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1 INTRODUCTION 

1.1 Why Environmental Pollutants Should Be Investigated 

Environmental pollutants can have a big impact on human health, because humans are exposed to 

them in their everyday life without having a big choice to avoid exposure. They are virtually 

everywhere: in the air, on plants and in animals that are consumed (1), (2). Several diseases, including 

reproductive and developmental issues, neurodegeneration and cancer, are results of continuous 

exposure to toxicants in our environment (1), (3)- (5). Even some idiopathic illnesses might have their origin 

in chronic exposure to low-dose environmental contaminants (6), (7). But still, not enough awareness has 

been addressed to this problem, as only few studies have been performed on chronic and low-dose 

exposure. Lacking prove of these effects results in continued ignorance of possible health risks and on-

going leakage of environmental pollutants into the environment. But this happened not only in past 

years, even nowadays, disposal of contaminated waste or use of not yet banned pesticides increases 

environmental toxicant burden. Although measurements were taken since the 1970s to reduce 

methylmercury (MeHg) emissions, they are still reaching critical levels, especially in Asia (8). Legally 

compulsory regulations for persistent organic pollutants (POPs) on a word-wide level were not 

achieved earlier than in 2004, when the Stockholm Convention, a treaty formulated by the United 

Nations Environment Program (UNEP) to reduce and limit the use and disposal of persistent organic 

pollutants (POPs), entered into force (9). Both, MeHg and POPs, share some common properties, 

including long half-life, lipophilicity, volatility and toxicity (1), (10), but only POPs are regulated on a world-

wide basis. Global cycling of MeHg, illustrated below (figure 1), shows quite plainly why world-wide 

legally binding regulations, like the Stockholm Convention for POPs, would be useful for MeHg too. 

  

Mercury vapour from either anthropogenic or natural origins, described below, will be retained in the 

atmosphere for approximately 1 year which in turn leads to a global distribution of mercury. This 

atmospheric mercury will be transformed to mercuric mercury (Hg2+) by oxidation. Next, Hg2+ gets 

deposited back on the earth crust by rain and enters aquatic systems in which mercury from factories 

is leaked too. By evaporation of the volatile mercury vapour back into the atmosphere, the cycle is 

completed, as can be seen in figure 1(1).  

In aquatic sediments Hg2+ gets methylated mostly by sulphate-reducing bacteria which is thought to 

have a protective effect on the bacteria, as for them inorganic mercury is more toxic (11). By 

consumption of these methylating bacteria by aquatic organisms, MeHg enters the food chain and 

accumulates in organisms. Finally, those fish will be consumed by humans and thus enter the human 

body (1). 
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FIG. 1. Schematic drawing of the environment polluting vicious circle of MeHg. Mercury enters into the 

environment by various natural or anthropogenic sources, gets methylated by aquatic microorganisms which are 
consumed and accumulated in marine predators. By consuming sea food with high accumulated MeHg burden, 
MeHg enters the human body. Figure from Clarkson and Magos (2006) (1). 
 
 

This demonstrates that mercury gets distributed throughout the whole world by displacement in the 

atmosphere or in oceans and is not limited to the surroundings of the MeHg emitting source. The 

world-wide cycling and harmful health effects are already known for POPs which lead to adopting the 

Stockholm Convention. But still many people are unaware of the health effects of low-dose (< 1 µM) 

MeHg exposure, and the fact that MeHg in combination with POPs might even increase the toxicity of 

MeHg. That’s why it is necessary to investigate and highlight all harmful aspects and possible 

interactions with POPs to show up the urgency for a worldwide regulatory treaty of MeHg too. 

 

1.2 Methylmercury (MeHg) 

1.2.1 Sources of Mercury and MeHg 

Due to various transformation processes MeHg can be generated from every form of mercury. Thus, 

all mercury sources contribute to the global MeHg burden (1). According to the United Nations 

Environment Programme’s Global Mercury Assessment 2013 (2) 10% of the current mercury emission 

and re-emission into the atmosphere are due to natural sources, whereas 30% have anthropogenic 

origin. The final 60% are due to re-emission of previously deposited mercury. Natural sources that emit 

mercury into air and water include weathering of rocks that contain mercury (e.g. cinnabar), erupting 

volcanoes or geothermal activities. The anthropogenic source comprises a broad variety of sources 

such as mining, small-scale gold-mining, burning of coal and fossil fuels, metal recycling, chlor-alkali 
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industry to manufacture chlorine and caustic soda, production of vinyl-chloride monomers, cement 

production, oil refining and dental amalgam (2). 

Also several products, listed in table 1, people were or are exposed to in their daily life, contain organic 

or inorganic mercury. Thus, they also contribute to a higher MeHg burden, not only in the environment, 

but through direct exposure in human bodies too.   

 

TABLE 1: Physical and chemical appearances of mercury; routes of exposure to humans in past and present-

day. Present-day exposure is marked as *. Table from Clarkson and Magos (2006) (1)
. 

  

Inorganic mercury 

Hg vapour Mercurous Mercuric 

Hg° Hg-Hg2,+ 

 

Hg2,+ 

Occupational* Laxatives Skin creams* 

Dental amalgam* Teething powder  

 

Organic mercury 

Short chain alkyl Other organics 

CH3(CH2)n-Hg+ 

 

(R-C-Hg+) 

MeHg in fish* Phenyl Hg as antiseptics 

Ethyl mercury in preservatives*  

 

Focussing on MeHg, especially consumption of fish living in saltwater that reach a high age and thus 

accumulate high MeHg concentrations contribute to increased MeHg levels in human bodies. So do 

mushrooms if they are grown in a ground with high MeHg burden. Interestingly, plants do not tend to 

accumulate MeHg even if their soils are contaminated with MeHg (12).  

 

1.2.2 Adverse Health Effects of MeHg 

The most common route of MeHg absorption is by ingestion. In that case the intestinal absorption rate 

is nearly 100% (13), (14). Once entered the bloodstream, MeHg will be taken to every part of the body, 

including the brain. MeHg and can even cross the placenta and thus enter into the body of the foetus 

(1) who suffers from undefined and widespread brain damage due to prenatal MeHg exposure (15). 

The ability of MeHg to cross the blood-brain-barrier is especially harmful, as the brain is the most 

susceptible organ and thus, is the mainly affected area by MeHg. Several cortical brain structures are 

harmed by MeHg toxicity, such as the visual centre of the occipital lobe or the primary auditory area 
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of the temporal lobe. Furthermore, there are MeHg-induced cortical lesions, resulting in olfactory and 

gustatory disturbances (16). 

Additionally, brain cells are not equally susceptible to MeHg: MeHg is especially harmful for neurons. 

Astrocytes were found to be less susceptive than neurons, whereas all other non-neuronal cells were 

shown to be the most resistant (17).  

 

1.2.3 MeHg Poisonings 

Two big MeHg poisonings occurred in Japan and Iraq in the past century. The symptoms of affected 

people strongly point out what has been described in the paragraph above: The central nervous system 

is the most susceptible organ to MeHg. 

Ekino et al. (2007) (16) reported in their paper about the first big epidemic MeHg poisoning that 

occurred in Japan at the beginning of the 1950s. An acetaldehyde plant was leaking MeHg chloride into 

the Minamata bay. People in this area have a very high fish consumption and thus were exposed to 

high MeHg concentrations over a decade of years, causing severe acute mercury poisonings, referred 

to as Minamata disease. Minamate disease shows symptoms such as paresthesia around the lips, 

seeing and hearing impairment, olfactory and gustatory disturbances, ataxic gait, dysarthria as well as 

somatosensory and psychiatric disorders and even death. Prenatally exposed children suffered from 

damage of the cerebral cortex as well, which resulted in disturbances in mental and motor 

development. After changing the drainage from the bay to a river which was flowing into the sea, 

MeHg was more diluted and widely distributed. Thus, people were exposed to a lower dose of MeHg 

but over a period of 20 years, resulting in the chronic Minamata disease which is characterised by 

starting with paraesthesia of the limbs and around the lips, steadily leading to more severe symptoms 

as described in the acute disease (16).  

The second epidemic poisoning occurred in Iraq in the winter of 1971-1972 when people prepared 

bread from wheat grains treated with a MeHg fungicide. They exhibited the same symptoms as people 

affected by Minamata disease (18).  

 

1.3 Persistent Organic Pollutants (POPs) and Organochlorines 

Besides MeHg, another group of environmental pollutants was investigated: POPs. POPs refer to 

organic compounds which remain in the surroundings and persist in living beings, with extensive half-

lives in ecological systems and biota. Those mostly lipophilic compounds, which concentrate in adipose 

tissue, gradually accumulate in the bodies of predator animals along the food chain and exhibit toxic 

effects in living organisms (10). 

POPs are volatile compounds at ambient temperature and thus can travel long distances before 

deposition on the earth crust, which means that they can reach even remote areas all around the world 
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(10). POPs belong to one of the most hazardous and harmful compounds discharged in the surroundings. 

Aware of this fact, there has been made much effort to eliminate, restrict and prevent unintentional 

production or use of the most detrimental environmental pollutants. They are referred to as the Dirty 

Dozen and listed in table 2 (19). Since 2001 they are regulated on a legally-binding basis by adopting the 

Stockholm Convention. Ten years later another 10 compounds, including β-hexachlorocyclohexane, 

were added to the initial ones (20). 

 

TABLE 2: List of the first 12 regulated compounds, known as Dirty Dozen. Table from chm.pops.int (19).  

Pesticides Industrial chemicals By-products 

Aldrin* Hexachlorobenzene (HCB)*# Hexachlorobenzene (HCB)*# 

Chlordane* Polychlorinated biphenyls 

(PCB)*# 

Polychlorinated biphenyls 

(PCB)*# 

DDT+  Polychlorinated dibenzo-p-

dioxins (PCDD)# 

Dieldrin*  Polychlorinated dibenzofurans 

(PCDF)# 

Endrin*   

Heptachlor   

Hexachlorobenzen  

(HCB)* 

  

Mirex*   

Toxaphene*   

* Elimination, * Restriction, # Reduce and ultimately eliminate unintentional production 

 

Organochlorines are a subgroup of POPs that comprise aliphatic and aromatic compounds with at least 

one chlorine substitute. This chlorine substitute contributes to the organochlorines’ lipophilic 

character, increasing their uptake and storage in fatty tissue (21). Furthermore, it facilitates the crossing 

of the blood-brain-barrier and placenta (22).  

The carbon-chlorine bond exhibits big stability towards degradation due to the resistance against 

hydrolysis. Increasing stability comes along with increasing chlorination. The structures of the organic 

compounds play also an important role in the organochlorines’ susceptibility towards biodegradation: 

aromatic rings exhibit greater stability than aliphatic structures do. Biotransformation of 

organochlorine pollutants (OCPs) is essential to reduce amounts of POPs in the environment and the 

body, as biotransformed, and hence hydrophilic forms, are secreted more easily and quickly from the 

body (23).  
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The aforementioned structure is illustrated in figure 2, where all used organochlorine compounds are 

shown with the structural formula. They will be briefly described in the sections below.   

 

Chemical Structures of the Used Organochlorine Compounds 

 

                                                              

                     4,4’-DDE                                                                                                      Dieldrin           

                       

                                                                                          

                          HCB                                                                                                             β-HCH               

        

                                                                      

                         δ-HCH                                                                                                          PCB-138  

 

 

PCB-153 

FIG. 2. The above described POPs depicted with their chemical structure. 

 

1.3.1 4,4´-DDE   

4,4´-DDE is a metabolite of the insecticide 4,4´-DDT. The metabolite 4,4’-DDE possesses no insecticide 

properties and is excreted more slowly than DDT (4).  

DDT, is maybe the most prominent organochlorine and has a long history of applications. It was used 

from the 1940s on in agriculture (e.g. the Colorado potato beetle plague in Europe in 1941), as anti-

lice product (typhus epidemy in Naples 1943) and for combatting malaria. After health concerns on 
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DDT, it finally got banned in most developing countries in the 1970s (24). Nowadays, DDT is listed in the 

Stockholm Convention which states that the use of DDT is now restricted to indoor residual spraying 

only and with the sole purpose of combating malaria, if there are locally no other appropriate 

pesticides available (25). 

DDT belongs to the group of endocrine disruptors that due to their oestrogenic and anti-androgenic 

effects by mimicking oestrogen can lead, amongst others, to cancer (26). According to the International 

Agency for Research on Cancer (IARC), DDT exhibits possible carcinogenicity in humans (27). Further 

adverse health effects include reproductive toxicity, reduced fertility, miscarriages and neonatal 

deaths as well as congenital defects (26). DDT also accounts for neurodevelopmental delays at prenatal 

exposure (28). 

