the previous paragraph, we have

H=¢oHop=¢ o) cGothod,

and we set ¢ := 1o ¢ and ¢’ = ¢’ 01’. Since ¢ and ¢’ are of the form as L and L’ above, we are in

the situation as above and we can argue as we did for H and G before to obtain degf] =degH. O
We now summarize all the previous results to give a proof of Theorem 6.8.

Proof of Theorem 6.8. The last claim of the theorem concerning Gf is proved in Lemma 6.37 and
Lemma 6.39. Let us consider for 1 < k£ < 4 the mappings Hj, from Definition 6.29, H ,  from (6.2)
and 7-72 as in (6.3) and py € W{ according to Remark 6.14. We note that according to subsection 6.3
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and Definition 6.29 the map H{ is equivalent to Gf, H, is equivalent to G5, Hy is equivalent to Gz_é
and ‘Hj is equivalent to GJ.
Since py € W we have M. po € F2. In Lemma 6.33 we explicitly derive standard parameters such that

Q,i satisfies (i)—(iv) of the normalization conditions in Proposition 4.1 and we compute the expressions

| Pt o2 (O)]
si(po) = R

We start investigating the case of mappings of degree 2, which are ﬁi,ﬁg and ﬁg since the degree
does not change if we apply automorphisms according to Lemma 6.39. We recall that these mappings

originate from G5 ; which is of degree 2. According to Theorem 5.1 we have
Hi € {G1,G5.,},

where s = 5¢(po) holds. By Lemma 6.37 the only possible case is H5 = G5 s, where s = s7(po). We
obtain (i) by Lemma 6.36 (ii) since the mappings G;S are equivalent to Hf for s > 0. In the case of
€ = —1 we obtain again by Lemma 6.36 (ii) that G, , is equivalent to H; if 0 < s < 1/4 and G, is
equivalent to H3 if s > 1/4, proving (iii) and (iv). Finally applying Lemma 6.36 (i) shows that G; , G5
and G5 are pairwise not equivalent, which proves (v).

Next we treat the case of mappings of degree 3, i.e., G?ts for s > 0 and G;, for 1/4 # s > 0 by

Lemma 5.3. According to Lemma 6.39 we have
deg(H3) = 3.

Thus by Theorem 5.1 it holds that H§ = G355, where s = s3(po) and satisfies s # 1/4 for e = —1. Then
we restrict the parameter space of the translations to py = (ro,irg) € H? for ro > 0 to obtain if s # 1/4
for e = =1 or if s > 0 for € = +1 from Lemma 6.36 (ii) that G5 , is equivalent to H3, which proves (ii)
and (vi) of Theorem 6.8. In the exceptional case t := |f,; .(0)| = 1/2 in G, we have Gii0 =0y as
in (vi). O

Remark 6.40. In the proof of Theorem 6.8 we avoid to compute all standard parameters such that
7:22 € Ns. In Proposition 4.1 and Remark 4.3 we have shown that we can achieve H € N for any
H € 7. In Appendix D we give the standard parameters appearing in the mapping ﬁi, such that
ﬁi € N for k =1, 3,4. For the mapping ﬁg we proceed differently and make use of Theorem 4.12 and
Example 4.13. We define the admissible normal form N := {o’ o Hoo : H € Ny}, where o and ¢’ are
the isotropies we used in Example 6.23 to show equivalence of H, and G; VB4 which by Theorem 6.8
is equivalent to G, = GQ_, 120 Then we renormalize H, with respect to N, i.e., we require H, € N and
list the appropriate standard parameters for this inclusion in Appendix D. Then analogously as for N>

we obtain that ﬁ; = H, for all admissible py € H.

80



7 The Class of Degenerate Mappings

In order to complete the classification in Proposition 3.16 we need to study the following class of

holomorphic mappings.

Definition 7.1. For a neighborhood U C C2 of 0 let us denote the set F;(U) of holomorphic mappings
H = (f1, f2,g) with H(U N H?) C H2, which are constantly (1,1)-degenerate, transversal at 0 and
satisfy H(0) = 0. By Proposition 3.13 we have

J12(0)f2:5(0) = f2:(0) f12(0) = 0, Vk =2, (7.1)

and by Lemma 3.3 we obtain g,,(0) > 0. We denote by F; the set of germs H, such that H € F;(U)
for some U C C? a neighborhood of 0.

The following theorem shows the missing claim (ii) in Proposition 3.16.

Theorem 7.2. Let H € Fy, then in the sense of Definition 2.26 we have H is equivalent to the mapping
(z,w) — (2,0, w).

Remark 7.3. (i) We prove the theorem by proceeding as in the nondegenerate case: First we compose
the degenerate mapping with automorphisms in order to fix some coefficients and then we compute
a jet parametrization which gives the linear embedding (z,w) — (z,0,w).

(ii) A different way to prove the theorem is to refer to [ES10, Theorem 1.1] to obtain that the image
of H is contained in a 2-dimensional hyperplane and conclude directly that H is equivalent to a
linear embedding. Yet another alternative for ¢ = +1 can be found in [Far82, Lemma 1.7].

(iii) Note that Theorem 7.2 together with Proposition 3.13 implies that a mapping which is (1,1)-
degenerate in an open, dense subset of its domain in H? is already (1, 1)-degenerate everywhere

in its domain in H?2.

Proposition 7.4. Let H € F;. Then there exist automorphisms o € Auto(H?,0) and o’ € Autg(H2,0)
such that H-=c'oHoo satisfies .FNI(O) =0 and the following conditions:

(1) ]}:IZ(O) = (1’070) (111) f~l2z2 (O) =0
(ii) H,(0) = (0,0,1) (iv) Re(gyu2(0)) =0

Definition 7.5. We write N for the set of holomorphic mapping of F; satisfying the conditions given

in Proposition 7.4.

Proof. We start by setting u = 1 = v/ = XA and ¢ = 0 = r’ in the definitions of the isotropies from
Definition 2.23 and Definition 2.24. Next we proceed as in Proposition 4.1 and consider the following

coefficients of H together with the conditions we impose on them.

H.(0) = (X < Zi _;“/2 ) ( ;:Eg; >70> = (1,0,0), (7.2)
H,(0) = (X ( @ e ) ( 6/19“’20) 11(0) > ,X2gw(0)> = (0,0,1). (7.3)
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Considering the first two equations of (7.2) we set

1 flz(o) / f2z<0)

a1 = 57~ Ay = 75—~

[1£=(0)]1” 1 £=(0)]]e”

and the third equation of (7.3) gives

such that the corresponding equations are satisfied if we use (3.4). By setting

f1w(0) f2w(0)

ch=- , cy=— ,
! gw(o) 2 Guw (O)

we have fixed the 1-jet of H at 0 such that a’ = (a}, a}) € S?

£,0

A >0 and ¢}, ¢, € C. With the choices

for o’ we obtain

Jo2(0) = N (b 1:2(0) + 2 (0) ) = 0,
since we assumed (7.1) with k£ = 2. Finally we solve

Re (w2 (0)) = —2r + N Re (g2 (0)) =0,

for r € R and we are done. O

Proposition 7.6. Let H € Ni. Then necessarily the coefficients of H satisfy the following equations:

() fre(0) =0 (k>2) (1) frus (0) =0
(i) Im(g,2(0)) =0 (v) fiw(z,0)=0
(iil) g.ry(0)=0 (k=>1)

Proof. The conditions are simply verified by differentiating (3.3) assuming the conditions on H given
in Proposition 7.4:

Differentiation of (3.3) with respect to z and evaluating the result at (z,x,7) = (0,x,0) gives x =
f1(x,0) if we assume the conditions on the 1-jet of H at 0. Differentiating k-times this equation for
k > 2 gives (i).

If we differentiate (3.3) twice with respect to 7 and evaluate the result at 0 we obtain using H,,(0) =
(0,0,1) that Im(g,2(0)) = 0 which is (ii).

Differentiation of (3.3) with respect to 7 and evaluating the result at (z,x,7) = (0, x, 0) shows, again
if we use H,,(0) = (0,0,1), g-(x,0) =1 and thus (iii).

In order to obtain (v) we first show f1,,,(0) = 0: Here we differentiate (3.3) twice with respect to z and
twice with respect to x and evaluate at 0. If we use H,(0) = (1,0,0) and H,2(0) = (0,0,0) we obtain
the desired condition.

Next if we differentiate (3.3) twice with respect to z and three times with respect to x we obtain (iv)
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when evaluated at 0. Here we need to use H,(0) = (1,0,0), H.2(0) = (0,0,0) and f1..,(0) = 0.

We get the last condition by combining two equations. The first equation is obtained by differentiating
(3.3) twice with respect to z and the second one by differentiating with respect to z and 7. Both
equations we evaluate at (0, x,0) and use H,(0) = (1,0,0), f,(0) = (0,0), H.2(0) = (0,0,0), f1,,(0) =
0 = g.4(0) and f1,2(0) =0 = g,,2(0) to get the following equations:

J20,0) (f220(0) +1xf242(0)) =0,
le‘r(Xa 0) +e f_Z(X7 0) (f2zw (0) +2i Xf2w2 (0)) = 07
from which we conclude fi,(x,0) =0 and (v). O

Remark 7.7. We summarize the conditions we obtained for the 2-jet of H € N7 at 0 from Proposition 7.4
and Proposition 7.6.

(i) H(0) = 0 (iv) H.2(0) = (0,0,0)
(ii) H.(0) = (1,0,0) (v) H.u(0) = (0, f2:1,(0),0)
(i) H(0) = (0,0,1) (i) Hy(0) = (0, fau2(0),0)

Lemma 7.8 ([Lam01, Proposition 30]). Let H € Ni. Then after applying an automorphism of H? we
have H(z,2izx) = (2,0,2izx) for all (z,x) € C? near 0.

Proof. We proceed as in the proof of [Lam01, Proposition 30]. We additionally assume the conditions
for the coefficients of H from Remark 7.7. The (1,1)-degeneracy, more precisely equation (7.1), allows
us to solve for H(z,21izy) in three equations according to the functions @1, @2, P35 defined as follows.

The function ®; simply is (3.3):
él(sza X:T) = g(z,w) - g(Xa 7—) - 21(']01(2’77.1))]?1()(,7) + €f2(z7w)f2(Xa T))

For ®, we take derivatives of (3.3) with respect to the vector field L = % — 2126% as in the proof of
Proposition 3.13:

q)Q(Z?va’T) = Lp/(H(Z,w),H(X,T)) = gX(X’T) - Qing(X,T)
= 2i(fu(zw) (Fix 06 7) = 212F1, (0. 7) + € fol,w0) (For (6 7) = 2122 (7)) )-

For the function ®5 we use the (1, 1)-degeneracy: We write
p/(zi7 Zé, wla X?L? XI2> TI) = ’LU/ - Tl - Ql(zixll +e Z/2X12)a
and as in the proof of Lemma 3.11 in (3.22) we define for k = 1,2

or(z,w,x, T) = p;’; (H(Z,U)),H(X7T)), 03(2,w,x,T) = pl (H(z,w),H(X,T)>,
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In our case we have

cpl(Z;vaaT) = 72if_1(X7T)7 902(211”7)(’7) = 72i€f_2(X7T)a
903(27“-)7)()7_) =1

Then we set

D3(z,w, x,7) = Lpi(z,w,0,w)pa(z,w,x,T) — Lpa(z,w,0,w)p1 (z,w, x,T) (7.4)
= —de((fin(0,0) = 2i2f1(0.0)) o0, 7) = (For (0. w) = 212 f2 (0,w)) fi(x:7) ).

