
MASTERARBEIT

Titel der Masterarbeit

“Game Engine for web-based Serious Games”

Verfasserin

Katharina Meusburger, BSc.

angestrebter akademischer Grad

Diplom-Ingenieurin (Dipl.-Ing.)

Wien, 2014

Studienkennzahl lt. Studienblatt: A 066 935

Studienrichtung lt. Studienblatt: Masterstudium Medieninformatik

Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Helmut Hlavacs

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 2

1.3 Publication . 2

2 Background 3

2.1 Psychological Background . 3

2.2 User Needs and Design Principles . 4

3 Related Work 7

3.1 Game Engine . 7

3.2 Quintus . 9

3.3 Crafty . 11

3.4 PandaJS . 12

3.5 EnchantJS . 12

3.6 Collie . 13

3.7 LimeJS . 14

3.8 Summary . 16

4 Technological Aspects 19

4.1 JavaScript . 19

4.2 HTML5 . 23

4.3 CSS3 . 25

4.4 Summary . 28

5 Game Engine - Jumru 5s 29

i

5.1 Engine Object - jumruCore . 31

5.2 Composition - Stage and Scene . 32

5.3 Player . 41

5.4 Media Management . 43

5.5 Asset Manager and Progress Bar . 44

5.6 Input Manager . 45

5.7 Rendering - Game loop . 46

5.8 (Keyframe) Animations . 51

5.9 Cross Browser Compatibility . 54

5.10 Logging . 55

6 Case Study - EmoJump 59

6.1 Game setting . 60

7 Performance Evaluation 63

7.1 Test Setting . 63

7.2 Results . 65

7.3 Summary . 74

8 Conclusion and Future Work 79

Bibliography 81

ii

1 Introduction

1.1 Motivation

Nowadays the number of children suffering from a psychological illness is increas-

ing [9]. These impairments show first symptoms at early ages and may cause difficul-

ties in communication skills, like emotion recognition or social life. Proper treatment

at a young age may significantly improve the children’s behavioural disorders. Espe-

cially for children alternative therapy strategies are very welcomed, which introduces

the field of serious gaming. Research [1] reveals that children with cognitive disabili-

ties are amenable for technology or computer games - they react to game technologies

in a positive way. A serious game uses this advantage and is meant to be more than just

a simple game. By incorporating a psychological treatment in the game context, the

child has fun while playing and is even treated through the therapeutic background.

Unfortunately, existing games for emotion recognition are insufficient. Not only be-

cause proper game aspects and user needs are not sufficiently addressed, but because

there is no game engine that is especially designed for developing serious games.

Game engines tend to differ according to the game play scenario, i.e., an engine for a

strategy game has a different architecture than an engine for a shooter game [21]. The

strong relation between a game an its underlying engine complicates a generalization

of the term game engine. Besides common components, which constitute a basic game

engine, we further present features for serious gaming. These features enable data col-

lection, either directly through a questionnaire or indirectly through logging. With

the web as our target platform, we use new HTML5 and CSS3 concepts like canvas

rendering, audio or video elements and keyframe animations, which can even replace

Flash animations [45].

In our master thesis project we met the challenge of developing a web serious game,

1

which is used to train the emotion recognition skills of children. While researching

and diving into HTML5 and JavaScript concepts, we evaluated several existing web

frameworks or game engines that are mostly designed for building basic indie games

for the web. However, we could not find any framework that mainly focuses on de-

veloping serious games. For the purpose of inventing a serious game for emotion

recognition that incorporates a logging tool to store data of the game play and the

player’s status, we have built our own HTML5 game engine, whose presentation is

the aim of this master thesis.

1.2 Outline

In this work we first give a short introduction in the psychological background of se-

rious gaming, emotion recognition and the requirements that arise for proper game

development in this field of interest. Afterwards, we describe the main components

of which a game engine is generally composed. Moreover, we look at some existing

web game engines and evaluate them according to these engine modules. Before we

present our game engine Jumru 5s in detail, we explain important JavaScript, HTML5

and CSS3 concepts that build the fundamentals of our work. Furthermore, we show

how we successfully used the engine based on the example of our serious game Emo-

Jump. At the end we evaluate the engine by means of the game and provide some

performance statistics. Lastly, a conclusion sums this work up.

1.3 Publication

Fortunately, our work is accepted as a full paper by the Programme Committee for the

5th International Conference on SGDA and is published in Springer LNCS 8778:

N. Schweiger, K. Meusburger, H. Hlavacs, M. Sprung,

Jumru 5s - A Game Engine for Serious Games,

The Fifth International Conference on Serious Games Development & Applications

(SGDA 2014) 9-10 Oct 2014, Berlin, Germany. (http://ddsgsa.net/sgda/)

2

http://ddsgsa.net/sgda/

2 Background

2.1 Psychological Background

ASDs - Autism Spectrum Disorders

As stated earlier in the introduction, the number of children with ASDs has grown

during the last couple of years. From 2000 to 2010 the number of children suffering

from ASDs has more than doubled and increased from 1 in 150 to 1 in 68 within 10

years [9]. Having a closer look on the term ASDs, CDC1 provides following definition:

“Autism spectrum disorders (ASDs) are a group of developmental disabilities that

can cause significant social, communication and behavioural challenges. People

with ASDs handle information in their brain differently than other people.”

Speaking of spectrum disorders, people suffer from ASDs at different degrees, though

they share some common symptoms that normally complicate social interactions.

Symptoms can appear at early ages of childhood and may even start before the age

of three. Though there is no cure for ASDs, research shows that an appropriate treat-

ment can alleviate the symptoms. Further research studies demonstrate that improv-

ing emotion comprehension skills at an early age may have significant beneficial effects

on a person’s life and social interactions [10].

People with ASDs struggle in their social life and communication because they

have difficulties in interpreting facial or generally non-verbal expressions. A major

issue for these people is also to keep eye contact. All these factors lead to difficulties

in emotion recognition [1]. Though ASDs may appear in different ways [10], we focus

solely on emotion recognition and how to train this ability.

1Centers for Disease Control and Prevention

3

Training of Emotion Recognition

For the Cognitive Atlas Russ Poldrack [36] defines emotion recognition as “the process

of assigning an emotion to one of the discrete categories of emotion available in a particular

culture”. For our training study we are developing a web game in cooperation with

the Department of Clinical Child and Adolescent Psychology of the University of Vi-

enna2. The game has two aims: on the one hand it is used to evaluate to what extent

children are able to recognize emotions and on the other hand the game shall train the

children’s emotion recognition skills. To provide a basis for building this online tool

we implemented our own web engine, which is especially designed for serious games.

The game that is built on this framework is further used to evaluate the engine.

Previous research has also focused on measuring and improving emotion recog-

nition skills and has originated in computer-based intervention tools. For evolving

appropriate game technologies, or rather development environments for this field of

interest, we have to consider requirements, which a good serious game has to fulfill in

order to fit the users needs.

2.2 User Needs and Design Principles

Abirached et al. [1] evaluate user needs and requirements for designing serious games

that deal with emotion recognition, because a “successful deployment of a technology for

users with ASDs can only be assured by a clear understanding of end users’ needs”.

To identify requirements for designing serious games, they collect data about chil-

dren with ASDs through observations and interviews while playing a simple proto-

type game. Throughout the whole game play process, the children are accompanied

by their parents. Analysis of these interviews show that the most important psycho-

logical need is to incorporate the context behind the emotional statement into the game,

because some children even have difficulties in interpreting basic emotions, i.e., sad-

ness. They can only tell someone is sad if the person is crying. Other children can

2http://kinder-psy.univie.ac.at/

4

not recognize complex emotions like embarrassment, because they do not understand

the emotional context behind this feeling or why someone acts or reacts in a special

way. The goal of this design principle is to embed the emotion in a real-life scenario,

which a child can transfer to a real social interaction. This rule also includes learning

the cause and effect of an emotion.

Besides this psychological need, they identified following technological design

principles that are relevant for game development and could be provided by a game

engine, to take the effort off the hands of the game developer:

1. Allow Customization: A high level of customization allows the game to fit spe-

cific user needs. Customization should be implemented in different areas, like

feedback, characters, visual elements, language, audio and video settings, etc.

Additionally, the game could also consider the context of the game environment

- where is the child playing the game (bus, home, school, etc.).

2. Enable Adaptability: The game itself should adapt to the behaviour of a child,

i.e., by eye contact, speech recognition or a high level of interactivity. How

important adaptability for the user’s attention is, is also mentioned in the study

of Finkelstein et al. [15]. They also state that the granularity of customizing the

interface has a massive impact on the user’s concentration. The higher the level

of interactivity and adaptability is, the more attentive a user is. If the interface

fits the personal interest, the user is more attracted to the game.

3. Technology Platforms: A design feature to keep in mind is platform independence.

Supporting multiple platforms includes desktop devices as well as mobile de-

vices, since touch screens become more and more popular. Multiple platforms

also include movement-based systems such as Nintendo WII or Microsoft Kinect.

Abirached et al. [1] further analysed existing game approaches and complained

that these computer-based tools assisting children with ASDs are too static in their

game play. To nail these arguments down, they state that

5

“the fundamental need for a system to assist children with ASDs in recognizing,

understanding, and generalizing facial expressions of emotions using an interac-

tive computer-game approach has not been sufficiently addressed”.

6

3 Related Work

Before we present the main topic of this thesis, our implemented game engine, we have

a closer look on the term game engine itself and explain which components basically

constitute a game engine. Based on this introduction, we evaluate existing web engines

that enable game development and eventually show their strengths and qualities for

implementing serious games.

3.1 Game Engine

While studying literature for a definition of the term game engine we encountered

that there is no real or common definition. In his book about general game engine

architecture, Jason Gregory [21] outlines that the game engine mostly depends on

the use case scenario, for example an engine for a first person shooter game might

differ from an engine for a platform runner game or a strategy game. Therefore it

is not a simple task to generalize a definition. The strong relation between the game

engine and the game itself reveals that the engine is the heart of a game, because a

game depends on its engine. An engine manages the life of a game, encapsulates all

things that are “abstract and applicable to all or most games”, whereas a game consists of

elements that are specific for a single game [41].

Literature covering game engine architecture, especially for the web, is hard to find,

because technologies are changing fast. Anderson et al. even say the “lack of literature

and research regarding game engine architecture is perplexing” [3]. They also outline that

existing engines are specialized for a particular game genre, instead of concentrating

on the commonality of the engine’s components. Nevertheless, research proves that

the architecture of an engine itself must consist of some features to enable proper

game development. Though there is no standard list of features a game engine must

7

provide, we present basic components that are generally valid. Alan Thorn [41] states

that “to some degree, the range and kind of features a developer chooses to put into an engine

reflects their professional experience, design preferences, and business intentions.”.

An architecture is normally divided into manager or subsystems that are respon-

sible for a specific task area, but interact with each other. Among others, Thorn lists

following main components [41], which we think an engine should provide at least:

1. Asset management: A manager-tool that is responsible for loading game assets,

supporting multiple types.

2. Scene or stage management: Loaded game data is composed and structured in

layers or nodes. Some functionality must enable traversing or manipulating the

game’s stage.

3. Physics engine: The laws of physics like gravity or other forces must be in-

cluded. If a player jumps or an element is thrown into the air, physical laws

bring it automatically back to earth.

4. Rendering: After an asset manager has loaded game data, the game engine must

also provide functionality to render these assets on screen.

5. Media management: A game engine should support multiple media types like

image, video and audio. Therefore some management system to correctly play

and pause media tracks is necessary.

6. User input: This component includes catching and processing user input accord-

ing to the current game mode.

In case of developing a game engine for serious games, an important and mostly

unadressed feature is the following one:

7. Logging: Especially for serious gaming and for analysing the game experience

of the player we need an appropriate logging tool that stores data of the game

8

context at specific events. Sometimes logging in serious games can include fur-

ther psychophysiological tools like emotives that match the users emotional state

against the game experience. By sending event-codes at specific points in the

game, the recording software of the player’s condition captures these signals

and places markers in the recorded data. According to Nacke et al. [29] a log-

ging mechanism has to be able to cope with different types of events. They

differentiate between in-game events, if the player in the game does something,

and real-world events that capture the human player’s reactions, like “shouting at

the computer in anger”. To support real-world events, of course further methods for

measurement would have to be incorporated.

Therefore a game engine is seen as a good engine, if it keeps the game code sim-

ple. To what extent existing frameworks or game engines meet these requirements is

presented in the following section. Some of these engines are also mentioned as tools

on the SEGAN1 website and often came across our mind during the development.

3.2 Quintus

Quintus2 is a JavaScript and HTML5 game engine that is open-source, lightweight

and easy to use. On the website the authors offer some tutorials on using the en-

gine and explain basic components. In addition to the API and the source codes

the developers provide a forum, in case further support is necessary. Someone can

use the engine by initially creating the engine object Quintus(). Afterwards, access

on quintus features is possible. The engine constitutes itself as a modular system,

which means modules have to be included into the engine to be able to use their

functionality. Just modules that are relevant for a specific game, must be loaded into

the project. The modular system design also allows the development of own com-

ponents by extending the basic Quintus object by an own function. The modularity

should minimize coupling between the subsystems. The engine controls the game

1Serious Games Network http://seriousgamesnet.eu/tools
2http://html5quintus.com/

9

http://seriousgamesnet.eu/tools
http://html5quintus.com/

loop with requestAnimationFrame(). Some methods used in the engine are taken

from Undercore.js 3, which is a library providing 80 utility methods. Quintus in-

corporates asset loading and forces the user to organize assets in specific a way, i.e.,

it provides default paths for images or audio files. Otherwise, it recommends using

special file formats, for example audio must be provided in .ogg and .mp3. These

specifications can be overwritten, but take the necessity off to look for supported file

types in the browser. Though the engine has no progress bar visualizing the loading

status, a tutorial on the website explains how to build one with CSS. The audio mod-

ule supports web audio or HTML5 audio according to the browser and contains basic

functions for starting, stopping and pausing sounds. Working with video streams

is not supported, though the authors explain how to extend the engine in order to

enable video streams, which can be found in the documentation of the code [33].

Quintus renders data using the canvas-element. Drawable items are sprite-objects

and therefore we have to include the sprites module. A sprite contains information

like the position, an asset path, a sprite sheet or a point-array that is used for collision

detection. This element can also have types like friendly, active or enemy, which are

defined by Quintus. A scenes module encapsulates game items like sprites. Multiple

scenes can be staged independently on each other, which means sprites of one stage

can not interact with sprites of another stage. Inside a stage, collisions are detected

by the 2D module that consists of three parts. First, the definition of a viewport

enables movement in the stage like a scrolling camera. Second, this module contains a

tileLayer to create tiled backgrounds, i.e., for platform games. A tiled background

takes an image and renders it subsequently. The third element is a 2d object that

applies physics (velocity, gravity, etc.) to sprites. An input module handles user in-

puts, concerning keyboard or mouse input or touch types, like click or drag events.

