
DISSERTATION

Titel der Dissertation

Provenance in Clouds:

Framework, Applications and Implication

Verfasser

Muhammad Imran

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2014

Studienkennzahl lt. Studienblatt: A 786 881

Dissertationsgebiet lt. Studienblatt: Informatik

Betreuer: Univ.-Prof. Dr. Helmut Hlavacs

To my Parents...

Abstract

Clouds – one of the latest implementation of distributed computing emerged as a result of
research and advancement in virtualization, networking, web services and grid computing.
They imply a service oriented architecture and provide on-demand access to a shared
pool of resources such as servers, storage, applications and services. The underlying
architecture of Clouds is based on various tiers or layers such as software, platform, and
infrastructure also called Cloud computing stack. These tiers target specific audiences
such as consumers, developers and resource providers. Each tier contributes in the overall
process of delivering resources, executing applications, providing services and storing data
for the target users. Clouds are also abstract, modular and dynamic in nature. The
abstraction helps hiding the underlying complex details from the end users and presents
them as a single entity. The layered and dynamic architecture of Clouds has made it a
rapidly adopting platform for computation and data science activities. However, there
is a dire need to make Clouds more reliable, accountable, secure and trustworthy from
different perspectives of the end users.

Provenance is metadata that describes the derivation history of any object in data
or computation science. It is used as evidence to provide reliability and trustworthiness
to the derived object. The existing works of provenance in Clouds are mostly focused
on the application layer. However, it is not widely recognized that Clouds have their
own provenance because of the dynamic and modular architecture. For instance, the
provenance of infrastructure, platform, software, client, and virtualization tiers while
delivering and hosting various applications and data.

In this thesis, we examine the architecture of Clouds and provide a list of requirements
for the collection of provenance. The requirements are identified from different layers
while considering various characteristics such as abstraction, modularity, and scalability
etc. of Clouds. In addition, low cost of provenance computation and storage is also
considered. To achieve this, a provenance framework is designed and developed which
addresses the list of requirements in a modular, independent and seamless fashion for
the collection of provenance. The proposed provenance framework not only addresses the
identified requirements but also provides services such as storage, query and visualization
of provenance.

The collected provenance and the services of framework are further utilized to present
the usefulness of provenance enabled Clouds. This is achieved through validating various
applications scenarios which highlight the significance of provenance and the developed
framework at various layers of Clouds for the different end users. These applications cover
a broad range of domains such as: (i) metadata (subset of provenance) based search, (ii)
usage reports of various users and Cloud services, (iii) finding similarity patterns and
utilization of resources through analysis of various users and Cloud activities, and (iv)
failure tracking. Moreover, Cloud provenance is exploited as a bonding agent to explore
the connections and relationships amongst various layers. In short, an effective provenance
framework is derived which addresses the layered architecture of Cloud and various appli-
cations using provenance ensure the improved management of Clouds for end users. This
is accomplished while keeping the computation and storage cost of provenance marginal
as evident through various evaluation in this thesis. We believe that the contribution of
this thesis is relevant with current data and computation science shifting towards Clouds.

iii

Zusammenfassung

Clouds – einer der neuesten Trends in der Entwicklung von verteilten Systemen entstand
auf Grund der Forschung und neuen Entwicklungen in den Bereichen Virtualisierung, Net-
zwerktechnik, Web Services und Grid Computing. Clouds setzen eine Service-Orientierte
Architektur voraus und erlauben bedarfsgetriebenen Zugriff auf eine gemeinsame Menge
an Ressourcen wie Server, Speicher, Applikationen und Services. Die darunterliegende
Architektur basiert auf verschiedenen Tiers wie zum Beispiel Software, Plattform und In-
frastruktur, die in der Regel als Cloud Computing Stack bezeichnet werden. Jedes dieser
Tiers trägt seinen Teil zum Funktionieren der Cloud bei, sei es durch die Übertragung
von Ressourcen, die Ausführung von Programmen, oder die Speicherung von Daten für
die Benutzer. Clouds sind abstrakt, modular und dynamisch aufgebaut. Die Abstraktion
hilft die Komplexität vor dem Benutzer zu verstecken und hilft dabei die Cloud dem Be-
nutzer als eine einzelne Entität darzustellen. Aus Sicht der Endbenutzer haben Clouds
trotz vieler Vorzüge noch einige Probleme. So sind zum Beispiel weitere Verbesserungen
in den Bereichen Verfügbarkeit, Nachvollziehbarkeit, Sicherheit und Vertrauenswürdigkeit
nötig.

Provenance sind Metadaten über die Herkunft und Geschichte eines Datenobjektes
oder Berechnungsergebnis in der Simulationswissenschaft. Diese Metadaten werden ver-
wendet um die Zuverlässigkeit und die Vertrauenswürdigkeit der Daten zu untermauern.
Aktuelle Forschungsergebnisse zum Thema Provenance beschäftigen sich hauptsächlich
mit der Applikationsschicht Wir sind aber der Ansicht, dass für Clouds auf Grund ihrer
Dynamik und Modularität ebenfalls Provenance Daten gespeichert werden sollten. Zum
Beispiel Provenance Daten für die Infrastruktur, die Plattform, die Software, den Client
und Virtualisierungsumgebungen die für das Hosten der Applikationen und Übertragen
der Daten zuständig sind.

In dieser Arbeit untersuchen welche Anforderungen eine Cloud erfüllen muss um die
Aufzeichnung von Provenance-Daten zu ermöglichen. Wir unterteilen die Anforderungen
anhand der verschiedenen Tiers unter Berücksichtigung der speziellen Cloud-Charakteri-
stiken (wie zum Beispiel Abstraktion, Modularität, Skalierbarkeit, etc.). Wir schlagen
zur Vereinfachung Aufzeichnung von Provenance-Daten ein Framework vor, das die iden-
tifizierten Anforderungen erfüllt und dabei modular, unabhängig und für den Benutzer
transparent arbeitet. Das Framework sollte zusätzlich zur Aufzeichnung der Provenance
Daten auch Möglichkeiten zum Speichern, Abfragen und Visualizern dieser Daten bieten.

Mit dem von uns entwickelten Framework und den damit aufgezeichneten Provenance
Daten zeigen wir in der Folge den Zusatznutzen der Provenance Daten anhand einer
Reihe von Anwendungsszenarios, welche die Wichtigkeit dieser Daten verdeutlichen. Diese
Szenarien beinhalten ein breites Spektrum an Anwendungsgebieten, wie zum Beispiel
Metadaten (eine Untermenge von Provenance-Daten), Benutzerstatistiken für verschiedene
Benutzer und Cloud-Aktivitäten, sowie die Nachverfolgung von auftretenden Fehlern.
Zusätzlich verwenden wir die Cloud Provenance Daten um die Verbindungen und Beziehun-
gen der einzelnen Tiers zueinander zu untersuchen. Unser Framework wurde entwickelt
um die speziellen Anforderungen an die Sammlung von Provenance Daten in der Cloud
zu berücksichtigen und die Managementmöglichkeiten für den Benutzer zu verbessern.
Des Weiteren konnten wir zeigen, dass die Anforderungen des Frameworks an Speicherka-
pazität und Rechenleistung vernachlässigbar sind.

v

Acknowledgments

In the name of ALLAH S.W.T., the most Merciful, Who blessed me with all what

I am able to achieve in this world.

I want to express my special gratitude and thanks to my supervisor Univ.-Prof.

Dr. Helmut Hlavacs, for the support, encouragement and guidance he showed me

throughout the last years. His help, constructive comments, and valuable sugges-

tions throughout my studies have contributed significantly to the success of this

research. My special appreciation also goes to Dr. Karin Hummel, for her support,

encouragement and guideline in the start of my research. It would have not been

possible without her.

I am very thankful to my parents and siblings who were a constant source of

encouragement during my whole life and specially my course of studies in Vienna.

None of this would have been possible without the love and support of my family. I

love you all.

I am thankful to my colleagues and staff members for their constant support and

help during my research (thank you Tanja Schwind, Rudolf Hürner, Ewald Hotop,

Dr. Andreas Janecek and all others). Special thanks to Dr. Andreas Janecek for

proofreading parts of this thesis and providing me with valuable suggestions.

Many friends have helped me during my PhD studies and especially in the last

weeks of writing this thesis. I greatly value their friendship and I appreciate their

efforts. Special thanks to Dr. Fakhri alam and Sardar hussain for their constant

help, motivation and critical analysis of this research.

I am thankful to Higher Education Commission of Pakistan (HEC) for providing

me the opportunity to grasp and experience the research environment abroad by

funding my PhD studies in Vienna, Austria.

Muhammad Imran

Vienna, Austria

July 2014

vii

Contents

Abstract . iii

Zusammenfassung . v

Acknowledgments . vii

1 Introduction and Motivation 1

1.1 Motivation . 4

1.2 Research Questions . 6

1.3 Research Approach . 8

1.4 Outcome . 9

1.5 Contributions . 10

1.6 Research Publications . 11

1.7 Organization of Thesis . 12

2 The Architecture of Cloud Computing 13

2.1 Types or Layers in Cloud Computing 13

2.1.1 Infrastructure as a Service (IaaS) 14

2.1.2 Platform as a Service (PaaS) 17

2.1.3 Software as a Service (SaaS) 20

2.1.4 Storage as a Service (STaaS) 22

2.2 Features of a Cloud IaaS . 23

2.2.1 Resource Types . 23

2.2.2 Instances and their Types . 24

2.2.3 User-Data . 24

2.2.4 Elastic Block Storage (EBS) 25

2.2.5 Snapshots . 26

2.3 Cloud Deployment Models . 26

2.4 Roles in Cloud Computing . 27

2.5 Characteristics of Cloud Computing 28

2.6 Conclusion . 29

3 Related Work 30

3.1 Provenance in Grid, Workflow, SOA and Database Domains 31

3.2 Provenance in Cloud . 32

3.3 Provenance in Cloud: Why? . 36

3.4 Possible Schemes of Provenance in Clouds 38

3.4.1 Provenance as a Part of Cloud Service Models (Provenance on

Cloud Core) . 39

3.4.2 Provenance is Independent of Cloud Service Models 41

3.4.3 Discussion . 42

3.5 Service Oriented Architecture (SOA) 43

ix

3.6 REST . 44

3.7 SOAP . 45

3.8 XML . 46

3.9 HTTP . 46

3.10 ESB . 47

3.11 Conclusion . 48

4 A Provenance Framework for Clouds 49

4.1 Prerequisites of the Provenance Framework 50

4.1.1 Provenance Requirements . 51

4.1.2 Provenance Metric . 53

4.2 The Design of the Provenance Framework 53

4.2.1 Provenance Collection . 56

4.2.2 Provenance Parsing . 57

4.2.3 Provenance Data . 60

4.2.4 Provenance Storage . 64

4.2.5 Provenance Query . 67

4.2.6 Provenance Visualization . 68

4.2.7 User Interface . 68

4.3 Relationship of the Framework with Provenance Requirements . . . 70

4.4 Provenance Enabled Clouds: Implication of the Framework 71

4.5 Provenance Framework: Implementation of the Interceptor Approach

in Cloud IaaS . 73

4.5.1 Mule Enterprise Service Bus 74

4.5.2 Axis2/C Architecture . 76

4.5.3 Provenance Configuration . 81

4.6 Framework Experience . 83

4.7 Conclusion . 84

5 Applications of the Provenance Framework in Clouds 86

5.1 Providing Content Search for Clouds Object Storage Using Metadata 87

5.1.1 Introduction . 87

5.1.2 Problem Description: What is Missing? 88

5.1.3 Understanding the Architecture 89

5.1.4 Proposed Solution . 90

5.1.5 Implementing the Solution: Using the Framework 92

5.1.6 Metadata Based Search: Application Architecture 98

5.1.7 Experiment and Evaluation 102

5.1.8 Implication . 105

5.1.9 Summary . 106

5.2 Usage Reports and Similarity Patterns in Clouds 107

5.2.1 Introduction . 107

5.2.2 Problem Description: A Case Study 108

5.2.3 Solution: Using the Provenance Framework 109

5.2.4 Experiment and Evaluation: Various Features for Report Gen-

eration . 111

5.2.5 Implication . 118

5.2.6 Summary . 118

5.3 Efficient Utilization of Resources . 119

5.3.1 Introduction . 119

5.3.2 Problem Description: A Case Study 119

5.3.3 Solution: Using Provenance for the Utilization of Resources . 120

5.3.4 Experiment and Evaluation 121

5.3.5 Implication . 124

5.3.6 Summary . 124

5.4 Conclusion . 124

6 Aggregating Provenance from Various Layers/Service Models of

Clouds 126

6.1 Introduction . 126

6.2 Understanding the Layered Architecture 127

6.3 Shortcoming of Existing Works . 128

6.4 Problem Description: Why Aggregated Provenance – A Case Study 129

6.4.1 Architecture of DataSync . 130

6.4.2 Significance of Aggregated Provenance 131

6.5 Solution: Extending the Framework 132

6.5.1 Provenance Collection and Parsing 132

6.5.2 Provenance Data . 133

6.5.3 Provenance Query . 133

6.5.4 Summary . 134

6.6 Use Cases of DataSync . 135

6.6.1 Use-Case: The Sync process failed 135

6.6.2 Use-Case: The sync process from Cloud presents wrong content138

6.6.3 Use-Case: Corrupted Data 140

6.6.4 Discussion . 142

6.7 Fault Tracking (Error Handling) in Clouds 142

6.7.1 Fault tracking using provenance 143

6.7.2 Advantages . 144

6.7.3 Summary . 146

6.8 Conclusion . 146

7 General Evaluation of the Provenance Framework 147

7.1 Evaluation of the Framework for Cloud IaaS Model (Using Eucalyptus)148

7.1.1 Performance of the Framework for CC and NC Services Using

Axis2/C . 148

7.1.2 Performance of the Framework for CLC Services Using Mule 148

7.1.3 Storage Overhead of the Framework 150

7.1.4 Discussion of the Results . 151

7.2 Evaluation of the Framework for Platform and Software Models (Us-

ing WSO2 and DataSync Application) 153

7.2.1 Discussion of the Results . 154

7.3 Evaluation of the Framework for Object Storage (STaaS Model) . . 155

7.3.1 Collection Overhead . 156

7.3.2 Storage Overhead . 158

7.3.3 Query Performance . 159

7.3.4 Discussion of the Results . 160

7.4 Extension of the Provenance Framework to Nimbus Cloud 160

7.5 Conclusion . 163

8 Conclusion 164

8.1 Research Contributions . 165

8.2 Limitations, Open Issues and Future Work 169

8.3 Summary . 170

Appendices 171

A.1 XML Configuration Files of Mule (Eucalyptus Cloud) 171

A.1.1 eucalyptus-walrus . 171

A.1.2 eucalyptus-verification . 172

A.1.3 db-model . 174

A.1.4 eucalyptus-bootstrap . 175

A.1.5 storage-model . 176

A.1.6 storage-services . 178

A.1.7 eucalyptus-userdata . 178

A.1.8 eucalyptus-storage . 179

A.1.9 eucalyptus-services . 180

A.1.10 eucalyptus-runtime . 182

A.1.11 eucalyptus-interface . 184

A.2 XML Configuration Files of Axis2/C (Eucalyptus Cloud) 186

A.2.1 EucalyptusCC . 186

A.2.2 EucalyptusNC . 189

A.2.3 Eucalyptus-Axis2/C . 191

Curriculum Vitae 198

Publications 200

References 202

List of Figures

1.1 The basic flow (solid lines) of requesting a raw resource from the

Cloud infrastructure. The dotted lines present the various metadata

(provenance) of each step. 3

1.2 A sample application which provides information of the current weather

using Cloud . 5

1.3 Provenance in Clouds - The overview 7

2.1 Cloud computing stack . 14

2.2 Basic architecture of Eucalyptus Cloud 15

2.3 Extended architecture of Eucalyptus Cloud and various components 18

2.4 Basic architecture of WSO2 platform with Servers and Carbon Core 19

2.5 Inside architecture of WSO2 ESB . 20

2.6 Cloud computing architecture with WSO2 and Eucalyptus IaaS . . . 21

2.7 The storage architecture of Eucalyptus Walrus 23

3.1 PASS model for Cloud environments: Concept taken from, “Prove-

nance for the Cloud” Kiran-Kumar Muniswamy-Reddy, 2010 35

3.2 Application utilizing a Cloud IaaS 37

3.3 Provenance service as part of Cloud services (Cloud core) 40

3.4 Provenance service as an independent module 42

3.5 SOAmodel: Concept taken fromW3C “http://www.w3.org/2003/Talks/

0521-hh-wsa/slide5-0.html” . 44

3.6 The basic architecture of an ESB . 48

4.1 The left side depicts a middleware which connects two services. The

right side presents the extension of the middleware by introducing a

new component, i.e., interceptor . 55

4.2 The basic approach for the collection of provenance data in different

service models of Cloud computing. Provenance data is collected at

the middleware of each model. 55

4.3 The architecture of the proposed framework with various modules

and components, and their relation with the requirements. 57

4.4 Collecting the provenance data using interceptor between a client and

Cloud stack . 58

4.5 Provenance parser for different layers of Cloud computing 59

xv

4.6 Various parameters (provenance data) for the Infrastructure (IaaS)

part of a Cloud environment. The rectangles represent the decision

process and routing a particular request when acquiring a resource.

The diamonds represents main items (provenance data types) of a

Cloud IaaS and the circles represent various provenance data from

different types of items. 62

4.7 DAG mechanism used to store and present Cloud provenance data. . 66

4.8 Different protocols to store the provenance data 67

4.9 Visualization of a query in various formats 69

4.10 User interface to engage the provenance module 70

4.11 Various relationships between the components of the framework and

requirements of provenance in Cloud. 71

4.12 The architecture of interceptor in the Mule framework 75

4.13 Mule Interceptor for a particular component inside a Flow 76

4.14 Architectural overview of Phases and Flow in Axis2/C 78

4.15 Configuration of a Module in Axis2/C 80

4.16 Framework components for CC and NC services. 82

4.17 Framework components . 83

5.1 The storage architecture of Eucalyptus Walrus 89

5.2 The high level architecture presenting the management and usage of

metadata for content searching. 91

5.3 Communication between the client and storage service using a normal

(left side) and the altered (right side) flow. 93

5.4 Augmented metadata which combines information from user-defined,

system and server metadata . 94

5.5 Intercepting the server component (Eucalyptus Walrus) 95

5.6 The tree structure represent the parsed metadta into various categories 95

5.7 Management of metadata according to the different operations of Eu-

calyptus Walrus . 97

5.8 High level architecture of Search and Find application 98

5.9 Client interface for searching content in Cloud 99

5.10 Results are displayed in an interactive fashion for the input parame-

ters from various users. The red lines represent the matching of input

parameter anywhere in the metadata such as Title (system metadata)

and Notes (user-define metadata). 99

5.11 Results are displayed in an interactive fashion for the input parame-

ters. The circles around text represent the matching of input param-

eters with metadata repository. 100

5.12 The architecture of search and find service which takes the input

parameters and build search queries. The queries are further executed

for finding relevant contents. 101

5.13 Interactive Display of results with the functionalities of grouping and

sorting contents accordingly. The circles around text represents the

types which are used for grouping related items. 102

5.14 Performance of query protocols in linear fashion 105

5.15 Metadata model to search and find contents in Eucalyptus Walrus . 106

5.16 Various tasks of compute and storage performed by a user in a Cloud

environment. The task number presents the activities in a sequence

and the dashed lines represent the relationship between various tasks. 108

5.17 Various users interacting with object storage 109

5.18 High level architecture of the usage of provenance data in reports

generation. 109

5.19 User interface for the selection of various kinds of reports. 110

5.20 The query protocol uses time frame and input parameter as keys to

extract various information from provenance data. 110

5.21 The visualization of various reports utilizing the result of provenance

query in XML format. 112

5.22 The activity report (hierarchical format) presenting various tasks per-

formed by a user in a particular time frame. The circles around the

text represent the relationship between the activities of a user and

the activities of the Cloud. 113

5.23 The activity report presenting various tasks performed by a selected

Node Controller. 114

5.24 The representation of contents stored in a Cloud based on their Access

Count which defines the most or least used contents. 114

5.25 Column chart for the Cloud instance types for a particular group.

X-axis presents the instance types and y-axis presents the number of

instances utilized by various users. 115

5.26 Pie chart presenting the percentage usage of Cloud resources based

on the resource-ID and the number of request for each resource. . . . 116

5.27 The report presenting the information of volumes, their size, creation

time, attached time, and the snapshot created from a particular volume.117

5.28 The representation of CPU and memory usage while laying the prove-

nance from IaaS layer (instance specific information) of a Cloud. . . 117

5.29 Two users requesting for the same kind of resource in Cloud computing120

5.30 The left side presents the default architecture of assigning resource to

users where the right side presents the altered architecture of resource

utilization using the provenance data 121

5.31 The total time saved utilizing the developed framework and prove-

nance information that depends on the number of matches in prove-

nance data, i.e., Apache Tomcat, JAVA JDK and JAVA JRE. 123

5.32 The total space saved utilizing components of the developed frame-

work and provenance data that depends on the size of individual

application. 123

6.1 Layered architecture of the Cloud . 128

6.2 DataSync: The architecture of DataSync utilizing various layers of

Cloud computing. The relationships between the Cloud layers and

components of the application are also presented. For end users,

DataSync is simply an application provided through Cloud for vari-

ous purposes. This architecture presents various components of the

application, their location and execution flow inside the Cloud. . . . 129

6.3 Integration of provenance collection and parsing modules of the devel-

oped framework towards infrastructure, platform, and software layers. 133

6.4 Aggregated provenance from various layers of Cloud 134

6.5 Different between the execution of simple query and aggregated query 134

6.6 Fault tracking and fault management 143

6.7 Fault tracking using the collected provenance and aggregated query . 145

7.1 Evaluation of Mule ESB . 150

7.2 Various methods of Eucalyptus NC service and their respective stor-

age overhead (kilobytes of disk space) for provenance data. 151

7.3 Total overhead (in milliseconds) of provenance computation is the

summation of individual overheads from various components 152

7.4 Total overhead (in milliseconds) of provenance computation is the

summation of individual overheads from various layers 155

7.5 Results of the calculated time (minutes:seconds format) with and

without the metadata for Eucalyptus Walrus 156

7.6 Results of the calculated time (hours:minutes format) with and with-

out the metadata for Eucalyptus Walrus and 5000 objects 157

7.7 Cost of provenance collection in terms of elapsed time (in seconds)

for different number of objects . 158

7.8 Cost of provenance storage (disk space in bytes) for different number

of objects . 159

7.9 Various components in the Nimbus IaaS Cloud. 161

8.1 Major Contributions of Thesis in Pictorial Form 166

List of Tables

2.1 Various information of instance types from the local installation of

Eucalyptus Cloud. 25

4.1 Various provenance data represented in XML elements of different

methods of Eucalyptus CC service 59

4.2 Various metadata and their names, values and description for Clouds

infrastructure . 63

5.1 Various metadata and their description for object based storage . . . 90

5.2 M/DB domain with attributes and values for metadata storage . . . 97

5.3 Performance of query protocols (in seconds) for 1000 objects 104

5.4 Performance of query protocols (in seconds) for 5000 objects 104

5.5 Average execution time (in seconds) of Cloud resources 122

5.6 Average space (in megabytes) and time (in seconds) required by in-

dividual applications . 122

7.1 Underlying architectural components used to evaluate Eucalyptus

Cloud. 148

7.2 Underlying machine details . 149

7.3 Elapsed time overhead (in milliseconds) for provenance collection. . . 149

7.4 Underlying architectural components used to evaluate Mule framework.150

7.5 Elapsed time overhead (in milliseconds) of provenance collection for

the platform and software layers . 153

7.6 System details for evaluation . 157

xxi

List of Listings

3.1 A simple document structure of XML 46

4.1 Sample of provenance data collected from the Eucalyptus Cloud which

describes the structure of stored provenance in XML file 65

4.2 Configuration of the provenance module in the Mule framework . . . 77

4.3 The orchestration of built-in and user-defiened phases in Axis2/C . . 78

4.4 A sample configuration file required to configure Addressing Handler 80

4.5 Configuration of provenance into Axis2/C 81

5.1 XML file representing the stored metadata 96

6.1 Sample of the software provenance presenting information when the

service was invoked and the return status of the service (MessageIn

and MessageOut) . 135

6.2 Sample of the infrastructure provenance depicting information of the

NC and instance hosting the synctodatabase service 136

6.3 Aggregated provenance presenting the information from the software

and infrastructure layers together using aggregated query. The result

clearly indicates the steps which are taken in a sequence for finding

the exact cause of the failure . 137

6.4 Cluster Controller provenance presenting that CC was shut down . . 138

6.5 Provenance information: john synched data to the Cloud 139

6.6 Provenance information: john synched data from the Cloud 139

6.7 Provenance information presenting the fact that john and alex synced

a particular file to the Cloud with the same name (key) 140

6.8 Aggregated provenance from the software and infrastructure layers

depicting activities of the two users with the content having same key 141

6.9 Presentation of a known or non-silent failure using provenance . . . 144

7.1 Sample of provenance data collected from the Nimbus IaaS Cloud . . 162

xxiii

1. Introduction and Motivation

Provenance: In general, provenance is defined by the sources of information like

data, processes and entities which are involved in producing an article. The Oxford

dictionary1 defines provenance as “the place of origin or earliest known history of

something”. Originally the concept of provenance in computation or data science

was inspired from the field of art; where it was used for the verification, authen-

ticity and finding the origin of any artifact. This involves information regarding

the intermediate datasets and/or processes which are produced and consumed while

producing the final product in computation or data science. There are many advan-

tages of adding provenance to scientific computing such as verification, audit trials,

reproduction, trust, reliability, and tracking to name a few [123, 31]. Provenance

has been explored in various scientific domains such as grid, distributed, and work-

flow computing [123, 25]. Provenance has also important implications in the field of

databases and Service Oriented Architectures [126, 93].

Provenance has been used in a real lab environment, i.e., in fields of chemistry

and biology. Consider a researcher who is working on his experiment to find a cure

for a disease in a lab environment. When executing a particular experiment, he

records various characteristics and parameters in his notebook for each step during

the overall experiment. This data (provenance) is later used as a proof to verify

and/or reproduce the final results. The improvement in computer technology results

in the architecture where the same experiments are performed using the software

(in-silico) [122]. This results in the provenance collection scheme which is called

automatic provenance collection; because, it is impossible to manually calculate the

provenance data for such a fast and dynamic process in computational environments.

In automatic provenance collection, provenance helps the scientists to trace their

data which went through many modification, transformation, and interpretation.

Cloud computing: Cloud computing has emerged as a model for enabling con-

venient, on-demand network access to a shared resource pool of configurable ele-

ments such as networks, servers, storage, applications, and services. Historically

the concept of Cloud computing can be attributed to John McCarthy2 who said,

1http://oxforddictionaries.com/definition/english/provenance
2John McCarthy, speaking at the MIT Centennial in 1961, “Architects of the Information Society,

1

2

“If computers of the kind I have advocated become the computers of the future,

then computing may someday be organized as a public utility just as the telephone

system is a public utility. The computer utility could become the basis of a new

and important industry”. The development and standardization such as Quality

of Service (QoS) and reliability from existing fields of grid and distributed com-

puting, Service Oriented Architectures (SOA) and virtualization contributed in the

evolutionary process toward Clouds [79, 38, 61, 44, 13].

Cloud is perceived differently by various research communities and businesses

depending on its domain, architecture, context and characteristics. For example,

Foster et. al. [61] defines Cloud computing as “a large-scale distributed computing

paradigm that is driven by economies of scale, in which a pool of abstracted, vir-

tualized, dynamically scalable, managed computing power, storage, platforms, and

services are delivered on demand to external customers over the internet”. On the

other hand Gartner [48] sees it as “a style of computing where massively scalable

IT-enabled capabilities are delivered ‘as a service’ to external customers using in-

ternet technologies”. Similarly, Berkeley RAD Lab (UC Berkeley Reliable Adaptive

Distributed Systems Laboratory) describes the vision of Clouds as “Cloud Comput-

ing refers to both the applications delivered as services over the Internet and the

hardware and systems software in the datacenters that provide those services. The

datacenter hardware and software is what we will call a Cloud” [22]. All the above

definitions address and bring together the different aspects of Cloud computing.

As a practical baseline for this thesis, we cite [92] the National Institute of

Standards and Technology (NIST)3 definition of Cloud computing: “Cloud com-

puting is a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction”. Cloud computing is di-

vided into various components which are based on the perspective of service models,

deployments architectures and the characteristics of a Cloud [92, 22]. In general,

the service models are called infrastructure, platform and software. The deployment

models mainly consist of private, public, community and hybrid Clouds. Some of the

various characteristics are defined as on-demand self-service, pay-as-you-go model,

rapid elasticity, abstraction of resources, and remote access.

Provenance of Clouds: One of the key service models, i.e., the infrastructure

model of a Cloud provides on-demand access to various computational, and storage

Thirty-Five Years of the Laboratory for Computer Science at MIT,” Edited by Hal Abelson
3“The NIST Definition of Cloud Computing”. National Institute of Standards and Technology.

Retrieved 24 July 2013

Introduction and Motivation 3

User

Cloud client Cloud provider

Cloud eEnvironment

(entry point to the

Cloud)

Cluster

Node

Virtualization

Physical resource

(computational or

storage)

Request for a resource

Storage

Storage Controller

Get/put data

Provenance

(metadata)

Flow control

Provenance data

Figure 1.1: The basic flow (solid lines) of requesting a raw resource from the Cloud infras-
tructure. The dotted lines present the various metadata (provenance) of each
step.

resources to end users. There are many steps involved while hiring a particular

resource of compute or storage from a Cloud infrastructure as shown by the solid

lines in Figure 1.1. However, the abstraction property of a Cloud hides these complex

details from the end user’s perspective. A user can hire a resource when and where

it is required and once the resource is no more needed, it is simply released to the

pool of resources. Similarly, the storage module of a Cloud infrastructure provides

the distributed storage management for persistent data, e.g., audio, video and text

files. A user can stream in/out any data by directly communicating with the storage

service anytime and anywhere.

As depicted in Figure 1.1, the infrastructure of a Cloud consists of many compo-

nents such as Cloud (the entry point), Cluster, Node and Storage Controller. The

request of a user is routed from one component to another and each of the steps

add some additional information (e.g., metadata) to the previous step for further

execution as shown by the dotted lines in Figure 1.1. This information (metadata

from each component) which describes the derivation process is called provenance.

Each resource itself has a set of particular properties such as type and location for

example. These basic properties are further enhanced by the installation of partic-

ular software, applications and services. Similarly, the requested resource also has a

configuration property about the memory, disk space, and number of allotted CPUs

etc. All these properties regarding the resources, location, time, virtual machines

and the flow of request adds to the provenance data.

The platform model of a Cloud provides the functionality to ease the develop-

ment, management and designing of complex applications such as workflows [51].

Similarly, the software model exposes various functions of an application in Clouds,

e.g., mail services. Both the service models, i.e., the platform and software request

4 Motivation

for various resources from a Cloud infrastructure. Communication with the Cloud

infrastructure is established by a set of Application Programming Interfaces (APIs)

directly by a user, via platform and/or software. Each of these models contribute

to the overall provenance data because the three service models namely the infras-

tructure, platform and software interactively work as layers on top of each other.

Infrastructure sits at the bottom, platform in the middle and software on top in a

Cloud computing stack.

Concluding remarks: The evolution of Cloud from the existing computing

paradigms results in added or changed features as described in [61], e.g., abstraction

which hides the underlying complexities of infrastructure, platform and software.

The main characteristics of Cloud computing is its total dependence on the SOA

architecture, modularity, abstraction, scalability and elasticity etc. However, these

characteristics present major challenges for the automatic provenance collection in

Clouds. Similarly, the diversity of Cloud computing such as services and deployment

models further enhances the challenge for the provenance collection. For instance,

the service models address different view points such as users, developers and re-

source providers in a Cloud. These view points must be taken into consideration

when providing provenance in Clouds. Moreover, the transformation for applications

from grid and distributed computing towards Cloud is also in progress [69, 68]. The

evolving Cloud technology and the recent trend in deploying application into Clouds

results for the motivation to include the automatic provenance collection with the

view point of a user, developer and resource provider.

1.1 Motivation

In Figure 1.2, we highlight different service models in Clouds such as software, plat-

form and infrastructure which are various layers of Cloud computing. In this exam-

ple, a user requests for the current weather information using the client application.

All the inner details of the execution, i.e., the web services, datasets and compu-

tational resources that are used to produce the final result of the current weather

are completely hidden. In a research environment, scientists are interested in the

inner details of a process, i.e., step by step information regarding the intermediate

processes and datasets for the final output. For example, if multiple requests for the

current weather produce different results, the actual reason could be the usage of

a different web service, data set, and/or infrastructure for the computation of the

final result. Such information is very important in research environments in order

to verify the final output, to reproduce the exact results and to bring trust and

authenticity for the overall process.

Introduction and Motivation 5

Weather Service (http://

www.webservicex.net/

globalweather.asmx?WS

DL)

User

dataset1

dataset2

dataset3

Computation

Infrastructure

Process/es

Weather Service (http://

www.weather.gov/

forecasts/xml/DWMLgen/

wsdl/ndfdXML.wsdl)

Weather Service (http://

wsf.cdyne.com/

WeatherWS/

Weather.asmx?wsdl)

Platform and Infrastructure layer
Software layer

Client

Application

R
e

q
u

e
s
t c

u
rre

n
t w

e
a

th
e

r

Figure 1.2: A sample application which provides information of the current weather using
Cloud

The division of Clouds into various types’ results in different points of view of

a provider, developer and consumer called end-users. The provider supplies vari-

ous computational and storage resources (infrastructure), the developer utilizes the

Clouds platform for the delivery of complex and Cloud aware applications, and the

consumer uses the software layer for various purposes. For example, in Figure 1.2,

a user of the application is interested to know the reason for getting different re-

sults of the current weather with the same input parameters. The answer to this

question lies in the various web services and different data sets used by the software

application. The developer of a Cloud is interested in the platform layer where he

manages various applications. This covers the deployment phases with various web

services, their architectures, different versions of services and the communication

model between the software and platform layers. Similarly, the real data is stored

and the process is executed by physical and virtual resources supplied by a provider

on the infrastructure layer. Therefore, it is important to realize that provenance in

Clouds is not only associated with the application layer.

The platform and infrastructure layers contribute significant and important prove-

nance data such as, (i) details about resources provider, the resources location and

types, (ii) instance types which are based on memory, disk space and CPU cores,

(iii) details about different versions of services and their communication mecha-

nisms on the platform layer, (iv) details about changes made to various services

and components of an application, (v) details about virtualization techniques and

6 Research Questions

physical resources, (vi) provenance of client applications such as web browsers, and

(vii) details about various users and their group information among others. All of

this information can be used in data or computation science to define various ap-

plications which address different view points of a consumer, resource provider and

software developer. Moreover, the information helps in understanding the layered

architecture of Clouds such as the linking and communication mechanisms between

layers.

The provenance information can be utilized to make Clouds more beneficial from

the end users perspective such as provenance based search, resource utilization, sim-

ilarity patterns, fault tracking and management etc. The resources in Clouds can be

effectively utilized by provisioning and scheduling techniques which use the prove-

nance data. For instance, upcoming requests can be predicted based on the similarity

patterns and recent requests in provenance. Provenance can also prove its signif-

icance in fault tracking and management by providing the contextual information

regarding any fault and/or error. Energy consumption via the reuse of existing

resources based on similarity patterns in applications and/or users is another im-

portant aspect. Provenance has many advantages and has proved its significance

in distributed and workflow computing. There is a strong need to implement the

provenance architecture for the evolving Cloud computing and its various types.

The objective of this study is to provide provenance for Clouds paradigm along

with various applications that utilize the collected provenance to make Clouds more

beneficial.

1.2 Research Questions

In this study, we aim to achieve the overall goal, i.e., provenance in Cloud computing:

Framework, Applications and Implication. This results in the following research

questions which are related to the different phases of this study.

• Prerequisites: What are the main requirements for the collection of prove-

nance in Cloud computing?

Various challenges like abstraction, layering, and scalability etc. are confronted

for the collection of provenance data by the dynamic architecture of Clouds.

Furthermore, a list of standards such as low cost, addressing various types

of Clouds, and the independence from underlying architectures and domains

must be addressed. These challenges and standards together provide a list of

requirements for the collection of provenance in Cloud computing.

• Extend the Clouds: How to extend the Clouds without altering the underly-

Introduction and Motivation 7

ing architectures and services for provenance Collection?

Clouds are abstract and various layers are hidden from each other and also

from end users. Therefore, the basic mechanism for the collection of prove-

nance requires extending the Clouds architecture in a structured and seamless

fashion. Moreover, the mechanism should address various types and layers of

Cloud computing in a uniform way.

• Provenance framework: How to provide the collection, storage and man-

agement of provenance, i.e., a framework while addressing the various require-

ments? Furthermore, how to integrate provenance information from various

layers of Clouds computing?

Provenance information needs to be properly managed with various operations

performed by users or services in Cloud computing. Therefore, the framework

should be designed in such a way that collection, storage, and management

of provenance are automatic, reliable, and cost effective. Furthermore, the

framework should be able to integrate the provenance data from various types

of Clouds and present a unified view of provenance information.

• Utilization: How to make Clouds more beneficial with the usage of collected

provenance and the modules of the framework?

The presentation of various applications which take the advantage of collected

provenance and different modules of the framework is important. The applica-

tions should also address various roles like consumer, developer and resource

provider in Cloud computing.

Figure 1.3 presents the connection between the core part of this thesis and various

questions described above.

Provenance and

Clouds

The implication of provenance

enabled Cloud

Integrating the provenance

data from varoius layers

or types of Clouds

The approach for provenance

collection, i.e., the method to

incorporate provenance in

Clouds

The modular framework to

address various

requirements of the Clouds

The list of requirements and

standards for the collection of

provenance in Clouds

A
p
p
lica

tio
n
s

Approach

FrameworkPrerequisites

Layered provenance

Figure 1.3: Provenance in Clouds - The overview

8 Research Approach

1.3 Research Approach

To answer the above research questions, we use the following approach:

• Feasibility of existing provenance schemes: We studied the existing

schemes of provenance from data and computational science such as grid and

workflows, and grouped them into two main categories, i.e., provenance at core

of Clouds and provenance is independent of Clouds. The grouping is based on

the idea if the existing schemes can be incorporated in Clouds architecture.

Therefore, we present (i) the inner architecture of Clouds (specifically the re-

search or open Clouds) which is the target domain of this thesis, (ii) categorized

the existing schemes, and (iii) discussed the implication of existing schemes

for Clouds with various advantages and disadvantages.

• Finding the prerequisites of provenance in Cloud computing: We

studied the dynamic architecture of Clouds and present a taxonomy based

on various service models, deployment models, roles, and characteristics of

Cloud computing. We identified various requirements and list of standards

that depends on the underlying architecture of Clouds. The requirements and

list of standards present the prerequisites that need to be addressed while

providing provenance for the Cloud paradigm.

• Proposing a provenance framework: We propose a cost effective and in-

dependent framework for the management of provenance data in Cloud com-

puting. The provenance collection part of the framework adopts a technique

which is not affected by the underlying architectures, domains and platforms.

Therefore, the framework is available to different service models or layers, i.e.,

infrastructure, platform, software, and storage. Furthermore, the framework

is divided into various autonomous modules such as collection, storage, query,

visualization, and user interface. The modularity of the framework addresses

various aspects of provenance utility. The objectives of the framework is to

present and follow an approach where (i) minimal changes are required to the

architectures and service models of Clouds, (ii) independence from underlying

domains, and (iii) marginal cost for provenance collection and storage etc.

• Extension of the framework to different layers of Cloud computing:

We present the extension of provenance collection (which is one component

in the proposed framework) from one type or layer of a Cloud to others, i.e.,

from infrastructure to platform to software. We also present the important

provenance information and various queries for each layer. Thus, we address

Introduction and Motivation 9

the provenance framework for the overall architecture of Cloud computing.

• Significance of the aggregated provenance: Each layer of the Cloud pro-

vides important provenance information. Here, we investigate the significance

of the aggregated provenance from various layers and the respective view points

of a consumer, developer and resource provider. The aggregated provenance

is helpful to understand and explore the layered architecture of Clouds and

connections between the layers. This is achieved using a sample DataSync

application which is developed and explored from the different view points or

audiences.

• Implication of the provenance framework: We present various applica-

tions which are designed to use the collected provenance and modules of the

framework. These applications are explored from the view point of a consumer,

developer and recourse provider. The applications include features of resource

utilization, fault tracking, content based searching, report generation and find-

ing similarity patterns in Clouds. These applications specify the implication

of provenance aware Clouds with various characteristics and advantages.

1.4 Outcome

Cloud computing is still an evolving technology, specially, from the perspective of

application deployment, e.g., the recent trend of transforming existing applications

toward Clouds. Applications in Clouds are deployed and executed on the resources

that are provided by different suppliers. These resources are consumed by vari-

ous audiences like research communities, business organizations, stand alone users,

and/or software applications. While requesting resources from Clouds, organiza-

tions such as research groups or small businesses have their preferences. These

preferences result in similarities of the usage of resources. These similarities are

found in data, resource types, usage time, memory, and storage etc. Furthermore,

Clouds in general and research Clouds in particular rely on the communication tech-

nology between various components using open source and third party technologies

(libraries, controls etc.). These technologies are often prone to faults and errors like

network failure, hardware failure and software crashes. We believe, provenance is a

potential candidate to resolve such situations.

The inclusion of provenance in Cloud computing will result in an environment

where such data (history data, metadata) is not only provided but can be also ana-

lyzed. The analyzed provenance data can be used to find the behavior in the usage

of the resources from a provider’s perspective. This behavior is a common result of

10 Contributions

similarities that exists in a research or business environment. Provenance can also be

used for fault tracking and management. For instance, in case of hardware or soft-

ware failures, provenance data can be utilized to find the exact component and/or

device that caused the failure (fault tracking). Since, provenance also provides the

contextual information regarding any failure; therefore, it can be utilized to resolve

the failure by using either a proactive or reactive approach (fault management). The

usage of resources in Clouds produces similarity patterns in a research environment.

These patterns can be found in provenance data for the efficient allocation and in-

telligent organization of resources. Similarly, Cloud storage is already utilized to

archive desktop data, scientific data and web application data etc. However, most

of this data is persistent and unstructured. Provenance is an important ingredient

to describe the context and semantics of such unstructured data. For example, we

investigate the case of searching contents in a Cloud using metadata which is a miss-

ing feature in existing Clouds storage. The outcome of a provenance enabled Cloud

could be simply the verification of requested resource or more complex situations

such as audit trials of an organization, and/or utilization of existing resources.

1.5 Contributions

This thesis aims to present the notion of provenance in Cloud computing. The con-

tribution is twofold; Firstly, we present a provenance framework which addresses

the various requirements for the collection and management of provenance in Cloud

computing. Since, Clouds are usually hardly extensible (i.e., modifications to the

existing service models); therefore, we adopted a strategy to provide a provenance

framework which requires minimal or no changes to the existing service models.

Thus, the proposed framework is independent, generic, and not restricted to a par-

ticular domain or service models of a Cloud. This part of the thesis also addresses

the issues of provenance integrity and overhead of provenance collection and storage.

The proposed framework further supports the query and visualization of prove-

nance data which requires individual and/or the aggregated provenance of Clouds.

Secondly, we explore the implication of provenance in Clouds by presenting vari-

ous applications which utilizes the collected provenance data. These applications

are from the view point of a user, resource provider and software developer, e.g.,

metadata based search in Clouds object storage, fault tracking of Cloud services and

components, finding the behavior of various users, report generation of the usage of

resources, and the utilization of resources by finding similarity patterns etc.

Introduction and Motivation 11

1.6 Research Publications

During this research, we published one journal paper, five international conference

papers and one short paper. Our paper titled “Provenance in the Cloud: Why and

How?” won the ‘Best Paper Award’ at Third International Conference on Cloud

Computing, Grids, and Virtualization (Cloud Computing 2012). The following list

provides the publications (most recent comes first) that are resulted from our re-

search:

• “Searching in Cloud Object Storage by Using a Metadata Model”, Imran,

Muhammad and Hlavacs, Helmut In: The 9th International Conference on

Semantics, Knowledge and Grids (SKG2013).

• “Layering of the Provenance Data for Cloud Computing”, Imran, Muhammad

and Hlavacs, Helmut, In: 8th International Conference, GPC 2013 and Colo-

cated Workshops, Seoul, Korea, May 9-11, 2013, Grid and Pervasive Comput-

ing, pp 48-58, Lecture Notes in Computer Science, Springer Berlin Heidelberg.

• “Provenance Framework for the Cloud Infrastructure: Why and How?”, Im-

ran, Muhammad and Hlavacs, Helmut In: International Journal On Advances

in Intelligent Systems, volume 6, numbers 1 and 2, 2013.

• “Applications of Provenance Data for Cloud Infrastructure”, Imran, Muham-

mad and Hlavacs, Helmut In: The 8th International Conference on Semantics,

Knowledge and Grids (SKG2012), Pages 16-23, IEEE Computer Society.

• “Provenance Framework for the Cloud Environment (IaaS)”, Imran, Muham-

mad and Hlavacs, Helmut In: CLOUD COMPUTING 2012, The Third Inter-

national Conference on Cloud Computing, GRIDs, and Virtualization: Nice,

France, 2012.

• “Provenance in the Cloud: Why and How?”, Imran, Muhammad and Hlavacs,

Helmut In: CLOUD COMPUTING 2012, The Third International Conference

on Cloud Computing, GRIDs, and Virtualization: Nice, France. We Won

the Best Paper Award.

• “On using provenance data to increase the reliability of ubiquitous computing

environments”, Imran, Muhammad and Hummel, Karin Anna In: Proceedings

of the 10th International Conference on Information Integration and Web-

based Applications and Services Pages 547-550 : Linz, Austria. 2008, ACM.

12 Organization of Thesis

1.7 Organization of Thesis

Chapter 2 focuses on the metaphor of Cloud computing. This chapter presents

the detailed architecture of Cloud computing, its various components and service

models which include infrastructure, platform and software. Furthermore, introduc-

tion of various roles, deployment models and characteristics of Cloud computing is

provided.

Chapter 3 provides the background and related work of provenance data in compu-

tation and data science such as grid, workflow and Cloud computing. In this chapter,

we investigate the existing schemes of provenance and provide a discussion to in-

clude those schemes in Cloud computing with their advantages and disadvantages.

We also present the reasoning to provide provenance in Clouds, i.e., the implication

of provenance aware Clouds. This chapter also presents an overview of the related

concepts such as SOA, REST, XML etc. in Cloud computing.

Chapter 4 details various challenges, requirements and the list of standards that

must be addressed for the collection and management of provenance data in Clouds

paradigm. Based on the requirements and standards, we propose the design of

the framework along with various components such as collection, storage and query

among others. We also provide the implementation of the framework using different

Clouds.

Chapter 5 presents various applications which utilize the collected provenance data

and the proposed framework to make Clouds more beneficial from the user, devel-

oper and resource provider perspectives. This chapter also provides the evaluation

of the applications and the impact on different end users.

Chapter 6 presents the implication of aggregated provenance for various layers of

Clouds. Various scenarios are explored where the answer to a specific problem is

achieved using the aggregated provenance. Aggregated provenance itself is accom-

plished via the integration of framework to multiple layers of Cloud. This chapter

also provides a fault tracking system based on the aggregated provenance.

Chapter 7 details the testing of the proposed framework on various service mod-

els of Cloud computing. We provide various results of the cost of computation and

storage of provenance such as using different storage and query protocols involved in

the proposed framework. Hereby, we provide the impact of the developed framework

like independence, marginal cost of computation and storage among others.

Chapter 8 provides the summary and conclusion of this research work as well as

the limitations and open issues are described.

2. The Architecture of Cloud Comput-

ing

Cloud computing is the ability to increase capacity or add capability such as storage,

computation and/or networking on the go. It relies on sharing computational and

storage resources over the network. The term Cloud is a metaphor for Internet and

therefore, it is also referred to as “internet based computing”. There are various

alternative terms of Cloud computing, e.g., utility computing, autonomic computing

and virtualization; because it is used as per the understandings, knowledge and

requirements by different organizations, research communities and users. In general

the goal of Cloud computing is to gain the capability of high performance computing

by sharing distributed and diverse resources around the world. A user can interact

with Clouds and acquire any kind of a resource, application and platform by simply

using a web browser or a set of provided APIs. Users are not aware of the underlying

complex architecture of service models, deployment models, network infrastructure,

and computation and storage resources. Cloud computing provides all these facilities

with low cost, scalable environment, on-demand computing, pay-as-you-go model

and high speed access for data storage and management.

