
D I S S E R T A T I O N

Titel der Dissertation

Definition and Enforcement of Access Constraints

in Collaborative Processes

verfasst von

Mag. Patrick Gaubatz

angestrebter akademischer Grad

Doktor der Wirtschaftswissenschaften (Dr.rer.oec.)

Wien, 2015

Studienkennzahl lt. Studienblatt: A 784 175
Dissertationsgebiet lt. Studienblatt: Wirtschaftsinformatik
Betreuer: Univ.-Prof. Dr. Uwe Zdun

Declaration of Authorship

I, Patrick Gaubatz, declare that this thesis with the title, “Enforcing Access Constraints
in Collaborative Processes” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Abstract

A collaborative process is a structured or unstructured process where two or more dif-
ferent stakeholders are working together to fulfill a shared, collective and bounded goal.
Especially in today’s technology- and information-driven society, participation in such
collaborative processes is common place. Information technology and the automation
provided by IT systems lead to an ever-increasing shift towards virtual collaborative
processes. In general, collaborative processes are often subject to security policies, busi-
ness rules, laws and regulations. For instance, a legal contract has to be signed by all
contractual partners and certified by a notary. In virtual collaborative processes, such
restrictions could be enforced using different types of access constraints. In particular,
they could strictly constrain the way each stakeholder participates in a collaborative
process. However, developing and maintaining means for defining and enforcing differ-
ent kinds of access constraints and access control in general is a cross-cutting concern
that is inherently prone to increase the complexity of software systems and to degrade
the software system’s code quality. The diverse variety of collaborative process types,
which ranges from structured and rigid business processes to unstructured and flexible
real-time collaborative Web applications (such as collaborative text editing), to be made
subject to access constraints, requires custom, domain-specific enforcement mechanisms
and approaches, which would significantly increase the overall development effort. Par-
ticularly, real-time collaborative Web applications require these enforcement mechanisms
to be scalable and computationally efficient too.

In this thesis, we propose a model-driven approach for defining and enforcing different
types of access constraints in different types of collaborative processes. Our approach
aims for tackling the aforementioned challenges while, at the same time, reducing the
required development and maintenance effort. Based on this approach, we explore the
implications of changing access constraints dynamically at runtime and devise a novel set
of generic and reusable consistency checking and conflict resolution strategies. In the con-
text of real-time collaborative Web applications, we introduce and evaluate the concept of
dynamic view customization as a means for enforcing access constraints. In addition, we
investigate offline-editing scenarios in the context of access constrained, real-time collab-
orative Web documents. In particular, we demonstrate how a combination of client-side
access control enforcement and a corresponding document merging approach can be used
to enable mobile workers to participate in a real-time collaborative process while their
computing devices are temporarily not connected to any network. Our proposed model-
driven approach as well as the accompanying concepts have been implemented in various
research prototypes, thereby showing the feasibility and effectiveness. Extensive per-
formance measurements demonstrate that our concepts and prototypes are applicable
in real-life collaborative processes as well as in a larger Web context. Controlled ex-
periments provide evidence that automatic access constraint enforcement increases both
the effectivity and efficiency of users. In summary, this thesis has gone a considerable
step towards enhancing our understanding of making collaborative processes subject to
diverse kinds of access constraints.

iii

Zusammenfassung

Ein kollaborativer Prozess ist ein strukturierter oder unstrukturierter Prozess in dem
zwei oder mehrere Akteure zusammenarbeiten, um ein gemeinsames, abgestecktes Ziel
zu erreichen. Vor allem in der heutigen Technologie- und Informations-gestützten Ge-
sellschaft ist die Teilnahme an solchen kollaborativen Prozessen alltäglich. Die wohlbe-
kannten Vorteile von Informationstechnologien und Automatisierung durch IT-Systeme
hat zu einer stetig zunehmenden Virtualisierung von kollaborativen Prozessen geführt.
Kollaborative Prozesse werden oft Sicherheitsrichtlinien, Unternehmensrichtlinien, Ge-
setzen und Regulierungen unterworfen. So muss beispielsweise ein Vertrag von allen
Vertragspartnern unterschrieben und von einem Notar beglaubigt werden. In virtuel-
len kollaborativen Prozessen könnten diese Einschränkungen mittels Zugriffs-Constraints
durchgesetzt werden, welche die Art und Weise wie jeder Akteur am kollaborativen Pro-
zess teilnimmt einschränken. Die Entwicklung und Pflege von Mechanismen zur Definiti-
on und Durchsetzung von verschiedensten Zugriffs-Constraints und Zugriffskontrolle im
Allgemeinen, ist ein Cross-Cutting-Concern und daher besonders anfällig, die Komple-
xität von Software-Systemen zu erhöhen und die Code-Qualität des Software-Systems
zu verschlechtern. Die Vielfalt an verschiedenartigen Typen von kollaborativen Prozes-
sen, welche von strukturierten und starren Business-Prozessen bis hin zu flexiblen Echt-
zeit-Kollaborations-Web-Applikationen (z.B. kollaboratives Editieren von Texten) reicht,
welche Zugriffs-Constraints unterworfen werden sollen, benötigen maßgeschneiderte, Do-
mänen-spezifische Durchsetzungsmechanismen, welche den Gesamtentwicklungsaufwand
nochmals erhöhen. Insbesondere Echtzeit-Kollaborations-Web-Applikationen verlangen
nach skalierbaren und effizienten Durchsetzungsmechanismen.

In dieser Dissertation stellen wir einen Modell-getriebenen Ansatz zur Definition
und Durchsetzung von Zugriffs-Constraints für verschiedenste Arten von kollaborati-
ven Prozessen. Unser Ansatz zielt darauf ab, die zuvor genannten Herausforderungen
zu bewältigen und den Entwicklungs- und Wartungsaufwand zu reduzieren. Auf Basis
dieses Ansatzes untersuchen wir die Auswirkungen von Zugriffs-Constraint-Änderungen
zur Laufzeit und beschreiben einen generischen Mechanismus zur Konsistenzprüfung und
Konfliktauflösung. Im Kontext von Echtzeit-Kollaborations-Web-Applikationen beschrei-
ben und evaluieren wir das Konzept der dynamischen View-Konfiguration zur Durchset-
zung von Zugriffs-Constraints. Außerdem erforschen wir Offline-Bearbeitungsszenarios
im Kontext von Zugriffs-Constrains und Echtzeit-Kollaborations-Web-Dokumenten. Da-
bei demonstrieren wir, wie eine Kombination von Client-seitiger Zugriffskontrolle und
ein Dokumenten-Merge-Mechanismus mobilen Arbeitern ermöglicht, an einem Echtzeit-
kollaborativen Prozess teilzunehmen, während deren Geräte temporär nicht mit einem
Netzwerk verbunden sind. Wir belegen die Machbarkeit und Effektivität unseres Modell-
getriebenen Ansatzes und dessen zugehörigen Konzepten mit Hilfe von Forschungsproto-
typen. Umfangreiche Performance-Messungen zeigen, dass unsere Konzepte und Prototy-
pen auch in der Praxis bzw. einem größeren Web-Kontext anwendbar sind. Kontrollierte
Experimente weisen nach, dass das automatische Durchsetzen von Zugriffs-Constraints
sowohl die Effektivität als auch die Effizienz von Benutzern steigert. Diese Dissertation
erweitert unser Verständnis von der Unterwerfung von kollaborativen Prozessen durch
verschiedenste Arten von Zugriffs-Constraints.

v

Acknowledgments

Finishing this thesis makes me immensely proud and I can, without any hesitation, admit

that the last four years have been the most challenging and demanding, but also the most

rewarding years of my life, so far. A work of this scale is never undertaken alone and I

am deeply indebted to those that supported, influenced, inspired, motivated and enabled

me to pursue this momentous and memorable journey.

First of all, I would like to express my sincere thanks to my supervisor, Prof. Uwe

Zdun, who has been an inexhaustible source of inspiration and motivation, for guiding

me throughout my studies and for always being available when I felt I was lost. I am

also most grateful to Prof. Cesare Pautasso for serving as examiner of my thesis. Special

thanks go to my colleagues, Mark Strembeck, Waldemar Hummer, Ioanna Lytra, Thomas

Quirchmayr and Stefan Sobernig for the endless, but enjoyable and fruitful discussions

and collaboration eventually leading to numerous successful paper projects. I would

like to thank the whole Software Architecture Group, most notably Thomas Haitzer,

Ioanna Lytra, Gerhard Pernecker, Simon Tragatschnig and Huy Tran, for providing such

a cordial, productive and pleasant working environment.

Finally, I am sincerely thankful to family and friends, who always cheered me up and

also provided the occasional but definitely necessary distractions from work. Most of

all, I wanted to thank the most important person in my life, my girlfriend Claudia, who

had to suffer with me through all the ups and downs and who was always there for me.

Without her, I could not have finished this thesis. Thank you!

Patrick Gaubatz

Hainburg an der Donau, December 2014

vii

Contents

Declaration of Authorship i

Abstract iii

Zusammenfassung v

Acknowledgements vii

Publications xi

1 Introduction 1

2 Background 3

2.1 Business Processes and Workflows . 3
2.2 Real-time Collaborative Web Applications 4
2.3 Access Control and Constraints . 5

3 Problem Statement 7

3.1 Problem Domain and Context . 7
3.2 Research Questions . 10

4 Research Results and Contributions 13

4.1 Design Science Research Method . 13
4.2 Publication Overview . 13
4.3 Scientific Contributions . 16

5 Conclusions 25

5.1 Research Questions Revisited . 25
5.2 Future Work . 29

Bibliography 31

A An Integrated Approach for Identity and Access Management in a SOA

Context 41

B Enforcement of Entailment Constraints in Distributed Service-based

Business Processes 53

ix

C Consistency Checking and Resolution Strategies for Runtime Conflicts

Resulting from Changes in Process-related RBAC Models 77

D UML2 Profile and Model-Driven Approach for Supporting System In-

tegration and Adaptation of Web Data Mashups 107

E Supporting Entailment Constraints in the Context of Collaborative

Web Applications 121

F Supporting Customized Views for Enforcing Access Control Constraints

in Real-time Collaborative Web Applications 129

G Enforcing Entailment Constraints in Offline Editing Scenarios for Real-

time Collaborative Web Documents 145

H Two Controlled Experiments on Model-based Architectural Decision

Making 155

I Automatic Enforcement of Constraints in Real-time Collaborative Ar-

chitectural Decision Making 195

Curriculum Vitæ 251

x

Publications

This cumulative doctoral dissertation consists of work that has either been published in

scientific conferences, workshops, journals and books or is currently under review. The

following list of publications is included in this thesis:

• P. Gaubatz, I. Lytra, and U. Zdun. Automatic Enforcement of Constraints in

Real-time Collaborative Architectural Decision Making. Journal of Systems and

Software, accepted for publication in January 2015

• I. Lytra, P. Gaubatz, and U. Zdun. Two Controlled Experiments on Model-based

Architectural Decision Making. submitted to Information and Software Technology,

submitted first revision in January 2015

• T. Quirchmayr, P. Gaubatz, M. Strembeck, and U. Zdun. Consistency Checking

and Resolution Strategies for Runtime Conflicts Resulting from Changes in Process-

related RBAC Models. submitted to Advances in Verifiably Secure Process-aware

Information Systems, submitted in June 2014

• P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Enforcing Entailment Con-

straints in Offline Editing Scenarios for Real-time Collaborative Web Documents.

In 29th Symposium On Applied Computing, Gyeongju, Korea, March 2014

• W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. Enforcement

of Entailment Constraints in Distributed Service-based Business Processes. Infor-

mation and Software Technology, 55(11), November 2013

• P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Supporting Customized

Views for Enforcing Access Control Constraints in Real-time Collaborative Web

Applications. In 13th International Conference on Web Engineering, Aalborg, Den-

mark, July 2013

• P. Gaubatz and U. Zdun. Supporting Entailment Constraints in the Context of Col-

laborative Web Applications. In 28th Symposium On Applied Computing, Coimbra,

Portugal, March 2013

• P. Gaubatz and U. Zdun. UML2 Profile and Model-Driven Approach for Supporting

System Integration and Adaptation of Web Data Mashups. In 4th International

Workshop on Lightweight Integration on the Web, Berlin, Germany, July 2012

• W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. An Integrated

Approach for Identity and Access Management in a SOA Context. In 16th ACM

Symposium on Access Control Models and Technologies, Innsbruck, Austria, June

2011

xi

Chapter 1

Introduction

Automation provided by IT systems is a continuing trend that fundamentally changes

what, how, when and where we work and conduct business. Especially repetitive work

tasks are being standardized, automated, monitored and streamlined, in order to increase

productivity and to eliminate human error as much as possible. Office automation aims

for the automation of creating, collecting, modifying, archiving and relaying of office data.

The last decades were and future decades will be characterized by the virtualization and

entailing automation of more and more of such office related work tasks. Nowadays,

the vast majority of office data that is being created, processed and relayed is electronic

data. Striving for the frequently mentioned paperless office, printed documents have been

replaced by electronic forms or documents, file cabinets have been replaced by databases

and document storages, and conventional postal delivery services (“snail mail”) is literally

facing extinction because of the e-mail. Despite this radical and ongoing shift towards the

virtualization of office work, there will (at least for the foreseeable future) always remain

situations, work tasks or processes that require some kind of human-to-human interaction.

Where formerly sheets of paper where physically handed from one person to the next, in

order to complete a record that requires to be handled by more than one person, such

collaborative processes are increasingly transformed into virtual collaborative processes.

Motivated by these trends and observations, this PhD thesis ultimately aims for

improving the way different persons collaborate within the boundaries of virtual collab-

orative process. In the context of this thesis, we define a collaborative process as follows:

Definition 1 A collaborative process is a structured or unstructured process where

two or more different stakeholders are working together to fulfill a shared, collective and

bounded goal.

An exemplary collaborative process is the process of putting a legal contract in place. It

involves at least two different stakeholders (i.e., contractual partners), that have to ne-

gotiate the contract’s exact terms, in order to reach their shared, collective and bounded

1

2 1. Introduction

goal, i.e., a legally binding contract. The aforementioned technological advances lead

to an ever-increasing shift towards virtual collaborative processes, such as collaborative

document editing, decision making, (software) project management/development, white-

boarding, groupware, wikis as well as a plethora of so-called process aware information

systems (PAIS), i.e., software that manages and executes operational processes involving

people, applications, and/or information sources on the basis of process models [18].

Specifying who is supposed to do what within a collaborative process, is essential

for successful collaboration. Also, collaborative processes are often subject to security

policies, business rules, laws and regulations, such as the Basel II/III Accords, the In-

ternational Financial Reporting Standards (IFRS), the Health Insurance Portability and

Accountability Act (HIPPA), or the Sarbanes-Oxley Act (SOX). For instance, for a valid,

legally binding contract, it is required, that it gets signed by all contractual partners and

certified by a notary. Or, in the e-health context there could be the requirement, that

for every report that is filed by a doctor, a second doctor needs to approve and sign the

report to realize the well-known four eyes principle. In virtual collaborative processes,

such restrictions can be enforced using different types of access constraints. We define

an access constraint as follows:

Definition 2 An access constraint restricts or mandates the way each stakeholder

must or must not participate in a collaborative process.

In other words, access constraints provide means for precisely defining who must or must

not do what within a collaborative process. Thus, they are crucial means for preventing

chaos, dysfunctional ambiguities or conflicts within collaborative processes and satisfying

complex requirements that stem from laws, regulations or any other compliance rules.

However, from a software developer’s point of view, developing and maintaining

means for defining and enforcing different kinds of access constraints is a complex, error-

prone and time-consuming endeavor. Consequently, this thesis strives for enhancing

our understanding of making collaborative processes subject to diverse kinds of access

constraints and finding ways of reducing the effort, that is required to implement and

maintain access constrained collaborative processes.

The remainder of this cumulative PhD thesis is structured as follows. Chapter 2

defines relevant terms and provides a literature overview of topics that build the founda-

tion this thesis. Chapter 3 details the research problem domain and context, highlights

research challenges and states the research questions. Chapter 4 discusses the pursued

research method, lists all scientific papers that have been published and details the sci-

entific contributions that have been made in the course of this thesis. Finally, Chapter 5

concludes this thesis and gives an outlook on potential future work.

Chapter 2

Background

This chapter provides a literature overview of the relevant terms and topics and builds

the foundation of this thesis.

2.1 Business Processes and Workflows

In essence, a Business Process is an ordered set of activities or tasks that produce a certain

desirable result [105]. The concept of business processes emerged from earlier work in the

context of office information systems (see, e.g., [20, 46, 104]), seeking for ways to improve

the efficiency of organizations. Business Process Management (BPM) can be defined as

“supporting business processes using methods, techniques, and software to design, enact,

control, and analyze operational processes involving humans, organizations, applications,

documents and other sources of information” [96].

A cornerstone of BPM’s promise to improve operational efficiency is automation of

processes. In order to automate the executing of processes, business processes need to

be specified using a process modeling language. A process modeling language provides

means for precisely defining the task as well as their execution order within a business

process. Several modeling languages and approaches have been introduced over the

years. Popular examples include Petri nets [64], the Unified Modeling Language (UML)

[67], the Business Process Modeling And Notation (BPMN) [68], Yet Another Workflow

Language (YAWL) [95], or the Web Services Business Process Execution Language (WS-

BPEL) [66]. A central idea in this context is the distinction between process type (e.g.,

“Patient admission”) and process instance (e.g., “Admission of patient Patrick Gaubatz”).

Thereby, process types are defined using a particular process modeling language and each

process type can have an arbitrary number of instances, which are handled individually.

Note that business processes can be modeled at different abstraction levels. To this end,

a business process that is in its execution level is often referred to as a workflow [45, 51].

Workflows can be executed within the context of workflow management systems. In

3

4 2. Background

recent years, such systems have evolved into Process-aware Information Systems (PAIS).

A PAIS can be defined as “a software system that manages and executes operational pro-

cesses involving people, applications, and/or information sources on the basis of process

models” [18, 94]. According to this definition, many other types of information systems

can be considered to be “process aware” even if their processes are hard-coded or only used

implicitly [93]. Popular example of PAIS are, “classical” workflow management (WFMS)

systems, enterprise resource planning (ERP) systems, case handling systems, product

data management (PDM) systems, customer relationship management (CRM) systems,

or hospital information systems. Following the aforementioned definition of PAIS, we

argue that real-time collaborative Web applications, which will be discussed in the next

section, may also be classified as PAIS in the broader sense. That is, real-time collabora-

tive Web applications typically have an implicit underlying process, such as “a particular

form or document needs to be filled out completely”. Contrary to business processes, in

such real-time collaborative processes the precise set and sequence of tasks that need to

be performed in order to complete the process is not defined or predetermined.

2.2 Real-time Collaborative Web Applications

Real-time collaborative Web applications are Web applications that employ synchronous

distributed interaction [22], a collaboration form in the context of real-time groupware,

that allows multiple users to edit a shared artifact concurrently, at the same time. Group-

ware is a “computer-based system that supports groups of people engaged in a common

task (or goal) and that provides an interface to a shared environment” [22]. Groupware

can be distinguished into real-time groupware and non-real-time groupware. While the

former requires that users are actively (and synchronously) using the application at the

same time, the latter describes an asynchronous style of communication and collabora-

tion that is employed, for instance, in asynchronous conferencing software, such as online

forums, blogs and wikis (see, e.g., [61, 72]) The groundwork of real-time groupware has

been laid by Douglas Engelbart’s “The Mother of All Demos” [24], demonstrating the first

multi-user text editor in 1968. Nearly three decades later, Web browsers are becoming

the common platform of choice for delivering real-time groupware applications (see, e.g.,

[43, 63, 99]). Popular examples of Web-based real-time groupware range from text edit-

ing (see, e.g., Google Docs1 or Sharelatex2), to Integrated Development Environments

(see, e.g., Cloud93 or Collabode [40]), to modeling tools (see, e.g., Creatly4 or Cacoo5).

1http://docs.google.com
2http://sharelatex.com
3http://c9.io
4http://creately.com
5http://cacoo.com

http://docs.google.com
http://sharelatex.com
http://c9.io
http://creately.com
http://cacoo.com

2. Background 5

The cornerstone of real-time groupware is concurrency control. The purpose of con-

currency control is to ensure data consistency and resolving conflicts between users’

simultaneous operations [21]. In both real-time and non-real-time groupware, conflicts

are inherent and happen when two (or more) participants change the very same part of a

shared document. An exemplary conflict might be a situation where one user fixes a typo

within a particular word, while another user removes the very same word, at the same

time. Concurrency control approaches can be distinguished in optimistic concurrency

control and pessimistic concurrency control approaches. The prevailing optimistic ap-

proaches (see, e.g, Operational Transformation [21] and Differential Synchronization [31])

maintain consistency without relying on locking certain parts of the shared document.

2.3 Access Control and Constraints

According to Sandhu et al., “Access control constrains what a user can do, thereby

seeking to prevent activity that could lead to breach of security” [79]. Thus, it deals with

the “elicitation, specification, maintenance, and enforcement of access control policies

in software systems” [56, 79]. “An Access control policy is a high-level guideline that

determines how accesses are controlled and access decisions determined” [79, 82]. An

access or authorization decision is the decision if access to secured resource shall be

granted or not. Put simply, access control concerns defining and enforcing who shall be

granted to do what within a software system.

Access control policies can be divided into authorization policies and obligation poli-

cies [82, 83]. Authorization policies concern the rights of users, i.e., what users are

permitted or not permitted to do. The essence of an authorization policy can be formal-

ized using the triplet 〈subject, object, operation〉, whereby subject uniquely identifies a

particular user (e.g., Patrick Gaubatz), object uniquely identifies a particular entity or

artifact within a software system (e.g., Thesis) and operation describes an operation that

can be performed on the corresponding object (e.g., write). This exemplary authoriza-

tion policy grants Patrick Gaubatz the permission to write (his) Thesis. Authorization

policies can be positive, i.e., granting permission to do something, and negative, i.e.,

denying permission to do something. On the other hand, obligation policies concern the

duties of users, i.e., what users must or must not do when certain events occur. Obliga-

tion policies are event-triggered and define the activities users must perform on objects

[15, 82, 83]. For instance, there exists an obligation policy that requires Patrick Gaubatz

to write (his) Thesis, given the preceding event PhD started.

In recent years, role-based access control (RBAC) [29, 77] has become a de-facto

standard for defining and enforcing security/access control policies in both research and

industry. It supersedes mandatory access control (MAC, see, e.g., [41, 55]) and discre-

6 2. Background

tionary access control (DAC, see, e.g., [6, 80]) in terms of flexibility. Thus, RBAC can

be used to implement both MAC [69] and DAC [78]. In the context of RBAC, roles are

used to model different job positions and scopes of duty within an information system.

These roles are equipped with the permissions to perform their respective work tasks.

Human users and other active entities (i.e., subjects) are assigned to roles according to

their work profile [86, 87]. Thereby, subjects acquire all permissions necessary to fulfill

their duties via their role memberships. RBAC has been extended and adapted to fit into

many different application domains. For instance, process-related RBAC models (see,

e.g., [39, 88, 90, 98]) enable the definition of permissions for the tasks that are included in

(collaborative) processes. Similar extensions have been proposed that allow for securing

Web resources or Web services (see, e.g., [1, 28, 52, 100]).

Besides customizing and adapting RBAC into different application domains, it has

also been the foundation for several conceptual extensions. In particular, different types

of (access) constraints have been proposed as a means for defining, e.g., how or when

particular subjects may exercise particular permissions. For instance, context constraints

are used to integrate context information (such as as temporal or spatial context of a user,

see, e.g., [4, 13, 89]). Such constraints can, for instance, be used to make authorization

decisions dependent on the current location of a particular user (i.e., is the user currently

in the office?). Another important family of constraints have been generalized under the

term (task-based) entailment constraints (see, e.g., [5, 8, 11]). A (task-based) entailment

constraint places some restriction on the subjects who can perform a task x given that

a certain subject has performed another task y. They cover two important concepts:

separation of duty and binding of duty. Separation of duty can be enforced by static

mutual exclusion (SME) and dynamic mutual exclusion (DME) constraints. A SME

constraint defines that two tasks must never be assigned to the same role and must never

be performed by the same subject (i.e., to prevent fraud and abuse). This constraint is

global with respect to all instances of a particular process type. In contrast, DME refers

to individual instances and can be enforced by defining that two tasks must never be

performed by the same subject in the same process instance. SME or DME constraints

provide means for enforcing a four-eyes-principle, which is intended to prevent fraud,

abuse and error. In contrast to mutual exclusion constraints, binding constraints define

that two bound tasks must be performed by the same entity. In particular, a subject-

binding constraint defines that the same individual who performed the first task must

also perform the bound task(s). Similarly, a role-binding constraint defines that bound

tasks must be performed by members of the same role but not necessarily by the same

individual. Such restrictions are required, e.g., in privacy critical environments, such as

the e-health domain, where users acquire confidential knowledge.

Chapter 3

Problem Statement

The following section outlines the research problem and clarifies its domain and context.

Secondly, we formulate the core research questions Section 3.2.

3.1 Problem Domain and Context

A collaborative process is a structured or unstructured process where two or more dif-

ferent stakeholders are working together to fulfill a shared, collective and bounded goal.

In general, crucial “ingredients” of successful collaboration are coordination, clarity of

roles, rights and responsibilities of each participating stakeholder (see, e.g., [59, 76, 91]).

On the contrary, unclear role specification, i.e., not specifying who is supposed to do

what within a collaborative process, may create dysfunctional ambiguity and conflict in

an organization (see, e.g., [2, 7, 103]). Hence, as Zhu et al. noted, an ideal collaborative

system allows users to know and fulfill their obligations while respecting the rights and

authority of other users in collaboration [103]. Similarly, Ellis et al. argued that effective

access control is an important means for preventing user-to-user interference [22].

This inherent need for defining the rights and responsibilities of stakeholders within

collaborative processes is intensified by the fact that collaborative processes are often

subject to security policies, business rules, laws and regulations. Numerous regulations

and IT standards exist that pose compliance requirements for the corresponding systems.

In particular, IT systems must comply with laws and regulations such as the Basel II/III

Accords, the International Financial Reporting Standards (IFRS), the Health Insurance

Portability and Accountability Act (HIPPA), or the Sarbanes-Oxley Act (SOX). For

instance, one important part of SOX compliance is to provide adequate support for

definition and enforcement of process-related security policies (see, e.g., [10, 14, 62]).

Role-based access control (RBAC) [29, 77] has become the de-facto standard for defin-

ing and enforcing such process-related security/access control policies in both research

and industry. In particular, a process-related RBAC model (see, e.g., [88, 98]) enables

7

8 3. Problem Statement

the definition of permissions for the tasks that are included in (collaborative) processes.

Simply put, a process-related RBAC model is used to define who (i.e., subjects and roles)

can do what (i.e., tasks and actions) within a particular process. In addition, different

types of access constraints have been proposed as a means for defining, e.g., how or when

particular subjects may exercise particular permissions. For instance, context constraints

are used to integrate context information (such as as temporal or spatial context of a

user, see, e.g., [4, 13, 89]). Also, entailment constraints are an important means to assist

the specification and enforcement of compliant business processes (see, e.g., [5, 8, 11]).

In particular, separation of duty constraints (i.e., DME and SME) provide means for

enforcing a four-eyes-principle, which is intended to prevent fraud and error – something

that is particularly important, e.g., in the context of SOX [62]. On the other hand,

binding of duty constraints (i.e., subject-binding and role-binding) are often required in

privacy critical environments, such as the e-health domain, where users acquire confi-

dential knowledge. In summary, it can be noted that context constraints and entailment

constraints, as well as domain-specific security constraints (see, e.g., [44]) are used to

satisfy complex requirements that stem from laws, regulations or any other compliance

rules.

Defining such access constraints and access control policies can be considered to be

a translation process. More specifically, it involves the conversion of the various rules,

regulations, and requirements into a formal set of access constraints and access control

policies. This is usually a non-automatic, manual work task. Although domain experts,

such as security experts or bank clerks, know the rules and regulations of their respective

domain best, the formalization is usually done by software developers. Communication

between software developers and the domain experts is literally the Achilles’ heel in this

particular situation. Unfortunately, there is usually a fundamental communication bar-

rier between domain experts and software developers [27]. Software developers often have

only a very vague idea about the domain-specific rules and regulations, while domain ex-

perts are most likely not familiar with any sorts of software development techniques or

modeling methodologies required for formalizing access constrains. Due to misunder-

standings or misinterpretations a considerable amount of additional time and effort has

to be invested into clarifying discussions. In the worst case, it may even compromise a

software system’s security mechanism, i.e., allowing an unauthorized user to access se-

cured resources [12, 50, 101]. Obviously, preventing such security breaches is of topmost

importance. In summary, it can be noted that the inherent communication mismatch

between security/domain experts and software developers may considerably add to the

overall development and maintenance effort of defining access control policies.

As Xiao et al. noted, the second major issue in access control and security, besides

incorrectly formalizing policies, is incorrect enforcement of the latter in the software

3. Problem Statement 9

system’s implementation [101]. One particular reason for such incorrect implementations

is that access control enforcement as well as access control in general can be considered

to be a prime example for a so-called cross-cutting concern. According to Kiczales et

al. a concern is said to be cross-cutting when its implementation is scattered across

the program and possibly tangled with the source code related to other concerns [53].

Several empirical studies (see, e.g., [9, 33, 42, 57, 102]) provide evidence that cross-

cutting concerns often lead to a degradation of a software system’s code quality. Eaddy

et al. even provide empirical evidence suggesting that cross-cutting concerns effectively

cause software defects [19]. Hence, we conclude that access control enforcement itself is

a complex and error-prone concern from a software developer’s point of view.

The situation gets worse if we consider the diverse variety of collaborative process

types, which ranges from structured and rigid business processes to unstructured and

flexible real-time collaborative Web applications. While business processes and process-

aware information systems are omnipresent in the corporate contexts, real-time collabo-

rative Web applications such as Google Docs, Etherpad, or Creately are getting more and

more popular. This means that an ever increasing number of collaborative processes get

realized as real-time collaborative Web applications. From a software developer’s point of

view, each type of process requires custom, domain-specific enforcement mechanisms and

comes with its own set of technical challenges. In particular, large-scale Web applications

require scalable and computationally efficient enforcement mechanisms. Another ongoing

major trend that must be considered in this context is the shift towards mobile comput-

ing and mobile devices. As real-time collaborative Web applications proliferate, more

and more users are going use mobile devices to participate in collaborative processes.

Summing up, it can be noted, that the implementation of access control enforcement

mechanisms is complicated by the diversity of collaborative process types and execution

environments. Due to the ever increasing importance of Web applications and mobile

devices, in this thesis, special attention is paid to these execution environments.

10 3. Problem Statement

3.2 Research Questions

Based on the problem context defined in the previous section, this thesis aims to address

three research questions, which are introduced and discussed in the following:

Research Question 1

How can the development and maintenance effort of defining different types of
access constraints and implementing the respective enforcement mechanisms
in different types of collaborative processes be reduced?

Research Question 1

How can the development and maintenance effort of defining different types of
access constraints and implementing the respective enforcement mechanisms
in different types of collaborative processes be reduced?

Research Question 1 concerns two important dimensions that contribute to the over-

all development effort of introducing and maintaining access control mechanisms in a

software system, namely the definition of access constraints and the enforcement of the

latter at runtime. Defining and maintaining access constraints typically does not only

involve software developers, but also non-technical stakeholders, such as domain experts

or security experts. Involving and coordinating both software developers and domain

experts naturally increases the overall effort that is required in the formalization pro-

cess. As has been discussed previously, the runtime enforcement of access control is

a cross-cutting concern. As such, it is inherently prone to increase the complexity of

software systems, degrade the code quality, and even cause software defects [19]. Repair-

ing these defects, working against the degradation of code quality and coping with the

ever-increasing complexity inevitably increases the development effort that is required to

maintain such systems. Thus, a central goal of this thesis has been the attempt to reduce

the effort that is needed to develop means for defining and enforcing access constraints

in different types of collaborative processes.

Research Question 2

How can different types of access constraints in different types of collaborative
processes be enforced in an effective, efficient and scalable way?

Research Question 2

How can different types of access constraints in different types of collaborative
processes be enforced in an effective, efficient and scalable way?

Research Question 2 is motivated by the observation that access control is really a

key concern in many different application domains. If access control is a key concern the

respective domain usually requires that the constrained system effectively enforces the

defined policies and access constraints. This means that unauthorized access to secured

resources must be prevented and it must therefore not be possible to somehow circumvent

the respective enforcement mechanisms. While ensuring the effectiveness of enforcement

mechanisms is certainly the topmost goal, some types of collaborative processes, such

as real-time collaborative Web applications, require the efficiency and scalability of the

enforcement mechanisms to be taken into consideration too. This is due to the fact

3. Problem Statement 11

that users of such applications usually expect instantaneous update behavior. Therefore,

enforcement mechanisms in such environments have to be efficient enough to not impose

a perceivable performance penalty on the application’s update behavior. Because in the

Web context it is not uncommon having to deal with thousands of clients, being connected

to the same Web application simultaneously, scalability is also a crucial requirement.

Research Question 3

How can we guarantee the consistency of access constraint models and the
corresponding collaborative processes, especially considering constraint model
changes at runtime and scenarios of offline use?

Research Question 3

How can we guarantee the consistency of access constraint models and the
corresponding collaborative processes, especially considering constraint model
changes at runtime and scenarios of offline use?

Research Question 3 is primarily driven by the ever increasing importance of Web

applications, mobile computing and mobile devices. In particular, mobile computing

demands solutions that enable users to continue working on access constrained, collabo-

rative processes if a reliable network connection can not be guaranteed. Such unreliable

network connections frequently occur if the user is on an airplane, in a train, in a base-

ment, or in a rural area. In spite of this, most (real-time collaborative) Web applications

do not adequately handle or do not consider such offline use scenarios at all. Besides

that, it can be noted that especially large-scale Web applications are expected to be

always available. Maintenance downtimes, due to updates or configuration changes, such

as changing access constraint models, shall be avoided or at least kept as short as pos-

sible. Changing access constraint models dynamically at runtime would be the best

solution. Unfortunately, due to the interrelations and dependencies between collabora-

tive processes and their corresponding access constraint models as well as the immanent

complexity of some access constraint models itself, such runtime changes inevitably lead

to inconsistencies.

Research Question 4

What are the benefits and limitations of automatic enforcement of access
constraints for collaborative processes?
How can we measure or quantify the impact of automatic enforcement of
access constraints for collaborative processes?

Research Question 4

What are the benefits and limitations of automatic enforcement of access
constraints for collaborative processes?
How can we measure or quantify the impact of automatic enforcement of
access constraints for collaborative processes?

Research Question 4 aims at finding evidence for the (beneficial) impacts of auto-

matic enforcement of access constraints for collaborative processes. Besides discussions

of lessons learned, we quantitatively study the efficiency and effectiveness of users. Such

quantitative evidence can help decision-makers to conduct a cost-benefit analysis by esti-

mating both the costs and the potential benefits of implementing automatic enforcement.

12 3. Problem Statement

Chapter 4

Research Results and Contributions

The following section discusses the pursued research method. Section 4.2 lists all scientific

papers that have been published and Section 4.3 provides a detailed overview of the

scientific contributions that have been made in the course of this thesis.

4.1 Design Science Research Method

This thesis is founded on the principles of design science research. Design science research

produces rigorous, meaningful results for information systems and gives the potential to

investigate new technologies and to advance accepted practice – in the absence of a

strong theory base – through the construction and evaluation of these systems and their

components [92]. According to Peffers et al., the design science process includes six

steps [71]: (1) problem identification and motivation, (2) definition of the objectives

for a solution, (3) design and development, (4) demonstration, (5) evaluation, and (6)

communication. Figure 4.1 illustrates and describes the artifacts that have been produced

in the first two steps according to Peffers et al.

4.2 Publication Overview

This thesis consists of work that has either been published in scientific conferences,

workshops, journals and books already, or is currently under review. The following list

provides a detailed list of publications that are included in this thesis.

• Paper A: W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar.

An Integrated Approach for Identity and Access Management in a SOA Context.

In 16th ACM Symposium on Access Control Models and Technologies, Innsbruck,

Austria, June 2011

13

14 4. Research Results and Contributions

Identify Problem and Motivate

● Developing and maintaining access control enforcement mechanisms is a cross-
cutting concern and inherently prone to increase the complexity and decrease
the quality of software.

● Constraining a diverse variety of collaborative process types requires custom,
domain-specific enforcement mechanisms and approaches, which would
significantly increase the overall development effort.

● The applicability in large-scale Web applications require scalable and
computationally efficient enforcement mechanisms.

● Mobile computing demands solutions that support offline use scenarios.
● Avoiding maintenance downtimes by modifying access constraint models at

runtime may inevitably lead to inconsistencies of access constraint models and
the corresponding collaborative processes.

Identify Problem and Motivate

● Developing and maintaining access control enforcement mechanisms is a cross-
cutting concern and inherently prone to increase the complexity and decrease
the quality of software.

● Constraining a diverse variety of collaborative process types requires custom,
domain-specific enforcement mechanisms and approaches, which would
significantly increase the overall development effort.

● The applicability in large-scale Web applications require scalable and
computationally efficient enforcement mechanisms.

● Mobile computing demands solutions that support offline use scenarios.
● Avoiding maintenance downtimes by modifying access constraint models at

runtime may inevitably lead to inconsistencies of access constraint models and
the corresponding collaborative processes.

Define Objectives of a Solution

● To devise an approach for defining and enforcing different types of access
constraints that can be applied for different types of collaborative process.

● The approach shall...
● minimize the development and maintenance effort.
● be applicable in large-scale Web contexts.

● To explore means for ensuring the consistency of access constraint models and
the corresponding processes in offline use and runtime change scenarios.

● To find empirical evidence about the beneficiary effects of automatic constraint
enforcement in collaborative processes.

Define Objectives of a Solution

● To devise an approach for defining and enforcing different types of access
constraints that can be applied for different types of collaborative process.

● The approach shall...
● minimize the development and maintenance effort.
● be applicable in large-scale Web contexts.

● To explore means for ensuring the consistency of access constraint models and
the corresponding processes in offline use and runtime change scenarios.

● To find empirical evidence about the beneficiary effects of automatic constraint
enforcement in collaborative processes.

Design and DevelopmentDesign and Development

DemonstrationDemonstration

EvaluationEvaluation

CommunicationCommunication

Figure 4.1: Applying the first two steps of Design Science according to Peffers et al. [71]

4. Research Results and Contributions 15

• Paper B: W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar.

Enforcement of Entailment Constraints in Distributed Service-based Business Pro-

cesses. Information and Software Technology, 55(11), November 2013

• Paper C T. Quirchmayr, P. Gaubatz, M. Strembeck, and U. Zdun. Consistency

Checking and Resolution Strategies for Runtime Conflicts Resulting from Changes

in Process-related RBAC Models. submitted to Advances in Verifiably Secure

Process-aware Information Systems, submitted in June 2014

• Paper D: P. Gaubatz and U. Zdun. UML2 Profile and Model-Driven Approach

for Supporting System Integration and Adaptation of Web Data Mashups. In 4th

International Workshop on Lightweight Integration on the Web, Berlin, Germany,

July 2012

• Paper E: P. Gaubatz and U. Zdun. Supporting Entailment Constraints in the

Context of Collaborative Web Applications. In 28th Symposium On Applied Com-

puting, Coimbra, Portugal, March 2013

• Paper F: P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Supporting Cus-

tomized Views for Enforcing Access Control Constraints in Real-time Collaborative

Web Applications. In 13th International Conference on Web Engineering, Aalborg,

Denmark, July 2013

• Paper G: P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Enforcing En-

tailment Constraints in Offline Editing Scenarios for Real-time Collaborative Web

Documents. In 29th Symposium On Applied Computing, Gyeongju, Korea, March

2014

• Paper H: I. Lytra, P. Gaubatz, and U. Zdun. Two Controlled Experiments on

Model-based Architectural Decision Making. submitted to Information and Soft-

ware Technology, submitted first revision in January 2015

• Paper I: P. Gaubatz, I. Lytra, and U. Zdun. Automatic Enforcement of Constraints

in Real-time Collaborative Architectural Decision Making. Journal of Systems and

Software, accepted for publication in January 2015

Figure 4.2 puts these publications into their respective contexts. For instance, Pa-

per A presents “an integrated approach for identity and access management in a SOA

context” and is therefore placed within the contexts Business Processes, Access Control and

Constraints and Model-driven Development. Similarly, Paper D introduces a model-driven

approach for Web data mashups and therefore overlaps both Model-driven Development

and Web Applications.

16 4. Research Results and Contributions

Business
Processes

Web Applications

Real-time
Collaboration

Real-time
Collaboration

Access Control
and Constraints

Access Control
and Constraints

Model-driven
Development

Model-driven
DevelopmentA

B

C D

E F

G HI

CoCoForm
Framework

CoCoADvISE
Framework

SeCoS
Framework

Figure 4.2: Context of Publications and Developed Prototypes

Besides indicating the context of each publication, Figure 4.2 also names the three

prototypical implementations (i.e., the SeCoS, CoCoForm and CoCoADvISE Frameworks)

that have been developed in the course of this thesis. As each prototype takes a different

shade of gray, we can easily tell which prototype has been presented in which particular

publication. For example, the CoCoADvISE Framework (i.e., dark gray) is part of Paper H

and Paper I.

4.3 Scientific Contributions

In this section we want to highlight and discuss the main scientific contributions that

have been published within the scope of this thesis. Figure 4.3 provides an overview of

the five main contributions, clearly indicating that Contribution 1 sets the boundaries

and provides the foundation for Contribution 2, Contribution 3 and Contribution 4 while

Contribution 5 is an orthogonal aspect of the first four contributions.

Contribution 1

Model-driven approach for defining and enforcing different types of access
constraints in different types of collaborative processes.

Contribution 1

Model-driven approach for defining and enforcing different types of access
constraints in different types of collaborative processes.

We have designed and developed a model-driven approach for defining and enforcing

access constraints in collaborative processes. More precisely, our approach has been ap-

plied for two different types of access constraints, i.e., constraints from the RBAC context

and collaborative decision making constraints. The approach has also been extended and

applied for the following three different types of collaborative processes:

4. Research Results and Contributions 17

Model-driven Approach for Defining
and Enforcing Access Constraints

Model-driven Approach for Defining
and Enforcing Access Constraints

CoCoForm CoCoADvISESeCoS

Consistency
Checking

and
Runtime
Conflict

Resolution

Consistency
Checking

and
Runtime
Conflict

Resolution

Dynamic
View

Customization

Dynamic
View

Customization

Offline
Editing

Scenarios

Offline
Editing

Scenarios

Controlled
Experiment

Controlled
Experiment

1

2 3 4

5

Figure 4.3: Overview of Scientific Contributions

a. Business processes in distributed service-based architectures. In this con-

text, we introduced the SeCoS framework. The purpose of this framework is to secure

service invocations within a business process by making them subject to access control

policies and constraints. Our approach incorporates the concept of RBAC, entailment

constraints and single sign-on. A custom domain-specific language (DSL), which is

an important cornerstone of our approach, provides means for defining RBAC poli-

cies and entailment constraints. In addition, it allows for tagging service invocations

within process definitions with special security annotations. At deployment time,

the control flows of these annotated process definitions are automatically augmented

with additional code for enforcing the defined RBAC policies and constraints. At

runtime, this enforcement logic requests authorization decisions from the central Pol-

icy Decision Point (PDP) service, used for determining whether the invoking user

shall be granted the permission to invoke the respective service, or not. The inclu-

sion of the single sign-on concept, guarantees applicability of our approach in larger

cross-organizational environments, enabling one organization’s users to access secured

services of another trusting organization. Finally, we performed extensive evaluations

of our SeCoS prototype implementation. In particular, we verified the consistency and

quantified the performance penalty of our proposed enforcement mechanism.

b. Real-time collaborative form editing. In this context, we introduced the Co-

CoForm framework. This frameworks aims to be a straightforward model-driven ap-

proach for specifying and enforcing access constraints (such as entailment constraints)

in real-time collaborative Web applications. We demonstrated the applicability of this

approach using a real-time collaborative Web form editing application. We contrast

such real-time collaborative Web applications with “traditional” form-based business

18 4. Research Results and Contributions

applications, where users are confronted with standardized forms and precisely spec-

ified form fields. In such business applications, the structure of the forms is often

hard-coded into custom-made legacy applications. An alternative solution would be

workflow- or pageflow-based applications, where the form consists of workflow tasks

to be executed in a precisely prescribed order. Beside cluttering the control flow with

additional code concerning access control enforcement, these business applications ex-

hibit a major disadvantage: Their control flows are statically prescribed at design

time and it is not possible to leave this prescribed path. On the contrary, CoCoForm

does not prescribe any execution path at all. In CoCoForm, the structure of forms is

modeled using a custom meta-model and each element within a form can be made

subject to various access constraints. This allows form fields to be filled out concur-

rently by various users at the same time and can easily accommodate “unforeseen”

deviations from the originally intended workflows. CoCoForm is a generic approach

that can be applied to many real-time collaborative Web applications. It requires

some modifications to existing Web applications, but these – as well as the generation

of all other required artifacts – can optionally be automated with model-driven devel-

opment techniques. Analogous to the SeCoS framework, in CoCoForm the enforcement

logic delegates authorization decisions to a central, service-based PDP too.

c. Real-time collaborative decision making and documenting. In this context,

we introduced the CoCoADvISE framework. Our approach is the first one to consider

the precise definition and automatic enforcement of constraints in real-time collabo-

rative architectural decision making. It includes a formal meta-model containing a

set of novel decision making constraints including precisely defined semantics of each

constraint type. Conceptually, the CoCoADvISE framework is quite similar to CoCo-

Form. That is, instead of making form elements subject to various access constraints

(as in CoCoForm’s case), in CoCoADvISE, reusable decision models are made subject

to decision making constraints. At runtime, these constrained decision models are au-

tomatically transformed into Web-based questionnaires (similar to CoCoForm’s Web

forms). Questionnaires enable multiple, possibly geographically dispersed software

architects and stakeholders to participate in the group decision making and documen-

tation process, while the constraint enforcement mechanisms guarantee compliance to

the defined decision making constraints.

Figure 4.4 illustrates the main components of our model-driven approach in an ab-

stract, high-level view, as it is used in all three types of collaborative processes. Our

approach is based on three major concepts: model-driven development, separation of

concerns, and service-orientation. In the following we explain how each of these concepts

is used in our approach to define and enforce access constraints in collaborative processes:

4. Research Results and Contributions 19

Security
Expert

Software
Developer

Access Constraint
Models

User

Authorization
Service
(PDP)

defines uses

accesses / uses

implements

requests
decisions

Collaborative
Process

Enforcement
Layer

partially generated from

Figure 4.4: Defining and Enforcing Access Constraints in Collaborative Processes

1. Model-driven Development. The model-driven development concept (see, e.g.,

[3, 60, 81]) proposes the model as the primary artifact in software development. We

adhere to this concept by formalizing various types of – potentially domain-specific

– access constraints in the form of Access Constraint Models. We also propose the

development of DSLs, as a means for defining Access Constraint Models. This has the

benefit that a potentially larger group of people may be involved in the formalization

process. Eventually, we aimed for empowering non-software-developing people, such

as Security Experts, to define and maintain access control related policies.

Another essential concept of model-driven development is model verification. Espe-

cially in our context, i.e., security and access control, model verification can be a

valuable tool. This is due to the fact, that access control policies may contain various

inconsistencies, conflicting access constraints (such as entailment constraints), or even

loopholes that may – in the worst case – allow attackers to circumvent access control

mechanisms. Model verification techniques, although being beyond the scope of this

thesis’ contributions, can mitigate such problems to a large extent by propagating

model invariants to be defined. Checking these model invariants eventually exposes

inconsistencies, conflicts or loopholes within the models.

The final step in a model-driven development environment is usually a combination

of model transformation and code generation. Correspondingly, in our approach the

Access Constraint Models are semi-automatically transformed (i.e., code has to be

annotated manually) into executable code that is part of the Enforcement Layer. Code

generation is important, because enforcement code can be considered to be “boilerplate

20 4. Research Results and Contributions

code” and manually writing code would be both time-consuming and error-prone. In

addition to code generation, certain components in our proposed system architecture,

such as the central Authorization Service or Policy Decision Point, may also interpret

and manipulate parts of the Access Constraint Models dynamically at runtime.

2. Separation of Concerns. The concept of Separation of Concerns (see, e.g., [17, 49,

70]) advises that software should be decomposed in such a way that different concerns

or aspects of the problem at hand are solved in well-separated modules or parts of the

software [16]. Security and access control is a prime example of a particular “concern”

as in “separation of concerns”. Consequently, the general idea of our approach is to

decouple the Enforcement Layer from the actual application code of the Collaborative

Process, as much as possible. Access Constraint Models are decoupled from the ap-

plication code in a similar fashion. And finally, our approach also includes the idea

of strictly separating the concern of authorization decision making from the actual

enforcement of authorization decisions. Figure 4.4 clearly illustrates the application

of the Separation of Concerns principle. While Access Constraint Models, the Enforce-

ment Layer and the Authorization Service are cleanly separated from each other, we can

see, that the Enforcement Layer overlaps the Collaborative Process slightly. This means,

that access control enforcement always requires adaptations and/or modifications to

be made on the underlying application code. However, a key concern of our approach

is to keep this overlap as small as possible.

3. Service-orientation. The Service-oriented Architecture (see, e.g., [23, 25, 54]) as

well as the corresponding service-orientation paradigm aims for positioning services

as the primary means through which application logic is represented [26]. A service is

a loosely coupled and self-contained software unit that provides a particular function-

ality. In our approach, we adopt these principles by proposing a central, service-based

Authorization Service or PDP (Policy Decision Point). In particular, this Authorization

Service represents the single authority within a particular system that is empowered to

make authorization decisions. This architecture allows for supporting the enforcement

more sophisticated access constraints, such as entailment constraints, which requires

such a Single Source of Truth to make authorization decisions. A single service can

potentially also be reused for multiple instances of the same collaborative process.

Finally, we found that a service-based Authorization Service naturally fits quite well

into the context of today’s service-based business processes or the context of real-time

collaborative Web applications.

Contribution 1 has originally been presented in Paper A, Paper B, Paper D, Paper E

and Paper I.

4. Research Results and Contributions 21

Contribution 2

Generic and reusable consistency checking and resolution strategies and
algorithms for runtime conflicts resulting from changes in process-related
RBAC models.

Contribution 2

Generic and reusable consistency checking and resolution strategies and
algorithms for runtime conflicts resulting from changes in process-related
RBAC models.

Contribution 2 is an extension of Contribution 1(a) and has originally been presented

in Paper C. This contribution has gone some way towards enhancing our understanding of

the effects and pitfalls of changing process-related RBAC models dynamically at runtime.

This was driven by the desire to further establish the approach of viewing process-related

RBAC models as long-lived but dynamic artifacts that are constantly subject to change,

instead of completely static, “deploy once and never touch it again” type of artifacts. In

particular, we have examined the impact of changes in process-related RBAC models on

the respective process instances at runtime. We have systematically analyzed how every

possible change operation might negatively affect the runtime consistency of process

instances. For each potentially harmful change operation we have derived a generic and

reusable conflict detection algorithm that detects runtime consistency conflicts and is

independent of a certain software platform or programming language. Finally, we have

tackled the issue of resolving runtime consistency conflicts by proposing generic resolution

strategies that take the current state of conflicting task instances into account.

Contribution 3

Dynamic view customization, a novel concept for enforcing access control in
large-scale, real-time collaborative Web applications, as well as the prototypical
implementation and evaluation of this concept.

Contribution 3

Dynamic view customization, a novel concept for enforcing access control in
large-scale, real-time collaborative Web applications, as well as the prototypical
implementation and evaluation of this concept.

Contribution 3 is an extension of Contribution 1(b) and has originally been presented

in Paper F. This contribution demonstrates that access control policies and constraints

– in particular entailment constraints – in the context of real-time collaborative Web

applications can effectively be enforced by dynamically constraining user interface (UI)

elements for certain subjects. We call this process “view customization”. Further, we

show that our service-based approach can be used to realize the corresponding UI view

configuration functionality and we provide evidence that it is potentially capable of meet-

ing the – especially in the context of real-time collaborative Web applications important

– requirement of nearly instantaneous update behavior, even for a large number of simul-

taneously connected users. Although the client-side part of the UI view configuration

functionality is built upon the Model-View-ViewModel pattern [84], we show that it can

easily coexist with others. In fact, we argue that our approach is complementary to

currently available frameworks and solutions that support the development of real-time

collaborative Web applications, because it is completely decoupled from the collaborative

22 4. Research Results and Contributions

aspects of the application. In essence, supporting view customization merely requires the

deploying a single, dedicated and self-contained View Service as well as hooking-in the

View Updater code into the client-side application code.

Contribution 4

A novel approach for supporting offline-editing scenarios in the context of
access constrained, real-time collaborative Web documents, as well as the
prototypical implementation and evaluation of this approach.

Contribution 4

A novel approach for supporting offline-editing scenarios in the context of
access constrained, real-time collaborative Web documents, as well as the
prototypical implementation and evaluation of this approach.

Contribution 4 is an extension of Contribution 1(b) and Contribution 3 and has

originally been presented in Paper G. Existing solutions for access control enforcement

typically rely on a central service, the Policy Decision Point (PDP). However, for use

cases with unreliable or limited connectivity, such as mobile devices, a permanent con-

nection to this centralized PDP can not be guaranteed. This shortcoming lead us to

devise a novel approach that enables users to locally edit access constrained, real-time

collaborative Web documents while their devices are temporarily offline. Our CoCo-

Form prototype implementation demonstrates, that offline editing for access constrained,

real-time collaborative Web documents can effectively be realized using a combination of

client-side access control enforcement and a document merging approach. We highlighted

that merging such documents is inherently prone to conflicts and motivated the need for

a merge approach that is capable of detecting and resolving conflicts automatically. We

provided evidence that many possible conflicts can be resolved automatically and that

both the merge algorithms and our prototypical document merge approach work with

acceptable runtime performance and scalability even for lots of simultaneous merge re-

quests and documents with lots of data fields. We also argued that the prioritization

of online performed changes of the Web document in favor of offline performed changes

is crucial in the context of real-time collaboration. We introduced the concept of an

offline weight as a means of discriminating offline performed changes in the merge pro-

cess and discovered a tradeoff relationship inherent to this approach, i.e., a higher offline

weight increases the automatability of the merge process but also increases the number

of situations where online data fields have to be reverted. The optimal offline weight

has to be determined empirically for a given document and the corresponding entailment

constraint model.

Contribution 5

A controlled experiment that evaluates and quantifies the beneficiary effects of
automatic constraint enforcement on the productivity of users.

Contribution 5

A controlled experiment that evaluates and quantifies the beneficiary effects of
automatic constraint enforcement on the productivity of users.

4. Research Results and Contributions 23

Contribution 5 is an extension of Contribution 1(c) and has originally been presented

in Paper I and Paper H. While the aforementioned contributions focus on aspects con-

cerning the development of constrainable collaborative processes, Contribution 5 shifts

to a completely different point of view, namely the perspective of users. With the help

of controlled experiments using our CoCoADvISE tool, we were able to report strong ev-

idence that the automatic enforcement of constraints leads to increased time and effort

related efficiency and effectiveness of the users while making and documenting architec-

tural decisions. In our experiment setup, we observed that the treatment group that

was supported by CoCoADvISE’s automatic constraint enforcement mechanisms, could

finish nearly 16% more work tasks, requiring 41% less time and 44% less work steps,

than the other treatment group, that was not supported by the automatic enforcement

mechanisms. Finally, we consider our approach and accompanying CoCoADvISE tool to

be relevant and useful for other collaborative software engineering tools as well, which

involve various stakeholder roles and distributed teams.

Figure 4.5 summarizes the main research contributions described above. It comple-

ments Figure 4.1 by illustrating and describing the artifacts that have been produced in

the last four steps of the design science research method according to Peffers et al.

In addition to these main contributions, the following contribution has been made in

course of writing this thesis. In [85] we presented an exploratory experiment concerning

the complexity of different types of API designs. In particular, we could report that

in our experiment, a textual DSL exhibited a smaller API complexity than three other

object-oriented frameworks – an aspect that is often claimed in literature, but rarely

backed by empirical evidence. As the topic of this particular publication is somewhat

out of scope of this thesis, we have excluded it from the latter.

24 4. Research Results and Contributions

Identify Problem and MotivateIdentify Problem and Motivate

Define Objectives of a SolutionDefine Objectives of a Solution

Design and Development

● Model-driven approach for defining and enforcing different types of access
constraints in different types of collaborative processes.

● Generic and reusable consistency checking and resolution strategies and
algorithms for runtime conflicts resulting from changes in process-related RBAC
models.

● Dynamic view customization, a novel concept for enforcing access control in
large-scale, real-time collaborative Web applications.

● A novel approach for supporting offline-editing scenarios in the context of access
constrained, real-time collaborative Web documents.

Design and Development

● Model-driven approach for defining and enforcing different types of access
constraints in different types of collaborative processes.

● Generic and reusable consistency checking and resolution strategies and
algorithms for runtime conflicts resulting from changes in process-related RBAC
models.

● Dynamic view customization, a novel concept for enforcing access control in
large-scale, real-time collaborative Web applications.

● A novel approach for supporting offline-editing scenarios in the context of access
constrained, real-time collaborative Web documents.

Demonstration

● Implementation of three different proof-of-concept prototypes (i.e., SeCos,
CoCoForm and CoCoADvISE) in three different contexts (i.e., business
processes in distributed service-based architectures, real-time collaborative form
editing and real-time collaborative decision making and documenting).

Demonstration

● Implementation of three different proof-of-concept prototypes (i.e., SeCos,
CoCoForm and CoCoADvISE) in three different contexts (i.e., business
processes in distributed service-based architectures, real-time collaborative form
editing and real-time collaborative decision making and documenting).

Evaluation

● Various experiments and simulations, demonstrating the functionality, efficiency
and scalability of the prototypes.

● A controlled experiment that evaluates and quantifies the beneficiary effects of
automatic constraint enforcement on the productivity of users.

Evaluation

● Various experiments and simulations, demonstrating the functionality, efficiency
and scalability of the prototypes.

● A controlled experiment that evaluates and quantifies the beneficiary effects of
automatic constraint enforcement on the productivity of users.

Communication

● Academic publications (see Paper A-I).
● Talks at academic conferences and workshops.

Communication

● Academic publications (see Paper A-I).
● Talks at academic conferences and workshops.

Figure 4.5: Applying the last four steps of Design Science according to Peffers et al. [71]

Chapter 5

Conclusions

In this final chapter, the research questions formulated in Section 3.2 are revisited and put

into perspective with the list of scientific contributions elaborated in Section 4.3. Finally,

Section 5.2 concludes with a discussion of open topics and potential future research.

5.1 Research Questions Revisited

Let us now revisit the three research questions, that have been formulated in Section 3.2.

In this section, we will summarize how these central questions have been addressed by

the scientific contributions discussed in the previous Section 4.3. Figure 5.1 provides an

overview of the interrelations of Research Questions, Contributions and Publications.

Research Question 1: How can the development and maintenance effort of defining

different types of access constraints and implementing the respective enforcement mech-

anisms in different types of collaborative processes be reduced?

Research QuestionResearch Question
4

A B C D E F G H I

ContributionContribution
1

ContributionContribution
2

ContributionContribution
3

ContributionContribution
4

ContributionContribution
5

Research QuestionResearch Question
1

Research QuestionResearch Question
2

Research QuestionResearch Question
3

presented in ▼

addressed by ▼

Figure 5.1: Overview of Research Questions, Contributions and Publications

25

26 5. Conclusions

This question has been addressed by Contribution 1. Our proposed model-driven de-

velopment approach reduces both the development and maintenance effort by leveraging

the following concepts and ideas. First, we propose the usage of models and DSLs as a

means for formalizing access constraints and policies. Relying on concise meta-models

accompanied by tailor-made DSLs empowers domain experts, such as security experts,

to define and maintain access constraint models, thereby relieving the software devel-

oper’s workload. Model verification techniques can reduce the workload even further, by

exposing inconsistencies, conflicts or loopholes, which might potentially cause security

breaches, within the access constraint models.

Automation, a cornerstone of model-driven development, is by far the most effective

technological means for boosting productivity and reliability [81]. For this reason, in

our approach, access constraint models are both, interpreted dynamically at runtime,

and transformed into executable code. On the contrary, manually writing code would

be both, time-consuming and error-prone, resulting in reduced productivity of software

developers and reduced reliability of the security enforcements mechanisms. Especially in

Paper A and Paper B we could demonstrate that code generation can greatly reduce the

development effort in our context as compared to manual implementation. In Paper D,

Paper E and Paper I we focus on model interpretation, instead of code generation.

Adhering to the concept of Separation of Concerns promises to increase the main-

tainability, i.e., it decreases the effort that needs to be invested in order to maintain the

security enforcements mechanisms. This is especially important, because access control

is a cross-cutting concern, that is inherently prone to increasing the complexity and de-

grading the quality of a software system’s code. Consequently, our approach suggests

decoupling security enforcement mechanisms and access constraint models from the ac-

tual application code, as much as possible. For instance, in Paper A and Paper B we

propose an annotation mechanism as a non-intrusive way of linking access constraint

models with process definitions. Besides annotation, the original process definition is

left totally untouched. Hence, we argue, that this additional annotation step causes only

a marginal and negligible increase in code complexity and degradation of code quality.

Our central, service-based Authorization Service can potentially also increase the main-

tainability, as a single instance of the service can be reused for multiple instances of the

same collaborative process.

Research Question 2: How can different types of access constraints in different types

of collaborative processes be enforced in an effective, efficient and scalable way?

This question has been addressed by Contribution 1 and Contribution 3. Access

control is really a key concern in many different application domains end enforcement

mechanisms are essential in such situations. By implementing our three research proto-

5. Conclusions 27

types, SeCos (see Paper A and Paper B), CoCoForm (see Paper E, Paper F and Paper G)

and CoCoADvISE (see Paper I and Paper H), that have been developed during the course

of this thesis, we can assure the effectiveness of the proposed enforcement mechanisms.

Thus, we could demonstrate that our enforcement mechanisms correctly enforce various

types of access constraints at runtime.

Regarding the efficiency and scalability aspects of enforcement, we thoroughly evalu-

ated our prototypes by conducting extensive performance experiments. In the context of

business processes (see Paper A and Paper B), we illustrate that our enforcement mech-

anisms operate with an overhead that scale well up to the order of several ten thousand

logged service invocations. Especially in the context of real-time collaborative Web ap-

plications (see Paper F and Paper G) we explicitly focus on evaluating the efficiency and

scalability of our proposed dynamic view customization approach (see Contribution 3).

In Paper F, we show that our dynamic view customization approach provides linear scal-

ability and our prototype implementation can serve thousands of users, collaboratively

working on the same Web document. Performance measurements reveal, that even in

the case of 2000 simultaneously connected users, the average response time of our view

(customization) service remains well below a second.

Research Question 3: How can we guarantee the consistency of access constraint

models and the corresponding collaborative processes, especially considering constraint

model changes at runtime and scenarios of offline use?

This question has been addressed by Contribution 2 and Contribution 4. While our

model-driven approach comprising Contribution 1 concern both the development and

maintenance aspects, in Contribution 2 we deliberately focus on maintenance. Based on

previously documented observations (see e.g., [32, 52]) that RBAC can decrease both

the administration and maintenance costs, in Paper C we start with the assumption

of process-related RBAC models being treated as long-lived but dynamic artifacts that

are constantly subject to change [30]. For the sake of consistency, changing process-

related RBAC models is typically preceded by shutting down the corresponding process

instances or even the whole process-ware information system. However, especially in

the case of long-running processes such procedures are impractical. In Paper C we

therefore propose a novel set of consistency checking algorithms that aim for allowing

manipulating process-related RBAC models while the corresponding process instances are

currently being executed. We show that performing changes at runtime may inevitably

lead to runtime consistency conflicts within the corresponding access constraint models.

We tackle this issue by complementing the proposed algorithms with generic conflict

resolution strategies, that may be used to resolve conflicts (semi-) automatically. In

summary, our consistency checking and resolution strategies can considerably reduce the

28 5. Conclusions

required maintenance effort in situations that demand changes of process-related RBAC

models to be effected instantaneously. We consider the effort reduction to be substantial,

because the alternative manual approach involves manually resolving runtime conflicts,

which is error-prone, cumbersome and impractical for complex models.

While Contribution 2 concerns constraint models changes at runtime, in Contribu-

tion 4 our focus shifts towards scenarios of offline use. In Paper G we propose a novel

approach that enables users to edit access constrained, real-time collaborative Web doc-

uments while their devices (e.g., notebooks or smartphones) are currently offline. This

approach was driven by the fact that existing solutions for access control enforcement typ-

ically require permanent connection to central PDPs – something that can not be taken

as granted in the context of mobile computing due to unreliable or limited network con-

nectivity. Our approach combines client-side access control enforcement and document

merging algorithms that are capable of detecting and resolving inevitable merge conflicts

automatically. The merge algorithms are parameterizable with an offline weight. More

precisely, we introduced offline weights as a means of discriminating offline performed

changes of the collaborative Web document over online performed ones. In experimental

simulations, we discovered that increasing the offline weight increases the automatability

of the merge process, i.e., the chance that a merge can be performed automatically. For

instance, in one exemplary scenario this chance more than doubles (from 20% to 47%) if

we double the offline weight (from 0.4 to 0.8). However, increasing the offline weight also

increases the number of merge conflicts, i.e., situations where online performed changes

have to be reverted. In the same exemplary scenario and the same offline weight increase

the chance of conflicts rises from 9% to 44%. Orthogonal to Research Question 2, which

concerns the scalability of access constraint enforcement mechanisms, we conducted ex-

tensive performance experiments that aim for evaluating the scalability of our proposed

merge mechanism. Our results indicate linear scalability and even in the case of 500

users, simultaneously submitting their offline performed changes, the average response

time of our (offline) merge service remains below a tenth of a second. Also considering

the results of our evaluation, concerning the memory consumption and execution time

of merge algorithms and snapshotting approaches, we conclude, that our proposed ap-

proaches are sufficiently efficient to be applicable in real-world scenarios and large-scale

Web applications. In summary, Contribution 4 demonstrates how offline use scenarios

can be supported in a way that access constraint models and the corresponding collabo-

rative process are kept in a consistent state.

