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Abstract

In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in
inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number
scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed
for deep inelastic scattering (DIS) in the classical region 1 − x ∼ O(1) and which will be also discussed
here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently
takes into account the effects of massive quark loops and allows to deal with all hierarchies between the
mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums
all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large
masses and the correct massless behavior for very small masses, and provides a continuous description in
between.

In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as
a showcase for the concepts and on the thrust distribution for e+e−-collisions in the dijet limit as a
phenomenologically relevant example for an event shape. The computations of the corrections to the
structures in the factorization theorems are described explicitly for the singular terms at O(α2

sCFTF )
arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function
for thrust, which requires a dedicated calculation, these results are directly obtained from the correspond-
ing results for the radiation of a massive gauge boson with vector coupling at O(αs) with the help of
dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at
this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary
massive bottom and top quarks on thrust distributions at different center-of-mass energies.

Zusammenfassung

In dieser Arbeit beschreibe ich eine Vorgehensweise, um Masseneffekte schwerer Quarks aus sekundärer
Strahlung in inklusiven harten Streuprozessen mit mehreren dynamische Skalen zu behandeln. Das dabei
resultierende Setup verallgemeinert ein bekanntes und auch hier beschriebenes Schema für massive Quarks
im Anfangszustand, das für tiefinelastische Streuung (DIS) in der klassischen Region 1 − x ∼ O(1) en-
twickelt wurde. Die Methode, die in den Formalismus von Soft-Collinear Effective Theory (SCET)
eingebaut wird, berücksichtigt auf konsistente Weise die Effekte von Schleifen mit massiven Quarks und
ermöglicht eine Behandlung aller Hierarchien zwischen der Massenskala und den auftretenden kinema-
tischen Skalen für kollineare und softe Strahlung. Das Schema summiert alle großen Logarithmen durch
Renormalisierungsgruppen-Evolution mit einer veränderlichen Anzahl aktiver Quarks, sorgt automatisch
sowohl für das Entkoppeln von massiven Quarkeffekten bei großen Massen als auch für den masselosen
Limes bei kleinen Massen und liefert ein stetiges Verhalten dazwischen.

Im Hauptteil der Arbeit werde ich einerseits auf das Beispiel von DIS in der Endpunktregion x → 1
eingehen, das hauptsächlich als Demonstration der eingehenden Konzepte dient. Andererseits behandle
ich auch die Thrustverteilung bei e+e−-Kollisionen im Dijetlimes, wo sekundäre massive Quarks auch
eine wichtige phänomenologische Auswirkung haben können. Die Berechnungen der Korrekturen durch
sekundäre massive Quarks in den Bestandteilen der Faktorisierungstheoreme werden für die singulären
Terme auf der Ordnung O(α2

sCFTF ) explizit beschrieben. Mit Ausnahme der soften Funktion für Thrust
können die Resultate direkt aus den entsprechenden Ergebnissen für die Strahlung von massiven Eichboso-
nen mit Vektorkopplung auf O(αs) erhalten werden, was mit der Hilfe von Dispersionsrelationen erzielt
wird. Der Großteil der relevanten konzeptionellen und technischen Probleme kann bereits in diesem
Schritt behandelt werden. Schließlich führe ich eine numerische Analyse durch, um die Auswirkung der
Korrekturen von massiven sekundären Bottom- und Top-Quarks auf die Thrustverteilung bei verschiede-
nen Schwerpunktsenergien zu bestimmen.
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Chapter 1

Introduction

In the era of the Large Hadron Collider (LHC) we are investigating the mechanism of electroweak sym-
metry breaking, determining fundamental parameters of the Standard Model and looking for new physics
beyond the Standard Model at the TeV scale. One of the main requirements for this search is a good
understanding of collider phenomenology, in particular a thorough analysis of QCD at different energy
scales is necessary. This includes a precise description of the strongly interacting initial state on the one
hand and of the hard scattering interactions and final state cross talks on the other hand, which affects
the complete energy range between the hadronization scale ΛQCD and the center-of-mass (c.m.) energy
Q � ΛQCD. One of the most common objects observed in collider experiments are jets, i.e. bunches of
very energetic collimated hadrons. Their distribution and shape provide many information about the
high-energy process, such that a good understanding of jets is the basis of carrying out measurements at
all modern colliders. In the recent years many advances have been achieved in this field thanks to higher
order loop calculations and summation of large logarithmic terms allowing for an accurate description of
many strong interaction processes. In this context one cannot neglect the quark masses at sufficient high
accuracy, which concerns in particular the top mass at the LHC. Depending on the hierarchy between
the relevant mass scales and the kinematic energy scales in the process, different descriptions for the
massive quark can be appropriate. In this field substantial progress is required to take full advantage of
present and upcoming data, since currently mass effects are in many cases not treated in a coherent way
concerning resummation and the incorporation of fixed-order matrix elements.

One example where the treatment of massive quark effects raises a lot of interest is deep-inelastic
scattering (DIS), the benchmark process for the extraction of parton distribution functions (PDFs). These
are one main input for the analysis of all processes at hadron colliders, such that a precise determination
including the effects of the charm and bottom quark masses is necessary. A first systematic approach
to incorporate heavy quarks with arbitrary masses with respect to the other relevant scales has been
provided in Refs. [1, 2], which laid the basis of a variable flavor number scheme (VFNS) for inclusive
processes in hadron collisions. It is founded on the separation of close-to-mass-shell modes and offshell
fluctuations and is thus in the spirit of effective field theory (EFT) factorization. Nowadays, different
schemes have been developed to cope with this challenge, which are mainly based on this approach, but
differ in their detailed implementation concerning formally subleading contributions (see Ref. [3] for a
short overview).

Jets play a major role also at experiments beyond hadron colliders. In particular, due to the lack of a
strongly interacting initial state, high energy processes at lepton colliders are very suitable for precision
QCD measurements. Recent conceptual developments in EFTs and progress in theoretical calculations
have made it possible to extract fundamental parameters of QCD like the strong coupling from LEP
data for event shapes with unprecedented accuracy [4,5]. In this context one also needs a good estimate
of quark mass effects at the current accuracy of the predictions for a complete analysis. Furthermore,
future lepton colliders like the ILC will allow to determine also the top mass, one of the most sensitive
parameters for constraints of the Standard Model, with small uncertainties both via threshold scans [6,7]
and far away from threshold in the dijet region [8, 9].

In this thesis and the associated papers we propose a general factorization framework to include
massive quark corrections loops in inclusive hard scattering processes with several dynamical scales. In
particular we develop a VFNS for final state jets, which are initiated by massless quarks and where
massive quarks are produced through the radiation of gluons that split into massive quark-antiquark
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pairs, i.e. via secondary radiation. This concerns both real radiation effects and heavy quark loops. Since
the corresponding fixed-order corrections start contributing at O(α2

s) they give numerically quite small
effects. Nevertheless, their treatment provides important conceptual background for the full consistent
treatment of massive quark effects in differential cross sections including direct (primary) production, in
particular concerning the treatment of large logarithmic terms, which might have a significant impact in
future phenomenological studies.

In processes with jets one faces a multiscale problem with the different invariant mass scales corre-
sponding to the hard momentum transfer, the collinear radiation within the jets, the low-energetic soft
radiation between the jets and the hadronic scale ΛQCD, which can be widely separated depending on
the process and the kinematic regime under investigation. Our setup allows to deal with all possible hi-
erarchies between the mass and the above-mentioned scales. It resums all large logarithms between these
scales due to flavor number dependent evolution, converges smoothly to the correct limiting behavior,
namely the decoupling limit for large masses and the massless limit for small masses, and provides a
continuous description in between. We illustrate the features of the VFNS on two examples, namely DIS
in the endpoint region x→ 1 and the thrust distribution in the dijet limit τ → 0, and provide the corre-
sponding computations for the secondary massive quark corrections at O(α2

sCFTF ). The incorporation
of massive quarks into cross section allows to resolve real and virtual radiation and can also shed light
on the case of massless quarks.

The outline of this thesis is as follows: First we will describe in chapter 2 an appropriate EFT
framework for the investigation of jet processes that disentangles the physics at the different kinematic
scales, namely Soft-Collinear Effective Theory (SCET). Here we provide the language and the basic
concepts for the factorization theorems in the later chapters. In chapter 3 we describe factorization in
DIS in the classical region 1 − x ∼ O(1) and explain how a VFNS for inclusive processes in hadron
collisions, is constructed. We will show how the flavor number dependent resummation of logarithms
is related to the proper choice of renormalization conditions. In particular we will also perform the
required computations for secondary massive quark radiation at O(α2

sCFTF ) explicitly, which to our
knowledge have not been displayed in the literature before. These results are directly obtained from the
corresponding results for the radiation of a massive gauge boson with vector coupling at O(αs) with the
help of dispersion relations.

The chapters 4 and 5 contain the main results of this thesis. In chapter 4 we generalize the setup to the
endpoint region of DIS with 1− x� 1, where the final state becomes a single jet with an invariant mass
that is much smaller than the momentum transfer energy. We explain how the factorization theorem
changes compared to the region 1 − x ∼ O(1) and what consequence this has for the incorporation
of massive quarks. We will distinguish massive quark modes with a collinear and a soft scaling and
show how either of them contributes for different hierarchies with respect to the kinematic scales. The
computations of the secondary massive quark corrections at O(α2

sCFTF ) in the factorization theorem are
described explicitly, again first at the level of a “massive gluon” at O(αs), where most relevant conceptual
and technical issues can be already dealt with. We will encounter divergences which are not regularized
by dimensional regularization and corresponding potentially large logarithms for contributions around the
mass shell, which are not resummed by the usual renormalization group (RG) evolution. We will discuss
the “rapidity evolution” to resum these both at O(αs) and O(α2

sCFTF ). Another interesting aspect is
that the virtual structures at different scales are related to each other via consistency conditions of RG
running which we will check by explicit computations.

In chapter 5 we switch process to e+e−-collisions and investigate the thrust distribution in the dijet
limit as an example for an event shape, where secondary massive quarks may also have a significant
phenomenological impact. The factorization setup for both massless and massive quarks is in fact related
to DIS for x → 1 due to crossing symmetry and the universality of some involved components of the
factorization theorem. The only additional ingredient which needs to be calculated is the perturbative
soft function describing low-energetic radiation between the jets, which is a more involved computation
and deserves a devoted discussion. This also includes the computation of the corresponding renormalon
subtractions to remove the O(ΛQCD) ambiguity in the perturbative expansion in dimensional regular-
ization. Finally, to estimate the impact of the mass corrections we carry out a numerical analysis for
secondary massive bottom and top quarks on thrust distributions at different c.m. energies.
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In chapter 6 we summarize our results and give an outlook on future work on mass effects with exciting
possible applications in hadron collider physics. Some prospects concern top loop effects for the primary
production of massive top quarks, which is discussed using the example of the thrust distribution in
appendix F.

Much of the content of this thesis has been already published in papers in collaboration with Simon
Gritschacher, Andre Hoang, Ilaria Jemos and Vicent Mateu concerning the development of the mass mode
setup and the application to the thrust distribution [10–12]. Large parts in chapter 4 and in particular
in chapter 5 are adopted from these papers. The application to the case of both primary and secondary
massive quarks and the resummation of rapidity logarithms will be discussed in a future publication in
collaboration with Andre Hoang, Aditya Pathak and Iain Stewart [13]. The application to DIS is ongoing
work with Andre Hoang and Daniel Samitz [14] which has been already presented partially at different
conferences [15].

We will usually perform the calculations in Feynman gauge and in dimensional regularization for the
regularization of UV divergences with d = 4 − 2ε and µ̃2ε = (µ

2eγE

4π )2ε for the extension of the integra-
tion measure, which is convenient when the MS scheme is employed for renormalization. Most of the
computations and plots were performed using Mathematica 9 [16]. For the expansion of hypergeometric
functions, which frequently appear in our computations, we use the HypExp package [17]. The Feynman
diagrams and many illustrations were drawn in Jaxodraw 2 [18].
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Chapter 2

SCET: An EFT for jet physics

In this chapter we describe an EFT for hard scattering processes with widely separated scales, namely
SCET. First we briefly outline what EFTs are, what benefits one gains in using them and why an EFT
framework is useful in jet physics. Further information about EFTs can be found in many sources, e.g. in
Refs. [19, 20]. We then highlight the main steps in the construction of SCET at leading order in the
expansion parameter and its most important features as described in Refs. [21–24]. The emphasis lies on
the applications in the chapters 3, 4 and 5, where we in particular need to understand the relevant degrees
of freedom and types of interactions that can appear, and the way how factorization and resummation
works in SCET. We recommend Iain Stewart’s online lectures for a detailed overview over SCET [25].

2.1 Effective Field Theories

The language of particle physics is the one of quantum field theories (QFTs) that describe the degrees
of freedom and their interactions up to some particular scale. Basically all phenomenologically relevant
QFTs are not UV finite, which implies a validity range up to some high scale ΛUV where the description
in terms of these theories breaks down and has to be replaced by a more general picture. This holds
in particular for the Standard Model, where the high energy scale ΛUV might correspond to the Planck
scale, the scale of grand unification or a much lower scale (the TeV scale?), which could be probed at the
LHC. Since the former scales are out of range, experimentally testable QFTs in particle physics are in
principle EFTs. The lack of knowledge about the UV behavior, which causes divergent expressions in the
amplitudes does not lead, however, to an inability to describe the physics at a typical low energy scale Λ.
This is related to the fact that all building blocks in the QFT, i.e. the couplings, fields and operators can be
renormalized in a controlled way, such that meaningful predictions can be obtained. EFTs are intrinsically
nonrenormalizable, since they are an infinite series in a power counting parameter corresponding to
Λ/ΛUV, which implies that an infinite number of operators have to be renormalized. However, at any order
in the power counting parameter Λ/ΛUV we need only a finite amount of operators and corresponding
coefficients related to the high energy behavior which can be determined from experiment. This means
that we can make quantitative descriptions at the scale Λ to any precision we want without referring to
the details of the full underlying theory. 1

On the other hand, we do not always want to use the full QFT for describing processes at low energy
scales, even if we know the more general structure at high energies. This concerns situations where
the full QFT does not give stable quantitative results, e.g. in a perturbative expansion containing large
logarithms, or is practically difficult to handle, e.g. the description of atoms and molecules using the
full information of QCD and QED. In these cases EFTs are useful to perform simplified computations
with reduced degrees of freedom and number of scales in agreement with the infrared structure of the full
theory. As described above this does not result in an uncontrolled loss of precision, due to the possibility of
a systematic incorporation of higher order effects in the power counting. Since EFTs separate the degrees
of freedom at the relevant scales from the beginning they allow to disentangle the quantum fluctuations
in a physical quantity at different energies in the form of a factorization theorem. EFTs provide operator
based definitions for the matrix elements in factorization theorems in terms of the corresponding degrees

1However, symmetries and patterns in the Wilson coefficients can help us to identify main features of the underlying
theory. This is exploited in particular in B physics.
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of freedom. These components are often highly constrained by the emerging symmetries in the EFT,
so that they appear frequently as universal ingredients for different processes. In the context of QCD,
factorization is in particular important to separate perturbative and nonperturbative physics. Usually
we can exploit our knowledge about the full QCD description and determine the process-dependent high-
energy coefficients in the EFT by an explicit calculation. 2 This allows to extract the nonperturbative
operator matrix elements in a benchmark process, which can be then used as an input in the description
of a different reaction where they appear. Finally, all EFT operators contributing to the corresponding
matrix elements in the factorization theorem have to be renormalized, which provides a natural framework
for the resummation of large logarithms between widely separated physical scales via RG evolution, a
particularly important benefit of EFTs.

Within the Standard Model we often encounter large hierarchies between different scales, e.g. the
masses of the particles are very different from each other. In this context, a frequently discussed example
is the study of processes at the bottom mass scale which does not require a detailed description of
the electroweak interaction and of the top quark. It is then more appropriate to adopt an effective
description with a power counting parameter corresponding to mb/mW , where the exchange of the gauge
bosons in the electroweak theory is incorporated only via local four-fermion operators at leading order
in the EFT. The EFT constructed in this way is called Fermi theory. Also in QCD large hierarchies of
scales corresponding to masses, momenta, binding energies and the hadronization scale ΛQCD lead to the
development of different EFTs. Prominent and very successful examples are Chiral Perturbation Theory
(ChPT), Non-Relativistic QCD (NRQCD), Heavy Quark Effective Theory (HQET) and Soft Collinear
Effective Theory (SCET), which is the one we will discuss in the following.

The basic ingredients of any EFT are always the same: First one has to find the relevant scales
and appropriate degrees of freedom for the given process one wants to describe, which become the
fields (modes) in the EFT. The symmetries which are inherited from the full theory or which can arise
additionally in the specific kinematic regime guide us what operators are allowed and which possible
interactions appear between the modes. Finally, the power counting parameter corresponding to the
ratio of the generic scales of the modes we kept in the theory and the ones we integrated out tells us, at
which order we can truncate the infinite series expansion of the full theory to reach the intended precision.
In the following we will see the most relevant steps explicitly for the case of jet processes described by
SCET.

2.2 Momenta and modes in SCET I

SCET is an EFT for jets and light, energetic hadrons that was first developed for B decays. It is different
from most EFTs in the respect that it separates the modes according to the scaling of the momentum
components of all particles instead of to the particle content. One integrates out far off-shell modes, but
keeps the low-energy modes with different invariant masses that can communicate with each other via
nonlocal interactions. The ultimate goal of SCET is to factorize cross sections into single scale structures
and resum large logarithms between the corresponding kinematic scales.

Let us first investigate the scales appearing in collider processes with narrow jets. In this collinearly
enhanced region the typical invariant mass of the jets becomes much smaller than the hard scale Q
corresponding to the momentum transfer. In addition soft particle radiation can appear between the
jets. This is illustrated in Fig. 2.1 for the endpoint region of the decay B → Xsγ in the heavy meson
rest frame, where the final state X contains a single narrow jet of invariant mass ∼ mbΛQCD. Due to
the fact that the hard scale Q ∼ mb and the invariant mass scales of the collinear and soft radiation can
be widely separated the language of EFT is appropriate to describe this process in the kinematic regime
where the jets are narrow.

To describe low invariant mass fluctuations for highly boosted objects, we introduce appropriate
coordinates which make the hierarchies in the momentum components obvious. These are the lightcone
coordinates which are defined by the lightlike vectors nµ = (1, ~n) and n̄µ = (1,−~n) satisfying n2 = n̄2 = 0

2This is not always possible in an analytic way, since the Wilson coefficients can be nonperturbative. In these cases one
has to match to experiments or rely on computations from lattice QCD.
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~n

pn,⊥ ≪ ~n · ~pn ∼ Q

p2s ≪ Q2 p2n ≪ Q2

γ

Figure 2.1: Sketch of the decay B → Xsγ in the endpoint region, where the invariant mass of the collinear
and soft radiation is much smaller than the c.m. energy Q ∼ mb.

and n · n̄ = 2 and where ~n indicates the direction of the jet. 3 The decomposition of the momenta in
terms of the lightcone vectors and the three-momentum perpendicular to the jet axis ~n reads

pµ =
n̄µ

2
p+ +

nµ

2
p− + pµ⊥ ≡ (p+, p−, p⊥) (2.1)

with p+ ≡ n · p and p− ≡ n̄ · p. The energy of a particle reads in terms of these coordinates

E = p0 =
1

2
(p+ + p−) . (2.2)

The invariant mass of a particle can be written as

p2 = p+p− + p2
⊥ . (2.3)

We define hard momenta by the generic scaling pµh ∼ Q(1, 1, 1). Since these have a large offshellness,
they only appear in the local interaction denoted by the blob in Fig. 2.1 and will not be associated with
degrees of freedom in SCET. The momentum components of (massless) boosted collinear particles in
the jet direction ~n satisfy p−n � p+

n and p−n � |~p⊥|, such that p−n ∼ 2En ∼ Q. The invariant mass of
the jet s ∼ (

∑
i∈jet pn,i)

2 is much smaller than Q2, characterizes the width of the jet and depends on
the (inclusive) observable we want to measure. The SCET power counting parameter can be defined
by the ratio of the jet invariant mass and the momentum transfer scale, i.e. λ2 ∼ s/Q2. Frequently
one encounters the specific scaling λ ∼

√
ΛQCD/Q or λ ∼ ΛQCD/Q corresponding to soft radiation at

the hadronic scale, but depending on the process and the kinematic regime s can adopt also a scaling
unrelated to ΛQCD. To describe the momentum components of the collinear fluctuations the natural
counting in terms of the power counting parameter is p+p− ∼ p2

⊥ ∼ Qλ2. Thus the n-collinear momenta
scale like pµn ∼ Q(λ2, 1, λ). The momenta of the soft radiation have uniformly scaling components, but
invariant masses that depend on the corresponding physical observable. If the soft invariant mass scale is
of order Q2λ4 we call the momenta ultrasoft and they satisfy pµus ∼ Q(λ2, λ2, λ2). On the other hand if the
soft invariant mass scale is of the same order as the jet scale, the soft momenta scale as pµs ∼ Q(λ, λ, λ).
The corresponding theories are then usually called SCET I and SCET II, respectively. 4 In this thesis we
will encounter both theories. Since SCET II can be obtained from integrating out (hard) collinear modes
with larger virtuality from SCET I, we will first sketch the construction of SCET I, and come back to
SCET II in Sec. 2.5.

We have now seen that the relevant degrees of freedom for jet processes, the collinear and soft particles,
are characterized by their momentum scalings. The corresponding fields can be obtained from the full
QCD fields by disentangling short-range from long-distance quantum fluctuations. There are different
technical ways to perform this: One can either distinguish the large and small momenta by introducing
“labels” in a hybrid momentum-position space picture [22–24] or one can stay in position space and
perform a full multipole expansion there [27, 28]. In the following we will adopt the first approach. We

3We will investigate only processes with a single jet or two jets going back-to-back. Therefore, a single jet axis is enough
for our purposes, so that we can choose n̄µ1 = nµ2 in dijet processes with ~n2 = −~n1 for convenience. In the case of several
jet directions this description can be generalized.

4For some observables, e.g. arbitrary angularities, the jet and soft scales can be also separated by noninteger powers of
the expansion parameter λ. We will not consider this situation in the following.
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Figure 2.2: Momentum modes and scaling in the p+-p− plane in SCET I for a process with a single jet
like B → Xsγ with Q ∼ mb. Hard modes with offshellness ∼ Q2 are integrated out and only ultrasoft
and collinear modes at different scales remain. Adapted from Ref. [26].

decompose the momentum of a n-collinear particle into a “discrete” large label momentum p̃µn with respect
to the n-collinear direction of order Q and Qλ and a small residual momentum kµ of order Qλ2

pµn = p̃µn + kµ , p̃µn ∼ Q(0, 1, λ) , kµ ∼ Q(λ2, λ2, λ2) . (2.4)

Both types of momenta will be (overall) conserved individually in any interaction. We want to separate
quantum fluctuations corresponding to these momenta in a gauge-invariant way and therefore decompose
the quark fields q(x) and the gluon field Aµ(x) such that they contain only the dependence on the residual
momentum, 5

q(x) =
∑

p̃ 6=0

e−ip̃xqn,p̃(x) + qus(x) , Aµ(x) =
∑

p̃ 6=0

e−ip̃xAµn,p̃(x) +Aµus(x) . (2.5)

For p− � p⊥ � p+ the collinear quark field qn,p̃(x) contains one large spinor component ξn,p̃(x) and one
small spinor component ξ̂n̄,p̃(x). These can be obtained by applying the orthogonal projectors

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
with Pn + Pn̄ = 1 (2.6)

on qn,p̃ via

ξn,p̃(x) = Pn qn,p̃(x) , ξ̂n̄,p̃(x) = Pn̄ qn,p̃(x) . (2.7)

The small component ξ̂n̄,p̃(x) has a power suppressed kinetic term, will be therefore not treated as a
dynamic field and is integrated out in the construction of SCET. The location of the relevant fields in
the p+p− plane in the case of one single jet in SCET I and the scaling of the corresponding momenta is
summarized in Fig. 2.2. Note that ξn,p̃(x) represents both quark and antiquark fields, which can then be
treated together for internal states. Writing out the mode expansion of the Dirac spinor

q(x) =

∫
d4p δ(p2) θ(p+ + p−)

(
u(p) a(p) e−ipx + v(p) b†(p) eipx

)
≡ q+(x) + q−(x) , (2.8)

and following the decomposition in Eq. (2.5) and the projection in Eq. (2.7) particle fields with a positive
label p− and antiparticle fields with a negative label p− can be combined to the collinear field ξn,p̃(x),

ξn,p̃(x) = θ(p−) ξ+
n,p̃(x) + θ(−p−) ξ−n,−p̃(x) . (2.9)

5In the second relation also terms with multiple gauge fields Aµ(x) appear to preserve gauge symmetries at higher orders
in the power counting. Since we are here just interested in the leading order terms in λ we neglect them.
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An important thing to notice is that the ultrasoft fields qus(x) and Aµus(x) are related to a vanishing
label. In contrast the collinear fields imply a nonvanishing label. In practice, however, it is much simpler
to perform calculations with a continuous integration over all momenta. In this case one has to take
care of double counting between the collinear and ultrasoft sector, which can be achieved by performing
a subtraction of the amplitudes with an additional expansion of the collinear momenta in the ultrasoft
region, called zero-bin subtractions [29].

2.3 The Lagrangian in SCET I

To perform computations in SCET we need the Lagrangian and the corresponding Feynman rules. In
this thesis we will just consider the leading order in the expansion parameter λ. Power suppressed
contributions were considered e.g. in Refs. [27,30]. We start with the QCD Lagrangian including a quark
mass,

LQCD = q̄ (i /D −m) q − 1

4
FµνF

µν (2.10)

with Dµ = ∂µ + igT aAaµ and the gluon field strength tensor Fµν = − i
g [Dµ, Dν ]. To find the relevant

operators in the SCET Lagrangian we have to consider the scaling of the collinear and ultrasoft fields. It
is convenient to let the kinetic terms of the dynamic fields scale like λ0, and count the interaction terms in
powers of λ with respect to them. The n-collinear fields fluctuate over a distance ∆xµn ∼ Q−1(λ−2, 1, λ−1),
which yields a phase space measure d4xn ∼ (Qλ)−4. Performing the field redefinitions in Eq. (2.5) in the
Lagrangian (2.10) and investigating the derivative terms (related to the residual momentum component)
leads to the scaling relations for the collinear fields, 6

ξn,p̃ ∼ qn,p̃ ∼ Q3/2λ , Aµn,p̃ ∼ Q(λ2, 1, λ) , (2.11)

The ultrasoft fields fluctuate over a distance ∆xµus ∼ Q−1(λ−2, λ−2, λ−2), which yields a phase space
measure d4xus ∼ (Qλ2)−4, and satisfy the scaling

qus ∼ Q3/2λ3 , Aµus ∼ Q(λ2, λ2, λ2) . (2.12)

Note that the gauge fields scale like the corresponding momenta, so that derivatives acting on a collinear
quark field can be recombined to covariant derivatives.

Let us study the collinear quark Lagrangian in SCET. Applying Eqs. (2.5) and (2.7) in the QCD
quark Lagrangian yields

Lq,n =
∑

p̃,p̃′ 6=0

e−i(p̃−p̃
′)x

[
ξ̄n,p̃′ in ·D

/̄n

2
ξn,p̃ +

¯̂
ξn̄,p̃′

(
/̃p⊥ + i /D⊥ −m

)
ξn,p̃

+ ξ̄n,p̃′
(
/̃p⊥ + i /D⊥ −m

)
ξ̂n̄,p̃ +

¯̂
ξn̄,p̃′ (p̃+ in̄ ·D)

/n

2
ξ̂n̄,p̃

]
. (2.13)

As already stated in Sec. 2.2 the field ξ̂n̄,p̃ ∼ Q3/2λ2 is static in SCET due to the fact that the kinetic
term involving the partial derivative n̄ · ∂ ∼ Qλ2 is suppressed. We can therefore integrate it out via the
equation of motion

(p̃+ in̄ ·D)
/n

2
ξ̂n̄,p̃ = −

(
/̃p⊥ + i /D⊥ −m

)
ξn,p̃ , (2.14)

and the corresponding one for ¯̂
ξn̄,p̃. Thus the Lagrangian at tree level reads

Lq,n =
∑

p̃,p̃′ 6=0

e−i(p̃−p̃
′)xξ̄n,p̃′

[
in ·D + (/̃p⊥ + i /D⊥ +m)

1

p̃− + in̄ ·D (/̃p⊥ + i /D⊥ −m)

]
/̄n

2
ξn,p̃ . (2.15)

6For the collinear gauge field one can impose the constraint that all components of the propagator scale according to
the momenta in a general covariant gauge.
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= i p−
p−p++p2⊥−m2+iǫ

/n
2

= −igT anµ
/̄n
2

= −igT a

nµ +

γ⊥µ (/p⊥+m)

p− +
(/p⊥−/k⊥−m)γ⊥µ

p−−k− − (/p⊥+m)(/p⊥−/k⊥−m)

p−(p−−k−) n̄µ



/̄n
2

= ig2T aT b

p−−q−


γ⊥µ γ⊥ν − γ⊥µ (/p⊥+m)

p− n̄ν −
(/p⊥−/k⊥−/q⊥−m)γ⊥ν

p−−k−−q− n̄µ +
(/p⊥+m)(/p⊥−/k⊥−/q⊥−m)

p−(p−−k−−q−) n̄µn̄ν



/̄n
2

+ (µ ↔ ν, a ↔ b, k ↔ q)
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k

p p′

p p′
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Figure 2.3: The SCET Feynman rules corresponding to the n-collinear massive quark Lagrangian in
Eq. (2.18) at leading order in λ up to O(g2) in the strong coupling. Here we have combined the label
momenta with the residual momenta. Zero-bin subtractions are implied for the collinear momenta.

This expression is still exact when considering a single collinear sector which is just boosted QCD. Note
that due to the interactions with collinear gluons the label momentum of the quark changes. It is
convenient to suppress the explicit dependence on the labels to simplify the notation. For this purpose
we introduce the label operator Pµ, which extracts the large label momentum out of any collinear field
φn,p̃(x), i.e.

Pµφn,p̃(x) = p̃µφn,p̃(x) , Pµφ†n,p̃(x) = −p̃µφ†n,p̃(x) . (2.16)

The remaining partial derivatives are only acting on the residual x-dependence in contrast to the full
QCD fields,

i∂µ [Pnq(x)]→ e−iP·x (Pµ + i∂µ) ξn(x) with ξn(x) ≡
∑

p̃ 6=0

ξn,p̃(x) , (2.17)

with ∂µ ∼ Qλ2 in SCET. In the following we will imply overall label conservation, so that the exponentials
e−iPx will not be written out explicitly. To obtain the Lagrangian at LO we have to expand Eq. (2.15)
using the scaling of the momenta in Eq. (2.4) and the scaling of the fields in Eqs. (2.11) and (2.12). After
these steps the collinear quark Lagrangian reads [22,31]

Lq,n = ξ̄n(x)

[
in ·D +

(
i /Dn⊥ +m

) 1

in̄ ·Dn

(
i /Dn⊥ −m

)] /̄n
2
ξn(x) , (2.18)

which is still local in the residual coordinate x. In Eq. (2.18) we have used besides the full covariant
derivative in n ·D also the multipole expanded components denoted by Dµ

n⊥ and n̄ ·Dn, which are given
by

in ·D = in · ∂ − gn ·An − gn ·Aus , (2.19)
iDµ

n⊥ = Pµ⊥ − gA
µ
n,⊥ , (2.20)

in̄ ·Dn = n̄ · P − gn̄ ·An . (2.21)

We note that the label n is conserved corresponding to the fact that only a hard external interaction
can alter the direction of the collinear quark. The Feynman rules corresponding to the Lagrangian in
Eq. (2.18) expanded up to O(g2) in the strong coupling are displayed in Fig. 2.3.

The derivation of the leading order (i.e. O(λ4)) Lagrangian density has been performed here just at
tree level. In principle loop corrections could enter in Wilson coefficients and could involve also other
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Figure 2.4: The Feynman rule corresponding to the Wilson line in Eq. (2.28) contributing to the SCET
current operator in Eq. (2.24) for one configuration of m outgoing n-collinear gluons.

operators. However, investigating the symmetries of SCET it turns out that the Lagrangian (2.18) is
exact to any order in αs: On the one hand, SCET can be constructed such that the collinear and ultrasoft
sectors do not mix under gauge transformations, i.e. are separately gauge-invariant [24] as we will discuss
in Sec. 2.4, which puts constraints on the form of the possible operators involving several gluon fields.
On the other hand, although Lorentz invariance is explicitly broken by a fixed jet direction ~n, there is
still a degree of arbitrariness in picking the coordinates nµ and n̄µ. This residual symmetry is called
reparametrization invariance, excludes any additional operators in the Lagrangian at leading order and
fixes all remaining Wilson coefficients [32].

Including also all collinear gluon and ultrasoft interactions the complete Lagrangian reads

LSCET = Lq,n(ξn, A
µ
n, A

µ
us) + Lg,n(Aµn, A

µ
us) + Lus(qus, Aµus) . (2.22)

The ultrasoft Lagrangian Lus has uniformly scaling components, does not contain interactions with the
collinear fields and is thus the same as in QCD with the fields replaced by ultrasoft quarks and gluons. The
purely gluonic collinear Lagrangian Lg,n can be derived in a similar way as the collinear quark Lagrangian
and can be found with the corresponding Feynman rules in Ref. [24]. Note that the Lagrangian (2.22)
can be generalized easily for multiple jets by including copies of Lq,ni and Lg,ni with the corresponding
jet axes ~ni.

2.4 Wilson lines and gauge symmetries

We discuss collinear and ultrasoft Wilson lines which have the appropriate gauge transformations to
construct fundamental building blocks of SCET operators.

2.4.1 Collinear Wilson lines

We have seen in the SCET Lagrangian (2.22) that n is a conserved label, i.e. collinear particles in
different directions cannot interact with each other directly. This is related to the fact that their sum of
the momenta and their invariant mass satisfy (here displayed for an n- and n̄-collinear particle)

pµn + pµn̄ ∼ Q(1, 1, λ) , (pn + pn̄)2 ∼ Q2 , (2.23)

such that these interactions generate large virtualities (i.e. invariant masses) which we have integrated
out in the matching process to SCET and which are encaptured in local Wilson coefficients. Thus only
interactions within one collinear sector and with the low-momentum ultrasoft modes are possible.

However, in hard scattering processes we will encounter interactions, which are not described by
the Lagrangian in Eq. (2.22), in our examples mainly mediated via the electromagnetic force. In the
corresponding external current operators fields with different collinear directions can appear. Let us
investigate a scattering process with an incoming n̄-collinear and an outgoing n-collinear quark field as
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displayed in Fig. 2.4. 7 The corresponding current reads in full QCD and in SCET

q̄(x) Γ q(x)→ ξ̄n(x) Γ ξn̄(x) [1 +O(g)] , (2.24)

where Γ is an arbitrary 4 × 4 spin matrix. The current operator on the RHS can contain an arbitrary
number of n-collinear (n̄-collinear) gluons emitted from the incoming n̄-collinear (outgoing n-collinear
quark) since operators with n̄ ·An (n ·An̄) are not suppressed by the power counting parameter λ in the
corresponding collinear sector. However, this interaction pushes the intermediate quark propagators far
offshell, as shown in Eq. (2.23) resulting in local interactions in the effective theory.

The form of these local interactions is restricted by gauge-invariance. In SCET the fields fluctuate over
different distances, which is a fact that should be preserved under gauge transformations U such that the
EFT is closed and different degrees of freedom do not mix with each other. Therefore the fields change
under gauge transformations according to their corresponding momentum scaling. We define n-collinear,
n̄-collinear and ultrasoft gauge transformations by

∂µUn(x) ∼ Q(λ2, 1, λ) , ∂µUn̄(x) ∼ Q(1, λ2, λ) , ∂µUus(x) ∼ Q(λ2, λ2, λ2) . (2.25)

The n-collinear quark field transforms according to [24] 8

ξn(x)
Un−→ Un(x)ξn(x) , ξn(x)

Un̄−→ ξn(x) , ξn(x)
Uus−→ Uus(x)ξn(x) , (2.26)

and analogously for the n̄-collinear field with the replacement n→ n̄. The n-collinear (n̄-collinear) field
does not change under n̄-collinear (n-collinear) gauge transformations. Therefore, the current operator
on the RHS of Eq. (2.24) is not invariant under collinear gauge transformations and we need gauge-links
in terms of the collinear gluon fields to restore this symmetry. These are provided by Wilson lines, which
are given in position space by

W̃n(x,−∞) = P exp

[
−ig

∫ 0

−∞
ds n̄ ·An (sn̄µ + xµ)

]
(2.27)

for the n-collinear sector and a related definition for the n̄-collinear Wilson line W̃n̄. Here P denotes the
path-ordering operator. Performing a Fourier transformation to label space we obtain for the n-collinear
sector

Wn(x) =

[ ∑

perms

exp
{
− g

n̄ · P n̄ ·An(x)
}]

. (2.28)

Here and in the following the label operator acts only inside the square bracket. This label space Wilson
line agrees with the direct computation of the matching between the QCD to SCET currents. The
corresponding Feynman rule at LO in λ for one configuration of m outgoing n-collinear gluons is shown
in Fig. (2.4). By summing over all permutations and different numbers of emitted gluons one obtains
Eq. (2.28). Note that we have dropped the iε prescription in Eq. (2.28), since it does not play a role for
the collinear sector once the corresponding zero-bin subtractions are taking into account. In this respect
Wn̄(x) is in analogy to Eq. (2.27) with n replaced by n̄ irrespective of the origin of the collinear Wilson
line. 9

The Wilson lines transform under the gauge transformations according to

Wn(x)
Un−→ Un(x)Wn(x) , Wn(x)

Un̄−→Wn(x) , Wn(x)
Uus−→ Uus(x)Wn(x)U†us(x) , (2.29)

With the transformation rules in Eqs. (2.26) and (2.29) one can construct the collinearly gauge-invariant
quark jet fields χn(x), χn̄(x) defined by

χn(x) ≡W †n(x)ξn(x) , χn̄(x) ≡W †n̄(x)ξn̄(x) , (2.30)

7The remaining cases with incoming or/and outgoing antiquarks can be treated analogously and correspond to inversions
of the momenta and the ordering of the emitted gluons.

8The n-collinear transformation changes the label of the quark field, i.e. ξn,p̃(x)→Un,p̃−p̃′ (x) ξn,p̃′ (x), which we have
hidden in our notation.

9This does not hold any more for ultrasoft Wilson lines, see Sec. 2.4.2.
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Figure 2.5: The Feynman rule for the Wilson line Y †n,+ corresponding to Eq. (2.40) contributing to the
SCET current operator in Eq. (2.35) for one configuration of m outgoing soft gluons and an n-collinear
outgoing quark.

as building blocks for SCET operators. The corresponding current

JΓ = χ̄n(x) Γχn̄(x) (2.31)

is then gauge-invariant with respect to both collinear and ultrasoft transformations.
In a similar way to the quark fields, one can also construct collinearly gauge-invariant gluon jet fields

with the help of the Wilson lines, e.g. for the n-collinear sector one has

Bµn⊥(x) =
1

g

[
W †n(x)iDµ

n⊥(x)Wn(x)
]
. (2.32)

The label of a quark or gluon jet field is the sum of the labels of the particles in the jet initiated by the
corresponding parton, such that these fields are the appropriate ones to describe the dynamics of a jet.

2.4.2 Ultrasoft Wilson lines
So far the collinear fields in the SCET Lagrangian (2.22) are still interacting with the ultrasoft fields. It
is, however, possible and convenient (though not mandatory) to decouple also the collinear and ultrasoft
sectors there. This can be achieved by the following field redefinitions [24],

ξn(x) = Yn(x)ξ(0)
n (x) , Aµn(x) = Yn(x)Aµ(0)

n (x)Y †n (x) , (2.33)

where Yn(x) is an ultrasoft Wilson line and the computations with the decoupled fields ξ(0)
n (x) and

A
µ(0)
n (x) yield the same S-matrix elements as with ξn(x) and Aµn(x). Using the defining equation of the

ultrasoft Wilson line, (in · ∂ + gn · Aus)Yn = 0, and its unitarity, YnY †n = 1, the ultrasoft interactions
cancel in the collinear Lagrangian and all sectors are separated (and of course gauge-invariant), i.e.

LSCET = Lq,n(ξn, A
µ
n) + Lg,n(Aµn) + Lus(qus, Aµus) . (2.34)

The interactions between the collinear and ultrasoft fields are now encoded in external current operators,
e.g. for the SCET current in Eq. (2.31) we obtain

JΓ = χ̄nΓχn̄(x)→ χ̄(0)
n Y †n ΓYn̄χ

(0)
n̄ (x) . (2.35)

In the remainder of this thesis we will drop the superscript (0), since it will be clear from the context
when we use the collinear fields after having decoupled the ultrasoft fields.

For external incoming/outgoing particles and antiparticles the precise prescriptions for the ultrasoft
Wilson line Yn(x) differ. For the case of an incoming and outgoing n-collinear quark the Wilson lines
reads in position space

Yn,+(x) ≡ Yn(x,−∞) = Pexp
[
−ig

∫ 0

−∞
ds n ·Aus(snµ + xµ)

]
, (2.36)

Y †n,+(x) ≡ Yn(∞, x) = Pexp
[
−ig

∫ ∞

0

ds n ·Aus(snµ + xµ)

]
, (2.37)
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∼ Q2λ
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Qλ2

mode pµ = (+,−,⊥) p2 fields
hard Q(1, 1, 1) Q2 −

n-collinear Q(λ2, 1, λ) Q2λ2 ξn, Aµn
soft Q(λ, λ, λ) Q2λ2 qs, Aµs

Figure 2.6: Momentum modes and scaling in SCET II in the p+-p− plane e.g. for an exclusive decay with
one collinear hadron in the final state like in B → Dπ with Q ∼ mb. Hard modes with offshellness ∼ Q2

are integrated out and only soft and collinear modes at different scales remain. We have also indicated
the scaling of the corresponding hard collinear SCET I modes, which have to be integrated out to obtain
SCET II.

where the subscript n stands for the direction of the Wilson line and not the encoded fields, and Y †n,+(x)

should be read as (Y †n )+(x) and not as (Yn,+(x))†. For the case of an outgoing and incoming n-collinear
antiparticle we obtain instead

Yn,−(x) ≡ Yn(∞, x) = Pexp
[
ig

∫ ∞

0

ds n ·Aus(snµ + xµ)

]
, (2.38)

Y †n,−(x) ≡ Yn(x,−∞) = Pexp
[
ig

∫ 0

−∞
ds n ·Aus(snµ + xµ)

]
, (2.39)

where P denotes anti-path-ordering. Note that we get (Yn,+(x))† = Y †n,−(x) and (Yn,−(x))† = Y †n,+(x).
Performing a Fourier transform to momentum space the Wilson line for n-collinear outgoing quarks and
gluons with outgoing momenta ki one obtains

Y †n,+ =

∞∑

m=0

∑

perms

gm

m!

n ·Aamus T am · · ·n ·Aa1
usT

a1

(k+
1 + iε) · · · (∑m

i=1 k
+
i + iε)

(2.40)

with the corresponding Feynman rule illustrated in Fig. 2.5 for one configuration of m soft gluons. The
other configurations have similar expressions. A thorough analysis for the appropriate soft Wilson lines
in different processes can be found in Ref. [33]. Finally, we note that the ultrasoft fields do not change
under collinear gauge transformations, in particular we obtain

Yn(x)
Un−→ Yn(x) , Yn(x)

Un̄−→ Yn(x) , Yn(x)
Uus−→ Uus(x)Yn(x) . (2.41)

2.5 SCET II

So far we have discussed SCET with collinear and ultrasoft modes. For some processes like exclusive
decays into hadrons or for some production mechanisms of massive particles this is, however, not the
appropriate theory. In these cases fluctuations of soft and collinear modes can take place at the same
invariant mass scale. This is sketched in Fig. 2.6 for the decay B → Dπ in the B meson rest frame,
where the pion is strongly boosted and large fluctuations around the heavy quark mass scales have been
integrated out, so that the remaining fluctuations have an invariant mass of O(Λ2

QCD). Note that the
distinction of soft and collinear modes is frame dependent, since they are just separated by boosts and
not by invariant masses as in SCET I.
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SCET II can be obtained from SCET I with the expansion parameter λI by integrating out hard
collinear modes with the momentum scaling phc,n ∼ Q(λ2

I , 1, λI) for the n-direction [34]. In terms of
the SCET II scaling parameter λII = λ2

I the corresponding low-energy collinear modes adopt the usual
scaling pn ∼ Q(λ2

II, 1, λII), whereas the ultrasoft modes in SCET I become soft, i.e. they scale like
ps ∼ Q(λII, λII, λII). Note that soft and collinear particles in SCET II cannot interact with each other
directly, since the corresponding invariant mass would scale like (pn + ps)

2 ∼ Q2λII � Q2λ2
II and is

thus far offshell. Therefore, intermediate offshell particles have to be integrated out giving rise to soft
Wilson lines Sn(x). These can be also obtained directly from SCET I using the field redefinitions with
the ultrasoft Wilson lines Yn(x) (see Sec. 2.4.2) and with the replacement Aµus → Aµs . Note that the
collinear fields now do not change under soft gauge transformations and also soft fields are not affected
by collinear gauge transformations.

There are some subtleties in SCET II computations compared to SCET I: First, the collinear fields
in SCET II require now a soft-bin subtraction to avoid double counting with the soft sector, i.e. the
subtraction of contributions with an additional expansion in the soft region [29,35]. Second, the fact that
soft and collinear modes are not separated by invariant masses but by rapidity y (with e2y = p−/p+) leads
to a new type of divergence in the overlap region for individual sectors, which is called rapidity divergence.
This divergence cannot be regularized with dimensional regularization, but needs an additional regulator
that breaks boost invariance. In the sum of all contributions the rapidity divergences cancel, but can
leave behind a large logarithm.

2.6 Factorization and resummation in SCET

The main aim of the separation of the hard, collinear and soft modes in SCET is to factorize differential
cross sections dσ into structures depending only on one single scale, schematically

dσ ∼ H⊗ J ⊗ S [1 +O(λ)] , (2.42)

where H denotes a hard function corresponding to the mismatch between SCET and QCD at the hard
scale, J stands for a jet function in terms of the collinear modes and S corresponds to a soft function
in terms of the ultrasoft (or soft) modes. We will see in the next chapters examples for this type of
factorization. Establishing a factorization theorem in QCD is often tedious and many “proofs” rely on
the use of a specific gauge or are performed order by order in the strong coupling. In contrast, in EFTs
factorization is simplified by the appropriate choice of modes. We just have to write down all possible
operators at the given order in the power counting parameter that are consistent with the symmetries
of the EFT. In SCET, a minimal basis of building blocks with n-collinear fields for operators satisfying
gauge invariance and reparametrization invariance is given by [36]

χn(x) , Bµn⊥(x) , Pµn⊥ , n̄ · P . (2.43)

Note that the label operator n̄ · P is not suppressed by powers of λ and can be attached as an arbitrary
function C(n̄ · P) to any collinear field, which can be interpreted as a Wilson coefficient feeding into H.
In general this gives rise to convolutions of the form [37]

dσ ∼
∫

dω1 · · ·
∫

dωm Cij(ω1, . . . , ωm)Oj(ω1, . . . , ωm) , (2.44)

where the operators Oi encode the low-energy behavior and are decomposed out of the terms

χn,ω(x) = [δ(n̄ · P − ω)χn(x)] , Bµn⊥,ω(x) = [δ(n̄ · P − ω)Bµn⊥(x)] , Pµn⊥ . (2.45)

Eq. (2.44) means that the labels of the jet fields are associated to the momenta entering the perturba-
tive hard function that can be obtained by a partonic matching calculation. In addition to this hard-
collinear factorization one can also achieve soft-collinear factorization by the field redefinitions described
in Sec. 2.4.2 and a decomposition of the operators Oi into separate color singlet structures corresponding
to J and S. Since the set of operators Oi which can built out of the collinear fields in Eq. (2.45) and
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series in ln(dσ) Γ γ β matching
LL αnsL

n+1 1-loop - 1-loop tree
NLL αnsL

n 2-loop 1-loop 2-loop tree
N2LL αnsL

n−1 3-loop 2-loop 3-loop 1-loop
N3LL αnsL

n−2 4-loop 3-loop 4-loop 2-loop

Table 2.1: Table with required ingredients at different orders in the resummation for processes with
Sudakov double logarithms.

the (ultra-)soft fields is frequently strongly limited, in particular at lowest order in the power counting
parameter λ, we get in many cases universal low-energy matrix elements in the EFT (like the PDFs)
appearing in various processes.

After having established a factorization theorem the aim is to evaluate the cross section in a pertur-
bative expansion with the required accuracy at some arbitrary renormalization scale. Since the scales
of the functions corresponding to H, J and S in Eq. (2.42) are, however, widely separated, one obtains
large logarithms between these scales, which render the perturbative expansion unstable. In the case
of collider processes we encounter in addition to single logarithms also Sudakov double logarithms of
the form ln2λ. These arise as the remnants from the cancellation of overlapping IR collinear and soft
divergences in full QCD. Since SCET turns IR divergences into UV divergences, it provides a way to
resum the corresponding logarithms in terms of RG evolution.

Let us have a closer look at the way how resummation works in SCET, which logarithms are resummed
at a particular order and which ingredients we need for this purpose. The perturbative expansion of a
differential cross section in the SCET regime (i.e. with widely separated physical scales) has the typical
form 10

ln(dσ) ∼ αsL
2 + αsL + αs

+ α2
sL

3 + α2
sL

2 + α2
sL + α2

s

+ α3
sL

4 + α3
sL

3 + α3
sL

2 + α3
sL + α3

s

+
...

...
...

...
...

(2.46)

Here L ∼ lnλ corresponds to a large logarithm between two involved scales in the process. Using a
fixed-order counting at a particular order in αs one would take into account the corresponding number of
rows in Eq. (2.46). In SCET, however, one wants to resum the logarithms using the counting αsL ∼ 1.
This effectively corresponds to the summation of all elements inside a column in Eq. (2.46), e.g. at LL
the complete first column has to be taken into account with the elements being counted ∼ 1/αs. The
resummation is performed with RG equations for which the anomalous dimensions of the structures have
to be determined. For SCET operators Oi depending just on a single label ω these read 11

µ
d
dµ
Oi(µ, ω) =

∫
dω′

(
ΓOij
µ

[
µ θ(ω − ω′)
ω − ω′

]

+

+ γOij δ(ω − ω′)
)
Oj(µ, ω′) , (2.47)

where ΓOij and γOij are called the cusp and noncusp anomalous dimensions. Note that if the remaining
label ω in Eq. (2.47) is fixed kinematically we obtain a simple multiplication instead of a convolution and
the plus-distribution is replaced by a single logarithm. The required ingredients for a determination of
cross sections in SCET up to N3LL resummation are displayed in Table 2.1.

At the very end, we have to remark that the “rapidity logarithms” arising in SCET II from the
interface between collinear and soft modes as described in Sec. 2.5 cannot be resummed by the usual RG
evolution with respect to the invariant mass scale. These logarithms appear in ln(dσ) as single logarithms
at any order in the strong coupling and are therefore known to simply exponentiate in differential cross
sections [38,39]. In fact they can be also resummed formally via a RG evolution in rapidity space [40,41]
which provides a way to assign scale ambiguities for perturbative error estimates. We will encounter
rapidity logarithms in Chapter 4 and 5 and discuss their resummation there explicitly.

10Taking the logarithm of the cross section makes the counting more transparent.
11We could have equivalently written this RG equation also for the Wilson coefficients Cij .
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Chapter 3

VFNS for classical DIS

As a first hard scattering process we investigate DIS, i.e. the scattering of a lepton off a hadron, for
a differential cross section in the inclusive OPE region 1 − x ∼ O(1). This process contains only two
relevant scales, the hard momentum transfer scale Q and the hadronization scale ΛQCD and is thus one
of the simplest examples for a multiscale problem in QCD discussed in many textbooks (see e.g. [42]).
Here factorization plays the crucial role of separating perturbative and nonperturbative physics in terms
of hard matching coefficients and PDFs, which will be discussed first for the massless case in Sec. 3.2
in the language of SCET. In spite of its simplicity DIS has a rich and interesting phenomenology which
needs to be understood at high accuracy to extract PDFs for the use at hadron colliders. In this context
massive quark effects have an important impact, which has lead to the development of many approaches
for their treatment. We outline in Sec. 3.3 how massive quarks are incorporated at O(αs) and compute in
Sec. 3.4 the contributions from secondary massive quark radiation at O(α2

sCFTF ) explicitly via dispersion
relations from corresponding massive gluon results at O(αs).

3.1 Kinematics of DIS

We consider the scattering of an electron off a proton P via photon exchange as displayed in Fig. 3.1. We
denote the proton momentum by PµP , the momentum of the incoming (outgoing) electron by kµ (k′µ), the
incoming momentum of the virtual photon by qµ = k′µ− kµ with spacelike invariant mass q2 = −Q2 < 0
and the momentum of the outgoing final state X by PµX . The Lorentz invariant Bjorken scaling variable
x is defined by

x = − q2

2PP · q
=

Q2

2PP · q
(3.1)

with the kinematic constraint 0 ≤ x ≤ 1. We will work in the Breit frame, where qµ does not have an
energy component and the initial state proton is n̄-collinear. This frame will be particularly convenient
in the endpoint region x→ 1 to obtain a transparent power counting. The relevant momenta in the Breit
frame read in terms of lightcone coordinates, see Eq. (2.1), 1

qµ = Q(−1, 1, 0) , PµP =
Q

x
(1, 0, 0) , PµX = PµP + qµ = Q

(
1− x
x

, 1, 0

)
. (3.2)

Note that the invariant mass of the final state is

P 2
X =

Q2(1− x)

x
. (3.3)

In this chapter we consider the classical OPE region, where 1−x ∼ O(1), and thus P 2
X ∼ Q2 resulting in

a two-scale problem. The endpoint region 1−x� 1, where the additional scale Q2(1−x)� Q2 appears,
will be discussed in chapter 4.

1Here we neglect the proton mass mP ∼ ΛQCD which is consistent with the power expansion in ΛQCD/Q in Sec. 3.2.
For a discussion of target mass effects we refer to Ref. [43].
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k k′

q = k − k′

e− e−

PP

ξPP

X
P

Figure 3.1: The kinematics of e−P → e−X via virtual photon exchange.

We will see that at leading order in the hard scattering process in fact only a single parton with
momentum pµ initiates the hard interaction. The corresponding partonic Bjorken variable reads

x̂ ≡ x

ξ
=

Q2

2p · q , (3.4)

where the longitudinal momentum component of the parton is the fraction ξ of the corresponding proton
momentum, i.e. pµ = ξPµP for massless partons.

In the following we will consider the spin-averaged differential cross section

dσ
dQ2dx

=
4πα2

em

Q2x2s2
Lµν(k, k′)Wµν(PP , q) , (3.5)

where s denotes the c.m. energy (PP + k)2. The leptonic tensor Lµν(k, k′) can be described in QED and
does not contain strong interaction effects at leading order in the electromagnetic coupling αem. We will
concentrate on the hadronic tensor containing in particular the nonperturbative physics which is defined
by

Wµν(PP , q) =
1

4π

∑

X

dΠX〈P (PP )|Jµ†(0)|X〉〈X|Jν(0)|P (PP )〉 (2π)4 δ(4)(PP + q − PX)

=
1

2π
Im

[
i

∫
d4z eiqz〈P (PP )|T [Jµ†(z)Jν(0)] |P (PP )〉

]
, (3.6)

with the current Jµ(z) =
∑
qi
e2
qi q̄iγ

µqi(z) summed over all quark flavors qi with corresponding electric
charges eqi and dΠX denoting the integration over the complete phase space. We will just consider
unpolarized DIS, so that a spin average is always implied. Using current conservation, which implies
qµWµν = 0, one can decompose the hadronic tensor for the parity conserving vector current into two
structure functions F1(x,Q2) and F2(x,Q2),

Wµν(PP , q) =

(
−gµν −

qµqν

q2

)
F1(x,Q2) +

1

PP · q

(
PµP +

qµ

2x

)(
P νP +

qν

2x

)
F2(x,Q2)

= −gµν⊥ F1(x,Q) +
1

2

(
nµ

2
+
n̄µ

2

)(
nν

2
+
n̄ν

2

)
FL(x,Q) . (3.7)

with gµν⊥ = gµν − 1/2(nµn̄ν + n̄µnν). Here the longitudinal structure function FL(x,Q) reads in terms of
F1(x,Q) and F2(x,Q)

FL(x,Q) =
1

x
F2(x,Q)− 2F1(x,Q) . (3.8)

In the following we consider the factorization and mass effects for the form factor F1(x,Q) for definiteness
and present a summary of the results for FL(x,Q) in appendix A. In analogy to the hadronic tensor we can
also define the partonic tensor Ŵµν

qi (p, q) with corresponding partonic structure functions F̂1,qi(z,Q) and
F̂L,qi(z,Q), where in Eq. (3.6) the initial state proton is replaced by a parton i = q, q̄, g with momentum
pµ.
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3.2 The massless factorization theorem

The way how the structure functions factorize has been known for a long time in QCD [44, 45]. Within
SCET the demonstration of the factorization theorem turns out to be very simple and provides immedi-
ately an operator based definition for the low energy matrix elements, the PDFs. In the Breit frame the
incoming proton can be described as a n̄-collinear initial state at the invariant mass scale Λ2

QCD, whereas
the final state does not contain relevant degrees of freedom at the low-energy scale and is integrated out.
Thus the corresponding SCET scaling parameter satisfies λ = ΛQCD/Q and the low-energy operators can
be described by the n̄-collinear SCET II-type jet fields χn̄ and Bµn̄⊥ defined in analogy to Eqs. (2.30) and
(2.32). 2 The only possible operators which are consistent with the symmetries, i.e. gauge invariance and
reparametrization invariance, and thus constructed from the building blocks in Eq. (2.45) are at lowest
order in the power counting, i.e. at O(λ2) corresponding to twist two, given by [37,46]

Oq(ω) = χ̄n̄(0)
/n

2
χn̄,ω(0) , (3.9)

Og(ω) = − ω

TF
Tr
[
Bn̄⊥µ(0)Bµn̄⊥,ω(0)

]
, (3.10)

where the trace is over the suppressed color indices. Although the relevant operators contain two jet
fields they effectively just depend only on one single label ω due to momentum conservation, which is
already explicit in Eqs. (3.9) and (3.10). Note that these operators are local with respect to the residual
coordinate (but nonlocal with respect to the label momentum). They are normalized such that the
nonvanishing results for the tree level matrix elements with initial partonic states having the momentum
pµ give δ(1−ω/p+). All ultrasoft fields cancel each other in SCET I after performing the field redefinitions
described in Sec. 2.4.2, so that the operators in SCET II depend only on collinear physics in the Breit
frame.

The quark, antiquark and gluon PDFs are the probability distributions for extracting out of the proton
the corresponding parton jet with the momentum fraction ξ, which is carried to the hard interaction.
They are forward matrix elements of the operators in Eqs. (3.9) and (3.10),

φbare
q/P (ξ) = θ(ξ)〈P (PP )|Obare

q (ξP+
P )|P (PP )〉 , (3.11)

φbare
q̄/P (ξ) = −θ(−ξ)〈P (PP )|Obare

q (−ξP+
P )|P (PP )〉 = −φbare

q/P (−ξ) , (3.12)

φbare
g/P (ξ) = θ(ξ)〈P (PP )|Obare

g (ξP+
P )|P (PP )〉 . (3.13)

These definitions in terms of collinear field operators are equivalent to the full QCD definitions in Ref. [47].
Note that the quark PDFs are associated with a positive label momentum ω > 0, whereas the antiquark
PDFs correspond to a negative label momentum ω < 0 in agreement with Eq. (2.9).

The hard collinear factorization has the form of Eq. (2.44), where only one label momentum enters
the convolution. Reparametrization invariance implies that the convolution involves ratios of the large
label momenta. Following Ref. [37] the factorization theorem for the structure functions reads for nf
massless quarks to all orders in αs up to higher orders in the power counting parameter 3

F1(x,Q) =
∑

i=q

e2
i

2

∑

j,k=q,g

∫
dξ
ξ

∫
dξ′

ξ′
C(nf )
ij

(
x

ξ
,Q, µH

)
U

(nf )
φ,jk

(
ξ

ξ′
, µH , µφ

)
φ

(nf )

k/P (ξ′, µφ) . (3.14)

Here the sum over q includes the massless quark flavors as well as the corresponding antiquarks and
the subscript (nf ) indicates that the MS scheme with nf dynamic flavors is used for all renormalized
quantities, as common when only massless quarks are involved. The factorization theorem allows for
parton mixing, which means that the parton generated out of the PDF is not necessarily the one directly
interacting with the photon.

2Since we will not encounter any soft or ultrasoft modes in this example, we can actually be ignorant about whether we
deal with SCET I or SCET II.

3In fact the next corrections arise from twist-four operators and appear only atO(λ2) = O(Λ2
QCD/Q

2) in the factorization
theorem (3.14).
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In Eq. (3.14) the hard matching coefficients C(nf )
ij (z,Q, µ ∼ Q) contain the mismatch between the full

QCD structure function and the low-energy operator matrix elements in SCET, i.e. the PDFs φ(nf )

k/P (z, µ),
and are known up to three loops [48]. They can be computed with a partonic initial state j at the scale
µH ∼ Q, where the quark flavor i = q is interacting with the photon. The results can be directly deduced
from a pure QCD calculation since the partonic PDF diagrams for massless partons are scaleless in
dimensional regularization and vanish. Since both theories contain the same IR behavior the dependence
on any low-energy scale cancels in the matching coefficient. Note that the matching coefficients for initial
quarks and antiquarks are related to each other via charge conjugation like the PDFs (see Eq. (3.12)) and
enter Eq. (3.14) with the same expression. The functions C(nf )

ij (z,Q, µ) depend implicitly on nf at O(αs)
through the strong coupling constant. The explicit dependence on nf apart from the possible values of
the indices ij starts at O(α2

s). The expansion of the matching coefficient up to this order has the form

C(nf )
ij (z,Q, µ) = δ(1− z) + C(nf ,1)

ij (z,Q, µ) +
[
C(nf ,2)
ij,CF

(z,Q, µ) + C(nf ,2)
ij,CA

(z,Q, µ) + nf C(nf ,2)
ij,TF

(z,Q, µ)
]

+O(α3
s) , (3.15)

where C(nf ,1)
ij , C(nf ,2)

ij,CF
, C(nf ,2)

ij,CA
and C(nf ,2)

ij,TF
denote the contributions at O(αs), O(α2

sC
2
F ), O(α2

sCFCA) and
O(α2

sCFTF ), respectively. We use a similar notation for all other perturbative expressions throughout
this thesis. The additional dependence on a finite quark mass will be indicated in the arguments. We will
frequently also drop the reference to the number of quark flavors when it is not relevant, in particular
when we discuss the case of a massive gluon, where a similar self-explaining notation is used.