2.1 Types or Layers in Cloud Computing

The underlying architecture of resources and provisioning of such resources is divided

into various components and modules in Clouds. These components depends on the

deployment model of services, the deployment model of infrastructure and the char-

acteristics provided by Cloud computing [92, 15]. There are many kind of services

model that are used in research environments and in the industry [23, 92, 84]. Few

of the key and well established models are called Software as a Service (SaaS), Plat-

form as a Service (PaaS) and Infrastructure as a Service (IaaS). Collectively they

are knows as Cloud computing stack as shown in Figure 2.1. There are many other

types of service models that are described and used in industry such as, Storage as a

Service (STaaS) [16], Data as a Service (DaaS), Communication as a Service (CaaS)

and Network as a Service (NaaS) etc. In general, all these service models which are

13

14 Types or Layers in Cloud Computing

used in various domains such as e-Science and businesses are called Everything as a

Service (XaaS) [16, 61, 82]. In this thesis, our focus is on four service models, which

are SaaS, PaaS, IaaS and STaaS. The objective of this chapter is not to compare

various service models with each other, but to explore the underlying architecture

and the communication mechanism between the end user, resource provider and

application developer with different service models.

Cloud Applications
SaaS (Software as a Service)

Cloud Software Delivery
PaaS (Platform as a Service)

Communication
Storage

Computation

Cloud Resources
IaaS (Infrastructure as a Service)

Virtualization
Provider

Developer

Vis
ibi
lity

of
Clo

ud
to
en
du

se
r Consumer

uti
lize

uti
lize

uti
lize

Figure 2.1: Cloud computing stack

2.1.1 Infrastructure as a Service (IaaS)

IaaS is a service model which is provided for computational, storage, servers and

network resources via internet. This is considered the lowest layer in the Cloud

computing stack as shown in Figure 2.1, where virtualization is used for physi-

cal resources. Elastic Cloud is a commonly used term for IaaS model and users

pay for the acquired resources as they go (pay-as-you-go). Amazon Elastic Com-

pute Cloud (aws.amazon.com/ec2/), Eucalyptus (open.eucalyptus.com), OpenNeb-

ula (www. opennebula.org) and Nimbus (www.nimbusproject.org) are few examples

of IaaS Cloud from business and research communities. In this model, an organiza-

tion outsources the equipments that are required to run various applications and/or

to host any platform. The service provider is the owner and also responsible for the

management of various equipments. On the other hand, a consumer or application

developer has a full control of the acquired equipment and he/she can install various

kinds of applications or store data. A user typically logs in to a virtualized operating

system on the acquired resource; therefore, has the complete control for application

deployment. A service-level agreement (SLA) is used as a contract between a con-

sumer and provider of resources to define the delivery time and performance of IaaS

The Architecture of Cloud Computing 15

services. In the next section, we provide an example of a research or open Cloud IaaS

model, i.e., Eucalyptus and explore the inner architecture, various modules and the

communication mechanism between end user and components of Eucalyptus IaaS.

EUCALYPTUS

Eucalyptus is an open source implementation of Cloud computing IaaS service model

which uses JAVA and C/C++ programming languages for various components.

Users can control an entire Virtual Machine (VM) instance deployed on a physi-

cal or virtual resource [133]. It supports a modularized design and is compatible

with the industry standards in Cloud, i.e., Amazon EC2 and its storage service S31.

It is one of the most used platforms to create scientific and hybrid Clouds. Eucalyp-

tus gives researchers the opportunity to modify and instrument the software (being

open source and by using open source technologies) which has been lacking in the

business services offering such as Amazon EC2. The name Eucalyptus stands for

Elastic Utility Computing Architecture for Linking Your Programs To Useful Sys-

tems. Figure 2.2 presents the basic architecture of Eucalyptus Cloud and the main

components are summarized as following:

StorageCloud Controller (CLC)

Cluster Controller (CC) Cluster Controller (CC)

Node Controller (NC)

Node Controller (NC)

Node Controller (NC)

Node Controller (NC)

Node Controller (NC)

Node Controller (NC)

Application Programming Interface
(web browser)

Figure 2.2: Basic architecture of Eucalyptus Cloud

• Application Tools: Application Programming Interface (APIs) which are

available to communicate with various modules and/or services, e.g., resource

1http://aws.amazon.com/s3/

16 Types or Layers in Cloud Computing

hiring, starting, stopping, saving and/or describing the state of a particular

resource. This works as a bridge between the consumer of resources and the

Cloud infrastructure. The APIs available to communicate with Eucalyptus

Cloud are called euca2ools. Since, Eucalyptus supports the same architecture

style as Amazon EC2 and S3 therefore, the support of Amazon APIs is also

provided.

• Cloud Controller (CLC): CLC services are the entry point for various re-

quests from end users in Eucalyptus Cloud. The job of CLC is to process and

route these requests, e.g., from consumer and administrator of a Cloud such as

scheduling of Virtual Machines (creation and maintenance) by using appropri-

ate modules, managing users data and process level agreements etc. This part

of Eucalyptus Cloud is written in JAVA and the communication between a

user and CLC is provided by Mule framework2. Mule is an Enterprise Service

Bus (ESB) [80, 10, 74] that provides various interfaces for the implementation

and interaction between users and CLC.

• Cluster Controller (CC): A cluster is the organization of various resources

(compute, storage, network, servers) that work together and can be viewed as

a single system. Cluster Controller (CC) is the part of Eucalyptus Cloud that

controls and manages various resources installed in a particular organization.

There could be more than one cluster in Eucalyptus Cloud and the job of a

particular CC is to manage various Node Controllers (explained next) that

are part of a particular cluster. CC works as intermediate gateway between

the Node Controller and CLC. From the architecture point of view, CC is

a web service written in C language and provides a WSDL interface. From

the functional point of view, CC collects the information about various Node

Controllers, schedules the creation of VMs and provides the connection and

configuration for the public and private IP addresses of a running VM. CC

provides various functions and these functions take the request from CLC,

parse the request and transform it for further processing to a particular Node

Controller.

• Node Controller (NC): NC is the component (service) that is installed on

each physical machine. The job of NC is to administer and host the running

instance of a VM. NC is written in C language and provides a WSDL interface

to communicate between the VM and CC. Among various features, NC runs

an instance, terminate the instance, start the network etc.

2http://www.mulesoft.org/

The Architecture of Cloud Computing 17

• Storage Controller (SC): Cloud offers a distributed storage management

(object storage) to archive user’s data (text and pdf documents, audio and

video files etc.) and raw disk images for VMs. These raw images (virtual

machines) are later run as resources (operating systems, database servers etc.).

Communication with a storage unit is controlled by a service, e.g., Walrus in

Eucalyptus. Walrus can be used directly by users with the REST protocol to

stream data in/out of a Cloud, e.g., files. Walrus can also be used indirectly by

using the SOAP protocol while communicating with CLC services to upload,

modify and delete virtual images.

All the communication and data exchange between different components of Euca-

lyptus Cloud is achieved using SOAP, XML, WSDL, REST and HTTP protocols

of communication and data exchange via Axis2/C and Mule frameworks. Figure

2.3 presents the extended inner architecture of Eucalyptus Cloud along with various

components, flows and the communication mechanisms that are involved.

2.1.2 Platform as a Service (PaaS)

PaaS provide tools and libraries to ease the development cost and efforts to build

Cloud aware applications [52]. PaaS is an environment that allows the customer to

host and manage various applications. A developer and/or ultimately the owner who

is providing the application to various users has a complete control of the deployed

application, e.g., various versions of the application, logic of the application and the

communication protocol that are utilized etc. At the same time, developer has no

control over the infrastructure of the deployed application, i.e., network, servers,

and resources (computation and storage) which are provided by the supplier of a

Cloud infrastructure. NIST [92] describes PaaS as: “The capability provided to the

consumer to deploy onto the cloud infrastructure consumer-created or acquired ap-

plications created using programming languages and tools supported by the provider.”

There are various examples in the industry for PaaS that are famous for host-

ing and developing different kinds of applications. For example, Google App En-

gine3 which is used to host and deploy web applications, salesforce.com [134] which

is famous for CRM applications, Microsoft Azure [42] which provides infrastruc-

ture and database services through APIs (REST, HTTP and XML communication)

and WSO24. WSO2 is open source platform for developing enterprise applications.

WSO2 provides many products such as ESB, Application Server, and Business Server

among others. Similarly, the concept of providing ESB as a service is also known as

3developers.google.com/appengine/
4http://wso2.com/platforms/

18 Types or Layers in Cloud Computing

CLC(Cloud

Controller)

LAN/WAN

Computing resources

Eucalyptus Cloud

Storage Center

(Users, Images)

Communication resources

Euca2ools/

ApplicationController API

Walrus (Storage

Controller)

Storage API

Node Controller

VM VM

KVM/XEN

hypervisor

Cluster A

CC(Cluster

Controller)

Node

Controller

Node

Controller

Cluster B

CC(Cluster

Controller)

Node

Controller

Node

Controller

VM: virtual machine

REST web

service

Deployed

using mule

framework

Deployed

using Axis2C

Figure 2.3: Extended architecture of Eucalyptus Cloud and various components

a type of PaaS.

In this thesis, we consider WSO2, various components of WSO2, and the un-

derlying architecture for hosting and deploying various kinds of applications that

addresses different audiences (consumer, developer, and provider) of a Cloud envi-

ronment.

WSO2 Platform

WSO2 platform provides the deployment model for various kinds of applications that

are using a diverse set of communication protocols (HTTP, JMS, TCP, REST etc.).

WSO2 carbon is the core of the platform which provides the basic functionalities

such as logging, statistics, management etc. It is written in JAVA and is based on

the industry model called Open Services Gateway initiative (OSGI). Using the OSGI

model, the entire WSO2 platform is divided into products, e.g., Application Server,

The Architecture of Cloud Computing 19

Business Server, ESB and more. All of these products (components) work together

through the carbon framework, i.e., they share the run time environment of carbon

core.

Furthermore, the core provides the functionality of pluggable interface. For ex-

ample, when a customer requires ESB and Data Server, both of these components

can be plugged in together with the carbon core. Therefore, the architecture of

WSO2 follows a modular design and hereby can fit to any architectural requirement

of a customer. All the components that are plugged into carbon core such as Ap-

plication Server, Business Server, Identity Server, Mashup Server, and Data Server

constitutes the WSO2 platform. The job of the WSO2 platform or any other PaaS

is to eliminate the management of hardware and resources to build applications,

i.e., the abstraction property of a Cloud is utilized. Figure 2.4 describes the basic

architecture of WSO2 where individual layers identify WSO2 carbon core, WSO2

platform and the usage of OSGI communication protocol.

OSGI

WSO2 Platform

Carbon CoreLogging

Clustering

Security Managemen
t

Statistics

ESB Data
Server

Application
Server

Business
Server

Identity
Server

Figure 2.4: Basic architecture of WSO2 platform with Servers and Carbon Core

WSO2 Enterprise Service Bus (ESB)

WSO2 ESB is a lightweight and open source environment that allows developers to

easily configure various functions such as message routing, transformation, schedul-

ing and load balancing among others. The background technology of WSO2 ESB is

the Apache Engine for exposing these various components. WSO2 ESB is developed

on top of the WSO2 carbon platform and extracts the basic feature from carbon

core, e.g., logging. Furthermore, WSO2 supports the functionality of add-on fea-

ture. Therefore, any component, feature or functionality can be added and removed

as per the application requirements. WSO2 supports various communication proto-

20 Types or Layers in Cloud Computing

WSO2 Enterprise Service Bus (ESB)

WSO2 Core (Security, Logging, Management etc)

Applicatoin

Transport

SOAP, XML,
Binary, Text

TranformationRouting

Transport

Applicatoin

Me
ssa
ge

Me
ssa
ge

User

Figure 2.5: Inside architecture of WSO2 ESB

cols (HTTP, HTTPs, JMS and SMTP) between different applications and make the

necessary transformation and mediation for the actual messages in different formats

such as xml and text etc.

From the architecture point of view, WSO2 ESB is a software environment for

middleware which enables the interoperability among various components using the

SOA architecture. ESB works as a middleware mechanism for communication be-

tween the end user and complex applications by providing a single and a uniform

interface. Figure 2.5 describes the inside architecture of WSO2 ESB, e.g., how a

message is received and transformed from one application to another. The given

Figure depicts a very basic architecture and there are many other features such as

Message Builders, Tasks and Commands etc. that are provided by WSO2 ESB

and a complete documentation can be found at5. In short, an ESB is described as

connecting everything to everything.

2.1.3 Software as a Service (SaaS)

SaaS is the actual application or software that is designed, managed and delivered

through PaaS and uses the resources from IaaS [59, 102]. The application is accessi-

ble from a client that is usually a web browser, e.g., gmail and/or custom Graphical

User Interface (GUI). The SaaS service model eliminates the need to install the ac-

tual application on personal devices (e.g., a computer); therefore, it is very easy to

maintain and upgrade any application. Different applications are centrally hosted

in the Cloud and the delivery model of any application is one to many, i.e., a single

instance of the application for each user. The user or the consumer of the application

has no control over the Cloud infrastructure, e.g., storage, network and computation

resources and/or the platform. The major advantage of this kind of model is the re-

duced cost. Users do not need to purchase the software but instead rent it (payment

for the service) when and how long they require it. Various kinds of applications

5http://docs.wso2.org/wiki/display/ESB460/Enterprise+Service+Bus+Documentation

The Architecture of Cloud Computing 21

Figure 2.6: Cloud computing architecture with WSO2 and Eucalyptus IaaS

can be built and delivered as SaaS, e.g., Customer Relationship Management, Hu-

man Resource Management (HRM), Business Process Management (MBP) and web

applications.

Figure 2.6 presents the complete architecture of these three deployment models

(IaaS, PaaS and SaaS) of a Cloud. The resources are delivered through Eucalyptus

IaaS, platform is exposed via WSO2 and the software application is a web service.

It is important to note that a particular application can be developed and installed

directly into Cloud infrastructure [82]. In this case, an application utilizes the re-

sources directly from infrastructure and does not utilize any functionality from Cloud

platform as shown in Figure 2.1.

22 Types or Layers in Cloud Computing

2.1.4 Storage as a Service (STaaS)

Various Cloud providers such as Amazon, Google and Eucalyptus provide an inde-

pendent and separate service for the management of persistent data. A consumer

can upload and retrieve any data using the service and various APIs. Data can be

shared with other potential users by making it public to a particular group and/or

individual members. The data in Cloud is stored by following a hierarchical struc-

ture and generally it is used to store persistent data (audio, video, text files etc.).

Amazon S3, Eucalyptus Walrus and Nimbus Cumulus are few examples of STaaS

model. STaaS service model uses the REST protocol for the direct communication

with users. This model utilizes a virtualized pool of storage resources where virtual-

ization hides the details of the underlying file system and provides a uniform access

control for the management of various data. The following is a list of tasks that can

be achieved using Cloud storage:

• Archive personal data: A backup solution where users can store their data

from personal devices such as computers and laptops in Clouds.

• Store applications data: To provide a fast and uniform access to various kinds

of applications data. For example, an application that is used to edit various

images in different formats and all the images can be stored in the Cloud

storage.

• Data sharing: Any data in Cloud storage can be shared with other potential

users.

• Easy to use interface: A simple GUI is provided that can be used to stream

in/out any data. Furthermore, a list of APIs is available to communicate with

the storage service and therefore custom GUIs can be developed.

The persistent data in Clouds is stored as objects inside the buckets. Bucket is

a container (e.g., folder in file system) and the data that could be anything (audio,

video, text) is represented as objects. Users can create and name various buckets

and the data is stored as objects inside a particular bucket with a unique name.

While storing objects, some metadata is also stored related to objects such as Ac-

cess Control Policy (ACP) that contains information about the access rights, e.g.,

creation, deletion, modification etc. Similarly, each object has a unique identifier,

i.e., a key and value attribute and this is also stored as the metadata information.

It is important to note that many Cloud providers, such as, Amazon provides the

facility of replicating the data, but it is missing in the open source implementation

of Eucalyptus Cloud.

The Architecture of Cloud Computing 23

Cloud Obj ect

Storage

Bucket 1 Bucket 2

Object 1 Object 2
Object 3

Name (key)
Value

(Contents)

Access Control Policy (ACP)

(Owner)

(Public URL)

(Access rights e.g., create, edit,

modify and delete)

Figure 2.7: The storage architecture of Eucalyptus Walrus

The communication protocols supported by Walrus are REST, SOAP and Bit

Torrent. The REST protocol is used for the direct stream in/out of data by users

and the SOAP protocol is used by Eucalyptus CLC components for the management

of Virtual Machine images. The Bit Torrent protocol can be used to make the data

public and retrievable by simply clicking the bit torrent link. Figure 2.7 describes

the basic architecture of Eucalyptus Walrus and the storage mechanism, i.e., buckets

and objects along with the basic metadata information.

2.2 Features of a Cloud IaaS

The subsections below provide various features/components in a Cloud IaaS model.

2.2.1 Resource Types

Clouds host various resources according to the industry demands and user require-

ments. Each resource has a different ID which describes the resource type. For

example, uploading multiple operating systems of Linux (Ubuntu, Debian, Solaris),

Windows (XP, Vista) and database servers (SQL server, MySQL) to a Cloud IaaS

result in various resources available to the users as Virtual Machines (VM). A user

hires a particular resource according to the requirements of an application. A re-

source in the Eucalyptus Cloud is called Eucalyptus Machine Image (EMI). Each

resource is further divided into multiple parts which are defined as Image-ID, Kernel-

24 Features of a Cloud IaaS

ID and Ramdisk-ID. These parts detail the resource, i.e., the Kernel-ID depicts the

particular version of the kernel and modules required for the proper function of an

image used by a resource, the Ramdisk-ID depicts the location of the resource, and

the Image-ID is used as a reference to a particular resource that is stored in Walrus.

2.2.2 Instances and their Types

A ’Cloud Instance’ is a virtual machine rented from a public or private Cloud. An

instance is assigned to the end user after the selection of a particular resource.

Clouds offer various types of instances which are based on the memory, disk space

and processor cores, etc. Eucalyptus, Amazon [1], Nimbus [101] and other Cloud

IaaS divide the instances into different types such as small, medium, large, extra

large and huge based on the hardware requirements. Table 2.1 presents these various

instance types and their related memory, CPU cores and disk information from our

local installation of the Eucalyptus Cloud.

Users make a request for a particular instance type based on the requirements

of an application. Instance types can be changed at run time by the administrator

of a Cloud to manage the load of the networked resources. A few of the properties

of any instance type in Clouds are following:

• Instance-ID: It is used as an identifier for a particular instance and differenti-

ates it from others.

• Memory: The amount of Random Access Memory (RAM) assigned to a par-

ticular instance.

• CPU: The numbers of cores assigned and the type of CPU.

• IP addresses: An instance is assigned two IP addresses called local address

and public address. For instance, the local address in the Eucalyptus is used

for various network modes, i.e., internal networking and the public address is

used by the users to communicate with the instance.

• Owner: The user who created or started the instance and his group informa-

tion.

• Storage: The amount of disk space in gigabytes (GB) that is assigned to an

instance.

2.2.3 User-Data

There are three different methods to install services/applications directly on a hired

resource from a Cloud infrastructure. In the first method, users make a request

The Architecture of Cloud Computing 25

Name CPUs Memory (MB) Disk (GB)

m1.small 1 256 5

t1.micro 1 256 5

m1.medium 1 512 10

c1.medium 2 512 10

m1.large 2 512 10

m1.xlarge 2 1024 10

c1.xlarge 2 2048 10

m2.xlarge 2 2048 10

m3.xlarge 4 2048 15

m2.2xlarge 4 4096 30

m3.2xlarge 4 4096 30

Table 2.1: Various information of instance types from the local installation of Eucalyptus
Cloud.

for a raw resource and when the resource is in running state and assigned to the

user, he/she can customize the resource accordingly. This method is not feasible

for the deployment of huge and complex applications because every instance needs

manual changes and installation of various services, components and the networking

between them. In the second method, users write their scripts which are passed

to the resources as user-data. Such scripts are executed before the instances are

assigned to the users and therefore all the services and components required by the

users are already configured. This method is much more flexible and feasible for the

configuration of complex and scientific applications where users get their resources

ready and configured with services. In the third method, a user uploads a resource

which is already configured and contains all the applications. From the resource

provider perspective and with the diversity of Cloud computing, it is not possible to

know all the requirements in advance for such a dynamic architecture. Furthermore,

storing populated resources in Clouds require huge amount of space.

When applications are directly deployed to a Cloud IaaS, mostly custom scripts

are passed to the resources which are executed after the resource is booted. The

main objective of the user-data is to deploy services or applications on the basis

of particular user requirements. For example, a custom script which would install

JAVA on a requested resource before it is started is following:

sudo apt-get install JAVA (for an Ubuntu resource)

2.2.4 Elastic Block Storage (EBS)

The Elastic Block Storage (EBS) provides block level storage called volumes that can

be attached to instances. The created volumes maybe formatted with a particular

26 Cloud Deployment Models

file system depending on various users requirements. When a volume is created,

it has a particular size (less than 10 GB), and it can be attached in the same

Availability Zone (the Cluster) where the instances are running in Eucalyptus Cloud.

Furthermore, multiple EBS volumes can be attached to a single instance. A volume

is differentiated from others using a Volume-ID. Volumes are used in Clouds to store

data and applications which might be require for later purposes.

2.2.5 Snapshots

To get a backup of a particular volume, a snapshot is created. A snapshot requires

the name of a volume and a description can also be provided. Similar to volumes,

a snapshot has a particular id called Snapshot-ID and contains the information of

the volume from which it is created. The snapshot can be used to create further

volumes or registered as a resource (VM Image) in a Cloud IaaS.

2.3 Cloud Deployment Models

An organization can choose between different options to use the resources that are

provided in a Cloud environment. These different options result in various deploy-

ment models of Clouds [92]. The following is a list of few of the deployment models:

• Private Cloud: In a private Cloud, the computing and storage infrastructure

is dedicated to a single organization. The infrastructure can be managed

internally within the organization or hosted by a third party externally. In

this model the infrastructure is not shared with other organizations. This kind

of Cloud brings more security to the data because it is not shared across the

internet. Similarly, these Clouds are more available (resources exist within the

network of an organization) and fault tolerant. Private Clouds are sometimes

called on-premise Clouds. This type of deployment model is best suited for

organizations which are deploying critical application, using very sensitive data

and/or the organization has to follow strict regulation rules etc.

• Public Cloud: In a public Cloud, computing and storage infrastructure is

hosted by different vendors on their premises. The provided infrastructure

is shared by any organization. Furthermore, the infrastructure is completely

hidden and the customer has no control over the infrastructure. This kind of

model utilizes Internet as a Service for the delivery of services, applications

and storage units to end users. The cost of using these resources is paid by pay-

as-you-go model and the resources are provided based on on-demand model.

The Architecture of Cloud Computing 27

This kind of Cloud has the advantage of infinite scalability and generally they

cost less than private Clouds (no need to purchase expensive hardware).

• Hybrid Cloud: As the name suggests, the hybrid Cloud is a combination of

private and public Clouds. An organization can host critical application and

data on private Cloud where the applications and data that needs less secu-

rity can be hosted on public Clouds. This is beneficial when an organization

has sudden peaks in loads and therefore, extra load can be shifted by taking

resources from public Clouds. This ensures the proper handling of increase in

requirements at any time.

• Community Cloud: A community Cloud is controlled and used by a group

of organizations that have shared interests, such as specific security require-

ments or a common mission. It is mostly used in universities by different

research groups. The members of the community share access to the data and

applications in the Cloud.

2.4 Roles in Cloud Computing

Various roles can be identified that are based on the SOA architecture and the

business model of Clouds. Each of these roles, which we refer to as audiences or view

points have different interests in Cloud computing. Following is a list of individual

roles and their description:

• Cloud Provider: An organization supplying various resources for computa-

tion, storage and networking to customers or end users. These resources are

accessed through dedicated APIs or a web browser. The utilization of various

resources is achieved directly by a consumer, Cloud aware applications and/or

various platforms.

• Services Developer and Vendor: The vendor provides various services and

applications to customers where the provided applications utilize resources

from Cloud provider. Such architecture enables the vendor to dynamically

scale the application as the demand varies from time to time. For example,

a new business which is not able to estimate the demand and uptake of ser-

vices usage and hence the resources required, such organization can scale the

application as the demand varies.

• Cloud User or Consumer: A user is the person or organization who is uti-

lizing either the services offered by a vendor or resources from Cloud provider

28 Characteristics of Cloud Computing

directly. The user has no control over the deployed application or the resources

infrastructure and they simply exploit the offered services or resources. For

example, the storage of data in Clouds such as archiving personal data in

Amazon or Dropbox by users. Similarly, in a research environment the exe-

cution of a complex application which is designed by a group of members for

a particular task. Mostly the users access the Cloud environment through a

thin client such as a web browser.

These roles will be used as per the above presented context for the rest of this thesis.

2.5 Characteristics of Cloud Computing

Cloud computing is defined by a set of properties and characteristics such as ab-

straction, elasticity and virtualization [129, 37] etc. Since, Clouds evolved from the

existing domains of grid, virtualization and SOA architecture therefore, it borrows

many properties from these existing fields. However, Clouds add their own specific

properties to make them distinguishable from the existing computation and storage

paradigms such as grid computing [61]. Here, we list the most essential properties

for the understanding of Cloud computing which are used in the scope of this thesis:

• SOA Architecture: Cloud depends completely on Services Oriented Archi-

tectures (SOA), specially, by the usage of abstraction, modular design, and

accessibility. The abstraction is achieved with the use of virtualization tech-

nology and thus exposing only the main functionalities to the end user. This

makes the key functionalities of a Cloud very accessible.

• Delivery Model (on-demand, pay-as-you-go): This property of a Cloud

makes it different from the other fields, e.g., grid computing. Cloud offers var-

ious services and infrastructure for computation and storage resources which

are managed according to different requests and demands. A resource is simply

acquired when and where it is needed (on-demand). Similarly, the payment

for the acquired resources is based on utility model such as electricity. Users

pay for the resource as long as it is required and used (pay-as-you-go). Once

the resource is no more needed, it is simply released.

• Scalability and Elasticity: One of the key characteristic of Clouds is the

huge scalability of resources. For example, computation and storage resources

can be added and removed as per the variation in demand from time to time.

This is the best model to handle the requests from consumers at peak times.

The Architecture of Cloud Computing 29

This also means that Clouds are elastic, i.e., Clouds can scale in/out quickly

and in automatic fashion according to the demand.

• Miscellaneous: There are many other properties of Clouds such as ease of

use for the end users. The underlying complex architecture and the details are

hidden from the consumer and Clouds are provisioned as a single and uniform

entity, i.e., abstraction. For example, Cloud services and applications are ac-

cessible without the human interaction with the service provider, e.g., email.

Technically, Cloud follows a loosely-coupled approach where the architecture

is divided into many parts and components which brings isolation between

these different components. For example, the isolation of IaaS, PaaS and SaaS

layers. Similarly, there is isolation within each individual layer, e.g., various

applications are delivered via PaaS and one application is not aware of the

existence of any of the other applications.

2.6 Conclusion

This chapter provides the background information of Cloud computing along with

various components that are related. A detailed overview is presented for various

service models and deployment models of a Cloud. With each services model, we

demonstrated specific examples such as Eucalyptus, WSO2 and ESB etc. More-

over, the details of the inner architecture of communication and linking of various

components are presented for each services model. This chapter also provides the

characteristics and various roles that exist in Cloud computing. These details will

be utilized in the upcoming chapters for proposing a provenance framework and

various applications that are defined by using the provenance data in Clouds.

3. Related Work

Provenance, from the French word provenir, “to come from” has various definitions

such as:

• “Provenance is information about entities, activities, and people involved in

producing a piece of data or thing, which can be used to form assessments

about its quality, reliability or trustworthiness.” 1

• “The history of ownership of a valued object or work of art or literature.” 2

• “The history of the ownership of an object, especially when documented or

authenticated. Used of artworks, antiques, and books.” 3

• “The place of origin or earliest known history of something.” 4

The concept of provenance (also referred as lineage and pedigree) has been used

in various fields, e.g., art and artifacts, archeology, food production, distributed,

grid and workflow computing for knowing the origin and history of any object [73,

128, 65, 75]. Each of these domains define provenance within their own domain

and context. Generally, provenance is used to answer the following questions in

computation or data science, (i) how was a particular object (dataset) created or

derived, (ii) what are the source parameters (input data) for a particular result

generated by an experiment, (iii) when was a particular results generated (this may

include the intermediate results), and (iv) to define the ancestry of a particular object

(this can include hardware, infrastructure, platform and software components which

are contributing in the overall process) etc. In this chapter, we limit ourselves to

the context of computational and data science such as grid computing, workflow

computing, database domain, SOA architectures and Cloud computing.

1http://www.w3.org/TR/2013/WD-prov-dictionary-20130312/
2http://www.merriam-webster.com/dictionary/provenance
3http://www.thefreedictionary.com/provenance
4http://oxforddictionaries.com/definition/english/provenance

30

Related Work 31

3.1 Provenance in Grid, Workflow, SOA and Database

Domains

Provenance has been a major attraction and key element in accessing the significance

of electronic data [35, 117]. It is used to determine the quality and trust one can place

on a final result produced by scientific experiments [87, 106]. For example, Buneman

et al. [35] consider provenance as the description of origin of data and the process by

which that data is produced in the field of database. Lanter [81] explains provenance

or lineage as the information that describe materials and the transformations applied

to those materials for the derived data in Geographic Information System (GIS).

Provenance is generally associated with the process, sub processes and datasets

(e.g., input) that are consumed for the production of final data and results. Green-

wood et al. [66] consider the concept of data and process together and hence define

provenance as the metadata that is recorded for the process/es and data of any

experimentation, e.g., workflow. Therefore, there are two important features which

are considered for a final product in computation or data science.

• The data sets which are consumed and produced while delivering the final

results.

• The process/es, services and components which are consumed while producing

the final results.

Granularity of provenance

The amount of provenance data, i.e., granularity, which is collected for any exper-

iment, can vary according to the application and users requirements. Provenance

is mainly categorized by its granularity and there are two major approaches, i.e.,

fine-grained and coarse-grained provenance [116, 34]. The coarse-grained prove-

nance is related with workflows that are called in-silico experiments [122]. In this

case provenance data is a set of properties regarding the step by step informa-

tion about process/es that were used to produce the final result. Several research

works [138, 124, 118, 94] in the field of workflow provenance and scientific experi-

mentation consider the software or the services architecture as a black box for the

collection of provenance data. Therefore, the coarse-grained provenance scheme

mainly targets the high level of abstraction in scientific applications such as the

functional requirements in workflow experiments. On the other hand, fine-grained

provenance addresses more detailed data. For instance, to record each individual

data items that are used from the input datasets, e.g., tuples in the source data set

which are used by a SELECT or any other query in relational databases.

32 Provenance in Cloud

There are two important characteristics of provenance, i.e., why and where which

are highlighted in [35]. Where classifies the source elements, e.g., table and dataset

and why justifies or give reasons for the final result. The usage of provenance in

the database domain and the various techniques that are used to collect provenance

data are explored in [127, 136, 28].

The execution of workflow experiments and the storage of related data require

heterogeneous resources which are offered by grid and distributed computing. These

include computational resources (computers, processors, and sensors), storage re-

sources (relational database, NoSQL, file system, hard disks) and the networking

of all these resources. The applications which are deployed in such an environ-

ment usually follow Service Oriented Architectures (SOA). Numerous techniques

and projects have been proposed during the last few years for provenance systems

in computational sciences for validation, reproduction, trust, audit trials and fault

tolerance [123, 46, 35]. For instance, Provenance Aware Service Oriented Archi-

tecture (PASOA) [93] uses Service Oriented Architecture (SOA) [14] for provenance

collection and its usage in distributed computing for workflow management systems.

myGrid5 and Kepler [20] are examples of projects for executing in-silico experiments

developed as workflow and they use Taverna6 and Chimera [21] schemes respectively

for provenance data management. However, none of these approaches were designed

specifically for the Cloud computing architecture. All the techniques and approaches

which are used for provenance in grid, workflow, database and SOA mainly focus

on the application or data layer of e-Science. It is important to realize that Clouds

have their own provenance from the infrastructure, platform, hardware, virtualiza-

tion, client and software layers.

3.2 Provenance in Cloud

Clouds are rapidly becoming the future platform for computational and data sci-

ence. However, it is not realized that Clouds have their provenance in addition to

the provenance of various applications [35, 117] and data [66]. This involves prove-

nance of the infrastructure, platform, software, object storage, client, hardware and

virtualization tiers among others, i.e., provenance of the dynamic and modular ar-

chitecture of the Cloud itself. The exploitation of Cloud’s own provenance can be

used for various applications like failure tracking, privacy and security violation,

reliability, accountability, usage reports of Clouds resources, and provenance based

search. Provenance of Clouds to the best of our knowledge is not addressed to its

5http://www.mygrid.org.uk/
6http://www.taverna.org.uk/

Related Work 33

full potential like the previous domains of workflow and grid computing.

The NIST [92, 84] definition of Cloud computing divides the overall architecture

into many types depending on the deployment models, service models and various

characteristics of Cloud. Therefore, provenance data and the target audience are

different when considering these various service models, e.g., SaaS, PaaS and IaaS

etc. Similarly the challenges involved in providing provenance in Clouds vary due to

the variations in the deployment models, service models and other parameters such

as abstraction, scalability and availability of Clouds.

The increased interest in Cloud computing attracted the research community to

explore provenance in Cloud computing. The initial works to address the issue of

provenance in Clouds are mostly focused on presenting the challenges associated with

provenance collection and to highlight the significance of provenance data in Cloud

computing [18, 99]. Specifically, the authors in [99] highlight the significance of

provenance data for Cloud storage such as Amazon S37 and Microsoft Azure Blob8,

and they propose various applications that can be based on the suggested prove-

nance data, e.g., content based searching in Clouds. The emphasis is to consider

provenance as an important and valuable ingredient for the Cloud environment.

Clouds use a diverse and distributed set of resources for computation and stor-

age and the networking (intranet or internet) between them that is called Cloud

computing stack. These bundles of resources provide the necessary infrastructure

for the delivery of a particular application and/or hosting various platforms. This

architecture brings various individual layers and components that may or may not

be visible to end users. For example, Clouds are accessed via web browsers and

therefore the browser itself is considered as one component or layer in a Cloud envi-

ronment. Daniel W. et. al. [89] consider web browsers as an important application

for distributed environment and present the case of web browsers provenance. Fur-

ther, they highlighted the advantages of a provenance enabled web browser such as

fast web search and efficient data management when compared to a browser where

provenance is not available. Similarly, virtualization is another important layer in

Clouds that is achieved mostly through Xen [13] or Kernel-based Virtual Machine

(KVM) [67] technologies. Provenance for Xen hyper-visor technology on the system

kernel level and Cloud computing is discussed in [88]. Similarly, application level

provenance, i.e., the software layer is addressed in [111] using a sample E-Social

Cloud application.

The individual layers in Cloud computing and the corresponding provenance data

are very important but at the same time, the aggregated provenance from various

7http://aws.amazon.com/s3
8http://www.windowsazure.com/en-us/home/features/data-management/

34 Provenance in Cloud

layers of a Cloud or any other distributed system paradigm proved to be significant.

Muniswama-Reddy et. al. [95] establish the importance of integrating provenance

data for different layers of workflow execution. However, their work focuses on

combining the provenance data from a workflow engine, web browser and the python

wrapper by extending the Provenance Aware Storage System (PASS) [96]. Similarly,

a short survey [137] about various techniques from grid and distributed computing

are discussed to track the data in Cloud using a layered architecture. Their work

highlights the significance of provenance data at different layers of Cloud computing.

Scheidegger et. al. [115] reasoned the integration of provenance data in workflow

systems that include evolution, execution and specification layers of a workflow but

their focus is on the application layer of a Cloud, i.e., SaaS.

Provenance Aware Storage System (PASS) [96] is one of the promising tech-

niques successfully extended towards the Cloud environment and here we give a

brief overview of the PASS project.

Provenance Aware Storage Systems (PASS)

The basic concept of PASS [98] is to observe various system calls that are made to

the data from applications, e.g., READ and WRITE system calls. Since provenance

of data and processes are both important to evaluate the final results, PASS also

collects the relationships between data and processes. For instance, PASS creates a

provenance edge (i.e., a relationship) by recording the fact that processes depend on

the file, e.g., for the READ operation or system call. Similarly, when a file is written,

i.e., a WRITE system call is issued; PASS also records the dependency between the

processes and data.

Figure 3.1 presents the architecture of PASS for Cloud environments. PASS

collects the system calls which are represented by syscalls in Figure 3.1 and translates

these system calls into provenance records which are made from any application.

PA-S3fs in Figure 3.1 is the extension of S3fs (FUSE-based file system backed by

Amazon S3)9’10, a file system interface to Amazon object storage (S3) that is utilized

by PASS. Furthermore, the collected provenance data is stored in the Cloud using

one of the three protocols called P1, P2 and P3 in Figure 3.1.

The first protocol P1 represented by the solid lines collects the provenance data

and stores the data in the Cloud object storage (Amazon S3) together with the

original data. The second protocol P2 represented by the dotted lines stores the

provenance data in the Cloud database (Amazon SimpleDB) and the original data

in Cloud object storage (S3). The third protocol P3 represented by the dashed

lines stores the provenance data in the database (SimpleDB) and original data in

9http://code.google.com/p/s3fs/wiki/FuseOverAmazon
10http://fuse.sourceforge.net/

Related Work 35

the object storage (S3) using a messaging service and Write Ahead Log (WAL)

queue approach. Each one of these approaches has corresponding advantages and

disadvantages, e.g., P1 does not provide efficient data query for provenance, because

provenance data is stored together with the original data (strongly coupled).

As proposed in [88], PASS has few drawbacks. For example, PASS depends on the

kernel (collector module for syscalls) and therefore any change in the kernel requires

appropriate changes in PASS, e.g., reintegration. Similarly, Clouds utilize various

diverse resources and to make PASS useful in Clouds will require the integration of

PASS on each and individual resource (virtual machine). More importantly, PASS

is designed to add provenance for Clouds storage systems. Contrary to the PASS

approach we are interested in, (i) the provenance of infrastructure such as nodes,

clusters and virtual machines, (ii) the provenance of platform such as composition

of services and the interaction mechanisms between services and client, (iii) the

provenance of software such as dataset and functional requirements of an application

and, (iv) the provenance of storage in Clouds. Our focus is targeted towards the

provenance of Clouds themselves.

Application

PASS

PA-S3fs Provenance

Local
Cache

Data

Provenance + Data

Syscall
Boundary

S3

Simple DB

(Write Ahead Log)
WAL Queue

Client

P3: Provenance is stored in database (SimpleDB)
and data is stored in Cloud store (S3)

P2: Provenance is stored in database (SimpleDB)
and data is stored in Cloud store (S3)

P1: Provenance and data are stored together
in Cloud store (S3)

A Cloud messaging service is
used to provide provenance
data coupling

Figure 3.1: PASS model for Cloud environments: Concept taken from, “Provenance for
the Cloud” Kiran-Kumar Muniswamy-Reddy, 2010

36 Provenance in Cloud: Why?

3.3 Provenance in Cloud: Why?

Cloud is an evolving paradigm which is based on virtualization, and offers differ-

ent service models (Iaas, PaaS, SaaS), various characteristics such as on-demand

computing, pay-as-you-go model, high scalability, and abstraction and different de-

ployment models (private, public and community Clouds). The vision of this new

paradigm is to address a complex engineering, medical or social problem [43, 103]

and to store and manage huge amounts of data [19, 49] among others. Clouds enable

end users to run complex applications and satisfy the need for mass computational

power via resource virtualization. The execution of complex experiments towards

Cloud architectures such as workflow computing is already in progress [69, 68, 85].

The existing research mainly focuses on the provenance of the application layer [91,

123, 93, 31, 76, 111]. This includes provenance of data and processes which is ex-

tremely important for quality, assurance, trust, reliability and reproducibility etc.

With the layered architecture of Clouds and different roles (view points), Clouds

themselves have important provenance data which adds to the provenance of ap-

plications. For example, Infrastructure as a Service (IaaS) is the paradigm of a

Cloud that can be utilized by researchers to deploy complex applications as shown

in Figure 3.2. This is different to existing grid and distributed environments [36, 61]

where a user has to adopt his applications to the grid infrastructure and policies.

An IaaS scheme provides a raw resource which is hired and updated according to

the requirements of an application (by a user) without knowing the complexities

and details of the underlying architecture of networking, software, services and plat-

forms. The execution of complex applications in a Cloud requires various storage

and computation resources that are hired from the infrastructure (IaaS) type of a

Cloud.

There are two main approaches to deploy complex applications in Clouds. The

first approach utilizes Cloud resources directly from the infrastructure [82] where

the acquired resources needs to be populated with the proper tools, libraries and

middleware required by that particular application. The second approach utilizes

a platform layer for the deployment of applications [82]. In this case, resources

are acquired by using the platform service. Therefore, the acquisition of different

resources from a Cloud goes through the various components which are involved

such as platform, software, storage and infrastructure. Similarly, the acquired re-

source has a specific type such as memory, disk space, VM image etc. Each of the

components involved in acquiring a resource and the various data that specifies the

acquired resources adds to the provenance data. For instance, the process of acquir-

ing a resource goes through components such as CLC, CC, NC, Storage Controller

Related Work 37

APIs

ComputeStorage Network

Application

Cloud IaaS

Figure 3.2: Application utilizing a Cloud IaaS

and/or Walrus in the Eucalyptus Cloud. These components route a particular re-

quest which depends on the type of the request, e.g., storing data and/or acquiring

a VM. While routing a particular request to its destination, each component adds

additional provenance data. For example, provenance data for the Cloud infrastruc-

ture can be broadly categorized into the categories of user’s data, instances types,

resources types, details about users and resource providers, memory and disk space

etc.

The collected pieces of information from a Cloud IaaS are of high importance

and can be utilized to define various applications. For example, a resource which is

already built and updated by one user in a private Cloud environment can be used by

other users with minimum or no change of the installed applications and components

when the requirements are the same. Furthermore, mining provenance data can

be used to forecast a future request, e.g., Eddy Caron [39] use string matching

algorithms on the recent history data to forecast upcoming requests. Similarly,

networks in general and Clouds in particular are prone to errors and the history data

can be utilized in Clouds to resolve the faults and errors with minimum effort. For

instance, the network failure in a Cloud such as the unexpected shutdown of a Node

or a Cluster Controller would result in faults and errors in the deployed applications

and services execution. In this case, the provenance data of the Cluster or Node

Controller provides the information about the time stamp, about the particular

Cluster or Node and about the method where the failure has occurred. This data

can be used to pinpoint the exact failure, the time of a failure and the location of

a failure. Similarly, provenance data from a software layer can be used to verify

the execution of applications. Furthermore, analysis of provenance data can define

various similarity patterns and behavior that exists in data and/or applications in a

Cloud. The behavior can be further utilized for the efficient allocations of resources

38 Possible Schemes of Provenance in Clouds

such as predicting future requests.

In Clouds, the SOA architecture and the abstraction of networking, software,

and hardware allows the end user to send and receive data to and from a Cloud

without bothering about the underlying complex details. In a research environment,

scientists are more interested in the overall process of execution, e.g., step by step

information of a process to keep a log of sub-data and sub-processes to make their

experiments believable, trust able, reproducible and to get the inside knowledge.

Particularly with the improvements of in-silico experiments, most of the computation

and processing is achieved using computing resources.

It can be argued that users of a Cloud may not be interested in the physical

resources, e.g., brand of a computer but surely they are interested in (i) the invoked

services, (ii) input and output parameters to the services, (iii) time stamps of in-

vocation and completion, (iv) overall time used by processes, (v) methods invoked

inside a particular service, and (vii) the complete process from start to finish. For

Clouds this also includes the details about the provider, users, provided resources

and the details of each particular resource such as type, location, size etc. hired

by a user. This metadata which provides various users the ability to see a process

from start to end or simply track back to find the origin of a final result including

the detailed information about the processes and resources taking part in the final

output is called provenance. Generally, provenance is used in different domains by

scientists and researchers to trust, track back, verify individual input and output pa-

rameters to services, sub-process information, reproducibility, compare results and

change preferences (input/output parameters) for another simulation run. Prove-

nance is still missing in Cloud environments and needs to be explored in detail as

mentioned in [97, 109].

3.4 Possible Schemes of Provenance in Clouds

The existing techniques from grid, workflow and distributed computing of prove-

nance collection and management range from tightly coupled provenance systems

to loosely coupled systems [123, 46, 35]. The architecture of tightly coupled prove-

nance collection depends on a specific domain or application because it is strongly

tied with the underlying system. On the other hand, a loosely coupled provenance

technique follows an independent approach for provenance collection and therefore

addresses different domains, architectures and applications. Since provenance is not

established to its full potential in Cloud computing, we provide a discussion of the

possible schemes of incorporating provenance data and its management in Clouds

with their advantages and disadvantages.

Related Work 39

3.4.1 Provenance as a Part of Cloud Service Models (Provenance

on Cloud Core)

In this scheme we assume provenance collection is part of the Cloud environment

such as platform or infrastructure layer of a Cloud. For example, if we consider a

Cloud infrastructure such as Eucalyptus or Amazon, the supplier of resources (Cloud

providers) needs to allocate a service, e.g., provenance collection as part of the

overall infrastructure. The provenance service or module has to communicate with

other services of the infrastructure like Cluster, Node and Storage etc such as in a

Eucalyptus IaaS. Furthermore, to store the collected provenance data, such a scheme

can utilize the Cloud storage like Walrus in Eucalyptus Cloud where the original

data is stored. This scheme proposes the integration of provenance as part of overall

Cloud infrastructure and thus follows a tightly coupled approach. Figure 3.3 presents

the architecture of such a scheme where provenance data and provenance service

are part of the existing infrastructure a Cloud. Application services in Figure 3.3

represent the logic of a particular application with various web services. When a

user utilizes the Cloud environment the provenance service and data are managed

for the Cloud like other existing services as shown in Figure 3.3. Following are the

advantages of provenance inside the Cloud infrastructure (IaaS):

• Easy to use because provenance is part of a Cloud infrastructure and the

provider can decide to turn it on/off just like other services in Clouds.

• The management of provenance data (collection, storage etc.) is fast and

efficient because the proposed scheme is part of the existing infrastructure and

service models.

• This scheme is convenient to use because of its simplicity such as provenance

collection and storage etc. are part of the existing infrastructure. Furthermore,

it is the responsibility of the Cloud provider to embed such a scheme. For

example, in the PaaS model, the developer can take advantage of provenance

data for application developments and management without understanding

the structure of provenance scheme on the infrastructure or platform layer.

The following lists the disadvantages of such a provenance scheme.

• It is unlikely that users will pay for such a scheme from the Cloud provider

unless it provides benefits such as resource utilization and initialization. Fur-

thermore, depending on the provided functionalities such as provenance data

visualization etc. can further cost a consumer.

40 Possible Schemes of Provenance in Clouds

• In case of Cloud services failure, the provenance service will also fail (being

part of Cloud core) and the reason of a failure cannot be traced. Similarly,

in case of provenance service failure itself, there will be no records for future

operations in Clouds.

• Incorporating the provenance module in different service models of a Cloud

infrastructure or platform will decrease the performance of such service models.

The decreased performance depends on the granularity of the provenance data

and the methods to store provenance data.

• The performance of other services in Clouds is likely to decrease due to the

incorporation of the provenance service as part of the existing Cloud services

(infrastructure and/or platform).

• Such a scheme can only work with a particular version of the Cloud infrastruc-

ture or platform. Any change in the Cloud model or services signature needs

an appropriate change in the provenance framework accordingly.

• Such a scheme is domain or application dependent and cannot be integrated

in other environments.

There are various examples of provenance data management and schemes that are

tightly coupled in distributed, grid and workflow computing [123, 46, 35, 116]. Each

of these schemes is designed for a particular environment and they rely on the

underlying service models. Therefore, these existing techniques cannot be applied

to Cloud computing and the various service models of Clouds.