Research Question 4: What are the benefits and limitations of automatic enforcement

of access constraints for collaborative processes? How can we measure or quantify the

impact of automatic enforcement of access constraints for collaborative processes?

5. Conclusions 29

This question has been addressed by Contribution 5. Driven by the fact that imple-

menting access constraint enforcement mechanisms is always a substantial investment,

we aimed for finding means for quantifying the prospective benefits of such an invest-

ment. In Paper H and Paper I we present the results of two controlled experiments. In

the context of collaborative architectural decision making and documenting architectural

decisions, we could provide strong evidence that automatic enforcement of constraints

increases both the efficiency and effectiveness of users. In the experiment, we found that

users completed their assigned work tasks faster (i.e., requiring 41% less time) while at

the same time having to invest less effort (i.e., requiring 44% less work steps). This is

because automatic enforcement mechanisms take away the burden of detecting, prevent-

ing and resolving constraint violations “manually” from the user. We found that our

linear regression model presented in Paper I serves as a good estimator for predicting the

effort reduction to be expected when introducing automatic enforcement mechanisms to

a collaborative process. We argue that predicting and quantifying the potential effort

reduction is a crucial instrument in outweighing the costs and benefits of implementing

enforcement mechanisms. Although it is possible that the results of our experiments are

specific to collaborative decision making and documenting architectural decisions, we be-

lieve that virtually any kind of collaborative process that concerns different stakeholder

roles and demands to be restricted by various domain and context specific constraints

will benefit from automatic constraint enforcement in a similar way to CoCoADvISE.

5.2 Future Work

The research presented in this thesis raised several questions and unlocked a number of

important challenges which were beyond the scope of this thesis. In particular:

• Although we have started to explore the implications of changing access constraint

models dynamically at runtime, our proposed model-driven approach still assumes

and requires static process/document models, which is a major limitation in certain

contexts. Especially in the case of ad-hoc processes, such as collaborative rich text

editing (e.g., Google Docs), our approach would have to be adapted and/or ex-

tended to be able to deal with such completely dynamic process/document models.

• SeCoS, our prototype implementation for securing business processes still has limi-

tations. For instance, in the case of highly parallel processing logic, advanced syn-

chronization mechanisms would be required for ensuring compliance to the defined

access constraints. Moreover, the query mechanism that checks access constraints

for validity needs to be further optimized for very large log data sets (in the order of

millions of invocations). We envision advanced data storage and compression tech-

30 5. Conclusions

niques, as well as optimized query mechanisms to further reduce this increase of

overhead over time. Also, it would be interesting to investigate the use of additional

security annotations, in order to analyze the generalizability of our approach.

• Our work on changing access constraint models dynamically at runtime has thrown

up questions and open issues in need of further investigation. For instance, it would

be interesting to study the conflict resolution’s possible degree of automation. In

particular, we would need a reliable instrument for automatically choosing the

most sensible resolution strategy for a given runtime consistency conflict at hand.

Future work might complement our work by deriving similar conflict detection

algorithms for access constraints other than task-based mutual exclusion constraints

and binding constraints.

• Our work on client-side access control enforcement and the CoCoForm prototype

revealed several limitations inherited from HTML5 and Web browser implementa-

tions, such as the limited client-side storage capacity which be problematic if we

have to deal with huge document and access constraint models (i.e., tens of thou-

sands of model elements). Our initial experiments with two different document

merge approaches leads us to believe that there is still room left for improvements

in that area. More precisely, we think that more sophisticated merge approaches

could further increase the automatability without having to sacrifice and revert

already performed work. Another interesting topic would be to devise an approach

for estimating (i.e., instead of determining it empirically) the optimal offline weight

for a given document and the corresponding entailment constraint model.

• More empirical evidence about the supportive effect of automatic enforcement of

constraints in collaborative architectural decision making tools on the efficiency

and effectiveness of users, should be collected. Also, our assumptions regarding the

supportive effects of automatic constraint enforcement, should be tested with prac-

titioners, in order to receive feedback concerning the usability of our CoCoADvISE

tool. Our approach should also be tested with different group sizes, in different

system domains, and with different decision models. Abstracting from collabora-

tive architectural decision making and conducting similar studies and experiments

in other contexts, such as collaborative text-editing (i.e., CoCoForm), could provide

provide evidence, that our results are generalizable and valid for virtually any kind

of real-time collaborative process.

Bibliography

[1] G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting rbac to secure a web-based

workflow system. In Proceedings of the Fifth ACM Workshop on Role-based Access

Control, RBAC ’00, pages 1–10, New York, NY, USA, 2000. ACM.

[2] B. E. Ashforth. Role transitions in organizational life: An identity-based perspec-

tive. Lawrence Erlbaum Associates, 2001.

[3] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling founda-

tion. Software, IEEE, 20(5):36–41, 2003.

[4] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A temporal role-based access

control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, Aug. 2001.

[5] E. Bertino, E. Ferraria, and V. Atluri. The specification and enforcement of au-

thorization constraints in workflow management systems. ACM Transactions on

Information and System Security, 2(1):65–104, 1999.

[6] K. J. Biba. Integrity considerations for secure computer systems. Technical Report

ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA, Apr. 1977.

[7] R. P. Bostrom. Role conflict and ambiguity: Critical variables in the mis user-

designer relationship. In Proceedings of the Seventeenth Annual Computer Person-

nel Research Conference, SIGCPR ’80, pages 88–115, New York, NY, USA, 1980.

ACM.

[8] R. Botha and J. Eloff. Separation of duties for access control enforcement in

workflow environments. IBM Systems Journal, 40(3):666–682, 2001.

[9] N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, C. M. F. Rubira, et al. Ex-

ceptions and aspects: the devil is in the details. In Proceedings of the 14th ACM

SIGSOFT international symposium on Foundations of software engineering, pages

152–162. ACM, 2006.

[10] J. Cannon and M. Byers. Compliance Deconstructed. ACM Queue, 4(7):30–37,

Septemper 2006.

31

32 Bibliography

[11] D. Clark and D. Wilson. A Comparison of Commercial and Military Computer

Security Policies. In IEEE Symp. on Security and Privacy, April 1987.

[12] M. Croitoru, L. Xiao, D. Dupplaw, and P. Lewis. Expressive security policy rules

using layered conceptual graphs. In M. Bramer, F. Coenen, and M. Petridis, editors,

Research and Development in Intelligent Systems XXIV, pages 237–250. Springer

London, 2008.

[13] F. Cuppens and N. Cuppens-Boulahia. Modeling contextual security policies. Int.

J. Inf. Secur., 7(4):285–305, July 2008.

[14] M. Damianides. How does SOX change IT? Journal of Corporate Accounting &

Finance, 15(6):35–41, 2004.

[15] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specifi-

cation language. In Proceedings of the International Workshop on Policies for

Distributed Systems and Networks, POLICY ’01, pages 18–38, London, UK, UK,

2001. Springer-Verlag.

[16] B. De Win, F. Piessens, W. Joosen, and T. Verhanneman. On the importance of

the separation-of-concerns principle in secure software engineering. In Workshop on

the Application of Engineering Principles to System Security Design, pages 1–10,

2002.

[17] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 1976.

[18] M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede. Process-aware Information

Systems: Bridging People and Software Through Process Technology. John Wiley

& Sons, Inc., New York, NY, USA, 2005.

[19] M. Eaddy, T. Zimmermann, K. Sherwood, V. Garg, G. Murphy, N. Nagappan, and

A. Aho. Do Crosscutting Concerns Cause Defects? Software Engineering, IEEE

Transactions on, 34(4):497–515, July 2008.

[20] C. A. Ellis. Information control nets: A mathematical model of office information

flow. In Proceedings of the Conference on Simulation, Measurement and Modeling

of Computer Systems, volume 3670. Boulder, CO, 1979.

[21] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. SIGMOD

Rec., 18(2):399–407, June 1989.

[22] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: Some issues and experiences.

Commun. ACM, 34(1):39–58, Jan. 1991.

Bibliography 33

[23] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M. Luo, and

T. Newling. Patterns: service-oriented architecture and web services. IBM Corpo-

ration, International Technical Support Organization, 2004.

[24] D. C. Engelbart and W. K. English. A research center for augmenting human intel-

lect. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,

Part I, AFIPS ’68 (Fall, part I), pages 395–410, New York, NY, USA, 1968. ACM.

[25] T. Erl. Service-oriented architecture. Concepts, Technology, and Design, 2004.

[26] T. Erl. SOA: principles of service design, volume 1. Prentice Hall Upper Saddle

River, 2008.

[27] E. Evans. Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional, 2004.

[28] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based access control model

and reference implementation within a corporate intranet. ACM Trans. Inf. Syst.

Secur., 2(1):34–64, Feb. 1999.

[29] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Control.

Artech House, second edition, 2007.

[30] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and

change-impact analysis of access-control policies. In 27th International Conference

on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA,

pages 196–205, 2005.

[31] N. Fraser. Differential synchronization. In Proceedings of the 9th ACM Symposium

on Document Engineering, DocEng ’09, pages 13–20, New York, NY, USA, 2009.

ACM.

[32] M. P. Gallaher, A. C. O’Connor, and B. Kropp. The Economic Impact of Role-

Based Access Control. Technical report, National Institute of Standards and Tech-

nology, 2002.

[33] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa.

Modularizing design patterns with aspects: a quantitative study. In Transactions

on Aspect-Oriented Software Development I, pages 36–74. Springer, 2006.

[34] P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Supporting Customized

Views for Enforcing Access Control Constraints in Real-time Collaborative Web

Applications. In 13th International Conference on Web Engineering, Aalborg, Den-

mark, July 2013.

34 Bibliography

[35] P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Enforcing Entailment Con-

straints in Offline Editing Scenarios for Real-time Collaborative Web Documents.

In 29th Symposium On Applied Computing, Gyeongju, Korea, March 2014.

[36] P. Gaubatz, I. Lytra, and U. Zdun. Automatic Enforcement of Constraints in

Real-time Collaborative Architectural Decision Making. Journal of Systems and

Software, accepted for publication in January 2015.

[37] P. Gaubatz and U. Zdun. UML2 Profile and Model-Driven Approach for Supporting

System Integration and Adaptation of Web Data Mashups. In 4th International

Workshop on Lightweight Integration on the Web, Berlin, Germany, July 2012.

[38] P. Gaubatz and U. Zdun. Supporting Entailment Constraints in the Context of Col-

laborative Web Applications. In 28th Symposium On Applied Computing, Coimbra,

Portugal, March 2013.

[39] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas. Flexible team-

based access control using contexts. In Proceedings of the Sixth ACM Symposium

on Access Control Models and Technologies, SACMAT ’01, pages 21–27, New York,

NY, USA, 2001. ACM.

[40] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding in a web

ide. In Proceedings of the 24th Annual ACM Symposium on User Interface Software

and Technology, UIST’11, pages 155–164, New York, NY, USA, 2011. ACM.

[41] G. S. Graham and P. J. Denning. Protection: Principles and practice. In Pro-

ceedings of the May 16-18, 1972, Spring Joint Computer Conference, AFIPS ’72

(Spring), pages 417–429, New York, NY, USA, 1972. ACM.

[42] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia, N. Cacho,

C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, et al. On the impact of aspectual

decompositions on design stability: An empirical study. In ECOOP 2007–Object-

Oriented Programming, pages 176–200. Springer, 2007.

[43] C. A. Gutwin, M. Lippold, and T. C. N. Graham. Real-time groupware in the

browser: Testing the performance of web-based networking. In Proceedings of

the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW ’11,

pages 167–176, New York, NY, USA, 2011. ACM.

[44] M. Hafner, R. Breu, B. Agreiter, and A. Nowak. Sectet: an extensible frame-

work for the realization of secure inter-organizational workflows. Internet Research,

16(5):491–506, 2006.

Bibliography 35

[45] A. H. M. T. Hofstede, W. van der Aalst, M. Adams, and N. Russell. Modern Busi-

ness Process Automation: YAWL and Its Support Environment. Springer Publish-

ing Company, Incorporated, 1st edition, 2009.

[46] A. W. Holt. Coordination technology and petri nets. In Advances in Petri Nets

1985, Covers the 6th European Workshop on Applications and Theory in Petri

Nets-selected Papers, pages 278–296, London, UK, UK, 1986. Springer-Verlag.

[47] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. An Integrated

Approach for Identity and Access Management in a SOA Context. In 16th ACM

Symposium on Access Control Models and Technologies, Innsbruck, Austria, June

2011.

[48] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. Enforcement

of Entailment Constraints in Distributed Service-based Business Processes. Infor-

mation and Software Technology, 55(11), November 2013.

[49] W. L. Hürsch and C. V. Lopes. Separation of concerns. 1995.

[50] A. Inthiran and A. Seddon. Security Policies: Making it Work. In Proceedings of the

6th European Conference on Information Warfare & Security, page 109. Academic

Conferences Limited, 2007.

[51] S. Jablonski. On the complementarity of workflow management and business pro-

cess modeling. SIGOIS Bull., 16(1):33–38, Aug. 1995.

[52] J. B. D. Joshi, W. G. Aref, A. Ghafoor, and E. H. Spafford. Security Models for

Web-based Applications. Communications of the ACM, 44(2):38–44, Feb. 2001.

[53] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. Aspect-oriented programming. Springer, 1997.

[54] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: service-oriented architecture

best practices. Prentice Hall Professional, 2005.

[55] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, Jan. 1974.

[56] C. E. Landwehr. Formal models for computer security. ACM Comput. Surv.,

13(3):247–278, Sept. 1981.

[57] M. Lippert and C. V. Lopes. A study on exception detection and handling using

aspect-oriented programming. In Software Engineering, 2000. Proceedings of the

2000 International Conference on, pages 418–427. IEEE, 2000.

36 Bibliography

[58] I. Lytra, P. Gaubatz, and U. Zdun. Two Controlled Experiments on Model-based

Architectural Decision Making. submitted to Information and Software Technology,

submitted first revision in January 2015.

[59] P. W. Mattessich and B. R. Monsey. Collaboration: what makes it work. A review

of research literature on factors influencing successful collaboration. Amherst H.

Wilder Foundation, 1992.

[60] S. J. Mellor, T. Clark, and T. Futagami. Model-driven development: guest editors’

introduction. IEEE software, 20(5):14–18, 2003.

[61] S. Minocha and P. G. Thomas. Collaborative learning in a wiki environment:

Experiences from a software engineering course. New Review of Hypermedia and

Multimedia, 13(2):187–209, 2007.

[62] S. Mishra and H. Weistroffer. A Framework for Integrating Sarbanes-Oxley Com-

pliance into the Systems Development Process. Communications of the Association

for Information Systems (CAIS), 20(1):712–727, 2007.

[63] S. Mogan and W. Wang. The impact of web 2.0 developments on real-time group-

ware. In Proceedings of the 2010 IEEE Second International Conference on Social

Computing, SOCIALCOM ’10, pages 534–539, Washington, DC, USA, 2010. IEEE

Computer Society.

[64] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, Apr 1989.

[65] M. Nowak and C. Pautasso. Team Situational Awareness and Architectural Deci-

sion Making with the Software Architecture Warehouse. In 7th European Confer-

ence on Software Architecture, ECSA’13, pages 146–161, Berlin, Heidelberg, 2013.

Springer-Verlag.

[66] OASIS. Web Services Business Process Execution Language. URL: http://docs.

oasis-open.org/wsbpel/2.0/OS, 2007.

[67] Object Management Group. OMG Unified Modeling Language (OMG UML): Su-

perstructure (Version 2.2). URL: http://www.omg.org/spec/UML/2.2/, February

2009.

[68] Object Management Group. Business Process Model and Notation (BPMN). URL:

http://www.omg.org/spec/BPMN/2.0/, January 2011.

http://docs.oasis-open.org/wsbpel/2.0/OS
http://docs.oasis-open.org/wsbpel/2.0/OS
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/BPMN/2.0/

Bibliography 37

[69] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to

enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst.

Secur., 3(2):85–106, May 2000.

[70] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058, 1972.

[71] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. A Design Science

Research Methodology for Information Systems Research. Journal of Management

Information Systems, 24(3):45–77, Dec. 2007.

[72] D. Pinelle and C. Gutwin. A groupware design framework for loosely coupled

workgroups. In Proceedings of the Ninth Conference on European Conference on

Computer Supported Cooperative Work, ECSCW’05, pages 65–82, New York, NY,

USA, 2005. Springer-Verlag New York, Inc.

[73] T. Quirchmayr, P. Gaubatz, M. Strembeck, and U. Zdun. Consistency Checking

and Resolution Strategies for Runtime Conflicts Resulting from Changes in Process-

related RBAC Models. submitted to Advances in Verifiably Secure Process-aware

Information Systems, submitted in June 2014.

[74] V. S. Rekha and H. Muccini. A Study on Group Decision-Making in Software

Architecture. In IEEE/IFIP Conference on Software Architecture (WICSA), pages

185–194, 2014.

[75] S. Rekha V. and H. Muccini. Suitability of Software Architecture Decision Making

Methods for Group Decisions. In Software Architecture, volume 8627 of Lecture

Notes in Computer Science, pages 17–32. Springer International Publishing, 2014.

[76] P. S. Ring and A. H. v. d. Ven. Developmental processes of cooperative interorga-

nizational relationships. The Academy of Management Review, 19(1):pp. 90–118,

1994.

[77] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control

models. Computer, 29(2):38–47, 1996.

[78] R. Sandhu and Q. Munawer. How to do discretionary access control using roles.

In Proceedings of the Third ACM Workshop on Role-based Access Control, RBAC

’98, pages 47–54, New York, NY, USA, 1998. ACM.

[79] R. Sandhu and P. Samarati. Access control: principle and practice. Communica-

tions Magazine, IEEE, 32(9):40–48, Sept 1994.

38 Bibliography

[80] R. S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, Nov.

1993.

[81] B. Selic. The pragmatics of model-driven development. IEEE software, 20(5):19–25,

2003.

[82] M. Sloman. Policy driven management for distributed systems. Journal of Network

and Systems Management, 2(4):333–360, 1994.

[83] M. Sloman and E. Lupu. Security and management policy specification. Netwrk.

Mag. of Global Internetwkg., 16(2):10–19, Mar. 2002.

[84] J. Smith. WPF Apps with the Model-View-ViewModel Design Pattern. MSDN

magazine, 2009.

[85] S. Sobernig, P. Gaubatz, M. Strembeck, and U. Zdun. Comparing Complexity of

API Designs: An Exploratory Experiment on DSL-based Framework Integration.

In 10th International Conference on Generative Programming and Component En-

gineering, Generative Programming and Component Engineering, Portland, OR,

USA, October 2011.

[86] M. Strembeck. A Role Engineering Tool for Role-Based Access Control. In 3rd

Symposium on Requirements Engineering for Information Security, 2005.

[87] M. Strembeck. Scenario-driven Role Engineering. IEEE Security & Privacy,

8(1):28–35, January 2010.

[88] M. Strembeck and J. Mendling. Modeling Process-related RBAC Models with

Extended UML Activity Models. Information and Software Technology, 53(5):456–

483, May 2011.

[89] M. Strembeck and G. Neumann. An integrated approach to engineer and enforce

context constraints in rbac environments. ACM Trans. Inf. Syst. Secur., 7(3):392–

427, Aug. 2004.

[90] R. K. Thomas and R. S. Sandhu. Task-based authorization controls (tbac): A fam-

ily of models for active and enterprise-oriented autorization management. In Pro-

ceedings of the IFIP TC11 WG11.3 Eleventh International Conference on Database

Securty XI: Status and Prospects, pages 166–181, London, UK, UK, 1998. Chapman

& Hall, Ltd.

[91] A. M. Thomson and J. L. Perry. Collaboration processes: Inside the black box.

Public Administration Review, 66:20–32, 2006.

Bibliography 39

[92] V. K. Vaishnavi and W. K. JR. Design Science Research Methods and Patterns:

Innovating Information and Communication Technology. Auerbach, 2007.

[93] W. M. P. van der Aalst. Process-aware information systems: Design, enactment,

and analysis. In Wiley Encyclopedia of Computer Science and Engineering. 2008.

[94] W. M. P. van der Aalst. Transactions on petri nets and other models of concur-

rency ii. chapter Process-Aware Information Systems: Lessons to Be Learned from

Process Mining, pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[95] W. M. P. van der Aalst and A. Hofstede. Yawl: Yet another workflow language.

Inf. Syst., 30(4):245–275, June 2005.

[96] W. M. P. van der Aalst, A. H. M. T. Hofstede, and M. Weske. Business pro-

cess management: A survey. In Proceedings of the 2003 International Conference

on Business Process Management, BPM’03, pages 1–12, Berlin, Heidelberg, 2003.

Springer-Verlag.

[97] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman, M. Pinzger, and

A. Guzzi. Adinda: A knowledgeable, browser-based ide. In Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering - Volume 2,

ICSE’10, pages 203–206, New York, NY, USA, 2010. ACM.

[98] J. Wainer, P. Barthelmes, and A. Kumar. W-RBAC - A Workflow Security Model

Incorporating Controlled Overriding of Constraints. International Journal of Co-

operative Information Systems, 12(4):455–485, December 2003.

[99] M. Wenzel, L. Gericke, R. Gumienny, and C. Meinel. Towards cross-platform

collaboration - transferring real-time groupware to the browser. In Proceedings

of the 17th International Conference on Computer Supported Cooperative Work in

Design, CSCWD ’13, pages 49–54, June 2013.

[100] R. Wonohoesodo and Z. Tari. A role based access control for web services. In

Proceedings of the 2004 IEEE International Conference on Services Computing,

SCC ’04, pages 49–56, Washington, DC, USA, 2004. IEEE Computer Society.

[101] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie. Automated extraction

of security policies from natural-language software documents. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, FSE ’12, pages 12:1–12:11, New York, NY, USA, 2012. ACM.

[102] C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In

Proceedings of the 2nd international conference on Aspect-oriented software devel-

opment, pages 130–139. ACM, 2003.

40 Bibliography

[103] H. Zhu and M. Zhou. Role-based collaboration and its kernel mechanisms. IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,

36(4):578–589, July 2006.

[104] M. D. Zisman. Representation, Specification and Automation of Office Procedures.

PhD thesis, Wharton School, University of Pennsylvania, 1977.

[105] M. zur Muehlen and M. Indulska. Modeling languages for business processes and

business rules: A representational analysis. Inf. Syst., 35(4):379–390, June 2010.

Paper A

An Integrated Approach for Identity

and Access Management in a SOA

Context

The subsequent paper has been published as follows:

W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. An Integrated Ap-

proach for Identity and Access Management in a SOA Context. In 16th ACM Symposium

on Access Control Models and Technologies, Innsbruck, Austria, June 2011.

In this paper, we devised a model-driven approach including a DSL for the definition

of RBAC policies in the context of service-based business processes. We leverage the WS-

BPEL (Business Process Execution Language for Web services) extension mechanism to

annotate process models with custom RBAC directives. Using our SeCoS (Secure Collab-

oration in Service-based Architectures) prototype implementation we could demonstrate

the feasibility of automatically augmenting an annotated WS-BPEL process with addi-

tional tasks concerning the enforcement of the defined RBAC policies. Our approach

thus enables (non-technical) domain experts, such as physicians or hospital clerks, to

participate in defining and maintaining policies. Thereby, they are able to precisely de-

fine the set of users that shall be granted the permission to execute certain tasks within

a collaborative business process.

41

An Integrated Approach for Identity and Access
Management in a SOA Context

Waldemar Hummer1, Patrick Gaubatz2, Mark Strembeck3, Uwe Zdun2, and Schahram Dustdar1

1Distributed Systems Group
Information Systems Institute

Vienna University of Technology
{lastname}@infosys.tuwien.ac.at

2Software Architecture Group
Faculty of Computer Science

University of Vienna
{firstname.lastname}@univie.ac.at

3Information Systems Institute
Vienna University of

Economics and Business
mark.strembeck@wu.ac.at

ABSTRACT

In this paper, we present an approach for identity and access man-
agement (IAM) in the context of (cross-organizational) service-
oriented architectures (SOA). In particular, we defined a domain-
specific language (DSL) for role-based access control (RBAC) that
allows for the definition of IAM policies for SOAs. For the appli-
cation in a SOA context, our DSL environment automatically pro-
duces WS-BPEL (Business Process Execution Language for Web
services) specifications from the RBAC models defined in our DSL.
We use the WS-BPEL extension mechanism to annotate parts of
the process definition with directives concerning the IAM policies.
At deployment time, the WS-BPEL process is instrumented with
special activities which are executed at runtime to ensure its com-
pliance to the IAM policies. The algorithm that produces extended
WS-BPEL specifications from DSL models is described in detail.
Thereby, policies defined via our DSL are automatically mapped to
the implementation level of a SOA-based business process. This
way, the DSL decouples domain experts’ concerns from the tech-
nical details of IAM policy specification and enforcement. Our ap-
proach thus enables (non-technical) domain experts, such as physi-
cians or hospital clerks, to participate in defining and maintaining
IAM policies in a SOA context. Based on a prototype implementa-
tion we also discuss several performance aspects of our approach.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-

cess Control; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Client/server, Distributed applications;
D.2.11 [Software]: Software Architectures—Domain-specific

architectures, Languages, Service-oriented architecture

General Terms

Design, Languages, Management, Security

Keywords

Identity and Access Management, SAML, SOAP, WS-BPEL, WS-
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’11, June 15–17, 2011, Innsbruck, Austria.
Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

1. INTRODUCTION
In recent years, Service-Oriented Architectures (SOA) [24]

have emerged as a suitable means to develop loosely coupled
distributed systems. Today, Web services are a commonly used
technology that build the foundation of SOAs and both intra- and
cross-organizational business processes. Electronic business col-
laborations require enforcement of high-level security constraints
such as ensuring the identity and competencies of end users,
restricted access to resources, or protection of private data. In our
previous work, we identified the need for modeling support of
identity and access control models from the experiences gained
in the area of role engineering (see, e.g., [34–37]). However,
to enforce the corresponding access control policies in a soft-
ware system, the resulting models must also be mapped to the
implementation level.

Different aspects of identity and access management (IAM) in
distributed environments and SOAs have been studied previously.
In fact, our work builds on a number of existing approaches and
standards. An important point with regards to electronic business
processes spanning multiple services and cross-organizational units
is the concept of Single Sign-On (SSO, e.g., [17, 25]), which sim-
plifies user authentication for the individual services by establish-
ing trust relationships across security domains. SSO allows the
business process to obtain a signed authentication token for a secu-
rity domain d, which is also accepted by other security domains
that trust domain d. The Security Assertion Markup Language
(SAML) [20] provides a standard way of expressing signed asser-
tions about the identity and attributes of a system participant. The
Web Services Security (WS-Security) [21] SAML Token Profile
defines how SAML assertions can be transported securely in Web
service invocations, i.e., by including a security token element in
the header of the SOAP (Simple Object Access Protocol) invoca-
tion message.

Cross-organizational IAM involves stakeholders with different
background and expertise. The technical IAM model which ex-
presses well-defined semantics and supports detailed security au-
dits may be suited for software architects and developers, but for
non-technical domain experts an abstracted view is desirable. In
the context of model-driven development (MDD) [28,29,33], a sys-
tematic approach for DSL (domain-specific language) development
has emerged in recent years (see, e.g., [15, 32, 38, 42]). A DSL is
a tailor-made (computer) language for a specific problem domain.
In general, DSLs provide relevant domain abstractions as first class
language elements and can be designed and used on different ab-
straction layers, ranging from DSLs for technical tasks to DSLs for
tasks on the business-level. Thus, DSLs can also be defined for
non-technical stakeholders, such as business analysts or biologists,
for example. In general, a DSL makes domain-knowledge explicit.

42 Paper A

That is, the DSL is built so that domain experts can understand and
modify DSL code to phrase domain-specific statements that are un-
derstood by an information system. To ensure compliance between
models and software platforms, the models defined in a DSL are
mapped to source code artifacts of the software platform via auto-
mated model-transformations (see, e.g., [14, 30, 41]).

This paper presents an approach to define and enforce IAM poli-
cies in cross-organizational SOA business processes. The approach
is based on the Web Services Business Process Execution Language
(WS-BPEL) [22], which has in the previous years emerged as the
de-facto standard for defining Web service compositions and busi-
ness processes. WS-BPEL is an XML-based special-purpose lan-
guage whose features range from invocation of external Web ser-
vices, message correlation and asynchronous invocations to con-
trol flow structures (e.g., loops, branches, parallel flows), XML
data transformation and modification of SOAP message headers.
Our implementation builds on well-established standards including
SAML and WS-Security, and supports the concept of single-sign-
on (SSO) to authorize and secure the individual steps in the busi-
ness process. The use of a domain-specific language (DSL) for
Role Based Access Control (RBAC) [4, 5, 27] allows us to abstract
from technological details and to involve domain experts in the se-
curity modeling process. SOA experts and software developers uti-
lize the identity and access models to define security constraints
while designing electronic business processes in WS-BPEL. At de-
ployment time, the WS-BPEL process is instrumented with special
activities to ensure its compliance to the IAM policies at runtime.

The remainder of this paper is structured as follows. In Section
2, we introduce an illustrative scenario for IAM in a distributed
SOA context. We then present in Section 3 our approach for inte-
grated modeling and enforcement of identity and access control in
SOA business processes, and discuss the mapping from the model-
ing to the implementation level. Details on the implementation are
given in Section 4, and in Section 5 we evaluate different aspects of
our solution. Section 6 contains a discussion of related work, and
Section 7 concludes the paper with an outlook for future work.

2. SCENARIO: IAM IN A SOA BUSINESS

PROCESS CONTEXT
We illustrate the concepts of this paper based on a motivating

scenario taken from the e-health domain. Our example scenario
models the workflow of an orthopedic hospital which treats frac-
tures and other serious injuries. The hospital is supported by an
IT infrastructure organized in a SOA, implemented using Web ser-
vices. The SOA provides services for patient data, connects the de-
partments of the hospital and facilitates the routine processes. The
hospital exchanges data with other partner hospitals. As patient
data constitute sensitive information, security must be ensured and
a tailored domain-specific RBAC model needs to be enforced.

A core procedure in the hospital is the patient examination. The
corresponding technical business process is depicted in Business
Process Modeling Notation (BPMN) in Figure 1. We assume that
the process is implemented using WS-BPEL and that each BPMN
service task (depicted as gray rounded rectangles) denotes the in-
vocation of a Web service. The arrows between the tasks indicate
the control flow of the process. The BPMN groups in the figure are
annotated with Role and Context labels, the purpose of which will
be detailed later in this section. Note that all tasks are backed by
Web services, however, part of the tasks are not purely technical but
involve some sort of human labor or interaction. For instance, the
activation of the task Obtain X-Ray Image triggers an invocation

Get Personal Data

Get Patient History
From Hospital hx

Context “default“

For each partner hospital hx

Role “staff“

Assign Physician

Role “physician“

Role “patient“

Obtain X-Ray Image

Context
“emergency“

is emergency

Get Critical
Patient History

more data required

Decide On Treatment

Group (WS-BPEL: Scope)

Service Task (WS-BPEL: Service Invocation)

Loop Activity (WS-BPEL: For Loop)

Context “reception“

Figure 1: Hospital Patient Examination Scenario in BPMN

to the Web service http://h1.com/xray, but the task itself is
performed by the hospital staff (and the patient).

The first step in the examination process is to retrieve the per-
sonal data of the patient. To demonstrate the cross-organizational
character of this scenario, suppose that the patient has never been
treated in our example hospital (H1) before, but has already re-
ceived medical treatment in a partner hospital (H2). Consequently,
H1 obtains the patient’s personal data from H2 via a Web service re-
siding under the URL http://h2.com/patients. Secondly, the
patient is assigned to an available physician, which is performed
using an examination service. These first two tasks need to be
performed by a general staff member (role “staff”). In the process
definition in Figure 1, this requirement is expressed as a BPMN
group (rounded rectangle with dashed border) with a corresponding
label. In the implementation of the process, this group is mapped
to a BPEL scope with an extensibility attribute role. Similar to a
scope in a regular programming language, a WS-BPEL scope em-
braces a set of instructions and defines boundaries for the lifetime
of variables and event handlers defined in this scope. Analogously,
the role attribute is valid within the boundaries of its owner scope.

After the patient has been assigned, the responsible physician
requests an x-ray image using the Web service of the x-ray depart-
ment (http://h1.com/xray). This activity runs under a new
group (or scope), which requires the role “physician”. The physi-
cian then analyzes the received x-ray image and decides whether
additional data are required. For instance, the patient may have had
a similar fraction or injury in the past, in which case special treat-
ment is required. Hence, the business process requests historical
data from partner hospitals, which also participate in the SOA. Due
to privacy issues, the historical data are only disclosed to the patient
herself, and the Get Patient History service task executes under the
role “patient”. Note that this role change and the identity manage-
ment is enforced by the platform, which will be discussed in Sec-
tion 3. Another situation that requires additional data is the case of
an emergency. If the emergency demands for immediate surgery,
it is important to determine historical data about any critical condi-
tions or diseases that might interfere with the surgery. This critical
information is stored in a secured repository which can be accessed
via the Web service http://h1.com/emergency. Access to
the critical historical data requires the context “emergency”, which

Paper A 43

is also indicated via an enclosing scope in Figure 1. Finally, af-
ter acquiring the necessary data, the process switches back to the
context “default” and the role “physician”. The invocation of the
operation decideOnTreatment constitutes the end of the ex-
amination and triggers the subsequent treatment activities.

The following list summarizes the stakeholders and their key re-
quirements concerning the SOA-based IT system of the hospital.

• The IT system facilitates the hospital staff in their daily work
and employs a clear role concept for separation of concerns.
• Besides receiving an efficient treatment, the main interest of

the patient is that all personal data remain confidential and
protected from abuse.
• The security experts of the hospital need not necessarily be

technical experts and hence require an intuitive interface to
model identities, roles and security restrictions in the system.
• The IT architects and developers who implement Web ser-

vices and business processes desire an integrated solution, in
which identity and access control can be easily plugged in
based on the models defined by the hospital’s management.

In the course of this paper, we focus on two aspects concerned
with mapping security constraints from a higher-level model to the
implementation level: 1) enabling domain experts to map the iden-
tity and access model from its abstract representation to a DSL,
and mapping of DSL expressions to the implementation level, 2)
enabling architects and developers to easily author SOA business
processes in WS-BPEL which enforce the security constraints.

3. INTEGRATED APPROACH FOR IAM IN

A SOA CONTEXT
This section presents our integrated approach for identity and ac-

cess management and enforcement in a SOA context. The core as-
sets in a SOA are the services, and the participants that perform op-
erations on these services are either humans or other services. It has
been shown that SOA models can be mapped to (extended) RBAC
models (e.g., [1]). We build on these findings and provide a declara-
tive DSL for RBAC, integrated with an end-to-end solution for sim-
plified development of secured SOA business processes. The tight
integration of the DSL allows to trace identity and access control
specifications from the modeling level down to the implementation
code, enabling the detailed audit of security compliance.

RBAC
DSL

Security
Experts

write
commands

expresses

Design Time

IT Architect/
Developer

subject to

RBAC Model
Constraints

Web
Services

annotated with

implements

writes

Business
Process
Instance

Execution Time

transformed
into

 User

Deployment Time

Business
Process
Definition

(WS-BPEL)

Business Process
Definition with IAM
Tasks (WS-BPEL)

invokes

instantiated as

IAM
Tasks

enforce

utilizes

executes

PEP

Figure 2: Approach Overview

Figure 2 depicts a high-level overview of our approach, including
the involved stakeholders and system artifacts and the relationships
between them. At design time, the security experts write RBAC
DSL commands to define the RBAC model constraints. The IT spe-

cialists implement Web services and define WS-BPEL processes on
top of the services. The WS-BPEL definition is annotated with el-
ements from the RBAC DSL, in order to define which parts in the
process require which access privileges. At deployment time, the
WS-BPEL file is automatically enriched with IAM tasks that con-
form to the security annotations. The business process is instanti-
ated and executed by human individuals (for example patients and
staff members), and the IAM tasks have the process conform to the
constraints defined in the RBAC model. A PEP component inter-
cepts all service invocations and blocks unauthorized access.

In the following, we firstly discuss the core language model of
the RBAC DSL and show its mapping to the textual representation
and further down to the implementation level. Secondly, we present
our approach for automatic enforcement of the access control con-
straints using the extensibility mechanism in WS-BPEL processes.

3.1 DSL-Based RBAC Modeling for SOA
Type/Class Instance/Object (ex.) DSL Textual Syntax (ex.)

Subject

Operation

Role

Permission

Resource

:Subject
SUBJECT “jane“

:Subject

:Role

name=“physician“

SUBJECT “bob“

ROLE “staff“
ROLE “physician“:Role

name=“staff“

ASSIGN “jane“ “staff“
ASSIGN “bob“ “physician“

RESOURCE “h1.com/patients“

:Permission

:Operation

name=“get
PersonalData“

ASSIGN “1352-010170“ “patient“

:Resource

name=“h1.com/
patients“

:Resource

name=“h1.com/
emergency“ RESOURCE “h1.com/emergency“

OPERATION “getPersonalData“

PERM “staff“ “getPersonalData“
“h1.com/patients“

:Permission

INHERIT “staff“ “physician“

inherits

SUBJECT “1352-010170“

:Subject

:Role

name=“patient“

inherits

ROLE “patient“

Context CONTEXT “default“

CONTEXT “emergency“

:Context

name=“default“

:Context

name=“emergency“

PERM “physician“ “getCritical-
History“ “h1.com/emergency“
WHEN “emergency“

:Operation

name=“get
CriticalHistory“ OPERATION “requestXRay“

name:
“1352-010170“name: “bob“

:Subject

name: “jane“+ name

mutualExclusive

+ name

+ allPerms()

+ name

+ name

+ name

MUTEX “patient“ “physician“

mutualExclusive

*
*

*

*

Figure 3: RBAC Model and DSL Language Elements

Figure 3 depicts an example that shows the different abstraction
layers of our RBAC DSL. In particular it depicts a (simplified) class
diagram of the DSL language elements, an excerpt of the object dia-
gram for the hospital scenario from Figure 1, and a textual represen-
tation of the example specified with our RBAC DSL. Subjects
are identified by a name attribute: hospital staff receive a unique
name, and for the patients’ name we use their social security num-
ber, which serves as a unique identifier. Subjects are associated
with an arbitrary number of Roles, which are themselves associ-
ated with Permissions to execute certain Operations. Roles
may inherit from other role instances (association inherits),
and two roles can be defined as being mutually exclusive (associ-
ation mutualExclusive). We use a context-specific extension
of the traditional RBAC model, which has been proposed previ-
ously in a similar form (e.g., [6, 8, 26]). The Context element
allows for a more fine-grained definition of permissions and maps
directly to the context requirements in the scenario process defini-
tion (see Figure 1). In our approach, we directly associate Web ser-
vice instances with Resources, service invocations with RBAC
Operations, and Contexts with scopes in a Web services busi-
ness process. A scope in WS-BPEL builds a group of related tasks
and limits the lifetime and validness of its enclosed variables, part-
ner links, correlation sets and event handlers. The RBAC permis-

44 Paper A

sions are expressed with regard to a certain context in which they
are applicable. When a WS-BPEL scope is associated with a cer-
tain context (e.g., emergency), then all activities (i.e., operations)
contained in that scope must execute under this context, and, con-
sequently, the subject executing the process must be allowed to in-
voke the service operations under this context (see Section 3.2).
For instance, when the physician named bob is about to retrieve the
critical patient history in our scenario, then bob needs to have the
role physician, which allows him to execute the Web service op-
eration getCriticalHistory in the context emergency (see
Figure 3). The default context always exists and is automatically
assumed if no context is explicitly provided.

DSL Command Effect (OCL)

SUBJECT "jane" Subject.allInstances()->select(s |
s.name=’jane’)->size() = 1

ASSIGN "jane" Subject.allInstances()->select(s |
"staff" s.name=’jane’).role->select(r |

r.name=’staff’)->size() = 1

INHERIT "staff" Role.allInstances()->select(r1 |
"physician" r1.name=’staff’).allPerms()->forAll(p1 |

Role.allInstances()->select(r2 |
r2.name=’physician’).allPerms()
->exists(p2 | p1=p2))

MUTEX "patient" Subject.allInstances()->forAll(s | not (
"physician" s.role->exists(r | r.name=’physician’)

and s.role->exists(r | r.name=’patient’)))

Table 1: Excerpt of RBAC DSL Semantics in OCL

An excerpt of the RBAC DSL constructs and their effect
expressed as an OCL (Object Constraint Language) expression
is printed in Table 1. The first exemplary command, SUBJECT
"jane" has the effect that, upon execution, exactly one instance
of the class Subject with name attribute "jane" exists. The effect
of the second instruction is that the Subject named jane has an
associated Role object with name "staff". The INHERIT command
takes two parameters, a junior-role and a senior-role name, and
causes the senior-role to inherit all permissions of the junior-role.
The operation Role.allPerms() returns all associated permissions of
a Role instance and its ancestor roles. Finally, the statically mutual
exclusive roles “patient” and “physician” are defined via the DSL
command MUTEX, which specifies that no Subject instance must
ever be assigned both of these roles simultaneously . We currently
do not use the alternative form of dynamic mutually exclusive
constraints which disallow combinations of certain roles to be
activated by one user in the same session or process instantiation,
but this is planned for future work. The four OCL constraints
illustrate the mapping from the abstract RBAC domain model
to the level of an intermediate language (DSL), which is easy to
use and comprehend for domain experts, and abstracts from the
underlying complexity. The remaining OCL constraints for our
example have been left out for brevity.

3.1.1 Collaborative Identity and Access Modeling
for Single-Sign On

The goal of the patient examination scenario is that hospitals are
able to collaboratively model the identity and access control infor-
mation. To avoid a single point of failure and because each hospital
reserves the right to define their own (internal) access control poli-
cies, the RBAC information is not stored centrally, but each hos-
pital maintains their own model. However, the ability to retrieve
the model data from partner hospitals is vital in order to support
SSO and cross-organizational access to resources. For instance,
the loop in the business process in Figure 1 retrieves the patient

history from partner hospitals using a secured Web service opera-
tion getPatientHistory, which is provided by all hospitals.
The idea is to store data in a decentralized manner, i.e., when a
patient is registered or examined in hospital X, then X creates a
patient record that is stored locally, but can be accessed by the part-
ner hospitals. The invocation of the getPatientHistory op-
eration is secured with a SAML header asserting the identity of
the patient. Consider the patient is identified under a subject name
“1352-010170” (cf. Figure 3). This requires that the RBAC mod-
els of the partner hospitals also contain a subject with this identifier,
and that this subject is associated with the role “patient”.

To achieve an integrated view on a distributed RBAC model,
different strategies have been proposed. The special-purpose lan-
guage PCL (Policy Combining Language) defined in [10] allows
combining of access control policies expressed in XACML. In an-
other work, integration of policies from different organizations is
performed based on the similarity of XACML rules [12]. Since
the RBAC DSL essentially provides a subset of the functionality of
XACML, we are able to utilize these existing solutions for policy
integration and collaborative modeling of access control constraints
across the different hospitals in the scenario.

3.2 Security Enforcement in WS-BPEL Pro-
cesses using Annotations

Section 3.1 discussed how the RBAC model is constructed by
means of the RBAC DSL, and how the access constraints relate
to services, operations, and scopes in SOA business processes.
To enforce these constraints at runtime, the business process
needs to follow a special procedure. For instance, invoking the
getPersonalData operation of Hospital 1 requires the process
to execute under the role “staff”. That is, this service operation
requires the presence of a corresponding SAML WS-Security
token in the SOAP header of the request. The token contains a
SAML assertion that confirms the identity of the subject executing
the process operation, as well as the attribute claims for that
subject. Integrity of this token and the contained attributes is
ensured by applying an XML signature [40] using the X.509
certificate issued for Hospital 1. The attribute claims contain
the information under which role (“staff”) and in which context

(“default”) the subject executes the operation. To obtain the
signed SAML assertion, the process needs to invoke the operation
requestSAMLAssertion of the SAML Identity Provider
(IdP) service of Hospital 1. The patient data service relies on the
IdP to identify and authenticate the subject (process user), hence
the user credentials (e.g. subject name and password) are required
for invocation of requestSAMLAssertion.

Since one execution of the patient examination process involves
different subjects (a staff member, a physician, a patient), the user
credentials cannot be hard-coded into the process definition, but are
requested from a separate, decoupled Credentials Provider (CrP)
service. This service offers a getUserAuthentication op-
eration, which provides the actual user credentials to be used for a
specific process scope. Upon invocation, this operation will cause a
username/password input prompt to be displayed to the staff mem-
ber sitting at the reception desk. After the user has been authenti-
cated, the user credentials can also be stored in a local session con-
figuration file on the reception desk computer. To avoid plaintext
passwords from being transmitted over the network, the returned
user credentials are encrypted using WS-Security [21]. During ex-
ecution, the Credentials Provider service is always invoked when
the process enters a scope that requires a change of subject.

The detailed procedure is illustrated in Figure 4, which shows
the sub-part of the hospital scenario process that executes under

Paper A 45

<process xmlns=“...“
xmlns:rbac=“http://.../rbac“>...

 <scope name=“reception“
 rbac:context=“reception“

 rbac:role=“staff“>
 <invoke partnerLink=“...“

operation=“getPersonalData“
name=“Get_Personal_Data“
… />

 <invoke partnerLink=“...“ ...
operation=“assignPhysician“/>

 </scope> ...
</process>

WS-BPEL Design View WS-BPEL Deployment View

getPersonalData

 Context „reception“

getUserAuthentication

getPersonalData

assignPhysician

requestSAMLAssertion

Copy auth data to request
for SAML assertion

Add SOAP headers to
request getPersonalData

Add SOAP headers to
request assignPhysician

assignPhysician
Automatic Transformation

Generate Instance ID
Role “staff“

Figure 4: Transformation of WS-BPEL Process Definition

the role “staff” and the context “reception”. The left part of
the figure shows the process definition at design time. Note the
annotation attributes rbac:context and rbac:role which
define the required context and role for the scope. At deployment
time, the necessary additional process tasks are inserted into the
WS-BPEL definition by means of an automatic transformation.
At the start of the transformed process, an activity is inserted
which generates a unique process instance identifier (ID). The
instance ID is sent along as a SOAP header in all subsequent
invocations of the WS-BPEL process. This ID helps the CrP
service to correlate previous invocations of the process instance,
and to keep track of the process state in order to provide the
credentials from the correct subject. For instance, when the CrP’s
operation getUserAuthentication is first called with the
generated ID, the user credentials are requested from the reception
desk employee. The second invocation with the same instance ID
will cause the CrP to request the user credentials from the assigned
physician, and so on (cf. Figure 1). Note that the CrP service
is application-specific and constitutes a tailor-made decoupled
component that orchestrates the retrieval of user credentials of
changing subjects. The injected process tasks that follow the CrP
invocation retrieve the required SAML assertion from the IdP and
copy a corresponding SAML header to all service requests of the
scope. Details on the implementation of the automatic WS-BPEL
transformation are provided in Section 4.

4. IMPLEMENTATION
In the following, we describe the prototype implementation of

our approach for integrated SOA identity and access control. This
section is divided into four parts: firstly, we outline the architecture
of the system and the relationship between the individual services
and components; secondly, the SAML-based SSO mechanism is
described; the third part briefly discusses the implementation of the
RBAC DSL; finally we present the algorithm for automatic trans-
formation of WS-BPEL definitions containing security annotations.

4.1 System Architecture
Figure 5 sketches the high-level architecture and relationship

between the example process and the system components. The
patient examination example scenario is implemented using WS-

Hospital 2

SAML Identity Provider

S

RBAC

S Secured Service

IdP

PDP

PEP

SAML Request

S

S

IdP

Hospital 1

S

RBACPDP

PEP S

S

IdP

Hospital 3

S

RBACPDP

PEP S

S

IdP

Import

Import

In
te

g
ra

te
d
 D

is
tr

ib
u
te

d
 R

B
A

C
 V

ie
w

Instrumented
IAM Tasks Secured Service Request

Business Process System Architecture and Services

Figure 5: Example Process in System Architecture

BPEL [22] and deployed in a Glassfish1 server with WS-BPEL
module. The example scenario involves three hospitals, which host
the protected services for patient management and examination.
All service invocations are routed through a Policy Enforcement
Point (PEP), which acts as a central security gateway, intercepts
every incoming service request and either allows or disallows its
invocation. Using the Java API for XML Web services (JAX-WS),
the PEP has been implemented as a SOAP message handler (inter-
face SOAPHandler). This handler can be plugged into the Web ser-
vice’s runtime engine in a straightforward manner. Once activated,
the interceptor is able to inspect and modify inbound and outbound
SOAP messages as well as to abort the service invocation.

Each hospital runs an instance of the SAML IdP service, which
is used to issue the SAML assertions that are required in the WS-
BPEL process. The responsibilities of the IdP are twofold: firstly,
it checks whether the subject (i.e., the user currently executing the
process) has provided valid credentials; secondly, the IdP assures
the identity of a subject and its associated attributes (roles, con-
texts) by issuing an SAML assertion which is used as a SOAP
header in subsequent service invocations by this subject (i.e., the
process scope for which it is valid).

The actual decision whether an invocation should be prevented
or not is typically delegated to another entity, the Policy Decision
Point (PDP). When deciding over the access to a service resource
the PDP has to make sure that the subject attempting to access the
resource has the permission to do so. In our concrete implemen-
tation, the PDP uses the RBAC repository to determine whether
the requesting subject is permitted to access the target resource
(service) under the specified context and role. Thereby, the PDP
can rely on the SAML tokens in the SOAP header of the request
messages, which assert the identity of the subject as well as the
context and role it operates under. The policy information in the
RBAC repository is based on the DSL commands authored by do-
main experts. Each repository defines both local rules and inte-
grates rules from RBAC repositories of trusted partner hospitals
(see, e.g., [10,12]). The combined information of all RBAC repos-
itories creates an integrated view on the distributed RBAC model.

The advantage of our approach is that changing security require-
ments in the course of the process execution are handled automati-

1https://glassfish.dev.java.net/

46 Paper A

C
lie

n
t

(B
P

E
L

)
S

e
rv

ic
e

(H
3

)
P

E
P

(H
3

)
Id

P
/P

D
P

(H
3

)
Id

P
(H

2
)

authenticate user

check
credentials

authentication
failed

return assertion

request service

intercept request
validate integrity

of assertion

assertion invalid

create
AuthzDecisionRequest

check permissions return result

receive request return assertion

check
AuthzDecisionStatement

invoke service

receive result

invocation disallowed

X

X

X

Id
P

(H
1

)

authenticate user
return

assertion

R
B

A
C

(H
3

)

Figure 6: Identity and Access Control Enforcement Procedure

cally. Each time the process changes the scope and requires a new
role or context, we utilize the Instrumented IAM Tasks which get
injected into the WS-BPEL process automatically, as described in
Section 3.2. The IAM tasks invoke the IdP and request a new secu-
rity assertion token for the current subject, role, and context. The
security token is then added to the header of all invocations in the
same scope. This procedure is repeated for all sub-scopes which re-
quire a new role or context. More details concerning the automatic
generation of the IAM tasks in WS-BPEL are given in Section 4.4.

4.2 SAML-based Single Sign-On
Figure 6 depicts an example of the Identity and Access Control

enforcement procedure modeled via BPMN. To illustrate the SSO
aspect of the scenario, we assume that a patient with subject name
“1352-010170” (cf. Figure 3), who is registered in hospital 2 (H2),
is examined in hospital 1 (H1) and requests its patient history from
previous examinations in hospital 3 (H3). The procedure is ini-
tiated by the Web service client that demands the execution of a
protected Web service. Note that we use the generic term client,
whereas in our scenario this client is the WS-BPEL engine exe-
cuting the patient examination process. Prior to issuing the actual
service request, the client has to authenticate using the SAML IdP.
The latter queries the user database (DB) to validate the creden-
tials provided by the client. In our approach, the credentials (e.g.,
username-password combinations) are stored in a separate DB and
are hence decoupled from the RBAC model. However, the user-
name in the DB equals the subject name in the RBAC model. As
the credentials of user “1352-010170” are not stored in the DB of
H1, the IdP contacts the IdP of H2, which validates the credentials.

If the user credentials could not be validated, the process is ter-
minated prematurely and a SOAP fault message is returned. In our
example scenario, the business process receives the fault message
and activates corresponding WS-BPEL fault handlers. Otherwise,
if the credentials are valid, the IdP creates a signed assertion similar
to the one shown in Listing 1 and passes it back to the client. From
now on the business process attaches this assertion to every service
request. The request to the protected service is then intercepted by
the PEP of H3, which extracts the attached assertion, validates its
integrity, and aborts the service invocation if the assertion is invalid
(i.e., has been manipulated). Otherwise, it generates an Authoriza-
tion Decision Request message which is passed to the PDP. The
PDP then asks the RBAC repository if the client is allowed to ac-
cess the requested service. The PDP’s decision is expressed as an

Authorization Decision Statement. Wrapped into an assertion sim-
ilar to the one shown in Listing 2, the statement is then passed back
to the PEP. Based on the assertion’s enclosed information the PEP
then either effects the actual service invocation or returns a fault.

The example SAML assertion in Listing 1 illustrates the infor-
mation that is encapsulated in the header token when the scenario
process invokes the getPatientHistory operation of the pa-
tient Web service of H3. The assertion states that the subject named
1352-010170, which has been successfully authenticated by the
IdP of the hospital denoted by the Issuer element (H2), is al-
lowed to use the context default and the role patient. Note
that the subject can be a human being, but it may as well be a ser-
vice itself that attempts to invoke another service as part of a service
composition. The included XML signature element ensures the in-
tegrity of the assertion, i.e., that the assertion content indeed orig-
inates from the issuing IdP (H2) and has not been modified in any
way. When the PEP of H3 intercepts the service invocation with the
SAML SOAP header, its first task is to verify the integrity of the
assertion. The signature verification requires the public key of the
IdP that signed the assertion; this key is directly requested from the
corresponding IdP (under http://h2.com/IdP) using SAML
Metadata [19].
✞ ☎

1 < I s s u e r > h t t p : / / h2 . com / IdP < / I s s u e r >
2 < d s : S i g n a t u r e > . . . < / d s : S i g n a t u r e >
3 < S u b j e c t ><NameID>1352−010170< / NameID>< / S u b j e c t >
4 < C o n d i t i o n s NotBefore ="2010−12−17 T09 :48 :36 . 1 7 1Z"
5 NotOnOrAfter="2010−12−17 T10 :00 :36 . 1 7 1Z" / >
6 < A t t r i b u t e S t a t e m e n t >
7 < A t t r i b u t e Name=" c o n t e x t ">
8 < A t t r i b u t e V a l u e > d e f a u l t < / A t t r i b u t e V a l u e >
9 < / A t t r i b u t e >

10 < A t t r i b u t e Name=" r o l e ">
11 < A t t r i b u t e V a l u e > p a t i e n t < / A t t r i b u t e V a l u e >
12 < / A t t r i b u t e >
13 < / A t t r i b u t e S t a t e m e n t >
14 < / A s s e r t i o n >
✝ ✆

Listing 1: SAML Assertion Example (1)

After the PEP of H3 has verified the message integrity (and
thereby authenticated the subject), it needs to determine whether
the subject is authorized to access the requested service operation.
This is achieved by the PDP service of H3 that allows the PEP to
post an SAML Authorization Decision Query. The PDP answers
this query by returning an assertion containing at least one SAML
Authorization Decision Statement. Using these Decision State-

Paper A 47

ments the PDP is able to express the RBAC service’s authorization
decision using “plain” SAML. Listing 2 shows an example SAML
assertion which informs the PEP that our patient is allowed to
invoke the action (operation) getPersonalData of the resource
(Web service) http://h1.com/patient. The Issuer name
of the PDP is the same as for the IdP (http://h3.com/IdP).
✞ ☎

1 < A s s e r t i o n >
2 < I s s u e r > h t t p : / / h3 . com / IdP < / I s s u e r >
3 < d s : S i g n a t u r e > . . . < / d s : S i g n a t u r e >
4 < S u b j e c t >
5 <NameID>1352−010170< / NameID>
6 < / S u b j e c t >
7 < A u t h z D e c i s i o n S t a t e m e n t D e c i s i o n =" P e r m i t "
8 Resource =" h t t p : / / h3 . com / p a t i e n t ">
9 < A c t i o n > g e t P e r s o n a l D a t a < / A c t i o n >

10 < / A u t h z D e c i s i o n S t a t e m e n t >
11 < / A s s e r t i o n >
✝ ✆

Listing 2: SAML Assertion Example (2)

4.3 RBAC DSL Implementation
In Section 3.1 we have described the mapping of the RBAC

model elements to the textual DSL representation. The mapping
of the RBAC DSL commands to executable code on the implemen-
tation level is illustrated in Figure 7. We follow a hybrid approach
to DSL development, which combines preprocessing with embed-

ding [42]. Embedding means that the DSL platform makes use of
an existing host language and uses the interpreter and development
tools of that language. Preprocessing denotes the process of con-
verting the DSL commands into the machine-readable syntax of the
host language using (light-weight) transformations. We evaluated
the performance and syntactical flexibility of different (scripting)
languages and have chosen Ruby, a language frequently used for
DSL development. Ruby provides an interpreter named JRuby2,
which is implemented in pure Java and can be integrated using the
Java Bean Scripting Framework3 (BSF).

DSL Implementation
(in Host Scripting

Language)

DSL Implementation
(in Host Scripting

Language)

RBAC Scenario
Definition

(in Host Scripting
Language)

RBAC Scenario
Definition

(in Host Scripting
Language)

Uses

Interpreter for
Host Scripting Language

Interpreter for
Host Scripting Language

RBAC Scenario
Definition

(in DSL Notation)

PreprocessorPreprocessor

Starts as
External Process

PDPPDP RBAC
Service

RBAC
Service

Figure 7: Execution of RBAC Requests

The Preprocessor component transforms the RBAC scenario def-
inition from the DSL notation to the syntax of the host scripting lan-
guage. An example of a light-weight transformation is to convert
ASSIGN "jane" "staff" to ASSIGN "jane","staff"

when using Ruby as the host scripting language. While the first
command cannot be parsed by JRuby, the transformed command
is well-formed for the interpreter, and is interpreted as a call to the
function ASSIGN with the two string parameters, which looks up
the Subject instance and assigns the given role. The remaining
DSL constructs are interpreted analogously, and the implementa-
tion ensures that all constraints (e.g., mutually exclusive roles, see

2http://jruby.org/
3http://jakarta.apache.org/bsf/

Table 1) are fulfilled. The preprocessor also serves a second pur-
pose, namely checking whether the DSL code conforms to the al-
lowed syntax or uses any disallowed commands; since the textual
DSL is the user interface to the security-critical RBAC model, it is
important to identify potentially harmful commands. Another point
to consider is that the host language potentially provides features
that are undesired for use in the DSL context, such as input/output
operations. Hence, the interpreter for the host scripting language
executes in a separate Java process, for which we apply restrictive
permissions in the Java security policy settings, such as file sys-
tem access (java.io.FilePermission) or network access
(java.net.NetPermission).

4.4 Automatic Transformation of WS-BPEL
Process Definition

At deployment time of the business process, the WS-BPEL def-
inition is automatically transformed to ensure correct execution of
identity and access control at runtime. Note that the WS-BPEL pro-
cess is responsible for the choreography of CrP service, SAML IdP,
as well as the core business logic services for patient examination.

Figure 8 depicts the relationships between the five scopes (s1,
s2, s3, s4, s5) of the scenario process. A hierarchical relationship
indicates that the child scope (arrow target) is contained in the par-
ent scope (arrow source). Attributes that are not defined in a child
scope are inherited from the parent scope. For instance, scope s3
inherits the context from its parent s1. The existence of a sequential
relationship between two scopes sx (arrow source) and sy (arrow
target) means that the control flow is passed from sx to sy . More
specifically, the last task of scope sx has a control flow link to the
first task of sy in the process definition. This is the case for the
scopes s2 and s3, where task Assign Physician has a control flow
link to Obtain X-Ray Image (cf. Figure 1). The scope relationships
graph is the basis for determining at which points in the process
definition the IAM tasks need to be injected.

Scope s1

context = default

Scope s2

context = reception
role = staff

Scope s3

context = default
role = physician

Scope s4

context = emergency
role = physician

Scope s5

context = default
role = patient

Scope Relationships:

Hierarchical
Sequential

Figure 8: Scope Relationships in Scenario Process

The automatic WS-BPEL transformation is described in Algo-
rithm 1. Variable names are printed in italics, and XML markup
and XPath expressions are in typewriter font. The input is a
WS-BPEL document bpel with security annotations. Firstly, four
required documents need to be imported into the WS-BPEL process
using import statements: the XML Schema Definitions (XSD) of
SAML and WS-Security, and the WSDL (Web Service Description
Language) files describing the CrP service and the IdP service.

Then the partnerLink declarations for these two services are
added to bpel, and six variable declarations are created (in-
put/output variables for operations getUserAuthentication
and requestSAMLAssertion, a variable to store the assertion,
and a variable for additional information such as the instance ID).
Next, the algorithm loops over all scope elements s with a role
or context attribute, and stores hierarchical and sequential re-
lationships to the array variable rel. Although the implementa-

48 Paper A

Algorithm 1 WS-BPEL Transformation Algorithm

1: Input: WS-BPEL document bpel
2: Output: transformed BPEL document
3: add <import ../> statements to bpel
4: add <partnerLink ../> definitions to bpel
5: add <variable ../> declarations to bpel
6: rel← new array // use variable rel for scope relationships
7: for all bpel//scope as s do

8: rel[s]← ∅
9: if s/@role or s/@context then

10: rel[s]← rel[s]
⋃

s/ancestor::scope[1]
11: rel[s]← rel[s]

⋃

s/preceding-sibling::scope[1]
12: end if

13: end for

14: for all indexes s in rel, r in rel[s] do

15: if scopes r and s have different security requirements then

16: // add IAM tasks to s: <invoke> for IdP and CrP
services, <assign> (SAML SOAP header) for each
<invoke> in s

17: end if

18: end for

tion also considers more complex cases, we assume that a sequen-
tial relationship exists if s has a preceding XML sibling element
(i.e., an element on the same level as s in the element tree, shar-
ing the parent element with s) named scope. The parent scope
in a hierarchical relationship can be addressed using the XPath
ancestor::scope[1]. After all scope relationships have been
determined, we loop over all related scopes r and s (conforming to
the notation in Figure 8, an arrow points from r to s) and check
whether the security requirements are different (in terms of differ-
ent security annotations). If so, the IAM tasks are injected to the
beginning of scope s. The IAM tasks consist of two invokes for
the invocations to CrP and IdP, as well as several assign tasks
which add the security SOAP headers to the requests of the re-
maining service invocations in scope s. Note that the first scope in
the process always receives the IAM tasks, although it has neither
a parent nor a preceding sibling element.

5. DISCUSSION AND EVALUATION
We evaluated various aspects of the presented solution, and the

main evaluation results are discussed in the following. The key as-
pects are the runtime performance of identity and access control en-
forcement, and the discussed WS-BPEL transformation algorithm.

To evaluate the scalability of the approach we have defined,
deployed, and executed ten test processes with the Glassfish
WS-BPEL engine. The processes contain an increasing size
(1,2,. . . ,10) of scopes that are annotated with rbac:role and
rbac:context attributes. Each scope contains one <invoke>
task, which invokes one of the Web service operations of the
hospital scenario. The average response time of each service is
roughly 200 milliseconds. The processes have been deployed
in Glassfish, once with enforced security (i.e., annotated with
security attributes, automatically transformed at deployment time),
and once in an unsecured version. The deployed processes were
executed 10 times and we have calculated the average value to min-
imize the influence of external effects. Figure 9 illustrates different
measurements of the process execution time in milliseconds for
both the secured and the unsecured version. The secured version
incurs a large overhead, which is hardly surprising considering the
fact that for each business logic service the process needs to invoke

the CrP, IdP and RBAC services, and applies and checks the XML
signatures. However, the measured results indicate that the current
implementation leaves room for additional optimization.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 1 2 3 4 5 6 7 8 9 10

A
v
g
.

d
u
ra

ti
o
n
 (

m
s
)

Number of WS-BPEL Scopes

Execution Time Secured
Execution Time Unsecured

Figure 9: Process Execution Times – Secured vs Unsecured

In Section 4.1 we presented our concrete implementation of an
SAML IdP and its duty to issue SAML Assertion tokens. These
Assertion tokens are embedded in the header of every subsequent
request to secured Web services. Each Assertion contains at least
one Attribute Statement that includes the service’s required role
and context attribute. As the Assertion contains exactly one single
context as well as one single role attribute, this means that the As-
sertion is only valid for one single subject, role, and context. Fur-
thermore this also means, that whenever one of these three change,
a new SAML Assertion has to be issued by the IdP. In terms of per-
formance, this approach may not be the most effective, but it has
the advantage, that it can be implemented using “plain” SAML. If
performance is a critical issue, we propose the following solution:
Instead of creating lots of specialized Assertions, the IdP should
issue just one generic Assertion per subject. Contrary to the spe-
cialized Assertion, the generic one contains a list of all context and
role attributes that the subject is allowed to use (instead of just one
in each case). This means, that the generic Assertion can be re-used
for multiple role/context changes in the WS-BPEL process. Con-
sequently, the IdP’s workload can be effectively reduced (provided
that there is at least one role/context change present in the WS-
BPEL process). The drawback of this solution is that a new custom
SOAP header needs to be introduced, in which the client specifies
which context and which role (chosen from the Assertion’s list of
allowed ones) it wants to use. Since the WS-BPEL engine acts as
the client, it is the engine’s duty to select and attach the correct
header to every Web service request. Hence this functionality has
to be embedded in the WS-BPEL process definition which, again,
increases its size and complexity substantially.

Concerning the evaluation of the WS-BPEL transformation al-
gorithm, we again consider the ten test processes described ear-
lier in this Section. Figure 10 shows the number of WS-BPEL
elements of the process definition before and after the automatic
transformation. The results indicate that the size of the WS-BPEL
definition rises sharply with increasing number of scopes. While
our test process with a single scope contains 33/115 WS-BPEL el-
ements before/after transformation, the process definition for 10
scopes grows to 60/484 WS-BPEL elements before/after transfor-
mation, respectively. These numbers are determined by counting
all XML (sub-)elements in the WS-BPEL file using the XPath ex-
pression count(//*). At the beginning of the transformation,
41 elements are added (import, partnerLink and variable
declarations), and for each new scope 41 elements are added for the
IAM task definitions (note that both values are 41 coincidentally).
We observe that the ability to define security annotations in WS-
BPEL greatly reduces the required effort at design time.

