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Abstract (Deutsch)

Das Ziel dieser Masterarbeit ist die Darstellung einiger rezenter Re-
sultate über die Struktur abzählbarer Borel-Äquivalenzrelationen. Die
Arbeit beginnt mit der Einführung wesentlicher Voraussetzungen aus der
deskriptiven Mengenlehre. §3 gibt einen vollständigen Beweis eines Re-
sultates von Popa, das Rigiditätsphänomene von Property (T) Gruppen
beschreibt. Mithilfe dieses Resultates und der in §4 dargestellten Eigen-
schaften der speziellen linearen Gruppen über den ganzen Zahlen wird
in §5 das Resultat von Scot Adams und Alexander S. Kechris bewiesen,
welches besagt, dass Continuum-viele unvergleichbare abzählbare Borel-
Äquivalenzrelationen existieren. Der Höhepunkt dieser Arbeit ist §6, wo
mehrere Resultate von Simon Thomas über die Komplexität des Klassi-
fikationsproblemes für abzählbare torsionsfreie abelsche Gruppen endlichen
Ranges dargelegt werden. Der hier beschriebene Beweis folgt der neuen
Beweismethode von Samuel Coskey und verwendet Adrian Ioanas Su-
perrigidity Theorem.
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Abstract (English)

This thesis provides an exposition of some recent results on the struc-
ture of countable Borel equivalence relation. We start by introducing the
relevant concepts from descriptive set theory. The main tool for our ex-
ploration of the poset of countable Borel equivalence relations is given by
Sorin Popa’s cocycle superrigidity theorem, which is proved in detail in
§3, by means of the ergodic-theoretic methods provided by Alex Furman.
Together with the properties of the special linear group over the integers
described in §4 (mainly property (T)), these are the tools of the trade for
the last two sections. In §5 we show how to directly derive the result
of Scot Adams and Alexander S. Kechris on the existence of continuum-
many incomparable countable Borel equivalence relations by means of
Popa’s theorem. We conclude this thesis by giving a detailed sketch of
Simon Thomas’s proof that the complexity of the classification problem
for torsion-free abelian groups of fixed finite rank increases strictly (in
the Borel sense) as the rank increases; we furthermore show the result of
Thomas that these countably many Borel equivalence relations obtained
from this classification problem are not cofinal in the poset of countable
Borel equivalence relations. The proof we provide here is by Samuel
Coskey, by means of Adrian Ioana’s superrigidity theorem.
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1 Introduction

The purpose of this thesis is twofold; on the one hand, we want to show
the reader some results that explain the richness of the partial order of
countable Borel equivalence relations when viewed under Borel reducibil-
ity. We tried to make this as self-contained as possible while keeping
some sensible space-constraints in mind.

The main tool for this exploration will come in the form of Sorin
Popa’s cocycle superrigidity theorem, as presented in §2.

The second aim is to provide an exposition of various results cen-
tered around the classification problem for countable torsion free abelian
groups. The main theorem here will certainly be Simon Thomas’s result
that the «difficulty» of the classification for torsion free abelian groups
strictly increases with an increase of rank.

Some words on classification problems The systematic study classifi-
cation problems set in the context of Borel equivalence relations seems to
originate from the seminal paper by L. Stanley and H. Friedman ([FS89]).
As a summary, we would like to pick and discuss those results presented
therein which are of primary interest for presentation of the theory, since
they provide a very natural starting point for the main topics treated in
this thesis.

The structural novelty of the discussion certainly lies in viewing the
isomorphism relation for a given class of structures in a descriptive set-
ting, whence Borel reductions can be used to discuss the «complexity»
of such structures. One of the first structural achievements lies in their
definition of a jump operator (customarily called the Friedman–Stanley
jump), which allows to construct, starting from any non-trivial Borel
equivalence relation, a tower of increasingly complex Borel equivalence
relations of height ω1. However, the main body of their work lies in the
description of a number of classes of structures and their corresponding
isomorphism relations; their primary concern is whether those are or are
not Borel complete or even complete analytic.
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Theorem 1 ([FS89, Theorem 5]). The isomorphism relation on abelian torsion
groups is not Borel complete. More precisely, it does not reduce to equality of
countable subsets of reals.

Since equality of countable subsets of reals lies in the lower regions
(level 4 or level 2, depending on the concrete definition) of the FS-tower,
in this way the incompleteness is shown. The proof analyses the groups
from the point of view of their direct decomposition into primary sub-
groups and in turn codes those subgroups by means of their Ulm invari-
ants.

Furthermore, in [FS89, §2.4] they proceed by direct analysis of the
Kurosh–Malcev invariants in order to show that the isomorphism relation
on the class of torsion-free abelian groups of finite rank is Borel; we will
come back to this soon.

As for [FS89, §2.5], it is conjectured that the isomorphism relation for
infinite rank torsion-free abelian groups is in fact Borel complete. In other
words,

Conjecture 2 (Friedman–Stanley). For any countable language L the follow-
ing holds:

∼=�Mod(L) ≤B
∼=�TFAG∞ ,

where ∼= �TFAG∞ denotes the isomorphism relation on torsion-free
abelian groups of infinite rank. At the time of writing this thesis, this
seems to still be open. However, the following related result has been
proved by G. Hjorth:

Theorem 3 ([Hjo02]). Start with any countable language L; then for any Borel
X ⊆ Mod(L) such that the resulting isomorphism relation ∼=Mod(X) is also
Borel, the following holds:

∼=�Mod(X) ≤B
∼=�TFAG∞

We deem it important to emphasize that this directly implies that iso-
morphism of torsion-free abelian groups of infinite rank ∼= �TFAG∞ is not
Borel.
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Countable Borel Equivalence Relations Since the classification of hy-
perfinite Borel equivalence relations in [DJK94], the countable Borel equiv-
alence relations, i.e. those whose classes are all countable, have enjoyed
particular scrutiny by the community. One apparent reason is the fact
that quite a few problems from other areas of mathematics can be cast
in their setting (as for the classification of countable torsion-free abelian
groups, which form the example dealt with in this thesis), together with
their close relation to group actions and consequently orbit equivalence
relations.

For many years it remained an open problem to show that there are
any Borel equivalence relations strictly between E0, the relation of even-
tual agreement on ω–sequences of zeroes and ones, and E∞, the univer-
sal countable Borel equivalence relation. The definitive settlement in this
matter came from [AK00] in the following form.

Theorem 4 (Adams–Kechris). The partial order of Borel subsets of the reals R

under set inclusion ⊆ can be embedded into the partial order of countable Borel
equivalence relations under Borel reducibility (modulo bireducibility). In other
words, there exists an assignment

X 7→ EX

assigning to each X ⊆ R a countable Borel equivalence relation EX such that

X ⊆ X′ ⇐⇒ EX ≤B EX′ .

They achieved this by relying heavily (and brilliantly, for that matter)
on the superrigidity theorems of R. Zimmer (which, in turn, have deep
connections to the superrigidity theory by Margulis and Mostow). More
specifically, they prove that considering the groups

SO7

(
Z

[
1
p

])
for any prime p ∈ P, the free parts of their induced shift equivalence
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relation on {0, 1}–sequences are indeed ≤B–incomparable for unequal
primes.

Countable Torsion-Free Abelian Groups of Finite Rank As for the
classification problem of countable torsion-free abelian groups of finite
rank, it was long known that for the rank-one–groups the isomorphism
relation is indeed hyperfinite (see the classical result of Baer); Then Hjorth
proved in [Hjo99] that the rank-two–problem is not hyperfinite, so strictly
above E0; however, it was not known at the time whether this equivalence
relation might be countably universal, so that the complexity of the iso-
morphism problem might collapse at the second level.

It was not until after the new methods introduced by Adams–Kechris
that S. Thomas found a way to directly analyse the complexity for the
rank-three–case by using Król’s analysis of endomorphism rings of torsion-
free abelian groups of rank two ([Tho02a]). In fact, Adams and Kechris
themselves had already proved that if the isomorphism relation was re-
stricted to the rigid groups, i.e. those with a most simple automorphism
group, then none of the resulting equivalence relations was countably
universal; so an ω–tower was obtained. However, the relationship be-
tween the rigid groups and the general case was unclear, until Thomas
proved the two-three–result and the general case soon afterwards, leading
to the following

Theorem 5 ([Tho03]). For any n ∈ ω we have

∼=n <B
∼=n+1 .

Limitations We remark that we have decided to leave two topics com-
pletely out of the thesis (even in the sense of references), although they
are situated very close to the theory developed here and certainly reflect
deeper insights while furthermore many current developments are even
based on them: in the case of Borel equivalence relations, this refers to
the concept of treeability; for rigidity phenomena of group actions, a
different and important reduction notion is given by orbit equivalence.
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Prerequisites This thesis is written with a set-theoretic reader in mind.
The basic concepts of descriptive set theory should be enough to un-
derstand most of the material. Furthermore, an introductory chapter is
provided by section 2, which introduces all the relevant concepts from
descriptive set theory and the theory of Borel equivalence relations. In
order to ease the access further, we provide an index as well as an index
of symbols at the end. All other concepts are introduced where they are
needed, like for example abelian group theory or representation theory.
We give a list of the sections which require further prerequisites from the
reader:

• Section 3.2 needs some understanding of measurable quotients and
the involved relative notions; see [Fur07] or [Gla03].

• Section 6.4 provides only an introduction to the concepts around
Ioana’s superrigidity theorem, without proving the theorem itself;
see [Ioa11] or [Cos13].

• The last paragraph in section 6.4 uses results from the superrigidity
theory of Margulis;

• Section 6.5 needs a rather deep result from [Lad79];

• Section 6.5 needs some more results on the structure of abelian
groups; those that seem appropriate for the discussion are intro-
duced at the beginning of the section, the rest is referenced to [Fuc73].

Acknowledgements I would like to thank Asger Törnquist for his valu-
able input and many hours dedicated to answering my (in the beginning
very basic) questions and for giving a basis and subsequently a direction
to this thesis; I furthermore thank Jakob Kellner, without whom none of
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Zsidó for their numerous comments concerning content and structure.
Last but not least, I am greatly indebted to my parents for their relentless
and unchanging support.
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2 Preliminaries

We start out by introducing the basic notions (mostly without provid-
ing proofs). We do not pretend the exposition here to be complete by
any means; the main concern is introducing language and fundamental
results.

Borel Equivalence Relations We introduce and remind the reader of
the basic notions; for more details consult [Gao09] or [Kec95].

The main objects of study are Polish spaces X together with an equiv-
alence relation E ⊆ X × X which is Borel as a subset of the product. In
fact, we are mainly concerned with the Borel structure, so that we opt to
forget the topology.

Definition 6. A standard Borel space is a set X together with a σ–algebra
B such that there exists a Polish topology on X generating B as Borel sets.

Naturally we would like to compare the complexity of equivalence
relations; for that matter, we define Borel reductions.

Definition 7. Let E and F be two Borel equivalence relations on their respective
spaces X and Y. A Borel function

f : X → Y

is a reduction from E to F if the following holds:

∀x, y ∈ X xEy⇐⇒ f (x)F f (y) .

If only implication holds in this last formula, then we say that f is a homomorphism
from E to F.

In order to make the quasi-order of Borel equivalence relations under
reductions into a partial order, we naturally identify bireducible equiva-
lence relations.
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Definition 8. For two Borel equivalence relations E and F, E is reducible to
F (or F reduces E) if there exists a reduction from E to F, in symbols

E ≤ F .

If both E ≤ F and F ≤ E hold, we say that the equivalence relations are
bireducible or equivalent.

We only consider Borel reducibility; we note that one can also con-
sider different reducibility notions, like Borel embeddings or continuous
reductions, but these are outside of the scope of this thesis.

We would like to remind the reader of the two classical dichotomy
theorems, also observing that there are no other pairs which form a di-
chotomy for all Borel equivalence relations (see [KL97, §5]).

Theorem 9 (Silver). For any Borel Equivalence relation E,
either

1. E ≤ id(ω)

or
2. id(2ω) ≤ E

Definition 10. Let E0 denote the relation of eventual agreement on Cantor space
2ω.

Theorem 11 (Glimm–Effros, Harrington–Kechris–Louveau). For any Borel
Equivalence relation E,
either

1. E ≤ E0

or
2. E0 ≤ E

The original proofs of both the Silver dichotomy as well as the Harrington–
Kechris–Louveau dichotomy relied heavily on Gandy–Harrington forc-
ing (or the respective topology depending on your point of view). Since
B.D. Miller publications, a different approach using graphs and Borel
chromatic numbers is known. We are only interested in countable Borel
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equivalence relations, i.e. those for which all classes are countable. The
fundamental and celebrated theorem by Feldman–Moore states that ev-
ery countable Borel equivalence relation is in fact induced by the Borel
action of a countable group.

Theorem 12 (Feldman–Moore). Let E be a countable Borel equivalence rela-
tion on a standard Borel space X. Then there exists a countable group G such
that E is induced by a Borel action of G on X.

Furthermore, we define

Definition 13. A Borel equivalence relation is called finite [countable], if
each of its equivalence classes is finite [countable].

This leads to the definition of hyperfiniteness:

Definition 14. A Borel equivalence relation is hyperfinite, if it can be repre-
sented as the increasing union of a countable family of finite Borel equivalence
relations.

Theorem 15. Let E and F be Borel equivalence relations (on standard Borel
spaces X and Y respectively).

1. If E ⊆ F and F is hyperfinite, then E is also hyperfinite.

2. If E ≤ F and F is hyperfinite, then E is also hyperfinite.

3. Given a Borel set A ⊆ X and a hyperfinite E, then its restriction E�A is
also hyperfinite.

In their seminal paper [DJK94] show that up to Borel reducibility, E0 is
the only non-smooth hyperfinite Borel equivalence relation. They further-
more even characterize hyperfinite relations up to Borel isomorphism.

Some results on group actions

Definition 16. Given a measure preserving group action of a group G acting
on a measure space (X, µ), the system is called ergodic, if any invariant set is
either null or conull.
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The following fact is well-known.

Theorem 17. The following are equivalent:

• G y (X, µ) is ergodic.

• For any G–invariant Borel function f : X → Y mapping into a standard
Borel space Y, it follows that f is constant almost everywhere.

We end with the following result, which we will need later on. It says
that Bernoulli shifts are strongly mixing.

Lemma 18. For any infinite countable group G, the shift action of G on Fr(G y
2G) is strongly mixing (with respect to the usual product measure on 2G).

Proof. Recall the definition of the basis consisting of the clopen sets

Ns := { f ∈ 2G | f�dom(s) = s} ,

for s varying through the maps defined on finite subsets of G and map-
ping to {0, 1}.

Then we may restrict ourselves to finite unions of these basic open sets,
since these finite unions are dense in the measure algebra of (2G, mu).
Assume that

A1 =
⋃

i≤k1

Ns1
i

,

A2 =
⋃

i≤k2

Ns2
i

.

