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Introduction

The main theme of this thesis is the application of the method of forcing to different mathematical
structures. In particular, to the structure of the real line, R, and general topological spaces.

In the first part (joint work with M. Goldstern, J. Kellner, and S. Shelah) we continue the long
study of combinatorial aspects of the real line. Our focus is on the so-called “Cichoń’s diagram,” which
provides a graphical representation of known inequalities between many “cardinal characteristics of
the continuum,” those mainly dealing with the measure-theoretic properties (as encapsulated by the
ideal of Lebesgue null subsets of R), and topological properties (as encapsultated by the ideal of
meagre subsets of R).

In the second part, we continue the investigation of properties of certain, special models of ZFC
which were first examined by P. Larson and S. Todorcevic. These are the models formed after forcing
with a Souslin tree S over a model of PFA(S) (the restriction of the Proper Forcing Axiom to those
proper posets which do not add a cofinal branch through S). In particular, we look at properties of
the compact (Hausdorff) spaces in such models. The specific property we look at is one step of a
programme initiated by F.D. Tall to derive the consistency of the following statement: all hereditarily
normal manifolds of dimension >1 are metrizable.

1



2



Part I

Creature forcing and Cichon’s
diagram

Joint work with M. Goldstern, J. Kellner, and S. Shelah
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Chapter 1

Introduction

1.1 The result and its history

Let N denote the ideal of Lebesgue null sets, andM the ideal of meager sets. We prove (see The-
orem 6.2.0.7) that consistently, several cardinal characteristics of Cichoń’s Diagram (see Figure 1.1)
are (simultaneously) different:

ℵ1 = cov(N ) = d < non(M) < non(N ) < cof(N ) < 2ℵ0 .

Since our model will satisfy d = ℵ1, will also have non(M) = cof(M). The desired values of the

Figure 1.1: Cichoń’s diagram. An arrow between x and y indicates that x ≤ y. Moreover,
max(d,non(M)) = cof(M) and min(b, cov(M)) = add(M).

cardinals non(M),non(N ), cof(N ), 2ℵ0 can be chosen quite arbitrarily, as long as they are ordered
as indicated and each satisfies κℵ0 = κ.

A (by now) classical series of theorems [3, 5, 9, 10, 11, 17, 21, 22, 24, 25, 28] proves these
(in)equalities in ZFC and shows that they are the only ones provable, more precisely: all assignments
of the values ℵ1 and ℵ2 to the characteristics in Cichoń’s Diagram are consistent, provided they do
not contradict the above (in)equalities. (A complete proof can be found in [4, chapter 7]).

This does not answer the question whether three (or more) characteristics can be made simulta-
neously different. The general expectation is that this should always be possible, but may require
quite complicated forcing methods: We cannot use the two best understood methods, countable
support iterations of proper forcings (as it forces 2ℵ0 ≤ ℵ2) and, at least for the “right hand side” of
the diagram, we cannot use finite support iterations of ccc forcings in the straightforward way (as it
adds lots of Cohen reals, and thus increases cov(M) to 2ℵ0).

There are ways to overcome this obstacle. One way would be to first increase the continuum in a
“long” finite support iteration, resulting in cov(M) = 2ℵ0 , and then “collapsing” cov(M) in another,
“short” finite support iteration. In a much more sophisticated version of this idea, Mejía [20] recently

5



6 Chapter 1. Introduction

constructed several models with many simultaneously different cardinal characteristics in Cichoń’s
Diagram (building on work of Brendle [7], Blass-Shelah [6] and Brendle-Fischer [8]).

We take a different approach, completely avoiding finite support, and use something in between
a countable and finite support product (or: a form of iteration with very “restricted memory”).

This construction avoids Cohen reals, in fact it is ωω-bounding, resulting in d = ℵ1. This way
we get an independence result “orthogonal” to the ccc/finite-support results of Mejía.

The fact that our construction is ωω-bounding is not incidental, but rather a necessary con-
sequence of the two features which, in our construction, are needed to guarantee properness: a
“compact” or “finite splitting” version of pure decision, and fusion (which together gives a strong
version of Baumgartner’s Axiom A and in particular properness and ωω-bounding).

We think that our construction can be used for various other independence results with d = ℵ1,
but the construction would require considerable remodeling if we want to use it for similar results
with d > ℵ1, even more so for b > ℵ1.

1.2 A very informal overview of the construction

The obvious attempt to prove the theorem would be the following: Find a forcing for each cardinal
characteristic x that increases x but leaves the other characteristics unchanged. More specifically:
Find the following forcing notions:

• Qnm, adding a new meager set which will contain all old reals.
Adding many such sets will tend to make non(M) large.

• Qnn, adding a new measure zero set which will contain all old reals.
Adding many such sets will tend to make non(N ) large.

• Qcn, adding a new measure zero set which is not contained in any old measure zero set.
Adding many such sets will tend to make cf(N ) large.

• Qsk, adding a kind of Sacks real, in the sense that the generic real does not change any other
cardinal characteristics: every new real is bounded by an old real, is contained in an old measure
zero set, etc.
Adding many such reals will tend to make the continuum large.

For each t ∈ {nm, nn, cn, sk}, our Qt will be a finitely splitting tree forcing; Qnm will be “lim-inf”
(think of a tree forcing where we require large splitting at every node, not just infinitely many along
every branch; i.e., more like Laver or Cohen than Miller or Sacks; however note that in contrast to
Laver all our forcings are finitely splitting); the other ones will be “lim-sup” (think of forcings like
Sacks or Silver).

We then fix for each t a cardinal κt, and take some kind of product (or: iteration) of κt many
copies of Qt, and hope for the best. Here we arrive at the obvious problem: Which product or
iteration will work? As mentioned above, neither a finite support iteration1 nor a countable support
iteration will work, and it is not clear why a product will not collapse the continuum. So we will
introduce a modification of the product construction.

The paper is divided into two parts: In part 1 we describe the “general” forcing construction (let
us call it “framework”), in part 2, the “application”, we use the framework to construct a specific
forcing that proves the main theorem.

1To avoid a wrong impression: our specific forcings Qt will not be ccc, so a finite support iteration would not work
anyway.



1.2. A very informal overview of the construction 7

Part 1: In Sections 2–5 we present the “framework”: Starting with building blocks (so-called
“subatoms”), we define the forcing Q. This is an instance of creature forcing. (The standard reference
for creature forcing is Rosłanowski and Shelah [25], but our presentation will be self-contained.
Our framework is a continuation of [14, 13], where the central requirement to get properness was
“decisiveness”. In this paper, decisiveness does not appear explicitly, but is implicit in the way that
the subatoms are combined to so-called atoms.)

We fix a set Ξ of indices. (For the application, we will partition Ξ into sets Ξt of size κt for
t ∈ {nm, nn, cn, sk} as above.) The forcing Q will “live” on the product Ξ×ω, i.e., a condition p ∈ Q
will contain for certain (ξ, n) a “creature” p(ξ, n), a finite object that gives some information about
the generic filter.

More specifically: There is a countable subset supp(p) ⊆ Ξ, and for each ξ ∈ supp(p) the condition
up to some level n0(ξ) consists of a so-called trunk (where the according finite initial segment of the
generic real

˜
yξ is already completely determined), and for all n > n0(ξ) there is a creature p(ξ, n), an

element of a fixed finite set Kξ,n, which gives several (finitely many) possibilities for the according
segment of the generic real

˜
yξ. We assign a “norm” to the creature, a real number that measures the

“number of possibilities” (or: the amount of freedom that the creature leaves for the generic): More
possibilities means larger norm.

Moreover, for each m there are only finitely many ξ with n0(ξ) ≤ m (i.e., at each level m there
live only finitely many creatures of p). We can then set the norm of p at m to be the minimum of
the norms of p(ξ, n) over all ξ “active” at level m.

A requirement for a p to be a valid condition in Q is that the norms at level m diverge to infinity
for m→∞ (i.e., the lim-inf of the norms is infinite).

So far, Q seems to be a lim-inf forcing, but recall that we want to use lim-inf as well as lim-sup.
So let us redefine Q: We will “cheat” by allowing “gluing”. We declare a subset of Ξ to be the

set Ξls of “lim-sup indices” (in the application this will be Ξnn ∪Ξcn). Forget the “norm of p at level
m” and the lim-inf condition above. Instead, we partition the set of levels ω into finite intervals
ω = I0 ∪ I1 ∪ . . . (this partition depends on the condition and can be coarsened when we go to
a stronger condition). For such an interval I, we declare all creatures whose levels belong to I to
constitute a “compound creature” with a “compound norm”:

• Basically, for each ξ ∈ Ξls we set nor(p, I, ξ) to be the maximum of the norms of p(ξ,m) with
m ∈ I;

• for other ξ we take the minimum rather than the maximum;

• and finally we set nor(p, I) to be the minimum of nor(p, I, ξ) for all (finitely many) ξ active at
some level in I.

The new lim-inf condition is that nor(p, Ik) diverges to infinity with k →∞.
While this may give some basic idea about the construction, things really are more complicated:

We will require the well-known “halving” property of creature forcing (to prove Axiom A). Moreover
the Sacks part, i.e., Qsk on the indices Ξsk ⊂ Ξ, does not fit well into the framework as presented above
and requires special treatment. This will mathematically not be very complicated but unfortunately
will make our notation much more awkward and unpleasant.

A central requirement on our building blocks (subatoms) will be another well-known property of
creature-forcing: “bigness”, a kind of Ramsey property connected to the statement that creatures at
a level m are “much bigger” than everything that “happened below m”.

Using these requirements, we will show the following:
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• (Assuming CH in V ) Q is ℵ2-cc (a standard ∆-system argument).

• We say that p essentially decides a name
˜
τ of an ordinal, if there is a levelm such that: whenever

we increase the trunk of p up to m (for this, there are only finitely many possibilities), we know
the value of

˜
τ . In other words, knowing the generic up to m (on some finite set of indices), we

also know the value of
˜
τ .

• Pure decision and fusion: Given a name
˜
τ of an ordinal and a condition p, we can strengthen

p to a condition q essentially deciding
˜
τ . Moreover, we can do this in a way such that p and q

agree below a given level h and the norms above this level do not drop below a given bound.
(This is called “pure decision”.)

This in turn implies “fusion”: We can iterate this strengthening for infinitely many names
˜
τ`,

resulting in a common extension q∞ which essentially decides all
˜
τ`.

(While fusion is an obvious property of the framework, pure decision is the central result of
part 1, and will use the requirements on bigness and halving).

• The usual standard argument then gives continuous reading (every real is a continuous image
of (countably many) generic reals), a strong version of Axiom A and thus ωω-bounding and
proper. (Recall that we have “finite splitting”, i.e., essentially deciding implies that there are
only finitely many potential values.)

• We also get a Lipschitz variant of continuous reading, “rapid reading”, which implies that the
forcing adds no random reals (and which will be essential for many of the proofs in part 2).

Part 2: In Sections 6–10, we define the specific forcings Qt (or rather: the building blocks, i.e.,
the subatoms, for these forcings) for t ∈ {nm, nn, cn} (the Sacks case is already dealt with in part 1).

We prove that these subatoms satisfy the bigness requirements of the framework, and we prove
the various parts of the main theorem.

Annotated Contents

Part 1: We present a forcing framework.

Section 2, p. 10 Starting with building blocks (the so-called subatomic families, which are black
boxes that will be described later) we describe how to build a forcing Q.

Section 3, p. 21 We give some simple properties of Q, including the ℵ2-cc.

Section 4, p. 27 We impose additional requirements on the subatomic families, and give an in-
ductive construction that shows how we can choose suitable subatomic families so that the
requirements are satisfied.

Section 5, p. 29 Using the additional requirements, we show that Q satisfies Axiom A, is ωω-
bounding and has continuous and rapid reading. This implies d = cov(N ) = ℵ1 in the generic
extension.

Part 2: We give the application.

Section 6, p. 39 We present the specific forcing: There are four “types” t: nm, nn, cn, and sk,
corresponding to non(M), non(N ), cof(N ) and the continuum, respectively. The nm-part will
be lim-inf, nn and cn lim-sup (and sk lim-sup as well, but treated differently). The actual
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definitions of the t-subatoms (other than Sacks) will be given in Sections 7, 8, 10. For each
type t the forcing will contain a “t-part” of size κt.
We formulate the main theorem: Q will force each invariant to be the respective κt.
We show that the Sacks part satisfies a Sacks property, which implies cof(N ) ≤ κcn in the
generic extension.
And just using the fact that only the nm-indices are “lim-inf”, we show that non(M) ≤ κnm.

Section 7, p. 46 We define the nm-subatoms and prove non(M) ≥ κnm.

Section 8, p. 48 We define the nn-subatoms and prove non(N ) ≥ κnn.

Section 9, p. 50 Wemention some simple facts about counting, and use them to define the counting
norm, lognor, for the cn subatoms.

Section 10, p. 53 We define the cn-subatoms and prove cof(N ) ≥ κcn. And finally, we show
non(N ) ≤ κnn.

1.3 Acknowledgements

We are grateful to Diego Mejía for pointing out several embarrassing oversights.



Chapter 2

The definition of the forcing Q

2.1 Subatomic creatures

Definition 2.1.0.1. Let POSS be a finite set. A subatomic family living on POSS consists of a
finite set K (whose elements are called subatomic creatures, or subatoms, for short), a quasiorder ≤
on K and functions poss and nor with domain K, satisfying the following for all x ∈ K:

• poss(x) is a nonempty subset of POSS;

• nor(x) is a nonnegative real number; and

• y ≤ x implies poss(y) ⊆ poss(x).

To simplify notation, we further assume:

• If |poss(y)| = 1, then nor(y) < 1.

• For each x ∈ K and a ∈ poss(x) there is a y ≤ x with poss(y) = {a}. (Such a subatom will be
called a singleton.)

Notation 2.1.0.2. Abusing notation, we will just write K for the subatomic family (K,≤,nor,poss).
If y ≤ x we will also say that y is “stronger than x” or is “a successor of x”.

Remark 2.1.0.3. Our subatomic families will also have the following properties (which might make
the picture clearer, but will not be used in any proof):

• x is determined1 by poss(x) (i.e., the function poss : K→ 2POSS is injective). So in particular
nor(x) is determined by poss(x).

• poss(y) ⊆ poss(x) implies nor(y) ≤ nor(x).

• y ≤ x iff poss(y) ⊆ poss(x).

In the usual way we often identify a natural number n with the set {0, . . . , n − 1}, and write
m ∈ n for m < n; for example in the following definition.

Definition 2.1.0.4. Fix a natural number B > 0. We say that a subatom x ∈ K has B-bigness if for
all colorings c : poss(x)→ B there is a y ≤ x such that c |poss(y) is constant and nor(y) ≥ nor(x)−1.2

We say that the subatomic family K has B-bigness if each x ∈ K has B-bigness.
1The analogous statement will not be true for “compound creatures” (cf. Definition 2.5.0.19) because of the halving

parameters.
2As only the number of “colors” is of importance, we may consider the codomain of the coloring function to be any

set of cardinality B.

10



2.2. Atomic creatures 11

Given a subatom x in a fixed subatomic family K, we have the following facts.

• If nor(x) ≤ 1, then x has B-bigness for all B > 0. (Any coloring c : poss(x) → B will be
constant on poss(y) for any singleton y ≤ x.)

• If nor(x) ≥ 2, then x cannot have |poss(x)|-bigness. (The identity function c : poss(x) →
poss(x) is only constant on singleton sets, and any singleton subatom has norm < nor(x)− 1.)

• If x has B-bigness, then x has B′-bigness for all 1 ≤ B′ ≤ B.

Example 2.1.0.5. The basic example of a subatomic family withB-bigness is the following “counting
norm”: Fix any finite set POSS. A subatom x is a nonempty subset of POSS, poss(x) := x, y ≤ x

is defined as y ⊆ x, and we set
nor(x) := logB |x|.

We get a stronger variant of bigness if we divide the norm by B:

nor′(x) :=
logB(|x|)

B
.

Then for each F : poss(x) → B there is a y ≤ x such that F |poss(y) is constant and nor′(y) ≥
nor′(x)− 1/B.

Remark 2.1.0.6. The above example (in the version nor′) is actually used for the non(M)-subatoms
(cf. 7.1.0.1). The cof(N )-subatoms (cf. Section 10.1) still use a counting norm, i.e., nor(x) only
depends on the cardinality of poss(x), but the relation between |poss(x)| and nor(x) is more com-
plicated. The non(N )-subatoms (cf. Section 8.1) will use another kind of norm: nor(x) will not just
depend on the cardinality of poss(x), but also on its structure.

Given a subatomic family with 2-bigness, it is straightforward to construct another subatomic
family with arbitrary bigness by only altering the norm.

Lemma 2.1.0.7. If K is a subatomic family with 2-bigness, then given any b ≥ 1 replacing the norm
of K with nor′ defined by nor′(x) := nor(x)/b results in a subatomic family with 2b-bigness.

Proof. Given x ∈ K, and a coloring c : poss(x) → P(b), use the 2-bigness of the original subatomic
family to inductively pick x = x0 ≥ x1 ≥ · · · ≥ xb = y so that for each i < b we have nor(xi+1) ≥
nor(xi)− 1 and ci |poss(xi+1) is constant, where ci : poss(xi)→ 2 is defined by ci(a) = 1 iff i ∈ c(a).
Then c |poss(y) is constant, and nor′(y) = nor(y)/b ≥ (nor(x)−b)/b = nor′(x)− 1.

2.2 Atomic creatures

We now describe how to combine subatomic families to create so-called atoms. Fix a natural number
J > 0, and fix a parameter ` ∈ ω. We will first define the “measure” of subsets of J with respect to
this parameter:

Definition 2.2.0.8. For A ⊆ J , we set

µ`(A) :=
log3(|A|)
`+1

(or 0, if A = ∅).3

3So, technically µ`(A) is defined to be log3(max{|A|,1})/`+1.



12 Chapter 2. The definition of the forcing Q

We will later use the following easy observation about the “measure”:

Lemma 2.2.0.9. Suppose k ≤ `, and A0, . . . , Ak are subsets of J . Then there are pairwise disjoint
sets B0, . . . , Bk such that Bi ⊆ Ai, and µ`(Bi) ≥ µ`(Ai)− 1 for all i ≤ k.

Proof. Note that if for some i ≤ k we have that µ`(Ai) ≤ 1, then simply picking Bi := ∅ will
introduce no obstructions. We may then assume that µ`(Ai) > 1 (meaning that |Ai| ≥ 3`+1) for
each i ≤ k. We now inductively construct (k + 1)-tuples (Aj0, . . . , A

j
k) (j ≤ n := k(k+1)/2 where

A0
i = Ai for each i ≤ k, and at stage j < n we handle a distinct pair (i0, i1) with i0 < i1 ≤ k so that

• Aj+1
i0 ⊆ Aji0 , |A

j+1
i0 | ≥ |A

j

i0
|/3;

• Aj+1
i0 ⊆ Aji1 , |A

j+1
i1 | ≥ |A

j

i1
|/3; and

• Aj+1
i0 ∩Aj+1

i1 = ∅.

(and Aj+1
i = Aji for all other i ≤ k). As |Ai0 | ≥ 3`+1 it follows by the induction that |Aji0 | ≥ 3, and

similarly |Aji1 | ≥ 3, and so it is possible to partition the intersection Aji0 ∩ A
j
i1 into Y ∪ Z so that

|Aji0 \ Y | ≥ |A
j

i0
|/3 and |Aji1 \ Z| ≥ |A

j

i1
|/3. We may then take Aj+1

i0 := Aji0 \ Y and Aj+1
i1 := Aji1 \ Z.

After these steps, set Bi := Ani for each i ≤ k. It is clear that the Bi are pairwise disjoint (since
if i0 < i1 ≤ k at some stage j we would have handled this pair, meaning that Aj+1

i0 ∩Aj+1
i1 = ∅, but

Bi0 ⊆ Aj+1
i0 and Bi1 ⊆ A

j+1
i1 ). As each Ai was modified at most k times in the inductive construction

it follows that |Bi| ≥ |Ai|/3k, and so µ`(Bi) = log3(|Bi|)/`+1 ≥ log3(|Ai|/3k)/`+1 ≥ log3(|Ai|)− /̀`+1 ≥
µ`(Ai)− 1.

Suppose now that for each j ∈ J we have a subatomic family Kj living on a finite set POSSj .
We can now define the atoms built from the subatoms:

Definition 2.2.0.10. • An atomic creature, or atom, a consists of a sequence (xj)j∈J where xj
is a Kj-subatom for all j ∈ J .

• The norm of an atom a = (xj)j∈J , nor(a), is the maximal r with the following property: There
is a set A ⊆ J with µ`(A) ≥ r and nor(xj) ≥ r for all j ∈ A. We say that such an A “witnesses
the norm” of a.

So the norm of an atom is large if there is a “large” subset A of J such that all subatoms in A
are “large”.

The following easy fact will be useful later:

Fact 2.2.0.11. Suppose A ⊆ J witnesses the norm of an atom a = (xj)j∈J , and let b = (yj)j∈J

be any atom which agrees with a on all indices in A. Then nor(b) ≥ nor(a). In particular, if
nor(yj) ≤ nor(xj) for all j /∈ A, then nor(b) = nor(a).

2.3 Sacks columns

Given a (finite) tree T , its splitting-size, norsplit(T ), is defined as the maximal ` ∈ ω such that there
is a subset S ⊆ T (with the induced order) which is order isomorphic to the complete binary tree
2≤` (of height ` with 2` many leaves). Equivalently: 2≤` embeds into T (i.e., there is an injection
which preserves order in both directions, i.e., an order isomorphism onto the image).

Given a finite subset I of ω and F ⊆ 2I , we can identify F with the tree of its restrictions
TF = F ∪ {η |n : η ∈ F, n ∈ I} (a tree of partial functions from I to 2, ordered by inclusion). We
write norsplit(F ) for norsplit(TF ).

The following establishes a basic combinatorial fact about this norm:
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Definition and Lemma 2.3.0.12. There exists a function f with the following property:

• For each n, c: Whenever 2f(1,n,c) is colored with c colors, then there is a homogeneous subset
A of 2f(1,n,c) such that norsplit(A) ≥ n.

• More generally:
For each j, n, c: Whenever (2f(j,n,c))j is colored with c colors, then there are subsets A1, . . . , Aj

of 2f(j,n,c) such that the set A1 × · · · ×Aj is homogeneous,4 and norsplit(Ai) ≥ n for all i.

• Moreover, f may be chosen to be monotone in each argument.

Proof. We define f(j, n, c) recursively on j by f(1, n, c) = n·c, and f(j+1, n, c) = f(1, n, c2
j·f(j,n,c)

) =

n · c2j·f(j,n,c) . Note that f(j, n, 1) = n, and clearly any coloring π : (2n)j → 1 is constant. We may
then assume that c > 1 for the remainder of the proof.

We first show by induction on c that f(1, n, c) is as required. Suppose that f(1, n, c) works for
some c ≥ 1, and let π : 2n·(c+1) → c + 1 be a coloring. For η ∈ 2n, let [η] := {ν ∈ 2n+c·n : η ⊆ ν}.
Note that norsplit([η]) = 2c·n for each η ∈ 2n. If there is an η ∈ 2n such that π |[η] omits one of
0, . . . , c, then π |[η] is a coloring with at most c colors, and so there must be an A ⊆ [η] ⊆ 2n+c·n

such that norsplit(A) ≥ n and π |A is constant.
Otherwise, for each η ∈ 2n there is an νη ∈ [η] such that π(νη) = 0. It follows that A := {νη :

η ∈ 2n} has splitting size n, and π |A is constantly 0.
Assume that f(j, n, c) satisfies the desired property for some j ≥ 1. Set p := f(j, n, c) and

q := c2
j·p

, so that f(j + 1, n, c) = n · q = f(1, n, q). Suppose π : (2n·q)j+1 → c is a coloring.
Define T := {η ∈ 2n·q : η |[p, n · q) is constantly 0}. Since c ≥ 2 it follows that p < n · q, and so
norsplit(T ) = p. For η ∈ 2n·q define πη : T j → c by πη(η1, . . . , ηj) = π(η1, . . . , ηj , η). Note that the
mapping η 7→ πη is a coloring of 2n·q by at most c(2

p)j = q many colors. By the above it follows
that there is an Aj+1 ⊆ 2n·q and a π∗ : T j → c such that norsplit(Aj+1) ≥ n and πη = π∗ for each
η ∈ Aj+1.

Then as π∗ is a coloring of T j by at most c colors, and as norsplit(T ) = p = f(j, n, c) by hypothesis
for each i ≤ j there are Ai ⊆ T ⊆ 2n·q with norsplit(Ai) ≥ n (for i ≤ j) such that A1 × · · · × Aj is
homogeneous for π∗. It then follows that A1 × · · · ×Aj ×Aj+1 is homogeneous for π.

Definition 2.3.0.13. Suppose that I is a nonempty (finite) interval in ω. By a Sacks column on
I we mean a nonempty s ⊆ 2I . We say that another Sacks column s′ on I is stronger than s, and
write s′ ≤ s, if s′ ⊆ s.

We can naturally take products of columns that are stacked above each other:

Definition 2.3.0.14. Let s1 be a Sacks column on an interval I1 and let s2 be a Sacks column on
an interval I2. If min(I2) = max(I1) + 1, then the product s′ = s1⊗ s2 is the Sacks column on I1 ∪ I2
defined by f ∈ s′ iff f | I1 ∈ s1 and f | I2 ∈ s2.
Iterating this, we can take products of finitely many properly stacked5 Sacks columns.

We now define the norm of a Sacks column s on an interval I. Actually, we define a family
of norms, using two parameters B and m. Later, we will virtually always use values of B and m

determined by min(I); more details will come in Subsection 2.5 and Section 4.

4As in the case of the bigness of subatoms, only the number of “colors” of our coloring functions is of importance.
Moreover, by the definition of the splitting norm it follows that T1, . . . , Tj are trees each of splitting size at least
f(j, n, c) and π : T1 × · · · × Tj → c is a coloring, then there are Ai ⊆ Ti (i ≤ j) such that norsplit(Ai) ≥ n for each i
and π |A1 × · · · ×Aj is constant.

5Sacks columns s1, . . . , sn on intervals I1, . . . , In, respectively, are called properly stacked if min(Ii+1) = max(Ii)+1
for each i < n.
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Definition 2.3.0.15. norB,mSacks(s) ≥ n iff n = 0 or norsplit(s) ≥ FBm (n) where FBm : ω → ω is
defined as follows: FBm (0) = 1 and FBm (n + 1) = f(m,FBm (n), B), where we use the function f of
Definition 2.3.0.12.

