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Abstract

We investigate a specific aspect of a classical problem in the theory of holomorphic mappings between
real submanifolds in complex spaces. Poincaré observed that it is in some sense unlikely for two arbitrary
given real-analytic real submanifolds to find a holomorphic mapping which sends one into the other.
An interesting class studied in this direction is the class of Levi-nondegenerate submanifolds, which was
considered in the pioneering works of Cartan, Tanaka and Chern–Moser. Here the simplest examples
are Levi-nondegenerate hyperquadrics, which serve as models for Levi-nondegenerate hypersurfaces.
After Pinčuk’s and Alexander’s work dealing with the equidimensional case, Webster’s rigidity result
constitutes the first step in the study of immersions of spheres contained in complex spaces of different
dimensions. More precisely, Webster considered holomorphic maps from the sphere in Cn to the sphere
in Cn+1 for n ≥ 3, and showed that all holomorphic mappings are equivalent to the linear embedding
with respect to the groups of automorphisms of the spheres. For n = 2 this rigidity fails and Faran
proved that there are four classes of holomorphic mappings from the sphere in C2 to the sphere in C3

modulo equivalence. More recently, Lebl considered holomorphic mappings from the sphere in C2 to the
hyperquadric of signature (2, 1) in C3. In this case there are seven classes of holomorphic mappings up
to the biholomorphic equivalence mentioned before. With Lebl’s results the missing case of mappings
of Levi-nondegenerate hyperquadrics in dimension two and three was established.
The present work consists of two parts. In the first part we give a new proof of Faran’s and Lebl’s
results by means of a new CR-geometric approach and classify all holomorphic mappings from the
sphere in C2 to Levi-nondegenerate hyperquadrics in C3. We use the tools developed by Lamel, which
allow us to isolate and study the most interesting class of holomorphic mappings. This family of so-
called nondegenerate and transversal maps we denote by F . For F we introduce a subclass N of maps
which are normalized with respect to the group G of automorphisms fixing a given point. With the
techniques introduced by Baouendi–Ebenfelt–Rothschild and Lamel we deduce a classification of N .
This intermediate result is of twofold importance: On the one hand, if we consider the transitive part
of the automorphism group of the hyperquadrics, we obtain a complete classification of F to show
Faran’s and Lebl’s results. On the other hand our classification of N allows us to prove new topological
results for F , which yield the second part of our work. We demonstrate that from a topological point
of view there is a major difference between the class of mappings of the spheres and mappings of the
sphere in C2 to the hyperquadric with signature (2, 1) in C3. In the first case F modulo the groups of
automorphisms is discrete in contrast to the second case where this property fails to hold. Furthermore
we study some basic properties such as freeness and properness of the action of G on F . Finally we
obtain a structural result for a particularly interesting subset of F using the real-analytic version of the
local slice theorem for free and proper actions.
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Zusammenfassung

In dieser Arbeit untersuchen wir einen Aspekt eines klassischen Problems in der Theorie holomor-
pher Abbildungen zwischen reellen Teilmannigfaltigkeiten in komplexen Räumen. Poincaré bemerkte,
dass es in einem gewissen Sinne unwahrscheinlich ist, für zwei beliebig gegebene reell-analytische reelle
Teilmannigfaltigkeiten eine holomorphe Abbildung zu finden, welche die eine in die andere überführt.
Unter diesem Gesichtspunkt wurde vor allem eine interessante Klasse, nämlich Levi-nichtdegenierte
Teilmannigfaltigkeiten, von Cartan, Tanaka und Chern–Moser studiert. Als einfache Beispiele treten
hierbei Levi-nichtdegenerierte Hyperquadriken auf, die als Modelle für Levi-nichtdegenerierte Hyper-
flächen dienen. Nachdem Pinčuk und Alexander den equidimensionalen Fall behandelt hatten, gelang es
Webster mit seinem Rigiditätssatz Immersionen von Sphären in komplexen Räumen unterschiedlicher
Dimension zu beschreiben. Webster betrachtete holomorphe Abbildungen zwischen der Sphäre in Cn

und der Sphäre in Cn+1 für n ≥ 3 und konnte zeigen, dass alle holomorphen Abbildungen äquivalent
zur linearen Einbettung sind bezüglich der Gruppen der Automorphismen der Sphären. Für n = 2

gibt es keine solche Rigidität, denn Faran konnte zeigen, dass es vier Klassen von holomorphen Ab-
bildungen von der Sphäre in C2 und der Sphäre in C3, modulo Äquivalenz, gibt. Kürzlich studierte
Lebl holomorphe Abbildungen von der Sphäre in C2 und der Hyperquadrik mit Signatur (2, 1) in C3.
Er bewies, dass es sieben Klassen von holomorphen Abbildungen bezüglich der vorher beschriebenen
biholomorphen Äquivalenz gibt. Dieses Resultat von Lebl vollendete die Klassifizierung holomorpher
Abbildungen zwischen Levi-nichtdegenerierten Hyperquadriken in den Dimensionen zwei und drei.
Die vorliegende Arbeit besteht aus zwei Teilen. Im ersten Teil wird ein ein neuer Beweis von Faran’s und
Lebl’s Resultat mittels eines neuen CR-geometrischen Zugangs gegeben. Wir klassifizieren alle holomor-
phen Abbildungen von der Sphäre in C2 und Levi-nichtdegenerierten Hyperquadriken in C3. Dazu wer-
den Resultate von Lamel verwendet, die es uns erlauben unsere Untersuchungen auf eine spezielle Klasse
von holomorphen Abbildungen einzuschränken. Diese Familie von sogenannten nichtdegenerierten und
transversalen Abbildungen werden wir mit F bezeichnen. Für F geben wir eine Unterklasse N von Ab-
bildungen an, die, bezüglich der Gruppe G von Automorphismen welche einen gegebenen Punkt fixieren,
normalisiert sind. Vermöge der Techniken von Baouendi–Ebenfelt–Rothschild und Lamel erhalten wir
eine Klassifikation von N , welche von doppelter Bedeutung ist. Einerseits erhalten wir eine vollständige
Klassifizierung von F und reproduzieren die Resultate von Faran und Lebl, wenn wir den transitiven
Teil der Automorphismen der Hyperquadriken verwenden. Andererseits erlaubt es unsere Klassifikation
von N neue topologische Resultate für F im zweiten Teil der Arbeit zu beweisen. Wir zeigen, dass es
von einem topologischen Standpunkt aus gesehen einen bedeutenden Unterschied zwischen der Klasse
der Abbildungen der Sphären und der Abbildungen zwischen der Sphäre in C2 und der Hyperquadrik
mit Signatur (2, 1) gibt. Im ersten Fall ist F modulo der Gruppen der Automorphismen diskret, im
Gegensatz zum zweiten Fall. Weiters studieren wir Eigenschaften wie Freiheit und Eigentlichkeit der
Aktion von G auf F . Schließlich erhalten wir ein strukturelles Resultat für eine interessante Teilmenge
von F , bei dem wir eine reell-analytische Version des lokalen Slice-Theorems für freie und eigentliche
Aktionen verwenden.
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1 Introduction and Results

Poincaré [Poi07] asked whether for two given real-analytic real hypersurfaces in C2 one can find holo-
morphic mappings sending one into the other. He also gave an intuitive answer, originally for biholo-
morphisms, that for two given arbitrary real-analytic hypersurfaces in general it is in some sense unlikely
to find holomorphic mappings sending locally one hypersurface into the other. We also note that for
real-analytic mappings of real-analytic hypersurfaces Poincaré’s question is trivial by the real-analytic
Implicit Function Theorem.
Considerable work was done classifying Levi-nondegenerate hypersurfaces of CN , N ≥ 2 up to biholo-
morphisms: In C2, this “biholomorphic equivalence problem” was solved by Cartan [Car33, Car32] and
for N ≥ 2 by Tanaka [Tan62] and Chern–Moser [CM74].
In the class of strictly pseudoconvex hypersurfaces Poincaré’s question is answered by this classification
of Levi-nondegenerate hypersurfaces and results by Pinčuk [Pin74] and Alexander [Ale74, Ale77]. They
proved that any holomorphic self-mapping of a strictly pseudoconvex hypersurface in CN is necessar-
ily an automorphism. This implies that a holomorphic mapping of two biholomorphically equivalent
strictly pseudoconvex hypersurfaces M1,M2 ∈ CN is given by the composition of the biholomorphism
sending M1 to M2 and an automorphism of M2. Hence we note that the class of holomorphic mappings
between two arbitrary given strictly pseudoconvex hypersurfaces is small in some sense.
For N ′ > N and a mapping H : CN → CN ′ we refer to the number N ′ − N as codimension. If we
consider holomorphic mappings in high codimension the situation changes drastically. Here models
of Levi-nondegenerate hypersurfaces, i.e., hyperquadrics received reasonable attention. For k ∈ N we
denote the hyperquadric SNk of signature (k,N − k) in CN by

SNk :=
{

(z1, . . . , zN ) ∈ CN : |z1|2 + . . .+ |zk|2 − |zk+1|2 − . . .− |zN |2 = 1
}
, (1.1)

and write SN := SNN for the sphere in CN . Studying holomorphic mappings of hyperquadrics it is
natural to introduce the following equivalence relation, see [Far82, §2] and [Leb11a, sections 3.4-3.5]:
We consider the homogeneous model ŜNk of SNk given by

ŜNk :=
{

(z1, . . . , zN , t) ∈ CN+1 : |z1|2 + . . .+ |zk|2 − |zk+1|2 − . . .− |zN |2 − |t|2 = 0
}
. (1.2)

Let us denote by SU(N − k, k + 1) the special unitary group with respect to the Hermitian form in
CN+1 with signature (N − k, k+ 1) induced by the quadratic form which occurs in (1.2). The group of
automorphisms of ŜNk is SU(N − k, k + 1)/K, where K is the subgroup of SU(N − k, k + 1) consisting
of diagonal matrices with all entries being equal to ζ a (N + 1)-root of unity, see e.g. [BER00, §2].
Let V ⊂ CN be an open neighborhood of p ∈ SNk . Any holomorphic mapping H : V → CN ′ which
satisfies H(V ∩ SNk ) ⊂ SN ′k′ can be identified with a CR-mapping Ĥ : V̂ ⊂ CN+1 → CN ′+1 for some
open neighborhood V̂ of p̂ ∈ ŜNk satisfying Ĥ(V̂ ∩ ŜNk ) ⊂ ŜN ′k′ . We say that two holomorphic mappings
H1, H2, which both satisfy Hm : CN ⊃ Vm → CN ′ , where Vm is a neighborhood of pm ∈ SNk , such that
Hm(Vm ∩ SNk ) ⊂ SN ′k′ for m = 1, 2, are equivalent if there exist matrices U ∈ SU(N − k, k + 1) and
U ′ ∈ SU(N ′ − k′, k′ + 1) such that Ĥ2 = U ′ ◦ Ĥ1 ◦ U . We give other ways of defining the equivalence
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relation for holomorphic mappings of hyperquadrics in Definition 2.26, Definition 2.27 and Definition 6.3
below.
If N ′ ≥ 2N D’Angelo [D’A88] shows that there are infinitely many quadratic mappings from SN to
SN ′ which are not equivalent. In small codimensions the family of holomorphic mappings is less richer.
Webster [Web79] proved that for holomorphic mappings between the spheres in CN and CN+1, where
N ≥ 3, there is only one equivalence class, namely the one containing the linear embedding. Faran
[Far86] and Huang [Hua99] extended this result to holomorphic mappings of SN to SN ′ with N ≥ 3

and N ′ ≤ 2N − 2. The case of mappings from SN to S2N−1 for N ≥ 3 is covered by Huang–Ji [HJ01],
where they show that there exist two classes of mappings which are not equivalent.
We would like to point out the study of Poincaré’s question in CN and CN ′ if N ′ < N is trivial for
non-constant mappings of spheres, since there are none. This can be seen as in [Leb11a, Proposition
3.1.4]: if we let N,N ′ ∈ N be arbitrary, p ∈ SN and U ⊂ CN be an open and connected neighborhood
of p such that a holomorphic mapping H : U → CN ′ satisfies H(U ∩ SN ) ⊂ SN ′ and p′ = H(p). Let
BN := {(z1, . . . , zN ) ∈ CN : |z1|2 + . . . + |zN |2 < 1} denote the ball in CN , which possesses SN as its
boundary. Then H considered as a mapping H : U ∩ BN → V ∩ BN ′ for a sufficiently small open and
connected neighborhood V ⊂ CN ′ of p′ is a proper mapping, see [D’A93, Chapter 1, Lemma 1], which
implies that H−1(q′) is a compact subset of BN for q′ ∈ V ∩BN ′ . The Rank Theorem, see e.g. [Rud76,
Theorem 9.32], yields that H−1(q′) is a complex variety at least of dimension N ′ −N > 0.
The situation differs again if we consider holomorphic mappings between hyperquadrics with signature
(`,N − `) and (`′, N ′ − `′) with 3 ≤ N ′ < N and 0 < N ′ − `′ < `′. For this purpose we write
z = (z1, . . . , zN ) ∈ CN and let F : CN → CN ′ be the holomorphic mapping given by

z 7→
(
h1(z), . . . , hN ′−`′(z), 0, . . . , 0, 1, h1(z), . . . , hN ′−`′(z)

)
,

for some holomorphic functions hj , j = 1, . . . , N ′ − `′. Note that the constant 1 in the definition of F
occurs in the `′-th component. Then F sends SN` to SN ′`′ . A similar construction works for the case
0 < N ′ − `′ = `′ to obtain non-constant holomorphic mappings from SN` to SN ′`′ .
Moreover there are no holomorphic mappings from SN` with N−` > 0 to SN ′ , since there are no complex
varieties contained in SN ′ .
In order to discuss the case of holomorphic mappings between hyperquadrics in C2 and C3 in a more
detailed exposition we introduce the hypersurface S3

ε, which for ε = ±1 is given by

S3
± :=

{
(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 ± |z3|2 = 1

}
,

so that S3 = S3
+. In fact, S2 and S3

ε are the only Levi-nondegenerate hyperquadrics in C2 and C3,
respectively, since every Levi-nondegenerate hyperquadric can be mapped biholomorphically to one of
these hypersurfaces as is well known, see e.g. the argument given in Remark 2.8 below.
Before we discuss the most interesting case of holomorphic mappings of S2 to S3

ε we briefly discuss the
cases of mappings from S3

− to S3
− and S3

− to S2. In the first case we refer to [BH05, Theorem 1.6], which
says that under equivalence the only holomorphic mappings in this case are linear embeddings or the
mapping is of the form z 7→ (1, h(z), h(z)), for z ∈ S3

− and some holomorphic function h. In the second
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case, where we map S3
− to S2, there are no non-constant holomorphic mappings, as we argued above or

we can verify directly from the mapping equation.
Faran [Far82] classified holomorphic mappings between balls in C2 and C3 with certain boundary
regularity. Below we formulate the Main Theorem of [Far82] in terms of mappings between spheres
disregarding regularity issues.

Theorem 1.1 (Faran [Far82]). Let p ∈ S2, U ⊂ C2 be an open and connected neighborhood of p and
F : U → C3 a non-constant holomorphic mapping satisfying F (U ∩ S2) ⊂ S3. Then F is equivalent to
exactly one of the following maps:
(i) F1(z, w) = (z, w, 0)

(ii) F2(z, w) = (z, zw,w2)

(iii) F3(z, w) = (z2,
√

2zw,w2)

(iv) F4(z, w) = (z3,
√

3zw,w3)

Faran’s proof consists of giving a characterization of so-called planar maps from C2 to C3 which send
complex lines to complex planes and uses Cartan’s method of moving frames.
Cima–Suffridge [CS89] approached Faran’s Theorem via a reflection principle deduced in [CS83] by the
same authors, which contains some inconsistencies when using certain degeneracy conditions. More
recently Ji [Ji10] gave a new proof of Faran’s Theorem based on Huang’s study [Hua99] of the Chern–
Moser operator and several preceding articles [HJ01, Hua03, HJX06, CJX06]. In [Ji10] a small fixable
mistake in the case distinction leads to the wrong mapping at the very end of the article.
Lebl [Leb11b] classified mappings sending S2 to S3

−, using a classification result for quadratic maps and
Faran’s approach:

Theorem 1.2 (Lebl [Leb11b]). Let p ∈ S2, U ⊂ C2 be an open and connected neighborhood of p and
L : U → C3 a non-constant holomorphic mapping satisfying L(U ∩ S2) ⊂ S3

−. Then L is equivalent to
exactly one of the following maps:
(i) L1(z, w) = (z, w, 0)

(ii) L2(z, w) =
(
z2,
√

2w,w2
)

(iii) L3(z, w) =
(

1
z ,

w2

z2 ,
w
z2

)

(iv) L4(z, w) =
(z2+

√
3zw+w2−z,w2+z−

√
3w−1,z2−

√
3zw+w2−z)

w2+z+
√

3w−1

(v) L5(z, w) =
( 4√2(zw−i z),w2−

√
2 iw+1, 4√2(zw+i z))

w2+
√

2 iw+1

(vi) L6(z, w) =
(2w3,z(z2+3),

√
3w(z2−1))

3z2+1

(vii) L7(z, w) =
(
1, `(z, w), `(z, w)

)
, for an arbitrary holomorphic function ` : C2 → C

Let us now state our results and outline some intermediate steps in our work. The first and main part
of this work is to provide a new proof of Theorem 1.1 and Theorem 1.2. The following Theorem is
based on a very different approach than the one of Faran or Lebl and is independent of their proofs.

Theorem 1.3 (Main Theorem). Let p ∈ S2, U ⊂ C2 be an open and connected neighborhood of p and
H : U → C3 a non-constant holomorphic mapping satisfying H(U ∩ S2) ⊂ S3

ε. Then H is equivalent to
exactly one of the following maps:

3



(i) Hε
1(z, w) = (z, w, 0)

(ii) Hε
2(z, w) =

(
z2, (1−ε+z(1+ε))w√

2
, w2

)

(iii) Hε
3(z, w) =

(
z, (1−ε+z2(1+ε))w

2z , (1−ε+z(1+ε))w2

2z

)

(iv) Hε
4(z, w) =

(4z3,(3(1−ε)+(1+3 ε)w2)w,
√

3(1−ε+2(1+ε)w+(1−ε)w2)z)
1+3 ε+3(1−ε)w2

Additionally for ε = −1 we have:
(v) H5(z, w) =

(
(2+
√

2z)z

1+
√

2z+w
, w, (1+

√
2z−w)z

1+
√

2z+w

)

(vi) H6(z, w) =
((1−w)z,1+w−w2,(1+w)z)

1−w−w2

(vii) H7(z, w) =
(
1, h(z, w), h(z, w)

)
for some non-constant holomorphic function h : C2 → C

Further, H−3 is equivalent to L3, H−4 to L6, H5 to L4 and H6 to L5.

Before we give some more details and results for the proof of Theorem 1.3 let us mention some features
of our approach. One advantage of our chosen method is, that we prove Faran’s and Lebl’s result in a
unified manner, i.e., we treat mapping from S2 → S3 and S2 → S3

− in the same way and use the same
techniques for both situations.
Another aspect of our proof is to be in some sense computationally effective, meaning that our technique
allows us to give explicit formulas for the automorphisms which bring an arbitrary mapping to one of
the mappings listed in the Main Theorem. Moreover we provide a list of biholomorphic invariants
associated to each mapping of the Main Theorem which also implies that all the maps in the Main
Theorem are not equivalent to each other. Thus we think we can provide a new proof of Faran’s and
Lebl’s results which is easier to verify and more elementary. Nevertheless our proof is long, technical
and features some huge computations.
Now we provide some details of our proof: We introduce the class F2, which consists of germs of
2-nondegenerate transversal mappings. These notions are defined below in Definition 3.6 and Defini-
tion 3.1 respectively. For this class we give a normal form and denote the set of normalized mappings by
N2. Then we prove a first local characterization in terms of automorphisms fixing a given point. The fol-
lowing theorem is formulated for holomorphic mappings in N2 from H2 to H3

ε, which are biholomorphic
images of S2 and S3

ε except one point and defined below in Definition 2.4.

Theorem 1.4. The set N2 consists of the following mappings, where s ≥ 0:

Gε1(z, w) :=

(
z(1 + i εw),

√
2z2, w

)

1− w2
,

Gε2,s(z, w) :=

(
z − 2 ε sz2 + i

(
ε−s2

)
zw + 2sw2, 2

(
z2 + s2w2

)
, w
(
1− 2 ε sz − i(ε+s2)w

))

1− 2 ε sz − i
(
ε+s2

)
w − 4 i szw − 4 ε s2w2

,

Gε3,s(z, w) :=
(

16 ε z + 24 i zw + 8 ε sw2 + 16z3 + 8 i ε sz2w + 3
(
s2 − 3 ε

)
zw2 + 2 i sw3,

32 ε z2 − 8w2 + 16sz3 + 8 i z2w − 4 ε szw2 − 2 i εw3,

w
(
16 ε−8 iw + 16z2 − 8 i ε szw −

(
s2 + ε

)
w2
))

/
(

16 ε−8 iw + 16z2 − 24 i ε szw −
(
9s2 + 17 ε

)
w2 + 32 i ε z2w + 12szw2 + 4 iw3

)
.

Each map in N2 is not equivalent to any different map of N2 with respect to automorphisms fixing 0.
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For ε = −1 we have the following picture of N2 according to Theorem 1.4:

G−2,0

G−
2, 12

G−2,1

G−3,0

G−1

Figure 1: Picture of N2 for ε = −1

We choose certain values for s and define the following mappings:

Gε1(z, w) := Gε2,0(z, w), Gε2(z, w) := Gε2,1/2(z, w), Gε3(z, w) := Gε2,1(z, w), (1.3)

Gε4(z, w) := Gε3,0(z, w).

Non-isotropic automorphisms which we apply to the mappings Gεk,s allow us to reduce the parameter s
to finitely many values in the sense of the following theorem.

Theorem 1.5. For m = 2, 3 and 1 ≤ k ≤ 4 let Gεm,s be as in Theorem 1.4 and Gεk as in (1.3).
For ε = +1 we have:
(i) For every s ≥ 0 the mapping G+

2,s is equivalent to G+
1 .

(ii) For every s ≥ 0 the mapping G+
3,s is equivalent to G+

4 .
For ε = −1 we have:
(iii) For every 0 ≤ s < 1

2 the mapping G−2,s is equivalent to G−1 .
(iv) For every s > 1

2 the mapping G−2,s is equivalent to G−3 .
(v) The mappings G−1 ,G−2 and G−3 are pairwise not equivalent to each other.
(vi) For every 0 ≤ s 6= 2 the mapping G−3,s is equivalent to G−4 and G−3,2 = G−2 .
The mapping Gε1 is not equivalent to any of the mappings Gεk.

The second part of our work, which is heavily based on the first part, deals with topological aspects
of holomorphic mappings in our setting to provide new and profound insights into the topological and
real-analytic structure of the set of holomorphic maps and the moduli space.
We denote the equivalence relation used in Theorem 1.3 by ∼, then by Theorem 1.4 and Theorem 1.5
the following result holds true:

Theorem 1.6. The quotient space F2 /∼ is discrete for ε = +1 and not discrete for ε = −1.
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The above result was not known before and stands in contrast to the case of the group of germs of
real-analytic CR-diffeomorphisms fixing a point p ∈ M , denoted by Autp(M,p), for a germ of a real-
analytic CR-submanifold (M,p) in CN . Assuming some nondegeneracy conditions for certain (M,p) it
is shown that Autp(M,p) admits a Lie group structure, see [BER97], [BER99a], [BRWZ04], [Kow05],
[KZ05], [LM07], [LMZ08] and [JL13].
Next we study the action of the group of automorphisms fixing a given point on the set of holomorphic
maps. Let us denote by G := Aut0(H3

ε, 0) × Aut0(H2, 0), the direct product of the stability groups of
H2 and H2

ε respectively, with elements g = (g1, g2) ∈ G. We write F2 ⊂ F2 for the set where the action
of G on F2 given by G × F2 → F2, (g1, g2, h) 7→ g1 ◦ h ◦ g−1

2 , has only trivial stabilizers. Then the
following results holds:

Theorem 1.7. The mapping N : G× F2 → F2 given by

N(φ′, φ,H) := φ′ ◦H ◦ φ−1,

is a free and proper left action.

Based on this result we obtain the following result concerning the topological and real-analytic structure
of F2, where Π : F2 → N2 denotes the normalization map induced by the mapping N and N2 ⊂ N2

denotes a set of representatives of the quotient F2 /G:

Theorem 1.8. (i) If ε = +1 then Π : F2 → F2 /G is a real-analytic principal fibre bundle with
structure group G.

(ii) If ε = −1 then locally F2 is mapped to G × N2 via locally real-analytic diffeomorphisms. In
particular F2 is not a smooth manifold.

This theorem allows us to obtain the following result for the different topologies we can associate to
N2. All relevant notions are introduced in section 9.

Theorem 1.9. The quotient topology on N2 coincides with the induced topology of F2, which carries
the topology induced by the jet space J3

0 (H2,H3
ε).

We organize this work as follows: In section 2 we compute all relevant automorphisms and introduce the
precise notion of equivalence. The following section 3 introduces all biholomorphic invariants we use in
order to obtain a class F2 of interesting mappings, more precisely 2-nondegenerate transversal mappings.
For this class of mappings, we compute a normal form in subsection 4.1 and obtain N2 ⊂ F2, the set
of normalized mappings with respect to the stability groups. We also discuss different suitable normal
forms with respect to the stability group and their effects on the classification. For N2 we compute
a jet parametrization in section 5 and after some desingularization it turns out that N2 consists of
one separated mapping and two one-parameter families of mappings, denoted by C1 and C2. Then in
section 6 we use the non-isotropic part of the automorphism groups to see how the families C1 and
C2 are recovered from finitely many normalized mappings. For this purpose we study mappings at
points, where the degeneracy is higher than at generic points in subsection 6.3. In section 7 we treat
the case of degenerate mappings such that we are able to complete the proof of the Main Theorem in
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subsection 8.1. Finally in section 9 we consider topological questions related to Theorem 1.4, which
provides topological information about F2 as well as the quotient spaces. The main effort is to prove
that the application of the stability group gives a proper action on F2 and that N2 at least contains
some manifold structure.
Our computations are carried out with Mathematica 7.0.1.0 [Wol08].
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2 Preliminaries

We start this section with a well-known fact concerning the complexification of real-analytic equations,
see e.g. [D’A93, Chapter 1, Proposition 1]. For U ⊂ CN we introduce the set Ū consisting of the
conjugated elements of U .

Theorem 2.1 (Complexification). Let U ⊂ CN be open and connected and let F : U×Ū ⊂ CN×CN →
C be a holomorphic function such that F (z, z̄) = 0 for all z ∈ U , then F (z, χ) = 0 for all (z, χ) ∈ U× Ū .

Proof. First we set V := {(z, z̄) : z ∈ U} ⊂ C2N and choose coordinates (z, χ) = (x + i y, u + i v) in
CN × CN . Then V = {(z, χ) ∈ C2N : χ = z̄} such that V is given by 2N real defining functions

ρ2j+1(x, y, u, v) = u− x, 0 ≤ j ≤ N − 1,

ρ2j(x, y, u, v) = v + y, 1 ≤ j ≤ N.

After linearly changing coordinates to (x̃+ i ỹ, ũ+ i ṽ) = (z̃, χ̃) := ϕ(z, χ) =
(
i(χ− z), z + χ

)
we have

ρ̃2j+1(x̃, ỹ, ũ, ṽ) = ỹ, 0 ≤ j ≤ N − 1,

ρ̃2j(x̃, ỹ, ũ, ṽ) = ṽ, 1 ≤ j ≤ N.

as local defining functions for V . Our assumption F |V ≡ 0 then becomes F̃ (x̃, ũ) = 0 for all (x̃, ũ) ∈ R2N

and F̃ = F ◦ ϕ−1. If we write F̃ (z̃, χ̃) =
∑
α,β F̃αβ z̃

αχ̃β we have

0 = F̃ (x̃, ũ) =
∑

α,β

F̃αβ x̃
αũβ ,

which implies F̃αβ = 0 for all α, β, hence Fαβ = 0 and the claim is proved.

Definition 2.2 (Normal coordinates). For n, n′ ≥ 1 we denote by Z = (z1, . . . , zn, w) ∈ Cn+1 and
Z ′ = (z′, w′) = (z′1, . . . , z

′
n′ , w

′) ∈ Cn′+1 coordinates in Cn+1 and Cn′+1 respectively.
We consider the complexification of a real-analytic hypersurface M ⊂ Cn+1, denoted byM, where we
write χ := z̄ and τ := w̄. Coordinates (z, w) ∈ Cn+1 are called normal coordinates near 0, if there is
U ⊂ Cn+1 a neighborhood of 0 such that

M∩ {U × Ū} =
{

(z, w, χ, τ) ∈ U × Ū : w = Q(z, χ, τ)
}
,

where Q : Cn × Cn × C→ C is holomorphic in a neighborhood of 0 satisfying

τ = Q(z, 0, τ) = Q(0, χ, τ), w = Q
(
z, χ, Q̄(χ, z, w)

)
.

Before we introduce our prototype example of hypersurfaces given in normal coordinates we need the
following definition.
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Definition 2.3. For z, ζ ∈ Cn we define

〈z, ζ〉k := z1ζ1 + . . .+ zkζk − zk+1ζk+1 − . . .− znζn, ||z||2k := 〈z, z̄〉k.

In C2 we denote for ε = ±1

〈z, ζ〉ε := z1ζ1 + ε z2ζ2, ||z||2ε := 〈z, z̄〉ε.

The standard real euclidean inner product in Cn is denoted by

〈z, ζ〉 := z1ζ1 + . . .+ znζn, ||z||2 := 〈z, z̄〉.

Definition 2.4. For (z, w) ∈ Cn+1 and k ≥ n
2 we define

ρk(z, w, z̄, w̄) := Imw − ||z||2k,

and

Hn+1
k :=

{
(z, w) ∈ Cn+1 : ρk(z, w, z̄, w̄) = 0

}
.

If k = n we write Hn+1 := Hnn+1. In C2 and C3 we denote for ε = ±1

H2 :=
{

(z, w) ∈ C2 : Imw = |z|2
}
,

H3
ε :=

{
(z′, w′) ∈ C3 : Imw′ = ||z′||2ε

}
,

respectively. Further we write H3 := H3
+.

Remark 2.5. We also write p0 = (z0, w0) = (r0e
i θ0 , v0 + i r2

0) ∈ H2 with r0 ≥ 0, 0 ≤ θ0 < 2π and v0 ∈ R
and identify H2 with the subset H2 ⊂ R3 given by

H2 :=
{
p0 = (r0, θ0, v0) ∈ R3 : r0 ≥ 0, 0 ≤ θ0 < 2π, v0 ∈ R

}
, (2.1)

using a slight abuse of notation.

Definition 2.6 (Cayley-Transformation). We define the following biholomorphism TN sending CN \
{zN = −1} to CN \ {zN = − i}:

TN (z1, . . . , zN ) :=
(
z1, . . . , zN−1, i(1− zN )

)
/(1 + zN ). (2.2)

The inverse T−1
N of TN maps CN \ {zN = − i} to CN \ {zN = −1} and is given by:

T−1
N (z1, . . . , zN ) =

(
2z1, . . . , 2zN−1, 1 + i zN

)
/(1− i zN ). (2.3)

Remark 2.7. Let M := SNk be a hyperquadric with signature (k,N − k) from (1.1) given in coordinates
z = (z1, . . . , zN ) ∈ CN and let p ∈ M . Then we decompose CN = p⊥ ⊕ Cp, where p⊥ := {v ∈ CN :
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〈p, v̄〉k = 0}. In this decomposition we obtain new coordinates ξ for M with (ξ1, . . . , ξN−1) ∈ p⊥ and
ξN ∈ Cp.
Let H : CN → CN ′ be a holomorphic mapping defined in a neighborhood U of p ∈M with H(U ∩M) ⊂
M ′ and H(p) = q′, where M ′ = SN ′`′ for some `′ ∈ N. Then we decompose CN and CN ′ with respect
to p and q′ as described above. If we consider Ĥ := TN ′ ◦ H ◦ T−1

N we possibly need to shrink U to
avoid the poles at − i p and −q′ respectively. Moreover in this coordinates Ĥ satisfies Ĥ(0) = 0 and
Ĥ(U ∩Hk−1

N ) ⊂ H`
′−1
N ′ .

Remark 2.8. We call a hypersurface M given by M = {z ∈ CN : 〈z,Az̄〉 = 1}, where A is an N ×N -
Hermitian matrix, Levi-nondegenerate if A has no zero eigenvalue. The signature of M is a pair of
natural numbers, the first one is the number of positive eigenvalues of A and the second one is the
number of negative eigenvalues of A.
Let M be a Levi-nondegenerate hyperquadric in Cn+1 with signature (k + 1, n − k) and fix p0 ∈ M ,
then M∗ := M \ {p0} is mapped to Hn+1

k as follows: First we apply a linear change of coordinates to
M∗ such that M∗ is mapped into Sn+1

k for some k ∈ N from (1.1). Then we map SNk according to
Remark 2.7 outside a point q0 ∈ Sn+1

k , biholomorphically to Hn+1
k via Tn+1, where we may have to vary

the definition of Tn+1 by permuting the variables (z1, . . . , zn+1). Further if n = 2k we possibly need to
apply an automorphism of Hn+1

k of the form (z1, . . . , zn, w) 7→ (zk+1, . . . , zn, z1, . . . , zk,−w).

Definition 2.9 (Notation). (i) Let h : Cn+1 → C be a holomorphic function given by h(z, w) =∑
α,β aαβz

αwβ , defined near 0. We write for the complex conjugate of h

h̄(z̄, w̄) := h(z, w) =
∑

α,β

āαβ z̄
αw̄β .

For derivatives of h with respect to z or w we write

hzαwβ (0) := α!β!aαβ .

For n ≥ 1, a holomorphic mapping H : Cn+1 → Cn′+1 defined near 0 with components H =(
f1, . . . , fn′ , g

)
is given by a power series as follows:

H(z, w) =
∑

α,β

Hzαwβ (0)

α!β!
zαwβ ,

where

Hzαwβ (0) =
(
f1zαwβ (0), . . . , fn′zαwβ (0), gzαwβ (0)

)
.

(ii) For H = (f1, . . . , fn′ , g) a holomorphic mapping of Cn+1 to Cn′+1 near 0 we denote

∆(α1, β1; . . . ;αn′ , βn′) :=

∣∣∣∣∣∣∣∣

f1zα1wβ1 (0) · · · f1zαn′wβn′ (0)
...

...
fn′zα1wβ1 (0) · · · fn′zαn′wβn′ (0)

∣∣∣∣∣∣∣∣
. (2.4)
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(iii) Let H : Cn+1 → Cn′+1 be a holomorphic mapping defined at p ∈ Cn+1 and α ∈ Nn+1. We denote
by jkpH the k-jet of H at p defined as

jkpH :=

(
∂|α|H
∂Zα

(p) : |α| ≤ k
)
.

We denote by Jkp the collection of all k-jets at p. We write Jkp (M,p;M ′, p′) for the collection of
all k-jets at p of mappings, which send (M,p) ⊂ (CN , p) to (M ′, p′) ⊂ (CN ′ , p′).

2.1 Tangent Spaces

In this section we follow [BER99b, §1.2]. Let Z = (z1, . . . , zN ) ∈ CN be coordinates in CN . We identify
CN with R2N by setting xj := Re(zj) and yj := Im(zj) for 1 ≤ j ≤ N . Let M be a smooth real
submanifold of codimension d in CN . For p ∈ M we let ρ = (ρ1, . . . , ρd) : CN → Rd be a smooth
real-valued mapping defined in a neighborhood U ⊂ CN of p such that M ∩ U = {Z ∈ U : ρ(Z) = 0}.
We write ρ(Z, Z̄) instead of ρ(Z) to indicate that ρ is in general not holomorphic.
We define the real tangent space TpCN of CN at p by

TpCN :=



X =

N∑

j=1

aj
∂

∂xj

∣∣∣∣∣
p

+ bj
∂

∂yj

∣∣∣∣∣
p

: aj , bj ∈ R



 . (2.5)

Then X ∈ TpCN is called tangent to M at p if

(Xρ)(p, p̄) =

N∑

j=1

aj
∂ρ

∂xj
(p, p̄) + bj

∂ρ

∂yj
(p, p̄) = 0. (2.6)

We write TpM for the real tangent space of M at p which consists of all real vectors X ∈ TpCN which
are tangent to M at p. TpM is a 2N − d-dimensional real vector space.
If we allow aj , bj ∈ C in (2.5) and (2.6) we obtain complex vector spaces denoted by CTpCN and CTpM
respectively. We introduce a real-linear mapping J : TpCN → TpCN

J


 ∂

∂xj

∣∣∣∣∣
p


 =

∂

∂yj

∣∣∣∣∣
p

, J


 ∂

∂yj

∣∣∣∣∣
p


 = − ∂

∂xj

∣∣∣∣∣
p

, 1 ≤ j ≤ N. (2.7)

By linearly extending J to CTpCN we obtain a complex-linear mapping again denoted by J : CTpCN →
CTpCN . We call the maximal subspace of TpM which is invariant under J the complex tangent space
given by T cpM := TpM ∩ JTpM . As above we consider CT cpM and extend J to an operator CT cpM →
CT cpM . Then we decompose CT cpM into a direct sum of subspaces consisting of the eigenspaces of J
according to its eigenvalues ± i. We set

Vp := {X ∈ CTpM : J(X) = − iX}, (2.8)
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to obtain CT cpM = Vp⊕V̄p. Then we can write CTpM = CT cpM ⊕NpM , where NpM is the orthogonal
complement of CT cpM in CTpM .
M is called CR-submanifold if the dimension of Vp is locally constant. If M is a hypersurface, then
T cpM is an N − 1-dimensional complex vector space for every p ∈M .
A smooth complex vector field X on U ⊂ M is a smooth mapping defined in an open neighborhood
U ⊂ M of p ∈ M such that X(q) ∈ CTqM for all q ∈ U . In coordinates a complex vector field X can
be expressed as follows:

X =

N∑

j=1

aj(z, z̄)
∂

∂zj
+ bj(z, z̄)

∂

∂z̄j
, (2.9)

where aj , bj are smooth complex-valued functions defined in U . Then according to the above decompo-
sition of CT cpM we can write tangent vectors v ∈ Vp as v =

∑N
j=1 bj(p, p̄)

∂
∂z̄j

, which we refer to as an
antiholomorphic tangent vector. The space of antiholomorphic tangent vectors is denoted by T 0,1

p CN .
Similar for so called holomorphic tangent vectors v̄, given by v̄ =

∑N
j=1 aj(p, p̄)

∂
∂zj

such that v̄ ∈ V̄p,
we denote the space of holomorphic tangent vectors by T 1,0CN . Then we have Vp = T 0,1CN ∩ CTpM
and V̄p = T 1,0CN ∩ CTpM .
If M is CR, then vector fields L with the property that L(p) ∈ Vp for p ∈M are called CR-vector fields.

2.2 Segre Sets

We need to introduce the so-called Segre sets, which arise in studying holomorphic mappings of real-
analytic submanifolds using a “reflection principle”-argument, as for example in the proof of Lemma 5.5
below. The definition is based on [BER99b, Proposition 10.4.1].

Definition 2.10 (Segre mappings). For M a real-analytic hypersurface in CN we choose normal coor-
dinates near 0 ∈M as in Definition 2.2. Let p ∈ Cn+1 be sufficiently close to 0. We define

v1
p : Cn → Cn+1, v1

p(z) :=
(
z,Q(z, p̄)

)
, (2.10)

the first Segre mapping v1
p of M at p. Let ` ≥ 2 then for 1 ≤ j ≤ ` we write zj = (zj1, . . . , z

j
n) ∈ Cn to

define

v`p : C`n → Cn+1, v`p(z
1, . . . , z`) :=

(
z`, Q

(
z`, v̄`−1

p (z̄`−1, . . . , z̄1)
))
, (2.11)

the `-th (iterated) Segre map v`p of M at p.

Definition 2.11 (Segre sets). Let ` ≥ 1 and p ∈ Cn+1 sufficiently close to M . We call the image of v`p
the `-th Segre set S`p of M at p.

Example 2.12. For the complexification of Hn+1
k we have

Q(z, χ, τ) = Qk(z, χ, τ) := τ + 2 i〈z, χ〉k, (2.12)
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such that

S1
0 =

{
(z, 0) ∈ Cn+1 : z ∈ Cn

}
, (2.13)

S2
0 =

{(
z, 2 i〈z, χ〉k

)
∈ Cn+1 : z, χ ∈ Cn

}
, (2.14)

since Qk is defined on C2n+1.

To see the relevance of the Segre sets in the following theorem we introduce the generic rank Rk(F ) of
a mapping F as in [BER03, §1]: Let F : (CN , 0)→ (CN ′ , 0) be given by F = (F1, . . . , FN ′), where each
Fj : (CN , 0) → (C, 0) is a formal power series and write z = (z1, . . . , zN ) for coordinates of CN . The
generic rank Rk(F ) of F is defined as the largest number s ∈ N such that there is an s× s-minor of the
Jacobi matrix ∂F

∂z which does not vanish identically as a formal power series in z.

Theorem 2.13 ([BER03, Theorem 1.1]). Let M ⊂ CN be a real-analytic and generic submanifold of
codimension d with 0 ∈M . The following statements hold:
(i) The generic rank Rk

(
vk0
)
of vk0 is an increasing function of k ≥ 1 and is independent of the choice

of holomorphic coordinates for CN and the defining function for M .
(ii) There exists k0 ∈ N with k0 ≤ d+ 1, such that

Rk
(
vj0
)

= Rk
(
vj+1

0

)
, ∀j ≥ k0,

and

Rk
(
vj−1

0

)
< Rk

(
vj0
)
, 2 ≤ j ≤ k0.