Then, except for finitely many group elements γ, the unions of the do-
mains of the basic sets get shifted away from one another, i.e.

γ

⋃
i≤k1

dom(s1
i )

 ∩ (
⋃

i≤k2

dom(s2
i )) = ∅ ,

so for those γ, the sets γ.A and B are really independent, therefore

µ(γ.A ∩ B) = µ(γ.A)µ(B) = µ(A)µ(B) ,
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which completes the argument. a

Representation Theory and Kazhdan’s Property (T)

Definition 19. A unitary representation of a group G is a pair (π,H)

consisting of a Hilbert space H together with a continuous homomorphism

π : G → U (H)

mapping into the unitary group of the hilbert space.

Definition 20. Let (π,H) be a unitary representation of a discrete countable
group G. For a subset K ⊆ G and a real ε > 0 a vector ξ is said to be
(K, ε)–invariant if

sup
g∈K
‖πx(ξ)− ξ‖ < ε‖ξ‖ .

When the corresponding representation is understood from context,
We will denote the set of (K, ε)–invariant vectors by VK,ε.

Definition 21. A unitary representation has almost invariant vectors if
VK,ε is nonempty for every finite K ⊆ G and every ε > 0.

The basic definition of property (T) is the following.

Definition 22. A countable discrete group has Kazhdan’s property (T) if
every unitary representation which almost has invariant vectors actually has a
non-trivial invariant one.

Property (T) is in fact equivalent to just having a single pair (K, ε) with
K ⊆ G finite and ε > 0 such that every unitary representation which has
(K, ε)–invariant vectors already has non-trivial invariant ones. For the
non-trivial direction, starting with the assumption that G does not have
(T), consider all possible admissible pairs (K, ε); for every such pair, there
is supposed to exist a unitary representation with non-trivial invariant
vectors, but with a (K, ε)–invariant one. Constructing the direct sum of
all such representations, it is very easy to see that this new representation
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certainly possesses almost invariant vectors; however, all invariant ones
must be trivial. We will call such a pair as was just described a Kazhdan

pair.

Theorem 23. Let G be an arbitrary topological group. Then (G,
√

2) is a Kazh-
dan pair.

Proof. Define A as the closed convex hull of

π(G)ξ0 ,

where ξ0 is such that

sup
g∈G
‖π(x)ξ0 − ξ0‖ <

√
2 .

Define η0 as the element in A which is norm-minimal; the G–invariance
of A furthermore implies the invariance of η0. It remains to show that η0

is non-trivial.

To that end, define

ε :=
√

2− sup
g∈G
‖π(x)ξ0 − ξ0‖ ,

which is positive by definition.

From the following simple identity

2− 2Re (〈π(g)ξ0, ξ0〉) = ‖π(x)ξ0 − ξ0‖2 ≤ (
√

2− ε)2

we obtain that for all g ∈ G

Re (〈π(g)ξ0, ξ0〉) ≥
2− (

√
2− ε)2

2
=

ε(2
√

2− ε)

2
> 0 .

This directly implies for each η ∈ A that

Re (〈η − ξ0〉) > 0 ,
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so in particular η0 6= 0. a
We conclude with a theorem, stating that invariant vectors can be

found lying close to the almost invariant ones.

Theorem 24. If H C G has relative property (T), then for any δ > 0 there
exist a finite K ⊆ G and ε > 0 sucht that the following holds: any unitary
representation of G with non-empty VK,ε has an H–invariant unit vector ξ0

with
dist(ξ0, VK,ε) < δ .

Proof. Define
Λ := {ξ ∈ H | ∀h ∈ H π(h)ξ = ξ} ,

i.e. the subspace of all H–invariant vectors in H; furthermore let ξ be a
(K, δε̃)–invariant vector.

Since H is a normal subgroup, it immediately follows that Λ is G–
invariant.

Take the orthogonal decomposition of ξ over Λ, so

ξ = λ + λ′ ,

with λ ∈ Λ and λ′ ∈ Λ⊥. Since we are dealing with unitary represen-
tations, it follows that Λ⊥ is also G–invariant, so we can consider the
subrepresentation by restricting to Λ⊥; now by definition Λ⊥ contains no
non-trivial invariant vectors and by the fact that (K, ε̃) is a Kazhdan pair,
we know that there exists an h ∈ H such that

‖π(h)λ′ − λ′‖ ≥ ε̃‖λ′‖ .

By definition we also have

‖π(h)λ′ − λ′‖ = ‖π(h)ξ − ξ‖ < δε̃‖ξ‖ ,

which gives together

‖ξ − λ‖ = ‖λ′‖ < δ‖ξ‖
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thus we have established that using that orthogonal projection onto the
space of H–invariant vectors we obtain the one we were looking for; for
obtaining unit norm observe that in norming λ we do not obstruct any of
the arguments, though the constants might change. a

Definition 25. Let G be a discrete countable group, H ≤ G a subgroup. Then
we say that H has relative property (T) in G (or that the pair (G,H)

has property (T) if every unitary representation of G which almost has in-
variant vectors, actually has a non-trivial H–invariant one.

Projection-valued measures In the case of a locally compact abelian
groups G, it turns out that its unitary representations can be described
in the form of so called projection-valued measures on the Pontryagin
dual Ĝ.

Definition 26. A projection-valued measure on a locally compact space X
is a mapping

E : B(X)→ Proj(H) ,

where Proj(H) ⊆ L(H) denotes the space of orthogonal projections, which sat-
isfies the following

1. E(∅) = 0 and E(X) = id;

2. E(B1 ∩ B2) = E(B1)E(B2) for all Borel B1, B2;

3. For a countable sequence of pairwise disjoint Borel sets (Bn)n∈ω, we have

E

(⋃
n∈ω

Bn

)
= ∑

n∈ω

E(Bn) ,

where the sum converges in the sense of the strong operator topology.

The following classical theorem by Stone, Naimark, Ambrose and
Godement gives the desired characterization.
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Theorem 27 (SNAG Theorem). Let (π,H) be a unitary representation of a
locally compact group G. Then there exists a unique regular projection-valued
measure

Eπ : B(Ĝ)→ Proj(H)

such that
π(x) =

∫
x̂∈Ĝ

x̂(x)dEπ(x̂) .

Cocycles Let us now give the basic definition which is needed for the
rigidity theorems and their consequences.

Definition 28. For G, L locally compact groups and X a standard Borel space,
a map α : G× X → L is called a cocycle if the following identity holds:

α(g · h, x) = α(g, h.x) · α(h, x) .

So a cocycle can be thought as being akin to a group homomorphism,
however subject to the caveat of needing to consider the action (and the
space acted upon). In case of independence on the second coordinate, we
are indeed handed a group homomorphism.

Now the typical way by which cocycles will arise for us is the fol-
lowing: start out with a standard Borel G–space X and a standard Borel
H–space Y, for some countable groups G, H. Assume furthermore that
the action of H on Y is free, and that we have a homomorphism f : X → Y
between the induced equivalence relations EX

G and EX
H at our disposal. As

a consequence, we can define a cocycle

α : G× X → H

by setting

α(g, x) := «the unique h ∈ H which realises f (g.x) = h. f (x)»

uniqueness is granted by the freeness of the action, and it is easy to check
that this is indeed a cocycle.
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We will denote the space of all cocycles from the action G y X into
H by Z1(G y X, H). Furhtermore, we define an equivalence relation on
this space: two cocycles α, β are said to be cohomologous if there exists a
Borel ϕ : X → H such that we have for all g ∈ G and x ∈ X

α(g, x) = ϕ(g.x) β(g, x) ϕ(x)−1 .

The space of cocycles modulo cohomology will be denoted by H1(G y
X, H). We will always consider Z1(G y X, H) to be endowed with the
topology of convergence in measure; i.e. we obtain a basis for the topol-
ogy by considering all finite sets F ⊆ G and all ε > 0 and considering
cocycles α, β such that

µ ({x ∈ X | α(g, x) 6= β(g, x)}) > 1− ε

for all g ∈ F.
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3 Popa Cocycle Superrigidity

We want to prove a very special case of Popa’s Cocycle Superrigidity
Theorem. For generalities see subsection 3.4. Let us begin by stating the
theorem, which we will use in the coming chapters:

Theorem 29. Let G be a discrete countable group, H C G a normal subgroup
with property T. Let G act by Bernoulli shifts on the space (X, µ)G, for a proba-
bility space (X, µ):

G y (X, µ)G .

Then for any discrete countable group L, any measurable cocycle α : G ×
X → L is cohomologous to a homorphism, i.e. there exists ϕ : X → L measurable
and ρ : G → L homomorphism such that

α(g, x) = ϕ(g.x) ρ(g) ϕ(x)−1

holds.

We will in fact only prove this for the case where (X, µ) is non-atomic;
to see how one can derive the general theorem see the remarks at the end
of this chapter in subsection 3.4.

Weak mixing and malleability of Bernoulli actions The following is a
property enjoyed by Bernoulli actions, which we will need to get the full
strength of Theorem 29.

Lemma 30. For a non-atomic standard probability space (X, µ), the flip trans-
formation F(x, y) := (y, x) is contained in the path connected component of the
identity of the identity in Aut(X× X, µ× µ).

Proof. Since any non-atomic standard probability space is isomorphic to
Lebesgue measure on the unit interval [0, 1], we may assume without
loss of generality that this is the space in question. Define Tt : [0, 1] →
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Aut([0, 1]2, m2), where m denotes Lebesgue measure, by

Tt(x, y) :=

(x, y) if x, y ∈ [0, t]

(y, x) otherwise

Then obviously T0 = F, the flip, and T1 is the identity. This path is clearly
continuous in the strong, and hence also in the weak topology. a

From this we obtain the malleability of Bernoulli actions (with non-
atomic base space) by observing that the diagonal embedding

Aut(X, µ)→ Aut
(
(X, µ)G

)
is continuous, and its image commutes with G. Furthermore, we note
that Bernoulli actions are strongly mixing, as we have seen in Lemma 18.

In fact this holds true even for generalised Bernoulli actions (under
the assumption of no finite orbits), which are obtained by substituting
the G–product of the space X by the product over an arbitrary countable
index set on which G acts (see [Fur07]). We now state the form of the
theorem which we will subsequently prove.

Theorem 31. Start with a discrete countable group G with a normal subgroup
HCG with property (T) acts on a standard probability space (X, µ) in a measure
preserving way. Assume that the G–action is ergodic and malleable and that
furthermore the H–action is weakly mixing.

Then the action is cocycle-superrigid for any discrete countable group as tar-
get.

We first need to introduce a topology on the automorphism group of
a measure space.

Definition 32. For a measure space (X, µ) denote by

Aut(X, µ)

the automorphism group of the measure space; more precisely, the set of
all measurable bijections between conull subsets of X which preserve the measure.
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We want to endow this group with a topology, so as to make it a
topological group. Recall that we can embed

Aut(X, µ)→ U
(

L2(X, µ)
)

via the Koopman-representation, thereby identifying each element of the
automorphism group with a unitary transformation of the space of square-
integrable functions on X. This embedding allows us to use the known
topologies on the unitary group in order to topologize Aut(X, µ). By the
metric completeness of the weak topology on Aut(X, µ), which is stated
below, we also know that the image under this natural embedding is
closed in

(
L2(X, µ)

)
.

Definition 33. Unless stated otherwise, Aut(X, µ) will always be considered to
be endowed with the weak topology, i.e. the topology inherited from U (L2(X, µ))

together with the weak operator topology.

This topology can be viewed as generated by the following family of
pseudometrics, one for each measurable set E:

dE(T, S) := µ (T(E)4S(E)) .

For the sake of completeness, we also quickly show the following impor-
tant property of the measure automorphism group.

Theorem 34. For any Lebesgue measure space, the space Aut(X, µ) endowed
with the weak topology is a Polish group.

Proof. By direct calculation we see that

|dE(T, S)− dF(T, S)| =

= |µ((T(E) \ S(E)) ∪ (S(E) \ T(E)))− µ((T(F) \ S(F)) ∪ (S(F) \ T(F)))

≤ 2(|µ(E)− µ(F)|) ≤ 2µ(E4F) .

So since (X, µ) is a standard Borel space, we have a countable family of
sets at our disposal, which are dense in the Borel σ-algebra. Together
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with the above inequality this means that the space is both metrizable
and separable. It is furthermore easily seen that this metric is complete;
we leave this to the reader. a

3.1 A Local Theorem of Hjorth

The following theorem, which is in principle from [Hjo05] is the core of
the proof; it states that if we start from an appropriately ergodic action
arising from a property (T) group, then any two cocycles that are (in a
specific sense) «close» to each other will already be cohomologous.

Theorem 35 (Hjorth). Let G be a discrete countable group, H < G a subgroup
with property (T), and let G y (X, µ) be a measure preserving action on a
standard probability space such that the restriction to H is ergodic.

Then for any discrete countable group L, there exists a finite set K ⊆ G and
ε > 0 such that for any two cocycles α, β : G× X → L that satisfy

∀g ∈ K(µ(x ∈ X | α(g, x) = β(g, x)) > 1− ε)

there exists a measurable ϕ : X → L such that α and β are cohomologous as
H-cocycles:

∀h ∈ H(α(h, x) = ϕ(h.x)β(h, x)ϕ(x)−1) .

Proof. As we have shown in Theorem 24, we know that we can find invari-
ant unit vectors lying close to the almost invariant ones; in other words,
we know that there exist a finite subset K ⊆ G and ε > 0 such that for
any unitary representation π : G → U (Hπ) that possesses a unit vector
v0 ∈ Hπ with

inf
g∈K
|
〈
πg(v0), v0

〉
| ≥ 1− ε

there exists an H–invariant unit vector v ∈ Hπ with

‖v− v0‖ <
1

10
.

Now suppose that (α, β) ∈ VK,ε. The main idea will be to consider a new

32



space given by the product

X̃ := X× L

endowed with the measure µ̃ := µ×mL, where mL denotes the counting
measure on L. Define

G y (X̃, µ̃)

g.(x, l) := (g.x, α(g, x) · l · β(g, x)−1) .

This defines a unitary representation π on L2(X̃, µ̃) =: H by simply com-
posing vectors in H with the action of an element in G, so

πg(v)(x, l) = v
(

g.x, α(g, x) · l · β(g, x)−1
)

.

Let us find a unit vector in H that suits our needs:

F0 := χX×{e} ,

where e denotes the identity element in L. Remembering that (X, µ) is a
probability space clearly shows that this characteristic function is a unit
vector. Furthermore we can calculate

〈
πg(F0), F0

〉
=
∫

X×L
F0(x, l) · F0

(
g.x, α(g, x) · l · β(g, x)−1

)
dµ̃(x, l)

=
∫

X×{e}
F0

(
g.x, α(g, x) · l · β(g, x)−1

)
dµ̃(x, l)

= µ({x ∈ X | α(g, x) = β(g, x)})

and for g ∈ K this last term is by assumption greater than 1− ε. So by
property (T) we know that there exists an H-invariant unit vector F ∈ H
close to F0.