In other words,

norB,mSacks(s) = max({n ∈ ω : FBm (n) ≤ norsplit(s)} ∪ {0}). (2.3.0.16)

The exact definition of this norm will not be important in the rest of the paper; we will only
require the following properties:

Lemma 2.3.0.17.

1. If s, s′ have the same splitting-size, then norB,mSacks(s
′) = norB,mSacks(s).

2. If s′ ≤ s, B′ ≥ B and m′ ≥ m, then norB
′,m′

Sacks (s′) ≤ norB,mSacks(s).

3. norB,mSacks(s1 ⊗ · · · ⊗ sn) ≥ norB,mSacks(si) for all 1 ≤ i ≤ n.

4. If I is large (with respect to B and m), then norB,mSacks(2
I) will be large. More precisely, given

a ∈ ω, if |I| > FBm (a), then norB,mSacks(2
I) ≥ a.

5. We will later use the following simple (but awkward) consequence: Fix properly stacked intervals
I, I ′ and a Sacks column s on I ∪ I ′. Then there is an s̃ ≤ s such that

norB,mSacks(s̃) ≥ min
(

norB,mSacks(s),norB,mSacks(2
I)
)

and |s̃| ≤ |2I |.

6. (Bigness) For i < m, fix Sacks columns si such that norB,mSacks(si) ≥ n+ 1.
Then for any “coloring” function π :

∏
i<m si → B there are Sacks columns s′i ≤ si with

norB,mSacks(s
′
i) ≥ n such that π is constant on

∏
i<m s′i.

Proof. For (5), just prune all unnecessary branches. In more detail: Note that norsplit(2
I) = |I|, and

that norB,mSacks is determined by the splitting-size norsplit. So we have to find s̃ ⊆ s with splitting size
r := min(norsplit(s), |I|): Obviously we can find the binary tree 2≤r inside s (as a suborder). Extend
each of its maximal elements (uniquely), and take the downwards closure. This gives s̃.

(6) follows immediately from Lemma 2.3.0.12: We have norsplit(si) ≥ FBm (n+1) = f(m,FBm (n), B);
so by the characteristic property of the function f , for any coloring function π :

∏
i<m si → B there

are Sacks columns s′i ≤ si with norsplit(s
′
i) ≥ FBm (n) such that π is constant on

∏
i<m s′i. So

norB,mSacks(s
′
i) ≥ n.

2.4 Setting the stage

We fix for the rest of this paper a nonempty (index) set Ξ. We furthermore assume that Ξ is
partitioned into subsets Ξls,Ξli,Ξsk (Ξli is nonempty, but Ξls and Ξsk could be empty). For each
ξ ∈ Ξ, we say that ξ is of type lim-sup, lim-inf or Sacks if ξ is an element of Ξls, Ξli, or Ξsk,
respectively. We set Ξnon-sk := Ξls ∪ Ξli = Ξ \ Ξsk.

Our forcing will “live” on Ξ× ω. For (ξ, `) ∈ Ξ× ω we call ξ the index and ` the level.
The “frame” of the forcing will be as follows:

Definition 2.4.0.18. 1. (For the “Sacks part”:) We fix a sequence (Isk,`)`∈ω of properly stacked
intervals in ω.6 For simplicity we further assume that min(Isk,0) = 0. Given natural numbers

6I.e., Isk,` = [min(Isk,`),min(Isk,`+1)) for all ` ∈ ω.
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` < m we set Isk,[`,m) :=
⋃
`≤h<m Isk,h = [min(Isk,`),min(Isk,m)). A Sacks column on Isk,[`,m)

is also called a “Sacks column between ` and m”.

2. We fix for each level ` ∈ ω some J` ∈ ω. A sublevel is a pair (`, j) for ` ∈ ω and j ∈ J` ∪ {−1}.
(The sublevel (`,−1) will be associated with the Sacks part at level `.) We will usually denote
sublevels by u or v.

3. We say v is below u, or v < u, if v lexicographically precedes u. Note that this order has
order type ω.

4. A sublevel (`,−1) is called a Sacks sublevel; all other sublevels are called subatomic. Instead of
(`,−1) we will sometimes just write “the sublevel `”, and we sometimes just write “v is below
`” instead of v < (`,−1).

5. (For the “non-Sacks part”:) For each subatomic sublevel u and index ξ ∈ Ξnon-sk we fix a
subatomic family Kξ,u living on a finite set POSSξ,u.

6. For each level ` ∈ ω and index ξ ∈ Ξnon-sk, each sequence (xj)j∈J` with xj ∈ Kξ,u constitutes
(as in 2.2.0.10) an atom a, where we use ` as parameter in µ` for the definition of the norm of
the atom.

Figure 2.1: Diagram of the sublevels at level `, with the Sacks sublevel (`,−1) occurring “before” the
subatomic sublevels (`, 0), (`, 1), . . . , (`, J` − 1).

To be able to use this frame to construct a reasonable (in particular: proper) forcing, we will
have to add several additional requirements of the following form: The Sacks intervals Isk,` (that
“appear” at sublevel `) are “large” with respect to everything that was constructed in sublevels v

below `; and the subatoms at a subatomic sublevel u have “large” bigness with respect to everything
that was constructed at sublevels v < u. The complete construction with all requirements will be
given in Section 4.

2.5 Compound creatures

We can now define compound creatures, which are made up from subatomic creatures and Sacks
columns.

Definition 2.5.0.19. A compound creature c consists of:

1. Natural numbers mdn < mup.

2. supp, a nonempty finite7 subset of Ξ.

3. For each ξ ∈ supp ∩ Ξsk, the object c(ξ), which is a Sacks column between mdn and mup.

4. For each ξ ∈ supp ∩ Ξnon-sk and each subatomic sublevel u = (`, j) with mdn ≤ ` < mup and
j ∈ J`, the object c(ξ,u) which is a subatom in Kξ,u.

7We could assume without loss of generality that the size of supp is at most mdn. This will be shown in
Lemma 3.4.0.11.
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5. For each mdn ≤ ` < mup a real number d(`) (called the halving parameter of c at level `).8

6. We additionally require “modesty”:9 For each subatomic sublevel u there is at most one ξ ∈
supp(c) such that the subatom c(ξ,u) is not a singleton.

7. This defines for each ξ ∈ supp ∩ Ξnon-sk the atom c(ξ, `) = (c(ξ, (`, j)) : j ∈ J`).

We also write mdn(c),mup(c), supp(c), d(c, h).
We will use the following assumptions (later there will be more, a complete list will be given in

Section 4):

Assumption 2.5.0.20. For each ` ∈ ω,

• we fix natural numbers B(`) and maxposs(<`), such that k ≤ ` implies B(k) ≤ B(`) and
maxposs(<k) ≤ maxposs(<`). (These parameters will be defined in Section 4.)

• we assume that Isk,` is large enough so that there are Sacks trees of large norm; more concretely:
nor

B(`),`
Sacks (2Isk,`) ≥ ` for every ` ∈ ω.

• we assume that J` is large enough such that µ`(J`) is big; more concretely: µ`(J`) ≥ 2`·maxposs(<`).

• we assume that for every ξ ∈ Ξnon-sk and j ∈ J` there is (at least) one subatom x ∈ Kξ,(`,j)
with nor(x) ≥ 2`·maxposs(<`).

Using these assumptions, we can now define the norm of a compound creature:

Definition 2.5.0.21. The norm of a compound creature c, nor(c), is defined to be the minimum of
the following values:

1. norwidth(supp(c));

2. norSacks(c(ξ)) for all ξ ∈ supp ∩ Ξsk;

3. norlimsup(c, ξ) for all ξ ∈ supp ∩ Ξls; and

4. nor
maxposs(<mdn)
liminf (c, h) for all mdn ≤ h < mup.

where we use the following:

• The “width norm” norwidth(supp(c)) = mdn(c)
| supp(c)| .

As supp(c) is nonempty, the width norm (and thus nor(c) as well) is at most mdn(c).

• The Sacks norm norSacks(c(ξ)) := nor
B(mdn),mdn

Sacks (c(ξ)) (withmdn := mdn(c)) as defined in (2.3.0.16).

• The “lim sup norm”, the maximal norm of the atoms appearing at index ξ at any level h, i.e.,

norlimsup(c, ξ) = max(nor(c(ξ, h)) : mdn ≤ h < mup).

• The “lim inf norm”, the minimal norm of the atoms appearing at level h at any lim-inf index,
modified by the halving parameter:10,11

nor
maxposs(<mdn)
liminf (c, h) =

log2(N − d(c, h))

maxposs(<mdn)
for N := min{nor(c(ξ, h)) : ξ ∈ supp ∩ Ξli}.

8One could (without loss of generality, in some sense) restrict the halving parameter to a finite subset of the reals;
then for fixed supp,mdn,mup there are only finitely many compound creatures.

9Again: without this requirement, the resulting forcing poset would be equivalent.
10As usual: If the following logarithm results in a negative number, or if we apply the logarithm to a negative

number, then we instead define the resulting norm as nor(c) := 0. So really we mean nor
maxposs(<mdn)
liminf (c, h) =

log2(max(1,N−d(c,h))
maxposs(<mdn)

.
11The reason for the logarithm, and the use of the halving parameters, will become clear only in Section 5.2.
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(So for both norlimsup and norliminf we use the norms of atoms c(ξ, h); recall that the level h of
this atom is used in Definition 2.2.0.10 of nor(c(ξ, h)), more specifically: µh is used to measure the
size of subsets of Jh.)

The assumptions imply the following:

Lemma 2.5.0.22. Fix 2 < mdn < mup and supp ⊆ Ξ with |supp| < mdn and supp∩Ξsk, supp∩Ξli,
supp ∩ Ξls all nonempty. Then there is a compound creature c with mdn(c) = mdn, mup(c) = mup,
supp(c) = supp such that nor(c) = norwidth(supp).

Proof. We can first use for all subatoms and Sacks columns the “large” ones guaranteed by the
assumptions. However, this will in general not satisfy modesty. So we just apply Lemma 2.2.0.9
at each mdn ≤ ` < mup, resulting (for each `) in disjoint sets A`ξ ⊆ J` for ξ ∈ supp ∩ Ξnon-sk. We
keep the large subatoms at the sublevels in A`ξ, and choose arbitrary singleton subatoms at other
sublevels. Now we have a compound creature, whose norm is the minimum of the following:

• the width norm;

• the (unchanged) Sacks norms, which are ≥ mdn > norwidth(supp);

• the lim sup norms; here, all atoms at level ` have norm≥ 2`·maxposs(<`)−1 ≥ 2m
dn·maxposs(<mdn)−

1 > norwidth(supp); so all lim sup norms drop by at most 1.

• the lim inf norms, which drop by an even smaller amount, due to the logarithm.

Fact 2.5.0.23. Let c be a compound creature and u ⊆ supp(c) such that u ∩ Ξsk, u ∩ Ξli, u ∩ Ξls

are all nonempty. Then the naturally defined c |u is again a compound creature with norm at least
nor(c).

Definition 2.5.0.24. A compound creature d is purely stronger than c, if c and d have the samemdn,
mup, the same halving parameters, the same supp; and if for each ξ ∈ supp ∩ Ξsk the Sacks column
d(ξ) is stronger than c(ξ) and for each subatomic sublevel u that appears in c and ξ ∈ supp∩Ξnon-sk

the subatom d(ξ,u) is stronger than c(ξ,u).
In other words, the only difference between c and d occurs at Sacks columns and subatoms, where

they become stronger.
d is r-purely stronger than c, if additionally nor(d) ≥ nor(c)− r.

To show ℵ2-cc, we will later use the following property:

Lemma 2.5.0.25. Fix two compound creatures c1 and c2 with same mdn and mup and the same
halving parameters, with disjoint supports, and such that nor(c1),nor(c2) > x. Then there exists a
compound creature d with same mdn and mup and support supp(c1)∪supp(c2) such that nor(d) ≥ x

2−1

and d | supp(ci) is purely stronger than ci for i = 1, 2.
More generally, the same is true if c1 and c2 are not necessarily disjoint, but identical on the

intersection u := supp(c1) ∩ supp(c2), i.e., c1 |u = c2 |u.

Proof. Set d′ be the union of c1 and c2 (which is defined in the obvious way: d′(ξ, k) = c1(ξ, k) if
ξ ∈ supp(c1), and c2(ξ, k) otherwise).

It is easy to see that d′ satisfies all requirements apart from modesty 2.5.0.19(6). As in the proof
of Lemma 2.5.0.22, we can make it modest, resulting in a compound creature d, of norm ≥ x

2 − 1.
(The factor 1

2 comes from doubling the size of the support, which decreases the width norm.)
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2.6 The elements (conditions) of the forcing poset Q

Definition 2.6.0.26. ∅ is the weakest condition. Any other condition p consists of wp, (p(h))h∈wp

and tp such that:

• wp ⊆ ω is infinite.

• For each h ∈ wp, p(h) is a compound creature such that

– mdn(p(h)) = h,

– mup(p(h)) is the wp-successor of h,

– for h < h′ in wp, supp(p(h)) ⊆ supp(p(h′)),

– limh∈wp(nor(p(h))) =∞.

• We set supp(p) :=
⋃
h∈wp supp(p(h)) (a nonempty subset of Ξ which is finite or countable).

• For ξ ∈ supp(p), we define trklgp(ξ) (the trunk length at ξ) to be the minimal h such that
ξ ∈ supp(p(h)).

• The trunk tp assigns

– to each ξ ∈ supp(p) ∩ Ξsk and ` < trklgp(ξ) an element of 2Isk,` ;

– to each ξ ∈ supp(p) ∩ Ξnon-sk and subatomic sublevel u below trklgp(ξ) an element of
POSSξ,u.

Note that Assumption 2.5.0.20 guarantees that Q is nonempty (cf. Lemma 2.5.0.22).

Notation 2.6.0.27. Given p ∈ P , h ∈ wp and ` which is ≥ h and less than the wp-successor of h,
and a sublevel u = (`, j) we set

• supp(p,u) = supp(p, `) := supp(p(h)).

• d(p, `) := d(p(h), `) (the halving parameter of p at level `),

• For ξ ∈ Ξnon-sk ∩ supp(p,u) and j 6= −1 we set p(ξ,u) := p(h)(ξ,u), the subatom located at
index ξ and sublevel u.

• For ξ ∈ Ξsk ∩ supp(p(h)) we set p(ξ, h) := p(h)(ξ), the Sacks column at index ξ starting at
level h (note that we require h ∈ wp).

2.7 The set of possibilities

We will now define the “possibilities” of a condition p, which give information about the possible
value of the generic objects

˜
yξ and which we will use to define the order of the forcing. Informally

speaking, a condition p consists of

• the trunk part tp, where there is a unique possibility,

• subatoms x (each with a set of possibilities poss(x)),

• Sacks columns s (which we interpret as a set of possible branches) which “live” between h ∈ wp

and the wp-successor h+ of h, and this set of possible branches generally cannot be written as
a product of possibilities at levels h ≤ l < h+, let alone sublevels.
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This property of the Sacks columns will make our notation quite awkward. As a consequence,
the following section has the worst ratio of mathematical contents to notational awkwardness.
Things will improve later on. We promise.

We first (in 2.7.0.28) describe a way to define the set of possibilities separately for each ξ ∈
supp(p); all possibilities then are the product over the ξ-possibilities.

Then (in 2.7.0.29) we will describe a variant: We define the possibilities at a sublevel u, and all
possibilities are a product over the u-possibilities.

Both versions result in the same set of possibilities (apart from an awkward but canonical bijec-
tion, see 2.7.0.30). The first version is more useful in formulating things such as “a stronger condition
has as smaller set of possibilities”; but the second one is the notion that will actually be used later
on in proofs.

Definition 2.7.0.28. Fix a condition p and an index ξ ∈ supp(p).

• If ξ ∈ Ξnon-sk and u = (`, j) is a subatomic sublevel, then we set poss(p, ξ,=u) to be poss(x)

for the according subatom x = p(ξ,u). However, if ` < trklgp(ξ) (and so there is no subatom,
but instead a part of the trunk), then we let poss(p, ξ,=u) be the singleton {tp(ξ,u)}. (In
either case we have poss(p, ξ,=u) ⊆ POSSξ,u.)
We set poss(p, ξ,<u) to be

∏
v<u subatomic sublevel poss(p, ξ,=v).

• If ξ ∈ Ξsk and u = (m, j) is a sublevel, then we will define poss(p, ξ,<u). We first define a
number ` as follows:

– If j = −1 and m ∈ wp, then ` := m.

– Otherwise: ` is the least number > m in {0, . . . , trklgp(ξ)− 1} ∪ wp.

We then set poss(p, ξ,<u) to be the set of all functions η ∈ 2[0,min(Isk,`)) compatible12 with the
trunk and the Sacks columns at ξ.

• Set poss(p,<u) to be
∏
ξ∈supp(p) poss(p, ξ,<u).

• Recall that we identify ` with the sublevel (`,−1), so we can write poss(p,<`) instead of
poss(p,<(`,−1)).

Note that each possibility below u restricted to the non-Sacks part can be seen as a “rectangle”
with width supp(p) ∩ Ξnon-sk and height u; whereas the restriction to the Sacks part is a rectangle
with height in wp (which is generally above u). So together this gives an “L-shaped” domain. Only
in case u = (`,−1) for ` ∈ wp we get a more pleasant overall rectangular shape.

In the following alternative definition we ignore a part of p which is “trivial” because we have no
freedom/choice left. More specifically, we ignore the trunk and singleton subatoms (but not, e.g.,
singleton Sacks columns). Also, we do not first concentrate on some fixed index ξ, but directly define
poss′(p,=u) for certain sublevels u.

Definition 2.7.0.29. We define the set sblvls(p) of “active” sublevels of p by case distinction; for
each u ∈ sblvls(p) we define the object poss′(p,=u):

• If u = (`,−1) is a Sacks sublevel, then u ∈ sblvls(p) iff ` ∈ wp and S := supp(p, `) ∩ Ξsk 6= ∅.

We set p(u) to be the sequence (p(ξ, `))ξ∈S of these Sacks columns, and set poss′(p,=u) to be
the product of this sequence.

12In more detail: Whenever h < trklgp(ξ)) and h ≤ m (or < m, if j = −1), then η | Isk,h = tp(ξ, h). And: if
h ≥ trklgp(ξ) and h ≤ m (or < m, if j = −1), and h ∈ wp then η | Isk,h ∈ p(ξ, h).
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• If u = (`, j) is a subatomic sublevel, then u ∈ sblvls(p) if ` ≥ min(wp) and if there is a non-
singleton subatom at sublevel u, at index ξ, say. In that case, according to modesty 2.5.0.19(6),
this is the only non-singleton subatom at u. We call ξ the active index at u, and we set
p(u) := p(ξ,u) (the “active subatom”) and poss′(p,=u) := poss(p(u)).

So sblvls(p) is a subset (and thus suborder) of the set of all sublevels (again of order type ω). We
set poss′(p,<u) =

∏
v<u, v∈sblvls(p) poss′(p,=v).

The definition of the following bijection ι is easy to see/understand, but very awkward to formu-
late precisely, and hence left as an exercise.

Fact 2.7.0.30. There is a natural/canonical correspondence ι : poss(p,<u) → poss′(p,<u): Given
an η ∈ poss(p,<u), we first omit from η all the “trivial” information contained in the trunk and in
the singleton subatoms; and then “relabel” the resulting sequence (instead of a sequence indexed by
elements of ξ we wish to have one indexed by elements of sblvls(p)).

Later in this paper we will not distinguish between poss and poss′; actually we will mostly use
poss′, and often use the following trivial observation:

Fact 2.7.0.31. For v < u in sblvls(p),

poss′(p,<u) = poss′(p,<v)× poss′(p,=v)× poss′(p,>v),

where we set poss′(p,>v) :=
∏

v′∈sblvls(p),v<v′<u poss(p,=v′).
poss′(p,=v) is a product of Sacks columns if v is Sacks, otherwise it is poss(x) for the active subatom
at v.

2.8 The order of the forcing

Definition 2.8.0.32. A condition q is stronger than p (or: q ≤ p), if

1. wq ⊆ wp.

2. supp(p) ∩ supp(q(h)) = supp(p(h)) for each h ∈ wq. This implies:

• supp(q(h)) ⊇ supp(p(h)).

• For ξ ∈ supp(p), trklgq(ξ) = min{` ∈ wq : ` ≥ trklgp(ξ)}.

• So the trunk tq is defined on a bigger domain than tp.

3. The trunk of q, i.e., the function tq, extends the function tp and is “compatible” with p: The
singleton poss(q, ξ,<trklgq(ξ)) is a subset of poss(p, ξ,<trklgq(ξ)). I.e., the subatoms and
Sacks columns that disappeared have been replaced by a trunk which is compatible with the
respective possibilities of p.

Equivalently, we could also write: For any η ∈ poss(q,<min(wq)), the restriction of η to supp(p)

is in poss(p,<min(wq)).

4. If ξ ∈ supp(p)∩Ξnon-sk and u is a subatomic sublevel above trklgq(ξ), then the subatom q(ξ,u)

is stronger than p(ξ,u).

5. If ξ ∈ supp(p)∩Ξsk and h ∈ wq such that h ≥ trklgq(ξ), then the Sacks column q(ξ, h) is stronger
than (i.e., a subset of) the product of the Sacks columns p(ξ, `) for ` ∈ wp, h ≤ ` < h+, where
h+ is the wq-successor of h.

6. The halving parameters do not decrease, i.e.: d(q, `) ≥ d(p, `) for all ` ∈ ω with ` ≥ min(wq).
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Some simple properties of Q

3.1 Increasing the trunk

We now introduce an obvious way to strengthen a condition: Increasing the trunk.

Definition 3.1.0.1. Given ` ∈ wp and η ∈ poss(p,<`), we define p∧η to be the condition q resulting
from replacing the compound creatures below ` with the trunk η.

More formally: wq = wp \ `; for k ∈ wq we have q(k) = p(k); for a subatomic u below ` and
ξ ∈ supp(p) ∩ Ξnon-sk, the trunk tq(ξ,u) is η(ξ,u); and for h < ` and ξ ∈ supp(p) ∩ Ξsk, the trunk
tq(ξ, h) is η(ξ) | Isk,h.

The definition of the order implies:

Fact 3.1.0.2. Fix ` ∈ wp.

• For η ∈ poss(p,<`), p ∧ η ≤ p.

• {p ∧ η : η ∈ poss(p,<`)} is predense below p.

• In particular: Assume that p and q are conditions that above some `1 have the same w and the
same compound creatures,1 and that poss(q,<`1) ⊆ poss(p,<`1). Then q ≤∗ p.
(Here, q ≤∗ p means q  p ∈ G; equivalently: every r ≤ q is compatible with p.)

We can define a variant of ∧, which works for any sublevel (not only those sublevels u = (`,−1)

with ` ∈ wp):

Definition 3.1.0.3. Given η ∈ poss(p,<u), we define q = p f η as the condition obtained by
replacing the according parts of p with the singleton subatoms (or: singleton Sacks columns) given
by η.

More formally: wq = wp; supp(q, n) = supp(p, n) for all n ∈ wp; tq = tp; if ξ ∈ supp(p,v)∩Ξnon-sk

and the subatomic sublevel v is below u, then q(ξ,v) is the singleton subatom {η(ξ,v)}; if ` ∈ wp

and ξ ∈ supp(p, `) ∩ Ξsk and u strictly above `, then the Sacks column q(ξ, `) consists of the single
branch given by η(ξ) restricted to Isk,[`,`+), where `+ is the wp-successor of `.

We can now define the generic sequence added by the forcing (note that the generic filter will
generally not be determined by this sequence, due to additional information given by w and the
halving parameters).

1more formally: `1 ∈ wp, wp \ `1 = wq \ `1, and p(h) = q(h) for all h ∈ wp \ `1. Note that this implies supp(p) =
supp(q).

21
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Definition 3.1.0.4. For ξ ∈ Ξnon-sk, let
˜
yξ be (the name for)

{(u, a) : u a subatomic sublevel and (∃p ∈ G) tp(ξ,u) = a}.

For ξ ∈ Ξsk, we set
˜
yξ to be ⋃

{tp(ξ, `) : p ∈ G, ` < trklgp(ξ)}.

Fact 3.1.0.5. Let u be a sublevel.

• For η ∈ poss(p,<u), pf η ≤ p.

• If ` ∈ wp, u = (`,−1) and η ∈ poss(p,<`), then pf η ≤∗ p ∧ η and p ∧ η ≤ pf η.

• {pf η : η ∈ poss(p,<u)} is predense below p.

• pf η and pf η′ are incompatible if η′ 6= η in poss(p,<u).

• pf η forces that ¯
˜
y extends η, i.e., that

˜
yξ extends η(ξ) for all ξ ∈ supp(p).

In particular, p forces that ¯
˜
y extends tp.

• η ∈ poss(p,<u) iff 2 p does not force that η is incompatible with the generic reals ¯
˜
y.

• For η ∈ poss(p,<u), p forces: ¯
˜
y extends η iff pf η ∈ G.

• Q forces that ¯
˜
y is “defined everywhere”:

– For ξ ∈ Ξsk
˜
yξ ∈ 2ω,

– and for ξ ∈ Ξnon-sk and u a subatomic sublevel,
˜
yξ(u) ∈ POSSξ,u is defined.

(Proof of the last item: Given a condition p and ξ ∈ Ξ, we have to show that we can find a q ≤ p
with ξ ∈ supp(q). This is shown just as Lemma 2.5.0.25, using at ξ the large Sacks columns/subatoms
guaranteed by 2.5.0.20. Then “increasing the trunk” shows that

˜
yξ(n) is defined for all n.)

Note that we can use the equivalent poss′ (defined in 2.7.0.29) instead of poss. Formally, we could
use the bijection ι of 2.7.0.30 and set p∧η′ := p∧ι−1(η′) for η′ ∈ poss′(p,<l) (and pfη′ := pfι−1(η′)

for η′ ∈ poss′(p,<u)). But what we really mean: For some η′ ∈ poss′ we can define p ∧ η′ (and:
pf η′) in the obvious and natural way; and this results in the same object as when using p ∧ η (or:
pf η) for the η ∈ poss that corresponds to η′ (i.e., for η = ι−1(η′)).