Paper A 49

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

V
a

lu
e

Number of WS-BPEL Scopes

WS-BPEL Elements After Transf.
WS-BPEL Elements Before Transf.

Figure 10: Process Size before and afer Transformation

The textual DSL is used as an interface to the policy rules stored
in the RBAC repository. In case a UML binding is required, it is
straightforward to integrate our DSL with domain-specific UML
extensions for process-related RBAC models (see, e.g., [36]).

6. RELATED WORK
This section discusses related approaches in the area of model-

driven IAM and their application to SOA.
Skoksrud et al. present Trust-Serv [31], a solution for model-

driven trust negotiation in Web service environments. The platform
supports modeling of trust negotiation policies as state machines,
and the policy enforcement is transparent to the involved Web ser-
vices. Different strategies for policy lifecycle management and mi-
gration are proposed. Our approach is less concerned with iterative
creation of trust relationships, but builds on an IAM model and uses
an integrated enforcement in Web service based business processes.

An integrated approach for Model Driven Security, that promotes
the use of Model Driven Architectures in the context of access con-
trol, is presented by Basin et al. [2]. The foundation is a generic
schema that allows creation of DSLs for modeling of access control
requirements. The domain expert then defines models of security
requirements using these languages. With the help of generators
these models are then transformed to access control infrastructures.

The approach by Wolter et al. [39] is concerned with modeling
and enforcing security goals in the context of SOA business pro-
cesses. Similar to our approach, their work suggests that business
process experts should collaboratively work on the security poli-
cies. A computational independent model (CIM) defines high-level
goals, and the CIM gets mapped to a platform independent model
(PIM) and further to a platform specific model (PSM). At the PIM
level, XACML and AXIS 24 security configurations are generated.
Whereas their approach is more generic and attempts to cover di-
verse security goals including integrity, availability and audit, we
focus on IAM in WS-BPEL business processes.

Kulkarni et al. [9] describe an application of context-aware
RBAC to pervasive computing systems. As the paper rightly states,
model-level support for revocation of roles and permissions is
required to deal with changing context information. Whereas their
approach has a strong focus on dynamically changing context (e.g.,
conditions measured by sensors) and the associated permission
(de-)activation, context in our case is a design-time attribute that is
part of the RBAC model definitions.

A related access control framework for WS-BPEL is presented
by Paci et al. in [23]. It introduces the RBAC-WS-BPEL model

4http://axis.apache.org/axis2/java/core/

and the authorization constraint language BPCL. Similar to our ap-
proach, the BPEL activities are associated with required permis-
sions (in particular, we associate permissions for invoke activi-
ties that try to call certain service operations). However, one main
difference is related to the boundaries of the validity of user permis-
sions: RBAC-WS-BPEL considers pairs of adjacent activities (a1

and a2, where a1 has a control flow link to a2) and defines rules
among them, including separation of duty (a1 and a2 must execute
under different roles) and binding of duty (a1 and a2 require the
same role or user); our approach, on the other hand, is to annotate
scopes in BPEL processes, which allows to apply separation and
binding of duties in a sequential, but also in a hierarchical manner.

A dynamic approach for enforcement of Web services Security
is presented in [16] by Mourad et al. The novelty of the approach is
mainly grounded by the use of Aspect-Oriented Programming
(AOP) in this context, whereby security enforcement activities
are specified as aspects that are dynamically weaved into the
WS-BPEL process at certain join points. Essentially, our approach
can also be regarded as a variant of AOP: the weaved aspects are
the IAM tasks, and join points are defined by security annotations
in the process. A major advantage of our approach is the built-in
support for SSO and cross-organizational IAM. An interesting
extension could be to decouple security annotations from the WS-
BPEL definition and to dynamically adapt to changes at runtime.

Various other papers have been published that are related to
our work or have influenced it, some of which are mentioned in
the following. The platform-independent framework for Security
Services named SECTISSIMO has been proposed by Memon at
al. [13]. A multilayer mandatory access control (MAC) architec-
ture tailored to Web applications is presented by Hicks et al. [7].
Lin et al. [11] propose policy decomposition to support collabo-
rative access control definition. In [3] an approach to speeding up
credential-based access control operations – in particular in the
web context – is proposed by Carminati et al.

XACML [18] is an XML-based standard to describe RBAC
policies in a flexible and extensible way. Our DSL could be
classified as a high-level abstraction that implements a subset of
XACML’s feature set. Using a transformation of DSL code to
XACML markup, it becomes possible to integrate our approach
with the well-established XACML environment and tools for
policy integration (e.g., [12]).

7. CONCLUSION
We presented an integrated approach for Identity and Access

Management in a SOA context. The solution is centered around
model-driven development of RBAC constraints, and runtime
enforcement of these constraints in Web services based business
processes. Our approach fosters cross-organizational authenti-
cation and authorization in service-based systems, and greatly
simplifies development of SSO-enabled WS-BPEL processes. Al-
though tailor-made SSO solutions (coded explicitly in the business
process) may yield a performance gain over the generic approach,
from a practical viewpoint our approach has the advantage of being
highly reusable and simple to apply. As part of our ongoing work,
we are developing alternative ways to define and assign RBAC
permissions at runtime, also taking into account dynamic mutual
exclusion. We further investigate the use of additional security
annotations and an extended view of context information.

8. REFERENCES
[1] M. Alam, M. Hafner, and R. Breu. A constraint based role

based access control in the SECTET a model-driven appro-
ach. In Int. Conf. on Privacy, Security and Trust, 2006.

50 Paper A

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: From UML models to access control infrastruc-
tures. ACM Transactions on Software Engineering

Methodology, 15:39–91, 2006.

[3] B. Carminati and E. Ferrari. AC-XML documents:
improving the performance of a web access control module.
In 10th ACM SACMAT, pages 67–76, 2005.

[4] D. F. Ferraiolo and D. R. Kuhn. Role-Based Access Controls.
In 15th National Computer Security Conference, 1992.

[5] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-

Based Access Control. Artech House, second edition, 2007.

[6] O. Garcia-Morchon and K. Wehrle. Efficient and
context-aware access control for pervasive medical sensor
networks. In IEEE Int. Conf. on Pervasive Computing and

Communications Workshops, pages 322 –327, April 2010.

[7] B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman,
Y. Sreenivasan, P. McDaniel, and T. Jaeger. An architecture
for enforcing end-to-end access control over web
applications. In 15th ACM SACMAT, pages 163–172, 2010.

[8] V. Koufi, F. Malamateniou, and G. Vassilacopoulos. A
Mediation Framework for the Implementation of Context-
Aware Access Control in Pervasive Grid-Based Healthcare
Systems. In 4th Int. Conf. on Advances in Grid and Pervasive

Computing, pages 281–292, 2009.

[9] D. Kulkarni and A. Tripathi. Context-aware role-based
access control in pervasive computing systems. In 13th ACM

SACMAT, pages 113–122, 2008.

[10] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and
D. Lin. Access control policy combining: theory meets
practice. In 14th ACM SACMAT, pages 135–144, 2009.

[11] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. Policy
decomposition for collaborative access control. In 13th ACM

SACMAT, pages 103–112, 2008.

[12] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino.
XACML Policy Integration Algorithms. ACM Transactions

on Information System Security, 11:4:1–4:29, February 2008.

[13] M. Memon, M. Hafner, and R. Breu. SECTISSIMO: A
Platform-independent Framework for Security Services. In
Modeling Security Workshop at MODELS ’08, 2008.

[14] T. Mens and P. V. Gorp. A Taxonomy of Model
Transformation. Electronic Notes in Theoretical Computer

Science, 152:125–142, 2006.

[15] M. Mernik, J. Heering, and A. Sloane. When and How to
Develop Domain-Specific Languages. ACM Computing

Surveys, 37(4):316–344, December 2005.

[16] A. Mourad, S. Ayoubi, H. Yahyaoui, and H. Otrok. New
approach for the dynamic enforcement of Web services
security. In 8th Int. Conf. on Privacy Security and Trust,
pages 189 –196, 2010.

[17] B. Neuman and T. Ts’o. Kerberos: an authentication service
for computer networks. Communications Magazine, IEEE,
32(9):33–38, Sept. 1994.

[18] OASIS. eXtensible Access Control Markup Language.
http://docs.oasis-open.org/xacml/2.0, 2005.

[19] OASIS. Metadata for the OASIS Security Assertion Markup
Language (SAML). http://docs.oasis-open.org/security/saml/
v2.0/saml-metadata-2.0-os.pdf, 2005.

[20] OASIS. Security Assertion Markup Language.
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-
os.pdf, March 2005.

[21] OASIS. Web Services Security: SOAP Message Security

1.1. http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf, 2006.

[22] OASIS. Web Services Business Process Execution
Language. http://docs.oasis-open.org/wsbpel/2.0/OS, 2007.

[23] F. Paci, E. Bertino, and J. Crampton. An Access-Control
Framework for WS-BPEL. Int. J. f. Web Services Research,
5(3):20–43, 2008.

[24] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. Computer, 40(11):38–45, 2007.

[25] A. Pashalidis and C. J. Mitchell. A taxonomy of single
sign-on systems. In 8th Australasian Conference on

Information Security and Privacy, pages 249–264, 2003.

[26] W. rong Jih, S. you Cheng, J. Y. jen Hsu, and T. ming Tsai.
Context-aware access control in pervasive healthcare. In EEE

Workshop: Mobility, Agents, and Mobile Services, 2005.

[27] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. Computer, 29(2):38 –47, 1996.

[28] D. C. Schmidt. Model-Driven Engineering – Guest Editor’s
Introduction. Computer, 39(2), February 2006.

[29] B. Selic. The Pragmatics of Model-Driven Development.
IEEE Software, 20(5), 2003.

[30] S. Sendall and W. Kozaczynski. Model Transformation: The
Heart and Soul of Model-Driven Software Development.
IEEE Software, 20(5), 2003.

[31] H. Skogsrud, B. Benatallah, and F. Casati. Model-Driven
Trust Negotiation for Web Services. IEEE Internet

Computing, 7:45–52, November 2003.

[32] D. Spinellis. Notable design patterns for domain-specific
languages. J. of Systems and Software, 56(1):91–99, 2001.

[33] T. Stahl and M. Völter. Model-Driven Software

Development. John Wiley & Sons, 2006.

[34] M. Strembeck. A Role Engineering Tool for Role-Based
Access Control,. In 3rd Symposium on Requirements

Engineering for Information Security, 2005.

[35] M. Strembeck. Scenario-driven Role Engineering. IEEE

Security & Privacy, 8(1), January/February 2010.

[36] M. Strembeck and J. Mendling. Modeling Process-related
RBAC Models with Extended UML Activity Models.
Information and Software Technology, 53(5), May 2011.

[37] M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC Environ-
ments. ACM Trans. on Inf. and System Security, 7(3), 2004.

[38] M. Strembeck and U. Zdun. An Approach for the Systematic
Development of Domain-Specific Languages. Software:

Practice and Experience (SP&E), 39(15), October 2009.

[39] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and
C. Meinel. Model-driven business process security
requirement specification. J. Syst. Archit., 55:211–223, 2009.

[40] World Wide Web Consortium (W3C). XML Signature
Syntax and Processing.
http://www.w3.org/TR/xmldsig-core/, 2008.

[41] U. Zdun and M. Strembeck. Modeling Composition in
Dynamic Programming Environments with Model Trans-
formations. In 5th Int. Sym. on Software Composition, 2006.

[42] U. Zdun and M. Strembeck. Reusable Architectural
Decisions for DSL Design: Foundational Decisions in DSL
Projects. In 14th European Conference on Pattern

Languages of Programs (EuroPLoP), July 2009.

Paper A 51

52 Paper A

Paper B

Enforcement of Entailment

Constraints in Distributed

Service-based Business Processes

The subsequent paper has been published as follows:

W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. Enforcement

of Entailment Constraints in Distributed Service-based Business Processes. Information

and Software Technology, 55(11), November 2013.

This paper is a substantial extension of the work presented in Paper A. In particular,

we complemented our model-driven approach with novel means for for defining and au-

tomatically enforcing RBAC-related entailment constraints in distributed service-based

business processes. We extended our textual DSL with language abstractions for the

specification of entailment constraints. Furthermore, we integrated our approach with

the Business Activity meta-model [88], a generic approach for the specification of process-

related RBAC models including a corresponding UML extension. We have significantly

extended our SeCoS prototype implementation and provided an extensive performance

evaluation of our approach.

53

Enforcement of Entailment Constraints in Distributed Service-Based Business Processes

Waldemar Hummera, Patrick Gaubatzb, Mark Strembeckc, Uwe Zdunb, Schahram Dustdara

aDistributed Systems Group, Vienna University of Technology, Austria
bFaculty of Computer Science, University of Vienna, Austria

c Institute of Information Systems, New Media Lab, Vienna University of Economics and Business, Austria

Abstract

Context: A distributed business process is executed in a distributed computing environment. The service-oriented architecture

(SOA) paradigm is a popular option for the integration of software services and execution of distributed business processes. En-

tailment constraints, such as mutual exclusion and binding constraints, are important means to control process execution. Mutually

exclusive tasks result from the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding

constraints define that a subject who performed one task must also perform the corresponding bound task(s). Objective: We aim to

provide a model-driven approach for the specification and enforcement of task-based entailment constraints in distributed service-

based business processes. Method: Based on a generic metamodel, we define a domain-specific language (DSL) that maps the

different modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based access control (RBAC)

with the tasks that are performed in a business process. Process definitions are annotated using the DSL, and our software platform

uses automated model transformations to produce executable WS-BPEL specifications which enforce the entailment constraints.

We evaluate the impact of constraint enforcement on runtime performance for five selected service-based processes from existing

literature. Results: Our evaluation demonstrates that the approach correctly enforces task-based entailment constraints at runtime.

The performance experiments illustrate that the runtime enforcement operates with an overhead that scales well up to the order of

several ten thousand logged invocations. Using our DSL annotations, the user-defined process definition remains declarative and

clean of security enforcement code. Conclusion: Our approach decouples the concerns of (non-technical) domain experts from

technical details of entailment constraint enforcement. The developed framework integrates seamlessly with WS-BPEL and the

Web services technology stack. Our prototype implementation shows the feasibility of the approach, and the evaluation points to

future work and further performance optimizations.

Keywords: Identity and Access Management, Business Process Management, Entailment Constraints, Service-Oriented

Architecture (SOA), WS-BPEL

1. Introduction

The Service-Oriented Architecture (SOA) metaphor has been

elaborated by different communities to address different prob-

lem areas (such as enterprise application integration or business

process management, see, e.g., [1]). Amongst others, it can be

seen as a set of technology independent concepts for distributed

computing environments. In this context, it has emerged as

a popular paradigm for developing loosely coupled distributed

systems [2, 3]. Today, Web services [4] are a commonly used

technology which serves as a foundation of SOAs, as well as

distributed business processes. A distributed business process

is an intra-organizational or cross-organizational business pro-

cess executed in a distributed computing environment (such as

SOA). Business processes often require the definition and en-

forcement of process-related security policies. For example,

Email addresses: hummer@infosys.tuwien.ac.at (Waldemar

Hummer), patrick.gaubatz@univie.ac.at (Patrick Gaubatz),

mark.strembeck@wu.ac.at (Mark Strembeck),

uwe.zdun@univie.ac.at (Uwe Zdun),

dustdar@infosys.tuwien.ac.at (Schahram Dustdar)

such requirements result from internal business rules of an or-

ganization, or service-level agreements (SLAs) [5] with cus-

tomers. In addition, numerous regulations and IT standards

exist that pose compliance requirements for the corresponding

systems. In particular, IT systems must comply with laws and

regulations such as the Basel II/III Accords, the International

Financial Reporting Standards (IFRS), or the Sarbanes-Oxley

Act (SOX). For instance, one important part of SOX compli-

ance is to provide adequate support for definition and enforce-

ment of process-related security policies (see, e.g., [6, 7, 8]).

Role-based access control (RBAC) [9, 10] is a de-facto stan-

dard for access control in both research and industry. In the

context of RBAC, roles are used to model different job posi-

tions and scopes of duty within an information system. These

roles are equipped with the permissions to perform their re-

spective tasks. Human users and other active entities (subjects)

are assigned to roles according to their work profile [11, 12].

A process-related RBAC model (see, e.g., [13, 14]) enables

the definition of permissions and entailment constraints for the

tasks that are included in business processes. A task-based en-

tailment constraint places some restriction on the subjects who

Preprint submitted to Information and Software Technology December 19, 2013

54 Paper B

can perform a task x given that a certain subject has performed

another task y. Entailment constraints are an important means

to assist the specification and enforcement of compliant busi-

ness processes (see, e.g., [15, 16, 17, 18, 19, 20]).

Mutual exclusion and binding constraints are typical exam-

ples of entailment constraints. Mutual exclusion constraints

can be subdivided in static mutual exclusion (SME) and dy-

namic mutual exclusion (DME) constraints. A SME constraint

defines that two tasks (e.g. Order Supplies and Approve Pay-

ment) must never be assigned to the same role and must never

be performed by the same subject (to prevent fraud and abuse).

This constraint is global with respect to all process instances

in an information system. In contrast, DME refers to individ-

ual process instances and can be enforced by defining that two

tasks must never be performed by the same subject in the same

process instance.

In contrast to mutual exclusion constraints, binding con-

straints define that two bound tasks must be performed by the

same entity. In particular, a subject-binding constraint defines

that the same individual who performed the first task must also

perform the bound task(s). Similarly, a role-binding constraint

defines that bound tasks must be performed by members of the

same role but not necessarily by the same individual.

Motivation. As outlined above, entailment constraints are an

important means to assist the specification of business pro-

cesses and control their execution. Yet, the runtime enforce-

ment of entailment constraints in distributed SOA business pro-

cesses is a complex task, and currently there is still a lack of

straightforward solutions to achieve this task. This complexity

arises from the fact that the tasks of distributed business pro-

cesses are performed on independent, loosely coupled nodes

in a network. One of the advantages of loosely coupled sys-

tems is that the different nodes (i.e. services) can execute their

tasks independently of other nodes. However, the enforcement

of entailment constraints in a distributed system often requires

knowledge that is not available to a single node.

Moreover, to enforce access control policies in a software

system, the resulting policy models must also be mapped to

the implementation level. To account for different platforms

and implementation styles, it is important to first establish the

enforcement on a generic and conceptual level, in order to map

it to concrete platforms (e.g., SOA, as in our case).

Evidently, enforcement of RBAC policies and constraints has

an impact on the execution time of business processes. Depend-

ing on the complexity of the constraints and the amount of data

that needs to be evaluated, the impact will be more or less se-

vere. While the theory behind RBAC and entailment constraints

in business processes has been intensively studied in the past,

less attention has been devoted to the runtime enforcement, in-

cluding performance impacts, of such constraints.

With respect to the rapidly increasing importance of process-

aware information systems, the correct and efficient implemen-

tation of consistency checks in these systems is an important

issue. Therefore, the runtime performance needs to be eval-

uated thoroughly in order to ensure the efficient execution of

business processes that are subject to access constraints.

Approach Synopsis. This paper builds on our previous work

from [14, 21]. In [14], we presented a generic approach for the

specification of process-related RBAC models including a cor-

responding UML extension (see also Sections 2 and 3). In [21],

we discussed an approach for identity and access management

in a SOA context. However, while the enforcement of entail-

ment constraints in a distributed system is a very complex task

(see discussion in the Motivation section above), neither [14]

nor [21] address this important issue. In this paper, we integrate

the approaches from [14, 21] and provide multiple novel con-

tributions. In particular, we present an integrated, model-driven

approach for the definition and enforcement of RBAC-related

entailment constraints in distributed SOA business processes.

We extend our textual DSL from [21] with language primitives

for the specification of entailment constraints. Furthermore, we

significantly extended our implementation and provide an ex-

tensive performance evaluation of our solution.

In general, distributed business processes involve stakehold-

ers with different background and expertise. A technical RBAC

model may be well-suited for software architects and develop-

ers, but for non-technical domain experts an abstracted view is

desirable. In the context of model-driven development (MDD)

[22, 23, 24], a systematic approach for DSL (domain-specific

language) development has emerged in recent years (see, e.g.,

[25, 26, 27, 28]). A DSL is a tailor-made (computer) language

for a specific problem domain. To ensure compliance between

models and software platforms, models defined in a DSL are

mapped to code artifacts via automated model-transformations

(see, e.g., [29, 30, 31]). In our approach, the use of a DSL for

RBAC constraints allows us to abstract from technical details

and involve domain experts in the security modeling procedure.

RBAC
DSL

Security
Experts

author
statements

expresses

Design Time

IT Architect/
Developer

subject to

RBAC Model
Constraints

Web
Services

annotated
with

implements

writes

Business
Process
Instance

Execution Time

created by model
transformation

 User

Deployment Time

Business
Process
Definition

Business Process
Definition with IAM

Tasks

invokes

instantiated as

IAM
Tasks

enforce

utilizes

executes

PEP

Figure 1: Approach Overview

Figure 1 depicts a high-level overview of our approach, in-

cluding the involved stakeholders, system artifacts, and rela-

tionships between them. At design time, the security experts

author RBAC DSL statements to define the RBAC model and

entailment constraints. IT specialists implement Web services

and define business processes on top of the services. At de-

ployment time, the process definition files are automatically en-

riched with tasks for identity and access management (IAM)

that conform to the corresponding entailment constraints. The

2

Paper B 55

business process is instantiated and executed by human indi-

viduals, and the IAM tasks ensure that the process conforms to

the constraints defined in the RBAC model. A policy enforce-

ment point (PEP) component intercepts all service invocations

to block unauthorized access (see also [21]).

For the sake of platform independence, we model business

processes using UML activity diagrams [32]. In particular, we

use the BusinessActivities extension [14], which enables the

definition of process-related RBAC models via extended UML

activity models. Based on the generic solution, we discuss a

concrete instantiation and show how the approach is mapped to

the Web services technology stack, including the Business Pro-

cess Execution Language for Web services (WS-BPEL) [33].

The remainder of this paper is structured as follows. In Sec-

tion 2, we present a motivating scenario. Section 3 introduces

a generic metamodel for specification of process-related RBAC

models including entailment constraints. Section 4 describes

the transformation procedure that enriches the process defini-

tions with IAM tasks to enforce runtime-compliance. In Section

5, we present a concrete WS-BPEL-based application of our ap-

proach. Implementation-related details are given in Section 6,

and in Section 7 we evaluate different aspects of our solution.

Section 8 discusses related work, and Section 9 concludes with

an outlook for future work.

2. Motivating Scenario

We illustrate the concepts of this paper based on a scenario

taken from the e-health domain. The scenario models the work-

flow of orthopedic hospitals which treat fractures and other se-

rious injuries. The hospitals are supported by an IT infrastruc-

ture organized in a SOA, implemented using Web services. The

SOA provides Web services for patient data, connects the de-

partments of different hospitals, and facilitates the routine pro-

cesses. Because the treatment of patients is a critical task and

the personal data constitute sensitive information, security must

be ensured and a tailored domain-specific RBAC model needs

to be enforced. Task-based entailment constraints in the form

of mutual exclusion and binding constraints are a crucial part of

the system.

2.1. Patient Examination Business Process

A core procedure in the hospital is the patient examination,

illustrated in Figure 2 as a Business Activity [14] model. We as-

sume that the process is implemented using a business process

engine and that the actions (or tasks) represent the invocations

of services. The arrows between the actions indicate the control

flow of the process. Note that all tasks are backed by technical

services, however, part of the tasks are not purely technical but

involve some sort of human labor or interaction.

The top part of the figure shows the BusinessActivity model

of the process, and the bottom part contains an excerpt of the

RBAC definitions that apply to the scenario. We define three

types of roles (Staff, Physician, Patient), each with a list of tasks

they are permitted to execute, and four subjects (John, Jane,

Bob, Alice), each with roles assigned to them. The names of

Get Personal Data

Get Patient History
From Partner Hospital

Patient Examination Process

«structured»
(LoopNode)

«structured» Reception

Assign Physician

«structured» Examination

Get Critical History

Obtain X-Ray Image
[is emergency]

[more data required]

Decide On Treatment

B

Staff

Task: Get Personal Data,
Assign Physician,
Obtain X-Ray Image

R Physician

Task: Get Critical History,
Get Expert Opinion,
Decide On Treatment

R

BA

B

RBind: Assign Physician RBind: Get Personal Data

«rrAssign»

B

DME: Get Expert Opinion
SBind: Decide on Treatment

John
S Bob

S

«rsAssign»

[else]

Patient

Task: Get Patient History
From Partner Hospital,
Get Critical History

R

Alice
S

«rsAssign»

Get Expert Opinion B

DME: Get Critical History
SME: Get Patient History

From Partner Hospital

B

B

SBind:Get Patient History
From Partner Hospital

SME: Get Expert Opinion

SBind: Get Critical History

Jane
S

«rsAssign» «rsAssign»

J

Figure 2: Patient Examination Scenario Modeled As UML Business Activity

permitted tasks of a role are displayed after the string “Task:”.

Note, however, that this is only one possible graphical presen-

tation option to display the association between roles and ac-

tions (see [14]). Role inheritance hierarchies are modeled using

the role-to-role assignment (rrAssign) relationship (senior-roles

inherit the permissions of junior-roles, e.g., Physician inherits

from Staff). The role-to-subject assignment (rsAssign) associa-

tion is used to assign roles to subjects.

The first step in the examination process (see Figure 2) is to

retrieve the personal data of the patient. To demonstrate the

cross-organizational character of this scenario, suppose that the

patient has never been treated in our example hospital (H1) be-

fore, but has already received medical treatment in a partner

hospital (H2). Consequently, H1 obtains the patient’s personal

data via the Web services of H2. Secondly, the patient is as-

signed to a physician. After the patient has been assigned, the

physician requests an x-ray image from the responsible depart-

ment. The physician then decides whether additional data are

required (e.g., information about similar fractions or injuries in

the past). If so, the business process requests historical data

from partner hospitals which also participate in the SOA. For

privacy reasons, the historical data are only disclosed to the pa-

tient herself, and the Get Patient History service task has to

execute under the role Patient (see Figure 2). Another situa-

tion that requires additional data is the case of an emergency.

If the emergency demands for immediate surgery, it is impor-

tant to determine historical data about any critical conditions or

3

56 Paper B

diseases that might interfere with the surgery (task Get Critical

History). To avoid that a single physician takes wrong decisions

in an emergency, it is mandatory to get the opinion of a second

expert. Finally, the task Decide On Treatment completes the

examination and triggers the (physical) treatment.

2.2. Entailment Constraints

In this paper, we support four types of entailment constraints

which we briefly discuss in the following. The scenario process

in Figure 2 contains examples for each type of constraint.

• Static Mutual Exclusion (SME): The SME constraint be-

tween Get Expert Opinion and Get Patient History from Part-

ner Hospital defines that the two tasks must never be ex-

ecuted by the same subject or role, across all process in-

stances. This constraint is reasonable as we need to explicitly

separate the permissions of patients and physicians.

• Dynamic Mutual Exclusion (DME): The DME constraint

for Get Critical History and Get Expert Opinion requires

that, for each instance of the process, these two tasks are ex-

ecuted by different subjects. This ensures that the treatment

decision in an emergency clearly depends on the medical as-

sessment of two individual physicians.

• Subject Binding (SBind): An example SBind constraint is

the Get Patient History From Partner Hospital task, which

executes multiple times in a loop. To ensure that each itera-

tion is done by the same subject, the SBind attribute reflex-

ively links to the same task. A second subject binding exists

between Get Critical History and Decide on Treatment.

• Role Binding (RBind): The process defines a role-binding

constraint which demands that the Get Personal Data and

Assign Physician are performed by the same role (although

potentially different subjects).

3. Generic Metamodel for Specification of Entailment Con-

straints in Business Processes

This section gives an overview of the generic metamodel for

specification of process-related RBAC models including entail-

ment constraints. To provide a self-contained view in this paper,

Section 3.1 repeats the core definitions from [14], which form

the basis for our approach. In Section 3.2, we introduce the tex-

tual RBAC DSL which allows to define entailment constraints

in a simple textual syntax and enables a seamless mapping of

UML-based process-related RBAC models (see [14]) to the im-

plementation level. The core part of the textual RBAC DSL is

based on [21]. For this paper, it has been extended with capa-

bilities for the specification of entailment constraints.

3.1. Business Activity RBAC Models

Definition 1 (Business Activity RBAC Model). A Busi-

ness Activity RBAC Model BRM = (E,Q,D) where

E = S ∪R∪PT ∪PI ∪TT ∪TI refers to pairwise disjoint sets of

the metamodel, Q = rh∪tra∪rsa∪ptd∪pi∪ti∪es∪er to map-

pings that establish relationships, and D = sb∪ rb∪ sme∪ dme

to binding and mutual exclusion constraints, such that:

• For the sets of the metamodel:

– An element of S is called Subject. S , ∅.

– An element of R is called Role. R , ∅.

– An element of PT is called Process Type. PT , ∅.

– An element of PI is called Process Instance.

– An element of TT is called Task Type. TT , ∅.

– An element of TI is called Task Instance.

In the list below, we iteratively define the partial mappings of

the Business Activity RBAC Model and provide corresponding

formalizations (P refers to the power set, for further details see

[14]):

1. The mapping rh : R 7→ P(R) is called role hierarchy.

For rh(rs) = R j we call rs senior role and R j the set of

direct junior roles. The transitive closure rh∗ defines the

inheritance in the role hierarchy such that rh∗(rs) = R j∗

includes all direct and transitive junior roles that the senior

role rs inherits from. The role hierarchy is cycle-free, i.e.

for each r ∈ R : rh∗(r) ∩ {r} = ∅.

2. The mapping tra : R 7→ P(TT) is called task-to-role as-

signment. For tra(r) = Tr we call r ∈ R role and Tr ⊆ TT

is called the set of tasks assigned to r. The mapping

tra−1 : TT 7→ P(R) returns the set of roles a task is as-

signed to (the set of roles owning a task).

This assignment implies a mapping task ownership

town : R 7→ P(TT), such that for each role r ∈ R

the tasks inherited from its junior roles are included, i.e.

town(r) =
⋃

rinh∈rh∗(r) tra(rinh) ∪ tra(r). The mapping

town−1 : TT 7→ P(R) returns the set of roles a task is as-

signed to (directly or transitively via a role hierarchy).

3. The mapping rsa : S 7→ P(R) is called role-to-subject

assignment. For rsa(s) = Rs we call s ∈ S subject and

Rs ⊆ R the set of roles assigned to this subject (the set of

roles owned by s). The mapping rsa−1 : R 7→ P(S) returns

all subjects assigned to a role (the set of subjects owning a

role).

This assignment implies a mapping role ownership

rown : S 7→ P(R), such that for each subject s ∈ S

all direct and inherited roles are included, i.e. rown(s) =
⋃

r∈rsa(s) rh∗(r)∪ rsa(s). The mapping rown−1 : R 7→ P(S)

returns all subjects assigned to a role (directy or transi-

tively via a role hierarchy).

4. The mapping ptd : PT 7→ P(TT) is called process type

definition. For ptd(pT) = TpT
we call pT ∈ PT process

type and TpT
⊆ TT the set of task types associated with

pT .

5. The mapping pi : PT 7→ P(PI) is called process instan-

tiation. For pi(pT) = Pi we call pT ∈ PT process type

and Pi ⊆ PI the set of process instances instantiated from

process type pT .

6. The mapping ti : (TT × PI) 7→ P(TI) is called task in-

stantiation. For ti(tT , pI) = Ti we call Ti ⊆ TI set of task

instances, tT ∈ TT is called task type and pI ∈ PI is called

process instance.

4

Paper B 57

7. Because role-to-subject assignment is a many-to-many re-

lation (see Def. 1.3), more than one subject may be able

to execute instances of a certain task type. The mapping

es : TI 7→ S is called executing-subject mapping. For

es(t) = s we call s ∈ S the executing subject and t ∈ TI is

called executed task instance.

8. Via the role hierarchy, different roles may posses the per-

mission to perform a certain task type (see Def. 1.1 and

Def. 1.2). The mapping er : TI 7→ R is called executing-

role mapping. For er(t) = r we call r ∈ R the executing

role and t ∈ TI is called executed task instance.

9. The mapping sb : TT 7→ P(TT) is called subject-binding.

For sb(t1) = Tsb we call t1 ∈ TT the subject binding task

and Tsb ⊆ TT the set of subject bound tasks.

10. The mapping rb : TT 7→ P(TT) is called role-binding.

For rb(t1) = Trb we call t1 ∈ TT the role binding task and

Trb ⊆ TT the set of role bound tasks.

11. The mapping sme : TT 7→ P(TT) is called static mutual

exclusion. For sme(t1) = Tsme with Tsme ⊆ TT we call

each pair t1 ∈ TT and tx ∈ Tsme statically mutual exclusive

tasks.

12. The mapping dme : TT 7→ P(TT) is called dynamic mu-

tual exclusion. For dme(t1) = Tdme with Tdme ⊆ TT we

call each pair t1 ∈ TT and tx ∈ Tdme dynamically mutual

exclusive tasks.

3.2. RBAC Modeling for Business Processes

Figure 3 depicts the core RBAC metamodel and its connec-

tion with the core elements of the BusinessActivity metamodel.

In particular, Figure 3 outlines how we extended our DSL from

[21] to include process-related RBAC entailment constraints

(see [14]). The different model elements are described below.

Permission

seniorRole

Subject

+ name

+ allPermissions()

Resource

+ name

Operation

+ name

*

*

dynamicExclusion

staticExclusion

subjectBinding

roleBinding

0..*

RBAC
Model

Core
Model
For
Business
Activity
RBAC
Constraints

Role

+ name
*

*

TaskInstance

1..*

executingSubject

*

instanceOf

ProcessType

*

instanceOf

executingRole

*

*

*

ProcessInstance

+ instanceID

TaskType

+ taskName

Figure 3: Excerpt of RBAC Metamodel and Business Activity Metamodel

A ProcessInstance has a unique instanceID,

a ProcessType, and is composed of multiple Task-

Instance objects which are again instances of a certain

TaskType. The class TaskType has a name and four re-

flexive associations that define mutual exclusion and binding

constraints. Subjects are identified by a name attribute and

are associated with an arbitrary number of Roles, which are

themselves associated with Permissions to execute certain

Operations. A TaskType in the BusinessActivity meta-

model corresponds to an Operation in the RBAC meta-

model. Roles may inherit permissions from other roles (associ-

ation seniorRole). In our approach, we directly associate

Web service instances with Resources. That is, a subject

that attempts to invoke a Web service operation op on a ser-

vice resource res must be associated with a role that holds a

permission to execute op on res. A detailed description of the

BusinessActivity metamodel and corresponding OCL (Object

Constraint Language) constraints can be found in [14]. We uti-

lize the core parts of this model and focus on the mapping of

the RBAC constraints to a textual DSL and to business process

execution platforms, as illustrated for WS-BPEL in Section 5.

3.3. RBAC DSL Statements

Our RBAC DSL is implemented as an embedded DSL [27]

and is based on the scripting language Ruby as host program-

ming language. We now briefly discuss how the model ele-

ments are mapped to language constructs provided by the DSL

(see also Section 3.1 and Figure 3). Table 1 lists the ba-

sic DSL statements (left column) and the corresponding effect

(right column). In the table, keywords of the DSL syntax are

printed in bold typewriter font, and placeholders for cus-

tom (scenario-specific) expressions are printed in italics.

RBAC DSL Statement Effect
RESOURCE name [description] Define new resource

OPERATION name [description] Define new operation

SUBJECT name [description] Define new subject

ROLE name [description] Define new role

ASSIGN sub ject role Assign role to subject

INHERIT juniorRole seniorRole Let senior role inherit a junior role

PERMIT role operation resource Allow a role to execute a certain operation

on a specific resource

TASK name operation resource Define operation-to-task mapping

DME task1 task2 Define dynamic mutual exclusion (DME)

SME task1 task2 Define static mutual exclusion (SME)

RBIND task1 task2 Define role-binding (RBind)

SBIND task1 task2 Define subject-binding (SBind)

Table 1: Semantics of RBAC DSL Statements

The RBAC DSL statements RESOURCE, OPERATION,

SUBJECT and ROLE are used to create resources, opera-

tions, subjects and roles with the respective name and optional

description attributes. ASSIGN creates an association between

a subject and a role. INHERIT takes two parameters, a junior-

role and a senior-role name, and causes the senior-role to inherit

all permissions of the junior-role. PERMIT expresses the per-

mission for a role to execute a certain operation on a resource.

DME and SME allow the specification of dynamically or stati-

cally mutual exclusive operations. Using RBIND and SBIND,

two operations are subjected to role-binding or subject-binding

constraints. Finally, the TASK statement is used to establish

5

58 Paper B

a mapping from our RBAC DSL to implementation level arti-

facts. More precisely, operations are mapped to concrete WS-

BPEL tasks (see Section 5.2). The complete access control con-

figuration for the patient examination scenario, expressed via

RBAC DSL statements, is printed in Appendix A.

4. Model Transformations of Process Definitions for Run-

time Constraint Enforcement

To enforce the RBAC constraints at runtime, the business

process needs to follow a special procedure. If the process ex-

ecutes a secured task, it needs to provide a valid authentication

token for the active user. For instance, this token contains infor-

mation which subject (e.g., “Jane”) executes an operation, and

under which role (e.g. “Staff”) this individual operates. In this

section, we discuss our approach for automatically obtaining

these authentication tokens to enforce security at runtime.

Figure 4 illustrates which artifacts are utilized by the in-

stances of the business process. We follow the concepts of

the SAML framework [34] and provide the authentication data

with the aid of an Identity Provider (IdP) service. An IdP is

a service provider that maintains identity information for users

and provides user authentication to other services. The IdP is

a reusable standard component; its sole responsibility is to au-

thenticate the user and to issue an AuthData document which

asserts the user’s identity (subject and role). As such, the IdP

has no knowledge about the process structure and RBAC con-

straints. Hence, we utilize the decoupled RBAC Manager Ser-

vice which keeps track of the state of the process instances.

The RBAC Manager Service knows the process structure and

decides, based on the RBAC constraints, which subject or role

is responsible for the next task (see also [19]).

Business Process
Instance

requests
assertion

Responsibility

+ subject: String
+ role: String

issues *
uses for
service invocations

Identity Provider
Service (IdP)

+ getAuthenticationData(
responsibility : Responsibility)

: AuthData

*

RBAC Manager Service

+ getResponsibility(
instanceID: String,
taskName: String)

: Responsibility

requests
responsibility

for tasks
AuthData

determines
for each task *

Figure 4: Relationship Between Business Process Instance and Security En-

forcement Artifacts

Combining the functionality of getResponsibility

and getAuthenticationData (see Figure 4) constitutes

the core protocol for obtaining authentication tokens that en-

able the enforcement of task-based entailment constraints in

a BusinessActivity. This recurring protocol is executed for

each secured task; hence, it need not be implemented manu-

ally, but should ideally be generated automatically on top of the

business process model that is defined by the developer. We

therefore aim at providing automatic transformations to convert

the domain-specific extensions for mutual exclusion and bind-

ing constraints in BusinessActivity models into regular activity

models which perform the required IAM tasks. This transfor-

mation is required as an intermediate step towards the gener-

ation of corresponding definitions that are directly deployable

and executable (e.g., by WS-BPEL engines). In the following,

we describe the transformation procedure in detail and discuss

different implementation and runtime aspects.

4.1. Model Transformations to Enforce Mutual Exclusion Con-

straints

Here we discuss the detailed procedure for runtime enforce-

ment of mutual exclusion constraints in the form of DME and

SME tasks. We propose an approach for transforming design-

time BusinessActivity models into deployable standard activity

models that comply with this procedure. The transformations

for enforcing mutual exclusion constraints are illustrated in Fig-

ure 5. Tasks representing invocations to external Web services

are printed in grey, while structured activities and tasks with

local processing logic are depicted with a white background.

The transformed activity models with mutual exclusion con-

straints in Figure 5 contain four additional tasks. All four tasks

are UML CallBehaviorActions [32] (indicated by the rake-style

symbol) which consist of multiple sub-tasks. The internal pro-

cessing logic depends on the concrete target platform; later in

Section 5.1 we discuss the detailed logic for WS-BPEL.

The task Get Authentication Data invokes the IdP service

to obtain the authentication data token (AuthData) to be used

for later invocation of the BusinessAction. The second inserted

task is Check Mutual Exclusion, which is responsible for check-

ing whether the provided authentication data are valid with re-

spect to the mutual exclusion constraint. A UML value pin [32]

holding the name of the corresponding task provides the input

for the pin DME (Figure 5(a)) or the pin SME (Figure 5(b)),

respectively. Additionally, the Check Mutual Exclusion task re-

ceives as input the name of the task to-be-executed (taskName,

which is known from the original process definition), and the

AuthData (received from the IdP service). The decision node

is used to determine whether Check Mutual Exclusion has re-

turned a successful result. If the result is unsuccessful (i.e., a

constraint violation has been detected) the control flow points

back to Get Authentication Data to ask the IdP again for a valid

authentication data token. Otherwise, if the result is successful,

the task Add Authentication to Request appends the user cre-

dentials in AuthData to the request message for the target Web

service operation. The fourth inserted task is Log Invocation,

which adds a new log record that holds the name of the task

(taskName) and the AuthData of the authenticated user. The in-

put pin global determines whether the log entry is stored in a

local variable of the process instance (value null) or in a global

variable accessible from all process instances (value ’true’).

4.2. Model Transformations to Enforce Binding Constraints

The approach for transforming binding constraints in Busi-

nessActions (illustrated in Figure 6) is similar to the trans-

formation for mutual exclusion constraints presented in Sec-

6

Paper B 59

Get Authentication Data

Automatic Transformation

Process Design Model Process Deployment Model

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

. . .

BusinessAction X

DME: BusinessAction Y

B

. . .

BusinessAction X

Check Mutual Exclusion

AuthDataDME

'BusinessAction_Y'

Log Invocation

taskName

[check unsuccessful]

AuthData

taskName

[else]

«structured»

taskName instanceID

...

(a) Transformation for DME Constraints

Process Design Model Process Deployment Model

Get Authentication Data

Automatic Transformation

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

. . .

BusinessAction X

SME: BusinessAction Y

B

. . .

BusinessAction X

Check Mutual Exclusion

AuthDataSME

'BusinessAction_Y'

Log Invocation

taskName

[check unsuccessful]

global

'true'

AuthData

taskName

[else]

«structured»

taskName instanceID

...

(b) Transformation for SME Constraints

Figure 5: Process Transformations to Enforce Mutual Exclusion Constraints

tion 4.1. The transformed process model first requests authenti-

cation data from the IdP service. The task Check Binding Con-

straints then checks the resulting AuthData with respect to role-

bindings (RBind, Figure 6(a)) and subject-bindings (SBind, Fig-

ure 6(b)). The process asks for new user credentials and repeats

the procedure if the binding constraint is not fulfilled.

Note that the entailment constraints are checked directly in-

side the process, not by the IdP service. Even though the Au-

thData (subject, role) obtained from the IdP is trusted and as-

sumed to properly represent the user executing the process, the

AuthData may be invalid with respect to entailment constraints.

Hence, the branch “check unsuccesful” indicates that the pro-

cess instance asks for a different user to login and execute the

task. As the log of previous tasks is stored locally by each pro-

cess instance (except for SME constraints, where log entries are

also stored globally), the Check Binding and Check Mutual Ex-

clusion tasks are required directly inside the process logic and

are not outsourced to external services. This approach is able to

deal with deadlock situations (evaluated in Section 7.2).

Process Design Model Process Deployment Model

Get Authentication Data

BusinessAction X

Automatic Transformation

BusinessAction X

RBind: BusinessAction Y

B

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

Check Binding Constraints

AuthDataRBind

'BusinessAction_Y'. . .

. . .

[else]

Log Invocation

taskName AuthData

[check unsuccessful]

«structured»

taskName instanceID

...

(a) Transformation for Role Binding

Process Design Model Process Deployment Model

Get Authentication Data

BusinessAction X

Automatic Transformation

BusinessAction X

SBind: BusinessAction Y

B

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

Check Binding Constraints

AuthDataSBind

'BusinessAction_Y'
. . .

. . .

[check unsuccessful]

[else]

Log Invocation

taskName AuthData

«structured»

taskName instanceID

...

(b) Transformation for Subject Binding

Figure 6: Process Transformations to Enforce Binding Constraints

In certain deployments, the platform providers (e.g., hospi-

tal management) may be interested in tracking failed authoriza-

tions. For brevity, such mechanisms are not included in Fig-

ures 5 and 6, but extending the approach with notifications is

straight-forward.

4.3. Transformation Rules for Combining Multiple Constraints

So far, the transformation rules for the four different types

of entailment constraints in BusinessActivities (role-binding,

subject-binding, SME, DME) have been discussed in isolation.

However, as the scenario in Section 2 illustrates, Business-

Actions can possibly be associated with multiple constraints

(e.g., Get Critical History). Therefore, we need to analyze how

the transformation rules can be combined while still maintain-

ing the constraints’ semantics. A simple approach would be to

successively apply the atomic transformations for each Busi-

nessAction and each of the constraints associated with it. How-

ever, this approach is not suited and may lead to incorrect re-

7

60 Paper B

sults. For instance, if we consider the task Get Critical History

with the associated DME and SBind constraints, the process

might end up requesting the authentication data twice, which

is not desired. Therefore, multiple constraints belonging to the

same task are always considered as a single unit (see also [19]).

Figure 7 depicts the transformation template for a

generic sample BusinessAction X with multiple constraints

c1, c2, . . . , cn.

Process Design Model Process Deployment Model

Get Authentication Data

Add Authentication to Request

BusinessAction X B

Constraint c1

Constraint c2

…
Constraint cn

BusinessAction X

Check Constraint c1

Log Invocation

[c1 violated]

Check Constraint c2

[c2 violated]

. . .

[else]

Check Constraint cn

[cn violated]

[else]

[else]

Automatic Transformation

Figure 7: Generic Transformation Template for Business Action With Multiple

Constraints

5. Application to SOA and WS-BPEL

This section discusses details of the process transformation

from Section 4 and illustrates how the approach is applied to

SOA, particularly WS-BPEL and the Web services framework.

5.1. Supporting Tasks for IAM Enforcement in WS-BPEL

In the following we discuss the internal logic of the five sup-

porting IAM tasks used in the transformed activity models for

the enforcement of mutual exclusion (Section 4.1) and binding

constraints (Section 4.2).

Task Log Invocation: In general, process-related RBAC

constraints rely on knowledge about historical task executions

(see also [14]). Therefore, a mechanism is required to store data

about previous service invocations. One conceivable approach

is that the process execution engine keeps track of the invoca-

tion history. To that end, invocation data can be stored either in

a local variable of the process instance (for DME constraints)

or in a global variable that is accessible from all process in-

stances (for SME constraints). Unfortunately, WS-BPEL does

not support global variables, but we can overcome this issue by

using an external logging Web service. Figure 8(a) shows the

Log Invocation activity, which stores data about service calls,

including the name of the invocation and the AuthData of the

user under which the process executes. The invocation is first

stored in a local array variable of WS-BPEL. If the input pin

named global is not null, the data is also stored with the exter-

nal logging service (Log Invocation Globally). Currently, our

framework relies on a central logging service. As part of our

future work, we tackle advanced challenges such as privacy,

and timing issues that come with decentralized logging.

Task Get Authentication Data: This supporting IAM task

is used to obtain authentication tokens, see Figure 8(b). The

identifier of the affected process task is provided as a parameter

taskName. For instance, in the case of WS-BPEL, the name at-

tribute of the corresponding invoke statement can be used to

determine this value. As outlined in Section 4, the procedure is

split up between the RBAC Manager service and the IdP. First,

the invocation Get Responsibility asks the RBAC Manager for

the role or subject responsible for executing the next task. All

combinations of values are possible, i.e., either subject or role,

or both, or none of the two may be specified. The subject/role

responsibility information is used to execute an IdP Authentica-

tion Request. The authentication method performed by the IdP

is transparent; for instance, it may perform smartcard based au-

thentication or ask for username and password. The AuthData

output pin provided by this invocation contains the definite sub-

ject and role name of the user.

Task Add Authentication to Request: The activity in Fig-

ure 8(c) illustrates how authentication data are appended to the

invocation of Business Actions. First, the AuthData informa-

tion is used to request a SAML assertion from the IdP service.

This token contains the subject and role with a trusted signature

that ensures the integrity of the assertion content. The assertion

is then added to the request message for the target service oper-

ation (the name is specified via the input pin taskName) using

the SOAP header mechanism [35] (SOAP is the communication

protocol used by Web services). Note that this activity leaves

room for optimization. If many tasks in the process are exe-

cuted by the same subject and role, it is advantageous to cache

and reuse the SAML tokens in a local variable of the process

instance. However, caching security tokens carries the risk of

inconsistencies if the RBAC policies change.

Task Check Binding Constraints: Figure 8(d) contains the

activity Check Binding Constraints, whose internal logic is to

check the logged invocations with role-binding and subject-

binding against the AuthData information. If the SBind param-

eter is set, the activity looks up the last corresponding log entry

(the taskName of the log entry needs to be equal to SBind) in

the local invocation map of the WS-BPEL process instance. If

the returned array (named logs) is not empty, then the subject

stored in the last log entry needs to be identical to the subject in

AuthData. Analogously, if the RBind parameter is set, then the

role of the last log entry with taskName equal to RBind must be

equal to the role in AuthData. If and only if all conditions hold

true, the activity returns a success status.

Task Check Mutual Exclusion: Similarly, the Check Mutual

Exclusion activity in Figure 8(e) uses the log data to check the

AuthData against the previously performed invocations. If the

input parameter DME is set, WS-BPEL looks up the log entries

from the local invocation map. Otherwise, if an SME param-

eter is provided, the corresponding logs are received from the

external logging service (global invocation map). The activity

8

Paper B 61

Log Invocation Locally

Log
Invocation

AuthDatataskName

taskName AuthData

[isNull(global)]

global

Log Invocation Globally

taskName AuthData

[else]

(a) Log Invocation

Get Responsibility

Perform IdP Authentication Request

 Get Authentication Data

instanceID

taskName

taskName

Responsibility

instanceID

AuthData

AuthData

Responsibility

(b) Get Authentication Data

Create WS-Security Header
for taskName

Add AuthData
to WS-Security Header

Add Authentication
to Request

AuthData

taskName

AuthData

taskName

SOAPHeader

SOAPHeader

(c) Add Authentication to Request

Check Binding Constraints
RBindSBind

[else]

[else]

AuthData

successful unsuccessful

[not isNull(SBind)]

[not isNull(RBind)]

Lookup Local Invocation Map

taskName

Lookup Local Invocation Map

taskName

logs

logs

[else]

[logs->notEmpty() and
logs->last().subject <>

AuthData.subject]

[logs->notEmpty()
and

logs->last().role <>
AuthData.role]

[else]

(d) Check Binding Constraints

Check Mutual Exclusion
SMEDME

[else]

[else]

AuthData

successful unsuccessful

[not isNull(DME)]

[not isNull(SME)]

Lookup Local Invocation Map

taskName

Lookup Global Invocation Map

logs

logs
[logs->isEmpty() or logs.forAll(

subject <> AuthData.subject and
role <> AuthData.role)]

[else]

taskName

(e) Check Mutual Exclusion

Figure 8: Supporting Tasks for IAM Enforcement in WS-BPEL

returns a successful result if either the logs sequence is empty

or all log entries have a different subject and role than the given

AuthData. Due to the possibly large number of entries in the

logs sequence, it is crucial where these conditions are evaluated

(by the process or the logging service directly). To avoid trans-

mitting log data over the network, we recommend the imple-

mentation variant in which the logging service itself validates

the conditions. To that end, AuthData is sent along with the

request to the logging service and the service returns a boolean

result indicating whether the constraints are satisfied.

5.2. RBAC DSL Integration with WS-BPEL

The TASK statement of the RBAC DSL realizes a map-

ping from operations to concrete WS-BPEL tasks (invoke

activities). This corresponds to the model in Figure 3, where

TaskType in the Business Activities metamodel is mapped to

Operation in the RBAC metamodel. Using this mapping, we

are able to automatically apply all Business Activity entailment

constraints to the corresponding WS-BPEL invoke activities.

DSL Statement WS-BPEL DSL Statement

DME task1 task2 <invoke name="task1" rbac:dme="task2" ../>

SME task1 task2 <invoke name="task1" rbac:sme="task2" ../>

SBIND task1 task2 <invoke name="task1" rbac:sbind="task2" ../>

RBIND task1 task2 <invoke name="task1" rbac:rbind="task2" ../>

Table 2: Mapping of RBAC DSL Statements to WS-BPEL DSL Statements

In our approach, WS-BPEL invoke activities are con-

strained using specialized DSL statements. The DSL uses

the extension mechanism of WS-BPEL and introduces new

XML attributes rbac:dme, rbac:sme, rbac:sbind and

rbac:rbind (the prefix rbac refers to the XML namespace

these attributes are part of). These attributes are then directly

annotated to the invoke activities in WS-BPEL. Table 2 il-

lustrates how the relevant RBAC DSL statements are mapped

to the corresponding WS-BPEL DSL statements. For instance,

the DME statement is mapped to a rbac:dme attribute. The

parameters of the DSL statements in Table 2 refer to the task

types defined using the TASK statement (see Section 3.3). Note

that these rbac:* attributes can be multi-valued. That is, mul-

tiple values can be separated by commas. For example, a task

that is dynamically mutual exclusive to task1 and task2 can be

annotated with a rbac:dme="task1,task2" attribute.

5.3. Automatic Transformation of WS-BPEL Definition

At deployment time, the business process model is automati-

cally transformed to ensure correct enforcement of identity and

access control policies at runtime. The transformation can hap-

pen on different abstraction levels, either based on the platform-

independent model (PIM) or on the platform-specific model

(PSM) (see, e.g., [36]). On the PIM level, model transformation

languages such as Query/View/Transformation (QVT) [37] can

be used to perform UML-to-UML transformation of process ac-

tivity models. Our approach proposes a transformation directly

on the PSM model, i.e., the WS-BPEL process definition file.

9

62 Paper B

Algorithm 1 WS-BPEL Transformation Algorithm

Input: WS-BPEL document bpel, Fragment Templates tmpl

Output: transformed WS-BPEL document

1: add <import ../>, <partnerLink ../>, and <variable

../> statements to bpel

2: add <assign ../> statements to initialize ProcessInstanceID and

InvocationLogs variables

3: for all bpel//invoke as inv do

4: if inv/@rbac:* then

5: authInvoke← create <invoke ../> for operation getAuthentica-

tionData and partnerLink IdP

6: constraintChecks← ∅

7: for all inv/@rbac:* as constraint do

8: tasks← split value of constraint by commas

9: for all tasks as task do

10: check ← create <if>..</if> which checks outcome of

authInvoke for RBAC entailment constraint constraint and

task task

11: constraintChecks← constraintChecks ∪ check

12: end for

13: end for

14: enforcementBlock ← wrap sequence authInvoke||constraintChecks

in new <while>..</while> block

15: insert en f orcementBlock before inv

16: if inv/@rbac:sme then

17: logInvoke ← create <invoke ../> for operation logInvoca-

tion via partnerLink LoggingService

18: insert logInvoke after inv

19: end if

20: end if

21: end for

Algorithm 1 gives a simplified overview of which WS-BPEL

code fragments are injected, and where. Variable names are

printed in italics, and XML markup and XPath expressions are

in typewriter font. The input is a WS-BPEL document bpel

with security annotations. Firstly, various required documents

(e.g. the XSD files of SAML and WS-Security) need to be im-

ported into the WS-BPEL process using import statements.

Then the partnerLink declarations for the needed services

(such as the IdP service) are added to bpel, and variable

declarations are created (e.g. input/output variables for get-

AuthenticationData operations). Using assign state-

ments, some variables (such as ProcessInstanceID) are

initialized. Next, the algorithm loops over all invoke el-

ements that have an attribute from the rbac namespace as-

signed (e.g. rbac:rbind or rbac:dme). For every match-

ing invoke several WS-BPEL code injections and transfor-

mations have to be conducted. Firstly, an invoke statement

(authInvoke) is created. At runtime, this statement calls

the IdP’s getAuthenticationData operation. Next, an

empty set (constraintChecks) is created. Afterwards,

the algorithm iterates over all constraints (e.g. rbac:sbind)

that have been defined for this particular invoke statement.

The values of every constraint are split by commas. For

instance, in the case of an rbac:dme="task1,task2"

annotation, constraint is rbac:dme and tasks is a

set with two elements (task1 and task2). For every

task an if-block (check) is created. At runtime, this if-

block checks, if there is a violation of the entailment con-

straint constraint regarding another task task. Every

check added to the set constraintChecks. Next, a

new <while>..</while>-block (enforcementBlock)

is created. This block envelopes the previously cre-

ated authInvoke statement and all checks contained in

constraintChecks. Finally, this enforcementBlock

is inserted directly before the secured invoke statement. Just

in case the latter is also annotated using a rbac:sme at-

tribute, an additional invocation is injected right after the ac-

tual invoke element. This one calls the logInvocation

operation via the LoggingService PartnerLink.

6. Implementation

In this section, we discuss our prototype implementation of

the proposed approach. The implementation is integrated in

the SeCoS1 (Secure Collaboration in Service-based systems)

framework. This section is divided into four parts: firstly, we

outline the architecture of the system and the relationship be-

tween the individual services and components in Section 6.1;

secondly, the SAML-based SSO mechanism is described in

Section 6.2; in Section 6.3 we present the algorithm for au-

tomatic transformation of WS-BPEL definitions containing se-

curity annotations from our DSL; finally, Section 6.4 discusses

the implementation for checking constraints over the log data.

6.1. System Architecture

Figure 9 sketches the high-level architecture and relation-

ships between the example process and the system components.

Hospital 2

SAML Identity Provider

S

RBAC
Service

S Secured Service

IdP

PDP

PEP

SAML Request

S

S

IdP

Hospital 1

S

PDP

PEP S

S

IdP

Hospital 3

S

PDP

PEP S

S

IdP

Instrumented
IAM Tasks Secured Service Request

Business Process System Architecture and Services

Figure 9: Example Process in System Architecture

The patient examination scenario from Section 2 is imple-

mented using WS-BPEL and deployed in a Glassfish2 server.

1http://www.infosys.tuwien.ac.at/prototype/SeCoS/
2https://glassfish.dev.java.net/

10

Paper B 63

C
lie

n
t

(B
P

E
L

)
S

e
rv

ic
e

(H
3

)
P

E
P

(H
3

)
Id

P
/P

D
P

(H
3

)
Id

P
(H

2
)

authenticate user

check
credentials

[authentication
failed]

return assertion

request service

intercept request
validate integrity

of assertion

[assertion invalid]

create
AuthzDecisionRequest

check permissions return result

receive request return assertion

check
AuthzDecisionStatement

invoke service

receive result

[invocation disallowed]

Id
P

(H
1

)

authenticate user
return

assertion

R
B

A
C

[else]

[else]

[else]

Figure 10: Identity and Access Control Enforcement Procedure

The scenario involves three hospitals, which host the protected

services for patient management and examination. All ser-

vice invocations are routed through a Policy Enforcement Point

(PEP), which acts as a central security gateway, intercepts ev-

ery incoming service request and either allows or disallows its

invocation. It is important that the PEP operates transparently

and as close to the protected resources (i.e., services) as possi-

ble. Using the Java API for XML Web services (JAX-WS), the

PEP has been implemented as a SOAP message handler (inter-

face SOAPHandler). This handler can be plugged into the Web

service’s runtime engine in a straightforward manner. Once ac-

tivated, the interceptor is able to inspect and modify inbound

and outbound SOAP messages and to deny service invocations.

Each hospital runs a SAML IdP service, which is used to

issue the SAML assertions that are required in the WS-BPEL

process. The IdP’s responsibility is twofold: firstly, it authen-

ticates users; secondly, the IdP assures the identity of a subject

and its associated attributes (e.g., roles) by issuing a SAML as-

sertion SOAP header which is used in subsequent service in-

vocations. For the sake of an easy integration into the given

system environment, we decided to use the JAX-WS API for

implementing the Login Web service. This SOAP Web service

offers a login method. It requires a username/password pair

and returns a SAML assertion. Internally, we utilize the Java

Architecture for XML Binding (JAXB) for parsing and creat-

ing SAML assertions. Additionally, the Apache XML Security

for Java3 library is used for digitally signing XML documents

(i.e., the SAML assertions).

The actual decision whether an invocation should be pre-

vented or not is typically delegated to another entity, the Pol-

icy Decision Point (PDP). When deciding over the access to

a service resource the PDP has to make sure that the subject

attempting to access the resource has the permission to do so.

This decision is based on the policy information stored in the

RBAC repository (which is based on the DSL statements au-

thored by domain experts). In our implementation, the core

3http://santuario.apache.org/

functionality of the PDP is embedded into the RBAC DSL (see

Section 3.2). That is, the DSL offers an access method that

can be used to determine whether the requesting subject is per-

mitted to access the target resource (service) under the specified

context and role (see Figure 9). In order to make this function-

ality accessible to the outside of the DSL’s interpreter, we de-

veloped a RESTful Web service, that bridges HTTP requests to

the interpreter. More precisely, the PDP service uses the Bean

Scripting Framework (BSF)4 to access the interpreter. The Java

API for RESTful Web Services (JAX-RS) is used to realize the

PDP service’s RESTful Web interface.

6.2. SAML-based Single Sign-On

Figure 10 depicts an example of the Identity and Access Con-

trol enforcement procedure modeled in UML. To illustrate the

SSO aspect of the scenario, we assume that a patient with sub-

ject name “Alice” (cf. Figure 3), who is registered in hospital 2

(H2), is examined in hospital 1 (H1) and requests her patient

history from previous examinations in hospital 3 (H3). The pro-

cedure is initiated by the WS-BPEL process which requests the

execution of a protected Web service.

Prior to issuing the actual service request, the user has to

authenticate using the SAML IdP. The IdP queries the user

database to validate the credentials provided by the client. As

the credentials of user Alice are not stored in the DB of H1, the

IdP contacts the IdP of H2, which validates the credentials.

If the user credentials could not be validated, the process is

terminated prematurely and a SOAP fault message is returned.

In our example scenario, the business process receives the fault

message and activates corresponding WS-BPEL fault handlers.

Otherwise, if the credentials are valid, the IdP creates a signed

assertion similar to the one shown in Listing 1 and passes it

back to the WS-BPEL process (see Figure 10). The business

process attaches the assertion to the actual service request.

4http://commons.apache.org/bsf/

11

64 Paper B

✞ ☎
1 <A s s e r t i o n>
2 <I s s u e r>h t t p : / / h2 . com / IdP</ I s s u e r>
3 <ds : S i g n a t u r e > . . . < / ds : S i g n a t u r e>
4 <S u b j e c t><NameID>Al ice </NameID></S u b j e c t>
5 <C o n d i t i o n s NotBefore =” 2012−05−17T09 : 4 8 : 3 6 . 1 7 1 Z”
6 NotOnOrAfter=” 2012−05−17T10 : 0 0 : 3 6 . 1 7 1 Z”/>
7 <A t t r i b u t e S t a t e m e n t>
8 <A t t r i b u t e Name=” r o l e ”>
9 <A t t r i b u t e V a l u e>s t a f f </ A t t r i b u t e V a l u e>

10 </ A t t r i b u t e>
11 </ A t t r i b u t e S t a t e m e n t>
12 </ A s s e r t i o n>
✝ ✆

Listing 1: Exemplary SAML Assertion Carrying Subject and Role Information

The example SAML assertion in Listing 1 illustrates the in-

formation that is encapsulated in the header token when the sce-

nario process invokes the getPatientHistory operation

of the patient Web service of H3. The assertion states that the

subject named Alice, which has been successfully authenti-

cated by the IdP of the hospital denoted by the Issuer ele-

ment (H2), is allowed to use the the role staff in the context

default. The included XML signature element ensures the

integrity of the assertion, i.e., that the assertion content indeed

originates from the issuing IdP (H2) and has not been modi-

fied in any way. When the PEP of H3 intercepts the service

invocation with the SAML SOAP header, its first task is to ver-

ify the integrity of the assertion. The signature verification re-

quires the public key of the IdP that signed the assertion; this

key is directly requested from the corresponding IdP (under

http://h2.com/IdP) using SAML Metadata [38]. Our

implementation uses the Apache XML Security for Java library

to conduct the signature verification.
✞ ☎

1 <A s s e r t i o n>
2 <I s s u e r>h t t p : / / h3 . com / IdP</ I s s u e r>
3 <ds : S i g n a t u r e > . . . < / ds : S i g n a t u r e>
4 <S u b j e c t>
5 <NameID>Al ice </NameID>
6 </ S u b j e c t>
7 <A u t h z D e c i s i o n S t a t e m e n t D e c i s i o n =” P e r m i t ”
8 Resource =” h t t p : / / h3 . com / p a t i e n t ”>
9 <Act ion>g e t P e r s o n a l D a t a </Act ion>

10 </ A u t h z D e c i s i o n S t a t e m e n t>
11 </ A s s e r t i o n>
✝ ✆

Listing 2: Exemplary SAML Authorization Decision

After the PEP of H3 has verified the message integrity, it

needs to determine whether the subject is authorized to access

the requested service operation. This is achieved by the PDP

service of H3 that allows the PEP to post a SAML Authoriza-

tion Decision Query. The PDP answers this query by returning

an assertion containing a SAML Authorization Decision State-

ment. Listing 2 shows an example SAML assertion which in-

forms the PEP that our staff member is allowed to invoke the

action (operation) getPersonalData of the resource (Web

service) http://h1.com/patient. Analogously to the

IdP service, we also used the JAX-WS API to implement the

SOAP-based interface of the PDP service. The PDP offers the

method query, which takes an Authorization Decision Query

message as argument and returns an Authorization Decision

Statement. Again, we leverage JAXB for parsing the SAML

documents.

6.3. Automatic Transformation of WS-BPEL Definition

Since both WS-BPEL and SAML are XML based standards,

we are able to reuse and utilize the broad line-up of existing

XML tooling. The transformation procedure of WS-BPEL pro-

cess definitions is hence based on XSLT (Extensible Stylesheet

Language Transformations) [39], a language for arbitrary trans-

formation and enrichment of XML documents.

