

MASTERARBEIT

Titel der Masterarbeit

Evaluating capacity and drainage behavior of alpine ground water storages – Recession observations in the upper Poschiavino Area / Switzerland in winter 2013/14

> Verfasser Marius Floriancic, BSc

angestrebter akademischer Grad Master of Science (MSc)

Wien, 2014

Studienkennzahl It. Studienblatt: Studienrichtung It. Studienblatt: Betreuerin / Betreuer:

A 855 655 Masterstudium Geographie Dr. Felix Naef

ii

Erklärung

Hiermit versichere ich,

- dass die ich die vorliegende Masterarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubter Hilfe bedient habe,
- dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe
- und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit vollständig übereinstimmt.

Wien, August 2014

Marius Floriancic

Danksagung

Im Laufe des Studiums, während spannender Exkursionen sowie bei meinen Praktika konnte ich unzählige Erfahrungen sammeln und lernte zahlreiche interessante Personen kennen. An dieser Stelle möchte ich mich bei all jenen bedanken, die mich während meines Studiums und beim Verfassen dieser Arbeit unterstützt haben. Allen voran danke ich meinem "Betreuerteam" Felix Naef, Maarten Smoorenburg und Michael Margreth für die unzähligen Stunden spannender Diskussionen und Hilfestellungen. Durch eure hervorragende Betreuung hatte ich erst die Möglichkeit diese Arbeit erfolgreich zu beenden, eure ständige Motivation und Hilfe beim Bewältigen der Herausforderung waren ein wesentlicher Antrieb vor allem in den "dunkelsten Stunden vor der Dämmerung".

Des Weiteren möchte ich mich bei allen Kollegen und Mitarbeitern des Instituts für Umweltingenieurwissenschaften bedanken: Wolfgang Kinzelbach für die finanzielle Unterstützung, Vera Löhle für die Unterstützung in oft kurzfristigen bürokratischen Belangen, Daniel Braun und Lucien Boilley für Hilfestellungen bei der Laborarbeit, Thomy Keller für die Vorbereitungen der Feldkampagnen und selbstverständlich bei der "Zmittagcrew" für die spannenden, motivierenden und lustigen Tischgespräche in der Mensa. Ein grosser Dank geht an meinen Mitbewohner Gero Bauser, der mich in Zürich aufgenommen, bekocht und sehr unterstützt hat.

Für Unterstützung bei den herausfordernden Feldarbeiten möchte ich mich vor allem bei Familie Foppoli und den Mitarbeitern des "Chalet della Stazione" bedanken die mich während den Aufenthalten im winterlichen Puschlav bestens beherbergt, verpflegt und in allen Belangen unterstützt haben. Ausserdem möchte ich mich bei Marco Passini (Comune di Poschiavo), der Firma "Fratelli Lanfrachi" und Romeo Lardi (Giardino dei Ghiacciai Cavaglia) bedanken. Für die Finanzierung meines mehrmonatigen Auslandsaufenthalts und den Feldarbeiten möchte ich mich beim Institut für Umweltingenieurwissenschaften, den Firmen Soilcom GmbH und HyBest GmbH sowie bei der Kärnter Industriellenvereinigung bedanken ohne deren finanzielle Unterstützung diese Arbeit nicht zustande gekommen wäre.

Außerdem möchte ich mich bei den zahlreichen Personen bedanken, die mich während meines Studiums unterstützt haben: Christian Maslo der in mir die Leidenschaft für Hydrologie entfacht und mich letztendlich nach Zürich vermittelt hat, Robert Peticzka und Franz Holawe für die jahrelange Unterstützung während meines Studiums und die zahlreichen motivierenden Gespräche, Rainer Bell für unvergesslichen Erlebnisse auf den Exkursionen nach Nepal, Rumänien und ins Salzkammergut, der ganzen Arbeitsgruppe ENGAGE für die spannenden Projekte bei denen ich mitarbeiten durfte und nicht zuletzt bei meinen Studienkollegen an Universität Wien und BOKU für eine unvergessliche Studienzeit.

Mein grösster Dank gilt meinen Eltern denen ich diese Arbeit widmen möchte. Meine Ausbildung, Exkursionen und Auslandsaufenthalte, zahlreiche Reisen wären ohne eure grenzenlose Unterstützung nicht möglich gewesen.

Table of Contents

Er	klär	run	g	iii
D	anks	sag	ung	v
Li	st o	f fig	gure	sxi
Li	st o	f ta	bles	XV
Α	bbre	evia	tior	ns xvii
K	urzfa	ass	ung	xix
Α	bstr	act	•••••	xxi
1		Int	rodu	uction1
	1.1		Gen	eral introduction1
	1.2		Obj	ectives and hypotheses2
	1.3		Stru	icture of the thesis
2		The	eore	tical background4
	2.1	. Th	e lo	w flow value Q3474
	2.2	Sto	orag	e, drainage and traveltimes4
	2.3	Re	cess	sion analysis5
3		Res	sear	ch Area6
	3.1	-	Sele	ection of the study area6
		3.1	.1	Decision criteria6
		3.1	.2	Evaluation of existing data8
	3.2		The	upper Poschiavino Area9
		3.2	.1	The hydrology of the catchment11
		3.2	.2	The geology of the catchment11
		3.2	.3	Main subcatchments 12
4		Me	tho	dological Approach 16
	4.1		Ava	ilable data16
	4.2		Map	oping of storages
	4.3		Disc	harge measurements
		4.3	.1	Salt dilution

		4.3.	2	Bucket measurements	19
	4.4	ſ	Mea	asurement of electric conductivity	21
		4.4.	1	Continuous measurements	21
		4.4.	2	Field campaigns	21
	4.5	L	ake	e gauges	21
	4.6	I	on	composition of water samples	22
	4.7	ſ	Moc	del calculations	22
	4.8	(Orga	anization of field work	23
5		Res	ults		24
	5.1	ſ	Mea	asurements on catchment scale	24
	5.2	(Corr	nparison on subcatchment scale	25
		5.2.	1	Discharge and Conductivity	25
		5.2.	2	Storage mapping	28
	5.2	.2.1	Sı	ıbcatchment A	28
	5.2	.2.2	Sı	ibcatchment B	30
	5.2	.2.3	Sı	ıbcatchment C	31
	5.2	.2.4	Sı	ıbcatchment D	33
		5.2.	3	Potential storage volume	35
		5.2.	4 Co	omparison of storage and discharge behavior	37
	5.3	5	Spat	tially higher resolved measurements	37
		5.3.	1	Scale issues	37
		5.3.	2	Variation of ion composition along Poschiavino	40
		5.3.	3	Influence of the rockslide area	41
		5.3.	4 1	The influence of Raibler sediment series on discharge behavior	44
	5.4	ļ	٩dd	itional results	47
		5.4.	1. E	valuation of influence of snowmelt	47
		5.4.	2 In	fluence of the pass road on ion compostion	48
6		Inte	erpro	etation and discussion	51
	6.1	9	Spat	tial variability in discharge during recession	51
	6.2	9	Spat	tial scale issues	52

	6.3	Different storage types	53		
7	Ре	rspectives and summary	54		
	7.1	Perspectives	54		
	7.2	Summary	55		
8	Re	References			
9	Ар	Appendix			

х

List of figures

Figure 1: Flow duration curve of Poschiavino LaRösa for 2004 until 2013 (Data: FOEN)4
Figure 2: Measured discharge for Alpbach / Erstfeld for winter seasons 2003/04 until
2012/13 (Data: FOEN)
Figure 3: Measured discharge for Poschiavino / LaRösa for winter seasons 2003/04 until
2012/13 (Data: FOEN)
Figure 4: Study area Poschiavino / LaRösa (Data: swisstopo / ETH Zürich)10
Figure 5 & Figure 6: FOEN gauging station LaRösa, after (left) and before bricking of the
riverbed and sealing cracks at the orographic right side (right) (Figure 6 – Andrea Crose /
FOEN)11
Figure 7: Geological map of the study area Poschiavino / La Rösa (Data: swisstopo / ETH
Zürich)12
Figure 8: Map of the four main subcatchments including location and direction of
impressions of the subcatchments (Figure 8 – 15) (Data: swisstopo / ETH Zürich)
Figure 9 & Figure 10: Impressions of subcatchment A – see Figure 8 for location and
perspective
Figure 11 & Figure 12: Impressions of subcatchment B – see Figure 8 for location and
Figure 11 & Figure 12: Impressions of subcatchment B – see Figure 8 for location and perspective
perspective
perspective 14 Figure 13 & Figure 14: Impressions of subcatchment C – see Figure 8 for location and 15 Figure 15 & Figure 16: Impressions of subcatchment D – see Figure 8 for location and 15 Figure 17: Storage map in subcatchment C: besides field observation and a DEM, aerial 15 Prigure 17: Storage map in subcatchment C: besides field observation and a DEM, aerial 15 storage map (C). Geomorphological type, depth (<1m, 1-5m and >5m) and permeability 15
perspective 14 Figure 13 & Figure 14: Impressions of subcatchment C – see Figure 8 for location and 15 Figure 15 & Figure 16: Impressions of subcatchment D – see Figure 8 for location and 15 Figure 15 & Figure 16: Impressions of subcatchment D – see Figure 8 for location and 15 Figure 17: Storage map in subcatchment C: besides field observation and a DEM, aerial 15 photographs (A) and geological maps (B) (see Figure 7 for legend) were used to generate a storage map (C). Geomorphological type, depth (<1m, 1-5m and >5m) and permeability (high, medium, low and zero) were classified. (Data: swisstopo)

Figure 21 & Figure 22: Lake gauges (left – in western part of subcatchment A, right –
subcatchment C)
Figure 23: Overview of the locations of EC monitoring and lake gauges (Data: swisstopo /
ETH Zürich)
Figure 24 & Figure 25: snow accumulation during winter season 2013/14
Figure 26: Q, Q _s and EC at the gauging station LaRösa from 9 Nov 13 to 02 April 14 (Discharge
data: FOEN)
Figure 27: Discharged volume between 27 November 13 and 11 March 14
Figure 28: Q, Q _s and EC in the four subcatchments during the winter season 2013/1426
Figure 29: The four subcatchments show different recession behavior during the winter
season 2013/14. In the beginning specific discharge (I/s km ²) is similar but the drainage
behavior of the four catchments differs - quick recession in the western part (A and B), high
winter discharge and slow recession in the eastern part (C and D)
Figure 30: Depth of the quaternary deposits for subcatchment A
Figure 31: Discharged volume (highlighted in grey) between 27.11. – 11.03. for
subcatchment A
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered by
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered by
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered by sedimentary rocks
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks30Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B.31Figure 34: Depth of the quaternary deposits for subcatchment C.32Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C.33
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks30Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B.31Figure 34: Depth of the quaternary deposits for subcatchment C.32Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C.33Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C.33Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered by sedimentary rocks 30 Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B. 31 Figure 34: Depth of the quaternary deposits for subcatchment C. 32 Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C. 33 Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain 33 LaRösa. 34
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks30Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B31Figure 34: Depth of the quaternary deposits for subcatchment C32Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C33Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain34LaRösa34Figure 37: Discharged volume between 27.11. – 11.03. for subcatchment D34
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks30Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B.31Figure 34: Depth of the quaternary deposits for subcatchment C.32Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C.33Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain34LaRösa34Figure 37: Discharged volume between 27.11. – 11.03. for subcatchment D .34Figure 38: Estimated storage potential in mm for the research area36
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks30Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B31Figure 34: Depth of the quaternary deposits for subcatchment C32Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C33Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain34LaRösa34Figure 37: Discharged volume between 27.11. – 11.03. for subcatchment D34Figure 38: Estimated storage potential in mm for the research area36Figure 39: Variation of discharge (Q), specific discharge (Qs) and electric conductivity (EC)
Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered bysedimentary rocks30Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B.31Figure 34: Depth of the quaternary deposits for subcatchment C.32Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C.33Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain34LaRösa34Figure 37: Discharged volume between 27.11. – 11.03. for subcatchment D .34Figure 38: Estimated storage potential in mm for the research area36Figure 39: Variation of discharge (Q), specific discharge (Qs) and electric conductivity (EC)36along Poschiavino from measurement point C to the gauging station on 22 February 2014. 38

Figure 42: Variation of water chemistry along Poschiavino between 22 February 13 and 12
March 14 41
Figure 43: Variation of specific discharge and electrical conductivity in subcatchment C on 12
March 14 42
Figure 44: Measured values of EC and Q between X7 and C43
Figure 45: Area covered by sedimentary rocks and crystalline lithology and relevant sampling
points
Figure 46: Total amount (mg/l) of Mg, Ca and SO₄ ions at sampling points in subcatchment B
and C 46
Figure 47: Evaluation of the electric conductivity probes for the main measurement points
between 19 Dec until 03 April 14
Figure 48: The Bernina Pass Road in the upper Poschiavino area
Figure 49: Variation of Na, Cl and EC during snowmelt at MP A and the gauging station 49

List of tables

Table 1: List of gauging stations considered for this project (Data: FOEN / swisstopo)	. 7
Table 2: Comparison of discharged volume and the estimated range of storage volume for	
main subcatchments	35
Table 3: Estimated discharge from Raibler sediment series from ion composition from	
January 14 to March 14	44

Abbreviations

- BU ... Bucket measurement
- EC ... electrical conductivity (µS/cm)
- FOEN ... Federal Office of the Environment (BAFU Bundesamt für Umwelt)
- m asl ... meters above mean sea level
- **MeteoSwiss** ... Federal Office of Meteorology and Climatology (Bundesamt für Meterologie und Klimatologie)
- MK ... measurement campaign
- MP ... measuring point
- **Q** ... discharge (I/s)
- **Qs** ... specific discharge (I/s km²)
- **SD** ... salt dilution measurement

swisstopo ... Federal Office of Topography (Bundesamt für Landestopografie)

Kurzfassung

Die Abschätzung der Wasserverfügbarkeit in alpinen Einzugsgebieten bei Niederwasser ist wesentlich für viele wirtschaftliche und ökologische Fragestellungen. Besseres Verständnis über die Wasserspeicherung in Böden und quartären Sedimenten könnte die Abschätzung von Niederwasserverhalten und Hochwasserretention erheblich verbessern. Selbst steile alpine Gebiete reagieren auf Grund der vorhandenen Speicher gedämpft auf Niederschlagsereignisse oder weisen auch in Niederwasserperioden einen hohen Abluss auf. Nicht nur das Volumen dieser Speicher, sondern auch die Zeit der Entwässerung ist wichtig um die Dynamik der Abflussabnahme zu verstehen. In den Wintermonaten können Rücklaufprozesse von Abflüssen in alpinen Einzugsgebieten gut untersucht werden, da die Speicher kaum durch Regen oder Schneeschmelze aufgefüllt werden.

Um zu untersuchen, wie das Verhalten eines Einzugsgebiets mit der räumlichen Verteilung von Speichern zusammen hängt, wurden während der Wintersaison 2013/14 in 7 Messkampagnen in verschiedenen Teileinzugsgebieten des Oberlaufs des Poschiavino, räumlich hoch aufgelöst, Abflussmessungen durchgeführt. Das Einzugsgebiet in der Südost Schweiz ist etwa 14 km² gross und weist sehr unterschiedliche Teileinzugsgebiete auf. Ausserdem wurden elektrische Leitfähigkeiten, sowie Ionenzusammensetzung gemessen, um verschiedene Speichertypen und die Herkunft des Wassers zu identifizieren und klassifizieren. Um die Auswirkungen von Speichern auf das Verhalten bei Niederwasser zu untersuchen, wurden die unterschiedlichen Ablagerungen kartiert und nach ihrer Mächtigkeit und Typen klassifiziert. Ausserdem wurde versucht das Speicherpotential der Ablagerungen abzuschätzen.

Räumliche Variationen in Drainagezeit und abgeflossenem Volumen konnten in den einzelnen Teileinzugsgebieten identifiziert werden (zwischen 54mm und 200mm in vier Monaten). Die Untersuchungen sind auf Teileinzugsgebietsebene limitiert, da unterirdischer Abfluss und punktuelle Zuflüsse die Beobachtungen auf kleinerer Skala verfälschen. Rücklaufkurven, kombiniert mit zeitlicher Veränderung in der Ionen-Zusammensetzung, wurden verwendet, um Drainage-Zeiten und Speichervolumen zu klassifizieren. Die unterschiedlichen Volumina und die zeitliche Variabilität der Abflüsse konnten auf kartierte Speichereigenschaften zurückgeführt werden. Zusammengefasst konnte gezeigt werden, dass das Verständnis über Speicher und Drainageprozesse in alpinen Einzugsgebieten helfen könnte, Herausforderungen bei der Vorhersage von Niederwassermenge, aber auch bei der Hochwasserabschätzung zu bewältigen.

Abstract

Estimation of water availability in alpine catchments during low flow conditions is important for many economic and environmental services. Better understanding of water storage timescales of soils and quaternary deposits may improve flood prediction and low flow estimation in mountainous catchments. Even steep slopes can react damped to precipitation events and sustain baseflow during dry periods due to large storage. Not only the storage volume, but also the drainage time scale is important for understanding recession dynamics. To explore how low flow behavior relates to spatial organization of storage potential a detailed field study of winter low flows was carried out in the upper Poschiavino catchment in southeast Switzerland, a 14km² basin with strongly contrasting subcatchments.

Winter months provide good opportunities for studying flow recession in alpine catchments because there is little groundwater recharge from rainfall and snowmelt. Therefore, discharge time series were obtained for different nested subcatchments in 7 campaigns throughout the 2013/14 winter season. Electrical conductivity and various ion composition of stream water were measured to identify different drainage types and their origin. To study the effect of storage on low flow, sediment cover type and thickness were mapped what allowed classifying storage potential throughout the catchment.

Substantial spatial variation in drainage timescales and contributed volumes between the different subcatchments (54mm vs. 200mm discharged in four months) could be observed. Subsurface flow and point source contributions complicate small scale studies of recession flow, suggesting this process should be studied at subcatchment rather than hillslope-scale. The recession analyses combined with time series of ion composition allowed detecting different drainage timescales and an estimation of storage volumes. The variability of low flow discharge and differences in recession behavior can be attributed to the mapped storage potential. The observations show that understanding storage and drainage behavior of areas with large storage potential helps assessing catchment-scale flood and low flow problems.

(see also FLORIANCIC et al., 2014a and FLORIANCIC et al., 2014b)

1 Introduction

1.1 General introduction

Better understanding of storage and drainage of soils and quaternary deposits can help to improve flood prediction and low flow estimation. Yet, particularly in mountainous terrain, knowledge of storage potential and drainage behavior of different geomorphological settings is limited. Even steep slopes can react delayed to precipitation events and sustain baseflow during dry periods due to large storage (SMOORENBURG et al., 2013). To improve understanding of the processes involved it is essential to address differences in drainage to different physical properties of deposits. This could help assessing catchment scale low flow and flood problems.

Knowledge of formation of low flow is essential for water management strategies like sustainable drinking water supply, energy production, artificial snow production in alpine regions for winter tourism but also for environmental reasons (MWAKALILA et al., 2002). Discharge during dry periods varies even on small scales, some areas are contributing more than others (MARGRETH et al., 2013). These differences and the impact on water availability get more severe with changing climate conditions (OUYANG, 2012) (PUSHPALATHA et al., 2011). PUSHPALATHA et al. (2011) suggest that hydrological droughts have even higher economic consequences than flood events. Different approaches for low flow estimations on watershed scale were provided in the last decades: On the one hand numerous rainfallrunoff models, which are used for all possible flow conditions (SINGH and FREVERT, 2002) on the other hand approaches focusing especially on low flow (e.g. PUSHPALATHA et al., 2011). In Switzerland low flow $(Q_{347}$ – see chapter 2) in alpine watersheds is estimated based on duration curves (in catchments with an at least 10 year observation period) or by a method developed by ASCHWANDEN (1992) based on regression and regionalization (MARGRETH et al., 2013). Due to lack of measurements and a limited understanding of the interaction of storage and drainage processes in alpine watersheds the mentioned approaches do not produce satisfying results (MARGRETH et al., 2013).

Drainage and storage processes characterizing low flow discharge behavior also contain important information for understanding different response of alpine watersheds to <u>flood</u> <u>events</u>. Although storage processes of catchments are essential for estimating runoff (e.g. BRUTSAERT, 2005; KIRCHNER, 2009; KIRCHNER, 2006;), due to lack of information on the complex subsurface processes involved (SAYAMA et al., 2011), only few attempts estimating the volumes of these water storages can be found. Even in steep alpine watersheds quaternary deposits can have dampening effects during flood runoff (SMOORENBURG et al.,

2013). Recently published, process based researches, focused on the storage capacity and the drainage processes of these hillslope storages, due to their importance for catchment description, inter-comparison, classification and explaining non-linearities in rainfall-runoff transformation (PFISTER et al., 2014). Different watershed scale rainfall-runoff approaches, focusing on the functions of landscapes, proposed a threshold like activation of hillslopes (e.g. SAYAMA et al., 2011; SMOORENBURG et al., 2013;). Further studies found that storages have to be filled before they release water (e.g. McGUIRE and McDONNELL, 2010; SAYAMA et al., 2011). Although there have recently been published different approaches on quantification of flood retention potential and storage dynamics on watershed scale, knowledge about these processes should be broadened.

1.2 Objectives and hypotheses

Drainage processes depend on interaction of numerous storages. Much work has already been done analyzing and mapping the upper layers, especially on different physical properties of soils and estimation of dominant subsurface flood runoff processes in lower altitude areas (SCHERRER and NAEF, 2003) (WEILER and NAEF, 2003) (SCHERRER et al., 2007) (SCHMOCKER-FACKEL et al., 2007) (KIENZLER and NAEF, 2008). With higher altitude deeper layers and deposits become more significant for drainage processes, therefore SMOORENBURG et al., 2013 also considered deeper layers like quaternary deposits. All these investigations aimed to understand runoff formation and the retention behavior of hillslope storages during intense precipitation.

The aim of the thesis is to improve the understanding of storage and drainage processes in alpine catchments during low flow conditions. The connection between discharge recession and different storage properties should be examined. The characterizing processes should be observed and linked to physical properties of the landscape, like type and depth of the deposits, slope length, bedrock permeability and groundwater recharge. Different storages should be identified and classified regarding their drainage behavior. The main idea was to conduct spatially detailed discharge measurements in a small heterogeneous watershed during a period of recession and depletion and link the differences in drainage behavior to various landscape properties. Quantification of storage volume should be done based on the recession observation and water chemistry analyses. Observation of storage depletion is only possible in dry periods. In middle Europe alpine catchments at high altitude provide good opportunities for studying flow recession during winter months, because there is hardly any groundwater recharge from rainfall or snowmelt and storages are depleted by drainage only. Therefore winter measurement campaigns should be conducted in a high altitude alpine catchment. The research was guided by the following main hypotheses:

• Can we relate spatial differences in low flow behavior within a small alpine catchment to distribution and physical properties of hillslope storages that can be identified by geomorphological mapping?

Water chemistry evaluation and model calculations (electric conductivity, ion capacity recession gradient and different product equations) were used to classify discharge and storage types regarding drainage timescales and water storage capacity.

• Is it possible to classify different storage / drainage types and quantify storage capacity by water chemistry evaluation and model calculations based on the collected data?

For a small research area a high resolution storage map was produced and discharge measurements were made. On small scale challenges regarding the topographic delineation of subsurface catchment borders are expected.

• What is the smallest possible organization unit of the hydrological research, what is the smallest organization unit on which reliable results can be gathered?

1.3 Structure of the thesis

In chapter 2 the relevant hydrological concepts influencing the thesis are explained. Chapter 3 gives a geological and hydrological overview about the research area and a description of its characteristic features. In chapter 4 the applied methodological approaches are explained. All investigations are explained, and analyzed for reliability of the results. In chapter 5 discharge and conductivity measurements on different scales will be presented and mapped storage potential is compared to observed recession behavior. Results of conductivity monitoring, ion composition analyses and experimental calculations are explained. In chapter 6 the outcomes are discussed and further estimations are interpreted. The knowledge gained from field campaigns is linked to possible improvements for flood and low flow predictions. Ideas for further research are raised in chapter 7, followed by a final summary of the thesis.

2 Theoretical background

The hydrological concepts used are explained in this part of the thesis, mainly the use of Q_{347} , the connection between storage, drainage and traveltimes and the concept of flow recession.

2.1 The low flow value Q347

In Switzerland residual flow in rivers is based on the Q_{347} , defined as the discharge reached or exceeded at least 347 days a year over the last 10 years (see Figure 1). The value should not be influenced by artificial storage, supplies or extraction and based on measured values (ASCHWANDEN and KAN, 1999). For all measured rivers Q_{347} is published in the hydrological yearbook as a base for water management in Switzerland (ASCHWANDEN and KAN, 1999).

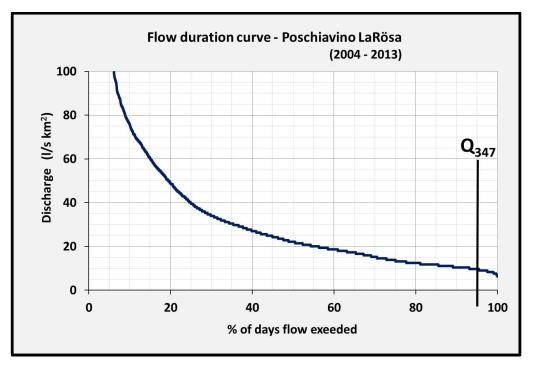


Figure 1: Flow duration curve of Poschiavino LaRösa for 2004 until 2013 (Data: FOEN)

2.2 Storage, drainage and traveltimes

Recent physically based approaches in catchment hydrology focused on storage potential and storage and drainage timescales in different geological settings. Water storage is the nonlinear variable in most simple rainfall-runoff approaches (PFISTER et al., 2014). Therefore a lot work concentrated on analyzing and mapping the upper subsurface layers (SCHERRER and NAEF, 2003) (WEILER and NAEF, 2003) (SCHERRER et al., 2007) (SCHMOCKER-FACKEL et al., 2007) (KIENZLER and NAEF, 2008). SMOORENBURG et al. (2013) found that even steep alpine slopes have dampening effects on flood runoff due to large storage (mainly quaternary deposits). Not only these storage volumes but especially the timescale of drainage and traveltimes through the sediment are important when estimating contribution from different hillslopes.

The most relevant storage is groundwater, where water is stored (and transported) in highly permeable rocks or deposits called aquifers (JOHNSTON and McCARTNEY, 2010). Water is also stored in the unsaturated zone or in wetlands like swamp areas. When looking at the recession dynamics the traveltimes of water through storages has to be considered. Traveltime is defined as the time a water particle needs to flow through a hillslope, from infiltration of precipitation to drainage into the streamflow. Traveltimes are often used for characterizing catchment-scale flow and transport processes. (BOTTER et al., 2011). These processes of transport involved in runoff generation are crucial for understanding the main hydrological processes of a catchment (UHLENBROOK et al., 2002).

2.3 Recession analysis

Knowledge of discharge and drainage processes of hillslope storages and the delay of contribution to the river network is essential for water budgets and threshold behavior of catchments (TALLAKSEN, 1995). The variations in streamflow are attributed to different drainage behavior of hillslopes and storage elements (KIRCHNER, 2009). A useful and acknowledged tool to interpret catchment characteristics is recession analysis. The concept of flow recession analysis dates back to BOUSSINESQ (1877) MAILLET (1905) used for estimation of groundwater storage.

During dry periods stream flow is fed by drainage from different groundwater storages and other delayed sources as soils, quaternary deposits and bedrock fractures. This outflow and gradual depletion during dry periods results in the recession rate and can be plotted as recession curves (see TALLAKSEN, 1995; KIRCHNER, 2009;). Therefore recession curves characterize catchment storage and drainage properties. The most challenging aspect is identification of the contributing sources. Measuring and modelling of these drainage processes especially on small scale and during unsaturated conditions is extremely challenging (HEWLETT, 1961) (TALLAKSEN, 1995).

3 Research Area

3.1 Selection of the study area

3.1.1 Decision criteria

Observation of depletion of storages is only possible during dry periods. In middle Europe such periods exist in high altitude alpine areas during winter months. Due to the lack of liquid precipitation there is no / only little recharge of the storages.