After barring the previous expression ®3 we get an equation denoted by ®3. Then we restrict ®; to H?

to obtain
Py (2, 7+ 2iz2x,x,7) =0, 1<k<3. (7.5)

Let us give an argument why we choose ®3 in the above form:
We refer to Remark 3.12. We let v € N™, then in our case the determinant of (3.24) becomes
L L
| ( L : (7.6)

Loy Lo )(Z,w»cﬁ)

for (z,w,x,7) € H?, because L7p3 = 0 for v > 1. Points of the form p = (2, w,0,w) belong to the
complexified version of H?2, such that the vanishing of the determinant in (7.6) at p becomes

L1 (z,w,0,w) LY a(z,w,0,w) — Lps(z,w,0,w)L7p1(z,w,0,w) = 0,

for all v > 0, which is equivalent to the equation in (7.4) being 0, since for k = 1,2

a7 _

L’ka(zaw507w):7 fk(X,w—leX)
X" | =0

We proceed setting 7 = 0 in (7.5) which yields the following system of equations using the conditions

of Proposition 7.4 and Proposition 7.6:

2iy 2ie fa(x,0) 1 0
21 2ie(for(x,0) —2izfor(x,0)) 0 | H(z,2izx)+ | 2iz | =0.
0 -1 0 0

Solving the above equation and applying the automorphism (2, w) — (—z,w) of H? shows the claim. [

Proof of Theorem 7.2. Let H € Fi, then we apply automorphisms according to Proposition 7.4 to
obtain a mapping H € N,. Then we use Lemma 7.8 for H and as in the proof of Theorem 5.1 we set

X = 515, which implies that H is equivalent to the linear embedding given by L(z,w) = (2,0,w). O
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8 Classification of Mappings

In this section we give the proof of our Main Theorem by bringing together all the previously deduced

steps.

8.1 Proof of the Main Theorem

Proof of the Main Theorem. Let U C C2? be an open and connected neighborhood of p € S? and
H : U — C? a holomorphic mapping with H(U N'S?) C S2. At some point of the proof it may occur
that we have to shrink U. By abuse of notation we denote the resulting neighborhood again by U.
According to Remark 2.7 we change coordinates to obtain p = (0,1) and H(0,1) = (0,1,0) € S2. Then
we use the biholomorphisms T3 and T, * from (2.2) and (2.3) respectively to define

Si(H)=Ts0VoHoT,",

where V is a unitary matrix, which interchanges the second and the third component of H. We obtain
a holomorphic mapping S (H) : U — C3, which satisfies S;(H)(0) = 0 and maps W NH? to H2, where
W is a sufficiently small and open neighborhood of 0.

By Proposition 3.16, S1(H) is either Hf or Hy, after changing coordinates to obtain mappings from S?
to S2, or belongs to F,. This class of mappings is introduced in Definition 3.17.

Next we define
S3(H) =0y 0 Hooy,

where o1 € Autg(H?,0) and o} € Auto(H2,0). If S;(H) € Fo we consider S(S1(H)) and choose the
appropriate isotropies such that S5(S1(H)) € N, according to Proposition 4.1. In Theorem 5.1 we
obtain that

SQ(Sl(H))G{Giv g,s? g,s}a

where G35 ¢, G5 ; are two one-parameter families of mappings, which both depend on a real parameter
s > 0. We obtain from the proof of Theorem 6.8 that the parameter s of the mappings listed in
Theorem 5.1 depends on admissible py € H2. In Lemma 6.37 we conclude that for every s > 0 the
mapping G5 ; is not equivalent to G. Furthermore by Lemma 6.39 for s # % it holds that G7 ; is not
equivalent to G or G35 g, since the degree of the mappings do not agree. The classification of mappings
G5 5 and G35 ¢ is carried out in Theorem 6.8. Then we note that in Lemma 6.5 we conclude that the
equivalence relation we use is the most general equivalence relation in our setting, i.e., mappings which
are not equivalent with respect to our equivalence relation, cannot be equivalent with respect to any
other equivalence relation using composition of automorphisms, as described in Lemma 6.5.

In order to prove equivalence to the mappings listed in the Main Theorem we recall Definition 6.3 and
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introduce the following mapping:
S3(H) := oho (tiq(pﬂ) oHo tpo) 003, (8.1)

where pg € H?, 05 € Auto(H?,0), 0% € Auto(H2,0). In these considerations we may use the parameter
po € H? to guarantee S3(H) € Fa, see subsection 6.2, Proposition 6.30 and Proposition 6.31.

We show that S;*(G5) is equivalent to H5 by composing G5 with dilations (z,w) ~ (v/2z,2w) and
then we apply S; ! which results in the mapping HsS.

Next we handle the one-parameter families of mappings G5 g, G5 ,:

If S5(S1(H)) = G54, according to Theorem 6.8, S3(G5 ) is equivalent to either Gi,G, or Gy when
using appropriate standard parameters and choices for pg. Note that by Theorem 6.8 (v) we have
G, ,G, and G5 are pairwise not equivalent to each other.

It holds that Sy '(#5), where #5 from Definition 6.29 is equivalent to G5, agrees with HS.

For ¢ = —1 we have S;(H; ), where H; from Definition 6.29 is equivalent to G, , is the mapping Hs.
Further ST 1(7—[; ), where Hz from Definition 6.29 is equivalent to G5, is equivalent to Hg. We apply
the isotropy (2, 25, w’) — (21/2,124/2,w'/4) and then S;! to the map in (6.10) to obtain H.

In the case S2(51(H)) = G5 5, Theorem 6.8 yields that S3(Gj ;) is equivalent to the mapping G. If we
consider S (H3), where Hj from Definition 6.29 is equivalent to G5, we obtain Hj.

It remains to prove the last statement of the Main Theorem. We show equivalence of S;(Ls3) and G;,
S1(L4) and G5, S1(Ls) and G5 and finally equivalence of Sq(Lg) and G, . We keep the notation for the
equivalence relation from (8.1).

We start by showing the first equivalence by considering S5(51(L3)) and defining

and the rest of the occurring parameters trivially. Then we have S5(S1(L3)) = Gy .
In the case of the mapping S;(L4) we define

11i 2

p0:(2,4i)7 0271, U:—].7 )\:3, )\123373/4,

a/:_i_ﬂ a/:_i+ﬁ g 272-5v3) (2724 5V3)
! 31/4 g 2 31/4 g 1 144 2 144 ’

and the rest of the parameters trivially. With these choices we obtain S5(S1(L4)) = G, .
Next we want to see that S1(Ls) is equivalent to G; . We define the following parameters for S3(S1(Ls))

44 3i 1-—2i 1 1
= \/i,—l—i—Qi), c= , U= — , A=—, r=-, =32,
= 8v5 N V2 8
2-11i , —147i , —4+3i

N =424 = a

5\/57 5 b 5 9
, 1-51 i
0= T osa 0 27 T3

and the remaining parameters we choose trivially. Then we have S3(S1(Ls)) = G which, since

N
2,7
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V5/4 > 1/2, is equivalent to G; by Theorem 6.8.

Finally we consider S;(Lg) and we want to see that this mapping is equivalent to H, . Here we note
that after a linear change of coordinates, Lg is the same mapping as H, , which we know is equivalent
to G5 . The change of coordinates in C? and C3 is performed via the following unitary matrices V; and

V5 respectively given by

0 i -1 0 O
i
i = , Vo = 0 —i 0
' ( 10 ) ? 1
0 0 1
This completes the proof of the Main Theorem. O

8.2 Invariants of Mappings

To show for the collection of maps listed in Main Theorem that two different maps are not equivalent
to each other, we argued that any application of automorphisms to mappings in F, by composition is
of the form as given in the proof of the Main Theorem, see Lemma 6.5. In this section we want to give
some invariants with respect to automorphisms of the hyperquadrics to distinguish the maps listed in
the Main Theorem from each other.

We start with the easy cases: H7 is not equivalent to any other map of the list, since it is not immersive.
Also Hf cannot be equivalent to any other map, since the map is (1, 1)-degenerate everywhere and the
mappings H5, HS, H;, Hs and Hg have points in its domain, where the map is 2-nondegenerate, see
Proposition 3.16.

Next we note by Lemma 6.39 that Hj is not equivalent to any other map in the list. It remains to
distinguish mappings of degree 2. First we treat the case ¢ = +1. Here we have H;' is equivalent to
G7, which is 2-nondegenerate everywhere, see Example 6.18. The map Hj is equivalent to G;” = G;O,
which has points in its domain, where the map is not 2-nondegenerate, see Proposition 6.31. Thus H 1+
and H, are not equivalent.

Next we consider the case € = —1. First we note according to Proposition 6.31 the map H; , which is
equivalent to §; = G5, and Hs, which is equivalent to G5 = G; 1/2> are 2-nondegenerate everywhere.
The maps H; and Hg, which are equivalent to G| and G5~ = G5 ; respectively, also by Proposition 6.31,
do contain points in their domains, where the maps are not 2-nondegenerate. Example 6.19 shows that
G7 is equivalent to a map, which has (2, 1)-degenerate points in its domain and a similar computation
shows that G] does not contain any point in the domain where the map is (1,1)-degenerate. We
computed in Example 6.21, that there is a mapping which has (1, 1)-degenerate points in its domain
and is equivalent to Hg by Theorem 6.8. Thus the maps H, and Hg are not equivalent to any other map
of the list. Next we make the following observation concerning the isotropic stabilizer of isotropically

equivalent mappings:

Remark 8.1. We set G := Auto(H2) x Auto(H?). If we let H € Ny and F = ¢’ o Hop, where (¢, ¢) € G,
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it is a well-known fact that
stabg(F') = {((p’ od’o @’717 pooop ) eG:(d,0)€ Stabo(H)} .

