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Abstract

The Einstein-Vlasov system of equations describes a universe that contains matter con-
sisting of freely falling particles of equal mass. Vlasov matter is used to model for example
globular clusters, galaxies or galaxy clusters.

A detailed derivation of the static Einstein-Vlasov system in spherical symmetry is given
and using the up-to-date notations important existing results on the system with cosmological
constant A = 0 are reviewed in detail. These results include existence of regular solutions,
solutions with a Schwarzschild singularity at the center, boundedness of the support of
the matter quantities, and bounds on the ratio @, also known as Buchdahl inequality.
Numerical calculations illustrate important classes of static solutions.

For small positive cosmological constants we construct spherically symmetric, static solu-
tions with matter quantities of bounded support and a regular center. In the vacuum region
these solutions coincide with the Schwarzschild-de Sitter metric. For arbitrary negative cos-
mological constants we prove the existence of globally regular solutions via an energy esti-
mate. The matter quantities of these solutions again are shown to have bounded support and
the metric coincides with the Schwarzschild-Anti de Sitter metric beyond the matter regions.
For both, positive and negative cosmological constants, we construct non-vacuum solutions
that have a Schwarzschild singularity at the center. These solutions describe Schwarzschild-
de Sitter and Schwarzschild-Anti de Sitter spaces with immersed shells of Vlasov matter
surrounding the black hole.

Finally we construct Penrose diagrams showing the maximal analytic extensions of the
obtained metrics. By virtue of the matter balls and shells several classes of spacetimes with
interesting topologies and properties occur.
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Zusammenfassung

Das Einstein-Vlasov Gleichungssystem beschreibt ein Universum, welches Materie ent-
halt, die sich aus im freien Fall befindlichen Teilchen von gleicher Masse zusammensetzt.
Man verwendet das Vlasov Materiemodell um beispielsweise Kugelsternhaufen, Galaxien
oder Galaxiehaufen zu modellieren.

Als erstes wird eine detaillierte Herleitung des Einstein-Vlasov Systems in Kugelsymme-
trie prasentiert. Anschlieftend werden ausgewihlte bereits bekannte Ergebnisse zum System
ohne kosmologische Konstante A diskutiert, die fiir spitere Beweise zum System mit nicht
verschwindender kosmologischer Konstante wichtig sind. Diese Ergebnisse umfassen die Exis-
tenz regulédrer Losungen des Systems, Losungen mit einem schwarzen Loch im Zentrum, Be-
schrinktheit des Trégers der Materiegrofen und obere Schranken fiir den Ausdruck mff) , also
eine verallgemeinerte Version der Buchdahl Ungleichung. Numerische Berechnungen veran-
schaulichen wichtige Klassen dieser statischen Losungen.

Fiir kleine positive kosmologische Konstanten konstruieren wir kugelsymmetrische, stati-
sche Losungen mit regulérem Zentrum. Die Materiegrofien dieser Losungen haben beschrank-
ten Trager. In der Vakuumregion jenseits des Trégers der Materiegrofen sind diese Losun-
gen durch die Schwarzschild-de Sitter Metrik gegeben. Fiir beliebige negative kosmologische
Konstanten beweisen wir die Existenz von Losungen, die fiir alle Radien einer gewissen Re-
gularitdt geniigen, mittels einer Energieabschitzung. Auch fiir diesen Fall zeigen wir, dass
der Tréger der Materiegrofsen beschrankt ist. Jenseits dieses Tragers ist die Metrik durch
die Schwarzschild-Anti de Sitter Metrik gegeben. Sowohl fiir positive, als auch fiir negative
kosmologische Konstanten konstruieren wir Losungen, die ein schwarzes Loch beschreiben,
welches von Materie umgeben ist. Man kann diese Losungen als Schwarzschild-de Sitter be-
ziehungsweise Schwarzschild-Anti de Sitter Raumzeiten mit eingebetteten Kugelschalen aus
Vlasov-Materie auffassen.

Schlieflich stellen wir in Penrose-Diagrammen die maximale analytische Fortsetzung der
Metriken, die wir in den vorhergehenden Abschnitten als Losungen des Einstein-Vlasov Glei-
chungssystems konstruieren, dar. Die Kugeln und Kugelschalen aus Vlasov-Materie ermog-
lichen die Konstruktion einiger beachtenswerter Klassen von Raumzeiten mit interessanten
Eigenschaften und Topologien.
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1 Introduction

1.1 The cosmological constant

The notion of the cosmological constant A has undergone a changeful history. An overview on
this history and also the subsequent considerations can be found in the review article [19] in
more detail. The cosmological constant was originally introduced by Einstein himself to modify
his field equations such that the theory fits observations of that time, that is to say the existence
of a static, matter filled universe.

On very large scales the universe can be considered as being approximately spatially homoge-
neous and isotropic. Such a universe can be described by a Friedman-Robertson-Walker metric.
In this geometry the relative size of the spatial sections of the spacetime, i.e. hypersurfaces of
constant time coordinate, are characterized by a scale factor R(t). This scale factor is a function
of the time variable and may describe expanding or contracting behavior. In addition, in a rough
approach one can model the matter contained in the universe as an ideal fluid characterized by
an energy density o and an isotropic pressure p. The corresponding energy momentum tensor is
given by

Ty = (0 + p)uptn + pYuvs (1.1)

where u,, is the four velocity field of the ideal fluid. Under these assumptions Einstein’s equations
(3.1) without cosmological constant reduce to the two Friedman equations

.\ 2
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where G is the gravitational constant, k a curvature parameter taking values in {—1,0,+1}, and
R(t) the aforementioned scaling factor. Also the Hubble parameter H := R /R is introduced. The
dot denotes the derivative with respect to the time coordinate t. At the time of the introduction
of general relativity one was interested in finding static solutions to be in accordance with the
astronomical data as they were available and understood back then. But the Friedman equations
(1.2) and (1.3) do not have static solutions, characterized by R = 0, as can be seen by the
following argument. A positive energy density o implies a positive spatial curvature (k = 1)
provided it is appropriately tuned. If p is also non-negative which is true for an ideal fluid and
for most reasonable matter models, like the Vlasov model, equation (1.3) implies that R will
never vanish. This already implies that R cannot be zero for all t. But the Friedman equations
do admit static solutions if a cosmological constant A is introduced even though the obtained
solutions turned out to be not stable. These solutions are referred to as the FEinstein static
universe. In fact, the left hand side of the Einstein equations with cosmological constant (3.1)
is the most general local, coordinate-invariant, divergenceless, symmetric two-index tensor that
can be constructed solely from the metric and its first and second derivative.

Later, in the 1920s, it was discovered by Hubble that the universe is actually expanding. This
made the cosmological constant needless concerning its original purpose since solutions of the
FEinstein equations without cosmological constant describing an expanding universe had already
been discovered by Friedman and Lemaitre. Even though it lost its original purpose, by no means
the notion of a cosmological constant has become obsolete. First, it is far from evident that the




1 INTRODUCTION

expansion of the universe is fully determined by other mechanisms like presence of matter and
curvature (the terms on the right hand side of (1.2)) and not also by a bare cosmological constant
Ag. Moreover, the cosmological constant leads to vacuum solutions of the Einstein equations that
expand or contract. These are the de Sitter and Anti de Sitter metric, respectively, playing an
important role in this work. Furthermore, as meanwhile discovered by particle theorists, the
cosmological constant can be interpreted as energy density of the vacuum. This mechanism can
be illustrated by the following example. Consider a scalar field ¢ with potential energy V(o).
For this matter model the energy momentum tensor is given by

1 1
Ty = §au¢au¢ + B) (gpaap¢aa¢) Guv — V(¢)9M" (1.4)

In this setting, the configuration with the lowest energy density will be one without any con-
tribution of kinetic energy. This means 9,¢ = 0 and the energy momentum tensor is given
by Ty = —V(¢0)gu where ¢y denotes the value of ¢ that minimizes V. The configuration
on hand is understood as vacuum and one can write the energy momentum tensor in the form
T, = —0vacYuv- In this example we have gvac = V(¢o). This corresponds to the energy momen-
tum tensor of an ideal fluid (1.1) with equation of state pyac = —0vac. In the Einstein equations
the effect of this effective energy momentum tensor is equivalent to that of a cosmological con-
stant A = 8mG oyac. This can easily be seen by moving Ag,, to the right hand side in the Einstein
equations (3.1). There are also other effects, like for example vacuum fluctuations as predicted by
quantum mechanics, that can be described by a cosmological constant. In fact, the cosmological
constant can be understood as a combination of several constants resulting from different effects.
Because of this variety of contributions, it is difficult to make a reliable theoretical prediction for
the magnitude of A.

Every contribution to this assembled cosmological constant can be translated into an energy
density as described above. It is important to note that the different contributions can still be
distinguished by their behaviors as the universe expands. For example the vacuum energy density
stays constant whereas the energy densities of matter or curvature decrease with specific rates.
These differences in behavior can be exploited to determine the individual contributions using
cosmological models and astronomical observations. Thereby the different contributions to the
cosmological constant belong to the set of the so called cosmological parameters. Cosmological
models determined by these parameters can be compared to observations and measurements.
This yields constraints on combinations of these parameters. By a combination of various tests
the range of possible values for the cosmological constant can be confined. Around the year 2000
large progress concerning such tests has been made.

An eligible phenomenon are Ia supernovae occurring when a white dwarf crosses the Chan-
drasekhar limit and explodes. For several reasons these supernovae are particularly suitable for
astronomic observations. Since la supernovae always occur under similar circumstances they are
of nearly uniform intrinsic luminosity which makes it possible to determine their distance and
redshift. Supernovae happen relatively rarely, within a certain galaxy they can only be observed
a few times in a century. But since they use to be extremely bright, approximately as bright as
the host galaxy, a sufficient amount of them can be observed. Also the observation of supernovae
in huge distances (i.e. high redshifts) is possible. A further difficulty is that the peak luminosi-
ties of different supernovae show still a scatter of approximately 40% due to different chemical
compositions of the exploding star. Fortunately the observed differences in peak luminosity are
very closely correlated with observed differences in the shapes of their light curves. Moreover




1.2 Spacetimes with Vlasov matter

the measurements of the light curves can be influenced by galactic dust or gravitational lensing.
But still the observation of Ia supernovae provides an auspicious possibility to constrain the
cosmological constant. In 2011 the physicists Perlmutter, Riess, and Schmidt were awarded with
the Nobel prize for the discovery of the accelerating expansion of the universe through observa-
tions of distant supernovae [45]. In their works [28, 38, 44| the methods and difficulties of their
measurements, the obtained data, and its interpretation are presented.

The cosmic microwave background (CMB) is another source of information. It originates
from a very early stage of the development of the universe, the so called epoch of recombination.
During this epoch the universe became cool enough such that protons and electrons combined
to uncharged atoms that are transparent for light. Measurements show that the CMB is almost
isotropic all over the sky, observed fluctuations are about 0.1%. But these fluctuations carry
information about the statistical properties of the energy density in the universe at the epoch
of recombination. By means of the cosmological parameters these fluctuations can be modeled
and a fit of the parameters to the observations is possible. This yields further constraints on the
value of the cosmological constant. An example for observed data and their interpretation can
be found in [26].

As already mentioned various effects can be described by a single cosmological constant.
In a common approach one distinguishes between a part caused by the matter density in the
universe and the vacuum energy. The aforementioned observational tests yield constraints on
combinations of these two parameters. So it is very useful to have constraints only on the mass
density as well to get further information about the cosmological constant understood as vacuum
energy. This is for example done by estimating the mass of a galaxy cluster, dividing it by its
luminosity and extrapolating it to the universe [27]. One can also measure the matter density
by means of the baryon density [22]. Lots of problems concerning the determination of the
cosmological constant are still under discussion or unsolved, but research on this field is very
active and it is strongly believed that the cosmological constant plays an important role in the
dynamics of the universe.

1.2 Spacetimes with Vlasov matter

For the description of the dynamics of systems of stars the collisionless Boltzmann equation
provides a suitable model. In the non-relativistic case it describes a collection of uncharged
particles with equal mass that are moving through space under the influence of a gravitational
potential U [17]. The matter is represented by a density function f(¢,z,p) depending on the
time ¢, the position variables z = (z!, 22, z3) and the momentum variables p = (p', p?, p?). This
density function describes how many particles with the momentum p can be found at the position
x at the time t. The gravitational potential U is caused by the whole of the present particles

described by f via the Poisson equation

AU(t,x) = 4nGo(t,x), olt,z) = /RS f(t,z, p)d3p, (1.5)

where G is the gravitational constant. Due to the low density of galaxies collisions between stars
can be neglected and the only interaction is caused by the gravitational potential [17].

The time evolution of such a system serves as model for stellar dynamics and is therefore
of great relevance. The questions of global existence and stability of solutions to the initial
value problem of the Vlasov-Poisson system are already well understood. Pfaffelmoser [29] first
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established the global existence of classical solutions for the Vlasov-Poisson system with general
initial data. His proof was considerably simplified by Schaeffer [42] and Horst [24]. Also the
problem of static solutions is of great interest. In spherical symmetry the existence of solution
was shown by Batt, Faltenbacher, and Horst [15]. In [13] Andréasson and Rein numerically
construct disc solutions to the axially symmetric Vlasov-Poisson system. These solutions are
a good model to describe disc galaxies. In this context the rotation curves are of particular
interest. A rotation curve depicts the magnitude of the orbital velocities of visible stars or gas
particles in the galaxy versus their radial distance to the center. Observations [18, 40] show that
these curves rise steeply at the center of the galaxy and are approximately flat apart from the
inner region. Andréasson and Rein calculated curves that have exactly this shape, thus match
the observations. This is remarkable because these rotation curves could be constructed without
introducing dark matter which was not possible until this work. In fact these rotation curves are
one reason for the introduction of the notion of dark matter.

A full relativistic description of a spacetime that contains collisionless matter is provided by
the Einstein-Vlasov system. The Vlasov-Poisson system is the Newtonian limit of the Einstein-
Vlasov system [31]. Even though the analysis of the Einstein-Vlasov system is much more
complicated several results on the initial value problem have been achieved. Rein and Rendall
have proven the global existence of solutions of the spherically symmetric Einstein-Vlasov system
for small initial data [32]. Rein, Rendall, and Schaeffer proved in the spherically symmetric
setting that if singularities occur this happens first in the center of symmetry [35]. For outgoing
matter the global existence of regular solutions has been established by Andréasson, Kunze, and
Rein [5]. Also on the gravitational collapse and the formation of black holes several results are
available, cf. the review article [7] and the references therein.

However, in the context of this work static solutions are at the center of interest. The
existent proofs of existence of solutions use an ansatz for the matter distribution f fulfilling the
Vlasov equation and show that corresponding solution to the Einstein equations exist. Basically
three classes of ansétze are relevant. The most simple one is called isotropic. The isotropic
ansatz leads to matter configurations where the momentum is equal in every direction. The
corresponding solutions are very similar to solutions for ideal fluids [33, 37]. The polytropic ansatz,
however, admits solutions that have different tangential and radial pressure. The anisotropic
ansatz extends the class of possible matter configurations even further. Whereas the isotropic
ansatz only leads to solutions where all of the matter is located in a ball, the anisotropic ansatz
admits configurations where several shells of matter separated by vacuum are on hand. For the
isotropic ansatz Rein and Rendall established global existence of regular, static solutions to the
Einstein-Vlasov system [33|. The matter quantities belonging to these solutions were shown to
be of compact support. Rein generalized the proof of existence to the anisotropic ansatz and
the proof of boundedness of the support of the matter quantities to the polytropic ansatz [34].
In this work also spherically symmetric solutions are constructed that contain a Schwarzschild
singularity at the center. Such solutions describe a situation where a black hole is surrounded by
a shell of Vlasov matter. They are candidates for the final state of the gravitational collapse of
a matter cloud. In [36] the existence of solutions with bounded support of the matter quantities
was proved also for the anisotropic ansatz for f via a perturbation argument. Ramming and
Rein present in [30] a simplified proof of finite extension of the support of the matter quantities
for a large class of matter models.

Also the Einstein-Vlasov system in axially symmetry is an interesting subject of research.




1.8  Outline of the work

Andréasson, Kunze, and Rein showed the existence of non-vacuum solutions to this system [9].
In [12] the same authors prove the existence of solutions with non-zero angular momentum.
This provides mathematical models for rotating, general relativistic, and asymptotically flat
non-vacuum spacetimes. All of the mentioned existence results are valid for the Einstein-Vlasov
system without cosmological constant. For the system with cosmological constant the literature
provides no existence results for static solutions. With [10] a detailed review article on both,
static and dynamic solutions of the Einstein-Vlasov system is available.

An important feature of non-vacuum solutions of the Einstein equations are Buchdahl type
inequalities. These inequalities give bounds on the expression @ where m(r) is the so called
quasilocal mass and r is the radius. One can think of the quasilocal mass as the mass of the
matter that is inside a ball of radius r. In [2] Andréasson proves for uncharged matter and
without cosmological constant that the quantity QMT(T) is bounded by % if the underlying matter
model satisfies certain conditions. Vlasov matter fulfills these conditions. Constructing solutions
of infinitely thin matter shells Andréasson also showed that this inequality is sharp. Karageorgis
and Stalker developed a method for a simpler proof of this Buchdahl inequality [25]. Andréas-
son generalized their proof to the case of charged matter [3]. Together with Bohmer he proves
a Buchdahl inequality for static matter objects with positive cosmological constant. Later An-
dréasson, Bohmer, and Mussa prove a Buchdahl inequality in a setting with positive cosmological
constant and static objects of charged matter [11]. But it is important to note that the existence
of non-vacuum solutions of the Einstein equations with positive cosmological constant is just
assumed and not established. The primal proof of existence is given in this work.

1.3 Outline of the work

This work is organized as follows. In section 2 the Valsov matter model is introduced and
important properties of the Vlasov equation and the corresponding energy momentum tensor are
pointed out. In section 3 the complete Einstein-Vlasov system is considered. By virtue of the
symmetry assumptions it can be shown that two of the Einstein equations are already equivalent
to the full system of equations. The energy momentum tensor gives rise to matter quantities
that form the right hand side of the remaining Einstein equations. Finally a transformation of
the momentum variables is performed and the Vlasov equation is solved using the method of
characteristics. This is done by choosing a suitable ansatz for the matter distribution function f
that only depends on certain quantities that in turn are conserved along the characteristic curves
of the Vlasov equation. By virtue of certain boundary conditions the system of equations reduces
to a single ordinary differential equation that can be solved in the subsequent sections. Section 4 is
dedicated to results for the Einstein-Vlasov system without cosmological constant. These results
are already known in the literature, but nevertheless it is useful to collect them in a compact
form and present the proofs using consistent and up-to-date notation and variables. First the
proof of global existence of spherically symmetric, static solutions is given. Then finiteness of the
ADM mass, boundedness of the support of the matter quantities, the Buchdahl inequality, and
solutions with a black hole at the center surrounded by a finitely extended shell of Vlasov matter
are discussed. Finally the discussed classes of solutions are illustrated by numerically obtained
graphs using the methods of [1]. A detailed knowledge of solutions for vanishing cosmological
constant is of great importance because the proofs concerning the system with non-vanishing
cosmological constant make use of them at various places.




2 THE VLASOV MATTER MODEL

In section 5 results for the Einstein-Vlasov system with non vanishing cosmological constant
are presented. All of these results have been developed in the course of this work and are the
outcome of a collaboration with Hakan Andréasson and David Fajman. First we prove the global
existence of spherically symmetric, static solutions for small cosmological constants with regular
center. The proof of this assertion extends to several steps. For the first instance we prove local
existence using a contraction argument. Then a continuation criterion is established. In the next
step it is shown that the solution exists until a certain radius that lies already beyond the support
of the matter. So a vacuum region is on hand. In this vacuum region the metric coincides with
the Schwarzschild-de Sitter metric. A step showing that the metric can be continued with the
Schwarzschild-de Sitter metric and the matter distribution with constant zero ends the proof.
Secondly we prove global existence of solutions for arbitrary negative cosmological constants using
an energy estimate similar to [34]. It is also shown that the matter quantities of these solutions are
of bounded support. Thereafter, we construct solutions with a Schwarzschild singularity at the
center for both, positive and negative cosmological constants. The introduction of a cosmological
constant changes the large scale structure of the obtained spacetimes fundamentally. That is
why we consider the maximal analytic extensions of the obtained metrics in the last part of the
section. A straightforward procedure to construct Penrose diagrams showing the corresponding
spacetimes is discussed.