An essential working step was finding an appropriate study area. To work on the research hypothesis and to get reliable results following points were considered when deciding for the research area:

First of all, the report of MARGRETH et al., 2013 on flow recession in Switzerland was evaluated. Available gauging data (daily mean discharge in m^3/s) for alpine catchments in Switzerland from FOEN (Federal Office for the Environment) were collected (http://www.hydrodaten. admin.ch/de/). As a result there should be a dense data set of discharge measurements and a high spatial resolution map of storage types, therefore only catchments smaller than 100 km² were selected. To avoid the refill of the storages due to liquid precipitation and major influence of snowmelt only catchments with a gauging station above 1000 m asl were selected. It is estimated that below this elevation, snowmelt and rain events also take place during winter months and have influence to storage recession. The possible observation periods would be shorter and without a frequent discharge observation the recession curves would be flattened due to inflow to the storages of the catchment.

Fifteen of the FOEN gauging stations were selected to take a closer look at (Table 1). Because winter discharge occurs on low rates, uncertainties in the discharge measurements can have major effects on the results. These mainly derive from bedload and suspended matter accumulated at the measuring station changing the rating curves and the calculated discharge. Low flow measurements are critical, therefore the gauging station must be equipped properly. Pictures of the gauging stations and personal contact with the responsible keepers helped to identify reliable stations. Stations having a low flow channel or a concrete / bricked riverbed are less influenced by sediment accumulation. Because discharge measured during the winter is used, also the influence of ice at the gauge had to be considered. According to available information three of the selected stations are known to be iced during the winter months and are not freed from ice during winter season, another three do not have a low flow channel or a bricked / concrete riverbed.

In a further step the geology of the catchment was examined using existing information from swisstopo (Federal Office of Topography – http://map.geo.admin.ch) and gauging station background information of FOEN (http://www.hydrodaten.admin.ch/de/). The catchments were organized according to the main geology (crystalline, flysch, limestone or dolomite). It

was assumed that crystalline catchments could be better delineated than carstic watersheds consisting of limestone or dolomite.

Because the aim of the research is to identify different storages types the geomorphologic heterogeneity within the catchment was also taken into consideration. The idea was to identify nested subcatchments, showing different storage and drainage behavior. Additionally also the mean Q_{347} of the last twenty years was looked at. Catchments having a high Q_{347} were assumed to have large storages. To allow frequent discharge observations during winter months, accessibility to the catchment must be given.

name of the creek	location gauging station	catchme nt size (km ²)	m asl	info FOEN	main geology	Q ₃₄₇	Accessibility
Allenbach	Adelboden	28.8	1.297	ok	flysch	8.33	Poor
Alpbach	Erstfeld	20.6	1.022	ok	crystalline	4.85	Poor
Dischmabach	Davos	43.3	1.668	ice	crystalline	6.45	Med
Goneri	Oberwald	40.0	1.385	ice	crystalline	9.25	Med
Lonza	Blatten	77.8	1.520	ok	crystalline	6.17	Poor
Orbe	LeChenit	44.4	1.040	ok	limestone	2.03	Med
Ova da Cluozza	Zernez	26.9	1.509	ok	dolomite	5.20	Poor
Ova dal Fuorn	Zernez	55.3	1.707	ice	dolomite	5.97	Poor
Rein da Sumvigt	Sumvigt	21.8	1.490	ok	crystalline	7.34	Poor
Poschiavino	LaRösa	14.1	1.860	ok	crystalline	9.93	Good
Rhone	Gletsch	38.9	1.761	lfch miss	crystalline	4.11	Poor
Riale di Roggiasca	Roveredo	8.1	980	lfch miss.	crystalline	3.72	Poor
Rosegbach	Pontresina	66.5	1.766	lfch miss.	crystalline	1.35	Med
Rotenbach	Plaffeien	1.65	1.275	ok	flysch	6.12	Med
Schwändli- bach	Plaffeien	1.38	1.220	ok	flysch	0.38	Med

 Table 1: List of gauging stations considered for this project (Data: FOEN / swisstopo)

3.1.2 Evaluation of existing data

Furthermore different analyses on the reliability of the existing data were made. Discharge data (FOEN - http://www.hydrodaten. admin.ch/de/) of the last ten years were used to study the recession behavior and rating curves for the catchments Alpbach, Dischmabach, Goneri, Lonza, Rein da Sumvigt, Poschiavino, Riale di Roggiasca and Rosegbach.

For all these catchments the rating curves were stable, at least for the last 10 years. In addition recession curves, based on daily mean values were derived to get an idea of the discharge behavior during the winter months. To avoid recharge of the storages there should be no liquid precipitation and no snowmelt in the potential research area. Of course recession could be observed frequently, but to study the storage and drainage behavior of a catchment during low flow conditions it's essential to be able to observe a long recession period.

When having a closer look at the evaluation of winter discharge at the gauging station Erstfeld at Alpbach (Figure 2), it's obviously that there is frequent influence of rain and snowmelt events during the winter months. Due to the low main altitude of the catchment and the height of the gauging station (1022 m asl) discharge shows frequent increase also during winter months and recession was observable for short periods only.

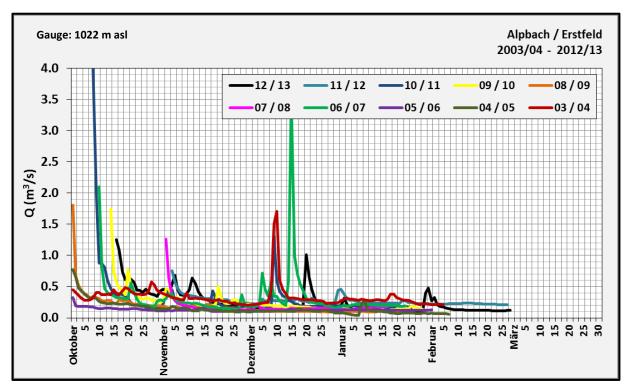


Figure 2: Measured discharge for Alpbach / Erstfeld for winter seasons 2003/04 until 2012/13 (Data: FOEN)

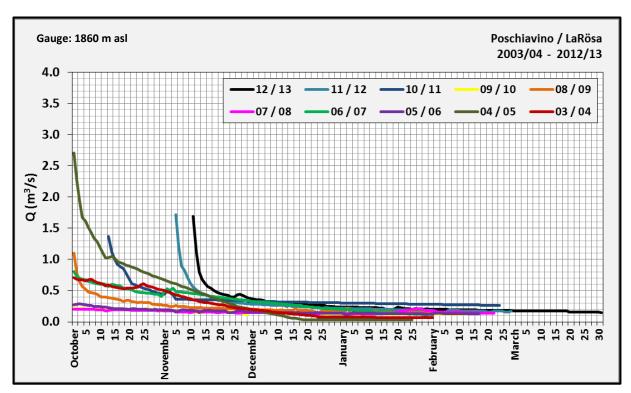


Figure 3: Measured discharge for Poschiavino / LaRösa for winter seasons 2003/04 until 2012/13 (Data: FOEN)

The gauge of the upper Poschiavino catchment lies at 1860 m asl and measurements do not show any major rain or snowmelt events during the last 10 winter seasons. The recession curves show long periods of decreasing discharge, beginning at least mid-November (Figure 3). Considering all collected information, quoted in chapters 3.1.1 and 3.1.2 the upper Poschiavino area was selected for the research.

3.2 The upper Poschiavino area

The research area spreads over 14.4 km² in the southeast of Switzerland in the region Puschlav of the Kanton Graubünden (see Figure 4). It is the headwater of the 238 km² Poschiavino catchment which merges after about 30 km into the Adda river (part of Po watershed). The northwestern limit of the catchment corresponds with the border to Italy. The highest point is Piz Ursera with 3032 m asl, the lowest point is the FOEN gauging station at the end of the Plan da LaRösa (1860 m asl) (see Figure 4). The catchment mean altitude is 2283 m asl.

Almost half of the area is used as alpine grazeland; Due to the high elevation only 6% of the area is covered by coniferous forests (FOEN - http://www.hydrodaten.admin.ch/de/).

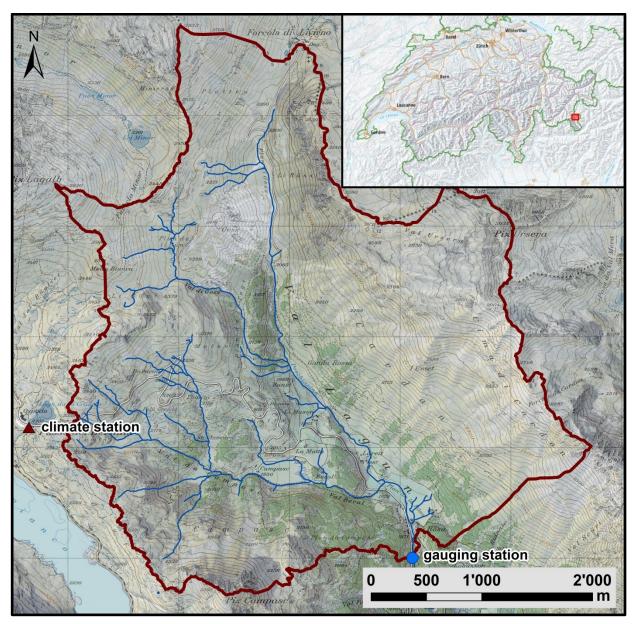


Figure 4: Study area Poschiavino / LaRösa (Data: swisstopo / ETH Zürich)

The main soil types are lithosols and regosols (shallow weakly developed soils lacking defined horizons) with very poor storage capacity and high permeability (FOEN - http://www.hydrodaten.admin.ch/de/).

The next climate station is at Passo di Bernina, about 200 meters outside the catchment at 2.207 m asl. The mean annual precipitation is 1.738mm (1981 – 2010). The annual mean temperature (1981 – 2010) is 0.2°C, reaching maximum in July and August and minimum in January and February. Due to high snow accumulation (annual mean 792cm) and the high elevation snow cover lasts at average for 217 days (mean 1981 – 2010) (MeteoSwiss - http://www.meteosuisse.admin.ch/). Mean annual height of evapotranspiration (1973 – 1992) is around 300mm per year (MENZEL et al., 1999).

3.2.1 The hydrology of the catchment

The main river Poschiavino stretches from north to south through the research area, with two main inflows form orographic right (Passo del Bernina and Plan da li Cüni). The eastern part of the catchment covered by thick quarterly sediments shows almost no surface discharge.

The general hydrological behavior of catchments in Switzerland is classified according to ASCHWANDEN and WEINGARTNER (1985). The upper Poschiavino area is assigned to the south alpine regime nival meridional, characterized by a discharge maximum in spring due to snowmelt.

Figure 5 & Figure 6: FOEN gauging station LaRösa, after (left) and before bricking of the riverbed and sealing cracks at the orographic right side (right) (Figure 6 – Andrea Crose / FOEN)

The mean discharge at LaRösa is $0.55 \text{ m}^3/\text{s}$ (1970 – 2013) varying between $0.94\text{m}^3/\text{s}$ (1977) and $0.31\text{m}^3/\text{s}$ (2007). The specific discharge is 39 l/s km². In 2013 the mean annual discharge was $0.67 \text{ m}^3/\text{s}$ (FOEN - http://www.hydrodaten.admin.ch/de/). According to personal information of the responsible keeper Andrea Crose (FOEN) there had been problems at the station with undercurrent in the last years. In April 2013 the bricked riverbed was repaired to avoid losses and measuring errors (see Figure 5 & 5).

The Q_{347} over the period 1970 – 2012 was 0.14 m³/s, the specific Q_{347} 10 l/s km². Due to uncertainties in the measurements mentioned above, the Q_{347} might be even a little higher.

3.2.2 The geology of the catchment

The catchment is situated in the Bernina- and Campo nappes from the Middle and Lower East Alpine. It is strongly influenced by glacial activity. Along the main river the border of the two nappes is surmised. The western half of the catchment is characterized by Lower East Alpine crystalline formations, mainly green orthogneiss, and a variety of quarterly sediments. The eastern and northern parts of the catchment are characterized by Middle East Alpine layers consisting of paraslates and ortho and injection gneiss overlapped by thick quarterly sediments. At some locations gabbroides and amphibolites emerge. In the eastern part of the catchment two areas of creeping landmasses and a rockslide could be found. In the northern part of the catchment lower East Alpine sediments are exposed. They consist of Triassic flat marine carbonates, mainly dolomite and gypsum, and could be divided into the Raibler Series and main dolomite. Raibler Series are characterized by various thin layers in steady alternation due to environmental changes during sedimentation. In the research area these are mainly derived from dolomites, rauhwacke and gypsum in a very frequent sequencing (see Figure 7) (NAEF, 1987). Numerous moraines are indicated in the geological map suggesting high influence of glaciation in the area. Half of the catchment is overlaid by quaternary sediments.

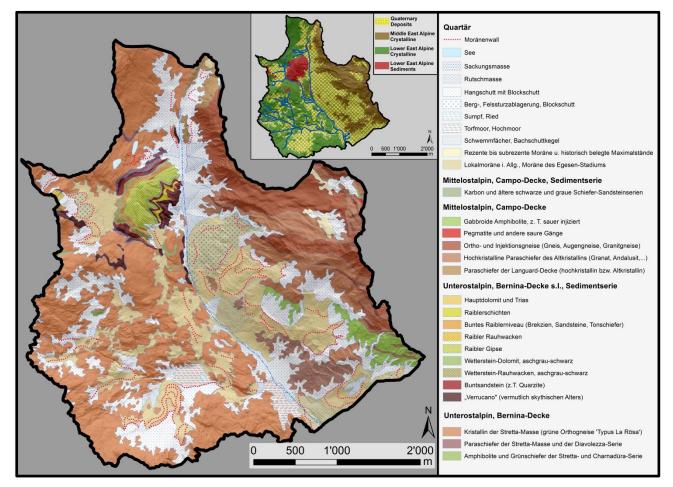
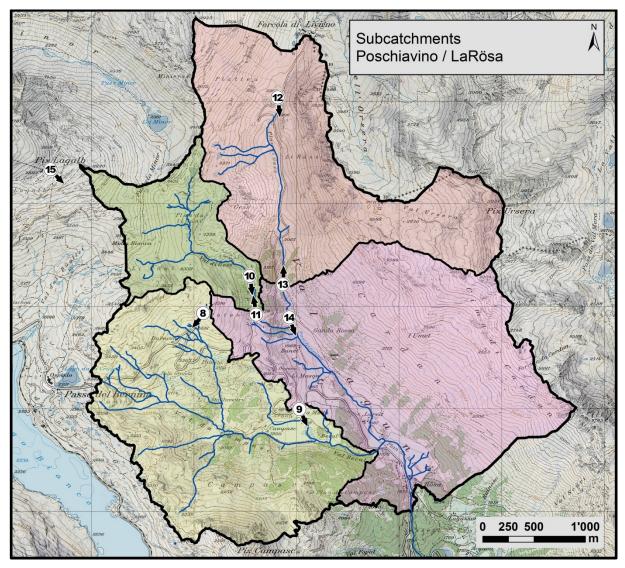



Figure 7: Geological map of the study area Poschiavino / La Rösa (Data: swisstopo / ETH Zürich)

3.2.3 Main subcatchments

The research area was divided in four main subcatchments (see Figure 8). Subcatchment A is characterized by numerous small creeks, swampy areas and a homogeneous crystalline

geology. It has a heterogeneous morphology due to quaternary sediments like moraines and talus deposits. In the lower part (at the swamp area of Val da Campasc) all the creeks flow into one tributary of the Poschiavino. Subcatchment B is also the watershed of an orographic right tributary of the main creek, most of the catchment is characterized by the same quaternary deposits and geology as found in subcatchment A, but some parts of B are situated in the Lower East Alpine Sediments (Raibler formations). After a large swamp / plain area (Plan da li Cüni) all the conveyors merge to pass through a steep canyon (Val di Gess). Subcatchment C is the headwater of the catchment. It contains Raibler formations in the south western part and thick talus and moraine deposits in large parts of the catchment. In some sections the Poschiavino is even covered by deposits. The fourth subcatchment (D), is characterized by a steep slope showing no tracer of surface discharge because of thick quaternary sediments lying on quiet homogeneous crystalline nappes. In the lower part there is a large alluvial aquifer / Plan LaRösa.

Figure 8: Map of the four main subcatchments including location and direction of impressions of the subcatchments (Figure 8 – 15) (Data: swisstopo / ETH Zürich)

Subcatchment A

Figure 9 & Figure 10: Impressions of subcatchment A – see Figure 8 for location and perspective

Subcatchment B

Figure 11 & Figure 12: Impressions of subcatchment B – see Figure 8 for location and perspective

Subcatchment C

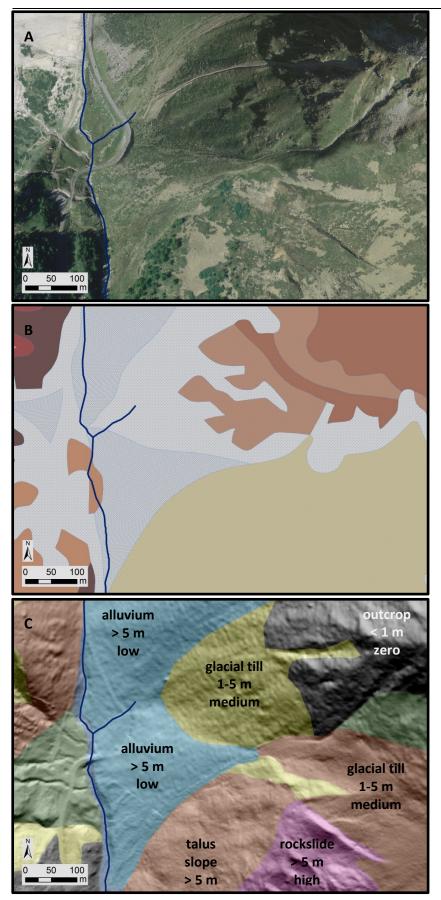
Figure 13 & Figure 14: Impressions of subcatchment C – see Figure 8 for location and perspective

Subcatchment D

Figure 15 & Figure 16: Impressions of subcatchment D – see Figure 8 for location and perspective

4 Methodological Approach

4.1 Available data


First data of the research area were collected to get an overview of existing information:

- geological information of the vector dataset GeoCover (Bernina-Gruppe)
 based on investigations of Rudolf Staub (1912 1945) at a scale of 1:50.000
- digital elevation models (DEM) in 2m and 25m resolution
- vector data (1:25.000) of landuse, hydrology, buildings and traffic routes
- a topographical map and aerial photographs (swisstopo available via ETH VPN)

Preliminary investigations of the hydrological behavior were based on data of FOEN (http://www.hydrodaten.admin.ch/de/). The data contain daily mean values of discharge (m³/s) and daily mean water level values (m asl). FOEN additionally provided discharge values (l/s) and water level measurements (m asl) in 10 minute resolution and the valid rating curves.

4.2 Mapping of storages

The aim of the project was to identify different storages and estimate their main physical properties like mean depth, permeability and area. This should help classifying the deposits regarding their storage and drainage behavior and get a map of the spatial distribution of storage potential. Based on the DEM, aerial photographs, geological maps and field observations the whole watershed was mapped regarding geomorphological type, thickness and estimated permeability (see Figure 17). The mapping scheme was inspired by the methodology of SMOORENBURG et al., (2013) developed for a geomorphological types were differentiated: alluvium, talus slope, outcrop, swamp area, glacial till and debris slope assigning three thickness classes: < 1m, 1-5m and > 5m and the permeability classes high, medium, low and zero based on surface observation (see Figure 17).

Figure 17: Storage map in subcatchment C: besides field observation and a DEM, aerial photographs (A) and geological maps (B) (see Figure 7 for legend) were used to generate a storage map (C). Geomorphological type, depth (<1m, 1-5m and >5m) and permeability (high, medium, low and zero) were classified. (Data: swisstopo)

Based on the DEM, aerial photographs, geological maps and field observations the whole watershed was mapped regarding geomorphological type, thickness and estimated permeability (see

Figure 17). The mapping scheme was inspired by the methodology of SMOORENBURG et al., (2013) developed for a geomorphology based flood prediction model on dominant runoff processes. Six geomorphological types were differentiated: alluvium, talus slope, outcrop, swamp area, moraine and debris slope assigning three thickness classes: < 1m, 1-5m and > 5m and permeability classes high, medium, low and zero based on surface observation (see

Figure 17).

4.3 Discharge measurements

Discharge was measured every three weeks with high spatial resolution at up to 57 locations during the winter 2013/14 from November to April (Figure 20). Measuring discharge in a high alpine catchment is challenging. Due to heterogeneous river morphology usage of current meter can be difficult. Low temperatures can lead to icing of the weir and measurement structures, the variation in flow velocity results in uncertainties when applying standard weir equations (MOORE, 2004). Therefore tracer dilution and a volumetric bucket approach were used.

4.3.1 Salt dilution

The tracer dilution method is based on tracer injection and measuring the dilution after complete mixing downstream (MOORE, 2004). The tracer can be injected constantly or by gulp injection. The accuracy of both methods depends on complete mixing of stream water and tracer in a short distance with as little pool volume as possible and no backwater areas (MOORE, 2004). For this project gulp injection was used and all measurement sites were selected preliminary in autumn. The mixing length in the stream was chosen regarding the proposal of DAY (1977) to use the flow width 25 times. Gulp injection is easily applicable because no additional equipment for injection is needed and it can be done at temperatures far below zero. As tracer salt solution (NaCl + H₂O) was used as it has low aquatic toxicity at the concentration needed (WOOD and DYKES, 2002) and can easily be measured as electrical conductivity. It is cheap (MOORE, 2004), works well in steep, highly turbulent streams and produces reliable results up to 10m³/s (MOORE, 2005). After injecting the cloud of salty water (longitudinal dispersion) is measured as variation of electric conductivity (EC) at a point downstream (MOORE, 2005). Accuracy depends on the variation of electrical conductivity, therefore MOORE (2005) suggests the salt solution should increase EC by 100% - 200% at streams with a background EC below 100 μ S/cm and 400% above 100 μ S/cm background EC. For the salt used a calibration curve was derived in the laboratory, salt was weighed and packed with high accuracy in the laboratory and dissolved in stream water using an electric drill and a remand wing at the measurement sites. Downstream EC was measured and logged with at least two calibrated devices (types: WTW Multi 3420 or WTW Multi 340i) in intervals of 5 seconds in the main part of the flow as suggested by MOORE (2005). Additionally water temperature was logged, because EC varies by temperature. Calibration of the devices was done frequently using 0.01 molar Potassium Chloride as suggested by the manufacturer. The error of the method is less than 5% under good conditions (DAY, 1976). Errors occur when salt is not completely dissolved, if the solution is not mixed across the whole channel or when the flow path is covered by ice and snow (MOORE, 2005). For high alpine conditions during winter times measuring error was estimated to be below 10%. When comparing the results of the two probes at the same point, the error was always below 5%.

4.3.2 Bucket measurements

Bucket measurements were used mainly at tube outlets with low discharge, found along the Bernina Pass road (see Figure 20). Volumetric discharge measurement are most reliable when measuring small discharges (TURNIPSEED and SAUER, 2010). It is based on the time a container of a calibrated volume needs to be filled completely or up to a certain depth (RANTZ, 1982).

Figure 18 & Figure 19: Bucket measurements at MP D5 and MP A 21

Four different sized containers were calibrated in the lab (by weighing the full container with high precision) for usage depending on the discharge. The time until complete filling of the container was measured. The outlet of the tube was often too low to place the bucket

beneath; therefore a gutter was used to lead the water into the bucket (see Figure 18 & 19). The measurement error is lower if the time for filling the container is longer. The measurement was repeated at least two times (if filling time exceeded 4 minutes) three times (from 1 to 4 minutes) and five times (below one minute).

At measurement point D2, an orographic left tributary, the presented volumetric method was not possible, due to high discharge and low elevation difference between the tubes and the riverbed of the receiving waters. A bigger bucket was weighed, held beneath the tube for short time (recorded with a stopwatch) then the whole bucket was weighed again. The difference in weight would be the discharged volume in a certain time period. This method was applied at least six times to minimize errors. Afterwards the minimum and the maximum were dismissed; the remaining four values were used to calculate the mean. After applying the mentioned statistical approaches, the error could be minimized to below 5%.

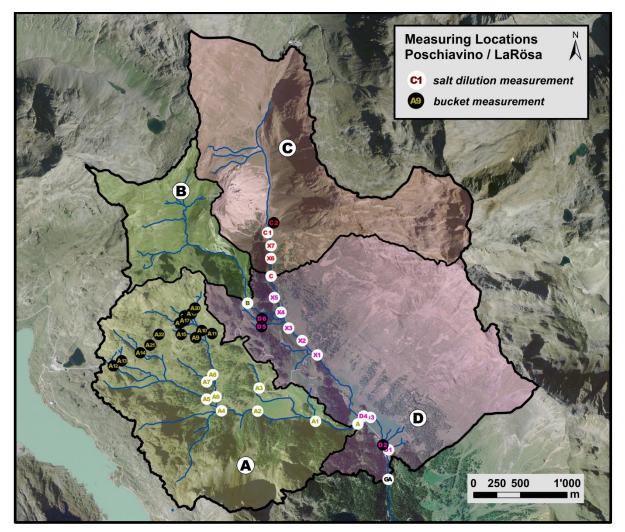


Figure 20: Overview of the measuring locations of discharge (Data: swisstopo / ETH Zürich)

4.4 Measurement of electric conductivity

4.4.1 Continuous measurements

Electric conductivity probes were installed at certain points (see Figure 23) to record hourly values from December to March. To evaluate the influence of snow melt during the recession period and to survey electric conductivity 9 probes (HOBO U24 Conductivity Logger) were installed (Gauge, D3, D4, A, A2, A4, A6, B and C) on 19 December. Calibration curves for all loggers were derived before installing and after removing them from the creeks by observing the increase of EC by adding a certain amount of calibrated salt solution every 2 minutes for 20 minutes. The calibration was additionally observed with another calibrated device (WTW Multi 3420).

4.4.2 Field campaigns

Electric conductivity was observed along the main creeks every three weeks at the measurement sites and at additional locations using the calibrated devices WTW Multi 3420 and WTW Multi 340i. Calibration was done frequently using 0.01M KCl (as determined by the manufacturer). A spatial dataset of electric conductivity for the observation period could be derived.

4.5 Lake gauges

Lake gauges where installed at four small lakes (see Figure 21 & 22 for examples and Figure 23 for location of the lake gauges). Due to low air temperatures (up to -29°C) in November 2013 three of the lakes froze up to the ground, the fourth lake gauge at Val di Campasc was lost due to massive snow accumulation after 19 December.

Figure 21 & Figure 22: Lake gauges (left – in western part of subcatchment A, right – subcatchment C)

4.6 Ion composition of water samples

Water samples were taken at the main measurement points and at various tributaries and springs every three weeks from January to March for ion composition analyses. Plastic conical centrifuge tubes were used to take one sample for each point, completely filled to avoid the influence of air inside the tube. The samples were stored in the refrigerator until they were analyzed by ion chromatography, using organic polymers and eluent ions (FEDOTOVA and GÜNTHER, 2013). Every sample was analyzed two times.

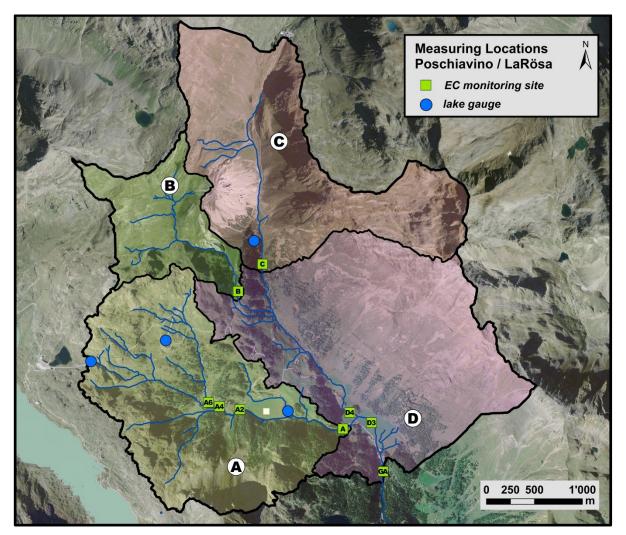


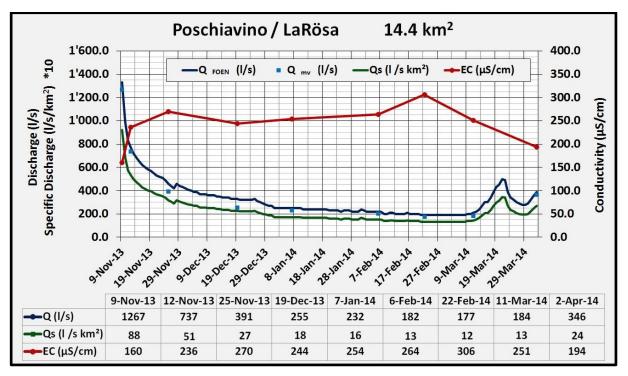
Figure 23: Overview of the locations of EC monitoring and lake gauges (Data: swisstopo / ETH Zürich)

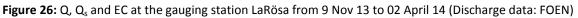
4.7 Model calculations

The collected data was used as input for various mathematical approaches for storage quantification and drainage type separation. Quantification of storage volumes throughout the catchment was based on mapped thickness of deposits and qualitative permeability estimation. The contribution from sedimentary rocks was estimated using natural ion tracers $(SO_4 \text{ and } Mg)$ in the water samples. Product equations could be used for estimating the contribution from a rockslide area. Recession curves and product equations were used to divide different storage types regarding their drainage behavior the gradient of the plotted recession curves was used.