 

1.3.2 Dieldrin 

Dieldrin describes an insecticide with the main compound called HEOD (1,2,3,4,10,10-hexachloro-6, 7-

epoxy-l,4,4a,5,6, 7 ,8,8a-octahydro-endn-1 , 4-exo- 5, 8-dimethanonapthalene) and additional 

insecticidal compounds. It has bioaccumulative properties as it exhibits hydrophobic properties and a 

long half-live in the environment. Dieldrin is a metabolite of the pesticide aldrin which is 

biotransformed in plants or animals (29).  

Dieldrin was used as insecticide against soil insects, such as termites, but was also used against moths 

in the textile industry (30).  Nowadays, it is banned, as regulated in the Stockholm Convention (25). 

Dieldrin forms also part of the group of endocrine disruptors due to their interaction with the 

oestrogen receptor, which in turn leads to its big impact in breast cancer development (31). 

Furthermore, there is evidence for an anti-androgenic effect of dieldrin, harming the male 

reproductivity system due to developmental anomalies which include the central nervous system too 

(32). Acute neurotoxic effects include nausea, headache and convulsions (29). 

 

1.3.3 Hexachlorbenzene (HCB) 

Hexachlorbenzene’s structure resembles benzene, which is an aromatic hydrocarbon. Its hydrogen 

atoms are substituted by chloride atoms resulting in the chemical formula C6Cl6. Due to its lipophilic 

properties it is highly bioaccumulative (33).  

In history, HCB served many purposes not only in agriculture but also in industry. In agriculture it was 

used as fungicidal seed dressing for barley, oats, rye and wheat until the 1970s when awareness was 

addressed to possible harmful effects of HCB on the ambient and public health. Although in some 

countries its use continues, for above-mentioned purposes and additionally as anti-scabies pesticide 

in Tunisian sheep (34). HCB occurred also in industry, in manufacturing pyrotechnics, pesticides and was 

used for preserving wood (35). It is also present as by-product in producing chlorinated solvents (36) as 



  

10 
 

well as in chlor-alkali factories (33). Furthermore, municipal incinerations are contributing to the 

elevated HCB levels in the ambient (35).  

Adverse health effects include, porphyria cutanea tarda (33) (a disease affecting the synthesis of heme) 

and possible carcinogenicity in humans (37). In high-doses and short-term exposure HCB accounts for 

symptoms such as bloated thyroid glands, scarring and infantile arthritis in offspring of exposed 

mothers. In experimental studies animals showed symptoms of neurotoxicity including tremors, 

paralysis, weakness and convulsions (33). Furthermore, exposure to HCB can have harmful effects on 

the neurodevelopment of the unborn (38). 

         

1.3.4 Hexachlorocyclohexane (HCH) 

Hexachlorocyclohexane (HCH), previously called benzene hexachloride (BHC), occurs in eight isomeric 

forms. The most important ones, regarding environmental pollution, are alpha (α)-, beta (β)-, gamma 

(γ)-, delta (δ)-and epsilon (ε)-hexachlorocyclohexanes, as they are the most abundant ones in the 

environment. The now-banned technical-grade HCH, was used as pesticide and comprises all 

aforementioned isomers, although nearly all the insecticidal effects are due to the γ-isomer (3).  

Due to non-regulated dumping of HCH waste for several years all over the world, there is still a big 

amount of those isomers leaking into the ambient. The more persistent forms of the above mentioned 

isomers include β- and δ-HCH (39). 

Several adverse health effects are reported for HCH: All forms of HCH exhibit kidney and liver toxicity 

and possible endocrine disruptive effects and there is evidence showing that β-HCH has human 

carcinogenic effects, thus evoking liver cancer in animal studies. Furthermore, it can produce 

immunosuppression. β-HCH also accounts for neurological deficits such as behavioural changes, 

reduced nerve conduction velocity, seizures and even coma  (3). Prenatal exposure can lead to 

teratogenic, genotoxic and mutagenic effects (39). 

 

1.3.5 Polychlorinated Biphenyls (PCBs) 

There are 209 congeners of polychlorinated biphenyls (PCBs) and usually are sold as mixtures of these 

congeners (e.g. “Aroclor”). They differ from each other in their degree of chlorination on their biphenyl 

(= two linked benzenes) structure. With increasing degree of chlorination PCBs become more 

persistent in sediments and soil. Their lipophilic properties make them bioaccumulate in organisms, 

resulting in food consumption, especially fish, as major contribution to the body burden in humans.  (5) 

The congeners to be most quantitatively and commonly detected in humans are the numbers 138, 

153, and 180 (40). 
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Due to their low inflammable and well insulating properties they were used as coolants and lubricants 

in electrical devices. Furthermore, they were heavily used in a wide range of applications, such as flame 

retardants, paints, inks, metal coatings, and wire insulators (5).  

Toxic effects of PCBs show a broad range of symptoms affecting skin, thyroid, liver as well as the 

immune system. Furthermore, they cause neurodevelopmental abnormalities, which are probably due 

to the endocrine disrupting properties of PCBs that also affect reproductivity and can induce cancer, 

primarily breast and liver cancers. As the brain and the former mentioned systems are not yet fully 

developed in children and foetuses, the harmful effects of PCBs will have more profound consequences 

if human beings are exposed pre- or neonatally to them, thus rendering children and unborn more 

vulnerable to PCBs  (5). 

 

1.4 Molecular Mechanisms of MeHg and POPs Neurotoxicity 

1.4.1 The Mitochondrial System 

Mitochondria play an essential role in cell physiology as this is the place where oxidative metabolism 

occurs that generates adenosine triphosphate (ATP), which is crucial for providing energy to the cell. 

MeHg can have harmful effects on mitochondria by inhibiting the electron transport chain and thus 

increasing ROS (41), as illustrated in figure 3 and 4. Inhibiting or depressing effects of the respiratory 

chain were also demonstrated for dieldrin (42) and PCBs (43). Literature for HCB, HCH isomers and DDE 

is limited on this topic.  

 

1.4.2 Calcium (Ca2+) Dyshomeostasis and Glutamate-Induced Excitotoxicity  

Ca2+ is an important cell-signalling molecule with the ability to induce cell death pathways (41). It can 

also cause mitochondrial membrane potential (ΔΨm) loss by stimulating the opening of the 

mitochondrial transition pore (MTP), a pore by which molecules up to 1 500 Da can cross the 

impermeable inner mitochondrial membrane (44). Both, intracellularly released Ca2+ of mitochondria 

and extracellular influx of Ca2+, contribute to the induction of aforementioned target effects of Ca2+ 

signalling. It is known that MeHg has the ability to increase the intracellular calcium concentration 

[Ca2+]i (41), amongst other mechanisms, also by releasing intramitochondrial Ca2+, thus contributing to 

mitochondrial membrane discharge (45), (46).  

Several organochlorines have been investigated regarding their impact on [Ca2+]i levels: Dieldrin does 

not contribute to [Ca2+]i increase (47), whereas β-HCH and PCBs increase [Ca2+]i
 (48), (49). The rise in [Ca2+]i 

caused by PCBs is due to an increased influx of extracellular Ca2+ (49), whereas the mechanism of 

increased [Ca2+]i  by β-HCH is not known yet. 
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MeHg can increase [Ca2+]i not only by intramitochondrial Ca2+ release, but by MeHg-induced 

excitotoxicity too. MeHg increases extracellular glutamate levels, which lead to increased intracellular 

Ca2+ levels (41). This process is shown in figure 3.  

 

FIG.3. i&ii. MeHg exposure leads to an increase in extracellular glutamate levels which is most likely due to a 

MeHg-induced inhibitory effect on glutamate reuptake of astrocytes. iii. This increased extracellular glutamate 
concentration causes an N-methyl D-aspartate (NMDA)-type glutamate receptor hyperactivation that results in 
a rise in Ca2+ conductance into the intracellular space where iv. Ca2+ induces cell death pathways v. or harms 
mitochondria which raises reactive oxygen species production.(i-iv) (50) vi. Ca2+ release and increased oxidative 
stress is also caused by MeHg acting directly on mitochondria. vii. Free radicals in turn lower the levels of 
glutamate taken up by astrocytes thus again increasing oxidative stress (51). Figure from Farina et al. (2011) (41). 

   

1.4.3 The Glutathione System 

Glutathione (γ-glutamyl-cysteinyl-glycine) is an enzyme which is crucial to protect against oxidative 

stress and is abundant in nearly every cell. Glutathione is also abbreviated as GSH, as the thiol group 

(-SH), the active site of the enzyme, is important in catalysing reactions. GSH is especially susceptible 

to MeHg as it has a high affinity for thiol groups. Due to its reducing capabilities, GSH is responsible for 

protecting the reduced form of important cysteine residues in proteins and enzymes. GSH is also in 

charge of neutralizing peroxides and thus inhibiting free radicals and oxidative stress, by using 

glutathione peroxidase which catalyses the following reaction: 

H2O2 + 2GSH → GS-SG + 2H2O 

In the following step, NADPH reduces the oxidized state of GSH (GS-SG) via the action of glutathione 

reductase to obtain reduced GSH again: 

GS-SG + NADPH + H+ → 2GSH + NADP+ (52) 
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MeHg interferes with the GSH system on several levels: Figure 4 illustrates the interactions of MeHg 

with the GSH system, including binding of MeHg to the thiol groups of GSH due to the high affinity of 

MeHg for thiols. Furthermore, it involves reduced GSH reductase activity and reduced GSH peroxidase 

activity (53). 

There is also evidence for effects of some organochlorines on the GSH system. It was demonstrated 

that PCBs influence GSH reductase and peroxidase, but are not changing GSH levels (54). Nor does 4,4´-

DDE affect GSH levels (55), whereas for β-HCH and HCB no relevant literature was available. 

 

 

FIG. 4. i. MeHg is inhibiting the tricaboxylic acid cycle which leads to electron transport chain inhibition. This 

interference with the respiratory chain is responsible for increased levels of reactive oxygen species including 
hydrogen peroxide (H2O2) and superoxide anions (O2

-·). Furthermore, the inhibition leads to a discharge of the 
proton gradient across the mitochondrial inner membrane and subsequently decreases ATP production. (56) ii. 
Due to its high affinity for thiols, MeHg binds to the thiol group of glutathione (GSH) which hampers the enzyme’s 
reducing abilities. Furthermore, it leads to a depletion of GSH levels because the MeHg-GSH complex is excreted 
as detoxifying mechanism, which in turn increases reactive oxygen levels. (41) iii. GSH peroxidase (GPx) activity is 
reduced by MeHg exposure. iv. Prenatal exposure to MeHg can also lead to reduced GSH reductase (GR) activity. 
(iii and iv)(57) Figure from Farina et al. (2011) (41). 

 

1.4.4 Effects of MeHg and POPs on Microtubules 

Playing an important role in cellular morphology and stability, consequences of microtubules affected 

by MeHg and organochlorines can be fatal. Microtubules are polymers of α- and β-tubulin protein 

dimers with each dimer containing 15 thiol groups (58). Binding of MeHg to the thiols of the dimers leads 

to depolymerisation of the microtubules (59). This depolymerisation causes a microtubule disassembly 

that results in neuronal degeneration. Literature on organochlorines affecting microtubules was found 

for PCBs only: PCBs cause a disruption of the actin cytoskeleton (60) which in turn can affect 

microtubules involved in branching of the axons (61). This will result in a less dense neurite network. 

Interestingly, the disruption of the actin cytoskeleton could be observed before cytotoxicity was 

detectable (60).  
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1.5 The Involvement of MeHg and POPs in Neurodegenerative Diseases 

The range of diseases caused by organochlorine compounds and MeHg intoxication comprises a big 

variety of symptoms. MeHg is known for its acute and chronic, devastating effects on the human brain 

and symptoms associated with this brain damage (1). But its link to neurodegenerative illnesses is not 

very clearly established yet, which applies for OCPs too. But there is evidence that several 

environmental pollutants, organochlorines and MeHg included, are risk factors for neurodegenerative 

diseases, such as amyotrophic lateral sclerosis (6), Alzheimer’s disease (62), (63) and Parkinson’s disease 

(PD) (62), (64), (7) .  With an increasing number of people suffering from neurodegenerative diseases (65), it 

is important to investigate potential risk factors of these illnesses, as their origin still remains unclear. 

The reason for the still lacking explanation of the aetiology of several neurodegenerative diseases 

might be due to the fact that a variety of complex mechanisms, including neurotransmitter systems, 

are involved in the development of these diseases.  