The nonvanishing hard matching coefficients at O(αs) read [49] (α(nf )
s ≡ α(nf )

s (µ))

C(nf ,1)
qq (z,Q, µ) =

α
(nf )
s CF

4π
θ(z) θ(1− z)

{
δ(1− z)

[
3LQ − 9− 2π2

3

]
+

[
1

1− z

]

+

[4LQ − 3]

+ 4

[
ln(1− z)

1− z

]

+

− 2(1 + z) [LQ + ln(1− z)]− 2(1 + z2)

1− z ln(z) + 6

}
, (3.16)

C(nf ,1)
qg (z,Q, µ) =

α
(nf )
s TF

4π
θ(z) θ(1− z)

{
2(1− 2z + 2z2) [LQ + ln(1− z)− ln(z)]− 2 + 8z − 8z2

}
,

(3.17)

with LQ ≡ ln(Q2/µ2). For later comparison with our results for secondary massive quarks we also display
the flavor diagonal contribution at O(α2

sCFTF ), where the initial quark is also the one interacting with the
photon and where any other flavor just appears via “secondary” production, obtained in Refs. [50, 51], 4

C(nf ,2)
qq,TF

(z,Q, µ) =

(
α

(nf )
s

)2
CFTF

16π2
θ(z) θ(1− z)

{
δ(1− z)

[
2L2

Q −
(

38

3
+

16π2

9

)
LQ +

457

18
+

38π2

9
+

8

3
ζ3

]

+

[
1

1− z

]

+

[
8

3
L2
Q −

116

9
LQ +

494

27
− 8π2

9

]
+

[
ln(1− z)

1− z

]

+

[
16

3
LQ −

116

9

]

+
8

3

[
ln2(1− z)

1− z

]

+

− 8(1 + z2)

3(1− z) Li2(1− z) +
10(1 + z2)

3(1− z) ln2(z)− 4

3
(1 + z) ln2(1− z)

− 16(1 + z2)

3(1− z) ln(z) ln(1− z) +
4

3(1− z) ln(z)
[
6 + 2z + 11z2 − 4(1 + z)LQ

]

+
8

9
ln(1− z) [8 + 11z − 3(1 + z)LQ]− 4

3
(1 + z)L2

Q +
8

9
(8 + 11z)LQ −

460

27
− 376

27
z

+
4π2

9
(1 + z)

}
. (3.18)

4This correction corresponds to the matching coefficient in the “nonsinglet” part of the structure function at O(α2
sCFTF ).
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Since the PDFs are matrix elements of EFT operators they need to be renormalized. 5 The bare PDFs
in Eqs. (3.11) – (3.13) and the renormalized PDFs entering Eq. (3.14) are related via

φbare
i/P (z) =

∑

j=q,g

∫
dξ
ξ
Z

(nf )
φ,ij

(
z

ξ
, µ

)
φ

(nf )

j/P (ξ, µ) . (3.19)

The corresponding counterterms Z(nf )
φ,qj for the production of a quark out of the PDF read at O(αs)

Z
(nf ,1)
φ,qq (z, µ) =

α
(nf )
s CF

4π
θ(z) θ(1− z) 1

ε

{
3 δ(1− z) + 4

[
1

1− z

]

+

− 2(1 + z)

}
, (3.20)

Z
(nf ,1)
φ,qg (z, µ) =

α
(nf )
s TF

4π
θ(z) θ(1− z) 1

ε

{
2(1− 2z + 2z2)

}
, (3.21)

and for the contribution at O(α2
sCFTF )

Z
(nf ,2)
φ,qq,TF

(z, µ) =

(
α

(nf )
s

)2
CFTF

16π2
θ(z) θ(1− z)

{
δ(1− z)

[
2

ε2
− 1

ε

(
1

3
+

4π2

9

)]
+

[
1

1− z

]

+

[
8

3ε2
− 40

9ε

]

− 4

3ε2
(1 + z)− 1

ε

[
4(1 + z2)

3(1− z) ln(z) +
4

9
− 44

9
z

]}
. (3.22)

The flavor mixing evolution factors U (nf )
φ,ij resum the logarithms between the characteristic renormal-

ization scale of the PDFs µφ ∼ ΛQCD and the hard scale µH ∼ Q and satisfy the DGLAP evolution
equations [52–54]

µ
d
dµ

U
(nf )
φ.ij (z, µ, µ0) =

∑

k=q,g

∫
dξ
ξ
γ

(nf )
φ,ik

(
z

ξ

)
U

(nf )
φ,kj (ξ, µ, µ0) . (3.23)

Note that the evolution factors are already at LL sensitive to the number of active flavors both through
the dependence on αs as well as due to the summation over the quarks q. Thus, modifying the number
of active quark flavors in the evolution affects the form factor already at LL, which happens when a mass
threshold is crossed. The anomalous dimensions γ(nf )

φ,ij (z) can be derived from the counterterms Z(nf )
φ,ij (z)

via

γ
(nf )
φ,ij (z, µ) = −

∑

k=q,g

∫
dξ
ξ

(
Z

(nf )
φ

)−1

ik

(
z

ξ
, µ

)
µ

d
dµ

Z
(nf )
φ,kj (ξ, µ) . (3.24)

The terms at O(αs) and O(α2
sCFTF ) can be easily computed from Eqs. (3.20) - (3.22) and read

γ
(nf ,1)

φ,qq(g)(z, µ) =
α

(nf )
s CF

4π
P

(1)
qq(g)(z) , γ

(nf ,2)
φ,qq,TF

(z, µ) =

(
α

(nf )
s

)2
CFTF

16π2
P

(2)
qq,TF

(z) (3.25)

with the splitting functions given by 6

P (1)
qq (z) = 2 θ(z) θ(1− z)

{
3 δ(1− z) + 4

[
1

1− z

]

+

− 2(1 + z)

}
, (3.26)

P (1)
qg (z) = 4 θ(z) θ(1− z)

{
1− 2z + 2z2

}
, (3.27)

5Strictly speaking we renormalize the corresponding operators. However, since the external state does not play a role
for the UV behavior, we can equivalently talk about the renormalization of the matrix elements. Note that sometimes we
will also associate the counterterms with the corresponding Wilson coefficients instead of the operators, which is technically
equivalent.

6Since we display perturbative expansions in terms of αs/4π, the splitting functions defined here differ from the more
common ones in the literature by a factor of 4.
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and

P
(2)
qq,TF

(z) = 4 θ(z) θ(1− z)
{
δ(1− z)

[
−1

3
− 4π2

9

]
− 40

9

[
1

1− z

]

+

− 4(1 + z2)

3(1− z) ln(z)− 4

9
+

44

9
z

}
.

(3.28)

The splitting functions are nowadays known up to 3-loop [55, 56]. We note that even at one-loop the
DGLAP equations cannot be solved fully analytically, but require a numerical treatment either directly
in x-space or in the frequently used Mellin moment space.

3.3 Mass effects at O(αs)
Let us investigate the situation where a massive quark is included into DIS. In the following we consider a
setup with nl massless flavors and one heavy quark with mass m� ΛQCD, which we want to incorporate
into the factorization theorem of Eq. (3.14). This can be easily generalized to the case of several massive
quark flavors with different masses appearing in practical considerations where both the mass of the
charm and bottom quark may be relevant. We remark that we will not consider the possibility of having
an intrinsic charm contribution with m & ΛQCD generated nonperturbatively out of the proton.

The massive quark can in general not be treated in the same way as the massless quarks, since the
mass represents an additional scale in the setup which has to be taken into account. In the literature
massive quarks are usually treated with different approaches, either based on a fixed flavor number scheme
(FFNS), which treats the massive quark as heavy and does not include it in the RG evolution, or based
on a variable flavor number scheme (VFNS), which accounts for the massive quark as heavy or light
depending on the hierarchies with respect to the other scales implying a RG evolution with a variable
number of flavors. The latter is in the spirit of EFTs and we will describe in the following a VFNS which
coincides with the FFNS for the case of heavy quarks with m & Q.

A VFNS for DIS has to exhibit the following features: (i) it has to sum all large logarithms between
the mass, the hard scale and ΛQCD, and (ii) to recover the correct limiting behavior, i.e. the decoupling
limit for m� Q and the massless limit for m� Q. A VFNS valid for arbitrary quark masses should (iii)
continuously interpolate between these two limits keeping the full mass dependence because in practice
large hierarchies between the hard scale and the mass scale might not be reached. This has been achieved
for the first time in the ACOT scheme [1, 2]. The crucial ingredient is the use of proper renormalization
conditions for the massive quark PDFs depending on the hierarchy with respect to the hard scale Q [57],
whereas for the massless quark corrections always MS-renormalization is employed. This renormalization
procedure is analogous to the one for the strong coupling in the presence of massive quarks [58].

We will describe the massive quark with additional degrees of freedom in SCET, which we call mass
modes and which carry in particular fluctuations around the mass shell. The latter can be described
for small masses with the parameter λm = m/Q. Since at leading order in the power counting only
n̄-collinear modes contribute to the factorization theorem, the only relevant mass shell fluctuations adopt
the scaling Q(1, λ2

m, λm) for small masses m � Q. When the mass threshold is crossed in the evolution
these contributions should be integrated out. 7 For large masses m & Q the mass modes should not
enter the SCET description at all and should be rather taken into account in the matching process to
QCD. The corresponding factorization theorems for the two hierarchies m � Q and m & Q lead to the
correct physical description, but might suggest that we rely on a large hierarchy for the first case, so
that the range of applicability of the mass mode method would be constrained to the cases λm � 1 and
λm & 1 separately, but might miss either power corrections or the resummation of large logarithms in
between. However, in fact the two cases can be merged continuously without any power corrections in
the transition region, since one can instead take the viewpoint of having the mass modes always included
in the setup, but impose different renormalization conditions for the massive quark PDFs, as we will see
in the following. The mass mode picture will be in particular helpful to discuss setups involving several
SCET modes at different invariant mass scales (see chapters 4 and 5).

7Throughout this work we adopt the convention that the effects of the massive quark flavor in the factorization theorems
are integrated out globally at the scale µm ∼ m.
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p

m

ω ω

Figure 3.2: Feynman diagram at O(αs) for the collinear PDF operator OQ(ω) corresponding to Eq. (3.9)
with a massive quark field Q for a collinear gluon in the initial state.

To show the impact of the renormalization scheme we discuss the renormalization of the massive quark
PDF operator, which is defined in analogy to Eq. (3.9), where the corresponding collinear quark fields
have a mass. We are interested in the perturbative generation of a massive quark from a light parton
state which can be found inside the proton at the scale ΛQCD. At O(αs) only initial state gluons can
contribute to the operator OQ(ω) giving rise to the Feynman diagram in Fig. 3.2. Applying the Feynman
rules in Fig. 2.3 and performing a computation in analogy to Ref. [46] we obtain for the spin-averaged
matrix element

φ̂
(bare,1)
Q/g (z,m, µ) ≡ 〈gn(p)|Obare

Q (zp+)|gn(p)〉(1) =
αsTF

4π

P
(1)
qg (z)

2

[
1

ε
− Lm +O(ε)

]
, (3.29)

with Lm = ln(m2/µ2). Here αs is still the unrenormalized coupling. Note that the mass regulates all
IR divergences so that the computation can be carried out without any additional IR regulator. The
subtractions of the region where the collinear modes become soft, i.e. the soft-bin subtractions, do not
have to be taken into account, since soft (and also ultrasoft) modes do not play any role in the OPE
region of DIS. In fact all contributions associated to the soft modes and soft-bins are scaleless and
would vanish anyway. We will employ two different renormalization conditions for the massive quark
corrections to the PDF operator, but always MS-renormalization for the light parton corrections: Using
on-shell (OS) renormalization for the massive quark contributions indicated by the superscript (nl), which
corresponds to a low-momentum subtraction, the counterterm cancels the whole contribution leaving
behind no correction to the matrix element of the renormalized operator OOS

Q , i.e. (α(nl)
s = α

(nl)
s (µ))

Z
(nl,1)
φ,Qg (z,m, µ) =

α
(nl)
s TF
4π

P
(1)
qg (z)

2

[
1

ε
− Lm

]
, φ̂

(nl,1)
Q/g (z,m, µ) = 0 . (3.30)

Due to this fact the corresponding anomalous dimension vanishes, i.e. γ(nl,1)
φ,Qg (z, µ) = 0 at O(αs), so that

the massive quark is a passive flavor with respect to the RG evolution. This statement holds to any
order in perturbation theory. Here we have also used the OS scheme for the massive quark corrections
to αs which leads to the anomalous dimension β = β(nl), i.e. a running with only nl flavors. Therefore,
the OS renormalization scheme will turn out to be appropriate if the quark mass is large or comparable
to the evolution scale µ, where the virtual contributions can be integrated out. In contrast, the MS
renormalization indicated by the superscript (nl + 1) implies that only the divergent piece is absorbed
into the counterterm, i.e. we have (α(nl+1)

s = α
(nl+1)
s (µ))

Z
(nl+1,1)
φ,Qg (z, µ) =

α
(nl+1)
s TF

4π

P
(1)
qg (z)

2

1

ε
, φ̂

(nl+1,1)
Q/g (z,m, µ) = −α

(nl+1)
s TF

4π

P
(1)
qg (z)

2
Lm . (3.31)

The corresponding anomalous dimension is the same as for the case of massless quarks, i.e. γ(nl+1,1)
φ,Qg (z, µ) =

γ
(nl+1,1)
φ,qg (z, µ) (see Eq. (3.25)) at O(αs), which also holds to any order in αs, so that the massive quark

is an active flavor with respect to the RG evolution. Here we have also used the MS scheme for the
massive quark corrections to αs which leads to the anomalous dimension β = β(nl+1), i.e. a running with
nl + 1 flavors. Therefore, the MS renormalization scheme gives a good description if the quark mass is
small or comparable to the evolution scale µ, where its finite virtual contributions should contribute to
the renormalized matrix elements.
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CµH ∼ Q

µφ ∼ ΛQCD

µm ∼ m

I II
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Figure 3.3: Illustration of the ACOT scheme for DIS for the hierarchies m & Q and m . Q. The green
arrows indicate the RG running of the PDFs φi/P and αs to the natural scale of the matching coefficients
Cij with the respective appropriate number of active flavors. When the mass threshold is crossed we
obtain a matching condition and the number of active flavors changes.

A VFNS like the ACOT scheme combines these two renormalization schemes as illustrated in Fig. 3.3.
When m & Q (scenario I) OS renormalization is employed for the massive quark contributions to the
PDFs and αs, which implies that the RG evolution for the PDFs and αs is performed just with the nl
massless flavors. Here the decoupling limit for the hard matching coefficients Cij is reached for m � Q.
On the other hand, for m . Q (scenario II) the renormalization scheme is switched from OS to MS above
the mass scale µm ∼ m. Taking into account that the quark mass does not affect the UV divergences for
the mass-independent MS-scheme this implies that the RGE is performed with nl + 1 flavors above µm
and with nl flavors below µm. Due to the fact that the dependence on IR low-energy scales cancels in
the matching between full QCD and the effective theory description, the Wilson coefficients Cij in MS
reach the massless limit for m→ 0. The difference between OS- and MS-renormalized PDFs constitutes
threshold corrections denoted by Mφ in Fig. 3.3 similar to the decoupling relation of αs, which render
the description of the structure functions continuous. 8

We remark that the ACOT scheme is usually interpreted in the literature in a different way which
is rather based on the strict EFT paradigm that the massive quark is either present in the theory or
integrated out. This viewpoint is perfectly legitimate, but obscures the origin of the continuity between
the two descriptions, where one might expect large power counting breaking terms of O(m2/Q2) in the
transition region µ ∼ m ∼ Q. This is not the case which is intrinsically manifest in the construction of
the VFNS scheme based on different renormalization conditions for the massive quark corrections.

We will now describe the mass factorization setups in scenario I and II in more detail and discuss the
contributions for an NLL analysis requiring fixed-order corrections at O(αs). For the explicit computa-
tions we refer to Ref. [59].

3.3.1 Scenario I: m & Q

When the mass is larger than the momentum transfer energy Q, the factorization theorem is the same
as for nl massless quarks except for the fact that the matching coefficients between QCD and SCET are
now mass dependent, i.e.

F
(nl)
1 (x,Q,m) =

∑

i=q,Q

e2
i

2

∑

j,k=q,g

∫
dξ
ξ

∫
dξ′

ξ′
C(nl)
ij

(
x

ξ
,Q,m, µH

)
U

(nl)
φ.jk

(
ξ

ξ′
, µH , µφ

)
φ

(nl)
k/P (ξ′, µφ) .

(3.32)

Since OS renormalization is employed for the massive quark PDF, the quark is not generated at a low

8We mean continuity up to higher order perturbative corrections which are not enhanced by large logarithms.
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Figure 3.4: Massive quark contributions to the hard matching coefficient C(nl,1)
Qg in full QCD.

energy scale and cannot enter the hard interaction as an initial state. The only contributing diagrams at
O(αs) arise via gluon splitting in the hard coefficient C(nl,1)

Qg and are shown in Fig. 3.4 for the full QCD

contributions in the partonic structure function F̂ (nl,1)
1,Qg . They yield the correction [60] 9

F̂
(nl,1)
1,Qg (z,Q,m) =

α
(nl)
s TF
4π

e2
Q

2
θ(z) θ

(
Q2

Q2 + 4m2
− z
){
−2v

(
1− 4z + 4z2 +

4m2

Q2
z(1− z)

)

+ 2

(
1− 2z + 2z2 +

4m2

Q2
z(1− z)− 8m4

Q4
z2

)
ln
(

1 + v

1− v

)}
, (3.33)

where z ≤ Q2/(Q2 + 4m2) is the kinematic condition for the massive quark pair production and the final
state massive quark velocity in the partonic quark-photon c.m. frame v is given by

v =

√
1− 4m2z

Q2(1− z) . (3.34)

The matching coefficients can be obtained from the partonic structure function and the partonic PDFs
by the relation

F̂
(nl)
1,ij (z,Q,m) =

e2
Q

2

∫
dξ
ξ
C(nl)
ij

(
z

ξ
,Q,m, µ

)
φ̂

(nl)
j/k (ξ,m, µ) . (3.35)

Since the SCET contributions to the partonic PDF φ̂
(nl,1)
Q/g vanish in OS renormalization corresponding

to the fact that there are no relevant massive modes in the effective theory we obtain the matching
correction 10

C(nl,1)
Qg (z,Q,m) =

2

e2
Q

F̂
(nl,1)
1,Qg (z,Q,m)− φ̂(nl,1)

Q/g (z,m, µ) =
2

e2
Q

F̂
(nl,1)
1,Qg (z,Q,m) . (3.36)

Note that C(nl,1)
Qg vanishes for 4m2 > Q2(1 − z)/z, so that the heavy quark automatically decouples for

sufficiently large masses. In the massless limit we obtain

C(nl,1)
Qg (z,Q,m)

m→0−→ α
(nl)
s TF
4π

θ(z) θ (1− z)
{
−P

(1)
qg (z)

2
ln
(

m2z

Q2(1− z)

)
− 2 + 8z − 8z2

}
, (3.37)

which does not correspond to the massless expression in Eq. (3.17). Eq. (3.37) contains unresummed mass
logarithms related to the splitting function P (1)

qg (z), which spoil the perturbative expansion in powers of
αs for large hierarchies between m and Q. This tells us that using the OS scheme, where the massive
quark is treated as a UV degree of freedom concerning RG evolution, is not appropriate for small masses.
Instead one should switch the scheme and incorporate the massive quark as dynamic light degree of
freedom.

9Throughout the thesis we usually suppress the dependence on the renormalization scale µ in the arguments of fixed-
order corrections which are just implicitly depending on the renormalization scale through αs or the mass m indicating that
the corresponding contribution to the anomalous dimension is vanishing at the given order.

10Here we have used the fact that C(nl,0)
gg (z) = φ̂

(nl,0)
g/g

(z) = δ(1− z).
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3.3.2 Scenario II: m . Q

When the mass is smaller than the momentum transfer energy Q, the massive quark contributes to all
structures above the matching scale µm and the factorization theorem reads

F
(nl+1)
1 (x,Q,m) =

∑

i=q,Q

e2
i

2

∑

j,k=q,Q,g

∑

l,m=q,g

∫
dξ
ξ

∫
dξ′

ξ′

∫
dξ′′

ξ′′

∫
dξ′′′

ξ′′′
C(nl+1)
ij

(
x

ξ
,Q,m, µH

)
(3.38)

× U (nl+1)
φ.jk

(
ξ

ξ′
, µH , µm

)
Mφ,kl

(
ξ′

ξ′′
,m, µm

)
U

(nl)
φ,lm

(
ξ′′

ξ′′′
, µm, µφ

)
φ

(nl)
m/P (ξ′′′, µφ) .

Employing MS renormalization above µm implies that the massive flavor can contribute to the running
of the PDFs. At the mass scale we now get threshold correctionsMφ,ij that relate the PDF operators in
the MS renormalization scheme to the ones in the OS scheme,

φ
(nl+1)
i/P (z,m, µm) =

∑

j=q,g

∫
dξ
ξ
Mφ,ij

(
z

ξ
,m, µm

)
φ

(nl)
j/P (ξ, µm) . (3.39)

The matching conditions for the PDFs are thus the analogues of the well known relations between the
strong coupling schemes with nl + 1 and nl running dynamic flavors, α(nl+1)

s and α
(nl)
s respectively.

However, they do not involve simple products, but rather convolutions in x-space. We now also obtain
a “massive quark PDF” due to this matching relation since i = q,Q, g includes the massive quark fla-
vor, which can then appear as an initial state of the hard interaction. Relating the bare PDFs to the
renormalized ones in the two schemes,

φbare
i/P (z,m) =

∑

j=q,g

∫
dξ
ξ
Z

(nl)
φ,ij

(
z

ξ
,m, µ

)
φ

(nl)
j/P (ξ, µ) =

∑

j=q,Q,g

∫
dξ
ξ
Z

(nl+1)
φ,ij

(
z

ξ
, µ

)
φ

(nl+1)
j/P (ξ,m, µ) ,

(3.40)

we can write the threshold factorsMφ,ij as

Mφ,ij (z,m, µm) =
∑

k=q,Q,g

∫
dξ
ξ

(
Z

(nl+1)
φ

)−1

ik

(
z

ξ
, µ

)
Z

(nl)
φ,kj (ξ,m, µ) . (3.41)

The contribution due to initial state gluons reads at O(αs)

M(1)
φ,Qg(z,m, µ) = Z

(nl,1)
φ,Qg (z,m, µ)− Z(nl+1,1)

φ,Qg (z, µ) = φ̂
(nl+1,1)
Q/g (z,m, µ)− φ̂(nl,1)

Q/g (z,m, µ)

= − α
(nl+1)
s TF

4π
θ(z) θ(1− z) P

(1)
qg (z)

2
Lm , (3.42)

where we have used Eqs. (3.30) and (3.31) as well as the tree level results φ̂(nl+1,0)
Q/Q (z) = φ̂

(nl,0)
g/g (z) =

δ(1 − z). Note that we have here the freedom to display αs either in the nl or (nl + 1)-scheme, where
the connection between these two schemes is just the decoupling relation which does not contain any
large logarithm for µ = µm ∼ m. The only other nonvanishing matching contribution at O(αs) is due to
self-energy diagrams for the gluon PDF (with initial state gluons),

M(1)
gg (z,m, µ) =

α
(nl+1)
s TF

3π
δ(1− z)Lm . (3.43)

Note that both M(1)
φ,Qg and M(1)

gg vanish for µm = m, which has been exploited in some analyses to
disregard the massive threshold correction factors. However, this feature does not hold in general and
one gets already at O(α2

s) nonvanishing contributions for µm = m. Furthermore, it is desirable to keep
µm different from m allowing for a reliable assignment of perturbative errors via scale variations.

The hard coefficients C(nl+1)
ij in Eq. (3.38) are obtained by performing a matching in analogy to

Eq. (3.35) in the MS scheme with partonic (onshell) initial states, which include now both massless and
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m

Figure 3.5: Massive quark contributions to the hard matching coefficient C(nl+1,1)
QQ in full QCD. The cuts

indicated by the dashed lines have to be placed at all possible positions. Symmetric diagrams and wave
function renormalization corrections have to be added.

massive quarks. The partonic structure function F̂ (nl,1)
1,Qg gives the same result as in Eq. (3.33) except for

the fact that the strong coupling is now evaluated with nl + 1 flavors, i.e.

F̂
(nl+1,1)
1,Qg (z,Q,m) = F̂

(nl,1)
1,Qg (z,Q,m)

∣∣∣
α

(nl)
s →α(nl+1)

s

. (3.44)

The corresponding PDF contribution φ̂(nl+1,1)
Q/g has been already given in Eq. (3.31). Thus the matching

coefficient C(nl+1,1)
Qg reads

C(nl+1,1)
Qg (z,Q,m, µ) =

2

e2
Q

F̂
(nl+1,1)
1,Qg (z,Q,m)− φ̂(nl+1,1)

Q/g (z,m, µ)

= C(nl+1,1)
Qg (z,Q, µ) +

2

e2
Q

(
F̂

(nl+1,1)
1,Qg (z,Q,m)− F̂

(nl+1,1)
1,Qg (z,Q,m)

∣∣∣
m→0

)
, (3.45)

This expression clearly shows that the SCET matching subtracts the mass singular terms in the Wilson
coefficient and that therefore the massless limit is reached for m→ 0, i.e.

C(nl+1,1)
Qg (z,Q,m, µ)

m→0−→ C(nl+1,1)
Qg (z,Q, µ) . (3.46)

Note that the same correction φ̂
(nl+1,1)
Q/g is swapped between C(nl+1,1)

Qg in Eq. (3.45) and M(1)
φ,Qg in

Eq. (3.42), which guarantees that we get a continuous transition to the factorization of scenario I in
Eq. (3.32) at fixed order, i.e. for µH = µm = µ,

∑

j=q,Q,g

∫
dξ
ξ
C(nl+1)
Qj

(
z

ξ
,Q,m, µ

)
Mφ,jg(ξ,m, µ) = C(nl)

Qg (z,Q,m) , (3.47)

which can be easily checked explicitly at O(αs) using the tree level results M(0)
φ,gg(z) = C(nl+1,0)

QQ (z) =
δ(1 − z) and the expressions in Eqs. (3.33), (3.42) and (3.45). The difference with respect to scenario I
is that the corrections φ̂(nl+1,1)

Q/g are evaluated at different scales, namely µm and µH . The flavor number
dependent evolution together with this feature allow us to resum the large mass logarithms appearing in
Eq. (3.37), but to give still the same result in the fixed-order expansion without having to drop terms of
O(m2/Q2).

By discussing M(1)
φ,Qg and C(nl+1,1)

Qg we have in fact already considered all relevant contributions in
the factorization theorem appearing at O(αs) in the fixed-order expansion. For completeness, let us
also display the one-loop hard matching coefficient with initial state massive quarks, i.e. C(nl+1,1)

QQ , which
contributes at O(α2

s) in the factorization theorem since one matching relation at O(αs) has to be involved
to generate the massive quark PDF. The corresponding full QCD diagrams for the partonic tensor are
shown in Fig. 3.5. These have been calculated in Refs. [59, 61] and yield lengthy expressions. We only
display the massless limit,

F̂
(nl+1,1)
1,QQ (z,Q,m)

m→0−→ α
(nl+1)
s CF

4π

e2
Q

2
θ(z) θ(1− z)

{
P

(1)
qq (z)

2
ln
(
Q2

m2

)
− δ(1− z)

[
5 +

2π2

3

]
− 7

[
1

1− z

]

+

− 4

[
ln(1− z)

1− z

]

+

+ 2(1 + z) ln(1− z)− 2(1 + z2)

1− z ln(z) + 8 + 2z

}
. (3.48)
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m

ω ω ω ω

Figure 3.6: Feynman diagrams at O(αs) for the collinear PDF operator OQ(ω) corresponding to Eq. (3.9)
for a massive quark field Q in the initial state. Symmetric diagrams and wave function renormalization
corrections have to be added.

This expression contains also logarithmic mass singularities, which are related to the splitting function
and suggest a resummation via RG evolution performed in SCET. For the matching we have to take into
account the SCET subtractions given by the partonic PDF diagrams with a massive quark in the initial
state displayed in Fig. 3.6, which yield

φ̂
(nl+1,1)
Q/Q (z,m, µ) =

α
(nl+1)
s CF

4π
θ(z) θ(1− z)

{
−P

(1)
qq (z)

2
Lm + 4 δ(1− z)− 4

[
1

1− z

]

+

− 8

[
ln(1− z)

1− z

]

+

+ 4(1 + z) ln(1− z) + 2 + 2z

}
. (3.49)

In the matching coefficient the IR low-mass dependence cancels and we get in analogy to Eq. (3.45)

C(nl+1,1)
QQ (z,Q,m, µ) =

2

e2
Q

F̂
(nl+1,1)
1,Qg (z,Q,m)− φ̂(nl+1,1)

Q/Q (z,m, µ)

= C(nl+1,1)
QQ (z,Q, µ) +

2

e2
Q

(
F̂

(nl+1,1)
1,QQ (z,Q,m)− F̂

(nl+1,1)
1,QQ (z,Q,m)

∣∣∣
m→0

)
, (3.50)

which yields the massless limit for m→ 0,

C(nl+1,1)
QQ (z,Q,m, µ)

m→0−→ C(nl+1,1)
QQ (z,Q, µ) . (3.51)

Thus, if Q � m the mass dependence in the hard matching coefficient can be dropped and the only
place where the mass enters explicitly is in the threshold corrections. This approach is frequently called
zero-mass VFNS (ZM-VFNS).

Let us at the end of this section comment on different quark mass implementations in the literature
concerning this scenario. First we note that keeping the exact mass dependence the momentum of an
onshell initial state massive parton reads in terms of the partonic Bjorken variable in Eq. (3.4)

pµ = Q

(
1

η
,
m2η

Q2
, 0

)
with η ≡ 2x̂

1 +
√

1 + 4m2x̂2

Q2

. (3.52)

In the discussion above with massive quark fluctuations scaling as ∼ Q(1, λ2
m, λm), the residual momenta

are of O(m2/Q) such that the label momentum is not affected by the presence of the mass, i.e. p̃+ = Q/x̂.
In contrast, in the ACOT approach (see Ref. [2]) translated to the language of SCET the mass dependence
is fully incorporated in the label momentum component p̃+, i.e. p̃+ = Q/η, but p− is still treated as
residual momentum. The corresponding matching coefficients denoted by C̃ij with an initial massive
quark state are then obtained from the partonic relation

F̂
(nl+1)
1,iQ (x̂, Q,m) =

e2
i

2

∑

j=q,Q,g

∫
dξ
ξ
C̃(nl+1)
ij

(
η

ξ
,Q,m, µ

)
φ̂

(nl+1)
j/Q (ξ,m, µ) , (3.53)

which yields e.g. at tree level the relation

C̃(nl+1,0)
QQ (η(x̂)) = δ(1− x̂) . (3.54)
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m m

Figure 3.7: Exemplary diagrams for secondary massive quark production in DIS at O(α2
sCFTF ).

M
M

Figure 3.8: Exemplary diagrams for secondary massive gluon production in DIS at O(αs).

Incorporating this matching coefficient back into the original convolution for the hadronic structure
function with a massless initial state proton gives a tedious form for the involved Wilson coefficients,
which can be considerably simplified by displaying them in terms of the rescaled variable [2, 59,61]

χ =
x

2

(
1 +

√
1 +

4m2

Q2

)
. (3.55)

Note that the ACOT approach resums the same logarithms at O(m
0

Q0 ln(m
2

Q2 )) as Eq. (3.38) and coincides
in the fixed-order expansion with Eq. (3.38), since both approaches exhibit a continuous transition to
the common fixed flavor result in Eq. (3.32). Concerning our discussion outlined at NLL the difference
therefore amounts to the treatment of terms at O(α2

s
m2

Q2 ln(m
2

Q2 )) and is thus parametrically of higher
order, both for m � Q and m ∼ Q. We also mention that Eq. (3.38) and also the ACOT approach
in Ref. [2] yield nonvanishing contributions for the hard matching coefficients beyond the kinematically
allowed threshold for the production of two heavy quarks, z = 1/(1+4m2/Q2), related to the subtraction
terms. This has lead to the implementation of the correct threshold behavior by hand due to a different
rescaling variable [62]. The difference concerns again terms of O(α2

s
m2

Q2 ln(m
2

Q2 )) and is thus formally of
higher order. The ambiguity to deal with these terms has been first pointed out in Ref. [63] and lead to
the emergence of many more different schemes. Extending our systematic SCET approach to subleading
order one can in principle clarify conceptually how to unambiguously assign m2/Q2 suppressed terms
between the Wilson coefficients and mass threshold corrections.

3.4 Secondary mass effects

We now turn to the computation of massive quark effects initiated by massless quarks and where massive
quarks are produced through the radiation of gluons splitting into massive quark-antiquark pairs and do
not interact with the hard photon directly, see Fig. 3.7. We call this type of heavy quark production
mechanism, which starts at O(α2

s), secondary in contrast to the case where massive quarks interact
directly with the hard photon, which is the situation discussed in the previous section at O(αs) and
which we call primary. We will see in chapter 4 that in the endpoint region x → 1 the primary mass
effects are suppressed by O(1−x) and thus the secondary mass effects give the dominant mass corrections
there. It is instructive to investigate these corrections also for 1−x ∼ O(1) to illustrate the computations
with the dispersive method frequently used throughout the remainder of this thesis and for the sake of
comparison to the results in the endpoint region in chapter 4.

We will see that the problem of secondary heavy quark production with mass m is closely related to
the production of gauge bosons with vector coupling and mass M , i.e. “massive gluons”, see Fig. 3.8. The
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Figure 3.9: Figure illustrating the dispersion method for the vacuum polarization correction to the gluon
propagator in the subtracted version with ΠOS(m2, p2 = 0) = 0 suitable for situations where the massive
quark is not contributing to the renormalization group evolution.

connection is given by the invariant mass which a massless offshell gluon has to carry to split up into a
quark-antiquark pair. In the following we will adopt a notation for the massive gluon that agrees with
the one for the QCD results, which facilitates the interpretation of the results at O(αs) and allows to
compare with the results for massless gluons given in Sec. 3.2.

Here we perform the calculations at O(α2
sCFTF ) for the mass mode contributions to the infrared-safe

hard Wilson coefficient and the massive threshold corrections explicitly within the factorization theorems
of the VFNS described in Sec. 3.3 in Eqs. (3.32) and (3.38) and discuss the main features. We remind the
reader that we use Feynman gauge and dimensional regularization as UV regulator. For the computation
of the SCET diagrams we need the integration measure in light-cone coordinates, which reads

ddk

(2π)d
−→ 1

2

dk+

2π

dk−

2π

23−dπ1−d/2

Γ
(
d−2

2

) d|~k⊥| |~k⊥|d−3 (3.56)

for integrals not depending on the angles between the transverse momenta. For convenience we abbreviate
the ratios between the masses M and m and the momentum transfer energy Q via

M̂ ≡ M

Q
, m̂ ≡ m

Q
. (3.57)

3.4.1 Dispersion relations

Instead of performing the two-loop integrations for the secondary massive quarks directly we will first
calculate the results for the radiation of a massive gluon atO(αs) and then relate them to the contributions
at O(α2

sCFTF ) via a dispersive integration. This way is both technically simpler and conceptually more
instructive, since most of the interesting features for secondary massive quarks can be already discussed
at the one-loop level with the massive gluon.

We explain the dispersive method for a secondary massive quark-antiquark pair starting from the
gluonic vacuum polarization Π(m2, p2) due to a massive quark-antiquark bubble,

ΠAB
µν (m2, p2) = − i

(
p2gµν − pµpν

)
Π(m2, p2) δAB

≡
∫

d4x eipx 〈0|T [JAµ (x)JBν (0)]|0〉 , (3.58)

with the vector current JAµ (x) = ig q̄(x)TAγµq(x). The vacuum polarization function Π(m2, p2) can be
rewritten as a dispersion integral over its absorptive part. The unsubtracted (unrenormalized) dispersion
integral reads

Π(m2, p2) = − 1

π

∫
dM2 Im

[
Π(m2,M2)

]

p2 −M2 + iε
, (3.59)

and the subtracted (on-shell and finite) dispersion relation has the form

ΠOS(m2, p2) = Π(m2, p2)−Π(m2, 0)

= −p
2

π

∫
dM2

M2

Im
[
Π(m2,M2)

]

p2 −M2 + iε
. (3.60)
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The absorptive part in d dimensions reads

Im
[
Π(m2, p2)

]
= θ(p2 − 4m2) g2TF µ̃

2ε(p2)(d−4)/2 23−2dπ(3−d)/2

Γ
(
d+1

2

)
(
d− 2 +

4m2

p2

)(
1− 4m2

p2

)(d−3)/2

.

(3.61)

Eqs. (3.59) and (3.60) together with Eq. (3.61) are valid for any d. The subtracted vacuum polarization
function ΠOS(m2, p2) has the important feature that its insertion into the gluon line can be rewritten as
a dispersion integration over a “massive gluon” propagator,

− i gµρ
p2 + iε

ΠOS
ρσ (m2, p2)

− i gσν
p2 + iε

=
1

π

∫
dM2

M2

− i
(
gµν − pµpν

p2

)

p2 −M2 + iε
Im
[
Π(m2,M2)

]
, (3.62)

where pµ denotes the external gluon momentum, and we have dropped the overall color conserving
Kronecker δAB . Note that in Eq. (3.62) the propagator becomes transverse from the insertion of the
vacuum polarization. In our calculations the contributions from the additional pµpν term vanish due to
gauge invariance and can be ignored. The insertion of the full unsubtracted vacuum polarization function
Π(m2, p2) can be recovered by subtracting a term with the massless gluon propagator times the vacuum
polarization function at zero momentum transfer,

− i gµρ
p2 + iε

Πρσ(m2, p2)
− i gσν
p2 + iε

=
1

π

∫
dM2

M2

− i
(
gµν − pµpν

p2

)

p2 −M2 + iε
Im
[
Π(m2,M2)

]

−
− i
(
gµν − pµpν

p2

)

p2 + iε
Π(m2, 0) . (3.63)

Note that the RHS of the equalities in Eqs. (3.62) and (3.63) stays the same in any gauge used for the
propagators on the LHS. The zero momentum vacuum polarization function at O(αs) in d dimensions
reads

Π(m2, 0) =
αsTF

3π

(
µ2eγE

m2

)2− d2
Γ

(
2− d

2

)
. (3.64)

Using the on-shell vacuum polarization insertion via Eq. (3.62) automatically implements the on-shell
subtraction for the renormalization of the strong coupling with respect to the effects of the massive
quark. So using Eq. (3.60) implies that we employ the strong coupling in the nl flavor scheme, i.e. α(nl)

s .
The subtracted dispersion relation has the computational advantage that the integration over the virtual
gluon mass is suppressed by an additional inverse power of M2. This can make the dispersion integration
UV finite and may allow us to carry out the integral directly in d = 4 dimensions. Using the full vacuum
polarization insertion of Eq. (3.63) implies that the strong coupling is still unrenormalized with respect
to the effects of the massive quark flavor.

The relations in Eqs. (3.62) and (3.63) show explicitly that we can obtain the result for the massive
quark-antiquark pair from a dispersion integral over the corresponding result for a gluon with mass M .
We note that the dispersion relation method may not only be used to determine the effects of secondary
virtual massive quarks, but also for real radiation corrections as long as the momenta of the massive
quark and antiquark enter a quantity coherently (i.e. only the sum of their momenta is relevant in the
observable), which is the case for inclusive DIS. Even if this is not the case the dispersion integration
may be useful to determine the dominant corrections or to the deal with singular or divergent parts
of the result, see e.g. Sec. 5.4 for such an application in the calculation of the O(α2

sCFTF ) massive
quark contributions to the soft function for the thrust distribution describing large angle soft radiation.
Furthermore, besides the treatment of massive quarks dispersion relations can be applied for the study
of other secondary colored particles, see e.g. Ref. [26] for a study of massive gluino effects.
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M
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Figure 3.10: Full QCD contributions to the partonic tensor with a massless initial state quark and a
massive gluon at O(αs). The cuts indicated by the dashed lines can be also placed at different positions.
Symmetric diagrams and wave function corrections have to be added.

3.4.2 Massive gluon computation at O(αs)

We compute the hard matching coefficients C(OS,1)
qq (z,Q,M) and C(MS,1)

qq (z,Q,M, µ) for the structure
function F1(x,Q,M) in the scenarios I and II described in Sec. 3.3, respectively, for the radiation of a
massive gluon at O(αs), as well as the threshold correctionM(1)

φ,qq(z,M, µ). The corresponding results for
the longitudinal structure function FL(x,Q,M) can be found again in appendix A. First we will display
the full QCD computation of the partonic tensor, then the corresponding SCET calculation for the PDF
and discuss the complete massive gluon corrections to the factorization theorems (3.32) and (3.38) at the
end of this subsection. In general we will need the full d-dimensional result to carry out the dispersive
integral in Eq. (3.60) to obtain the results for secondary massive quarks O(α2

sCFTF ) in the next step.

Full QCD computation

We start with the calculation of the partonic tensor Ŵµν
qq (p, q) in full QCD, for which the corresponding

Feynman diagrams are shown in Fig. 3.10. After applying the QCD Feynman rules we have performed this
calculation using FeynCalc [64] for the spin traces coming from the spin average and the decomposition
into elementary one-loop scalar integrals, which could be evaluated with the help of Refs. [65, 66]. At
the end the imaginary part was taken, which corresponds to all cuts of the diagrams in Fig. 3.10, and
the appropriate projections of the partonic tensor have been applied to obtain the partonic structure
functions F̂ (1)

1,qq and F̂
(1)
L,qq. Note that no IR divergences occur in the calculation since the gluon mass acts

as an IR regulator. In the following we display the results for each diagram separately already expanded
for ε→ 0. 11

The first diagram in Fig. 3.10 yields both a virtual self-energy correction and a real radiation contri-
bution from the final state quark with the kinematic threshold z = 1/(1 + M̂2),

F̂
(1,a)
1,qq =

αsCF
4π

e2
q

2

{
δ(1− z)

[
−1

ε
+ LM +

1

2

]
+ θ(z) θ(1− z − M̂2z)

(1− z − M̂2z)2

(1− z)3

}
, (3.65)

with LM = ln(M2/µ2). In this section we will not specify the renormalization conditions for the massive
gluon coupling αs. The second diagram gives a virtual vertex correction as well as a real radiation
contribution emitted from the initial state quark with the same threshold as before,

F̂
(1,b)
1,qq =

αsCF
4π

e2
q

2

{
δ(1− z)

[
1

ε
− LM + (1− M̂2)2

(
2Li2(M̂2)− ln2(M̂2) + 2 ln(1− M̂2) ln(M̂2)− 2π2

3

)

−(3− 2M̂2) ln(M̂2)− 4 + 2M̂2
]

+ θ(z) θ(1− z − M̂2z)
2z

1− z

[
ln

(
(1− M̂2z)(1− z)

M̂2z2

)

×
(

1− M̂2(1 + z) + M̂4z
)
− 1

1− z
(

1− z − M̂2 + M̂4z
)]}

. (3.66)

11Since the full QCD result decouples automatically for M � Q the onshell dispersion integral in Eq. (3.62) is convergent
and dimensional regularization will not be needed as a regulator at this stage.
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Figure 3.11: The quark wave function renormalization diagrams for an interaction with a massive gluon
at one loop in full QCD (first diagram) and in SCET (second and third diagram).

The third diagram yields a pure real radiation correction,

F̂
(1,c)
1,qq =

αsCF
4π

e2
q

2
θ(z) θ(1− z − M̂2z)

{
2 ln

(
(1− M̂2z)(1− z)

M̂2z2

)[
1− z + 4M̂2z2 − 6M̂4z3

]
(3.67)

− 2(1− z − M̂2z)

(1− z)2(1− M̂2z)

[
(1− z)(1− 2z)− M̂2z(2− 10z + 7z2) + M̂4z2(2− 9z + 6z2)

]}
.

Finally we also need the quark wave-function renormalization graph displayed in Fig. 3.11, which yields

Z(1)
q =

αsCF
4π

δ(1− z)
{

1

ε
− LM −

1

2

}
. (3.68)

Summing up all contributions and taking into account all symmetric configurations yields

F̂
(1)
1,qq(z,Q,M) = F̂

(1,a)
1,qq + 2F̂

(1,b)
1,qq + F̂

(1,c)
1,qq − Z(1)

q

e2
q

2
δ(1− z)

= e2
q δ(1− z) F̂ (1)

M,QCD(Q,M) + θ(z) θ(1− z − M̂2z)
e2
q

2
F̂

(1)
M,QCD,θ(z,Q,M) . (3.69)

Here F̂ (1)
M,QCD(Q,M) denotes the partonic current form factor in a spacelike QCD process for the inter-

action with a massive gluon and is given by (see also Refs. [67,68] for the timelike analytic continuation)

F̂
(1)
M,QCD(Q,M) =

αsCF
4π

{
(1− M̂2)2

[
2Li2(M̂2)− ln2(M̂2) + 2 ln(1− M̂2) ln(M̂2)− 2π2

3

]

− (3− 2M̂2) ln(M̂2) + 2M̂2 − 7

2

}
. (3.70)

The real radiation correction F̂ (1)
M,QCD,θ(z,Q,M) with the threshold z = 1/(1 + M̂2) reads

F̂
(1)
M,QCD,θ(z,Q,M) =

αsCF
4π

1

1− z

{
2 ln

(
(1− M̂2z)(1− z)

M̂2z2

)[
1 + z2 − 2M̂2z(1− z + 2z2)

+ 2M̂4z2(1− 3z + 3z2)
]

+
1− z − M̂2z

(1− z)2(1− M̂2z)

[
−1 + 3z − 6z2 + 4z3

+ M̂2z(6− 23z + 30z2 − 14z3) + M̂4z2(−7 + 26z − 30z2 + 12z3)
]}

. (3.71)

Since the QCD current is conserved all UV divergences have cancelled in the calculation and the con-
tributions to the structure function do not require renormalization. We remark that in the heavy quark
limit the full QCD corrections decouple, i.e. F̂ (1)

1,qq(z,Q,M)→ 0 for M̂ →∞. In contrast to the one-loop
massive quark correction F̂ (nl,1)

1,Qg (z,Q,m) in Eq. (3.33) there is, however, always a virtual contributions
for arbitrary masses M > Q that does not vanish above a certain threshold. In the small mass limit
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Figure 3.12: Feynman diagrams for the collinear PDF operator Oq(ω) with a massless quark field in the
initial state and a massive gluon at O(αs). Special care has to be taken in the diagram (b) concerning
the label momentum which extracted in the local interaction. Symmetric diagrams and wave function
corrections have to be added.

M̂ → 0, on the other hand, we obtain 12

F̂
(1)
1,qq(z,Q,M)

M̂→0−→ αsCF
4π

e2
q

2
θ(z) θ(1− z)

{
δ(1− z)

[
−3 ln(M̂2)− 9

2
− 4π2

3

]

+

[
1

1− z

]

+

[
−4 ln(M̂2)− 3

]
+ 4

[
ln(1− z)

1− z

]

+

+ 2(1 + z) ln(M̂2)

− 2(1 + z) ln(1− z)− 4(1 + z2)

1− z ln(z) + 2 + 4z

}
, (3.72)

which exhibits again infrared mass-singularities.

SCET computation

We turn to the computation of the partonic PDF corrections in SCET corresponding to the diagrams
displayed in Fig. 3.12, which we will describe in more detail here. We note that we could in principle
also perform the calculation with the full QCD Feynman rules, since for one single boosted collinear
sector SCET is equivalent to QCD. Applying the SCET Feynman rules given in Fig. 2.3 for the matrix
element of the PDF operator Oq(ω) in Eq. (3.9) with massless external quarks the spin average of the
first diagram yields in close analogy to the computation in Ref. [46]

φ̂
(1,a)
q/q = −ig2CF µ̃

2ε(d− 2) p+θ(z)

∫
ddk

(2π)d
k2
⊥

[(p− k)2 + iε]2
1

[k2 −M2 + iε]
δ(p+ − k+ − zp+) . (3.73)

For convenience, we use a frame for the initial onshell particle, where the perpendicular momentum
component vanishes, i.e. pµ = (Q, 0, 0). Employing the scaling kµ ∼ Q(1, λ2

M , λM ) for the n̄-collinear
loop momentum we obtain

φ̂
(1,a)
q/q = ig2CF µ̃

2ε(d− 2) θ(z)

∫
ddk

(2π)d

~k2
⊥

[k+k− − ~k2
⊥ −Qk+ + iε]2

1

[k+k− − ~k2
⊥ −M2 + iε]

× δ
(

1− z − k+

Q

)
. (3.74)

We first carry out the k− integration with the method of residues and then the k⊥-integration. Finally,
after integrating over the remaining δ-distribution in k+ space we obtain

φ̂
(1,a)
q/q =

αsCF
4π

(d− 2)2

2
Γ

(
2− d

2

)(
µ2eγE

M2z

)2− d2
θ(z) θ(1− z) (1− z) . (3.75)

12Note that the virtual current form factor F̂ (1)
M,QCD and the real radiation correction F̂ (1)

M,QCD,θ yield individually also
Sudakov double logarithms in the massless limit, which cancel in the sum.
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In principle we still have to take care of the corresponding soft-bin subtractions. In fact they give
vanishing contributions due to the fact that the soft region is not relevant for the factorization of the
structure functions and they can be decoupled by a field redefinition in the same way as (ultra-)soft fields.
We will check this here by explicit computations. By further expanding Eq. (3.74) with the soft scaling
kµ ∼ Q(λM , λM , λM ) one gets

(
φ̂

(1,a)
q/q

)
0M

= ig2CF µ̃
2ε(d− 2) θ(z)

∫
ddk

(2π)d

~k2
⊥

[Qk+ − iε]2
1

[k2 −M2 + iε]
δ(1− z) , (3.76)

which is parametrically suppressed by M2/Q2 and thus gives no contribution at leading order in λM .
In a similar way we can compute the second diagram. Here one has to be aware of the fact that

a gluon field can be contracted both with the Wilson line in the jet field χn̄(0) or the one in χ̄n̄(0) in
Eq. (3.9) giving rise to purely virtual and real radiation contributions with different extractions of the
label momenta by the label operator. Taking into account both possibilities we get

φ̂
(1,b)
q/q = 2ig2CF µ̃

2ε θ(z)

∫
ddk

(2π)d
Q− k+

k+

1

[k+k− − ~k2
⊥ −Qk+ + iε]

1

[k+k− − ~k2
⊥ −M2 + iε]

×
[
δ (1− z)− δ

(
1− z − k+

Q

)]
. (3.77)

After carrying out the integrations in k− and k⊥ and rescaling the integration variable k+ in terms of
y = k+/Q this yields

φ̂
(1,b)
q/q =

αsCF
2π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2
θ(z) θ(1− z)

∫ 1

0

dy
y

(1− y)
d
2−1

[δ(1− z − y)− δ(1− z)] .
(3.78)

Note that both phase space contributions are by themselves not well-defined in dimensional regularization.
In fact they contain rapidity divergences which, however, cancel among these two collinear contributions
and do not result in large logarithms for 1 − x ∼ O(1). With a proper recombination in terms of
distributions we obtain 13

φ̂
(1,b)
q/q =

αsCF
2π

Γ

(
2− d

2

)(
µ2eγE

M2z

)2− d2
θ(z) θ(1− z)

{
H d

2−1 δ(1− z) +

[
1

1− z

]

+

− 1

}
, (3.79)

where Hn denotes the n-th Harmonic number. We note that the corresponding soft-bin subtractions
cancel due to the fact that the two δ-distributions in Eq. (3.77) become the same after performing an
additional soft expansion.

Finally, we compute the wave function renormalization diagrams Z(1,a)
ξ and Z(1,b)

ξ in Fig. 3.11 for the
external massless collinear quarks. This will give the same result as in full QCD, since the interactions
within a single collinear sector correspond to the ones in full QCD in a boosted frame. The sum of both
self-energy diagrams for arbitrary collinear external momentum pµ can be readily combined and reads

Z
(1,a)
ξ + Z

(1,b)
ξ = −i /n

2
g2CF (d− 2)µ̃2ε 1

Q

∫
ddk

(2π)d
p2 +Qk−

[p2(1 + k+/Q) +Qk− + k2 + iε]

1

[k2 −M2 + iε]
.

(3.80)

The wave-function renormalization contribution Z(1)
ξ can be identified in the limit p2 → 0 giving

Z
(1,a)
ξ + Z

(1,b)
ξ

p2→0−→ i
/n

2

p2

p+
Z

(1)
ξ . (3.81)

13This can be achieved with the help of a rapidity regulator and will be described in chapter 4 explicitly.
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In d dimensions Z(1)
ξ reads

Z
(1)
ξ =

αsCF
4π

Γ

(
2− d

2

)(µ2eγE

M2

)2− d2 2(d− 2)

d
, (3.82)

which reproduces the full theory self energy graph and in particular has the same expansion for ε→ 0 as
given in Eq. (3.68). The soft-bin subtraction for the wave function contribution turns out to be power
suppressed by M/Q. To demonstrate this let us first consider the power counting of the collinear mass
mode self-energy diagrams given in Eq. (3.80). The external massless collinear modes interacting with the
collinear mass modes with the scaling kµ ∼ Q(1, λ2

M , λM ) obey the same scaling giving p2 ∼ (p+k)2 ∼M2.
This yields Z(1,a)

ξ + Z
(1,b)
ξ ∼ M2/Q for the result in Eq. (3.80) and thus gives p2/Q × Z(1)

ξ ∼ M2/Q in

Eq. (3.81). This demonstrates that Z(1)
ξ ∼ O(1) as we have obtained also in the explicit result shown in

Eq. (3.82). For the soft-bin subtraction to Eq. (3.80) we have to apply the counting kµs ∼ (λM , λM , λM )
for the loop momentum, which increases the typical invariant mass of the massless collinear quarks to
p2 ∼ (p + ks)

2 ∼ QM . The mass mode bin integral that emerges therefore has the form of a simple
tadpole graph,

(
Z

(1,a)
ξ + Z

(1,b)
ξ

)
0M

= −i /n
2
g2CF (d− 2)µ̃2ε 1

Q

∫
ddk

(2π)d
1

[k2 −M2 + iε]
. (3.83)

with the counting (Z
(1,a)
ξ + Z

(1,b)
ξ )0M ∼ M2/Q. The same counting also applies to the resulting wave-

function renormalization contribution, i.e. p2/Q × (Z
(1)
ξ )0M ∼ M2/Q, and because p2 ∼ QM we find

that (Z
(1)
ξ )0M ∼ M/Q. This shows that the mass mode bin subtraction for the collinear wave function

renormalization due to the mass modes belongs to a subleading treatment beyond the scope of the
treatment discussed here. 14

Adding all contributions and taking into account the symmetric configuration of diagram (b) in
Fig. 3.12 yields

φ̂
(bare,1)
q/q (z,M, µ) = φ̂

(1,a)
q/q + 2φ̂

(1,b)
q/q − Z

(1)
ξ δ(1− z)

=
αsCF

4π
Γ

(
2− d

2

)(µ2eγE

zM2

)2− d2
θ(z) θ(1− z)

{
δ(1− z)

[
4H d

2−1 −
2(d− 2)

d

]

+ 4

[
1

1− z

]

+

+ (1− z) (d− 2)2

2
− 4

}
. (3.84)

Expanding for ε→ 0 gives

φ̂
(bare,1)
q/q (z,M, µ) =

αsCF
4π

θ(z) θ(1− z)
{[

1

ε
− LM

]
P

(1)
qq (z)

2
+ δ(1− z)

[
9

2
− 2π2

3

]
− 2(1 + z2)

1− z ln(z)

− 4(1− z)
}
, (3.85)

with the one-loop splitting function P (1)
qq (z) defined in Eq. (3.26). The condition of decoupling requires

that the massive quark contributions vanish for M → ∞. Renormalizing the PDF operator in the OS
scheme thus yields the counterterm

Z
(OS,1)
φ,qq (z,M, µ) = φ̂

(bare,1)
q/q , (3.86)

14Since linear M/Q-suppressed terms do not exist in the non-singular collinear terms that can be obtained in the full
theory calculation, the subleading effective field theory treatment contains a mechanism that makes these contributions
vanish identically.
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with a vanishing renormalized contribution, i.e. φ̂(OS,1)
q/q (z,M, µ) = 0. Using MS renormalization we obtain

the same counterterm as in Eq. (3.20) since the UV behavior is independent of any IR scale like the mass,
which yields the renormalized contribution

φ̂
(MS,1)
q/q (z,M, µ) =

αsCF
4π

θ(z) θ(1− z)
{
δ(1− z)

[
−3LM +

9

2
− 2π2

3

]
− 4LM

[
1

1− z

]

+

+ 2(1 + z)LM −
2(1 + z2)

1− z ln(z)− 4(1− z)
}
. (3.87)

Results for hard matching coefficients and threshold correction

Now we have computed all required contributions to display the final results for the hard matching
coefficients C(OS,1)

qq in scenario I (for M & Q) and C(MS,1)
qq in scenario II (for M . Q) and the threshold

correctionM(1)
φ,qq. Due to the fact that the partonic PDF diagrams vanish in the OS scheme we obtain

in scenario I using Eq. (3.35)

C(OS,1)
qq (z,Q,M) =

2

e2
q

F̂
(1)
1,qq(z,Q,M) , (3.88)

which has the correct decoupling limit, see Eq. (3.69). In scenario II all infrared mass-singularities cancel
between the QCD and SCET contributions in the MS scheme, so that we get

C(MS,1)
qq (z,Q,M, µ) =

2

e2
q

F̂
(1)
1,qq(z,Q,M)− φ̂(MS,1)

q/q (z,M, µ)

= C(1)
qq (z,Q, µ) +

2

e2
q

(
F̂

(1)
1,qq(z,Q,M)− F̂

(1)
1,qq(z,Q,M)

∣∣∣
M→0

)
, (3.89)

which has the correct massless limit in Eq. (3.16), i.e.

C(MS,1)
qq (z,Q,M, µ)

M→0−→ C(1)
qq (z,Q, µ) . (3.90)

The evolution for the massive gluon in the MS scheme is performed above the mass mode matching scale
µm with the same anomalous dimension as for the massless one in Eq. (3.25). At this scale the change
of schemes between OS and MS renormalization is performed leading to a threshold correctionM(1)

φ,qq in
analogy to Eq. (3.42),

M(1)
φ,qq(z,M, µ) = φ̂

(MS,1)
q/q (z,M, µ) , (3.91)

with φ̂(MS,1)
q/q (z,M, µ) given in Eq. (3.87). We get a continuous transition between scenario I and II due

to the fact that the contribution φ̂(MS,1)
q/q is only swapped in the factorization theorem between the hard

matching coefficient and the threshold correction for the purpose of resummation of logarithms. Note
that the linearity of the dispersion integration entails that the continuity is carried over also to the
contributions coming from the secondary massive quarks.

3.4.3 Secondary massive quark effects at O(α2
sCFTF )

Starting from the results at O(αs) for a massive gluon we can now compute the secondary massive quark
corrections at O(α2

sCFTF ), which become more lengthy, but exhibit the same basic features. Following
Eq. (3.62) we can obtain the unrenormalized O(α2

sCFTF ) contributions by the relations

F̂
(nl,2)
1,qq,TF

(z,Q,m) =
1

π

∫
dM2

M2
F̂

(1)
1,qq(z,Q,M) Im

[
Π(m2,M2)

]
, (3.92)

φ̂
(nl,bare,2)
q/q,TF

(z,m, µ) =
1

π

∫
dM2

M2
φ̂

(bare,1)
q/q (z,M, µ) Im

[
Π(m2,M2)

]
, (3.93)
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where the superscripts (nl) and (bare) remind us that the subtracted dispersion relation is used, i.e. that
the strong coupling is given in nl flavors, but that the PDF itself is still unrenormalized.

The full QCD result at O(α2
sCFTF ) is both IR- and UV-finite and can be decomposed in analogy to

Eq. (3.69) into a purely virtual correction and a real radiation correction with the kinematic threshold
z = 1/(1 + 4m̂2),

F̂
(nl,2)
1,qq,TF

(z,Q,m) = e2
q F̂

(nl,2)
m,QCD(Q,m) δ(1− z) + θ(z) θ(1− z − 4m̂2z)

e2
q

2
F̂

(nl,2)
m,QCD,θ(z,Q,m) . (3.94)

The partonic QCD current form factor F̂ (nl,2)
m,QCD(Q,m) is in fact just a function of m̂ and reads

F̂
(nl,2)
m,QCD(Q,m) =

(
α

(nl)
s

)2
CFTF

16π2
f

(2)
m,QCD(m̂) (3.95)

where the function f (2)
m,QCD(m̂) is given by

f
(2)
m,QCD(m̂) =

(
− r4 + 2r2 +

5

3

)[
Li3
(
r + 1

r − 1

)
+ Li3

(
r − 1

r + 1

)
− 2ζ3

]
+
(46

9
r3 +

10

3
r
)

×
[
Li2
(
r − 1

r + 1

)
− Li2

(
r + 1

r − 1

)]
+

(
110

9
r2 +

200

27

)
ln
(1− r2

4

)
+

238

9
r2 +

1213

81
, (3.96)

where

r =
√

1− 4m̂2 . (3.97)

This expression has been written in a way that allows easily for an analytical continuation from the
spacelike DIS with q2 = −Q2 to timelike processes e.g. e+e− collisions with q2 = Q2 (see also the result
in Refs. [68–70]). We also redefine the threshold term without the prefactors,

F̂
(nl,2)
m,QCD,θ(z,Q,m) =

(
α

(nl)
s

)2
CFTF

16π2
f

(2)
m,QCD,θ(z, m̂) (3.98)

where the real radiation function f (2)
m,QCD,θ(z, m̂) reads

f
(2)
m,QCD,θ(z, m̂) =

1

1− z

{
8

3

[
1 + z2 − 12m̂4z2(1− 3z + 3z2)

] [
Li2
(
rz − wz
rz + 1

)
+ Li2

(
rz + wz
rz − 1

)
(3.99)

− Li2
(
rz − wz
rz − 1

)
− Li2

(
rz + wz
rz + 1

)
+ ln

(
1 + rz
1− rz

)
ln
(
rz + wz
rz − wz

)]

+
8

9
rz
[
−8− 11z2 + 2m̂2z(13− 18z + 28z2)

]
ln
(
rz + wz
rz − wz

)

+
4

3(1− z)2

[
1− 3z2 + 2z3 + 6m̂4z2(1− 2z)(7− 12z + 6z2)

]
ln
(

1 + wz
1− wz

)

+
2wz

27(1− z)
[
151− 265z + 436z2 − 322z3 − 2m̂2z(491− 1530z + 2030z2 − 996z3)

]}
.