4.8 Organization of field work

An important major part of the project was the field work in a hostile environment. Many permissions and support had to be organized. The nine measurement campaigns were carefully prepared beforehand and coordinated regarding weather conditions. Although much afford was put into the preparation for field work, measurement campaigns were challenging during winter season 2013/14. 9m to 10m of snow were accumulated during winter and temperatures were often below -20°C.




Figure 24 & Figure 25: snow accumulation during winter season 2013/14

5 Results

5.1 Measurements on catchment scale

First the results of the measurement campaigns during winter season 2013/14 were analyzed on catchment scale. Salt dilution measurements were applied 9 times from 09 November 13 until 02 April 14 at the FOEN gauging station LaRösa. In Figure 26 the results for discharge provided by FOEN (dark blue graph), measured discharged (light blue, dashed) specific discharge (green) and electrical conductivity (red) were plotted. Obviously a quick recession until the end of November followed by a dampened recession until mid of March took place. After the measurement campaign launched on 11 March increase in discharge due to snowmelt is visible, but as explained in chapter 5.2 (Comparison on subcatchment scale) not all parts of the catchment reacted to increasing temperatures. Regarding the FOEN discharge measurements the peak was reached on 22 March. Discharge decreased from November to March from 1267 l/s to 177 l/s. Specific discharge (Q l/s km²) reached the minimum at 12.3 l/s km² which is above the expected mean of the catchment given by FOEN. This could be explained by the renovation of the riverbed at the gauging station or by more precipitation during summer and autumn leading to a higher content in the storages. A quick increase of the electric conductivity time series could be observed reaching a peak at the end of November. Electric conductivity again increased after the 19 December 13 to reach the highest peak in the end of February (306 µS/cm). Afterwards conductivity decreased again due to the influence of snowmelt especially in the parts of the catchment influenced by the pass road.

Between 27 November 13 and 11 March 14 165mm were discharged in the research area (see Figure 27). As no significant recharge of the storages occurred through liquid precipitation or snowmelt in this period, the storages in the catchment were depleted by 2.4 million m³. In this three and a half months, almost 1/10 of mean annual precipitation of 1738mm were discharged. When comparing the measured values during the field campaigns to the daily mean values measured by FOEN (see Figure 26), the results fit very well except in the period from 25 November until 7 January, when the plotted discharge curve of daily mean values by FOEN increases. The difference could be assigned to inaccurate measurements by FOEN, by plotting the relation of discharge and stage (rating curve) for the relevant period which does not show reliable results.

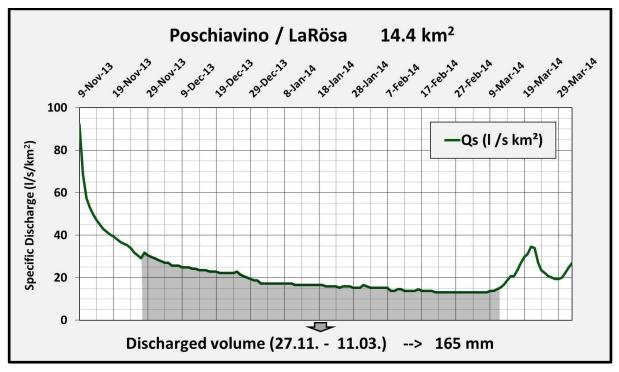


Figure 27: Discharged volume between 27 November 13 and 11 March 14

5.2 Comparison on subcatchment scale

5.2.1 Discharge and Conductivity

The differences in drainage behavior between the watersheds A, B, C and D are evaluated on subcatchment scale. They show different recession behaviors (see Figure 28). The western part (A and B) and the eastern part (C and D) behave differently. Subcatchment A and B both show a quick recession in autumn and a low winter discharge. In subcatchment B electric conductivity is much higher than in A, discharge is a little higher. Subcatchment C and D show a slower recession over the observation period. As observed at the gauging station electric conductivity decreases between the measuring campaigns of 22 November and 19

December in subcatchment C. The results for subcatchment D are not measured values but are calculated as the difference between the gauging station and the measured values of subcatchments A, B and C. Therefore there are no measured values for electric conductivity. Considering the sum of uncertainties of the four salt dilution measurements (gauge, A, B and C) the plotted recession curve for subcatchment D shows slow recession behavior and high winter discharge.

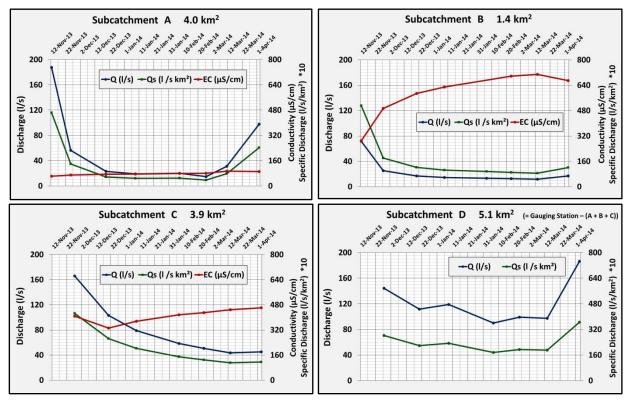
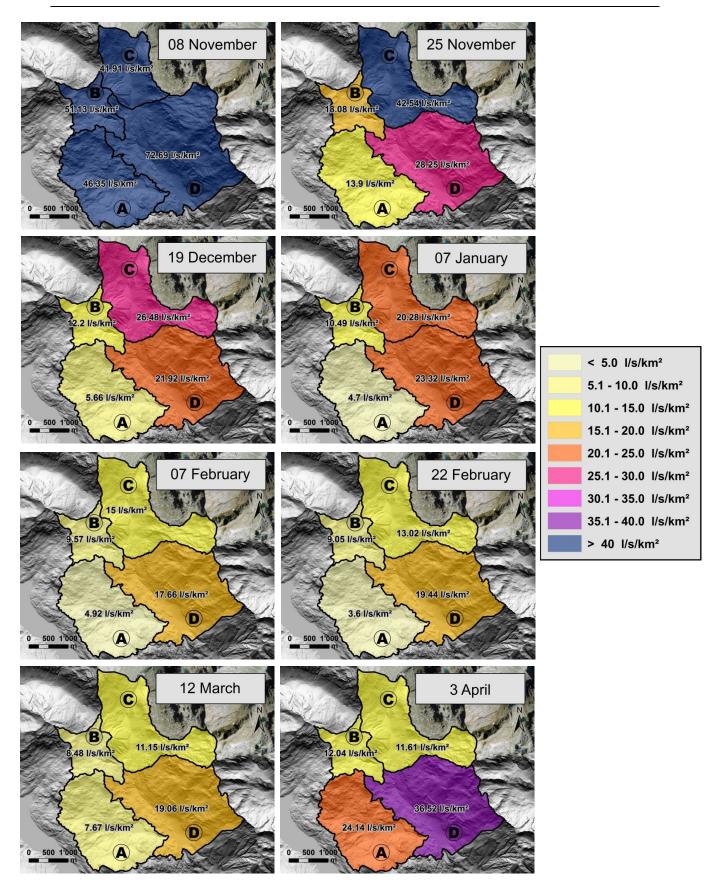



Figure 28: Q, Q_s and EC in the four subcatchments during the winter season 2013/14

An overview of the spatial distribution of low flow behavior in the research area and the variations during the observation period is shown in the maps of specific discharge (I/s km²) for the subcatchments (see Figure 29). At 8 November 13, all subcatchments show a discharge of more than 40 I/s km². At the 28 November a much smaller discharge is visible in the western part of the catchment (subcatchments A and B). Subcatchment C shows the highest specific discharge followed by subcatchment D. Until 19 December 13 subcatchment A (from 14 I/s/km² to 6 I/s/km²) was going through much higher decrease in specific discharge than subcatchment B (from 15 I/s km² to 12 I/s km²). In subcatchment C (from 43 I/s km² to 26 I/s km²) a stronger recession can be detected than in D (from 28 I/s/km² to 22 I/s/km²), but the headwater area C remains the part of the watershed with the highest contribution. It changes with the beginning of January 14: subcatchment D then shows the highest specific discharge, remaining with the highest contribution for the rest of the observation period. Subcatchment A only shows smooth recession until the end of February 14 (from 6 I/s km² to 4 I/s km²).

Figure 29: The four subcatchments show different recession behavior during the winter season 2013/14. In the beginning specific discharge (I/s km²) is similar but the drainage behavior of the four catchments differs - quick recession in the western part (A and B), high winter discharge and slow recession in the eastern part (C and D)

Also in subcatchment B specific discharge decreases only marginally from 12 l/s km² to 8 l/s km² until 12 March 14. Subcatchment D shows about the same mean value from end of December to mid-March with about 20 l/s km² for three months. It shows only minor recession). During the measurement campaign on 22 February subcatchment A reaches the lowest point, all other catchments show further decreasing discharge. Although until 12 March discharge decreases in subcatchments B, C and D some influence of snowmelt can be observed. This leads to a more flattened recession curve. Due to major influence of snowmelt along the pass road in subcatchment A (see also chapter 5.4.2) discharge rises in that part of the research area. Looking at the measurement on 3 April 14 one can observe rising discharge in all four subcatchments, however increase is larger in the catchments A and D influenced by lower altitude and the pass road. Subcatchments B and C only show a small increase in specific discharge (Figure 29).

5.2.2 Storage mapping

In the following the results of the measurements are compared to the mapped storages in the catchment.

5.2.2.1 Subcatchment A

In subcatchment A many slopes are covered by debris material but outcrop is frequently visible. Numerous glacial relicts like terminal moraines, glacial cirques or moraine debris can be identified. In glacial cirques, swamp areas developed over time. The largest swamp area, which also has a small lake due to artificial drainage systems, is at Val Campasc where all conveyors gather into one main creek of subcatchment A (see Figure 30). The surface material appears to be pretty rough and high permeable, except in the area of talus slopes identified in the northern and southern part of the catchment (green - Figure 30). According to the spatial distribution of storage thickness in subcatchment A (Figure 30) wide areas have no or only small storage potential. About 63% of the watershed is covered by sediments estimated to be less than 1m in depth. Only 17% are between 1 and 5m and 13% above 5m in thickness. Another indication for the low storage capacity are numerous swamp areas in this subcatchment A is bedrock.

In subcatchment A we find a low storage potential due to thin sediment deposits. This low storage potential results in a quick recession behavior in November (Figure 31), a low winter discharge and a quick increase in discharge due to snowmelt starting at the end of February. Discharged volume during the main recession period from 27 November 13 to 11 March 14 is only 54mm, about one third of the mean value of the catchment (142mm). The electric conductivity is low compared to the values at the gauging station and shows only small increase during the measurement campaign (from 69 μ S/cm to 79 μ S/cm).

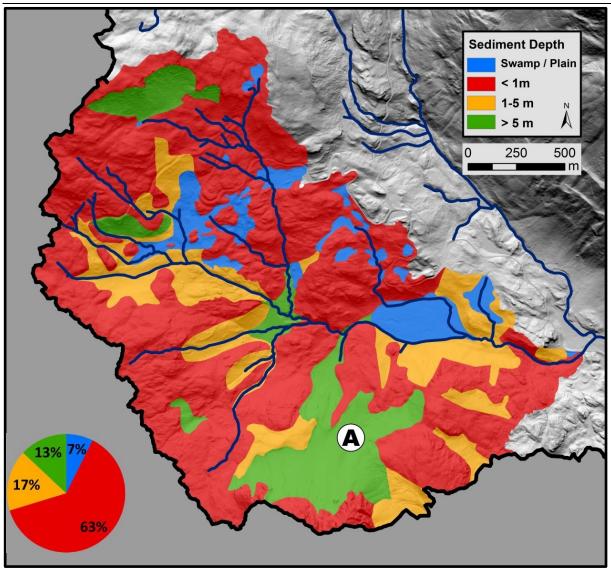


Figure 30: Depth of the quaternary deposits for subcatchment A

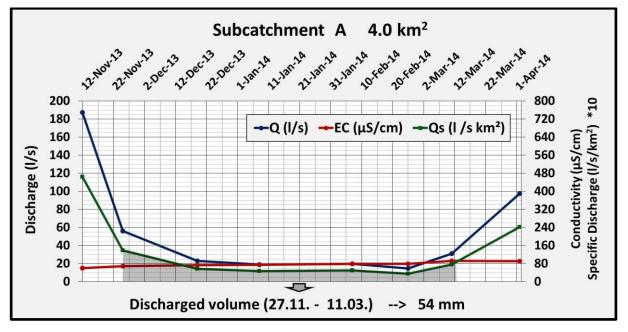


Figure 31: Discharged volume (highlighted in grey) between 27.11. – 11.03. for subcatchment A

The Bernina pass road - leading through the catchment – seems to influence the discharge. Because the street's drainage system is conveying meltwater directly into small creeks, a quick discharge increase can be observed with increasing temperatures. This is also visible when looking at ion composition of the collected water samples. During snowmelt we find a higher conductivity due to increased concentration of sodium and chloride ions, coming from applied NaCl at the pass road.

5.2.2.2 Subcatchment B

In subcatchment B geomorphological conditions are similar to those observed in subcatchment A. Numerous glacial relicts like moraine debris form a thin cover on bedrock. Outcrop is visible in many parts. In some areas moraine debris cover is a little thicker than in subcatchment A but as permeable.

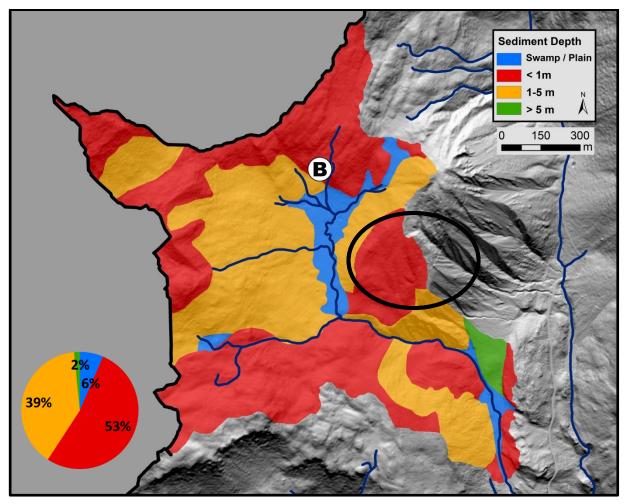


Figure 32: Depth of the quaternary deposits in subcatchment B – marked: area covered by sedimentary rocks

Additionally we find Lower East Alpine sedimentary rocks, mainly gypsum and rauhwacke, building a less permeable surface visible in numerous gullies in the eastern part of the

catchment. These sedimentary rocks are known to have high storage potential due to numerous cavities. Subcatchment B is characterized by storage properties similar to subcatchment A. 53% of the area is covered by sediments below 1m thickness. 29% of the area is covered by sediments between 1 and 5m, only 2% by deposits of more than 5m. Swampy areas exist mainly at Plan di Cüni along the main creek where all the tributaries gather to one main creek (see Figure 32).

Subatchment B has also a low storage potential, resulting in a quick recession in November and low winter discharge like subcatchment A. But winter discharge is higher in subcatchment B. The discharged volume during the observation period (101 mm) is twice the volume discharged in catchment A (see Figure 33). This can be traced back to sedimentary rocks, mainly gypsum and dolomites found in the eastern part of the catchment contributing about 40% of the total discharge (highlighted in Figure 32) as shown in chapter 5.3.4. Electric conductivity is about 8 times higher than in subcatchment A. High concentrations of calcium, magnesium and especially sulfate can be identified in the water samples. These are washed out from gypsum and other sedimentary rocks being the origin of the discharged water (see also chapter 5.3.4).

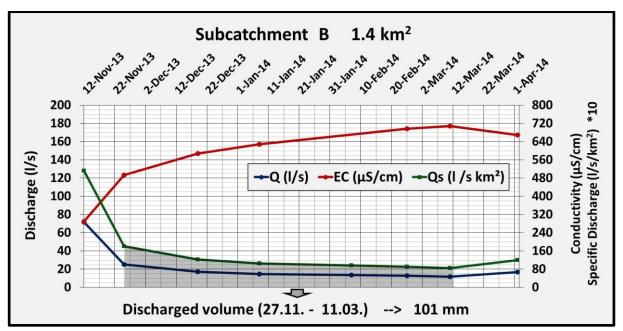


Figure 33: Discharged volume between 27.11. – 11.03. for subcatchment B

5.2.2.3 Subcatchment C

Along the main creek, large talus and alluvial deposits could be identified in subcatchment C. Coming from steep hillslopes on both sides of the riverbed, a lot of material was deposited. In some areas, the river is even covered by those sediments. In the upper parts of these hillslopes outcrop is visible. In the northwestern part a large slope covered with debris was identified, comparable to the main parts of subcatchment A and B. Visible gullies suggest low permeability and surface runoff due to low storage capacity (see Figure 34). The southwestern part (orographic right of the main creek) is characterized by Raibler sediment series, strongly erodible sedimentary rocks of marine origin where surface runoff processes occur (visible steep gullies). The southeastern part of subcatchment C is a former glacial cirque, with some leftover ice lenses and a lot of moraine material and debris showing no surface discharge. In the southern part a rockslide is deposited.

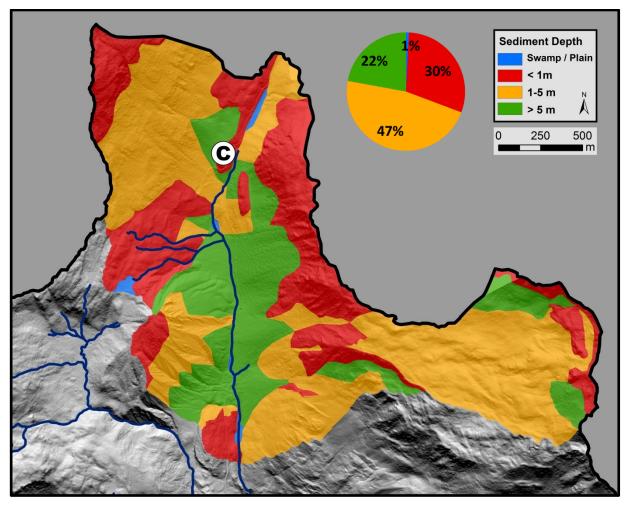


Figure 34: Depth of the quaternary deposits for subcatchment C

Subcatchment C is characterized by a large storage potential, 22% of the covering deposits are above 5m in thickness and additionally 47% are between 1 and 5m in depth. There are only little swamp areas and 30% of the catchment's area is outcrop or covered by less than 1m of sediment (see Figure 34). The storage potential in subcatchment C is much larger than in subcatchment A and B. Conductivity is also high, due to the influence of gypsum / sedimentary rocks in the western part of the catchment. There is dampened but persistent recession behavior and high winter discharge. Discharged volume (190mm) is almost four times as large as in subcatchment A (see Figure 35).

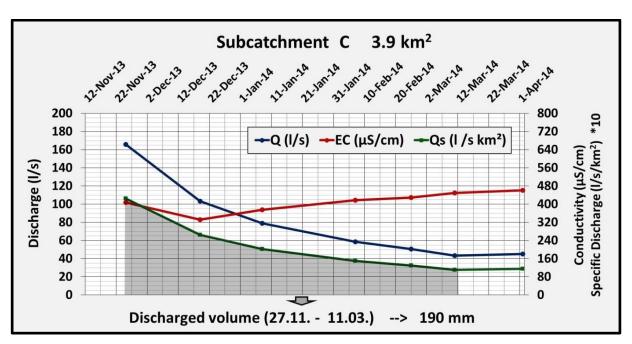


Figure 35: Discharged volume between 27.11. – 11.03. for subcatchment C

The storage potential in subcatchment C is much larger than in subcatchment A and B. Conductivity is also high, due to the influence of gypsum / sedimentary rocks in the western part of the catchment. There is dampened but persistent recession behavior and high winter discharge. Discharged volume (190mm) is almost four times as large as in subcatchment A (see Figure 35).

5.2.2.4 Subcatchment D

Subcatchment D is divided into two parts by Poschiavino River. On the orographic right lie thin debris deposits with properties as found in subcatchments A and B, on the orographic left, which forms the major part of the catchment, a steep slope without any surface discharge is found. Orographic right one can detect numerous small inflows suggesting low permeability and low storage potential. The steep slope on the orographic left side is characterized by thick layers of debris, only little traces of surface runoff processes. Numerous cracks and neotectonics (see SUMMERFIELD, 1987) perpendicular to slope inclination can be detected. Between these neotectonic cracks sediment is deposited. On the slope a few small sliding areas with small springs, mainly in the lower part, can be found. In the lower parts along the river lies the large alluvial aquifer ("Plan LaRösa" - highlighted in Figure 36) at the valley bottom, visible as a wetland area / swampy plain with an artificial drainage system.

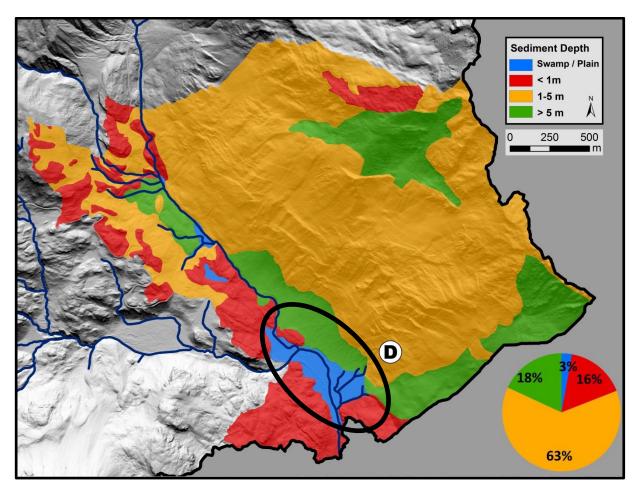


Figure 36: Depth of the quaternary deposits in subcatchment D – highlighted: alluvial plain LaRösa

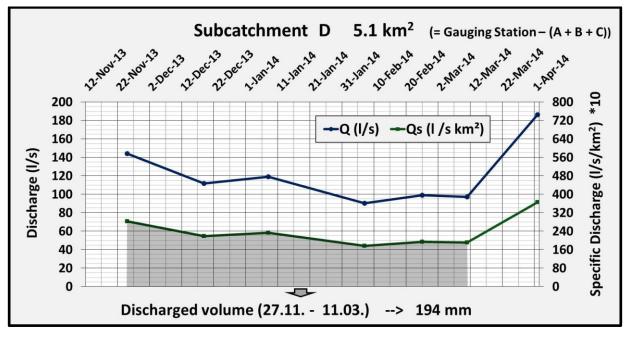


Figure 37: Discharged volume between 27.11. – 11.03. for subcatchment D

Subcatchment D, dominated by a steep slope without any surface discharge has approximately 18% of sediment cover of above 5m depth (see Figure 36). 63% of the deposits are between 1 and 5m, only 16% are below 1m thickness or outcrop. Additional influence on discharge from the valley bottom alluvial aquifer ("Plan LaRösa"), the visible cracks and neotectonics is plausible.

Due to the thick quaternary deposits the storage potential of the catchment is very high. During the measuring campaign slow, dampened recession could be observed. Considering the higher uncertainties in the calculated discharge values for subcatchment D, discharge in the main recession period nearly stabilized. The catchment shows the highest discharged volume of all four subcatchments (194mm).

5.2.3 Potential storage volume

Quantification of storage volumes was done based on mapped thickness of deposits and qualitative permeability estimation within a certain range. The depth classes <1m, 1-5m, >5m where averaged into 0.5m, 3m and 7m for minimum storage potential and 1m 5m and 10m for maximal storage potential and the values for porosity (low, medium, high) were quantified regarding literature (BLUME et al., 2010) as pore volume (10%, 20% and 30%). Regarding these values the storage capacity for every subcatchment was calculated.

subcatchment	discharged volume 27 November – 11 March	range of storage potential	% of annual precipitation	
	in mm	in mm	(P minus ET)	
Α	54	370 – 540	26 – 37	
В	101	250 – 420	17 – 29	
C	190	670 – 1030	47 – 72	
D	194	760 - 1190	53 – 82	

 Table 2: Comparison of discharged volume and the estimated range of storage volume for main subcatchments

Estimated storage volumes are much larger than volumes discharged in the main recession period (from 27 November to 11 March), which started long after the recharge of storages by a large big precipitation event. Especially short term storages had already been depleted when the observation started. The storage potential seems to be underestimated as no catchment could store total annual precipitation of 1738mm even when considering 300mm of mean annual evapotranspiration (see

Table 2). Subcatchment A has a storage potential between 370mm to 540mm, about 10% were discharged during the observation period. Subcatchment B has the lowest storage potential of 250mm to 420mm, which is less than 30% of total annual precipitation. Storage of the sedimentary rocks were not included in this calculations, therefore the storage

potential in B would be much higher. Subcatchment C and D have more potential storage volume, up to 72% of mean annual precipitation can be stored in subcatchment C, up to 82% in subcatchment D.

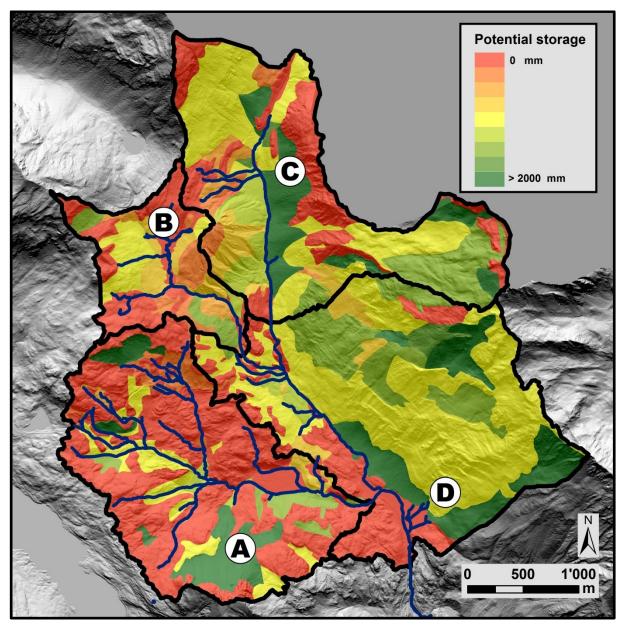


Figure 38: Estimated storage potential in mm for the research area

Uncertainties derive from generalized pore volume and thickness classes, mean precipitation (1738mm) and mean annual evapotranspiration (300mm). Another uncertainty is the traveltime through the sediments. It is estimated that deposits, although having only low porosity and high pore volume, beneath 1m thickness cannot hold water for a sufficient time period, sustaining baseflow during low flow conditions.

Of course generalizations were applied when calculating the potential storage but Figure 38 gives an overview of spatial distribution of the catchments' storages and the main source areas of winter discharge.