2

Original
Process
Definition

BPEL

Transformed
Process
Definition

BPEL

Template
Generator

XSLT

BPEL
Transformation

XSLTgenerate
TemplatesTemplatesFragments

XML

generate

TemplatesTemplatesFragment
Templates

XML

Figure 11: Artifacts of the Transformation Process

In general, the original WS-BPEL process is transformed by

enriching the process definition file with code fragments that

perform the IAM tasks (cf. Section 5.1). In principle, these

fragments are generic and static, i.e., for arbitrary WS-BPEL

processes nearly the same fragments can be injected. However,

some fragments contain volatile elements that are specific to

every single WS-BPEL process. As these fragments need to be

adapted to fit a specific WS-BPEL process, we propose a two-

stage transformation process. Figure 11 depicts an overview of

the document artifacts involved in the transformation process,

as well as the flow relations between them. The leftmost part

of the figure indicates how the original WS-BPEL process def-

inition file and various XML fragment files serve as input for

the Template Generator XSLT file. This Template Generator

constitutes the first transformation step and turns the generic

fragment templates into fragments tailored to the target process

definition. The last transformation step injects the generated

fragments into the original WS-BPEL process file.

6.4. Checking Business Activity Constraints

The process transformation approach presented in Section 4

ensures runtime enforcement of Business Activity entailment

constraints. For highly business- or security-critical systems we

propose log analysis to additionally monitor that the process in-

stances behave as expected (see, e.g., [40]). To check whether

all constraints are fulfilled in the log data, we require an en-

gine capable of querying the state of historical invocation data.

As our framework is operating in a Web Services environment,

XML is the prevalent data format and we focus mainly on XML

tooling. We hence utilize XQuery [41] to continuously perform

queries over the invocation logs stored in XML. To facilitate

the handling of these queries, we use WS-Aggregation [42], a

platform for event-based distributed aggregation of XML data.

Listing 4 prints exemplary log data that are emitted by the

transformed business process and handled by WS-Aggregation.

Each log element in the listing represents one invocation event.

12

Paper B 65

✞ ☎
1 l e t $cons := <c o n s t r a i n t s >
2 <r b i n d> <t a s k>G e t P e r s o n a l D a t a </ t a s k> <t a s k>A s s i g n P h y s i c i a n </ t a s k> </ r b i n d>
3 <sb ind> <t a s k>Dec ide On Trea tmen t </ t a s k> <t a s k>G e t C r i t i c a l H i s t o r y </ t a s k> </ sb ind>
4 <dme> <t a s k>G e t C r i t i c a l H i s t o r y </ t a s k> <t a s k>G e t E x p e r t O p i n i o n </ t a s k> </dme>
5 <sme> <t a s k>G e t E x p e r t O p i n i o n </ t a s k> <t a s k>G e t P a t i e n t H i s t o r y </ t a s k> </sme>
6 . . .
7 </ c o n s t r a i n t s >
8 l e t $ l o g s := / / l o g

9

10 SME Tasks :
11 every $sme in $cons / sme , $ t 1 in $sme / t a s k , $ t 2 in $sme / t a s k s a t i s f i e s ($ t 1 = $ t 2 o r
12 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
13 not (e x i s t s ($ l o g s [@taskName= $ t 2] [@role= $ i / @role]))
14 and
15 not (e x i s t s ($ l o g s [@taskName= $ t 2] [@subjec t = $ i / @subjec t])))))
16 DME Tasks :
17 every $dme in $cons / dme , $ t 1 in $dme / t a s k , $ t 2 in $dme / t a s k s a t i s f i e s ($ t 1 = $ t 2 o r
18 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
19 not (e x i s t s ($ l o g s [@taskName= $ t 2] [@subjec t = $ i / @subjec t] [@ins tanceID = $ i / @ins tanceID])))))
20 S u b j e c t −Bind ing :
21 every $ s b i n d in $cons / sb ind , $ t 1 in $ s b i n d / t a s k , $ t 2 in $ s b i n d / t a s k s a t i s f i e s ($ t 1 = $ t 2 o r
22 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
23 every $ j in $ l o g s [@taskName= $ t 2] [@ins tanceID = $ i / @ins tanceID] s a t i s f i e s $ i / @subjec t = $ j / @sub jec t)))
24 Role−Bind ing :
25 every $ r b i n d in $cons / r b i n d , $ t 1 in $ r b i n d / t a s k , $ t 2 in $ r b i n d / t a s k s a t i s f i e s ($ t 1 = $ t 2 o r
26 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
27 every $ j in $ l o g s [@taskName= $ t 2] [@ins tanceID = $ i / @ins tanceID] s a t i s f i e s $ i / @role = $ j / @role)))
✝ ✆

Listing 3: XQuery Assertion Expressions for Enforcing Business Activity Constraints

✞ ☎
1 <l o g taskName=” G e t P e r s o n a l D a t a ” s u b j e c t =” j ohn ”
2 r o l e =” s t a f f ” i n s t a n c e I D =” i 1 ” t ime =” 1316423654600 ”/>
3 <l o g taskName=” A s s i g n P h y s i c i a n ” s u b j e c t =” john ”
4 r o l e =” s t a f f ” i n s t a n c e I D =” i 1 ” t ime =” . . . ”/>
5 <l o g taskName=” G e t P e r s o n a l D a t a ” s u b j e c t =” j ohn ”
6 r o l e =” s t a f f ” i n s t a n c e I D =” i 2 ” t ime =” . . . ”/>
7 <l o g taskName=” G e t C r i t i c a l H i s t o r y ” s u b j e c t =” bob ”
8 r o l e =” p h y s i c i a n ” i n s t a n c e I D =” i 1 ” t ime =” . . . ”/>
9 . . .

✝ ✆
Listing 4: Format of Invocation Data Logged as Events

Listing 3 prints the constraint enforcement queries, expressed

as XQuery assertion statements that are expected to always

yield a boolean true value. Lines 1-7 contain an excerpt of

the constraint definitions in our scenario. For instance, the two

tasks named Get Personal Data and Assign Physician are in

a role-binding relationship and hence combined in an element

rbind. Moreover, the code binds the log elements from List-

ing 4 to the variable $logs (line 8). Finally, Listing 3 contains

the four XQuery expressions used for enforcing constraints

concerning SME tasks (lines 11-15), DME tasks (lines 17-19),

subject-bindings (lines 22-25) and role-bindings (lines 27-30).

The four expressions use universal quantification

(every...in...satisfies) to express assertions about

pairs of tasks defined in the constraints list. The variables

$t1 and $t2 refer to the names of the respective tasks. The

query for SME loops over all pairs of SME tasks and ensures

that the logs do not contain invocations for both tasks that

use the same subject or the same role. The DME query tasks

is similar, with the difference that only the subject is queried

and additionally the instanceID attribute of the log entries is

considered. Subject-binding is checked by ensuring that for

all log entries of a particular process instance two tasks $t1

and $t2 are executed by the same subject. The role-binding

query works analogously, but instead of using the subject

attribute, here we require the role attribute to match for all

rbind-connected tasks that occur in the same process instance.

7. Evaluation and Discussion

In this section, we evaluate various aspects to highlight the

benefits, strengths, and weaknesses of the presented solution.

Five business processes with entailment constraints were se-

lected to conduct the evaluation, including our example pro-

cess from Section 2 and four additional processes from exist-

ing literature. The examples represent typical processes from

different domains and cover all constraint types supported by

our approach. The key properties of the evaluated processes are

summarized in Table 3: ID identifies the process (P1 is our sam-

ple process), |TT | is the total number of task types per process,

|CTT | is the number of task types associated with entailment

constraints5, |R| is the number of roles defined in the scenario,

|S | is the number of subjects used for the test, and |HR| is the

number of senior-junior relationships in the role hierarchy6.

ID Name |TT | |CTT | |R| |S| |HR|

P1 Patient Examination 7 6 3 4 1

P2 Purchase Order [43] 6 4 2 3 1

P3 Paper Review [14] 5 4 3 5 0

P4 Tax Refund [16] 5 4 2 5 0

P5 Credit Application [14] 5 3 2 4 1

Table 3: Characteristics of Business Processes Used in the Evaluation

Although not all results of our evaluation are fully generaliz-

able, they are arguably valid for a wide range of scenarios and

SOA environments in general. An evident observation is that

runtime enforcement of security constraints is computationally

intensive, and therefore performance effects need to be taken

into account. We also show that the proposed DSL greatly sim-

plifies development of security-enabled WS-BPEL processes,

5CTT = { t ∈ TT | sb(t) , ∅ ∨ rb(t) , ∅ ∨ sme(t) , ∅ ∨ dme(t) , ∅ }
6HR = { (s, j) ∈ R × R | j ∈ rh(s) }

13

66 Paper B

which becomes apparent when comparing the number of code

artifacts before and after automatic transformation. However,

the approach also has certain limitations which we also want

to document explicitly. Overall, our evaluation is organized in

four parts: first, we evaluate the runtime performance in Section

7.1; second, in Section 7.2 we verify the behavior of secured

processes when provided with valid and invalid authentication

data7; third, Section 7.3 evaluates the WS-BPEL transforma-

tion procedure; fourth, in Section 7.4 we discuss current lim-

itations in the framework and general threats to validity. The

experiments in Sections 7.1, 7.2 and 7.3 were executed on a

machine with Quad Core 2.8GHz CPU, 8GB RAM, running

Ubuntu Linux 9.10 (kernel 2.6.31-23).

7.1. Performance and Scalability

For our scalability evaluation we have defined, deployed, and

executed different process instantiations (based on the example

in Section 2) in a Glassfish server (version 2.1.1) with WS-

BPEL engine (version 2.6.0). Here, we are only interested in

the net processing time of the Web service invocations, the du-

ration of human tasks is not considered. Therefore, the execu-

tion of business operations (e.g., Obtain X-Ray Image or Decide

On Treatment) has zero processing time in our testbed.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

m
s
)

Number of WS-BPEL Scopes

Execution Time Secured
Execution Time Unsecured

Figure 12: Process Execution Times – Secured vs Unsecured

The WS-BPEL process has been deployed in different sizes

(multiple scopes, one invoke task per scope), once with en-

forced security (i.e., annotated with security attributes, auto-

matically transformed at deployment time), and once in an un-

secured version. The deployed processes were executed 100

times and we have computed the average value to reduce the

influence of external effects. Figure 12 plots the execution time

(minimum, maximum, average) for both the secured (top line)

and the unsecured version (bottom line). The top/bottom of

each box represents the maximum/minimum, respectively, and

a trendline is drawn for the average value8. We observe that a

7Note that all processes from Table 3 where implemented and evaluated

with the same rigor. However, we do believe that certain parts of our evaluation

are best explained in detail based on a single process. Therefore, Sections 7.1

and 7.2 exemplarily discuss the results from the patient examination example.

This discussion applies analogously to the other processes from Table 3. The

aggregated results for all processes are discussed in Section 7.2.3.
8The standard deviation was in the range of 39.21 to 413.69 ms (lowest and

highest values are for processes with 1 scope and 18 scopes, respectively) for

the secured version, and in the range of 10.38 to 58.78 ms (for 13 scopes and 8

scopes, respectively) for the unsecured version.

single BusinessAction invocation in the unsecured version is

very fast, whereas the secured version incurs a considerable

overhead. The overhead is hardly surprising considering that

for each business logic service the process needs to invoke the

IdP and RBAC services, as well as apply and check XML sig-

natures. However, the measured results indicate that the current

implementation has potential room for additional optimization.

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
s
)

Number of Logged Invocations

Execution Time for Constraint Queries

Figure 13: Execution Time of Constraint Queries for Increasing Log Data

In addition to the end-to-end performance of the secured WS-

BPEL process, we also evaluated the performance of enforc-

ing the BusinessActivity constraints using the XQuery based

querying approach. To that end, we stored 10000 entries with

SME, DME, SBind and RBind constraints to the invocation log

and measured the time required to execute the four constraint

queries in Listing 3. The results are illustrated in Figure 13,

which plots the time for every 100th invocation over time. As

the testbed started cleanly from scratch, the first logged invoca-

tion(s) took longer (∼250ms) because of internal initialization

tasks in the log store and the WS-Aggregation query engine.

Starting from the second data point (invocation 100), we see the

query time increasing by around 6ms per 100 queries. To pro-

vide an insight about resource consumption, the CPU utilization

and Java heap space usage are plotted in Figure 14. The slight

fluctuations in heap space are due to Java’s garbage collection

procedure. The four constraint queries are executed in parallel,

but since they access a shared data structure with log data, inter-

nal thread synchronization is applied. Hence, CPU utilization

reaches only a peak value of ∼70% (i.e., 3 of the 4 cores).

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
e
m

o
ry

 S
iz

e
 (

M
e
g
a
B

y
te

s
)

U
ti
liz

a
ti
o
n
 (

%
)

Number of Logged Invocations

CPU Utilization
Java Heap Space

Figure 14: Resource Consumption for Constraint Queries

The increase of time is inherent to the problem of querying

growing log data. We argue that query performance is feasible

14

Paper B 67

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

D
u
p
lic

a
te

 R
e
q
u
e
s
ts

Process Instance

Figure 15: Blocked Task Executions per Test Process Instance (Patient Examination Scenario)

for medium-sized to even large scenarios. Firstly, as evidenced

in Figure 14, the execution time appears to grow only linearly

(we have also performed a linear regression which showed al-

most perfect fit for y = 20 + 0.06x). The reason is that the

queries are formulated in a way that always only the last added

log entry needs to be compared to the other entries (hence, the

queries are executed for each new log entry). Secondly, even

for large logs (tens of thousands of entries) the execution time

is still in a range of only a few seconds. If we extrapolate the

test values for very huge logs (millions of entries), however, the

current approach would take in the order of minutes, which may

not be feasible for real-time processes. Hence, additional opti-

mizations will be required for such very-large scale situations –

a problem we actively tackle in our future work.

7.2. Reaction of the Secured Process to Valid and Invalid Au-

thentication Data

In the second experiment, we utilize the five evaluation pro-

cesses (see Section 7) to evaluate how our approach deals with

authentication data of authorized and unauthorized users pro-

vided by the IdP service. As outlined in Section 4, the task of

the IdP is solely to authenticate users, but the authorization in

terms of RBAC constraints is enforced by the process instance

(and, additionally, by the log data queries from Section 6.4).

Hence, the reason for performing this experiment is to test the

ability of the transformed business process to cope with unau-

thorized users who attempt to execute restricted process tasks.

Moreover, we are interested in evaluating under which circum-

stances the RBAC rules may become overconstrained such that

the process ends in a deadlock and is unable to continue. Our

methodology in this experiment is to execute all possible in-

stances of the test processes with respect to user authorization

(given a set of subjects and process tasks, try each combination

of subjects performing a task; see Section 7.2.1 for details). The

chosen scenario processes have a feasible size to perform this

full enumeration. We discuss detailed results based on the pa-

tient examination process (P1) in Section 7.2.2, and aggregated

results over all five processes (P1-P5) in Section 7.2.3.

7.2.1. Permutation of RBAC Assignments

We define the domain [TT → (S × R)] of RBAC assignment

functions, where TT is the set of BusinessAction task types, S is

the set of subjects and R is the set of roles (cf. Section 3.1). The

function defines which authentication data should be used for

each task type. We then consider all possible permutations of

function assignments in this domain, with the restriction that for

each pair (s, r) ∈ S × R the subject s is directly associated with

role r. To keep the domain small, inherited roles are not con-

sidered. For instance, in our scenario the pair (Bob,Physician)

is included, but (Bob,Staff) is not considered, although Bob

inherits the role Staff through Physician. Furthermore, note

that SME constraints are checked at design-time when defin-

ing a process-related RBAC model. The static correctness rules

ensure the consistency of the corresponding RBAC models at

any time (see [14]). This means that it is not possible to de-

fine an inconsistent RBAC model where, for example, a sub-

ject or role possesses the right to execute two SME tasks. The

respective RBAC model is then applied to make access deci-

sions and to perform task allocations for all process instances.

In other words, because for each process instance the allocation

of the respective task instances is based on a consistent process-

related RBAC model, it is not necessary to check the fulfillment

of SME constraints again at runtime (see also [19]).

For each permutation one process instance has been exe-

cuted, and the IdP service in the test environment is configured

to return the authentication data that correspond to the respec-

tive permutation. The IdP keeps track of getAuthenticationData

requests and registers how many duplicate requests are issued

for any task type in each process instance. Recall that a du-

plicate request is always issued if the IdP provides authentica-

tion data of a non-authorized user. Thus, each duplicate getAu-

thenticationData request represents a blocked execution of a

restricted task (which is the desired/expected behavior).

The purpose of this experiment setup is to empirically

evaluate 1) whether the secured process correctly allows/de-

nies access for valid/invalid provided credentials, respectively,

and 2) how the platform deals with unresolvable conflicts (if

the process deadlocks due to mutual exclusions). For instance,

15

68 Paper B

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
im

e
 (

m
s
)

Process Instance

WS-BPEL Execution Time

Figure 16: Execution Time of Secured BPEL Process Instances Over Time

when Get Personal Data in our scenario has been invoked with

(Bob,Physician) and the IdP provides (John,Staff) for Assign

Physician, then it is required to get new authentication data be-

cause of a violated role-binding constraint. In this case, the IdP

simply provides the next available authentication data, simu-

lating the real-life situation that a new subject logs in after an

unauthorized subject has been denied access. This procedure is

repeated as long as new pairs of subject and role can be pro-

vided; if the process has unsuccessfully attempted to invoke a

task with all possible combinations, the whole process termi-

nates with a fault message. Note that this method of deadlock

detection is suitable for our scenario which defines only a small

number of subjects; for more advanced detection of deadlocks

and unsatisfiable constraints we refer to related work [44, 45].

7.2.2. Detailed Discussion for the Patient Examination Process

In our scenario, the domain (S × R) consists of the four

pairs ((John,Staff), (Jane,Physician), (Bob,Physician), (Al-

ice,Patient)), and six task types exist (|TT | = 6). Hence, the

total number of possible assignment function permutations is

46
=4096. However, the process structure allows to reduce this

number because the decision node (whether the patient is in an

emergency situation) splits the process into two possible exe-

cution paths (one path with 5 tasks and the other path with 4

tasks). The decision node has been simulated to uniformly use

both of the two possible conditional branches. Therefore, in

total only 45
+ 44
=1280 process instances have to be executed.

Figure 15 illustrates the number of blocked authorization re-

quests for each process instance. Considering the procedure of

security enforcement (cf. Section 4), a blocked request means

that the authentication data provided by the IdP violate any con-

straints (which is expected in many cases, since all permuta-

tions are tested). Table 4 summarizes the aggregated values:

20 of the 1280 generated RBAC assignments were completely

valid from the start and no blocked requests were necessary.

The remaining instances required between 1 and 11 blocked re-

quests until a final state (successful or unsuccessful) is reached.

While there have been 1024 successful executions of the

process, 256 failed instances had to be aborted because of

deadlock situations. Deadlocks can result from the complex

Result Outcome Instances Result Outcome Instances

No Blocked Requests 20 7 Blocked Requests 140

1 Blocked Request 56 8 Blocked Requests 80

2 Blocked Requests 108 9 Blocked Requests 32

3 Blocked Requests 163 10 Blocked Requests 10

4 Blocked Requests 228 11 Blocked Requests 1

5 Blocked Requests 232 Successful Execution 1024

6 Blocked Requests 210 Failed (Deadlocked) 256

Total Instances 1280

Table 4: Process Executions with Permutations of TT → (S × R) Assignments

inter-dependencies of BusinessActivity access rules (see, e.g.,

[18, 46]). For instance, consider the operation sequence in Ta-

ble 5. The deadlock is caused by the subject-binding between

Get Critical History and Decide On Treatment, combined with

the fact that both tasks can be executed by different roles (the

former by Patient and Physician, and the latter only by Pa-

tient). In fact, all process executions in which the patient Alice

executes Get Critical History lead to this conflicting situation.

Note that the focus of this paper is to enforce RBAC constraints

and to detect deadlocks9. In our future work we also investi-

gate techniques to check the satisfiability of a certain process

and avoid deadlocks in advance (see, e.g., [18, 44, 45, 47]).

Task Sub. Role Effect

Get Personal Data John Staff Role Staff must Assign Physician

John must Assign Physician

Assign Physician John Staff -

Obtain X-Ray Image Bob Physician -

Get Critical History Alice Patient Alice must not Get Expert Opinion

Alice must Decide On Treatment

Get Expert Opinion Jane Physician -

Decide On Treatment ? ? Deadlock, because the bound subject

Alice is not permitted

Table 5: Operation Sequence Leading to a Constraint Conflict (Deadlock)

9Note that the deadlocks in our evaluation result from the fact that we auto-

matically generate and execute all possible process instances (see Section 7.2).

Because our process-related RBAC models adhere to the static and dynamic

consistency requirements defined in [14, 19] the resulting RBAC models are

always consistent. However, even though we always have consistent models, it

is still possible that a certain process is not satisfiable (see, e.g., [44, 45]).

16

Paper B 69

The same experiment setup has been used to measure the ex-

ecution time of the secured process instances over time (Fig-

ure 16). Again, we see a slight upwards trend in the processing

time. The reasons for this trend are twofold. First, the more

instances have executed, the more log data must be checked for

constraint conflicts. Second, particularly for SME constraints

an increasing number of log data increases the likelihood that

the blocked requests need to be issued because the provided test

authentication data are in a conflict with one or more previous

invocations. The spikes in Figure 16 indicate different execu-

tion times of instances with few versus many blocked requests

(see also Figure 15). Notice that the execution time shows a cer-

tain pattern between roughly 0 and 1000, and a different pattern

between 1000 and 1280. These patterns are a direct result of the

experiment design, because we first execute 1024 instances that

follow the “emergency” path in the scenario process, and after-

wards 256 instances that follow the “non-emergency” path.

7.2.3. Aggregated Results for All Test Processes

ID Inst- Dead- Blocked Requests Execution Time (ms)

ances locks min avg max min avg max

P1 1280 256 0.0 4.8 11.0 1802.0 3199.6 5222.0

P2 729 243 0.0 3.3 7.0 3990.0 5009.0 8881.0

P3 625 0 0.0 3.6 8.0 3444.0 5464.8 8057.0

P4 3125 0 0.0 6.9 16.0 2984.0 8356.6 14363.0

P5 64 0 0.0 1.8 4.0 2799.0 3070.1 5530.0

Table 6: Aggregated Test Execution Results of the Five Evaluated Processes

Table 6 summarizes the test results for the five test processes.

The table contains the process ID that refers back to Table 3, the

total number of executed instances which were generated from

the RBAC assignment permutations, the number of deadlocks

that occurred, the blocked requests (minimum/maximum/aver-

age) per process instance, and the aggregated execution time

per instance. In general, the number of instances corresponds

to |S ||TT |, except in cases where we can take advantage of the

process structure to reduce the number of instances (i.e., 1280

instead of 4096 instances for P1). Process P4 has the highest

number of instances (3125). The aggregated values are com-

puted over all process instances; for example, the average num-

ber of blocked requests over all 1280 instances of process P1

is 4.8. The difference between minimum and maximum execu-

tion time depends on the executed tasks, and hence correlates

strongly with the number of blocked requests. The maxium ex-

ecution time was roughly 14 seconds (for an instance of process

P4), and the shortest instance (of P1) executed within less than

2 seconds. Depending on the process definition and the cho-

sen subjects, either all generated process instances were able

to execute successfully (P3, P4, P5), or some instances dead-

locked (P1, P2). Some process definitions are prone to dead-

locking (e.g., 20% of P1’s possible instances lead to a dead-

lock), whereas in other processes deadlocks are not even possi-

ble. For instance, the tax refund process [16] (P4) was run with

the smallest possible number of subjects (at least 2 clerks and 3

managers are required), but out of the 3125 instances (each sub-

ject tries to access each of the five task types, 55
= 3125) not a

single instance deadlocks. Even though satisfiability of access

constraints at different points of the process execution can be

determined algorithmically (see, e.g., [18]), we argue that it is

equally important to test the running system, and to empirically

verify the number of successful and blocked requests, as shown

in this evaluation.

7.3. WS-BPEL Transformation Algorithm

Concerning the evaluation of the WS-BPEL transformation

algorithm, we consider the same twenty test process definitions

with different sizes described earlier in Section 7.1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r

o
f

E
le

m
e

n
ts

Number of WS-BPEL Scopes

WS-BPEL Elements After Transf.
WS-BPEL Elements Before Transf.

Figure 17: Different Sizes of WS-BPEL Processes Before Transformation (i.e.,

process annotated with RBAC DSL statements) and After Transformation (i.e.,

process with injected security enforcement tasks)

Figure 17 shows the number of WS-BPEL elements of the

process definition before and after the automatic transforma-

tion. The results indicate that the size of the WS-BPEL defini-

tion rises with increasing number of scopes. While our test pro-

cess with a single scope contains 33/115 WS-BPEL elements

before/after transformation, the process definition for 10 scopes

grows to 60/484 WS-BPEL elements before/after transforma-

tion, respectively. These numbers are determined by counting

all XML (sub-)elements in the WS-BPEL file using the XPath

expression count(//*). At the beginning of the transfor-

mation, 41 elements are added (import, partnerLink and

variable declarations), and for each new scope 41 elements

are added for the IAM task definitions (note that both values are

41 coincidentally). We observe that the ability to define secu-

rity annotations in WS-BPEL keeps the process definition clear

at design time. In fact, the additional code for security enforce-

ment in WS-BPEL is often larger than the actual business logic.

This can be seen as an indicator that our approach can reduce

the development effort as compared to manual implementation,

although we did not empirically evaluate this aspect in detail.

7.4. Limitations

In this section, we discuss the current limitations and weak-

nesses of our approach and the corresponding Web service tech-

nology projection. We also propose possible mechanisms and

future work to mitigate the consequences and risks associated

with these limitations.

• Parallel Process Flows: WS-BPEL provides the flow

command for concurrent execution of tasks. Security en-

forcement of tasks that execute in parallel poses a chal-

lenge for various reasons. Firstly, if two tasks are started

17

70 Paper B

with mutually exclusive access rights, a race condition is

created with respect to the first task to access the authen-

tication token. Secondly, since we make use of “global”

(process-instance-wide) variables, the injected IAM tasks

for each single WS-BPEL invoke action are supposed to

execute atomically and should not access these variables

concurrently. To handle parallel execution, we hence pro-

pose to extend the injected IAM tasks with two additional

tasks to acquire and release an exclusive lock when en-

tering and leaving the critical region, respectively. Since

BPEL does not provide a corresponding language con-

struct, an external Web service is used to acquire the ex-

clusive lock on a semaphore. For brevity and clarity, these

additional synchronization tasks have not been added to

the transformation in Section 4. In future work, we fur-

ther plan to introduce more sophisticated synchronization

using the WS-BPEL link mechanism.

• Deadlocking: If the RBAC policies are conflicting, the

procedure for obtaining and checking user authentication

data can end up in a deadlock that is unable to terminate

with a successful result. To mitigate the effect of policy

conflicts, it is therefore required to perform timely satisfia-

bility checks. In Section 8 we discuss related work that fo-

cuses on this topic, in particular we refer to previous work

in [18, 19, 46, 47].

• Single Point of Failure: Our Web service technology pro-

jection builds on the assumption that the IdP and Logging

services operate reliably and continuously. An outage of

any of these services would imply that the access control

procedure cannot be performed in its entirety or that cer-

tain log data cannot be stored. Depending on the process

definition at hand, the consequences can be more or less

severe. The IdP service is the key component that pro-

vides the basis for user authentication. If it is unavailable,

the secured execution fails. A possible strategy for cer-

tain application scenarios would be to define break-the-

glass (BTG) rules (see, e.g., [48, 49, 50]) which allow to

temporarily access the protected resources with fallback

security settings, in order to provide for continuous op-

eration. An outage of the Logging service is less severe,

because it is strictly only required to perform a posteriori

conformance checks of global constraints that may affect

all (or at least multiple) process instances (see, e.g., [51]).

Instance-specific constraints are local to a certain process

instance and can be enforced by means of instance-specific

log data stored in WS-BPEL variables (see Section 5).

• Security Token Hijacking: Malicious users may attempt to

gain access to services they are not entitled to. Consider

an attacker who intentionally does not follow the process-

ing logic of the transformed process but invokes the target

Web services directly. The attacker may obtain a SAML

token by executing getAuthenticationData, which asserts

its subject and role. Assume that the token is used in com-

bination with the instanceID of an active process instance

to invoke the Decide On Treatment; this situation must be

avoided under any circumstances. To enforce the subject-

binding with Get Critical History and other RBAC rules it

is imperative that all access constraints are validated on the

service side. In our architecture we hence require a policy

enforcement point (PEP) which intercepts and analyzes all

invocations.

• Invalid WS-BPEL Modification: For the approach to

work reliably, it is important that the WS-BPEL definition

should not be modified after the automated code transfor-

mation step. We therefore propose the use of a trusted de-

ployment component which provides exclusive access to

the business process execution engine. As part of transfor-

mation process the WS-BPEL file is signed with an XML

signature [52], which is then checked by the deployment

component to enforce integrity.

• Human Factors: In the end, a business process involving

human labor can only be as safe and reliable as the per-

sons who perform it. That is, control mechanisms such as

mutual exclusion (e.g. to enforce the four-eyes principle)

can provide a strong instrument for improving quality and

reliability, but human errors can never be fully ruled out.

8. Related Work

This section provides a discussion of related work in the area

of model-driven IAM and their application to SOA business

processes. Our analysis focuses on three main research areas:

security modeling for Web service based systems, DSL-based

security modeling, and techniques for incorporating runtime en-

forcement of security constraints into business processes.

8.1. Security Modeling for Web Service Based Systems

Jensen and Feja [53] discuss security modeling of Web ser-

vice based business processes, focusing on access control, con-

fidentiality and integrity. Their approach is based on Event-

driven Process Chains (EPC) [54] and defines different secu-

rity symbols that the process definitions are annotated with.

Their implementation is integrated into the ARIS SOA Archi-

tect software, which is also able to transform the EPC model

into an executable SOA business process. The paper describes

the generation of WS-SecurityPolicy [55] policies, but does not

discuss mutual exclusion and binding constraints in process-

related RBAC models, nor does it discuss in detail how the

process engine enforces the policies and constraints at runtime,

which in contrast is a core part in our work.

Kulkarni et al. [56] describe an application of context-aware

RBAC to pervasive computing systems. As the paper rightly

states, model-level support for revocation of roles and permis-

sions is required to deal with changing context information.

The approach has a strong focus on dynamically changing con-

text (e.g., conditions measured by sensors) and the associated

permission (de-)activation. In our framework, context informa-

tion is part of the RBAC model definitions (more details can

be found in [21]). In this paper, the context information in the

RBAC model has been abstracted from, but as part of our future

18

Paper B 71

work we plan to integrate the Business Activity model in [14]

with context information (see also [57]).

Although our model does not directly build on the notion of

trust, access control policies can also be established dynami-

cally by deriving trust relationships among system participants

[58]. Skoksrud et al. present Trust-Serv [59], a solution for

model-driven trust negotiation in Web service environments.

Similar to our approach, the policy enforcement is transparent

to the involved Web services. Another similarity is that trust

credentials (such as user identifier, address or credit card num-

ber) are exchanged iteratively throughout the process, which is

also the case for the authentication credentials in our approach.

However, trust-based policies in [59] are monotonic in the sense

that additional trust credentials always add access rights and

never remove existing ones, which is in contrast to access con-

trol in this paper, where the execution of tasks can activate en-

tailment constraints which progressively narrow down the set

of valid access control configurations.

Our approach was also influenced by Foster et al. [60] who

present an integrated workbench for model-based engineering

of service compositions. Their approach supports service and

business process developers by applying formal semantics to

service behavior and configuration descriptors, which can then

be analyzed and checked by a verification and validation com-

ponent. The policies enforced by the workbench are quite gen-

erally applicable and hence require developers to perform appli-

cation specific modeling, whereas our proposed DSL and WS-

BPEL annotations are tailored to the domain of RBAC and en-

tailment constraints and arguably straight-forward to apply.

Seminal contributions in the context of modeling support

for Web service based business processes are provided within

the Web Services Modeling Framework (WSMF) by Fensel et

al. [61], and the modeling ontologies that emerged from this

project. For instance, security requirements can be modeled in

WSMF by declaring the subject and role as input data and defin-

ing pre-conditions for all operations that require certain authen-

tication data. In the previous years, the Semantic Web com-

munity has been pushing forward various ontologies to draw

an ever more exact picture of the functionality exposed by Web

services, in order to allow for sophisticated discovery, execu-

tion, composition and interoperation [62]. In fact, although not

very frequently used in practice, semantically annotated Web

services also allow for a more fine-grained definition of access

control policies, from the interaction level down to the message

level. Whereas annotations in semantic Web services are used

mostly for reasoning purposes, the BPEL annotations used in

our approach are utilized as metadata for runtime access con-

trol enforcement. Such business process model abstractions,

which are the underpinning of semantic equivalence and struc-

tural difference, have been empirically studied in [63], and our

approach can be seen as the reverse operation of abstraction

(i.e., concretization) for the specific application domain of task-

based entailment constraints.

Various other papers have been published that are related to

our work or have influenced it, some of which are mentioned

in the following. The platform-independent framework for Se-

curity Services named SECTISSIMO has been proposed by

Memon at al. [64]. The conceptual novelty of this framework

is the three-layered architecture which introduces an additional

layer of abstraction between the models and the concrete imple-

mentation technologies. In contrast, our prototype only consid-

ers two layers (i.e. modeling of RBAC constraints and transfor-

mation of WS-BPEL code). However, the presented modeling

concepts (see Section 3) as well as the model transformations

(see Section 4) are independent from concrete implementation

technologies too.

Lin et al. [65] propose a policy decomposition approach. The

main idea is to decompose a global policy and distribute it to

each collaborating party. This ensures autonomy and confiden-

tiality of each party. Their work is particularly of relevance for

cross-organizational definition of RBAC policies, as performed

in our multi-hospital use case scenario. Currently, our proto-

typical implementation relies on a single, global RBAC Web

service. However, we plan to adopt this complementary pol-

icy decomposition approach, which will allow each hospital to

employ its own dedicated RBAC Web service.

8.2. DSL-Based Security Modeling

An integrated approach for Model Driven Security, that pro-

motes the use of Model Driven Architectures in the context of

access control, is presented by Basin et al. [66]. The foundation

is a generic schema that allows creation of DSLs for model-

ing of access control requirements. The domain expert then

defines models of security requirements using these languages.

With the help of generators these models are then transformed

to access control infrastructures. However, compared to our

approach, [66] does not address the definition of task-based en-

tailment constraints.

The approach by Wolter et al. [36] is concerned with mod-

eling and enforcing security goals in the context of SOA busi-

ness processes. Similar to our approach, their work suggests

that business process experts should collaboratively work on

the security policies. They define platform independent models

(PIM) which are mapped to platform specific models (PSM).

At the PIM level, XACML and AXIS 210 security configura-

tions are generated. Whereas their approach attempts to cover

diverse security goals including integrity, availability and audit,

we focus on entailment constraints in service-based business

processes.

A related access control framework for WS-BPEL is pre-

sented by Paci et al. in [67]. It introduces the RBAC-WS-BPEL

model and the authorization constraint language BPCL. Simi-

lar to our approach, the BPEL activities are associated with re-

quired permissions (in particular, we associate permissions for

invoke activities that try to call certain service operations).

However, one main difference is related to the boundaries of

the validity of user permissions: RBAC-WS-BPEL considers

pairs of adjacent activities (a1 and a2, where a1 has a control

flow link to a2) and defines rules among them, including sepa-

ration of duty (a1 and a2 must execute under different roles) and

binding of duty (a1 and a2 require the same role or user). As

10http://axis.apache.org/axis2/java/core/

19

72 Paper B

elaborated in previous work [21], our approach also allows to

annotate scopes (groups of invoke tasks) in BPEL processes

and hence to apply RBAC policies in a sequential, but also in a

hierarchical manner.

XACML [68] is an XML-based standard to describe RBAC

policies in a flexible and extensible way. Our DSL could be

classified as a high-level abstraction that implements a subset of

XACML’s feature set. Using a transformation of DSL code to

XACML markup, it becomes possible to integrate our approach

with the well-established XACML environment and tools for

policy integration (e.g., [69]).

8.3. Runtime Enforcement of Security and Other Constraints in

Business Processes

Various approaches have been proposed to incorporate exten-

sions and cross-cutting concerns such as security features into

business process models. Most notably, we can distinguish dif-

ferent variants of model transformation [70, 30] and approaches

that use aspect-oriented programming [71].

A dynamic approach for enforcement of Web services Secu-

rity is presented in [72] by Mourad et al. The novelty of the

approach is mainly grounded by the use of Aspect-Oriented

Programming (AOP) in this context, whereby security enforce-

ment activities are specified as aspects that are dynamically wo-

ven into WS-BPEL processes at certain join points. Charfi and

Mezini presented the AO4BPEL [73] framework, an aspect-

oriented extension to BPEL that allows to attach cross-cutting

concerns. The aspect-oriented language Aspects for Access

Control (AAC) by Braga [74] is based on the same principle

and is capable of transforming SecureUML [75] models into

aspects. A main difference is that AAC does not operate on

BPEL, but on Java programs, and can hence be applied directly

to Java Web service implementations to enforce access control.

Essentially, our approach can be regarded as a variant of

AOP: the weaved aspects are the injected IAM tasks, and join

points are defined by security annotations in the process. A ma-

jor advantage of our approach is the built-in support for SSO

and cross-organizational IAM. An interesting extension could

be to decouple security annotations from the WS-BPEL defini-

tion, to store them in a separate repository and to dynamically

adapt to changes at runtime.

A plethora of work has been published on transformations

and structural mappings of business process models. Most no-

tably, our solution builds on work by Saquid/Orlowska [76],

and Eder/Gruber [77] who presented a meta model for block

structured workflow models that is capable of capturing atomic

transformation actions. These transformation building blocks

are important for more complex transformations, as in our

case when multiple process fragments for enforcement of en-

tailment constraints are combined for a single action in WS-

BPEL. While this work focuses mainly on deployment time

model transformations, other research also investigates runtime

changes of service compositions. For instance, automatic pro-

cess instrumentation and runtime transformation have previ-

ously been applied in the context of functional testing [78] of

service-based business processes. Weber et al. [79] investi-

gate security issues in adaptive process management systems

and claim that such dynamicity increases the vulnerability to

misuse. Our approach is adaptive in that it allows the “envi-

ronment” (e.g., access policies) to change at runtime. However,

we currently assume that the process definition itself does not

change. In our ongoing research, we are complementing our

approach with support for online structural process adaptation.

An important aspect of security enforcement is the way how

constraint conflicts are handled at runtime. Consequently, our

approach is related to a recent study on handling conflicts of

binding and mutual exclusion constraints in business processes

[46, 47]. Based on a formalization of process-related RBAC,

this work proposes algorithms to detect conflicts in constraint

definitions, as well as strategies to resolve the conflicts that have

been detected. In our evaluation (see Section 7), we illustrated

an example constraint conflict that lead to a deadlock and dis-

cussed how the platform is able to detect such conflicts. In order

to anticipate and avoid deadlocks altogether, we will eventually

integrate these algorithms with our RBAC DSL.

Although not necessarily concerned with security (i.e., ac-

cess control) in the narrower sense, the area of Web service

transaction processing [80, 81] and conversational service pro-

tocols [82, 83] is related to our work on secured business pro-

cesses. Put simply, a transactional protocol is a sequence of

operations with multiple participants that have a clearly defined

role and need to collaboratively perform a certain task. Anal-

ogously, BusinessActivities are performed by subjects with

clearly defined roles and limited permissions. One could argue

that while the responsibility of transaction control is to ensure

that all participants actually do perform their task, the main pur-

pose of access control is to ensure that subjects do not perform

tasks they are not authorized to. Amongst others, our approach

was influenced by von Riegen et al. [81] who model distributed

Web service transactions with particular focus on complex in-

teractions where participants are restricted to only possess lim-

ited local views on the overall process. These limited views are

comparable to our access control enforcement. Our approach

also detects if a process instance is about to break the required

conversational protocol (i.e., access control policies), in which

case we apply a sequence of compensation actions [80] (e.g.,

repeat authentication or terminate instance due to deadlock).

9. Conclusion

We presented an integrated, model-driven approach for the

enforcement of access control policies and task-based entail-

ment constraints in distributed service-based business pro-

cesses. The approach is centered around the DSL-driven devel-

opment of RBAC policies and the runtime enforcement of the

resulting policies and constraints in Web services based busi-

ness processes. Our work fosters cross-organizational authen-

tication and authorization in service-based systems, and facili-

tates the systematic development of secured business processes.

From the modeling perspective, the solution builds on the

BusinessActivity extension – a native UML extension for defin-

ing entailment constraints in activity diagrams. We provided a

detailed description of the procedure to transform design-time

20

Paper B 73

BusinessActivity models into standard activity models that en-

force the access constraints at runtime. Based on a generic

transformation procedure, we discussed our implementation

which is based on WS-BPEL and the Web services framework.

Our approach based on BusinessActivities allows to abstract

from the technical implementation of security enforcement in

the design time view of process models. The detailed evaluation

of the process transformation has shown that process definitions

with injected tasks for security enforcement grow considerably

large. In fact, the additional code for security enforcement in

WS-BPEL is often larger than the actual business logic. This

can be seen as an indicator that our approach can reduce the

development effort as compared to manual implementation, al-

though we did not empirically evaluate this aspect in detail.

Our extensive performance evaluation has illustrated that the

proposed runtime enforcement procedures operate with a slight

overhead that scales well up to the order of several ten thousand

logged invocations. We can conclude that the overhead consists

of three main parts: 1) the approach builds on digital signatures

for ensuring message integrity, 2) the process determines the

role and permissions of the currently executing user, which re-

sults in additional requests and increased execution time, and

3) the enforcement of entailment constraints requires querying

the log traces of previous executions of the process. Note that

the overhead for 1) and 2) does not increase over time (with

rising number of process executions), whereas the overhead for

3) inherently rises because the log traces are accumulating over

time, and more data have to be evaluated.

The implementation of our prototype still has limitations, and

we discussed strategies to improve some of these limitations in

future work. For instance, advanced synchronization mecha-

nisms are required for business processes with highly parallel

processing logic. Moreover, the query mechanism that checks

security constraints for validity needs to be further optimized

for very large log data sets (in the order of millions of invo-

cations). We envision advanced data storage and compression

techniques, as well as optimized query mechanisms to further

reduce this increase of overhead over time. In our ongoing

work we also investigate the use of additional security anno-

tations and an extended view of context information. Finally,

we plan to shift from a process-centric to a more data-centric

view and integrate the concept of entailment constraints to our

recent work on reliability in event-based data processing [84]

and collaborative Web applications [85].

Acknowledgements

This work is partially supported by the Austrian Science

Fund (FWF): P23313-N23, and has received funding from the

European Community’s Seventh Framework Programme (FP7)

under grant agreement 257483 (Indenica).

Appendix A. RBAC DSL Statements for Scenario Process

Listing 5 contains the complete access control configuration

of the Patient Examination scenario process (two involved hos-

pitals), expressed using RBAC DSL statements.

✞ ☎
1 RESOURCE P a t i e n t S e r v i c e 1 ” h t t p : / / h o s p i t a l 1 . com / p a t i e n t s ”
2 RESOURCE P a t i e n t S e r v i c e 2 ” h t t p : / / h o s p i t a l 2 . com / p a t i e n t s ”
3 OPERATION r e t r i e v e D a t a
4 OPERATION makeAssignment
5 OPERATION g e t H i s t o r y
6 OPERATION g e t O p i n i o n
7 OPERATION q u e r y P a r t n e r
8 OPERATION makeDecis ion
9 ROLE S t a f f

10 ROLE P h y s i c i a n
11 ROLE P a t i e n t
12 INHERIT S t a f f P h y s i c i a n
13 SUBJECT John
14 SUBJECT J ane
15 SUBJECT Bob
16 SUBJECT A l i c e
17 ASSIGN John S t a f f
18 ASSIGN J ane P h y s i c i a n
19 ASSIGN Bob P h y s i c i a n
20 ASSIGN A l i c e P a t i e n t
21 # Web s e r v i c e o p e r a t i o n p e r m i s s i o n s (h o s p i t a l 1)
22 PERMIT S t a f f r e t r i e v e D a t a P a t i e n t S e r v i c e 1
23 PERMIT S t a f f makeAssignment P a t i e n t S e r v i c e 1
24 PERMIT P h y s i c i a n g e t H i s t o r y P a t i e n t S e r v i c e 1
25 PERMIT P a t i e n t g e t H i s t o r y P a t i e n t S e r v i c e 1
26 PERMIT P h y s i c i a n g e t O p i n i o n P a t i e n t S e r v i c e 1
27 PERMIT P a t i e n t q u e r y P a r t n e r P a t i e n t S e r v i c e 1
28 PERMIT P h y s i c i a n makeDecis ion P a t i e n t S e r v i c e 1
29 # Web s e r v i c e o p e r a t i o n p e r m i s s i o n s (h o s p i t a l 2)
30 PERMIT S t a f f r e t r i e v e D a t a P a t i e n t S e r v i c e 2
31 PERMIT S t a f f makeAssignment P a t i e n t S e r v i c e 2
32 PERMIT P h y s i c i a n g e t H i s t o r y P a t i e n t S e r v i c e 2
33 PERMIT P a t i e n t g e t H i s t o r y P a t i e n t S e r v i c e 2
34 PERMIT P h y s i c i a n g e t O p i n i o n P a t i e n t S e r v i c e 2
35 PERMIT P a t i e n t q u e r y P a r t n e r P a t i e n t S e r v i c e 2
36 PERMIT P h y s i c i a n makeDecis ion P a t i e n t S e r v i c e 2
37 # ’ t a s k ’ t o ’ s e r v i c e o p e r a t i o n ’ b i n d i n g s (h o s p i t a l 1)
38 TASK G e t P e r s o n a l D a t a r e t r i e v e D a t a P a t i e n t S e r v i c e 1
39 TASK A s s i g n P h y s i c i a n makeAssignment P a t i e n t S e r v i c e 1
40 TASK G e t C r i t i c a l H i s t o r y g e t H i s t o r y P a t i e n t S e r v i c e 1
41 TASK G e t E x p e r t O p i n i o n g e t O p i n i o n P a t i e n t S e r v i c e 1
42 TASK G e t P a r t n e r H i s t o r y q u e r y P a r t n e r P a t i e n t S e r v i c e 1
43 TASK DecideOnTrea tment makeDecis ion P a t i e n t S e r v i c e 1
44 # ’ t a s k ’ t o ’ s e r v i c e o p e r a t i o n ’ b i n d i n g s (h o s p i t a l 2)
45 TASK G e t P e r s o n a l D a t a r e t r i e v e D a t a P a t i e n t S e r v i c e 2
46 TASK A s s i g n P h y s i c i a n makeAssignment P a t i e n t S e r v i c e 2
47 TASK G e t C r i t i c a l H i s t o r y g e t H i s t o r y P a t i e n t S e r v i c e 2
48 TASK G e t E x p e r t O p i n i o n g e t O p i n i o n P a t i e n t S e r v i c e 2
49 TASK G e t P a r t n e r H i s t o r y q u e r y P a r t n e r P a t i e n t S e r v i c e 2
50 TASK DecideOnTrea tment makeDecis ion P a t i e n t S e r v i c e 2
51 # t a s k −based e n t a i l m e n t c o n s t r a i n t s
52 RBIND G e t P e r s o n a l D a t a A s s i g n P h y s i c i a n
53 DME G e t C r i t i c a l H i s t o r y G e t E x p e r t O p i n i o n
54 SBIND G e t C r i t i c a l H i s t o r y DecideOnTrea tment
55 SBIND G e t P a r t n e r H i s t o r y G e t P a r t n e r H i s t o r y
56 SME G e t E x p e r t O p i n i o n G e t P a r t n e r H i s t o r y
✝ ✆

Listing 5: Exemplary RBAC DSL Statements for Hospital Scenario

References

[1] D. Draheim, The Service-Oriented Metaphor Deciphered, JCSE 4 (4)

(2010) 253–275.

[2] M. Huhns, M. Singh, Service-Oriented Computing: Key Concepts and

Principles, IEEE Internet Computing 9 (2005) 75–81.

[3] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented

Computing: State of the Art and Research Challenges, IEEE Computer

40 (11) (2007) 38–45.

[4] World Wide Web Consortium (W3C), Web services activity.

URL http://www.w3.org/2002/ws/

[5] P. Leitner, W. Hummer, S. Dustdar, Cost-Based Optimization of Service

Compositions, IEEE Transactions on Services Computing (Preprint) (99)

(2011) 1.

[6] J. Cannon, M. Byers, Compliance Deconstructed, ACM Queue 4 (7)

(2006) 30–37.

[7] M. Damianides, How does SOX change IT?, Journal of Corporate

Accounting & Finance 15 (6) (2004) 35–41.

21

74 Paper B

[8] S. Mishra, H. Weistroffer, A Framework for Integrating Sarbanes-Oxley

Compliance into the Systems Development Process, Communications of

the Association for Information Systems (CAIS) 20 (1) (2007) 712–727.

[9] D. F. Ferraiolo, D. R. Kuhn, R. Chandramouli, Role-Based Access Con-

trol, 2nd Edition, Artech House, 2007.

[10] R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based access control

models, Computer 29 (2) (1996) 38–47.

[11] M. Strembeck, A Role Engineering Tool for Role-Based Access Con-

trol, in: 3rd Symposium on Requirements Engineering for Information

Security, 2005.

[12] M. Strembeck, Scenario-driven Role Engineering, IEEE Security & Pri-

vacy 8 (1) (2010) 28–35.

[13] J. Wainer, P. Barthelmes, A. Kumar, W-RBAC - A Workflow Security

Model Incorporating Controlled Overriding of Constraints, International

Journal of Cooperative Information Systems 12 (4) (2003) 455–485.

[14] M. Strembeck, J. Mendling, Modeling Process-related RBAC Models

with Extended UML Activity Models, Information and Software Tech-

nology 53 (5) (2011) 456–483.

[15] D. Clark, D. Wilson, A Comparison of Commercial and Military Com-

puter Security Policies, in: IEEE Symp. on Security and Privacy, 1987.

[16] E. Bertino, E. Ferraria, V. Atluri, The specification and enforcement of

authorization constraints in workflow management systems, ACM Trans-

actions on Information and System Security 2 (1) (1999) 65–104.

[17] R. Botha, J. Eloff, Separation of duties for access control enforcement in

workflow environments, IBM Systems Journal 40 (3) (2001) 666–682.

[18] K. Tan, J. Crampton, C. Gunter, The Consistency of Task-Based Autho-

rization Constraints in Workflow Systems, in: 17th IEEE Workshop on

Computer Security Foundations (CSFW), 2004, pp. 155–169.

[19] M. Strembeck, J. Mendling, Generic Algorithms for Consistency Check-

ing of Mutual-Exclusion and Binding Constraints in a Business Process

Context, in: 18th International Conference on Cooperative Information

Systems (CoopIS), 2010.

[20] C. Wolter, A. Schaad, C. Meinel, Task-based entailment constraints for

basic workflow patterns, in: 13th ACM Symposium on Access Control

Models and Technologies (SACMAT), ACM, 2008, pp. 51–60.

[21] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, S. Dustdar, An inte-

grated approach for identity and access management in a SOA context,

in: 16th ACM Symposium on Access Control Models and Technologies

(SACMAT), 2011, pp. 21–30.

[22] D. C. Schmidt, Guest editor’s introduction: Model-driven engineering,

IEEE Computer 39 (2) (2006) 25–31.

[23] B. Selic, The Pragmatics of Model-Driven Development, IEEE Software

20 (5) (2003) 19–25.

[24] T. Stahl, M. Völter, Model-Driven Software Development, John Wiley &

Sons, 2006.

[25] M. Mernik, J. Heering, A. Sloane, When and How to Develop Domain-

Specific Languages, ACM Computing Surveys 37 (4) (2005) 316–344.

[26] D. Spinellis, Notable design patterns for domain-specific languages, Jour-

nal of Systems and Software 56 (1) (2001) 91–99.

[27] U. Zdun, M. Strembeck, Reusable Architectural Decisions for DSL De-

sign: Foundational Decisions in DSL Projects, in: 14th European Confer-

ence on Pattern Languages of Programs (EuroPLoP), 2009.

[28] M. Strembeck, U. Zdun, An Approach for the Systematic Development of

Domain-Specific Languages, Software: Practice and Experience 39 (15).

[29] T. Mens, P. V. Gorp, A Taxonomy of Model Transformation, Electronic

Notes in Theoretical Computer Science 152 (2006) 125–142.

[30] S. Sendall, W. Kozaczynski, Model Transformation: The Heart and Soul

of Model-Driven Software Development, IEEE Software 20 (5).

[31] U. Zdun, M. Strembeck, Modeling Composition in Dynamic Program-

ming Environments with Model Transformations, in: 5th Int. Symposium

on Software Composition, 2006.

[32] Object Management Group, UML 2.4.1 Superstructure (August 2011).

URL http://www.omg.org/spec/UML/2.4.1

[33] OASIS, Web Services Business Process Execution Language (2007).

URL http://docs.oasis-open.org/wsbpel/2.0/OS

[34] OASIS, Security Assertion Markup Language (March 2005).

URL http://docs.oasis-open.org/security/saml-

/v2.0/saml-core-2.0-os.pdf

[35] World Wide Web Consortium (W3C), SOAP Messaging Framework

(2007).

URL http://www.w3.org/TR/soap12-part1/

[36] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, C. Meinel, Model-driven

business process security requirement specification, Journal of Systems

Architecture 55 (2009) 211–223.

[37] Object Management Group, Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification (January 2011).

URL http://www.omg.org/spec/QVT/

[38] OASIS, Metadata for the OASIS Security Assertion Markup Language

(SAML) (2005).

URL http://docs.oasis-open.org/security/saml-

/v2.0/saml-metadata-2.0-os.pdf

[39] World Wide Web Consortium (W3C), XSL Transformations (XSLT) Ver-

sion 2.0 (2007).

URL http://www.w3.org/TR/xslt20/

[40] B. Hoisl, M. Strembeck, A UML Extension for the Model-driven Spec-

ification of Audit Rules, in: 2nd International Workshop on Information

Systems Security Engineering (WISSE), Springer Verlag, 2012.

[41] World Wide Web Consortium (W3C), XQuery 3.0: An XML Query Lan-

guage (2011).

URL http://www.w3.org/TR/xquery-30/

[42] W. Hummer, P. Leitner, S. Dustdar, WS-Aggregation: Distributed Aggre-

gation of Web Services Data, in: ACM Symposium On Applied Comput-

ing, 2011.

[43] J. Crampton, A reference monitor for workflow systems with constrained

task execution, in: 10th ACM Symposium on Access Control Models and

Technologies (SACMAT), 2005, pp. 38–47.

[44] J. Crampton, G. Gutin, A. Yeo, On the parameterized complexity of the

workflow satisfiability problem, in: 19th ACM Conference on Computer

and Communications Security (CCS), ACM, 2012, pp. 857–868.

[45] Q. Wang, N. Li, Satisfiability and resiliency in workflow authorization

systems, ACM Transactions on Information and System Security (TIS-

SEC) 13 (4) (2010) 40:1–40:35.

[46] S. Schefer, M. Strembeck, J. Mendling, A. Baumgrass, Detecting and

resolving conflicts of mutual-exclusion and binding constraints in a busi-

ness process context, in: 19th International Conference on Cooperative

Information Systems (CoopIS’11), Springer, 2011.

[47] S. Schefer, M. Strembeck, J. Mendling, Checking satisfiability aspects

of binding constraints in a business process context, in: Workshop on

Workflow Security Audit and Certification (WfSAC), Springer, 2011.

[48] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha, E. Oliveira-Palhares,

D. Chadwick, A. Costa-Pereira, How to break access control in a con-

trolled manner, in: Computer-Based Medical Systems, 2006. CBMS

2006. 19th IEEE International Symposium on, 2006, pp. 847–854.

[49] S. Marinovic, R. Craven, J. Ma, N. Dulay, Rumpole: a flexible break-

glass access control model, in: 16th ACM Symposium on Access Control

Models and Technologies (SACMAT), 2011.

[50] S. Schefer-Wenzl, M. Strembeck, A UML Extension for Modeling Break-

Glass Policies, in: 5th International Workshop on Enterprise Modelling

and Information Systems Architectures (EMISA), 2012.

[51] A. Baumgrass, T. Baier, J. Mendling, M. Strembeck, Conformance

Checking of RBAC Policies in Process-Aware Information Systems,

in: BPM’11 Workshop on Workflow Security Audit and Certification

(WfSAC), Springer, 2011.

[52] World Wide Web Consortium (W3C), XML Signature Syntax and Pro-

cessing (2008).

URL http://www.w3.org/TR/xmldsig-core/

[53] M. Jensen, S. Feja, A security modeling approach for web-service-based

business processes, in: 16th Annual IEEE International Conference on the

Engineering of Computer Based Systems (ECBS’09), 2009, pp. 340–347.

[54] A.-W. Scheer, O. Thomas, O. Adam, Process Modeling using Event-

Driven Process Chains, John Wiley & Sons, Inc., 2005, pp. 119–145.

[55] OASIS, WS-SecurityPolicy 1.3 (2009).

URL http://docs.oasis-open.org/ws-sx/ws-security-

policy/v1.3/os/

[56] D. Kulkarni, A. Tripathi, Context-aware role-based access control in per-

vasive computing systems, in: 13th ACM SACMAT, 2008, pp. 113–122.

[57] M. Strembeck, G. Neumann, An Integrated Approach to Engineer and

Enforce Context Constraints in RBAC Environments, ACM Trans. on Inf.

and System Security 7 (3) (2004) 392–427.

[58] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, K. Moody, Using

trust and risk in role-based access control policies, in: 9th ACM Sympo-

sium on Access Control Models and Technologies (SACMAT), 2004.

22

Paper B 75

[59] H. Skogsrud, B. Benatallah, F. Casati, Model-Driven Trust Negotiation

for Web Services, IEEE Internet Computing 7 (2003) 45–52.

[60] H. Foster, S. Uchitel, J. Magee, J. Kramer, An integrated workbench for

model-based engineering of service compositions, IEEE Transactions on

Services Computing 3 (2) (2010) 131–144.

[61] D. Fensel, C. Bussler, The web service modeling framework wsmf, Elec-

tronic Commerce Research and Applications 1 (2) (2002) 113 – 137.

[62] S. McIlraith, T. Son, H. Zeng, Semantic web services, IEEE Intelligent

Systems 16 (2) (2001) 46–53.

[63] S. Smirnov, H. A. Reijers, M. Weske, A semantic approach for busi-

ness process model abstraction, in: 23rd International Conference on Ad-

vanced information Systems engineering (CAiSE), 2011, pp. 497–511.

[64] M. Memon, M. Hafner, R. Breu, SECTISSIMO: A Platform-independent

Framework for Security Services, in: Modeling Security Workshop at

MODELS ’08, 2008.

[65] D. Lin, P. Rao, E. Bertino, N. Li, J. Lobo, Policy decomposition for col-

laborative access control, in: 13th ACM SACMAT, 2008, pp. 103–112.

[66] D. Basin, J. Doser, T. Lodderstedt, Model driven security: From UML

models to access control infrastructures, ACM Transactions on Software

Engineering Methodology 15 (2006) 39–91.

[67] F. Paci, E. Bertino, J. Crampton, An Access-Control Framework for WS-

BPEL, Int. Journal of Web Services Research 5 (3) (2008) 20–43.

[68] OASIS, eXtensible Access Control Markup Language (2005).

URL http://docs.oasis-open.org/xacml/2.0

[69] P. Mazzoleni, B. Crispo, S. Sivasubramanian, E. Bertino, XACML Policy

Integration Algorithms, ACM Transactions on Information System Secu-

rity 11 (2008) 4:1–4:29.

[70] K. Czarnecki, S. Helsen, Feature-based survey of model transformation

approaches, IBM Systems Journal - Model-driven software development

45 (2006) 621–645.

[71] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-

ingtier, J. Irwin, Aspect-oriented programming, in: European Conference

on Object-Oriented Programming (ECOOP’97), 1997, pp. 220–242.

[72] A. Mourad, S. Ayoubi, H. Yahyaoui, H. Otrok, New approach for the

dynamic enforcement of Web services security, in: 8th International Con-

ference on Privacy Security and Trust, 2010, pp. 189–196.

[73] A. Charfi, M. Mezini, AO4BPEL: An Aspect-oriented Extension to

BPEL, World Wide Web Journal - Special Issue: Recent Advances in

Web Services 10 (2007) 309–344.

[74] C. Braga, A transformation contract to generate aspects from access con-

trol policies, Software and Systems Modeling 10 (2011) 395–409.

[75] T. Lodderstedt, D. A. Basin, J. Doser, Secureuml: A uml-based modeling

language for model-driven security, in: 5th International Conference on

The Unified Modeling Language (UML’02), Springer-Verlag, 2002, pp.

426–441.

[76] W. Sadiq, M. Orlowska, On business process model transformations, in:

A. Laender, S. Liddle, V. Storey (Eds.), Conceptual Modeling ER 2000,

Vol. 1920, Springer Berlin / Heidelberg, 2000, pp. 47–104.

[77] J. Eder, W. Gruber, A meta model for structured workflows supporting

workflow transformations, in: 6th East European Conference on Ad-

vances in Databases and Information Systems (ADBIS’02), Springer-

Verlag, 2002, pp. 326–339.

[78] W. Hummer, O. Raz, O. Shehory, P. Leitner, S. Dustdar, Test coverage

of data-centric dynamic compositions in service-based systems, in: 4th

International Conference on Software Testing, Verification and Validation

(ICST), 2011.

[79] B. Weber, M. Reichert, W. Wild, S. Rinderle, Balancing flexibility and

security in adaptive process management systems, in: On the Move to

Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, Vol.

3760, Springer Berlin / Heidelberg, 2005, pp. 59–76.

[80] M. Schäfer, P. Dolog, W. Nejdl, An environment for flexible advanced

compensations of web service transactions, ACM Transactions on the

Web 2 (2) (2008) 14:1–14:36.

[81] M. von Riegen, M. Husemann, S. Fink, N. Ritter, Rule-based coordination

of distributed web service transactions, IEEE Transactions on Services

Computing 3 (1) (2010) 60–72.

[82] B. Benatallah, F. Casati, F. Toumani, Web Service Conversation Model-

ing: A Cornerstone for E-Business Automation, IEEE Internet Comput-

ing 8 (1) (2004) 46–54.

[83] W. Hummer, P. Leitner, S. Dustdar, SEPL – a domain-specific language

and execution environment for protocols of stateful Web services, Dis-

tributed and Parallel Databases 29 (4) (2011) 277–307.

[84] W. Hummer, C. Inzinger, P. Leitner, B. Satzger, S. Dustdar, Deriving a

unified fault taxonomy for event-based systems, in: 6th ACM Interna-

tional Conference on Distributed Event-Based Systems (DEBS’12), 2012.

[85] P. Gaubatz, U. Zdun, Supporting entailment constraints in the context of

collaborative web applications, in: 28th Symposium On Applied Com-

puting (SAC), ACM, 2013.

23

76 Paper B

Paper C

Consistency Checking and

Resolution Strategies for Runtime

Conflicts Resulting from Changes in

Process-related RBAC Models

The subsequent paper has been submitted as follows:

T. Quirchmayr, P. Gaubatz, M. Strembeck, and U. Zdun. Consistency Checking and

Resolution Strategies for Runtime Conflicts Resulting from Changes in Process-related

RBAC Models. submitted to Advances in Verifiably Secure Process-aware Information

Systems, submitted in June 2014.

In this paper, we studied the fact that changes in process-related RBAC models may

have potentially negative impacts on the corresponding process instances. In particular,

RBAC policies and constraints which are defined at design time are enforced in runtime

process instances. Changing these policies and constraints while process instances are

currently running, may inevitably lead to a number of different runtime consistency

conflicts. To tackle this problem, we identified and named the different types of such

runtime consistency conflicts and introduce novel strategies that allow for the systematic

resolution of these conflicts. Our approach is founded on the Business Activity meta-

model [88] and can therefore considered to be an orthogonal complement of the work

presented in Paper A and Paper B.

77

Consistency Checking and Resolution Strategies

for Runtime Conflicts Resulting from Changes in

Process-related RBAC Models

Thomas Quirchmayr1, Patrick Gaubatz2, Mark Strembeck1, and Uwe Zdun2

1 Institute for Information Systems, New Media Lab
WU Vienna, Austria

{firstname.lastname}@wu.ac.at
2 Faculty of Computer Science
University of Vienna, Austria

{firstname.lastname}@univie.ac.at

Abstract. A process-related role-based access control (RBAC) model
defines which subjects and roles are allowed to execute the tasks that
are included in the business processes of a specific organization. In this
context, entailment constraints, such as mutual exclusion and binding
constraints, are an additional means to control the task flow in process
instances. Changes in the process-related RBAC model may have a di-
rect impact on the respective process instances. In particular, the access
control policies and constraints which are defined at design time are
enforced in runtime process instances. If these policies and constraints
change while a process instance is running, such a change may therefore
result in a number of runtime consistency conflicts. In this paper, we dis-
cuss different types of such runtime consistency conflicts and introduce
corresponding strategies that support the systematic resolution of these
conflicts.

Key words: process-aware information systems, task-based entailment
constraints, role-based access control, binding of duty, mutual exclusion

1 Introduction

Process-aware information systems (PAIS) [6] enable the execution, management
and documentation of business processes in a comprehensive way. A task is a
logical unit of work that is connected to and performed via a software service at
runtime (e.g., Web services or applications).

Role-based access control (RBAC) is a widely implemented approach to en-
force access control (see, e.g., [7, 12]). In the context of workflows, process-related
RBAC models define access control policies (see, e.g. [1, 15, 17, 20]) which assign
subjects to roles which hold permissions to execute particular tasks. Further-
more, an RBAC mechanism usually specifies authorization constraints, such as
mutual exclusion, or binding constraints.

78 Paper C

2 Quirchmayr et al.

The immanent complexity of process-related RBAC models and the cor-
responding task-based mutual exclusion constraints and binding constraints
require checks to ensure the consistency of the corresponding process-related
RBAC model at design time (type-level) and at runtime (instance-level). In our
previous work, we identified consistency requirements for entailment constraints
and provided generic algorithms to ensure their consistency in a business process
context at design-time and runtime (see [14, 15, 16]).