Cloud
User

Cloud
Services

Storage
Services

Provenance
Service

Cloud and
Provenance data

Storage

Service 1

Service 2

Service 3

Application Services

Utilize

Figure 3.3: Provenance service as part of Cloud services (Cloud core)

Related Work 41

3.4.2 Provenance is Independent of Cloud Service Models

In this scheme we assume that the architecture adopts a modular and an agent like

approach to address cross platforms, applications, different domains, and various

Cloud providers. This kind of scheme in Clouds is independent of the underlying

infrastructure or platform. The major obstacle in implementing such a scheme is to

design a technique to address properties of Clouds such as on-demand computing

and pay-as-you-go model, and the extremely scalable and abstract architecture of

Cloud computing. These properties of Clouds are the corresponding challenges that

must be addressed when implementing an independent provenance scheme. For

instance, a Node or Cluster Controller can be added at run time to the existing

infrastructure in Eucalyptus Cloud. An independent provenance scheme has to ad-

dress the modular design of a Cloud infrastructure to embed provenance into newly

added Nodes and/or Clusters. Similarly, the inability to extend Cloud services is

another major challenge for such a scheme because business Clouds are the property

of various organizations such as Amazon EC2. Similarly, open source Clouds like

Eucalyptus require a deep understanding of each and every service, their architec-

ture and communication mechanisms to incorporate provenance from outside the

architecture. Following are the advantages of an independent provenance scheme:

• Independent from the service models such as infrastructure and platform, and

various application domains in Clouds.

• Failure of a Cloud will not affect the provenance scheme because it is not part

of the Cloud environment.

• Users and Cloud providers will be able to track faults and errors if some Cloud

services failed to work properly.

• This scheme is very easy to use for end users because the user has complete

control over the provenance system.

Following are the disadvantages of an independent provenance scheme:

• Complete understanding of service models of Clouds is required to make any

changes and communicate with the Cloud infrastructure or platform.

• Trust is required on behalf of the Cloud provider because of request, permission

and response from the Cloud services to the provenance service.

• Any change in Cloud services, their signature, or communication mechanism

will need an appropriate change in provenance scheme.

42 Possible Schemes of Provenance in Clouds

In workflow computing, Karma [119] is an example which adopts an independent

approach towards provenance collection. Karma utilizes a notification broker where

all the activities are published from workflow engine and services. The notification

broker collects provenance data and stores it accordingly in a provenance store. The

technique proposed by the Karma service is not part of a workflow enactment engine

and it works as a bridge between the provenance store and the enactment engine.

Figure 3.4 gives a brief overview of an independent provenance scheme in Cloud.

It is to be noted in Figure 3.4 that the provenance service is outside of the Cloud

environment and stores the collected provenance data independent of the original

data.

Cloud
User Cloud

Services
Storage
Services

Provenance
Service

Service 1

Service 2

Service 3

Application Services

Utilize

Provenance
Storage

Cloud
StorageProvenance

Collection
Provenance

Data

Figure 3.4: Provenance service as an independent module

3.4.3 Discussion

Both of approaches, i.e., provenance as a part of Cloud and provenance independent

of Cloud service models (defined above) has their pros and cons. While considering

provenance for Cloud service models such as infrastructure or platform, the major

challenge is to address the extensibility of these models and services in business

Clouds, e.g., Amazon. In case of open source Clouds, a developer needs a deep

understanding of the functions of the Cloud and the source code in order to make or

propose any change. Keeping this point in view, we propose a provenance framework

in Chapter 4 which is independent of Cloud infrastructure and requires minimal or

no changes in the Cloud architecture and/or service models.

Keeping in mind the existing provenance schemes from distributed and workflow

computing, and the proposed implementation of those schemes in Clouds, we design

and propose an approach which differs from these existing works in many ways.

First, we aim to incorporate provenance in the Cloud using a seamless and modular

Related Work 43

approach by extending Clouds in a structured way. This will bring more trust on the

proposed scheme and reliability on the collected provenance data. Secondly, we aim

to target the service models of Cloud computing, i.e., IaaS, PaaS and SaaS without

modifying or changing the source code or the basic services architecture. The goal

is to achieve provenance on the core of Cloud environment without modification and

changes.

We investigated open source Clouds for infrastructure and platform such as Eu-

calyptus, Nimbus, Mule, WSO2 and ESB for the understanding of underlying tech-

nologies, and the communication and linking mechanisms between them. We target

to intercept the communication mechanism which is used between various layers of

Clouds and between different components of a single layer.

3.5 Service Oriented Architecture (SOA)

The Organization for the Advancement of Structured Information Standards (OA-

SIS) Reference Model group defines Service Oriented Architecture [14] as: “A paradigm

for organizing and utilizing distributed capabilities that may be under the control

of different ownership domains. It provides a uniform means to offer, discover,

interact with and use capabilities to produce desired effects consistent with mea-

surable preconditions and expectations”. To understand SOA, we must begin with

the understanding of the term service. Service is a function that is well defined,

self-contained, and does not depend on the context or state of other services [26].

Therefore, SOA is a collection of services that communicate with each other for

various functions such as data transfer. SOA is best defined by the three patterns

of publish, find and interact as described in Figure 3.5. In this model, services are

published by the owner or developer to a registry. This service can be discovered by

other services or users and utilized accordingly.

The concept of SOA and services is related with the web services model. The

World Wide Web Consortium (W3C)11 defines a web service as “a software system

designed to support interoperable machine-to-machine interaction over a network.

It has an interface described in a machine-processable format”. Some people (from

the research community) consider that SOA is different than web services. Their

claim is based on the fact that SOA is not bound to any specific technology. We

agree with this claim but at the same time we consider that web services are a subset

of SOA model. Therefore, they are used in the same context of this thesis.

To fully realize SOA architecture, there must be a standard and uniform way of

communication between services [78]. Therefore, bodies such as OASIS (www.oasis-

11http://www.w3.org

44 REST

Service Broker

Service ProviderService Consumer

Find Publish

Client Service
Interact

Service
Contract

Figure 3.5: SOA model: Concept taken from W3C “http://www.w3.org/2003/Talks/
0521-hh-wsa/slide5-0.html”

open.org) and W3C (www.w3.org) come into play and have defined several stan-

dards which must be met while creating SOA applications. These standards define

various technologies for the communication between different layers of SOA appli-

cations such as Simple Object Access Protocol (SOAP), Web service Description

Language (WSDL), Web services Resource Framework (WSRF), Representational

State Transfer (REST) and others.

Clouds are designed to completely follow the SOA architecture. In the Cloud

computing perspective, the SOA is considered as a paradigm that is used to build

and expose an infrastructure of resources (computing, storage and their network-

ing), a platform (WSO2, Google App Engine) for services design, development and

delivery, and the execution of various applications to the target audiences (owners,

developer and consumers). This architecture is used to build and deploy complex

applications that require various communication protocols and huge set of resources

of computation and storage.

3.6 REST

REST stands for Representational State Transfer. The architecture style of REST is

a major contributor in the Web’s success where it describes complex and distributed

systems with beneficial properties such as scalability, performance, simplicity and

reliability [104]. The basic communication model of REST is stateless where it fol-

lows a client-server model and uses the HTTP protocol. Various objects in REST

Related Work 45

are represented by the use of unique URLs. The content of any object is accessible

through HTTP GET, and to delete or modify the contents each of HTTP POST,

PUT or DELETE are used. Web services which follow the REST protocol are be-

coming increasingly famous such as yahoo, flicker and twitter etc. The idea of REST

is to utilize a simple HTTP protocol for designing complex network applications.

The applications or web services that follow the REST protocol have the following

advantages:

• Simple and lightweight (not a lot of extra XML markup)

• Independent of programming languages and tools such as .Net, JAVA, C Sharp

etc. and independent of various platform (Windows, Mac and Linux)

• Easy to build and deploy because there is no toolkit required for the develop-

ment of REST services

3.7 SOAP

SOAP, defined as Simple Object Access Protocol is an XML based protocol that

is used to exchange the information between applications and/or web services in

decentralized and distributed environments. Fundamentally, SOAP follows a one

way messaging exchange between SOAP sender and SOAP receiver. SOAP basically

uses the HTTP protocol for communication over the network however, the support

for other protocols is also provided, e.g., JMS and SMTP. Just like REST, SOAP is

also platform and language independent. The major disadvantage of SOAP is the

use of verbose XML which can make the performance an issue. The structure of

SOAP consists of the following parts:

• Envelop, Header and Body: This is the construct that defines an overall frame-

work for expressing the contents of messages, i.e., what is inside of a message

(body), who should deal with it, i.e., all or part of the message (header), and

whether it is optional or mandatory.

• A data model for SOAP, i.e., a particular encoding scheme that defines a

serialization mechanism that can be used to exchange instances of application-

defined data types, e.g., in Remote Procedure Calls (RPC).

SOAP is a W3C recommendation and more about SOAP can be find here12 [132].

12http://www.w3.org/TR/soap/

46 XML

Listing 3.1: A simple document structure of XML

<?xml version="1.0"?>

<note>

<to>Adam</to>

<from>Jane</from>

<heading >Reminder </heading >

<body>Send me the document in pdf format </body>

</note>

3.8 XML

XML is acronym for eXtensible Markup Language and it is a technique of adding

intelligence to the documents. XML defines a set of rules that are used for encoding

documents that are both human and machine readable. XML is a tag based language

and information (metadata) can be added to the tags and elements inside the tags,

i.e., it is used in the descriptive sense. The communication protocols of web services

such as SOAP and REST use XML data for the communication. XML is also used

for the representation of data with the usage of HTML and Cascading Style Sheets

(CSS) styles. XML documents are considered simple, easy to understand, portable

and more powerful. XML follows a hierarchical and tree like structure as shows in

the Listing 3.1, where, a note is written to Adam from Jane as a reminder. More

about XML and its specification can be found here13.

3.9 HTTP

Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

collaborative, hypermedia information systems [60]. The basic model of communi-

cation is client-server where the client is usually a web browser and the server is a

machine hosting a website, web service or any other application. The client submits

a request message (in case of web services and SOA applications, the message is

expressed as XML) to the server. The server hosting the application such as web

pages or any other contents sends a response to the client which also contains addi-

tional information such as completion status etc. There are various methods which

are used in HTTP and some of them are described below:

• GET: To retrieve the data from the server.

• PUT: To modify or create a resource if it does not exist already.

13http://www.w3.org/XML/

Related Work 47

• POST: To consider the new contents as subordinate of the original contents,

e.g., annotation of existing resources.

• DELETE: To delete specific contents or resources from the server

The above methods are sometimes referred as CRUD (Create, Read, Update, and

Delete) operations. The details specification about HTTP protocol is presented in

[60].

3.10 ESB

ESB stands for Enterprise Service Bus and it is a platform and architecture for the

SOA paradigm. An ESB is a software architecture for middleware that provides

fundamental services for more complex architectures. ESB works as an integration

platform and brings together transformation and routing into a single place for

various kinds of applications while providing abstraction for endpoints. Therefore,

various applications communicate with each other via the bus without the knowledge

of existence of other applications, and also the dependencies within a particular

application.

The advantage of using an ESB is the reduced number of point-to-point com-

munications because it is very hard to manage too many point-to-point interactions

over time. Furthermore, ESB follows a simple, well defined and a pluggable system

that scales very well for various businesses and applications. The data that travel on

the bus is mostly in XML format. There are various kinds of ESBs that are provided

by different companies. In this thesis we will explore two ESBs which are Mule and

WSO2. Mule is utilized by Eucalyptus Cloud IaaS and WSO2 is a platform for

delivering Cloud aware services. The Mule ESB is detailed in Section 4.5.1.

Various communication protocols such as HTTP, REST, SOAP, SAP and CORBA

that are used by different applications are transparently translated and converted in-

side the ESB. Figure 3.6 presents the basic architecture of ESBs where various kinds

of applications are communicating using different protocols. The basic features of

ESBs such as transformation, validation and routing of messages and security of

web services is also presented as part of ESBs (the core of ESB) in Figure 3.6. The

detailed architecture and features, specifically from Open source ESB perspective

are discussed in [72].

48 Conclusion

Figure 3.6: The basic architecture of an ESB

3.11 Conclusion

This chapter provides the related work of provenance from different fields of e-Science

such as grid, workflow, database and Cloud computing. We analyzed the existing

schemes of provenance from these various fields and divided them into two main

categories, i.e., provenance as core part of Cloud and provenance as an independent

service. The analysis and categorization of existing schemes is further discussed when

including provenance in Cloud computing with their advantages and disadvantages.

We believe, Cloud’s own provenance is significant for both the service provider and

the applications in Clouds. The provenance of Clouds has many application domains

such as failure tracking, verification of data and processes, audit trials of the usage

of Clouds resources, and provenance bases search. This chapter also provides an

overview of related concepts such as ESB, SOAP, REST and XML etc.

4. A Provenance Framework for Clouds

Clouds present a layered (service models) architecture, and individual layers provide

different kind of functionalities. For instance, infrastructure layer provides compu-

tation and storage resources, platform layer provides the designing and communi-

cation environment for applications development and software layer is the interface

to expose the capabilities of services. The layered architecture of Clouds and the

differences of functionality of each layer requires to collect, present, and manage

provenance data respectively, i.e., the provenance framework should be designed in

such a manner that it satisfies the Cloud architecture.

The properties of Clouds such as abstraction, scalability and the inability to

extend Cloud services themselves are major requirements for provenance collection.

Furthermore, the characteristics of a provenance system such as independence from

the underlying architecture, modular design, low computation and storage overhead

and a uniform scheme across all the layers of Clouds are important requirements for

a provenance framework. Moreover, the provenance data vary according to different

layers of Clouds such as client, software, platform and infrastructure tiers. Therefore,

presenting the granularity of provenance data for each layer and integrating them

accordingly to explore the connections such as relationships between the layers is

also important. However, the existing schemes such as Karma [119], PASS [96],

PASOA [93], and other [127, 136, 28, 18, 88, 98] address mostly the application

layer in grid computing, e.g., workflows and/or individual layers of Clouds, e.g.,

data storage or software layers.

We propose a technique to collect provenance data on the communication layer

(middleware) of Clouds to satisfy the requirements of layered architecture and inde-

pendence from underlying domains etc. We divide our framework into many modules

or components such as collection, parsing, storage, query, and visualization to satisfy

other requirements such as modularity, low overhead and high performance etc. In

this chapter, we detail the proposed framework with perspectives of provenance re-

quirements, capabilities of the framework and the individual components (collection,

storage, query, and visualization) of the framework. Following are the contributions

of this chapter:

49

50 Prerequisites of the Provenance Framework

• To detail the requirements such as abstraction, high scalability, modularity,

various types or layers and the inability to extend Cloud services among oth-

ers that need to be addressed by the framework for the collection, storage, and

presentation of provenance data in Clouds. Moreover, to define a set of stan-

dards for the provenance framework that must be achieved such as modular

design, consistency and a uniform approach across all the layers of Clouds.

• To discuss the reasons to provide provenance data in Clouds, i.e., how a prove-

nance enabled Cloud is beneficial from a user, developer and resource provider’s

perceptive. For instance, content based searching, efficient utilization of re-

sources and fault tracking in Clouds utilizing the provenance data.

• To describe the mechanisms, i.e., the design of the framework for the man-

agement of provenance data while addressing the requirements and defined

standards. Furthermore, to detail the architecture of the proposed provenance

framework which consists of provenance collection, storage, query and visual-

ization among others and how each component satisfy the requirements of the

framework.

• To provide various provenance data and their description from different types

or layers of Cloud computing.

• To detail the storage mechanisms used by the framework for the collected

provenance across various layers of Cloud computing.

• To present the implementation of the proposed framework with examples from

open source Clouds such as Eucalyptus.

• To present the framework experience with various advantages and disadvan-

tages.

4.1 Prerequisites of the Provenance Framework

To provide a provenance framework that addresses the abstract, scalable and layered

architecture of Clouds along with other characteristics such as modularity, indepen-

dence and consistency is highly important. Furthermore, a provenance system has

to provide various modules for the management of provenance data such as collec-

tion, storage and query. In the following subsections, we list the requirements and a

set of standards that must be addressed to fulfill the goal of providing a provenance

framework in Clouds.

A Provenance Framework for Clouds 51

4.1.1 Provenance Requirements

To provide a provenance framework for distributed architectures such as Clouds

or grids, some requirements are ubiquitous like (i) collecting provenance data in a

seamless fashion with a modularized design and approach, (ii) minimal overhead

required for object (data items) identification in distributed environments, (iii) con-

fidentiality and reliability of provenance data, and (iv) storing provenance data in

such a way that it can be used more efficiently (energy consumption) and presenting

such information to end users, i.e., query and visualization. In Clouds, we also have

to address properties such as the scalable architecture, abstraction on various levels

and on-demand computing along with different deployment and service models. Fol-

lowing is a list of requirements that must be addressed by the proposed provenance

framework:

• Domain, platform and application independence: To provide a prove-

nance framework that works with different domain (scientific, business, data-

bases), platforms (Windows, Linux), applications (SOA architecture), various

deployment models of a Cloud (Private, Community Clouds), and various ser-

vice models (IaaS, PaaS) of Clouds.

• Computation overhead: Any layer of integration to solve a computer sci-

ence problem brings some overhead. Therefore, the goal is to keep the com-

putation overhead for the collection of provenance data minimal. The extra

overhead of computation of provenance data required by a provenance frame-

work can vary for a particular domain and service models of a Cloud.

• Storage overhead: The storage overhead of provenance data in Clouds is

twofold. First, the technique to store the provenance data such as a copy of

the original data is stored or a link reference to the original object is stored

in provenance storage unit. This also includes the storage unit for provenance

data such as SQL server, MySQL, file system (XML) or NoSQL schema. Sec-

ond, the granularity of provenance data, i.e., a coarse-grained or a fine-grained

approach is used for the provenance data selection.

• Usability: It determines the ease of use of a provenance framework from the

perspectives of end users such as consumers, developers and resource providers

of a Cloud. The usability constitutes on the properties such as how to acti-

vate, deactivate and embed a provenance framework into existing Cloud in-

frastructures and service models. Usability also identifies that the provenance

framework is completely independent or modifications are required on various

layers of a Cloud.

52 Prerequisites of the Provenance Framework

• Object identification: To adopt a consistent approach for the identification

of various objects in Cloud computing, i.e., to link the provenance data with

the original objects across various layers of Clouds. The link between original

objects and provenance can utilize one of many methods such as making copy

or keeping reference of the original objects.

• Automaticity: With the huge amount of data and process computation

within a Cloud, collecting and storing provenance data should be automatic

and consistent.

• Properties of Clouds: To provide mechanisms that addresses various prop-

erties of Clouds such as on-demand computing, abstraction and scalability

among others. For instance, the scalable architecture of Clouds allows the

addition and removal of various compute and storage services at run time.

Therefore, we have to properly handle the availability and extensibility of the

framework to the added/removed services.

• Interaction with Cloud services: Business Clouds such as Amazon are

property of organizations. Therefore, service models that are offered by busi-

ness organizations are not extensible, i.e., the direct interaction with various

services is not possible. On the other hand, Open source Clouds such as Eu-

calyptus need an understanding of every service, functional requirements and

source code if a change is required. For instance, the interaction with the

infrastructure services for the collection of provenance data. It is extremely

important to design and provide an approach to handle such situations, e.g.,

an independent provenance scheme which requires no or minimal change in

the existing architectures of Clouds.

• Granularity of provenance data: The framework has to address the dis-

tributed architecture of Clouds with different service models, i.e., IaaS, PaaS,

STaaS and SaaS for the collection of provenance data. The granularity of

the provenance varies with each of these models. Furthermore, the collected

provenance should address different roles (view points) in Cloud computing

such as consumers, software developers and resource providers. Therefore, to

provide a list of significant provenance data according to the architecture of

Clouds is important.

• Types of Cloud (Service Models) and flow of provenance data: To

provide techniques for the management of provenance data that can be uni-

formly applied to different services models or layers such as IaaS, PaaS and

SaaS. Furthermore, the collected provenance data from various layers should

A Provenance Framework for Clouds 53

be stored in such a manner that the relationships between layers are exposed

to end users. For instance, to manage and expose the flow of activities from

top to bottom; SaaS, PaaS and IaaS layers.

4.1.2 Provenance Metric

We defined a set of parameters that should be addressed while providing a prove-

nance framework to address the issue of incorporating provenance in Clouds such as

various service models. These set of parameters include the following:

• Independence from Clouds architecture: The proposed framework should

be independent of the underlying architectures, various components and ser-

vice models of a Cloud.

• Consistency: The framework should be consistent across the layers of Cloud

computing. Therefore, the extension of the framework from one layer to others

should require minimal or no changes.

• Marginal cost: The framework should adopt policies to keep the computation

and storage overhead minimal to affordable.

• Data relation: To keep the relationships that exists within provenance (in-

line) and between provenance and original objects (out-line). We intent to

maintain the in-line relationships using XML structure which tie parent and

child elements. Similarly, the out-line relationship is maintained in XML using

a reference or link to the original objects.

• Efficient query: To provide the support of querying the provenance data to

extract important information based on users retirements. Various queries can

be generated that depends on the underlying service models, e.g., to query the

usage of Nodes and Clusters in a Cloud IaaS. It is also important to provide

the support of queries which require aggregated provenance from various layers

of Cloud computing.

• Modularity: To address the various requirements offered by a Cloud paradigm

for the provenance framework in a seamless, automatic and modular fashion.

4.2 The Design of the Provenance Framework

In this section, we outline our provenance framework which addresses the require-

ments, various provenance data and the defined metric in a seamless and modular

fashion. As discussed in Section 3.4, one of the methods (provenance as core part

54 The Design of the Provenance Framework

of a Cloud) to implement provenance in Clouds (e.g., IaaS model) is changing the

source code. Such a method is motivated from research works [123, 46, 35] in dis-

tributed and workflow computing for provenance data management. This is very

cumbersome because deep understanding of the source code and functional require-

ments is required. Therefore, such a method will restrict the changes to a particular

version of a Cloud. Moreover, this method is not feasible to address and satisfy the

provenance requirements for various Cloud providers, domains and applications.

The other method (provenance as an independent module) follows somehow an

independent approach such as Karma [119] where the provenance module works as a

bridge between the provenance store and Cloud services. This scheme is not possible

for business Clouds because the service models are not extensible. Furthermore, this

scheme requires the interaction between Cloud services and provenance module such

as request, permission and response messages which might increase the cost of the

framework and thus affect the performance of Clouds significantly. To overcome

these problems we propose an approach for the collecting of provenance data on the

communication and linking (middleware) layer of Clouds.

The architecture of research Clouds rely on open source third party tools, li-

braries and applications to link various components and services. For instance,

Eucalyptus Cloud depends on the Apache Axis, Axis2/C, and Mule frameworks.

These third party libraries are used for the communication and linking mechanisms

between various components of Cloud computing. The architecture of Clouds is the

orchestration of different services and the third party libraries works as middlewares

to connect those services.

Middlewares are components in different service models of Clouds where all the

communication is taking place. We propose an approach which extends these mid-

dlewares/libraries used by Clouds. The black box design for such an extension is

depicted in Figure 4.1. The extension is achieved with custom methods implemented

to collect provenance data at various levels/layers of Clouds. Figure 4.2 presents the

approach of the collection of provenance data on the middleware level for different

service models of a Cloud. The middleware is configured with custom logic for the

collection of provenance data. This approach requires minimum efforts and can be

deployed across any Cloud system that uses the same middlewares/libraries. Fur-

thermore, there will be no changes required in the architecture of services and/or

signature of a Cloud because only the middleware is updated. Other services in

Cloud computing are not affected by this approach as shown in the Figure 4.2.

We introduce various components of the framework as shown in Figure 4.3 to ad-

dress the scalable and layered architecture of Clouds and to answer the requirements

of provenance in Clouds. These various components are listed in the following:

A Provenance Framework for Clouds 55

Service A

Service B

Middleware

Various components
of middleware Service A

Service B

Middleware

The interceptor
component

Figure 4.1: The left side depicts a middleware which connects two services. The right side
presents the extension of the middleware by introducing a new component,
i.e., interceptor

Iaas Model

NC ServicesCC Services

CLC Services
Middleware

Data + Prov

Data + Prov

Data + Prov

PaaS Model Business
Services

Security
Services

Application
Services

Middleware

Data + Prov

Data + Prov

Data + Prov

Provenance data collected
on the middleware of IaaS
service model.

Provenance data collected
on the middleware of SaaS
service model.

Provenance data collected
on the middleware of PaaS
service model.

SaaS Model Web
Service2

Web
Service3

Web
Service1

Middleware

Data + Prov

Data + Prov

Data + Prov

Represents an extended
version of the middleware
with custom logic for
provenance collection

Provenance
Collection

Provenance
Collection

Provenance
Collection

Provenance
Data

Figure 4.2: The basic approach for the collection of provenance data in different service
models of Cloud computing. Provenance data is collected at the middleware
of each model.

• Provenance Collection: Provenance data is collected by adopting a tech-

nique which extends the underlying middlewares of Cloud computing for dif-

ferent service models. Using this technique, the basic architecture of Clouds

remains the same and no changes are made to services architecture. Since the

data is collected without altering the architecture, we expect the computation

overhead to be minimal.

• Provenance Parsing: The collected provenance data is parsed according to

the layers of Clouds. For instance, IaaS, PaaS, and SaaS data is parsed using

various parsers for the significant provenance data.

• Provenance Data: This part of the framework presents the data types, their

values and description, i.e., the granularity of the provenance data for various

56 The Design of the Provenance Framework

layers of Cloud computing.

• Provenance Storage: The parsed provenance data is stored in a well-defined

XML schema or database storage for future utilization such as content based

searching. This section also presents the techniques, i.e., object storage and

database storage for provenance data to keep the storage overhead minimal

and take the maximum advantages of the stored data such as efficient query

and visualization.

• Provenance Query: This module presents the architecture of various pro-

tocols for efficient, fast and reliable results of users queries utilizing the prove-

nance data. The protocols depend on the storage mechanisms, i.e., we used

LINQ to XML for object storage and AMAZON APIs for database storage of

provenance data.

• Provenance Visualization: The results of users queries are visualized in

different formats such as charts, lines, graphs and pies etc.

• User Interface: An easy to use interface provided with the framework for

the configuration of different components of the framework for various service

models and components/services of individual models.

We provide the detail of various components of the framework in the following

subsections.

4.2.1 Provenance Collection

A Middleware [27, 113] is a software that connects and integrates different com-

ponents of complex applications in distributed environments. Middlewares provide

support for communications and transactions between the components among oth-

ers. The communication between components is taking place using a variety of

protocols such as Remote Procedure Call (RPC), Java Remote Method Invocation

(RMI), Java Message Service (JMS) and Web services for examples. Web services

use XML format for the content of messages and SOAP or REST protocol for the

communication.

Middlewares provide the functionality of interception for various purposes such

as Quality of Service (QoS), versioning, security and privacy [47, 50, 105]. The in-

terception provides a low-level mechanism to intercept the communication messages

without altering the architecture. Therefore, middlewares can be extended with

custom logic using interceptors. The communication between services of distributed

architectures is taking place in various flows such as normal flow and faulty flow in

A Provenance Framework for Clouds 57

Pro
ve
na
nc
eF

ram
ew

ork

Users
Client

Application

Cloud Computing

PaaS
Service Model

IaaS
Service Model

SaaS
Service Model

Communication and Linking Layer
(Middleware)
Provenance
Collection

Provenance
Parsing

Provenance Storage
Object Storage

(XML)
Database

Storage (NoSQL)

Users

Provenance
Query

Provenance
Visualization

Extended middleware
with custom logic for
provenance data

collection at various
service models

Represents the middleware
in different service models

Abstraction, scalability,
virtualization, on-demand
and pay-as-you-go model,
elasticity, dependence on
SOA, modularity, etc.

Requirements

Requirements
Modularity

Consistency

Overhead

Usability

Utilization of the
provenance framework

Content searching
based on metadata
Similarity patterns
and usage reports

Efficient utilization of
resources

Fault tracking and
error handling

FF

Layering (aggregation)
of provenance data

Provenance
Data

Properties

Figure 4.3: The architecture of the proposed framework with various modules and com-
ponents, and their relation with the requirements.

Apache Axis [62]. The flow of communication is two ways, i.e., request and response

messages.

We developed the interceptors for the collection of significant provenance data

and deployed them in middlewares thus extending the architecture of Clouds. These

interceptors are placed in various flows for the collection of significant provenance

data. The interceptors take the hold of the request as well as response communi-

cation message as shown in Figure 4.4. Once the data is collected from SOAP and

REST messages at various layers of Clouds, it is forwarded to the parser module for

further processing.

4.2.2 Provenance Parsing

The parser receives SOAP or REST messages from IaaS, PaaS and SaaS layers. The

parser works in-line with the collector module to avoid altering the architecture of

the Cloud. The parser is divided into sub-parsers because of the layered architecture

58 The Design of the Provenance Framework

Client Cloud Computing Stack
(SaaS, PaaS, IaaS)

Interceptor

Request

Response

Use

Result

Intercepting the
request before sending
it to the server

Intercepting the result
before sending the
response

Figure 4.4: Collecting the provenance data using interceptor between a client and Cloud
stack

of Clouds namely: Infrastructure Parser, Platform Parser and Software Parser as

shown in Figure 4.5. In our development of the provenance framework, STaaS is part

of the Cloud IaaS. Therefore, the Infrastructure Parser is further divided into two

sub-parsers named: Storage Parser and Computation Parser. These parsers gather

significant provenance information and neglect the rest of the message as following:

• Infrastructure Parser: This parser collects information for computation and

storage requests on the infrastructure layers. In case of a computation request,

it determines the flow, resource type, instance type, resource provider, resource

user, creation time, termination time, IP addresses of VMs and user data etc.

In case of a storage request, it collects information such as consumer name,

group details, time used by service, data types, data size, and storage location

etc.

• Platform Parser: This parser collects information such as commutation and

linking protocols, developer name and group information, changes made to

services such as different versions etc.

• Software Parser: This parser collects information for applications executed

in Clouds such as web service names, method names, input and output pa-

rameters, and time taken by services among others.

The parsed data is represented in a well-defined XML structure. We use XML

schema for the collected provenance information because it is a widely used model for

data representation. Furthermore, XML can be used to maximize the advantages

such as custom algorithms and third party applications from various users which

A Provenance Framework for Clouds 59

Provenance Parser

Provenance
Collection

Infrastructure
Parser

Platform
Parser

Software
Parser

SOAP/REST
Messages

Forward

Infrastructure
Provenance

Platform
Provenance

Software
Provenance

Parsed
Provenance

Figure 4.5: Provenance parser for different layers of Cloud computing

utilize a well formed provenance. It is also useful to provide a standard schema and

hence the usage according to individuals preferences such as querying the provenance

data.

Table 4.1 presents a sample of collected and parsed provenance data by the

proposed provenance framework. The data in Table 4.1 represent activities of various

methods of the Eucalyptus Cluster service and details the timestamps, resource

type, resource location and instance specific information such as memory size and

disk space. <UserData> is a list of applications specified by a user to populate

the resource which vary according to individuals preferences and <TimeStamp> are

corresponding start and finish time of a web service method in Table 4.1.

Eucalyptus Data
Item

Eucalyptus Data Values

Service Name <EucalyptusServiceName> ClusterController </EucalyptusServiceName>

Method Data <MethodName> StartNetwork </MethodName>
<StartTime> 2014-02-11:11:25 </StartTime>
<FinishTime> 2014-02-11:11:26 </FinishTime>
<ClusterAddress> 131.130.32.12 </ClusterAddress>
<UserID> admin </UserID>

Image Data <ImageID> emi-392B15F8 </ImageID>

<KernelID> eki-AE1D17D7 </KernelID>

<RamdiskID> eri-16981920 </RamdiskID>

<ImageURL> emi-URL </ImageURL>
<RamDiskURL> eri-URL </RamDiskURL>
<KernelURL> eki-URL </KernelURL>

Instance Data <Name> m1.small </Name>
<Memory> 512MB </Memory>
<Cores> 1 </Cores>
<Disk> 6GB </Disk>

Table 4.1: Various provenance data represented in XML elements of different methods of
Eucalyptus CC service

60 The Design of the Provenance Framework

4.2.3 Provenance Data

The parser module parses the data according to different service models. Therefore,

to identify important provenance information according to various layers or service

models is important. Following is a list of important provenance data that is required

and collected for the Cloud infrastructure (IaaS).

1. Cloud process provenance: The control flow in a Cloud environment, i.e.,

the sequential execution of various services and processes is important prove-

nance information. For instance, a request goes through CLC, CC, Walrus and

NC services in Eucalyptus Cloud. Therefore data such as web service name,

method name and timestamps of invocation and completion in particular are

important provenance information. Similarly, the control flow of various com-

ponents inside a particular service is also important. For example, the Walrus

service in Eucalyptus Cloud has components such as BukkitWS, BukkitInter-

nalVM and WalrusReplyQueueWS etc. Such provenance information can be

utilized for various purposes, e.g., finding the exact method and time when a

failure occurs. Moreover, Cloud process provenance also includes various IDs

which are assigned to resources such as reservation-IDs and instance-IDs.

2. Cloud storage provenance: The data which is stored from various consumers

or applications in a Cloud object or database storage has valuable provenance

information such as type of data, size of data, creator of data and the storage

location. Furthermore, the time information about the creation, update and

deletion of data items, and the time details about sharing the data items with

other members of a Cloud is significant provenance data.

3. System provenance: System information or physical resource details like com-

piler version, operating system, VM details, and the location of virtualized

resources. For example, if a VM fails to work properly, its location can be

found in provenance data.

4. Timestamps: Invocation and completion time of various Cloud services and

their methods are important provenance information. For instance, the total

time required to stream in/out a particular data item in Eucalyptus Walrus or

the time required to hire a particular resource from a Cloud IaaS is calculated

based on the invocation and completion times.

5. Consumers: The details about various users of a Cloud such as their names,

group information and Access Control Policy (ACP). Such provenance is im-

portant for various tasks like security and privacy of data in Clouds.

A Provenance Framework for Clouds 61

6. Provider: Various details about the supplier of a Cloud such as the organization

name, location of clusters, nodes and storage units. Such information are

important because their could be laws against the usage of resources from a

particular geographical area.

7. Instance provenance: A Cloud instance is a virtual machine in a running

state. Instances in Cloud vary in sizes based on hardware requirements. The

provenance data includes information like disk size, memory, resource type,

number of cores (CPU) and the number of acquired instances from various

users or applications for a particular operation.

8. Cloud User-data: This data is part of a Cloud infrastructure when applications

are deployed directly on IaaS model. When users hire various resources, they

populate them according to the application requirements before the resource

is booted. This includes the initial scripts which contain information such as

tools and libraries that are required to deploy the application. For instance, a

script which downloads and installs JAVA JDK, JAVA JRE, MySQL database

system, and Tomcat web services engine.

The above items present important provenance information from the infrastruc-

ture (IaaS) part of Cloud computing. Figure 4.6 presents this information in the

context of Eucalyptus Cloud when a user requests for a computational or storage

resource. The platform and software layers also provide significant provenance data

from the view point of software developer and software consumer such as:

1. Application provenance: Information about various processes of an applica-

tion, e.g., process name, method name and the time taken by a single or

overall process.

2. Data provenance: Information about the input and output parameters that

are passed to a particular process which include the initial data sets that are

consumed, the intermediate data sets that are produced and the final result.

3. Platform provenance: Various information that are collected on the platform

layer such as different versions of services and the details of modifications

made to a particular service and its methods. For instance, who made the

modifications, and when various changes were performed and uploaded to a

Cloud.

4. Other: There are various provenance information which are similar for all

service models such as the flow of execution in IaaS or SaaS model, the IP

62 The Design of the Provenance Framework

addresses of various VMs which are requested by users and applications, and

the timestamps of various invocations for web services. Such information are

gathered for each service Models.

Memory
Name CPU

cores
Disk
Space

Instance
Type

User Data

Resource
Type

Image
ID

Kernel
ID

Ramdisk
ID

Image
URL

Kernel
URL

Ramdisk
URL

Applicati
on
Name

Downloa
d Size

Installati
on Size Time for

Downloa
d

Time for
Installati
on

Provider

Cloud
Type

Location

Private
Address

Public
Address

Node
Controller

Time
Stamps

Node
Address

Method
Name

Consumer

ID Group

Selecting and
Updating a
Resource

Choose a
Provider

Cloud
Controller

Time
Stamps Cluster

Address
Method
Name

Storage
Controller

Computation or
Storage request

Cluster
Controller

Time
Stamps

Cluster
Address

Method
Name

Time
Stamps

Storage
Address

Method
Name

Data
Type

Data
Size

Storage request

Up
da
te
req
ue
st

Computationrequest

Figure 4.6: Various parameters (provenance data) for the Infrastructure (IaaS) part of a
Cloud environment. The rectangles represent the decision process and rout-
ing a particular request when acquiring a resource. The diamonds represents
main items (provenance data types) of a Cloud IaaS and the circles represent
various provenance data from different types of items.

Table 4.2 describes a brief list of various provenance data, their names, values and

description which is required in Cloud computing.

A Provenance Framework for Clouds 63

D
at
a
T
y
p
e

D
a
ta

N
a
m
e

D
a
ta

V
al
u
e

D
es
cr
ip
ti
on

S
y
st
em

p
ro
ve
n
an

ce
Im

ag
e
ID

,
Im

-
ag
e
U
R
L

em
i-
39
A
51
60
9,

h
tt
p
:/
/1
31
.1
30
.3
2.
11
:8
77
3/

se
rv
ic
es
/W

al
ru
s/
u
b
u
n
tu
-i
m
ag
e-
b
u
ck
et
/

u
b
u
n
tu
.9
-0
4.
x
86
-6
4.
im

g.
m
an

if
es
t.
x
m
l

D
es
cr
ib
es

th
e
ty
p
e
of

th
e
re
so
u
rc
e
a
n
d

th
e

p
h
y
si
ca
l
lo
ca
ti
on

of
th
e
re
so
u
rc
e
in

C
lo
u
d
.

C
lo
u
d

p
ro
ce
ss

p
ro
ve
n
a
n
ce

R
es
er
va
ti
on

ID
r-
A
B
S
D
98
7

T
h
e
ID

w
h
ic
h
is

a
ss
ig
n
ed

to
th
e
re
so
u
rc
e
b
y

C
lu
st
er

C
on

tr
ol
le
r
b
ef
or
e
p
as
si
n
g
it
to

a
N
o
d
e

C
on

tr
ol
le
r.

C
lo
u
d

p
ro
ce
ss

p
ro
ve
n
a
n
ce

In
st
an

ce
ID

i-
4
B
C
90
95
C

T
h
e
ID

w
h
ic
h
is

a
ss
ig
n
ed

to
th
e
ru
n
n
in
g
in
-

st
an

ce
fr
om

C
C

a
n
d
N
C

se
rv
ic
es

C
lo
u
d

p
ro
ce
ss

p
ro
ve
n
a
n
ce

S
er
v
ic
e

n
a
m
e,

M
et
h
o
d
n
a
m
e

E
u
ca
ly
p
tu
s
N
C
,
E
u
ca
ly
p
tu
sN

C
R
u
n
In
st
an

ce
W
eb

se
rv
ic
e
an

d
m
et
h
o
d
n
am

e.
In

th
is

ca
se

N
C

is
th
e
se
rv
ic
e
an

d
R
u
n
In
st
an

ce
is

th
e

m
et
h
o
d
in

p
ro
ve
n
an

ce
st
or
e.

In
st
a
n
ce

p
ro
ve
n
an

ce
In
st
an

ce
ty
p
e

m
em

or
y
=

19
2,

co
re
s
=

1,
d
is
k
=

2
D
es
cr
ib
in
g
th
e
in
st
an

ce
ty
p
e
w
it
h

u
se
rs

re
-

q
u
ir
em

en
t
of

m
em

or
y,

p
ro
ce
ss
or

co
re
s
an

d
h
ar
d
d
is
k
sp
ac
e.

C
on

su
m
er
s
of

C
lo
u
d

U
se
r
ID

,
U
se
r

gr
o
u
p

ad
m
in
,
d
ef
au

lt
W

h
o

is
in
it
ia
ti
n
g

th
e

re
so
u
rc
e

an
d

w
h
ic
h

gr
ou

p
th
e
in
it
ia
to
r
b
el
on

gs
to
.

C
lo
u
d
u
se
r
d
at
a

U
se
r
d
a
ta

C
u
st
om

sc
ri
p
t

T
h
e

in
fo
rm

at
io
n

or
sc
ri
p
ts

w
h
ic
h

a
re

u
p
-

lo
ad

ed
b
y
u
se
rs

to
p
op

u
la
te

th
e
re
so
u
rc
es

b
e-

fo
re

th
ey

a
re

b
o
ot
ed

an
d
as
si
gn

ed
.

T
im

es
ta
m
p
s

T
im

e
st
a
m
p
s

F
ri
A
p
r
13

15
:3
5:
00

20
12
,
F
ri
A
p
r
13

15
:3
5:
02

20
12

S
ta
rt

an
d

en
d

ti
m
e
fo
r
a
p
ar
ti
cu
la
r
se
rv
ic
e

an
d
m
et
h
o
d
s

O
th
er

F
ro
m
,
T
o

13
1.
13
0.
32
.1
2,

13
1.
13
0.
32
.1
1

S
en
d
er

an
d
re
ce
iv
er

IP
a
d
d
re
ss

fo
r
C
lo
u
d
se
r-

v
ic
es
.

T
a
b
le

4
.2
:
V
ar
io
u
s
m
et
ad

at
a
an

d
th
ei
r
n
am

es
,
va
lu
es

an
d
d
es
cr
ip
ti
on

fo
r
C
lo
u
d
s
in
fr
as
tr
u
ct
u
re

64 The Design of the Provenance Framework

4.2.4 Provenance Storage

Provenance storage depends on two key points. Firstly, the mechanism to store

provenance like copying the original objects or making reference to the original

objects in provenance data. Secondly, the technique to store provenance like XML

schema or database storage. Below, we provide the details of provenance storage of

the framework.

Provenance storage mechanisms

Various mechanisms for storing the provenance data are based on tightly-coupled or

loosely-coupled strategies. The tightly-coupled strategy stores the provenance data

along with the original data, i.e., provenance and original data are kept together.

The advantages of using such a strategy are:

1. Less storage overhead because there is no copy created of the original data in

provenance.

2. Easy to manage because provenance data and the original data is placed to-

gether.

The disadvantages of such a scheme are:

1. Deleting the original object will result in deletion of the provenance data.

2. Since provenance is stored with original data (tightly coupled) therefore, effi-

cient query and data coupling are challenging.

The loosely-coupled strategy offers the storage of provenance data independent

of the original data. Using this strategy, a copy of original data is created in prove-

nance store. Such a scheme can suffer from huge storage overhead when fine grained

provenance data is collected. However, the independence of original data and prove-

nance leads to fast and efficient query mechanisms. Contrary to the tightly-coupled

strategy, deleting the original objects does not affect the provenance data because

copy of the original object is already created. We propose a hybrid approach, i.e.,

link based mechanism to store various provenance data from the above strategies.

A hybrid approach - link based mechanism

In this scheme, we make a copy of the names of objects and use links or references

for original objects in provenance data. Therefore, provenance data is independent

of the original data and provides fast and efficient query mechanisms. Moreover, the

hybrid approach is not affected from huge storage overhead because only links are

A Provenance Framework for Clouds 65

Listing 4.1: Sample of provenance data collected from the Eucalyptus Cloud which de-
scribes the structure of stored provenance in XML file

<In f l ow> !− the name o f the flow , i . e . , r eque s t message−
<ServiceName> !− the name o f the s e r v i c e−

<MethodName> RunInstance </MethodName> !− the name o f the method−
<ImageID> emi−39A51609 </ImageID> !− the name o f the r e s ou r c e−
<ImageURL> ht tp : //131 . 130 . 32 . 12 :8773 / s e r v i c e s /Walrus/ubuntu−image/

ubuntu . 9 . 0 4 x86−64. img . mani f e s t . xml
</ImageURL>
!−a l i n k r e f e r e n c e to the o r i g n a l ob j e c t−

</ServiceName>
</ In f l ow>

maintained in provenance data. Using the hybrid approach, we define two kinds of

relationships that are maintained in provenance data for Cloud computing.

The first relationship is between the provenance data and original data/objects.

For instance, when data is stored in Eucalyptus Cloud using Walrus, the creator

could be a user and/or Cloud services like CLC. To maintain an overall relationship

between provenance and original data along with the creator we create (i) a copy of

the creator such as user name and group information, (ii) a copy of the name of the

object which is stored, and (iii) a link reference to the location of the object.

A sample XML is shown in Listing 4.1, which describes the structure of stored

provenance data using the hybrid approach. In the given Listing, ImageID is the

resource identifier used by Clouds and ImageURL is the location of the resource in

Cloud storage unit. We make the copy of names such as method name and resource

ID and store a reference or link to the original object as presented in the colored

tags. The example XML is for Eucalyptus1 Cloud and Walrus service.

The second relationship is within provenance data which is to maintain the flow of

Cloud services execution. This relationship is maintained by storing the provenance

data in form of a Directed Acyclic Graph (DAG) [130]. Inside DAG, the flow of

Cloud services is maintained by linking the child objects to the parent object. For

instance, in a Eucalyptus Cloud, when a user makes a request for a resource, the

flow of execution is from the user to the resource via Cloud services. Inside the

Cloud, the flow is from CLC to the Node service which describes the various layers

of Cloud infrastructure. Each layer of the infrastructure adds provenance data and it

is collected and stored in a tree structure as depicted in Figure 4.7. The blue circles

represent the flow of Cloud services, the green circles represent the main provenance

items and the silver circles represent metadata of each item in Figure 4.7.

1http://open.eucalyptus.com/

66 The Design of the Provenance Framework

User

Node

Services

Cluster

Services

Cloud

Services

Time

Stamps

Sender/

Receiver

Service

Name

Method

Name

Start

Instance

s

Resourc

e Type

Instance

Type

M1.small

Reservat

ion ID

Name Group

Method

Name

Run

Instance

Time

Stamps
Sender/

Receiver

Service

Name

User

Data

M1.Smal

l

Reservat

ion ID

MAC

Address

Resourc

e Type

Memory Core Disk
EMI-ID/

URL

EKI-ID/

URL

ERI-ID/

URL

Example Method

Example Method

Class

Name

Method

Name
Time

Stamps
Sender/

Receiver

Service

Name

Figure 4.7: DAG mechanism used to store and present Cloud provenance data.

Provenance storage techniques

We propose two methods to store the collected and parsed provenance data. The

first method utilizes the XML schema to represent and store the provenance data.

The second method utilizes the NoSQL database, M/DB [8] in particular for the

storage and management of provenance data. The black box architecture to store

the provenance data is presented in Figure 4.8. We provide an overview of these

storage methods as:

1. XML storage of provenance: In this method, we provide a mechanism to

store the provenance in XML file. We follow an approach where provenance

is saved in the same repository or virtual pool that is used to store original

objects. For instance, the Walrus service saves users data at a particular

A Provenance Framework for Clouds 67

location in Eucalyptus Cloud. We save provenance data at the same location

where original data is stored. More precisely we are only utilizing the same

location. Our provenance data is still independent of original data.

2. M/DB storage of provenance: In this approach, we are using an alternative

to the Amazon SimpleDB called M/DB. According to [8], M/DB is not a

mock service but a true database and we configured it in the same Eucalyptus

Cloud where other services are running. It is deployed on a Virtual Machine

instance running Ubuntu Lucid. Just like SimpleDB, M/B provides indexing

feature. The difference between the two is the consistency model. SimpleDB

supports a weaker kind of consistency called eventual consistency while M/DB

is immediate consistent. In this method, provenance is stored in a domain and

a SELECT like operation can be performed to query the provenance data.

Service1 Service2

Object storage
(xml schema)

Middelware
(object + provenance)

Provenance

Intercept

Non-relation data
storage (M/DB)

Store provenance

Figure 4.8: Different protocols to store the provenance data

4.2.5 Provenance Query

The query module of the framework utilizes the stored provenance to extract various

information. Since provenance is managed independent of the original data, custom

applications can be designed to query provenance data based on the individual

requirements. For instance, a query can be generated to find the activity pattern

in a Cloud IaaS based on the resource types, instance types, time used or user IDs.

The results of such a query will generate information which is useful to monitor a

Cloud IaaS such as to move the frequently used resources to a faster CPU/disk unit

for better performance. Algorithm 1 is an example query to find activity patterns

based on the resource-ID.

We devised two different methods to extract the data from the provenance stor-

age which depends on the storage model, i.e., XML schema or NoSQL database.

68 The Design of the Provenance Framework

Algorithm 1 Solve Query Q: Q = Return Resource Types (emi-IDs) in XML Store

Require: XMLStore, ClusterName
Ensure: XMLStore is not Empty
Begin
Array ResouceType[] T
OpenXMLFile(XMLStoreLocation)
FindCluster(ClusterName)
while ParentNode<MethodName> == RunInstance) do

T ← ChildNode(<ImageID>)
end while
End

In the first method, we used Language-Integrated Query (LINQ) to XML to ex-

tract information from provenance. LINQ to XML provides an in-memory XML

programming interface that leverages the .NET Language-Integrated Query (LINQ)

Framework. LINQ to XML utilizes the latest .NET Framework language capabilities

and is comparable to an updated, redesigned Document Object Model (DOM) XML

programming interface2. The second method utilizes Amazon APIs of SimpleDB

and provides a SELECT like feature to extract provenance information. Various

queries that extract important information from XML store or NoSQL database are

provided in next chapters.