Take this F ∈ H and for each x ∈ X view it as a function

ιx : L→ [0, ∞[ l 7→ |F(x, l)|2 .
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Using Fubini’s theorem, we know that ιx is summable for µ-a.e. x ∈ X,
so we can define µ-a.e. the functions

w : X → [0, ∞[ x 7→ ∑
l∈L

ιx(l)

p : X → [0, ∞[ x 7→ max
l∈L

ιx(l)

k : X → ω x 7→ card ({l ∈ L | ιx(l) = p(x)})

denoting, respectively, the sum, maximum value and number of points
where that maximum value is attained.

These functions w, p, k are by definition certainly measurable, and re-
calling that F is H-invariant for the representation π, clearly reformulates
as being H-invariant for the action G y (X̃, µ̃) which, by the defini-
tion of that action, makes our functions w, p, k H-invariant for the action
G y (X, µ). Hence ergodicity allows us to conclude that they are con-
stant functions for µ-a.e. x ∈ X. Calculating the first is easy and gives
w(x) = 1; let us call call the others by abuse of notation the same as their
constant values, i.e. p(x) = p, k(x) = k).

Since
p(x) · k(x) ≤ w(x)

it follows that p ≤ 1
k , so in particular |F(x, e)|2 = ιx(e) ≤ 1

k . This leads to

‖F− F0‖2 ≥ 1− 1√
k

which contradicts ‖F− F0‖ < 1
10 unless we take k = 1.

This fact gives us the possibility to define a function ϕ : X → L by the
identity

|F(x, ϕ(x))|2 = p ,

i.e. simply choosing the element where the maximum of ιx is attained.
This choice for constructing the function is furthermore measurable, which
stems from the way we were able to define it. Since F is H-invariant, we
once more obtain, by turning to the definition of G y (X̃, µ̃) and looking
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at the second component, that

∀h ∈ H
(

ϕ(h.x) = α(h, x) · ϕ(x) · β(h, x)−1
)

,

which is clearly equivalent to α and β being H-cohomologous. a

3.2 An Untwisting Theorem

Our goal in this section is to show that if we start from a weakly mixing
action and are able to establish a connection between to cocycles, which
can be described as some sort of untwisting, though depending on two
spacial coordinates, then we can deduce that this is already enough to
loose the two spacial coordinates and get an untwisting in the sense of
cohomology.

The theorems in this section are stated and proved in a more general
context than we will need for our main theorem, i.e. with respect to
measurable quotients. For the general theorem see subsection 3.4.

A few words on measurable quotients In this subsection, the main ob-
jects involved are probability spaces (X, µ) acted upon by discrete count-
able groups G, together with measurable quotients Y; in other words,
we are implicitly given a measurable measure preserving surjection

π : X → Y

which also respects the action (it is understood that Y is a G–space as
well). To define the the notion of relative weak mixing, we first recall the
notion of fibered product.

Definition 36. Let (X1, µ2), (X2, µ2) be two standard Borel probability spaces
together with a common measurable quotient (Y, ν) and quotient maps p1, p2.
Then the fibred product is obtained

X1 ×Y X2 := {(x1, x2) ∈ X1 × X2 | p1(x1) = p2(x2)}
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together with the following measure obtained from the measure disintegration
through both p1 and p2:

(µ1 ×ν µ2)(B) :=
∫

Y
(µ1,y × µ2,y)(B)dν(y) ,

where µ1,y and µ2,y denote the corresponding disintegrations.

We start with the following simple

Lemma 37. Let (X, µ) be a standard probability space, (M, d) a separable metric
space and Φ : X → M a Borel map such that for µ× µ-almost every (x1, x2) we
have

d (Φ(x1), Φ(x2)) = d0 .

Then d0 = 0 and there exists m0 ∈ M such that the pushfoward measure has the
form Φ∗µ = δm0 .

Proof. Towards a contradiction, assume that d0 > 0. Since M is separable,
it can be covered by countably many open balls:

M =
⋃

i<ω

Bi

with diam(Bi) < d0. Defining Ei := Φ−1(Bi), these sets have all measure
zero by the choice of diameter of the covering balls. But also

1 = ∑
i<ω

µ(Ei) ,

obviously a contradiction. Thus it must be that d0 = 0, which implies that
Φ∗µ the Dirac measure concentrating at some m0 ∈ M. a

The next Lemma contains the main idea which we want for our goal;
if we start with an ergodic action and a relatively weakly mixing quotient,
then given two cocycles for the action on the quotient, if we know that
we can untwist the into one another by a measurable function on the
extension, then we automatically obtain that this untwisting may take
place in the quotient. More precisely,
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Theorem 38. Let G y (X, µ) be an ergodic action, (X, µ)→p (Y, ν) a measur-
able quotient which is also relatively weakly mixing. Let L be a discrete countable
group, α, β : G×Y → L two measurable cocycles.

Let Φ : X → L be a measurable function, such that

∀g ∈ G ∀∗x ∈ X α(g, p(x) = Φ(g.x) β(g, p(x))Φ(x)−1 .

Then Φ descends to Y, i.e. there exists ϕ : Y → L measurable, with

Φ = ϕ ◦ p a.e. on X

and
α(g, y) = ϕ(g.y) β(g, y) ϕ(y)−1 .

Proof. Since the quotient is relatively weakly mixing, we know that the
diagonal action of G on the fibered product (X ×Y X, µ×ν µ) is ergodic.
Define f : X×Y X → [0, ∞) by

f (x1, x2) := d(Φ(x1), Φ(x2)) .

We claim that it is G-invariant: denoting by

y := p(x1) = p(x2) ,

we have for all g ∈ G and for µ×ν µ-a.e. (x1, x2) that

f (g.x1, g.x2) = d (Φ(g.x1), Φ(g.x2))

= d
(

α(g, y)Φ(x1) β(g, y)−1, α(g, y)Φ(x2) β(g, y)−1
)

= d (Φ(x1), Φ(x2)) = f (x1, x2) .

Relative weak mixing implies that f is essentially a constant, say d0, for
(µ×ν µ)-a.e. (x1, x2). Applying Lemma 37 to (X, µy), we see that

Φ∗µy = δϕ(y)

37



for some measurable ϕ : Y → L. a

We shall note the following important corollary, which is of indepen-
dent interest.

Corollary 39. Let G be a discrete countable group, together with a probability
G–space preserving the measure and two measure preserving extensions:

(X, µ)→ (X′, µ′)→ (Y, ν) .

Furthermore assume that the first extension (X, µ) → (X′, µ′) is relatively
weakly mixing.

If every measurable cocycle for G y (X, µ) targeting any discrete count-
able group can be untwisted relatively to (Y, ν), then also every cocycle for the
intermediate action G y (X′, µ′) can be be untwisted relatively to (Y, ν).

Less formally, this means that rigidity is transferred to the intermedi-
ate quotient.

Now we have reached the final step, we can take the previous theorem
to obtain the following theorem, which will be crucial for getting the
global structure theorem for the space of cocycles modulo cohomology.

Theorem 40. Let G y (X, µ) be a relatively weakly mixing measure preserving
action on a probability space with respect to a quotient (Y, ν). Let α, β : G ×
X → L be two measurable cocycles with values in a discrete countable group L.
Assume that there exists a map F : X×Y X → L with the following property for
all g ∈ G and µ2

ν-a.e. (x1, x2) ∈ X2
Y

α(g, x1) = F(g.x1, g.x2) β(g, x2) F(x1, x2)
−1 . (?)

Then there exists a measurable cocycle on the quotient ρ : G×Y → L such that
both cocycles α and β are cohomologous to it.

Proof. By the assumption we know that the relation in Equation ? holds
on µ2

y–conull many (x1, x2) for ν–conull many y ∈ Y. Using Fubini we
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get simultaneously the following relations for µ3
y–a.e. (x1, x2, x3) ∈ X3 on

a ν–conull set of y ∈ Y:

α(g, x1) = F(g.x1, g.x3) β(g, x2) F(x1, x2)
−1

and

α(g, x3) = F(g.x3, g.x3) β(g, x2) F(x3, x2)
−1

We can now substitute the first equation into the second one, and by
setting

Φ(x1, x2, x3) := F(x1, x2) · F(x3, x2)
−1

we get the following identity for µ3
ν–a.e. (x1, x2, x3)

α(g, x1) = Φ(g.x1, g.x2, g.x3) α(g, x3)Φ(x1, x2, x3)
−1 .

If we now turn to the projection between X3
Y and X2

Y, we obtain a
quotient

q : (X3
Y, µ3)→ (X2

Y, µ2) (x1, x2, x3) 7→ (x1, x3) .

This quotient is particularly simple, so we should observe that

X3
Y ×(X2) X3

Y
∼= X4

Y ,

So we can view this fibered product as X4
Y. Now relative weak mixing for

this fibered product simply means ergodicity of the diagonal G-action on
X4

Y, which we have, since our original G–action is weakly mixing relative
to (Y, ν).

At this point, Theorem 38 lets us conclude that the map Φ has the
following form:

Φ(x1, x2, x3) = f (x1, x3) for some f : X2
Y → L .
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Thus for µ3
ν-a.e. x1, x2, x3 we get

F(x1, x2) = f (x1, x3) · F(x3, x2) .

This in turn allows us to use Fubini to choose a measurable section s :
Y → X such that for ν–a.e. y ∈ Y for µ2

y–a.e. (x1, x2) we can simply
substitute x3 with s(y). By defining ϕ, ψ : X → L as

ϕ(x) := f (x, s ◦ p(x)) ψ(x) := F(s ◦ p(x), x)−1

we see that F factors as

F(x1, x2) = ϕ(x1) · ψ(x2)
−1 .

This remarkable factorisation is now plugged into the main assumption
of the theorem, resulting in

ϕ(g.x1)
−1 · α(g, x1) · ϕ(x1) = ψ(g.x−1

2 ) · β(g, x2) · ψ(x2)

for ν–a.e. y ∈ Y for µ2
y-a.e. (x1, x2) ∈ X2

Y. Since the two sides of the
equation are separated with respect to x1 and x2, and the equation holds
for µ2

y-a.e. (x1, x2), each is equal to a constant µy-a.e., which we use to
define a new function ρ(g, y). So finally we have reached our goal, since
this function is measurable by the way it was defined and is of course a
cocycle between G×Y and L, since α and β are both cocycles. a

For the next section, in order to see that it is enough to work with a
normal subgroup, we will also need the following simple

Lemma 41. Let G be a discrete countable group with a measure preserving
action on a probability space (X, µ). Let (Y, ν) be a quotient of (X, µ), and
assume that H < G is a subgroup such that the quotient is relatively weakly
mixing with respect to the action of H. Then for any cocycle α : G × X → L
whose restriction to H descends to a cocycle on Y, we are able to extend this on
Y to the normaliser of H.
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More precisely, if there exists ρ : H ×Y → L such that

∀h ∈ H α(h, x) = ρ(h, p(x)) ,

then ρ extends to ρ′ : NG(H)×Y → L with

∀h ∈ NG(H) α(h, x) = ρ′(h, p(x)) .

As always, L can be any discrete countable group, and p denotes the quotient
map.

Proof. Start with a fixed g ∈ NG(H) and denote by

hg := ghg−1

the corresponding conjugation automorphism of H. Obviously α(gh, x) =
α(hgg, x), and we may split it in two different ways:

α(gh, x) =α(g, h.x)α(h, x) =α(g, h.x)ρ(h, p(x))

α(hgg, x)=α(hg, g.x)α(g, x)=ρ(hg, g.p(x))α(g, x)

So as a consequence we have µ–a.e.

α(g, h.x) = ρ(hg, g.p(x))α(g, x)ρ(h, p(x))−1 .

We may now define ρ̂ : H ×Y → L by

ρ̂(h, y) = ρ(hg, g.y) ,

and observe that this is a cocycle. So by fixing g, the function Φ(x) :=
α(g, x) satisfies

Φ(h.x) = ρ̂(h, p(x))Φ(x)ρ(h, p(x))−1

and using Theorem 38, we know that for g in the normaliser this Φ de-
scends to a function on Y, which we shall denote by ϕ′(g, y). It is obvious
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from the construction that this cocycle agrees with ρ on H ×Y. a

3.3 Putting it all Together

Once we have the Local Rigidity Theorem, how can we extend this to
the whole space? First of all we need to move to a product, so set
(Z, ξ) := (X × X, µ × µ) and define C := CAut(Z,ξ)(G), the centraliser
of G in Aut(Z, ξ). Denote by C0 the connected component of the identity
in C topologized with the weak topology.

We have shown in Lemma 30 that our Bernoulli actions contain the
flip

(x, y) 7→ (y, x)

in C0. Furthermore weak mixing implies that G acts ergodically on (Z, ξ).

Given any measurable cocycle α : G × X → L, observe that this in-
duces a cocycle α̃ : G× Z → L by setting

α̃(g, (x1, x2)) := α(g, x1) .

So we simply forget the second coordinate, which, together with the di-
agonal action on (Z, ξ) certainly makes α̃ a cocycle.

We need the following Lemma in order to see that we can apply The-
orem 35.

Lemma 42. For G and L discrete countable groups and G y (X, µ) a measure
preserving ergodic action it follows that

CAut(X,µ)(G) y Z1(G y X, L) is continuous.

Proof. Since G is discrete, we want to show that given any finite set F ⊆ G
and ε > 0 we can find a neighbourhood of the identity in Aut(X, µ) such
that

∀g ∈ F ∀T ∈ U ∩ CAut(X,µ)(G) µ ({x ∈ X | α(g, x) = α(g, T(x))}) > 1− ε .
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For each g ∈ G we can find a finite set Lg ⊆ L such that

µ
(
{x ∈ X | α(g, x) ∈ Lg}

)
> 1− ε

2
.

Defining
Cg,l := {x ∈ X | α(g, x) = l} ,

then there exists a neighbourhood U of the identity in Aut(X, µ) that
gives for each T ∈ U and each g ∈ F that

∑
l∈Lg

µ
(
Cg,l4T(Cg,l)

)
<

ε

2
,

since this is exactly what convergence of T to the identity in the weak
topology looks like. This allows us to infer that our original claim holds,
and remembering that if we restrict T to commute with all of G, we ensure
that α(g, T(x)) is a cocycle, we obtain the statement of the Lemma. a

Since C0 is connected, the Local Rigidity Theorem tells us that any two
cocycles which are in the C0-orbit in Z1(G y X, L) are cohomologous, so
in particular we get

α(g, x1) = F(g.x1, g.x2) · α(g, x2) · F(x1, x2)
−1

for some measurable F : Z → L. By Theorem 40 the cocycle α is al-
ready cohomologous to a homomorphism when restricted to H. We now
conclude by using Lemma 41 to see that it is cohomologous to a homo-
morphism on all of G.