Here we have used the abbreviations

rz =
√

1− 4m̂2z , wz =

√
1− 4m̂2z

1− z . (3.100)

We remark that as for the one-loop case the QCD corrections decouple in the heavy quark limit using
the nl scheme for αs, i.e. F̂

(nl,2)
1,qq,TF

(z,Q,m)→ 0 for m̂→∞. In the small mass limit m̂→ 0, on the other
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hand, we obtain

F̂
(nl,2)
1,qq,TF

(z,Q,m)
m̂→0−→

(
α

(nl)
s

)2
CFTF

16π2

e2
q

2
θ(z) θ(1− z)

{
δ(1− z)

[
2 ln2(m̂2) +

(
38

3
+

16π2

9

)
ln(m̂2)

+
265

9
+

134π2

27

]
+

[
1

1− z

]

+

[
8

3
ln2(m̂2) +

116

9
ln(m̂2) +

718

27
− 8π2

9

]

+

[
ln(1− z)

1− z

]

+

[
−16

3
ln(m̂2)− 116

9

]
+

8

3

[
ln2(1− z)

1− z

]

+

− 8(1 + z2)

3(1− z) Li2(1− z)

+
4(1 + z2)

1− z ln2(z)− 4

3
(1 + z) ln2(1− z)− 16(1 + z2)

3(1− z) ln(z) ln(1− z)

+
4

9(1− z) ln(z)
[
12
(
1 + z2

)
ln(m̂2) + 29− 6z + 44z2

]

+
8

9
ln(1− z)

[
3 (1 + z) ln(m̂2) + 8 + 11z

]
− 4

3
(1 + z) ln2(m̂2)

− 8

9
(8 + 11z) ln(m̂2)− 416

27
− 644

27
z +

4π2

9
(1 + z)

}
. (3.101)

As we have already seen in the one-loop case this expression has infrared mass logarithms.
We turn to the computation of the corresponding PDF corrections. Carrying out the convolution in

Eq. (3.93) in d = 4− 2ε dimensions and expanding in ε we obtain (Lm = ln(m2/µ2))

φ̂
(nl,bare,2)
q/q,TF

(z,m, µ) =

(
α

(nl)
s

)2
CFTF

16π2
θ(z) θ(1− z)

{
δ(1− z)

[
2

ε2
+

1

ε

(
−4Lm −

1

3
− 4π2

9

)
+ 4L2

m

+

(
2

3
+

8π2

9

)
Lm +

73

18
+

29π2

27
− 8

3
ζ3

]
+

[
1

1− z

]

+

[
8

3ε2
− 1

ε

(
16

3
Lm +

40

9

)

+
16

3
L2
m +

80

9
Lm +

224

27
+

4π2

9

]
− 4

3ε2
(1 + z) +

1

ε

[
8

3
(1 + z)Lm −

4

9
+

44

9
z

− 4(1 + z2)

3(1− z) ln(z)

]
+

2(1 + z2)

3(1− z) ln2(z) +
ln(z)

1− z

[
8

3
Lm(1 + z2) +

44

9
− 16

3
z +

44

9
z2

]

− 8

3
L2
m(1 + z) + Lm

(
8

9
− 88

9
z

)
+

44

27
− 268

27
z − 2π2

9
(1 + z)

}
. (3.102)

In scenario I we renormalize the massive quark correction in the OS scheme, where the counterterm
cancels all SCET contributions, i.e. 15

Z
(nl,2)
φ,qq,TF

(z,m, µ) = φ̂
(nl,bare,2)
q/q,TF

(z,m, µ) . (3.103)

Thus the hard matching coefficient in scenario I corresponds again only to the full theory contributions

C(nl,2)
qq,TF

(z,Q,m) =
2

e2
q

F̂
(nl,2)
1,qq,TF

(z,Q,m) , (3.104)

which decouples for m → ∞. In scenario II we want to apply the MS renormalization condition for the
computation of the matching condition, i.e. for the corrections to the PDF operator, but also for the
strong coupling. 16 Since F̂ (nl,2)

1,qq,TF
and φ̂

(nl,bare,2)
q/q,TF

have been computed with the subtracted dispersion
relation they correspond to expressions in the nl flavor scheme for the strong coupling. To switch to the
(nl + 1)-flavor scheme one can subtract, according to Eq. (3.63), the MS-subtracted vacuum polarization

15We remind the reader that the massless quark bubble contributions are still renormalized in the MS scheme as usual.
16Note that the quark mass scheme does not play any role at this order and has to be only specified in the consideration

of secondary mass effects at O(α3
s).
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function at zero-momentum times the corresponding unrenormalized (massless) one-loop partonic struc-
ture function F̂

(1)
1,qq(z,Q, µ,∆) and PDF φ̂

(bare,1)
q/q (z,Q, µ,∆) calculated with an arbitrary IR regulator

∆,

F̂
(nl+1,2)
1,qq,TF

(z,Q,m, µ,∆) = F̂
(nl,2)
1,qq,TF

(z,Q,m)−
(

Π(m2, 0)− αsTF
3π

1

ε

)
F̂

(1)
1,qq(z,Q, µ,∆) , (3.105)

φ̂
(nl+1,bare,2)
q/q,TF

(z,m, µ,∆) = φ̂
(nl,bare,2)
q/q,TF

(z,m, µ)−
(

Π(m2, 0)− αsTF
3π

1

ε

)
φ̂

(bare,1)
q/q (z, µ,∆) . (3.106)

To obtain the matching coefficient we should in principle first renormalize both quantities and then
calculate their difference where the dependence on ∆ cancels. Since the QCD structure function is UV
finite, it is convenient to revert this procedure, i.e. to first determine the difference of the unrenormalized
quantities and cancel the UV divergences in the PDF correction by the corresponding counterterm at the
very end, such that the cancellation of the IR divergences can be made explicit from the beginning. The
difference of the massless gluon one-loop QCD structure function and the PDF correction involved in the
calculation of the matching coefficient yields 17

2

e2
q

F̂
(1)
1,qq(z,Q, µ,∆)− φ̂(bare,1)

q/q (z, µ,∆) = C(1)
qq (z,Q, µ)− Z(1)

φ,qq(z, µ) . (3.107)

Thus the additional term in the hard matching coefficient corresponding to the change from the nl- to
the (nl + 1)-flavor scheme for the strong coupling reads

C(nl→nl+1,2)
qq (z,Q,m, µ) = −

(
Π(m2, 0)− αsTF

3π

1

ε

)(
C(1)
qq (z,Q, µ)− Z(1)

φ,qq(z)
)

=
α2
sCFTF
16π2

θ(z) θ(1− z)
{
δ(1− z)

[
−4

ε
Lm + 2L2

m + 4LQLm −
(

12 +
8π2

9

)
Lm

+
π2

3

]
+

[
1

1− z

]

+

[
−16

3ε
Lm +

8

3
L2
m +

16

3
LQLm − 4Lm +

4π2

9

]

+
16

3
Lm

[
ln(1− z)

1− z

]

+

+
8

3ε
(1 + z)Lm −

4

3
(1 + z)L2

m −
8

3
(1 + z)LmLQ

− 8

3
(1 + z)Lm ln(1− z)− 8(1 + z2)

3(1− z) Lm ln(z) + 8Lm −
2π2

9
(1 + z)

}
. (3.108)

Combining all contributions and including the MS current counterterm contribution Z
(nl+1,2)
φ,qq,TF

given in
Eq. (3.22), the result for the O(α2

sCFTF ) secondary massive quark contributions to the hard matching
coefficient for scenario II, i.e. in the (nl + 1)-flavor scheme for the strong coupling and PDF, reads
(αs = α

(nl+1)
s (µ))

C(nl+1,2)
qq,TF

(z,Q,m, µ) =
2

e2
q

F̂
(nl,2)
1,qq,TF

(z,Q,m)− φ̂(nl,bare,2)
q/q,TF

(z,m, µ) + C(nl→nl+1,2)
qq (z,Q,m, µ) + Z

(nl+1,2)
φ,qq,TF

(z, µ)

= C(nl+1,2)
qq,TF

(z,Q, µ) +
2

e2
q

(
F̂

(nl,2)
1,qq,TF

(z,Q,m)− F̂
(nl,2)
1,qq,TF

(z,Q,m)
∣∣∣
m→0

)
, (3.109)

which yields the massless limit for m→ 0, i.e.

C(nl+1,2)
qq,TF

(z,Q,m, µ)
m→0−→ C(nl+1,2)

qq,TF
(z,Q, µ) (3.110)

with C(nf ,2)
qq,TF

(z,Q, µ) given in Eq. (3.18).

17Using dimensional regularization for both UV and IR divergences the SCET contributions for massless gluons vanish
identically.
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Finally, we also compute the PDF matching coefficient starting from Eq. (3.41). Due to the fact that
the scheme dependence cancels between the matching coefficients and low-energy operators, this relation
can be equivalently written in terms of the renormalized matching coefficients in the OS and MS scheme

Mφ,ij (z,m, µm) =
∑

k=q,Q,g

∫
dξ
ξ

(
C(nl+1)

)−1

ik

(
z

ξ
,Q,m, µ

)
C(nl)
kj (ξ,Q,m, µ) . (3.111)

Since the difference in the factorization theorems for scenario I and II concerns just the matching condi-
tions and the PDF evolution, Eq. (3.111) makes it evident that the condition for the threshold correction
automatically implements a continuous transition between these two scenarios for m ∼ µm ∼ µH ∼ Q.
Due to the fact that the expressions in Eq. (3.111) are written in different schemes for αs one has to
relate them by the decoupling relation for αs 18

α(nl)
s (µm) = α(nl+1)

s (µm)

[
1 +

α
(nl+1)
s (µm)TF

3π
Lm +O(α2

s)

]
. (3.112)

Using the structure of the Wilson coefficients in Eqs. (3.104) and (3.109) we obtain up to O(α2
s)

Mφ,qq(z,m, µ) = δ(1− z) + φ̂
(nl,bare,2)
q/q,TF

(z,m, µ)− C(nl→nl+1,2)
qq (z,Q,m, µ)− Z(nl+1,2)

φ,qq,TF
(z, µ)

+
α

(nl+1)
s TF

3π
Lm C(nl+1,1)

qq (z,Q, µ) +O(α3
s) . (3.113)

Inserting all explicit expressions gives at O(α2
sCFTF )

M(2)
φ,qq(z,m, µm) =

(
α

(nl+1)
s

)2
CFTF

(4π)2
θ(z) θ(1− z)

{
δ(1− z)

[
2L2

m +

(
2

3
+

8π2

9

)
Lm +

73

18
+

20π2

27
− 8

3
ζ3

]

+

[
1

1− z

]

+

[
8

3
L2
m +

80

9
Lm +

224

27

]
− 4

3
L2
m(1 + z) + Lm

[
8

9
− 88

9
z +

8(1 + z2)

3(1− z) ln(z)

]

+
2(1 + z2)

3(1− z) ln2(z) +
ln(z)

1− z

[
44

9
− 16

3
z +

44

9
z2

]
+

44

27
− 268

27
z

}
, (3.114)

where the scheme for αs does not necessarily need to be specified at this order. The result in Eq. (3.114)
is in agreement with Ref. [71] and completes our discussion of the secondary massive quark effects in the
OPE region in DIS.

18Using the ratio of the counterterms in Eq. (3.41) instead of the ratio of the renormalized matching coefficients in
Eq. (3.111) we would need in Eq. (3.112) terms up to O(ε2). These can be easily determined from the result for Π(m2, 0)
in Eq. (3.64) in d dimensions. Otherwise the calculation is straightforward and completely equivalent to the one based on
the renormalized expressions.
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Chapter 4

VFNS for DIS in the endpoint region

After having discussed the VFNS in the OPE region of DIS we now turn to the endpoint region x→ 1.
This region is experimentally difficult to investigate due to the strong suppression of the PDFs, so that
small corrections due to massive quark effects are unlikely to play an important phenomenological role.
However, this region is conceptually interesting since the limit x→ 1 constrains the final state to contain
one single jet with a small invariant mass, which modifies the factorization theorem as will be explained
in Sec. 4.1. The emerging structures are to some extent universal and appear also in other processes
involving jets.

We will see that at leading order in 1− x heavy quark contributions to the structure functions arise
in the endpoint region exclusively from secondary massive quark radiation. Here, we will extend our
discussion about mass modes in SCET initiated in Sec. 3.3 and show in Sec. 4.2 how to embed them
into a factorization setup from the EFT perspective depending on the hierarchy between the involved
scales. Here we elucidate the resulting factorization theorems in this EFT picture, although technically
we just impose different renormalization conditions in analogy to our discussion in chapter 3, which is
the underlying reason why the VFNS is continuous.

We perform the associated computations at O(α2
sCFTF ) relevant for an analysis at N3LL order again

with the help of dispersion relations discussing first the calculation of the matrix elements and threshold
corrections at O(αs) for the radiation of a massive gluon in Sec. 4.3 and performing the dispersive integral
to obtain the results for secondary massive quarks afterwards in Sec. 4.4. One interesting aspect in the
calculations is the appearance of rapidity divergences, which arise due to the separation of fluctuations
with different rapidity but same invariant mass and can be treated completely at the one-loop level
with the massive gluon. In the threshold corrections at the mass scale these generate associated large
logarithms, which were already mentioned in Sec. 2.6 and whose resummation will be also discussed here
in detail.

The mass mode setup is quite generic and can be applied to other, less inclusive processes, where the
computations may be more challenging. We will face such an example in chapter 5.

4.1 The massless factorization theorem

Let us first discuss the massless factorization setup in the endpoint region x → 1 for the most singular
contributions, highlight the main features and give explicit results at O(αs) and O(α2

sCFTF ) for com-
parison and reference concerning the massive gluon and massive quark contributions discussed in later
sections. Due to consistency the massive quark results must yield the massless expressions for vanishing
quark mass.

For x→ 1 the collinear parton entering the hard interaction carries almost the full momentum fraction
of the proton leaving behind only soft beam remnants. We have shown in Eq. (3.3) that in this region the
invariant mass of the final state X becomes much smaller than the momentum transfer scale Q2. As can
be seen in Eq. (3.2) the final state is boosted in n-direction in the Breit frame and therefore corresponds
to a n-collinear jet. This situation is sketched in Fig. 4.1. The emergence of the additional jet invariant
mass scale Q2(1− x) implies that the factorization theorem in Eq. (3.14) is not any more applicable. In
particular this can be seen in the hard matching coefficient C(nf )

ij (z,Q, µ), where in the endpoint region
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Figure 4.1: The scales in DIS close to the endpoint x ≈ 1. The different colors correspond to structures
with different invariant masses.

large Sudakov logarithms ∼ ln2(1− z) arise. 1 These are implicit in the distributions in 1− z and can be
made obvious e.g. for C(nf ,1)

qq in Eq. (3.16) by a proper rescaling in terms of the jet scale s = Q2(1− z),

µ2

Q2
C(nf ,1)
qq (z,Q, µ)

z→1−→ α
(nf )
s CF

4π

{
δ(s̄)

[
−2L2

Q + 6LQ − 9− 2π2

3

]
− 3

[
θ(s̄)

s̄

]

+

+ 4

[
θ(s̄) ln s̄

s̄

]

+

}
(4.1)

with LQ = ln(Q2/µ2) and s̄ = s/µ2. Setting µ2 ∼ Q2(1 − x) which is required to minimize implicit
logarithms in the distributions generates a large logarithm for LQ. Therefore the n-collinear dynamics
has to be separated from the hard function leading to the emergence of an additional matrix element,
which is sometimes called “refactorization” [72]. We will assume that the jet scale is a perturbative scale,
i.e. 1 − x � Λ2

QCD/Q
2. Generically the emission of soft hadronic radiation will push the final state

invariant mass up to scales of QΛQCD � Λ2
QCD (except if directly a hadronic resonance is probed which

is then not a jet), so that this condition does not impose a significant constraint.
The relevant SCET modes for the endpoint region in DIS are displayed in Fig. 4.2. Note that we have

both SCET I-type modes, namely the final state n-collinear modes with invariant mass ∼ Q2(1−x), and
SCET II-type modes corresponding to the initial collinear proton and the beam remnants with invariant
mass ∼ Λ2

QCD which can interact with the final state jet via its residual momentum component scaling
like Q(1 − x). The general scaling of the beam remnants, which has to our knowledge not been stated
explicitly in this form before, allows the derivation of the factorization theorem without any assumption
on the relation between ΛQCD and Q(1− x). In the following we will adopt the scaling 1− x ∼ ΛQCD/Q
for convenience, which is the common way to define the endpoint region in the literature. We emphasize,
however, that the outcome for the factorization theorem and the results presented in this chapter do not
rely on this counting since there is no physical structure associated to the invariant mass scale Q2(1−x)2,
so that we will later not correlate the (rapidity) scale Q(1−x) with ΛQCD any more. This point has been
already stated in several papers, e.g. in Refs. [73–75].2

Due to the fact that the final state is described in SCET and not integrated out as for 1− x ∼ O(1)
the derivation of the factorization theorem has to be modified. As a first step the full QCD hadronic
tensor in Eq. (3.6) is matched onto the corresponding SCET I operators, which involves the matching of
the SCET current in Eq. (2.35) to the QCD current,

Jµ(x) −→
∫

dω
∫

dω′ C(ω, ω′) χ̄n,ω′Y
†
nγµYn̄χn̄,ω(x) . (4.2)

We remark that currents constructed out of the gluon jet fields in Eq. (2.32), which would be among
the allowed gauge-invariant building blocks, vanish due to current conservation [76]. Following a sim-
ilar derivation as for event shapes [8] one can separate the dynamics of the gauge-invariant fields by

1Note that x→ 1 implies that the longitudinal momentum fractions in all structures are close to 1 since x ≤ z ≤ 1.
2We remark that concerning the mode setup we disagree with Ref. [74] which assumes nonperturbative messenger modes

for the beam remnants at the invariant mass scale Λ2
QCD(1− x)� Λ2

QCD.
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Figure 4.2: Relevant momentum modes for DIS in the endpoint region. Here we show the general case,
where λI =

√
1− x and λII = ΛQCD/Q are the uncorrelated expansion parameters in SCET I and II,

respectively. Note that for λ2
I � λII also the soft modes are boosted in n̄-collinear direction. For the

discussion of the factorization theorem we assume λ2
I ∼ λII, where the soft modes adopt the familiar

SCET II scaling pµs ∼ Q(λII, λII, λII).

decomposing the final state into collinear and ultrasoft states, 3

|X〉 = |Xn̄〉 |Xn〉 |Xus〉 . (4.3)

By performing Fierz-transformations for color and spin one can disentangle the hadronic tensor into color
singlet structures inside which the Dirac indices are contracted with each other. The contributions to the
hadronic tensor from one single primary quark flavor read

W q
µν(P, q) = − e2

q

2
g⊥µν (2π)4 δ(4) (P + q − PXn̄ − PXn − PXus)

∫
dω
∫

dω′ |C(ω, ω′)|2

×
∑

Xn̄

〈P (PP )|χ̄n̄|Xn̄〉〈Xn̄|
/n

2
χn̄,ω|P (PP )〉

∑

Xn

1

4πNc
Tr

{
〈0| /̄n

2
χn|Xn〉〈Xn|χ̄n,ω′ |0〉

}

×
∑

Xus

1

Nc
Tr

{
〈0|T

[
Y n̄(0,−∞)Yn(∞, 0)

]
|Xus〉〈Xus|T [Yn(∞, 0)Yn̄(0,−∞)] |0〉

}
. (4.4)

For a primary antiquark we obtain an analogous expression. In Eq. (4.4) all fields are evaluated at xµ = 0
for the residual coordinate, all color and spin indices are summed over and the integration over the phase
space is implicit in the sums over the final states. Due to momentum conservation only one relevant label
appears in each gauge-invariant collinear sector. We have used the appropriate ultrasoft Wilson lines
defined in Eqs. (2.36) – (2.39), which are in fact already properly time-ordered, so that the (anti)-time
ordering operators T (T ) can be dropped in Eq. (4.4). Note that the hadronic tensor becomes transverse
in the limit x → 1, such that FL(x,Q2) = 0 and the Callan-Gross relation F2(x,Q2) = 2xF1(x,Q2) is
satisfied to all orders in αs.

The kinematics in the Breit frame prohibits the appearance of a final n̄-collinear state, as can be seen
from Eq. (3.2), so that |Xn̄〉 = |0〉, PµXn̄ = 0 and the label momentum ω is fixed to Q. This has the
important consequence that the n̄-collinear sector just enters the factorization theorem as a component
which is local both in label space as well as in the residual coordinate, as has been also pointed out in
Ref. [78].

In the following one employs the multipole expansion of the final state momenta according to Eq. (2.4),
i.e. PµXn = P̃µXn + Kµ

Xn
and PµXus = Kµ

Xus
with P̃µXn being the label momentum of the n-collinear state

and Kµ
Xn

, Kµ
Xus

being residual momenta, to make the power counting manifest. We can already see in

3This assumption is based on the fact that the Lagrangian factorizes and therefore the energy eigenstates of the corre-
sponding Hamiltonian do as well. It is in fact not crucial as shown in [77].
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Eq. (4.4) that the collinear and ultrasoft modes communicate with each other via the residual component
in the condition for momentum conservation, which finally yields a convolution between the corresponding
structures. We can relate the momenta in the final state sectors to the corresponding matrix elements
introducing the identity

1 =

∫
d4p̃n δ

(4)(p̃n − P̃Xn)

∫
d4kn d4kus δ

(4)(kn −KXn) δ(4)(kus −KXus)

=

∫
dp̃−n d2p̃⊥n δ(p̃

−
n −Q) δ(2)(p̃⊥n )

∫
d4kn d4kus

∫
d4y

(2π)4
ei(kn−KXn )y

∫
d4z

(2π)4
ei(kus−KXus )z , (4.5)

where we have displayed the label momenta in terms of continuous variables and used the expression
for the final state momentum in the Breit frame in Eq. (3.2) in the second line. This fixes in particular
the label momentum ω′, so that the corresponding Wilson coefficient C(ω, ω′) → C(Q) just depends on
the momentum transfer energy Q and no convolution between the hard and collinear structures appears.
Eq. (4.5) can be used to translate n-collinear and ultrasoft fields in Eq. (4.4) from 0 to a position y and
z, respectively, which allows to write the corresponding matrix elements as imaginary parts of vacuum
correlation functions. Finally, in going from a SCET I to a SCET II description, the jet invariant mass
scale Q2(1 − x) is integrated out, so that the corresponding n-collinear function becomes a matching
coefficient and the ultrasoft Wilson lines become soft Wilson lines with respect to the n̄-collinear modes,
which are then defined with a soft-bin subtraction. 4 All in all we obtain the factorization theorem for
nf massless quarks (to all orders in αs and up to higher orders in 1− x) [73,74,78–81]

F1(x,Q) =
∑

i=q

e2
i

2

∣∣C(nf )(Q,µH)
∣∣2 ∣∣U (nf )

C (Q,µH , µ)
∣∣2
∫

ds
∫

ds′ J (nf ) (s′, µJ)U
(nf )
J (s− s′, µ, µJ)

×
∫

dξ φ̃(nf )

i/P

(
ξ − x− s

Q2
, µφ

)
U

(nf )

φ̃
(1− ξ, µ, µφ) , (4.6)

where the sum over q includes both quark and antiquark flavors. In the following we only display
explicit definitions of the matrix elements in terms of the quark flavors, the antiquarks lead to analogous
expressions with the same perturbative expansions.

In Eq. (4.6) the matching coefficient between SCET I and SCET II, J (nf )(s, µ), is a vacuum correlator
of the hard collinear fields in SCET I and describes the production rate of an inclusive jet with invariant
mass s. Therefore, it is usually called the jet function. It is defined in terms of the n-collinear fields as

J (nf )(Qr+
n , µ) ≡ −1

2πNcQ
Im

[
i

∫
d4z eirn·z〈0|T

{
χ̄n,Q(0)

/̄n

2
χn(z)

}
|0〉
]
, (4.7)

where the invariant mass is r2
n ' Qr+

n . All color and spin indices are traced implicitly. Since the jet
invariant mass s varies according to the Bjorken variable x, the renormalization scale should depend on
the evaluation point in the spectrum, i.e. µJ = µJ(x).

The definition of the PDF in the endpoint region, which we denote by φ̃
(nf )

i/P (1 − z, µ), has to be
modified compared to Eq. (3.11), since now the emitted real radiation cannot be any more collinear, but
has to be soft. Thus the collinear matrix element describing the initial state proton yields only purely
virtual corrections, whereas we have in addition a soft matrix element describing the remaining beam
remnants as can be already seen from Eq. (4.4). Therefore, the PDF is decomposed according to

φ̃
(nf )

i/P (1− z, µ) = Q

∫
d`′ f (nf )

i/P (Q(1− z)− `′, µ)S
(nf )
φ (`′, µ) . (4.8)

Here the local collinear quark PDF function is defined as

f
(nf )

q/P (`, µ) = 〈P (PP )|χ̄n̄(0)
/n

2
χn̄,Q(0)|P (PP )〉 δ(`) . (4.9)

4The n-collinear gauge-singlet structure is the only matching coefficient in this step since all sectors are fully factorized
in Eq. (4.4) and the Lagrangian (2.34), so that except for the n-collinear fields no offshell modes have to be integrated out.
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Figure 4.3: Illustration of the underlying argument, why no flavor mixing occurs in the EFT contributions
to the factorization theorem (4.6): The emission of an (ultra)soft gluon by a collinear quark is enhanced
with respect to other splitting interactions with a final parton with ξ ≈ 1.

The nonlocal soft function reads 5

S
(nf )
φ (`, µ) =

1

4πNc
Im

[
i

∫
dy e

i
2 `y 〈0|S†n̄,−

(
nµ

2
y

)
Sn,−

(
nµ

2
y

)
S†n,+(0)Sn̄,+(0)|0〉

]
, (4.10)

or equivalently,

S
(nf )
φ (`, µ) =

1

Nc

∑

Xs

δ(`− k+
s ) 〈0|S†n̄,−(0)Sn,−(0)|Xs〉〈Xs|S†n,+(0)Sn̄,+(0)|0〉 , (4.11)

where again all color indices are traced implicitly. We will see explicitly that both f
(nf )

i/P (`, µ) and

S
(nf )
φ (`, µ) individually contain rapidity divergences. These cancel in the PDF defined as in Eq. (4.8).

The soft function encodes also information on the interactions with the final state, which has lead to a
reconsideration of the PDF definition [78]. From our viewpoint it seems natural to include these interac-
tions due to the nonperturbative soft beam remnants into the PDF, even if this restricts its universality,
and we will therefore stay with the definition in Eq. (4.8). Finally, we remark that Eq. (4.8) can be
obtained from the full QCD definition in Ref. [47] by appropriate expansions (see e.g. Ref. [59]). The
crucial difference with respect to the conventional definition for the OPE region in Eq. (3.11) is that
the fields are separated by a typical distance y ∼ 1

Q(1−x) instead of y ∼ 1
Q → 0, which results in the

nonlocality in the soft function definition, and that the collinear momentum ω = Qz has been set to Q.
An important feature of the factorization theorem in Eq. (4.6) is that there are no flavor mixing

terms between quarks and gluons in any of the EFT contributions in the hard current matching, the jet
function, the PDF and their evolution factors. One can easily explain this using the possible interactions
in SCET at leading order in the power counting parameter, e.g. for the PDF evolution one can make
the following intuitive argument as illustrated in Fig. 4.3: Flavor mixing requires the splitting of an
initial state collinear quark or gluon into two partons. To stay in the endpoint regime one of the final
partons has to carry the longitudinal momentum fraction ξ > x ≈ 1, i.e. almost the whole momentum,
implying that the remaining parton is (ultra)soft. The only available interaction of this kind at leading
order in SCET is the emission of an (ultra)soft gluon from a collinear quark, whereas the splitting of a
collinear gluon into a collinear and (ultra)soft quark is suppressed by O(1 − x). This means that the
parton extracted out of the PDF at the low scale ∼ ΛQCD is also the one interacting with the photon
and entering the final state jet, and thus cannot be a gluon. However, we note that in the full QCD
current contributions to the hard matching coefficient there are in fact flavor mixing diagrams appearing
at O(α3

s) for the electromagnetic vector current, which are not explicit in our notation and will not be
relevant for the later discussion.

Now we give the perturbative expansions of the functions C(nf )(Q,µ) and J (nf )(s, µ) for massless
quarks and the corresponding counterterms for later comparison and reference in the discussion of the
massive quark corrections. In particular we collect the results at O(αs), which are implicitly depending
on nf through the strong coupling constant, and at O(α2

sCFTF ), where the explicit dependence on nf

5Our prescriptions for the Wilson lines are consistent with Ref. [75], but differ with respect to Ref. [78].
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appears. 6 We will stick to the notation introduced in Eq. (3.15).
The current matching coefficient for massless quarks corresponds to the finite terms of the par-

tonic form factor in full QCD with dimensional regularization as IR regulator and is known up to three
loops [82]. The renormalized contributions at O(αs) and O(α2

sCFTF ) read (α(nf )
s ≡ α(nf )

s (µ))

C(nf ,1)(Q,µ) =
α

(nf )
s CF

4π

{
−L2

Q + 3LQ − 8 +
π2

6

}
, (4.12)

C
(nf ,2)
TF

(Q,µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
− 4

9
L3
Q +

38

9
L2
Q −

(
418

27
+

4π2

9

)
LQ +

4085

162
+

23π2

27
+

4

9
ζ3

}
. (4.13)

The associated contributions to the renormalization factor read 7

Z
(nf ,1)
C (Q,µ) =

α
(nf )
s CF

4π

{
− 2

ε2
+

2

ε
LQ +

3

ε

}
, (4.14)

Z
(nf ,2)
C,nf

(Q,µ) =

(
α

(nf )
s

)2
CFTFnf

16π2

{
− 2

ε3
+

1

ε2

[
4

3
LQ −

8

9

]
+

1

ε

[
− 20

9
LQ +

65

27
+
π2

3

]}
. (4.15)

The jet function J (nf )(s, µ) is known up to two loops [83]. The renormalized expressions at O(αs) and
O(α2

sCFTF ) read

µ2J (nf ,1)(s, µ2) =
α

(nf )
s CF

4π

{
δ(s̄)

(
7− π2

)
− 3

[
θ(s̄)

s̄

]

+

+ 4

[
θ(s̄) ln s̄

s̄

]

+

}
, (4.16)

µ2J
(nf ,2)
TF

(s, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
δ(s̄)

[
− 4057

162
+

68π2

27
+

16

9
ζ3

]
+

[
θ(s̄)

s̄

]

+

[
494

27
− 8π2

9

]

−116

9

[
θ(s̄) ln s̄

s̄

]

+

+
8

3

[
θ(s̄) ln2s̄

s̄

]

+

}
, (4.17)

with s̄ ≡ s/µ2. The corresponding contributions to the renormalization factor read

µ2Z
(nf ,1)
J (s, µ) =

α
(nf )
s CF

4π

{
δ(s̄)

[
4

ε2
+

3

ε

]
− 4

ε

[
θ(s̄)

s̄

]

+

}
, (4.18)

µ2Z
(nf ,2)
J,TF

(s, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
δ(s̄)

[
4

ε3
− 2

9ε2
− 1

ε

(
121

27
+

2π2

9

)]
−
[
θ(s̄)

s̄

]

+

[
8

3ε2
− 40

9ε

]}
. (4.19)

For completeness, we display also the counterterm contributions at O(αs) and O(α2
sCFTF ) for the PDFs

in the endpoint region, which can be read off from Eqs. (3.20) and (3.22) by identifying the singular terms
in the limit z → 1

Z
(nf ,1)

φ̃
(1− z, µ) =

α
(nf )
s CF

4π

{
3

ε
δ(1− z) +

4

ε

[
θ(1− z)

1− z

]

+

}
, (4.20)

Z
(nf ,2)

φ̃,TF
(1− z, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
δ(1− z)

[
2

ε2
− 1

ε

(
1

3
+

4π2

9

)]
+

[
θ(1− z)

1− z

]

+

[
8

3ε2
− 40

9ε

]}
.

(4.21)

Large logarithms between the characteristic scales of each sector, µH , µJ and µφ, and the final,
common renormalization scale of the factorization theorem µ are summed by the evolution factors U (nf )

C ,

6Here we only cite the references with the most up-to-date results and refer to [4] for a comprehensive list of original
literature for the closely related functions in e+e− collisions.

7Here we use Cbare = ZCC as common in literature. The counterterm of the SCET current operator J in Eq. (2.35) is
related to this definition by taking the inverse.
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U
(nf )
J and U (nf )

φ̃
. The evolution factors are already at LL sensitive to the number of active flavors nf due

to the running of αs. The evolution factors satisfy the RG equations

µ
d
dµ

U
(nf )
C (Q,µH , µ) = γ

(nf )
C (Q,µ)U

(nf )
C (Q,µH , µ) , (4.22)

µ
d
dµ

U
(nf )
J (s, µ, µJ) =

∫
ds′ γ(nf )

J (s− s′, µ)U
(nf )
J (s′, µ, µJ) , (4.23)

µ
d
dµ

U
(nf )

φ̃
(1− z, µ, µφ) =

∫
dz′ γ(nf )

φ̃
(z′ − z, µ)U

(nf )

φ̃
(1− z′, µ, µφ) . (4.24)

The anomalous dimensions can be easily derived from the corresponding counterterm contributions,

γC(Q,µ) = −Z−1
C (Q,µ)µ

d
dµ

ZC(Q,µ) , (4.25)

µ2γJ(s, µ) = −
∫

ds′ Z−1
J (s− s′, µ)µ

d
dµ

ZJ(s′, µ) (4.26)

γφ̃(1− z, µ) = −
∫

dz′ Z−1

φ̃
(z′ − z, µ)µ

d
dµ

Zφ̃(1− z′, µ) . (4.27)

For the current we obtain

γ
(nf ,1)
C (Q,µ) =

α
(nf )
s CF

4π

{
Γ(1)LQ − 6

}
, (4.28)

γ
(nf ,2)
C,TF

(Q,µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
Γ

(2)
TF
LQ +

260

27
+

4π2

3

}
, (4.29)

with Γ(1) = 4 and Γ
(2)
TF

= −80/9 being the O(αs) and O(α2
sCFTF ) coefficients of the cusp anomalous

dimension Γ
(nf )
cusp. For the jet function one gets

µ2γ
(nf ,1)
J (s, µ) =

α
(nf )
s CF

4π

{
−2 Γ(1)

[
θ(s̄)

s̄

]

+

+ 6 δ(s̄)

}
, (4.30)

µ2γ
(nf ,2)
J,TF

(s, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
− 2 Γ

(2)
TF

[
θ(s̄)

s̄

]

+

−
(

484

27
+

8π2

9

)
δ(s̄)

}
. (4.31)

Finally, the anomalous dimensions for the PDF read

γ
(nf ,1)

φ̃
(1− z, µ) =

α
(nf )
s CF

4π

{
2 Γ(1)

[
θ(1− z)

1− z

]

+

+ 6 δ(1− z)
}
, (4.32)

γ
(nf ,2)

φ̃,TF
(1− z, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
2 Γ

(2)
TF

[
θ(1− z)

1− z

]

+

−
(

4

3
+

16π2

9

)
δ(1− z)

}
. (4.33)

The anomalous dimensions are of the form of Eq. (2.47) involving a cusp anomalous dimension and thus
resum the Sudakov double logarithms in (1− z) arising in Eq. (4.1). In contrast to the OPE region the
specific structure of the anomalous dimensions in the endpoint region allows us to solve the RG equations
in Eqs. (4.22) – (4.24) fully analytically up to any arbitrary order in αs in terms of the coefficients of
the anomalous dimensions and the β function. Since the RG equations for the jet function and the PDF
involve convolutions it is convenient to solve them in Fourier- or Laplace-space and transform the resulting
expression back into momentum space at the end [74]. We show the generic solutions in appendix C.

In Eq. (4.6) the choice of µ is arbitrary, and the dependence on µ cancels exactly working to any given
order in perturbation theory. In the following we will present our results adopting the choice µ = µφ,
such that the evolution factor satisfies Uφ̃(1 − z, µφ, µφ) = δ(1 − z) and can be dropped from Eq. (4.6).
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m

Figure 4.4: Flavor mixing contribution at O(α2
sCFTF ) with massive quarks in the full QCD current. For

a vector current this correction vanishes.

The fact that any other choice for µ can be implemented leads to a consistency relation between the
renormalization group factors, which reads [74]

Q2
∣∣U (nf )
C (Q,µ0, µ)

∣∣2 U (nf )
J (Q2(1− z), µ, µ0) = U

(nf )

φ̃
(1− z, µ0, µ) . (4.34)

It can be also written as a relation for the µ-anomalous dimensions,

2γ
(nf )
C (Q,µ) δ(1− z) +Q2γ

(nf )
J (Q2(1− z), µ) + γ

(nf )

φ̃
(1− z, µ) = 0 . (4.35)

In the massive quark case this consistency relation remains intact since the UV divergences are mass
independent. However, since the quark mass represents an additional relevant scale, the factorization
theorem exhibits a richer structure due to the increased number of scales and additional consistency
relations emerge between threshold corrections when massive quark modes are integrated out.

4.2 The mass factorization setup

In the following we will construct a VFNS in the endpoint region of DIS with the same features as in
the classical OPE region, see Sec. 3.3. This includes (i) the resummation of all large logarithms, (ii) the
correct limiting behavior of the perturbative structures, i.e. the hard matching coefficient and the jet
function, for very small and large masses and (iii) a continuous description for arbitrary hierarchies of the
dynamic scales with respect to the mass keeping the full mass dependence of the singular terms (i.e. at
the lowest order in the power counting parameter λ).

The fact that the factorization theorem (4.6) does not show any flavor mixing terms for the EFT
contributions is maintained in the presence of massive quarks. Due to the same argument as given
above the massive quark contributions in SCET to the hard and jet functions, their evolution as well as
additional threshold corrections at the mass scale related to different renormalization conditions of the
matrix elements in analogy to Eq. (3.41) are also flavor diagonal. Since we assume m � ΛQCD, so that
the heavy quarks are not produced nonperturbatively out of the proton, this has the consequence that
massive quarks enter the EFT components of the factorization theorem only via secondary corrections,
i.e. via contributions which are initiated by massless quarks and where massive quarks are produced
through the radiation of virtual gluons that split into a massive quark-antiquark pair, see Fig. 3.7. We
mention that in the full QCD current there are also flavor mixing corrections with massive quarks, see
Fig. 4.4 for an example, which in general start contributing also at O(α2

s) like the secondary corrections.
Since these types of corrections do not have a corresponding EFT counterpart, they can be easily included
in the hard matching coefficient, and we will not consider them specifically in our discussion. For the case
of the electromagnetic vector current the diagram in Fig. 4.4 in fact vanishes due to charge conjugation,
so that these effects also do not show up at O(α2

sCFTF ) relevant for N3LL resummation, which is the
order where we give explicit results.

It is convenient to discuss the hierarchies appearing in the treatment of secondary mass effects by
means of the mass modes briefly introduced in Sec. 3.3. We will outline the corresponding setup that is
based on three different EFT scenarios associated to the hierarchies between the hard and jet scales and
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Figure 4.5: The intrinsic (SCET II-type) mass mode fluctuations around the mass-shell in the p+p−-
plane. Modes with the same invariant mass are located on the same mass hyperbola which is always the
case for the collinear and soft mass-shell fluctuations. Adapted from Ref. [26].

the quark mass, which leads in an intuitive way to the correct form of the resulting factorization theorems.
Here we will not carry out a formal “derivation”, since this does not lead to any new insights. Before
performing the explicit computations in Secs. 4.3 and 4.4 we already present the final results for all mass
dependent perturbative corrections to explain the main features without getting lost in details concerning
calculational steps. Since the strict EFT setup assumes large hierarchies, it does not, however, explain
the continuity between two neighboring scenarios in a satisfactory way. In Sec. 4.2.4 we will therefore
adopt a similar view as in chapter 3 based only on SCET with the massless power counting parameter
λ, but with renormalization schemes for the different components of the factorization theorem that vary
according to the relation between the hard and jet scales and the mass.

For the discussion of the mass mode method we consider again a generic setup with one massive quark
flavor with mass m in addition to nl massless flavors, and our notation is set up accordingly. In addition
to the power counting parameters λI ∼

√
1− x and λII ∼ ΛQCD/Q in the massless setup, which we decide

to correlate via λ ≡ λI =
√
λII for simplicity, we define the ratio

λm =
m

Q
. (4.36)

From the field theoretic point of view we consider n-, n̄-collinear and soft mass modes in addition to the
corresponding massless modes with the scaling pµn ∼ Q(λ2, 1, λ), pµn̄ ∼ Q(1, λ4, λ2) and pµs ∼ Q(λ2, λ2, λ2).
If kinematically allowed, the mass modes can have the momentum scaling and virtualities of their massless
counterparts, but in addition one has to account for the fluctuations around their mass-shell which have
the scaling pµn ∼ Q(λ2

m, 1, λm), pµn̄ ∼ Q(1, λ2
m, λm) for the n-, n̄-collinear mass modes, respectively, and

pµs ∼ Q(λm, λm, λm) for the soft mass modes. Note that the invariant mass fluctuations around the mass
shell of the collinear and the soft mass modes are of the same order and thus just separated by boosts
with different rapidity y (with e2y = p−/p+), see Fig. 4.5. Since the typical invariant masses of the mass
modes are bounded from below by p2

n ∼ p2
n̄ ∼ p2

s ∼ Q2λ2
m ∼ m2, dynamical real radiation effects can only

occur if the typical collinear scale is bigger than m2. Thus, n̄-collinear and soft mass mode fluctuations
will only contribute via virtual effects. Since the relation between the mass scale and the hard and jet
scales can vary substantially, the treatment of the mass modes has to be adapted from case to case. There
are also different scenario-dependent threshold corrections when the RG evolution crosses the mass scale
and the massive quark flavor is integrated out.

The different scenarios can be ordered according to where the mass scale is situated with respect to
the hard and jet scales, see Fig. 4.6 for graphical illustrations. Each scaling situation corresponds in
principle to a different EFT setup. In the following we briefly summarize the different EFT scenarios: 8

8For the scenarios II and III we require besides the condition λ� 1 in principle also large hierarchies between λm and
the massless parameters 1, λ and λ2. In fact the latter conditions can be abandoned as will become obvious in Sec. 4.2.4.
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Figure 4.6: Localization of massless (ML) and massive (M) modes together with their mass-shell fluctua-
tions (MM) in the p+-p−-plane according to their generic scaling for different hierarchies between λ and
λm.

I) m > Q > Qλ > Qλ2 (λm > 1 > λ > λ2): The mass m is larger than the hard scale Q and the mass
modes are not described by SCET, but integrated out when SCET is matched to full QCD. Thus the
factorization theorem is the one for massless fermions up to the hard current matching coefficient
which acquires an additional contribution due to the mass modes. The mass effects decouple for
λm →∞.

II) Q > m > Qλ > Qλ2 (1 > λm > λ > λ2): In this scenario the mass m is between the hard scale
and the jet scale. The mass mode effects are virtual because the jet scale Qλ, the typical invariant
mass for real collinear particle radiation, is below m. However, the mass modes contribute to the
matching condition at the scale Q and the evolution of the current for scales above m. The mass-
shell fluctuations are integrated out at the scale m. The factorization theorem is the one for the
massless quarks concerning the jet function but receives mass mode corrections in the matching
and evolution of the production current. The matching condition of the production current at the
hard scale Q reproduces the result for massless quarks for λm → 0, since all infrared mass-shell
contributions have been removed from it in the matching procedure.

III) Q > Qλ > m > Qλ2 (1 > λ > λm > λ2): The mass is below the jet scale. Therefore, massless
and massive collinear modes both can fluctuate in the n-collinear sector yielding real and virtual
contributions to the jet function, whereas the n̄-collinear and soft mass modes only arise through
their virtual effects. The mass mode contributions to the current matching and evolution are
exactly the same as in scenario II. Analogously to the previous scenario the mass-shell fluctuations
are integrated out at the scale µm ∼ m leading to an additional massive threshold correction for
the jet function.

Concerning Feynman rules, the collinear massive quark interactions are determined from the collinear
Lagrangian in Eq. (2.18). In practice, since the collinear sector is essentially just a boosted version of
usual QCD, the effects of the secondary massive quarks in the collinear sector can be calculated using
regular QCD Feynman rules. We emphasize, however, that the consistency for calculations in the collinear
sector with massive modes involves additional (non-vanishing) soft mass mode bin subtractions [35] in the
collinear loop integrations to avoid double-counting with the soft sector and to maintain collinear gauge
invariance. These soft-bin subtractions are essential to obtain meaningful and gauge-invariant results.
Concerning the interactions within the soft sector, the Feynman rules are anyway given by the usual
QCD interactions and Feynman rules. This is sufficient for the treatment of the secondary soft massive
quarks in this work.

Note that some of the notation, the formulation of the factorization theorems and the organization of
the RG evolution we use for the presentation of the results in this section are related to the choice that
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Figure 4.7: The different scenarios depending on the hierarchy between the mass scale µm and the hard,
jet and PDF scale. MM indicates mass-shell scaling, ML the massless one. With M we denote modes
that have a mass m but scale as their massless counterparts. The renormalization group evolution is also
shown in the top-down evolution from the hard scale µH down to µ = µφ. When the mass scale is crossed
the mass-shell fluctuations are integrated out (dashed box). This leads to a matching condition and to a
change in the evolution factor.

the final renormalization scale µ is set equal to the PDF scale. Thus only the current and jet function RG
evolution factors UC and UJ , respectively, appear. The RG pattern of this “top-down approach” together
with a graphical display of how the collinear and soft massive modes give contributions are illustrated
in Fig. 4.7. Clearly, any other choice for µ is possible and can significantly affect the form as well as
the interpretation of the various components of the factorization theorems in the different scenarios. We
postpone a more general discussion of different choices of µ to Secs. 4.3.3 and 4.4.3, where we focus
more on the RG properties of the hard coefficient, the jet function and the PDF rather than on the full
factorization theorem. This allows to streamline the discussion significantly and to generalize our results
to other processes.

4.2.1 Scenario I: m > Q > Qλ > Qλ2

The massive quark is integrated out at the hard scale. The factorization theorem is the one for nl massless
fermions in analogy to Eq. (4.6) up to the hard current matching coefficient which acquires an additional
contribution due to the heavy quark,

F1(x,Q,m) =
∑

i=q

e2
i

2

∣∣C(nl)(Q,m, µH)
∣∣2 ∣∣U (nl)

C (Q,µH , µφ)
∣∣2
∫

ds
∫

ds′ J (nl)(s′, µJ)

× U (nl)
J (s− s′, µφ, µJ) φ̃

(nl)
i/P

(
1− x− s

Q2
, µφ

)
, (4.37)

where

C(nl)(Q,m, µ) = C(nl)(Q,µ) + F̂
(nl,2)
m,QCD(Q,m) . (4.38)

The term F̂
(nl,2)
m,QCD represents the massive quark bubble contribution to the QCD current form factor,

see the first diagram in Fig. 3.7, which has been already computed in Sec. 3.4 with the result given in
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Eq. (3.95). The imposed OS renormalization condition for the strong coupling concerning the massive
quark bubble contributions implies the massive quark is not an active dynamic flavor and does not
contribute to the RG evolution of the strong coupling. Together with the fact that the form factor is
evaluated with external on-shell states this guarantees that scenario I shows manifest decoupling in the
infinite mass limit, i.e.

C(nl)(Q,m, µ)
m→∞−→ C(nl)(Q,µ) . (4.39)

due to the the decoupling property of the zero-momentum subtracted result, F̂ (nl,2)
m,QCD(Q,m) → 0 for

m̂ ≡ m/Q→∞. For light fermions, i.e. m̂→ 0, we find (α(nl)
s = α

(nl)
s (µ))

F
(nl,2)
m,QCD(Q,m)

m̂→0−→
(
α

(nl)
s

)2
CFTF

16π2

{
4

9
ln3(m̂2) +

38

9
ln2(m̂2) +

(
530

27
+

4π2

9

)
ln(m̂2) +

3355

81

+
38π2

27
− 16

3
ζ3

}
, (4.40)

with subleading corrections going as O(m̂2). Eq. (4.40) does not bear any similarity to the massless
result of Eq. (4.13) and further exhibits large unresummed mass logarithms. Thus the QCD result of
Eq. (3.95) is not suitable for taking the massless limit. This is because Eq. (3.95) still contains the
mass-shell contributions which must be subtracted prior to taking the limit m � Q. This procedure is
described in scenario II.

4.2.2 Scenario II: Q > m > Qλ > Qλ2

The mass m is below the hard scale, but still above the jet scale. It is the aim (i) to resum the mass
logarithms in Eq. (4.40) and (ii) to determine the hard current matching coefficient such that it contains
no mass-singularities and in particular approaches the massless limit for m → 0. The collinear and
soft mass modes are included into the SCET setup, so that they render the hard coefficient IR safe by
subtracting the mass-shell contributions in the matching procedure. They contribute as dynamic degrees
of freedom to the RG evolution above m. In the RG evolution of the current from the hard to the jet
scale the mass-shell fluctuations are finally integrated out at the scale m. The mass mode effects are
purely virtual because the jet scale Qλ, the typical invariant mass for real collinear particle radiation is
below m. Therefore, the jet function as well as its RG evolution factor towards scales smaller than m
coincides with the one for nl massless quarks. The factorization theorem reads

F1(x,Q,m) =
∑

i=q

e2
i

2

∣∣C(nl+1)(Q,m, µH)
∣∣2 ∣∣U (nl+1)

C (Q,µH , µm)
∣∣2∣∣MC(Q,m, µm)

∣∣2 ∣∣U (nl)
C (Q,µm, µφ)

∣∣2

×
∫

ds
∫

ds′ J (nl)(s′, µJ)U
(nl)
J (s− s′, µφ, µJ) φ̃

(nl)
i/P

(
1− x− s

Q2
, µφ

)
. (4.41)

Compared to C(nl)(Q,m, µH) in Eq. (4.38) the hard current coefficient C(nl+1)(Q,m, µH) acquires a
subtractive contribution arising from the non-vanishing SCET diagrams involving virtual collinear and
soft mass modes and contributions related to the use of the MS renormalization prescription for the strong
coupling rather than the OS one concerning the massive quark bubble. The latter correction means that
the massive quark now contributes to the RG evolution and that we employ α(nl+1)

s . The result reads

C(nl+1)(Q,m, µ) = C(nl+1)(Q,µ) + F̂
(nl+1,2)
∆m (Q,m) . (4.42)

The term F̂
(nl+1,2)
∆m (Q,m) represents the corrections due to the non-vanishing mass of the heavy quark

and can be written with the help of Eq. (3.95) as (α(nl+1)
s = α

(nl+1)
s (µ))

F̂
(nl+1,2)
∆m (Q,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

[
f

(2)
m,QCD(m̂)− f

(2)
m,QCD(m̂)

∣∣∣
m→0

]
, (4.43)
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which can be read off explicitly from Eqs. (3.96) and (4.40). All calculational steps leading to this results
are explained in detail in Secs. 4.3.1 and 4.4.1. One can check explicitly that all of the IR divergent
mass-shell contributions are removed and that the massless limit for Eq. (4.42) is recovered for m → 0,
i.e. F̂ (nl+1,2)

∆m (Q,m)
m→0−→ 0. We will see that in the results of the collinear, the soft and the soft-bin

contributions there are rapidity divergences that cancel in the sum of all terms. We stress, however, that
for µ ∼ Q no large (rapidity) logarithm remains in the hard current matching.

Note that the UV divergences of the bare SCET form factor are insensitive to the non-vanishing quark
mass, such that we get in total the UV divergences from Eq. (4.15) for nf = nl + 1. This argument does
not rely on a specific order in αs, so that the evolution factor U (nl+1)

C obeys the RG equation

µ
d
dµ

U
(nl+1)
C (Q,µH , µ) = γ

(nl+1)
C (Q,µ)U

(nl+1)
C (Q,µH , µ) (4.44)

to all orders in perturbative QCD.
At the scale µm the mass-shell fluctuations of the collinear and soft mass modes are integrated out

in the RG evolution of the current coefficient leading to the current mass mode matching coefficient
MC(Q,m, µm), which is the analogue of the PDF matching coefficient which we have encountered in
chapter 3. Using the counting αs ln(m2/Q2) ∼ O(1) the result has the structure

MC(Q,m, µH , µm) = 1 +

[(
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H
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]
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s

)3

(4π)3
ln
(
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H

µ2
m
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M(3)

C,ln(m,µm)

+

(
α

(nl+1)
s

)4

(4π)4
ln2

(
µ2
H

µ2
m

)
M(4)

C,ln2(m,µm)

]

O(α2
s)

+O(α3
s) , (4.45)

We display the corresponding results for α(nl+1)
s = α

(nl+1)
s (µm) and m ≡ m(µm) given in the MS

scheme. The two-loop functions in the fixed-order expansion, i.e. M(2)
C,ln and M(2)

C,1, read explicitly
(Lm ≡ ln

(
m2/µ2

m

)
)

M(2)
C,ln(m,µm) =CFTF

{
−4

3
L2
m −

40

9
Lm −

112

27

}
, (4.46)

M(2)
C,1(Q,m, µm, µH) =CFTF

{
4

9
L3
m +

38

9
L2
m +

(
242

27
+

2π2

3

)
Lm − ln

(
Q2

µ2
H

)[
4

3
L2
m +

40

9
Lm +

112

27

]

+
875

54
+

5π2

9
− 52

9
ζ3

}
. (4.47)

The three-loop functionM(3)
C,ln is given by

M(3)
C,ln(m,µm) =CFTF

{
L3
m

[
88

27
CA −

32

27
TFnl −

64

27
TF

]
+ L2

m

[(
−92

9
+

8π2

9

)
CA + 12CF −

160

27
TF

]

+ Lm

[(
−620

81
+

80π2

27
− 112

3
ζ3

)
CA +

(
−4

3
+ 32ζ3

)
CF −

1088

81
TFnl −

992

81
TF

]

+ CA

(
17726

729
− 824π2

243
− 30ζ3 +

88π4

135
− 16

3
B4

)
+ CF

(
−3337

27
+

604

9
ζ3 −

8π4

15
+

32

3
B4

)

+TFnl

(
12032

729
− 256

27
ζ3

)
+ TF

(
−6032

729
+

448

27
ζ3

)}
, (4.48)

where

B4 =
2

3
ln4(2)− 2π2

3
ln2(2)− 13π4

180
+ 16Li4

(1

2

)
. (4.49)
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Finally, the relevant four-loop functionM(4)

C,ln2(m,µm) reads

M(4)

C,ln2(m,µm) =

(
M(2)

C,ln(m,µm)
)2

2
= C2

FT
2
F

{
8

9
L4
m +

160

27
L3
m +

416

27
L2
m +

4480

243
Lm +

6272

729

}
.

(4.50)

The result for the threshold correction in Eq. (4.45) deserves some discussion. We see that the mass mode
matching coefficient contains large logarithms ln(µ2

m/µ
2
H), which are not summed by the RG µ-evolution

of the current. These logarithms are related to rapidity singularities that arise in the overlap region
between the collinear and soft mass modes, all having invariant masses of order m2. Carrying out the
corresponding computations in Sec. 4.4.1 we will discuss how these logarithms can be resummed. The
outcome is just a simple exponentiation which yields the term at O(α4

s ln
2(m2/Q2)) corresponding to

the function M(4)

C,ln2 in Eq. (4.50). We note that through the rapidity RG evolution MC depends at
each order on two rapidity scales. For simplicity we have correlated them with the two invariant mass
scales µH and µm. We stress, however, that the dependence of MC on the hard matching scale µH is
actually spurious and cancels in an expansion at fixed-order in αs. The existence of the large logarithms
has the important consequence that the O(α2

s ln(m2/Q2)) corrections in Eq. (4.45) corresponding to
M(2)

C,ln in Eq. (4.46) enter at the same order as the O(αs) fixed-order corrections based on the counting
αs ln(m2/Q2) ∼ O(1) and thus contribute already at N2LL order where one-loop fixed-order corrections
to the hard coefficient and the jet and the soft function are accounted for. At N3LL order we therefore
need the terms at O(α3

s ln(m2/Q2)) and O(α4
s ln

2(m2/Q2)). 9 We have indicated this counting by using
the subscripts “O(αs)” and “O(α2

s)” in the result of Eq. (4.45). In Eq. (4.48) we display the full form of
the O(α3

s ln(m2/Q2)). We can derive the µm dependent terms by consistency of RG running as explained
in Sec. 4.4.1. We have not computed the term multiplying the rapidity logarithm that is physically
unrelated to logarithms of µm. However, it can be directly determined from a corresponding term in the
PDF threshold correction computed in Ref. [84] due to a consistency relation as explained in Sec. 4.4.3.

4.2.3 Scenario III: Q > Qλ > m > Qλ2

The mass is between the jet scale and ΛQCD. The current evolution is the same as the one in scenario II
and the PDF still includes only the effects of the nl massless quarks. Since the massless as well as the
massive n-collinear modes both can now fluctuate in the jet sector the difference to scenario II concerns
the jet function, where additional massive real and virtual contributions arise. The setup is constructed
such that it (i) sums all mass logarithms that arise in the evolution of the jet function and (ii) ensures
that the jet function approaches the known massless result for nl + 1 flavors in the limit m → 0. In
analogy to the current, the RG evolution of the jet function is performed with nl + 1 flavors above the
mass threshold. Collinear mass-shell fluctuations are integrated out at the mass scale yielding a threshold
correction MJ for the jet function, and the evolution continues with nl light quarks down to the PDF
scale. Overall the factorization theorem in this scenario has the form

F1(x,Q,m) =
∑

i=q

e2
i

2

∣∣C(nl+1)(Q,m, µH)
∣∣2 ∣∣U (nl+1)

C (Q,µH , µm)
∣∣2∣∣MC(Q,m, µm)

∣∣2 ∣∣U (nl)
C (Q,µm, µφ)

∣∣2

×
∫

ds
∫

ds′
∫

ds′′
∫

ds′′′ J (nl+1)(s′′′,m, µJ)U
(nl+1)
J (s′′ − s′′′, µm, µJ)

×MJ(s′ − s′′,m, µm)U
(nl)
J (s− s′, µφ, µm) φ̃

(nl)
i/P

(
1− x− s

Q2
, µφ

)
, (4.51)

where the matching coefficients C(nl+1)(Q,m, µH) andMC(Q,m, µm) are the same as in scenario II, see
Eqs. (4.42) and (4.45). The jet function J (nl+1)(s,m, µ) contains contributions related to virtual and real

9In the primed counting one might also distinguish between terms enhanced by rapidity logarithms (and related to terms
summed by the rapidity RGE) and the remaining terms in the series for the mass mode threshold factors. This can have a
sizeable numerical effect.
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radiation of the massive secondary quarks and has the form

J (nl+1)(s,m, µ) = J (nl+1)(s, µ) + J
(nl+1,2)
∆m,dist (s,m, µ) + J

(nl+1,2)
m,real (s,m) . (4.52)

Here the last two terms represent the corrections due to a nonvanishing quark mass, the corresponding
computations are described in Secs. 4.3.2 and 4.4.2. The expression for J (nl+1,2)

∆m,dist (s,m, µ) contains only
distributions and corresponds to collinear massive virtual corrections (including soft-bin subtractions) as
well as terms related to the subtraction of the massless quark result already contained in J (nl+1)(s, µ)
(see Eq. (4.17)). Its renormalized expression reads (s̄ = s/µ2)

µ2J
(nl+1,2)
∆m,dist (s,m, µ) =

(
α

(nl+1)
s

)2
CFTF

16π2

{
δ(s̄)

[
8

9
L3
m +

58

9
L2
m +

(
718

27
− 8π2

9

)
Lm +

4325

81
− 58π2

27
− 32

3
ζ3

]

+

[
θ(s̄)

s̄

]

+

[
−8

3
L2
m −

116

9
Lm −

718

27
+

8π2

9

]
+

[
θ(s̄) ln s̄

s̄

]

+

[
16

3
Lm +

116

9

]

− 8

3

[
θ(s̄) ln2s̄

s̄

]

+

}
. (4.53)

The term J
(nl+1,2)
m,real (s,m) in Eq. (4.52) contributes only when the jet invariant mass is above the threshold

4m2 and thus corresponds to real production of the massive quarks. It is given by

µ2J
(nl+1,2)
m,real (s,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

1

s̄
θ(s− 4m2)

{
− 32

3
Li2
(
b− 1

1 + b

)
+

16

3
ln
(

1− b2
4

)
ln
(

1− b
1 + b

)

− 8

3
ln2

(
1− b
1 + b

)
+

(
1

2
b4 − b2 +

241

18

)
ln
(

1− b
1 + b

)
− 5

27
b3 +

241

9
b− 8π2

9

}
, (4.54)

with

b =

√
1− 4m2

s
. (4.55)

Due to its physical character it is UV-finite and does not contain any explicit logarithmic µ-dependence.
Furthermore, J (nl+1,2)

m,real and its first two derivatives in s vanish at the threshold, so that no discontinuity
arises due to real radiation. Note that the range in τ where scenario III is employed may be chosen such
that it includes the threshold of collinear massive real radiation at τ = 4m2/Q2, so that the threshold is
properly accounted for through the analytic form of J (nl+1,2)

m,real . For m→ 0 the jet function J (nl+1)(s,m, µ)

yields correctly the fully massless jet function at O(α2
s), i.e.

J (nl+1)(s,m, µ)
m→0−→ J (nl+1)(s, µ) . (4.56)

We note that in the calculation of J (nl+1,2)
∆m,dist rapidity divergences arise which cancel in the sum of the

collinear diagrams and the corresponding soft-bin subtractions. We stress that for µ2 ∼ s all associated
logarithms cancel completely in the sum of J (nl+1,2)

m,real and J (nl+1,2)
∆m,dist , so that no (large) rapidity logarithm

remains in the jet function.
The UV divergences of the bare jet function J (nl+1,bare)(s,m, µ) are mass independent and agree with

the known massless ones for nl + 1 dynamic flavors. The O(α2
sCFTF ) contributions to the jet function

counterterm are the ones from Eq. (4.19) for nf = nl + 1. This statement holds to any order in αs, so
that the jet function evolution factor U (nl+1)

J obeys

µ
d
dµ

U
(nl+1)
J (s, µ, µJ) =

∫
ds′ γ(nl+1)

J (s− s′, µ)U
(nl+1)
J (s′, µ, µJ) . (4.57)

When crossing the scale µm in the RG evolution of the jet function down to the soft scale the mass-
shell fluctuations of the collinear mass modes are integrated out. These contributions are encoded in the
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jet mass mode matching coefficientMJ(s,m, µm) and contain all virtual effects of the massive flavor such
that for the scales µ < µm all massive collinear effects decouple. Using the counting αs ln(m2/s) ∼ O(1)
the result has the structure

µ2
JMJ(s,m, µJ , µm) = δ(s̃) +

[(
α

(nl+1)
s

)2

(4π)2
δ(s̃) ln

(
µ2
J

µ2
m

)
M(2)

J,ln(m,µm)

]

O(αs)

+

[(
α

(nl+1)
s

)2

(4π)2

(
δ(s̃)M(2)

J,1(m,µm) +

[
θ(s̃)

s̃

]

+

M(2)
J,ln(m,µm)

)

+

(
α

(nl+1)
s

)3

(4π)3
δ(s̃) ln

(
µ2
J

µ2
m

)
M(3)

J,ln(m,µm)

+

(
α

(nl+1)
s

)4

(4π)4
δ(s̃) ln2

(
µ2
J

µ2
m

)
M(4)

J,ln2(m,µm)

]

O(α2
s)

+O(α3
s) . (4.58)

We display the corresponding results for α(nl+1)
s = α

(nl+1)
s (µm) and m ≡ m(µm) given in the MS scheme.

The functions multiplying the logarithm ln(µ2
J/µ

2
m) are related to the ones entering the current mass

mode matching correction (see Eqs. (4.46), (4.48) and (4.50)),

M(2)
J,ln(m,µm) = − 2M(2)

C,ln(m,µm) , (4.59)

M(3)
J,ln(m,µm) = − 2M(3)

C,ln(m,µm) , (4.60)

M(4)
J,ln(m,µm) = 4M(4)

C,ln2(m,µm) . (4.61)

The intrinsic relation between the current and jet threshold corrections is based on the consistency of
RG running and will be elucidated in Sec. 4.4.3. The less universal two-loop functionM(2)

J,1 reads

M(2)
J,1(m,µm) = CFTF

{
−8

9
L3
m −

58

9
L2
m +

(
−466

27
− 4π2

9

)
Lm −

1531

54
− 10π2

27
+

80

9
ζ3

}
. (4.62)

It is interesting to note that the result in Eq. (4.58) is a non-trivial distributive function of the jet invariant
mass s and thus differs substantially from the local mass mode matching coefficient of the current (see
Eq. (4.45)) or the strong coupling which do not depend on any kinematic scale. As for the case of the
current mass mode matching coefficient,MJ contains large logarithms involving the ratio of the jet scale
s ∼ µJ and the mass scale m ∼ µm which are not summed by the RG µ-evolution of the jet function.
They are related to rapidity-type singularities that arise for the massive virtual corrections in the overlap
region between the collinear mass mode contributions and the soft-bin subtractions. These logarithms
exponentiate as in the case of the current mass mode matching coefficient. We note that, through the
rapidity RG evolution,MJ depends at each order on two rapidity scales, which we correlate to the jet and
mass scales µJ and µm. We stress, however, that the dependence ofMJ on the jet scale µJ is spurious
and cancels at fixed order. Using the counting αs ln(m2/s) ∼ O(1) concerning rapidity logarithms the
O(α2

s ln(m2/s)) corrections in Eq. (4.58) are counted as O(αs), while at O(α2
s) one has to include the

terms of O(α4
s ln

2(m2/s)) and O(α3
s ln(m2/s)). We refer to Sec. 4.4.2 for the explicit computations.