(iii) The following statements are equivalent:
• M is of finite type at 0.
• Rk

(
vk0

0

)
= N .

Remark 2.14. If vk0
0 is of generic rank N we note that the second condition in (iii) is equivalent to

the statement that Sk0
0 contains an open set of CN , i.e., the Segre set provides a uniqueness set for

holomorphic functions.
If we consider the complexification of Hn+1

k ⊂ Cn+1, then Rk
(
v1

0

)
= n and Rk

(
v2

0

)
= n+ 1. The rank

is full outside of {(z, χ) ∈ C2n : z = 0}. Note that in order to get Rk
(
v2

0

)
= n + 1 it is enough to set

χ2 = . . . = χn = 0 in S2
0 .

2.3 Automorphisms

Since automorphisms play a crucial role in our study of mappings of hyperquadrics we provide a rather
self-contained presentation of the computation of the well-known automorphism group Aut(Hn+1

k ).
First we compute the infinitesimal CR-automorphisms of Hn+1

k as described in [Bel02, §2-3], which
surveys the well-known method used in several previous works, e.g. in [Bel79]. Then we show a jet
determination result for isotropies of Hn+1

k following the method introduced in [BER97], from which,
together with the infinitesimal CR-automorphisms, we are able to compute all isotropies of Hn+1

k .
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In this section we fix k, n ∈ N, write M = Hn+1
k and skip the subscript in Definition 2.4 for the defining

function of M . Moreover we are going to complexify ρ and write χ = z̄ and τ = w̄. We denote the set
of infinitesimal CR-automorphisms hol(M, 0) by

hol(M, 0) :=



X =

n+1∑

j=1

aj(Z)
∂

∂zj
: aj : (Cn+1, 0)→ C holomorphic,Re(X) is tangent to M near 0



 .

As in [Sta91, Theorem 2.2, Corollary 2.4] we can show that hol(M, 0) is a Lie algebra and germs of
flows of germs of vector fields in hol(M, 0) generate germs of automorphisms of M .
We assign the weight 1 to the z-coordinate and weight 2 to the w-coordinate to turn hol(M, 0) into a
graded Lie algebra. Then hol(M, 0) is given by

hol(M, 0) =
⊕

m≥−2

holm(M, 0),

where holm(M, 0) contains all vector fields of hol(M, 0) which are weighted homogeneous of order m.
Note that here ∂

∂z has weight −1 and ∂
∂w has weight −2. The collection of weighted homogeneous vector

fields of order m is denoted by gm and for Xm ∈ gm we write

Xm = fm+1(z, w)
∂

∂z
+ gm+2(z, w)

∂

∂w
, (2.15)

where fm+1(z, w) and gm+2(z, w) are homogeneous polynomials of weighted order m + 1 and m + 2

respectively.
We compute holm(M, 0) for −2 ≤ m ≤ 2 in the following manner: We let Xm ∈ gm, then Xm ∈
holm(M, 0) if for ρ(z, w, χ, τ) a complexified weighted homogeneous defining function for (M, 0) there
exists a complex-analytic function Am(z, w, χ, τ), weighted homogeneous of order m, such that

1

2

(
Xmρ(z, w, χ, τ) + X̄mρ(z, w, χ, τ)

)
= Am(z, w, χ, τ)ρ(z, w, χ, τ), (2.16)

for all (z, w, χ, τ) near 0.
On the other hand for m ≥ −2 we let Xm be given by (2.15) such that Xm ∈ holm(M, 0) if

Re(Xm)ρ
∣∣
M
≡ 0⇔

(
−2 i〈fm+1, z̄〉k + gm+2 − 2 i〈f̄m+1, z〉k + ḡm+2

)∣∣
M
≡ 0

⇔Re(i gm+2 + 2〈fm+1, z̄〉k)
∣∣
M
≡ 0.

Thus we give the following definition.

Definition 2.15. For H = (f, g) a holomorphic mapping from (Cn+1, 0) to (Cn+1, 0) we define the
Chern-Moser operator L for M as

L(f, g) := Re(ig + 2〈f, z̄〉k)
∣∣
M
.

The following lemma is crucial when treating vector fields of weighted homogeneous order m ≥ 3.
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Lemma 2.16 (Chern–Moser [CM74]). Let H = (f, g) be a mapping from (Cn+1, 0) to (Cn+1, 0). If

f(0) = g(0) = fzj (0) = gzj (0) = fw(0) = gw(0) = gzjzk(0) = gw2(0) = 0,

for 1 ≤ j, k ≤ n+ 1, then L(f, g) ≡ 0 has the unique solution (f, g) ≡ 0.

Proof. See [CM74, Lemma 2.1].

We denote by In,k := Ik,n−k the (n× n)-diagonal matrix with 1 in the first k diagonal entries and −1

for the rest of the diagonal and note that 〈z, ζ〉k = 〈z, In,kζ〉.

Theorem 2.17 (Infinitesimal CR-Automorphisms of M). The space hol(M, 0) of infinitesimal CR-
automorphisms of M is generated by the following vector fields:

• X−2 = ∂
∂w

• X−1 = 〈a, ∂∂z 〉+ 2 i〈ā, z〉k ∂
∂w

• X1
0 = 〈z, ∂∂z 〉+ 2w ∂

∂w

• X2
0 = 〈Hz, ∂∂z 〉

• X1 = 〈b, z〉〈z, ∂∂z 〉+ iw
2 〈b̄, ∂∂z 〉k + 〈b, z〉w ∂

∂w

• X2 = w〈z, ∂∂z 〉+ w2 ∂
∂w ,

where a, b ∈ Cn and H = (h`m)1≤`,m≤n ∈ Cn × Cn satisfies

In,k
tH̄ = −HIn,k, (2.17)

which means that H is a skew-Hermitian matrix with respect to the Hermitian form (z, ζ) 7→ 〈z, ζ̄〉k,
i.e., 〈Hz, z̄〉k = −〈z, H̄z̄〉k.

Proof. We note that if we consider (2.16) for m ∈ {−2,−1} then Am = 0. We have X−2 = A ∂
∂w for

A ∈ C, which implies A ∈ R.
For X−1 ∈ g−1 we write

X−1 =

〈
a,

∂

∂z

〉
+ 〈b, z〉 ∂

∂w
,

where a, b ∈ Cn. In (2.16) all we have to consider are the coefficients of zj for 1 ≤ j ≤ n, which give

bj =

{
2 i āj , 1 ≤ j ≤ k,
−2 i āj , k + 1 ≤ j ≤ n.

We note that for m ≥ 0 there are no pure z-terms occurring as coefficients of ∂
∂w in Xm, since there are

none at the right-hand side of (2.16). Next for m = 0 we have A0 = A ∈ R and

X0 =

〈
Hz,

∂

∂z

〉
+ cw

∂

∂w
,

where H = (hrs)1≤r,s≤n for hrs, c ∈ C. In (2.16) we have if we compare the coefficients of w, that c = A

and if we consider for 1 ≤ j ≤ n the coefficients of zjχj we obtain 2 Re(hjj) = A. Hence we obtain X1
0
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and the vector field X0 reduces to X0 = 〈Hz, ∂∂z 〉 with Re(hjj) = 0 for 1 ≤ j ≤ n. The equation which
H has to satisfy is

k∑

s=1

n∑

r=1
r 6=s

hrszrχs −
n∑

s=k+1

n∑

r=1
r 6=s

hrszrχs +

k∑

s=1

n∑

r=1
r 6=s

h̄rszsχr −
n∑

s=k+1

n∑

r=1
r 6=s

h̄rszsχr = 0,

which implies if r 6= s that

hrs = −h̄sr, {(r, s) : 1 ≤ r, s ≤ k} ∪ {(r, s) : k + 1 ≤ r, s ≤ n},
hrs = h̄sr, {(r, s) : k + 1 ≤ r ≤ n, 1 ≤ s ≤ k} ∪ {(r, s) : 1 ≤ r ≤ k, k + 1 ≤ s ≤ n}.

Then we note that we obtain the same system of equations if we consider the components of the equation
given in (2.17) resulting in the vector field X2

0 .
If m = 1 we have A1(z, χ) =

∑n
j=1 bjzj + b̄jχj for bj ∈ C. Next we let a(z) =

(
a1(z), . . . , an(z)

)
, where

for 1 ≤ ` ≤ n the function a`(z) is a holomorphic polynomial in z of degree 2 with coefficients a`α ∈ C
for α ∈ Nn with |α| = 2 and c(z) =

∑n
j=1 cjzj for cj ∈ C. For X1 ∈ g1 we let d ∈ Cn and write

X1 =

〈
a(z) + dw,

∂

∂z

〉
+ c(z)w

∂

∂w
.

On the right-hand side of (2.16) there are monomials zjzmχj and zjχjχm for 1 ≤ j,m ≤ n, thus
a`(z) = z`ã`(z) := z`

∑n
m=1 a`mzm. If we compare z`χ` in (2.16) we obtain for 1 ≤ ` ≤ n:

ã`(z) + ã`(χ) = A1(z, χ),

hence a`m = bm for 1 ≤ `,m ≤ n. Considering wχj for 1 ≤ j ≤ n we obtain if j ≤ k that dj =
i b̄j
2 and

if j > k we have dj = − i b̄j
2 . Finally the coefficients zjw for 1 ≤ j ≤ n show cj = bj to get X1, since the

remaining coefficients χjτ and zjτ do not give new equations.
If m = 2 in (2.16) we have

A2(z, w, χ, τ) = A(z) +Bw + Ā(χ) + B̄τ,

where A(z) is a holomorphic polynomial of degree 2 in z. Further X2 ∈ g2 has the following form:

X2 =

〈
c(z) + wd(z),

∂

∂z

〉
+
(
e(z)w + hw2

) ∂
∂w

,

where c(z) is a holomorphic polynomial of degree 3 in z, d(z) is linear in z, e(z) a holomorphic polynomial
of degree 2 in z and h ∈ C. For α = (α1, . . . , αn) ∈ Nn we write zα = zα1

1 · · · zαnn . Then the monomials
zατ for |α| = 2 only occur on the right-hand side of (2.16) hence A(z) = 0. There are only monomials
involving w or τ on the right-hand side of (2.16) which implies c(z) = 0. Since the terms involving z
on the right-hand side of (2.16) are of the form zjχj we obtain e(z) = 0. With the same argument
we obtain that d(z) = (d1z1, . . . , dnzn) where dj ∈ C. Comparing wτ shows B ∈ R, w2 gives h = B
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and the coefficients of zjwχj imply dj = B. The remaining coefficients τ2 and zjχjτ do not give new
equations and we obtain X2.
To treat the case m ≥ 3 we apply Lemma 2.16 to obtain Xm = 0, which finishes the proof.

Definition 2.18. We denote the collection of local real-analytic CR-diffeomorphisms Aut(M, 0) of
(M, 0) by

Aut(M, 0) := {H : (Cn+1, 0)→ Cn+1 : H holomorphic, H(M) ⊂M,det(H ′(0)) 6= 0},

and the group of isotropies or stability group Aut0(M, 0) of (M, 0) by

Aut0(M, 0) := {H ∈ Aut(M, 0) : H(0) = 0}.

Elements of the subgroup of Aut(M, 0) generated by the flows of the vector fields X−2 and X−1 from
Theorem 2.17 are referred to as translations.

We prove the following well-known theorem ([Bel90], [ES97], [BER98]) with the approach as in [BER97],
where a more general result is shown. We follow the algorithm given in [BER97, §6].

Theorem 2.19 (Jet Determination for Aut0(M, 0)). If G,H ∈ Aut0(M, 0) with j2
0G = j2

0H, then
G ≡ H.

Proof. We let H = (f1, . . . , fn, g) ∈ Aut0(M, 0). We use the notation introduced in the beginning
of subsection 2.3 and write 〈z, χ〉 =

∑n
j=1 σjzjχj , where σj = +1 for 1 ≤ j ≤ k and σj = −1

for k + 1 ≤ j ≤ n. Since H maps (M, 0) to (M, 0) we have the following equation after setting
w = τ + 2 i〈z, χ〉:

g(z, τ + 2 i〈z, χ〉)− ḡ(χ, τ) = 2 i

n∑

j=1

σjfj(z, τ + 2 i〈z, χ〉)f̄j(χ, τ). (2.18)

If we set χ, τ = 0 we obtain g(z, 0) = 0 such that we need to require det(fz(0)) 6= 0 and gw(0) 6= 0.
We also write z = (z1, z

′) and χ = (χ1, χ
′). Our computations are devoted to prove the dependence of

H(z, 2 iσ1z1χ1) on j2
0H, since Remark 2.14 implies that H only depends on j2

0H and the jet determi-
nation is proved.
Setting χ′, τ = 0 in (2.18) we get

g(z, 2 iσ1z1χ1) = 2 i

n∑

j=1

σjfj(z, 2 iσ1z1χ1)f̄j(χ1, 0). (2.19)

In the remaining part of the proof we deduce the dependence of fj(z, 2 iσ1z1χ1) on j2
0H. First we
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differentiate (2.18) with respect to z` for 1 ≤ ` ≤ n to obtain

gz`(z, τ + 2 i〈z, χ〉) + 2 iσ`χ`gw(z, τ + 2 i〈z, χ〉) (2.20)

= 2 i

n∑

j=1

σj f̄j(χ, τ)
(
fjz`(z, τ + 2 i〈z, χ〉) + 2 iσ`χ`fjw(z, τ + 2 i〈z, χ〉)

)
.

If we set z′ = 0, τ = −2 iσ1z1χ1 in (2.20) and conjugate the result we deduce for 1 ≤ ` ≤ n the following
equation:

σ`z`ḡτ (χ1, 0) =

n∑

j=1

σj f̄j(χ,−2 iσ1z1χ1)
(
f̄jχ`(χ1, 0)− 2 iσ`z`f̄jτ (χ1, 0)

)
,

hence the theorem follows if we prove the dependence of f̄j , f̄jχ` , f̄jτ and ḡτ at (χ1, 0) on j2
0H since it

is possible to invert the matrix
(
(f̄jχ` − 2 iσ`z`f̄jτ )(χ1, 0)

)
j,`=1,...,n

for (z, χ1) ∈ Cn+1 near 0.
First we set z, χ′, τ = 0 in (2.20) for each ` = 1, . . . , n to obtain the following system:




σ1χ1gw(0)

0
...
0




= J




f̄1(χ1, 0)
...

f̄n(χ1, 0)


 , (2.21)

where J denotes the following n× n-matrix

J :=




σ1(f1z1(0) + 2 iσ1χ1f1w(0)) · · · σn(fnz1(0) + 2 iσ1χ1fnw(0))

σ1f1z2(0) · · · σnfnz2(0)
...

...
σ1f1zn(0) · · · σnfnzn(0)



,

which is invertible for χ1 near 0. Thus from (2.21) it follows that f̄j(χ1, 0) depends on j1
0H for 1 ≤ j ≤ n.

Next we differentiate (2.20) with respect to χm for 1 ≤ m ≤ n and set z, χ′, τ = 0 to get

σmzmδm`


gw(0)− 2 i

n∑

j=1

σjfjw(0)f̄j(χ1, 0)


 =

n∑

j=1

σj

(
fjz`(0) + 2 iσ`δ1`χ`fjw(0)

)
f̄jχm(χ1, 0),

where we write δjk for the Kronecker delta. The fact that J is invertible implies that f̄jχm(χ1, 0) for
1 ≤ j,m ≤ n depends on j1

0H.
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If we differentiate (2.20) with respect to τ and take z, χ′, τ = 0 we obtain

gz`w(0) + 2 iσ`χ`δ1`gw2(0)− 2 i

n∑

j=1

σj

(
fjz`w(0) + 2 iσ`χ`δ1`fjw2(0)

)

= 2 i

n∑

j=1

σj

(
fjz`(0) + 2 iσ`δ1`χ`fjw(0)

)
f̄jτ (χ1, 0),

which determines f̄jτ (χ1, 0) for 1 ≤ j ≤ n by j2
0H.

Finally we differentiate (2.18) with respect to τ and set z, χ′, τ = 0 to get

ḡτ (χ1, 0) = gw(0)− 2 i

n∑

j=1

σjfjw(0)f̄j(χ1, 0),

and the dependence of ḡτ (χ1, 0) on j1
0H, which is the missing piece in the proof of the theorem.

Theorem 2.20 (Automorphisms of M). Aut(M, 0) is generated by the following mappings:

• H−2(z, w) = (z, w + r)

• H−1(z, w) =
(
z + a,w + i ||a||2k + 2 i〈ā, z〉k

)

• H1
0 (z, w) = (λz, σλ2w)

• H2
0 (z, w) = (Uz,w)

• H1(z, w) = (z+bw,w)

1−2 i〈b̄,z〉k−i ||b||2kw
• H2(z, w) = (z,w)

1+sw ,

where σ = ±1, r, s, λ ∈ R, a, b ∈ Cn with λ > 0 and U = (u`m)1≤`,m≤n ∈ Cn × Cn satisfies

σIn,k = UIn,k
tŪ , (2.22)

which says that U is a unitary matrix with respect to the Hermitian form (z, ζ) 7→ 〈z, ζ̄〉k, i.e., ||Uz||2k =

σ||z||2k.
The case σ = −1 only appears if n = 2k and we define the following automorphism π of M given by

π(z, w) := (π̃(z),−w) := (zk+1, . . . , zn, z1, . . . , zk,−w), (2.23)

such that each matrix U satisfying (2.22) with σ = −1 can be written as U = V ◦ π̃, where the matrix
V satisfies (2.22) with σ = +1.

Remark 2.21. The real dimension of Aut(HNk ) is (N + 1)2 − 1 and the real dimension of Aut0(HNk , 0)

is N2 + 1. The real dimension of the group of translations of HNk is 2N − 1.

Proof. The proof consists of two parts: In the first part we obtain some automorphisms from infinites-
imal CR-automorphisms. In the second part we compute all automorphisms by using some of the
isotropies we deduced in the first part of the proof. We take the notation as in the proof of Theo-
rem 2.19.
To obtain a mapping Hm or H`

m as in the statement of the theorem, we integrate the corresponding
vector field Xm or X`

m from Theorem 2.17. We use the notation for vector fields Xm ∈ holm(M, 0) from
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(2.15). Then we have to solve for Hm(t) :=
(
zm(t), wm(t)

)
: R→ Cn+1 satisfying

żm(t) = fm+1

(
zm(t), wm(t)

)

ẇm(t) = gm+2

(
zm(t), wm(t)

)
,

with initial value
(
zm(0), wm(0)

)
= (z, w) ∈ M . Here we use the convention ψ̇(t) = dψ(t)

dt . Then the
solution Hm(t) is an automorphism of M depending on (z, w) ∈ M for sufficiently small t ∈ R near 0

by the Fundamental Theorem of ODEs.
To obtain H−2 and H−1 we integrate X−2 and X−1 and reparametrize a ∈ Cn for m = −1. Next H1

0

is obtained directly from X1
0 , after setting λ := et. For X2

0 we integrate to obtain U = exp(Ht), where
H is the matrix from X2

0 satisfying (2.17). Let us write H again for Ht. Then we have

exp
(
−tH̄

)
= exp(In,kHIn,k) = In,k exp(H)In,k,

where we used (2.17) for the first and I2
n,k = In,n, which is the usual identity matrix in Cn, and the

definition of the matrix exponential for the second equality. Next we have

exp
(
−tH̄

)
=
(
exp

(
tH̄
))−1

=
(

exp (tH)
)−1

=
(
texp (H)

)−1

,

which shows if we set U := exp(H), that (tŪ)−1 = In,kUIn,k and (2.22) with σ = +1 follows.
In order to integrate X1 we have to reduce the following system of differential equations:

żj(t) = zj(t)〈b, z(t)〉+
i b̄jw(t)

2
, 1 ≤ j ≤ k,

żj(t) = zj(t)〈b, z(t)〉 −
i b̄jw(t)

2
, k + 1 ≤ j ≤ n,

ẇ(t) = 〈b, z(t)〉w(t).

From the last equation we get 〈b, z(t)〉 = ẇ(t)
w(t) , which we substitute into the other equations. For

1 ≤ j ≤ n we multiply the j-th equation with bj . Then we sum up all the resulting n equations to
obtain

〈b, ż(t)〉 = 〈b, z(t)〉 ẇ(t)

w(t)
+

i

2
||b||2kw(t).

After again substituting the formula for 〈b, z(t)〉 we obtain the equation

(
1

w(t)

)··
= − i ||b||2k

2
,

which can be solved for w(t). The other components zj(t) can now be obtained from the equations
after the first substitution, which give H1. Finally integrating X2 directly gives H2. This completes
the study of flows of infinitesimal CR-automorphisms of M and the first part of the proof.
In the second part of the proof we want to show the list of automorphisms in Theorem 2.20 is exhaustive.
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The transitive part of Aut(M, 0) is given by H−2 and H−1 due to dimensional reasons. In the remaining
parts of the proof we show that any given isotropy belongs to the group generated by H1

0 , H
2
0 , H1 and

H2.
Let H ∈ Aut0(M, 0) be given by H = (f, g) = (f1, . . . , fn, g). We assign the weight 1 to z and 2 to w
and consider the weighted homogeneous expansion of H given by

H(z, w) =
∑

ν≥1

Hν(z, w), Hν = (fν1 , . . . , f
ν
n , g

ν),

where each Hν is weighted homogeneous of order ν with respect to (z, w). The mapping H has to
satisfy the same equation as in (2.18). Then we collect terms of weighted order κ ≥ 1 to obtain

gκ(z, τ + 2 i〈z, χ〉)− ḡκ(χ, τ) = 2 i

n∑

j=1

σj

( ∑

µ+ν=κ

fµj (z, τ + 2 i〈z, χ〉)f̄νj (χ, τ)

)
. (2.24)

For the rest of the proof we investigate the cases κ = 1, . . . , 5. For κ = 1 we obtain g(z, 0) = 0. If κ = 2

we set A = (aij)1≤i,j≤n, an invertible complex n×n-matrix, and write f1(z, w) = Az and g2(z, w) = bw,
where b ∈ C \ {0}, then (2.24) becomes

b(τ + 2 i〈z, χ〉)− b̄τ = 2 i

n∑

j=1

σj

n∑

i,m=1

aij ā
m
j ziχm, (2.25)

which implies b ∈ R\{0} and after scaling the above equation with 1/|b| and setting ckj := akj /
√
|b|, C =

(ckj )1≤j,k≤n we obtain the equation

σ||z||2 = ||Cz||2,

where σ = sgn(b) = ±1. We note that the scaling we performed corresponds to an application of an
isotropy S to M given by S(z, w) := ( z√

|b|
, w|b| ), which is of the form as H1

0 in the theorem. The term

σ in H1
0 comes from the fact that σ||z||2 = Im(σw) in the above equation. The matrix C is of the form

as H2
0 in the theorem and satisfies (2.22). Thus after composing H with S and C−1 we obtain that

H(z, w) =
(
z+O(2), w+O(3)

)
, where O(m) stands for terms in z, w of weighted order at least m ≥ 1.

To see the last claims of the theorem one proceeds similar with π as we did with S and we note that
σ = −1 can only occur if n = 2k, since the signature of the Hermitian form (z, ζ) 7→ 〈z, ζ̄〉 is invariant
under isomorphisms.
Next, for κ = 3 we take

f1
j (z, w) = zj , f2

j (z, w) =
∑

1≤`≤m≤n
a`mj z`zm + bjw, g3(z, w) =

n∑

j=1

cjzjw, (2.26)

where a`mj , bj , cj ∈ C, and plug them into (2.24). If we compare the coefficients of zjτ we obtain
cj = 2 iσj b̄j and if we collect terms of the form zjχ`χm we obtain the following equation after removing
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the common factor σjzj :

0 =
∑

1≤`≤m≤n
ā`mj χ`χm +

n∑

k=1

2 iσkbkχkχj ,

which implies that a`mj = 0 if both `,m 6= j and otherwise we have after conjugation

a`jj = 2 iσ`b̄`, ` < j,

ajmj = 2 iσmb̄m, m ≥ `.

Hence the weighted homogeneous expansion of H is of the following form

fj(z, w) = zj


1 + 2 i

n∑

j=1

σj b̄jzj


+ bjw +O(3),

g(z, w) = w


1 + 2 i

n∑

j=1

σj b̄jzj


+O(4).

The weighted homogeneous expansion of H1 which we obtained in the first part of the proof gives the
same expansion for terms up to weighted order 2 for the first n components and weighted order 3 in
the last component. Thus H

(
H−1

1 (z, w)
)

=
(
z+O(3), w+O(4)

)
, which is the form of H we assume in

the remaining cases κ ≥ 4.
For κ = 4 we write

f3
j (z, w) =

∑

|α|=3

aαj z
α +

n∑

m=1

bmj zmw, g4(z, w) = cw2 +
∑

|β|=2

dβz
βw,

where aαj , bmj , c, dβ ∈ C, and f1
j (z, w) as in (2.26). In (2.24) if we consider the coefficients of zαχj and

χβτ we obtain aαj , dβ = 0 for all α ∈ N3 with |α| = 3, β ∈ N2 with |β| = 2 and 1 ≤ j ≤ n. The coefficient
of τ2 implies c ∈ R. Considering terms of the form zγχδ with |γ|, |δ| = 2 we end up after dividing by
〈z, χ〉 at the equation

c〈z, χ〉 =

n∑

j=1

σj

n∑

m=1

bmj zmχj ,

which implies bmj = 0 for j 6= m and c = bjj for 1 ≤ j ≤ n. Then the homogeneous expansion of H is
given by

fj(z, w) = zj(1 + cw) +O(4),

g(z, w) = w(1 + cw) +O(5),

which is the same expansion as for H2 with s = c ∈ R, which we obtained in the first part of the proof
and hence H(H−1

2 (z, w)) =
(
z +O(4), w +O(5)

)
.
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If κ = 5 we take in (2.24)

f4
j (z, w) = ajw

2 +
∑

|α|=2

bαj z
αw +

∑

|β|=4

cβj z
β , g5(z, w) =

n∑

j=1

djzjw
2 +

∑

|γ|=2

eγz
γw,

where aj , bαj , c
β
j , dj , eγ ∈ C, and f1

j (z, w) as in (2.26) which we plug into (2.24). If we consider coefficients
of terms of the form χγw for |γ| = 2 we obtain eγ = 0, terms of the form zβχj for |β| = 4 give cβj = 0

and coefficients of terms of the form zδχε for |δ| = 2, | ε | = 3 imply aj = 0. Then we immediately get
f4, g5 ≡ 0 and we have H(z, w) =

(
z+O(5), w+O(6)

)
. Next we apply Theorem 2.19 to this mapping,

which gives H ≡ idCn+1 , hence we have found all elements of Aut(M, 0) and the list in the statement
of Theorem 2.20 contains all elements of Aut(M, 0), which completes the proof.

We obtain the following corollary from Theorem 2.20:

Corollary 2.22. Let φ ∈ Aut(M, 0), then there exists a unique translation t and isotropy σ of (M, 0)

such that φ = t ◦ σ.

Proof. We let φ ∈ Aut(M, 0) with φ(0) = p ∈ M . According to Theorem 2.20 there exists a unique
translation t with t(0) = p such that σ := t−1 ◦φ satisfies σ(0) = 0 and is an automorphism ofM , hence
σ ∈ Aut0(M, 0) is exactly one of the isotropies listed in Theorem 2.20, which implies φ = t ◦ σ.

We set n = 1 in Theorem 2.20 to obtain the automorphisms of H2. We compose and reparametrize
isotropies and translations accordingly to obtain biholomorphic mappings given in the following defini-
tion.

Definition 2.23 (Automorphisms of H2). (i) We write R+ := {x ∈ R : x > 0}, denote the unit
sphere in C by S1 := {ei t : 0 ≤ t < 2π} and set Γ := R+ × R × S1×C. Then we parametrize
Aut0(H2, 0) via Γ and write for γ = (λ, r, u, c) ∈ Γ:

σγ(z, w) :=
(λu(z + cw), λ2w)

1− 2 i c̄z + (r − i |c|2)w
. (2.27)

(ii) We define for p0 = (z0, w0) ∈ H2 the following mapping which form the translations of H2:

tp0
: H2 → H2, tp0

(z, w) := (z + z0, w + w0 + 2 i z0z), (2.28)

with inverse given by

t−1
p0

: H2 → H2, t−1
p0

(z, w) := (z − z0, w − w0 − 2 i z0z). (2.29)

To get automorphisms of H3
ε we set n = 2 in Theorem 2.20. We are going to describe how to parametrize

the 2× 2-matrix U given by

U =

(
a b

c d

)
,
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with complex components. We let Iε be the 2×2-diagonal matrix with 1 in the first and ε in the second
diagonal entry. Then by Theorem 2.20 the matrix U is an automorphism of H3

ε if UIεtŪ = σIε, where
σ = ±1 if ε = −1, which gives the following system

|a|2 + ε |b|2 = σ,

|d|2 + ε |c|2 = σ,

āc+ ε b̄d = 0.

The last equation says that (d, c) = α(ā,− ε b̄) for α ∈ C and using the other two equations we obtain
|α| = 1. After some reparametrization we obtain

U =

(
ua − ε ub
b̄ ā

)
,

for |u| = 1 and |a|2 + ε |b|2 = σ.

Definition 2.24 (Automorphisms of H3
ε). (i) We define for σ = ±1 if ε = −1

S2
ε,σ :=

{
a′ ∈ C2 : ||a′||2ε = σ

}
,

and let

U ′ :=

(
u′a′1 − ε u′a′2
ā′2 ā′1

)
, u′ ∈ S1, a′ = (a′1, a

′
2) ∈ S2

ε,σ. (2.30)

We set Γ′ := R+ × R × S1×S2
ε,σ × C2 to parametrize Aut0(H3

ε, 0) via Γ′ and write for γ′ =

(λ′, r′, u′, a′, c′) ∈ Γ′:

σ′γ′(z
′, w′) :=

(λ′U ′ t(z′ + c′w′), σλ′2w′)

1− 2 i〈c̄′, z′〉ε +
(
r′ − i ||c′||2ε

)
w′
. (2.31)

(ii) We define for p′0 = (z′0, w
′
0) = (z′0

1
, z′0

2
, w′0) ∈ H3

ε the following mapping is a translations of H3
ε:

t′
−1
p′0

: H3
ε → H3

ε, t′
−1
p′0

(z′, w′) :=
(
z′ + z′0, w

′ + w′0 + 2 i〈z̄′0, z′〉ε
)
. (2.32)

with inverse given by

t′p′0 : H3
ε → H3

ε, t′p′0(z′, w′) :=
(
z′ − z′0, w′ − w′0 − 2 i〈z̄′0, z′〉ε

)
. (2.33)

Remark 2.25. For ε = −1 in the definition of U ′ in (2.30) we emphasize that we also allow for |a′1|2 −
|a′2|2 = −1. We define the following matrix V ′, which also belongs to the group of isotropies of H3

−, as
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follows:

V ′ :=




b′1 b′2 0

b̄′2 b̄′1 0

0 0 −1


 , (2.34)

with |b′1|2 − |b′2|2 = −1. If we take b′1 = 0 and set b′2 = 1 in V ′ we obtain the following automorphism
π′ of H3

− as in (2.23):

π′(z′1, z
′
2, w

′) := (z′2, z
′
1,−w′). (2.35)

If we do not mention otherwise we take σ = +1 in the definition of σ′ and use π′ separately.
Next, if we set a′2 = 0 in U ′ of (2.30), we define the following automorphisms U2(v) and U ′3(v1, v2) of
H2 and H3

ε respectively:

U2(v) :=

(
1/v 0

0 1

)
, U ′3(v1, v2) :=




v1 0 0

0 v2 0

0 0 1


 , U ′3(v) := U ′3

(
v, v2

)
, (2.36)

where |v| = 1 = |v1| = |v2| and we sometimes skip arguments in U2, U
′
3 and U3.

2.4 Equivalence Relations

We distinguish if we apply isotropies or translations to mappings. Roughly speaking isotropies are easier
to work with, since they do not move points as translations. Composing a mapping with translations
may have the consequence that the resulting mapping does look different in a certain way if we move
the base point.
We are going to introduce families of mappings by composing a mapping with translations depending on
some parameter set P0. Then for a mapping which is defined locally, P0 depends on the neighborhood
where the mapping is defined. Since at some point we only treat mappings which are defined everywhere
in C2 outside some complex-analytic set we only give definitions for this particular family of mappings.
In the case of composing mappings with isotropies we use the language of germs to have all parameters
of the isotropies available.

Definition 2.26 (Local equivalence). (i) Let G,H : (H2, 0)→ (H3
ε, 0) be germs of holomorphic map-

pings. We let (γ, γ′) ∈ Γ× Γ′ to define

Hγ,γ′(z, w) :=
(
σ′γ′ ◦H ◦ σγ

)
(z, w) (2.37)

and

O0(H) :=
{
Hγ,γ′ : (γ, γ′) ∈ Γ× Γ′

}
, (2.38)

which we call the isotropic orbit of H. We say G is isotropically equivalent to H if G ∈ O0(H).
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(ii) We will refer to the elements of Γ×Γ′ as standard parameters. In the case where we take standard
parameters (γ, γ′) ∈ Γ× Γ′ such that σγ = idC2 and σ′γ′ = idC3 , we say the standard parameters
are trivial.

For the first part of the next definition we follow [Hua99, Section 4] for mappings which are defined
everywhere on H2. In subsection 6.1 below we give an equivalence relation for mappings defined in an
open set of H2.

Definition 2.27 (Global equivalence). (i) Let U ⊂ C2 be a neighborhood of H2 such that H : U →
C3 is a holomorphic mapping with H(H2) ⊂ H3

ε. Then we define for (z, w) ∈ H2 and p0 ∈ H2:

Hp0(z, w) :=
(
t′H(p0) ◦H ◦ tp0

)
(z, w). (2.39)

(ii) Let H be as above, (z, w) ∈ H2 and (γ, γ′) ∈ Γ × Γ′. Then we define for p0 ∈ H2 the following
mapping:

Hp0,γ,γ′(z, w) :=
(
σ′γ′ ◦ t′H(p0) ◦H ◦ tp0

◦ σγ
)

(z, w).

As above in the case where we take standard parameters (γ, γ′) ∈ Γ×Γ′ such that σγ = idC2 and
σ′γ′ = idC3 and p0 = 0, we say the standard parameters and p0 are trivial.

We note that if the standard parameters are chosen to be trivial in Hp0,γ,γ′ we obtain a mapping Hp0

as given in (2.39) and for H0,γ,γ′ we can use the notation as given in (2.37).
Letting p0 vary in H2 and (γ, γ′) in Γ× Γ′ we consider the following definition in the sense of germs of
mappings Hp0,γ,γ′ :
(iii) We define the orbit of H as

O(H) :=
{
Hp0,γ,γ′ : p0 ∈ H2, (γ, γ′) ∈ Γ× Γ′

}
. (2.40)

For G : U → C3 a holomorphic mapping sending H2 to H3
ε for U ⊂ C2 a neighborhood of 0, we

say G is equivalent to H if G ∈ O(H) after possibly shrinking U .

Definition 2.28 (Degree). For a rational, holomorphic mapping H : CN → CN ′ given by H =

(P1, . . . , PN ′)/Q, where P1, . . . , PN ′ and Q are polynomial and complex-valued we say H is reduced
if P1, . . . , PN ′ and Q do not possess any common factor. Then the degree degH of a reduced rational
map H is defined as

degH := max
(
(degPk)k=1,...,N ′ ,degQ

)
.

26



3 First Properties

In this section we introduce the equation a mapping from H2 to H3
ε has to satisfy and deduce some

basic properties to obtain some invariants of the mappings. From this we get a first, rough classification
of mappings as well as a class of mappings which we are going to study more extensively.

Assumption

According to Remark 2.7 and Definition 2.4 our starting point is for U ⊂ C2 an open and connected
neighborhood of 0 we have given a mapping H : U → C3 with H(U ∩ H2) ⊂ H3

ε and H(0) = 0. The
components of H are denoted by H = (f, g) = (f1, f2, g).
The condition that H maps H2 into H3

ε can be expressed via a so called mapping equation which is
given as follows:

Im
(
g(z, w)

)
= |f1(z, w)|2 + ε |f2(z, w)|2, (3.1)

if Imw = |z|2 for (z, w) ∈ U . In order to work with such an equation in a more convenient way we
write (3.1) as

g(z, w)− ḡ(z̄, w̄) = 2 i
(
f1(z, w)f̄1(z̄, w̄) + ε f2(z, w)f̄2(z̄, w̄)

)
, (3.2)

if w − w̄ = 2 i zz̄. After expressing w in the last equation and plugging the result into (3.2) we apply
Theorem 2.1. By setting χ := z̄ and τ := w̄ we obtain the following equation:

g(z, τ + 2 i zχ)− ḡ(χ, τ) = 2 i
(
f1(z, τ + 2 i zχ)f̄1(χ, τ) + ε f2(z, τ + 2 i zχ)f̄2(χ, τ)

)
, (3.3)

which holds for all (z, χ, τ) ∈ C3 sufficiently close to 0. We refer to this equation as complexified mapping
equation.
Some easy facts can be deduced directly from (3.3): If we evaluate at (z, χ, τ) = (z, 0, 0) we obtain
g(z, 0) = 0. Moreover differentiating (3.3) with respect to z and χ and evaluating the result at 0 we
have

gw(0) = f1z(0)f̄1χ(0) + ε f2z(0)f̄2χ(0) = |f1z(0)|2 + ε |f2z(0)|2, (3.4)

which implies gw(0) ∈ R.

3.1 Transversality of Mappings

This section is devoted to introduce a well-known first-order biholomorphic invariant for mappings.

Definition 3.1 (Transversality). Let M ⊂ CN and M ′ ⊂ CN ′ be real-analytic, real hypersurfaces and
U ⊂ CN be a neighborhood of p ∈ M . A holomorphic mapping H : CN → CN ′ with H(U ∩M) ⊂ M ′
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is called transversal to M ′ at H(p) if

TH(p)M
′ + dH(TpCN ) = TH(p)CN

′
. (3.5)

Remark 3.2. (i) In view of (3.5) it is easy to observe that transversality is invariant under biholomor-
phic changes of coordinates: Let H be a mapping as in Definition 3.1. We assume w.l.o.g. that
p = 0 and H(0) = 0. Let ψ and ψ′ be biholomorphisms of CN and CN ′ sending (M, 0) to (M̃, p̃)

and (M ′, 0) to (M̃ ′, p̃′) respectively. For the induced mapping H̃ = ψ′◦H◦ψ−1 : (M̃, p̃)→ (M̃ ′, p̃′)

we consider (3.5). Then we note that Tp̃′M̃ ′ and dH̃(Tp̃CN ) are related to T0M
′ and dH(T0CN ) via

the Jacobian matrix of ψ′,which shows that H̃ is transversal to M̃ ′ at p̃′, hence again transversal.
(ii) When dealing with submanifolds there also exists the notion of the so called CR-transversality of

a mapping H. We use the notation from subsection 2.1 and let M ⊂ CN and M ′ ⊂ CN ′ be real-
analytic real submanifolds of codimension d and d′ respectively and H a holomorphic mapping
sending locally M to M ′. Let p ∈M , then H is called CR-transversal to M ′ at H(p) if

T 1,0
H(p)M

′ + dH(T 1,0
p CN ) = T 1,0

H(p)C
N ′ .

It can be shown that a mapping of real submanifolds which is CR-transversal is transversal in
the sense of Definition 3.1, if we allow for submanifolds instead of hypersurfaces in this definition.
The converse is in general not true, but if we deal with mappings of hypersurfaces these notions
coincide, see [ER06, §5].

We give some characterizations for transversality of a mapping which will be useful for our purpose.

Lemma 3.3 ([ER06, Theorem 5.2]). Let (M,p) ⊂ CN+1 and (M ′, p′) ⊂ CN ′+1 be germs of con-
nected, real-analytic, real hypersurfaces given in coordinates Z = (z1, . . . , zN+1) ∈ CN+1 and Z ′ =

(z′1, . . . , z
′
N ′+1) ∈ CN ′+1 by ρ and ρ′ defining functions for M and M ′ respectively. Let H : (M,p) →

(M ′, p′) be a germ of a holomorphic mapping. Then the following statements are equivalent:
(i) H is transversal to M ′ at p′.
(ii) There exists a holomorphic function A : (C2N+2, p)→ C such that the following equation holds:

ρ′
(
H(Z), H̄(ζ)

)
= A(Z, ζ)ρ(Z, ζ), (3.6)

with A(p, p̄) 6= 0.
(iii) If we choose normal coordinates as in Definition 2.2 with p = p′ = 0 we have ∂g

∂w (0) 6= 0.

Proof. To prove the lemma we first change to normal coordinates (z, w) = (z1, . . . , zN , w) ∈ CN+1 and
(z′, w′) = (z′1, . . . , z

′
N ′ , w

′) ∈ CN ′+1 centered at p = p′ = 0 as in Definition 2.2 and write H = (f, g) =

(f1, . . . , fN ′ , g) : (M, 0) → (M ′, 0). By Remark 3.2 H is transversal to M ′ at 0 if and only if H is
transversal to M ′ at p′.
To prove the lemma we set p = p′ = 0 and show (i) ⇔ (iii) and then we prove (ii) ⇔ (iii). The first
equivalence is proved by verifying what (3.5) means under the assumptions of the lemma. For this
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purpose we write

CT0M = CT c0M ⊕N0M = T 1,0
0 M ⊕ T 0,1

0 M ⊕N0M, (3.7)

where we use the definitions from subsection 2.1 such that

T 1,0
0 M =

〈
∂

∂zj
, j = 1, . . . , N

〉

C
∩ CT0M,

T 0,1
0 M =

〈
∂

∂z̄j
, j = 1, . . . , N

〉

C
∩ CT0M,

N0M =

〈
∂

∂w
+

∂

∂w̄

〉

C
.