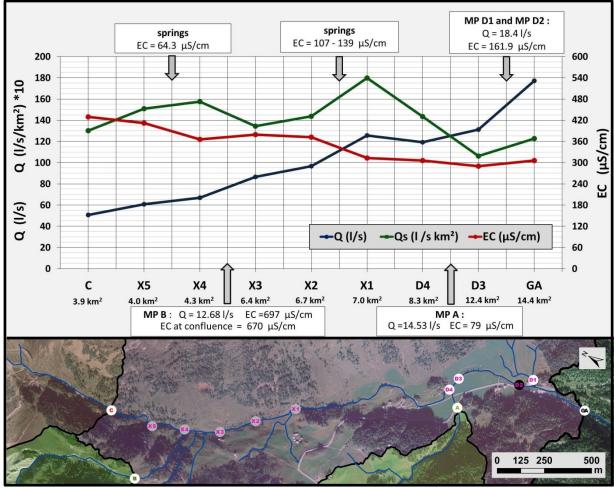
5.2.4 Comparison of storage and discharge behavior

The estimated depth of quaternary sediments is corresponding to discharged volumes during the winter months: The western part of the catchment with thin sediment cover shows quick recession in autumn and a low winter discharge, the eastern part covered by numerous thick deposits shows slow recession throughout the winter season. It is estimated that basically the thick quaternary deposits sustain the high winter discharge during times without liquid precipitation. The estimation of total storage volume, despite included uncertainties, gives an overview of the spatial distribution of contributing storages of the upper Poschiavino area.

5.3 Spatially higher resolved measurements

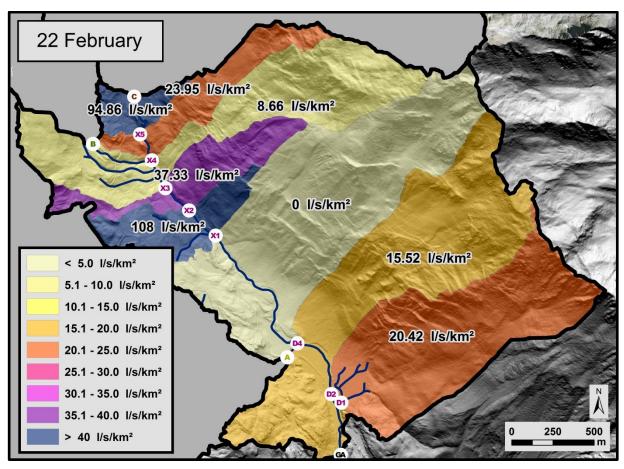
Numerous measurements were done on smaller scales, so more interesting findings can be put forward to discussion:

5.3.1 Scale issues


Figure 39 shows discharge (blue line), specific discharge (green) and conductivity (red) measurements in high spatial resolution on 22 February along Poschiavino between MP C and the gauging station. Additionally identified conveyors from orographic left and right are indicated. On the X axis measurement points with their catchment areas are plotted.

Almost no difference in specific discharge between MP C and the gauging station (13 l/s km² vs. 12 l/s km²) can be found, but between those points differences are visible (from 18 l/s km² at MP X1 to 11 l/s km² at MP D3). Discharge rises and conductivity falls almost linear; the only exceptions looking at discharge are at measurement point X1 due to inflow of numerous springs from orographic left and at the gauging station suggesting more subsurface inflow from the groundwater aquifer "Plain LaRösa" (see Figure 41). Variation in Q, Qs and EC can be explained by observed features. Qs is rising till MP X4 due to numerous subsurface conveyors and springs mainly from orographic left.

Although between MP X4 and X3 the main creek of subcatchment B merges from orographic right, specific discharge decreases due to low specific discharge in subcatchment B (larger area but Qs smaller than 16 l/s km²). Conductivity decreases until X4. Due to high electric conductivity in subcatchment B EC rises a little till MP X3. Qs smoothly increases again until MP X2, also EC smoothly decreases until that MP. Between MP X2 and X1 numerous small


springs add a lot of water with lower electric conductivity from orographic left, what leads to visible increase in Qs (from 14 l/s km² to 18 l/s km²) and decrease in EC (360 μ s/cm to 300 μ s/cm). Up to measuring point D4 no more conveyors merge, therefore of course Qs decreases and EC and Q more or less remain at the same level. Before D3 the main creek from subcatchment A merges to Poschiavino (low conductivity and low discharge), therefore Q rises but Qs (due to the large catchment area) decreases. Between MP D3 and the gauging station discharge increases a lot (130 l/s to 180 l/s) also specific discharge rises a little, due to conveyors from orographic left (D1 and D2) and contribution of "Plain LaRösa". Electric conductivity remains around 300 μ s/cm.

According to Figure 39 many point sources contribute to the river network resulting in a large spatial variation of specific discharge in the subcatchments within research area D (Figure 40).

Figure 39: Variation of discharge (Q), specific discharge (Qs) and electric conductivity (EC) along Poschiavino from measurement point C to the gauging station on 22 February 2014

One can identify two main source areas, one between measurement points C and X5, the second between MP X2 and X1. Regarding existing geo(morpho)logical maps and field observations a rockslide (C to X5) and an area of creeping landmasses (X2 to X1) can be

identified as main points of contribution. Additionally subcatchment D1/ D2 and the area between D4 and the gauging station show specific discharge exceeding the mean value.

Figure 40: Spatial variation of specific discharge (Qs) for every single MP in subcatchment D on 22 February based on subcatchment areas defined by surface topography

Point sources are the main contributors to the river network. The hillshade of subcatchment D (Figure 41) shows linear faults interpreted as cracks and neotectonics. The whole slope on the orographic left side is covered by thick deposits. There is no recent river network visible on the slope, even fossil river channels are missing. This is evidence for the existence of subsurface flow resulting in uncertainties when deriving topographic catchment borders. It is unlikely to have a slope without any discharge (between X1 and D4) next to it a small subcatchment with extremely high specific discharge (X2 to X1). Therefore the topographic catchment layers but also cracks and neotectonics (Figure 41) can transfer water beneath surface and therefore determine the catchment borders differently. Due to deposits on the slopes next to the alluvial plain, it is suggested that water is transported to the alluvial plain directly. So much water appears only after "Plain LaRösa" at the gauging station.

Between MP X2 and X1 the creeping landmasses have an exceptionally high contribution due to many small springs. Also the rockslide area, in the upper part of catchment D, more or

less derived by high fractured rocks with concentrated flow paths and few point source outlets, shows high contribution.

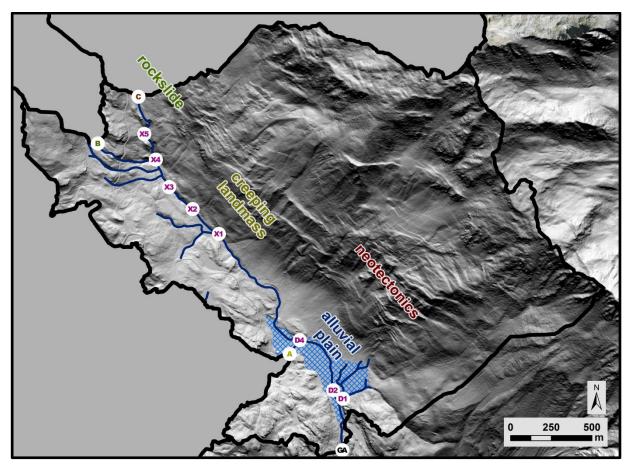


Figure 41: Hillshade of subcatchment D

5.3.2 Variation of ion composition along Poschiavino

Ion composition was analyzed between 06 January and 12 March 14 for several measurement points within the research area. Here some results of ion chromatography are presented. Figure 42 shows the evaluation for five ions (Mg, Na, Cl, Ca and SO_4) along the main river in mg/l. X7 is the highest sampling point situated in subcatchment C, GA the lowest at the gauging station. Main sampling points along Poschiavino are also visualized in the map, additional samples were taken at PO2 – PO8 and furthermore tributaries are drawn.

Downriver concentrations of Mg, Ca and SO₄ are decreasing, with an exception between MP X4 and MP X3 where the main creek from subcatchment B merges with Poschiavino. Especially sulfate concentration is extraordinary high, decreasing downriver, suggesting that SO₄ contribution comes from the headwater area and subcatchment B. SO₄ is mainly responsible for the high electric conductivity in subcatchments C and B. It suggests that the high amount of Mg, Ca and SO₄ comes from the sedimentary rock layers. Another interesting

result is that Na and Cl concentration are rising after the confluence of the main creek with subcatchment A (see chapter 5.4.2). Also influence of the other tributaries on the ion composition in the main river network is visible.

The amount of ions decreases downriver, mainly because the discharge from sedimentary rocks in subcatchments B and C shows the highest ion concentration. High SO₄ concentration from gypsum layers is responsible for the high electric conductivity in the headwater area.

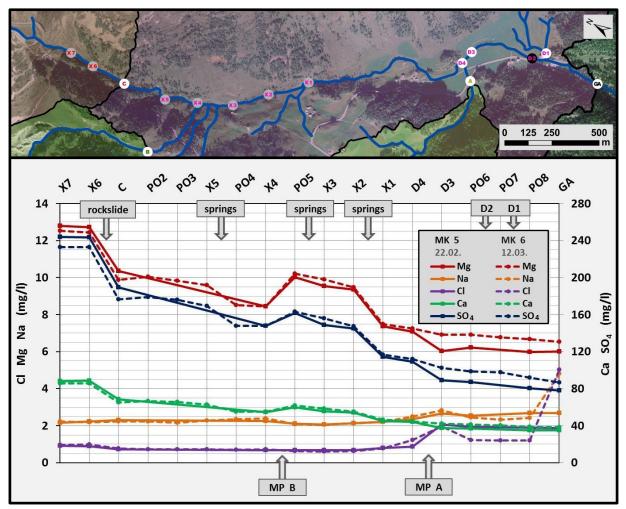


Figure 42: Variation of water chemistry along Poschiavino between 22 February 13 and 12 March 14

5.3.3 Influence of the rockslide area

At the border between subcatchment C and D rockslide material is deposited on the orographic left side of the main creek. An estimation of the contribution of this area to the discharge of subcatchment C is tried here, using product equations of discharge and electric conductivity.

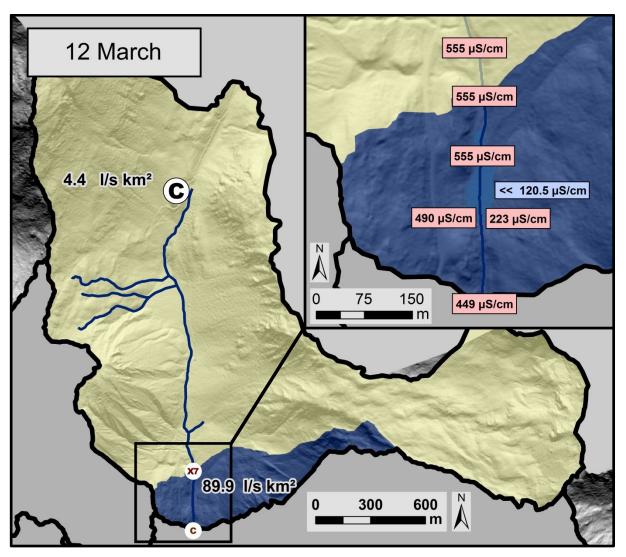


Figure 43: Variation of specific discharge and electrical conductivity in subcatchment C on 12 March 14

Due to sediment accumulation along the main creek in subcatchment C the river flows not always on the surface. Unfortunately it was not possible to measure discharge in the upper part of subcatchment C due to avalanche risk and massive snow accumulation. The specific discharge for measurement point X7 is only 4.4 l/s km² compared to 89.9 l/s km² for MP C on 12 March. Based on this measurements contribution from the rockslide area could be calculated and interpreted. Above the rockslide area (MP X7) electric conductivity in the main creek is much higher than below (MP C) (555 μ S/cm vs. 449 μ S/cm) (see Figure 43). Along the alluvial plain between MP X7 and C variation in electric conductivity can be measured. One spring can be identified with a very low EC of 120.5 μ S/cm originating from the rockslide (orographic left). Measured discharge rises from 16 l/s to 44 l/s between X7 and C. Although some undercurrent could occur at MP X7, it seems that the rockslide area is the main contributor to discharge measured at MP C.

As conductivity decreases and discharge increases in the creek passing the rockslide area the amount of water contributed from the two areas can be assessed with a simple product equation:

 $Q_{\text{Rockslide}} * EC_{\text{Rockslide}} + Q_{\text{between X7 and C}} * EC_{\text{between X7 and C}} = Q_{\text{C}} * EC_{\text{C}} - Q_{\text{X7}} * EC_{\text{X7}}$ $Q_{\text{Rockslide}} + Q_{\text{between X7 and C}} = Q_{\text{C}} - Q_{\text{X7}}$

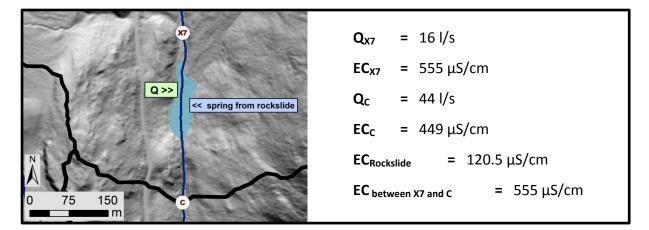


Figure 44: Measured values of EC and Q between X7 and C

Applying these equations using measured values from 12 March suggests that approximately 10 l/s come from the rockslide area and 18 l/s are coming from orographic left (sedimentary rocks) or from undercurrent at MP X7.

The rockslide area covers approximately 1 km². The whole catchment area of the rockslide was calculated regarding topographic criteria to be about 1.7 km². To compare the contribution from the rockslide area to the discharged volume of catchment C the derived value was extrapolated: Estimating that 10 l/s is the mean discharge from the rockslide area, the total discharged volume during the observations (27 November 13 until 12 March 14) would be 53 mm, which is far below the average of subcatchment C (190 mm). Also when estimating that a fifth of discharge (as in the example of 12 March) measured at MP C comes from the rockslide area, like springs beneath MP C, could not be identified. Also electric conductivity in the main creek does not change downstream of MP C. Therefore the main source of subcatchment C is subsurface inflow from the rockslide area.

5.3.4 The influence of Raibler sediment series on discharge behavior

Runoff from subcatchments B and C has a high electric conductivity due to the high amount of SO₄, Ca and Mg ions found in the water samples from these areas. These three ions are main components of marine sediments. According to the geological map, approximately 1.5 km² belong to the Lower East Alpine sediments (Raibler Series) in subcatchments B and C. The majority of water derives from gypsum (CaSO₄ 2H₂O) and dolomite (CaMg(CO₃)₂) layers, known as potent water storages, due to cavities.

Date	MP	SO4	Са	Mg	Q measured	\mathbf{Q}_{SED}	\mathbf{Q}_{SED}		
		mg/l	mg/l	mg/l	l/s	l/s	%		
MK Jan	В	261	100	21	14.7	5.6	37.8		
MK Feb	В	292	111	23	12.7	5.3	41.8		
MK Mar	В	297	114	23	11.9	5.0	42.2		
MK Jan	С	166	62	9	79.1	15.8	19.9		
MK Feb	С	180	66	10	50.8	11.1	21.8		
MK Mar	С	189	69	10	43.5	9.8	22.5		
MK Jan	X7	181	67	10	-	-	-		
MK Feb	X7	233	86	13	17.3	4.9	28.3		
MK Mar	X7	244	88	13	15.6	4.5	29.1		
MK Jan	D4	104	42	7	164.9	22.0	13.4		
MK Feb	D4	112	45	7	122.5	18.0	14.7		
MK Mar	D4	109	44	7	118.9	16.9	14.2		
Q measured measured discharge at the MP Q sed calculated Q from sedimentary rocks									

Table 3: Estimated discharge from Raibler sediment series from ion composition from January 14 to March 14

Maximum SO₄ saturation of water originating from gypsum is 1450 mg/l SO₄ and 650 mg/l Ca (EUROGYPSUM, 2010), maximum Mg saturation of water from dolomite is 106 mg/l (PAVUNZA and TRAINDL, 1983). Assuming that water discharged from gypsum series is fully saturated with SO₄ ions, runoff from dolomite layers is fully saturated with Mg ions and only these layers contribute Mg and SO₄, discharge from gypsum and dolomite can be calculated (see Table 3). The amount of water discharged from theses layers is estimated for three dates based on measured concentration at the sampling points B, C, X7 and D4 (see Figure 45). For example if a concentration of 100 mg/l SO₄ can be measured at a discharge of 10 l/s only 6.9% of the water are fully saturated with SO₄ ions.

In subcatchment B the amount of water from sedimentary rocks (Table 3 - Q_{SED} l/s) is nearly constant over the observation period, a decrease can be observed in subcatchment C. Referring to specific discharge the whole area covered by sedimentary rocks in the subcatchments B and C shows decrease from 14 l/s km² to 10 l/s km² (from 08 January to 13 March 14).

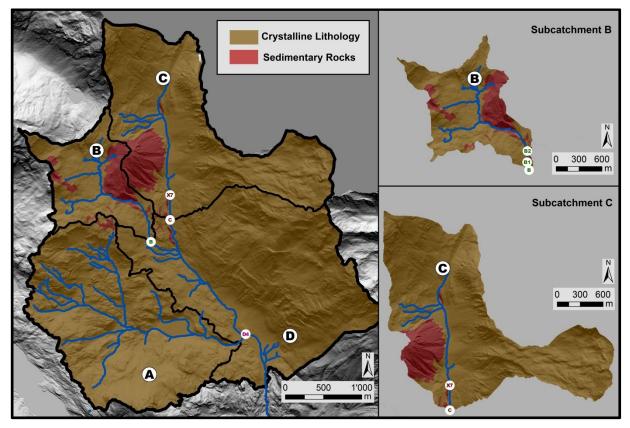


Figure 45: Area covered by sedimentary rocks and crystalline lithology and relevant sampling points

The percentage of water discharged from sedimentary rocks (Table 3 - Q_{SED} %) is around 40% in subcatchment B, around 20% in subcatchment C at MP C and 30% at MP X7. (see Figure 45). Although only 7 % of the whole catchment is covered by the Raibler Series, 14% of the discharge is coming from these sedimentary rocks. This value is estimated based on the assumption that water originating from the Raibler Series is completely saturated. The amount could be even higher when the water is not completely saturated.

To verify the obtained results also discharge from sediment series for MP D4 downstream was calculated assuming full SO_4 and Mg saturation. It is estimated that below the measuring points B and C only little water containing SO_4 or Mg is discharged. Therefore the sum of discharge from sedimentary rocks at MP B and MP C should be the same as the discharge from sedimentary rocks at MP D4. During the measuring campaign in January the sum from MP B and MP C was 21.4 l/s, at MP D4 22 l/s were calculated. So about 97% of the discharge from sedimentary rocks at MP D4 could already be measured at MP B and MP C.

However the percentage is decreasing to 91% during the measuring campaign in February and to 87.5 in March. The increasing difference between MP D4 and the sum of MP B and C could be a result of decreasing water storage in the cavities of the sedimentary rocks. It is estimated that with a lower water table in the cavities, more water is discharged below the measurement points B and C and could only be measured at point D4. Uncertainties when comparing the results occur, because water samples were not always taken at the same day at all sampling points and because of the unknown state of saturation of the water discharged from sedimentary rocks.



Figure 46: Total amount (mg/l) of Mg, Ca and SO₄ ions at sampling points in subcatchment B and C

Figure 46 shows the total amount of Mg, Ca and SO_4 ions in the subcatchments B and C. In both watersheds concentration increases upstream (see Figure 45 for location of the sampling points), confirming the significance of water from the sediment series sustaining baseflow during recession.

5.4 Additional results

5.4.1. Evaluation of influence of snowmelt

Hourly values of electric conductivity probes were used to evaluate the influence of snowmelt during the measurement period. Meltwater flowing into the creeks has a lower electric conductivity than water from the subsurface storages, therefore snowmelt results in decreasing electric conductivity measurable in the creek. In subcatchment A and in the lower parts of subcatchment D along the pass road, snowmelt is characterized by increasing electric conductivity, because the salt applied along the pass road leads to meltwater with a higher electrical conductivity than the baseline conductivity of the water in the creek (see chapter 5.4.2 for further explanation). After most of the salt is washed out into the river network, also in the parts along the pass road, meltwater leads to decreasing electric conductivity.

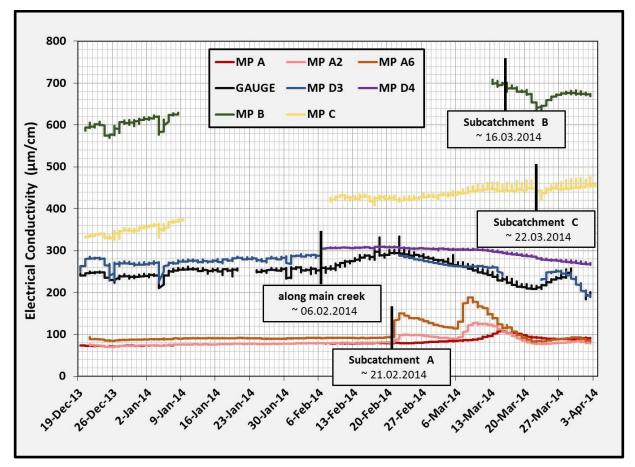


Figure 47: Evaluation of the electric conductivity probes for the main measurement points between 19 Dec until 03 April 14

To guarantee validity of calibration, probes were planned to be read out during every measurement campaign, but it was noticed that removing them from the water destroyed the calibration. Therefore many values had to be removed and the datasets produced have

high uncertainty. From the remaining data at least the point when major snowmelt insets could be identified. In some parts of the catchment also small melting events could be observed in some parts of the catchment (Figure 47).

Major influence of snowmelt could be seen in subcatchment A starting on 21 February. This event appears is well recorded by the three probes along the main creek with the same behavior. At the gauging station LaRösa and at the two measurement points along the main creek at low altitude (D4 - before merging with subcatchment A, D3 after merging with A) influence of snowmelt could be observed starting on 06 February (+ / - 2 days). In subcatchment C influence of meltwater in the creek can be observed starting on 22 March for three days. Afterwards electric conductivity increases again. Starting 8 March subcatchment C shows a higher day night variation of up to 40μ S/cm, suggesting snowmelt during the day. Although discharge is still decreasing and electric conductivity is still increasing, day night variation has minor influence on the recession behavior. In subcatchment B removal of the probes for calibration led to major uncertainties, therefore a lot of values had to be removed. Snowmelt in subcatchment B is estimated to start on 16 March (+/-3 days).

Two periods of decreasing electric conductivity could be observed in subcatchments B, C and D. One around 26 December and another around 5 January, which could be assigned to two heavy snowfall events in the catchment. These snowfall events are not visible in the electric conductivity timeseries of subcatchment A, which is attributed to the low baseline conductivity in the creek. At MP D3 and the gauging station an additional snowfall event (around 31 January) was recorded (see Figure 47).

5.4.2 Influence of the pass road on ion compositon

In this chapter the influence of the Bernina pass road in subcatchment A and along the lower parts of subcatchment D on ion composition is evaluated (see Figure 48). The drainage system of the street is speeding up the reaction of discharge during snowmelt due to direct inflow from the drainage system into the river network. During the measurement campaigns also influences on water chemistry could be observed.

According personal information from the company responsible for snow removal at the Bernina pass road (Fratelli Lanfranchi - http://www.fratelli-lanfranchi.ch/) mostly gravel split is used to prepare the lanes roadworthy due to the low air temperatures during winter months. In the winter season 2013 /14 about 15 tons of salt were applied between LaRösa and Passo di Bernina. With snowmelt, the salt is transported into the river network and can be measured in the water samples.

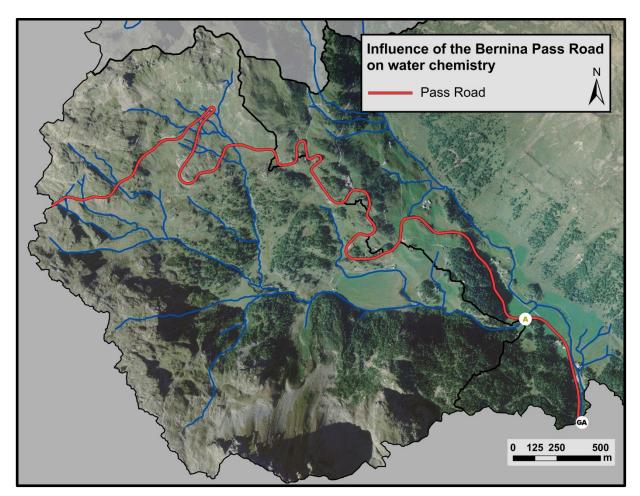


Figure 48: The Bernina Pass Road in the upper Poschiavino area

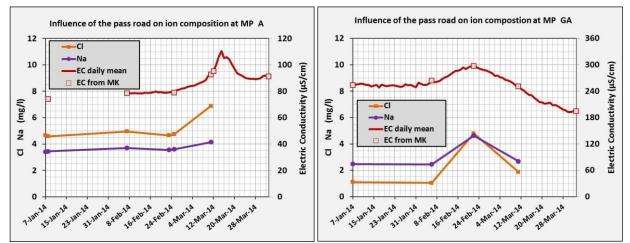


Figure 49: Variation of Na, Cl and EC during snowmelt at MP A and the gauging station

It is estimated that along the street snow is melting quicker than in parts with a continuous snow cover. With beginning snow melt first salty snow from along the road is transported into the river network leading to an increase in electric conductivity in the creeks. After the first flush of salty snow EC is decreasing due to the lower conductivity of meltwater.

Figure 49 shows the variation of Na, Cl and EC from 07 January to 2 April 14 for the sampling points MP A and at the gauging station: In subcatchment A an increase in electric conductivity could be observed between the measurement campaigns of 25 February and 17 March rising from 79 μ S/cm to 106 μ S/cm. Sodium concentration is rising by 0.5 mg/l, chloride concentration by 2 mg/l in this period. On 11 March a total amount of approximately 6.7 kg of Na and Cl were additionally added to the river network of subcatchment A in only one day.

At the gauging station influence could be measured earlier than in subcatchment A due to the lower altitude of the areas along the road. Increase in EC and the amount of Na and Cl ions could be observed between the MK of 7 February and 22 February. EC was rising from 264 μ S/cm to 297 μ S/cm, sodium concentration was rising by 2.2 mg/l, chloride concentration by 3.8 mg/l in this period. On 22 February a total amount of approximately 92 kg of Na and Cl were additionally added to the river network of the catchment.

6 Interpretation and discussion

6.1 Spatial variability in discharge during recession

Low flow recession proved to be highly variable within the research area. At subcatchment scale, variations from 54mm up to 194mm discharged in subcatchment A and D in the observation period were found. Different discharged volumes and variable recession behavior were assigned to different storage elements. Variety in discharge behavior during the winter season 2013/14 can be attributed to the mapped storage potential. Due to unfavorable conditions (9-10m of snow accumulation, air temperature up to -29°C) during the measurement campaigns, results have higher uncertainties. However the measurement errors were minimized by frequent calibration of the devices, detailed preparation of field campaigns and selection of appropriate observation sites in autumn.

As snowmelt during the winter months is small, storage refill was negligible, resulting in an undisturbed recession period. However minor contribution to the storages from snowmelt can not be totally excluded during the observation period: Heat fluxes from soil to snow cover may melt the snow from below. Especially in the swampy areas of subcatchment A a thinner snow cover could be observed, which suggests melting influence at least above soils actively converting organic matter during the winter months. Another point derived from observations was the influence of snow-free areas (e.g. along the pass road or along avalanche tracks of subcatchment D) which expanded due to melting of the surrounding areas happening also during periods with low temperatures due to influence of albedo. To evaluate these influences, electric conductivity probes were installed throughout the river network, because water from snowmelt would lead to decreasing electric conductivity. For subcatchment A, where the mentioned influences mainly occur, evaluation of electric conductivity did not show any interference of snowmelt.

The whole catchment was classified regarding geomorphological type, thickness and permeability. As main results the spatial distribution of storages contributing to low flow discharge could be derived and recession behavior could be assigned to the thickness of the contributing storages. Storage volume could be estimated within a certain range applying generalized assumptions on thickness and permeability. The suggested mapping methodology, based on existing data and field observations, could be applied in inaccessible terrain with modest outlay. As merely surface observations were done, main uncertainties derive from unknown subsurface flow paths and watersheds leading to unknown interactions between the single storages. However, small scale spatial variability of bedrock cracks and fractures can be neglected until a certain spatial scale of the research area. Heterogeneous storage properties can not be captured applying the developed

methodology. Observations were done in a mainly crystalline watershed, but have not been tried in other geological settings or within geological more heterogeneous alpine catchments.