This paper discusses the impact that changes in process-related RBAC mod-
els (e.g., adding or removing subjects, roles, or task types) might have on the
corresponding process instances. Our considerations are complementary to sat-
isfiability approaches (see, e.g., [3, 5]) as we assume the business process to be
satisfiable and the corresponding process-related RBAC model to be consistent
before and after a change (see also [14, 15, 16]). In this paper, we identify run-
time consistency conflicts in process instances that may result from changes in
a corresponding process-related RBAC model. Furthermore, we present generic
algorithms to check the consistency at runtime and provide resolution strategies
for each runtime consistency conflict.

Figure 1 shows two situations where a change operation in a process-related
RBAC model leads to a runtime consistency conflict. In the context of this
paper, we define a runtime consistency conflict as a situation where an instance
of a business process, that is satisfiable at design time, cannot be executed
(completely) as a result of a change of the corresponding process-related RBAC
model.

tai
rxs1

Process-related RBAC Model
Process

Instance 1
Process

Instance 2

Runtime
Consistency

Conflict

instance of

Design Time Runtime

ta tajs2

allocation

(a) Delete Subject

tai
rxs1s2

Process-related RBAC Model
Process

Instance 1
Process

Instance 2

Runtime
Consistency

Conflict

instance of

Design Time Runtime

ta
taj

tb
tbi

tbj

s
u

b
je

c
t-b

in
d

in
g

allocation

(b) Add Subject-Binding Constraint

Fig. 1. Runtime Consistency Conflicts as a Result of Changes in a Process-Related
RBAC Model

In Figure 1(a) subject s2 is to be deleted from the process-related RBAC
model. This change operation is allowed on type level, as task ta can also be
executed by subject s1 due to its assignment to role r which occupies the per-
missions to execute ta. However, as task instance taj

(i.e., an instance of task t)
in process instance 2 is allocated to s2 at runtime this inevitably leads to a
runtime consistency conflict.

Figure 1(b) shows that adding a subject-binding constraint can also lead to a
runtime consistency conflict. At the type level the introduction of a new subject

Paper C 79

Changes in Process-related RBAC Models 3

binding between the two tasks ta and tb is allowed (e.g., subjects s1 and s2
are allowed to execute both subject-bound tasks ta and tb). Process instance 1
can be executed correctly as task instances tai

and tbi are allocated to s1. In
process instance 2 taj

is allocated to s1 whereas tbj is allocated to s2 which
violates the new introduced subject-binding constraint to be added and thus,
leads to a runtime consistency conflict.

In this paper:

– We systematically analyze each change operation in process-related RBAC
models regarding their impact on the runtime consistency of corresponding
process instances.

– We provide generic algorithms for detecting runtime consistency conflicts for
a given change operation.

– We propose (semi-) automatic resolution strategies for each runtime consis-
tency conflict.

The remainder of this paper is structured as follows. In Section 2 we in-
troduce a running example and Section 3 provides background information on
process-related RBAC models. Section 4 deals with the detection of runtime
consistency conflicts and Section 5 presents our conflict resolution approach.
Section 6 discusses related work and Section 7 concludes.

2 Running Example

We illustrate the problem space of this paper based on a scenario from the
e-health domain (see [8]). The treatment of patients is a critical task, and the
patient data constitute sensitive information. In this example, we model business
processes using UML activity diagrams [10], in particular the BusinessActivities
extension [16]. It enables the definition of process-related RBAC models via
extended UML activity models.

Figure 2 shows an exemplary patient examination process modeled as Busi-
nessActivity and the corresponding process-related RBAC model. We assume
that all tasks are supported by technical services. Some tasks involve human
interaction. The left hand side of the figure shows the BusinessActivity model
of a patient examination process, and the right hand side contains an excerpt
of the RBAC definitions which apply to the scenario. We define five types of
roles (i.e., Staff, Patient, Physician, Surgeon, Administration), each with a list
of tasks they are permitted to execute (displayed after the string “Tasks:”), and
seven subjects (i.e., Sue, Alice, Joe, Pete, John, Bob, Lisa).

The examination process starts with the retrieval of the patient’s personal
data. Afterwards the patient is assigned to a physician. After the assignment the
corresponding physician requests an x-ray image from the responsible depart-
ment. Subsequently, the physician decides whether additional data are required
(e.g., information about related injuries or diseases in the past). In that case,
the historical data is requested from partner hospitals. Due to privacy reasons,

80 Paper C

4 Quirchmayr et al.

ObtainCX-RayCImage

GetCPersonalCData B

RBind:TAssignTPhysician
SBind:TWriteTDischareTPapers

BAssignCPhysician

RBind:TGetTPersonalTData

Surgery Medication

BDecideConCTreatment

SBind:TGetTCriticalTHistory

BGetCCriticalCHistory

DME:TGetTExpertTOpinion
SBind:TDecideTonTTreatment

BGetCExpertCOpinion

DME:TGetTCriticalTHistory
SME:TGetTPatientTHistory
TTTTTTTTTTfromTPartnerTHospital

BGetCPatientCHistory
fromCPartnerCHospital

SBind:TGetTPatientTHistory
TTTTTTTTTTTTfromTPartnerTHospital
SME:TTTGetTExpertTOpinion

[isTemergency]

[moreTdataTrequired][else]

B

[surgeryTnecessary] [onlyTmedication]

BAPatientCExaminationCProcess

structured
LLoopNodeN

BWriteCDischarge
Papers

SBind:TGetTPersonalTData

B

Staff R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage,
MMMMMMMMMMMMMedication,MWrite
MMMMMMMMMMMMDischargeMPapers

Physician R

Tasks:MGetMCriticalMHistory,
MMMMMMMMMMMMGetMExpertMOpinion,
MMMMMMMMMMMMDecideMonMTreatment

Patient R

Tasks:MGetMPatientMHistory
MMMMMMMMMMMMfromMPartnerMHospital,
MMMMMMMMMMMMGetMCriticalMHistory

Surgeon

Tasks:MSurgery

J

J

Alice S

Bob S

John S

Pete S

rrAssign

rrAssign

rsAssign rsAssign

rsAssign

Lisa S

Administration R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage,
MMMMMMMMMMMMWriteMDischareMPaper,
MMMMMMMMMMMMExpenseMStatement

Sue S

Joe S

Fig. 2. Patient Examination Scenario modeled as UML Business Activity (pt ∈ PT)

the historical data are only disclosed to the patient. Thus, the task Get Patient
History from Partner Hospital has to be executed by a subject with the role Pa-
tient. Additional data is also needed in case of an emergency. If the emergency
demands for immediate treatment, it is important to determine historical data
about any critical conditions or diseases that might interfere with the proposed
treatment (Get Critical History). To avoid a single physician to make wrong
decisions in an emergency it is mandatory to get the opinion of a second ex-
pert. The decision which treatment is given to the patient is finally followed by
a surgery and a medication or a medication only. The process ends with the
writing of the discharge papers for the patient.

In this paper, we focus on the impact of changes in process-related RBAC
models on the consistency of a business process instances at runtime (on instance-
level) under the assumption that the access control model is consistent [14, 15, 16]
and the business process is satisfiable on the type level (see [3, 5]). At runtime
the changes affect the execution of specific task instances in a way that they
cannot be performed by the allocated subject without violating the process-
related RBAC policy. In general, we differentiate three execution states of task
instances:

– Allocated : Each task instance of a corresponding process instance is allocated
before it is executed (e.g., task Get Expert Opinion in Figure 3(b), indicated

by). A task is allocated to a single subject and a specific role (see, e.g., [16])
which has to execute the task further on in the process instance.

Paper C 81

Changes in Process-related RBAC Models 5

– Running : A task instance which is being executed is running (e.g., task Surgery
in Figure 3(a), indicated by *).

– Finished : A task instance which was completely executed is finished (e.g.,
task Get Personal Data in Figure 3(b), indicated by).

ObtainHX-RayHImage

GetHPersonalHData AssignHPhysician

Surgery Medication

DecideHonHTreatment

GetHCriticalHHistory

GetHExpertHOpinion

BGetHPatientHHistory
fromHPartnerHHospital

Loop

*

WriteHDischargeHPapers

 Delete Bob from the process-related RBAC model

<Physician> Bob

<Surgeon> Joe

<Surgeon> Bob

(a) Process Instance piv ∈ pi(pt)

ObtainHX-RayHImage

GetHPersonalHData AssignHPhysician

Surgery Medication

DecideHonHTreatment

GetHCriticalHHistory

GetHExpertHOpinion

BGetHPatientHHistory
fromHPartnerHHospital

Loop

WriteHDischargeHPapers

<Physician> Joe

<Physician> Bob

<Physician> ... Role BobH... Subject

(b) Process Instance piw ∈ pi(pt)

Fig. 3. Exemplary Process Instances of Patient Examination Scenario (see Figure 2)

Consider that subject Bob is deleted from the process-related RBAC model
of Figure 2. At design time this change does not violate the consistency of the
RBAC model, and it does not impact the satisfiability of the corresponding pro-
cess model. At runtime, this change does not take effect on process instance piv
from Figure 3(a), because all task instances which are allocated to Bob are al-
ready finished.

In case Get Expert Opinion is allocated to Bob with role Physician at the
moment Bob is deleted (see piw in Figure 3(b)), it has to be decided, if the task
instance can be executed with the given allocation (see Section 4). If the task
instance cannot be performed by the allocated subject this leads to a runtime
consistency conflict.

3 Background: Process-related RBAC Models

The formal notations, algorithms and resolution strategies presented in the fol-
lowing sections are based on the formal definitions for process-related RBAC
models defined in [15, 16]. In the following we provide an overview of these
definitions.

Definition 1 (Process-related RBAC Model) A process-related RBAC Mo-
del is defined as PRM = (E,Q,D), where E = S ∪R ∪ PT ∪ PI ∪ TT ∪ TI , Q =
rh ∪ rsa ∪ tra ∪ es ∪ er ∪ ar ∪ pi ∪ ps ∪ ti and D = sb ∪ rb ∪ sme ∪ dme refer

82 Paper C

6 Quirchmayr et al.

to the pairwise disjoint set of the model, to mappings that establish relationships
and to binding and mutual exclusion constraints respectively.

In that context S is a set of subjects, R is a set of roles, elements of PT and PI

are called process type and process instance respectively, TT refers to task types
whereas TI is a set of task instances. Furthermore, the definition of subject-
binding (sb), role-binding (rb), static mutual exclusion (sme) and dynamic mu-
tual exclusion (dme) is allowed on task type level. We repeat the following def-
initions from [15, 16] because they facilitate the understanding of the defined
algorithms in Section 4.1 and the Appendix.

1. For each task type we can create an arbitrary number of respective task
instances. Thus, if we have two instances of a process, we also have two
instances of the corresponding tasks. Formally: The mapping ti : (TT×PI) 7→
P(TI) is called task instantiation. For ti(tT , pI) = Ti we call Ti ⊆ TI set
of task instances, tT ∈ TT is called task type and pI ∈ PI is called process
instance (see [16]). The mapping tio : TI 7→ TT is called task instance
origin and returns the task type a specific task instance originates from.

2. For each process type we can create an arbitrary number of corresponding
process instances. Formally: The mapping pi : PT 7→ P(PI) is called process
instantiation. For pi(pT) = Pi we call pT process type and Pi ⊆ PI the
set of process instances instantiated from process type pT (see [16]). The
mapping pio : PI 7→ PT is called process instance origin and returns the
process type pT ∈ PT a process instance originates from.

3. Each process type consists of an arbitrary number of task types, and each
task type can be associated with an arbitrary number of process types. Thus
the process-type to task-type relation is a many-to-many relation. Formally:
The mapping ptd : PT 7→ P(TT) is called process type definition. For
ptd(pT) = TpT

we call pT ∈ PT process type and TpT
⊆ TT the set of task

types associated with pT . The mapping ptd−1(tT) = PtT returns a set of
process types PtT ⊆ PT a specific task type tT ∈ TT is part of.

4. The mapping pid : PI 7→ P(TI) is called process instance definition. For
pid(pI) = TpI

, we call pI ∈ PI process instance and TpI
⊆ TI the set of

task instances associated with pI . The mapping pid−1(tI) = pI returns the
process instance a specific task instance belongs to.

5. At runtime each task type is instantiated and thus allocated to one subject
under a specific role which has to execute the task instance further on in
the process instance. The mapping TI 7→ R is called executing-role. For
er(ti) = r we call r ∈ R the executing role and ti ∈ TI is called executed task
instance. Analogously the mapping TI 7→ S is called executing-subject.
For es(ti) = s we call s ∈ R the executing subject and ti ∈ TI is called
executed task instance (see [16]).

6. The mapping rh : R 7→ P(R) is called role hierarchy. For rh(rs) = Rj we
call rs senior role and Rj the set of direct junior roles. The transitive closure
rh∗ defines the inheritance in the role hierarchy such that rh∗(rs) = Rj

includes all direct and transitive junior roles that the senior role rs inherits

Paper C 83

Changes in Process-related RBAC Models 7

from. For the mapping rh−1(rj) = Rs we call rj junior role and Rs the set
of direct senior roles.

7. The mapping town : R 7→ P(TT) is called task ownership, such that for
each role r ∈ R the tasks inherited from its junior roles are included, i.e.
town(r) =

⋃
ri∈rh ∗(r)

tra(ri) ∪ tra(r).

The following, additional definitions extend PRM (i.e., the metamodel of a
process-related RBAC model) and are required to cover the novel concepts of
this paper.

1. We formally define the mapping att : S 7→ TT as subject-related task
types. For att(s) = Ts we call Ts ⊆ TT the set of task types which can be
executed by a specific subject s ∈ S.

2. Formally the mapping tip : TI 7→ ST is called task instance progress. For
tip(tI) = ST we call tI ∈ TI task instance and ST = {FINISHED,RUNNING,
ALLOCATED} the set of task instance states.

3. Formally the mapping ati : TT 7→ TI is called all task instances. For
ati(Tt) = Ti we call Ti ⊆ TI the set of task instance in all process instances
according to the set of task types Tt ⊆ TT .

4 Detecting Runtime Consistency Conflicts

We identify two different types of changes in a process-related RBAC model.
Additive changes refer to operations that add new subjects, roles, task types, an
assignment (e.g., a role-to-role assignment) or an entailment constraint (e.g., a
subject-binding) to the process-related RBAC model. On the other hand, sub-
tractive changes refer to operations which delete entities from the process-related
RBAC model.

Table 1 provides an overview of change operations divided into additive and
subtractive change operations. The second column indicates if a change operation
has an impact on (a) the consistency of the corresponding process-related RBAC
model and (b) the satisfiability of the corresponding business process (see, e.g.,
[5, 13, 14, 15]).

In this paper, we focus on the impact of change operations on the ability to
finish the execution of all affected process instances. An “x” in the third column
of Table 1 indicates that a change operation might potentially influence the
executability of corresponding process instances. The fourth column provides a
short description for each change operation and the last column refers to the
generic algorithms we provide to detect possible runtime consistency conflicts
caused by the respective change operations.

Each algorithm (see Section 4.1 and Appendix A) returns a list task instances
that may suffer from a runtime consistency conflict. In particular, each runtime
consistency conflict is represented by a pair (tiA, tiB), where tiA, tiB ∈ TI are
task instances. task instance tiA must not be null and refers to a task instance
that may no longer be executed with its current executing subject as a result of

84 Paper C

8 Quirchmayr et al.

Change

Operation
DT RT Description A#

Additive Change Operations

addSubject(s) add a new subject s /∈ S to the RBAC model

addRole(r) add a new role r /∈ R to the RBAC model

addTask(t) add a new task type t /∈ TT to the RBAC model

addRSA(s,r) x
add a new role-to-subject assignment between a
subject s ∈ S and a role r ∈ R

addTRA(t,r) x
add a new role-to-subject assignment between a
subject s ∈ S and a role r ∈ R

addR2R(rS,rJ) x
add a new role-to-role assignment between two
roles rS , rJ ∈ R such that rJ ∈ rh(rS)

addSB(tA,tB) x x
add a new subject-binding between two
task types tA, tB ∈ TT

1

addRB(tA,tB) x x
add a new role-binding between two task types
tA, tB ∈ TT

1

addSME(tA,tB) x
add a new static mutual exclusion between two
task types tA, tB ∈ TT

addDME(tA,tB) x x
add a new dynamic mutual exclusion between two
task types tA, tB ∈ TT

1

Subtractive Change Operations

deleteSubject(s) x x delete a subject s ∈ S from the RBAC model 2

deleteRole(r) x x delete a role r /∈ R from the RBAC model 3

deleteTask(t) x x delete a task type t /∈ TT from the RBAC model 4

deleteRSA(s,r) x x
delete a role-to-subject assignment between a
subject s ∈ S and an existing role r ∈ R

5

deleteTRA(t,r) x x
delete a task-to-role assignment between a task
t ∈ TT and a role r ∈ R

6

deleteR2R(rS,rJ) x x
delete a role-to-role assignment between two roles
rS , rJ ∈ R such that rJ ∈ rh(rS)

7

deleteSB(tA,tB)
delete a subject-binding between two task types
tA, tB ∈ TT

deleteRB(tA,tB)
delete a role-binding between two task types
tA, tB ∈ TT

deleteSME(tA,tB)
delete a static mutual exclusion between two task
types tA, tB ∈ TT

deleteDME(tA,tB)
delete a dynamic mutual exclusion between two
task types tA, tB ∈ TT

Legend : DT ... Impact at Design Time, RT ... Impact at Runtime
4.1 and the Appendix)

Table 1. Impact of Change Operations on Type- and Instance-Level

a change in the process-related RBAC model. Situations where tiB is not null
symbolize that the entailment constraint defined on the two task instances tiA
and tiB cannot be correctly executed as a result of a change in the process-related
RBAC model.

Paper C 85

Changes in Process-related RBAC Models 9

4.1 Detecting Runtime Consistency Conflicts in Additive Changes

We identified three additive change operations which possibly lead to runtime
consistency conflicts: to add a subject-binding (addSB(tA, tB)), to add a role-
binding addRB(tA, tB) and to add a dynamic mutual exclusion addDME(tA, tB).
All other additive change operations listed in Table 1 are not considered because
they do not have an impact on the runtime consistency of process instances. If
we add an entity (e.g., a subject, a role, or a task type) it won’t affect the
executability of any process instance. If we add an assignment (e.g., a role-to-
subject, a task-to-role, or a role-to-role assignment) it may have an impact on
type-level but it won’t affect the executability of a process instance provided
that the process is satisfiable. Figure 4 shows three situations which lead to
runtime consistency conflicts due to adding a subject-binding, a role-binding
or a dynamic mutual exclusion constraint. Furthermore, it is not necessary to
consider the adding of a static mutual exclusion constraint to cause a runtime
consistency conflict because all possible conflicts are already prevented at design
time per definition. If a static mutual exclusion constraint is to be defined on
two task types they must not be assigned to the same role or the same subjects.
It is not allowed to add a static mutual exclusion constraint on e.g. Surgery and
Medication as both task types can be allocated to e.g. role Surgeon and thus
be executed by e.g. subject Joe (see Figure 2).

Surgery Medication

<Surgeon>
 Joe

<Staff>
 Lisa

Surgery

SB: Medication

Medication

SB: Sugery

RBAC-model at design time

Business process at runtime

(a) Process Instance piu ∈ pi(pt)

Surgery Medication

<Surgeon>
Joe

<Staff>
John

Surgery

RB: Medication

Medication

RB: Sugery

RBAC-model at design time

Business process at runtime

(b) Process Instance piv ∈ pi(pt)

Surgery Medication

<Surgeon>
Joe

<Staff>
Joe

Surgery

DME: Medication

Medication

DME: Sugery

RBAC-model at design time

Business process at runtime

(c) Process Instance piw ∈ pi(pt)

Fig. 4. Runtime Consistency Conflicts due to the Adding of a SB, RB and DME
constraint to Figure 2

Add Subject-Binding Runtime Conflict: An Add Subject-Binding Run-
time Conflict may occur if we add a subject-binding constraint. Within a specific

86 Paper C

10 Quirchmayr et al.

process instance two task instances are already allocated to different subjects. If
we want to add a subject-binding constraint on their corresponding task types
we suffer an Add Subject-Binding Runtime Conflict.

The upper half of Figure 4(a) shows an excerpt of the process-related RBAC
model from Figure 2 where a subject-binding constraint (i.e., addSB(tA, tB)) is
to be added between the task types Surgery and Medication. At design time the
corresponding business process (see Figure 2) is satisfiable as there exist several
subjects (e.g., Joe, Lisa) that are potentially allowed to execute the subject-
bound tasks.

The bottom part of Figure 4(a) shows an excerpt of a corresponding pro-
cess instance where subjects Joe and Lisa have been allocated to the task in-
stances Surgery andMedication. The subject-binding constraint between Surgery
and Medication is to be added after task instance Surgery was executed but be-
fore task instance Medication is to be executed. As both task instances are
supposed to be executed by the same subject, but different subjects are already
allocated to the task instances, we consider this situation to be a runtime con-
sistency conflict.

Add Role-Binding Runtime Conflict: An Add Role-Binding Runtime
Conflict may occur if we add a role-binding constraint. Within a specific process
instance two task instances are already allocated to different roles. If we want
to add a role-binding constraint on their corresponding task types we suffer an
Add Role-Binding Runtime Conflict.

In Figure 4(b) a role-binding constraint (i.e., addRB(tA, tB)) is to be added
between the tasks Surgery and Medication on type level. In process instance piv
Surgery was executed by Joe using the role Surgeon and Medication is already
allocated to John and the role Staff. This situation leads to a runtime consis-
tency conflict because the proposed role-binding constraint demands that the
executing roles of both task instances have to be the same. Thus, executing
task instance Medication using the currently allocated role Staff would violate
the new role-binding constraint.

Add Dynamic Mutual Exclusion Runtime Conflict: An Add Dynamic
Mutual Exclusion Runtime Conflict may occur if we add a dynamic mutual
exclusion constraint. Within a specific process instance two task instances are
already allocated to the same subject. If we want to add a dynamic mutual
exclusion constraint on their corresponding task types we suffer an Add Dynamic
Mutual Exclusion Runtime Conflict.

In Figure 4(c) a dynamic mutual exclusion constraint (i.e., addDME(tA, tB))
is to be added to the business process model. As this constraint requires both
task instances Surgery andMedication to be performed by two different subjects,
but the workflow engine has already allocated Joe to both task instances, this
situation also leads to a runtime consistency conflict.

Algorithm 1 can be used to determine the set of task instances that suffer
from runtime consistency conflicts as a consequence of adding an entailment
constraint. It is able to detect all runtime consistency conflicts mentioned above.

Paper C 87

Changes in Process-related RBAC Models 11

Algorithm 1 Determines runtime consistency conflicts caused by
addSB(tA, tB), addRB(tA, tB) and addDME(tA, tB)

Trigger: before addSB(tA, tB), before addRB(tA, tB), before addDME(tA, tB)
Input: {tA, tB} ∈ T, type ∈ {SB,RB,DME}
1: conflicting ← ∅
2: for all pt ∈ ptd−1(tA) ∩ ptd−1(tB) do

3: for all pi ∈ pi(pt) do

4: for all ta ∈ ti(tA, pi) do

5: for all tx ∈ ti(tB , pi) do

6: if type = SB and es(ta) 6= es(tx) then

7: conflicting ← conflicting ∪ (ta, tx)
8: else if type = RB and er(ta) 6= er(tx) then

9: conflicting ← conflicting ∪ (ta, tx)
10: else if type = DME and es(ta) = es(tx) then

11: conflicting ← conflicting ∪ (ta, tx)
12: end if

13: end for

14: end for

15: end for

16: end for

17: return conflicting

4.2 Detecting Runtime Consistency Conflicts in Subtractive Changes

We identified six subtractive change operations that can potentially lead to run-
time consistency conflicts: delete a subject (deleteSubject(s)), delete a role
(deleteRole(r)), delete a task (deleteTask(t)), delete a role-to-subject assign-
ment (delRSA(r, s)), delete a task-to-role assignment (delTRA(t, r)) and delete
a role-to-role assignment (delR2R(rS , rJ)). The deletion of an entailment con-
straint is not considered because it does not affect the execution of a process.
Again, we illustrate the occurrence of runtime consistency conflicts with the help
of the patient examination scenario depicted in Figure 2. The corresponding set
of generic algorithms for detecting the conflicts are presented in the Appendix.

Delete Subject Runtime Conflict: A Delete Subject Runtime Conflict
may occur if we delete a subject from a process-related RBAC model. The con-
flict may occur in the following three situations:

– Subject x is to be deleted from the process-related RBAC model. Each task
instance whose executing subject is x leads to a Delete Subject Runtime Con-
flict.

– All subject-bound task instances whose constraining task instance was allo-
cated to the subject to be deleted, lead to a Delete Subject Runtime Conflict.
In particular, Figure 5(a) shows an excerpt of the process-related RBAC model
where subject Bob is to be deleted. At design time, the corresponding business
process is satisfiable: Lisa and Pete are both allowed to execute the subject-
bound tasks Get Critical History and Decide on Treatment. The left hand
side of Figure 5(a) shows an excerpt of process instance piw where Bob is

88 Paper C

12 Quirchmayr et al.

deleted after task instance Get Critical History was executed but before the
subject-bound task instance Decide on Treatment is executed.

– Two task instance are role-bound. Both task instances are allocated to the
same role. Subjects s is is the only subject assigned to that role. If we want
to delete s a Delete Subject Runtime Conflict occurs. The upper part of Fig-
ure 5(b) shows an excerpt of the process-related RBAC model where sub-
ject Sue is to be deleted. Again, at design time the corresponding business
process is satisfiable: any subject assigned to role Staff is allowed to execute
the role-bound tasks Get Personal Data and Assign Physician. The bottom
part of Figure 5(b) shows an excerpt of process instance piw where Sue is
deleted after task instance Get Personal Data was executed but before the
role-bound task instance Assign Physician is executed. As it is allocated to
Sue with role Administrator this leads to a Delete Subject Runtime Conflict.

Decide on Treatment

Get Critical History

Get Expert Opinion

<Surgeon> Bob

<Physician>MMMMMMLisa

Physician R

Tasks:MGetMCriticalMHistory,
MMMMMMMMMMMMGetMExpertMOpinion,
MMMMMMMMMMMMDecideMonMTreatment
MMMMMMMMMMMMMedication

Surgeon R

Tasks:MSurgery

J

Bob S

Pete S

rrAssign

rsAssign

rsAssign

Lisa S

RBAC-modelMatMdesignMtimeBusinessMprocessMatMruntime

<Physician> Bob

(a) Process Instance piv ∈ pi(pt)

Obtain X-Ray Image

Get Personal Data Assign Physician*

Administration R

Tasks:xGetxPersonalxData,
xxxxxxxxxxxxAssignxPhysician,
xxxxxxxxxxxxObtainxX-RayxImage
xxxxxxxxxxxxExpensexStatement,
xxxxxxxxxxxxWritexDischargexPaper

Staff R

Tasks:xGetxPersonalxData,
xxxxxxxxxxxxAssignxPhysician,
xxxxxxxxxxxxObtainxX-RayxImage,
xxxxxxxxxxxxMedication,xWrite
xxxxxxxxxxxxDischargexPaper

J

John S

rrAssign

Sue S

RBAC-modelxatxdesignxtime

Businessxprocessxatxruntime

<Administration> Sue <Administration> Sue

(b) Process Instance piw ∈ pi(pt)

Fig. 5. Runtime Consistency Conflicts due to the Deletion of a Subject related to
Figure 2

Delete Role Runtime Conflict: A Delete Role Runtime Conflict may
occur if we delete a role from a process-related RBAC model. The conflict may
occur in the following three situations:

– Role r is to be deleted from the process-related RBAC model. Each task
instance whose executing role is r leads to a Delete Role Runtime Conflict.

– Within a specific process instance two subject-bound task instances are al-
ready allocated. The constrained task instance i is allocated to role r and any
subject s assigned to r. Assume role rD is a (transitive) junior role of r which
holds the actual permissions to execute i. If we want to delete rD we suffer
an Delete Role Runtime Conflict if s is not allowed to execute i without the
permissions of rD.
The upper part of Figures 6(a) and 6(b) show an excerpt of the process-
related RBAC model where role Administration is to be deleted. At design
time the corresponding business process is satisfiable: any subject that owns
the role Stuff is allowed to execute the subject-bound tasks Get Personal Data

Paper C 89

Changes in Process-related RBAC Models 13

and Write Discharge Papers and thus the entailment constraint in Figure 6(a)
is enforced correctly. The bottom part of Figure 5(a) shows an excerpt of
a corresponding process instance where Administration is deleted after task
instance Get Personal Data was executed by Sue with the executing role
Administration but before the subject-bound task instance Write Discharge
Papers is executed.

– All role-bound task instances whose constraining task instance was allocated
to the role to be deleted, leads to a Delete Role Runtime Conflict. In Fig-
ure 6(b) the role-binding constraint is also correctly enforced. In particular,
any subject that owns the role Stuff is allowed to execute any of the role-
bound tasks Get Personal Data and Assign Physician. The bottom part of
Figure 6(b) shows an excerpt of process instance piv where Administration is
deleted while task instance Get Personal Data and before the role-bound task
instance Assign Physician is executed. As role Administration is deleted Sue
is not allowed to perform a task which was allocated to the role we suffer a
Delete Role Runtime Conflict

Get Personal Data Assign Physician

Write Discharge Papers

*

Administration R

Tasks:xGetxPersonalxData,
xxxxxxxxxxxxAssignxPhysician,
xxxxxxxxxxxxObtainxX-RayxImage
xxxxxxxxxxxxExpensexStatement,
xxxxxxxxxxxxWritexDischargexPaper

Staff R

Tasks:xGetxPersonalxData,
xxxxxxxxxxxxAssignxPhysician,
xxxxxxxxxxxxObtainxX-RayxImage,
xxxxxxxxxxxxMedication,xWrite
xxxxxxxxxxxxDischargexPaper

J

John S

rrAssign

Sue S

RBAC-modelxatxdesignxtime

Businessxprocessxatxruntime

<Administration> Sue

<Administration> Sue

(a) Process Instance piv ∈ pi(pt)

Obtain X-Ray Image

Get Personal Data Assign Physician*

Staff R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage,
MMMMMMMMMMMMMedication,MWrite
MMMMMMMMMMMMDischargeMPaper

J

John S

rrAssign

Administration R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage
MMMMMMMMMMMMExpenseMStatement,
MMMMMMMMMMMMWriteMDischargeMPaper

Sue S

RBAC-modelMatMdesignMtime

BusinessMprocessMatMruntime

<Administration> Sue <Administration> Sue

(b) Process Instance piw ∈ pi(pt)

Fig. 6. Runtime Consistency Conflicts due to Removing Role Administration related
to Figure 2

Delete Task Type Runtime Conflict: A Delete Task Type Runtime Con-
flict may occur if we delete a task type from a process-related RBAC model.

In general, each task whose corresponding task type is to be deleted leads
to a Delete Task Type Runtime Conflict (see Figure 7). The upper part of the
Figure 7 shows an excerpt of the process-related RBAC model where we want
to delete task type Write Discharge Papers. At design time the corresponding
business process is satisfiable. The bottom part of the figure shows an excerpt of
a corresponding process instance where Write Discharge Papers is deleted while
it is executed by John which leads to a Delete Task Type Runtime Conflict.

Delete Role-to-Subject Assignment Runtime Conflict: A Delete Role-
to-Subject Assignment Runtime Conflict may occur if we delete a role-to-subject

90 Paper C

14 Quirchmayr et al.

<Staff> Pete

Staff R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage,
MMMMMMMMMMMMMedication,MWrite
MMMMMMMMMMMMDischargeMPaper

J

John S

rrAssign

Administration R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage
MMMMMMMMMMMMExpenseMStatement,
MMMMMMMMMMMMWriteMDischargeMPaper

Sue S

Get Personal Data Assign Physician

Write Discharge Papers*

<Staff> John

<Staff> John

RBAC-modelMatMdesignMtime

BusinessMprocessMatMruntime

Fig. 7. Runtime Consistency Conflicts due to the Deletion of Task Type Write Dis-
charge Papers related to Figure 2

Staff R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage,
MMMMMMMMMMMMMedication,MWrite
MMMMMMMMMMMMDischargeMPaper

J

John S

rrAssign

Administration R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage
MMMMMMMMMMMMExpenseMStatement,
MMMMMMMMMMMMWriteMDischargeMPaper

Sue S

Get Personal Data Assign Physician

Write Discharge Papers*

RBAC-modelMatMdesignMtime

BusinessMprocessMatMruntime

<Administration> Sue

<Administration> Sue

<Administration> Sue

Fig. 8. Runtime Consistency Conflicts due to the Deletion of Role-to-Subject Assign-
ment Administration - Sue related to Figure 2

assignment from a process-related RBAC model. The conflict may occur in the
following three situations:

– Role r is assigned to subject s. Task t is assigned to r. An instance i of t is
allocated to s and r or one of its (transitive) senior roles. If the role-to-subject
assignment between r and s is deleted and s is allowed to perform t only via
r this leads to an Delete Role-to-Subject Assignment Runtime Conflict when
executing i. The upper part of Figure 8 shows an excerpt of the process-
related RBAC model where the role-to-subject assignment of Administration
and Sue is to be deleted. At design time the corresponding business process
is satisfiable: any subject assigned to role Staff is allowed to execute Write
Discharge Papers and thus correctly enforce RBAC policy. The bottom part
of Figure 8 shows an excerpt of a corresponding process instance where the
role-to-subject assignment is deleted before the task instance Write Discharge
Papers is executed but after it was allocated to Sue. As Sue is no more assigned
to Administration she is not allowed to execute the task instance at all.

– All subject-bound task instances whose constraining task instance suffers a
Delete Role-to-Subject Assignment Runtime Conflict leads to the same if its
allocated subject is not allowed to perform the constraining task instance
due to the proposed deletion of the role-to-subject assignment. In Figure 8

Paper C 91

Changes in Process-related RBAC Models 15

there exists a subject-binding betweenGet Personal Data andWrite Discharge
Papers which cannot be correctly enforced within the specific process instance
after applying the proposed deletion of the role-to-subject assignment.

– All role-bound task instances whose constraining task instance suffers a Delete
Role-to-Subject Assignment Runtime Conflict leads to the same if its allocated
role is not assigned to the constraining task instance due to the proposed
deletion of the role-to-subject assignment.

Delete Task-to-Role Assignment Runtime Conflict: A Delete Role-
to-Subject Assignment Runtime Conflict may occur if we delete a task-to-role
assignment from a process-related RBAC model. The conflict is caused by the
following three situations:

– Each task instance whose corresponding task type t is to be deassigned from a
specific role which (or one of its transitive senior roles) at once accords to the
executing role of the task instance leads to aDelete Role-to-Subject Assignment
Runtime Conflict. The upper part of Figure 9 shows an excerpt of the process-
related RBAC model where the task-to-role assignment of Administration and
Write Discharge Papers is to be deleted. At design time the corresponding
business process is satisfiable: any subject assigned to role Staff is allowed
to execute Write Discharge Papers and thus the RBAC policy is enforced
correctly. The bottom part of Figure 9 shows an excerpt of a corresponding
process instance where the task-to-role assignment is deleted before the task
instance Write Discharge Papers is executed but after it was allocated to Sue.
As Sue is assigned to Administration she is not allowed to execute the task
instance anymore.

– All subject-bound task instances whose constraining task instance suffers a
Delete Role-to-Subject Assignment Runtime Conflict also lead to a Delete
Role-to-Subject Assignment Runtime Conflict if the allocated subject is not
allowed to perform the constraining task instance due to the deletion of the
role-to-subject assignment. Figure 9 shows a subject-binding between Get Per-
sonal Data and Write Discharge Papers which cannot be correctly enforced
within the specific process instance after applying the proposed deletion of the
task-to-role assignment.

– All role-bound task instances whose constraining task instance suffers a Delete
Role-to-Subject Assignment Runtime Conflict leads to the same if its allocated
role is not assigned to the constraining task instance due to the proposed
deletion of the task-to-role assignment.

Delete Role-to-Role Assignment Runtime Conflict: A Delete Role-
to-Subject Assignment Runtime Conflict may occur if we delete a task-to-role
assignment from a process-related RBAC model. The conflict is caused by the
following three situations:

– Each task instance whose executing subject is assigned to a transitive senior
role of the role whose junior role is to be deassigned leads to a conflict. The left
hand side of Figure 10 shows an excerpt of the process-related RBAC model

92 Paper C

16 Quirchmayr et al.

Staff R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage,
MMMMMMMMMMMMMedication,MWrite
MMMMMMMMMMMMDischargeMPaper

J

John S

rrAssign

Administration R

Tasks:MGetMPersonalMData,
MMMMMMMMMMMMAssignMPhysician,
MMMMMMMMMMMMObtainMX-RayMImage
MMMMMMMMMMMMExpenseMStatement,
MMMMMMMMMMMMWriteMDischargeMPaper

Sue S

Get Personal Data Assign Physician

Write Discharge Papers*
<Administration> Sue

<Administration> Sue <Administration> Sue

RBAC-modelMatMdesignMtime

BusinessMprocessMatMruntime

Fig. 9. Runtime Consistency Conflicts due to the Deletion of Task-to-Role Assignment
Administration - Write Discharge Papers related to Figure 2

where the role-to-role assignment of Surgeon and Physician is to be deleted.
At design time the corresponding business process is satisfiable: any subject
assigned to role Physician is allowed to execute Decide on Treatment and thus
the RBAC policy is enforced correctly. The right hand side of Figure 10 shows
an excerpt of a corresponding process instance where the role-to-role assign-
ment is deleted before the task instance Decide on Treatment is executed but
after it was allocated to Pete. As Pete is not assigned to Physician anymore
he is not allowed to execute the task.

– All subject-bound task instances whose constraining task instance suffers a
Delete Role-to-Role Assignment Runtime Conflict leads to the same if its
allocated subject is not allowed to perform the constraining task instance due
to the proposed deletion of the role-to-subject assignment. In Figure 10 there
exists a subject-binding betweenGet Critical History andDecide on Treatment
which cannot be correctly enforced within the specific process instance after
applying the proposed deletion of the role-to-role assignment.

– All role-bound task instances whose constraining task instance suffers a Delete
Role-to-Role Assignment Runtime Conflict leads to the same if its allocated
role is not assigned to the constraining task instance due to the proposed
deletion of the task-to-role assignment.

Decide on Treatment

Get Critical History

Get Expert Opinion
Physician R

Tasks:gGetgCriticalgHistory,
ggggggggggggGetgExpertgOpinion,
ggggggggggggDecidegongTreatment
ggggggggggggMedication

Surgeon R

Tasks:gSurgery

J

Bob S

Pete S

rrAssign

rsAssign

rsAssign

Lisa S

*

<Physician> Pete

<Physician>ggggggLisa

<Surgeon> Pete

RBAC-modelgatgdesigngtimeBusinessgprocessgatgruntime

Fig. 10. Runtime Consistency Conflicts due to the Deletion of Role-to-Role Assign-
ment Surgeon - Physician related to Figure 2

Paper C 93

Changes in Process-related RBAC Models 17

5 Resolving Runtime Consistency Conflicts

This section discusses possible resolution strategies for each runtime consistency
conflict. Our resolution strategies rely on the following four basic process instance
management operations which are supposed to be provided by the business pro-
cess execution engine:

– stop(ti): This procedure stops a specific task instance ti ∈ TI whose state is
running (i.e., tip(ti) = RUNNING).

– alloc(ti): This procedure initializes the allocation of a subject s ∈ S and
a role r ∈ R to a specific task instance ti ∈ TI such that er(ti) = r and
es(ti) = s where s is allowed to perform ti with the role r according to the
corresponding process-related RBAC model. The actual selection of s and its
corresponding role r is carried out by an external component (e.g., a policy
decision point, see [8]) which considers the proposed change operation.

– wait(ti): This procedure waits for a task instance ti ∈ TI to be finished (i.e.,
tip(ti) = FINISHED).

– run(ti): This procedure runs a specific task instance ti ∈ TI whose state is
allocated (i.e., tip(ti) = ALLOCATED).

We describe concrete resolution strategies as sequences of process instance
management operations. For example, if we assume that subject s which is cur-
rently allocated to task instance ta is to be deleted, a possible concrete resolution
strategy could be as simple as: alloc(ta). That is, we use alloc(ta) to allocate
another subject to perform ta.

The following Table 2 provides an overview of the different resolution strate-
gies that can be applied. The resolution strategies are generic and therefore can
be used for each of the runtime consistency conflicts. Instead, they depend on
the current state of a conflicting task instance. Regarding the previously men-
tioned Delete Subject Runtime Conflict we have to consider the current state of
the conflicting task instance ta. If ta is currently in the state ALLOCATED, Table 2
suggests the following two resolution strategies: (a) alloc(ta) and (b) wait(ta).

In general, from an unconstrained task instance point of view a change of
the corresponding process-related RBAC model can be applied at one of the
following task instance states (indicated by 1 to 3 in Figures 11(a) to 11(d)):

– Figure 11(b) shows that the change is to be applied before tx is executed. As
the affected task instance tx is already allocated this state is indicated as A
(i.e., ALLOCATED, see Section 2).

– Figure 11(c) shows that the change is to be applied at the moment tx is
executed. As the affected task instance tx is already running this state is
indicated as R (i.e., RUNNING, see Section 2).

– Figure 11(d) shows that the change is to be applied when tx is finished. Thus
the affected task instance tx is indicated as F (i.e., FINISHED, see Section 2).

These three states are also reflected in Figure 11. Both Figure 11 and 12
show excerpts of an exemplary business process with two task instances (i.e., ta

94 Paper C

18 Quirchmayr et al.

Task Instance States Resolution Strategy

Unconstrained Task Instance (tx = null)

1 tip(ta) = Allocated (A)
(a) alloc(ta)
(b) wait(ta)

2 tip(ta) = Running (R)
(a) stop(ta), alloc(ta), run(ta)
(b) wait(ta)

3 tip(ta) = Finished (F) -

Constrained Task Instance (tx 6= null)

4 tip(ta) = A AND tip(tx) = A
(a) alloc(ta), alloc(tx)
(b) wait(ta), wait(tx)

5 tip(ta) = R AND tip(tx) = A
(a) stop(ta), alloc(ta), run(ta), alloc(tx)
(b) wait(ta), wait(tx)

6 tip(ta) = F AND tip(tx) = A
(a) alloc(ta), run(ta)+, alloc(tx)
(b) wait(tx)

7 tip(ta) = F AND tip(tx) = R

(a) alloc(ta), run(ta)+, stop(tx),
alloc(tx), run(tx)

(b) wait(tx)

8 tip(ta) = F AND tip(tx) = F -

Table 2. Proposed Resolution Strategies based on Task Instance State Records (ta, tx)
(see Figures 11 and 12)

ta tx

21

sb sy

3

(a) States Overview

ta tx

sb sy

1

(b) Allocated (A)

ta

2

tx

sb sy

*

(c) Running (R)

ta tx

sb sy

3

(d) Finished (F)

Fig. 11. Changes at Different Task Execution States without Constraints

and tx) and two subjects which are allocated to the tasks (via its roles). Each
figure depicts the same change operation at different points in time (indicated
by 1 to 8). task tx is shaded grey to indicate that its execution is affected by
the intended change.

From a constrained task instance’s point of view there are five different situa-
tions a change of the corresponding process-related RBAC model can be applied
at runtime (indicated by 4 to 8 in Figures 12(b) to 12(f)). As ta is executed
before tx it constrains the execution of ta. Thus, ta is called the constraining task
and tx is called the constrained task. The five different situations are as follows:

– Figure 12(b) shows that the change is to be applied before the constraining
task ta is executed. As both, ta and tx are allocated the situation is referred
to as (A,A).

Paper C 95

Changes in Process-related RBAC Models 19

ta tx

6 75

sb sy

4 8

EC

(a) States Overview

ta tx

sb sy

4

EC

(b) (A,A)

ta tx

5

sb sy

EC
*

(c) (R,A)

ta tx

6

sb sy

EC

(d) (F,A)

ta tx

7

sb sy

EC
*

(e) (F,R)

ta tx

sb sy

8

EC

(f) (F,F)

Fig. 12. Changes at Different Task Execution States with Constraints

– Figure 12(c) shows that the change is to be applied at the moment the con-
straining task ta is executed. As ta is running and tx is allocated the situation
is referred to as (R,A).

– Figure 12(d) shows that the change is to be applied at the moment the con-
straining task ta is finished but before tx is executed. As tx is allocated the
situation is referred to as (F,A).

– Figure 12(e) shows that the change is to be applied at the moment the con-
strained task ta is executed. As ta is finished and tx is running the situation
is referred to as (F,R).

– Figure 12(f) shows that the change is to be applied at the moment the bots
tasks ta and tx are finished. Thus, the situation is referred to as (F,F).

The process instance management operation run(ta)+ as part of the reso-
lution strategies for 6 and 7 implies that each task instance ty which is (a)
part of the business process flow between ta and tx and (b) is already executed
(i.e., tip(ty) = FINISHED) has to be executed once more as there might be de-
pendencies between ta and any task instance ty related to the executing subject
and the executing role of ta (e.g., different subjects executing the same task
instance might produce different output which serves as input for a subsequent
task instance).

In Figure 6(a) Get Personal Data and Write Discharge Papers are role-
bound. Both task instances are allocated to role Administration. As Write Dis-
charge Papers is allocated in the moment Administration is to be deleted a
Delete Role Runtime Conflicts occurs.

That situation is referred to 6 . When we want to apply resolution strat-
egy (a) run(ta)+ means to run all task instances which are scheduled between
Get Personal Data and Write Discharge Papers (exclusive) and finished again.
Analogously, the deletion of the Task-to-Role Assignment between role Admin-
istration and task Write Discharge Papers in Figure 9 is referred to situation

96 Paper C

20 Quirchmayr et al.

7 . The term run(ta)+ in resolution strategy (a) means to run all task instances
which are scheduled between Get Personal Data and Write Discharge Papers
(inclusive) and finished again.

The algorithms to detect runtime consistency conflicts proposed in the paper
(see Sections 4.1 and the Appendix A) all collect task instances which suffer
runtime consistency conflicts.

Each proposed change operation triggers these conflict detection algorithms.
Eventually, the conflict dection algorithms trigger the conflict resolution mecha-
nism. As we can see in Table 2, there are two abstract resolution strategies. We
can either try to allocate a different subject to a conflicting task instance, or we
can wait for the conflicting task instance to be finished by the currently allocated
subject. The final decision-making which basic resolution strategy to choose can
either be fully automated or delegated to a human person (i.e., a business process
responsible). This decision mainly depends on the context and type of business
process. While mainly technical or short-lived processes are often suitable for a
high degree of automation, long-running processes that involve many different
stakeholders and sensitive environments (like a hospital) will most likely dele-
gate the decision to a business process responsible. The reason for this is, that
re-allocating and also re-running already finished task instances simply is not
feasible or sensible in some situations. For instance, in our exemplary Patient
Examination Scenario it would not make sense to re-run the already finished task
instance Surgery. Instead, a business process responsible might rather decide to
apply the “wait” resolution strategy in this concrete situation.

6 Related Work

Several approaches address consistency checks of entailment constraints in
process-related RBAC models and the satisfiability of business processes related
to a given access control model.

The ARBAC97 model proposed in [11] allows the administration of a RBAC
model by providing user-role assignment, permission-role assignment and role-
role assignment to define a role hierarchy. Sandhu et al. describe and outline
the ARBAC967 model and the three different activities which are all required
to bring users and permissions together which is best done by different admin-
istrative roles.

In [2] the authors introduce a formal model for constrained workflow sys-
tems that incorporate constraints for implementing access control policies and
entailment constraints. They provide a computation of all possible dependencies
between the tasks in the workflow which serves as a basis for an analysis of the
satisfiability of a workflow.

Crampton and Gutin provide new methods for determining workflow satisfia-
bility based on the concept of constraint expression in [5]. They allow to establish
the complexity of solving workflow satisfiability problem (see, e.g., [18]).

Schefer et al. [14] discuss the detection of and resolution strategies for con-
sistency conflicts related to the definition of mutual-exclusion and binding con-

Paper C 97

Changes in Process-related RBAC Models 21

straints. In [16] the authors provide an approach to model processes and process-
related RBAC models which support the continuous consistency of the process-
related RBAC model itself, its related entailment constraints and the corre-
sponding process model.

The authors of [4] present a framework for describing role-based adminis-
trative models. An administrative model defines rules which control the state
changes to an access control model and the data structures defined by models.
Based on the concept of administrative domains they define a number of different
criteria sets controlling the effect of state changes on the set of administrative
domains and thus leading to different role-based administrative models.

AW-RBAC is introduced in [9] which extends the RBAC model for adaptive
workflow systems. It includes change operations and a variety of objects that
are subject to change within a workflow system. Administrative and operative
changes can be enforced on a set of objects in a workflow system with improved
security during workflow changes and reduced administration costs by the use
of the AW-RBAC model.

Weber et al. [19] discuss requirements which are relevant in context of au-
thorization in process-aware information systems (PAIS) and proposes a com-
prehensive access control model with a special focus on process management
systems. They present an access control model which allows for the definition
of access rights as needed in adaptive process management systems. In particu-
lar, the definition of user dependent and process type dependent access rights is
possible

XACML has an RBAC profile to support RBAC policies. The authors of
[21] extended this profile with an administrative RBAC profile referred to as
XACML-ARBAC profile. It allows to enforce ARBAC policies with XACML in
web service environments. Furthermore they specify concurrency requirements of
an ARBAC model and introduce a concept to capture the affected roles when the
permissions granted to this role are updated due to administrative operations.

Our work is complementary to the related approaches as we discuss the
impacts of changes in process-related RBAC models on the consistency of the
corresponding business process instances. In particular, we discuss different types
of such runtime consistency conflicts, provide algorithms to detect those conflicts
and introduce corresponding strategies that allow for a systematic resolution of
these conflicts.

7 Conclusion

This paper has examined the impact of changes in process-related RBAC models
on the respective process instances at runtime. In particular, we systematically
analyzed how every possible change operation might (negatively) affect the run-
time consistency of process instances. For each potentially harmful change oper-
ation we derived a generic and reusable conflict detection algorithm that detects
runtime consistency conflicts and is independent of a certain software platform

98 Paper C

22 Quirchmayr et al.

or programming language. Finally, we tackled the issue of resolving runtime con-
sistency conflicts by proposing generic resolution strategies that take the current
state of conflicting task instances into account.

This paper has gone some way towards enhancing our understanding of the
effects and pitfalls of changing process-related RBAC models dynamically at
runtime. In addition, we want to further establish the notion of viewing process-
related RBAC models as long-lived but dynamic artifacts that are constantly
subject to change, instead of completely static, “deploy once and never touch it
again” type of artifacts.

In summary, this paper has thrown up questions and open issues in need of
further investigation. For instance, it would be interesting to study the conflict
resolution’s possible degree of automation. In particular, we would need a reliable
instrument for automatically choosing the most sensible resolution strategy for
a given runtime consistency conflict at hand. Future work might complement
our work by deriving similar conflict detection algorithms for access constraints
other than task-based mutual exclusion constraints and binding constraints.

References

1. F. Casati, S. Castano, and M. Fugini. Managing workflow authorization constraints
through active database technology. Information Systems Frontiers, 3(3):319–338,
Sep 2001.

2. J. Crampton. On the satisfiability of constraints in workflow systems. Technical re-
port, Department of Mathematics, Royal Holloway, University of London, London,
2004.

3. J. Crampton. A reference monitor for workflow systems with constrained task
execution. In Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies, SACMAT ’05, pages 38–47, New York, NY, USA, 2005. ACM.

4. J. Crampton. Understanding and developing role-based administrative models.
In Proceedings of the 12th ACM Conference on Computer and Communications
Security, CCS ’05, pages 158–167, New York, NY, USA, 2005. ACM.

5. J. Crampton and G. Gutin. Constraint expressions and workflow satisfiability. In
Proceedings of the 18th ACM Symposium on Access Control Models and Technolo-
gies, SACMAT ’13, pages 73–84, New York, NY, USA, 2013. ACM.

6. M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede. Process Aware In-
formation Systems: Bridging People and Software Through Process Technology.
Wiley-Interscience, 2005.

7. D. Ferraiolo and R. Kuhn. Role-based access control. In 15th NIST-NCSC National
Computer Security Conference, pages 554–563, 1992.

8. W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. Enforcement of
entailment constraints in distributed service-based business processes. Information
Software Technology, 55(11):1884–1903, Nov. 2013.

9. M. Leitner, S. Rinderle-Ma, and J. Mangler. AW-RBAC: Access control in adaptive
workflow systems. In Proceedings of the 2011 Sixth International Conference on
Availability, Reliability and Security, ARES ’11, pages 27–34, Washington, DC,
USA, 2011. IEEE Computer Society.

10. Object Management Group. UML 2.4.1 Superstructure, August 2011. http://

www.omg.org/spec/UML/2.4.1.

Paper C 99

Changes in Process-related RBAC Models 23

11. R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-
based administration of roles. ACM Transactions on Information System Security,
2(1):105–135, Feb. 1999.

12. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38–47, Feb. 1996.

13. S. Schefer, M. Strembeck, and J. Mendling. Checking satisfiability aspects of
binding constraints in a business process context. In F. Daniel, K. Barkaoui,
and S. Dustdar, editors, Business Process Management Workshops, volume 100 of
Lecture Notes in Business Information Processing, pages 465–470. Springer Berlin
Heidelberg, 2012.

14. S. Schefer, M. Strembeck, J. Mendling, and A. Baumgrass. Detecting and resolving
conflicts of mutual-exclusion and binding constraints in a business process context.
In Proceedings of the 19th International Conference on Cooperative Information
Systems (CoopIS), volume 7044 of Lecture Notes in Computer Science (LNCS),
pages 329–346, Berlin, Heidelberg, 2011. Springer-Verlag.

15. M. Strembeck and J. Mendling. Generic algorithms for consistency checking of
mutual-exclusion and binding constraints in a business process context. In Pro-
ceedings of the 18th International Conference on Cooperative Information Systems
(CoopIS), volume 6426 of Lecture Notes in Computer Science (LNCS), pages 204–
221, Berlin, Heidelberg, 2010. Springer-Verlag.

16. M. Strembeck and J. Mendling. Modeling process-related RBAC models with
extended UML activity models. Information & Software Technology, 53(5):456–
483, 2011.

17. J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC - a workflow security model
incorporating controlled overriding of constraints. International Journal of Coop-
erative Information Systems, 12:2003, 2003.

18. Q. Wang and N. Li. Satisfiability and resiliency in workflow authorization systems.
ACM Trans. Inf. Syst. Secur., 13(4):40:1–40:35, Dec. 2010.

19. B. Weber, M. Reichert, W. Wild, S. Rinderle, B. Weber, M. Reichert, W. Wild,
and S. Rinderle. Balancing flexibility and security in adaptive process management
systems. In R. Meersman and Z. Tari, editors, On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, volume 3760 of Lecture Notes in
Computer Science, pages 59–76. Springer Berlin Heidelberg, 2005.

20. C. Wolter, A. S. C., and Meinel. Task-based entailment constraints for basic work-
flow patterns. In Proceedings of the 13th ACM symposium on Access control models
and technologies, SACMAT ’08, pages 51–60, New York, NY, USA, 2008. ACM.

21. M. Xu, D. Wijesekera, and X. Zhang. Runtime administration of an RBAC profile
for XACML. IEEE Transactions on Services Computing, 4(4):286–299, 2011.

A Appendix

In order to detect runtime consistency conflicts we need to define a supporting
procedure. Procedure 1 determines the set of transitive senior roles of a specific
role rx without the junior roles of rJ in case rS is its senior role.

100 Paper C

24 Quirchmayr et al.

Algorithm 2 Determines runtime consistency conflicts caused by
deleteSubject(s)

Trigger: before deleteSubject(s)
Input: s ∈ S
1: conflicting ← ∅
2: for all ta ∈ ati(att(s)) do

3: if es(ta) = s then

4: pi← pid−1(ta)
5: conflicting ← conflicting ∪ (ta, null)
6: for all tc ∈ sb(tio(ta, pi)) do

7: for all tx ∈ ti(tc, pi) do

8: conflicting ← conflicting ∪ (ta, tx)
9: end for

10: end for

11: for all tc ∈ rb(tio(ta, pi)) do

12: if rown−1(er(ta)) \s = ∅ then
13: for all tx ∈ ti(tc, pi) do
14: conflicting ← conflicting ∪ (ta, tx)
15: end for

16: end if

17: end for

18: end if

19: end for

20: return conflicting

Paper C 101

Changes in Process-related RBAC Models 25

Algorithm 3 Determines runtime consistency conflicts caused by
deleteRole(r)
Trigger: before deleteRole(r)
Input: r ∈ R
1: conflicting ← ∅
2: for all ta ∈ ati(town(r)) do

3: if er(ta) = r then

4: pi← pid−1(ta)
5: conflicting ← conflicting ∪ (ta, null)
6: for all tc ∈ sb(tio(ta, pi)) do

7: for all tx ∈ ti(tc, pi) do

8: if er(tx) = r then

9: conflicting ← conflicting ∪ (ta, tx)
10: end if

11: end for

12: end for

13: for all tc ∈ rb(tio(ta, pi)) do

14: for all tx ∈ ti(tc, pi) do

15: conflicting ← conflicting ∪ (ta, tx)
16: end for

17: end for

18: end if

19: end for

20: return conflicting

Algorithm 4 Determines runtime consistency conflicts caused by
deleteTask(t)
Trigger: before deleteTask(t)
Input: t ∈ TT

1: conflicting ← ∅
2: for all ta ∈ ati(t) do

3: conflicting ← conflicting ∪ (ta, null)
4: end for

5: return conflicting

102 Paper C

26 Quirchmayr et al.

Algorithm 5 Determines runtime consistency conflicts caused by delTRA(t, r)

Trigger: before delTRA(t, r)
Input: t ∈ T, r ∈ R
1: conflicting ← ∅
2: allowedRoles← ∅
3: allowedSubjects← ∅
4: for all rr ∈ tra−1(t) \r do

5: allowedRoles← allowedRoles ∪ sr(rr)
6: end for

7: for all rr ∈ allowedRoles do

8: allowedSubjects← allowedSubjects ∪ rsa−1(rr)
9: end for

10: for all ta ∈ ati(t) do

11: pi← pid−1(ta)
12: if er(ta) /∈ allowedRoles then

13: conflicting ← conflicting ∪ (ta, null)
14: if ec(t) 6= ∅ then
15: for all tc ∈ sb(t) do

16: for all tx ∈ ti(tc, pi) do

17: if es(tx) /∈ allowedSubjects then

18: conflicting ← conflicting ∪ (ta, tx)
19: end if

20: end for

21: end for

22: for all tc ∈ rb(t) do

23: for all tx ∈ ti(tc, pi) do

24: if er(tx) /∈ allowedRoles then

25: conflicting ← conflicting ∪ (ta, tx)
26: end if

27: end for

28: end for

29: end if

30: end if

31: end for

32: return conflicting

Paper C 103

Changes in Process-related RBAC Models 27

Algorithm 6 Determines runtime consistency conflicts caused by delRSA(s, r)

Trigger: before delRSA(s, r)
Input: s ∈ S, r ∈ R
1: conflicting ← ∅
2: allowedRoles← ∅
3: affectedTasks← ∅
4: for all rr ∈ rsa(s) \r do

5: allowedRoles← allowedRoles ∪ rh∗(rr)
6: end for

7: for all rr ∈ rh∗(r) do

8: affectedTasks← affectedTasks ∪ tra(rr)
9: end for

10: for all ta ∈ ati(affectedTasks) do

11: if es(ti) = s and er(ta) /∈ allowedRoles then

12: pi← pid−1(ta)
13: conflicting ← conflicting ∪ (ta, null)
14: for all tc ∈ sb(tio(ta, pi)) do

15: for all tx ∈ ti(tc, pi) do

16: if es(tx) = s and er(tx) /∈ allowedRoles then

17: conflicting ← conflicting ∪ (ta, tx)
18: end if

19: end for

20: end for

21: for all tc ∈ rb(tio(ta, pi)) do

22: for all tx ∈ ti(tc, pi) do

23: if er(tx) /∈ allowedRoles then

24: conflicting ← conflicting ∪ (ta, tx)
25: end if

26: end for

27: end for

28: end if

29: end for

30: return conflicting

104 Paper C

28 Quirchmayr et al.

Algorithm 7 Determines runtime consistency conflicts caused by
delR2R(rS , rJ)

Trigger: before delR2R(rJ , rS)
Input: {rJ , rS} ∈ R
1: conflicting ← ∅
2: affectedTasks← ∅
3: for all r ∈ rh∗(rJ) do

4: affectedTasks← affectedTasks ∪ tra(r)
5: end for

6: for all t ∈ affectedTasks do

7: allowedRoles← ∅
8: allowedSubjects← ∅
9: for all r ∈ tra−1(t) do

10: allowedRoles← allowedRoles ∪ getSeniorsWithoutR2R(r, rS , rJ)
11: end for

12: for all r ∈ allowedRoles do

13: allowedSubjects← allowedSubjects ∪ rsa−1(r)
14: end for

15: for all ta ∈ ati(t) do

16: if es(ta) /∈ allowedSubjects or er(ta) /∈ allowedRoles then

17: conflicting ← conflicting ∪ (ta, null)
18: end if

19: for all tc ∈ sb(t) do

20: for all tx ∈ ti(tc, pi) do

21: if es(tx) /∈ allowedSubjects then

22: conflicting ← conflicting ∪ (ta, tx)
23: end if

24: end for

25: end for

26: for all tc ∈ rb(t) do

27: for all tx ∈ ti(tc, pi) do

28: if er(tx) /∈ allowedRoles then

29: conflicting ← conflicting ∪ (ta, tx)
30: end if

31: end for

32: end for

33: end for

34: end for

35: return conflicting

Paper C 105

Changes in Process-related RBAC Models 29

Procedure 1 Determines all roles allowed to execute a specific task considering
a deletion of a role-to-role assignment

Trigger: getSeniorsWithoutR2R

Input: {rx, rS , rJ} ∈ R
1: seniors← ∅
2: if rh−1(rx) 6= ∅ then
3: for all r ∈ rh−1(rx) do

4: if not (rx = rJ and r = rS) then
5: seniors← seniors ∪ getSeniorsWithoutR2R(r, rS , rJ)
6: end if

7: end for

8: return seniors
9: else

10: return rx
11: end if

106 Paper C

Paper D

UML2 Profile and Model-Driven

Approach for Supporting System

Integration and Adaptation of Web

Data Mashups

The subsequent paper has been published as follows:

P. Gaubatz and U. Zdun. UML2 Profile and Model-Driven Approach for Supporting

System Integration and Adaptation of Web Data Mashups. In 4th International Workshop

on Lightweight Integration on the Web, Berlin, Germany, July 2012.

Using this paper we set foot in the Web and Web engineering domain. Thus, it liter-

ally paved the way for introducing our access control related approaches in the context

of real-time collaborative Web applications (i.e., Paper E, Paper F, Paper G, Paper H

and Paper I). In summary, we considered Web data mashups in larger system architec-

tures, where mashups often need to be integrated with other system components, such

as services, business processes, and so on. Changing parts of one of these components

often require changes in many of the dependent components to be made too. Updating

dependent software components manually is usually error-prone and tedious. Therefore,

we proposed a model-driven development approach based on a generic UML2 profile for

defining Web data mashups, including code generation techniques to remedy this prob-

lem. Our approach builds upon the notion of describing Web data mashups as microflows,

i.e., very short-lived processes. Consequently, the concepts presented in Paper A, Pa-

per B and Paper C are applicable with minor adaptations, although this has not been a

key concern of this particular publication.

107

UML2 Profile and Model-Driven Approach for

Supporting System Integration and Adaptation of Web

Data Mashups

Patrick Gaubatz and Uwe Zdun

Faculty of Computer Science

University of Vienna, Vienna, Austria,

{firstname.lastname}@univie.ac.at

Abstract From a system integration perspective, Web data mashups used in

larger architectures often need to be integrated with other system components,

such as services, business processes, and so on. Often a change in one of these

components requires changes in many of the dependent components. Similarly,

an analysis of some system properties requires knowledge about other system

parts than just the mashup. Such features could be implemented using the model-

driven development (MDD) approach, but existing MDD approaches for mashups

concentrate on modeling and execution only. To remedy this problem, we propose

a generic approach based on a UML2 profile which can easily be extended to

model other system parts or integrated with other existing models. It is the foun-

dation for generating or interpreting mashup code in existing languages as well

as other system parts using the MDD approach and performing system adaptation

or analysis tasks based on models in a standard modeling language.

1 Introduction

Web mashups are used to combine data from different Web documents and services to

create new functionality. Web data mashups concentrate on extracting and transforming

data from such Web data sources and offer them as a service. Different domain-specific

languages (DSLs) that are tailored specifically to facilitate the development of Web

mashups (see e.g. [1–4]), model-driven approaches for Web mashups and Web data

integration [5, 6], and extensions of existing behavioral modeling languages like BPEL

[7, 8] have been proposed to model Web mashups.

Most approaches today concentrate on mashup modeling and execution. From a

system integration perspective, they offer two means for system integration: (1) they

integrate data from Web documents and services and (2) they offer their results ei-

ther as Web documents or services. The larger system integration or architectural con-

text is usually not supported any further by current approaches. For instance, Web data

mashups may be used to integrate data from various internal and external information

systems. Changes (e.g. of the service interface) in any of these information systems

might require adaptations of the dependent Web data mashups.

The model-driven development approach (see e.g. [9]) offers a convenient way to

address this problem. Via a model-driven generator, we can generate different compo-

108 Paper D

nents from models and re-generate the code upon changes in the models. Via a model-

driven interpreter we could even support model-based runtime (on-the-fly) adaptation

of the mashups. Finally, the model-driven approach could be used to generate other

representations of the models. For instance, we could generate a Petri Net or automata

representations of the complete process and mashup behavior to analyses aspects like

deadlocks or life-locks in the entire model.

From a modeling perspective, mashups are similar to areas like behavioral software

modeling (see e.g. [10]) and business process modeling or workflows (see e.g. [11]). In

essence, mashups can be seen as behavioral composition models similar to UML ac-

tivity diagrams [12] or microflows [13] (a microflow is a short-running, non-persistent

workflow [13]), with specific functionality such as extracting data from Web pages, in-

voking services, and combining the data retrieved from Web pages and services using

scripts. Some modeling approaches that extend existing behavioral modeling languages

like BPEL have been proposed [7, 8], but BPEL is designed for long-running, transac-

tional business processes (macroflows) rather than short-running microflows.