Quintus can even add functionality for a joypad that allows a 4-way movement. By

loading the animation module we can set keyframe animations on a sprite sheet, but

the definition of tweened animations for a specific duration with an easing-value is

3http://underscorejs.org/

10

http://underscorejs.org/

also possible. An interesting feature of this engine is a selector mechanism that works

similar like jQuery. Quintus is a powerful engine, which relies on other libraries like

Undercore.js or Tween.js4. It supports desktop devices as well as mobile devices.

3.3 Crafty

The Crafty5 engine is an open source 2D engine that has some similarities with the

Quintus engine. It also has a jQuery-like syntax and is based on different components

or modules that can be added on entities. The developers provide a blog 6 containing

posts about new releases or upcoming features. The authors also link to a forum for

further questions. Generally, the API section of the homepage lists most information

about the engine, because the documentation area of the website is not fully prepared.

The fundamental elements in Crafty are components (the modules) and entities (the

sprites). Components can be built by calling Crafty.c(name, object) that takes

the name of the newly created component and the component itself as parameters.

For example we could define a component called BoundingBox, add the properties

top, right, bottom and left and some functions like expandBox(). The function for

creating an entity works quite simple: Crafty.e(componentList) takes multiple

existing components, adds them to the entity and returns the created entity. In contrast

to Quintus, the engine offers a choice between canvas or DOM rendering. Crafty

supports the loading of image or audio assets by passing the URL of the file. Unlike

Quintus, this engine does not provide standard audio formats. An animation module

offers tweenings and keyframe (sprite) animations. By applying the 2D module, we

can add gravity or collision detection mechanisms (a hitbox) to entities. Crafty is said

to support key, mouse and touch input devices and provides storage mechanisms, for

example to persist data even if the browser window is closed. A nice feature of Crafty

is the debug module, which enables the visualization of game elements, i.e., elements

are drawn with a custom alpha value or a visible bounding box.

4https://github.com/sole/tween.js/blob/master/src/Tween.js
5http://craftyjs.com/
6http://craftyjs.tumblr.com

11

https://github.com/sole/tween.js/blob/master/src/Tween.js
http://craftyjs.com/
http://craftyjs.tumblr.com

3.4 PandaJS

PandaJS7 is a modular engine and supports both mobile an desktop devices. It is

based on PixiJS8, a WebGL/Canvas rendering engine. On the project’s website the

engineers provide an overview of many modules and functionalities of the engine. In

PandaJS different scenes consist of sprites, which can use a physics module for col-

lision detection. Sprites can have other sprites as children, i.e., to add an item to a

player. Between the scenes the engine enables dynamic asset loading of images and

audio files. Further features include animations like tweenings or a particle engine,

which can be used for special effects. Besides animations, the engine handles sprite

sheets and offers debugging options, like bounding box visualization. It also allows to

build own modules to extend the engine by specific functionalities. Technical features

enable fullscreen mode or pausing the game, i.e., if another tab is open. The devel-

opers also pay attention to performance improvements and provide object pooling,

which eases memory management. As further features PandaJS supports local storage

possibilities and offline game play mechanisms. The engine also offers many tutorials,

screencasts or code examples. In addition to the API and the sources on github, a

forum is provided to communicate with other developers.

3.5 EnchantJS

EnchantJS9 is an object oriented engine and is designed for desktop and mobile de-

vices. It handles code asynchronously, which means execution is shut down if no

user interaction takes place and is resumed if user input is captured again. EnchantJS

consists of a core library that can be extended through further plug-ins i.e., to provide

further interactive input functionality or UI elements. The game is set up by initializing

the engine’s core object with the screen’s width and height. Asset loading is imple-

mented by a preload() function, which can take multiple asset paths as parameters.

7http://www.pandajs.net/
8http://www.pixijs.com/
9http://enchantjs.com/

12

http://www.pandajs.net/
http://www.pixijs.com/
http://enchantjs.com/

These assets are not loaded until the core-object is started. Besides images, the en-

gine can also preload audio data. Due to the object oriented design, scenes consist of

multiple node-elements, which serve as prototypes for entities or groups. Entities and

nodes are abstract objects and represent DOM-elements. Groups can contain an arbi-

trary number of other nodes, which is a necessary function for the scene, why a scene

itself inherits from the group. The entity serves as a parent for sprites, for maps (tiled

backgrounds) and for labels, i.e., to show scoring or health information. Collisions

of entities are detected by intersection or containment (intersect(), within()).

Though it is allowed to define multiple scenes, just one is visible in the display object

tree. Predefined images can be used for characters, tiled maps, etc., which can be

drawn either by DOM or canvas rendering. Further plug-ins enable avatars, webGL or

box2D or handle user input and interface elements. Simple animations like tweenings

are also supported [27]. EnchantJS provides a coding environment called code.9leap10,

which shall simplify coding with the engine, even if someone does not have much

JavaScript knowledge. After registering, a game coder can also test and share a de-

veloped game in this environment. On the website the developers of EnchantJS have

listed some publications about the engine like books and hands-on guides, which also

describe basic JavaScript concepts. Moreover, the website provides an API section and

code samples as an entry point.

3.6 Collie

Not listed under the SEGAN tools, but also a noteworthy framework for creating

HTML5 games is Collie 11. Collie is designed for desktop and mobile devices and

therefore supports both DOM and canvas rendering. Based on the detected device,

an appropriate rendering method is automatically chosen. Collie describes itself not

as a game engine, but as “the most optimized JS library for mobile”, why the authors

present some performance statistics on the website, showing the strengths for mobile

10http://code.9leap.net/
11http://jindo.dev.naver.com/collie/

13

http://code.9leap.net/
http://jindo.dev.naver.com/collie/

devices. Additionally, they list some tutorials and demo games as an introduction and

provide an API and a link to a forum for further help and information. Collie is also an

object oriented library that is based on Components and DisplayObjects, where

the latter are important objects in the framework. A display object is actually derived

from the component and represents a drawable element, like images or shapes, i.e.,

circles. Display objects are just visible on the screen when they are added to a layer

component or another display object, why they can contain children of the same type.

Elements are drawn by passing the layer to the renderer. Display objects can get

animated, for example if they are repeated or put in transition. An ImageManager

takes care of preloading and handling images, sprite sheets and tiled maps. However,

playing further media like audio and video is not possible. Simple collision detection

is enabled by a Sensor object, but the library box2D is also supported, which can

add further physics to the game. For a more accurate collision detection, the hit area

of a display object can be set to a specific scope, for example a polygon shape. For

debugging options, Collie offers a minified tool script and a FPS console object that

can be used for “checking FPS on screen on demand”.

3.7 LimeJS

We started developing our serious game with LimeJS12, a lightweight open source

framework, which can be found on github. It uses the Google Closure library13 and

Python to build and minify projects, which is explained on the website and serves

as a nice entry point. Besides, the website lists some tutorials, demo games and the

API to start working with the engine. LimeJS is an object oriented engine and defines

a basic lime.Node-element, from which every other object in the scope is derived.

On top of the DOM-tree a director object is placed, which is composed of scenes.

Scenes can contain an arbitrary number of layers, sprites or shapes. Drawable items

have a lime.Fill-element that can either be a single frame, a color-value or a path

12http://www.limejs.com/
13https://developers.google.com/closure/library/

14

http://www.limejs.com/
https://developers.google.com/closure/library/

to an image object. LimeJS itself does not offer any asset preloading mechanisms

directly in the code, though the developers mention how to add a .manifest-file for

downloading assets before the game starts. The engine supports DOM and canvas

rendering, which can be explicitly set to each node. The developers state that DOM

rendering and manipulating CSS properties should be used if there are lots of ani-

mations, or if the game is designed to work on mobile devices. Canvas rendering

supports polygon shapes and should be used for static elements. Though LimeJS does

not contain any debugging mechanisms like other engines, it is possible to define a

stroke-element, which paints the node’s boundaries. The engine provides basic CSS

animations, like moving, scaling, rotating, color changes or fading that can be looped

or put in a sequence. For media management audio streams are supported, but no

video streams. The engine offers a basic button element, which is useful for simple

game development. Further event management and input types like keyboard, mouse

or touch are enabled with the help of the Google Closure library and is explained on

the LimeJS website. The Closure library also provides the bounding box for nodes,

which is used for collision detection. As a future task, the developers of LimeJS also

want to incorporate the box2D library and even provide some demo tests in the github

repository. Besides these general components, the engine offers an automatic adjust-

ment to the screen resolution, which is an interesting feature for mobile devices. It

also provides a schedule manager, which automatically controls the game loop us-

ing requestAnimationFrame(). Though LimeJS is easy to learn and has an active

community, we stopped working with the engine when we experienced difficulties,

for example when resizing the window. Suddenly the sprite animation of our player

running on the ground froze, animations did not stop correctly or we had to hack

elements like the PauseScene, which is shown while the game is paused. When we

started directly coding into the framework files, we decided to implement an own en-

gine for serious web games that would also incorporate a logging module, which all

the presented frameworks do not have.

15

3.8 Summary

To summarize this section, we see that the presented engines generally fall into two

categories, each with its strengths and weaknesses. EnchantJS, Collie and LimeJS are

object oriented engines, based on a prototypal inheritance model providing function-

ality in different related hierarchies. The prototypal inheritance is further explained in

Section 4.1. The object oriented engine design is a classical approach, which adds more

functionality with each layer in the object tree. Due to the prototypal inheritance, the

tree-based composition results in “is-a” relationships. Problems arise if the tree and

its nodes grow large. Changes in the base node may affect all other nodes in the tree

and could cause unexpected consequences [24] [43] [46]. Other engines, like Quintus,

CraftyJS and PandaJS are modular or component based which means functionalities

are encapsulated in independent and reusable components that can be added to game

objects. Each entity in the game is now “the sum of its parts”, as Mick West [46] out-

lines. By using this approach the connection between game objects and components is

often referred to a “has-a” relationship. If interfaces of the components are well mod-

eled, the modules are decoupled and complexity is eventually reduced [24] [43] [46].

Modular engines are probably easier to extend by own functionality, by just adding

more components and load them when needed. On the other side, the object oriented

engine EnchantJS provides a long list of plug-ins that can be loaded into the engine to

enable further functionalities. All of the engines are still updated quite regularly, as

listed in Table 3.1. The table shows a summary of the engines, when they were last

updated (either on github or the website) and provides a short description. All of the

projects offer enough tutorials, code samples or documentations to start working with

the engine.

Most of the engines provide asset loading mechanisms, though LimeJS does not

provide a preloader. Because all engines support mobile devices, all of them imple-

ment DOM or canvas rendering, except Quintus, which is just based on the canvas

element. PandaJS embeds PixiJS, a rendering engine, which also supports webGL.

16

Due to the mobile support, functionalities handling user input is provided at differ-

ent degrees, including keyboard, mouse and touch events like dragging. Quintus for

example even supports joypads by loading an appropriate module. According to data

types, all engines support image types. Moreover, all engines except Collie support

audio streams, but none of them incorporate video streams. For enabling physics some

use the library box2D, whereas others implement their own basic physics module or

functionalities. Every engine offers at least basic animations and tweenings, includ-

ing sprites or CSS3 animations. PandaJS even contains a particle engine that is used

for special effects. Some of the projects provide extra features for debugging (mostly

visualizations or console output) like Crafty, Collie or EnchantJS, which has an own

coding environment. Crafty and PandaJS enable offline storage mechanisms to play a

game even when the site is down.

Engine last updated Summary
Quintus 28 days ago on

github
modular engine supporting various devices, canvas
rendering

Crafty 12 days ago on
github

modular engine, supporting DOM and canvas ren-
dering

PandaJS 13 days ago on
github

modular engine, supports canvas and WebGL ren-
dering, provides various animation tools

EnchantJS 20 days ago on
github

object oriented engine, supports canvas, WebGL and
DOM rendering, incorporates plug-ins

Collie Apr 11, 2013
on website

object oriented library, automatically chooses appro-
priate rendering method according to device

LimeJS Jun 1, 2014 on
github

object oriented engine, supporting DOM and canvas
rendering, no asset loading mechanisms

Table 3.1: Overview of game engines, Status: Aug 11, 2014.

17

4 Technological Aspects

Our engine is built on the web technologies JavaScript, HTML5 and CSS3. A difficult

aspect, with which we have to deal when working with these technologies, is cross-

browser compatibility. Different browsers have different implementations of JavaScript

or CSS standards that can complicate the development progress. Therefore a frame-

work or a game engine should provide some functionalities to avoid cross-browser

issues [26]. The next sections deal with the presentation of the core features of these

three technologies that are relevant for our framework.

4.1 JavaScript

JavaScript is a dynamic scripting language and consists of simple types like numbers,

strings and booleans. Simple types also include null and undefined. Former de-

scribes a value to assign to a variable and indicates “no value” , whereas the latter is

the value of a variable, which is declared but not yet instantiated [16]. Everything else

in JavaScript is an object, like arrays or functions. Objects contain properties, which

are key-value elements [11]. Whenever values are created in JavaScript, memory is

allocated as long as we use these values (read, write). If these values are not needed

anymore, memory is freed again, but identifying memory that is not used anymore

is an undecidable task [28]. This process of automatic memory management is called

garbage collection. Generally, memory is reclaimed by the browser if objects have

no more references. Problems arise if elements are referenced in a circular or cyclic

way [5].

19

Namespace

A common advice in JavaScript is to avoid using global variables, because they are evil

and “visible in every scope” and can be altered at any time, as Douglas Crockford [11]

mentions. A global variable can either be placed outside of a function, like

var globalVariable = value;

or it can be appended to a global object:

window.variable = value;

As we can see, this could cause interferences with other applications or libraries that

call the same variable. According to Crockford, global variables “weaken the resiliency

of programs and should be avoided” [11].

To avoid or to minimize this problem, we implement an imitation of namespacing

in JavaScript. Therefore we define one single global object that represents our names-

pace. Afterwards, all other relevant objects are encapsulated under the namespace

object, which reduces the number of global objects to a minimum [20].

var jumru = jumru || {};

By implementing this strategy we guarantee that if the object jumru is already defined,

we just extend it by further information and prevent from overriding it [25].

Inheritance

In JavaScript every function is an object and each object is linked to a prototype ob-

ject. From this prototype it can inherit properties, which means the prototype serves

as a parent object. All objects are linked to an Object.prototype, which comes

standard with JavaScript. The prototype, which serves as a parent object, can be self-

defined [11].