2 The Vlasov matter model

2.1 Motivation

The Vlasov matter model describes a large collection of identical particles that are moving freely
falling through space. The mass of these particles is normalized to m = 1. Collisions between the
particles are not occurring and the only modeled interaction is due to gravitational effects. The
Vlasov matter model is used to describe galaxies or even galaxy clusters [17]. In fact the density
of galaxies in a galaxy cluster is higher than the density of stars in a galaxy. The fractional
volume occupied by galaxies in a galaxy cluster is approximately 1073 whereas the occupied
volume of stars in a galaxy only is about 10722, cf. [17]. Collisions between two galaxies have
been observed, just as deformed galaxies whose shape is the outcome of a collision. When a
collision between galaxies occurs the individual stars collide almost never due to the galaxy’s
low density. The galaxies merely move through one another, get deformed, and change their
trajectories.

The collection of particles is described by a continuous density function f. This density
function generates the gravitational effects that influence the trajectory of a single star. Here a
fundamental difference between the kinetic theory used to describe matter on a macroscopic scale
and on a microscopic scale becomes apparent. If one considers for example molecules in a box the
following behavior will occur. Since the forces the particles are affecting on one another with is of
rather short range, most of the time the molecules move on straight lines without any influence
of the other particles. The mechanism that makes a particle change its trajectory is collisions,
i.e. scattering with other particles. In galactic dynamics, however, the stars are influencing each
other on a much larger range. In addition their density is very small. So compared to the influence
the whole collection of stars exerts on the trajectory of a certain particle single stars do not come
to effect any more. This justifies that one uses a continuous density function f satisfying the




2.2 The Vlasov equation

Vlasov equation to describe galaxies, cf. [17]. In general relativity gravity is modeled as curvature
of spacetime caused by an energy momentum tensor. This mechanism is described by Einstein’s
field equations (3.1). Via the energy momentum tensor the Vlasov equation couples to the
Einstein equations. In the following the relevant quantities are introduced and this coupling is
described in a detailed way.

2.2 The Vlasov equation

We consider a Lorentzian manifold .# equipped with local coordinates z¢, o = 0,...,3, and
the tangent bundle T.#. The canonical momentum variables shall be denoted by p®. Since the
rest mass of all particles shall be conserved and normalized to one the four momentum of each
particle fulfills gagpapﬁ = —m? = —1. We define the matter distribution function f: % — Rt
on the mass shell

P ={(x%,p™) € TM : gapp®p”® = —1, p® future directed}. (2.1)

The geodesics of the metric g,3 are the projections onto spacetime of the curves in T.# defined

in local coordinates by

dz® dp®

ds =p°, ds = —F%,ypﬁpy, (2.2)
where I'g~are the Christoffel symbols, cf. [32]. Solutions of the system (2.2) are the integral

curves of the vector field 2" = po‘a% — I’%vpﬁ p“/ap%. This vector field 2" is called the geodesic
spray. 2 is tangent to &, cf. [39, 41]. For this reason there are coordinates such that the
geodesic spray can be expressed in a basis (z#,p’), where y = 0,...,3 and j = 1,...,3. The
Vlasov equation for the non-negative density function f is 2 f = 0. In the aforementioned
coordinates it reads

OF i app0f _

P g T tasP PG

Furthermore denoting the fiber of &2 over a point x € .# by &, we define the particle current
density N® and the energy momentum tensor T by

0. (2.3)

@) == [ 18 o (2.4)
1(0) == [ 00 . (25)

The measure pg, on the fiber &2, of the mass shell is given by

p, = —— 19, dpt A dp? A dp?. (2.6)
It is constructed in the following way [39]. The metric g on .# induces a metric p on T.# as one
identifies Ty and T, Ty . Thus p(Ope, Opv)|q = guv(q) for ¢ € A . One calculates the metric p

that is induced on &, by p and the desired volume element can be calculated from the formula




3 DERIVATION OF THE SYSTEM OF EQUATIONS

The Vlasov matter model describes well behaved matter in the sense that the energy momentum
tensor (2.5) shows some suitable properties. It is not hard to see, that T is divergence free,
ie. V, 7" =0, cf. [10]. This of course is a necessary property for the energy momentum tensor
to be compatible with the Einstein equations since the Einstein tensor is divergence free due to
the Bianchi identities. The fact that T is divergence free can be interpreted as conservation of
energy. In local coordinates one can also calculate V,N = 0 which expresses the conservation
of number of particles.

In virtue of the Vlasov equation (2.3) a number of inequalities hold. First, if V' is a future-
directed causal vector then we have N, V* < 0. Equality holds if and only if f = 0 at the given
point, cf. [10]. Hence the particle current density N is always future directed and timelike if
there are particles at the respective point. Moreover, if V¥ and W¥ are future directed timelike
vectors we have T, V#W?" > 0. This is called the dominant energy condition. It implies the
weak energy condition. Moreover, if X is a spacelike vector, then 7}, X# X" > 0. This is called
the non-negative pressure condition. Finally, a well-posedness theorem for the Cauchy problem
of the Einstein Vlasov system holds, cf. [39, 20].

3 Derivation of the system of equations

3.1 The Einstein equations

In this section the relevant equations and quantities will be introduced and a suitable set of
coordinates will be chosen that simplifies the analysis of the Einstein-Vlasov system. In view
of the assumption of spherical symmetry the system will be further simplified. Finally, using
boundary conditions for the metric coefficients and a suitable ansatz for the matter distribution f
we derive a single ordinary differential equation that will be analyzed and solved in the subsequent
sections. The solution of this equation will imply the solution of the full system.

Einstein’s field equations read

887G
GMV + AgMV = c—4TMV. (31)

G is the gravitational constant, c is the speed of light, A is the cosmological constant and G, is
the Einstein tensor. In the following we choose units such that G = ¢ = 1. The Einstein tensor
is defined to be

1
Guu = Ruu - §RgMV7 (32)

where R, is the Ricci tensor and R is the Ricci scalar of g,,,. They can be calculated from the
Riemann tensor that in turn is defined as

R(X,Y)Z =VxVyZ - VyVxZ —Vxy|Z, (3.3)
where V denotes the covariant derivative and [, ] the Lie bracket. Its components are given by

R, 5 = da®(R(D,. 95)95)

= avrgé + Pg’y Eé - a(SFgfy - lO/é(S E’y (34)
Then the Ricci tensor R,g and the Ricci scalar R are defined as
Rop =R’ R=9""Rap. (3.5)




3.1 The Einstein equations

In the appendix, section A, the Einstein tensor G is calculated using the ansatz (3.6) for the
metric.

In this work we will be interested in spherically symmetric solutions of the Einstein equations.
This suggests the ansatz

ds? = X2 4 PO 42 (492 + sin?(9)dp?) (3.6)

for the metric g, cf. [32].

By means of the energy momentum tensor 7", defined in equation (2.5), we can define
matter quantities that will appear in the t¢-, rr- and ¥1¥-component of the Einstein equations.
Given the vector fields zy = e "9, and z; = e 9, we define the matter quantities

0:= Taﬁzg‘zg, (3.7)
pi= Taﬁzf‘zlﬁ, (3.8)
pr = Tyy. (3.9)

The quantity o can be understood as energy density, p as radial pressure, and pr as tangential
pressure. Using these quantities and the expressions for the entries of the Einstein tensor derived
in the appendix, section A, one obtains for the first three diagonal entries of the Einstein equations

e 2 (2rN —1) + 1 — A = 871, (3.10)
e A2y +1) — 1+ 72A = 8nr?p, (3.11)

e 2 <;/’ (u + %) (1 — A’)) = &mpr. (3.12)

Note that equations (3.10) and (3.11) are already equivalent to the whole set of Einstein equations
(3.1) since there are only two unknown functions left, © and A. We state this as a theorem and
prove it following [32] where the statement is shown for the case where A = 0.

Theorem 3.1. Let A\, ju be a C?-solution of the reduced system defined by the equations (3.10),
(3.11) and the matter quantities (3.7) and (3.8). Let f be a Cl-solution of the Viasov equation
(2.3). Then all Einstein equations are satisfied.

Proof. Let Eog = Guog + gap\ — 87T,3. Note that E,z is symmetric. Then the Einstein
equations are equivalent to E,3 = 0. We prove this using the equation VoE = 0. This
equation is equivalent to VoG = 0 since V4T = 0 and Va,g*® = 0. Of course, the latter
equation only holds if the metric is C3. But it is possible to approximate p and A by C3-functions
and obtain the desired equations [32]. We calculate the V,E*" component and obtain

. 2) .
OE™ + 0.E" + E" (2 + A) + ET (3;/ + N+ —> +ETEAHA =0 (3.13)
T

Since we take the first two Einstein equations (3.10) and (3.11) for granted, we have E = E'" =
0. We plug this into equation (3.13) and obtain

O (r*E") + (3 + N)(r*E™) = 0. (3.14)




3 DERIVATION OF THE SYSTEM OF EQUATIONS

This implies that E' is zero. Next we consider the component V,E®". One obtains

i 2 —2X
OE"™ + 0, E + EMeX Ny 4 B (3N + 1) + BT (u’ +2X + ;> - —gapE"" =0, (3.15)

where A, B € {9, p}. Taking into account that E = E'" = E'" = 0 one is left with g4 E4P = 0.
Symmetries now imply that E4® = 0 and also that E*4 and E™ are zero. U

3.2 Coordinate transformation

It will be easier to work on the mass shell with an orthonormal frame {e;} instead of the co-
ordinate basis {0;}. So we perform a change of variables on &?. The metric (3.6) expressed in
Cartesian coordinates, 2° = ¢, 2! = rsin1 cos o, £2 = rsin¥sin ¢, and 23 = r cos ¥, reads

2
-1
ds? = —e2rdt? + <5ab + 6725a05bdxcxd> dztda?. (3.16)
T
We define the coefficients \
-1
e = 6% + ‘ 3 26l (3.17)

Here ¢ is a frame index and a is a coordinate index, i.e. e¢; = efJ,. This gives a new basis
(O, €1, €2, e3) of the tangent space T,.# (at a point ¢ € .#). The vectors e; are orthonormal
with respect to g, thus

g(el-, ej) = 62J (318)
The components p* of the momentum vector p are given by p* = e?vi, where

A

v =p® + ¢ 5 2 Gpea’pC. (3.19)
r
Note that on the mass shell &2 we have
1 o
(19)° = ——(1 + gwpefelv'v?) = p° = e /11 [of2. (3.20)

goo

We also introduce the abbreviations |v] = /d;;v'v7 and v, = WT%J

In order to write down the Vlasov equation (2.3) in the new coordinates (z%,v*) we have to
replace the p’s by v’s and the Christoffel symbols by the connection coefficients T4 with respect
to the orthonormal frame {e;}. They are given by the formula

1
I\abc = 5 [eb(gac) + ec(gba) - ea(gcb) + ’nggad + ’chgbd - Vgagcd] (3-21)

where ;. are the commutation functions which are defined by

[ebs ec] = Vielas (3.22)

cf. [21]. The vectors e, are the basis vectors of the tangent space Ty,.#, ¢ € ., thus e, €
(8t7 €1, €2, 63)'

Furthermore, we impose several symmetry assumptions which lead to a more simplified form
of the Vlasov equation. We assume f to be static, i.e. d;f = 0, and spherically symmetric,

10



3.2 Coordinate transformation

ie. f(t, A%, AV) = f(t,Z,7), where T = ($1,£U2,£E3), U = (vl,vz,v3), for all A € SO(3). As
carried out in section C of the appendix, one obtains

v oF 7,2 0F _
JTE]oP 0u V1+|v]2u o =0 (3.23)

for the Vlasov equation in the frame.
Finally, we give explicit expressions for the matter quantities ¢ and p in terms of the coor-
dinates (v*). We always use the metric in Cartesian coordinates (3.16). The energy density o is

defined to be p = Taﬁzg‘zg. Thus we write

o [ @0 ()"’ /19l
goop?

= g
= /RS f (%, v (p®)\/1 + |v]? dvtde?de. (3.24)

0= —¢ |Dp®(v®)| dvtdv?de?

| Dp®(v®)] is the determinant of the Jacobi matrix of the map p®(v?) = v’ = v+ e -1 Sijaivize
T

which is needed because of the change of variables from p* to v* in the integral. The radial

pressure p is defined as p = Tang‘zlﬁ where the vector z; is given by z; = e *0,. We express 2;

in terms of the basis (0, e1, €2, €3):

or or or T Yy 2
-2 -\ -\
z1=¢ "0 =e (%ax + a—yay + 583> =e€ <;8x + ;By + ;8;;)
0 0 0
= e*)\ (a_i(c%el + 6%62 + 6?63) + 8—2(0%61 + 0362 + 0363) + 8_’12“(621561 -+ 0362 + c§e3))
A ;
= e_)‘e—xzei = x—ei. (3.25)
T T

The coefficients cZ are given in (C.3) — (C.8) in the appendix. Remember that in the (9, e, e2, €3)-
frame gup = J4p holds. So we have

p=T, ﬁzf‘zg =T vl T“bigi“gjbxixj
=T, — —

2 r2
_ [ @ EDWIDS ) o 90055 12,
R3 goop r
(07 a a
— —f(a: V(P ))vfdvldUde‘g. (3.26)

SIRVAENTE

In a similar way one finds the analogue expression for the tangential pressure pr, namely

pT(?”):%/R3

In the next subsection we will derive an ordinary differential equation by virtue of the choice
of a suitable ansatz for the matter distribution f. For given initial conditions a solution of this
ODE will imply a solution of the full system (3.10), (3.11), (3.23), (3.26), (3.24).

2

rXY f(t, z,v)dvidv?ded. (3.27)

r

11



3 DERIVATION OF THE SYSTEM OF EQUATIONS

3.3 Conserved quantities and reduction of the problem

By virtue of theorem 3.1 is is sufficient to consider the reduced system

vt of 7,20 0F _
Tt o O 1+ |v)%u i 0, (3.28)

e 2rN —1) + 1 —72A = 8nr?p, (3.29)
e A2y +1) — 1+ 72A = 8nr?p, (3.30)

where |v] = /0;;v'07, and v, = 5””# and the matter quantities read
0= / f(t,z,v)\/1+ |[v]?2 dvtde?de?, (3.31)
R3
fzv) o000 9. 3
= ————=v, dv dv“dv”. 3.32
P= e TR (3.32)

We consider the characteristic system of the Vlasov equation (3.28) in v-coordinates:

0X . |4

=X = :
s 1+ V% (3:33)
ov

V

—V1+ V%u’(r)%. (3.34)

The solutions (X, V) of the characteristic system are called characteristic curves. The charac-
teristic curves are the integral curve of the geodesic spray 2°. Along these curves the matter
distribution function f is constant. There are quantities £ and L, given by

ds

E:=eMMe = et\/1 402, L:=2%%— (z-0)? = |z xv]?, (3.35)

that are conserved along the characteristics. This can easily be seen:

dE x-z v - etr)
o) (N 2 VY
o ¢ w'(r) . + v+ N
= 0l (1) = — e () = 0,
T T
dL
d—:2x-9&1}2+2x2v-®—2(x-v)(5c-v+x-@)
s

9 o2 2220 - i (VI £ 02 2 2
_ T-UvUT XV T (T) +v —2(:6-2}) v x—,u/(r)\/l +v2 | =0.
/1 +U2 r \/1—|—’U2 r

Certain values of the quantities £/ and L determine a certain characteristic curve. So every
function ®(FE, L) depending only on these quantities solves already the Vlasov equation. One
could ask the question whether this method already yields all possible solutions of the Vlasov
equation. In the non-relativistic case, thus for the Vlasov-Poisson system, there is a theorem,
called Jeans’ theorem, stating exactly this [17]. But this does not hold for the Einstein-Vlasov
system. In the relativistic setting Schaeffer found a class of counter examples to this theorem

12



3.8 Conserved quantities and reduction of the problem

[43]. In the literature three types of ansétze for the matter distribution are important. First,
the isotropic ansatz stating that ®(FE, L) is actually not depending on L, thus

f(t,z,v) = (E), (3.36)
where E > 0. The second class of ansétze is called polytropic. They are of the form
f(t,z,v) = ®(B, L) = ¢(B)L (3.37)

with ¢ € L*>°((0,00)), E > 0 and ¢ > —%. The third, most general class is called anisotropic and
reads

f(tw%'??}) = CI)(Ev L) = (b(E)[L - LO]ﬁ- (3'38)

where ¢ € L*>((0,00)), £ > —%, E >0and Ly > 0. Ly can be interpreted as a cutoff for L from
below.

The theorems stating that the matter quantities are of bounded support require a more
specific ansatz for f, namely a certain form of ¢(F) [33, 34, 36, 30|. This form is given by
p(e) = ¢p(1 — E/Ey), where ¢ : R — [0,00) is measurable, ¢(n) = 0 for < 0 a.e. on some
interval [0, 1] with n; > 0 and Ej is some prescribed cutoff energy. Moreover, it is required that
there exists v > —1 such that for every compact set K C R there exists a constant C' > 0 such
that &(n) <Cn',nekK.

We choose an ansatz that is as general as possible, thus anisotropic, but that meets the
assumptions of all theorems relevant for the proof concerning solutions to the Einstein-Vlasov
system with cosmological constant. To simplify calculations we define y := In(Fy) — p as in [30]
so that e# = Ey/eY. In this work we will treat the ansatz

f(t,z,v) = @(E,L) = co¢ <1 - E£> [L — Lol = co¢ (1 —ee™¥) [L — Lol

0
o(n) = ],

where k >0, £ > —% fulfill the inequality k < 3¢+ 7/2 and ¢y, Ey > 0, Ly > 0. The cutoff energy
cannot be chosen arbitrarily but is determined by the initial value yo of y and the boundary
conditions. For the construction of globally regular solutions Ly has to be sufficiently small to
ensure finite support of the matter quantities [36]. When considering solutions with a black hole
at the center, there are positive lower bounds on L.

In the next step, we want to express ¢ and p as integrals over E and L instead of v. Thus we
make a transformation of variables. The spherical coordinates in v-space shall be denoted by 7,
Yy, @u. The coordinate system is chosen in a way that & is parallel to the v3-axis. We introduce
the map v : R? — R2, (r,,9,) — (¢, L). The Jacobi determinant takes the form

27,3

| Zy| = ——== cos U, sin 0. (3.40)

(3.39)

We calculate

2T
/ / / e “Ye(ry) L(CE,’I“U,19U)) V14 r2r2sind, dr,dd,de,
1 2
:277/ / <I>(e ys(rv),L(rv,ﬁv)) (1+73)
0 0

_— . 41
2r2r, cos U, | Al dryddy (3-41)

13



3 DERIVATION OF THE SYSTEM OF EQUATIONS

Note that ) ) )
1
Utry) __& < . (3.42)
2r2rycostdy,  2rx-v 22, /e2 —1 — L /12
After adjusting the domains of integration, one obtains
) oo pr2(e?-1) 2
olr) = =5 / / O (e Ve, L) c dLde. (3.43)
7% Je=1JI1=0 Ver—1—L/r?

In an analogous way, one calculates

o [P r2(e2-1)
p(r) == / / ® (e7Ye,L) \/e? —1 — L/r? dLde. (3.44)
" Je=1JL=0

As already mentioned above, one is not able to treat the system when ® is depending on E and
L in a fully general way. We are assuming the ansatz (3.39) and simplify the expressions for o
and p further. This yields

o(r) = Gy(r,y(r)),  p(r) = Hy(r,y(r)), (3.45)

where

0o I +3
Gy(r,y) = Cgcorﬂ/ ¢(1—ce?)e? <52 — <1 + —0>> de, (3.46)

3
Hy(r,y) = 2?—007"25/ ¢(1—ce?) <e2 - (1 + L—§>>”2 de. (3.47)
+3 1+ Lo/ r
The constant ¢, is given by
co =2 /01 \/fZTSdS' (3.48)

Lemma 3.2. The functions Gy(r,y) and Hy(r,y) defined in (3.46) and (3.47), respectively, have
the following properties.