We chose to investigate the influence of environmental pollutants with regard to PD, as cortical 

atrophy is present in PD patients (66) and thus is related to our studies of environmental toxicant 

neurotoxicity in cortical neurons. Although cortical atrophy can be found in Alzheimer’s disease (AD) 

too (62) and AD ranges first as most common neurodegenerative disease, PD is the second most 

common (67) but with an earlier onset. The age of PD onset in patients is around 60 years with early-

onset PD beginning already at the age of teenagers, compared to an average age of onset of 73 years 

in AD, with the youngest patients ranging around 50 years (68). That means that PD is more likely to 

affect working people which will lead to a high economic burden, due to loss of work force and 

intensive costs for care. Therefore, we decided to investigate the effect of MeHg and organochlorines 

in combination with two neurotransmitters involved in PD pathology: acetylcholine (ACh) and 

dopamine (DA) (69). 

 

1.6 Parkinson’s Disease (PD) 

With about 1% of the world´s population over 60 suffering from PD, it is one of the most frequent 

movement disorders worldwide. It is a neurodegenerative illness characterised by loss of dopaminergic 

neurons mainly in the substantia nigra and, according to recent findings, cholinergic neurons mainly in 

the nucleus basalis of Meynert (70), (71). Symptoms of PD include akinesia (incapacity of movement) 

respectively bradykinesia (slower movements), tremor, rigor (muscle stiffness due to coactivation of 

agonist and antagonist muscles) and a postural disorder. Additional symptoms may be present 

including pain, depression, cognitive impairment and in severe cases dementia (72). Currently, no cure 

for PD is available. Only symptoms can be eased by medication, which is described in more detail 

below. But there are studies going on that are investigating transplantation of stem or progenitor cells 

into various parts of the brain, including the striatum (73) and the cortex (74), to improve symptoms 
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caused by neuronal cell loss. Although the aetiology of PD is not known yet, there are some risk factors 

associated with PD: increasing probability with age, genetic predisposition as well as exposure to 

environmental pollutants (70). On molecular level, several mechanisms were suggested being involved 

in neurodegeneration of dopaminergic and cholinergic neurons such as oxidative stress, excitotoxicity, 

mitochondrial dysfunction, inflammation and apoptosis (75).  

 

1.7 The Involvement of Dopamine (DA), Acetylcholine (ACh), MeHg and POPs in PD  

It has been suggested that the underlying mechanisms of PD involve a DA-ACh imbalance, which has 

been proposed, as medication regulating the ACh and DA balance improved symptoms of PD. Before 

L-DOPA (L-3,4-Dihydroxyphenylalanin) was available, PD was treated with anticholinergic drugs to 

improve motor symptoms (76), although the mode of action of anticholinergic drugs is not fully 

understood yet. Nowadays, only young patients are given anticholinergics, if they only suffer from 

tremor and no difficulties with gait. Usually PD is treated with L-DOPA in more severe cases but as 

motor fluctuations can develop in long-term use, young people with mild symptoms are preferentially 

treated with anticholinergic drugs first. But anticholinergics exhibit side effects too, especially in older 

patients where they can lead to cognitive impairment (77). L-DOPA is used as the most powerful anti-

PD medication. As DA cannot cross the blood-brain-barrier (BBB) via the large neutral amino acid 

transporter, the BBB-crossable L-DOPA is given that readily enters the brain. Inside the brain it is 

decarboxylized to DA by DOPA-decarboxylase. Thus, L-DOPA substitutes for the DA of the lost 

dopaminergic neurons. Also DA agonists can be used in PD treatment because they exhibit less side 

effects although their effect is not as strong as the one from Levodopa (72). Concluding, medication that 

regulates ACh and DA levels provides evidence that cholinergic and dopaminergic systems are mainly 

affected. Further evidence for an ACh-DA imbalance is provided by a recent study by Ziegler et al. 

(2013) (78). They demonstrated that the loss of dopaminergic neurons in substantia nigra occurs before 

cholinergic cells die in the basal forebrain. That means that there is a time span, where cholinergic 

neurons are still active whereas dopaminergic activity is already reduced.  Thus leading to a DA-ACh 

imbalance and explaining, why anticholinergic drugs improve tremor in early PD stages but worsen 

cognitive symptoms in old PD patients with advanced cholinergic cell loss.  

 

But not only a disturbed DA-ACh balance is associated with PD. As mentioned above, there is also a 

possible link between organochlorine insecticides, MeHg and PD (62), (64), (7). A study by Richardson et al. 

(2011) (79) found an association between increased serum β-HCH levels and increased PD risk. 

Researchers in Greenland found higher DDE levels in PD patients than in the control (80).  This literature 

findings are in agreement with another study which demonstrates that higher incidence of PD is 

associated with occupational exposure to organochlorines (81). Additionally, mercury body burden is 
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also linked to PD (64), (7). Furthermore, MeHg and organochlorines are known to induce harmful effects, 

including cell death, oxidative stress or mitochondrial depolarization (see section 1.4) which may 

contribute to neuronal loss in PD too. 

The various interaction of MeHg with ACh (see section 1.8) and DA (see section 1.9) might as well 

influence the development or severity of symptoms in PD.  

 

1.8 ACh and its Importance in the Central Nervous System 

Cholinerigc neurons synthesize ACh, an ester of acetic acid and choline, which plays an important role 

in sensory input regulation (82), attention (83) as well as cortical neuromodulatory effects (84). Incorrect 

neuromodulation by ACh can cause mental disorders ranging from schizophrenia to depression (85) and 

is present in neurodegenerative diseases, including AD (86) and PD (69).  

 

 ACh-containing neurons occur in three cholinergic modulation systems: There are cholinergic neuron 

groups in the media septal nuclei and the nucleus basalis in the basal forebrain projecting to cortex 

and hippocampus. The third one is the pontomesencephalotegmental complex from where neurons 

are projecting to thalamus and forebrain. Furthermore, there are some cholinergic interneurons in the 

cortex (72). 

 

In the cholinergic system two receptor types binding ACh are involved: the nicotinic and the muscarinic 

receptor type. The nicotinic receptor is an ionotropic receptor which forms an ion channel across the 

membrane and gets stimulated by ACh and nicotine. The muscarinic receptors forms part of the 

metabotropic receptor group. This receptor group is also referred to as G protein-coupled group, as 

metabotropic receptors use the G protein as second messenger. The subunits (α, β, γ) of the trimeric 

G protein are involved in cell signalling pathways. The name of the muscarinic receptor as well derives 

from the substance it gets stimulated from, apart from ACh: muscarine (87).  

Both of them are involved in regulation of a range of cell physiological activities including proliferation, 

differentiation and apoptosis (88). Muscarinic (89) as well as nicotinic (90) receptors, are present in the 

cortex in great number. 

 

One of the environmental pollutants interfering with the cholinergic system is MeHg. There are three 

main forms of interaction between MeHg and the cholinergic system: Firstly, there is evidence that 

micromolar MeHg concentrations block ACh receptors (91). Secondly, it has been shown that MeHg 

causes an activity reduction in acetylcholinesterase (92) and thirdly, has been demonstrated that 

MeHg increases release of ACh (93). 
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1.9 DA and its Importance in the Central Nervous System 

The name of the neurotransmitter DA derives from 3,4-dihydroxyphenethylamine and forms part of 

the catecholamine group (catecholamines are molecules that have a catechol, which is a benzene ring 

with two hydroxyl groups). It is synthesized by an enzyme called tyrosine-hydroxylase, which is present 

in every catecholaminergic neuron. This enzyme catalyses the transformation of the amino acid 

tyrosine to L-DOPA. Consequently, the enzyme dopa-decarboxylase is the catalyst for the L-DOPA to 

DA reaction (87). 

 

There are mainly two areas in the brain with dopaminergic neurons projecting to various areas of the 

brain. One originates in the substantia nigra in the mesencephalon projecting to the striatum, which 

comprises nucleus caudatus and putamen. The other dopaminergic system is located in the 

mesencephalon too, adjacent to the substantia nigra, and is called ventral tegmental area (VTA). The 

axons of the VTA are projecting to the frontal cortex and parts of the limbic system (87).  

DA from the nigrostriatal area plays an important role in movement control (94) whereas dopaminergic 

neurons from the ventral tegmental area are essential for reward (95). A lack or excess of DA is related 

to several illnesses such as restless legs syndrome (96), attention deficit hyperactivity disorder (97), 

schizophrenia (98) as well as PD (69). 

 

In the dopaminergic system, there are five subtypes of DA receptors. All of them belong to the G 

protein-coupled receptors. Those subtypes either belong to the D1-like group, including the subtypes 

D1 and D5, or to the D2-like family, comprising D2, D3 and D4. Those two groups differ from each other 

on behalf of their mode of action after activation by DA. The D1-like receptors are coupled with the 

adenylate cyclase stimulating Gs protein, whereas the D2-like family is attached to the adenylate 

cyclase inhibiting Gi protein, which is illustrated in figure 5. Activation of either Gi or Gs and the 

consequent effect on cAMP production leads to inhibition or stimulation of various cell signalling 

pathways that influence cell survival (99). 

 

https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pcsubstance&term=%223%2c4%2ddihydroxyphenethylamine%22%5bCompleteSynonym%5d%20681%5bstandardizedcid%5d
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FIG. 5. Depiction of D1 and D2 receptors and their location in synapse and the nerve terminal. D1 receptors are 

coupled to stimulating Gs proteins that increase the production of the second messenger cAMP. D2 receptors are 
coupled to the inhibitory Gi protein which reduces cAMP production and can lead to hyperpolarization of the 
neuron. On the nerve terminal, D2 receptors can be found as well. Those receptors are autoreceptors and are 
associated with Gi too and regulate the dopamine release. Activation of autoreceptors occurs only at high DA 
concentrations, whereas post-synaptic DA receptors are much more sensitive (99). Figure from Cooper et al. 
(1991) (99). 

 
DA receptor location in the brain and number is varying: In rat cortex, D1 is the most numerous DA 

receptor and together with the less expressed D5 receptors, occurs in virtually all parts of the brain in 

varying concentrations. D2 receptors are the second most frequent DA receptors and occur in the 

forebrain too. D3 and D4 receptor presence in the cortex is limited. (100). 

 

In our project we focused on the effect of the D2 receptor. Therefore, the D2-like receptor family will 

be described briefly in the following: The inhibitory effects of the Gi protein of the D2-like receptor 

family resemble much each other. But D2-like receptor signalling is not limited to the Gαi-subunit-

induced reduction in cAMP levels. Their Gβγ-subunits is also involved in inhibiting various Ca2+ channels 

and in activating inwardly rectifying potassium channels which leads to hyperpolarization of the cell. 

Furthermore, a protein complex can assemble at the D2 receptor and induce further signalling with a 

big variety of targets (101). 

 

These signalling functions and the whole dopaminergic system can be affected by exposure to 

environmental pollutants, including MeHg and organochlorines. MeHg affects the dopaminergic 

system in several ways: There is evidence that 1µM Hg2+ prevents binding of a D1 receptor antagonist 

(102). Furthermore, it has been demonstrated that MeHg affects in in vivo studies the binding activity of 

D2 receptors (103). Additionally, a study by Zimmer et al. (2011) (104) showed that the exposure of 

developing neurons to MeHg affects neurotrophic factor levels that are important for the development 

of catecholaminergic cells. This leads to a reduced number of catecholaminergic neurons, including 

dopaminergic neurons. 
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Among the used organochlorine compounds PCBs and 4,4’-DDE might exert negative influence on 

the dopaminergic system: PCBs seem to affect the uptake of DA (105) and DA synthesis (106). 4,4’-DDE 

as well inhibits uptake of DA via the DA transporter (107).  

 

1.10 Objectives and Hypothesis 

This project was about studying potential neurotoxic effects of MeHg in combination with 

organochlorine pollutants on developing cortical neurons derived from a primary culture. We 

hypothesized that we would find increased cytotoxicity when cortical neurons were exposed to a 

MeHg-organochlorine combination, compared to cells exposed to MeHg alone. Furthermore, we 

wanted to investigate underlying mechanisms of a potential cytotoxic effect. Thus, we researched 

mechanisms known to be involved in cell viability decreasing effects of MeHg and organochlorines in 

order to find interactive effects of this MeHg-organochlorine combination. These mechanisms included 

ROS production, GSH levels and mitochondrial membrane potential. Additionally, we extended our 

research on how the absence or presence of neurotransmitters involved in PD (ACh and DA) would 

affect neurons exposed to a MeHg-organochlorine combination. This branch of our investigation was 

based upon a literature finding that demonstrated that developmental exposure to MeHg decreased 

the number of dopaminergic neurons (104). Loss of dopaminergic neurons is characteristic for PD, thus, 

an already reduced number in dopaminergic neurons might increase the probability of developing PD. 

