

MASTERARBEIT

Titel der Masterarbeit

„Enclosures for solutions of overdetermined linear systems
using a directed QR-decomposition“

verfasst von

Armin Spazierer, BSc

angestrebter akademischer Grad

Master of Science (MSc)

Wien, im November 2014

Studienkennzahl lt. Studienblatt: A 066 821

Studienrichtung lt. Studienblatt: Masterstudium Mathematik

Betreut von: ao. Univ.-Prof. Dipl.-Ing. Dr. Hermann Schichl

ABSTRACT

As the title predicts, in this masterthesis we are looking for a method which

provides enclosures for solutions of overdetermined linear systems of equa-

tions, allowing for inaccuracies in the input data, i.e., for errors in the pa-

rameters. Assuming the system to have a solution, the (useable) system

with perturbated parameters is generally not solveable. Therefore we have

to consider the least squares problem with those. Knowing bounds for the

perturbations, they can be translated into so-called hybrid norms. Using

those and assuming exact arithmetic, we show that theoretic bounds can be

computed for the solution by a reduced QR-decomposition.

Since we have to take into account roundoff errors in floating point arithmetic,

we need stronger tools for enclosure. Computing a QR-decomposition, bas-

ing on the Householder method, in a specific way, we can control these errors

during the factorization, and combine them with the initial errors to hybrid

norms, so that it will also be possible to obtain enclosures for the existing

solutions.

In addition, Matlab code, which perform the upcoming concept, will be pre-

sented. Entering inaccurate parameters and bounds for the size of the per-

turbations provides an interval vector containg the solution of the overdeter-

mined system.

Finally, we will analyze the algorithm and compare it to the evaluation of a

(floating point) solution, using the Householder method.

iii

Contents

1 Mathematical background 1
1.1 Least squares problems . 2
1.2 Hybrid norms . 6

1.2.1 Properties of hybrid norms 7
1.3 Interval arithmetic . 11

2 Bounds for overdetermined linear systems 15
2.1 The criterion cTf < 1 . 24

3 QR-decomposition 26
3.1 Householder method . 26
3.2 Directed QR-decomposition 33

3.2.1 Modified reflections . 33
3.2.2 Main property of modified reflections 35

4 Error control 38
4.1 Bounds including roundoff errors 40
4.2 Evaluation of enclosures . 41

5 Implementations 47

6 Numerical Tests 52
6.1 Tests . 55

7 Conclusion 66

8 References 68

Zusammenfassung 71

Curriculum vitae 73

v

1 Mathematical background

In this section we recapitulate basic mathematical concepts which are impor-

tant for our topic. We will consider mainly statements and results, found in

Stoer/Bulirsch [1] resp. Schwarz, Köckler [2], and abstain from illustrating

all details and proofs.

At first, we start with some definitions:

Definition 1.1. For m,n ∈ N, we denote the unit matrix of size m by Im

and the matrix of size m×n which contains only zeros by 0m×n. Furthermore

we define 0m := 0m×m, om := 0m×1, the null vector of size m and we denote

the vector of length m which contains only ones by 1m.

Definition 1.2. Let e
(m)
i ∈ Rm define the ith unit vector of size m, i.e.,

(e
(m)
i)j := δij, where δij :=

1, if i = j,

0, otherwise

for j ∈ {1, . . . ,m}.

In the following we take absolute values and inequalities for matrices

componentwise, i.e., ∀A,B ∈ Rm×n with A = (aij)1≤i≤m,1≤j≤n and B =

(bij)1≤i≤m,1≤j≤n:

|A| = (|aij|)ij and A ≤ B ⇔ aij ≤ bij

for all (i, j) ∈ {1, . . . ,m} × {1, . . . , n}.

A matrix A ∈ Rm×n is said to be rectangular, if m 6= n for m,n ∈ N.

Considering linear systems of equations with rectangular matrices, then it

1

is not a priori clear, what is ment by the solution x ∈ Rn of the equation

Ax = b for a given b ∈ Rn. If the system is overdetermined, i.e., m > n, the

set of solutions might be empty, and if the system is underdetermined, which

means that m < n, then in general there exist infinitely many solutions. In

this thesis, we will focus on overdetermined systems.

Defining the residual (with respect to A ∈ Rm×n and b ∈ Rn) by

res(x) : Rn → Rm, res(x) := Ax− b,

the linear system of equations is satisfied with solution x, if and only if

res(x) = on. Now, if there exists no solution of the system of equations, then

there is no x ∈ Rn for which res(x) = on. In that case it is reasonable to

minimize the residual in the following sense:

1.1 Least squares problems

Definition 1.3. Let A ∈ Rm×n, x ∈ Rn, b ∈ Rm and m ≥ n. Then x∗ is

called a least squares solution of the system Ax = b if

x∗ = arg min
x∈Rn
‖res(x)‖2 = arg min

x∈Rn
‖Ax− b‖2,

whereas min ‖Ax− b‖2 is called least squares problem.

Before we describe, how to solve a least squares problem, we need the

following result:

Proposition 1.4. Let A ∈ Rm×n and m ≥ n. Then rk(A) = rk(ATA).

Hence rk(A) = n implies rk(ATA) = n, so that ATA ∈ Rn×n is regular.

2

Theorem 1.5. Let A ∈ Rm×n, m ≥ n and rk(A) = n. Then the (unique)

solution of the least squares problem

x∗ = arg min
x∈Rn
‖Ax− b‖2

satisfies the normal equation

ATAx∗ = AT b.

The solution is unique, since by Proposition 1.4 the matrix ATA has full

rank. By Theorem 1.5, we obtain the least squares solution by solving the

normal equation. For example, this can be done by Cholesky factorization

of ATA:

Since ATA is symmetric and positive semidefinite, there exists a Cholesky

factorization ATA = RTR and the normal equation changes to RTRx∗ =

AT b. Then the solution x∗ is obtained by solving RTy = AT b and Rx∗ = y

by forward respectively backward substitution. But the fact that ATA is

often poorly conditioned makes this method potentially unstable:

Example 1.6. Assume rounding to 5 significant digits and consider the least

squares problem with parameters

A =


1 1

0 10−3

0 0

 and b =


2

10−3

3

 .

Then x∗ = (1, 1)T . But computing ATA yields

3

ATA =

 1 1

1 1

 ,

which is singular, so that there is no unique solution and this method fails.

Thus, we look for a better suited method to solve the normal equation,

which lead us to the QR-decomposition:

Definition 1.7. A matrix R = (rij)1≤i≤m,1≤j≤n ∈ Rm×n is called an upper

triangular matrix if rij = 0 for all i > j.

Theorem 1.8. For every matrix A ∈ Rm×n (with m ≥ n) there exists a

reduced QR-decomposition (resp. QR-factorization) A = QR into a matrix

Q ∈ Rm×n of orthonormal columns and an upper triangular matrix R ∈ Rn×n.

If A has full rank, the factorization is unique, provided that Rii > 0 for all

i ∈ {1, . . . , n}.

Completing Q to a matrix Q̃ ∈ Rm×m, whose columns form an orthonor-

mal basis of Rm and defining the upper triangular matrix R̃ ∈ Rm×n by

adding m − n zero-rows to R, we get a so called full QR-decomposition

A = Q̃R̃.

Proposition 1.9. Let A ∈ Rm×n, rk(A) = n and A = QR be a reduced

QR-decomposition of A. Then rk(R) = n.

Proof: n = rk(A) = rk(QR) ≤ min{rk(Q), rk(R)} = min{n, rk(R)} ⇒

rk(R) = n.

Therefore, if A has full rank, then R (and therefore RT) is regular and

4

using the (reduced) factorization A = QR, the normal equation changes to

RTQTQRx = RTQT b⇔ RTRx = RTQT b⇔ Rx = QT b,

which again can be solved by backward substitution. Summarizing, we can

find a least squares solution by computing a QR-factorization ofA and solving

the linear system of equations Rx = QT b.

In Example 1.6, a (reduced) QR-decomposition of the matrix A is found

easily, since it already has upper triangular form: A = QR holds for

Q =


1 0

0 1

0 0

 and R =

 1 1

0 10−3

 .

Hence, computing Rx = QT b leads to the system

 1 1

0 10−3

 x∗1

x∗2

 =

 1 0 0

0 1 0




2

10−3

3

 =

 2

10−3

 ,

with rounded solution x∗ = (1, 1)T .

Knowing how to calculate the solution of a least squares problem for a

given matrix A and vector b, we can consider the following problem, drafted

in Neumaier [4]:

In applications it is often the case that A and b are measurements of un-

known parameters Â and b̂ of an overdetermined system of equations Âx̂ = b̂.

If x∗ denotes the solution of the least squares problem with parameters A

5

and b, then x∗ lies ”close“ to x̂ and we will show that a bound for the error

|x̂− x∗| can be found.

Since the accuracy of the components might differ, it is sensible to bound

this error componentwise. Therefore it would be helpful to have columnwise

bounds for the deviations Â − A and b̂ − b. We assume that such column-

wise bounds are given or can be determined (e.g. from the accuracy of the

measurements).

A proper way to handle componentwise bounds is the concept of hybrid

norms; main results can be found in Neumaier [4]:

1.2 Hybrid norms

Definition 1.10. Let A ∈ Rm×n and let Ai: denote the ith row of A. Simi-

larly, the jth column of A is denoted by A:j. Then we define the vector-valued

functions νp and µp by

νp : Rm×n → Rm, νp(A) :=


‖A1:‖p

...

‖Am:‖p

 ,

µp : Rm×n → Rn, µp(A) :=


‖A:1‖p

...

‖A:n‖p

 .

These functions νp and µp are called hybrid norms (with respect to the p-

norm).

6

1.2.1 Properties of hybrid norms

In this subsection we present important properties of hybrid norms, which

are fundamental for our topic.

Proposition 1.11. Let A ∈ Rm×n. Then

(i) νp(A) = µp(A
T) and

(ii) µp(A) = νp(A
T).

Proof: (i) Obviously, Ai: = AT:i for all i ∈ {1, . . . ,m}. Therefore

νp(A) =


‖A1:‖p

...

‖Am:‖p

 =


‖AT:1‖p

...

‖AT:m‖p

 = µp(A
T).

(ii) By (i) we obtain µp(A) = µp((A
T)T) = νp(A

T).

Theorem 1.12. Let A,B ∈ Rm×n, α ∈ R and p ∈ N ∪ {∞}. Then

(i) νp(A) = om ⇔ A = 0m×n,

(ii) νp(αA) = |α|νp(A),

(iii) νp(A+B) ≤ νp(A) + νp(B),

(iv) (i) - (iii) apply for µp too.

Proof: (i) νp(A) = om ⇔ Ai: = oTn for all i ∈ {1, . . . ,m} ⇔ A = 0m×n.