By setting an own prototype as a parent object, we can implement prototypal

inheritance, or prototype chains:

20

jumru.inherits = function(Parent, Child) {

function F() {}

F.prototype = Parent.prototype; //set prototype to the parent’s prototype

Child.prototype = new F();

Child.prototype.constructor = Child; //reset to child’s constructor

};

The function jumru.inherits takes a parent object and a child object as param-

eters and connects their prototypes. First, a temporary dummy object F is created,

which is an empty “middle” object. The empty F object now inherits all properties

from the parent’s prototype. Creating the middle object is a necessary step, because

otherwise if we would change the child’s prototype, this might also affect the parent’s

prototype. If multiple objects inherit from the same parent, this may lead to changes in

other children too. Afterwards, the child’s prototype is set to a newly created instance

of F (which was created by the parent’s constructor). At the end we have to reset

the constructor-property again, so that if we create an instance of the child, its own

constructor and not the constructor of F is used. David Shariff [37] provides a visual-

ization of the prototypal inheritance, which is mapped to our example in Figure 4.1:

Figure 4.1: Inheritance visualization

RequestAnimationFrame

Normally, there exist two options to loop and schedule an animation in JavaScript:

setInterval(f, ms) or setTimeout(f, ms), which take the function f to loop

21

and the milliseconds as arguments. By using this strategy the update rate is

fixed and determined by the programmer, which may cause choppy animations or

jittering, because frames can get lost. Furthermore, this may downgrade the bat-

tery life of the device, because the animation is also executed even if the website

is not visible (another tab is open, browser window is minimized, etc.) [30]. To

avoid this problem the W3C defined a timing API that lets the user-agent take care

of updating the animation at a qualified rate to achieve smooth animations. There-

fore they define a window.requestAnimationFrame-function, which gets a call-

back as parameter and can automatically schedule the function. Inside the callback,

requestAnimationFrame(callback) has to get called again, to keep the anima-

tion playing. Even if the window or tab looses focus, this approach can significantly

throttle the animation to save CPU power [34]. The browser itself redraws the next

frame, when it is ready to do so and not at a fixed update rate. We use the strategy

implemented by David Geary [19], whose callback-function gets a time-value as pa-

rameter, though he states that there is no definition available explaining what exactly

this time value represents. He just notes that it means the same for all browsers and

helps us to calculate the time passed since the last animation frame. This value is

called now in our engine code and deals with FPS and game looping.

The requestAnimationFrame-approach has been originally invented by Mozilla,

was adapted by Webkit and finally standardized by W3C. Different browser vendors

lead to different prefixes in the code, which makes it quite difficult to provide the same

functionality for all browsers. Therefore the HTML5 community developed a polyfill

to get the best out of each browser when using this animation-function. The polyfill

even provides a workaround with setTimeout, if requestAnimationFrame is not

supported [19].

Event Handling

During the course of a game, events may occur at different points, i.e., if a button

is clicked, if an animation has started or stopped or if a media element is played or

22

paused, etc. An event is always linked to an object (a DOM-element) that implements

the EventTarget interface, which defines methods for dispatching events or adding

and removing event listeners for them. If an event is dispatched, a listener or event

handler function is executed and processes code according to the thrown event. Events

themselves are objects in JavaScript, which are dispatched either through user inter-

action, like onmousemove, onclick, etc., but can also be thrown by the application

itself. For such a special purpose CustomEvents are created. The constructor of a

custom event takes a type as parameter, which defines the name of the event [42].

How we use custom events in our engine’s code, is further described in Section 5.2.

Minification

In order to achieve better performance and to minimize JavaScript code data, we use

Google Closure’s minification mechanisms to remove unused or unnecessary lines of

code [38]. All JavaScript files of our engine are compiled into one single file. We use

this same mechanism for our game code too.

4.2 HTML5

The Hypertext Markup Language is the “core language of the World Wide Web”. HTML5,

or more precisely the current Version 5.1, which is still work in progress [44], shows

some differences to HTML4 according to document structure, new attributes for the

input type, a progress element and tags for drawing and managing media content.

Concerning the document structure and organization, there exist new tags that define

a section or header and footer, etc. The W3C list new and interesting types

for the input element, like tel, email or url. By specifying a pattern for the input

element, an own RegExp can be applied to validate the user input. In addition to these

few elements, a progress element can visualize the amount of loaded data. Other new

tags, like canvas, audio and video are also used in our game engine. This is just

an excerpt of new elements invented by the W3C [31]. We shortly describe how we

embed some of these new HTML5 features in our game engine.

23

Canvas Rendering

The <canvas> element is an important component in the HTML5 specification [7] and

is responsible for drawing operations within a defined region that has a width and a

height. In combination with JavaScript it enables many methods for drawing images

or graphics and applying transformations like rotation, translation, scaling, etc. on

them. The canvas further provides pixel-based graphic manipulation, for example to

grey-scale an image. The drawable entity of the canvas is the context, which can be

retrieved by calling

var context = canvas.getContext("2d");

With the canvas we can not only draw images or simple shapes like rectangles, but

also lines, arcs, curves and even text [48]. Canvas rendering is hardly relying on the

GPU’s power, why there exist plenty of hints and tips how to achieve a performance

boost in canvas rendering. Optimization strategies that are also part of our engine are

listed at the end of Section 5.7.

Audio and Video

Audio and video are both media elements, which provide predefined functions for

playing or pausing media streams. An audio element can be created through JavaScript

by simply calling its constructor with the path of the audio-file as a parameter:

var audio = new Audio(path);

For video data there is no equivalent to this constructor function. To be able to create a

HTML5 video element, we use the old-fashioned way of creating DOM-elements [44]:

var video = document.createElement("video");

video.src = path;

24

4.3 CSS3

CSS3 (Cascading Style Sheets) is composed of different modules which provide new

functionalities and extend previous CSS specifications. Important modules are media

queries enabling responsive designs, or selectors for specifying elements or areas to

append styles to [6]. Another new feature is the support of animations and transitions.

Transitions are used to translate the style of an element to another style over a specified

duration, i.e., if we move over an element. Animations provide more possibilities and

can even replace Flash animations [45] [6]. Transitions are triggered implicitly if an

underlying property of the element changes, whereas animations are explicitly called

or applied [12]. Animations are widely used in our game play, why we describe their

basic structure and functionality.

(Keyframe) Animations

An animation is applied to an element by setting the animation-name attribute

of the <style>-tag. Generally an animation consists of various properties, like the

iterationCount regulating the number of iterations, a delay time (in s or ms)

to wait before playing the animation, or a fill-mode, which defines if the anima-

tion state is already applied before playing it or kept after playing it. Multiple ani-

mations can get executed on a single element but the last added element under the

animation-name property will override other appended animations [12].

The fill-mode-property defines the state of an animation and how it is set to the

style of an element. There exist four different fill-modes, whose functioning is visu-

alized in Figure 4.2. The diagram shows the created animation, which has a defined

start and end time (specified by setting a duration) and a delay value. Depending

on the chosen fill-mode, the specified transformations by the animation are applied to

the element as follows:

1. forwards: before the animation is playing, its specified start-styles are already

appended to the element.

25

Figure 4.2: CSS3 animation fill-modes

2. backwards: same as forwards, but here the style defined at the end of the

animation stays on the element.

3. both: combination of forwards and backwards.

4. none: style is just visible while playing the animation.

How transitions between different keyframes should look like, can be specified

by setting a animation-timing-function. We call this attribute easing in the

engine’s code. Possible values for the transition type would be ease-in, ease-out,

linear, etc.

Most common and simple animations are transformations like scaling, rotation,

translation, etc. in a 2D and 3D context, which are applied by setting the objects

style-transform-property. Transformations are based on matrix multiplications.

26

By setting the transform-origin as an additional property, the center of the trans-

formation can be specified [17].

The following code example below shows how a simple animation can be set up,

paying attention to different browser vendors that use different prefixes handling CSS

code. The correct prefix for Google Chrome and Safari is -webkit-, for Mozilla

Firefox it is -moz- and for Opera we can either use -webkit- or -o- [45]. The code

creates a yellow box of size 50px x 50px, with a black border on the top. The box

moves infinitely from left to right, by translating the x position between 0 and 100.

During the translation, the box rolls from left to right, or more specifically from -90

degree to 90 degree.

<style>

@-webkit-keyframes boxroll {

0% { -webkit-transform: translateX(0) rotate(-90deg)}

50% { -webkit-transform: translateX(100px) rotate(90deg)}

100% { -webkit-transform: translateX(0px) rotate(-90deg)}

}

@-moz-keyframes boxroll {

0% { -moz-transform: translateX(0) rotate(-90deg)}

50% { -moz-transform: translateX(100px) rotate(90deg)}

100% { -moz-transform: translateX(0px) rotate(-90deg)}

}

div {

width: 50px;

height: 50px;

background: yellow;

border-top: 5px solid black;

/* append the animations on the div */

-webkit-animation: boxroll ease-in-out 2s infinite;

-moz-animation: boxroll ease-in-out 2s infinite;

}

</style>

27

4.4 Summary

In this section we presented basic JavaScript concepts and innovations in HTML5 and

CSS3. We showed how to use a namespace object in JavaScript to build a scope for the

engine’s data. We further explained how we implemented prototypal inheritance to

be able to put basic properties and functions into an object, which serves as a parent

for other engine objects. For game development with these three technologies we

introduced the W3C’s timing API and outlined differences to old-fashioned ways of

looping JavaScript animations. Lastly, we mentioned how to use custom events and

how to minify code, to reduce irrelevant data.

HTML5 allows native audio and video support and provides a canvas element

for drawing images or for pixel manipulation. In combination with CSS3 it is possi-

ble to create flash-like animations and transformations. All these features enable the

development of our game engine Jumru 5s.

28

5 Game Engine - Jumru 5s

Based on the knowledge of JavaScript, HTML5, CSS3 concepts and the core features

of engine components, we introduce our implemented game engine. We start into this

topic with a basic overview of the engine’s architecture and its fundamental elements.

Afterwards, we list how these fundamentals are implemented and related to each

other.

The name of our game engine is built on the application area:

Jump and Run Framework for HTML5 Serious Games.

Therefore we define a namespace object called jumru that establishes a scope, in

which all the framework files are embedded. Figure 5.1 outlines our engines structure,

which is further described on the following pages.

29

Figure 5.1: Jumru 5s - architecture overview.

30

5.1 Engine Object - jumruCore

The heart of the engine builds the jumruCore, which is a global object of type

jumru.Core. This object is analogous to the game object presented in [20], stores

important data of the engine and handles the basic game loop for updating and draw-

ing elements. It can further start or pause the game and is responsible for calculating

the frames per second.

The most important elements among others in the jumruCore are:

1. gamemode: to store the current game mode.

2. mouseBox: a 1x1 pixel box representing a bounding box for the mouse. The

mouseBox is used to identify user clicks on visible elements in the game.

3. inputmanager: the input manager is responsible for handling user input (key-

board, mouse).

4. gamestage: the gamestage is the root node of the DOM-tree and holds all game

elements underneath it.

5. arrays: the jumruCore has some arrays for storing different engine element

types like layers, scenes or motions. These arrays ease further game processing

like pausing, etc.

6. gamewidth and gameheight: constants for the game’s size.

7. fps, averageFps: values for calculating the passed time since the last frame.

8. loop and gamecode-loop: the game coder using the engine has to define an own

game loop, which controls the action that happens in the game, i.e., actions that

take place according to a specific game mode. The game loop is passed to the en-

gine, which regularly calls it inside an own loop that is responsible for updating

and drawing the elements hanging in the stage. The engine’s loop is scheduled

with David Geary’s implementation of requestNextAnimationFrame [19].

31

9. resizeValue: this value is calculated if the window dimensions change. In such a

case all elements in the game have to get resized, to fit in the screen.

10. questScene: this scene is automatically set if a questionnaire is shown.

The jumruCore’s gamestage consists of displayable objects, which are composed

in a tree-based structure. To get an impression on how this tree looks like and what

its basic nodes are, we outline the composition of these nodes and the engines internal

structures.

5.2 Composition - Stage and Scene

Our engine is generally built on the composite pattern. By using this pattern the game

is composed in a tree-based hierarchy of nodes, consisting of composites and leaves.

Harmes and Diaz [14] recommend using this pattern when it is necessary to group

objects in some sort of hierarchy and if operations should be performed on a subset

of these nodes, which means these operations are passed down a subtree. Both points

are relevant for our framework: we have some nodes that inherit from each other, are

ordered in a tree-based structure and we want to update and draw a subset of them.

Applying the tree-based structure onto our engine, we always have the

jumru.Stage, called gamestage in the code, as the tree’s root node. The gamestage

encapsulates all other nodes in the tree. Multiple jumru.Scenes ly directly un-

der the root on the next level, but only one scene can be active at any point in

time. Therefore we can switch between defined scenes and always set a different

activeScene. The scene, which is active is shown, updated and drawn. All other

scenes are invisible and therefore not considered at this time. A scene on the other

hand consists of an arbitrary number of jumru.Layers. Layers encapsulate elements

of type jumru.ObjectEntity that represent drawable nodes. Object entities are leaf

nodes and can not contain any children. Stage, scene and layer are <div>-containers,

whereas object entities are <canvas>-elements that draw images, shapes or buttons.

32

Figure 5.2 visualizes the tree under the gamestage, with one scene marked as active

that is updated and drawn in the game loop cycle.

Figure 5.2: Stage tree with an activeScene.

Entity

The main node, from which almost every other node in the framework is derived,

is the jumru.Entity. Entities are abstract elements, which means they should not

be instantiated, though it is still possible to create entity objects1. They just serve

as a main node providing basic functionality. When speaking of basic functionality

we think of features like positioning, size and resizing, traversing mechanisms, event

handling, collision detection or visibility and activity.

1Which we even do in our case study EmoJump. Barriers for example have no image, why we just
created empty entities for them.

33

Positioning and Resizing

When positioning an element we have to differentiate between DOM-positioning and

relative positioning within the DOM-element. Each entity contains a document.element

called domEl, which represents the actual DOM-node. When instantiating an entity,

the domEl can have following types that are defined in the jumru.Entity.Dom-

Element-object: canvas, div, input or progress, for visualizing a progress bar.

DOM-elements have a width and height, which are set to the document.element.style-

attribute. Here we have to pay attention to <canvas>-elements, because a canvas itself

has a width and height attribute that define the real size of the canvas, whereas the

size attributes of the style-tag can additionally scale the canvas dimensions:

//set width w and height h to the element, according to its type

if(this.domEl.tagName.toLowerCase()=="canvas"){

this.domEl.width = w;

this.domEl.height = h;

}

//div, input, progress

else {

this.domEl.style.width=w+"px";

this.domEl.style.height=h+"px";

}

Stage, scene, layer and object entities are set to the game’s width and height in

the constructor, whereas the progress bar and input field have other fixed standard

values. DOM-positioning also includes a style.position-attribute, which is set to

absolute in the objects constructor, so each <div>- and <canvas>-element is placed

on top of each other. This enables staging of different scenes, layers and object entities.

The gamestage and all its children are automatically positioned horizontally in

the center of the screen, which is maintained even when the window gets stretched

by the user and elements have to get resized. Therefore we implemented a method in

the jumruCore that calculates a resizeValue according to the current aspect ratio,

which is used to resize each entity, so the game always fits the screen size:

34

/**

* calculate aspect ratio.