4.2.6 Provenance Visualization

The visualization component takes the query as an input parameter. A particular

query is analyzed to find various components and their relationships within prove-

nance data. For instance, a sample query:

Visualize the instance types of various users from the last 48 hours.

is analyzed to find the relationship between the users and various instances requested

by them over a specified period of time. The result of the query is visualized in chart

form that can be changed at run time with different types of charts, e.g., lines, graphs

and pies etc. Figure 4.9 presents a sample visualization of the above query in various

shapes.

4.2.7 User Interface

The proposed provenance framework can be engaged to different service models

and therefore addresses the respective view points of a user, developer and resource

provider. To engage the provenance framework, editing is required for various config-

uration (XML) files in Clouds. Various audiences can enable/disable the provenance

2http://msdn.microsoft.com/en-us/library/bb387098.aspx

A Provenance Framework for Clouds 69

0
1
2
3
4
5
6
7
8

alex imran ali admin

small
medium
large
xlarge

(a) Clusterd column chart

0
1
2
3
4
5
6
7
8

alex imran al i admin

smal l
medium
large
xlarge

(b) Line chart

alex
imran
ali
admin

(c) Doughnut chart

0

5

10

15

alex imran ali admin

xlarge
large
medium
small

(d) Stacked column chart

Figure 4.9: Visualization of a query in various formats

framework according to their requirements. For example, if we consider the Cloud

provider, the list of options is following:

• To enable/disable the provenance module for all clusters

• To enable/disable the provenance module for a particular cluster

• To enable/disable the provenance module for a particular node or all nodes

• To enable/disable the provenance module for selected methods of a particular

cluster or a node.

These options make the usability of the proposed framework very high. Further-

more, we developed a Graphical User Interface (GUI) that can be used to engage

provenance framework as per various requirements. The GUI facilitates a user in

engaging provenance framework and saves the time required to find and edit various

XML configuration files. Figure 4.10 presents a prototype of the user interface which

is available to a Cloud IaaS provider.

70 Relationship of the Framework with Provenance Requirements

�

Figure 4.10: User interface to engage the provenance module

4.3 Relationship of the Framework with Provenance Re-

quirements

The proposed approach of interpreting various data on the middleware level and

dividing the framework into multiple autonomous modules address various require-

ments of the framework as shown in Figure 4.11. The following items present some

of the relationships in Figure 4.11.

• Intercepting the provenance data on middleware layer address abstraction

property of Cloud because data collection is not part of the platform, in-

frastructure and software services. Moreover, the interception at middlewares

makes the approach independent of Service Oriented Architectures.

• Modularity of the proposed framework makes our approach available to differ-

ent services models such as IaaS, PaaS and SaaS because with each model, only

the collection part needs to be modified and rest of the components remain

A Provenance Framework for Clouds 71

the same.

• The consistency of the framework helps us to integrate provenance data from

different layers of Cloud and hence explore the relationships among various

layers.

Cloud
Characteristics
Abstraction

Scalability

Virtualization

Elasticity

SOA
Architecture

Modularity

On-demand

Deployment Models

Private Public

Community

Services Models (Types)

IaaS PaaS

SaaS STaaS

Proposed Framework

Modular

Independent

Data Consistency

Interception

Models Properties

Types

Figure 4.11: Various relationships between the components of the framework and require-
ments of provenance in Cloud.

4.4 Provenance Enabled Clouds: Implication of the Frame-

work

Any framework is useless without presenting the implication in its own context.

Therefore, to present applications which utilize various components of the frame-

work is extremely important. Provenance enabled Clouds have many advantages

depending on the service models. For instance, introducing the provenance data

into a Cloud IaaS has the following advantages:

• Efficient searching: Using the provenance data of Clouds storage such as

Eucalyptus Walrus to search and find contents. For instance, collecting meta-

data of Walrus and utilizing the metadata to provide fast, efficient and user

controlled search mechanisms.

• Reports generation: Utilizing the provenance data of Clouds to generate

various usage reports. For instance, generating reports about the usage of re-

72 Provenance Enabled Clouds: Implication of the Framework

source types, instance types, memory, storage, user data, volumes, and snap-

shots for a Cloud IaaS. These reports can be based on a specified time period.

• Patterns: The use of provenance data to find similarity patterns that exist

in instance types, resource types and/or users data in a Cloud. Provisioning

techniques can utilize such patterns to forecast future requests from various

users. Similarly, the collected provenance can be analyzed to find the behavior

of various users in storing, accessing or managing contents in Clouds, e.g.,

finding famous or most used contents.

• Resource utilization: Utilizing the provenance data for efficient planning

and execution of resources in Clouds. For instance, when a user makes a

request for a resource with particular requirements such as resource type, in-

stance type, and user data, the provenance data is queried for a match, i.e., if

such a resource already exists, a copy of the running resource is allocated to

the user instead of creating a new resource from scratch.

• Reduced cost and energy consumption: Provenance enabled Clouds re-

sult in reduced cost and energy efficiency using factors such as similarity pat-

terns to forecast future requests, utilizing existing resources and using provi-

sioning techniques for efficient planning of resources.

The introduction of provenance data into platform and software layers has many

advantages such as:

• Trust, reliability and data quality: Trust, reliability and data quality in

distributed computing are concerns of any organization and end users. For

instance, how to identify if the data produced by users and their applications

is trustworthy. Provenance enabled Clouds provide the opportunity to test and

verify the final results based on the source data and the applied transformations

along with the information about users. Therefore, trust and reliability of

provenance enabled Clouds is higher when compared to a Cloud that is not

provenance enabled.

• Fault detection: Utilizing the provenance framework to pinpoint the exact

time, service, method and related data in case of a failure. This can be achieved

for any type of service model, i.e., IaaS, PaaS and SaaS.

• Verification: Utilizing the provenance data to verify the final results of any

application by detailing and verifying the individual steps of applications.

A Provenance Framework for Clouds 73

• Layering of provenance: Provenance can be combined from various layers

of Clouds for better understanding of the underlying architectures such as

exposing the relationships between layers. Therefore, integrating (layering)

the provenance data from various layers is another important and significant

aspect of Cloud computing.

It is important to note that the above advantages are just descriptions of many

more that can be achieved by incorporating provenance into various service models.

Various applications utilizing the developed framework and its various components

are detailed in Chapter 5.

4.5 Provenance Framework: Implementation of the In-

terceptor Approach in Cloud IaaS

To understand the proposed framework, firstly we provide a brief overview to the

most important Mule and Axis2/C architectures that work as middlewares in Eu-

calyptus Cloud. Secondly, we provide the details of the interception mechanism for

the collection of provenance data according to different middlewares. Afterwards,

we detail our framework which consists of components, i.e., provenance collection,

provenance parsing, provenance storage and provenance query. A few steps logic

presented below is used to configure the interception technique along with other

components of the framework to the Eucalyptus Cloud.

Extension of the middleware of different service models (IaaS, PaaS, SaaS, STaaS)
in Clouds

Require: Various middlewares on different layers (e.g., IaaS layer) of Cloud
Ensure: Middleware is working properly
Begin
Step 1 Check out the middleware
Step 2 Create a module named provenance
Step 3 Modify the module with custom logic such as provenance collection
Step 4 Embed further logic such as provenance parsing and storing
Step 5 Update the middleware by embedding the new module
Step 6 Configure various configuration files with the newly added logic
Step 7 Repeat Step 1 to Step 6 for other middlewares on the same layer
Step 8 Repeat Step 1 to Step 7 for middlewares on all the layers of a Cloud
End

Using the above steps, we configure provenance for the Eucalyptus Cloud. The

CLC services of the Eucalyptus Cloud are deployed using a Mule framework. These

services are divided into different components including core, cloud, cluster man-

ager, msgs etc. These different components are built and deployed as .jar files and

74 Provenance Framework: Implementation of the Interceptor Approach in Cloud IaaS

they use the Mule framework messaging protocols (HTTP, SOAP, XML, etc.) to

communicate with each other and with other Eucalyptus services such as NC and

CC. The NC and CC services are deployed using the Axis2/C framework. The sub-

sections below present the architecture of Mule, Axis2/C, their extension through

interception mechanism and the configuration of provenance to various components

of the Mule and Axis2/C.

4.5.1 Mule Enterprise Service Bus

Mule is a lightweight Enterprise Service Bus (ESB) written in JAVA and is based

on the Service Oriented Architecture (SOA) [53]. Mule enables the integration of

different applications regardless of their communication protocols. To understand

the Mule architecture, we present the main concepts that are called building blocks

which are related to the proposed framework.

• Flow: Mule ESB accepts and processes messages from various applications

where the messages are transformed step by step using a series of individual

components. The orchestration of these individual components constitutes a

flow. Any flow in mule supports synchronous, asynchronous, request-response

and other types of communication. The facility to create child-flows inside

a flow is also possible. The integration of various flows together builds the

actual application. When a message enters to a particular flow, it passes

through various individual components, e.g., an input message in XML format

is transformed to new contents of text format and the response is generated

to the source (client).

• Mule Message: The actual data that is flowing through various components

of an application in different flows is called a Mule Message [54, 55]. This mes-

sage consists of two parts which are called header and payload. The message

header contains important metadata such as properties and variables that are

used to get the message to the appropriate target. The properties and vari-

ables share the same format of name-value pair where name is the key and

value are the contents in a message header. The message payload contains the

actual content or data which is being transported and flowing via applications.

When a payload goes through different flows, additional metadata is added,

e.g., security parameters thus enriching the existing payload by adding more

data.

• Routers: Routers are used to control the processing of incoming and outgoing

messages by different components in Mule [56]. Two of the important routers

A Provenance Framework for Clouds 75

Application 1

Application 2

Outbound Endpoint

Inbound Endpoint

Incoming Message

Outgoing Message

Inbound Router

Outbound Router

Interceptor

Accepts the incoming message

Handling and routing the incoming
message

Custom logic for the collection of
provenance data

Handling and routing the outgoing
message

Accepts the outgoing message

Figure 4.12: The architecture of interceptor in the Mule framework

in the context of this thesis are called Inbound and Outbound routers. The In-

bound router is used to handle the incoming message and the Outbound router

is used to handle the outgoing message by different services and components.

• Mule Interceptor: An interceptor is a piece of code in Mule ESB which can

be attached to various components or building blocks to alter the behavior

of the messages [57]. The interceptor allows intercepting the processing of

an object at run time. The basic uses of interceptors are permission checks

and security checks for various components. The interceptors can be dynami-

cally configured in Mule ESB for different applications and their components

(flows). Figure 4.12 presents the basic architecture of intercepting the data

(Mule Message) when two applications communicate via Mule framework. The

Mule message could be for any component, e.g., a web service and/or any event.

Extending the Mule Framework (for Eucalyptus Cloud)

The Mule framework is based on a layered architecture and modular design. Mule

offers different kind of interceptors such as EnvelopeInterceptor, TimeInterceptor

and Interceptor to take the control and edit the incoming or outgoing message

inside a flow. Provenance is metadata information which is flowing between different

76 Provenance Framework: Implementation of the Interceptor Approach in Cloud IaaS

Eucalyptus Cloud
(Cloud Controller

CLC)
Mule

Framework
SOAP, XML, REST,

HTTP etc.
Mule Flow InboundRouter

OutboundRouter

Provenance Interceptor

Service
Component

IncomingMessageMule
Message

Mule
Message

SOAP, XML, REST,
HTTP etc.

Ou
tgo
ing

Me
ssa
ge

Mule
Framework

Figure 4.13: Mule Interceptor for a particular component inside a Flow

components and services and we do not need to edit the message structure therefore,

we use the EnvelopeInterceptor. The Envelop interceptor carries the Mule Message

and it is executed before and after a service is invoked. Figure 4.13 describes the

architecture of Eucalyptus CLC services where the Mule framework is used as a

middleware to communicate between different services. As shown in Figure 4.13 the

provenance interceptor is placed between the incoming and outgoing routers inside

a particular flow of a Mule.

Configuring the Mule Interceptor (for Eucalyptus Cloud)

There are two steps involved in configuring Mule interceptors to Cloud (IaaS) ser-

vices. The first step is to compile and build a provenance package (JAVA class files)

and copying them to the services directory of a Cloud. The second step requires

editing the Mule configuration files used by different CLC components. Interceptors

can be configured globally to a particular service or locally to a particular method of

a service. Listing 4.2 is a sample “eucalyptus-userdata.xml” Mule configuration file

which is used to verify users credentials and groups. In the Listing 4.2, we provide

the mechanism to add provenance into a Mule configuration file.

There are various other components in CLC services using the Mule framework

for communication and linking between them and with other IaaS services. Ap-

pendix A.1 provides a list of various configuration files used by Eucalyptus CLC

services.

4.5.2 Axis2/C Architecture

Apache Axis2/C is a C language implementation for the SOAP model of communica-

tion which is platform independent and portable. Axis2/C also supports the REST

A Provenance Framework for Clouds 77

Listing 4.2: Configuration of the provenance module in the Mule framework

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<mule xmlns=” ht tp : //www. mulesource . org / . . . ”>

<i n t e r c ep to r−s tack name=”CLCProvenance”>
!− i n d i c a t i n g the i n t e r c e p t o r s tack c rea ted by us f o r the c o l l e c t i o n o f

provenance data−
<custom−i n t e r c e p t o r c l a s s=” euca lyptus . CLCprovenance”/>

!− i n d i c a t i n g the path o f the java package and c l a s s name f o r CLC
s e r v i c e s provenance data c o l l e c t i o n−

</ in t e r c ep to r−s tack>
<model name=” eucalyptus−userdata ”>

<s e r v i c e name=”KeyPair”>
<inbound>

<inbound−endpoint r e f=”KeyPairWS”/>
</ inbound>
<component>

<i n t e r c ep to r−s tack r e f=”CLCProvenance”/>
!− c on f i g u r a t i on o f the ” keypa i r s e r v i c e ” to provenance module−

<c l a s s=”com . euca lyptus . keys . KeyPairManager”/>
</component>
<outbound>

<outbound−pass−through−rou te r>
<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>
</outbound>

</ s e r v i c e>
</model>

</mule>

model of web services. The communication between various web services that are

deployed by using Axis2/C is achieved via XML data format for the input and out-

put parameters. In the context of this thesis, we describe the following concepts of

Axis2/C and the mechanism they are layered and linked with each other:

• Flow: In Axis2/C, a flow is a logical concept of the execution of messages. It

is a collection of phases (explained next) that work as a real execution chain.

There are two main flows which are named Inflow and Outflow in Axis2/C.

As the names suggest, Inflow hold the incoming messages and Outflow hold

the outgoing messages. There are two other flows which are named Infaultflow

and Outfaultflow and they deal with the transactions which are erroneous or

faulty for the incoming and outgoing messages.

• Phase: A phase is a collection of handlers (explained next). The orchestration

of different phases constitutes a Flow and they are invoked in order of place-

ment. Invoking a phase would result in invoking of all the handlers that are

inside a particular phase. The execution of handlers is also based on the order

of placement inside a phase. There are predefined phases in Axis2/C which are

78 Provenance Framework: Implementation of the Interceptor Approach in Cloud IaaS

Listing 4.3: The orchestration of built-in and user-defiened phases in Axis2/C

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
!− The incoming message i s i n t e r c ep t ed here−

<phaseOrder type=” in f l ow ”>
!− prede f i n ed phases in Axis2 /C−

<phase name=”Transport ”/>
<phase name=”PreDispatch ”/>
<phase name=”Dispatch ”/>
<phase name=”PostDispatch ”/>

!− user de f i n ed phases where custom in t e r c e p t i o n i s implemented f o r
incoming messages−
<phase name=”userPhase1 ”/>
<phase name=”userPhase2 ”/>

</phaseOrder>
!− The outgoing message i s i n t e r c ep t ed here−
<phaseOrder type=” out f low ”>

!− user de f i n ed phases where custome i n t e r c e p t i o n i s implemented f o r
outgo ing messages−
<phase name=”userPhase3 ”/>
<phase name=”MessageOut”/>
<phase name=”userPhase4 ”/>

</phaseOrder>

Axis2/C
Inflow

Transport PreDispatch Dispatch PostDispatch

Outflow

MessageOut

Message
In

Message
Out UserPhase3UserPhase4

UserPhase1
Orchestration
and logic of
web services

Figure 4.14: Architectural overview of Phases and Flow in Axis2/C

named Transport, Pre-Dispatch, Dispatch and Post Dispatch for the Inflow. In

Outflow the corresponding phase is named Message Out. In addition to the

pre-defined phases, a user can add a custom (user-defined) phase in Axis2/C.

Listing 4.3 presents an example of the configuration file of Axis2/C and the

ordering of phases inside a flow. The phaseOrder element’s type identifies the

flow name in Listing 4.3. Figure 4.14 presents the architectural overview of

Axis2/C, Inflow and Outflow channels and the corresponding pre-defined and

user-defined phases.

• Handler or Interceptor: A handler or interceptor is the smallest execution

unit in the Axis2/C engine. The invocation of a phase results in the execu-

tion of each handler in the chain of handlers. A handler can perform any

kind of processing, e.g., quality of a service aspect of web services. One of

A Provenance Framework for Clouds 79

the important handlers which is used in Axis2/C is for the WS-Addressing

[5] implementation. This handler is divided into two parts which are named

AddressingInHandler and AddressingOutHandler that are placed in the corre-

sponding Inflow and Outflow sections. AddressingInHandler is placed in the

pre-dispatch phase inside the Inflow where AddressingOutHandler is placed in

the MessageOut phase inside the Outflow. The addressing hander deals with

the processing of incoming and outgoing SOAP headers in the request and

response messages which are referred as Message In and Message Out. Sim-

ilarly, the WS-Security [4] handler deals with the processing of the incoming

and outgoing SOAP body for the encryption and decryption of the messages

before presenting them to the rest of the components involved in Axis2/C.

A custom handler can be written and placed inside user-defined phases that

can perform any kind of processing required by users and applications such as

collecting provenance.

• Module: The collection of handlers and their configuration is called a module.

A module is basically a configuration concept that enables a user to extend

the Axis2/C by adding custom handlers. Each module has a configuration file

which is named module.xml that defines the placement of handlers into various

phases and flows. To add a particular module in Axis2/C, it is required to write

a program (the logic for a particular purpose) in C language and implement the

various interfaces. To consume a module, the configuration file is required, and

Listing 4.4 provides the sample module.xml configuration file for Addressing

handler. In Listing 4.4, class is the C (programming language) implementation

and module name is the given name to the module.

Once the required classes are written in C language and the configuration file

is ready, the next step is to deploy the module in Axis2/C. The deployment

step requires creating a folder with the same name as the module name and

putting them together in the appropriate repository of Axis2/C. The final step

in utilizing a module is to engage the module in Axis2/C. A module can be

engaged as following:

1. Globally to all the web services of Axis2/C by configuring the axis2.xml

file.

2. To a particular web service in Axis2/C by modifying the services.xml file

of a web service.

3. To a particular method of a web service.

Figure 4.15 presents the extension of Figure 4.14 with the implementation of

80 Provenance Framework: Implementation of the Interceptor Approach in Cloud IaaS

Listing 4.4: A sample configuration file required to configure Addressing Handler

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<module name=” addre s s ing ” c l a s s=”axis2 mod addr ”>

<i n f l ow>

!− c on f i g u r a t i on o f a handler to i n f l ow phase with handler d e t a i l s l i k e
name and c l a s s−

<handler name=”Address ingInHandler ” c l a s s=” axis2 mod addr ”>
<order phase=”PreDispatch ”/>

</ handler>
</ in f l ow>

<out f low>
!− c on f i g u r a t i on o f a handler to out f low phase with handler d e t a i l s

l i k e name and c l a s s−
<handler name=”AddressingOutHandler ” c l a s s=”axis2 mod addr ”>

<order phase=”MessageOut”/>
</ handler>

</ out f low>
</module>

Axis2/C
Inflow

Transport PreDispatch Dispatch PostDispatch

Outflow

MessageOut

Message
In

Message
Out UserPhase3UserPhase4

UserPhase1
Orchestration
and logic of
web services

Addressing Module

Addressing
In Handler

Addressing
Out Handler

Figure 4.15: Configuration of a Module in Axis2/C

Addressing module into appropriate phases and flows of Axis2/C.

Eucalyptus Services and Axis2/C

The Node and Cluster Controller services in Eucalyptus IaaS are exposed to other

components and services by using Apache Axis2/C framework. We intercept the

data using handlers and modules [62] from the underlying linking and communica-

tion framework (Axis2/C) and thus extend the Cloud in a seamless fashion. The

messages flow between components of CC, NC and CLC where they are linked

through Axis2/C engine. Our custom handlers are deployed for the collection of

significant provenance for each service and corresponding activity of the service.

The interception technique has been used already for many purposes such as

web service security and addressing [4, 5] in Apache Axis. Similarly, the concept is

A Provenance Framework for Clouds 81

Listing 4.5: Configuration of provenance into Axis2/C

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<s e r v i c e name = ”EucalyptusNC”>

<module r e f=”NCprovenance”/>
!− I t w i l l c on f i gu r e provenance to a l l the methods o f NC s e r v i c e−

<Operation name=”ncRunInstance”>
<Parameter name = ”wsmapping”>

EucalyptusNCncRunInstance
</Parameter>

</Operation>
<Operation name=”ncAttachVolume”>

<module r e f=”NCprovenance”/>
!− I t w i l l c on f i gu r e provenance to the p a r t i c u l a r method in NC s e r v i c e−

<Parameter name = ”wsmapping”>
EucalyptusNCncAttachVolume

</Parameter>
</Operation>

</ Se rv i c e>

used in [71] for SOAP services with WSDL configuration in workflow execution where

services are deployed in a Tomcat container for the collection of provenance. As with

other related work from grid and workflow for the collection of provenance data, this

work is focused on the application layer, i.e., workflow execution. However, we are

interested and motivated by the provenance of infrastructure, platform, software

and data, i.e., provenance of Clouds. Therefore, the work in [71] is not extensible

to Cloud services and platforms because of the different domain, communication

mechanism, and underlying architectures, i.e., Cloud, REST protocol, and Axis2/C

and Mule.

Configuration:

The proposed module for the collection of provenance data can be configured globally

to NC and CC services by editing the axis2.xml file, or to a particular service and

method by modifying services.xml file. Listing 4.5 describes the configuration of

provenance module to Eucalyptus NC service.

The complete configuration files of the services that utilize Axis2/C in Eucalyp-

tus are provided in Appendix A.2. Appendix A.2.1 and A.2.2 provides configuration

files for Eucalyptus Cluster and Node Controller respectively. Similarly, Appendix

A.2.3 provides the complete axis2.xml file to configure the provenance module glob-

ally in the Eucalyptus Cloud.

4.5.3 Provenance Configuration

The modules for provenance collection are placed inside the Apache Axis, Axis2/C

and the Mule frameworks (middlewares) of Cloud service modules such as Euca-

82 Provenance Framework: Implementation of the Interceptor Approach in Cloud IaaS

Pi = phase
Hi = handler
Hu = user defined custom
handler

Message
In

Axis2C
engine

P1 P2 P3 P4

H1 Hu Hn

Eucalyptus Services Execution Flow
Message
In

Message
Out

Message
Out

Message
In

Message
In

Message
Out

Message
Out

InFlow

InFaultFlow

OutFlow

OutFaultFlow

Flow
withcustom

handler

Message
In

Figure 4.16: Framework components for CC and NC services.

lyptus and WSO2. When a message enters in Eucalyptus Cloud, it goes through

CLC, CC and NC services respectively. The provenance module and corresponding

handlers are invoked depending on the particular service, e.g., Mule handlers for

CLC services and Axis2/C handler for CC and NC services. For example, when we

consider the Axis2/C engine and a message enters to Inflow, all the handlers are in-

voked inside the Inflow. Infaultflow is similar and handles a faulty incoming request,

e.g., sending wrong arguments to the web service method or any other unexpected

condition that prevents the request to succeed. Outflow is invoked when a message

is moving out of the Eucalyptus Cloud (invoking all handlers in Outflow) and the

Outfaultflow is invoked when something goes wrong in the out path, e.g., a host is

shut down unexpectedly.

Various Flows within Eucalyptus Cloud Axis2/C engine and the execution of a

service with input and output messages is described in Figure 4.16. The left side of

Figure 4.16 details the different flows and the right side gives an overview of one sin-

gle flow with phases and handlers concepts (both built in and user defined). Custom

handlers using C/C++ for provenance collection are deployed in four different Flows

of Eucalyptus Cloud IaaS execution chains. When a component inside Cloud IaaS

is invoked, provenance collection module intercepts the flow and gets the hold of

the message for provenance data in the corresponding execution flow. Similarly, the

flows inside Mule framework are intercepted by using the Mule EnvelopInterceptors.

The EnvelopInterceptor hold the message which is passing between the components

of CLC and also when the message is passed from CLC to CC service in Eucalyptus

Cloud.

Various components of the framework such as provenance storage, provenance

A Provenance Framework for Clouds 83

SOAP

Provenance

framework

collection

visualization

storage

query

T
ra
n
s
p
o
rt

lis
te
n
e
r

T
ra
n
s
p
o
rt

s
e
n
d
e
r

In
flo
w
/In
fa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

O
u
tflo
w
/O
u
tfa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

Message

receiver

Axis2/C

engine

CC and NC

services

Eucalyptus

Cloud

CLC

services

Service

Component

Inbound router

Outbound

router

M
u
le

M
e
s
s
a
g
e

M
u
le

M
e
s
s
a
g
e

Provenance Interceptor

surrounding service

component

Mule

framework

HTTP, SOAP, XML etc.

Figure 4.17: Framework components

query, and provenance visualization in the context of the Eucalyptus Cloud IaaS

are presented in Figure 4.17. Figure 4.17 further details the interaction mecha-

nisms between Cloud services which are using different communication protocols

and frameworks such as Apache Axis2/C and Mule.

4.6 Framework Experience

The extension of middleware, i.e., Apache, Axis2/C and Mule by exploiting the built-

in features of handlers and modules facilitated in the provenance collection that is

independent of Clouds, their architectures, and types such as IaaS, PaaS and SaaS

etc. We followed a modular approach and divided our framework into various in-

dependent components to address different requirements and the defined standards.

84 Conclusion

We believe that the future of provenance in Clouds lies in a lightweight and inde-

pendent provenance scheme to address cross platforms, different types of Clouds,

and application domains. Furthermore, the proposed framework can be deployed

without making any changes to the Cloud services and underlying architectures.

Following are the advantages of our approach and the proposed framework:

• It is independent of Clouds such as various service models (IaaS, PaaS, SaaS).

The framework is compatible with any domain where Apache, Mule or similar

frameworks are utilized as middleware.

• The proposed framework follows a soft deployment approach and therefore, no

installation is required for any component of the framework.

• Various challenges and requirements are offered by Clouds such as virtualiza-

tion, on-demand computing, pay-as-you-go model, abstraction, extremely flexi-

ble architecture and the inability to extend Cloud services and architectures.

The proposed framework addresses these requirements in an automatic fash-

ion because it becomes part of the Cloud middleware. For example, adding a

Node or Cluster to the existing infrastructure (Eucalyptus) simply require to

engage the provenance module for the newly added Node/Cluster.

• The proposed framework is extensible to Platform and Software layers by

adopting the same guidelines as described for IaaS in this chapter.

• The proposed framework requires minimal knowledge and understanding of

the underlying service models and architectures of Clouds. Furthermore, trust

is assured by augmenting a Cloud infrastructure with provenance collection in

a structured way.

Major disadvantage of the proposed framework is:

• The proposed framework relies completely on the extension of the tools and

libraries, i.e., the middleware and cannot work in any service model where the

middleware is not extensible.

4.7 Conclusion

With the evolution of distributed computing and the shift of compute or data science

towards Clouds, it is challenging to keep the important information about applica-

tions, platforms, infrastructure and data in Cloud computing. In this chapter, we

described a list of requirements and standards that must be addressed when col-

lecting provenance data in Clouds. Based on the list of requirements, we proposed

A Provenance Framework for Clouds 85

a provenance framework with properties such as modular design and seamless ap-

proach for the collection of significant provenance data at various layers of Cloud

computing. Hereby, the design of the framework is detailed along with various

components such as collection, storage, query and visualization which address the

individual significance of provenance data. The implementation of the framework

module, i.e., provenance collection follows which details the underlying architecture

and the mechanism to intercept provenance data. This chapter also provide the im-

plication of the framework, i.e., and overview of various application that can benefit

from the developed framework.

The characteristics of the framework such as modularity, Independence, and

consistent approach enable the integration of provenance in Clouds with minimal

knowledge and understanding of the underlying architecture and services. Further-

more, the developed framework can be applied uniformly across all the layers of

Cloud computing. Provenance proved its significance in distributed computing such

as grids and workflows for verification and audit trials. With the recent trend of

technology shift towards Clouds, provenance must be properly addressed in the con-

text of Cloud computing such as provenance of Clouds themselves. Our framework

provides the necessary details of how provenance is embed in Clouds without altering

the architectures and services.

5. Applications of the Provenance Frame-

work in Clouds

The developed framework collects, parses and stores provenance of Clouds in a

seamless fashion using various independent modules. The utilization of the col-

lected provenance and various components of the framework such as adding new

capabilities to the existing Clouds is significant from consumers, resource providers

and application developers perspectives. In this chapter, we explore various appli-

cations where the developed framework and the collected provenance are utilized in

the context of different service models of the Cloud.

• Contents Search in Clouds: A user controlled search mechanism for finding

various contents in Clouds object storage using metadata (which is a subset

of provenance data). The object storage is used for storing persistent content

and the developed framework plays a key role in collecting, parsing and man-

agement of metadata of various contents. The collected information of the

content is further utilized for providing a fast and efficient search mechanism.

• Usage Reports and Similarity Patterns: Utilizing the stored provenance of

users, groups and Clouds themselves to generate various usage reports of com-

pute and storage tasks such as memory, object storage and volumes among

others. These reports present trends or similarity patterns over time in the

usage of Cloud resources from various users.

• Utilization of Resources: The utilization of resources by using the similarities

in the resource usage, user activities and other important parameters, e.g.,

volumes and snapshots. For instance, querying provenance data for future

compute and storage requests and finding the similar resources in the existing

Cloud, i.e, reusing existing resources (instances to be specific).

86

Applications of the Provenance Framework in Clouds 87

5.1 Providing Content Search for Clouds Object Stor-

age Using Metadata

Goal: To provide a new capability of searching content which delivers an efficient,

fast and user controlled search mechanism for Clouds object storage using the prove-

nance framework.

5.1.1 Introduction

A huge amount of data produced by sensors, mobile devices, social media and other

gadgets connected through internet is stored in Clouds [29, 19, 49]. Moreover, the

shift of storage of data such as text files, images, and audio and video from personal

computers toward Clouds is in progress. Amazon S3 [2], Microsoft Live SkyDrive [9],

DropBox [58] and Eucalyptus Walrus [7] are few examples from business and research

domains used by customers to archive their personal data in Clouds. These services

are used by enterprises, scientists and home users for various purposes due to which

the stored data is in different size and various formats. The possible preferences

from a consumer could be to store a large audio and video file or small files (e.g.,

text files) in abundance. The variety and range of the data stored in Clouds is vast

and it became challenging to effectively and efficiently find relevant data according

to the requirements of users.

Metadata is described as information about information and it could be as simple

as an author’s name of a document. Among others, metadata is used for searching,

content and privacy protection and resource discovery in data or computational

science [107, 114, 86]. For instance, the metadata about Cloud services and the

performance of those services (submitted by users) from various providers can be

used to make better decisions when deploying a particular application in Clouds as

proposed in [120].

Metadata is used as one of the key features to search and find meaningful

data [83]. In Clouds, the persistent data from various users is stored as objects

inside buckets with various Access Control Policies (ACPs) using the storage service

such as Eucalyptus Cloud and Walrus service. While storing data, metadata such

as file name, size, type, group and user’s detail is also associated with the stored

data. The amount and type of metadata can vary according to various layers of

distributed architectures [45]. For example, the physical layer in a sensor network

can provide the information of particular devices such as heat or touch sensors and

their models etc. This information can be further extended to other layers such

as the operational layer where particular algorithms are used to filter the original

88 Providing Content Search for Clouds Object Storage Using Metadata

data, e.g., filtering and sampling rules. In the context of this thesis, we focus on the

utilization of three types of metadata as following:

1. System metadata: The information which is associated with files on the

client side, e.g., file name, file format, size etc.

2. User-defined metadata: The information which is provided by various

users, e.g., notes.

3. Server metadata: The information which is associated with the objects on

the server side, e.g., owner details.

5.1.2 Problem Description: What is Missing?

Clouds manage the data which is mostly persistent and unstructured via a service

called object storage. With the huge amount of unstructured data comes the issue

of retrieval of data relevant to the requirements of a user. As the volume of personal

and commercial data is moved to private or public Clouds, retrieval of meaningful

data, i.e., the exact data users require in an effective and efficient manner has become

challenging. In current storage offerings such as Amazon, Eucalyptus and Google,

the content or objects are defined by a key-value pair.

In a key-value based storage, there is no native method to search content such as

a Select * From ..Where operation in traditional databases. However, objects can be

listed based on the unique key1,2, but searching and finding content with any other

parameters (metadata) such as type, size, owner, time stamps etc., is not directly

supported. Therefore, for searching content, users must know the key or bucket name

where the objects are stored. An indirect approach, e.g., hit and trial can be taken

into consideration which utilizes the existing metadata in Clouds3. For instance,

metadata can be retrieved through the name (key) of the object in existing Clouds.

To search for content, a user needs to loop through all the objects and their metadata

until the match is found. This method is cumbersome, tedious and inefficient for

large number of objects stored in Clouds. To solve the problem of finding contents

in Cloud, we propose to utilize various components of the provenance framework.

Hereby, we provide a fast, efficient, easy to use, detailed and user controlled search

mechanism.

1http://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysUsingAPIs.html
2http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
3http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

Applications of the Provenance Framework in Clouds 89

Cloud Obj ect

Storage

Bucket 1 Bucket 2

Object 1 Object 2
Object 3

Name (key)
Value

(Contents)

Access Control Policy (ACP)

(Owner)

(Public URL)

(Access rights e.g., create, edit,

modify and delete)

Figure 5.1: The storage architecture of Eucalyptus Walrus

5.1.3 Understanding the Architecture

In Cloud environments, an independent service or model referred to as object storage

is used for the management of persistent data. This model provides a virtualized

pool of storage resources and can be accessed via Application Programming Interface

(API) or a web browser. Object storage is used to store the persistent data from

various users through put/get methods of the REST protocol. Object storage also

stores the virtual machine images in Clouds. Cloud storage services are used by

enterprises, home users and researchers to store their files of various size and formats.

The data in Clouds is stored utilizing a hierarchal structure of buckets and

objects as shown in Figure 5.1 for Eucalyptus Walrus. A bucket is a container like

a folder in file systems and the actual data is represented as objects. While storing

objects, some metadata is also stored such as Access Control Policy (ACP) that

contains information about the access rights, e.g., creation, deletion, modification

etc. as depicted in Figure 5.1. Similarly, each object has a unique identifier, i.e., a

key and value attribute and it is also stored as the metadata information.

To search for content in Clouds, i.e., the hit and trial approach utilizes a method

where the metadata of individual objects is retrieved. The result, i.e., retrieved

metadata can be compared with the request parameters from users. To find the

exact content, a loop is required which goes through all the objects until the match

is found.

90 Providing Content Search for Clouds Object Storage Using Metadata

5.1.4 Proposed Solution

In this thesis, we are mainly interested in navigational queries, i.e., a user wants

to find some important data which is already stored in a Cloud. Our goal is to

utilize the description of contents (data) for finding the original or related contents.

Table 5.1 presents the various metadata and their description that are utilized for

finding contents in Cloud object storage.

Name Description

Type The type of different contents such as text files, pdf docu-
ments, and audio or video files

Source The client application or software that is used to upload
the contents, e.g., JetS3t

Policy The ACP (content policy) that is used to share the contents
with other users, e.g., public access to read any content

Region The storage location of contents, e.g., in S3 a location can
be set as per users choice to EU and US etc.

User Information about the person and group details who is re-
sponsible to create, update, share or delete any contents

Path The location of contents, i.e., objects inside the directory
structure of Walrus and the unique identifier

Time stamps The creation, update, deletion and access times of contents
in Clouds

Access history How many times and when was a particular object (con-
tent) accessed. This information can be used to move pop-
ular contents to a fast storage unit for better efficiency and
faster access

Size or Length This information is used to describe the size of contents for
audio and video files, and length for text files, e.g., number
of pages

Access URL This presents the URL of contents when it is shared for
access by the owner to other potential users

Custom parameters User defined metadata that is represented as name-value
pair and contains any information such as description of
documents

Table 5.1: Various metadata and their description for object based storage

The high level architecture of the solution for providing effective and efficient search

mechanism is presented in Figure 5.2. This architecture answers two key questions

as following:

Applications of the Provenance Framework in Clouds 91

• What is the role of the framework in content searching? As shown in

Figure 5.2, users of the Cloud interact with the object storage from anywhere

using private network or internet. The Object Storage service such as Walrus

manages the contents according to the different operations (CRUD) performed

by users. The developed framework seamlessly intercepts the metadata and

stores it either in object storage (XML Schema) or database storage (NoSQL)

regardless of the location of the original contents.

• How is metadata utilized for effective searching? The search and find

service uses the metadata stored by the developed framework as shown in

Figure 5.2. The query module of the framework is utilized for the extraction of

data relevant to the requirements of users. The centralized metadata provides

an efficient, user controlled and fast search mechanism for the distributed

contents regardless their location in the Cloud.

.

Figure 5.2: The high level architecture presenting the management and usage of metadata
for content searching.

The solution to satisfy the goal of content searching is divided into the following

92 Providing Content Search for Clouds Object Storage Using Metadata

components:

1. Metadata Assembler: How is metadata assembled for various files?

This component assembles the metadata associated with files which includes

system data such as file name and user-defined data such as notes. The col-

lected information are forwarded to the server module.

2. Metadata Collector: How is metadata intercepted on the server side?

This component extracts the metadata at the server layer such as user names

and their group information from the object storage service along with the

metadata sent by the client. It refers to the provenance collection module of

the framework

3. Metadata Parser and Storage: How is metadata parsed and stored for

efficient usage?

This component parses the metadata into various categories such as Access

Control Policy, content types, and users information. The parsed metadata is

further stored using different storage mechanisms, i.e., object storage in XML

format and NoSQL (M/DB) schema for further utilization. It refers to the

provenance parsing and storage module of the framework

4. Metadata Management: How is metadata managed according to the differ-

ent operations of object storage service?

This component manages the stored metadata accordingly when different op-

erations are performed by users such as creation, deletion and modification of

objects in Clouds. It refers to the modules such as collection, parsing, storage

and query of the framework

5. Metadata based Search: How the end user utilizes the search functionality

for finding relevant contents?

This component provides a service that facilitates fast, effective and efficient

search and find operation of contents in a Cloud by utilizing the stored meta-

data. For example, providing the ability to search for a list of objects that has

a specific metadata value, range of values, and the support of building com-

plex search queries with and and or mathematical operations. This component

utilizes the provenance query module of the framework

5.1.5 Implementing the Solution: Using the Framework

We propose the following components to provide metadata based search in Euca-

lyptus Cloud for the Walrus service and object storage. These components work on

the corresponding client and server modules of a Cloud.

Applications of the Provenance Framework in Clouds 93

Metadata Assembler

There are various clients that communicate with Eucalyptus Cloud for storing and

retrieving data such as CloudBerry4 and JetS3t toolkit5. These clients usually utilize

the APIs provided by Amazon S3. Here, we used the JetS3t toolkit which is config-

ured on a local machine to communicate with Eucalyptus Walrus. A user selects a

file on the local machine and uploads it to the Cloud utilizing the client. The client

architecture is altered to collect the metadata associated with files such as title and

author name which is called system metadata. Furthermore, additional metadata

can be added as per requirements of a user and application such as description of

a file which is called user-defined metadata. The left side of Figure 5.3 depicts the

normal flow where the right side presents the customized flow of the architecture of

communication between the client and storage service (Walrus). The client appli-

cation collects system metadata of a selected file, adds user-defined metadata, and

these pieces of information are send to the server.

Customized FlowNormal Flow

Cloud Object
Storage

Client
Application

Eucalyptus
Walrus

FileSelect file to
upload

Connectanduploadfile
Client

Application
Select file
to upload

Collect
metadata

Add
metadata

Eucalyptus
Walrus

Connectanduploadfile

File

x x
User x x

User

Figure 5.3: Communication between the client and storage service using a normal (left
side) and the altered (right side) flow.

4CloudBerry: http://www.cloudberrylab.com/free-amazon-s3-explorer-cloudfront-IAM.aspx
5JetS3t Toolkit: http://jets3t.s3.amazonaws.com/toolkit/toolkit.html

94 Providing Content Search for Clouds Object Storage Using Metadata

Metadata Collector

The server side of the Cloud receives the client metadata. Furthermore, additional

data such as ACP of content, owner name and group information, the location

and name of the bucket and the name of created object is also collected. The

additional data collected from the server is called server metadata. This information

is collected by intercepting the storage service which is receiving data from various

clients. Hereby, the server side metadata is augmented with the client metadata.

The augmented metadata contains information, i.e., system metadata, user-defined

metadata and server metadata as shown in Figure 5.4.

The additional information collected at the server is important for various rea-

sons, e.g., to prevent the violation of security and privacy of confidential data. In

this application, metadata is collected only for the contents that are described as

public and available to all the users in a particular Cloud environment. Another

approach could be to collect the metadata for all the ACPs and provide the search

mechanisms to private and confidential data. This can be achieved by adding an

additional parameter in the metadata repository that is used to authorize various

users. At the moment, we do not follow this approach and provide the search for

public contents. Figure 5.5 presents the architecture of the module that intercepts

the server component (Eucalyptus Walrus) and retrieves various information.

System
metadata

User-defined
metadata

Server
metadataClient ServerAugmented

metadata

Figure 5.4: Augmented metadata which combines information from user-defined, system
and server metadata

Metadata Parser and Storage

The retrieved metadata is parsed accordingly into various items and attributes. The

parser module reads the augmented metadata and parses it into various categories

such as content length from system metadata, client name from user-defined meta-

data and ACP details from server metadata along with other information as shown

in Figure 5.6. Once the data is parsed accordingly, it is stored in a well-defined XML

file or M/DB schema.

Applications of the Provenance Framework in Clouds 95

Eucalyptus Walrus

Cloud Object
Storage

Message
and Data

Interception

Retrieve metadata

Retrieve policy (ACP)

Retrieve user and group
information

Retrieve bucket and
object information

Intercept

Figure 5.5: Intercepting the server component (Eucalyptus Walrus)

Augmented
metadata Service operation

Content length

Content type
ACP

Request Type

Bucket
Key

Time stamp User

Metadata
ParserReads

Eucalyptus message

Status

Parse

Figure 5.6: The tree structure represent the parsed metadta into various categories

Metadata Storage Mechanism

The metadata is stored using two storage protocols, i.e., XML storage (object stor-

age) and M/DB storage (database storage) introduced in Section 4.2.4. Listing 5.1

presents a sample of the XML file from the parsed and stored metadata using object

storage. The XML structure in Listing 5.1 represents the same tree structure as

shown in Figure 5.6 for the parsed data. As shown in Listing 5.1, the root element

of the XML depicts the type of operation, i.e., create contents. The root element has

further child elements that depict important information stored separately such as

content type, ACP information, content size, user details, and location information.

These elements are stored separately to provide a fast and user controlled search

mechanism where a query can be generated for individual items or their combina-

tion.

Description: Few of the elements in Listing 5.1 are described as follows. The

parent element <accessControlList> defines the permission of any object and the

child element <permission> depicts the allowed permission, e.g., public-read-write.

Similarly, <contentType> describes the type of content that is uploaded which in

this case is a pdf document. The <euca:name> element inside <euca:item> de-

96 Providing Content Search for Clouds Object Storage Using Metadata

Listing 5.1: XML file representing the stored metadata

<?xml version="1.0" encoding="UTF -8"?>

<euca:PutObjectType xmlns:euca="http: //msgs.eucalyptus.com"> !-

operation of the Walrus service , i.e., create contents -

<euca:WalrusDataRequestType >

<euca:WalrusRequestType >

<euca:EucalyptusMessage >

<euca:userId >admin </euca:userId > !-user name-

<euca:_return >true</euca:_return >

</euca:EucalyptusMessage >

<euca:timeStamp >2013 -05 -26 T13:00:40 .015Z</euca:timeStamp > !-time

stamp when contents are created -

<euca:bucket >bucket1 </euca:bucket > !-name of the bucket -

<euca:key >leung.pdf</euca:key > !-name of the object -

</euca:WalrusRequestType >

</euca:WalrusDataRequestType >

<euca:contentLength >591748 </euca:contentLength > !-size of contents in

bytes -

<euca:metaData > !-represents user_defined metadata -

<euca:item >

<euca:name >jets3t -original -file -date -iso8601 </euca:name > !-name of

the client in user_defined metadata -

</euca:item >

</euca:metaData >

<euca:accessControlList > !-represents the ACP of contents -

<euca:grants >

<euca:item >

<euca:permission >public -read -write </euca:permission > !-represnets

that contents are publicly available -

</euca:item >

</euca:grants >

</euca:accessControlList >

<euca:contentType >application/pdf</euca:contentType > !-type of

contents such as pdf file-

</euca:PutObjectType >

scribes the client application that is used to upload the file such as JetS3t in the

example. <euca:timeStamp> is the time when a particular object was uploaded.

<euca:userId>, <euca:bucket> and <euca:key> provides the information about the

user, the location and the name of bucket and the name of the object.

The second method utilizes the structure of M/DB to store the metadata. A

domain is created that represents various metadata as described in Table 5.2. As

shown in Table 5.2, various related items are clustered such as Time-Stamps and

Access URLs. Non-related items such as bucket name and type of data are stored

separately. Such a mechanism is designed to provide a fast, user controlled and

detailed search mechanism. For instance, the clustering of Access URLs enables the

search mechanism to query a single attribute-value pair.

Applications of the Provenance Framework in Clouds 97

Item Metadata

Attribute Name Bucket Type Size Time-Stamps Owner Access URLs

Values

Readme Software pdf 4MB Creation Time Name Http

Update Time Group Https

Modification Time BitTorrent

Last Access Time

Table 5.2: M/DB domain with attributes and values for metadata storage

Metadata Management

Eucalyptus Walrus provides the functionalities to create, update, delete or access

content. Depending on the particular operation, metadata is processed accordingly.

For instance, the creation operation creates a new entry in the metadata reposi-

tory but the deletion operation finds the existing entry and removes it accordingly.

Similarly, updating any data require finding and updating the related metadata.

To provide a fast, effective and reliable search mechanism, the relationship between

metadata and original data is also important. For instance, creating a new data item

creates a new entry in the metadata repository which contains the relationship of the

user and contents, i.e., the object. Figure 5.7 presents the architecture for various

operations of Eucalyptus Walrus and their connection with metadata repository.

Eucalyptus
Walrus

Create Content

Access Content

Update Content

Delete Content
Metadata
Repository

Create a new
metadata record

Add access history (time stamp,
count) to existing record

Find and delete an
existing record

Find and update an
existing record

Operation

Figure 5.7: Management of metadata according to the different operations of Eucalyptus
Walrus

Metadata Based Search

The presentation of relevant search results depends on the understanding of:

• What is to be presented? The search parameters entered by users and the

relationship between the user input and the content returned as a result.

• How should the results be displayed? An interactive environment where

end users have the opportunities to customize the results such as grouping and

98 Providing Content Search for Clouds Object Storage Using Metadata

sorting.

To answer these questions, we created an application (client and service) which uti-

lizes the stored metadata according to users requirements. The detailed architecture

of the application with various components is presented in the next section.

5.1.6 Metadata Based Search: Application Architecture

The high level architecture to search object storage and present relevant results is

shown in Figure 5.8. The key components of the application are following:

• Client: The client takes the input from users and sends it to the server.

• Search and Find Service: The search and find service takes the input from the

client and compares it to the metadata repository. The extracted results are

stored in a temporary XML file.

• Interactive Display: The final results are presented in a web browser to end

users where a style sheet is used for interactive display.

Search and Find

(Service)
User

Client Interface

Input parameters

Metadata

Repository

Extracted results

XMLInteractive Display XSL Style Sheet

Figure 5.8: High level architecture of Search and Find application

Client

The client side of the application provides two kinds of search methods, i.e., basic

search and advanced search as shown in the Figure 5.9.