4.2.4 Renormalization conditions and continuity

So far we have discussed the mass mode setup in terms of three different EFT scenarios resulting in
different factorization theorems. This description might suggest that we imply large hierarchies between
the hard and jet scale on the one hand and the mass scale on the other hand for each of these descriptions.
In fact this requirement is not necessary. Instead of using different effective theories that follow the strict
guideline of having the massive quark modes either as fluctuating fields or excluded completed (i.e.
integrated out) we can use only a single theory which contains the massive quark modes, but employs
different renormalization conditions for the quantum corrections arising from the massive quark modes,
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which is along the lines of the discussion in chapter 3. Since the hard current, the jet function and the
PDFs are gauge-invariant quantities, they can also be renormalized independently. These renormalization
conditions are again either the MS prescription or the OS prescription (concerning the massive quark
corrections). The former leads to the usual MS feature that massless quarks and the massive flavor all
contribute to the RG evolution in the same way, so one uses the (nl + 1) running flavor scheme. The
latter is defined by the condition that the mass corrections vanish for invariant mass scales much smaller
than the quark mass and also subtracts finite and scale-dependent contributions such that the massive
flavor does not lead to any contribution in the RG evolution, so there are only nl running flavors. This
concerns the strong coupling αs as well as the hard coefficient, the jet function and the PDFs.

Obviously the MS prescription is suitable to cover the situation where the quark mass becomes small
(where suitable means that no large mass logarithms arise in the massless limit) and leads to results
which give the known results for massless quarks in the limit m→ 0. The on-shell prescription is suitable
to cover the decoupling limit, such that the effects of the massive quark vanish in the infinite mass limit.
This method of using different renormalization conditions for the RG evolution schemes with (nl+1) and
nl running flavors also has the advantage that the kinematically dependent threshold of the jet function
due to the quark mass is fully contained in the prediction regardless of which type of renormalization
scheme is used. This is unlike for the case of using the effective theory method, where the massive quark
is completely excluded from the nl flavor theory, and one is forced to take care of the fact that the real
radiation thresholds are always located in the (nl + 1)-flavor theory.

The differences of the renormalized quantities with respect to both of these renormalization prescrip-
tions constitute matching conditions that uniquely define the massive threshold correction factors MC

andMJ in analogy to the PDF threshold factorsMφ,ij in Eq. (3.41). Since the hard current coefficient,
the jet function and the PDFs are independent and in principle not tied to the particular factorization
theorem for DIS in the endpoint region, the important outcome is that the threshold correction factors
can be determined from these quantities themselves and do not rely on knowing the perturbative “full
theory” results in the classical OPE region.

The fact that the hard coefficient, the jet function, the PDFs and the massive quark threshold correc-
tions factors that appear in the factorization theorems in the three scenarios (in schemes with either nl or
nl + 1 running flavors) are conceptually connected through different choices of renormalization schemes
and not related in any way to expansions in either small or large quantities makes it evident that the pre-
dictions of the different factorization theorems at their respective borders of validity have an overlap region
and are continuous. In the case of marginal or non-existent hierarchies (such as Q� m & Qλ� Qλ2 or
Q & m� Qλ� Qλ2) the RG evolution between close-by scales is equivalent to a perturbative treatment,
so that the factors of concern might be simply expanded out. Since this might be as well applied to the
two neighboring scenarios within some range, we have continuity between the two descriptions, and the
transition point where one switches between them can be picked freely within this range. The continuity
of the theoretical description for differential cross sections depending on some external kinematic scales
is particularly important for practical applications, since different hierarchies between the mass scale and
the kinematic scales can arise within a single spectrum when the kinematic variables are varied within
their allowed ranges.

4.2.5 Outline of the computations

In the following sections we will perform the computations corresponding to the results summarized
before. We have seen in Sec. 3.4.1 that for sufficiently inclusive observables dispersion relations can be
used to obtain the results for secondary massive quark radiation (with mass m) at O(α2

sCFTF ) from the
results for “massive gluon” radiation (with mass M) at O(αs), which allows to deal with the technically
simpler one-loop computations for the latter instead of performing the two-loop integration directly. Due
to the fact that the scaling M ∼ m is inherited in the dispersion integration also the field theoretic
setups in both cases are closely related to each other, which provides the opportunity to investigate many
conceptual features of the VFNS already with secondary massive gluons. In Sec. 4.3 we will therefore first
compute the hard coefficient, the jet function and the corresponding mass mode threshold corrections at
O(αs) and discuss the factorization theorems at this level. In Sec. 4.4 we will then use the dispersion
relation in Eq. (3.63) to obtain the results at O(α2

sCFTF ) for massive secondary quarks.
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4.3 One-loop computations for secondary massive gluons

We discuss the massive gluon corrections within a toy theory where these gauge bosons are distinct degrees
of freedom and exist in parallel to the common massless collinear and ultrasoft gluons. We will consider
massive collinear as well as soft gluon modes with mass M , all of which can have mass-shell fluctuations
of equal typical virtuality of O(M2) in addition to fluctuations at the hard and jet scale depending on the
kinematic situation. While they primarily adopt the role of placeholders for the secondary massive quarks
(and the gluonic modes they can interact with) the setup can be of direct interest by itself and might well
serve for concrete applications for example related to the electroweak theory. We use a notation for the
massive gluon that is analogous with the one for the QCD results (with massless gluons) and facilitates
the interpretation of the results for the dispersion integration used to implement the corrections due
to the gluon splitting. Before we describe the computations for a massive gluon explicitly, let us write
down the factorization theorems in the three different scenarios for later reference. Instead of following
the strict EFT guideline we adopt this time a notation in which the mass modes are always dynamical
degrees of freedom, but different renormalization conditions are employed concerning the massive gluon
effects. Including the massless gluons the factorization theorem in scenario I (M & Q) reads

F1(x,Q,M) =
∑

i=q

e2
i

2

∣∣C(OS)(Q,M,µH)
∣∣2 ∣∣U (OS)

C (Q,µH , µφ)
∣∣2
∫

ds
∫

ds′ J (OS)(s′,M, µJ)

× U (OS)
J (s− s′, µφ, µJ) φ̃

(OS)
i/P

(
1− x− s

Q2
, µφ

)
, (4.63)

The superscript (OS) in the matrix elements and matching coefficients indicates that the OS scheme is
used for the massive gluon corrections, which implies in particular that the running is only due to the
massless gluon contributions. In scenario II (Q &M and M & Q

√
1− x) we have

F1(x,Q,M) =
∑

i=q

e2
i

2

∣∣C(MS)(Q,M,µH)
∣∣2 ∣∣U (MS)

C (Q,µH , µM )
∣∣2∣∣MC(Q,M,µM )

∣∣2 ∣∣U (OS)
C (Q,µM , µφ)

∣∣2

×
∫

ds
∫

ds′ J (OS)(s′,M, µJ)U
(OS)
J (s− s′, µφ, µJ) φ̃

(OS)
i/P

(
1− x− s

Q2
, µφ

)
. (4.64)

The superscript (MS) in the matrix elements and matching coefficients indicates that the MS scheme
is used for the massive gluon contributions, which implies in particular that the running is both due to
the massless and massive gluon contributions. In scenario III (Q

√
1− x &M) the factorization theorem

reads

F1(x,Q,M) =
∑

i=q

e2
i

2

∣∣C(MS)(Q,M,µH)
∣∣2 ∣∣U (MS)

C (Q,µH , µM )
∣∣2∣∣MC(Q,M,µM )

∣∣2 ∣∣U (OS)
C (Q,µM , µφ)

∣∣2

×
∫

ds
∫

ds′
∫

ds′′
∫

ds′′′J (MS)(s′′′,M, µJ)U
(MS)
J (s′′ − s′′′, µM , µJ)

×MJ(s′ − s′′,M, µM )U
(OS)
J (s− s′, µφ, µm) φ̃

(OS)
i/P

(
1− x− s

Q2
, µφ

)
. (4.65)

In the following we describe the calculations for the mass mode contributions to the hard Wilson coef-
ficients C(OS)(Q,M,µ) and C(MS)(Q,M,µ), the jet functions J (OS)(s,M, µ) and J (MS)(s,M, µ) and the
mass-mode matching coefficients andMC(Q,M,µ) andMJ(s,M, µ) entering the factorization theorems
at O(αs).

An important technical point is that we encounter rapidity divergences in single diagrams mentioned in
Sec. 2.5 which are not associated to the UV or IR behavior, but rather to large rapidity separations of the
collinear and soft mass modes, and are not regularized by dimensional regularization. In the calculations
of the mass-mode contributions to the hard current Wilson coefficient (at µH ∼ Q) and the jet function
(at µJ ∼ Q

√
1− x) these divergences turn out to cancel among the proper set of diagrams and, if needed,

the soft-bin subtractions, and do not result in large logarithms. For the threshold corrections that arise
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when the mass modes are integrated out (at µM ∼ M) the rapidity divergences also cancel, but they
leave behind large logarithmic terms that in general cannot be summed within the µ-evolution formalism
based on dimensional regularization. For the current threshold correction these logarithms are known to
exponentiate [40, 41]. In Sec. 4.3.1 we reproduce this result using the evolution method from [41] and
demonstrate that analogous exponentiations arise for the jet and PDF mass mode matching coefficients,
respectively.

To resum the rapidity logarithms we need an additional regulator that breaks boost invariance. Here
we display the corresponding results for individual diagrams employing the analytic “α-regulator” [85,86]
for the k− integrations, i.e. 10

dk−

k−
→ dk−

να

(k−)1+α
. (4.66)

In this context the scale ν is an auxiliary scale to maintain the dimensions of the regulated integrals which
adopts a similar role as the µ scale in dimensional regularization. In particular, also the strong coupling
adopts a ν-scaling proportional to α. The α-regulator treats the n-and n̄-collinear sectors as well as the
soft boundaries towards the two collinear sectors in an asymmetric way. Note that the α-regulator as
defined in Eq. (4.66) entails the occurrence of spurious ln(Q) -terms that are not supposed to be confused
with the analytic ln(Q2) -terms. Only the latter are altered in the analytic continuation from the timelike
momentum transfer in DIS to the spacelike momentum transfer in e+e− collisions discussed in chapter 5.

We present all calculations in Feynman gauge. We have checked explicitly that the contributions
coming from longitudinal polarizations of the massive gauge bosons vanish due to gauge invariance in all
matrix elements and matching corrections.11 To achieve this for the calculations involving collinear mass
modes the inclusion of soft-bin subtractions turned out to be crucial. Thus the soft-bin subtractions are
essential to isolate gauge-invariant structures and to achieve factorization, as has also been stressed in
Ref. [35].

4.3.1 Hard current matching coefficient and threshold correction

Current matching coefficient

We compute the hard current matching coefficient with a massive gluon at one-loop using quarks as
external states. The virtual full QCD result F̂ (1)

M,QCD(Q,M) corresponds to the first diagram in Fig. 3.8
and has been already given in Eq. (3.70). We therefore focus on the calculation of the collinear and
soft mass mode corrections to the effective theory vertex. The relevant diagrams are shown in Fig. 4.8,
where p (p′) denotes the momentum of the collinear massless external incoming (outgoing) quark. The
corrections for antiquarks in the initial state can be derived in complete analogy and yield the same
result. The computations are valid for all scenarios where the mass scale M is below the hard scale Q.
This can be understood from the fact that the way how collinear and soft mass modes are distributed
with respect to the massless modes below the hard scale Q does not affect the hard contribution itself. 12

Applying the SCET Feynman rules in Fig. 2.3 gives for the coefficient multiplying the current
ξ̄n,pγ

µξn̄,p′ in the soft mass mode diagram

Vs = −2ig2CF µ̃
2ε

∫
ddk

(2π)d
p+ − k+

[(p− k)2 + iε]

p′− − k−
[(p′ − k)2 + iε]

1

[k2 −M2 + iε]
. (4.67)

Using pµ = (Q, 0, 0) and p′µ = (0, Q, 0) and the soft scaling kµ ∼ Q(λM , λM , λM ) for the soft momentum

10We use the α-regulator in a way more general than advocated in Ref. [86] since we apply it not only for phase space
integrations but also for loop diagrams, so that some of the properties of this regulator for phase space integrals as stated
in Ref. [86] might not hold.

11For the resummation of rapidity logarithms we decompose the matrix elements into components which are sometimes
gauge-dependent. However, the rapidity divergences and the resulting ν-anomalous dimensions are always gauge-invariant.

12We carry out the calculations for external massless collinear quarks which are on-shell. This leads to exactly the same
calculations for all scenarios with M < Q.
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Vn Vn̄Vs

p′

p

M

n

n̄

Figure 4.8: Non-vanishing EFT vertex diagrams for the computation of the hard matching coefficient.
Soft mass mode bin subtractions are implied for the collinear diagrams.

we obtain for λM � 1

Vs = −2ig2CF µ̃
2ε

∫
ddk

(2π)d
1

[k− − iε]
1

[k+ − iε]
1

[k2 −M2 + iε]
. (4.68)

The expression in Eq. (4.68) can as well be obtained directly from the SCET Feynman rules upon field
redefinition in SCET I (or equivalently in SCET II) such that the soft mass mode gauge bosons couple
to the collinear massless quarks through Wilson lines. The n-collinear diagram yields

Vn = 2ig2CF µ̃
2ε

∫
ddk

(2π)d
p′− − k−

[(p− k)2 + iε]

1

[k− − iε]
1

[k2 −M2 + iε]
, (4.69)

and using the form of the external momenta (and likewise the collinear scaling kµ ∼ Q(λ2
M , 1, λM )) we

obtain

Vn = 2ig2CF µ̃
2ε

∫
ddk

(2π)d
Q− k−

[k+(k− −Q)− ~k2
⊥ + iε]

1

[k− − iε]
1

[k2 −M2 + iε]
. (4.70)

The n̄-collinear diagram is obtained in an analogous manner and involves the function Vn̄. It is obtained
from the n-collinear diagram by swapping the plus- with the minus-components as well as p′ with p. To
avoid double counting and achieve gauge-invariance it is crucial to subtract the soft-bin contributions,
which arise from the soft scaling regions of the collinear diagrams. Expanding the n-collinear diagram
of Eq. (4.70) in the soft mass mode regime kµ ∼ Q(λM , λM , λM ) we obtain the soft-bin subtraction
contribution,

Vn,0M = −2ig2CF µ̃
2ε

∫
ddk

(2π)d
1

[k+ − iε]
1

[k− − iε]
1

[k2 −M2 + iε]
, (4.71)

with the analogous expression for the n̄-collinear sector, which we call Vn̄,0M . Note that Vn,0M = Vn̄,0M =
Vs holds for rapidity regulators that do not act differently on soft graphs and soft-bin subtractions from
collinear graphs, e.g. the α-regulator defined in Eq. (4.66). The sum of all vertex diagrams including the
soft-bin subtractions and the wave function renormalization computed in Eq. (3.82) gives [35]

F̂
(bare,1)
M,SCET(Q,M,µ) = (Vn − Vn,0M ) + (Vn̄ − Vn̄,0M ) + Vs − Z(1)

ξ

= Vn + Vn̄ − Vs − Z(1)
ξ , (4.72)

as for the massless case with 0-bin subtractions [87]. We note that the second identity in Eq. (4.72) does
not hold for arbitrary IR regulators, e.g. the η regulator employed for the Wilson lines [41] yields different
results for the soft graphs and the soft-bin subtractions.

We compute the integrals for Vn, Vn̄ and Vs by first performing the k+-integration with the method
of residues and then the k⊥-integration. Finally, the rapidity divergences in the k−-integration are
regularized with the α-regulator in Eq. (4.66), and the limit α → 0 is implied at the end. Note that
the integrals Vn and Vn̄ are not treated symmetrically and lead to different analytic expressions for the
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remaining k− integral. We start from the integral Vn given in Eq. (4.70). Carrying out the k+- and
k⊥-integration as described above we obtain

Vn = −αsCF
(4π)2

Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
(
ν

Q

)α ∫ 1

0

dz
(1− z) d2−1

z1+α

=
αsCF

2π
Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
{

1

α
+ ln

(
ν

Q

)
+H d

2−1

}
, (4.73)

where z ≡ k−/Q. After performing the k+- and k⊥-integrations for Vn̄ we arrive at 13

Vn̄ =
αsCF

2π
Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
[(

Qν

M2

)α ∫ ∞

0

dz
zα

1− z d2−2

1− z +

∫ 1

0

dz (1− z) d2−2

]

=
αsCF

2π
Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
{
− 1

α
− ln

(
Q2

M2

)
− ln

(
ν

Q

)
− Γ

(
d
2

)2
Γ
(
1− d

2

)2

2 Γ(d) Γ(1− d)
+

2

d− 2

}
.

(4.74)

The result differs from Eq. (4.73) since the integrations for Vn and Vn̄ were performed in an asymmetric
way. Note that upon summing the contributions from Vn and Vn̄ according to Eq. (4.72) the rapidity
divergences cancel exactly. Finally, we compute Vs given in Eq. (4.68) in the same way and obtain

Vs = Vn,0M = Vn̄,0M = −αsCF
2π

Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
∫ ∞

0

dz
z1+α

= 0 . (4.75)

Combining Eqs. (4.73), (4.74), (4.75) and including the contribution due to the wave function renor-
malization in Eq. (3.82) we arrive at the final d-dimensional result

F̂
(bare,1)
M,SCET(Q,M,µ) =

αsCF
4π

Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
{

2H d
2−1 −

Γ
(
d
2

)2
Γ
(
1− d

2

)2

Γ(d) Γ(1− d)
− 2(d2 − 6d+ 4)

d(d− 2)

+ ln
(
M2

Q2

)}
. (4.76)

The logarithm in the second line arises as a remnant from the cancellation of the rapidity divergences.
Expanding in ε gives (LQ = ln(Q2/µ2), LM = ln(M2/µ2))

F̂
(bare,1)
M,SCET(Q,M,µ) =

αsCF
4π

{
2

ε2
+

3

ε
− 2

ε
LQ + 2LMLQ − L2

M − 3LM +
9

2
− 5π2

6

}
. (4.77)

The same result apart from a trivial analytic continuation to a timelike process (see also chapter 5) has
been obtained before in Refs. [35, 38, 41, 88] using different regulators and in Refs. [10, 26] without any
regulator by properly recombining the integrals, such that the rapidity divergences cancel implicitly. In
Eq. (4.77) the UV-divergences do not depend on the mass and agree exactly with those of the sum of
the corresponding collinear and soft effective theory diagrams for massless gluons, see Eq. (4.14). If we
renormalize the matching coefficient in MS using Eq. (4.14) we obtain the result for the massive gluon
contributions to the current in SCET

F̂
(MS,1)
M,SCET(Q,M,µ) = F̂

(bare,1)
M,SCET(Q,M,µ) + Z

(MS,1)
C (Q,µ)

=
αsCF

4π

{
2LMLQ − L2

M − 3LM +
9

2
− 5π2

6

}
, (4.78)

13The contour integration in the k+-component requires some care concerning the pole structure for k− ≈ 0. To be
safe, one can determine the relevant residues by including a small p−-component which can be set to 0 after the contour
integration.
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which has large logarithms forM � Q andM � Q. Using OS renormalization which implies F̂ (OS,1)
M,SCET =

0 for M/Q→∞ the counterterm absorbs the complete contribution, i.e.

Z
(OS,1)
C (Q,M,µ) = −F̂ (bare,1)

M,SCET(Q,M,µ) . (4.79)

We are now able to write down the full matching coefficients in all scenarios. In scenario I we use
OS renormalization with respect to the massive gluon corrections which gives after including also the
massless gluon contributions in Eq. (4.12)

C(OS,1)(Q,M,µ) = C(1)(Q,µ) + F̂
(1)
M,QCD(Q,M) , (4.80)

where the massive gluon decouples in the heavy gluon limit, i.e. C(OS,1)(Q,M,µ) → C(1)(Q,µ) for
M̂ →∞. In the small mass limit M̂ → 0, on the other hand, we obtain

C(OS,1)(Q,M,µ)
M̂→0−→ C(1)(Q,µ)− αsCF

4π

{
ln2(M̂2) + 3 ln(M̂2) +

7

2
+

2π2

3

}
, (4.81)

which shows infrared sensitivity to the small mass scale. However, this limit belongs to the realm of the
scenarios II and III where MS renormalization for the mass mode contributions in SCET should be used
yielding

C(MS,1)(Q,M,µ) = C(1)(Q,µ) + F̂
(1)
M,QCD(Q,M)− F̂ (MS,1)

M,SCET(Q,M,µ) . (4.82)

For µH ∼ Q the large logarithms that occur in the full theory form factor F̂ (1)
M,QCD forM � Q in Eq. (4.81)

cancel entirely with the corresponding logarithms in the SCET contributions F̂ (MS,1)
M,SCET in Eq. (4.78), and

C(MS,1) reaches the massless limit, i.e. in our toy theory with both massive and massless gluon corrections

C(MS,1)(Q,M,µ)
M→0−→ 2C(1)(Q,µ) . (4.83)

Note that although we have encountered rapidity divergences in intermediate stages of the calculation
they do not produce a large logarithm in the final result which is not suppressed by M̂ . This is also valid
for the jet function and the results with secondary massive quarks.

Hard current threshold correction

The mass mode threshold factor MC(Q,M,µM ) arises when the RG evolution of the hard current
coefficient crosses the massive quark threshold, i.e. in the factorization theorems of scenario II and III in
Eqs. (4.64) and (4.65), respectively. As already mentioned in Sec. 4.2 and in analogy to the discussion
of the PDF threshold correction in Eq. (3.41), it is constituted by the difference in the renormalization
conditions for the hard matching coefficient

MC(Q,M,µM ) =
C(OS)(Q,M,µM )

C(MS)(Q,M,µM )
=

Z
(MS)
C (Q,µM )

Z
(OS)
C (Q,M,µM )

=
Z

(OS)
J (Q,µM )

Z
(MS)
J (Q,M,µM )

. (4.84)

In the latter equality we have written the threshold correction in terms of the renormalization constants
of the SCET current J which is more convenient for the discussion of the rapidity evolution. Since
the difference in the factorization theorems for scenario I and II in Eqs. (4.63) and (4.64) concerns just
the current matching coefficients and evolution, Eq. (4.84) makes it evident that the condition for the
current mass mode matching coefficient automatically implements a continuous transition between these
two scenarios for M ∼ µM ∼ µH ∼ Q. Thus we obtain up to O(αs) in the fixed-order expansion

MC(Q,M,µ) = 1 + F̂
(MS,1)
M,SCET(Q,M,µ) +O(α2

s)

= 1 +
αsCF

4π

{
2LM ln

(
Q2

M2

)
+ L2

M − 3LM −
5π2

6
+

9

2

}
+O(α2

s) . (4.85)
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Figure 4.9: Evolution in µ-ν-space for the current: We first perform the running of the Wilson coefficient
C(Q,M,µ) in µ from the hard scale µH ∼ Q to the mass scale µM ∼ M . The evolution to a common
ν-scale (ν0) is then employed for the n- and n̄-collinear matching corrections at this fixed invariant mass
scale before the µ-evolution down to lower scales continues. Note that the soft contributions vanish with
our choice of regulator. Since path independence holds [40, 41], other choices of running are equivalent,
but may lead to more involved analytic structures of the evolution factors.

The mass mode contributions F̂ (MS,1)
M,SCET, which are subtracted from the scenario I hard matching coefficient

(at µH) to obtain the infrared-safe expression C(MS,1), are added back in the current threshold factor (at
µM ) when the mass modes are integrated out. This is exactly the analogue of the situation realized for
hard coefficients in the VFNS for classical DIS in chapter 3.

Notice that for M � Q the mass mode matching coefficient MC contains a large logarithmic term
∼ ln(M2/µ2

M ) ln(Q2/M2), which can be traced back to the rapidity divergences contained in the collinear
and soft mass mode diagrams. For µM = M this logarithm is resummed by the current evolution factors
with respect to the invariant mass, but not any more for a generic choice µM ∼ M . This feature holds
generically just for the one-loop case, at higher orders one encounters logarithmic terms which cannot be
resummed in this way [38,89].

We follow the method of Refs. [40, 41] for setting up the rapidity RG evolution. The summation of
these logarithms can be carried out independently after the µ-evolution has been settled, and this is the
approach we are adopting here, see Fig. 4.9. The result will be a simple exponentiation. In Refs. [40,41]
it has been pointed out that the µ-evolution and the summation of rapidity logarithms can also be
carried out simultaneously via a two-dimensional evolution merging RG evolution in virtuality (within
dimensional regularization) with RG evolution in rapidity.

We first decompose the current corrections into n-, n̄-collinear and soft contributions, which has been
in fact one step in the derivation of the factorization theorem 14

F̂SCET = F̂SCET,n × F̂SCET,n̄ × F̂SCET,s . (4.86)

Here we include implicitly the wave function contributions Zξn/2 and Zξn̄/2 in the terms for the cor-
responding collinear sectors. Let us consider the corresponding one-loop contributions. With the α-
regulator the soft mass mode as well as the soft-bin subtraction diagrams lead to vanishing scaleless
integrals, i.e. F̂ (1)

M,SCET,s = 0. Starting from Eq. (4.73), including half of the wave function renormal-
ization in Eq. (3.82) and taking the limit α → 0 prior to ε → 0, we obtain for the “bare” n-collinear

14The zero-bin contributions might be decoupled in SCET I via a field redefinition [87, 90] and recombined in SCET II
with the soft contributions to F̂SCET,s. We also emphasize that the individual expressions for each of the factors on the
RHS of Eq. (4.86) is regulator dependent.
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contribution 15

F̂
(bare,1)
M,SCET,n =

αsCF
4π

{
2

α

[
1

ε
− LM +O(ε)

]
+

1

ε

[
2 ln

(
ν

Q

)
+

3

2

]
− 2LM ln

(
ν

Q

)
− 3

2
LM +

9

4
− π2

3

}
,

(4.87)

and for the n̄-collinear contribution

F̂
(bare,1)
M,SCET,n̄ =

αsCF
4π

{
− 2

α

[
1

ε
− LM +O(ε)

]
+

2

ε2
− 1

ε

[
2 ln

(
Q2

M2

)
+ 2 ln

(
ν

Q

)
+ 2LM −

3

2

]

+L2
M + 2LM

[
ln
(
Q2

M2

)
+ ln

(
ν

Q

)]
− 3

2
LM +

9

4
− π2

2

}
. (4.88)

We see that F (bare,1)
M,SCET,n is free of large logarithms for ν = νn ∼ Q, and F (bare,1)

M,SCET,n̄ is free of large logarithms
for ν = νn̄ ∼ M2/Q. It is then possible to set up an evolution in ν between νn and νn̄. The resulting
current renormalization constants read

Z
(MS,1)
J ,n =

αs(µ, ν)CF
4π

{
2

α

[
1

ε
− LM +O(ε)

]
+

1

ε

[
2 ln

(
ν

Q

)
+

3

2

]}
, (4.89)

Z
(MS,1)
J ,n̄ =

αs(µ, ν)CF
4π

{
− 2

α

[
1

ε
− LM +O(ε)

]
+

2

ε2
− 1

ε

[
2 ln

(
Q2

M2

)
+ 2 ln

(
ν

Q

)
+ 2LM −

3

2

]}
.

(4.90)

We note that the renormalized strong coupling depends on the scale ν only due to the dimensional
extension of the k−-integration and satisfies dαs/d ln ν = −ααs. The sum of the individual counterterm
contributions gives the complete current counterterm corresponding to Eq. (4.14),

Z
(1)
C (Q,µ) = −

(
Z

(MS,1)
J ,n + Z

(MS,1)
J ,n̄

)
, (4.91)

which yields the correct µ-anomalous dimension for the hard current. The ν-evolution equation for the
soft, n- and n̄-collinear contributions of the threshold correction denoted by MC,s, MC,n and MC,n̄,
respectively, can be directly obtained from Eq. (4.84) applied to each sector and reads

ν
d
dν
MC,i(Q,M,µ, ν) =

(
γJ ,i,ν − γ(OS)

J ,i,ν

)
MC,i(Q,M,µ, ν) ≡ γMC ,iMC,i(Q,M,µ, ν) , (4.92)

where i = s, n, n̄ and the anomalous dimensions γ(OS)
J ,i,ν corresponding to counterterms in the OS scheme

employed below the mass threshold vanish for the massive gluon atO(αs). 16 The ν-anomalous dimensions
in the MS scheme employed above the mass threshold can be read off at O(αs) from the counterterm
contributions in Eqs. (4.89) and (4.90), 17

γ
(1)
J ,s,ν = − ν d

dν
Z

(MS,1)
J ,s = 0 , (4.93)

γ
(1)
J ,n,ν = − ν d

dν
Z

(MS,1)
J ,n = −αsCF

4π
2LM = −Γ

(1)
cusp

2
LM , (4.94)

γ
(1)
J ,n̄,ν = − ν d

dν
Z

(MS,1)
J ,n̄ =

αsCF
4π

2LM = −γ(1)
J ,n,ν . (4.95)

15Here the ε-dependence in the expression proportional to 1/α should be in principle kept unexpanded to avoid terms
going like ε/α in the µ-anomalous dimension. However, for convenience we show only the terms up to O(ε0).

16The anomalous dimensions with respect to the massless gluon contributions cancel exactly at O(αs) in the difference
between the two anomalous dimensions in Eq. (4.92). This does not hold when considering higher order corrections in the
strong coupling due to the scheme dependence of αs as we will see in Sec. 4.4.1.

17Using instead the symmetric Wilson line regulator η in Refs. [40,41] the corresponding anomalous dimensions γ(MS,1,η)
J ,i,ν

satisfy in terms of the one Eq. (4.94): γ(MS,1,η)
J ,s,ν = −2γ

(MS,1)
J ,n,ν and γ(MS,1,η)

J ,n,ν = γ
(MS,1,η)
J ,n̄,ν = γ

(MS,1)
J ,n,ν .
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M

Ja JcJb

Figure 4.10: Non-vanishing EFT diagrams for the computation of the jet function. The required soft-bin
subtractions are implicit. Concerning Ja also the right-symmetric diagram has to be taken into account.
At the end the imaginary part has to be taken.

We note that the coefficient multiplying LM = ln(M2/µ2) is related to the one-loop cusp anomalous
dimension due to the path-independence of the evolution in µ-ν-space, which holds to all orders in αs.
Solving Eq. (4.92) and expanding out the terms that do not involve large logarithms leads to

MC(Q,M,µM , νn, νn̄) = exp

[
αsCF

2π
LM ln

(
νn
νn̄

)](
1 +

αsCF
4π

{
−LM

[
ln
(
ν2
n

Q2

)
− ln

(
Q2ν2

n̄

M4

)]

+L2
M − 3LM +

9

2
− 5π2

6

})
. (4.96)

This expression is also suitable for an analytic continuation to timelike processes e.g. in e+e− → jets via
the replacement Q2 → −(Q2 + i0).

4.3.2 Jet function and threshold correction

Jet function

We calculate the O(αs) massive gluon contributions to the massless quark jet function. The corresponding
diagrams are listed in Fig. 4.10. The mass mode contributions to the jet function arise in the situation
λM ∼ λ, where the collinear mass modes can yield real and virtual effects with typical invariant mass
Q2λ2, so we can use the scaling kµ ∼ Q(λ2, 1, λ) for the n-collinear massive gluon keeping the full mass
dependence. The jet momentum and its invariant mass are denoted with pµ and s ≡ p2 = Qp+ + p2

⊥,
where the prescription s → s + i0 is understood in the following. We keep p+ explicitly non-zero in the
subsequent computations to account for the non-vanishing offshellness s of the jet sector and use a frame
with pµ⊥ = 0.

Taking into account the trace and the prefactors of the jet function matrix element in Eq. (4.7) we
obtain for diagram Ja (before taking the imaginary part)

Ja =− 2g2CF
πs

µ̃2ε

∫
ddk

(2π)d
p− − k−

[(p− k)2 + iε]

1

[k− − iε]
1

[k2 −M2 + iε]
. (4.97)

For our choice of the external momenta this yields

Ja =− 2g2CF
πs

µ̃2ε

∫
ddk

(2π)d
Q− k−

[s(1− k−/Q)−Qk+ + k2 + iε]

1

[k− − iε]
1

[k2 −M2 + iε]
. (4.98)

The corresponding soft mass mode bin subtraction with the scaling kµ ∼ Q(λM , λM , λM ) gives

Ja,0M = −2g2CF
πs

µ̃2ε

∫
ddk

(2π)d
Q

[s−Qk+ + iε]

1

[k− − iε]
1

[k2 −M2 + iε]
. (4.99)

Note that the invariant mass term s is maintained as an infrared scale to account for the non-zero jet
invariant mass. This is related to the fact that the typical invariant mass of the massless collinear quark
increases from Q2λ2 to Q2λM by an interaction with a virtual soft mass mode which also changes the
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parametric counting of s for the soft-bin contribution. In close analogy to the wave function contributions
discussed in Sec. 3.4.2 the sum of the self-energy diagrams Jb and Jc reads

Jb + Jc =− g2CF (d− 2)

πs
µ̃2ε

∫
ddk

(2π)d
1

[k2 −M2 + iε]

1 +Qk+/s

[s(1 + k−/Q) +Qk+ + k2 + iε]
. (4.100)

As we have discussed below Eq. (3.82), the soft-bin subtraction terms to the self-energy diagrams belong
to a subleading effective theory treatment and are thus not considered.

To compute the integrals, we apply the same technique as in Sec. 4.3.1, i.e. we first carry out the k+-
and k⊥-integrations. We will encounter rapidity singularities in the collinear mass mode contributions
and the soft-bin subtractions, for which we employ the α-regulator in Eq. (4.66) in the k− integration.
For Ja we then obtain

Ja = − i

πs

αsCF
2π

Γ
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2

)(
µ2eγE

M2

)2− d2 ( ν
Q

)α ∫ 1

0
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(
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M2
z
) d

2−2
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2
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(4.101)

with z ≡ k−/Q. In the second line we have also isolated the structures which are singular at s = 0 yielding
distributive pieces, for which we will need the full d-dimensional expressions, from structures which vanish
for M → ∞. The latter yield UV and IR-finite real radiation pieces which we have expanded for d → 4
in the last line.

The corresponding soft mass mode bin subtraction yields

Ja,0M = − i

πs

αsCF
2π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2 ( ν
Q

)α ∫ ∞

0

dz
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(
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M2
z
) d
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= − i
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2π

Γ

(
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2

)(
µ2eγE
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)2− d2 {
− 1

α
− ln

(
ν

Q

)
−H1− d2 − ln

(
− s

M2

)}
. (4.102)

In the difference of Ja and Ja,0M all rapidity divergences cancel and one obtains a finite result in di-
mensional regularization. We note that the rapidity divergences we encounter only affect the virtual
(distributive) contribution to the jet function. Note that the soft-bin contributions do not lead to any
real radiative terms, consistently with the counting argument given after Eq. (4.99).

Next, we proceed to the calculation of the self energy diagrams Jb + Jc. Here rapidity divergences
do not occur and we will thus not employ any regulator besides dimensional regularization. Defining
z ≡ −k+/p+ we arrive at the expression

Jb + Jc = − i

πs

αsCF
4π
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(
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)(
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2s2
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1− s
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+

3

4
− M2

2s

}
.

(4.103)

Here we have again expanded out a finite real radiation piece for d→ 4.
The sum of all diagrams before taking the imaginary part yields

2(Ja − Ja,0M ) + Jb + Jc = − i

πs

αsCF
4π

{
4 Γ

(
2− d

2

)(
µ2eγE
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ln
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)
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s
− 5

2

}
. (4.104)
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The same result was also obtained in Refs. [10, 26] without any regulator by properly recombining the
integrals, such that the rapidity divergences cancel implicitly. We can take the absorptive part with the
help of the relations in the appendix of Ref. [9] (which are partially also displayed in appendix B), which
leads to the mass mode contributions to the jet function. Including the massless gluon contributions we
write the unrenormalized jet function as

J (bare,1)(s,M, µ) = J (bare,1)(s, µ) + J
(bare,1)
M,virt (s,M, µ) + J

(1)
M,real(s,M) . (4.105)

Here the unrenormalized virtual contribution J (bare,1)
M,virt (s,M, µ) containing only distributions is given in d

dimensions by (s̄ = s/µ2)

µ2J
(bare,1)
M,virt (s,M, µ) =

αsCF
4π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2 {
δ(s̄)

[
4H d

2−1 − 4H1− d2 + 4LM −
2(d− 2)

d

]

−4

[
θ(s̄)

s̄

]

+

}
. (4.106)

The UV- and IR-finite correction J (1)
M,real(s,M) contributes only when the jet invariant mass is above the

threshold M and thus corresponds to real production of the massive gluons,

J
(1)
M,real(s,M) =

αsCF
4π

θ(s−M2)

{
(M2 − s)(3s+M2)

s3
+

4

s
ln
( s

M2

)}
. (4.107)

Expanding for ε→ 0 the virtual contributions read

µ2J
(bare,1)
M,virt (s,M, µ) =

αsCF
4π

{
δ(s̄)

[
4

ε2
+

3

ε
− 2L2

M − 3LM +
9

2
− π2

]
+

[
θ(s̄)

s̄

]

+

[
−4

ε
+ 4LM

]}
.

(4.108)

We see that the UV-divergences are mass independent and agree with those from the purely massless
jet function in Eq. (4.18). Therefore, using MS renormalization for both massless and massive gluon
contributions the jet function reads

J (MS,1)(s,M, µ) = J (1)(s, µ) + J
(1)
M,virt(s,M, µ) + J

(1)
M,real(s,M) . (4.109)

with

J
(1)
M,virt(s,M, µ) =J

(bare,1)
M,virt (s,M, µ)− Z(1)

J (s, µ)

=
αsCF

4π

{
δ(s̄)

[
−2L2

M − 3LM +
9

2
− π2

]
+ 4LM

[
θ(s̄)

s̄

]

+

}
. (4.110)

Note that for µ2 = µ2
J ∼ s the large logarithms that arise for M2 � s cancel between the real and virtual

mass mode contributions and we obtain the massless limit

J (MS,1)(s,M, µ)
M→0−→ 2J (1)(s, µ) . (4.111)

In contrast, if OS renormalization is employed for the massive gluon corrections we obtain the corre-
sponding counterterm contribution 18

Z
(OS,1)
J,M (s,M, µ) = J

(bare,1)
M,virt (s,M, µ) , (4.112)

which results in the renormalized jet function

J (OS,1)(s,M, µ) = J (1)(s, µ) + J
(1)
M,real(s,M) . (4.113)

Since the real radiation contribution contains a threshold it is obvious that the massive gluon terms
decouple for s�M .

18For the massless gluon contributions we still employ MS renormalization with the counterterm in Eq. (4.18).
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Jet function threshold correction

The mass mode threshold factorMJ(s,M, µM ) arises when the RG evolution of the jet function crosses
the massive quark threshold. The derivation goes along the lines of the current mass mode threshold
factor. The matching procedure is accounting for the difference between the jet functions in the OS and
MS scheme, thus the mass mode matching coefficient is obtained by the relation

MJ(s,M, µM ) =

∫
ds′ J (OS)(s− s′,M, µM )

(
J (MS)

)−1

(s′,M, µM )

=

∫
ds′ Z(MS)

J (s− s′, µM )
(
Z

(OS)
J

)−1

(s′,M, µM ) . (4.114)

Since the difference in the factorization theorems for the scenarios II and III in Eqs. (4.64) and (4.65)
concerns just the jet function and its evolution, Eq. (4.114) shows that the matching condition for the jet
function automatically implements a continuous transition between these two scenarios at M2 ∼ µ2

M ∼
µ2
J ∼ s. Note that real radiation terms are fully included in both scenarios. Thus we obtain up to O(αs)

µ2
JMJ(s,M, µM ) = δ(s̃)− J (1)

virt(s,M, µM ) +O(α2
s)

= δ(s̃) +
αsCF

4π

{
δ(s̃)

[
−4LM ln
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M + 3LM −
9

2
+ π2

]

− 4LM

[
θ(s̃)

s̃

]

+

}
+O(α2

s) . (4.115)

Similar to the mass mode matching coefficient of the current MC , also MJ contains a large logarithm
∼ ln(s/M2) for µM � µJ , which is manifest when using the normalized jet invariant mass variable
s̃ ≡ s/µ2

J . For the discussion of its resummation we closely follow the method outlined in Sec. 4.3.1. We
decompose the jet function as

J = Jn ⊗ J0M (4.116)

for the collinear and soft-bin mass mode contributions. 19 Note that J0M as it is defined here will
have an opposite sign compared to the soft-bin contributions in the jet function calculation (which were
subtracted). In the following we will not explicitly write out the real radiation corrections and the
massless gluon contributions, since they cancel in the ratio of Eq. (4.114).

Using the α-regulator and taking the limit α → 0 prior to ε → 0, we obtain for the bare virtual
collinear mass mode contributions from Eqs. (4.101) and (4.103)
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J J
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. (4.117)

Using Eq. (4.102) the contributions due to the soft-bin subtractions yield
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J J
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. (4.118)

We see that for µ = µM ∼ M the contribution J (bare,1)
M,virt,n is free of large logarithms for ν = νn ∼ Q, and

J
(bare,1)
M,virt,0M is free of large logarithms for ν = ν0M ∼ QM2/s. The resulting renormalization constants for

19Zero-bin subtractions can be formally decoupled in SCET I via field redefinitions [87,90]. Therefore we can in principle
also factorize the soft-bin subtractions in SCET II.



CHAPTER 4. VFNS FOR DIS IN THE ENDPOINT REGION 71

the jet threshold corrections read

µ2
J Z
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, (4.119)
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. (4.120)

The sum of the individual counterterm contributions yields the complete jet function counterterm corre-
sponding to Eq. (4.18)

Z
(1)
J,M (s, µ) = Z

(1)
J,M,n + Z

(1)
J,M,0M , (4.121)

which is in particular free of rapidity divergences and yields the correct µ-anomalous dimension for the jet
function. The ν-evolution equation for the collinear and soft-bin contributions to the threshold correction
denoted byMJ,n andMJ,0M , respectively, can be derived from Eq. (4.114) for each sector and reads

ν
d
dν
MJ,i(s,M,Q, µ, ν) = −

(
γJ,i,ν − γ(OS)

J,i,ν

)
MJ,i(s,M,Q, µ, ν) ≡ γMJ ,iMJ,i(s,M,Q, µ, ν) , (4.122)

where i = n, 0M and the anomalous dimensions γ(OS)
J,i,ν corresponding to counterterms in the OS scheme

employed below the mass threshold vanish for the massive gluon contributions at O(αs). Note that the
RGE in Eq. (4.122) does not involve a convolution in contrast to the RGE equation for µ, see Eq. (4.23).
This is due to the fact that the ν-anomalous dimension does not involve a cusp (see Ref. [38]) and is thus
purely local in the convolution variable. The ν-anomalous dimensions at O(αs) can be read off from the
counterterm contributions in Eqs. (4.119) and (4.120), 20

γ
(1)
J,n,ν = − ν d

dν
Z
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J,M,n = −αsCF

4π
4LM = −Γ(1)

cusp LM , (4.123)

γ
(1)
J,0M,ν = − ν d

dν
Z

(MS,1)
J,M,0M =

αsCF
4π

4LM = −γ(1)
J,n,ν . (4.124)

As for the current mass mode matching coefficient, there is no ν-evolution for µM = M . Solving
Eq. (4.122), which leads to the anticipated exponentiation, and expanding out the terms that do not
involve large logarithms leads to the final form of the jet function threshold correction,

µ2
JMJ(s,M, µM , νn, ν0M ) = exp
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αsCF
π

LM ln
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ν0M
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αsCF
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2
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2
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]
− 4LM

[
θ(s̃)

s̃

]

+

})
. (4.125)

4.3.3 Consistency relations
The fact of having four different scales relevant for setting up the RG evolution (µH , µJ , µφ and µM )
leads to another interesting feature related to the possibilities to pick the final renormalization scale
µ = µfinal which the hard current coefficient, the jet function and the PDF are being evolved to in the
different factorization theorems. In Fig. 4.11 we show an illustration of two equivalent choices for scenario
III (µJ > µM > µφ), where we display the situations that (a) µfinal lies between the mass and the PDF
scale and (b) between the jet and the mass scale. The equivalence concerning physical predictions for the
differential cross section leads to statements about the intrinsic connections between the components of
the factorization theorems. On the one hand, they imply the well-known consistency conditions between
the RG evolution factors UC , UJ and Uφ̃. However, in the context of the RG evolution crossing a massive
quark threshold they also imply a consistency relation between the mass mode threshold factorsMC ,MJ

20The Wilson line regulator η in Refs. [40,41] acts on the n-collinear sector and the soft-bin subtraction in the same way
as the α-regulator and thus yields the same result for the anomalous dimensions.



72 4.3. ONE-LOOP COMPUTATIONS FOR SECONDARY MASSIVE GLUONS

C

MC

J

MJ

φ

µH ∼ Q

µJ ∼ Qλ

µφ ∼ Qλ2

µfinal

µM ∼ M

U
( M

S
)

C
U

(O
S
)

C

U
(O

S
)

J
U

(M
S
)

J

U
( O

S
)

φ̃

(a)

˜

C

J

Mφ̃

φ

µfinal

U
(M

S
)

C

U
(M

S
)

J

U
(O

S
)

φ̃
U

(M
S
)

φ̃

(b)

˜

Figure 4.11: Illustration of the different RG setups for scenario III (µJ > µM > µφ) leading to the
consistency relations mentioned in the text. We display the cases where the final renormalization scale
µfinal satisfies (a) µM > µfinal > µφ and (b) µJ > µfinal > µM .

andMφ̃, the analogue for the PDF φ̃. This can be used to gain interesting general insights into properties
of mass singularities, and at the practical level, may be used as a non-trivial tool for consistency checks.

Apart from providing consistency checks of theoretical calculations, these relations have also compu-
tational power, as they can be used to calculate properties of independent gauge-invariant field theoretic
objects once it has become clear that they represent building blocks of a factorization theorem. In the
case of DIS these building blocks are the hard current coefficient, the jet function and the PDF. Hereby,
one of the most interesting aspects is that the various building blocks can appear in different factorization
theorems, as we will see in the discussion of event shapes in chapter 5, and one may gain insights into
the mass-singularities of apparently unrelated quantities.

To be specific let us consider the factorization theorem in scenario III for a different choice of the final
renormalization scale, namely the jet scale µfinal = µJ ,

F1(x,Q,M) =
∑

i=q

e2
i

2

∣∣C(MS)(Q,M,µH)
∣∣2 ∣∣U (MS)

C (Q,µH , µJ)
∣∣2

×
∫

ds
∫

dz
∫

dz′
∫

dz′′J (MS)(s,M, µJ)U
(MS)

φ̃
(1− z − s

Q2
, µJ , µM )

×Mφ̃(z − z′,M, µM )U
(OS)

φ̃
(z′ − z′′, µM , µφ) φ̃

(OS)
i/P

(
z′′ − x, µφ

)
. (4.126)

Here the mass mode threshold factor Mφ̃(1 − z,M, µM ) arises since the RG evolution of the PDF φ̃
crosses the massive quark threshold. This does not happen in the RG setup we discussed in Sec. 4.2,
since there the final renormalization scale has always been set to the PDF scale. Mφ̃ differs from MC

andMJ in the fact that it corresponds to the correction when the mass modes are integrated in, i.e. that
the threshold is crossed from below instead from above. 21

The equivalence of the factorization theorems in Eqs. (4.65) and (4.126) implies, besides the relation
between the evolution factors and anomalous dimensions shown in Eqs. (4.34) and (4.35) for nf =

21In this respect we could have also defined eitherMφ̃ orMC andMJ via their inverse. However, it will be always clear
from the context how we define the mass mode threshold corrections.
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nl, nl + 1, also a relation between the mass mode threshold factors,

Mφ̃(1− z,M, µ) = Q2 |MC(Q,M,µ)|2MJ(Q2(1− z),M, µ) . (4.127)

We have computed the PDF threshold condition for the radiation of a massive gluon at O(αs) already in
the classical region in Sec. 3.4.2. The result in the endpoint region can be easily obtained from Eq. (3.91)
by expanding for z → 1,

M(1)

φ̃
(1− z,M, µ) =

αsCF
4π

{
δ(1− z)

[
−3LM +

9

2
− 2π2

3

]
− 4LM

[
θ(1− z)

1− z

]

+

}
. (4.128)

Similar to the mass mode matching coefficient of the current and the jet function also Mφ̃ contains a
large logarithm ∼ ln(1− z), which is manifest when rescaling the plus-distribution using the identity in
Eq. (B.3) in terms of the normalized soft momentum variable ˜̀≡ `/νφ with ` = Q(1− z) and the profile
scale νφ ∼ Q(1− z) ∼ µ2

J/µH ,

νφ
Q
M(1)

φ̃

(
`

Q
,M,Q, µ, νφ

)
=
αsCF

4π

{
δ(˜̀)

[
−4LM ln

(
νφ
Q

)
− 3LM +

9

2
− 2π2

3

]
− 4LM

[
θ(˜̀)

˜̀

]

+

}
.

(4.129)

Note that the argument of the large logarithm is not depending on the mass scale µM or on the PDF
scale µφ, but only on the ratio between the scales νφ ∼ Q(1− z) and Q related to the separation of the
soft and n̄-collinear modes in rapidity. Using the explicit fixed-order expressions forM(1)

C in Eq. (4.85)
andM(1)

J in Eq. (4.115) one can check that the relation (4.127) is indeed satisfied at O(αs). Note that
Eq. (4.127) shows in particular that the rapidity logarithms (and singularities) that arise in the current,
jet and PDF sectors are intrinsically related to each other, which implies also that an exponentiation of
the large logarithms also takes place inMφ̃.

In the following we will compute the PDF threshold condition directly in the endpoint region and
confirm that it gives the same fixed-order result as the one derived from M(1)

φ,qq in the classical regime.
Since, however, for x→ 1 the collinear and soft contributions can be explicitly separated, the definition
in Eq. (4.8) provides a way to resum the rapidity logarithm in Eq. (4.128) via the rapidity RGE.

PDF threshold correction

For the computation of the PDF threshold correction we have to consider both the collinear PDF function
fq/P (`, µ) and the soft function Sφ(`, µ) defined in Eqs. (4.9) and (4.10), respectively. Since we are inter-
ested in the matching correction related to different employed schemes, we can perform the computation
with partonic initial states. In the following we consider only the massive gluon contributions.

Let us start with the computation of the partonic collinear contribution f̂ (1)
q/q, where the only contri-

bution for massive gluon radiation at O(αs) is given by the virtual gluon contribution of the diagram in
Fig. 3.12 (b) and which we denote by fn̄. After performing the k−- and k⊥-integrations we get in analogy
to Eq. (3.78)

fn̄ = −αsCF
2π

δ(`) Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2 ∫ Q

0

dk+

k+

(
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Q

) d
2−1

. (4.130)

This piece is not regularized by dimensional regularization and in contrast to the computation in Sec. 3.4.2
there is no collinear real radiation contribution to cancel the corresponding rapidity divergences. Em-
ploying the α-regulator for the k+-component in analogy to Eq. (4.66) and expanding for α → 0 gives
the same result for the integral as for the current matching contribution in Eq. (4.73),

fn̄ =
αsCF

2π
δ(`) Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2 { 1

α
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(
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)
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2−1

}
. (4.131)
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Figure 4.12: Non-vanishing Feynman diagrams for the computation of the one-loop massive gluon con-
tributions to the soft function Sφ(`, µ). The corresponding symmetric configurations are implied.

Now a corresponding function fn̄,0M for the soft-bin subtractions has to be taken into account, which
in general yields some additional contributions. 22 However, with our choice of regulator it vanishes in
analogy to Eq. (4.75). Including the contribution from the wave function renormalization in Eq. (3.82)
we obtain in total for the bare partonic collinear function

f̂
(bare,1)
q/q (`,M,Q, µ, ν) = 2 (fn̄ − fn̄,0M )− Z(1)

ξ δ(`)
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d

}
.

(4.132)

Expanding for d→ 4 gives the unrenormalized correction

f̂
(bare,1)
q/q (`,M,Q, µ, ν) =
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. (4.133)

Let us turn to the computation of the (partonic) soft matrix element Ŝ(1)
φ , where the corresponding

diagrams are shown in Fig. 4.12. The virtual diagram Sa is the analogue to the current diagram Vs in
Eq. (4.68) and reads

Sa = Vs δ(`) . (4.134)

Using the α-regulator entails therefore, that Sa vanishes. The real radiation diagram Sb yields

Sb = 2ig2CF µ̃
2ε

∫
ddk

(2π)d
1

[k− − iε]
1

[k+ − iε] (−2πi) θ(k+ + k−) δ(k2 −M2) δ(`− k+) . (4.135)

Employing the α-regulator for the k+ component and performing the k+- and k⊥-integrations gives

Sb =
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. (4.136)

Finally, expanding in α after the k−-integration yields (with ¯̀≡ `/ν)

ν Sb =
αsCF

2π
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)(
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− 1
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+

}
. (4.137)

22Concerning the resummation of rapidity logarithms fn̄,0M might be also associated with the soft function than with
the collinear function.
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Summing up all contributions the bare soft function reads in terms of ˜̀≡ `/νφ

νφ S
(bare,1)
φ (`,M, µ, ν) = 2 νφ (Sa + Sb)

=
αsCF

4π
Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2
{
δ(˜̀)

[
− 4

α
− 4 ln

(
ν

νφ

)]
+ 4

[
θ(˜̀)

˜̀

]

+

}
.

(4.138)

We emphasize that the computation of the soft diagrams does not require any collinear-bin subtractions
in contrast to the calculation in Ref. [78]. 23 Expanding for d→ 4 yields

νφ S
(bare,1)
φ (`,M, µ, ν) =

αsCF
4π

{
δ(˜̀)

(
− 1

α

[
4

ε
− 4LM +O(ε)

]
−
[

4

ε
− 4LM

]
ln
(
ν

νφ

))

+

[
θ(˜̀)

˜̀

]

+

[
4

ε
− 4LM

]}
. (4.139)

Upon combining the collinear and soft function the rapidity divergences cancel and the unrenormalized
partonic PDF at O(αs) reads (see also Ref. [78])

ˆ̃
φ

(bare,1)
q/q (1− z,M, µ) =

αsCF
4π

{
δ(1− z)

[
3

ε
− 3LM +

9

2
− 2π2

3

]
+

[
θ(1− z)

1− z

]

+

[
4

ε
− 4LM

]}
. (4.140)

Renormalizing the PDF in the MS scheme implies that the same counterterm is used as for massless
quarks given in Eq. (4.20), whereas in OS renormalization the counterterm is

Z
(OS,1)

φ̃
(1− z,M, µ) =

ˆ̃
φ

(bare,1)
q/q (1− z,M, µ) . (4.141)

The threshold correction for the PDF is related to the difference in the employed schemes in analogy to
Eq. (3.42) and is thus given at one loop by

M(1)

φ̃
(1− z,M, µ) =

ˆ̃
φ

(bare,1)
q/q (1− z,M, µ)− Z(1)

φ̃
(1− z,M, µ) , (4.142)

which yields Eq. (4.128).
In the same way as for the hard current and jet threshold correction we can also resum the rapidity

logarithms in the PDF matching factor. We see that f̂ (1)
q/q is free of large logarithms for ν = νf ∼ Q, and

Ŝ
(1)
φ is free of large logarithms for ν = νS ∼ νφ ∼ Q(1− x). The resulting counterterms associated to the

PDF mass mode matching coefficient read

νφ Z
(MS,1)

φ̃,f
=
αsCF

4π
δ(˜̀)

{
4

α

[
1

ε
− LM +O(ε)

]
+

1

ε

[
4 ln

(
ν

Q

)
+ 3

]}
, (4.143)

νφ Z
(MS,1)

φ̃,S
=
αsCF

4π

{
δ(˜̀)

(
− 4

α

[
1

ε
− LM +O(ε)

]
− 4

ε
ln
(
ν

νφ

))
+

4

ε

[
θ(˜̀)

˜̀

]

+

}
. (4.144)

The ν-evolution equation for the collinear and soft function contributions (i = f, S) to the threshold
correction reads

ν
d
dν
Mφ̃,i(`,M,Q, µ, ν) =

(
γφ̃,i,ν − γ

(OS)

φ̃,i,ν

)
Mφ̃,i(`,M,Q, µ, ν) ≡ γMφ̃,i

Mφ̃,i(`,M,Q, µ, ν) , (4.145)

23This is not related to the fact that in the computation in Ref. [78] the Wilson line regulator η was used. Repeating their
calculation we obtain a different result for the soft real radiation contribution that yields with the corresponding virtual
contribution (with which we agree) directly the soft function in Eq. (4.138).
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where the anomalous dimensions γ(OS)

φ̃,i,ν
corresponding to counterterms in the OS scheme employed below

the mass threshold vanish for the massive gluon at O(αs). We see that the RGE in Eq. (4.145) is again
local. The ν-anomalous dimensions at O(αs) can be read off from the counterterm contributions in
Eqs. (4.143) and (4.144), 24

γ
(1)

φ̃,f,ν
= − ν d

dν
Z

(MS,1)

φ̃,f
= −αsCF

4π
4LM = −Γ(1)

cusp LM , (4.146)

γ
(1)

φ̃,S,ν
= − ν d

dν
Z

(MS,1)

φ̃,S
=
αsCF

4π
4LM = −γ(1)

φ̃,f,ν
. (4.147)

Solving Eq. (4.145), which leads to the anticipated exponentiation, and expanding out the terms that do
not involve large logarithms leads to (with νS = νφ)

νφ
Q
Mφ̃

(
`

Q
,M,Q, µM , νf , νφ

)
= exp

[
αsCF
π

LM ln
(
νf
νφ

)](
1 +

αsCF
4π

{
δ(˜̀)

[
−4LM ln

(
νf
Q

)

− 3LM +
9

2
− 2π2

3

]
− 4LM

[
θ(˜̀)

˜̀

]

+

})
. (4.148)

4.3.4 Fixed-order expansion and comparison with full QCD result
Each of the factorization theorems discussed at the beginning of Sec. 4.3 contains all information about
the singular O(αs) secondary massive gluon corrections to the structure function F1(x,Q,m) in the
fixed-order expansion. Besides the virtual contributions in QCD, which are fully contained in the SCET
description, the singular perturbative fixed-order corrections consist also of the singular collinear real
radiation contributions which arise for 1 − x ∼ M2/Q2 � 1. Setting µ = µH = µJ = µM we obtain in
any scenario

F1(x,Q,M)|FO =
∑

i=q

e2
i

2

∫
dξ Q2

∣∣C(OS)(Q,M,µ)
∣∣2 J (OS)(Q2(1− ξ),M, µ)︸ ︷︷ ︸

≡C(OS)
x→1 (ξ,Q,M,µ)

φ̃
(OS)
i/P

(
ξ − x, µ

)
. (4.149)

where the massive gluon contributions to the fixed-order matching coefficient C(OS)
x→1 at O(αs) read

C(OS,1)
x→1,M (z,Q,M) = 2F̂

(1)
M,QCD(Q,M) δ(1− z) +Q2J

(1)
M,real(Q

2(1− z),M) (4.150)

with F̂
(1)
M,QCD(Q,M) and J

(1)
M,real(s,M) given in Eqs. (3.70) and (4.107), respectively. In the following

we show as a cross-check that this result can be obtained from the corresponding full QCD fixed-order
computation in Sec. 3.4.2, i.e.

C(OS,1)
qq (z,Q,M)

z→1−→ C(OS,1)
x→1,M (z,Q,M) (4.151)

with C(OS,1)
qq (z,Q,M) given in Eq. (3.88), and discuss the required expansion for z → 1. As stated before,

we see that the terms in the δ-distributions agree, which means that the SCET does not perform any
expansion for the virtual contributions. The term F̂

(1)
M,QCD,θ(z,Q,M) in the full QCD fixed-order result

in Eq. (3.88), which contains the threshold θ(1− z − M̂2z) (with M̂ ≡M/Q), contains the collinear real
radiation contributions. In the endpoint region the jet invariant mass Q

√
1− z and the mass M have to

be considered of the same order to account for real radiation effects in the singular expression. Thus we
have to expand in terms of 1− z ∼ M̂2 � 1 and obtain

θ(1− z − M̂2z) F̂
(1)
M,QCD,θ(z,Q,M)

z→1−→ αsCF
4π

θ(1− z − M̂2)



−

(
1− z − M̂2

)(
3(1− z) + M̂2

)

(1− z)3

+
4

1− z ln
(

1− z
M̂2

)}
+ O

(
(1− z)0, M̂0

)
, (4.152)

24The Wilson line regulator η yields the same result for the anomalous dimensions, see also Ref. [78].
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Figure 4.13: Massive gluon contributions at O(αs) in full QCD (blue, solid) together with the singular
result for z → 1 in the fixed-order expansion (red, dashed) and the nonsingular terms (green, dotted) for
M̂ = 0.2 (left panel) and M̂ = 0.1 (right panel), all normalized by αsCF /(4π).

which is equivalent to the term Q2J
(1)
M,real(Q

2(1− z),M).

In Fig. 4.13 we display the full fixed-flavor QCD term C(OS,1)
qq (z,Q,M) (blue, solid line), the singular

fixed-order terms corresponding to the SCET result in Eq. (4.150) (red, dashed line) and the remaining
nonsingular terms (green, dotted line) for M̂ = 0.2 and M̂ = 0.1. Here the singular contributions are
in fact dominant even up to small z. For small masses we see that the fixed-order expansion of the
fixed flavor result undergoes big changes related to large mass logarithms which render the perturbative
expansion unstable and which should be resummed by a proper VFNS description.

An important difference of the factorization theorems in the SCET setup compared to the fixed-order
QCD expansion is that in the former the various components are calculated in different renormalization
schemes to allow for the summation of logarithms involving ratios of the scales Q2, Q2(1−x) and M2, as
discussed at the beginning of Sec. 4.3. A maybe even more notable difference is that the consistent and
IR-safe definition of the jet function entails that virtual corrections have non-vanishing support for finite
values of 1−z, so that they do not only arise in coefficients of δ(1−z), but also in coefficients involving plus-
distributions (lnn(1 − z)/(1 − z))+. In contrast, the fixed-order expansion contains only real radiation
corrections for finite values of 1 − z and virtual corrections proportional to δ(1 − z) each of which is
individually IR-divergent for M → 0. The rearrangement of virtual and mass-singular corrections, which
is intrinsically connected to the consistency relation of Eq. (4.127), is the basis of rendering the hard
coefficient and the jet function in the factorization theorems IR-safe in the limit M → 0. This may
provide a guideline to understand the factorization from the point of view of the fixed-order expansion.

4.4 Two-loop computations for secondary massive quarks

After having calculated all secondary massive gluon results at O(αs) we are now able to apply the
dispersion relations in Sec. 3.4.1 to obtain the secondary massive quark corrections at O(α2

sCFTF ) to
the hard current coefficient, the jet function and the corresponding massive threshold corrections, which
were already given in the discussion of the factorization theorems in Sec. 4.2.