Using (3.7) and since M is of hypersurface type we have

CT0CN = CT0M + JCT0M = CT0M ⊕ JN0M. (3.8)

Note that an analogous decomposition holds if we replace M by M ′. Next we complexify M and M ′

and if we use (3.8), the definition of transversality from (3.5) is equivalent to

CT0M
′ + dH(JN0M) = CT0CN

′
, (3.9)

where we take coordinates (z, w, z̄, w̄) ∈ CN+1 × CN+1 and (z′, w′, z̄′, w̄′) ∈ CN ′+1 × CN ′+1 for the
complexification of M and M ′ respectively, where (z, w) ∈ CN+1 and (z′, w′) ∈ CN ′+1 are normal
coordinates for M and M ′ respectively. Then ∂

∂w − ∂
∂w̄ ∈ JN0M corresponds to the vector N :=

(0, 1, 0,−1) ∈ CN ×C×CN ×C. Since we are working with normal coordinates we can deduce similar
to (3.4) that ∂g

∂w (0) is a real matrix and g(z, 0) = 0.
To complete this part of the proof we consider the expression dH(JN0M) and compute the tangent
vector X := dH|0N as follows:

X =

(
∂(f, g, f̄ , ḡ)

∂(z, w, z̄, w̄)
(0)

)
N =




∂f
∂z (0) ∂f

∂w (0) 0 0

0 ∂g
∂w (0) 0 0

0 0 ∂f̄
∂z̄ (0) ∂f̄

∂w̄ (0)

0 0 0 ∂g
∂w (0)







0

1

0

−1




=




∂f
∂w (0)
∂g
∂w (0)

− ∂f̄
∂w̄ (0)

− ∂g
∂w (0)



,

which in normal coordinates is the following vector:

X =

(
∂f

∂w
(0)

∂

∂z′
+
∂g

∂w
(0)

∂

∂w′
− ∂f̄

∂w̄
(0)

∂

∂z̄′
− ∂g

∂w
(0)

∂

∂w̄′

)
.

The part of X which is not in CT0M
′ is given by ∂g

∂w (0)
(
∂
∂w′ − ∂

∂w̄′

)
. Thus (3.9) is satisfied if and only

if ∂g
∂w (0) 6= 0, which completes the proof of the equivalence of (i) and (ii).
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Next we show (ii) ⇔ (iii): Since we have given normal coordinates near 0 we write

ρ(z, w, χ, τ) = w −Q(z, χ, τ),

ρ′(z′, w′, χ′, τ ′) = w′ −Q′(z′, χ′, τ ′),

where τ = Q(z, 0, τ) = Q(0, χ, τ) and τ ′ = Q′(z′, 0, τ ′) = Q′(0, χ′, τ ′). Because H maps M to M ′ there
exists a nontrivial holomorphic function A : C2(N+1) → C such that

g(z, w)−Q′
(
f(z, w), f̄(χ, τ), ḡ(χ, τ)

)
= A(z, w, χ, τ)

(
w −Q(z, χ, τ)

)
, (3.10)

for all (z, w, χ, τ) ∈ C2N+2 near 0. Then we differentiate the previous equation (3.10) with respect to
w and evaluate at 0. By the normality condition of Q and Q′ we have Q′z′(0) = Qz(0) = 0 to obtain
gw(0) = A(0), which proves the equivalence of (ii) and (iii).

Remark 3.4. (i) Lemma 3.3 shows that if H is not transversal to M ′ at H(q) if and only if there
exists a holomorphic function A satisfying A(q, q̄) = 0. The set {q ∈ M : A(q, q̄) = 0} defines
a proper, real-analytic subset of M and hence we say H is transversal to M ′ outside a proper,
real-analytic subset of M if H is transversal to M ′ at H(p) for some p ∈M . Otherwise we say H
is nontransversal.

(ii) Lemma 3.3 (iii) together with (3.4) shows that a transversal mapping H from H2 to H3
ε is immer-

sive.

We see in the next proposition what happens if we study mappings from H2 to H3
ε. It turns out that

for ε = −1 there are mappings which need not be transversal, in contrast to the case ε = +1.

Proposition 3.5 ([BER07, Theorem 1.1]). Let U ⊂ C2 be an open, connected neighborhood of 0 and
H : U → C3 a non-constant holomorphic mapping with H(U ∩H2) ⊂ H3

ε. Then we have the following
two mutually exclusive statements:
(i) H is transversal to H3

ε outside a proper, real-analytic subset of U ∩H2.
(ii) The mapping satisfies H(U) ⊂ H3

ε.
Furthermore (ii) can only appear if ε = −1.

Proof. By our assumptions there exists a holomorphic function a : C4 → C such that

g(z, w)− ḡ(χ, τ)− 2 i
(
f1(z, w)f̄1(χ, τ) + ε f2(z, w)f̄2(χ, τ)

)
= a(z, w, χ, τ)

(
w − τ − 2 i zχ

)
, (3.11)

for all (z, w, χ, τ) ∈ C4 near 0. We have the possibility that a ≡ 0 to obtain (ii) for ε = −1, since if
ε = +1 we would have H ≡ 0. If a 6≡ 0 then we divide the function a sufficiently often by the defining
function of H2 to obtain a holomorphic function A : C4 → C satisfying

a(z, w, χ, τ) = A(z, w, χ, τ)(w − τ − 2 i zχ)m, (3.12)

for m ≥ 0 and A|H2 6≡ 0. If m = 0 we are in the business of (ii) of Lemma 3.3 to obtain (i), since
the proper, real-analytic set of points q ∈ H2 where H is not transversal to H3

ε at q ∈ H2 is given by
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A(q, q̄) = 0 according to Remark 3.4 (i).
The rest of the proof consists of showing that m ≥ 1 is possible only if ε = −1 and H satisfies the
property given in (ii). For this purpose we change coordinates to assume A(0) 6= 0, let m ≥ 1 and
replace a in (3.11) by (3.12) to obtain

g(z, w)− ḡ(χ, τ)− 2 i
(
f1(z, w)f̄1(χ, τ) + ε f2(z, w)f̄2(χ, τ)

)
= A(z, w, χ, τ)

(
w − τ − 2 i zχ

)k
, (3.13)

for k ≥ 2 and A(0) 6= 0.
If we set χ = τ = 0 we obtain

g(z, w) = A(z, w, 0, 0)wk,

and using this in (3.13) we get

A(z, w, 0, 0)wk − Ā(χ, τ, 0, 0)τk − 2 i
(
f1(z, w)f̄1(χ, τ) + ε f2(z, w)f̄2(χ, τ)

)
(3.14)

= A(z, w, χ, τ)
(
w − τ − 2 i zχ

)k
,

Next we differentiate (3.14) with respect to z and χ and evaluate at 0 to obtain

f1z(0)f̄1χ(0) + ε f2z(0)f̄2χ(0) = 0, (3.15)

since k ≥ 2.
For ε = +1 we obtain fz(0) =

(
f1z(0), f2z(0)

)
= 0 and since we always have gz(0) = 0 as noted in

section 3, the rank of the Jacobian of H is at most 1, which means that H is not immersive. We
conclude that there is no non-immersive mapping if ε = +1 similar as in the proof of [Leb11b, Theorem
1.2] as follows: Having the rank of the Jacobian of H at most 1 means that outside a complex-analytic
set in U ⊂ C2 the mapping H sends a neighborhood of p ∈ C2 into a complex 1-dimensional subset
of C3. It is possible to find p ∈ H2, such that H sends an open neighborhood of p in H2 to H3 which
implies that there is no non-immersive H, since H3 does not contain complex-analytic sets.
From now on we treat the case ε = −1. In view of (3.15) we say the vector fz(0) is trivial if at least
one of the components is 0. Hence if fz(0) is trivial we have that H is not immersive and we conclude
(ii) as in the proof of [Leb11b, Theorem 1.2]: We proceed as above where ε = +1 and note that outside
a complex-analytic set in U ⊂ C2 the mapping H sends a neighborhood of p ∈ H2 to a 1-dimensional
subset in C3. Then we observe that H maps a neighborhood V ⊂ C2 of p ∈ H2 into H3

−, since if the
image of H in H3

− is less than two real-dimensional, then the preimage of such a point would give a
complex-analytic set in H2 according to the rank theorem, which is not possible.
Let us assume fz(0) is nontrivial for the rest of the proof. Then we proceed by setting z = τ = 0 in
(3.14), differentiate with respect to χ and evaluate at χ = 0 to obtain

−2 i
(
f1(0, w)f̄1χ(0)− f2(0, w)f̄2χ(0)

)
= Aχ(0, w, 0, 0)wk. (3.16)
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Differentiating (3.16) with respect to w and evaluating at 0 gives

f1w(0)f̄1χ(0)− f2w(0)f̄2χ(0) = 0, (3.17)

since k ≥ 2, which implies the vector fw(0) =
(
f1w(0), f2w(0)

)
is a multiple of fz(0). At the end of the

proof we need the wk−1-coefficient in (3.16), which satisfies

f1wk−1(0)f̄1χ(0)− f2wk−1(0)f̄2χ(0) = 0. (3.18)

Next we take z = χ = 0 in (3.14), differentiate with respect to τ and evaluate at τ = 0 to get

−2 i
(
f1(0, w)f̄1τ (0)− f2(0, w)f̄2τ (0)

)
= Aτ (0, w, 0, 0)wk − kA(0, w, 0, 0)wk−1. (3.19)

Then we differentiate (3.19) k − 1-times with respect to w and evaluate at 0 to obtain

−2 i
(
f1wk−1(0)f̄1τ (0)− f2wk−1(0)f̄2τ (0)

)
= −k!A(0). (3.20)

Since we already know from (3.17) that fw(0) is a multiple of fz(0) we substitute f̄χ(0) into (3.20) and
use (3.18) to obtain A(0) = 0, a contradiction.

3.2 Degeneracy of Mappings

The next biholomorphic invariant we need is the well-known (finite) degeneracy for mappings. This in-
variant was used by among others Faran [Far82], Cima–Suffridge [CS83] and Forstnerič [For89] to extend
proper holomorphic mappings, which are smooth up to the boundary of their domain, holomorphically
past the boundary. This section is based on [Lam01, Section 2.5].

Definition 3.6 (Degeneracy). Let M ⊂ CN and M ′ ⊂ CN ′ be generic, real-analytic submanifolds of
codimension d and d′ respectively and denote n := N − d and n′ := N ′ − d′. For p ∈ M,p′ ∈ M ′ and
U ⊂ CN a neighborhood of p we letH : U → CN ′ be a holomorphic mapping satisfyingH(U∩M) ⊂M ′.
We choose coordinates Z and Z ′ centered at p and p′ forM andM ′ respectively. In the complexification
of M and M ′ we write ζ := Z̄ and ζ ′ := Z̄ ′. For ρ′ = (ρ′1, . . . , ρ

′
d′) a defining function for M ′ near p′ we

denote for 1 ≤ j ≤ d′ the complex gradient ρ′j,Z′(Z
′, Z̄ ′) of ρ′j with respect to Z ′ by defining

ρ′j,Z′(Z
′, ζ ′) :=

(
∂ρ′j(Z

′, ζ ′)

∂z′1
, . . . ,

∂ρ′(Z ′, ζ ′)
∂z′N ′

)
.

For L1, . . . , Ln a basis of CR-vector fields for M near p, as defined in subsection 2.1, and α =

(α1, . . . , αn) ∈ Nn we denote Lα := Lα1
1 · · ·Lαnn . Then we define for k ≥ 0 and q ∈ M near p the

following vector spaces after possibly shrinking U :

E′k(q) := spanC

{
Lαρ′j,Z′

(
H(Z), H̄(ζ)

)∣∣∣
(Z,ζ)=(q,q̄)

: 0 ≤ |α| ≤ k, 1 ≤ j ≤ d′
)}
⊂ CN

′
. (3.21)

Since for k ≥ 0 the E′k(q) form an ascending chain of vector spaces in CN ′ , there exists a minimal k0 ≥ 0
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such that E′k(q) = E′k0
(q) for all k ≥ k0 and E′k0−1(q) ( E′k0

(q) in a neighborhood of q ∈M . We set

s(q) := N ′ − dimCE
′
k0

(q),

called the degeneracy of H at q and H is called
(
k0, s(q)

)
-degenerate at q ∈M .

If s = s(q) is constant in a neighborhood of p ∈M we say H is constantly (k0, s)-degenerate near p ∈M
and s is called constant degeneracy of H.
If for some q ∈M we have s(q) = 0, then E′k0

(q) = CN ′ which means that H is of constant degeneracy
s = 0 near q and H is called k0-nondegenerate.

Lemma 3.7. Definition 3.6 is independent of the choices of a basis of CR-vector fields and the defining
function.

Proof. Let L̃ = (L̃1, . . . , L̃n) be another basis of CR-vector fields for M , such that L̃ = A(Z, ζ)L for
an invertible matrix A(Z, ζ) = (ajk(Z, ζ))j,k=1,...,n in a neighborhood of p ∈ M . Then L̃α is a linear
combination of Lβ for |β| ≤ |α|. Thus if we denote by Ẽ′k(q) the subspace as given in (3.21) where we
use L̃ instead of L, we obtain that Ẽ′k(q) consists of linear combinations of vectors in E′k(q). Hence if
we interchange roles of L̃ and L we have Ẽ′k(q) = E′k(q).
To see the independence of Definition 3.6 of the defining function we let ρ̃′ be another defining
function for M ′. Then we have ρ̃′(Z ′, ζ ′) = B(Z ′, ζ ′)ρ′(Z ′, ζ ′) for an invertible matrix B(Z ′, ζ ′) =

(bjk(Z ′, ζ ′))j,k=1,...,d′ near p′ ∈M ′. For ` = 1, . . . , d′ we compute

ρ̃′`,Z′(Z
′, ζ ′) =

d′∑

k=1

b`k,Z′(Z
′, ζ ′)ρ′k(Z ′, ζ ′) +

d′∑

k=1

b`k(Z ′, ζ ′)ρ′k,Z′(Z
′, ζ ′).

Then in Lαρ̃′`,Z′(H(Z), H̄(ζ)) the first sum vanishes if we restrict to M and in the second sum we
obtain terms of the form Lβρ′`,Z′(H(Z), H̄(ζ)) for |β| ≤ |α|. Again if we write Ẽ′k(q) for the subspace
given by (3.21) where we use ρ̃′ instead of ρ′, we obtain, after interchanging ρ̃′ and ρ′ in the previous
consideration, Ẽ′k(q) = E′k(q).

Example 3.8. For U ⊂ C2 an open set containing S2 we consider the mapping F4 : U → S3 of
Theorem 1.1 and choose coordinates Z = (z1, z2) ∈ C2 and Z ′ = (z′1, z

′
2, z
′
3) ∈ C3. We write ζ = Z̄ and

ζ ′ = Z̄ ′, such that S2, the complexification of S2, is given by ρ(Z, ζ) = Zζ − 1 and the complexification
of S3 is given by ρ′(Z ′, ζ ′) = Z ′ζ ′ − 1. Then

ϕ(Z, ζ) := ρ′Z′
(
F4(Z), F̄4(ζ)

)
=
(
ζ3
1 ,
√

3ζ1ζ2, ζ
3
2

)
,

and we take L = z2
∂
∂ζ1
− z1

∂
∂ζ2

as a basis for the CR-vector fields. We note that Lkϕ = 0 for k ≥ 4 and
compute

{
Lϕ,L2ϕ,L3ϕ

}
=
{(

3z2ζ
2
1 ,
√

3(z2ζ2 − z1ζ1),−3z1ζ
2
2

)
,
(

6z2
2ζ1,−2

√
3z1z2, 6z

2
1ζ2

)
,
(

6z3
2 , 0,−6z3

1

)}
.
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Then the set for S2, where F4 is 3-nondegenerate is given by

{(Z, ζ) ∈ S2 : det(ϕ,Lϕ,L2ϕ) = 0} = {(Z, ζ) ∈ S2 : ζ1ζ2 = 0}.

In the following we show that the notion of degeneracy is invariant under biholomorphic changes of
coordinates in CN and CN ′ .

Lemma 3.9 ([Lam01, Lemma 14]). Definition 3.6 is independent of the choices of holomorphic coor-
dinates in CN and CN ′ .

Proof. Let Ψ and Ψ′ be biholomorphisms of CN and CN ′ respectively, such that Z̃ := Ψ(Z) and
Z̃ ′ := Ψ′(Z ′) are holomorphic coordinates for M̃ and M̃ ′ near p̃ and p̃′ respectively.
A change of coordinates in CN has the consequence that the CR-vector fields L are mapped to L̃ = Ψ∗L,
which form a basis of CR-vector fields for M̃ . Similar as we did in the proof of Lemma 3.7 we can show
that Ẽ′k(q̃) = E′k(q), where Ẽ′k(q̃) is obtained from (3.21) if we write H̃ := H ◦Ψ−1, use Z̃ as coordinates
for M̃ and L̃ as a basis of CR-vector fields near p̃.
To show the invariance of a change of coordinates in CN ′ we have ρ̃′(Z̃ ′, ζ̃ ′) := ρ′(Ψ′−1(Z̃ ′), Ψ̄′−1(ζ̃ ′))

as defining function for M̃ ′ and we compute for 1 ≤ ` ≤ d′:

ρ̃′
`,Z̃′

(Z̃ ′, ζ̃ ′) =
(
ρ′`(Ψ

′−1(Z̃ ′), Ψ̄′−1(ζ̃ ′))
)
Z̃′

= ρ′`,Z′(Ψ
′−1(Z̃ ′), Ψ̄′−1(ζ̃ ′))

∂Ψ′−1

∂Z̃ ′
(Z̃ ′).

If we plug in H(Z) for Z̃ ′ we set H̃ := Ψ′−1 ◦ H and note that the CR-vector fields of L annihilate
∂Ψ′−1

∂Z̃′
(H(Z)). Again we obtain Ẽ′k(q̃) = E′k(q) if we choose ρ̃′ in (3.21).

In order to obtain a more global view on the concept of degeneracy we define the following degeneracy.

Definition 3.10. Let M ⊂ CN and M ′ ⊂ CN ′ be generic, real-analytic submanifolds and U ⊂ CN be
a neighborhood of p ∈ M . Let H : U → CN ′ be a holomorphic mapping satisfying H(U ∩M) ⊂ M ′

and fix V ⊂ U a neighborhood of p ∈M such that V ∩M ⊂ U . The number

sH(V ) := min
q∈V ∩M

s(q),

is called generic degeneracy in V ⊂ CN a neighborhood of p ∈M .

Note that H is of constant degeneracy sH(V ) near p ∈ V . The following lemma shows that H having
degeneracy sH happens generically in U .

Lemma 3.11 ([Lam01, Lemma 22]). LetM ⊂ CN andM ′ ⊂ CN ′ be generic, real-analytic submanifolds
and U ⊂ CN a neighborhood of p ∈ M . Let H : U → CN ′ be a holomorphic mapping satisfying
H(U ∩M) ⊂M ′ and fix V ⊂ U a neighborhood of p ∈M . Then H is constantly

(
k0, sH(V )

)
-degenerate

outside a proper, real-analytic subset of V ∩M for some k0 ∈ N.

Proof. In order to show the claim we prove that the set

X :=
{
q ∈ V ∩M : s(q) > sH(V )

}
( V ∩M,
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is a real-analytic subset in V by giving real-analytic defining functions for X. We go back to Defini-
tion 3.6 and define for 1 ≤ ` ≤ d′ and 1 ≤ k ≤ N ′ the following real-analytic functions:

ϕ`,k(Z, ζ) := ρ′`z′k
(
H(Z), H̄(ζ)

)
. (3.22)

Being of constant degeneracy sH = sH(V ) in V ∩M means the following: There exist t = tH := N ′−sH
multi-indices β1, . . . , βt ∈ Nn and numbers m1, . . . ,mt ∈ N with 1 ≤ mr ≤ d′ such that, after possibly
permuting components in Z ′, the following vectors with real-analytic entries

vj(Z, ζ) :=
(
Lβ

j

ϕmj ,1(Z, ζ), . . . , Lβ
j

ϕmj ,t(Z, ζ)
)
∈ Ct, 1 ≤ j ≤ t (3.23)

form a basis of Ct. Since sH is the smallest possible degeneracy in V ∩M the set X of points q ∈ V ∩M ,
where the degeneracy s(q) is bigger than sH is given by

X =
{
q ∈ V ∩M : det

(
v1(q, q̄), . . . , vt(q, q̄)

)
= 0
}
,

which is a proper and real-analytic subset.
The number k0 is given by the maximal length of the βr for 1 ≤ r ≤ t from above.

Lemma 3.11 shows if we take a smaller neighborhood W ⊂ V in Definition 3.10 then sH(V ) = sH(W ).
Hence we skip the argument in sH(V ) and write sH from now on.

Remark 3.12. For nondegenerate mappings and mappings of degeneracy equal to 1 we can deduce jet
parametrizations which we are going to give in two of the following sections below. In the case of the
constantly 1-degenerate mappings we mention the following easy fact for this purpose:
In the proof of Lemma 3.11 we had for a mapping H of constant degeneracy s, that the vectors vj given
in (3.23) form a basis of Ct, where t = N ′ − s. We furthermore have that this set of vectors satisfies
the following equations: For any γ ∈ Nn, t+ 1 ≤ k ≤ N ′ and 1 ≤ ` ≤ d′ the determinant of the matrix




Lβ
1

ϕm1,1 · · · Lβ
1

ϕm1,t Lβ
1

ϕm1,k

...
...

...
Lβ

t

ϕmt,1 · · · Lβ
t

ϕmt,t Lβ
t

ϕmt,k

Lγϕ`,1 · · · Lγϕ`,t Lγϕ`,k




(3.24)

restricted to points in M vanishes.

Next we obtain bounds for the generic degeneracy sH and k0 adapted to our setting.

Proposition 3.13 ([Lam01, Lemma 23–24]). Let U ⊂ C2 be a neighborhood of p ∈ H2 and H : U → C3

a holomorphic mapping with components H = (f1, f2, g) and H(U ∩ H2) ⊂ H3
ε which is transversal to

H3
ε outside a proper real-analytic subset of H2. There exists a proper, real-analytic subset X of U ∩H2

such that after shrinking U and performing a change of coordinates in U \X the following two mutually
exclusive statements hold:
(i) H is 2-nondegenerate, such that f1z(0)f2z2(0)− f2z(0)f1z2(0) 6= 0.
(ii) H is constantly (1, 1)-degenerate, such that f1z(0)f2zk(0)− f2z(0)f1zk(0) = 0, for all k ≥ 2.
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Proof. By Lemma 3.11 we have (k0, sH)-degeneracy outside a proper, real-analytic subset of H2. By
Remark 3.2 and Lemma 3.9 after a change of coordinates we assume that 0 is a point where H is
constantly (k0, sH)-degenerate and transversal to H3

ε. This change of coordinates is performed via
composing H with translations such that 0 gets mapped to a point q where H is constantly (k0, sH)-
degenerate and transversal to H3

ε, i.e., we consider the mapping t′H(q) ◦ H ◦ tq from (2.28) and (2.33)
instead of H. At this point it is possible that we need to shrink U .
Before we give estimates for k0 and sH we introduce some notation first:
Let (Z, ζ) = (z, w, χ, τ) and (Z ′, ζ ′) = (z′1, z

′
2, w

′, χ′1, χ
′
2, τ
′) be coordinates of the complexification of H2

and H3
ε and

ρ′(Z ′, ζ ′) := w′ − τ ′ − 2 i(z′1χ
′
1 + ε z′2χ

′
2)

a defining function for the complexification of H3
ε. A basis of (0,1)-vector fields of the complexification

of H2 is given by

L :=
∂

∂χ
− 2 i z

∂

∂τ
. (3.25)

Next we define for k ≥ 0

vk(Z, ζ) := Lkρ′Z′
(
H(Z), H̄(ζ)

)
= Lk

(
−2 i f̄1(χ, τ),−2 i ε f̄2(χ, τ), 1

)
, (3.26)

and uk := vk(0, 0). Further let us define the subspaces E′k := spanC{um : 0 ≤ m ≤ k}.
Then we have u0 = (0, 0, 1) and u` = −2 i

(
f̄1χ`(0), ε f̄2χ`(0), 0

)
for ` ≥ 0. Since H is transversal at 0 we

have by Remark 3.4 (ii) u1 6= 0 such that u0 and u1 are linearly independent. Consequently E′0 ( E′1
and dimCE

′
k ≥ 2 for k ≥ 1, which implies k0 ≥ 1 and 0 ≤ sH ≤ 1. We are left with two cases:

If sH = 0, then k0 ≥ 2. In order to show k0 = 2 we prove as in [BER99b, Lemma 11.5.4]

∆(z) := f1z(z, 0)f2z2(z, 0)− f1z2(z, 0)f2z(z, 0) 6≡ 0, (3.27)

which says that ∆ vanishes on a proper, complex-analytic set of C. Since H2 does not contain any
complex-analytic sets we obtain that H is 2-nondegenerate outside a proper real-analytic subset of
U ∩H2 satisfying the linear independence condition in (i).
We show (3.27) by assuming the converse ∆ ≡ 0 and write

(
f1(z, 0), f2(z, 0)

)
=


∑

k≥1

akz
k,
∑

`≥1

b`z
`


 ,

where (ak, b`) =
(
f1zk(0)/k!, f2z`(0)/`!

)
. Then we have

∆(z) =
∑

m≥3

(
m−2∑

k=1

k(m− k)(m− k − 1)
(
akbm−k − am−kbk

))
zm−3.
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Considering the coefficients zα for α ≥ 0 in ∆ ≡ 0 we inductively obtain that there exists Ak ∈ C such
that (ak, bk) = Ak(a1, b1) for all k ≥ 2. This implies

(
f1(z, 0), f2(z, 0)

)
=
(
f1z(0), f2z(0)

)
h(z),

for some holomorphic function h : C → C. Then we have E′1 = E′k for k ≥ 2, hence k0 = 1, a
contradiction.
Finally we consider the case sH = 1, where we must have dimCE

′
k = 2. This is already achieved

for k = 1, which means that H is (1, 1)-degenerate outside a proper, real-analytic set of U ∩ H2.
Furthermore, since then E′1 = E′k for k ≥ 2, we obtain the condition

f1z(0)f2zk(0)− f2z(0)f1zk(0) = 0, ∀k ≥ 2, (3.28)

which completes the proof.

Remark 3.14. We let H = (f1, f2, g) be as in Proposition 3.13. According to Definition 3.6 and (3.26)
we note that the set N of points in H2, where H is not 2-nondegenerate, is given by

N :=
{
p ∈ H2 : Lf1(p)L2f2(p)− Lf2(p)L2f1(p) = 0

}
.

Remark 3.15. The conditions forH given in Proposition 3.13 (i) and (ii) are invariant under applications
of isotropies or appropriate translations as in (2.37) or (2.39), if one assumes that the parameter
occurring in (2.39) belongs to a sufficiently small neighborhood of 0. Since translations are not needed
at this point of our investigations we will discuss them in a subsequent chapter in more detail.

3.3 Initial Classification and the Class F2

We are going to use the invariants we introduced in the previous section to obtain a first classification
of mappings.

Proposition 3.16. Let U ⊂ C2 be an open and connected neighborhood of 0 and H : U → C3 a non-
constant holomorphic mapping given by H = (f1, f2, g) with H(U∩H2) ⊂ H3

ε and H(0) = 0. Then, after
possibly shrinking U , changing coordinates or composing H with automorphisms, one of the following
mutually exclusive statements holds:
(i) H is transversal to H3

ε and 2-nondegenerate at 0 and we can assume H(0) = 0, gw(0) = |f1z(0)|2+

ε |f2z(0)|2 > 0 and f1z(0)f2z2(0)− f2z(0)f1z2(0) 6= 0.
(ii) H is equal to the linear embedding (z, w) 7→ (z, 0, w).
(iii) For ε = −1: H is a mapping of the form (z, w) 7→ (h(z, w), h(z, w), 0) for some non-constant

holomorphic function h : U → C with h(0) = 0.

Definition 3.17. We assign to the mappings from Proposition 3.16 (i) the following notation: For a
neighborhood U ⊂ C2 of 0 let us denote the set F2(U) of holomorphic mappings H = (f1, f2, g) with
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H(U ∩H2) ⊂ H3
ε, which satisfy H(0) = 0, using the notation of (2.4)

∆(1, 0; 2, 0) = f1z(0)f2z2(0)− f2z(0)f1z2(0) 6= 0 (3.29)

and

gw(0) > 0. (3.30)

We denote by F2 the set of germs H, such that H ∈ F2(U) for some U ⊂ C2 a neighborhood of 0.

Proof of Proposition 3.16. We apply Proposition 3.5 to obtain that either H is transversal to H3
ε outside

a proper, real-analytic set of U ∩H2 or for ε = −1 we have H maps a neighborhood U ⊂ C2 of 0 to H3
−.

We assume the first condition for H and apply Proposition 3.13, such that after performing a change of
coordinates via translations and possibly shrinking U as in the beginning of the proof of Proposition 3.13,
that H is transversal to H3

ε at 0 and either 2-nondegenerate or (1, 1)-degenerate near 0. By Lemma 3.3
transversality to H3

ε at 0 is equivalent to gw(0) 6= 0. For ε = +1 by (3.4) we immediately have gw(0) > 0.
If ε = −1 and we have gw(0) < 0 we compose H with the automorphism π′ from (2.35).
If we assume H is transversal to H3

ε at 0 and 2-nondegenerate near 0, then we immediately obtain (i)
by (3.27) in the proof of Proposition 3.13.
If we assume H is transversal to H3

ε at 0 and (1, 1)-degenerate near 0 we also have the property which
is given in (3.28) and we refer to Theorem 7.2 in section 7 below to obtain (ii).
To finish the proof we need to treat the case if ε = −1 and H maps a neighborhood U ⊂ C2 to H3

−.
Here the following mapping equation holds for all (z, w, χ, τ) ∈W for some neighborhood W ⊂ C4 of 0:

g(z, w)− ḡ(χ, τ)− 2 i
(
f1(z, w)f̄1(χ, τ)− f2(z, w)f̄2(χ, τ)

)
= 0. (3.31)

Setting χ = 0 = τ we obtain g(z, w) = 0 such that (3.31) reduces to

f1(z, w)f̄1(χ, τ) = f2(z, w)f̄2(χ, τ), (3.32)

for (z, w, χ, τ) ∈ C4. Next we either apply [D’A93, Chapter 3, Proposition 3] or we proceed as follows:
Differentiation of (3.32) gives |f1z(0)| = |f2z(0)|, |f1w(0)| = |f2w(0)| and f1z(0)f̄1τ (0)−f2z(0)f̄2τ (0) = 0.
These equations together imply that the Jacobi matrix of H is of rank 1 near 0. This means at a generic
point p0 near 0 the mapping f : (z, w) 7→

(
f1(z, w), f2(z, w)

)
sends a full neighborhood W of p0 into

an irreducible complex- analytic curve C of C2. We proceed as in the proof of [Leb11b, Theorem 1.2]
and apply an automorphism of H3

ε as U ′3 from (2.36) to (z, w) 7→ (f(z, w), 0), such that the image of H
is contained in the complex variety given by

{
(z′1, z

′
2, w

′) ∈ C3 : z′1 = z′2, w
′ = 0

}
. Thus H is equivalent

to the map (z, w) 7→ (h(z, w), h(z, w), 0) for some holomorphic function h : C2 → C with h(0) = 0.
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4 Isotropical Equivalence of Mappings in F2

In this section we provide a normal form for mappings in the class F2, which was defined in Defini-
tion 3.17. Note that the conditions for H to belong to F2 given in Definition 3.17 are preserved if we
apply isotropies which are fixing 0 to H.

4.1 Normal Form N2

Proposition 4.1. Let H ∈ F2. Then there exist automorphisms σ ∈ Aut0(H2, 0) and σ′ ∈ Aut0(H3
ε, 0)

such that Ĥ := σ′ ◦H ◦ σ satisfies Ĥ(0) = 0 and the following conditions:

(i) Ĥz(0) = (1, 0, 0)

(ii) Ĥw(0) = (0, 0, 1)

(iii) f̂2z2(0) = 2

(iv) f̂2zw(0) = 0

(v) f̂1w2(0) = |f̂1w2(0)| ≥ 0

(vi) Re
(
ĝw2(0)

)
= 0

(vii) Re
(
f̂2z2w(0)

)
= 0

Definition 4.2. We refer to the equations given in Proposition 4.1 as normalization conditions. A
holomorphic mapping of F2 satisfying the normalization conditions is called a normalized mapping.
The set of normalized mappings is denoted by N2.

Proof of Proposition 4.1. For H ∈ F2 we proceed as follows: We normalize H in 6 steps. In each step
we apply certain isotropies to H in order to normalize some coefficients of H and to obtain a partial
normal form for H, which is used in the subsequent steps. At some points it is necessary to renormalize
to preserve some already achieved normalized coefficients of H.
We write H = (f, g) = (f1, f2, g). We introduce the following notation: For k ≥ 1, in the k-th step if we
apply isotropies σk ∈ Aut0(H2, 0) and σ′k ∈ Aut0(H3

ε, 0) we write Hk := σ′k ◦Hk−1 ◦σk with components
Hk = (fk, gk) = (fk1 , f

k
2 , g

k). We set H0 := H.
We start by defining H1 := (λ′U ′f, λ′2g), where λ′ > 0 and U ′ is a 2 × 2-matrix as in (2.30). We
compute

H1z(0) =
(
λ′
(
a′1f1z(0)− ε a′2f2z(0)

)
, λ′
(
ā′2f1z(0) + ā′1f2z(0)

)
, 0
)
,

g1
w(0) = λ′2gw(0).

Since we assume gw(0) > 0 we can choose λ′ > 0 to obtain g1
w(0) = 1, which gives one equation of (ii)

from our desired normalization conditions. Next we set

a′1 :=
f̄1χ(0)√
gw(0)

, a′2 := − f̄2χ(0)√
gw(0)

,

to obtain by (3.4) that (a′1, a
′
2) ∈ S2

ε,σ and f1
z (0) = (1, 0), which is (i).
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In the second step we apply the isotropy of H3
ε from (2.31) involving c′ = (c′1, c

′
2) ∈ C2 and define

H2 :=

(
f1

1 + c′1g
1, f1

2 + c′2g
1, g1

)

1− 2 i(c̄′1f
1
1 + ε c̄′2f

1
2 )− i ||c′||2εg1

.

We verify that H2z(0) = (1, 0, 0) and g2
w(0) = 1 and compute that f2

w(0) = (c′1 + f1
1w(0), c′2 + f1

2w(0)),
such that we can achive f2

w(0) = (0, 0), which gives the normalization condition (ii).
Next we define

H3(z, w) :=

(
f2

1

(
(z+cw,w)

1−2 i c̄z−i |c|2w

)
+ ĉg2

(
(z+cw,w)

1−2 i c̄z−i |c|2w

)
, f2

2

(
(z+cw,w)

1−2 i c̄z−i |c|2w

)
, g2
(

(z+cw,w)
1−2 i c̄z−i |c|2w

))

1− 2 i ¯̂cf2
1

(
(z+cw,w)

1−2 i c̄z−i |c|2w

)
− i |ĉ|2g2

(
(z+cw,w)

1−2 i c̄z−i |c|2w

) ,

(4.1)

where c, ĉ ∈ C. It holds that H3z(0) = (1, 0, 0), H3w(0) = (c + ĉ, 0, 1), such that we need to set
ĉ = −c to fulfill the normalization conditions from the previous steps. We note that the condition for
H3 from Definition 3.17 given by f3

1z(0)f3
2z2(0) − f3

2z(0)f3
1z2(0) 6= 0 reduces to f2

2z2(0) 6= 0, such that
f3

2zw(0) = cf2
2z2(0)+f2

2zw(0), which implies that we can achieve (iv), i.e., f3
2zw(0) = 0, for the remaining

steps.
In the fourth step we define

H4(z, w) :=
(
λ′d′v′f3

1 (λz, λ2w), λ′d̄′f3
2 (λz, λ2w), λ′2g3(λz, λ2w)

)
,

where λ, λ′ > 0 and |d′| = |v′| = 1. We compute H4z(0) = (d′v′λλ′, 0, 0), H4w(0) = (0, 0, (λλ′)2) and
f4

2zw(0) = 0 and set v′ = 1/d′ and λ′ = 1/λ such that all normalization conditions we obtained so far
are satisfied by H4. Then we have f4

2z2(0) = λd̄′f3
2z2(0) 6= 0 since H4 ∈ F2. Hence we can find d′ and

λ > 0 to get f4
2z2(0) = 2, which is (iii).

In the fifth step we define

H5(z, w) :=
(
e′u′f4

1 (uz,w), ē′f4
2 (uz,w), g4(uz,w)

)
,

where |u| = |u′| = |e′| = 1. We have H5z(0) = (uu′e′, 0, 0), H5w(0) = (0, 0, 1), f5
2z2(0) = 2ē′u2 and

f5
2zw(0) = 0. To preserve the so far obtained normalization conditions we set e′ = u2 and u′ = 1/u3.
Then we calculate f5

1w2(0) = f4
1w2(0)/u, such that we can normalize f5

1w2(0) ≥ 0 with the standard
parameter u, which is (v).
In the last step we define

H6(z, w) :=

(
f5

1

(
(z,w)
1+rw

)
, f5

2

(
(z,w)
1+rw

)
, g5
(

(z,w)
1+rw

))

1 + r′g5
(

(z,w)
1+rw

) ,

where r, r′ ∈ R. Then we verify that all normalization conditions from the previous steps are satisfied
by H6 and we obtain that g6

w2(0) = −2(r + r′) + g5
w2(0) and f6

2z2w(0) = −(2r + r′) + f5
2z2w(0). Hence

we can find unique r, r′ ∈ R such that Re
(
g6
w2(0)

)
= Re

(
f6

2z2w(0)
)

= 0. These conditions are the
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missing normalization conditions (vi) and (vii). The isotropies σ ∈ Aut0(H2, 0) and σ′ ∈ Aut0(H3
ε, 0)

in the proposition consist of the appropriate composition of the isotropies we used in each of the 6

normalization steps.

Remark 4.3. It is possible to obtain explicit formulas for the standard parameters of the isotropies
we used in the normalization procedure of Proposition 4.1. One possibility is to keep track of the
applications of isotropies in each step and each relevant coefficient in the previous proof. Alternatively
we consider Ĥ := σ′ ◦ H ◦ σ, where we use all standard parameters in σ and σ′ with the notation of
(2.27) and (2.31). Then we have to compute the coefficients of Ĥ we want to normalize and solve the
resulting equations for the standard parameters. The first equations are the following:

Ĥz(0) =

(
uλλ′

(
u′a′1 − ε u′a′2
ā′2 ā′1

)(
f1z(0)

f2z(0)

)
, 0

)
=
(
1, 0, 0

)
, (4.2)

Ĥw(0) =

(
uλλ′

(
u′a′1 − ε u′a′2
ā′2 ā′1

)(
c′1λgw(0) + λf1w(0) + cuf1z(0)

c′2λgw(0) + λf2w(0) + cuf2z(0)

)
, λ2λ′

2
gw(0)

)
(4.3)

= (0, 0, 1),

which can be solved using (3.4) by

a′1 =
f̄1χ(0)

uu′||fz(0)||ε
, a′2 = − f̄2χ(0)

uu′||fz(0)||ε
, (4.4)

such that a′ = (a′1, a
′
2) ∈ S2

ε,σ and we obtain

c′1 =
−cuf1z(0)− λf1w(0)

λgw(0)
, c′2 =

−cuf2z(0)− λf2w(0)

λgw(0)
, λ′ =

1

λ
√
gw(0)

, (4.5)

since we require λ, gw(0) > 0. For the following equations we use the notation for 2 × 2-determinants
of coefficients of H we introduced in (2.4). Then we use (3.4) as well as the formulas for the standard
parameters for a′, c′ and λ′ to obtain the following equation:

f̂2zw(0) =
u2u′λ
gw(0)2

(
cugw(0)∆(1, 0; 2, 0) + λ

(
gzw(0)∆(0, 1; 1, 0) + gw(0)∆(1, 0; 1, 1)

))
= 0, (4.6)

which has a unique solution c ∈ C, since gw(0) > 0 and ∆(1, 0; 2, 0) 6= 0, given by

c = − λ
(
gzw(0)∆(0, 1; 1, 0) + gw(0)∆(1, 0; 1, 1)

)

ugw(0)∆(1, 0; 2, 0)
. (4.7)

Then using the representations for a′, λ′ and equation (3.4):

f̂2z2(0) =
u3u′λ∆(1, 0; 2, 0)

||fz(0)||2ε
= 2, (4.8)
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the unique solution is given by

λ =
2||fz(0)||2ε
|∆(1, 0; 2, 0)| , u′ =

∆̄(1, 0; 2, 0)

u3|∆(1, 0; 2, 0)| , (4.9)

since ∆(1, 0; 2, 0) 6= 0. Then, using all the previously determined standard parameters, we compute
f̂1w2(0) = T1

(
j2
0H
)
/u, where T1

(
j2
0H
)
∈ C is a real-analytic function in j2

0H, which does not depend
on u. Thus there is a u with |u| = 1 and 0 ≤ Arg u < 2π, such that f̂1w2(0) = |f̂1w2(0)| ≥ 0. Finally we
consider the following coefficients, where λ > 0 is given by (4.9)

Re
(
ĝw2(0)

)
=− 2r − 2r′λ2gw(0) + T2

(
j2
0H
)

= 0, (4.10)

Re
(
f̂2z2w(0)

)
=− 2r − r′λ2gw(0) + T3

(
j3
0H
)

= 0, (4.11)

where T2

(
j2
0H
)
, T3

(
j3
0H
)
∈ R are real-analytic functions in j2

0H and j3
0H respectively and both do not

depend on r or r′, we can uniquely solve for the real parameters r and r′.