3.2 The set of possibilities of stronger conditions

If q ≤ p, then poss(q,<u) morally is a subset of poss(p,<u) for any u.
If we just consider a sublevel (`,−1) for ` ∈ wq then this is literally true:

Assume that q ≤ p, ξ ∈ supp(p) and ` ∈ wq. Then poss(q, ξ,<`) ⊆ poss(p, ξ,<`).

In the general case, it is more cumbersome to make this explicit for the Sacks part. We will only
need the following:

Lemma 3.2.0.6. Given q ≤ p and η ∈ poss(q,<u) there is a unique η′ ∈ poss(p,<u) such that
q f η ≤ pf η′.

2for the direction “right to left”, which we will not need in this paper, we of course have to assume that η has the
right “format”, i.e., η =

∏
ξ∈supp(p) η(ξ) and each η(ξ) has the appropriate length/domain.
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Proof. Uniqueness follows from the fact that p f η′ and p f η′′ are incompatible for different η′, η′′

in poss(p,<u).
We define η′(ξ) separately for each ξ ∈ supp(p). For ξ ∈ Ξnon-sk we just use η′(ξ) := η(ξ). So

assume ξ ∈ Ξsk. Let k be the smallest element of wp above u.

• If u is below trklgp(ξ) (and therefore also below trklgq(ξ)), then again we set η′(ξ) := η(ξ).

• If u is above trklgp(ξ) but below trklgq(ξ), then we extend η(ξ) up to k with the values given
by the trunk tq. This gives η′(ξ).

• If u is above trklgq(ξ) ≥ trklgp(ξ), then η′(ξ) is the restriction of η(ξ) to k.

Remark 3.2.0.7. Note that q ≤ p does not imply sblvls(q) ⊆ sblvls(p); as a previously “inactive”
sublevel can become active (outside of supp(p), of course). Also, u can be an active subatomic
sublevel in both p and q, and still the active index can change: The “old” active subatom at ξ can
shrink to a singleton in q, while q gains a new index with an active subatom (outside of supp(p)).
Because of this, it is even more cumbersome to formulate an exact version of “stronger conditions
have fewer possibilities” for poss′ instead of poss.

3.3 ℵ2 chain condition

Lemma 3.3.0.8. Assuming CH, Q is ℵ2-cc.

Proof. Assume that A = {pi : i ∈ ℵ2} is a set of conditions. By thinning out A (only using CH
and the ∆-system lemma for families of countable sets), we may assume that there is a countable
set ∆ ⊆ Ξ such that for p 6= q in A the following holds:

• wp = wq.

• d(p, `) = d(q, `) for all ` ≥ min(wp).

• ∆ = supp(p) ∩ supp(q). Moreover supp(p, `) ∩∆ = supp(q, `) ∩∆ for all ` ∈ wp.

• p and q are identical on ∆, i.e., for each ` ∈ wp the compound creatures p(`) and q(`) are
identical on the intersection, as in Lemma 2.5.0.25; and the trunks agree on ∆, i.e., tp(ξ, `)
is the same as tq(ξ, `) for each ξ ∈ ∆ ∩ Ξsk and ` < h(ξ); and analogously for the subatomic
sublevels.

As in Lemma 2.5.0.25 we can (for each p, q ∈ A and ` ∈ wp) find a compound creature d(`)

“stronger than” both p(`) and q(`). These creatures (together with the union of the trunks) form a
condition stronger than both p and q. Hence A is not an antichain.

3.4 Pruned conditions

Let p be a condition. All compound creatures p(`) above some `0 will have norm at least 1. Note
that by the definition of norwidth this implies that | supp(p, `)| ≤ `.

The norm of a compound creature c is at most mdn (where we set mdn := mdn(c)). We assumed
that nor

B(mdn),mdn

Sacks (2Isk,mdn ) is at least mdn. Let s be any Sacks column in c. By Lemma 2.3.0.17(5)
(using I := Isk,mdn and I ′ := Isk,[mdn+1,mup)), there is an s̃ ⊆ s with |s̃| ≤ 2Isk,mdn and nor

B(mdn),mdn

Sacks (s̃) ≥
min(mdn,nor

B(mdn),mdn

Sacks (s)). So when we replace s by s̃ in c, the norm of the compound creature
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does not change. The same is true if we replace all Sacks columns with an appropriate strengthening:
The resulting compound creature d will be 0-purely stronger than c, cf. Definition 2.5.0.24.

So we get the following:

Definition 3.4.0.9. We call a Sacks-column s between ` and n Sacks-pruned, if |s| ≤ 2|Isk,`|. A
compound creature is Sacks-pruned, if all its Sacks columns are. A condition q is Sacks-pruned, if
all q(h) are. A condition p is pruned, if it is Sacks pruned and all compound creatures p(h) have
norm bigger than 1.

Definition 3.4.0.10. A condition q is purely stronger (or: r-purely stronger) than p, if wq = wp,
q(`) is purely stronger3 than p(`) (or: r-purely stronger, respectively) for all ` ∈ wq, and tq = tp.
(This implies q ≤ p.)

For every condition p there is a 0-purely stronger Sacks-pruned q. Given p ∈ Q Sacks-pruned,
` ∈ wp sufficiently large, and η ∈ poss(p,<`), the condition q = p ∧ η < p is pruned.

In particular, we get:

Fact 3.4.0.11.

• If p is pruned, then | supp(p(h))| < h for all h ∈ wp.

• The set of pruned conditions in Q is dense.

3.5 Gluing

So far we have increased trunks to strengthen conditions, as well as taking disjoint unions and pure
strengthenings. There are two additional constructions:

Definition 3.5.0.12. A compound creature d is the result of increasing the halving parameters in
c, if d and c are identical except for the halving parameters: d(d, `) can be bigger than d(c, `) for
each mdn ≤ ` ≤ mup.

Analogously, we define a condition q to be the result of increasing the halving parameters in p.
(Again, this implies q ≤ p.)

Definition 3.5.0.13. We call a finite sequence of compound creatures c1, . . . , cn “properly stacked”,
if mup(ci) = mdn(ci+1) and supp(ci) ⊆ supp(ci+1). Given such a sequence, we can glue it together
to get the new creature d = glue(c1, . . . , cn) in the following way:

• mdn(d) = mdn(c1) and mup(d) = mup(cn) (i.e., vertically the creature lives on the union of the
levels of the old creatures).

• supp(d) = supp(c1) (i.e., the rectangle-shape of the new creature is the result of taking the
union of the old rectangles and cutting off the stuff that sticks out horizontally beyond the
base).

• For ξ ∈ supp(d)∩Ξnon-sk and subatomic sublevels u between mdn(d) and mup(d), the subatom
d(ξ,u) is ci(ξ,u) for the appropriate i.

• For ξ ∈ supp(d) ∩ Ξsk, the Sacks column d(ξ) is defined as the product c1(ξ)⊗ · · · ⊗ cn(ξ).

3see Definition 2.5.0.24
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By the definition of the norm (see 2.5.0.21) monotonicity of B and maxposs (Assumption 2.5.0.20)
and Lemma 2.3.0.17(2),(3), we get

nor(glue(c1, . . . , cn)) ≥ min(nor(c1), . . . ,nor(cn)).

This gives another way to strengthen a condition p: shrinking the set w:

Definition 3.5.0.14. Given a condition p and an infinite subset U of wp such that min(U) = min(wp),
we say that q results from gluing p along U , if

• wq = U ,

• for h ∈ wq, let h = h1 < h2 < · · · < hn enumerate the elements of wp that are ≥ h and less
than the wq-successor of h. Then the compound creature q(h) is glue(p(h1), . . . , p(hn)),

• The new parts of the trunk are compatible with p.

Note that q is not unique, as there are many choices to increase the trunk (in the last item). Of
course the resulting q is stronger than p.

(a) (b)

(c) (d)

Figure 3.1: (a) A schematic diagram of a condition p of the forcing. The hi indicate an increasing
enumeration of wp, while the shaded region represents the domain of the trunk function tp. (b)
A condition q = p ∧ η, where η ∈ poss(p,<h2). In particular, all of the compound creatures
above level h2 have been left unchanged, and the below level h2 the condition q consists entirely
of trunk, with values determined by η. (c) A condition q obtained from p by gluing the pairs of
compound creatures p(h0), p(h1) and p(h2), p(h3). Note that trklgq(η) = h2 for any η ∈ supp(p)
with trklgp(η) = h1 (and similarly if trklgp(η) = h3). (d) A condition q obtained as the “disjoint
union” of p and another condition (represented to the left of the dotted line) with the same w and
the same halving parameters at each level as p.

By now we have seen five specific ways to strengthen a condition. Actually, every q ≤ p can be
obtained by a combination of these methods. (We will not use the following fact, nor the subsequent
remark, in the rest of the paper.)
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Fact 3.5.0.15. For p, q ∈ Q, q ≤ p iff there are p1, p2, p3 and p4 such that:

1. p1 results from increasing the trunk in p, i.e., p1 = p ∧ η for some η ∈ poss(p,<min(wq)) (in
fact: for the (unique) η which is extended by tq).

2. p2 ≤ p1 results from gluing p along wq, as above.

3. p3 ≤ p2 is purely stronger.

4. p4 ≤ p3 results from increasing halving parameters.

5. q is the disjoint union of p4 with some condition p′; i.e., the conditions p and p′ have the same
w, the same halving parameters, disjoint domain, and jointly satisfy “modesty” 2.5.0.19(6); and
q is the naturally defined union.

Remark 3.5.0.16. • Every q obtained by the construction above is stronger than p, provided
it is a condition. Note that constructions (1), (2) and (5) always result in conditions (for (5),
this is the same argument as in 2.5.0.25), whereas in constructions (3) and (4) we will generally
decrease the norms of the compound creatures in an uncontrolled fashion. So to get a condition,
we have to make sure that the norms of the new compound creatures still converge to infinity.
Also, to be able to find a suitable p′ in (5), we should make enough room for modesty in (3).

• The order is not entirely irrelevant: gluing (2) has to be done before pure strengthening (3),
since glued Sacks columns always have the form of products along the old wp, whereas generally
the Sacks columns in q will not be of this form.

We will later use a specific gluing construction:

Lemma 3.5.0.17. Assume that c0, . . . , cn is a properly stacked sequence of compound creatures,
n > 0, and nor(ci) ≥ M for all i ≤ n. Pick for each i < n some compound creatures di, purely
stronger than ci, such that di and ci agree on the lim-inf part (but di could consist of singletons on
the lim-sup and the Sacks part). Set dn = cn. Then glue(d0, . . . , dn) has norm ≥M as well.

Proof. The lim sup norm and the Sacks-norms will be large because nor(dn) = nor(cn) ≥ M ; the
lim inf norm will be large because we did not change anything on the lim inf part.

3.6 Projections and complete subforcings

Lemma 3.6.0.18. Assume that4 Ξli ⊆ Ξ′ ⊆ Ξ. Let QΞ′ ⊆ Q consist of all p ∈ Q with supp(p) ⊆ Ξ′.
Then QΞ′ is a complete subforcing, and the restriction map is a projection on an open dense subset.
Of course, QΞ′ will satisfy all the properties that we will prove generally for Q (as QΞ′ is defined just
like Q, only with other sets index sets Ξ).

Proof. The dense set D is the set of all conditions p with supp(p) ∩ Ξli 6= ∅. Fix p ∈ D and set
p′ = p |Ξ′. Assume that q′ ≤ p′ is in Q′. It is enough to show that q′ is compatible with p. We will
construct q ≤ p such that q′ = q |Ξ′ as follows: Fix p1 := p |(Ξ \ Ξ′). Increase the trunk of p1 to
min(wq

′
) and glue along wq

′
. This gives a condition q1 ≤ p1 with wq1 = wq

′
. We let q be the union of

q1 and q′ in the obvious way: For each ` ∈ wq1 , we take the union (as in the proof of 2.5.0.25) of the
compound creatures q1(`) and q′(`), using the (potentially bigger) halving parameters of q′(`). The
compound norms still converges to infinity: The lim-inf norm only uses the information of q′, and
the width norms of q′(`) and q1(`) both converge to infinity, and the width norm of the union is at
least one half of the minimum of these two.

4If we do not assume Ξ′ ⊇ Ξli, then we get problems with the lim-inf norm when we combine the increased halving
parameters of q′ with the lim-inf creatures in p1.
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An inductive construction of Q

We will now review the “framework” 2.4.0.18, finally giving all the assumptions (including the pre-
vious Assumption 2.5.0.20) that are required to make the forcing proper.

In the following construction, we have the freedom to choose (as long as the assumptions are
satisfied).

• Ξ, Ξls, Ξli as in 2.4.0.18,

• natural numbers H(<u) (for each sublevel u) such that H is increasing.
Remark: The function H gives us the possibility to impose additional demands on the bigness
B (as given in (4.0.0.1)). It is not needed to get properness and ωω-bounding, but will be used
later1 in the constructions that are specific to our cardinal characteristics.

• the subatomic families Kξ,u living on some finite set POSSξ,u

The other parameters are determined by the construction, namely:

• Natural numbers maxposs(<u) for each sublevel u.
This will turn out to be an upper bound to the cardinality of poss(p,<u) for any pruned p.

• For each sublevel u, we set
B(u) := 2H(<u)·maxposs(<u). (4.0.0.1)

(And we set B((0,−1)) := 2). B(u) is the bigness required for the subatoms (or: Sacks
columns) at u.

• The Sacks intervals Isk,` and subatomic index sets J`, for each ` ∈ ω, as in 2.4.0.18.

Note that, as usual, for a Sacks sublevel u = (`,−1) we may write B(`) for B(u). Similarly,
maxposs(<`) := maxposs(<(`,−1)) and H(<`) := H(<(`,−1)).

We define and require the following, by induction on `, where we set the “initial values” maxposs(<(0,−1)) :=

1 and Isk,−1 = {−1}:

Basic Construction.

(∗1) We require that H(<`) > maxposs(<`) + `+ 2.
1Here is a very informal description of how H will be used. The basic requirement is that at each sublevel u we have

bigness (namely B(u)) which is large with respect to everything that happened below. However, the notion of “large
with respect to” will slightly depend on the actual construction that increases the relevant cardinal characteristic. The
parameter H will allow us to accommodate these different interpretations. The function H will be used as a parameter
when defining “rapid reading” in Definition 5.1.0.1.

27
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(∗2) The Sacks sublevel:
We let Isk,` be the interval starting at max(Isk,`−1)+1 and of minimal size such that nor

B(`),`
Sacks (2Isk,`) ≥

`.
The relevant information is: We have “bigness” in the form of Lemma 2.3.0.17(6) for B := B(`).

(∗3) We set maxposs(<(`, 0)) := maxposs(<`) · 2|Isk,`|·`.

(∗4) We set J` := 3(`+1)·2`·maxposs(<`)

. So µ`(J`) = 2`·maxposs(<`). (µ is defined in 2.2.0.8.)

(∗5) The subatomic sublevels: By induction on j ∈ J` we now deal with the sublevel u = (`, j):

(a) For each ξ ∈ Ξnon-sk, we require that Kξ,u is a subatomic family living on some finite set
POSSξ,u.

(b) For each ξ ∈ Ξnon-sk, we require that there is a subatom x ∈ Kξ,u with norm at least
2`·maxposs(<`).

(c) For each ξ ∈ Ξnon-sk, we require that Kξ,u is B(u)-big.

(d) We require that there is a uniform bound M(u) = max({|POSSξ,u | : ξ ∈ Ξnon-sk}). Then
we set, for v the successor sublevel of u,

maxposs(<v) := maxposs(<u) ·M(u)`+1.

In particular this defines maxposs(<(`+ 1,−1)) if u = (`, J` − 1).

The assumptions guarantee that the previous Assumption 2.5.0.20 is satisfied (so in particular
that there are compound creatures with norm mdn, and that Q 6= ∅).

By induction, we immediately get the following (which is the reason for the name “maxposs”):

Fact 4.0.0.2. Let p be pruned. Then |poss(p,<u)| ≤ maxposs(<u) for u ∈ sblvls(p). In particular,
|poss(p,<h)| ≤ maxposs(<h) for h ∈ wp.

Each p(u) is B(u)-big:

Fact 4.0.0.3. Let p be a pruned condition, u = (`, j) be a p-sublevel (which can be Sacks or sub-
atomic), and v < u another sublevel.

Whenever F : poss′(p,=u) → B(u) is a coloring function, then there is a strengthening q(u) of
the p(u) (i.e., either q(u) is a subatom stronger than p(u); or q(u) is a sequence of Sacks column
such that each one is stronger than the according column in p(u)) such that the subatomic norm (or:
each Sacks norm) decreases by at most 1 and such that F |poss(y) is constant.

As B(u) is much larger than maxposs(<u), we also get a version of “compound bigness” (we will
not directly use the following version, but we will use similar constructions):

A function G : poss′(p,≤u) → H(<u) can be interpreted as F : poss′(p,=u) → H(<u)Y

for poss′(p,<u) (cf. 2.7.0.31). As |poss′(p,<u)| ≤ maxposs(<u)), and B(u) is big with respect to
maxposs(<u)) andH(<u), we can use the previous item and strengthen p(u) to make G independent
of the possibilities at u.

Iterating this downwards from the predecessor of u to v, we get:

Fact 4.0.0.4. • If G : poss′(p,<u) → H(<v), then we can increase the p(u′) to q(u′) for
v ≤ u′ < u, decreasing all subatomic/Sacks norms (and therefore also all compound norms)
by at most 1, such that G restricted to poss′(q,<u) only depends on poss′(q,<v).

• In particular, if G : poss′(p,<u) → 2, then we can strengthen p to q as above such that
G |poss′(q,<u) is constant.



Chapter 5

Properness, ωω-bounding and rapid
reading

5.1 Bigness, rapid reading from continuous reading

(Remark: This section is the straightforward modification of [14, Lemma 1.13].)

Definition 5.1.0.1. • Let
˜
τ be the name of an ordinal. We say that

˜
τ is decided below the

sublevel u (with respect to the condition p), if pfη decides the value of
˜
τ for all η ∈ poss(p,<u);

in other words, there is a function R : poss(p,<u) → Ord such that p f η 
˜
τ = R(η) for all

η ∈ poss(p,<u).

• We also write “
˜
τ is decided < u”; and we write “

˜
τ is decided ≤ u” for the obvious concept (i.e.,

“
˜
τ is decided < v”, where v is the successor sublevel of u).

• p essentially decides
˜
τ , if there is some sublevel u such that τ is decided below u.

• Let
˜
r be the name of an ω-sequence of ordinals. We say that a condition p continuously reads

˜
r, if all

˜
r(m) are essentially decided by p.

• p rapidly reads
˜
r ∈ 2ω, if, for each sublevel u,

˜
r |H(<u) is decided below u.

• Let Ξ0 ⊆ Ξ. We say that p “reads
˜
r continuously only using indices in Ξ0” if p reads

˜
r

continuously and moreover (using the relevant functions R mentioned above) the value of R(η)

depends only on η |Ξ0.

In other words: For every n there exists a sublevel u such that pf η decides the value of
˜
r(n)

for all η ∈ poss(p,<u), and whenever η |Ξ0 = η′ |Ξ0, then pf η and pf η′ agree on the value
of

˜
r(n).

• We define the notion “reads
˜
r rapidly only using indices in Ξ0” similarly.

• Instead of “only using indices in Ξ \ Ξ1” we also write “not using indices in Ξ1”.

Note that for X ⊇ Ξli, a real
˜
r is read continuously from X iff it exists in the QX -extension

(cf. 3.6.0.18).

Remark 5.1.0.2. For a fixed condition p, the possibilities (at all sublevels) form an infinite tree in
the obvious way. The set of branches Tp of this tree carries a natural topology. p continuously reads

29
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τ iff there is a continuous function F on Tp in the ground model such that p forces
˜
τ = F̃ (¯

˜
y), where

F̃ is the canonical extension of F .
In our case, the tree is finitely splitting, so Tp is compact, and continuous is the same as uniformly

continuous. (Note that the definition above really uses a uniform notion of continuity.)
Rapid reading corresponds to a form of Lipschitz continuity.

Lemma 5.1.0.3. 1. If p continuously (or: rapidly) reads
˜
r and q ≤ p with supp(q) ⊇ supp(p),

then q continuously (or: rapidly) reads
˜
r. The same holds if we add “only using Ξ0” or: “not

using Ξ1”.

2. If q ≤∗ p, and
˜
τ is a name of an ordinal essentially decided by p, then also q essentially decides

τ .

Proof. (1) Intuitively, this is clear: If q ≤ p and η ∈ poss(q,<u) then η morally is an element of
poss(p,<u), and q f η ≤ pf η.

The formal proof uses Lemma 3.2.0.6.
(2) p forces that

˜
τ is decided by a finite case distinction; so q forces the same.

Lemma 5.1.0.4. In V , let κ be max(ℵ0, |Ξ0|)ℵ0 . Then in the extension, there are at most κ many
reals which are continuously read only using1 indices in Ξ0.

Proof. This is the usual “nice names” argument: Given p continuously reading
˜
r. We can define the

obvious name
˜
r′ continuously read by p′ = p |Ξ0, such that p forces

˜
r =

˜
r′. There are at most κ many

countable subsets of Ξ0, and therefore only κ many conditions p′ with supp(p′) ⊆ Ξ0. Given such a
condition p′, there are only 2ℵ0 many ways to continuously read a real (with respect to p′).

We will first show that we can “densely” get from continuous reading to rapid reading. Later we
will show that “densely” we can continuously read reals. Both proofs are the obvious modifications
of the corresponding proofs in [14].

Lemma 5.1.0.5. Assume that p continuously reads
˜
r ∈ 2ω, then there is a q ≤ p rapidly reading

˜
r.

The same is true if we add “only using Ξ0”.

Proof. Without loss of generality we can assume that p is pruned (use Lemmas 3.4.0.11 and 5.1.0.3).
For a sublevel u, we set

vdec(u) is the maximal sublevel such that
˜
r |H(<vdec(u)) is decided below u, (5.1.0.6)

The function vdec is nondecreasing; and continuous reading implies that vdec is an unbounded
function on the sublevels; but vdec can generally grow very slowly. (p “rapidly reads

˜
r” would mean

that vdec(u) ≥ u for all u.)
For all sublevels v ≤ u we set

˜
xuv :=

˜
r |(H(<min(v,vdec(u)))) (which is by definition decided below u). (5.1.0.7)

There are at most
2H(<v) (5.1.0.8)

many possibilities for
˜
xuv, as H((<min(v,vdec(u)))) ≤ H(<v).

1More formally: reals r such that there is a p ∈ G and a name
˜
r such that p continuously reads

˜
r only using Ξ0

and such that G evaluates
˜
r to r.
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1 For now, fix a Sacks sublevel u = (`,−1) with ` ∈ wp.

We will define (or rather: pick) by downwards induction on u′ ∈ sblvls(p), u′ ≤ u, objects duu′ , which
are either a sequence of Sacks columns (if u′ is Sacks) or a subatom; and functions ψu

u′ .

1a For u′ = u, we set duu := p(u), i.e., the sequence of Sacks columns of level `. We let ψu
u be the

function with domain poss(p,<u) which assigns to each η ∈ poss(p,<u) the corresponding value of

˜
xuu.

In other words: pf η forces that
˜
xuu = ψu

u(η) for each η ∈ poss(p,<u).

1b We continue the induction on u′. For now, we write d′ := duu′ , ψ
′ := ψu

u′ , and x
′ := xuu′ .

• If u′ is subatomic, then we choose for d′ a subatom stronger than the active subatom p(u′),
with nor(d′) ≥ nor(p(u′))− 1.

• Otherwise, i.e., if u′ = (`′,−1) is Sacks with `′ ∈ wp, set S := supp(p, `′)∩Ξsk 6= ∅. Then d′ is a
sequence (s′ξ)ξ∈S of Sacks columns such that s′ξ ⊆ p(ξ, `′) and norSacks(s

′
ξ) ≥ norSacks(p(ξ, `))−1

for each ξ ∈ S.

• ψ′ is a function with domain poss(p,<u′) such that

modulo (v : u′ ≤ v < u), each η ∈ poss(p,<u′) decides
˜
x′ to be ψ′(η), (5.1.0.9)

by which we mean:

pfη forces the following: If the generic ¯
˜
y is compatible with duv for each sublevel

v ∈ sblvls(p) with u′ ≤ v < u, then
˜
x′ = ψ′(η).

How can we find such d′, ψ′?

Let u′′ be the smallest element of sblvls(p) above u′. By induction we already know that ψ′′ := ψu
u′′

is a function with domain poss(p,<u′′) such that modulo (v : u′′ ≤ v < u) each η ∈ poss(p,<u′′)

decides
˜
x′′ :=

˜
xuu′′ to be ψ′′(η).

Let ψ′′0 (η) be the restriction of ψ′′(η) to H(<min(u′,vdec(u))), i.e., ψ′′0 maps each η ∈ poss(p,<u′′)

to a restriction of
˜
x′′, which is a potential value for

˜
x′.

We can write2 ψ′′0 as a function A × B → C, for A := poss(p,<u′), B = poss(p,=u′) and C is the
set of possible values of

˜
x′, which has, according to (5.1.0.8), size ≤ 2H(<u′). This defines a function

from B to CA, a set of cardinality ≤ 2maxposs(<u′)·H(<u′); so according to (4.0.0.1) and Fact 4.0.0.3
we can use bigness at sublevel u′ to find d′ such that ψ′′0 does not depend on sublevel u′. This
naturally defines ψ′.

2 We perform this downwards induction from each Sacks sublevel u of p. So this defines for each
v < u in sblvls(p) the objects duv and ψu

v , satisfying (which is just 5.1.0.9):

modulo (v′ : v ≤ v′ ≤ u), each η ∈ poss(p,<v) decides
˜
xuv to be ψu

v(η). (5.1.0.10)

Also, the norms of each Sacks column and subatom drop by at most 1.

3 Note that for a given v, there are only finitely many possibilities for duv and ψu
v . So by König’s

Lemma there is a sequence (d∗v, ψ
∗
v)v∈sblvls(p) such that

for each sublevel v′ there is an u > v′ such that duv′′ = d∗v′′ and ψ
u
v′′ = ψ∗v′′ for

all v′′ ≤ v′.
(5.1.0.11)

2cf. 2.7.0.31
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4 We now construct q by replacing the subatoms and Sacks columns in p at sublevel v with d∗v (for
each v ∈ sblvls(p)). So q has the same w as p, the same supports, the same halving parameters and
the same trunk; and all norms decrease by at most 1. We claim that q rapidly reads

˜
r, i.e., we claim

that each η ∈ poss(q,<v) decides
˜
r |H(<v).