4.4.1 Hard current matching coefficient and threshold correction

Current matching coefficient

Following Eq. (3.62) we can obtain the O(α2
sCFTF ) secondary massive quark form factor corrections

relevant for the hard current matching calculation with the on-shell subtraction for the strong coupling
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by the relations

F̂
(nl,2)
m,QCD(Q,m) =

1

π

∫
dM2

M2
F̂

(1)
M,QCD (Q,M) Im

[
Π(m2,M2)

]
, (4.153)

F̂
(nl,bare,2)
m,SCET (Q,m, µ) =

1

π

∫
dM2

M2
F̂

(bare,1)
M,SCET(Q,M,µ) Im

[
Π(m2,M2)

]
, (4.154)

where F̂
(1)
M,QCD(Q,M) (F̂ (bare,1)

M,SCET(Q,M,µ)) denotes the one-loop massive gluon form factor in QCD

(SCET) computed in Eqs. (3.70) (in Eq. (4.76)). The full QCD correction at two loop, F̂ (nl,2)
m,QCD, is

both IR- and UV-finite, has been computed in Sec. 3 and is given in Eq. (3.95).
Carrying out the convolution in Eq. (4.154) for the bare SCET form factor in d = 4− 2ε dimensions

and expanding in ε we obtain (LQ ≡ ln(Q2/µ2), m̂ ≡ m/Q)

F̂
(nl,bare,2)
m,SCET (Q,m, µ) =

(
α

(nl)
s

)2
CFTF

(4π)2

{
2

ε3
+

1

ε2

[
−8

3
ln(m̂2)− 4LQ +

8

9

]
+

1

ε

[
4

3
ln2(m̂2) +

16

3
ln(m̂2)LQ

+ 4L2
Q − 4 ln(m̂2)− 16

9
LQ −

(
65

27
+
π2

9

)]
− 8

3
ln2(m̂2)LQ −

16

3
ln(m̂2)L2

Q

− 8

3
L3
Q +

56

9
ln2(m̂2) + 8 ln(m̂2)LQ +

16

9
L2
Q +

(
242

27
+

4π2

9

)
ln(m̂2)

+

(
130

27
+

2π2

9

)
LQ +

875

54
+

8π2

9
− 20

3
ζ3

}
. (4.155)

If we renormalize the current using the OS condition, the corresponding counterterm contribution asso-
ciated to the Wilson coefficient reads

Z
(nl,2)
C,m (Q,m, µ) = −F̂ (nl,bare,2)

m,SCET (Q,m, µ) , (4.156)

such that no finite corrections remain in the renormalized SCET result and the hard matching coefficient
just contains the full QCD corrections in the nl-scheme,

C
(nl,2)
TF

(Q,m, µ) = C
(nl,2)
TF

(Q,µ) + F̂
(nl,2)
m,QCD(Q,m) . (4.157)

This Wilson coefficient corresponds to the one used for scenario I in Sec. 4.2.
Since F̂ (nl,2)

m,QCD and F̂ (nl,2)
m,SCET have been computed with the subtracted dispersion relation they corre-

spond to expressions in the nl flavor scheme for the strong coupling. To switch to the (nl + 1)-flavor
scheme one has to add the MS-subtracted vacuum polarization function at zero-momentum times the
corresponding one-loop form factor, i.e.

F̂
(nl+1,2)
m,QCD (Q,m, µ,∆) = F̂

(nl,2)
m,QCD(Q,m)−

(
Π(m2, 0)− αsTF

3π

1

ε

)
F̂

(1)
QCD(Q,µ,∆) , (4.158)

F̂
(nl+1,bare,2)
m,SCET (Q,m, µ,∆) = F̂

(nl,bare,2)
m,SCET (Q,m, µ)−

(
Π(m2, 0)− αsTF

3π

1

ε

)
F̂

(bare,1)
SCET (Q,µ,∆) , (4.159)

where F̂ (1)
QCD(Q,µ,∆) (F̂ (bare,1)

SCET (Q,µ,∆)) is the (bare) massless gluon one-loop QCD (SCET) form factor
calculated with an IR regulator ∆. To obtain the matching coefficient one should in principle first
renormalize both quantities and then calculate their difference where the dependence on ∆ cancels. Since
the QCD current is UV finite, it is convenient to revert this procedure in analogy to the computation in
Sec. 3.4.3, i.e. to first determine the difference of the unrenormalized quantities and renormalize the UV
divergences in the SCET contribution at the very end, such that the cancellation of the IR divergences
can be made explicit from the beginning. The difference of the massless gluon one-loop QCD and SCET
form factors has the form 25

F̂
(1)
QCD(Q,µ,∆)− F̂ (bare,1)

SCET (Q,µ,∆) = Z
(1)
C (Q,µ) + C(1)(Q,µ) , (4.160)

25Using dimensional regularization for both UV and IR divergences the SCET form factor for massless gluons vanishes
identically.
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where the hard matching coefficient at one-loop C(1)(Q,µ) and the corresponding counterterm Z
(1)
C (Q,µ)

are given in Eqs. (4.12) and (4.14), respectively. The additional term corresponding to the change from
the nl- to the (nl + 1)-flavor scheme thus reads

C(nl→nl+1,2)(Q,m, µ) = −
(

Π(m2, 0)− αsTF
3π

1

ε

)(
Z

(1)
C (Q,µ) + C(1)(Q,µ)

)

=
α2
sCFTF
(4π)2

{
1

ε2

[
−8

3
ln(m̂2)− 8

3
LQ

]
+

1

ε

[
4

3
ln2(m̂2) +

16

3
ln(m̂2)LQ + 4L2

Q

− 4 ln(m̂2)− 4LQ +
2π2

9

]
− 4

9
ln3(m̂2)− 8

3
ln2(m̂2)LQ −

16

3
ln(m̂2)L2

Q

− 28

9
L3
Q + 2 ln2(m̂2) + 8 ln(m̂2)LQ + 6L2

Q −
32

3
ln(m̂2)−

(
32

3
+

2π2

9

)
LQ

+
π2

3
− 8

9
ζ3

}
. (4.161)

Combining all contributions and including the MS current counterterm contribution Z
(nl+1,2)
C,TF

given in
Eq. (4.15), the result for the O(α2

sCFTF ) secondary massive quark contributions to the hard current
coefficient in the (nl + 1)-flavor scheme, denoted by δC(nl+1,2)

m , reads

δC(nl+1,2)
m (Q,m, µ) = F̂

(nl,2)
m,QCD(Q,m)− F̂ (nl,bare,2)

m,SCET (Q,m, µ) + C(nl→nl+1,2)(Q,m, µ)− Z(nl+1,2)
C,TF

(Q,µ) ,

(4.162)

with αs = α
(nl+1)
s (µ) employed in δC(nl+1,2)

m at the end. Inserting Eqs. (4.15), (4.155) and (4.161) gives
(see also Ref. [26])

δC(nl+1,2)
m (Q,m, µ) = F̂

(nl,2)
m,QCD(Q,m) +

(
α

(nl+1)
s

)2
CFTF

(4π)2

{
−4

9
ln3(m̂2)− 4

9
L3
Q −

38

9
ln2(m̂2) +

38

9
L2
Q

+

(
530

27
+

4π2

9

)
ln(m̂2)−

(
418

27
+

4π2

9

)
LQ −

875

54
− 5π2

9
+

52

9
ζ3

}
, (4.163)

Subtracting from Eq. (4.162) the massless limit in Eq. (4.13) we obtain the mass corrections to the form
factor in MS renormalization for the scenarios II and III in Sec. 4.2, F̂∆m(Q,m), defined in Eq. (4.42).
We see from the result of Eq. (4.43) that the SCET matching procedure in the (nl + 1)-flavor scheme
does in principle nothing else than exactly subtracting the asymptotic massless limit from the full QCD
on-shell form factor correction. This is expected since the IR sensitivity has to cancel at leading order in
m/Q if the factorization in Sec. (4.1) has been set up properly, such that the SCET calculation can be
seen as consistency check without providing new essential information.

Hard current threshold correction

The mass mode threshold factorMC(Q,m, µm) is straightforward to determine from the relation between
the renormalized hard current coefficients in the OS and MS scheme at the scale µm. The matching
accounts for the difference between the two schemes and is obtained by the relation

MC(Q,m, µm) =
C(nl)(Q,m, µm)

C(nl+1)(Q,m, µm)
=

Z
(nl+1)
C (Q,µm)

Z
(nl)
C (Q,m, µm)

=
Z

(nl)
J (Q,µm)

Z
(nl+1)
J (Q,m, µm)

. (4.164)

Since the difference in the factorization theorems for scenario I and II in Eqs. (4.37) and (4.41) concerns
just the current matching coefficient and evolution, Eq. (4.164) makes it evident that the condition for
the current mass mode matching coefficient automatically implements a continuous transition between
these two scenarios. In the border region between the two scenarios, i.e. m ∼ µm ∼ µH ∼ Q, the same
mass-shell contributions are just swapped between the Wilson coefficient and the mass mode matching
coefficient.
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Since the expressions in Eq. (4.164) are written in different schemes for αs one has to relate them by
the decoupling relation for αs in Eq. (3.112). Using the structure of the Wilson coefficients in Eqs. (4.38)
and (4.42), we obtain at O(α2

s) in the fixed-order counting (Lm = ln(m2/µ2))

MC(Q,m, µ) = 1 + F̂
(nl,2)
m,QCD(Q,m)− δC(nl+1,2)

m (Q,m, µ) +
α

(nl+1)
s TF

3π
LmC

(nl+1,1)(Q,µ) +O(α3
s) .

(4.165)

Inserting all explicit expressions gives at O(α2
s) in the fixed-order counting we find

M(2)
C (Q,m, µm) =

α2
sCFTF
16π2

{[
4

3
L2
m +

40

9
Lm +

112

27

]
ln
(
m2

Q2

)
− 8

9
L3
m −

2

9
L2
m +

(
130

27
+

2π2

3

)
Lm

+
875

54
+

5π2

9
− 52

9
ζ3

}
. (4.166)

Since there are no O(αs) one-loop corrections the schemes of αs and the mass appearing in Eq. (4.166)
do not need to be specified at this point. In Eq. (4.166) we see explicitly the large rapidity logarithm
ln
(
m2/Q2

)
which enforces the counting αs ln(m2/Q2) ∼ 1.

We will now set up a RG evolution in rapidity space to resum the associated higher order logarithms in
analogy to the one-loop case described in Sec. 4.3.1. As in Eq. (4.86) we decompose the bare SCET form
factor in terms of n-collinear, n̄-collinear and soft contributions. Note that the scheme difference of the
strong coupling above and below threshold requires that also the one-loop corrections for the radiation
of a massless gluon have to be accounted for and should be decomposed in the same way. To achieve this
goal we will use a gluon mass Λ � m as an infrared regulator which allows us to apply the results in
Sec. 4.3.1. We write the two-loop contributions as

F̂
(nl+1,bare,2)
m,SCET,i (Q,m,Λ, µ, ν) =

1

π

∫
dM2

M2
F̂

(bare,1)
M,SCET,i(Q,M,µ, ν) Im

[
Π(m2,M2)

]

−
(

Π(m2, 0)− α
(nl+1)
s TF

3π

1

ε

)
F̂

(bare,1)
M,SCET,i(Q,Λ, µ, ν) , (4.167)

with i = n, n̄, s and the nonvanishing one-loop massive gluon corrections F̂ (bare,1)
M,SCET,i given in Eqs. (4.87)

and (4.88). We will display the rapidity divergent collinear and soft contributions using the α-regulator
in Eq. (4.66). After performing the subtracted dispersion relation and including the scheme change
contribution we obtain for the individual sectors (LΛ = ln(Λ2/µ2))

F̂
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m,SCET,n =
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)2
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}
, (4.168)

F̂
(nl+1,bare,2)
m,SCET,n̄ =
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, (4.169)
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and F̂ (nl+1,bare,2)
m,SCET,s = 0 . Therefore, the nonvanishing two-loop counterterm contributions above threshold,

where we use MS-renormalization, read for the current 26

Z
(nl+1,2)
J ,n,TF =

α
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s (µ, ν)α
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s (µ)CFTF

16π2
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27
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, (4.170)

Z
(nl+1,2)
J ,n̄,TF =

α
(nl+1)
s (µ, ν)α
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s (µ)CFTF

16π2
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+
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. (4.171)

The sum of the individual counterterm contributions gives the complete current counterterm for one
flavor corresponding to Eq. (4.15),

Z
(nl+1,2)
C,TF

(Q,µ) = −
(
Z

(nl+1,2)
J ,n,TF + Z

(nl+1,2)
J ,n̄,TF

)
. (4.172)

This yields together with the corresponding contributions at O(αs), for which the analogous relation
holds, the correct µ-anomalous dimension for the current at O(α2

sCFTF ) in Eq. (4.29). The ν-anomalous
dimensions for the soft, n- and n̄-collinear contributions in the MS-scheme satisfy 27

γ
(nl+1,2)
J ,s,ν,TF = − ν d

dν
Z

(nl+1,2)
J ,s,TF = 0 , (4.173)

γ
(nl+1,2)
J ,n,ν,TF = − ν d
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Z

(nl+1,2)
J ,n,TF =

(
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)2
CFTF

16π2

{
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40

9
Lm +

112

27

}
, (4.174)

γ
(nl+1,2)
J ,n̄,ν,TF = − ν d

dν
Z

(nl+1,2)
J ,n̄,TF = −γ(nl+1,2)

J ,n,ν,TF . (4.175)

Note that these anomalous dimensions are depending on the infrared regulator Λ. However, this depen-
dence drops out in the ν-evolution of the massive threshold correction, which is decomposed in terms of
n-, n̄-collinear and soft contributions satisfying in analogy to Eq. (4.92)

ν
d
dν
MC,i(Q,m, µ, ν) =

(
γ

(nl+1)
J ,i,ν − γ

(nl)
J ,i,ν

)
MC,i(Q,m, µ, ν) ≡ γMC ,iMC,i(Q,m, µ, ν) (4.176)

with i = n, n̄, s. This is due to the fact that the difference of the scheme for αs in the MS and OS
anomalous dimensions affects the terms at O(α2

sCFTF ),

γ
(nl+1)
J ,i,ν − γ

(nl)
J ,i,ν =

(
γ

(nl+1,1)
J ,i,ν − γ(nl,1)

J ,i,ν

)
+
(
γ

(nl+1,2)
J ,i,ν,TF − γ

(nl,2)
J ,i,ν,TF

)
+O(α3

s)

= γ
(nl+1,2)
J ,i,ν,TF −

α
(nl+1)
s TF

3π
Lm γ

(nl+1,1)
J ,i,ν +O(α3

s) , (4.177)

where we have used the decoupling relation of αs in Eq. (3.112) and the fact that the OS counterterms
lead to vanishing anomalous dimensions for the massive quark contributions, i.e. γ(nl,2)

J ,i,ν,TF = 0. Using

the result for the gluon mass dependent one-loop anomalous dimensions γ(1)
J ,i,ν in Eqs. (4.93) – (4.95) we

obtain γ(2)
MC ,s

= 0 and

γ
(2)
MC ,n

= −γ(2)
MC ,n̄

=
α2
sCFTF
16π2

{
4

3
L2
m +

40

9
Lm +

112

27

}
+O(α3

s) . (4.178)

26We indicate explicitly that only the strong coupling related to the interactions of the gluon to the primary quarks is
affected by the rapidity regularization procedure and adopts a ν-dependence. The interactions due to gluon splitting within
a single sector do not contain any rapidity divergences and therefore do not need additional regularization.

27Using the symmetric Wilson line regulator η in Refs. [40,41] one obtains the same relations for the anomalous dimensions
as in the one-loop case, i.e. γ(nl+1,2,η)

J ,s,ν,TF = −2γ
(nl+1,2)
J ,n,ν,TF and γ(nl+1,2,η)

J ,n,ν,TF = γ
(nl+1,2,η)
J ,n̄,ν,TF = γ

(nl+1,2)
J ,n,ν,TF .
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The solution of Eq. (4.176) is the anticipated exponentiation which allows to determine the required term
at O(α4

s ln
2(m2/Q2)) ∼ O(α2

s) in the logarithmic counting αsln(m2/Q2) ∼ 1.
For a complete analysis at N3LL we would also need the term at O(α3

s ln(m2/Q2)) ∼ O(α2
s). We can

determine its µm-dependent contribution from the identity

MC(Q,m, µm) = U
(nl+1)
C (Q,µm,m)MC(Q,m,m)U

(nl)
C (Q,m, µm) , (4.179)

or equivalently,

µ
d
dµ
MC(Q,m, µ) = −

(
γ

(nl+1)
C (Q,µ)− γ(nl)

C (Q,µ)
)
MC(Q,m, µ) . (4.180)

Expanding in αs gives the perturbative result for the µm-dependent terms. Including the relevant term at
O(α3

s ln(m2/Q2)) in the exponent the structure of the mass mode matching coefficient reads 28 (α(nl+1)
s =

α
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s (µm), m = m(µm))
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. (4.181)

Here ∆η ≡ η(nl+1) − η(nl) is the difference between an evolution constant η in the (nl + 1)- and nl-
scheme. The terms ΓCi , γCi , γmi and βi denote the coefficients of the cusp and noncusp current anomalous
dimensions, the mass anomalous dimension and the beta function with nl + 1 light quarks, respectively,

µ
d
dµ

C(nl+1)(Q,µ) =
∑

i≥0

(
α

(nl+1)
s (µ)

4π

)i+1 [
−ΓCi LQ + γCi

]
C(nl+1)(Q,µ) , (4.182)

µ
d
dµ

m(nl+1)(µ) = − 2
∑

i≥0

(
α

(nl+1)
s (µ)

4π

)i+1

γmi m(nl+1)(µ) , (4.183)

µ
d
dµ

α(nl+1)
s (µ) = − 2

∑

i≥0

(
α

(nl+1)
s (µ)

4π

)i+1

βi α
(nl+1)
s (µ) , (4.184)

where γm0 = 3CF for the MS scheme and the remaining required anomalous dimensions in the MS scheme
are displayed in appendix C. The terms MC,+

i (MC
i ) indicate the renormalization scale independent

constants, which multiply (do not multiply) the rapidity logarithm ln(m2/Q2) in the matching coefficient.
Note that we have not determined the relevant constantMC,+

3 at this stage. We will see in Sec. 4.4.3 how
to relate it to an existing result for the PDF threshold correction. The constant cdec is the mass scheme
dependent coefficient of the two-loop correction in the decoupling relation between the strong couplings
in the nl and the (nl + 1)-flavor schemes at the scale of the mass, that is being employed, i.e.

α(nl)
s (m) = α(nl+1)

s (m)

[
1 +

(
α

(nl+1)
s (m)

4π

)2

cdec

]
. (4.185)

28For simplicity we set νn = Q and νn̄ = µm here. For a phenomenological error estimate the ν-dependence can be easily
restored.
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For the MS mass m = m(µm) we have (see e.g. Ref. [91])

cMS
dec =

32

9
CATF −

13

3
CFTF . (4.186)

Inserting the values for all of the constants and expanding Eq. (4.181) using the logarithmic counting
αsln(m2/Q2) ∼ 1 gives our final result in Eq. (4.45).

4.4.2 Jet function and threshold correction

Jet function

The calculation of the O(α2
sCFTF ) secondary massive quark corrections to the jet function in the (nl+1)-

flavor scheme goes along the lines of the hard current coefficient. In the nl-flavor scheme for αs they
can be obtained from the one-loop jet function for the radiation of a massive gluon with the subtracted
dispersion relation

J (nl,bare,2)
m (s,m, µ) =J

(nl,bare,2)
m,virt (s,m, µ) + J

(nl,2)
m,real(s,m)

=
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(1)
M,real(s,M)

)
Im
[
Π(m2,M2)

]
, (4.187)

where the O(αs) results for the virtual emission in d dimensions and the real emission in 4 dimensions,
J

(bare,1)
M,virt (s,M, µ) and J (1)

M,real(s,M), are given in Eqs. (4.106) and (4.107), respectively. The convolution
is performed separately for these terms, where for the real radiation correction no divergences arise in
the M -integration and thus the d = 4 version of the absorptive part of the vacuum polarization function
in Eq. (3.61) can be used. This yields Eq. (4.54) for the real radiation term J

(nl,2)
m,real(s,m) (where the

nl-scheme for αs is implied) and (s̄ = s/µ2
m)
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. (4.188)

If we renormalize the jet function using the OS condition, the corresponding counterterm contribution
reads

Z
(nl,2)
J,m (s,m, µ) = J

(nl,bare,2)
m,virt (s,m, µ) , (4.189)

and the complete renormalized jet function contains besides the massless quark corrections just the real
radiation contributions,

J
(nl,2)
TF

(s,m, µ) = J
(nl,2)
TF

(s, µ) + J
(nl,2)
m,real(s,m) . (4.190)

We switch to the (nl + 1)-flavor scheme for αs by adding the MS-renormalized Π(0) times the (un-
renormalized) massless one-loop contribution to the jet function

J (bare,1)(s, µ) = J (1)(s, µ) + Z
(1)
J (s, µ) , (4.191)

with J (1)(s, µ) and Z
(1)
J (s, µ) given in Eqs. (4.16) and (4.18), respectively. Thus the corresponding



84 4.4. TWO-LOOP COMPUTATIONS FOR SECONDARY MASSIVE QUARKS

contribution needed to change from the nl to the (nl + 1)-flavor scheme reads
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}
. (4.192)

Combining all virtual massive quark contributions and renormalizing the result with the jet counterterm
contribution Z(nl+1,2)

J,TF
in Eq. (4.19) finally gives

J
(nl+1,2)
m,virt (s,m, µ) =J

(nl,bare,2)
m,virt (s,m, µ) + δJ (nl→nl+1,2)(s,m, µ)− Z(nl+1,2)

J,TF
(s, µ) (4.193)

with αs = α
(nl+1)
s (µ) employed at the end in J

(nl+1,2)
m,virt . Inserting Eqs. (4.19), (4.188) and (4.192) we

obtain (see also Ref. [26])
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. (4.194)

Subtracting from Eq. (4.194) the massless limit of Eq. (4.17) we obtain the distributive mass corrections
to the jet function given in Eq. (4.53).

Jet function threshold correction

The mass mode threshold factorMJ(s,m, µm) is straightforward to determine from the relation between
the renormalized jet functions in the OS and MS scheme at the scale µm. The matching accounts for the
difference between the two schemes and is obtained by the relation

MJ(s,m, µm) =

∫
ds′ J (nl)(s− s′,m, µm)

(
J (nl+1)

)−1

(s′,m, µm)

=

∫
ds′ Z(nl+1)

J (s− s′, µm)
(
Z

(nl)
J

)−1

(s′,m, µm) . (4.195)

Since the difference in the factorization theorems for the scenarios II and III in Eqs. (4.41) and (4.51)
concerns just the jet function and its evolution, Eq. (4.195) shows that the matching condition for the jet
function automatically implements a continuous transition between these two scenarios for m2 ∼ µ2

m ∼
µ2
J ∼ s, in particular at O(α2

s) also due to the fact that the real radiation terms J (nl,2)
m,real and J

(nl+1,2)
m,real ,

respectively, are fully included in each of the two scenarios.
Relating the schemes of αs via Eq. (3.112), we obtain at O(α2

s) in fixed-order counting

MJ(s,m, µm) = δ(s)− J (nl+1,2)
m,virt (s,m, µ) +

α
(nl+1)
s TF

3π
Lm J

(nl+1,1)(s, µm) +O(α3
s) . (4.196)

Note that using the renormalized jet functions for the matching calculation the real radiation terms
cancel in Eq. (4.195) and do not contribute to the threshold correction factor. 29 Inserting all explicit

29This should hold to any order in perturbation theory which is technically satisfied due to mixed virtual-real massive
quark corrections in the (nl + 1)-scheme at higher orders.
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expressions gives at O(α2
s) in the fixed-order counting
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. (4.197)

Since there are no O(αs) one-loop corrections the schemes of αs and the mass appearing in Eq. (4.197)
do not need to be specified at this point. Eq. (4.197) contains a large logarithm ln(m2/s), which can be
better seen by a rescaling of the invariant mass variable s̄ = s/µ2

m in terms of s̃ = s/µ2
J ∼ O(1) with the

help of Eq. (B.3),
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−
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.

As for the current mass mode matching coefficient this is a rapidity logarithm which enforces the counting
αs ln(m2/s) ∼ O(1).

We will now set up a RG evolution in rapidity space to resum the associated higher order logarithms in
analogy the one-loop case described in Sec. 4.3.2. As in Eq. (4.116) we decompose the bare jet function in
terms of n-collinear and the soft-bin contributions. Note that the scheme difference of the strong coupling
above and below threshold requires that also the one-loop corrections for the radiation of a massless gluon
have to be accounted for and should be decomposed in the same way. For this purpose we will again use
a gluon mass Λ� m as an infrared regulator which allows us to apply the results in Sec. 4.3.2. We write
the two-loop contributions for virtual massive quarks as

J
(nl+1,2,bare)
m,virt,i (s,m,Q,Λ, µ, ν) =
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(
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M,virt,i(s,Q,Λ, µ, ν) , (4.199)

with i = n, 0m denoting the n-collinear and the soft-bin contributions and the one-loop massive gluon
corrections J (bare,1)

M,virt,i given in Eqs. (4.117) and (4.118). After performing the subtracted dispersion
relation and including the scheme change contribution we obtain for the individual contributions 30

(LΛ = ln(Λ2/µ2))
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, (4.200)

30Note that the virtual n-collinear correction is equivalent to the corresponding current contribution in Eq. (4.168), i.e.
J

(nl+1,bare,2)
m,virt,n = 2F̂

(nl+1,bare,2)
m,SCET,n δ(s), which are both described by the same types of diagrams.
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and

µ2J
(nl+1,bare,2)
m,virt,0m =

(
α

(nl+1)
s

)2
CFTF

16π2

{
δ(s̄)

(
1

α

[
− 8

3ε2
+

40

9ε
+

16

3
LmLΛ −

8

3
L2
m −

80

9
Lm −

224

27
+O(ε)

]

+
4

ε3
+

1

ε2

[
−8

3
ln
(
ν

Q

)
− 20

9

]
+

1

ε

[
40

9
ln
(
ν

Q

)
− 112

27
+

2π2

9

]

+

(
−16

3
LmLΛ +

8

3
L2
m +

80

9
Lm +

224

27

)
ln
(
ν

Q

)
− 8

3
LmL

2
Λ +

8

9
L3
m +

40

9
L2
m

+

(
448

27
− 8π2

9

)
Lm +

656

27
− 10π2

27
− 56

9
ζ3

)
+

[
θ(s̄)

s̄

]

+

(
− 8

3ε2
+

40

9ε
+

16

3
LmLΛ

− 8

3
L2
m −

80

9
Lm −

224

27

)}
. (4.201)

Therefore, the nonvanishing two-loop counterterm contributions above threshold, where we use MS-
renormalization, read

µ2Z
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α
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, (4.202)

µ2Z
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. (4.203)

The sum of the individual counterterm contributions gives the complete jet function counterterm at
O(αsCFTF ) corresponding to Eq. (4.19),

Z
(nl+1,2)
J,TF

(s, µ) = Z
(nl+1,2)
J,n,TF

+ Z
(nl+1,2)
J,0m,TF

. (4.204)

This yields together with the corresponding contributions atO(αs), for which the analogous relation holds,
the correct µ-anomalous dimension for the jet function at O(α2

sCFTF ) in Eq. (4.31). The ν-anomalous
dimensions for the pure n-collinear and the soft-bin contributions in the MS-scheme satisfy 31

γ
(nl+1,2)
J,n,ν,TF

= − ν d
dν

Z
(nl+1,2)
J,n,TF

=

(
α

(nl+1)
s

)2
CFTF

16π2

{
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3
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80

9
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224

27

}
, (4.205)

γ
(nl+1,2)
J,0m,ν,TF

= − ν d
dν

Z
(nl+1,2)
J,0m,TF

= −γ(nl+1,2)
J,n,ν,TF

. (4.206)

As for the current threshold correction the dependence on the infrared regulator Λ cancels in the ν-
evolution of the jet function threshold correction, which is decomposed in terms of n-collinear and soft-bin
contributions satisfying in analogy to Eq. (4.122)

ν
d
dν
MJ,i(s,m, µ, ν) = −

(
γ

(nl+1)
J,i,ν − γ(nl)

J,i,ν

)
MJ,i(s,m, µ, ν) ≡ γMJ ,iMJ,i(s,m, µ, ν) (4.207)

with i = n, 0m. The difference between the anomalous dimensions in MS and OS renormalization reads

γ
(nl+1)
J,i,ν − γ(nl)

J,i,ν = γ
(nl+1,2)
J,i,ν − α

(nl+1)
s TF

3π
Lm γ

(nl+1,1)
J,i,ν +O(α3

s) . (4.208)

31The same results hold when the η-regulator in Refs. [40, 41] is employed.
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Using the results for the gluon mass dependent one-loop anomalous dimensions in Eqs. (4.93) – (4.95)
we obtain

γMJ ,n = −γMJ ,0m =
α2
sCFTF
16π2

{
−8

3
L2
m −

80

9
Lm −

224

27

}
+O(α3

s) . (4.209)

The solution of Eq. (4.207) is the anticipated exponentiation which allows to determine the required term
at O(α4

s ln
2(m2/s)) ∼ O(α2

s) in the logarithmic counting αsln(m2/s) ∼ 1.
For a complete analysis at N3LL we also need the term at O(α3

s ln(m2/s)) ∼ O(α2
s). We can determine

its µm-dependent contribution from the identity

MJ(s,m, µm) =

∫
ds′
∫

ds′′ U (nl+1)
J (s− s′,m, µm)MJ(s′ − s′′,m,m)U

(nl)
J (s′′, µm,m) . (4.210)

or equivalently,

µ
d
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MJ(s,m, µ) = −

∫
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(
γ

(nl+1)
J (s− s′, µ)− γ(nl)

J (s− s′, µ)
)
MJ(s′,m, µ) . (4.211)

Expanding in αs gives the perturbative result for the µm-dependent terms. Including the relevant term at
O(α3

s ln(s/m2)) in the exponent the structure of the mass mode matching coefficient reads 32 (α(nl+1)
s =

α
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, (4.212)

The terms ΓJi and γJi denote the coefficients of the cusp and non-cusp jet function anomalous dimensions
with nl + 1 flavors defined by (see appendix C for explicit expressions)

µ
d
dµ

J (nl+1)(s, µ) =
∑

i≥0

(
α

(nl+1)
s (µ)

4π

)i+1 ∫
ds′
(
− ΓJi
µ2

[
µ2θ(s− s′)
s− s′

]

+

+ γJi δ(s− s′)
)
J (nl+1)(s′, µ) .

(4.213)

The terms MJ,+
i (MJ

i ) indicate the µm-independent coefficients of the plus-distribution 1
m2

[
m2θ(s)

s

]
+

and delta-distribution δ(s) in the matching coefficientMJ(s,m,m) (i.e. for µm = m), respectively. Note
that we have not determined the relevant constantMJ,+

3 at this stage. We will see in Sec. 4.4.3 how to
relate it to an existing result for the PDF threshold correction. The remaining constants appearing in
Eq. (4.212) are defined below Eq. (4.181). Inserting the values for all of the constants and expanding
Eq. (4.212) using the logarithmic counting αsln(m2/s) ∼ O(1) gives our final result in Eq. (4.58).

32For simplicity we set νn = Q and ν0M = Qµ2
m/µ

2
J here. For a phenomenological error estimate the ν-dependence can

be easily restored.
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4.4.3 Consistency relations

We have seen in the discussion of secondary massive gluon effects in Sec. 4.3.3 that the corresponding
threshold corrections appearing in different setups for RG running are related to each other via the consis-
tency condition in Eq. (4.127). An equivalent relation holds in the presence of secondary massive quarks,
where the PDF matching correction Mφ̃ arises, when the PDF evolution crosses the mass threshold,
e.g. if the final renormalization in scenario III is the jet scale µfinal = µJ ,

F1(x,Q,m) =
∑

i=q

e2
i

2

∣∣C(nl+1)(Q,m, µH)
∣∣2 ∣∣U (nl+1)

C (Q,µH , µJ)
∣∣2
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∫
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∫
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(1− z − s

Q2
, µJ , µm)

×Mφ̃(z − z′,m, µm)U
(nl)

φ̃
(z′ − z′′, µm, µφ) φ̃

(nl)
i/P

(
z′′ − x, µφ

)
. (4.214)

We have already computed the PDF threshold condition at O(α2
s) in the OPE region in Sec. 3.4.2. The

result in the endpoint region can be easily obtained from Eq. (3.114) by expanding for z → 1,

M(2)
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. (4.215)

Eq. (4.215) contains a large logarithm ∼ ln(1− z) as for the massive gluon case (see Eq. (4.129)), that is
manifest when rescaling the plus-distribution in terms of a normalized soft momentum variable ˜̀≡ `/νφ
with ` = Q(1− z) and νφ ∼ Q(1− z) ∼ µ2

J/µH (using the identity in Eq. (B.3)),
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Q
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. (4.216)

Using the explicit fixed-order expressions for MC in Eq. (4.166) and MJ in Eq. (4.197) one can check
that the consistency relation

Mφ̃(1− z,m, µ) =Q2 |MC(Q,m, µ)|2MJ(Q2(1− z),m, µ) (4.217)

is indeed satisfied at O(α2
s). The relation (4.217) implies also that the rapidity logarithms (and singular-

ities) in the hard, collinear and PDF sectors are intrinsically related to each other. We emphasize again
that the form of the threshold factors and the validity of the consistency relation are not restricted to
DIS in the endpoint region, but arise in analogous form for other observables, which exhibit factoriza-
tion theorems with a similar structure, i.e. involving a hard current coefficient, a jet function and a soft
function as building blocks, as we will see in chapter 5.

In the following we will compute the PDF threshold condition directly from the definition in Eq. (4.8)
for the PDF in the endpoint region, which confirms the fixed-order result derived from M(2)

φ,qq in the
classical regime, and resum the rapidity logarithms in Eq. (4.215) via the rapidity RGE.

PDF threshold correction

We determine the PDF threshold correction from the difference of the MS- and OS-renormalized collinear
and soft PDF functions, fq/P (`,m, µ) and Sφ(`,m, µ) defined in Eqs. (4.9) and (4.10), respectively. Since
we have already seen in Eq. (4.215) that a large rapidity logarithm arises we will directly compute the
corresponding contributions individually to be able to resum it via the rapidity RGE. Therefore, we
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calculate the massive quark corrections at O(α2
sCFTF ) in terms of the (partonic) results for the radiation

of a massive gluon at O(αs) in Eqs. (4.132) and (4.138) as

f̂
(nl+1,bare,2)
q/q,TF

(`,m,Q,Λ, µ, ν) =
1
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∫
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ε
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Ŝ
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φ (`,Λ, µ, ν) . (4.219)

For the massless contributions we use again a gluon mass Λ � m as an infrared regulator which also
allows us to apply the results from Sec. 4.3.3.

After performing the subtracted dispersion relation and including the scheme change contribution we
obtain 33 (¯̀= `/ν)
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, (4.220)

µ Ŝ
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Therefore, the nonvanishing two-loop counterterm contributions above the quark mass threshold, where
we use MS-renormalization, read
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ν Z
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The sum of the individual counterterm contributions yields the complete PDF counterterm for one flavor
corresponding to Eq. (4.21),

Z
(nl+1,2)

φ̃,TF
(1− z, µ) = Q

(
Z

(nl+1,2)

φ̃,f,TF
+ Z

(nl+1,2)

φ̃,S,TF

)
. (4.224)

This yields together with the corresponding contributions at O(αs), for which the analogous relation
holds, the correct µ-anomalous dimension for the PDF at O(α2

sCFTF ) in Eq. (4.33). The ν-anomalous

33Note that the virtual n-collinear correction is equivalent to the corresponding current contribution in Eq. (4.168), i.e.
f̂

(nl+1,bare,2)
q/q,TF

= 2F̂
(nl+1,bare,2)
m,SCET,n δ(`), which are both described by the same types of diagrams.
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dimensions for the pure collinear and the soft PDF contributions in the MS-scheme satisfy
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γ
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φ̃,S,ν,TF
= − ν d
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φ̃,S,TF
= −γ(nl+1,2)
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. (4.226)

Below the mass threshold OS renormalization is employed for both the strong coupling and the massive
quark contribution to the collinear and soft PDF functions. The threshold corrections correspond to the
resulting difference to the MS renormalized quantities,

Mφ̃(1− z,m, µm) =
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and analogously for the individual components Mφ̃,f and Mφ̃,S . For the collinear PDF threshold cor-
rection at O(α2

sCFTF ) we obtain in analogy to Eqs. (4.165) and (4.196) with νφ ∼ Q(1− x) ∼ `

νφM(2)
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Here we have used Eq. (4.133) with a gluon mass Λ as an infrared regulator resulting in the renormalized
one-loop collinear PDF function f̂ (nl+1,1)

q/q . Similarly, for the soft PDF threshold correction at O(α2
sCFTF )

one gets
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where the one-loop result in Eq. (4.138) with a gluon mass Λ was used. Upon summing up M(2)

φ̃,f
and

M(2)

φ̃,S
we obtain the total PDF threshold correction in Eq. (4.215).

For the ν-evolution of the threshold corrections we obtain (i = f, S)

ν
d
dν
Mφ̃,i(`,m,Q, µ, ν) =

(
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− γ(nl)

φ̃,i,ν

)
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Mφ̃,i(`,m,Q, µ, ν) , (4.230)

where the ν-anomalous dimensions for the mass mode matching coefficients read
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. (4.231)

As for the case of the current and jet function threshold correction the solution of Eq. (4.230) is a simple
exponentiation which allows us to determine the required term at O(α4

s ln
2(1− x)) ∼ O(α2

s) in the PDF
threshold correction (in the logarithmic counting αsln(1− x) ∼ 1).

For a complete analysis at N3LL we also need the term at O(α3
s ln(1−x)) ∼ O(α2

s). We can determine
its µm-dependent contribution from the identity

Mφ̃(1− z,m, µm) =

∫
dz′
∫

dz′′ U (nl)

φ̃
(z′ − z,m, µm)Mφ̃(z′′ − z′,m,m)U
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(1− z′′, µm,m) .

(4.232)
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or equivalently,

µ
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Mφ̃(1− z,m, µ) =
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dz′
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φ̃
(z′ − z, µ)− γ(nl)

φ̃
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)
Mφ̃(1− z′,m, µ) . (4.233)

Expanding in αs gives the perturbative result for the µm-dependent terms. Including the relevant term at
O(α3

s ln(1− x)) in the exponent the structure of the mass mode matching coefficient reads 34 (α(nl+1)
s =

α
(nl+1)
s (µm), m = m(µm))

νφ
Q
Mφ̃

(
`

Q
,m,Q, µm, νφ

)
=

{
δ(˜̀) +

(
α

(nl+1)
s

)2

(4π)2

(
δ(˜̀)

[
−L

2
m

4
γφ̃0 ∆β0 −

Lm
2

∆γφ̃1 +Mφ̃
2

]

+

[
θ(˜̀)

˜̀

]

+

[
L2
m

2
Γφ̃0 ∆β0 + Lm ∆Γφ̃1 +Mφ̃,+

2

])}

× exp

{(
α

(nl+1)
s

)2

(4π)2
ln

(
ν2
φ

Q2

)[
L2
m

4
Γφ̃0 ∆β0 +

Lm
2

∆Γφ̃1 +
Mφ̃,+

2

2

]

+

(
α

(nl+1)
s

)3

(4π)3
ln

(
ν2
φ

Q2

)[
−L

3
m

6
Γφ̃0 ∆β0(β0 + ∆β0)

+
L2
m

4

(
− 2∆Γφ̃1 (β0 + ∆β0) + 2 Γφ̃1 ∆β0 + Γφ̃0 ∆β1 − 4 Γφ̃0 ∆β0γ

m
0

)

+
Lm
2

(
∆Γφ̃2 − 2∆Γφ̃1γ

m
0 − Γφ̃0 cdec − 2β0Mφ̃,+

2

)
+
Mφ̃,+

3

2

]}
. (4.234)

The terms Γφ̃i and γφ̃i denote the coefficients of the cusp and non-cusp PDF anomalous dimensions with
nl + 1 flavors defined by (see appendix C to obtain explicit expressions)

µ
d
dµ

φ̃(nl+1)(1− z, µ) =
∑

i≥0

(
α

(nl+1)
s (µ)

4π

)i+1∫
dz′
[
−2 Γφ̃i

[
θ(z′ − z)
z′ − z

]

+

+ γφ̃i δ(z
′ − z)

]
φ̃(nl+1)(1− z′, µ) .

(4.235)

The termsMφ̃,+
i (Mφ̃

i ) indicate the µm-independent constants in the plus-distribution (delta-distribution)
terms. The (nonsinglet) PDF threshold correction in the OPE region has been recently computed up to
O(α3

s) in Ref. [84]. The corresponding expanded result for x → 1 agrees with our computation for the
µm-dependent terms at fixed order, but allows additionally to extract the relevant constant Mφ̃,+

3 . It
reads

Mφ̃,+
3 =CFTF

{
CA

(
−35452

729
+

1648π2

243
+ 60ζ3 −

176π4

135
+

32

3
B4

)
+ CF

(
6674

27
− 1208

9
ζ3 +

16π4

15
− 64

3
B4

)

+TFnl

(
−24064

729
+

512

27
ζ3

)
+ TF

(
12064

729
− 896

27
ζ3

)}
, (4.236)

with B4 defined in Eq. (4.49). The remaining constants appearing in Eq. (4.234) are defined below
Eq. (4.181). Using the explicit form of the threshold corrections in Eqs. (4.181), (4.212) and (4.234) and
the relation between the anomalous dimensions in Eq. (4.35) one can check that the consistency condition
in Eq. (4.217) is satisfied exactly for νφ = µ2

J/Q for the µm-dependent terms, and for νφ ∼ µ2
J/Q up

to terms of higher orders in the logarithmic counting. Furthermore, Eq. (4.217) allows to predict the
constants MC,+

3 and MJ,+
3 , which are enhanced by a rapidity logarithm and therefore directly tied to

34For simplicity we set νf = Q and νS = νφ here. For a phenomenological error estimate the ν-dependence can be easily
restored.
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Mφ̃,+
3 via

MJ,+
3 = 2MC,+

3 =Mφ̃,+
3 . (4.237)

Inserting the values for all of the constants and expanding Eq. (4.234) using the logarithmic counting
αsln(1− x) ∼ O(1) gives the following result for the PDF threshold correction

νφ
Q
Mφ̃

(
`

Q
,m,Q, µm, νφ

)
= δ(˜̀) +

[(
α

(nl+1)
s

)2

(4π)2
δ(˜̀) ln

(
ν2
φ

Q2

)
M(2)

φ,ln(m,µm)

]

O(αs)

+

[(
α

(nl+1)
s

)2

(4π)2

(
δ(˜̀)M(2)

φ̃,1
(m,µm) +

[
θ(˜̀)

˜̀

]

+

2M(2)

φ̃,ln
(m,µm)

)

+

(
α

(nl+1)
s

)3

(4π)3
δ(˜̀) ln

(
ν2
φ

Q2

)
M(3)

φ̃,ln
(m,µm)

+

(
α

(nl+1)
s

)4

(4π)4
δ(˜̀) ln2

(
ν2
φ

Q2

)
M(4)

φ̃,ln2(m,µm)

]

O(α2
s)

+O(α3
s) . (4.238)

We display the corresponding results for α(nl+1)
s = α

(nl+1)
s (µm) and m ≡ m(µm) given in the MS scheme.

The functions multiplying the logarithm ln(ν2
φ/Q

2) are related to the ones entering the current mass
mode matching correction (see Eqs. (4.46), (4.48) and (4.50))

M(2)

φ̃,ln
(m,µm) = −M(2)

C,ln(m,µm) , (4.239)

M(3)

φ̃,ln
(m,µm) = −M(3)

C,ln(m,µm) , (4.240)

M(4)

φ̃,ln2(m,µm) = M(4)

C,ln2(m,µm) . (4.241)

Finally, the less universal two-loop function M(2)

φ̃,1
which is not related to a rapidity logarithm can be

easily identified from Eq. (4.215),

M(2)

φ̃,1
(m,µm) = CFTF

{
2L2

m +

(
2

3
+

8π2

9

)
Lm +

73

18
+

20π2

27
− 8

3
ζ3

}
. (4.242)

4.4.4 Fixed-order expansion and comparison with full QCD result

The factorization theorems discussed in Sec. 4.2 each contain all information about the singularO(α2
sCFTF )

secondary massive quark corrections to the structure function F1(x,Q,m) in the fixed-order expansion
in full QCD. Besides the virtual contributions in QCD, which are fully contained in the SCET descrip-
tion, the singular perturbative fixed-order corrections also consist of the singular collinear real radiation
contributions which arise for 1− x ∼ m2/Q2 � 1. Setting µ = µH = µJ = µm we obtain in any scenario

F1(x,Q,m)|FO =
∑

i=q

e2
i

2

∫
dξ Q2

∣∣C(nl)(Q,m, µ)
∣∣2 J (nl)(Q2(1− ξ),m, µ)︸ ︷︷ ︸

≡C(nl)

x→1(ξ,Q,m,µ)

φ̃
(nl)
i/P

(
ξ − x, µ

)
. (4.243)

where the massive quark contributions to the fixed-order matching coefficient C(nl)
x→1 at O(α2

sCFTF ) read

C(nl,2)
x→1,m(z,Q,m) = 2F̂

(nl,2)
m,QCD(Q,m) δ(1− z) +Q2J

(nl,2)
m,real(Q

2(1− z),m) . (4.244)

with F̂ (nl,2)
m,QCD(Q,m) and J (nl,2)

m,real(s,m) given in Eqs. (3.95) and (4.54) with αs = α
(nl)
s (µ). In analogy to

Sec. 4.3.4 we can obtain this result also from the corresponding full QCD fixed-order computation in
Sec. 3. Since the virtual contributions in the δ(1 − z) distribution agree, we only have to consider the
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Figure 4.14: Secondary massive quark contributions at O(α2
sCFTF ) in full QCD (blue, solid) together

with the singular result for z → 1 in the fixed-order expansion (red, dashed) and the nonsingular terms
(green, dotted) for m̂ = 0.1 (left panel) and m̂ = 0.05 (right panel), all normalized by α2

sCFTF /(4π)2.

expansion of the real radiation term F̂
(nl,2)
m,QCD,θ(z,Q,m) in Eq. (3.98) for 1−z ∼ m̂2 � 1 (with m̂ = m/Q),

which yields indeed the correct term,

θ(1− z − 4m̂2z) F̂
(nl,2)
m,QCD,θ(z,Q,m)

z→1−→ Q2δJ
(nl,2)
m,real(Q

2(1− z),m) + O((1− z)0, m̂0) , (4.245)

In Fig. 4.14 we display the full fixed-flavor QCD term C(nl,2)
qq,TF

(z,Q,m) (blue, solid line), the singular
fixed-order terms corresponding to the SCET result in Eq. (4.244) (red, dashed line) and the remaining
nonsingular terms (green, dotted line) for m̂ = 0.1 and m̂ = 0.05. We note that compared to the massive
gluon results in Sec. 4.3.4 the singular fixed-order terms do not provide a good approximation of the full
QCD result away from the endpoint unless the mass is very small, so that a phenomenological analysis
will necessarily have to take care of the nonsingular terms in 1− x, even in the vicinity of the endpoint
for not very large hierarchies between the m and Q. The nonsingular terms can be included together
with the singular terms in a combined description F tot

1 (x,Q,m),

F tot
1 (x,Q,m) = F s

1(x,Q,m) + F ns
1 (x,Q,m) . (4.246)

Here F s
1(x,Q,m) denotes the factorized SCET structure function in its scenario-dependent appearance

as discussed in Sec. 4.2, which treats the most singular terms and resums all logarithms ∼ ln(1− x), and
F ns

1 (x,Q,m) corresponds to the difference between the factorized QCD structure function discussed in
Sec. 3.4 and the SCET structure function evaluated at fixed order concerning 1−x, i.e. for µJ = µH . Here
we will not carry out a numerical analysis of secondary massive quark effects, since in practice they will
unlikely play any role in any phenomenological discussion of the endpoint region, where currently only
few data with large uncertainties are present. In the following chapter we will discuss the example of the
thrust distribution, where these effects are phenomenologically more relevant and where their numerical
impact will be determined in relation to the complete massless result.
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Chapter 5

VFNS for thrust in the dijet region

We turn to the discussion of secondary massive quark effects for event shapes in e+e− collisions. Here we
will consider the most prominent event shape, namely thrust. The setup of most other inclusive soft-recoil
insensitive observables is very similar, but the computations can be significantly more involved.

After a short introduction to event shapes in Sec. 5.1 we discuss the massless factorization theorem
for thrust in the dijet limit in Sec. 5.2. Its structure and ingredients resemble the ones for DIS in the
endpoint region x → 1. The main difference is the appearance of a soft scale that is not necessarily
related to ΛQCD and can generate a perturbative soft function. As explained in Sec. 5.3 this also leads to
the only major extension of the mass mode setup discussed for DIS in Sec. 4.2, namely to an additional
EFT scenario where the mass is below the soft scale. This requires the computation of the massive quark
corrections to the soft function which we describe in detail in Sec. 5.4. Since the thrust soft function
depends on individual projections and not just the sum of all final state particle momenta the dispersive
technique cannot be used directly to obtain the complete result, but provides a good starting point for
the more involved computation. The soft function can have large nonperturbative power corrections and
suffers from a renormalon problem in dimensional regularization which can be cured in the gap formalism
of Ref. [92] by appropriate subtractions and the infrared evolution of the corresponding gap parameter.
Here the required components are computed for the secondary massive quark case. Finally, we show
a numerical analysis for secondary massive bottom and top quark effects at different c.m. energies. In
particular we give estimates for the impact of the mass corrections on phenomenological analyses in
relation to the massless approximation.

5.1 Event shapes

Infrared and collinear safe observables at e+e−-colliders provide a clean environment to study QCD
at the high precision. Among these observable event shapes are particularly simple and suitable to
describe geometrically the final state in an inclusive way. Instead of relying on jet algorithms, that
introduce cutoff scales, event shapes measure the “jettiness” of an event (i.e. usually how dijet-like the
final state is) in a continuous way and are more practical for analytic calculations. On the experimental
side there has been a large amount of data taken at LEP and at PETRA at different c.m. energies
(between 14 and 207 GeV) with small uncertainties. On the theoretical side the description of event
shape distributions has recently seen substantial progress concerning the treatment of higher-order QCD
corrections [93–96], the techniques concerning the summation of large logarithmic terms [40, 41, 97–100]
and the implementation of schemes that avoid renormalon ambiguities together with the definition of
nonperturbative parameters [92, 101]. These developments have contributed to an improved theoretical
accuracy for the description of event shape distributions and to precise measurements of QCD parameters
such as the strong coupling [4, 5, 97,100,102].

Popular examples for event shapes are angularities [103] including thrust [104] and jet broadening [105],
heavy jet mass [106] and the C-parameter [107]. All of these have the generic property that their values
continuously interpolate between the dijet region with narrow back-to-back jets in one limit and the
isotropic region with uniform radiation in the other limit. Note that this can be also generalized for N
jets [108]. Many examples and specific features of several event shapes can be found in [109].

As a concrete event shape we will discuss in the following thrust, where we define the thrust variable
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q2 = Q2

s ∼ max(QΛQCD, Q
2τ )

s ∼ max(QΛQCD, Q
2τ )

ℓ ∼ max(ΛQCD,Qτ )

Figure 5.1: Illustration of the kinematic scales for thrust. The different colors indicate radiation at
different invariant masses.

τ via

τ = 1− T = 1− max
~n

∑
i |~n · ~pi|∑
j |Ej |

= 1−max
~n

∑

i

|~n · ~pi|
Q

. (5.1)

Here the sum is performed over all final state particles with momenta ~pi and energies Ei. The axis that
maximizes the moduli of the momentum projections is called thrust axis. Note that we define the thrust
variable τ normalized with respect to the c.m. energy Q, which is the sum of all energies, in contrast to the
original definition [104], where the sum of the modula of the momenta ~pi appears in the denominator. 1 In
the massless case both definition coincide, but in the massive case our definition simplifies the analytical
computations significantly. Thrust is related to the invariant masses from all particles in each of the two
hemispheres (+,−) separated by the plane perpendicular to the thrust axis via

τ =
s+ + s−
Q2

+O
(
s2

+,−
Q4

)
(5.2)

in the dijet limit, where the invariant masses in both hemispheres vanish and τ → 0. The isotropic
multi-particle limit is reached for τ → 1/2 (for massless primary quarks).

For thrust and any soft-recoil insensitive event shapes (i.e. not for jet broadening) the dijet region
τ � 1 is governed by three different scales, see Fig. 5.1: the hard scale Q corresponding to the c.m. energy,
the jet scale Qλ related to the invariant mass of collinear fluctuations and the soft scale Qλ2, where low
energetic ultrasoft radiation between the jets takes place. In the peak region, where τ ∼ ΛQCD/Q, the
ultrasoft radiation saturates at a hadronic scale such that λ ∼

√
ΛQCD/Q, whereas in the tail region

ΛQCD/Q� τ � 1 the ultrasoft scale can exceed the hadronic scale contributing to an invariant mass in
each hemisphere of order Q2τ , such that λ ∼ √τ and structures at the hadronic scale appear only via
power corrections. Finally, if τ ∼ 1/2 the distinction into hard, jet and ultrasoft scales becomes artificial
and perturbative radiation can be always described in a fixed-order description at the scale Q.

Note that the thrust distribution exhibits a power law behavior making it large in the extreme dijet
limit, in particular in the peak region, such that this region, where the resummation of infrared soft and
collinear logarithms needs to be performed, is phenomenologically very relevant. This is in contrast to
DIS in the endpoint region where we had a suppression due to the small values of the PDFs.

5.2 The massless factorization theorem

In this section we briefly review the known massless factorization theorem for the most singular contribu-
tions of the thrust distribution in the dijet limit, which are the dominant terms for small values of τ . The
relevant SCET modes for τ → 0 are displayed in Fig. 5.2. This time we have only SCET I-type modes,
the n- and n̄-collinear modes corresponding to the quark and antiquark initiated jets along the thrust

1Our definition agrees also with the event shape variable 2-jettiness [108].
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Figure 5.2: Relevant momentum modes for thrust in the dijet limit τ → 0. Adapted from Ref. [26].

axis with invariant mass of O(Q2λ2) and the ultrasoft modes with invariant mass O(Q2λ4). The factor-
ization proceeds in a similar way as for DIS in the endpoint region, see Sec. 4.1, where now, however, no
matching onto SCET II is required at the end. As a first step of the factorization we match the currents
in the full QCD hadronic tensor, which is defined in analogy to Eq. (3.6), onto the corresponding SCET
currents in Eq. (4.2) resulting in the Wilson coefficient C̃(ω, ω′). After the final state is decomposed into
n-, n̄-collinear and ultrasoft states and the different gauge structures are disentangled into spin and color
singlets, the cross section in the SCET limit reads

σ ∼ (2π)4 δ(4) (q − PXn̄ − PXn − PXus)
∫

dω
∫

dω′ |C(ω, ω′)|2

×
∑

Xn̄

1

4πNc
Tr

{
〈0|χ̄n̄|Xn̄〉〈Xn̄|

/n

2
χn̄,ω|0〉

} ∑

Xn

1

4πNc
Tr

{
〈0| /̄n

2
χn|Xn〉〈Xn|χ̄n,ω′ |0〉

}

×
∑

Xus

1

Nc
Tr

{
〈0|T

[
Yn̄(∞, 0)Yn(∞, 0)

]
|Xus〉〈Xus|T

[
Yn(∞, 0)Y n̄(∞, 0)

]
|0〉
}
. (5.3)

Then the details on the particular event shape are implemented and the expansions for the restricted
dijet-like final state are performed. The corresponding algebra has been performed in Ref. [8] for the
double hemisphere invariant mass distribution and thrust, which are related via Eq. (5.2).

The resulting factorization theorem for nf massless quarks reads to all orders in αs up to the higher
orders in λ ∼ max{τ1/2, (ΛQCD/Q)1/2} [8, 77,103,110,111] 2

1

σ0

dσ
dτ

=Q
∣∣∣C̃(nf )(Q,µH)

∣∣∣
2 ∣∣∣U (nf )

C̃
(Q,µH , µ)

∣∣∣
2
∫

ds
∫

ds′ J (nf )
τ (s′, µJ)U

(nf )
Jτ

(s− s′, µ, µJ)

×
∫

d` S(nf )
τ (Qτ − s

Q
− `, µS)U

(nf )
Sτ

(`, µ, µS) . (5.4)

Here σ0 denotes the total partonic e+e− cross-section at tree-level. The local hard matching coefficient
C̃(nf )(Q,µ) is the same as C(nf )(Q,µ) appearing in the factorization theorem for DIS in the endpoint
region in Eq. (4.6) up to an analytic continuation from spacelike to timelike momentum transfer, q2

DIS =
−Q2 → q2

e+e− = Q2. This amounts to a simple replacement of LQ = ln(Q2/µ2) to L−Q = ln(−Q2/µ2)
(with Q2 = Q2 + i0) in Eqs. (4.12) – (4.15).

The thrust jet function J (nf )
τ (s, µ) describes the dynamics of the n- and n̄-collinear modes and takes

into account both final state jets in n and n̄ direction,

J
(nf )
τ (s, µ) ≡

∫
ds′ J (nf )

n (s− s′, µ) J
(nf )
n̄ (s′, µ) , (5.5)

2In fact the first nonvanishing power corrections are again of O(λ2).
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where J (nf )
n (s, µ) is the same hemisphere jet function as the one appearing in the DIS factorization

theorem for x → 1 in Eq. (4.6) and defined in Eq. (4.7). The n̄-collinear antiquark jet function is given
in analogy by

J
(nf )
n̄ (Qr−n̄ , µ) ≡ 1

2πNcQ
Im

[
i

∫
d4x eirn̄·x〈0|T{χ̄n̄(x)

/n

2
χn̄,−Q(0)}|0〉

]
, (5.6)

which has the same perturbative expansion as J (nf )
n (s, µ) due to charge conjugation symmetry. There-

fore, the corrections to the thrust jet function at O(αs) and O(α2
sCFTF ) amount to a multiplication of

Eqs. (4.16) – (4.19) by a factor of 2.
The thrust soft function S(nf )

τ (`, µ) describes ultrasoft radiation between the two jets and reads

S
(nf )
τ (`, µ) =

1

Nc

∑

Xus

δ(`− n · kRs − n̄ · kLs ) 〈0|Ỹ †n̄,+(0)Yn,−(0)|Xus〉〈Xus|Y †n,+(0) Ỹn̄,−(0)|0〉 , (5.7)

where we have defined the (anti-)time-orderedWilson lines Ỹn,−(x) ≡ T [Yn,−(x)] and Ỹ †n̄,+(x) ≡ T [Y †n̄,+(x)].
Furthermore, kRs (kLs ) denotes the momentum of the ultrasoft final state |Xus〉 in the right (left) hemi-
sphere and again all color indices are traced implicitly. 3 It is convenient to write the complete soft
function as a convolution of the partonic soft function describing perturbative corrections at the ultrasoft
scale and the nonperturbative hadronic soft function Smod

τ (`) [92], i.e.

S
(nf )
τ (`, µ) =

∫
d`′ Ŝ(nf )

τ (`− `′, µ)Smod
τ (`′) . (5.8)

The renormalized expressions for the partonic soft function are known up to two loops [112,113] and read
at O(αs) and O(α2

sCFTF )

µ Ŝ
(nf ,1)
τ (`, µ) =

α
(nf )
s CF

4π

{
π2

3
δ(¯̀)− 16

[
θ(¯̀) ln ¯̀

¯̀

]

+

}
, (5.9)

µ Ŝ
(nf ,2)
τ,TF

(`, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
δ(¯̀)

[
80

81
+

74π2

27
− 232

9
ζ3

]
+

[
θ(¯̀)

¯̀

]

+

[
−448

27
+

16π2

9

]

+
320

9

[
θ(¯̀) ln ¯̀

¯̀

]

+

− 64

3

[
θ(¯̀) ln2 ¯̀

¯̀

]

+

}
, (5.10)

with ¯̀≡ `/µ. The corresponding contributions to the renormalization factor read

µZ
(nf ,1)
Sτ

(`, µ) =
α

(nf )
s CF

4π

{
− 4

ε2
δ(¯̀) +

8

ε

[
θ(¯̀)

¯̀

]

+

}
, (5.11)

µZ
(nf ,2)
Sτ ,TF

(`, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
δ(¯̀)

[
− 4

ε3
+

20

9ε2
+

1

ε

(
112

27
− 2π2

9

)]
+

[
θ(¯̀)

¯̀

]

+

[
16

3ε2
− 80

9ε

]}
.