Winter discharge observations at high altitude allowed obtaining recession curves for up to four months without interruption. This dataset helps understanding storage and drainage processes in alpine catchments during periods without storage refill. It was possible to obtain high spatial resolution information on the variability of contribution during low flow periods within a small catchment. With the developed mapping method the contributing storages can be identified, classified and an approximation of their volumes can be done.

6.2 Spatial scale issues

Complex subsurface flow is leading to point source contributions often limiting the possible spatial scale of hydrological research. When trying to identify single storages on a small scale, computation of topographic catchment borders leads to uncertainties. All measuring points were chosen carefully in autumn after field observation, additionally considering high resolution data from different sources. When looking at catchment and subcatchment scale topographic borders could be derived with a high reliability. On smaller scale, when bounding the watersheds of nested subcatchments or single storages on topographic criteria uncertainties came up. The research area is characterized by thick deposits, therefore subsurface flow occurs. Additional influence of cracks and fractioned bedrock hides further uncertainties when trying to understand discharge and drainage behavior of the catchment. Due to the lack of information on subsurface flow processes, watersheds were derived based on surface topography. Variation in specific discharge between neighboring watersheds varied from 0 to 108 l/s km². It indicates that research on storages is limited to a minimum scale on which research is possible; otherwise time-consuming tracer experiments would be necessary to define the accurate watershed of the different storages.

However the high resolution information on discharge and storage properties gathered for the project helped to assess rational catchment areas including the mentioned subsurface flow processes. This backward approach – from discharge behavior and storage properties to catchment area – could help resolving limiting scale issues in hydrological research, so catchment estimation would not only depend on tracer experiments.

6.3 Different storage types

A few methods were tried, separating different storage types regarding their contribution to low flow discharge: Water originating from sedimentary rocks could be identified using ion composition. Although no springs could be identified and diffuse inflow to the river network is dominant, contribution from Raibler series could be estimated by assuming full saturation of SO₄ and Mg ions. Due to large differences in electric conductivity and variation of ion composition between water from crystalline geology and sedimentary rocks the applied quantification of the discharged volumes showed reliable results. Uncertainties derive from estimating full SO₄ and Mg saturation of water from Raibler sediment series, however at least the minimum contribution from those layers can be calculated with the presented approach.

Contribution from the rockslide deposition area on the orographic left in the lower part of subcatchment C was quantified for one measurement campaign. The product of electric conductivity and discharge at the points above and below the rockslide area and electrical conductivity at a spring from the rockslide were used to calculate the discharge. Applying the presented calculations it could be shown that high winter discharge in subcatchment C does not come from the area where rockslide material is deposited. Due to massive snow accumulation during the winter the spring could first be detected in March and product equations could only be used for this measurement campaign, which is leaving a lot of uncertainties especially when extrapolating the derived results over the whole winter season.

7 Perspectives and summary

7.1 Perspectives

The collected data in the upper Poschiavino area give a good insight in complex storage mechanisms and the different drainage behavior of various catchment parts during low flow conditions. The observed hydrological behavior can be assigned to physical properties of the landscape, however these findings should be extended to other alpine watersheds in different geological settings and with diverse storage distribution. This would improve our knowledge on the complex interactions determining discharge behavior in high mountain areas.

The attained qualitative information on the storage and drainage mechanisms will be used to develop mathematical equations for a storage-based low flow model approach. A mapping methodology should be developed and validated in various alpine catchments. What are similarities and differences in storage composition and the drainage behavior during low flow conditions? The aim should be to explain discharge behavior by landscape properties that can be mapped, including available information and field investigations, as a fundamental for the model approach. The gathered information and additional investigation on discharge recession and water chemistry in various watersheds should be used to develop mathematical equations stating relations of storage and drainage interaction. The final outcome should be a storage-based model for low flow discharge in alpine watersheds.

The dataset of upper Poschiavino area shows a high variability in residence times within a small area. Although storages are relatively small, compared to lower altitude areas, water can be stored for long time periods, however yet no satisfactory approach for estimating this residence times could be found. By the means of knowledge on storage processes and the physical properties of these reservoirs more reliable statements on the residence times are possible.

A rough separation of different storage types can be done based on the dataset of electric conductivity and discharge calculating tracer balance. The approach can only be a first rough approximation on separation of discharge from different storages, however the dataset is an important base for further research on storage and drainage behavior of alpine catchments. Further attempts of storage quantification and separation could also improve flood prediction in alpine watersheds. It remains an open question to which extend storages responsible for sustaining baseflow during low flow conditions are also important retention features during flood events. Information on infiltration capacity of geomorphological properties, traveltimes and the drainage behavior is still little investigated, however further investigation of low flow recession enables to gather more reliable information.

Accuracy of winter discharge observations in high alpine regions during hostile conditions can be increased significantly when preparing for the observation campaigns regarding the

experiences of winter season 2013/14. This information can be used to find more accurate discharge measurement techniques on higher temporal and spatial resolution and improve observation of electric conductivity.

7.2 Summary

Even steep slopes can react damped to precipitation events and sustain baseflow significantly due to large storage volume. Not only storage, but also the time scale of drainage is important to understand recession dynamics. Winter months provide good opportunities to study flow recession in alpine catchments because there is little groundwater recharge from rainfall and snowmelt. Detailed field observation during the winter season 2013/14 helped understanding the complex hydrological interactions during low flow recession in upper Poschiavino area. Discharge was measured every three weeks at up to 58 measurement locations during recession. Additionally electrical conductivity and various ion composition were measured to identify different storages and the origin of the water. Sediment deposits were mapped regarding type, thickness and permeability, allowing a classification of storage potential throughout the catchment. The contribution from different storages regarding volume and drainage time could be estimated. Applying different approaches discharge from sedimentary rocks, a rockslide area and slow, medium and quick draining storages could be divided and their volumes were estimated.

Results were presented mainly based on four different subcatchments. These subcatchments have different storage potential due to different depth of sediment deposits, leading to different recession and drainage timescales. In the eastern part large storages could be identified, showing higher low flow and discharged water volume during the observation period (194mm in subcatchment D vs. 54mm in A discharged in 104 days). Drainage was quicker and the discharged volume was less in the western subcatchments (A and B). Point sources were limiting the spatial resolution of the hydrological research. The nested subcatchments show high variation in specific discharge, suggesting that topographic catchments do not coincide with the hydrological catchments. Subsurface flow and point source contribution are limiting the spatial resolution of the measurements, on the other hand high resolution information on discharge and storage properties could improve small scale catchment bordering. High electrical conductivity in subcatchments B and C could be traced back to sedimentary rocks covering about 7% of the catchment area. Estimating full saturation of SO₄ and Mg ions contribution could be quantified. At least 14% of the total discharge of the catchment during recession derives from these sedimentary rocks. The contribution of a rockslide area could be estimated by product equations. Regarding the drainage time three storage types - quick, medium and slow - could be divided and an approximation of the volumes of these storage types was tried.

Low flow discharge in the crystalline upper Poschiavino area proved to be highly variable. This variability in recession and drainage behavior could be assigned to spatial distribution and depth of storages. Point sources, subsurface flow and the resulting uncertainties when deriving topographic catchment borders limit the spatial resolution of the investigations. Natural ion tracers and product equations of electric conductivity and discharge can be used to identify and separate contributions of different geological origin. The obtained results suggest that improved understanding of storage and drainage behavior of areas with large storage potential helps assessing catchment scale low flow problems.

8 References

ASCHWANDEN, H. (1992). Die Niedrigwasserabflussmenge Q347 - Bestimmung und Abschätzung in alpinen schweizerischen Einzugsgebieten (Bern).

ASCHWANDEN, H., and KAN, C. (1999). Die Abflussmenge Q347 - Eine Standortbestimmung (Eidgenössisches Department des Inneren, Landeshydrologie und -geologie).

ASCHWANDEN, H., and WEINGARTNER, R. (1986). Die Abflussregimes der Schweiz (Bern: Geographisches Institut der Universität Bern).

BLUME, H.-P., BRÜMMER, G.W., HORN, R., KANDELER, E., KÖGEL-KNABNER, I., KRETZSCHMAR, R., STAHR, K., and WILKE, B.-M. (2010). Scheffer/Schachtschabel: Lehrbuch der Bodenkunde. 16.Auflage;

BOTTER, G., BERTUZZO, E., and RINALDO, A. (2011). Catchment residence and travel time distributions: The master equation. Geophysical Research Letters *38*, L11403.

BOUSSINESQ, J. (1877). Essai sur la theorie des eaux courantes du mouvement nonpermanent des eaux souterraines. Acad. Sci. Inst. Fr. *23*, 252–260.

BRUTSAERT, W. (2005). Hydrology - An introduction (UK: Cambridge University Press).

DAY, T.J. (1976). On the precision of salt dilution gauging. Journal of Hydrology *31*, 293–306.

DAY, T.J. (1977). Observed mixing lengths in mountain streams. Journal of Hydrology 35, 125–136.

EUROGYPSUM (2010). Fact sheet on: Gypsum and Water (Brussesls: EUROGYPSUM - The voice of the european gypsum industry).

FEDOTOVA, N., and GÜNTHER, D. (2013). Ionenchromatographie (IC) - Bestimmung von Anionen in Wasser (Zürich: ETH Zürich).

FLORIANCIC, M., SMOORENBURG, M., MARGRETH, M., and NAEF, F. (2014a). Can we relate flood and low flow behavior to spatial distribution of thick quaternary deposits? Case study of the 14 km2 alpine Poschiavino catchment, Switzerland. In AGU Chapman Conference, (Luxembourg City),.

FLORIANCIC, M., SMOORENBURG, M., MARGRETH, M., and NAEF, F. (2014b). Which hillslopes sustain baseflow during low flow conditions? Lessons from winter discharge observations in the alpine Poschiavino catchment,Switzerland. In Geophysical Research Abstracts, (Vienna),.

JOHNSTON, R., and McCARTNEY, M. (2010). Inventory of Water Storage Types in the Blue Nile and Volta River Basins (Colombo, Sri Lanka: International Water Management Institute).

KIENZLER, P.M., and NAEF, F. (2008). Subsurface storm flow formation at different hillslopes and implications for the "old water paradox." Hydrol. Process. *22*, 104–116.

KIRCHNER, J.W. (2006). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research *42*, W03S04.

KIRCHNER, J.W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. *45*, 34.

KITE, G. (1989). An extension to the salt dilution method of measuring streamflow. International Journal of Water Resources Development *5*, 19–24.

MAILLET, E. (1905). Essais d'hydraulique souterraine et fluviale. Librairie Sci. 218.

MARGRETH, M., NAEF, F., and SCHERRER, S. (2013). Pilotstudie zur Anwendung von Abflussprozesskarten im Niedrigwasserbereich (Bern: Bundesamt für Umwelt (BAFU)).

MENZEL, L., LANG, H., and ROHMANN, M. (1999). Mittlere jährliche aktuelle Verdunstungshöhen 1973–1992.

MOORE, R.D. (2004). Introduction to salt dilution gauging for streamflow measurement. Streamline - Watershed Management Bulletin *7*, 20–23.

MOORE, R.D. (2005). Slug Injection Using Salt in Solution. Streamline - Watershed Management Bulletin *8*, 1–6.

NAEF, M.H. (1987). Ein Beitrag zur Stratigraphie der Trias-Serien im Unterostalpin Graubündens (Grisoniden). PhD Thesis. ETH Zürich.

OUYANG, Y. (2012). A potential approach for low flow selection in water resource supply and management. Journal of Hydrology *454–455*, 56–63.

PAVUNZA, R., and TRAINDL, H. (1983). Über Dolomitkarst in Österreich. Die Höhle 34, 15–25.

PFISTER, L., KLAUS, J., HISSLER, C., IFFLY, J.F., GOURDOL, L., MARTINEZ-CARRERAS, N., and McDONNELL, J.J. (2014). A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe). In Geophysical Research Abstracts, (EGU 2014),.

PUSHPALATHA, R., PERRIN, C., LE MOINE, N., MATHEVET, T., and ANDREASSIAN, V. (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. Journal of Hydrology *411*, 66–76.

RANTZ, S.E. (1982). Measurement and computation of streamflow: Volume 1 - Measurement of stage and discharge (Washington: USGS - U.S. Geological Survey).

SAYAMA, T., MC DONNELL, J.J., DHAKAL, A., and SULLIVAN, K. (2011). How much water can a watershed store? Hydrological Processes 25, 3899–3908.

SCHERRER, S., and NAEF, F. (2003). A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrol. Process. *17*, 391–401.

SCHERRER, S., NAEF, F., FAEH, A.O., and CORDERY, I. (2007). Formation of runoff at the hillslope scale during intense precipitation. Hydrol. Earth Syst. Sci. 11, 907–922.

SCHMOCKER-FACKEL, P., NAEF, F., and SCHERRER, S. (2007). Identifying runoff processes on the plot and catchment scale. Hydrol. Earth Syst. Sci. *11*, 891–906.

SINGH, V.P., and FREVERT, D.K. (2002). Mathematical Models of Small Watershed Hydrology and Applications.

SMOORENBURG, M., VOLZE, N., MARGRETH, M., SCHERRER, S., and NAEF, F. (2013). How do storage and drainage processes influence extreme floods in the Swiss Alps? In Geophysical Research Abstracts, (Vienna: EGU 2013),.

SUMMERFIELD, M.A. (1987). Neotectonics and landform genesis. Progress in Physical Geography *11*, 384–397.

TALLAKSEN, L.M. (1995). A review of baseflow recession analysis. Journal of Hydrology *165*, 349–370.

TURNIPSEED, P., and SAUER, V. (2010). Discharge Measurements at Gaging Stations (Virginia: USGS - U.S. Geological Survey).

UHLENBROOK, S., FREY, M., LEIBUNDGUT, C., and MALOSZEWSKI, P. (2002). Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resources Research *38*, 31–1.

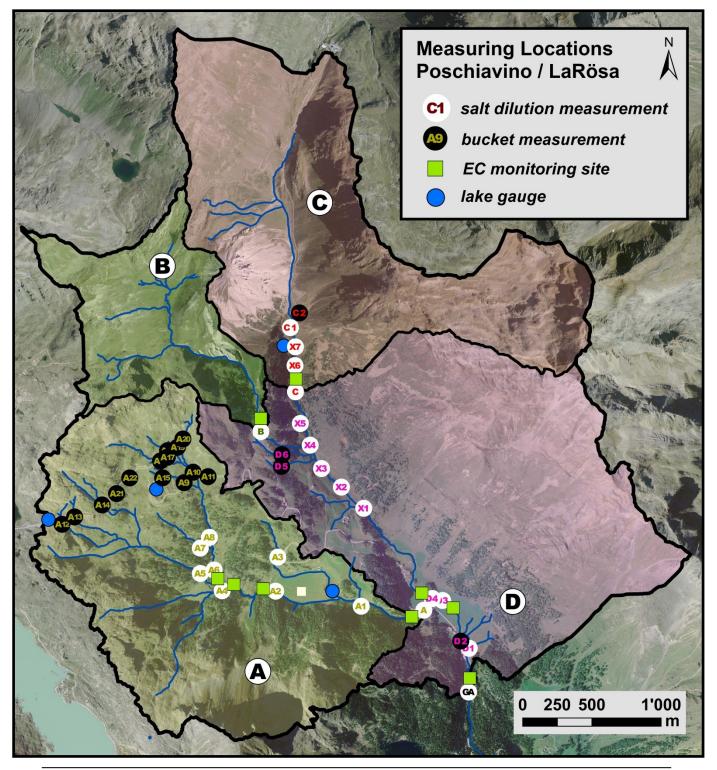
WEILER, M., and NAEF, F. (2003). An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol. Process. *17*, 477–493.

WOOD, P. and DYKES, A. (2002). The use of salt dilution gauging techniques: ecological considerations and insights. Water Research *36*, 3054–3062.

Online references: (last access 21.10.2014)

http://map.geo.admin.ch

http://www.hydrodaten.admin.ch/de/


http://www.meteosuisse.admin.ch/

http://www.fratelli-lanfranchi.ch/

http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/maps/geology/acce ssories.html

9 Appendix

Measurement Locations

Measuring Point / X (GIS) Y (GIS) Altitude (m) (GIS) Catchment (km²) Method Description	A_1a 801313 142670 1930 3.7 SALT TEZG A after Campasc before side torrent		
Method	SD SD	SD SD	
Date	12.11.2013 26.1	1.2013 21.12.2013	
l / s Conductivity	175.8 61.2	48.4 20.3 71.9 73.1	
Temperature I / km²	1.9 47.1	0.3 1.9 13.0 5.4	
		13.0 3.4	
Measuring Point	A_1b		
X (GIS) Y (GIS)	801313 142670		
Altitude (m) (GIS)	1930		
Method	SALT		
Description	TEZG A after Campasc after side torrent		
Method Date	SD 26.11.2013		
l / s Conductivity	49.9 70.8		
Temperature	0.1		
Measuring Point	A_2		
X (GIS) Y (GIS)	800622 142760		
Altitude (m) (GIS)	1960		
Catchment (km ²) Method	3.0 SALT		a that the second se
LF Sonde	A2		
Description	TEZG A before Campasc		
Method Date		5D 2.2013	
1 / s	21.3	10.8	
Conductivity Temperature	67.2 0.0	74.3 1.1	
l / km²	7.2	3.6	

Manager Daine									
Measuring Point (X (GIS) Y (GIS)	802127 141706								
Catchment (km ²)	15.2							1.	
Method	15.2 SALT				-	- 23 3	1		
Description	at street below gau	iging station					10	A Stand	41 C 7
					1	1 And		1.	
						-		and the second	
							1.1		-ste
						ACT FOR	A		Search Search
					1				
							Vil Day		August and and
							Miner Davie	-	- FI
								Corres 5	A Start
							- produce	S. March	State of
							12 24 B	Can Y	
						Nº SAL			The
								1.	
Method	SD				,				1.
Date	SD 12.03.2014								
I/s	183.3								_
Conductivity	251								
Temperature									
l / km²	12.0								_
Measuring Point -	GAUGING STATI	ON							
				1000	Color Color			1005180	
X (GIS)	807295			1 AT M					
Y (GIS) Altitude (m) (GIS)	158534 1810.8						Ser Thereway State		
Catchment (km ²)	14.44			TT I					Contraction of the
Method	SALT			LL P				The a	A TA
LF Sonde	PEGEL					Constant of the	a state of the second	2	
Description	Gauging Station Po	schiavino / La Rös	a	AC	THE REAL PROPERTY.				C CHARLES
				- 131			24		Sec. 2
							TS COL		
					F		- Harris	and the second	and the second s
					THEM IS IT	and the second s			
					1 1				F.T
					112			-	212-64
					1.1	The Bridge			
					in		A COLORAD	Mart Control	1000
						Contraction of the	and the constraint	30. 34	1 Proventier
							The start in the	1 Barry	48-0-
						C CORRES	Sugar Constraint	STREE STREET	A again
Method	SD	SD	SD	SD	SD	SD	SD	SD	SD
Date	09.11.2013	12.11.2013	25.11.2013	19.12.2013	07.01.2014	06.02.2014	22.02.2014	11.03.2014	02.04.2014
l / s	1266.6	736.9	391.5	255.0	231.7	181.9	177.1	183.6	345.9
Conductivity	160.3	236	270	244	254	264	306	251	194.2
Temperature I / km²	3.4 87.7	2.4 51.0	0.4 27.1	1.6 17.7	1.9 16.0	1.1 12.6	1.1 12.3	3.5 12.7	4.5 24.0
		51.0	27.1	17.7	10.0	12.6	12.3	12.7	24.0
Measuring Point A	A								
V (CIC)				and the second	A State				
X (GIS) Y (GIS)	801774 142589			A CAR	ALL THE				
Y (GIS) Altitude (m) (GIS)	142589				A COL				
Catchment (km ²)	4.04				1 2 2 1	No aller			The the
Method	SALT					in the second	2002- 32		the second
LF Sonde	А	1			and the second second		1 200	1	and the
Description	TEZG A before junc	tion with Poschiav	ino	11112			1200	and the second s	5 Star 195
						States and		AL AN	AND SHARE
				and the second	100000	-		and the second s	199 B
			T-0.00	S. S.	and the second	and the second	State of the	Print The	-
				and the second	1	Charles and	the shall	- TABE!	12 -12 -
				14-1-1-		12 - 7	and the second second	the to the	1 Milester
					1 allow	A State			
			1	-		a port			
				and the second		A N	6 6 8		
			1	150					A suit
			1	Non- No	mar -	AL AN	The second		
			3	han 3	14	en la la	1 200	Contraction of the second	1
Method	SD	SD	SD	SD	SD	SD	SD	SD	SD
Date	01.11.2013	12.11.2013	25.11.2013	19.12.2013	08.01.2014	07.02.2014	25.02.2014	11.03.2014	02.04.2014
l/s	310.5	187.3	56.1	22.9	19.0	19.9	14.5	31.0	97.5
Conductivity	59.7	60.8	68.9	73.8	74.2	78.6	79.0	92.7	91.2
Temperature I / km²	5.1 76.9	1.8 46.3	1.4 13.9	0.9	1.1 4.7	0.6	0.9 3.6	1.5 7.7	1.7 24.1
.,	70.5	40.5	13.5	3.7	4./	4.5	5.0	1.1	27.1

Measuring Point / X (GIS) Y (GIS) Altitude (m) (GIS) Catchment (km ²) Method Description	A_1a 801313 142670 1930 3.7 SALT TEZG A After Campasc before side torrent			
Method	SD	SD	SD	
Date	12.11.2013 26.1	1.2013	21.12.2013	
/ s Conductivity	175.8 61.2	48.4 71.9	20.3 73.1	
Conductivity Temperature	1.9	0.3	/3.1 1.9	
/ km²	47.1	13.0	5.4	
Measuring Point /	A 1b			
((GIS) ((GIS)	801313 142670			
(GIS) Ntitude (m) (GIS)	142670			
Aethod Description	SALT TEZG A after Campasc			- 12. · · · · · · · · · · · · · · · · · · ·
vesen priori	after side torrent			
				A State of the second s
Method	SD			
Date	26.11.2013			
/ s Conductivity	49.9 70.8			
l'emperature	0.1			
Measuring Point	A_2			
(GIS) (GIS)	800622 142760			
Altitude (m) (GIS)	1960			
Catchment (km ²)	3.0			
Vlethod .F Sonde	SALT A2			
.F Sonde Description	A2 TEZG A before Campasc			
				AN ICH AND THE REAL PROPERTY AND THE REAL PROPERTY.
				A A A A A A A A A A A A A A A A A A A
				MAY TO MARCON CLARKER STOLEN
	SD	SD		
		SD 12.2013		
Method Date	27.11.2015 21.			
Date I / s	21.3	10.8		
Date /s Conductivity				
Date	21.3 67.2	10.8 74.3		

Measuring Point	A 2		
X (GIS) Y (GIS) Altitude (m) (GIS) Catchment (km ²) Method Description	800748 143049 2000 0.19 SALT	eet / conveyor Campasc	
Method	SD	SD	
Date	27.11.2013	20.12.2013	
l / s Conductivity	2.0 96.6	0.9 88.2	
Temperature	0.1	0.6	
	10.4	4.9	
Measuring Point	A_4a		
X (GIS)	800197		
Y (GIS) Altitude (m) (GIS)	143428 2130		
Catchment (km ²)	0.69		
Method Description	SALT		
Method Date	SD 26.11.2013 9.1	SD 21.12.2013 3.2	
Conductivity	38.3	41.1	
Temperature I / km²	2.3 0.6	3.0 0.2	
Measuring Point	A 4b		
X (GIS) Y (GIS)	800197 143428		
Altitude (m) (GIS)	2130		
Catchment (km ²) Method	1.7 SALT		
Method LF Sonde Description	SALT A5 II		
Method Date	SD 26.11.2013	SD 21.12.2013	
l / s	22.4	7.5	
Conductivity Temperature	80.3 0.3	87.5 1.5	
l / km²	13.6	4.6	

Measuring Point / X (GIS) Y (GIS) Altitude (m) (GIS)	800370 142755 2020			
Catchment (km²) Method Description	1.0 SALT			
Method	SD	SD	SD	
Date	12.11.2013 34.6	26.11.2013 8.8	21.12.2013 2.5	
Conductivity Temperature	69.9 1.0	68.5 0.1	94.6 0.5	
l / km²	34.0	8.6	2.4	
Measuring Point	A_6			
X (GIS) Y (GIS)	800377 142778			And the second s
Altitude (m) (GIS) Catchment (km ²)	2020 0.62			and the second se
Method	SALT			Contraction of the second s
LF Sonde Description	A6			
				A DECEMBER OF
Method Date	SD 12.11.2013	SD 26.11.2013	SD 21.12.2013	
l / s Conductivity	41.2 69.7	8.8 78.9	2.7 92.7	
Temperature I / km²	1.4 66.4	0.3 14.2	0.2 4.3	
Measuring Point A	4_7			
X (GIS)	800248			
Y (GIS) Altitude (m) (GIS)	142808 2050			and the second sec
Catchment (km ²)	0.13			The second s
Method Description	SALT			A A A A A A A A A A A A A A A A A A A
				are the state of the
				Dest Artic
				No. A
Method Date	CAL 12.11.2013	SD 26.11.2013		
l / s Conductivity	18.9	1.7 97.7		
Temperature	145.5	0.3		
17 KIII	145.5	12.8		

Measuring Point / X (GIS) Y (GIS) Altitude (m) (GIS) Catchment (km ²) Method Description	A_8 800291 142845 2050 0.49 SALT			
Method	SD	SD		
Date	12.11.2013	26.11.2013 6.4		
l / s Conductivity	22.3 71.1	6.4 79.4		
Temperature	1.4	0.1		
l / km²	45.4	13.1		
Measuring Point	A_9a			
X (GIS) Y (GIS) Altitude (m) (GIS) Catchment (km²) Method Description	800061 143533 2160 0.03 BUCKET small catchment fr	om swamp		
Method Date	BUCKET (old) 11.11.2013	BU new 27.11.2013	BU new 20.12.2013	
l / s	4.5	0.6	0.1	
Conductivity		90.0	104.2	
Temperature I / m²	- 150.0	0.8 20.3	0.5	
Measuring Point	A . 0h			
X (GIS) Y (GIS)	800061 143533			to have an product
Altitude (m) (GIS)	2160			- stelling the
Method	BUCKET			A The Art of the State of the S
Description	small sub catchme			
Method	side torrent - oro l from KL / HS ESTIMATION	eft BU new	BU new	
Date	09.11.2013	27.11.2013	20.12.2013	
l / s	2.0 17.5	< 0.01	no Q	
Conductivity Temperature	3.8			