(1) Gy(r,y) and Hy(r,y) are continuously differentiable in r and y.

(ii) The functions Gy(r,y) and Hy(r,y) and the partial derivatives 0,Gy(r,y) and OyHgy(r,y)
are increasing both in r and y.

(iii) There is vacuum, i.e. p(r) = o(r) = 0, if and only if e ¥")\/1 + Lo/r2 > 1, in particular

there is vacuum if y(r) < 0.

Proof. The differentiability can be seen via a change of variables in the integral in (3.46) and
(3.47) given by E = ee Y Ey. For G one finds

e\
Gotray(r) =cueor® (5) o (W TF Lol (3.49)

with

Golt) = /too ¢ <1 - E%) B (B2 - 2) 2 aE. (3.50)
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3.8 Conserved quantities and reduction of the problem

In analogy to the arguments given in [32] we consider

A7 ot =80 -30) =5 [ o <1 . E£0> B (5 - (- %) ab

+ /too é (1 - E%) i—i (B2~ AL e (B2 - t2)“%> dE (3.51)

Obviously, the first integral converges to zero as At goes to zero. The second term has a limit
as At — 0 by Lebesgue’s theorem. Thus, the function g is left-differentiable with

i—;g(t) =—(20+ 1)t/oo ) (1 — E£> E? (B? - tQ)Z_% dE. (3.52)
t 0

Again by Lebesgue’s theorem this function is continuous, and a continuous and continuously
left-differentiable function is continuously differentiable. For Hj the calculation can be done
analogously.

The monotonicity can be seen directly from the structure of Gy and Hy. The last statement
becomes obvious if one performs the aforementioned change of variables in the integrals in (3.46)

and (3.47), cf. [34]. O
The remaining problem is to prove that the Einstein equations have solutions being compat-
ible with the chosen ansatz of the matter distribution f. By virtue of the upper simplifications

and assumptions we now derive a single ODE that will be discussed and solved in the following
sections. The Einstein equations take the form

e 22 (2rN — 1) + 1 — 72\ = 8712 Gy(r, y(r)) (3.53)
e 2rp + 1) — 1+ 12N = 8rr?Hy(r, y(r)) (3.54)

We integrate equation (3.53):

/07" <_% <56_2A) +1- 52A> ds = /O ' 852Gy (r, y(r))ds
=== /OT 52 Gy (s,y(s))ds. (3.55)

We now plug this into the second Einstein equation (3.54) and obtain

2A T
<1 - % o 32G¢(s,y(s))ds> (2rp’ +1) = 14 r*A = 8mr2 Hy(r, y(r)). (3.56)
rJo
Since ¢/ = —y’ one obtains the differential equation for y
4
/
Yy (T) - - r T [T
1-— ATQ — 87 fo $2Gy(s,y(s))ds (3.57)
A 1T '
< (st — T+ 5 [ PGusaoas).
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4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

A solution to (3.57) yields a solution to the full system (3.28)—(3.32) and as stated in theorem
3.1, a solution (i, \) to (3.29) and (3.30) already implies a solution of all Einstein equations.
This equation is analyzed and solved in the remainder of this work.

We conclude this section by stating a useful differential equation for p relating the matter
quantities o, p, and pr and the metric coefficient p, the so called Tolman-Oppenheimer-Volkov
equation. It is the subject of the following lemma.

Lemma 3.3. Let pu, A be a solution of the system (3.29), (3.30) and let o and p be given via
(3.45) and the quantity pr by (3.27). Then the Tolman-Oppenheimer-Volkov equation (TOV
equation) holds:

2
p'(r) = = (p(r) + o(r) = ~(p(r) = pr(r)). (3.58)
Proof. In a first step, one checks by direct calculation that
L
pr(r) =+ 1)p(r) + %LOTM_QG_(QHQ)"I% <e“ 1+ r_é)) , (3.59)
where
o 9 o\ 0+1
ko(t) = / ¢(E) (E* —t*) "2dE, t>0. (3.60)
t

Using (3.47) and lemma 3.2 one obtains the relation

2 L L
p(r) = %p(r) — (204 4)p (r)p(r) — ¢ (1 + r_;)) 7“%6_(2”2)“1% (e“\/ 1+ 7“_20> w
+ Cﬂ“%_gLoe_(QH_Q)Mkd) (em 1+ L_;)) (3.61)
r

which, after some further simplifications, leads to the Tolman-Oppenheimer-Volkov equation. [

4 The System with vanishing cosmological constant

In section 5 the existence of solutions of the Einstein-Vlasov system with non-vanishing cosmo-
logical constant A will be proved in various settings. For some of these proofs the existence of a
solution in the corresponding setting with A = 0 will be crucial. In the course of the discussion in
a setting with non-vanishing cosmological constant, the corresponding solution with A = 0 will
be referred to as a background solution. Also certain properties of these solutions will be of major
importance. Most of the needed results are already known in the literature. The purpose of this
section is to present the relevant results for the A = 0 setting using a consistent, up-to-date
notation. If needed, some minor adaptions and extensions will be made as well.

4.1 Existence results

This subsection is devoted to the proof of existence of static solutions of the Einstein-Vlasov
system in spherical symmetry. We consider equation (3.57) with vanishing cosmological constant,
4

8
1= 5[5 $2G(r, u(r))ds

y'(r)=— <7~H(r,y(r)) + % /OT SZG(S,y(s))d,S) , (4.1)
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4.1 Ezistence results

and prove the global in 7 existence of a solution y. The solutions that will be constructed in the
following are asymptotically flat. This will be guaranteed by the boundary conditions

lim A(r) = lim p(r) =0. (4.2)

T—00 T—00

Solutions with a regular center will be of special interest. The regular center at r» = 0 is guaran-
teed by the boundary condition

A(0) = 0. (4.3)

The proof of existence divides into two steps. First, local existence is shown, i.e. that a unique
solution exists on a small interval [0,0]. The solution can be extended onto a maximal interval
of existence [0, R.). In the next step one shows that this solution can be extended to the whole
R —axis. The radius R, is characterized by a continuation criterion. We have R, = oo or either

limsup8—7r/ s*Gy(s,u(s))ds =1 or limsuppu(r) = . (4.4)
" Jo

r—Rc r—Re

So in particular if g and A stay bounded on an interval [0, R) the solution already exists beyond
R. For the first step we formulate the following lemma.

Lemma 4.1. Let ® : R? — [0,00) be of the form (3.39) and let G4 and Hy be defined by
equations (3.46) and (3.47), respectively. Then for every yo € R there is a 6 > 0 such that there
exists a unique solution y € C%([0,6]) of equation (4.1) with initial value y(0) = yo.

Proof. The proof follows [33] and uses a contraction argument. Integrating equation (4.1) with
respect to r we obtain the fixed point problem

y(r) = (Ty)(r) (4.5)
with the operator

47
1-— 8?” fdg 02G(o,y(o))do

(Ty)(r) = yo — /0 ' <8H(s,y(s)) +Si2 /O ’ U2G(a,y(a))da> ds. (4.6)

This operator is considered on the set

M = {u: (0,0 = R|u(0) = yo,30 < ulr) w0 +1,

8t [T 1
| G uls)ds < 5 e 0,61} (4.7)

By direct calculation it can be shown that for § small enough
(i) u=yo € M,
(ii) we M = Tu € M and

(ili) Ja € (0,1)Vu,v € M : ||[Tu — TV| 005 < alju — V|05, Where || - [|oo5 = SUPre[o,a](')-
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4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

Thus T acts as a contraction on the set M. Then from Banach’s fixed point theorem it follows
that there exists a unique fixed point y € M of T. Differentiation of (4.5) with respect to r
yields that y solves equation (4.1) on the interval [0,0]. The steps (i) — (iii) are carried out in
detail for the more general case of a non vanishing cosmological constant in section 5.1.

Away from the singularity » = 0, standard existence and uniqueness results are applied to
extend y to a maximal solution on an interval [0, R.). The asserted regularity of the solution can
be seen as follows. Obviously, the boundary condition (4.3) at » = 0 is satisfied. The regularity
of the functions G and Hy implies that y € C%((0, R.)), cf. [34], and it can be shown that the
second derivative continuously extends to r = 0 and 3/(0) = 0. O

For the proof of global existence we follow the argument given in [34]. The third matter
quantity pp, defined in (3.9), becomes important. The next lemma states existence of solutions
from a minimum radius rg onwards. This is for technical reasons. Of course we are interested
in solutions that are defined on the whole of [0,00). So when solutions with a regular center are
considered, we always have rg = 0. But later, in subsection 4.3, solutions will be constructed
that have a black hole at the center. These black holes will be encased by a vacuum region and
there will be a certain radius at which a solution of the non-vacuum Einstein equations will be
glued to the inner vacuum solution. Also in the proof of theorem 4.5 the existence of a solution of
equation (4.1) starting at 9 > 0 will be needed. In view of this procedure we prove the existence
of non-vacuum solutions on the interval [rg, 00).

Lemma 4.2. Let ® : R? — [0,00) be of the form (3.39) and let G4 and Hy be defined by
equations (3.46) and (3.47), respectively. Then for every ro > 0 and Ao > 0, ug € R with A\g =0
if 1o = 0 there exists a unique solution \,u € C*([rg,00)) of the Einstein equations (3.53) and
(3.54) with AX(0) = 0 and pu(0) = po.

Proof. In the case g > 0 the existence of a local solution of equation (4.1) follows from the
regularity of its right hand side. Otherwise, the existence of a solution to equation (4.1) on an
interval [0, 0] is established by lemma 4.1. Let [0, R.) be the maximum interval that the solution
exists on. In the following we show that both metric coefficients, p and A, stay bounded on the
interval [0, R.) following the arguments in the corresponding proof in [34]. This already implies
that R. = oo due to the continuation criterion.

Integration of the first Einstein equation (3.29) with A = 0 yields

e =1 o7 s20(s)ds. (4.8)
" Jo

If one plugs this into equation (3.30) one obtains

w(r)= 4 (r) (p(r) + %2 /Or 329(3)d3> =: 4?7 (p(r) + w(r)), (4.9)

where w(r) has been defined implicitly. By adding equations (3.29) and (3.30) we have
N + 1) (r) = 47re ) (p(r) + o(r)). (4.10)

We define an energy by the quantity e’ #(p+w) and wish to establish a differential inequality for
this energy. Since for small radii the existence of a solution is already shown it suffices to consider
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4.2  Bounded support of the matter quantities

the inequality on the interval [Fo, R.) where 7p := max{rg, R./2}. This avoids the blow-up at
r = 0 of certain summands in the course of the estimate. The estimate will allow to deduce that
A + p stays bounded for all 7 € [rg, 00). Using the TOV equation (3.58) one finds

4 (e”“(p +w)> = Mn (—2—p L2 _ 2w, g) < M (272 + g) . (4.11)
dr r r r r r r

We can drop the terms —2p/r and —2w/r due to their sign. Now we assume R, < oo. From its
definition we see that w is an increasing function. Thus there exists 11 € (7, R.) and a constant
C > 0 such that w(r) > C for all r € [r1, R.). Moreover, we observe that ¢ and pp are bounded
on [ri, R;). This follows from the structure of pr, cf. equations (3.27) and (3.59), and lemma
3.2. So we may write

d
— (MM p+w) £ G < Colp+w)e
d Atp G
— < <
& drln(e (p—i—w)) S ST Cy
— M < Cs. (4.12)

It follows that p + A is bounded on [r1, R.). We have p/(r) > 0 as can be easily seen from
equation (4.1). This implies u(r) > po. Moreover, equation (4.8) implies that A > 0. So we can
conclude that both, p and A, stay bounded on R.. But this is a contradiction to the definition
of R. by the continuation criterion. Hence R, = 0. O

4.2 Bounded support of the matter quantities

In this subsection we show that there exist solutions where the corresponding matter quantities
have bounded support. These solutions describe finitely extended objects of Vlasov matter.
Being able to refer to a background solution having compactly supported matter quantities is
crucial for the proof of existence of solutions with positive cosmological constants.

The reasoning will go as follows. The ansatz (3.39) for the matter distribution function f
has been chosen in a way such that there is vacuum if y < 0, cf. lemma 3.2, (iii). First we prove
a compact support lemma stating that y will have a single zero if y(0) = yo > 0. Afterwards,
this lemma will be applied to the Einstein-Vlasov system. Since with this methods compact
support can only be proved for the polytropic case (3.37), the anisotropic case has to be covered
separately. This can done by a perturbation argument [36]. So we start by stating the compact
support lemma.

Lemma 4.3. Let y € C*(]0,00)) with y(0) = ¢ € (0, ymax) satisfy the estimate

on [0, 00) (4.13)

where
m(r) =m(r,y) = 477/ s2F2g(y(s))ds, (4.14)
0

g € C((—00, Ymax)) 1s increasing with g(y) =0 for y <0 and g(y) > 0 fory >0, and £ > —1/2.
Let g satisfy the estimate
gly) > ey™tt for 0<y <y (4.15)

with parameters ¢ > 0, y* > 0, and 0 <n < 34 £. Then the function y has a unique zero.
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4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

Proof. The proof follows [30]. Since y is decreasing, the limit Yoo 1= lim, o0 y(r) € [—00, 0)
exists. We need to show that y,, < 0. Since y is monotonically decreasing this will allow
to deduce the existence of a unique zero of y. The proof works with a contradiction argument.
Assume yo, > 0. By the monotonicity of y we have y(r) > yoo on [0,00) and by the monotonicity
of g:

r 4
m(r) > 47Tg(yoo)/0 s2t2tqs — 57 I 3g(yoo)r2€+3. (4.16)

We put this into the estimate (4.13) for y’ and integrate with respect to r. This yields already
the desired contradiction:

/ y'(s)ds < —/ m(;) ds © yr) <y —Crt 28 oo (4.17)
0 o S

C denotes a positive constant which may depend on all the parameters but never on r.
So we have shown that Yy, < 0. The remaining task is to exclude y., = 0. We observe that
m(r) is increasing in r and positive for 7 > 0. Hence m(r) > m(1) =: my; > 0 for r > 1 and

o o d
y(r) = _/ Y (s)ds > ml/ S =% forr>l (4.18)

Moreover, since ¢ is increasing and y decreasing, we have

47

mir) = dmglyr) [ 5217ds = ST () (4.19)
Hence 4
y'(r) < ——WT%Hg(y(r)), r > 0. (4.20)

We consider the integral

- _ _ ds > — ds = 4.21
/ym o0 /0 sen? W= et YT mrreeir ) (4.21)

where a simple change of variables was performed. Now we take r > 0 sufficiently large so that
0 < y(r) < y*. Recall that we are assuming y(r) — 0 as r — oco. This assumptions will now lead
to a contradiction. By the growth assumption (4.15) on g and (4.21) we have

y(ro) y" 1 (Y
O r2tt? < / dn < / _dn_ +05 < _/ (ijzl + Cs. (4.22)
y(r) 9(77) y(r) 9(77) €Sy N

We estimate the left hand side from below using (4.18), multiply the resulting estimate by

y(r)%”, and compute the integral. At the last step the cases n + ¢ # 1 and n + £ = 1 need to
be distinguished. We find
1 (v d
erm?t? < _/ n—Zzy%H 4 Oy 22
C Jyr) M
242 v _
= Coy* 2 + y=" ) I gy(r)> ’ n+l=1 . (4.23)
¢ (W) =) ) nkl#L
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4.2  Bounded support of the matter quantities

Note that C is determined by the right hand side of equation (4.21). In particular the constants
C1 and C5 are strictly positive. So are the expressions mi, 2+ 2 > 0, and £+ 3 —n. Having this
in mind one observes that the right hand side of (4.23) goes to zero as r goes to infinity while
the left hand side stays strictly larger than zero. This yields the desired contradiction. O

This lemma enables us to prove bounded support of the matter quantities of solutions to the
Einstein-Vlasov system. We formulate this as a theorem.

Theorem 4.4. Let ® be a polytropic ansatz of the form (8.37) with the properties described
in subsection 3.3. Then for any §y > 0 the unique solution of the reduced equation (4.1) with
y(0) =y has a unique zero Ry > 0. By

Ft,z,0) = ¢ (1 e+ |v|2> Iz x o[ (4.24)

a static, spherically symmetric solution to the FEinstein-Viasov system is defined. This solution
is compactly supported, and its spatial support is the ball with radius Ry centered at the origin.
The parameter y is related to the metric quantity p via y = pu(Ro) — u(0). Moreover, o,p €
C(R3) N C! (Bg,(0)).

Proof. The unique solution of equation (4.1) with y(0) = y exists by virtue of lemma 4.2. We
want to apply the compact support lemma to show that y has a unique zero Ry. The crucial
assumption that has to be checked is (4.15). We want to identify Gy (r,y(s)) = r*g(y(s)) where
Gy is defined in (3.46). The other assumptions then follow by means of equation (4.1). So we
perform a change of variables given by 7 = 1 — ce™¥ in the integral in the definition of G and
obtain

1—e7Y 1
e+3
Gy(r,y(r)) = r*g(y(r)) = r¥cocee™ /0 o) (L —n)? (1 —n?—1)"2dnp.  (4.25)
Using the explicit form of ¢ given by ¢(n) = [n]% and estimating n < 1 — e™¥ one obtains
3.4, 1—e™Y 041
CQCge(§+ )y/ nk (1 - — efy) 2 dn. (4.26)
0

For y sufficiently small we observe 1 —e™¥ > y/2 and eV > 1/2. So we can estimate all factors in

. . . _q
front of the integral by a constant C. Now we perform a change of variables given by s = —=;.
This yields

1

3

g(y) >C (1 _ e*y)k+5+§ / Sk(l i S)ZJr%dS > CykJrZng (427)
0

being equivalent to (4.15). So the assumptions of lemma 4.3 are fulfilled. The compact support

lemma and lemma 3.2, (iii) imply the assertion. O

As mentioned at the beginning of this subsection these results do not cover the most general
ansatz for the matter distribution f with a non zero cutoff angular momentum Ly. But such
ansétze are necessary to obtain solutions with vacuum at the center surrounded by Vlasov matter,
cf. [1] and subsection 4.5. Such configurations are called shells. In [36] Rein proved the existence
of such shell solutions. The proof relies on theorem 4.4 and includes small Ly via a perturbation
argument. The exact statement is the subject of the following theorem.
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4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

Theorem 4.5. There exists a static, spherically symmetric solution f, 0,p, \, u of the Finstein-
Viasov system (3.28) — (3.32) with vanishing cosmological constant where f is given by the ansatz
(3.89) and o and p depend on p via (3.45) in a neighborhood of their support. A, u € C%([0,00))N
C?(R3) satisfy the boundary conditions (4.2) and (4.3). Furthermore o,p € C1([0,00)) N CL(R?)
with supp(g) = supp(p) = [R;, Ro] for some 0 < R; < Ry < oo, where R; > 0 provided Ly > 0.
The ADM mass M is finite.