Remark 4.4. (i) We need an explicit expression of |f̂1w2(0)| for later purposes. To this end we either
consider the coefficient f3

1w2(0) of H3 from (4.1) or we compute f̂1w2(0) of Ĥ from Remark 4.3,
using the definitions for a′ from (4.4), c′, λ′ from (4.5) and the equation from (3.4). In this case
we obtain the following term still containing some standard parameters:

f̂1w2(0) =
−λ
(
f̄1χ(0)S1 + ε f̄2χ(0)S2

)

ugw(0)2
,

where for ` = 1, 2 we have

S` = λ2
(
gw2(0)f`w(0)− gw(0)f`w2(0)

)
+ cuλ

(
gw2(0)f`z(0) + 2gzw(0)f`w(0)− 2gw(0)f`zw(0)

)

+ c2u2
(
2gzw(0)f`z(0)− gw(0)f`z2(0)

)
.

If we use the definition for c from (4.7) we obtain the same formula as for the coefficient f3
1w2(0)

of H3, given by

f̂1w2(0) =
λ3

u
S
(
j2
0H
)
,

where S
(
j2
0H
)
is an explicitly given, real-analytic function in j2

0H not depending on any standard
parameter. Then we have

|f̂1w2(0)| = λ3|S
(
j2
0H
)
|, (4.12)

and we note that in order to compute |f̂1w2(0)| it is only necessary to compute the standard
parameters a′, c′, λ′ and c, λ.

(ii) Further inspection of T3 in (4.11) shows that the coefficients of H at 0 of order 3 occurring in T3

are fz3(0) and Hz2w(0).
(iii) Uniqueness of the choice of isotropies in the proof of Proposition 4.1 or of the standard parameters
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in Remark 4.3 cannot be achieved in general, since for the latter case in the equation f̂1w2(0) =

T1

(
j2
0H
)
/u it may occur that T1 = 0. In this case the standard parameter u appears as a free

parameter. For a discussion concerning the stabilizer of mappings see Lemma 5.18 below.

Proposition 4.5. Let H ∈ N2. Then necessarily the derivatives of H satisfy the following equations:

(i) f1zk(0) = 0 (k ≥ 2)

(ii) f1zw(0) = i ε
2

(iii) Im(gw2(0)) = 0

(iv) Im(gw3(0)) = 0

(v) f2z3(0) = −3 i ε f1z2w(0)

(vi) gzkw(0) = 0 (k ≥ 1)

(vii) f1z2w(0) = 2gzw2(0)

(viii) f1zw2(0) = 1
4

(
−1 + 2 Re(gw3(0))

)

(ix) gzw2(0) = 2 i |f1w2(0)|

Proof. The conditions are simply verified by differentiating (3.3) assuming the normalization conditions
given in Proposition 4.1. We list which coefficients we consider and normalization conditions we use.
Differentiation of (3.3) with respect to z and evaluating the result at (z, χ, τ) = (0, χ, 0) gives χ =

f̄1(χ, 0) assuming the normalization conditions for the 1-jet of H at 0, hence (i) holds.
If we differentiate (3.3) twice with respect to τ and evaluate the result at 0 we obtain, using Hw(0) =

(0, 0, 1), that Im(gw2(0)) = 0, which is the statement of (iii). In a similar way we obtain (iv), when
differentiating three times with respect to τ .
Differentiation of (3.3) with respect to τ and evaluating the result at (z, χ, τ) = (0, χ, 0) shows
ḡτ (χ, 0) = 1, again by Hw(0) = (0, 0, 1), which implies (vi).
To get (ii) we differentiate (3.3) twice with respect to z and χ, evaluate at 0 and use Hz(0) =

(1, 0, 0), f2z2(0) = 2 and gw2(0) = 0 = f1z2(0).
Differentiation of (3.3) twice with respect to z and once with respect to τ and χ and evaluating at 0

gives (vii) if we use f1w(0) = 0 = f2zw(0), Hz2(0) = (0, 2, 0), Hz(0) = (1, 0, 0) as well as (ii).
Taking derivatives of (3.3) three times with respect to z and twice with respect to χ and evaluate at 0

we use Hz(0) = (1, 0, 0), f1z3(0) = 0 and f2z2(0) = 2 to get (v).
If we differentiate (3.3) twice with respect to z and χ and once with respect to τ , evaluate at 0 and use
Hz(0) = (1, 0, 0), Hw(0) = (0, 0, 1), Hz2(0) = (0, 2, 0), f1zw(0) = i ε

2 , f2zw(0) = 0 and Re(f2z2w(0)) = 0,
we obtain (viii) according to (iv).
Finally, to obtain (ix) we differentiate (3.3) twice with respect to τ and once with respect to z, evaluate
at 0 and use f1z(0) = 0 = f1w(0).

Remark 4.6. We summarize the conditions for the 3-jet of H ∈ N2 at 0 by collecting the normalization
conditions from Proposition 4.1 and their consequences given in Proposition 4.5:

(i) H(0) = 0

(ii) Hz(0) = (1, 0, 0)

(iii) Hw(0) = (0, 0, 1)

(iv) Hz2(0) = (0, 2, 0)

(v) Hzw(0) = ( i ε
2 , 0, 0)

(vi) Hw2(0) = (|f1w2(0)|, f2w2(0), 0)

(vii) Hz3(0) = (0, 12 ε |f1w2(0)|, 0)

(viii) Hz2w(0) = (4 i |f1w2(0)|, i Im(f2z2w(0)), 0)

(ix) Hzw2(0) =
(

1
4

(
−1 + 2 Re(gw3(0))

)
, f2zw2(0),

2 i |f1w2(0)|
)

(x) Hw3(0) =
(
f1w3(0), f2w3(0),Re

(
gw3(0)

))
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We would like to point out the differences to the normalization used in [Ji10, Lemma 2.2], which is the
normalization obtained by Huang [Hua03, Lemma 3.2]. In Huang’s normal form a normalized mapping
Ĥ fulfills f̂1w2(0) = 0 assuming the original mapping H satisfies f1zw(0) 6= 0, which is a consequence of
having the so-called “geometric rank” equal to 1. The concept of this invariant is introduced in [Hua03,
Definition 2.1]. We note that here a mapping of geometric rank 1 is 2-nondegenerate at 0 if we consider
the normalized mapping in the sense of [Ji10] at the end of [Ji10, §3]. On the other hand if we start
with a mapping in N2, then the geometric rank is 1, since it is of the form as in [Ji10, Lemma 2.1] with
nontrivial condition (3) from [Ji10, Lemma 2.1].
Moreover in Huang’s normal form the coefficient f̂2zw(0) is still present, which we require to be 0, since
in our considerations the standard parameter c from Aut0(H2, 0) is linear in f̂2zw(0) and has a nonzero
coefficient, see (4.6).

4.2 Homeomorphic Variations of Normal Forms

In this section we investigate what happens, when we consider different admissible normal forms with
respect to isotropies. The question is then, how does the resulting normal form differ from N2, given
in Definition 4.2?

Definition 4.7. For p ∈ CN and p′ ∈ CN ′ we denote by

H(p; p′) := {H : (CN , p)→ (CN
′
, p′) : H holomorphic},

the set of germs of holomorphic mappings from (CN , p) to (CN ′ , p′).
For (M,p) ⊂ CN and (M ′, p′) ⊂ CN ′ germs of real-analytic hypersurfaces we denote by

H(M,p;M ′, p′) := {H ∈ H(p; p′) : H(M ∩ U) ⊂M ′ for some neighborhood U of p},

the set of germs of holomorphic mappings from (M,p) to (M ′, p′) and denote H(M,p) := H(M,p;M,p).

Definition 4.8. For (M,p) ⊂ CN a germ of a real-analytic hypersurface we denote by

Autp(M,p) := {H ∈ H(M,p) : |H ′(p)| 6= 0},

the group of local automorphisms of (M,p) or the group of isotropies of (M,p) fixing p.

Remark 4.9. For G,H ∈ H(M,p;M ′, p′) the relation G ∼ H :⇔ ∃(φ, φ′) ∈ Autp(M,p)×Autp′(M
′, p′) :

G = φ′ ◦ H ◦ φ−1 defines an equivalence relation in H(M,p;M ′, p′). The equivalence classes in
H(M,p;M ′, p′)/∼ are denoted by [F ] := {G ∈ H(M,p;M ′, p′) : G ∼ F}.
Definition 4.10. (i) A proper subset N ( F ⊂ H(M,p;M ′, p′) is called normal form for F , if for

each [F ] ∈ F/∼, there exists a unique representative G ∈ N ∩ [F ]. We denote the mapping which
assigns to each H ∈ F the representative G ∈ N ∩ [H] as π : F → N .

(ii) A normal form N for F is called admissible if π : F → N is continuous.

Remark 4.11. The uniqueness of the representative F ∈ N ∩ [F ] in Definition 4.10 (i) is no restriction:
Assume we have another representative F 6= G ∈ N in the class [F ], then G is equivalent to F , hence
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it suffices to choose only one element from the set of all representatives which belong to N ∩ [F ].
There exist admissible normal forms for F2, since N2 is an admissible normal form for F2. Thus for
any admissible normal form N there is a unique element Ĥ ∈ N in each orbit of some – not necessarily
admissible – normal form N ′. So we can always restrict ourselves to admissible normal forms.

The main theorem of this section is the following result for holomorphic mappings from H2 to H3
ε

belonging to F2.
For the discussion which topology we associate to N2 we refer to the beginning of section 9.

Theorem 4.12. Let N be an admissible normal form for F2. Then N is homeomorphic to N2.

Proof. Let us denote by π : F2 → N the continuous mapping as in Definition 4.10 (i). We note that
the class N2 from Definition 4.2 is an admissible normal form for F2 as in Definition 3.17: For H ∈ F2

the standard parameters (γ, γ′) ∈ Γ×Γ′ such that φ′γ′ ◦H ◦φγ ∈ N2 depends continuously on H, more
precisely on j3

0(H), as can be seen in Remark 4.3. In this case we denote the corresponding continuous
mapping by π2 : F2 → N2. Hence we have the following diagram:

F2

N N2

π

incl

π2

incl2

ψ

Figure 2: Diagram for admissible normal forms

The mapping incl : N → F2 is the inclusion mapping, which is given by incl(H) := H for all H ∈ N and
analogously for incl2. In the diagram ψ : N → N2 is given as follows: LetH ∈ N , then ψ(H) := F ∈ N2,
where F ∈ N2 ∩[H]. By the uniqueness of the choice of representatives in each orbit of elements of
N and N2 respectively and since both N and N2 are normal forms, we obtain that ψ is a bijective
mapping. Further since ψ = π2 ◦ incl and ψ−1 = π ◦ incl2 are compositions of continuous mappings, we
obtain that ψ is a homeomorphism.

Example 4.13. Starting with N2 we can construct different admissible normal forms N as follows:
We fix a pair of isotropies (φ0, φ

′
0) ∈ Aut0(H2, 0) × Aut0(H3

ε, 0) and consider the isotropies (φ, φ′) ∈
Aut0(H2, 0)× Aut0(H3

ε, 0) from the proof of Proposition 4.1 or Remark 4.3, such that π2 : F2 → N2 is
given by π2(H) := φ̂′ ◦H ◦ φ̂, denoted by Ĥ. We define φ := φ̂ ◦ φ0 and φ′ := φ′0 ◦ φ̂′, to obtain for any
F ∈ F2,

φ′ ◦ F ◦ φ = φ′0 ◦ φ̂′ ◦ F ◦ φ̂ ◦ φ0 = φ′0 ◦ F̂ ◦ φ0,
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where F̂ ∈ N2. Hence we define

N :=
{
φ′0 ◦ F̂ ◦ φ0 : F̂ ∈ N2

}
.

Since φ̂ and φ̂′ depend continuously on F ∈ F2, the mapping π : F2 → N given by π(F ) := φ′ ◦ F ◦ φ
is continuous, such that N is an admissible normal form.
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5 Mappings in N2

Let us recall Theorem 1.4.

Theorem 5.1. The set N2 consists of the following mappings, where we denote for H = (f1, f2, g) ∈ N2

the parameter s := f1w2(0) ≥ 0:

Gε1(z, w) :=
(

2z(2 + i εw), 4z2, 4w
)
/(4− w2),

Gε2,s(z, w) :=
(

4z − 4 ε sz2 + i(ε−s2)zw + sw2, 4z2 + s2w2, w(4− 4 ε sz − i(ε+s2)w)
)

/
(

4− 4 ε sz − i(ε+s2)w − 2 i szw − ε s2w2
)
,

Gε3,s(z, w) :=
(

256 ε z + 96 i zw + 64 ε sw2 + 64z3 + 64 i ε sz2w − 3(3 ε−16s2)zw2 + 4 i sw3,

256 ε z2 − 16w2 + 256sz3 + 16 i z2w − 16 ε szw2 − i εw3,

w(256 ε−32 iw + 64z2 − 64 i ε szw − (ε+16s2)w2)
)

/
(

256 ε−32 iw + 64z2 − 192 i ε szw − (17 ε+144s2)w2 + 32 i ε z2w + 24szw2 + iw3
)
.

Each mapping in N2 is not isotropically equivalent to any different mapping in N2.
We write Gεk,s =

(
fε1k,s, f

ε
2k,s, g

ε
k,s

)
for the components.

Remark 5.2. (i) The mappings listed in Theorem 1.4 are equivalent to the mappings given in The-
orem 5.1 via an application of dilations: We either apply automorphisms of the form (z, w) 7→
(2z, 4w) or (z, w) 7→ (

√
2z, 2w). In the case of the degree-3-mapping we also scale the parameter

s by s 7→ s/4.
(ii) Since Gεk are rational, these maps are globally defined. More precisely we denote the zero set of

the denominator of Gεk in H2 by Qεk, which may depend on s. Then each of the above mappings
Gεk is actually defined in V εk := H2\Qεk and sends V εk to H3

ε. Note there is an open neighborhood
Uεk of 0, which depends on s and is contained in V εk .

(iii) In the definition of mappings listed in Theorem 5.1, which depend on the parameter s ≥ 0, we
could formally allow s ∈ C. Then a small computation shows that we obtain mappings belonging
to F2 only if we assume s ∈ R.

The family of mappings Gε3,s in Theorem 5.1 is not of degree 3 for each s ≥ 0: If we set ε = −1 and
s = 1/2 in Gε3,s the denominator and the numerator of each component is divisible by 16 i−8 i z + w,
resulting in a mapping of degree 2, which coincides with G−2,1/2. The following lemma shows that this
is the only possibility.

Lemma 5.3. The mapping Gε3,s from Theorem 5.1 is of degree 2 if and only if ε = −1 and s = 1
2 in

Gε3,s.

Proof. The necessary direction can be verified directly. The other direction is proved as follows: We
let H denote an arbitrary rational mapping of degree 2 with H(0) = 0 defined in a sufficiently small
neighborhood U ⊂ C2 of 0. We require H to be holomorphic in U . Then H is of the form H =
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(p1, p2, p3)/q, where for 1 ≤ j ≤ 3 the terms pj and q are polynomials of degree 2 given by

pj(z, w) = ajz + bjw + cjz
2 + djzw + ejw

2,

q(z, w) = 1 + a4z + b4w + c4z
2 + d4zw + e4w

2,

where each element of Λm := {am, bm, cm, dm, em} is a complex number for 1 ≤ m ≤ 4. We denote by
Λ the collection of all Λm. If we compare the 3-jets of H and Gε3,s and solve for the elements of Λ we
obtain

H(z, w) =

(
16z − 16s ε z2 + 5 i ε zw + 4sw2, 16z2 − εw2, w

(
16− 16 ε sz − 3 i εw

))

16 + 16 ε sz + 3 i εw + 8 i szw + (1 + 8 ε s2)w2
.

Comparing the f1z3w(0)-coefficients of H and Gε3,s we find a solution if and only if ε = −1 and s = 1/2.
Then we observe with these choices the mapping H coincides with G−3,1/2.

Remark 5.4. Clearly the formulas for Gεk,s depend on our choices for the normalization conditions
in Proposition 4.1, but we can say more: For mappings in N2 we prove Theorem 5.1 by only using
isotropies of the source and target hypersurface to obtain 2 families of mappings parametrized by a
nonnegative real number. In Theorem 4.12 we proved, that the picture we obtain from Theorem 5.1 is
intrinsic. More precisely we have shown that whenever we consider a reasonable normal form N , given
in Definition 4.10, then N is homeomorphic to N2. In particular, it is not possible to reduce to finitely
many mappings by considering only isotropies.
Moreover by Proposition 4.1 we observe that Theorem 5.1 gives a complete description of N2, such that
F2 =

⋃3
k=1O0(Gεk).

The proof of Theorem 5.1 is based on the following lemmas. After stating them, we show how Theo-
rem 5.1 is deduced from these lemmas.
In the first lemma we obtain a so called jet parametrization for H ∈ N2 at 0 along the second Segre
set. In order to simplify our formulas we introduce the following notation:

Ak` := f1zkw`(0), Bk` := f2zkw`(0), Ck` := gzkw`(0), D` := D0`, (5.1)

for k, ` ≥ 0 and D ∈ {A,B,C}. In the list of coefficients of a mapping H ∈ F2 we gave in Remark 4.6,
there are still some unknown coefficients belonging to J4

0 . These remaining coefficients we denote by

j := (A2, B2, B21, B12, A3, B3, C3, A22, B22, C22, A13, B13, C13, A4, B4, C4) . (5.2)

We refer to the coefficients Dk` we listed in (5.2) as components of j. We set N0 := 16 and define the
following set:

J :=
{
j ∈ CN0 : A2 ≥ 0, C3 ∈ R, B21 ∈ iR

}
⊂ CN0 . (5.3)

We consider j from (5.2) as variable for J ⊂ CN0 .
The following lemma is based on [Lam01, Proposition 25, Corollary 26–27].
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Lemma 5.5 (Jet Parametrization). Let H ∈ N2. Then there exists an explicitly computable, rational
mapping Ψ satisfying

H(z, 2 i zχ) = Ψ
(
z, χ, j

)
(5.4)

for all (z, χ) ∈ C2 sufficiently near 0. The formula for Ψ is given in Appendix A, where we scaled j ∈ J
for simplification.

Remark 5.6. In order to compute Ψ in Lemma 5.5 we only need to assume the nondegeneracy of H,
but to simplify expressions we require H ∈ N2.

The approach we take in the next lemmas follows the line of thought of [BER97, Proposition 2.11–
3.1,§6]. The following two lemmas are Proposition 2.11 and Proposition 3.1 from [BER97] adapted to
our setting. We restrict to N2 to make computations easier to handle.

Lemma 5.7 ([BER97, Proposition 2.11]). There exists a C3-valued function Φ(z, χ,Λ), which is holo-
morphic in a neighborhood of 0× 0× J4

0 in C× C× J4
0 and a germ at 0 of a nontrivial function A(z),

such that for a fixed Λ0 ∈ J4
0 , satisfying the normalization conditions from Proposition 4.1, the following

equivalence holds:
There exists H ∈ N2 with

(
∂|α|H
∂Zα

(0)

)

|α|≤4

= Λ0, (5.5)

if and only if all of the following properties are satisfied:
(i) The map (z, w) 7→ Φ

(
z, w

A(z) ,Λ0

)
extends to a function ĤΛ0

(z, w), which is holomorphic in a full
neighborhood of 0 in C2.

(ii) We have
(
∂|α|ĤΛ0

∂Zα (0)
)
|α|≤4

= Λ0.

(iii) We have ĤΛ0
(H2) ⊂ H3

ε.
If (i), (ii) and (iii) hold, then the unique mapping H ∈ N2, which satisfies (5.5) is given by H(Z) =

ĤΛ0
(Z).

Proof. The proof is the same as in [BER97, Proposition 2.11] and uses the jet parametrization for
N2 ⊂ F2 from Lemma 5.5 instead of [BER97, Lemma 2.8].

It is possible to give conditions which are equivalent to (i), (ii) and (iii) of Lemma 5.7 by means of an
explicit system of equations.

Lemma 5.8 ([BER97, Proposition 3.1]). We use the notation as in Lemma 5.7. There exists a function
G(z,Λ), which is holomorphic in a neighborhood of 0 × J4

0 in C2 × J4
0 , such that Lemma 5.7 (i) holds

for a fixed Λ0 ∈ J4
0 if and only if Φ(z, w

A(z) ,Λ0) ≡ G(z, w,Λ0).
The following equivalences also hold true:
(i) There exist functions ak, k ∈ N, holomorphic in J4

0 , such that Lemma 5.7 (i) holds if and only if
ak(Λ0) = 0 for k ∈ N.

49



(ii) There exist functions bk, 1 ≤ k ≤ K, holomorphic in J4
0 , such that if Lemma 5.7 (i) is satisfied,

then Lemma 5.7 (ii) holds if and only if bk(Λ0) = 0 for 1 ≤ k ≤ K.
(iii) There exist functions ck, k ∈ N, holomorphic in J4

0 × J4
0 , such that if Lemma 5.7 (i) is satisfied,

then Lemma 5.7 (iii) holds if and only if ck(Λ0, Λ̄0) = 0 for k ∈ N.

Proof. The proof is the same as in [BER97, Proposition 3.1] and uses Lemma 5.7.

The proof of Lemma 5.8 in [BER97, Proposition 3.1] explains how to obtain the equations for (i) – (iii)
of Lemma 5.8. By using the approach of [BER97, Proposition 3.1] we give the following lemma, which
guarantees that Lemma 5.8 (i) and (ii) hold. We give the resulting mappings here, instead of listing
the equations of (i) and (ii). We refer to this step as “desingularization”.

Lemma 5.9. Let H ∈ N2 and Ψ be given as in Lemma 5.5. If

ψ(z, w) := Ψ
(
z,

w

2 i z
, j
)

(5.6)

is holomorphic for (z, w) ∈ C2 near 0 and j4
0ψ = j4

0H, then ψ ∈ {ψ1, . . . , ψ5} is of at most degree
3 and depends on A2, B2, B21, A22, B22 and C22 satisfying A2 ≥ 0 and Re(B21) = 0, whenever these
parameters are present in ψ. The concrete formulas for (ψk)k=1,...,5 are listed in Appendix C.

Next we show Lemma 5.8 (iii), which gives condition (iii) of Lemma 5.8, based on [BER97, Proposition
3.1]. Again we give the resulting maps, instead of the defining equations.

Lemma 5.10. Let U ⊂ C2 be a sufficiently small neighborhood of 0 and ψ ∈ {ψ1, . . . , ψ5} from
Lemma 5.9 satisfies ψ(U ∩H2) ⊂ H3

ε. Then ψ ∈ {Gε1, Gε2,s, Gε3,s} from Theorem 5.1, where s := A2 ≥ 0.

Next we describe how to prove Theorem 5.1 from the previously stated lemmas, which might also be
viewed as an easy proof of Lemma 5.7 and Lemma 5.8.

Proof of Theorem 5.1. Let H ∈ N2 and U ⊂ C2 be a sufficiently small neighborhood of 0. As in
Definition 2.4 we write

ρ(z, w, χ, τ) := w − τ − 2 i zχ,

for a defining function of the complexification of H2. For the parametrization of S2
0 we write as in (2.12)

Q(z, χ, τ) := τ + 2 i zχ,

such that the second Segre set S2
0 of H2 at 0 is given as the image of v2

0(z, χ) := (z, 2 i zχ), for (z, χ) ∈ U
by (2.14). Then a point (z0, w0) ∈ U is contained in S2

0 if and only if for some χ ∈ C near 0 we have
w0 = 2 i z0χ.
Since v2

0 is of rank 2 outside of the complex variety

X :=
{

(z, χ) ∈ U : z = 0
}
⊂ C2,
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it follows that S2
0 contains an open set V ⊂ U \X of C2. From Lemma 5.5 we know after scaling the

variable j ∈ J from (5.2), that

H
(
v2

0(z, χ)
)

= Ψ(z, χ, j) =
∑

k,`

Ψk`(j)z
kχ`, (5.7)

holds, where we have written Ψ in the Taylor expansion with coefficients Ψk`(j) ∈ C3 depending on
j ∈ J . Then for (z, w) ∈ V we have:

H(z, w) = H
(
v2

0

(
z,

w

2 i z

))
= Ψ

(
z,

w

2 i z
, j
)

=
∑

α,β

Ψ̂αβ(j)zαwβ , (5.8)

where Ψ̂αβ(j) ∈ C3. On the right-hand side of (5.8) there may occur terms as w`0/zk0 for k0 ≥ 0,
but since the left-hand side of (5.8) is required to be holomorphic in a neighborhood of 0, (5.8) yields
equations Ψ̂αβ(j) = 0 for α < 0. Equivalently from (5.7), we obtain equations

Ψk`(j) = 0, ` > k. (5.9)

We examine these equations for j in the proof of Lemma 5.9 to end up with Ψ
(
z, w/(2 i z), j

)
being one

of 5 holomorphic mappings ψ̂1(z, w), . . . , ψ̂5(z, w), defined in a neighborhood of 0 and given in Appendix
C. Moreover (5.8) can only hold if

j4
0H(z, w) = j4

0Ψ
(
z,

w

2 i z
, j
)

= j4
0 ψ̂k(z, w),

for each 1 ≤ k ≤ 5. We carry out these computations in the last part of the proof of Lemma 5.9, which
yield H being one of the holomorphic mappings ψ1, . . . , ψ5 according to Lemma 5.9 listed in Appendix
C.
Since we require H being a mapping of H2 to H3

ε and j was an arbitrary variable in J so far, we have
to ensure ψk sends H2 to H3

ε for 1 ≤ k ≤ 5. This last step is carried out in Lemma 5.10 and we end up
with the mappings Gε1, Gε2,s and Gε3,s as in Theorem 5.1, where s = f1w2(0). The last claim, that the
maps we listed in Theorem 5.1 are not isotropically equivalent is proved in Theorem 5.19 below.

The rest of the section is devoted to the proofs of Lemma 5.5, Lemma 5.9 and Lemma 5.10 and to give
a jet determination result deduced from the jet parametrization.

5.1 Jet Parametrization

Proof of Lemma 5.5. We need to carry out the following steps: From the mapping equation we can
determine H along the germ of the second Segre set S2

0 of H2 near 0 in terms of the 2-jet of H evaluated
along the germ of the conjugated version of the first Segre set S̄1

0 = {(χ, 0) : χ ∈ C} of H2 near 0.
In a similar way we obtain formulas for the 2-jet of H along S1

0 depending on j ∈ J . In both steps
it is essential that we assume 2-nondegeneracy. The resulting representation of H gives the desired
mappings Ψ depending on j. Now we present the detailed version of the proof.
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Using the notation as in the proof of Proposition 3.13 we start by computing

Φr+1(z, w, χ, τ) := Lrρ′
(
H(z, w), H̄(χ, τ)

)
, 0 ≤ r ≤ 2,

to obtain

Φ1(z, w, χ, τ) := g(z, w)− ḡ(χ, τ)− 2 i(f1(z, w)f̄1(χ, τ) + ε f2(z, w)f̄2(χ, τ)),

Φ2(z, w, χ, τ) :=− ḡχ(χ, τ) + 2 i zḡτ (χ, τ)− 2 i
(
f1(z, w)

(
f̄1χ(χ, τ)− 2 i zf̄1τ (χ, τ)

)

+ ε f2(z, w)
(
f̄2χ(χ, τ)− 2 i zf̄2τ (χ, τ)

))
, (5.10)

Φ3(z, w, χ, τ) :=− ḡχ2(χ, τ) + 4 i zḡχτ (χ, τ) + 4z2ḡτ2(χ, τ)

− 2 i
(
f1(z, w)

(
f̄1χ2(χ, τ)− 4 i zf̄1χτ (χ, τ)− 4z2f̄1τ2(χ, τ)

)

+ ε f2(z, w)
(
f̄2χ2(χ, τ)− 4 i zf̄2χτ (χ, τ)− 4z2f̄2τ2(χ, τ)

))
.

We introduce the following variables for expressions which occur in Φj for 1 ≤ j ≤ 3:

(Z, ζ) := (z, w, χ, τ) ∈ C4, (Z ′, ζ ′) :=
(
H(z, w), H̄(χ, τ)

)
∈ C6,

W :=

(
∂|β|

∂ζβ
H̄(χ, τ)

)

1≤|β|≤2

∈ C15.

By a slight abuse of notation we obtain Φj(Z, ζ, Z
′, ζ ′,W ) = 0 for 1 ≤ j ≤ 3 when restricted to H2, i.e.,

setting Z = (z, τ + 2 i zχ). Further if we write Φ := (Φ1,Φ2,Φ3) we have

det

(
∂Φ

∂Z ′
(0)

)
= ε
(
f̄2χ(0)f̄1χ2(0)− f̄1χ(0)f̄2χ2(0)

)
= − ε 6= 0, (5.11)

since we assumed H ∈ N2 ⊂ F2. Hence we can explicitly solve the system given in (5.10) for Z ′ near 0

as follows. We denote by B(z, χ, τ) the matrix




f̄1(χ, τ) ε f̄2(χ, τ) − i
2

f̄1χ(χ, τ)− 2 i zf̄1τ (χ, τ) ε
(
f̄2χ(χ, τ)− 2 i zf̄2τ (χ, τ)

)
0

f̄1χ2(χ, τ)− 4 i zf̄1χτ (χ, τ)− 4z2f̄1τ2(χ, τ) ε
(
f̄2χ2(χ, τ)− 4 i zf̄2χτ (χ, τ)− 4z2f̄2τ2(χ, τ)

)
0


 ,

thus we have for all (z, χ, τ) ∈ C3 near 0 the following identity

H(z, τ + 2 i zχ) =
1

2 i
B−1(z, χ, τ)




−ḡ(χ, τ)

−ḡχ(χ, τ) + 2 i zḡτ (χ, τ)

−ḡχ2(χ, τ) + 4 i zḡχτ (χ, τ) + 4z2ḡτ2(χ, τ)


 . (5.12)

If we evaluate (5.12) at τ = 0 we obtain a formula for H along S2
0 depending on the 2-jet of H̄ along

S̄1
0 . So to finish our computations we need to find formulas for j2

(χ,0)H̄. To this end we introduce the
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vector field S tangent to H2 defined as

S :=
∂

∂w
+

∂

∂τ
,

such that SkH(z, τ + 2 i zχ) = Hwk(z, τ + 2 i zχ) for k ∈ N. Applying S and S2 to (5.12) and setting
χ = 0 and τ = 0 we obtain formulas for Hw(z, 0) and Hw2(z, 0) respectively, which are rational and
depend on j ∈ J . After conjugating these expressions we obtain the components of j2

(χ,0)H̄ as rational
function of j, which consists of components of j4

0H, see (5.2).
The resulting mapping is denoted by Ψ and depends on j ∈ J . In order to get rid of powers of 2 in
formulas we scale j as follows:

(A2, B2, B12, A3, B3, C3, A22, B22, A13, B13, C13, A4, B4, C4) 7→ (5.13)
(
A2

2
,
B2

2
,
B12

4
,
A3

4
,
B3

4
,
C3

2
,
A22

2
,
B22

2
,
A13

8
,
B13

8
,
C13

4
,
A4

8
,
B4

8
,
C4

4

)
.

The numerator of the components of H are polynomials of highest degree (3, 8) in (z, χ) and are
homogeneous in z. The components of H have the same denominator, which is a polynomial of highest
degree (3, 9) in (z, χ). The complete expression is listed in Appendix A.

5.2 Desingularization

We introduce the following relation:

Definition 5.11. For J1, J2 ⊂ J from (5.3) we denote variables j1 ∈ J1 and j2 ∈ J2 as in (5.2)
respectively. We set Ψ1(z, χ) := Ψ(z, χ, j1) and Ψ2(z, χ) := Ψ(z, χ, j2), where Ψ is given in Lemma 5.5.
We say that Ψ1 is a special case of Ψ2, if J1 ⊂ J2.

More geometrically this means that the variety given by the defining equations for Ψ1 is contained in
the variety generated by the defining equations for Ψ2.

Proof of Lemma 5.9. As described in the proof of Theorem 5.1, in (5.7) we expand the mapping
Ψ
(
z, χ, j

)
from (5.4) into a power series

Ψ(z, χ, j) =
∑

k,`

Ψk`(j)z
kχ`,

around 0. For the components we write

Ψk`(j) =
(

Ψ1
k`(j),Ψ

2
k`(j),Ψ

3
k`(j)

)
∈ C3,

and then we set

Ψk`(j) = 0, ∀ ` > k, (5.14)

as in (5.9), which are obtained by the expansion given in (5.8). These equations allow us to obtain
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conditions for j ∈ J . Each solution of an equation from (5.14) corresponds to considering maps as in
(5.4), but instead j ∈ J we have j ∈ J ′, where J ′ is a subvariety of J . This means that we gradually
restrict the space of possible mappings in F2. In the following we describe which coefficients Ψk` we
consider and which components of j we can eliminate from equations given as in (5.14).
We start considering Ψ3

34 = 0 = Ψ1
34 = Ψ3

45 = Ψ1
45, which determine the following components of j:

A3 =
i

2

(
6A3

2 + 3 εB12 −A2

(
6B2 + ε(−3 + C3)

))

B3 =
ε

10

(
−18 i εA4

2 + 15 iA2B12 − 2B2

(
9 εB21 + 4 i(−3 + C3)

)
+ 3 iA2

2(−3 + 6 εB2 − 6 i εB21 + C3)
)

A4 =
ε

5

(
−324 εA5

2 − 15A2
2(− εA22 + 2B12 + εC13) + 5

(
−3 εA22B2 + iB13 +B12

(
−6 iB21

+ ε(−6 + C3)
)

+ 3 εB2C13

)
+A2

(
−5 iA13 + 30 iB21 + 10 iB21C3 − 5 ε(6B2

21 + (−5 + C3)C3)

+ 5 iC4 + 3B2(44 + 48 i εB21 − 18C3 + 15 iC22)
)

+ 3A3
2(−34 + 108 εB2 − 28 i εB21 + 28C3

− 15 iC22)
)

B4 =
ε

20

(
3060 εA6

2 − 45 εB2
12 + 2B2

(
−40 iA13 + 102 εB2

21 + 5 iB21(−33 + 23C3)

+ ε(−42− 30B22 + 78C3 − 28C2
3 ) + 40 iC4

)
+ 180A3

2(− εA22 +B12 + εC13)

+ 20A2

(
9 εA22B2 + iB13 + 6 iB12B21 + 2 εB12C3 − 3B2(B12 + 3 εC13)

)

+A2
2

(
60 iA13 + 900 εB2

2 + 150 iB21 − 290 iB21C3 + ε(9− 24B2
21 + 60B22 − 106C3 + 61C2

3 )

− 60 iC4 + 12B2(−79− 117 i εB21 + 63C3 − 65 iC22)
)
− 12A4

2(−69 + 330 εB2 − 97 i εB21

+ 73C3 − 45 iC22) + 240 iB2
2C22

)

Then we consider Ψ2
34 = 0 to obtain two cases, either

(i) Case A: B12 = 2 εA2

5

(
6A2

2 + 5B2 + 6 iB21 + ε(3− C3)
)
, or

(ii) Case B: B2 = A2
2.

Next we assume one of the expressions for B12 or B2 respectively for Ψ and consider another equation
from (5.14) in order to solve for further components of j in terms of the remaining elements. It turns out
that each of the remaining equations of the system given in (5.14) has more than one possible solution,
resulting in a case distinction, when we solve one equation. In Appendix B we give two diagrams of
this elimination process for case A and case B respectively. In these diagrams we keep track of all
the equations Ψk`(j) = 0 we consider, which components of j we are able to determine and which
holomorphic expressions we obtain in the end. Now we describe the diagrams in a more detailed way:
Let us write γ := (A2, C3, B21, C4, A13, B13, C13, A22, B22, C22). In case A Ψ still depends on the vari-
ables γ and B2 and in case B Ψ depends on the variables γ and B12. Since both cases are treated
in the same way we write Λ for the set of the remaining variables in Ψ with components denoted by
(D1, . . . , D11).
Inductively we start considering equations Ψj

k` = 0, which determine further variables Dm1 , . . . , Dmn ∈
Λ, where 1 ≤ mj ≤ 11 for 1 ≤ j ≤ n. Each determined variable Dmj corresponds to a case Ersi . It
turns out that we have 0 ≤ r ≤ 7 and 1 ≤ si ≤ 13, where r = 0 corresponds to the starting node from
case A or B. The notation for Ersi is chosen in a way such that the first index r indicates the number
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of nodes one has to pass in order to get from the starting node, i.e., case A or case B from above, to
Ersi .
Let us denote by E some already achieved case, starting with case A or case B. In the diagram such an
induction step is displayed as in the following Figure 3:

E Ψk` = 0

Ers1
Dm1

= . . .

Ersn
Dmn = . . .

Figure 3: Diagram for new cases

Now we take all parameters from the preceding cases of Ersi , plug them into Ψ and denote the resulting
rational mapping by ϕ(z, χ). Then we have several possibilities:
(i) If ϕ(z, w

2 i z ) is holomorphic near 0 we do not consider further equations. Then we have the
possibility that ϕ is a special case of a holomorphic mapping ϕ′ from some other case, which is
indicated in Figure 4 or ϕ is not a special case of any of the occurring mappings in the diagrams,
which is indicated in Figure 5.

Ersi
Dkm = . . .

ϕ′

Figure 4: Diagram for special cases of holomorphic maps

Ersi
Dkm = . . .

ϕ

Figure 5: Diagram for new holomorphic maps
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(ii) If ϕ(z, w
2 i z ) is not holomorphic, we either proceed with another induction step as shown in Figure 3

or we recognize that the mapping ϕ is a special case of a mapping ϕ′′ from some case Er′′s′′i . We
indicate this situation as Ersi ⊂ Er′′s′′i , which is shown in the following Figure 6.

Ersi ⊂ Er′′s′′i
Dkm = . . .

Figure 6: Diagram for special cases of maps

The complete case distinction is carried out in Appendix B, where we denote the cases Ersi by “Arsi” and
“Brsi” for case A and B respectively. As mentioned above after at most 7 steps the process terminates,
which means, that after setting χ = w

2 i z in Ψ(z, χ, j) we obtain a holomorphic expression. It turns out
that we obtain 5 rational, holomorphic mappings, which we denote by ψ̂k(z, w) for 1 ≤ k ≤ 5, as can
be seen in the diagrams and is indicated in Figure 5. We point out that these mappings include all
H ∈ N2 by construction. The formulas for ψ̂k are given in Appendix C.
We write ψ̂k = (ψ̂1

k, ψ̂
2
k, ψ̂

3
k) and proceed by verifying j4

0 ψ̂k = j4
0H. For some ψ̂k this allows us to

determine further parameters from (5.2). We also have to take into account, that we scaled j ∈ J ,
when we compare the coefficients of ψ̂k and the initial coefficients of H. Whenever we have expressed
one component of j in terms of the remaining components we use this expression for the subsequent
computations.
First we treat ψ̂1 and consider ψ̂3

1w3(0) = C3

2 to obtain

C3 = 3(1 + 2 i εB21).

Next we consider ψ̂1
1z2w2(0) = A22

2 to get

C13 =
3A22

2
.

Then we inspect ψ̂2
1z2w2(0) = B22

2 which gives

C4 = A13 + 18B21 − 6 i ε
(
1−B2

21

)
.

Verifying the normalization conditions we obtain Re(B21) = 0 and we end up with the mapping ψ1 as
claimed, which still depends on B21, A22, B22 and C22 and is given in Appendix C.
For ψ̂2 we start with considering ψ̂1

2zw2(0) = A13

8 to obtain

A13 = −10B21 + i ε(4 +B22) + C4 − 2 i εA2(A22 − C13) + 2A2
2(6 i−C22),

such that ψ̂2 is independent of B22 and C4. Then we compute ψ̂3
2zw3(0) = C13

4 to get

C13 =
3

2

(
A22 +A2

(
2 iB21 + ε(4− iC22)

))
.

The rest of the coefficients are already in the correct form and the normalization conditions give A2 ≥ 0
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and Re(B21) = 0. The resulting mapping is denoted by ψ2, depends on A2, B21, A22 and C22 and is
given in Appendix C.
The maps ψ̂k for k = 3, 4, 5 already satisfy j4

0 ψ̂k = j4
0H and by verifying the normalization conditions

we obtain for k = 3, 5 that A2 ≥ 0 and additionally for k = 3 that Re(B21) = 0. Finally we denote
ψk = ψ̂k for k = 3, 4, 5. The mapping ψ3 depends on A2, B2 and B21, ψ4 on B2 and C22 and ψ5 depends
on A2 and C22. All these mappings are given in Appendix C.

5.3 Reduction to One-Parameter-Families of Mappings

In order to achieve the normalization condition f1w2(0) ∈ R for rational mappings H = (f1, f2, g) of a
certain form, instead of using the parameter u′ from Aut0(H3

ε, 0), we mention a simple observation in
the following lemma.

Lemma 5.12. Let G2 be the following rational mapping of degree 2:

G2(z, w) =
(
a1z + a2e

− i θz2 + a3zw + a4e
i θw2, b1z

2 + b2e
2 i θw2, w(1 + c1e

− i θz + c2w)
)
/

(
1 + d1e

− i θz + d2w + d3e
− i θzw + d4w

2
)
,

where ak, b`, c`, dk ∈ C for 1 ≤ k ≤ 4 and ` = 1, 2, θ ∈ R and let G3 be a rational mapping of degree 3

of the following form:

G3(z, w) =
(
a1e

2 i θz + a2e
2 i θzw + a3e

3 i θw2 + a4z
3 + a5e

i θz2w + a6e
2 i θzw2 + a7e

3 i θw3,

ei θ(b1e
i θz2 + b2e

3 i θw2 + b3z
3 + b4e

i θz2w + b5e
2 i θzw2 + b6e

3 i θw3),

w
(
c1e

2 i θ + c2e
i θz + c3e

2 i θw + c4z
2 + c5e

i θzw + c6e
2 i θw2

))
/

(
e2 i θ + d1e

2 i θw + d2z
2 + d3e

i θzw + d4e
2 i θw2 + d5z

2w + d6e
i θzw2 + d7e

2 i θw3
)
,

where ak, b`, cm, dk ∈ C for 1 ≤ k ≤ 7, 1 ≤ ` ≤ 6 and 1 ≤ m ≤ 8, θ ∈ R.
Then, after setting v = e− i θ in (2.36) and considering

Ǧk := U ′3(v) ◦Gk ◦ U2(v),

for k = 2, 3, we obtain Ǧk is independent of θ.