(5.12)

Large UV logarithms between the characteristic scales of each sector, µH , µJ and µS , and the fi-
nal, common renormalization scale of the factorization theorem µ are summed by the evolution fac-
tors U (nf )

C̃
(Q,µ0, µ), U (nf )

Jτ
(s, µ, µ0) and U (nf )

Sτ
(`, µ, µ0) satisfying RG equations analogous to Eqs. (4.22)

and (4.23), and by

µ
d
dµ

U
(nf )
Sτ

(`, µ, µS) =

∫
d`′ γ(nf )

Sτ
(`− `′, µ)U

(nf )
Sτ

(`′, µ, µS) . (5.13)

3The thrust soft function cannot be written as imaginary part of a time-ordered product in contrast to the PDF soft
function (see Eq. 4.10) since the momenta of the final state particles enter the definition incoherently.
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We display for completeness the anomalous dimensions of the soft function at O(αs) and O(α2
sCFTF ),

µγ
(nf ,1)
Sτ

(`, µ) = =
αsCF

4π

{
4 Γ(1)

[
θ(¯̀)

¯̀

]

+

}
, (5.14)

µγ
(nf ,2)
Sτ ,TF

(`, µ) =

(
α

(nf )
s

)2
CFTF

16π2

{
4 Γ

(2)
TF

[
θ(¯̀)

¯̀

]

+

+

(
448

27
− 8π2

9

)
δ(¯̀)

}
, (5.15)

with Γ(1) = 4 and Γ
(2)
TF

= −80/9 being the O(αs) and O(α2
sCFTF ) coefficients of the cusp anomalous

dimension Γ
(nf )
cusp. We mention that in analogy to Eq. (4.34) one obtains a consistency relation between

the anomalous dimensions, which reads here

2 Re
[
γ

(nf )

C̃
(Q,µ)

]
δ(¯̀) +Qµγ

(nf )
Jτ

(Q`, µ) + µγ
(nf )
Sτ

(`, µ) = 0 . (5.16)

The overlap between the partonic and the nonperturbative contributions in dimensional regularization
leads to an infrared sensitivity of the perturbative corrections implying factorially enhanced coefficients
called renormalons. These are formally defined as a type of singularities in the Borel transform of the
perturbative series and the divergent behavior of the corresponding coefficients can be related to the
ambiguities in performing the back transform arising from the pole structure in the Borel plane, see
Ref. [114] for more information. Introducing a gap parameter ∆ ∼ ΛQCD in the hadronic soft model
function related to a minimal hadronic energy deposit in each hemisphere together with properly defined
perturbative subtractions in the partonic soft function, one can eliminate the renormalon problem for
the leading O(ΛQCD) power correction that arises in the operator production expansion (OPE) of the
soft function for ` � ΛQCD rendering it order-by-order IR stable [92, 115]. Effectively, one switches to
a short distance scheme, which depends on an IR “cutoff” scale R. The complete function including the
renormalon-subtractions has the form

S
(nf )
τ (`, µ) =

∫
d`′ Ŝ(nf )

τ

(
`− `′ − 2δ(nf )(R,µ), µ

)
Smod
τ

(
`′ − 2∆̄(nf )(R,µ)

)
, (5.17)

where δ(nf )(R,µ) is the subtraction series, and ∆̄(nf )(R,µ) is the gap parameter which is free of the
O(ΛQCD) renormalon. A convenient definition for δ(nf )(R,µ) with consistent RG properties has been
given in Ref. [115] and has the form

δ(nf )(R,µ) =
R

2
eγE

d
d ln(ix)

ln S̃(nf )
τ (x, µ)

∣∣∣
x=(iReγE )−1

, (5.18)

where S̃(nf )
τ (x, µ) is the partonic soft function in configuration space, S̃(nf )

τ (x, µ) =
∫
d` Ŝ(nf )

τ (`, µ) e−i`x.
The O(αs) and O(α2

sCFTF ) corrections read

δ(nf ,1)(R,µ) =
α

(nf )
s CF

4π
R eγE

{
−4 ln

(
µ2

R2

)}
, (5.19)

δ
(nf ,2)
TF

(R,µ) =

(
α

(nf )
s

)2
CFTF

16π2
ReγE

{
8

3
ln2

(
µ2

R2

)
+

80

9
ln
(
µ2

R2

)
+

224

27
+

8π2

9

}
. (5.20)

The renormalon-free gap parameter ∆̄(nf )(R,µ) is related to the ambiguous, but scale-independent “bare”
gap parameter ∆ by the relation 4

∆ = ∆̄(nf )(R,µ) + δ(nf )(R,µ) . (5.21)

Thus ∆̄(nf )(R,µ) is now scale- and subtraction scheme-dependent. The natural choice for the scale R of
the nonperturbative gap is R & ΛQCD. On the other hand, the renormalon subtraction δ(nf )(R,µ) should

4The “bare” gap parameter ∆ is conceptually analogous to the heavy quark pole mass parameter, so all renormalon-free
gap schemes can be related to each other unambiguously through their relation to the bare ∆.
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Figure 5.3: Localization of massless (ML) and massive (M) modes together with their mass-shell fluctua-
tions (MM) in the p+-p− phase space according to their generic scaling for different hierarchies between
λ and λm for λm < 1.

be evaluated for µ = µS , which is much larger than ΛQCD in the tail region, in order to achieve a proper
cancellation with the IR sensitive terms in the soft function. This requires the resummation of large
logarithms ∼ ln(µS/ΛQCD) which can be performed by solving the evolution equations [92,101,115,116]

R
d
dR

∆̄(nf )(R,R) ≡ −Rγ(nf )
R [α

(nf )
s (R)] = −R d

dR
δ(nf )(R,R) , (5.22)

µ
d
dµ

∆̄(nf )(R,µ) ≡ −Rγ(nf )
∆,µ = 2ReγE Γ

(nf )
cusp[α

(nf )
s (µ)] . (5.23)

Note that the R-anomalous dimension γ
(nf )
R , which is responsible for relating ∆̄(nf )(R,µ) at different

values of R to each other in a way free of the O(ΛQCD) renormalon and free of large IR logarithms,
happens to vanish at O(αs), i.e. γ

(nf ,1)
R = 0 . Thus the leading anomalous dimension at O(α2

s) depends
both linearly and via the strong coupling constant on the number of active flavors nf . The contribution
at O(α2

sCFTF ) reads

γ
(nf ,2)
R,TF

=

(
α

(nf )
s

)2
CFTF

16π2
eγE

{
224

27
+

8π2

9

}
. (5.24)

Note that the first moment of the soft model function Ωτ1 , related to the more standard moment of the
model function for the double hemisphere invariant mass distribution Ω1 via Ωτ1 ≡ 2 Ω1, becomes also
a scheme- and scale-dependent quantity once we employ a renormalon-free gap scheme. The moment
parameter Ω̄

(nf )
1 (R,µ) is then related to the gap parameter ∆̄(nf )(R,µ) via

Ω̄
(nf )
1 (R,µ) ≡ 1

2

∫ ∞

0

d` ` Smod
τ

(
`− 2 ∆̄(nf )(R,µ)

)
= ∆̄(nf )(R,µ) +

1

2

∫ ∞

0

d` ` Smod
τ (`) . (5.25)

5.3 The mass mode setup

We turn to the discussion of secondary massive quark effects initiated by light quarks. We have described
already the setup dealing with this question in Sec. 4.2 by means of the example of DIS in the endpoint
region. Here the involved mass modes are the same as before giving also rise to the EFT scenarios I, II
and III which we will briefly show in the following and where we just highlight the changes compared
to the DIS case discussed in Sec. 4.2. The main difference concerns an additional hierarchy the mass
scale can have with respect to the ultrasoft scale. Since the typical ultrasoft scale in the tail region is
µS ∼ Qτ � ΛQCD the heavy quark mass can be also of the order of µS or even smaller. We call the
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Figure 5.4: The different scenarios depending on the hierarchy between the mass scale µm and the hard,
jet and ultrasoft scale. MM indicates mass-shell scaling, ML the massless one. With M we denote modes
that have a mass m but scale as their massless counterparts. The renormalization group evolution is
also shown in the top-down evolution from the hard scale µH down to µ = µS . When the mass scale is
crossed the mass-shell fluctuations are integrated out (dashed box). This leads to a matching condition
and to a change in the evolution factor.

corresponding EFT setup to this scaling situation scenario IV. In this case the mass-shell fluctuations of
the mass modes merge into those of the massless quarks and gluons and in principle do not have to be
separated. Both the collinear and soft fluctuations of the mass modes are treated at the same footing as
those of the massless collinear and ultrasoft quarks and gluons, in particular the soft mass modes adopt
the same invariant mass scaling as the massless ultrasoft degrees of freedom. However, their mass still
has to be taken into account in the calculations. In this last scenario the mass-shell fluctuations are not
integrated out. The hierarchies between the modes for λm < 1 are displayed in Fig. 5.3.

The factorization theorems in each scenario will be described again in the top-down running as shown
in Fig. 5.4. For convenience we will discuss only the EFT picture that entails that the mass modes either
contribute or are completely integrated out. It is implied that using the OS renormalization condition
massive real radiation effects may still be present in matrix elements in boundary regions between two
scenarios.

5.3.1 Scenario I: m > Q > Qλ > Qλ2

When the mass m is larger than the hard scale Q the massive quark is integrated out in the matching
process between SCET and QCD. The factorization theorem is the one for nl massless fermions in analogy
to Eq. (5.4) up to the hard current coefficient which acquires an additional contribution due to the heavy
quark, i.e.

1

σ0

dσ
dτ

= Q
∣∣C̃(nl)(Q,m, µH)

∣∣2 ∣∣U (nl)

C̃
(Q,µH , µS)

∣∣2
∫

ds
∫

ds′ J (nl)
τ (s′, µJ)U

(nl)
Jτ

(s− s′, µS , µJ)

× S(nl)
τ

(
Qτ − s

Q
, µS

)
, (5.26)

where the massive contribution to the Wilson coefficient C̃(nl)(Q,m, µH) at O(α2
sCFTF ) corresponds to

Eq. (4.38) with the replacement Q2 → −(Q2 + i0) (or equivalently m̂2 → −m̂2 + i0).
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5.3.2 Scenario II: Q > m > Qλ > Qλ2

The mass m is below the hard scale, but still above the jet and the ultrasoft scale. The collinear and soft
mass modes are included into the SCET setup and contribute as dynamic degrees of freedom to the RG
evolution above m, but not yet via real radiation. In the RG evolution of the current from the hard to
the jet scale the mass-shell fluctuations are finally integrated out at the scale µm ∼ m. The factorization
theorem reads

1

σ0

dσ
dτ

= Q
∣∣C̃(nl+1)(Q,m, µH)

∣∣2 ∣∣U (nl+1)

C̃
(Q,µH , µm)

∣∣2∣∣MC̃(Q,m, µm)
∣∣2 ∣∣U (nl)

C̃
(Q,µm, µS)

∣∣2

×
∫

ds
∫

ds′ J (nl)
τ (s′, µJ)U

(nl)
Jτ

(s− s′, µS , µJ)S(nl)
τ

(
Qτ − s

Q
, µS

)
. (5.27)

The hard current coefficient acquires a subtractive contribution arising from the non-vanishing SCET
diagrams and contributions related to the change of the renormalization prescription for the strong
coupling, and the threshold correctionMC̃(Q,m, µm) arises, when the current evolution crosses the mass
scale. Both terms at O(α2

sCFTF ) are the same as the expressions in Eqs. (4.42) and (4.45) after the
replacement Q2 → −(Q2 + i0).

5.3.3 Scenario III: Q > Qλ > m > Qλ2

The mass is between the jet and the ultrasoft scale. Since the massless as well as the massive collinear
modes both can now fluctuate in the collinear sector additional massive real and virtual contributions
arise in the jet sector. In analogy to the current, the RG evolution of the jet function is performed with
nl + 1 flavors above the mass threshold and collinear mass-shell fluctuations are integrated out at the
mass scale. Overall the factorization theorem in this scenario has the form

1

σ0

dσ
dτ

= Q
∣∣C̃(nl+1)(Q,m, µH)

∣∣2 ∣∣U (nl+1)

C̃
(Q,µH , µm)

∣∣2∣∣MC̃(Q,m, µm)
∣∣2 ∣∣U (nl)

C̃
(Q,µm, µS)

∣∣2

×
∫

ds
∫

ds′
∫

ds′′
∫

ds′′′ J (nl+1)
τ (s′′′,m, µJ)U

(nl+1)
Jτ

(s′′ − s′′′, µm, µJ)

×MJτ (s′ − s′′,m, µm)U
(nl)
Jτ

(s− s′, µS , µm)S(nl)
τ

(
Qτ − s

Q
, µS

)
, (5.28)

The virtual and real mass corrections to the thrust jet function at O(α2
sCFTF ) are simply twice the ones

of the hemisphere jet function contributions given in Eqs. (4.53) and (4.54). The jet mass mode matching
coefficient can be decomposed into a n- and n̄-collinear factor,MJτ =MJτ ,n⊗MJτ ,n̄, which yields with
respect to the hemisphere jet threshold correction in Eq. (4.58) a factor of two for the terms at O(α2

s)
and O(α3

s) in the fixed-order counting, and a factor of four at O(α4
sC

2
FT

2
F ).

5.3.4 Scenario IV: Q > Qλ > Qλ2 > m

The mass is below the ultrasoft scale. There is no separation between the collinear and soft mass modes
and the corresponding collinear and ultrasoft massless modes since the RG evolution following the top-
down approach of Fig. 5.4 never crosses the massive quark threshold and all evolution is carried out for
nl + 1 active dynamic flavors. So compared to scenario III there are no mass mode matching coefficients,
and the soft function accounts for the secondary massive contributions. The factorization theorem reads

1

σ0

dσ
dτ

= Q
∣∣C̃(nl+1)(Q,m, µH)

∣∣2 ∣∣U (nl+1)

C̃
(Q,µH , µS)

∣∣2
∫

ds
∫

ds′ J (nl+1)
τ (s′,m, µJ)U

(nl+1)
Jτ

(s− s′, µS , µJ)

× S(nl+1)
τ

(
Qτ − s

Q
,m, µS

)
, (5.29)

where the hard current matching coefficient C̃(nl+1)(Q,m, µH) is the same as in scenarios II and III, and
the jet function J (nl+1)

τ (s,m, µJ) is the same as in scenario III. The soft function S(nl+1)
τ (`,m, µS) contains
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virtual as well as real radiation contributions related to the massive quark. The partonic contribution
can be written up to O(α2

sCFTF ) as

Ŝ(nl+1)
τ (`,m, µ) = Ŝ(nl+1)

τ (`, µ) + Ŝ
(nl+1,2)
τ,∆m,dist(`,m, µ) + Ŝ

(nl+1,2)
τ,m,θ (`,m) + Ŝ

(nl+1,2)
τ,m,∆ (`,m) , (5.30)

where Ŝ(nl+1)
τ (`, µ) is the partonic soft function for nl + 1 massless quark flavors. The other terms rep-

resent the O(α2
sCFTF ) corrections due to the non-zero quark mass. Their computation will be presented

explicitly in Sec. 5.4.
The expression for Ŝ(nl+1,2)

τ,∆m,dist(`,m, µ) contains only distributions and corresponds to virtual massive
quark radiation as well as to the terms related to the subtractions of the massless quark result (see
Eq. (5.10)) to avoid double counting with the full massless result in the first term of Eq. (5.30). The
renormalized expression reads (¯̀= `/µ, α

(nl+1)
s = α

(nl+1)
s (µ))

µ Ŝ
(nl+1,2)
τ,∆m,dist(`,m, µ) =

(
α

(nl+1)
s

)2
CFTF

16π2

{
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[
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9
L3
m −

40

9
L2
m −

(
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27
− 8π2

9
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− 64π2

27
+ 32ζ3

]

+

[
θ(¯̀)

¯̀

]
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[
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3
L2
m +

160

9
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896

27
− 16π2

9

]
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[
θ(¯̀) ln ¯̀

¯̀

]

+

[
−64

3
Lm −

320

9

]

+
64

3

[
θ(¯̀) ln2 ¯̀

¯̀

]

+

}
. (5.31)

The term Ŝ
(nl+1,2)
τ,m,θ (`,m) describes real massive quark radiation for the prescription that the coherent sum

of the massive quark and antiquark momentum (i.e. the virtual gluon momentum) enters the thrust defi-
nition. This prescription can be easily calculated analytically with the dispersive method and agrees with
the regular thrust prescription except when quark and antiquark enter different hemispheres. Ŝ(nl+1,2)

τ,m,θ

contains a threshold at ` = 2m and reads

µ Ŝ
(nl+1,2)
τ,m,θ (`,m) =

(
α

(nl+1)
s

)2
CFTF

16π2
θ(`− 2m)

1
¯̀

{
64

3
Li2
(
w − 1

w + 1

)
− 32

3
ln
(1− w2

4

)
ln
(

1− w
1 + w

)

+
16

3
ln2

(
1− w
1 + w

)
− 160

9
ln
(

1− w
1 + w

)
+

64

27
w3 − 320

9
w +

16π2

9

}
, (5.32)

with

w =

√
1− 4m2

`2
. (5.33)

Ŝ
(nl+1,2)
τ,m,θ (`,m) and its first two derivatives in ` vanish at the threshold, so that no discontinuity arises due

to real radiation. Since the momenta of the quark and antiquark contribute to the thrust prescription
as different respective projections on one of the two lightcone axes if they enter different hemispheres,
Ŝ

(nl+1,2)
τ,m,θ (`,m) does not represent the correct real radiation contribution. For the phase space region

where the massive quark and antiquark propagate into opposite hemispheres, one has to account for
the additional, numerically small hemisphere misalignment contribution Ŝ(nl+1,2)

τ,m,∆ (`,m) that consists out

of the difference between the correct thrust prescription and the one leading to Ŝ(nl+1,2)
τ,m,θ (`,m). This

correction does not have a threshold and is nonvanishing for all positive thrust momenta `. In the
massless limit Ŝ(nl+1,2)

τ,m,∆ (`,m) approaches a δ-distribution. We give a parametrization for Ŝ(nl+1,2)
τ,m,∆ that

approximates this contribution up to better than 2% relative accuracy (ˆ̀≡ `/m),

Ŝ
(nl+1,2)
τ,m,∆ (`,m)

∣∣∣
param.

=

(
α

(nl+1)
s

)2
CFTF

16π2

ˆ̀5

m

a ln2
(

1 + ˆ̀2
)

+ b ln
(

1 + ˆ̀2
)

+ c

d ˆ̀8 + e ˆ̀7 + f ˆ̀6 + g ˆ̀4 + h ˆ̀3 + j ˆ̀2 + 1
. (5.34)

with a = 8 d, b = − 80 d, c = 8/15 and d = 6/(2400 + 360π+ 73π2) being fixed from imposing the correct
asymptotic behavior for m� ` and m� `. The remaining 5 parameters were obtained using a fit with
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the constraint of satisfying the correct normalization corresponding to the massless analytic limit,

e = 0.0117 , f = 0.100 , g = − 0.502 , h = 0.747 , j = − 0.180 . (5.35)

Note that both real radiation contributions are UV finite. For m → 0 the soft function Ŝ(nl+1)
τ (`,m, µ)

yields correctly the fully massless partonic soft function at O(α2
s), i.e.

Ŝ(nl+1)
τ (`,m, µ)

m→0−→ Ŝ(nl+1)
τ (`, µ) . (5.36)

We note that in the calculation of Ŝ(nl+1,2)
τ,∆m,dist rapidity divergences arise in the contributions coming from

the different hemispheres which cancel in the sum of the terms. We stress, however, that for µ ∼ ` all
associated logarithmic mass-singularities cancel in the sum of Ŝ(nl+1,2)

τ,∆m,dist and Ŝ
(nl+1,2)
τ,m,θ , so that no (large)

rapidity logarithm remains in the soft function.
The UV divergences of the bare soft function Ŝ(nl+1,bare,2)

τ are mass independent and agree with the
known massless ones for nl + 1 dynamic flavors in Eq. (5.12) with the replacement nf = nl + 1. The
evolution factor U (nl+1)

Sτ
obeys

µ
d
dµ

U
(nl+1)
Sτ

(`, µ, µS) =

∫
d`′ γ(nl+1)

Sτ
(`− `′, µ)U

(nl+1)
Sτ

(`′, µ, µS) , (5.37)

which holds to any order in the strong coupling.

5.3.5 Gap subtraction, evolution and matching
Since in the scenarios I to III the quark mass is above the ultrasoft scale, the massive quark does not
affect the soft function. Thus the gap subtraction agrees with the one from the factorization theorem for
nf = nl massless quarks as described in Sec. 5.2. 5 In scenario IV, for m > ΛQCD the finite quark mass
provides an infrared cutoff for the virtuality of the exchanged gluon in the partonic soft function such
that the factorial growth of the coefficients related to the massive flavor at large orders in perturbation
theory is suppressed and, in principle, a corresponding subtraction in the gap series δ(R,µ) might be
unnecessary. However, implementing the gap scheme along the lines of Eqs. (5.17) and (5.18) including
the effects of the secondary massive quarks is useful in order to have a smooth interpolation of the gap
scheme parameters to the massless quark limit. Since the resulting subtraction series δ(nl+1)(R,m, µ)
encodes infrared-sensitive perturbative contributions, it now becomes mass dependent. Thus the complete
soft function in scenario IV reads

S(nl+1)
τ (`,m, µ) =

∫
d`′ Ŝ(nl+1)

τ (`− `′ − 2 δ(nl+1)(R,m, µ),m, µ)Smod
τ (`′ − 2 ∆̄(nl+1)(R,m, µ)) . (5.38)

The renormalon subtractions δ(nl+1)(R,m, µ) can be written as

δ(nl+1)(R,m, µ) = δ(nl+1)(R,µ) + δ
(nl+1,2)
∆m (R,m) , (5.39)

where δ(nl+1)(R,µ) is the series for nl+1 massless quark flavors and δ(nl+1,2)
∆m (R,m/R) represents the cor-

rection to the massless result at O(α2
sCFTF ) due to the finite quark mass. The result can be parametrized

by (y = m/R)

δ
(nl+1,2)
∆m (R,R y)

∣∣∣
param.

=

(
α

(nl+1)
s

)2
CFTF

16π2
ReγE

{
h̃(y)− h̃(y) + ay

1 + by + cy2
e−αy

β

}
, (5.40)

5If we do not use the strict EFT picture, but rather the OS renormalized soft function in the scenarios I to III we would
also have mass dependent real radiation terms there and could define corresponding renormalon subtractions (which decouple
for m� R). This would modify the R-evolution below the mass threshold and the matching condition in Eq. (5.49). Since,
however, we do not have to cancel any renormalon for a heavy quark in the first place, we have some freedom concerning
this point. For our purposes it is more convenient to define the renormalon subtractions such that gap parameter in the nl
scheme is not mass dependent.
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where

α = 0.634 , β = 1.035 , a = 23.6 , b = − 0.481 , c = 1.19 , (5.41)

and

h̃(y) = − 8

3
ln2y2 − 80

9
ln y2 − 448

27
− 8π2

9
. (5.42)

The expression in Eq. (5.40) provides an approximation with a relative deviation of much less than 1% that
is constructed such that the massless limit in Eq. (5.39) is recovered form→ 0, i.e. δ(nl+1,2)

∆m (R,m)
m→0−→ 0.

Moreover, for m/R→∞ the parametrization yields the correct limit,

δ
(nl+1,2)
∆m (R,R y)

∣∣∣
para

y→∞−→
(
α

(nl+1)
s

)2
CFTF

16π2
ReγE h̃(y) , (5.43)

The µ-evolution of the gap parameter ∆̄(nl+1)(R,m, µ) is mass independent and thus the same as for
the massless gap parameter as given in Eq. (5.23) with the replacement nf = nl+1. With the quark mass
dependent gap subtraction at O(α2

sCFTF ), however, the gap evolution in R becomes mass dependent, and
one can determine the R-evolution equation directly from Eq. (5.39) using Eq. (5.22). The R-anomalous
dimension can then be written as

γ
(nl+1)
R

(m
R

)
= γ

(nl+1)
R + γ

(nl+1,2)
R,∆m

(m
R

)
. (5.44)

Using the parametrization of Eq. (5.40) the result for theO(α2
sCFTF ) massive quark correction γ(nl+1,2)

R,m (m/R)
can be easily computed,

γ
(nl+1,2)
R,∆m

(m
R

)∣∣∣
param.

=
d

dR
δ

(nl+1,2)
∆m (R,m)

∣∣∣
param.

. (5.45)

It approximates the exact result within 2% (except for m/R < 0.1, where the correction is anyway tiny)
and yields the correct massless limit in Eq. (5.44) for m→ 0, i.e. γ(nl+1,2)

R,∆m (m/R)
m→0−→ 0.

The explicit solution for the µ- and R-evolution for ∆̄(nf )(R,µ) with massless quarks can be found in
Eq. (41) of Ref. [4]. The quark mass just modifies the R-evolution terms of that solution. It affects the
function D(k)(αs(R1), αs(R0)), defined for massless quarks in Eq. (A.31) of Ref. [4], where R0 (R1) is the
initial (final) scale of the R-evolution. 6 Mass effects start contributing at N2LL order and modify the
corresponding function D(nl+1,2)(αs(R0), αs(R1)) defined in the (nl + 1)-scheme in the following way :

D(nl+1,2)(α(nl+1)
s (R0), α(nl+1)

s (R1),m) = D(nl+1,2)(α(nl+1)
s (R0), α(nl+1)

s (R1)) (5.46)

+
1

4β2
0

∫ t1

t0

dt e−t(−t)−2− β1
2β2

0 γ
(nl+1,2)
R,∆m

(
meG

(2)(t)

Λ
(nl+1,2)
QCD

)
,

with ti = − 2π/(β0 α
(nl+1)
s (Ri)) and βi being the coefficients of the perturbative expansion of the β

function in the (nl + 1)-scheme as defined in Eq. (4.184). Λ
(nl+1,2)
QCD = ReG

(2)(t) = Ri e
G(2)(ti) is the scale

coming from dimensional transmutation of the strong coupling running with (nl + 1) flavors at N2LL
order. The function G(2)(t) is given by

G(2)(t) = t+
β1

2β2
0

ln(− t)− β2
1 − β0β2

4β4
0

1

t
, (5.47)

Eq. (5.46) can be obtained following the changes of variables as explained in Ref. [116]. A generalization
to higher orders is straightforward.

6We note again that the R-evolution is performed diagonally in µ-R-space such that the running of αs is accounted for.
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Figure 5.5: R-evolution of Ω̄1(R,µ = R) with a massive bottom (left) and a massive top quark (right)
at O(α3

s) as described in the text. The curves represent purely massless evolution (red, dashed), massive
evolution including threshold matching (blue, solid) at mb(mb) and mt(mt), respectively, and massive
evolution without threshold matching (green, dotted).

To complete the discussion on the evolution of the gap parameter we have to consider the matching
relation between ∆̄(nl+1)(R,m, µ) for R,µ > µm ∼ m, where the massive quark is an active dynamic
flavor, and ∆̄(nl)(R,µ) for R,µ < µm ∼ m, where the massive quark is integrated out. The matching
relation is most easily derived using the fact that the “bare” gap parameter is scheme-independent very
much like the massive quark pole mass. This gives the relation

∆ = ∆̄(nl)(R,µ) + δ(nl)(R,µ) = ∆̄(nl+1)(R,m, µ) + δ(nl+1)(R,m, µ) . (5.48)

We thus obtain (Lm = ln(m2/µ2))

∆̄(nl)(R,µ) = ∆̄(nl+1)(R,m, µ) + δ
(nl+1,2)
TF

(R,µ) + δ
(nl+1,2)
∆m (R,m, µ)

− α
(nl+1)
s TF

3π
Lm δ

(nl+1,1)(R,µ) +O(α3
s) (5.49)

with the one-loop gap subtraction given in Eq. (5.19). The latter term arises from the matching relation
of the strong coupling between the nl- and (nl + 1)-scheme. To avoid large logarithms, the gap matching
relation should be employed for R ∼ µ ∼ m.

In Fig. 5.5 (left panel) we show Ω̄1(R,µ = R) (see Eq. (5.25)) as a function of R in the range between
2 and 13 GeV using Ω̄

(5)
1 (13 GeV, 13 GeV) = 0.5 GeV and α

(5)
s (mZ) = 0.114 as initial conditions. The

choice of these initial conditions is motivated by recent fits for αs and Ω̄1 in Refs. [4, 5] which involved
only experimental data related to R-scale values above 10 GeV despite the fact that values for Ω̄1 at
R = 2 GeV were quoted in the final result. The red, dashed curve shows the purely massless evolution
using the R-anomalous dimension at O(α3

s). The blue, solid curve shows the R-dependence accounting for
the finite bottom quark mass taking mb(mb) = 4.2 GeV as an input for the MS bottom quark mass and
using the threshold matching relation of Eq. (5.49) at R = µ = mb(mb) when switching from the nf = 5
to the nf = 4 flavor scheme for the gap parameter. The difference between the blue and the red curve
illustrates the impact of the finite bottom mass corrections on the R-dependence. We see that the mass
effects are relatively small for R > mb(mb), which indicates that the mass corrections in the anomalous
dimension in R represent only a minor effect. On the other hand, for R < mb(mb), the bottom mass
effects, which arise from the threshold matching corrections and from using the nf = 4 flavor anomalous
dimension, are quite sizeable. These belong also to the most important effects due to the finite bottom
mass in the complete thrust distribution. To visualize the impact of the bottom mass on the R-evolution
alone we have also displayed the dependence on R when the threshold matching correction is ignored
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(green, dotted curve). Overall, we see that the impact due to the finite bottom quark mass is sizeable
and non-negligible particularly for scales below the bottom quark mass.

In the right panel of Fig. 5.5 we display Ω̄1(R,µ = R) as a function of R in the range up to 500 GeV
showing the same type of curves as described before in order to illustrate the impact of the finite top
quark mass. All curves have the common input value Ω̄

(6)
1 (500 GeV, 500 GeV) = 1.85 GeV using again

α
(5)
s (mZ) = 0.114. The switch from the nf = 6 to the nf = 5 flavor scheme has been carried out exactly

at the top quark mass mt(mt) = 163 GeV. We can make observations that are very similar to the ones
already discussed for the bottom quark threshold region. The difference is that the impact of the finite
top quark mass effects are even more dramatic than for the bottom quark case leading to a discrepancy
of a factor of two between the appropriate mass dependent evolution and the running for a massless top
quark when Ω̄1 is evolved down to the bottom quark scale. This is related to the linear dependence of
the gap parameter on R ∼ mt in the threshold matching relation and the R-evolution.

Note that the mass dependence of the R-evolution equations at O(α3
s) is currently unknown. For the

numerical analysis in Sec. 5.7 we have therefore employed at O(α3
s) the known massless corrections with

the appropriate number of flavors. As the O(α3
s) corrections amount to at most 25 % of the O(α2

s) terms,
and – as we have just shown above – the mass dependence in the R-evolution equation only represents
a minor effect, this approach is certainly justified. We have checked that using the R-evolution equation
at O(α2

s) (disregarding O(α3
s)-terms) leads to a deviation in the bottom quark mass correction for the

thrust distribution that is less than half of the one generated by the variation of µm discussed in our
numerical analysis of Sec. 5.7. This indicates that the missing quark mass corrections at O(α3

s) might be
safely ignored at this stage.

5.4 Two-loop soft function for secondary massive quarks

In this section we compute the secondary massive quark contributions to the thrust soft function at
O(α2

sCFTF ). For a generalization to the related soft function for the double differential hemisphere
distribution we refer to Ref. [11]. We emphasize that the definition of the soft function in Eq. (5.7) also
applies to the case when the primary quarks are massive [8,9] as long as the c.m. energy Q is much larger
than their mass (i.e. in the boosted regime) since the emergence of the Wilson lines in the soft eikonal
approximation is mass independent. Thus our result is also valid for massive secondary quark effects
in massive primary quark production, where masses of primary and secondary quarks can differ, up to
potential trivial modifications concerning the scheme for αs.

We need to compute the diagrams in Fig. 5.6 for a quark flavor with mass m. While the phase space
for the diagrams (a) – (d) is simple, the computation of the diagrams (e) and (f) is highly non-trivial
corresponding to the case, when the massive quark and antiquark with momenta k and q, respectively,
enter the final state. Taking into account the corresponding symmetry factors, one can obtain their
contributions to the soft function in the form analogously to the massless case [112]

Se+f (`,m) =

∫
ddk

(2π)d

∫
ddq

(2π)d
F (qq)(k, q, `,m) s(k, q) , (5.50)

where s(k, q) is the matrix element calculated by conventional Feynman rules,

s(k, q) = g4CFTF µ̃
2ε 4(k+q− + k−q+ − 2k · q)

(k+ + q+)(k− + q−)(k + q)4
. (5.51)

The phase space constraints and the on-shell condition for the massive quarks are given by the quark
hemisphere prescription F (qq)(k, q, `,m),

F (qq)(k, q, `,m) = (−2πi)2 δ(k2 −m2) δ(q2 −m2) θ(k+ + k−) θ(q+ + q−) (5.52)

×
[
θ(k+ − k−) θ(q− − q+) δ(`− k− − q+) + θ(k− − k+) θ(q+ − q−) δ(`− k+ − q−)

+ θ(k− − k+) θ(q− − q+) δ(`− k+ − q+) + θ(k+ − k−) θ(q+ − q−) δ(`− k− − q−)
]
.
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n̄,+Ỹn̄,−

Y †
n,+
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Figure 5.6: The types of Feynman diagrams for the O(α2
sCFTF ) contributions to the soft function

with corresponding symmetric configurations. (a) and (b) are purely virtual, (c) and (d) contain the
contributions to real gluon radiation and (e) and (f) the contributions for the real radiation of a quark-
antiquark pair. (a) and (d) vanish in Feynman gauge due to n · n = 0.

Solving the integral (5.50) directly with this phase space constraint turns out to be an extraordinarily
difficult task due to the mass dependence together with the complications that arise from the parts of
the phase space where the quark and antiquark enter different hemispheres. Instead of approaching with
brute force, we therefore apply the following strategy: We first calculate a soft function (over the full
physical phase space) with a much simpler momentum assignment (but the same matrix element),

S
(g)
e+f (`,m) =

∫
ddk

(2π)d

∫
ddq

(2π)d
F (g)(k, q, `,m) s(k, q) , (5.53)

where the phase space constraints are given by the gluon hemisphere prescription F (g)(k, q, `,m),

F (g)(k, q, `,m) = (−2πi)2 δ(k2 −m2) δ(q2 −m2) θ(k+ + k−) θ(q+ + q−) (5.54)

×
[
θ(k+ + q+ − k− − q−) δ(`− k− − q−) + θ(k− + q− − k+ − q+) δ(`− k+ − q+)

]
.

This phase space assigns the soft hemisphere momenta coherently to the components of the gluon mo-
mentum k+ q, so that the massive quark and antiquark momenta always contribute together and homo-
geneously to `. The soft function obtained in this way only keeps track of the hemisphere, into which the
virtual gluon propagated, and therefore differs from the actual physical thrust soft function we aim to
calculate, where the final state partons each are accounted for in the hemisphere they propagate. Since
both prescriptions are compatible with soft-collinear factorization and lead to the same hard current and
jet functions, the consistency of the renormalization group evolution forces both soft functions to have
the same UV divergences. So the required additional correction arising from the difference between the
quark hemisphere and gluon hemisphere prescription, which we call phase space misalignment correction,
can be computed in four dimensions, which can be tackled numerically. Due to the finite quark masses
the resulting calculations are also IR-finite and straightforward to carry out.

The advantage of introducing the gluon hemisphere prescription is that the kinematics is only gov-
erned by the gluon momenta weighted by the gluon virtuality. So in the calculation the physical effects
associated to the fact that a massive quark pair is produced from virtual gluon decay can be separated
from the computation of the phase space. This makes the gluon hemisphere prescription quite simple to
compute because it allows us to perform the computation with the help of dispersion integrations over
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the gluon virtuality as described in Sec. 3.4.1. In the following we will therefore as a first step calculate
the O(αs) corrections to the partonic soft function coming from the radiation of a massive gluon with
momentum k + q. Then, by convoluting the massive gluon result with the imaginary part of the gluon
vacuum polarization function related to the massive quark cuts in diagrams (e) and (f) one obtains the
O(α2

sCFTF ) massive quark corrections in the gluon hemisphere prescription. The calculation is very
generic and it is simple to determine the effects of gluon splitting into any other kind of final state, such
as gluino pairs just to mention one example.

5.4.1 Soft function for massive gluons at O(αs)
The non-vanishing diagrams at O(αs) are similar to the ones displayed in Fig. 4.12 for the computation
of the PDF soft function and we will also refer to them as Sa and Sb. However, note that the involved
Wilson lines and in particular the phase space are different for the thrust soft function, which is based on a
hemisphere momentum definition. As in the computation of Sec. 4.3.3 we encounter rapidity divergences
in the soft function. In contrast to the PDF soft function, however, these cancel among themselves and
no further recombination with other structures is required. We calculate the massive gluon contributions
using again the α-regulator defined in Eq. (4.66), which implies that the diagram Sa vanishes. Diagram
Sb and its symmetric configuration give two contributions related to the cases k+ > k− and k+ < k− for
the massive gluon momentum kµ,

2Sb =S+ + S− , (5.55)

which are treated asymmetrically with the α-regulator,

S+ = 8πg2CF µ̃
2ε

∫
ddk

(2π)d
να

(k−)1+α

1

k+
θ(k+ + k−) δ(k2 −M2) θ(k+ − k−) δ(`− k−) , (5.56)

S− = 8πg2CF µ̃
2ε

∫
ddk

(2π)d
να

(k−)1+α

1

k+
θ(k+ + k−) δ(k2 −M2) θ(k− − k+) δ(`− k+) . (5.57)

Applying the hemisphere constraints and performing the k⊥-integration, one obtains the expressions

S+ =
αsCF
π

(
µ2eγE

)2− d2
Γ
(
d
2 − 1

)
∫ ∞

`

dk+ να

`α

(
` k+ −M2

) d
2−2

` k+
θ(` k+ −M2) , (5.58)

S− =
αsCF
π

(
µ2eγE

)2− d2
Γ
(
d
2 − 1

)
∫ ∞

`

dk−
να

(k−)
α

(
` k− −M2

) d
2−2

` k−
θ(` k− −M2) . (5.59)

Performing the last integration and taking the limit α→ 0 we obtain (¯̀= `/µ)

µS+ =
αsCF
π

{
Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2
(
δ(¯̀)

[
− 1

α
− ln

(
ν

µ

)]
+

[
θ(¯̀)

¯̀

]

+

)
− θ(`−M)

1
¯̀ ln

(
`2

M2

)}
,

(5.60)

and (LM = ln(M2/µ2))

µS− =
αsCF
π

{
Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2
(
δ(¯̀)

[
1

α
+ ln

(
ν

µ

)
− LM +H1− d2

]
+

[
θ(¯̀)

¯̀

]

+

)

− θ(`−M)
1
¯̀ ln

(
`2

M2

)}
. (5.61)

Note that the threshold terms involving the θ-function correspond to the real radiation contributions
for the massive gluon. They have been given for d = 4 (ε = 0) because they only contain IR and UV
finite integrals within the subtracted dispersion integral (3.62). In the sum all α-singularities and the
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dependence on ν cancels between the two hemisphere contributions. 7 We write the unrenormalized mass
mode contributions to the thrust soft function as

Ŝ
(bare,1)
τ,M (`,M, µ) = Ŝ

(bare,1)
τ,M,virt(`,M, µ) + Ŝ

(1)
τ,M,real(`,M) . (5.62)

with the virtual massive gluon corrections given by

µ Ŝ
(bare,1)
τ,M,virt(`,M, µ) =

αsCF
4π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2
{

4 δ(¯̀)
[
−LM +H1− d2

]
+ 8

[
θ(¯̀)

¯̀

]

+

}
, (5.63)

and the real massive gluon corrections given by

µ Ŝ
(1)
τ,M,real(`,M, µ) = − αsCF

4π
θ(`−M)

8
¯̀ ln

(
`2

M2

)
. (5.64)

Furthermore, expanding for ε→ 0 we obtain

µ Ŝ
(bare,1)
τ,M,virt(`,M, µ) =

αsCF
4π

{
δ(¯̀)

[
− 4

ε2
+ 2L2

M +
π2

3

]
+

[
θ(¯̀)

¯̀

]

+

[
8

ε
− 8LM

]}
. (5.65)

We see that the UV-divergences are mass independent and agree exactly with the well known divergences
of the massless gluon contributions to the soft function in Eq. (5.11). Subtracting the divergences with
the counterterm of Eq. (5.11) leads to a renormalized expression of the thrust soft function which has
the correct massless limit in Eq. (5.9), i.e. Ŝ

(1)
τ,M (`,M, µ) → Ŝ

(1)
τ (`, µ) for M → 0. Note that for

µ = µS ∼ ` ∼ Qλ2 all large logarithms that arise for M � ` in individual corrections cancel in the sum
of the real and virtual mass mode contributions.

5.4.2 Massive quark corrections with gluon hemisphere prescription

We use the dispersive technique for the calculation of the O(α2
sCFTF ) massive quark contributions to the

soft function with the gluon hemisphere prescription. In the nl-flavor scheme for αs they can be obtained
from the one-loop soft function for the radiation of a massive gluon with the subtracted dispersion relation

Ŝ(g,nl,bare,2)
τ,m (`,m, µ) = Ŝ

(nl,bare,2)
τ,m,virt (`,m, µ) + Ŝ

(nl,2)
τ,m,θ (`,m)

=
1

π

∫
dM2

M2

(
Ŝ

(bare,1)
τ,M,virt(`,M, µ) + Ŝ

(1)
τ,M,real(`,M)

)
Im
[
Π(m2,M2)

]
. (5.66)

The convolution is performed separately for the virtual gluon emission term Ŝ
(bare,1)
τ,M,virt in Eq. (5.63) and

the UV and IR finite real radiation term Ŝ
(1)
τ,M,real in Eq. (5.64), where for the latter the d = 4 version of

the absorptive part of the vacuum polarization function in Eq. (3.61) can be used. We obtain the result
in Eq. (5.32) for the real radiation term Ŝ

(nl,2)
τ,m,θ (with αs = α

(nl)
s (µ)) and for the virtual radiation term

µ Ŝ
(nl,bare,2)
τ,m,virt (`,m, µ) =

(
α

(nl)
s

)2
CFTF

16π2

{
δ(¯̀)

[
− 4

ε3
+

1

ε2

(
16

3
Lm +

20

9

)
+

1

ε

(
−8

3
L2
m +

112

27
− 2π2

3

)

− 40

9
L2
m +

(
−448

27
+

8π2

9

)
Lm −

656

27
+

10π2

27
+ 8ζ3

]
+

[
θ(¯̀)

¯̀

]

+

[
16

3ε2

+
1

ε

(
−32

3
Lm −

80

9

)
+

32

3
L2
m +

160

9
Lm +

448

27
+

8π2

9

]}
. (5.67)

7Using the symmetric Wilson line regulator η in Refs. [40,41] the diagram Sa does not vanish and the rapidity divergences
cancel between Sa and Sb within one hemisphere instead of between S+ and S−.
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We switch to the (nl + 1)-flavor scheme for αs by adding the MS-renormalized Π(0) times the (un-
renormalized) massless one-loop contribution to the soft function

Ŝ(nl+1,bare,1)
τ (`, µ) = Ŝ(nl+1,1)

τ (`, µ) + Z
(nl+1,1)
Sτ

(`, µ) , (5.68)

with Ŝ(nl+1,1)
τ (`, µ) and Z(nl+1,1)

Sτ
(`, µ) given in Eqs. (5.9) and (5.11), respectively. Thus the corresponding

contribution needed to change from the nl to the (nl + 1)-flavor scheme reads

µ Ŝ(nl→nl+1,2)
τ (`,m, µ) = −

(
Π(m2, 0)− αsTF

3π

1

ε

) (
Ŝ(nl+1,1)
τ (`, µ) + Z

(nl+1,1)
Sτ

(`, µ)
)

=
α2
sCFTF
(4π)2

{
δ(¯̀)

[
− 16

3ε2
Lm +

1

ε

(
8

3
L2
m +

4π2

9

)
− 8

9
L3
m −

16

9
ζ3

]

+

[
θ(¯̀)

¯̀

]

+

[
32

3ε
Lm −

16

3
L2
m −

8π2

9

]
− 64

3
Lm

[
θ(¯̀) ln ¯̀

¯̀

]

+

}
. (5.69)

Note that the contributions in Eq. (5.69) contain only the virtual distributive pieces and do not affect
the massive quark real radiation corrections. Combining all contributions and renormalizing the result
with the soft counterterm contribution Z(nl+1,2)

Sτ ,TF
in Eq. (5.12) finally gives

Ŝ
(nl+1,2)
τ,m,virt (`,m, µ) = Ŝ

(nl,bare,2)
τ,m,virt (`,m, µ) + Ŝ(nl→nl+1,2)

τ (`,m, µ)− Z(nl+1,2)
Sτ ,TF

(`, µ) (5.70)

with αs = α
(nl+1)
s (µ) employed in the final result. Inserting Eqs. (5.12), (5.67) and (5.69) yields

µ Ŝ
(nl+1,2)
τ,m,virt (`,m, µ) =

(
α

(nl+1)
s

)2
CFTF

16π2

{
δ(¯̀)

[
−8

9
L3
m −

40

9
L2
m +

(
−448

27
+

8π2

9

)
Lm −

656

27
+

10π2

27

+
56

9
ζ3

]
+

[
θ(¯̀)

¯̀

]

+

[
16

3
L2
m +

160

9
Lm +

448

27

]
− 64

3
Lm

[
θ(¯̀) ln ¯̀

¯̀

]

+

}
(5.71)

Subtracting from Eq. (5.71) the massless limit in Eq. (5.10) we obtain the distributive mass corrections
to the soft function given in Eq. (5.31).

From Eq. (5.66) one can take the massless limit by expanding the real radiation contribution Ŝ(nl+1,2)
τ,m,θ

into delta- and plus-distribution, which leads for the renormalized result

µ Ŝ(g,nl+1,2)
τ,m (`,m, µ)

m→0−→
(
α

(nl+1)
s

)2
CFTF

16π2

{
δ(¯̀)

[
656

81
− 10π2

9
− 40

9
ζ3

]
+

[
θ(¯̀)

¯̀

]

+

[
−448

27
+

16π2

9

]

+
320

9

[
θ(¯̀) ln ¯̀

¯̀

]

+

− 64

3

[
θ(¯̀) ln2 ¯̀

¯̀

]

+

}
. (5.72)

This agrees with a corresponding computation for the gluon hemisphere soft function, where the mass
is set to zero from the beginning, but does not yield the full massless thrust soft function correction at
O(α2

sCFTF ) (with the quark hemisphere prescription) in Eq. (5.10). Thus the additional phase space
misalignment contribution which we compute in the following is required to achieve the correct massless
limit of the thrust soft function.

5.4.3 Phase space misalignment correction

We now determine the O(α2
sCFTF ) massive quark corrections to the thrust soft function for the physical

quark hemisphere prescription. After having obtained the results for the gluon hemisphere prescription
Ŝ

(g,nl+1,2)
τ,m in Sec. 5.4.2, what remains to be calculated are the corrections due to the phase space mis-

alignment to the physical quark hemisphere prescription, which we call Ŝ(nl+1,2)
τ,m,∆ . The result for the full

O(α2
sCFTF ) massive quark corrections to the renormalized thrust soft function reads

Ŝ(nl+1,2)
τ,m (`,m, µ) = Ŝ(g,nl+1,2)

τ,m (`,m, µ) + Ŝ
(nl+1,2)
τ,m,∆ (`,m) . (5.73)
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Figure 5.7: The contributions to the thrust soft function from the opposite hemisphere phase space, for
the quark hemisphere prescription f̂qq(ˆ̀) (blue, solid), gluon hemisphere prescription f̂g(ˆ̀) (red, dashed)
and the difference which is proportional to mŜ

(nl+1,2)
τ,m,∆ (`,m) (black, dotted).

The phase space misalignment correction Ŝ(nl+1,2)
τ,m,∆ contains only phase space contributions, where the two

quarks enter different hemispheres, since quark and gluon hemisphere prescriptions act in the same way
when the quarks enter the same hemisphere. After having performed the integrations over the transverse
momenta in Eqs. (5.50) and (5.53) we obtain

Ŝ
(nl+1,2)
τ,m,∆ (`,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

∫
dq−

∫
dk+

∫
dq+

∫
dk− θ(k− − k+) θ(q+ − q−)

× θ(k+k− −m2) θ(q+q− −m2) θ(k− + k+) θ(q+ + q−)
[
δ(`− k+ − q−)

− θ(k− + q− − k+ − q+) δ(`− k+ − q+)− θ(k+ + q+ − k− − q−) δ(`− k− − q−)
]

× fm(k+, k−, q+, q−,m) (5.74)

with the integrand

fm(k+, k−, q+, q−,m) =

[(
k+q+

(q+ + k+)2
+

k−q−

(q− + k−)2

)(
q+k− + k+q−

)
− 4(k+k− −m2)(q+q− −m2)

(q+ + k+)(q− + k−)

]

× 16

[(q+k− + k+q−)2 − 4(k+k− −m2)(q+q− −m2)]
3/2

. (5.75)

In fact the results of both, quark and gluon hemisphere prescriptions entering Ŝ(nl+1,2)
τ,m,∆ are individually

free of UV divergences. Conceptually this is related to the consistency of soft-collinear factorization and
the exponentiation properties of the hemisphere soft function [92, 115], which imply that at O(α2

s) UV-
divergent contributions depending simultaneously on both momentum projections in the two hemispheres
in a non-trivial way can only have C2

F color-structures. For the massive quark corrections we calculate,
there are also no IR divergences for both hemisphere prescriptions individually since the mass acts as an
IR regulator. 8 Therefore we do not have to employ any additional regularization and a numerical com-
putation can be easily performed. Furthermore, since these contributions to the soft function correspond
to real emission diagrams, no distributions are generated for nonvanishing quark masses.

Using Eq. (5.74) we can cast the result for the phase space misalignment correction into the form
(ˆ̀= `/m)

mŜ
(nl+1,2)
τ,m,∆ (`,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

(
f̂qq(ˆ̀)− f̂g(ˆ̀)

)
. (5.76)

8In the massless computation of the hemisphere soft function in Refs. [112, 117] infrared 1/ε divergences arise for the
phase space, where the two quarks enter opposite hemispheres, as well as for the one, where they enter the same hemisphere.
These cancel in the sum.
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The term f̂qq is the contribution due to the quark hemisphere prescription,

f̂qq(ˆ̀) =

∫ ∞

0

dy−
∫ ∞

0

dy+

∫ ∞

0

dx− θ(x− + y− − ˆ̀) θ(y+ − y−) θ(ˆ̀x− − y−x− − 1) θ(y+y− − 1)

× fm(ˆ̀− y−, x−, y+, y−, 1) (5.77)

in rescaled variables with x± = k±/m and y± = q±/m. Since f̂qq is dimensionless we have recombined
the scales and written fm as a dimensionless function in terms of these rescaled momenta. The term f̂g
is related to the gluon hemisphere prescription and reads

f̂g(ˆ̀) =

∫ ∞

0

dy−
∫ ∞

0

dy+

∫ ∞

0

dx− θ(x− + y+ − ˆ̀) θ(y+ − y−) θ(ˆ̀x− − y+x− − 1) θ(y+y− − 1)

× fm(ˆ̀− y+, x−, y+, y−, 1) . (5.78)

Writing out the phase space in Eq. (5.77) and (5.78) in terms of separate integration domains, one
can evaluate f̂qq and f̂g numerically. Using the Cuba library [118] we obtained the same result for both
deterministic as well as Monte-Carlo algorithms. The resulting functions are displayed in Fig. 5.7 together
with their difference resulting in the complete hemisphere misalignment contribution. f̂g(ˆ̀) contains a
threshold at the scale ˆ̀ = 1, at which it turns on smoothly. Indeed the momentum deposit ` in the
gluon prescription for the opposite hemisphere phase space is a sum of one large lightcone component,
say q+, and a small lightcone component k+. Since the invariant mass of each real particle is fixed by
the on-shell condition, it follows that q+q− ≥ m2. Taking into account that in this case q+ > q− we
get `2 = (q+ + k+)2 ≥ (q+)2 ≥ q+q− ≥ m2. For f̂qq no threshold arises, since just the small lightcone
components contribute.

Let us investigate the asymptotic behavior of the hemisphere misalignment correction analytically and
show the results for very heavy and light quarks explicitly. For large masses, i.e. ` � m, the expansion
of f̂qq gives the only contribution to Ŝ(nl+1,2)

τ,m,∆ , since f̂g vanishes, resulting in

mŜ
(nl+1,2)
τ,m,∆ (`,m)

`�m−→
(
α

(nl+1)
s

)2
CFTF

16π2

8

15
ˆ̀5
[
1 +O

(
ˆ̀2
)]
. (5.79)

This gives a strong suppression of mass effects in the decoupling limit.
For `� m we obtain for the expansion of both f̂qq and f̂g at leading order

f̂qq(ˆ̀), f̂g(ˆ̀)
ˆ̀�1−→

(
−16

3
+

32π2

9

)
1

ˆ̀

[
1 +O

(
1

ˆ̀

)]
. (5.80)

Thus for large values of `/m the hemisphere misalignment correction involves strong cancellations in the
difference between its quark and gluon hemisphere contributions as can be also seen in Fig. 5.7, which
can lead to numerical instabilities. An alternative way to compute Ŝ(nl+1,2)

τ,m,∆ for large values of `/m
can be achieved by evaluating the cumulant, where the quark and gluon hemisphere contributions can
be combined prior to integration, and by differentiating numerically afterwards (see appendix D). The
asymptotic expansion for large thrust momenta is also outlined in appendix D and gives

mŜ
(nl+1,2)
τ,m,∆ (`,m)

`�m−→
(
α

(nl+1)
s

)2
CFTF

16π2

1

ˆ̀3

[
8 ln2 ˆ̀2 − 80 ln ˆ̀+

640

3
+

292π2

45
+ 32π

] [
1 +O

(
1

ˆ̀

)]
.

(5.81)

In the massless limit the hemisphere misalignment correction becomes a delta-distribution and gives

µ Ŝ
(nl+1,2)
τ,m,∆ (`,m)

m→0−→
(
α

(nl+1)
s

)2
CFTF

16π2
δ(¯̀)

{
−64

9
+

104π2

27
− 64

3
ζ3

}
. (5.82)

Together with the massless limits of the soft function with gluon hemisphere prescription in Eqs. (5.72)
this yields the massless result in Eq. (5.10).
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Figure 5.8: Left panel: Phase space misalignment correctionmŜ
(nf ,2)
τ,m,∆(`,m) (black dots) together with the

parametrization in Eq. (5.34) (red, dashed) and its asymptotic expansions (blue, dotted), all normalized
by the prefactor (α

(nf )
s )2CFTF /16π2 (with nf = nl or nf = nl + 1). The fit is almost indistinguishable

from the exact function. Right panel: The relative deviation of the parametrization with respect to an
interpolation of the exact function for Ŝ(nf ,2)

τ,m,∆, denoted by ∆Ŝ
(nf ,2)
τ,m,∆.

A possible parametrization of Ŝ(nl+1,2)
τ,m,∆ can be given by a Padé-type rational function multiplying

some logarithmic terms, see Eq. (5.34). We have adopted an analytic ansatz that is capable of yielding
the asymptotic behaviors of Eqs. (5.79) and (5.81) and has the finite normalization given by Eq. (5.82).
We have also already displayed the parameters fixed by the asymptotic expansion and the fitted values
corresponding to a local minimum of the χ2-function in Sec. 5.3 (above and in Eq. (5.35)). The exact
and fitted results together with the asymptotic expansions are shown in Fig. 5.8, where we clearly see
that the parametrization yields an excellent approximation of the actual function and is certainly more
than adequate for phenomenological applications in the near future.

Finally, we also display the three components of the O(α2
sCFTF ) massive quark corrections to the

renormalized thrust soft function, their sum and the massless limit together with the cumulants in Fig. 5.9
for µ = m as a function of ˆ̀= `/m and L̂ = L/m, respectively. We see that the phase space misalignment
correction represents a relatively small contribution.

5.4.4 Renormalon subtractions

We compute the leading renormalon subtraction for massive secondary quarks for m . Qτ in the gap
formalism. The subtraction series defined by Eq. (5.18) is now mass dependent. Following the form of
Eqs. (5.66) and (5.73) we parametrize the gap subtraction coming from the O(α2

sCFTF ) massive quark
corrections in the form

δ(nl+1,2)
m (R,m, µ) = δ

(nl+1,2)
m,virt (R,m, µ) + δ

(nl+1,2)
m,θ (R,m) + δ

(nl+1,2)
m,∆ (R,m) , (5.83)

where the three terms in the brackets arise from the results for Ŝ(nl+1,2)
τ,m,virt , Ŝ

(nl+1,2)
τ,m,θ and Ŝ(nl+1,2)

τ,m,∆ given in
Eqs. (5.71), (5.32) and (5.74). We emphasize that the results are given here in the scheme with nl + 1
dynamical quark flavors. We obtain

δ
(nl+1,2)
m,virt (R,m, µ) = −

(
α

(nl+1)
s

)2
CFTF

(4π)2
ReγE

{
16

3
Lm ln

(
µ2

R2

)
− 8

3
L2
m −

80

9
Lm −

224

27

}
, (5.84)
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Figure 5.9: Plots of the massive quark contributions to the thrust soft function (left panel) and its
cumulant (right panel) for µ = m, normalized by the prefactor (α

(nl+1)
s )2CFTF /16π2. Ŝ(nl+1,2)

τ,m,virt , Ŝ
(nl+1,2)
τ,m,θ

and Ŝ(nl+1,2)
τ,m,∆ denote the virtual, real radiation and phase space misalignment contributions described in

the text, Ŝ(nl+1,2)
τ,m is their sum, i.e. the full massive contribution, and Ŝ(nl+1,2)

τ,TF
is the massless contribution

at O(α2
sCFTF ) for one single flavor. The corresponding descriptions also hold for the cumulant terms Ŝτ .

and after some lengthy analytical calculation

δ
(nl+1,2)
m,θ (R,m) =

(
α

(nl+1)
s

)2
CFTF

(4π)2
ReγE

{
16

3
G3,0

1,3

(
1

0, 0, 0

∣∣∣∣
z2

4

)
− 160

9
K0(z) + z

[
160

9
K1(z)− 8π

]

+ z2

[
− 16

27
K2(z) + 8π(K0(z)L−1(z) +K1(z)L0(z))

]
+ z3

[
16

27
K1(z)− 8π

27

]

+
8π

27
z4

[
K0(z)L−1(z) +K1(z)L0(z)

]}
, (5.85)

where z ≡ 2m/(ReγE ) and Kn being the familiar Bessel functions. Gm,np,q and Ln denote the less known
Meijer G and Struve functions. For z > 0 the corresponding explicit integral representations of these
functions read

G3,0
1,3

(
1

0, 0, 0

∣∣∣∣
z2

4

)
= 4

∫ ∞

1

dt
t
K0(zt) , (5.86)

Ln(z) = I−n(z)− 21−nzn√
π Γ
(
n+ 1

2

)
∫ ∞

0

dt
(
t2 + 1

)n− 1
2 sin(tz) , (5.87)

where In indicate the better known Bessel functions. Computing the integral in Eq. (5.86) numerically is
faster and more stable than evaluating G3,0

1,3 directly in Mathematica (in particular for large vales of the
argument). We refer to Ref. [119] for further information about these functions.

The contribution from the phase space misalignment correction can again not be given in closed
analytic form and, using Eqs. (5.18) and (5.74), reads

δ
(nl+1,2)
m,∆ (R,m) = −

(
α

(nl+1)
s

)2
CFTF

(4π)2

1

2

∫
dq−

∫
dk+

∫
dq+

∫
dk− θ(k− − k+) θ(q+ − q−)

× θ(k+k− −m2) θ(q+q− −m2) θ(k+ + k−) θ(q+ + q−)

[
(q− + k+) e−

q−+k+

ReγE

− θ(k− + q− − k+ − q+)(k+ + q+) e−
k++q+

ReγE − θ(k+ + q+ − k− − q−) (k− + q−) e−
k−+q−
ReγE

]

× fm(k+, k−, q+, q−,m) . (5.88)
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Figure 5.10: Gap subtractions δ(nl+1,2)
m,virt (R,m, µ = R), δ(nl+1,2)

m,θ (R,m) and δ
(nl+1,2)
m,∆ (R,m) coming from

massive quark virtual (red dashed line) and real (blue dotted-dashed line) contributions to the gluon
hemisphere soft function and from the phase space misalignment correction (green wide-dashed line)
at O(α2

sCFTF ), all normalized by the prefactor ReγE (α
(nl+1)
s )2CFTF /16π2. The black solid line

δ
(nl+1,2)
m (R,m, µ = R) denotes the sum of all terms and the black dotted line δ(nl+1,2)

TF
(R,µ = R) the well

known massless limit.

The results for δ(nl+1,2)
m,virt (R,m, µ = R), δ(nl+1,2)

m,θ (R,m), δ(nl+1,2)
m,∆ (R,m) and their sum are shown in

Fig. 5.10 as a function of m/R and R/m. We see that δ(nl+1,2)
m,∆ , which contains only the phase space

contribution where the quark and antiquark enter different hemispheres, is very small. This is not
unexpected since this phase space configuration is related to larger gluon invariant masses and therefore
less sensitive to infrared renormalon-type contributions than the phase space contributions in δ

(nl+1,2)
m,virt

and δ(nl+1,2)
m,θ . One can also see that in the massless limit R/m� 1 there are large cancellations between

the virtual and real radiation contributions δ(nl+1,2)
m,virt and δ

(nl+1,2)
m,θ . This is related to the fact that the

real and virtual massive quark corrections to the soft function each contain mass-singularities, and the
sum of both is needed to reach the known massless limit (indicated by the black dotted line),

δ
(nl+1,2)
m,virt (R,m, µ) + δ

(nl+1,2)
m,θ (R,m)

m→0−→ δ
(nl+1,2)
TF

(R,µ) , (5.89)

with the massless renormalon subtraction δ(nl+1,2)
TF

given in Eq. (5.20) for nf = nl + 1. Including the first
non-vanishing correction to the massless limit we obtain for the whole renormalon subtraction 9

δ(nl+1,2)
m (R,m, µ)

m→0−→ δ
(nl+1,2)
TF

(R,µ)−
(
α

(nl+1)
s

)2
CFTF

(4π)2
66.1m+O

(
m2

R

)
. (5.90)

The fact that a term linear in m arises is directly tied to the existence of the O(ΛQCD) renormalon
in the soft function indicating a linear sensitivity to small momenta [120–122]. For large masses the
virtual contribution gives the leading order behavior, while the real radiation contributions decouple
exponentially and power-like,

δ
(nl+1,2)
m,θ (R,m)

m�R−→
(
α

(nl+1)
s

)2
CFTF

(4π)2
ReγE 16

√
2π z−

5
2 e−z

[
1− 49

8z
+O

(
1

z2

)]
, (5.91)

δ
(nl+1,2)
m,∆ (R,m)

m�R−→
(
α

(nl+1)
s

)2
CFTF

(4π)2
ReγE 12288 z−6

[
1 +O

(
1

z2

)]
. (5.92)

9The small mass expansion is proportional to −16πm for δ(nl+1,2)
m,θ and to ≈ −15.8m for δ(nl+1,2)

m,∆ at linear order in m.
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This leads to

δ(nl+1,2)
m (R,m, µ)

m→∞−→ δ
(nl+1,2)
m,virt (R,m, µ)

[
1 +O

(
R6

m6

)]
, (5.93)

which is equivalent to Eq. (5.43), where the massless result in Eq. (5.20) has been subtracted from δ
(nl+1,2)
m

to give the mass corrections to the massless limit. Thus the gap subtraction does not decouple by itself,
indicating that the evolution in R of the renormalon-free gap parameter ∆̄ has a decoupling relation when
the evolution crosses the mass threshold. This has been already discussed in detail in Sec. 5.3.5.

Since δ(nl+1,2)
m,θ is cumbersome to evaluate in a numerical code and δ(nl+1,2)

m,∆ is not known analytically,
we have provided a parametrization for the mass corrections with the correct leading asymptotic behavior
given in Eq. (5.40).

The O(α2
sCFTF ) massive quark corrections to the gap subtractions give contributions to the R-

evolution of the subtracted gap parameter ∆̄(nl+1), which is free of the O(ΛQCD) renormalon. The
O(α2

sCFTF ) massive quark contributions can be determined from Eq. (5.83) giving

γ
(nl+1,2)
R,m = γ

(nl+1,2)
R,m,virt + γ

(nl+1,2)
R,m,θ + γ

(nl+1,2)
R,m,∆ , (5.94)

where

γ
(nl+1,2)
R,m,virt =

(
α

(nl+1)
s

)2
CFTF

(4π)2
eγE

{
−8

3
ln2

(
m2

R2

)
+

16

9
ln
(
m2

R2

)
+

256

27

}
, (5.95)

γ
(nl+1,2)
R,m,θ =

(
α

(nl+1)
s

)2
CFTF

(4π)2
eγE

{
16

3
G3,0

1,3

(
1

0, 0, 0

∣∣∣∣
z2

4

)
+

32

9
K0(z)− 32

27
zK1(z) +

32

27
z2K0(z) +

16π

27
z3

− 16π

27
z4 [K1(z)L−2(z) +K2(z)L−1(z)]

}
. (5.96)

The term γ
(nl+1,2)
R,m,∆ cannot be given in analytic form and has to be computed numerically from Eq. (5.88).

Its contribution is, however, very small and might be insignificant for practical applications. Alternatively,
the complete O(α2

sCFTF ) massive quark contributions to the R-evolution can be determined from the
parametrization in Eq. (5.40) which yields the correct result up to a deviation of much less than 1%.