Proof. The proof follows [36]. Consider first the case Ly = 0. As established by theorem 4.4
there exists a solution y of equation (4.1) with e ¥ < 1 and e7¥(® > 1 for some R > Ry > 0
where Ry is the bound of the support of the matter quantities as introduced in theorem 4.4. We
choose R such that 1 < e %) < 2. For any Ly > 0 we define

[ Lo
~y(0) Lo ~y(0) Lo
eV 1—1—?:1 and e Y L+ — > 1forr e [0, R;). (4.29)
i T

Due to lemma 3.2, (iii), yr,(r) = y(0) solves equation (4.1) on [0, R;] with or,(r) = pr,(r) = 0.
Note that or,(r) and pr,(r) are given by yr, via (3.45). By lemma 4.2 y;, can be extended
as a solution of equation (4.1) for r > R;. We want to show that e ¥20(®) > 1 for Ly > 0
small because then the support of the matter quantities is bounded by R. We may assume that
yro(R) > y(R) — 1 since otherwise we are done. By monotonicity,

Then

y(0) > y(r), yL,(r) >y(R)—-1, rel0,R] (4.30)

In the remainder of the proof one compares the solution yr,, in the setting with Lo > 0 with the
solution y for Ly = 0. The latter one can be seen as a background solution. By virtue of the
structure of G¢ and Hy given in equations (3.46) and (3.47), the differential equation (4.1) for
y, and Gronwall’s inequality one finds an upper bound on the difference of y and yz,,:

Yo (r) — y(r)| < C\/Lo, €0, R, (4.31)

where C' > 0 is a constant depending on the background solution y and R, but not on r or L.
See [36] for details of the estimates. So by choosing Ly small enough one can attain e~ ¥%o (Fo) > 1.
Together with the monotonicity of y this implies the assertion. O

Remark 4.6. One can prescribe a distinct value for the ADM mass M > 0 or Ry > 0 or
R; > 0. For this purpose one has to rescale the matter distribution function f. If f(x,v) is a
static solution of the Vlasov equation, so is f,(x,v) = a’f(ax,v) for any a > 0. The rescaled
function f, has spatial support [a~*R;,a 'R and ADM mass

M = %/f(x,v)\/l + [v]2dvdz. (4.32)

So by rescaling a given solution we can get any prescribed value for the ADM mass or the inner
or the outer radius.
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4.8 Black holes

4.3 Black holes

An interesting modification of the results discussed above are static, spherically symmetric so-
lutions of the Einstein-Vlasov system that are not regular on [0,00) but that have a black hole
at the center. This subsection will be devoted to the construction of such solutions. The con-
figuration we will be obtaining is the following. In a ball of radius r4 around the center we will
have vacuum. This vacuum region will be surrounded by a shell of Vlasov matter supported on
(r4, Rp). In the outer region of this shell, thus for r > Ry, there will be vacuum again.

It is well known that if there is vacuum on hand, the spherically symmetric, asymptotically
flat solution of the Einstein equations with vanishing cosmological constant is given by the
Schwarzschild metric. The corresponding coefficients fiyac and Ay,ac are given by

e2Hvac(r) = g=2Avac(r) — 1 _ 2—]\40, r > 2Mj, (4.33)

r

where M) is the mass parameter of the black hole. This solution describes a black hole of mass M
that is hidden behind an event horizon at r = 2Mj. At this event horizon we have a coordinate
singularity and we consider the solution for r > 2Mj. In section 5.4 the global structure of the
spacetimes corresponding to solutions constructed in this work will be discussed, i.e. analytic
extensions of the metric beyond the black hole horizon. The existence of solutions as described
above is stated by the following theorem.

When dealing with solutions containing a black hole we drop the variable y and work with
p instead. The reason for this is that not in every vacuum region an unshifted Schwarzschild
solution can be glued to the non-vacuum solution as can be seen later, cf. remark 4.8.

Theorem 4.7. Let ® : R? — [0,00) be of the form (3.39) with Eg = 1 and Lo > 0. Moreover,
let Ly > 16]\402 > 0. Then there exists a static solution (f,\, ) of the spherically symmetric
FEinstein-Viasov system (3.28) — (3.32) such that p and X are given by (4.33) for 2My < r < ry
and o(r) = p(r) = f(x,v) =0 for 2My <r <ry orr > Ry and

Ro
0< 47?/ r2o(r)dr < oo (4.34)

T+

where

Lo+ /L2 — 16MZ Ly
= > 4 M, 4.35
+ 1 0 (4.35)

and Ry > ry. Furthermore, A\, € C%((2Mjy,00)), 0,p € C'((2My, 0)), and the spacetime is
asymptotically flat.

Proof. On the interval (2Mj,r,) the Einstein-Vlasov system is solved by the Schwarzschild
metric (4.33) and the vanishing matter distribution f(z,v) = 0. By virtue of lemma 3.2, (iii) for
Ey = 1 the ansatz (3.39) for the matter distribution f yields vacuum if e*(") /14 Lo/r2 > 1.
We consider this inequality for (") = /1 —2M/r. Tt is fulfilled on the interval [r_,r,] where

Lo+ +/L3—16MZLy
— , 4.36
Y] (4.36)

0

T+

Since Lg > 16M3 by assumption this interval is well defined and not empty. We have 2My <
r— < r4 and on (r_,ry) the ansatz ® given in (3.39) for f is consistent with f(z,v) = 0. For

23



4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

r > r4 we want to continue p(r) as a solution of the non-vacuum Einstein-Vlasov system. So
we impose the initial conditions

2M 2M
Mo = ,U'Vac(r—l—) =4/1- —07 Ao = Avac(r—i—) =4/1- =0

. 4.37
- - (4.37)

A solution of the Einstein-Vlasov system fulfilling these initial conditions exists by means of
theorem 4.2. Note that Ag > 0. The transition from iyac to the non-vacuum solution at r is
C2.

Next, one has to check that the constructed solution is not vacuum everywhere. Therefore,

one calculates
d L
=) 14 20
dr (e + 7“2)

which implies that o(r) > 0 and p(r) > 0 in a right neighborhood of r. It remains to show that
there exists Ry > r4 such that f(r,v) = 0 for all r > Ry. It suffices to show that lim,_,,, > 0.
To prove this we consider a corresponding equation to (4.1). We define

<0, (4.38)

T=r4

M(r) = My+m(r) = My + 4x /7‘ s%0(s)ds. (4.39)

T+

The Einstein equations imply

/ 1 M(r) My m(r)
— >
w(r) 2 Arrp(r) + 2 2 = 2hy) + o (4.40)
Integration of equation (4.40) yields
() > / ";(j)ds >0 (4.41)
T4

as desired. Since p is monotonically increasing there exists a single zero which we call Ry. So we
have obtained a solution of (3.28) — (3.32) that for r € (2Mjy, 7] is given by the Schwarzschild
metric with mass parameter M, that contains a matter shell supported on (r, Ry), and that is
again given by a Schwarzschild metric with mass parameter M := M (Ry) for r > Ry. O

Remark 4.8. In the coordinates on hand it is not possible to have a Schwarzschild solution
without any shift both, outside and inside of the matter shell. In the construction that is described
i theorem 4.7 by setting Ey = 1 the parameters were chosen in a way that p does not tend to
zero as T goes to infinity. But this only corresponds to a rescaling of the time coordinate and the
solution is asymptotically flat, nevertheless.

4.4 'The Buchdahl inequality

At the investigation of the Einstein-Vlasov system with non-vanishing cosmological constant an
upper bound for the mass term M) will turn out to be of great help. In the case of globally
regular solutions M (r) equals the quasilocal mass m(r) given by

m(r) = 4w /07‘ s20(s)ds. (4.42)
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4.4 The Buchdahl inequality

Such a bound has been proved by Andréasson, cf. [2]. He also shows that for Vlasov matter
the estimate is sharp. But we also wish to dispose of a bound of the corresponding quantity for
solutions with a Schwarzschild singularity at the center as described in subsection 4.3. In this
context, the quantity M (r) reads
T
M(r) = My + 47?/ s2o(s)ds, > 2My, (4.43)
2My

where M is the mass parameter of the black hole. For this purpose we extend the result in [25]
or [3] for the charged case to situations with Schwarzschild singularity at the center. We state
the following lemma.

Lemma 4.9. Let My > 0 and let A\, u € C%((2My, 00)) be a solution of the spherically symmetric,
static Einstein equations (3.10) — (8.12) with a Schwarzschild singularity with mass parameter
My at the center. Let the matter quantities o,p,pr € Llloc((QMQ,OO)) be zero on (QMO, %Mg],
fulfill the energy condition

p+2pr <o, (4.44)

and the generalized TOV equation

20— pr) (4.45)

p(r)=—w(e+p) -

a.e. in their domain of definition. Then the inequality

2M(r) _ 8
— <= 4.46
ro 9 (4.46)
holds for all v € [$ Mo, 00) where M(r) is given in (4.43).

Remark 4.10. If one wants to consider a spacetime without Schwarzschild singularity, thus the
case My = 0, the lemma is stating that ZmT(T) < g for all r € [0,00) where m(r) is the quasilocal
mass given by (4.42).

Proof. For the proof of the lemma we apply techniques that are already used in [25] to prove the
Buchdahl inequality for globally regular solutions without Schwarzschild singularity. At first we

introduce the variables o (M
T = HMo + m(r)) m(r)), y = 8rip(r). (4.47)
r
Note that < 1 and y > 0. The first inequality must hold true since otherwise the lapse function
e# would not stay bounded. We integrate the Einstein equation (3.10) over the interval (%, 7“)

and obtain .

M,
672)\ —1— 9 0 (1 _ e*2>\0) _ 8_7T/ 329(3)(13’ (448)

4r r J9Mg

where A\g = A (%). Since we have vacuum on (QMO, %), on this interval the metric is given by

A 1 20Mo+mir)

the Schwarzschild metric and one can compute Ay explicitly. One finds that e =2 -

We plug this into the other Einstein equation (3.11) and obtain the differential equation

1 My + m(r)
Iu/(qf-) = W <47T7“p+ T) .

T

(4.49)
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4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

Now we introduce 8 = 2In(r) and want to consider the curve (:U (66/ 2) Y (66/ 2)) parameterized
by £ in [0,1) x [0,00). In the following a dot denotes the derivative with respect to 5. Using the
Einstein equations and the TOV equation (4.45) one checks that = and y satisfy the equations

8rrlo = 2i + =, (4.50)

8mrlp =y, (4.51)
ety .. ()’

8rripp = ——— ~ 4.52

g Sy (4.52)

By virtue of these equations (4.50) — (4.52) the condition p+ 2py < o can be written in the form

(3x—2+y):’c+2(1—x)y§—@, a =322 — 2z + 92+ 2y. (4.53)

Next, one defines the quantity
(B(1—2)+1+y)?

= 4.54
w(z,) ot (454
and calculates the derivative with respect to g,
. 4—-3x+y . . 4—-3x+y
= —((3z—2 2(1 — < 4.55
0= T (Ge -2 )i 21— a)i) < g LHaey). (459)

depending on x and y. Since 0 < z < 1 and y < 0 this quantity is decreasing along the curve
(z,y) whenever o > 0. Define the set

E={(x,y)|0 <z <1,y>0ay) <0} (4.56)
So all parts of the curve (z(5),y(3)) where w is not decreasing are lying in E. This implies
w < max w(z,y). (4.57)
We consider partial derivatives of w with respect to z and y, respectively. We have

ow =91 —x)?+1+2y+y?

= o7 , (4.58)
ow 231 —z)+1+y
5y = — . (4.59)

So there are no stationary points of w in the interior of £. Thus, the maximum is attained at
the boundary OF of E. This maximum can be found with the method of Lagrange multipliers.
Thus we consider the function w(z,y,\) = w(z,y) + Aa(z,y) and the system of equations

O, w(x,y,\) =0, Oyw(x,y,A) =0, Ohw(z,y,\)=0. (4.60)
Eliminating the Lagrange multiplier A in the first two equations yields the system

Bz —1)(1 —=x)
I+y

(1-2) [6‘ (3(1 —z)+2 ) +4(3z — 1)} =0, (4.61)

32% — 2z +y* + 2y = 0. (4.62)
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4.5 Numerical results

We calculate y from (4.62) taking the solution larger than zero and plug it into equation (4.61).
One is left with a single equation for x that is solved by x = 0. Then equation (4.62) yields that
also y = 0. So we have

(3 (1 — M) + 871'7“2]9(7“))2

w(@,y) = | _ 2(Motm(n)

T

< w(0,0) = 16. (4.63)

Since p > 0 one can omit the term containing p and some further simplifications yield
2(M0 + m(r)) < §
r -9

which was the assertion of this lemma. O

(4.64)

4.5 Numerical results

In this subsection examples of static solutions of the spherically symmetric Einstein-Vlasov sys-
tem to different parameter choices and boundary conditions are presented. The data has been
calculated numerically using methods similar to those of [1]. The purpose of this discussion is to
illustrate the families of solutions that occur and how the parameters for example in the ansatz
® of the matter distribution function f affect the solution. We discuss different classes of matter
configurations as well as solutions with a black hole at the center.

For the different numerical calculations we choose for f an ansatz of the form (3.39). It is
advantageous for the calculations to introduce a different variable u for the metric coefficient p,
given by u = e~Y. The differential equation that has to be integrated reads

u(r) 5

u'(r) = xrHy(r,u(r am rs2 s,u(s))ds
(r) T 752G (s, u() s (4 Hy(r, ())+T2/0 Glols, ())d>, (4.65)

where G4(r,u(r)) = Gg(r, —In(u)) and Hy(r,u(r)) = Hy(r, —In(u)) and G4 and Hy are defined
in equations (3.46) and (3.47), respectively. The matter quantities ¢ and p and the quasilocal
mass m(r) have been calculated using Simpson’s rule and the integration of equation (4.65) was
performed using the Euler method. Also a variable step width has been used like in [6]. Given a
value for the second derivative ¢”(r) of the energy density and a maximum step width hp,ay the
variable step width h,, is calculated by h,, = hmax/In(e + 0" (1,,)).

The quantity a(r) defined by a(r) = u(r),/1 + % plays an important role. As stated by
lemma 3.2, (iii) we have vacuum if and only if a(r) > 1. The behavior of this quantity depends
strongly on the choice of Lg. If one chooses Ly = 0 the quantity a(r) will be smaller than 1 until
a certain radius Ry and will stay larger forever after, since «/(r) > 0 by means of equation (4.65).
But if Ly > 0 there will be a region [0,7,] where a(r) > 1. In that region there is vacuum,
i.e. o = 0 and u stays constant. So the numerical integration of equation (4.65) has to start
not until » = ;. As soon as u(r) exceeds the value 1 no matter can appear any more. So the
numerical integration can be stopped and u can be continued by a Schwarzschild solution.

In the following we will distinguish several types of solutions by the shape of the energy
density and its support. Essentially there are two classes of solutions. We call them shells and
non-shells and they are characterized as follows. Eventually we will discuss an example for a
solution with a black hole at the center as constructed in subsection 4.3.
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4 THE SYSTEM WITH VANISHING COSMOLOGICAL CONSTANT

One obtains non-shell solutions by setting Ly = 0. All ansétze with Ly = 0 lead to energy
densities o whose support is an interval [0, Ry]. If the solution is isotropic, i.e. £ = Lo = 0, then
o is strictly decreasing on its support [0, Ry]. Figure 1 shows an energy density in this setting.
The configuration just described is the most easy one to handle. Actually, the matter behaves

0
100 v R e R R s R :

80 A\
60 1\
o b N

20 ..... ..... ..... ..... ..... ..... ..... ..... ..... .....

—_ r

0.1 0.2 0.3

Figure 1: Energy density ¢ in the isotropic case, i.e. k =0, £ =0, Ly = 0, y(0) = 0.4. The matter is
strongly peaked around r = 0. The support of g is bounded by Ry ~ 0.162.

like an ideal fluid only admitting ball configurations.

In the situation where Ly = 0 but £ # 0 the energy density ¢ and the radial pressure p are
not monotonous any more. In fact, one observes the occurrence of peaks. It is important to
note that these peaks are never separated by vacuum regions. Even though g might become
very small it always stays strictly positive on the interval [0, Ry]. Moreover, one observes that
the smaller one chooses the initial value uy of u the more peaks one will obtain [1]. This also
holds for the shell case which will be discussed later. A situation of a non-shell with two peaks is
shown in figure 2. Even though for small r there is a region that happens to resemble a vacuum
region the energy density g is strictly positive until the end of its support at r = Ry. It is also
remarkable that the size of the peaks tends to decay very fast for larger radii. Furthermore, the
solution shows a so called tail, i.e. after the last peak there is a large region filled with a little
matter.

-—
0.1 0.2 0.3 0.4 0.5
Figure 2: A non-shell with two peaks and a tail, k = 0, £ = 5.5, Ly = 0, y(0) = 0.1. After the

second peak there is still a large area with a little matter, a so called tail. The support of o ends only at
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4.5 Numerical results

Setting Ly > 0 leads to shell solutions. As already mentioned a vacuum region around r = 0
occurs. The support of the energy density ¢ will be contained in an interval [ri, Ry] where
ry > 0. However, also within this interval the matter regions may be separated by vacuum
areas. Thus the support of o is not connected any more. Figure 3 shows a pure shell with a
single peak. A shell with two peaks that are separated by vacuum is depicted in figure 4. Of
course, the peaks of shells are not necessarily separated by vacuum.

1

1.50 +
1.25 +
1.00 +
0.75 1+
0.50 +
0.25 +

— .
01 02 03 04 05 06

Figure 3: A pure shell with kK =0, £ = 1.5, Ly = 0.2, y(0) = 0.4. The energy density ¢ is supported on
(0.198,0.506).
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Figure 4: A shell with a tail, k =0, £ = 1.5, Ly = 0.2, y(0) = 0.12. There is a vacuum region before the
first peak and between the two peaks, as well. Before the support of the matter ends there is a quite large
region with little matter, a so called tail. The energy density is supported on (0.055,0.092)U (0.118,2.08).

Finally we construct a solution with a black hole of mass M, at the center. The existence of
such solutions has been proven in subsection 4.3. There is a positive lower bound on Lg given
by the inequality Ly > 16Mg. The left graph in figure 5 shows the metric coefficient . The
right graph shows the corresponding energy density o. On the support of the energy density, u is
obtained by a numerical integration of equation (4.40). In the vacuum regions, y is merely given
by the Schwarzschild metric with mass parameter My or M = My + 4x [ r2o(r)dr, respectively
(see the dashed lines in figure 5). As mentioned in remark 4.8 either the vacuum solution inside or
outside the matter shell is shifted with respect to the Schwarzschild metric. This shift represents
only a rescaling of the time variable and is determined by the cutoff energy FEy in the ansatz

29



5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT
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Figure 5: A spherically symmetric, static solution of the Einstein-Vlasov system, with a black hole of
mass My at the center. My =1,k =0, ¢ =15, Ly = 18. The left graph shows the metric coefficient
and the right graph the energy density ¢. The initial value for the integration is determined by the mass
of the black hole. We have Ey = 0.969 and the matter is supported in (6.168,6.99).

400
Y
4o
40

T

T

(3.39) of the matter distribution function f. In this example, Fy has been chosen in a way that
w1 tends to zero as r goes to infinity.

5 Solutions with non-vanishing cosmological constant

This section is devoted to results concerning the Einstein-Vlasov system with non-vanishing com-
sological constant. The presented results are the outcome of a joint work with Hakan Andréasson
and David Fajman, published in [14].

5.1 Static, anisotropic globally regular solutions for A > 0

In this section we prove existence for globally regular, static solutions with A > 0. For this
purpose, it is sufficient to consider equation (3.57),

/(T) - 47
T IR R G ey ds

L (5.1)
< (i) — -+ % [ PGusaoas).

C12r 2
because a solution to this equation already determines uniquely a solution to the full Einstein-
Vlasov system (3.29) — (3.32). In the course of the proof we will refer to the corresponding
solution of the Finstein-Vlasov system with A = 0 which we call a background solution. The
existence, uniqueness and several other properties of this background solution have been proved
and discussed in the previous section. In this context "corresponding" refers to a solution with the
same initial value and the same ansatz for the matter distribution f. The boundary conditions
may however differ since A changes the structure of the spacetime for large r. Quantities that
belong to the solution with non-vanishing A will be subscripted with A, so for example we write
yAa, op and correspondingly. The proof has four steps. First we prove local existence using a
contraction argument in lemma 5.1. Then, in lemma 5.2, we specify a continuation criterion
for the local solution. In the next step we prove that for A small enough there will occur a
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5.1 Static, anisotropic globally reqular solutions for A >0

vacuum region after a radius Rop and that [0, Rgp ) is contained in the interval of existence of the
solution pp of the Einstein-Vlasov system. Finally, we show that a globally defined C'-solution
can be obtained by continuing the metric with the Schwarzschild-de Sitter metric and the matter
distribution with constant zero beyond Rgx.

So at first the following existence lemma is proven for small radii. This lemma corresponds
to the first part of the proof of theorem 2.2 in [33| for the case A = 0.