3.4 Generalities

On Theorem 35: This theorem easily generalises to the case where the
subgroup H < G is closed with relative property (T) inside a locally
compact second countable group G. To generalise the possible target
groups to Popa’s groups of finite type, a different argument is needed;
see [Pop07, Proposition 4.2].
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On the other hand, the generalisation of Theorem 24 is not routine;
see [Jol05].

For the sake of completeness, we state the Popa superrigidity theorem
in its general form:

Theorem 43 (Popa, Furman). Let G be a locally compact second countable
group with a w-normal subgroup H. Assume furthermore that the pair (H, G)

has relative property (T) and let G y (X, µ) be an ergodic measure preserving
action on a probability space (X, µ), together with a measurable quotient (Y, ν).

Assume

1. G y (X, µ) is malleable relative to (Y, ν);

2. H y (X, µ) is relatively weakly mixing with respect to (Y, ν).

Then any cocycle of the action G y (X, µ) with target group in the class of
groups of finite type can be untwisted to a cocycle on the quotient. More precisely,
let α : G × X → L be a measurable cocycle targeting a group of finite type L.
Then there exist ϕ : G → X measurable and a measurable cocycle on the quotient
ρ : G×Y → L such that we can represent α as

α(g, x) = ϕ(g.x)ρ(g, p(x))ϕ(x)−1 ,

with p denoting the quotient map.
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4 Some Results on the Structure of SLn(Z)

We start by introducing some rather well-known facts about SLn(Z) (with-
out proof). This chapter intends to give a quick introduction to some
concepts involved in handling SLn(Z); for the sake of completeness, sub-
section 4.1 exposes the classical elementary proof of the fact that SLn(Z)

contains a torsion-free subgroup of finite index. We will need this in
section 5 in order to see that the construction presented therein actually
produces incomparable equivalence relations. On the other hand, subsec-
tion 4.2 gives a sketch of Shalom’s new way of proving that SLn(Z) has
Kazhdan’s property (T) for n ≥ 3. This will be of central relevance to the
final two chapters.

A good general references for the structure of linear groups is [Weh73];
the short note [Nic13] provides a particularly easily accessible proof of
Selberg’s theorem. For the current state of affairs concerning property
(T)–groups see the book [BdlHV08]; a lot of background material on
representation theory is provided in an extensive appendix, furthermore
Shalom’s proof is given very detailed treatment. Shalom’s orginal paper
is [Sha06].

Definition 44. When the dimension is understood, we use ei,j to denote the
matrix with entry 1 at position (i, j) and zeroes elsewhere.

Theorem 45. The elementary matrices

{idn + ei,j | i 6= j}

generate SLn(Z) for n ≥ 2.

Definition 46. A group G is boundedly generated if there is a finite subset
(gi)i<n) such that every g ∈ G can be written as

g = gk1
1 gk2

2 · · · g
kn
n

for some integers ki ∈ Z.
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We state the following without proof; see e.g. [BdlHV08].

Theorem 47. The group SLn(Z) has bounded elementary generation. In
other words, the set of elementary matrices is a finite subset which witnesses that
the group is boundedly generated.

Definition 48. The minimal n ∈ ω such that every element SLn(Z) can be
written as a product of at most n elementary matrices will be denoted by υn(Z).

We even have the following

Theorem 49 (Carter–Keller). For n ≥ 3 we have that

υn(Z) ≤ 1
2
(3n2 − n) + 36 .

4.1 A Torsion-Free subgroup of finite index

Our exposition is inspired by the good introduction in [Nic13]; see also
[Weh73].

Theorem 50. The congruence homomorphism

ϕm : SLn(Z)→ SLn(Z/mZ)

is onto.

Proof. First observe that the congruence homomorphism maps elemen-
tary matrices again to elementary matrices. So it is enough to show that
SLn(Z/mZ) is elementarily generated.

By the Chinese Remainder Theorem, we can decompose

SLn(Z/mZ) ∼= ∏ Z/psi
i ,

where psi
i is the decomposition of m into primes. Furthermore notice that

in the decomposition we are confronted with local rings. Since elemen-
tary generation is preserved under direct products, it suffices to show
that it holds for local rings.
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Now let R be a local ring and picture a matrix in SLn(R). If some first
row entry is not in the maximal ideal of R we know that it is invertible.
By column swapping we can get this element to the (1, 1)–position, which
allows us to clear the first row and first column. The next step is to be
able to transform a diagonal matrix of unit determinant to the identity
matrix, via the following sequence of row- and column-operations:(

a 0
0 b

)
 

(
a a
0 b

)
 

(
1 a

(−a− 1)b b

)
 

(
1 a
0 ab

)
 

(
1 0
0 ab

)
=

(
1 0
0 1

)

a
Definition 51. The kernel of the homomorphism ϕm is called the principal

congruence subgroup of level m and denoted by

Γ(m) := ker(ϕm) .

It is easy to see that Γ(m) is a has finite index for any m ∈ ω. In
fact, with a bit more effort one can even compute the index; see [Nic13,
Lemma 2.3].

Theorem 52. If m ≥ 3 then the group Γ(m) is torsion-free.

Proof. Observe that we have

Γ(n) ⊆ Γ(m)⇐⇒ m|n

so it suffices to show that Γ(4) and for primes p ≥ 3, Γ(p) are torsion-free.
Assume that for a fixed prime p, there is a non-trivial element X ∈

Γ(p) of finite order. We may assume that

Xq = idn ,

after, if necessary, having replaced X by a power of itself. Then

−q(X− idn) =
q

∑
i≥2

(qi)(X− idn)
i .
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Let ps be such that s is the highest power of p dividing all the entries
in X− idn. In the identity above, the left hand side is divisible by at most
ps for q 6= p and by at most ps+1 if q = p. Also, the right hand side is
divisible by p2s, and if q = p ≥ 3 even by p2s+1. This implies q = p = 2
and s = 1.

In fact, p = 2 and s = 1 means that Γ(2) is the only one in the «prime
stratum which harbours torsion», and that Γ(4), which is its successor in
the descending 2-chain, is already free of torsion. Furthermore, q = 2
means that torsion elements in Γ(2) are of order a power of 2. Since
X2 ∈ Γ(4) for any X ∈ Γ(2), and because Γ(4) is torsion-free, we hence
know that any non-trivial torsion elements of Γ(2) are of order 2. a

4.2 A Proof of Property (T) for SLn(Z) with n ≥ 3

We intend to only give a rough sketch of the proof. We follow along the
lines of Y. Shalom’s new proof, which bears no reference to the fact that
SLn(Z) is a lattice in SLn(R). Our presentation is very close to the one
given in [BdlHV08].

Definition 53. The subset of elementary matrices

{Ei,j(1) | i ≤ n, j ≤ n, i 6= j}

of SLn(Z) will be denoted by Qn.

Property (T) for the pair (SL2(Z), Z2) As a preparation for proving
property (T) for the special linear groups over the integers, we need the
preparatory result stating that the pair (SL2(Z), Z2) has property (T). We
start with a simple lemma.

Lemma 54. Let ν be a mean (i.e. a finitely additve measure) defined on the Borel
sets of R2 \ {0} =: X.

Then there exists a Borel set M ⊆ X and a matrix γ ∈ {U±, L±} such that

|ν(γM)− ν(M)| ≥ 1
4
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for the natural linear action SL2(Z) y X.

Proof. We split X into four subsets in the following way: start with the
four lines defined by the equations

x = 0 y = 0 x = y x = −y .

These divide X into eight regions; from these we obtain our four subsets
by considering a point and the corresponding point obtained by reflection
at the origin as belonging to the same set. We shall call these A, B, C, D.
So, for example

A = {(x, y) ∈ X | 0 ≤ y < x ∨ x < y ≤ 0} ,

and the other sets are obtained by successive rotations of by π
4 . By look-

ing directly at how the relevant matrices were defined, we obtain the
following four identities:

U+(A ∪ B) = A L+(A ∪ B) = B

U−(C ∪ D) = D L−(C ∪ D) = C .

Assume towards a contradiction the negation of the statement of the
lemma; thus for any Borel M ⊆ X and for all γ ∈ {U±, L±} we have

|ν(γM)− ν(M)| < 1
4

,

so in particular taking A ∪ B as our Borel set, we obtain

ν(A) = ν(A ∪ B)− ν(B) = ν(A ∪ B)− ν(L+(A ∪ B)) <
1
4

,

and analogously we obtain the same bound for the measure of B, C, D.
But since these four sets form a disjoint partition of X we have reached
the contradiction sought for. a
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Theorem 55. The pair (SL2(Z)n Z2, Z2) has property (T). More precisely,(
Q,

1
10

)
is a Kazhdan pair for those groups.

Proof. Start with taking (π,H) to be a unitary representation for (SL2(Z)n
Z2, Z2) which furthermore possesses a (Q, 1/10)–invariant vector. In or-
der to reach a contradiction for relative property (T) of the inclusion, as-
sume that H does not have any non-trivial vector invariant under ++ Z2.

From Theorem 27 we know that there exists a unique projection-
valued measure associated to the representation

π�Z2

and defined on the Borel sets of the dual group Ẑ2; let us call it E.

We remark that Ẑ2 can be identified with the torus T2 by associating
to a point on the torus

(e2πıx, e2πıy) ∈ T2

the character on Z2 mapping pairs of integers in the following way:

Z2 3 (m, n) 7→ e2πı(mx+ny) .

Furthermore, the dual action

SL2(Z) y Ẑ2

corresponds to the transposed inverse of the natural action of SL2(Z) on
T2.

So we obtain, for z ∈ Z2 and ξ1, ξ2 ∈ H that

〈π(z)ξ1, ξ2〉 =
∫

T2
χ(z)d 〈E(χ)ξ1, ξ2〉 .

E(γB) = π(γ−1)E(B)π(γ)
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Now set
ε :=

1
10

and let ξ be a (Q, ε)–invariant unit vector. Define the following probabil-
ity measure on T2 by

µξ(B) := dEξ,ξ(B) ,

and since also π�Z2 does not have any non-trivial invariant vectors, we
obtain E({0}) = 0 and consequently µξ({0}) = 0.

Define

X :=
(
−1

4
,+

1
4

]2

;

then we have will now show that

µξ(X) ≥ 1− ε2 .

To that end, observe that since ξ is (Q, ε)–invariant, we have that for
l ∈ {e±, f±}

‖π(l)ξ − ξ‖2 =
∫
(− 1

2 ,+ 1
2 )
|e±2πıx − 1|2dµξ(x, y) ≤ ε2 ;

it follows that

ε2 ≥ 2µξ

({
(x, y) ∈

(
−1

2
,+

1
2

]2 ∣∣∣ |x| ≥ 1
4

})

by using that for 1
4 ≤ |t| ≤

1
2 we have

|e±2πıt − 1|2 = 2− 2 cos 2πt = 4(sin πt)2 ≥ 2 .

As a consequence we obtain both

µξ

({
(x, y) ∈

(
−1

2
,+

1
2

]2 ∣∣∣ |x| ≥ 1
4

})
≤ ε2

2
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and

µξ

({
(x, y) ∈

(
−1

2
,+

1
2

]2 ∣∣∣ |y| ≥ 1
4

})
≤ ε2

2
,

which together imply what was claimed.
Define a new probability measure ν by setting

ν(B) :=
µξ(B ∩ X)

µξ(X)
;

for this we actually obtain that for any Borel B and any γ ∈ {U±, L±} we
have

|ν(γB)− ν(B)| < 1
4

,

as we will now see: since by the above we have that

E(γB) = π(γ−1) E(B)π(γ)

we can calculate

∣∣µξ(γB)− µξ(B)
∣∣ = ∣∣∣〈π(γ−1) E(B)π(γ) ξ, ξ

〉
− 〈E(B)ξ, ξ〉

∣∣∣
≤
∣∣∣〈π(γ−1) E(B)π(γ) ξ, ξ

〉
−
〈

π(γ−1)E(B)ξ, ξ
〉∣∣∣

+
∣∣∣〈π(γ−1)E(B)ξ, ξ

〉
− 〈E(B)ξ, ξ〉

∣∣∣
=
∣∣∣〈π(γ−1)E(B)(π(γ)ξ − ξ), ξ

〉∣∣∣+ |〈E(B)ξ, (π(γ)ξ − ξ)〉|

≤ ‖π(γ−1)E(B)‖ · ‖π(γ)ξ − ξ‖+ ‖E(B)‖ · ‖π(γ)ξ − ξ‖
≤ ε + ε.

We already know how to infer that

0 ≤ µξ(B)− µξ(B ∩ X) ≤ ε2 .
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From this we obtain

µξ(γB ∩ X)− µξ(B ∩ X) = (µξ(γB ∩ X)− µξ(γB))

+ (µξ(γB)− µξ(B)) + (µξ(B)− µξ(B ∩ X))

≤ 0 + 2ε + ε2 .

Since we can apply this to both B and γ−1B, we obtain the same for the
absolute value, thus

|µξ(γB ∩ X)− µξ(B ∩ X)| ≤ 2ε + ε2 .

Now we are in a position to apply (**), and remembering that we put
ε = 1

10 we have

|ν(γB)− ν(B)| ≤ 2ε + ε2

1− ε2 =
21
99

<
1
4

;

so the second claim follows.
Since we observed that µξ({0}) = 0, we can consider ν as being a

measure on R2 \ {0}. Observe that acting with any of U±, L± on X, we

do not fall outside of
(
−1

2 ,+1
2

]2
. Consequently, since ν(X) = 1, we obtain

that for every Borel set B ⊆ R2 \ {0} the distance between the ν–measure
of B and that of the shift is less than 1

4 , which is a direct contradiction to
Lemma 54. a

We state the following corollary without proof; it quantitatively relates
the existence of (Q, ε)–invariant unit vectors for unitary representations
of SL2(Z)n Z to the possibility to find (Z–invariant vectors.

Corollary 56. Let (π,H) be a unitary representation of SL2(Z)n Z; assume
that there is a (Q, ε/20)–invariant unit vector ξ for some ε > 0.

Then ξ is (Z, ε)–invariant.

Proof of the Main Theorem Before we show the main result, we need
the following simple fact, which we state without proof; see [BdlHV08,
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Lemma 4.2.4].

Lemma 57. There exists an injective homomorphism

αn : SL2(Z)n Z2 → SLn(Z)

such that the set
{Ei,j(t)}i 6=j,t∈Z

is contained in αn(Z2) and

αn(SL2(Z)) =

Ik 0 0
0 SL2(Z) 0
0 0 In−k−2


for some k ≤ n− 2.

Now we are ready for the proof.

Theorem 58 (Shalom). The group SLn(Z) has property (T) if n ≥ 3.
In fact, we even obtain a quantitative result:(

Qn,
vn

20

)
is a Kazhdan pair for SLn(Z).