It remains to distinguish Hj from H;. First we observe that G, has a nontrivial isotropic stabilizer
2,1/2
stabilizer. By the above Remark 8.1 this property implies that any map belonging to the isotropic orbit

according to Lemma 5.18. On the other hand again by Lemma 5.18 the map G has a trivial isotropic

of Gy, /2 cannot have a nontrivial isotropic stabilizer. In Lemma 6.33 we concluded that O(G;’ 1 /2) =

O0(G5 4 /2). Hence any map to which G is equivalent must have a trivial isotropic stabilizer. Thus

2,1/2
H3 and Hs are not equivalent with respeci to automorphisms preserving the hyperquadrics S? and S2.
This completes the alternative proof, that none of the maps listed in the Main Theorem are equivalent
to each other.

Note that the above considerations give a way to decide to which mapping a given mapping is equivalent

without performing a normalization with respect to isotropies.

8.3 Algorithm for the Classification and Overviews

In the proof of the Main Theorem we describe an algorithm based on [BER97, §6] to decide for a given
mapping H from S? to S? with which of the mappings we listed in the Main Theorem the mapping
H coincides after a series of applications of changes of coordinates and automorphisms. We want to
summarize all the steps we need to carry out and keep track of the automorphisms we use for the
normalization procedure. An overview is given in Figure 7 below.

According to Remark 2.7 we first change variables and compose H with the Cayley-Transformation to
obtain H(0) = 0 and H maps an open neighborhood of 0 in H? to H3. Then as in Proposition 3.16 we
need to verify if H is transversal or not.

If H is nontransversal, then it is equivalent to (z,w) — (h(z,w),h(z,w),0) for some holomorphic
function h : C? — C with h(0) = 0. Here we basically apply a diagonal matrix to H as we did in the
proof of Proposition 3.16.

If H is transversal, the Main Theorem shows that H necessarily is rational of maximal degree 3. Next
we inspect where the mapping is nondegenerate or degenerate in its domain.

If H is degenerate at every point of its domain, then H is equivalent to the linear embedding (z, w)
(2,0,w) according to Theorem 7.2.

If H is nondegenerate at some point p in a neighborhood of 0, then we need to compose H with
translations and consider H,, according to Definition 6.2. This step is carried out as in the beginning
of the proof of Proposition 3.13, see also Lemma 6.15 for explicit arguments for the invariance of
transversality and degeneracy under translations. We note that it is possible to make use of Remark 6.12
at this moment.

Then we normalize the mapping H,,, such that the conditions of Proposition 4.1 are satisfied. We denote
the resulting mapping by H= (]71, f;, g). All the automorphisms we have used so far are isotropies and
are given explicitly in the proof of Proposition 4.1.

Next we consider Theorem 5.1. In both cases ¢ = +1 we have that H is one of the mappings
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Gi(z,w), G5 5 (2, w) and G5 ; (2, w) given in Theorem 5.1, where so = f102(0) > 0. We recall the
jet determination result given in Corollary 5.13. This shows, in order to decide to which mapping H is
equivalent, we only need to compare some coefficients of H and G, of at most order 3. For ¢ = —1 we
need to appeal to Theorem 6.8 and decide according to the value of sy to which orbit the mapping H
does belong. If ¢ = +1, by Theorem 6.8 and Lemma 6.37, there are only three orbits. To give explicit
automorphisms we mention that in Theorem 6.8 the equivalence relation is defined in Definition 6.3.
The standard parameters are chosen according to Proposition 4.1 and the necessary parameters py € H?

of the translations are among those given in Definition 6.35.

Holomorphic mapping H

non-transversal transversal

H~
(z,w) = (1, h(z,w), h(z,w)) | (1,1)-degenerate | | 2-nondegenerate

Hy 1,G54. G5
(z,w) = (z,w,0)

W

.6:.05.G3.0i

W

€ e €
2’H3aH47H5aH6

Figure 7: Overview of the classification

In the following table we list all nontrivial mappings we obtained in our classification, i.e., mappings

which belong to Fa. We also recall the nontrivial mappings from Theorem 1.1 and Theorem 1.2.
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Figure 8: Overview of maps in F;
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9 Topological Aspects

The goal of this section is to clarify some topological questions which arise in the study of holomorphic
mappings from H? to H3. First we treat the relation of the different topologies we can associate to
My C Ny and the question of local triviality of §» C Fa, for some appropriate subsets 9y C §F». Then
we also treat the question of connectedness of F» and Hausdorffness of the quotient space of Fy with
respect to automorphisms.

We have the natural inductive limit topology of uniform convergence on compact sets 7¢, the induced
topology from the jet space 7; and the quotient topology 7o on Ns. First we review the well-known
fact that 7¢ = 77, which follows from the jet parametrization for 5. When considering g we show
that §2 is a principal fibre bundle with respect to isotropies, which then implies 7¢g = 7; on I,.
Throughout this introduction we follow [BER97]. Let us recall Definition 4.7.

Definition 9.1. For p € CY and p’ € CV' we denote by
H(p;p') == {H : (CN,p) —» (CV',p') : H holomorphic},

the set of germs of holomorphic mappings from (CN,p) to (CN',p').
For (M,p) C CN and (M’,p') c CV " germs of real-analytic hypersurfaces we denote by

H(M,p; M',p') = {H € H(p;p') : HM NU) C M’ for some neighborhood U of p},

the set of germs of holomorphic mappings from (M,p) to (M',p’).

Definition 9.2. For K C C a compact neighborhood of p € C¥ we denote the Frechét space Hx (p; p')
of germs of holomorphic mappings, defined in a neighborhood of K, which map p € CV to p’ € CV .
The topology for Hx (p;p’) is given by uniform convergence on compact sets.

We equip H(p;p’) with the inductive limit topology, denoted by 7¢, with respect to Frechét spaces
Hi(p;p'), where K is some compact neighborhood of p in CV. Then for H, H, € H(p;p') we say
that H,, converges to H, if there exists K C CV a compact neighborhood of p, such that each H,, is
holomorphic in a neighborhood of K and H,, converges uniformly to H on K.

For H(M,p; M',p") C H(p;p’) we consider the induced topology 7 of H(p;p').

Based on Definition 2.9 (iii) we give the following definition.

Definition 9.3 (Jet Space). We denote by J;f,p, the collection of all k-jets at p of germs of holomorphic
mappings from (CV,p) to (CN',p). We set JE=Jk.
Let (M,p) C (CN,p) and (M’,p') € (CN',p') be germs of real-analytic hypersurfaces. For k € N we
denote by Jé“(M,p; M’ p’) the space of k-jets of H(M,p; M',p’) at q or the k-jet space of H(M,p; M’ p’)
at q. We write Jé“(M,p) = Jé“(M,p; M, p) and JE(M; M) == JE(M,0; M’,0).

We denote by G’;(M, p) C JZ]f(M7 p) the space of k-jets of Aut,(M,p) at p.

Remark 9.4. Note that JI’,“(M,p; M p) C Jz]f,p" Then Jz]f,p/ can be identified with the space of germs
of holomorphic polynomial mappings from CV to CV "up to degree k, which map p € CV to p’ € CV .
Thus J;f’p, can be identified with some C¥, where K = N’(N;,rk), such that the topology for Jzﬁp”
denoted by 77, is induced by the natural topology of CX. We refer to the topology 7 as topology of
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the jet space.

Definition 9.5 (Jet Parametrization). We say F C H(M, p; M’,p’) admits a jet parametrization for F
of order k if the following properties hold:

There exists a mapping ¥ : C¥N x CKX > U — CN', where U is an open neighborhood of {p} x
JIIf(M ,p; M, p"), which is holomorphic in the first N variables, real-analytic in the remaining K vari-
ables, such that F(Z) = ¥(Z, j;;F), for all F' € F.

Remark 9.6. (i) If F C H(M,p; M’,p’) admits a jet parametrization of some order k, then 7o = 77,
which follows from the real-analyticity in the last K variables.
(ii) In our situation, where F = F5 we have by Corollary 5.13 that K = Ky := 15, where the following
coefficients of H = (f,g) = (f1, f2,9) € F2 are involved:

J(H) = {f2(0)7 Hw(O), f22 (0)7 sz(O), Hw2 (0)> fz2w(0)} .
Hence by Theorem 5.1 we identify F» with a subset Jo C CK°, given by
Jo={J(H): H € Fo},

and the topology we use in the sequel for F3 is 7.

9.1 Properties of the Normalization Map restricted to §»

In the following definition we use the notation from Definition 5.15.

Definition 9.7. Let X,Y be topological spaces. A continuous map f : X — Y is called proper if f is
closed and for each y € Y the preimage f~!(y) is compact.
An action « of G, a topological group, on X, a topological space, is called proper if the associated map

o (g,xz) = (m, a(g, x)) is a proper map in the sense defined in the previous paragraph.
Let us recall the notation from Lemma 5.18, where we set & := {Gf, G5 o, G5 o}
Definition 9.8. We define My := N2\ € and §2 = Uyem, Oo(H).

We aim for the following theorem.

Theorem 9.9. The mapping N : Auto(H2,0) x Autg(H?,0) x F2 — 2 given by
N(¢' ¢, H):=¢' o Hop™ ",

is a free and proper action.

From Lemma 5.18 it is easy to see that NN is a free action. To show the properness in Theorem 9.9 we
use the following well-known characterization of properness in the case of free actions, whose proof can
be found in e.g. [tD87].

Lemma 9.10 ([tD87, Proposition 3.20]). Let G be a topological group acting freely on a topological
space X wia the action a: G x X — X. Then the following statements are equivalent:
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(i) G acts properly.
(i) Let o’ : G x X — X x X be given by o/(g,x) = (z,a(g,x)). The image C C X x X of o is
closed and the map o : C — G, given by @, (m,a(g,x)) = g 1S conlinuous.

Remark 9.11. For F : (C%,0) — (C?,0) a germ of a holomorphic mapping, for which we assume that
F € F; and the jet J(F) C j3F is of the form as in Remark 4.6, we write F = (f1, f2, f3) for the

components and denote derivatives of F' at 0 by ffm = f¥ _.(0). Here as usual we write (z,w) for

2lpm

coordinates in C2.

The following lemma is useful in this context.

Lemma 9.12. Forn € N we let H,,, H € My and ¢, € Auto(H?,0),¢], € Autg(H2,0) such that
¢ oH,op t — H (n = c0),

then ¢, — idce, @), — idces and Hy, — H as n — oc.