Furthermore, a reduced number of cortical neurons is associated with PD (66) too. So we decided to 

investigate the influence of dopamine on immature cortical neurons if co-exposed to MeHg 

and organochlorines. We were interested in whether we could detect an interactive effect in cells 

exposed to the MeHg and organochlorines, if co-exposed to sub-toxic concentrations of DA. As PD is 

based upon a DA-ACh imbalance (78), we investigated a possible interactive effect of a sub-toxic ACh 

concentration with MeHg as well. We hoped that our results would help to elucidate cytotoxic 

mechanisms of environmental toxicants and would support previous findings related to the impact of 

MeHg and organochlorines on PD development. 
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2 MATERIALS AND METHODS 

2.1 Materials 

TABLE 3: Supplier of used material and further information  
Animals Supplier Reference Number 

Pregnant NMRI strain mouse 

at 16th day of pregnancy 

Charles River Laboratories, Iffa 

Credo (Saint Germain-sur-

l’Arbreste, France) 

 

Compound   

 Sigma Aldrich, St. Louis (MO  

Antimycin A  A8674 
BSO (DL-buthionine-[S,R]-
sulfoximine) 

 B2640 

DMSO (Dimethyl sulfoxide) 
99.5% GC 

 D5879 

DNAse  D5025 
H2DCF-DA (2´,7´-
Dichlorofluorescin diacetate) 

 D6883 

L-Glutamic Acid (L-Glutamate) 
Monochlorobimane 

 
(Fluka Analytical) 

G-8415 
69899 

Paraformaldehyde  P6148 
Poly-D-lysine hydrobromide 
Rhodamine 123 

 
 
R8004 

Sodium dodecyl sulfate (SDS)  L4509 
Resazurin sodium salt  R7017 
Thiazolyl Blue Tetrazolium 
Bromide (MTT) 

 M2128 

Triton 100x        X100 
Uridine    
Dulbecco’s MEM (10x) 
w/ 4.5 g/L D-Glucose 

Biochrom AG F0455 

Halothane 
Propidium iodide 

Zeneca – Fluothane 
EMD Chemicals 

615179 
537059 

Toxicants   
 Sigma Aldrich  
Dieldrin (Pestanal) 33491 
Hexachlorobenzene 
Methylmercury(II) chloride 

 
 

171050 
442534 

PCB No. 153 (Fluka Analytical) 35602 
 Dr. Ehrenstorfer  
4,4’-DDE  C12041000 
PCB No. 138  C200138001 
Neurotransmitter           and  Antagonist  
 Sigma Aldrich  
Acetylcholine chloride  A6625 
Dopamine hydrochloride  H8502 
S(-)-Raclopride (+)-tartrate salt  R121 
Antibodies   
   
 Sigma Aldrich, Israel  



  

21 
 

Mouse monoclonal anti- Glial 
Fibrillary Acidic Protein (GFAP) 
Antibody 

 G3893 

Rabbit polyclonal anti-Tau 
Antibody 

 080M4753 

 
Invitrogen, Molecular Probes, 
Life Technologies, Oregon, USA 

 

Alexa Fluor 488 Goat Anti-rabbit 
IgG Secondary Antibody 

 A11008 

Alexa Fluor 594 Donkey Anti-
goat IgG Secondary Antibody 

 A11058 

Alexa Fluor 594 Goat Anti-
mouse IgG Secondary Antibody 

 A11032 

Materials   

 
Thermo Scientific Nunc, 
Denmark 

 

Nunclon Delta surface 24-well 
plates 

 142475 

Nunclon Delta surface 96-well 
plates 

 167008 

   
Other material and compounds were obtained from the institution’s suppliers (Sigma Aldrich and Merck). 

 

2.2 Used Mixtures and Buffers 

TABLE 4: Mixtures applied for preparations of toxicants, reagents and washing. 
Mixture Composition 
Nanopure Water Milipore miliQ synthesis A10 – 18.2 MΩ*cm; 3 ppb COT 

Used to make all solutions and dilutions 
Hank’s Buffer solution 1.3 mM CaCl2·2H2O, 5.4 mM KCl, 0.4 mM KH2PO4, 0.5 mM, 

MgCl2·6H2O, 0.4 mM MgSO4·7H2O, 137 mM NaCl, 4.2 mM 
NaHCO3, 0.3 mM Na2HPO4·2H2O, 8 mM HEPES, 5.5 mM 
Glucose-H2O; adjusted to pH 7.4 

Krebs Buffer 120.9 mM NaCl, 4.83 mM KCl, 1.22 mM KH2PO4, 25.5 NaHCO3, 
13 mM Glucose , Phenol Red ( approx. 0.015 g/L) 

Phosphate buffered saline (PBS) 
solution 

135 mM NaCl, 7.5 mM Na2HPO4·2H2O, 1.5 mM KH2PO4, 2.7 mM 
KCl; pH 7.4 

  

 

2.3 Instruments 

TABLE 5: Instruments used for experimental assays and preparing primary cultures  
Instrument Model  Software 
Fluorescent confocal microscope Leica Microsystems DM5500 Q Leica Application Suite 

Advanced Fluorescence (LAS 
AF) 

Fluorometer Molecular Devices Spectramax 
Gemini XS 

SOFTmax PRO Software 

Phase-contrast microscope Leica Microsystems DMI4000 B 
Camera: Leica DFC 300 FX 

Leica Application Suite V3 

Spectrometer Thermo Electron Corporation 
Multiskan Spectrum 

SkanIt RE for MSS 2.2 

Equipment in Cell Culture 
Laboratory  

In-house service: including 
centrifuges, incubators, phase-
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contrast microscope, laminar 
flow horizontal and vertical 
hoods 

Equipment in General Laboratory   
Animal Facility University of Barcelona, School 

of Medicine 
 

   

 

2.4 Toxicants 

Toxicants were used alone, in combination or as mixtures to research their impact on toxicant-induced 

alterations in developing cortical neurons derived from a primary culture.   

 

2.4.1 Selection of MeHg Concentrations 

The experimental concentrations of MeHg were adjusted from concentrations of previous experiments 

relevant to this investigational aims. The previously used MeHg concentrations ranging from 0 – 1000 

nM were used at the double of the cell concentration (1.6*106 cells/ml) of what was used in this 

project, i.e. 8*105 cells/ml. These concentrations proved to be too high for the used cell density 

resulting in rapid cell death. Thus, cells could not be exposed over a longer period of time to study 

chronic effects of MeHg. So we chose to use lower concentrations for the chronic exposure, with a 

maximum of 300 nM. 

For acute assays (ROS, GSH levels and ΔΨm assays) higher MeHg concentrations were chosen. In acute 

assays shorter exposure times were used. Due to shorter exposure time, MeHg concentrations were 

used at higher concentrations. 

 

2.4.2 Selection of Organochlorine Pollutants (OCPs) Concentrations 

The concentration of the seven organochlorine compounds used in this project were based upon 

findings of Briz et al. (2010) (47) and previous relevant experiments for dieldrin,  and on the INMA Project 

Valencia mother-infant cohort study (108), (109) for 4,4’-DDE, β-HCH, δ-HCH, HCB, PCB-138 and PCB-153. 

The INMA project is a study involving several research groups in Spain with the aim to investigate the 

impact of the environmental pollutants on children. Concentrations were used at 10 or 100 times of 

the geometric mean (GM) values of concentrations detected in cord blood of the INMA project and 

are summarized in table 6. 
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TABLE 6: Organochlorine toxicant concentrations found in samples of cord blood in the INMA project 

OCP compound Geometric Mean 

(GM) Values 

(ng/ml) 

100x GM Values 

(ng/ml) 

100x GM Values 

(nM) 

10x GM Values 

(nM) 

4,4’-DDE 0.82 82 258 25.8 

HCB 0.29 29 102 10.2 

β-HCH 0.12 12 41 4.1 

δ-HCH 0.023 2.3 7.9 0.79 

PCB-138 0.1 10 28 2.8 

PCB-153 0.13 13 36 3.6 

 

4,4’-DDE, β-HCH, HCB, PCB-138 and PCB-153 were used as mixture, while δ-HCH was not, due to its 

low concentration in the cord blood samples. Dieldrin was not added to the mixture as it was not 

investigated in the INMA study.  

From now on, if a “POPs mixture” is mentioned, it is referred to a mixture of 4,4’-DDE, β-HCH, HCB, 

PCB-138 and PCB-153. 

 

2.4.3 Selection of Neurotransmitter and Antagonist Concentrations 

DA concentrations for determining a sub-toxic dose were chosen from 100 µM of DA downwards based 

on a study by Noh et al. (1999) (110) demonstrating that 100 µM DA cause cell mortality.  

The experimental concentration of 100 µM ACh was chosen based upon previous experiments relevant 

to this investigational aim  that demonstrated that 100 µM is a sub-toxic ACh concentration. 

Raclopride concentrations were chosen following the product data sheet of Abcam suggesting an IC50 

of D2 receptor inhibition at 32 nM. 

 

2.5 Stock Solutions Preparation and Toxicant Treatment  

MeHg, organochlorine reagents, neurotransmitter and antagonist solids were weighed and dissolved 

in H2O (MeHg and ACh), ethyl acetate (HCB) or DMSO (4,4’-DDE, β-HCH, δ-HCH, HCB, PCB-138, PCB-

153 and raclopride), portioned as 50 µl aliquots and stored in the freezer at -20°C. Fresh aliquots were 

used for every new treatment solution and further prepared as needed. 

With these solutions cortical neurons were treated and exposed over varying times. DMSO and ethyl 

acetate, which were used to dissolve compounds, never exceeded 0.5% per well if exposed chronically. 

These concentrations proved not to be cytotoxic to primary culture cortical neurons. 
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2.6 Cortical Neuronal Cultures 

The cerebral cortex is involved in crucial functions of the human brain, including motor and sensory 

functions and cognition. The cytotoxic effects of MeHg are strongly exhibited in the cerebral cortex 

which is also one of the most susceptible brain regions to organochlorines (111). Additionally, neurons 

are the most susceptible brain cells regarding MeHg toxicity (17). That’s why we chose to culture 

cortical neurons which were isolated from 16-day old mouse foetuses. Foetuses were used at day 16 

of pregnancy, because at that time mouse neurons are not differentiated yet and are close to their 

last separation by mitosis, resulting in a more pure culture (112). The maturation of the neurons is 

expressed as days in vitro (DIV), starting at the day after seeding and indicating the age of the cell 

culture. 

Primary cultures of cortical neurons were isolated from the cerebral cortices of 16-day-old NMRI 

mouse foetuses. Halothane was used to anesthetize pregnant mice which were sacrificed by cervical 

dislocation. The foetuses were extracted by forceps and the cerebral cortices were removed in a sterile 

hood. The cortices were cut with a razorblade and transferred to a mixture of Krebs buffer, bovine 

serum albumin (1.2% w/v) and MgSO4 (150 mM). Consequently, brain tissue was hydrolysed at 37°C 

for 20 minutes by a solution containing trypsin (0.02% w/v) to dissociate cells and DNAse (0.0075% 

w/v) which should reduce freely floating DNA. Soybean trypsin inhibitor (0.052% w/v) stopped 

trypsinization. A syringe was used to mechanically disaggregate cells to obtain a single cell suspension.  

The cell suspension with a density of 8*105 cells/ml was prepared in adapted DMEM medium (10% 

fetal bovine serum, 0.2% penicillin, 26.2 mM NaHCO3, 25mM glucose, 0.2 mM L-glutamine, 100 mU/l 

insulin, 7 µM p-aminobenzoic acid). This cell suspension was seeded at a density of 8x105 cells/ml in 

24- or 96-well plates previously coated with poly-D-lysine (50 mg/L). The cultivation of the plated cells 

took place in a humidified incubator at 37°C with a 5% CO2/ 95% air mixture. To avoid astrocyte growth, 

the antimitotic compound uridine (20 µM) was added on DIV1. Animal handling was done according 

to standard procedures at the University of Barcelona, which were approved by the Generalitat de 

Catalunya, Spain and are according to EU guidelines. 

 

2.7 Experiments for Assaying Cell Viability 

By measuring the formazan product of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), the MTT assay was used to quantify cell viability. Reduction of the 

MTT dye to formazan occurs by reduction of mitochondrial enzymes. The MTT solution was prepared 

in Hank’s buffer at the concentration of 5mg/ml and added to each well of cells at a 10% v/v 

concentration. Plates were incubated for 2.5 hours at 37°C, protected from light, before the content 

of the wells was discarded. Next, 100 µl of 10% sodium dodecyl sulphate (SDS) were added to lyse the 

cells and dissolve the formazan and consequently incubated for at least four hours in an incubator at 



  

25 
 

37°C. Spectrophotometry was used to quantify the absorbance of the formazan product in a 

spectrometer at 560 nm.  