5 Pick a v′ > v such that vdec(v′) ≥ v. According to the definition (5.1.0.6), this means that

˜
r |H(<v) is decided below v′. Then pick u > v′ as in (5.1.0.11). Recall (from (5.1.0.10)) that

˜
xuv

is decided below v by ψu
v modulo the sequence (duv′′ : v ≤ v′′ < u). Recall that vdec(v′) ≥ v

and u ≥ v′. So min(vdec(u),v) = v, therefore
˜
xuv =

˜
r |H(<v). And, since vdec(v′) ≥ v,

˜
xuv is

decided already (by the original condition p) below v′. So we can omit the assumption that the
generic is compatible with duu′′ for any v′ ≤ u′′ < u and still correctly compute

˜
xuv with ψu

v modulo
(duu′′ : v ≤ u′′ < v′).

In particular, ψu
v = ψ∗v correctly computes

˜
xuv =

˜
r |H(<v) modulo q (since q contains duu′′ = d∗u′′ for

each u′′ < v′.)

5.2 Halving and unhalving

We will now, for the first and only time in this paper, make use of the halving parameter. We will
show how to “halve” a condition q to half(q), and then “unhalve” any r ≤ half(q) with “positive
norms” to some s ≤∗ q with “large norms”. This fact will only be used in the next section, to show
pure decision.

We repeat the definition of the lim-inf norm from 2.5.0.21:

nor
maxposs(<mdn)
liminf (c, h) =

log2(N c
h − d(c, h))

maxposs(<mdn)
for N c

h := min{nor(c(ξ, h)) : ξ ∈ supp ∩ Ξli}.

If we increase d := d(c, h) to

d′ := d+
N c
h − d
2

=
N c
h + d

2
, (5.2.0.12)

then the resulting lim-inf norm (hence also the compound norm) decreases by at most 1/maxposs(<mdn).

Definition 5.2.0.13. Given a compound creature c, we set half(c) to be the same compound creature
as c, except that we replace each halving parameter d(h) by the d′(h) described above.
So nor(half(c)) ≥ nor(c)− 1/maxposs(<mdn).
Similarly, given a condition p and a level h ∈ wp, we set half(p,≥h) to be the same as p, except that
all compound creatures p(`) for ` ≥ h are halved (and nothing changes below h).

The point of halving is the following: Assume that the norms in q are “large” and that r ≤ half(q)

has norms that are just > 0. Then there is an “unhalved version” of r, an s ≤ q, such that the norms
in s are “large” and still s ≤∗ r.

In more detail:

Lemma 5.2.0.14 (Unhalving). Fix

• M ∈ R,

• a condition q,

• h ∈ wq such that nor(q(`)) ≥M for all ` ≥ h in wq,

• a condition r ≤ half(q,≥h) such that min(wr) = h and nor(r(`)) > 0 for all ` in wr.
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Then there is an s such that

1. s ≤ q.

2. h = min(ws).

3. Writing h1 for the successor of h in ws, we have nor(s, `) ≥M for all ` ≥ h1 in ws.

4. supp(s, h) = supp(q, h).

5. Above h1, s is the same as r, i.e.:

• For ` ≥ h1: ` ∈ ws iff ` ∈ wr, and for such ` we have s(`) = r(`).

• The trunks agree above h1.

• So in particular, supp(s) = supp(r), and the norms do not change above h1 (hence are
≥M).

6. nor(s, h) ≥M − 1/maxposs(<h).

7. poss(s,<h1) ⊆ poss(r,<h1).

Note that (5) and (7) implies s ≤∗ r (by 3.1.0.2). So (by 5.1.0.3), if r essentially decides a name

˜
τ , then so does s.

Proof. First fix h0 ∈ wr bigger than h such that nor(r(`)) > M for all ` ≥ h0. Let h1 be the
wr-successor of h0.

We set ws := {h} ∪ wr \ h1. The trunk ts will extend tr (and will contain some additional in the
“area” [h, h1)× (supp(r, h0) \ supp(q, h))).

For ` ≥ h1 in ws, we set s(`) := r(`).
We set d0 := glue(r(h), . . . , r(h0)), and choose arbitrary r-compatible elements for the new parts

of the trunk ts. We then let d1 be the restriction of d0 to supp(q, h) (again, choosing r-compatible
elements for the new parts of the trunk ts).

Now we construct d from d1 by replacing each halving parameter dd1(k) by dq(k) (for all h ≤
k < h1). We set s(h) = d. This completes the construction of the condition s.

It is straightforward to check that the requirements are satisfied. We will show nor(s(h)) =

nor(d) ≥M − 1/maxposs(<h):
The norm of d is the minimum of several subnorms:

• The width norm, which is ≥M , as supp(d) = supp(q, h) and nor(q(h)) ≥M .

• The Sacks norms of the Sacks columns d(ξ) = r(ξ, h)⊗ · · · ⊗ r(ξ, h0) for ξ ∈ supp(d) ∩ Ξsk:

norSacks(d(ξ)) = nor
B(h),h
Sacks (d(ξ)) ≥ nor

B(h),h
Sacks (r(ξ, h0)) ≥

≥ nor
B(h0),h0

Sacks (r(ξ, h0)) = norSacks(r(ξ, h0)) ≥M,

by 2.3.0.17.

• The lim-sup norms: norlimsup(d, ξ) ≥ norlimsup(r(h0), ξ) ≥M .

• So it remains to deal with the lim-inf norm.
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So we have to show that for h ≤ ` < h1,

nor
maxposs(<h)
liminf (d, `) =

log2(Nd
` − d(c, `))

maxposs(<h)
≥M − 1

maxposs(<h)
, (5.2.0.15)

where Nd
` := min{nor(d(ξ, `)) : ξ ∈ supp(d) ∩ Ξli}.

Recall d′(`) as defined in (5.2.0.12). These are the halving parameters used in half(q), and since
r ≤ half(q) we know that dr(`) ≥ d′(`) (where dr are the halving parameters used in r).

Let m ∈ wr correspond to ` (i.e., m ≤ ` and ` less than the wr-successor of m). As nor(r(m)) > 0,
we know that

0 < nor
maxposs(<m)
liminf (r(m), `) ≤ nor

maxposs(<h)
liminf (r(m), `) ≤ log2(Nd

` − dr(`))
maxposs(<h)

for Nd
` as above.3

Fix any ξ ∈ supp(q, h) ∩ Ξli. Let k ∈ wq correspond to ` (as above), and set c = q(k). The
inequality above gives 0 < log2(nor(d(`, ξ))− dr(`)), which implies

nor(d(ξ, `)) > dr(`) ≥ d′(`) = dq(`) +
N c
` − dq(`)

2
.

So nor(d(`, ξ))− dq(`) > Nc
`−d

q(`)
2 for all ξ, and so

nor
maxposs(<h)
liminf (d, `) ≥ nor

maxposs(<h)
liminf (c, `)− 1

maxposs(<h)

≥ nor
maxposs(<k)
liminf (c, `)− 1

maxposs(<h)

≥M − 1

maxposs(<h)
.

5.3 Halving and pure decision

(Remark: This section is the straightforward modification of [14, Lemma 1.17].)

Lemma 5.3.0.16. Suppose that
˜
τ is a name for an element of V , that p0 ∈ Q, that M0 ∈ wp0 and

n0 ≥ 1 are such that nor(p0(h)) ≥ n0 + 2 for all h ∈ wp0 \M0. Then there is a condition q such that:

• q ≤ p0.

• q essentially decides
˜
τ .

• BelowM0, q and p0 are identical,4 i.e.: wq∩M0 = wp0∩M0 and q(h) = p0(h) for all h ∈ wq∩M0.

• nor(q(h)) ≥ n0 for all h ∈ wq \M0.

Proof. We may assume that p0 is pruned. Our proof will consist of several steps:
1. Using halving; the mini-steps.

Suppose that we are given p ∈ Q, M ∈ wp, and n ≥ 1 such that nor(p(h)) > n for all h ∈ wp \M .
We show how to construct an extension of p, denoted r(p,M, n).

First enumerate poss(p,<M) as (η1, . . . , ηm). Note that m ≤ maxposs(<M). Setting p0 = p, we
inductively construct conditions p1, . . . , pm and the auxiliary conditions p̃1, . . . , p̃m so that for each
k < m the following holds:

3The last ≤ holds since r(m) contains the same subatoms as d (on the common support; however the support of
r(m) may be larger, therefore the last inequality is not necessarily an equality).

4supp(q) can be larger than supp(p), so below M0 there will be new parts of the trunk tq .
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1. p̃k+1 is pk where we replace everything below M (and in supp(p)) with ηk+1.
Remarks:

• By (3) below, we will get min(wp̃
k+1

) = M .

• If k = 0, then p̃1 is just p ∧ η1. But for k > 0, ηk+1 will not be in poss(pk, <M), so we
cannot use the notation p̃k+1 = pk ∧ ηk+1.

• Note that generally supp(pk) will be larger than supp(p), so we do not replace the whole
trunk below M by ηk+1, but just the part in supp(p).

2. pk+1 ≤ p̃k+1. Note that we do not have pk+1 ≤ pk, for trivial reasons: their trunks are
incompatible.

3. min(wp
k+1

) = M .
Remarks:

• So by strengthening p̃k+1 to pk+1, we do not increase the overall trunk-length min(w).

• Note that we do not assume that wp
k+1

= wp
k \M , i.e., generally the w-sets will become

thinner due to gluing.

4. supp(pk+1,M) = supp(p,M).

• Remark: This only holds at level M : Generally, supp(pk+1) will be larger than supp(pk).

5. nor(pk+1, h) > n− k+1
maxposs(<M) for all h ∈ wp

k+1 \M .

6. One of the following two cases holds:

• (decide) pk+1 essentially decides
˜
τ .

• (halve) pk+1 = half(p̃k+1,≥M).

More explicitly: If the deciding case is possible, then we use it. Only if it is not possible, we
halve.

We then define r = r(p,M, n) as follows: Below M , r is identical to p; and above (including) M ,
r is identical to pm (the last one of the pk constructed above). In more detail:

• wr = (wp∩M)∪ (wp
m \M); i.e., belowM the levels of r are the ones of p; and above (including)

M the levels of r are the ones of pm.

• r(h) = p(h) for all h ∈ wr ∩M ;

• r(h) = pm(h) for all h ∈ wr \M ;

• This determines the domain of tr; and we set tr to be tp
m

restricted to this domain.

r = r(p,M, n) has the following properties:

• r ∈ Q, r ≤ p.

• nor(r(`)) > n− 1 for all ` ≥M in wr.

• If η ∈ poss(r,<M) and if there is a s ≤ r∧η such that s essentially decides

˜
τ , min(ws) = M and nor(s(`)) > 0 for all ` ≥M in ws, then r∧η essentially
decides

˜
τ .

(5.3.0.17)
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Proof of (5.3.0.17). η extends some ηk+1 ∈ poss(p,<M); so s ≤ r ∧ η ≤ pk+1 ≤ p̃k+1. All we have
to show is that pk+1 was constructed using the “decide” case. Assume towards a contradiction that
the “halve” case was used. Then s is stronger than half(p̃k+1,≥M), so we can unhalve it (using
Lemma 5.2.0.14) to get some s′ ≤ p̃k+1 with large norm such that s′ ≤∗ s, showing that we could
have used the “decide” case after all. This ends the proof of (5.3.0.17).

2. Iterations of the mini-steps; the condition q.
Given p0,M0, n0 as in the statement of the Lemma, we inductively construct conditions pk and

natural numbers Mk for k ≥ 1. Given pk and Mk, our construction of pk+1 and Mk+1 is as follows:
Choose Mk+1 ∈ wpk bigger than Mk such that

nor(pk(h)) > k + n0 + 3 for all h ∈ wpk \Mk+1.

Then set p′k+1 = r(pk,Mk+1, k+ n0 + 3), and construct pk+1 by gluing together everything between
(including) Mk and (excluding) Mk+1.

The sequence of conditions (pk)k∈ω converges to a condition of Q, which we will denote by q.
Note that r ≤ q implies that wr is a subset of (wp0 ∩M0) ∪ {M0,M1,M2, . . . } (as we have glued
everything between each Mi and Mi+1).

It is clear that q ≤ p0, and that nor(q, h) > n0 + 1 for all h ∈ wq \M0.
We will later show that q essentially decides

˜
τ (thus proving the lemma).

The following property will be central:

Assume that η ∈ poss(q,<M`) for some ` ∈ ω, and r ≤ q ∧ η essentially decides

˜
τ and min(wr) = M` and each r(m) has norm > 1 for each m ∈ wr.
Then q ∧ η essentially decides

˜
τ .

(5.3.0.18)

Proof of (5.3.0.18): η (or rather: a restriction of η to supp(p)) was considered as a possible trunk
ηk+1 in the “mini-step” when constructing r(p`−1,M`, ` + n0 + 2). So we can use (5.3.0.17). This
ends the proof of (5.3.0.18).
3. Using bigness to thin out q to prove essentially deciding.

We now repeat the construction of the proof of Lemma 5.1.0.5, but this time we do not homogenize
on the potential values of some

˜
x, but rather on whether q f η essentially decides

˜
τ or not.

For now, fix a sublevel u = (`,−1) above (M0,−1) with ` ∈ wq.

• We set duu to be the collection of Sacks columns q(u). We set Bu
u to be the set of η ∈ poss(q,<u)

such that q f η essentially decides
˜
τ .

• By downwards induction on u′ ∈ sblvls(q), (M0,−1) ≤ u′ < u, we construct duu′ and B
u
u′ such

that the following is satisfied:

– duu′ is a strengthening of the subatom (or: collection of Sacks columns) q(u′), the norm
decreases by at most 1.

– (Homogeneity) Bu
u′ is a subset of poss(q,<u′), such that for each η ∈ Bu

u′ and each
ν ∈ poss(duu′) η

_ν ∈ Bu
u′+1; and analogously for each η ∈ poss(q,<u′) \ Bu

u′ and each
ν ∈ poss(duu′), η

_ν /∈ Bu
u′+1.

(Just as in the case of rapid reading, we can find these objects using bigness: Assume that
u′′ is the sblvls(q)-successor of u′; by induction there is a function F which maps each η ∈
poss(q,<u′′ to {∈ B, /∈ B}; we thin out q(u′) to duu′ such that for each ν ∈ poss(q,<u′) each
extension of ν compatible with duu′ has the same F -value F ∗(ν); this in turn defines Bu

u′ .)



5.4. Properness, ωω-bounding, rapid reading, no randoms 37

• Assume that v < u as above, that η ∈ poss(q,<v), that q f η essentially decides
˜
τ and that

η′ ∈ poss(q,<u) extends η. Then trivially q f η′ also essentially decides
˜
τ . So we get:

If q f η essentially decides
˜
τ for η ∈ poss(q,<v), then η ∈ Bu

v for any u > v. (5.3.0.19)

• We now show the converse:

Whenever η ∈ Bu
u′ for some sublevel u′ of the form (M`′ ,−1) ≤ u for some `′,

then q ∧ η essentially decides
˜
τ .

(5.3.0.20)

(Equivalently: q f η essentially decides
˜
τ , as q f η =∗ q ∧ η.) Proof: We can modify q to a

stronger condition r using η as trunk and using duu′′ for all u
′ ≤ u′′ ≤ u. Any η′ ∈ poss(r,<u) is

in Bu
u , so qfη′ =∗ rfη′ essentially decides

˜
τ . So r essentially decides

˜
τ . Also, each compound

creature in r has norm > 1, so we can use (5.3.0.18). This ends the proof of (5.3.0.20).

• So to show that q essentially decides
˜
τ , it is enough to show that for all η ∈ poss(q,<(M0,−1))

there is a u such that η ∈ Bu
(M0,−1).

• As in the rapid reading case, we choose an “infinite branch” (d∗v, B
∗
v). I.e.: for each v′ there is

a u > v′ such that (duv, B
u
v ) = (d∗v, B

∗
v) for each v ≤ v′. This defines a condition q1 ≤ q.

• To show that q essentially decides
˜
τ , it is enough to show η ∈ B∗(M0,−1) for all η ∈ poss(q,<M0) =

poss(q1, <(M0,−1)).

So fix such an η. Find any r ≤ q1 ∧ η deciding
˜
τ . Without loss of generality, min(wr) = M`

for some `, and each compound creature in r has norm at least 1. Let η′ > η be the trunk of
r (restricted to supp(q) and M`). According to (5.3.0.18), q ∧ η′ essentially decides

˜
τ .

Pick some u > (M`,−1) such that (duv, B
u
v ) = (d∗v, B

∗
v) for each v ≤ (M`,−1). According

to (5.3.0.19), η′ ∈ B∗v. By homogeneity, η ∈ B∗(M0,−1). So according to (5.3.0.20), q ∧ η
essentially decides

˜
τ .

5.4 Properness, ωω-bounding, rapid reading, no randoms

A standard argument now gives the following:

Theorem 5.4.0.21. Q satisfies (the finite/ωω-bounding version of) Baumgartner’s Axiom A, in
particular it is proper and ωω-bounding and (assuming CH in the ground model) preserves all cofi-
nalities. Also, Q rapidly reads every

˜
r ∈ 2ω.

Proof. We already know that we can rapidly read each real if we can continuously read it.
We define q ≤n p as: q ≤ p and there is an h ∈ wq, h ≥ n, such that q and p are identical below

h and nor(q(`)) > n for all ` ≥ h.
It is clear that any sequence p0 ≥0 p1 ≥1 p2 ≥2 . . . has a limit; and Lemma 5.3.0.16 shows that

for any name
˜
τ of an ordinal, n ∈ ω and p ∈ Q, there is a q ≤n p such that modulo q there are only

finitely many possibilities for
˜
τ .

Rapid reading gives us:

Lemma 5.4.0.22. Every new real is contained in a ground model null set, i.e., no random reals are
added. So assuming CH in the ground model, we will have cov(N ) = ℵ1 in the extension.
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Proof. Let
˜
r be the name of an element of 2ω and p a condition. Let q ≤ p rapidly read

˜
r. So for

all ` ∈ wq,
˜
r |H(<`) is determined by each η ∈ poss(q,<`). Hence, the set Aq` of possibilities for

˜
r |H(<`) has size at most maxposs(<`) < H(<`) < 2H(<`)

/`. So Aq` has “relative size” < 1/`, and the
sequence (Aq`)`∈ω defines (in the ground model) the null set

N = {s ∈ 2ω : (∀` ∈ wq) s |H(<`) ∈ Aq`}.

And q forces that
˜
r ∈ N .



Chapter 6

The specific forcing and the main
theorem

6.1 The forcing

Recall that Ξ is partitioned into Ξsk, Ξli and Ξls. We now further partition Ξls into Ξnn and Ξcn.
So every ξ ∈ Ξ has one of the following four types:

• type sk (Sacks) for ξ ∈ Ξsk,

• type cn (cofinality null) for ξ ∈ Ξcn,

• type nn (non null) for ξ ∈ Ξnn, and

• type nm (non meager) for ξ ∈ Ξli. So nm is the only lim-inf type.

Let κt be the size of Ξt.

In the inductive construction of Q in Section 4, several assumptions are made in the subatom
stages u. We will satisfy those assumptions in the following way:

For each type t ∈ {cn, nn, nm} we assume that we have a family of subatomic families K′t,b indexed
by a parameter b, such that for each b ∈ ω, K′t,b is a subatomic family living on some POSS′t,b

satisfying b-bigness. Actually, we will require a stronger variant of b-bigness such that we can find
an homogeneous successor subatom while decreasing the norm not by 1 but by at most 1/b. I.e., we
require:

For x ∈ K′t,b and F : poss(x)→ b there is a y ≤ x such that nor(y) ≥ nor(x)− 1/b

and F |poss(y) is constant.
(6.1.0.1)

Additionally we require that

there is at least one subatom in K′t,b with norm ≥ b (6.1.0.2)

.

Then we set for each subatomic sublevel u = (`, j)

b(u) := B(u) · (b(v) + 1) + 1, (6.1.0.3)

39
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where v is the largest1 subatomic sublevel smaller than u. So the sequence b(u) is strictly (actually:
very quickly) increasing. According to the definition 4.0.0.1 of B(u), we also get:

Lemma 6.1.0.4. XX where do we need this? XX
b(u) ≥ 2 ·maxposs(<u), and even b(u) ≥ 2(number of sublevels below u)·maxposs(<u).

Then we set (for all ξ ∈ Ξt)
Kξ,u := K′t,b(u).

This way we automatically satisfy requirements (b) and (c) of item (∗5) on page 28. And since
there are only four, i.e., finitely many, types, there is automatically a bound M on |POSSξ,u | as
required in (d).

Strong bigness gives us the following property:

Lemma 6.1.0.5. Let I be a finite set of subatomic sublevels (and thus I is naturally ordered).
Let v be the minimum of I. For each u ∈ I let ξu ∈ non-sk and xu a subatom in Kξu,u. Let
F :

∏
u∈I poss(xu) → b(v). Then there are yu < xu with nor(yu) ≥ nor(xu) − 1/b(u) and such that

F |
∏

u∈I poss(yu) is constant.

Proof. We construct yu by downwards induction on u ∈ I: Let u′ be the maximum of I, then F can
be written as function from poss(xu′) to b(v)P , where P =

∏
u∈I\{u′} poss(xu). As |P | is less than

the number of sublevels below u′ times maxposs(<u′), we get |P | < b(u′), and thus can use strong
bigness to get yu′ < xu′ .

Now continue by induction.

The families K′t,r that we will actually use are described in Section 10 for t = cn, Section 8 for
t = nn, and Section 7 for t = nm.

In addition, we will define there for each K′t,b a number H ′(t,=b), and in the inductive construc-
tion, we define H as follows:

Definition. H(<(0,−1)) := 3. If u = (`, j) is a sublevel with immediate predecessor u′, we define
H(<u) = H(≤u′) in cases by:

• For a Sacks sublevel u (i.e., j = −1), H(<`) = H(<u) := 2 + ` + maxposs(<`) + H(<u′) +

max({H ′(t,=b(u′)) : t ∈ {nm, nn, cn}}).

• For j = 0: H(<u) := 1 +H(<u′) + max(Isk,`).

• For j > 0, H(<u) := 1 +H(<u′) + max{H ′(t,=b(u′)) : t ∈ {nm, nn, cn}}).

So in particular, if p rapidly reads
˜
r, then for all t ∈ {nm, nn, cn} and all subatomic sublevels u

˜
r |H ′(t,=u) is decided ≤ b(u). (6.1.0.6)

Note that once we fix the parametrized subatomic families K′t,b andH ′(t,=b) (and the cardinalities
κt), we have specified everything required to construct Q, and Q will satisfy Baumgartner’s Axiom A,
will be ωω-bounding, and, assuming CH, will have the ℵ2-cc. We also get rapid reading.

1If u is (0, 0), the smallest of all subatomic sublevels, we just set b(u) := B(u). By the way, it would be enough
to set b(u) := B(u), as this sequence would be increasing sufficiently fast, but this would require two extra lines of
calculations.
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6.2 The main theorem

We will show:

Theorem 6.2.0.7. Assume (in V ) CH, κnm ≤ κnn ≤ κcn ≤ κsk and κℵ0t = κt for t ∈ {nm, nn, cn, sk}.
Then there is a forcing Q which forces

1. cov(N ) = d = ℵ1,

2. non(M) = cof(M) = κnm,

3. non(N ) = κnn,

4. cof(N ) = κcn,

5. 2ℵ0 = κsk.

Moreover, Q preserves all cardinals and all cofinalities.

As mentioned above, we fix disjoint index sets Ξt (t ∈ {sk, cn, nn, nm}) of respective sizes κt,
and we construct Q as described above. Then the following points are obvious or have already been
shown:

(1) d = ℵ1, since Q is ωω-bounding. And it was already shown in Lemma 5.4.0.22 that no random
reals are added, so cov(N ) = ℵ1.

(5) If α 6= β ∈ Ξsk, then the generic reals at α and β are forced to be different, so we have at least
κsk many reals. Every real in the extension is read continuously, so by Lemma 5.1.0.4 there
are at most κℵ0sk = κsk many reals.

(•) The “moreover” part is clear because Q satisfies Baumgartner’s Axiom A and has the ℵ2-cc.

In the rest of the paper, we will describe the families K ′t,b and H
′(t,=b) and prove the remaining

parts of the main theorem:

(2) In ZFC, max(d,non(M)) = cof(M). And non(M) ≤ κnm is shown in 6.4.0.12, and ≥ in 7.3.0.7.

(3) non(N ) ≤ κnn is shown in 10.5.0.10; and ≥ in 8.3.0.5.

(4) cof(N ) ≤ κcn is shown in 6.3.0.11; and ≥ in 10.4.0.8.

6.3 The Sacks part: cof(N ) ≤ κcn

We will show that every null set added by Q is contained in a null set which is already added by the
non-Sacks part.

We will first show that the quotient Q/QΞnon-sk (in other words: the extension from the universe
obtained not using the sacks coordinates to the full generic extension) has the Sacks property.

Recall that the Sacks property states (or, depending on the definition, is equivalent to): Every
function in ωω in the extension is caught by an (n + 2)-slalom from the ground model. (I.e., there
is a function S : ω → [ω]<ω in the ground model with |S(n)| ≤ n+ 2, and f(n) ∈ S(n) for all n.)

The Laver property is similar, but only applies to functions f in the extension which are bounded
by a ground model function.

We get

Lemma 6.3.0.8. 1. Laver property is equivalent to:
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Whenever
˜
r ∈ 2ω is in the extension and G : ω → ω in the ground model,

then there is in the ground model a tree T (without terminal nodes) such that
˜
r ∈ [T ]

and |T | 2G(n)| < n+ 2 for all n.

2. The Sacks property is equivalent to the conjunction of Laver property and ωω-bounding.

3. If an extension has the Sacks property, then any new null set is contained in an old null set.

Proof. For the well known (2) and (3) see, e.g., [4, Theorem 2.3.12]. For (1), we only show how to
get the Laver property (which is enough for this paper, and the other direction is similarly easy).

Suppose that g : ω → ω is given. Enumerate {(n,m) : m ≤ g(n)} in lexicographic order as
(ni,mi). Define a function G : ω → ω by

G(n) = min{i : ni > n} = n+ 1 +
∑
k≤n g(k).