Proof. Define
Tn := Qn ∪Q−1

n ,

so Tn consists of all the elementary matrices with 1 in some place outside
the diagonal and their inverses. It is sufficient to show that (Tn, υn

20 ) is a
Kazhdan pair, since

‖πg(ξ)− ξ‖ = ‖πg−1(ξ)− ξ‖ .

Now let (π,H) be a unitary representation with a unit vector ξ0 which
is (Tn, υn

20 )–invariant. Take an arbitrary elementary matrix A. Then by
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Lemma 57 there exists an embedding

αn : SL2(Z)n Z2 → SLn(Z)

such that A ∈ αn(Z2) and furthermore

αn(Q) = Tn ∩ Im(αn)

where Q is as defined before.
Using Corollary 56 we obtain that ξ0 is (αn(Z2), 1

vn
)–invariant. In par-

ticular this means that for any elementary matrix A ∈ SLn(Z) we have

‖πA(ξ0)− ξ0‖ <
1
υn

.

If we now select an arbitrary matrix A in SLn(Z), we can represent
it as a product of elementary matrices {Ai}i<N, where N ≤ υn. By easy
calculation of the bound we get

‖πA(ξ)− ξ‖ ≤ ∑
i<N
‖πA0···AN−i(ξ)− πA0···AN−(i+1)

(ξ)‖

= ∑
j<N
‖πAj(ξ)− ξ‖ ≤ N

υn
≤ 1 ,

in other words, ξ is (SLn(Z), 1)–invariant; from Theorem 23 we now de-
duce that π has a non-trivial invariant vector. a
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5 The Structure of Countable Borel Equivalence

Relations

This chapter constitutes a partial goal in the journey of this thesis. We will
first prove that the structure of countable Borel equivalence relations is
very rich. This will follow quite easily from the rigidity result in section 3
together with the considerations in section 4.

The following two lemmata explain why we will opt to work with the
free part of shift actions.

Lemma 59. For any infinite countable group G and µ the standard product
measure on 2G we have that

µ(Fr(G y 2G)) = 1 .

Proof. We show that for each g ∈ G which is not the identity, it follows
that

Xg := {x ∈ 2G | g.x = x}

has measure zero. Obviously if x ∈ Xg, then x is constant on each right
coset of 〈g〉. Now there are only the following two possibilities for 〈g〉:
either this one-generator group is infinite, or there are infinitely many
cosets. a

5.1 Intermezzo — Why Invariant Measures Matter

In this short deviation, we would like to present two construction which
justify the crucial necessity for the necessity of the existance of an invari-
ant Borel probability measure on a G–space.

We present the result from [DJK94]. The following definition is crucial
to their work, and we will shortly see the consequences

Definition 60. Let E be a countable Borel equivalence relation on a standard
Borel space X. We call E compressible if there exists A ⊆ X Borel such that
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1. X \ A meets every E-class;

2. there exists a function f : X → A with ∀x ∈ X xE f (x) (the graph is
contained in E).

Theorem 61 ([DJK94, Proposition 11.1]). Let E be a compressible countable
Borel equivalence relation. Assume that E is induced by the free action of a
countable group G, and that H is any countable group extending G, i.e. G ⊆ H.

Then there exists a free action of H which also induces E.

Since compressibility destroys the existence of a potential invariant
measure, this does indeed tell us that there is no way we could hope for
getting rid of the assumption of an invariant measure and at the same
time recover the acting group (or some kind of meaningful class of in-
ducing groups).

5.2 Producing Continuum-Many Countable Borel Equiva-

lence Relations

We begin with the following simple observation:

Theorem 62. If G embeds into H, then EG ≤B EH.

Proof. For the sake of notation, suppose that G ≤ H. Then for each f ∈
Fr(2G), define f ∗ ∈ 2H by setting it to the value of f for arguments from
G, and to 0 otherwise.

Then we only need to check that f ∗ ∈ Fr(2H) since then obviously that
the map f 7→ f ∗ is a Borel reduction from EG to EH, which is obviously
true. a

We would like to be able to infer the converse in for certain classes of
groups – in the most general setting this is certainly not possible.

Definition 63. If G, H are groups, then a homomorphism π : G → H is called
a virtual embedding if the kernel ker π is finite.

Using Popa’s Cocycle Superrigidity from Theorem 29 we now obtain
the following remarkable result:
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Theorem 64. Let S be any countable group, define G := SL3(Z)× S. Assume
that H is a countable group and that H y Y is a free Borel action on a stan-
dard Borel space Y. Let G act by Bernoulli shifts on 2G If there exists a Borel
homomorphism from EG to EH which is not µ-trivial, then there exists a virtual
embedding between the groups π : G → H.

Proof. Suppose that f : Fr(2G) → Y is a µ-nontrivial Borel homomor-

phism from EFr(2G)
G to EY

H. Then we can define the associated Borel cocycle
α : G × Fr(2G) → H by selecting as value for α(g, x) the unique h ∈ H
that makes the following identity true:

h. f (x) = f (g.x) ,

as defined in section 2. By Theorem 29, after applying the correct ad-
justment through a measurable map and possibly disregarding a nullset,
we can assume that α does not depend on the second component, which
allows for being interpreted as a group homomorphism α : G → H.

Suppose towards a contradiction that N := ker α is infinite. Since we
know by Lemma 18 that the action G y Fr(2G) is strongly mixing, it
follows that the restricted action of N is also ergodic. By observing that
the homomorphism f : Fr(2G) → Y is N–invariant, we can conclude that
it must be µ–a.e. constant, which clearly contradicts µ–non-triviality.

Thus the kernel must be finite and we get the desired result. a

We now show how to achieve the goal of obtaining many incompara-
ble equivalence relations. First of all define, for each prime p, the groups

Ap :=
⊕
i<ω

Cp

as the direct sum of countably many copes of the cyclic groups of order
p. For an arbitrary subset of the primes C ⊆ P, define the group

GC := SL3(Z)×
⊕
p∈C

Ap .
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Then the following lemma will lead us to the desired result.

Lemma 65. For any two subsets of the prime numbers C and D the following
holds:

EGC ≤ EGD ⇔ C ⊆ D .

Proof. If we have C ⊆ D, then obviously GC ≤ GD and by Theorem 62
also EGC ≤ EGD .

Conversely, by applying Theorem 64, we know that there exists a vir-
tual embedding π : GC → GD. As we have seen in subsection 4.1, the
linear group SL3(Z) contains a torsion-free subgroup of finite index. Us-
ing this, we see that each of the cyclic groups Cp for which appear in GC

(so with p ∈ C) necessarily embed into

⊕
q∈D
Cq ,

since the torsion-freeness of the finite-index subgroup does not leave any
room for the embedding to «cross over» between the coordinates; this
obviously implies p ∈ D, as desired. a

In order to achieve 2ω–many incomparable countable Borel equiva-
lence relations, we need to once more glue those constructed here to-
gether. This is achieved by identifying a single real with a subset of the
primes. Then, given any Borel subset of the reals, we can simply take a
disjoint sum of all those reals identified with their corresponding sets of
primes, which is summarised in the following

Theorem 66 (Adams–Kechris). There exist continuum-many incomparable
free countable Borel equivalence relations.

Some thoughts on Essential Freeness We will now show, with very lit-
tle effort, that the rather long-standing question of whether the universal
countable Borel equivalence relation E∞ can be induced by a free group
action has a negative answer.
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Definition 67. A Borel equivalence Relation E on a standard Borel space is
essentially free if there exist a group G with a acting freely on a standard
Borel space G y Y such that the thus induced Borel equivalence relation F is
bireducible with E, i.e. E ∼ F.

The following is a simple fact quoted from [JKL02]:

Theorem 68. Suppose that E, F and (En)n∈ω are countable Borel equivalence
relations. Then we have the following:

1. If E ≤ F and F is essentially free, then E is also essentially free.

2. If E ⊆ F and F is essentially free, then E is also essentially free.

3. If for all n ∈ ω the relations En are essentially free, then
⊕

n∈ω En is also
essentially free.

In other words, essential freeness is preserved under taking reduced
equivalence relations, preserved under subsets and preserved under count-
able sums.

Theorem 69. If E is any essentially free Borel equivalence relation, then there
exists a countable group G such that

EFr(2G)
G 6≤ E .

Proof. Assume that E = EY
H for a suitable standard Borel space Y and a

countable group H. Then there exists a finitely generated group H′ that
does not embed into H; this is possible by means of a classical result
of Neumann which grants the existence of uncountably many finitely
generated groups. We obtain the promised group by defining it as the
product of our favourite linear group together with the free product of
H′ with the integers, i.e.

G := SL3(Z)×
(

H′ ? Z
)

.
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By construction, G has no nontrivial finite normal subgroups; further-
more, the choice of H′ ensures that even G does not embed into H. Using
Theorem 64 we arrive at the desired conclusion. a

In particular, E∞ is not essentially free.

We note that in [Tho09] S. Thomas has furthermore constructed continuum-
many non–essentially-free countable Borel equivalence relations; like in
the Adams–Kechris result, he even gives an embedding from the Borel
subsets of the reals under inclusion to a family of non–essentally-free
Borel equivalence relations under Borel reducibility.

5.3 Other Ways of Producing Incomparable Borel Equiva-

lence Relations

As stated in the introduction, the original construction of continuum-
many incomparables by Adams and Kechris used R. Zimmer’s super-
rigidity theory. Shortly after that, relying on the same methods, in [Ada02]
S. Adams constructed an example of two Borel equivalence relations E, F
with E ⊆ F which are nonetheless incomparable.

Theorem 70 (S. Adams). There exists a pair of countable Borel equivalence
relations E, F with E ⊆ F (subsets in the set-theoretic sense) but incomparable
in the Borel sense.

We want to mention the following very natural and interesting exam-
ple from the original [AK00].

Theorem 71 (Adams–Kechris). Denote by Rn the equivalence relation induced
by the natural action of the general linear group over the integers, i.e.

GLn(Z) y T .

Then we have for all n ∈ ω that Rn < Rn+1; in other words we obtain an
countable tower of strictly increasing Borel equivalence relations.
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With a different and more elementary approach, [HK05] show that
incomparables can be produced with the following, leading to a strong
result.

Theorem 72 (Hjorth–Kechris). Let S ⊆ P be a set of odd primes and consider
the following action:

(?p∈S(Cp ? Cp) =: ΓS y Fr
(

2ΓS
)

;

Then for any two sets of odd primes S1, S2, non-inclusion S 6⊆ T implies that

E
Fr
(

2
ΓS2
)

ΓS1
is E

Fr
(

2
ΓS2
)

ΓS2
–ergodic.

The following result bears mentioning, since it states that we can have
an increase in Borel complexity by simply forming disjoint sums; we end
our list here.

Theorem 73 ([Tho02b]). There exists a countable equivalence relation E such
that

E < E⊕ E < E⊕ E⊕ E < · · · .

Concerning Borel equivalence relations related to the classification
problem for torsion-free abelian groups of finite rank, we refer the reader
to the next chapter and the notes at the end of it.
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6 Torsion-free Abelian Groups of Finite Rank

This chapter represents the culmination of our efforts for this thesis. First
of all, the objects of our study will be countable torsion-free abelian
groups of finite rank. The rank of an abelian group is defined in anal-
ogy to the dimension of vector spaces; in fact, it is easy to see that any
torsion-free abelian group of rank n can be viewed as lying inside of Qn,
i.e. the n–dimensional vector space over the rational numbers. This is cer-
tainly a Polish space, and the torsion-free abelian groups of rank exactly n
are realised as additive subgroups, which furthermore contain n linearly
independent elements. This is again a Borel subset, and as such can be
viewed as a standard Borel space; we will denote the realisation of the
space of countable torsion-free abelian groups of rank n inside of Qn by
R(Qn); furthermore, denote by S(Qn) the space of all additive subgroups
of Qn.

We will show that the classification problem for countable torsion-free
abelian groups is very difficult, at least when the perspective of the Borel
setting is advanced. For this, we introduce some notions needed for the
study of abelian groups, first and foremost the Kurosh–Malcev invariants.
Those will constitute, together with Ioana’s superrigidity theorem, the
basis of our proofs.

Assume that we are given an isomorphism between two elements of
R(Qn). This isomorphism obviously extends to a vector space isomor-
phism of the whole space Qn; and of course on the other hand, any
vector space isomorphism is a group isomorphism between any abelian
subgroups and its image under the map. So we can conclude that the
isomorphism relation on the space R(Qn) is realised by the natural group
action of GLn(Q). By this representation and Theorem 12, we conclude
that we are in fact concerning ourselves with a countable Borel equiva-
lence relation.
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6.1 Baer’s Classification for Rank One Groups

We will soon see that with very little effort it becomes evident that the
rank 1 case admits very simple invariants. For the reader interested in
other algebraic results concerning those groups, [Fuc73, §85] is a good
starting point.

Definition 74. For an abelian group G, we define for a prime p the p–height
of an elment g ∈ G as

hg(p) := sup{n ∈ ω | ∃h ∈ G nh = g} .

The characteristic of g, denoted by χ(g), is simply defined to be the function
assigning the respective sequence of heights along all the prime numbers, i.e.

χ(g) := (hg(p))p∈P) .

Definition 75. Two characteristics χ(g1), χ(g2) belong to the same type

if both of the following hold:

1. χ(x1)(p) = χ(x2)(p) for cofinitely many primes p;

2. if χ(x1)(p) 6= χ(x2)(p), then both their values are finite.

This is an equivalence relation among characteristics; we call the equivalence
class containing a given characteristic χ(x) the type of x and denote it by τ(x).

Lemma 76. Every sequence λ : P→ ω ∪ {∞} is a characteristic.

Proof. Define X as the subgroup of Q generated by all

p−k

with k < λ(p) and p ranging over all primes. Then the element 1 ∈ Q

will achieve that χ(1) = λ. a
Observe that for rank-one–groups, the type of two arbitrary (nontriv-

ial) elements belongs to the same type; so in that case we are allowed to
define the type of any such element as the type of the group.
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Theorem 77 (Baer). Two rank-one torsion-free abelian groups are isomorphic if
and only if the are of the same type.

Proof. Take two groups X, Y and arbitrary nonzero elements x, y. Then
the corresponding characteristics differ only on a finite number of indices,
say p1, . . . , pk. We can now divide x and y by

pχ(x)(p1)
1 · · · pχ(x)(pk)

k

and
pχ(y)(p1)

1 · · · pχ(y)(pk)
k

respectively, to obtain the elements x′ and y′ with zeroes in their charac-
teristics at all the indices p1, . . . , pk. Of course also χ(x′) = χ(y′); consid-
ering the equations

mz = nx′ (†1)

and
mz = ny′ (†2)

this means that Equation †1 has a solution in X if and only if Equation †2
has a solution in Y.

Since these kind of equations have at most one solution in torsion-
free groups, this allows us to define an isomorphism simply by sending
a solution of Equation †1 to a solution of Equation †2. a

Corollary 78. There are continuum-many nonisomorphic countable torsion-free
groups of rank one.