Measuring Point	A_10a				1					
V (CIC)	000122			the training of the second	THE OWNER WHEN					
X (GIS) Y (GIS)	800133 143601			Nec.						
Altitude (m) (GIS)	2160			2						
Catchment (km ²)	0.45						STROKAL STROK			_
Method	BUCKET	100				- C-E		C. S. C. Law	- Andrew	
Description	Main torrent A15	-A20								
						- A - Mar				2
				1		James				
				132				-	he jeir	
				Contraction of	Tele.	L. Ta				2
				10-28			The L	and a last	AC-A DES	3
				100			-		a se	
					Same -		the second	3	The second	
					Stand-			The		
				Mark Street		A SA SA		SUPAT		
							- A AR	1984		
Method	ESTIMATION	ESTIMATION	BU big 27.11.2013	BU big 20.12.2013	BU big 08.01.2014					
Date	01.11.2013 15.0	08.11.2013 10.0	4.1	20.12.2013	08.01.2014	2				- 11
Conductivity	39.4	46.5	64.9	78.7	82.3					
Temperature	6.5	2.9	0.4	0.5	1.0					
l / km²	33.3	22.2	9.0	3.0	2.7	/				
Measuring Point	A_10b									
				A State			-	at the		1
X (GIS) Y (GIS)	800087 143599			a deline and	* -=-		Barrist-	A ST	10 A 10	*
Altitude (m) (GIS)	2160			LAN 24	-			A Star	A A	
	DUCKET			the state	1200	A Star	The second		and the second	
Method Description	BUCKET Drainage betweer	A9a - A10a		and the second	2		N G	MARL STR		
bescription	brainage sectores	11100		State 1	A Carlo		Ser.	the second	A. Contraction	
					Sec.	CHARLES IN				
				A Contra			- States	- 14	a paleta a	
				Land		993			The Art and	
				The Asia	A. 20					
					1		Ast	17 X 101		
				F. CAR		C / Land	A 19	A I	18.3746	
				p - m			14 3	VERSE	A CONTRACTOR	
				Nº CA	AL					
						- / 7		2 F.		
								C. Calme	And the	
Method	BU small	BU small					1000 Mar 100	608 979		201
Date	08.11.2013	27.11.2013								
l / s	1.0	no Q								
Conductivity Temperature	24.9 3.5	-								
iciliperature	5.5									
					_			_	_	
Measuring Point	A_11a			NAME AND DESCRIPTION	The second	and the state of the state				1000
X (GIS)	800176			STATE AND				1		
Y (GIS)	143607			THE STATE	the A start			254	time the	
Altitude (m) (GIS)	2160			A AND A AND A		Mark L	- Starting	and the	Ser and a	
Method	BUCKET			AN CO		A CALL	and the second	A dia		
Description	Side torrent from	HS above the stre	et l			and the second second	E.	the A M		
							ALA	的 这个人不	March March	
					The states		and the second			
										2
						the to the	and in			
				1				Part and and		
				ALL ST					ya fi ser se	
					AND AND			- 200 /	the stars ?	-
							10/10/10		and a start of the	
							The state		14 Th 1740 -	
				1 1 1		a bit p	Mar he	10 1 2 P.	and the strength	
				Carlo Maria		64	and the second	1122	The second	
Method	BUCKET (old)	BU NaCl	BU NaCl	BU NaCl			AND THE REAL PROPERTY OF	and and the		
Date	11.11.2013	27.11.2013	20.12.2013	08.01.2014						
l / s	1.5	0.1	< 0.01	no Q						
Conductivity	15.2 3.0	18.0 1.2	-							
Temperature	3.0	1.2	-							

	A_11b			
X (GIS) Y (GIS) Altitude (m) (GIS) Method Description	800176 143607 2160 BUCKET Side torrent from H			
Method Date	BU new 27.11.2013	BU NaCl 20.12.2013	BU N 8 08.01.	
l / s Conductivity Temperature	0.09 31.4 3.4	3	.03 no (7.3 - 2.3 -	2
Measuring Point A	A_12a			
X (GIS) Y (GIS) Altitude (m) (GIS) Method	799173 143323 1885 BUCKET			
Description	TEZG A 12 / torren outflow of small la		atchment	
Method Date	BUCKET (old) 08.11.2013			
l / s Conductivity Temperature	no Q - -			
Measuring Point /	A_12b			
X (GIS) Y (GIS) Altitude (m) (GIS)	799173 143323 1885			
Method Description	BUCKET TEZG A 12 / torren NR 272	t in HS		

Measuring Point	A_13a			
((GIS) ((GIS) Altitude (m) (GIS)	799173 143323 1885			
Vethod Jescription	SALT torrents from HS / Schacht - NR 271	KL		
Method Date	BUCKET (old) 08.11.2013	BU small 24.11.2013	BU NaCl 18.12.2013	BU NaCl 06.01.2014
/ s Conductivity	0.9	0.09	0.01 102.5	no Q
Temperature	3.0	2.0	102.5	
Aeasuring Point	A_13b			and the state of the
(GIS)	799173			
(GIS) Iltitude (m) (GIS)	143323 1885			
Nethod Rescription	SALT torrents from HS /	KI		
				- 1
Method	BU small	BU new	BU NaCl	
Method Date	24.11.2013	BU new 18.12.2013 0.06	06.01.2014	
Date / s Conductivity				
	24.11.2013 0.14 61.5 2.3	18.12.2013 0.06 61.5	06.01.2014 no Q -	
Date / s conductivity emperature Measuring Point /	24.11.2013 0.14 61.5 2.3 A_14 799466	18.12.2013 0.06 61.5	06.01.2014 no Q -	
Date / s ionductivity 'emperature Measuring Point / (GIS) (GIS) ultitude (m) (GIS)	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300	18.12.2013 0.06 61.5	06.01.2014 no Q -	
Date / s conductivity eemperature Measuring Point / (GIS) (GIS) klitiude (m) (GIS) latchment (km ²) Method	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1 BUCKET	18.12.2013 0.06 61.5 2.6	06.01.2014 no Q -	
Date / s Conductivity iemperature Measuring Point / (GIS) (GIS) Littude (m) (GIS) Catchment (km ²)	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1	18.12.2013 0.06 61.5 2.6	06.01.2014 no Q -	<image/>
Date / s Conductivity emperature Measuring Point / (GIS) (GIS)	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1 BUCKET beneath junction o	18.12.2013 0.06 61.5 2.6 f EZG A14 IR 265 BU NaCl 18.12.2013	06.01.2014 no Q -	<image/>
Date / s iconductivity iemperature Measuring Point / (GIS) (GIS) (GIS) (atchment (km ²) Aethod Aethod Aescription (a) oro left Date / s iconductivity	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1 BUCKET beneath junction o 2 torrents (a + b) N 2 torrents (a + b) N COND 24.11.2013 - 43.5	18.12.2013 0.06 61.5 2.6 f EZG A14 IR 265 BU NaCl 18.12.2013 0.06 42.0	06.01.2014 no Q -	<image/>
Date / s Conductivity emperature Measuring Point / (GIS) / (GIS) // (GIS)	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1 BUCKET beneath junction o 2 torrents (a + b) N 24.00 24.11.2013	18.12.2013 0.06 61.5 2.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	06.01.2014 no Q -	<image/>
Date / s ionductivity iemperature //easuring Point / / (GIS) (GIS) (Ititude (m) (GIS) ititude (m) (GIS	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1 BUCKT beneath junction o 2 torrents (a + b) N 2 torrents (a + b) N 24.11.2013 not pos.	18.12.2013 0.06 61.5 2.6 f EZG A14 IR 265 BU NaCl 18.12.2013 0.06 42.0 COND	06.01.2014 no Q -	<image/>
Date / s ionductivity emperature //easuring Point / (GIS) (GIS) (Ititude (m) (GIS) atchment (km ²) //ethod tescription (a) oro left Date / s onductivity (b) oro right Date / s	24.11.2013 0.14 61.5 2.3 A_14 799466 143376 2300 0.1 BUCKET beneath junction o 2 torrents (a + b) N 24.11.2013 43.5 COND 24.11.2013 not pos.	18.12.2013 0.06 61.5 2.6	06.01.2014 no Q -	<image/>

1 100 10 10 10 10 10 10 10 10 10 10 10 1	Measuring Point A	A 15a			
Dec 24.12.03 18.12.20.3 Conductivity 7.9.9	X (GIS) Y (GIS) Altitude (m) (GIS) Method Description	143609 2200 BUCKET) HS and KL		
1/3 0.0, 0.0 Imperature 0.2 0.2 0.0 Method (n) (r05) 2020 /s 2.200					
Method BU Nect Method BU CKET mail drainage from K5 and KL Figure 1000 CKET Method BU Nect Method BU Nect Security Fold A Security Sec	l / s	0.53	no Q		
C (65) ((65)(Conductivity Temperature				
C (65) ((65)(Manager	15			
Method Decerption BU MaCl BUCKET strail drainage from H5 and KL Image: Strain					
Method (becription) BU NaCl I standard framage from HS and KL Image from HS and KL Image from HS and KL Method (becription) BU NaCl I I I I I I I I I I I I I I I I I I I	Y (GIS)				and the second second
Description small drainage from HS and KL Image: Small drainage from HS and KL Method BU NeCl Image: Small drainage from HS and KL Method BU NeCl Image: Small drainage from HS and KL Method BU NeCl Image: Small drainage from HS and KL Method BU NeCl Image: Small drainage from HS and KL Method BU NeCl Image: Small drainage from HS and KL Method BU NeCl Image: Small drainage from HS and KL Method Date drainage from HS and KL Image: Small drainage from HS and KL Method Date drainage from HS and KL Image: Small drainage from HS and KL Method Date drainage from HS and KL Image: Small drainage from HS and KL Method Date drainage from HS and KL Image: Small drainage from HS and KL Method Date drainage from HS and KL Image: Small drainage from HS and KL Method Disting the symptom part Image: Small drainage from HS and KL Method Disting the symptom part Image: Small drainage from HS and KL Method Disting the symptom part Image: Small drainage from HS and KL Method Disting the symptom part Image: Small drainage from HS	Altitude (m) (GIS)				
Date 18.12.2013 /s <0.01 Conductivity 13.3.5 remperature 3.0	Method Description		m HS and KL		
Conductivity 133.5 Semperature 3.0 Measuring Point A_16a K (GiS) 143702 143702 2240 Method BUCKET Creek A15 - upper part Fill Constant (Constant (Constan					
Temperature 3.0 Measuring Point A_16 Measuring Point A_163 X (GIS) 799869 143702 2240 Xethod BUCKET Creek A16 - upper part BUCKET Creek A16 - upper part Vertical State Method BULKET or each A16 - upper part	l / s	< 0.01			
C (GIS) (C(S) Altitude (m) (GIS) 2240 799869 143702 2240 Image: Comparison of the comparison of	Temperature				
C (GIS) (C(S) Altitude (m) (GIS) 2240 799869 143702 2240 Image: Comparison of the comparison of	Measuring Point	A 16a			
/ (GIS) 143702 Nutlude (m) (GIS) 2240 BUCKET BUCKET creek A16 - upper part Fill Method BUCKET 01.11.2013 BU med 24.11.2013 24.11.2013 /s 7.5 5.0 0.11.2013 24.11.2013 /s 7.5 0.0 29.6					
Method Description BUCKET creek A16 - upper part Image: Supper part Image: Supper part Method Date ESTIMATION 08.11.2013 BU med 24.11.2013 /s 7.5 5.0 /s 7.5 5.0 0.201 29.6 -	Y (GIS)	143702			
Description creek A16 - upper part Image: Creek A16 - upper part Method ESTIMATION BU med 01.11.2013 08.11.2013 24.11.2013 /s 7.5 5.0 n o.Q. Conductivity 30.0 29.6 -					
Date 01.11.2013 08.11.2013 24.11.2013 / s 7.5 5.0 no Q Conductivity 30.0 29.6 -	Method Description		part		
/ s 7.5 5.0 no Q Conductivity 30.0 29.6 -	Date				
	l / s	7.5	5.0	no Q	
	Conductivity Temperature				

Monsuring Point	166			
Measuring Point	799928			
X (GIS) Y (GIS) Altitude (m) (GIS)	143675			
Method	BUCKET			
Description	creek A16 - lower part			
				o manufic a second s
		5		
		is -	2. 2	
			4 -11 - 9	
		47	12.52	
Method Date	ESTIMATION BU mee 08.11.2013 24.11.20			
l / s Conductivity	10.0 42.3	2.0 0.4 47.4 58.2		
Temperature	3.3	0.3 1.6		
Measuring Point	0.17			
X (GIS) Y (GIS)	799944 143714		-	
Altitude (m) (GIS)	2240			
Method Description	BUCKET Spring of HS and KL		-	
		1 and a	all -	
		1000	12	A A
				Mar I I
		1		13
			- Service	9
			1.12	
Method Date	BUCKET (old) BU mee 08.11.2013 24.11.20			
l / s Conductivity	0.3	0.17 0.13 163.6 132.0		
Temperature	5.4	0.7 2.8		
Measuring Point				
X (GIS) Y (GIS)	799943 143765			12
Altitude (m) (GIS)	2250		+	and the second second
Method Description	BUCKET creek 18 - upper part	- E		
		and and the	COL POID	9
		where the state		
			Non Providence	
			The second	
		- 1 /A.	A	200 00 00 00 00 00 00 00 00 00 00 00 00
			Al	10 . 20 10
			The second	
Method Date	BUCKET (old) BUCKET (0 01.11.2013 08.11.20			
l / s	5.50	5.00 1.24	0.18	
Conductivity Temperature	30.0 7.0	32.0 33.9 3.8 0.7	35.8 1.2	

Measuring Point A_1 X (GIS) Y (GIS) Altitude (m) (GIS) Method Description cre	799967 143748 2240 BUCKET eek 18 - lower pa	art					
		art	1	h la la		N KER	
				S -			
Method Date	EC E 08.11.2013	BU NaCl (GRAV) 18.12.2013					
l/s	-	0.37					
Conductivity Temperature	45.0 3.1	- 44.0					
Measuring Point A_1	.9						
X (GIS)	799975		and the	a way		ANT-	
Y (GIS) Altitude (m) (GIS)	143801 2230		212	1 - 1 - 1	**		
Method Description	BUCKET						
Method Date	EC 08.11.2013	BU new 27.11.2013	BU NaCl 20.12.2013				
l / s Conductivity	- 56.6	0.24 47.4	0.19 54.6				
Temperature	4.9	1.5	1.8				
Measuring Point A_2	20		n ti a			a familie and a state	all the second second
X (GIS) Y (GIS) Altitude (m) (GIS)	800045 143799 2220						
Method Description To	SALT rrrent 20						
					A State	A Brown	
	ESTIMATION 07.11.2013	SALT 20.12.2013					
	ESTIMATION 07.11.2013 2.0 18.7	SALT 20.12.2013 no Q				a and a start of the second	

	_21a	
	799703 143608 2260 BUCKET Drainages between A14 and A16	
Method Date	BU small 24.11.2013	
l / s Conductivity Temperature	no Q - -	
Measuring Points	_21b	
X (GIS) Y (GIS) Altitude (m) (GIS)	799703 143608 2260	
Method Description	BUCKET Drainages between A14 and A16	
Method Date	BU NaCl BU small 24.11.2013 18.12.2013	
I / s Conductivity Temperature	0.02 no Q 114.5 - 2.3 -	
Measuring Points	_22a	
X (GIS) Y (GIS) Altitude (m) (GIS) Method	799703 143608 2260 BUCKET Drainages between A14 and A16	
Method Date	BU NaCl 24.11.2013 no Q	
Conductivity Temperature	:	

Measuring Points	A 22a		
X (GIS) Y (GIS)	799703 143608		
Altitude (m) (GIS)	2260		
			the second second
Method Description	BUCKET Drainages betweer	A14 and A16	
Description	Diamages between	A14 and A16	
			and the second
Method	BU NaCl		
Date	24.11.2013 no Q		
Conductivity	-		
Temperature	-		
Measuring Points	A_22b		
X (GIS)	799703		Contraction of the second seco
Y (GIS)	143608		
Altitude (m) (GIS)	2260		
Method	BUCKET		
Description	Drainages between	A14 and A16	
	-		
Method	BU NaCl	BU small	
Date	24.11.2013	18.12.2013	
l / s Conductivity	0.26 39.3	no Q	
Temperature	4.6	-	
Measuring Point I	В		
X (GIS) Y (GIS)	800681		
Y (GIS) Altitude (m) (GIS)	143844 2190		
Catchment (km ²)	1.4		
Method	SALT		
LF Sonde Description	B3 Main torrent TEZG	R	
Description	Main torrent TE2G	Б	
			and the second states and the second states and the second s
			a solution of the second second
			CAL MA STATE A
			The second se
			Cherry and
Method	SD	SD	SD SD CAL SD SD SD
Date	12.11.2013	27.11.2013	20.12.2013 08.01.2014 06.02.2014 23.02.2014 13.03.2014 03.04.2014 17.1 14.7 13.4 12.7 11.9 16.9
l / s Conductivity	71.6 290	25.3 494	17.1 14.7 13.4 12.7 11.9 16.9 588 629 697 708 669
Temperature	3.0	-	2.3 2.5 2.3 2.5 2.6
1 / 1	5.0	1.8	1.2 1.0 <u>9.6</u> 0.9 0.8 1.2
l / km²			

Measuring Point	c							
X (GIS) Y (GIS) Altitude (m) (GIS) Catchment (km²) Method LF Sonde Description	800971 143777 1980 3.9 SALT B4 Poschiavino at beg	inning of gorch						
Method	SD	SD	SD	SD	SD	SD	SD	
Date	25.11.2013 165.9	20.12.2013 103.3	09.01.2014 79.1	06.02.2014 58.5	24.02.2014 13 50.8	.03.2014 03 43.5	.04.2014 45.3	
Conductivity	408	332	376	417	430	449	461	
Temperature I / km²	1.1 11.5	2.3	3.1 5.5	2.3	3.0 3.5	3.4 3.0	3.3 3.1	
		7.2	5.5	7.4	5.5	5.0	5.1	
Measuring Point	C_1a							Advantation of the second
X Y Altitude (m) Catchment (km ²) Method Description	800838 144675 2080 2.6 SALT Main torrent TEZG	C / Bridge Forcola	t di Livigno					
Method Date	SD 12.11.2013	SD 25.11.2013	SD 20.12.2013					
l / s	107.3	57.1	50.4					
Conductivity	612	677	452					
Temperature	3.7 7.4	2.1 4.0	2.7 3.5					
Measuring Point								
							(A. 1)	the second second
X Y	800838 144675					Ma.	ANTE:	and the second
Altitude (m)	2080					1	Survey and	A Contraction
Method	BUCKET					-		A CONST
Description	Spring out of tube					No. of the second se		
Method Date	BUCKET (old) 01.11.2013	BU NaCl 25.11.2013	BU NaCl 20.12.2013					
l / s	1.6	1.4	0.00					
Conductivity Temperature	270 3.5	182.1 3.1	-					

Measuring Point X Y Altitude (m) Method Description	C_23 800838 144675 2080 BUCKET Outflow - under Li	vigno street		
Method Date 1/s	BU NaCl 25.11.2013 2.9	BU NaCl 20.12.2013 no Q		
Conductivity Temperature	181.5 1.0	:		
Measuring Point	C 2b		_	
X Y Altitude (m) Method	800838 144675 2080 ESTIMATION			
Method Date	ESTIMATION 01.11.2013	ESTIMATION 12.11.2013	ESTIMATION 25.11.2013	
l/s Conductivity Temperature	5 240 3.5	6 180 4.0	not pos - -	
Discharge Catch	ment D			
Catchment (km²) Method Description Method Description	5.1 CALCULATION PEGEL - (MP_A + N CALCULATION D3 - (MP_A + MP_	В	- D2	
Method Date I / s I / km² Method Date I / s I / km²	CAL_A 24.11.2013 144.1 10.0 CAL_B 24.11.2013 116.2 8.1	CAL_A 20.12.2013 111.8 7.7 CAL_B 20.12.2013 85.7 5.9	CAL_A 08.01.2014 118.9 8.2 CAL_B 08.01.2014 88.8 6.2	6.2 6.9 6.7 12.9 CAL_B CAL_B CAL_B 06.02.2014 24.02.2014 12.03.2014 71.4 72.2 63.4

Measuring Point	D_1						
X (GIS) Y (GIS) Altitude (m) (GIS)	800971 143777 1980						
Method	SALT						
Description	small torrent unde	r Chalet Post		-1			
Method	SD	SD	SD	SD	SD	SD	
Date	25.11.2013	19.12.2013	09.01.2014	07.02.2014	22.02.2014	11.03.2014	
l / s	10.6	7.6	6.5	6.1	5.8	5.5	
Conductivity	119.0	126.2	130.2	173.3	138.0	140.0	
Temperature	2.1	3.7	3.8	3.5	3.4	3.6	
Measuring Point	D_2a						
v	800838				1 and a state	and part of the lot	

	800838 144675 2080 Bucket gravimetric small tube / under Chalet Post				
Method Date	BU med BU med (GRAV 25.11.2013 19.12.2013		med (GRAV) 1	BU med (GRAV) 11.03.2014	
1/s	6.2 6	.2 6.1	5.0	4.5	

l/s	6.2	6.2	6.1	5.0	4.5
Conductivity	166.0	169.8	170.4	174.0	179.4
Temperature	5.2	4.2	2.4	3.2	4.5

Measuring Point	D_2b					
x	800838			2		
Y	144675			in the second	4)	
Altitude (m)	2080			-X.X	FC Y	The set of the set
Method	Bucket gravimetr	ic			And A MARK	A A A A A A A A A A A A A A A A A A A
Description	big tube / under (halet Post				
Method Date	BU med 25.11.2013	BU big (GRAV) 19.12.2013	BU med (GRAV) 07.01.2014	BU med (GRAV) 22.02.2014	BU med (GRAV) 11.03.2014	
	11.8	11.4		8.2	8.0	
/s		170.0	169.0	172.0	175.5	
/s Conductivity	163.0	170.2	109.0			

D_1_2 (D1 + D2a	+ D2b)								
X (GIS) Y (GIS) Altitude (m) (GIS)	800971 143777 1980								
Catchment (km ²) Method Description	0.93 SALT C1 + C2a + C2b			An					
Description	CI + C28 + C20								
							in the		
				a					
Method	CAL	CAL	CAL	CAL	CAL				
Date	25.11.2013 28.6	19.12.2013 25.2	09.01.2014 22.8	22.02.2014 18.9	11.03.2014 17.9				-
Conductivity I / km²	147.4 30.7	156.9 27.1	158.4 24.5	162.1 20.3	165.6 19.3				- 1
Measuring Point									
X (GIS) Y (GIS) Altitude (m) (GIS)	801849 142707 1885								
Catchment (km ²) Method	12.4 SALT				e a h				-
LF Sonde Description	AB MP A and B after c	onfluence		- Edite		N NO A	-		
	D_3 is calculated in (measured value	D_3 + (measured	value A +	Contraction of the second	AND THE REAL PROPERTY OF	A State	A		
	measured value E	0_4))/2					-		
						A Martin	B		
					4	A.			200
Method Date	CAL 24.11.2013	SD 19.12.2013	SD 07.01.2014	SD 06.02.2014	SD 22.02.2014	SD 11.03.2014	SD 02.04.2014		
Measurement MP A + MP D4	356.8	183.6 217.9	173.1 183.9	135.6 149.6	131.2 137.0	157.5 149.9	281.0 257.3		
l / s Conductivity Temperature	356.8	200.7 257 1.6	178.5 271 2.1	142.6 286 1.4	134.1 290 1.3	153.7 264 2.4	269.2 194.9 3.1		
l / km²	24.7	13.9	12.4	9.9	9.3	10.6	18.6		_
Measuring Point	D_4			1962 (1966)		2004-0050			
X (GIS) Y (GIS)	801849 142707						Sec.	230	
Altitude (m) (GIS) Catchment (km ²)	1885 8.3			Jaren P	P				
Method LF Sonde Description	SALT B TEZG B C and D / b	efore junction		TAL AND					
Description	with Berninabach	erore junction							
						a suge	The second		
								S. Cond	
						14 -		2	
							Jun 1	NAME IN	
Method Date	SD 12.11.2013	SD 25.11.2013	SD 19.12.2013	SD 08.01.2014	SD 06.02.2014	SD 22.02.2014			SD 2.04.2014
l / s Conductivity Temperature	454.2 314 3.8	300.7 322 1.1	195.0 273 1.8	164.9 285 2.5	129.7 303 1.8	122.5 308 1.3	119.2 306 2.0	118.9 303 2.6	159.8 270 4.0
l / km ²	3.8	20.8	1.8	2.5	1.8 9.0	1.3 8.5	8.3	8.2	11.1