(For convenience we will think of G(−1) = 0.) Note that according to the enumeration given above,
every function r : ω → 2 determines a subset of

∏
n<ω(g(n)+1) by {(ni,mi) : r(i) = 1}. Accordingly,

certain functions r induce a function bounded by g: those functions r such that given any n there is a
unique m ≤ g(n) such that (n,m) is in the subset determined by r as described above. (Equivalently,
for each n there is a unique G(n− 1) ≤ i < G(n) such that r(i) = 1.) Given such an r, by val(r, n)

we denote mi where G(n− 1) ≤ i < G(n) is such that r(i) = 1.
Note that given any function f bounded by g there is a unique function rf : ω → 2 (which

determines a function bounded by g as described above) such that val(rf , n) = f(n) for all n.
Suppose that

˜
f is a name for a function bounded by the ground model function g. Let

˜
rf be a name

for the function ω → 2 as described above, and let T be the tree guaranteed to exist by the assumption
(using the function G defined from g above). We may assume that all branches x of T determine a
function bounded by g as described above. Now define a slalom S by S(n) = {val(x, n) : x ∈ [T ]}.
It is clear that S catches

˜
f .

We now prove our version of the Laver property for the quotient. As the whole forcing is ωω-
bounding, this implies the Sacks property.

Lemma 6.3.0.9. 1. Assume that p is a condition,
˜
r ∈ 2ω a name and G : ω → ω is in V .

Then there is a q ≤ p and a name
˜
T ⊆ 2<ω (of a tree without terminal nodes) such that: q

continuously reads
˜
T not using any Sacks indices; q forces r ∈ [

˜
T ]; and |

˜
T | 2G(n)| < n+ 2 for

all n.

2. Therefore the quotient Q/QΞnon-sk has the Laver property (and thus the Sacks property).

Proof. If G1(n) ≤ G2(n) for all n, and
˜
T witnesses the conclusion of the lemma for G2, then

˜
T also

witnesses the lemma for G1. So we may without loss of generality increase the function G whenever
this is convenient.

We can assume that p rapidly reads
˜
r, i.e., poss(p,<n) determines

˜
r |H(<n) for all n ∈ wp.

We can then assume that there is a strictly increasing function G′ such that G′(n) ∈ wp and
G(n) = H(<G′(n)) for all n (as we can increase G).

Also, to simplify notation, we can assume that wp = {G′(0), G′(1), . . . }. (Otherwise, just glue.)
So each η ∈ poss(p,<G′(n)) determines a value for

˜
r |G(n), which we call Rn(η). We view η as

a pair (ηsk, ηnon-sk) for ηt := η |Ξt for t ∈ {non-sk, sk}. Accordingly we write Rn(ηsk, ηnon-sk). If we
fix ηsk, then Rn(−, ηsk) can be viewed as a name (for an element of 2G(n)) which does not depend
on the Sacks part, in the following way: If there is a ηnon-sk compatible with the generic filter such
that (ηnon-sk, ηsk) = η ∈ poss(p,<G′(n)), then the value is Rn(η) (and otherwise ∅, say).
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Below we will construct q ≤ p by gluing and by strengthening Sacks columns (and we will leave
the support, the subatoms and the halving parameters unchanged).

Assume we have such a q, and assume that G′(m0) < G′(m1) are consecutive elements of wq.
Note that G′(m0) < G′(m0 + 1) < · · · < G′(m1 − 1) < G′(m1) are consecutive elements of wp. Fix
η ∈ poss(q,<G′(m1)) and m0 ≤ ` ≤ m1. Then η extends a unique element of poss(q,<G′(`)), which
we call η`. We can then restrict η` to the Sacks part: η`sk := η` |Ξsk.

Note:

• η`sk is η restricted to the Sacks part and to “height G′(`)”, i.e.,

η`sk := η |Ξsk × (1 + max(Isk,G′(`))).

• q ∧ η forces that the name R`(−, η`sk) (which does not depend on the Sacks part) is evaluated
to

˜
r |G(`).

• So q forces that
˜
r |G(`) is an element of

˜
T ` := {R`(−, η`sk) : η ∈ poss(q,<G′(m1))},

a name not depending on the Sacks part.

So it is enough to show that there are few η`sk, i.e.,

|S`| < `+ 2 for S` := {η`sk : η ∈ poss(q,<G′(m1))}. (?`)

We will now by induction on n:

1. construct hn, where wq will be the set {G′(h0), G′(h1), . . . };

2. construct q below G′(hn),

3. and show that (?`) holds for all ` ≤ hn.

We set h0 = 0; so G′(h0) = min(wp) and q below G′(h0) has to be identical to p. And (?0) holds
as S0 is a singleton.

Assume we have already constructed hn and q below G′(hn), satisfying (?`) for ` ≤ hn.

1. For any I and s ⊆ 2I , we write nor∗Sacks(s) for nor
B(G′(hn)),G′(hn)
Sacks (s), see 2.3.0.16. (I.e., the

Sacks norm that would be assigned to a Sacks column starting at G′(hn) which has the same
norsplit as s.) Let Σ := supp(p,G′(hn)) ∩ Ξsk, the set of Sacks indices active at the current
level. Let s be minimal such that nor∗Sacks(2

s) ≥ n, and define h′ by

h′ := (hn + 1) · 2s·|Σ|. (6.3.0.10)

Finally, let hn+1 be minimal such that for all ξ ∈ Σ there is an `(ξ) with h′ ≤ `(ξ) < hn+1 and
nor∗Sacks(p(ξ,G

′(`(ξ)))) ≥ n. (We can find such `(ξ), as even norSacks(p(ξ,G
′(`))) diverges to

infinity.)

2. G′(hn) < G′(hn+ 1) < · · · < G′(hn+1−1) < G′(hn+1) are consecutive elements of wp. We glue
p between G′(hn) and G′(hn+1 − 1)), so G′(hn) and G′(hn+1) will be consecutive elements of
wq.

We now define the compound creature q(G′(hn)), a pure strengthening of the compound crea-
ture glue(p(G′(hn), . . . , p(G′(hn+1 − 1)))): The subatoms are unchanged. So we just have to



44 Chapter 6. The specific forcing and the main theorem

specify for each ξ ∈ supp(p, hn) ∩ Ξsk the new Sacks column q(ξ, hn) ≤ p(ξ,G′(hn)) ⊗ · · · ⊗
p(ξ,G′(hn+1 − 1)) as follows: Recall that there is one `(ξ) such that h′ ≤ `(ξ) < hn+1 and
nor∗Sacks(p(ξ,G

′(`(ξ)))) ≥ n. Choose a singleton subset of p(ξ,G′(m)) for all m 6= `(ξ), and at
m = `(ξ) pick a subtree of p(ξ,G′(m)) which is isomorphic to 2s (in the sense that each branch
has s splitting points).

By the definition of s, we have norSacks(q(ξ, hn)) ≥ n, and therefore

nor(q(hn)) ≥ min(n, nor(p(hn), . . . ,nor(p(hn+1 − 1)))).

So in particular the q we get after the induction will be an element of Q.

3. As we choose singletons below G′(h′), |Shn | = |Shn+1| = · · · = |Sh′−1|. By induction, |Shn | <
hn + 2; so (∗`) holds for ` ≤ h′. For each h′ ≤ ` ≤ hn+1, we added at each ξ ∈ Σ at most once
at most 2s many possibilities. So |S`| ≤ (hn + 1) · 2s·|Σ| < `+ 2, by (6.3.0.10).

By Lemma 6.3.0.8(3), we conclude:

Corollary 6.3.0.11. 1. If
˜
N is the name of a null set and p a condition, then there is a q ≤ p

and some name of a null set
˜
N ′ not depending on any Sacks indices such that q forces

˜
N ⊆

˜
N ′.

2. Q forces cof(N ) ≤ κcn.

6.4 Lim inf and lim sup: non(M) ≤ κnm

The following does not require any knowledge about the particular subatoms used in the forcing
construction, the only relevant fact is that the nm indices are the only ones that a lim-inf construction.

Lemma 6.4.0.12. Q forces non(M) ≤ κnm.

Proof. We claim that the set of all reals that can be read continuously from nm-indices is not meager.
This set has size ≤ κnm by Lemma 5.1.0.4.

Let
˜
M be a name for a meager set. We can find names

˜
Tn ⊆ 2<ω for nowhere dense trees such

that
˜
M =

⋃
n∈ω[

˜
Tn] is forced. We want to show that we can continuously read a real

˜
r /∈

˜
M using

only the nm-indices.
As Q is ωω-bounding and

˜
Tn is nowhere dense, there is in V a function fn : ω → ω such that for

each ν ∈ 2k there is a ν′ ∈ 2fn(k) extending ν and not in
˜
Tn.

We fix some p ∈ Q forcing the above, and assume that p is pruned and continuously reads
˜
Tn

for each n. We will construct (in V ) a q ≤ p and an
˜
r continuously read by q only using nm indices,

such that q forces
˜
r /∈

˜
M .

Assume we have already constructed q below some kn ∈ wq, and that we already have some
hn ∈ ω and a name

˜
`n for an element of 2hn that is decided by poss(q,<kn) |Ξnm. (The real

˜
r will be

the union of the
˜
`n.) We also assume that is already guaranteed that

˜
`n is not in

˜
T0 ∪ · · · ∪

˜
Tn−1).

Enumerate poss(q,<kn) as η0, . . . , ηK−1.
Set k0 := kn, h0 := hn,

˜
`0 :=

˜
`n, and we define q′ below k0 to be q. By induction on r ∈ K

we now deal with ηr: Assume we are given a name
˜
`r for an element of 2h

r

that is decided by
poss(q′, <kr) |Ξnm, and that we have constructed q′ below kr ∈ wp, in a way that between k0 and kr

on the non-nm indices, all subatoms and Sacks-columns in q′ are singletons.
Set hr+1 := fn(hr). Choose kr+1 ∈ wp bigger than kr and large enough to determine

˜
X :=

˜
Tn |hr+1. I.e., there is a function F from poss(p,<kr+1) to potential values of

˜
X. We now define q′

between kr and kr+1: The nm-subatoms are unchanged (i.e., the ones of p), for the other subatoms
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and Sacks columns, we choose arbitrary singletons. A ν ∈ poss(p,<kr+1) consists of: the part below
kr called A, then non-nm-part above kr called B, and the nm-part above kr called C. So we can
write

˜
X = F (A,B,C). If we assume that the generic chooses ηr (i.e., A = ηr) and then follows the

singleton values of q on the non-nm-part (which determines B to be some Bq), then
˜
X can be written

as nm-name. More formally: We can define
˜
X ′ as F (ηr, Bq,−), which is a nm-name and forced by q

to be
˜
X.

Also, we know that p forces that there is an element `′ ∈ 2h
r+1

which extends
˜
`r (which by

induction is already determined by the nm-part of ηr) and which is not in
˜
X. So (in V ) we can pick

for all choices of C an `′(C) ∈ 2h
r+1 \ F (ηr, Bq, C) extending

˜
`r. Then

˜
`r+1 = `(−) is a nm-name

determined below kr+1, and q forces that
˜
`n+1 extends

˜
`n, and q ∧ ηr forces that

˜
`n+1 /∈

˜
Tn.

We repeat the construction for all r ∈ K, and set `n+1 := `K , hn+1 := hK and set kn+1 to be
the wp-successor of kK , where we use the Sacks columns and subatoms of p between kK and kn+1.
We now glue the condition between kn and kn+1. This results in a condition that still has “large”
norm, as described in Lemma 3.5.0.17.



Chapter 7

The nm part

7.1 The subatomic creatures for type nm

We now describe the subatomic family K′nm,b used at nm-indices (depending on the parameter b).

Definition 7.1.0.1. 1. Fix a finite index set I ⊆ ω which is large enough so that item (4) below
is satisfied. For notational simplicity, we assume that I is disjoint to all intervals already used.1

2. POSSnm,b := 2I .

3. A subatomic creature x is just a nonempty subset of 2I , where we set poss(x) := x and

nor(x) :=
1

b
logb(|poss(x)|).

4. We require nor(POSS) > b (thus satisfying (6.1.0.2)).

5. We set H ′(nm, b) := 2max(I)+1.

Clearly, the norm satisfies strong b-bigness (i.e., satisfies the requirement (6.1.0.1)).

Note 7.1.0.2. We just used the simplest possible norm here. It turns out that the details of the
definition of this norm are not relevant, as long as the norm has bigness. Later in section 10.6 we
will use a different norm to get a different constellation of cardinal characteristics.

7.2 The generic object

Recall that (according to Section 6.1) when constructing the forcing at subatomic sublevels u, we
use for all ξ ∈ Ξnm the subatomic family Kξ,u = K′nm,b(u) living on some interval I, which we will call
Inm,u.

Fix α of type nm. Recall that the generic object
˜
yα assigns to each subatomic sublevel u the

element of POSSα,u chosen by the generic filter.
We define the name

˜
Mα of a meager set as follows:

A real r ∈ 2ω is in
˜
Mα iff for all but finitely many levels ` there is a subatomic

sublevel u = (`, j) such that r | Inm,u 6=
˜
yα(u).

(7.2.0.3)

1This is a bit fuzzy, but it does not matter how we interpret it. More specifically, we could use any of the following:
“disjoint to all I that are associated to smaller parameter values b′ < b”, or: “disjoint to all I that have actually been
used in type nm for some Kξ,v”; and since H′(nm,=b) is larger than max(I), it would also follow from: “the minimum
of I is bigger than H(<u′), where u′ is the predecessor of the current sublevel”.
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If p rapidly reads
˜
r, then according to (6.1.0.6) and 7.1.0.1(5),

˜
r | Inm,u is decided ≤ u. (7.2.0.4)

Also, since b(u) > maxposs(<u), we get:

If the norm of a nm-subatom x at sublevel u is at least 1, then |poss(x)| >
maxposs(<u).

(7.2.0.5)

(Recall Note 7.1.0.2: This is true whenever the norm has bigness.)

7.3 non(M) ≥ κnm

Lemma 7.3.0.6. Let
˜
r be a name of a real, p a condition that rapidly reads

˜
r not using2 α ∈ Ξnm.

Then p forces that
˜
r ∈

˜
Mα.

Proof. It is enough to prove that some q ≤ p forces that
˜
r ∈

˜
Mα: Assume that p does not force

˜
r ∈

˜
Mα, then some p′ ≤ p forces the negation; p′ still rapidly reads

˜
r not using α, so if we know that

there is a q ≤ p′ as claimed, we get a contradiction.
We can assume that p is pruned and that α ∈ supp(p). We will construct a q purely stronger than

p (in particular with the same w, halving parameters, and trunk). Actually, we will only strengthen
one subatom at index α for each level h ≥ min(wp).

For all h ≥ min(wp) (not necessarily in wp), there are several j ∈ Jh such that nor(x) > 1 for
the subatom x = p(α, (h, j)). For each such h we pick exactly one subatomic sublevel u(h) = (h, j),
with x(h) the according subatom.

According to (7.2.0.4),
˜
r | Inm,u is decided ≤ u and therefore even below u (since α is the active

index at sublevel u; according to modesty no other index can be active; and
˜
r does not depend on

α). Therefore there are at most maxposs(<u) many possibilities for
˜
r | Inm,u. According to (7.2.0.5)

there has to be at least one element s of poss(x(h)) which differs from all of these possibilities. So we
can in q replace the subatom x(h) with the singleton {s}. Then the norms in q will still be large. (If
A ⊆ Jh witnesses the large norliminf of p, then A \ {j} for u(h) = (h, j) witnesses that the norliminf

of q decreases only slightly.)
So q is constructed by strengthening each x(h) in this way. Clearly q ≤ p is still a valid condition,

and forces
˜
r ∈

˜
Mα, as

˜
r | Inm,(h,u(h)) disagrees with

˜
yα for all h ≥ min(wp).

Corollary 7.3.0.7. Q forces non(M) ≥ κnm.

Proof. Assume that κnm > ℵ1 (otherwise there is nothing to show). Fix a condition p and κ < κnm

and names (
˜
ri)i∈κ of reals. It is enough to show that there is an α ∈ Ξnm such that p forces that

{
˜
ri : i ∈ κ} is a subset of the meager set

˜
Mα.

For each i fix a maximal antichain Ai below p such that each a ∈ Ai rapidly reads
˜
ri. Due to

ℵ2-cc, and since κnm > ℵ1 and κnm > κ, we can find an index α ∈ Ξnm not appearing in the support
of any condition in any Ai. According to the previous lemma, every element a ∈ Ai (and hence also
p itself) forces that

˜
ri ∈

˜
Mα.

2cf. 5.1.0.1



Chapter 8

The nn part

8.1 The subatomic creatures for type nn

We describe the subatomic families K′nn,b , depending on a parameter b.

Definition 8.1.0.1. 1. Fix an interval I large enough such that (4) is satisfied (and in particular
|I| > b). As in the nm subatoms, we assume that this interval I is disjoint to all intervals
previously chosen.

2. The basic set of all possibilities, POSS, consists of all subsets X of 2I with relative size 1−1/2b:

POSS := {X ⊆ 2I : |X| = (1− 1/2b)|2I |}.

3. A subatom C = poss(C) is a subset of POSS, where we set

nor(C) :=
1

b
logb(nor0(C)), where

nor0(C) := min{|Y | : Y ⊆ 2I , (∀X ∈ poss(C))X ∩ Y 6= ∅}.

4. We require nor(POSS) > b (thus satisfying (6.1.0.2)).

5. We set H ′(nn,=b) := max(I) + 1.

Note that nor0 of the subatom with full possibility set is approximately 2|I|/2b. In particular, for
large I the norm gets large, i.e., we can satisfy (4).

Lemma 8.1.0.2. 1. The subatomic family has strong b-bigness (i.e., satisfies the requirement (6.1.0.1)).

2. Given E ⊆ 2I and a subatom C, then the subatom C ′ with possibilities {H ∈ poss(C) : H∩E =

∅} satisfies nor0(C ′) ≥ nor0(C)− |E|.

3. From the above it follows that: If |E| ≤ bnor(C)
/2, then nor(C ′) ≥ nor(C)− logb(2).

Proof. (1): Fix F : poss(C)→ b. Let Ci be the subatom with F |poss(Ci) = i for all i ∈ b. Assume
that all Ci have nor0 at most r, witnesses by Xi ⊆ 2I . Then

⋃
Xi witnesses that nor0(C) ≤ b · r. So

nor(C) ≤ logb(b·r)/b ≤ 1/b + max(nor(Ci)). So there is at least one i with nor(Ci) ≥ nor(C) − 1/b, as
required.

(2): Assume Y witnesses nor0(C ′), then Y ∪ E witnesses nor0(C).
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(3):

bnor(C)

2
=

nor0(C)1/b

2
=

(
nor0(C)

2b

)1/b

≤

≤
[
(1− 1

2b
)
1/b · nor0(C)b

]1/b

= (1− 1

2b
) · nor0(C)

8.2 The generic object

The following paragraph is just as in the nm case 7.2:
According to Section 6.1, when constructing the forcing at subatomic sublevels u, we use for all

ξ ∈ Ξnn the subatomic family Kξ,u = K′nn,b(u) living on some interval I, which we temporarily call
Inn,u. Also, if p rapidly reads

˜
r, then

˜
r | Inn,u is decided below ≤ u.

Fix α of type nn. Recall that the generic object
˜
yα assigns to each subatomic sublevel u the

element
˜
Rα,u of POSSα,u chosen by the generic filter. So

˜
Rα,u is a subset of 2Inn,u of relative size

(1− 1/2b(u)).
Note that b(u) is strictly monotone (cf. (6.1.0.3)), and hence

∏
u subatomic sublevel(1−1/2b(u)) > 0.

Therefore
{x ∈ 2ω : ∀u : x | Inn,u ∈

˜
Rα,u}

is positive, and
{x ∈ 2ω : ∀∞u : x | Inn,u ∈

˜
Rα,u}

has measure one. Therefore

˜
Nα := {x ∈ 2ω : ∃∞u : x | Inn,u /∈

˜
Rα,u} (8.2.0.3)

is a null set. (Here, u ranges over all subatomic sublevels.)

8.3 non(N ) ≥ κnn

Lemma 8.3.0.4. Let p ∈ Q rapidly read
˜
r ∈ 2ω not using α ∈ Ξnn. Then p forces r ∈ Nα.

Proof. As in 7.3.0.6, it is enough to find a q ≤ p forcing r ∈ Nα; and we assume that p is pruned
and that α ∈ supp(p).

We construct q purely stronger than p by induction, only modifying subatoms at index α (and
decreasing their subatom norms by at most 1):

Pick a subatomic sublevel u (higher than any sublevel previously considered) where α is active
with the subatom C “living” on I := Inn,u.

˜
r | I is decided ≤ u and therefore even below u (as

˜
r is read from p not using α; and due to

modesty α is the only index active at sublevel u). So the set E of possibilities for
˜
r | I has size at

most maxposs(<u), and we can remove them all from the subatom at C while decreasing the norm
by at most 1, according to Lemma 8.1.0.2(2) and (6.1.0.4).

Repeat this for infinitely many sublevels u.

Just as in 7.3.0.7, this implies:

Corollary 8.3.0.5. Q forces non(N ) ≥ κnn.



Chapter 9

Some simple facts about counting

We now list some simple combinatorial properties that will be used for the definitions and proofs in
the cn-part.

9.1 Large families of positive sets have positive intersection,

nor∩

Lemma 9.1.0.1. For δ ∈ (0, 1) and ` ∈ ω there are M(δ, `) ∈ ω and ε∩(δ, `) > 0 such that:
Whenever we have a probability space Ω and a family (Ai : i < M) of sets of measure ≥ δ, we can
find a subfamily of ` many sets whose intersection has measure at least ε∩(δ, `).

Proof. By straightforward counting.1

We write χB for the characteristic function of B. Assume we have M many sets Ai, and set
X ⊂ Ω to contain all points that lie in at least ` many of the Ai. Then

δ ·M ≤
∫ ∑

i∈M
χAi ≤ µ(X) ·M + µ(Ω \X) · (`− 1) ≤ µ(X) ·M + `,

and µ(X) ≥ δ − /̀M. So if we set

M > 2
`

δ
,

then there are at least δ/2 “many” points in X. We can assign to each point x ∈ X a subset Mx of
M (of size at least `) by

i ∈Mx iff x ∈ Ai.

This partitions X into at most 2M many sets; and at least one of the pieces has to have size at least

ε∩(δ, `) :=
δ

2 · 2M
.

Let us set F 0
b := 1 and Fn+1

b = M(1/b, Fnb ). We can use this notion to define a norm on natural
numbers:

Definition 9.1.0.2. For m > 0: nor∩b (m) ≥ n iff m ≥ Fnb .

1Originally we used a stronger statement for which we only had a more complicated proof. We are grateful to
William B. Johnson for pointing out in http://mathoverflow.net/q/108380 that the statement in the current form
has the obvious straightforward proof.
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So we get the following:

Fix a measure space Ω and a sequence (Ti)i∈A of sets of measure ≥ 1/b. Then
there is a subset B ⊆ A such that nor∩b (|B|) ≥ nor∩b (|A|) − 1 and

⋂
i∈B Ti has

measure ≥ ε∩(1/b, |A|).
(9.1.0.3)

Note that without loss of generality the function ε∩ satisfies: ε∩(δ, `1) ≥ ε∩(δ, `2) whenever
`2 > `1 > 0. We write down the following trivial consequence of (9.1.0.3) for later reference:

Assume that A is a subset of some finite set POSS. Fix a measure space Ω and
a sequence (Ti)i∈A of sets of measure ≥ 1/b. Then there is a subset B ⊆ A such
that nor∩b (|B|) ≥ nor∩b (|A|)− 1 and

⋂
i∈B Ti has measure ≥ ε∩(1/b, |POSS |).

(9.1.0.4)

9.2 Most large subsets do not cover a half-sized set

Let Ω be the set of subsets of some finite set A ∈ ω of relative size 1 − ε (for 0 < ε < 1/4). (Since
A ∈ ω, we can write A for the cardinality |A|.) I.e.: x ∈ Ω implies x ⊆ A and |x| = A · (1− ε). We
can assume A� 1/ε and that A · ε is an integer.

Let T ⊆ A be of relative size ≥ 1/2, i.e., |T | ≥ A/2. Let ΩT be the elements of Ω that cover T ,
i.e., x ∈ ΩT iff x ∈ Ω and T ⊆ x.

We will use the following easy fact from combinatorics:

Fact 9.2.0.5. For any natural number k ≥ 2, the quotient(
2Nk
N

)(
Nk
N

)
tends to infinity with N →∞.

Proof. This can be checked with Stirling’s approximation formula, or with the following elementary
estimate: From

∀a, b :
(a− b)b

b!
≤
(
a

b

)
≤ ab

b!

we get

N ! ·
(

2Nk

N

)
≥ (2Nk −N)N and N ! ·

(
Nk

N

)
≤ (Nk)N ,

and hence (
2Nk
N

)(
Nk
N

) ≥ (2Nk −N)N

(Nk)N
≥ (2− 1

k
)N →∞.

Lemma 9.2.0.6. Fix b > 2 and a finite set I with |I| > b. Let POSS be the family of subsets of 2I

of relative size 1− 1/2b. For m ∈ ω we define nor÷I,b(m) := bm/(2|I|−1

2|I|−b)c.
Then:

1. For any T ⊆ 2I of at least relative size 1/2 and for any C ⊆ POSS there is a subset D ⊆ C

with nor÷I,b(|D|) ≥ nor÷I,b(|C|)− 1 and T 6⊆ x for all x ∈ D.

2. If I is chosen sufficiently large (with respect to b), then nor÷I,b(POSS) is large.

Proof. 1. It is enough to show this in case T has exactly size 2|I|−1. If x ∈ C \D, then the set
2I \ x has size 2|I|−b and is a subset of 2I \ T . So there are at most

(
2|I|−1

2|I|−b

)
possibilities for
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2I \ x, hence (by definition of nor÷I,b) we get nor÷(C \D) ≤ 1. From the implication

x ≤ y and bx− yc ≤ 1 ⇒ bxc − byc ≤ 1

we get nor÷I,b(C)− nor÷I,b(D) ≤ 1.

2. Note that the cardinality of POSS is equal to
(

2|I|

2|I|−b

)
. Using Fact 9.2.0.5 with N := 2|I|−b and

k := 2b−1 we get that ( 2|I|

2|I|−b)/(2|I|−1

2|I|−b) is large for large I.