Proof of Lemma 5.10. We plug ψk into the complexified version of the mapping equation (3.3) and
compare coefficients with respect to z, χ and τ . We list the monomials zkχ`τm we consider in the
mapping equation and which of the remaining coefficients ofH in ψk we are able to determine. Whenever
B21 is present in ψk we write B21 = i b21, where b21 ∈ R. Moreover we recall that A2 ≥ 0.
We start with ψ1 in which we have the terms b21, A22, B22 and C22. The coefficient of χ2τ2 yields
C22 = 0 and χτ3 gives A22 = 0. We write B22 = Re(B22) + i Im(B22) to get from τ4

Re(B22) = 2
(
1− 3 ε b21 + b221

)
.
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The coefficient of τ6gives the following equation:

Im(B22)2 + 4b221

(
1− 2 ε b21

)2
= 0.

Thus Im(B22) = 0 and either b21 = 0 or b21 = ε /2. The first case b21 = 0 results in Gε1 and from the
second case if b21 = ε /2 we obtain Gε2,0.

Next, we insert ψ2 into (3.3), which depends on A2, b21, A22 and C22. The coefficient of χ2τ2 gives

C22 = 2 i εA2
2,

and the coefficient of zχ2τ2 shows

A22 = 2
(
5 iA2b21 + 3A3

2

)
.

The coefficient of τ4 yields two cases: Either b21 = − 3A2
2

2 or b21 =
ε+A2

2

2 .
Assuming the first case b21 = − 3A2

2

2 , we obtain from the coefficient of τ6 either A2 = 0, which results
in Gε1, or

1 + 12 εA2
2 + 48A4

2 + 64 εA6
2 = 0,

which, since A2 ≥ 0, has the only solution if we take ε = −1 and A2 = 1/2. This choice of parameters
gives G−2,1/2.

In the second case b21 =
ε+A2

2

2 we immediately obtain the mapping Gε2,s, where we set s = A2 ≥ 0.

If we handle ψ3, which depends on A2, B2 and b21, we first consider the coefficient of χ2τ2 in (3.3) to
get B2 = A2

2. Then the coefficient of τ4 yields two cases:
The first one is b21 =

A2
2

2 . If we consider the coefficient of χτ3 we obtain A2 = 0 and thus the mapping
Gε1.
The second case is b21 =

ε+A2
2

2 which again gives Gε2,s after setting s = A2 ≥ 0.

Treating ψ4, which depends on B2 and C22, we proceed as follows: The coefficient of χ2τ2 shows
C22 = 2 i ε B̄2 and τ4 gives B2 = ei t

4 for t ∈ R. In order to get rid of ei t in ψ4 we apply U2(v) and U ′3(v)

from (2.36) as in Lemma 5.12 with

v =
2e−

i t
2

1− ε+ i(1 + ε)
∈ S1,

to ψ4, which does not affect the normalization. The resulting mapping is Gε3,0.

Finally we deal with ψ5 in which the terms A2 and C22 occur. We write C22 = Re(C22) + i Im(C22)

and consider the coefficient of χ2τ2 to obtain Im(C22) = − 1
2 and Re(C22) = 0. We end up with the

mapping Gε3,s after setting s = A2 ≥ 0, which completes the proof of the lemma.
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5.4 Jet Determination

In this section we provide a jet determination result based on Theorem 5.1, with the consequence that
we do not need to consider all elements of the 4-jet of a mapping at 0 as in Lemma 5.5 when we compare
two mappings and would like to show that they coincide.

Corollary 5.13 (Jet determination for F2). Let U ⊂ C2 be a neighborhood of 0 and H : U → C3

a holomorphic mapping. We denote the components of H by H = (f1, f2, g) and write f = (f1, f2).
Further let Λ be the collection of j2

0H and the coefficients fz2w(0). If for H1, H2 ∈ F2 the coefficients
belonging to Λ coincide, we have H1 ≡ H2.

Proof. We note that N2 is the collection of the mappings Gε1, Gε2,s and Gε3,s from Theorem 5.1. The
only parameter left in elements of N2 is s = f1w2(0). Let H1, H2 ∈ N2, then we need to verify that if
the coefficients which belong to Λ coincide, this yields H1 ≡ H2.
If s = 0 in some H1 or H2, then the mappings H1 and H2 already differ considering the elements of Λ

if we look at the coefficients f2w2(0) and f2z2w(0).
If s 6= 0, the coefficient f1w2(0) yields that we may have Gε2,s = Gε3,t for some s, t ≥ 0. According
to Lemma 5.3 this is only possible if and only if t = s = 1/2 and ε = −1. In this case we have
G−2,1/2 ≡ G−3,1/2. Next we note the following: In order to be able to apply Theorem 5.1 to a mapping
H ∈ F2 we need to compose H with isotropies according to Proposition 4.1. We see from the proof of
Proposition 4.1 and Remark 4.4 that the standard parameters used to normalize H precisely depend
on the elements of Λ as well as gz2w(0) and fz3(0). To show the dependence of gz2w(0) on j2

0f we take
derivatives of (3.3) twice with respect to z and once with respect to τ and evaluate at 0 to obtain

gz2w(0) = 2 i
(
f1z2(0)f̄1w(0) + ε f2z2(0)f̄2w(0)

)
.

To get rid of the dependence of fz3(0) we consider the system of equations in (5.10) and set w = τ+2 i zχ

and (χ, τ) = 0. Then due to the 2-nondegeneracy of H we can solve for f(z, 0), which then depends on
elements of j2

0H. This completes the proof of the jet determination.

Example 5.14. The following example shows that we cannot do better than Corollary 5.13 and have
to consider coefficients of order 3: For t ∈ R the family of mappings Ht = (f1,t, f2,t, gt) given by

Ht(z, w) :=

(
(1 + (i ε−t)w)z

1− (i ε+t)w
,

2z2

1− (i ε+t)w
,w

)
,

sends H2 into H3
ε and has the property that j2

0Ht is independent of t, but Re
(
(f2,t)z2w(0)

)
= 4t.

These mappings are all isotropically equivalent to Gε2,0(z, w) by an application of isotropies of the form
(z, w) 7→ (z, w)/(1 + tw) and (z′1, z

′
2, w

′) 7→ (z′1, z
′
2, w

′)/(1 − tw′) and dilations (z, w) 7→ (2z, 4w) and
(z′1, z

′
2, w

′) 7→ (z′1/2, z
′
2/2, w

′/4).

5.5 Isotropic Stabilizers

We need to introduce some notation concerning group actions.
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Definition 5.15. Let X be a set and G a group with unit element e. A (left) action α : G ×X → X

of G on X is a map, which satisfies:
(i) α(e, x) = x for all x ∈ X,
(ii) α

(
g1, α(g2, x)

)
= α(g1g2, x), for all g1, g2 ∈ G and x ∈ X.

We write α(g, x) = g · x for g ∈ G and x ∈ X.
The stabilizer stabG(x) of x is defined by stabG(x) := {g ∈ G : g · x = x}. An action of G on X is
called free if for all x ∈ X we have stabG(x) = {e}, i.e., all stabilizers are trivial.

Lemma 5.16. The mapping N : Aut0(H3
ε, 0)×Aut0(H2, 0)×F2 → F2 given by

N(φ′, φ,H) := φ′ ◦H ◦ φ−1,

is a left action.

Proof. For φ1, φ2 ∈ Aut0(H2, 0), φ′1, φ
′
2 ∈ Aut0(H3

ε, 0) and H ∈ F2 we have to show that

N
(
φ′1, φ1, N(φ′2, φ2, H)

)
= N(φ′1 ◦ φ′2, φ1 ◦ φ2, H).

Indeed, we have

N
(
φ′1, φ1, N(φ′2, φ2, H)

)
= N

(
φ′1, φ1, φ

′
2 ◦H ◦ φ−1

2

)

= φ′1 ◦
(
φ′2 ◦H ◦ φ−1

2

)
◦ φ−1

1

= (φ′1 ◦ φ′2) ◦H ◦ (φ1 ◦ φ2)−1 = N(φ′1 ◦ φ′2, φ1 ◦ φ2, H),

which proves the claim.

Definition 5.17. Let N be the action given in Lemma 5.16 and define G := Aut0(H3
ε, 0)×Aut0(H2, 0).

For a mapping H ∈ F2 we call stab0(H) := stabG(H) the isotropic stabilizer for H.

We prove the following fact about the isotropic stabilizers of mappings in N2 from Theorem 5.1.

Lemma 5.18. We set E := {Gε1, Gε2,0, Gε3,0}. If H ∈ N2 \ E, then the isotropic stabilizer stab0(H) of
H is trivial. Furthermore we have stab0(Gε1) = stab0(Gε2,0) is homeomorphic to S1 and stab0(Gε3,0) is
homeomorphic to Z2.

Proof. We let H = (f, g) = (f1, f2, g) ∈ N2 satisfy the conditions we collected in Remark 4.6. We write
s := |f1w2(0)| ≥ 0, x := f2w2(0) ∈ C and y := Im

(
f2z2w(0)

)
∈ R. By Corollary 5.13 we only need to

consider coefficients in j2
0H and fz2w(0). We let (σ′, σ) ∈ G with the notation from (2.27), (2.30) and

(2.31) respectively and consider the equation

σ′ ◦H ◦ σ = H. (5.15)
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The coefficients of order 1, which are fz(0) and Hw(0), are given as follows:

U ′ t(uλλ′, 0) = (1, 0), (5.16)

U ′ t(uc+ λc′1, λc
′
2, λλ

′) = (0, 0, 1). (5.17)

These equations imply λ′ = 1/λ, a′2 = c′2 = 0, a′1 = 1/(uu′) and c′1 = −uc/λ. Assuming these standard
parameters we consider the coefficients of order 2, which are fz2(0), Hzw(0) and Hw2(0), given by:

(0, 2u′u3λ) = (0, 2), (5.18)
(
−r − λ2r′ +

i ε λ2

2
, 2u′u3λc, 0

)
=

(
i ε

2
, 0, 0

)
, (5.19)

(
λ2(λs+ i ε uc)/u, uu′λ(λ2x+ 2u2c2),−2(r + λ2r′)

)
= (s, x, 0). (5.20)

The second component of (5.19) implies c = 0. If we assume this value for c we obtain for the third
order terms fz2w(0) the following equation:

(
4 iuλ3s, u′u3λ(−4r − 2λ2r′ + iλ2y)

)
= (4 i s, i y). (5.21)

The second component of (5.18) shows λ = 1. Furthermore we obtain from the third component of
(5.20) that r′ = −r and since from the second component of (5.18) we get u′u3 = 1, we obtain from
the second component of (5.21) that r = 0. The equation from f2z2(0) given by u′u3 = 1 uniquely
determines u′. The remaining equation from the first component of (5.20), which comes from the
coefficient f1w2(0), is s/u = s.
If s > 0 we obtain that u = 1 and hence all standard parameters are trivial, which proves the first claim
of the lemma.
If s = 0, then H ∈ E , since elements in E are the only maps satisfying f1w2(0) = 0 in the list of mappings
from Theorem 5.1. It is easy to check that the isotropic stabilizers of the maps Gε1 and Gε2,0 consist
precisely of the isotropies σ(z, w) = (uz,w) and σ′(z′1, z

′
2, w

′) = (z′1/u, z
′
2/u

2, w′) with |u| = 1. If we
consider Gε3,0 in (5.15), then we obtain that σ(z, w) = (δz, w) and σ′(z′1, z′2, w′) = (δz′1, z

′
2, w

′), where
δ = ±1, are the only elements of stab0(Gε3,0), which proves the last claim of the lemma.

With a similar procedure as in the previous Lemma 5.18 we obtain the following result:

Theorem 5.19. Let G,H ∈ N2 and σ ∈ Aut0(H2, 0), σ′ ∈ Aut0(H3
ε, 0) such that

σ′ ◦H ◦ σ = G, (5.22)

then G = H. If G or H does not belong to E, then σ = idC2 and σ′ = idC3 .

Remark 5.20. The above Theorem 5.19 says that the isotropic orbit of a given normalized map does
not intersect the isotropic orbit of a different normalized map.

Proof of Theorem 5.19. Let H = (f1, f2, g) and G = (f̂1, f̂2, ĝ) be as in the hypothesis. In the same
way as in the proof of Lemma 5.18 we consider the equations (5.16) to (5.21) and solve for standard
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parameters. We write s := |f1w2(0)| ≥ 0 and ŝ := |f̂1w2(0)| ≥ 0. As before a coefficient where the
left-hand side of (5.22) may differ from the right-hand side, is the w2-coefficient of the first component
of (5.22), which gives s/u = ŝ. Note that all standard parameters except u are uniquely determined.
We have to consider two cases:
If ŝ > 0, then s > 0, which implies u = 1 is the only possibility. This gives σ = idC2 and σ′ = idC3 and
hence G = H. The same conclusion holds if we assume s > 0.
If ŝ = 0, then also s = 0 and from the equations (5.16)–(5.21) we obtain that G and H agree up to
order 3 such that Corollary 5.13 implies G = H.
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6 Global Equivalence of Mappings in N2

In this section we prove the main parts of the Main Theorem by getting rid of the parameter s in The-
orem 5.1. For this purpose we compose the mappings Gεk,s with translations depending on a parameter
p0 to obtain mappings denoted by Gεk,p0

. These mappings are in general not elements of N2, hence we
have to renormalize, that means we have to compose Gεk,p0

with appropriate isotropies, such that we
end up with a normalized mapping, denoted by G̃εk. Using Theorem 5.1 the mappings G̃εk are again of
the form as Gεk,s, with the difference that s = s(p0) depends on the parameter p0 of the translations.
This new free parameter p0 suffices to completely reduce the one-parameter-family of mappings Gεk,s to
finitely many mappings.

6.1 Equivalence Revisited

We start by adapting Definition 2.27 for the global equivalence relation. The mappings Gεk are not
defined everywhere in H2. Composing Gεk with translations, depending on a parameter p0, lead to
restrictions of the parameter space for p0.

Remark 6.1. We are dealing with mappings H : C2 \ X → C3 with X being a complex-analytic set
in C2 and 0 6∈ X. We denote by Y the proper, real-analytic set Y := H2 ∩X. Then we suppose that
H(H2 \ Y ) ⊂ H3

ε and H(0) = 0.
For p, p0 ∈ H2 we define

Hp0(p) :=
(
t′H(p0) ◦H ◦ tp0

)
(p), if tp0

(p) 6∈ Y, (6.1)

for translations as in (2.28) and (2.33) respectively. For p ∈ H2 we set

Up := {q0 ∈ H2 \ Y : tq0(p) 6∈ Y },

such that each Up is open in H2 and 0 ∈ Up if and only if p 6∈ Y . We denote by Yp := H2 \Up such that
Y0 = Y .
For V ( H2 \ Y an open neighborhood of 0 the set U :=

⋂
p∈V Up contains an open and connected

neighborhood ∅ 6= W ⊂ U of 0. Thus if we write Ĥ(p, p0) := Hp0(p) the domain of Ĥ consists of the
nontrivial set V × U . Now the following definition makes sense.

Definition 6.2. Let X be a complex-analytic set in C2 and 0 6∈ X and denote by Y the proper, real-
analytic set Y := H2 ∩X. Let H : C2 \X → C3 be a holomorphic mapping, such that H(H2 \ Y ) ⊂ H3

ε

and H(0) = 0. Consider Z ∈ V ⊂ H2 and p0 ∈ U ⊂ H2 sufficiently small open and connected
neighborhoods of 0 from above. Then we define

Hp0
(Z) :=

(
t′H(p0) ◦H ◦ tp0

)
(Z) =

(
f1,p0

, f2,p0
, gp0

)
(Z). (6.2)

From now on we consider Hp0
as germs of mappings and refer to p0 ∈ U , depending on the neighborhood

V on which Hp0
is defined, as admissible parameter of the translations.

In case we are dealing with the mappings Gεk from Definition 6.6, we write
(
fε1k,p0

, fε2k,p0
, gεk,p0

)
for the
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components of Gεk,p0
.

Since the mapping Hp0 is fixing 0 for all admissible p0 such that, if we use Definition 2.26, we can apply
isotropies to Hp0 .

Definition 6.3 (Equivalence revisited). Let H be as in Definition 6.2, σγ ∈ Aut0(H2, 0) and σ′γ′ ∈
Aut0(Hε3, 0) as in Definition 2.23 and Definition 2.24. Then for admissible p0 ∈ H2 we define

Hp0,γ,γ′(Z) :=
(
σ′γ′ ◦ t′H(p0) ◦H ◦ tp0 ◦ σγ

)
(Z). (6.3)

We say a mapping F , defined in a neighborhood of 0, is equivalent to H, if there exist an admissible
p0 ∈ H2, σγ ∈ Aut0(H2, 0) and σ′γ′ ∈ Aut0(H3

ε, 0), such that F = Hp0,γ,γ′ after possibly shrinking the
neighborhoods involved. Analogous to (2.40) we define the orbit O(H) of H:

O(H) :=
{
Hp0,γ,γ′ : p0 ∈ H2 admissible, (γ, γ′) ∈ Γ× Γ′

}
. (6.4)

We write H̃ := Hp0,γ,γ′ and denote the components of H̃ by H̃ = (f̃1, f̃2, g̃). If we have H = Gεk we
write G̃εk =

(
f̃ε1k, f̃

ε
2k, g̃

ε
k

)
for the components.

Lemma 6.4. The relation defined in Definition 6.3 is an equivalence relation.

Proof. Throughout this proof we write σk for isotropies and tk for translations of the according hyper-
surfaces, where k ∈ N.
Reflexivity of the relation is clear, for symmetry we note that if G is equivalent to H, then we have
G = σ1 ◦ t1 ◦H ◦ t2 ◦ σ2 which we rewrite as H = t−1

1 ◦ σ−1
1 ◦G ◦ σ−1

2 ◦ t−1
2 . By Corollary 2.22 we write

(t−1
1 ◦ σ−1

1 )−1 = t3 ◦ σ3 and σ−1
2 ◦ t−1

2 = t4 ◦ σ4, such that H = σ−1
3 ◦ t−1

3 ◦G ◦ t4 ◦ σ4, i.e., H ∈ O(G).
To show transitivity we proceed similar: Let G be equivalent to H and H be equivalent to F , i.e,
G = σ1 ◦ t1 ◦H ◦ t2 ◦ σ2 and H = σ3 ◦ t3 ◦ F ◦ t4 ◦ σ4. Thus G = (σ1 ◦ t1 ◦ σ3 ◦ t3) ◦ F ◦ (t4 ◦ σ4 ◦ t2 ◦ σ2)

and by Corollary 2.22 we write (σ1 ◦ t1 ◦ σ3 ◦ t3)−1 = t5 ◦ σ5 and t4 ◦ σ4 ◦ t2 ◦ σ2 = t6 ◦ σ6, such that
G = σ−1

5 ◦ t−1
5 ◦ F ◦ t6 ◦ σ6, which shows G ∈ O(F ).

In the next lemma we observe that the equivalence relation we give in Definition 6.3 covers the most
general case of an equivalence relation in our setting. More precisely we have the following result:

Lemma 6.5. For G,H ∈ F2 we write G ∈ [H] if there exists φ ∈ Aut(H2, 0) and φ′ ∈ Aut(H3
ε, 0) such

that G = φ′ ◦H ◦ φ−1. If G ∈ [H], then G is equivalent to H in the sense of Definition 6.3.

Proof. We let G,H ∈ F2 and φ ∈ Aut(H2, 0) and φ′ ∈ Aut(H3
ε, 0) such that G = φ′ ◦ H ◦ φ−1. By

Corollary 2.22 we write φ−1 = t1 ◦ σ1 and φ′−1 = t2 ◦ σ2, where for k = 1, 2 σk is an isotropy and tk is
a translation. Hence we have

G = σ−1
2 ◦ t−1

2 ◦H ◦ t1 ◦ σ1,

which means that G ∈ O(H).

We recall the mappings given in (1.3).
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Definition 6.6. Let Gε2,s(Z) and Gε3,s(Z) be as in Theorem 5.1.
We define

Gε1(Z) := Gε2,0(Z), Gε2(Z) := Gε2,1/2(Z), Gε3(Z) := Gε2,1(Z),

Gε4(Z) := Gε3,0(Z).

We denote the components of Gεk by
(
fε1k, f

ε
2k, g

ε
k

)
.

Remark 6.7. (i) Throughout this section we only need Gε1(Z) and Gε3(Z) for ε = −1. We define the
case ε = +1 to keep the notation more consistent.

(ii) We would like to point out, that the value of s to define Gε1(Z), i.e., s = 1
2 , depends on the choices

of our normalization conditions we made in Proposition 4.1 and how we scaled the elements of J
in (5.13), see also Theorem 4.12. It turns out that we would only need to require s > 1

2 .
(iii) We recall the notation for H2 from (2.1) in Remark 2.8. We note that we apply unitary matrices

U ′3(e− i θ0) and U2(e− i θ0) to Gε1,p0
as in Lemma 5.12 such that from now on we only need to deal

with Gε1,p0
which is now independent of θ0. Also we set θ0 = v0 = 0 in Gε4,p0

, which only depends
on r0 ≥ 0. This parameter will suffice to reduce to finitely many mappings.

Now we have introduced all relevant notions to recall and make Theorem 1.5 sensible.

Theorem 6.8. For m = 2, 3 and 1 ≤ k ≤ 4 let Gεm,s be as in Theorem 5.1 and Gεk as in Definition 6.6.
The following statements hold if we use the equivalence relation of Definition 6.3:
For ε = +1 we have:
(i) For every s ≥ 0 the mapping G+

2,s is equivalent to G+
1 .

(ii) For every s ≥ 0 the mapping G+
3,s is equivalent to G+

4 .
For ε = −1 we have:
(iii) For every 0 ≤ s < 1

2 the mapping G−2,s is equivalent to G−1 .
(iv) For every s > 1

2 the mapping G−2,s is equivalent to G−3 .
(v) The mappings G−1 ,G−2 and G−3 are pairwise not equivalent to each other.
(vi) For every 0 ≤ s 6= 1

2 the mapping G−3,s is equivalent to G−4 and G−3,1/2 = G−2 .
The mapping Gε1 is not equivalent to any of the mappings Gεk.

Remark 6.9. The equivalence relation of (6.3) gives a finer description of N2 and Theorem 6.8 shows
that N2 is given by finitely many orbits O(Gεk).

The rest of this chapter is devoted to prove Theorem 6.8.

6.2 Admissible Sets for Translations

In this section we give the definition for the admissible sets for translations. We think of the mappings
Gεk if we deal with H in the following considerations.

Definition 6.10. Let H from Definition 6.2 be given by H = P/Q, where P,Q are polynomials such
that P (0) = 0 and Q(0) 6= 0. Let Hp0

=: Pp0
/Qp0

be given by (6.2). For fixed Z ∈ H2 we define the
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proper, real-analytic set

DH(Z) := {p0 ∈ H2 : Qp0
(Z) = 0},

and write DH := DH(0). If H = Gεk we write DH = Dε
k.

We take a closer look at rational mappings Hp0
given by Hp0

= Pp0
/Qp0

. We already know that Hp0
is

defined in a sufficiently small neighborhood of 0 and makes sense. If we expand Hp0
into a power series

around 0, all denominators of the Taylor coefficients consist of powers of Qp0
(0). Hence DH defines the

set Y0 = Y from Remark 6.1. Since DH = {p ∈ H2 : Q(p) = 0} we give the following Definition.

Definition 6.11. Let H from Definition 6.2 be given by H = P/Q, where P,Q are polynomials such
that P (0) = 0 and Q(0) 6= 0. Then we define AH as the set of admissible parameters for H or admissible
set of H by

AH := H2 \DH = {p ∈ H2 : Q(p) 6= 0}.

If H = Gεk we write AH = Aεk.

Next we give another observation, which provides some positivity condition if ε = −1.

Remark 6.12. The mappings H ∈ F2 we are dealing with depend on ε = ±1. We write H = (f1, f2, g).
If we consider Hp0

= (f1,p0
, f2,p0

, gp0
) as in (6.2), then it may happen for some choices of p0, that

gp0w(0) < 0 if ε = −1, as pointed out in the proof of Proposition 3.16. In this remark we describe
explicitly which isotropies we need to apply to these mappings, such that the resulting mapping Ĥ =

(f̂1, f̂2, ĝ) satisfies ĝw(0) > 0. Consequently, if we consider Hp0
we can always restrict ourselves to

parameters of the translations p0, such that in Hp0
we have gp0w(0) > 0.

Let us denote by H− = (f−1 , f
−
2 , g

−) the mapping H, where we set ε = −1 and we have g−w (0) < 0 and
by H+ = (f+

1 , f
+
2 , g

+) the mapping H, where we set ε = −1 and we have g+
w (0) > 0. If we want to

normalize H− as in Proposition 4.1 we first compose H− with π′ from (2.35), such that

Ĥ− := π′ ◦H− =
(
f̂−1 , f̂

−
2 , ĝ

−) :=
(
f−2 , f

−
1 ,−g−

)
,

satisfies ĝ−w (0) > 0. For H+ we keep the components as they are and write Ĥ+ := H+ with components
(f̂+

1 , f̂
+
2 , ĝ

+) = (f+
1 , f

+
2 , g

+) for consistency.
For the normalization of Ĥε we proceed as in the proof of Proposition 4.1 by first deriving the parameter
a′ = (a′1, a

′
2) ∈ S2

−,σ from U ′ given in (2.30). For Ĥε in order to satisfy the normalization condition
f̂εz (0) = (1, 0) we obtain the matrix U ′ ε with standard parameters a′ ε = (a′ ε1 , a

′ ε
2 ) ∈ S2

−,σ. Since we
flipped f1 and f2 in H− we have that

a′−1 = a′+2 ,

a′−2 = a′+1 ,

such that |a′−1 |2 − |a′−2 |2 = −1, i.e., σ = −1. Summing up the steps we carried out so far, we apply a
matrix V ′−, as we defined in (2.34), to H−, which belongs to the group of isotropies of H3

− and is given
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by

V ′− :=




a′+2 a′+1 0

ā′+1 ā′+2 0

0 0 −1


 ,

and we apply a matrix V ′+ to H+ given by

V ′+ :=




a′+1 a′+2 0

ā′+2 ā′+1 0

0 0 1


 ,

such that V ′−t(f̂−1 , f̂
−
2 ) = V ′+t(f̂+

1 , f̂
+
2 ). Thus after this first normalization step the mappings agree

and we assume without loss of generality that the mappings H satisfies g−w (0) > 0.

Definition 6.13. Let H from Definition 6.2 be given by H = (f1, f2, g). The real-analytic set NH of
admissible points p0, such that Hp0

(Z) does not satisfy condition (3.29) from the definition for the class
F2

NH :=
{
p0 ∈ AH : f1,p0z(0)f2,p0z2(0)− f2,p0z(0)f1,p0z2(0) = 0

}
. (6.5)

The proper, real-analytic set TH of admissible points p0, where Hp0(Z) does not satisfy condition (3.30)
is given by

TH :=
{
p0 ∈ AH : gp0w(0) = 0

}
,

if we take into account Remark 6.12. We define

SH := TH ∪NH , WH := {SH ∩AH . (6.6)

If we deal with the mappings Gεk we write subscripts Sεk and W ε
k and the same for NH and TH . If we

write Sε2 or Sε3 , we set S+
2 = S+

3 = ∅.
Remark 6.14. According to Proposition 3.5 and Proposition 3.13 it is possible to compose the mapping
with translations to obtain the conditions (3.30) and (3.29), which define the class F2. So we may
also exclude those points of H2, which belong to TH or NH , such that Hp0 as defined in Definition 6.2
satisfies (3.30) and (3.29).

The connection of NH and TH with the sets associated to H, where H is not 2-nondegenerate or
transversal is given in the following lemma.

Lemma 6.15. Let H from Definition 6.2 be given by H = (f1, f2, g). Let N denote the set of points
p ∈ H2 where H is not 2-nondegenerate at p and let T be the set of points q ∈ H2 where H is not
transversal to H3

ε at H(q). Then N = NH and T = TH .

Proof. To show the first equality we note according to Remark 3.14 the set N where H = (f1, f2, g) is
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not 2-nondegenerate in H2 is given by

N = {p = (p1, p2) ∈ H2 :
(
f1z(p) + 2 i p̄1f1w(p)

)(
f2z2(p) + 4 i p̄1f2zw(p)− 4p̄2

1f2w2(p)
)

−
(
f2z(p) + 2 i p̄1f2w(p)

)(
f1z2(p) + 4 i p̄1f1zw(p)− 4p̄2

1f1w2(p)
)

= 0}.

Then if we consider Hp0
and compute NH we obtain the same equation as the one defining N above.

For the second equality we recall that the set T of p ∈ H2 where H is not transversal to H3
ε at H(p)

according to Lemma 3.3 is described in Remark 3.4. More precisely there exists a real-analytic function
A : C4 → R satisfying

Im
(
g(z, w)

)
−
(
|f1(z, w)|2 + ε |f2(z, w)|2

)
= A(z, w, z̄, w̄)

(
Imw − |z|2

)
, (6.7)

such that H is transversal to H3
ε at H(p) if and only if A(p, p̄) 6= 0. If we consider (6.7) for Hp0

with
admissible p0 ∈ C2 and evaluate at (z, w) = (0, 0) we again obtain equation (6.7) but for the variable
p0 instead of p = (z, w). Thus by Lemma 3.3 (ii) ⇔ (iii) we have shown that for a mapping H as above
it holds that T = TH .

6.3 Mappings of Higher (Non-)Degeneracy

In this section we want to see what happens if we translate mappings to points, where they are not
2-nondegenerate, i.e., where Hp0

6∈ F2. We already computed in Example 3.8, that Faran’s map F4 of
Theorem 1.1 is not 2-nondegenerate at 0, but 3-nondegenerate at 0. Using translations we provide some
examples of mappings of higher (non-)degeneracy at 0, which are then used in the following sections to
prove Theorem 6.8. This subsection concludes with a collection of some monomial maps.

Definition 6.16. Let H ∈ F2. We call H deficient at p ∈ H2 if H is not 2-nondegenerate at p. We
refer to such p as deficient point for H. If H is 2-nondegenerate at p ∈ H2 we say H is nondeficient at
p, which we call a nondeficient point for H.

Remark 6.17. By Proposition 3.16 the set of deficient points is a proper, real-analytic subset of H2.

For a mapping H ∈ F2 we have the following possibilities: Either there exists p ∈ H2 such that H is
deficient at p or H is nondeficient everywhere in H2.
In the first case we consider Hp and compose with isotropies fixing 0. Then we try to normalize
the resulting mapping according to some different normalization conditions than we introduced in
Proposition 4.1.
In the second case if H is nondeficient everywhere in H2 we may try to normalize H with respect to
different normalization conditions as given in Proposition 4.1 by composing H with isotropies fixing
some appropriate point q ∈ H2. Here the mapping H belongs to F2 \N2.
At this point we refer to Lemma 6.15, which gives another way how to find deficient points.
The following example gives a mapping, which is nondeficient everywhere:

Example 6.18. We consider the mapping H := G+
1 such that AH = H2 \ {(0,±1)} is the admissible

set. Then we need to compute NH , which is given by the following equation if we take p0 = (r0e
i θ0 , v0 +
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i r2
0), r0 ≥ 0, , θ0, v0 ∈ R instead of (z, w):

(1 + i v0 + r2
0)(1 + v0 − i r2

0)(1− v0 + i r2
0)

(1 + (r2
0 − i v0)2)3

= 0,

which admits no solution in AH .

In the following paragraphs we deduce some mappings of higher (non-)degeneracy at 0.

Example 6.19. For H := G−1 we consider Hp0
. The admissible set AH consists of points (0,±1) ∈ H2

such that NH = {q0 ∈ H2 : q0 = (ei θ0 , i), θ0 ∈ R}. We choose p0 = (1, i) in Hp0
to obtain that 0 is a

deficient point for Hp0
. We compose Hp0

with isotropies fixing 0 which results in a mapping G := H̃,
if we use the notation from Definition 6.3. We write G = (f, g) = (f1, f2, g) and consider the following
normalization conditions:

(i) fw(0) = (0, 1)

(ii) f1z2(0) = 2
√

2

(iii) f1zw(0) = 0

(iv) fw2(0) = (0, 0)

(v) f1z2w(0) = 0

(vi) f2w3(0) = 0

These equations are satisfied if we choose the following standard parameters:

c =
i

2
, a′1 =

√
2 i, a′2 = 1, λ′ = 2, c′1 =

1

2
,

and the rest trivially. After an application of the automorphism π′ of H3
− from (2.35) the resulting

mapping is equal to

(z, w) 7→ (w,
√

2z2, iw2).

We note that this mapping is (2, 1)-degenerate and not transversal at 0.

Example 6.20. For H := G+
1 we consider Hp0

, where AH = H2. Then we obtain NH = {p0 = (2, 4 i)}.
After composing Hp0

with elements of Aut0(H2) and Aut0(H3) we denote G := H̃, using the notation
from Definition 6.3. We impose the following normalization conditions when we write G = (f, g) =

(f1, f2, g):

(i) fz(0) = (1, 0)

(ii) Gw(0) = (0, 0, 1)

(iii) fzw(0) = (0, 1)

(iv) f2w2(0) = 0

(v) gw2(0) = 0

(vi) f2zw2(0) = 0

They can be achieved if we take the following standard parameters except the trivial ones r, c′1, r′ = 0:

c = i, λ = 4, u′ = − i, a′1 = a′2 = − i√
2
, λ′ =

1

4
√

2
, c′2 = − i

4
.
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The resulting mapping is of the form

(z, w) 7→ (z, zw,w)

1− w2
,

which is (1, 1)-degenerate and transversal at 0.

Example 6.21. Next we consider the mapping H := G−
2, 1√

3

. For Hp0
we find p0 = (

√
3, 3 i) ∈ NH and

then renormalize with respect to the same normalization conditions as in Example 6.20. The following
nontrivial standard parameters provide that H̃ satisfies the above normalization conditions:

λ = 3
3
4 , u′ = − i, a′1 =

√
3(1 + i)

2
, a′2 = −1 + i

2
, λ′ =

3
3
4

2
√

2
, c′2 = − i

2
,

to obtain the mapping

(z, w) 7→ (z, zw,w)

1 + w2
, (6.8)

which is (1, 1)-degenerate and transversal at 0.

Remark 6.22. We note Example 6.20 and Example 6.21 show that the mapping

(z, w) 7→ (z, zw,w)

1− εw2
,

is equivalent to G+
1 for ε = +1 and to G−

2, 1√
3

for ε = −1.

Example 6.23. We let H := G−
2,
√

5
4

and take Hp0 to find q0 =
(

376+32 i
89
√

5
,− 512+320 i

89

)
∈ NH ∩ TH .

We apply isotropies fixing 0 to Hq0 and denote the resulting mapping by G = (f, g) = (f1, f2, g). We
normalize the mapping according to the following conditions:

(i) fz(0) = (1, 1)

(ii) fw(0) = (0, 0)

(iii) fz2(0) = (0, 0)

(iv) f1zw(0) = 0

(v) gw2(0) = 2

(vi) f1zw2(0) = 0

when we use the following standard parameters:

c = −2 + 199 i

2848
√

5
, r =

1223

2048
, c′1 =

1276− 3243 i

22304
√

5
, c′2 =

11484 + 29187 i

55760
,

a′1 =
30613535492− 20104041651 i

353339968
√

3485
, a′2 = −11384417567− 3593306283 i

353339968
√

697
, λ′ =

32
√

697

89
,

u′ =
538504992958 + 544496189479 i

342480284921
√

5
, r′ = −756545275

32444416
,

and the remaining standard parameters are chosen trivially. The resulting mapping is of the form

(z, w) 7→
(
z,

z

1 + w
,
w2

1 + w

)
. (6.9)
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This mapping is (1,1)-degenerate and not transversal at 0. If we apply translations t−1
p0

and t′−1
q0 , where

p0 = (0, 1) and q0 = (0, 0, 2), to the map from (6.9) we obtain

(z, w) 7→
(
z,
z

w
,

1 + w2

w

)
. (6.10)

Example 6.24. For H := G−4 we consider Hp0
to obtain that q0 =

(
4√
3
, 16 i

3

)
∈ NH . With this choice

for p0 we scale Hq0 via dilations given by (z, w) 7→ (
√

3z, 3w) and (z′1, z
′
2, w

′) 7→
( 11z′1

27 ,
11z′2
27 , 121w′

729

)
.

Then we compose the resulting mapping G = (f, g) = (f1, f2, g) with isotropies fixing 0 and we impose
the following normalization conditions:

(i) fz(0) = (0,
√

3)

(ii) Gw(0) = (0, 0,−3)

(iii) f2zw(0) = 0

(iv) gw2(0) = 0

(v) f1z2w(0) = 0

(vi) f1z3(0) = 24

which are achieved if we take the following standard parameters:

c = i, λ =
8

3
, a′1 =

14

11
, a′2 = −5

√
3

11
, λ′ =

3
√

3

8
, c′1 =

3
√

3 i

8
,

and the remaining parameters are chosen trivially. The resulting mapping is given by

(z, w) 7→ (4z3,
√

3(1− w2)z,−(3 + w2)w)

1 + 3w2
,

which is 3-nondegenerate and transversal at 0.

Example 6.25. In this example we consider H := G+
4 and again Hp0

. Here we take p0 = (4(1 +

2
√

2/3)1/2, 16(1 + 2
√

2/3) i) such that 0 is a deficient point for Hp0
. First we compose Hp0

with the
following dilations

(z, w) 7→
(

(9 + 6
√

2)
1
2 z, 3(3 + 2

√
2)w

)
,

(z′1, z
′
2, w

′) 7→
(

(23 + 20
√

2)z′1
27

,
(23 + 20

√
2)z′2

27
,

(1329 + 920
√

2)w′

729

)
,

to remove some common factors. Then we compose the resulting mapping with isotropies fixing 0 and
denote this mapping by G. Next we consider the same normalization conditions as in Example 6.24
except we need to require Gw(0) = (0, 0, 3) and use the following nontrivial standard parameters:

c = (1 +
√

2) i, λ =
8
√

2

3
, u′ = −1,

a′1 =
(75
√

2− 154)

271
, a′2 = −5

√
3(11 + 14

√
2)

271
, λ′ =

3

8

√
51

2
− 18

√
2,

c′1 =
−21 i(3987− 2760

√
2)

1
2

1084
√

2
, c′2 =

45 i(40− 23
√

2)

4336
.
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The resulting mapping is given by

(z, w) 7→ (4z3,
√

3(1 + w2)z, (3− w2)w)

1− 3w2
,

which is 3-nondegenerate and transversal at 0.

Remark 6.26. Example 6.24 and Example 6.25 show that the mapping

(z, w) 7→ (4z3,
√

3(1 + εw2)z, (3 ε−w2)w)

1− 3 εw2
, (6.11)

is equivalent to Gε4 . For ε = +1 after applying the Cayley-Transformation to this mapping we obtain
the mapping F4 from Theorem 1.1 when we interchange the second and third component.

For the next mapping we cannot proceed as in the previous examples and we normalize differently at 0.

Example 6.27. We prove that H := G−2,s with 0 ≤ s ≤ 1/2 admits no admissible points, where H fails
to be 2-nondegenerate. For admissible points p = (r0e

i θ0 , v0 + i r2
0) ∈ AH the set NH is given by

NH = {p ∈ AH : −4r0s+ ei θ0
(
4 + (1− 3s2)(r2

0 + i v0)
)

= 0, 0 ≤ s ≤ 1/2}.

Splitting up the defining equation for NH into real and imaginary part we obtain the following system:

(
cos(θ0) sin(θ0)

sin(θ0) − cos(θ0)

)(
4 + r2

0(1− 3s2)

v0(1− 3s2)

)
−
(

4r0s

0

)
= 0,

which does not admit any solution for 0 ≤ s < 1/2 and any p ∈ H2 and if s = 1/2 the solution of the
above system does not belong to AH .
We set H := G−2 and compose H with isotropies fixing 0 to obtain the mapping H̃ = (f̃1, f̃2, g̃). We
consider the following normalization conditions at 0:

(i) f̃z(0) = (1, 0)

(ii) G̃w(0) = (0, 0, 1)

(iii) f̃2z2(0) = 2
√

2

(iv) f̃1w2(0) = 0

(v) g̃w2(0) = 0

(vi) Re(f̃1z2w(0)) = 0

These conditions are achieved with the following nontrivial standard parameters

c = − i

2
√

2
, λ =

√
2, λ′ =

1√
2
, c′1 =

1√
2
, c′2 =

i

4
,

which results in the following mapping given by

(z, w) 7→
(
z(1 +

√
2z − iw)

1 +
√

2z
,
z(
√

2z − iw)

1 +
√

2z
, w

)
. (6.12)

We note that in contrast to the normalization conditions of Proposition 4.1 we have here f̃1w2(0) = 0,
but f̃2zw(0) = − i and a different scaling of f̃2z2(0).
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Example 6.28. We complete this section by mentioning some monomial maps we have found during
our studies of mappings of hyperquadrics of C2 and C3. A monomial map is a mapping, with the
property that each of its components consists of monomials.
Additional examples of monomial mappings from S2 → S3

− besides L2 and L3 of Theorem 1.2 are given
as follows:

(z, w) 7→
(
1, z2,

√
2z
)

w2
, (z, w) 7→

(√
2

w
,
z2

w2
,

1

w2

)
,

which are both equivalent to G−1 . Further there is an example of a monomial mapping of H2 → H3
− of

degree 3 given by

(z, w) 7→
(√

3zw, 2z3, w3
)
,

which is equivalent to G−4 .