(ii) νp(αA) =


‖αA1:‖p

...

‖αAm:‖p

 =


|α|‖A1:‖p

...

|α|‖Am:‖p

 = |α|νp(A).

7

(iii) νp(A+B) =


‖A1: +B1:‖p

...

‖Am: +Bm:‖p

 ≤

‖A1:‖p + ‖B1:‖p

...

‖Am:‖p + ‖Bm:‖p


= νp(A) + νp(B).

(iv) By Proposition 1.11 (ii), the same results can be proved for µp inserting

AT and BT instead of A and B in the equalities:

(i) µp(A) = on ⇔ νp(A
T) = on ⇔ AT = 0n×m ⇔ A = 0m×n,

(ii) µp(αA) = νp(αA
T) = |α|νp(AT) = |α|µp(A) and

(iii) µp(A+B) = νp(A
T +BT) ≤ νp(A

T) + νp(B
T) = µp(A) + µp(B).

Lemma 1.13. Let A,B ∈ Rm×n and x ∈ Rn. Then

(i) ‖Ax‖p ≤ µp(A)T |x|, for every matrix norm ‖.‖p,

(ii) µp(AB) ≤ ‖A‖pµp(B), for every submultiplicative ‖.‖p,

(iii) νp(AB) ≤ ‖B‖pνp(A), for every submultiplicative ‖.‖p,

(iv) ‖AB‖p ≤ ‖µp(A)T |B|‖p, for every submultiplicative ‖.‖p.

Proof: We denote the ith entry of ν2(A) in the following by ν2(A)i, i.e.,

ν2(A)i = ‖Ai:‖2, (1 ≤ i ≤ m) and equivalently µ2(A)j = ‖A:j‖2, (1 ≤ j ≤ n).

Then we obtain (i) by:

‖Ax‖p =

∥∥∥∥∥
n∑
j=1

A:jxj

∥∥∥∥∥
p

≤
n∑
j=1

‖A:jxj‖p =
n∑
j=1

‖A:j‖p|xj| = µp(A)T |x|.

Furthermore, (ii) follows from

µp(AB)j = ‖AB:j‖p ≤ ‖A‖p‖B:j‖p = ‖A‖pµp(B)j

8

and analogously (iii) by

νp(AB)i = ‖Ai:B‖p ≤ ‖Ai:‖p‖B‖p = ‖B‖pνp(A)i.

Finally, we have (iv) by (i), since ‖Ax‖p ≤ µp(A)T |x| ⇒ ‖ABy‖p ≤ µp(A)T |By|

where x = By ⇒ ‖ABy‖p ≤ µp(A)T |By| ≤ µp(A)T |B||y| ⇒ ‖ABy‖p ≤

‖µp(A)T |B||y|‖p ≤ ‖µp(A)T |B|‖p‖|y|‖p, whereby

sup
y 6=0

‖ABy‖p
‖y‖p

≤ sup
y 6=0
‖µp(A)T |B|‖p = ‖µp(A)T |B|‖p.

In addition, we consider statements for the particular case p = 2, which

will be especially important:

Lemma 1.14. Let A,B ∈ Rm×n and x ∈ Rn, y ∈ Rm. Then the following

statements hold:

(i) |Ax| ≤ ν2(A)‖x‖2
(ii) |yTA| ≤ µ2(A)T‖y‖2
(iii) ‖A‖2 ≤ ‖ν2(A)‖2
(iv) ‖µ2(A)‖2 =

√
tr (ATA) (= ‖A‖F)

(v) ‖ν2(A)‖2 = ‖µ2(A)‖2
(vi) |A| ≤ |B| ⇒ ν2(A) ≤ ν2(B)

(vii) |A| ≤ |B| ⇒ µ2(A) ≤ µ2(B)

Proof: Applying the Cauchy-Schwarz inequality we obtain (i) by

|Ax|i = |Ai:x| ≤ ‖Ai:‖2‖x‖2 = ν2(A)i‖x‖2

9

and analogously (ii) from

|yTA|j = |yTA:j| ≤ ‖y‖2‖A:j‖2 = µ2(A)Tj ‖y‖2.

Making use of (i) provides (iii):

|Ax| ≤ ν2(A)‖x‖2 ⇒ ‖Ax‖2 ≤ ‖ν2(A)‖x‖2‖2 = ‖ν2(A)‖2‖x‖2

and thus

sup
x 6=0

‖Ax‖2
‖x‖2

≤ sup
x 6=0
‖ν2(A)‖2 = ‖ν2(A)‖2.

Moreover, (iv) is equivalent to µ2(A)Tµ2(A) = tr
(
ATA

)
which follows from

µ2(A)Tµ2(A) =
n∑
j=1

‖A:j‖22 =
n∑
j=1

AT:jA:j = tr
(
ATA

)
.

Using (iv) and Proposition 1.11 (i) we obtain (v):

‖µ2(A)‖2 =
√
tr (ATA) =

√
tr (AAT) = ‖µ2(A

T)‖2 = ‖ν2(A)‖2.

Finally, for (vi) and (vii) we denote A = (aij)ij and B = (bij)ij. Then

|A| ≤ |B| ⇒ |aij| ≤ |bij| ⇒
n∑
j=1

a2ij ≤
n∑
j=1

b2ij ⇒ ν2(A)i ≤ ν2(B)i,

and using again Proposition 1.11 (ii),

|A| ≤ |B| ⇒ |AT | ≤ |BT | ⇒ ν2(A
T) ≤ ν2(B

T)⇒ µ2(A) ≤ µ2(B).

10

Remark 1.15. Let A ∈ Rm×n. There are also similar inequalities which

hold for differing but compatible norms, e.g.

|Ax| ≤ ν1(A)‖x‖∞.

Proof: Let i ∈ {1, . . . ,m}. Then |Ax|i = |Ai:x| ≤ |Ai:||x| =

n∑
j=1

|aij||xj| ≤
n∑
j=1

|aij|‖x‖∞ = ‖Ai:‖1‖x‖∞ = ν1(A)i‖x‖∞.

1.3 Interval arithmetic

Since we are interested in bounding errors, we will consider interval arith-

metic, which is a very useful concept for that problem. In the following we

will give definitions, relations and results concerning interval arithmetic. Al-

though there are many more, we will regard only those few that are used

later on. This subsection is based upon Neumaier [3], notations also found

in Neumaier, Domes [5].

Definition 1.16. Let IR denote the set of all nonempty, connected and com-

pact subsets a of R so that

a := [a, a] = {a ∈ R | a ≤ a ≤ a},

for some a, a ∈ R with a ≤ a, i.e., the closed intervals.

Analogously, let IR define the set of all nonempty, connected and closed sub-

sets of R.

11

Definition 1.17. Let aij ∈ IR for (i, j) ∈ {1, . . . ,m}× {1, . . . , n}. Then we

define an interval matrix A ∈ IRm×n by

A := (aij)1≤i≤m,1≤j≤n = {(aij)ij | (aij) ≤ aij ≤ (aij)} = {A | A ≤ A ≤ A}.

Definition 1.18. Let a = [a, a] ∈ IR. Then we call

wid(a) : IR→ R, wid(a) := a− a

the width of a. This definition can be extended componentwise on interval

matrices so that wid: IRm×n → Rm×n, wid(A) := (wid(aij))ij. Similarly,

we can define the radius of an interval matrix by

rad(A) : IRm×n → Rm×n, rad(A) :=
1

2
(A− A) =

1

2
wid(A).

Now we can prove the following results:

Proposition 1.19. Let a = [a, a] ∈ IR. Then

a1, a2 ∈ a ⇒ |a1 − a2| ≤ wid(a).

Proof: W.l.o.g. let a1 ≥ a2. Then

|a1 − a2| = a1 − a2 ≤ a− a2 ≤ a− a = wid(a).

12

Theorem 1.20. Let A ∈ IRm×n. Then

B,C ∈ A ⇒ |B − C| ≤ wid(A).

Proof: For (i, j) ∈ {1, . . . ,m} × {1, . . . , n} let A = (aij)ij, B = (bij)ij and

C = (cij)ij . Then for all (i, j) we have bij, cij ∈ aij and therefore by Propo-

sition 1.19

|bij − cij| ≤ wid(aij),

hence |B − C| ≤ wid(A).

In conclusion of this short insertion we consider the following definition:

Since it is not possible to represent an irrational number on a computer, we

usually calculate with approximations of real numbers in practise.

Definition 1.21. Let M ⊆ R denote the machine representible numbers. For

a real number x ∈ R, a machine representible number m ∈ M, obtained by

some kind of rounding, is called floating point number of x and we write m =

fl(x). Analogously, a floating point matrix fl(A) of a matrix A = (aij)ij ∈

Rm×n is defined as fl(A) := (fl(aij))1≤i≤m,1≤j≤n.

|x−fl(x)| is called roundoff error (resp. rounding error).

For example, we define the rounding modes downward rounding 5 and

upward rounding 4 as functions 5,4 : R→M with

5x := sup{m ∈M : m ≤ x} and 4 x := inf{m ∈M : m ≥ x}.

Remark 1.22. Clearly, for η ∈ R an η̃ ∈ M with η̃ ≈ η and η̃ ≤ η (resp.

η̃ ≥ η) can be achieved by setting η̃ := 5(η) (resp. η̃ := 4(η)).

13

Furthermore, using the function outward rounding, defined by � : R→ IR,

�a := [5a,4a], one can represent a real number by an interval with machine

representible bounds. Clearly, a ∈ �a, i.e., the produced interval contains

the real number. Now, calculations with intervals can be used to make error

estimations. Therefore, we will need these functions resp. intervals at the

implementation of our program (see Section 5).

For practical calculations we will use Intlab [9], a Matlab [8] toolbox.

Intlab allows calculations with intervals and interval matrices, which will

be necessary in the implementation of our concept. For built-in codes and

general handling of Intlab, see Moore [6] resp. Hargreaves [7].

14

2 Bounds for overdetermined linear systems

In the following, we show that bounds for the solution of overdetermined lin-

ear systems of equations can be found, knowing bounds for the perturbations

in the parameters. In addition to our main program, we will discuss a second,

more general case. Since we work in exact arithmetic in this section, the re-

sults remain theoretical and can be considered as a basis for the next sections.

To recapitulate, we assume to know approximations A and b of parame-

ters of an overdetermined system Âx̂ = b̂. We suppose that the “underlying”

system has at least one solution x̂ and try to find a bound for the error |x̂−x∗|,

where x∗ = arg min ‖Ax− b‖2. Moreover we suppose to know bounds for the

errors Â− A and b̂− b, more precise for the norms of the columns of those,

which can be described by hybrid norms. So we assume the following setting:

(A) Letm ≥ n, Â, A ∈ Rm×n, b̂, b ∈ Rm, c ∈ Rn and β ∈ R satisfy rk(A) = n,

‖Â:j − A:j‖2 ≤ cj, (1 ≤ j ≤ n) ⇔ µ2(Â− A) ≤ c and

‖b̂− b‖2 ≤ β ⇔ µ2(b̂− b) ≤ β.