Basic Search: In the basic search method, typing a word or phrase in the search

box finds a specific object (file) in all the buckets (folders). This method searches

for objects irrespective of their type and size, e.g., audio, video, spread sheet and

Applications of the Provenance Framework in Clouds 99

Ba
sic

Se
arc

h
Ad

va
nc

ed
Se

arc
h

Figure 5.9: Client interface for searching content in Cloud

presentation. For instance, a user named John searches for contents with input text

of ‘Metadata’. The result is displayed on a web page as shown in Figure 5.10. If

an item is not located, a notification appears that contents are not found with the

specified criteria.

Figure 5.10: Results are displayed in an interactive fashion for the input parameters from
various users. The red lines represent the matching of input parameter any-
where in the metadata such as Title (system metadata) and Notes (user-define
metadata).

Advanced Search: To make the search operation effective, efficient and user con-

trolled, narrowing the search space is possible using the advanced search as shown in

Figure 5.9. For instance, when John enters search parameters of ‘Metadata’ as Title

and ‘admin’ as owner, the result contains information belonging to admin where the

term ‘Metadata’ exists anywhere in the Title as shown in Figure 5.11. Advanced

100 Providing Content Search for Clouds Object Storage Using Metadata

search provides the following functionalities to narrow down the search space:

• Type of document: By selecting pdf, text document, images etc.

• ACP: To select if the data belongs to a particular user, a group or publicly

available in the Cloud.

• Creator and/or uploaded: If the data was created and uploaded by you (the

owner) or by other users in a Cloud.

• Size: Searching for data which has a specific size limit.

• Users/Groups: To select all the documents that belongs to a particular user

or a group in a Cloud.

• Custom description: User-defined metadata that could be any kind of text

description of contents stored in a Cloud.

Figure 5.11: Results are displayed in an interactive fashion for the input parameters. The
circles around text represent the matching of input parameters with metadata
repository.

Search and Find Service

A search and find web service is created to search and find contents based on the

metadata. The service takes the input parameters from the client. The input pa-

rameters constitute the search query that can be based on any of the basic metadata

Applications of the Provenance Framework in Clouds 101

Client

Search and Find

(Service)

Simple/Complex

Query

NoSQL

(metadata)

XML

Input

Parameters

Build Query
LinQ

SimpleDB

API

Results

Object storage

(metadata)

Results

Figure 5.12: The architecture of search and find service which takes the input parameters
and build search queries. The queries are further executed for finding relevant
contents.

with the support of building complex queries. The query is analyzed by the service

and the generated results are stored in a well defined XML file. This service is de-

ployed on a virtual machine in the same Cloud where other services, e.g., Walrus is

deployed.

Since the metadata is stored using two different storage mechanisms, i.e., XML

format and NoSQL schema. Therefore, we also perform two different query mech-

anisms to search contents. When the metadata is stored in object based storage

in XML format, we perform LINQ to XML technique to find content. When the

metadata is stored in M/DB we utilize the NoSQL query, i.e., Amazon SimpleDB

APIs to find contents. Figure 5.12 presents the basic architecture of search and find

service.

Table 5.1 presents all the parameters that are used individually or together in

finding contents. The combination of various search parameters is possible using

the mathematical operators such as AND and OR. For example, the combination

can be performed to find documents with a specific content type such as pdf, a

particular owner such as admin and a time stamp information such as contents that

were uploaded in a certain time period.

Remarks: We establish the relationship between the returned results and users

input using the client interface for input and search and find service to build simple

or complex queries. Therefore, the two components of the application satisfy the

question, i.e., what is to be presented to end users.

Interactive Display

The presentation of actual results for various users input is significantly important

to satisfy the question, How should the result be displayed? We present the

102 Providing Content Search for Clouds Object Storage Using Metadata

Sorting of
the results

Grouping based
on document
types

Figure 5.13: Interactive Display of results with the functionalities of grouping and sorting
contents accordingly. The circles around text represents the types which are
used for grouping related items.

results in an interactive fashion where users have the opportunities to customize the

results according to their requirements such as grouping and sorting. For instance,

John can group the results based on three different types, i.e., (i) Images, (ii) Audio

and Video, and (iii) Documents as shown in Figure 5.13. The grouping of various

related items increase the usability of the application for finding relevant contents.

Moreover, John can sort the results based on his preferences such as Title, Access

Count, Owner, Type and Size etc. Figure 5.13 further presents that items are sorted

via Title as shown by the arrow key.

The display utilizes a custom XSL style sheet as shown in Figure 5.8. However,

using the modularity and Independence of the components of the framework, a

third party can create their own style sheets to view the results according to their

requirements by replacing the existing style sheet. It is to be noted that in our

current model the search and find web service only displays the result of the query as

original or related contents. The contents are not accessible from the web page. The

contents exist in the Cloud and accessibility is only possible after authentication.

The authentication mechanism can be added to the web service but we have not

implemented such a feature in the current model.

5.1.7 Experiment and Evaluation

The main contribution of search and find is the new capability of finding content

added to the existing Cloud and object storage. However, it is extremely impor-

tant this new capability does not impose excessive overhead. Moreover, the new

capability should reveal efficient search results compared to the existing method.

Therefore, the evaluation is two fold. Firstly, the measurement of execution time

(elapsed time) to collect provenance and space (disk space) required to store prove-

nance. Secondly, the performance of query protocols (for searching content), and

comparing the results with the native method.

Applications of the Provenance Framework in Clouds 103

The computation and storage overhead of provenance for object storage is de-

tailed in Section 7.3 where the Chapter 7 focuses on the provenance overhead for

each layer in Clouds. The results from the Section 7.3 present that cost of prove-

nance collection and storage is marginal both in terms of time and space. Moreover,

the computation and storage overhead stay consistent regardless the size and format

of various objects uploaded to the Cloud. This is satisfied using techniques such as

interception, coarse grained provenance, and link based mechanism in the developed

framework.

The performance of query protocols is measured through a client/server model.

The server is running Eucalyptus Cloud and a virtual machine instance with M/DB

deployed. The client machine is making the request to find contents based on the

input parameters. The search and find service is also deployed in the same network

and during this experiment it is executed on the same physical machine where Eu-

calyptus Walrus is configured. To compare the performance of queries to search for

data in a Cloud, we used the following methods:

• S3 API: This method utilizes a native approach (AmazonS3 APIs), i.e., hit

and trial, where the metadata of individual objects is retrieved and compared

with the request parameters.

• LinQ to XML: This method uses LINQ to XML technique for the extraction

of information. In this method, the XML object storing the metadata resides

in the same location where Walrus stores objects.

• SimpleDB: This method utilizes the Amazon APIs for SimpleDB. We con-

figured these APIs for the local M/DB database. This method provides a

SELECT like feature to query the data.

Three different test cases, i.e., worst case, best case and normal case are per-

formed to measure the performance of a sample query such as:

List the objects in Walrus where input parameter exists in the user defined metadata.

Best case means that the object to be searched is the foremost item in the metadata

repository. For example, in object storage (XML), it is the first record. Similarly,

when calling the GET method using Amazon S3 APIs, it is also the first record. In

the worst case, the item to be found is the last record in metadata repository where

in the normal case the searched item exists somewhere in the middle.

Table 5.3 present the performance (in seconds) of various query protocols for the

different test cases when the numbers of objects are 1000 in the Cloud storage. The

results in the given Table depict that LINQ is performing best for all the test cases.

There are two main reasons that LINQ is performing best. Firstly, Eucalyptus

104 Providing Content Search for Clouds Object Storage Using Metadata

Walrus and search and find services are running on the same machine and there

is no network communication involved. Secondly, the number of objects uploaded

to a Cloud and hereby the size of the object (XML file) that is used for storing

metadata. For instance, when we increased the number of objects from 1000 to 5000,

the performance of LINQ is affected (degraded) as presented in Table 5.4. In real

Clouds, where the numbers of objects are extremely large, the LINQ performance

can be further degraded.

To handle such a situation, a versioning system can be introduced, e.g., creating

a new object when the size of metadata object exceeds a particular limit or when

the date is changed such as in logging mechanisms. SimpleDB APIs are performing

almost the same in each case and for different number of objects as shown in Table 5.3

and Table 5.4. The reason for such a steady performance is the indexing feature

provided by M/DB. The worst performance is displayed by the native GET APIs

(AmazonS3) in any case presented in Table 5.3 and Table 5.4.

Query Method Number of Objects = 1000

Best (s) Worst (s) Normal (s) Average (s) Standard Deviation
(σ)

S3 GET API 3.977 25.793 15.322 15.03 10.91

SimpleDB API 1.219 1.228 1.226 1.224 0.0047

LinQ 0.323 0.352 0.325 0.333 0.0162

Table 5.3: Performance of query protocols (in seconds) for 1000 objects

Query Method Number of Objects = 5000

Best (s) Worst (s) Normal (s) Average Standard Deviation
(σ)

S3 GET API 8.372 39.227 23.253 23.617 15.43

SimpleDB API 1.217 1.226 1.22 1.22 0.0046

LinQ 1.75 1.77 1.753 1.758 0.0108

Table 5.4: Performance of query protocols (in seconds) for 5000 objects

Figure 5.14 presents the performance of various query protocols through linear

trend lines when the number of objects are increased from 1000 to 5000. As shown

in Figure 5.14, the average overhead of hit and trial method is constantly increasing

with the number of objects. This clearly presents that hit and trial approach is not

practical in the Cloud environment when the objects to be searched are very large

in numbers.

Applications of the Provenance Framework in Clouds 105

The performance of LinQ also increases with the number of objects in Figure 5.14

which can be handled by introducing a versioning system (similar to versioning

in logging) for the object storing metadata. However, the performance of LinQ

is surpassing the native hit and trial method. The performance of SimpleDB is

steady regardless the number of objects. Therefore, the results of the various query

methods, i.e., S3 GET APIs, LINQ to XML and SimpleDB APIs clearly shows that

hit and trial method is not practical when the number of objects to be searched are

very large in number. Hereby, we conclude the storage methods (XML object and

NoSQL schema) of metadata and the query protocols for searching content present

faster, efficient and user controlled results.

0
5

10
15
20
25

1000 2000 3000 4000 5000

Av
era

ge
 Ti
me

 in
 se
co
nd
s

Number of objects

S3 GET API SimpleDB API LinQ

Figure 5.14: Performance of query protocols in linear fashion

5.1.8 Implication

Following are the implication and advantages of search and find contents in Clouds

utilizing metadata (subset of provenance).

• Fast, Effective and User-controlled searching: By utilizing the metadata

stored in XML objects or M/DB storage, searching and finding contents is

much faster than the native approach of hit and trial method. Moreover,

the storage of metadata in various categories such as type, size, and location

among others provide a user controlled search mechanism. Users can choose

one or more parameters or merge various parameters for finding meaningful

data.

• Consistency: Since metadata is managed on the server component, the same

consistency model is applied to the metadata that is used by the service itself.

106 Providing Content Search for Clouds Object Storage Using Metadata

Indeed, metadata is immediate consistent with the original model of the server

component.

• Adding Custom Parameters: The user defined metadata can be utilized to

add custom parameters. For example, adding a name-value pair of<AccessCount>

<Value> can be used to depict the most used (famous) contents.

• Custom Algorithms: The metadata is managed in a separate repository.

Therefore, a user can write their custom algorithms to utilize the metadata

such as to move the famous contents to a faster disk unit.

• Coupling: Metadata is retrieved and managed on the server component of a

Cloud, therefore it is consistent with the original data. Any change made to

the original data will result in the corresponding change in metadata repository

at the same time.

5.1.9 Summary

In this application, we provide the ability to search for contents in Clouds based on

the metadata. Metadata which is a subset of provenance is managed accordingly

using the developed framework for Clouds object storage. We utilized the compo-

nents of the framework and search and find service for providing a user controlled,

easy to use, effective and efficient search mechanism as shown by our experiments.

Figure 5.15 depicts the complete architecture of the developed application which is

based on the provenance framework and search and find service.

Client

Application

Contents

Collect and add

metadata

Intercept

metadata

Metadata

repository

Store (5)

Select

a file (1)

(2)

U
p
lo

a
d

co
n
te

n
ts

a
n
d

m
e
ta

d
a
ta

(3
)

(4)

Search and

Find
Search query (i)

Display

results (ii)

User

Cloud Storage

Eucalyptus Walrus

T
h
e

n
u
m

b
e
rs

e
.g

.,
1
,2

,3
a
n
d

i,
ii

re
p
re

se
n
t

d
if
fe

re
n
t

o
p
e
ra

ti
o
n
s

in

a
se

q
u
e
n
ce

Figure 5.15: Metadata model to search and find contents in Eucalyptus Walrus

Applications of the Provenance Framework in Clouds 107

5.2 Usage Reports and Similarity Patterns in Clouds

Goal: To utilize the provenance data of various users, groups and Clouds themselves

to generate usage reports of important tasks regarding compute, storage and memory.

The reports can be further utilized to find trends or similarity patterns over time in

the usage of resources.

5.2.1 Introduction

The infrastructure part of a Cloud paradigm (IaaS) offers a versatile number of

resources that are distributed across a particular domain in private Clouds or ge-

ographically around the world in public Clouds. To utilize such resources, Clouds

offer various features and services of compute and storage such as instances, object

storage, volumes, and snapshots. These features are utilized by users, groups and

Clouds themselves for various activities. The activities that are performed in Clouds

take place on various Nodes, Clusters and storage resources. Therefore, the presen-

tation such as visualization of user’s activities and their relationship with Cloud

services is an important aspect. For instance, presenting the computing and storage

performance of various resources that are utilized by different users.

Report generation is one of the key methods to visualize various tasks in dis-

tributed computing. The generated reports are further utilized for the management

of resources in distributed environments. For instance, the provider (administra-

tor) of resources in Clouds can generate various reports of computer and storage

and analyze them for finding trends or patterns in the usage from various users,

groups, and Clouds themselves. Such patterns are utilized in distributed computing

to provide an efficient model based on predictions.

There are various methods to find the similarity patterns, e.g., Jian Tan et.

al. [125] measured the activities of an individual Node or a Cluster to find patterns

in the usage of resources in distributed environments such as Clouds. Their focus

is on the utilization of CPUs and the allocation of memory. Moreover, the patterns

from individual Nodes/Clusters are used for efficient resource planning. Similarly,

Eddy Caron et. al. [40] forecast the next request for a particular resource in a grid

and Cloud environment by finding patterns in the recent history data. A prediction

algorithm is used for the future requests based on the similar activity in the recent

past.

Contrary to the above techniques, the developed framework provides provenance

of instances, volumes, snapshots, users, groups, Nodes, Clusters and their relation-

ships. Therefore, we propose to utilize the provenance information, collected and

managed by the developed framework in order to generate enhanced usage reports

108 Usage Reports and Similarity Patterns in Clouds

based on an individual or clusters of compute and storage services.

5.2.2 Problem Description: A Case Study

To elaborate the goal, let us consider the series of tasks performed by John in

Figure 5.16. The tasks include, (i) John requests a resource with a particular instance

type and submits user-data. The user-data is a custom script that deploys a web

service. An instance of the resource is assigned to John, (ii) John creates a volume

(block level storage) of a particular size and attaches the volume to the assigned

instance, (iii) John performs some operations of the web service which generates a

dataset and stores the dataset either on the created volume or directly in Cloud

object storage and, (iv) if the data is stored on the volume, he creates a snapshot of

the volume that can be used for later analysis or sharing with other potential users.

Similar activities are performed by other users and groups in a Cloud.

Task 4

Task 3

Task 2

Task 1
Select a
resource

Select
instance type

Submits user-
data

Deploy web
service

Execute
web service

Generate
dataset

Create Volume Attach Volume to
instance

Store dataset
on Volume

Create
Snapshot

Store dataset in
Walrus

Instance
assigned

Request a
resource

Modified
instance

Select
Volume

Snapshot
created

Represents flow of activities of individual tasks
Represent relationships between different tasks

Figure 5.16: Various tasks of compute and storage performed by a user in a Cloud en-
vironment. The task number presents the activities in a sequence and the
dashed lines represent the relationship between various tasks.

The actual operations of various users activities are executed using features and

services like instances, NC service, CC service, and object storage among others.

Therefore, we have two different perspectives for reports generation. Firstly, the user

point of view, who is interested to visualize his activities performed in a sequence

(the task number in Figure 5.16), and the relationship between the activities (the

dashed lines in Figure 5.16). Secondly, the administrator point of view, who is

interested in the performance of the provided compute and storage resources such

as object storage.

The data stored in distributed Clouds is accessed by different users as shown

in Figure 5.17 and the number of requests for a particular dataset can be used to

define mostly utilized (famous) contents. The information from Cloud services like

famous contents should be provided in a graphical format to the administrator in

Applications of the Provenance Framework in Clouds 109

order to detail the resources usage, data usage, and their behavior with users for

finding trends. The analysis can be further utilized for providing an efficient model

of resource planning which uses the prediction techniques and the observations from

the reports. For example, to move the famous contents to a faster disk unit based

on the generated report of the object storage service.

Figure 5.17: Various users interacting with object storage

5.2.3 Solution: Using the Provenance Framework

How is the framework utilized for the generation of various reports?

Figure 5.18 presents the high level architecture of the implemented solution where

users interact with Cloud services on one side and report generation on the other.

The provenance data, query and visualization modules are utilized respectively for

finding, extracting and displaying of information according to users requirements.

Figure 5.18: High level architecture of the usage of provenance data in reports generation.

The key components of the solution are following:

• Client: The client provides the interface for the selection of a time frame,

110 Usage Reports and Similarity Patterns in Clouds

i.e., From and To, and the selection of different components/features such as

users, instances, volumes and snapshots as shown in Figure 5.19. The selection

constitutes the input parameters which are passed to the provenance query

module.

Figure 5.19: User interface for the selection of various kinds of reports.

• Provenance Query: The query module is used to analyze the input param-

eters and extract various information from the stored provenance data. The

input parameters from the client provides a time frame and the componen-

t/feature which is used as a key for the extraction of information as shown

in Figure 5.20. For example, if a particular time frame is selected for vol-

umes, the result will contain information during that particular time period

for all the volumes such as, (i) the time they are created, deleted, attached

and detached from/with instances, (ii) the size of volumes, (iii) the instance

information where the volumes are attached/detached and, (iv) the snapshots

created from the volumes etc. The result of provenance query is stored in a

well defined XML file which is used as an input by the visualization module

for report generation.

Provenance

Query

Client

Input

Parameters

Extracted Results

XML

Time Frame

+ Key
Provenance Data

Instance Type

Volume/Snapshot

User/Group

Node/Cluster

Storage

Figure 5.20: The query protocol uses time frame and input parameter as keys to extract
various information from provenance data.

• Provenance Data: The provenance data contains the information regarding

the activities of users and the activities of Clouds themselves. For instance,

provenance data contains the information about users, their groups, and when

Applications of the Provenance Framework in Clouds 111

they utilized various compute and storage resources. Similarly, provenance

data contains the information of the activities of Cloud services such as Nodes,

Clusters and Walrus. The relationships between users and their activities

with Cloud services are also maintained in provenance data via copy and link

mechanism (see Section 4.2.4 for details).

• Provenance Visualization: The visualization module is used to present the

extracted information stored in the XML file in various formats. The display of

the results depends on the extracted information. For instance, the result may

contain the information about the activities of a particular user, Cloud service,

e.g., NC, or features of a Cloud such as Volumes and Snapshots. Similarly, the

result may contain information of a particular resource such as, the number of

times a resource is requested in a Cloud. Therefore, the visualization module

presents the reports based on two key factors, i.e., Activity Report and Static

Report which are explained next.

Reports Types

Figure 5.21 presents the basic architecture of visualizing various reports, i.e., Activity

and Static reports. The Activity Report presents the tasks performed by a user,

group, or Cloud services in a sequence. The relationship between the user activity

and Cloud is also presented. For instance, if John performs the Task 1 (request

a resource) in Figure 5.16, the report will contain the activity of John and Cloud

service, i.e., the Node Controller utilized to assign an instance of the resource to

John. This report is presented in web browser using XML and XSLT.

Secondly, the Static Report which presents, (i) the performance of various in-

stances, (ii) the number of volumes and snapshots, or (iii) most used contents in a

Cloud etc. This report is presented to the user in various types of charts (lines, pies

and bars etc.) or tabular format. The examples of these report types are presented

in the next section. Moreover, the modularity and independence of the framework

provides the ability to visualize reports using any third party visual editors such as

yED Graph Editor6.

5.2.4 Experiment and Evaluation: Various Features for Report

Generation

What are the key features and parameters available for the generation of various

reports?

The selection of usage reports is based on the compute and storage resources, the

6http://www.yworks.com/en/products yed about.html

112 Usage Reports and Similarity Patterns in Clouds

Visualization

Activity

Static

Third Party

Utilize
Charts

Style Sheet

XML (The
extracted results)

Utilize

Display

Figure 5.21: The visualization of various reports utilizing the result of provenance query
in XML format.

activities of users, the activities of Cloud itself, and the relationship between the

users and Clouds activities among others. Therefore, the generated reports are of

various types depending on the provided features in a Cloud environment.

Users and Group Reports

The user report provides various information about the user activities and their

relationship with each other and with Cloud services. This report is used to track

various tasks performed by a user. Similarly, the group report provides information

about group activities and their relationships with the Cloud.

For instance, John in Figure 5.16 performs the following tasks: (i) create an

instance, (ii) creates a volume and attaches it to the instance, (iii) store some data

in Walrus, and (iv) creates a snapshot from the volume. John wants to trace his

steps for finding when he created the volume and where he attached the volume.

Therefore, john selects a time frame, his user name in the Cloud and generates an

activity report as shown in Figure 5.22. The report details all the steps and activities

in a hierarchical format performed by John during the selected time period and

the relationship of those activities with Cloud services. The circles represent the

relationship between John’s and Cloud’s activities. The report details the necessary

information regarding the volume, snapshot and instance etc. for tracking John’s

tasks.

Applications of the Provenance Framework in Clouds 113

Figure 5.22: The activity report (hierarchical format) presenting various tasks performed
by a user in a particular time frame. The circles around the text represent the
relationship between the activities of a user and the activities of the Cloud.

Cloud Services - Nodes and Clusters

This report provides the information of the activities of various Nodes and Clusters

for a selected period of time. This report can be used for efficient resource planning

based on the activities of an individual Node and/or Cluster. For instance, when the

administrator selects a time frame and a particular Node Controller (the same node

where John performed his tasks), the result displays all the activities performed by

that NC from various users as shown in Figure 5.23. The circles in the generated

report present the activity of NC and the relationship with the respective user.

114 Usage Reports and Similarity Patterns in Clouds

Figure 5.23: The activity report presenting various tasks performed by a selected Node
Controller.

Object Storage

The storage report provides information such as: (i) number of contents, (ii) location

of each content (iii) owner details, (iv) when and where the contents were created,

(v) ACP of contents (vi) storage utilized by each user and (vii) the access count

of each content etc. This report establishes the relationship of various users needs

and Cloud storage. For instance, when the administrator of a Cloud generates a

report for all the contents in the object storage from most utilized to least utilized,

a sample of the report is presented in tabular format as shown in Figure 5.24. The

report details the content title, location, owner, and the Access Count which is used

to define famous (most or least utilized) contents. The administrator can utilize the

report to move least used contents to a slower disk unit and vice a versa for the

better utilization of the Cloud storage. It is important to note that the report in

this case is presented in a tabular format. The tabular format is important when the

result of a query contains a huge amount of information such as contents in object

storage.

Figure 5.24: The representation of contents stored in a Cloud based on their Access Count
which defines the most or least used contents.

Applications of the Provenance Framework in Clouds 115

Performance Reports

The performance report provides the information according to three key features of

a Cloud. Firstly, the report of resource types which provides information of each

resource such as type and location, and the number of requests for each resource.

This report presents the most or least utilized resources in a Cloud. Secondly, the

report of various instance types which present information of instance types and their

utilization from various users. This report establishes the relationship between users

and the utilized instance types. This report can be used to understand the needs of

instance types for each user. Thirdly, the performance report of each instance such

as CPU and memory utilization. This report presents information if resources are

utilized to their full extent.

For the presentation of information from a user’s perspective, let’s consider John

in interested to measure the number of instances and their types requested by the

group in which he is working. Therefore, John selects the group name and instances

for the report generation. Figure 5.25 presents the result in graphical format where

the Y-axis represents the number of instances, and the X-axis represents the in-

stance types. The colored bars are used to present the utilization of various instance

types by each user in the selected group. This report clearly indicates the needs of

individual users via the relationship between instance types and users IDs.

The administrator can also generate a report based on the usage of resources in

a Cloud. For instance, the administrator selects the resource types and generates a

report showing the percentage usage of each resource based on the number of requests

for each resource. The result is displayed in a pie chart as shown in Figure 5.26.

The chart indicates each resource type (emi-ID) and presents the percentage usage

of each resource (the number of requests) from various users.

0

2

4

6

8

small medium large xlarge

N
u
m

b
e
r

o
f
in

st
a

n
ce

Instance Types

alex

imran

john

Figure 5.25: Column chart for the Cloud instance types for a particular group. X-axis
presents the instance types and y-axis presents the number of instances uti-
lized by various users.

116 Usage Reports and Similarity Patterns in Clouds

�����

������
�	
���������

������

������

������

�	
���������

�	
���������

�	
���������

�	
���������

������

������

�	
���������

�	
���������

Figure 5.26: Pie chart presenting the percentage usage of Cloud resources based on the
resource-ID and the number of request for each resource.

Volume and Snapshot

This report provides the information of various volumes and snapshot in a Cloud.

For instance, the number of volumes, when they were created, when they were

attached, where they were detached, who created them, and the size of each volume

among others. The snapshot report presents additional details, i.e., the Volume ID’s

from which they are created. This report presents the complete status of various

volumes and snapshots in a Cloud and their relationship with users and groups.

Figure 5.27 presents a sample of the generated report for the Volumes created and

attached by John in Figure 5.16.

Integrating the Client (Virtual Machine) Provenance

Various properties of the developed framework such as modularity and independence

allow layering the provenance information from various tiers of a Cloud. For instance,

we wrote a short script which measures the performance in terms of CPU and

memory usage of a particular instance. This information is part of the physical layer

in a Cloud. The developed framework does not collect provenance of the physical

layer. However, we can merge the provenance information from the physical layer

with the IaaS layer of a Cloud. The report in Figure 5.28 presents the performance of

the particular instance utilized by John where provenance of physical layer is merged

with the IaaS layer, i.e., instance specific information such as NC and User-ID.

Applications of the Provenance Framework in Clouds 117

Figure 5.27: The report presenting the information of volumes, their size, creation time,
attached time, and the snapshot created from a particular volume.

0

20

40

60

80

100

11:10 11:11 11:12 11:13 11:14 11:15

P
e
rf

o
rm

a
n
ce

(%
)

Time

CPU

Memory

Instance Information

Instance-ID: i-60254078

Instance Type: small

User-ID: John

Node Controller:

131.130.32.75

Instance IP: 131.130.32.85

Figure 5.28: The representation of CPU and memory usage while laying the provenance
from IaaS layer (instance specific information) of a Cloud.

Discussion

The above examples present a few of the report that are generated through the usage

of client, provenance data, provenance query, and provenance visualization modules.

However, the complete list of reports that are available may contain one or more

of the features and roles presented in the Sections 2.2 and 2.4. Moreover, a user of

a Cloud can find any similarity patterns based on the generated reports of various

features and services. Following is a list of queries in natural language that are

utilized by the framework and client application:

• Generating the report of the number of requests where EMI-ID = X (selecting

a particular resource)

118 Usage Reports and Similarity Patterns in Clouds

• Generating the report of the number of requests where EMI-ID = all (selecting

all the resources)

• Generating the report of the number requests where user = admin (selecting

a particular user)

• Generating the report of the number of requests where instance type = m1.small

(selecting a particular instance type)

Each of the report presents a pattern in the usage of Cloud resources based on

resource types, instance types or users. Moreover, multiple features of reporting can

be merged to get insight details such as:

• Generating the report of the resource usage where user = admin and instance

type= m1.large (selecting a particular user and instance type)

• Generating the report of the resource usage where user= admin and EMI-ID

= X and Cluster Controller = X.Y.Z.W (selecting a particular user, resource

and CC in a Cloud)

5.2.5 Implication

Reports present the key usage points such as popular contents, highly shared data,

highly used resource types and often used instance types among others. These points

present similarity patterns which can be utilized for efficient planning of resources,

e.g., moving the most requested instance type to a faster CPU unit. Moreover,

reports present the activity and performance of the Cloud itself such as NC, CC and

Walrus etc. The reporting feature provides various functionalities such as:

• Trend Analysis: Finding the similarity patterns in the usage of Cloud re-

sources based on users and groups activities.

• Data Trend: Finding the trend in the usage of data storage and usage such

as presenting the mostly utilized contents.

• Efficient Planning: Using the reports and analyzed trends for making rea-

sonable predictions for future requests of resources.

5.2.6 Summary

The provenance data is utilized for generating various types of reports and hereby

any patterns or trends in the usage of resources. The report contains the activities

of an individual user, a group of users, a Cloud service or a particular feature of a

Applications of the Provenance Framework in Clouds 119

service. The individual module of the framework such as provenance query is utilized

to analyze users requests and extract information according to their requirements.

The generated reports present similarity patterns or trends based on the activity

of an individual Node, a set of Nodes, a particular Cluster, a set of Clusters, and

the data in object storage. The patterns are found based on users, groups and

their utilization of compute and storage components such as instances, volumes,

snapshots, and users-data etc. One or more of these types can be combined and

therefore, the generated reports present more insight details.

5.3 Efficient Utilization of Resources

Goal: To utilize similarities or trends in Clouds for the efficient utilization of re-

sources.

5.3.1 Introduction

Among various approaches, distributed computing offers VM scheduling and re-

source provisioning as two key techniques for resources utilization. In Clouds, the

resource provisioning technique adopts a dynamic and autonomous approach for

the resource allocation instead of static resource allocation. Resources provisioning

requires a learning algorithm to acquire the knowledge for handling future request

in an efficient manner [108]. VM scheduling of the resources is the process of load

balancing and faster execution in Clouds by assigning priorities to various tasks

submitted by users [77]. Green computing [24] is a term which is often used for the

effective management of cost, energy and resources in Clouds and distributed com-

puting. Apart from VM scheduling and resource provisioning, various modes such

as hibernate, sleep, idle and standby are utilized to save energy in lab environments

and home networks.

Contrary to the previously described approaches, we propose a method that uti-

lizes the collected and stored provenance data for the efficient utilization of Cloud

resources. As we discussed in the previous application, provenance is utilized to find

the similarity patters in users requests for storage and computational resources. In

this application, we focus on the utilization of similarity patterns found in prove-

nance such as user-data and instance types.

5.3.2 Problem Description: A Case Study

In this case study shown in Figure 5.29, user1 requests for a resource type R1,

instance type N1 and submits user-data D1. R1 is an Ubuntu virtual machine, N1

120 Efficient Utilization of Resources

is the small type of an instance with 512 MB RAM, 2 GB hard disk, One processor

unit and D1 is a custom script that installs JAVA JDK, JRE and Apache Tomcat

on the requested resource. Meanwhile, user2 requests for a resource with the same

parameters of resource type, instance type and application requirements. This kind

of scenario is common in a research environment where various members work on

different parts of the same application. The main components required by these

users such as JAVA JDK, JRE and Apache Tomcat are same but their individual

objectives are different.

In the normal or default execution of these requests, user2 would be assigned a

new resource where the required applications are installed on the assigned resource.

We propose to utilize the provenance data and assign a copy of the resource to user2

instead of creating a new resource.

Request resource

Request resource
User1

User2

CloudResource
Broker

Resource Type: R1
Instance type:N1
User-data:D1

Resource Type: R1
Instance type:N1
User-data:D1

Figure 5.29: Two users requesting for the same kind of resource in Cloud computing

5.3.3 Solution: Using Provenance for the Utilization of Resources

The developed provenance framework already stores the information regarding re-

source type, instance type and user-data from the user1 (presented in detail in the

previous application). When user2 makes a request for a resource, the provenance

data is queried for a match. When a match is found, instead of allocating a com-

pletely new resource, an instance of the already running resource is assigned to user2.

The generalized model for the utilization of Cloud resources through provenance is

presented in Figure 5.30 where the resource allocation to user1 is achieved with the

default architecture and to user2 with the altered architecture. Figure 5.30 also

depicts the difference between the normal and altered architecture where the al-

tered architecture utilizes the stored provenance information and provenance query

modules of the framework for finding similarities in the user-data.

Applications of the Provenance Framework in Clouds 121

Default architecture

Request for resource

User 1

Resource
Broker

Start resource

Cloud

Re
so
urc

ea
ssi
gn
ed

Altered architecture

Request for resource

Resource Broker

Query provenance
for a pattern match

Cloud

Re
so
urc

ea
ssi
gn
ed

User 2

Provenance
Data

Initialize existing
resource

Start
resource

Match found

Start new
resource

Match not
found

Start resource

Figure 5.30: The left side presents the default architecture of assigning resource to users
where the right side presents the altered architecture of resource utilization
using the provenance data

5.3.4 Experiment and Evaluation

The current version of Eucalyptus Cloud does not provide the functionality of initi-

ating a copy of a running instance but this feature is provided by other Clouds like

Amazon. Therefore, we adopt a different method for testing purposes. We created

a customized resource with three particular applications which are JAVA JDK, JRE

and Apache Tomcat. This customized resource is uploaded to the Cloud. Another

resource is uploaded to the Cloud without these particular applications. The basic

architecture of both the resources is same, i.e., the same raw image (Ubuntu) is used

for both the resources. Multiple instances of both the resources are requested and

the execution time is recorded as given in Table 5.5

It can be noted that the average start time of the customized resource is greater

than the non-customized resource by 19 seconds. Afterwards, we recorded the in-

dividual times, i.e., the download time and the installation time respectively of the

three applications. We also calculated the download and installation space which is

required by these three applications as presented in Table 5.6.

The time required to download and install individual applications is much higher

122 Efficient Utilization of Resources

Image Type Average time to
run instance

Average time to
stop instance

Number of execu-
tions

Image1: Pop-
ulated with
Apache, JDK and
JRE

54 s 5 s 5 times

Image2: Raw im-
age

35 s 5 s 5 times

Table 5.5: Average execution time (in seconds) of Cloud resources

Application Disk space
(download)

Average
Download
Time

Average In-
stallation
Time

Average Total
Time

Apache Tom-
cat 7.0

8MB 3 s 35 s 38 s

JAVA JDK 80MB 8 s 72 s 80 s

JAVA JRE 30MB 3 s 18 s 21 s

Grand Total 118MB 139 s

Table 5.6: Average space (in megabytes) and time (in seconds) required by individual
applications

than the time required starting another instance of the already running resource.

This process saves the time required by various users and Cloud resource providers.

Furthermore, the solution also saves the storage space required by individual users

for their applications which are common to other users. Using time and space, we

automatically save energy used by Cloud resources. The time and storage space

saved by the proposed model of utilizing resources using provenance data ad simi-

larity patterns are absolute factors. The total energy that is saved is a relative factor

as described by the following formulas:

T imeSaved =

n∑

i=0

TDi+

n∑

i=0

TIi (5.1)

where TD is the time to download and TI is time to install for any component

of the application. The variable i represent the number of matches that are found

in provenance data. Figure 5.31 presents the total time saved for the matched

application, i.e., Apache Tomcat, JAVA JDK and JAVA JRE.

Space Saved =

n∑

i=0

SDi (5.2)

where SD is the space to download any application and the variable i represent

Applications of the Provenance Framework in Clouds 123

3

35 38

8

72
80

3

18 21

0
10
20
30
40
50
60
70
80
90

Dow nload Time Install Tim e Total T im e

Tim
e (

se
co

nd
s)

Tim e saved by individual applicatio ns

Apache tom cat JAVA JDK JAVA JRE

Figure 5.31: The total time saved utilizing the developed framework and provenance in-
formation that depends on the number of matches in provenance data, i.e.,
Apache Tomcat, JAVA JDK and JAVA JRE.

the number of matches that are found in provenance data. Figure 5.32 presents the

total space saved utilizing the provenance data and existing resource for the three

applications (Tomcat, JAVA JDK and JRE).

8

80

30

0
10
20
30
40
50
60
70
80
90

Space saved by individual
applications

Di
sk

 Sp
ac

e (
M

B)
 Apache

to mcat

JAVA JDK

JAVA JRE

Figure 5.32: The total space saved utilizing components of the developed framework and
provenance data that depends on the size of individual application.

124 Conclusion

Energy Saved =

n∑

i=0

EDi+

n∑

i=0

EIi (5.3)

where ED is the energy required to download and EI is the energy required to

install any application. The variable i represent the number of matches that are

found in provenance data.

Final Remaks: The above equations and charts present that the saved time, space

and hereby the energy have a direct relationship with the number of matches in

provenance data. Therefore, we conclude as the number of matches increases, the

efficiency of Cloud also increases in terms of saved space, time and energy.

5.3.5 Implication

Under-utilized resources accounts for a substantial energy loss in distributed com-

puting. Clouds are designed to reduce the energy cost by using virtualization tech-

niques and on-demand computing. However, the energy cost is further reduced

using intelligent planning of resources via provisioning and scheduling techniques.

Such techniques rely on the history data from resources, users, and applications like

provenance. For instance, we used only one aspect of provenance, i.e., similarity pat-

terns to save time, space and energy. Since, the framework manages the provenance

data in a separate repository therefore, any third party algorithm can be applied for

efficient utilization of resources according to various layers of Clouds.

5.3.6 Summary

In this application, we effectively utilized Cloud resources by reusing the existing in-

stances. It is accomplished through provenance analysis which finds similarities such

as instance type, resource type and user-data. Provenance data is used to compare

a new request from users with the already running instances. The same approach

can be applied for similarities on the software layer where various applications are

executed.

5.4 Conclusion

Provenance is an important aspect in distributed computing and workflow appli-

cations for the verification of processes and audit trails of data. However, with

e-Science centered on the Clouds paradigm in last decade, Clouds themselves have

important provenance from various layers. In this chapter, we focused on the usage

of the provenance data of Clouds and presented various applications where such

Applications of the Provenance Framework in Clouds 125

data is utilized. These applications present the usefulness of the provenance enabled

Clouds, e.g., finding access patterns in resource usage, reports generation, prove-

nance based search, and efficient utilization of resources. We believe, provenance

is a key to make Clouds more trustworthy and reliable. Therefore, we provided

compelling applications utilizing provenance and hereby satisfying that provenance

enabled Clouds are more beneficial for end users and Cloud providers.

6. Aggregating Provenance from Vari-

ous Layers/Service Models of Clouds

Goal: To provide the aggregated provenance from different layers or types of Clouds

paradigm for exploring the connections and relationships between them.

6.1 Introduction

The properties of the developed framework such as modular design and independence

from the underlying architectures and domains allow the collection of provenance

across multiple layers of Cloud computing. Each layer of the Cloud provides sig-

nificant provenance and answers to various questions specific to that layer. The

applications provided in Chapter 5, signifies the importance of provenance at the

object storage and IaaS layers of the Clouds. However, the aggregated provenance

is important to answer questions that require provenance information across mul-

tiple layers of Cloud computing. These information include the datasets consumed

and produced, different versions of services and processes, and various resources

which are utilized by such services in Clouds or any other distributed and layered

environment.

The aggregated provenance is used to exploit the relationships between the layers

that are hidden by the abstract architecture of Cloud computing. Section 4.2.3 and

4.2.4 provides the details of layers embedded inside a particular service model, i.e.,

CLC, CC, NC and storage of IaaS model. In this chapter, we take a step forward and

integrate the provenance across multiple layers of Cloud computing including the

software, platform and infrastructure layers. The key contributions of this chapter

are the followings:

• Providing the reasoning for aggregated provenance using various scenarios

where only the aggregated provenance can satisfy users questions. The sce-

narios are demonstrated and the achievements are presented using a sample

application DataSync which utilizes various layers of Clouds environment.

126

Aggregating Provenance from Various Layers/Service Models of Clouds 127

• Aggregated provenance is accomplished with the extension of the developed

framework (provenance collection and parsing) to the different layers of Clouds.

• Aggregated queries are introduced and used that extract information from

the various models/layers of Cloud computing, i.e., overall provenance of the

Cloud.

• A fault tracking system is proposed which utilizes the aggregated provenance

and aggregated query for finding silent (unknown) and non-silent (known)

failures.

6.2 Understanding the Layered Architecture

The NIST [92] definition of Cloud computing divides the service models into the

categories of IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and

SaaS (Software as a Service). Cloud aware applications are developed and deployed

following these various layers where, IaaS is at the bottom, PaaS in the middle and

SaaS at the top. The layered approach may also include tiers such as virtualization,

hardware and client tools, e.g., a web browser depending on the definition of Clouds

from various business and research domains [16, 61, 82]. Complex scientific and

business applications are developed, deployed, and executed using one or more of

service models offered in the Cloud [3, 51, 131].

Various components of Cloud aware applications reside on different layers of the

Cloud. Depending on the layered architecture, the resource providers are interested

in the IaaS layer of the Cloud which supports virtualization of resources to enable

computation, storage, and communication [133, 6, 101]. These resources are utilized

by Cloud applications such as email service1 and sharing documents2, often termed

as SaaS. The PaaS layer is used by developers to customize and easily develop, deploy

and manage Cloud aware applications in order to fill the gap between IaaS and SaaS.

The examples include salseforce [11], WSO2 [12] and providing Enterprise Service

Bus (ESB) [10] as a service. Figure 6.1 presents various layers in Cloud computing

and the respective view points of a user, developer and resource provider.

Each layer of the Cloud has its own provenance and generally the queries or

questions to reason the collected provenance address that particular layer. Consid-

ering various layers of Cloud computing, resource providers are mainly interested

in the infrastructure provenance to verify the utilization of resources through audit

trials. For example, to generate reports of memory and CPU usage from a particular

1www.gmail.com
2docs.google.com

128 Shortcoming of Existing Works

Cloud Applications

SaaS

Cloud Software Developement

PaaS

Communication

Storage

Computation

Cloud Software Infrastructure

IaaS

Virtualization

User

Eucalyptus

OpenNebula

Nimbus

CRM

Web Service

Email service(gmail)

Provider

Developer

Apache

Tomcat

Programming

(JAVA,ASP,PHP)

WSO2 stratos

Figure 6.1: Layered architecture of the Cloud

cluster over a period of time. On the other hand, the developers of Cloud aware

applications and users (researchers) are interested in the performance of deployed

applications and the verification of scientific experiments. However, the aggregated

provenance from various layers of a Cloud provides a unified view that exploits the

relationships between the layers. This feature of aggregated provenance is significant

but currently missing in mostly provenance systems.

6.3 Shortcoming of Existing Works

The existing solutions for the management of provenance data focus on a single

layer of abstraction in distributed environments. For instance, application level

services in workflow computing [116], workflow design specification in a grid en-

vironment [25], Service Oriented Architecture, e.g., PASOA [93] and database do-

mains [127]. Similarly, recording system level calls for processes and files has also

been addressed [96, 112, 30]. In Cloud computing, the significance of provenance

data for abstraction layers such as web browsers [90], Virtual Machines using XEN

hypervisor [88] and e-Social application (software layer) [111] has been addressed.

Each of these systems provides important and significant provenance data at a single

layer of abstraction. However, these existing systems cannot address queries which

require an aggregated view of provenance from multiple layers of Clouds (the detail

is provided in Section 3.2).

Aggregating Provenance from Various Layers/Service Models of Clouds 129

6.4 Problem Description: Why Aggregated Provenance

– A Case Study

In fact Clouds are abstract and various layers are hidden from the end users, here

we present an application DataSync depicted in Figure 6.2 to interpret these layers.

DataSync provides two key functionalities, i.e., sync local data to the Cloud and sync

Cloud data to the local machine. These functionalities are provided for data such as

mails, tasks, appointments, and documents in the Cloud. Users can retrieve various

data from anywhere and anytime. When users sync their data, the application

checks for any new content and present them to the user. For instance, if a new task

is assigned to the user, it will show up when user sync the data from the Cloud. The

architecture of DataSync is described in the following section.

So
ftw

are
La

ye
r

(SaaS)
Provenance)

Service Name
Method Name
Time Stamps
User Name
Local Data

Synctodatabase
(service)

Syncfromdatabase
(service)

Inf
ras

tru
ctu

re
La

ye
r Virtual Machine

(Syncto)
Virtual Machine

(Syncfrom)

Local
Database

Virtual Machine (shared database)

Object Storage (shared)

Platform Layer
Linking
Protocol

REST

SOAP

Programming
Language

(PaaS) Provenance

Developer ID
Developer Activity
Activity Time

(IaaS)
Provenance

Resource ID
Instance ID
Instance Type
Location (NC,
CC, CLC)
Object Storage
Time Stamps

Get Data Set Data

Utilize

Mo
dif

y
Re

nt

Users

Client (GUI
Interface)Sync

Data
Sync
Data

DataSync Relationship between
Cloud Layers

Relationship of services
and virtual machines

Provenance items from
various layers

Figure 6.2: DataSync: The architecture of DataSync utilizing various layers of Cloud com-
puting. The relationships between the Cloud layers and components of the
application are also presented. For end users, DataSync is simply an applica-
tion provided through Cloud for various purposes. This architecture presents
various components of the application, their location and execution flow inside
the Cloud.

130 Problem Description: Why Aggregated Provenance – A Case Study

6.4.1 Architecture of DataSync

Various components of DataSync reside on different layers of Clouds. The individual

layers of the Cloud provide the following functionalities:

Software Layer

The software layer is composed of two components, i.e., client and web services.

The client is a GUI interface used to interact with the Cloud. The client provides

to view content such as assigned tasks and list of appointments for a particular

user. Moreover, it provides information such as who assigned the task, meetings

and appointments time, member involved and location etc. The client also provides

the options to sync local data to the Cloud and vice versa to get/set the latest

content.

The two web services, i.e., synctodatabase and syncfromdatabase are exposed to

the end user via client. The synctodatabase takes the data from the client (local

database) and submit or sync it to the Cloud (Cloud database and object storage).

The sync process can be performed either for one particular category, e.g., appoint-

ments or for the overall data, e.g., contacts, appointments, mails and tasks etc. The

syncfromdatabase takes the data from the Cloud and syncs it to the client (local

database). Analogously to synctodatabase, the sync process is for one particular

category or overall data.

Platform Layer

The platform layer is utilized by the developers of the application. It provides the

design phase where developers choose how the services communicate with the client

and Cloud. This may include linking and communication protocols such as HTTP,

HTTPs, REST, SOAP, format of data exchange such as XML and text, and the

design of the database including various tables etc. More importantly, this layer

contains the developer name and his activities. For instance, when a developer adds

a new routine to the services and uploads the routine to the Cloud, such information

is part of the platform layer. The two web services of DataSync are deployed using

SOAP protocol, Apache Axis2 web server, Eclipse IDE, and WSO2 platform for

testing and evaluation purposes.

Infrastructure Layer

The infrastructure layer provides the computation and storage resources for the

executions of the services and storage of data from various users. For this particular

application, IaaS provides two virtual machines that host the two web services. The

Aggregating Provenance from Various Layers/Service Models of Clouds 131

object storage is used for storing persistent data such as pdf documents. The third

virtual machine is a database server (MySQL) which hosts the database required

for storing various data about mails, tasks, appointments and users.

Summary

The three service layers (SaaS, PaaS, and IaaS) of the Cloud contribute to the overall

execution of DataSync. The software layer exposes the functionalities to the end

user. The platform layer sits in the middle where developer of the services can add,

delete or change the functionalities to the demands of end users. The infrastructure

provides physical and virtual resources for the execution of services and storing of

data. Each of the layers provides significant provenance information addressing that

particular layer as depicted in Figure 6.2. The software layer provides information

such as service name, user name, local data, and time stamps of user’s activity, e.g.,

when a user synced his data. Similarly, the platform layer provides information of

the developer activities such as changes made to the services. The infrastructure

layer provides information about virtual machines, their type, instances ID’s, their

location in the Cloud and information about Cloud services such as NC, CC and

object storage among others.

6.4.2 Significance of Aggregated Provenance

The DataSync application presents the facts that different components of the ap-

plication and various layers of the Cloud share relationships or dependencies. The

relationships are data and process specific such as object storage and local data, and

the two services and virtual machines. Therefore, in case of failures the actual reason

could be anywhere in the Cloud. For instance, if a user gets corrupted content from

the Cloud, the exact reason depends on the activities of the user and Cloud, i.e.,

the relationship between layers. The reason of the wrong output is only clear if we

aggregate provenance and expose those relationship between the layers of Cloud and

components of the application. Some of the failures which require the aggregated

provenance are described below.