Proof. We assume for H,, = (hL,h2 h3) and H = (h',h? h?) to be given as in Remark 9.11, where

n»''nr''n
in H, the coefficients depend on n € N. We write s, = |hly| € Rz, = h%y), € C and y,, =
Im(h2,,). To each ¢, and ¢/, we associate v, € I' and 4/, € I respectively, where we use the notation
for the parametrization of Auto(H?,0) as in Definition 2.23 and for Auto(H2,0) as in Definition 2.24
respectively. According to Theorem 5.1 we have that H, depends on s, > 0. Let us denote = =
' x I" x RY and write &, = (Yn, V%, $n) € Z. We define ¥,, := ¢/, o H,, 0 ¢,,;, which depends on &, € =.

n
For components of ¥,,, we write ¥,, = (1 12 43) and 1, = (¢}, 4?2).
Note in the following the similarity with the equations we considered in the proof of Lemma 5.18. We

start considering the first order terms of ¥,,. We set

! ! A,
U/ o UpCyy  — EURA,
n —_y —y ’
QAap A1p

where |a},|? + ¢|ab,|? = 1 and u/, € S! for all n € N. We have

'l/an(O) :Ur/L t(un)‘n)\;w 0)7 (9.1)
Uy (0) =M, N, (U; (tncn + AnChs Anchn), AnA;). (9.2)

Since ¥3,,(0) — 1 we obtain
AN, — 1, (n — 00), (9.3)
which implies if we consider (9.1), since ¥,,,(0) — (1,0) as n — oo, that

upunay, — 1, (9.4)

ab,, — 0. (9.5)
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Because of aj, = (a},,, ah,,) € 2, from Definition 2.24 (i), we have
la),] — 1, (n — ). (9.6)

If we consider the first two components in (9.2) we obtain since 1,,,,(0) — (0,0), as n — oo, and by
(9.5) and (9.6) that

UnCn + AnCl, — 0, (9.7)

ey, — 0, (9.8)

if n — o0o. Next we consider the second order terms of V,,.

9.9
W (9.9)

2i(e =
wnZZ (0) = QUnA”)‘:lU:l < l(Cn + ’U,n)\ncln) ) 7

where the left-hand side of (9.9), ¥,.2(0), must converge to (0,2) as n — oo. After applying Uffl we

rewrite the second components of (9.9) as

=/ 1 0
22, =i (-0 g2 ), (9.10)

where the absolute value of the right-hand side of (9.10) according to (9.5) and (9.6) converges to 2
when n — oco. Taking the absolute value of the left-hand side of (9.10) implies that

An — 1, (n — c0), (9.11)
which together with (9.3) shows
A= 1, (n — o). (9.12)
Further inspection of (9.10) gives
u2
1n
Next we consider
i Ty (Yns Y
Grow(0) = SAN U o i _,) L, , (9.14)
2 4N, (cgn (cn + un)\ncln) - 1uncn)

where the real-analytic function T3 : I' x I — C does not depend on aj, € §2, and u),. The left-hand
side of (9.14) has to converge to (1£,0) and we rewrite the second component of (9.14) as

4An (Cl2n (én + un)‘nélln) - luicn) - (_@énw}ww (0) + u;la’/ln’(/}rglzw (0>) . (915)

= AT
Ap ALl
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Taking the limit, we know from (9.5), (9.6) and (9.11), (9.12), that the right-hand side of (9.15)
converges to 0 and if we also use (9.7) we obtain that

cn — 0, (n — 00), (9.16)
such that (9.7) implies
A — 0, (n — o). (9.17)
Next we compute
wiwzan::QAiAQQ(A(rn%fAir;)+i(cnén4fsAic%gbn/%fAnﬁﬁ(2uncn4—AncLJ>). (9.18)

We let n — oo and take all the previously obtained limits of the sequences ¢, = (c},,, ¢h,) € C?, ¢, and
An, AL, then we have since ¢2 ,(0) — 0, that

o 4+ A2l =0, (n — 00). (9.19)

Next we consider

(9.20)

A3 n T ny ,
wm®=%&m<’ﬁ+QWV0>

Asan + T3(Yns 1)
where To : I' X IV — C and T3 : I' x I — C are real-analytic functions and 75 is given by

/

To(ns i) = 2(uncn + M) (i len]? = rp — )\irn) + 21 MA@, (Uncn + Anchy) (2uncn, + Ancy,)
+ iE )‘31 (uncn(l + 2|012n‘2) + 2)‘nc§.n|cl2n|)’

such that T5(v,,7,) — 0 as n — co. Then the first component of (9.20) becomes

1 _
Xasn + Ty 1) = 557 (@in¥ohe (0) + € 0,0, 02,2(0) ). (9.21)

Since (¥},2(0),42 2(0)) — (|hsl, hds) € RY x C, if we let n — oo we obtain that a},/ul, — 1 and
$n — |hgs]- Then (9.4) shows u,, — 1 and (9.13) gives a},, — 1, hence u/, — 1.
Finally we consider
—4i 2/\3 T /
Urna2e(0) = )‘n)\InUrlz lun' nsn + Ta(VYnsVn) . (9.22)
—2euZ N, (2ry + A200) +icui N3y, + 1203 N2 cnsy + T5(Yn, 7h)
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where Ty : T' X IV — C and T5 : ' x I — C are real-analytic functions and T} is given by

T5(yn, 7)) = 2ieAn (4iénc’2n(5n + 2 An,,) + 200102 (560 + SunAnf, )

U2 N (k2 + 3e [eh, | + 4iehch,) )

hence T5(vn,7;,) — 0, if n — oo. If we consider the second component of (9.22) we obtain, since
(! 2,(0),92 5, (0) = (4i|hly],ih3,) € iR x iR, that 2r, + 7/, — 0 as n — oc. Hence by (9.19) we
get r, — 0 and ], — 0.

To sum up we obtain ¢,, — idcz and ¢!, — ides, as n — oo, which completes the proof. O

Proof of Theorem 9.9. First we observe that N is a continuous map from Autg(H2, 0) x Autg(H?,0) X Fo
to §2, since the image of IV consists of rational mappings, which depend real-analytically on the jets of
the isotropies and the mapping.

Next we show the freeness of N: For any H € Fo and ¢ € Autog(H?2,0), ¢’ € Auto(H2,0) we have to
show that if ¢ o H o ¢—! = H, this implies ¢ = id¢2 and ¢’ = idcs.

By Lemma 5.18 we obtain that N restricted to 915 is a free action. Next we assume the general case
H € F5 and consider the equation ¢/ o H o ¢! = H. We can write H = (;’S\’ oHo QAS’l, where H € No
and ¢ € Autg(H?,0), ¢ € Auto(H2,0) are unique according to Lemma 5.18. Then we have

-~ ~

poHop '=H — q{ﬁ\’_loqﬁlog/i)\'oHoa*lodfloa:H.
Since N acts freely on 9%y we obtain that ¢~! o ¢~1 o ¢ = idg> and &_1 o ¢ o @' = ides, which shows
the freeness of the action.
To show the properness of N we prove (ii) of Lemma 9.10 using Lemma 9.12. We let the mapping
N’ : Auto(HZ, 0) x Auto(H?,0) x Fo — F2 x F2 be given by N'(¢/,¢, H) := (H,N(¢',¢,H)). Then we
know from Proposition 4.1 that the image C of N’ agrees with §2 X F2, which is closed in Fa X Fo.
Next we let the mapping ¢n : Cy — Autg(H?,0) x Auto(H2,0) be given by oy (H,N(¢,¢', H)) =
(¢, ¢"). To show the continuity of ¢ we let (Hy,)nen € F2 be a sequence of mappings with

H, — H € §2, (9.23)
¢ oH,op,t - HeFs. (9.24)

Using Proposition 4.1 we assume w.l.o.g. H € My. Moreover we can write by Proposition 4.1 H =
@' o Ho¢ ! for HE My. Then we need to conclude that ¢, — ¢, ¢, — ¢ and H = H, which implies
the continuity of ¢ny.

For each n € N we write H,, = 5;1 Oﬁnog,: 1 where ﬁn € My. If we substitute the above representations
of H, and H into (9.24) we obtain

¢ toglod oHyod tog o — HeN,.
By Lemma 9.12 we have ¢! 0 ¢, © $n — idez and ¢/t o @l o (Z;L — idgs. Since H,, — H € My

Lemma 9.12 shows that ¢, — idc2 and qAS;L — ides, we obtain ¢, — ¢ and ¢}, — ¢ as required. O
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9.2 On the Real-Analytic Structure of &,

Let us recall the description of F given in Remark 9.6 (ii), for M2 we proceed similar.

Lemma 9.13. Let II : §o — Mo be given by II(H) = ¢’ o H o ¢~ L, where ¢ € Auto(H?2,0) and
@' € Auto(H2,0) are the unique isotropies according to Proposition J.1 and Lemma 5.18. For k = 2,3

we write
My, = {171 (G} ) : s > 0}

Then My, . is a real-analytic real submanifold of Fo of real dimension 16.

Proof of Lemma 9.13. For fixed k = 2,3,s > 0 and 6§ > 0 we write
Gss = {Gi,t :t € Bs(s)NRT}. (9.25)

To prove the lemma we show that for every so € RT and sufficiently small §y > 0 there exists a local
real-analytic parametrization for Ms, s, == II"*(Gs, s, )-

We abbreviate M = Mj, s, from now on. As noted in Remark 9.6 we identify F, with the set J, C CHo,
Theorem 5.1 implies that for each H € M there exist ¢ € Auto(H?2,0),¢’ € Autg(H2,0),k € {2,3}
and s1 € Bs,(s0) NR*, such that H = ¢' o G}, o ¢. This fact is used to describe M locally via
parametrizations as follows: For s > 0 sufficiently near sg let F; be a mapping as in Remark 9.11, which
depends real-analytically on s := |fd,|. For the remaining coefficients in J(Fy) we write = := f2, and
Y= Im( f221), where we suppress the dependence on s notationally.

We use the real version of the notation for the parametrization of Autg(H?,0) as in Definition 2.23 and
for Auto(H2,0) as in Definition 2.24. Here we denote the set of real parameters of Autg(H?,0) by T
and of Auto(H2,0) by I'. Let us denote = :=T x I x RT C RYo, where Ny := 16. For £ € Z we write
&= (v,7,s) and define the mapping

v

[1]

— Jo, U(¢) = J(d)fy, o Fso0¢,), (9.26)

where we use the notation as in (2.27) and (2.31) for ¢., and (blv' respectively and suppress the dependence
on e. We set ¥(z,w) = ((b/v’ o Fy0,)(z,w) with components U = (1,92, ¢%) and ¢ := (¢!, 1)?). The
holomorphic mapping ¥ is defined in a small neighborhood U € C? of 0 and satisfies W(H>NU) C H3.
By Theorem 5.1 and the real-analytic dependence of the isotropies on the standard parameters, we
note that ¥ and ¥ are real-analytic in ¢ € Z. We make the following assumptions and consider w.l.o.g.
that £y is chosen in such a way that ¢, = idcz2 and ¢fy, = idgs. Consequently we write O(2) for
terms involving standard parameters of the isotropies which vanish to second order at &. Moreover

since we only consider aj € C near 1 and o’ = (a},ay) € 82, from Definition 2.24, we substitute
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@) = (1 —e|ab|?)/a) into ¥, which is then given by the following expressions:

U2 (0) =(uu/ AN ay, udN'aj),

-« 1 1
V., (0) :(—iuu'/\/\'al (2(r 4+ X2r") —ie M%), ur?N (126)@’2 + 2uc/a’1> 21NNV e+ uAé’l)) +0(2),

N (/) + ahs), — 202N (r + A%')) +0(2),
Doz (0) = (—uu’ A3\ (4(1’1 (—iuds + (G + urd))) +ic uAagy),
uz)\z)\’<(—2(2r F %) 12 udes + i /\Qy) Jd, +4i )\2&’25)) +0(2).