Gen Base Bin Bin Strate Stra	View 1573 Unitable 00 (07) 1133 Unitable 00 (07) Unitable 00 (07) <th>Moncuring Delet</th> <th>5.</th> <th></th> <th></th> <th></th>	Moncuring Delet	5.			
UserSol Rescale 13722 1220 Backet Sol Rescale BUCKET Sol Sol Rescale BUTWO Sol Rescale BUTWO Sol Re	V. (6H2) 13723 Number (6) 13723 Number (6)					
Athod Receiption SUCCIT Forescal Biology BU Jund Biology BU Jund Biology BU Jund Biology BU Jund Biology BU Jund Biology Method Receiption Biology BU Jund Biology BU Jund Biology BU Jund Biology BU Jund Biology Biology Athod Receiption Biology Biology Biology Biology Biology Athod Receiption Biology Biology Biology Biology Biology Biology Biology Biology Biology Biology Biology Biology Biology Biology Receiption Biology Biology Biology Biology<	Method Science al Hungo Is labele (M) Bund Description Method Boble (M) Bund BUNG BUNG Method Boble (M) Bund BUNG BUNG Method Boble (M) BUNG BUNG Method BUNG BUNG BUNG Standarde (n) (R) BUNG BUNG BUNG Method BUNG BUNG BUNG Bethod BUNG BUNG BUNG Method BUNG BUNG BUNG Standarde (n) (R)	Y (GPS)				WAY . MAR
Note 201 / Mark Banesah Bisker (dif) BU Jack Bisker (dif)	Description Side torrent ITES 8 / Me basesth BUT NCL	Altitude (m) (GPS)	1820			
Model Buddet (efd)	Retice BU Hod 121303 BU Hod 131303 BU Hod 131303 BU Hod 131303 Very Conductive Very Reticed BU Hod 121303 BU Hod 131303 BU Hod 131303 BU Hod 131303 Very Reticed BU Hod 13133 BU Hod 13133 BU Hod 13130 BU Hod 131303 Keffel Method Benghon BU Hod 13133 BU Hod 13133 BU Hod 13133 BU Hod 13133 Method Benghon BU Hod 13133 BU Hod 13133 BU Hod 13133 BU Hod 13133 Method Benghon BU Hod 13133 BU Hod 131234 BU Hod 131234 BU Hod 131234 Method Benghon BU Hod 131233 BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 Method Benghon BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 Method Ison Benghon BU Hod 131233 BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 Method Ison Benghon BU Hod 131233 BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 BU Hod 131234 Ison Benghon BU Hod 13233 BU Hod 13234					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 19.12.013 19.12.014 (14) 3.5 0.5 0.0 0.0 Conductivity 3.43 0.16 0.0 Meshading Folicet 5-15 3 0.1 0.0 Kernerature Serrorative for the serverature for the serveratu	Description		B / tube beneath		
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 19.12.013 19.12.014 (14) 3.5 0.5 0.0 0.0 Conductivity 3.43 0.16 0.0 Meshading Folicet 5-15 3 0.1 0.0 Kernerature Serrorative for the serverature for the serveratu					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 05.12.03 00.02014 (1/3) 6.3 0.5 0.0 0.0 Conductivity 6.4.3 0.6.4 0.0 Messauring Point D_SB 0.0 0.0 Conductivity 73.1 423.0 Y (0%) 13.20 0.00 Conductivity 73.1 423.0 Y (0%) 13.00 0.00 Messauring Point D_SB 13.00 Messauring Point D_SB 13.00 BUCCET Staturenthi Forcola di Livigno BUCCET					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 05.12.03 00.02014 (1/3) 6.3 0.5 0.0 0.0 Conductivity 6.4.3 0.6.4 0.0 Messauring Point D_SB 0.0 0.0 Conductivity 73.1 423.0 Y (0%) 13.20 0.00 Conductivity 73.1 423.0 Y (0%) 13.00 0.00 Messauring Point D_SB 13.00 Messauring Point D_SB 13.00 BUCCET Staturenthi Forcola di Livigno BUCCET					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 05.12.03 00.02014 (1/3) 6.3 0.5 0.0 0.0 Conductivity 6.4.3 0.6.4 0.0 Messauring Point D_SB 0.0 0.0 Conductivity 73.1 423.0 Y (0%) 13.20 0.00 Conductivity 73.1 423.0 Y (0%) 13.00 0.00 Messauring Point D_SB 13.00 Messauring Point D_SB 13.00 BUCCET Staturenthi Forcola di Livigno BUCCET					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 05.12.03 00.02014 (1/3) 6.3 0.5 0.0 0.0 Conductivity 6.4.3 0.6.4 0.0 Messauring Point D_SB 0.0 0.0 Conductivity 73.1 423.0 Y (0%) 13.20 0.00 Conductivity 73.1 423.0 Y (0%) 13.00 0.00 Messauring Point D_SB 13.00 Messauring Point D_SB 13.00 BUCCET Staturenthi Forcola di Livigno BUCCET					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.12.03 25.12.03 05.12.03 00.02014 (1/3) 6.3 0.5 0.0 0.0 Conductivity 6.4.3 0.6.4 0.0 Messauring Point D_SB 0.0 0.0 Conductivity 73.1 423.0 Y (0%) 13.20 0.00 Conductivity 73.1 423.0 Y (0%) 13.00 0.00 Messauring Point D_SB 13.00 Messauring Point D_SB 13.00 BUCCET Staturenthi Forcola di Livigno BUCCET					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.9 0.0 0.1 0 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 1.1721 1.1721 1.1721 Interview 90.0028 0.00 0.00 0.00 Method 80.1Not 80.1Not 80.010 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 Interview 1.1 1.3 0.00 0.00 0.00 Interview 7.1.1 42.00 0.00 0.00 0.00 0.00 Interview 1.1 <	Det 12.11.203 25.11.203 25.12.203 09.02.004 Conductivity 3.43 0.15 0.0 Method S07.03 0.1 0.0 Method S07.03 0.1 0.0 Method S07.03 0.1 0.0 Method S07.03 1.5772.1 Attack (n)					
Det 12.11.2013 19.12.2013 19.12.2013 00.12014 Indextiny 6.3.3 6.6.6 224.0 0.0 Indextiny 6.3.3 6.6.6 224.0 0.0 Interview 6.3.7 0.0 0.1 0 Interview 6.3.7 0.0 0.1 0 Interview 6.6.6 224.0 0.0 0 Interview 6.7.7 0.0 0.1 0 Interview 90.7028 137721 1 0 0 Interview 137721 1 0 0 0 0 Interview 13.17293 10.20204 0 <td< td=""><td>Det 12.11.203 25.11.203 25.12.203 09.02.204 Conductivity 6.3 0.5 0.0 Method B.07.03 0.0 0.0 Method B.07.04 B.00.04 0.00 0.0 Method B.01.04 B.01.04 0.00.20 0.00 Conductivity 7.3 423.0 0.00 0.0 Conductivity 7.3 423.0 0.00 0.0 V (cP2) 1.4 1.3 0.0 0.0 Method B.01.04 B.00.04 0.00 0.0 Conductivity 7.3 423.0 0.0 0.0 Buccr Buccr</td><td></td><td></td><td></td><td></td><td></td></td<>	Det 12.11.203 25.11.203 25.12.203 09.02.204 Conductivity 6.3 0.5 0.0 Method B.07.03 0.0 0.0 Method B.07.04 B.00.04 0.00 0.0 Method B.01.04 B.01.04 0.00.20 0.00 Conductivity 7.3 423.0 0.00 0.0 Conductivity 7.3 423.0 0.00 0.0 V (cP2) 1.4 1.3 0.0 0.0 Method B.01.04 B.00.04 0.00 0.0 Conductivity 7.3 423.0 0.0 0.0 Buccr Buccr					
A 9.5.3 0.1.3 0.0 caturing Point 0 3.2 0.3 0.1.1 0.0 caturing Point 0 3.2 0.1.2 Image: Caturing Point 0 <	1/3 0.5 0.1 0.0 Conductivity 3.2 0.3 0.1 Messuring Point U_50 0.1 0.0 Messuring Point U_50 0.1 0.0 Method 0.0 0.1 0.0 Method 0.0 0.00 0.00 Method 0.0 0.00 0.00 Method 0.1 0.12014 0.00 Method 0.1 0.12014 0.00 Method 0.1 0.12014 0.00 Conductivity 7.1 4230 0.00 Method 0.1 0.12014 0.00 Method 0.1 0.12014 0.00 V (GP) 1.3 0.00 0.00 Method 0.1 0.00 0.00 Method 0.00 0.00 0.00 Method 0.00 0.00 0.00 Method 0.00 0.00 0.00 Method 0.00 0.00 0.00 Method 0.01 Media 0.00 0.00					
Matching 64.3 5.2 61.6 0.3 224.0 0.1 essuring Point 0.30 (Fig) D30 257273 127273 127273 188408 (m) (97) D30 257273 127273 188408 (m) (97) D30 257273 189408 (m) (97) D30 257273 189408 (m) (97) bitset (m) (97) D30 257273 189408 (m) (97) D30 257273 189408 (m) (97) D30 257273 189408 (m) (97) D30408 (m) (97) Method D1 Nad 51,12,203 D0 Nad 90,02,203.4 D0 Nad 90,02,203.4 D0 Nad 90,02,203.4 Method D1 Nad 51,12,203 D1 Nad 90,02,203.4 D0 Nad 90,02,203.4 D0 Nad 90,02,203.4 starting Point 0.4 BU Nad 13,22,203 D0 Nad 90,02,203.4 D0 Nad 90,02,203.4 D0 Nad 90,02,203.4 starting Point 0.4 BU Nad 13,22,203 BU Nad 90,02,203.4 BU Nad 90,02,203.4 D0 Nad 90,02,203.4 starting Point 0.4 BU Nad 13,22,203 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 starting Point 0.4 BU Nad 91,22,203 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 starting Point 0.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,203.4 BU Nad 90,02,	Conductivity Imperature 64.3 3.2 61.6 0.3 22.0 0.1 Measuring Point U-3b- X (cp) X (cp) Autrusk (ny) (cp) Autrusk (ny) (cp) BUCKET Description BUCKET Sile: Corrent II TECS 5 / Unb beneath Forcola di Ligno BU Naci BU Naci BU Naci BU Naci BU Naci Sile: Corrent II TECS 5 / Unb beneath Sile: Corrent II TECS 5 / Unb beneath Forcola di Lingno Method Poeciption BU Naci Sile: Corrent II TECS 5 / Unb beneath Forcola di Lingno BU Naci BU Corr Sile: Corrent II TECS 6 / Unb beneath Forcola di Lingno Method Poeciption BU Naci Sile: Corrent III TECS 6 / Unb beneath Forcola di Lingno BU Naci Sile: Corrent III TECS 7 / Unb beneath Forcola di Lingno Method Conductivity BU Naci Sile: Sile: Corrent III TECS 7 / Unb beneath Forcola di Lingno BU Naci Sile: Sile: Corrent III TECS 7 / Unb beneath Forcola di Lingno					
Asuring Point D, ST (193) (193) (197) (193) (197) (193) (197) (193) (197) (19	Messuring Point D_SB X (grs) (grs) Decription 870728 132721 1320 132721 1320 1320 Method Decription BU NaCl 51/L201 BU NaCl 1912/2013 BU NaCl 1912/2013 BU NaCl 1912/2013 BU NaCl 1912/2013 BU NaCl 1912/2013 Method Decription BU NaCl 1912/2013 BU NaCl 1912/2013 BU NaCl 1912/2013 BU NaCl 1912/2013 BU NaCl 1912/2013 Method Conductivity C0.20 7.0.02 C0.00 C0.00 C0.00 Method Castring Foint D_SE S07028 157721 C0.00 C0.00 C0.00 Method Castring Foint D_SE S07028 157721 C0.00 C0.00 C0.00 Method Castring Foint D_SE S07028 157721 S0.00 C0.00 C0.00 Method Decription S07028 157721 S0.00 C0.00 C0.00 Side Errent III TZCE B / tube beneath Forcols di Lingno S07028 Side Errent III TZCE B / tube beneath Forcols di Lingno S07028 Side Errent III TZCE B / tube beneath Forcols di Lingno Method Date Method BU NaCl Date Conductivity S0.12013 19.12.2013 BU NaCl D0.00.2014 S0.00	Conductivity	64.3	61.6	224.0	
GF9 (GP3) (GP3) (GP3) (GP3) B07028 15771 1220 3de tornent IIT208 / tube beneath Sector of 101203 BUCKIT Sector of 101203 BUCKIT	K (675) Y (675) Decription SU7028 J 157211 SUCKET Decription SUCKET BUCKET Substrate the baneath Provide LUB // Lube baneath Decription SU Nacl SU SU Nacl SU SU Nacl SU SU Nacl SU SU SU SU SU SU SU SU SU SU SU S	remperature	3.2	0.5	0.1	
(6FS) 15721 1320 third of skrrpton BUCKT Side torrent II TEZG B / tube beneath Forciol di Luigno BU NaCl	Y (6F3) 157221 Bild torrent II FEZS B / tube beneath Forcola di Livigno BU NACI Side torrent II FEZS B / tube beneath Forcola di Livigno BU NACI Side torrent II FEZS B / tube beneath Forcola di Livigno Method Date BU NACI 25.11.2013 BU NACI 19.22.2013 BU NACI 99.01.2014 BU NACI 99.01.2014 // S Conductivity 73.1 423.0 0.00 Method Date SU SUCE 12.22.211 BU NACI 99.01.2014 BU NACI 99.01.2014 // S Conductivity 73.1 423.0 0.00 Method Date SU SUCE 50 E Forcola di Livigno BU NACI 99.01.2014 BU NACI 99.01.2014 // S Conductivity Date 51.12.013 BU NACI 132.0 BU NACI 132.0 BU NACI 132.0 Method Date BU NACI 51.12.013 BU NACI 19.01.2014 BU NACI 19.01.2014 BU NACI 19.01.2014 // S Conductivity 70.6 BU NACI 19.22.2013 BU NACI 19.01.2014 BU NACI 19.01.2014	Measuring Point I	D_5b			
(6FS) 15722 1323 ethod skrrpton BUCKT Side torrent II TEZG B / tube beneath Forciol di Luigno BU NaCi BU NaCi BU NaCi Method BU NaCi BU NaCi BU NaCi BU NaCi BU NaCi Strpton Side torrent II TEZG B / tube beneath Table BU NaCi BU NaCi BU NaCi BU NaCi Method BU NaCi BU NaCi BU NaCi BU NaCi BU NaCi BU NaCi Starting Point U Side torrent III TEZG B / tube beneath Forcial di Luigno BU NaCi BU NaCi BU NaCi Method BU NaCi BU NaCi BU NaCi BU NaCi BU NaCi BU NaCi Starting Point U - - - - - - Butch Mitori BU CKET BU CKET - - - - Method BU NaCi	Method Description BU NaCl Slide torrent II TEZG B / Usbe beneath Forciol di Usigno BU NaCl Slide torrent II TEZG B / Usbe beneath Forciol di Usigno BU NaCl Slide torrent II TEZG B / Usbe beneath Slide torrent II TEZG B / Usbe beneath Forcia di Usigno BU NaCl B Slide torrent II TEZG B / Usbe beneath Forcia di Usigno Method Date BU NaCl Slide torrent II TEZG B / Usbe beneath Forcia di Usigno BU NaCl B Slide torrent II TEZG B / Usbe beneath Forcia di Usigno Method Date BU NaCl Slide torrent II TEZG B / Usbe beneath Forcia di Usigno BU NaCl B Slide torrent II TEZG B / Usbe beneath Forcia di Usigno Method Date BU NaCl Slide torrent II TEZG B / Usbe beneath Forcia di Usigno BU NaCl B Slide torrent II TEZG B / Usbe beneath Forcia di Usigno	X (GPS)	807028			
Held skription BUCKET Side torrent II TECS B / Use beneath Forciolal Livigno BU Naci BU Naci	Method Description BUCKET Side forment II FEZG B / Lube beneath Forcola di Luigno Subscription BU NaCl S 11 203 BU NaCl 9 20 12014 BU NaCl 9 20 2014 Method Date BU NaCl 2 31 203 BU NaCl 9 20 2014 BU NaCl 9 20 2014 BU NaCl 9 20 2014 1/3 Conductivity Y (efs) Subscription B 207028 1 37721 1 377721 1 37721 1 377	Y (GPS)	157721			
Method BU NaCl Date BU NaCl 25,11,2013 BU NaCl 19,12,2013 BU NaCl 09,01,2014 s 0.20 0,20 0.04 0,00 0.00 ndctwity merature 1.4 1.3	Bescription Forcola di Livigno Side torrent II TE25 8 / tube benesth Forcola di Livigno BU Naci 10 10 10 10 10 10 10 10 10 10 10 10 10 1					
Method Date BU NaCl SJILZ013 BU NaCl 19.12.2013 BU NaCl 09.01.2014 s 0.20 0.004 0.00 ndetwity 7.31 423.0 sturing Point Deservice BU NaCl 19.20 0.00 sturing Point Deservice BU CKET GPS (GPS) (GPS) (GPS) (GPS) B7728 152.0 BUCKET stripton BU NaCl bUCKET BU NaCl 19.22.203 BU LNCL but over till TEZG B / Lube beneath Forcols di Livigno BU NaCl 19.22.2013 Method Bate BU NaCl 25.11.2013 BU NaCl 19.12.2013 BU NaCl 09.01.2014 s 0.05 0.03 0.00	Method Date BU NaCl 25.11.203 BU NaCl 19.12.203 BU NaCl 0.00 1/3 Conductivity 0.20 7.1. 0.04 4.33.0		Side torrent II TEZG	B / tube beneath		
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 ndettivity 73.1 423.0 mperature 1.4 1.3	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 1.4 1.3		Forcola di Livigno			
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 1.3	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a X (GPS) Altitude (m) GPS) Altitude (m) GPS) BUCKET IS20 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl Buttude (m) GPS) 19.12.2013 Method BU NaCl BU NaCl Buttude (m) GPS) 0.00					
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 423.0	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a X (GPS) Altitude (m) GPS) Altitude (m) GPS) BUCKET IS20 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl Buster BU NaCl BU NaCl Date 25.11.2013 19.12.2013 BU NaCl V(s 0.06 0.00 0.00					A CARDON AND A CAR
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 423.0	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a K (GPS) 807028 157721 1320 BUCKET 1320 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Side torrent III TEZS B / tube beneath Forcola di Livigno					the main set of
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 423.0	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a K (GPS) 807028 157721 1320 BUCKET 1320 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Side torrent III TEZS B / tube beneath Forcola di Livigno					
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 423.0	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a K (GPS) 807028 157721 1320 BUCKET 1320 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Side torrent III TEZS B / tube beneath Forcola di Livigno					AND A AND A AND A
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 1.3	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a X (GPS) Altitude (m) GPS) Altitude (m) GPS) BUCKET IS20 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl Buster BU NaCl BU NaCl Date 25.11.2013 19.12.2013 BU NaCl V(s 0.06 0.00 0.00					
Det 25.11.2013 19.12.2013 09.01.2014 s 0.20 0.04 0.00 mperature 1.4 1.3	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.20 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a X (GPS) Altitude (m) GPS) Altitude (m) GPS) BUCKET IS20 BUCKET Side torrent III TEZS B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl Buster BU NaCl BU NaCl Date 25.11.2013 19.12.2013 BU NaCl V(s 0.06 0.00 0.00					
s 0.20 0.04 0.00 nductivity 73.1 423.0 resurving Point J_4 1.3 easuring Point J_5 (GPS) 807028 157721 1820 BUCKET BUCKET itde (m) (GPS) BUCKET iscle torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl BUNACI BU NaCl BU NaCl gs 0.06 0.03 o.006 0.03 o.006 0.03	1/s 0.02 0.04 0.00 Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6a Masuring Point D_6a X (GPS) 807028 157721 1820 BUCKET 1820 BUCKET Side to rerent III TEZG B / tube beneath Forcola di Livigno Method BU NaCI BU NaCI Description 8U NaCI BU NaCI Method BU NaCI BU NaCI Date 25.11.2013 19.12.2013 Method 0.06 0.03 U/s 0.06 0.03 Conductivity 71.3 92.9					
nductivity 73.1 423.0 mperature 1.4 1.3 essuring Point D_6a	Conductivity 73.1 423.0 Temperature 1.4 1.3 Measuring Point D_6 Conductivity Conductivity <thconductivity< th=""> Conductivity <thcond< td=""><td></td><td></td><td></td><td></td><td></td></thcond<></thconductivity<>					
BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl	Measuring Point D_6a X (GPS) Y (GPS) Altitude (m) (GP) Catchiment Size Method Description 807028 157721 1320 BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Method Description BU NaCl 5 / tube beneath Forcola di Livigno	Conductivity	73.1	423.0		
(GPS) (GPS) (ISPS) 157721 1820 807028 157721 1820 ISP721 1820 BUCKET scription BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl Date 25.11.2013 19.12.2013 09.01.2014 s 0.00 Method 7.1.3 92.9	X (GPS) Y (GPS) Altitude (m) (GPS) Attitude (m) (GPS) 1820 807028 157721 1820 Istriction (GPS) BUCKET BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Method Description BU NaCl 25.11.2013 BU NaCl 19.12.2013 BU NaCl 09.01.2014 I/s Conductivity 71.3 92.9		±.7			
(GPS) 157721 1820 1820 BUCKET BUCKET Scription Side torrent III TEZG B / tube beneath Forcola di Livigno Method BUNACI BUNACI BUNACI BUNACI BUNACI Scription Side torrent III TEZG B / tube beneath Forcola di Livigno	Y (GPS) 157721 Altitude (m) (GPS) 1820 Catchment Size BUCKET Bucket BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl Method BU NaCl Bu NaCl BU NaCl Bu Nacl BU NaCl Bu Nacl BU Nacl Bu Nacl 19.12.2013 0.00 Conductivity 71.3 92.9	Measuring Point [D_6a			
ititude (m) (GPS) tchment Size stription 1820 BUCKET BUCKET Side torrent III TEZG B / tube benesth Forcola di Livigno Method BU NaCl BU NaCl BU NaCl BU NaCl BU NaCl Side torrent III TEZG B / tube benesth Forcola di Livigno	Method BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl Method D.03 D.00<					
Rethod BUCKET Side torrent III TEZG B / tube beneath Forcola di Livigno Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl BU NaCl BU NaCl BU NaCl Date 25.11.2013 19.12.2013 S 0.06 0.03 0.00	Catchment Size BUCKET Description Side torrent III TEZ/S B / tube beneath Forcola di Livigno Method BU NaCl Method BU NaCl BU NaCl BU NaCl BU NaCl BU NaCl Ponto 25.11.203 BU NaCl 9.01.2014 I/s 0.03 Conductivity 71.3 92.9	Altitude (m) (GPS)				
scription Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl BU NaCl Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Description Side torrent III TEZG B / tube beneath Forcola di Livigno Method BU NaCl BU NaCl BU NaCl Method BU NaCl BU NaCl BU NaCl Jate 19.12.2013 0.901.2014 I/s 0.06 0.03 0.00	Catchment Size				
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.06 0.03 0.00 Conductivity 71.3 92.9			G B / tube beneat	h Forcola di Livig	igno
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I/s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 1/s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I/s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I / s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I / s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I / s 0.06 0.03 0.00 Conductivity 71.3 92.9					
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I / s 0.06 0.03 0.00 Conductivity 71.3 92.9					att a second sec
Date 25.11.2013 19.12.2013 09.01.2014 s 0.06 0.03 0.00 nductivity 71.3 92.9	Date 25.11.2013 19.12.2013 09.01.2014 I / s 0.06 0.03 0.00 Conductivity 71.3 92.9	Method	RUNCO	BUNC	RUNACI	
nductivity 71.3 92.9	Conductivity 71.3 92.9	Date	25.11.2013	19.12.2013	09.01.2014	
			71.3		0.00	

K (MS) Decomption 13:21 3:20 3:20 Decomption Non- end of the server of the server of the server of forces de dup of the server of forces de dup of the server of the serv					
K (MS) DECKT	Measuring Point I	D_6b			
Dec 231,203 25	X (GPS) Y (GPS) Altitude (m) (GPS) Catchment Size Method Description	157721 1820 BUCKET	G B / tube beneatl	h Forcola di Livign	
Dec 231,203 25	Method	ESTIMATION	BU med	BU new	
Conductivity 41.2 51.1 74.1 Imperature So 0.4 0.7 Metauring Yoln X.2 So 0.4 0.7 Metauring Yoln X.2 So So 0.4 0.7 Metauring Yoln X.2 So So So So So Y (56) 12333 12333 So	Date	12.11.2013	25.11.2013	19.12.2013	
	Conductivity	41.2	55.1	74.1	
K (65) V (65) Results Decipion80155 14333 14333 Noted Decipion80155 14333 Noted N	Temperature	5.0	0.4	0.7	
K (65) V (65) Results Decipion80155 14333 14333 Noted Decipion80155 14333 Noted N	Measuring Point	X_1			
Method Description SAT Here springs from one-left SAT Here springs from one-left Sat List springs from one-left Method 50 50 Sot 2022014 Sot 2022014 Sot 2022014 Method 2022014 1203-014 Sot 2022014 Sot 2022014 Sot 2022014 Method 2022014 1203-014 Sot 2022014 Sot 2022014 Sot 2022014 Method 50 50 Sot 2022014 Sot 2022014 Sot 2022014 Method 50 Sot 2022014 Sot 2022014 Sot 2022014 Sot 2022014 K (sit) (hthod Sot 2022014 Sot 2022014 Sot 2022014 Sot 2022014 Sot 2022014 Method Sot 2022014 2022014 Sot 2022014 Sot 2022014 Sot 2022014 Method Sot 2022014 2022014 Sot 2022014 Sot 2022014	X (GIS) Y (GIS)	801363			XX I I I I I I I I I I I I I I I I I I
Description After springs from creeping landmasses from oro. left Image: Spring from creeping from creeping landmasses Method 50 50 Description 2202204 12032014 1/3 115.5 Conductivity 313 Temperature 8.70 K (GS) 201196 Catchment (Im) 6.7 Method 5.1 Before springs from creeping landmasses from oro. Left 5.1 Before springs from creeping landmasses from oro. Left 5.0 After 23.02.2014 10.3.5 Conductivity 372 372	Catchment (km ²) Method			the second	
Date 23.02.2014 12.03.2014 12.03.2014 1/s 125.6 119.5 50.119.5 Conductivity 313 311 Temperature - - // km ⁻¹ 8.70 8.28	Description	After springs from			
Conductivity Temperature (/km² 313 311 Temperature (/km² 8.70 8.28 Messuring Point X - Z S01196 143494 Catchment (km²) Method 6.7 SALT S01196 Description 6.7 SALT Before springs from creeping landmasses from oro. Left S0 Method SD SD SD Method SD SD SD V (sit) 96.7 92.7 108.5 Conductivity 372 372 342					
Temperature //km³ 8.70 8.28 Method Description 801196 143494 6.7 SALT 6.7 SALT 50 6.7 SALT Before springs from creeping land masses from or o. Left 50 50 Method 50 50 Date 23.02.2014 12.03.2014 03.04.2014 1/s 96.7 92.7 108.5 Conductivity 372 372 342	l / s	125.6	119.5		
Measuring Point X_2 X (015) Y (015) 801196 143494 Solution 6.7 SALT Before spring from creeping landmasses from ore. Left Fore spring from creeping landmasses Method SD SD Date 23.02.2014 12.03.2014 12.03.2014 12.03.2014 1/s 96.7 92.7 Conductivity 372 372 342 342	Temperature				
X (GIS) 801196 143494 Catchment (km ²) Method Description 6.7 SALT Before springs from creeping landmasses from oro. Left Solution Method Date SD SD SD Method Date SD SD SD Method Date SD SD SD Method SD SD SD Me			5.20		
Catchment (km²) Method Description 6.7 SALT Before springs from creeping landmasses from oro. Left Solution Method SD SD Description SD SD Description SD SD Method SD SD Date 23.02.2014 12.03.2014 03.04.2014 I/s 96.7 92.7 108.5 Conductivity 372 372 342				and the second s	
Method Description SALT Before springs from creeping landmasses from oro. Left SALT Method SD SD Method SD SD SD SD Date 23.02.2014 12.03.2014 1/s 96.7 92.7 Conductivity 372 372 372 372	Y (GIS)			- 1	
Description Before springs from creeping landmasses from oro. Left Second from oro. Left Method SD SD SD Date 23.02.2014 12.03.2014 03.04.2014 I//s 96.7 92.7 108.5 Conductivity 372 372 342	Catchment (km ²)			- 1	
from oro. Left From oro. Left Method SD SD Date 23.02.2014 12.03.2014 1/s 96.7 92.7 Conductivity 372 372 Temperature 342	Method Description		n creeping landma	asses	
Date 23.02.2014 12.03.2014 03.04.2014 I/s 96.7 92.7 108.5 Conductivity 372 372 342 Temperature					
Date 23.02.2014 12.03.2014 03.04.2014 I/s 96.7 92.7 108.5 Conductivity 372 372 342 Temperature					
I/s 96.7 92.7 108.5 Conductivity 372 372 342 Temperature					
Temperature	l / s	96.7	92.7	108.5	
1/ Km* 14.4 13.8 16.1	Temperature				
	1 / Km*	14.4	13.8	16.1	

Measuring Point	X_3				
X (GIS) Y (GIS) Catchment (km²) Method Description	801056 143640 6,4 SALT after confluence wit	h creek B			
Method Date	SD 23.02.2014	SD 12.03.2014			
l / s	86.6	86.0			
Conductivity Temperature	380	381			
l / km²	13.4	13.4			
Measuring Point	X_4				Alle Alle
X (GIS) Y (GIS)	800971 143804				
Catchment (km²) Method Description	4.3 SALT before confluence w	rith creek B			
Method Date	SD 23.02.2014	SD 12.03.2014	SD 03.04.2014		
l / s Conductivity	67.0 366	62.1 371			
Temperature	15.8	14.6			
Measuring Point	X_5				
X (GIS) Y (GIS)	800911 143957			N	CATAX?
Catchment (km²) Method Description	4.0 SALT after terrain rim				
Method Date	SD 23.02.2014				
l / s Conductivity	60.8 412				
Temperature	15.1				
	13.1				

Measuring Point	x_6		
X (GIS) Y (GIS) Catchment (km²) Method Description	800860 144375 3.6 SALT above MP C		
Method Date	SD 23.02.2014	SD 12.03.2014	
I/s	17.3	11.6	
Conductivity	531	555	
Temperature			
l / km²	4.8	3.2	
	-		
Measuring Point	x_/		
X (GIS) Y (GIS)	800864 144510		
Catchment (km ²)	3.6		And the second se
Method Description	SALT above MP C		
Method	SD	SD	
Date	12.03.2014 15.6	03.04.2014 15.8	
Conductivity	555	572	
	222	572	
Temperature	4.4	4.4	

Electric conductivity (µS/cm)

Measuring Point	FS	MA	MC 1	MC 2	MC 3	MC 4	MC 5	MC 6	MC 7
u_PEG								253	
PEGEL		236	271	244	252	263	289	250	194
Α	60	61	69	74	74	79	79	93	91
A_1a		61	72	73					
			71						
A_2			67	74					
A_3			97	89					
A_4a			38	41					
A_4b			80	88					
A_5		70	87	95					
A_6		70	79	93					
A_7			98						
A_8		71	79						
A_9a		103	90	104					
A_9b		18							
A_10a	39	47	65	79	82				
A_10b		25							
A_11a		15	18						
A_11b			31	37					
A_12a									
A_12b		39							
A_13a			58	103					
A_13b			62	62					
A_14			50						
A_14a			44	42					
A_14b									
A_15a			80						
A_15b				134					
A_16a	30	30							
A_16b		42	47	58					
A_17		192	164	132					
A_18a	30	32	34	36					
A_18b		45		44					
A_19		57	47	55					
A_20		19							
A_21a									
A_21b			115						
A_22a									
A_22b			39						
В		290	494	583	629		697	708	669
above MP_B_oro_left							889		
above MP_B_oro_right							390		
B_plain_above							755		
B_at_confluence_to_main_creek							670	620	
С			412	329	373	417	430	449	461
C_1a		615	677	488					