6.4 Renormalization

We introduce the following notation for some particular mappings:

Definition 6.29. We define

Hε1(z, w) :=

(
z(1 + i εw)

1− i εw
,

2z2

1− i εw
,w

)
,

H−2 (z, w) :=

(
z(1 +

√
2z − iw)

1 +
√

2z
,
z(
√

2z − iw)

1 +
√

2z
, w

)
,

H−3 (z, w) :=

(
z,
z

w
,

1 + w2

w

)
,

Hε4(z, w) :=
(4z3,

√
3(1 + εw2)z, (3 ε−w2)w)

1− 3 εw2
.

We write Hεk =
(
fε1k, f

ε
2k, g

ε
k

)
. The notation for sets associated to Gεk from subsection 6.2 carries over to

the maps Hεk.
The mapping Hε1 is equivalent to Gε2,0, by scaling in C2 and C3 with the following maps:

(z, w) 7→ (2z, 4w), (z′1, z
′
2, w

′) 7→ (z′1/2, z
′
2/2, w

′/4).

The map H−2 is the one from (6.12), H−3 is the map (6.10) and H−4 is taken from (6.11).

We observe that each mapping H := Hεk belongs to some orbit O(G), where G ∈ N2, although H 6∈
F2. Nevertheless in this section we consider Hp0 for appropriate p0 ∈ H2, such that Hp0 ∈ F2, see
Definition 6.13 and Remark 6.14. The sets WH are given below. Then we normalize Hp0 ∈ F2 and
we consider mappings H̃ := H̃εk from (6.3) and standard parameters of the isotropies according to
Proposition 4.1 to achieve H̃ = (f̃1, f̃2, g̃) ∈ N2. Applying Theorem 5.1 to H̃, the mapping H̃ coincides
with one of the families of mappings Gεk,s with the difference, that in this particular case s = s(p0) is a
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function, depending on p0. We know from Theorem 5.1 and Proposition 4.1 that s = |f̃1w2(0)| up to a
scaling factor.
In this section we compute the expressions s(p0) and some of the standard parameters which are needed
for this purpose. Then we analyze the image of the function s(p0) for appropriate p0 which allows to
determine the orbits of the mappings Hεk. Then the reduction of the one-parameter-families of mappings
Gεk,s and the proof of Theorem 6.8 is completed.
In the next proposition we list the sets Dε

k from Definition 6.10.

Proposition 6.30. Let Hεk,p0
, where 1 ≤ k ≤ 4, be as in Definition 6.2 for the maps from Defini-

tion 6.29. Then for ε = +1 we have D+
1 = D+

4 = ∅ and for ε = −1 we compute the following nontrivial
sets D−k :

D−1 =
{
p0 ∈ H2 : 1 + i v0 − r2

0 = 0
}
,

D−2 =
{
p0 ∈ H2 : 1 +

√
2r0e

i θ0 = 0
}
,

D−3 =
{
p0 ∈ H2 : v0 + i r2

0 = 0
}
,

D−4 =
{
r0 ≥ 0 : 1− 3r4

0 = 0
}
,

Proof. For ε = −1 the computations of D−k and the nontriviality are straightforward. For ε = +1 we
obtain D+

1 =
{
p0 ∈ H2 : 1− i v0 + r2

0 = 0
}

= ∅ and D+
4 =

{
r0 ≥ 0 : 1 + 3r4

0 = 0
}

= ∅.

Proposition 6.31. Let Hεk,p0
, where 1 ≤ k ≤ 4, be as in Definition 6.2 for the maps from Defini-

tion 6.29. The sets Nε
k and T εk from Definition 6.13 are given as follows:

For ε = +1:

N+
1 =

{
p0 ∈ H2 : 1 + v2

0 − 2 i r2
0v0 − r4

0 = 0
}
,

T+
1 =∅,

N+
4 =

{
r0 ≥ 0 : r0(1− r4

0) = 0
}
,

T+
4 =∅.

For ε = −1:

N−1 =∅,
T−1 =

{
p0 ∈ A−1 : 1− 6r2

0 + v2
0 + r4

0 = 0
}
,

N−2 =∅,

T−2 =
{
p0 ∈ A−2 : ei θ0 +

√
2r0(1 + e2 i θ0) = 0

}
,

N−3 =
{
p0 ∈ A−3 : r0 = 0

}
,

T−3 =
{
p0 ∈ A−3 : −1 + v2

0 + r4
0 = 0

}
,

N−4 =
{
r0 ∈ A−4 : r0 = 0

}
,

T−4 =
{
r0 ∈ A−4 : 1− 14r4

0 + r8
0 = 0

}
.
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Proof. It is straightforward to get the nontrivial sets Nε
k and T εk . To show the triviality of T+

k for
k = 1, 4 we write Hk := H+

k,p0
with components (H1

k , H
2
k , H

3
k) and compute H3

kw(0):

H3
1w(0) =

1 + 6r2
0 + v2

0 + r4
0

1 + 2r2
0 + v2

0 + r4
0

,

H3
4w(0) =

3
(
1 + 14r4

0 + r8
0

)

(1 + 3r4
0)2

.

To show triviality of N−k for k = 1, 2 we note in Example 6.27 we have shownH := G−2,s with 0 ≤ s ≤ 1/2

admits no admissible points, where H fails to be 2-nondegenerate. By Lemma 3.9 this must also hold
for H−1 and H−2 , since they are equivalent to G−2,0 and G−

2, 12
respectively.

Remark 6.32. According to Remark 6.12 we can assume the mapping Hεk,p0
satisfies gεkp0w

(0) > 0,
which is given by the following expressions:

gε1p0w(0) =
1 + 6 ε r2

0 + v2
0 + r4

0

1 + 2 ε r2
0 + v2

0 + r4
0

, (6.13)

g−2p0w
(0) =

1 +
√

2r0(e− i θ0 + ei θ0)

(1 +
√

2r0e− i θ0)(1 +
√

2r0ei θ0)
, (6.14)

g−3p0w
(0) =

−1 + v2
0 + r4

0

v2
0 + r4

0

, (6.15)

gε4p0w(0) =
3(ε+14r4

0 + ε r8
0)

(1 + 3 ε r4
0)2

. (6.16)

One can verify that these expressions make sense since we assume p0 ∈W ε
k .

As already mentioned we apply Proposition 4.1 to obtain H̃εk ∈ N2 for some maps in order to compute
the coefficient f̃1w2(0) in the following lemma. For this purpose we provide explicit computations of
some of the standard parameters.

Lemma 6.33. Using the notation from (6.3), for 1 ≤ k ≤ 4 we set Hk := Hεk and consider H̃k with
components H̃k = (f̃1k, f̃2k, g̃k). Moreover in H̃k we let p0 ∈ W ε

k ⊂ H2. If we assume H̃k ∈ N2, then

Σεk(p0) :=
|f̃1kw2 (0)|2

4 is given as follows:

Σε1(p0) =
r2
0

(
1 + 2 ε r2

0 + v2
0 + r4

0

)

(1− 2 ε r2
0 + v2

0 + r4
0)2

,

Σ−2 (p0) =
1

16
,

Σ−3 (p0) =
(1− v2

0)2 + 2(1 + v2
0)r4

0 + r8
0

16r4
0

,

Σε4(p0) =
(1 + ε r4

0)2(1− 34 ε r4
0 + r8

0)2

1728r4
0(1− ε r4

0)4
.

We write sεk(p0) :=
√

Σεk(p0).

Proof. First we take a look at the expression f̃1w2(0) from Remark 4.4 for an arbitrary normalized
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mapping. In order to achieve f̃1kw2(0) = |f̃1kw2(0)| we need to compute a′ = (a′1, a
′
2), c′ = (c′1, c

′
2), λ′

and c, λ according to the formulas given in Remark 4.3. This is possible since we have for p0 ∈W ε
k that

Hk ∈ F2. For each 1 ≤ k ≤ 4 we denote the corresponding standard parameters in H̃k by

a′k = (a′1k, a
′
2k) ∈ S2

ε,σ, ĉ′k = (c′1k, c
′
2k) ∈ C2, λ′k > 0, ck ∈ C, λk > 0,

where all of these expressions depend on p0. For k = 1, 4 they further depend on ε = ±1 and if k = 2, 3

we set ε = −1, but we suppress this dependence notationally. We denote the collection of these standard
parameters for a fixed k by Ωk. The parameters a′k are given in (4.4) and ĉ′k as well as λ′k are given in
(4.5). Then ck is computed according to (4.7) and λk is of the form as in (4.9). All these expressions
in Ωk are given in Appendix D for the mappings H̃k. We recall that H̃1 is independent of θ0 as we
described in Remark 6.7 (iii). We note that it is crucial to assume p0 ∈ W ε

k such that the elements of
Ωk make sense.
If we put all these parameters into f̃1kw2(0) we obtain

f̃1kw2(0) =
S′
(
j2
0Hk

)

uk
,

where S′ is a rational function in the coefficients of Hk at 0 up to order 2 according to Remark 4.4.
Thus, instead of computing uk explicitly at this point, we have

Σεk(p0) =
|S′
(
j2
0Hk

)
|2

4
,

which yields the expressions in the statement of the lemma.

Remark 6.34. It turns out that Σ−2 is constant equal to 1
16 , which means the mapping G−2 is a fixed

point of the renormalization map given by H 7→ σ′ ◦ t′H(p0) ◦H ◦ tp0 ◦ σ considered as a mapping from
N2 to N2.

In order to achieve equivalence of Gεm,s and Gεk via choices of translations in s = sεk we restrict ourselves
to subsets of W ε

k which we give in the following Definition.

Definition 6.35. For ε = +1 we define:

W+
1 :=

{
p0 ∈ H2 : v0 = 0 = θ0, 0 < r0 < 1

}
, (6.17)

W+
4 :=

{
r0 ∈ R+ : 0 < r0 < −1 +

√
2
}
, (6.18)

and the following sets for ε = −1:

W−1 :=
{
p0 ∈ H2 : v0 = 0 = θ0, 0 < r0 < −1 +

√
2
}
, (6.19)

W−3 :=
{
p0 ∈ H2 : v0 = 0 = θ0, 0 < r0 < 1

}
(6.20)

W−4 :=

{
r0 ∈ R+ : r0 > 1, r0 6=

√
2 +
√

3

}
. (6.21)
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If we write Wε
3 , we set W+

3 = ∅.
Next we derive some properties of the functions Σεk.

Lemma 6.36. We set R+
0 := R+ ∪ {0} and define

R+
1 := R+

0 , R+
4 := R+

0 ,

R−1 := [0, 1/16), R−3 := R+
0 \ [0, 1/16], R−4 := R+

0 \ {1/16}.

Then Σεk from Lemma 6.33 has the following properties:
(i) For p0 ∈W−1 we have 0 ≤ Σ−1 (p0) < 1/16 and for p0 ∈W−3 we have Σ−3 (p0) > 1/16.
(ii) Σεk :Wε

k → Rεk is a bijection for ε = +1 if k = 1, 4 and for ε = −1 if k = 1, 3, 4.

Proof. The first statement in (i) holds, since for p0 ∈W−1 we have

Σ−1 (p0)− 1

16
= − (1− 6r2

0 + v2
0 + r4

0)2

16(1 + 2r2
0 + v2

0 + r4
0)2

< 0,

and the second statement, since for p0 ∈W−3 we have

Σ−3 (p0)− 1

16
=

(1− v2
0 − r4

0)2

64r4
0

> 0.

To show (ii) we compute the derivatives of Σεk restricted to Wε
k with respect to r0: Then we have Σε1 is

strictly increasing, Σ−3 is strictly decreasing in W−3 . The function Σ+
4 is strictly decreasing in W+

4 and
Σ−4 is strictly increasing in W−4 . We note that Σ−4

(√
2 +
√

3
)

= 1/16.

Since we only consider equivalence with respect to isotropies in Theorem 5.1 we give the following
lemma.

Lemma 6.37. Consider the mappings Gε1 and Gε2,s from Theorem 5.1. In the sense of Definition 6.3
the mapping Gε1 is not equivalent to Gε2,s for any s ≥ 0.

Proof. Let us denote H := Gε1,p0
as in (6.2) with components (f1, f2, g) and Ĥ := Gε2,s with components

(f̂1, f̂2, ĝ). Then we compute S for H from (6.6) given by

S =
{
p0 ∈ H2 :

(
4− v2

0 − 2 i v0r
2
0 + r4

0

)(
2 ε+ i v0 + r2

0

)
= 0
}
.

Moreover we have for p0 ∈W = {S ∩H2

gw(0) =
4
(

4 + 4 ε r2
0 + v2

0 + r4
0

)

(
4− v2

0

)2
+ 2r4

0

(
4 + v2

0

)
+ r8

0

> 0. (6.22)

Then for p0 ∈ W we have H ∈ F2 and we compute standard parameters to normalize the mapping
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according to Proposition 4.1. First we introduce the expression

R :=

√
4 + 4 ε r2

0 + v2
0 + r4

0

(4− v2
0)2 + 2r4

0(4 + v2
0) + r8

0

,

which is the square root of (6.22), such that the standard parameters for the normalization are given
by

c′1 := − (4 + r4
0 + 2 i r2

0v0 − v2
0)
(
cu
(
8 ε+r6

0 − r4
0(6 ε+ i v0) + 4 i v0 − 2 ε v2

0 − i v3
0

− r2
0(12− 4 i ε v0 − v2

0)
)

+ λr0e
i θ0
(
4 i +4 ε v0 + 4 i ε r2

0 + i v2
0 − 2r2

0v0 − i r4
0

))

/
(

2λ(4− v2
0 − 2 i r2

0v0 + r4
0)(4 + 4 ε r2

0 + v2
0 + r4

0)
)
,

c′2 :=
2r0e

i θ0
(
4− v2

0 + 2 i r2
0v0 + r4

0

)(
cu(−4 + v2

0 + r4
0) + iλr0e

i θ0(i v0 − r2
0)
)

λ
(
4− v2

0 − 2 i r2
0v0 + r4

0

)(
4 + 4 ε r2

0 + v2
0 + r4

0

) ,

λ′ :=
1

λR
,

a′1 :=
8− 4 i ε v0 − 12 ε r2

0 − 2v2
0 − 4 i r2

0v0 + i ε v3
0 − 6r4

0 + ε r2
0v

2
0 + i ε r4

0v0 + ε r6
0

uu′R(4− v2
0 + 2 i r2

0v0 + r4
0)2

,

a′2 :=
4r0e

− i θ0(−4 + v2
0 + r4

0)

uu′R(4− v2
0 + 2 i r2

0v0 + r4
0)2

,

c :=
iλr0e

i θ0

u(2 ε+ i v0 + r2
0)
,

u′ :=
(4− v2

0 − 2 i r2
0v0 + r4

0)2
√

4 + v2
0 + 4 ε r2

0 + r4
0

u3(2 + i ε v0 + ε r2
0)(4− v2

0 −+2 i r2
0v0 + r4

0)2
,

λ :=

√
4 + v2

0 + 4 ε r2
0 + r4

0

2
.

The resulting normalized mapping is denoted by H̃ ∈ N2, according to Definition 6.3, and we want to
solve H̃ = Ĥ. First we compare coefficients belonging to the 2-jet at 0. Using Remark 4.4 we have
f̃1w2(0) = 0 and f̂1w2(0) = s/2, thus we need to require s = 0 such that the 2-jets of the mappings
at 0 coincide. Considering higher order derivatives we discover f̃2z2w(0) ∈ R, depending on r and r′

and is of the form as in (4.11). The standard parameter u is not present in the coefficient f̃2z2w(0), see
Lemma 5.18. On the other hand we have f̂2z2w(0) = i ε

2 , hence Gε1 and Gε2,s are not equivalent for any
s ≥ 0.

Remark 6.38. We can also compute the remaining standard parameters in the normalization in the
proof of Lemma 6.37, which are given by

r′ := − 4r
(
(4− v2

0)2 + 2(4 + v2
0)r4

0 + r8
0)
)

+ v0

(
−48 + 8v2

0 + v4
0 + 2(12 + v2

0)r4
0 + r8

0

)

4(4 + v2
0 + 4 ε r2

0 + r4
0)2

,

r := − v0

4
.

Then if we compose Gε1 with translations and renormalize as in Definition 6.3, the resulting mapping is
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Gε1, which again shows that O(Gε1) = O0(Gε1).

The following Lemma is stated in [Mey06, Lemma 2.1].

Lemma 6.39. Let H ∈ F2 and φ ∈ Aut(H2, 0) and φ′ ∈ Aut(H3
ε, 0), then H̃ := φ′ ◦ H ◦ φ satisfies

deg H̃ = degH.

Proof. Let F : C2 → C3 be a reduced rational mapping of maximal degree k ≥ 1 satisfying F (0) = 0

and F = (f1, f2, f3)/p with p(0) 6= 0. Further let L : C2 → C2 and L′ : C3 → C3 be linear rational
mappings satisfying L(0) = L′(0) = 0 which are given by L = (`1, `2)/q and L′ = (`′1, `

′
2, `
′
3)/q′ with

q(0), q′(0) 6= 0. Let F̃ := L′ ◦ F ◦ L, then we claim that deg F̃ ≤ degF after removing common factors.
For convenience we write for coordinates z = (z1, z2) ∈ C2. Let h ∈ {f1, f2, f3, p} and write with
mulitindex notation h(z) =

∑
|α|≤k aαz

α. Then we have

h(L(z)) =
∑

|α|≤k
aα

`(z)α

q(z)|α|
=

1

q(z)k

∑

|α|≤k
aαq(z)

k−|α|`(z)α =:
hL(z)

q(z)k
,

where each monomial of hL is of maximal degree k. Note that F̂ := F (L) satisfies F̂ (0) = 0 and is of the
form F̂ = f̂/p̂ = (f̂1, f̂2, f̂3)/p̂. Hence if we consider the m-th component of F̂ we have deg(f̂m/p̂) ≤ k.
Let ĥ ∈ {̂̀1, ̂̀2, ̂̀3, q̂} where we write ĥ(z) =

∑
|β|≤1 bβz

β . Then we have

ĥ(F̂ (z)) =
∑

|β|≤1

bβ
f̂(z)β

p̂(z)β
=

1

p̂(z)

∑

|β|≤1

bβ p̂(z)
1−|β|f̂(z)β =:

ĥF (z)

p̂(z)
,

where each monomial of ĥF is of maximal degree k. We set F̃ := L′(F̂ ), which satisfies F̃ (0) = 0

and is of the form F̃ = (f̃1, f̃2, f̃3)/p̃. Thus if we consider the m-th component of F̃ we obtain that
deg(f̃m/p̃) ≤ k, which proves the claim.
To prove the lemma let H ∈ F2. Then from Theorem 5.1 it follows that there exists G ∈ N2 with
2 ≤ degG ≤ 3 and isotropies ψ ∈ Aut0(H2, 0) and ψ′ ∈ Aut0(H3

ε, 0) such that H = ψ′ ◦ G ◦ ψ. In
particular H is a rational mapping of some degree m. Hence by the above claim we obtain m ≤ degG.
If we rewrite the representation of H by G, i.e., G = ψ′−1 ◦H ◦ ψ−1, we get degG ≤ m, which shows
degH = degG.
If we let H̃ be as in the hypothesis and H as in the previous paragraph, we have

H̃ = φ′ ◦H ◦ φ = φ′ ◦ ψ′ ◦G ◦ ψ ◦ φ,

and we set ϕ := ψ ◦ φ and ϕ′ := φ′ ◦ ψ′. Since ϕ and ϕ′ are of the form as L and L′ above, we are in
the situation as above and we can argue as we did for H and G before to obtain deg H̃ = degH.

We now summarize all the previous results to give a proof of Theorem 6.8.

Proof of Theorem 6.8. The last claim of the theorem concerning Gε1 is proved in Lemma 6.37 and
Lemma 6.39. Let us consider for 1 ≤ k ≤ 4 the mappings Hεk from Definition 6.29, Hεk,p0

from (6.2)
and H̃εk as in (6.3) and p0 ∈ W ε

k according to Remark 6.14. We note that according to subsection 6.3
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and Definition 6.29 the map Hε1 is equivalent to Gε1 , H−2 is equivalent to G−2 , H−3 is equivalent to G−
2,
√

5
4

and Hε4 is equivalent to Gε4 .
Since p0 ∈W ε

k we have Hεk,p0
∈ F2. In Lemma 6.33 we explicitly derive standard parameters such that

G̃εk satisfies (i)–(iv) of the normalization conditions in Proposition 4.1 and we compute the expressions

sεk(p0) :=
|f̃ε1k,p0w2(0)|

2
.

We start investigating the case of mappings of degree 2, which are H̃ε1, H̃ε2 and H̃ε3 since the degree
does not change if we apply automorphisms according to Lemma 6.39. We recall that these mappings
originate from Gε2,s which is of degree 2. According to Theorem 5.1 we have

H̃εk ∈
{
Gε1, G

ε
2,s

}
,

where s = sεk(p0) holds. By Lemma 6.37 the only possible case is H̃εk = Gε2,s, where s = sεk(p0). We
obtain (i) by Lemma 6.36 (ii) since the mappings G+

2,s are equivalent to H+
1 for s ≥ 0. In the case of

ε = −1 we obtain again by Lemma 6.36 (ii) that G−2,s is equivalent to H−1 if 0 ≤ s < 1/4 and G−2,s is
equivalent to H−3 if s > 1/4, proving (iii) and (iv). Finally applying Lemma 6.36 (i) shows that G−1 ,G−2
and G−3 are pairwise not equivalent, which proves (v).
Next we treat the case of mappings of degree 3, i.e., G+

3,s for s ≥ 0 and G−3,s for 1/4 6= s ≥ 0 by
Lemma 5.3. According to Lemma 6.39 we have

deg
(
H̃ε4
)

= 3.

Thus by Theorem 5.1 it holds that H̃ε4 = Gε3,s, where s = sε4(p0) and satisfies s 6= 1/4 for ε = −1. Then
we restrict the parameter space of the translations to p0 = (r0, i r

2
0) ∈ H2 for r0 ≥ 0 to obtain if s 6= 1/4

for ε = −1 or if s ≥ 0 for ε = +1 from Lemma 6.36 (ii) that Gε3,s is equivalent to Hε4, which proves (ii)
and (vi) of Theorem 6.8. In the exceptional case t := |f−13w2(0)| = 1/2 in G−3,t we have G−3,1/2 = G−2 as
in (vi).

Remark 6.40. In the proof of Theorem 6.8 we avoid to compute all standard parameters such that
H̃εk ∈ N2. In Proposition 4.1 and Remark 4.3 we have shown that we can achieve H̃ ∈ N2 for any
H ∈ F2. In Appendix D we give the standard parameters appearing in the mapping H̃εk, such that
H̃εk ∈ N2 for k = 1, 3, 4. For the mapping H̃−2 we proceed differently and make use of Theorem 4.12 and
Example 4.13. We define the admissible normal form N := {σ′ ◦H ◦ σ : H ∈ N2}, where σ and σ′ are
the isotropies we used in Example 6.23 to show equivalence of H−2 and G−

2,
√

5/4
, which by Theorem 6.8

is equivalent to G−2 = G−2,1/2. Then we renormalize H̃−2 with respect to N , i.e., we require H̃−2 ∈ N and
list the appropriate standard parameters for this inclusion in Appendix D. Then analogously as for N2

we obtain that H̃−2 = H−2 for all admissible p0 ∈ H2.
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7 The Class of Degenerate Mappings

In order to complete the classification in Proposition 3.16 we need to study the following class of
holomorphic mappings.

Definition 7.1. For a neighborhood U ⊂ C2 of 0 let us denote the set F1(U) of holomorphic mappings
H = (f1, f2, g) with H(U ∩ H2) ⊂ H3

ε, which are constantly (1, 1)-degenerate, transversal at 0 and
satisfy H(0) = 0. By Proposition 3.13 we have

f1z(0)f2zk(0)− f2z(0)f1zk(0) = 0, ∀k ≥ 2, (7.1)

and by Lemma 3.3 we obtain gw(0) > 0. We denote by F1 the set of germs H, such that H ∈ F1(U)

for some U ⊂ C2 a neighborhood of 0.

The following theorem shows the missing claim (ii) in Proposition 3.16.

Theorem 7.2. Let H ∈ F1, then in the sense of Definition 2.26 we have H is equivalent to the mapping
(z, w) 7→ (z, 0, w).

Remark 7.3. (i) We prove the theorem by proceeding as in the nondegenerate case: First we compose
the degenerate mapping with automorphisms in order to fix some coefficients and then we compute
a jet parametrization which gives the linear embedding (z, w) 7→ (z, 0, w).

(ii) A different way to prove the theorem is to refer to [ES10, Theorem 1.1] to obtain that the image
of H is contained in a 2-dimensional hyperplane and conclude directly that H is equivalent to a
linear embedding. Yet another alternative for ε = +1 can be found in [Far82, Lemma 1.7].

(iii) Note that Theorem 7.2 together with Proposition 3.13 implies that a mapping which is (1, 1)-
degenerate in an open, dense subset of its domain in H2 is already (1, 1)-degenerate everywhere
in its domain in H2.

Proposition 7.4. Let H ∈ F1. Then there exist automorphisms σ ∈ Aut0(H2, 0) and σ′ ∈ Aut0(H3
ε, 0)

such that H̃ := σ′ ◦H ◦ σ satisfies H̃(0) = 0 and the following conditions:

(i) H̃z(0) = (1, 0, 0)

(ii) H̃w(0) = (0, 0, 1)

(iii) f̃2z2(0) = 0

(iv) Re
(
g̃w2(0)

)
= 0

Definition 7.5. We write N1 for the set of holomorphic mapping of F1 satisfying the conditions given
in Proposition 7.4.

Proof. We start by setting u = 1 = u′ = λ and c = 0 = r′ in the definitions of the isotropies from
Definition 2.23 and Definition 2.24. Next we proceed as in Proposition 4.1 and consider the following
coefficients of H̃ together with the conditions we impose on them.

H̃z(0) =

(
λ′
(
a′1 − ε a′2
ā′2 ā′1

)(
f1z(0)

f2z(0)

)
, 0

)
=
(
1, 0, 0

)
, (7.2)

H̃w(0) =

(
λ′
(
a′1 − ε a′2
ā′2 ā′1

)(
c′1gw(0) + f1w(0)

c′2gw(0) + f2w(0)

)
, λ′

2
gw(0)

)
= (0, 0, 1). (7.3)
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Considering the first two equations of (7.2) we set

a′1 =
f1z(0)

||fz(0)||ε
, a′2 =

f2z(0)

||fz(0)||ε
,

and the third equation of (7.3) gives

λ′ =
1√
gw(0)

,

such that the corresponding equations are satisfied if we use (3.4). By setting

c′1 = −f1w(0)

gw(0)
, c′2 = −f2w(0)

gw(0)
,

we have fixed the 1-jet of H at 0 such that a′ = (a′1, a
′
2) ∈ S2

ε,σ, λ
′ > 0 and c′1, c′2 ∈ C. With the choices

for a′ we obtain

f̃2z2(0) = λ′
(
a′2f1z2(0) + ā′1f2z2(0)

)
= 0,

since we assumed (7.1) with k = 2. Finally we solve

Re
(
g̃w2(0)

)
= −2r + λ′

2
Re
(
gw2(0)

)
= 0,

for r ∈ R and we are done.

Proposition 7.6. Let H ∈ N1. Then necessarily the coefficients of H satisfy the following equations:

(i) f1zk(0) = 0 (k ≥ 2)

(ii) Im
(
gw2(0)

)
= 0

(iii) gzkw(0) = 0 (k ≥ 1)

(iv) f1w2(0) = 0

(v) f1w(z, 0) = 0

Proof. The conditions are simply verified by differentiating (3.3) assuming the conditions on H given
in Proposition 7.4:
Differentiation of (3.3) with respect to z and evaluating the result at (z, χ, τ) = (0, χ, 0) gives χ =

f̄1(χ, 0) if we assume the conditions on the 1-jet of H at 0. Differentiating k-times this equation for
k ≥ 2 gives (i).
If we differentiate (3.3) twice with respect to τ and evaluate the result at 0 we obtain using Hw(0) =

(0, 0, 1) that Im(gw2(0)) = 0 which is (ii).
Differentiation of (3.3) with respect to τ and evaluating the result at (z, χ, τ) = (0, χ, 0) shows, again
if we use Hw(0) = (0, 0, 1), ḡτ (χ, 0) = 1 and thus (iii).
In order to obtain (v) we first show f1zw(0) = 0: Here we differentiate (3.3) twice with respect to z and
twice with respect to χ and evaluate at 0. If we use Hz(0) = (1, 0, 0) and Hz2(0) = (0, 0, 0) we obtain
the desired condition.
Next if we differentiate (3.3) twice with respect to z and three times with respect to χ we obtain (iv)
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when evaluated at 0. Here we need to use Hz(0) = (1, 0, 0), Hz2(0) = (0, 0, 0) and f1zw(0) = 0.
We get the last condition by combining two equations. The first equation is obtained by differentiating
(3.3) twice with respect to z and the second one by differentiating with respect to z and τ . Both
equations we evaluate at (0, χ, 0) and use Hz(0) = (1, 0, 0), fw(0) = (0, 0), Hz2(0) = (0, 0, 0), f1zw(0) =

0 = gzw(0) and f1w2(0) = 0 = gw2(0) to get the following equations:

f̄2(χ, 0)
(
f2zw(0) + iχf2w2(0)

)
= 0,

f̄1τ (χ, 0) + ε f̄2(χ, 0)
(
f2zw(0) + 2 iχf2w2(0)

)
= 0,

from which we conclude f̄1τ (χ, 0) = 0 and (v).

Remark 7.7. We summarize the conditions we obtained for the 2-jet ofH ∈ N1 at 0 from Proposition 7.4
and Proposition 7.6.

(i) H(0) = 0

(ii) Hz(0) = (1, 0, 0)

(iii) Hw(0) = (0, 0, 1)

(iv) Hz2(0) = (0, 0, 0)

(v) Hzw(0) = (0, f2zw(0), 0)

(vi) Hw2(0) = (0, f2w2(0), 0)

Lemma 7.8 ([Lam01, Proposition 30]). Let H ∈ N1. Then after applying an automorphism of H2 we
have H(z, 2 i zχ) = (z, 0, 2 i zχ) for all (z, χ) ∈ C2 near 0.

Proof. We proceed as in the proof of [Lam01, Proposition 30]. We additionally assume the conditions
for the coefficients of H from Remark 7.7. The (1, 1)-degeneracy, more precisely equation (7.1), allows
us to solve for H(z, 2 i zχ) in three equations according to the functions Φ1,Φ2,Φ3 defined as follows.
The function Φ1 simply is (3.3):

Φ1(z, w, χ, τ) := g(z, w)− ḡ(χ, τ)− 2 i
(
f1(z, w)f̄1(χ, τ) + ε f2(z, w)f̄2(χ, τ)

)
.

For Φ2 we take derivatives of (3.3) with respect to the vector field L = ∂
∂χ − 2 i z ∂

∂τ as in the proof of
Proposition 3.13:

Φ2(z, w, χ, τ) := Lρ′
(
H(z, w), H̄(χ, τ)

)
= ḡχ(χ, τ)− 2 i zḡτ (χ, τ)

− 2 i
(
f1(z, w)

(
f̄1χ(χ, τ)− 2 i zf̄1τ (χ, τ)

)
+ ε f2(z, w)

(
f̄2χ(χ, τ)− 2 i zf̄2τ (χ, τ)

))
.

For the function Φ3 we use the (1, 1)-degeneracy: We write

ρ′(z′1, z
′
2, w

′, χ′1, χ
′
2, τ
′) := w′ − τ ′ − 2 i

(
z′1χ
′
1 + ε z′2χ

′
2

)
,

and as in the proof of Lemma 3.11 in (3.22) we define for k = 1, 2

ϕk(z, w, χ, τ) := ρ′z′k

(
H(z, w), H̄(χ, τ)

)
, ϕ3(z, w, χ, τ) := ρ′w′

(
H(z, w), H̄(χ, τ)

)
,
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In our case we have

ϕ1(z, w, χ, τ) = −2 i f̄1(χ, τ), ϕ2(z, w, χ, τ) = −2 i ε f̄2(χ, τ),

ϕ3(z, w, χ, τ) = 1.

Then we set

Φ̄3(z, w, χ, τ) := Lϕ1(z, w, 0, w)ϕ2(z, w, χ, τ)− Lϕ2(z, w, 0, w)ϕ1(z, w, χ, τ) (7.4)

=− 4 ε
((
f̄1χ(0, w)− 2 i zf̄1τ (0, w)

)
f̄2(χ, τ)−

(
f̄2χ(0, w)− 2 i zf̄2τ (0, w)

)
f̄1(χ, τ)

)
.

After barring the previous expression Φ̄3 we get an equation denoted by Φ3. Then we restrict Φk to H2

to obtain

Φk
(
z, τ + 2 i zχ, χ, τ

)
= 0, 1 ≤ k ≤ 3. (7.5)

Let us give an argument why we choose Φ3 in the above form:
We refer to Remark 3.12. We let γ ∈ Nn, then in our case the determinant of (3.24) becomes

∣∣∣∣∣

(
Lϕ1 Lϕ2

Lγϕ1 Lγϕ2

)
(z, w, χ, τ)

∣∣∣∣∣ , (7.6)

for (z, w, χ, τ) ∈ H2, because Lγϕ3 = 0 for γ ≥ 1. Points of the form p = (z, w, 0, w) belong to the
complexified version of H2, such that the vanishing of the determinant in (7.6) at p becomes

Lϕ1(z, w, 0, w)Lγϕ2(z, w, 0, w)− Lϕ2(z, w, 0, w)Lγϕ1(z, w, 0, w) = 0,

for all γ ≥ 0, which is equivalent to the equation in (7.4) being 0, since for k = 1, 2

Lγϕk(z, w, 0, w) =
∂γ

∂χγ

∣∣∣∣
χ=0

f̄k(χ,w − 2 i zχ).

We proceed setting τ = 0 in (7.5) which yields the following system of equations using the conditions
of Proposition 7.4 and Proposition 7.6:




2 iχ 2 i ε f̄2(χ, 0) 1

2 i 2 i ε(f̄2χ(χ, 0)− 2 i zf̄2τ (χ, 0)) 0

0 −1 0


H(z, 2 i zχ) +




0

2 i z

0


 = 0.

Solving the above equation and applying the automorphism (z, w) 7→ (−z, w) of H2 shows the claim.

Proof of Theorem 7.2. Let H ∈ F1, then we apply automorphisms according to Proposition 7.4 to
obtain a mapping H̃ ∈ N1. Then we use Lemma 7.8 for H̃ and as in the proof of Theorem 5.1 we set
χ = w

2 i z , which implies that H is equivalent to the linear embedding given by L(z, w) := (z, 0, w).
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8 Classification of Mappings

In this section we give the proof of our Main Theorem by bringing together all the previously deduced
steps.

8.1 Proof of the Main Theorem

Proof of the Main Theorem. Let U ⊂ C2 be an open and connected neighborhood of p ∈ S2 and
H : U → C3 a holomorphic mapping with H(U ∩ S2) ⊂ S3

ε. At some point of the proof it may occur
that we have to shrink U . By abuse of notation we denote the resulting neighborhood again by U .
According to Remark 2.7 we change coordinates to obtain p = (0, 1) and H(0, 1) = (0, 1, 0) ∈ S3

ε. Then
we use the biholomorphisms T3 and T−1

2 from (2.2) and (2.3) respectively to define

S1(H) := T3 ◦ V ◦H ◦ T−1
2 ,

where V is a unitary matrix, which interchanges the second and the third component of H. We obtain
a holomorphic mapping S1(H) : U → C3, which satisfies S1(H)(0) = 0 and maps W ∩H2 to H3

ε, where
W is a sufficiently small and open neighborhood of 0.
By Proposition 3.16, S1(H) is either Hε

1 or H7, after changing coordinates to obtain mappings from S2

to S3
ε, or belongs to F2. This class of mappings is introduced in Definition 3.17.

Next we define

S2(H) := σ′1 ◦H ◦ σ1,

where σ1 ∈ Aut0(H2, 0) and σ′1 ∈ Aut0(H3
ε, 0). If S1(H) ∈ F2 we consider S2(S1(H)) and choose the

appropriate isotropies such that S2(S1(H)) ∈ N2 according to Proposition 4.1. In Theorem 5.1 we
obtain that

S2(S1(H)) ∈ {Gε1, Gε2,s, Gε3,s},

where Gε2,s, Gε3,s are two one-parameter families of mappings, which both depend on a real parameter
s ≥ 0. We obtain from the proof of Theorem 6.8 that the parameter s of the mappings listed in
Theorem 5.1 depends on admissible p0 ∈ H2. In Lemma 6.37 we conclude that for every s ≥ 0 the
mapping Gε2,s is not equivalent to Gε1. Furthermore by Lemma 6.39 for s 6= 1

2 it holds that Gε3,s is not
equivalent to Gε1 or Gε2,s, since the degree of the mappings do not agree. The classification of mappings
Gε2,s and Gε3,s is carried out in Theorem 6.8. Then we note that in Lemma 6.5 we conclude that the
equivalence relation we use is the most general equivalence relation in our setting, i.e., mappings which
are not equivalent with respect to our equivalence relation, cannot be equivalent with respect to any
other equivalence relation using composition of automorphisms, as described in Lemma 6.5.
In order to prove equivalence to the mappings listed in the Main Theorem we recall Definition 6.3 and
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introduce the following mapping:

S3(H) := σ′2 ◦
(
t′H(p0) ◦H ◦ tp0

)
◦ σ2, (8.1)

where p0 ∈ H2, σ2 ∈ Aut0(H2, 0), σ′2 ∈ Aut0(H3
ε, 0). In these considerations we may use the parameter

p0 ∈ H2 to guarantee S3(H) ∈ F2, see subsection 6.2, Proposition 6.30 and Proposition 6.31.
We show that S−1

1 (Gε1) is equivalent to Hε
2 by composing Gε1 with dilations (z, w) 7→ (

√
2z, 2w) and

then we apply S−1
1 , which results in the mapping Hε

2 .
Next we handle the one-parameter families of mappings Gε2,s, Gε3,s:
If S2(S1(H)) = Gε2,s, according to Theorem 6.8, S3(Gε2,s) is equivalent to either Gε1 ,G−2 or G−3 when
using appropriate standard parameters and choices for p0. Note that by Theorem 6.8 (v) we have
G−1 ,G−2 and G−3 are pairwise not equivalent to each other.
It holds that S−1

1 (Hε1), where Hε1 from Definition 6.29 is equivalent to Gε1 , agrees with Hε
3 .

For ε = −1 we have S−1
1 (H−2 ), where H−2 from Definition 6.29 is equivalent to G−2 , is the mapping H5.

Further S−1
1 (H−3 ), where H−3 from Definition 6.29 is equivalent to G−3 , is equivalent to H6. We apply

the isotropy (z′1, z
′
2, w

′) 7→ (z′1/2, i z
′
2/2, w

′/4) and then S−1
1 to the map in (6.10) to obtain H6.

In the case S2(S1(H)) = Gε3,s, Theorem 6.8 yields that S3(Gε3,s) is equivalent to the mapping Gε4 . If we
consider S−1

1 (Hε4), where Hε4 from Definition 6.29 is equivalent to Gε4 , we obtain Hε
4 .

It remains to prove the last statement of the Main Theorem. We show equivalence of S1(L3) and G−1 ,
S1(L4) and G−2 , S1(L5) and G−3 and finally equivalence of S1(L6) and G−4 . We keep the notation for the
equivalence relation from (8.1).
We start by showing the first equivalence by considering S3(S1(L3)) and defining

u′ = −1, λ =
1

2
, a′1 = −1, c′2 =

i

2
,

and the rest of the occurring parameters trivially. Then we have S3(S1(L3)) = G−1 .
In the case of the mapping S1(L4) we define

p0 = (2, 4 i), c =
11 i

4
, u = −1, λ = 3, λ′ =

2

3 33/4
,

a′1 = − 2

31/4
− 31/4

8
, a′2 = − 2

31/4
+

31/4

8
, c′1 = − i(272− 5

√
3)

144
, c′2 =

i(272 + 5
√

3)

144
,

and the rest of the parameters trivially. With these choices we obtain S3(S1(L4)) = G−2 .
Next we want to see that S1(L5) is equivalent to G−3 . We define the following parameters for S3(S1(L5))

p0 =
(√

2,−1 + 2 i
)
, c =

4 + 3 i

8
√

5
, u = −1− 2 i√

5
, λ =

1√
2
, r =

1

8
, r′ = 3

√
2,

λ′ = 4 21/4, u′ = −2− 11 i

5
√

5
, a′1 =

−1 + 7 i

5
, a′2 =

−4 + 3 i

5
,

c′1 = −1− 5 i

23/4
, c′2 = − i

23/4
,

and the remaining parameters we choose trivially. Then we have S3(S1(L5)) = G−
2,
√

5
4

, which, since
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√
5/4 > 1/2, is equivalent to G−3 by Theorem 6.8.

Finally we consider S1(L6) and we want to see that this mapping is equivalent to H−4 . Here we note
that after a linear change of coordinates, L6 is the same mapping as H−4 , which we know is equivalent
to G−3 . The change of coordinates in C2 and C3 is performed via the following unitary matrices V1 and
V2 respectively given by

V1 =

(
0 i

1 0

)
, V2 =



−1 0 0

0 − i 0

0 0 1


 .

This completes the proof of the Main Theorem.