Lemma 5.1. Let ® : R? — [0,00) be of the form (3.39) and let Gy, Hy be defined by equations
(3.46) and (3.47), respectively. Then for every yo € R and every A > 0 there is a 6 > 0 such
that there exists a unique solution yp € C2([0,6]) of equation (5.1) with initial value ya(0) = yo.

Proof. We consider the equation (5.1) and integrate it using the initial condition ya(0) = yp.
The following fixed point problem is obtained,

ya(r) = (Tya)(r), r=0 (5.2)
where the operator T' is given by
" 47
Tu)(r) :=yg — /
Tu)lr) = vo 0o 1— SQTA — 8 [F02Gy(0,u(c))do
sA 1 [ 5
X <5H¢(s,u(s)) ~ Tom + 2/ o G¢(J,u(0))d0> ds. (5.3)

This operator is considered on the set

M i={u:[0,0) = B | u(0) = yo.y0 — 1 < ufr) < yo + 1,

2A T
= 87” $2Go(s,u(s)ds < c < 1re 0,6} (5.4)
0

As carried out in detail in the appendix, section D, it is shown that T acts as a contraction
on M. This implies (by the Banach fixed point theorem) that there exists yp € M such that
Tyax = ya. Differentiability of ya follows from the structure of 7. The differentiation with
respect to r yields that y, solves equation (5.1) on the interval [0, d]. Away from the singularity
r = 0, standard existence and uniqueness results are applied to extend ya to a maximal solution
on an interval [0, R.). Obviously, the boundary condition at r = 0 is satisfied. The regularity of
the functions G, and Hy implies that yo € C?((0, R.)), (cf. [34]) and it can be shown that the
second derivative continuously extends to r = 0 and y/, (0) = 0. O

The characterization of the maximal existence interval of the local solutions constructed in
lemma 5.1 is relevant to assure for the existence of solutions beyond the non-vacuum region
proven in the next step. For this purpose a continuation criterion is proved in the following
lemma 5.2. Define R, as the maximal radius such that the unique local solution ya of equation
(5.1) can be continued to the interval [0, R.). If R. < oo then either

lim inf
r—Re

7,,2 T r
(1 - TA - 87 ; 52G¢(S,y,\(s))ds> = (5.5)
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

or
limsup |ya(r)| = oo, (5.6)
r—Re
which follows straightforward from equation (5.1). In the case A = 0 it can be shown that
R. = o0, cf. [34]. In the case of a positive cosmological constant, R, may be finite. However, the
solution y, exists at least as long as the denominator of the right hand side of equation 5.1 is
strictly larger than zero. The following lemma formulates this assertion.

Lemma 5.2. Let yg € R and let R, > 0 be the largest radius such that the unique local C?-
solution yp of equation (5.1) with ya(0) = yo exists on the interval [0, R.). Then there exists
Rp < R. such that

lim inf
T*)RD

2 T
<1 _rA 8 32G¢(s,y/\(s))ds> =0. (5.7)
3 r 0

Remark 5.3. We can a priori not exclude the case R. = oo which would however not occur due
to the A term.

Proof. Assume
2A 8 ‘A
-2 sGy(s,ya(s))ds >0 (5.8)
3 T 0
for all » € [0, R.). Otherwise Rp < R. (with Rp characterized as above) occurs due to the
continuity of ys and G4 and the lemma follows. Assume now that the assertion of the lemma
does not hold, i.e. there is a constant a > 0 such that
r’A 8w [T,
1———— [ 5°Gys(s,ya(s))ds > a (5.9)
3 T Jo
for all » € [0, R.). First we show that this implies the existence of a C' > 0 such that for all
r € [0, R.) we have |y}, (r)] < C. Therefore we consider

O < o (Halrom () + 3+ 75 [ Galsn(eds). (5.10)

Here it is used that Hys and G are positive. It is obvious that the second term, %, is bounded

on the interval [0, R.). We show that the right hand side of (5.10) is bounded on this interval.
Assume the opposite,

limsup Hy(r,ya(r)) = oo or limsup/ 5Gy(s,ya(s))ds = co. (5.11)
0

r—Re r—Re

The second possibility implies limsup,_, g G(r, ya(r)) = co. On the interval [0, R.) we have
the upper bounds Hy(r,ya(r)) < Hg(Re,ya(r)) and Gy(r,ya(r)) < Gg(Re,ya(r)), cf. lemma
3.2, (ii). And since Hy(r,y) and Gy(r,y) are increasing functions in y (cf. lemma 3.2) this in
turn implies

lim sup ya (r) = oo. (5.12)

r—Re
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5.1 Static, anisotropic globally reqular solutions for A >0

It follows that for all ¢ > 0 sufficiently small there exists r € (R, — ¢, R.) such that v/ (r) > 0
which on the other hand implies

T
rHy(r,ya(r)) + %/ 82G¢(s,y/\(s))ds < ﬂ, (5.13)
< Jo 127
by equation (5.1) for y). This contradicts the assumption that either Hy(r, ya(r)) or the integral
Jo s°Gs(s,ya(s))ds diverge as the right hand side of (5.13) is bounded. Thus |y} (r)| is bounded
on [0, R.).

In the remainder of this proof it is shown that the solution can be continued beyond R,
which yields the desired contradiction. To achieve this, similar methods as in the proof of lemma
5.1 will be used. For §,e > 0, § > ¢ define y. = yp(R. — €), the interval I. containing R, by
I. =[R.—¢,R. — e+ 4], and

ya(r); r € [0, R, — €] ‘

uy(r) = { u(r); r>R.—¢ (5.14)
Consider the operator
" 47
Teu)(r) = —|—/
) e T R oG ey @)
A 1 [°
X <8H¢(s,u(s)) - 182—7T + 2/, o?Gy(o, uy(a))da> ds (5.15)
acting on the set
ME:{u:IE—ﬂMu(RC—E):yg,ya—lgu(r)gye—i—l,
2A 8 T
% + TW s2Gy(s,uy(s))ds < c< 1,1 € Ig}. (5.16)
0

Using (5.9) and |y} ()| < C on [0, R.) for a C' > 0 one can prove that T acts as a contraction
on M.. In virtue of Banach’s fixed point theorem the operator 7. has a fixed point y. € M,
such that (ye), defined by (5.14) solves equation (5.1) on the interval (0, R. — & + d). But this
contradicts the definition of R, and the lemma follows. O

In the next lemma we prove that within the interval of existence [0, R.) of the solution yj
there will be a radius Ryppy where the matter stops. Beyond this radius vacuum is on hand.

Lemma 5.4. Let ® : R2 — [0,00) be of the form (3.39) and let y be the unique global C*-
solution of equation (5.1) in the case A = 0 where y(0) = yo > 0 (cf. section 4). As proved in
[34], o(r) = G4(r,y(r)) has bounded support which is the interval [0, Ry) where y(Ro) = 0 defines
Ry uniquely. Let yp be the unique C*-solution of equation (5.1) with A > 0 and yx(0) = y(0)
that according to lemma 5.1 exists at least on an interval [0,6] for a certain § > 0 and let pp be
the energy density corresponding to ya.

Then ya exists at least on [0, Ry + AR] and the support of oa is bounded by some Ry p <
Ro+ AR if A and AR > 0 are chosen such that

ly(Ro + AR)] i
Cy(Ro + AR)7 CU(RO + AR)

0<A< min{ (5.17)
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

holds. The constants Cy(r) defined in equation (5.27) and Cy(r) defined in equation (5.25) are
fully determined by the background solution y.

Proof. We define

mir) = am TSZ S S m T) = 4am TSQ S S .

() 4/0 o(s)ds,  ma(r) 4/0 or(s)ds, (5.18)
mi\r 7'2 m T

v(r):l—Qr(), vp(r) = —%—2 ﬁ() (5.19)

Consider the continuous function vy. Note that va(0) = 1. We define 7* = r*(A) as the smallest
radius where v (1) = 1_18' Lemma 5.2 assures that r* < R, i.e. 7* is well defined. We can write

r* =inf{r € [0, R.) |va(r) = 1/18}. (5.20)

In addition, we define 7 as the radius until that |y (r) — y(r)| < |y(Ro + AR)|. The right hand
side of this inequality is given by the background solution y, which exists globally, i.e.

7 =sup{r € [0, R] | [ya(r) — y(r)] < [y(Ro + AR)]}. (5.21)

Note that y(0) = ya(0) = yo, so 0 < 7 by continuity of y and y,. Let

*

7 = min{r*, 7}. (5.22)

Choosing A s.t. (5.17) holds, we will show that 7 > Ry + AR. We assume the opposite,
7™ < Ry + AR, and consider the sum |oa(r) — o(r)| + [pa(r) — p(r)| on the interval [0,7*]. By
the mean value theorem we have

loa(r) = o(r)| + Ipa(r) — p(r)| = <‘3yG¢(7“7 y)|ul‘ + ‘3yH¢>(ﬁy)\u2

) lyar) =yl (5.28)

where u1,us € [y(r),ya(r)] are chosen appropriately. From the estimate (E.2) in Appendix B we
have that for r < 7*
loa(r) = o(r) + [pa(r) = p(r)] < ACun (™), (5.24)

where Cyj, is defined in (E.2). Note that Cyy(r) is increasing in 7. Still on [0,7*] we compute

7,,2 7“2 T T
(1) = va(r)] < 5 + Zhmalr) = mlr)] = = + 5 [ loa(s) — oolds
< <—(f*)2 + 5y (f*)) A= Cu(7)A o
>~ 3 3 gh - Lo

Since we have v(r) > & (Buchdahl inequality, cf. lemma 4.9) and A < % by choice of A
we can conclude

oA(r) > o(r) = AC,(7*) > % W8 oy s

Co(Ro+AR) " (5:20)

x
18
on [0,7*] since Cy(r*) < Cy(Rop + AR) because C,(r) is increasing and 7 < Ry + AR by
assumption.
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5.1 Static, anisotropic globally reqular solutions for A >0

We also consider the distance between y and ya on [0,7*]. Following the procedure depicted
in section E of the appendix one obtains

) = )] < A (324 29w (Holrvan) + 3Gl ) )

1 T
+ 727 (7“ + 24772 <H¢(T, yo) + §G¢(T, y0)>> / Cgh(s)Ads (5.27)
0
=: Cy(r)A < Cy(7")A.
' = ly(Ro+AR)| o : :
Since Cy(7*) < Cy(Rp + AR) and A < C, (Rotak) 1 [0, 7*] by assumption, the relation
lya(r) —y(r)| < ly(Ro + AR)| (5.28)

already holds. Equations (5.26) and (5.28) state that vA(7*) > & and |ya(7) — y(7)| <
ly(Ro + AR)|, respectively on the interval [0, 7*], which is a contradiction to the definition of 7*.
Thus we have 7 > Ry + AR as desired.

matter region vacuum

Figure 6: Qualitative sketch of the situation in the proof of lemma 5.4

We have shown that y, exists at least on [0, Ry+AR] as the continuation criterion applies and
from equation (5.28) we already know that yx (Ro+AR) < 0. Since y, is continuous it has at least
one zero at in the interval (Rg, Ry + AR). In particular there exists an interval (Rop, Ry + AR)
where y, is strictly smaller than zero. Ry is the largest zero of yp in (Rg, Ry + AR). So the
spatial support of fa is contained in the interval [0, Ry ) and this implies the assertion. U

In the last two subsections we have seen that for suitably chosen A there exists a unique
solution yp to equation (5.1) on the interval [0, Ry + AR] for some AR > 0. This solution
uniquely induces a solution pa, Ap of the equations (3.29), (3.30) on [0, Ry + AR] whose energy
density ga is of bounded support in space. By gluing a Schwarzschild-de Sitter metric to this
solution one can construct a global static solution to the Einstein-Vlasov system.
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

Theorem 5.5. Let ® : R? — [0,00) be of the form (8.39). For every initial value py < 0 there
exists a constant C' = C(uo, @) > 0 such that for every 0 < A < C there exists a unique global
solution pp, A\n € C%([0,00)), fao € C%[0,00)) of the static, spherically symmetric Einstein-
Viasov system (3.29) — (3.32) with pa(0) = po, and Ay(0) = 0 such that the support of the
distribution function f is bounded. This solution coincides with the Schwarzschild-de Sitter metric
i the vacuum region.

Proof. According to Lemma 5.1 there exists a C2-solution y of equation (5.1) on a small interval
[0,6]. In the proof of Lemma 5.4 we saw that this solution can be extended at least until
r = Ro+ AR for any AR if one chooses A small enough. Beyond the support of g5 and py, thus
for r € [Ro A, Ro + AR], equation (5.1) takes the form

2
yh(r) = _%i In <1 _ A %) (5.29)

where M = mp(Ro,a). This equation is solved by the (shifted) Schwarzschild-de Sitter metric,
whose corresponding y-coefficient yg is given by

2
ys(r) = _%m (1 _ ﬂ _ %) _In <e*)‘(R07A)> . (5.30)

The shift has been chosen such that y, can be extended by yg as a C?-solution of equation (5.1)
on [0,00) using a modified ansatz for the matter distribution fr. Namely, for » > Ry + AR we
drop the original ansatz ® for fy and continue fa by the constant zero function, i.e.

[1—ee¥)" [L— Loli, r€0,Ry+ AR]

5.31
0, r>Ry+ AR ( )

falz,v) = {
Obviously f is continuous since fy(r) = 0 already on (Roa, Ro + AR) but & fa(z,v) is not
continuous in general.
Via pp = In(Ey) — ya and
2A 8 T
eP=1 -2 _°T s°Gy(s,ya(s))ds (5.32)
3 T 0
one can construct a local solution pa, Ay € C2([0, R.)) of the Einstein equations (3.29), (3.30),
where R, > Ry + AR. This solution fulfills the boundary conditions Ap(0) = 0, ua(0) =
In(Ep) — yo, Ny (0) = 1, (0) = 0. We now see that Fy = e#f0.a) and continue pp and Ay with
the Schwarzschild-de Sitter coefficients pg, Ag given by
r’A 2M

WS =TS =1 — T 5.33
e e 3 r ( )

in a continuous way beyond Ry + AR. From equation (5.29) we deduce that also the derivatives
of up and pg can be glued together in a continuous way. The functions pa, Ax, and fa solve the
Einstein-Vlasov system (3.29) — (3.32) globally. O

Remark 5.6. In the isotropic case, i.e. Ly = £ = 0 in the ansatz (3.39) for the distribution
function f, the matter quantities o and p are monotonically decreasing. This implies that their
support in space is a ball. In the anisotropic case however, so called shell solutions occur, cf. sec-
tion 4.5 or [1]. The support of such matter shells is in general not connected.
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5.2 Static, anisotropic, globally reqular solutions for A < 0

5.2 Static, anisotropic, globally regular solutions for A < 0

In this section an existence lemma for A < 0 is stated for small radii. This lemma corresponds
to the first part of the proof of theorem 2.2 in [33| for the case A = 0.

Lemma 5.7. Let ® : R? — [0,00) be of the form (3.39) and let Gy, Hy be defined by equations
(3.46) and (3.47), respectively. Then for every yo € R and every A < 0 there exists a § > 0 such
that there exists a unique solution yp € C2%([0,6]) of equation (5.1) with initial value ya(0) = yo.

Proof. The proof works in an exactly analogue way as in the case A > 0. O

For negative cosmological constants the global existence of solutions can be proved in an
analogue way as done in [34] for the case A = 0. After establishing the local existence of
solutions analog to the A > 0 case, we show that the metric components stay bounded for all
r € R4 with an energy estimate. This will yield the global existence of solutions of the Einstein-
Vlasov system with negative cosmological constant. In the next step we show by virtue of a
suitable choice of an ansatz ® for the matter distribution f, that the matter quantities ¢ and p
are of bounded support.

In the following theorem the existence on spatial intervals of the form R\ [0, rg), for ro > 0 is
included for the purpose of applying the same theorem to the construction of static spacetimes
with Schwarzschild singularities in the center (cf. theorem 5.16 in subsection 5.3). The solutions
of interest here are those where the radius variable takes values in all of R.

Theorem 5.8. Let A < 0 and let ® : R?\[0,00) be of the form (3.39) and let G4 and Hy be
defined by equations (3.29) and (3.30). Then for every ro > 0 and po, Ao € R there exists a
unique solution Ap,pun € CY([rg,00)) of the Einstein equations (3.29), (3.30) with px(ro) = o
and A (ro) = Ao. One has A\g =0 if ro = 0.

Proof. We use an energy argument similar to [34]. Let yn € C?([ro, ro + d]) be the local solution
of equation (5.1) with ya(rg) = In(Ep)e 0. If ro = 0 the existence of this local solution is
established by lemma 5.1 and in the case ¢ > 0 the existence of a local solution follows directly
from the regularity of the right hand sides of (3.29) and (3.30). Let [rg, R;) be the maximal
interval of existence of this solution. By pua = In(Ep) — ya and

A 5\ 2 r
e — 1 3 (7"2 — 7"_0> = (%0 (1 - 6_2)\()) + 477/ 32G¢(s,y/\(s))ds> (5.34)

r r 0

one constructs a local solution px, Ay € C?([ro, R¢]) of equations (3.29) and (3.30). We define

A 1 TSA Tro —9)\ T )
=t (e 2 (11— ) ds ) . 5.3
walr) = e < 247 8n ( ‘ +/m senls)ds (5.35)
The Einstein equation (3.29) implies
i (1) = dmre® 2 ) (pa () + wa (1)) . (5.36)

By adding equations (3.29) and (3.30) we have

(,u’A(r) + )\j\(r)) — 4qrreialr) (pa(r) + oa(r)). (5.37)
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

We assume R, < oo and consider the quantity e#A+* (py 4+ wy) on the interval [%,Rc). On
this interval, in particular away from the origin, a differential inequality will be established that
will allow us to deduce that both up and Ay are bounded on [%, Rc). Using the TOV equation
(3.58) (lemma 3.3) we obtain

d 2 3 A 2
- (eMA+)\A (pA + wA)) — elatAa <_ﬂ _swa A + PTA + Q_A>

dr r T 4rr T T

. S eMA-f—)\A (538)
PA + wp
=: Cy (pr +wyp) ehatAn,

In the course of this estimate we have used that ﬁ, pra(r)/r, and pa(r)/r stay bounded for
r € [£ R.). The constant C5 is bounded since wx (r) > 0 for negative A. It follows

d
1 In <6“A+)‘A (pA + wA)> <Cy = A+ pp < oo. (5.39)

Equation (5.36) implies that gy (r) > 0 and therefore pp(r) > po. We also have

2 2
r|A] < 3+ RZ|A| < 0o
3 3
This in turn implies Ay > —oo and we deduce from equation (5.39) that both pa and Ap are
bounded on [%, Rc) . This allows to continue pp and Ap as C?-solutions of the Einstein equations
beyond R, which contradicts its definition. So R, = oc. O

e <14 (5.40)

We prove in the following that the matter sources in the solutions, constructed in the previous
theorem, are compactly supported in r and thereby yield physically reasonable solutions.

Theorem 5.9. Let ® : R? — [0,00) be of the form (8.89) and let uyg € R , 79 > 0 and
let A, pa € CY([ro,00)), flz,v) = ®(E,L) be the unique global-in-r solution of the Einstein-
Viasov system (3.29) — ((3.32)) with negative cosmological constant where up(0) = po such that
yo = In(Eg)e " > 0. Then there exists Ry € (rg,00) such that the spatial support of fp is
contained in the interval [ro, Ry).

Proof. Due to lemma 3.2, (iii) we have vacuum, i.e. op(r) = Gg(r,ya(r)) = 0 and pa(r) =
Hy(r,ya(r)) = 0, if ya(r) < 0. By assumption we have ya(0) > 0. In the following we show
that lim, . ya(r) < 0. Since ya is continuous and monotonically decreasing, this implies that
YA possesses a single zero Ry and the support of the matter quantities pp and pp is contained in

[0, Rp). We define yyac,a by

1 r2A
Yvac,A = Yo — 5 In <1 - T) . (541)
So we have A A
/ . T T
yvaC,A(r) - 1— ATTQ <_m> (542)

and Yvac,A (0) = ya(0) = yo. Furthermore, since ), (r) < y... o(7) which can be seen immediately
by means of equation (5.1) we have

1 702’/\’ r—00
YA(r) < praca(r) = yo — g {1+ —= | = —00 <0 (5.43)
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5.8 Solutions with a black hole at the center

and the theorem follows. O

Remark 5.10. The solution coincides with Schwarzschild-Anti de Sitter for r > Rg if the con-
tinuity condition

2
pa(Ro) = () — (o) = 5 (1= 22 - 20 (5.44)

1s fulfilled, where M = 4w fORO s2o0p(s)ds. So if yo is given, the corresponding value of Eq in the
ansatz © for the matter distribution f can be read off.