*/

jumru.Core.prototype.calculateResize = function() {

var windowWidth = window.innerWidth;

var windowHeight = window.innerHeight;

//scale width to fit game size

var scaleToFitX = windowWidth / jumruCore.width();

//scale height to fit game size

var scaleToFitY = windowHeight / jumruCore.height();

//take the smaller value

this.resizeValue = Math.min(scaleToFitX, scaleToFitY, 1);

};

Due to the calculated value and the composite pattern, we can now successively resize

the entities by multiplying their DOM-size with the resizeValue:

this.domEl.style.width = ((this.domWidth * jumruCore.resizeValue)>>0)+"px";

this.domEl.style.height = ((this.domHeight * jumruCore.resizeValue)>>0)+"px";

Traversing Mechanisms

As stated earlier, see Section 5.2, our engine is based on the composite pattern. There-

fore the root node (the stage) contains children in a tree-based structure, built on

the DOM-elements. An entity has a children-array, which contains all children ap-

pended to this entity, i.e., a stage contains scenes, a scene contains layers and a layer

contains the leave nodes of type jumru.ObjectEntity. If a node is appended to

another node, we set a parent-attribute of the childnode, draw the childnode and

append it directly to the DOM-tree. We also provide a function to remove a single

child, respectively to remove all children of a node. To avoid circular references we do

not only delete the node out of the children’s array and set its parent to null, but we

also remove the node out of the DOM-tree. The method for removing all children just

35

invokes the function for removing a single child for each entity stored in the current

children-array.

Event Handling

Entities contain a document.element called domEl, which can catch and dispatch specific

events, i.e., if a button is clicked. Therefore we define CustomEvents, as described in

Section 4.1 that ease event handling in the engine code. For example we have 5 differ-

ent events for processing button states (click, mouseup, mousedown, focus,

unfocus) that are created in a similar way:

var ButtonClickEvent = new CustomEvent("ButtonClick", {

detail:{}, bubbles: true, cancelable: true

});

The entity or more precisely its document.element serves as the event target and im-

plements methods for adding or removing event listeners and is also able to dispatch

events. The methods for controlling events on the document.element are:

/**

* functions handling eventlisteners

* @param {CustomEvent} event - own defined event

* @param {Object} callback - callback function to remove

* @param {boolean} bool - specifies the useCapture

*/

jumru.Entity.prototype.listen = function(event, callback, bool) {

this.domEl.addEventListener(event, callback, bool);

};

jumru.Entity.prototype.ignore = function(event, callback, bool) {

this.domEl.removeEventListener(event, callback, bool);

};

jumru.Entity.prototype.fire = function(event) {

this.domEl.dispatchEvent(event);

};

36

Collision Detection

To be able to recognize collisions in the game, i.e., if an item is collected by a player, we

need to have some collision detection methods. Each entity has a jumru.Box called

boundingBox surrounding the item depending on its size and position. A box con-

tains the values left, right, top and bottom which define the entity’s bound-

aries. Collisions are resolved by checking if the boxes do not overlap and building the

negation of it. In this case we can concatenate the if-statements through disjunction,

which needs less time than checking 4 conjunctions.

/**

* check if this box collides with another box

* @param {jumru.Box} otherBox - other box which might collide

* @returns {boolean} true, if this box collides with otherBox, else false

*/

jumru.Box.prototype.collide = function(otherBox){

return !(

(this.right < otherBox.left) || (this.left > otherBox.right) ||

(this.bottom < otherBox.top) || (this.top > otherBox.bottom)

);

};

We further provide a function to expand the boundingBox, to adjust the col-

lectable area. The bounding box is not updated in each game loop step, because this

could be an expensive and useless task, i.e., if the entity is moving through the screen.

The entity provides a getter for the bounding box that automatically updates the box

before returning its dimensions to the programmer.

Visibility and Activity

Each entity has a visible and an active property. Visibility determines whether

the entity is displayed or not. If an element is set invisible, it is automatically set inac-

tive as well. Just active elements are updated, drawn and used for collision detection,

but just setting an element inactive does not make it invisible at the same time. In

37

order to support different browser vendors, the jumru.Entity.prototype.set-

Visible()-function is automatically set during the pageload, because we experi-

enced difficulties in combination with CSS3 animations in Webkit browsers when

manipulating the domEl.style.display-property. Further explanations how we

circumvented this problem, is described in Section 5.9

Object Entity

A jumru.ObjectEntity represents a drawable object (image or shape) and contains

a <canvas>-element for drawing operations. If the object holds an image, further

variables can influence the image’s opacity or size, i.e., if the image is scaled. By

manipulating the image data (each pixel), we can grey out an image by changing

the RGB-values. Each object entity is marked as empty at its creation time through

the boolean isEmpty, which is set to false, if an image is passed or if a shape is

instantiated. Just objects that are not empty are drawn to the canvas. Optionally an

object entity can have a text label, which can be a single string or a jumru.Textlabel

that is drawn in the object entity’s canvas. A text label is not an entity itself, but

contains properties like x and y position, size, text, font- or fill-style, etc.

Offscreen Canvas

An important property of an object entity is its offscreen canvas, which is a separate

canvas element that is not appended to the DOM-tree. After an image is passed to

the object entity, the size of the offscreen canvas is set to the size of the image and the

image is drawn. During the game play, the offscreen canvas is drawn onto the real

canvas, which is appended in the DOM:

//use offscreenCanvas instead of image

this.context.drawImage(this.offscreenCanvas, this.tempX, this.tempY,

this.scaledWidth, this.scaledHeight);

This significantly reduces expensive drawing operations2 [39].
2http://jsperf.com/canvas-vs-imageperformance

38

http://jsperf.com/canvas-vs-imageperformance

Rounded Pixel

Generally, rendering in canvas can strongly influence the performance of the game,

why we always kept an eye on improving rendering strategies. Besides the offscreen

canvas and checking if an element is active, another strategy to consider when us-

ing canvas drawing operations are rounded pixels. If we draw on subpixels due to

computations during the game play, the images start to blur because the canvas auto-

matically applies anti-aliasing to soften the edges. Therefore we take care of rendering

to rounded pixels [39]. As David Catuhe [8] shows, the way of rounding pixels has

also an impact on performance: calling Math.floor, Math.round or parseInt can

be very intense. Therefore we round each pixel by

var roundedValue = value >> 0;

In addition to these canvas optimization strategies, we describe further improve-

ments in Section 5.7.

Other objects in the engine inherit functionality from the object entity. These objects

include sprites, buttons and rectangles.

Sprite

A jumru.Sprite is an object entity that consists of a sprite sheet. The frames of a

sprite sheet can be arranged horizontally or vertically and are played one after another

(either forwards or backwards). Therefore the x and y positions of the frames are

stored in arrays, keeping an index of the current frame to be displayed and drawn. A

sprite is not redrawn in each game loop step, because this would update the sprite too

often and the sequence of the frames would not be visible. For this reason a sprite has

its own update rate that is defined by a variable msPerFrame, which is initially set

to 100. This update rate guarantees that a sprite is just redrawn if 100ms have passed

by since the last frame. To avoid updating the sprite in each game loop step, we have

overwritten its update function, which has a counter for the passed time since the last

drawn frame. The passed time is accumulated until the passed time is higher than the

39

threshold of msPerFrame. In this case, the index of the current frame is increased and

the sprite gets redrawn. Additional properties define if the sprite animation is played

and drawn once, or started over again if the last frame is reached.

Rectangle

The jumru.Rectangle is a simple shape that has parameters like a fillStyle or a

gradient and is used to draw i.e., a simple background in a specific color.

Button

Another element that is derived from the object entity is the jumru.Button, which

is basically a clickable rectangle. It contains some styling parameters, i.e., to provide

rounded corners or a coloured border, which is drawn if the element is focused. Fur-

thermore, it includes two callback functions for focusing and releasing the button, i.e.,

for menu toggling. Focusing a button is just supported if the button is enabled -

otherwise it is transparent and not clickable. A button can optionally contain a text

string, but it also supports images as its content.

Canvas elements of object entities are set to the game’s width and height, therefore

clicking buttons inside the canvas does not easily work. In HTML user clicks are just

caught on document.elements and because in the engine multiple canvas lie on top of

each other, we can not decide immediately which canvas is the target of the click.

To be able to process user clicks, we deal with this problem by catching clicks on

the current activeScene. After clicking on the scene, it checks its active children and

determines which child is directly lying underneath the mouse-position. For this check

the jumruCore’s mouseBox is used. As described in Section 5.1, the mouseBox is a

bounding box that is updated with the current cursor position and is used for collision

detection with the button’s bounding box, to decide whether a button is touched or

not. The same touch mechanism generally works for object entities. If the button is

clicked via keyboard, just the click event is directly thrown at the selected button.

40

5.3 Player

Our engine supports jump and run or endless runner games and therefore incorpo-

rates a standard jumru.Player. The player is also an entity and consists of multiple

jumru.Sprites that are stored in a sprite-array and are appended to a layer. Pre-

defined enums control the player’s type or its direction, whether he’s aligned left or

right. Player types, which are already provided, are RUN or JUMP, though new types

can be added, i.e., if the game contains a flying version of a player. Sprites are put in

the array under a specific type and an optional direction. The engine always sets one

sprite as an activeSprite that is displayed and constantly updated. The bound-

ing box of the active sprite is also used for collision detection between the player and

other entities. The player can contain a jumru.Motion, to enable the movement of

the player, i.e., if the user presses buttons for running left or right.

Because forces affecting physics are actually just used for the player when he is

jumping, relevant variables are stored here, i.e., the apex of the jump, a gravity

value, a jumping velocity or boolean variables checking if the player is ascending

or standing on the ground. The player also incorporates a standard jump function,

which is based on the formula for a trajectory parabola and describes an object that

is just vertically thrown into the air. Because we are calculating in a pixel coordinate

system, we have to work with opposite signs. Jumping in the game must not only take

care of a different game speed, but also a variable FPS, which was not an effortless

task for us.

Before the player jumps we calculate the apex of the jump, which is defined as the

maximum height he can achieve:

apex = y − velocity2
0

2 ∗ gravity

The basic formula for a trajectory that is adapted in the engine in order to fit our

jump function, is calculated in the following way:

y = velocity0 ∗ time − gravity
2

time2

41

In each game loop step we call the jump function that accumulates the time passed

since the start of the jump, updates the velocity according to the gravity and the

passed time and it updates the y position of the player. The time value is not

initially set to t0 = 0, but to a high value if we have a high level speed and low FPS,

because the higher the initial time value is, the higher the player jumps immediately

after the start. The player has to start jumping from a lowest position, if the speed is

low and the FPS is high. Setting the time value not to 0 gives the jump some kind of

boost at the beginning, which is visualized in Figure 5.3 and further explained below.

Afterwards, the time value, the velocity and the position of the player are accumulated

by

//accumulate time

this.time += (this.speedValue/jumruCore.avgFps);

//update velocity and the y position of the player

this.velocity += this.gravity * this.time;

this.positionY += this.velocity * this.time;

which does not only include the time passed since the last frame (1/jumruCore.avgFps),

but it also takes the level speed into account.

Figure 5.3 visualizes the jump values for two levels with different speeds and dif-

ferent FPS. We played the slowest level (L11) and the fastest level (L14) on a computer

with a high FPS of 60 and another computer with a low FPS of 30. On the x axis we

see the time for each game loop cycle and on the y axis the y position of the player,

which is positioned on y = 480px in a pixel coordinate system. The graph shows

that the player jumps faster in the air and achieves higher jump values in the fast level

(see the purple line), where he has generally a steeper ascent. The apex is the same for

each level, because it is calculated solely with the initial velocity and the gravity. If the

apex is reached, we smooth down the time value, so the player stays a little longer in

the air, until he falls normally to the ground again. The reset of the time value results

in left skewed graphs. Because of the different speeds, the player has to fall faster to

the ground in the quick level, because the ground is moving faster too. If in addition

42

0 20 40 60 80 100

45
0

40
0

35
0

30
0

25
0

20
0

15
0

passed time

y
po

si
tio

n

L11_60
L14_60
L11_30
L14_30
apex
apex interval

Figure 5.3: Graph of player jump in a slow and a fast level with a FPS of 60 and 30.

to the high level speed the FPS is low, the faster the animation takes place in the game,

because elements are moving by a higher offset value. Therefore the jump curve is

smallest for the highest level speed with low FPS (purple) and takes the longest time

and tiniest jump steps for the slow level with high FPS (blue).

5.4 Media Management

Jumru 5s does not only support HTML5 audio streams, but also video elements. For

both types we embed functions for playing, pausing or stopping media data. More-

over, we define a jumru.MediaEvent.END that is optionally dispatched if the media

43

stream has ended.

Audio

A jumru.Audio object contains a HTML5 audio file object, which is the actual audio

element appended to the DOM. Audio elements are automatically attached to the

document during the asset loading. If an audio file is not appended to the DOM, it

cannot be played. An audio element further stores some parameters to control the

volume or to check if the file has to get looped.

Video

In Section 3 we saw that hardly any other engine supported the HTML5 video type.

Our jumru.Video object inherits from the jumru.Entity, because it can also be

positioned or sized within a layer. In opposition to the audio element, a video element

is not initially appended to the DOM-tree, but has to get attached to a layer to ensure

that the video can be played.

5.5 Asset Manager and Progress Bar

For further processing it is important to preload game assets before the execution takes

place. Therefore we implement a jumru.AssetManager that solves this task and

just proceeds with the code after game assets are preloaded and stored in the engine.

An asset is added by passing its path to the manager, which supports video, audio

and image types. By calling loadResources(callback){...} the added data is

preloaded and stored in an asset-array. If all files are preloaded, the passed callback

function is called. To be able to correctly address stored game data, the manager

demands a basic URL of the website, because data is stored under its absolute path.

After defining the basic URL of the site, access on assets works like the following

example, because now the manager itself knows the basic URL and returns the asset

stored under its full path:

44

//game code

assetManager.getAsset(’images/myimage.png’);

//engine code

return this.assets[this.basicURL+’images/myimage.png’];

For visualizing the loading progress we provide a simple jumru.ProgressBar. An

instance of the progress bar is stored in the asset manager and is successively updated

while assets are loaded.

5.6 Input Manager

The jumru.InputManager is an object defined in the jumruCore and allows the

definition of menu structures that consist of different button maps. Buttons that are

defined i.e., for a specific game mode, like a gender selection between girl and boy, are

stored in a jumru.ButtonMap. A button map can store various buttons in form of a

matrix and keeps the vertical and horizontal index of the current button, which enables

toggling in the map with the arrow keys. For a menu structure a game developer can

define a button map for a game mode. In this example two buttons for the gender

selection are stored in a single row:

var btnGirl = new jumru.Button("BtnGirl");

var btnBoy = new jumru.Button("BtnBoy");

var genderMap = new jumru.ButtonMap().addRow(new Array(btnGirl, btnBoy));

//store the created buttonMap under its gamemode

jumruCore.inputmanager.menuMap[GENDER_SELECTION_MODE] = genderMap;

If a new row in the button map is added, the function addRow() is called again. After

storing the map under its mode in the input manager, the user can toggle between

the two buttons with the arrow keys, if the specific game mode is active. By pressing

space, the button at the selected position is clicked. Further handler for input types are

specified by calling the addHandler()-function. The method takes one of the prede-

fined key types (jumru.InputManager.Type.DOWN or .UP), a mode as a string and

a callback function as parameters. The input manager holds arrays for both key types.

45

According to the passed type, the callback function is stored under its mode identifier.

Therefore different callbacks can get stored under a single mode, i.e., to catch a jump

press and jump release event.