The sync process failed - why? If a user tries to sync his data to or from the

Cloud and the sync process is failed, the reason of the failure could be anywhere in

the Cloud. For instance, software services are crashed, the platform is performing

some update or the infrastructure resources are not responding because of the Node

or Cluster failure. To find the exact reason of the failure, we require the aggregated

provenance from all the layers to answer the question that why the sync process was

failed.

132 Solution: Extending the Framework

Users are presented with wrong content: When a user syncs his data from

the Cloud, and he is presented with wrong content. We require aggregating the

provenance from the software and infrastructure layers in order to find the reason

of wrong content. This could be either a mistake/bug in the software or the return

data from the object storage is affected.

Validation of corrupted data: If a developer made some changes (add or delete

a routine) to the services or database and those changes result in data corruption.

We need the aggregated provenance from the software and platform layer to find

out which users are affected by the changed routine. The software layer provides

the information about users and input data, where the platform layer provides in-

formation about the time of added/deleted routine to the services. The combined

data provides exactly which data and users are affected. For instance, data which

is synced to the Cloud before the added routine is safe in the Cloud but only the

local database is corrupted.

Providing the exact reason of failures in the above situations and more like them,

we need the provenance from each layer of the Cloud. Therefore, we present the

solution for aggregated provenance using the developed framework. We also present

how the aggregated provenance solves the above problems and failures.

6.5 Solution: Extending the Framework

We extended the modules (provenance collection and parsing) of the framework to

the different layers of Cloud computing to satisfy the goal of providing aggregated

provenance. We utilized WSO2 platform for the delivery of the services and Axis2

as a web server. The individual steps of the solution are described in the following

subsections.

6.5.1 Provenance Collection and Parsing

As shown in Figure 6.3, the collector and parser modules (provenance collection

and provenance parsing) of the framework are extended towards all the layers of

the Cloud. Each layer intercepts the activities performed on various parts of Cloud

computing. The resultant data from the interception mechanism is passed to the

parser module. The parser module gathers significant provenance according to the

layer of the Cloud and present it either in XML format or NoSQL schema.

Aggregating Provenance from Various Layers/Service Models of Clouds 133

Software Layer
...

Provenance
Collection

Synctodatabase
Syncfromdatabase

Local
Database

Provenance
Parsing

Get

Set

Intercept

Int
erc

ep
t

(SaaS) Provenance)

<Service Name>
<Method Name>
<Time Stamps>
<User Name>
<Local Data>

(PaaS) Provenance

<Developer ID>
<Developer Activity>
<Activity Time>

(IaaS) Provenance

<Resource ID>
<Instance ID>
<Instance Type>
<Location (NC, CC, CLC)>
<Object Storage (Location)>
<Time Stamps>

Pla
tfo

rm
La
ye

r
.

Provenance
Collection

Add routine
Delete Routine
Update Routine
Upload Routine

Change Instance
Add Memory

Provenance
Parsing

Inf
ras

tru
ctu

re
La
ye

r
.

Provenance
CollectionCLC Services NC Services

Provenance
Parsing

Int
erc

ep
t

Int
erc

ep
t

Object Storage (shared)
CC Services

Intercept Intercept

XML or NoSQL

XML or NoSQL

XMLorNoSQL

Developer

Service
Activities

(Infrastructure
Activities)

Intercept Intercept

Figure 6.3: Integration of provenance collection and parsing modules of the developed
framework towards infrastructure, platform, and software layers.

6.5.2 Provenance Data

Each layer of the Cloud provides significant provenance specific to the layer as shown

in Figure 6.4. The software layer provides information such as service name, method

name, time stamps of execution etc. The platform layer provides information about

developer activities and the infrastructure layers provides information about com-

putation and storage resources.

6.5.3 Provenance Query

The query module of the framework is utilized to extract needed information from

the provenance. Since, we store the provenance of each layer separately; the concept

of aggregated query is used to extract the information from overall provenance.

Figure 6.5 presents the difference between a normal (the solid lines) and aggregated

query (the dashed lines). As depicted in Figure 6.5, the aggregated query extracts

134 Solution: Extending the Framework

Cloud Applications
(Software as a Service)

Cloud Software Delivery
(Platform as a Service)

Cloud Resources
(Infrastructure as a Service)

Vis
ibi

lity
of

Clo
ud

to
en

du
ser

s

Ut
iliz

e
Ut

iliz
e

Ut
iliz

e

<Service Name>
<Method Name>
<Time Stamps>

<User Name>
<Local Data>

<Developer ID>
<Developer Activity>
<Activity Time>

<Resource ID>
<Instance ID>
<Instance Type>
<Location (NC, CC, CLC)>
<Object Storage (Location)>
<Time Stamps>

Software
Provenance

Platform
Provenance

Infrastructure
Provenance

AggregatedProvenance

Figure 6.4: Aggregated provenance from various layers of Cloud

information from multiple layers of the Cloud in contrast to the simple query.

UserUser

Simple Query

SaaS Provenance

PaaS Provenance

IaaS Provenance

Input

Input
Output

Input
Outpt

Results
(XML)

Output

Aggregated
Query

Results
(XML)

UserrrUser

Input

Output

Figure 6.5: Different between the execution of simple query and aggregated query

6.5.4 Summary

Aggregated provenance is accomplished with the integration of the framework to

various layers of Cloud where each layer provides its own provenance which is stored

separately. Therefore, the aggregated query is used to extract the information from

the overall provenance to answers various questions/problems which require infor-

mation from each layer. The following section details the use-cases (problems) from

Section 6.4.2 where only the aggregated provenance can provide the solution for

various problems and failures.

Aggregating Provenance from Various Layers/Service Models of Clouds 135

6.6 Use Cases of DataSync

The Following use cases are explored in the context of DataSync which requires

provenance aggregation for the resolution of problems.

6.6.1 Use-Case: The Sync process failed

Scenario:

The administrator decided for the maintenance of the Cloud. During the main-

tenance, something went wrong and the instance hosting the web service syncto-

database was terminated. The virtual machine hosting the service stopped working.

During that time, John tried to sync his data but was unsuccessful.

Without Aggregation

When we examined the provenance of the software layer, we found that the sync

process was failed along with other information such as time and operation that was

not successful as shown in Listing 6.1. The reason of the failure is not clear from

the software provenance alone.

Listing 6.1: Sample of the software provenance presenting information when the service
was invoked and the return status of the service (MessageIn and MessageOut)

!− Ingo ing message to the s e r v i c e−
<Time> Friday , May 30 2014 10 :25 PM </Time> !−date and time o f the

a c t i v i t y−
<ServiceName> Synctodatabase </ServiceName> !−name o f the s e r v i c e−
<MethodDetai ls> !− var i ous d e t a i l s about the invoked method and input

parameters to the method such as who i s per forming the task and i t ’ s
sub j e c t e t c .−

<SyncTask>
<name>john</name>
<id>johd−005</ id>
< t i t l e>Doing the t e s t</ t i t l e>
<body>This i s a t e s t f o r v a l i d a t i o n o f f a i l u r e s</body>
<ass ignedfrom>imran</ ass ignedfrom>

</SyncTask>
</MethodDetai ls>
−−−
!− Outgoing message from the s e r v i c e −
<SyncTaskResponse>

<n s : r e t u rn> f a i l u r e</ n s : r e t u rn>!− re turn s t a tu s o f the s e r v i c e
i n d i c a t i n g a f a i l u r e−

<SyncTaskResponse>

Contrary to the software layer, when we examined the infrastructure provenance, it

is found the Node Controller responsible for hosting the service snyctodatabase was

136 Use Cases of DataSync

rebooted as shown in Listing 6.2. We might suspect this to be the reason for the

sync failure. However, only the infrastructure provenance is not enough to produce

the evidence that the restart of the NC is the exact cause of the failure of John’s

sync process.

Listing 6.2: Sample of the infrastructure provenance depicting information of the NC and
instance hosting the synctodatabase service

!- Ingoing message to the service -

<To> http: //172.31.252.1 :8775/axis2/services/EucalyptusNC <To> !-path

of the node controller hosting the virtual machine -

<Action >EucalyptusNCncRebootInstance </Action > !- name of the invoked

method at NC-

<Created >Friday , May 30 2014 10:25 PM<Created > !- time of the method

when execution started -

<ncRebootInstance > !- name of the method and other details such as who

and where the method was executed -

<userId >admin </userId >

<partition >CLUSTER01 </partition >

<name>cc_01 </name>

<ip>131.130.32.85 </ip>

<instanceId >i-AE843F32 </instanceId > !-the instance hosting

synctodatabase service -

<ncRebootInstance >

<Expires >Friday , May 30 2014 10:27 PM</Expires >!- time of the method

when execution finished -

!-Outgoing message from the service -

<n:ncRebootInstanceResponse >

<n:userId >admin </n:userId >

<n:return >true</n:return > !- indicating that NC was successfull

rebooted -

</n:ncRebootInstanceResponse >

With Aggregation

This time we combined the provenance of the software and infrastructure layer.

We executed the aggregated query with the selection of a time frame when the

failure occurred. A sample result of the aggregated query is presented in Listing 6.3.

The result clearly indicates when John tried to sync his data, the Node Controller

responsible for the instance hosting the virtual machine was in reboot phase (the

second record in Listing 6.3). Therefore, the aggregated provenance establishes the

relationship between the software and infrastructure layers and provides the evidence

of the failure of john’s activity.

Aggregating Provenance from Various Layers/Service Models of Clouds 137

Listing 6.3: Aggregated provenance presenting the information from the software and in-
frastructure layers together using aggregated query. The result clearly indi-
cates the steps which are taken in a sequence for finding the exact cause of
the failure

!- the first record in provenance presenting John ’s activity to sync

his data-

<Time> Friday , May 30 2014 10:25 PM </Time> !- activity date and time-

<ServiceName > Synctodatabase </ServiceName > !- name of the service -

<MethodDetails > !-various details about the invoked method -

<SyncTask >

</SyncTask >

</MethodDetails >

!- the second record in provenance presenting NC was rebooted -

<Action >EucalyptusNCncRebootInstance </Action > !- name of the invoked

method at NC-

<Created >Friday , May 30 2014 10:25 PM<Created > !- time of the method

when execution started -

<ncRebootInstance > !- name of the method and other details such as who

and where the method was executed -

<userId >admin </userId >

<partition >CLUSTER01 </partition >

<name>cc_01 </name>

<ip>131.130.32.85 </ip>

<instanceId >i-AE843F32 </instanceId > !-the instance hosting

synctodatabase service -

<ncRebootInstance >

<Expires >Friday , May 30 2014 10:27 PM</Expires >!- time of the method

when execution finished -

!- The third record indicating john request failed -

<SyncTaskResponse >

<ns:return >failure </ns:return > !-Return Status indicating a failure

-

<SyncTaskResponse >

Discussion

In the above scenario, the aggregated provenance from the software layer and NC

layer of the infrastructure provides the reason of the failure. For finding why the

Node was rebooted, we can further aggregate the provenance of Cluster Controller of

the infrastructure layer. The result of aggregating CC provenance with NC presents

the fact of CC problem and ultimately NC restart as shown in Listing 6.4. Hereby,

we conclude the aggregated provenance provides information of the exact cause of

failure regardless the reason of failures such as internet lost, restart of NC, shutdown

of CC, or any other problem at any layer of the Cloud.

138 Use Cases of DataSync

Listing 6.4: Cluster Controller provenance presenting that CC was shut down

<wsa:Action >EucalyptusCCShutdownService </wsa:Action > !- method of the

CC service invoked in Cloud -

<wsa:From >

<wsa:Address >http: // localhost:8774/axis2/services/EucalyptusCC </

wsa:Address > !- the location where the method was invoked -

</wsa:From >

<n:ShutdownServiceResponse xmlns:n="http: // eucalyptus.ucsb.edu/"> !-

the response generated by the service -

<n:userId >admin </n:userId > !- user who perfomed the shut down-

<n:return >true</n:return > !- indicating that CC was shut down-

</n:ShutdownServiceResponse >

6.6.2 Use-Case: The sync process from Cloud presents wrong con-

tent

Scenario:

John synced his data to the Cloud while at work. Later at home he got wrong

contents after syncing the data from the Cloud. The wrong output is a pdf file

which he submitted to the Cloud earlier via attachment in an email. Something

went wrong between the two sync processes and John is interested to know the

reason.

Without Aggregation

We examined the provenance of software layer for the services synctodatabase and

syncfromdatabase as shown in Listing 6.5 and Listing 6.6 respectively. The results

indicates various information such as when and who performed the task along with

other information. More importantly the provenance depicts information about con-

tent such as title and size of the pdf document. As shown in Listing 6.6, provenance

of the item (pdf file) is changed, i.e., size and notes. However, the software prove-

nance alone is not able to provide the necessary information why the file is changed.

Aggregating Provenance from Various Layers/Service Models of Clouds 139

Listing 6.5: Provenance information: john

synched data to the Cloud

!-Input message -

<Time> Friday , May 30 2014 10:30

AM

</Time> !-activity date and time-

<ServiceName > Synctodatabase </

ServiceName > !-name of the

service -

<SyncMailWithAttachment > !-method

details -

<name>john</name>

<Attachment -title >Test</title >

<notes >This is a pdf file for

the test</notes>

<size> 0.56 MB </size>

!-Output message -

<SyncTaskResponse >

<ns:return >success </ns:return >

!-return status indicating

a success -

<SyncTaskResponse >

Listing 6.6: Provenance information: john

synched data from the Cloud

!-Input message -

<Time> Friday , May 30 2014 10:25

PM

</Time> !-activity date and time-

<ServiceName > Syncfromdatabase </

ServiceName > !-name of the

service -

<SyncMailWithAttachment > !-method

details -

<name>john</name>

<Attachment -title >Test</title >

<Notes >This is a test to view if

the content are uploaded </

notes>

<size> 0.04 MB </size>

!-Output message -

<SyncTaskResponse >

<ns:return >success </ns:return >

!-return status indicating

a cuccess -

<SyncTaskResponse >

Analogous to the software layer, when we examined the provenance of the infras-

tructure layer (object storage to be specific), it is found that John and another user

Alex performed operations on the same content as shown in Listing 6.7. The reason

for the same operation is the public read/write access to the file. However, only the

infrastructure provenance is not sufficient to produce evidence that Alex operation

is indeed responsible for the wrong content.

With Aggregation

We aggregated provenance of the software and object storage for the duration of time

John performed the two sync processes. The aggregated query was used to extract

the information from the provenance as shown in Listing 6.8. The result clearly

indicates that Alex performed his operation after John, and this is the exact reason

of the wrong output. Moreover, we found out that the wrong output to John is

actually the file uploaded by Alex. The aggregation allows us to see the provenance

of both the layers and hence the fact that content is changed. Therefore, it is possible

for us to verify modifications are made to John’s original data not performed by him.

140 Use Cases of DataSync

Listing 6.7: Provenance information presenting the fact that john and alex synced a par-
ticular file to the Cloud with the same name (key)

!- Activity of user John-

<euca:PutObjectType > !-operation of the Walrus service , i.e., create

content -

<euca:userId >john</euca:userId > !-user name-

<euca:_return >true</euca:_return > !-status -

<euca:timeStamp >Friday , May 30 2014 10:30 AM</euca:timeStamp > !-

time stamp when content are created -

<euca:bucket >bucket1 </euca:bucket > !-name of the bucket -

<euca:key >test.pdf</euca:key > !-name of the object -

<euca:contentLength >591748 </euca:contentLength > !-size of content

in bytes -

<euca:metaData > !-represents user_defined metadata -

<notes > This is a pdf file for the test </notes >

</euca:metaData >

<euca:contentType >application/pdf</euca:contentType > !-type of

content such as pdf file-

</euca:PutObjectType >

!- Activity of user Alex-

<euca:PutObjectType > !-operation of the Walrus service , i.e., create

content -

<euca:userId >ales</euca:userId > !-user name-

<euca:_return >true</euca:_return > !-status -

<euca:timeStamp >Friday , May 30 2014 11:30 AM</euca:timeStamp > !-

time stamp when content are created , noted that alex performed

the operation after john-

<euca:bucket >bucket1 </euca:bucket > !-name of the bucket -

<euca:key >test.pdf</euca:key > !-name of the object -

<euca:contentLength >44568 </euca:contentLength > !-size of content

in bytes -

<euca:metaData > !-represents user_defined metadata -

<notes > This is a test to view if the content are uploaded </

notes>

</euca:metaData >

<euca:contentType >application/pdf</euca:contentType > !-type of

content such as pdf file-

</euca:PutObjectType >

6.6.3 Use-Case: Corrupted Data

Scenario

A developer decided to add a routine to the services which submits and extracts

data to/from the Cloud using an updated driver. He also updated the drivers on

the virtual machines to comply with the added routine. The driver has bugs and

the data send or retrieved by users got corrupted. We want to know exactly which

users and data is affected by the added routine.

Aggregating Provenance from Various Layers/Service Models of Clouds 141

Listing 6.8: Aggregated provenance from the software and infrastructure layers depicting
activities of the two users with the content having same key

!−Record 1 in provenance : when john synched h i s data−
<Time> Friday , May 30 2014 10 :30 AM </Time> !− a c t i v i t y date and time−
<ServiceName> Synctodatabase </ServiceName> !−name o f the s e r v i c e−
−−−
!−Record 2 in provenance : When ob j e c t s t o rage c rea ted the content−
<euca:PutObjectType> !− opera t i on o f the Walrus s e r v i c e , i . e . , c r e a t e

content−
<Time> Friday , May 30 2014 10 :30 AM </Time> !− when the content was

c rea ted−
<john> !− i n fo rmat ion about the user John
<metadata> !− i n fo rmat ion about h i s content−
−−−
!−Record 3 in provenance : a re sponse f o r s u c c e s s f u l c r e a t i on o f content

to john−
−−−
!−Record 4 in provenance : when Alex c rea ted h i s content with the same

name (key)−
<euca:PutObjectType> !− opera t i on o f the Walrus s e r v i c e , i . e . , c r e a t e

content−
<Time> Friday , May 30 2014 11 :30 AM </Time> !− when a l ex rep la ced the

content−
<a l ex> !− i n fo rmat ion about a l ex−
<metadata> !− i n fo rmat ion about the c rea ted content which d i f f e r s from

john ’ s content−
−−−
!−Record 5 in provenance : When john synced h i s data from the Cloud−
<ServiceName> Syncfromdatabase </ServiceName> !−name o f the s e r v i c e−

Without Aggregation

The platform layer provides information about the time and added routine to the

services, i.e., when the service was updated. The software layer presents information

about various users and their input/output data which they send and retrieved

to/from the Cloud. Similarly, if the new routine is utilizing object storage from the

Cloud then IaaS layer provides information about the affected content. Each of the

layers provide important provenance however, we need the aggregated provenance

to find which data and which users are affected by the added routine in the web

services.

With Aggregation

When we aggregate the provenance of various layers, we can exactly identify which

users got affected by the added routine. This is accomplished using platform prove-

nance for finding when the routine was added, and the software provenance for

finding users and data utilizing the newly added routine. Similarly, the infrastruc-

ture layer (object storage) presents information about content uploaded with the

142 Fault Tracking (Error Handling) in Clouds

newly added routine. Moreover, the aggregated provenance also identifies if the

data in the Cloud is corrupted or not. For instance John is getting corrupted date

when he synced his data from the Cloud. However, when john synced data to the

Cloud, it used the service before any changes. Therefore, aggregated provenance

also validates, John’s data in the Cloud is not corrupted but only the extraction of

data is wrong.

6.6.4 Discussion

The above use cases present the significance of aggregated provenance for finding

various failures and the reason of those failures. Moreover, aggregated provenance is

utilized for validation and verification corrupted content, users activities and wrong

outputs. The aggregated provenance identifies the source of various failures and who

is affected since the failure occurred. Therefore, aggregated provenance is important

for solving various problems at different layers of Clouds. In the next section, we

present how the aggregated provenance is utilized for building a fault tracking system

in Clouds.

6.7 Fault Tracking (Error Handling) in Clouds

Clouds use a diverse set of resources, applications, hardware, and network proto-

cols for the delivery of various services. Research Clouds in particular utilize open

source libraries for communication between various components, web services and

storage mechanisms, e.g., Axis2/C, Apache and Mule [10] in Eucalyptus. Moreover,

unexpected failures such as software crashes are part of any distributed system.

Therefore, Clouds in general and research Clouds in particular are prone to errors

and faults. To resolve such failures, a fault tolerant system is used in distributed

environments.

A fault tolerant system is mainly composed of two parts, i.e., fault tracking

(detection of faults) and fault handling (corrections of faults) [64, 41]. Fault tracking

is the process of finding a fault and logging the result or showing a proper message

to the user. Fault handling on the other side is the analysis of a current failure by

mapping the data from recent events which might caused the failure, thus finding

the root cause of a failure [64]. Once the root cause of a failure is analyzed, the

proactive or reactive approach [135] is taken into consideration to resolve the failure.

The various steps required in a fault tolerant system are shown in Figure 6.6.

Proactive fault handling [100] is the process of prediction of upcoming failures.

This involves the analysis of the root cause and making the necessary decisions to

resolve the failure [110]. Reactive approach on the other hand, utilizes the exception

Aggregating Provenance from Various Layers/Service Models of Clouds 143

raising technique to resolve failures. For complex and scientific applications such

as workflow execution (SOA architecture), failure handling can be further divided

for individual tasks and layers as proposed in [70]. Individual task failure may

be handled by various approaches like restarting the task, putting checkpoints at

various levels and making a copy of the original task [17, 63].

It is important to note that the implementation of a fault management system

requires an extensive knowledge of each fault and methods to resolve them. This

can vary according to the domain, application and recovery mechanisms [64]. This

thesis does no cover the actual management of faults but instead provide the data

that can be utilized to build such a system.

Current failure

Analyze current failure

Map with history data

Root cause failure and

analysis

Fault Tracking

Fault

Management

Figure 6.6: Fault tracking and fault management

6.7.1 Fault tracking using provenance

Failures in distributed systems are categorized in two types, i.e., silent (unknown)

and non-silent (known) [32]. For instance, if we call synctodatabase service with

wrong arguments, this will cause a failure which is known to the system. Such fail-

ures are detected and stored by the provenance framework as shown in Listing 6.9.

The detail of provenance configuration for known failures, i.e., faulty flows is pro-

vided in Section 4.5.3. The silent failures occur when something goes wrong during

processing of the request and the root cause of the failure could be anywhere in

the distributed system. In the above Section 6.6, we presented various use cases of

different failures such as wrong output and corrupted data. Such failures require an

intensive investigation for finding the root cause of failures.

In distributed systems such as Clouds, fault tracking is mainly accomplished by

logging errors into text files. These logs contain warning, info and error messages.

However, logs are limited and lack the semantic meaning of errors unlike provenance.

For instance, the relationships between various events of Clouds and the respective

144 Fault Tracking (Error Handling) in Clouds

Listing 6.9: Presentation of a known or non-silent failure using provenance

!− the p r e s en ta t i on o f a know f a i l u r e in provenance−
<Fault> !− i n d i c a t i n g that a f a u l t has occured−

<Code>
<Value>Rece iver</Value> !− i n d i c a t i n g that f a u l t occured on the

r e c i e v i n g s i d e o f the s e r v i c e−
</Code>
<Reason>

<Text>wrong number o f arguments</Text> !− i n d i c a t i n g the reason o f
the f a i l u r e−

</Reason>
</Fault>

logs are not established. More precisely, provenance contains information where logs

contain data or messages. Contrary to logs, provenance is useful in finding the root

cause of any failure through investigation of recent activities.

The aggregated provenance records the relationships between the processes of

Clouds, users activities, and various data items. These relationships are exposed

through aggregated query when something goes wrong in the system. More precisely,

the result of an aggregated query presents users activities and the resultant Cloud

activities. Therefore, aggregated provenance plays a key role in finding the exact

cause of failures. The combination of silent and non-silent failure using the developer

framework provides the opportunity to track various failures, and find their origin.

Moreover, it provides a list of users and data items which are affected. Figure 6.7

presents the high level architecture of a fault tracking system utilizing provenance

of Clouds.

The provenance of particular layer highlights any failure and the aggregated

provenance track the failure to its origin. Therefore, fault tracking and management

is enhanced with the collection of related information on other layers of the Cloud as

shown by the aggregated query in Figure 6.7. Fault tracking utilize various informa-

tion from Clouds layers such as different processes, invoked methods, input/output

data, resources utilized, and changes made to the resources and services etc. Us-

ing provenance as a means of finding root cause of any failure has the following

advantages:

6.7.2 Advantages

• Related data: The framework captures and provides the related data for

any event. For instance, the input and output parameters when a service is

invoked. These parameters are important for finding the exact reason of a

failure.

Aggregating Provenance from Various Layers/Service Models of Clouds 145

End user/Developer/Administrator
Activities

Service
components

Virtual
Machines

Object
Storage

Database
Storage

Linking and
Communication

Provenance
Collection

Int
erc

ep
t

Software

Platform

Infrastructure

Represents the
relationships between
Cloud components

Fault
Tracking

Aggregated
Query

Query

Provenance contains
activities of end users,

software developer and
resource providers and

the corresponding
activity on the Cloud

Result
Analyze

Others

Figure 6.7: Fault tracking using the collected provenance and aggregated query

• Provenance is event based: Provenance supply information according to

the activities of users and the corresponding activities of the Cloud anywhere

in the distributed system. Therefore, in case of failures, provenance provides

the recent activities for analysis.

• Reduced effort: The well defined structure of the stored provenance allows

easy understanding and query of the information. Therefore, the effort to

find the root cause of any failure is reduced using a well-managed event based

provenance data.

• Custom messages: The provenance of various components is collected us-

ing the developed framework. Therefore, users can add custom messages for

various failures since the framework support modularity and independence.

• Controlling the amount of provenance: The user has a complete control

over the collection of provenance across various layers of Cloud. Therefore, the

framework allows configuring provenance to a particular service, a method, or

a component.

Limitation: Unfortunately, each version of the Eucalyptus Cloud is deployed using

the Mule 2.0.2 version of the framework. This particular version does not support

interceptors. The interceptor concept was dropped for this version while the previous

and later versions of Mule provide the support of interceptors. Therefore, we changed

146 Conclusion

the source code of Eucalyptus Cloud and built the Cloud with Mule 2.2.0 libraries

instead of using 2.0.0 to prove the concept of error handling using interceptors. The

change was not completely successful because of the change in new libraries and

their communication mechanisms. Therefore, we were not able to generate fault

messages for the CLC components to its full potential.

6.7.3 Summary

Distributed computing such as Clouds follow SOA architecture where the executions

of events utilize a diverse set of resources. Therefore, in case of failures, it is im-

portant to present the actual failure and provide the related data. The combined

data, i.e., actual failure and related information are analyzed for finding the root

cause of failures. Moreover, corrective actions can be taken to resolve the failure

such as in fault management systems. Such a system can be developed on top of our

fault tracking system which already provides the necessary information to analyze

the faults.

6.8 Conclusion

Cloud computing follows a layers architecture namely software, platform and in-

frastructure. On one side, each layer of the Cloud provides significant provenance

which generally target the audiences at that particular layer. On the other side, the

aggregated provenance is the result of accumulating provenance from individual lay-

ers which exploits the relationships that exists between various layers of distributed

computing such as Cloud. In this chapter, we put emphasis on the aggregated

provenance from various layers or types of Cloud computing. Firstly, we highlighted

the importance of aggregated provenance using a DataSync application and var-

ious scenarios which require the aggregated provenance. Secondly, we integrated

the developed framework to the software, platform and infrastructure layers for the

collection and management of provenance. Hereby, we explored the concept of aggre-

gated query which extracts information from provenance of all layers. We explored

various scenarios from DataSync application where the answer to a specific prob-

lem is only possible if we have the aggregated provenance. We also provided that

known and unknown failures can be resolved through investigating the aggregated

provenance, i.e., fault tracking and management. The architecture of the developed

framework proved to be versatile and provide the ability to integrate provenance

collection across multiple layers of Clouds.

7. General Evaluation of the Provenance

Framework

It is generally believed as mentioned by leading computer scientists that every com-

puter science problem can be solved by imposing an extra layer of indirection [121].

However, the extra layer cost some overhead. The integrated solution of provenance

in Cloud computing, particularly for the service models such as infrastructure, plat-

form, storage and software causes extra overhead of computation and storage.

The computation overhead is the extra time required for intercepting, parsing

and making the connection to store significant provenance data in the developed

framework. To provide a solution for problems which involve storing data such as

provenance, it is also important to provide strategies where the storage overhead

is kept minimal. Moreover, the data should be stored in such a manner, i.e., the

storage mechanism that facilitates efficient query. Furthermore, the evaluation of

the developed framework involves a proof of concept that the framework is extensible

to different service models with minimal changes and efforts.

We performed various test cases in order to provide the performance of the

developed framework including the collection, storage and query overhead. These

test cases are:

• Performance overhead of the framework for IaaS services such as Node Con-

troller and Cluster Controller using Eucalyptus Cloud.

• Performance overhead of the framework for PaaS model such as Application

Server and Enterprise Service Bus among others using WSO2 platform.

• Performance overhead of the framework for SaaS model using the web services

synctodatabase and syncfromdatabase developed in the DataSync application.

• Storage overhead of the framework for provenance data which includes different

protocols of storing data such as object storage in XML format and NoSQL

schema with M/DB database.

• Query performance of the stored provenance data in different storage units

and formats.

147

148 Evaluation of the Framework for Cloud IaaS Model (Using Eucalyptus)

7.1 Evaluation of the Framework for Cloud IaaS Model

(Using Eucalyptus)

The developed framework is tested and evaluated using Eucalyptus Cloud set as

IaaS model. The Eucalyptus Cloud uses two middlewares, i.e., Axis2/C and Mule

for the communication and linking between services and components. Therefore, we

evaluated the developed provenance framework based on these two middlewares.

7.1.1 Performance of the Framework for CC and NC Services Using

Axis2/C

In this test case, we evaluated the Cluster and Node Controller services of Eucalyp-

tus Cloud. To get the physical evidence of computation overhead, timestamps were

calculated at the beginning of provenance module invocation and later on when the

data is parsed and saved into XML file. Time overhead includes the provenance mod-

ule for Inflow and Outflow phases of Apache Axis2/C. Evaluation was performed

using the underlying architecture detailed in Table 7.1. The details of the physical

machines that were used to install and run IaaS Cloud are given in Table 7.2.

Table 7.3 presents the performance overhead of provenance for CC and NC com-

ponents. The maximum times are the exceptional cases and therefore, we calculated

the average time from multiple runs, i.e., 50 executions. The average time presents

the overhead for collecting, parsing and storing of provenance data into properly

defined XML files. The results were very low (in milliseconds) for collection module

of the provenance framework as shown in Table 7.3.

Cloud
provider

Operating
system

Cloud
services
engine

Languages Storage
unit

Virtualization

Eucalyptus
1.6.2

Linux
Ubuntu
10.04
Server

Axis2/C
1.6.0

C,C++ File
system
(XML)

KVM/XEN

Table 7.1: Underlying architectural components used to evaluate Eucalyptus Cloud.

7.1.2 Performance of the Framework for CLC Services Using Mule

The CLC services of Eucalyptus Cloud are deployed using Mule 2.0 framework. This

particular version of Mule framework does not support interceptors and therefore, we

built Eucalyptus with Mule 2.1.2 libraries. However, we were not able to successfully

implement Mule 2.1.2 libraries to all the components of CLC services. Therefore,

General Evaluation of the Provenance Framework 149

Machine No Services Installed CPU Memory Disk Space

Machine 1 CLC, CC, Storage
Service

Intel Core (TM) 2:
CPU 2.13 GHz

2 GB 250 GB

Machine 2 Node Controller Intel Core (TM) 2:
CPU 2.13 GHz

2 GB 250 GB

Table 7.2: Underlying machine details

Cloud Component Max time (ms) Min time (ms) Avg time (ms)

Infrastructure (NC) 15 2 4

Infrastructure (CC) 20 7 12

Combined 16ms

Table 7.3: Elapsed time overhead (in milliseconds) for provenance collection.

we tested Mule ESB independently with various communication protocols to send

and receive data between different components of applications.

In this case, we calculated the time required for provenance collection, parsing

and logging to text file. Different services which are provided as samples with Mule

framework such as Echo, Hello and WebApp were tested. These samples use dif-

ferent configuration, i.e., communication protocols and data formats to send and

receive data between various components. For example, Echo service is provided

with two different configurations. The first configuration utilizes the System.in and

System.out methods to send and receive data on console. The second configuration

utilizes HTTP protocol to send and receive information. Where the WebApp service

utilizes REST and SOAP protocols of communication to send and receive data in

XML format.

We executed and tested Echo, Hello and WebApp services with different config-

uration and communication mechanisms multiple times. We calculate the best time,

worst time and average time of the computation of provenance data. The process

of testing is performed considering the overall provenance which includes the Mes-

sageIn and MessageOut phases of Mule. We also calculated provenance overhead

only for MessageIn phase and provenance only for MessageOut phase. The under-

lying architecture and system details for this test case are presented in Table 7.4.

Figure 7.1 presents the performance results of various executions of the services

with provenance (MessageIn), provenance (MessageOut) and provenance (MessageIn

+ MessageOut). The Y-axis represents the time required for collecting, parsing and

storing of provenance data in text file.

The increase in time, i.e., the cost of provenance computation is calculated for

overall provenance, only MessageIn provenance and only MessageOut provenance.

150 Evaluation of the Framework for Cloud IaaS Model (Using Eucalyptus)

Component
tested

Operating
system

Services
tested

Protocols
tested

CPU
architecture

Mule frame-
work 2.1.2

CentOS 6.4 Echo HTTP x86 64 Intel
(R) Core
(TM)2

WebApp REST
Hello SOAP

Console(Std-
in/out)

Table 7.4: Underlying architectural components used to evaluate Mule framework.

The cost is calculated for average values from multiple executions using Formula 7.1.

T ime Increase = AverageofT2 −AverageofT1 (7.1)

Where T2 is the time including provenance and T1 is the time excluding provenance.

The average increase in time for collecting, parsing and storing overall provenance

data is only 1.12 milliseconds using Formula 7.1. The average increase in time for

only MessageIn provenance is 0.2 milliseconds and for only MessageOut provenance

is 1 millisecond when the comparison is performed for provenance collection with and

without provenance data. The individual MessageIn and MessageOut provenance

are collected and evaluated to observe the respective overhead in each phase. In a

real e-Science environment, the overall provenance of any process is essential.

0
1
2
3
4
5

MessageIn
(Inbound)

MessageOut
(Outbound)

Total (Inbound
+ Outbound)

Tim
e in

 mi
lise

con
ds

Best Case
Worst Case
Average

Figure 7.1: Evaluation of Mule ESB

7.1.3 Storage Overhead of the Framework

To find the storage overhead, we calculated the size of the XML file which is storing

provenance data for CC and NC services. We chose a worst case scenario where

all the incoming (Inflow) and outgoing (Outflow) data was stored, i.e., provenance

General Evaluation of the Provenance Framework 151

data without any filtering or parsing. This process was performed for every method

of the Eucalyptus CC and NC services. The size of provenance data for some of

the methods is represented in Figure 7.2 for Eucalyptus NC service. As shown in

Figure 7.2 the average data size for the presented methods is about 2.24 Kilo Bytes

(KB). There could be slight variation in the overall file size because the provenance

data depends on the context of any request such as the methods that are invoked

for a particular request in a Cloud IaaS. The rest of the methods in Eucalyptus CC

and NC services demonstrated the same storage cost.

Figure 7.2: Various methods of Eucalyptus NC service and their respective storage over-
head (kilobytes of disk space) for provenance data.

7.1.4 Discussion of the Results

The cost of collection of provenance data for IaaS module using our technique of

interception is almost negligible as shown in Table 7.3 and Figure 7.1. Similarly

the cost of storage of provenance data is also minimal as shown in Figure 7.2. It is

essential to note that the low computation and storage overhead of the provenance

frameworks is because of two reasons. Firstly, we used an approach where the

extension of the middleware is achieved by utilizing built in feature, i.e., interceptors.

This approach does not add any extra burden except the collection of provenance

data. Therefore, the computation overhead is very low as provenance collection is

part of the underlying architecture. Secondly, we utilized the link based mechanism

to store the provenance data. This approach saves the space and time required

to make a copy of the original object. Since the original objects already exist in

152 Evaluation of the Framework for Cloud IaaS Model (Using Eucalyptus)

Cloud storage such as Walrus, therefore we do not make a copy of existing objects

(contents) in Clouds.

In Eucalyptus or any other IaaS Cloud, a particular request maybe routed to

various services and components. For example, to stream data in/out in Eucalyptus

Cloud involves CLC and Storage Controller to interact and communicate for the

successful operation. Similarly, requesting a VM involves CLC, CC and NC services

to route a particular request. Therefore, the total overhead of provenance in IaaS

Cloud is the summation of individual overheads of various services such as CLC,

CC, and NC as depicted in Formula 7.2.

Total Overhead =

n∑

i=0

CLCi +

n∑

i=0

CCi +

n∑

i=0

NCi (7.2)

Where the variable i represent the number of components such as methods for which

the provenance module is configured. Therefore, the overall overhead depends on

the configuration of provenance based on users requirements of granularity of data.

The term CLC stands for Cloud Controller, CC for Cluster Controller, and NC for

Node Controller. Figure 7.3 presents the total overhead where the individual values

(average) of CLC, CC and NC are taken from Figure 7.1 and Table 7.3.

1.12

12

4

17.12

0
2
4
6
8

10
12
14
16
18

CLC CC NC
Overhead of individual components Total Overhead

Tim
e i

n m
ilis

ec
on

ds

Figure 7.3: Total overhead (in milliseconds) of provenance computation is the summation
of individual overheads from various components

General Evaluation of the Provenance Framework 153

7.2 Evaluation of the Framework for Platform and Soft-

ware Models (Using WSO2 and DataSync Applica-

tion)

The developed framework is tested and evaluated for platform model using WSO2

platform and DataSync application. The DataSync application which acts as a

software model is deployed in WSO2. Two of the key servers in WSO2 platform,

i.e., Application Server and Enterprise Server Bus (ESB) are tested with the web

services synctodatabase and syncfromdatabase created in the DataSync application.

Rest of the servers in WSO2, e.g., Business Process Server, Identity Server and

Data Services Server etc. are tested with the default Echo service.

The Application Server in WSO2 is used for deploying applications such as busi-

ness processes, workflows, web, and mobile applications. The Application Server

utilizes open source technologies such as Apache Tomcat, Apache Axis2, and JAX-

RS etc. to share various applications and business logic across an entire IT System.

Similarly, ESBs utilize routing, meditation and transformation of messages to con-

nect various applications or components of a particular application seamlessly in

one place. For example, the format in XML, HTML and text are transformed and

routed via REST and SOAP protocols among others. There are various transport

protocols available to communicate with ESB such as HTTP, SMTP and HTTPs

etc.

We performed the evaluation by using HTTP transport protocol, SOAP com-

munication protocol, Axis2 (JAVA version) framework and XML data format for

the communication and linking between different components of WSO2 framework

and DataSync application. Table 7.3 presents the cost of provenance collection for

different layers such as software and platform. The platform layer is evaluated with

Application Server and ESB as shown in Table 7.3. The maximum times are the

exceptional cases and therefore average time is calculated from multiple runs (i.e.,

50 executions) of the involved components and layers. The average time presents

the overhead for collection, parsing and storing of the provenance data.

Cloud Platform layer Max time (ms) Min time (ms) Avg time (ms)

Software (DataSync application) 18 2 7

Platform (WSO2 AS) 22 1 3
Platform (WSO2 ESB) 12 1 2.5

Table 7.5: Elapsed time overhead (in milliseconds) of provenance collection for the plat-
form and software layers

154
Evaluation of the Framework for Platform and Software Models (Using WSO2 and DataSync

Application)

7.2.1 Discussion of the Results

The cost of collection of provenance for software and platform layers of Cloud is

almost negligible as shown in Table 7.5. It is important to note that the cost

of collection of provenance data is always in milliseconds for any layer of Cloud

as depicted in Table 7.3, Table 7.5 and Figure 7.1 regardless of the underlying

architectures. Hereby, the technique for provenance collection works in a standard

fashion across all the layers of Cloud computing. Similarly the cost of storage of

provenance data is also low as shown in Figure 7.2. The storage technique follows

the link based mechanism, therefore the original objects size and their formats do

not affect the size of provenance storage.

A particular application in Clouds may utilize one or more service models. For

example, the DataSync application can be deployed directly in Eucalyptus Cloud

without utilizing the platform. Similarly, the DataSync application can be deployed

using the platform services. Therefore, the overall overhead of provenance depends

on the architecture of applications. A generalized Formula 7.3 is presented which

is used to calculate the grand total overhead with the summation of individual

overheads from the software, platform and infrastructure layers.

Total Overhead =

n∑

i=0

SaaSi+

n∑

i=0

PaaSi+

n∑

i=0

IaaSi (7.3)

Where the variable i represent the number of components such as methods for which

provenance module is configured in a particular service model. Figure 7.4 presents

the total overhead where the values (average) of individual layers, i.e., IaaS, PaaS

(Application Server) and SaaS (DataSync) are taken from Figure 7.3 and Table 7.5.

Depending on the granularity and storage mechanism, time required for prove-

nance may slightly vary. The cost effective performance in terms of provenance

computation and storage explains the utility of our provenance collection technique

that follows the interceptor based approach and provenance storage that utilizes a

link based approach. Given the overall advantages of provenance enabled Clouds

such as fault tracking, resource utilization, patterns finding, trust, reliability and

energy consumption, the extra overhead is negligible. Furthermore, the success-

ful deployment of provenance collection to Axis2/C, Axis2 and Mule frameworks

support our theory of a generalized and independent provenance framework.

General Evaluation of the Provenance Framework 155

17.12

3
7

27.12

0

5

10

15

20

25

30

IaaS PaaS SaaS
Overhead of individual layers Total Overhead

Tim
e i

n m
ilis

ec
on

ds

Figure 7.4: Total overhead (in milliseconds) of provenance computation is the summation
of individual overheads from various layers

7.3 Evaluation of the Framework for Object Storage

(STaaS Model)

We chose a subset of provenance data, i.e., metadata to evaluate the overhead in-

volved in collecting, storing and querying provenance data for STaaS model. We

performed various test cases as following:

• Collection Overhead: The first test case involves the overhead or cost of col-

lecting and parsing the metadata by measuring the elapsed time for the server

module, i.e., Walrus in Eucalyptus IaaS. The elapsed time is measured with

and without the metadata, i.e., the modified and the original architecture of

Eucalyptus Walrus.

• Storage Overhead: The second test case involves the storage overheads of the

metadata in XML format and NoSQL schema.

• Query Performance: The third test case is performed to evaluate the query

performance based on different protocols, i.e., LinQ to XML and SimpleDB

APIs. The performance of the query protocols are compared with the native

hit and trial method.

It is important to note that the overhead involved in metadata collection does not

depend on the file size or format because the interception works in a seamless fashion

regardless of the size and format of files. Similarly, the metadata storage also use link

based mechanism and therefore the size and format of files are irrelevant. Therefore,

156 Evaluation of the Framework for Object Storage (STaaS Model)

we expect the overhead or cost to be minimal in both cases, i.e., storage space and

elapsed time using the interception techniques and link based mechanism.

7.3.1 Collection Overhead

To evaluate the collection overhead, we executed a scenario where various objects

of different size and formats are uploaded to a Cloud with and without the meta-

data support. We steadily increased the number of objects from 200 to 5000 and

calculated the time required to upload each additional 200 objects. The calculated

overhead is measured via elapsed time between the objects with the metadata and

without the metadata, i.e.,

Elapsed Time = Time taken by objects with the metadata minus the time taken by

objects without the metadta

The overhead is displayed in Figure 7.5 and Figure 7.6. The results are calculated

using a client/server architecture of three machines with various components of Eu-

calyptus Cloud installed on individual machines and the detail is provided in Table

7.6.

Figure 7.5: Results of the calculated time (minutes:seconds format) with and without the
metadata for Eucalyptus Walrus

Elapsed time is calculated for different number of objects in Figure 7.5 and

Figure 7.6. For instance, when the numbers of objects are 200, elapsed time with

XML storage is 16 seconds and with M/DB is 24 seconds. Therefore the cost for

individual objects is calculated using the equation 7.4.

General Evaluation of the Provenance Framework 157

Figure 7.6: Results of the calculated time (hours:minutes format) with and without the
metadata for Eucalyptus Walrus and 5000 objects

Resource Operating
System

Memory
(MB)

Component
Installed

Disk
Size (GB)

CPU
Archi-
tecture

CPU
Cores

Network
(Mb/s)

Machine 1
(Server)

Ubuntu
10.04

2048 CLC, Wal-
rus

80 x84 64
Intel(R)
Core
(TM) 2

2 (2.33
GHz)

100

Machine 2
(Server)

CentOS
6.4

4192 Cluster,
Node

250 x84 64
Intel(R)
Core
(TM)2

4 (2.83
GHz)

100

Machine 3
(Client)

Ubuntu
12.04

2048 Amazon
SDK,
JetS3t

80 x84 64
Intel(R)
Core
(TM) 2

2 (2.13
GHz)

100

Virtual
Machine
Instance

Ubuntu
10.04

512 M/DB 5 GB x84 64
Intel(R)
Core

1 (2.83
GHz)

100

Table 7.6: System details for evaluation

Cost =
ETi

i
(7.4)

where i represent the number of objects and ET represents the elapsed time.

Figure 7.7 presents the elapsed time for different number of objects using For-

mula 7.4. The results in Figure 7.7 clearly show that the involved overhead is

negligible when individual objects are uploaded to Cloud. Moreover, it also demon-

strates, the cost for individual object remains almost the same regardless the number

of objects as depicted by the trend lines. Furthermore, object storage is reflecting

158 Evaluation of the Framework for Object Storage (STaaS Model)

a slightly better performance when compared to M/DB storage of metadata. We

believe the reason is the configuration of M/DB in the Cloud on a virtual machine

instance that is running on a different physical machine (Node Controller). Each

time the server component request to add the metadata in M/DB, network and

HTTP protocol is involved. This overhead can be decreased if metadata is stored

in memory for a particular number of objects and then the whole bunch is written

to the M/DB. By using this approach, the number of request over HTTP protocol

will be reduced and therefore the overall overhead can also be reduced. This ap-

proach can create consistency problem between the original data and metadata. For

instance, when the data is stored in memory for particular number of objects, mean-

while another user can modify the existing data. In general, the overhead increases

as the number of objects increases but remains minimal.

�� ��� �� ��� ����

�

����

���

����

��

��
�

���

����

���
�������	����	�������� �������	����	�� !"�

#��$��	%&	'$(�)��

�
��

�
�
�

�
	�

��
�

	�
*

	�
�

)
%

*
�

�

Figure 7.7: Cost of provenance collection in terms of elapsed time (in seconds) for different
number of objects

7.3.2 Storage Overhead

When metadata is stored in XML object, each individual metadata item cost ap-

proximately 1.8 KB of disk space which includes user metadata, system metadata

and server metadata. On the other hand, when M/DB is utilized to store the meta-

data, Formula 7.5 is used to measure the base storage required for various items and

their respective attributes and values pairs. In the given Formula, storage size varies

General Evaluation of the Provenance Framework 159

depending on the text length of item names, attribute names and attribute values.

Storage Overhead =
n∑

i=1

(ItemNamesSizeBytes)i+

n∑

i=1

(AttributeNamesSizeBytes)i+

n∑

i=1

(AttributeV aluesSizeBytes)i (7.5)

Where the variable i represent the number of objects that are uploaded to a Cloud

storage. Figure 7.8 presents the cost of provenance storage using the average size of

1.8 KB of disk space for XML repository, and the Formula 7.5 for M/DB repository.

Figure 7.8 depicts a marginal cost of provenance storage which remains consistent

regardless the size of the original objects uploaded to the Cloud. This is achieved

using the link based approach and coarse grained provenance for collection and

storage.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

200 400 600 800 1000 5000
Number of Objects uploaded to the C loud

Di
sk

 Sp
ac

e f
or

 pr
ov

en
an

ce
 in

 By
te

s

NoSQL XML

Figure 7.8: Cost of provenance storage (disk space in bytes) for different number of objects

7.3.3 Query Performance

The performance of query protocols for the stored metadata in different formats is

evaluated in Section 5.1.7.

160 Extension of the Provenance Framework to Nimbus Cloud

7.3.4 Discussion of the Results

The framework presents a marginal cost in terms of provenance collection and stor-

age overheads as shown by various experiments for STaaS model just like the IaaS,

PaaS, and SaaS models of the Cloud. For the storage model, it is also proved that

the framework technique is not affected by the size of objects in Clouds. Therefore,

the interception technique and link based mechanism for provenance collection and

storage proved their utility. Moreover, the results from Section 5.1.7 clearly depicts

the efficiency of query protocols utilized by the framework. Hence, the framework

presents a consistent evaluation with a marginal cost for all the layers or types of

Clouds paradigm.