9.3 Providing bigness

In this section, we write log to denote log2.
Apart from unimportant rounding effects, log of nor÷ satisfies 2-bigness (and the same for nor∩).

Instead of thinking about such effects, we just define for any norm a 2-big version. Actually, we
define a 2-big version of the combinations of two norms (of course, any finite number of norms can
be combined in this way):

Definition 9.3.0.7. Assume that nor1,nor2 : ω → ω are weakly increasing and converge to infinity.
Then we define lognor = lognor(nor1,nor2) : ω → ω as follows: By induction on m, we define

lognor(x) ≥ m by the conjunction of the following clauses:

• nor1(x) ≥ m and nor2(x) ≥ m.

• lognor(bx2 c) ≥ m− 1.

• If y ∈ ω and i ∈ {1, 2} satisfies nori(y) ≥ nori(x)− 1, then lognor(y) ≥ m− 1.

We set lognor(x) := lognor(nor∩,nor÷).

Lemma 9.3.0.8. Let lognor = lognor(nor1,nor2).

• lognor(x) is a well-defined natural number for all x, i.e., there is a maximal m such that
lognor(x) ≥ m holds.

• lognor is weakly increasing and diverges to infinity.

• lognor has 2-bigness: If F : m → 2 is a coloring function and lognor(m) = n, then there is
some c ∈ 2 such that lognor(F−1(c)) ≥ n− 1.

• So if we define norb(x) as lognor(x)
dlog(b)e , then norb will be b-big.

• If nori(y) ≥ nori(x)− 1 for some i ∈ {1, 2}, then lognor(y) ≥ lognor(x)− 1.

Proof. “Well-defined” follows from lognor(x) ≤ nori(x).
Monotonicity follows from the monotonicity of nor1 and nor2.
We now prove that by induction on m that there are only finitely many x with lognor(x) < m.

For m = 0 this is obvious, as all x satisfy lognor(x) ≥ 0. For m > 0: lognor(x) < m iff either
nor1(x) < m or nor2(x) < m or lognor(bx2 c) < m − 1 or there is some y and some i ∈ {1, 2} with
nori(y) ≥ nori(x)− 1 and lognor(y) < m− 1; for each case there are only finitely many possibilities.

2-bigness and the last item follow directly from the definition. b-bigness is Lemma 2.1.0.7.
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The cn part

10.1 The subatomic creatures for type cn

We now describe the subatomic families K′cn,b used for the cn-indices.

Definition 10.1.0.1. 1. Fix an interval I which is large enough to satisfy (4). In particular,
|I| > b. Again, we assume that this interval is disjoint to all intervals previously chosen.

2. The basic set of all possibilities and the set of subatoms is the same as in the nn-case 8.1.0.1
(but the norm will be different). So POSS consists of all subsets X of 2I with relative size
1− 1/2b:

POSS = {X ⊆ 2I : |X| = (1− 1/2b)|2I |}.

3. A subatom C is a subset of POSS, with poss(C) := C, and

nor(C) :=
lognor(nor∩b ,nor÷I,b)(|C|)

2min(I) · b2
.

4. We require nor(POSS) > b (thus satisfying (6.1.0.2)).

5. We set H ′(cn,=b) := max(H ′0, H
′
1) for H ′0 := 2( 2|I|

2|I|−b) and H ′1 := 1/ε∩(1/b,|POSS |), where ε∩ is
defined in 9.1.0.1.

Note that H ′(cn,=b) > |K′cn,b| (this is what we need H ′0 for).
Recall that lognor satisfies 2-bigness, so after dividing by b (actually, dlog2(b)e · b would be

sufficient) we get strong b-bigness (i.e., the norm satisfies the requirement (6.1.0.1)).
Note that (in contrast to the nn case) this norm is a counting norm, i.e., nor(C) only depends on

|C|, not on the “structure” of C.

10.2 The generic object

Just as in the nn-case, we set Inn,u to be the I used for K′nn,b(u); and we define
˜
Nα analogously to

the nn-case.1

As before,
˜
Nα is a name for a null set, and a real r is in

˜
Nα iff there are infinitely many sublevels

u such that r | Icn,u is not in the possibility X of K′cn,u = Kα,u that is chosen by the generic filter.
This time, the purpose of

˜
Nα is not to cover all reals not depending on α, but rather to avoid

being covered by any null set not depending on α.
1Of course, generally Icn,u 6= Inn,u, so

˜
Nα for α ∈ Ξnn lives on a different domain than

˜
Nβ for β ∈ Ξcn.
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Lemma 10.2.0.2. Fix a subatomic sublevel u, an index α ∈ Ξcn and a subatom C ∈ K′cn,u = Kα,u.

1. Given T ⊆ 2Icn,u of relative size ≥ 1/2 we can strengthen C to D, decreasing the norm by at
most 1/2min(I)·b(u) such that T 6⊆ X for all X ∈ POSS(D).

2. Fix a probability space Ω and a function F that maps every X ∈ poss(C) to F (X) ⊆ Ω of
measure ≥ 1/b(u). Then we can strengthen C to D, decreasing the norm by at most 1/2min I ·b(u)

such that
⋂
X∈poss(D) F (X) has measure at least 1/b(u+1). Here, u + 1 denotes the smallest

subatomic sublevel above u.

Proof. This is an immediate consequences of (9.1.0.4), 9.2.0.6 and 9.3.0.8, just note that

b(u + 1) > H ′(cn,=b(u)) ≥ 1/ε∩(1/b(u),|POSS |).

Again, let u + 1 denote the smallest subatomic sublevel above u. Then

b(u + 1) > H ′(cn,=b(u)) > |Kcn,b(u)|.

In other words,

The cardinality of Kcn,b(u) is less than b(u + 1). (10.2.0.3)

10.3 Names for null sets

Let T ⊆ 2<ω be a tree (without terminal nodes) of measure 1/2. (Such trees correspond bijectively
to closed sets of measure 1/2.) Then the set

NT := 2ω \
⋃
{r + [T ] : r ∈ Q}. (10.3.0.4)

is a null set (closed under rational translations). Conversely, for every null set N there is such a T
with N ⊆ NT .

The relative measure of s in T (for s ∈ 2n, n ∈ ω) is defined as µ([T ]∩ [s]) ·2n. For completeness,
we say that the relative measure of s is 0 if s /∈ T . (Analogously, we can define the relative measure
of a node s in a finite tree T ⊆ 2≤m with no terminal nodes of height < m.) Note the following easy
consequence of the Lebesgue density theorem:

Fact 10.3.0.5. If T is a tree without terminal nodes, s ∈ T has positive relative measure, and δ < 1,
then there is a t > s with relative measure > δ. (And for all levels above the level of t, there is an
extension t′ > t which also has relative measure > δ.)

By removing nodes with relative measure 0, the measure of T does not change. We give such
trees a name:

Definition 10.3.0.6. T is a pruned-1/2 tree, if T ⊆ 2<ω has measure 1/2 and has no nodes of relative
measure zero (and in particular no terminal nodes).

Note that each null set is contained in NT for some pruned-1/2 T . So instead of investigating
arbitrary names for null sets, we will consider names

˜
T for pruned-1/2 trees.

Note that there are fewer than 22h many possibilities for the level h of
˜
T . So we can “code”

˜
T by

a real
˜
r ∈ 2ω such that

˜
T |h is determined by

˜
r | 22(h+1)

.
Assume that p rapidly reads this

˜
r. Then

˜
T |(max(Icn,u) + 1) is determined ≤ u (according

to (6.1.0.6) and 10.1.0.1(5)).
We will describe this situation by “p rapidly reads

˜
T ”.
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10.4 cof(N ) ≥ κcn

Lemma 10.4.0.7. Let p ∈ Q rapidly read the pruned-1/2 tree
˜
T not using the index α ∈ Ξcn. Then

p forces that
˜
Nα is not a subset of N

˜
T , i.e.,2 there is some s ∈

˜
Nα ∩ [

˜
T ].

Proof. We can assume that p is pruned and that α ∈ supp(p). It is enough to find a name
˜
r ∈ 2ω

and a q ≤ p forcing
˜
r ∈

˜
Nα ∩ [T ]. For this, we will inductively modify p at infinitely many sublevels

u (resulting in the 1-purely stronger q):
Let u be a subatomic sublevel (above all the sublevels that we have already modified), where α

is the active index with subatom C of norm at least 10, living on the interval I := Icn,u.
The finite tree

˜
T ′ :=

˜
T |max(I) + 1 is determined ≤ u, and even < u, as

˜
T does not depend on

α (as usual, note that due to modesty α is the only active index at sublevel u). In particular the set
Y of potential values of

˜
T ′ has size ≤ maxposs(<u).

We now enumerate all T ∗ ∈ Y and t ∈ T ∗ ∩ 2min(I) with relative measure (in T ∗) at least 1/2.
There are at most maxposs(<u)× 2min(I) many such pairs (T ∗, t).

Starting with C0 := C, we iteratively use Lemma 10.2.0.2(1) to strengthen the subatom Cn to
some Cn+1 such that for the current (T ∗, t) and all X ∈ poss(Cn+1) there is some t′ ∈ 2I \X such
that t_t′ ∈ T ∗.

So in the end we get a subatom D ≤ C of norm ≥ nor(C) − 1 such that for all (T ∗, t) and
X ∈ poss(D) there is some t′ ∈ 2I \X with t_t′ ∈ T ∗.

In this way, we modify infinitely many sublevels u, resulting in a condition q ≤ p.
Now work in the forcing extension, where q is in the generic filter. We can now construct by

induction an element r of
˜
Nα ∩ [

˜
T ] (i.e., r | Icn,u is not in the generically chosen X at index α and

sublevel u, for infinitely many sublevels u.)
Assume we already have r |n ∈

˜
T for some n. Since

˜
T has no nodes of relative norm 0, there is a

h′ > n and an t′ ∈ T ∩ 2h
′
extending r |n with relative measure ≥ 1/2 (see 10.3.0.5). Pick a sublevel

u such that: min(I) =: h > h′ for I := Icn,u, and u was considered in our construction of q. There
is still some t ∈ 2h

′
extending

˜
r |n of relative measure 1/2. Set T ∗ :=

˜
T |max(I) + 1. Note that in

our construction of q, when considering u, we dealt with the pair (T ∗, t), and thus made sure for all
X ∈ poss(q(α,u)) (so in particular for the one actually chosen by the generic filter) there is some
t′ ∈ 2I such that t_t′ ∈ T ∗ and t′ /∈ X. So we can just set r |max I := t_t′.

Corollary 10.4.0.8. Q forces that cof(N ) ≥ κcn.

Proof. This is very similar to the proof of 7.3.0.7: Assume that there is a ℵ1 ≤ κ < κcn and a p forcing
that (

˜
N∗i )i∈κ is a basis of null sets. As described above, we can assume that each

˜
N∗i = N

˜
Ti for

some pruned-1/2 tree
˜
Ti of measure 1/2. For each i, fix a maximal antichain Ai below p of conditions

rapidly reading
˜
Ti. X :=

⋃
i∈κ,q∈Ai supp(q) has size κ, so there is an α ∈ Ξcn \ X. Each a ∈ Ai

rapidly reads
˜
Ti not using α. So by the preceding lemma,

˜
Nα 6⊆ N

˜
Ti is forced by a (and therefore

by p, as Ai is predense below p).

10.5 non(N ) ≤ κnn

We want to show that the set X of reals reals that are added by (or more precisely: rapidly read
from) the nm and nn parts (i.e., not depending on the cn and Sacks parts) is not null.

Let QΞnon-sk be the set of conditions p with supp(p) ∩ Ξsk = ∅. Recall that according to
Lemma 3.6.0.18, QΞnon-sk is a complete subforcing of Q (and satisfies ωω-bounding, rapid reading,

2as
˜
Nα is closed under rational translates
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etc). We have seen in 6.3 that the quotient of Q and QΞnon-sk satisfies the Sacks property, and in par-
ticular that every null set N in the Q-extension is contained in a null-set N ′ ⊇ N in the intermediate
QΞnon-sk -extension.

So it is enough to show that X is still non-null in the QΞnon-sk -extension; in other words, we can
in the rest of the paper ignore the Sacks indices altogether (i.e., work in QΞnon-sk , or in other words
assume that Ξsk = ∅).

We have seen that the sets of the form NT for pruned-1/2 trees T form a basis of null sets; so we
just have to show the following:

Lemma 10.5.0.9. Let
˜
T ∗ be a pruned-1/2 tree rapidly read by p. Then there is a q ≤ p continuously

reading some
˜
r ∈ 2ω not using the cn part, such that q forces

˜
r ∈ [

˜
T ∗]. (As described above, the

Sacks part is not used at all.)

As
˜
r ∈ [

˜
T ∗] implies

˜
r /∈ N

˜
T∗ , and

˜
r only depends on the nm and nn parts, we get:

Corollary 10.5.0.10. Q forces non(N ) ≤ κnn.

To prove Lemma 10.5.0.9 we will use:

Lemma 10.5.0.11. Let T be a tree of positive measure and fix ε > 0. Then for all sufficiently large
m ∈ ω there are many fat nodes in T ∩ 2m, by which we mean:

µ([T [s]]) ≥ 2−m(1− ε) for at least |[T ] ∩ 2m| · (1− ε) many s ∈ T ∩ 2m.

Proof. Write µ for the measure of [T ]. Note that |T ∩ 2m| · 2−m decreases and converges to µ. Hence
from some m on, we have

|T ∩ 2m| · 2−m − µε2 ≤ µ. (10.5.0.12)

Let l be the number of fat nodes at level m, and s = |T ∩ 2m| − l the number of non-fat nodes. We
want to show l ≥ 2mµ · (1− ε).

Clearly,
µ < l · 2−m + s · 2−m(1− ε) = |T ∩ 2m| · 2−m − 2−msε. (10.5.0.13)

Combining (10.5.0.12) and (10.5.0.13), we get |T ∩ 2m| · 2−m−µε2 ≤ |T ∩ 2m| · 2−m− 2−msε, and
hence s ≤ 2mµ · ε. As l + s = |T ∩ 2m| ≥ 2mµ, we get l ≥ 2mµ · (1− ε), as required.

Proof of Lemma 10.5.0.9. We can assume that p is pruned. By induction on n ∈ ω, we construct:

(a) kn ∈ ω.

(b) A condition qn ≤ p with kn ∈ wqn such that nor(qn, k
′) ≥ n+ 6 for all k′ ≥ kn in wqn .

(c) We will additionally require: qn+1 ≤ qn; qn+1 is identical to qn below kn, and has norms ≥ n

between kn and kn+1.

(Therefore there is a limit condition qω stronger than each qn.)

(d) in ∈ ω and a name
˜
sn for an element of

˜
T ∗ ∩ 2in such that qn decides

˜
sn below kn not using any

cn-indices.

(e) We additionally require that in is “not too large” with respect to kn, more particularly:

2in+2 < b((kn, 0)).

((kn, 0) is the the smallest subatomic sublevel above kn.) (As b is strictly monotone, it suffices
to have kn > 2in+2.)
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(f) We additionally require: in+1 > in, and
˜
sn+1 is forced (by qn+1) to extend

˜
sn.

So q∞ will force that the union of the
˜
sn will be the required branch through

˜
T ∗, proving the

Lemma.

(g) We will also construct a name
˜
Tn, which is (forced by qn to be) a subtree of

˜
T ∗ with stem

˜
sn

and relative measure > 1/2 (i.e., µ([
˜
Tn]) > 1/2 · 2−in), which is read continuously by qn not using

any cn-indices below kn.3

We set i0 := 0,
˜
s0 := 〈〉 and

˜
T0 =

˜
T ∗. We choose k0 such that the norms of the compound

creatures in p are ≥ 6 above k0 and set q0 to be p where we increase the trunk to k0. So
˜
T0 does not

depend on any cn-indices below k0 (as below k0 there is only trunk and thus a unique possibility).
So assume we already have the objects mentioned above for some n (i.e., kn, qn, in,

˜
sn and

˜
Tn).

For notational simplicity we refer to them without the subscript n, i.e., we set k := kn etc. We will
now construct the objects for n+ 1.

1. We choose k∗ so large that for each ξ ∈ supp(q(k)) ∩ Ξls there is an atom qn(ξ, `) of norm
> n+ 2 for some ` between k and k∗.

2. It is forced that Lemma 10.5.0.11 holds for
˜
T and for ε := 1/maxposs(<k∗)·maxposs(<k). So we get

a name
˜
m for a level where there are many fat nodes. Using Lemma 5.3.0.16, we strengthen q

to q1, not changing anything below k∗ and keeping all norms ≥ n + 4, such that we can find
(in V ) some m > i which is forced by q1 to be ≥

˜
m. Note that Lemma 10.5.0.11 is forced to

hold for this m ≥
˜
m as well, i.e., there is a name of a “large” set

˜
L ⊆ 2m of “fat” nodes.

This m will be our in+1. So in+1 > in is satisfied.

3. So can further strengthen q1 to q2 not changing anything below k∗ and keeping all norms
≥ n+ 2 such that

˜
L ⊆ 2m is essentially decided, i.e., decided below some level k∗∗ > k∗. Since

we already assumed that
˜
T is read continuously, we can assume that q2 also decides

˜
T ∩ 2m

below k∗∗. Also, we can assume that all norms of compound creatures in q2 above (including)
k∗∗ are > n+ 7, and that k∗∗ > 2m+2.

This k∗∗ will be kn+1. Note that this ensures item (e) for n+ 1.

4.
˜
L is forced to be a subset of

˜
T ∩2m of relative size ≥ (1−ε), and both

˜
L and

˜
T ∩2m are decided

below k∗∗. Also,
˜
T ∩ 2m does not depend on the cn-part below k. Therefore, we can construct

a name
˜
L′ ⊆

˜
L that also does not depend on such coordinates, and such that

˜
L′ ⊆

˜
T ∩ 2m has

relative size ≥ (1− ε ·maxposs(<k)) ≥ 1/2.

Proof: Each η ∈ poss(q2, k
∗∗) determines objects Lη ⊆ Sη (where q2 ∧ η forces

“Lη =
˜
L and Sη =

˜
T ∩ 2m”). We call η1, η2 equivalent if they differ only on the

cn-part below k (which implies Sη1 = Sη2). Clearly, each equivalence class has size
at most maxposs(<k). For an equivalence class [η], we set L′[η] :=

⋂
η′∈[η] Lη′ . So

the map assigning η to L′[η] defines a name (not depending on the cn-part below k)
of a subset of Sη of relative size ≥ 1/2.

Recall that
˜
T is forced to have stem s ∈ 2i and measure > 1/2 · 2−i, so the cardinality of

˜
T ∩2m is forced to be > 2m−i−1, and thus the cardinality of

˜
L′ is forced to be > 2m−i−1(1/2) =

2m−i−2 > 2m/b((k,0)), according to item (e).

To summarize:
3I.e.: For all ` there is a k and a function defined on poss(qn, <k) giving the value of

˜
Tn ∩ 2` such that the value

is the same for η, η′ ∈ poss(qn, <k) that differ only on the cn-part below kn.
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•
˜
T ∩ 2m and its subset

˜
L′ are decided by q2 below k∗∗, not using the cn-part below k.

• We set Ω = 2m. (As a finite set, it carries the uniform probability measure.)
˜
L′ as subset

of Ω is forced to have measure > 1/b((k,0)).

• q2 forces that each s ∈
˜
L′ satisfies µ([

˜
T [s]]) ≥ 2−m(1− ε).

5. Now we glue q2 between k and k∗∗, and replace all lim-sup subatoms between k∗ and k∗∗ with
singletons (not changing the lim-inf subatoms, nor anything between k and k∗), resulting in
q∗ and the compound creature d∗ = q∗(k) (with mdn(d∗) = k, mup(d∗) = k∗∗ and supp(d∗) =

supp(q, k)). So above k∗∗, q∗ is identical to q2, and below k∗ it is identical to q.

Note that nor(d∗) ≥ n+ 2: Gluing results in a norm at least the minimum of the norms of the
glued creatures; and replacing lim-sup subatoms above k∗ with singletons does not drop the
norm below n+ 2 as we made sure that there are large subatoms between k and k∗.

We will in the following find a strengthening d∗∗ of d∗ with nor(d∗∗) ≥ nor(d∗)− 2 ≥ n and we
will set qn+1 to be q∗ where we replace d∗ with d∗∗. Then items (b) and (c) will be satisfied
for n+ 1.

6. Recall that q∗ decides both
˜
L′ and

˜
T ∩2m below k∗∗, not using the cn-part below k. Note that

poss(q∗, <k∗∗) is isomorphic to X × Y × Z, for

• X := poss(q∗, <k) = poss(q,<k),

• Y are the possibilities of d∗ between k and k∗, and

• Z are the possibilities of d∗ between k∗ and k∗∗ (which we can restrict to the lim-inf part,
as there are only singletons in the lim-sup-part).

7. Fix a ν ∈ Z. We will now perform an induction on the (subatomic) sublevels u between k and
k∗, starting with the lowest one, (k, 0). We assume that we have arrived in this construction
at sublevel u with the active subatom C, and that we already have constructed the following:

• The (final) subatoms for all sublevels v below u (and above k), with subatom-norm at
most 2 smaller than the norms of the original subatoms (i.e., those in d∗).

• (Preliminary) subatoms for all sublevels u′ above (including) u (and below k∗), where
the norm of the subatom at u′ has been reduced from the original one by at most K/b(u′),
where K is the number of steps already performed in the current induction (i.e., K is
the number of subatomic sublevels between k and u). So our current C is one of these
“preliminary subatoms”.

• A function Fu that maps each possibility η ∈ X × Y to a subsets Fu(η) of 2m; such that
for all η

– Fu(η) is forced to be a subset of
˜
L′ by the condition q∗ modulo the fixed ν ∈ Z,

modulo η and modulo the already constructed subatoms (the final ones as well as the
preliminary ones).4

– Fu(η) ⊆ 2m is of relative size ≥ 1/b(u).

– Fu(η) does not depend on any cn-indices below u.

The first sublevel, (k, 0), is clear: there are no sublevels below where we have to define final
subatoms, the preliminary subatoms above are just the original ones, and F (k,0) is just given
by the name

˜
L′.

4See (5.1.0.9) for a definition of “modulo”. If η is not a compatible with the currently constructed (final and
preliminary) subatoms, then Fu(η) is irrelevant.
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Now we perform the inductive step. If our subatom C is not of cn-type, we do nothing5 and
go to the next step. So let us assume that the current (preliminary) C is of cn-type.

Let Y − be Y restricted to the sublevels below u, and Y + to the ones above. Every6 η ∈ X×Y
can be written as (η−, ηu, η+) for η− ∈ X × Y −, ηu ∈ poss(C) and η+ ∈ Y +.

When we fix some η− ∈ X × Y − and η+ ∈ Y +, the function Fu reduces to a function F η
−,η+

that maps poss(C) to subsets of 2m of relative size ≥ 1/b(u). So we can use Lemma 10.2.0.2(2)
and strengthen C to D(η−, η+) decreasing the norm by at most 1/b(u) such that

F ′(η−, η+) :=
⋂

µ∈poss(D(η−,η+))

F η
−,η+(µ)

is a set of measure ≥ 1/b(u+1).

For fixed η+ ∈ Y +, we can iterate this strengthening for all η− ∈ X × Y −: From D to some
D̃ := D(η−, η+), then from D̃ to D(η′−, η+) for the next η′−, etc., resulting in a D(η+) with
norm reduced by at most maxposs(<u)/b(u) < 1.

Note that there are less than b(u + 1) many possibilities for D(η+), cf (10.2.0.3). Finally we
can use bigness of the Y +-part, as stated in Lemma 6.1.0.5, to find successor subatoms at all
sublevels above u, resulting in a new set of possibilities Ỹ + ⊆ Y + such that for each η+ ∈ Ỹ +

we get the same D := D(η+). This D will be the (final) subatom at our current level u.

We can now define
Fu+1(η) :=

⋂
µ∈poss(D)

Fu(η−, µ, η+).

As above, this is a set of measure ≥ 1/b(u+1), does not depend on the cn-part ≤ u, and it is
forced (modulo D) to be a subset of

˜
L′.

We have now chosen the new final subatom D, the new preliminary subatoms and Fu+1 in a
way that we can perform the next step of the iteration.

8. We perform the whole inductive construction of (7) for every ν ∈ Z independently (i.e., we
start at the original d∗ for each ν ∈ Z).

So for every ν we get a different sequence D̄(ν) of subatoms between k and k∗. Using bigness
(again as in Lemma 6.1.0.5), we can thin out the subatoms between k∗ and k∗∗, resulting in
Z ′ ⊆ Z, such that for each ν ∈ Z ′ we get the same sequence D̄(ν) =: D̄ which finally defines
the compound creature d∗∗ stronger than d∗.

We set qn+1 to be q∗ with d∗ strengthened to d∗∗, and we set in+1 := m and kn+1 := k∗∗.

9. Now work modulo qn+1. So the final function F of the induction in (7) gives us a name for
a subset

˜
L′′ ⊆

˜
L ⊆ 2m of positive relative size (in 2m), and the name

˜
L′′ does not depend on

any cn indices: Not on any below k, since we started with the name
˜
L′ which did not depend

on such subatoms; not on any between k and k∗, as we removed this dependence sublevel by
sublevel during the induction; and not on any cn subatoms between k∗ and k∗∗, as cn indices
are of lim-sup type, and we have only singleton subatoms for the lim sup part between k∗ and
k∗∗.

So we can pick a non-cn-name sn+1 for an arbitrary (the leftmost, say) element of
˜
L.

5slightly more formally: we make the current preliminary subatom final, and set Fu+1 := Fu

6We are concerned only about the η still are compatible with the currently constructed preliminary/final subatoms.
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10. qn+1 forces that sn+1 is in
˜
L, i.e., a “fat” node, more specifically:

˜
T ′ :=

˜
T

[sn+1]
n has a measure

greater than 1−ε
2m .

The tree
˜
T ′ is read continuously by qn and therefore also by qn+1. In particular, for each

` > m the finite tree
˜
T ′ ∩ 2` is decided below some `′. For η ∈ poss(qn+1, <`

′) let T `,η be
the according value of

˜
T ′ ∩ 2` (a subset of 2` with at least 2` · 1−ε

2m elements). We call η and
η′ equivalent if they differ only on the cn part below k∗∗. Each equivalence class has size
≤ maxposs(<k∗), as there are only singleton values in the lim-sup part between k∗ and k∗∗.
We assign to each equivalence class [η] the tree T `,[η] :=

⋂
η′∈[η] T

`,η′ . Then T `,[η] has size at
least 2` · 1−maxposs(<k∗)·ε

2m (and of course does not depend on the cn-part below k∗∗). So the
family T `,[η] defines a continuous name for a tree

˜
Tn+1 not depending on the cn-part below

k∗∗ with root sn+1 and measure > 1/2m+1, as required.