For example we could define two keyboard actions, to let the player jump after

hitting the space bar or to pause the game if the user presses escape. According to the

jumruCore.gamemode, the input manager always knows which mode is active and

can proceed with the correct handler for the mode.

jumruCore.inputmanager.addHandler(jumru.InputManager.Type.DOWN,

emojump.GAME_PLAY, function(evt){

// Space jump

if(evt.keyCode == 32) { /* player jump */ }

// Escape Key - Pause Mode

if(evt.keyCode == 27) { /* pause game */ }

});

5.7 Rendering - Game loop

The jumruCore’s game loop is the heart of the framework and contains functions for

calculating the frames per second (FPS), looping the game’s game loop and updating

and drawing the gamestage, or more precisely the gamestage’s activeScene.

jumru.Core.prototype.gameloop = function(now) {

if(jumruCore.isPlaying) {

jumruCore.fps = jumruCore.calculateFPS(now);

jumruCore.loop();

jumruCore.gamestage.draw();

jumruCore.requestId = requestNextAnimationFrame(jumruCore.gameloop);

}

};

calculateFPS()

In each game loop step, we calculate the amount of time that has passed since the last

animation frame. The passed time is stored in jumruCore.loopTime. At a normal

46

FPS of 60 showing one frame takes 16.6ms. By dividing 1000/jumruCore.loopTime

we get the amount of frames that are visible in one second. The FPS should always

be between 30-60, to get a smooth visible game play, otherwise the game starts jitter-

ing [19]. Therefore we catch extreme outliers and limit the FPS values.

jumru.Core.prototype.calculateFPS = function(now) {

var fps = 1000 / (jumruCore.loopTime=now-jumruCore.lastAnimationFrameTime);

jumruCore.lastAnimationFrameTime = now;

fps = fps > 70 ? 60 : (fps > 10 ? fps : 30);

this.calculateAvgFPS(fps);

return fps;

};

By calling this.calculateAvgFPS(fps) we successively calculate the average of

all FPS values. The resulting average frame rate for the whole game could be used for

logging or for displaying it to the player [47]. After setting the frames per second, we

call the game loop defined by the user by calling jumruCore.loop(). Afterwards,

the actual updating and drawing of the framework elements used in the game takes

place. By calling jumruCore.gamestage.draw() we force the gamestage to draw

the activeScene and all its children. The basic draw method is implemented in the

jumru.Entity:

jumru.Entity.prototype.draw = function() {

if(this.active) {

this.update();

var length = this.children.length;

for(var i = 0; i < length; i++) {

if(this.children[i].active) {

this.children[i].draw();

}

}

this.setDirty(false);

}

return this;

};

47

Each element updates itself before the drawing happens. Scene and layer use the

entity’s draw function, whereas object entities and other drawable elements have their

own implementation of the draw method. Because the draw operation itself is very

costly, we mark every element as active. If we explicitly set an element inactive,

for instance after drawing it once like a never changing background image, it is not

updated and drawn again. The same applies to object entities and layers. In case a

motion is appended to an entity, elements are redrawn in each cycle as long as the

motion is active. After elements are drawn, they are marked as non-dirty until their

properties change again. If the properties of a layer change, all its children are marked

as dirty too. If an element is not dirty, it will not get redrawn in the next game loop

cycle, which reduces the number of canvas operations.

Time-based Motion

Our engine supports a jumru.Motion-object that allows the movement of object en-

tities or even layers with all its children. This motion can be used for a scrolling

background or for applying a parallax effect to the game. Parallaxing enables the

movement of elements lying on different levels at different speeds, which simulates a

3D effect. All created motions during the game’s life cycle are automatically stored in

an array in the jumruCore. As an example the array can be used if the game pauses

and all motions need to get stopped at once.

Currently Jumru 5s just supports horizontal movement, in left or right direction.

Besides defining the direction, a motion consists of a speed value controlling the

velocity of the movement, a left and right bound that limit the movable area and a

target representing the target entity. If a motion is set to an entity, it is automatically

called in each game loop step, otherwise it has to get paused explicitly. According

to David Geary’s recommendations [19] the animation should be time-based, which

means the speed of the animation should be independent of the games frame rate. The

speed of an animation is defined in pixels per second, whereas the FPS is defined as

frames per second. According to these two values an element is consequently moved

48

by an offset value that is calculated according to the motions speed and the current

FPS:

this.newOffset = this.offset + this.speed/jumruCore.fps;

this.tempx = this.target.parent.tempX+this.target.x+

(this.newOffset*this.direction);

By dividing the speed (pixels per second) by the frames per second, we achieve

the number of pixels to move the element in each frame. The resulting offset values

are accumulated and the target entity’s position is updated in horizontal direction.

Afterwards, we can check if the element has moved out of the defined motion area by

checking its left and right boundaries. If the limit is exceeded, a MotionStopEvent

is thrown and the offset is set back to 0 in order to start the animation again:

//out of bounds, set offset back

if(this.tempx < this.leftBound || this.tempx > this.rightBound){

this.target.fire(MotionStopEvent);

this.offset = 0;

}

//if new position is in between boundaries - set new offset

else {

this.offset = this.newOffset;

}

return (this.offset*this.direction)>>0;

Canvas Optimization Strategies

Adding motion to the game means the canvas of the animated elements have to get

cleared and redrawn again in each loop cycle. This continuous process of refreshing

the canvas is an exhausting task, which may cause performance deficits. Besides the

improvements for object entities, which are described in Section 5.2, we have imple-

mented several optimization strategies to get the best out of using HTML5 canvas for

painting. All approaches are summarized in Table 5.1.

49

Dirty Mechanism

In each game loop call the canvas has to get cleared and painted again, if a motion is

applied to an entity. By calling

this.context.clearRect(x, y, width, height);

the canvas is cleared from position (x, y) by width and height. Instead of calling

this on the whole canvas dimensions, we implemented a dirty-mechanism that just

marks the area dirty, which has been painted. For example if we draw an element

with a size of 60px x 60px at position (10, 40) on a canvas with a width of 600px and

a height of 400px, just the painted area is marked as dirty and not the whole canvas.

The dirty area for this element would be (10, 40, 60, 60) instead of (0, 0, 600, 400).

This dirty mechanism is one of some major performance improvements we have

implemented. Not only clearRect() is an time-consuming function, but also draw-

Image(), where we can significantly improve code to reduce performance lacks. Fur-

ther canvas optimization strategies are described below [39].

In-canvas Mechanism

As mentioned in Section 5.2, just active elements are updated and drawn. If an element

is explicitly set inactive after drawing it once, it will not get updated or drawn again.

Furthermore, we also implemented a function for object entities called isInCanvas()

that checks if an object entity is positioned inside the canvas, to avoid costly rendering

operations, if the element is not even visible in the canvas.

Hardware Acceleration

Canvas rendering methods hardly rely on the potential of the graphical processing

unit, the GPU. To be able to achieve best results, we can use it in combination with

the central processing unit, the CPU. This is called hardware acceleration and uses

the GPU over the CPU for complex rendering operations, whenever it is possible [35].

50

Each browser provides mechanisms to find out, if hardware acceleration is currently

available and activated, see Section 7.1.

Strategy Description see
jumru-Class
and function

active elements, 5.2 just draw elements that are marked
as active

Entity, draw

offscreen canvas, 5.2 pre-render images in an offscreen
canvas and use this offscreen
canvas instead of the image for
consecutive drawing operations

ObjectEntity,
draw

rounded pixel, 5.2 avoid aliasing by drawing on
rounded pixels

ObjectEntity,
draw

dirty mechanism, 5.7 just clear and redraw dirty areas in
the canvas

ObjectEntity,
draw

In-canvas mechanism,
5.7

avoid drawing elements that are
positioned outside the canvas

ObjectEntity,
isInCanvas

hardware acceleration,
5.7

use hardware acceleration for
canvas drawing

- browser options

Table 5.1: Overview of performance optimization strategies

5.8 (Keyframe) Animations

As mentioned in Section 4.3 CSS3 implements animation and transition effects that

can be appended on document.elements. To be able to set and modify CSS3 animations

via JavaScript, we implemented some standard animation types in our engine.

All of the listed animation types below share a common jumru.Animation con-

structor property. The common animation object defines properties like the animation-

type, whether we set the transform-property or if we just change style-attributes, for

example for fading effects. It further defines the animation’s value that determines

the value to be used for scaling or rotating an element and it stores an anchorPoint,

which just represents the transform-origin of the animation. An animation can be ap-

pended on an entity by calling the play()-function that takes the target entity as a

parameter and changes its style-attribute:

51

jumru.Animation.prototype.play = function(entity) {

entity.domEl.style[jumru.browserSpec.JS+"TransformOrigin"]=this.anchorPoint;

entity.domEl.style[jumru.browserSpec.JS+"Transform"]=this.value;

};

Note: The jumru.browserSpec.JS object is used to handle cross-browser compati-

bility and is further explained in Section 5.9.

Currently Jumru 5s supports following animation types:

• Scale: scales the document.element of an entity in x and y direction, appended via

transform property.

• Rotation: rotates the document.element of an entity by some degree, appended via

transform property.

• Translation: translates the document.element of an entity by some pixels in x and y

direction, appended via transform property.

• Fade: changes the opacity of the document.element of an entity. In this case, adapt-

ing the transform property is not necessary.

For example we can create three scaling and rotating animations:

var scale1 = new jumru.Scale().setPercent(0).setScale(1.0);

var scale2 = new jumru.Scale().setPercent(50).setScale(0.9);

var scale3 = new jumru.Scale().setPercent(100).setScale(1.0);

var rotate1 = new jumru.Rotation().setPercent(0).setDegree(-3);

var rotate2 = new jumru.Rotation().setPercent(50).setDegree(3);

var rotate3 = new jumru.Rotation().setPercent(100).setDegree(-3);

Without specifying the percent property, each animation could be played indepen-

dently on an entity by calling the jumru.Animation.prototype.play()-function.

Instead of applying each single animation, we combine them in a jumru.Keyframe-

Animation. Therefore we call the setPercent()-function, which sets a percentage

52

that defines the point in time when the specified animation and its value should occur

in the keyframe animation.

A keyframe animation has a specified name, with which the animation is stored

in the style sheet. This property is passed to the constructor. Besides the proper-

ties that are mentioned in Section 4.3, a keyframe animation also contains a dirty

boolean, which is set true, if a value or a sub-animation of the keyframe animation has

changed. If the animation is marked dirty, it is deleted out of the style sheet, updated

and written into it again. Just if the animation is stored in the style sheet, it can be

appended to a document.element.

By adding multiple animations to a keyframe animation, combinations of different

animation types are possible. According to the example above, we could combine

each scale animation with a rotation animation. Therefore the animations are stored

in a key-value map, which uses the percentage of the keyframe as the key and a

jumru.AnimationStore as the value. An animation-store is a list that consists of

different animations:

var itemAnim = new jumru.KeyframeAnimation("itemAnimPulse");

itemAnim.addAnimation(scale1).addAnimation(scale2).addAnimation(scale3);

itemAnim.addAnimation(rotate1).addAnimation(rotate2).addAnimation(rotate3);

itemAnim.setDuration(2).setIterationCount(’infinite’).setEasing(’linear’);

itemAnim.play(itemEntity);

For each animation to add, we check if an animation-store for this percentage

key already exists and add the animation under its percentage key. An animation-

store differentiates between animations affecting the transform property (scale, rotate,

translate) and the fading animation, which does not affect this property. Building on

the class properties for the current keyframe animation and the animation-stores in it,

we construct a proper CSS3 keyframe animation string. This string is written to the

document’s style sheet, by reading the document.styleSheets and the cssRules-

array in it. Afterwards, the keyframe animation can be played analogous to the simple

animation, just here we set further properties like the fill-mode or the duration, etc.

53

Playing an animation means that the style-attribute of the document.element is over-

written. To be able to replay an animation after a specific amount of time, we ex-

plicitly have to remove the animation again. The animation is removed by calling the

removeAnimationOfEntity()-function of the keyframe- or the animation-object.

Existing values for the animation are cleared and the animation can get applied again.

5.9 Cross Browser Compatibility

While implementing CSS3 animations and effects we encountered troubles dealing

with different browser vendors that use different prefixes. To avoid this problem we

define a jumru.browserSpec object that stores individual prefixes, which are used

to handle specific CSS or JavaScript code. Paying attention to different vendors in

the code is important, i.e., we differentiate between Mozilla or Webkit browsers for

keyframe animations.

Dealing with cross browser compatibility is also important if we listen to an an-

imation’s start or stop event. While Firefox is throwing an animationstart and anima-

tionend event, Webkit browser dispatch a webkitAnimationStart and webkitAnimationEnd

event. Besides these issues, we experienced difficulties when setting elements invisi-

ble, which we mentioned in Section 5.2. In our game we are playing some CSS3 anima-

tions while the user can pause the game. If the game pauses, we set the current scene

invisible by setting its style.display to none. After getting back to the game play

by setting the scene visible again, the animations are forced to get replayed in Webkit

browsers, though not in Firefox. To cope with this issue, we explicitly set a negative

z-index to the element to place it in the background, if it is set invisible. Therefore the

setVisible()-function of the entity is automatically set on the pageload, depending

on the browser vendor. For Firefox it is sufficient to manipulate the style.display

property, whereas Webkit browsers set a negative z-index.

54

5.10 Logging

Logger

An unnoticed but important component for serious gaming, as mentioned above in

Section 3.1, is logging. Jumru 5s provides a basic jumru.Logger that stores multiple

jumru.Logs in a logs-array. A jumru.Log generally describes a row that is stacked

in the logs-array. The array is sent to a logger.php which is lying on the server.

The first index of the array is reserved for the filename. The PHP file reads out the

chosen filename and walks through the rest of the array, evaluates the entries and

creates a text string in CSV file format. The file is stored on the server and the PHP

reports if everything went fine or if an error occurred. When a jumru.Log is flushed

to the logger’s logs-array, a timestamp is created and stored at the beginning of the

log-row. A visualization of the logger’s structure is shown in Figure 5.4. The logs

can be seen stored as stacked row entries, where each log row starting from index 1

contains a timestamp. The first index is reserved for the filename and does not include

a timestamp.

Questionnaire

Besides logging that happens unnoticed in the background, we also provide a mech-

anism to collect data directly from the user. A jumru.Questionnaire is a div-

container and holds a HTML5 form element. Inside the form element a table is placed,

which contains the data to be shown to the user. The table is styled with a CSS file,

though the developer using the engine can override its contents. We use PHP to

store the form as a TXT file on the server. As a generic approach and to enable non-

developers the possibility to create the form’s content easily, we use XML as the basic

language. The XML must be consistent with the following structure:

55

Figure 5.4: Basic structure of the jumru.Logger.