In a first step we show that for given &y € = the Jacobian of ¥ with respect to £ evaluated at &y, denoted
by We(&o), is of full rank Ny. But instead of considering the real equations of ¥, we conjugate ¥ and

compute the Jacobian of the system
= (U, ) € C*Fo,

with respect to & = (u, \,c,r,u',a},al, N, c},ch, v, s;¢ ah, ¢, c) € CNo and evaluate at
(9.27)

50 = (17 1a 07 07 17 17 Oa 17 070707 503 07070a 0) € RNO7

denoted by ®¢(£p). We bring the transpose of ®¢(&p) into echelon form, where we denote the resulting
,(pgKO) € C?Ko 1 < j < Ny, such that rank(Cbg(go)) =

matrix by ¢ = (p!,...,oN0), each @I = ((p]i, e
rank(p). In the following we suppress the evaluation of ® at &, notationally and perform elementary

row operations. The matrix given by

() = (Bus By, Dy, By, B, B, By, By, D, By, B, )

- (Oa 07 0) q)uv (I)u707 (bua 07 q)c’17i5/2(1)5a O)a

is in row echelon form, with constant nonzero entries in the main diagonal. Each 0 in the last vector

above represents 0 € C2£0. Next we define

12 =P, + ‘I)u/3 — P, — (I)a’l/3 — i€/8‘I)r/ + 1050/3(1)3,

@
13 =®, —®,/3 - 2/3®y —2/3%,,

¥
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which are of the following form:

9012 = (07"'707(p%§7"'7<p%§<0)

—2(4x — 5spa’) 8isg 2i(3e—3y+5s0y’) 1 1, 19
:(Oa"'aoa 3 a2l‘€a 3 ) 3 7_§7¢17?"'902K0
2r — spx’ 8isg isgy’ 2
5013:(07...,07903,...,@%%(0): 0,...,0, ,0, — ,— ,—agoﬁ,...cpéio .
3 3 3 3
Then we define
pr=0 =0, 9Pi=0g, 9%i=,
and compute
e = —2(e15 + e2k,), ©'% = eqo, @' = =294 +icegs — 12€ sea,,

where for j € N we denote by e; the j-th unit vector in R2Ko_ We have to consider several cases. If
12 # 0, we consider ¢'? = 12 — 1312 /012 such that p13 is a multiple of —2x+sp2’. If $13 # 0, then
0 = (... 02 31 1 !5 ©16) is in echelon form. If $13 = 0, then # = Cs2, where C € C\ {0}
and we have ¢13 # 0, which again implies that ¢ = (!, ..., p!2, 3 11 !5 ') is in echelon form.

Next we treat ¢15 = 0. First we consider the trivial case. If z = 0, then since sg > 0, we have 2/ = 0 and
p=(h..., 0!
0. The solution is given by x = Csé/s, where C' € C\ {0} and o = (¢, ..., o', '3, p!2, o1 p1® p'6)

is in echelon form.

is in echelon form. Now we assume z # 0 which implies s, ' # 0 and we solve 12 =

We sum up that in all cases the Jacobian ®¢(&p) of the system ® evaluated at & is of full rank No,
hence we conclude that ¥ from (9.26) is a real-analytic locally regular mapping if we choose dy > 0
sufficiently small in M.

For ¥ to be a local parametrization of Js it remains to show that for each sufficiently small neighborhood
U C = C RN of &, there exists a neighborhood W C CKo of ¥(&y) = Fy,, such that ¥(U) = W N M.
We have

V() ={J(H): 3= (y,7,t) €U : H=¢l,0F 00},
and with the notation of (9.25) for 6 > 0 we have
M =T (Fs.,) ={H €F2:3(7,7,s) €T x I x Bs(so) "R : fb/y oHo qb;l = F,}.

By Remark 9.6 (ii) and since for each H € M we can write H = qS’;,l o Fy o ¢, we obtain ¥(U) C M.
We assume that there exists U C = a neighborhood of &, such that for any neighborhood W of
V(&) = F, we have U(U) # W N M. We choose open, connected neighborhoods (W, )nen of Fs, with
N, Wn = {Fs,} and ¥(U) # W,,n M for all n € N. There exists a sequence of mappings (Hy)nen € §2
such that H,, € W,,NM and H,, & V(U). We write H,, = qﬁ'% oFy, oqb;nl, and conclude by Lemma 9.12

that (Yn,7h, Sn) — & in Z. Thus eventually H,, € ¥(U) for large enough n € N, which completes the
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proof of the lemma. O

Definition 9.14. (i) For a manifold M and a Lie group G acting on M via (g, m) — g-m, we denote

by m: M — M/G the canonical projection given by m(m) =G -m :={g-m:g € G} for m € M.

(ii) Let a group G act on two sets X,Y: We call a map ¢ : X — Y equivariant with respect to G if
d(g-x) =g-¢(x) for all x € X and g € G.

(iii) For G a real-analytic Lie group acting on M a real-analytic manifold we say the action « :

G x M — M of G on M is real-analytic, if the map (g,m) — g-m is a real-analytic map between

real-analytic manifolds.

Remark 9.15. (i) By [BER97, Corollary 1.2] the groups Auto(H?,0) and Auto(H2, 0) are totally real,
closed, real-analytic submanifolds of G3(H?,0) C JZ(H?,0) and GZ(H2,0) C JZ(H2,0) respec-
tively, which correspond to the jet spaces of holomorphic mappings with nonvanishing Jacobian
determinant at 0. Hence G = Auto(H2, 0) x Auto(H?, 0) is a real-analytic real Lie group. Since the
pair (¢, ¢') € G depends real-analytically on I' x I'; we obtain for M being one of the real-analytic
submanifolds given in Lemma 9.13, that N : G x M — M is a real-analytic action.

(ii) We let a group G act on G x M via h- (g,m) == (h- g, m).

Definition 9.16. Let M be a real-analytic manifold and G a real-analytic Lie group acting real-
analytically on M. A real-analytic principal fibre bundle with structure group G is a triple (w, M, X),
where 7 : M — X is a real-analytic map, which satisfies the following property:
For every z € X there exists an open neighborhood U of x in X and a real-analytic diffeomorphism
¢: 7 Y (U) — G x U, such that

(i) ™= pry o¢ on 7~ 1(U), where pry; : G x U — U is the projection on the second factor.

(ii) ¢ is equivariant with respect to G.

We call M the total space, X the base space and ¢ is called a local trivialization of the bundle.

Theorem 9.17 (Local trivialization). Let M be a real-analytic manifold equipped with a real-analytic
action G x M — M, where G is a real-analytic Lie group. If the action is free and proper, then the
triple (m, M, M/Q) is a real-analytic principal fibre bundle with structure group G, i.e., M/G has a

unique real-analytic manifold structure, such that m: M — M/G is a real-analytic submersion.
Proof. See e.g. [vdB10, Theorem 13.5] for the smooth version of this theorem. O

The proof of the above Theorem 9.17 is based on the following result. We call a set V' C M G-invariant
ifg-VCVforall g €.

Lemma 9.18 (Local Slice-Theorem for free and proper actions). Let M be a real-analytic manifold
equipped with a free and proper real-analytic action G x M — M, where G is a real-analytic Lie group.
Then for each m € M there exists a real-analytic submanifold S C M with m € S such that (g,s) — g-s
is a real-analytic diffeomorphism from G x S onto an open G-invariant neighborhood U C M of m. A

submanifold as S above is called a slice for the action of G at m.

Proof. See e.g. [vdB10, Lemma 13.7] for the smooth version of this lemma. O
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Remark 9.19. For proper smooth actions of non-compact Lie groups the first proof of the local Slice-
Theorem was given in [Pal61, 2.2.2 Proposition|, where references treating compact Lie groups are
included. In the real-analytic setting a global Slice-Theorem was proved by [HHK96, section VI| and
[IK00, Theorem 0.6]. In both works the action is assumed to be proper. In [vdB10, sections 11-13] and
[Leel3, Theorem 21.10] smooth versions of Lemma 9.18 and Theorem 9.17 are treated. To obtain the

statements in the real-analytic category the proofs of [vdB10] need to be slightly modified.

Definition 9.20. Let X,Y be topological spaces and 7 : X — Y a surjective mapping. Then 7 is called
quotient map if it satisfies the following property: A set U C Y is open in Y if and only if 7=1(U) is
open in X. We call the topology on Y induced by 7 the quotient topology 7q on'Y, where aset U C Y
is open in Y if 771(U) is open in X.

Remark 9.21. We note the following well-known fact about the quotient topology 7g: Let m: X — Y
be as in Definition 9.20, then 7o is unique. More precisely, if 7 is a topology for Y such that = is a
quotient map, then we have 7o = 7. We also have that if f : X — Y is a surjective, continuous and

open or closed mapping then f is a quotient map.

Theorem 9.22 (Structure of Fa). We define G := Auto(H2,0) x Auto(H?,0).
(i) If e = 41 then 11 : F2 — F2 /G is a real-analytic principal fibre bundle with structure group G.
(ii) If e = —1 then locally F2 is mapped to G x Mg via locally real-analytic diffeomorphisms. In
particular o is not a smooth manifold.

(iii) The quotient topology Tg on Fa2 /G ~ Ny agrees with the topology Ty induced by the jet space.

Proof. To prove (i) we note that by Lemma 9.13 the set §2 is a real-analytic manifold and from
Theorem 9.17 the conclusion in (i) follows.

Next we show (ii): For k=1,2 we set
N = {G,;H’S 15> 0},

and Ng := Ny NNy = {G£1/2}' The corresponding preimages are denoted by My, = II71(N,) C Fa,
such that My :== M; N My = II71(Ny). We set M = M; U My. By Lemma 9.13 for k = 1,2 we have
that Mj is a real-analytic submanifold of §2, hence by Theorem 9.17 locally My is real-analytically
diffeomorphic to G x Sk, where Sy is a slice for the action of G according to Lemma 9.18 such that
dimg (Sk) = dimg(My) — dimg(G) = 1, by Lemma 9.13 and Remark 2.21. Since dimg(Ny) = 1 and it
is possible to uniquely normalize any element in the slice Sy by Proposition 4.1, we obtain that Sy can
be mapped to N via real-analytic diffeomorphisms. Hence locally we have that M, is real-analytically
diffeomorphic to G x Ny, for k =1, 2.