 

The resazurin assay was also used to quantify cell viability, in this case, by measuring the fluorescence 

of resorufin, a fluorescent product of the non-fluorescent resazurin. The reduction of resazurin occurs 

due to the cell´s redox potential, which the cell needs for metabolic activity (113). The resazurin solution 

was prepared at a concentration of 100 µg/ml in phosphate buffered saline (PBS) and added at a 10% 

v/v concentration to the seeded cells. Cells were incubated for 2 hours at 37°C to allow them to convert 

resazurin to resorufin. The fluorescence (Ex 530 nm/Em 590 nm) of resorufin was quantified in a 

fluorometer.  

 

The propidium iodide (PI) assay was the third method to assess cell viability: PI is membrane-

impermeable and intercalates with DNA. Thus, PI will intercalate only with DNA of cells which have 

already permeabilized membranes and therefore stains damaged cells. If intercalated with DNA, the 

excitation and emission wavelengths of unbound PI shift to the below-mentioned excitation and 

emission wavelengths of bound PI. The PI solution was prepared at a concentration of 40 µg/ml in PBS 

and added at 2% v/v concentration to the seeded cells. 30 minutes before adding the PI solution 10% 

Triton-X was added to negative control cells to lyse the cells. Next, PI solution was added and incubated 

for 30 min at 37°C to allow PI to intercalate with intracellular DNA. The fluorescence (Ex 535 nm/Em 

617nm) of intercalated PI was quantified in a fluorometer. 

 

2.8 Immunocytochemistry for Cell Morphology  

Immunocytochemistry was used to get a qualitative image of cells exposed to various toxic 

compounds. For immunocytochemistry cells were seeded in 24-well plates. After discarding the 

solutions of the plate, 4% paraformaldehyde (PFA) was added for 10-15 min to fix the cells. PFA was 

removed from the plate and cells were washed three times for 5-10 min with PBS. Cell membranes 

were permeabilized with 0.15% v/v triton-PBS for 15 min to allow antibodies to enter. Blocking 

unspecific binding sites was done by incubating cells with 1% w/v BSA-PBS for 1 hour. Primary 

antibodies were diluted in 0.1% w/v BSA-PBS, 1:500 rabbit polyclonal anti-Tau and 1:1000 mouse 

monoclonal anti-GFAP antibodies, and added to the plate. Incubation of the cells with the primary 

antibodies was done in agitation at 4°C overnight. On the following day, cells were washed three times 

with PBS for 5-10 min. Secondary antibodies were diluted in 0.1% w/v BSA-PBS, 1:1000 green goat anti-

rabbit IgG and 1:1000 red goat anti-mouse IgG antibodies. Cells were incubated with secondary 

antibodies at room temperature for 1 hour protected from light. Next, cells were washed one time 

with PBS for 5-10 min and incubated with 5 µM bisbenzimide (nuclear dye) in PBS for 5-10 min and as 
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final step washed with PBS for 5-10 min. A phase-contrast fluorescence microscope was used to see 

the stained cells at a 200x magnification. Five fields per well were photographed with the help of Leica 

Application Suite V3 software of which a representative picture was chosen. 

 

2.9 Oxidative Stress Assays 

To assess production of oxidative stress in cortical neurons, the fluorescence of oxidized 2’,7’-

dichlorodihydrofluorescin diacetate (H2DCF-DA) was measured. The non-fluorescent H2DCF-DA 

penetrates cells and gets oxidized by reactive oxygen species (ROS) converting it to the fluorescent 

2',7'-dichlorofluorescein (DCF). The H2DCF-DA stock solution was prepared at a concentration of 2 mM 

(1 mg/ml) in methanol and diluted to 10 µM in Hank’s buffer. In the chronic assays, cells chronically 

exposed to the compounds were rinsed two times with Hank’s buffer and incubated with the 10 µM 

H2DCF-DA solution for 20 min at 37°C protected from light. Cells were rinsed again for two times with 

Hank’s buffer and previously prepared H2O2 concentrations in Hank’s buffer were added. Next, 

fluorescence of DCF (Ex 492 nm/Em 525 nm) was measured by a fluorimeter. Measurements were 

taken every 5 minutes until 30 min and then every 30 min. 

In the acute assays, the same procedure was performed, but instead of adding the H2O2
 solution, 

toxicant solutions were added to the cells.  

 

For assessing how GSH levels are involved in oxidative stress, quantification of GSH levels was done via 

measurement of fluorescent monochlorobimane (mBCl). mBCl is not fluorescent until conjugated with 

GSH. 10 mM DL-buthionine-[S-R]-sulfoximine prepared in PBS were added 24 hours previous to the 

GSH determination as negative control, to inhibit GSH synthesis and incubated at 37°C. The next day, 

compounds that should be tested for GSH depletion were added to cells and incubated for 60 minutes 

at 37°C. Next, 8 mM mBCl was added and incubated for 30 minutes at room temperature and 

protected from light. The fluorescence (Ex 360 nm/Em 460 nm) of the conjugated mBCl was quantified 

via a fluorimeter.  

 

2.10 Mitochondrial Membrane Potential (ΔΨm) 

To quantify mitochondrial membrane potential (ΔΨm) fluorescent rhodamine 123 was used. 

Rhodamine can enter mitochondria but its fluorescent gets quenched by mitochondrial energization. 

A 10 mM rhodamine 123 stock solution was prepared in dimethyl sulfoxide (DMSO) and was diluted 

1:10 in Hank’s buffer. Cells were rinsed two times with Hank’s buffer, then, the rhodamine 123 dilution 

was added to the cells and incubated for 15 min at 37°C. Cells were rinsed three times with Hank´s 

buffer and various concentrations of the compounds to be tested, prepared in Hank’s buffer, were 

added. As negative control, 30 µM anitmycin A, an inhibitor of the respiratory chain, were added. The 
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fluorescence (Ex 485 nm/Em 530 nm) of non-quenched rhodamine 123 was quantified by a 

fluorimeter. Measurements were taken every 5 min until 30 min and then at 60 min. As control 

condition, 2% triton X was added after 60 min to the cells and incubated for 15 min at 37°C to lyse 

cells.  

 

2.11 Statistical Analysis of Data 

Obtained data were organized and analysed with Microsoft Excel 2007 and subsequently analysed and 

visualized with Graph-Pad Prism version 4.0 and 6.0 software (GraphPad Software Inc., San Diego, CA). 

Data are represented in bar graphs with mean ± SEM. When no statistically significant difference of 

the basal control values (i.e. the values of the treatment groups at 0 concentration of the toxicant that 

is plotted at the x axis of the graph) was found, each treatment condition was normalized to their basal 

control values to make a comparison among the groups easier and focus on possible interactive effects. 

Results were analysed with a two-way ANOVA analysis followed by a Bonferroni multiple comparison 

post-test. 
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3 RESULTS 

3.1 Effects of Combined Exposure of MeHg and Single Compound OCPs on Viability 

To study the effects of combined MeHg and organochlorine exposure on differentiating neurons, cells 

were consequently exposed to the toxicants from the cortical neurons’ first day in vitro (DIV1). At this 

stage neurons are considered to be immature (112). 

The first experiments were done for two purposes. Firstly, we wanted to investigate whether OCPs in 

combination with MeHg exacerbate MeHg-induced effects on cortical neurons. Secondly, these 

experiments were also used to approve or adjust previously used MeHg working concentrations to a 

less dense cell culture of 8*105 cells/ml, which is half as dense as the previously used cell culture 

density.  

 

In the first trials, differentiating cortical neurons were exposed to 0-1000 nM MeHg alone or in 

combination with 60 nM dieldrin or 100 nM HCB. In the first experiments the used concentrations 

higher than 300 nM MeHg (600 nM and 1000 nM MeHg) proved to be too high to be exposed over a 

longer period of time. Hence, MeHg concentrations were changed to 0-300 nM and the same 

experiments were repeated. Cells were exposed to 0-300 nM MeHg in absence or presence of 60 nM 

dieldrin or 100 nM HCB for 6-8 days (DIV1 to DIV6-8), depending on the culture’s susceptibility to 

MeHg. 

 

In this experiment no statistically significant change in cell viability by dieldrin and HCB could be 

observed, thus every value of the MeHg-dieldrin condition was normalized to the value of 0 nM MeHg 

and 60 nM dieldrin. The same applied for HCB, where values were normalized to 0 nM and 100 nM 

HCB.  This was done to facilitate direct comparison in-between groups to focus on interactive effects. 

Furthermore, there is no statistically significant difference in cell viability when cells exposed to MeHg 

alone are compared to the combination of MeHg and dieldrin or MeHg and HCB, neither at sub-toxic 

or toxic MeHg concentrations, as can be seen in figure 6. No toxic effects of MeHg are observable until 

100 nM MeHg. Beginning at 200 nM MeHg, cell viability decreases by 30% and is further reduced at 

300 nM, reaching 60% of viability.  

The same pattern was found, when viability curves were evaluated by means of a resazurin assay (data 

not shown). 
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FIG. 6. Viability curve of cortical neurons after exposure to different MeHg concentrations alone or in 

combination with dieldrin or HCB. Primary culture cortical neurons were exposed to 0-300 nM MeHg in absence 
or presence of 60 nM dieldrin or 100 nM HBC from their first day in vitro (DIV1) to DIV 6-8. Viability was evaluated 
via MTT assay. The bars are expressed as a percentage of the MeHg-free basal control values. The data are 
represented as mean ± SEM and were obtained in three independent trials, using triplicates per treatment 
condition.  
 

As there were no significant interactive cytotoxic effects of dieldrin or HCB with MeHg at any 

concentration observable, we decided to screen some OCPs for interactive cytotoxic effects with MeHg 

at a sub-toxic concentration. We chose δ-HCH, 4,4’-DDE, PCB-138 and PCB-153, as this selection 

comprises a representative variety of different compound groups that belong to the compounds with 

the highest levels detected in infant cord blood in the INMA project (108), (109).  

 

Primary culture cortical neurons were exposed for 8 or 9 days (DIV1 to DIV8/9) to 100 or 200 times the 

geometric mean (GM) of each of the abovementioned organochlorines, in absence or presence of 50 

nM MeHg. By using 100x GM we compensated for the long-term exposure over months in real life, 

whereas by using 200x GM we wanted to determine whether the double of our working concentration 

would exhibits toxic effects. 

 

Neither, there was a statistically significant toxic effect of an OCP compound alone, nor was a 

statistically significant interactive toxic effect of one of the four OCPs with 50 nM MeHg observable. 

No effect was observed at 100x GM, nor at 200xGM concentrations, as shown in figure 7.  
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FIG. 7. Viability of cortical neurons after exposure to MeHg alone or in combination with an organochlorine 

compound at different concentrations. Cells were intoxicated either in absence or presence of 50 nM MeHg with 
100 or 200 times the geometric mean (GM) of δ-HCH (A), 4,4’-DDE (B), PCB-138 (C) and PCB-153 (D) on DIV1 and 
exposed until DIV8-9. The viability was evaluated via MTT assay. The bars are expressed as percentage of the 
value of 50 nM MeHg. The data are represented as mean ± SEM and were obtained in three independent trials, 
using triplicates per treatment condition.  

 

3.2 Effects of Combined Exposure of MeHg and POPs mixture on Viability 

Our next experiment was done to evaluate a possible interactive toxicity of a mixture of representative 

organochlorines, found at high levels in infant cord blood in the INMA project (108), (109), and MeHg. In 

this experiment sub-toxic and toxic MeHg concentrations in combination with a POPs mixture at 

different GM concentrations were used. The mixture comprises 4,4’-DDE, HCB, β-HCH, PCB138 and 

PCB153. From now on, the mixture comprising 4,4’-DDE, HCB, β-HCH, PCB138 and PCB153 will be 

referred to as “POPs mixture”.   

 

In this experiment cells were exposed consequently for 8-9 days (DIV1 to DIV8/9) to MeHg 

concentrations ranging from 0-300 nM and the mixture of OCPs at 10x GM and 100x GM 

concentrations. Neither, statistically significant toxic effects of the POPs mixture at 10x or 100x GM, 

nor statistically significant interactive cytotoxic effects between the different treatment conditions 

were found, as illustrated in figure 8.  

 

The results are supported by data which were obtained by evaluating the same experiments by means 

of a PI assay (data not shown). The obtained graph showed the same viability pattern as the assay done 

by MTT. 
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FIG. 8. Viability of cortical neurons after exposure to the POPs mixture and MeHg at different concentrations. 

Cells were intoxicated with MeHg concentrations in a range from 0-300 nM and the POPs mixture at 10x or 100x 
GM of HCB, β-HCH, 4,4’-DDE, PCB-138 and PCB-153 on DIV1 and exposed until DIV8-9. The viability was evaluated 
via MTT assay. The bars are expressed as a percentage of the MeHg-free basal control values. The data are 
represented as mean ± SEM and were obtained in three independent trials, using triplicates per treatment 
condition.  
 