<questionnaires>, root node

- <quest> (*), with an id and a title

--- <entry> (*)

------ <label> (1), text

------ <answer> (1)

--------- <input> (*), with an id, type, name. supported input types:

text, number, range, radio, checkbox

--- <button> (1), for submitting

The root node questionnaires can contain multiple forms, named quest. Each

questionnaire must contain an unique id and a title. A questionnaire consists of

various entries that have a label and an answer as children. A label is a text

element, which is placed on the left in the form. The corresponding answer is placed

right next to it and can hold multiple input elements that are ordered vertically. Each

input element must contain a name attribute, which is necessary for storing the form’s

content. At the moment the engine supports these input types:

56

• text: for text input

• number: i.e., for providing age input

• range: i.e., to state how the user liked the game. This input type needs more

attributes like from and to, which specify the range

• radio: i.e., for gender selection

• checkbox: for providing multiple solutions

In addition to these input types, a questionnaire must always contain a button, which

is used for submitting the form to the server. The jumru.QuestionnaireFactory

takes a XML file as a parameter, parses it and creates appropriate HTML5 table

entries. After creating the questionnaire, the engine stores it under its id. The

jumruCore holds a questScene that is set as an activeScene, if the question-

naire is loaded with the jumru.Core.prototype.showFormular()-function. If

the form is shown to the user, we store the current time as an invisible table en-

try. Furthermore, if the user submits the form, the end time is captured again and

may be used to evaluate the duration. After the user has filled in all entries and has

clicked the submit button, the PHP returns a prompt to an iframe within the div-

container, to prevent the browser from opening a new tab or window. To be able to

remove the questScene after submitting the form, the engine appends a close button

for each questionnaire. Therefore the showFormular()-function optionally takes a

background image and a string defining the button text as parameters. By default no

background image is set and the button’s content is “close”. In the code excerpt below,

we initialize the factory, create a questionnaire with a xmlfile and call the appropri-

ate function for showing the form with the id id01. Furthermore, we pass an image

to be shown after submitting the form. Figure 5.5 shows the form, based on the XML

file.

jumruCore.questFactory = new jumru.QuestionnaireFactory();

jumruCore.questFactory.create(xmlfile);

jumruCore.showFormular(’id01’, img_thankyou);

57

<questionnaires>

<quest id="id01" title="Survey">

<entry>

<label>Your name</label>

<answer>

<input id="Name" type="text" name="Name">Name</input>

</answer>

</entry>

<entry>

<label>Your gender</label>

<answer>

<input type="radio" name="Gender">Male</input>

<input type="radio" name="Gender">Female</input>

</answer>

</entry>

<entry>

<label>Did you like the game</label>

<answer>

<input type="range" name="Value" from="0" to="10"

fromtext="(yes)" totext="(no)" step="1">5</input>

</answer>

</entry>

<button>Send</button>

</quest>

</questionnaires>

Figure 5.5: Questionnaire, based on the XML file.

58

6 Case Study - EmoJump

On the basis of Jumru 5s we developed a serious game that is used to train the emotion

recognition skills of children aged between 5 and 12. We invented the game in a close

collaboration with the Department of Clinical Child and Adolescent Psychology of the

University of Vienna, which use the game in a training study. During the game play,

the logging tool delivers information in the background. The data is stored as a CSV

file on the server and is further analysed to evaluate the effectiveness of the training.

EmoJump is an endless runner game, in which the player has to collect emotional

faces that are displayed as coins. While collecting coins the player has to avoid crash-

ing in barriers on the ground. The game consists of three levels representing different

stages of emotion recognition. The three levels slightly differ from each other, though

they share some common game play mechanisms. In each level some kind of scenario

in form of a thought bubble or a comic strip is presented to the children. In these sce-

narios we see different stakeholders, of which one is always a child in a red shirt. Now

the children playing the game have to put themselves into the scene and have to un-

derstand the feelings of the child in the red shirt. Afterwards, the player starts running

and coins in form of emotions are moving through the screen. Four basic emotions

can appear in the game, namely happy, sad, angry and scared. An illustration of level

1, which is also used for further evaluations, is shown in Figure 6.1. Before the player

starts running, he is standing still and looks at the presented thought bubble. In the

picture we see the thought bubble showing a child in a red shirt, standing in front of a

house with a broken window, because it was playing soccer. How does the child feel

in this moment? By pressing space the player starts running, which means the ground

is moving towards the player, who stays at the same position. Afterwards, several

coins are randomly set on the ground. The correct emotion type (in this case scared) is

59

always part of the random set. If the player collects an emotion, the backpack in the

left top is bubbling. Additionally, if the user does not understand what the thought

bubble is presenting, he can click on a joker button, which acoustically explains the

situation. If the player crashes into a barrier like the coppice on the ground, his lives

are decremented.

Figure 6.1: Example of EmoJump - Level 1.

6.1 Game setting

In this section we mainly describe how we build the game with the help of Jumru 5s,

which elements we use and how they interact with each other. When starting imple-

menting the game, we can instantly use the jumruCore to set first game objects. For

initializing the game it is important to set the jumruCore.gamestage’s properties,

like the game’s width or height. EmoJump is generally divided into several scenes, at

which just one scene is active for some time. Each scene consists of various layers and

object entities. In the game we have following instances of jumru.Scene:

1. Menu: shown during menu selection.

2. Preloading: shown while game data is loaded in the background.

3. Game: this scene is active during the whole game play.

60

4. Pause: shown if the game is paused.

5. Crash: shown after the player crashes into a barrier.

6. Gameover: shown if the player has no more lives left after multiple crashes.

7. Win: shown at the end of the level and provides further buttons to jump back to

the menu scene or the game scene, if the user decides to play the next level.

After starting the game, the user sees the menu scene. Optionally he can specify

some settings by clicking on various jumru.Buttons. Furthermore, he can choose

a character (object entities with images of boy and girl) and enter a name for it

in a jumru.Textfield. Finally, he selects a level and a sublevel, whereupon a

jumru.Video introduces the user to the game play. Afterwards, the menu scene

switches to the preloading scene, while the jumru.AssetManager loads game assets

in the background. When finished, the scene switches to the game scene, which is

present most of the time.

Figure 6.1 further shows the game scene and its main components. At the very

back the background image is painted. Multiple layers and object entities are placed

above. In the left upper corner a layer contains several control elements, which are

positioned next to an object entity showing the thought bubble. The player is standing

in the left lower corner. To create the endless runner motion two object entities for the

ground are set next to each other, each having its own motion object. A visualization

of the motion of the two grounds is shown in Figure 6.2.

The motion object translates the ground through the canvas from right to left and

dispatches a stop event if the position of the object entity has reached the motion’s

boundaries. If the motion has stopped, a new ground is randomly chosen and the

motion is reset. During the movement the player is always staying at the same position.

The ground images are repainted in each game loop step in order to create a seamless

motion, but the sprites of the player have their own update rate. Just if the player is

jumping, he gets repainted in each loop to achieve a smooth jumping curve. Motions

61

Figure 6.2: Motion of grounds.

are also used to create a parallax effect, i.e., in Figure 6.1 we also see a boat in the

background, which is moving slower than the floor in the foreground.

The logger in EmoJump is derived from the framework logger and logs information

about the game. The data includes general information about the level, like day and

time, duration of the game play, level speed or the average FPS. Furthermore, we store

the player’s name, each thought bubble and the collected items, lost lives, etc.

In addition to the logger, we implemented some simple questionnaires to illustrate

their functionalities, though they are not part of the official final EmoJump game.

62

7 Performance Evaluation

On the basis of our game EmoJump we evaluate the performance of our engine Jumru 5s.

For the evaluation we tested the game on different platforms in different browsers on

a MacBook Pro 9.2, 2.9 GHz Intel Core i7 with 8GB RAM and a Intel HD Graphics

4000 GPU (1GB VRAM). Therefore we played level 1, sublevel 1 for three minutes

and logged the frame rate and the corresponding time value in each game loop step.

Afterwards, we plotted and analysed the frame rate values with the software R1.

7.1 Test Setting

The game, or rather the engine is evaluated on following platforms and browsers, of

which some are virtualized with the VMWare Player 2:

1. OS X 10.9.3

Mozilla Firefox 31.0, Google Chrome 36.0.1985.143, Safari 7.0.4

2. Windows 7 Professional 64bit

Mozilla Firefox 31.0, Google Chrome 36.0.1985.143

3. XUbuntu 14.04 64bit as a VM in VMWare Player on Windows 7

Mozilla Firefox 31.0, Google Chrome 36.0.1985.143

4. Linux Mint 17 Cinnamon 64bit as a VM in VMWare Player on Windows 7

Mozilla Firefox 31.0, Google Chrome 36.0.1985.143

We could not test the game in Safari on Windows 7, because Apple stopped up-

grading their browser for Windows users. The latest update on their website is Sa-
1http://www.r-project.org/
2https://my.vmware.com/de/web/vmware/free#desktop_end_user_computing/

vmware_player/6_0

63

http://www.r-project.org/
https://my.vmware.com/de/web/vmware/free#desktop_end_user_computing/vmware_player/6_0
https://my.vmware.com/de/web/vmware/free#desktop_end_user_computing/vmware_player/6_0

fari 5.1.7 and was released on May 9, 2012. This version can not cope with the current

HTML5 version, i.e., video or audio playback is not supported [40]. Furthermore,

we are not testing Safari on Linux, because no Linux version of this browser is avail-

able [23].

To set up different operating systems, we installed Windows 7 on a MacBook Pro

with the BootCamp Assistant. We virtualized two Linux distributions (XUbuntu and

Mint) in VMWare Player on Windows 7, because the player is just available for Win-

dows or Linux platforms. At the beginning we achieved low FPS values between 15

and 20 for XUbuntu and Mint in Firefox and Chrome, because Hardware Acceleration,

see Section 5.7, was not enabled by default. After setting the acceleration, we could

improve results for Google Chrome. We activated it manually by following the steps

below:

Firefox [2, 13]

1. We looked up the about:support site and checked the Graphics information.

No GPU-accelerated Windows were set: (0/1 Basic).

2. We manually adapted parameters in about:config and set layers.acceleration.

force-enabled and layers.offmainthread.composition.enabled to true.

3. Afterwards, we opened Firefox via terminal with env MOZ_USE_OMTC=1

firefox and hardware acceleration was now enabled under about:support:

(2/2 OpenGL (OMTC)), see Figure 7.1.

Chrome [4]

1. We looked up the chrome://gpu settings and encountered under Graphics Fea-

ture Status that Canvas support was just set to software only.

2. In chrome://flags we manually enabled Override software rendering list and

restarted the browser.

3. Afterwards, canvas support for Chrome was now Hardware accelerated.

64

Figure 7.1: Firefox - about:support

7.2 Results

The following sections show detailed information about test results on different oper-

ating systems and in different browsers, whereas for each platform Firefox is marked

orange, Chrome is marked green and Safari is marked blue. For visualizing perfor-

mance outcomes we provide two kind of R plots: on the one hand we show graphs of

the logged frame rate, which is captured in each game loop step. On the other hand

we provide an overview of the average FPS in combination with error bars, indicating

the standard deviation of the frame rate. The bar plot for all test cases and a tabular

comparison of the results can be found in the summary in Section 7.3.

OS X 10.9.3

For OS X Mavericks 10.9.3 we tested the game in Firefox, Chrome and Safari and

achieved an average FPS of 60 for Webkit browsers (Safari and Chrome). In Firefox

FPS was a bit lower, resulting in an average FPS of 52. Figure 7.2 shows the frame

rate logged during the game play. On the x axis we plot the time values with the

corresponding frame rate on the y axis.

65

time

fp
s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 52.2257487548752

(a) OS X, Firefox

time

fp
s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 60.0156542012198

(b) OS X, Chrome

time

fp
s

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

safari : average FPS = 59.8257346718692

(c) OS X, Safari

Figure 7.2: FPS in OS X 10.9.3 for Firefox, Chrome and Safari.

Chrome 7.2(b) shows the smallest number of fluctuations and provides a steady

frame rate. As the other Webkit browser, Safari 7.2(c) reveals similarities to the Chrome

66

plot, but has more low FPS values. Interestingly, the FPS in Firefox 7.2(a) signalizes

hops and regular patterns, which occur because of specific actions taking place in

the game code, i.e., collecting items or collisions with barriers. The diagonal lines

represent time breaks, i.e., if the game loop pauses due to a crash or a new presented

thought bubble.

time

fp
s

0.63 0.65 0.67 0.69 0.71 0.73 0.75 0.77 0.7910
30

50
70

firefox : average FPS = 52.2257487548752

(a) OS X, Firefox (0.63 - 0.8)

time

fp
s

0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.9910
30

50
70

firefox : average FPS = 52.2257487548752

(b) OS X, Firefox (0.83 - 1.0)

Figure 7.3: Zoom-In in Firefox for OS X.

If we zoom into the Firefox plot, see Figure 7.3, we have a closer look on these

patterns. After each pause, indicated by diagonal lines, the frame rate remains stable

around a value of 60. We can see this robustness in the first subplot 7.3(a) from time

0.64 to 0.675 and from 0.74 to 0.77. In the second subplot 7.3(b) this is also observable

from time 0.84 to 0.87. During this time range of 0.03, which represents about 7

67

seconds in the game play for an average FPS of 52, only the player is running until

the first barrier or the first emotion enters the screen. Afterwards, we successively

check for collisions with barriers or emotions until the current thought bubble ends

or the player crashes and the loop pauses again. These checks probably result in the

recurring steps in the graph.

Windows 7 Professional

On Windows 7 we obtained best results in Firefox achieving an average FPS of 61, see

Figure 7.4(a), whereas in Chrome the result was best at a frame rate of 53, which can

be seen in Figure 7.4(b).

time

fp
s

0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 60.5246687336852

(a) Windows, Firefox

time

fp
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 52.7253023996762

(b) Windows, Chrome

Figure 7.4: FPS in Windows 7 for Firefox and Chrome.

68

The plot shows some outliers for Firefox, but the frame rate keeps mostly stable

among the logging process. In Chrome we experienced a higher fan speed, which

is visualized in the middle of the graph and especially at the end of the plot. At

halftime, the plot indicates a staircase-shaped pattern as a result of sudden changes

in the frame rate. This jittering between low and high values impaired the gaming

experience, which was primarily noticeable when jumping over barriers, resulting in

a choppy jump curve.

time

fp
s

0.47 0.48 0.49 0.5010
30

50
70

firefox : average FPS = 60.5246687336852

(a) Windows, Firefox (0.47 - 0.5)

time

fp
s

0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.8610
30

50
70

chrome : average FPS = 52.7253023996762

(b) Windows, Chrome (0.79 - 0.86)

Figure 7.5: Zoom-In in Firefox and Chrome for Windows 7.

Figure 7.5 shows a zoom in Firefox and Chrome. In the first zoom for Firefox 7.5(a)

we see how steady the frame rate is, with a few outliers at the beginning around

time 0.475. Otherwise, the frame rate keeps stable and does not offer any notice-

69

able patterns. Instead the plot underneath visualizes how jittery the frame rate is

for Chrome 7.5(b). Like for Firefox in OS X after restarting the game after a pause,

the frame rate is constant for a specific amount of time (0.79 - 0.798), until elements

appear in the screen again. When the objects entered the screen, we also jumped to

collect these objects or to avoid crashing into them. These calculations are visible in

the dropping frame rate.

XUbuntu 14.04

The first Linux distribution, which we virtualized in Windows 7 is XUbuntu 14.04. On

this platform we tested the game in Firefox and Chrome. Analogous to OS X 10.9.3 we

achieved best results in a Webkit browser, or more precisely Google Chrome, resulting

in an average FPS of 60, after enabling hardware acceleration, see Figure 7.6(c). The

frame rate during the game play stays quite robust and does not exhibit many outliers.