5.3 Solutions with a black hole at the center

In this section we construct spherically symmetric, static solutions of the Einstein-Vlasov system
with non-vanishing cosmological constant that contain a black hole at the center. This means
that there is a vacuum region around the origin where the metric is given by the Schwarzschild-de
Sitter or Schwarzschild-Anti de Sitter metric, respectively, with non vanishing mass parameter
My. We will consider both positive and negative cosmological constants. The construction for
the case A > 0 makes use of the corresponding solutions with vanishing A. We call this solution,
where A = 0, a background solution like in subsection 5.1. As in the previous sections we dis-
tinguish between the notation for the Einstein-Vlasov system with A = 0 and the corresponding
system with A # 0. Every quantity of the system with A # 0 is denoted by an additional index
A, e.g. we write yp(r), oa(r), and correspondingly.

5.3.1 Matter shells immersed in Schwarzschild-de Sitter spacetime

The construction of the solution with A > 0 can be outlined as follows. In the vacuum case,
i.e. when the right hand sides of the Einstein equations (3.29) and (3.30) are zero, the solutions
are given by

2N 2M 2N oM\ !
e2m(r) — 1 _ % _ 20 ) = (1 A —0> , T >TBA (5.45)
T

where rgy is defined to be the black hole event horizon, i.e. the smallest positive zero of 1 —
r2A/3 — 2My/r. If one chooses Ly and My appropriately and A sufficiently small the following
configuration is on hand. For small » > rpp one sets f(x,v) = 0 and the metric is given by
Schwarzschild-de Sitter. Thus one has the coefficients (5.45). Increasing the radius r one reaches
an interval [r_a, 74 4] where also an ansatz f(x,v) = ®(E, L) of the form (3.39) yields vacuum,
ie. Gy(r,y(r)) = Hy(r,y(r)) = 0. In this interval it is possible to glue to the Schwarzschild-de
Sitter solution (5.45) a non vacuum solution solving the Einstein-Vlasov system. It will be shown
that the matter quantities pp and pa of this solution have finite support. Beyond the support
of the matter quantities the solution will be continued again by Schwarzschild-de Sitter. For
negative cosmological constants, globally defined solutions can be constructed, too. Like in the
upper case, the black hole is surrounded by a vacuum shell which is on its part surrounded by a
shell containing matter. In the outer region, we again have vacuum.

In the course of the proof of theorem 5.13 we will need a continuation criterion for the solution
of the Einstein equations, namely the following statement.
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

Lemma 5.11. Let A > 0, pg € R and My, 9 > 0. Let Gy and Hy defined by equations (3.46)
and (8.47). Then the equation

1
1-4 (7"2 — @) -2 (Mo +dr [ 82G¢(S,MA(S))dS>

« <4WH¢(3,M(3)) A (g + 6’%) = (MO +ar / 32G¢(S,MA(S))ds>>

0

iy =

(5.46)

has a unique local C*-solution pup with p(re) = po with maximal interval of existence [ro, Re),
R. > 0. Moreover, there exists Rp < R. such that

lim inf (1 - % <r2 — T—3> — % <M0 + 47 /T 52G¢(S,MA(S))dS>> = 0. (5.47)

r—Rp r 70

Proof. The local existence of a C2-solution of equation (5.46) follows from the regularity of the
right hand side. Basically one is in the situation of lemma 5.2 in the A > 0 with regular center
case except for the fact that there are additional terms containing ry and My. But on a finite
interval [ro, R.) these terms are bounded and well behaved, i.e. the proof can be carried out in
an analogue way. O

Remark 5.12. Lemma 5.11 implies that if there exists a solution pp of equation (5.46) and the
denominator of the right hand side of equation (5.46) is strictly larger than zero on an interval
[ro,7), then up can be extended beyond r as a solution of (5.46).

The following theorem states the existence of solutions for A > 0 with a Schwarzschild
singularity at the center.

Theorem 5.13. Let ® : R2 — [0,00) be of the form (3.39) with Eq = 1 and let Lo, Mg > 0
such that Lo > 16M3. Choose A > 0 sufficiently small. Then there exists a unique solution
pa, A € C%((rpa,0)), f € CO((rpa,0)) of the Einstein-Viasov system (3.29) — (3.32). The
support of the matter quantities op and py is contained in a shell {rix < r < Rop}. In the
complement of this shell the solution of the Einstein equations is given by the Schwarzschild-de
Sitter metric.

Proof. In the first part of the proof we consider the black hole region and show that the chosen
parameters lead to a convenient configuration with opportune properties, cf. figure 7. Then we
make use of the existence of a background solution and construct the desired solution pp in a
rigorous way.

We define the functions

a(r) = \/1— 2Mo \/1+%, (5.48)

r
7"2A 2MO LQ

Moreover, we define r_ and r4 to be the first and second radius where a(r) = 1, respectively,
and rp := 2Mj to be the event horizon of the Schwarzschild singularity. Since Ly > 16M3 we
have rg < r— < ry (cf. [34]). Note also that r > 4My > %MO.
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5.8 Solutions with a black hole at the center

B 'BA T— T-A

black hole vacuum matter vacuum
Figure 7: Qualitative sketch of a black hole configuration surrounded by a shell of matter
Since 9M3A < 1 by assumption (A is chosen to be small), there exists a black hole horizon

rga of the Schwarzschild-de Sitter metric with parameters My and A. It can be calculated
explicitly! by

2 1
rEA = ~ 7 cos (5 arccos <—3M0\/K) + g) . (5.50)
Note that rp < rpa. We construct an upper bound to rpp. Set v(r) =1 — %.
TBA
v(rpp) = / v'(s)ds + v(rp)
B _VO
TBA
> / ( inf v'(s)) ds = (rga — re)v'(ra) (5.51)
rB SE[rB,rBA]
= 7rpr<rp+ U,(TBA)
v'(rBA)
A short calculation yields v(rpy) = TQB?"‘A and v'(rpr) = iQM One also checks by explicit
BA
calculation that d:l—ﬁ/‘ > 0. So the distance
4
reA A
—rp < BAT 5.52
TBATTB S e (5.52)

between the two horizons can be made arbitrarily small if A is chosen to be sufficiently small. In
particular we need A to be small enough to assure for rpy < r_.

ITo assure oneself of that one has chosen the right zero, using % arccos(x) = — i one checks

in (i _ s 1 3My
I'Haspital .. Zsin (3 arccos ( SMO\/X) + 3) 3v/1-(3Myv/A)2 2VA
= lim = 2Mo.

A0 1/ (2\/K)

lim rBa
A—0
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

Next we define r_j and 745 to be the first and second radius where ap(r) = 1. Note that
a(r) > ap(r) for all r € (rpa,rc), where r¢ is the cosmological horizon of the vacuum solution,
thus the second positive zero of 1 —r?A/3 — 2My/r. Between r_ and r, the function a(r) has a
unique maximum at r = 7, given by

f:

Lo— /L2 — 12M?L
0 0 00 (5.53)

2My
We consider the distance between a?(r) and a3 (r) at this radius :

f2
1a2(7) — a3 ()] = A ELO. (5.54)

Choosing A sufficiently small one can attain |a?(#)—a? (#)| < a?(#)—1. This implies that ax (r)—1
has exactly two zeros in the interval (r_,r;). This in turn yields the desired configuration

2My =1 <7TBA <T_ <T_A<T<71ipA<Ty. (5.55)

In the vacuum region [r_p,rya] the function ap(r) coincides with the expression

e v\ /1 4 %. Lemma 3.2, (iii) implies that therefore for r € [r_,r;a] also the ansatz @

for the distribution function f yields oa(r) = G4(r,ya(r)) = 0 and pa(r) = Hy(r,ya(r)) = 0. So
at 7 = rya one can continue f by the ansatz ® in a continuous way and for r > r 5 the Einstein
equations lead to the differential equation

1

3
14 (= 52) <2 (5 (- e s an ], Pon(o)ds)

3 r
T r A T+A —9\ 47 2
x [dmrp— A | = + 15 +—(1—e °>—|——/ s“on(s)ds
< (3 67“2) 212 72 Jria

where A\g = A(741).

There exists a background solution u € C%((2Mp, 00)) to the Einstein equations with A = 0
(cf. [34]). For r € (2My, 4] this solution is given by the Schwarzschild metric and for r > rj 5
as a solution of equation (5.56) with A = 0. The background solution is continuous at r, if

iy =

(5.56)

”TA (1 - e%) = M. (5.57)
Furthermore, the background solution p has the property that there exists Ry > 0 such that
the support of matter quantities ¢ and p is contained in the interval (r4, Ro) (cf. [34]). In the
remainder of the proof we show that using properties of this background solution p one obtains
a global solution pp of equation (5.56). We set

1 r2 A 2M,

N T ) 5.58

HOA 2 n ( 3 T+A> 3 ( )
1 2 M,

po= (o) = 51 (1 - —0) . (5.59)
THA
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5.8 Solutions with a black hole at the center

In the following we seek for a solution pp of equation (5.56) on on an interval beginning at
r = rya with the initial value pop at given in (5.58) that we can glue to the vacuum solution
on (rpa,r4+a)]. Note that pga < 0. Since there are no issues with an irregular center the local
existence of pup on an interval (r4a,744 + 0], § > 0 follows from the regularity of the right hand
side of equation (5.56). So let (2My, R.) be the maximum interval of existence of py. We define

v (r) =1— % (MO + 47 /T 329(3)d3> ) (5.60)

Al o T 2 T2
opa(r) =1—— [ r? = =2 | == | My +4rn s%oa(s)ds (5.61)
3 r r reA

as the denominator of the right hand side of equation (5.56). We set

1 120
Avg = — = < 5.62
Vo 18UM0,A(T+A) 8 =13 (5.62)

and define the radii

r* =inf {r € (r4a, Re) | vaoa(r) = Awvg },

7 =sup{r € (roa, Re) | [pa(r) — u(r)] < p(Ro + AR)}, (5.63)

and set 7 := min{F,7*}. We assume that r < 7 and calculate |u(r) — pa(r)|. To make
calculations more convenient, we extend g and p on [0,2Mj] as constant zero such that integrals
of o and p over (r4,r) can be replaced by integrals over (0,7). First we calculate

-1
1 r2 A r2 A 2N,
o — poa| = 5 I |14 2= (1 — A =20 =: Coa(r). (5.64)
2 3 3 TH+A
We write
lu(r) — pa(r)|
r 1 S T3A
< 47s s)—p(s) =A==+ 22
[ s msloa) - p00) <3 - )

A (5.65)

+ 35 [ len(o) - sfolaaas

n /r :A (47rsp(5) + ‘i—Z /O s 029(0)d0>

We would like to apply the generalized Buchdahl inequality (lemma 4.9) to the background
solution p on the interval [rya,00). One easily sees that rip > 7 > 3My > 9/4Mj. The crucial
condition is the existence of a vacuum region on (2M0, %Mg]. But this is ensured by virtue of
the assumption Ly > 16M¢ which implies r, > 4My. So the difference |u(r) — pua(r)| can be
further simplified and estimated. One obtains an inequality of the form

1 1

UMOA(S) UMO(S)

ds + Coa(r)

() — ()] < Calr) + C () /0 "(Ip(s) = pa(s)| + lo(s) — oa(s))ds  (5.66)
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

where C(r) is increasing in 7, Cx(r) is increasing both in A and r and we have Cp(r) = 0 if
A = 0. Note that the constants are fully determined by My, Ly, ¢ and pu.
In virtue of the mean value theorem, the sum |py — p| + |oa — o] is given by

[pa(r) = p(r)l + lea(r) — o(r)| < C - [ua(r) — pu(r)], (5.67)

where the constant C' is determined by the derivatives of Gy and Hg. A Gronwall argument
yields |pa(r) — p(r)| < Cua(r) implying |oa(r) — o(r)] < Cya(r) with certain constants Cga and
Cua.

One can choose A small enough such that for all » € (r4a, Ro+ AR] we have |ua(r) —p(r)] <
u(Ry + AR). Moreover, we consider the difference

{12
3

3
TiA
T

oat,(r) — ()] < 5 |2 Con(r). (5.68)

Lemma 4.9 implies vpy, (r) > % for all r € (r4a,00). Choosing A sufficiently small, such that for
allr € (rya, Ro+AR] we have [vg, (1) — vaza(r)| < & one obtains vaga > & on (rya, Ro+AR).

So altogether, one has deduced that #* > Ry + AR if A is chosen sufficiently small. This
implies that py exists at least on [0, Ry + AR] by lemma 5.11 and also that pa(Ro + AR) > 0.
From the latter property one deduces that there exists a radius Rgp > Ry (the zero of py)
such that for all » € [Rop, Ro] we have gp(r) = pa(r) = 0. On this interval, we can glue
an appropriately shifted Schwarzschild-de Sitter metric to ps. This yields the desired solution
defined on (rpa, 00). O

Remark 5.14. To see that the solutions constructed in theorem 5.18 are non-vacuum, one checks

that for r > rya one has
2

d d
— — < 0. .
draA(T) <0 and P ap(r) <0 (5.69)

Since ap(r) corresponds to e YA this implies that for some r > rop the quantity

e v /1 4 % < 1 which in turn implies by lemma 3.2, (i) that op(r),pa(r) > 0 for some
> T4

Remark 5.15. In contrary to the metric without a singularity at the center, the metric with a
Schwarzschild singularity does not coincide with the not shifted Schwarzschild-de Sitter solution
for r > Rop. This can be seen as follows. We have

() > %— In (1 A —> . (5.70)

Certainly, the mass parameter M of the vacuum solution, that is glued on in the outer region, is
larger than My. This implies
r?A  2M, r’A  2M

l1-————>1-— — — 5.71
3 r 3 T ( )

for all v € (rpa,rc). So there is no ansatz ® for the matter distribution that yields a metric
component up that connects the two vacuum solutions without any shift. But by suitable choice
of ® and Ey one can determine whether the inner or the outer Schwarzschild-de Sitter metric
1s shifted. For the mazximal analytic extension of the metric constructed in theorem 5.13 we will
need the solution to coincide with the not shifted Schwarzschild-de Sitter metric for r > Rya.
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5.8 Solutions with a black hole at the center

5.3.2 Matter shells immersed in Schwarzschild-Anti de Sitter spacetimes

We construct solutions of the Kinstein-Vlasov system with a Schwarzschild singularity at the
center for the case A < 0. The result is given in the following theorem.

Theorem 5.16. Let ® : R? — [0,00) be of the form (3.89) and let Lo, My > 0 such that
Lo < 16M¢. Choose A < 0 such that |A| is sufficiently small. Then there exists a unique solution
pa, A € C%((rpa,0)), f € C%(rpa,0)) of the Einstein-Vlasov system (3.29) — (3.32). The
support of the matter quantities pon and pa is contained in a shell, {ryx < r < Rop}. In the
complement of this shell, the solution of the Einstein equations is given by the Schwarzschild-Anti
de Sitter metric.

Proof. We define rg := 2Mjy to be the Schwarzschild black hole horizon of the background
solution and rpA to be the black hole horizon for the Schwarzschild-Anti de Sitter with A < 0,
i.e. the smallest positive zero of 1 —r2A/3 — 2My/r. Define also the functions

20, L

a(T)Z\/l— TO\/HT—S, (5.72)
A 2M, L

aA(r):\/l——3 ——TO\/1+T—2°. (5.73)

Moreover we define r_ and 74 to be the first and second positive zero of a(r) — 1, respectively,
as well as r_p and 745 to be the first and second positive zero of ap(r) — 1. The assumption
Ly < 16Mg assures that rp < r_ < r4 but a priori 7o = oo and r_p = oo are possible.
However, we show that the configuration is

2My =rpp < T_p < Tpp < 00. (5.74)

First, we observe that a(r) < 1 for all » > r; and also that ax(r) > a(r) for all » € Ry since
A < 0. So we have rg, < r_p <r_ <ry < ryp. It remains to show that r;p < oo. This is
done by showing that for |A| sufficiently small the functions a and a, are sufficiently close at a
radius 74 + Ar, Ar > 0 such that ax(r4 +Ar) < 1. So we consider the difference |a% (1) — a?(r)|
at the radius r4 + Ar:

(7”+ + A?“)2 + Lo
3 .

Choosing |A| small one attains this difference to be smaller than a(r; + Ar) — 1 which implies
rea < rgp 4+ Ar < oo.

Given this configuration (5.74) we construct a global solution of the Einstein-Vlasov system
in the following manner. For r € (rpa,r4a] we set f(x,v) =0 and

ja(r) = ~In <1 _rA %> . (5.76)

For r > ryp we set f(x,v) = ®(F,L). Since also ®(E,L) = 0 on the interval (r_p,r;,) the
distribution function f is continuous and the metric coefficient up is given by the ODE (5.56)
with A < 0 for all » € (r_p,00). The initial value Ag of A\p is determined by the continuity
criterion

jai (r4 + Ar) —a®(ry + Ar)| = |A]

(5.75)

SR (1= ) = M, (5.77)

45



5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

The last step of the proof is to assure for the existence of a solution with the desired properties of
the Einstein-Vlasov system on [ry A, co) with initial values A\g given by (5.77) and pg = pa(r4a),
given by equation (5.76). But this is already implied by the theorems 5.8 and 5.9. U

5.4 Solutions on R x S and R x S% x R

In sections 5.1 and 5.3.1 we constructed spherically symmetric, static solutions of the Einstein-
Vlasov system with small positive cosmological constant A. For small radii the A-term plays
only a minor role. This was crucial for the method of proof. However, the global structure of the
constructed spacetimes is substantially different when A > 0 and shows interesting properties.
In particular, it allows for solutions with different global topologies.

The following theorem gives a class of new solutions to the non-vacuum field equations with
non-trivial global topology. These solutions are constructed from pieces consisting of solutions
constructed in theorems 5.5 and 5.13.

Theorem 5.17. Let A > 0 be sufficiently small and let #; = R x S3 and My = R x S? x R.
The following types of static metrics solving the Finstein-Viasov system exist on these topologies.

(i) There is a class of static metrics on #1, which is characterized by the diagram shown in
figure 8. In regions I and IV a metric in this class coincides with two a priori different
solutions of the type constructed in theorem 5.5 with identical total mass, but possibly dif-
ferent matter distributions and radii of the support of the matter quantities Ry and R and
reqular centers. The metric in regions Il and III is vacuum.

(ii) There is a class of static metrics on M1, which is characterized in figure 9. A metric in
this class consists of two regqular centers with finitely extended matter distribution around
each of the centers of equal mass but possible different matter distributions and radii Ry,
Ry of the type constructed in theorem 5.5. These two regions are connected by a chain of
black holes of identical masses (the diagram shows the minimal configuration with one black
hole).

(i1i) There is a class of metrics on #s, which is characterized in figure 10. The spacetime
consists of an infinite sequence of black holes, each surrounded by matter shells of possibly
different radii and positions. In regions IV, VII, X and XIII these solutions coincide with
those constructed in theorem 5.13. The necessary conditions on the masses are Mg‘l =
Mé42, Mfl = Mf2 and MOA + Mé42 = Mfl + MOB, where Mg, i = A, B, denote the mass
parameter of the black holes and Mz)j, i =A,B, j=1,2, denote the quasilocal mass of the
matter shells defined in equation (5.88).

Remark 5.18.

(i) The r =0 surfaces in the first an second class have the topology R and the topology of the
r = oo surfaces is a cylinder, i.e. R x S%2. The r = 0 surfaces with singular metric in the
second class have topology R x S2.