5.5 Consistency relations

In the same way as already discussed in chapter 4, the threshold factorsMC̃ for the hard current mass
mode matching, MJτ for the jet mass mode matching and MSτ for the soft mass mode matching are
related by consistency of RG running. The latter arises when the RG evolution of the soft function
crosses the massive quark threshold. This does not happen in the RG setup we discussed in section 5.3,
since there the final renormalization scale has always been set to the soft scale. However, if we choose a
different final renormalization scale, say the jet scale µJ , we can get a factorization theorem depending
onMSτ (`,m, µm). This happens e.g. in scenario III (µJ > µm > µS),

1

σ0

dσ
dτ

= Q
∣∣C̃(nl+1)(Q,m, µH)

∣∣2 ∣∣U (nl+1)

C̃
(Q,µH , µJ)

∣∣2
∫

ds
∫

d`
∫

d`′
∫

d`′′ J (nl+1)
τ (s,m, µJ) (5.97)

× U (nl+1)
Sτ

(
`− s

Q
, µJ , µm

)
MSτ (`′ − `,m, µm)U

(nl)
Sτ

(`′′ − `′, µm, µS)S(nl)
τ (Qτ − `′′, µS) .

The consistency relation can be easily read off from Eqs. (5.28) and (5.97), which show the factorization
theorems in scenario III with the final renormalization scale µ set equal to the soft and the jet scale,
respectively. It reads

MSτ (`,m, µ) = Q |MC̃(Q,m, µ)|2MJτ (Q`,m, µ) . (5.98)

The relation implies in particular that the rapidity logarithms (and singularities) that arise in the hard,
collinear and soft sectors are intrinsically related to each other. We will check that this relation holds at
O(α2

sCFTF ) by explicitly calculating the soft threshold factorMSτ (`,m, µm) in the following.



118 5.5. CONSISTENCY RELATIONS

Soft mass mode matching

The derivation ofMSτ (`,m, µm) proceeds along the lines of the mass mode threshold factors in Sec. 4.4.
The matching procedure takes care of the difference between the renormalized soft functions in the MS
and OS scheme concerning the massive quark contributions, such that the mass mode matching coefficient
at the mass scale µm is obtained by the relation

MSτ (`,m, µm) =

∫
d`′ Ŝ(nl+1)

τ (`− `′,m, µm)
(
Ŝ(nl)
τ

)−1

(`′,m, µm)

=

∫
d`′ Z(nl)

Sτ
(`− `′,m, µm)

(
Z

(nl+1)
Sτ

)−1

(`′, µm) . (5.99)

For scales µ > m we use the (nl+1)-flavor scheme, so we employ the MS subtractions for the UV divergent
contributions to the strong coupling and the soft function. We have displayed the MS renormalized soft
function Ŝ

(nl+1)
τ (`,m, µ) in Eq. (5.30) and the corresponding counterterm is given in Eq. (5.12) with

nf = nl + 1. Using the OS scheme implies that the massive quark contributions decouple for m→∞, so
that the counterterm has to cancel all virtual massive corrections, i.e.

Z
(nl,2)
Sτ ,TF

(`,m, µ) = Ŝ
(nl,bare,2)
τ,m,virt (`,m, µ) , (5.100)

with Ŝ(nl,bare,2)
τ,m,virt (`,m, µ) given in Eq. (5.67). The OS renormalized soft function at O(α2

sCFTF ) contains
only real radiation corrections, which vanish for m� `, and thus reads

Ŝ(nl,2)
τ,m (`,m, µ) = Ŝ

(nl,2)
τ,m,θ (`,m) + Ŝ

(nl,2)
τ,m,∆(`,m) , (5.101)

with Ŝ
(nl,2)
τ,m,θ (`,m) and Ŝ

(nl,2)
τ,m,∆(`,m) given in analogy to Eqs. (5.32) and (5.34), respectively, with αs =

α
(nl)
s (µ) also renormalized in the OS scheme. The renormalized soft function in this scheme is the one to

be used for µm & µS (in the scenarios I, II and III).
Relating the schemes of αs via Eq. (3.112), which leads to addional terms involving the one-loop

contributions to the soft function, we obtain at O(α2
s) in the fixed-order counting (α(nl+1)

s = α
(nl+1)
s (µm))

MSτ (`,m, µm) = δ(`)− α
(nl+1)
s TF

3π
Lm Ŝ

(nl+1,1)
τ (`, µm) + Ŝ

(nl+1,2)
τ,m,virt (`,m, µ) +O(α3

s) . (5.102)

Note that the real radiation terms cancel in the ratio in Eq. (5.99) and do not contribute to the threshold
correction factor. Inserting the explicit expressions in Eqs. (5.9) and (5.71), this gives at O(α2

s) in the
fixed-order counting (¯̀= `/µm, Lm = ln(m2/µ2))

µmM(2)
Sτ

(`,m, µm) =
α2
sCFTF
16π2

{
δ(¯̀)

[
− 8

9
L3
m −

40

9
L2
m +

(
−448

27
+

4π2

9

)
Lm −

656

27
+

10π2

27
+

56

9
ζ3

]

+

[
θ(¯̀)

¯̀

]

+

[
16

3
L2
m +

160

9
Lm +

448

27

]}
. (5.103)

Since there are no O(αs) corrections the schemes of αs and the mass appearing in Eq. (5.103) do not
need to be specified at this point. Eq. (5.103) contains a large logarithm, which can be better seen using
the rescaled soft energy variable ˜̀ = `/µS ∼ O(1) rather than ¯̀ = `/µm. As for the other mass mode
matching coefficients this is a rapidity logarithm which enforces the counting αs ln(m/`) ∼ O(1).

We will now set up a RG evolution in rapidity space to resum the associated higher order logarithms
in analogy to the mass mode threshold corrections in chapter 4. First we decompose the bare soft function
in terms of the two hemisphere contributions (+,−) each having rapidity divergences if the α-regulator
is used. Note that the scheme difference of the strong coupling above and below threshold requires that
also the one-loop corrections for the radiation of a massless gluon have to be accounted for and should be
decomposed in this way. For this purpose we will again use a gluon mass Λ� m as an infrared regulator
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which allows us to apply the results in Sec. 5.4.1. We write the two-loop contributions for virtual massive
quarks as

Ŝ
(nl+1,bare,2)
τ,m,virt,i (`,m,Λ, µ, ν) =

1

π

∫
dM2

M2
Ŝ

(bare,1)
τ,M,virt,i(`,M, µ, ν) Im

[
Π(m2,M2)

]

−
(

Π(m2, 0)− α
(nl+1)
s TF

3π

1

ε

)
Ŝ

(bare,1)
τ,M,virt,i(`,Λ, µ, ν) , (5.104)

with i = +,− corresponding to either of the two hemispheres where the gluon containing the virtual mas-
sive quark polarization propagates. After performing the subtracted dispersion integral and including the
scheme change contribution we obtain for the individual corrections (LΛ = ln(Λ2/µ2), Lm = ln(m2/µ2))

µS Ŝ
(nl+1,bare,2)
τ,m,virt,+ =

(
α

(nl+1)
s

)2
CFTF

16π2

{
δ(˜̀)

(
1

α

[
− 8

3ε2
+

40

9ε
+

16

3
LmLΛ −

8

3
L2
m −

80

9
Lm −

224

27
+O(ε)

]

− 8

3ε2
ln
(
ν

µS

)
+

40

9ε
ln
(
ν

µS

)
+

(
16

3
LmLΛ −

8

3
L2
m −

80

9
Lm −

224

27

)
ln
(
ν

µS

))

+

[
θ(˜̀)

˜̀

]

+

(
8

3ε2
− 40

9ε
− 16

3
LmLΛ +

8

3
L2
m +

80

9
Lm +

224

27

)}
, (5.105)

µS Ŝ
(nl+1,bare,2)
τ,m,virt,− =

(
α

(nl+1)
s

)2
CFTF

16π2

{
δ(˜̀)

(
1

α

[
8

3ε2
− 40

9ε
− 16

3
LmLΛ +

8

3
L2
m +

80

9
Lm +

224

27
+O(ε)

]

− 4

ε3
+

1

ε2

[
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3
ln
(
ν µS
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)
+

20

9

]
+

1

ε

[
−40

9
ln
(
ν µS
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)
+

112

27
− 2π2
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]

+

(
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3
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3
L2
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9
Lm +

224

27

)
ln
(
ν µS
µ2

)
+

8

3
LmL

2
Λ −

8

9
L3
m −

40

9
L2
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−
(

448

27
− 8π2

9
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656

27
+
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27
+

56

9
ζ3

)

+

[
θ(˜̀)
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+

(
8

3ε2
− 40
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3
LmLΛ +

8

3
L2
m +

80

9
Lm +

224

27

)}
. (5.106)

We see that for µ = µm the correction Ŝ
(nl+1,bare,2)
τ,m,virt,+ is free of large logarithms for ν = ν+ ∼ µS , and

Ŝ
(nl+1,bare,2)
τ,m,virt,− is free of large logarithms for ν = ν− ∼ µ2

m/µS . It is then possible to set up an evolution in
ν between ν+ and ν−. The nonvanishing two-loop counterterm contributions above threshold, where we
use MS-renormalization, read

µZ
(nl+1,2)
Sτ ,+,TF

=
α

(nl+1)
s (µ, ν)α

(nl+1)
s (µ)CFTF

16π2

{
δ(¯̀)

(
1

α

[
− 8

3ε2
+

40

9ε
+

16

3
LmLΛ −

8

3
L2
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80

9
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− 224

27
+O(ε)

]
− 8

3ε2
ln
(
ν
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)
+

40

9ε
ln
(
ν

µ

))
+

[
θ(¯̀)

¯̀

]

+

(
8

3ε2
− 40

9ε

)}
,

µZ
(nl+1,2)
Sτ ,−,TF =

α
(nl+1)
s (µ, ν)α

(nl+1)
s (µ)CFTF

16π2

{
δ(¯̀)

(
1

α

[
8

3ε2
− 40

9ε
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LmLΛ +
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3
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m +
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9
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+
224

27
+O(ε)

]
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ε3
+

1

ε2

[
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3
ln
(
ν
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+
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]
+

1

ε

[
−40

9
ln
(
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27
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+

[
θ(¯̀)

¯̀

]

+

(
8

3ε2
− 40

9ε

)}
. (5.107)

The sum of the individual counterterm contributions gives the complete current counterterm correspond-
ing to Eq. (5.12),

Z
(nl+1,2)
Sτ ,TF

(`, µ) = Z
(nl+1,2)
Sτ ,+,TF

+ Z
(nl+1,2)
Sτ ,−,TF . (5.108)
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This yields together with the corresponding contributions at O(αs), for which the analogous relation
holds, the correct µ-anomalous dimension for the soft function at O(α2

sCFTF ) in Eq. (5.15). The ν-
anomalous dimensions for the two hemisphere contributions in the MS-scheme satisfy

γ
(nl+1,2)
Sτ ,+,ν,TF

= − ν d
dν

Z
(nl+1,2)
Sτ ,+,TF

=

(
α

(nl+1)
s

)2
CFTF

16π2

{
16

3
LmLΛ −

8

3
L2
m −

80

9
Lm −

224

27

}
, (5.109)

γ
(nl+1,2)
Sτ ,−,ν,TF = − ν d

dν
Z

(nl+1,2)
Sτ ,−,TF = −γ(nl+1,2)

Sτ ,+,ν,TF
. (5.110)

The corresponding threshold corrections MSτ ,+ and MSτ ,− in the two hemispheres can be directly
obtained from Eq. (5.99) applied to each sector and satisfy the equation

ν
d
dν
MSτ ,i(`,m, µ, ν) =

(
γ

(nl+1)
Sτ ,i,ν

− γ(nl)
Sτ ,i,ν

)
MSτ ,i(`,m, µ, ν) ≡ γ(nl)

MSτ ,i
MSτ ,i(`,m, µ, ν) . (5.111)

The difference of the anomalous dimensions can be written as

γ
(nl+1)
Sτ ,i,ν

− γ(nl)
Sτ ,i,ν

= γ
(nl+1,1)
Sτ ,i,ν

− γ(nl,1)
Sτ ,i,ν

+
(
γ

(nl+1,2)
Sτ ,i,ν,TF

− γ(nl,2)
Sτ ,i,ν,TF

)
+O(α3

s)

= γ
(nl+1,2)
Sτ ,i,ν,TF

− α
(nl+1)
s TF

3π
Lm γ

(nl+1,1)
Sτ ,i,ν

+O(α3
s) . (5.112)

The one-loop anomalous dimensions γ(nl+1,1)
Sτ ,i,ν

can be easily computed from the results in Sec. 5.4.1.
Expanding Eqs. (5.60) and (5.61) and absorbing all divergences, the one-loop counterterms with the
infrared regulator Λ read

µZ
(nl+1,1)
Sτ ,+

=
α

(nl+1)
s (µ, ν)CF

4π

{
δ(¯̀)

[
− 4

α

(
1

ε
− LΛ +O(ε)

)
− 4

ε
ln
(
ν

µ

)]
+

4

ε

[
θ(¯̀)

¯̀

]

+

}
, (5.113)

µZ
(nl+1,1)
Sτ ,− =

α
(nl+1)
s (µ, ν)CF

4π

{
δ(¯̀)

[
4

α

(
1

ε
− LΛ +O(ε)

)
− 4

ε2
+

4

ε
ln
(
ν

µ

)]
+

4

ε

[
θ(¯̀)

¯̀

]

+

}
, (5.114)

which yields the anomalous dimensions

γ
(nl+1,1)
Sτ ,+,ν

= − ν d
dν

Z
(nl+1,1)
Sτ ,+

=
α

(nl+1)
s CF

4π
4LΛ = −γ(nl+1,1)

Sτ ,−,ν . (5.115)

As in the computation of the current, jet function and PDF threshold corrections in Sec. 4.4 the depen-
dence on the infrared regulator Λ cancels in the evolution of the soft function threshold correction which
has the anomalous dimension

γMSτ ,+
= − γMSτ ,− =

α2
sCFTF
16π2

{
−8

3
L2
m −

80

9
Lm −

224

27

}
+O(α3

s) . (5.116)

The solution of Eq. (5.111) is the anticipated exponentiation which allows to determine the required term
at O(α4

s ln
2(m2/`2)) ∼ O(α2

s) in the logarithmic counting αsln(m2/`2) ∼ 1.
For a complete analysis at N3LL we also need the term at O(α3

s ln(m/`)) ∼ O(α2
s). We can determine

its µm-dependent contribution from the identity

MSτ (`,m, µm) =

∫
d`′
∫

d`′′ U (nl)
Sτ

(`− `′,m, µm)MSτ (`′ − `′′,m,m)U
(nl+1)
Sτ

(`′′, µm,m) . (5.117)

or equivalently,

µ
d
dµ
MSτ (`,m, µ) =

∫
d`′
(
γ

(nl+1)
Sτ

(`− `′, µ)− γ(nl)
Sτ

(`− `′, µ)
)
MSτ (`′,m, µ) . (5.118)
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Expanding in αs gives the perturbative result for the µm-dependent terms. Including the term at
O(α3

s ln(`2/m2)) in the exponent the structure of the threshold factor reads 10

µSMS(`,m, µm, µS) =

{
δ(˜̀) +
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s

)2

(4π)2
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ΓS0 ∆β0 −

L2
m

4

(
∆ΓS1 + γS0 ∆β0

)

− Lm
2

(
∆γS1 +MSτ ,+

2

)
+MSτ

2

]
+

[
θ(˜̀)

˜̀

]

+

[
L2
m

2
ΓS0 ∆β0 + Lm ∆ΓS1 +MSτ ,+
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(4π)2
ln
(
µ2
S

µ2
m

)[
L2
m

4
ΓS0 ∆β0 +

1

2
Lm∆ΓS1 +

MSτ ,+
2

2

]

+

(
α

(nl+1)
s

)3

(4π)3
ln
(
µ2
S

µ2
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]}
. (5.119)

The terms ΓSi and γSi denote the coefficients of the cusp and non-cusp jet function anomalous dimensions
with nl + 1 flavors defined by (see appendix C to obtain explicit expressions)

µ
d
dµ

S(nl+1)
τ (`, µ) =

∑

i≥0

(
α

(nl+1)
s (µ)

4π

)i+1∫
d`′
[
− 2 ΓSi

µ

[
µ θ(`− `′)
`− `′

]

+

+ γSi δ(`− `′)
]
S(nl+1)
τ (`′, µ) .

(5.120)

The termsMSτ ,+
i andMSτ

i indicate the µm-independent coefficients of the plus-distribution 1
m

[
mθ(`)
`

]
+

and delta-distribution δ(`) in the matching coefficientMS(`,m,m) (i.e. for µm = m), respectively. Note
that we have not determined the relevant constantMSτ ,+

3 at this stage. However, the consistency relation
in Eq. (5.98) implies that it is related to the rapidity logarithm enhanced constants MC̃,+

3 and MJτ ,+
3

in the current and jet function threshold corrections. These are closely related to the corresponding
constants in DIS which have been determined by consistency from the PDF threshold correction (see
Eq. (4.237)). Thus we obtain

MSτ ,+
3 = 2Mφ̃,+

3 , (5.121)

with Mφ̃,+
3 given in Eq. (4.236). The remaining constants appearing in Eq. (5.119) are defined below

Eq. (4.181). Inserting the values for all of the constants and expanding Eq. (5.119) using the logarithmic
counting αsln(m2/`2) ∼ O(1) gives the result (α(nl+1)

s = α
(nl+1)
s (µm), m = m(µm))

µSMSτ (`,m, µm, µS) = δ(˜̀) +
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(4π)2
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m
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]

O(αs)

+
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+
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)
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]

O(α2
s)

+O(α3
s) . (5.122)

10Here we set ν+ = µS and ν− = µ2
m/µS . For a phenomenological error estimate the ν-dependence can be easily restored.
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We display the corresponding results for α(nl+1)
s = α

(nl+1)
s (µm) and m ≡ m(µm) given in the MS scheme.

The functions multiplying the logarithm ln(µ2
S/µ

2
m) are related to the ones entering the current mass

mode matching correction (see Eqs. (4.46), (4.48) and (4.50))

M(2)
Sτ ,ln(m,µm) = − 2M(2)

C,ln(m,µm) , (5.123)

M(3)
Sτ ,ln(m,µm) = − 2M(3)

C,ln(m,µm) , (5.124)

M(4)
Sτ ,ln(m,µm) = 4M(4)

C,ln2(m,µm) . (5.125)

Finally, the two-loop functionM(2)
Sτ ,1

which is not related to a rapidity logarithm can be easily read off
from Eq. (5.103),

M(2)
Sτ ,1

(m,µm) = CFTF

{
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Lm −

656

27
+
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9
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}
. (5.126)

Continuity

In the RG setup, where the final renormalization scale is the jet scale µJ , the difference in the factorization
theorems for scenario III, given in Eq. (5.97), and for scenario IV, given by

1

σ0

dσ
dτ

= Q
∣∣C̃(nl+1)(Q,m, µH)

∣∣2 ∣∣U (nl+1)

C̃
(Q,µH , µJ)

∣∣2
∫

ds
∫

d` J (nl+1)
τ (s,m, µJ)

× U (nl+1)
Sτ

(
`− s

Q
, µJ , µS

)
S(nl+1)
τ (Qτ − `,m, µS) , (5.127)

concerns just the soft function and its evolution. Thus the condition for the soft function threshold
correction in Eq. (5.99) automatically implements a continuous transition between these two scenarios
in the region m ∼ µm ∼ µS ∼ `, which happens at O(α2

s) in particular if the real radiation terms
Ŝ

(nf ,2)
τ,m,θ (`,m) and Ŝ(nf ,2)

τ,m,∆(`,m) are included scenario III and IV with nf = nl and nf = nl+1, respectively,
and contribute when kinematically allowed. From the viewpoint of the factorization theorems in the
top-down evolution to the soft scale given in Eqs. (5.28) and (5.29) the continuity seems less obvious.
However, since the final renormalization scale is unphysical, these two RG setups are related to each
other via consistency relations. Using the structure of the current and jet threshold corrections related
to Eqs. (4.165) and (4.196), and the one for the soft threshold correction in Eq. (5.102), the consistency
relation at O(α2

s) in the fixed-order expansion has the explicit form

2 Re
[
F̃

(nl,2)
m,QCD(Q,m)− δC̃(nl+1,2)

m (Q,m, µm)
]
δ(τ)−Q2J

(nl+1,2)
τ,m,virt (Q2τ,m, µ)−Q Ŝ(nl+1,2)

τ,m,virt (Qτ,m, µ)

+
αsTF

3π
Lm

{
2 Re

[
C̃(nl+1,1)(Q,µ)

]
δ(τ) +Q2J (nl+1,1)

τ (Q2τ, µ) +Q Ŝ(nl+1,1)
τ (Qτ, µ)

}
= 0 . (5.128)

The massive quark corrections given by F̃
(nl+1,2)
m,QCD (Q,m), δC̃(nl+1,2)

m (Q,µ) and J
(nl+1,2)
τ,m,virt (s,m, µ) are in

complete analogy to the ones given for DIS in Eqs. (3.95), (4.163) and (4.194) with the appropriate
analytic continuation for the hard current corrections and a factor of 2 for the jet function contribution,
respectively, while the correction Ŝ(nl+1,2)

τ,m,virt (`,m, µ) has been given in Eqs. (5.71). These do not involve
terms related to real radiation of heavy quarks, but only the virtual quark contributions to the SCET
current, the jet function and the soft function (in the MS scheme). Finally also the one-loop terms
C̃(nl+1,1)(Q,µ), J (nl+1,1)

τ (s, µ) and Ŝ
(nl+1,1)
τ (`, µ), which can be read off from the Eqs. (4.12), (4.16)

and (5.9), appear due to the virtual heavy quark contributions to the strong coupling encoded in the
decoupling relation of αs between the nl and (nl + 1)-flavor scheme. Eq. (5.128) relates the virtual quark
contributions to the hard current coefficient, the jet function, the soft function and αs to one another and
is a consequence of the consistency of the mass mode setup. Moreover, Eq. (5.128) is also the analytic
relation behind the fact that the transition between the factorization theorems in Eqs. (5.28) and (5.29)
for the scenarios III and IV, respectively, is continuous. 11

11Note that also the gap parameter in the soft model function and the renormalon subtractions to the partonic soft
function change. However, they compensate each other for µm ∼ µS due to the matching relation in Eq. (5.49).
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5.6 Singular fixed-order QCD result

So far we have computed the secondary massive quark corrections in the SCET factorization theorems,
i.e. the singular contributions of the full QCD result at the respective scales with the corresponding resum-
mation of large logarithmic terms. Since the nonsingular contributions might have a significant impact
even for small values of τ their calculation should be also done in order to perform a full phenomeno-
logical analysis with O(α2

s) corrections. In contrast to DIS, where the full QCD result at O(α2
sCFTF )

has been fairly easy to calculate via dispersion relations (see Sec. 3.4.3), it is extraordinarily difficult to
find an analytic solution for the full QCD contributions, since in the corresponding computation the full
four-particle phase space has to be dissected. We postpone this calculation, which will be rather tackled
numerically instead with the help of an event generator, to a future work. In appendix E we present
the (much simpler) calculation of the massive gluon corrections at O(αs) in full QCD in order to display
some important features and to explain the required expansions to obtain the singular terms from the
full QCD result.

In this section we present the singular O(α2
sCFTF ) secondary massive quark corrections to the thrust

distribution in the fixed-order expansion, which are fully contained in each of the factorization theorems
discussed in the previous sections. To our knowledge these have not been made available in the literature.
Besides the virtual contributions the singular fixed-order corrections consist of the singular collinear and
soft real radiation contributions which arise for τ ∼ m2/Q2 � 1 and τ ∼ m/Q � 1, respectively, in
the dijet regime. Setting µ = µH = µJ = µS , using the nl-flavor scheme for αs and ignoring the gap
subtraction we obtain

1

σ0

dσ
dτ

∣∣∣∣
O(α2

sCFTF )

= 2 Re
[
F̃

(nl,2)
m,QCD(Q,m)

]
δ(τ) +Q2J

(nl,2)
τ,m,real(Q

2τ,m) +Q Ŝ
(nl,2)
τ,m,θ (Qτ,m)

+Q Ŝ
(nl,2)
τ,m,∆(Qτ,m) . (5.129)

Using the explicit expressions for F̂ (nl,2)
m,QCD(Q,m) and J

(nl,2)
m,real(s,m) in Eqs. (3.95) and (4.54) properly

adapted from DIS to thrust, and for Ŝ(nl,2)
τ,m,θ (`,m) in Eq. (5.32) we obtain

1

σ0

dσ
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∣∣∣∣
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s (µ)
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with

r ≡
√

1 +
4m2

Q2
, b ≡

√
1− 4m2

Q2τ
, w ≡

√
1− 4m2

Q2τ2
, (5.131)
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and where Ŝ(nl,2)
τ,m,∆(`,m) can be read off from the parametrization in Eq. (5.34).

An important difference of the SCET setup to this fixed-order QCD expansion is that in the factoriza-
tion theorems the various components are calculated in different flavor number schemes to allow for the
summation of logarithms involving ratios of the scales Q, Qλ, Qλ2 and m. A maybe even more notable
difference is that the consistent and IR-safe definitions of the jet and the soft functions entail that virtual
corrections have non-vanishing support for finite values of τ , so that they do not only arise in coefficients
of δ(τ), but also in coefficients involving plus-distributions (lnnτ/τ)+. In contrast, the fixed-order expan-
sion contains only real radiation corrections for finite values of τ and virtual corrections proportional to
δ(τ) each of which is individually IR-regular for m→ 0. The rearrangement of virtual and mass-singular
corrections, which is intrinsically connected to the consistency relation of Eqs. (5.98) and (5.128), is the
basis of rendering the hard coefficient and the jet and the soft functions in the factorization theorems
infrared-safe in the limit m→ 0.

5.7 Numerical analysis

In the following we investigate the numerical effects of secondary bottom and top quarks in the thrust
distribution related to the mass dependent factorization theorems we have described and presented in the
previous sections. The emphasis is on a comparison to the predictions where the mass of the secondary
quark is neglected. Since our analysis does not include the nonsingular contributions which might be size-
able in the tail and the far-tail region, some of the conclusions concerning the tail region, e.g. concerning
the scale variations, are preliminary and final conclusions are postponed to a complete phenomenological
analysis which also includes the effects of primary massive quark production.

The results in our analysis are calculated at N3LL order in the usual SCET counting (with top-down
running), see Table 2.1. 12 The perturbative corrections to the matrix elements and matching conditions
are included up to O(α2

s) and expanded out within the factorized expressions to avoid higher order cross
terms. In our analysis we have used the form of the RG evolution factors in appendix C and also all results
for the matrix elements up to O(α2

s) not involving massive quark corrections, which can be found e.g. in
Ref. [4] and the references therein. We have further checked that the massless limit of the factorization
theorem for scenario IV agrees with the N3LL thrust distribution given in Ref. [4] for massless quarks up
to implementation-dependent higher order corrections.

For the renormalization scales of the individual structures and the renormalon subtraction scale we
use the τ -dependent profile functions for the hard, jet, soft and R scale given in Ref. [4], which contain
an appropriate generic scaling and smoothly interpolate between peak, tail and far-tail regimes. Adding
an additional profile for the τ -independent mass mode matching scale the profile functions have the form

µH = eH Q , (5.132)

µS(τ) =





µ0 + b
2t1
τ2 , 0 ≤ τ ≤ t1 ,

b τ + d , t1 ≤ τ ≤ t2 ,
µH − b

1−2t2
( 1

2 − τ)2 , t2 ≤ τ ≤ 1
2 ,

(5.133)

µJ(τ) =

(
1 + eJ

(1

2
− τ
)2
)√

µH µS(τ) , (5.134)

R(τ) =

{
R0 + µ1τ + µ2τ

2 , 0 ≤ τ ≤ t1 ,
µS(τ) t1 ≤ τ ≤ 1

2 ,
(5.135)

µm = emmb . (5.136)

12For the currently unknown four-loop cusp anomalous dimension Γcusp
3 , which has only a tiny impact on the numerical

results, we use the Padé approximation of Ref. [4]. The remaining missing ingredient is the massive (noncusp) R-anomalous
dimension at O(α3

s), for which we use the massless approximation (see the discussion in Sec. 5.3.5). Compared to Ref. [12] we
have included the previously unknown logarithmically enhanced coefficientsMC̃,+

3 andMJτ ,+
3 in the mass mode threshold

factors at O(α3
s) in the fixed-order counting, which result only in a tiny change at the permille-level.
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Figure 5.11: Default profiles for Q = 14 GeV. The transition value for τ between the scenarios III and
IV is indicated by the dotted line.

As default values we use

eH = em = 1 , eJ = 0 , µ0 = 2 GeV , R0 = 0.85µ0 ,

t2 = 0.25 , n1 ≡
Qt1

1 GeV
=

{
5 , Q ≥ 5 GeV

t2
,

Qt2
1 GeV , Q ≤ 5 GeV

t2
,

(5.137)

and b, d, µ1 and µ2 are fixed by demanding smoothness of the profiles as in Ref. [4]. Compared to Ref. [4]
we have modified the default value of the parameter n1 for the case Q ≤ 5 GeV/t2 such that one always
has t1 ≤ t2, and the profiles can remain smooth for small values of Q.

We perform the convolution with the soft model function directly in momentum space since the mass
dependent corrections to the jet and the soft function cannot be easily treated in Fourier space. This
requires a thorough treatment of fractional plus-distributions of the form [lnn(x)/x1+ω]+ appearing in
the jet evolution factor (see Eq. (C.7)), where ω can be larger than 0. For convenience the corresponding
rules are given in appendix B.2. As a model function we use

Smod
τ (`) =

128 `3

3λ4
e−4`/λ , (5.138)

which is properly normalized to unity. The parameter λ is a measure for the width of the function
and therefore contributes as in Eq. (5.25) together with the gap parameter to the first nonperturbative
moment, Ω̄1 = ∆̄ + λ/2. As a default we use the following parameters,

Ω̄
(5)
1 (13 GeV, 13 GeV) = 0.5 GeV , λ = 0.65 GeV ,

α(5)
s (mZ) = 0.114 , mb(mb) = 4.2 GeV , mt(mt) = 163 GeV . (5.139)

We have checked that the basic characteristics of the results for the mass effects are depending rather
weakly on these parameters within their known accuracy and on details of the shape of the soft model
function, so our observations represent generic properties of the mass effects from secondary massive
quarks.

An important aspect of the practical implementation of the VFNS concerns the prescription how
the predictions within the various scenarios discussed in the previous sections are patched together to
obtain the complete spectrum of the thrust distribution. As described in Sec. 5.3, one switches between
neighboring scenarios when the mass scale is close to one of the kinematic scales related to the hard
coefficient and the jet and the soft functions. It is therefore natural to tie the prescription for the
transition to the τ -dependent profile functions for µm, µH , µJ and µS . In Figs. 5.11 and 5.12 the default
profile functions (including the subtraction scale R) are shown for Q = 14 GeV with µm = mb(mb)
and Q = 500 GeV with µm = mt(mt), respectively. The prescription we adopt is that the transition
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Figure 5.12: Default profiles for Q = 500 GeV. The transition values for τ between the scenarios II and
III and between the scenarios III and IV are indicated by dotted lines.

■■■ ■�

✵✁✵ ✵✁✂ ✵✁✄ ✵✁☎ ✵✁✆ ✵✁✝
✵

✄

✆

✻

✽

t

✂

s✞

❞s

❞t

Figure 5.13: The thrust distribution at Q = 14 GeV including secondary massive bottom effects (blue,
solid) compared to keeping the bottom quark massless (red, dashed).

concerning the scenarios II, III and IV is carried out when µm is equal to µJ or µS , respectively. For each
choice of the profile functions and the mass mode matching scale this leads to a unique value of τ for the
transition. The resulting τ regions for the scenarios II, III and IV are indicated in Figs. 5.11 and 5.12 by
the black dotted vertical lines. We note that the general freedom to choose the transition value for τ in
some range causes variations in the predictions that are related to higher order corrections in the same
way as changes of the renormalization and matching scales µm, µH , µJ and µS in their respective ranges.
Our prescription ties the choices made for their profile functions to the range in τ of the scenarios.

The practical implementation of the factorization theorems from the different scenarios at N3LL
involves a treatment of perturbative terms at higher orders that arise from cross terms of the perturbative
series for the hard, jet and soft functions and the mass mode threshold factors. As mentioned above, we
use the common approach to expand out the perturbative terms in the matrix elements and matching
factors to O(α2

s), but to keep the RG evolution factors multiplying all expanded terms to the highest
order. This approach has been proven advantageous to avoid spurious higher order corrections in the fixed-
order expansion and to obtain reliable information on the remaining renormalization scale dependence
at the corresponding order. This approach is also crucial to achieve a good numerical agreement of the
factorization theorems in overlap regions where two different scenarios can be employed. In the same
spirit, to avoid gaps at the transition points between neighboring scenarios related to spurious higher
order terms and to obtain a continuous distribution, we also adopt as the default method an approach,
where we expand in the series for the decoupling relations of the strong coupling and the gap parameter
∆̄ in Eqs. (3.112) and (5.49) up to O(α2

s).
In Fig. 5.13 the thrust distribution (for primary production of the four light quark flavors and sec-

ondary production of the light flavors and the bottom quark) normalized to the Born cross section σ0
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Figure 5.14: The relative deviations from the massless thrust distribution due to secondary massive
bottom effects at Q = 14 GeV using our default fully expanded approach as described in the text (blue,
solid) and the modified approach, where the decoupling relations for the gap and the strong coupling are
not expanded out with the matrix elements (red, dashed).

is shown for Q = 14 GeV (a c.m. energy with collected data at PETRA) at N3LL order, based on the
factorization theorems for secondary massive bottom quarks with µm = mb(mb) (blue, solid line) and in
the massless approximation (red, dashed line). We see that the finite bottom mass effects are significant
at and below the peak, but small in the tail region. Overall the secondary quark mass effects lead to a
significant decrease in the peak cross section.

Let us investigate the relative change due to the finite mass of the secondary massive bottom quarks
∆σ(mb) defined by

∆σ(m) ≡
dσ
dτ (m)− dσ

dτ (m = 0)
dσ
dτ (m = 0)

. (5.140)

Here dσ
dτ (m) is the complete thrust distribution at N3LL for primary massless quarks and for secondary

quark production which includes the proper number of light quarks and an additional flavor with mass
m. In Fig. 5.14 we show ∆σ(mb) for Q = 14 GeV using our default approach (blue, solid curve) and a
modified approach where the decoupling relations for the gap parameter ∆̄ and the strong coupling are
always taken into account up to the highest known order without expanding (red, dashed curve). We can
see that ∆σ is up to ∼ −5% (∼ −3%) in the peak region in the default (modified) approach, whereas
in the tail region the mass effects from secondary bottom quarks amount to relative corrections below
1%. Moreover, we can see that the default approach is continuous, 13 whereas the modified approach
yields a numerically large discontinuity when the soft scale crosses the mass threshold due to the fact that
the difference of the gap schemes is proportional to m at the mass scale, see Eq. (5.49). Furthermore,
the variation of the mass mode matching scale µm turns out to be more unstable for the latter method.
Therefore, we will present most of the remaining results in the default approach keeping in mind that for
a phenomenological analysis a thorough investigation of the most appropriate description with the best
way to assign uncertainties will have to be performed.

Interestingly at the peak the deviations are only weakly depending on the value ofQ. This is illustrated
in Fig. 5.15, where we display for Q = 14 GeV (blue, solid curve), Q = 35 GeV (red, dashed curve) and
Q = mZ (green, dotted curve) the relative change due to the finite mass of the secondary massive bottom
quarks ∆σ(mb). We see that in the peak region ∆σ(mb) is always up to −4%, whereas in the tail region
the mass effects from secondary bottom quarks quickly decrease for larger values of Q.

It is also instructive to consider the relative mass effects at the partonic level and the changes due to
the nonperturbative physics. This is shown in Fig. 5.16 for Q = 14 GeV, where we display ∆σ(mb) for a
purely partonic thrust distribution (red, dashed line), including a convolution with the soft model function
Smod
τ (`) with Ω1 = 0.5 GeV without a gap (green, dotted line) and the full hadronic thrust distribution

including the gap formalism with the associated renormalon subtractions (blue, solid line). We see that

13What appears to be a tiny gap around the scenario threshold is in fact only a change in slope in the small region
R < µm < µS , where the mass threshold is crossed both in the R-evolution and in the µ-evolution from R to µS of the gap
parameter.
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Figure 5.15: Relative secondary massive bottom effects for Q = 14 GeV (blue, solid), Q = 35 GeV (red,
dashed) and Q = mZ (green, dotted).
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Figure 5.16: Relative secondary massive bottom effects for Q = 14 GeV at the partonic level (red, dashed)
and including the nonperturbative soft model function Smod

τ (`) without (green, dotted) and with the
incorporation of the gap formalism, which is the final default result (blue, solid).
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Figure 5.17: The relative deviations from the massless thrust distribution due to secondary massive
bottom effects at Q = 14 GeV at different orders in the logarithmic counting, namely at LL (red,
dashed), NLL (green, dotted), N2LL (black, dashed-dotted) and N3LL (blue, solid).
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Figure 5.18: Dependence of ∆σ(mb) on the mass mode matching scale µm for secondary bottom quarks
for Q = 14 GeV: µm = mb (blue, solid), µm = mb/2 (red, dashed), µm = 2mb (green, dotted) with
mb ≡ mb(mb). The variation in between is indicated by the shaded area.

at the partonic level the massive quark correction are significantly larger than at the nonperturbative
level, reaching up to ∼ 4% for τ ≈ 0.1. They are smeared out in the peak region by the convolution with
the model which makes them smaller there. In the tail region the nonperturbative effects from Smod

τ enter
only via the power correction Ω1 (see Eq. 5.25) resulting in an overall shift of the distribution. Here the
mass effects can be still quite significant reaching up to 2− 3% for τ . 0.2. Finally, the inclusion of the
gap formalism leads to a quite different shape of ∆σ(mb). In the tail region the renormalon subtractions
effectively remove the leading power corrections of O(m/Qτ), which decreases ∆σ(mb). The modified
R-evolution has a large impact on the peak behavior.

In Fig. 5.17 we show ∆σ(mb) for Q = 14 GeV at different orders in the logarithmic counting. At LL
(red, dashed line) and NLL (green, dotted line) the massive quark effects enter only via different flavor
numbers in the evolution, such that ∆σ(mb) = 0 in scenario IV, i.e. for τ & 0.15. At N2LL (black,
dashed-dotted line) ∆σ(mb) changes its shape due to the appearance of the massive quark R-anomalous
dimension, resulting in a nonvanishing value in scenario IV, and due to the inclusion of rapidity logarithms
counting effectively as O(αs). Finally, at N3LL (blue, solid line) for the first time mass dependent matrix
elements enter corresponding to corrections at O(α2

s), which also alters ∆σ(mb) significantly. Since at
higher orders only corrections to the existing structures appear, we expect that ∆σ(mb) does not change
qualitatively and its uncertainties can be described by scale variations of the profile functions.

It is important to discuss the scale variations of the mass correction ∆σ. In Fig. 5.18 the impact
of the variations of µm is illustrated for the bottom quark case for Q = 14 GeV. We show the curves
for µm = mb(mb)/2 and µm = 2mb(mb) and the variation band between these two values. The µm
dependence is quite small in the tail region and vanishes identically for µS > 2mb(mb). In the peak
region, on the other hand, the variation of ∆σ(mb) increases to 4% of the differential cross section and
grows even further below the peak, where ∆σ changes sign. This behavior is generic for the bottom quark
case and very similar for other values of Q. Since the finite mass of the secondary heavy quark leads to
a modification of the peak behavior which represents a property of the complete thrust distribution, ∆σ
should not be seen any more as a correction in this context. The result shows that variations of µm need
to be accounted for when estimating perturbative uncertainties in the peak region.

In this context it is also relevant to examine the variations of ∆σ due to changes of the profile functions
for µH , µJ , µS as well as for R. In Fig. 5.19 ∆σ is shown for the bottom quark case at Q = 14 GeV for
variations of the parameters eH , eJ , µ0, n1 and t2, see Eqs. (5.132) – (5.135), which parametrize changes
of the profile functions. The ranges of variation are described in the figure caption and are identical to the
ones used for the thrust analysis of Ref. [4] (except for n1 which requires a lower range for low Q values).
These variations induce visible changes in ∆σ, but they are in general much smaller than the dependence
on µm discussed just above. This outcome is again generic for other values of Q and also for the top
quark case and shows that independent variations of the profile functions and of µm are essential for a
thorough assessment of the scale variations of the complete thrust distribution including both massless
and massive quark effects.

We continue our analysis by showing in Fig. 5.20 the thrust distribution for primary light quark
production at Q = 500 GeV with nl = 5 massless flavors and a secondary massive top quark (blue,
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Figure 5.19: Relative secondary bottom mass effects for Q = 14 GeV under variation of the profile
parameters for the hard, jet and soft scales.
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Figure 5.20: The thrust distribution at Q = 500 GeV including secondary massive top effects (blue, solid)
compared to keeping the top quark massless (red, dashed).

solid line). The figure also shows the prediction for the case where the secondary top quark is treated
as massless (red, dashed line). For all parameters the default values mentioned above are used. It is
visible that the finite top quark mass causes, besides a reduction of the distribution at the peak, as
we have already observed in the bottom quark case, also a shift of the peak to lower τ values. This
effect is related to the top quark mass effects in the R-scale dependence of the gap parameter, which is
significantly modified below the massive threshold as described in Sec. 5.3.5. In Fig. 5.21 ∆σ is shown
for the top quark case for Q = 500 GeV (blue, solid line), Q = 1000 GeV (red, dashed line) and Q = 3000
GeV (green, dotted line). We find again sizable mass effects at and below the peak of the distribution
even for large values of Q, where they amount to 10− 20%. In the tail region, on the other hand, the top
mass effects are relatively small. In contrast to the bottom quark case, the size of the top mass effects
is much larger than the variations due changes of the mass mode matching scale µm which amount to
1− 2% in the differential cross section, see Fig. 5.22.

It is also interesting to compare the full mass dependent thrust distribution with other approximations
that impose large hierarchies between the mass scale and the other involved scales except for the massless
limit. We define the relative deviations between the full mass dependent result and these approximating
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Figure 5.21: Relative secondary massive top effects for Q = 500 GeV (blue, solid), Q = 1000 GeV (red,
dashed) and Q = 3000 GeV (green, dotted).
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Figure 5.22: Dependence of ∆σ on the mass mode matching scale µm for secondary top quarks for
Q = 500 GeV: µm = mt (blue, solid), µm = mt/2 (red, dashed), µm = 2mt (green, dotted).
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Figure 5.23: Relative deviation of the mass effects between the full mass dependent thrust distribution
and four “schemes” assuming large hierarchies, i.e. the massless limit m � Qτ (blue, solid), the limit
Qτ � m � Q

√
τ (green, dotted), the limit Q

√
τ � m � Q (red, dashed) and the decoupling limit

Q� m (black, dashed-dotted).
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“schemes” in analogy to Eq. (5.140) as

∆σ(m) =

dσ
dτ (m)−

(dσ
dτ

)
approx

(m)
(dσ

dτ

)
approx

(m)
. (5.141)

In Fig. 5.23 we display ∆σ(m) at Q = 500 GeV for secondary massive top quarks. Besides the full
massless limit m� Qλ2 (blue, solid line) we display the decoupling limit m� Q (black, dashed-dotted
line), where the massive quark does not contribute at all. Furthermore, we show a zero-mass VFNS
(ZM-VFNS) for scenario III assuming the hierarchy Qλ2 � m � Qλ (green, dotted line), i.e. with a
hard and jet function in the massless limit and no massive quark contributions to the soft function. The
only fixed-order components in the factorization theorem which contain any explicit mass dependence are
the mass mode threshold corrections. Analogously we also display scenario II assuming Qλ � m � Q
(red, dashed line), i.e. with a massless hard function and no massive quark contributions to the jet
and soft functions. Since we want to employ parameters both only defined in the nl- as well as in the
(nl + 1)-scheme corresponding to the decoupling and the massless limit we have employed here the more
appropriate modified approach, where the decoupling relations for the gap parameter and the strong
coupling are always taken into account up to their highest known order. We note that the decoupling
limit, i.e. the thrust distribution with just 5 massless flavors, is at the peak much closer to the full massive
prediction than the massless top approximation. This is due to the fact that the top mass is comparable
to the hard scale and in the peak region significantly larger than the jet and the soft scales such that the
decoupling approximation is more appropriate than the massless one. We emphasize that this statement
has to be scrutinized case by case depending on the values of the involved scales and is e.g. not directly
applicable in the bottom quark case for Q = 14 GeV, where the ratio between the mass scale and the
c.m. energy is comparable to the top quark case with Q = 500 GeV.

At the end, let us mention that a thorough analysis of secondary mass effects in relation to experiment
will face several subtleties. So far experiments have used the original definition for thrust [104], which
is normalized by the sum of the modula of the momenta ~pi, in contrast to the definition applied here,
which is normalized by the total c.m. energy (see Eq. (5.1)). Furthermore, we have considered the heavy
quarks to be stable, whereas they decay in practice before reaching the detector and usually only the
momenta of light hadrons are taken into account in the determination of the thrust value. In the SCET
factorization setup this affects essentially the hemisphere momentum deposits in the soft function which
would have to be reconsidered.
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Chapter 6

Conclusions

In this work we provide for the first time a systematic factorization approach for secondary mass cor-
rections, including effects from massive quark bubbles in the vacuum polarization function, in processes
involving jets. The conceptual setup is nontrivial due to the emergence of different hierarchies between
the mass scale and the involved kinematic scales for each of the field theoretical structures entering the
corresponding factorization theorem. Using the language of SCET we have discussed for different ex-
amples a variable flavor number scheme (VFNS) which describes all of these hierarchies consistently. A
properly defined VFNS can resum all large logarithms between the involved scales and obtain the correct
limiting behavior, i.e. the decoupling limit for heavy quark masses and the massless limit for light quark
masses. We find that to achieve these features a suitable choice of renormalization conditions for any
component of a factorization theorem has to be imposed: On the one hand the use of the OS scheme
for the massive quark corrections implies that the heavy quark does not contribute to the RG running.
It is suitable, when the mass is larger than (or similar to) the relevant massless scale. On the other
hand the MS scheme entails that the massive quark is active with respect to RG evolution, which can be
applied if the mass of the quark is smaller than (or similar to) the relevant massless scales. The difference
between these schemes contains only virtual massive quark corrections, which constitute mass threshold
factors, the analogues of the matching correction of αs regarding the matrix elements in the factorization
theorem.

We have illustrated these properties on the well-known example of DIS in the classical region 1−x ∼
O(1), where a corresponding VFNS has been already developed in Ref. [1]. Apart from a more complicated
analytic structure of the Wilson coefficient at the momentum transfer scale Q the massive quark affects
the RG evolution of the PDF which is carried out with different flavor number above and below the
quark mass scale and leads to a mass threshold correction factor when the RG evolution crosses the mass
scale. Here we have explicitly calculated the full secondary massive quark contributions at O(α2

sCFTF ),
which could be derived from the corresponding O(αs) corrections for the radiation of a “massive gluon”
via dispersion relations.

In the following we have set up a VFNS for processes involving inclusive final state jets, where the
number of relevant physical scales increases. We have discussed this situation in the endpoint region of
DIS, x→ 1, where the final state invariant mass becomes small and thus a single jet emerges. Including
the mass scale several possible scale hierarchies emerge and the VFNS has to deal with all of them. This is
achieved by including additional modes to the theory, the collinear and soft “mass modes”. The treatment
of these mass modes differs for each scale hierarchy and leads to modifications of the known factorization
for massless quarks. However, no assumption concerning a large hierarchy between the mass and the other
scales has to be imposed and in a transition region between two neighboring hierarchical scaling scenarios
both of their descriptions can be used which ensures that the transition is continuous (up to perturbative
terms from beyond the order that is employed in the description). We have carried out the associated
computations at O(αs) for the radiation of a massive gluon and at O(α2

sCFTF ) for the radiation of
secondary massive quarks taking into account the resummation of so called rapidity logarithms arising
from the interface between soft and collinear modes in the mass mode threshold factors. Furthermore, we
have also found that the threshold corrections are not completely independent of each other, but related
via consistency relations of RG running.

Finally, we have discussed also a VFNS for the thrust distribution in e+e− collisions in the dijet limit
τ → 0. Since the field theoretic setup for the mass modes is generic and the structures at the hard and jet
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scale are to some extent universal the corresponding quantities in the factorization theorem can be read
off easily from DIS in the endpoint region. Here only the structure describing the physics at the soft scale
is different since we do not have a nonperturbative initial state and the radiation of low-energetic particles
between the jets can take place at a perturbative scale, i.e. also above the mass scale. The corresponding
observable dependent soft function has been calculated at O(α2

sCFTF ) including renormalon subtractions
in the gap formalism. Finally, we have discussed the numerical impact of the secondary quark mass effects
on the thrust distribution. These turn out to be generically small corrections in the tail region, but sizable
at the peak, so that a phenomenological analysis of this region will have to take them into account. We
emphasize that although the VFNS described here has been constructed for primary massless quarks,
it can be applied also to the production of primary massive quarks as described in appendix F, which
will lead to phenomenologically important improvements in the description of the full massive thrust
distribution in a future work.

The conceptual results of this work can be applied far beyond the examples discussed here. Since the
treatment of secondary massive quark or lepton effects and the incorporation of the associated threshold
corrections is in several cases not complete or consistent, our results can help to clarify these issues and
contribute to an improved phenomenological description of different observables in various processes. This
concerns also QED processes like Bhabha scattering [123]. Certainly it will be particularly interesting
to incorporate the mass mode method to physics at hadron-hadron colliders like the LHC. On the one
hand one can investigate the impact of mass effects on other endpoint processes. This includes e.g. hard
photon production at large transverse momentum in analogy to DIS, or event shapes in hadron colliders
like beam thrust [76] applicable for Drell-Yan or Higgs production. On the other hand we can also
scrutinize primary top quark production at the LHC, where questions concerning the implementation of
massive top loops beyond a small or large mass approximation are still not resolved [124].
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Appendix A

Longitudinal structure function

Here we summarize the results for the longitudinal structure function FL(x,Q2) in the classical OPE
region 1 − x ∼ O(1), from which in combination with the results for F1(x,Q2) in chapter 3 also the
results for F2(x,Q2) can be obtained via Eq. (3.8). We normalize the hard matching coefficients in the
factorization theorem according to

FL(x,Q) =
∑

i=q

e2
i

∑

j,k=q,g

∫ 1

x

dξ
ξ

∫ 1

ξ

dξ′

ξ′
C(nf )
L,ij

(
x

ξ
,Q, µH

)
U

(nf )
jk

(
ξ

ξ′
, µH , µφ

)
φ

(nf )

k/P (ξ′, µφ) . (A.1)

A.1 Massless results

The tree level results for the hard matching coefficients C(nf )
L,ij with massless quarks vanish. At O(αs) we

obtain

C(nf ,1)
L,qq (z) =

α
(nf )
s CF

4π
θ(z) θ(1− z) 4z , (A.2)

C(nf ,1)
L,qg (z) =

α
(nf )
s TF

4π
θ(z) θ(1− z) 8z(1− z) . (A.3)

The nonsinglet contribution for C(nf )
L,qq at O(α2

sCFTF ) reads [51]

C(nf ,2)
L,qq,TF

(z,Q, µ) =

(
α

(nf )
s

)2
CFTF

16π2
θ(z) θ(1− z)

{
16

3
zLQ −

32

3
z ln(z) +

16

3
z ln(1− z) +

16

3
− 200

9
z

}
.

(A.4)

A.2 Mass effects at O(αs)
The full QCD diagrams in Fig. (3.4) yield for the partonic tensor in the nl scheme

F̂
(nl,1)
L,Qg (z,Q,m) =

α
(nl)
s TF
4π

e2
Q θ(z) θ

(
Q2

Q2 + 4m2
− z
){

8vz(1− z)− 16m2

Q2
z ln

(
1 + v

1− v

)}
, (A.5)

with v given in Eq. (3.34). Since the SCET contributions to the partonic PDF φ̂
(nl,1)
Q/g vanish in OS

renormalization we obtain the matching correction

C(nl,1)
L,Qg (z,Q,m) =

1

e2
Q

F̂
(nl,1)
L,Qg (z,Q,m) . (A.6)

It decouples for heavy quarks, i.e. C(nl,1)
L,Qg (z,Q,m) → 0 for m → ∞. To obtain the result in the nl + 1

scheme let us first remark that the longitudinal hard matching coefficient C(nl+1,0)
L,QQ does not vanish at
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tree level as can be seen from a diagrammatic computation of the partonic structure function F̂ (nl+1,0)
L,QQ

with a massive onshell external quark. 1 We obtain

C(nl+1,0)
L,QQ (z,Q,m) =

4m2

Q2
δ(1− z) . (A.7)

Together with the partonic PDF correction φ̂
(nl+1,1)
Q/g given in Eq. (3.31) this implies for the matching

coefficient C(nl+1,1)
L,Qg obtained by the relation (3.35),

C(nl+1,1)
L,Qg (z,Q,m, µ) =

1

e2
Q

F̂
(nl+1,1)
L,Qg (z,Q,m)− C(nl+1,0)

L,QQ ⊗ φ̂(nl+1,1)
Q/g (z,Q,m, µ)

=
1

e2
Q

F̂
(nl+1,1)
L,Qg (z,Q,m) +

α
(nl+1)
s TF

4π
θ(z) θ(1− z) 4m2

Q2

P
(1)
qg (z)

2
Lm , (A.8)

where F̂ (nl+1,1)
L,Qg is defined in analogy to Eq. (3.44). This expression has the correct massless limit, 2

C(nl+1,1)
L,Qg (z,Q,m, µ)

m→0−→ C(nl+1,1)
L,qg (z) . (A.9)

The transition between the factorization theorems for m & Q with C(nl)
L,ij and for m . Q with C(nl+1)

L,ij and
Mφ,ij is continuous at O(αs) as can be checked by explicit computations.

The computation of the matching coefficient for a massive quark in the initial state can be carried out
in analogy with the lengthy partonic structure function F̂ (nl+1,1)

L,QQ which we do not display here explicitly.
The matching relation reads

C(nl+1,1)
L,QQ (z,Q,m, µ) =

1

e2
Q

F̂
(nl+1,1)
L,QQ (z,Q,m)− C(nl+1,0)

L,QQ ⊗ φ̂(nl+1,1)
Q/Q (z,Q,m, µ) , (A.10)

with φ̂(nl+1,1)
Q/Q given in Eq. (3.49), which has the correct massless limit,

C(nl+1,1)
L,QQ (z,Q,m, µ)

m→0−→ C(nl+1,1)
L,qq (z) . (A.11)

A.3 Secondary mass effects

A.3.1 Massive gluon results at O(αs)
We give the full QCD contributions to the matching coefficient for the longitudinal structure function
FL(x,Q2) for the radiation of a massive gluon at O(αs). Only the third diagram in Fig. 3.10 contributes
to the computation of the partonic structure function giving rise to the real radiation contribution

F̂
(1)
L,qq(z,Q,M) =

αsCF
4π

e2
q θ(z) θ(1− z − M̂2z)

{
8M̂2z2 ln

(
(1− M̂2z)(1− z)

M̂2z2

)[
2− 3M̂2z

]

+
4z(1− z − M̂2z)

(1− z)2

[
1− z + M̂2(2− 9z + 6z2)

]}
. (A.12)

Due to the fact that the tree level result for F̂ (0)
L,qq vanishes, there are no additional subtraction terms

involved in the computation of the matching coefficient via Eq. (3.35), so

C(OS,1)
L,qq (z,Q,M) = C(MS,1)

L,qq (z,Q,M) =
1

e2
q

F̂
(1)
L,qq(z,Q,M) , (A.13)

which has both the correct decoupling limit for large masses, i.e. C(OS,1)
L,qq (z,Q,M)→ 0 for M̂ →∞, and

the correct massless limit given in Eq. (A.2), i.e. C(MS,1)
L,qq (z,Q,M)→ C(1)

L,qq(z) for M̂ → 0.

1Note that there is in principle an ambiguity of O(m2/Q2) how to split up fixed-order corrections in the matching
coefficients of the VFNS which cannot be resolved by SCET at leading order.

2Note that already the first term in Eq. (A.8) has the correct massless limit.
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A.3.2 Secondary massive quark effects at O(α2
sCFTF )

The corresponding corrections due to secondary massive quarks can be easily obtained from the previous
results by using the dispersion relation (3.62). We obtain for the partonic structure function in full QCD
and the hard matching coefficient in the OS scheme

F̂
(nl,2)
L,qq,TF

(z,Q,m) = e2
q C(nl,2)

L,qq,TF
(z,Q,m)

= e2
q θ(z) θ(1− z − 4m̂2z)

(
α

(nl)
s

)2
CFTF

16π2
f

(2)
L,QCD,θ(z, m̂) , (A.14)

with the function (rz =
√

1− 4m̂2z, wz =
√

1− 4m̂2z
1−z )

f
(2)
L,QCD,θ(z, m̂) = 192 m̂4z3

[
Li2
(
rz − wz
rz + 1

)
+ Li2

(
rz + wz
rz − 1

)
− Li2

(
rz − wz
rz − 1

)
− Li2

(
rz + wz
rz + 1

)

+ ln
(

1 + rz
1− rz

)
ln
(
rz + wz
rz − wz

)]
+

16z

3rz

[
1− 26 m̂2z + 88 m̂4z2

]
ln
(
rz + wz
rz − wz

)

+
32 m̂4z2

(1− z)2

[
2− 9z + 6z2

]
ln
(

1 + wz
1− wz

)

+
8wz

9(1− z)
[
6− 31z + 25z2 − m̂2z(60− 478z + 372z2)

]
. (A.15)

C(nl,2)
L,qq,TF

decouples for m̂2 > (1− z)/(4z). In the massless limit one obtains the mass divergent expression

C(nl,2)
qq,TF

(z,Q,m)
m̂→0−→

(
α

(nl)
s

)2
CFTF

16π2
θ(z) θ(1− z)

{
−16

3
z ln(m̂2)− 32

3
z ln(z) +

16

3
z ln(1− z)

+
16

3
− 200

9
z

}
. (A.16)

Due to the fact that the tree level result for the longitudinal matching coefficient vanishes for massless
quarks, i.e. C(0)

L,qq = 0, there are no pure SCET subtraction terms involved, but we get an additional term
corresponding to the scheme change from the nl- to the (nl + 1)-flavor scheme,

C(nl→nl+1,2)
L,qq (z,m, µ) = −

(
Π(m2, 0)− αsTF

3π

1

ε

)
C(1)
L,qq(z)

=
α2
sCFTF
16π2

θ(z) θ(1− z) 16

3
z Lm . (A.17)

The matching coefficient in the (nl + 1)-scheme reads (αs = α
(nl+1)
s (µ))

C(nl+1,2)
L,qq,TF

(z,Q,m, µ) = C(nl,2)
L,qq,TF

(z,Q,m) + C(nl→nl+1,2)
L,qq (z,m, µ) , (A.18)

which has the correct massless limit, i.e.

C(nl+1,2)
L,qq,TF

(z,Q,m, µ)
m̂→0−→ C(nl+1,2)

L,qq,TF
(z,Q, µ) , (A.19)

with C(nf ,2)
L,qq,TF

(z,Q, µ) given in Eq. (A.4).
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Appendix B

Identities for distributions

Here we summarize some helpful identities concerning plus-distributions which were frequently used
throughout the thesis. We refer to Ref. [9] for a more extensive discussion.

B.1 Integer plus-distributions

We define the integer plus-distributions by the relation
[
θ(x) lnn(x)

x

]

+

= lim
ε→0

[
θ(x− ε) lnn(x)

x

]
− δ(x− ε) ln

n+1(ε)

n+ 1
, (B.1)

which is equivalent to the integral prescription

∫ X

0

dx
[
θ(x) lnn(x)

x

]

+

f(x) =

∫ X

0

dx
lnn(x)

x
[f(x)− f(0)] + f(0)

lnn+1(X)

n+ 1
. (B.2)

In the thesis we apply several times the following rescaling identity to go from a variable with the
parametric scaling x� 1 to a natural scaling by redefining x = κx̃ with x̃ ∼ 1,

[
θ(x) lnn(x)

x

]

+

=
1

κ

lnn+1(κ)

n+ 1
δ(x̃) +

1

κ

n∑

k=0

(
n

k

)
lnn−k(κ)

[
θ(x) lnk(x̃)

x̃

]

+

. (B.3)

Plus-distributions are frequently obtained by the expansion of the function θ(x)/x1+ε (e.g. arising in
dimensional regularization) for ε→ 0,

θ(x)

x1+ε

ε→0−→ −1

ε
δ(x) +

∞∑

k=0

(−1)k
εk

k!

[
θ(x) lnk(x)

x

]

+

. (B.4)

To perform convolutions between distributions it is convenient to have the corresponding Fourier trans-
forms at hand. They can be easily derived from Eq. (B.4) by performing the transformation on both
sides separately and comparing the results at each order in ε. We obtain for the first few distributive
terms [115]

∫
dx e−ixy δ(x) = 1 , (B.5)

∫
dx e−ixy

[
θ(x)

x

]

+

= − ln (iyeγE ) , (B.6)

∫
dx e−ixy

[
θ(x) ln(x)

x

]

+

=
1

2
ln2 (iyeγE ) +

π2

12
, (B.7)

∫
dx e−ixy

[
θ(x) ln2(x)

x

]

+

= −1

3
ln3 (iyeγE )− π2

6
ln (iyeγE )− 2

3
ζ3 . (B.8)
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The back-transform can be easily derived in the same way. For Feynman diagrams, which are performed
by taking an imaginary part at the end corresponding to a real radiation cut, like in the computations of
the hard matching coefficient in DIS in chapter 3 or the jet function in chapter 4 and appendix F, also
the following identities are helpful,

1

π
Im

[
1

x+ iε

]
= −δ(x) , (B.9)

1

π
Im

[
1

(x+ iε)2

]
= δ′(x) , (B.10)

1

π
Im

[
ln(−x− iε)
x+ iε

]
= −

[
θ(x)

x

]

+

, (B.11)

1

π
Im

[
ln2(−x− iε)

x+ iε

]
=
π2

3
δ(x)− 2

[
θ(x) ln(x)

x

]

+

. (B.12)

B.2 Noninteger plus-distributions

We give the definition and integral prescription for the plus-distributions appearing in the nonlocal
evolution factors, denoted by [lnn(x)/x1+ω]+, for arbitrary (non-vanishing) ω. The prescription of these
plus-distributions is based on an analytic continuation to a domain with a well-behaved convergence [9]

[
θ(x) lnn(x)

x1+ω

]

+

ω<0−→ θ(x) lnn(x)

x1+ω
, (B.13)

which gives the definition
[
θ(x) lnn(x)

x1+ω

]

+

= lim
ε→0

[
θ(x− ε)lnn(x)

x1+ω
− δ(x− ε) n!

ωn+1
ε−ω

n∑

l=0

ωl lnl(ε)
l!

]
. (B.14)

This expression can be rewritten as an integral prescription

∫ X

0

dx
[
θ(x) lnn(x)

x1+ω

]

+

f(x) =

∫ X

0

dx
lnn(x)

x1+ω

[
f(x)−

∞∑

k=0

f (k)(0)
xk

k!

]

−
∞∑

k=0

f (k)(0)
1

k!

Γ(n+ 1, (ω − k)ln(X))

(ω − k)n+1
, (B.15)

where the sums can be truncated for k = N if ω < N . Eq. (B.15) allows for numerically stable convolutions
with noninteger plus-distributions for arbitrary ω and has been used in the numerical analysis in Sec. 5.7.
We note that the noninteger plus-distributions defined here are of a different type than the integer ones
defined in appendix B.1, in particular we obtain for ω = 0 different subtraction terms.