Proof. The set of characteristics obviously has cardinality 2ω, so this is an
upper bound. On the other hand, if we consider sequences consisting
exclusively of elements of {0, ω}, we know that these can be realised as
characteristics. And since these sequences certainly represent all distinct
types, we also have produced the lower bound 2ω. a
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6.2 Construction of an SLn(Z)–invariant measure

This section is devoted to the construction of a measure on S(Qn).

Theorem 79 (Hjorth). There is an ergodic, non-atomic, SLn(Z)–invariant mea-
sure on S(Qn, Zn). Furthermore there is an SLn(Z)–invariant Borel subset,
which is conull with respect to this measure and consists entirely of rigid groups.

Here S(Qn, Zn) denotes those subgroups of Qn which contain a copy
of Zn.

We start with an outline of how to construct the measure, as defined
in [Hjo99]. To begin Hjorth’s construction, let n ≥ 2 and define Sn as the
set of all subgroups of

Qn/Zn ,

furthermore denote by πn the canonical surjection to that quotient, so

πn : Qn → Qn/Zn .

The set of groups Sn are clearly a closed subspace of 2Qn/Zn
and thus

Polish. Also, we can identify S(Qn, Zn) and Sn via the Borel bijection we
obtain by

A 7→ πn(A) .

Define Γn as the dual group of Qn/Zn (as a discrete group), i.e.

Γn := {ψ : Qn/Zn → R/Z | ψ is a homomorphism} ,

and equip Γn with the topology of pointwise convergence and group
structure of pointwise addition.

Furthermore, the fact that Qn/Zn is a countable discrete torsion group
implies that Γn is a compact metrizable zero-dimensional space.

Let mn be Haar measure on Γn. Then we can first define a map

kn : Γn → Sn

ψ 7→ ker(ψ)
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and use this map to push forward to a probability measure ν̂n on Sn, i.e.

ν̂n := k∗mn .

Turning back, define νn as the probability measure on S(Qn, Zn) by tak-
ing ν̂ together with the identification described before. This finishes the
construction; we are now going to prove the required properties.

Lemma 80. The measure νn is SLn(Z)–invariant.

Proof. For any A ∈ SLn(Z) we can define the following map

ρA : Γn → Γn

(ρA(ψ))(h) := ψ(A−1h) .

This is clearly a homeomorphism which even respects the group struc-
ture, i.e. an endomorphism. We may certainly push forward through
this, and by the uniqueness of Haar measure we immediately get

ρA∗m = m .

Now we start calculating; take any measurable T ⊆ Sn, then

ν (A(T)) = m ({ψ ∈ Γn | ker(ψ) ∈ A(T)})

= m
({

ψ ∈ Γn | {A−1h | ψ(h) = 0} ∈ T
})

= m ({ψ ∈ Γn | {h | ψ(Ah) = 0} ∈ T})

= m
({

ψ ∈ Γn | ker
(

ρ−1
A (ψ)

)
∈ T

})
= m

(
ρA

(
ker−1 (T)

))
,

and by what we have said above, that last term equals m
(

ρA

(
ker−1 (T)

))
,

which is by definition equal to νn(T), as we had set out to find. a
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Some Remarks on Ergodicity It can easily be seen that Hjorth’s mea-
sure is not ergodic; to see this, consider νn on S(Qn, Zn) and any prime
p ∈ P, then

{A ∈ S(Qn, Zn) | Zn ≤ p A}

is SLn(Z)–invariant with measure 1
pn .

However, Adams and Kechris found a way around this difficulty and
used it to derive (from Zimmer’s theory) that the classification problem
restricted to the rigid groups increases in Borel complexity as the rank
increases. We will now give a sketch of how they obtained an ergodic
invariant measure from Hjorth’s construction. To achieve that, we will
consider the ergodic decomposition of the action

SLn(Z) y S(Qn, Zn) .

Define E to be the standard Borel space of all invariant ergodic measures
with respect to this action. Then there is a Borel surjection

π : S(Qn, Zn)

which is invariant under SLnZ, with the additional properties that

∀ε ∈ E ε ({x ∈ S(Qn, Zn) | π(x) = ε}) = 1

and furthermore any SLn(Z)–invariant measure ν can be represented by

ν(A) =
∫

e(A)d(π∗ν)(e) .

Since νn (S∗(Qn, Zn)) = 1 there must also be a π∗νn–conull Borel set
E ′ ⊆ E with

∀ε ∈ E ′ ε(S∗(Qn, Zn) = 1 .

Claim: There is ε′ ∈ E ′ which is non-atomic.

Proof: Otherwise, for each ε ∈ E ′ there is a unique SLn(Z)–orbit θε
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with ε(θε) = 1, and consequently the set

W := {x ∈ S(Qn, Zn) | π(x) ∈ E ′ and x ∈ θπ(x) ,

and observing that saying x ∈ θπ(x) is equivalent to saying π(x)([x]SLn(Z)) =

1, we see that W is both Borel and SLn(Z)–invariant. If we now shift our
attention back to the projection, it is clear that

xEW
SLn(Z)y⇐⇒ π(x) = π(y) ,

which makes that relation on W smooth; but then W is also νn–conull,
which contradicts the previous theorem the fact that Hjorth has proved
that his measure does not make the equivalence relation smooth when
restricting to any conull set. So we have just extended to the following

Theorem 81. There is an ergodic, non-atomic, SLn(Z)–invariant measure on
S(Qn, Zn). Furthermore there is an SLn(Z)–invariant Borel subset, which is
conull with respect to this measure and consists entirely of rigid groups.

6.3 The Rank Two Case

Some Notes on Amenability We will start by introducing the basic
definition of amenability; our interest lies in the proof that under some
(very natural) assumptions, non-amenable groups induce non-hyperfinite
equivalence relations. For further remarks see [JKL02, §1 and §2].

Definition 82. For a countable set X, a finitely additive probability

measure is a function ϕ : 2X → [0, 1] such that

1. ϕ(A ∪ B) = ϕ(A) + ϕ(B) if A ∩ B = ∅

2. ϕ(X) = 1

Definition 83. A mean on X is a positive linear functional ϕ̄ on `∞(X), the
Banach space of bounded real functions on X, with ϕ̄(1) = 1.
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This last property makes ϕ̄ continuous. Means and finitely addi-
tive probability measures can be identified with one another; given any
finitely additive probability measure ϕ, define the corresponding func-
tional as

ϕ̄ :=
∫

f dϕ .

Conversely, for a positive linear functional ϕ̄ we can define a finitely ad-
ditive measure by setting

ϕ(A) := ϕ̄(χA) .

Thus we do not have to distinguish between the two concepts.

Definition 84. A countable group G is amenable if there exists a left-invariant
mean ϕ̄ on G.

Examples of amenable groups include all compact groups and by a
result of Markov–Kakutani all abelian topological groups. We state the
following theorem without proof.

Theorem 85 ([JKL02]). Let G be a countable group acting on a standard Borel
probability space (X, µ) in a measure preserving way. Assume furthermore that
the action is free on a conull set.

Then the hyperfiniteness of EX
G implies the amenability of G.

Completing the Proof Using the observations just presented in the con-
text of amenable groups, we shall now use the construction from the pre-
vious section subsection 6.2 together with some observations on amenabil-
ity to show that the classification problem in the rank two–case is not
hyperfinite.

In order to use Theorem 85, we need to ensure that the measure con-
structed in subsection 6.2 meets the requirements; i.e. we want to find a
conull subset where the action is free. The following theorem tells us that
there is a conull set whose elements are all rigid groups.

Theorem 86 (Thomas, Hjorth). Define Xn to be the Borel subset consisting of
the groups A ∈ S(Qn, Zn) which satisfy the following two conditions;
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1. For any prime p ∈ P we have pA 6= A.

2. For two linearly independent elements a, b ∈ A it follows that τ(a) 6=
τ(b).

Then for all n ∈ ω we have that

νn (Xn) = 1 .

Proof. First of all, let us show that each A ∈ Xn is rigid. Assume that we
have an automorphism ϕ, then clearly

∀a ∈ A τ(ϕ(a)) = τ(a) .

If a ∈ A is furthermore nonzero, the condition in item 2 of the theorem
implies that there is a nonzero λa ∈ Q such that we can represent

ϕ(a) = λaa ,

and this λa must certainly be the same for all a ∈ A. Now we can use the
condition in item 1, which leaves no room except for λa ∈ {−1,+1}.

Now take an element a ∈ Qn \Zn such that the projection π(a) has
positive order k in Qn/Zn. Defining

Γa
n := {ψ ∈ Γn | ψ(a) = 0} ,

we get that

νn ({A ∈ S(Qn, Zn) | a ∈ A}) = ν̂(Γa
n) =

1
[Γn : Γa

n]
=

1
k

,

where the last equality follows from the translation invariance of Haar
measure and the rest simply from definition.

Observe now that for two linearly independent elements a, b ∈ Qn \
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Zn, the corresponding events

{A ∈ S(Qn, Zn) | a ∈ A}

and
{A ∈ S(Qn, Zn) | b ∈ A}

the corresponding events are νn–independent.

It follows easily that if we fix a prime p, then for νn–conull many
A ∈ S(Qn, Zn) it holds that pA 6= A.

Let us denote by {ei}i<n the elements of the standard basis of Qn; then
we define for each prime p the events

Fp := {A ∈ S(Qn, Zn) | e0

p
∈ A and

e1

p
6∈ A} .

Using what was just said above about events arising from linearly in-
dependent elements, we see that all these {Fp | p ∈ P} are also νn–
independent.

Furthermore, for each prime p we can calculate that

νn(Fp) =
p− 1

p2 .

From a classical theorem of Euler we can easily derive that

∑
p∈P

p− 1
p2 = ∞ ,

so that we can apply the Second Borel–Cantelli Lemma to see that

νn

( ⋂
n<ω

⋃
p>n

Fp

)
= 1 .

Hence the types are unequal, i.e.

τ(e0) 6= τ(e1)
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in νn–conull many A ∈ S(Qn, Zn).
Also observe that SLn(Z) acts transitively on the set of ordered pairs of

1–dimensional linear subspaces of Qn; together with the SLn(Z)–invariance
of νn, we obtain that the set of all groups in S(Qn, Zn) such that any
two linearly independent group elements are not of the same type is νn–
conull. a

But where is the free action we are looking for? We have established
the existence of a conull set of rigid subgroups, i.e. the automorphism
groups of those groups consist exactly of two elements. Since we are
acting by the natural action of the special linear group over the integers,
the most natural thing to do is to factor these two elements out of the
acting group; so finally, the desired group is the projective special linear
group of rank two over the integers. The following facts clarify that this
will indeed do.

Theorem 87. For a countable group G and a normal subgroup Γ, we have that

G/Γ is amenable and Γ is amenable =⇒ G is amenable .

Recall that SL2(Z) is not amenable; this can be viewed as stemming
from the fact that SL2(Z) contains a free subgroup of rank two of finite
index, namely the one generated by(

1 2
0 1

)
and

(
1 0
2 1

)
;

to review the details, consult [Wag93]. Thus, by using Theorem 87 we
observe the following for the projective special linear group over the in-
tegers of rank two.

Theorem 88. The group PSL2(Z) is not amenable.

So the action of PSL2(Z) gives rise to a non-hyperfinite countable
Borel equivalence relation. Using the closure properties of hyperfinite
actions summarised in Theorem 15, we conclude that the same holds for
the original action of GL2(Z).
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6.4 All the other Finite Ranks (n ≥ 3)

Ioana Superrigidity This section is meant as a short introduction to
Ioana’s superrigidity theorem. We omit the proof, only mentioning that
its main tecnique can be thought of threading along the lines of Hjorth’s
theorem 35, however applied to a different setting.

Definition 89. A measure preserving action is profinite if it is the inverse
limit of a countable sequence of actions on finite spaces.

A simple example is the following: assume you are given a countable
group G together with an infinite descending chain of finite index sub-
groups (Gn)n∈ω. For each n ∈ ω, take µn to be the counting measure on
the right cosets G/Gn together with the action αn by left multiplication.
The factor maps are obtained by inclusion of cosets. The resulting limit
action is ergodic and profinite.

Theorem 90 ([Ioa11]). Let G y (X, µ) be a profinite ergodic measure preserv-
ing action on a standard probability space (X, µ), together with its invariant
factor maps πn : X → Xn for n ∈ ω. Then for any cocycle α : G×X → L there
are n ∈ ω and a ∈ Xn such that the restriction of α to the action

Ga y π−1
n (a)

is cohomologous to a homomorphism. We remark that obviously profinite actions
are far from being weakly mixing; also note that the untwisting is not on the
whole space but on one of its «components» obtained from the factor maps of the
inverse limit.

Some Abelian Group Theory For two abelian groups G, H, define the
tensor product as

G⊗ H := F(G× H)/ ∼

where F(G× H) denotes the free group on G× H factored by the follow-
ing relations denoted by ∼:

(g1 + g2, h)− (g1, h)− (g2, h)
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(g, h1 + h2)− (g, h1)− (g, h2)

for any g, g1, g2 ∈ G and any h, h1, h2 ∈ H. This is the same as the more
common tensor product over modules, where each abelian group needs
to be viewed as a Z–module (scalar multiplication identities follow im-
plicitly).

From now on we will always view a given countable torsion-free
abelian group of rank n ∈ ω as an additive subgroup of Qn, via the
natural identification.

Definition 91. We will denote by Rp(Qn) the subset of R(Qn) consisting of all
p–local groups.

Definition 92. An abelian group is p–local if

n ≥ 1∧ p ∈ P∧ q 6= p⇒ A = qn A .

In other words, A is an Rq–module for each prime q unequal to p.

For our discussion of the Kurosh–Malcev invariants, it will be im-
portant to regard the vector space Qn over Q as a subspace of the n–
dimensional space of p–adic numbers Qn

p over Qp. So, fixing p, given the
standard basis (ei)i≤n of Qn

p over Qp, we can identify Qn with

⊕
i≤n

Qei .

Furthermore, we can extend the action GLn(Q) y Qn to an action

GLn(Q) y Qn
p ;

this allows us to regard GLn(Q) as a subgroup of GLn(Qp).

Definition 93. PG(n − 1, Qp) denotes projective space over Qn
p, i.e. the

space of all 1–dimensional subspaces of Qn
p over Qn

p.

We introduce the «quasi»-analogues to our relations and provide a
discussion of the Kurosh–Malcev invariants.

77



Definition 94. For any A, B ∈ R(Qn) we define the following: A is quasi-contained
in B, or A ≺n B if there exists a positive m ∈ ω such that mA ≤ B. If further-
more A ≺n B and B ≺ A, we write A ≈n B, A and B being quasi-equal.

It follows that A ≈n B if and only if A ∩ B has finite index in both A
and B.