To investigate whether the MeHg concentrations of acute assays influence cell viability, cells were 

exposed on DIV7/8 for 24h (which is longer than actually needed for acute assays) to MeHg (up to 1 

µM) and the 100x GM POPs mixture. No statistically significant decrease in cell viability could be found 

in any of the treatment conditions. The experiments were evaluated by PI and MTT assay and were 

realized in two independent trials, using triplicates per treatment condition (data not shown).  

 

We were not only interested in qualitative viability assays but we also wanted to investigate the quality 

of the neuronal culture exposed to toxicants. Immunostains can provide interesting qualitative 

information about cell morphology. We were interested in possible differences in cell morphology, 

comparing cells with different treatment conditions (MeHg alone and in combination with the POPs 

mixture). Although we did not find any statistically significant difference in cell viability, we decided to 

make cell morphology visible by immunocytochemistry, as MeHg (59) and PCBs (60), (61) are supposed to 

have the ability to interfere with microtubules and thus change cell morphology. 

 

Cortical neurons from primary cultures were exposed to MeHg at 0, 50 and 100 nM alone or in 

combination with the POPs mixture at 100x GM concentrations for 8 days (DIV1-8) and consequently 

fixed. To make neurons and astrocytes visible, we stained the cells with antibodies for Tau and GFAP. 
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Tau is a protein that is bound to the microtubules of neurons and GFAP occurs specifically in astrocytes. 

The fluorescent stain bisbenzimide was used to stain the nuclei of the cells. 

 

Neuronal cell bodies and a dense neurite network are well observable due to the Tau 

immunofluorescence. Cell density and neurite network density decreases with increasing MeHg 

concentrations, showing no difference between treatment conditions except for cells at 100 nM MeHg, 

where a slight difference between the two different treatment conditions is observable. The cells 

exposed to MeHg alone at 100 nM seem to be less susceptible than those where the additional 100x 

GM POPs mixture was added which can be seen in figure 9. 
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FIG. 9. Fluorescence microscopy images of Tau-immunostained cortical neurons from primary cortical neuronal 

cultures. Only neurons (at DIV8) immunostained with Tau are depicted here, as astrocytes, stained with GFAP, 
and nuclei, stained with bisbenzimide, are not shown for clarity. Neurons were either left untreated (A), exposed 
to 50 nM MeHg (B), 100 nM MeHg (C), 100x GM POPs mixture (D), 50 nM MeHg and 100x GM POPs mixture (E) 
or 100 nM MeHg and 100x GM POPs mixture (F). Decreasing cell body density and neurite density with increasing 
MeHg concentrations are observable. One image was chosen from five regions per well, with one well per 
condition. The images were taken at a 200x magnification.   

 

3.3 Effects of Combined Exposure of MeHg and POPs on Oxidative Stress 

Studies by Francoa et al. (2009) (53) and Shinyashiki et al. (1996) (114) have demonstrated that enzymes 

important for protection against oxidative stress can be inhibited by MeHg, including the ROS-

neutralizing enzymes glutathione peroxidase and superoxide dismutase. In this experiment we wanted 

to investigate whether the chronic and combined exposure of MeHg and dieldrin or MeHg and HCB 

would exhibit a difference in ROS production if compared to cells exposed to MeHg only. In this assay 

we used a sub-toxic MeHg concentration to study the influence on ROS production in the cells. 

  

Cortical neurons were left alone or exposed to sub-toxic 50 nM MeHg and 60 nM dieldrin (each 

compound alone and in combination) for 6 to 8 days, depending on the culture’s susceptibility. On the 

last day of exposure the assay was performed by adding increasing hydrogen peroxide (H2O2) 

concentrations to induce oxidative stress and investigate if cells exposed to the toxicant combination 

would exhibit increased ROS production compared to untreated cells or cells exposed to single 

compounds. The same experiment was also performed with 100 nM HCB, instead of 60 nM dieldrin. 

 

In this experiment, it has been demonstrated that there is no statistically significant difference 

between cells exposed to different treatment conditions. As there was no statistically significant 

difference between the treatment groups without H2O2, their values were normalized to each of their 

H2O2-free condition to facilitate in-between comparison among groups. 
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The same results were obtained when the experiment was realized with 100 nM HCB instead of 

dieldrin. Both graphs are shown in figure 10. 

 

A 

0 1 5 1 0 0 2 5 0 5 0 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

c o n tro ls

5 0  n M  M e H g

5 0  n M  M e H g  +

6 0  n M  D ie ld r in

6 0  n M  D ie ld r in

H 2 O 2  (M )

re
la

ti
v

e
 f

lu
o

re
s

c
e

n
c

e
 o

f 
D

C
F

 (
%

)

B 

0 1 5 1 0 0 2 5 0 5 0 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

c o n tro l

5 0  n M  M e H g

5 0  n M  M e H g  +

1 0 0  n M  H C B

1 0 0  n M  H C B

H 2 O 2  (M )

re
la

ti
v

e
 f

lu
o

re
s

c
e

n
c

e
 o

f 
D

C
F

 (
%

)

  

FIG. 10. Effect of MeHg alone or in combination with organochlorine pesticides dieldrin or HCB on ROS 

production. Cells were intoxicated with 50 nM MeHg and 60 nM dieldrin (A) or 100 nM HCB (B) on DIV1 and 
exposed until DIV6-8 when H2O2 at different concentrations was used to induce oxidative stress in mature cells. 
Reactive oxygen species were measured via DCF fluorescence at 30 minutes after adding hydrogen peroxide. The 
bars are expressed as a percentage of the H2O2-free basal control values. The data are represented as mean ± 
SEM and were obtained in three independent trials using triplicates per treatment condition.  
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Next, we investigated the acute effects of chronically toxic MeHg concentrations (up to 1 µM) in 

combination with the 100x GM POPs mixture on oxidative stress. We used a ROS assay (on DIV6/7), to 

investigate a possible induction or increase of oxidative stress, and measured GSH levels (DIV2 and 

DIV8), as GSH plays an important role in neutralizing ROS. In both experiments we could not find any 

observable, statistically significant effects. 

Both experiments were realized in two independent trials, using triplicates per treatment condition 

(data not shown).  

  

3.4 Effects of Combined Exposure of MeHg and POPs mixture on ΔΨm 

Because of studies suggesting the involvement of the mitochondria as one possible mechanism for the 

neurotoxicity of MeHg (46) and for the harmful effects of POPs on mitochondria (42), (43), we decided to 

do an experiment investigating mitochondrial function at combined exposure of MeHg and the POPs 

mixture. 

 

Primary cultures of cortical neurons were exposed at DIV 7-8 to the 100x GM POPs mixture in absence 

or presence of MeHg concentrations ranging from 0 to 1000 nM. 30 μM of antimycin A were used as 

positive control, leading to mitochondrial membrane depolarization of nearly 200%.  

 

We found a tendency that increasing MeHg concentrations lead to an increased level of depolarized 

mitochondrial membranes, as well as cells exposed to the 100x GM POPs mixture alone, tend to 

depolarize the inner mitochondrial membrane too. When primary cultures were exposed to both, 

MeHg and the mixture, the depolarization by the POPs mixture on its own is statistically significant 

different (p < 0.05) from the control value without MeHg and POPs mixture. Furthermore, statistically 

significant (p < 0.01) interaction between the two treatments was found. The tendency of the POPs 

mixture to depolarize the mitochondrial membrane seems to be increasingly counteracted by 

increasing MeHg concentrations. In combination, the depolarizing effect of the POPs mixture seems to 

be negatively correlated with the MeHg concentrations, as can be seen in figure 11. 
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FIG. 11. Mitochondrial membrane depolarization in cortical neurons after MeHg and 100x GM POPs mixture 
exposure. On DIV 7-8 cells were exposed to MeHg concentrations at 0, 50, 600 and 1000 nM in absence or 
presence of the POPs mixture at concentration 100x GM, and to 30μM antimycin A as positive control. Levels 
were measured via rhodamine 123 fluorescence at 60 minutes after addition of the reagents. The bars are 
expressed as a percentage of the control basal value. The data are represented as mean ± SEM and were obtained 
in three independent trials using triplicates per treatment condition. Statistical significance marked as * (p < 0.05) 
compares the difference between cell exposed to MeHg only and cells exposed to MeHg and the OCP 100x 
mixture. Statistical significant (p < 0.01) interaction was found between the two treatments. 

 

3.5 Effects of Combined MeHg-ACh Exposure on Viability 

We used the sub-toxic ACh concentration of 100 µM, to investigate possible interactive effects with 

sub-toxic and toxic concentrations of MeHg. The sub-toxic ACh concentration was determined in 

previous experiments relevant to this investigational aim.  

 

Neuronal cells from the primary culture were exposed from DIV1 for 5-6 days to MeHg alone at 

concentrations ranging from 0-300 nM or in combination with 100 μM ACh.  

 

In this experiment it could be proven that 100 µM do not exhibit any toxic effect on the used cell 

culture. For this all MeHg-100 µM ACh values were normalized to the ACh only-value to facilitate in-

between treatment comparison. But, as seen in figure 12, ACh was found to statistically significant 

increase cell mortality in combination with 100 nM MeHg. 
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FIG. 12. Concentration dependent viability of cortical neurons after exposure to MeHg alone at different 

concentrations or in combination with ACh. Cells were exposed to MeHg concentrations in a range from 0-300 
nM and 100 μM ACh from DIV1 to DIV5-6. The viability was evaluated via MTT assay. Bars are represented as 
percentage of MeHg-free basal control values. The data are represented as mean ± SEM and were obtained in 
three independent trials, using triplicates per treatment condition. Statistical significance is marked as *** (p < 
0.001). 
 

3.6 Effects of Combined MeHg-DA Exposure on Viability 

Cortical neurons were exposed for 5-7 days (DIV1-5/7) to DA at concentrations ranging from 10-100 

μM, in presence or absence of 50 nM MeHg.  

 

Figure 13 shows that concentrations up to 10 µM DA, in combination with MeHg or not, do not exhibit 

any statistically significant effect on cell viability, whereas from 30 µM on, cell mortality increases from 

40% at 30 µM DA up to 80% at 100 µM DA.  
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FIG. 13. Concentration dependent viability of cortical neurons after exposure to different concentrations of DA 

in absence or presence of 50 nM MeHg. Cells were exposed to DA concentrations in a range from 0-100 µM alone 
or in presence of 50 nM MeHg from DIV1 to DIV5-7. The viability was evaluated via MTT fluorescence.  Bars are 
represented as percentage of the MeHg- and DA-free basal control value. The data are represented as mean ± 
SEM and were obtained in three independent trials, using triplicates per treatment condition.  
 

Based on the previous finding the working concentration was set to the sub-toxic concentration of 10 

µM DA and was used to further investigate the effect of this DA concentration on various MeHg 

concentrations, including toxic ones. 

 

Cortical neurons were exposed for 6-8 days (DIV1 - DIV6/8) to 10 µM DA in presence or absence of 

various MeHg concentrations ranging from 0-300 nM.  

 

As already proven above, 10 µM proved not to be toxic alone, hence MeHg-DA values were normalized 

to the DA alone-value. As can be seen in figure 14, 10 µM DA statistically significant increased cell 

viability at toxic MeHg concentrations. As shown in figure 16, at 100, 200 and 300 nM a viability 

increasing effect of DA could be observed. At 200 nM MeHg viability was increased up to 30%.  
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FIG. 14. Concentration dependent viability of cortical neurons after exposure to different concentrations of 

MeHg alone or in combination with 10 µM DA. Cells were exposed to MeHg concentrations in a range from 0-
300 nM and 10 µM DA from DIV1 until DIV6-8. The viability was evaluated via MTT assay. The bars are 
represented as percentage of the MeHg-free basal control values. The data are represented as mean ± SEM and 
were obtained in three independent trials, using triplicates per treatment condition. Statistical significance is 
marked as ** (p < 0.01) and *** (p < 0.001). 
 
 

3.7 Mechanisms involved in the Protective Effect of DA against MeHg toxicity 

As MeHg and organochlorines compounds are suspected to be involved in inducing excitotoxicity (see 

section 1.4.2), we investigated a possibly increased susceptibility to glutamate-induced excitotoxicity.  

 

Primary culture cortical neurons were exposed for 5 days (DIV1-5) to 50 nM MeHg in absence or 

presence of 10 µM DA. On DIV5 glutamate concentrations (0-600 µM) were added and exposed for 

another 2-4 days, depending on the culture’s vulnerability.  