Clai Doto Doto <thdotoo< th=""> Dotoo Dotoo <</thdotoo<>										
C_a C_b240180 <th>C_1a_conveyor_oro_right</th> <th></th> <th></th> <th></th> <th>553</th> <th></th> <th></th> <th></th> <th></th> <th></th>	C_1a_conveyor_oro_right				553					
C_bb240180100100100100100100above_C1643531555572X6532556572plain_above_MP_c_main532556conveyor_from_oro_left_1532556conveyor_from_oro_left_at spring120D120D_110120D_2119126130173138140D_2119126130173138140D_2110170170174176after_D1_i133133140120after_D2_i255255before_D2_i210210210spring_of_MP_D1_1210210210D_3275288280306303270P01275288280290264155P03275288286290<		270	200							
above_C1in				182						
X6X7III <t< th=""><th></th><th>240</th><th>180</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		240	180							
X7ImageIma	——————				643					
plain_above_MP_C.sidein <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
plain_above_MP_C_main <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>532</th><th></th><th>572</th></t<>								532		572
conveyor_from_oro_left_iimageimageimageimageimageimageDImageImageImageImageImageImageImageImageImageD_1Image<										
conveyor_from_oro_left_at springIII <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
DImageImageImageImageImageImageImageD_1171713814017013814019D_2a166170169130173138170172176D_2b161631701691721721761after_D1_i1616170169172172171241after_D211 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>139</th> <th>145</th> <th></th>								139	145	
D_1ImageIm	conveyor_from_oro_left_at spring								120	
D_2a1111111111D_bb161631701691721761after_D1_li1161631701691721761after_D1_re1111112211241after_D211111112212before_D2_re111111121221spring_of_MP_D1_11	D									
D_2b16163170169172176176after_D1_ieIIIIIII271241after_D1_reIIIIIII255Iafter_D2III <th>D_1</th> <th></th> <th></th> <th>119</th> <th>126</th> <th>130</th> <th>173</th> <th>138</th> <th>140</th> <th></th>	D_1			119	126	130	173	138	140	
after_D1_ii	D_2a			166	170	170		174	179	
after_D1_reimage: spine of the s	D_2b			163	170	169		172	176	
after_D2im								271	241	
before_D2_liImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_dImage: spring_d </th <th>after_D1_re</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>255</th> <th></th>	after_D1_re								255	
before_D2_liImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_of_MP_D1_lImage: spring_dImage: spring_d </th <th>after_D2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>282</th> <th></th> <th></th>	after_D2							282		
spring_of_MP_D1_II <th>before_D2_li</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>278</th> <th>259</th> <th></th>	before_D2_li							278	259	
spring_of_MP_D1_III </th <th>before_D2_re</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>283</th> <th>262</th> <th></th>	before_D2_re							283	262	
D_3Image: space of the system of	spring_of_MP_D1_I								213	
D_4304314321273285303306303270PO1IIIIIIIIIIIIPO2IIIIIIIIIIIIIPO3II<	spring_of_MP_D1_II								210	
PO1Image: space s	D_3				257	268	286	290	264	195
PO2Image: selection of the selec	D_4	304	314	321	273	285	303	306	303	270
PO3Image: space of the system of	P01							424		
XSImage: sector of the sector of	PO2							425		
ZU 2Image: selection of the sele	PO3							440		
PO 4Image: selection of the sele	X5							425		
X4Image: Market Mar	ZU 2							64		
PO 5 Image: Mark and	PO 4							368		
ZU 3Image: springs_from_landslide_oro_left_IIImage: springs_from_landslide_oro_left_IIImage: springs_from_landslide_oro_left_IIImage: springs_from_landslide_oro_left_IIImage: springs_from_landslide_oro_left_IIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_IIIImage: springs_from_landslide_oro_left_VIImage: spr	X4							368	372	
X3X3373383X2Image: Springs_from_landslide_oro_left_IImage: Springs_from_landslide_oro_left_IIImage: Springs_from_landslide_oro_left_IIIImage: Springs_from_landslide_oro_left_IIIImage: Springs_from_landslide_oro_left_IIIImage: Springs_from_landslide_oro_left_IVImage: Springs_from_landslide_oro_left_VImage: Springs_from_landslide_oro_left_VImage: Springs_from_landslide_oro_left_VImage: Springs_from_landslide_oro_left_VImage: Springs_from_landslide_oro_left_VIImage: Springs_f	PO 5							405	392	
X2 Image: Mark and M	ZU 3							64	65	
springs_from_landslide_oro_left_I Image: line springs_from_landslide_oro_left_II Image: line springs_from_landslide_oro_left_III Image: line springs_from_landslide_oro_left_III Image: line springs_from_landslide_oro_left_IV Image: line springs_from_landslide_oro_left_V Image: line springs_from_landslide_oro_left_V Image: line springs_from_landslide_oro_left_V Image: line springs_from_landslide_oro_left_V Image: line springs_from_landslide_oro_left_VI	Х3							378	383	
springs_from_landslide_oro_left_II Image: Constant of the syntage	X2							372	372	342
springs_from_landslide_oro_left_III Image: Constraint of the synthetic or constraint of the synthet synthetic or constraint of the synthetic	springs_from_landslide_oro_left_I							107		
springs_from_landslide_oro_left_IV Image: springs_from_landslide_oro_left_V Image: springs_from_landslide_oro_left_VI Image: springs_from_landslide_oro_left_VI Image: springs_from_landslide_oro_left_VII <	springs_from_landslide_oro_left_II							117		
springs_from_landslide_oro_left_V Image: springs_from_landslide_oro_left_VI Image: springs_from_landslide_oro_left_VI Image: springs_from_landslide_oro_left_VII	springs_from_landslide_oro_left_III							132	127	
springs_from_landslide_oro_left_VI Image: springs_from_landslide_oro_left_VII Image: springs_from_landslide_Oro_leftt_VII	springs_from_landslide_oro_left_IV							133		
springs_from_landslide_oro_left_VII Image: margin black Image: ma	springs_from_landslide_oro_left_V							140		
springs_from_landslide_oro_left_VII Image: margin black Image: ma	springs_from_landslide_oro_left_VI							139		
conveyor_at_X1 Image: Marcine Stress of the stress of	springs_from_landslide_oro_left_VII							137	135	
D_5a 64 62 224 D_5b 73 423 D_6a 71 93	X1							312	310	
D_5b 73 423	conveyor_at_X1								126	
D_6a 71 93 <th< th=""> <th<< th=""><th>D_5a</th><th></th><th>64</th><th>62</th><th>224</th><th></th><th></th><th></th><th></th><th></th></th<<></th<>	D_5a		64	62	224					
	D_5b			73	423					
D_6b 41 55 74 6 6	D_6a			71	93					
	D_6b		41	55	74					

lon capacity

Sampling location				Jai	nuary 07 -	09				
	Fluorid	Chlorid	Bromid	Nitrat	Sulphat	Sodiu	Potassi	Calciu	Magne	
	е	е	е	е	е	m	um	m	sium	
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	
			alo	ng main d	reek (in flo	w directio	on)			
MP_X6	0.72	0.92	0.00	0.93	200.84	2.20	2.57	73.95	10.91	
plain_above_MP_C_main	0.69	0.86	0.00	0.99	180.50	2.13	2.46	66.85	10.09	
plain_above_MP_C_side	0.66	0.82	0.00	1.14	155.74	2.15	2.18	59.30	9.09	
MP_C	0.56	0.73		0.97	146.17	1.91	2.02	53.70	8.16	
MP_D4	0.39	0.72	0.02	0.66	104.13	2.28	1.89	41.78	6.66	
MP_D3	0.36	0.92	0.02	0.69	96.31	2.32	2.13	39.28	6.37	
MP_D2a	0.22	0.67	0.12	1.07	36.30	2.22	2.32	22.85	5.09	
MP_D2b	0.24	0.51	0.12	0.82	40.36	2.48	2.81	21.92	4.88	
MP_D1	0.13	0.28	0.11	1.22	23.00	2.06	2.64	17.66	3.58	
PEGEL	0.32	1.10	0.05	0.96	83.74	2.47	1.89	36.55	6.22	
	Subcatchment A									
MP_A	0.03	4.62	0.04	1.43	7.25	3.41	0.98	9.67	1.61	
	Subcatchment B									
MP_B	0.40	0.14	0.11	0.83	260.71	0.46	3.53	99.59	20.93	
SNOW_at_MP_B	0.08	4.58	0.04	0.27	0.36	2.80	1.54	1.73	0.22	

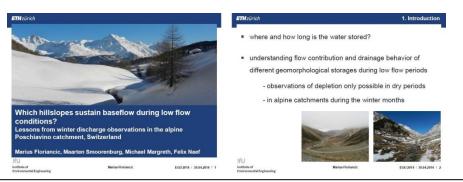
Sampling location		February 07 - 08									
	Fluorid	Fluorid Chlorid Bromid Nitrat Sulphat Sodiu Potassi Calciu Magne									
	е	е	е	е	е	m	um	m	sium		
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		
	along main creek (in flow direction)										
MP_C	0.59	0.74	0.00	1.08	171.41	2.20	2.37	63.83	9.62		
MP_D4	0.36	0.58	0.01	0.67	110.65	2.16	2.09	44.30	7.14		
MP_D3	0.33	0.92	0.00	0.77	102.28	2.29	1.90	41.68	6.70		
PEGEL	0.30	1.08	0.03	0.98	86.81	2.46	1.93	37.59	6.56		
	Subcatchment A										
MP_A	0.03	4.95	0.04	1.45	7.59	3.70	0.93	10.33	1.63		

Sampling location				Fe	bruary 22	- 24					
	Fluorid	Chlori	Bromid	Nitrat	Sulphat	Sodiu	Potassi	Calciu	Magne		
	е	de	е	е	e	m	um	m	sium		
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		
	along main creek (in flow direction)										
PO_1	0.74	0.95	0.00	1.14	232.91	2.22	2.67	85.90	12.54		
MP_X6	0.75	0.98	0.00	1.11	232.88	2.19	2.54	85.94	12.43		
tributary_oro_left_I	0.17	0.31	0.00	1.02	52.30	2.57	1.73	17.09	3.43		
MP_C	0.57	0.71	0.00	1.08	172.63	2.23	2.12	63.65	9.71		
PO_2	0.59	0.72	0.00	1.08	178.94	2.23	2.38	66.57	10.04		
PO_3	0.58	0.72	0.00	1.04	176.04	2.15	2.08	65.63	9.84		
MP_X5	0.56	0.73	0.00	1.04	169.30	2.29	2.35	62.97	9.59		
tributary_oro_left_II	0.19	0.23	0.00	0.76	21.41	2.48	1.48	6.60	1.48		
PO_4	0.52	0.70	0.00	1.02	148.08	2.36	1.93	55.07	8.51		
MP_X4	0.51	0.72	0.00	1.03	147.96	2.40	2.31	55.29	8.44		
PO_5	0.49	0.63	0.00	1.06	162.99	2.09	2.33	61.74	10.21		
tributary _oro_left_III	0.20	0.21	0.00	0.65	22.05	2.68	1.42	6.45	1.46		
MP_X3	0.47	0.60	0.00	0.95	156.01	2.06	1.98	58.43	9.91		
MP_X2	0.45	0.63	0.00	0.92	147.14	2.14	2.13	55.02	9.47		
springs_landslide_oro_left_I	0.14	0.38	0.03	0.74	29.63	2.52	2.08	16.06	1.29		
springs_landslide_oro_left_II	0.12	0.46	0.06	0.78	33.35	2.45	2.35	20.02	1.30		
springs_landslide_oro_left_III	0.14	0.48	0.06	0.85	34.05	2.41	2.97	21.09	1.27		
springs_landslide_oro_left_IV	0.11	0.36	0.06	0.88	34.11	2.18	2.71	22.30	1.25		
springs_landslide_oro_left_V	0.11	0.32	0.06	0.90	35.74	2.09	2.81	23.70	1.33		
springs_landslide_oro_left_VI	0.11	0.29	0.06	0.93	35.00	2.09	2.73	22.44	1.25		
Springs_landslide_oro_left_VII	0.11	0.22	0.05	0.91	34.62	2.00	2.57	22.58	1.22		
MP_X1	0.37	0.77	0.02	0.82	116.89	2.20	2.41	46.72	7.50		
MP_D4	0.35	1.22	0.01	0.83	111.99	2.48	2.09	44.62	7.26		
MP_D3	0.32	1.96	0.02	0.88	102.55	2.84	2.31	42.37	6.92		
PO6	0.32	1.22	0.04	0.85	98.72	2.45	2.57	41.40	6.90		
MP_D2a	0.22	0.61	0.10	0.99	37.60	2.32	2.08	23.89	5.07		
MP_D2b	0.23	0.45	0.09	0.79	41.35	2.45	2.77	22.92	4.96		
P07	0.31	1.20	0.04	0.86	97.52	2.33	2.38	40.10	6.77		
MP_D1	0.15	0.29	0.09	1.17	24.73	2.27	2.64	18.94	3.88		
PO8	0.30	1.21	0.05	0.86	92.00	2.41	2.14	38.79	6.68		
PEGEL	0.30	5.04	0.05	0.86	86.67	4.81	2.39	38.23	6.52		
					ubcatchmer						
MP_A	0.03	4.70	0.07	1.49	7.77	3.56	1.09	10.12	1.75		
					ubcatchmei						
B_plain_above	0.48	0.19	0.14	0.84	325.25	0.47	4.58	122.01	25.32		
above MP_B_oro_left	0.15	0.26	0.18	1.60	119.99	0.52	2.59	63.35	9.56		
above MP_B_oro_right	0.92	0.47	0.18	0.82	402.46	0.72	5.46	145.02	32.11		
MP_B	0.39	0.14	0.11	0.97	292.74	0.48	4.39	111.81	22.74		
B_at_main_creek	0.36	0.29	0.10	1.04	276.32	0.57	2.48	107.68	22.06		

Sampling location					March	11 - 13			
	Fluorid	Chlori	Bromid	Nitrat	Sulphat	Sodiu	Potassi	Calciu	Magne
	е	de	е	е	e	m	um	m	sium
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
			a	ong main	creek (in fl	ow direct	ion)		
PO_1	0.73	0.91	0.00	1.26	243.78	2.16	3.00	87.86	12.80
MP_X6	0.73	0.88	0.00	1.24	243.31	2.23	3.08	88.68	12.72
tributary_oro_left_I	0.17	0.30	0.00	1.07	53.87	2.56	2.05	17.35	3.49
tributary_oro_left_I_spring	0.14	0.40	0.00	1.00	45.70	2.68	1.79	13.60	2.92
MP_C	0.59	0.73	0.00	1.17	189.48	2.30	2.72	68.56	10.35
MP_X4	0.48	0.67	0.00	1.12	148.05	2.24	2.64	54.83	8.44
PO_5	0.46	0.68	0.00	1.22	161.60	2.10	2.29	60.09	10.03
MP_X3	0.43	0.67	0.00	1.14	148.74	2.07	2.60	55.72	9.53
MP_X2	0.42	0.66	0.00	1.10	145.11	2.13	2.19	54.18	9.36
springs_landslide_oro_left_III	0.12	0.20	0.00	0.66	33.03	2.37	2.32	19.25	1.29
springs_landslide_oro_left_VII	0.11	0.24	0.02	0.85	33.94	2.38	2.07	20.99	1.09
MP_X1	0.34	0.79	0.00	1.05	114.17	2.21	2.68	45.18	7.36
MP_D4	0.33	0.87	0.00	1.01	109.23	2.35	2.61	43.99	7.08
MP_D3	0.27	2.07	0.00	1.12	88.89	2.65	1.93	37.24	6.02
PO6	0.27	1.95	0.00	1.07	87.00	2.54	2.03	36.81	6.22
MP_D2a	0.23	0.72	0.07	0.97	39.37	2.43	2.47	23.93	5.15
MP_D2b	0.23	0.43	0.06	0.78	41.94	2.43	3.05	22.67	5.00
spring_of_MP_D1_I	0.31	0.26	0.07	0.44	53.15	2.87	3.75	26.67	6.56
spring_of_MP_D1_II	0.29	0.28	0.07	0.46	52.92	2.83	3.83	26.47	6.59
MP_D1	0.15	0.44	0.07	1.19	24.81	2.21	2.86	18.54	3.70
PO8	0.26	1.89	0.02	0.98	80.57	2.68	2.23	35.12	5.99
PEGEL	0.26	1.88	0.02	0.98	78.27	2.68	2.12	34.95	6.01
uPEG	0.27	2.32	0.02	0.91	78.91	3.00	2.31	35.44	6.22
		-		S	ubcatchme	nt A			
MP_A	0.03	6.88	0.03	1.52	8.46	4.15	0.97	11.34	1.93
				S	ubcatchme	nt B			
MP_B	0.37	0.20	0.02	1.05	296.79	0.54	3.50	113.75	22.79
SNOW_at_MP_B	0.06	4.86	0.14	0.03	0.65	4.06	1.66	18.16	1.07

EGU General Assembly (Presentation - 01.05.2014)

Geophysical Research Abstracts Vol. 16, EGU2014-15113, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.


Which hillslopes sustain baseflow during low flow conditions? Lessons from winter discharge observations in the alpine Poschiavino catchment, Switzerland

Marius Floriancic (1), Maarten Smoorenburg (1), Michael Margreth (2), and Felix Naef (1) (1) Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland, (2) Soilcom GmbH, Zurich, Switzerland

Estimation of water availability during low flow conditions is important for many economic and environmental services. Yet, particularly in mountainous terrain, knowledge of which areas in a catchment store water long enough to sustain streamflow during low flow conditions is very limited. Not only the storage volume, but also the drainage time scale is important for understanding recession dynamics. To identify how alpine hillslopes contribute to baseflow recession at the catchment scale, a detailed field study of winter low flows was conducted in the 14.1km² upper Poschiavino catchment in southeast Switzerland. Winter discharge observations in alpine catchments are particularly suitable for studying drainage behavior because there is little recharge and groundwater reservoirs are depleted by drainage only.

The upper Poschiavino catchment with its crystalline geology is an interesting research area because of its high winter discharge (Q_{95} approximately 10 l/s/km²). Based on geo(morpho)logical maps, digital elevation model, aerial photographs and field observations a variety of geomorphological storages, like glacial, rockfall and fluvial deposits, was identified. Frequent discharge measurements during winter allowed obtaining a baseflow recession time series for nested subcatchments in various geomorphological settings. The discharge observations were augmented with electrical conductivity measurements and analysis of stream water chemistry.

These observations form a spatial dataset of low flow distribution in the river network that allows identifying the drainage timescales and the storages involved. We found much variation in the contribution of these hillslopes and tried to attribute these variations to properties of the storages, like catchment area, geomorphology and physical parameters of the sediments. A classification of the different storage types regarding capacity and drainage behavior was developed. This classification formed the basis for a geomorphological mapping scheme for low flow estimation that was evaluated using the discharge observations. The developed methodology may help to estimate the magnitude of low flow in ungauged alpine catchments.

EXACUTE CONFERENCE Luxembourg City, Luxembourg | 23–26 September 2014

Can we relate flood and low flow behavior to spatial distribution of thick quaternary deposits? Case study of the 14 km2 alpine Poschiavino catchment, Switzerland

Marius Floriancic¹, Maarten Smoorenburg¹, Michael Margreth² and Felix Naef¹

(1) ETH Swiss Federal Institute of Technology, Zurich, Switzerland (2) Soilcom GmbH, Zurich, Switzerland

Better understanding of water storage timescales of soils and quaternary deposits may improve flood prediction and low flow estimation in mountainous catchments. Even steep slopes can react damped to precipitation events and sustain baseflow during dry periods due to large storage. It remains an open question to what extent short term storage mechanisms that dampen flood runoff are also responsible for sustaining baseflow. Therefore we explored how flood and low flow behavior relate to spatial organization of storage potential in the upper Poschiavino, a 14km2basin with strongly contrasting subcatchments.

Winter months provide good opportunities for studying flow recession in alpine catchments because there is little groundwater recharge from rainfall and snowmelt. Therefore, discharge time series were obtained for different nested subcatchments in 7 campaigns throughout the 2013/14 winter season. Stream water electrical conductivity and various ion composition where measured to identify different drainage types and their origin.

To study the effect of storage on low flow, sediment cover type and thickness were mapped. This allowed classifying storage potential throughout the catchment. Alongside, contribution to flood formation was evaluated for different slopes using a recently developed tool for geomorphology-based classification of dominant runoff formation processes in mountainous terrain.

We found substantial spatial variation in drainage timescales and contributed volumes between the different subcatchments (54mm vs. 200mm discharged in four months). Subsurface flow and point source contributions complicate small scale studies of recession flow, suggesting this process should be studied at subcatchment rather than hillslope-scale. The recession analyses combined with time series of ion composition allowed detecting different drainage timescales and an estimation of storage volumes. The variability of low flow discharge and differences in recession behavior can be attributed to the mapped storage potential. Flood runoff behavior could be linked to the mapped distribution of storages, but also requires understanding of drainage mechanisms not only during recession but also during flood formation. Short and long term storage do not necessarily share the same mechanisms but can be related in some areas (strong runoff response - substantially lower winter discharge). Our observations suggest that understanding storage and drainage behavior of areas with large storage potential helps assessing catchment-scale flood and low flow problems.

Can we relate low flow recession to depth of deposits? Case study: 14 km² alpine Poschiavino catchment, Switzerland

Marius Floriancic¹, Maarten Smoorenburg¹, Michael Margreth², Felix Naef¹

Introduction

Even steep slopes can react damped to precipitation events and sustain baseflow significant due to large storage volumes. Not only storage, but also time scale of drainage is important to understand recession dynamics. Winter months provide good opportunities to study flow recession in alpine catchments because there is little groundwater recharge from rainfall and snowmelt

Study area upper Poschiavino:

area	14 km ²
altitude	1860 – 3032 m asl
precipitation	1738 mm
Q ₉₅	10 l/s km ²

We explored how low flow behavior relates to spatial organization of storage potential in crystalline upper Poschiavino basin. Discharge time series were obtained for different nested subcatchments in 8 campaigns at up to 54 measurement points throughout the 2013/14 winter season. Stream water electrical conductivity and various ion composition were also measured to identify different storages and the origin of water. Sediment cover and thickness were mapped, allowing a classification of storage potential throughout the catchment

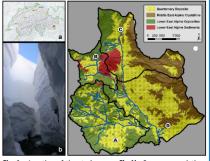
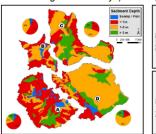



Fig 1b: Snow accumulation Fig. 1a: Location of the study area Fig. 1c: Tectonic map of during winter season 2013/14 Poschiavino / LaRösa

Results

Different storages - different drainage behavior

The four subcatchments have different storage potential due to different depth of sediment deposits (Fig.2). This leads to different recession and drainage timescales. In the eastern part huge storages could be identified (C and D) leading to higher low flow and discharged water volume (194 mm in D vs. 54 mm in A discharged in 104 days). Drainage is quicker in the western subcatchments.

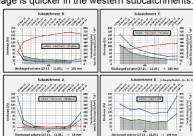


Fig. 3: Specific discharge (I/s km²) in the four main subcatchments (A, B, C

and D) for every measurement campaign Recession differs in the four subcatchments during

Fig. 2: Distribution of sediments with different depth in the four subcatchments and discharge (I/s), specific winter season 2013/14.

Natural ion tracer experiment

High electrical conductivity in subcatchments B and C derives from sedimentary rocks (Fig. 1c), mainly gypsum and dolomite covering 7% of the catchment. Estimating full saturation of SO₄ and Mg ions quantification of their contribution was done. About 14% of total discharge of the

discharge (I/s km²) and electrical conductivity (µS/cm) in winter 2013/14

catchment derive from sedimentary rocks (Fig. 5). The amount is even higher in subcatchment B and C.

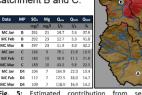


Fig. 5: Estimated contribution from sedimentary rocks, subcatchments A, B and the whole catchment (D4)

ETH zürich

Subcatchment D is showing the highest contribution / slowest drainage during recession. However higher resolution measurements for subcatchment D show high spatial variation in specific discharge (Fig. 4). Topographic catchments do not coincide with the hydrological catchments. Subsurface flow and point source contribution are limiting the possible spatial resolution.

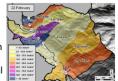


Fig. 4: Specific discharge (I/s km²) on higher resolution for every nested subcatchment

Conclusions

fo

Institute of Environmental Engineering

- low flow discharge in crystalline headwaters proved to be highly variable
 - variability in recession and drainage behavior could be assigned to spatial distribution and depth of storages
- point source contribution and uncertain catchment borders limit the spatial resolution of hydrological research
- natural tracers can be used to identify contributions of different geological origin
- understanding storage and drainage behavior of areas with large storage potential helps assessing catchment scale flood and low flow problems

Contact: m.floriancic@gmail.com SoilCom² Acknowledgements : Research was funded by Institute of Environmental Engineering / ETH Zürich, SoilCom, and HyBeSt

Curriculum Vitae - Marius Günter Floriancic

Ausbildung

2012 - 2014	Universität für Bodenkultur – Wien Masterstudium Hydrologie und alpine Naturgefahren <u>Schwerpunkte:</u> Hydrologie und wasserwirtschaftliche Planung, Landeskulturelle Wasserwirtschaft, Konstruktiver Wasserbau, Risikomanagement und Ressourcenschutz, Niederschlag-Abfluss Modellierung und Feststofftransport in Wildbächen
2012 - 2014	Universität Wien / Masterstudium Angewandte Geographie Schwerpunkte: Geomorphologie, Pedologie und Hydrologie

- 2007 2012Universität Wien / Bachelorstudium Physische Geographie
Bachelorarbeit: Trinkwasserversorgung von Ballungsräumen Herausforderungen und
Entwicklungspotentiale für Mexico City, Sanaa, Las Vegas und Wien
- 06/2006 AHS Matura AHS BG Peraustraße, Villach

Studienbegleitende Berufserfahrung

seit 10/2013	Projektassistent am Institut für Umweltingenieurwissenschaften / ETH Zürich Arbeitsgruppe Hydrologie – Dr.Felix Naef Abflussmessungen, Kartierung und GIS-gestützte Analysen im Rahmen des Niederwasserprojekts am oberen Poschiavino
07-08/2013	Abteilung 8 des Landes Kärnten – Umwelt, Wasser und Naturschutz <u>Unterabteilungen Umweltdaten & KAGIS und Schutzwasserwirtschaft</u> Umstellung von KAGIS auf ArcGis Server, Validierung von schutzwasser- wirtschaftlichen Maßnahmen, GIS-gestützte Hochwasserereignisdokumentation
10/2012 – 05/2013	Projektassistent der Arbeitsgruppe ENGAGE Institut für Geographie und Regionalforschung – Universität Wien GIS-gestützte Risikoanalysen, Geländekartierung, Erstellung von Prozesskarten und Gefahrenkarten im Rahmen der EU-Projekte SEERisk
07/2012	Forsttechnischer Dienst für Wildbach und Lawinenverbauung <u>Gebietsbauleitung Gailtal und oberes Drautal</u> Wildbachkartierungen, Bauwerkszustandserhebungen, Abflussmodellierung und CAD gestützte Erstellung von Prozesskarten, Durchflussprofilen u. Gefahrenzonenplänen

Projektarbeit

2012 / 13	Projektmitarbeiter – Physiographisches Labor Universität Wien Probennahme und physikalische und chemische Laboranalytik im Auftrag u.a. von: Ökoregion Kaindorf, Bioforschung Austria, NUA;
09/2013	Soilcom GmbH, Scherrer AG Profilaufnahmen zur Validierung der Abflussprozesskarte Vinschgau / Südtirol im Auftrag der autonomen Provinz Bozen
10-11/2012	NUA – Umweltanalytik GmbH Bodenbeweissicherung von Rekultivierungsflächen im Rahmen des Baus der S10

Wissenschaftliche Publikationen

Mühlviertler Schnellstraße

FLORIANCIC, Marius; SMOORENBURG, Maarten; MARGRETH, Michael; NAEF, Felix; (in prep.) Evaluating capacity and drainage behavior of alpine groundwater storages – winter recession observations in the upper Poschiavino Area / Switzerland; Hydrological Processes;

Conference abstracts:

FLORIANCIC, Marius; SMOORENBURG, Maarten; MARGRETH, Michael; NAEF, Felix; (2014) Which hillslopes sustain baseflow during low flow conditions? Lessons from winter discharge observations in the alpine Poschaivino catchment.- In: European Geoscience Union (Eds.): Abstracts Vol.16; General Assembly, Vienna (Austria) 27.April - 02. Mai 2014;

FLORIANCIC, Marius; SMOORENBURG, Maarten; MARGRETH, Michael; NAEF, Felix; (2014) Can we relate flood and low flow behavior to spatial distribution of thick quaternary deposits? Case study of the 14 km² alpine Poschiavino catchment, Switzerland. In: American Geoscience Union (Eds.): AGU Chapman Conference, Luxembourg City (Luxembourg) 23.September - 26.September 2014;

Mitgliedschaften

American Geoscience Union (AGU) European Geoscience Union (EGU) Österreichische Gesellschaft für Hydrologie (ÖGH)

Sonstiges

Kinderuni (2012 u. 2013) – Lehrveranstaltungsgestaltung "Jetzt tauts – Wasser marsch statt Pistenspaß"

Tutorium: Fachexkursion - Die Wiener Wasserversorgung – Universität Wien / WS 2012

2010/11 Auslandssemester in Rom - Studium der Geographie an der Universität "La Sapienza"

2009 pm basic Zertifikat – Projekt Management Austria