Moreover, let x∗ be the least squares solution of min ‖Ax− b‖2, i.e.,

x∗ = arg min
x∈Rn
‖Ax− b‖2 ⇔ ATAx∗ = AT b.

(B) There exists a vector x̂ ∈ Rn which satisfies Âx̂ = b̂.

15

Assuming exact arithmetic, we can find error bounds for this setting in

Neumaier [4]:

Theorem 2.1. Assume (A) and (B) and let A = QR be a reduced QR-

decomposition of A. We define

r := Ax∗ − b, ρ := ‖r‖2, σ := β + cT |x∗| and f := ν2(R
−1).

If cTf < 1 and σ2 ≥ ρ2(1− (cTf)2), then for

γB :=
σcTf +

√
σ2 − ρ2

(
1− (cTf)2

)
1− (cTf)2

we have

|x̂− x∗| ≤ γBf.

Proof: Defining δ := x̂− x∗, we will first show

‖r + Aδ‖22 = ‖r‖22 + ‖Rδ‖22. (1)

‖r + Aδ‖22 = (r + Aδ)T (r + Aδ) = (rT + δTAT)(r + Aδ) = rT r + 2δTAT r +

δTATAδ and since AT r = ATAx∗ − AT b = 0 and ATA = RTQTQR = RTR,

we obtain (1):

‖r + Aδ‖22 = rT r + δTRTRδ = ‖r‖22 + ‖Rδ‖22.

Defining furthermore γ := ‖Rδ‖2 and the vector d ∈ Rn by

d := b̂− b+ (A− Â)x̂,

16

we have

|δ| = |R−1Rδ| ≤ ν2(R
−1)‖Rδ‖2 = γf, (2)

using Lemma 1.14 (i) and by Âx̂ = b̂, Lemma 1.13 (i) and (2)

‖d‖2 = ‖b̂− b+ (A− Â)x̂‖2 ≤ ‖b̂− b‖2 + ‖(A− Â)x̂‖2 ≤ β+µ2(A− Â)T |x̂| ≤

β + cT |x̂| = β + cT |x∗ + δ| ≤ β + cT |x∗|+ cT |δ| ≤ σ + γcTf so that

‖d‖2 ≤ σ + γcTf (3)

Therefore, we get the inequality

ρ2 + γ2 ≤ (σ + γcTf)2 (4)

using (1) and (3):

ρ2 + γ2 = ‖r‖22 + ‖Rδ‖22 = ‖r + Aδ‖22 = ‖Ax∗ − b+ A(x̂− x∗)‖22 = ‖Ax̂− b‖22

= ‖b̂− b+ Ax̂− Âx̂‖22 = ‖d‖22 ≤ (σ + γcTf)2.

The relation (4) is equivalent to

(1− (cTf)2)γ2 − 2σcTfγ + ρ2 − σ2 ≤ 0.

Now, if h : R→ R,

h(γ) := (1− (cTf)2)γ2 − 2σcTfγ + ρ2 − σ2,

then we need to find γ with h(γ) ≤ 0. Computing the zeros of h(γ), we obtain

17

γ1,2 =
2σcTf ±

√
(−2σcTf)2 − 4(1− (cTf)2)(ρ2 − σ2)

2(1− (cTf)2)

=
2σcTf ±

√
4σ2(cTf)2 − 4(ρ2 − ρ2(cTf)2 − σ2 + σ2(cTf)2)

2(1− (cTf)2)

=
σcTf ±

√
σ2 − ρ2(1− (cTf)2)

1− (cTf)2
.

Thus, the solutions exist in R if σ2 ≥ ρ2(1− (cTf)2) and the largest zero of

h(γ) equals

(γ1 =)
σcTf +

√
σ2 − ρ2(1− (cTf)2)

1− (cTf)2
= γB.

Setting

γ0 :=
σcTf

1− (cTf)2
,

then cTf < 1 implies that (γ2 ≤) γ0 ≤ γB, provided that σ2 ≥ ρ2(1− (cTf)2).

Since

h(γ0) =
σ2(cTf)2

1− (cTf)2
− 2σ2(cTf)2

1− (cTf)2
+ ρ2 − σ2 =

(1− (cTf)2)ρ2 − σ2

1− (cTf)2
≤ 0,

we have

h(γ0) ≤ 0.

Therefore, we can conclude, that γ satisfies (4), if

σ2 ≥ ρ2(1− (cTf)2) and (γ2 ≤) γ ≤ γB.

Hence, by (2) we find the bounds |x̂ − x∗| ≤ γBf , which are sensible since

cTf < 1 guarantees γB ≥ 0.

18

The above setting (A) and (B) is mainly in our interest. Although, we

can also compute bounds if we suppose instead of (B) the more general as-

sumption (C):

(C) x̂ ∈ Rn is a solution of the least squares problem with parameters Â and

b̂, i.e., x̂ minimizes ‖Âx− b̂‖2 over x ∈ Rn.

Theorem 2.2. Assume setting (A) and (C) and let A = QR be a reduced

QR-decomposition of A. We define (as before)

r := Ax∗ − b, ρ := ‖r‖2, σ := β + cT |x∗|, f := ν2(R
−1)

and additionally

ω :=
β + ‖b‖2
1− cTf

, τ := ‖cT |R−1|‖2.

If cTf < 1, then for

γC :=
σ + ωτ2

2
+ τ
√

ω2τ2

4
+ ρ2 + βρ+ ωσ

1− cTf

we have

|x̂− x∗| ≤ γCf.

Proof: As in the proof of Theorem 2.1, let

δ := x̂− x∗, γ := ‖Rδ‖2 and d := b̂− b+ (A− Â)x̂,

19

such that (1)−(3) hold. Now in this setting the residual r̂ := Âx̂− b̂ can be

nonzero. We only know AT r = 0 and similarly ÂT r̂ = ÂT Âx̂− ÂT b̂ = 0. By

Aδ = A(x̂−x∗) = (A− Â)x̂+ Âx̂−Ax∗ = (A− Â)x̂+ r̂+ b̂− r− b we obtain

the equation

Aδ = d+ r̂ − r, (5)

which provides RTRδ = RTQTQRδ = ATAδ = ATd + AT r̂ = ATd + AT r̂ −

ÂT r̂ = RTQTd− (Â− A)T r̂ such that

Rδ = QTd−R−T (Â− A)T r̂. (6)

Taking norms in this equation yields ‖Rδ‖2 = ‖QTd+(−R−T (Â−A)T r̂)‖2 ≤

‖QTd‖2 +‖R−T (Â−A)T r̂‖2 = ‖QTd‖2 +‖((Â−A)R−1)T r̂‖2 ≤ ‖d‖2 +‖(Â−

A)R−1‖2‖r̂‖2. Using Lemma 1.13 (iv), we obtain

‖(Â− A)R−1‖2 ≤ ‖µ2(Â− A)T |R−1|‖2 ≤ ‖cT |R−1|‖2 = τ. (7)

Hence for γ′ := ‖d‖2 + τ‖r̂‖2 we have

γ ≤ γ′. (8)

Using (3) we obtain by (8) γ′ = ‖d‖2 + τ‖r̂‖2 ≤ σ + γcTf + τ‖r̂‖2 ≤ σ +

γ′cTf + τ‖r̂‖2, such that

γ′ ≤ σ + τ‖r̂‖2
1− cTf

(9)

holds. Now from ρ2 = ‖r‖22 = rT r = x∗TAT r − bT r = −bT r and analogously

20

‖r̂‖22 = r̂T r̂ = x̂∗
T
ÂT r̂ − b̂T r̂ = −b̂T r̂ follows that

‖r̂‖22 = −b̂T r̂ = −b̂T r̂ + ρ2 + bT r + b̂T r − b̂T r = ρ2 + (b− b̂)T r + b̂T (r − r̂).

Using the Cauchy-Schwarz inequality, we have

(b− b̂)T r ≤ ‖b− b̂‖2‖r‖2 ≤ βρ and b̂T (r − r̂) ≤ ‖b̂‖2‖(r − r̂)‖2,

whereby ‖r̂‖22 ≤ ρ2+βρ+‖b̂‖2‖(r−r̂)‖2 and ‖b̂‖2 ≤ ‖b̂−b‖2+‖b‖2 ≤ β+‖b‖2,

hence

‖r̂‖22 ≤ ρ2 + βρ+ (β + ‖b‖2)‖(r − r̂)‖2. (10)

The equations (5), (6) and (7) yield

‖r − r̂‖2 = ‖d − Aδ‖2 = ‖d − QRδ‖2 = ‖d − Q(QTd − R−T (Â − A)T r̂)‖2 =

‖QR−T (Â− A)T r̂‖2 ≤ ‖(Â− A)R−1‖2‖r̂‖2 ≤ τ‖r̂‖2 ≤ ‖d‖2 + τ‖r̂‖2 = γ′.

Thus (10) and (9) provide ‖r̂‖22 ≤ ρ2 +βρ+ (β+ ‖b‖2)‖(r− r̂)‖2 ≤ ρ2 +βρ+

(β + ‖b‖2)γ′ ≤ ρ2 + βρ+ (β + ‖b‖2)σ+τ‖r̂‖21−cT f ≤ ρ2 + βρ+ ω(σ + τ‖r̂‖2), which

implies

‖r̂‖22 − ωτ‖r̂‖2 − (ρ2 + βρ+ ωσ) ≤ 0. (11)

If we again define h : R→ R,

h(y) := y2 − ωτy − (ρ2 + βρ+ ωσ)

then the zeros of h(y) are

y1 =
ωτ

2
+

√
ω2τ 2

4
+ ρ2 + βρ+ ωσ, y2 =

ωτ

2
−
√
ω2τ 2

4
+ ρ2 + βρ+ ωσ.

21

Since all terms in y1 are non-negative we have that y2 ≤ 0 ≤ y1 and h(0) =

−(ρ2 + βρ+ ωσ) ≤ 0, so that h(y) ≤ 0, if ‖r̂‖2 ≤ y1, i.e., ‖r̂‖2 satisfies (11),

if

‖r̂‖2 ≤
ωτ

2
+

√
ω2τ 2

4
+ ρ2 + βρ+ ωσ.

Inserting this in (9), then by (8) we have

(0 ≤) γ ≤ γ′ ≤
σ + ωτ2

2
+ τ
√

ω2τ2

4
+ ρ2 + βρ+ ωσ

1− cTf
.