In order to prove (ii) we show that if we let Uy C §2 be a sufficiently small open neighborhood of Ny
there exists a real-analytic diffeomorphism ¢ : Uy — Vj such that ¢(UyN M) = (G x No) NVy, where Vj
is an open neighborhood of N} := {id} x Ny C G x M and id = (id¢2,idcs). By Lemma 9.18 for k = 1,2
there exists an open neighborhood Uy C F2 of Ny and a real-analytic diffeomorphism ¢y : Uy — Vi
such that ¢ (U N M) = (G x Ni) N Vy, where Vj, is an open neighborhood of Nj C G x M. Moreover
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ok (Ux N Ni) = ({id} x Ng) NV and ¢y, is equivariant with respect to G. We define

, e UyNnUy,
6:Un—s Vo, ola)=q OHh relni
(;52(33), JZEUoﬂUQ,
where Vo = V3 U V4 is an open neighborhood of Nj. We define U = UiNUsNUy C 2, an open
neighborhood of Ny. Then we have ¢’[7 =@ |[7, which implies that the mapping (;5!(7 is a real-analytic

diffeomorphism. Furthermore, since

image(¢1|g,,,) = (G x No) N V= image (2|5 p,);

where V is an open neighborhood of Nj C G x M, the mapping ¢ locally maps M real-analytically
diffeomorphic to G x Ny. Finally the last statement of (ii) follows from Theorem 9.17, since if F2 would
be a smooth manifold, then the quotient 915 needs to be a smooth manifold, which is not the case.

To prove (iii) we use Remark 9.21 and prove that II : o — 915 is a surjective, continuous and closed
mapping with respect to 7; to obtain 79 = 7;.

Surjectivity is clear from Proposition 4.1 and Theorem 5.1. To show continuity of IT with respect to 75
we either refer to Remark 4.11 and Theorem 4.12 or we proceed similar as in the proof of Lemma 9.13
and use Lemma 9.12. We let (H,,),en be a sequence of mappings in §3 and H € §o, such that H,, — H,
then we need to conclude that II(H,) — II(H). W.lLo.g. we assume H € Ny, hence II(H) = H by
Lemma 5.18. We have II(H,) = ¢, o Hy, o ¢, € Mo, where (¢, ¢n) € G are the isotropies according to
Proposition 4.1. Assume ¢/, o H, 0 ¢,, — He Mo, then by Lemma 9.12 we obtain ¢!, — idcs, ¢, — idcez
and since H,, — H we get H=H.

We are left by proving the closedness of IT with respect to 7;: Let C' C §2 be a closed subset. We need
to show that II(C) C My is a closed subset. To prove this statement we let H, € II(C) for n € N,
forming a sequence of mappings in Mg such that H, — Hy, where Hy € 5. To show the closedness
of TI(C) we need to conclude that Hy € TI(C). By Theorem 5.1 there exists N € N such that for all
n > N the mappings H, and H are of the same form. More precisely we can write H,, = Gi,sn and
Hy = Gi,SO for 59,5, € R* and we have s,, — s9. Next we consider the elements of the orbits I1~1(H,,)
in C. Let G,, € II"*(H, )N C for n € N be a sequence of maps with G,, — Go. By what we have shown
in (i) and (ii) of Theorem 9.22 we have G € II"*(Hy) C Fo. Since (G )nen is a convergent sequence
in the closed set C' we obtain Gy € C, which implies Hy = II(Gy) € TI(C). O

9.3 Basic Topological Properties of F,
Finally we show the following result concerning the connectedness of F> which follows from Theorem 5.1.

Theorem 9.23. The set Fy consists of % connected components.

Proof. We denote by ¢(X) the number of connected components of a topological space X and observe
that for ¢ = —1 we have ¢(N2) = 2 and for ¢ = +1 we have ¢(N3) = 3. We use the notation for
the parametrization of Auty(H?,0) as in Definition 2.23 and for Autg(H2,0) as in Definition 2.24. We
denote = :=T' x IV x R € RM, where Ny := 16 and for £ € = we write & = (7,7, s). The set = is
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connected, since for mappings in F» and € = —1 we only consider isotropies as in (2.31) with o = +1.
Since we consider 7; as the topology on F, and A5, which is induced by the topology of some C¥,
we have that connectedness is the same as path-connectedness. Clearly each isotropic orbit of a fixed
mapping is connected. Also any isotropic orbit Og(H) of a fixed mapping H € N> is closed, since if we
let (Gn)nen be a sequence in Og(H) and write G, = ¢, o H o ¢,. Then we obtain for G,, — F € Fy,
where F' = ¢ o Fo ¢ with Fe N5. Lemma 9.12 can be adapted, such that the conclusion F= H,ie.,
F € Og(H) holds for maps in Na.

First we show that C' := Op(G5) is a connected component of 7. We denote 7 =0C C F» and
N = No \{G5}. By Lemma 6.5 and Lemma 6.37 we have O(GS) = C, consisting of all maps in F
which are equivalent to G5. Assume there exists a continuous path p : [0,1] — F5 with p(0) € C and
p(1) € B, ie., p(1) is isotropically equivalent to a mapping of N». Thus there exists to € [0, 1] such that
p(t) € C for all t <ty and p(t) € j-'; for all ¢ > ty. Hence there exists a sequence (H,,)nen of mappings
in ]/-";, such that H, — p(to) € C. Again by Lemma 9.12, if we write H, € /\//\2 for the normalized
mapping associated to H,, this would imply that ﬁn — G5, which is not possible.

Next we want to show that if ¢ = +1 we have c(j—";) = 2. We observe that my : F» — N> is a continuous
and surjective mapping, hence we obtain c(j-";) > 2. Otherwise if 7-'; is assumed to be connected, then
o (j-"\g) = /\//\2 would be connected, which is not the case. For k = 2,3 we denote C}, := {G;S 1 s> 0}
and the corresponding preimage C’\k = Ty 1(Ck). By Lemma 5.3 and Lemma 6.39, the set 63 only
consists of mappings of degree 3. Thus we have 6'2 N 6'3 = () and hence by Theorem 6.8 a partition
.%\2 = 52 U 63 of connected sets, since this decomposition also holds if we consider translations, instead
of isotropies, as in Definition 6.3 by Lemma 6.39 and by the fact that C' is a connected component of
Fo. Since for k = 2, 3 the set ék is homeomorphic to =, defined at the beginning of the proof, we obtain
the connectedness of ék, which proves the theorem for ¢ = +1.

To prove the statement for € = —1 we need to show that j-'\g is connected. Let Hy, H; € ]/:; and for
k = 0,1 associate (i, 7V, Sk) € Z to Hy such that Hy is isotropically equivalent to Gy € ./\//; for
some f; = 2,3. Since //\72 is connected we can find a continuous path pg : [0,1] — Rsr connecting sg
and s;. Moreover we can find continuous paths (p,,p/) : [0,1]> — I' x I connecting (7,7)) and
(71,71)- The corresponding mapping P = ¢;’w/ 0G,, ,. 0 by, where p, = 2,3, describes a continuous

PespPs

path P:[0,1] — 7> which connects Hy and H;. O

We consider the equivalence relation induced by Definition 2.26 and Definition 6.3, i.e., we allow trans-
lations and normalize via isotropies twice. More precisely we say that F, G € F, are equivalent and
write ' ~ G if F is isotropically equivalent to some Fe N3 according to Definition 2.26 and where
Fis equivalent to Ge N3 according to Definition 6.3, where G is isotropically equivalent to G as in
Definition 2.26. We note that by Lemma 6.5 the equivalence relation ~ constitutes the most general
equivalence relation in our setting. Then we have the following result for the quotient topology of the

quotient space with respect to ~.

Theorem 9.24. Let ~ denote the equivalence relation given by Definition 2.26 and Definition 6.3
defined above. Then Fy [~ is discrete if e = +1 and is not discrete if e = —1.

Proof. We set X = Fy /. consisting of elements denoted by [F] for F' € F». We equip X with the
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quotient topology such that the canonical projection 7 : F; — X is continuous.

For ¢ = 41 we have X = {GT,G;O,G;O} by Theorem 6.8. For H € X we have 7 1(H) = O(H),
which we have shown in the proof of Theorem 9.23 is a connected component of F5, hence open. Thus
X carries the discrete topology.

To prove the statement if e = —1 we write Hy = G2_,1/2 € Ny and Hy == Gz, € Na. For k = 0,1 let
Ur € X be an open neighborhood of [Hy], then Vj := 7=1(Uy) is an open neighborhood of Hy in Fo.
According to Theorem 5.1 and Theorem 6.8 there exists a sequence (G, )nen of mappings in Fa, where
each G,, € [Hy] and G,, — Hy in F» as n — co. Thus there exists N € N such that G,, € Vo N'V; for
all n > N, which shows [H;| € Uy N U; and completes the proof. O
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Appendix A: Formula for Jet Parametrization

In Lemma 5.5 we have the following formulas: Denote ¥ = (f1, f2,9). We order the monomials by
degree and by assigning the weight 1 to z and the weight 2 to the variable x. The numerator of

f1(z,21zx) is the following expression:

22+ 6402 +1Co02> +4ic Bor2?x + 66 Bozy? + (25A2 + Aoy — 013)23)(
- 2(31A3 +3eBs+ As(Te —31321))z2x2 245 By
+ (6Ag +iAis+e(—1—2B% + Byy + C3) —iCy — 2132022)z3x2
- 2(5A§ +4ie By +4AsB1s + Ba(6 — 215321))22X3
+ (—A4 9499 Bs + Bio + 243Bo1 +ic(4A; + Bis — 4B12B1)
+ Ag(5+4e By — die By — 2B2, + Boo + 3C5) + 232013)z3x3
n 21(32(4,43 +ieByg) + Ay (—5Bs + By(5ic +Bgl)))22><4
n (2133 +2iA3Byy +i Ay (445 + Bys + Bia(—6ic —4Byy)) + 242(5e —2B, — i Byy)
+e(—By + 2B}, +4B3Bay) + Ba(—2i A1z — 61 Boy + (2 — Bas + 2C5) +21Cy) + 133022)23%1
— 2A2By2%x"
+ (4,43 +2A44Bs + A2 Bj + 3A3B12 + 5By By + 4ic B3Bis — ie BoBig — 2A43(Bs + Ba(ic +Ba))
— Ay (62 B2+ By — 2B2 + By(~8ic —4By;) + By(—4 + 8ic Bay + Bag + 2C3)) — Bgclg)zi%XS
—2iB, (A3B2 _ A2B3)z2X6
+ (—2€ B} + Ba(4i By + 2 By — 2i Ay Buy) — i A (24 By — 4B3 By + Ba(6ie By + Buy))
+2A%(—B2 +2iBs + Ba(e —21Bo1)) + B2(3e +iA13 — 3eCs — 104))z3x6
+ (Bg(—A4Bg +2A45(—ie By + Bs)) + 345B2B1s + Az (—2B5 + Ba(4ie By + By)
— B;(—?) + Cg)))z3x7