In this paper, we propose a UML profile for mashup modeling that is based on a

core package describing basic microflows as an extension of UML activity diagrams.

Mashup-specific functions are added in an extension package. In this package we semi-

formally modeled some of the most common mashup functionalities. The profile is de-

signed so that it can be extended with more specific mashup functions that are provided

by mashup approaches. The core contribution of this paper is a semi-formal profile for

core mashup functionality as an extension of the UML2 meta-model. As a proof-of-

concept we have also implemented a model-driven interpreter for the mashup profile.

To explain the generalizability of our mashup modeling profile and show that it can

serve as a unified modeling approach for many existing mashup approaches, we also

discuss how our approach can be used in model-driven code generators to cover other

existing mashup approaches.

2 Problem Description

Current Web data modeling approaches do not consider Web data mashups in a larger

architectural context. For instance, the mashup may be used inside of a business pro-

cess, and both mashup and process must be monitored. Figure 1 shows the architectural

overview of this example scenario. In this simple architecture example, we must inte-

grate the business process, the mashup, the used services, and the used Web sites, and

provide monitoring rules for all these components as well as their deployment config-

urations. If we perform changes, all these artifacts might need to be changed. Keeping

them consistent during development and maintenance is tedious and error-prone.

The model-driven development approach helps to overcome this problem. Unfor-

tunately, using the model-driven approach with mashups is difficult as they are often

described in proprietary modeling or script languages and there is no unified modeling

approach for them that enables us to use model-driven development approaches together

with mashup approaches. Standard modeling languages that provide convenient ways

to model other system parts as well like the UML are usually not used (e.g. service

interfaces can be modeled as extensions of class diagrams). Furthermore, the existing

Paper D 109

Monitor

S1 S2 S3

Web

Services

B1

Business Processes

M1 M2

Mashups

accesses

observes observes

accesses

accesses

Figure 1: Architectural Overview of a System Integration Scenario

model-driven mashup approaches (e.g. [5, 6]) focus on specific aspects (like user inter-

face layer integration) and offer only limited support for the integration of mashups in

larger architectural contexts.

3 UML2 Profile for Modeling Web Data Mashups as Microflows

In order to model Web data mashups, different primitives, such as service invocations,

transformation of data, and output generation in a mashup must be modeled and in-

terconnected. To model such primitives we chose the profile extension mechanism of

UML2 because there are already existing UML2 meta-classes that are semantically a

close match to the characteristics of a Web data mashup. In particular, a mashup can be

seen as a series of activities that perform data transformations. From the perspective of

behavioral modeling, a mashup can be seen as a special purpose microflow: The term

microflow refers to a short running, rather technical process model [13]1. A typical way

to model microflows are UML2 activity diagrams, which we will extend using a UML2

profile for modeling mashups as microflows.

This is done by semi-formally extending semantics of the respective UML2 meta-

classes (rather than having to define completely new meta-classes). A profile is still

valid, standard UML2. That is, it can be used in existing UML2 tools, instead of having

to offer proprietary ones which are rarely used in practice. We use the Object Con-

straint Language (OCL) to define the necessary constraints for the defined stereotypes

to precisely specify their semantics. OCL constraints are the primary mechanism for

traversing UML2 models and specifying precise semantics on stereotypes.

Below, each primitive is precisely specified in the context of the UML2 meta-model

using OCL constraints. This is a very important step for the practical applicability of

our concepts: Without an unambiguous definition of the primitives, they cannot be used

(interchangeably) in UML2 tools and model-driven generators. That is, our main reason

for using the UML2 – a potential broad tool support – could otherwise not be supported.

3.1 Modeling Microflows

As a Web data mashup can be seen as a microflow, we decided to found our profile

for Web data mashups on a meta-model extension for microflows. More precisely, we

1 Microflows can be contrasted to macroflows which describe long-running, rather business-

oriented process [13].

110 Paper D

are proposing a meta-model for scripting language-based microflows in the context of

service composition and service-based data integration.

UML2

<<metaclass>>
Activity

<<stereotype>>
MicroflowActivity

+refinedNodes : ActivityNode[0..*]

<<stereotype>>
ActivityRefinement

<<metaclass>>
ObjectNode

<<stereotype>>
Data

<<stereotype>>
PrimitiveData

<<stereotype>>
CompositeData

<<stereotype>>
Configuration

+endpoint : String

<<stereotype>>
InvocationConfiguration

<<metaclass>>
ActivityNode

+scriptFile : String

<<stereotype>>
Script

+configuration : InvocationConfiguration

<<stereotype>>
Invocation

<<stereotype>>
Output

<<stereotype>>
ListData

<<stereotype>>
MapData

Figure 2: The Microflow Meta-Model

Figure 2 depicts the UML2 class diagram of the microflow meta-model. The Mi-

croflowActivity stereotype allows us to denote an UML2 activity to be a microflow. It

also allows us to make the model subject to model constraints. For example, we defined

an OCL constraint (see Listing 1) specifying that an instance of a microflow must have

exactly one InitialNode – a requirement needed to allow the execution of microflows.

c o n t e x t M i c r o f l o w A c t i v i t y
inv : s e l f . b a s e A c t i t i y . node−> s e l e c t (o c l I s T y p e O f (I n i t i a l N o d e))−>s i z e () = 1

c o n t e x t S c r i p t inv : s e l f . s c r i p t F i l e −>notEmpty ()
c o n t e x t I n v o c a t i o n C o n f i g u r a t i o n inv : s e l f . e n d p o i n t−>notEmpty ()
c o n t e x t I n v o c a t i o n inv : s e l f . c o n f i g u r a t i o n−>notEmpty ()
c o n t e x t Outpu t inv : s e l f . b a s e A c t i v i t y N o d e . incoming−> e x i s t s (i n |

Data . a l l I n s t a n c e s ()−> e x i s t s (d a t a |
i n . s o u r c e . o c l I s T y p e O f (ObjectNode) and i n . s o u r c e = d a t a . baseObjec tNode))

Listing 1: OCL Constraints for the Microflow Model

Microflows of Web data mashups read, write, transform, process, analyze, anno-

tate, group, . . . data. Consequently, our meta-model defines a Data stereotype. In our

approach, instances of Data are called data objects. Data can either be PrimitiveData

(e.g. strings, numbers, or boolean values) or complex CompositeData. The latter can

either be ListData (i.e. arrays) or MapData (i.e. key/value-pairs). These two complex

data structures allow us to accommodate and map (at least) the two most widely used

data formats in the Web context: XML and its variations (e.g. HTML) as well as JSON.

Having introduced data objects, we have yet to define means to get them into/out

of a microflow. An Output returns data and/or a result (e.g. an XML document) back to

the executor of the microflow (e.g. a Web application). An Invocation is used to retrieve

data to be processed from a service (e.g. a RESTful Web service).

A Script acts as a “placeholder” for implementation-level code. This way arbitrary

extensions from existing mashup implementation languages can be integrated – allow-

ing us to model mashups in a generalizable fashion, but still being able to incorporate

the specialized features of different mashup languages via code generation. That is, the

model-driven interpreter or generator will take the code in the script files and insert

it at the dedicated points into the generated or interpreted code. For this reason, Script

serves both as the meta-model’s primary extension point and as a “fallback” activity. Al-

Paper D 111

though the meta-model is extensible, in practice there will always be situations, where

no “suitable” modeling-construct is available. In such cases, the developer can either

extend the meta-model (i.e. introduce a new modeling-construct) or he/she directly at-

taches implementation-level code.

The main purpose of the ActitivyRefinement stereotype is to allow a MicroflowAc-

tivity to refine a concrete ActivityNode. For example, a MicroflowActivity (A1) might

contain an ActivityNode – with the name N1 – to be refined. A second, MicroflowActiv-

ity (A2) might then use the tag refinedNodes to indicate, that it refines the node N1

(from A1). As we will see in Section 5, this mechanism can not only be used to refine

MicroflowActivities but also to integrate our meta-model with other meta-models.

3.2 Modeling Web Data Mashups

Based on the rather generic microflow meta-model introduced in the previous section,

we will now present a model extension aiming to cover the most basic set of invoca-

tion activities related to Web mashups (i.e. “plain” HTTP and SOAP). Note, that the

resulting model is far from “complete” and mainly tries to give the reader an idea of our

meta-model’s extension mechanism (see Section 4 for further details).

 GET
 PUT
 POST
 DELETE
 HEAD
 OPTIONS

<<enumeration>>
HTTPInvocationOperationKind

<<stereotype>>
MashupActivity

+operation : HTTPInvocationOperationKind
+header : MapData
+body : Data
+bodyType : String
+timeout : Integer

<<stereotype>>
HTTPInvocationConfiguration

+header : MapData
+body : MapData

<<stereotype>>
SOAPInvocationConfiguration

+type : String

<<stereotype>>
MashupOutput<<stereotype>>

HTTPInvocation
<<stereotype>>
SOAPInvocation

Microflow

<<stereotype>>
MicroflowActivity

<<stereotype>>
InvocationConfiguration

<<stereotype>>
Invocation

<<stereotype>>
Output

Figure 3: The Mashup Meta-Model

Figure 3 illustrates the Mashup meta-model in its UML2 class diagram representa-

tion. Invocation is derived twice: HTTPInvocation and SOAPInvocation. The former is

used to model a plain HTTP request (e.g. to retrieve a resource from a RESTful service

or to post data to a JSON-based Web service). The stereotype SOAPInvocation indicates

an invocation of a SOAP Web service. Finally, MashupOutput is derived from Output.

The mandatory type tag is used to specify the MIME type of the data to be returned.

c o n t e x t H T T P I n v o c a t i o n C o n f i g u r a t i o n
inv : s e l f . o p e r a t i o n−>notEmpty ()
inv : s e l f . o p e r a t i o n = POST or s e l f . o p e r a t i o n = PUT

i m p l i e s s e l f . body−>notEmpty ()
inv : s e l f . body−>notEmpty () i m p l i e s s e l f . bodyType−>notEmpty ()

c o n t e x t HTTPInvocat ion
inv : s e l f . c o n f i g u r a t i o n . o c l I s K i n d O f (H T T P I n v o c a t i o n C o n f i g u r a t i o n)

c o n t e x t S O A P I n v o c a t i o n C o n f i g u r a t i o n inv : s e l f . body−>notEmpty ()
c o n t e x t SOAPInvocat ion

inv : s e l f . c o n f i g u r a t i o n . o c l I s K i n d O f (S O A P I n v o c a t i o n C o n f i g u r a t i o n)
c o n t e x t MashupOutput inv : s e l f . type−>notEmpty ()

Listing 2: OCL Constraints for the Mashup Model

112 Paper D

<<Script>>
Check Parameter

<<Script>>
Prepare order

<<HTTPInvocation>>
HTTP Request

<<SOAPInvocation>>
SOAP Request

<<MashupOutput>>
Output

<<Script>>
Prepare serviceResult

<<Script>>
Prepare chargeMoney

<<Data>>
order

<<PrimitiveData>>
parameterOK

<<MapData>>
chargeMoney

<<MapData>>
orderResponse

<<MapData>>
creditResponse

<<MapData>>
serviceResult

<<HTTPInvocationConfiguration>>
configRest

<<SOAPInvocationConfiguration>>
configSOAP

[parameterOK = false]

[else]

Figure 4: Example Scenario

To give you an idea how a concrete instance of our Mashup meta-model might look

like, let us consider a simple online shop. An HTML page resembles its user interface.

Its backend is realized using a Web data mashup. Upon invocation, the it first has to

place a new order in the internal inventory system of the company, which is reachable

via a JSON-based Web service. Secondly, a billing request to the external SOAP Web

service of an Credit card company is issued. Finally, the result of both invocations

is passed back to the user interface (e.g. a simple HTML page). Figure 4 depicts the

corresponding microflow model.

4 Exploring the Generalizability of the UML2 Profile

 ASCENDING
 DESCENDING

<<enumeration>>
SortDirectionKind

Microflow

<<stereotype>>
ManipulateData

<<stereotype>>
Script

+expression : String
+property : String
+value : Data

<<stereotype>>
AnnotateData

+template : String
+configCode : String

<<stereotype>>
DataTemplate

+expression : String

<<stereotype>>
FilterData

+condition : String

<<stereotype>>
JoinData

+expression : String

<<stereotype>>
MergeData

+key : String
+direction : SortDirectionKind

<<stereotype>>
SortData

+expression : String

<<stereotype>>
GroupData

Figure 5: EMML Extensions to the Mashup Meta-Model

A generic and unified modeling approach implies, that – thanks to its generalizabil-

ity – it is possible to accommodate models from similar approaches. This is achieved

by mapping the model abstractions of one approach to the ones of the other. As this

Paper D 113

is not always possible (e.g. because there is simply no matching modeling construct

available), a generic modeling approach should provide an extension mechanism.

c o n t e x t M a n i p u l a t e D a t a
inv : s e l f . b a s e A c t i v i t y N o d e . incoming−> e x i s t s (i n |

Data . a l l I n s t a n c e s ()−> e x i s t s (d a t a | i n . s o u r c e . o c l I s T y p e O f (ObjectNode)
and i n . s o u r c e = d a t a . baseObjec tNode))

c o n t e x t A n n o t a t e D a t a
inv : s e l f . e x p r e s s i o n−>notEmpty ()
inv : s e l f . p r o p e r t y−>notEmpty ()
inv : s e l f . va lue−>notEmpty ()

c o n t e x t F i l t e r D a t a inv : s e l f . e x p r e s s i o n−>notEmpty ()
c o n t e x t GroupData inv : s e l f . e x p r e s s i o n−>notEmpty ()
c o n t e x t J o i n D a t a

inv : s e l f . c o n d i t i o n−>notEmpty ()
inv : s e l f . b a s e A c t i v i t y N o d e . incoming−>f o r A l l (i n |

Data . a l l I n s t a n c e s ()−> s e l e c t (d a t a | i n . s o u r c e . o c l I s T y p e O f (ObjectNode)
and i n . s o u r c e = d a t a . baseObjec tNode)−>s i z e () > 1

c o n t e x t MergeData
inv : s e l f . e x p r e s s i o n−>notEmpty ()
inv : s e l f . b a s e A c t i v i t y N o d e . incoming−>f o r A l l (i n |

Data . a l l I n s t a n c e s ()−> s e l e c t (d a t a | i n . s o u r c e . o c l I s T y p e O f (ObjectNode)
and i n . s o u r c e = d a t a . baseObjec tNode)−>s i z e () > 1

c o n t e x t S o r t D a t a inv : s e l f . key−>notEmpty ()

Listing 3: OCL Constraints for the EMML Mashup Model Extension

To explore the generalizability of our modeling approach we tried to map the con-

cepts and model abstractions of the Enterprise Mashup Markup Language (EMML) [4].

EMML is an XML-based standard that supports the specification of processing flows

for Web mashups in a platform- and vendor-independent manner. Table 1 contains a list

of EMML statements (taken from the reference [4]) and shows how each statement can

be mapped to our UML2 profile. In Table 1a we can see, that many statements (e.g.

control flow-related) can directly be mapped to plain UML2 (e.g. <if>).

For a large part of the domain-specific statements (e.g. <mashup>) this is also the

case. To cover the remaining, we had to extend our model. Figure 5 shows, that we have

extended the Script stereotype – the primary extension point of our model – to introduce

8 new stereotypes. Listing 3 shows the corresponding OCL constraints (e.g. JoinData

needs at least two incoming activity edges originating Data objects) and Table 1b shows

how they are mapped to EMML. The remaining statements are listed in Table 1c. We

considered them either to be “generic” in a sense that they are not very specific for the

domain of “data mashups” (e.g. <constructor>) or to mainly exist for debugging

purpose (e.g. <assert>). Hence, we used the Script “fallback” to cover them.

(a) Plain UML2

EMML UML2

<input> ActivityParameterNode

<variables> ObjectNode / ObjectFlow

<include>
Activity<macro>

<macros>

<if>

DecisionNode
<for>
<foreach>
<break>
<while>

<parallel> ForkNode / JoinNode

<sequence> ControlFlow

(b) UML2 Stereotypes

EMML UML2

<mashup> MashupActivity

<directinvoke>
Invocation

<invoke>

<annotate> AnnotateData

<filter> FilterData

<group> GroupData

<join> JoinData

<merge> MergeData

<sort> SortData

<xslt> DataTemplate

<output> Output

(c) Script Fallbacks

EMML UML2

<script>

Script

<select>
<appendresult>
<assert>
<assign>
<constructor>
<template>
<display>
<datasource>
<sql*>

Table 1: Mapping of EMML language elements to UML2

114 Paper D

As we could show, our modeling approach provides a model-driven abstraction that

can be used to model the essence of mashups expressed in languages like EMML in

a technology-independent way that supports implementing features for model-driven

generation of system integration code, analysis, or adaptation based on the abstract

models. EMML code could be generated from our models and Section 7 will show that

it is feasible to implement a model-driven interpreter that can execute instances of our

meta-model on-the-fly.

5 Integration of the UML2 Profile with Existing Models

Different meta-models can be integrated via a common meta-meta-model, like MOF

for UML2. That is, every single meta-model to be integrated has to be defined us-

ing the same meta-meta-model. The profile definition mechanism of UML2 provides

straightforward means to define meta-models. As a standard modeling language, lots of

different UML2 profiles and UML2-derived meta-models have been proposed. Hence,

basing model integration on the common UML2 meta-model allows for an straightfor-

ward integration with other UML2-based meta-models.

Using an extension of our illustrative example, we will demonstrate the model inte-

gration capabilities of our mashup meta-model via the standard UML2 extension mech-

anisms. As mentioned before, mashups may very likely be used in larger architectures.

For instance, our example mashup from Section 3.2 may be used by a macroflow [13],

a long-running, interruptible process flow which depicts the business-oriented process

perspective (e.g. a business process).

<<Macroflow>>
Purchase

Handover Goods

Take Order

<<MashupActivity>>
Order Mashup

<<MashupActivity>>
Order Processing Mashup
{refinedNodes = Order Mashup}

<<Script>>
Check Parameter

<<Data>>
order

<<MapData>>
chargeMoney

<<Script>>
Prepare order

<<Script>>
Prepare chargeMoney

<<PrimitiveData>>
parameterOK

[parameterOK = false]

[else]

...

...

Figure 6: Integrating the Mashup Model with a Macroflow Model

Suppose that the company from our example scenario (see Section 4) also provides a

physical “brick and mortar” store. The left side of Figure 6 depicts a very simplistic and

high-level macroflow model of the whole buying process. The first as well as the last

activities have to be conducted by a human (i.e. the shop assistant). That is, after taking

the order, the original mashup model (from Section 4) shall be used to process it. Hence,

we insert an activity node (Order Mashup) to be refined. Using the ActivityRefinement

stereotype and the refinedNodes tag, we can then specify that our order processing

mashup refines the mentioned activity node in the macroflow model.

Paper D 115

This way of integrating different compatible meta-models using a tagged value in-

troduced in the mashup profile (i.e., refinedNodes) is one way of model integration

– in this case with other activity models. Other types of UML2 models can easily be

integrated in the same way. Another option is named-based matching. For instance, the

object nodes in our mashup models can easily be matched by name with the correspond-

ing classifiers in class or component models that describe them in detail. Class models

can also be used to describe the service interfaces used in a mashup.

A model-driven generator or interpreter can then use the linking tagged values or

names to navigate both models and generate code for different system artifacts. The big

benefit of our UML2 profile is that mashups can easily be integrated with models in

other types of models and that UML2 already provides a wide variety of models that

can be used to describe all kinds of other artifacts relevant for mashups.

6 Implementing a Model-driven Tool Chain

The presented UML2 meta-models have been developed and specified using a textual

DSL. Frag [14, 15], a tailorable language, specifically designed for the task of defining

DSLs, provides the syntactic foundation of this DSL. Among other things, Frag sup-

ports the tailoring of its object system and the extension with new language elements.

Hence, it provides a good basis for defining a UML2-based textual DSL because it

is easy to tailor Frag to support the definition of the UML2 meta-classes. Frag auto-

matically provides us with a syntax for defining application models using the UML2

meta-classes. In addition Frag also provides a constraint language similar to OCL as

well as a model validator. Using the model validator we can easily check a models

conformance to its meta-models as well as its model constraints.

d e f i n e a new s t e r e o t y p e

FMF : : S t e r e o t y p e c r e a t e MashupOutput \
−s u p e r c l a s s e s Microf low : : Outpu t \
−a t t r i b u t e s { t y p e S t r i n g }

d e f i n e a new model c o n s t r a i n t

MashupOutput addInvar iant [notEmpty [s e l f t y p e]]

Listing 4: Frag DSL example

Note, that the textual syntax of the DSL is mainly intended to be used internally

in the model validator, as a common syntax for model integration, and for debugging

purposes. The developers should mainly work with UML2 and OCL tools to define

the models and constraints. The main contribution of our prototypical tool chain is

to validate and demonstrate that a model validation support following our concepts is

feasible and can be implemented with moderate effort from scratch.

7 Implementing a Model-driven Interpreter

As a proof-of-concept, we have also implemented a basic model-driven interpreter, that

is able to execute instances of our mashup meta-model on-the-fly. Using the Frag lan-

guage, and mainly due to its realization of the transitive mixins concept [15], it could

be implemented in roughly 450 lines of code. Mixins allow us (among other things) to

add methods to classes dynamically at runtime.

116 Paper D

c r e a t e e x e c u t o r c l a s s e s

FMF : : C l a s s c r e a t e M a s h u p A c t i v i t y E x e c u t o r −method e x e c u t e a r g s { . . . }
FMF : : C l a s s c r e a t e S c r i p t E x e c u t o r −method e x e c u t e a r g s { . . . }
add m i x i n s

Mashup : : M a s h u p A c t i v i t y mixins M a s h u p A c t i v i t y E x e c u t o r
Microf low : : S c r i p t mixins S c r i p t E x e c u t o r

Listing 5: Defining Mixin Classes

Thus, the basic idea of our model execution-approach is to use mixins to extend

our (Frag-specified) meta-model with additional execution functionality. For instance,

Listing 5 shows how we define two mixin classes (MashupActivityExecutor

and ScriptExecutor), both implementing the method execute. For every de-

fined stereotype a corresponding executor mixin – containing the execution-logic – is

needed. For instance, the execution-logic of the MashupActivityExecutor is to

execute the model’s initial node. The initial node’s execution logic is to traverse its out-

going activity edge and execute the next activity node. In Listing 5 we can see, that the

previously defined mixin classes are then directly attached to the classes of the meta-

model (e.g. Microflow::Script).

d e f i n e a model i n s t a n c e

UML2 : : A c t i v i t y c r e a t e A1
Mashup : : M a s h u p A c t i v i t y c r e a t e M1 −b a s e A c t i v i t y A1
e x e c u t e t h e model i n s t a n c e

M1 e x e c u t e

Listing 6: Executing a MashupActivity

Having the mixin classes attached, it is then possible to directly execute any instance

of our meta-model. Listing 6 depicts both the instantiation of the meta-model as well as

the execution of the newly created instance via the execute method.

8 Related Work

A considerable amount of work has been done on the design and development of DSLs

that are tailored specifically to facilitate the development of Web mashups (see e.g. [1–

3]). In particular, the idea of seeing Web mashups as compositions of Web services and

Web data leads to the design of numerous service composition languages. For instance,

the Bite language [7] has been proposed as a simplified variant of the Web Services

Business Process Execution Language (WS-BPEL) [16], a current standard technology

for business process execution in the context of Web services. Like our approach this

approach uses a behavioral model as the foundation of a mashup model. But BPEL is

designed for long-running, transactional business processes (macroflows) and contains

many language elements not useful for mashup composition, whereas our approach

offers a model focused on the short-running microflows typically required for mashup

composition tasks. Rosenberg et al. [8] demonstrate the applicability of Bite to model

RESTful Web services and collaborative workflows.

Our model-based approach does not compete with the already existing languages

and approaches. But rather it provides a model-driven abstraction that can be used to

model the essence of mashups expressed in these languages. This has been demon-

strated in Section 4 for the Enterprise Mashup Markup Language [4], a standard pro-

posed by the Open Mashup Alliance. In contrast to our approach, the existing modeling

Paper D 117

approaches are not based on a standard modeling language that provides convenient

ways to model other system parts as well like the UML2 (e.g. in UML2 service inter-

faces can be modeled as extensions of UML2 class diagrams). Our approach can be

used to augment those other mashup modeling languages with links to UML2 models

for other system parts via the standard UML2 extension mechanisms.

Model-driven development in the context of Web mashups and Web data integra-

tion is nothing new and numerous approaches have been presented before. For example,

Daniel et al. present mashArt [5], a model-driven approach to UI and service compo-

sition on the Web, consisting of component model for mashup components as well

as an event- and flow-based service composition model. A meta-model for context-

aware component-based mashup applications is presented by Pietschmann et al. [6].

The model provides means to describe all necessary application aspects on a platform-

independent level, such as its components, control and data flow, layout, as well as

context-aware behavior. Koch et al. present UWE [17], a model-driven approach for

Web application development. The proposed UML2 profile aims to cover the entire de-

velopment life cycle of Web systems and therefore clearly surpasses the scope of our

own meta-model. Similarly, Kapitsaki et al. [18] also suggest a UML2 profile for mod-

eling Web applications using UML2 class and state transition diagrams. A conceptual

modeling approach to business service mashup development is presented in [19]. Boz-

zon et al. demonstrate the feasibility of modeling Web mashups as Business Processes

using BPMN (Business Process Management Notation). In summary, these approaches

attach great importance to the integration of the data and the user interface layer – which

is the main focus of the meta-models of these approaches.

In contrast to these approaches, our approach tries to be as generic as possible and

focus on the microflow abstraction needed to support features for model-driven gener-

ation of system integration code, analysis, or adaptation. Thus, our meta-model consti-

tutes the bare minimum needed to model the microflows of Web mashups. Also, our

main focus lies in the Web data integration and service composition aspect of Web

mashups. In future extension of our model we plan to extend it to also support the user

interface layer integration.

9 Conclusion and Future Work

In this paper we introduced an UML2 profile for semi-formally modeling the essence of

Web data mashups based on activity diagrams and formal constraints in the OCL. We

divided our meta-model into an abstract microflow layer and a mashup specific layer.

We were able to show the applicability of our approach in a prototype implementation,

realizing a mashup DSL and a model-driven interpreter. We showed the generalizability

of our approach by mapping it to a standard mashup language, the EMML. We argued

and showed how other UML2 diagrams can be integrated with our approach. Hence,

the UML2 profile together with the model-driven approach help to make the mashup

approach usable in a system integration context, in which the mashups and other de-

pendent components must be changed together. The approach can potentially be used

to better support the adaptation and analysis of mashups – especially together with other

system components. As future work we plan to apply our approach in for these tasks.

118 Paper D

References

1. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and

Service Mashups. IEEE Internet Computing 12(5) (September 2008) 32–43
2. Vallejos, J., Huang, J., Costanza, P., De Meuter, W., D’Hondt, T.: A programming language

approach for context-aware mashups. In: Proceedings of the 3rd and 4th International Work-

shop on Web APIs and Services Mashups. Mashups ’09/’10, New York, NY, USA, ACM

(2010) 4:1–4:5
3. Sabbouh, M., Higginson, J., Semy, S., Gagne, D.: Web mashup scripting language. In:

Proceedings of the 16th international conference on World Wide Web. WWW ’07, New

York, NY, USA, ACM (2007) 1305–1306
4. Open Mashup Alliance: Enterprise Mashup Markup Language. http://www.

openmashup.org/omadocs/v1.0/

5. Daniel, F., Casati, F., Benatallah, B., Shan, M.: Hosted Universal Composition: Models, Lan-

guages and Infrastructure in mashArt. In: Proceedings of the 28th International Conference

on Conceptual Modeling. ER ’09, Berlin, Heidelberg, Springer-Verlag (2009) 428–443
6. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meißner, K.: A metamodel

for context-aware component-based mashup applications. In: Proceedings of the 12th In-

ternational Conference on Information Integration and Web-based Applications & Ser-

vices. iiWAS ’10, New York, NY, USA, ACM (2010) 413–420
7. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for the Web.

In: Proceedings of the 5th international conference on Service-Oriented Computing. ICSOC

’07, Berlin, Heidelberg, Springer-Verlag (2007) 94–106
8. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services and Col-

laborative Workflows: A Lightweight Approach. IEEE Internet Computing 12(5) (September

2008) 24–31
9. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors’ Introduction: Model-Driven Devel-

opment. IEEE Software 20 (2003) 14–18
10. Bock, C.: Unified Behavior Models. Journal of OO-Programming 12(5) (1999) 65–68
11. Aguilar-Savén, R.S.: Business process modelling: Review and framework. International

Journal of Production Economics 90(2) (2004) 129 – 149
12. Object Management Group: UML 2.4.1 Superstructure. http://www.omg.org/spec/

UML/2.4.1

13. Hentrich, C., Zdun, U.: Process-Driven SOA - Proven Patterns for Business-IT Alignment.

CRC Press, Taylor and Francis, Boca Raton (2012)
14. Zdun, U.: Frag. http://frag.sf.net/
15. Zdun, U.: Tailorable language for behavioral composition and configuration of software

components. Comput. Lang. Syst. Struct. 32(1) (April 2006) 56–82
16. OASIS: Web Services Business Process Execution Language. http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

17. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml-Based Web Engineering. In Rossi,

G., Pastor, O., Schwabe, D., Olsina, L., eds.: Web Engineering: Modelling and Implementing

Web Applications. Human–Computer Interaction Series. Springer London (2008) 157–191
18. Kapitsaki, G.M., Kateros, D.A., Pappas, C.A., Tselikas, N.D., Venieris, I.S.: Model-driven

development of composite web applications. In: Proceedings of the 10th International Con-

ference on Information Integration and Web-based Applications & Services. iiWAS ’08, New

York, NY, USA, ACM (2008) 399–402
19. Bozzon, A., Brambilla, M., Facca, F.M., Carughu, G.T.: A Conceptual Modeling Approach

to Business Service Mashup Development. In: Proceedings of the 2009 IEEE International

Conference on Web Services. ICWS ’09, Washington, DC, USA, IEEE Computer Society

(2009) 751–758

Paper D 119

120 Paper D

Paper E

Supporting Entailment Constraints

in the Context of Collaborative Web

Applications

The subsequent paper has been published as follows:

P. Gaubatz and U. Zdun. Supporting Entailment Constraints in the Context of

Collaborative Web Applications. In 28th Symposium On Applied Computing, Coimbra,

Portugal, March 2013.

In this paper, we presented a generic and model-driven approach for the specification

and enforcement of entailment constraints in real-time collaborative Web applications.

Until then, the concept of entailment constraints had only been studied in the context

of workflows and business processes (including our own work presented in Paper B and

Paper C). Using our CoCoForm (Constrainable Collaborative Form) prototype implemen-

tation we could demonstrate the feasibility of applying these concepts in a completely

different context, i.e., real-time collaborative Web applications. An exemplary use case

for CoCoForm are form-based business applications that often require forms or specific

parts of forms to be filled out by different stakeholders or stakeholder roles. CoCoForm

allows for precisely defining which stakeholder or stakeholder role shall be granted the

permission to edit specific parts of forms. At runtime, users can fill out forms collabo-

ratively and concurrently, while the system guarantees compliance to the defined access

constraints (e.g., entailment constraints).

121

Supporting Entailment Constraints in the Context of
Collaborative Web Applications

Patrick Gaubatz and Uwe Zdun
Faculty of Computer Science

University of Vienna, Vienna, Austria
firstname.lastname@univie.ac.at

ABSTRACT

Collaborative Web applications allow several users to collabora-
tively work on the same artifact. In addition to popular use cases,
such as collaborative text editing, they can also be used for form-
based business applications that often require forms to be filled out
by different stakeholders or stakeholder roles. In this context, the
different stakeholders often need to fill in different parts of the
forms. For example, in an e-health application a nurse might fill
in the details and a doctor needs to sign them. Role-based access
control and entailment constraints provide means for defining such
restrictions. So far entailment constraint have mainly been studied
in the context of workflow-based architectures, but not for collab-
orative Web applications. We present a generic approach for the
specification and enforcement of entailment constraints in collab-
orative Web applications that supports their real-time nature and
the non-prescriptive order in which tasks can be performed. Fur-
ther, we discuss a model-driven implementation approach of our
concepts and lessons learned and limitations.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Web Applications;
D.2.2 [Software Engineering]: Design Tools and Techniques

Keywords

Collaborative Web Application, Entailment Constraint, RBAC

1. INTRODUCTION
Collaborative Web applications such as Google Docs1, Ether-

pad2, or Creately3 aim to efficiently support the joint work of differ-
ent teams members, allowing them to collaboratively work on the
same artifact at the same or a different time. As such collaborative
Web applications are getting more and more popular, it is interest-
ing to study their use for typical business applications that often

1
https://docs.google.com

2
http://etherpad.org

3
http://creately.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

require multiple forms to be filled out by different stakeholders or
stakeholder roles. The basic approach required for such form-based
collaborative applications has for instance been studied in Mob-
Write [8], which enables users to collaboratively fill out HTML
forms. However, the – in this context crucial – aspect of access
control has mainly been studied on a per-document level so far.

In form-based applications often situations occur in which differ-
ent stakeholders or stakeholder roles need to fill in different parts of
the forms. If restrictions on who is allowed to fill in which parts at
which time exist, then proper access control must be ensured. For
example, in an e-health application a nurse might fill in the details
and a doctor needs to sign the document. Or a doctor files a re-
port and a second doctor needs to check and sign the document (to
realize the so-called four eyes principle). Access control in such sit-
uations has been studied in the context of role-based access control
(RBAC) [9]. In RBAC, roles are used to model different job posi-
tions and scopes of duty within an information system. These roles
are equipped with the permissions to perform tasks. Human users
(subjects) are assigned to roles according to their work profile [11].
The examples given above have been generalized under the term
entailment constraints [12], i.e. constraints that place some restric-
tion on the subjects who can perform a task x given that a certain
subject has performed another task y.

So far entailment constraints have mainly been studied in the
context of workflow-based architectures (see for instance [2, 12,
14]), but not for collaborative Web applications. In this paper, we
will introduce a novel approach for specifying and automatically
enforcing entailment constraints in collaborative Web applications.
Our approach aims to support their real-time nature and the non-
prescriptive order in which tasks can be performed in collaborative
Web applications through a server-side constraint checking service.
On client side we propose non-intrusive modifications that integrate
this constraint checking service into the collaborative Web applica-
tion. A constraint model is used to integrate the client and server
side in a way that requires the Web developer only to make mi-
nor modifications, whereas all security-related aspects are specified
by a security expert. That is, our approach enables the separation
of concerns between these two roles. In our prototype implemen-
tation we use a model-driven approach to automatically generate
all required artifacts from the constraint model. That is, only the
specification of the constraint model is necessary to augment a col-
laborative Web application with entailment constraint enforcement.
Using the model-driven implementation is only an option in our ap-
proach: It is equally possible to manually hook our Web services
with a few extra steps into existing collaborative Web applications.

This paper is structured as follows: In Section 2 we introduce
entailment constraints. We motivate our work in Section 3. Our
approach is described in Section 4. In Section 5 we discuss a pro-

122 Paper E

totypical implementation, and Section 6 explains how it can be
used to resolve the motivating example. After discussing related
works in Section 7, and the lessons learned and limitations of our
approach in Section 8, we conclude in Section 9.

2. ENTAILMENT CONSTRAINTS
As explained before, entailment constraints are a concept in the

RBAC domain, defined as follows [12]: A task-based entailment

constraint places some restriction on the subjects who can perform
a task x given that a certain subject has performed another task y.

Different kinds of entailment constraints can be distin-
guished [12]: Mutual exclusion and binding constraints are typical
examples of entailment constraints. They can be subdivided into
static mutual exclusion (SME) and dynamic mutual exclusion

(DME) constraints. An SME constraint defines that two tasks must
never be assigned to the same role and must never be performed by
the same subject (i.e. to prevent fraud and abuse). This constraint
is global with respect to all instances in an information system. In
contrast, DME refers to individual instances and can be enforced
by defining that two tasks must never be performed by the same
subject in the same instance. In contrast to mutual exclusion
constraints, binding constraints define that two bound tasks must
be performed by the same entity. In particular, a subject-binding

constraint defines that the same individual who performed the first
task must also perform the bound task(s). Similarly, a role-binding

constraint defines that bound tasks must be performed by members
of the same role but not necessarily by the same individual.

3. MOTIVATING EXAMPLE
In the context of health care, a medical record is used to doc-

ument a patient’s medical history and care. It is maintained by
health care professionals (e.g. doctors) and includes information
such as therapy plans, various results, and reports. There is an on-
going trend towards electronic medical records. For many of these
records, a number of different health care professionals (e.g. doc-
tors, nurses, administrative persons) have to complete a form.

Today, often the health care professionals are confronted with
strict, standardized forms with precisely specified form fields,
which are “hard-coded” into a custom-made (legacy) application.
Adding new fields or changing existing ones is usually an error-
prone and cumbersome task. An alternative solution would be
workflow-based (or pageflow) applications. That is, the application
consists of workflow tasks executed in a prescribed order. Each
subset of the form fields, to be filled out by a specific person or user
role, would be realized using a single workflow task. Executing the
workflow will eventually lead to the completion of the form. The
workflow-based solution has the advantage over the hard-coded
solution that modifications of the control flow are possible without
touching the source code. However, both solutions have a major
disadvantage: Their control flows are statically prescribed at
design time. It is not possible to leave this “prescribed path”. This
is a problem because the whole process might easily get stuck.
For example, a missing signature from a doctor, who is currently
off-duty, might prevent other health care professionals to proceed
to the next group of form fields.

These problems led us to study in how far medical records can be
created by letting users complete forms using a collaborative Web
application in which ordinary HTML forms are used. In contrast to
the previously described solutions a collaborative Web application
would not exhibit the problems of a “prescribed path”. Instead,
it allows form fields to be filled out concurrently by various users
at the same time. Thus, it can easily accommodate “unforeseen”

Web
Developer

Role

Subject

Constraint

Constrainable

Models

Collaboration
Service

Constraint Checking
Service

Web Application

Server

Browser

synchronizes
state

requests
permissions

deployed to

models models

Security
Expert mapped

to

develops

constrain

Figure 1: Architectural Overview of the Approach

deviations from the originally intended workflow.
This leads to the requirement to enforce entailment constraints

in such collaborative Web applications: For some form fields it is
required to precisely specify who is allowed to enter which infor-
mation when. For example, a medical record form might contain
an input field where the doctor in charge has to enter a documenta-
tion about the prescribed therapy. Before the final discharge of the
patient, we might want the same doctor who prescribed the therapy
to sign the complete medical record again. Thus, we are effec-
tively constraining these two form fields using a subject-binding

constraint. Another example is that for quality assurance reasons
(i.e. realizing the four-eye principle) another doctor has to sign the
whole record. Here, a dynamic mutual exclusion constraint be-
tween the two signature fields would provide means to prevent the
same person to sign both fields. In this paper, we describe – to the
best of our knowledge – the first approach to specify and enforce
such entailment constraints in collaborative Web applications.

4. APPROACH

4.1 Approach Overview
Figure 1 gives an architectural overview of our approach. The

figure illustrates two distinct stakeholder roles, Web developers and
security experts, whose tasks can be clearly separated in our ap-
proach. At design time the security expert first models the roles
and subjects required for the Web application (see Section 4.2). In
our approach, a Web application consists of constrainable elements
(e.g. a button, a JavaScript method, or even a remote service invoca-
tion). Both the Web developer and the security expert model these
constrainable elements. The latter may then use constraint models
to make the constrainable elements subject to various entailment
constraints. The Web developer role realizes the collaborative Web
application. The collaborative aspect is typically realized using a
Publish-Subscriber architecture. That is, every state change of the
Web application is distributed to other session participants using a
collaboration service (i.e. the message broker).

From the Web developer’s point of view, the development pro-
cess, described so far, does not differ to the “standard approach”
to developing collaborative Web applications. Only the following
additional steps have to be carried out by the Web developer to
guarantee compliance to the entailment constraints (see also Sec-

Paper E 123

Constrainable

+constrainableID: String

SMEConstraint

RBindConstraint

SBindConstraint

EntailmentConstraint

DMEConstraint

Role

+name: Str ing

Subject

+name: Str ing

ConstrainableInstance

ConstrainableContextInstance

+contextInstanceID: String

ConstrainableContext

+contextID: String

executingRole

executingSubject

2..*

*

1

*

*

**

1

1
1

1

1

*

Figure 2: The Constraint Model

tion 4.3). Firstly, he or she has to map the (abstract) constrainable
elements to concrete implementation-level artifacts (e.g. HTML el-
ements) of the Web application. Whenever one of these constrained
elements is invoked (e.g. a button is clicked), the Web application
must request the permission to do so from a constraint checking
service. This service uses a model-based constraint checking en-
gine which either allows or denies the invocation. As the engine’s
decision is based on the defined subjects, roles, constraints and con-
strainables models, these modeling artifacts have to be deployed to
the engine before. Only if the constraint service has permitted the
invocation, the Web application should actually change its internal
state (e.g. by calling the button’s onclick handler) and eventually
notify the session participants via the collaboration service of this
particular state change. Conversely, if the invocation has been de-
nied, the Web application must prevent the state change.

4.2 Constraint Model
The core element of our approach is a generic constraint model.

Figure 2 shows an UML2 class diagram of this model. The model
specifies that the Constrainables (mentioned before) can be con-
strained by an arbitrary number of EntailmentConstraints. Every
Constrainable has a unique constrainableID and belongs to a Con-

strainableContext. A ConstrainableContext has a unique contex-

tID, aggregates Constrainables, and constitutes a self-contained ex-
ecution domain or environment. More precisely, it denotes a dis-
tinct “collaboration canvas” of a Web application. For example, in
a collaborative text editor there could be a ConstrainableContext

with the ID “text document”. Depending on the type of collabora-
tive Web application, the application as a whole or just a distinct
part of it constitutes a ConstrainableContext. We use the classes
Subject and Role to model the available subjects and roles.

These model elements are usually defined at design time and in-
stantiated at runtime using the two classes ConstrainableContextIn-

stances and ConstrainableInstance. A ConstrainableContext can
have an arbitrary number of ConstrainableContextInstances. For
example, considering the previously mentioned “text document”
example, a group of users may collaboratively work on a single
ConstrainableContextInstance with a contextInstanceID “text doc-
ument instance xyz”. Whenever a ConstrainableContextInstance is
created, a ConstrainableInstance has to be created for every aggre-
gated Constrainable of the respective ConstrainableContext. That

Method Parameters Return

contextInstance contextID, contextInstanceID –

invoke contextID, contextInstanceID, constrain-
ableID, subject, role

Boolean

Table 1: Interface Excerpt of the Constraint Checking Service

is, a ConstrainableInstance is an instance of exactly one Constrain-

able and is part of exactly one ConstrainableContextInstance.
When a ConstrainableInstance is invoked, the executingRole

and executingSubject associations are used to establish relations
to the respective Role and Subject objects actually invoking the
ConstrainableInstance.

4.3 Runtime Enforcement and Architecture
In the previous section we have presented a generic model for

defining abstract constrainable elements and making them subject
to different types of entailment constraints. This section discusses
the runtime architecture needed to actually enforce the compliance
of the Web application with regard to the defined constraints. In
essence, our approach requires both, a dedicated server-side com-
ponent and modifications to the client-side application logic.

4.3.1 Server-side Constraint Checking Service

On server side, a generic and self-contained service realizes the
Policy Decision Point (PDP) [7], the entity that actually decides if
an invocation is to be allowed or not according to defined entail-
ment constraints. Generally, a PDP needs to know about existing
subjects, roles, and policies to be able to actually make decisions.
Hence, the service needs to have access to the full set of modeling
artifacts created by the security expert at design time.

Table 1 lists two essential methods that the constraint checking
service has to provide to the Web application. Firstly, the Web
application must call the contextInstance method, before any
constraint checking can be done at all. It also has to provide both,
a contextID (e.g. “text document”) of an existing Constrainable-

Context and a unique contextInstanceID (e.g. “text document
xyz”). The service is then able to instantiate and initialize the
classes ConstrainableContextInstance and ConstrainableInstance.

After contextInstance has been called, the service is
initialized. The second mandatory method, invoke, must be
called (by the Web application) before a constrainable element is
invoked. Note that this method requires numerous parameters to
be supplied: The service needs to know which subject (subject),
using which role (role) is going to invoke a specific constrainable
element (constrainableID). Furthermore, a context instance
(contextInstanceID) and a context (contextID) need to be
specified. If the invocation is allowed (i.e. no entailment constraints
are violated), the service will then respond with the Boolean value
true, and the Web application may finally perform the actual
invocation of the constrainable element. Otherwise false is
returned, and the invocation must be prevented. Whenever an
invocation is allowed, the service will assign the executingSubject

and executingRole relations of the corresponding Constrainable-

Instance object, according to the provided subject and role

parameters which is required by the underlying constraint checking
algorithms (see [12] for details on the algorithms).

4.3.2 Client-side Modifications

In addition to the server-side constraint checking service, our
approach also requires making modifications of the client-side ap-
plication logic. These modifications would typically be performed

124 Paper E

<body onload=”init()”>
<button onclick=”click()”>
...
<script>

...

function click() {
 if(invoke(“btn1Click”, subject, role)) {
 alert(“click”);
 sendChange();
 }
}

c1:Constrainable

constrainableID = btn1Click

function click() {
 alert(“click”);
 sendChange();
}

(3) map
IDs

(1) inject
initialization code

function init() {
 initCollaboration();
}

function init() {
 initCollaboration();
 contextInstance(“Document”, “doc xyz”);
}

ctx1:ConstrainableContext

contextID = Document

(2) inject
enforcement code

Figure 3: Required Mappings and Modifications

automatically using a model-driven code generator (see Section 5
for a discussion of our prototype). However, it is also possible to
perform the modifications manually. This way it is possible to hook
our Web services into existing collaborative Web applications using
the few additional steps described in this section.

Figure 3 illustrates the required modifications. In general, the
Web developer has to (1) call the contextInstance method and
(2) use the invoke method of the constraint checking service and
enforce its decision whenever a constrainable element is invoked.

Figure 3 illustrates a collaborative document editor application,
in which our constraint model contains a ConstrainableContext

with a contextID “Document” and an (examplary) constrainable
element with a constrainableID “btn1Click”. The figure shows an
excerpt of the application’s main HTML file. We can see that the
browser will execute the init() method as soon as the <body>

element has been parsed. The embodied initCollaboration()

method initializes the Web application’s collaboration functional-
ity. Furthermore, there is a <button>. When it is clicked, an alert
box is shown and this state change is propagated to other session
participants using sendChange().

The first required modification is the injection of the initializa-
tion code in which we have to call the contextInstance method
of the constraint checking service. In the example, we specify
that the constaint service should create an instance of the “Doc-
ument” ConstrainableContext from our defined model and give the
instance an ID of “doc xyz”. Next, we have to inject the actual en-
forcement code, which is done by inserting a call to the constraint
service’s invoke method into the click() method. The result of
this modification is that the original method body will only be exe-
cuted, if the constraint service allows it.

5. THE COCOFORM IMPLEMENTATION
This section discusses a concrete implementation of the previ-

ously described approach. The developed prototype is called Con-
strainable Collaborative Forms (CoCoForm)4 and can be used to
realize the e-health record case from Section 3. The basic idea is
that an ordinary HTML form (e.g. an electronic health record form)

4A (proof-of-concept) CoCoForm demo application is available at
http://demo.swa.univie.ac.at/cocoform

TextInput

+multi l ine: Boolean

FormComponent

+label: String

Button

+text: Str ing

Form

Constrainable

+constrainableID: String

ConstraintModel

ConstrainableContext

+contextID: String

...

Figure 4: The WebForm Model

can be filled out collaboratively by different users at the same time.
Parts of this form are subject to entailment constraints.

We decided to use a model-driven development approach for the
implementation. Hence, we extended the Constraint model (see
Figure 2), as can be seen in Figure 4. Every instance of Form con-
stitutes a self-contained ConstrainableContext. A Form aggregates
FormComponents. More precisely, a FormComponent can be a But-

ton, a TextInput, and so on. As these components are subtypes of
Constrainable, they can be constrained by entailment constraints.

Both models, the Constraint and the WebForm model, have been
implemented in Frag [15], a Java-based, interpreted, tailorable lan-
guage, specifically designed for the task of model-driven develop-
ment. Frag supports both model-driven generation and interpreta-
tion of models at runtime. Hence, we have also implemented the
model-based, runtime constraint checking engine in Frag. The next
step was the development of the constraint checking service. We
chose a RESTful service interface design, implemented in Java,
using the JAX-RS API5 and Jetty6 as our servlet container. The
service returns JSON data and is merely a HTTP-based connector
between the Web application and the constraint checking engine.

The actual Web application consists of a single HTML5 docu-
ment and a generic JavaScript library. We use the Open Coopera-
tive Web Framework [13] for all collaborative aspects of our Web
application. It consists of a JavaScript library, a Java servlet (i.e.
the Collaboration Service component depicted in Figure 1), and
realizes a Publish-Subscriber architecture.

For the mapping of the constrainable elements to concrete
implementation-level artifact (see Section 4.3.2), the CoCoForm
implementation leverages a model-driven code generator. It is
used to automatically generate an instantly deployable HTML5
skeleton document from a WebForm model instance. The actual
mapping information of each FormComponent (i.e. the constrain-
able element) and each Form (i.e. the constrainable context) is
attached to the corresponding HTML5 tags. More specifically, we
annotate the tags using custom (HTML5) data-* attributes. For
example, an instance of Form with a contextID “f1” will result in a
<form data-context-id="f1"> tag. Analogously, an instance
of Button with a constrainableID “b1” will be transformed to
<button data-constrainable-id="b1">.

At runtime, the generic JavaScript library then uses these
attributes to automatically register onclick (for buttons) and
onchange (for text input fields) handlers for the corresponding
elements. Whenever these callback functions are executed (e.g.
a button has been clicked), the application calls the constraint

5JAX-RS, http://jax-rs-spec.java.net
6Jetty, http://eclipse.org/jetty

Paper E 125

Figure 5: Subject-Binding with CoCoForm

service’s invoke method and enforces the returned decision. If the
invocation is allowed, the application disables the corresponding
FormComponent to prevent further editing (i.e. components can
only be invoked once). Secondly, the state of the component (e.g.
the actual value of the input field, as well as the disabled flag)
is distributed to the other session participants.

6. MOTIVATING EXAMPLE RESOLVED
Let us revisit the motivating example from Section 3. We will

discuss the CoCoForm implementation of the subject-binding ex-
ample from Section 3. Figure 5 shows a few screenshot excerpts
of an example form. There are two form components: a text input
field, which is used to document a patient’s therapy, and a button,
which is used to sign the documentation. For these two compo-
nents a subject-binding constraint has been defined. In the first
screenshot we can see the empty form. Next, Peter, a Doctor, fills
out the therapy text input field. At the same time, Fritz joins the
session and sees that the input field has already been filled out by
Peter. Additionally, he tries to sign this form. However, he receives
an error message, saying that he is not allowed to sign. This is due
to the subject-binding constraint, which eventually requires Peter

to sign. In a similar way, CoCoForm supports the definition of all
entailment constraints required in the e-health case.

7. RELATED WORK
There are already some frameworks and libraries that facilitate

the development of collaborative Web applications. For instance,
the Open Cooperative Web Framework [13] consists of a set of
JavaScript libraries and a generic Java servlet. The beWeeVee
SDK [3] is a .NET-based framework and requires the Microsoft
Silverlight browser plugin to be installed. MobWrite [8] is another
approach for enabling real-time collaboration. However, it is
restricted to synchronizing HTML forms, and the reusability and
applicability is thus somewhat limited. Heinricht et al. [4] present a
generic collaboration infrastructure aimed at transforming existing
single-user Web applications into collaborative multi-user Web
applications. In principle, our approach embraces the usage of

already existing libraries and approaches. In fact, we used the
Open Cooperative Web Framework to implement the collaboration
aspects of CoCoForm (see Section 5). However, there is one re-
quirement: The synchronization process of the library/framework
must be interceptable. More precisely, we must prevent state
changes, which have not been permitted by the constraint checking
service, to be synchronized. Thus, these service invocations have
to be conducted before any synchronization takes place.

The concept of task-based entailment constraints originally
originates the domain of business processes and workflows.
Bertino et al. [2] introduce the notion of assigning roles or subjects
to tasks in a workflow and making them subject to separation of

duty constraints. Wainer et al. [14] propose a system architecture
that clearly separates the permission service from the workflow
engine. Furthermore, they also present a modeling solution for
specifying binding of duty constraints. Strembeck et al. [12]
present a set of generic algorithms that ensure the consistency of
entailment constraints. We used these algorithms to implement
our constraint checking engine (see Section 5). In general, the
existing literature – almost exclusively – examines entailment
constraints in a workflow and business process context. As a
result, the presented solutions are aligned with concepts that are
specific for these contexts. However, in the context of collaborative
Web applications, we can not resort to concepts like task, process

instance, and so on. Hence, we generalized the already existing
works and proposed a generic model (see Section 4.2). Instead of
constraining tasks in a process, in our approach we are constrain-
ing abstract constrainable elements, which have to be mapped to
concrete implementation-level artifacts.

A lot of work has been conducted in the area of RBAC in the
context of Web applications and services. Ahn et al. [1] present an
approach for injecting RBAC into an already existing Web-based
workflow system. They propose a special reverse proxy that is able
to enforce RBAC rules transparently to the actual Web application
behind. Sohr et al. [10] and Hummer et al. [5] propose a similar ap-
proach in the context of Web Services. More precisely, they present
generic interceptors that can be plugged into (Java-based) Web ser-
vice stacks. These interceptors intercept service invocations and are
then able to prevent the actual invocation in case of a policy vio-
lation. Again, this happens transparently to the underlying service
implementation. In contrast, our approach requires modifications
of the original client-side application logic to be made. This draw-
back is due to the way modern HTML5/JavaScript-based Web ap-
plications work. However, the usage of Aspect-oriented program-
ming could help mitigating this problem (see Section 8).

8. LESSONS LEARNED
Using the CoCoForm prototype (see Section 5) we have been

able to demonstrate the feasibility of our approach (see Section 1).
More precisely, we showed that the concept of task-based entail-
ment constraints can be adapted to fit into the context of collabo-
rative Web applications. In the following paragraphs we want to
discuss our lessons learned and the limitations of our approach.

The genericity of the proposed constraint model (see Section 4.2)
and the constraint checking service (see Section 4.3) allow our ap-
proach to be applied to many different types of collaborative Web
applications. Moreover, a single instance of the constraint checking
service can potentially handle an arbitrary number of Web applica-
tion instances. Thus, it is sufficient for an organization to maintain
one instance of the service (maybe in replicated form).

Another positive aspect of our approach is that it follows the
principle of separation of concerns. That is, the definition of roles,
subjects, and constraints is completely decoupled from the actual

126 Paper E

application. Thus, a security expert does not need to care about any
implementation-level artifacts at all, whereas the Web developer
does not need to care about anything related to RBAC.

We have implemented our approach with model-driven tech-
niques to automate the generation of all additional constraint
checking code. It is also possible to use the approach using manual
modifications of the Web application. That is, existing code can
also be instrumented this way and used with our approach by
manually following the steps illustrated in Figure 3.

There are also some limitations. Firstly, our approach induces
a slight performance penalty due to the required extra call of the
constraint checking service. However, in the context of collabora-
tive Web applications, which are innately prone to requiring lots of
service calls, the effect of this extra call is more or less negligible.

Another limitation are the needed adaptations of the client-side
application (see Section 4.3.2). The code, needed to enforce the
constraint checking service’s decision, has to be embedded directly
into the application logic. This results in scattered and tangled
code which is hard to maintain. As we have already pointed out,
a model-driven code generator can avoid this issue. Besides that,
aspect-oriented programming (see, e.g. [6]) can be used to decou-
ple the enforcement-related code from the actual application code.

In our approach, the client application handles enforcement.
From a security perspective, however, we often cannot trust code
that is executed on the client (i.e. in a Web browser). The reason
is that we cannot prevent a potential attacker from modifying
the code to be executed. For instance, let us assume that there
is a JavaScript method that calls the constraint checking service.
An attacker might effectively undermine the enforcement just by
overwriting this method and preventing the service from getting
called. The effects of such client-side code injections can be
contained by preventing any unauthorized state change from being
distributed to other session participants. This can be achieved by
using public-key cryptography. That is, the constraint checking
service returns digitally signed permission documents in which
the signature covers both, the actual decision and all parameters.
Whenever the Web application wants to send a synchronization
event to the collaboration service, it has to attach the signed
permission to the request. The latter is then routed through an
enforcement proxy. This proxy will only forward the request to
the service, if the signature is valid (i.e. the permission document
has not been tampered with) and the invocation has been permitted
by the constraint checking service. In general, all (server-side)
services belonging to the Web application must be tunnelled
through the enforcement proxy. With these modifications we
can guarantee that client-side code injections do not lead to a
server-side state change or an impact on session participants.

9. CONCLUSIONS
Our approach demonstrates that the concept of task-based entail-

ment constraints can be adapted to fit into the context of collabora-
tive Web applications. That is, we can support collaborative editing
of form-based applications with no prescribed order, and precisely
specify constraints on who can perform which tasks when. We
presented a generic approach that can be applied to many differ-
ent collaborative Web applications. It requires some modifications
to existing Web applications, but these – as well as the generation
of all other required artifacts – can optionally be automated with
model-driven development techniques. Our approach introduces
some security concerns in untrusted environments, but these can be
mitigated using public-key cryptography (see Section 8).

As future work, we will address these limitations and try to ex-
plore and establish the concept of RBAC in the context of collab-

orative Web application further. Furthermore, we will apply our
approach to other types of collaborative processes. In particular
with regard to dynamic processes (e.g. text editing or modeling)
we will have to deal with completely dynamic document and con-
straint models (i.e. models that change at runtime).

10. REFERENCES
[1] G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting rbac to

secure a web-based workflow system. In Proceedings of the

fifth ACM workshop on Role-based access control, RBAC
’00, pages 1–10, New York, NY, USA, 2000. ACM.

[2] E. Bertino, E. Ferraria, and V. Atluri. The specification and
enforcement of authorization constraints in workflow
management systems. ACM Transactions on Information and

System Security, 2(1):65–104, 1999.

[3] BeWeeVee. BeWeeVee – Life collaboration framework.
http://www.beweevee.com/.

[4] M. Heinrich, F. Lehmann, T. Springer, and M. Gaedke.
Exploiting single-user web applications for shared editing: a
generic transformation approach. In Proceedings of the 21st

international conference on World Wide Web, WWW ’12,
pages 1057–1066, New York, NY, USA, 2012. ACM.

[5] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and
S. Dustdar. An integrated approach for identity and access
management in a soa context. In 16th ACM Symposium on

Access Control Models and Technologies, 2011.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
ECOOP’97 Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 220–242.
Springer Berlin / Heidelberg, 1997. 10.1007/BFb0053381.

[7] S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, and
M. Strembeck. Role-based access control for information
federations in the industrial service sector. In ECIS, 2010.

[8] MobWrite. MobWrite - Real-time Synchronization and
Collaboration Service.
http://code.google.com/p/google-mobwrite/.

[9] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. Computer, 29(2):38 –47, 1996.

[10] K. Sohr, T. Mustafa, X. Bao, and G.-J. Ahn. Enforcing
role-based access control policies in web services with uml
and ocl. In Proceedings of the 2008 Annual Computer

Security Applications Conference, ACSAC ’08, pages
257–266, Washington, DC, 2008. IEEE Computer Society.

[11] M. Strembeck. Scenario-driven Role Engineering. IEEE

Security & Privacy, 8(1), January/February 2010.

[12] M. Strembeck and J. Mendling. Generic algorithms for
consistency checking of mutual-exclusion and binding
constraints in a business process context. In Proceedings of

the 2010 international conference on On the move to

meaningful internet systems - Volume Part I, OTM’10, pages
204–221, Berlin, Heidelberg, 2010. Springer-Verlag.

[13] The Dojo Foundation. Open Cooperative Web Framework.
http://opencoweb.org/.

[14] J. Wainer, P. Barthelmes, and A. Kumar. W-RBAC - A
Workflow Security Model Incorporating Controlled
Overriding of Constraints. International Journal of

Cooperative Information Systems (IJCIS), 12(4), Dec 2003.

[15] U. Zdun. Frag. http://frag.sf.net/.

Paper E 127

128 Paper E

Paper F

Supporting Customized Views for

Enforcing Access Control

Constraints in Real-time

Collaborative Web Applications

The subsequent paper has been published as follows:

P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Supporting Customized Views

for Enforcing Access Control Constraints in Real-time Collaborative Web Applications.

In 13th International Conference on Web Engineering, Aalborg, Denmark, July 2013.

This paper is an extension of the work presented in Paper E. While Paper E laid the

foundations for supporting access constraints (such as entailment constraints) in real-

time collaborative Web applications, in Paper F we focused on the enforcement aspect in

such environments. More precisely, we introduced the notion of leveraging the concept

of dynamic view customization as a means for enforcing access constraints in real-time

collaborative Web applications. We showed how this view customization approach may

be implemented using CoCoForm in order to customize the views of each user in such a

way that they are not able to violate any defined access constraints at all. Finally, we also

provided evidence (using our CoCoForm prototype implementation) that our approach is

potentially able to handle large numbers of users simultaneously connected clients with

acceptable performance overhead.

129

Supporting Customized Views for Enforcing

Access Control Constraints in Real-time

Collaborative Web Applications

Patrick Gaubatz1, Waldemar Hummer2, Uwe Zdun1 and Mark Strembeck3

1Faculty of Computer Science, University of Vienna, Austria
{firstname.lastname}@univie.ac.at

2Distributed Systems Group, Vienna University of Technology, Austria
{lastname}@infosys.tuwien.ac.at

3Institute for Information Systems, WU Vienna, Austria
{firstname.lastname}@wu.ac.at

Abstract Real-time collaborative Web applications allow multiple users
to concurrently work on a shared document. In addition to popular use
cases, such as collaborative text editing, they can also be used for form-
based business applications that often require forms to be filled out by
different stakeholders. In this context, different users typically need to
fill in different parts of a form. Role-based access control and entailment
constraints provide means for defining such restrictions. Major challenges
in the context of integrating collaborative Web applications with access
control restrictions are how to support changes of the configuration of
access constrained UI elements at runtime, realizing acceptable perfor-
mance and update behaviour, and an easy integration with existing Web
applications. In this paper, we address these challenges through a novel
approach supporting constrained and customized UI views that support
runtime changes and integrate well with existing Web applications. Us-
ing a prototypical implementation, we show that the approach provides
acceptable update behaviour and requires only a small performance over-
head for the access control tasks with linear scalability.

1 Introduction

Real-time collaborative Web applications such as Google Docs1, Etherpad2, or
Creately3 aim to efficiently support the joint work of different team members,
allowing them to collaboratively work on the same artifact at the same time. In
addition to such popular examples, the real-time collaboration approach can also
be used in typical business applications that often require multiple forms to be
filled out by different stakeholders [7]. A crucial – though in the context of real-
time collaborative Web applications often neglected – aspect of these business
applications is access control.

1 https://docs.google.com
2 http://etherpad.org
3 http://creately.com

130 Paper F

In recent years, role-based access control (RBAC) [14] emerged as a standard
for access control in software systems. In RBAC, roles are used to model differ-
ent job positions and scopes of duty within an information system. These roles
are equipped with permissions to perform tasks. Human users (subjects) are as-
signed to roles according to their work profile [17]. For example, in an e-health
application only a doctor shall be allowed to file a report. Moreover, a second
doctor needs to check and sign the same report (four-eyes principle). In this ex-
ample the role doctor is equipped with both permissions, i.e., filing and signing
a report. To prevent a single subject from performing both tasks on the same
report (thus undermining the four-eyes principle) we have to constrain these two
tasks with an entailment constraint. Entailment constraints (see, e.g., [3,18,20])
provide means for placing restrictions on the subjects who can perform a task x
given that a certain subject has performed another task y. Mutual exclusion
and binding constraints are typical examples for entailment constraints. For in-
stance, a dynamic mutual exclusion (DME) constraint defines that two subjects
must not perform two mutually exclusive tasks in the same instance of a Web
document. This means, that the permissions to perform two DME tasks can
be assigned to the same subject or role, but for each instance of a particular
Web document, we need two distinct individuals to perform both tasks. Binding
constraints, on the other hand, can be seen as the opposite of mutual exclusion
constraints. For example, subject binding defines that the subject who performed
the first task must also perform the bound tasks.

Ideally, realizing form-based business applications with a real-time collabora-
tive Web application approach would enable us to enforce RBAC and entailment
constraints directly as the users collaboratively work on the forms, i.e., by con-
straining (e.g. by disabling, locking, or hiding) certain control elements in the
user interfaces (UI) for certain subjects. However, so far this topic has – to the
best of our knowledge – not been addressed in the existing literature. Major
open challenges in this context are how to support changes of the configuration
of access constrained UI elements at runtime, realizing acceptable performance
and update behaviour, and the easy integration with existing Web applications.

In this paper, we address these challenges that are inherent to enforcing
access control constraints in the context of real-time collaborative Web applica-
tions. The client-side part of our approach follows the Model-View-ViewModel
pattern [15]. Additional server-side components complement our service-based
architecture. The resulting architecture enables us to support runtime changes
and facilitates the integration our approach with existing applications (see Sec-
tion 6.2). Furthermore, we show that the approach provides acceptable update
behaviour and requires only a small performance overhead for the access con-
trol tasks. In our experiments, it shows linear scalability (see Section 6.1). The
remainder of this paper is structured as follows: An example scenario motivates
our approach in Section 2. In Sections 3 and 4 we propose a novel approach
supporting constrained and customized UI views. In Section 5, we describe a
prototypical implementation and revisit the motivating example. After compar-
ing to related work in Section 7 we conclude in Section 8.

Paper F 131

2 Motivating Example and Challenges

As a motivating example, consider a Web-based application where patient health
records are maintained using forms for data entry. The data entry procedure is
typically included in a business process with well-defined roles and responsibil-
ities (see, e.g., [9]). In previous work, we presented CoCoForm [7], a real-time
collaborative Web application framework in which several users can concurrently
fill out HTML forms.