Finally by (2) we obtain

|x̂− x∗| ≤ γCf.

The bounds obtained for the setting (A) and (C) are of course weaker than

the bounds for (A) and (B) (if it is consistent, i.e., if σ2 ≥ ρ2(1− (cTf)2)):

Corollary 2.3. Assume that (A) and (B) hold and let ρ, σ and f be defined

as in Theorem 2.1. If cTf < 1 and σ2 ≥ ρ2(1− (cTf)2) hold, then γB ≤ γC.

Proof: Let ω and τ be defined as in Theorem 2.2. From 0 ≤ cTf < 1 we get

that (cTf)2 < 1 and therefore

1− (cTf)2 > 0. (12)

Hence ρ2(1− (cTf)2) ≥ 0 which implies

0 ≤ σ2 − ρ2(1− (cTf)2) ≤ σ2 ⇒
√
σ2 − ρ2(1− (cTf)2) ≤ σ

22

and therefore

σcTf +
√
σ2 − ρ2(1− (cTf)2) ≤ σ + σcTf = σ(1 + cTf).

By (12), we obtain

σcTf +
√
σ2 − ρ2(1− (cTf)2)

1− (cTf)2
≤ σ(1 + cTf)

1− (cTf)2
=

σ

1− cTf
. (13)

Obviously ωτ2

2
+ τ
√

ω2τ2

4
+ ρ2 + βρ+ ωσ ≥ 0, whereby

σ ≤ σ +
ωτ 2

2
+ τ

√
ω2τ 2

4
+ ρ2 + βρ+ ωσ

and consequently

σ

1− cTf
≤
σ + ωτ2

2
+ τ
√

ω2τ2

4
+ ρ2 + βρ+ ωσ

1− cTf
.

Together with (13), this inequality provides

σcTf +
√
σ2 − ρ2(1− (cTf)2)

1− (cTf)2
≤
σ + ωτ2

2
+ τ
√

ω2τ2

4
+ ρ2 + βρ+ ωσ

1− cTf
,

hence γB ≤ γC .

For both settings, we had to assume the crucial property cTf < 1 to com-

pute bounds for |x̂−x|. In the following subsection we can give a requirement

on the one hand and we can find a consequence of this important property

on the other hand.

23

2.1 The criterion cTf < 1

We start with the following requirement: If the errors in A, i.e., the size of

the entries of the matrix |Â−A| are “small enough”, then the criterion holds

(and Theorem 2.2 applies). Lemma 2.4 gives a bound for the size of these

errors:

Lemma 2.4. Let Â, A ∈ Rm×n, (a′kl)1≤k≤m,1≤l≤n := (Â − A), A = QR be a

reduced QR-factorization of A and (r′ij)1≤i,j≤n := R−1. If

a′kl < (
√
mn3 max

1≤i,j≤n
|r′ij|)−1

holds for all k ∈ {1, . . . ,m}, l ∈ {1, . . . , n} and f := ν2(R
−1), then there

exists a vector c̃ ∈ Rn with

µ2(Â− A) ≤ c̃ and c̃Tf < 1.

Proof: Let

r̄ := max
1≤i,j≤n

|r′ij| and µ̄ := max
1≤j≤n

µ2(Â− A)j.

Since for all i ∈ {1, . . . , n}

µ2(Â− A)i = ‖Â:i − A:i‖2 =

√√√√ m∑
k=1

a′ki
2 <

√√√√ m∑
k=1

1

mn3r̄2
=

√
1

n3r̄2
=

1√
n3r̄

,

clearly

µ̄ <
1√
n3r̄

.

24

Defining c̃ ∈ Rn by c̃ := µ̄1n, we have

µ2(Â− A) ≤ c̃ and c̃i <
1√
n3r̄

∀i ∈ {1, . . . , n}.

Finally

fi =

√√√√ n∑
j=1

r′ij
2 ≤

√√√√ n∑
j=1

r̄2 =
√
nr̄ ∀i ∈ {1, . . . , n}

implies

c̃Tf =
n∑
i=1

c̃jfj <
n∑
i=1

1√
n3r̄

√
nr̄ =

n∑
i=1

1

n
= 1.

Furthermore, there is a consequence of the criterion:

Theorem 2.5. Assume (A) and (C), let A = QR be a reduced QR-decom-

position of A and f := ν2(R
−1). If cTf < 1, then rk(Â) = n.

Proof: Suppose rk(Â) < n. Then there exists a vector z ∈ Rn, z 6= on with

Âz = om. By (C) we have ÂT Âx̂ = ÂT b̂ for a x̂ ∈ Rn, hence ÂT Â(x̂+ λz) =

ÂT b̂ for all λ ∈ R. Now we can apply Theorem 2.2 for x̂+λz, which provides

|x̂+ λz − x∗| ≤ γCf ∀λ ∈ R.

Hence, for λ→∞ we must obtain z = on, a contradiction.

Thus, by Theorem 2.5 we know, if cTf < 1 and b̂ ∈ im(Â) hold, there is

a vector x̂, satisfying Âx̂ = b̂.

25

3 QR-decomposition

The QR-decomposition is a fundamental task in our topic. Up to now, we

always assumed to have a factorization of the input matrix A. In this section

we describe how to compute a QR-decomposition, using the Householder

method, compare Stoer/Bulirsch [1].

At first we consider some definitions, necessary to formulate the method. In

the second part of the section, we will modify the Householder method so

that the produced reflections have a certain property. As we will see later

on in Section 4, this property will be essential for controlling roundoff errors

and evaluating enclosures for solutions of overdetermined systems in floating

point arithmetic.

3.1 Householder method

There are different algorithms to compute a QR-decomposition of a matrix A.

We will consider the Householder method, which iteratively uses orthogonal

matrices, so-called Householder reflections, P1, . . . Pn to transform the matrix

A into an upper triangular matrix R̃, i.e., Pn · · ·P1A = R̃.

Especially for this section, we consider the following definitions:

Definition 3.1. For a, e ∈ Rm with e 6= om and η ∈ R we define α ∈ R by

α := ±
√
aTa

eT e
= ±‖a‖2
‖e‖2

,

the vector p ∈ Rm by

p := a− αe

26

and the functions

φ : Rm × Rm × R→ Rm×m, φ(a, e, η) := Im − ηppT

and for fixed p 6= om,

Φ : Rm × Rm → Rm×m, Φ(a, e) := φ

(
a, e,

2

pTp

)
.

The symbol ± in the definition of α means that the sign of α is freely se-

lectable.

Theorem 3.2. Let a, e ∈ Rm with e 6= om, p 6= om and P := Φ(a, e). Then

Pa = αe.

Proof: For z ∈ R, defined by z := ‖a‖22 − αeTa,

ppTa = zp, (14)

since ppTa = (a − αe)(a − αe)Ta = aaTa − αeaTa − αaeTa + α2eeTa =

‖a‖22a−α‖a‖22e−αeTaa+α2eTae = (‖a‖22−αeTa)(a−αe) = zp. Moreover,

we have

pTp = 2z, (15)

by pTp = (a−αe)T (a−αe) = aTa−αeTa−αaT e+α2eT e = ‖a‖22− 2αeTa+

α2‖e‖22 = ‖a‖22 − 2αeTa+
‖a‖22
‖e‖22
‖e‖22 = 2‖a‖22 − 2αeTa = 2z.

27

Inserting (14) and (15) into

Pa = (Im −
2

pTp
ppT)a = a− 2

pTp
ppTa

yields

a− 2

2z
zp = a− p = a− a+ αe = αe,

hence Pa = αe.

Proposition 3.3. Let a, e ∈ Rm, η ∈ R with e 6= om. Then the matrix

P := φ(a, e, η) is symmetric.

Proof: P T =
(
Im − ηppT

)T
= ITm − η(ppT)T = Im − ηppT = P .

Proposition 3.4. Let a, e ∈ Rm with e 6= om, p 6= om. Then the matrix

P := Φ(a, e) is symmetric and orthogonal.

Proof: P T = P follows directly from Proposition 3.3. Therefore P T = P−1

follows from:

PP T = P 2 =

(
Im −

2

pTp
ppT
)(

Im −
2

pTp
ppT
)

= Im −
4

pTp
ppT +

4

(pTp)2
p(pTp)pT = Im.

Proposition 3.5. Let k,m ∈ N with 1 ≤ k < m and a, e ∈ Rk with e 6= ok,

p 6= ok. Then for P := Φ(a, e), the matrix P̃ ∈ Rm×m, defined by

P̃ :=

 Im−k 0k

0k P


28

is symmetric and orthogonal.

Proof: By Proposition 3.3 we have

P̃ T =

 Im−k 0k

0k P

T

=

 Im−k 0k

0k P

 = P̃ .

Moreover

P̃ P̃ T = P̃ 2 =

 Im−k 0k

0k P

 Im−k 0k

0k P

 =

 Im−k 0k

0k Ik

 = Im.

Now we can formulate the Householder method, which computes a (full)

QR-decomposition of A:

Theorem 3.6 (Householder Method). Let A ∈ Rm×n and m ≥ n. Then

there exist symmetric and orthogonal matrices P̃i, i ∈ {1, . . . , n} so that for

Q̃ ∈ Rm×m defined by

Q̃ :=
n∏
i=1

P̃i

we have A = Q̃R̃ with Q̃ orthogonal and R̃ ∈ Rm×n an upper triangular

matrix.

Proof: For i ∈ {1, . . . , n} we define

A(0) := A and A(i) := P̃iA
(i−1)

29

and the vectors a(i) ∈ Rm−i+1 by

a(i) :=


A

(i−1)
ii

...

A
(i−1)
mi

 .

Furthermore, if p(i) ∈ Rm−i+1 defined by

p(i) := a(i) − αie(m−i+1)
1 6= om−i+1,

(where αi = ±‖a(i)‖2,) we define the matrices Pi ∈ Rm−i+1×m−i+1 by

Pi := Φ(a(i), e
(m−i+1)
1)

and P̃i ∈ Rm×m by

P̃1 := P1, P̃i :=

 Ii−1 0m−i+1

0m−i+1 Pi

 for i ∈ {2, . . . , n}.

By Theorem 3.2, Pia
(i) = αie

(m−i+1)
1 holds. Thus

A(1) = P1A = (P1A:1|P1A:2| . . . |P1A:n) =


∗ ∗ · · · ∗

0
...

...
...

...
...

0 ∗ · · · ∗

 ,

30

A(i) = P̃iA
(i−1) =



Ii−1 0m−i+1

0m−i+1 Pi





∗ · · · ∗ ∗ · · · ∗

0
. . .

...
...

...
...

. . . ∗ ∗ · · · ∗
... 0 ∗ · · · ∗
...

...
...

...