+2iAyB, (ngBz + A2B3)23x8
The numerator of fa(z,21zy) is equal to the following formula:

2622 + 24523 + 64527 + (—1 + 03)23)( +4e Byz?x? — (21A3 +6As(e +Bs) + 5812)z3x2
—4A5By X3 + (—4A§ —2ie B3 — AyBig + Bo(1 +4ie By — 303)>z3x3 —6e B3z%x*
+ (21B2(A3 +1ieBi2) + A2 (683 — 21 B3 + 4B2(s+iBgl))>z3X4 — 24,B22%\°

4B, (4A§ — 9A3B12 + Ba(—3 — 4ic Boy + 303))23)(5
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+ B2 (2 i Ay + 3¢ Bys + 245(c — By — 21321))z3><6 + B2 (2 i By + 345815 — Ba(—3 + 03))z3x7

—2i B% (Ang — A233)23X8
The numerator of g(z,21zy) is equal to the following formula:

Aic 2y + 121 Aozx? — 209923y + (41 —85321)2%42 £ 12ie Bozy® + 21(45A2 + Agy — 013) 2By2
+ 12(A3 —ie By + As(—ice _le))fx?’ 441 Ay Boot
+ 2(81,43 — Ay —ie(2 4+ 2B2, — Bas — 2C5) + Cy + 232022)23X3
- 4(21A§ —4eBs +4iAsBis + 32(31-1—26321))22)(4
+ 2(4,44 —2iAgBy — £ Bys — 2A43(c —i Bay) + 42 B1aBay + Ay (42 By, — 2i B
+i(—2 4 Bz +4C3)) + 2132013)23)(4
- 4(B2(4A3 +ieBya) + Ay(—5Bs + Bs(ic +Bgl)))22><5
+ 2(—2143312 — Ay(2A3 + Biz + Biao(—4ie —4By;)) + 242(—4i By + Bay)
—ie(By — 2(B}, + 2B3B21)) + B2 (2413 + 2Ba1 — ie(—2 + Bay) — 2C4) — B§C22)Z3X5
_ 21(_2,4432 — A9y B2 — 2A3Byy — 2By By — 4ie ByBis + i ByBig + 243(Bs + Bs(ic +Ba))
+ Ay(4e B2+ By — 2B% + Bs(—4ie —4By,) + Ba(—2 + Bay + 4C3)) + B%Clg>z3x6
+4B; (A?,Bz - 14233)32X7
- 2(A13B§ +2A2B5 + 2By By — 2A3By By — Ay(2A3Bs — AB3B1a + By Bi3)
+i2(2B2 — ByBy + 2B2Cy) — 3304)Z3X7

— 21(A4B§ — 21433233 + AQ(ZB?% - BQB4)>2,’3X8
The denominator of H is of the following form:

2e +6Asx +1Co02° + (2 + 4ingl>zx +6eBax? + (6€A2 + Aoy — 013)22X
- 6(1 Az +eBia+ As(e —iBgl)) X2+ 245Box® —ie O’y
n (12A§ YAy — 2iBay + (3 — 2B2, + Boy +3Cs) —iCy — 2i32022)z2x2
- 2(2,43 +4ie By + 445815 + By(3 — 2ingl)>zx3 + (6(—A22 4 Cra) + 2i As(i+ 2 Boy — ng))z3X2
+ (—A4 — 2A55By + 3By + 243891 +16(445 + Bys — 4B12B1)
4 Ay(—2 — 10ie Bay — 2B2, + Bas + 6C3) + 232013)z2x3

+ 21(32(4143 +ieBia) + Ao (—5B3 + Bs(ie +B21))>ZX4
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_ (—1 +2A2(8 —iBay) — 2B3, + By + Cs +1ie(A1s — Bar(—1 + Cs) — Cy)
+2A5(1As + Aza + € Byg — 013))23X3
. (_4133 —2iA3B1a — i A3 (445 + Bz + Bia(—13ic —4By))) + 443(3B; + 2i Byy)
+&(By — 2(B}, +2B3B21)) + B (21 A13 + 21 Boy + £(—8 + Bas) — 2iCy) — 133022>Z2X4
- (16A§ +242B15 +i(ic Ay + Bis — 3B1aBa1 — ic B1aCs + A3(3+ C3)) + Az (21 Ays + 31 Bay
— 1By Cs + £(2i By — 682, + 3Bas + 8C3) — 21 Oy + 2B2(6 + i Bay — 1022)))23)(4
+ (2A4B2 + Agy B +10A3Byy + 3By Byg +4ic ByByy — ie ByBis — 243(Bs + Ba(4ic +Bay))
— Ay(6¢ B2 + By — 2B2 + Bs(—16ic —4Bg;) + Ba(—10 + 2ic Byy + Bay + 6C)) — 33013) 20
—2iB, (A3B2 — AQBS)ZXG
. (2A§ — 2By — By + B2, + 2B3Byy + As(—ie Big + 245(—2i By + Byy)) + ByBay + 6B5Cs

+245(i By + B2(8e +1Ba1) — 2B3) + Boy +4C3) + Ax(—2A4 — 2A33By — 2B1o + e(—2B2Bio
+ 31313 — 101B12321) + B1203 + 232013) + 1€(B3(1 + Cg) + B2(B21(*5 + Cg)

- 32022)))Z3X5

+ (121A§B3 —2e B3 + By(41Bs + e By — 21 A3B13) — 1 A3 (1243By — 4B3 B + By(3ie Bia + Bi))
+ B2(3e(1— Cy) +idys — 104))22X6

+ (—iBgBlg —iByBi3 + A3(2ByB1a — 2 i By + 7iB1aBay) + A3(—2¢ By — 1 Ay By + By (4e By
+2i(=1+4C3))) +1A42(2413B2 + 21 B2 + By — (3B — 4(B2, + 2B3Bs1)) — BsCs + By (2 By
— Boi(=T+ C3) +i(2(Bas + 8Cs) + 21 C1))) + & By (Aga By + Bya(—4 + Cs) — 32013))z3x6

+ (—A4B§ +243By(~2ie By + By) + Ay (—2B% + By(4ic By + 34)))z2x7

+ (Ag (21 BoB3 + 2By — 3(B}, + 2B3Ba1)) — A2(244Bs + 6BoBis + 6ie B3Bia +ic Bo B3
+2i A3By(Bs + 31 Ba1) — ByB12C3) + Ba(By +ie(343By2 + Bs(—3 + C3))
—By(3—icAs+ O+ 1604))>z3x7

+ (— € AuB} + A (By(22 By — 51 A3B1o) + Ba (e Ba +1By(—5 + C3))) — i AsBa(~2ie By — 542 B,
+ Ba(—5+ C’g)))z3x8

2
+ 2(14332 — A2B3) 23X9
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Appendix B: Case A and B

In the proof of Lemma 5.9 the following diagrams occur:

A32 C B22
Ba =4 (e +43)

A33

A31 C Bl11
A =0

Cy = ;(mm —10B21 +1ig(12 — 7TB22) + 14ie Ax(A2e — Ch3) + 2A§(—22i+7C22)) [

A24
Cs = %(1+225A§+2i5B21)

A25 = B22
Cs=3+6¢(A3 +1Ba1)

A13
C3 =3(1+2¢(A3 +1Bn))

A26 = B25

By = A3

A27
Bz = :z(is(Azz — C13)(—12A43 + Ba) — A2 (4A13 + 56Bay + die(—4 + 8B3, —
322)74C4+Bz(78i+45321719022))+4A§(—4i—1(]i532+24532|79022))

’ AG2

Cis = Agp+3 & Ap(22—-27iCas)

A34 = B25

By, = A3

A35
Ca = A13+14Ba1 +ie(—4+8B3 — Baz) +3ic A2(Az2 —
Ci3) — 4B2Cos + A3(4i+10ie Ba — 24 Bay + 9C322)

A41 = B25

By = A3

A43
Azy = Ci3+i Az (—8Ba1+3e(2i+Ch2))

Bay = ﬁ(85+532>

A69 = B52
Bay = %(5 +A§)

A611 C A55

B, = A3

A612 = A62
By =0

&

Figure 9: Diagram for Case A
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a

B31

Ay =0

B22
Ba = %(1 +4ec A2 703)

~

& O

B32

Cs = 1+ 2A3A22 — Bay — 2A2C13 — 16(4413 —Cy + 2A§(*2i+022))

9

— £

2

B23

(25 26 AyAgy — € Bay — 26 AsChs +i(—Ars + 2By + Cy — 2A§ng))

B12
Bia = Az + 2ie AsBor + A2Cs

B11
Ay =0

2:4
B2 = 2

B13

3

(242(943 + 61 By +=(3 - C))

a

& @

B24 T _
Ay =0 \1146 =0
B25
Cs =3(1+2eA3+2icBa)
B36 T _
43 =0 @_0

B34 = B37
Bo = é(i +A§)

B26

%(€+6A§+2132')

B33

A =0

B35
B = 1(i(—4e+36A3 — 10 Ay Aoy +
5¢ Baa +10¢ A2C13) — 5(A1s — Ca + 243C22))

B37
Boy = %(6 +A§)

B41

Ay =0

B38

Ci= g(gomg +2(c Az + 14 Byy +8iB3 —i(d+
Ba2)) + 51 A2(A2 — Ci3) + A%(*4OBQ1 + E(2i+7C22)))

a

B43

Ay =0

B42

& Bz — 2 AxCis) + 2A3Ca

B44 C B37
By = %(E +A§)

%

B45

Ci3 = 6¢€ Az + Az2 +1(8A2B21 — 3¢ A2C22)

~

B53
Oy = 2ic A2

B52 C B37
Bay = 5(6 +A§)

Figure 10: Diagram for Case B
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Appendix C: Formulas for v, and v

In Lemma 5.9 we have the following formulas:

Y1 (z,w) :<2z (8 + 8Borw +4ie Coo2? +1ic Agpzw + (4+12ie By — ZLBS1 — ng)w2),
822 (2 —ie +31321)w> 2w (8 —Aie —2Bo1)w + die Conz? +ic Agzw
4 (24 6ic By — 4B2 — Bzg)wz))/
(16 — 8(ie —2Bg1)w + 8ie Copz? + 2ie Appzw + 2(2i€ By — AB2, — Baz)w®
— 4Chy2%w — Agyzw?® — (14Byy —i2(4 — 10B2, — BQQ))W”’)
Yoz, w) :(2(16z + 16Byy 2w + 4Ayw? + 812 Co2® + 2(ie Agy + Ag(81—62 Byy — 3Cs))2%w
— (AyAgy — 4(1 + 2ie By + BZ) +1A2(6Ba; + £ Cas)) 2w® + 2i Ag(e +242 + 1321)w3),
4<8z2 24202 4+ 8 Ap2® — A(ie —3Ba1)2*w + 245(2 + 3¢ A2 + die By )zw?
FiA2(e 4242 + 1321)w3) : 2w(16 — 8(ic —2By1 )w + 8ie Cap2® + 2(ic Agy + Ay(4i
— 62 By — 3Css)) 2w — <A2A22 +4Byy(ic —Bay) +1A3(6By; — £(4i —022)))w2))/
(32 —16(ie —2Ba1)w + 16ie Capz? + 4(ie Agy — 3A5(22 By + Ca)) 2w
_ 2(A2A22 +4(143ie By — B3) +1A3(6By — 5(121—022)))w2 — 8Ch2%w
- 2<A22 + A5 (101 By + (8 — 1022)))zw2 + (ie AyAgy — 12Bgy + 4ic(1 — 2BZ)
+ A2(12i—14¢ By — 022))w3)
s (z,w) :(42' —4e Ag2® + 2i(e 1By 2w + Agw?, 42% + w? Bo, 2w(2 — 26 Aoz — Bglw))/
(4 —de Agz — 2Byrw — 2i Apzw — (1 4+ 2 A2 + 2i€le)w2>
ba(z,w) :(z (256 L 96icw + 1281 Ogp2? — (5 — 32ie BQCQQ)UP),
4(64z2 £ 16Bow? + die 22w + ieng3),
w(256 —32icw + 1281 Cyp2® + (3 + 321532022)102))/
(256 —32icw 4 128ie Caoz? — (13 — 32ie ByCao)w? — 64Ca022w — (ic —1632022)11;3)
s (2, w) :(256z £ 961e 2w + 6440w + 1281 Cppz® + 641 Apz2w — (5 — 48 A2 + 81 Ch) 2
+4ie Asw?,2562% — 16 w? + 256 & As2® + 16ie 2%w — 16Az2w? — w3,
w(256 _32icw + 1281 Opoz? — 64i Apzw + (3 — 162 A2 — 81022)w2))/
(256 —32icw + 1281 Oppz? — 1921 Apzw — (13 + 14d e A2 + 81 Coz)w? — 64Ca222w

+ 8¢ Ag(—1+ 8iC9)zw? — &(i —|—4022)w3>
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We have QZk =y, for k = 3,4,5.

o~

D1 (2,w) :(2z<85+85B21w 441 Chp2? — 2i(Agg — Chs)zw + (e —iAys + 26 B2, — € By — £ C3
+i C’4)w2) 422 (45 (1 - Cg)w) 2w (85 —4(i—2¢ Boy)w + 41 Cyp2?
— 2i(Agy — Cha)zw — (1 Ayg — 26 B — (2 — Byy — 2C3) — iC’4)w2))/
(165 —8(i—2e By )w + 81 Cap2? — 4i(Agy — Cha)zw — 2(i Ayg — 2i Byy — 22 B,
—£(3 = By — 3C3) —iCy)w® — de Cao2®w + 2e(Agg — Cr3)zw” + (e A1z + 21 B3,
4 eBor(1—Cs) +i(1 — Bag — Cy + 1504))11)3)

zZQ(Z,w) :(3212 + 321 Byjzw + 81 Asw? — 16 Cog2® + 8(5(A22 Ch3) + A2(2 — 31C22))z w

+2(c A1z +2eBa1 +41B3 —iBoy — £ Cy + 41 Ay(Ay — Ci3) + 62 A3C0) 2w
+ As(1A13+6iBay + By —1Cy — 2 Ax(Azy — Ci3) + A3(4+ 21 Co))w
32i2% + 8iAJw” + 32ie Agz® — 4(i(A13 — 2Ba1 — ie Boy — Cy) — 2 Ax(Agg — Ch3)
+2A43(6 4 1C22)) 2°w — 445 (i Bas — (A1 + 2Boy — Cy) — 21 Ay(Ass — C13)

+2e A2(31 —Coy )zw + A2(i Ay3 4+ 61Boj + & Boy —1Cy — 2¢ Ay(Agp — C13)

)

)

FA2(4 4 21022))w3,4w(81+4(€ 421 Byy)w — 4 Cp2® + 2(2(Ags — Cis)
+ Ag(4— 3iCh)) 2w + (2(e +1Ba1)Bay +1 Ag(Agy — Cig) + 2¢ A2 (21+C’22))w2>)/
(32i+16(5 +21 Bog)w — 16 Cap2? + 8((Ags — Cha) + Az (6 — 3iCha)) 2w
+ 2(41331 +iByy — £(Ays — 2By — Cy — 2A§(61+022)))w2 — 81Cyp22w

4(1(,422 — Cis) + Ag(2Bay + ¢(2i +022))) 2w? (2 i Boy + Avs(i— e Ba)
+1Bgy Bay —1Cy — £(2B3, — Bag — B21Cy) — 2i Ay Bay(Agz — Ci3)
+2A42(6 —iCyy + £ By (2i —022)))w3)
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Appendix D: Standard Parameters

In the proof of Lemma 6.33 and Remark 6.40 we compute the following standard parameters:
Here we display the standard parameters for Cvf First we define the following expression, which is the

square root of (6.13):

. 1+6er34+v3+rd
B = 14+2er? +0v2 +rd’
o T vy t+T1g

. (5+ivo+r3)(clu1(fl7v3+2r8(2571v0)+r§)72157“0)\1)

1 A(e—ivg+7r3)(1+6e73 + v +1d)

2irg(e +ivg + r3)(2c1ur(4di+evg) — eroA1)
Ai(e —ivo +75)(1+6erg + vf +15)

)\/1 = (/\1R1)_1

, (1402 —2ird(vo — 2ie) — 1) ;o 4ro(1+iewvy)
uu) Ry (e +ivg + )2

al, = al, =
11 - ) 21
uru) Ry (e +1ivg + 1rd)?

iroA(derd + (ie+vo)? +1g)

c1 =
P ui(—et+ivg +r3)(1+6erd + v +rd)
uh = Ry(1+icv —erg)(e —ivg +r5)? wy = (e —ivg +1r3) 1+2erd +vd+r§
VT (e —ivg +12)2(1 + 6672 + 03 +1d)’ (—edivo+73)" \| 1=2er§ 4+ v +75
\ o 1647+ ug+ 24rge
L= 7 7 a2

416 + rf +vf — 8r2e
;=4 (14 208 — 2rg + vy + 2rgug +75)
"= 2 2 3

(1+6ers +vs+15)

. —vo (1= 03)% +8er2(1+v0)2 + 274 (7 +v2) + 827§ +15)
1= =

4(1—2er3+ v +18)?

We give the standard parameters for 52_ in the following paragraphs. First we introduce the following

expression, which is the square root of (6.14), to simplify formulas:

. . 1/2
R 1+\/§T0(€7100 +6100)
2 (1 + V2rge=1%)(1 + v/2rpeifo) ’

also we introduce the following expression:

1+ \/5((3_“90 +€l9)rg + 2r2)2(2(e= 1% 4 elb0)ry + \/5(1 +212))?
(1 + ﬂr067i90)4(1 + \/561907“0)4(1 + \/5(6490 + €i90)r0)2 .

SQ =
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;o (ewO + \/ﬁro)(*CQUQ(l +3r3 + 2621007"8 + 2\@6“901"0(1 +713) —ivg) + ieieoro(l + \/561007"0)/\2)

C = . . .
2 (1+ v2ei%rg)(elf% + /2rg 4 v/2€210%1rg) A,

oo (€% + v/2r0)(caua(—ro(3rg + 2€2 19071y + 2¢/2e1%0 (1 4+ 12)) +ivg) +iel?rg(1 4+ v/2ei%rp) o)
2 (14 V2ei7) (€l + v/2rg + v/2e210070) Ay

Ny = (AaRy) ™!
1+3r¢ + 26_21007“8 + 2\/§e_i90r0(1 +73) +ivg

!
al, = :
12 uguy Ro (1 + V2e~160p)2
d e 3r§+26721907’8+2\/§67i9°r0(1+r8)+iv0
22 UQU/QRQ(l + \/56_1007‘0)2
o el 90(\/§r0 +V2e 2100y, 4 e~ 190 (14 2r2))(2r¢ + 27 21%py 4 \/Ee_ieo(l +212))
? (14 V2e=100rg)4(e=100 + \/2rg + v/2e=21%01)Sou3
255(1 + \/57"067100)4(1 + \/561007‘0)4(1 + v 2rge 100 1 \/56“907’0)
Ug = - - - -
2 (14 V2rge=100 4 /21001 + 2r2)(v/2 + 2rge— 100 + 2¢iforg + 2r2)3
Ao = \/552(1 + \/57“06_190)4(1 + \/561907“0)4(1 + \/§T06_i00 + \/ﬁei90r0)2

(14 v2rge= 100 4 /2eib0rg + 2r2)2(\/2 + 2rge— 100 4 2eifory + 272)2

The remaining parameters co,ro and r} are set to 0.
We give the standard parameters for 53_ in the following paragraphs. Before we define an expression,

which is the square root of (6.15), to simplify the subsequent formulas.

[—1+ 02+
R3:: 5 04 0
vy + 1o

e cauz (v +rg) o (r2 +ivo)(cgus(vg —ird) — roA3)
13 As(=1+ g +75)’ “ As(rg —ivo) (=1 +v§ +75)

N, = (AgRg)_l

i(?"2 — i’Uo)
o= 1 /R - 0
o 1= Vi ) T ug Ry v
iAg —1+v2+7rd
@ = 2usrg’ As 1= 27’(; )
;i —iwo) _ A= v —2ivr3 +18)
U3 = —5, 5 = 5 us =

u3(rg +1ivo)?’ VI =02 251+ d) + 1

The remaining parameters r3 and 74 are set to 0.

For the last mapping QNZ we obtain the following standard parameters:

14r4 8
Ry =13 e Ao *erg T0+iro
1+3er
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, degrdu(=1+rie) —8irfe , caug(—1+ 3r§ + 1drde) — 8irge Ay
Cly = ) Coq = 4 8
V3(14rd + e 41§ £)\y

(1478 + e +r§ e)\a
—1
/\21 = </\4R4)

—12r§(=1+rge) 1—3r§ —14rge

r A
e - uguy Ra(1 + 3rge)?’ 24 * uquy Ry(1 + 3ri e)?
ir3(—=7 — 267§ + 96 — 3615 e +60ri2 e) Ay
Cyq =

T ug (<1978 = 3882 + 920 — (1 4 T4rE — 123r86) ¢)

v (13 S A , sen(ry —¢)
= T Uy =
* 11+ 1derd+48 ' Y udsgn(1 5+ 14rde)

1—¢\ (sen(—1—33rs + 33r§ +ri?) 1+¢ 4 12 . 16
= —1+34r; — 34
e ( 2 ) ( sgn(l — 1474 + r8) (T ) sen(= L 3drg = 3drg” 4 77)

The remaining parameters r4 and 7} are taken to be 0.
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