 

As none of the treatment conditions exhibited toxic effects at 0 µM glutamate they were normalized 

to each of their basal control values. No statistically significant differences could be observed regarding 

the treatment: Cells exposed to MeHg were not more susceptible to glutamate-induced excitotoxicity 

than naïve ones, nor did 10 µM DA statistically significant increase cell viability, regardless of the 

presence of 50 nM MeHg. After 2-4 days of exposure to glutamate, cell-viability was reduced up to 

40% at 600 µM glutamate, as can be seen in figure 15. 
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FIG. 15. Concentration dependent viability of cortical neurons after exposure to 50 nM MeHg alone or in 
combination with 10 µM DA and consequent exposure to different glutamate concentrations. Cells were exposed 
to 50 nM MeHg in absence or presence of 10 µM DA or DA alone from DIV1 until DIV5. On DIV5 glutamate (0-
600 µM) was added and exposed for another 2-4 days (DIV7-9). The viability was evaluated via MTT assay. The 
bars are represented as percentage of the glutamate-free basal control values.  The data are represented as 
mean ± SEM and were obtained in three independent trials, using triplicates per treatment condition.  

 
To study the protective effect of DA against MeHg toxicity, we did an experiment to investigate the 

role of DA receptors involved in this mechanism. A study by Coccini et al. (2011) (115) showed that 

exposure to MeHg leads to alterations in D1 and D2 receptors. We were interested in whether blocking 

the D2 receptor with 2 µM of the D2 receptor antagonist raclopride could prevent the protective effect 

of 10 µM DA.  

Using an MTT assay, we could not find any statistical significant difference between cells exposed to 

the MeHg-DA combination and the MeHg-DA-raclopride combination. The protective effect was not 

reduced by the additional exposure of the D2 receptor antagonist raclopride.  

Experiments were realized in two independent trials, using duplicates per treatment condition (data 

not shown).   

 

3.8 Effects of Combined MeHg-POPs Exposure on the Protective Effect of DA  

Due to the interesting effect of 10 µM DA, we wanted to investigate whether the same viability 

increasing effect could also be observed, if cells were exposed not only to MeHg but additionally to 

the 100x GM POPs mixture. 

 

Primary cortical neuronal cultures were exposed for 6-8 days (DIV1 to DIV6-8) to 10 µM DA in absence 

or presence of the 100x GM POPs mixture and MeHg at different concentrations (0-300 nM).  
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As no statistical difference at 0 nM MeHg between the two treatments was observable, values were 

normalized to the corresponding control value. In this experiment we also found the viability increasing 

effect of 10 µM DA, on cells exposed to MeHg and the POPs mixture at 100x GM concentrations. Figure 

16 shows that statistically significant cell viability increase was found at MeHg concentrations of 100, 

200 and 300 nM, with the biggest increase of 20% at 200 nM MeHg and POPs mixture. 

 

0 5 0 1 0 0 2 0 0 3 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

M e H g  +  1 0 0 x  G M  m ix tu re

M e H g  +  1 0 0 x  G M  m ix tu re

+  1 0 M  D o p a m in e

M e H g  (n M )

v
ia

b
il

it
y

 (
%

)

**

***
***

 

FIG. 16. Concentration dependent viability of cortical neurons after exposure to different concentrations of 

MeHg and POPs mixture in absence or presence of 10 µM DA. Cells were exposed to the POPs mixture at 100x 
GM concentrations and MeHg concentrations in a range from 0-300 nM and 10 µM DA from DIV1 until DIV6-8. 
The viability was evaluated via MTT assay. The bars are represented as percentage of the MeHg-free basal control 
values. The data are represented as mean ± SEM and were obtained in three independent trials, using triplicates 
per treatment condition. Statistical significance is marked as ** (p < 0.01) and *** (p < 0.001). 
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4 DISCUSSION 

4.1 Effects of Combined Exposure of MeHg and Single Compound OCPs on Viability 

Our findings demonstrate that exposure of differentiating cortical neurons to MeHg in presence of the 

organochlorine pesticides dieldrin, HCB, β-HCH, δ-HCH, 4,4’-DDE, PCB-138 and PCB-153 at 100x GM 

concentrations do not increase the cytotoxic effect of MeHg. 

The literature on interactive toxicity of the seven used OCPs with MeHg is limited, only one study by 

Omara et al. (1997) (116) reports about no interactive toxicity if cells were exposed to MeHg and PCB 

mixtures concentrations in the same range as the used concentrations.  

 

Along our experiments we experienced difficulties with the 100 nM MeHg concentration, as depending 

on the cell culture, weaker cultures exhibited an increase in mortality at already 100 nM of MeHg, 

whereas less susceptible neurons of other primary cultures did not show any toxic effects at this 

concentration. It was interesting to observe that 100 nM of MeHg seemed to be a threshold value for 

MeHg toxicity. 

 

Four different assays were used to evaluate cell viability: MTT, resazurin and PI as quantitative assay, 

and immunostains as a qualitative method. We compared the three of them at the beginning of this 

project to find the optimal method. Although they showed the same pattern of cell viability in the same 

experiment, there were some quantitative differences between resazurin and MTT assay. MTT and PI 

assay exhibited the same quantitative results. Comparing resazurin with MTT assay, MTT results were 

more in accordance with the observations made via the phase-contrast microscope. Resazurin assays 

possibly would have needed adjusted reagent concentrations which would have cost time and 

material.  The PI assay is much more time-consuming if several plates have to be treated, as the small 

volume of reagent cannot be pipetted with the multi-step or repetition pipet. So we chose to do further 

viability evaluation by means of MTT assays only.  

 

The fourth technique, the immunostains, shows a qualitative image of the different conditions cells 

were exposed to. A less dense neuronal network was observed with increasing MeHg concentration, 

with no big difference regarding treatment condition, apart from cells exposed at 100 nM MeHg. Cells 

intoxicated with 100 nM MeHg in combination with POPs mixture seemed to be more susceptible. The 

decreased cellular morphology in the well exposed to MeHg and organochlorines could be explained 

by PCBs’ ability to depolymerize actin filaments that are interacting with microtubules (60), (61). At 100 

nM MeHg, the effect of the PCBs might have become observable in combination with the increased 

microtubule depolarizing activity of MeHg. The decreasing cell morphology due to MeHg exposure are 
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in accordance with a study by Miura et al. (1998) (59) that reports about the ability of MeHg to 

depolymerize microtubules (5*10-6 M MeHg/3 hours; Miura et al. (1998) (59)). 

The conflicting decrease in cell number seen at 100 nM MeHg, compared to no observable or just little 

toxic effect if evaluated by MTT, may be due to the fact that this culture might have been one of the 

more susceptible cultures. Furthermore, we have to take into account that despite constant cell 

density among the immunostains and MTT assay experiments, there was a difference in surface area 

of the culture wells.  This possibly influences neuronal distribution patterns and exposure physics. 

Lower concentrations of OCPs and MeHg might be necessary. 

 

4.2 Effects of Combined Exposure of MeHg and OCPs on Oxidative Stress 

As increased ROS production can render cells more susceptible and contribute to cell death (117), it 

seemed interesting to investigate the effect of MeHg and OCPs on ROS production in a chronic assay. 

But investigating ROS generation in cells exposed to MeHg over a longer period of time proved not to 

be easy, as MeHg concentrations higher than 50 nM would kill the cells and therefore, could not be 

compared to non-treated cells regarding their ROS levels. So we chose to first investigate ROS 

protective mechanisms at sub-toxic pollutant concentrations. Chronic exposure of cells to sub-toxic 50 

nM MeHg in combination with 100 nM HCB or 60 nM dieldrin did not seem to have any observable 

influence on ROS levels. Neither did single exposure of the compounds. Although studies by Francoa 

et al. (2009) (53) and Shinyashiki et al. (1996) (114) demonstrate inhibition in two important anti-oxidant 

enzymes, glutathione peroxidase (GPx) and superoxide dismutase, low dose MeHg concentrations did 

not show increased oxidative stress levels. This might be due to the fact that low dose MeHg 

concentrations do not cause enough inhibition of ROS neutralizing enzymes (25% GPx activity 

reduction at 1µM MeHg; Francoa et al. (2009) (53)) to influence oxidative stress levels.  

 

As we could not find any difference in oxidative stress levels at sub-toxic toxicant level, we investigated 

if MeHg, at concentrations that proved to be toxic in chronic exposure, and combined with various 

organochlorines, could induce oxidative stress. As we performed an acute assay, we used higher MeHg 

concentrations and the POPs mixture at 100x GM concentrations.  

We did not find any increase in ROS levels if cells were exposed to MeHg-POPs mixture combination, 

neither, if cells were exposed to MeHg or the mixture alone. Francoa et al. (2009) (53) demonstrated an 

increase in ROS levels at 1µM MeHg. The non-existing effect in our experiment might be due to the 

fact that cells in the study were exposed for 24 hours instead of 3 hours in our experiment. 

Furthermore, we were hypothesizing that the method might not have been sensitive enough. This, as 

well as the generally non-toxic concentration of PCBs in our experiment, could also be a valid 
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explanation for apparently no effects by PCBs, although there is evidence that PCBs principally have 

the ability to affect mitochondrial function and thus increase ROS (43). 

 

ROS and GSH are closely related, as GSH is important for neutralizing peroxides and thus reduces ROS 

levels. But GSH gets bound by MeHg due to its high affinity for thiol groups which in turn leads to 

increased ROS levels, as less free GSH is available (41). We were interested in how the combination of 

MeHg and POPs would affect GSH levels and if our previous ROS-results would be supported by the 

GSH assay. This is why we investigated the ability of MeHg and organochlorine pesticides of affecting 

GSH levels in primary culture cortical neurons. The combination of both of them did not alter GSH 

levels. 

A study by Gatti et al. (2004) (118) reports that 5µM MeHg depleted GSH levels of 15%. We might have 

seen no increase because we were using lower MeHg concentrations (maximum of 1µM). Studies 

investigating PCBs’ and 4,4’-DDE’s effect on GSH levels, are in agreement with our findings, as both 

didn’t show any influence on GSH levels (54), (55). 

 

Concluding on oxidative stress, our findings suggest that low MeHg and organochlorine concentrations 

do not affect cellular oxidative stress levels. In the experiments of literature findings, always higher 

(micromolar) MeHg concentrations were used. They are reported to increase statistically significant 

ROS production in a rat synaptosome (119) and cerebellar neurons (120), as well as GSH depletion (118). As 

the highest MeHg concentration we used was 1µM, we may conclude that at low MeHg (nanomolar) 

concentrations neither ROS generating mechanisms, nor ROS protective mechanisms or GSH levels are 

affected.  

 

4.3 Effects of Combined Exposure of MeHg and POPs mixture on ΔΨm 

Another cell parameter closely related with cell survival is the ΔΨm which as well is known to be 

affected by MeHg and organochlorines. Our experiment, investigating mitochondrial membrane 

depolarization, demonstrates that the 100x GM POPs mixture causes a loss of ΔΨm and that 

depolarization increases with increasing MeHg concentrations. But interestingly, in combination with 

the POPs mixture, increasing MeHg concentrations do not lead to an increased depolarization, but to 

reduced mitochondrial membrane depolarization, comparable to untreated cells. 

 

This result is supported by several literature findings. According to a study by Tofighi et al. (2011) (121), 

MeHg can lead to mitochondrial membrane depolarization in hippocampal neurons and mitochondrial 

dysfunction (122). The antagonistic effect of organochlorines and MeHg is in agreement with a study by 

Vettori et al. (2006) (123) that reports about antagonistic effects of PCB-153 and MeHg on lipid 
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peroxidation which is associated with mitochondrial membrane stability. A study supporting the ability 

of OCPs to depolarize the mitochondrial membrane is based upon the fact that mitochondrial calcium 

sequestration, which requires a membrane potential, is inhibited by PCBs (124), (125). There is also 

evidence that MeHg has the ability to induce release of inner mitochondrial calcium stores (45), (46). This 

occurs via the opening of the mitochondrial transition pore (MTP) and results in a membrane potential 

decrease (126). This again is supported by a study of Limke and Atchison (2002) (46) demonstrating the 

ability of MeHg to open the MTP.  

The opening of the MTP and consequent mitochondrial membrane depolarization occurs at 

intramitochondrial increased Ca2+ levels which will result in increased [Ca2+]i levels. It is known that β-

HCH and PCBs increase [Ca2+]i (48), (49), although it is not clear whether the increase in [Ca2+]i is a result 

of intramitochondrial calcium release or extracellular Ca2+ influx. In that case, β-HCH and PCBs might 

be responsible for the POPs mixture’s ability to depolarize the inner mitochondrial membrane. 