0 · · · 0 ∗ · · · ∗



=



∗ · · · ∗ ∗ · · · · · · ∗

0
. . .

...
...

...
...

. . . ∗ ∗ · · · · · · ∗
... 0 ∗ · · · · · · ∗
...

... 0 ∗ · · · ∗
...

...
...

...

0 · · · 0 0 ∗ · · · ∗


for i ∈ {2, . . . , n− 1}

and

A(n) = P̃nA
(n−1) =



In−1 0m−n+1

0m−n+1 Pn





∗ · · · ∗ ∗

0
. . .

...
...

...
. . . ∗ ∗

... 0 ∗

...
...

...
...

...
...

0 · · · 0 ∗



31

=



∗ · · · ∗ ∗

0
. . .

...
...

...
. . . ∗ ∗

... 0 ∗

...
... 0

...
...

...

0 · · · 0 0


=: R̃.

Now, if p(i) = a(i) − αie(m−i+1)
1 = om−i+1, then

a
(i)
1 = αi = ‖a(i)‖2 and a

(i)
j = 0 for j ∈ {i+ 1, . . . ,m}.

But in that case, the ith column of A(i−1) has already the desired form (only

zeros below the diagonal element) and we can proceed to the next step (op-

tionally setting P̃i = Im). Therefore, we can always compute a decomposition

(i.e., for arbitrary matrices A).

Hence P̃n · · · P̃1A = R̃ with R̃ an upper triangular matrix. By Proposi-

tion 3.5, we have that the matrices P̃i are symmetric and orthogonal and

therefore

A = P̃ T
1 · · · P̃ T

n P̃n · · · P̃1A = P̃ T
1 · · · P̃ T

n R̃ = P̃1 · · · P̃nR̃ = Q̃R̃

and

Q̃T Q̃ = (P̃1 · · · P̃n)T (P̃1 · · · P̃n) = P̃ T
n · · · P̃ T

1 P̃1 · · · P̃n = Im,

implying Q̃ to be orthogonal.

32

Taking Q ∈ Rm×n as the matrix which consists of the first n columns of

Q̃ and R ∈ Rn×n as the matrix which remains by leaving out the last m− n

rows of R̃, we get a reduced QR-decomposition A = QR of A.

Remark 3.7. Of course, for the computation of least squares solutions, the

overdetermined case is important. However, for general A ∈ Rm×n a (full)

QR-decomposition of A ∈ Rm×n can be computed by the Householder method

in the same way as in the proof of Theorem 3.6, iterating for i ∈ {1, . . . ,

min{m,n}}.

3.2 Directed QR-decomposition

Since roundoff errors occur in floating point calculations, the orthogonality

of the matrices Pi can not be guaranteed and we generally obtain only an

approximate factorization in practise. The errors in this factors of course

affect the bounds, computed in Section 2. Thus, we have to do a modified

construction of the reflections, which allows us to control these unavoidable

errors:

3.2.1 Modified reflections

Theorem 3.8. Let a, e ∈ Rm with e 6= om, p 6= om, η̃ ∈ R, H := φ(a, e, η̃)

and define z ∈ R by

z := ‖a‖22 − αeTa.

If η̃ ≤ 2
pT p

, so that there exists a δ ≥ 0 with η̃ + δ = 2
pT p

then

Ha = αe+ δppTa

33

and δz ∈ [0, 1] imply

‖H‖2 ≤ 1.

Proof. The first assertion follows from Theorem 3.2:

Ha = (Im − η̃ppT)a = a− 2

pTp
ppTa+ δppT = αe+ δppTa.

Now, (14) implies

Ha = αe+ δppTa = αe+ δzp = αe+ δza− δzαe = δza+ (1− δz)αe,

and therefore

‖H‖2 = max
‖a‖2=1

‖Ha‖2 = max
‖a‖2=1

‖δza+ (1− δz)αe‖2

≤ max
‖a‖2=1

(‖δza‖2 + ‖(1− δz)αe‖2) ≤ max
‖a‖2=1

(|δz|‖a‖2 + |1− δz||α|‖e‖2)

≤ max
‖a‖2=1

(
|δz|‖a‖2 + |1− δz|‖a‖2

‖e‖2
‖e‖2

)
= |δz|+ |1− δz|.

For δz ∈ [0, 1] we have

|δz|+ |1− δz| = δz + 1− δz = 1

and thereby ‖H‖2 ≤ 1.

Corollary 3.9. Let a ∈ Rm. If e equals an unit vector e
(m)
k , (1 ≤ k ≤ m)

then

z = ‖a‖22 − αeTa ≥ 0.

34

Proof: By definition α = ±‖a‖2. For all i ∈ {1, . . . ,m}

|ai| ≤

√√√√ n∑
i=1

a2i = ‖a‖2 ⇒ ‖a‖2|ai| ≤ ‖a‖22,

hence z = ‖a‖22 − αeTk a = ‖a‖22 ∓ ‖a‖2ak ≥ ‖a‖22 − ‖a‖2|ak| ≥ 0.

So, if we apply the Theorem 3.8 with e = e
(m)
k , where k ∈ {1, . . . ,m}, it is

sufficient to assume δz ≤ 1 instead of δz ∈ [0, 1] to make sure that ‖H‖2 ≤ 1,

since for δ ≥ 0, we have always δz ≥ 0 by Corollary 3.9.

3.2.2 Main property of modified reflections

In the following we present the important property of the modified reflections

indicated in the beginning of this chapter. In Subsection 4.1 we will see how

we can use it to control roundoff errors occuring during a QR-factorization.

Lemma 3.10. Let k,m ∈ N with 1 ≤ k < m and H ∈ Rk×k with ‖H‖2 ≤ 1.

Then for H̃ ∈ Rm×m defined by

H̃ :=

 Im−k 0k

0k H

 ,

we have

‖H̃‖2 ≤ 1.

Proof: Since ‖H‖2 ≤ 1, we have for all that w ∈ Rk

‖Hw‖2 ≤ ‖H‖2‖w‖2 ≤ ‖w‖2.

35

Thus, defining w̃ ∈ Rk by w̃ := Hw, we have ‖w̃‖2 ≤ ‖w‖2 and thereby

‖w̃‖22 ≤ ‖w‖22. (16)

Now, define

u ∈ Rm by u :=

 v

w


for arbitrary v ∈ Rm−k and w ∈ Rk. Then by (16)

‖H̃‖2 = max
‖u‖2=1

‖H̃u‖2 = max
‖u‖2=1

∥∥∥∥∥∥
 v

Hw

∥∥∥∥∥∥
2

= max
‖u‖2=1

∥∥∥∥∥∥
 v

w̃

∥∥∥∥∥∥
2

= max
‖u‖2=1

√√√√m−k∑
i=1

v2i +
k∑
i=1

w̃2
i ≤ max

‖u‖2=1

√√√√m−k∑
i=1

v2i +
k∑
i=1

w2
i

= max
‖u‖2=1

‖u‖2 = 1,

hence ‖H̃‖2 ≤ 1.

Now by Theorem 3.8, an η̃ ∈ R with η̃ ≈ 2
pT p

and η̃ ≤ 2
pT p

, implies H ≈ P

for any a, e ∈ Rm (w.l.o.g. p 6= om), where

H := φ(a, e, η̃) and P := Φ (a, e) ,

but ‖H‖2 ≤ 1! Thus, for a reflection H̃ (obtained from H) we have also

H̃ ≈ P̃ with ‖H̃‖2 ≤ 1 by Lemma 3.10.

Applying the Householder method with modified reflections, we obtain a

36

factorization

H̃n . . . H̃1A ≈ R̃,

into an approximate upper triangular matrix and ‖H̃i‖2 ≤ 1 for all i ∈

{1, . . . , n}. (In fact, H̃n · · · H̃1A is not an upper triangular matrix, but the

lower off-diagonal elements are of the size of roundoff errors.) From Propo-

sition 3.3 it follows that also all Hi and therefore all H̃i are symmetric.

Since all reflections H̃i are required to satisfy ‖H̃i‖2 ≤ 1 which can be as-

sured by directed rounding of 2
pT p

, it is reasonable to call a factorization of A,

obtained by the Householder method which uses such modified reflections, a

directed QR-decomposition.

37

4 Error control

Additionally to errors in the QR-decomposition, in practical calculations

an error |P̃A − H̃A| can increase due to roundoff errors in computing a

matrix product, which has the consequence that the bounds computed in

Theorem 2.1 and Theorem 2.2 may be too optimistic, since this roundoff

errors affect the QR-decomposition of A (and therefore also the vector f =

ν2(R
−1)). Assuming setting (A) and (B), our goal in this section is to find

a bound for |x̂ − x∗|, which takes into account this additional error source

(see Lemma 4.5). To provide the requirements of Lemma 4.5 we need several

preparations:

By Theorem 1.20 it is possible to bound the error |A−fl(A)| by wid(A) for a

given interval matrix A with A, fl(A) ∈ A. Relating to our topic, we consider

such bounds for vectors:

Theorem 4.1. Let ai ∈ Rm and ai ∈ IRm such that ai, fl(ai) ∈ ai for

i ∈ {1, . . . , n}. Then by Theorem 1.20 for ω′i := wid(ai) ∈ Rm we have that

|ai − fl(ai)| ≤ ω′i

and therefore ωi := ‖ω′i‖2 ∈ R satisfies

‖ai − fl(ai)‖2 ≤ ωi.

Thus we can bound µ2(A−fl(A)) for a matrix A ∈ Rm×n with A =

38

(a1| . . . |an) by the vector (ωi)1≤i≤n =: ω ∈ Rn so that

µ2(A− fl(A)) ≤ ω.

Theorem 4.1 will be important to control the error propagation in the QR-

factorization of a matrix A in (A).

Furthermore, for an upper triangular matrix R ∈ Rn×n we can bound

ν2(R
−1) by some vector u ∈ Rn: Theorem 4.2 states that the columns of R−1

can be obtained iteratively by backward substitution:

Theorem 4.2. Let R ∈ Rn×n be a regular upper triangular matrix. Then

R−1 = (x1| . . . |xn), where xk ∈ Rn satisfies

Rxk = e
(n)
k for all k ∈ {1, . . . , n}.

Proof: Since R is regular, rk(R) = n. Thereby all xk are uniquely determined

and R(x1| . . . |xn) = (Rx1| . . . |Rxn) = (e
(n)
1 | . . . |e

(n)
n) = In. Hence R−1 =

(x1| . . . |xn).

Remark 4.3. For an upper triangular matrix R = (rij)ij ∈ Rn×n and e ∈ Rn,

backwards substitution Rx = e leads to the recursive formula:

xn =
en
rnn

, xk =
1

rkk

(
ek −

n∑
l=k+1

rklxl

)
for k = n− 1, . . . , 1.