Lemma 95. Quasi-equality ≈n is a countable Borel equivalence relation on
R(Qn).

Proof. From the definition it follows immediately that ≈n is a Borel equiv-
alence relation.

To see that it is countable, assume that A, B ∈ R(Qn) and A ≈n B with
integers r, s > 0 that satisfy

rA ≤ B
∧

sB ≤ A .

Then
rA ≤ B ≤ 1

s
A

and consequently

[
1
s

A : rA] = [A : rsA] < ∞ ,

by which only countably many possibilities for B remain. a

Definition 96. Two groups A, B ∈ R(Qn) are quasi-isomorphic, A ∼n B, if
there is a transformation ϕ ∈ GLn(Q) such that

ϕ(A) ≈n B .

Using Lemma 95 we additionally get that for every n ∈ ω the relation
∼n is a countable Borel equivalence relation on R(Qn).

Definition 97. A linear transformation ϕ ∈ GLn(Q) is a quasi-endomorphism
of A ∈ R(Qn) if

ϕ(A) ≺n A .
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Lemma 98. 1. ϕ ∈ GLn(Q) is a quasi-endomorphism of A ∈ R(Qn) if and
only if there exists an integer m > 0 with mϕ ∈ End(A).

2. The collection of quasi-endomorphism of A is a Q-subalgebra of GLn(Q).

3. A ≈n B implies that the two associated algebras of quasi-endomorphisms
coincide.

Definition 99. The collection of all quasi-endomorphisms of A ∈ R(Qn) is de-
noted by QE(A). A linear transformation ϕ ∈ GLn(Q) is a quasi-automorphism
if it is a unit in the Q-algebra QE(A). We will denote the group of quasi-
automorphisms of A by QAut(A).

Lemma 100. The setwise stabiliser of [A]≈n in GLn(Q) is exactly QAut(A).

Proof. First suppose that ϕ ∈ QAut(A). Then we know that there is an
integer m > 0 such that ψ := mϕ is an endomorphism of A. Since ψ is ob-
viously also a unit in QE(A) we can conclude that it is a monomorphism.
Hence ψ(A) has finite index in A and thus

ψ(A) ≈n A .

By definition of ψ we also obtain

ψ(A) ≈n ϕ(A)

and thus
ϕ(A) ≈n A ,

as desired.
For the converse, we assume that ϕ ∈ GLn(Q) stabilises [A]≈n . As this

means ϕ(A) ≈n A it follows that for some integer m > 0 we have

mϕ(A) ≤ A .

Since additionally mϕ is a monomorphism, it follows that mϕ ∈ QAut(A)

hence ϕ ∈ QAut(A). a
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The Kurosh–Malcev Invariants

Definition 101. For a prime p define

Rp := { a
b
∈ Q | b and p are relatively prime}

i.e. the ring of rational numbers with denominator relatively prime to p.

Definition 102. The ring of p-adic integers will be denoted by Zp, the
field of p-adic numbers by Qp.

We start by defining two kinds of localisations:

Definition 103. For a torsion-free abelian group A ∈ R(Qn), define

Ap := Rp ⊗ A

A?p := Zp ⊗ A .

Furthermore we shall need the following result, which will lead to the
existence of a basis for the following direct-sum–decomposition:

Theorem 104 ([Fuc73, §93.3]).

Observe that A∗p is a Zp–submodule of Qn
p; clearly Ap ≤ A?p. Fur-

thermore, we opt to regard both Ap and A∗p as lying inside of Qn
p (which

is certainly a divisible hull for A). Then, for example the elements of Ap

can be written as finite sums of products qa, with q ∈ Rp and a ∈ A.
We remark that these localisation constructions are a way of obtaining an
extension of scalars (since Z clearly embeds into both rings above).

Suppose we have a torsion-free abelian group of rank n. Then the
Zp–module A∗p is also of rank n, and by Theorem 104 its reduced part is
free. This allows us to conclude that we can represent

A∗p =
⊕
i≤kp

Qpvi ⊕
⊕
i≤lp

Zpwi

for some kp, lp ∈ ω such that kp + lp = n and all vi, wi ∈ A∗p.
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Now take a maximal independent {ai}1≤i≤n in A. We can thus write

ai = ∑
1≤j≤kp

αi,jvj + ∑
1≤j≤lp

βi,jwj ,

where again αi,j ∈ Qp and βi,j ∈ Zp.

In summary we obtain an n× n–matrix

Mp :=


α

p
1,1 · · · α

p
1,kp

β
p
1,1 · · · β

p
1,lp

... . . . ...
... . . . ...

α
p
n,1 · · · α

p
n,kp

β
p
n,1 · · · β

p
n,lp

 ;

we furthermore know that these matrices are invertible over Qp, since the
vectors

{vi, wj}1≤i≤kp,1≤j≤lp

form a maximal linear independent system in A?
p over Qp.

It turns out that these matrix sequences together with the sequences
of natural numbers {lp}p∈P and {kp}p∈P are invariants for the group A;
more precisely there is an equivalence relation on the matrices in Mn(Qp)

which serve as an invariant for the group. For the details consult [Fuc73,
§93]. In fact, even the converse is true: for every sequence of matrices
with p–adic entries (with the natural restriction that the last lp entries
always must be p–adic integers in some representant of the class) there
exists a torsion-free abelian group of rank n with exactly that sequence as
invariant in the construction above.

For our purposes, the main result of Kurosh–Malcev can now be sum-
marized as the following:

Theorem 105 (Kurosh–Malcev). The map

A 7→ A?
p

is a GLn(Q)–preserving bijection between the full-rank p–local subgroups of Qn

and the full-rank Zp–submodules of Qn
p. Furthermore, the inverse map is given
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by
A?

p 7→ A?
p ∩Qn .

Time for the Harvest We get now get to the core of the proof, which
we present in the way given by S. Coskey in [Cos13]. In order to reach
a contradiction, we assume now assume that n ≥ 2 and that there is a
reduction from ∼=n+1 to ∼=n. Then we will need to use the Kurosh–Malcev
invariants in the following way.

Theorem 106. The equivalence relation induced by the natural action GLn(Q) y
P(Qn

p) is Borel reducible to ≈n.

Proof. Start with a linear subspace V ≤ Qn
p; then there exists a vector such

that
V⊥ ⊕Zpv

is a full-rank submodule of Qn
p. By Lemma 6.5 we can now identify this

module with an element of R(Qn).

To establish that this indeed a reduction; first of all one needs to check
that the Kurosh–Malcev-construction is really GLn(Q)–preserving; then,
the following fact completes the argument: assume

dim(V) = dim(V′) = n− 1

and
V ⊕Zpv and V′ ⊕Zpv′

are full-rank modules for some v, v′; then the existence of an element of
GLn(Q) taking W into W ′ implies that there is an element of GLn(Q)

taking V ⊕Zpv into V′ ⊕Zpv′. a

From this and the original assumption we infer that for the subrela-
tion induced by SLn+1(Z) y Qn

p there exists a countable-to-one homo-
morphism of equivalence relations f into quasi-isomorphism ∼n. It is
furthermore easy to see that SLn+1(Z) y Qn

p is a profinite ergodic action.
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First notice that there are only countably many possibilities for the
Q-algebra QE( f (x)).

Hence there exists a Borel subset of positive measure X′ ⊆ X and a
single fixed Q-subalgebra S of Mn(Q) such that

∀x ∈ X′ QE ( f (x)) = S .

By ergodicity we know that the saturation of X′ has full measure, i.e.

µ(SLm(Z).X′) = 1 .

For the sake of notation let us assume that this saturation is actually
the whole space X. Furthermore, since we may compose f with a function
on X whose graph is contained in EX

SLm(Z), we are allowed to adjust f as
to obtain

∀x ∈ X QE( f (x)) = S ,

i.e. the previous identity for the whole space.

That also means that for all x ∈ X it holds that QAut( f (x)) = S∗, i.e.
the group of units of S.

If we pick x, y ∈ X such that xEy, then also f (x) ∼n A(y), which by
definition means that there is ϕ ∈ GLn(Qn) which realises

ϕ( f (x)) ≈n A(y) .

Conjugating S by ϕ clearly gives

ϕSϕ−1 = ϕQE( f (x))ϕ−1 = QE(ϕ( f (x))) = QE(A(y)) = S .

In other words, ϕ is in the normalizer of S in GLn(Q), which we shall call

N := NGLn(Q)(S) .
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Clearly it holds that

ϕ([ f (x)]≈n) = [A(y)]≈n ,

and by Lemma 100 we know that for each x ∈ X the stabiliser of f (x)
in GLn(Q) is simply given by QAut( f (x)), which equals S∗. So we can
define

H := N/S∗ and for ϕ ∈ N define ϕ̄ := ϕN . (1)

Then, since this action has now become free, we can define the corre-
sponding Borel cocycle

α : SLm(Z)× X → H

α(g, x) := the unique ϕ̄ ∈ H such that ϕ([ f (x)]≈n = [ f (g.x)]≈n .

Using Ioana’s superrigidity theorem Theorem 90 we can now deduce
that there exists a finite-index subgroup Γ0 ≤ PSLn+1(Z), a positive mea-
sure set X′ ⊆ X and a homomorphism

ρ : Γ0 → H

which is cohomologous to α. By ergodicity this homomorphism must
also be nontrivial.

The final word of Margulis By the theorem on normal groups of Mar-
gulis, ρ can assumed to be an embedding. Also note that the algebra
S ⊆ Mn(Q) is definable from a vector space basis, we have that S = S(Q)

for an algebraic Q–group lying inside of Mn(Q). Basic facts from alge-
braic group theory now imply that also N = N(Q) and S∗ = K′(Q) for
N, K′ algebraic Q–groups in Mn(Q). So

H = N(Q)/K′(Q) ,
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which is furthermore contained in the algebraic Q–group N/K′, and
since for algebraic groups passing to subgroups or quotients decreases
the dimension, we have that

dim(N/K′) ≤ dim(Mn(Q)) = n2 < (n + 1)2 − 1 = dim(PSLn+1) ,

which is a contradiction due to Margulis superrigidity.

6.5 The Hyperfiniteness of the Quasi-Equality Relation≈n

The following non-trivial result is from [Lad79]. We will need it in order
to show the hyperfiniteness, by first showing that for each prime p the
quasi-equality relation restricted to p–local groups is smooth.

Theorem 107 (Lady). Two groups A, B ∈ R(Qn) are quasi-equal if and only if
both of the following conditions are satisfied:

1. Ap ≈n Bp for all primes p

2. Ap = Bp for all but finitely many primes p

Definition 108. The restriction of the quasi-equality relation to the space of
p-local groups Rp(Qn) will be denoted by ≈p

n.

The heart of this section will be devoted to proving that for all primes
the quasi-equality relation restricted to the corresponding p-local groups
is in fact smooth. From this it will follow easily that the quasi-equality
relation on the whole space R(Qn) is hyperfinite by directly finding a
Borel reduction to a variant of E0. We tread closely along the lines of
[Tho03].

By the definition, we may regard A?
p as the subgroup of Qn

p consisting
of all the finite sums of the form

∑
i≤k

γiai ,

for some finite k ∈ ω, where each γi ∈ Zp and each ai ∈ A.
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By there exist natural numbers k, l ∈ ω with k + l = n and group
elements (vi)i<k, (wj)j<l such that we can decompose A?

p as

A?
p =

⊕
i<k

Qpvi ⊕
⊕
j<l

Zpwj .

Definition 109. For a group A ∈ Rp(Qn) we shall call the first part of the
decomposition VA, i.e. for vi as above, we define

VA :=
⊕
i<k

Qpvi .

and the second part will be denoted by LA,

LA :=
⊕
i<k

Qpwi .

The next theorem, which is a consequence of the appended lemmas,
shows that in order to understand quasi-equality ≈p

n in Rp(Qn), it is
enough to know about VA.

Theorem 110. For A, B ∈ Rp(Qn) we have the following equivalence:

A ≈p
n B ⇔ VA = VB .

We now prove two lemmas, which simply split the proof of the theo-
rem.

Lemma 111. For A, B ∈ Rp(Qn) we have the following equivalence:

A ≈p
n B ⇔ A?

p ≈
p
n B?

p .

Proof. Let us start with the assumption that A?
p ≈

p
n B?

p. Then by we have
that Qn takes out exactly A and B, i.e. A = A?

p ∩Qn and B = B?
p ∩Qn.

Thus we see that

[A : A ∩ B] = [A?
p ∩Qn : (A?

p ∩ B?
p) ∩Qn] ≤ [A?

p : A?
p ∩ B?

p] < ∞ ,
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and analogous reasoning gives

[B : A ∩ B] < ∞ ,

hence by we can conclude
A ≈p

n B .

Conversely, assume that A ≈p
n B and let C := A ∩ B. Then also C?

p ≤
A?

p ∩ B?
p, and we can complete the proof by showing that C?

p has finite
index in both A?

p and B?
p. In order to get there, we first define F := A/C

and obviously get the short exact sequence

0→ C → A→ F → 0 ,

simply because of how these groups were defined. Furthermore, [Fuc73,
Theorem 60.2] allows us to conclude that by taking products with Zp we
still have an exact sequence before us;

Zp ⊗ C → Zp ⊗ A→ Zp ⊗ F → 0 .

If we now decompose F into a finite direct sum of finite cyclic groups, say

F =
⊕
r≤s
Cmr ,

[Fuc73, §59] tells us that

Zp ⊗ F ∼=
⊕
r<s

Zp/(mrZp) .

And since this means that Zp ⊗ F is a finite group, it follows that C?
p has

finite index in A?
p; analogous reasoning gives finite index of C?

p in A?
p,

which completes the proof. a

Lemma 112. For A, B ∈ Rp(Qn) we have the following equivalence:

A?
p ≈

p
n B?

p ⇔ VA = VB .
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Proof. Start with A?
p ≈

p
n B?

p; then for each v ∈ VA we calculate

[Qpv : B?
p ∩Qpv] = [A?

p ∩Qpv : A?
p ∩ B?

p ∩Qpv] ≤ [A?
p : A?

p ∩ B?
p] < ∞ .

Now suppose we have a v ∈ VA \ VB. Then B?
p ∩Qpv is a proper Zp-

submodule of Qpv and so there exists a nonzero u ∈ Qpv such that B?
p ∩

Qpv = Zpu. But as a consequence

Qpv/(B?
p ∩Qpv) ∼= Qp/Zp ∼= C(p∞) ,

which is a contradiction. Thus necessarily VA ≤ VB, and through analo-
gous arguments VB ≤ VA, which means VA = VB .

Now suppose that the components of the decomposition are equal and
define

V := VA = VB .

Then there exist finitely many elements (ai)i<l A?
p, (bi)i<lB?

p such that

A?
p = V ⊕

⊕
i<l

Zpai ,

B?
p = V ⊕

⊕
i<l

Zpbi .