Furthermore, the graph for Chrome shows a slight periodic pattern.

Enabling hardware acceleration on Firefox did not significantly improve perfor-

mance statistics. Before activating the hardware support we achieved a FPS of 17,

whereas after enabling it the frame rate increased to 21, though without hardware

acceleration the frame rate seems to keep steadier among the logging process. In Fig-

ure 7.6 we plotted values for Firefox without and with hardware acceleration and the

values we got for Chrome. In the first graph 7.6(a) for Firefox, which visualizes the

game play without acceleration, we see smaller differences between the minimal and

maximal turning points than for the second graph 7.6(b), showing the frame rate after

enabling hardware acceleration. Otherwise plots for Firefox in UNIX based systems

(OS X, Mint) generally tend to have a greater variance from maximal and minimal

turning points, which is also shown in the barplot in Section 7.3.

70

time

fp
s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 17.1646730099505

(a) XUbuntu, Firefox without hardware acceleration

time

fp
s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 21.0122056027012

(b) XUbuntu, Firefox with hardware acceleration

time

fp
s

0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 59.9325496410192

(c) XUbuntu, Chrome

Figure 7.6: FPS in XUbuntu for Firefox and Chrome.

When zooming in the plot of Chrome from time 0.465 to 0.485, we first see a

negative, and shortly thereafter a positive amplitude around the time of 0.47, see the

71

first subplot in Figure 7.7(a). At this point of time the parallax in the back moved

out of screen and we jumped over a barrier. This results in extra calculations for

swapping the parallax, performing the jump in each game loop step and checking if

the player crashes into the barrier, which probably caused the peaks at the beginning.

As mentioned earlier, the graph for Chrome illustrates some periodicities. Underneath

the first subplot, see Figure 7.7(b), we zoomed in from time 0.77 to 0.82 to have a

closer look on the regularity of the pattern. A timestep of 0.01 represents 3 seconds in

realtime for a FPS of about 60. Every 0.01 steps on the time axis we see some outliers.

This may be caused by functions checking for barrier collision or emotion collision

that mostly happen every 3 seconds.

time

fp
s

0.465 0.475 0.48510
30

50
70

chrome : average FPS = 59.9325496410192

(a) XUbuntu, Chrome (0.465 - 0.485)

time

fp
s

0.77 0.78 0.79 0.80 0.81 0.8210
30

50
70

chrome : average FPS = 59.9325496410192

(b) XUbuntu, Chrome (0.77 - 0.82)

Figure 7.7: Zoom-In in Chrome for XUbuntu.

72

Linux Mint 17

time

fp
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 33.2966045590488

(a) Linux Mint, Firefox without hardware acceleration

time

fp
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 32.5086068652017

(b) Linux Mint, Firefox with hardware acceleration

time

fp
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 59.9289699686817

(c) Linux Mint, Chrome

Figure 7.8: FPS in Linux Mint for Firefox and Chrome.

73

We wanted to find out if the game would perform better in other Linux distribu-

tions. Therefore we virtualized Linux Mint 17 in Windows 7, which already has a

pre-installed Firefox browser. We updated it manually from Version 28.0 to Version

31.0 and tested it with and without hardware acceleration. Interestingly, playing with-

out acceleration resulted in an average frame rate of 33, see Figure 7.8(a). However,

enabling the hardware acceleration did not improve the performance of the game. In-

stead the FPS was almost the same with a rounded value of 33, which is illustrated

in the second plot 7.8(b) below. Once more for a UNIX based system the best perfor-

mance is obtained in Chrome 7.8(c), resulting in an average FPS of 60. The graph for

Chrome reveals a regularity of a descent followed by an ascent, taking place at time

0.3 and 0.48. Like for XUbuntu in Chrome, at this point in time the parallax moved

out of the canvas and a new barrier entered the screen.

7.3 Summary

Table 7.1 shows the platforms and the tested browsers with the average FPS we

achieved for each test case. Additionally, the bar plot in Figure 7.9 provides an

overview of all test cases and the average frame rate with their standard deviations.

Once more, for OS X 10.9.3 Webkit browsers (Safari, Chrome) obtain best results with

an average FPS of 60, but Safari shows a little more fluctuations among the game play

resulting in a greater standard deviation. XUbuntu and Linux Mint are significantly

better in Chrome, whereas Windows achieves better results in Firefox.

Firefox 31.0 Chrome 36.0.1985.143 Safari 7.0.4
OS X 10.9.3 52 60 60
Windows 7 61 53 /
XUbuntu 14.04 (VM
on Windows 7)

21 (with h.acc.) 60 /

Linux Mint 17 (VM
on Windows 7)

33 (without h.acc.) 60 /

Table 7.1: Overview of performance tests with the resulting average FPS (rounded).

74

FPS OVERVIEW - Browsers / OS

FP
S

0

10

20

30

40

50

60

70

 OS X Windows 7 XUbuntu Linux Mint

firefox chrome safari

Figure 7.9: Bar plot of all test cases with their standard deviations.

browser os mean sd min max length

[1,] "firefox" "osx" "52.223" "8.653" "18.519" "69.977" "8260"

[2,] "chrome" "osx" "60.012" "1.462" "29.893" "65.967" "9703"

[3,] "safari" "osx" "59.822" "3.211" "10.003" "66.900" "9544"

[4,] "firefox" "win7" "60.521" "2.384" "24.483" "69.952" "10101"

[5,] "chrome" "win7" "52.722" "13.15" "14.925" "66.666" "7755"

[6,] "firefox" "xubuntu" "21.015" "5.639" "10.136" "69.021" "3104"

[7,] "chrome" "xubuntu" "59.929" "2.885" "11.957" "69.405" "9818"

[8,] "firefox" "mint" "33.296" "4.141" "13.808" "68.994" "5732"

[9,] "chrome" "mint" "59.925" "2.607" "14.899" "69.367" "9765"

We created the bar plot on the basis of the statistics listed in the code excerpt above,

though we present rounded values here. The highest standard deviation of 13.15 was

received for Windows 7 and Chrome, due to the cascaded plot, see Figure 7.4(b). Oth-

erwise Chrome generally exhibits the lowest standard deviations with values between

1.462 for OS X and 2.885 for XUbuntu. For UNIX based systems (OS X, XUbuntu,

75

Mint) Firefox generally has a higher standard deviation than Webkit browsers. The

number of values (called length in the code excerpt above), which are logged during 3

minutes of game play, is determined by the refresh rate of the browser. The faster the

update rate and the higher the FPS, the more values are extracted. On the opposite,

the lower the FPS, the less values are logged.

Figure 7.10 summarizes the performance evaluation and shows a comparison of all

winning browsers of each tested platform. The final test cases show similarities, like a

steady frame rate and a small standard deviation.

76

time

fp
s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 60.0156542012198

(a) OS X, Chrome

time

fp
s

0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

firefox : average FPS = 60.5246687336852

(b) Windows 7, Firefox

time

fp
s

0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 59.9325496410192

(c) XUbuntu, Chrome

time

fp
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
30

50
70

chrome : average FPS = 59.9289699686817

(d) Linux Mint, Chrome

Figure 7.10: Frame rate of all winning browsers for each platform.

77

8 Conclusion and Future Work

This master thesis describes a web game engine for serious games, which supports

jump and run and endless runner games. On the basis of our engine we implemented

a serious game, which served as a case study to evaluate the engine’s potentials. We

started by giving a general introduction in the background (2) of serious games that

are especially designed for teaching emotion recognition skills. The purpose of our

game is to train the emotion recognition skills of children, why we have taken a close

look at existing web game engines (3). After getting familiar with JavaScript, HTML5

and CSS3 technologies (4) and evaluating several existing engines, we decided to im-

plement an own object oriented engine, which is especially designed for serious games

and incorporates modules for data collection. Therefore we provided a general defi-

nition of the term game engine. Based on the knowledge gained during research, we

developed our engine Jumru 5s, whose presentation is the aim of this work and builds

the main part (5). Building on Jumru 5s we introduced our serious game EmoJump (6),

which is used for the performance evaluation of our engine (7). The performance tests

incorporated several platforms and browsers, which were all tested on the same de-

vice. Results show that the current status of the engine works well for most platforms,

at least for one browser, but performance improvements are still possible, especially

for rendering. To be able to support multiple devices, related game engines not only

use canvas for rendering, but implement further strategies like DOM-sprites.

Back in 2008, after the first draft version of HTML5 was released by the W3C, mo-

bile support of HTML5 was very low [32]. Since then enhancements in mobile tech-

nologies for example better hardware enabled new possibilities and wider support

for HTML5, especially for audio and video, CSS3 and canvas rendering. In his book

David Geary [18] notes that during the time of writing his book about HTML5 canvas

79

and game development “Canvas performance on mobile devices was dismal”. Geary, who

published his book in 2012 further mentions that the performance on mobile devices

significantly improved when iOS5 was released, which supported hardware acceler-

ation. He states that “hardware acceleration dramatically improved performance, making it

possible to implement smooth animations and video games”. The software iOS5 has been

released in 2011 [22]. Supporting multiple devices is still a complex issue, because

different devices provide different features like processing power, storage capacity,

hardware acceleration, screen resolution or input types. Interestingly, Paul Rettig fur-

ther outlines that the hardware of the device is important, but “the browser that runs on

your target device is the most important arbiter of the features available” [32].

Apart from rendering optimizations and mobile support, further improvements

concerning our engine can be made by extending the logging package. Besides the

logger and the questionnaire, the engine could provide mechanisms to enable record-

ing software or other psychophysiological tools like emotives. Future work could also

incorporate visualizations of bounding boxes to provide some debugging instruments.

In addition to these ideas, the field of animation and motion is still capable of devel-

opment. Therefore further implementations of CSS3 animations or vertical motions

are possible.

As we can see, game engine development shows much space for enhancements and

new ideas. Implementing these features is not an easy task, since games should work

on various devices, each with different hardware specifications, operating systems and

browsers. Furthermore, the engine’s components have to work hand in hand in order

to simplify game coding, rather than complicating game development. Based on these

findings, I would like to conclude with a quote from Aristotle, who summarizes what

I’ve learned about game engine design:

“The whole is greater than the sum of its parts”.

Aristotle.

80

Bibliography

[1] Bretagne Abirached, Yan Zhang, and Ji Hyun Park. Understanding user needs for

serious games for teaching children with autism spectrum disorders emotions. In

Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecom-

munications 2012, pages 1054–1063, Denver, Colorado, USA, June 2012. AACE.

[2] _abraxas. [SOLVED] Firefox 28 stopped using hardware acceleration.

https://bbs.archlinux.org/viewtopic.php?pid=1394765, accessed:

2014-08-18, 03 2014.

[3] Eike Falk Anderson, Steffen Engel, Peter Comninos, and Leigh McLoughlin. The

case for research in game engine architecture. In Proceedings of the 2008 Conference

on Future Play: Research, Play, Share, Future Play ’08, pages 228–231, New York,

NY, USA, 2008. ACM.

[4] Andrew (Alin Andrei). Enable Hardware Acceleration In Chrome/Chromium

Browser [Quick Tip]. http://www.webupd8.org/2014/01/enable-

hardware-acceleration-in-chrome.html, accessed: 2014-08-18, 01 2014.

[5] Abhijeet Bhattacharya. Memory leak patterns in JavaScript.

http://www.ibm.com/developerworks/web/library/wa-memleak/,

accessed: 2014-04-06, 04 2007.

[6] Bert Bos. W3C CSS Specifications. http://www.w3.org/Style/CSS/

current-work, accessed: 2014-04-02, 03 2014.

[7] Rik Cabanier, Jatinder Mann, Jay Munro, Tom Wiltzius, and Ian Hickson. HTML

Canvas 2D Context. http://www.w3.org/html/wg/drafts/2dcontext/

html5_canvas_CR/, accessed: 2014-04-02, 04 2014.

81

https://bbs.archlinux.org/viewtopic.php?pid=1394765
http://www.webupd8.org/2014/01/enable-hardware-acceleration-in-chrome.html
http://www.webupd8.org/2014/01/enable-hardware-acceleration-in-chrome.html
http://www.ibm.com/developerworks/web/library/wa-memleak/
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas_CR/
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas_CR/

[8] David Catuhe. Unleash the power of HTML 5 Canvas for gaming.

http://blogs.msdn.com/b/eternalcoding/archive/2012/03/

22/unleash-the-power-of-html-5-canvas-for-gaming-part-

1.aspx?Redirected=true, accessed: 2014-03-16, 03 2012.

[9] Centers for Disease Control CDC and Prevention. Autism Spectrum Disor-

ders (ASDs) - Data & Statistics. http://www.cdc.gov/ncbddd/autism/

data.html, accessed: 2014-03-09, 12 2013.

[10] Centers for Disease Control CDC and Prevention. Autism Spectrum Disorders

(ASDs) - Facts About ASDs. www.cdc.gov/ncbddd/autism/facts.html, ac-

cessed: 2014-03-10, 12 2013.

[11] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

[12] Dean Jackson and David Hyatt and Chris Marrin and Sylvain Galineau and L.

David Baron. Css animations. http://www.w3.org/TR/css3-animations/,

accessed: 2014-04-02, 02 2013.

[13] d.free. Force Enable Hardware Acceleration in Firefox.

http://askubuntu.com/questions/491750/force-enable-

hardware-acceleration-in-firefox, accessed: 2014-08-18, 07 2014.

[14] Dustin Diaz and Ross Harmes. Pro JavaScript Design Patterns. The expert’s voice

in web development. Apress, 2008.

[15] Samanta Finkelstein, Andrea Nickel, Lane Harrison, Evan A. Suma, and Tiffany

Barnes. cMotion: A New Game Design to Teach Emotion Recognition and Pro-

gramming Logic to Children using Virtual Humans. In IEEE Virtual Reality, pages

249–250, 2009.

[16] David Flanagan. JavaScript: The Definitive Guide. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 6th edition, 03 2011.

82

http://blogs.msdn.com/b/eternalcoding/archive/2012/03/22/unleash-the-power-of-html-5-canvas-for-gaming-part-1.aspx?Redirected=true
http://blogs.msdn.com/b/eternalcoding/archive/2012/03/22/unleash-the-power-of-html-5-canvas-for-gaming-part-1.aspx?Redirected=true
http://blogs.msdn.com/b/eternalcoding/archive/2012/03/22/unleash-the-power-of-html-5-canvas-for-gaming-part-1.aspx?Redirected=true
http://www.cdc.gov/ncbddd/autism/data.html
http://www.cdc.gov/ncbddd/autism/data.html
www.cdc.gov/ncbddd/autism/facts.html
http://www.w3.org/TR/css3-animations/
http://askubuntu.com/questions/491750/force-enable-hardware-acceleration-in-firefox
http://askubuntu.com/questions/491750/force-enable-hardware-acceleration-in-firefox

[17] Simon Fraser, Dean Jackson, Edward O’Connor, and Dirk Schulze. CSS Trans-

forms Module Level 1. http://www.w3.org/TR/css-transforms-1/, ac-

cessed: 2014-04-08, 11 2013.