Applying this formula iteratively to the columns of In provides the entries

of R−1. In this way, one can bound ν2(R
−1) using Intlab.

39

4.1 Bounds including roundoff errors

Suppose that a given interval matrix H̃A satisfies H̃A, fl(H̃A) ∈ H̃A (this

situation can be achieved using Intlab). Then we can apply Theorem 4.1 on

the columns of A to obtain a vector cr with µ2(H̃A− fl(H̃A)) ≤ cr, a bound

for the error generated by (matrix) calculations in floating point arithmetic.

Now, the next theorem shows how to compute an overall error estimate for

µ2(H̃Â− fl(H̃A)), allowing for an initial error c (≥ µ2(Â−A)) and using cr.

Theorem 4.4. Let Â, A ∈ Rm×n, H̃ ∈ Rm×m and c, cr ∈ Rn such that

‖H̃‖2 ≤ 1,

µ2(Â− A) ≤ c and µ2(H̃A− fl(H̃A)) ≤ cr.

Then for c̃ ∈ Rn defined by

c̃ := c+ cr

we have

µ2(H̃Â− fl(H̃A)) ≤ c̃.

Proof: By Lemma 1.13 (ii)

µ2(H̃(Â− A)) ≤ ‖H̃‖2µ2(Â− A) ≤ µ2(Â− A) ≤ c

and therefore using Theorem 1.12 (iv) and (iii) we have µ2(H̃Â− fl(H̃A)) =

µ2(H̃Â−H̃A+H̃A−fl(H̃A)) ≤ µ2(H̃(Â−A))+µ2(H̃A−fl(H̃A)) ≤ c+cr =

c̃.

40

Now it became clear why we requested the modified reflections H̃i to

satisfy ‖H̃i‖2 ≤ 1 (see Lemma 3.10): Iterating Theorem 4.4 at the evalu-

ation of a directed QR-decomposition (Section 3.2), we obtain a bound for

µ2(H̃n · · · H̃1Â − H̃n · · · H̃1A), a requirement of the main lemma of this sec-

tion.

4.2 Evaluation of enclosures

Using Lemma 4.5, we will be able to enclose solutions of overdetermined

systems of equations in floating point arithmetic. Even for arbitrary x ∈ Rn,

we can compute a bound for |x̂− x|:

Lemma 4.5. Assume setting (A) and (B) and Q ∈ Rm×n, R ∈ Rn×n regular,

r ∈ Rm, c̃ ∈ Rn and β̃ ∈ R such that

µ2(Q
T Â−R) ≤ c̃ and µ2(Q

T b̂− r) ≤ β̃

and u ∈ Rn satisfies

ν2(R
−1) ≤ u.

If c̃Tu < 1, then for γ̃ : Rn → R defined by

γ̃(x) :=
c̃T |x|+ β̃ + ‖r −Rx‖2

1− c̃Tu

we have that

|x̂− x| ≤ γ̃(x)u.

Proof: µ2(Q
T Â−R) ≤ c̃ and µ2(Q

T b̂− r) ≤ β̃ can be written together as

41

µ2(Q
T (Â|b̂)− (R|r)) ≤

 c̃

β̃

 (∈ Rn+1).

Since (B) holds, we have Âx̂ = b̂ which implies Âx̂− b̂ = om and

(Â|b̂)

 x̂

−1

 = om and therefore QT (Â|b̂)

 x̂

−1

 = om.

Thus by Lemma 1.13 (i)∥∥∥∥∥∥(R|r)

 x̂

−1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥QT ((Â|b̂)− (R|r))

 x̂

−1

∥∥∥∥∥∥
2

≤ (c̃T |β̃)

 |x̂|
1

 ,

which yields

‖Rx̂− r‖2 ≤ c̃T |x̂|+ β̃. (17)

Now by Lemma 1.13 (iii), every x ∈ Rn satisfies |x̂− x| ≤ |R−1R(x̂− x)| ≤

ν2(R
−1)‖Rx̂− Rx‖2 = ν2(R

−1)‖Rx̂− r + r − Rx‖2 ≤ ν2(R
−1)(‖Rx̂− r‖2 +

‖r − Rx‖2), hence by (17), |x̂ − x| ≤ ν2(R
−1)(c̃T |x̂| + β̃ + ‖r − Rx‖2) and

therefore

|x̂− x| ≤ u(c̃T |x̂|+ β̃ + ‖r −Rx‖2). (18)

This inequality implies

|x̂| − |x| ≤ |x̂− x| ≤ u(c̃T |x̂|+ β̃ + ‖r −Rx‖2),

whereby

|x̂| − u(c̃T |x̂|+ β̃ + ‖r −Rx‖2) ≤ |x|

42

and since c̃ ≥ on, we obtain

c̃T |x̂| − c̃Tu(c̃T |x̂|+ β̃ + ‖r −Rx‖2) ≤ c̃T |x|.

Adding β̃ + ‖r −Rx‖2 yields

c̃T |x̂|+ β̃ + ‖r−Rx‖2− c̃Tu(c̃T |x̂|+ β̃ + ‖r−Rx‖2) ≤ c̃T |x|+ β̃ + ‖r−Rx‖2

so that

(1− c̃Tu)(c̃T |x̂|+ β̃ + ‖r −Rx‖2) ≤ c̃T |x|+ β̃ + ‖r −Rx‖2.

Because of c̃Tu < 1 we have

c̃T |x̂|+ β̃ + ‖r −Rx‖2 ≤ γ̃(x) (19)

and finally by (18) and (19)

|x̂− x| ≤ γ̃(x)u.

The following corollary is a consequence of Lemma 4.5:

Corollary 4.6. Assume setting (A) and (B). If A = QR is a reduced QR-

decomposition of A, then define r := QT b. If cTu < 1, for a vector u ∈ Rn

43

with ν2(R
−1) ≤ u, then for γ : Rn → R defined by

γ(x) :=
cT |x|+ β + ‖r −Rx‖2

1− cTu

we have that

|x̂− x| ≤ γ(x)u.

Proof: By Lemma 1.13 (ii) we find

µ2(Q
T Â− R) = µ2(Q

T (Â− A)) ≤ ‖QT‖2µ2(Â− A) ≤ c and µ2(Q
T b̂− r) ≤

µ2(Q
T (b̂− b)) ≤ ‖QT‖2µ2(b̂− b) ≤ β.

Therefore, we can apply Lemma 4.5 with c̃ = c and β̃ = β and obtain

|x̂− x| ≤ γ(x)u, where γ(x) :=
cT |x|+ β + ‖r −Rx‖2

1− cTu
.

Remark 4.7. Of course, the most interesting case is x = x∗, where x∗ is

the least squares solution of Ax = b. E.g., in Corollary 4.6, x∗ produces the

bound

|x̂− x∗| ≤ γ(x∗)u, where γ(x∗) =
cT |x∗|+ β

1− cTu
,

since x∗ satisfies Rx∗ = QT b (= r).

The bound γ̃(x) obtained by Lemma 4.5 is generally weaker than γB,

obtained from Theorem 2.1, but it has a crucial advantage.

Theorem 4.8. Assume (A) and (B) hold, A = QR is a reduced QR-

decomposition of A and let ρ, σ and f be defined as in Theorem 2.1. If

σ2 ≥ ρ2(1− (cTf)2) and cTu < 1 for a vector u ≥ ν2(R
−1), then γB ≤ γ(x∗).

44

Proof: We can use (13) from the proof of Corollary 2.3 which states:

γB =
σcTf +

√
σ2 − ρ2(1− (cTf)2)

1− (cTf)2
≤ σ

1− cTf
.

Since on ≤ f = ν2(R
−1) ≤ u and c ≥ on imply cTf ≤ cTu < 1, we have

0 ≤ 1− cTu ≤ 1− cTf,

providing
σ

1− cTf
≤ σ

1− cTu
=
cT |x∗|+ β

1− cTu
= γ(x∗).

Hence γB ≤ γ(x∗).

As mentioned above, the reason why we consider Lemma 4.5 is that it

has an essential benefit, namely it produces bounds for arbitrary vectors x

(and matrices R, satisfying the requirement). Therefore, we can apply the

lemma with

R = Rf := fl(QTA), r = rf := fl(QT b), and x = x∗f := fl(x∗).

If there exists a vector c̃ ∈ Rm and a β̃ ∈ R with

µ2(Q
T Â−Rf) ≤ c̃ and µ2(Q

T b̂− rf) ≤ β̃

and c̃Tu < 1 for u ≥ ν2(R
−1
f), then we obtain a bound

|x̂− x∗f | ≤ γ̃fu,

45

where

γ̃f := γ̃(x∗f) =
c̃T |x∗f |+ β̃ + ‖rf −Rfx

∗
f‖2

1− c̃Tu
.

How to compute such quantities c̃, β̃ and u for given A, b and c, β with

µ2(Â−A) ≤ c and µ2(b̂− b) ≤ β has been described before in Theorem 4.4.

Furthermore u can be computed since rk(A) = n⇒ rk(R) = n, by Proposi-

tion 1.9.

Remark 4.9. By the same assumptions as in Lemma 4.5, one can show that

‖R(x̂− x)‖2 ≤ γ̃(x)

holds for any x ∈ Rn.

Proof: Making use of (17) and (19) provides ‖R(x̂−x)‖2 ≤ ‖Rx̂−r‖2 +‖r−

Rx‖2 ≤ c̃T |x̂|+ β̃ + ‖r −Rx‖2 ≤ γ̃(x).

46

5 Implementations

This section contains programs written in Matlab- resp. Intlab code, which

perform the basic concept of the previous section(s).

For simplicity, we assume in the following algorithms, that the command

’intval’ produces rigorous intervals. In fact, that can be wrong in practise

(e.g. for numbers which are not expressible in binary floating point arith-

metic), see Hargreaves [7], p. 8.

Our goal is to produce a method, based on Lemma 4.5. In preparation for

that, we start with two algorithms used later: The first program performs

backward substitution for a given regular upper triangular matrix R ∈ Rn×n

and a given vector b ∈ Rn, using the formula of Remark 4.3., i.e., it computes

a vector x ∈ Rn with Rx = b:

Algorithm 5.1 Backward substitution

1 func t i on [x]=bwsub (R, b)
2 [˜ , n]= s i z e (R) ;
3 x=ze ro s (n , 1) ;
4 f o r j=n:−1:1
5 x (j ,1)=(b(j ,1)−R(j , :) ∗ x)/R(j , j) ;
6 end
7 end

Another task in producing enclosures is the computation of a vector

u ∈ Rn with ν2(R
−1) ≤ u for an upper triangular matrix R ∈ Rn×n, as

described in Section 4. Such a vector can be computed by an interval ma-

trix S which contains R−1: Taking an S ∈ S, with |R−1| ≤ |S|, then by

Lemma 1.14 (vi) we have ν2(S) ≥ ν2(R
−1). A matrix S with this property

47

has to exist always. In our program, we provide the bound for ν2(R
−1) as

the componentwise supremum of ν2(S). (For definitions and details, see Neu-

maier [3].)