7.4 Extension of the Provenance Framework to Nimbus

Cloud

The Nimbus project [101] is an open source Cloud IaaS model which provides two

products named the Nimbus Infrastructure and the Nimbus Platform.

The Nimbus Infrastructure allows clients to acquire various resources, deploy

virtual machines on the acquired resources and configure them according to the

user or application requirements. This part of Nimbus Cloud also provides the

implementation of a storage Cloud which is called Cumulus [33]. The communication

between a client, Nimbus Infrastructure and Cumulus is established using WSRF,

WSDL and REST mechanisms. Furthermore, Nimbus Infrastructure is compatible

with Amazon EC2 and Cumulus is compatible with Amazon S3 services. Figure 7.9

depicts the main components of Nimbus Infrastructure where the description of the

components is following:

• Cloud Client: The client provides various APIs that are utilized by users and

applications to communicate with the infrastructure services.

• Service Node: The component which sits in the middle between the client

and the VM. The job of the Service Node is to manage various requests from

users such as creation of a Virtual Machine and/or storing data. The storage

component stores users data along with raw Virtual Machines, i.e., resources.

• Virtual Machine Manager (VMM): The component in Nimbus Cloud which

handles the management of virtual machines. It uses libvirt library for the

management of XEN/KVM Virtual Machines and DHCP server is utilized to

assign IP addresses (public and private) to the Virtual Machines.

General Evaluation of the Provenance Framework 161

The Nimbus Platform provides additional tools to simplify the management of

the infrastructure services such as the integration of Nimbus Infrastructure with

other Cloud IaaS models, e.g., OpenStack and Amazon. To test the developed

provenance framework, we chose the Nimbus Infrastructure.

Service Node

Nimbus Cloud
IaaS

Storage
(Cumulus)

Cloud Client
(WSRF) HTTP SSH

VMM Node
VMM Node
Control
Libvirt

Xen/KVM

VM VM VM
Hypervisor

Push image

Request node

Virtual Machine Manager

DHCP server

User

Figure 7.9: Various components in the Nimbus IaaS Cloud.

Any request from a user is routed through the components presented in Fig-

ure 7.9. To collect the provenance data in the Nimbus Cloud, the Service Node

resides between the Cloud Client and VMM. Various services in the Service Node

are exposed via WSDL. These services utilize the Apache Axis2 framework for the

communication and linking mechanisms.

The developed provenance framework in divided into various components of col-

lection, storage, query and visualization. These components work independent from

each other, i.e., the modularity of the framework. Therefore, to test the integration

of our provenance framework, the collection module 4.2.1 needs to be tested. We

deployed the provenance collection module from the developed framework in Nimbus

Cloud at the Service Node. It is to be noted that the same module is used which is

deployed in WSO2 platform because they both use the same Apache Axis2 frame-

work. The test was successful and we were able to engage the provenance module

and collect various provenance data as shown in Listing 7.1.

Listing 7.1 provides a sample of the provenance data collected from Nimbus

IaaS Cloud where various parameters are presented such as the location of Nimbus

services, type of a request, networking mode, CPU architecture, memory, CPU cores,

and the state of the resource among others.

162 Extension of the Provenance Framework to Nimbus Cloud

Listing 7.1: Sample of provenance data collected from the Nimbus IaaS Cloud

<?xml version="1.0" encoding="UTF -8"?>

<To>https: //alf -laptop:8443/wsrf/services/WorkspaceFactoryService </To>

!- the address or machine where the request is forwarded -

<Action >http: //www.globus.org /2008/06/ workspace/

WorkspaceFactoryPortType/createRequest </Action > !-the type of

request which is the creation of a virtual machine in this sample -

<networking > !- the internel networking interface of Nimbus Cloud -

<name>eth0</name>

<ipConfig >

<acquisitionMethod > AllocateAndConfigure </acquisitionMethod >

</ipConfig >

<association > public </association > !- the public address assigned

to the resource and utilized by users -

</networking >

<CPUArchitecture > !- the architecture of the assigned Virtual machine ,

i.e., CPU-

<CPUArchitectureName > x86 </CPUArchitectureName >

</CPUArchitecture >

<VMM>

<type>Xen</type> !- the vitrualization technique -

<version >3</version >

</VMM>

<diskCollection > !- the resource which is requested along with its

location -

<location >cumulus: //alf -laptop:8888/Repo/VMS /35 df3a8c -afd7 -11e1-a77d

-0015 c553233a/ubuntu10 .10 </location >

</diskCollection >

<mountAs >hda</mountAs > !- the type of mounting -

<permissions >ReadWrite </permissions > !- the permissions assigned to

the resource -

<DeploymentTime >

<minDuration >PT60M </minDuration > !- the time duration for which the

resource is requested -

</DeploymentTime >

<InitialState >Running </InitialState > !- state of the virtual machine -

<IndividualCPUCount >

<Exact >1.0</Exact > !- number of assigned CPU-

</IndividualCPUCount >

<IndividualPhysicalMemory >

<Exact >256.0 </Exact > !- assigned memory in MB-

</IndividualPhysicalMemory >

<NodeNumber >1</NodeNumber > !-each instance is assigned a unique number

-

<ShutdownMechanism >Trash </ShutdownMechanism > !- The operation to be

perfomrmed when the machine is shut down-

General Evaluation of the Provenance Framework 163

7.5 Conclusion

In this chapter we focused on two key points, i.e., to measure the cost of the devel-

oped framework using the overhead involved and to evaluate the independence of

the framework from underlying architectures and domains.

Firstly, we evaluated the cost of computation, storage and query for various

modules of the framework. We performed tests to evaluate the overhead involved

in collecting and storing provenance data using various transport protocols, com-

munication protocols and data formats. Furthermore, we focused on various service

models, i.e., types of Cloud computing and the respective cost of various modules

of the framework. As shown with different experiments that the related overhead

of computation and query is always in milliseconds which we consider to be mini-

mal. The storage overhead depends on the granularity of provenance data and the

technique to store provenance data. We calculated the storage overhead involved in

different service models of Cloud and detailed the results. Since we are using the

link based mechanism to store the provenance data, therefore the storage overhead is

also low. We used different approaches to store the provenance data, i.e., XML for-

mat in object storage and NoSQL schema for M/DB. We believe that the overhead

involved in collecting and storing provenance data is negligible when considering the

utility of provenance in Clouds such as energy consumption, fault tracking, content

based searching, trust, reliability, pattern recognition and behavior analysis among

others.

Secondly, we provided a proof of concept with examples that the proposed tech-

nique of interception for provenance data can be deployed across different infras-

tructure, platform, and software layers of Clouds. The successful deployment of

the framework across various layers of Cloud and with a different IaaS Cloud, i.e.,

Nimbus proved that our approach is independent from underlying architectures and

domains.

8. Conclusion

Provenance is associated with datasets, processes, applications, infrastructures and

platforms that are used to derive a final result or data product in computational

or data science. Provenance provides useful information to understand, reproduce

and/or validate the final result along with the creator process and sub processes.

With the recent trend in distributed computing, Clouds are becoming the future

platform for e-Science research such as private Clouds which are used in lab envi-

ronments and universities. The distributed and abstract architecture of Clouds has

attracted the research and business communities for applications deployment such

as storage and sharing of data, and computation of data and processes.

The dynamic architecture of Clouds provides different service models such as

IaaS, PaaS, SaaS, and various characteristics such as abstraction, scalability, on-

demand computing among others. The different service models or layers address

various view points such as consumer, provider and developer of the Cloud. The

existing research of provenance in distributed computing like grids and workflows is

mostly focused on the application tier. With Clouds, the provenance of the archi-

tecture, i.e., service models or layers is also essential, e.g., to explore the connections

between the layers.

It is extremely important to provide provenance of the dynamic architecture of

Clouds from the perspectives of various service models and view points. Introducing

provenance in Clouds result in the reliability and trust of data and processes along

with other potential applications such as content based searching, fault tracking of

Cloud services (e.g., IaaS services), debug applications and utilization of resources

etc. Moreover, provenance of Clouds helps to understand the relationships that exist

between various layers or types of Clouds.

In this thesis, we investigated two key questions, i.e., why and how to provide

provenance of Clouds. The why part is focused on the implication of provenance en-

abled Clouds, i.e., the usefulness for the end users when provenance is augmented in

the Cloud. This part is build up with motivation, problem definition and the various

applications based on provenance data. The applications are explored from the view

points of consumers, developers and resource providers with respective service mod-

164

Conclusion 165

els of Clouds. The how part of this thesis provides the design and implementation

of a modular and independent framework for the management (collection, parsing,

storage, query, and visualization) of provenance data. The developed framework is

uniformly applied to the underlying abstract and distributed architecture of Clouds

such as different service models, i.e., infrastructure, platform, storage and software

as the proof of concept. Hereby, the evaluation of the framework is performed with

respect to various application domains and the framework components themselves.

8.1 Research Contributions

This thesis investigates the significance of provenance of Clouds which is motivated

by the recent shift of computation and storage towards Cloud. To satisfy the research

questions and the overall goal, i.e., Provenance in Clouds: Framework, Applications

and Implication, this thesis is divided into multiple parts.

The first part introduces provenance with respect to the architecture of Cloud

computing and provides the reasoning to incorporate provenance in Clouds. Hereby,

the architecture of Clouds is explored from the view point of a user, developer

and resources provider along with the respective provenance data. A list of re-

quirements/challenges are presented for the collection of provenance based on the

distributed, abstract, scalable and layered architecture of Clouds. In addition, re-

quirements such as low cost of provenance collection and storage are also presented.

The second part of this thesis provides the design of the framework for the

collection and management of provenance which addresses various requirements and

challenges offered by the layered and abstract architecture of Cloud computing.

The framework adopts a modular and independent approach for the collection of

provenance. The framework also provides services such as provenance storage, query,

and visualization. The implementation of the framework for different service models

of Cloud is also provided.

The third part details the implication of provenance in Clouds by defining, im-

plementing and validating various applications based on the collected provenance

and the components of the framework itself. These applications are explored from

the view points of a consumer, developer and resources provider in Cloud. Moreover,

the aggregated provenance is provided which exploits the relationships between the

layers such as finding the root cause of any failure. Lastly, the framework is tested

and evaluated for different service models of Cloud.

Figure 8.1 depicts the various components and activities which are detailed in

this thesis. To support the provenance enabled Clouds and satisfy the research

questions, this thesis provides the followings:

166 Research Contributions

Applications via utilizing the provenance framework and
provenance data

Service Models
(Cloud Computing)

SaaS

PaaS

IaaS

Abstraction, scalability, virtualization, on-
demand, pay-as-you-go, elasticity, dependence

on SOA, modularity, etc.
Properties

Main Components of IaaS

Cloud (CLC) Cluster

Node Storage

Framework Requirements

Consistency Modularity

Cost Effective Independence

Provenance
Framework

Framework Properties

Modular Consistent

Effecient High Usability

Independent

Challenges

PaaS SaaS

Aggregated
Provenance

Integration of the Framework

Architectural
Challenges

IaaS

Framework Components

Collector Parser

Storage Query

Visualization

Evaluation of the
Framework Components

Collection Overhead

Storage Overhead

Query Performance

Testingand
Evaluation

Content search based on metadata
Layering of provenance data for finding and exploring
the connections and relationships between the layers

(failures handling, verification, validation)
Creating usage reports and finding similarity patterns
Analyzing provenance data and utilizing the analyzed
data for efficient utilization of resources (reusing

existing resources)
Error Handling (fault tracking and management)

Provenancefrom
variouslayers

Provenance Data

Figure 8.1: Major Contributions of Thesis in Pictorial Form

Conclusion 167

• Cloud Computing: We studied the dynamic architecture of Cloud comput-

ing such as different service models of IaaS, PaaS, SaaS and STaaS (object

storage), and the properties of Clouds such as abstraction, scalability and on-

demand computing etc. We provided examples with each service model, i.e.,

Eucalyptus, WSO2, DataSync and Walrus. We gave a detailed view of the

design and characteristics of Cloud computing. A list of requirements/chal-

lenges is provided based on the design and characteristics that must be ad-

dressed while providing provenance in Clouds. Moreover, a list of significant

provenance items along with their description is provided for the individual

layers of Cloud.

• Analyzing Existing Techniques of Provenance: We provided a state

of the art for the collection of provenance data from existing fields such as

grid, workflow and Cloud computing. We categorized the existing schemes

into two main types (provenance as core part of the Cloud and provenance

as an independent service) and presented their impact on Cloud computing.

This involved various advantages and disadvantages of the existing schemes

assuming they are incorporated in Clouds. We presented in detail the pros

and cons when provenance collection is part of the Cloud core (the underlying

architecture or service models) and when provenance collection is independent

of the Cloud core.

• Proposed Provenance Framework: We designed and developed a prove-

nance framework for Clouds which: (i) addresses the abstract, modular and

distributed architecture, (ii) addresses the list of requirements for the collec-

tion of provenance data in Cloud computing, and (iii) takes the advantages

from the existing schemes of provenance from workflow and grid computing.

The framework adopts a modular design and independent approach for the

collection and management of provenance data. The framework allows incor-

porating provenance in Clouds with minimal knowledge and understanding

of the underlying architectures and domains. Furthermore, the framework is

extended towards different service models with minimal changes. The devel-

oped framework supports properties such as modularity, independence from

underlying architectures, marginal cost of provenance collection and storage,

and high usability among others. The implementation of the framework and

its various components is also provided using various types/layers of Clouds.

• Applications of Provenance in Clouds: The collection and management

of provenance is one aspect in any domain of e-Science. The other aspect is

to utilize such data, e.g., in Clouds to make them useful for the end users.

168 Research Contributions

Therefore, we presented and validated various applications exploiting the col-

lected provenance and the components of the framework from the view point of

consumers, developers and resource providers. The applications are designed

and tested to cover various aspects of provenance enabled Clouds such as: (i)

metadata based search in Clouds object storage, (ii) report generation of the

usage of Cloud resources and, finding behavior and similarity patterns in the

usage of Cloud resources, and (iii) resource utilization by analyzing and using

provenance data.

• Aggregated Provenance: The granularity of provenance data depends on

the architecture of Cloud computing. Since, Clouds are composed of different

layers such as IaaS, PaaS, SaaS and STaaS among others, provenance data can

be divided into different categories of infrastructure, platform, software, virtual

machines, web browsers and physical machines etc. Similarly, provenance

data inside one layer can be further divided into different components such

as provenance of CLC, CC and NC of the Eucalyptus Cloud (IaaS model).

The aggregated provenance from the different layers of Clouds is extremely

important to: (i) understand and explore the complete architecture, (ii) find

the relationships between layers, (iii) explore the interaction between layers,

and (iv) answer various queries which require individual or the aggregated

provenance from multiple layers.

A DataSync application was developed and explored for the layered architec-

ture of the Cloud with respective view points of consumers, developers and re-

source providers. Using the DataSync application and the layered architecture

of Clouds, aggregated provenance was established. The aggregated provenance

was further exploited for finding the root cause of various failures, i.e., fault

tracking. This was accomplished utilizing the relationships between the layers

of Clouds and the users activities (using DataSync) in aggregated provenance.

Moreover, the aggregated provenance was used to find components such as

data and processes which are affected because of the failure.

• Evaluation: Any layer of integration to solve a problem such as provenance

requires extra computation and storage overhead. We provided various eval-

uation results that our framework requires minimal to negligible overhead of

the computation and storage of the provenance data. Furthermore, we proved

that the framework is extensible to different service models, i.e., PaaS and

SaaS and other Clouds such as Nimbus. We also provided the performance of

query protocols which utilize provenance data from XML schema and NoSQL

database. The results clearly showed that the design of the framework using

Conclusion 169

interception for the collection and link based mechanism for the storage has

marginal cost and provides fast and efficient query mechanisms.

8.2 Limitations, Open Issues and Future Work

Some of the limitations, issues and future work directions for provenance in Clouds

are following:

• A completely independent provenance scheme: Our framework relies

on the extension of underlying architectures, i.e., middlewares. On one hand,

this approach makes our framework independent of various domains and ap-

plications. On the other hand, the framework becomes dependent on the

middlewares. Due to the extension of middlewares, the proposed framework

can collect the data which is passing through various components and services

via middlewares. If an organization requires fine grained provenance such as

the data which is not passing through various components of middlewares, the

framework is not able to collect such data. It would be interesting to investi-

gate a scheme which can communicate with components and services of Clouds

from outside. The major challenge to provide such a scheme is the inability to

extend and communicate with business Clouds and services. Furthermore, it

would be interesting to layer the provenance data where all the service models

of Cloud are utilized at the same time. For example, the support of WSO2

platform is provided in the commercial version of Eucalyptus. It would be

compelling to layer the provenance data of an application that is developed

and deployed using a platform which utilizes resources from infrastructure in

commercial offerings.

• Security and privacy issues: The security and privacy of data and pro-

cesses are concerns of any organization, especially in the context of sensitive

and critical private data. We do not provide any direct mechanism or algo-

rithm to handle such issues. However, we provide indirect methods to address

such issues, e.g., a provider can choose to disable the collection and storage

of provenance for the clusters and nodes where sensitive data is stored and

critical processes are executed. The same technique can be applied to disable

the provenance collection from the platform and software layers for various

components and services.

• Future work: The future work can extend the framework to its full potential

such as the implementation of the framework for business Clouds. Similarly,

170 Summary

the service models can be investigated and probably extended by using a com-

pletely independent approach for provenance data. It will also be interesting to

express provenance data using Web Ontology Language (OWL) and Resource

Description Framework (RDF) technologies for semantic purposes. Further-

more, various potential applications can be proposed based on the provenance

data and framework such as resolution (proactive or reactive approach) of

faults and errors.

8.3 Summary

Provenance is an important ingredient in various domains of computation and data

science for the purpose of verification, audit trials, reproduction, trust and reliability.

With the shift of dynamics toward Clouds such as computation and storage, it is

realized that Clouds themselves have important provenance from the infrastructure,

platform, storage and software layers. However, the existing research is mostly

focused in the provenance of application layer of distributed computing. To the best

of our knowledge, provenance is still missing to its full potential in Cloud computing

such as provenance of Clouds themselves. Therefore, we analyzed the dynamic and

modular architecture of Cloud computing from different view points (consumers,

developers and resource providers) and list the requirements for the collection and

management of provenance data. Hereby, we extend the architecture of Clouds

in a structured way to provide a framework for the collection and management

of provenance data and detailed various applications which take advantage of the

collected data and the developed framework.

The applications which are explored in this thesis address the view points of a

user and resource provider in detail. The software developer point of view is also

discussed while providing the aggregated provenance from various layers of Cloud

using the DataSync application. Various applications which utilize the collected

provenance data and developed framework provide the proof of concept, results

and the practical implication of the significance of provenance in Clouds. For in-

stance, providing the ability to search objects in Clouds explains the utilization of

the framework and the collected provenance data.

The framework is designed and implemented with key points such as, (i) modular

design, (ii) independent from underlying architectures and domains, (iii) extensible

to various layers of Clouds with minimum changes, (iv) easy to use and users con-

trolled, and (v) low cost of provenance computation and storage which is evident

through various evaluations performed in this thesis.

Appendices

A.1 XML Configuration Files of Mule (Eucalyptus Cloud)

Various configuration files (XML files) which are used by the Mule framework are provided below.

To configure, i.e., enable/disable provenance, these configuration files need to be edited for the

corresponding flow, model, service and/or method accordingly.

A.1.1 eucalyptus-walrus

Listing: eucalyptus-walrus.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ” xmlns : spr ing=”

ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ” xmlns:euca=”

ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=”walrus ”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”WalrusReplyQueueWS”/>

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”WalrusRequestQueue”>

<inbound>

<inbound−endpoint r e f=”WalrusRequestQueueEndpoint”/>

</ inbound>

<bridge−component/>

<outbound>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”BukkitWS” />

<payload−type− f i l t e r

expectedType=”edu . ucsb . euca lyptus . msgs . WalrusComponentMessageType

” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

171

172 XML Configuration Files of Mule (Eucalyptus Cloud)

<outbound−endpoint r e f=”BukkitWS”/>

<payload−type− f i l t e r expectedType=”edu . ucsb .

euca lyptus . msgs . WalrusRequestType”/>

</ f i l t e r i n g −rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Bukkit ”>

<inbound>

<inbound−endpoint r e f=”BukkitWS”/>

</ inbound>

<component c l a s s=”edu . ucsb . euca lyptus . c loud . ws .

WalrusControl ”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”WalrusReplyQueueWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”WalrusReplyQueue”>

<inbound>

<inbound−endpoint r e f=”WalrusReplyQueueWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . ws . u t i l . ReplyQueue”/>

</ s e r v i c e>

</model>

<model name=”WalrusInterna l ”>

<s e r v i c e name=”Bukk i t In te rna l ”>

<inbound>

<inbound−endpoint r e f=”BukkitInternalWS”/>

<inbound−endpoint r e f=”BukkitInternalVM”/>

</ inbound>

<component c l a s s=”edu . ucsb . euca lyptus . c loud . ws .

WalrusControl ”/>

</ s e r v i c e>

</model>

</mule>

A.1.2 eucalyptus-verification

Listing: eucalyptus-verification.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

Appendices 173

ht tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=” eucalyptus−v e r i f i c a t i o n ”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=” Sta r tVe r i f y ”>

<inbound>

<inbound−endpoint r e f=”StartVerifyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . s l a . VmAdmissionControl”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ImageVerifyWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Fin i shedVer i f y ”>

<inbound>

<inbound−endpoint r e f=”FinishedVerifyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . s l a . VmAdmissionControl”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”UpdateSystemWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=” ImageVeri fy ”>

<inbound>

<inbound−endpoint r e f=”ImageVerifyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . images . ImageManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”KeyPairVerifyWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”KeyPairVeri fy ”>

<inbound>

<inbound−endpoint r e f=”KeyPairVerifyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . keys . KeyPairManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”VmTypeVerifyWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”VmTypeVerify”>

174 XML Configuration Files of Mule (Eucalyptus Cloud)

<inbound>

<inbound−endpoint r e f=”VmTypeVerifyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . c l u s t e r . VmTypeVerify”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”GroupsVerifyWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”GroupsVeri fy ”>

<inbound>

<inbound−endpoint r e f=”GroupsVerifyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . network .

NetworkGroupManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”FinishedVerifyWS”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

</model>

</mule>

A.1.3 db-model

Listing: db-model.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=”DB”>

</model>

<model name=”DBInternal ”>

</model>

</mule>

Appendices 175

A.1.4 eucalyptus-bootstrap

Listing: eucalyptus-bootstrap.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ” xmlns :x s i=

” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans” xmlns:euca

=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ” xmlns:mule=”

ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<mul e : c on f i gu ra t i on>

<mule :de fau l t−threading−p r o f i l e doThreading=” true ” maxThreadsActive

=”16” poolExhaustedAction=”RUN” />

</mu l e : c on f i gu ra t i on>

<euca : connec to r name=”eucaws” />

<vm:connector name=” in t e rna l−async” queueEvents=” f a l s e ” >

<vm:queuePro f i l e p e r s i s t e n t=” f a l s e ” maxOutstandingMessages=”256”/>

</vm:connector>

<endpoint name=”ReplyQueueEndpoint” address=”vm://ReplyQueue”

synchronous=” f a l s e ” />

<endpoint name=”RequestQueueEndpoint” address=”vm://RequestQueue”

synchronous=” f a l s e ” />

<endpoint name=”EucalyptusRequestQueueEndpoint” address=”vm://

EucalyptusRequestQueue” synchronous=” f a l s e ” />

<endpoint name=”WalrusRequestQueueEndpoint” address=”vm://

WalrusRequestQueue” synchronous=” f a l s e ” />

<endpoint name=”StorageRequestQueueEndpoint ” address=”vm://

StorageRequestQueue” synchronous=” f a l s e ” />

<endpoint name=”ComponentRequestQueueEndpoint” address=”vm://

ComponentRequestQueue” synchronous=” f a l s e ” />

<model name=” eucalyptus−boots t rap ”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”ReplyQueueEndpoint” />

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”ReplyQueue”>

<inbound>

<inbound−endpoint r e f=”ReplyQueueEndpoint” />

</ inbound>

<component c l a s s=”com . euca lyptus . ws . u t i l . ReplyQueue” />

</ s e r v i c e>

<s e r v i c e name=”RequestQueue”>

<inbound>

<inbound−endpoint r e f=”RequestQueueEndpoint” />

176 XML Configuration Files of Mule (Eucalyptus Cloud)

</ inbound>

<component c l a s s=”com . euca lyptus . ws . u t i l . RequestQueue” />

<outbound>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”WalrusRequestQueueEndpoint”

synchronous=” f a l s e ” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

WalrusRequestType” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”StorageRequestQueueEndpoint ”

synchronous=” f a l s e ” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

StorageRequestType” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”EucalyptusRequestQueueEndpoint ”

synchronous=” f a l s e ” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

EucalyptusMessage ” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”ComponentRequestQueueEndpoint”

synchronous=” f a l s e ” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

ComponentMessageType” />

</ f i l t e r i n g −rou te r>

</outbound>

</ s e r v i c e>

</model>

</mule>

A.1.5 storage-model

Listing: storage-model.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ” xmlns : spr ing=”

ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ” xmlns:euca=”

ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=” s to rage ”>

Appendices 177

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”StorageReplyQueueWS” />

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”StorageRequestQueue”>

<inbound>

<vm:inbound−endpoint r e f=”StorageRequestQueueEndpoint ” />

</ inbound>

<bridge−component />

<outbound>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”StorageWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

StorageRequestType” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”StorageWS” />

<payload−type− f i l t e r

expectedType=”edu . ucsb . euca lyptus . msgs .

StorageComponentMessageType” />

</ f i l t e r i n g −rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Storage ”>

<inbound>

<inbound−endpoint r e f=”StorageWS” />

</ inbound>

<component c l a s s=”edu . ucsb . euca lyptus . c loud . ws . BlockStorage ” />

<outbound>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

StorageComponentMessageResponseType” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”StorageReplyQueueWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

StorageResponseType” />

</ f i l t e r i n g −rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”StorageReplyQueue”>

<inbound>

<inbound−endpoint r e f=”StorageReplyQueueWS” />

</ inbound>

<component c l a s s=”edu . ucsb . euca lyptus . i c . StorageReplyQueue” />

</ s e r v i c e>

</model>

<model name=” storage−i n t e r n a l ”>

<s e r v i c e name=” Sto rag e In t e rna l ”>

<inbound>

<inbound−endpoint r e f=”StorageInternalWS” />

<inbound−endpoint r e f=”StorageInternalVM” />

</ inbound>

178 XML Configuration Files of Mule (Eucalyptus Cloud)

<component c l a s s=”edu . ucsb . euca lyptus . c loud . ws . BlockStorage ” />

</ s e r v i c e>

</model>

</mule>

A.1.6 storage-services

Listing: storage-services.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<euca : endpo int name=”StorageControl lerWS”

connector−r e f=”eucaws”

address=” ht tp : / / 1 27 . 0 . 0 . 1 : ${ euca . ws . port }/ s e r v i c e s /

Storage ”/>

<euca : endpo int name=”StorageInternalWS”

connector−r e f=”eucaws”

address=” ht tp : / / 1 27 . 0 . 0 . 1 : ${ euca . ws . port }/ i n t e r n a l /

S to r ag e In t e rna l ”

synchronous=” true ”/>

<endpoint name=”StorageWS” address=”vm:// Storage ” synchronous=”

f a l s e ”/>

<endpoint name=”StorageInternalVM” address=”vm:// S to r ag e In t e rna l ”

synchronous=” true ”/>

<endpoint name=”StorageReplyQueueWS” address=”vm://

StorageReplyQueue” synchronous=” f a l s e ”/>

</mule>

A.1.7 eucalyptus-userdata

Listing: eucalyptus-userdata.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

Appendices 179

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=” eucalyptus−userdata ”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”KeyPair”>

<inbound>

<inbound−endpoint r e f=”KeyPairWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . keys . KeyPairManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Groups”>

<inbound>

<inbound−endpoint r e f=”GroupsWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . network .

NetworkGroupManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

</model>

</mule>

A.1.8 eucalyptus-storage

Listing: eucalyptus-storage.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

180 XML Configuration Files of Mule (Eucalyptus Cloud)

ht tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=” eucalyptus−s t o rage ”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”Image”>

<inbound>

<inbound−endpoint r e f=”ImageWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . images . ImageManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Volume”>

<inbound>

<inbound−endpoint r e f=”VolumeWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . b l o ck s t o rage . VolumeManager

”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Snapshot”>

<inbound>

<inbound−endpoint r e f=”SnapshotWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . b l o ck s t o rage .

SnapshotManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

</model>

</mule>

A.1.9 eucalyptus-services

Listing: eucalyptus-services.xml

Appendices 181

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<!−−user data s e r v i c e s−−>

<euca : endpo int name=”EucalyptusWS” connector−r e f=”eucaws” address=”

ht tp : / / 1 27 . 0 . 0 . 1 : ${ euca . ws . port }/ s e r v i c e s /Eucalyptus ” synchronous=

” true ” />

<endpoint name=”ShortBusWS” address=”vm://ShortBus” synchronous=”

f a l s e ” />

<endpoint name=”ImageWS” address=”vm:// Image” synchronous=” f a l s e ” />

<endpoint name=”VolumeWS” address=”vm://Volume” synchronous=” f a l s e ” /

>

<endpoint name=”SnapshotWS” address=”vm://Snapshot” synchronous=”

f a l s e ” />

<endpoint name=”KeyPairWS” address=”vm://KeyPair” synchronous=” f a l s e ”

/>

<endpoint name=”GroupsWS” address=”vm://Groups” synchronous=” f a l s e ” /

>

<!−−vm reque s t v e r i f i c a t i o n p i p e l i n e−−>

<endpoint name=”StartVerifyWS” address=”vm://VmVerify” synchronous=”

f a l s e ” />

<endpoint name=”ImageVerifyWS” address=”vm:// ImageVeri fy ” synchronous

=” f a l s e ” />

<endpoint name=”KeyPairVerifyWS” address=”vm://KeyPairVeri fy ”

synchronous=” f a l s e ” />

<endpoint name=”GroupsVerifyWS” address=”vm://GroupsVeri fy ”

synchronous=” f a l s e ” />

<endpoint name=”VmTypeVerifyWS” address=”vm://VmTypeVerify”

synchronous=” f a l s e ” />

<endpoint name=”FinishedVerifyWS” address=”vm://VmVerified”

synchronous=” f a l s e ” />

<endpoint name=”KeyPairResolveWS” address=”vm://KeyPairResolve ”

synchronous=” true ” />

<endpoint name=”ImageResolveWS” address=”vm:// ImageResolve ”

synchronous=” true ” />

<!−−run−time system s t a t e s e r v i c e s−−>

<endpoint name=”ClusterEndpointWS” address=”vm://ClusterEndpoint ”

synchronous=” f a l s e ” />

<endpoint name=”ClusterSinkWS” address=”vm:// Clus te rS ink ” synchronous

=” f a l s e ” />

182 XML Configuration Files of Mule (Eucalyptus Cloud)

<endpoint name=”VmMetadataWS” address=”vm://VmMetadata” synchronous=”

true ” />

<endpoint name=”VmControlWS” address=”vm://VmControl” synchronous=”

f a l s e ” />

<endpoint name=”AddressWS” address=”vm://Address ” synchronous=” f a l s e ”

/>

<endpoint name=”UpdateSystemWS” address=”vm://UpdateSystemState”

synchronous=” f a l s e ” />

<endpoint name=”SystemStateWS” address=”vm:// SystemState ” synchronous

=” f a l s e ” />

<endpoint name=”TransformReplyWS” address=”vm://TransformReply”

synchronous=” f a l s e ” />

</mule>

A.1.10 eucalyptus-runtime

Listing: eucalyptus-runtime.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xmlns : spr ing=” ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ”

xmlns:euca=” ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=” eucalyptus−runtime”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”VmControl”>

<inbound>

<inbound−endpoint r e f=”VmControlWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus .vm. VmControl”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”KeyPairResolve ”>

<inbound>

<inbound−endpoint r e f=”KeyPairResolveWS”/>

</ inbound>

Appendices 183

<component c l a s s=”com . euca lyptus . keys . KeyPairManager”/>

</ s e r v i c e>

<s e r v i c e name=” ImageResolve ”>

<inbound>

<inbound−endpoint r e f=”ImageResolveWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . images . ImageManager”/>

</ s e r v i c e>

<s e r v i c e name=”Cluste rS ink ”>

<inbound>

<inbound−endpoint r e f=”ClusterSinkWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . c l u s t e r . ClusterEndpoint ”/>

</ s e r v i c e>

<s e r v i c e name=”ClusterEndpoint ”>

<inbound>

<inbound−endpoint r e f=”ClusterEndpointWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . c l u s t e r . ClusterEndpoint ”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Address ”>

<inbound>

<inbound−endpoint r e f=”AddressWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . address . AddressManager”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”SystemState ”>

<inbound>

<inbound−endpoint r e f=”SystemStateWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus .vm. SystemState ”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”UpdateSystemAndReply”>

<inbound>

<inbound−endpoint r e f=”UpdateSystemWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus . s l a . CreateVmInstances ”/>

<outbound>

184 XML Configuration Files of Mule (Eucalyptus Cloud)

<mult i ca s t ing−rou te r>

<outbound−endpoint r e f=”ClusterSinkWS”/>

<outbound−endpoint r e f=”TransformReplyWS”/>

</mul t i ca s t ing−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”TransformReply”>

<inbound>

<inbound−endpoint r e f=”TransformReplyWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus .vm. VmReplyTransform”/>

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint”/>

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

</model>

<model name=”vm−metadata”>

<s e r v i c e name=”VmMetadata”>

<inbound>

<inbound−endpoint r e f=”VmMetadataWS”/>

</ inbound>

<component c l a s s=”com . euca lyptus .vm. VmMetadata”/>

</ s e r v i c e>

</model>

</mule>

A.1.11 eucalyptus-interface

Listing: eucalyptus-interface.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<mule xmlns=” ht tp : //www. mulesource . org /schema/mule/ core /2 .0 ”

xmlns :x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ” xmlns : spr ing=”

ht tp : //www. springframework . org /schema/beans”

xmlns:vm=” ht tp : //www. mulesource . org /schema/mule/vm/2 .0 ” xmlns:euca=”

ht tp : //www. euca lyptus . com/schema/ cloud /1 .6 ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans h t tp : //www.

springframework . org /schema/beans/ spr ing−beans −2.0 . xsd

h t tp : //www. mulesource . org /schema/mule/ core /2 .0 h t tp : //www.

mulesource . org /schema/mule/ core /2 .0/mule . xsd

h t tp : //www. mulesource . org /schema/mule/vm/2 .0 h t tp : //www.

mulesource . org /schema/mule/vm/2.0/mule−vm. xsd

h t tp : //www. euca lyptus . com/schema/ cloud /1 .6 h t tp : //www. euca lyptus

. com/schema/ cloud /1 .6/ euca . xsd”>

<model name=” eucalyptus−i n t e r f a c e ”>

<de fau l t−s e r v i c e−except ion−s t r a t e gy>

<outbound−endpoint r e f=”ReplyQueueEndpoint” />

</ de fau l t−s e r v i c e−except ion−s t r a t e gy>

<s e r v i c e name=”EucalyptusRequestQueue”>

Appendices 185

<inbound>

<inbound−endpoint r e f=”EucalyptusRequestQueueEndpoint ”/>

</ inbound>

<bridge−component/>

<outbound>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”ShortBusWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

DescribeRegionsType ” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”StartVerifyWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

RunInstancesType” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”VmControlWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

VmControlMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”VmControlWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

VmBundleMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”ClusterEndpointWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

ClusterMessage ” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”KeyPairWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

VmKeyPairMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”ImageWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

VmImageMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”VolumeWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

BlockVolumeMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”SnapshotWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

BlockSnapshotMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”AddressWS” />

186 XML Configuration Files of Axis2/C (Eucalyptus Cloud)

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

VmAddressMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”GroupsWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

VmSecurityMessage” />

</ f i l t e r i n g −rou te r>

< f i l t e r i n g −rou te r>

<outbound−endpoint r e f=”ShortBusWS” />

<payload−type− f i l t e r expectedType=”edu . ucsb . euca lyptus . msgs .

EucalyptusMessage ” />

</ f i l t e r i n g −rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”ShortBus”>

<inbound>

<inbound−endpoint r e f=”ShortBusWS” />

</ inbound>

<component c l a s s=”edu . ucsb . euca lyptus . i c . Eucalyptus ” />

<outbound>

<outbound−pass−through−rou te r>

<outbound−endpoint r e f=”ReplyQueueEndpoint” />

</outbound−pass−through−rou te r>

</outbound>

</ s e r v i c e>

<s e r v i c e name=”Eucalyptus ”>

<inbound>

<inbound−endpoint r e f=”EucalyptusWS” />

</ inbound>

<component c l a s s=”edu . ucsb . euca lyptus . i c . Eucalyptus ” />

</ s e r v i c e>

</model>

</mule>

A.2 XML Configuration Files of Axis2/C (Eucalyptus

Cloud)

The XML files below provide the configuration of provenance to the Cluster and Node Controller

services of the Eucalyptus Cloud.

A.2.1 EucalyptusCC

The XML file below provides the configuration of provenance to the various methods of the Eucalyp-

tus Cluster Controller service. The provenance collection can be enabled/disabled for a particular

Cluster and its various methods.

Listing: services.xml (Eucalytus CC)

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<s e r v i c e name=”EucalyptusCC”>

Appendices 187

<parameter name=”wsdl path ” locked=” x s d : f a l s e ”>/opt/ euca lyptus / packages

/ ax i s2c −1.6 .0/ s e r v i c e s /EucalyptusCC/ euca lyp tu s c c . wsdl</parameter>

<parameter name=” Se rv i c eC l a s s ”>EucalyptusCC</parameter>

<d e s c r i p t i o n>EucalyptusCC Se rv i c e

</ d e s c r i p t i o n>

<opera t i on name=”Desc r ib e In s t ance s ”>

<parameter name=”wsamapping”>EucalyptusCC#Desc r ib e In s tance s</parameter>

</ opera t i on>

<opera t i on name=”ConfigureNetwork”>

<parameter name=”wsamapping”>EucalyptusCC#ConfigureNetwork</parameter>

</ opera t i on>

<opera t i on name=”Descr ibeResources ”>

<parameter name=”wsamapping”>EucalyptusCC#Descr ibeResources</parameter>

</ opera t i on>

<opera t i on name=”StartNetwork”>

<parameter name=”wsamapping”>EucalyptusCC#StartNetwork</parameter>

</ opera t i on>

<opera t i on name=”StopNetwork”>

<parameter name=”wsamapping”>EucalyptusCC#StopNetwork</parameter>

</ opera t i on>

<opera t i on name=”DescribeNetworks ”>

<parameter name=”wsamapping”>EucalyptusCC#DescribeNetworks</parameter>

</ opera t i on>

<opera t i on name=”AssignAddress ”>

<parameter name=”wsamapping”>EucalyptusCC#AssignAddress</parameter>

</ opera t i on>

<opera t i on name=”Descr ibePubl i cAddres se s ”>

<parameter name=”wsamapping”>EucalyptusCC#Descr ibePubl i cAddres se s</

parameter>

</ opera t i on>

<opera t i on name=”RebootInstances ”>

<parameter name=”wsamapping”>EucalyptusCC#RebootInstances</parameter>

</ opera t i on>

<opera t i on name=”GetConsoleOutput”>

<parameter name=”wsamapping”>EucalyptusCC#GetConsoleOutput</parameter>

</ opera t i on>

<opera t i on name=”UnassignAddress ”>

<parameter name=”wsamapping”>EucalyptusCC#UnassignAddress</parameter>

</ opera t i on>

<opera t i on name=”TerminateInstances ”>

<parameter name=”wsamapping”>EucalyptusCC#TerminateInstances</parameter

>

</ opera t i on>

<opera t i on name=”DetachVolume”>

<parameter name=”wsamapping”>EucalyptusCC#DetachVolume</parameter>

</ opera t i on>

<opera t i on name=”AttachVolume”>

<parameter name=”wsamapping”>EucalyptusCC#AttachVolume</parameter>

</ opera t i on>

<opera t i on name=”RunInstances ”>

<parameter name=”wsamapping”>EucalyptusCC#RunInstances</parameter>

</ opera t i on>

<module r e f=”rampart”/>

188 XML Configuration Files of Axis2/C (Eucalyptus Cloud)

<wsp:Po l i cy xmlns:wsp=” ht tp : // schemas . xmlsoap . org /ws/2004/09/ po l i c y ”>

<wsp:ExactlyOne>

<wsp:Al l>

<sp:AsymmetricBinding xmlns :sp=” ht tp : // schemas . xmlsoap . org /ws

/2005/07/ s e c u r i t y p o l i c y ”>

<wsp:Po l i cy>

<s p : I n i t i a t o rToken>

<wsp:Po l i cy>

<sp:X509Token sp: Inc ludeToken=” ht tp : // schemas . xmlsoap . org

/ws/2005/07/ s e c u r i t y p o l i c y / IncludeToken/Always”>a

<wsp:Po l i cy>

<sp:RequireEmbeddedTokenReference/>

<sp:WssX509V3Token10/>

</wsp :Po l i cy>

</sp:X509Token>

</wsp :Po l i cy>

</ sp : I n i t i a t o rToken>

<sp :Rec ip ientToken>

<wsp:Po l i cy>

<sp:X509Token sp: Inc ludeToken=” ht tp : // schemas . xmlsoap . org

/ws/2005/07/ s e c u r i t y p o l i c y / IncludeToken/Always”>

<wsp:Po l i cy>

<sp:RequireEmbeddedTokenReference/>

<sp:WssX509V3Token10/>

</wsp :Po l i cy>

</sp:X509Token>

</wsp :Po l i cy>

</ sp :Rec ip ientToken>

<sp :A lgor i thmSui te>

<wsp:Po l i cy>

<sp :Bas ic256Rsa15 />

</wsp :Po l i cy>

</ sp :A lgor i thmSui te>

<sp:Layout>

<wsp:Po l i cy>

<s p : S t r i c t />

</wsp :Po l i cy>

</ sp:Layout>

<sp:IncludeTimestamp/>

<sp:OnlySignEntireHeadersAndBody/>

<!−− <sp :EncryptS ignature /> −−>

</wsp :Po l i cy>

</ sp:AsymmetricBinding>

<sp:Wss10 xmlns:sp=” ht tp : // schemas . xmlsoap . org /ws/2005/07/

s e c u r i t y p o l i c y ”>

<wsp:Po l i cy>

<sp :MustSupportRefKeyIdent i f i e r />

<sp:MustSupportRefEmbeddedToken/>

<sp :MustSuppor tRe f I s sue rSe r i a l />

Appendices 189

</wsp :Po l i cy>

</ sp:Wss10>

<sp :S ignedPart s xmlns :sp=” ht tp : // schemas . xmlsoap . org /ws/2005/07/

s e c u r i t y p o l i c y ”>

<sp:Body/>

<sp:Header Namespace=” ht tp : //www.w3 . org /2005/08/ addre s s ing ”/>

</ sp :S ignedPar t s>

<rampc:RampartConfig xmlns:rampc=” ht tp : //ws . apache . org / rampart/c/

po l i c y ”>

<r ampc :Rec e i v e rCe r t i f i c a t e>/opt/ euca lyptus /var / l i b / euca lyptus / keys /

cloud−c e r t . pem</ r ampc :Re c e i v e rCe r t i f i c a t e>

<r ampc :Ce r t i f i c a t e>/opt/ euca lyptus /var / l i b / euca lyptus / keys / c l u s t e r−

c e r t . pem</ r ampc :Ce r t i f i c a t e>

<rampc:PrivateKey>/opt/ euca lyptus /var / l i b / euca lyptus / keys / c l u s t e r−pk .

pem</ rampc:PrivateKey>

<!−− <rampc:TimeToLive>14400</rampc:TimeToLive> −−>

<rampc:ClockSkewBuffer>20</ rampc:ClockSkewBuffer>

</rampc:RampartConfig>

</wsp:Al l>

</wsp:ExactlyOne>

</wsp :Po l i cy>

</ s e r v i c e>

A.2.2 EucalyptusNC

The XML file below provides the configuration of provenance to the various methods of the Euca-

lyptus Node Controller service. The provenance collection can be enabled/disabled for a particular

Node and its various methods.

Listing: servicex.xml (EucalyptusNC)

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<s e r v i c e name=”EucalyptusNC”>

<parameter name=”wsdl path ” locked=” x s d : f a l s e ”>/opt/ euca lyptus / packages

/ ax i s2c −1.6 .0/ s e r v i c e s /EucalyptusNC/ euca lyptus nc . wsdl</parameter>

<parameter name=” Se rv i c eC l a s s ”>EucalyptusNC</parameter>

<d e s c r i p t i o n>EucalyptusNC Se rv i c e

</ d e s c r i p t i o n>

<opera t i on name=”ncRunInstance”>

<parameter name=”wsamapping”>EucalyptusNC#ncRunInstance</parameter>

</ opera t i on>

<opera t i on name=”ncRebootInstance ”>

<parameter name=”wsamapping”>EucalyptusNC#ncRebootInstance</parameter>

</ opera t i on>

<opera t i on name=”ncGetConsoleOutput”>

<parameter name=”wsamapping”>EucalyptusNC#ncGetConsoleOutput</parameter

>

</ opera t i on>

<opera t i on name=”ncDetachVolume”>

<parameter name=”wsamapping”>EucalyptusNC#ncDetachVolume</parameter>

190 XML Configuration Files of Axis2/C (Eucalyptus Cloud)

</ opera t i on>

<opera t i on name=” ncDesc r ibe In s tance s ”>

<parameter name=”wsamapping”>EucalyptusNC#ncDesc r ibe In s tance s</

parameter>

</ opera t i on>

<opera t i on name=”ncAttachVolume”>

<parameter name=”wsamapping”>EucalyptusNC#ncAttachVolume</parameter>

</ opera t i on>

<opera t i on name=”ncPowerDown”>

<parameter name=”wsamapping”>EucalyptusNC#ncPowerDown</parameter>

</ opera t i on>

<opera t i on name=”ncDescr ibeResource ”>

<parameter name=”wsamapping”>EucalyptusNC#ncDescr ibeResource</parameter

>

</ opera t i on>

<opera t i on name=”ncTerminateInstance ”>

<parameter name=”wsamapping”>EucalyptusNC#ncTerminateInstance</

parameter>

</ opera t i on>

<opera t i on name=”ncStartNetwork”>

<parameter name=”wsamapping”>EucalyptusNC#ncStartNetwork</parameter>

</ opera t i on>

<module r e f=”rampart”/>

<wsp:Po l i cy xmlns:wsp=” ht tp : // schemas . xmlsoap . org /ws/2004/09/ po l i c y ”>

<wsp:ExactlyOne>

<wsp:Al l>

<sp:AsymmetricBinding xmlns :sp=” ht tp : // schemas . xmlsoap . org /ws

/2005/07/ s e c u r i t y p o l i c y ”>

<wsp:Po l i cy>

<s p : I n i t i a t o rToken>

<wsp:Po l i cy>

<sp:X509Token sp: Inc ludeToken=” ht tp : // schemas . xmlsoap . org

/ws/2005/07/ s e c u r i t y p o l i c y / IncludeToken/Always”>a

<wsp:Po l i cy>

<sp:RequireEmbeddedTokenReference/>

<sp:WssX509V3Token10/>

</wsp :Po l i cy>

</sp:X509Token>

</wsp :Po l i cy>

</ sp : I n i t i a t o rToken>

<sp :Rec ip ientToken>

<wsp:Po l i cy>

<sp:X509Token sp: Inc ludeToken=” ht tp : // schemas . xmlsoap . org

/ws/2005/07/ s e c u r i t y p o l i c y / IncludeToken/Always”>

<wsp:Po l i cy>

<sp:RequireEmbeddedTokenReference/>

<sp:WssX509V3Token10/>

</wsp :Po l i cy>

</sp:X509Token>

</wsp :Po l i cy>

</ sp :Rec ip ientToken>

<sp :A lgor i thmSui te>

Appendices 191

<wsp:Po l i cy>

<sp :Bas ic256Rsa15 />

</wsp :Po l i cy>

</ sp :A lgor i thmSui te>

<sp:Layout>

<wsp:Po l i cy>

<s p : S t r i c t />

</wsp :Po l i cy>

</ sp:Layout>

<sp:IncludeTimestamp/>

<sp:OnlySignEntireHeadersAndBody/>

<!−− <sp :EncryptS ignature /> −−>

</wsp :Po l i cy>

</ sp:AsymmetricBinding>

<sp:Wss10 xmlns :sp=” ht tp : // schemas . xmlsoap . org /ws/2005/07/

s e c u r i t y p o l i c y ”>

<wsp:Po l i cy>

<sp :MustSupportRefKeyIdent i f i e r />

<sp:MustSupportRefEmbeddedToken/>

<sp :MustSuppor tRe f I s sue rSe r i a l />

</wsp :Po l i cy>

</ sp:Wss10>

<sp :S ignedPart s xmlns :sp=” ht tp : // schemas . xmlsoap . org /ws/2005/07/

s e c u r i t y p o l i c y ”>

<sp:Body/>

<sp:Header Namespace=” ht tp : //www.w3 . org /2005/08/ addre s s ing ”/>

</ sp :S ignedPar t s>

<rampc:RampartConfig xmlns:rampc=” ht tp : //ws . apache . org / rampart/c/

po l i c y ”>

<r ampc :Rec e i v e rCe r t i f i c a t e>/opt/ euca lyptus /var / l i b / euca lyptus / keys /

c l u s t e r−c e r t . pem</ r ampc :Re c e i v e rCe r t i f i c a t e>

<r ampc :Ce r t i f i c a t e>/opt/ euca lyptus /var / l i b / euca lyptus / keys /node−c e r t .

pem</ r ampc :Ce r t i f i c a t e>

<rampc:PrivateKey>/opt/ euca lyptus /var / l i b / euca lyptus / keys /node−pk . pem

</ rampc:PrivateKey>

<!−− <rampc:TimeToLive>14400</rampc:TimeToLive> −−>

<rampc:ClockSkewBuffer>20</ rampc:ClockSkewBuffer>

</rampc:RampartConfig>

</wsp:Al l>

</wsp:ExactlyOne>

</wsp :Po l i cy>

</ s e r v i c e>

A.2.3 Eucalyptus-Axis2/C

The XML file below provides the configuration of provenance into Axis2/C with various phases. The

provenance collection can be enabled/disabled for all the Nodes and Clusters globally by editing

192 XML Configuration Files of Axis2/C (Eucalyptus Cloud)

the file below.