Shared Model
Instance State

Name

Subject: A
Role: Nurse

1:

2:

3:

Therapy 1
Therapy 2

Subject: B
Role: Physician

Name1:

2:

3:

Therapy 1
Therapy 2

Subject: C
Role: Physician

Name1:

2:

3:

Therapy 1
Therapy 2

Subject: D
Role: Patient

Name1:

2: Therapy 1
Therapy 2

Figure 1: Form-based Collaborative Web Application with Customized Views

Figure 1 shows a simplified example of using CoCoForm in the e-health do-
main. It includes four subjects with shared access to the health record of a
patient. The subjects take different roles (nurse, physician, patient) which de-
fine their permissions within the application. The nurse enters the name and
other personal data of the patient into a textfield (identified by “1”), physician B
adds “Therapy 1” to the list of therapies (field “2”), and physician C suggests an
additional specialized therapy “Therapy 2”. The entire form record is then con-
firmed by both physicians (buttons “3”). To enforce the four-eyes principle (DME
constraint), after physician B clicks the first submit button, the second button
is deactivated for physician B, but remains active for physician C. Moreover,
each physician can only modify his own therapy suggestions (subject-binding
constraint). Finally, the patient should have read-only access to the data. To
enforce these constraints, each user has a customized view with partial access to
the collaboratively shared model. In Figure 1, white elements can be accessed
and modified by the respective user, whereas elements with gray background are
subject to access limitations (e.g., read-only but not editable).

A major challenge to realize such customized views for access control con-
straints is that the configuration of constrained UI elements must be computed
server-side and effected client-side. Moreover, this configuration might change
dynamically at runtime. Other challenges are related to performance and update
behaviour : This means, we immediately need to deliver customized views to all
UIs that access the same instance of a Web document (e.g., in the example the
UIs need to be updated immediately after one of the subjects changes a docu-
ment). Such an immediate update is required to prevent users from performing
actions that were either already performed by another user or that are con-

132 Paper F

strained by an entailment constraint (which may have a direct impact on the
subjects who are allowed to fill in certain form field for example, see Section 1).
In order to be applicable in real-world application scenarios, the approach should
efficiently handle large numbers of simultaneously connected users. Finally, the
approach should allow for an easy integration with existing Web applications.

3 Approach Synopsis

The aim of our approach is to support access control and customized views in
real-time collaborative Web applications. The View of a Web application rep-
resents the UI with all visible and invisible elements, form input fields, inter-
active content, and more. The elements and associated interactions in the UI
are subject to constraints (e.g., actions that require a certain permission) which
are encoded in well-defined (RBAC) models. Our approach maps the model ele-
ments to configuration properties, and clients request the runtime values of these
configurations from a View Service. The user-specific configurations computed
by the server-side View Service are then applied to the View on the client-side.

View

PeterName:

Save:

ViewModelData Binding

<input type='text' data-bind='value: Name' />
<button data-bind='onclick: Save' />

 {
 Name: 'Peter',
 Save: function() { … }
 }

Figure 2: Data Binding between View and ViewModel

As the basic binding concept between the View and the Model, our approach
applies the Model-View-ViewModel (MVVM) pattern [15]. The MVVM is a spe-
cific version of the Presentation Model pattern (see [6]). It relies on the data
binding concept, which ensures that the View and the state of its components
are bound to properties of a ViewModel. This means that changes of the View-
Model are automatically reflected in the View. For instance, in Figure 2 we can
see that the value attribute of the <input> field is bound to the property Name

in the ViewModel. Secondly, the onclick handler of the button is bound to the
ViewModel ’s Save property. In general, the ViewModel acts as a mediator be-
tween the Model and the View by encapsulating all logic (e.g., formatting and
data type conversion) needed to expose the properties and functionalities of the
Model to the bound View. Additionally, it is in charge of reacting to user com-
mands (e.g., a user fills out an input field) and reflecting them by performing
the corresponding Model state changes. In general, the MVVM pattern makes
it easy to realize the client-side part of the required View Customization func-
tionality. In particular, we can customize a client’s View just by configuring its
ViewModel properties.

Paper F 133

MVVM
Components

Collaboration
Components

View ViewModel

Model
(Shared)

Model
(Local Copy)

View
Updater

View
Service

RBAC
Service

data
binding

synchronizes requests
configuration

accesses /
manipulates

uses

observes changes

applies configuration

accesses / manipulates

Client

Server

Collaboration
Service

View Customization
Components

Figure 3: Architectural Overview

Figure 3 provides an architectural overview of the components (i.e., both
server-side and client-side) and interactions in our approach that are needed to
realize the required View Customization functionality. The left-hand column of
the figure depicts the core components of the MVVM architecture. In contrast
to the classic MVVM architecture, in our approach the ViewModel does not
directly access/manipulate the shared Model (i.e., the shared application state).
Instead, it accesses/manipulates only a local copy of the shared Model. That
is, a Collaboration Service, which is the cornerstone of a real-time collaborative
Web application, ensures that the server-side shared Model is constantly kept in
sync with all client-side copies of it. While the Collaboration Service allows us
to let users collaboratively work on the same Web document, it certainly does
not provide means for constraining (e.g., disabling, locking, or hiding) certain
control elements in the UI for certain users. Consequently, the View Service
uses the central RBAC Service to compute ViewModel configurations. Although
these ViewModel configurations are computed server-side, they need to be ef-
fected client-side, i.e., to constrain UI elements in the Views of each client. To
account for this, the client-side View Updater component of each client actively
requests (i.e., pulls) the computed ViewModel configurations from the View Ser-
vice. Eventually, these configurations are then applied to the ViewModel, which
in turn – through data binding – effectively constrain the Views of each client.

4 Supporting Customized Views

This section details how the different components of the architecture outlined in
Figure 3 enable us to enforce access control policies and entailment constraints
directly as the users collaboratively work on a shared Model, i.e., by constraining
certain control elements in the UI for certain subjects.

Firstly, we want to exemplify our UI customization approach using Figure 4.
The figure is divided in two parts, the client-side part and the server-side part.

134 Paper F

The figure shows that the Model contains only a single property Name which is
mapped 1 to both, a value and a label property in the ViewModel. Next, by
applying the basic MVVM pattern, the two properties are bound 2 to concrete
<label> and <input> HTML elements in the View.

View

ViewModelModel

 {
 Name: 'Peter'
 }

 {
 value: 'Peter',
 label: 'Name',

 disable: false
 }

<label for='name' data-bind='text: label'></label>
<input id='name' type='text' data-bind='value: value, disable: disable' />

View
Service

Customizable
Properties

RBAC
Service

uses

applies

values

1

View
Updater

Client

2
4

5 returns

values

computes

values for

Server

6

3
requests

values

Figure 4: View Customization Example

Next, we assume that the <input> field (and the associated action in the
RBAC model) is constrained by some RBAC policy. To customize the <input>

and dynamically make it enabled or disabled, we add the disable property to
our ViewModel. The name of the property (disable) is added to the set of Cus-
tomizable Properties. That is, we do not want the client to decide about the
value of the disable property on its own. Instead, the server has to compute the
values for each Customizable Property. Thus, the client requests 3 the values
from the server-side View Service. The View Service uses the RBAC Service to
determine the concrete value for the disable property (true if and only if the
client is allowed to change the Name property of the Model). The View Service
returns 4 the list of Customizable Properties together with their customized
values to the client-side View Updater. Next, the View Updater applies 5 these
customized values to the ViewModel. Finally, the property value is automati-
cally reflected 6 in the View, as we have bound the disable property of the
ViewModel to the disabled flag of our <input> field.

Abstracting from the example in Figure 4, the basic idea of our approach is
that the core ViewModel is augmented with additional Customizable Properties.
These properties are used to easily implement customizations in the View (e.g.,
enabling/disabling an <input> field). While the property names are defined and
processed on the client-side, the actual values for these properties are computed
for each user separately on the server side. In summary, the purpose of the
Customizable Properties is twofold:

1. Enablement. At the client-side, these properties have an enabling charac-
ter, i.e. they allow for realizing the customization of the View.

2. Contract. Additionally, they can be considered as a contract between the
ViewModel and the server-side View Service. That is, the client-side View-

Paper F 135

Model defines the set of Customizable Properties and the server-side View
Service provides the actual values for these properties. For instance, if the
server returns a value of true for the disable property (see the example
above), the client is responsible for actually disabling the <input> field in
the client’s View. Hence, the client and the server must have a common view
of the semantics of each property.

4.1 Client-side Updates of the ViewModel

The View Updater is in charge of requesting and applying ViewModel config-
urations from the View Service. We propose a simple request/response style of
communication between these two components.

1 var subject, role,
2 viewModel = {
3 value: ’Peter’, label: ’Name’, // core properties
4 disable: false, visible: true // customizable properties
5 };
6

7 function requestView() {
8 var xhr = new XMLHttpRequest(),
9 uri = ’/viewService?subject=’ + encodeURI(subject) + ’&role=’ + encodeURI(role);

10 xhr.open(’GET’, uri);
11 xhr.onload = function() {
12 var configuration = JSON.parse(this.response); // e.g. {disable: true, visible: true}
13 for (var property in configuration) {
14 viewModel[property] = configuration[property];
15 }
16 };
17 xhr.send();
18 };
19

20 function onModelChange(property, value) { // called whenever the Model changes
21 requestView();
22 viewModel[property] = value;
23 };

Listing 1: A Simple View Updater Example

Listing 1 illustrates an excerpt of the corresponding exemplary client-side
JavaScript code. After firing the request (line 17) we asynchronously process the
response that contains the requested ViewModel configuration. In the example
from Listing 1, the Customizable Properties consist of two properties disable and
visible (line 4). Correspondingly, the ViewModel configuration returned by the
View Service contains concrete values for these two properties, e.g., {disable:

true, visible: true}. The next step is to apply this configuration to our View-
Model. To this end, the JSON-encoded result of the View Service is parsed, and
each entry in the result is applied to the local viewModel variable (lines 12-15).

Having discussed how the View Updater requests and applies ViewModel
configurations, we now draw our attention to the question when it should issue
its requests. In general, we can say that this depends on the application’s context.

136 Paper F

However, in our context, i.e., RBAC and entailment constraints, we can also say
that Views need to be updated exclusively after a Model change has happened.
Whenever a property is changed in the shared Model (i.e., the application state),
all Views need to be re-computed and (potentially) updated. This circumstance
is also reflected in Listing 1 (lines 20-23), where we can see that a new request is
triggered for every Model change that happens (via the onModelSync() callback).

4.2 Server-side Computation of ViewModel Configurations

The computation of ViewModel configurations is done server-side, i.e., by the
View Service. Upon a request, the View Service returns a ViewModel configura-
tion to the requesting client-side View Updater component.

1 function onRequest(subject, role) {
2 var property = ’Name’, // there is just a single ’Name’ property in our model
3 response = {
4 disable: !rbacService.canWrite(subject, role, property),
5 visible: rbacService.canRead(subject, role, property)
6 };
7 return response; // e.g. {disable: false, visible: true}
8 }

Listing 2: Basic View Service Example

For instance, in Listing 2 we can see an excerpt of the implementation of a
very basic View Service4 that is tailored to return a configuration for the set of
Customizable Properties defined in the application code presented in Listing 1. In
essence, the service has to compute values for the two Customizable Properties,
i.e., disable and visible. As we can see (line 4), it “asks” the central RBAC
Service if the provided subject/role combination has the permission to change
(i.e., write) the application’s Model property, i.e., Name. A positive answer (i.e.,
the user has the permission to change the Model property) is reflected with a
disable value of false, which in turn enables the UI element and eventually
allows this specific user to manipulate the Model property in her customized
View. Similarly, the service uses the RBAC Service to determine a value for the
visible property. Eventually, it returns the JSON-encoded configuration (line 7)
to the requesting client. Note, that the required parameters of the service, i.e.,
subject and role could be supplied as URI parameters (as in line 9 in Listing 1).

5 Implementation – The CoCoForm Framework

This section discusses a prototype implementation of our approach, called Con-
strainable Collaborative Forms (CoCoForm)5. We used CoCoForm to implement
and evaluate the e-health record case from Section 2.
4 Note that we chose JavaScript solely for its well-known and concise syntax.
5 A proof-of-concept demo is available at http://demo.swa.univie.ac.at/cocoform2

Paper F 137

Our prototype is based on the OpenCoweb6 framework, which consists of
both, a Collaboration Service (as in Figure 3) and a (client-side) JavaScript
API. The latter allows to subscribe to incoming Model change events, i.e., by
registering a callback function which in turn enables us to trigger our View
Updater component (as in Listing 1).

The View Updater issues simple XMLHttpRequests to obtain ViewModel
configurations from the View Service. The View Service is implemented as a
plain HTTP Service in Java, using the JAX-RS API7, and the configurations
are returned in JSON format. The central RBAC Service, which is utilized by
the View Service, has been presented in previous work [7]. We use a model-driven
approach for defining forms and securing them using access control constraints.
Server-side we internally work with Ecore8 model instances which are marshalled
into JSON for the client-side JavaScript application.

Besides OpenCoweb’s JavaScript API, we use the Knockout9 library for re-
alizing the MVVM pattern in the client-side application code. In particular, we
also use Knockout’s Mapping plugin which allows us to automatically transform
the JSON-encoded Model into a ViewModel. The Mapping plugin also allows
us to easily update the ViewModel whenever the Model changes. Additionally,
we augment the ViewModel with additional visible and editable properties.
We also use Knockout’s template mechanism to (1) create the needed input
fields and buttons on-the-fly and (2) establish data binding using corresponding
data-bind attributes.

1

2

Figure 5: Customized Views and Dynamic Mutual Exclusion with CoCoForm

Motivating Example Revisited Now we want to revisit the dynamic mutual ex-
clusion example from Section 2 and discuss a concrete implementation using
CoCoForm. Figure 5 shows four screenshot excerpts of an example form with

6 OpenCoweb, http://opencoweb.org
7 JAX-RS, http://jax-rs-spec.java.net
8 Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf
9 Knockout, http://knockoutjs.com

138 Paper F

two dynamically mutual exclusive buttons. In particular, these buttons represent
the first and the second signature on a patient record (as described in Section 2).
Figure 5 is vertically split into two columns, i.e., the View of the first user (sub-
ject B) and the second user (subject C). Both subjects are concurrently working
on this form. In the first row (indicated with 1) we can see that both but-
tons are available for both subjects. The mouse pointer in the upper left part
indicates that subject B clicks the first signature button. This click results in a
Model change which triggers the View Updater component of both clients. As
a result, the View Updaters of both clients issue a request to the View Service,
resulting in the updated Views in 2 . While the first button has been disabled
for both clients (which reflects the requirement that any form element can only
be manipulated once), the second button is only disabled for subject B. This is
due to the dynamic mutual exclusion constraint which demands that subject B,
who has just clicked the first button, must be prevented from clicking the second
button (see Section 2). However, subject C is still allowed to click the second
button. In summary, this example illustrates how our approach enforces access
control constraints in real-time collaborative Web applications by dynamically
changing the UIs of each user at runtime.

6 Evaluation

In the following sections we discuss both, our lessons learned and the limitations
of our approach and the findings of the conducted performance evaluation.

6.1 View Service Performance Evaluation

In the context of real-time collaborative Web applications, users typically ex-
pect instantaneous update behavior, which led us to study in how far our UI
customization approach meets this requirement. We identify the View Service as
a potential performance bottleneck. In particular, we anticipate that requests is-
sued by a potentially large number of users (i.e., resulting from a Model change)
need to be handled concurrently by CoCoForm’s View Service.

All measurements have been conducted on a machine equipped with a 2.4
GHz dual core CPU, 8 GB RAM, running Ubuntu GNU/Linux 12.10. Both,
the View Service and the testing tool, i.e., Apache’s ab tool10, ran on the same
machine. Hence, the measurements are free from any network-induced effects
such as latency, jitter and so on.

Figure 6 depicts the average response times of both, the actual View Service
(solid line) and a “Null” (i.e., no computation at all) Service (dashed line), for a
given number of concurrent requests. For instance, in the case of 600 concurrent
requests, the average response time for all clients is roughly 200 ms while the
response time of the Null Service is roughly 50 ms. This means, that in this case
it takes roughly 150 ms to compute a single ViewModel configuration, while the
rest of 50 ms accounts for the underlying communication and Web Service stack.

10 Apache ab tool, http://httpd.apache.org/docs/2.4/programs/ab.html

Paper F 139

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Concurrent Requests

View Service:
Null Service:

Figure 6: View Service Response Times

The evaluation results indicate that our View Service implementation has
linear scalability. Even in the case of 2000 users working on the same form
document collaboratively, the average response time remains well below a second.
In our experiment, the View Service’s response times amount to approximately
four times the response times of the Null Service. As the Null Service represents
the theoretical minimum that is possible for the given Web Service framework,
we consider the performance overhead acceptable.

6.2 Lessons Learned

We implemented the CoCoForm prototype (see Section 5) to demonstrate the
feasibility of our approach (see Section 4). We showed that access control policies
and entailment constraints in the context of real-time collaborative Web appli-
cations can effectively be enforced by dynamically constraining UI elements for
certain subjects. In the following paragraphs we want to discuss our lessons
learned and the limitations of our approach.

Our approach is complementary to currently available frameworks and solu-
tions that support the development of real-time collaborative Web applications
such as Apache Wave11, ShareJS12 and OpenCoweb (see Section 5). This is due
to the fact that it is completely decoupled from the collaborative aspects of the
application. In essence, supporting customized views using our approach merely
requires the deployment of a single, dedicated and self-contained View Service as
well as hooking-in the View Updater code into the client-side application code.

Although our approach is built upon the MVVM pattern, it does not exclude
other approaches (e.g., the classic Model-View-Controller pattern). Instead, we
argue that our approach can coexist with others. In that case, the ViewModel is
solely used to realize the customizable parts of the View. Hence, it just contains
the set of Customizable Properties. The only requirement is that the correspond-
ing DOM nodes (e.g., <input> elements) are augmented with additional data
binding attributes (e.g., data-bind). Note that this even works in the case of

11 Apache Wave, http://incubator.apache.org/wave
12 ShareJS, http://sharejs.org

140 Paper F

dynamically generated (i.e., generated using JavaScript code) DOM nodes, as
long as it is possible to add the data binding attributes.

A major concern – especially in the context of real-time collaborative Web
applications – is the ability to apply the View customization nearly instanta-
neously. In other words, the response times of the View Service must be kept
low. Keeping the response time low with a growing number of simultaneously
connected users, requires that the system is able to scale. Our View Service it-
self is completely stateless, as (1) each request contains all necessary information
(e.g., subject and role) that is needed to compute a ViewModel configuration and
(2) no information at all needs to be persisted. This stateless nature as well as
the simple request/response style of communication between the View Updater
and the View Service allows for scaling horizontally in a straightforward man-
ner, i.e., the communication can be routed through a load-balancing proxy that
distributes each request among multiple instances of the service.

However, the request/response communication style also comes with a couple
of challenges. For example, there is the issue of “the needless request”. This is
the case when the View Service returns a ViewModel configuration that is not
different from the currently active one. Hence, we could have saved both client-
side and server-side computing resources (e.g., CPU time, network bandwidth,
etc.) if we simply had not issued this “needless request” in the first place. This
issue can be addressed using a push approach (instead of the presented pull
approach). That is, the View Service would selectively push new ViewModel
configurations to the clients only if it is necessary (i.e., at least one ViewModel
property needs to be changed). However, this push approach introduces a certain
amount of complexity to the View Service. For instance, it would require an
explicit session handling, i.e., in a push scheme we have to maintain a list of
connected clients to correctly update the corresponding ViewModels. Moreover,
a push scheme would also require to keep track of each client’s ViewModel to
determine if we need to push a new ViewModel to a particular client. In summary,
the push approach allows for avoiding “needless requests” (in fact, no requests are
made at all) while the pull approach comes with a lower complexity, especially
when scaling (i.e., when multiple instance of the View Service have to coordinate
session with each client’s ViewModel configuration). Another idea to – at least –
mitigate this problem would be a more efficient client-side triggering logic. For
instance, we could provide the clients with a list of Model properties that are
not constrained by any access control constraint at all. Then, the clients would
not need to request a new ViewModel configuration whenever a Model change
event arrives that is contained in the list of unconstrained properties.

In our approach access control policies and entailment constraints are en-
forced client-side, i.e., by constraining UI elements. From a security perspec-
tive, however, we often cannot trust code that is executed on the client (i.e.,
the browser). The reason is that we can not prevent a potential attacker from
modifying the code to be executed. For instance, an attacker might be able to
change the ViewModel configuration to gain access to a constrained UI element
and eventually pass a Model change event (i.e., concerning a constrained Model

Paper F 141

property) to the Collaboration Service. However, we could contain the effects of
such client-side code injections by preventing such unauthorized Model changes
(1) from being applied to the server-side Model and (2) from being distributed
to other session participants. This can be achieved by routing all incoming (i.e.,
coming from the clients) Model change events trough an enforcement proxy. This
proxy uses the RBAC Service to decide if it should forward the event to the Col-
laboration Service (i.e., in case the client has the permission to change the Model
property) or not. This guarantees that client-side code injections do not lead to
server-side Model changes or impact session participants.

Finally, our approach assumes that the Model is being synchronized with
all clients. That is, all clients “see” exactly the same Model. However, if this
Model contains sensitive information, this might be an issue. We will address
this problem as part of our ongoing research.

7 Related Work

In this section we discuss related work in the area of customized and shared
application views, collaboration platforms as well as access control enforcement.

Customized and Shared Application Views. Similar to customized
views in our approach, Koidl et al. [12] propose user-specific Web site rendering.
However, their approach aims at user-centric personalization of Web experience,
whereas the customized views in our approach result from RBAC policies and
entailment constraints. An interesting aspect in their solution is that the per-
sonalization is cross-site, i.e., it spans the Web sites of multiple providers. Our
approach currently does not implement cross-provider policies. However, we pre-
sented a related approach for cross-organizational access control in Web service
based business processes in [9]. As part of our future work, we will integrate
cross-site capabilities in our approach for real-time collaborative Web applica-
tions. Berry et al. [2] have applied role-based view control to desktop applica-
tions. Their approach captures the virtual framebuffer of application windows
and applies blurring, highlighting, pixelizations, and other manipulations over
the rendered view. Our approach benefits from the fact that manipulation of Web
user interfaces is easier to achieve; using the path to the target DOM element,
our client-side View Updater takes care of customized view manipulations.

Collaboration Platforms. The seminal work of Sun et al. [19] proposes
the transparent adaptation (TA) approach to convert single-user applications
into collaborative multi-user applications. The cornerstone of TA is operational
transformation (OT) [4]. Our approach is orthogonal to OT: the RBAC policies
and entailment constraints provide an application workflow with well-defined re-
sponsibilities, and we maintain document consistency by allowing only sequences
of operations that comply with this workflow. Farwick et al. [5] discuss an ar-
chitecture for Web-based collaborative metamodeling. Their framework allows
multiple users to work on graphical meta-models collaboratively. Modifications
of the (meta-)models are secured by basic access control measures, but in con-
trast to our work, they do not explicitly address customized views and dynamic

142 Paper F

updates resulting from the enforcement of RBAC entailment constraints. Hein-
rich et al. [8] present a generic collaboration infrastructure aimed at transforming
existing single-user Web applications into collaborative multi-user Web applica-
tions by synchronizing DOM trees. In other words, their approach makes sure
that the DOM trees of all clients in a collaborative session is constantly kept in
sync. As we strive for customizing the DOM tree for each client, this approach is
completely at odds with ours. Consequently, we require synchronization to take
place at the model-level instead of the view-level (as in [8]).

Security and Access Control Enforcement. A plethora of approaches
have been presented for integrating security and access control in Web appli-
cations. Joshi et al. [10] provide an early study on generic security models for
Web-based applications. Starnberger et al. [16] use smart card based security
and discuss a generic proxy architecture to enforce authorizations. In [1], Bel-
chior and colleagues model RBAC policies using RDF triples and N3Logic rules.
Mallouli et al. [13] use extended finite state machines (EFSM) to model sys-
tems with OrBAC [11] (Organization Based Access Control) security policies.
However, none of these approaches addresses the enforcement of access control
policies and entailment constraints in dynamic real-time Web applications.

8 Conclusion and Future Work

In this paper, we demonstrate that access control policies and constraints –
in particular entailment constraints – in the context of real-time collaborative
Web applications can effectively be enforced by dynamically constraining UI el-
ements for certain subjects. We show that our service-based approach can be
used to realize the corresponding UI view configuration functionality and we
provide evidence that it is potentially capable of meeting the – especially in the
context of real-time collaborative Web applications important – requirement of
nearly instantaneous update behavior, even for a large number of simultaneously
connected users. Although the client-side part of the UI view configuration func-
tionality is built upon the MVVM pattern, we show that it can easily coexist
with others.

As future work we will look into privacy issues (see Section 6.2) and apply
our approach to other types of collaborative processes. In particular, we are in-
terested in establishing the concept of entailment constraints in more dynamic
processes (e.g., text editing or modeling) where we will have to deal with com-
pletely dynamic (i.e., changing at runtime) access control and constraint models.

References

1. Belchior, M., Schwabe, D., Silva Parreiras, F.: Role-based access control for model-
driven web applications. In: 12th International Conference on Web Engineering
(ICWE). pp. 106–120 (2012)

2. Berry, L., Bartram, L., Booth, K.S.: Role-based control of shared application views.
In: 18th ACM symposium on User interface software and technology (UIST). pp.
23–32 (2005)

Paper F 143

3. Bertino, E., Ferraria, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security 2(1), 65–104 (1999)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD
Record 18(2), 399–407 (1989)

5. Farwick, M., Agreiter, B., White, J., Forster, S., Lanzanasto, N., Breu, R.: A web-
based collaborative metamodeling environment with secure remote model access.
In: 10th International Conference on Web Engineering (ICWE). pp. 278–291 (2010)

6. Fowler, M.: Presentation model. Essay, July (2004)
7. Gaubatz, P., Zdun, U.: Supporting entailment constraints in the context of collab-

orative web applications. In: 28th Symposium On Applied Computing (2013)
8. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web

applications for shared editing: a generic transformation approach. In: Proceedings
of the 21st international conference on World Wide Web. pp. 1057–1066 (2012)

9. Hummer, W., Gaubatz, P., Strembeck, M., Zdun, U., Dustdar, S.: An integrated
approach for identity and access management in a SOA context. In: 16th ACM
Symposium on Access Control Models and Technologies (SACMAT) (2011)

10. Joshi, J.B.D., Aref, W.G., Ghafoor, A., Spafford, E.H.: Security models for web-
based applications. Communications of the ACM 44(2), 38–44 (2001)

11. Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C.,
Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
4th IEEE Int. Workshop on Policies for Distributed Systems and Networks (2003)

12. Koidl, K., Conlan, O., Wade, V.: Towards user-centric cross-site personalisation.
In: 11th International Conference on Web Engineering (ICWE). pp. 391–394 (2011)

13. Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens, F.: A formal ap-
proach for testing security rules. In: 12th ACM symposium on Access control mod-
els and technologies (SACMAT). pp. 127–132. ACM (2007)

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role- based access control mod-
els. Computer 29(2), 38 –47 (1996)

15. Smith, J.: WPF apps with the Model-View-ViewModel design pattern. MSDN
magazine (2009)

16. Starnberger, G., Froihofer, L., Goeschka, K.M.: A generic proxy for secure smart
card-enabled web applications. In: 10th International Conference on Web Engi-
neering (ICWE). pp. 370–384 (2010)

17. Strembeck, M.: Scenario-driven Role Engineering. IEEE Security & Privacy 8(1)
(January/February 2010)

18. Strembeck, M., Mendling, J.: Generic algorithms for consistency checking of
mutual-exclusion and binding constraints in a business process context. In: On
the Move to Meaningful Internet Systems (OTM). pp. 204–221 (2010)

19. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent adaptation of
single-user applications for multi-user real-time collaboration. ACM Transactions
on Computer-Human Interaction 13(4), 531–582 (2006)

20. Wainer, J., Barthelmes, P., Kumar, A.: W-RBAC - A Workflow Security Model
Incorporating Controlled Overriding of Constraints. International Journal of Co-
operative Information Systems (IJCIS) 12(4) (Dec 2003)

144 Paper F

Paper G

Enforcing Entailment Constraints in

Offline Editing Scenarios for

Real-time Collaborative Web

Documents

The subsequent paper has been published as follows:

P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Enforcing Entailment Con-

straints in Offline Editing Scenarios for Real-time Collaborative Web Documents. In 29th

Symposium On Applied Computing, Gyeongju, Korea, March 2014.

This paper further extends the concepts presented in Paper E and Paper F. In par-

ticular, we identified a potentially weak spot of existing solutions for enforcing access

control restrictions in service-based systems (including our own previously presented

work). Namely, they typically rely on a central service, the policy decision point. How-

ever, for use cases with unreliable or limited connectivity, such as mobile devices, a

permanent connection to this centralized policy decision point can not be guaranteed.

Therefore, we tackled this problem by proposing a novel approach that includes methods

for client-side enforcement of access control constraints for offline users, and merging

of offline changes, that enables users to edit such access constrained shared documents

offline. The proposed approach includes a generic conflict detection and resolution ap-

proach that attempts to resolve merge conflicts that are inherent to access constrained

documents automatically while prioritizing online users and maximizing the number of

filled out data fields in a document. Eventually, we substantially extended our CoCoForm

prototype implementation and conducted extensive performance evaluations.

145

Enforcing Entailment Constraints in Offline Editing
Scenarios for Real-time Collaborative Web Documents

Patrick Gaubatz1, Waldemar Hummer2, Uwe Zdun1 and Mark Strembeck3

1Faculty of Computer Science
University of Vienna

{first.last}@univie.ac.at

2Distributed Systems Group
Vienna University of Technology
hummer@infosys.tuwien.ac.at

3Institute for Information Systems
WU Vienna

mark.strembeck@wu.ac.at

ABSTRACT

Real-time collaborative Web applications allow a multitude
of users to concurrently work on a shared document. Es-
pecially in business contexts it is often necessary to be able
to precisely define and restrict who is allowed to edit which
data field of such a shared document. Existing solutions for
enforcing such access control restrictions typically rely on a
central service, the policy decision point. However, for use
cases with unreliable or limited connectivity, such as mobile
devices, a permanent connection to this centralized policy
decision point can not be guaranteed. To address this prob-
lem, we present a novel approach that includes methods for
client-side enforcement of access control constraints for of-
fline users, and merging of offline changes, that enables users
to edit such access constrained shared documents offline. We
propose a generic conflict detection and resolution approach
that attempts to resolve merge conflicts that are inherent
to access constrained documents automatically while prior-
itizing online users and maximizing the number of filled out
data fields in a document. In addition, we discuss and eval-
uate our approach via a prototype implementation.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Web Appli-
cations; D.2.2 [Software Engineering]: Design Tools and
Techniques

Keywords

Document Merge, Conflict Detection, Conflict Resolution,
Authorization, Access Control Enforcement

1. INTRODUCTION
Real-time collaborative Web applications such as Google

Docs or Etherpad aim to efficiently support the joint work
of team members, allowing them to collaboratively work on
the same Web document at the same time. While such text
based applications are probably the most popular example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

of collaborative Web applications today, their use in typical
business contexts is limited as many business applications
usually deal with strict, standardized forms with precisely
specified text fields (see, e.g., [11]). Another crucial aspect
of business applications is access control. The general goal
of our work is to address this combination of form-based
collaborative Web applications with access control; in this
paper, we specifically focus on offline editing of real-time col-
laborative Web forms which have access control constraints.
Role-based access control (RBAC) [17] is the de-facto

standard for access control in software systems. In RBAC,
roles are used to model different job positions and scopes
of duty within a system. These roles are equipped with
permissions to perform tasks. Human users (subjects)
are assigned to roles according to their work profile. For
example, in a real-time collaborative Web document for
the e-health domain only subjects assigned to the role
physician shall be allowed to prescribe medications by
filling in the corresponding text field of a document. To
enforce a four-eyes principle, a second physician shall
check and sign these prescriptions. In this example the
role physician is equipped with both permissions, i.e.,
prescribing and signing medications. To prevent a single
subject from performing both tasks and undermining
the four-eyes principle we have to constrain these two
tasks. Entailment constraints (see, e.g., [6, 20, 22]) provide
means for placing such restrictions on the subjects who
can perform a task x given that a certain subject has
performed another task y. Mutual exclusion and binding
constraints are typical examples for entailment constraints.
For instance, a dynamic mutual exclusion constraint can
be used to realize the four-eyes principle. In particular, it
defines that two subjects must not perform two mutually
exclusive tasks of the same Web document.
The decision if a specific subject should be granted the

permission to perform a task (e.g, filling in a field) is called
authorization decision. In the context of Web-based en-
vironments, authorization decisions are typically delegated
to a central service, the Policy Decision Point (PDP) (see,
e.g., [14]). As a consequence, using a Web application that
is subject to access control usually requires a user’s device to
have reliable network connectivity (to be able to access the
PDP). However, the increasing importance of mobile com-
puting and mobile devices in the context of business applica-
tions demands solutions that enable users to continue editing
(entailment constrained) collaborative Web documents even
if a reliable network connection can not be guaranteed. Such
unreliable network connections frequently occur if the user

146 Paper G

is on an airplane, in a train, in a basement, or in a rural
area. To the best of our knowledge, existing literature does
neither consider the enforcement of entailment constraints
for offline editing of collaborative Web documents, nor does
it provide a systematic approach for merging actions that
have been performed offline on a shared collaborative Web
document that is subject to entailment constraints.

In this paper, we therefore propose a novel approach to
support access control enforcement for offline users. In our
approach, the offline changes on a Web document are autho-
rized and recorded at the client-side. After re-establishing a
network connection the corresponding changes are merged
with the online, collaborative Web document. To handle po-
tential violations of entailment constraints that may result
from merging changes that were performed offline, our ap-
proach includes automated conflict detection and resolution
procedures. In addition, our approach allows for prioritizing
online performed changes (over changes that were performed
offline) and maximizes the number of filled out data fields
in a Web document.

The main contributions of this paper are as follows:

• We propose a system architecture that enables users
of real-time collaborative Web applications to edit en-
tailment constrained Web documents offline.

• We discuss how merge conflicts are inherent to editing
such constrained Web documents offline and present
a merge approach capable of detecting and resolving
these conflicts automatically.

• We explain how the approach can be mapped to al-
ready existing Web browser technologies and APIs.

• We discuss performance and scalability measurements
of the implemented prototype and evaluate the degree
of automation of the proposed merge approaches.

The structure of this paper is as follows: Section 2 mo-
tivates our approach using an example scenario. Section 3
presents the conceptual details of our approach. We discuss
our prototype implementation in Section 4 and evaluate the
approach in Section 5. After a discussion of related work in
Section 6, we conclude in Section 7.

2. MOTIVATING SCENARIO
For illustration, we consider a collaborative Web app-

lication for maintaining patient health records. Figure 1a
shows a simplified form with two text fields (T and M) and
a button (S). A physician is supposed to enter a therapy
plan into text field T. Text field M is used to prescribe a
specific medication. The hospital requires that only the
physician who originally proposed a therapy plan is allowed
to prescribe the medication. Entailment constraints (see,
e.g., [6, 20,22]) provide means for defining such restrictions.
In this particular example, a subject-binding (SBind) con-
straint defines that the subject entering text field M must be
the same that has filled in text field T. Moreover, to enforce
a four-eyes principle, the hospital also requires prescriptions
to be confirmed (button S) by a different physician. Hence,
a dynamic mutual exclusion (DME) constraint is used to
define that the subject filling in text field M must not be
allowed to click button S.

We now consider subjects A, B and C who are concur-
rently editing this form. Figure 1b shows that Subject A,

T:

M:

S:

S
B
in

d

DME DME

(a) Constraints

A
enters

'foo'

fooT:

M:

S:

…online
device

(b) Enforce-
ment

fooT:

M:

S:

✔

✘ A

offline
device

…

(c) Offline
Enf.

fooT:

M:

S:

C

clicks

B

(d) Con-
flicts

Figure 1: Exemplary Collaborative Web Application

whose device is currently online, fills in field T. As a result,
the system must disable text field S for Subject A (indi-
cated by a gray background) in order to prevent violation of
the DME constraint. Now, suppose that Subject A loses its
network connection. Ideally, the Web application should al-
low Subject A to continue working offline, while continuing
to enforce the entailment constraints (i.e., by allowing A to
edit text field M and preventing A from editing text field S,
see Figure 1c) even without a connection to the central PDP.
In such a scenario, authorization decisions are (temporarily)
made at the client side.
After Subject A has filled out T, both Subject B and C can

potentially click S. Assume in Figure 1d that Subject C also
(temporarily) loses network connectivity, while B confirms
the prescribed medication by clicking S. Since C is offline and
can not be informed of this action, C is also (locally) per-
mitted to click the same button. Eventually, as Subject C

re-establishes its network connection, the Web application
is confronted with conflicting actions, because only a single
confirmation can be stored in the document. The naive ap-
proach would be to enforce a first-come-first-serve principle
by blocking C’s action. However, this approach may be sub-
optimal if the global goal is to fill out as many form fields as
possible. Moreover, it may result in violations of potentially
defined entailment constraints. Thus, if we consider that C

submits an entire set of actions performed offline, it may
for instance be advantageous to revert B’s changes and give
precedence to C’s.
In summary, we identify two main challenges:

• If a client loses connectivity, both the authorization de-
cision making and the enforcement of entailment con-
straints have to be conducted at the client side instead
of relying on the central server-side PDP.

• Offline editing of entailment constrained real-time col-
laborative Web documents may lead to conflicts that
must be detected and resolved automatically.

3. OFFLINE EDITING APPROACH
Figure 2 provides an architectural overview of the compo-

nents and interactions used to support offline editing for an
entailment constrained collaborative Web document.
The left-hand column of the figure depicts the core com-

ponents of a real-time collaborative Web application. A Col-

laboration Service allows users to concurrently work on the
same collaborative Web document by constantly keeping the
server-side Shared Model (i.e., the data model/content of a
concrete Web document) in sync with all client-side Local

Models (i.e., exact copies of the Shared Model).

Paper G 147

Online Enforcement
Components

Collaboration
Components

Shared
Model

Local
Model

Central
PDP

synchro-
nizes

observes

observes changes

C
li

e
n

t(
s
)

S
e
rv

e
r

Collaboration
Service

Offline Enforcement
Components

Merge Service
+

Central PEP

Local
PDP

uses

changes

Change Tracker
+

Local PEP

uses

Access Control
Model Repository

requests model

submits sets
of changes

C
o

ll
a
b

o
ra

ti
v
e
 W

e
b

 A
p

p
li

c
a
ti

o
n

requests model

Figure 2: Architectural Overview

To prevent a user from unauthorized manipulation of pro-
tected parts of this Shared Model, our approach requires all
model changes (i.e., changes of data fields within a Web doc-
ument) to be routed through a Merge Service which acts as
the central Policy Enforcement Point (Central PEP). This
service enforces the authorization decision of the Central

PDP. More specifically, the Merge Service only applies a
change if the Central PDP confirms that the user actually
has the permission to perform that change.

Supporting offline editing builds upon three basic ideas:

1. We persist the Local Model and duplicate the function-
ality of the Central PDP to the clients, allowing them to
make authorization decisions locally (see Section 3.1).

2. The tracked changes of the Local Model on the clients
are submitted to the central Merge Service as soon as
the network connectivity is regained (see Section 3.2).

3. We strive to detect and automatically resolve conflicts
that result from merging offline performed changes
with the Shared Model (see Section 3.3).

3.1 Supporting Client-side Enforcement
Figure 3a depicts the steps that are triggered whenever a

user makes changes to their Local Model.
The Change Tracker component observes such changes. If

the user is online, the change is directly submitted to the
Merge Service, where it is checked for violations of entailment
constraints and eventually applied to the Shared Model. In
case of violations, the change is discarded and the corre-
sponding data field in the client’s Local Model is reverted
to its previous state. Otherwise, if the user’s device is of-
fline, the Change Tracker requests an authorization decision
from the Local PDP to determine if the change violates any
constraints, in which case it gets reverted. Otherwise, the
change is tracked and stored by the client until a merge with
the Shared Model is possible.

The Central PDP and the Local PDP require the same
entailment constraint models, which reside on a central Ac-
cess Control Model Repository service. To guarantee that the
user can continue working offline, the Local PDP requests
and persists the current model state on client side. Ideally
this is done as soon as a specific Web document is accessed
for the first time.

observe
local

model
change

[else]

[device
online]

submit
model
change

check for
access
control

violations

track
model
change

check for
access
control

violations

apply
model

change to
shared
model

revert
model
change

[else]

[else]

[vio-
 lations]

Client Server

[vio-
 lations]

create
model

snapshot

(a) Steps that are triggered
when a user changes a
data field

observe
regained

connectivity

submit
tracked
model

changes

check for
tracked
model

changes

restore
model

snapshot

merge
changes

with
shared
model

revert
model
change

[violations]

[tracked
changes]

[else]

apply
changes to

model
snapshot

check for
access
control

violations
in resulting

model

[else]

Client Server

(b) Steps that are triggered
when a user regains
network connectivity

Figure 3: Client-side Enforcement and Merging

3.2 Merging Offline Performed Changes
The Change Tracker tracks and stores model changes per-

formed offline. Figure 3b shows the steps that are triggered
as soon as a user regains network connectivity. First, the
Change Tracker checks if (newly) tracked model changes ex-
ist. If no model changes were tracked the process ends. Oth-
erwise, it submits the set of changes to the Merge Service.

Before merging the changes with the Shared Model, the
Merge Service must first ensure that all offline changes were
legitimate. This additional step is crucial to avoid illegiti-
mate model changes (e.g., in case the Local PDP has been
tampered with). Checking the legitimacy of changes in a
document requires the Central PDP to be aware of who (e.g.,
Subject x using Role y) has performed which changes on a
document. Therefore we propose a snapshot-and-replay ap-
proach where the Shared Model is versioned, such that a
snapshot of the current state is created for every change.
For each incoming merge request the Merge Service restores
the corresponding snapshot of the Shared Model that a set
of offline changes is based on. Finally, the Merge Service

applies (“replays”) these offline changes to the snapshot and
checks the validity of the resulting model. Thereby, the in-
tegrity of the client-side Local PDP can be verified and only
legitimate changes are merged with the Shared Model.

The actual merge procedure involves the Shared Model and
a single client’s set of offline changes. In essence, we apply
each change to the corresponding data field of the Shared

Model. To avoid data inconsistencies (if two clients simulta-

148 Paper G

Conflict Description

Duplicate Field The same field is filled out twice.

Subject-binding
(SBind) Violation

SBind constrained fields are filled
out by different subjects.

Role-binding
(RBind) Violation

RBind constrained fields are filled
out using different roles.

Dynamic Mutual Exclusion
(DME) Violation

DME constrained fields are filled
out by the same subject.

Static Mutual Exclusion
(SME) Violation

SME constrained fields are filled
out by the same subject or using
the same role.

Table 1: Potential Merge Conflicts

neously submit their changes), the Merge Service acquires a
lock on the Shared Model. Simultaneously submitted merges
are therefore serialized, i.e., processed sequentially.

For illustration, consider the exemplary merge situation
depicted in Figure 4a (Figure 4b is discussed in Section 3.3).
By filling out text field T, Subject A increases the Shared

Model’s version counter from V0 (i.e., the empty document)
to V1. At the same time Subject B, which is offline and still
working with V0, clicks button S. Afterwards, Subject B sub-
mits this offline change and eventually (i.e., after restoring
V0, applying the change and validity checking the result-
ing model) text field T is merged with the current Shared

Model’s version V1, resulting in the new merged version V2.

+

A B
enters clicks submits

B

V
1

V
0'

V
2

fooT:

M:

S:

T:

M:

S:

fooT:

M:

S:

(a) Non-conflicting Merge

+

A B
enters

V
1

V
0''

fooT:

M:

S:

T:

barM:

S:

enters

(b) Conflicting Merge

Figure 4: Exemplary Merge Situations

3.3 Detecting and Resolving Merge Conflicts
Offline editing for real-time collaborative Web documents

may inevitably lead to merge conflicts. Let us reconsider the
exemplary merge situation described above (see Figure 4). If
we suppose that Subject B fills out text fieldM while working
offline, we are confronted with a merge conflict situation that
is depicted in Figure 4b. More specifically, Subject B’s offline
completed text field M can not be merged without violating
the defined subject-binding constraint (see Figure 1a).

In general, a merge conflict happens either when the same
field is filled in twice (i.e., online and offline) or when a merge
results in a model that violates entailment constraints. We
systematically analyzed the respective entailment constraint
models (see, e.g., [6,20,22]) to compile a list of conflict types
that may arise when merging data fields that are subject to
such constraints. Table 1 depicts this set of conflict types.

Detecting merge conflicts is straightforward. However, re-
solving them (semi-)automatically is not. First of all, there
is not a single “one-size-fits-all” resolution strategy (see, e.g.,
[18]). For instance, to resolve a Duplicate Field conflict we
could choose between the following resolution strategies: (1)
concatenate both (field) values, (2) try to merge both val-

Name Return Value

getConstraints Set of constraints a field is subject to.

getConstrainedField Returns the field that is bound to the same
constraint as field.

getSubject Subject that has filled out field.

getRole Role that has filled out field.

violates true if field and anotherField violate con-
straint.

Table 2: Helper Procedures for Algorithm 2 and 3

ues into a single value, (3) move one value to an attachment
and let a human person manually resolve the conflict, or
(4) discard one value. However, Strategies 1 and 2 are not
always sensible (e.g., if a subject-binding exists), and since
Strategy 3 does not resolve conflicts instantaneously we will
focus on Strategy 4 for the rest of this paper.
The main challenge of this strategy is to decide which val-

ues to discard. For instance, in Figure 4b we could discard
Subject B’s value for field M and leave the Shared Model un-
changed. Alternatively, we could revert Subject A’s field T

and merge Subject B’s field M instead. However, by revert-
ing and ultimately deleting Subject A’s field partially sacri-
fice the main idea of the real-time collaboration approach:
keeping a document in sync for online users that are par-
ticipating in an online collaborative session. Therefore, we
allow that changes performed by online users can be priori-
tized over ones that have been performed by offline users.

Algorithm 1 Basic Merge Algorithm

1: procedure BasicMerge(model, offChanges, offWeight)
2: fieldsToDelete← FieldsToDelete(model, offChanges)
3: if |fieldsToDelete| ≤ |offChanges| × offWeight then

4: for each fieldToDelete in fieldsToDelete do

5: model← model \ fieldToDelete
6: end for

7: for each fieldToMerge in offChanges do

8: model← model ∪ fieldToMerge
9: end for

10: end if

11: end procedure

To devise a generic merging approach based on the
assumption that prioritization of online changes is crucial
in the context of real-time collaboration, we introduce a
decision criterion that determines whether a set of online
changes should be deleted in order to be able to merge
another set of offline changes. This decision is reflected
in Algorithm 1. Note, that all required helper procedures
are listed in Table 2. In our approach, a set of offline
changes (offChanges) gets merged only if the set of fields
that needs to be deleted (fieldsToBeDeleted) is smaller
than the former. This approach ensures that a merge—if
performed—never decreases the number of completed data
fields in the Shared Model. To support prioritization of
online completed fields we introduce a weighting factor
(offWeight) that is used to discriminate the set of offline
changes (as seen in line 3 of Algorithm 1). For instance, a
factor of 0.5 means that removing one online completed field
is equally bad as discarding two offline completed fields.
Applying this to Figure 4b (i.e., fieldsToDelete = {T} and
offChanges = {M}) we get 1 ≤ 1 × 0.5, decide against
merging and discard the given set of offline changes.
Algorithm 1 relies on Algorithm 2 to determine the set

of fields that would have to be deleted in order to merge

Paper G 149

Algorithm 2 Fields-to-Delete Algorithm

1: procedure FieldsToDelete(model, offChanges)
2: fieldsToDelete← ∅
3: for each field in offChanges do

4: if field ∈ model then

5: fieldsToDelete← fieldsToDelete ∪ field
6: end if

7: for each constraint in getConstraints(field) do

8: otherField← getConstrainedField(constraint, field)
9: if otherField ∈ model

and violates(field, otherField, constraint) then

10: fieldsToDelete← fieldsToDelete ∪ otherField
11: end if

12: end for

13: end for

14: return fieldsToDelete
15: end procedure

the set of offChanges with the Shared Model. To account
for Duplicate Field conflicts (see Table 1), Algorithm 2 first
adds all fields (contained in offChanges) that have already
been completed in the Shared Model to the fieldsToDelete
list. The remainder of the algorithm (i.e., lines 7–13) deals
with conflicts that may occur due to violations of entailment
constraints (see Table 1). For instance, regarding Figure 4b
this means that merging Subject B’s field M, requires delet-
ing Subject A’s field T. Otherwise, the subject-binding con-
straint that is associated with fields T and M (see Figure 1a)
would be violated. In general, Algorithm 2 adds all fields to
fieldsToDelete that must necessarily be deleted from the
Shared Model in order to allow offChanges to be merged
without violating any defined entailment constraints.

Algorithm 3 Two-step Merge Algorithm

1: procedure TwoStepMerge(model, offChanges, offWeight)
2: constrained← ∅
3: for each field in offChanges do

4: if getConstraints(field) 6= ∅ then

5: constrained← constrained ∪ field
6: end if

7: end for

8: unconstrained← offChanges \ constrained
9: BasicMerge(model, unconstrained, offWeight)
10: BasicMerge(model, constrained, offWeight)
11: end procedure

Our merge algorithm (i.e., Algorithm 1) realizes an “all
or nothing” approach, i.e., the set of offline changes is either
completely merged or discarded. For instance, the algorithm
might discard a complete set of offline performed changes
just because the set contains a single constrained data field
that required lots of the Shared Model’s data fields to be re-
verted. Consequently, a key to improving this basic merge
approach is to split the set of offline changes up into smaller
subsets and merge these subsets with the Shared Model one
after another. To this end, we propose a two-step approach
(see Algorithm 3) that first tries to merge the distinct set
of unconstrained data fields exclusively. Afterwards, the re-
maining set of constrained data fields is merged. As we show
in Section 5 the two-step merge approach exhibits a signif-
icantly higher chance that a set of offline changes can be
merged than basic merge. However, for large numbers of
fields the basic merge approach yields a better performance.

4. IMPLEMENTATION
This section discusses a prototype implementation that

has been developed to prove the feasibility of our approach.

It is founded on CoCoForm, a Web application framework
for real-time collaboration, supporting access control [10,11].
Our approach is completely decoupled from the collabora-

tive aspects of the application. Thus, it is complementary to
currently available frameworks for the development of real-
time collaborative Web applications, such as ShareJS1 or the
Open Cooperative Web Framework2 (OpenCoweb). In fact,
our prototype extends OpenCoweb, which consists of both,
a Collaboration Service (as in Figure 2) and a JavaScript
API that allows us to keep the Shared Model in sync with
all client-side Local Models. Both, the Change Tracker and
the Local PDP issue simple XMLHttpRequests to submit lo-
cal model changes to the central Merge Service and to re-
quest entailment constraint models from the Access Control

Model Repository. In case of failed requests (i.e., timeout
or error events are emitted) the Change Tracker uses the
Local PDP to determine if a change should be tracked or
not. We implemented the Local PDP (i.e., in JavaScript) in
such a way that it exhibits a runtime behavior that is iden-
tical to the Central PDP’s (which has originally been imple-
mented in Java). The Change Tracker and the Local PDP

leverage the Web Storage API3. More specifically, the win-

dow.localStorage JavaScript object provided by this API
is used to permanently persist tracked model changes, the
required entailment constraint model as well as the Local

Model in the user’s browser. The Change Tracker uses the
window.navigator.onLine attribute as well as the emitted
online event to react to regained network connectivity. The
Application Cache4 feature of HTML5 permanently caches
all required assets (e.g., JavaScript or CSS files) upon ac-
cessing the Web application for the first time. This allows
it to be accessed and executed in offline mode.
All server-side components are implemented in Java.

More specifically, the Merge Service and the Access Control

Model Repository are implemented as plain HTTP Services
using the JAX-RS API. Internally we work with Ecore5

model instances that are marshalled into JSON for the
client-side application code. We use a model-driven ap-
proach for defining forms and documents and securing them
using entailment constraints.

5. EVALUATION
In this section we first evaluate the merge algorithms’ pos-

sible degree of automation as well as the runtime perfor-
mance and scalability of a prototype implementation. Then,
we evaluate the performance and scalability of our prototype
Merge Service. Finally, we contrast two implementation vari-
ants of our proposed snapshotting approach.

5.1 Evaluation of the Merge Algorithms
A crucial part of our approach both in terms of the pos-

sible degree of automation and the overall performance are
the merge algorithms, which we evaluate in this section.
We evaluate the merge algorithms’ possible degree of au-

tomation by analyzing and comparing the percentage of ac-
tually performed merges and of overwritten fields. The eval-
uations have been performed using an exemplary, typical

1http://sharejs.org
2http://opencoweb.org
3http://www.w3.org/TR/webstorage
4http://www.w3.org/TR/html5/browsers.html#offline
5http://www.eclipse.org/modeling/emf

150 Paper G

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

 0

 20

 40

 60

 80

 100P
e
rf

o
rm

e
d

 M
e
rg

e
s
 (

%
)

Offline Weight

Basic TwoStep

(a) Varied Offline Weights

 0

 20

 40

 60

 80

 100

 0 20 40 60

 0

 20

 40

 60

 80

 100 O
v
e
rw

ri
tt
e
n
 F

ie
ld

s
 (

%
)

Unconstrained Fields (%)

Basic TwoStep

(b) Constrained vs. Uncon-
strained Fields

Figure 5: Evaluation of Two Merge Algorithms

document and entailment constraint model with two sub-
jects, one role and four data fields. Three of the data fields
are constrained by subject-binding constraints and the re-
maining field is unconstrained. For this model, we have
calculated all permutations of possible merge combinations.
For these combinations, first, we contrast the basic (i.e.,
Algorithm 1) and two-step merge algorithms (i.e., Algo-
rithm 3), the actually performed merges, and overwritten
fields for different values of the offline weight parameter.
Second, we contrast the performed merges and overwritten
fields for different portions of unconstrained fields to ana-
lyze the impact of changes in the document and entailment
constraint model.

Our approach introduces the notion of an offline weight
as a means of discriminating offline changes (see Sec-
tion 3.3). Figure 5a depicts how the offline weight affects
the automatability, i.e., the chance that a merge can be
performed automatically. For instance, in our exemplary
scenario and an offline weight of 0.4 nearly 16.5% of all
possible merge combinations could be merged using the
basic merge algorithm, while 33% could be merged using
the two-step merge algorithm.

On the other hand, a growing offline weight value leads for
both algorithms to more deleted and eventually overwritten
fields of the Shared Model. Figure 5a provides evidence that
– at least in our exemplary scenario – the two-step merge
algorithm always performs better than the basic merge al-
gorithm, both in terms of a higher number of performed
merges and a lower number of overwritten fields.

While the exact progression of the graphs is specific to our
exemplary model, similar tradeoff graphs can be calculated
for other models. That is, on the one hand, a higher of-
fline weight increases the automatability, and, on the other
hand, it also increases the number of situations where on-
line data fields have to be overwritten. Consequently, there
is no universally optimal offline weight, but it has to be de-
termined empirically for a specific document and entailment
constraint model.

To illustrate and analyze the impact of changes in the doc-
ument and entailment constraint model, we set the offline
weight parameter to 0.5 and change the number of uncon-
strained fields in the document. In Figure 5b we can see the
effects of changing the ratio of constrained vs. unconstrained
fields in our exemplary scenario. Obviously, for a model that
has no constrained fields at all, the results are identical for
both algorithms. If half of all fields in our exemplary model
are unconstrained, the two-step merge algorithm manages to

 0.01

 0.1

 1

 10

 0 2 4 6 8 10

A
v
g
.
E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Number of Fields x 100

Basic TwoStep

(a) Algorithms

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Concurrent Merge Requests

Service Baseline

(b) Merge Service

Figure 6: Performance Evaluations

merge nearly twice (i.e., 62%) as often and exhibits nearly a
seven times lower chance of overwritten fields compared to
the basic merge algorithm. The gap between the two algo-
rithms gets even wider with a growing ratio of unconstrained
fields. In summary, we observed that in both scenarios (i.e.,
with changing offline weights and especially with a grow-
ing number of unconstrained fields in a model) the two-step
merge algorithm exhibits significantly better characteristics
than the basic merge algorithm.
Algorithm 2 has a worst-case runtime complexity of

O (N ×M), i.e., in simplified form we can write O
(

N2
)

.
As a consequence, both merge algorithms (i.e., Algorithm 1
and 3) also have a runtime complexity of O (N ×M).
Because of the quadratic complexity and because Algo-

rithm 3 invokes Algorithm 1 two times, we further stud-
ied the performance impact of both approaches. The pre-
sented measurements are based on our prototype implemen-
tation (see Section 4) and have been conducted on a machine
equipped with a 2.4 GHz dual core CPU, 8 GB RAM, run-
ning Ubuntu GNU/Linux 13.04. The performance is mainly
dependent on the number of fields in a document. Figure 6a
visualizes the average execution time of a merge operation
for various field counts. Note that the y-axis is scaled log-
arithmically. Although the measurements exhibit a signifi-
cantly higher average execution time for the two-step merge
algorithm, the performance penalty should be negligible for
“reasonable” field counts. We consider the execution times
for both approaches to be acceptable, especially when keep-
ing in mind that merges typically happen only occasionally.

5.2 Evaluation of the Merge Service’s Perfor-
mance and Scalability

In addition to the performance evaluations for the merge
algorithms, we analyzed the performance of our prototype
Merge Service. In particular, we analyzed how well ourMerge

Service handles merge requests that are issued simultane-
ously by a potentially large number of users.
Figure 6b compares the average response times of the

Merge Service (using the two-step merge algorithm) and a
“Baseline Service” (i.e., no computation at all), for a given
number of simultaneous requests. For instance, in the case
of 250 requests, the average response time for all clients
is roughly 40ms and 20ms for the Baseline Service. This
means, that in this case it takes roughly 20ms to perform
the actual merge operation, while the remaining 20ms ac-
count for the underlying communication and Web Service
stack. Our results indicate linear scalability and even in

Paper G 151

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Number of Fields x 100

Copy
Log

(a) Memory Consumption

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 2 3 4 5 6 7 8 9 10

A
v
g
.
R

u
n
ti
m

e
 (

m
s
)

Number of Fields x 100

Copy Snapshot
Log Restore

(b) Execution Time

Figure 7: Evaluation of Snapshotting Approaches

the case of 500 users simultaneously submitting their offline
changes, the average response time remains below a tenth of
a second. As the Baseline Service represents the theoretical
minimum that is possible for the given Web Service frame-
work, we consider the performance overhead of our Merge
Service to be acceptable in most scenarios.

Note that we used the same machine and environment as
for the measurements of the merge algorithms. Additionally,
both the services and the testing tool, i.e., Apache’s ab tool6

ran on the same machine. Hence, the measurements are free
from network-induced effects such as latency or jitter.

5.3 Evaluation of Snapshotting Approaches
In Section 3.2 we motivated the need for a versionized

Shared Model and proposed a snapshot-and-replay ap-
proach. A document with n data fields potentially requires
n snapshots (i.e., if the fields are filled out one after the
other). Hence, we measured the consumption of computing
resources with a growing n. More specifically, we contrast
two implementation variants. First, the Copy approach
stores a clone of the complete document for each snapshot.
Second, the Log approach merely stores a log entry (i.e.,
who changed which fields). Figure 7a illustrates the amount
of memory that is required to hold n snapshots of a
document of n data fields in memory for both approaches
using our prototype implementation. Obviously, the Copy
approach requires approximately four orders of magnitude
more memory than the Log approach.
The corresponding (average) time that is needed to create

a single snapshot (i.e., to clone a document) using the Copy
approach is depicted in Figure 7b. As creating a snapshot
using the Log approach has a runtime complexity of O(1) we
can neglect it. On the other hand, using the Log approach
it takes significantly longer to restore a snapshot (i.e., the
Shared Model has to be cloned and all changes that have been
performed after the snapshot version to-be-restored have to
be reverted in the cloned model) than for the Copy approach
(which is O(1)). In summary, we conclude that the Log
approach is considerably more resource efficient than the
Copy approach.

6. RELATED WORK
In this section we discuss existing work in the related areas

of Web collaboration platforms, access control enforcement,
and (Web) document consistency.

6http://httpd.apache.org/docs/2.4/programs/ab.html

Web Collaboration Platforms. Systematic de-
velopment of Web collaboration platforms has received
considerable attention. Heinrich et al. [13] propose a col-
laboration infrastructure aimed at transforming single-user
Web applications into collaborative multi-user applications
by synchronizing DOM trees. Farwick et al. [8] discuss an
architecture for Web-based collaborative meta-modeling.
Their framework allows multiple users to work on graph-
ical meta-models collaboratively. Modifications of the
(meta-)models are secured by basic access control measures,
but in contrast to our work, they do not explicitly address
dynamic updates resulting from merging offline actions
under RBAC entailment constraints. Our work builds on
frameworks and libraries that facilitate the development
of collaborative Web applications. For instance, the Open
Cooperative Web Framework (see Section 4) consists of
a set of JavaScript libraries and a generic Java servlet.
MobWrite7 is another approach for enabling real-time
collaboration. However, it is restricted to synchronizing
HTML forms, and the re-usability and applicability is thus
somewhat limited.
Security and Access Control Enforcement.

Throughout the last years, a plethora of approaches have
been presented for integrating security and access control in
Web applications. Joshi et al. [15] provide an early study on
generic security models for Web-based applications. In [4],
Belchior et al. model RBAC policies using RDF triples
and N3Logic rules. Tackling security on the client side,
Guarnieri et al. [12] propose the GATEKEEPER framework
for authoring and enforcing policies in JavaScript code.
This complements our approach of having a local PDP
component on the client devices. Ahn et al. [1] present
an approach for injecting RBAC into an already existing
Web-based workflow system. They propose a special reverse
proxy for enforcing RBAC rules transparently to the actual
Web application. Sohr et al. [19] and Hummer et al. [14]
propose a similar approach in the context of Web services,
using interceptors that are able to prevent the actual
invocation in case of a policy violation. Several works on
distributed security enforcement, particularly in mobile
networks, complement and have influenced our approach.
For instance, Alicherry et al. [2] support offline nodes by
early distribution of policy tokens among network nodes.
Similarly, Gasmi et al. [9] partition networks into trusted
virtual domains which can operate and manage access
rights independently. Finally, while we focus on access
control, various other issues and threats also need to be
taken into account, as studied by Almorsy et al. [3]. Their
approach utilizes Object Constraint Language to define
vulnerability signatures for threats like SQL injections
or cross site scripting. Based on the signatures, different
mitigation actions are proposed.
Document Consistency. The seminal work of Sun et al.

[21] proposes the transparent adaptation (TA) approach to
develop collaborative multi-user applications. The corner-
stone of TA is operational transformation (OT) [7]. Given
two concurrent operations o1 and o2 resulting in states s1
and s2, the core idea of OT is to transform the parameters
of the operations to execute them on the current state while
maintaining document consistency. Our approach is orthog-
onal to OT: the RBAC policies and entailment constraints

7https://code.google.com/p/google-mobwrite

152 Paper G

provide an application workflow with well defined responsi-
bilities, and we maintain document consistency by allowing
only sequences of operations that comply with this work-
flow. The problem of consistency with concurrent modifica-
tions has also been a core issue in database research. The
general approach of allowing concurrent work, followed by
merging and resolving conflicts is denoted optimistic concur-
rency control [5] in databases. In this sense, the sequence
of offline actions in our approach relates to a transaction in
databases, and during merging the action sequences “com-
pete” with the online changes that have happened in the
meantime. A consistent merging strategy that could be ap-
plied to this problem is discussed and formally verified by
Lin and Mendelzon in [16].

7. CONCLUSION AND FUTURE WORK
In this paper we have shown that offline editing for entail-

ment constrained, real-time collaborative Web documents
can effectively be realized using a combination of client-
side access control enforcement and a document merging
approach. We highlighted that merging such documents is
inherently prone to conflicts and motivated the need for a
merge approach that is capable of detecting and resolving
conflicts automatically. We provided evidence that many
possible conflicts can be resolved automatically and that
both the merge algorithms and the prototype Merge Service

work with acceptable runtime performance and scalability
even for lots of simultaneous merge requests and documents
with lots of data fields. In addition, we demonstrated that
modern Web browsers as well as HTML5 and some of its
accompanying APIs provide a platform that can be used to
implement our novel approach.

Future work will address limitations inherited from
HTML5 and Web browser implementations, such as the
limited client-side storage capacity which be problematic if
we have to deal with huge document and entailment con-
straint models (i.e., tens of thousands of model elements).
Although we have shown that our basic merge approach
works quite well, the characteristics of the two-step merge
approach leads us to believe that there is still room left
for improvements in that area. Another interesting topic
would be to devise an approach for estimating (i.e., instead
of determining it empirically) the optimal offline weight
for a given document and the corresponding entailment
constraint model. Furthermore, we will apply our approach
to other types of collaborative processes. In particular
with regard to dynamic processes (e.g., free text editing or
modeling) we will have to deal with completely dynamic
document and access control and constraint models (i.e.,
models that change at runtime).

8. REFERENCES

[1] G.-J. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting
RBAC to secure a Web-based workflow system. In 5th
ACM workshop on RBAC, pages 1–10, 2000.

[2] M. Alicherry, A. Keromytis, and A. Stavrou. Deny-by-
default distributed security policy enforcement in
mobile ad hoc networks. In 5th SecureComm, 2009.

[3] M. Almorsy, J. Grundy, and A. S. Ibrahim. VAM-aaS:
Online Cloud Services Security Vulnerability Analysis
and Mitigation-as-a-Service. In 13th WISE, 2012.

[4] M. Belchior, D. Schwabe, and F. Silva Parreiras.
Role-based access control for model-driven web
applications. In 12th ICWE, pages 106–120, 2012.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] E. Bertino, E. Ferraria, and V. Atluri. The specifica-
tion and enforcement of authorization constraints in
workflow management systems. TISSEC, 2(1), 1999.

[7] C. Ellis and S. Gibbs. Concurrency control in group-
ware systems. SIGMOD Record, 18(2):399–407, 1989.

[8] M. Farwick, B. Agreiter, J. White, et al. A web-based
collaborative metamodeling environment with secure
remote model access. In 10th ICWE, 2010.

[9] Y. Gasmi, A.-R. Sadeghi, et al. Flexible and secure
enterprise rights management based on trusted virtual
domains. In 3rd ACM STC workshop, 2008.