Observe that we can identify LA and LB with the corresponding Zp–
submodules of the l–dimensional Qp–vector space

W := Qn
p/V .

Furthermore there is t ∈ ω such that ptyi ∈ LA for each i ≤ l. As a
consequence we can bound the index of the intersection by

[LB : LA ∩ LB] ≤ [LB : ptLB] = pt·l ,

a fact which proofs finiteness of the index. The same argument establishes

[LA : LA ∩ LB] < ∞
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and therefore A?
p ≈

p
n B?

p. a

Recall here that the Qp vector space Qn
p is a separable complete metric

space with respect to the metric induced by the p–adic norm. As men-
tioned in [Kec95], we therefore know that the Effros Borel F(Qn

p) space is
a standard Borel space.

By that, it only remains to show that the map taking each group to the
first part in the decomposition is a Borel map, i.e.

Rp(Qn
p)→ F(Qn

p)

A 7→ VA

is Borel in order to complete the proof of hyperfiniteness of the unre-
stricted quasi-equality relation for rank n.

First of all, it is easy to see that the map

s : (Qn
p)
≤n → F(Qn

p)

defined by sending an at most n–long sequence of vector to the spanned
Qp–subspace, is indeed a Borel map. Hence it is enough to show that
there exists a Borel map

b : Rp(Qn
p)→ (Qn

p)
≤n

which maps each group A to a basis of VA.

Definition 113. A finite sequence of nonzero elements (ai)i<l in A ∈ Rp(Qn)

is called p-independent if whenever

∑
i<l

niai ∈ pA

for some ni ∈ Z, then p|ni for all i < l. A maximal p–independent such
sequence is called a p–basis.

Let us start with some A ∈ Rp(Qn). Then we can clearly choose a
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p–basis p-basis (a1, . . . , al) of A in a Borel way. Let P := 〈a1, . . . , al〉 be
the subgroup of A generated those basis elements. Then [Fuc73, §32]
tells us that A/P is p–divisible and thus a divisible group. Hence we can
represent

A/P = R⊕ T

with T being the torsion subgroup and R the direct sum of k := n − l
copies of Q. Furthermore, by it is not difficult to see (as in [Fuc73, §93])
that we have dimVA = k.

Continuing, we can again choose — in a Borel way — a sequence
(zi)i<k of elements of A such that

(z1P, . . . , zkP

is a basis of R (which is isomorphic to Qk). To complete, we will use both
sequences (zi)i<k and (ai)i<l to construct a basis, call it (vi)i<k of VA.

Fix some i < k and let t ≥ 1. Suppose inductively that there exist
integers cj

s ∈ ω with j < l and s < t that satisfy the following conditions:

1. cj
s < p,

2. There exists dt ∈ A such that

ptdt = zi + ∑
i<l

ni
tai ,

where
ni

t := ci
1 + ci

2p + · · ·+ ci
t pt−1 .

Since we know that R is divisible, there exists an element dt+1 ∈ A and
integers (ci

t+1)i<l such that

pdt+1 = dt + ∑
i<l

ci
t+1ai ,

and after adjusting our choice of dt+1 if necessary, we may assume that
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0 ≤ ci
t+1 < p for i < l.

Then obviously
pt+1dt+1 = zi + ∑

i<l
ni

t+1ai .

This means that the induction can be completed.

Next, for j < l, let
γj := ∑

i<ω

cj
i p

i ∈ Zp .

Then the corresponding basis element of VA is

vi = zi + ∑
i<l

γiai ∈ A?
p .

The linear independence of z0, . . . , zk−1 over Qp implies that v0, . . . , vl−1

are linearly independent as well. This means that it suffices to check that
each vi ∈ pt A?

p for i < k and t ≥ 1. To achieve that, fix some i < k and
consider (as before) the element

vi = zi + ∑
i<l

γiai ∈ A?
p .

Then
ptdt = zi + ∑

j<l
nj

taj

and

vi − ptdt =

(
∞

∑
r=t+1

c1
r pr−1

)
a1 + . . . +

(
∞

∑
r=t+1

cl
r pr−1

)
al .

Hence
ptet = vi ,

where

et := dt +

(
∞

∑
r=t+1

c1
r pr−(t+1)

)
a1 + . . . +

(
∞

∑
r=t+1

cl
r pr−(t+1)

)
al .

So in fact, we have just proved the following
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Theorem 114. For each prime p the relation ≈p
n is smooth.

From this, we can finally deduce the hyperfiniteness of the unre-
stricted quasi-equality.

Theorem 115. The quasi-equality relation ≈n is hyperfinite for each n ≥ 1.

Proof. Define E∗0 as the equivalence relation on 2P×ω defined by

xE∗0y :⇔ x(p, n) = y(p, n) for all but finitely many (p, n) ∈ P×ω .

Clearly this is just another version of E0, so one can easily show that
E∗0 ∼ E0.

Now being smooth allows us to get, for each prime p, an injective
Borel map

gp : Rp(Qn)→ 2ω

that reduces ≈p
n to equality, i.e.

A ≈p
n B⇔ gp(A) = gp(B) .

Using this, we can define a new Borel map f : R(Qn)→ 2P×ω by

f (A)(p, n) := gp(Ap)(n) .

Eventually we rejoice since Theorem 107 really tells us that this is a re-
duction to E∗0 , in other words, ≈n is hyperfinite. a

6.6 Extending the Results to the space of all Finite Ranks

We now shift our attention to the space of countable torsion-free abelian
groups of finite rank, without restriction to a fixed rank n. In other words,
we take the countable sum over all ranks. The previous result subsec-
tion 6.4 that the complexity of the isomorphism relation increases strictly
with the rank of the groups certainly implies that none of the relations
(∼=n)n∈ω are countable universal. However, it might still be possible that
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these relations are complexity-wise cofinal in the poset of countable Borel
equivalence relations. We will show here that this is not the case. This
proof was given in [Tho09] and seems to crucially rest on Popa’s super-
rigidity theorem.

An ergodicity theorem for Bernoulli shifts Before going into the proof,
we additionally need a theorem which will help us make use of the
fact that quasi-equality ≈n is hyperfinite for any n ≥ 1. Before prov-
ing the main theorem here, which says that certain Bernoulli shifts are
E0–ergodic, we need the following preparatory characterization of E0–
ergodicity.

We state the following two theorems without proof, only showing how
to derive the E0–ergodicity of shift actions of non-amenable groups from
these.

Theorem 116 (Hulanicki). A countable group G is amenable if and only if the
left-regular action

G y `2(G)

has non-trivial almost invariant vectors.

Denote by L2
0(X, µ) those closed subspace of those functions f ∈ L2(X, µ)

that satisfy ∫
X

f dµ = 0 .

We will need the following result on E0–ergodicity:

Theorem 117 ([HK05, §A2,§A3]). Let G be a a countable group acting in an
ergodic measure preserving way a standard Borel probability space (X, µ).

Then the fact that the corresponding G–action on L2
0(X, µ) has no non-trivial

almost invariant sets implies that the induced equivalence relation on X is E0–
ergodic.

Using this we obtain the following
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Theorem 118 (Losert–Rindler, Jones–Schmidt). Let G be a countable group
and Γ ≤ G a non-amenable subgroup. Consider the space 2G equipped with the
usual product measure µ and the shift action of

Γ y 2G .

Then the action of
Γ y L2

0(2
G, µ)

has no nontrivial almost invariant vectors. As a consequence, the shift action of
Γ on 2G is E0-ergodic.

Proof. First, we can view 2G as a compact abelian group by identification
with (Z/(2Z))G. As a consequence, µ turns out to be Haar measure. The
dual group, i.e. the group of characters ĈG

2 , can be identified with

a := {χ ∈ CG
2 | χ(g) = 0 for all but finitely many g ∈ G} ,

where the associated character is given by

χ̂(x) := (−1)∑g∈G χ(g)x(g) .

From here on we will work with this identification.

Observe moreover that ∫
χ(x)dµ(x) = 0

for any character χ and that the nonzero characters form a basis for the
Hilbert space L2

0(C
G
2 , µ). To see this, first observe that orthonormality can

easily be established by direct calculation. To establish that the whole
space can be spanned by these, simply note that they separate parts and
are also closed under multiplication, which allows us to apply the Stone–
Weierstrass theorem.

Let Γ act on our set of characters. As every character can be viewed as
a characteristic function of a finite nonempty subset of the group G, this
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action can in turn be identified with the left translation action of Γ on the
finite nonempty subsets o G, which obviously implies that all stabilizers
are finite. As a sidenote, we remark that in case of a torsion-free Γ, this
action is even free. Enumerate all the orbits of this action of Γ on the
characters by (On)n∈ω, and furthermore choose a character from each of
these orbits, calling it χn ∈ On.

Now let Hn denote the closed subspace of L2
0(X, µ) with basis all χ ∈

On. Then we get that
L2

0(C
G
2 , µ) =

⊕
n∈ω

Hn ,

where furthermore each Hn is Γ–invariant.

Define as Γn the elements in Γ that fix χn. These are all finite sub-
groups of Γ.

Consider the quotient
Γ/Γn ,

and let Γ act on these left-cosets by left-translation. Again, shifting our
perspective, this gives rise to a unitary action of Γ on

`2(Γ/Γn)

by
γ. f (hGn) := f (γ−1hGn)

for an f ∈ `2(Γ/Γn).

As an action on Hilbert spaces, this is easily isomorphic to the action
of Γ y Hn.

In order to reach a contradiction, let us now assume that the action

Γ y L2
0(C

G
2 , µ)

has nontrivial almost invariant vectors. The strategy is as follows; we first
show that this implies that for any (ε, F) there is an n ∈ ω such that the
action Γ y Hn has an (ε, F)–invariant vector. This obviously means that
the same is true for the action on `2(Γ/Γn). This will be enough to show
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that `2(Γ) has an (ε, F)–invariant vector, which is a contradiction.

Now for the details. Fix ε > 0 and a finite subset F ⊆ Γ. Choose a
nonzero x ∈ L2

0(C
G
2 , µ) with

∀γ ∈ F
‖γ.x− x‖
‖x‖ <

ε

|F| .

Represent
x = ∑

i∈ω

xi

with each xi ∈ Hi. Then we see

∑
γ∈F
‖γ.x− x‖2 < ε2 · ‖x‖2 ,

and consequently

∑
γ∈F

∑
n∈ω

‖γ.xn − xn‖2 < ε2 · ∑
n∈ω

‖xn‖2 ;

then, by interchanging the order of summation

∑
n∈ω

∑
γ∈F
‖γ.xn − xn‖2 < ε2 · ∑

n∈ω

‖xn‖2 .

So we have, for some n ∈ ω, that

∑
γ∈F
‖γ.xn − xn‖2 < ε2 ‖xn‖2

which means that

∀γ ∈ F
‖γ.xn − xn‖2

‖xn‖2 < ε2 ,

or in other words, that xn is (ε, F)–invariant.

In order to ascend to `2(Γ), first observe that no generality is lost in
assuming that the vector we just found has unit norm. Then we get what
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we need by defining u ∈ `2(Γ) as

u(h) :=
1√
|Γn|
· v(hΓn) .

This u is a unit vector and since

∀γ ∈ F (‖γ.u− u‖ = ‖γ.v− v‖ < ε ,

we realize that this is the desired almost invariant vector. a

Proving the non-Universality We cannot argue that the smooth dis-
joint union of countable non-universal Borel equivalence relations is again
non-universal, since it is still not known whether this is true.

So assume that we have a reduction function

f : 2G →
⋃

n∈ω

R(Qn)

reducing the shift action on the free part of 2G to the union of the iso-
morphism relations ≈n over all finite ranks; we will shortly specify the
group G. Let the cocycle α : G × Fr(2G) → H be defined as before on
page 84, i.e. by shifting the classes of quasi-equality ≈n obtained from
the reduction function f .

Now take S to be a simple non-amenable group which does not embed
into any of the countably many possibilities for H. This group exists,
since we can start with a finitely generated non-amenable group T that
does not embed into any of the countably possibilities for H and in turn
take S to be a countable simple group into which T embeds.

Defining
G := SL3(Z)× S

and we can assume that our cocycle α is already a homomorphism from
G to H, since we have shown this to be perfectly fine by Popa’s cocycle
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superrigidty theorem. By the way we chose S, we know that

S ≤ ker(α)

must hold. Thus for almost all x ∈ Fr(2G) we obtain

[Ag.x]≈n = [Ax]≈n .

To put it in other words, this means that on a conull set the map

f : Fr(2G)→ R(Qn)

is a Borel homomorphism between the equivalence relation induced by
the S-action on Fr(2G) and the quasi-equality relation ≈n, which we know
to be hyperfinite. By Theorem 118 and using the non-amenability of S,
the action

S y Fr(2G)

is E0-ergodic and hence the homomorphism f is µ–trivial (for the stan-
dard product measure), which contradicts its definition.

6.7 Further Results

In a series of papers by S. Coskey, G. Hjorth and S. Thomas culminating
in [Tho11] it has been shown, among other results, that for n ≥ 2 the
isomorphism relations restricted to the p–local groups are incomparable
for unequal primes:

Theorem 119. If p 6= q are primes, then for any natural n ≥ 2 we have that

∼=p
n 6≤∼=

q
n and ∼=q

n 6≤∼=
p
n .

This also means that there are countably many incomparable Borel
equivalence relations between ∼=n and ∼=n+1. With a bit more efford as
above, even continuum many unequal equivalence relations can be con-
structed, lying between isomorphism of rank n and rank n + 1. An even
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stronger result is known.

Theorem 120 (Thomas). Let S, S′ be sets of primes and n ≥ 2. Then the
classification problem for the S–local torsion-free abelian groups of rank n is
Borel reducible to the classification problem for the S′–local ones if and only if

S ⊆ S′ .

Here, a group is said to be S–local if it is p–divisible for all primes
p 6∈ S.

It seems interesting to point out that for both results, the case where
n ≥ 3 has been solved using Ioana superrigidity, while the rank-2–case
still relies on R. Zimmer’s results in a critical way.
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homomorphism, 19
hyperfinite, 21
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reducible, 20
reduction, 19

bounded elementary generation, 46
bounded generation, 45

characteristic, 66
cocycle, 27
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Effros Borel space, 89
ergodic decomposition, 70
ergodicity, 21

fibred product, 35
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finitely additive probability measure,

71
free part, 57

group
p–local, 77
profinite, 76

localisations of an abelian group A,
80
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mean, 71
measurable quotient, 35
measure disintegration, 36

principal congruence subgroup of level
m, 47

projection-valued measure, 26
projective space, 77
property (T), 23
property (T) for pairs, 26

quasi-automorphism, 79
quasi-containment, 78
quasi-endomorphism, 78
quasi-equality, 78
quasi-isomorphism, 78

relative property (T), 26
ring of p-adic integers, 80

tensor product, 76
type, 66
type of a group, 66

unitary representation, 23

virtual embedding, 58
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