8.2 Invariants of Mappings

To show for the collection of maps listed in Main Theorem that two different maps are not equivalent
to each other, we argued that any application of automorphisms to mappings in F2 by composition is
of the form as given in the proof of the Main Theorem, see Lemma 6.5. In this section we want to give
some invariants with respect to automorphisms of the hyperquadrics to distinguish the maps listed in
the Main Theorem from each other.
We start with the easy cases: H7 is not equivalent to any other map of the list, since it is not immersive.
Also Hε

1 cannot be equivalent to any other map, since the map is (1, 1)-degenerate everywhere and the
mappings Hε

2 , H
ε
3 , H

ε
4 , H5 and H6 have points in its domain, where the map is 2-nondegenerate, see

Proposition 3.16.
Next we note by Lemma 6.39 that Hε

4 is not equivalent to any other map in the list. It remains to
distinguish mappings of degree 2. First we treat the case ε = +1. Here we have H+

2 is equivalent to
G+

1 , which is 2-nondegenerate everywhere, see Example 6.18. The map H+
2 is equivalent to G+

1 = G+
2,0,

which has points in its domain, where the map is not 2-nondegenerate, see Proposition 6.31. Thus H+
1

and H+
2 are not equivalent.

Next we consider the case ε = −1. First we note according to Proposition 6.31 the map H−3 , which is
equivalent to G−1 = G−2,0, and H5, which is equivalent to G−2 = G−2,1/2, are 2-nondegenerate everywhere.
The maps H−2 and H6, which are equivalent to G−1 and G−3 = G−2,1 respectively, also by Proposition 6.31,
do contain points in their domains, where the maps are not 2-nondegenerate. Example 6.19 shows that
G−1 is equivalent to a map, which has (2, 1)-degenerate points in its domain and a similar computation
shows that G−1 does not contain any point in the domain where the map is (1, 1)-degenerate. We
computed in Example 6.21, that there is a mapping which has (1, 1)-degenerate points in its domain
and is equivalent to H6 by Theorem 6.8. Thus the maps H−2 and H6 are not equivalent to any other map
of the list. Next we make the following observation concerning the isotropic stabilizer of isotropically
equivalent mappings:

Remark 8.1. We set G := Aut0(H3
ε)×Aut0(H2). If we let H ∈ N2 and F = ϕ′◦H ◦ϕ, where (ϕ′, ϕ) ∈ G,
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it is a well-known fact that

stab0(F ) =
{

(ϕ′ ◦ σ′ ◦ ϕ′−1
, ϕ ◦ σ ◦ ϕ−1) ∈ G : (σ′, σ) ∈ stab0(H)

}
.

It remains to distinguish H−3 from H5. First we observe that G−2,0 has a nontrivial isotropic stabilizer
according to Lemma 5.18. On the other hand again by Lemma 5.18 the map G−2,1/2 has a trivial isotropic
stabilizer. By the above Remark 8.1 this property implies that any map belonging to the isotropic orbit
of G−2,1/2 cannot have a nontrivial isotropic stabilizer. In Lemma 6.33 we concluded that O(G−2,1/2) =

O0(G−2,1/2). Hence any map to which G−2,1/2 is equivalent must have a trivial isotropic stabilizer. Thus
H−3 and H5 are not equivalent with respect to automorphisms preserving the hyperquadrics S2 and S3

ε.
This completes the alternative proof, that none of the maps listed in the Main Theorem are equivalent
to each other.
Note that the above considerations give a way to decide to which mapping a given mapping is equivalent
without performing a normalization with respect to isotropies.

8.3 Algorithm for the Classification and Overviews

In the proof of the Main Theorem we describe an algorithm based on [BER97, §6] to decide for a given
mapping H from S2 to S3

ε with which of the mappings we listed in the Main Theorem the mapping
H coincides after a series of applications of changes of coordinates and automorphisms. We want to
summarize all the steps we need to carry out and keep track of the automorphisms we use for the
normalization procedure. An overview is given in Figure 7 below.
According to Remark 2.7 we first change variables and compose H with the Cayley-Transformation to
obtain H(0) = 0 and H maps an open neighborhood of 0 in H2 to H3

ε. Then as in Proposition 3.16 we
need to verify if H is transversal or not.
If H is nontransversal, then it is equivalent to (z, w) 7→ (h(z, w), h(z, w), 0) for some holomorphic
function h : C2 → C with h(0) = 0. Here we basically apply a diagonal matrix to H as we did in the
proof of Proposition 3.16.
If H is transversal, the Main Theorem shows that H necessarily is rational of maximal degree 3. Next
we inspect where the mapping is nondegenerate or degenerate in its domain.
If H is degenerate at every point of its domain, then H is equivalent to the linear embedding (z, w) 7→
(z, 0, w) according to Theorem 7.2.
If H is nondegenerate at some point p in a neighborhood of 0, then we need to compose H with
translations and consider Hp according to Definition 6.2. This step is carried out as in the beginning
of the proof of Proposition 3.13, see also Lemma 6.15 for explicit arguments for the invariance of
transversality and degeneracy under translations. We note that it is possible to make use of Remark 6.12
at this moment.
Then we normalize the mapping Hp, such that the conditions of Proposition 4.1 are satisfied. We denote
the resulting mapping by H̃ = (f̃1, f̃2, g̃). All the automorphisms we have used so far are isotropies and
are given explicitly in the proof of Proposition 4.1.
Next we consider Theorem 5.1. In both cases ε = ±1 we have that H̃ is one of the mappings
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Gε1(z, w), Gε2,s0(z, w) and Gε3,s0(z, w) given in Theorem 5.1, where s0 := f̃1w2(0) ≥ 0. We recall the
jet determination result given in Corollary 5.13. This shows, in order to decide to which mapping H̃ is
equivalent, we only need to compare some coefficients of H̃ and Gεk of at most order 3. For ε = −1 we
need to appeal to Theorem 6.8 and decide according to the value of s0 to which orbit the mapping H̃
does belong. If ε = +1, by Theorem 6.8 and Lemma 6.37, there are only three orbits. To give explicit
automorphisms we mention that in Theorem 6.8 the equivalence relation is defined in Definition 6.3.
The standard parameters are chosen according to Proposition 4.1 and the necessary parameters p0 ∈ H2

of the translations are among those given in Definition 6.35.

Holomorphic mapping H

non-transversal

H7

(z, w) 7→ (1, h(z, w), h(z, w))

transversal

(1, 1)-degenerate

H1

(z, w) 7→ (z, w, 0)

2-nondegenerate

Gε1, G
ε
2,s, G

ε
3,s

Gε1, G̃ε1 , G̃ε2 , G̃ε3 , G̃ε4

Hε
2,H

ε
3,H

ε
4,H5,H6

Figure 7: Overview of the classification

In the following table we list all nontrivial mappings we obtained in our classification, i.e., mappings
which belong to F2. We also recall the nontrivial mappings from Theorem 1.1 and Theorem 1.2.
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Figure 8: Overview of maps in F2

90



9 Topological Aspects

The goal of this section is to clarify some topological questions which arise in the study of holomorphic
mappings from H2 to H3

ε. First we treat the relation of the different topologies we can associate to
N2 ⊂ N2 and the question of local triviality of F2 ⊂ F2, for some appropriate subsets N2 ⊂ F2. Then
we also treat the question of connectedness of F2 and Hausdorffness of the quotient space of F2 with
respect to automorphisms.
We have the natural inductive limit topology of uniform convergence on compact sets τC , the induced
topology from the jet space τJ and the quotient topology τQ on N2. First we review the well-known
fact that τC = τJ , which follows from the jet parametrization for F2. When considering τQ we show
that F2 is a principal fibre bundle with respect to isotropies, which then implies τQ = τJ on N2.
Throughout this introduction we follow [BER97]. Let us recall Definition 4.7.

Definition 9.1. For p ∈ CN and p′ ∈ CN ′ we denote by

H(p; p′) := {H : (CN , p)→ (CN
′
, p′) : H holomorphic},

the set of germs of holomorphic mappings from (CN , p) to (CN ′ , p′).
For (M,p) ⊂ CN and (M ′, p′) ⊂ CN ′ germs of real-analytic hypersurfaces we denote by

H(M,p;M ′, p′) := {H ∈ H(p; p′) : H(M ∩ U) ⊂M ′ for some neighborhood U of p},

the set of germs of holomorphic mappings from (M,p) to (M ′, p′).

Definition 9.2. ForK ⊂ CN a compact neighborhood of p ∈ CN we denote the Frechét spaceHK(p; p′)

of germs of holomorphic mappings, defined in a neighborhood of K, which map p ∈ CN to p′ ∈ CN ′ .
The topology for HK(p; p′) is given by uniform convergence on compact sets.
We equip H(p; p′) with the inductive limit topology, denoted by τC , with respect to Frechét spaces
HK(p; p′), where K is some compact neighborhood of p in CN . Then for H,Hn ∈ H(p; p′) we say
that Hn converges to H, if there exists K ⊂ CN a compact neighborhood of p, such that each Hn is
holomorphic in a neighborhood of K and Hn converges uniformly to H on K.
For H(M,p;M ′, p′) ⊂ H(p; p′) we consider the induced topology τC of H(p; p′).

Based on Definition 2.9 (iii) we give the following definition.

Definition 9.3 (Jet Space). We denote by Jkp,p′ the collection of all k-jets at p of germs of holomorphic
mappings from (CN , p) to (CN ′ , p′). We set Jkp := Jkp,p.
Let (M,p) ⊂ (CN , p) and (M ′, p′) ⊂ (CN ′ , p′) be germs of real-analytic hypersurfaces. For k ∈ N we
denote by Jkq (M,p;M ′, p′) the space of k-jets of H(M,p;M ′, p′) at q or the k-jet space of H(M,p;M ′, p′)

at q. We write Jkq (M,p) := Jkq (M,p;M,p) and Jk0 (M ;M ′) := Jk0 (M, 0;M ′, 0).
We denote by Gkp(M,p) ⊂ Jkp (M,p) the space of k-jets of Autp(M,p) at p.

Remark 9.4. Note that Jkp (M,p;M ′, p′) ⊂ Jkp,p′ . Then Jkp,p′ can be identified with the space of germs
of holomorphic polynomial mappings from CN to CN ′ up to degree k, which map p ∈ CN to p′ ∈ CN ′ .
Thus Jkp,p′ can be identified with some CK , where K := N ′

(
N+k
N

)
, such that the topology for Jkp,p′ ,

denoted by τJ , is induced by the natural topology of CK . We refer to the topology τJ as topology of
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the jet space.

Definition 9.5 (Jet Parametrization). We say F ⊂ H(M,p;M ′, p′) admits a jet parametrization for F
of order k if the following properties hold:
There exists a mapping Ψ : CN × CK ⊃ U → CN ′ , where U is an open neighborhood of {p} ×
Jkp (M,p;M ′, p′), which is holomorphic in the first N variables, real-analytic in the remaining K vari-
ables, such that F (Z) = Ψ(Z, jkpF ), for all F ∈ F .
Remark 9.6. (i) If F ⊂ H(M,p;M ′, p′) admits a jet parametrization of some order k, then τC = τJ ,

which follows from the real-analyticity in the last K variables.
(ii) In our situation, where F = F2 we have by Corollary 5.13 that K = K0 := 15, where the following

coefficients of H = (f, g) = (f1, f2, g) ∈ F2 are involved:

J(H) := {fz(0), Hw(0), fz2(0), Hzw(0), Hw2(0), fz2w(0)} .

Hence by Theorem 5.1 we identify F2 with a subset J2 ⊂ CK0 , given by

J2 := {J(H) : H ∈ F2},

and the topology we use in the sequel for F2 is τJ .

9.1 Properties of the Normalization Map restricted to F2

In the following definition we use the notation from Definition 5.15.

Definition 9.7. Let X,Y be topological spaces. A continuous map f : X → Y is called proper if f is
closed and for each y ∈ Y the preimage f−1(y) is compact.
An action α of G, a topological group, on X, a topological space, is called proper if the associated map
α′(g, x) :=

(
x, α(g, x)

)
is a proper map in the sense defined in the previous paragraph.

Let us recall the notation from Lemma 5.18, where we set E := {Gε1, Gε2,0, Gε3,0}.
Definition 9.8. We define N2 := N2 \ E and F2 :=

⋃
H∈N2

O0(H).

We aim for the following theorem.

Theorem 9.9. The mapping N : Aut0(H3
ε, 0)×Aut0(H2, 0)× F2 → F2 given by

N(φ′, φ,H) := φ′ ◦H ◦ φ−1,

is a free and proper action.

From Lemma 5.18 it is easy to see that N is a free action. To show the properness in Theorem 9.9 we
use the following well-known characterization of properness in the case of free actions, whose proof can
be found in e.g. [tD87].

Lemma 9.10 ([tD87, Proposition 3.20]). Let G be a topological group acting freely on a topological
space X via the action α : G×X → X. Then the following statements are equivalent:
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(i) G acts properly.
(ii) Let α′ : G × X → X × X be given by α′(g, x) :=

(
x, α(g, x)

)
. The image C ⊂ X × X of α′ is

closed and the map ϕα : C → G, given by ϕα
(
x, α(g, x)

)
:= g is continuous.

Remark 9.11. For F : (C2, 0) → (C3, 0) a germ of a holomorphic mapping, for which we assume that
F ∈ F2 and the jet J(F ) ⊂ j3

0F is of the form as in Remark 4.6, we write F = (f1, f2, f3) for the
components and denote derivatives of F at 0 by fk`m := fkz`wm(0). Here as usual we write (z, w) for
coordinates in C2.

The following lemma is useful in this context.

Lemma 9.12. For n ∈ N we let Hn, H ∈ N2 and φn ∈ Aut0(H2, 0), φ′n ∈ Aut0(H3
ε, 0) such that

φ′n ◦Hn ◦ φ−1
n → H (n→∞),

then φn → idC2 , φ′n → idC3 and Hn → H as n→∞.

Proof. We assume for Hn = (h1
n, h

2
n, h

3
n) and H = (h1, h2, h3) to be given as in Remark 9.11, where

in Hn the coefficients depend on n ∈ N. We write sn := |h1
n02| ∈ R+, xn := h2

n02 ∈ C and yn :=

Im
(
h2
n21

)
. To each φn and φ′n we associate γn ∈ Γ and γ′n ∈ Γ′ respectively, where we use the notation

for the parametrization of Aut0(H2, 0) as in Definition 2.23 and for Aut0(H3
ε, 0) as in Definition 2.24

respectively. According to Theorem 5.1 we have that Hn depends on sn > 0. Let us denote Ξ :=

Γ×Γ′×R+ and write ξn = (γn, γ
′
n, sn) ∈ Ξ. We define Ψn := φ′n ◦Hn ◦ φ−1

n , which depends on ξn ∈ Ξ.
For components of Ψn, we write Ψn = (ψ1

n, ψ
2
n, ψ

3
n) and ψn = (ψ1

n, ψ
2
n).

Note in the following the similarity with the equations we considered in the proof of Lemma 5.18. We
start considering the first order terms of Ψn. We set

U ′n :=

(
u′na

′
1n − ε u′na′2n

ā′2n ā′1n

)
,

where |a′1n|2 + ε |a′2n|2 = 1 and u′n ∈ S1 for all n ∈ N. We have

ψnz(0) =U ′n
t(unλnλ

′
n, 0), (9.1)

Ψnw(0) =λnλ
′
n

(
U ′n

t(uncn + λnc
′
1n, λnc

′
2n), λnλ

′
n

)
. (9.2)

Since ψ3
nw(0)→ 1 we obtain

λnλ
′
n → 1, (n→∞), (9.3)

which implies if we consider (9.1), since ψnz(0)→ (1, 0) as n→∞, that

unu
′
na
′
1n → 1, (9.4)

a′2n → 0. (9.5)
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Because of a′n = (a′1n, a
′
2n) ∈ S2

ε,σ from Definition 2.24 (i), we have

|a′1n| → 1, (n→∞). (9.6)

If we consider the first two components in (9.2) we obtain since ψnw(0) → (0, 0), as n → ∞, and by
(9.5) and (9.6) that

uncn + λnc
′
1n → 0, (9.7)

c′2n → 0, (9.8)

if n→∞. Next we consider the second order terms of Ψn.

ψnz2(0) = 2unλnλ
′
nU
′
n

(
2 i
(
c̄n + unλnc̄

′
1n

)

unλn

)
, (9.9)

where the left-hand side of (9.9), ψnz2(0), must converge to (0, 2) as n→∞. After applying U ′n
−1 we

rewrite the second components of (9.9) as

2u2
nλ

2
nλ
′
n = a′1n

(
− ā
′
2nψ

1
nz2(0)

u′na
′
1n

+ ψ2
nz2(0)

)
, (9.10)

where the absolute value of the right-hand side of (9.10) according to (9.5) and (9.6) converges to 2

when n→∞. Taking the absolute value of the left-hand side of (9.10) implies that

λn → 1, (n→∞), (9.11)

which together with (9.3) shows

λ′n → 1, (n→∞). (9.12)

Further inspection of (9.10) gives

u2
n

a′1n
→ 1, (n→∞). (9.13)

Next we consider

ψnzw(0) =
i

2
λnλ

′
nU
′
n

(
T1(γn, γ

′
n)

4λn

(
c′2n
(
c̄n + unλnc̄

′
1n

)
− iu2

ncn

)
)
, (9.14)

where the real-analytic function T1 : Γ× Γ′ → C does not depend on a′n ∈ S2
ε,σ and u′n. The left-hand

side of (9.14) has to converge to
(

i ε
2 , 0

)
and we rewrite the second component of (9.14) as

4λn

(
c′2n
(
c̄n + unλnc̄

′
1n

)
− iu2

ncn

)
=

−2 i

λnλ′nu′n

(
−ā′2nψ1

nzw(0) + u′na
′
1nψ

2
nzw(0)

)
. (9.15)
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Taking the limit, we know from (9.5), (9.6) and (9.11), (9.12), that the right-hand side of (9.15)
converges to 0 and if we also use (9.7) we obtain that

cn → 0, (n→∞), (9.16)

such that (9.7) implies

c′1n → 0, (n→∞). (9.17)

Next we compute

ψ3
nw2(0) = 2λ2

nλ
′
n

2
(
−(rn + λ2

nr
′
n) + i

(
cnc̄n + ε λ2

nc
′
2nc̄2n′ + λnc̄

′
1n

(
2uncn + λnc

′
1n

)))
. (9.18)

We let n→∞ and take all the previously obtained limits of the sequences c′n = (c′1n, c
′
2n) ∈ C2, cn and

λn, λ
′
n, then we have since ψ3

nw2(0)→ 0, that

rn + λ2
nr
′
n → 0, (n→∞). (9.19)

Next we consider

ψnw2(0) = λnλ
′
nU
′
n

(
λ3
nsn + T2(γn, γ

′
n)

λ3
nxn + T3(γn, γ

′
n)

)
, (9.20)

where T2 : Γ× Γ′ → C and T3 : Γ× Γ′ → C are real-analytic functions and T2 is given by

T2(γn, γ
′
n) = 2(uncn + c′1nλn)

(
i |cn|2 − rn − λ2

nr
′
n

)
+ 2 iλnc̄

′
1n(uncn + λnc

′
1n)(2uncn + λnc

′
1n)

+ i ε λ2
n

(
uncn(1 + 2|c′2n|2) + 2λnc

′
1n|c′2n|

)
,

such that T2(γn, γ
′
n)→ 0 as n→∞. Then the first component of (9.20) becomes

λ3
nsn + T2(γn, γ

′
n) =

1

λnλ′nu′n

(
ā′1nψ

1
nw2(0) + ε u′na

′
2nψ

2
nw2(0)

)
. (9.21)

Since
(
ψ1
nw2(0), ψ2

nw2(0)
)
→ (|h1

02|, h2
02) ∈ R+ × C, if we let n → ∞ we obtain that ā′1n/u′n → 1 and

sn → |h1
02|. Then (9.4) shows un → 1 and (9.13) gives a′1n → 1, hence u′n → 1.

Finally we consider

ψnz2w(0) = λnλ
′
nU
′
n

(
−4 iu2

nλ
3
nsn + T4(γn, γ

′
n)

−2 ε u2
nλn(2rn + λ2

nr
′
n) + i ε u2

nλ
3
nyn + 12u3

nλ
2
ncnsn + T5(γn, γ

′
n)

)
, (9.22)
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where T4 : Γ× Γ′ → C and T5 : Γ× Γ′ → C are real-analytic functions and T5 is given by

T5(γn, γ
′
n) = 2 i ε λn

(
4 i c̄nc

′
2n(c̄n + 2unλnc̄

′
1n) + 2cnu

2
n(5c̄n + 3unλnc̄

′
1n)

+ u2
nλ

2
n

(
|c′1n|2 + 3 ε |c′2n|2 + 4 i c̄′1nc

′
2n

))
,

hence T5(γn, γ
′
n) → 0, if n → ∞. If we consider the second component of (9.22) we obtain, since

(ψ1
nz2w(0), ψ2

nz2w(0)) → (4 i |h1
02|, ih2

21) ∈ iR × iR, that 2rn + r′n → 0 as n → ∞. Hence by (9.19) we
get rn → 0 and r′n → 0.
To sum up we obtain φn → idC2 and φ′n → idC3 , as n→∞, which completes the proof.

Proof of Theorem 9.9. First we observe that N is a continuous map from Aut0(H3
ε, 0)×Aut0(H2, 0)×F2

to F2, since the image of N consists of rational mappings, which depend real-analytically on the jets of
the isotropies and the mapping.
Next we show the freeness of N : For any H ∈ F2 and φ ∈ Aut0(H2, 0), φ′ ∈ Aut0(H3

ε, 0) we have to
show that if φ′ ◦H ◦ φ−1 = H, this implies φ = idC2 and φ′ = idC3 .
By Lemma 5.18 we obtain that N restricted to N2 is a free action. Next we assume the general case
H ∈ F2 and consider the equation φ′ ◦H ◦ φ−1 = H. We can write H = φ̂′ ◦ Ĥ ◦ φ̂−1, where Ĥ ∈ N2

and φ̂ ∈ Aut0(H2, 0), φ̂′ ∈ Aut0(H3
ε, 0) are unique according to Lemma 5.18. Then we have

φ′ ◦H ◦ φ−1 = H ⇐⇒ φ̂′
−1 ◦ φ′ ◦ φ̂′ ◦ Ĥ ◦ φ̂−1 ◦ φ−1 ◦ φ̂ = Ĥ.

Since N acts freely on N2 we obtain that φ̂−1 ◦ φ−1 ◦ φ̂ = idC2 and φ̂′
−1 ◦ φ′ ◦ φ̂′ = idC3 , which shows

the freeness of the action.
To show the properness of N we prove (ii) of Lemma 9.10 using Lemma 9.12. We let the mapping
N ′ : Aut0(H3

ε, 0)× Aut0(H2, 0)× F2 → F2×F2 be given by N ′(φ′, φ,H) :=
(
H,N(φ′, φ,H)

)
. Then we

know from Proposition 4.1 that the image CN of N ′ agrees with F2×F2, which is closed in F2×F2.
Next we let the mapping ϕN : CN → Aut0(H2, 0) × Aut0(H3

ε, 0) be given by ϕN
(
H,N(φ, φ′, H)

)
:=

(φ, φ′). To show the continuity of ϕN we let (Hn)n∈N ∈ F2 be a sequence of mappings with

Hn → H ∈ F2, (9.23)

φ′n ◦Hn ◦ φ−1
n → Ȟ ∈ F2 . (9.24)

Using Proposition 4.1 we assume w.l.o.g. H ∈ N2. Moreover we can write by Proposition 4.1 Ȟ =

φ′ ◦ Ĥ ◦ φ−1 for Ĥ ∈ N2. Then we need to conclude that φn → φ, φ′n → φ′ and H = Ĥ, which implies
the continuity of ϕN .
For each n ∈ N we write Hn = φ̂′n◦Ĥn◦ φ̂−1

n , where Ĥn ∈ N2. If we substitute the above representations
of Hn and Ȟ into (9.24) we obtain

φ′
−1 ◦ φ′n ◦ φ̂′n ◦ Ĥn ◦ φ̂−1

n ◦ φ−1
n ◦ φ→ Ĥ ∈ N2 .

By Lemma 9.12 we have φ−1 ◦ φn ◦ φ̂n → idC2 and φ′−1 ◦ φ′n ◦ φ̂′n → idC3 . Since Hn → H ∈ N2

Lemma 9.12 shows that φ̂n → idC2 and φ̂′n → idC3 , we obtain φn → φ and φ′n → φ′ as required.
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9.2 On the Real-Analytic Structure of F2

Let us recall the description of F2 given in Remark 9.6 (ii), for N2 we proceed similar.

Lemma 9.13. Let Π : F2 → N2 be given by Π(H) := φ′ ◦ H ◦ φ−1, where φ ∈ Aut0(H2, 0) and
φ′ ∈ Aut0(H3

ε, 0) are the unique isotropies according to Proposition 4.1 and Lemma 5.18. For k = 2, 3

we write

Mk,ε := {Π−1(Gεk,s) : s > 0}.

Then Mk,ε is a real-analytic real submanifold of F2 of real dimension 16.

Proof of Lemma 9.13. For fixed k = 2, 3, s > 0 and δ > 0 we write

Gδ,s := {Gεk,t : t ∈ Bδ(s) ∩ R+}. (9.25)

To prove the lemma we show that for every s0 ∈ R+ and sufficiently small δ0 > 0 there exists a local
real-analytic parametrization for Mδ0,s0 := Π−1(Gδ0,s0).
We abbreviateM := Mδ0,s0 from now on. As noted in Remark 9.6 we identify F2 with the set J2 ⊂ CK0 .
Theorem 5.1 implies that for each H ∈ M there exist φ ∈ Aut0(H2, 0), φ′ ∈ Aut0(H3

ε, 0), k ∈ {2, 3}
and s1 ∈ Bδ0(s0) ∩ R+, such that H = φ′ ◦ Gεk,s1 ◦ φ. This fact is used to describe M locally via
parametrizations as follows: For s > 0 sufficiently near s0 let Fs be a mapping as in Remark 9.11, which
depends real-analytically on s := |f1

02|. For the remaining coefficients in J(Fs) we write x := f2
02 and

y := Im
(
f2

21

)
, where we suppress the dependence on s notationally.

We use the real version of the notation for the parametrization of Aut0(H2, 0) as in Definition 2.23 and
for Aut0(H3

ε, 0) as in Definition 2.24. Here we denote the set of real parameters of Aut0(H2, 0) by Γ

and of Aut0(H3
ε, 0) by Γ′. Let us denote Ξ := Γ× Γ′ × R+ ⊂ RN0 , where N0 := 16. For ξ ∈ Ξ we write

ξ = (γ, γ′, s) and define the mapping

Ψ : Ξ→ J2, Ψ(ξ) := J(φ′γ′ ◦ Fs ◦ φγ), (9.26)

where we use the notation as in (2.27) and (2.31) for φγ and φ′γ′ respectively and suppress the dependence
on ε. We set Ψ̌(z, w) :=

(
φ′γ′ ◦Fs ◦φγ

)
(z, w) with components Ψ̌ = (ψ̌1, ψ̌2, ψ̌3) and ψ̌ := (ψ̌1, ψ̌2). The

holomorphic mapping Ψ̌ is defined in a small neighborhood U ⊂ C2 of 0 and satisfies Ψ̌(H2 ∩U) ⊂ H3
ε.

By Theorem 5.1 and the real-analytic dependence of the isotropies on the standard parameters, we
note that Ψ and Ψ̌ are real-analytic in ξ ∈ Ξ. We make the following assumptions and consider w.l.o.g.
that ξ0 is chosen in such a way that φγ = idC2 and φ′γ′ = idC3 . Consequently we write O(2) for
terms involving standard parameters of the isotropies which vanish to second order at ξ0. Moreover
since we only consider a′1 ∈ C near 1 and a′ = (a′1, a

′
2) ∈ S2

ε,σ from Definition 2.24, we substitute
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ā′1 = (1− ε |a′2|2)/a′1 into Ψ, which is then given by the following expressions:

ψ̌z(0) =
(
uu′λλ′a′1, uλλ

′ā′2
)
,

Ψ̌w(0) =
(
u′λλ′a′1(uc+ λc′1), λ2λ′c′2/a

′
1, λ

2λ′
2
)

+O(2),

ψ̌z2(0) =
(

2 iuu′λλ′(i ε uλa′2 + 2(c̄+ uλc̄′1)a′1), 2u2λ2λ′/a′1
)

+O(2),

Ψ̌zw(0) =
(
−1

2
uu′λλ′a′1(2(r + λ2r′)− i ε λ2), uλ2λ′

(
i ε

2
λā′2 + 2uc/a′1

)
, 2 iλ2λ′

2
(c̄+ uλc̄′1)

)
+O(2),

Ψ̌w2(0) =
(
u′λ3λ′

(
a′1(i ε uc+ λs)− ε λa′2x

)
,

λ4λ′
(
x/a′1 + ā′2s

)
,−2λ2λ′

2
(r + λ2r′)

)
+O(2),

ψ̌z2w(0) =
(
−uu′λ3λ′

(
4a′1
(
− iuλs+ ε(c̄+ uλc̄′1)

)
+ i ε uλa′2y

)
,

u2λ2λ′
((
−2(2r + λ2r′) + 12 ε uλcs+ iλ2y

)
/a′1 + 4 iλ2ā′2s

))
+O(2).

In a first step we show that for given ξ0 ∈ Ξ the Jacobian of Ψ with respect to ξ evaluated at ξ0, denoted
by Ψξ(ξ0), is of full rank N0. But instead of considering the real equations of Ψ, we conjugate Ψ and
compute the Jacobian of the system

Φ := (Ψ,Ψ) ∈ C2K0 ,

with respect to ξ = (u, λ, c, r, u′, a′1, a
′
2, λ
′, c′1, c

′
2, r
′, s; c̄, ā′2, c̄

′
1, c̄
′
2) ∈ CN0 and evaluate at

ξ0 = (1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, s0; 0, 0, 0, 0) ∈ RN0 , (9.27)

denoted by Φξ(ξ0). We bring the transpose of Φξ(ξ0) into echelon form, where we denote the resulting
matrix by ϕ = (ϕ1, . . . , ϕN0), each ϕj = (ϕj1, . . . , ϕ

j
2K0

) ∈ C2K0 , 1 ≤ j ≤ N0, such that rank
(
Φξ(ξ0)

)
=

rank(ϕ). In the following we suppress the evaluation of Φ at ξ0 notationally and perform elementary
row operations. The matrix given by

(ϕ1, . . . , ϕ11) :=
(

Φu,Φā′2 ,Φc′1 ,Φc′2 ,Φλ,Φc̄,Φa′1 ,Φr′ ,Φc,Φa′2 ,Φs

)

−
(

0, 0, 0,Φu,Φu, 0,Φu, 0,Φc′1 , i ε /2Φc̄, 0
)
,

is in row echelon form, with constant nonzero entries in the main diagonal. Each 0 in the last vector
above represents 0 ∈ C2K0 . Next we define

ϕ12 :=Φλ′ + Φu/3− Φλ − Φa′1/3− i ε /8Φr′ + 10s0/3Φs,

ϕ13 :=Φu′ − Φu/3− 2/3Φa′1 − 2/3Φs,
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which are of the following form:

ϕ12 = (0, . . . , 0, ϕ12
12, . . . , ϕ

12
2K0

)

=

(
0, . . . , 0,

−2(4x− 5s0x
′)

3
, 2 i ε,

8 i s0

3
,

2 i(3 ε−3y + 5s0y
′)

3
,−1

3
, ϕ12

17, . . . ϕ
12
2K0

)

ϕ13 = (0, . . . , 0, ϕ13
12, . . . , ϕ

13
2K0

) =

(
0, . . . , 0,

2x− s0x
′

3
, 0,−8 i s0

3
,− i s0y

′

3
,−2

3
, ϕ13

17, . . . ϕ
13
2K0

)
.

Then we define

ϕ14 := Φr − Φr′ , ϕ15 := Φc̄′2 , ϕ16 := Φc̄′1 ,

and compute

ϕ14 = −2(e15 + e2K0), ϕ15 = e19, ϕ16 = −2e24 + i ε e26 − 12 ε se2K0 ,

where for j ∈ N we denote by ej the j-th unit vector in R2K0 . We have to consider several cases. If
ϕ12

12 6= 0, we consider ϕ̃13 := ϕ13−ϕ13
12ϕ

12/ϕ12
12, such that ϕ̃13

13 is a multiple of −2x+s0x
′. If ϕ̃13

13 6= 0, then
ϕ = (ϕ1, . . . , ϕ12, ϕ̃13, ϕ14, ϕ15, ϕ16) is in echelon form. If ϕ̃13

13 = 0, then x = Cs2
0, where C ∈ C \ {0}

and we have ϕ̃13
14 6= 0, which again implies that ϕ = (ϕ1, . . . , ϕ12, ϕ̃13, ϕ14, ϕ15, ϕ16) is in echelon form.

Next we treat ϕ12
12 = 0. First we consider the trivial case. If x = 0, then since s0 > 0, we have x′ = 0 and

ϕ = (ϕ1, . . . , ϕ16) is in echelon form. Now we assume x 6= 0 which implies s0, x
′ 6= 0 and we solve ϕ12

12 =

0. The solution is given by x = Cs
4/5
0 , where C ∈ C \ {0} and ϕ = (ϕ1, . . . , ϕ11, ϕ13, ϕ12, ϕ14, ϕ15, ϕ16)

is in echelon form.
We sum up that in all cases the Jacobian Φξ(ξ0) of the system Φ evaluated at ξ0 is of full rank N0,
hence we conclude that Ψ from (9.26) is a real-analytic locally regular mapping if we choose δ0 > 0

sufficiently small in M .
For Ψ to be a local parametrization of J2 it remains to show that for each sufficiently small neighborhood
U ⊂ Ξ ⊂ RN0 of ξ0, there exists a neighborhood W ⊂ CK0 of Ψ(ξ0) = Fs0 , such that Ψ(U) = W ∩M .
We have

Ψ(U) = {J(H) : ∃ξ = (γ, γ′, t) ∈ U : H = φ′γ′ ◦ Ft ◦ φγ},

and with the notation of (9.25) for δ > 0 we have

M = Π−1(Fδ,s0) ={H ∈ F2 : ∃(γ, γ′, s) ∈ Γ× Γ′ ×Bδ(s0) ∩ R+ : φ′γ′ ◦H ◦ φ−1
γ = Fs}.

By Remark 9.6 (ii) and since for each H ∈ M we can write H = φ′−1
γ′ ◦ Fs ◦ φγ we obtain Ψ(U) ⊂ M .

We assume that there exists U ⊂ Ξ a neighborhood of ξ0, such that for any neighborhood W of
Ψ(ξ0) = Fs0 we have Ψ(U) 6= W ∩M . We choose open, connected neighborhoods (Wn)n∈N of Fs0 with⋂
nWn = {Fs0} and Ψ(U) 6= Wn ∩M for all n ∈ N. There exists a sequence of mappings (Hn)n∈N ∈ F2

such that Hn ∈Wn∩M and Hn 6∈ Ψ(U). We write Hn = φ′γ′n ◦Fsn ◦φ
−1
γn , and conclude by Lemma 9.12

that (γn, γ
′
n, sn) → ξ0 in Ξ. Thus eventually Hn ∈ Ψ(U) for large enough n ∈ N, which completes the
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proof of the lemma.

Definition 9.14. (i) For a manifoldM and a Lie group G acting onM via (g,m) 7→ g ·m, we denote
by π : M →M/G the canonical projection given by π(m) = G ·m := {g ·m : g ∈ G} for m ∈M .

(ii) Let a group G act on two sets X,Y : We call a map φ : X → Y equivariant with respect to G if
φ(g · x) = g · φ(x) for all x ∈ X and g ∈ G.

(iii) For G a real-analytic Lie group acting on M a real-analytic manifold we say the action α :

G×M →M of G on M is real-analytic, if the map (g,m)→ g ·m is a real-analytic map between
real-analytic manifolds.

Remark 9.15. (i) By [BER97, Corollary 1.2] the groups Aut0(H2, 0) and Aut0(H3
ε, 0) are totally real,

closed, real-analytic submanifolds of G2
0(H2, 0) ⊂ J2

0 (H2, 0) and G2
0(H3

ε, 0) ⊂ J2
0 (H3

ε, 0) respec-
tively, which correspond to the jet spaces of holomorphic mappings with nonvanishing Jacobian
determinant at 0. Hence G := Aut0(H3

ε, 0)×Aut0(H2, 0) is a real-analytic real Lie group. Since the
pair (φ, φ′) ∈ G depends real-analytically on Γ×Γ′, we obtain forM being one of the real-analytic
submanifolds given in Lemma 9.13, that N : G×M →M is a real-analytic action.

(ii) We let a group G act on G×M via h · (g,m) := (h · g,m).

Definition 9.16. Let M be a real-analytic manifold and G a real-analytic Lie group acting real-
analytically on M . A real-analytic principal fibre bundle with structure group G is a triple (π,M,X),
where π : M → X is a real-analytic map, which satisfies the following property:
For every x ∈ X there exists an open neighborhood U of x in X and a real-analytic diffeomorphism
φ : π−1(U)→ G× U , such that
(i) π = prU ◦φ on π−1(U), where prU : G× U → U is the projection on the second factor.
(ii) φ is equivariant with respect to G.

We call M the total space, X the base space and φ is called a local trivialization of the bundle.

Theorem 9.17 (Local trivialization). Let M be a real-analytic manifold equipped with a real-analytic
action G ×M → M , where G is a real-analytic Lie group. If the action is free and proper, then the
triple (π,M,M/G) is a real-analytic principal fibre bundle with structure group G, i.e., M/G has a
unique real-analytic manifold structure, such that π : M →M/G is a real-analytic submersion.

Proof. See e.g. [vdB10, Theorem 13.5] for the smooth version of this theorem.

The proof of the above Theorem 9.17 is based on the following result. We call a set V ⊂M G-invariant
if g · V ⊂ V for all g ∈ G.

Lemma 9.18 (Local Slice-Theorem for free and proper actions). Let M be a real-analytic manifold
equipped with a free and proper real-analytic action G×M →M , where G is a real-analytic Lie group.
Then for each m ∈M there exists a real-analytic submanifold S ⊂M with m ∈ S such that (g, s) 7→ g ·s
is a real-analytic diffeomorphism from G× S onto an open G-invariant neighborhood U ⊂ M of m. A
submanifold as S above is called a slice for the action of G at m.

Proof. See e.g. [vdB10, Lemma 13.7] for the smooth version of this lemma.
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Remark 9.19. For proper smooth actions of non-compact Lie groups the first proof of the local Slice-
Theorem was given in [Pal61, 2.2.2 Proposition], where references treating compact Lie groups are
included. In the real-analytic setting a global Slice-Theorem was proved by [HHK96, section VI] and
[IK00, Theorem 0.6]. In both works the action is assumed to be proper. In [vdB10, sections 11–13] and
[Lee13, Theorem 21.10] smooth versions of Lemma 9.18 and Theorem 9.17 are treated. To obtain the
statements in the real-analytic category the proofs of [vdB10] need to be slightly modified.

Definition 9.20. Let X,Y be topological spaces and π : X → Y a surjective mapping. Then π is called
quotient map if it satisfies the following property: A set U ⊂ Y is open in Y if and only if π−1(U) is
open in X. We call the topology on Y induced by π the quotient topology τQ on Y , where a set U ⊂ Y
is open in Y if π−1(U) is open in X.

Remark 9.21. We note the following well-known fact about the quotient topology τQ: Let π : X → Y

be as in Definition 9.20, then τQ is unique. More precisely, if τ is a topology for Y such that π is a
quotient map, then we have τQ = τ . We also have that if f : X → Y is a surjective, continuous and
open or closed mapping then f is a quotient map.

Theorem 9.22 (Structure of F2). We define G := Aut0(H3
ε, 0)×Aut0(H2, 0).

(i) If ε = +1 then Π : F2 → F2 /G is a real-analytic principal fibre bundle with structure group G.
(ii) If ε = −1 then locally F2 is mapped to G × N2 via locally real-analytic diffeomorphisms. In

particular F2 is not a smooth manifold.
(iii) The quotient topology τQ on F2 /G ' N2 agrees with the topology τJ induced by the jet space.