(ii) The black hole masses in the third class of solutions in the previous theorem can be pairwise
different. Only the total mass of black hole and matter shell have to agree pairwise (see
condition in (iii) above).
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I

r=o00,9"

Figure 8: Penrose diagram of the maximal analytic extension of a metric constructed as spherically
symmetric solution of the Einstein-Vlasov system. Region I corresponds to the region 0 < r < r¢o. The
metric is extended in an analogue way to the standard extension of the de Sitter metric. The gray lines
are surfaces of constant r.

(iii) Combinations of the classes 2 and 3 yield similar metrics on M5 = R x R® with a regular
center followed by an infinite sequence of black holes.

(iv) The second class of solutions could also be generalized by adding matter shells around the
black holes. The mass parameters then have to be adjusted.

(v) When crossing the cosmological horizon or the event horizon of a black or white hole the
Killing vector 0 changes from being timelike to spacelike. This means that the maximal
extended spacetime contains both static and dynamic regions that are alternating. This
holds for all constructed classes.

Proof. We outline now the construction of the spacetimes given in the previous theorem. For
the first two classes of spacetimes we consider solutions of the Einstein-Vlasov system with a
regular center. Let (ua, Aa, fo) be a static solution of the spherically symmetric Einstein-Vlasov
system with positive cosmological constant A defined for r € [0, r¢) such that the support of the
matter quantities is bounded by a radius 0 < Ryp < r¢. The radius r¢ denotes the cosmological
horizon. On [Rga, r¢) there is vacuum on hand and the metric is given by the Schwarzschild-de
Sitter metric (5.81) with the ADM mass M as mass parameter. The ADM mass M is then given
by

Roa
M :47T/ sop(s)ds. (5.78)
0

If 9M2A < 1, the polynomial 73 — %r + % has one negative zero and two positive ones. The
largest zero of this polynomial is defined to be the cosmological horizon ro. Moreover, r, is
the negative zero, and rgy the smaller positive one. In terms of the ADM mass M and the
cosmological constant A these zeros can be calculated explicitly.

Consider figure 8. This spacetime can be obtained in an analogue way to the standard
procedure to compactify the de Sitter space as described for example in [23]|. In the following,
this procedure is carried out in detail. The metric is given as a non-vacuum solution of the
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r =00, I~ r=20 r=o00,%"

Figure 9: Penrose diagram of the maximal analytic extension of a metric constructed as spherically
symmetric solution of the Einstein-Vlasov system. Region I corresponds to the region 0 < r < r¢. In
this region matter (represented by the shaded area) is present and the metric is regular. This metric is
extended with the Schwarzschild-de Sitter metric that leads to a periodic solution. The periodic course
stops when a matter region appears again preventing the metric from being singular at » = 0. The gray
lines are surfaces of constant r.

Einstein-Vlasov system for r € [0,r¢), corresponding to region I in figure 8, as discussed in
theorem 5.5. In this region we have

ds? = =M% + 2 dr? + r2d9? + 12 sin?(9)dp?. (5.79)

In the first step we introduce coordinates Uy, Vi that transform the region R x [0,7¢) x S? into
the left triangle (region I) in figure 8. The coordinates usually used to compactify the vacuum
de Sitter metric as for example described in [23| will do. They are given by

— ot — Tt
U=/ ere, Vi=—y/ ¢ lewc (5.80)
roc+ ro+r

and can be compactified via the transformations p; = arctan(Ur), g1 = arctan(V7). The left part
of figure 11 shows the transformed region R x [0, 7¢) in the py, g-coordinates.

The support of the matter (i.e. the matter distribution f) ends at a radius Rogp. For r > Rop
the metric is merely given by the Schwarzschild-de Sitter metric

A 2M dr?
d52:—<1—%—7>dt2+1r2ﬁ+r2d92, Rop <71 <rc. (5.81)
-5

At r = r¢ there is a coordinate singularity of the metric that we want to pass. For this purpose
we express the metric in other coordinates that do not have a singularity at » = rg. These
coordinates are given by

~ re =) (r =)t - _ e =r)(r—ra)! 7o
ve = \/ (r—rp)Y >0 Ve \/ (r—rp)? < :52)

where 6c = 5+ > 0 and v =
C

(1_/(%, 0 < v < 12. They are used in the standard

rEA 2M -0

2The signs of these expressions can be checked by means of the equality 1 — 2 o
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Mgt Mgt Mg MNP M
Figure 10: Penrose diagram of the maximal analytic extension of a metric constructed as spherically
symmetric solution of the Einstein-Vlasov system. The solution coincides with the Schwarzschild-de
Sitter spacetime in the vacuum regions and the black holes are surrounded by shells of Vlasov matter
(gray shaded domains). Notably the black holes do not necessarily have the same mass. The gray lines
are surfaces of constant r.

bc qc prv qiv

- o1 _ _
F=Ry, 7=00,.%

Figure 11: Construction of the spacetime shown in figure 8. We use three coordinate charts to compact-
ify the spacetime. Regions that are shaded in the same orientation are covered by two of the coordinate
charts simultaneously, thus there coordinates can be changed. The gray areas are matter regions and
the dashed lines correspond to r = rpa. We distinguish between r and 7 to emphasize that there are
different spacetime regions that cannot be covered by a single chart (¢,7,9, ). All coordinates p and ¢

take values in [fg, g]

compactification procedure of the Schwarzschild-de Sitter metric. For details, see [16] or [46]. In
the new coordinates the line element of the Schwarzschild-de Sitter metric (5.81) reads

4N,
3r

ds? = — (r — 1) (r — )t AUcAVE 4 r2d0? + r2sin®(9)de?, > Rop.  (5.83)

The coordinates Ug, Vi representing the region where r € [Rop,7¢) (region I in the middle part
of figure 11) only take values in {(u,v) € R?|u > 0,v < 0}. We extend them to R?. This
extension goes beyond rc. Again, the spacetime region covered by the coordinates Ugs and Vi
can be compactified using the transformation pc = arctan(Uc), go = arctan(Ve). The middle
part of figure 11 shows the region covered by Uc and Vg, taking values in R each, in the p¢,
gco-coordinates. The line element (5.83) can be extended to the whole area covered by Ug and
Ve in an analytic way. In the region where r € [Roa, r¢) the coordinates charts (5.80) and (5.82)
overlap and one can change coordinates (the shaded areas in the left and middle part of figure
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

11). The transformation law is given by

_ y—1 3-2Ar2
VoUi) = \/(Tc+7“)(7" )l e

r=rs)" 2 (5.84)
rc+r)(r—r,)y1 3224
Vo) = \/( - +(r)—( rB)wn) e e V.

Region IV in figure 8 corresponds to a second universe that also can be equipped with Schwarzschild
coordinates (Z,7). We distinguish between r and 7 to emphasize that the charts (¢,7) and (£, 7)
cover different regions of the spacetime. The vacuum parts of the regions are isometric and both
contain matter balls around » = 0. The latter property does not hold for the second class of
spacetimes (ii). In the region 7 € [Roa,7¢) (region IV in the middle part of figure 11), in terms
of the t, #coordinates Ug and V are given by

(re =F)(F —r_ )71 __L e =P —ro T L

To get a compactification of the whole region IV, including 7 < rp, we introduce coordinates
similar to (5.80), namely

ro—7T -t
—e "¢, Vv =

ro+r7 ro+7

—r _t
re =T

Uy = — (5.86)

covering the region characterized by 7 € [0, 7¢). This region can again be compactified via pry =
arctan(Uty ), qrv = arctan(Viy). This yields the right part of figure 11. For 7 € [Roa,7¢) the
coordinates can be changed using an analogue law to (5.85). On the spacetime region represented
by the middle part of figure 11 the line element can be expressed by (5.83). Since in both regions
I and IV the metric can be brought into the form (5.79) via coordinate transformations also the
energy densities are identical in these regions. This of course implies that in both regions the
mass parameter is equal.

Now we come to the spacetimes characterized by figure 9. For the construction of the analytic
extension of the metric (5.79) at least five coordinate charts are necessary. Figure 12 illustrates
this construction. We begin again with the region r € [0, 7¢) where the metric is given by (5.79).

Figure 12: Construction of the spacetime shown in figure 9. On regions that are shaded in equal
directions two coordinates are defined and one can change between them. All coordinates p, ¢ take values

in [-3,5).
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5.4 Solutions on R x 83 and R x 8% x R

In the same way as described above one expresses the line element in other coordinates p¢, qo
that avoid the singularity at » = r¢. The line element as given by (5.83) can be analytically
extended onto the regions I — IV in figure 12 (middle part). From now on the procedure differs
from the one above. Regions I and IV are not supposed to be identical but region IV shall be a
vacuum region thus the metric will be given by Schwarzschild-de Sitter everywhere. Certainly,
the line element (5.83) of the Schwarzschild-de Sitter metric given in terms of the coordinates
Uc, Vo now shows a singularity at » = rp53. This coordinate singularity can be overcome by
virtue of the coordinates

B (T—T’B)(T’—Tn)ﬁ_leﬁ _ (r—rp)(r _Tn)ﬁ_le*ﬁ
Up = \/ (rc — )P VB \/ (rc —r)f ’ (5:87)

where g = 1*7"/}\3?23 >0 and 8 = (A%rfcl)éB > 1. This is part of the standard compactification
procedure of the Schwarzschild-de Sitter metric, cf. [16] or [46]. Alternating the coordinate charts
(Uc, Vi) and (Up, V) this procedure can be continued an arbitrary amount of times extending
the spacetime to additional black hole and cosmological regions. This periodic extension stops
if for r < r¢ the metric is not given by a vacuum solution of the Einstein equations but again
by the solution (5.79) of the Einstein-Vlasov system. There is no coordinate singularity at
r = rp and also a regular center at »r = 0. So a regular expression of the line element by
the coordinates (5.80) is possible again, leading to region X in figure 9. This region now is
geometrically identical to region I in figure 9 (and also in figure 12). In the extension procedure
just described the expressions for the coordinates (5.85) and (5.87) used to pass the coordinate
singularities at r = rg and r = r¢ in the vacuum regions of the spacetime .#; depend on A and
M. So the identification of corresponding regions in the different coordinate charts, e.g. I or IV
in figure 12, is only possible if the parameters A and M are equal in all regions of .#;. In terms
of the notation of figure 9 this implies My = Mo.

A maximal analytic extension of a solution to the Einstein-Vlasov system on the manifold
M4 as characterized by figure 10, i.e. spacetimes in class (iii), can be obtained in a similar way.
Starting point is the region rgpx < r < r¢. On this interval the existence of a unique solution
to a given ansatz for f is established by theorem 5.13. The solution on hand can be understood
as a Schwarzschild-de Sitter spacetime with an immersed shell of Vlasov matter supported on
an interval (r4a, Rop). Two mass quantities are important. On the one hand one has the mass
parameter My of the black hole at the center. On the other hand M that is defined to be

Roa
M = My+ M, M,= 477/ s2op(s)ds. (5.88)

T+A

This quantity represents the sum of the mass of the black hole and the shell of Vlasov matter. As
constructed in theorem 5.13, for rpy < r < 7y the metric is given by a shifted Schwarzschild-de
Sitter metric

2N 2M dr?
ds? = —c (122 220 g2 ¢ - +r2dQ%, rpa <r<ryn  (5.89)
3 r C (1 r2A _ 2My +

with the mass My of the black hole as mass parameter and the shift C' > 0. For Rogp < r < r¢
the metric is given by the Schwarzschild-de Sitter metric (5.81) with mass parameter M.

3By abuse of notation we use r for the radius coordinate in every region of the spacetime ..
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5 SOLUTIONS WITH NON-VANISHING COSMOLOGICAL CONSTANT

The two critical horizons, rgax and r¢ can be given explicitly as zeros of the expression
1- TQTA — er(r) . But it is important to note that the mass parameter m(r) does not stay constant
throughout the whole interval (rpa, Rop). The black hole horizon rpy is characterized by M
and the cosmological horizon rc by M. This has to be kept in mind when choosing coordinates
to construct an extension of the metric on .#5 as illustrated in figure 13. We distinguish between

Figure 13: Construction of the spacetime shown in figure 10. The middle part shows a Schwarzschild-de
Sitter spacetime with an immersed matter shell for rgp = rgg < r < r¢. The left and the right part
show the adjacent vacuum region containing several coordinate singularities. On regions that are shaded
in equal directions two coordinate charts are defined and one can change between them. All coordinates
p, q take values in [—g, g]

the zeros of 1 — ”QTA — ZmT(T) when m(r) = My and m(r) = M and call them rpgg, rcg or rg, rc,

respectively. Note that rgg = rpa. Consider the metric on the region rpg < r < r¢ being part
of region VII in figure 10 or the middle part of figure 13. The metric shall be extended to the left
(regions IV, Vg, VIyw) and to the right (regions VIII¢, IX¢, X) as a vacuum solution until the
next matter shell appears. So the coordinate transformations have to be chosen with respect to
the radii rp (or rpg) and r¢ (or r¢p) belonging to the current mass parameter in the respective
spacetime region. Three coordinate charts are needed to extend the metric beyond the black
hole and the cosmological horizon. First we compactify the region rgy = rpg < r < r¢ using
the coordinates

~ f(r—=rpo)(r — )Pl eﬁ _ (r—rpo)(r —rn)P1 efﬁ
Up = \/ (re —r)P S \/ (rc —r)P . 40

where dgg = ljf;’QB - > 0 and 8 = (A%rfﬁ > 1. These coordinates give rise to pg =
arctan(Up) and qp = arctan(Vp). This region is depicted in the middle part of figure 13. The
spacetimes characterized by figure 10 show two types of connected vacuum regions. The first
type is characterized by r < r; A (inside the matter shell) and the second one by r > Ryp (beyond
the matter shell). To extend the metric to the region inside the matter shell (and the black hole)

one uses the coordinates

— — Bo—1 — — Bo—1 _ &
Upo = \/(r rso)(r rﬁn) eQétBO, Veo = —\/(T rpo)(r rﬁn) e 2“;0, (5.91)
(rco—1)p (rco — 1)

where dgg = 13{‘7{’% - > 0 and [y = (AT%Z% > 1, and the corresponding compactification

ppo = arctan(Upo), go = arctan(Vpp). The black hole horizon can be crossed using the usual
arguments of the extension of the Schwarzschild-de Sitter metric as for example done in [23, 17,
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46|. This is illustrated in the left part of figure 13. The region beyond the matter shell (and the
cosmological horizon) can be reached via the coordinates

v _\/(m =) \/(7“0 O L (5.92)

(r—rg)Y (r—rg)Y

with d¢ = # >0 and v = (17/{’%, 0 < v < 1. These coordinates extend the metric to
the area shown in the right part of figure 13.

On the connected vacuum regions the metric is given by only one expression even though
vacuum extends onto several regions of .45, e.g. regions VII, VIIIg, IX¢ and X. This implies
that the coordinates Upg, Vo or U, Vo have to be given by the same expressions (5.91) or
(5.92), respectively (modulo sign, cf. [23, 17, 46]) which in turn implies that the mass parameter
has to stay the same on these connected vacuum regions. For the vacuum region with r > Rgp
this implies MOA + M 542 = Md—g + M fl (notation of figure 10). On the region characterized by
r < rya this is always granted because the mass is entirely given by the black hole mass M.
Finally the shift constants C' of the vacuum metric have to coincide in this region (IV and VII in
figure 10). They are determined by the matter shells surrounding the black hole and are equal

in particular if these shells have the same shape which implies M éAl =M ;‘2. U

6 Concluding remarks

6.1 Achieved results

The first part of this work, section 1 to section 3, was devoted to a detailed introduction and
an explicit derivation of the reduced Einstein-Vlasov system in spherical symmetry with non-
vanishing cosmological constant. For this purpose, by virtue of a certain ansatz ® for the matter
distribution function f the Vlasov equation was solved by the method of characteristics. In
addition, a physical motivation for the research on this system and the application of the Vlasov
matter model was given. In section 4 results concerning spherically symmetric, static solutions of
the Einstein-Vlasov system that already exist in the literature were addressed. This collection of
results represents the current state of research and covers global in r existence of solutions as well
as several properties of these solutions like boundedness of the support of the matter distribution
function and bounds on the ratio @ of quasilocal mass and radius. Furthermore, by explicit
construction, the existence of non-vacuum solutions of the Einstein-Vlasov system that contain a
black hole at the center was shown. A numerical investigation revealed that the static solutions
of the Einstein-Vlasov system can be divided into several classes depending on the ansatz taken
for the matter distribution. There are isotropic solutions that form the simplest case and show
matter arranged in a ball around the origin. Moreover, the matter quantities are monotonically
decreasing, thus there are large similarities to the behavior of an ideal fluid. So called polytropic
solutions form a more diverse class. The matter is still arranged in a ball around the origin
but the matter quantities, like energy density or pressure, are not monotonous but may show
several peaks. Finally, we have anisotropic solutions that form the most general class of solutions
that results are known for in the literature. The matter quantities belonging to these solutions
may be supported on shells around the origin separated by vacuum. It is important to note
that no existence result is known on the spherically symmetric, static Einstein-Vlasov system
with non-vanishing cosmological constant. So far there are just results, like a Buchdahl type

53



6 CONCLUDING REMARKS

inequality, that assume the existence of these results without proving it [11]. This work provides
first results bridging this gap. For the proofs on solutions of the system with non-vanishing
cosmological constant A the existence of a corresponding solution with A = 0 and its properties
is often crucial. So section 4 prepared the ground for the new results presented in this work.

Section 5 is concerned with the Kinstein-Vlasov system with non-vanishing cosmological
constant. As mentioned in the introduction, the notion of the cosmological constant gains more
and more importance in the description of our universe. So the treatment of the Einstein-Vlasov
system with positive cosmological constant is a worthwhile business. In section 5 new results
are presented that are the outcome of a collaboration between Hakan Andréasson (Chalmers
University of Technology, Gothenburg, Sweden), David Fajman (University of Vienna, Austria)
and the author of this work. These results are published in [14]. The first result is the global
in r existence of regular, spherically symmetric, static solutions to the Einstein-Vlasov system
with small positive cosmological constants, cf. theorem 5.5. These solutions contain Vlasov
matter supported on a ball around the origin. The support of the matter quantities is bounded
by a certain radius Rpp and beyond this radius the solution is given by the Schwarzschild-
de Sitter solution. This result could be established for the anisotropic ansatz for the matter
distribution f which is the most general one. This ansatz admits all kinds of matter arrangements
mentioned above thus balls, shells, and multipeaked configurations. As already mentioned this
result provides the footing for the Buchdahl type inequality shown in [11]|. The existence of static
solutions is also a helpful assumption at the discussion of the gravitational collapse for the time
dependent Einstein-Vlasov system. In [8] the authors consider the time evolution of an initially
given matter distribution function f = fs + fm that leads to a gravitational collapse and the
formation of a black hole. This initial data may consist of a static solution fs of the spherically
symmetric Einstein-Vlasov system that is supported on a ball around the origin and, separated
by vacuum, a shell of matter fm with ingoing particles. The existence of matter that stays inside
a certain ball around the origin is essential for the proof of the gravitational collapse to work.
Another interesting aspect of the constructed solutions with positive cosmological constant is
the global structure of the obtained spacetimes. Section 5.4 provides an elaborate discussion of
analytic extensions of these solutions onto the manifolds R x S3, R x §? x R, and R x R3. We
constructed spacetimes resembling the analytic extension of the Schwarzschild-de Sitter metric
but its periodic structure is interrupted when singularity formation at r = 0 is prevented by the
appearance of regular matter regions.

Also for negative cosmological constants existence results for static solutions of the spherically
symmetric Einstein-Vlasov system have been proved. It turned out that methods developed by
Rein [34] in his proofs for the global existence of anisotropic solutions with vanishing cosmological
constant and spatial boundedness of the support of the matter distribution could be applied also
to the case with negative cosmological constant. Crucial for this to be possible is the fact that a
negative cosmological constant changes the system not as profound as a positive one does. For
example the property of the metric component p of being monotonically increasing is preserved.
The obtained solutions describe completely regular matter distributions of compact support that
pass on to a Schwarzschild-Anti de Sitter solution for large radii. For both, positive and negative
cosmological constants the existence of non-vacuum solutions that do not have a regular center
but a Schwarzschild black hole at the origin has been proved. These proofs provide an explicit
construction of these solutions showing the following configuration. The event horizon of the
black hole is surrounded by a vacuum region that in turn is followed by a finitely extended shell
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6.2 Further questions

of Vlasov matter. Beyond this shell there is again a vacuum region. These solutions could be
considered as the final state of a gravitational collapse. For the case A > 0 such spacetimes can
be considered as Schwarzschild-de Sitter spacetimes with immersed matter shells. An analytic
extension of the metric on a periodic spacetime with alternating black holes and cosmological
regions is possible just as for an ordinary Schwarzschild-de Sitter spacetime. But the matter
shells surrounding the black holes effectuate that the black holes do not necessarily have to have
the same mass.