[18] David Geary. Core HTML5 Canvas. Graphics, Animation and Game Development.

Prentice Hall, Crawfordsville, Indiana, USA, 2012.

[19] David Geary. HTML5 2D game development: Graphics and animation. Draw-

ing into the canvas and putting things in motion. http://www.ibm.com/

developerworks/java/library/j-html5-game2/index.html, accessed:

2014-03-19, 08 2012.

[20] David Geary. HTML5 2D game development: Setting the stage. Imple-

menting the game object, pausing, freezing, thawing, and keyboard in-

put. http://www.ibm.com/developerworks/java/library/j-html5-

game3/index.html, accessed: 2014-03-14, 08 2012.

[21] Jason Gregory. Game Engine Architecture. Taylor & Francis Group, 2009.

[22] Apple Inc. Apple to Unveil Next Generation Software at Keynote Ad-

dress on Monday, June 6. http://www.apple.com/pr/library/2011/

05/31Apple-to-Unveil-Next-Generation-Software-at-Keynote-

Address-on-Monday-June-6.html, accessed: 2014-09-24, 05 2011.

[23] Apple Inc. Downloads - Safari. http://support.apple.com/downloads/

#safari, accessed: 2014-08-21, 09 2013.

[24] Entropy Interactive. Game Engine Design – Component Based Entities.

http://entropyinteractive.com/2011/02/game-engine-design-

component-based-entities/, accessed: 2014-09-22, 02 2011.

[25] Brigitte Jellinek. Web Development. Ein Lehrbuch für das Informatik

oder Medien-Informatik Studium. http://web-development.github.io/

javascript/module/, accessed: 2014-03-12, 2012.

83

http://www.w3.org/TR/css-transforms-1/
http://www.ibm.com/developerworks/java/library/j-html5-game2/index.html
http://www.ibm.com/developerworks/java/library/j-html5-game2/index.html
http://www.ibm.com/developerworks/java/library/j-html5-game3/index.html
http://www.ibm.com/developerworks/java/library/j-html5-game3/index.html
http://www.apple.com/pr/library/2011/05/31Apple-to-Unveil-Next-Generation-Software-at-Keynote-Address-on-Monday-June-6.html
http://www.apple.com/pr/library/2011/05/31Apple-to-Unveil-Next-Generation-Software-at-Keynote-Address-on-Monday-June-6.html
http://www.apple.com/pr/library/2011/05/31Apple-to-Unveil-Next-Generation-Software-at-Keynote-Address-on-Monday-June-6.html
http://support.apple.com/downloads/#safari
http://support.apple.com/downloads/#safari
http://entropyinteractive.com/2011/02/game-engine-design-component-based-entities/
http://entropyinteractive.com/2011/02/game-engine-design-component-based-entities/
http://web-development.github.io/javascript/module/
http://web-development.github.io/javascript/module/

[26] Joe Lennon. Compare JavaScript frameworks. An overview of the frame-

works that greatly enhance JavaScript development. http://www.ibm.com/

developerworks/library/wa-jsframeworks/, accessed: 2014-03-21, 02

2010.

[27] Brandon McInnis, Ryo Shimizu, Hidekazu Furukawa, Ryohei Fushimi, Ryo

Tanaka, and Kevin Kratzer. HTML5 Game Programming with Enchant.Js. Apress,

Berkely, CA, USA, 1st edition, 2013.

[28] velvel53 Mozilla Developer Network. Memory Management.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Memory_Management, accessed: 2014-04-06, 09 2013.

[29] Lennart Nacke, Craig Lindley, and Sophie Stellmach. Log who’s playing: Psy-

chophysiological game analysis made easy through event logging. In Fun and

Games, volume 5294 of Lecture Notes in Computer Science, pages 150–157. Springer,

2008.

[30] Microsoft Developer Network. Timing control for script-based animations (“re-

questAnimationFrame”). http://msdn.microsoft.com/en-us/library/

hh920765%28v=vs.85%29.aspx, accessed: 2014-05-08.

[31] Simon Pieters. HTML5 - Differences from HTML4. http://www.w3.org/TR/

html5-diff/, accessed: 2014-03-23, 05 2013.

[32] Pascal Rettig. Professional HTML5 Mobile Game Development. John Wiley & Sons,

Inc., Indianapolis, Indiana, USA, 2012.

[33] Pascal Rettig. Quintus Documentation, lib/quintus.js.

http://html5quintus.com/api/files/lib_quintus.js.html,

accessed: 2014-08-11, 2012.

84

http://www.ibm.com/developerworks/library/wa-jsframeworks/
http://www.ibm.com/developerworks/library/wa-jsframeworks/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
http://msdn.microsoft.com/en-us/library/hh920765%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/hh920765%28v=vs.85%29.aspx
http://www.w3.org/TR/html5-diff/
http://www.w3.org/TR/html5-diff/
http://html5quintus.com/api/files/lib_quintus.js.html

[34] James Robinson and Cameron McCormack. Timing control for script-based

animations. https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/

RequestAnimationFrame/Overview.html, accessed: 2014-03-19, 10 2013.

[35] Paul Rouget. What is hardware acceleration. https://hacks.mozilla.org/

2010/09/hardware-acceleration/, accessed: 2014-04-22, 2010.

[36] UCLA Russ Poldrack and Cognitive Atlas. Emotion Recognition.

http://www.cognitiveatlas.org/concept/id/trm_4a3fd79d0b665,

accessed: 2014-03-11, 2012.

[37] David Shariff. JavaScript Inheritance Patterns. http://davidshariff.com/

blog/javascript-inheritance-patterns/, accessed: 2014-03-12, 02 2012.

[38] Google Developers Site. Getting Started with the Closure Compiler Ap-

plication. https://developers.google.com/closure/compiler/docs/

gettingstarted_app?hl=de, accessed: 2014-05-08, 12 2013.

[39] Boris Smus. Improving HTML5 Canvas Performance.

http://www.html5rocks.com/en/tutorials/canvas/performance/,

accessed: 2014-03-16, 10 2013.

[40] tested by Niels Leenheer. HTML5Test - How well does your browser support

HTML5? http://html5test.com/s/0bcfe81dfcdcd93b.html, accessed:

2014-08-18.

[41] Alan Thorn. Game Engine Design and Implementation. Foundations of game devel-

opment. Jones & Bartlett Learning, 2011.

[42] Anne van Kesteren, Aryeh Gregor, Ms2ger, Alex Russell, and Robin Berjon. W3C

DOM4 - Events. http://www.w3.org/TR/dom/#events, accessed: 2014-08-

04, 07 2014.

85

https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/RequestAnimationFrame/Overview.html
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/RequestAnimationFrame/Overview.html
https://hacks.mozilla.org/2010/09/hardware-acceleration/
https://hacks.mozilla.org/2010/09/hardware-acceleration/
http://www.cognitiveatlas.org/concept/id/trm_4a3fd79d0b665
http://davidshariff.com/blog/javascript-inheritance-patterns/
http://davidshariff.com/blog/javascript-inheritance-patterns/
https://developers.google.com/closure/compiler/docs/gettingstarted_app?hl=de
https://developers.google.com/closure/compiler/docs/gettingstarted_app?hl=de
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://html5test.com/s/0bcfe81dfcdcd93b.html
http://www.w3.org/TR/dom/#events

[43] venomation. Composition VS Inheritance. http://www.codeproject.com/

Articles/80045/Composition-VS-Inheritance, accessed: 2014-09-22, 05

2010.

[44] W3C. HTML 5.1 Nightly. A vocabulary and associated APIs for HTML

and XHTML. http://www.w3.org/html/wg/drafts/html/master/

Overview.html, accessed: 2014-03-20, 03 2014.

[45] w3school. CSS3 Animations. http://www.w3schools.com/css/

css3_animations.asp, accessed: 2014-05-23.

[46] Mick West. Evolve your Hierarchy. http://cowboyprogramming.com/2007/

01/05/evolve-your-heirachy/, accessed: 2014-09-22, 01 2007.

[47] Wikipedia. Cumulative moving average. http://en.wikipedia.org/wiki/

Moving_average#Cumulative_moving_average, accessed: 2014-03-19, 09

2013.

[48] James L. Williams. Learning HTML5 Game Programming: A Hands-on Guide to Build-

ing Online Games Using Canvas, SVG, and WebGL. Learning. Pearson Education,

2011.

86

http://www.codeproject.com/Articles/80045/Composition-VS-Inheritance
http://www.codeproject.com/Articles/80045/Composition-VS-Inheritance
http://www.w3.org/html/wg/drafts/html/master/Overview.html
http://www.w3.org/html/wg/drafts/html/master/Overview.html
http://www.w3schools.com/css/css3_animations.asp
http://www.w3schools.com/css/css3_animations.asp
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
http://en.wikipedia.org/wiki/Moving_average#Cumulative_moving_average
http://en.wikipedia.org/wiki/Moving_average#Cumulative_moving_average

Abstract

The area of serious gaming introduces a new research field and enables the therapy

of people with psychological disorders in a playful way. Especially children are very

amenable for computer games, which offers new and innovative treatment options.

In cooperation with the Department of the Clinical Child and Adolescent Psychology

(Applied Psychology) of the University of Vienna we developed a game that trains the

emotion recognition skills of children. Enhancements in emotion recognition prevent

from further psychological health issues and improve the children’s social life. For

developing the game in HTML5, JavaScript and CSS3 we dealt closely with these

technologies and analysed existing web game engines. The field of game engine design

discloses a large application area, because the term game engine itself is not explicitly

defined. During our researches and first implementations on the basis of existing

engines we encountered that none of these engines are especially designed for serious

games. Particularly for psychological treatment some kind of data collection, like

gaining information about the player is desirable. Information can be gathered either

directly through user questions or indirectly through logging mechanisms. None of

these engines supported some kind of logging tools, which led us to the development

of an own web game engine that focuses on serious games. Our engine Jumru 5s

should simplify the implementation of serious games and provide mechanisms for

data collection. By means of our engine we developed a HTML5 Jump and Run game

to train the emotion recognition skills of children aged between 5 and 12, which is

used as a case study to evaluate the engine. We analysed the engine according to

performance aspects on different platforms and in different browsers and illustrated

our outcomes.

87

Kurzfassung

Der Bereich des Serious Gaming beschreibt einen neuen Forschungszweig, der es er-

möglicht, auf spielerische Art und Weise, Menschen mit psychischen Gesundheits-

problemen zu therapieren. Speziell Kinder reagieren positiv auf Computerspiele, wo-

durch sich neue und innovative Behandlungsmöglichkeiten ergeben. In Kooperation

mit dem Arbeitsbereich für klinische Kinder- und Jugendpsychologie der Universität

Wien haben wir ein Spiel entwickelt, welches das Emotionsverständnis von Kindern

trainieren soll. Ein besseres Emotionsverständnis beugt psychischen Gesundheitspro-

blemen vor und kann das Sozialleben der Kinder verbessern. Zur Entwicklung des

Spieles in HTML5, JavaScript und CSS3 haben wir uns intensiv mit diesen Technologi-

en beschäftigt und existierende Web Game Engines analysiert. Der Bereich der Game

Engines umfasst ein großes Forschungsfeld, da der Begriff Game Engine selbst nicht

eindeutig definiert ist. Im Verlauf unserer Recherchen und Implementierungen auf Ba-

sis vorhandener Engines hat sich herausgestellt, dass keine Engine explizit für Serious

Games entwickelt wurde. Gerade zu Therapiezwecken wäre es wünschenswert, dass

Informationen über Spieler/innen, sei es direkt durch Benutzerabfragen oder indirekt

durch Logging, gesammelt werden können. Keine Engine hat solch eine Funktionali-

tät bereitgestellt, weswegen wir zur Erstellung unseres Spieles eine eigene Web Game

Engine, mit dem Fokus auf Serious Games, entwickelt haben. Unsere Engine Jumru

5s soll die Implementierung von Serious Games vereinfachen und wichtige Aspekte

für diesen Forschungsbereich, wie Datenerhebung, bereitstellen. Mithilfe der Engine

haben wir ein HTML5 Jump and Run-Spiel zum Training des Emotionsverständnisses

von Kindern im Volksschulalter entwickelt, welches als Fallstudie zur Evaluierung der

Engine dient. Wir haben die Engine bezüglich Performanceaspekte auf verschiedenen

Betriebssystemen und Browsern analysiert und Ergebnisse festgehalten.

89

Acknowledgements

First, I want to thank all the people who supported and encouraged me during the

completion of this master thesis. I want to take this opportunity to thank Univ.-Prof.

Dipl.-Ing. Dr. Helmut Hlavacs for initiating this project and for enabling me to be part

of it. He always helped our team immediately if questions or problems have occurred.

When speaking of our team I want to thank my colleague Natascha Schweiger at

this point, for the great teamwork and collaboration on this project. Furthermore, my

gratitude goes out to all my friends, who were helping me with words and deeds

whenever I needed them. Lastly, I gratefully acknowledge my parents for supporting

me and backing me up throughout my studies.

91

Katharina Meusburger, BSc.
Curriculum Vitae
Geburtsdatum: 28.07.1989, Bregenz, Österreich
Kontakt: katharina.meusburger@gmx.at

Education

10/2011 - heute Universität Wien:
Masterstudium Medieninformatik

04/2011 - 10/2011 Universität Wien:
Bachelorstudium Theater- Film- und Medienwissenschaften

10/2007 - 03/2011 Technische Universität Wien:
Bachelorstudium Medieninformatik
Abschluss: Bachelor of Science, am 24.03.2011
Bachelorarbeit: “Überblick über freie DVD-Authoring Software”

09/1999 - 06/2007 Bundesgymnasium Bregenz Gallusstraße

Publications

2014 N. Schweiger, K. Meusburger, H. Hlavacs and M. Sprung, Jum-
ru 5s - A Game Engine for Serious Games, The Fifth Internatio-
nal Conference on Serious Games Development & Applications
(SGDA 2014) 9-10 Oct 2014, Berlin, Germany.

Experience

08/2012 - 09/2012 VTG - Vorarlberger Informatik- und Telekommunikationsdienst-
leistungsgesellschaft mbh: Webdesign, Projektrecherche

08/2011 - 09/2011
08/2010 - 09/2010
08/2009 - 09/2009

Dr. Thomas Meusburger: Administration

07/2008 Firma Julius Blum GmbH: Ferialarbeit

	Introduction
	Motivation
	Outline
	Publication

	Background
	Psychological Background
	User Needs and Design Principles

	Related Work
	Game Engine
	Quintus
	Crafty
	PandaJS
	EnchantJS
	Collie
	LimeJS
	Summary

	Technological Aspects
	JavaScript
	HTML5
	CSS3
	Summary

	Game Engine - Jumru 5s
	Engine Object - jumruCore
	Composition - Stage and Scene
	Player
	Media Management
	Asset Manager and Progress Bar
	Input Manager
	Rendering - Game loop
	(Keyframe) Animations
	Cross Browser Compatibility
	Logging

	Case Study - EmoJump
	Game setting

	Performance Evaluation
	Test Setting
	Results
	Summary

	Conclusion and Future Work
	Bibliography