 

4.4 Effects of Combined MeHg-ACh and MeHg-DA Exposure on Cell Viability 

The fact that MeHg and organochlorines affect cell physiology, like ΔΨm, and their increased presence 

in people with PD (62), (64), (7) , led to the idea of studying how neurotransmitter involved in PD pathology 

would influence cell viability in combination with environmental pollutants. It has been suggested that 

PD is based upon a DA-ACh imbalance, which is the result of a loss of dopaminergic neurons (70), while 

cholinergic neurons remain unaffected (78). A similar situation occurs at prenatal exposure to MeHg: 

Developmental MeHg exposure is associated with a decreased number in dopaminergic neurons (104), 

while cholinergic neurons are not affected. As PD, associated with low dopamine levels, is linked to 

cortical atrophy too (66), we were interested in how DA and ACh would affect immature cortical neurons 

exposed to environmental pollutants. 

 

Our results demonstrate that cells exposed to MeHg in presence of 100 µM ACh, show an increase in 

cell mortality at the “threshold value” of 100 µM MeHg. 

  

Literature findings show that MeHg concentrations could increase ACh toxicity by increasing ACh 

concentrations which might be due to an inhibition of ACh esterase and an increase in ACh release (92), 

(93). The toxicity may be a result of a raise in [Ca2+]i  which occurs after stimulation of nicotinic ACh 

receptors (127). The increase in [Ca2+]i is in particular toxic for undifferentiated neurons because they 

can’t buffer big amounts of calcium yet (128).  We hypothesize that if MeHg inhibits ACh esterase and 

increases ACh release, the total ACh concentration and hence, the stimulation of nicotinic ACh 

receptors is increased. This results in increased, toxic [Ca2+]i levels. As cells at 100 µM MeHg, the 

“threshold value”, are in general more vulnerable, increased ACh concentration may lead to increased 
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cell death, compared to cells exposed to MeHg only. The fact that we do not see any increased cell 

mortality in MeHg concentrations higher than 100 nM, might be due to the toxicity of MeHg that seems 

to exceed ACh toxicity. The exact mode of action is not known, but may involve ACh receptors, as they 

can influence cell physiology with a broad variety of mechanisms, as explained in section 1.8. 

   

The interactive toxicity of MeHg and ACh should also be taken in account as additional risk of smoking 

mothers who are exposed to mercury not only by fish consumption, but by cigarettes (129) too. 

Increased nicotine levels are found in foetuses of smoking mothers (130) that may also lead to increased 

ACh release (131). This effect would even be worsened in combination with the mercury of the cigarettes 

and could lead to increased cell mortality. 

 

Our experiments investigating DA show that cells exposed to toxic MeHg concentrations exhibit less 

mortality if co-exposed to 10 µM DA. We found the same effect if MeHg was combined with the POPs 

mixture.  

 

On the look for possible mechanisms involved in this protective effect of 10 µM DA, we started by 

investigating glutamate-induced excitotoxicity, which can be elicited by MeHg exposure. This 

hypothesis was based upon a study by Vaarman et al. (2013) (132), who showed a protective effect of 

DA against glutamate-induced excitotoxicity. Although effective concentrations against glutamate-

induced excitotoxicity were smaller than 10 µM DA, we wanted to study if 10 µM DA, which proved to 

be protective against MeHg in our case, would also protect against glutamate-induced excitotoxicity 

in combination with MeHg. Furthermore, we wanted to investigate the possible ability of a sub-toxic 

MeHg concentration to promote excitoxicity. But our results demonstrated that sub-toxic MeHg 

concentrations do not induce excitotoxicity, nor do 10 µM DA protect against glutamate-induced 

excitotoxicity. So we may conclude that 10 µM DA do not protect against glutamate-induced 

excitotoxicity by MeHg. Furthermore, the findings that MeHg and the POPs mixture do not induce 

excitotoxicity are in agreement with our findings that MeHg and POPs mixture do not induce ROS 

production: Excitotoxicity is known to increase ROS levels (51). Therefore, no increase in excitotoxicity 

by MeHg and POPs mixture is in consonance with no rise in ROS production due to MeHg and POPs 

mixture. 

 

Although we could not demonstrate any increase in excitotoxicity, Petroni et al. (2013) (133) provide 

evidence for an increase in toxicity in SH-SY5Y neuroblastoma cells if they were exposed to 50 nM 

MeHg in combination with 1 mM glutamate compared to glutamate only. But these cells seem to be 

generally more susceptible to MeHg: In this study 50 nM MeHg alone cause already a viability decrease 
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of 30%. Furthermore, 600 µM glutamate were highest glutamate concentration, compared to 1 mM in 

the previously mentioned study. 

 

Therefore, our search for a possible explanation for the protective effect of DA continued and we 

focused on the D2 receptor. Literature findings suggest that the D2 receptor is responsible for the 

protective effect of DA (132), (134). Despite this fact, we did not find any D2 receptor-mediated protective 

effect, as we used the D2 receptor antagonist raclopride at 2 µM to investigate a possible D2 receptor 

effect. Although the IC50 of raclopride is 32 nM, we used a higher concentration to be sure that it would 

block efficiently in presence of 10 µM DA. But no effect was observed. 

 

Concluding on the mechanisms of action of DA, we can say that the protective effect of 10 µM DA 

against MeHg-induced toxicity was not affected by additional OCP exposure. Furthermore, this 

protective effect is not due to effects involving mechanisms against excitotoxicity or D2
 receptor-

mediated actions. Regarding the protective effect of DA, it should be further investigated whether 

other DA receptors or transporters are involved in this mechanism. 

 

In conclusion, the results of our experiments, investigating the impact of DA and ACh in cortical 

neurons exposed to MeHg and organochlorines, highlight the link between prenatal MeHg exposure, 

DA-ACh imbalance and cortical atrophy in PD: Decreased number of dopaminergic neurons by prenatal 

MeHg exposure (104) leads in total to a loss of projections to the cortex resulting in a lack of DA there. 

This renders cortical neurons more susceptible to the toxic effects of MeHg, as the protective effect of 

DA is lacking. In turn, the presence of ACh, in combination with MeHg and organochlorines, might even 

contribute to the loss of cortical neurons, if the number of dopaminergic neurons, hence the dopamine 

concentration, is reduced. The reduced number of dopaminergic neurons, in turn, might increase the 

risk of developing PD and of cortical atrophy induced by low-dose MeHg.  

 

4.5 Conclusions 

Generally, our results are in agreement with relevant literature. Our findings demonstrate that at 

environmental concentrations, MeHg seems to be a greater risk for a developing nervous system than 

organochlorines. The mitochondrial membrane depolarizing effect of the OCPs and MeHg alone, which 

is counteracted by the combination of both, provides evidence for possible interactive effects of MeHg 

and organochlorine pollutants without affecting cell viability. Additionally, the cell mortality-increasing 

effect of combined MeHg and ACh exposure should be taken into account in further investigations on 

the topic of environmental pollutant-induced PD. This finding addresses also more awareness to the 

harmful effects of smoking while pregnancy. Foetuses of smoking mothers are exposed to both 
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compounds and thus are more vulnerable to neuronal degeneration. The beneficial effect of DA 

against MeHg neurotoxicity and in PD treatment suggests that the harmful effect of low-dose MeHg 

concentrations might be increased in PD patients as protecting DA levels are reduced.  

Concluding, our experiments and literature provide evidence that MeHg alone or in combination with 

organochlorine pollutants or ACh can have harmful effects on human health and therefore should be 

further investigated. Interactions of MeHg with DA could provide useful information for the 

development of nutritional supplements for pregnant women in regions with a high mercury burden 

and could be a hint for further PD and PD progenitor cell transplant research. 
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ABSTRACT  

Methylmercury’s (MeHg) devastating health effects were demonstrated in the Minamata disease 

outbreak in Japan when people were exposed over decades to low MeHg concentrations, which 

resulted in severe brain damage and long-term effects affecting the central nervous system.  But MeHg 

is not the only perfidious compound causing harm to the human brain at chronic low-dose exposure. 

Organochlorine compounds, used as pesticides or in industry, and present in daily life have a big 

potential to cause neurological damage too. Exposure to both groups of toxicants, MeHg and 

organochlorine compounds, are linked to neurodegenerative diseases, including Parkinson’s disease. 

We wanted to investigate cytotoxic effects of MeHg in combination with various organochlorine 

compounds and neurotransmitters involved in Parkinson’s disease pathology: acetylcholine and 

dopamine.  

We did not find any interactive cytotoxic effect between MeHg and organochlorines. Furthermore, 

there was also no evidence for interactive effects of MeHg and organochlorines involved in oxidative 

stress. But measurements of the mitochondrial membrane potential showed that a mixture of various 

organochlorine compounds and MeHg, depolarizes mitochondrial membrane, but in combination 

counteract mitochondrial membrane depolarization. By researching MeHg in combination with 

Acetylcholine we could show that 100 µM acetylcholine can increase toxicity at MeHg concentrations 

of little toxicity. Furthermore, dopamine seems to have a protective effect against MeHg toxicity, 

which is not diminished by additional exposure to a mixture of numerous organochlorines. Moreover, 

we found that neither D2-receptor mediated actions, nor protection against glutamate-induced 

excitotoxicty is the mode of action in dopamine’s protective actions. 

We hypothesize that the mitochondrial membrane depolarization occurs due to opening of the 

mitochondrial membrane transition pore induced by intramitochondrial rise in Ca2+ which can be 

induced, according to literature findings, by MeHg and various organochlorines. The interactive 

harmful effect of acetylcholine and interactive protective effect of dopamine in combination with 

environmental pollutants provide useful information for neuronal progenitor cell transplantations, a 

potential cure for neurodegenerative diseases, in people with high environmental pollutant burden. 
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ABSTRACT (DEUTSCH) 

Methylquecksilbers (MeHg) verheerende Auswirkungen auf die Gesundheit wurden bei Ausbruch der 

Minamata-Krankheit in Japan deutlich, als die lokale Bevölkerung über Jahrzehnte hinweg niedrigen 

Dosen von MeHg ausgesetzt war, was zu schweren Hirnschäden und Schädigungen des Zentralen 

Nervensystems führte. Aber MeHg ist nicht das einzige Umweltgift, das dem menschlichen Gehirn, 

sogar in sehr geringen Dosen, Schaden zufügen kann. Organochlorine, die als Pestizide oder in der 

Industrie Verwendung finden, und denen man im täglichen Leben ausgesetzt ist, haben auch großes 

Potential neurologische Erkrankungen hervorzurufen. Belastung mit Umweltgiften, wie MeHg und 

Organochlorine, sind mit neurodegenerativen Erkrankungen assoziiert, unter anderem Parkinson. Wir 

wollten mögliche cytotoxische Effekte von MeHg in Kombination mit diversen Organochlorinen und 

Neurotransmittern, die in der Pathologie von Parkinson eine Rolles spielen, nämlich Acetylcholin und 

Dopamin, erforschen.  

Wir konnten keine interaktiven cytotoxischen Effekte zwischen MeHg und Organochlorinen finden, 

ebenso wenig wie interaktive Effekte zwischen MeHg und Organochlorinen in Bezug auf oxidativen 

Stress. Allerdings konnten wir zeigen, dass MeHg und ein Mix aus Organochlorinen die innnere 

Mitochondrienmembran teilweise depolarisieren kann. Aber in Kombination von MeHg und 

Organochlorin-Mix, kommt es zu einem der Depolarisation entgegengesetzten Effekt.  Außerdem 

wurde gezeigt, dass 100 µM Ach -alleine ein sub-toxische Konzentration- in Kombination mit 100 nM 

MeHg zu vermehrtem Zellensterben führt. Außerdem haben unsere Experimente gezeigt, dass 

Dopamin  schützend gegen die toxischen Effekte von MeHg wirkt. Dieser Effekt wird nicht von dem 

Organochlorin-Mix beeinflusst. Wir fanden heraus, dass der schützende Effekt gegen MeHg nicht auf 

einem Schutz vor Exzitotoxizität oder Mechanismen auf Grund einer Dopamin D2-Rezeptor-Aktivierung 

beruht. 

Wir denken, dass die Depolarisation der mitochondriellen Membran auf der Öffnung der 

„mitochondrial transition pore“ durch Zunahme an intramitochondriellen Kalziumkonzentration 

basiert. Die Zunahme intramitochondrieller Kalziumkonzentrationen kann, laut Literatur, durch MeHg 

oder Organochlorine hervorgerufen werden. Der interaktive schädliche Effekt von Acetylcholin und 

der interaktive schützende Effekt von Dopamin in Kombination mit Umweltgiften liefern nützliche 

Informationen für die Erforschung eine mögliche Therapie für Parkinson-Patienten, die mit hohen 

körperlichen Konzentrationen an Umweltgiften belastet sind. 
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