Finally, we conclude with an useful identity concerning the Fourier transformation of noninteger plus-
distributions,

∫
dy
2π

eixy (iy)
ω lnn(iy) =

∂n

∂ωn

[∫
dy
2π

eixy (iy)
ω

]

=
∂n

∂ωn

[
1

Γ(−ω)

[
θ(x)

x1+ω

]

+

]

=

n∑

k=0

(
n

k

)
(−1)k

[
θ(x) lnk(x)

x1+ω

]

+

∂n−k

∂ωn−k
1

Γ(−ω)
. (B.16)

This formula can be applied when performing the back transformation of an evolution factor (e.g. of the
jet or soft functions) in position space of the form (C.6) multiplying some logarithmic terms arising from
distributions in matrix elements into momentum space.
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Appendix C

Evolution factors and anomalous dimen-
sions

Here we display the solutions of the RG equations for DIS in the endpoint x → 1 and event shapes
for τ → 0, see Eqs. (4.22) – (4.24) and Eq. (5.13), and give also explicit expressions for the anomalous
dimensions. We refer to Refs. [4, 9] for further details and explicit derivations.

C.1 Current evolution factor

First we discuss the form of the local evolution factor UCQ(Q,µH , µ) of the hard current coefficient, which
reads [22]

UC(Q,µ0, µ) = eK(ΓC ,µ,µ0)+ 1
2ω(γC, µ,µ0)

(
µ0

Q

)ω(ΓC, µ,µ0)

. (C.1)

The functions ω and K read for N3LL resummation

ω(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β(α)
Γ(α)

= − Γ0

β0

{
ln r +

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1) +

α2
s(µ0)

(4π)2

(
Γ2

Γ0
− Γ1β1

Γ0β0
− β2

β0
+
β2

1

β2
0

)
(r2 − 1)

2

+
α3
s(µ0)

(4π)3

[
Γ3

Γ0
− Γ2β1

Γ0β0
− Γ1

Γ0

(
β2

β0
− β2

1

β2
0

)
− β3

β0
+

2β2β1

β2
0

− β3
1

β3
0

]
r3 − 1

3

}
, (C.2)

and

K(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β(α)
Γ(α)

∫ α

αs(µ0)

dα′

β(α′)

=− Γ0

2β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
−
(

Γ1

Γ0
− β1

β0

)
(r − 1− ln r) +

β1

2β0
ln2r

+
αs(µ0)

4π

[(
Γ1β1

Γ0β0
− β2

β0
+

(
Γ1β1

Γ0β0
− β2

1

β2
0

)
(r − 1)

)
ln r +

(
Γ2

Γ0
− 2Γ1β1

Γ0β0
+
β2

1

β2
0

)
(r − 1)

−
(

Γ2

Γ0
− Γ1β1

Γ0β0
− β2

β0
+
β2

1

β2
0

)
(r2−1)

2

]

+
α2
s(µ0)

(4π)2

[
Γ2β1

2Γ0β0
− Γ1β

2
1

Γ0β2
0

−
(
β3

2β0
+
β1β2

2β2
0

+

(
Γ2β1

Γ0β0
− Γ1β

2
1

Γ0β2
0

− β1β2

β2
0

+
β3

1

β3
0

)
(r2 − 1)

2

)
ln r

−
(

Γ1

Γ0

(
β2

β0
− β2

1

β2
0

)
− β1β2

β2
0

+
β3

1

β3
0

)
(r − 1) +

(
Γ3

Γ0
− 3Γ2β1

2Γ0β0
+

Γ1β
2
1

2Γ0β2
0

− β3

2β0
+
β1β2

2β2
0

)
(r2 − 1)

2

−
(

Γ3

Γ0
− Γ2β1

Γ0β0
− Γ1

Γ0

(
β2

β0
− β2

1

β2
0

)
− β3

β0
+

2β1β2

β2
0

− β3
1

β3
0

)
(r3 − 1)

3

]}
. (C.3)

Here r = αs(µ)/αs(µ0) (with 4-loop running) and the expansions of ΓC and β in terms of ΓC,i and βi
are given in Eqs. (4.182) and (4.184), respectively.
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C.2 Evolution factors for the jet and soft functions

We consider generic nonlocal RG equations of the type

µ
d
dµ

UF (t, µ, µF ) =

∫
dt′ γF (t− t′, µ)UF (t′, µ, µF ) , (C.4)

where the convolution variable t has the mass-dimension j (i.e. j = 2 for the jet function and j = 1 for
event shape soft functions) and γF (t, µ) involves a plus- and a δ-distribution,

γF (t, µ) = −2 ΓF [αs]

j µj

[
µjθ(t− t′)
t− t′

]
+ γF [αs] δ(t− t′) . (C.5)

The RGE becomes multiplicative in Fourier space involving a single logarithm and a constant (see
Eqs. (B.5) and (B.6)), and can be thus treated along the lines of the current evolution. The solution
reads [9]

UF (t, µ, µ0) = eK(ΓF ,µ,µ0)+ 1
2ω(γF, µ,µ0)

(
iy µj0 e

γE
) 1
j ω(ΓF, µ,µ0)

. (C.6)

Transforming this expression to momentum space gives (t̄ = t/µj0)

µj0 UF (t, µ, µ0) = eK(ΓF ,µ,µ0)+ 1
2ω(γF, µ,µ0) e

1
j γEω(ΓF ,µ,µ0)

Γ
[
− 1
j ω(ΓF , µ, µ0)

]
[

θ(t̄)

t̄ 1+ 1
j ω(ΓF ,µ,µ0)

]

+

, (C.7)

where the prescription for the noninteger plus-distribution has been given in Sec. B.

C.3 PDF evolution factor for x→ 1

The evolution factor for the PDF in the endpoint regime can be easily derived along the lines of the
previous section. In fact it has an even simpler structure due to the fact that the only µ-dependence in
the anomalous dimension is encoded in the strong coupling (see e.g. Eqs. (4.32) and (4.33)) leading to
the fact that the function K(Γφ̃, µ, µ0) does not appear. The solution reads in terms of the cusp and
noncusp anomalous dimensions defined in Eq. (4.235)

Uφ̃(1− z, µ, µ0) = e
1
2ω(γφ̃, µ,µ0) eγEω(Γφ̃,µ,µ0)

Γ
[
− ω(Γφ̃, µ, µ0)

]
[

θ(1− z)
(1− z) 1+ω(Γφ̃,µ,µ0)

]

+

. (C.8)

As discussed in Sec. (4.1) the PDF evolution factor is flavor diagonal in the endpoint region.

C.4 Coefficients of the β-function

The coefficients of the β-function as defined in Eq. (4.184) are given by [125]

β0 =
11

3
CA −

4

3
TFnf , (C.9)

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TFnf , (C.10)

β2 =
2857

54
C3
A −

(
1415

27
C2
A +

205

9
CFCA − 2C2

F

)
TFnf +

(
158

27
CA +

44

9
CF

)
T 2
Fn

2
f , (C.11)

β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf +

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f , (C.12)

where the value for β3 is specifically for SU(3).
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C.5 Anomalous dimensions of the matrix elements

We display the explicit expressions for the anomalous dimensions of the components of the factorization
theorems for DIS in the endpoint region and thrust for τ → 0. The cusp anomalous dimensions of the
hard current coefficient, the hemisphere jet function, the PDF and the thrust soft function appearing in
Eqs. (4.182), (4.213), (4.213), (4.235) and (5.120), respectively, are related to each other via

ΓCi = −ΓJi
2

= Γφ̃i =
ΓSi
2

= −Γcusp
i , (C.13)

where Γcusp =
∑
i≥0 α

i+1
s /(4π)i+1 Γcusp

i with the first few coefficients given by [55]

Γcusp
0 = 4CF , (C.14)

Γcusp
1 =CFCA

(
268

9
− 4π2

3

)
− 80

9
CFTFnf , (C.15)

Γcusp
2 =C2

ACF

(
490

3
− 536π2

27
+

88

3
ζ3 +

44π4

45

)
+

[
CACF

(
−1672

27
+

160π2

27
− 224

27
ζ3

)

+C2
F

(
−220

3
+ 64ζ3

)]
TFnf −

64

27
CFT

2
Fn

2
f . (C.16)

The four-loop cusp anomalous dimension, which is required at N3LL is currently not known, we use the
Padé-approximation Γcusp

3 = (Γcusp
2 )2/Γcusp

1 . The noncusp anomalous dimensions for the hard current
coefficient are given by [82]

γC0 = − 6CF , (C.17)

γC1 =CACF

(
−961

27
− 11π2

3
+ 52ζ3

)
+ C2

F

(
−3 + 4π2 − 48ζ3

)
+ CFTFnf

(
260

27
+

4π2

3

)
, (C.18)

γC2 =C2
ACF

(
−139345

1458
− 7163π2

243
+

7052

9
ζ3 −

88π2

9
ζ3 −

83π4

45
− 272ζ5

)
+ CAC

2
F

(
−151

2
+

410π2

9

−1688

3
ζ3 −

16π2

3
ζ3 +

494π4

135
− 240ζ5

)
+ C3

F

(
−29− 6π2 − 136ζ3 +

32π2

3
ζ3 −

16π4

5
+ 480ζ5

)

+

[
CACF

(
−34636

729
+

5188π2

243
− 3856

27
ζ3 +

44π4

45

)
+ C2

F

(
5906

27
− 52π2

9
+

1024

9
ζ3 −

56π4

27

)]
TFnf

+ CFT
2
Fn

2
f

(
19336

729
− 80π2

27
− 64

27
ζ3

)
. (C.19)

The noncusp anomalous dimensions for the (hemisphere) jet function are given by [55,74]

γJ0 = 6CF , (C.20)

γJ1 =CACF

(
1769

27
+

22

9
π2 − 80ζ3

)
+ C2

F

(
3− 4π2 + 48ζ3

)
+ CFTFnf

(
−484

27
− 8π2

9

)
, (C.21)

γJ2 =C2
ACF

(
412907

1458
+

838π2

243
− 11000

9
ζ3 +

176π2

9
ζ3 +

19π4

5
+ 464ζ5

)
+ CAC

2
F

(
151

2
− 410π2

9

+
1688

3
ζ3 +

16π2

3
ζ3 −

494π4

135
+ 240ζ5

)
+ C3

F

(
29 + 6π2 + 136ζ3 −

32π2

3
ζ3 +

16π4

5
− 480ζ5

)

+

[
CACF

(
10952

729
− 2360π2

243
+

5312

27
ζ3 −

92π4

45

)
+ C2

F

(
−9328

27
+

64π2

9
− 416

9
ζ3 +

328π4

135

)]
TFnf

+ CFT
2
Fn

2
f

(
−27656

729
+

160π2

81
+

512

27
ζ3

)
. (C.22)

The noncusp anomalous dimensions of the PDF and the thrust soft function can be easily obtained from
these expressions via the consistency relations in Eqs. (4.35) and (5.16), respectively, i.e. γφ̃i = −2γCi −γJi
and γSi = −2 Re[γC̃i ]− γJτi = −2γCi − 2γJi .
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Appendix D

Computation of the hemisphere misalign-
ment correction

D.1 Computation of the cumulant

Here we give some details on a numerically stable computation of the phase space misalignment correction
to the thrust soft function, Ŝ(nl+1,2)

τ,m,∆ (`,m), which does not rely on the separate determination of the
contributions from the quark and gluon hemisphere prescriptions in the phase space region where the
two quarks enter opposite hemispheres. We consider the cumulant

Ŝ(nl+1,2)
τ,m,∆ (L,m) =

∫ L

0

d` Ŝ
(nl+1,2)
τ,m,∆ (`,m) , (D.1)

which can be rearranged onto a single integration domain using the relation
∫ L

0

d` θ(k− − k+) θ(q+ − q−)
[
δ(`− k+ − q−)− θ(q+ + k+ − q− − k−) δ(`− k− − q−)

− θ(q− + k− − q+ − k+) δ(`− k+ − q+)
]

= θ(k− − k+) θ(q+ − q−) θ(k+ + q+ − L) θ(k− + q− − L) θ(L− k+ − q−) . (D.2)

After integration over the transverse momenta the cumulant adopts the form

Ŝ(nl+1,2)
τ,m,∆ (L,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

L∫

0

dq−
L−q−∫

0

dk+

∞∫

L−k+

dq+

∞∫

L−q−
dk− θ(k+k− −m2) θ(q+q− −m2)

× fm(k+, k−, q+, q−,m) (D.3)

with fm(k, q,m) given in Eq. (5.75). Note that in the massless case the on-shell constraint θ-functions
can be dropped in Eq. (D.3) and the integrations yield directly a constant corresponding to Eq. (5.82). In
order to unambiguously determine the integration domains in the 4-dimensional integral it is convenient
to distinguish between 4 parameter regimes: L < m, m < L < (1+

√
5)m/2, (1+

√
5)m/2 < L < 2m and

2m < L. We illustrate the areas with different integration domains for the larger momenta, q+ and k−,
for each regime in Fig. D.1 (a) – (d) in the plane of the smaller momenta q−, k+. One of the integrations
in Eq. (D.3) can be performed analytically, the remaining ones can be done numerically using the Cuba
library [118]. Using both deterministic as well as Monte-Carlo algorithms we obtain the same result.
Differentiating with respect to L yields Ŝ(nl+1,2)

τ,m,∆ (`,m).

D.2 Asymptotic expansion for `� m

We give a short outline for the calculation of the asymptotic expansion of Ŝ(nl+1,2)
τ,m,∆ (`,m) for large thrust

momenta. The asymptotic expansion has been performed for each area in Fig. D.1 (d) with cutoff
regularization taking m2/L � Λ1 � m � Λ2 � L, since using dimensional regularization we have not
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L

L

k+ + q− = L

q−

k+

(a) L < m

m

L−m

L

m2/L

mL−m Lm2/L
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q− = L− k+

m2

k+
= L− q−

k+ + q− = L

q−

k+

(b) m < L < (1 +
√

5)m/2

m

L−m
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mL−m Lm2/L
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q− = L− k+
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k+
= L− q−
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(c) (1 +
√

5)m/2 < L < 2m
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II
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q−
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(d) 2m < L

Figure D.1: The integration areas for different parameter regimes. For L < m we have one single
integration domain. For m < L < (1 +

√
5)m/2 and (1 +

√
5)m/2 < L < 2m there are three domains, the

regimes differ by the hierarchy between L −m and m2/L. Finally, for L > 2m we have 4 areas, where
the central one (IV) becomes dominating for large values of L.
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been able to obtain an analytic result. The result from area I is suppressed by m6/L6 and thus irrelevant.
For the computation of the areas II and III we obtain

Ŝ(nl+1,2,II)
τ,m,∆ (L,m) = Ŝ(nl+1,2,III)

τ,m,∆ (L,m)

=

(
α

(nl+1)
s

)2
CFTF

16π2

{
m2

L2

[
2 ln2

(
m2

L2

)
+ 12 ln

(
m2

L2

)
+ 12 +

8π2

3

]
+O

(
m3

L3

)}
,

(D.4)

The expansions in area IV are cumbersome. We have to go to subleading orders in the m/L-expansion
and consider a large number of different scaling regions with difficult integrations. Special care has to be
taken of power counting breaking terms arising in the computation with the two cutoffs separating the
different regions. Furthermore, cancellations in the denominator appear at the subleading order which
require a special treatment for the hemisphere border region with q− ≈ q+ and k+ ≈ k−. The calculation
for area IV eventually yields

Ŝ(nl+1,2,IV)
τ,m,∆ (L,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

{
−64

9
+

104π2

27
− 64

3
ζ3 −

m2

L2

[
8 ln2

(
m2

L2

)
+ 56 ln

(
m2

L2

)

+
296

3
+

386π2

45
+ 16π

]
+O

(
m3

L3

)}
. (D.5)

Thus, the final result for the integrated soft function difference reads

Ŝ(nl+1,2)
τ,m,∆ (L,m) =

(
α

(nl+1)
s

)2
CFTF

16π2

{
−64

9
+

104π2

27
− 64

3
ζ3 −

m2

L2

[
4 ln2

(
m2

L2

)
+ 32 ln

(
m2

L2

)

+
224

3
+

146π2

45
+ 16π

]
+O

(
m3

L3

)}
, (D.6)

which gives, after differentiation, Eq. (5.81).
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Appendix E

Massive gluon radiation in thrust atO(αs)
in full QCD

In this section we present the fixed-order calculation of the massive gluon corrections at O(αs) in full
QCD. We also discuss the various expansions needed to identify the singular terms. Since the full theory
result has nontrivial threshold contributions related to the mass scale, these expansions deserve a separate
discussion.

E.1 General result

The relevant diagrams for the computation are shown in Fig. E.1. The virtual contributions yield
F̃

(1)
M,QCD(Q,M) corresponding to the result for DIS in Eq. (3.70) apart from an analytic continuation

from Q2 → −Q2. What is left to be done, is the calculation of the real radiation diagrams for the massive
gluons and the integration over the three-particle phase space. It is convenient to introduce the usual
energy fraction variables,

x1 =
2p0

Q
, x2 =

2p′0
Q
, x3 =

2q0

Q
, (E.1)

where x1 + x2 + x3 = 2. Here p, p′ and q are the quark, antiquark and massive gluon momenta. The
double differential cross section in d = 4 dimensions reads in terms of these variables (M̂ = M/Q)

1

σ0

dσreal

dx1 dx2
=
αsCF

2π

1

(1− x1)(1− x2)

[
x2

1 − M̂2

(
1− 3x2 + 2x1x2

1− x1

)
+ M̂4 + (x1 ↔ x2)

]
. (E.2)

The relation of the thrust variable τ to x1,2,3 reads

τ ≡ 1−max
t̂

∑
i |t̂ · ~pi|
Q

= 1−max
(
x1, x2,

√
x2

3 − 4M̂2

)
. (E.3)

M M

p

p′

p

p′

q

Figure E.1: Diagrams for secondary massive gluon production in e+e− annihilation at O(αs).
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Figure E.2: The phase space for the real radiation of a massive gluon in terms of the variables x1

and x2 for M̂ = 0.2. The kinematic constraints yield the allowed area within the red, continuous
lines. The blue dotted lines bound the areas with the same thrust relation to x1 and x2 and are given
by x1 = x2, 2x1(2 − x2) = (2 − x2)2 − 4M̂2 and 2x2(2 − x1) = (2 − x1)2 − 4M̂2. D (located at

x1 = x2 =
√
x2

3 − 4M̂2 = 1 − τmax) is the point of maximal thrust, E1 and E2 have minimal thrust
configurations. At E3 the produced gluon is at rest with τ = τ̄ . The triangle E1DE2 corresponds to

τ = 1 −
√
x2

3 − 4M̂2 and generates the function A(τ, M̂). B(τ, M̂) is obtained by increasing the areas
of the segments E1E3D (E3E2D) to E1E4D (E5E2D) and integrating with τ = 1 − x1 (τ = 1 − x2).
Subtracting E5E4D with the corresponding opposite thrust prescription gives the soft function piece
C(τ, M̂).

The resulting thrust distribution (including also the virtual contributions) displays structures associ-
ated to collinear and soft gluon radiation thresholds. It has the form

1

σ0

dσ
dτ

=
αsCF

4π

{
2f

(1)
QCD(M̂) δ(τ) + θ(τ − τmin) θ(τmax − τ)

(
A(τ, M̂) +B(τ, M̂)

)

+ θ(τ − τ̄) θ(τmax − τ)C(τ, M̂)

}
, (E.4)

where the minimal and maximal thrust values and the intermediate threshold for the real radiation
contributions are given by

τmin ≡ M̂2 , τmax ≡
1

3

(
−1 + 2

√
1 + 3M̂2

)
, τ̄ ≡ M̂ . (E.5)

The real corrections associated to the threshold at τmin = M2/Q2 correspond to collinear radiation, and
those associated to the threshold at τ̄ = M/Q correspond to soft radiation. As illustrated in Fig. E.2,
we have distributed the contributions from the various phase space regions such that collinear and soft
terms both extend to the endpoint at τmax. This facilitates the identification of the singular terms in the
SCET framework as contributions coming from the jet and the soft functions. We emphasize that this
setup appears to be the only practical choice to achieve a separation of collinear and soft contributions
compatible with singular terms that can be analytically defined for the whole kinematic τ -range and for
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Figure E.3: The three contributions A(τ, M̂), B(τ, M̂) and C(τ, M̂) to the O(αs) full theory thrust
distribution for the radiation of a massive gluon for M̂ = M/Q = 0.2. The sum of all terms, given by the
thick green line, is positive. The vertical green line at τ = 0 indicates the virtual corrections proportional
to δ(τ).

all possible values of M̂ . Note that in Eq. (E.4) we have factored out an overall loop factor and redefined

Re
[
F̃

(1)
M,QCD(Q,M)

]
=
αsCF

4π
f

(1)
QCD(M̂) . (E.6)

The functions A(τ, M̂), B(τ, M̂) and C(τ, M̂) are obtained by integrating dσreal/dx1 dx2 in the phase-
space regions as described in the caption of Fig. E.2. The analytic results read

A(τ, M̂) =
4(1− τ)

ŵ2
ln
(
ŵ − τ
τ

)[
3− 2τ + τ2 − 2ŵ(1 + M̂2) + 2M̂4

]

− (ŵ − 2τ)(1− τ)

τŵ(ŵ − τ)

[
ŵτ(1− τ)− M̂2

]
, (E.7)

B(τ, M̂) =
4

τ
ln
(
τ(ŵ − τ)

M̂2

)[
2− 2τ + τ2 + 2M̂2(2− τ) + 2M̂4

]

− 2

τ3(ŵ − τ)

[
τ2
(
4− ŵ − τ(5 + 6ŵ) + 2τ2(1− ŵ) + 2τ3

)

+ 2M̂2τ
(
1− 2ŵ − τ(6 + 4ŵ)− τ2(5 + 4ŵ) + 4τ3

)
− M̂4

(
ŵ + τ(7 + 4ŵ) + 12τ2

)]
, (E.8)

C(τ, M̂) = − 8

τ3
ln
(
τ

M̂

)[
2− 2τ + τ2 + 2M̂2(2− τ) + 2M̂4

]
+

2(τ2 − M̂2)

τ3

[
τ(4 + τ) + M̂2(1 + 4τ)

]
,

(E.9)

with

ŵ ≡
√

(1− τ)2 + 4M̂2 . (E.10)

Our result agrees with the one given in Ref. [126]. The result for the fixed-order thrust distribution
in arbitrary units is displayed for M̂ = 0.2 in Fig. E.3. As a cross-check, from Eq. (E.4) we obtain the
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correct massless expression for M̂ → 0 [4, 107],

1

σ0

dσreal

dτ
M→0−→ αsCF

4π

{
2δ(τ)

(
−1 +

π2

3

)
− 6

[
θ(τ)

τ

]

+

− 8

[
θ(τ) ln τ

τ

]

+

+
2

1− τ

[
6 + 3τ − 9τ2 + (2− 4τ) ln τ +

(
4

τ
− 6 + 6τ

)
ln(1− 2τ)

]}
, (E.11)

valid for 0 ≤ τ ≤ 1/3. To obtain this result involving the plus-distributions it is required to exactly
account for the analytic behavior of the collinear and soft thresholds when taking the massless limit.

E.2 Expansions

The massless fixed-order thrust distribution shown in Eq. (E.11) only depends on τ , and the expansion
parameter relevant for approaching the dijet limit is simply λ ∼ √τ � 1. There is only one single
threshold located at τ = 0. Thus in the massless limit we can identify the fixed-order singular pieces
that are being summed in the factorization theorem and that can be used for the matching calculations
within SCET by simply performing an expansion in small τ . The collinear and soft contributions are
not separated. In the presence of the massive gluons the collinear and soft thresholds are separated due
to their different mass-dependence: collinear radiation arises for τ ≥ τmin = M2/Q2 and soft radiation
arises for τ ≥ τ̄ = M/Q. Thus the identification of the singular terms – which shall be defined for the
whole kinematic τ -range and include the full mass-dependence – needs to account for the location of the
thresholds. In this subsection we discuss the required expansions for the full theory results.

The δ(τ) term is left unexpanded since we aim at determining the full mass-dependence of the singular
contributions. The term proportional to θ(τ − M̂2) contains the collinear contributions. Here the jet
invariant mass Q

√
τ and the massM have to be considered at the same footing. Since the mass threshold

is treated exactly, we expand for τ ∼ M̂2 � 1. Here only the function B(τ, M̂) contains singular terms
as it originates from the collinear regions in the x1-x2 phase space where x1 ∼ 1 or x2 ∼ 1:

B(τ, M̂)
τ∼M̂2

−→ 2

τ3

[
(M̂2 − τ)(3τ + M̂2) + 4τ2 ln

(
τ

M̂2

) ]
+ O(τ0, M̂0) . (E.12)

The function B(τ, M̂) and all terms in the expansion vanish at τ = M̂2 giving a continuous turn-on of
the singular O(τ−1) terms (with τ ∼ M̂2). On the other hand, the function A(τ, x) does not contain
singular O(τ−1) terms as it stems from configurations which are neither collinear nor soft. Interestingly
the function A(τ, M̂) is nonvanishing at τ = M̂2 and responsible for the step visible in Fig. E.3. For
τ ∼ M̂2 � 1 the expansion for the function A(τ, M̂) reads

A(τ, M̂)
τ∼M̂2

−→ − 4
τ + M̂2 + τ ln τ

τ
+O(τ, M̂2) (E.13)

showing that it contributes at O(τ0 ∼ 1). Although the contribution from function A(τ, M̂) exceeds the
singular contribution from B(τ, M̂) numerically at τ ≈ M̂2, it only contains nonsingular terms which are
not described in the factorization theorems. It remains to discuss the term proportional to θ(τ − M̂),
which contains the soft contributions. Here the soft scale Qτ and the mass M have to be considered at
the same footing. Since the soft mass threshold is treated exactly we expand in τ ∼ M̂ � 1. For the
function C(τ, M̂) this yields singular O(τ−1) terms which read

C(τ, M̂)
τ∼M̂−→ − 16

τ
ln
(
τ

M̂

)
+O(τ0, M̂0) . (E.14)

Similar to B(τ, M̂), the singular O(1/τ) terms turn on continuously at τ = M̂ .
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Assembling all singular pieces we obtain

1

σ0

dσ
dτ

∣∣∣∣
FO

= δ(τ) +
αsCF

4π

{
2f

(1)
QCD(M̂) δ(τ) + θ(Q2τ −M2)

[
2(M2 −Q2τ)(3Q2τ +M2)

Q4τ3

+
8

τ
ln
(
Q2τ

M2

)]
− θ(Qτ −M)

8

τ
ln
(
Q2τ2

M2

)}
. (E.15)

We emphasize that the factorization theorems for all EFT scenarios account for the full-mass dependence
displayed in Eq. (E.15). The terms corresponding to the collinear and soft thresholds yield functions
which match exactly to the EFT real radiation contributions from collinear mass modes, denoted by
J

(1)
τ,M,real = 2J

(1)
M,real with J

(1)
M,real given in Eq. (4.107), and soft mass modes, denoted by Ŝ(1)

τ,M,real given
in Eq. (5.64), respectively. We note that from Eq. (E.15) the singular terms in the massless limit (first
three terms on the RHS of Eq. (E.11)) can be recovered, requiring the proper combination of the terms
into plus- and delta-distributions in τ .

An interesting issue we would like to mention is that the parametric precision of the expansions
leading to the singular contributions in Eq. (E.15) is not uniform and depends on τ . Above the collinear
threshold (τ > τmin) the expansion is valid up to higher order power corrections of order M̂2. On the
other hand, above the soft threshold (τ > τ̄) the expansion is valid up to higher order power corrections
of order M̂ . This is an intrinsic property and also inherited to the factorization theorems we derived in
the various scenarios. So, from a strict power counting point of view, for M̂ � 1 the soft sector would
need to be treated with the first order power corrections included to reach the same parametric precision
as the collinear sector. We stress, however, that this does not affect in any way the consistency of treating
only the singular collinear and soft mass mode contribution in the effective theory description.



154 E.2. EXPANSIONS



APPENDIX F. SECONDARY MASS EFFECTS WITH PRIMARY MASSIVE QUARKS 155

Appendix F

Secondary mass effects with primary mas-
sive quarks

In chapter 5 we have computed the secondary massive quark corrections at O(α2
sCFTF ) to the thrust

distribution for the production of primary massless quarks. Here we investigate these types of corrections
in the presence of primary massive quarks of the same flavor. Our presentation follows Refs. [8, 9],
but specifies for the first time the treatment of massive top quark loops and provides explicit results.
We discuss briefly the factorization theorem in the peak region for a primary massive top quark, which
requires the matching onto an additional EFT, namely boosted Heavy Quark Effective Theory (bHQET),
and present the calculation of the corresponding matching correction for secondary massive quark effects
at O(α2

sCFTF ) within this factorization framework in two different ways. This computation provides a
necessary ingredient for a N3LL analysis of event shape distributions, which might be used for a precise
extraction of a properly defined short distance top quark mass from the peak position.

F.1 Factorization for primary massive quarks

For the production of primary massive quarks the jet invariant mass of a single jet satisfies always s ≥ m2,
so that only the scaling scenarios III (µJ & µm and µm & µS) and IV (µS & µm) have to be considered in
the SCET mass mode setup described in Sec. 5.3. Thus the dependence on m� Q can be dropped in the
hard matching coefficient 1 and the only difference concerning secondary mass effects at O(α2

sCFTF ) with
respect to the case of primary massless quarks lies in the jet function and the current and jet function
threshold corrections. 2

Furthermore, we can have the additional regime, where the invariant masses of either of the outgo-
ing jets are very close to the mass of the heavy quark, i.e. (s − m2)/m2 � 1, and where the SCET
factorization theorem does not resum all large logarithms any more. This scaling holds in particular
in the phenomenologically interesting peak region for top quark production, where s − m2 ∼ QΛQCD,
for not too large c.m. energies at a future ILC (Q � m2/ΛQCD ∼ 30 TeV). 3 Note that this scaling
can be only preserved to all orders in perturbation theory if a proper short distance mass scheme with
δm . QΛQCD/m is employed, which excludes e.g. the MS mass (with δm ∼ m � QΛQCD/m). To ac-
count for the resummation of the logarithms ln(ŝ/m) = ln((s−m2)/m2) one has to switch to two boosted
versions of HQET for the top and antitop quark. The factorization theorem for the thrust distribution

1In contrast to virtual secondary mass effects one cannot incorporate the full mass dependence into the hard matching
coefficient of the leading order current since the primary quark mass appears as physically visible real radiation scale
directly tied to the SCET expansion parameter. Terms which are suppressed by (m/Q)n appear in matching coefficients
for subleading currents in SCET.

2In the SCET setup we are currently still missing an analytic expression for the real radiation contributions of the
secondary massive quarks in the jet function. Note that also the other corrections to the jet function at O(α2

s) have not
been given in literature.

3We neglect here the dependence on the top quark decay width Γt, which will be irrelevant for our discussion. Generally,
one has s−m2 ∼ QΛQCD +mΓt in the peak region.
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with jet invariant masses close to threshold reads in bHQET [8,9]

1

σ0

dσ
dτ

= Q
∣∣∣C̃(nl+1)(Q,µH)

∣∣∣
2 ∣∣∣U (nl+1)

C̃
(Q,µH , µm)

∣∣∣
2

|Cm(Q,m, µm)|2
∣∣∣U (nl)
m (Q,m, µm, µ)

∣∣∣
2

×
∫

dŝ
∫

dŝ′
∫

d`B(nl)
τ (ŝ′, µB)U

(nl)
Bτ

(ŝ− ŝ′, µ, µB)S(nl)
τ

(
Qτ − 2m2

Q
− mŝ

Q
− `, µS

)

× U (nl)
Sτ

(`, µ, µS) (F.1)

up to higher orders in the power counting parameters λSCET = m/Q and λbHQET = (Q2τ − 2m2)/m2.
Here the term C̃(nl+1)(Q,µ) is the same massless hard matching coefficient between the SCET and the
QCD current as in Eq. (5.4). At µm ∼ m the fluctuations of the order of the mass scale have to be
integrated out resulting in a matching coefficient Cm(Q,m, µm) between the bHQET and the SCET
current. Here we also include all (virtual) secondary mass effects into Cm, which were partially separated
in terms of a matrix element of soft mass mode Wilson lines in Refs. [8, 9]. 4 The perturbative bHQET
thrust jet function B(nl)

τ (ŝ, µ) describes the small fluctuations of the collinear top and antitop quark close
to the mass shell. It is defined as a time-ordered operator matrix element in terms of boosted heavy quark
fields and depends on the sum of the offshellnesses of the two jets via ŝ ∼ µB ∼ (Q2τ − 2m2)/m, see
Ref. [8]. 5 The soft function in bHQET is in fact the same as the one in SCET with nl massless flavors,
which in particular does not rely on the fact whether the primary quark is massless or massive, and is
thus given by Eq. (5.7). All matrix elements are evolved to a common renormalization scale µ with the
RG factors U (nl+1)

C̃
, U (nl)

m , U (nl)
Bτ

and U (nl)
Sτ

associated to the SCET current, the bHQET current, jet and
soft functions, respectively. Here we have set µ < µm implying that the final renormalization scale lies
in the bHQET regime and the matching coefficient Cm arises when the evolution of the current crosses
the mass scale from above. An equivalent picture where µ > µm and the jet and soft functions cross the
mass threshold from below will be discussed in Sec. F.3.

Due to the fact that the real radiation of an additional massive top quark pair increases the invariant
mass by ∆s & m2 � QΛQCD, secondary top quarks can only appear via virtual radiation in the peak
region. They are integrated out in the matching from bHQET to SCET in the coefficient Cm(Q,m, µm).

F.2 Current matching with secondary massive quarks

Here we perform the computation of the matching coefficient Cm(Q,m, µm) at O(α2
sCFTF ). In fact we

can split the calculation by first integrating out the secondary massive quark effects in the SCET current
resulting in a mass mode matching factor MCm and then matching the remainder to bHQET with a
matching coefficient C̃(nl)

m . In terms of renormalization conditions we thus switch from a SCET current
that is renormalized in MS concerning the secondary massive quark corrections to a corresponding one in
the OS scheme, which is then matched to the bHQET current where secondary massive quark correction
do not appear (which also corresponds to an OS description), i.e.

Cm(Q,m, µm) =MCm(Q,m, µm) C̃(nl)
m (m,µm) . (F.2)

Note that this formula holds independently whether the primary and the secondary quark masses are
equal. To obtain M(2)

Cm
(Q,m, µ) and eventually C

(2)
m (Q,m, µ) we will compute the secondary massive

quark corrections to the hard current in a similar way as in chapter 4. We start with the calculation of
the one-loop diagrams for the radiation of a “massive gluon” with mass M and apply in a second step the
dispersion relation (3.62) to account for the gluon splitting into two massive quarks with mass m. We
will be able to perform the calculation in close analogy to the one for primary massless quarks explicitly
described for DIS in the endpoint region in chapter 4, where the difference results in an UV and IR finite

4Note that our understanding of mass modes is different compared to Refs. [8, 9], where the corresponding secondary
effects were not investigated systematically, and comprises in particular also collinear mass modes.

5Compared to Ref. [8] we have normalized the bHQET jet function with a factor m differently such that B(0)
τ (ŝ) = δ(ŝ)

instead of B(0)
τ (ŝ) = 1/mδ(ŝ) = δ(s−m2).
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Figure F.1: Non-vanishing EFT diagrams for the computation of the hard current at O(αs) with primary
massive quarks and secondary massive gluons with masses m and M , respectively. Soft-bin subtractions
are implied for the collinear diagrams.

remainder at the level of the massive gluon that yields just a constant, nonlogarithmic correction at the
level of the secondary massive quarks. This has the important consequence that the rapidity logarithms
are the same for primary massless and massive quarks at O(α2

sCFTF ), which is a fact that holds to any
order in perturbation theory as will be explained in Sec. F.3.

F.2.1 One-loop computation for secondary massive gluons
We compute the diagrams in Fig. F.1 using the Feynman rules in Fig. 2.3. Due to the eikonal structure
we obtain for the soft diagram Ṽs,m the same result as for primary massless quarks which is given in
analogy to Eq. (4.68) by 6

Ṽs,m = − 2ig2CF µ̃
2ε

∫
ddk

(2π)d
1

[k− + iε]

1

[k+ − iε]
1

[k2 −M2 + iε]
. (F.3)

For the n-collinear diagram we get

Ṽn,m = 2ig2CF µ̃
2ε

∫
ddk

(2π)d
Q− k−

[k2 −Qk+ − m2

Q k− + iε]

1

[k− + iε]

1

[k2 −M2 + iε]
. (F.4)

We can decompose this contribution into a correction corresponding to the diagram with primary massless
quarks Ṽn,m=0, which is the same as Vn given in Eq. (4.70) apart from a different pole prescription, and
a UV (and IR) finite piece that accounts for contributions due to the mass of the primary quark and can
be computed in 4 dimensions,

Ṽn,m = Ṽn,m=0 + (Ṽn,m − Ṽn,m=0) . (F.5)

The latter reads

Ṽn,m − Ṽn,m=0 = − αsCF
2π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2 ∫ 1

0

dz
1− z
z

[(
1− z +

m2

M2
z2

) d
2−2

− (1− z) d2−2

]

=
αsCF

2π

[
ln
(

1 + a

2

)
ln
(

1− a
2

)
+

1 + a

1− a ln
(

1 + a

2

)
+

1− a
1 + a

ln
(

1− a
2

)
+ 1 +O(ε)

]

(F.6)

with

a =

√
1− 4m2

M2
. (F.7)

6Note that compared to the DIS calculation only one iε-prescription has changed corresponding to the fact that we have
an antiquark in the final state instead of a quark in the initial state.
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Note that the result in Eq. (F.6) does not contain any rapidity divergences, so that rapidity logarithms
arise only in the computation of Ṽn,m=0. For the soft-bin subtraction of Ṽn,m the dependence on the
primary quark mass drops out as for the soft diagram and we obtain the same result as for primary
massless quarks (namely Ṽs,m if the α-regulator in Eq. (4.66) is applied).

The n̄-collinear diagram corresponds to switching k− and k+ in Eq. (F.4). We perform an analogous
decomposition to Eq. (F.5),

Ṽn̄,m = Ṽn̄,m=0 + (Ṽn̄,m − Ṽn̄,m=0) , (F.8)

Since all rapidity divergences are encoded in the results with primary massless quarks, no additional
regulator has to be imposed for the computation of the UV (and IR) finite difference contribution, so
that the corresponding integral is symmetric to the one in the n-collinear sector and yields the same
result,

Ṽn̄,m − Ṽn̄,m=0 = Ṽn,m − Ṽn,m=0 . (F.9)

Finally, we also have to consider the wave function corrections. The diagrams give in analogy to the
computation in Ref. [9]

Z
(1,a)
ξ,m + Z

(1,b)
ξ,m = 2ig2CF µ̃

2ε /n

2

∫
ddk

(2π)d
Qm2(3− ε)− (Q2k+ +Qp2 +m2k−)(1− ε)

Q2[k2 −M2 + iε][(k + p)2 −m2 + iε]
. (F.10)

Using p2 = m2 + ∆2 and decomposing the integrals into elementary one- and two-point functions we
obtain

Z
(1,a)
ξ,m + Z

(1,b)
ξ,m = ig2CF µ̃

2ε /n

2

(1− ε)
Q(m2 + ∆2)

{[
A0(m2)−A0(M2)

]
[2m2 + ∆2]

+ B0(m2 + ∆2,M2,m2)

[
4m2(m2 + ∆2)

1− ε + 2m2M2 +M2∆2 −∆4

]}
. (F.11)

The wave function renormalization constant Z(1)
ξ,m is defined by

Z
(1,a)
ξ,m + Z

(1,b)
ξ,m

∆→0−→ i
/n

2

1

Q

[
2mδm

(OS,1)
M + ∆2 Z

(1)
ξ,m +O(∆4)

]
, (F.12)

where δm(OS,1)
M is the one-loop renormalization constant for the quark mass m in the pole mass scheme

for the interaction with a massive gluon (with massM). Z(1)
ξ,m can be written in terms of the counterterm

correction for primary massless quarks given in Eq. (3.82), which can be recovered from Eq. (F.11) for
m→ 0, and a UV (and IR) finite remainder,

Z
(1)
ξ,m = Z

(1)
ξ,m=0 + (Z

(1)
ξ,m − Z

(1)
ξ,m=0) . (F.13)

The mismatch contribution between massive and massless primary quarks reads in d = 4 dimensions

Z
(1)
ξ,m − Z

(1)
ξ,m=0 =

αsCF
4π

3

2a(1− a2)2

[
2(1 + a)4(2− a) ln

(
1 + a

2

)
− 2(1− a)4(2 + a) ln

(
1− a

2

)

+ a
(
11− 14a2 + 3a4

)
+O(ε)

]
. (F.14)

Thus the complete (unrenormalized) SCET result for the current at O(αs) reads

F̃
(1)
M,SCET,m(Q,M,m, µ) = F̃

(1)
M,SCET,m=0(Q,M,µ) + F̃

(1)
M,SCET,m(Q,M,m, µ)− F̃ (1)

M,SCET,m=0(Q,M,µ)
︸ ︷︷ ︸

= δF̃
(1)
M,SCET,m(M,m)

(F.15)
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with F̃
(1)
M,SCET,m=0 being the corrections with primary massless quarks in d dimensions, which can be

computed in close analogy to Sec. 4.3.1, 7

F̃
(1)
M,SCET,m=0(Q,M,µ) =

αsCF
2π

Γ

(
2− d

2

)(µ2eγE

M2

)2− d2
{
H d

2−1 − (−1)2− d2 Γ

(
d

2

)
Γ

(
1− d

2

)

− d2 − 6d+ 4

d(d− 2)
+ ln

(
M2

Q2

)}
. (F.16)

The UV finite correction due to the mass of the primary quark is given in terms of Eqs. (F.6) and (F.14)
by

δF̃
(1)
M,SCET,m(M,m) = 2(Ṽn,m − Ṽn,m=0)− (Z

(1)
ξ,m − Z

(1)
ξ,m=0) . (F.17)

F.2.2 Two-loop computation for secondary massive quarks

Following Eq. (3.62) we can obtain the O(α2
sCFTF ) secondary massive quark form factor corrections in

analogy to Eq. (4.154). For the d dimensional piece we obtain the same results as computed in Sec. 4.4.1
apart from the replacements LQ → L−Q and ln(m̂2)→ ln(−m̂2+i0). For the convolution of the additional
UV and IR finite piece δF̃ (1)

M,SCET,m(M,m) we get

δF̃
(nl+1,2)
SCET,m =

(
α

(nl+1)
s

)2
CFTF

16π2

{
1241

81
− 56π2

27
+

16

3
ζ3

}
. (F.18)

This allows us to compute the threshold correctionMCm(Q,m, µm) via Eq. (4.164),

M(2)
Cm

(Q,m, µm) =M(2)

C̃
(Q,m, µm) + δF̃

(nl+1,2)
SCET,m , (F.19)

whereM(2)

C̃
is the matching coefficient for primary massless quarks atO(α2

sCFTF ) appearing in Eq. (5.27).
Thus the only modification in the mass mode threshold correction for primary massive quarks with respect
to primary massless quarks is just a constant. If we write the matching coefficient Cm(Q,m, µm) between
bHQET and SCET in the nl-flavor scheme for αs, we obtain

C
(nl,2)
m,TF

(Q,m, µm) =M(2)
Cm

(Q,m, µm) , (F.20)

since the coefficient C̃(nl)
m (m,µm) in Eq. (F.2) does not contain any information about the secondary

massive flavor. For convenience we display the result also in the (nl + 1)-flavor scheme, which is given by
(Lm ≡ ln(m2/µ2

m), α(nl+1)
s ≡ α(nl+1)

s (µm)),

C
(nl+1,2)
m,TF

(Q,m, µm) =M(2)
Cm

(Q,m, µm) +
α

(nl+1)
s TF

3π
Lm C

(nl+1,1)
m (m,µm) , (F.21)

where the one-loop matching coefficient C(nl+1,1)
m (m,µm) reads [9]

C(nl+1,1)
m (m,µm) =

α
(nl+1)
s CF

4π

{
L2
m − Lm + 4 +

π2

6

}
. (F.22)

Plugging in Eqs. (4.166), (F.18) and (F.22) into Eq. (F.21) we obtain at fixed order

C
(nl+1,2)
m,TF

(Q,m, µm) =

(
α

(nl+1)
s

)2
CFTF

16π2

{(
4

3
L2
m +

40

9
Lm +

112

27

)
ln
(
−m

2

Q2

)
+

4

9
L3
m −

14

9
L2
m

+

(
274

27
+

8π2

9

)
Lm +

5107

162
− 41π2

27
− 4

9
ζ3

}
. (F.23)

7Note that compared to the result in Eq. (4.76) there is a slight modification due to the different pole prescriptions
corresponding to the analytic continuation from a spacelike to a timelike process.
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Note that the terms involving the rapidity logarithm ln(m2/Q2) are exactly the same as for massless
primary quarks and can be dealt with along the lines of Sec. 4.4.1. As a cross-check we remark that the
result in Eq. (F.23) is consistent with the difference of the RG evolution of the currents in bHQET and
SCET (in analogy to Eq. (4.180)), i.e.

µ
d
dµ

C(nl+1)
m (Q,m, µm)

∣∣∣∣
α2
sCFTF

= −
(
γ

(nl+1)

C̃
(Q,µ)− γ(nl)

m (Q,m, µ)
)
C(nl+1)
m (Q,m, µm)

∣∣∣
α2
sCFTF

=
α

(nl+1)
s TF

3π
Lmγ

(nl+1,1)
m (Q,m, µ)− γ(nl+1,2)

C̃,TF
(Q,µ) . (F.24)

Here the anomalous dimension γ(nl+1)

C̃
at O(α2

sCFTF ) related to the SCET current is given in analogy

to Eq. (4.29). The one-loop anomalous dimension γ(nf ,1)
m related to the bHQET current is given by [9]

γ
(nf ,1)
m (Q,m, µ) =

α
(nf )
s CF

4π

{
4 ln

(
−Q

2

m2

)
− 4

}
, (F.25)

with the corresponding evolution equation

µ
d
dµ

U
(nf )
m (Q,m, µm, µ) = γ

(nf )
m (Q,m, µ)U

(nf )
m (Q,m, µm, µ) . (F.26)

We note that one can perform the computation of the matching coefficient Cm without computing
any SCET diagrams by exploiting the fact that the infrared structure of QCD is fully contained in
the corresponding EFT description. The two-loop QCD result for the form factor was computed in
Refs. [127, 128] 8 and the O(α2

sCFTF ) correction can be also found in Ref. [70]. Using dimensional
regularization as an IR regulator the bHQET diagrams are scaleless, such that Cm can be extracted
from the expanded QCD result for m � Q and the hard current matching between SCET and QCD.
Our result in Eq. (F.23) agrees with this calculation that will be described in more detail in a future
publication [13]. We note that the UV finite difference between primary massive and primary massless
quarks δF̃ (nl+1,2)

SCET,m given in Eq. (F.18) can be also directly read off from the difference of Eqs. (1.74) and
Eq. (1.64) in Ref. [70].

F.3 Consistency relations

Let us reconsider the bHQET factorization theorem in Eq. (F.1), where we now want to use a final
renormalization scale that is above the mass scale, i.e. µ > µm,

1

σ0

dσ
dτ

= Qm2
∣∣∣C̃(nl+1)(Q,µH)

∣∣∣
2 ∣∣∣U (nl+1)

C̃
(Q,µH , µ)

∣∣∣
2
∫

dŝ
∫

dŝ′
∫

dŝ′′
∫

dŝ′′′ U (nl+1)
Jτ

(mŝ′′′, µ, µm)

× Cm,J(mŝ′′ −mŝ′′′,m, µm)U
(nl)
Bτ

(ŝ′ − ŝ′′, µm, µB)B(nl)
τ (ŝ− ŝ′, µB)

×
∫

d`
∫

d`′
∫

d`′′ U (nl+1)
Sτ

(`′′, µ, µm)Cm,S(`′ − `′′,m, µm)U
(nl)
Sτ

(`− `′, µm, µS)

× S(nl)
τ

(
Qτ − 2m2

Q
− mŝ

Q
− `, µS

)
. (F.27)

Here Cm,J(s,m, µ) and Cm,S(`,m, µ) denote the matching coefficients between the jet and soft functions
in bHQET and SCET,

J (nl+1)
τ (mŝ,m, µ) =

∫
dŝ′ Cm,J(mŝ−mŝ′,m, µ)B(nl)

τ (ŝ′, µ) +O
(
ŝ

m

)
, (F.28)

S(nl+1)
τ (`,m, µ) =

∫
d`′ Cm,S(`− `′,m, µ)S(nl)

τ (`′, µ) +O
(
`

m

)
. (F.29)

8Note that the result in Ref. [127] is not given in the MS scheme, since an additional factor Γ[1 + ε] is included in the
renormalization constants of the strong coupling.
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C̃

Cm

Sτ

µH ∼ Q

µfinal

µS ∼ Q2τ−2m2

Q

µB ∼ Q2τ−2m2

m

µm ∼ m
U

(n
l+

1)

C̃
U

(n
l)

m

U
(n

l)
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U
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S
τ
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H

Sτ

µfinal
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τ

(b)
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U
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U
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l+
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J
τ

U
(n

l+
1)

S
τ

Figure F.2: Illustration of the different RG setups for the bHQET factorization setup leading to the
consistency relations mentioned in the text. We display the cases where the final renormalization scale
µfinal satisfies (a) µm > µfinal > µB and (b) µH > µfinal > µm.

Note that the matching including mass mode effects involves convolutions in contrast to the purely
multiplicative form proposed in Ref. [9].

The two different ways of evolution are displayed in Fig. F.2. Since the final renormalization scale
is arbitrary, both factorization theorems in Eqs. (F.1) and (F.27) are equivalent. On the one hand
this implies relations between the anomalous dimensions in SCET (see Eq. (5.16)) and in bHQET (see
Ref. [9]). On the other hand we also get a consistency relation for the matching coefficients Cm, Cm,J
and Cm,S ,

|Cm(Q,m, µ)|2 δ(mŝ) =

∫
d`Cm,J(mŝ−Q`,m, µ)Cm,S(`,m, µ) , (F.30)

which is in the spirit of Eqs. (4.217) and (5.98).
In the following we want to check Eq. (F.30) by providing explicit expressions for the matching

functions Cm,J(s,m, µ) and Cm,S(`,m, µ) at O(α2
sCFTF ). Due to the fact that the soft function does

not contain any dependence on the primary quark mass, the corresponding matching correction contains
just purely secondary mass effects and is thus the same as the threshold correction for primary massless
quarksMSτ given in Eq. (5.103) at fixedO(α2

sCFTF ). Thus we will only have to compute theO(α2
sCFTF )

massive quark corrections to the jet function matching correction.
We start with the calculation of the jet function for the radiation of a massive gluon given by the

diagrams in Fig. F.3, where for the case of a primary massive quark also a mass counterterm on the
internal fermion line has to be taken into account. Here we will perform the computation just for the
distributive contributions corresponding to virtual radiation, since the real gluon radiation corrections
containing the threshold s = (m + M)2 for the single jet invariant mass are tedious, which especially
concerns the subsequent dispersive integration, and are not required for the matching procedure. For
diagram Ja we obtain

Ja,m =− 2g2CF
π(s−m2 + iε)

µ̃2ε

∫
ddk

(2π)d
1

[k− + iε]

1

[k2 −M2 + iε]

Q− k−
[s(1− k−/Q)−Qk+ + k2 −m2 + iε]

.

(F.31)
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Ja,m Jc,mJb,m

M

m

δm2

Jδm

Figure F.3: Non-vanishing EFT diagrams for the computation of the jet function with primary massive
quarks and a secondary massive gluon. The required soft-bin subtractions are implicit. Concerning Ja,m
also the right-symmetric diagram has to be taken into account.

The corresponding soft-bin subtraction reads

Ja,m,0M =− 2g2CF
π(s−m2 + iε)

µ̃2ε

∫
ddk

(2π)d
1

[k− + iε]

1

[k2 −M2 + iε]

Q

[s−Qk− −m2 + iε]
. (F.32)

Notice that as in Sec. 4.3.2 we have kept the jet invariant mass s and here also the mass m in the
expression of the soft-bin subtraction, although they seem at first sight formally suppressed. However,
since the interaction with a mode scaling like Q(λm, λm, λm) would “kick” them out from their natural
scaling, their parametric scaling changes. This is indeed exactly the contribution we have to subtract to
get an expression for the jet function that contains only fluctuations around the jet scale.

In analogy to the current diagrams we decompose Ja,m into singular contributions in d dimensions
for primary massless (internal) quarks with an offshellness s − m2, which we denote by J

(0m)
a,m , and a

UV-finite difference,

Ja,m = J (0m)
a,m + (Ja,m − J (0m)

a,m ) . (F.33)

The difference correction between the proper and the modified integrand reads (a =
√

1− 4m2/M2)

Ja,m − J (0m)
a,m =− 2i

π(s−m2 + iε)

αsCF
4π

Γ

(
2− d

2

)(
µ2eγE

M2

)2− d2 ∫ 1

0

dz
1− z
z

×
[(

1− z
(

1 +
s−m2

M2

)
+

s

M2
z2

) d
2−2

−
(

1− z
(

1 +
s−m2

M2

)
+
s−m2

M2
z2

) d
2−2
]

=
2i

π(s−m2 + iε)

αsCF
4π

{
ln
(

1 + a

2

)
ln
(

1− a
2

)
+

1 + a

1− a ln
(

1 + a

2

)
+

1− a
1 + a

ln
(

1− a
2

)

+ 1 +O
(
ε, (s−m2)0

)}
. (F.34)

In the second equality we have expanded for ε→ 0 and around s = m2 to obtain the singular distributive
corrections. This yields the same integral as in Eq. (F.6) for the hard current form factor. For J (0m)

a,m and
the corresponding soft-bin subtraction Ja,m,0M we obtain the same results as in Eqs. (4.101) and (4.102)
apart from a shift in the variable s→ s−m2.

In a similar way, the result for the virtual corrections in the diagrams Jb,m and Jc,m can be inferred
from the result for the corresponding primary massless diagrams J (0m)

b,m and J (0m)
c,m which can be read off

in their sum from Eq. (4.103) with s → s −m2, and a UV finite difference. The latter is related to the
difference of the wave-function renormalizations in Eq. (F.14),

Jb+c,m − J (0m)
b+c,m = − i

π(s−m2 + iε)

[
2mδm

(OS,1)
M

s−m2 + iε
+
(
Z

(1)
ξ,m − Z

(1)
ξ,m=0

)
+O

(
ε, (s−m2)0

)
]
. (F.35)

Finally, also one insertion of the mass counterterm δmM (in an arbitrary mass scheme) on the internal
quark line has to be taken into account yielding

Jδm =
i

π(s−m2 + iε)2
2mδm

(1)
M . (F.36)
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Summing up all corrections and taking the discontinuity gives for the one-loop virtual massive gluon
corrections for the (single direction) jet function (t = s−m2)

J
(bare,1)
M,m,virt(t,m,M, µ) = Disc

[
2(J (0m)

a,m − Ja,m,0M ) + J
(0m)
b+c,m + 2(Ja,m − J (0m)

a,m ) + (Jb+c,m − J (0m)
b+c,m) + Jδm

]

= J
(bare,1)
M,virt (t,M, µ) + δ(t) δF̃

(1)
M,SCET,m(M,m)− 2mδ

(1)
m,M δ′(t) . (F.37)

with J
(bare,1)
M,virt (t,M, µ) and δF̃

(1)
M,SCET,m(M,m) given in Eqs. (4.106) and (F.17), respectively. Here

δm,M ≡ δmM − δm(OS)
M denotes the difference between the employed mass scheme and the OS scheme.

Furthermore, we note again that since all of the plus-distributions are encoded fully in the first contri-
bution, any arising rapidity logarithms have to agree with the case of primary massless quarks.

Performing the dispersive integral for the jet function along the lines of Eq. (4.187) we obtain for the
virtual piece of the two-loop jet function (t̄ = t/µ2) 9

µ2J
(nl,bare,2)
m,virt (t,m, µ) =

(
α

(nl)
s

)2
CFTF

(4π)2

{
δ(t̄)

[
4

ε3
+

1

ε2

(
−16

3
Lm −

2

9

)
+

1

ε

(
8

3
L2
m − 4Lm −

121

27
+

2π2

9

)

+
76

9
L2
m +

466

27
Lm +

7075

162
− 37π2

27
− 16

3
ζ3

]
+

[
θ(t̄)

t̄

]

+

[
− 8

3ε2
+

1

ε

(
16

3
Lm +

40

9

)

− 16

3
L2
m −

80

9
Lm −

224

27
− 4π2

9

]}
. (F.38)

The corresponding OS counterterm cancels all virtual secondary massive corrections,

Z
(nl,2)
J,m (s,m, µ) = J

(nl,bare,2)
m,virt (t,m, µ) . (F.39)

Switching to the unsubtracted dispersion relation involves the unrenormalized massive jet function at
one-loop, which reads [9]

µ2J (bare,1)
m (t,m, µ) =

αsCF
4π

{
δ(t̄)

[
4

ε2
+

3

ε
+ 2L2

m + Lm + 8− π2

3

]
− 4

[
θ(t̄)

t̄

] [
1

ε
+ Lm + 1

]

+ 8

[
θ(t̄) ln t̄

t̄

]

+

+O
(
ε, t0

)
}
− 2mδ

(1)
m

µ2
δ′(t̄) , (F.40)

with δm defined in analogy to the massive gluon case. Thus the corresponding contribution atO(α2
sCFTF )

needed to change from the nl to the (nl + 1)-flavor scheme reads 10

µ2J (nl→nl+1,2)
m (t,m, µ) =−

(
Π(m2, 0)− αsTF

3π

1

ε

)
µ2J (bare,1)

m (t,m, µ)− 2m(δm(nl+1,2) − δm(nl,2))

µ2
δ′(t̄)

=
α2
sCFTF
(4π)2

{
δ(t̄)

[
16

3ε2
Lm +

1

ε

(
−8

3
L2
m + 4Lm −

4π2

9

)
+

32

9
L3
m −

2

3
L2
m

+
32

3
Lm −

π2

3
+

16

9
ζ3

]
+

[
θ(t̄)

t̄

]

+

[
−16

3ε
Lm −

8

3
L2
m −

16

3
Lm +

4π2

9

]

+
32

3
Lm

[
θ(t̄) ln t̄

t̄

]

+

}
− δ′(t̄) 2m

µ2

[
δm(nl+1,2) − δm(nl,2) +

αsTF
3π

Lm δ
(1)
m

]
.

(F.41)

9Besides αs we also employ the mass in the nl scheme, i.e. m = m(nl)(µ) with δm(nl,2)
TF

= δm
(OS,2)
TF

for the secondary
massive flavor corrections.

10Our conclusions do not rely on the specific expressions of δm(nl+1,2) and δm(nl,2), so that any appropriate (renormalon-
free) mass scheme can be picked. Here it is only important that the massive quark loops are renormalized in the nl-scheme
using low momentum subtraction and in the (nl + 1)-scheme by same renormalization condition as massless quark loops.
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The virtual corrections to the jet function at O(α2
sCFTF ) which are renormalized in the MS scheme by

the counterterm contribution in Eq. (4.19) read for the complete thrust jet function

µ2J
(nl+1,2)
τ,m,virt (t,m, µ) = 2

(
µ2J

(nl,bare,2)
m,virt (t,m, µ) + µ2J (nl→nl+1,2)

m (t,m, µ)− µ2Z
(nl+1,2)
J,TF

(t, µ)
)

=

(
α

(nl+1)
s

)2
CFTF

(4π)2

{
δ(t̄)

[
64

9
L3
m +

140

9
L2
m +

1508

27
Lm +

7075

81
− 92π2

27
− 64

9
ζ3

]

+

[
θ(t̄)

t̄

]

+

[
−16L2

m −
256

9
Lm −

448

27

]
+

64

3
Lm

[
θ(t̄) ln t̄

t̄

]

+

}

− δ′(t̄) 4m(nl+1)

µ2

[
δm(nl+1,2) − δm(nl,2) +

α
(nl+1)
s TF

3π
Lm δ

(1)
m

]
. (F.42)

We are now ready to compute the matching correction between the SCET and bHQET jet function.
In analogy to Eq. (F.2) it can be computed in two steps, by first switching the scheme of the SCET jet
function from MS to OS (with respect to the secondary massive contributions) giving rise to the threshold
correctionMJτ ,m(t,m, µ) and then matching it afterwards to the corresponding bHQET jet function,

Cm,J(t,m, µ) =MJτ ,m(t,m, µ) C̃
(nl)
m,J (m,µ) . (F.43)

The threshold correction MJτ ,m can be easily obtained similar to Eq. (4.195) from the results in
Eqs. (F.38) and (F.42) taking into account that the strong coupling constant and mass are displayed
in different schemes. 11 The decoupling relation between the masses is given by

m(nl)(µm) = m(nl+1)(µm) + δm(nl+1,2) − δm(nl,2) +
α

(nl+1)
s TF

3π
Lm δ

(nl+1,1)
m +O(α3

s) . (F.44)

This yields

MJτ ,m(t,m, µm) = δ
(
t
)

+ J
(nl+1,2)
τ,m,virt (t,m, µ)− αsTF

3π
Lm J

(nl+1,1)
τ,m (t,m, µ)

+ δ′
(
t
)

4m

[
δm(nl+1,2) − δm(nl,2) +

α
(nl+1)
s TF

3π
Lm δ

(nl+1,1)
m

]
. (F.45)

At O(α2
sCFTF ) in the fixed-order expansion one obtains

µ2
mM(2)

Jτ ,m
(t,m, µm) =

α2
sCFTF
(4π)2

{
δ(t̄)

[
16

9
L3
m +

116

9
L2
m +

(
932

27
+

8π2

9

)
Lm +

7075

81
− 92π2

27
− 64

9
ζ3

]

+

[
θ(t̄)

t̄

]

+

[
−16

3
L2
m −

160

9
Lm −

448

27

]}
. (F.46)

In the nl-scheme we have

C
(nl,2)
m,J,TF

(t,m, µm) =M(2)
Jτ ,m

(t,m, µm) . (F.47)

To write the expression for Cm,J at O(α2
sCFTF ) in the (nl + 1)-scheme we need the one-loop term of the

matching factor C̃m,J(m,µ) in Eq. (F.43). In fact C̃(nl)
m,J is identical to |C̃(nl)

m |2 with C̃(nl)
m contributing

to the current matching coefficient (see Eq. (F.2)) which follows from the fact that the soft function in
bHQET agrees with the soft function in SCET in the nl scheme and from the consistency relation in
Eq. (F.30). At one-loop, where no secondary mass mode corrections enter, this has been shown by an

11Note thatMJτ ,m is here defined by the inverse ratio with respect toMJ in Eq. (4.195).
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explicit computation in Ref. [9]. Thus, using Eq. (F.22) Cm,J(t,m, µ) is given at O(α2
sCFTF ) in the

(nl + 1)-scheme for the strong coupling by

µ2
mC

(nl+1,2)
m,J,TF

(t,m, µm) =µ2
mM(2)

Jτ ,m
(t,m, µm) +

2α
(nl+1)
s TF

3π
Lm C̃

(nl+1,1)
m (m,µm) δ(t̄)

=

(
α

(nl+1)
s

)2
CFTF

(4π)2

{
δ(t̄)

[
40

9
L3
m +

92

9
L2
m +

(
1220

27
+

4π2

3

)
Lm +

7075

81

− 92π2

27
− 64

9
ζ3

]
+

[
θ(t̄)

t̄

]

+

[
−16

3
L2
m −

160

9
Lm −

448

27

]}
. (F.48)

Inserting the results for the matching coefficients between SCET and bHQET in Eqs. (F.23), (F.48)
and (5.103) into Eq. (F.30) we can confirm explicitly that the consistency relation is satisfied atO(α2

sCFTF ).
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