The next algorithm, based on backward substitution and Theorem 4.2, pro-

vides such an interval matrix S:

Algorithm 5.2 Computing an interval matrix containing R−1

1 func t i on [S]= invbws (R)
2 [˜ , n]= s i z e (R) ;
3 I=eye (n) ;
4 x=i n t v a l (z e r o s (n , 1)) ;
5 f o r i=n:−1:1
6 f o r j=n:−1:1
7 x (j ,1)= i n t v a l ((I (j , i)−R(j , :) ∗ x)/R(j , j)) ;
8 end
9 S (: , i)=x ;

10 x=i n t v a l (z e r o s (n , 1)) ;
11 end
12 end

Now assume the setting (A) and (B). Then the following algorithm takes

a matrix A ∈ Rm×n, vectors b ∈ Rm, c ∈ Rn and β ∈ R as initial values and

produces an interval vector containing x̂:

Algorithm 5.3 Computing an interval vector x with x̂ ∈ x

1 func t i on [box]= enc l (A, b , c , beta)
2 [m, n]= s i z e (A) ;
3 f o r i =1:n
4 a=A(i :m, i) ;
5 z=sup (norm(a)∗ (norm(a)−a (1 , 1))) ;
6 i f eps∗z>1

48

7 e r r o r (’Bad input ’)
8 e l s e
9 w=a+i n t v a l (s i gn (a (1 , 1))∗norm(a)∗ eye (m−i +1 ,1)) ;

10 p=mid(w) ;
11 e=w’∗w;
12 e=2/e ;
13 M=A(i :m, i : n)−e∗p∗(p ’∗A(i :m, i : n)) ;
14 A(i :m, i : n)=sup (M) ;
15 q=b(i :m,1)− e∗p∗(p ’∗b(i :m, 1)) ;
16 b(i :m,1)= sup (q) ;
17 M=2∗rad (M) ;
18 k=n−i +1;
19 y=ze ro s (k , 1) ;
20 y (1 : k ,1)= sup (s q r t (sum(M(: , 1 : k) . ˆ 2))) ;
21 c (i : n ,1)= c (i : n ,1)+y ;
22 q=2∗rad (q) ;
23 q=sup (norm(q)) ;
24 beta=beta+q ;
25 end
26 end
27 S=invbws (A(1 : n , 1 : n)) ;
28 u=ze ro s (n , 1) ;
29 f o r j =1:n
30 u(j ,1)= sup (norm(S(j , :))) ;
31 end
32 i f c ’∗u>=1
33 e r r o r (’Bad bound (s) c or u ’)
34 end
35 x=bwsub (A(1 : n , 1 : n) , b) ;
36 g=sup ((c ’∗ abs (x)+beta+norm(b−A∗x))/(1−c ’∗u)) ;
37 box=midrad (x , g∗u) ;
38 end

49

For better comprehension, we will give a short explanation of the partic-

ular parts of the algorithm:

5–7 Based on Theorem 3.8 resp. Corollary 3.9, the necessity of the relation

δz ≤ 1 is checked here.

9–16 In these lines the directed QR-decomposition of the matrix A is com-

puted, so that we are able to generate the system Rfx
∗ = rf .

17–24 This part performs the idea of Theorem 4.4, i.e., it controls the roundoff

errors during the QR-decomposition. Allowing for bounds c and β for

the initial errors µ2(Â − A) and µ2(b̂ − b), it produces the required

bounds c̃ and β̃ for µ2(Q
T Â−Rf) and µ2(Q

T b̂− rf).

27–31 Using Algorithm 5.2., the evaluation of a bound u for the vector ν2(R
−1)

is done here.

32–34 Since all requirements of Lemma 4.5 are provided, the only thing which

has to be checked, is the criterion c̃Tu < 1.

35 If the criterion holds, x∗f can be computed by backward substitution

since A was transformed into an upper triangular matrix.

36 Now, making use of the floationg point solution x∗f , we can simply

evaluate the number γ̃f . This number is rounded upwards, to make

sure to have rigorous bounds.

37 Finally in this line, an enclosure for the solution x̂ which is assumed to

exist, is produced and denoted by box.

50

Moreover for comparison, we consider an implementation of the method,

which solves a least squares problem using the Householder method. The out-

put of the following algorithm is a floating point vector of the least squares

solution.

Algorithm 5.4 Computing a least squares solution by Householder method

1 func t i on [x]=househ (A, b)
2 [m, n]= s i z e (A) ;
3 f o r i =1:min (m, n)
4 a=A(i :m, i) ;
5 z=s i gn (a (1 , 1))∗norm(a)∗ eye (m−i +1 ,1) ;
6 v=z+a ;
7 v=v/norm(v) ;
8 A(i :m, i : n)=A(i :m, i : n)−2∗v∗(v ’∗A(i :m, i : n)) ;
9 b(i :m,1)=b(i :m,1)−2∗v∗(v ’∗b(i :m, 1)) ;

10 end
11 x=bwsub (A(1 : n , 1 : n) , b) ;

Since it is not necessary to compute the ith column of A, this algorithm

can be implemented in a way so that it runs faster. But because we want

to compare it with our method (Algorithm 5.3), we have to construct both

programs similarly.

Among others, in the next chapter we will compare the Algorithms 5.3

and 5.4.

51

6 Numerical Tests

In this section we will do several classes of tests for Algorithm 5.3 (and

Algorithm 5.4) and note important properties and results. The main charac-

teristics we test for these algorithms are running time on the one hand and

overestimation of the results on the other hand. This overestimation is mea-

sured by the 2-norm of the radius of the enclosures. The two measurements

should be considered, depending on the dimension of the input paramters

and the size of the perturbations. Another important property of the input

data, which should not be omitted, is the condition of the matrix A.

We will assure a well-conditioned matrix using the built-in QR-decomposition

of Matlab:

1 func t i on [A]= condl (m, n)
2 B=2∗rand (m, n)−1;
3 C=2∗rand (n , n)−1;
4 [B ˜]= qr (B) ;
5 [C ˜]= qr (C) ;
6 A=B(1 :m, 1 : n)∗C;
7 end

The output of this algorithm is a matrix A of dimension m×n, which can

be used as input for our method. Since both factors of A have (“almost”)

orthonormal columns, we obtain cond(A) ≈ 1. Converesly, we produce ill-

conitioned matrices of size m× n by increasing their largest singular value:

1 func t i on [A]=condh (m, n , l)
2 A=2∗rand (m, n)−1;
3 [U S V]=svd (A) ;
4 S(1 ,1)=10ˆ l ;
5 A=U∗S∗V’ ;
6 end

52

By Corollary 3.9, Algorithm 5.3 can only be executed if δz ≤ 1 holds.

To see, how far we can increase the condition of a matrix such that this

relation holds, we consider the following test, which uses the function condh

and counts the number of times the inequality is violated, depending on the

parameter l in condh (but independent from the dimension of the matrix).

The parameter t determines the number of repetitions of the test in which

the dimension of the testmatrices runs up to 200.

1 func t i on [u] = tes tcond (t)
2 u=ze ro s (1 2 , 1) ;
3 s =0;
4 f o r i =1: t
5 f o r k=1:200
6 f o r j =1:k
7 f o r l =1:12
8 v=0;
9 A=condh (k , j , l) ;

10 f o r m=1: j
11 i f v==0
12 a=A(m: k ,m) ;
13 z=norm(a)∗ (norm(a)−a (1 , 1)) ;
14 i f eps∗z>1
15 u(l ,1)=u(l , 1)+1 ;
16 v=1;
17 end
18 end
19 end
20 end
21 s=s +1;
22 end
23 end
24 end
25 u=u . / s ;
26 p l o t (u)
27 end

53

The number of violations for matrices, generated by condh(, ,l), is stored

in the lth entry of the vector u. Since each entry is divided by s (the number of

tests), the output vector contains the percentage of failures of the inequality.

Figure 1 shows the increament of failures of the inequality for increasing

highest singular value (10l, where 1 ≤ l ≤ 12) of the testmatrices, in a

logarithmic scale.

>> t e s tcond (100)

ans =

0
0
0
0
0
0
0

0 .1951
0 .9993
0 .9994
0 .9995
0 .9993 Figure 1: testcond(100)

Therefore, after making sure that δz ≤ 1 holds for matrices up to condh(, ,7),

whose condition may exceed 109, we will only use at most l = 7 for condh, if

this function is used in the following tests. Otherwise, we likely cannot use

Algorithm 5.3.

As mentioned in the first section, the most interesting case in applications

is that A ∈ Rm×n and b ∈ Rm are perturbated parameters of a system Âx̂ = b̂.

54

If the accuracy of the measurements ε is known, e.g. ε = 10−k for a k ∈ N,

then for each row of the matrix |Â−A|, we have |(Â−A):j| ≤ ε1m, whereby

‖(Â− A):j‖2 ≤
√
mε.

Hence, c ∈ Rn defined by c := 1n
√
mε, satisfies

µ2(Â− A) ≤ c.

Analogously, µ2(b̂−b) ≤ β holds for β :=
√
mε. In this way, we can translate

a given accuracy into bounds c and β for the hybrid norms in the following

tests.

6.1 Tests

We start with a test that plots the running time of Algorithm 5.3 for random

parameters A and b, depending on the dimensions of those. The threee input

numbers are a given maximal (row-)dimension m, the accuracy ε = 10−ep

(ep ∈ N) of the parameters and the number l of repetitions of the test:

1 func t i on []= t e s t 1 a (m, ep , l)
2 ep=10ˆ−ep ;
3 u=ze ro s (m,m) ;
4 s=ze ro s (m, 1) ;
5 f o r z=1: l
6 f o r k=1:m
7 f o r j =1:k
8 beta=ep∗ s q r t (k) ;
9 A=condl (k , j) ;

10 x=2∗rand (j ,1)−1;
11 b=A∗x ;

55

12 A=A+(2∗ rand (k , j)−1)∗ep ;
13 b=b+(2∗ rand (k ,1)−1)∗ ep ;
14 c=ones (j , 1)∗ beta ;
15 t i c ;
16 enc l (A, b , c , beta) ;
17 u(j , k)=u(j , k)+toc ;
18 end
19 s (k ,1)=k ;
20 end
21 end
22 u=u . / l ;
23 s u r f (s , s , u)
24 x l a b e l (’m’) ;
25 y l a b e l (’n ’) ;
26 end

Figure 2: test1a(50,10,5)

56

As expected, at the part where m ≥ n, we can see the cubic trend of

the running time for increasing parameter n, due to the (directed) QR-

decomposition. The lefthand side in Figure 2 remains flat, because we con-

sider only overdetermined systems in this thesis. Hence, there is produced

nothing if m < n for A ∈ Rm×n.