6.2 Further questions

The proof of existence of solutions in the setting with A > 0 yields configurations with a non-
vacuum solution containing a compactly supported matter formation that beyond the support
of this matter a vacuum solution is glued to. At the gluing radius one essentially drops the
ansatz for the matter distribution function f and continues it by constant zero. One might ask
the question if this gluing procedure is necessary or if there exist also solutions of the Einstein-
Vlasov system where f is given by a single ansatz ® throughout the whole domain of definition
of the solution. A qualitative analysis of the ODE (3.57) for vy,

y(r) = — Im
1— A2 87 [752Gy (s, y(s))ds
rA 1

< () — e+ % [ PGusaoas).
0

12w o2

(6.1)

reveals that this is not the case. If the matter distribution is determined by an ansatz ¢ of
the form (3.39) the matter quantities ¢ and p are given by the functions G, and Hy defined
in (3.46) and (3.47). As stated by lemma 3.2 the functions are increasing both, in y and r.
The dependence of Gy and Hy on the metric component y is crucial. First one notices that
the denominator is monotonically decreasing and that there is a radius r¢ such that it tends
to zero when r goes to rc. So the first factor of 3 becomes very large as r¢ is approached
whereas the second one cannot become arbitrarily small. This implies that y tends to +oo or
to —oo. But both possibilities lead to a contradiction. If y tends to +oo then also Hy(r,y) and
Gy(r,y) tend to +o0o0 and the second factor of the right hand side in the ODE for y becomes
positive. This implies that y < 0. Then again if y tends to —oo both functions, Gy(r,y) and
Hy(r,y) go to zero. One can show that then for r arbitrarily close to r¢ the expression for v/
turns positive. This indicates that using an ansatz of the form (3.39) no further static solutions
of the Einstein-Vlasov system can be obtained than those constructed in this work. This means
they have a matter configuration supported on a finite ball around the origin and coincide with
Schwarzschild-de Sitter outside. In this context it would be interesting to investigate for a given
cosmological constant A what the maximum radius for the support of the matter quantities is.
Another interesting question is whether there exist static solutions for massless particles as
well. Even for the system without cosmological constant this is not known. The Vlasov equation
with m = 0 describes the dynamics of a photon gas or the limit of very fast (ultrarelativistic)
particles. In the massless case particles show a greater tendency to fly apart. Numeric investiga-
tions and first analytic considerations indicate that the existence of static solutions with matter
quantities of bounded support cannot be proved for massless particles with the methods that
have been developed for the massive case. One always observes an infinitely extended tail of
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matter for large radii. A promising strategy seems to be taking an ansatz for the matter distri-
bution with a large lower bound Lg on the angular momenta of the particles. As suggested by
the graphs for massive particles discussed in section 4.5 this might lead to matter configurations
where vacuum separates several matter regions. In one of the vacuum regions one could glue a
vacuum solution to the metric and continue the matter distribution with constant zero.
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A Calculation of the Einstein tensor

In this section we show in a detailed way how to calculate the entries of the Einstein tensor G
using the ansatz

ds? = —e2 D) g2 4 2D qr? + 12492 + r? sin? (19)dy? (A1)

for the metric g.

At first one has to calculate the Christoffel symbols, the Ricci tensor, and the Ricci scalar.
Since the metric is diagonal all Christoffel symbols with three different indices give zero. The
non zero ones are:

Il = i Tir =4 Ty, = Ae?0)

T, = ple2t) 7 =4 I, =X

Iy =—er To, = —e Psin*(O)r Thy = %
2. _ 1 =1

[0, = —sindcosdy Iy, = = Fﬁg, = tan?

In terms of the Christoffel symbols the Ricci tensor has the form
Rps = 0al'Gs + T35 — OsT'54 — T - (A.2)
The terms are calculated separately. The first summand will be:

({“)argé = 8tfit + arr:fnt = /’[/ + 2(/’[/, _ )\,)GZ(M_A)ILL/ + eQ(M_)\)Iu/,
0,1 = oIt +0,I" = (2()'\ _ ﬂ))‘\ + )\> 201 4\

0algy = Oy = (2)\/7“ — 1)672>‘
Oalp = OrTgp+ aﬂrgv = (2X'r — 1) sin® ¥e~** — cos® ¥ + sin® ¥

For the second summand one obtains:
e, = DTy + T4 + DT, + ThIy, + Thlly + THIY,

. 2
= A+ A) + 2Ny <// + N+ ;)

F;{rrlofa = Firrit + Firrgr + F:rrit + F;T‘F:T‘ + F:rrfﬁ + F;rrfap
. ) 9
= A2On) <u + A) + N (u’ + N+ —)
r
5900 = Thglls+ DLy, + TheThg + TpeT7,
2
— —T€72>\ (Nl+)‘/+ _)
,
Toplha = F:wrf’t +T5e0 + P;«JF% + 5.7, + PZ@FZ‘;@
2 1
= —e Psin?or <,u' + N+ —> — sin ¥ cos ¥
r tan
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A CALCULATION OF THE EINSTEIN TENSOR

The third summand can be calculated to:

ore, = Tt +oT% =ji+\
2
Ore, = 0Tl +0, I, +0,T0 +0,T¢, =p" + X' — 5

T 7“2
OIS, = 09T% = 1
v e sin? ¢
0,10, = 0
The fourth gives:
thrgoc - Fitrit + QF;F; + F:fnrrgr
Pgrrga - Ff’trf’t + 2F77:trf"7" + P;rr:r + Ffﬁrfﬂ + ngorfcp
: 2
_ ,LL/2 + 2)\262()\7;1,) + )\/2 + ﬁ
1
v 9 —2A
polhe = TYI0, + 200, = nZg ¢
v 9 —2X 2 2
olo, = 25,0, + 2I’$19I’W7 = —2e “"sin“ ¥ — 2cos” ¥

Now, we can calculate the diagonal entries of the Ricci tensor:
\ i\ \ 2 2(p—2X) 1ot " 2 2M/
Rtt = )\,U,—)\—)\ + g4\ —)\/L+M + u +7
ro 2)' " 2 2(A—p) \ \ 32
Ry = Npl == =yl = 4 PO (—/\M+/\+>\ )
Ryy = 6_2’\()\'7° —ur—1)+1
Ry, = sin®d (672)‘ (Nr—pr—1)+ 1)

With this at hand we can also calculate the Ricci scalar:

. . 2u’ 2N 1 2
R=g¢g"R,, = 2e 2 <)\ + 22— A/l) + 2e~ A <X,u’ — = - T,u + - ﬁ) +—. (A3)

And the first three diagonal entries of the Einstein tensor

2X 1 e’

2(p—A

Gy — 2 (T _ 72) - (A4)
1

Gy = ) (27“// +1- 62)‘) ) (A.5)

Gyy = 7‘6_2)\(,[1,/ +ru? — NQA+rp) +rp”). (A.6)
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B The Christoffel symbols in Cartesian coordinates

In this section the Christoffel symbols are calculated in Cartesian coordinates. The matrix
representation of the metric is

—e2H 0 0 0
2\ 2\
e“r—=1,2 e“r—1 e“r—1
G)=| - hd Tty (B.1)
wv) — e2r—1 1,2 e2A—1
0 e 1yx 1 +2A 712 Y = ylz
e — et — e“r—1_2
0 T2 2y 1+ %
The inverse metric reads
—e 2 0 0 0
0 e’2Am2+y2+22 6_2/\*13: 6_2/\713:’2
MYy T r IS
(g ) = 0 e*”fl 12+e_22>‘y24?jz2 5*25—1 . (B.Q)
5,\2 ye 2{2 2 22 %52
e 1 e “"—1 oty t+e Nz
0 Ry T 2Y 2

For the calculation of the Christoffel symbols, one will need the derivatives of the entries of

(Gyv)- We have

OaGtt = —Q,U/gem
,
ab _.
Otgab = T—QQ)\@ZA
2 / 2
-1 2r\ — 2 2
gy = Delab)—— + abe " 4)6 i
T r
Now, we calculate all the Christoffel symbols:
! A2 A\zy ez
s — Q(uf)\)ﬂ e — 2 T _ e —
tt € ” tx 2 ty = 2 tz= = T2
rN — 14 e 2 31— e 2A
rs, = o x° + R
rN —14e 2
Iy, = B E— 2y
N —1 —2X
rs, = %xzz
T
rN —14e 2 1—e 2
e - 4 -~ rt= 2 - =
vy 4 Ty” + 2 7
N —14e 2
ng = — a1 TYz
rN —1+e 2 , 1—e 2
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C COORDINATE TRANSFORMATION OF THE VLASOV EQUATION

. . C .
DY Azy Ay A\yz
ry, = & )T M=% TIy="5 TL="%
rv, = r% ((1 — e M2+ + )\’x2r>
rN — 14 e 2 9
I’zy i w—
rN —1+4e 2
ry, = YR
oy, = & (1-e™)@+27) + Ny?r)
rN —1+e 2,
FZZ = Ty z
ry, = 7"_y4 ((1 — e_2>‘)(ac2 + y2) + )\'22r>
N2 \zz \yz 22
U, = SV T =t ThR=3 Th=T%
z
rz, = - ((1 — e M2+ 22 + A'w2r>
N —14e 2
Fiy = Twyz
N —14e 2
Fiz = T.YJZQ
r:, = % (1 —e M@+ 2% + )\'yQT)
rN — 14 e 2 9
F;Z = 1 Yz
z
rz, = 1 ((1 —e M) (@ + %) + )\'22r>

C Coordinate transformation of the Vlasov equation

At first we have to calculate the commutation functions defined by

[eb, €] = Vheta- (C.1)
It is easy to see that [0, 0] f = 0, thus 7§, = 0. Next we consider

-

[0, €q] = —X%xax@i. (C.2)

We already see that '781; = 0. In order to find the ~§,, we need to express the basis vectors 9; in
terms of the e; via coefficients: 9; = ce;. (The coefficients for the other way round are already
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given: e; = eg 0;.) For the coefficients CZ one finds

A = = (€ ;;)xy, (C.4)
S oo (e ;21)xz’ (C.5)
3 = %+ eiéﬁ + z27 (©6)
a = &= G ;21)%, (C.7)
g Prires o

Plugging this into equation (C.2) yields

. €_>\ b
o = —A—-za’.
Yoo 742
Note that always v;. = —v& holds and in our case also 7§, = A8
Finally we consider
Y -2
e —1 e =1
[ea,ep)f ="+ = T(:ﬂﬁf — xﬁf) (5,2 + - CECCCk> O.f .
i er(f)

Now we are able to calculate the connection coefficients using the formula (3.21). The for the
Vlasov equation relevant ones are

a ,.C

a
1 2u-2T . [ Tha”
I\aOO = ,U'e'u ) Pab0:07 PaOc:)‘ 5
T T
-
e —1
Fabc - 2 (xbfsac _xa(sbc)-

Now we are able to write down the Vlasov equation in this frame. Keep in mind that p° =
-
e Hy/1+ [v]? and p® = v2&—=Ly, 2% and set v° = p°.

af of of
— (U a T2 B,y Yd
0 P 520 tr Ozl BrY Y e
_9Fr 2-1/2 ( a er =1 .\ of
= 0 = 6t+e(1+]v]) vt vt | o

et - of

1 a 2, .a
e (rov® — |v*x )) B

If the distribution function f is spherically symmetric i.e. f(t,Z,0) = f(t, A%, AV) for all A €

Y 5, orz”
— (e M7\/1‘HU’ + A —+

61



D PROOF THATT ACTS AS A CONTRACTION

SO(3), the distribution function f merely depends on r, v,, and |v|. It follows that

of olv| of  Ov, Of
2..a a — 2..a a _
(|v|*z® — ropv )(%a (|v|*z® = rov?) <6v“ Aol + 904 Do
= (P - el
of or of  Ov, Of
2,.a a — 2,.a a —_
(rév® — ruyx )8x“ (r*v® — rv,.z®) <3x‘1 9 T By 8%)
= (P - gL
So of
2,a a — 2,.a a
(rév® —rv,z )8x“ (|v[*z® = ruyv )31}“ (C.9)
and the Vlasov equation becomes
af eh=A of x% /. N of
'l YY) - 1 2 ) — =0. 1
ot + 1+ ‘U‘va ox® r (AUT te + 1l M) ol 0 (C.10)

If one is only interested in the static case, one sets all time derivatives to zero and obtains the

simplified equation
a af x® Of
— /1 2,/ 24 . 11
Boa ~ V1T —50 =0 (C.11)

v
V14 |v]?

D Proof that T acts as a contraction

In order to show that the operator T, defined in (5.3), acts as a contraction on the set M, defined
in (5.4), one has to check

(i) u=yo € M,

(i) we M = Tu e M, and

(ili) da € (0,1) Vu,v € M : ||[Tu — Tv|oo,s < allu — v]|oo,5, Where || - |05 = supre[o,(;](.).
(i): Consider u = yp. Only the second critical condition

2 r
% + sm sGy(s,u(s))ds < c (D.1)
rJo

is relevant. We calculate

r2A 81 [T
3 T 0

r?A  8mr? A+ 871Gy (1, y0)

s?Gy(s,u(s))ds < 3 + 3 Gy (0,y0) < 3 P <ec

for § small enough.
(ii): We have to guarantee that yo — 1 < (T'u)(r) < yo + 1 and

r2A 8t [T

3 s s%Gy(s,Tu(s))ds < c.
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By choosing ¢ sufficiently small, one can achieve the domain of integration in T to become

arbitrarily small and these properties follow.
(iii): We calculate

[T = Tvlloo s

r

47
1— S22 (062G (0, u(o))do

<S(H¢(Sv U(S)) - H¢(S, U(S)))

+% /Os 02(G¢(a,u(0)) — G¢(a,v(a)))da>

sA 1
H i
+<$ ¢($7 U(S)) 127T +

52

oG y(o, v(a))da)

y 47 A 1
- s
-2 5 G (o u(o)dr 1 - ZE 5 (552G (0,0(0))do

00,0

Since Gy (r,u), Hy(r,u), 0uGg(r,u), and 0, Hy(r,u) are functions strictly increasing in u we have

sup Hy(r,u) = Hy(r,yo + 1) =1 Heyp(r),
u€lyo—1,y0+1]

sup th(r? u) = G¢(7", Yo + 1) = Gsup(r)y
“6[90*1790+1]

sup  [OuHy(r,u)| = [0uHy(r, 30 + 1)| = Glyp(r),
“6[90*1790+1]

sup  [0uGo(r,u)| = [0uGy(r, yo + 1) =: Hiyp(r).
u€lyo—1,y0+1]

We can estimate the first summand in the following way:

/r am
0o 1—=2 8% (952G (0,u(0))do

X <S(H¢(s,u(s)) — Hy(s,v(s))) + sig /Os o*(Gy(o,u(0)) — G¢(U,U(U)))da> ds
T 2
: % 5 <Héup<5> + éGéupw)) lu = vlloc.s-

Next, we consider the second summand:

/or <SH¢(S,U(S)) - % T 0802G¢>(‘77”(‘7))d0>

52
><< 4 B 4 )ds

1= % i fo 02G¢ o,u(o))d - S2—A — 82 [V 602G 4(0,v(0))do

< [ s (Hant o S azyds G = o]

= S sup\T” 1 sup 6 1—2+c sup U — V|oo,s
(87)25% 1 ,

< 9471 9. 1 92\ - .

— 24(1 _ 20+02) HSUP((S) 3GSUP(6) Gsup( ) Hu /UHOO,(S
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E ESTIMATE OF |ox(R) — o(R)| + |Ps(R) — P(R)|

So we get in total

2
T = Tv]os < ((1 T (Hanl0) + 3C)

T 2
P ) <Hsup<a> -+ %asupw)) G;up<6>64> ot — vl

24(1 — 2¢+ 2

If one actually wants to calculate § one can make use of the estimate

o L 1
Gy(r,u) = Cgr%/ ¢ (1—ee™) g2 ( (1 + O)) de
\/14+Lo/r?
< ¢pr?t /OO ¢ (1—ee?) g2 (52 — 1)”% de (D.2)
1

and the analogue one for Hy to obtain a polynomial in 4.

E Estimate of |ox(r) — o(r)| + |pa(r) — p(r)|

The following calculation is valid for r € [0,7 where we can take for granted 1 — 2”1(7") > %

7]
(Buchdahl inequality, cf. [2]), 1 — ﬂ — Zmalr ) > & and [ya(r) —y(r)| < |y(Ro+ AR)|, AR >0

T

where Ry is defined to be the (ﬁrst) zero of the background solution y. Since

loa(r) = o(r)| + |pa(r) = p(r)]

< < sup  [0uGg(r,u)l +  sup lauHas(ﬁu)!) lya(r) —y(r)| (E.1)
€lya(r),y(r)] w€lya(r),y(r)]

we calculate

ya(r) — y(r)] < / 1/ (s) — g (s)lds

r
S/0 1_52_/\_2mA()

L 3 s

/

<72m

X ( 152A + s|Hy(s,ya(s)) — Hy(s,y(s))|

+5 [ P16uomlo) - G¢<a,y<a>>rda>

I

1 /% 5 4w A
+ <SH¢(s,y(s)) + 5_2/0 o G¢(U,y(0))da> <1 - SQTA SN T ) ]ds.

S S

Ip)
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We estimate I; and I» separately:

b= [ 5 [ #16uean) - Golopio)ldads

< /O /O G0, ya(0)) — (0, y(0))|dords
< /0 G0, ya(0)) — Co(0y(0))]do,
[ 47 47
2 = 1_32TA_2m;\(5) _1_2771(5)
2A s
< an18:9- (42 [ 6uon(o) - Golowy(o)lio )
0

sZA

< oase (T w8 [ 1Gulo.m(0) - Gaowpto))ao).
0
So using that y is decreasing we have
lya(r) = y(r)]
" 1
< A/ <68 + 216753 <H¢(r, Yo) + §G¢(7", y0)>> ds
0

s1mr [ Hys.0(9) - Hols.y(s)lds
0
7,,3 r
+ (72777' + 5184%23 <H¢(r, Yo) + éG¢(T’, yo))) /0 |G¢(5,QA(5)) - G¢(s,y(s))|ds
<A <3r2 + 547t <H¢(r, yo) + éG¢>(7Z y0)>>
+ <72777“ + 17287273 <H¢(r, Yo) + %GW, yo)))
x /0 (1 Ho(5,50(5)) — Hy(s,9(5))] + G5, 9 (5)) — Gigls, y(5)) s
< AC:(r) + Ca(r) /O " (Ipa(s) — p(s)] + lea(s) — o(s)]) ds

The derivatives with respect to y of Gy(r,y) and Hy(r,y) are strictly increasing both in r and
y. And since |ya(r) — y(r)| < |y(Ro + AR)| we can write

< sup  [0,Gy(r,u)| +  sup Iaqus(T,U)I)
u€lya (r),y(r)] u€lya (r),y(r)]

< |8uG¢(’F*’u)|y0+\y(R0+AR)\| + ‘8UH¢(f*’u)|y0+|y(Ro+AR)|‘ =: Cj.

So we have obtained that equation (E.1) is of the form

[Pa(s) — p(s)| + [ea(s) — o(s)| < Ca(r)A + Cs(r) /OT (Ipa(s) = p(s) + lea(s) — o(s)[) ds.
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E ESTIMATE OF |ox(R) — o(R)| + |Ps(R) — P(R)|

Note that Cy(r) is strictly increasing. Gronwall’s inequality yields
(loa(r) = ()] + Ipa(r) = p()]) < Car)els % = (AT = (A, (B2)

Note that Cy(r) is increasing when r is increasing.
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