Proof. To prove (i) we note that by Lemma 9.13 the set F2 is a real-analytic manifold and from
Theorem 9.17 the conclusion in (i) follows.
Next we show (ii): For k=1,2 we set

Nk := {G−k+1,s : s > 0},

and N0 := N1 ∩ N2 = {G−2,1/2}. The corresponding preimages are denoted by Mk := Π−1(Nk) ⊂ F2,
such that M0 := M1 ∩M2 = Π−1(N0). We set M := M1 ∪M2. By Lemma 9.13 for k = 1, 2 we have
that Mk is a real-analytic submanifold of F2, hence by Theorem 9.17 locally Mk is real-analytically
diffeomorphic to G × Sk, where Sk is a slice for the action of G according to Lemma 9.18 such that
dimR(Sk) = dimR(Mk) − dimR(G) = 1, by Lemma 9.13 and Remark 2.21. Since dimR(Nk) = 1 and it
is possible to uniquely normalize any element in the slice Sk by Proposition 4.1, we obtain that Sk can
be mapped to Nk via real-analytic diffeomorphisms. Hence locally we have that Mk is real-analytically
diffeomorphic to G×Nk for k = 1, 2.
In order to prove (ii) we show that if we let U0 ⊂ F2 be a sufficiently small open neighborhood of N0

there exists a real-analytic diffeomorphism φ : U0 → V0 such that φ(U0∩M0) = (G×N0)∩V0, where V0

is an open neighborhood of N ′0 := {id}×N0 ⊂ G×M and id = (idC2 , idC3). By Lemma 9.18 for k = 1, 2

there exists an open neighborhood Uk ⊂ F2 of N0 and a real-analytic diffeomorphism φk : Uk → Vk

such that φk(Uk ∩Mk) = (G×Nk)∩ Vk, where Vk is an open neighborhood of N ′0 ⊂ G×M . Moreover
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φk(Uk ∩Nk) = ({id} ×Nk) ∩ Vk and φk is equivariant with respect to G. We define

φ : U0 → V0, φ(x) :=

{
φ1(x), x ∈ U0 ∩ U1,

φ2(x), x ∈ U0 ∩ U2,

where V0 = V1 ∪ V2 is an open neighborhood of N ′0. We define Ũ := U1 ∩ U2 ∩ U0 ⊂ F2, an open
neighborhood of N0. Then we have φ

∣∣
Ũ

= φ1

∣∣
Ũ
, which implies that the mapping φ

∣∣
Ũ

is a real-analytic
diffeomorphism. Furthermore, since

image
(
φ1

∣∣
Ũ∩M

)
= (G×N0) ∩ Ṽ = image

(
φ2

∣∣
Ũ∩M

)
,

where Ṽ is an open neighborhood of N ′0 ⊂ G ×M , the mapping φ locally maps M0 real-analytically
diffeomorphic to G×N0. Finally the last statement of (ii) follows from Theorem 9.17, since if F2 would
be a smooth manifold, then the quotient N2 needs to be a smooth manifold, which is not the case.
To prove (iii) we use Remark 9.21 and prove that Π : F2 → N2 is a surjective, continuous and closed
mapping with respect to τJ to obtain τQ = τJ .
Surjectivity is clear from Proposition 4.1 and Theorem 5.1. To show continuity of Π with respect to τJ
we either refer to Remark 4.11 and Theorem 4.12 or we proceed similar as in the proof of Lemma 9.13
and use Lemma 9.12. We let (Hn)n∈N be a sequence of mappings in F2 and H ∈ F2, such that Hn → H,
then we need to conclude that Π(Hn) → Π(H). W.l.o.g. we assume H ∈ N2, hence Π(H) = H by
Lemma 5.18. We have Π(Hn) = φ′n ◦Hn ◦ φn ∈ N2, where (φ′n, φn) ∈ G are the isotropies according to
Proposition 4.1. Assume φ′n ◦Hn ◦φn → Ĥ ∈ N2, then by Lemma 9.12 we obtain φ′n → idC3 , φn → idC2

and since Hn → H we get Ĥ = H.
We are left by proving the closedness of Π with respect to τJ : Let C ⊂ F2 be a closed subset. We need
to show that Π(C) ⊂ N2 is a closed subset. To prove this statement we let Hn ∈ Π(C) for n ∈ N,
forming a sequence of mappings in N2 such that Hn → H0, where H0 ∈ N2. To show the closedness
of Π(C) we need to conclude that H0 ∈ Π(C). By Theorem 5.1 there exists N ∈ N such that for all
n ≥ N the mappings Hn and H0 are of the same form. More precisely we can write Hn = Gεk,sn and
H0 = Gεk,s0 for s0, sn ∈ R+ and we have sn → s0. Next we consider the elements of the orbits Π−1(Hn)

in C. Let Gn ∈ Π−1(Hn)∩C for n ∈ N be a sequence of maps with Gn → G0. By what we have shown
in (i) and (ii) of Theorem 9.22 we have G0 ∈ Π−1(H0) ⊂ F2. Since (Gn)n∈N is a convergent sequence
in the closed set C we obtain G0 ∈ C, which implies H0 = Π(G0) ∈ Π(C).

9.3 Basic Topological Properties of F2

Finally we show the following result concerning the connectedness of F2 which follows from Theorem 5.1.

Theorem 9.23. The set F2 consists of 5+ε
2 connected components.

Proof. We denote by c(X) the number of connected components of a topological space X and observe
that for ε = −1 we have c(N2) = 2 and for ε = +1 we have c(N2) = 3. We use the notation for
the parametrization of Aut0(H2, 0) as in Definition 2.23 and for Aut0(H3

ε, 0) as in Definition 2.24. We
denote Ξ := Γ × Γ′ × R+

0 ⊂ RN0 , where N0 := 16 and for ξ ∈ Ξ we write ξ = (γ, γ′, s). The set Ξ is

102



connected, since for mappings in F2 and ε = −1 we only consider isotropies as in (2.31) with σ = +1.
Since we consider τJ as the topology on F2 and N2, which is induced by the topology of some CK ,
we have that connectedness is the same as path-connectedness. Clearly each isotropic orbit of a fixed
mapping is connected. Also any isotropic orbit O0(H) of a fixed mapping H ∈ N2 is closed, since if we
let (Gn)n∈N be a sequence in O0(H) and write Gn = φ′n ◦H ◦ φn. Then we obtain for Gn → F ∈ F2,
where F = φ′ ◦ F̂ ◦ φ with F̂ ∈ N2. Lemma 9.12 can be adapted, such that the conclusion F̂ = H, i.e.,
F ∈ O0(H) holds for maps in N2.
First we show that C := O0(Gε1) is a connected component of F2. We denote F̂2 := {C ⊂ F2 and
N̂2 := N2 \{Gε1}. By Lemma 6.5 and Lemma 6.37 we have O(Gε1) = C, consisting of all maps in F2

which are equivalent to Gε1. Assume there exists a continuous path p : [0, 1] → F2 with p(0) ∈ C and
p(1) ∈ F̂2, i.e., p(1) is isotropically equivalent to a mapping of N̂2. Thus there exists t0 ∈ [0, 1] such that
p(t) ∈ C for all t ≤ t0 and p(t) ∈ F̂2 for all t > t0. Hence there exists a sequence (Hn)n∈N of mappings
in F̂2, such that Hn → p(t0) ∈ C. Again by Lemma 9.12, if we write Ĥn ∈ N̂2 for the normalized
mapping associated to Hn, this would imply that Ĥn → Gε1, which is not possible.
Next we want to show that if ε = +1 we have c(F̂2) = 2. We observe that π2 : F2 → N2 is a continuous
and surjective mapping, hence we obtain c(F̂2) ≥ 2. Otherwise if F̂2 is assumed to be connected, then
π2(F̂2) = N̂2 would be connected, which is not the case. For k = 2, 3 we denote Ck := {G+

k,s : s ≥ 0}
and the corresponding preimage Ĉk := π−1

2 (Ck). By Lemma 5.3 and Lemma 6.39, the set Ĉ3 only
consists of mappings of degree 3. Thus we have Ĉ2 ∩ Ĉ3 = ∅ and hence by Theorem 6.8 a partition
F̂2 = Ĉ2 ∪ Ĉ3 of connected sets, since this decomposition also holds if we consider translations, instead
of isotropies, as in Definition 6.3 by Lemma 6.39 and by the fact that C is a connected component of
F2. Since for k = 2, 3 the set Ĉk is homeomorphic to Ξ, defined at the beginning of the proof, we obtain
the connectedness of Ĉk, which proves the theorem for ε = +1.
To prove the statement for ε = −1 we need to show that F̂2 is connected. Let H0, H1 ∈ F̂2 and for
k = 0, 1 associate (γk, γ

′
k, sk) ∈ Ξ to Hk such that Hk is isotropically equivalent to G−`k,sk ∈ N̂2 for

some `k = 2, 3. Since N̂2 is connected we can find a continuous path ps : [0, 1] → R+
0 connecting s0

and s1. Moreover we can find continuous paths (pγ , pγ′) : [0, 1]2 → Γ × Γ′ connecting (γ0, γ
′
0) and

(γ1, γ
′
1). The corresponding mapping P := φ′pγ′ ◦ G

−
p`,ps

◦ φpγ , where p` = 2, 3, describes a continuous

path P : [0, 1]→ F̂2 which connects H0 and H1.

We consider the equivalence relation induced by Definition 2.26 and Definition 6.3, i.e., we allow trans-
lations and normalize via isotropies twice. More precisely we say that F,G ∈ F2 are equivalent and
write F ∼ G if F is isotropically equivalent to some F̃ ∈ N2 according to Definition 2.26 and where
F̃ is equivalent to G̃ ∈ N2 according to Definition 6.3, where G is isotropically equivalent to G̃ as in
Definition 2.26. We note that by Lemma 6.5 the equivalence relation ∼ constitutes the most general
equivalence relation in our setting. Then we have the following result for the quotient topology of the
quotient space with respect to ∼.

Theorem 9.24. Let ∼ denote the equivalence relation given by Definition 2.26 and Definition 6.3
defined above. Then F2 /∼ is discrete if ε = +1 and is not discrete if ε = −1.

Proof. We set X := F2 /∼ consisting of elements denoted by [F ] for F ∈ F2. We equip X with the
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quotient topology such that the canonical projection π : F2 → X is continuous.
For ε = +1 we have X = {G+

1 , G
+
2,0, G

+
3,0} by Theorem 6.8. For H ∈ X we have π−1(H) = O(H),

which we have shown in the proof of Theorem 9.23 is a connected component of F2, hence open. Thus
X carries the discrete topology.
To prove the statement if ε = −1 we write H0 := G−2,1/2 ∈ N2 and H1 := G−3,0 ∈ N2. For k = 0, 1 let
Uk ∈ X be an open neighborhood of [Hk], then Vk := π−1(Uk) is an open neighborhood of Hk in F2.
According to Theorem 5.1 and Theorem 6.8 there exists a sequence (Gn)n∈N of mappings in F2, where
each Gn ∈ [H1] and Gn → H0 in F2 as n → ∞. Thus there exists N ∈ N such that Gn ∈ V0 ∩ V1 for
all n ≥ N , which shows [H1] ∈ U0 ∩ U1 and completes the proof.
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Appendix A: Formula for Jet Parametrization

In Lemma 5.5 we have the following formulas: Denote Ψ = (f1, f2, g). We order the monomials by
degree and by assigning the weight 1 to z and the weight 2 to the variable χ. The numerator of
f1(z, 2 i zχ) is the following expression:

2 ε z + 6A2zχ+ iC22z
3 + 4 i εB21z

2χ+ 6 εB2zχ
2 +

(
2 εA2 +A22 − C13

)
z3χ

− 2
(

3 iA3 + 3 εB12 +A2(7 ε−3 iB21)
)
z2χ2 + 2A2B2zχ

3

+
(

6A2
2 + iA13 + ε(−1− 2B2

21 +B22 + C3)− iC4 − 2 iB2C22

)
z3χ2

− 2
(

5A2
2 + 4 i εB3 + 4A2B12 +B2(6− 2 i εB21)

)
z2χ3

+
(
−A4 − 2A22B2 +B12 + 2A3B21 + i ε(4A3 +B13 − 4B12B21)

+A2(5 + 4 εB2 − 4 i εB21 − 2B2
21 +B22 + 3C3) + 2B2C13

)
z3χ3

+ 2 i
(
B2(4A3 + i εB12) +A2

(
−5B3 +B2(5 i ε+B21)

))
z2χ4

+
(

2 iB3 + 2 iA3B12 + iA2

(
4A3 +B13 +B12(−6 i ε−4B21)

)
+ 2A2

2(5 ε−2B2 − iB21)

+ ε(−B4 + 2B2
12 + 4B3B21) +B2

(
−2 iA13 − 6 iB21 + ε(2−B22 + 2C3) + 2 iC4

)
+ iB2

2C22

)
z3χ4

− 2A2
2B2z

2χ5

+
(

4A3
2 + 2A4B2 +A22B

2
2 + 3A2

2B12 + 5B2B12 + 4 i εB3B12 − i εB2B13 − 2A3

(
B3 +B2(i ε+B21)

)

−A2

(
6 εB2

2 +B4 − 2B2
12 +B3(−8 i ε−4B21) +B2(−4 + 8 i εB21 +B22 + 2C3)

)
−B2

2C13

)
z3χ5

− 2 iB2

(
A3B2 −A2B3

)
z2χ6

+
(
−2 εB2

3 +B2(4 iB3 + εB4 − 2 iA3B12)− iA2

(
2A3B2 − 4B3B12 +B2(6 i εB12 +B13)

)

+ 2A2
2

(
−B2

2 + 2 iB3 +B2(ε−2 iB21)
)

+B2
2(3 ε+ iA13 − 3 εC3 − iC4)

)
z3χ6

+
(
B2

(
−A4B2 + 2A3(− i εB2 +B3)

)
+ 3A2

2B2B12 +A2

(
−2B2

3 +B2(4 i εB3 +B4)

−B2
2(−3 + C3)

))
z3χ7

+ 2 iA2B2

(
−A3B2 +A2B3

)
z3χ8

The numerator of f2(z, 2 i zχ) is equal to the following formula:

2 ε z2 + 2A2z
3 + 6A2z

2χ+
(
−1 + C3

)
z3χ+ 4 εB2z

2χ2 −
(

2 iA3 + 6A2(ε+B2) + εB12

)
z3χ2

− 4A2B2z
2χ3 +

(
−4A2

2 − 2 i εB3 −A2B12 +B2(1 + 4 i εB21 − 3C3)
)
z3χ3 − 6 εB2

2z
2χ4

+
(

2 iB2(A3 + i εB12) +A2

(
6B2

2 − 2 iB3 + 4B2(ε+ iB21)
))
z3χ4 − 2A2B

2
2z

2χ5

+B2

(
4A2

2 − 2A2B12 +B2(−3− 4 i εB21 + 3C3)
)
z3χ5
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+B2
2

(
2 iA3 + 3 εB12 + 2A2(ε−B2 − 2 iB21)

)
z3χ6 +B2

2

(
2 i εB3 + 3A2B12 −B2(−3 + C3)

)
z3χ7

− 2 iB2
2

(
A3B2 −A2B3

)
z3χ8

The numerator of g(z, 2 i zχ) is equal to the following formula:

4 i ε zχ+ 12 iA2zχ
2 − 2C22z

3χ+
(

4 i−8 εB21

)
z2χ2 + 12 i εB2zχ

3 + 2 i
(

4 εA2 +A22 − C13

)
z3χ2

+ 12
(
A3 − i εB12 +A2(− i ε−B21)

)
z2χ3 + 4 iA2B2zχ

4

+ 2
(

8 iA2
2 −A13 − i ε(2 + 2B2

21 −B22 − 2C3) + C4 + 2B2C22

)
z3χ3

− 4
(

2 iA2
2 − 4 εB3 + 4 iA2B12 +B2(3 i +2 εB21)

)
z2χ4

+ 2
(
− iA4 − 2 iA22B2 − εB13 − 2A3(ε− iB21) + 4 εB12B21 +A2

(
4 εB21 − 2 iB2

21

+ i(−2 +B22 + 4C3)
)

+ 2 iB2C13

)
z3χ4

− 4
(
B2(4A3 + i εB12) +A2

(
−5B3 +B2(i ε+B21)

))
z2χ5

+ 2
(
−2A3B12 −A2

(
2A3 +B13 +B12(−4 i ε−4B21)

)
+ 2A2

2(−4 iB2 +B21)

− i ε
(
B4 − 2(B2

12 + 2B3B21)
)

+B2

(
2A13 + 2B21 − i ε(−2 +B22)− 2C4

)
−B2

2C22

)
z3χ5

− 2 i
(
−2A4B2 −A22B

2
2 − 2A2

2B12 − 2B2B12 − 4 i εB3B12 + i εB2B13 + 2A3

(
B3 +B2(i ε+B21)

)

+A2

(
4 εB2

2 +B4 − 2B2
12 +B3(−4 i ε−4B21) +B2(−2 +B22 + 4C3)

)
+B2

2C13

)
z3χ6

+ 4B2

(
A3B2 −A2B3

)
z2χ7

− 2
(
A13B

2
2 + 2A2

2B3 + 2B2B3 − 2A3B2B12 −A2(2A3B2 − 4B3B12 +B2B13)

+ i ε(2B2
3 −B2B4 + 2B2

2C3)−B2
2C4

)
z3χ7

− 2 i
(
A4B

2
2 − 2A3B2B3 +A2(2B2

3 −B2B4)
)
z3χ8

The denominator of H is of the following form:

2 ε+6A2χ+ iC22z
2 +

(
2 + 4 i εB21

)
zχ+ 6 εB2χ

2 +
(

6 εA2 +A22 − C13

)
z2χ

− 6
(

iA3 + εB12 +A2(ε− iB21)
)
zχ2 + 2A2B2χ

3 − i εC22z
3χ

+
(

12A2
2 + iA13 − 2 iB21 + ε(−3− 2B2

21 +B22 + 3C3)− iC4 − 2 iB2C22

)
z2χ2

− 2
(

2A2
2 + 4 i εB3 + 4A2B12 +B2(3− 2 i εB21)

)
zχ3 +

(
ε(−A22 + C13) + 2 iA2(i + εB21 − C22)

)
z3χ2

+
(
−A4 − 2A22B2 + 3B12 + 2A3B21 + i ε(4A3 +B13 − 4B12B21)

+A2(−2− 10 i εB21 − 2B2
21 +B22 + 6C3) + 2B2C13

)
z2χ3

+ 2 i
(
B2(4A3 + i εB12) +A2

(
−5B3 +B2(i ε+B21)

))
zχ4
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−
(
−1 + 2A2

2(8 ε− iB21)− 2B2
21 +B22 + C3 + i ε

(
A13 −B21(−1 + C3)− C4

)

+ 2A2(iA3 +A22 + εB12 − C13)
)
z3χ3

−
(
−4 iB3 − 2 iA3B12 − iA2

(
4A3 +B13 +B12(−13 i ε−4B21)

)
+ 4A2

2(3B2 + 2 iB21)

+ ε
(
B4 − 2(B2

12 + 2B3B21)
)

+B2

(
2 iA13 + 2 iB21 + ε(−8 +B22)− 2 iC4

)
− iB2

2C22

)
z2χ4

−
(

16A3
2 + 2A2

2B12 + i
(
i εA4 +B13 − 3B12B21 − i εB12C3 +A3(3 + C3)

)
+A2

(
2 iA13 + 3 iB21

− iB21C3 + ε(2 iB3 − 6B2
21 + 3B22 + 8C3)− 2 iC4 + 2B2(6 + i εB21 − iC22)

))
z3χ4

+
(

2A4B2 +A22B
2
2 + 10A2

2B12 + 3B2B12 + 4 i εB3B12 − i εB2B13 − 2A3

(
B3 +B2(4 i ε+B21)

)

−A2

(
6 εB2

2 +B4 − 2B2
12 +B3(−16 i ε−4B21) +B2(−10 + 2 i εB21 +B22 + 6C3)

)
−B2

2C13
)
z2χ5

− 2 iB2

(
A3B2 −A2B3

)
zχ6

−
(

2A2
3 − 2B2 −B4 +B2

12 + 2B3B21 +A3

(
− i εB12 + 2A2(−2 iB2 +B21)

)
+B2B22 + 6B2C3

+ 2A2
2

(
iB3 +B2(8 ε+ iB21)− 2B2

21 +B22 + 4C3

)
+A2

(
−2A4 − 2A22B2 − 2B12 + ε(−2B2B12

+ 3 iB13 − 10 iB12B21) +B12C3 + 2B2C13

)
+ i ε

(
B3(1 + C3) +B2(B21(−5 + C3)

−B2C22)
))
z3χ5

+
(

12 iA2
2B3 − 2 εB2

3 +B2(4 iB3 + εB4 − 2 iA3B12)− iA2

(
12A3B2 − 4B3B12 +B2(3 i εB12 +B13)

)

+B2
2

(
3 ε(1− C3) + iA13 − iC4

))
z2χ6

+
(
− iB3B12 − iB2B13 +A2

2(2B2B12 − 2 iB13 + 7 iB12B21) +A3

(
−2 εB3 − iA2B12 +B2

(
4 εB21

+ 2 i(−1 + C3)
))

+ iA2

(
2A13B2 + 2 iB2

2 +B3 − i ε
(
3B4 − 4(B2

12 + 2B3B21)
)
−B3C3 +B2

(
2 εB3

−B21(−7 + C3) + i(ε(B22 + 8C3) + 2 iC4)
))

+ εB2

(
A22B2 +B12(−4 + C3)−B2C13

))
z3χ6

+
(
−A4B

2
2 + 2A3B2(−2 i εB2 +B3) +A2

(
−2B2

3 +B2(4 i εB3 +B4)
))
z2χ7

+
(
A2

2

(
2 iB2B3 + 2B4 − 3(B2

12 + 2B3B21)
)
−A2

(
2A4B2 + 6B2B12 + 6 i εB3B12 + i εB2B13

+ 2 iA3B2(B2 + 3 iB21)−B2B12C3

)
+B2

(
B4 + i ε

(
3A3B12 +B3(−3 + C3)

)

−B2(3− i εA13 + C3 + i εC4)
))
z3χ7

+
(
− εA4B

2
2 +A2

(
B3(2 εB3 − 5 iA2B12) +B2

(
εB4 + iB3(−5 + C3)

))
− iA3B2

(
−2 i εB3 − 5A2B12

+B2(−5 + C3)
))
z3χ8

+ 2
(
A3B2 −A2B3

)2

z3χ9
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Appendix B: Case A and B

In the proof of Lemma 5.9 the following diagrams occur:

Ψ1
35 = 0

A11
A2 = 0

Ψ3
35 = 0

A22 ⊂ A13
C3 = 3(1 + 2 i εB21)

A21
B2 = 0

ψ̂1

A13
C3 = 3

(
1 + 2 ε(A2

2 + iB21)
)

Ψ2
45 = 0

A26 = B25
B2 = A2

2

A27
B13 = 3

(
i ε(A22 − C13)(−12A2

2 +B2)−A2

(
4A13 + 56B21 + 4 i ε(−4 + 8B2

21 −
B22)−4C4+B2(−8 i+4 εB21−19C22)

)
+4A3

2(−4 i−10 i εB2+24 εB21−9C22)
)

Ψ3
46 = 0

A34 = B25
B2 = A2

2

A35
C4 = A13+14B21+i ε(−4+8B2

21−B22)+3 i εA2(A22−
C13) − 4B2C22 + A2

2(4 i+10 i εB2 − 24 εB21 + 9C22)

Ψ1
46 = 0

A41 = B25
B2 = A2

2

A42
B2 = 0

Ψ1
56 = 0

A51
A2 = 0

ψ̂1

A53
A22 = 6A3

2+C13+2 iA2

(
−4B21+3 ε(i+C22)

)

Ψ3
56 = 0

A63
A2 = 0

ψ̂1

A64
C22 = 2 i εA2

2
ψ̂3

A52
B21 = 4 i ε

9

Ψ3
56 = 0

A62
C13 = A22+

1
9
εA2(22−27 iC22)

Ψ3
67 = 0

A71
A2 = 0

ψ̂1

A72
C22 = 2 i εA2

2
ψ̂3

A61
A2 = 0

ψ̂1

A43
A22 = C13+iA2

(
−8B21+3 ε(2 i+C22)

)

Ψ3
56 = 0

A56
C22 = 2 i εA2

2

ψ̂3

A55
B2 = A2

2

Ψ1
67 = 0

A610
C22 = 2 i εA2

2
ψ̂3

A68 = A65
A2 = 0

A69 = B52
B21 = i

2

(
ε+A2

2

)

A12
B2 = A2

2

Ψ2
45 = 0

A24
C3 = 1

7

(
1 + 22 εA2

2 + 2 i εB21

)

Ψ2
56 = 0

A31 ⊂ B11
A2 = 0

A33
C4 = 1

7

(
7A13 − 10B21 + i ε(12 − 7B22) + 14 i εA2(A22 − C13) + 2A2

2(−22 i+7C22)
)

ψ̂2

A32 ⊂ B22
B21 = i

2

(
ε+A2

2

)

A25 = B22
C3 = 3 + 6 ε

(
A2

2 + iB21

)A23 ⊂ B11
A2 = 0

Case A

A54
A2 = 0

Ψ3
57 = 0

A67
C22 = 0

ψ̂3

A57
B21 = i

18

(
8 ε+5B2

)

Ψ1
56 = 0

A612 = A62
B2 = 0

A611 ⊂ A55
B2 = A2

2

A614
C22 = 2 i εA2

2

ψ̂3

A613
B2 = − ε

4

ψ̂5

A65
B2 = 0

ψ̂1

A66
B21 = 3 i ε

8

ψ̂4

Figure 9: Diagram for Case A
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Ψ2
45 = 0

B11
A2 = 0

Ψ3
46 = 0 B12 = 0 ψ̂1

B13
B12 = 2 εA2

3

(
2A2

(
9A2

2 + 6 iB21 + ε(3−C3)
))

Ψ1
46 = 0

B24
A2 = 0

ψ̂1

B26
C3 = 3 ε

5

(
ε+6A2

2 + 2 iB21

)
Ψ3

56 = 0

B35
B21 = 1

2

(
i(−4 ε+36A2

2 − 10 εA2A22 +

5 εB22 +10 εA2C13)− 5(A13 −C4 +2A2
2C22)

) ψ̂2

B33
A2 = 0

ψ̂1

B34 = B37
B21 = i

2

(
ε+A2

2

)

B25
C3 = 3

(
1+2 εA2

2+2 i εB21

)

Ψ1
56 = 0

B36
A2 = 0

ψ̂1

B37
B21 = i

2

(
ε+A2

2

)
Ψ1

67 = 0
B41

A2 = 0
ψ̂1

B42
C4 = A13 + i(ε−7A2

2 + 2 εA2A22 −
εB22 − 2 εA2C13) + 2A2

2C22

ψ̂2

B38
C4 = ε

2

(
20 iA4

2 + 2(εA13 + 14 εB21 + 8 iB2
21 − i(4 +

B22)) + 5 iA2(A22 −C13) +A2
2

(
−40B21 + ε(2 i+7C22)

))

Ψ1
57 = 0

B43
A2 = 0

ψ̂1

B44 ⊂ B37
B21 = i

2

(
ε+A2

2

)

B45
C13 = 6 εA2+A22+i(8A2B21−3 εA2C22)

Ψ3
67 = 0

B51
A2 = 0

ψ̂1

B52 ⊂ B37
B21 = i

2

(
ε+A2

2

)

B53
C22 = 2 i εA2

2
ψ̂3

B12
B12 = A2 + 2i εA2B21 + A2C3

Ψ3
56 = 0

B22
B21 = i ε

2

(
1 + 4 εA2

2 − C3

)

Ψ1
67 = 0

B31
A2 = 0

ψ̂1

B32
C3 = 1 + 2A2A22 − B22 − 2A2C13 − i ε

(
A13 − C4 + 2A2

2(−2 i+C22)
) ψ̂2

B23
C3 = ε

2

(
2 ε+2 εA2A22 − εB22 − 2 εA2C13 + i(−A13 + 2B21 +C4 − 2A2

2C22)
)

ψ̂2
B21

A2 = 0
ψ̂1

Case B

Figure 10: Diagram for Case B
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Appendix C: Formulas for ψk and ψ̂k

In Lemma 5.9 we have the following formulas:

ψ1(z, w) =
(

2z
(

8 + 8B21w + 4 i εC22z
2 + i εA22zw + (4 + 12 i εB21 − 4B2

21 −B22)w2
)
,

8z2
(

2− i(ε+3 iB21)w
)
, 2w

(
8− 4(i ε−2B21)w + 4 i εC22z

2 + i εA22zw

+ (2 + 6 i εB21 − 4B2
21 −B22)w2

))
/

(
16− 8(i ε−2B21)w + 8 i εC22z

2 + 2 i εA22zw + 2(2 i εB21 − 4B2
21 −B22)w2

− 4C22z
2w −A22zw

2 −
(
14B21 − i ε(4− 10B2

21 −B22)
)
w3
)

ψ2(z, w) =
(

2
(

16z + 16B21zw + 4A2w
2 + 8 i εC22z

3 + 2
(
i εA22 +A2(8 i−6 εB21 − 3C22)

)
z2w

−
(
A2A22 − 4(1 + 2 i εB21 +B2

21) + iA2
2(6B21 + εC22)

)
zw2 + 2 iA2(ε+2A2

2 + iB21)w3
)
,

4
(

8z2 + 2A2
2w

2 + 8 εA2z
3 − 4(i ε−3B21)z2w + 2A2(2 + 3 εA2

2 + 4 i εB21)zw2

+ iA2
2(ε+2A2

2 + iB21)w3
)
, 2w

(
16− 8(i ε−2B21)w + 8 i εC22z

2 + 2
(
i εA22 +A2(4 i

− 6 εB21 − 3C22)
)
zw −

(
A2A22 + 4B21(i ε−B21) + iA2

2

(
6B21 − ε(4 i−C22)

))
w2
))
/

(
32− 16(i ε−2B21)w + 16 i εC22z

2 + 4
(
i εA22 − 3A2(2 εB21 + C22)

)
zw

− 2
(
A2A22 + 4(1 + 3 i εB21 −B2

21) + iA2
2

(
6B21 − ε(12 i−C22)

))
w2 − 8C22z

2w

− 2
(
A22 +A2

(
10 iB21 + ε(8− iC22)

))
zw2 +

(
i εA2A22 − 12B21 + 4 i ε(1− 2B2

21)

+A2
2(12 i−14 εB21 − C22)

)
w3
)

ψ3(z, w) =
(

4z − 4 εA2z
2 + 2 i(ε+ iB21)zw +A2w

2, 4z2 + w2B2, 2w(2− 2 εA2z −B21w)
)
/

(
4− 4 εA2z − 2B21w − 2 iA2zw − (1 + 2 εA2

2 + 2 i εB21)w2
)

ψ4(z, w) =
(
z
(

256 + 96 i εw + 128 i εC22z
2 − (5− 32 i εB2C22)w2

)
,

4
(

64z2 + 16B2w
2 + 4 i ε z2w + i εB2w

3
)
,

w
(

256− 32 i εw + 128 i εC22z
2 + (3 + 32 i εB2C22)w2

))
/

(
256− 32 i εw + 128 i εC22z

2 − (13− 32 i εB2C22)w2 − 64C22z
2w − (i ε−16B2C22)w3

)

ψ5(z, w) =
(

256z + 96 i ε zw + 64A2w
2 + 128 i εC22z

3 + 64 iA2z
2w − (5− 48 εA2

2 + 8 iC22)zw2

+ 4 i εA2w
3, 256z2 − 16 εw2 + 256 εA2z

3 + 16 i ε z2w − 16A2zw
2 − iw3,

w
(

256− 32 i εw + 128 i εC22z
2 − 64 iA2zw + (3− 16 εA2

2 − 8 iC22)w2
))
/

(
256− 32 i εw + 128 i εC22z

2 − 192 iA2zw − (13 + 144 εA2
2 + 8 iC22)w2 − 64C22z

2w

+ 8 εA2(−1 + 8 iC22)zw2 − ε(i +4C22)w3
)
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We have ψ̂k = ψk for k = 3, 4, 5.

ψ̂1(z, w) =
(

2z
(

8 ε+8 εB21w + 4 iC22z
2 − 2 i(A22 − C13)zw + (ε− iA13 + 2 εB2

21 − εB22 − εC3

+ iC4)w2
)
, 4z2

(
4 ε+ i(1− C3)w

)
, 2w

(
8 ε−4(i−2 εB21)w + 4 iC22z

2

− 2 i(A22 − C13)zw −
(
iA13 − 2 εB2

21 − ε(2−B22 − 2C3)− iC4

)
w2
))
/

(
16 ε−8(i−2 εB21)w + 8 iC22z

2 − 4 i(A22 − C13)zw − 2
(
iA13 − 2 iB21 − 2 εB2

21

− ε(3−B22 − 3C3)− iC4

)
w2 − 4 εC22z

2w + 2 ε(A22 − C13)zw2 +
(
εA13 + 2 iB2

21

+ εB21(1− C3) + i(1−B22 − C3 + i εC4)
)
w3
)

ψ̂2(z, w) =
(

32 i z + 32 iB21zw + 8 iA2w
2 − 16 εC22z

3 + 8
(
ε(A22 − C13) +A2(2− 3 iC22)

)
z2w

+ 2
(
εA13 + 2 εB21 + 4 iB2

21 − iB22 − εC4 + 4 iA2(A22 − C13) + 6 εA2
2C22

)
zw2

+A2

(
iA13 + 6 iB21 + εB22 − iC4 − 2 εA2(A22 − C13) +A2

2(4 + 2 iC22)
)
w3,

32 i z2 + 8 iA2
2w

2 + 32 i εA2z
3 − 4

(
i(A13 − 2B21 − i εB22 − C4)− 2 εA2(A22 − C13)

+ 2A2
2(6 + iC22)

)
z2w − 4A2

(
iB22 − ε(A13 + 2B21 − C4)− 2 iA2(A22 − C13)

+ 2 εA2
2(3 i−C22)

)
zw2 +A2

2(iA13 + 6 iB21 + εB22 − iC4 − 2 εA2(A22 − C13)

+A2
2(4 + 2 iC22))w3, 4w

(
8 i +4(ε+2 iB21)w − 4 εC22z

2 + 2
(
ε(A22 − C13)

+A2(4− 3 iC22)
)
zw +

(
2(ε+ iB21)B21 + iA2(A22 − C13) + 2 εA2

2(2 i +C22)
)
w2
))
/

(
32 i +16(ε+2 iB21)w − 16 εC22z

2 + 8
(
ε(A22 − C13) +A2(6− 3 iC22)

)
zw

+ 2
(

4 iB2
21 + iB22 − ε

(
A13 − 2B21 − C4 − 2A2

2(6 i +C22)
))
w2 − 8 iC22z

2w

+ 4
(

i(A22 − C13) +A2

(
2B21 + ε(2 i +C22)

))
zw2 +

(
2 iB21 +A13(i− εB21)

+ iB21B22 − iC4 − ε(2B2
21 −B22 −B21C4)− 2 iA2B21(A22 − C13)

+ 2A2
2

(
6− iC22 + εB21(2 i−C22)

))
w3
)
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Appendix D: Standard Parameters

In the proof of Lemma 6.33 and Remark 6.40 we compute the following standard parameters:
Here we display the standard parameters for G̃ε1 . First we define the following expression, which is the
square root of (6.13):

R1 :=

√
1 + 6 ε r2

0 + v2
0 + r4

0

1 + 2 ε r2
0 + v2

0 + r4
0

.

c′11 :=
(ε+ i v0 + r2

0)(c1u1(−1− v2
0 + 2r2

0(2 ε− i v0) + r4
0)− 2 i ε r0λ1)

λ1(ε− i v0 + r2
0)(1 + 6 ε r2

0 + v2
0 + r4

0)

c′21 :=
2 i r0(ε+ i v0 + r2

0)(2c1u1(4 i + ε v0)− ε r0λ1)

λ1(ε− i v0 + r2
0)(1 + 6 ε r2

0 + v2
0 + r4

0)

λ′1 := (λ1R1)−1

a′11 :=
(1 + v2

0 − 2 i r2
0(v0 − 2 i ε)− r4

0)

u1u′1R1(ε+ i v0 + r2
0)2

, a′21 := − 4r0(1 + i ε v0)

u1u′1R1(ε+ i v0 + r2
0)2

c1 :=
i r0λ1(4 ε r2

0 + (i ε+v0)2 + r4
0)

u1(− ε+ i v0 + r2
0)(1 + 6 ε r2

0 + v2
0 + r4

0)

u′1 :=
R1(1 + i ε v0 − ε r2

0)(ε− i v0 + r2
0)2

u3
1(ε− i v0 + r2

0)2(1 + 6 ε r2
0 + v2

0 + r4
0)
, u1 :=

(ε− i v0 + r2
0)

(− ε+ i v0 + r2
0)
/

√
1 + 2 ε r2

0 + v2
0 + r4

0

1− 2 ε r2
0 + v2

0 + r4
0

λ1 :=
16 + r4

0 + v2
0 + 24r2

0 ε

4
√

16 + r4
0 + v2

0 − 8r2
0 ε

r′1 :=
−4r1(1 + 2v2

0 − 2r4
0 + v4

0 + 2r4
0v

2
0 + r8

0)

(1 + 6 ε r2
0 + v2

0 + r4
0)3

r1 := − −v0

(
(1− v2

0)2 + 8 ε r2
0(1 + v0)2 + 2r4

0(7 + v2
0) + 8 ε r6

0 + r8
0

)

4(1− 2 ε r2
0 + v2

0 + r4
0)2

We give the standard parameters for G̃−2 in the following paragraphs. First we introduce the following
expression, which is the square root of (6.14), to simplify formulas:

R2 :=

(
1 +
√

2r0(e− i θ0 + ei θ0)

(1 +
√

2r0e− i θ0)(1 +
√

2r0ei θ0)

)1/2

,

also we introduce the following expression:

S2 :=
(1 +

√
2(e− i θ0 + ei θ0)r0 + 2r2

0)2(2(e− i θ0 + ei θ0)r0 +
√

2(1 + 2r2
0))2

(1 +
√

2r0e− i θ0)4(1 +
√

2ei θ0r0)4(1 +
√

2(e− i θ0 + ei θ0)r0)2
.
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c′12 :=
(ei θ0 +

√
2r0)(−c2u2(1 + 3r2

0 + 2e2 i θ0r2
0 + 2

√
2ei θ0r0(1 + r2

0)− i v0) + i ei θ0r0(1 +
√

2ei θ0r0)λ2)

(1 +
√

2ei θ0r0)(ei θ0 +
√

2r0 +
√

2e2 i θ0r0)λ2

c′22 :=
(ei θ0 +

√
2r0)(c2u2(−r0(3r0 + 2e2 i θ0r0 + 2

√
2ei θ0(1 + r2

0)) + i v0) + i ei θ0r0(1 +
√

2ei θ0r0)λ2)

(1 +
√

2ei θ0r0)(ei θ0 +
√

2r0 +
√

2e2 i θ0r0)λ2

λ′2 := (λ2R2)−1

a′12 :=
1 + 3r2

0 + 2e−2 i θ0r2
0 + 2

√
2e− i θ0r0(1 + r2

0) + i v0

u2u′2R2(1 +
√

2e− i θ0r0)2

a′22 := − 3r2
0 + 2e−2 i θ0r2

0 + 2
√

2e− i θ0r0(1 + r2
0) + i v0

u2u′2R2(1 +
√

2e− i θ0r0)2

u′2 :=
ei θ0(

√
2r0 +

√
2e−2 i θ0r0 + e− i θ0(1 + 2r2

0))(2r0 + 2e−2 i θ0r0 +
√

2e− i θ0(1 + 2r2
0))

(1 +
√

2e− i θ0r0)4(e− i θ0 +
√

2r0 +
√

2e−2 i θ0r0)S2u3
2

u2 :=
2S2(1 +

√
2r0e

− i θ0)4(1 +
√

2ei θ0r0)4(1 +
√

2r0e
− i θ0 +

√
2ei θ0r0)

(1 +
√

2r0e− i θ0 +
√

2ei θ0r0 + 2r2
0)(
√

2 + 2r0e− i θ0 + 2ei θ0r0 + 2r2
0)3

λ2 :=

√
2S2(1 +

√
2r0e

− i θ0)4(1 +
√

2ei θ0r0)4(1 +
√

2r0e
− i θ0 +

√
2ei θ0r0)2

(1 +
√

2r0e− i θ0 +
√

2ei θ0r0 + 2r2
0)2(
√

2 + 2r0e− i θ0 + 2ei θ0r0 + 2r2
0)2

The remaining parameters c2, r2 and r′2 are set to 0.
We give the standard parameters for G̃−3 in the following paragraphs. Before we define an expression,
which is the square root of (6.15), to simplify the subsequent formulas.

R3 :=

√
−1 + v2

0 + r4
0

v2
0 + r4

0

c′13 := − c3u3(v2
0 + r4

0)

λ3(−1 + v2
0 + r4

0)
, c′23 :=

(r2
0 + i v0)(c3u3(v0 − i r2

0)− r0λ3)

λ3(r2
0 − i v0)(−1 + v2

0 + r4
0)

λ′3 :=
(
λ3R3

)−1

a′13 := 1/(u3u
′
3R3), a′23 :=

i(r2
0 − i v0)

u3u′3R3(r2
0 + i v0)2

c3 :=
iλ3

2u3r0
, λ3 :=

−1 + v2
0 + r4

0

2r0

u′3 :=
i(r2

0 − i v0)

u3
3(r2

0 + i v0)2
, u3 := − i(1− v2

0 − 2 i v0r
2
0 + r4

0)√
(1− v2

0)2 + 2r4
0(1 + v2

0) + r8
0

The remaining parameters r3 and r′3 are set to 0.
For the last mapping G̃ε4 we obtain the following standard parameters:

R4 :=
√

3

√
ε+14r4

0 + ε r8
0

1 + 3 ε r4
0
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c′14 :=
4c4r

2
0u(−1 + r4

0 ε)− 8 i r5
0 ε λ4

(14r4
0 + ε+r8

0 ε)λ4
, c′24 :=

c4u4(−1 + 3r8
0 + 14r4

0 ε)− 8 i r3
0 ε λ4√

3(14r4
0 + ε+r8

0 ε)λ4

λ′4 :=
(
λ4R4

)−1

a′14 :=
−12r2

0(−1 + r4
0 ε)

u4u′4R4(1 + 3r4
0 ε)

2
, a′24 := −

√
3

1− 3r8
0 − 14r4

0 ε

u4u′4R4(1 + 3r4
0 ε)

2

c4 :=
i r3

0(−7− 26r8
0 + 9r16

0 − 36r4
0 ε+60r12

0 ε)λ4

u4(−19r4
0 − 38r12

0 + 9r20
0 − (1 + 74r8

0 − 123r16
0 ) ε)

λ4 :=

(
4
√

3r0

∣∣∣∣
ε−r4

0

1 + 14 ε r4
0 + r8

0

∣∣∣∣
)−1

, u′4 :=
sgn(r4

0 − ε)
u3

4 sgn(1 + r8
0 + 14r4

0 ε)

u4 :=

(
1− ε

2

)(
sgn(−1− 33r4

0 + 33r8
0 + r12

0 )

sgn(1− 14r4
0 + r8

0)

)
+

(
1 + ε

2

)
sgn(−1 + 34r4

0 − 34r12
0 + r16

0 )

The remaining parameters r4 and r′4 are taken to be 0.
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