10.6 Switching non

It turns out that the same proof can be used for the following variant of Theorem 6.2.0.7, where the
order of κnn and κcn is reversed:

Theorem 10.6.0.14. In Theorem 6.2.0.7, we can also use κcn ≤ κnn. In more detail: Assume (in
V ) CH, κnm ≤ κcn ≤ κnn ≤ κsk and κℵ0t = κt for t ∈ {nm, nn, cn, sk}. Then there is a forcing Q which
forces

1. cov(N ) = d = ℵ1,

2. non(M) = cof(M) = κnm,

3. cof(N ) = κcn,

4. non(N ) = κnn,

5. 2ℵ0 = κsk.

Moreover, Q preserves all cardinals and all cofinalities.

Proof. We now use the cn-norm for the nm part as well. (Recall 7.1.0.2: We can use any nm-norm,
as long as bigness is satisfied.) The proofs above do not change, apart the one of non(N ) ≤ κnn: In
the inductive construction, we only had to do something at the cn-indices, and we could ignore the
nm-indices (as there were only few). In the new version, we have to include the nm-indices as well.
But this is no problem: We now do exactly the same at nm-indices as at cn-indices (which we can,
as the nm-norm is the same as the cn-norm).
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Chapter 11

Introduction

The main result of this part is that Balogh’s Σ holds in “models of the form PFA(S)[S]” for coherent
S. In the following we briefly describe the notions used above.

Σ is the following statement:

All locally countable subspaces of size<c in countably tight compact spaces are σ-discrete.

This statement was excised by Z. Balogh in ([2]) from the work of Z. Szentmiklossy [29]. Specific
instances of Σ were central to Szentmiklossy’s proof under MA + ¬CH that every hereditarily sepa-
rable subspace of a countably tight space is Lindelöf. For more information about this and similar
variations of Σ one can read Balogh’s ([2]), in which he also demonstrates that the general statement
Σ holds under MA + ¬CH.

Given a Souslin tree S, PFA(S) is the weakening of PFA to those proper forcings which keep S
Souslin. By “models of the form PFA(S)[S]” we mean models obtained by forcing with the Souslin
tree S over a model of PFA(S). These models were first investigated by S. Todorcevic and P. Larson in
[19], where they showed that for suitably chosen S they yield a positive solution to Katetov’s problem
([12]): it is consistent that every Hausdorff space with hereditarily normal square is metrizable. Note
that the usual method of obtaining any model of PFA uses a supercompact cardinal, so consistency
results using models of PFA show consistency relative to a supercompact. In many cases this large
cardinal is unnecessary.

It has been known since the 1970s that consistently, there are non-metrizable hereditarily normal
manifolds of dimension > 1: for example CH ([27]) and MA +¬CH ([26]) both yield such manifolds.

Soon after the Larson-Todorcevic result, F. Tall initiated a programme to demonstrate that it is
consistent that all hereditarily normal manifolds of dimension > 1 are metrizable. He saw that this
would following from the follwing four statements [30]:

• Σ.

• All first-countable perfect pre-images of ω1 include a homeomorphic copy of ω1.

• Normal first-countable spaces are ℵ1-collectionwise Hausdorff.

• Given any countable covering ideal I of countable subsets of an stationary subset S of ω1,
either there is a stationary A ⊆ S such that [A]ω ⊆ I, or there is a stationary B ⊆ S such that
B ∩ I is finite for all I ∈ I.

The programme was then to demonstrate that these four statements each hold in models of the form
PFA(S)[S] for suitable S.

So our contribution to the programme is the demonstration of Σ.

63



Chapter 12

PFA(S)

12.1 ω1 -trees and coherent Souslin trees

We will be taking ω1-trees to be downward-closed normal subtrees of <ω1ω, with the inherited
ordering. In particular, all Souslin trees will be of this type. Note that if T is an ω1-tree, and t ∈ T ,
then the height of t in T , and the length of t as a sequence of natural numbers agree. We denote
this common value by ht(t). We follow common practice and denote for each countable ordinal δ
the family of all nodes of T of height δ by T (δ). We will use non-standardised notation and define
for each node s ∈ T the cone of T above s by

T (s) = {t ∈ T : s ≤T t}.

Given some C ⊆ ω1, we denote by T |C the family of all nodes t ∈ T with ht(t) ∈ C. Also, if X ⊆ T
consists entirely of nodes of height at least δ ∈ ω1, we define the projection of X onto the δth level
of T by

X↓ δ = {s ∈ T (δ) : (∃t ∈ X)(s ≤T t)} = {t | δ : t ∈ X}.

We will also make use of interval notation on trees, so that given s, t ∈ T with s <T t the notations
[s, t], [s, t), etc., have their obvious intended meanings.

We follow [19] and call a Souslin tree S ⊆ <ω1ω coherent if it is generated by a coherent family
of functions. Recall that a family of functions {fα}α<ω1 , where fα : α→ ω for each α < ω1, is called
coherent if given any two α < β < ω1 the family

fα4fβ = {ξ ∈ α = dom(fα) ∩ dom(fβ) : fα(ξ) 6= fβ(ξ)}

is finite. The tree generated by such a family is given by

T =
⋃
α<ω1

{g ∈ αω : {δ ∈ α : g(δ) 6= fα(δ)} is finite}.

The existence of coherent Souslin trees follows from ♦ (see [18]).

The strength of coherent Souslin trees comes from fact that they are strongly homogeneous, as
defined in [15] and [18]. In particular, if S is a coherent Souslin tree, then given any δ < ω1 and
any two s, t ∈ S(δ), there is a canonical isomorphism σs,t : S(s) → S(t). Furthermore, the family of
these canonical isomorphisms enjoys several nice coherence properties, although these are irrelevant
to the discussion at hand. An important consequence of this fact is that all generic branches through
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a coherent Souslin tree are “isomorphic,” leading to isomorphic generic extensions. When dealing
with these isomorphisms, we will generally follow bad form and think of them as automorphisms of
the entire Souslin tree S. This will allow us to keep notational obfuscation down, especially when
considering forcing statements. In particular, given two nodes s, t on the same level of a coherent
Souslin tree S and an S-name τ , by σs,t(τ) we will mean the S(t)-name σs,t(τ (s)), where τ (s) is
a canonically chosen S(s)-name satisfying s S τ = τ (s). More dramatically, given any forcing
statement φ(τ1, . . . , τn), and a node t′ ≥S t, the statement

t′ S φ(σs,t(τ1), . . . , σs,t(τn))

will mean
t′ S(t) φ(σs,t(τ

(s)
1 ), . . . , σs,t(τ

(s)
n )).

where the S(s)-names τ (s)
1 , . . . , τ

(s)
n are chosen as above.

12.2 PFA(S)

Given a (coherent) Souslin tree S, by PFA(S) we mean the restriction of the Proper Forcing Axiom
to those partial orders which do not destroy (the Souslinity of) S. To be precise, PFA(S) is the
following statement: Given any proper partial order P such that

P “Š is a Souslin tree”

and any family {Dα}α<ω1
of dense-open subsets of P, there is a filter G ⊆ P meeting each Dα. This

concept has been used in [33], and others, while a form of it, which may be phrased MAω1
(S) was

used to achieve the result in [2].
Our interest does not lie in models of PFA(S) themselves, but rather their generic extensions by

the Souslin tree S. This stems from the fact that certain consequences of V = L hold after forcing
with a Souslin tree, while at the same time certain consequences of PFA can be shown to be forced
by S over a model of PFA(S).

The method of showing that a PFA consequence holds in such a generic extension then comes
down to using PFA(S) to construct an S-name for the desired object. In cases that have been
investigated so far, one takes a proper partial order P using Todorcevic’s method of “using elementary
submodels as side conditions” (see [31] and [16]) that gives the desired object in models of PFA, and
then alters them to produce an S-name instead. We are then left to show that this altered partial
order has two properties: it is proper and it preserves S. To do so we apply the following lemma.

Lemma 1 (Miyamoto, [23]). A partial order P is proper and preserves a Souslin tree S iff the
following condition is satisfied: Given an elementary submodelM of some Hθ (for θ sufficiently large,
regular) containing S,P, every condition p ∈ P ∩M has an extension p̄ such that the condition-pair
〈s̄, p̄〉 is (M , S × P)-generic for every s̄ ∈ S(δ), where δ = ω1 ∩M .

We shall call the condition mentioned in the above lemma Miyamoto’s condition.



Chapter 13

An Example – The P -Ideal
Dichotomy

By an ideal of countable subsets of a set X we mean a nonempty I ⊆ [X]≤ω which is closed under
finite unions and subsets. In particular, [X]<ω is a subset of every ideal of countable subsets of
X. We call an ideal I of countable subsets of X a P-ideal if, in addition, given any countable
{In : n ∈ ω} ⊆ I there is a J ∈ I such that In ⊆∗ J for all n.

Given an ideal I of countable subsets of a set X, by I⊥ we mean the famaily of all countable
A ⊆ X with the property that A ∩ I is finite for all I ∈ I. B ⊆ X is called I⊥-homogeneous if
[B]≤ω ⊆ I⊥; all countable subsets of B have finite intersection with all sets in I.

In [1] S. Todorcevic and U. Abraham developed the following statement, called the P-Ideal
Dichotomy. Given any P-ideal I of countable subsets of ω1, one of the following conditions holds:

1. There is an uncountable A ⊆ ω1 such that [A]ω ⊆ I; or

2. ω1 can be decomposed as ω1 =
⋃
i∈ω Ai where each Ai is I⊥-homogeneous.

13.1 PFA implies the P-Ideal Dichotomy

In this short section we will outline the proof that PFA implies the P-Ideal Dichotomy. This proof
in based largely on that in [34], and not the proof in the Todorcevic–Abraham paper [1].

Theorem 1 (Todorcevic–Abraham). PFA implies the P-Ideal Dichotomy.

Proof. Let I be a P-ideal on ω1 for which condition (2) in the statement of the P-Ideal Dichotomy
fails. For each countable elementary submodel N ≺ H(ℵ2) fix some JN ∈ I such that I ⊆∗ JN
for each I ∈ I ∩ N , and also let ξN denote the least countable ordinal not belonging to any I⊥-
homogeneous set belonging to N . We define P to be the family of all pairs p = 〈Np,Mp〉 where

1. Mp is a finite ∈-chain of countable elementary submodels of H(ℵ2) containing I and the
mapping N 7→ 〈JN , ξN 〉;

2. Np ⊆Mp (the models in Np are called active in p).

We order P by declaring q ≤ p iff

1. Mq ⊇Mp;

2. Nq ∩Mp = Np; and
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3. Given N ∈ Nq \ Np and N ′ ∈ Np, if N ∈ N ′, then ξN ∈ JN ′ .

To prove that P is proper, let θ � ℵ2 be a sufficiently large regular cardinal, and let M be a
countable elementary submodel of H(θ) containing P, I, and the mapping N 7→ 〈JN , ξN 〉. Given
p ∈ P ∩M define p̄ = 〈Np,Mp ∪ {M ∩H(ℵ2)}〉. It is clear that p̄ is a condition of P extending p.
We now show that p̄ is (M,P)-generic.

Let D ∈M be a dense open subset of P and let q be an extension p̄ belonging to D.
Consider qM = 〈Nq ∩M,Mq ∩M〉. Note that qM ∈ M and is an “initial part” of q in the sense

thatMqM ⊆Mq and N ∈ N ′ for all N ∈MqM and N ′ ∈Mq\MqM . Enumerate Nq\M = Nq\NqM
increasingly according to ∈ as N1 ∈ · · · ∈ Nn. (Note that M ∩H(ℵ2) ∈ N1, also.)

Define F to be the family of all n-tuples 〈ζ1, . . . , ζn〉 in ω1 such that there is a condition r ∈ P
satisfying the following conditions:

• r ∈ D;

• r has qM as an initial part (in the sense defined above);

• Nr \ NqM has size n, and 〈ξNr1 , . . . , ξNrn〉 = 〈ζ1, . . . , ζn〉 where Nr
1 ∈ · · · ∈ Nr

n is the increasing
enumeration of Nr \ NqM .

Clearly F ∈ M , and contains the n-tuple 〈ξ1, . . . , ξn〉. Viewing F as the set of maximal nodes of
a subtree T ⊆ ω≤n1 , we may use elementarity arguments to thin T to a subtree T ′, also in M and
containing 〈ξq1 , . . . , ξqn〉, such that whenever 〈ζ1, . . . , ζk〉 (k < n) belongs to T ′ then the set

T ′(ζ1, . . . , ζk) = {ζ : 〈ζ1, . . . , ζk, ζ〉 ∈ T ′}

is not I⊥-homogeneous.
We now inductively pick an n-tuple 〈η1, . . . , ηn〉 ∈ T ′ ∩M so that ηi ∈ JNq1 ∩ · · · ∩ JNqn for each

i ≤ n. If η1, . . . ηk (k < n) have been appropriately chosen, then as T ′(η1, . . . ηk) ∈ M and is not
I⊥-homogeneous, there is an A ∈ [T ′(η1, . . . ηk)]ω ∩M which belongs to I. By our choice of the JN s,
it follows that A ⊆∗ JNqj for each j ≤ n. When may then pick ηk+1 ∈ A ∩

⋂
j≤n JNqj .

Then as 〈η1, . . . , ηn〉 ∈ T ′ ∩M by elementarity there is an r ∈ P ∩M witnessing that 〈ζ1, . . . , ζn〉
belongs to F . In particular this means that r ∈ D, and it is straightforward to verify that r and q
are compatible (with common extension 〈Nr ∪Nq,Mr ∪Mq〉).

It is easy to show that the sets Dα = {p ∈ P : ξN ≥ α for some N ∈ Np} are dense, and given a
{Dα}α∈ω1

-generic filter G for P, it follows that ZG =
⋃
p∈G Zp is an uncountable set, and [ZG]ω ⊆ I,

as desired.

13.2 The P-Ideal Dichotomy holds in models of the form PFA(S)[S]

We now move to proving that the P-Ideal Dichotomy holds in “models of the form PFA(S)[S].” This
result was first shown by S. Todorcevic in [33], though the present proof differs from this one. The
basic idea of this proof is to alter the above partial order in order to produce an S-name for the
desired object: in this case an uncountable subset of ω1 every countable subset of which is forced to
belong to İ, a fixed S-name for a P-ideal of countable subsets of ω1.

Theorem 2 (PFA(S)). The coherent Souslin tree S forces that the P-Ideal Dichotomy holds.

Proof. Fix an S-name İ for a P-idea of countable subsets of ω1, and assume that S forces that ω1

is not the countable union of İ⊥-homogeneous sets. For each countable elementary submodel N of
H(ℵ2) containing S and İ fix the following objects:
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• an S-name J̇N such that S “ J̇N ∈ İ and I ⊆∗ J̇N for all I ∈ İ ∩N [Ḃ]” where Ḃ denotes the
canonical S-name for the generic branch through S;

• an S-name ξ̇N for the least countable ordinal not belonging to any İ⊥-homogeneous set in
N [Ḃ]; and

• a countable ordinal ρN such that every node in SρN decides J̇N and the countable ordinal ξ̇N .

We will be using PFA(S) to construct an S-name for an uncountable subset Ż of ω1 in the
following manner. The conditions of the forcing will consist of a finte ∈-chain of countable elementary
submodels of H(ℵ2), and to some of these models N (the active models) a node xN of S of height
ρN . Our interpretation will be that xN S ξ̇N ∈ Ż. We will ensure that if q ≤ p and N is an active
model of q which is not among the models in p and N ′ is an active model of p and additionally
xN ≤S xN ′ , then xN ′ S “ η̇N ∈ J̇N ′ ”. This will help ensure that that the name so constructed is
forced to have the property that all its countable subsets belong to İ.

We then define P to be the family of all pairs p = 〈fp,Mp〉 where

1. Mp is a finite ∈-chain of countable elemntary submodels of H(ℵ2) containing S, İ and the
mapping N 7→ 〈J̇N , ξ̇N , ρN 〉;

2. fp is a function with domain Np ⊆Mp such that fp(N) = xpN is a node of height ρN in S for
each N ∈ Np.

We order P by declaring q ≤ p iff

1. Mq ⊇Mp;

2. fq ⊇ fp and Nq ∩Mp = Np;

3. given N ∈ Nq \ Np and N ′ ∈ Np, if xqN ≤S x
p
N ′ then x

p
N ′  “ ξ̇N ∈ J̇N ′ ”.

We now show that P is proper and preserves S. Given a sufficiently large regular cardinal θ � ℵ2,
let M be a countable elementary submodel of H(θ) containing S, İ, the mapping N 7→ 〈J̇N , ξ̇N , ρN 〉
and P. For p ∈ P ∈M , set

p̄ = 〈fp,Mp ∪ {M ∩H(ℵ2)}〉.

Then p̄ is a condition of P extending p, and we now show that it it satisfies Miyamoto’s condition.
Setting δ = ω1 ∩M , fix s̄ ∈ Sδ. We will show that the condition-pair 〈p̄, s̄〉 is (M,P ×S)-generic.
Fix D ∈ M a dense-open subset of P × S, and let 〈q, t〉 be an extension of 〈p̄, s̄〉. Without loss

of generality we may assume that 〈q, t〉 satisfies the following:

• 〈q, t〉 ∈ D;

• the maximum model Nq ofMq is inactive;

• t /∈ Nq;

• the maximum model NM ofMq ∩M is inactive;

• setting δM = ω1 ∩ NM , the projections of the set {xqN : N ∈ Nq \M} ∪ {t} onto the δM -
th and δ-th levels of S have the same size and, furthermore, x |[δM , δ) = y |[δM , δ) for all
x, y ∈ {xqN : N ∈ Nq \M} ∪ {t}.
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We may enumerate the projections of {xqN : N ∈ Nq \M} onto the δM -th and δ-th levels of S,
respectively, as {v1, . . . , vm}, {w1, . . . , wm} so that vj ≤S wj for all j ≤ m. For each j ≤ m, let σj
denote the canonical isomorphism S(tM ) → S(vi) where tM = t | δM = s̄ | δM .

We must find a condition-pair 〈r, u〉 ∈ D ∩ M with the property that u ≤S t and r, q are
compatible. For the latter it will be necessary to ensure that if N ∈ Nr \ Nq and N ′ ∈ Nq are such
that xrN ≤S x

q
N ′ then x

q
N ′  “ ξ̇N ∈ J̇N ′ ”. As xrN ∈ M , in order for xrN ≤S x

q
N ′ to hold it must be

that σj(tM ) ≤S xrN ≤ σj(s̄) where j ≤ m is such that uj ≤S vj ≤ xqN ′ . Much of our work will be to
gain some control over when σj(tM ) ≤S xrN ≤ σj(s̄) can happen.

Let N1 ∈ · · · ∈ Nn be the ∈-increasing enumeration of those N ∈ Nq with the property that
there is a j ≤M such that uj ≤S vj ≤S xqN ≤S σj(t). For each i ≤ n let ji denote the unique j ≤ m
such that uj ≤S xqNi .

Setting qM = 〈fq |M,Mq ∩M〉, we have that qM ∈ M is an “initial part” of q in the sense that
N ∈ N ′ for all N ∈MqM and N ′ ∈ Nq \ NqM .

Define D′ to be the family of all condition-pairs 〈r, u〉 ∈ D satisfying the following:

• r has qM as an initial part;

• tM ≤S u;

• the maximum model ofMq is inactive and does not contain u;

• there are exactly n models N ∈ Nr \NqM with the property that uj ≤S xrN ≤S σj(u) for some
j ≤ m, and by enumerating these increasingly according to ∈ as N 〈r,u〉1 ∈ · · · ∈ N 〈r,u〉n we have
that uji ≤ xrN〈r,u〉i

for each i ≤ n.

To somewhat ease the indexing, given 〈r, u〉 ∈ D′ we will denote xr
N
〈r,u〉
i

, ρ
N
〈r,u〉
i

, ξ̇
N
〈r,u〉
i

and

J̇
N
〈r,u〉
i

by x
〈r,u〉
i , ρ〈r,u〉i , ξ̇〈r,u〉i and J̇

〈r,u〉
i , respectively. As x〈r,u〉i decides the values of ξ̇〈r,u〉i and

J̇
〈r,u〉
i , we will remove the dots from the latter two to denote x〈r,u〉i ’s decision of these objects.
Note that D′ ∈M and contains 〈q, t〉.
Our goal is now to find a 〈r, u〉 ∈ D′ ∩M with the property that u ≤ t. Given such a condition-

pair, if N ∈ Nr \Nq is such that uj ≤ xrN ≤ σj(vj) for some j, then as u ≤S vj ≤S t it must be that
xrN ≤ σj(u), and so N = N

〈r,u〉
i for some i ≤ n with ji = j. In this way we will gain control over

when σj(tM ) ≤S xrN ≤S σj(s̄) occurs.
Let F denote the family of all (n+1)-tuples 〈〈x1, ξ1〉, . . . , 〈xn, ξn〉, u〉 for which there is a 〈r, u〉 ∈ D′

such that x〈r,u〉i = x1 and ξ1 = ξ
〈r,u〉
i for each i ≤ n. Note that F belongs to M ∩H(ℵ2).

For each initial segment 〈〈x1, ξ1〉, . . . , 〈xn, ξn〉〉 of an element of F , let F (〈x1, ξ1〉, . . . , 〈xn, ξn〉) be
the family of all u ∈ S(tM ) such that 〈〈x1, ξ1〉, . . . , 〈xn, ξn〉, u〉 ∈ F . In particular, F (〈x〈q,t〉1 , ξ

〈q,t〉
1 〉, . . . , 〈x〈q,t〉n , ξ

〈q,t〉
n 〉)

belongs toNM and contains t, so there must be a zn+1 ∈ NM , with x〈q,t〉n ≤S σjn(zn+1) and zn+1 ≤S t
such that F (〈x〈q,t〉1 , ξ

〈q,t〉
1 〉, . . . , 〈x〈q,t〉n , ξ

〈q,t〉
n 〉) is dense above zn+1.

For each initial segment 〈〈x1, ξ1〉, . . . , 〈xn−1, ξn−1〉〉 of an element of F , let F (〈x1, ξ1〉, . . . , 〈xn−1, ξn−1〉)
denote the family of all triples 〈z, y, ζ〉 such that y <S σjn(z) and F (〈x1, ξ1〉, . . . , 〈xn−1, ξn−1〉, 〈y, ζ〉)
is dense above z. In particular, note that F (〈x〈q,t〉1 , ξ

〈q,t〉
1 〉, . . . , 〈x〈q,t〉n−1 , ξ

〈q,t〉
n−1 〉 ∈ Nn and contains the

triple 〈zn+1, x
〈q,t〉
n , ζ

〈q,t〉
n 〉. It follows that there is a zn ∈ S∩Nn with x〈q,t〉n−1 ≤S σjn−1(zn) and σjn(zn) ≤

x
〈q,t〉
n such that the family of all second-coordinates of elements of F (〈x〈q,t〉1 , ξ

〈q,t〉
1 〉, . . . , 〈x〈q,t〉n−1 , ξ

〈q,t〉
n−1 〉)

is dense above σjn(zn).
Continuing in this fashion, we eventually define F () to be the family of all triples 〈z, y, ζ〉 such

that tM ≤S z and σj1(z) ≤S y and the family of all second coordinates of elements of F (〈y, ζ〉) is
dense above σj1(z). Note that F () ∈M and contains the triple 〈z2, z

〈q,t〉
1 , ζ

〈q,t〉
1 〉, from which we may
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conclude that there is a z1 ∈ S ∩M with tM ≤S z1 and σj1(z1) ≤S x〈q,t〉1 such that the family of all
second coordinates of elements of F () is dense above σj1(z1).

Let Ẋ1 be an S-name (in M) for the family of all ζ < ω1 for which there are z, y such that
〈z, y, ζ〉 ∈ F () and σj1(z) ∈ Ḃ, where Ḃ denotes the canonical S-name for the generic branch through
S. It follows that σj1(z1) S “Ẋ1 is not İ⊥-homoegenous”, and so by extending z1 to some z′1 (still in
M and below t) we can find an countably infinite A ⊆ ω1 inM such that σj1(z′1) S “A ⊆ Ẋ1, A ∈ İ”.
Given any N ∈ Nq \ NqM with vj1 ≤S x

q
N it follows that A ⊆∗ JN where JN denotes xqN ’s decision

of J̇N . It follows that there must be a ζ1 ∈ A such that xqN  “ζ1 ∈ J̇N ” for all such N . Then
there must be a triple 〈w2, y1, ζ1〉 ∈ F () ∩M such that σj1(z′1)  “σj1(w2) ∈ Ḃ”, which means that
w2 ≤S z′1 ≤ t.

Letting Ẋ2 be an S-name (in M) for the family of all ζ < ω1 for which there are z, y such that
〈z, y, ζ〉 ∈ F (〈y1, ζ1〉) and σj2(z) ∈ Ḃ, we may follow a similar argument to the above to find a
β2 ∈ ω1 ∩ M such that σj2(w′2)  “β2 ∈ Ẋ2” for a suitable extension w′2 of w2 in M and below
t, and such that xqN  “β ∈ J̇N ” for all N ∈ Nq \ NqM with vj2 ≤ xqN . Again, there is a triple
〈w3, y2, ζ2〉 ∈ F (〈y1, ζ1〉) ∩M such that w3 ≤ w′2 ≤ t.

Continuing this way we eventually find triples 〈w2, y1, ζ1〉, . . . , 〈wn+1, yn, ζ1〉, such that for each
i ≤ N we have that xqN S “ζi ∈ J̇N ” for each N ∈ Nq \ NqM with vji ≤S x

q
N .

We also have that F (〈y1, ζ1〉, . . . , 〈yn, ζn〉) is dense-open above wn, and so there must be a u ∈
F (〈y1, ζ1〉, . . . , 〈yn, ζn〉) ∩M with u ≤S t.

Then 〈〈y1, ζ1〉, . . . , 〈yn, ζn〉, u〉 ∈ D′∩M and so there is a condition pair 〈r, u〉 ∈ D′∩M witnessing
this, and it follows that r, q are compatible conditions of P, and clearly u ≤S t.