Listing: axis2.xml

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

<a x i s c o n f i g name=”AxisJava2 . 0 ”>

<parameter name=” sendStackt raceDeta i l sWithFau l t s ”> f a l s e</parameter>

<parameter name=”DrillDownToRootCauseForFaultReason”> f a l s e</

parameter>

<parameter name=”userName”>admin</parameter>

<parameter name=”password”>ax i s2</parameter>

<parameter name=”disableREST” locked=” true ”> f a l s e</parameter>

<parameter name=”disableSOAP12” locked=” true ”> f a l s e</parameter>

<dep loyer ex t ens i on=” . c l a s s ” d i r e c t o r y=”pojo ” c l a s s=”org . apache .

ax i s 2 . deployment . POJODeployer”/>

<dep loyer ex t ens i on=” . j a r ” d i r e c t o r y=” s e r v i c e j a r s ” c l a s s=”org .

apache . ax i s 2 . jaxws . framework . JAXWSDeployer”/>

<threadContextMigrators>

<threadContextMigrator l i s t I d=”JAXWS−ThreadContextMigrator−L i s t

” c l a s s=”org . apache . ax i s 2 . jaxws . addre s s ing . migrator .

EndpointContextMapMigrator”/>

</ threadContextMigrators>

<messageRece ivers>

<messageReceiver mep=” ht tp : //www.w3 . org /2004/08/wsdl / in−only ”

c l a s s=”org . apache . ax i s 2 . r e c e i v e r s .

RawXMLINOnlyMessageReceiver”/>

<messageReceiver mep=” ht tp : //www.w3 . org /2004/08/wsdl / in−out”

c l a s s=”org . apache . ax i s 2 . r e c e i v e r s .

RawXMLINOutMessageReceiver”/>

<messageReceiver mep=” ht tp : //www.w3 . org /2006/01/wsdl / in−only ”

c l a s s=”org . apache . ax i s 2 . r e c e i v e r s .

RawXMLINOnlyMessageReceiver”/>

<messageReceiver mep=” ht tp : //www.w3 . org /2006/01/wsdl / in−out”

c l a s s=”org . apache . ax i s 2 . r e c e i v e r s .

RawXMLINOutMessageReceiver”/>

</messageRece ivers>

<messageFormatters>

<messageFormatter contentType=” app l i c a t i o n /x−www−form−

ur lencoded ”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

XFormURLEncodedFormatter”/>

<messageFormatter contentType=”mult ipart /form−data”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

MultipartFormDataFormatter”/>

<messageFormatter contentType=” app l i c a t i o n /xml”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

ApplicationXMLFormatter”/>

<messageFormatter contentType=” text /xml”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

SOAPMessageFormatter”/>

<messageFormatter contentType=” app l i c a t i o n / soap+xml”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

SOAPMessageFormatter”/>

</messageFormatters>

Appendices 193

<messageBui lders>

<messageBui lder contentType=” app l i c a t i o n /xml”

c l a s s=”org . apache . ax i s 2 . bu i l d e r .

ApplicationXMLBuilder ”/>

<messageBui lder contentType=” app l i c a t i o n /xml”

c l a s s=”org . apache . ax i s 2 . bu i l d e r .

ApplicationXMLBuilder ”/>

<messageBui lder contentType=” app l i c a t i o n /x−www−form−ur lencoded ”

c l a s s=”org . apache . ax i s 2 . bu i l d e r .

XFormURLEncodedBuilder”/>

<messageBui lder contentType=”mult ipart /form−data”

c l a s s=”org . apache . ax i s 2 . bu i l d e r .

MultipartFormDataBuilder ”/>

</messageBui lders>

<t r an spo r tRece i v e r name=”http ”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

SimpleHTTPServer”>

<parameter name=”port ”>8080</parameter>

</ t ran spo r tRece i v e r>

<t r an spo r tRece i v e r name=”jms” c l a s s=”org . apache . ax i s 2 . t r an spo r t . jms

. JMSListener ”>

<parameter name=”myTopicConnectionFactory”>

<parameter name=” java . naming . f a c t o r y . i n i t i a l ”>org . apache .

activemq . j nd i . Act iveMQInit ia lContextFactory</parameter>

<parameter name=” java . naming . prov ide r . u r l ”>t c p : //

l o c a l h o s t : 6 1 6 1 6</parameter>

<parameter name=” t ranspo r t . jms . ConnectionFactoryJNDIName”>

TopicConnectionFactory</parameter>

</parameter>

<parameter name=”myQueueConnectionFactory”>

<parameter name=” java . naming . f a c t o r y . i n i t i a l ”>org . apache .

activemq . j nd i . Act iveMQInit ia lContextFactory</parameter>

<parameter name=” java . naming . prov ide r . u r l ”>t c p : //

l o c a l h o s t : 6 1 6 1 6</parameter>

<parameter name=” t ranspo r t . jms . ConnectionFactoryJNDIName”>

QueueConnectionFactory</parameter>

</parameter>

<parameter name=” de f au l t ”>

<parameter name=” java . naming . f a c t o r y . i n i t i a l ”>org . apache .

activemq . j nd i . Act iveMQInit ia lContextFactory</parameter>

<parameter name=” java . naming . prov ide r . u r l ”>t c p : //

l o c a l h o s t : 6 1 6 1 6</parameter>

<parameter name=” t ranspo r t . jms . ConnectionFactoryJNDIName”>

QueueConnectionFactory</parameter>

</parameter>

</ t ran spo r tRece i v e r>−−>

<t r an spo r tRece i v e r name=”http ” c l a s s=”org . apache . ax i s 2 . t r an spo r t .

nhttp . HttpCoreNIOListener ”>

194 XML Configuration Files of Axis2/C (Eucalyptus Cloud)

<parameter name=”port ” locked=” f a l s e ”>9000</parameter>

<parameter name=”non−b lock ing ” locked=” f a l s e ”>t rue</parameter>

</ t ran spo r tRece i v e r>−−>

<t r an spo r tRece i v e r name=”https ” c l a s s=”org . apache . ax i s 2 . t r an spo r t .

nhttp . HttpCoreNIOSSLListener”>

<parameter name=”port ” locked=” f a l s e ”>9002</parameter>

<parameter name=”non−b lock ing ” locked=” f a l s e ”>t rue</parameter>

<parameter name=” keys to r e ” locked=” f a l s e ”>

<KeyStore>

<Locat ion> i d e n t i t y . j k s</Locat ion>

<Type>JKS</Type>

<Password>password</Password>

<KeyPassword>password</KeyPassword>

</KeyStore>

</parameter>

<parameter name=” t r u s t s t o r e ” locked=” f a l s e ”>

<TrustStore>

<Locat ion>t r u s t . j k s</Locat ion>

<Type>JKS</Type>

<Password>password</Password>

</TrustStore>

</parameter>−−>

<t ransportSender name=” tcp ”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . tcp .

TCPTransportSender”/>

<t ransportSender name=” l o c a l ”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . l o c a l .

LocalTransportSender ”/>

<t ransportSender name=”http ”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

CommonsHTTPTransportSender”>

<parameter name=”PROTOCOL”>HTTP/1 .1</parameter>

<parameter name=”Transfer−Encoding”>chunked</parameter>

</ t ransportSender>

<t ransportSender name=”https ”

c l a s s=”org . apache . ax i s 2 . t r an spo r t . http .

CommonsHTTPTransportSender”>

<parameter name=”PROTOCOL”>HTTP/1 .1</parameter>

<parameter name=”Transfer−Encoding”>chunked</parameter>

</ t ransportSender>

<!−− === −−>

<!−− Global Modules −−>

<!−− === −−>

<!−− Comment t h i s to d i s ab l e Address ing −−>

<module r e f=” addre s s ing ”/>

<!−−Conf igur ing module , prov id ing parameters f o r modules whether

they r e f e r or not−−>

<!−−<moduleConfig name=” addre s s ing ”>−−>

<!−−<parameter name=” address ingPara ”>N/A</parameter>−−>

<!−−</moduleConfig>−−>

Appendices 195

<!−− Clus t e r i ng −−>

<c l u s t e r c l a s s=”org . apache . ax i s 2 . c l u s t e r . t r i b e s .

TribesClusterManager ”>

<parameter name=”param1”>value1</parameter>

<parameter name=”domain”>apache . ax i s 2 . domain</parameter>

<parameter name=” synchron i z eA l l ”>t rue</parameter>

<parameter name=”maxRetries ”>10</parameter>

<conf igurat ionManager c l a s s=”org . apache . ax i s 2 . c l u s t e r .

c on f i g u r a t i on . TribesConf igurat ionManager ”>

< l i s t e n e r c l a s s=”org . apache . ax i s 2 . c l u s t e r . c on f i g u r a t i on .

Defau l tConf igurat ionManagerL i s tener ”/>

</ conf igurat ionManager>

<contextManager c l a s s=”org . apache . ax i s 2 . c l u s t e r . context .

TribesContextManager”>

< l i s t e n e r c l a s s=”org . apache . ax i s 2 . c l u s t e r . context .

DefaultContextManagerListener ”/>

</contextManager>

</ c l u s t e r>

−−>

<!−− Phases −−>

<phaseOrder type=”InFlow”>

<!−− System prede f i n ed phases −−>

<phase name=”Transport ”>

<handler name=”RequestURIBasedDispatcher ”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

RequestURIBasedDispatcher ”>

<order phase=”Transport ”/>

</ handler>

<handler name=”SOAPActionBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

SOAPActionBasedDispatcher”>

<order phase=”Transport ”/>

</ handler>

</phase>

<phase name=”Address ing ”>

<handler name=”Address ingBasedDispatcher ”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

Address ingBasedDispatcher ”>

<order phase=”Address ing ”/>

</ handler>

</phase>

<phase name=” Secu r i ty ”/>

<phase name=”PreDispatch ”/>

<phase name=”Dispatch ” c l a s s=”org . apache . ax i s 2 . eng ine .

DispatchPhase ”>

<handler name=”RequestURIBasedDispatcher ”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

RequestURIBasedDispatcher ”/>

<handler name=”SOAPActionBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

SOAPActionBasedDispatcher”/>

196 XML Configuration Files of Axis2/C (Eucalyptus Cloud)

<handler name=”RequestURIOperationDispatcher ”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

RequestURIOperationDispatcher ”/>

<handler name=”SOAPMessageBodyBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

SOAPMessageBodyBasedDispatcher”/>

<handler name=”HTTPLocationBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

HTTPLocationBasedDispatcher”/>

<handler name=”Gener i cProv iderDispatcher ”

c l a s s=”org . apache . ax i s 2 . jaxws . d i s pa t ch e r s .

Gener i cProv iderDispatcher ”/>

<handler name=”MustUnderstandVal idat ionDispatcher ”

c l a s s=”org . apache . ax i s 2 . jaxws . d i s pa t ch e r s .

MustUnderstandVal idat ionDispatcher ”/>

</phase>

<phase name=”RMPhase”/>

<!−− System prede f i n ed phases −−>

<!−− After Postd i spatch phase module author or s e r v i c e author

can add any phase he want −−>

<phase name=”OperationInPhase ”>

<handler name=”MustUnderstandChecker”

c l a s s=”org . apache . ax i s 2 . jaxws . d i s pa t ch e r s .

MustUnderstandChecker”>

<order phase=”OperationInPhase ”/>

</ handler>

</phase>

<phase name=” soapmonitorPhase ”/>

</phaseOrder>

<phaseOrder type=”OutFlow”>

<!−− user can add h i s own phases to t h i s area −−>

<phase name=” soapmonitorPhase ”/>

<phase name=”OperationOutPhase”/>

<!−−system prede f i n ed phase−−>

<!−−the se phase w i l l run i r r e s p e c t i v e o f the s e r v i c e−−>

<phase name=”RMPhase”/>

<phase name=”Pol i cyDeterminat ion ”/>

<phase name=”MessageOut”/>

<phase name=” Secu r i t y ”/>

</phaseOrder>

<phaseOrder type=” InFaultFlow”>

<phase name=”Address ing ”>

<handler name=”Address ingBasedDispatcher ”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

Address ingBasedDispatcher ”>

<order phase=”Address ing ”/>

</ handler>

</phase>

<phase name=” Secu r i t y ”/>

<phase name=”PreDispatch ”/>

<phase name=”Dispatch ” c l a s s=”org . apache . ax i s 2 . eng ine .

DispatchPhase ”>

<handler name=”RequestURIBasedDispatcher ”

Appendices 197

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

RequestURIBasedDispatcher ”/>

<handler name=”SOAPActionBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

SOAPActionBasedDispatcher”/>

<handler name=”RequestURIOperationDispatcher ”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

RequestURIOperationDispatcher ”/>

<handler name=”SOAPMessageBodyBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

SOAPMessageBodyBasedDispatcher”/>

<handler name=”HTTPLocationBasedDispatcher”

c l a s s=”org . apache . ax i s 2 . d i s pa t ch e r s .

HTTPLocationBasedDispatcher”/>

<handler name=”Gener i cProv iderDispatcher ”

c l a s s=”org . apache . ax i s 2 . jaxws . d i s pa t ch e r s .

Gener i cProv iderDispatcher ”/>

<handler name=”MustUnderstandVal idat ionDispatcher ”

c l a s s=”org . apache . ax i s 2 . jaxws . d i s pa t ch e r s .

MustUnderstandVal idat ionDispatcher ”/>

</phase>

<phase name=”RMPhase”/>

<!−− user can add h i s own phases to t h i s area −−>

<phase name=”Operat ionInFaultPhase ”/>

<phase name=” soapmonitorPhase ”/>

</phaseOrder>

<phaseOrder type=”OutFaultFlow”>

<!−− user can add h i s own phases to t h i s area −−>

<phase name=” soapmonitorPhase ”/>

<phase name=”OperationOutFaultPhase ”/>

<phase name=”RMPhase”/>

<phase name=”Pol i cyDeterminat ion ”/>

<phase name=”MessageOut”/>

<phase name=” Secu r i ty ”/>

</phaseOrder>

</ a x i s c o n f i g>

Curriculum Vitae

Personal Information

Name: Muhammad Imran

Birth Date: 25th march 1982

Nationality: Pakistan

Address: Diefenbachgasse 46/27, 1150 Wien, Austria

Education

PhD in Computer Science, University of Vienna, Austia.

anticipated graduation: 2014

MSc in Computer Science, Quaid-i-Azam University, Islamabad, Pakistan - 2005

BSc in Mathematics and Statistics, University of Peshawar, Pakistan - 2003

Research

Currently pursuing research in the area of Cloud based platforms, Service Oriented

Architectures, and Provenance. My PhD title is: Provenance in Clouds: Frame-

work, Applications and Implication. This work focuses on the layered and

abstract architecture of Cloud platforms, an effective framework addressing various

requirements for the collection and management of provenance, and various applica-

tions using provenance ensuring the improved management of Clouds for end users.

During my PhD studies, following research papers were published.

• “Searching in Cloud Object Storage by Using a Metadata Model”, Imran,

Muhammad and Hlavacs, Helmut In: The 9th International Conference on

Semantics, Knowledge and Grids (SKG2013).

• “Layering of the Provenance Data for Cloud Computing”, Imran, Muhammad

and Hlavacs, Helmut, In: 8th International Conference, GPC 2013 and Colo-

cated Workshops, Seoul, Korea, May 9-11, 2013, Grid and Pervasive Comput-

ing, pp 48-58, Lecture Notes in Computer Science, Springer Berlin Heidelberg.

198

Curriculum Vitae 199

• “Provenance Framework for the Cloud Infrastructure: Why and How?”, Im-

ran, Muhammad and Hlavacs, Helmut In: International Journal On Advances

in Intelligent Systems, volume 6, numbers 1 and 2, 2013.

• “Applications of Provenance Data for Cloud Infrastructure”, Imran, Muham-

mad and Hlavacs, Helmut In: The 8th International Conference on Semantics,

Knowledge and Grids (SKG2012), Pages 16-23, IEEE Computer Society.

• “Provenance Framework for the Cloud Environment (IaaS)”, Imran, Muham-

mad and Hlavacs, Helmut In: CLOUD COMPUTING 2012, The Third Inter-

national Conference on Cloud Computing, GRIDs, and Virtualization: Nice,

France, 2012.

• “Provenance in the Cloud: Why and How?”, Imran, Muhammad and Hlavacs,

Helmut In: CLOUD COMPUTING 2012, The Third International Conference

on Cloud Computing, GRIDs, and Virtualization: Nice, France. We Won

the Best Paper Award.

• “On using provenance data to increase the reliability of ubiquitous computing

environments”, Imran, Muhammad and Hummel, Karin Anna In: Proceedings

of the 10th International Conference on Information Integration and Web-

based Applications and Services Pages 547-550 : Linz, Austria. 2008, ACM.

Achievements

• Best Paper Award, The Third International Conference on Cloud Comput-

ing, GRIDs, and Virtualization. Nice, France, 2012.

• HEC scholarship for PhD, in University of Vienna, Austria.

Work Experience

Quality Assurance Engineer in Ultimus Pakistan. (2006 to 2007)

Software Engineer at Goldmine Software (2005 to 2006)

Publications

During my PhD studies, following research papers were published.

• “On using provenance data to increase the reliability of ubiquitous computing

environments”, Imran, Muhammad and Hummel, Karin Anna In: Proceedings

of the 10th International Conference on Information Integration and Web-

based Applications and Services Pages 547-550 : Linz, Austria. 2008, ACM.

This paper presented the concept of using provenance as a reliability tool in

ubiquitous environments. The focus of this paper was to establish: (i) which

provenance items are significant, (ii) where should provenance be stored, and

(iii) how the additional data can be kept low in the system.

• “Provenance in the Cloud: Why and How?”, Imran, Muhammad and Hlavacs,

Helmut In: CLOUD COMPUTING 2012, The Third International Conference

on Cloud Computing, GRIDs, and Virtualization: Nice, France. We Won

the Best Paper Award.

This paper investigated provenance in Clouds through two key questions, i.e.,

why and how. The why part presented the reasoning for incorporating prove-

nance in Clouds, i.e., implication of provenance enabled Clouds. Various re-

quirements of provenance collection and management were identified for the

distributed and abstract architecture of Clouds. Key provenance items were

also identified for Cloud architectures. The how part presented the approach

for the collection of provenance while addressing various requirements. These

concepts are included in Chapter 3 and Chapter 4.

• “Provenance Framework for the Cloud Environment (IaaS)”, Imran, Muham-

mad and Hlavacs, Helmut In: CLOUD COMPUTING 2012, The Third Inter-

national Conference on Cloud Computing, GRIDs, and Virtualization: Nice,

France, 2012.

This paper explored the underlying architecture of Clouds, e.g., IaaS model

and presented the design of the framework for the collection and management

of provenance in distributed Clouds. The framework is divided into various in-

dependent services/modules. This paper also investigated the existing schemes

of provenance from various fields of scientific and data computation. The ex-

isting schemes were categorized accordingly and their impact was presented

assuming they are incorporated in Clouds. A use case of provenance usage

200

Publications 201

and example metadata from IaaS Cloud was also presented. These concepts

are included in Chapter 3 and Chapter 4.

• “Provenance Framework for the Cloud Infrastructure: Why and How?”, Im-

ran, Muhammad and Hlavacs, Helmut In: International Journal On Advances

in Intelligent Systems, volume 6, numbers 1 and 2, 2013.

This paper extended the previous two papers and provided various implemen-

tation and evaluation results. Findings of this paper are included in Chapter 3,

Chapter 4 and Chapter 7.

• “Applications of Provenance Data for Cloud Infrastructure”, Imran, Muham-

mad and Hlavacs, Helmut In: The 8th International Conference on Semantics,

Knowledge and Grids (SKG2012), Pages 16-23, IEEE Computer Society.

This paper presented the utility of provenance in Clouds utilizing the collected

provenance information and services of the framework. This was established

through validating various applications scenarios which highlight the signifi-

cance of provenance and the developed framework at various layers of Clouds

for the different end users. The applications themselves cover a broad range

of domains such as finding similarity pattern, failure tracking and efficient

utilization of resources. These concepts and related findings are included in

Chapter 5 and Chapter 6.

• “Searching in Cloud Object Storage by Using a Metadata Model”, Imran,

Muhammad and Hlavacs, Helmut In: The 9th International Conference on

Semantics, Knowledge and Grids (SKG2013).

This paper was focused on the utilization of the developed framework, its

various components, and the collected provenance for object storage in Clouds.

A novel application which provides the ability of provenance based search

in Clouds object storage was developed. Moreover, various evaluations were

performed depicting a solid performance of the application and components of

the framework. These concepts and related findings are included in Chapter 5.

• “Layering of the Provenance Data for Cloud Computing”, Imran, Muhammad

and Hlavacs, Helmut, In: 8th International Conference, GPC 2013 and Colo-

cated Workshops, Seoul, Korea, May 9-11, 2013, Grid and Pervasive Comput-

ing, pp 48-58, Lecture Notes in Computer Science, Springer Berlin Heidelberg.

This paper investigated the aggregation of provenance for the layered and

modular architecture of Clouds. Provenance information from the individ-

ual tiers/layers, i.e., software, platform and infrastructure were explored and

presented. Hereby, the significance of aggregating the provenance from these

layers was established and validated using various scenarios. These concepts

are included in Chapter 6.

Bibliography

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/. retrieved: Aug 2nd, 2013.

[2] Amazon s3. http://aws.amazon.com/s3/. retrieved: Aug 2nd, 2013.

[3] Amazon simple workflow service. http://aws.amazon.com/swf/. retrieved: Aug 2nd, 2013.

[4] Apache axis2/c manual. http://axis.apache.org/axis2/c/rampart/docs/rampartc_

manual.html. [retrieved: may, 2012].

[5] Axis2- ws-addressing implementation. http://axis.apache.org/axis2/java/core/

modules/addressing/index.html. [retrieved: may, 2012].

[6] Eucalyptus iaas. http://www.eucalyptus.com/eucalyptus-cloud/iaas. retrieved: Aug 2nd,

2013.

[7] Eucalyptus walrus. http://www.eucalyptus.com/eucalyptus-cloud/iaas/

architecturewalrus. retrieved: Aug 2nd, 2013.

[8] M/gateway. http://gradvs1.mgateway.com/main/. retrieved: Aug 2nd, 2013.

[9] Microsoft skydrive. http://skydrive.live.com/. retrieved: Aug 2nd, 2013.

[10] Mule esb. http://www.mulesoft.org/what-mule-esb. retrieved: Aug 2nd, 2013.

[11] salesforce. http://www.salesforce.com/. retrieved: Aug 2nd, 2013.

[12] Wso2 platforms. http://wso2.com/platforms. retrieved: Aug 2nd, 2013.

[13] Xen project. http://www.xenproject.org/. retrieved: Aug 2nd, 2013.

[14] Oasis reference model for service oriented architecture 1.0. https://www.oasis-open.org/

committees/download.php/19679/soa-rm-cs.pdf, October 2006.

[15] Cloud Computing Use Cases Whitepaper. http://www.scribd.com/doc/17929394/

Cloud-Computing-Use-Cases-Whitepaper, August 2009.

[16] The future of cloud computing: opportunities fro european cloud computing beyond 2010. In

Keith Jeffery and Burkhard Neidecker-Lutz, editors, The future of cloud computing, Brussel,

2010. European Commission: Information Society and Media.

[17] J. H. Abawajy. Fault-tolerant scheduling policy for grid computing systems. Parallel and

Distributed Processing Symposium, International, 14:238b, 2004.

[18] Imad M. Abbadi and John Lyle. Challenges for provenance in cloud computing. In TaPP

2011: Proceedings of the Third USENIX Workshop on the Theory and Practice of Provenance.

USENIX, 2011.

[19] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud computing:

current state and future opportunities. In Proceedings of the 14th International Conference

on Extending Database Technology, EDBT/ICDT ’11, pages 530–533, New York, NY, USA,

2011. ACM.

[20] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: an extensible

system for design and execution of scientific workflows. In Scientific and Statistical Database

Management, 2004. Proceedings. 16th International Conference on, pages 423–424, June 2004.

202

BIBLIOGRAPHY 203

[21] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-frank. Provenance collection support in the

kepler scientific workflow system. In In Proceedings of the International Provenance and

Annotation Workshop (IPAW), pages 118–132. Springer-Verlag, 2006.

[22] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above

the clouds: A berkeley view of cloud computing. Technical report, University of California at

Berkeley, February 2009.

[23] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A

view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[24] Jayant Baliga, Robert W. A. Ayre, Kerry Hinton, and Rodney S. Tucker. Green Cloud

Computing: Balancing Energy in Processing, Storage, and Transport. Proceedings of the

IEEE, 99(1):149–167, January 2011.

[25] Roger S. Barga, Yogesh L. Simmhan, Eran Chinthaka, Satya Sanket Sahoo, Jared Jackson,

and Nelson Araujo. Provenance for scientific workflows towards reproducible research. IEEE

Data Eng. Bull., 33(3):50–58, 2010.

[26] Douglas K. Barry and Patrick J. Gannon. Web Services and Service-Oriented Architecture:

The Savvy Manager’s Guide. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2003.

[27] Philip A. Bernstein. Middleware: A model for distributed system services. Commun. ACM,

39(2):86–98, February 1996.

[28] Deepavali Bhagwat, Laura Chiticariu, Wang chiew Tan, and Gaurav Vijayvargiya. An an-

notation management system for relational databases. In In VLDB, pages 900–911. Morgan

Kaufmann, 2004.

[29] Tekin Bicer, David Chiu, and Gagan Agrawal. A framework for data-intensive computing

with cloud bursting. In Proceedings of the 2011 IEEE International Conference on Cluster

Computing, CLUSTER ’11, pages 169–177, Washington, DC, USA, 2011. IEEE Computer

Society.

[30] Rajendra Bose and James Frew. Composing lineage metadata with xml for custom satellite-

derived data products. In in SSDBM, pages 275–284, 2004.

[31] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey.

ACM Comput. Surv., 37(1):1–28, March 2005.

[32] Francisco V Brasileiro, Paul D. Ezhilchelvan, Santosh K Shrivastava, Neil A Speirs, and Sha

Tao. Implementing fail-silent nodes for distributed systems. Computers, IEEE Transactions

on, 45(11):1226–1238, 1996.

[33] John Bresnahan, Kate Keahey, David LaBissoniere, and Tim Freeman. Cumulus: an open

source storage cloud for science. In Proceedings of the 2nd international workshop on Scientific

cloud computing, pages 25–32. ACM, 2011.

[34] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management in curated

databases. In Proceedings of the 2006 ACM SIGMOD international conference on Manage-

ment of data, pages 539–550. ACM, 2006.

[35] Peter Buneman, Sanjeev Khanna, and Wang chiew Tan. Why and where: A characterization

of data provenance. In In ICDT, pages 316–330. Springer, 2001.

[36] Rajkumar Buyya and Srikumar Venugopal. A gentle introduction to grid computing and

technologies. CSI Communications, 29(1):9–19, July 2005. Computer Society of India (CSI).

[37] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.

Cloud computing and emerging it platforms: Vision, hype, and reality for delivering comput-

ing as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

204 BIBLIOGRAPHY

[38] M. Cafaro and G. Aloisio. Grids, Clouds and Virtualization. Computer Communications and

Networks. Springer, 2010.

[39] Eddy Caron, Frederic Desprez, and Adrian Muresan. Forecasting for grid and cloud computing

on-demand resources based on pattern matching. In Cloud Computing, Second International

Conference, CloudCom 2010, pages 456–463. IEEE, 2010.

[40] Eddy Caron, Frederic Desprez, and Adrian Muresan. Forecasting for grid and cloud computing

on-demand resources based on pattern matching. In Proceedings of the 2010 IEEE Second

International Conference on Cloud Computing Technology and Science, CLOUDCOM ’10,

pages 456–463, Washington, DC, USA, 2010. IEEE Computer Society.

[41] Subhachandra Chandra and Peter M Chen. Whither generic recovery from application faults?

a fault study using open-source software. In Dependable Systems and Networks, 2000. DSN

2000. Proceedings International Conference on, pages 97–106. IEEE, 2000.

[42] David Chappell. Introducing the Azure Services Platform. White paper (sponsored by mi-

crosoft corporation), DavidChappell & Associates, October 2008.

[43] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. A cloud provisioning system for de-

ploying complex application services. In e-Business Engineering (ICEBE), 2010 IEEE 7th

International Conference on, pages 125–131, 2010.

[44] Susanta Nanda Tzi-cker Chiueh. A survey on virtualization technologies. 2005.

[45] Tom Coughlin and Mike Alvarado. Angels in our midst: Associative metadata in cloud

storage. Wikibon’s summit, November 2nd, 2010.

[46] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse transformations.

In Proceedings of the 27th International Conference on Very Large Data Bases, VLDB ’01,

pages 471–480, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[47] Edward Curry, Desmond Chambers, and Gerard Lyons. Extending Message-Oriented Mid-

dleware using Interception. In Antonio Carzaniga and Pascal Fenkam, editors, Third Inter-

national Workshop on Distributed Event-Based Systems (DEBS 04) at ICSE 04, pages 32–37,

Edinburgh, Scotland, UK, 2004. IEEE Computer Society.

[48] Tom Austin David W. Cearley David Mitchell Smith Daryl C. Plummer, Thomas J. Bittman.

Cloud computing: Defining and describing an emerging phenomenon, 2008.

[49] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: an elastic transactional data

store in the cloud. In Proceedings of the 2009 conference on Hot topics in cloud computing,

HotCloud’09, Berkeley, CA, USA, 2009. USENIX Association.

[50] Partha Dasgupta, Vijay Karamcheti, and Zvi M. Kedem. Transparent distribution middleware

for general purpose computations. In In Proc. of Intl. Conf. on Parallel and Distributed

Processing Techniques and Applications (PDPTA 99, 1999.

[51] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The cost of

doing science on the cloud: The montage example, 2008.

[52] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud com-

puting: architecture, applications, and approaches. Wireless Communications and Mobile

Computing, 2011.

[53] D. Dossot and J. Emic. Mule in Action. Manning Pubs Co Series. Manning Publications

Company, 2009.

[54] D. Dossot and J. Emic. Mule in Action, chapter Discovering Mule, pages 03–20. Manning

Publications Company, 2009.

[55] D. Dossot and J. Emic. Mule in Action, chapter Working with Compnents, pages 139–163.

Manning Publications Company, 2009.

[56] D. Dossot and J. Emic. Mule in Action, chapter Routing Data With Mule, pages 82–107.

Manning Publications Company, 2009.

BIBLIOGRAPHY 205

[57] D. Dossot and J. Emic. Mule in Action, chapter Using the Mule API, pages 299–326. Manning

Publications Company, 2009.

[58] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto, Ramin Sadre, and Aiko

Pras. Inside dropbox: understanding personal cloud storage services. IMC ’12, pages 481–

494, 2012.

[59] Fred Hoch et al. Software as a service: Strategic backgrounder. 2000.

[60] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext transfer protocol – http/1.1, 1999.

[61] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and Grid Computing

360-Degree Compared. In 2008 Grid Computing Environments Workshop, pages 1–10. IEEE,

November 2008.

[62] Apache Software Foundation. Apache axis2/java - next generation web services. Website

http://ws.apache.org/axis2/, July 2009.

[63] Ritu Garg and Awadhesh Kumar Singh. Fault tolerance in grid computing: State of the art

and open issues, feb 2011.

[64] Felix C. Gartner. Fundamentals of fault-tolerant distributed computing in asynchronous

environments. ACM Computing Surveys, 31, 1999.

[65] The getty research institute. http://www.getty.edu/research/tools/provenance/index.

html.

[66] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin, L. Moreau, and T. Oinn.

Provenance of e-Science experiments-experience from bioinformatics. Proceedings of the UK

OST e-Science second All Hands Meeting, 4, 2003.

[67] Irfan Habib. Virtualization with kvm. Linux J., 2008(166), February 2008.

[68] C. N. Hoefer and G. Karagiannis. Taxonomy of cloud computing services. In Proceedings

of the 4th IEEE Workshop on Enabling the Future Service-Oriented Internet (EFSOI’10),

Workshop of IEEE GLOBECOM 2010, Miami, USA, 2010 IEEE GLOBECOM Workshops,

pages 1345–1350, USA, December 2010. IEEE Communications Society.

[69] Christina Hoffa, Gaurang Mehta, Tim Freeman, Ewa Deelman, Kate Keahey, Bruce Berriman,

and John Good. On the use of cloud computing for scientific workflows. In Proceedings of

the 2008 Fourth IEEE International Conference on eScience, ESCIENCE ’08, pages 640–645,

Washington, DC, USA, 2008. IEEE Computer Society.

[70] Soonwook Hwang and Carl Kesselman. Grid workflow: a flexible failure handling framework

for the grid. In Proceedings of the 12th IEEE International Symposium on High Performance

Distributed Computing, 2003, pages 126–137. IEEE, June 2003.

[71] Ivan Janciak, Peter Brezany, and Fakhri Alam Khan. Workflow enactment engine independent

provenance recording for e-science infrastructures. In Proceedings of the Fourth IEEE Interna-

tional Conference on Research Challenges in Information Science RCIS’10. IEEE Computer

Society, May 2010.

[72] Jiang Ji-chen and Gao Ming. Enterprise Service Bus and an Open Source Implementation.

pages 926–930, September 2007.

[73] Simon Kelly, Karl Heaton, and Jurian Hoogewerff. Tracing the geographical origin of food:

The application of multi-element and multi-isotope analysis. Trends in Food Science and

Technology, 16(12), 2005.

[74] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc

Loingtier, and John Irwin. Aspect-oriented programming. Springer, 1997.

[75] Katherine Kiel and Katherine Tedesco. Stealing history: How does provenance affect the price

of antiquities? Working Papers 1105, College of the Holy Cross, Department of Economics,

2011.

206 BIBLIOGRAPHY

[76] Tamas Kifor, László Zsolt Varga, Javier Vazquez-Salceda, Sergio Alvarez, Steven Willmott,

Simon Miles, and Luc Moreau. Provenance in agent-mediated healthcare systems. Intelligent

Systems, IEEE, 21(6):38–46, 2006.

[77] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, and Joonwon Lee. Task-aware

virtual machine scheduling for I/O performance. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments, VEE ’09, pages

101–110, New York, NY, USA, 2009. ACM.

[78] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented Architecture

Best Practices. Prentice Hall, 1 edition, November 2004.

[79] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy and survey

of grid resource management systems. Software Practice and Experience, 32:135–164, 2002.

[80] Ingolf H. Krueger, Michael Meisinger, Massimiliano Menarini, and Stephen Pasco. Rapid

systems of systems integration - combining an architecture-centric approach with enterprise

service bus infrastructure. In In Proceedings of the IEEE International Conference on Infor-

mation Reuse and Integration (IRI, 2006.

[81] David P. Lanter. Design of a Lineage-Based Meta-Data Base for GIS. Cartography and

Geographic Information Science, 18:255–261, 1991.

[82] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas Sandholm. What’s

inside the cloud? an architectural map of the cloud landscape. In Proceedings of the 2009

ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pages

23–31, Washington, DC, USA, 2009. IEEE Computer Society.

[83] Andrew Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and Ethan L. Miller.

Spyglass: Fast, scalable metadata search for large-scale storage systems. In Proceedings of

the 7th USENIX Conference on File and Storage Technologies (FAST ’09), February 2009.

[84] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn Leaf.

Nist cloud computing reference architecture. NIST special publication, 500:292, 2011.

[85] X. Liu, D. Yuan, D. Cao, G. Zhang, W. Li, J. Chen, Q. He, and Y. Yang. The Design of

Cloud Workflow Systems. SpringerBriefs in Computer Science. Springer, 2011.

[86] Zhen Liu, Hongbin Huang, Su Deng, and Xueshan Luo. An algorithm for resource discovery

based on metadata semantic matching in semantic grid environment. In Semantics, Knowledge

and Grid, 2005. SKG ’05. First International Conference on, pages 58–58, 2005.

[87] Clifford A. Lynch. When documents deceive: trust and provenance as new factors for in-

formation retrieval in a tangled web. J. Am. Soc. Inf. Sci. Technol., 52(1):12–17, January

2001.

[88] Peter Macko, Marc Chiarini, and Margo Seltzer. Collecting provenance via the xen hypervisor.

In Workshop on the Theory and Practice of Provenance, 2011.

[89] Daniel W. Margo and Margo Seltzer. The case for browser provenance. In First workshop

on on Theory and practice of provenance, TAPP’09, pages 9:1–9:5, Berkeley, CA, USA, 2009.

USENIX Association.

[90] Daniel W. Margo and Margo I. Seltzer. The case for browser provenance. In Workshop on

the Theory and Practice of Provenance, 2009.

[91] Anderson Marinho, Leonardo Murta, Cláudia Werner, Vanessa Braganholo, Sérgio

Manuel Serra da Cruz, Eduardo S. Ogasawara, and Marta Mattoso. Provmanager: a prove-

nance management system for scientific workflows. Concurr. Comput. : Pract. Exper.,

24(13):1513–1530, September 2012.

[92] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Technical report,

July 2009.

BIBLIOGRAPHY 207

[93] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements of recording

and using provenance in e-Science experiments. Technical report, University of Southampton,

2005.

[94] Simon Miles, Sylvia C. Wong, Weijian Fang, Paul Groth, Klaus peter Zauner, and Luc

Moreau. Provenance-based validation of e-science experiments. In In ISWC, pages 801–815.

Springer-Verlag, 2005.

[95] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana

Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. Layering in provenance systems.

In Proceedings of the 2009 conference on USENIX Annual technical conference, USENIX’09,

pages 10–10, Berkeley, CA, USA, 2009. USENIX Association.

[96] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo Seltzer.

Provenance-aware storage systems. In Proceedings of the annual conference on USENIX

’06 Annual Technical Conference, ATEC ’06, pages 4–4, Berkeley, CA, USA, 2006. USENIX

Association.

[97] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer. Making a cloud

provenance-aware. In First workshop on on Theory and practice of provenance, TAPP’09,

pages 12:1–12:10, Berkeley, CA, USA, 2009. USENIX Association.

[98] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer. Provenance for the cloud.

In Proceedings of the 8th USENIX conference on File and storage technologies, FAST’10, pages

15–14, Berkeley, CA, USA, 2010. USENIX Association.

[99] Kiran-Kumar Muniswamy-Reddy and Margo Seltzer. Provenance as first class cloud data.

SIGOPS Oper. Syst. Rev., 43(4):11–16, January 2010.

[100] Arun Babu Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L Scott. Proactive

fault tolerance for hpc with xen virtualization. In Proceedings of the 21st annual international

conference on Supercomputing, pages 23–32. ACM, 2007.

[101] Nimbus. http://www.nimbusproject.org/. retrieved: Aug 2nd, 2013.

[102] Nitu. Configurability in saas (software as a service) applications. In Proceedings of the 2nd

India software engineering conference, ISEC ’09, pages 19–26, New York, NY, USA, 2009.

ACM.

[103] Mohamad Izuddin Bin Nordin and Mahamat Issa Hassan. Cloud resource broker in the

optimization of medical image retrieval system: A proposed goal-based request in medical

application. In National Postgraduate Conference (NPC), 2011, pages 1–5. IEEE, 2011.

[104] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. ”big”’

web services: making the right architectural decision. In Proceedings of the 17th international

conference on World Wide Web, WWW ’08, pages 805–814, New York, NY, USA, 2008.

ACM.

[105] J. Pruyne and Hewlett-Packard Laboratories. Enabling QoS Via Interception in Middleware.

HP Laboratories technical report. Hewlett-Packard Laboratories, 2000.

[106] Shrija Rajbhandari, Ian Wootten, Ali Shaikh Ali, and Omer F. Rana. Evaluating provenance-

based trust for scientific workflows. In Proceedings of the Sixth IEEE International Symposium

on Cluster Computing and the Grid, CCGRID ’06, pages 365–372, Washington, DC, USA,

2006. IEEE Computer Society.

[107] Muralikrishnan Ramane and Bharath Elangovan. A metadata verification scheme for data

auditing in cloud environment. International Journal on Cloud Computing: Services and

Architectur, Aug 2012.

[108] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, and Kun Wang. A distributed self-learning ap-

proach for elastic provisioning of virtualized cloud resources. MASCOTS ’11, pages 45–54,

Washington, DC, USA, 2011. IEEE Computer Society.

208 BIBLIOGRAPHY

[109] Mohamed Amin Sakka, Bruno Defude, and Jorge Tellez. Document provenance in the cloud:

constraints and challenges. In Proceedings of the 16th EUNICE/IFIP WG 6.6 conference

on Networked services and applications: engineering, control and management, EUNICE’10,

pages 107–117, Berlin, Heidelberg, 2010. Springer-Verlag.

[110] F. Salfner and M. Malek. Reliability modeling of proactive fault handling. Technical Report

209, Department of Computer Science, Humboldt-Universität zu Berlin, Germany, 2005.

[111] C.W.A.C.W. Samsudin. Data Provenance for E-social Science Cloud Applications. Final year

project–University of Leeds (School of Computing Studies), 2010/2011. University of Leeds,

School of Computing Studies, 2011.

[112] Can Sar and Pei Cao. Lineage file system. Online at http://crypto.stanford.edu/ cao/lin-

eage.html, January 2005.

[113] Richard E Schantz and Douglas C Schmidt. Middleware for distributed systems: Evolving

the common structure for network-centric applications. 2002.

[114] Maren Scheffel, Katja Niemann, Abelardo Pardo, Derick Leony, Martin Friedrich, Kerstin

Schmidt, Martin Wolpers, and Carlos Delgado Kloos. Usage pattern recognition in student

activities. In Proceedings of the 6th European conference on Technology enhanced learning:

towards ubiquitous learning, EC-TEL’11, pages 341–355, Berlin, Heidelberg, 2011. Springer-

Verlag.

[115] Carlos Scheidegger, David Koop, Emanuele Santos, Huy Vo, Steven Callahan, Juliana Freire,

and Cláudio Silva. Tackling the provenance challenge one layer at a time. Concurr. Comput.

: Pract. Exper., 20(5):473–483, April 2008.

[116] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance Tech-

niques. Technical report, Computer Science Department, Indiana University, Bloomington

IN, 2005.

[117] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. A survey of data provenance in e-science.

ACM Sigmod Record, 34(3):31–36, 2005.

[118] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A framework for collecting provenance

in data-centric scientific workflows. In ICWS, pages 427–436, 2006.

[119] Yogesh L. Simmhan, Beth Plale, Dennis Gannon, and Suresh Marru. Performance evalua-

tion of the karma provenance framework for scientific workflows. In IPAW, pages 222–236.

Springer, 2006.

[120] Michael Smit, Przemyslaw Pawluk, Bradley Simmons, and Marin Litoiu. A web service

for cloud metadata. In Proceedings of the 2012 IEEE Eighth World Congress on Services,

SERVICES ’12, pages 361–368, Washington, DC, USA, 2012. IEEE Computer Society.

[121] Diomidis Spinellis. Another level of indirection. In Andy Oram and Greg Wilson, editors,

Beautiful Code: Leading Programmers Explain How They Think, chapter 17, pages 279–291.

O’Reilly and Associates, Sebastopol, CA, 2007.

[122] Robert Stevens, Kevin Glover, Chris Greenhalgh, Claire Jennings, Simon Pearce, Peter Li,

Melena Radenkovic, and Anil Wipat. Performing in silico Experiments on the Grid: A Users

Perspective. In Proceedings UK e-Science programme All Hands Meeting, pages 43–50, 2003.

[123] Martin Szomszor and Luc Moreau. Recording and reasoning over data provenance in web and

grid services. In Robert Meersman, Zahir Tari, and Douglas C. Schmidt, editors, CoopIS/-

DOA/ODBASE, volume 2888 of Lecture Notes in Computer Science, pages 603–620. Springer,

2003.

[124] Martin Szomszor and Luc Moreau. Recording and reasoning over data provenance in web

and grid services. In In Int. Conf. on Ontologies, Databases and Applications of Semantics,

volume 2888 of LNCS, pages 603–620, 2003.

BIBLIOGRAPHY 209

[125] Jian Tan, Parijat Dube, Xiaoqiao Meng, and Li Zhang. Exploiting resource usage patterns

for better utilization prediction. In Proceedings of the 2011 31st International Conference

on Distributed Computing Systems Workshops, ICDCSW ’11, pages 14–19, Washington, DC,

USA, 2011. IEEE Computer Society.

[126] Wang Chiew Tan. Provenance in databases: Past, current, and future. volume 30, pages

3–12, 2007.

[127] Val Tannen. Provenance for database transformations. In Proceedings of the 13th International

Conference on Extending Database Technology, EDBT ’10, pages 1–1, New York, NY, USA,

2010. ACM.

[128] R. H. Tykot. Scientific methods and applications to archaeological provenance studies. In

Proceedings of the International School of Physics: IOS Press, Amsterdam 2004, pages 407–

432, 2004.

[129] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the

clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–55, De-

cember 2008.

[130] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and DawnWilkins.

A comparison of a graph database and a relational database: a data provenance perspective.

In Proceedings of the 48th Annual Southeast Regional Conference, ACM SE ’10, pages 42:1–

42:6, New York, NY, USA, 2010. ACM.

[131] Jens-Sönke Vöckler, Gideon Juve, Ewa Deelman, Mats Rynge, and Bruce Berriman. Experi-

ences using cloud computing for a scientific workflow application. pages 15–24, USA, 2011.

ACM.

[132] L. Wall and A. Lader. Building Web services and .NET applications. Application Development

Series. McGraw-Hill/Osborne, 2002.

[133] Simon Wardley, Etienne Goyer, and Nick Barcet. Ubuntu Enterprise Cloud Architecture.

Technical White Paper, August 2009.

[134] Craig D. Weissman and Steve Bobrowski. The design of the force.com multitenant internet

application development platform. In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, SIGMOD ’09, pages 889–896, New York, NY, USA, 2009.

ACM.

[135] Ying Yang, Xindong Wu, and Xingquan Zhu. Combining proactive and reactive predictions

for data streams. In Proceedings of the Eleventh ACM SIGKDD International Conference on

Knowledge Discovery in Data Mining, KDD ’05, pages 710–715, New York, NY, USA, 2005.

ACM.

[136] Jing Zhang, Adriane Chapman, and Kristen Lefevre. Do you know where your data’s been?

— tamper-evident database provenance. In Proceedings of the 6th VLDB Workshop on Secure

Data Management, SDM ’09, pages 17–32, Berlin, Heidelberg, 2009. Springer-Verlag.

[137] Olive Qing Zhang, Markus Kirchberg, Ryan K. L. Ko, and Bu Sung Lee. How to track your

data: The case for cloud computing provenance. In Proceedings of the 2011 IEEE Third

International Conference on Cloud Computing Technology and Science, CLOUDCOM ’11,

pages 446–453, Washington, DC, USA, 2011. IEEE Computer Society.

[138] Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan, and Mark Greenwood.

Using Semantic Web Technologies for Representing E-science Provenance. In The Semantic

Web ISWC 2004, pages 92–106. 2004.