Since the number of operations executed by a computer does not depend on

the condition of the input matrix of Algorithm 5.3, of course the running time

of the program does not change, applying test1a with the function condh, i.e.,

for ill-conditioned matrices. The same holds for Algorithm 5.4.

As announced above, we also consider the running time of this method,

which computes a floating point least squares solution:

1 func t i on []= t e s t 2 (m, l)
2 u=ze ro s (m,m) ;
3 s=ze ro s (m, 1) ;
4 f o r i =1: l
5 f o r k=1:m
6 f o r j =1:k
7 A=condl (k , j) ;
8 x=2∗rand (j ,1)−1;
9 b=A∗x ;

10 t i c ;
11 househ (A, b) ;
12 u(j , k)=u(j , k)+toc ;
13 end
14 s (k ,1)=k ;
15 end
16 end
17 u=u . / l ;
18 s u r f (s , s , u)
19 x l a b e l (’m’) ;
20 y l a b e l (’n ’) ;
21 end

57

Figure 3: test2(50,10)

As before, Figure 3 is now the result of test2, which maps the running time

of Algorithm 5.4, depending on the dimensions of parameter A. Clearly, this

algorithm runs much faster than Algorithm 5.3, since it requires less opera-

tions.

The program test3(m,ep,k) shows the proportion of the running times of

both methods up to dimension m, repeating the test k times. (The parameter

ep does not have an influence on this test, but is a necessary input for our

mehtod.)

58

Figure 4: test3(50,10,3)

As we see in Figure 4, the proportion of the algorithms is linear in n,

causing additional operations for error control in Algorithm 5.3, line 20 (and

line 23). Repeating this test with the alternation of Algorithm 5.3 to omit

these lines, the resulting figure shows the remaining factor:

Figure 5: test3(50,10,3)

59

From the Figures 4 and 5 we now can conclude that the proportion of the

algorithms is asymptotically

∼ 13n.

The next function, test1b, is construced similarly to test1a and tests the

criterion c̃Tu < 1. To be able to make conclusions, the running time of Algo-

rithm 5.3 is only mapped if the criterion holds. This test should depend on

dimension, accuracy and condition of the input matrix of the least squares

problem. Therefore we start with test1b(m,ep) for well-conditioned matrices,

where the input numbers are m and ep, denoting dimension and accuracy

once again.

Figure 6: test1b(40,4) Figure 7: test1b(40,2)

For test1b(40,1), i.e., for well-conditioned matrices and measurement accu-

racy ε = 10−1, the criterion fails always if the number of columns of the

matrix is larger than 4 (compare with the table below).

Of course, the condition depends on the bounds c̃ and u for the hybrid norms

of |Â − A| and R−1. From the Figures 6 and 7 we see that for an error tol-

60

erance of 10−4, which is relatively large, the criterion holds for all matrices

with dimension up to 40, whereas for increasing error tolerance the inequality

fails earlier. Increasing the dimension of the input matrix, depending on a

given error tolerance 10−ep, the following table contains the (row-)dimension,

denoted by dim, where this inequality is violated for the first time:

ep dim

1 5

2 22

3 100

4 465

5 2155

To be able to consider this test for ill-conditioned matrices, we use a modified

version test1b(m,ep,l), where the additional parameter l is selectable to set

the largest singular value of the testmatrix to 10l. In this way we can increase

the condition (see condh) for fixed error bounds. The Figures 8–13 show that

a high condition causes the criterion to fail slightly earlier.

Figure 8: test1b(40,4,2) Figure 9: test1b(40,4,5)

61

Figure 10: test1b(40,2,2) Figure 11: test1b(40,2,5)

Figure 12: test1b(40,1,2) Figure 13: test1b(40,1,5)

Finally, we consider the function test1c(m,ep), which is also similarly

constructed as test1a, but measures the size of (the radius of) the enclosures

by the 2-norm, depending once more on dimensions m×n of the matrix and

accuracy 10−ep. Plotting a result, whenever the criterion c̃Tu < 1 is satisfied,

we start again with well-conditioned matrices:

62

Figure 14: test1c(40,10) Figure 15: test1c(40,6)

Figure 16: test1c(40,4) Figure 17: test1c(40,3)

For test1c(40,2), which means that the accuracy of the measurements

amounts 10−2, there are cases where this norms blows up so that the enclo-

sures become meaningless resp. useless.

Finally, test1c(m,ep,l) tests the size of the errors for ill-conditioned matrices,

where the condition of the testmatrix can be increased with parameter l.

63

Figure 18: test1c(40,7,1) Figure 19: test1c(40,7,4)

Figure 20: test1c(40,5,1) Figure 21: test1c(40,5,4)

Figure 22: test1c(40,3,1) Figure 23: test1c(40,3,4)

64

Similar properties as for test1b hold for test1c, which analyzes the quality

of the enclosures: For decreasing accuracy of the measurements, the 2-norm

of the radius of the resulting interval vector increases, i.e., the quality gets

worse and as before, a high condition of the input matrix induces the in-

equality c̃Tu < 1 to fail earlier.

65

7 Conclusion

After all, we were successful in developing a method, which produces an

enclosure for the existing solution x̂ of an overdetermined linear system of

equations Âx̂ = b̂, depending on perturbated parameters A and b and bounds

(c̃ and β̃) for the perturbations. By Theorem 3.8 (resp. Corollary 3.9) and

Lemma 4.5, this procedure is only possible, if several relations are satisfied

(δz ≤ 1 and c̃Tu < 1).

Summarizing the properties of the implementation of our program, Alo-

girthm 5.3, a high accuracy of the parameters respectively “small” bounds for

the hybrid norms are essential for tight enclosures. But since the evaluation

of those is very expensive for high dimensions, they should be really required.

Moreover, a high (but small enough to run the algorithm) condition does not

really have an influence on the results of the tests, causing the method to

base on the directed QR-decomposition, which is numerically stable, since it

only uses (almost) orthogonal matrices, the modified reflections.

Progressing further in this topic, one could look for a similar method for

enclosing least squares solutions, i.e., developing a method, which computes

bounds for |x̂− x|, assuming the setting (A) and (C) from Section 2.

66

8 References

[1] Freund, R., Hoppe, R., Stoer/Bulirsch: Numerische Mathematik 1, 10.

Auflage, Springer, 2007

[2] Schwarz, H., Köckler, N., Numerische Mathematik, 8. Auflage, Springer,

2011

[3] Neumaier, A.: Interval Methods for Systems of Equations, Cambridge

University Press, 1990

[4] Neumaier, A.: Hybrid Norms and Bounds for Overdetermined Linear

Systems, Linear Algebra and its Applications, Volume 216, Elsevier

Science Inc., 1995, URL: http://www.sciencedirect.com/science/

article/pii/002437959300152P [18.6.2014]

[5] Neumaier, A., Domes, F.: Directed modified Cholesky factorizations

and convex quadratic relaxations, Universität Wien, 2014, URL: http:

//www.mat.univie.ac.at/~neum/ms/Modchol.pdf [14.7.2014]

[6] Moore, R., Baker Kearfott, R., Cloud, M.J., Introduction in Inter-

val Arithmetic, Siam, 2009, URL: http://www.sbras.ru/interval/

Library/InteBooks/IntroIntervAn.pdf [11.7.2014]

[7] Hargreaves, G.I.: Interval Analysis in Matlab, Masters thesis, Depart-

ment of Mathematics, University of Manchester, 2002, URL: http://

www.ti3.tuhh.de/rump/intlab/narep416.pdf [18.6.2014]

[8] Matlab, http://www.mathworks.de/products/matlab/

68

[9] Intlab, http://www.ti3.tu-harburg.de/rump/intlab/

69

Zusammenfassung

Wie der Titel vermuten lässt, ist Gegenstand dieser Masterarbeit die Ein-

schließung von Lösungen überbestimmter Gleichungssysteme. Dabei werden

Fehler in den Eingangsdaten erlaubt. Unter Annahme der Lösbarkeit des

zugrundeliegenden überbestimmten Systems ist das verwendbare, “gestörte”

System im Allgemeinen nicht mehr lösbar. Deshalb betrachtet man nun das

Ausgleichsproblem mit diesen fehlerbehafteten Parametern. Sind (Schranken

für) die Eingangsfehler bekannt, können diese in sogenannte Hybridnormen

übersetzt werden, mit deren Hilfe man unter Verwendung einer reduzierten

QR-Zerlegung in exakter Arithmetik Einschließungen finden kann.

Da in der Praxis jedoch Rundungsfehler berücksichtig werden müssen, wer-

den stärkere Hilfsmittel benötigt. In Kapitel 3 und 4 wird beschrieben,

wie eine QR-Faktorisierung berechnet werden kann, bei welcher Rundungs-

fehler kontrolliert werden können. Führt man diese gerichtete QR-Zerlegung,

basierend auf dem Householder-Verfahren, an der fehlerbehafteten Matrix

des Ausgleichsproblems durch, gelingt es, die Fortpflanzung der Rundungs-

fehler in der Zerlegung, zusätzlich zu den Eingangsfehlern, in Hybridnormen

zu vereinen. Auf diese Weise ist es möglich, auch in Gleitkommaarithmetik

Einschließungen zu berechnen.

Desweiteren werden Matlab-Programme vorgestellt, die das Kozept dieser

Arbeit umsetzen. Durch Eingabe fehlerhafter Parameter eines zugrunde

liegenden überbestimmten Gleichungssystems und Schranken für die Größe

der Fehler, wird ein Intervalvektor ausgegeben, der die Lösung des Gle-

ichungssystems enthält. In Kapitel 6 werden grundlegende Eigenschaften

wie Laufzeit und Größe der Einschließungen dieser Methode analysiert.

71

Curriculum vitae

Personal data

Name: Spazierer Armin

Title: Bachelor of Science, BSc

Date of Birth: 3. September 1989

Place of Birth: Vienna, Austria

Nationality: Austria

Email: armin.spazierer@gmx.at

Education

2011 - 2014 Master program (AMaSciCo), Faculty of Mathematics,

University of Vienna

July, 2011 Bachelor of Science (BSc) in Mathematics

2008 - 2011 Bachelor program, Faculty of Mathematics, University

of Vienna

1999 - 2007 Wirtschaftskundliches Realgymnasium Mater Salva-

toris, 1070 Vienna

1995 - 1999 Volksschule Mater Salvatoris, 1070 Vienna

73