Chapter 14

Balogh’s Σ in models of the form
PFA(S)[S]

In [2], Balogh extracted the following result, which he denoted Σ, from Szentmiklóssy’s famous [29].

Theorem 3 (MA + ¬CH). Every locally countable subspace of cardinality <c in a countably tight
compact space is σ-discrete.

The purpose of this chapter is to demonstrate that this consequence holds in models of the form
PFA(S)[S] for suitable S.

14.1 Combinatorial results

This section will present some of the necessary preliminary results required in the proof of the main
theorem.

Lemma 2. Suppose that S is a Souslin tree contained in a countable elementary submodel M of
some sufficiently large Hλ. Suppose further that F ∈ M is a subset of S containing some node
t ∈ S \ t. Then there is some s ≤ t in M such that F is dense above s.

Proof. Take A to be the family of all minimal nodes u ∈ T such that F ∩ S(u) = ∅. Clearly A is an
antichain of S, and therefore countable, but also A ∈ M . Therefore it follows that A ⊆ M . Note
also that since t ∈ F it follows that A ∩ {s ∈ S : s ≤ t} = ∅.

Letting δ = sup{ht(u) : u ∈ A} + 1, set s = t | δ. As A ⊆ M it follows that δ < ω1 ∩M , and
therefore s ∈M . If F is not dense above s, then there must be some minimal extension u of s such
that S(u) ∩ F = ∅, but then by definition it would follow that u ∈ A, contradicting our choice of δ,
and hence s.

We will also be interested in finite chains of nodes in a S. We will be taking finite chains to
be finite sequences 〈t1, . . . , tn〉 of nodes of S where t1 ≤S · · · ≤S tn. In particular, we will say
that a family F of n-chains in S is dense-above some s ∈ S if the family {t1 : 〈t1, . . . , tn〉 ∈ F} is
dense-above s.

Corollary 1. Let S be a Souslin tree contained in a countable elementary submodel M of some
sufficiently large Hλ. Suppose further that F ∈ M is a family of n-chains in S, containing some
{t1, . . . , tn} where each ti is not in M . Then there is some s ≤ t1 in M such that F is dense above
s.
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Let U be a non-principal ultrafilter on ω. The following definitions come from [32]. We recursively
define an ultrafilter Uα on ω for each α < ω1 by

• U0 = U0,

• Uα+1 = {A ⊆ ω : (Ui)(Uαj)(2i(2j + 1) ∈ A)},

• Uλ = {A ⊆ ω : (Ui)(Uλij)(2i(2j + 1) ∈ A)} where {λi}i∈ω is a cofinal sequence in λ.

Given a subset A of a topological space X, we recursively define the α-sequential closure A(α) of
A in X by

• A(0) = A,

• A(α+1) = {x ∈ X : (∃{xi}i∈ω ⊆ A(α))(x = limi→∞ xi)},

• A(λ) =
⋃
α<λA

(α).

The set A(ω1) is called the sequential closure of A in X.

Lemma 3. Let A be a subset of a topological space X, and let α < ω1. The a point x ∈ X belongs
to A(α) iff there is a sequence {xi}i∈ω of points of A such that x = limi→Uα xi.

Lemma 4. Let X be a family on non-decreasing n-sequences of countable ordinals such that the
family of all first-coordinates of elements of X is uncountable. Then there is an uncountable Y ⊆ X
such that for any β < ω1 and any i ≤ n the family

{α = 〈α1, . . . , αn〉 ∈ Y : αi = β}

is countable.

Proof. By induction on n. The base case is trivial, and so we assume that the result holds for families
of non-decreasing n-sequences of countable ordinals, and let X be a family of non-decreasing (n+1)-
sequences of countable ordinals such that the family of all of its first-coordinates is uncountable.
Letting

X ′ = {〈α1, . . . , αn〉 : (∃α)(〈α1, . . . , αn, α〉 ∈ X},

it is clear that the family of all first-coordinates of elements of X ′ is uncountable. Then by the
induction hypothesis there is an uncountable Y ′ ⊆ X ′ such that for each β < ω1 and each i ≤ n the
family

{α = 〈α1, . . . , αn〉 ∈ Y : αi = β}

is countable. For each β = 〈β1, . . . , βn〉 ∈ Y ′, choose a countable

Y(β) ⊆ {〈α1, . . . , αn, αn+1〉 ∈ X : αi = βi for each i ≤ n}

and let Y =
⋃
{Y(β) : β ∈ Y ′}. It is easy to show that Y is as required.

14.2 The proof

Suppose that S is a coherent Souslin tree, and that Ȯ is an S-name for a compact sequential
topology on some cardinal κ. For notational ease, we will denote by K̇ an S-name for the space
〈κ, Ȯ〉. Assume that S forces {α : α < ω1} to be a locally-countable subspace of K̇. Furthermore we
will fix a non-principal ultrafilter U in the ground model.
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Theorem 4 (PFA(S)). The coherent Souslin tree S forces that ω1 is a σ-discrete subspace of K̇.

Proof. For each α < ω1 fix S-names U̇α, V̇α such that for each α < ω1 the Souslin tree S forces:

1. U̇α, V̇α are neighbourhoods of α in K̇;

2. V̇ α ⊆ U̇α; and

3. U̇α ∩ ω1 is countable.

We will be using PFA(S) to construct an S-name Ḟ for a function ω1 → ω such that for each
n ∈ ω the tree S forces that Ḟ−1[{n}] is a discrete subset of K̇.

To aid in this, we recursively construct a strictly increasing sequence {να}α<ω1
of countable

ordinal such that for each α < ω1 every node s on the ναth level of S decides the value of the
countable sets V̇α ∩ ω1, V̇ α ∩ ω1.

The basic idea is that every node on the ναth level of S knows enough about the ordinal α in
regards to our situation that it may be used as a representative for α itself.

Letting C = {να : α < ω1}, we will use PFA(S) to construct a function f : S |C → ω.
The function f will be interpreted as an S-name Ḟ for a function ω1 → ω by the following

contrivance: given t ∈ S(να),
t  Ḟ (α) = f(t).

Our work will then be to construct f so that under this interpretation Ḟ is forced by S to have
discrete fibers.

For later convenience, for each ν ∈ C it will be useful to denote by ν− the unique α < ω1 such
that να = ν.

Define P to be the family of all pairs p = 〈fp,Np〉 where:

1. fp is a finite partial function S |C → ω; for each l ∈ ω by doml(fp) we denote f−1
p [{l}];

2. Np is a finite ∈-chain of countable elementary submodels of Hκ+ containing S, Ȯ, {〈U̇α, V̇α〉 :

α < ω1}, C;

3. for each l ∈ ω the chain Np separates doml(fp) in the sense that given any two distinct
s, s′ ∈ doml(fp) there is an N ∈ Np containing exactly one of these.

For p, q ∈ P, we let p ≤ q iff

1. fp ⊇ fq;

2. Np ⊇ Nq; and

3. given l ∈ ω, if s ∈ doml(fp) \ dom(fq) and s′ ∈ doml(fq) are compatible nodes of S, then

s′  α /∈ V̇β

where α = (ht(s))′ and β = (ht(s′))−.

Before proving that our partial order P satisfies Miyamoto’s condition, we will show that a
sufficiently generic filter in P gives our required object.

Lemma 5. For every s ∈ S |C the set

Ds = {p ∈ P : s ∈ dom(fp)}

is a dense-open subset of P.
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Proof of Lemma 5. If q is a condition of P not in Ds, pick any natural number n not in the range
of fq. Then the pair p = 〈fq ∪ {〈s, n〉},Nq〉 is clearly an extension of q in Ds.

Lemma 6. Let G ⊆ P be a filter generic for {Ds : s ∈ S |C}, and let

fG =
⋃
p∈G

fp.

Then fG is a function from S |C to ω. Furthermore, if ḞG is the S-name derived from fG as above,
then S forces that the fibers of ḞG are discrete in K̇.

Proof of Lemma 6. It clearly suffices to show that each s′ ∈ S |C forces that (Ḟ−1[fG(s′)]∩ω1)∩ V̇β
is finite, where β = (ht(s′))−. Pick any q ∈ Ds′ ∩G.

Taking any b ∈ S |C, pick some q ∈ Db∩G, and let β = (ht(b))−. If a ∈ f−1
G {fG(b)} is comparable

with b, let p ∈ Da ∩ G be an extension of q, and let α = (ht(a))−. By our extension relation, it
follows that either a ∈ Dq, or

b S “α /∈ V̇β .”

From this and the definition of ḞG it follows that

b S “V̇β ∩ Ḟ−1
G {fq(b)} ⊆ {(ht(a))− : a ∈ Dq, fq(a) = fq(b)}.”

We may now conclude that for any β < ω1 that

S “V̇β ∩ Ḟ−1
G {ḞG(β)} is finite,”

and therefore ḞG is forced to have discrete fibers.

We now proceed to prove that P satisfies Miyamoto’s condition. Let θ > κ+ be a sufficiently
large regular cardinal, and let M be a countable elementary submodel of Hθ containing S,P, and
everything else needed. Let δ = ω1 ∩M , and pick any p ∈ P ∩M . Defining

pM = 〈fp,Np ∪ {M ∩Hκ+}〉,

by a standard argument it follows that pM ∈ P, and pM ≤ p. We now show that 〈pM tM 〉 is
(M,P × S)-generic for any tM ∈ Sδ.

Let D be a dense open subset of P × S, and let 〈q, t〉 be a given extension of 〈pM , tM 〉.
Our first step will be to provide a description of this condition-pair 〈t, q〉 from M ’s perspective

so that by elementarity M contains a condition-pair 〈u, r〉 with the same description. Further work
will be required to allow us to choose such a 〈u, r〉 compatible with 〈t, q〉.

Extending 〈q, t〉, we may assume that 〈q, t〉 ∈ D. Since D is open, by the definition of the
extension relationship on P we may assume that t is not an element of the largest model in Nq, and
that this model contains fq.

Let qM = 〈fqM ,NqM 〉 = 〈fq |M,Nq ∩M〉 = 〈fq ∩M,Nq ∩M〉. Note that qM is an element of the
submodel M , and that it is an “initial part” of the condition q. (The exact sense in which we will
view qM as an “initial part” of q will made precise momentarily.)

Note that 〈q, t〉 could have been chosen so that the maximal model NqM of NqM is so large that,
letting δM = NqM ∩ ω1,

1. dom(fqM ) ⊆ N−1,
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2. dom(fq) \N−1 = dom(fq) \M , and

3. given any two a, b ∈ (dom(fq) \M) ∪ {t} we have a |[δM , δ) = b |[δM , δ).

A consequence of (2) and (3) is that the projection of (dom(fq) \M) ∪ {t} on the δM th and δth
levels of S have the same size. We may then enumerate the projections of (dom(fq) \M) ∪ {t} on
the δM th and δth levels of S, respectively, as {u1, . . . , un}, {v1, . . . , vn} so that un = vn | δM for each
n ≤ ñ, and v1 = t | δ = tM (so that u1 = t | δM = tM | δM ). For 1 ≤ i, j ≤ n, let σij be the canonical
isomorphism which moves ui to uj . Note that σ−1

ij = σji and σii is the identity function.
Define F = {x ∈ (dom(fq)∪{t}\M : (∃i ≤ n)(ui ≤S x ≤S σ1i(t))}. Note that by our assumptions

above, it follows that x ∈ F iff x ∈ (dom(fq) ∪ {t} \NqM and vi ≤S x ≤S σ1i(t) for some 1 ≤ i ≤ n.
For x ∈ F , let x̂ = σix1(x), where ix is the unique 1 ≤ i ≤ n such that ui ≤S x.
For n ≤ ñ let σn denote the canonical isomorphism S(un) → S(tM ), where tM = t | δM = s̄ | δM .

Note that for each n ≤ ñ the set

{a ∈ domq ∩S(un) : σn(a) ≤S t}

is a chain in S. Consider then the family

Z =
⋃
n≤ñ

{a ∈ domq ∩S(un) : σn(a) ≤S t}.

We may enumerate Z = {a1, . . . , am̃} non-decreasing by height. For each m ≤ m̃ let nm ≤ ñ be such
that unm ≤S am, and let im = fq(am).

As Nq separates the fibers of fq, there are models

M ∩Hκ+ = N0 ∈ N1 ∈ · · · ∈ N˜̀ = Nt

in Nq such that for all m < m′ ≤ m̃, if im = im′ , then there is an ` ≤ ˜̀ such that am ∈ N` and
am′ /∈ N`. For each ` ≤ ˜̀, let k̃` = |Z ∩ (N` \N`−1)|. We may re-enumerate Z as

{a1,1, . . . , a1,k̃1
, . . . , a˜̀,1, . . . , a˜̀,k̃˜̀

},

and make similar notational changes to the nm’s and the im’s. For each ` ≤ ˜̀ let

a` = 〈σn`,1(a`,1), . . . , σn`,k̃`
(a`,k̃`)〉 = 〈x`,1, . . . , x`,k̃`〉.

Clearly each a` is a chain in S included in the interval [tM , t), and that maxa` <S mina`+1 for all
` < ˜̀. For completeness we let a˜̀+1 = 〈t〉.

We now consider the family ∆∗ of all condition-pairs 〈u, r〉 ∈ ∆ satisfying the following conditions.

4. tM ≤S u,

5. r has qM as an “initial part” in the following sense: fr ⊇ fqM , Nr ⊇ NqM and domr ∩N−1 =

domqM ,

6. the maximal model N 〈u,r〉u of Nr is so large that domr ⊆ N 〈u,r〉u ,

7. u /∈ N 〈u,r〉u ,

8. the family Z〈u,r〉 =
⋃
n≤ñ{a ∈ domr ∩S(un) : σn(a) ≤S u} has m̃ elements,
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9. there is an enumeration Z〈u,r〉 = {a〈u,r〉1 , . . . , a
〈u,r〉
m̃ } non-decreasing by height such that for

each m ≤ m̃ unn ≤S am and fr(am) = im, and

10. there are models

min(Nr \ NqM ) = N
〈u,r〉
0 ∈ N 〈u,r〉1 ∈ · · · ∈ N 〈u,r〉˜̀ = N 〈u,r〉u

in Nr such that |Z〈u,r〉 ∩ (N
〈u,r〉
` \N 〈u,r〉`−1 )| = k̃` for each ` ≤ ˜̀.

It is clear that ∆∗ ∈M , and that 〈t, q〉 ∈ ∆∗.
Note that for each 〈u, r〉 ∈ ∆∗ we may re-enumerate

Z〈u,r〉 = {a〈u,r〉1,1 , . . . , a
〈u,r〉
1,k̃1

, . . . , a
〈u,r〉
˜̀,1

, . . . , a
〈u,r〉
˜̀,k̃˜̀
}

as we have re-enumerated Z. Then for each ` ≤ ˜̀we let

a
〈u,r〉
` = 〈σn`,1(a

〈u,r〉
`,1 ), . . . , σn`,k̃`

(a
〈u,r〉
`,k̃`

)〉.

As with the a`’s, each a
〈u,r〉
` is a chain in S in the interval [tM , u) and mina

〈u,r〉
` <S maxa

〈u,r〉
`+1 for

each ` < ˜̀. Again for completeness we let a〈u,r〉˜̀+1
= 〈u〉 for each 〈u, r〉 ∈ ∆∗.

Define
F = {〈a〈u,r〉1 , . . . ,a

〈u,r〉
˜̀ ,a

〈u,r〉
˜̀+1
〉 : 〈u, r〉 ∈ ∆∗}

Note that F ∈M ∩Hκ+ and 〈a1, . . . ,a˜̀,a˜̀+1〉 ∈ F .
For each initial segment 〈z1, . . . , z˜̀〉 of an element of F , let

F(z1, . . . , z˜̀) = {z ∈ S1 : 〈z1, . . . , z˜̀, z〉 ∈ F}.

In particular, note that a˜̀+1 ∈ F(a1, . . . ,a˜̀) ∈ N˜̀, however no coordinate of a˜̀+1 is in N˜̀ (that is,
t /∈ N˜̀). By Corollary 1 there is a y˜̀ ∈ S ∩N˜̀ with x˜̀,k̃˜̀

<S y˜̀<S t such that F(a1, . . . ,a˜̀) is dense
above y˜̀.

For each initial segment 〈z1, . . . , z˜̀−1〉 of an element of F , let F(z1, . . . , z˜̀−1) be the family{
〈z, y〉 ∈ Sk̃˜̀× S :

z is a chain in S, max z˜̀−1 <S min z,
max z <S y , F(z1, . . . , z˜̀−1, z) is dense above y.

}
.

In particular 〈a˜̀, y˜̀〉 ∈ F(a1, . . . ,a˜̀−1) ∈ N˜̀−1 however no coordinate of a˜̀ is in N˜̀−1 and neither
is y˜̀. By Corollary 1 it again follows that there is a y˜̀−1 ∈ S ∩N˜̀

1
with x˜̀−1,k̃˜̀−1

<S y˜̀
1
<S t such

that F(a1, . . . ,a˜̀−1) is dense above y˜̀
1
.

Continuing in this fashion, we eventually define F(∅) to be the family{
〈z, y〉 ∈ Sk̃1 × S :

z is a chain in S, tM <S min z,
max z <S y , F(z) is dense above y.

}
.

Again 〈a1, y1〉 ∈ F(∅) ∈ N0 while no coordinate of a1 is in N0, and neither is y1. Therefore by
Corollary 1 there is a y0 ∈ S ∩N0 with x1,k̃1

<S y0 <S t such that F(∅) is dense above y0.
For each n ≤ ñ, let Ȯn denote σn(Ȯ). Note that each Ȯn is an S-name (actually, it is an S(tM )-

name) for a compact sequential topology on κ. We are now prepared to begin constructing a copy of
〈a1, . . . ,a˜̀,a˜̀+1〉 in F ∩M that will be instantiated by a condition-pair 〈u, r〉 ∈ ∆∗ ∩M compatible
with 〈t, q〉. This will be accomplished in a layer-by-layer argument, where a` is called the `th layer
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of 〈t, q〉 above 〈tM , qM 〉.

Let Ẋ1 be an S-name for the familyα = 〈α1, . . . , αk̃1〉 ∈ ω
k̃1
1 :

there is an 〈z = 〈z1, . . . , zk̃1〉, y〉 ∈ F(∅)
such that {z1, . . . , zk̃1 , y} ⊆ Ḃ and
αk = (ht(zk))− for each k ≤ k̃1

 .

As F(∅) is dense above y0, it follows that

y0 S “{α1 : α ∈ Ẋ0} is uncountable.”

By Lemma 4 there is an S-name Ẏ1 for a subset of Ẋ0 such that

y0 S “Ẏ1 is uncountable with all projections uncountable.”

Note that all of these names may be found (and therefore assumed to be) in M . As
∏
k≤k̃1 Ȯn1,k

is
an S-name for a compact sequential topology on κk̃1 , there is an S(tM )-name ẋ1 = 〈ẋ1,1, . . . , ẋ1,k̃1

〉
such that

y0 S “ẋ1 is a complete accumulation point for Ẏ1 in
∏
k≤k̃1 Ȯn1,k

”

Then there is an S-names 〈ξ̇j〉j∈ω for a sequence of points in Ẏ0, and an S-name γ̇1 for a countable
ordinal such that

y0 S “ lim
j→Uγ̇1

ξ̇j = ẋ1.”

As each of these S-names may be assumed to be in M , we may move to an extension ȳ0 of y0, still
in M and below t, which decides these names. Let 〈ξj〉j∈ω and γ1 denote ȳ0’s decisions, and for each
j ∈ ω let ξj = 〈ξ1

j , . . . , ξ
k̃1
j 〉. Note that for each k ≤ k̃0 we have that

y0 S “ lim
j→Uγ1

ξkj = ẋ1,k in Ȯn1,k
”

Given any k ≤ k̃1, let b ∈ domq ∩S(un1,k
) be such that fq(b) = i1,k, and let β = (ht(b))−. As

σ−1
n1,k

(ȳ0) ≤S b it follows that

b S “ lim
j→Uγ1

ξkj = σ−1
n1,k

(ẋ1,k) (in O ).”

Since S “U̇β ∩ ω1 is countable” and b forces that ẋ1,k is a complete accumulation point for the
uncountable family of kth-coordinates of elements of σ−1

n1,k
(Ẏ1), it follows that

b S “σ−1
n1,k

(ẋ1,k) /∈ U̇β ⊇ V̇ β .”

As b decides the countable set V̇ β ∩ ω1, it follows that

Ab = {j ∈ ω : b S “ξkj /∈ V̇ β”} ∈ Uγ1 .

Taking any j ∈
⋂
k≤k̃1

⋂
{Ab : b ∈ domq ∩S(u1,k), fq(b) = i1,k}, it follows that for each k ≤ k̃1 and

each b ∈ f−1
q {i1,k} ∩ S(u1,k) we have

b S “ξjk /∈ V̇β”
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where β = (ht(b))−. Since ȳ0 S “ξj ∈ Ẏ1 ⊆ Ẋ1” there is a

〈z1 = 〈z1,1, . . . , z1,k̃1
〉, w1〉 ∈ F(∅)

such that
ȳ0 S “{z1,1, . . . , z1,k̃1

, w1} ∈ Ḃ”

and ξkj = (ht(z1,k))− for each k ≤ k̃1. By elementarity we may take 〈z1, w1〉 ∈M . Note that by (9)
and the definition of F(∅) it follows that

z1,1 ≤S · · · ≤S z1,k̃1
≤S w1 ≤S ȳ0 ≤S t.

Now let Ẋ2 be an S-name for the familyα = 〈α1, . . . , αk̃2〉 ∈ ω
k̃2
1 :

there is an 〈z = 〈z1, . . . , zk̃2〉, y〉 ∈ F(z1)

such that {z1, . . . , zk̃2 , y} ⊆ Ḃ and
αk = (ht(zk))− for each k ≤ k̃2

 .

Following the method above (noting that since F(z1) is dense above w1, then w1 forces that the
family of 1st-coordinates of elements of Ẋ2 is uncountable), we find a node ȳ1 ∈ S ∩M above w1 and
below t and a k̃2-tuple ξ2 = 〈ξ2,1, . . . , ξ2,k̃2〉 ∈M of countable ordinals such that

ȳ1 S “ξ2 ∈ Ẋ2”

and for each k ≤ k̃2 and each b ∈ f−1
q {i2,k} ∩ S

un2,k

b S ξ2,k /∈ V̇β

where β = (ht(b))−. Then by elementarity and definition of Ẋ2 there is a pair 〈z2 = 〈z2,1, . . . , z2,k̃2
〉, w2〉 ∈

F(z1) ∩M such that ȳ1 S “{z2,1, . . . , z2,k̃2
, w2} ⊆ Ḃ” and ξ2,k = (ht(z2,k))− for each k ≤ k̃2. It

then follows that w2 ≤s ȳ1 ≤S t.
Continuing in this fashion, we find

〈z3 = 〈z3,1, . . . , z3,k̃3
〉, w3〉 ∈ F(z1, z2) ∩M
...

〈z˜̀ = 〈z˜̀,1, . . . , z˜̀,k̃˜̀
〉, w˜̀〉 ∈ F(z1, . . . , z˜̀−1) ∩M

such that for each ` ≤ ˜̀we have

11. z`,1 ≤S · · · ≤S z`,k̃` ≤S w` ≤S t, and

12. for each k ≤ k̃` and every b ∈ f−1
q {i`,k}, if β = (ht(b))−, then b S “α /∈ V̇β”, where α =

(ht(z`,k))−.

Since F(z1, . . . , z˜̀) is dense above w˜̀ ∈M , it follows that there is a 〈u〉 ∈ F(z1, . . . , z˜̀)∩M such
that w˜̀≤S u ≤S t. Then the (˜̀+ 1)-tuple 〈z1, . . . , z˜̀, 〈u〉〉 is an element of F ∩M , and therefore by
definition and elementarity there is a condition-pair 〈u, r〉 ∈ ∆∗ ∩M such that

〈a〈u,r〉1 , . . . ,a
〈u,r〉
˜̀ ,a

〈u,r〉
˜̀+1
〉 = 〈z1, . . . , z˜̀, 〈u〉〉.

By our choices of the z` (for ` ≤ ˜̀) it follows that u and q are compatible, and clearly u ≤S t.



14.2. The proof 79

Therefore the partial order P satisfies Miyamoto’s condition, and is thus proper and preserves S.
This completes our proof.
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Abstract
This thesis applies the method of forcing to the investigation of the real line, and general topo-

logical spaces.
In the first part of the thesis (joint work with M. Goldstern, J. Kellner and S. Shelah), a creature

forcing construction is used to construct models of ZFC in which

ℵ1 = d = cov(N ) < non(M) < non(N ) < cof(N ) < c.

In the second part of the thesis, we continue the investigation of topological consequenced of
S. Todorcevic’s PFA(S) (the fragment of the Proper Forcing Axiom consistent with keeping a fixed
(coherent) Souslin tree S Souslin). In particular, we show that in the generic extension by S, every
locally countable subspace of cardinality <c in a compact Hausdorff space is σ-discrete. This is
related to Z. Szentmiklossy’s investigation of S-spaces under MA, the MA-counterpart of which was
extracted by Z. Balogh.





Zusammenfassung
Die vorliegende Dissertation verwendet die forcing Methode für Untersuchungen an den reellen

Zahlen und allgemeinen topologischen Räumen.
Im ersten Teil der Arbeit, die gemeinschaftlich mit M. Goldstern, J. Kellner und S. Shelah

entstanden ist, wird ein creature forcing verwendet um ein Modell der Mengenlehre zu konstruieren
in dem

ℵ1 = d = cov(N ) < non(M) < non(N ) < cof(N ) < c.

Im zweiten Teil der Dissertation setzen wir die Untersuchung der topologischen Konsequenzen
von PFA(S) fort. Das Axiom PFA(S) wurde von S. Todorcevics eingeführt und ist das Fragment von
PFA das konsistent bleibt mit der Aussage, einen vorher fixierten Suslin Baum S-Suslin zu belassen.
Wir zeigen insbesondere: In der von S erzeugten generischen Erweiterung ist jeder lokal abzählbare
topologische Teilraum von Größe <c eines kompakten Hausdorff Raums σ-diskret. Das Resultat
bezieht sich auf Z. Szentmiklossys Untersuchungen der S-Räume unter MA. Das MA Gegenstück
dazu wurde von Z. Balogh erarbeitet.
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