[10] P. Gaubatz, W. Hummer, U. Zdun, and
M. Strembeck. Supporting customized views for
enforcing access control constraints in real-time
collaborative web applications. In 13th ICWE, 2013.

[11] P. Gaubatz and U. Zdun. Supporting entailment
constraints in the context of collaborative web
applications. In 28th Symposium On Applied
Computing, 2013.

[12] S. Guarnieri and B. Livshits. GATEKEEPER: mostly
static enforcement of security and reliability policies
for javascript code. In USENIX Security’09, 2009.

[13] M. Heinrich, F. Lehmann, T. Springer, and
M. Gaedke. Exploiting single-user web applications for
shared editing: a generic transformation approach. In
21st Int. Conf. on WWW, pages 1057–1066, 2012.

[14] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun,
and S. Dustdar. An integrated approach for identity
and access management in a SOA context. In 16th
ACM SACMAT Symposium, pages 21–30, 2011.

[15] J. Joshi, W. Aref, A. Ghafoor, and E. Spafford.
Security models for web-based applications.
Communications of the ACM, 44(2):38–44, 2001.

[16] J. Lin and A. O. Mendelzon. Merging databases under
constraints. Int. J. of Coop. Inf. Systems, 07(01), 1998.

[17] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer, 1996.

[18] S. Schefer, M. Strembeck, J. Mendling, and
A. Baumgrass. Detecting and resolving conflicts of
mutual-exclusion and binding constraints in a business
process context. In 19th CoopIS, 2011.

[19] K. Sohr, T. Mustafa, X. Bao, and G.-J. Ahn.
Enforcing Role-Based Access Control Policies in Web
Services with UML and OCL. In 24th ACSAC, 2008.

[20] M. Strembeck and J. Mendling. Generic algorithms for
consistency checking of mutual-exclusion and binding
constraints in a business process context. In 18th
CoopIS, pages 204–221, 2010.

[21] C. Sun, S. Xia, et al. Transparent adaptation of
single-user applications for multi-user real-time
collaboration. ACM TOCHI, 13(4):531–582, 2006.

[22] J. Wainer, P. Barthelmes, and A. Kumar. W-RBAC -
A workflow security model incorporating controlled
overriding of constraints. Coop. Inf. Syst., 12(4), 2003.

Paper G 153

154 Paper G

Paper H

Two Controlled Experiments on

Model-based Architectural Decision

Making

The subsequent paper has been submitted as follows:

I. Lytra, P. Gaubatz, and U. Zdun. Two Controlled Experiments on Model-based

Architectural Decision Making. submitted to Information and Software Technology, sub-

mitted first revision in January 2015.

In this paper we presented our third research prototype implementation, called Co-

CoADvISE (Constrainable Collaborative Architectural Design Decision Support Frame-

work). CoCoADvISE is a real-time collaborative Web application that provides means

for making and documenting architectural design decisions in a collaborative way. Such

architectural design decisions have been becoming more and more common for docu-

menting software architectures, in recent years. Recent studies (see, e.g., [65, 74, 75])

also showed that such decisions are usually made in a collaborative manner. However,

there has been little empirical evidence about the supportive effect of reusable architec-

tural knowledge on the effectiveness and efficiency of architectural decision making. To

investigate these aspects, we conducted two separate controlled experiments with novice

architects in which we tested the supportive effect of reusable decision models in decision

making and documentation. We could show that the CoCoADvISE approach significantly

increased both the efficiency and the effectiveness of novice architects.

155

Two Controlled Experiments on Model-based

Architectural Decision Making

Ioanna Lytra∗, Patrick Gaubatz, Uwe Zdun

Software Architecture Research Group, University of Vienna, Austria

Abstract

Context: In recent years, architectural design decisions are becoming more and
more common for documenting software architectures. Rather than describing
the structure of software systems, architectural decisions capture the design ra-
tionale and – often reusable – architectural knowledge. Many approaches and
tools have been proposed in the literature to support architectural decision mak-
ing and documentation (for instance, based on models, ontologies, or templates).
In this context, the capturing, organization, and effective reuse of architectural
knowledge has gained a lot of attention. Objective: However, there is little em-
pirical evidence about the supportive effect of reusable architectural knowledge
on the effectiveness and efficiency of architectural decision making. Method:
To investigate these aspects, we conducted two separate controlled experiments
with software architecture students in which we tested the supportive effect of
reusable decision models in decision making and documentation. Results: Our
results show that the use of reusable decision models can significantly increase
both the efficiency and the effectiveness of novice architects. Conclusion: We
can report, that our findings are in line with similar studies and support the
claims regarding reusable architectural design decisions in principle.

Keywords: architectural design decision, architectural decision model,
architectural knowledge, controlled experiment

1. Introduction

In recent years, architectural design decisions (ADDs) have been promoted
to first class citizens in software architecture documentations [1]. Rather than
documenting the structure of software systems (e.g., components and connec-
tors), ADDs contribute to the capturing of design rationale. There are numerous
attempts on documentation and leveraging of design rationales with focus on

∗Corresponding author: Ioanna Lytra, Faculty of Computer Science, University of Vienna,
Währingerstraße 29, 1090 Vienna, Austria; Phone, +43-1-4277-78523

Email addresses: ioanna.lytra@univie.ac.at (Ioanna Lytra),
patrick.gaubatz@univie.ac.at (Patrick Gaubatz), uwe.zdun@univie.ac.at (Uwe Zdun)

Preprint submitted to IST January 30, 2015

156 Paper H

the reduction of architectural knowledge (AK) vaporization [2], reusability of
ADDs [3], and AK sharing [4]. Apart from that, the documentation of ADDs
for providing architectural guidance in software projects has gained much at-
tention in industrial practice [5, 6], lately. In this context, capturing the design
solutions and their rationale is important not only for the experienced software
architects but also for novice software designers who need to be educated on the
existing AK and the systematic reasoning on ADDs to avoid both reinventing
the wheel and making ADDs of bad quality.

Reusing ADDs can contribute to simplifying architecting [7]. Thus, address-
ing systematic documentation of ADDs and providing guidance during decision
making for recurring design issues, the use of reusable ADD models has been
proposed in the literature [3]. Similar to leveraging patterns for architectural
decision making [2], reusable ADD models provide proven solutions – both ap-
plication generic and technology specific – to various design issues along with
their forces and consequences. Examples of reusable ADD models that have
been documented cover solutions for designing service-oriented architectures
(SOA) [8] and service-based platform integration solutions [9].

A few reusable ADD models and related tools that support their manage-
ment (such as [10]) have been evaluated in real-life contexts. For instance,
Zimmermann et al.’s ADD model consisting of 300 ADDs from the SOA do-
main covering various aspects such as Web service integration and transac-
tion management has been used by practitioner communities and in industrial
projects [8]. However, no feedback or empirical evidence has been gathered on
whether and to which extent reusable ADD models are beneficial (i.e., they
support effectiveness and efficiency of architects) in the architectural decision
making process. While a few studies have investigated how reusable AK man-
agement and sharing is practiced in industrial contexts [5, 11] and have validated
the supportive effect of pattern-based reusable AK in the decision making pro-
cess [12], the software architecture community lacks empirical evidence on the
positive impact of reusable AK on ADD making and documentation. Such
empirically-grounded findings are important not only for validating the ben-
efits of reusable AK in practice, but also for understanding, improving, and
supporting the management and leveraging of reusable ADDs.

Therefore, we conducted two controlled experiments with students to test
whether the use of reusable ADD models increases the efficiency and effective-
ness of architects in the decision making and documentation process. We ex-
plicitly considered software architecture students in our evaluation, as reusable
ADD models are supposed to be used as guidance models by trainers for sys-
tematically teaching patterns and technology best practices to new or inexpe-
rienced members in a software development team [13]. In the two controlled
experiments, 49 and 122 students, respectively, with background in software ar-
chitecture and design patterns, were asked to make and document ADDs while
designing the architecture of two different software systems. For this, a Web-

2

Paper H 157

based tool support, called CoCoADvISE1, was provided to the experiment and
control groups. Both the experiment and control group received material with
related patterns and technology documentations and could use the tool to make
and document decisions. Contrary to the control group, the tool provided addi-
tional semi-automated decision making guidance based on reusable ADD models
for the participants of the experiment group. We found that participants who
were supported by our semi-automated decision making guidance approach . . .

• delivered more documented ADDs.

• delivered ADDs of better quality.

• invested less time for documenting ADDs.

The remainder of the paper is structured as follows. We give an overview of
the approaches related to architectural decision making and documentation and
compare existing architectural decision management tools with CoCoADvISE
in Section 2. We present our Web-based tool CoCoADvISE for decision making
and documentation and discuss its main concepts in Section 3. In Sections 4
and 5 we describe our experimental settings, as well as the analysis of the results
for the two controlled experiments we conducted. Our findings, implications,
and validity threats are discussed in Section 6, and finally, Section 7 concludes
with a summary of our contributions and discusses future work.

2. Related Work

In this section, we discuss the concept of ADDs, present existing tools and
methods for decision making and documentation, and summarize the few em-
pirical studies related to ADDs that exist in the literature.

2.1. Architectural Design Decisions

ADD documentations contain not only the resulting designs but also the
justification, the strengths and weaknesses, as well as alternatives for the se-
lected design solutions. Thus, software architects capture ADDs for analyzing
and understanding, as well as sharing and communicating the rationale and
implications of these decisions. Apart from that, the documentation of ADDs
prevents the potential loss of AK, a phenomenon which is known as architec-
tural knowledge vaporization [1, 2]. There are numerous attempts on supporting
ADDs and capturing their design rationales. Clements et al. suggest a gen-
eral outline for documenting architectures and guidelines for justifying design
decisions [15] while Tyree and Akerman present a rich template for capturing

1CoCoADvISE is the web-based version of our previous tool ADvISE for decision making
and documentation [14] and shares common concepts with other reusable ADD approaches
that have been documented in the literature (such as [3]). CoCoADvISE was developed for
the needs of the controlled experiments and in order to provide additionally collaboration
support.

3

158 Paper H

and documenting several aspects of ADDs [16]. A different technique proposed
by Lee and Kruchten aims at establishing formalized ontological descriptions
of architectural decisions and their relationships [17]. Zimmermann et al. use
decision meta-models to capture reusable AK [3] to be reused among different
projects of the same domain. In addition, patterns are regarded proven knowl-
edge for capturing ADDs and their rationale [2] and are considered often in the
aforementioned approaches.

Numerous tools for the management of ADDs have been proposed in the
literature [18–20]. In addition, a substantial amount of work has been done in
the direction of documenting the AK using architectural decision modeling (re-
fer to [18] for a comparison of existing architectural decision models and tools).
For instance, Jansen and Bosch propose a meta-model for capturing decisions
that consist of problems, solutions and attributes of the AK [1]. Zimmermann
et al.’s meta-model for capturing ADDs [6] consists of three core domain enti-
ties: Architectural Decision (AD) related to one or more ADTopics organized
in ADLevels, entailing ADAlternatives, the selection of which leads to an AD-
Outcome. The advantage of such ADD models is that they are reusable and
can be used as guidance for architectural decision making activities, whenever
recurring design issues emerge. Reusable ADD models share common concepts
with patterns (see [2]), that is, they both provide proven solutions for specific
design issues along with their motivation and rationale. The main difference is
that reusable ADD models provide the means for defining formally more com-
plex relationships for ADDs (e.g., the selection of a design option may exclude
a design solution). Furthermore, they allow us to capture except for generic
knowledge – usually addressed by patterns – also domain and technology spe-
cific AK. Yet, the relationship between architectural patterns and reusable ADD
models can be eventually synergetic [3], for instance, reusable decision models
can be integrated with patterns and guide the selection of patterns. Various
reusable ADD models have been documented in the literature, covering SOA-
related solutions [8], service-based platform integration [9], the design of domain
specific languages [21], and model and metadata repositories [22].

In our empirical study, we focus on the evaluation of reusable AK in the
form of reusable ADD models. For this, we provide reusable ADD models for
the participants of the experiment groups of the two controlled experiments
similar to the aforementioned reusable ADD models.

2.2. Tools for Architectural Decision Making and Documentation

Several tools have been developed to ease capturing, managing and sharing
of architectural decisions. In most of the cases, the focus is set on the manipula-
tion of architectural decision artifacts and their relationships, and the capturing
and reuse of AK, as well as collaboration aspects. In our work, we do not intend
to develop “yet another tool” for ADD management but rather to implement ex-
isting concepts in architectural decision support such as reusable architectural
decision models [3] and the Questions-Options-Criteria (QOC) approach [23]
and provide semi-automated tool support integrating these concepts. Our main
goal is to gather empirical evidence on the supportive effect of reusable ADDs

4

Paper H 159

in architectural decision making. In this section, we discuss existing tools for
architectural decision making and documentation and compare these to Co-
CoADvISE, the Web-based tool we have evaluated in our empirical study.

PAKME [24] and ADDSS [25] are some of the first attempts to develop
tools for decision making and documentation. PAKME aims at providing AK
management support for knowledge acquisition, maintenance, retrieval, and pre-
sentation, and contains features for capturing and classifying ADDs, integrating
pattern-based knowledge, and relating ADDs with quality-based scenarios and
requirements. Similar to PAKME, ADDSS can be used for storing, managing
and documenting ADDs. CoCoADvISE targets both decision making and doc-
umentation. For the decision making, reusable ADD models are leveraged [3]
and for the documentations, a text template like the one introduced by Tyree
and Akerman [16] is used. Unlike tools that focus on the visualization and un-
derstandability of ADDs (such as [26, 27]), we mainly target decision guidance
and automation of steps in decision making and documentation.

Many tools in the literature support the integration of ADDs in the software
architecture and development processes. For instance, Archium aims primarily
at capturing architectural decisions and weaving them into the development pro-
cess, that is, binding them with models and system implementation [28]. Also,
the ADVERT approach targets the capturing of pattern-specific ADDs with
their rationale along with decision-relevant requirements, quality attributes,
and architectural elements [29]. In our previous work, we have integrated
ADDs modeled in CoCoADvISE tool with architectural views, in particular,
component-and-connector views [14]. These aspects are out of the scope of this
paper though.

Some of the tools have been developed with focus on collaboration between
architects. Software Architecture Warehouse (SAW) supports collaborative ar-
chitectural decision making and enhances situational awareness by providing an
environment for real-time synchronization of design spaces, voting, and discus-
sion for software architects [30]. The purpose of the wiki-based tool ADkwik is
also to support collaboration in decision making through sharing of knowledge
about ADDs across project boundaries [31].

Although automated support is an important aspect in decision making,
it is addressed very little by existing approaches. Ameller et al. propose Ar-
chitech to support software architects during the architectural decision-making
process by suggesting alternative decisions for satisfying non-functional require-
ments [32]. For this, optimization techniques are applied on an AK ontology.
Also, ArchDesigner provides a quantitative quality-driven approach to find the
best possible fit between various quality goals, competing architectural concerns
and constraints [33]. It uses Multiple Attribute Decision Making (MADM) and
optimization techniques to find a best-fitting architecture composed of inter-
dependent architectural design decisions that satisfies prioritized quality goals.
CoCoADvISE provides semi-automated support at the following steps: (1) de-
cision making is guided through questionnaires and (2) semi-complete ADD
documentations are generated based on suggested design solutions.

Similar to our tool, Zimmermann et al. provide an architectural design

5

160 Paper H

method to combine pattern languages with reusable architectural decision mod-
els [6]. The goal of their approach is to provide domain-specific pattern selection
advice and traceability links from platform-independent patterns to platform-
specific decisions. However, the reusable ADD models have to be used manually
by software architects while in CoCoADvISE automated decision guidance based
on reusable decision models is provided.

The majority of the proposals have been evaluated either in case studies
(e.g., [6, 26]), in industrial projects [25], or focus groups [30], and in a few cases
no evaluation is reported. None of the tools has been empirically validated
and only little feedback has been gathered by the users2. We conducted two
controlled experiments with 171 software architecture students in total to test
the supportive effect of the main concept of CoCoADvISE, namely the reusable
ADD models, on capturing ADDs.

The reader can refer to Table 1 for an overview of the tools discussed in this
subsection. In particular, we report on the type of the tool support (decision
making or/and documentation), whether it provides automation support, and
how it has been evaluated.

2.3. Other Empirical Studies Related to ADDs

There are various literature surveys and reviews on the approaches and tools
for architectural decision making and documentation. For instance, Falessi et
al. provide a comparison of various techniques for selecting architectural alter-
natives during decision making [7]. Shahin et al. provide a survey on existing
ADD models and tools [18] while Bu et al. provide an analysis of decision-centric
approaches for design support [36]. The mapping study by Tofan et al. provides
an overview and taxonomy of the existing literature on ADDs [20]. Furthermore,
Weinreich and Groher compare software architecture management approaches
with focus on the main aims of documenting AK as well as the elements used
to represent AK [37].

Except for these literature surveys and reviews, little empirical evidence
(especially quantitative results) exists on the use and benefits of ADDs in the
industry and by practitioners. Heesch et al. conducted a multiple-case study
with four teams of software engineering students working in industrial projects
in order to find out whether decision documentation supports novice architects
in following a rational design process [38]. Shahin et al. test their hypothesis
that the visualization of ADDs and their rationale improves the understanding
of architecture designs in a controlled experiment with 10 participants [34].
Also, the supportive effect of pattern use in recovering of ADDs in terms of
quality and quantity of documented ADDs has been validated in a controlled
experiment with 33 software architecture experts and practitioners in a different
study [12]. A few other qualitative studies such as [39, 40] focus on how software

2Except for two studies [30, 34] which contain only a very brief summary of the results and
do not study their statistical significance.

6

Paper H 161

Name Decision
Making

Documen-
tation

Automation
Support

Approach Evaluation

ArchPad [6] + − − Case study from the fi-
nance industry. SOA-
related decisions (300)
are documented.

ArchiTech [32] + − Suggests al-
ternative de-
cisions based
on NFRs

No evaluation reported

ADkwik [31] − + − SOA-related decisions
(300) are documented

Archium [28] + + − Motivating example
MAD 2.0 [26] + + − Case study (CRM sys-

tem)
PAKME [24] + + − No evaluation reported
Compendium [27] + + − SOA-related decisions

are documented
ADDSS [25] + + − Two industrial projects

(multimedia system and
virtual reality applica-
tion)

ADVERT [29] + − − Evaluation using the
Common Component
Modeling Example
(CoCoME)1

ArchDesigner [33] + − Making
trade-offs
between
stakeholders

Industrial project (Glass
Box)

SAW [30] + − − In a focus group. 20 par-
ticipants considered 100
issues with 5 alternatives
each.

CoCoADvISE + + Predefined
question-
naires used
during deci-
sion making

Two controlled experi-
ments with 49 and 122
students respectively

1 CoCoME is an example system which provides a benchmark for component-based modeling ap-
proaches [35].

Table 1: Comparison Overview of ADD Tools

7

162 Paper H

architects make and document ADDs and which of them are being eventually
documented. To the best of our knowledge, no empirical-grounded evidence
exists yet on the impact of reusable AK and in particular reusable ADD models
on the efficiency and effectiveness of software architects.

3. Architectural Decision Making Using CoCoADvISE

In this section, we introduce the CoCoADvISE prototype. In particular,
we discuss its ADD meta-model (see Section 3.1) and core functionalities (see
Section 3.2), and provide selected implementation details (see Section 3.3). Co-
CoADvISE (Constrainable Collaborative Architectural Design Decision Support
Framework) provides semi-automated support for architectural decision making
and documentation. In addition, it supports collaboration in decision making
under various stakeholders’ constraints, but this will not be discussed further
in the current paper. The Web-based version of the tool was developed for the
needs of the controlled experiments in such a way that our approach could be
generalizable to a big extent. That is, the utilization of reusable ADD models,
as well as the tasks – to be performed by the software architects – for making
and documenting ADDs (see Section 4 for details) were designed in such a way
that the obtained results can be generalizable and not bound to the use of the
specific tool.

3.1. Reusable ADD Meta-model

CoCoADvISE provides tool support for modeling of reusable ADDs inspired
by the Questions, Options, and Criteria (QOC) approach [23]. The CoCoAD-
vISE ADD model extends the traditional QOC approach with – among others
– additional dependencies between options, such as enforcement or inclusion,
options and questions or decisions (i.e., an option triggers a next question or
decision). In addition, it supports categorizing reusable solutions (i.e., options
in QOC).

CoCoADvISE introduces a reusable ADD meta-model (see Figure 1) for the
design space of certain application domains, consisting of Decisions, Questions,
Options, and Solutions, as well as various relationships among them. For each
design issue, a set of Questions (including one or more first Questions) provid-
ing multiple Options has to be modeled. Examples of relationships are that a
selection of an Option triggers a follow-up Decision or an Option is incompatible
with or enforces another Option. A selection of an Option may lead to a Solution
to be suggested to the software architect. This Solution will be applied using an
Architecture Guidance, that is a Technology-related AK, a Design Pattern, an
Architectural Pattern, or a Composite Reusable Solution combining any of the
aforementioned Architectural Guidance types.

The concepts that we introduce in CoCoADvISE are comparable to existing
reusable ADD approaches such as the ones documented in [3, 9, 22]. Therefore,
our hypotheses testing and evaluation results are considered to apply on similar
approaches as well.

8

Paper H 163

1..*1

2..*

1

Decision

0..1

1

*

*

*

*

*

1

Architecture

Guidance

Solution

triggers

applies on

triggers

Question

*

*

incompatible with

has

has

leads to

enforces

*

*

Design Pattern

Architectural

Pattern

Technology-

related AK

Technology

*1

has first

Option
*

1

Composite

Reusable Solution

is related to

Figure 1: Reusable ADD Meta-model

3.2. Decision Support Based on Reusable ADD Models

The advantage of CoCoADvISE’s reusable ADD models is that they are
created only once for a recurring design situation and can be reused multiple
times following the model-driven paradigm. In similar application contexts,
corresponding questionnaires can be generated and used for making concrete
decisions. Based on the outcomes of the questionnaires answered by software
architects through the decision making process, CoCoADvISE can automatically
resolve potential constraints and dependencies (e.g., reveal follow-on questions
and decisions, deactivate incompatible options, etc.), recommend best-fitting
design solutions, and eventually, generate half-filled ADD documentations. Us-
ing CoCoADvISE the software architect can choose from a list of reusable ADD
models (see 1 of Figure 2) and generate a questionnaire based on this model.
The questionnaire provides architectural decision guidance through single-choice
questions which lead to follow-on questions, decisions, and recommendations as
indicated in 2 . Finally, software architects may generate semi-complete docu-
mentations based on the CoCoADvISE recommendations such as the one shown
in 3 . CoCoADvISE fills in automatically some of the fields of the ADD doc-
umentations in template form [16]; architects need to fill in afterwards the rest
of the required information.

3.3. Prototype Implementation Details

CoCoADvISE is the Web-based version of our previous Eclipse-based tool
ADvISE [14] and was developed for the needs of the controlled experiments.

9

164 Paper H

List of reusable ADD models.

Architectural decision guidance through
questionnaires.

ADD documentation with automatically half-filled
template fields.

1

2

3

Figure 2: Screenshots of CoCoADvISE

10

Paper H 165

It supports additionally collaborative architectural decision making. CoCoAD-
vISE is a mostly client-side executed Single-page Web application that is im-
plemented using Google’s AngularJS3 framework. The back-end of this Thin
Server Architecture is founded on the Node.js4 framework and runtime environ-
ment. In particular, it utilizes the real-time synchronization engine Racer5 and
persists the application state in a MongoDB6 database.

4. Controlled Experiments

To measure the effect of using reusable architectural decision models on the
efficiency and effectiveness of software architecture students we have conducted
two separate controlled experiments with software engineering students. For
the design and execution of the two experiments, we followed the guidelines of
Kitchenham [41] while for the analysis, evaluation, and presentation of results
we have consulted the advice of Wohlin et al. [42]. In the following subsections,
we discuss the common goals and hypotheses of the controlled experiments and
present their design and execution in detail.

4.1. Goals and Hypotheses

The goal of the experiments is to study and quantify the benefits of using
CoCoADvISE and in consequence reusable ADD models for making and docu-
menting ADDs in terms of quantity and quality related effectiveness, as well as
time efficiency. For this, we compare two groups of students, one using reusable
ADD models and one using an ad-hoc process based on pattern documentations
to make and document ADDs in template form.

We postulate the following three null hypotheses and corresponding alterna-
tive hypotheses: Making and documenting ADDs using reusable ADD models. . .

H01 leads to lower or equal quantity related effectiveness of software architecture
students compared to an ad-hoc process for architectural decision making.

H1 leads to increased quantity related effectiveness of software architecture stu-
dents compared to an ad-hoc process for architectural decision making.

H02 leads to lower or equal quality related effectiveness of software architecture
students compared to an ad-hoc process for architectural decision making.

H2 leads to increased quality related effectiveness of software architecture stu-
dents compared to an ad-hoc process for architectural decision making.

H03 leads to lower or equal time related efficiency of software architecture stu-
dents compared to an ad-hoc process for architectural decision making.

3http://angularjs.org
4http://nodejs.org
5http://github.com/codeparty/racer
6http://mongodb.org

11

166 Paper H

H3 leads to increased time related efficiency of software architecture students
compared to an ad-hoc process for architectural decision making.

We perform statistical tests to find out whether the corresponding null hy-
potheses can be rejected. We expect that the users of CoCoADvISE will deliver
ADDs of better quality and will manage to document more ADDs and in less
time.

4.2. Parameters and Values

Several variables have been observed during the two experiments. In the
following subsections, we discuss all dependent, independent, and derived vari-
ables we used for testing our hypotheses. A detailed list of variables (description,
type, scale type, unit, and range) is provided in Table 2.

4.2.1. Dependent Variables

All dependent variables have been captured by and extracted automatically
from CoCoADvISE’s database. In particular, we instrumented its source code in
such a way that we could precisely record all user activities within the system.
The variable time indicates a single user’s total time spent logged in in the
application. The number of decisions that were documented by each student
is indicated with the variable numOfDecisions. Finally, the variable quality
refers to the quality of each ADD that was evaluated in a scale from 1 to 10 by
two independent experts.

4.2.2. Derived Variables

To allow for a meaningful comparison of the time spent by the students to
document the decisions we decided to introduce the variable timeNorm which
expresses the time needed per decision. In this way, we exclude the possibility
that one treatment group needed less time to perform the tasks because they
just delivered less work. In addition, we calculate the average points per student
for the total of documented decisions (qualityPerStudent).

4.2.3. Independent Variables

The independent variables group, exp and commExp can potentially influ-
ence the dependent variables. In particular, group indicates the participant’s
treatment group (i.e., control or experiment), and exp and commExp refer to
their programming experience in general and in the industry, respectively.

4.3. Experiment Design

The controlled experiments were conducted in the context of Information
System Technologies and Software Architecture lectures respectively at the Fac-
ulty of Computer Science, University of Vienna, Austria. The first controlled
experiment took place in Winter Semester 2013/2014 (January 2014) and the
second in Summer Semester 2014 (June 2014). All participants were at the final
semesters of their bachelor studies and had background in software architec-
ture and design patterns. The readers can refer to Table 3 for a summary of

12

Paper H 167

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

S
c
a
le

T
y
p
e

U
n
it

R
a
n
g
e

D
ep

en
d
en

t
ti
m
e

O
v
er

al
l

ti
m

e
n
ee

d
ed

to
m

ak
e

an
d

d
o
cu

m
en

t
d
ec

i-
si

o
n
s

R
at

io
M

in
u
te

s
N

at
u
ra

l
n
u
m

b
er

s
in

cl
u
d
in

g
0

n
u
m
O
f
D
ec
is
io
n
s

N
u
m

b
er

of
d
o
cu

m
en

te
d

d
ec

is
io

n
s

R
at

io
–

N
at

u
ra

l
n
u
m

b
er

s
in

cl
u
d
in

g
0

qu
a
li
ty

Q
u
al

it
y

of
d
o
cu

m
en

te
d

d
ec

is
io

n
In

te
rv

al
–

1
(l

ow
es

t)
to

10
(h

ig
h
es

t)

D
er

iv
ed

ti
m
eN

or
m

(=
ti
m

e
n
u
m

O
f
D
e
c
is
io
n
s
)

T
im

e
n
ee

d
ed

p
er

d
ec

is
io

n
R

at
io

M
in

u
te

s
N

at
u
ra

l
n
u
m

b
er

s
in

cl
u
d
in

g
0

qu
a
li
ty
P
er
S
tu
d
en

t

(=

n
u
m

O
f
D

e
c
i
s
i
o
n
s

∑ i
=

1

q
u
a
li
ty

n
u
m

O
f
D
e
c
is
io
n
s

)

A
v
er

ag
e

q
u
al

it
y

of
d
ec

i-
si

on
s

In
te

rv
al

–
1

(l
ow

es
t)

to
10

(h
ig

h
es

t)

In
d
ep

en
d
en

t
g
ro
u
p

T
re

at
m

en
t

gr
ou

p
N

om
in

al
–

E
it

h
er

“e
x
p
er

im
en

t”
or

“c
on

tr
ol

”
ex

p
P

ro
gr

am
m

in
g

ex
p
er

ie
n
ce

O
rd

in
al

Y
ea

rs
4

cl
as

se
s:

0-
1,

1-
3,

3-
6,

>
6

co
m
m
E
x
p

C
om

m
er

ci
al

p
ro

gr
am

-
m

in
g

ex
p
er

ie
n
ce

in
in

d
u
st

ry

O
rd

in
al

Y
ea

rs
4

cl
as

se
s:

0-
1,

1-
3,

3-
6,

>
6

T
a
b
le

2
:

O
b
se

rv
ed

a
n
d

D
er

iv
ed

V
a
ri
a
b
le

s

13

168 Paper H

the experiment design in the two cases. We will refer to the first and second
controlled experiment as ORExp (Online Retailer Experiment) and UniISExp
(University Information System Experiment) respectively from the correspond-
ing case studies that were used in each case.

ORExp UniISExp

Location University of Vienna, University of Vienna,
Austria Austria

Time January 2014 June 2014
Case Study Online Retailer University Information System
Participants 49 (27 control / 22 exp.) 122 (56 control / 66 exp.)
ADDs 319 762
ADD Models 5 (16 patterns) 5 (40 patterns)

Table 3: Experiment Design Data

Participants. In the first controlled experiment in January 2014, from the 49
students of the lecture, 27 participated in the control group and 22 in the ex-
periment group. In the second experiment in June 2014, a bigger sample of 122
students (56 in the control group and 66 in the experiment group) participated.

The experiments have been conducted in the course of mandatory practical
exercises on architectural decisions for service-based software systems and dis-
tributed software systems respectively. The experiments took place in separate
exercise groups (4 in the first and 6 in the second experiment) and in different
computer labs at different times, which also explains the unequal number of
participants in the corresponding control and experiment groups. The students
in each group were assigned to the treatment groups randomly. In summary,
319 ADDs were documented in ORExp and 762 in UniISExp. All participants
had experience with Java programming and design patterns and were familiar
with the concepts of software architecture and architectural design decisions, as
these topics had been already discussed in the corresponding lectures or were
prerequisites to accomplish the previous exercises of the corresponding subjects.

Objects. A list of documented architectural design patterns and technology-
related solutions was integrated in the CoCoADvISE tool for both groups in
wiki format. The design patterns and architectural decision models were selected
based on the lecture materials known to the students as well as the students’
experiences from the previous programming exercises. The experiment group
was provided additionally with a set of reusable architectural decision models
and instructions how to use them for getting decision support with the aid of
the CoCoADvISE tool.

Instrumentation. In the preparation phase, all students were asked to study the
catalog of architectural design patterns and related technologies (afterwards in-
tegrated in the CoCoADvISE tool). Before starting with the experiment tasks,

14

Paper H 169

all participants had to fill in a short questionnaire regarding their programming
experience. Afterwards, the participants of both the control and experiment
groups were provided with a description and requirements of the system to be
designed. That was “An Online Retailer for Selling Books and Gadgets” and “A
University Information System (IS)” for the ORExp and UniISExp experiments
respectively. Both systems and their requirements were based on the experi-
ence of the authors with similar software systems from industrial projects. In
Table 4 and Table 5 we give examples of the aforementioned software system’s
requirements. The complete descriptions of the design exercises can be found
at http://andromeda.swa.univie.ac.at/advise-experiment/exercises.

Name Description

Take
Orders

Customers can place orders via two different channels: Web site
and call center. Each of these systems is based on a different tech-
nology and stores incoming orders in a different data format. The
call center system is a packaged application, while the Web site is
a custom J2EE application. We want to treat all orders equally,
regardless of their source. For example, a customer should be able
to place an order via the call center and check the order status
on the Web site. Decide how to deal with the different channels
and feed the retailer with unified messages.

Table 4: Excerpt from the “Online Retailer for Selling Books and Gadgets” Requirements

Name Description

Research
Network

The University is collaborating with a central research system
for establishing networks between researchers, dissemination of
research results, access to publications, etc. The University IS
should be able to send updates of new publications and research
projects of its research staff. In this case, reliability and per-
formance are not very important. The Research Network uses
only the XML-RPC protocol for communication with external
systems. Decide how you will design the communication between
the University IS and the Research Network.

Table 5: Excerpt from the “University Information System (IS)” Requirements

The students had to consider six sets of requirements in ORExp (Take Or-
ders, Process Orders, Logging, Track Orders, Announcements, and Customer
Login) and also six sets of requirements in UniISExp (General Requirements,
Student Services, Services for Research and Administrative Staff, Library Ser-
vice, Stream Service, and Research Network) – concerning different parts of the
software system – given in descriptive form. Additionally, some hints were pro-
vided with information about the concrete decisions that were expected (e.g.,

15

170 Paper H

“Decide how to deal with the different channels and feed the retailer with uni-
fied messages” from Table 4). For each requirement, one or more ADDs were
expected to be documented by the students.

Eventually, all participants were given access to the CoCoADvISE tool. The
functionality of CoCoADvISE is described in Section 3 and the setting provided
to the students can be viewed at http://andromeda.swa.univie.ac.at/orexp
and http://andromeda.swa.univie.ac.at/uniisexp for ORExp and UniIS-
Exp respectively7. The participants of the experiment groups could reuse five
ADD models which were different for the two controlled experiments. The
names and descriptions of the provided ADD models are documented in Table 6
(for more details refer to the CoCoADvISE settings accessible at the aforemen-
tioned URLs.). In contrast, CoCoADvISE was modified for the participants of
the control groups, so that the ADD model based support was hidden.

Blinding. In order to reduce the subjective bias of the participants and the re-
viewers we have applied double-blinding in both experiments. The participants
were not aware of the two different treatment groups and different CoCoAD-
vISE settings, therefore, they were not able to guess the goal of the experiments
and whether they belong to an experiment or control group. In addition, the
participants’ documented ADDs were scrambled and given anonymized to the
reviewers for evaluation. It was, thus, not possible to find out whether an ADD
comes from the control or experiment group, which ADDs belong to which par-
ticipants, and which ADDs belong together (i.e., were documented by the same
person). Also, the reviewers did not get any other information about the goals
and the different settings of the experiments.

4.4. Execution

As described in the previous section, the controlled experiments were ex-
ecuted in the context of the Information System Technologies and Software
Architecture lectures (Faculty of Computer Science, University of Vienna) with
students in the end of their bachelor studies, in Winter Semester 2013/2014 and
Summer Semester 2014 respectively.

The practical course groups were randomly assigned to experiment and con-
trol groups. That is the reason why we have unequal groups of participants,
namely 27 (control group) and 22 (experiment group) participants in ORExp
and 56 (control group) and 66 (experiment group) participants in UniISExp.
Nine students that participated in both experiments were excluded from the
second experiment – although the topic and the tasks required in ORExp and
UniISExp were different – in order to reduce the result bias. That led to a
reduced sample of 50 and 63 participants for the control and experiment group
of UniISExp respectively.

7To view and use the tools use the following user names (no password required): experiment
or control for the experiment and control settings respectively.

16

Paper H 171

ORExp

External Interface Design Use this reusable architectural decision model
in order to decide how the service-based system
will expose its interfaces to the external world.

Lifecycle Management Use this reusable architectural decision model
to decide how the lifecycle management of the
remote objects (e.g., by creating per-request in-
stances) and the resource consumption of the
service-based system will be designed.

Message Routing Use this reusable architectural decision model
in order to make decisions on strategies for
routing the messages in the service-based sys-
tem.

Message Transformations Use this reusable architectural decision model
in order to make decisions on methods for
transforming the messages inside the service-
based system.

Service-based Invocations Use this reusable architectural decision model
to decide on the type of remote asynchronous
invocations that will be used as well as the type
of communication channels required for the ex-
change of messages.

UniISExp

Application Structure Use this reusable architectural decision model
in order to decide which architectural style(s)
you will use to structure your application ar-
chitecture.

Data Store Use this reusable architectural decision model
in order to decide if and how you will need to
store your data.

Distribute Components Use this reusable architectural decision model
in order to decide how you will distribute the
different components of your system and how
to design the communication between compo-
nents.

Handling Processing Tasks Use this reusable architectural decision model
in order to decide how you will handle complex
processing tasks required in your application.

UI Design Use this reusable architectural decision model
in order to decide how you will design the UI
of your application.

Table 6: Reusable ADD Models Overview

17

172 Paper H

In addition, before the execution of the controlled experiments we decided
to exclude students that did not manage to achieve more than 50% of maximum
points at the practical course. However, the final grade of the students at the
practical course was not known at the time of execution, therefore, we excluded
participants in the end of the semester and before we started with the analysis
of the results. No students were excluded in ORExp while we had to exclude
one student from the control group and two students from the experiment group
in UniISExp. Thus, our sample for UniISExp was further reduced to 49 and 61
participants for the control and experiment group respectively.

Information about the programming experience of the students has been
gathered with questionnaires that were given to the students in the beginning
of the experiments. As we can see in Figure 3 and Figure 4 the programming
experience, as well as the industry programming experience of the participants
are quite similar for both groups. In ORExp, the control group has slightly
more programming experience while in UniISExp we observe the opposite. The
majority of the students in both experiments has 1 to 3 years of programming
experience while some of the participants are quite experienced in programming
(i.e., have more than 3 years of programming experience). However, only very
few participants of both experiments have experience in industrial projects8.

The exact same materials were handed out to all participants in the begin-
ning of the exercise. As mentioned before, the experiment and control groups
used different versions of CoCoADvISE, that is, the experiment group could use
the reusable ADD models as shown in Figure 2 while this feature was deacti-
vated for the control group. The participants had 90 minutes9 time for reading,
understanding, and performing the exercise. They were allowed to finish with
the tasks earlier though. Access to the Web-based tool was given only during
this session to avoid any offline work or discussion among the students. Apart
from that, in order to avoid communication between the students or use of other
materials the participants were prevented (i.e., using Web browser policies) from
opening Web pages other than that of CoCoADvISE.

The collection of the participants’ data was performed automatically during
the experiment. In particular, all relevant information, such as created question-
naires, documented decisions, as well as all relevant events, such as deletions
or modifications of architectural decisions, were saved in a database. In Ap-
pendix A we present six exemplary ADDs documented by the participants in
the two controlled experiments along with their evaluations. The evaluation
of the documented ADDs with the use of a Likert scale from 1 (lowest) to 10
(highest) was performed afterwards by two independent experts. The experts
were instructed to consider the distances between the points of the 1–10 Likert
scale to be constant. Hence, we argue that the corresponding variables quality

8Most of the students with industrial experience have been working from a couple of months
to maximum one year at a company.

9This is a typical duration for a lab exercise in the two computer science courses. The
experiments’ tasks were thus designed given the limited time that the students would spend
in the controlled environment.

18

Paper H 173

and qualityPerStudent qualify as interval scale type. In case of high distances
between the evaluations (i.e., 4 points or more between the ratings) the two
experts discussed their evaluations until they reached a consensus. In total, 47
and 122 ADDs in ORExp and UniISExp respectively had to be revised. For the
evaluation of the ADDs the following criteria were applied by both experts:

- The decision is stated clearly.

- The rationale of the decision is stated clearly.

- The decision corresponds to the described issue.

- The documented decision is a viable solution with regard to the described
issue.

- Potential alternatives are documented.

Regarding the execution of the two controlled experiments no deviations
from the initial study design occurred and no situations in which participants
behaved unexpectedly.

0

5

10

15

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience

0

5

10

15

20

control experiment

0−1 years 1−3 years 3−6 years >6

Programming Experience in Industry

Figure 3: ORExp: Participants’ Programming Experience

5. Analysis of Results

In order to analyze the data collected during the two controlled experiments
and test our hypotheses (see 4.1) we used the R language and environment
for statistical computing [43]. The raw data for these results are available at
http://andromeda.swa.univie.ac.at/advise-experiment/.

19

174 Paper H

0

10

20

30

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience

0

10

20

30

40

50

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience in Industry

Figure 4: UniISExp: Participants’ Programming Experience

5.1. Descriptive Statistics

As a first step in the analysis of the results we used descriptive statistics
to compare the means and medians of the observed variables. In particular,
Table 7 and Table 8 along with Figure 5 and Figure 6 display the mean and
median values of the number of documented ADDs (numOfDecisions), the
quality per ADD (quality), as well as the average quality of ADDs per student
(qualityPerStudent), the time needed for completing the required tasks (time)
and for documenting one decision (timePerDecision), for both control and
experiment groups in the ORExp and UniISExp experiments respectively.

It is noticeable that the participants of the experiment group documented
one ADD more on average than the control group: 7 against 6 and 6 against 5
for ORExp and UniISExp respectively. However, this is not necessarily an in-
dicator of “higher efficiency” of the students as the experiment group may have
needed more time for performing the tasks and thus has delivered more ADDs.
We notice, though, that the control groups spent also more time on document-
ing a single decision, that is, 3.91 and 2.64 more minutes than the corresponding
experiment groups on average. Therefore, the experiment groups needed less
time to document more decisions although they have dedicated some of their
time to understand and use the reusable ADD models. The reason is that Co-
CoADvISE with ADD model support generated semi-complete documentations
which saved some time for the experiment group. We also calculated the average
number of characters used for each ADD to find out whether the smaller number
of ADDs and the increased time spent on their documentation was due to the
smaller “size” of decisions. However, both treatment groups documented deci-
sions of almost the same size in ORExp (489 characters for the control group

20

Paper H 175

and 431 for the experiment group). We notice also a small difference in the
length of the ADDs in UniISExp – 890 characters for the control group and
588 for the experiment group. This can be explained by the fact that often the
participants of the control group reused parts of the pattern documentations to
fill in some ADD template fields (e.g., Argumentation/Implications) which led
to longer ADD texts – unlike for the experiment group these documentations
provided the main source for decision support.

Variable Means Medians

control exp. control exp.

numOfDecisions 5.59 7.57 6 7
quality 4.82 5.46 4.85 5.29
qualityPerStudent 4.9 5.35 4.5 5.5
time (min) 44.71 35.75 48.11 36.69
timePerDecision (min) 9.06 5.15 8.12 4.79

Table 7: Means and Medians of Observed Variables for ORExp

As mentioned in Section 4, each documented ADD was evaluated by two
independent experts using a 10-point Likert scale ranging from very low quality
(1) to very high quality (10). Likert scales are treated in the literature as
both ordinal (e.g., [44]) and interval (e.g., [45]) scales. Ordinal scales show us
the order, but not the distances between the ranking, that means, that in a
10-point Likert scale 2 means better quality than 1, 3 better quality than 2,
and so on. Interval scales, on the other hand, show the order of things with
equal intervals between the scale points. In order to be able to use descriptive
statistics and statistical tests to analyze the quality of decisions we must treat
the 10-point Likert scale as an interval scale. We assume, therefore, that this
holds true in our case.

The average quality of the experiment group’s ADDs is 5.46 and 6.96 com-
pared to 4.82 and 6.34 in the control group for the ORExp and UniISExp re-
spectively. In addition, the students in the experiment group delivered ADDs
of better quality on average. To summarize, we would say that the treatment
group that used the ADD models support documented more ADDs and achieved
results of better quality and in less time.

On average, the participants of the experiment groups used 7 (ORExp) and
6 reusable ADD models. In addition, we calculated the time needed for filling
in the questionnaires and the ADD templates separately. In ORExp 25% and
in UniISExp 16% of the total time (1.07 and 0.81 minutes per questionnaire
respectively) was spent on answering the questionnaires. The rest of the time
was spent on filling in the semi-complete ADD documentations. Therefore, the
effort for using the decision support capabilities of CoCoADvISE is very small
in comparison with the effort needed to make and document decisions without
automated or semi-automated guidance.

21

176 Paper H

0

10

20

30

40

50

control experiment

Total Time (min)

0.0

2.5

5.0

7.5

control experiment

Time per Decision (min)

0

2

4

control experiment

Quality of Decision

0

2

4

control experiment

Average Quality per Student

0

2

4

6

control experiment

Number of Decisions

mean

median

Figure 5: ORExp: Comparison of Means and Medians for the Observed Variables

5.2. Data Set Reduction

The few outliers that we noticed by studying the deviations from the means
for each of the observed variables correspond to different participants, that is,

22

Paper H 177

Variable Means Medians

control exp. control exp.

numOfDecisions 5.70 6.72 5 6
quality 6.34 6.96 6.79 7.04
qualityPerStudent 6.37 6.92 7 7
time (min) 57.50 44.99 58.37 45.74
timePerDecision (min) 10.72 8.08 11.52 7.20

Table 8: Means and Medians of Observed Variables for UniISExp

these outliers correspond to ADDs documented by different students. Thus,
the fact that these points have much higher or much lower values than the
means (e.g., a student documented only a few decisions or needed much time
for one decision) does not make necessarily the participant an outlier. Therefore,
we excluded only students from the second controlled experiment (UniISExp)
that had participated in the first as well and students who did not complete
the practical course successfully (i.e., scoring less than 50% of the maximum
points), and who therefore would make the study results vulnerable. This was
done, however, before the data analysis (see explanation in Section 4.4); at this
stage, we did not perform any further data set reduction.

5.3. Hypotheses Testing

5.3.1. Testing for Normal Distribution

Parametric tests like the t-test assume the normal distribution of the an-
alyzed data. In order to decide whether to use parametric or non-parametric
test for the analysis of the data, we applied the Shapiro-Wilk [46] normality
test. The null hypothesis of the Shapiro-Wilk test states that the input data
is normally distributed. We test the normality at a level of confidence of 95%.
That means that if the calculated p-value is lower than 0.05 the null hypothesis
is rejected and the input data is not normally distributed. Conversely, if the
p-value is higher than 0.05, we can not reject the null hypothesis that the data
is normally distributed.

Table 9 lists the p-values of the Shapiro-Wilk normality test for each observed
variable and treatment group (all values are rounded to 4 decimal digits) for
both controlled experiments. P-values that indicate normal distribution are
emphasized (i.e., using bold font). We can see that only numOfDecisions and
qualityPerStudent for ORExp and time for UniISExp controlled experiment
exhibits a tendency of being normally distributed, while for the other variables
we can not assume that they are normally distributed. As a result, we decided
to pursue a non-parametric statistical test for analyzing the data.

5.3.2. Comparing the Means of Variables

To compare the means of the observed variables for the control and exper-
iment groups, we applied the one-tailed Wilcoxon rank-sum test [47], a non-

23

178 Paper H

0

20

40

60

control experiment

Total Time (min)

0

3

6

9

12

control experiment

Time per Decision (min)

0

2

4

6

control experiment

Quality of Decision

0

2

4

6

control experiment

Average Quality per Student

0

2

4

6

control experiment

Number of Decisions

mean

median

Figure 6: UniISExp: Comparison of Means and Medians for the Observed Variables

parametric test for assessing whether one of two data samples of independent
observations is stochastically greater than the other. Its null hypothesis, which is
appropriate for the hypotheses in our experiments, is that the means of the first

24

Paper H 179

0

2

4

6

control experiment

Mean Time Needed

0

2

4

control experiment

Median Time Needed

editDecision editQuestionnaire editDecision editQuestionnaire

Figure 7: ORExp: Comparison of Time Spent by Participants for Making and Documenting
ADDs

0.0

2.5

5.0

7.5

control experiment

Mean Time Needed

0

2

4

6

control experiment

Median Time Needed

editDecision editQuestionnaire editDecision editQuestionnaire

Figure 8: UniISExp: Comparison of Time Spent by Participants for Making and Documenting
ADDs

variable’s distribution is less than or equal to the means of the second variable’s
distribution, so that we can write H0 : A ≤ B. The Wilcoxon rank-sum test
tries to find a location shift in the distributions, i.e., the difference in means of
two distributions. The corresponding alternative hypothesis HA could be writ-
ten as HA : A > B. If a p-value for the test is smaller than 0.05 (i.e., the level
of confidence is 95%), the null hypothesis is rejected and the distributions are
shifted. If a p-value is larger than 0.05, the null hypothesis can not be rejected,
and we can not claim that there is a shift between the two distributions.

Table 10 contains the p-values of five Wilcoxon rank-sum tests that were
performed to find out whether we can reject the null hypotheses presented in

25

180 Paper H

ORExp UniISExp
Variable p-Value p-Value

control exp. control exp.

numOfDecisions 0.493 0.0941 0.0009 0.0042
quality 0(10−5) 0(10−5) 0(10−11) 0(10−9)
qualityPerStudent 0.7323 0.7145 0.0046 0.0643
time (min) 0.0107 0.8832 0.3593 0.2717
timePerDecision (min) 0.002 0.918 0.5181 0(10−10)

Table 9: Shapiro-Wilk Normality Test

Section 4.1. Note that only the first four decimal places of the results are
reported. Based on the obtained p-values, we can assess that almost all distri-
butions show a statistically significant shift between each other and that most of
the null hypotheses can be rejected. Analogously, Table 11 contains the p-values
of t-Tests for those variables, where the assumption of normal distribution could
not be rejected (see Table 9).

Testing Hypothesis H1. The experiment group documented significantly more
ADDs than the control group. We reject the null hypothesis H01 (i.e., the use of
reusable ADD models has no effect on the quantity related effectiveness of soft-
ware architecture students) since the calculated p-value is 0.0027 (t-test: 0.0021)
and 0.008 for the ORExp and UniISExp experiments respectively. Hence, there
is evidence that the use of reusable ADD models for decision making and doc-
umentation increases the quantity related effectiveness of software architecture
students.

Testing Hypothesis H2. In our experiments, we observed that the participants
of the experiment groups delivered ADDs of better quality than the participants
of the control groups. As this observation holds for both variables quality and
qualityPerStudent we tested the null hypothesis H02 (i.e., the use of reusable
ADD models has no effect on the quality related effectiveness of software archi-
tecture students) for these two variables. In the experiment ORExp, the p-values
0.0332 and 0.055 (> 0.05) do not allow us to reject H02 completely (however,
t-test: 0.0330). We can reject this hypothesis for the quality of single ADDs
but not for the average quality of documented ADDs per student. For UniIS-
Exp though, in which we tested a bigger sample of ADDs and participants, H02

could be rejected given the p-values 0.0459 and 0.0173 for the variables quality
and qualityPerStudent respectively. Therefore, there is evidence for supporting
H2, that is, the ADDs of the experiment group were in total of better quality –
according to the reviewers’ evaluations – than those of the control group and the
single participants’ performance was also significantly “better”. Hence, we can
report evidence that using reusable ADD models for making and documenting
decisions also increases the quality related effectiveness of its users.

26

Paper H 181

Testing Hypothesis H3. Finally, we discovered that the experiment group needed
significantly less time to document a decision. This holds also for the total time
this group spent on the assigned tasks. With a p-value of 0.0045 and 0.0001
for time and timePerDecision in ORExp and corresponding values close to
0 (10−5) in UniISExp we can reject the null hypothesis H03 for both experi-
ments (the same holds for the corresponding t-test for the variable time), that
is, the use of reusable ADD models has no effect on the time related efficiency
of software architecture students. Thus, we can conclude that there is evidence
that reusable ADD models lead to increased time related efficiency of software
architecture students as well.

Hypothesis Variable (µ) p-Value

(Assumption) ORExp UniISExp

H01 (µexp ≥ µcontrol) numOfDecisions 0.0027 0.0080
H02 (µexp ≥ µcontrol) quality 0.0332 0.0459

qualityPerDecision 0.0550 0.0173
H03 (µexp ≤ µcontrol) time 0.0045 0(10−5)

timePerDecision 0.0001 0(10−5)

Table 10: Hypotheses Testing Results (Wilcoxon rank-sum Test)

Hypothesis Variable (µ) p-Value

(Assumption) ORExp UniISExp

H01 (µexp ≥ µcontrol) numOfDecisions 0.0021
H02 (µexp ≥ µcontrol) qualityPerDecision 0.0330
H03 (µexp ≤ µcontrol) time 0(10−6)

Table 11: Hypotheses Testing Results (t-Test)

6. Discussion

The following subsections discuss our main findings and their implications
and inferences for software architects. We also report on the threats to validity.

6.1. Evaluation of Results and Implications

Increased Effectiveness. The first two hypotheses, i.e., H1 and H2, are related
to the effectiveness of software architecture students which we study separately
with regard to the quantity and the quality of the documented ADDs. As
reported in Section 5, we have provided strong evidence for rejecting the corre-
sponding null hypotheses H01 and H02. Thus, reusable ADD models contribute
both to the completeness and the quality of ADD documentations.

27

182 Paper H

The semi-automated guidance using questionnaires provided by the Co-
CoADvISE tool allowed software architecture students (representative for novice
software architects) to (1) identify the ADDs that had to be made, (2) under-
stand the design space in the corresponding case study, (3) find out the alter-
natives for each design issue, and finally (4) document the appropriate design
solution according to the requirements. Some of the participants of the ex-
periment groups stated afterwards that CoCoADvISE’s reusable models helped
them find quickly the answer to their problem without needing to read all de-
sign pattern documentations. Especially, that turned out to be useful in cases
where the design solutions were not so obvious from the requirements and re-
quired a better research and analysis of the design situation. For instance, for
handling some complex processing tasks in the UniISExp case study, “single or
multi threaded implementation of the tasks” would be viable solutions inferred
by the reusable ADD models. Yet, most of the participants of the control group
opted for a “pipes and filters” solution, which would clearly be “overkill” in this
specific situation. Another phenomenon that we observed was that participants
of the control groups were often not confident about what they should docu-
ment in the ADD template fields. On the contrary, the reusable ADD models
provided support (i.e., some fields are filled in automatically) and guidance (i.e.,
the reusable ADD models already contain design rationale) for filling in the de-
cision related fields. We decided not to fill in further fields automatically (e.g.,
positions, arguments, etc.) as this would give a big advantage to the experiment
groups and would make the comparison between the treatment groups difficult.

The observed phenomenon of experiment groups documenting more decisions
can possibly be explained as follows. The reusable ADD models guided the
students to follow-on decisions that were not considered by the participants of
the control groups at all.

Systematically capturing and leveraging reusable AK in the form of reusable
ADD models therefore may lead to increased effectiveness of architects. Our
findings also validate Zimmermann et al.’s claim about some of the benefits
of architecting with reusable ADD models: reusable ADD models (1) provide
means for the semi-automatic decision identification and (2) improve the quality
of decision making [8].

Increased Efficiency. We showed in the previous section that our last alterna-
tive hypothesis H3 could also be accepted, that is, using CoCoADvISE’s support
on reusable ADD models reduces time and effort for software architecture stu-
dents. This finding was highly expected though, as much “manual” work for
making and documenting ADDs (e.g., reading documentations, filling in ADD
templates repeatedly) is made redundant due to the semi-automated guidance
by the questionnaires and the semi-complete documentations generated from
decision recommendations. Thus, architects may need less time to document
ADDs when guided by reusable ADD models.

28

Paper H 183

6.2. Threats to Validity

To ensure the validity of our results, we consider the categorization of validity
threats of Wohlin [42] and discuss each of them separately in the context of our
controlled experiments.

Conclusion Validity. The conclusion validity focuses on the relationship be-
tween the treatment we used in the experiment and the actual outcome, i.e.,
on the existence of a significant statistical relationship. The way we measured
the working time of the students automatically from the database entries may
pose a threat to conclusion validity, as the users might have spent some working
time idle or with pen and paper. Apart from that, to measure the actual time
spent on working with CoCoADvISE for performing the assigned tasks is very
difficult, if not impossible, as the participants may have spent some time reading
the tasks or familiarizing with the tool. However, we think that idle working
times, times spent on other tasks, or offline work can largely be excluded due
to the limited experiment time of 90 minutes in which the participants needed
to work in a concentrated manner in order to get the work done.

In addition, the interpretation of the 10-point Likert scale that was used to
rate the ADDs may pose a threat to the conclusion validity. In Section 5, we
argued that we consider the Likert scale an interval scale, and thus the descrip-
tive statistics and statistical tests that we applied are, making this assumption,
valid. Another potential threat to validity is the subjectivity of the quality rat-
ings and of the reviewers. It could have happened as well that the one reviewer
evaluated more strictly than the other. To reduce these risks, we asked two
independent experts in the field of software architecture to evaluate all ADDs
for both experiments and calculated afterwards the quality of each ADD on
average. In case of disagreements in the evaluations the two reviewers needed
to discuss their ratings until they reached a consensus. Nevertheless, this does
not erase the subjectivity of the evaluations completely as some aspects related
to the quality of ADDs like the evaluation of ADDs after the implementation of
the software system are not taken into consideration in our case.

Internal Validity. The internal validity refers to the extent to which treatment
or independent variables caused the effects seen on the dependent variables. In
order to reduce this kind of validity threats, we made sure that the participants
of both groups had at least medium experience in programming and design –
with slight differences – and that they were aware of the architectural design
patterns they had to use for making and documenting architectural decisions.
For this, the participants were asked to study all related patterns in advance.
Apart from this, a few patterns were applied in previous practical exercises
(i.e., programming exercises concerning the implementation of various software
systems) of the lecture by the students.

The experiments were carried out in controlled environments and the treat-
ment group members were in different rooms. Thus, they could not know the
goals of the experiment, as they were not aware of the existence of different
groups or/and the different CoCoADvISE settings for the two treatment groups.

29

184 Paper H

During the experiment, the students were allowed to use only the CoCoADvISE
tool and all other applications and Web pages were blocked. This way, we
prevented access to other Internet materials as well as the participants’ commu-
nication through chat applications. Also, an observer in the room ensured that
no interactions between the participants of the same room occurred to ensure
that the students worked individually.

We also prevented any access to CoCoADvISE and the accompanying ma-
terials outside the dedicated session or outside the labs where the controlled
experiments were carried out.

Construct Validity. The construct validity focuses on the suitability of the ex-
periment design for the theory behind the experiment and the observations.

The variables that have been observed in the experiment are regarded ac-
curate and objective as they are related to the actual use of tools and were
automatically extracted from the database. The students did not have any
training or experience with the tools. A potential threat to validity may be
posed by improper use of CoCoADvISE by participants who did either not un-
derstand the purpose of the reusable ADD models and the questionnaires or did
not comprehend the tasks. We also need to take into account language diffi-
culties in some cases (CoCoADvISE texts were in English, all other materials
were both in English and German). We tried to overcome such problems by en-
couraging the students to ask the instructors for further explanations. Another
potential threat to construct validity is the fact that only one measure was used
to evaluate the quality of the documented ADDs, which does not allow us to
cross-check the experiments’ results.

Finally, there is a potential threat to validity imposed by the participating
subjects, knowing the research topics of our research group and therefore being
able to “guess” results that we hoped to obtain. We tried to minimize the impact
of this threat by choosing independent and external experts that were not aware
of our research agenda.

External Validity. The external validity is concerned with whether the results
are generalizable outside the scope of our study. The subjects of the experiments
had medium programming experience and were familiar with the ADDs they
were asked to make. However, only few students had experience in the industry.
We hence consider the participants of both controlled experiments to be rep-
resentative for novice software developers or architects. A threat to validity of
the relevance of our study’s findings in practice is the use of students instead of
practitioners in both experiments. We tried to mitigate the threat by educating
the students on the patterns and architectural decisions used in the experiment.
At the time of the experiments, all participants had theoretical knowledge of,
as well as programming experience with the majority of the design solutions
that had to be considered for the required tasks. Therefore, our results can be
likely to a certain extent transferred to more experienced architects. However,
we will need to conduct similar experiments with practitioners in order to be
able to consider our experiment results generalizable – applicable to professional

30

Paper H 185

novice (or more experienced) software architects. In addition, Kitchenham et
al. regard students close to practitioners, as they are considered to be the next
generation of software professionals [41], which strengthens our claim that our
findings could apply to professional architects as well.

Also, the fact that the treatment groups used the CoCoADvISE tool only,
poses the threat that the results are specific only for this tool. However, we tried
to implement in CoCoADvISE general concepts and practices from reusable
ADD models [3] and ADD documentations [16]. Hence, we expect the same
results if the participants worked with tools based on similar concepts as well.

As mentioned before, the measurements were extracted from the tool data-
base, avoiding any bias by the experimenters.

6.3. Inferences

van Heesch et al. found out that the quality of ADDs increases when focus is
set on the use of design patterns for documentation [12]. Our findings confirm
and supplement these previous results for students of software architecture.
That means that the use of design patterns in the form of reusable ADD models
further increases the effectiveness of students leading to less effort and better
quality for ADD documentations. We claim that our results can be transferable
to novice/trainee software architects, that needs to be proven, however, in an
industrial context with practitioners.

Although we have conducted our experiments with students with software
architecture background and with little commercial experience, we believe that
our results can apply similarly to novice or more experienced architects in the
industry. To validate these claims we will need more empirical evidence and
feedback from the use of reusable architectural decision models in practice and
in the context of industrial projects.

In practice, ADDs remain either undocumented or partially documented and
the documentations are often dispersed in different places like wikis, meeting
minutes, and issue tracking systems [40]. In addition, documenting ADDs that
correspond to recurring design issues is tedious and time-consuming. Providing
the means for semi-automated decision making and documentation based on
reusable ADD models may encourage software architects to capture AK regu-
larly and systematically. That will contribute to reducing AK vaporization [2].

It is of course important that reusable ADD models that have been doc-
umented in the literature (e.g., [8, 9, 21, 22]) and have been tested in a very
limited scale (i.e., by practitioners of the same company, etc.) get validated and
enriched by practitioners from different domains. That will increase the accep-
tance of such reusable AK and confirm Nowak et al.’s vision of collaboration
and knowledge exchange between different AK repositories (i.e., repositories
containing reusable architectural decision models) [48]. Therefore, the useful-
ness of tools like CoCoADvISE which provide semi-automated decision support
based on such ADD models will get more significant.

31

186 Paper H

7. Conclusions and Future Work

In this paper, we reported the results of two separate controlled experiments
on architectural decision making and documentation based on reusable ADD
models. Due to the current lack of empirical evidence, the experiments were
designed to determine the supportive effect of reusable ADD models for software
architects. We were particularly interested in quantifying their impact on a
software architecture student’s efficiency and effectiveness while making and
documenting decisions. Hence, we implemented and instrumented a custom-
made tool (CoCoADvISE) for making and documenting ADDs, that tries to
incorporate the best practices of current (i.e., state of the art) ADD tools,
in such a way that each action in the tool was timestamped and stored in a
database. This valuable information allowed us to extract and deduce efficiency
and effectiveness related metrics.

Our experiments provided strong evidence that reusable ADD models can
potentially increase both the effectiveness and the efficiency of their users while
making and documenting ADDs. We can further report, that our findings are
in line with similar studies (see, e.g., [12]) and support the claims regarding
reusable ADDs (see, e.g., [8, 9, 21, 22]) in principle. We consider our results
to be applicable for novice software architects as well. Thus, as part of our
ongoing future work, we will repeat our experiments with different reusable
ADD models and different types of participants. In particular, we strive for
experimenting with practitioners to see if our assumptions and results are still
valid in industrial contexts. At the same time, we plan to further investigate the
educational aspect of reusable ADD models. To that end we want to find out
if and to what extent reusable ADD models are conducive for novice software
architects to learning how to systematically use patterns.

Acknowledgments

We would like to thank the reviewers who evaluated the architectural deci-
sions in both controlled experiments. We also thank all students for participat-
ing in the experiments.

Appendix A. Examples of Documented ADDs

We present in this appendix exemplary ADDs documented by the partic-
ipants of the two controlled experiments along with the experts’ ratings for
these decisions. In particular, we include three decisions from ORExp and three
decisions from UniISExp.

32

Paper H 187

Name D01: Use Fire and Forget for Logging

Group Communication/Logging

Issue All messages that the online retailer exchanges are sent to a logging
system that stores them in a database for 1 year.

Decision Fire and Forget Pattern

Assumptions Loss of logging messages is acceptable.

Positions Our logging service is implemented as a remote object. Recording of
log messages must not influence the execution of the client and loss
of individual log messages is acceptable. In this case Fire and Forget
can be used.

Arguments/
Implications

A client application wants to notify a remote object for an event. Nei-
ther a result is expected, nor does the delivery have to be guaranteed.
A one-way exchange of a single message is sufficient.
-> simple, non-blocking communication

Related Decisions -

Table A.1: Example 1 from ORExp / Reviewer 1: 7, Reviewer 2: 8

Name Process Orders - Multiple single orders

Group Messaging

Issue Inventory systems can only process single orders.

Decision Splitter

Assumptions The Splitter splits the order into individual order items. Each message
refers to the original message (e.g., the order ID) so that the processing
results can be correlated back to the original message.

Positions -

Arguments/
Implications

A Splitter can break large messages into individual messages to sim-
plify further processing. In our Systems this needs to be done be-
cause the inventory systems can only process single orders. The only
downside is that the overhead gets bigger because of the correlation
identifiers.

Related Decisions Process Orders - Routing and Take Orders.

Table A.2: Example 2 from ORExp / Reviewer 1: 7, Reviewer 2: 5

Name OrderMessageLocationProcessor-ADD1: Message processing

Group Message Routing and Processing

Issue OrderMessageLocationProcessor ADD1: Message processing

Decision Use a message splitter

Assumptions The order processing sever need to receive orders from different lo-
cations, the call center and the website. The order processing server
needs to know where is one order coming from and treat all orders
equally.

Positions Message splitter with Message aggregator

Arguments/
Implications

Each order message contents the location information and the order
information, before processing the order, a splitter is needed to split
the order message. As the retailer wants to treat each order equally,
an aggregator is not needed here.

Related Decisions OrderConfirmMessageRouter-ADD2: Message routing/filtering

Table A.3: Example 3 from ORExp / Reviewer 1: 10, Reviewer 2: 9

33

188 Paper H

Name Decision 02 S-T

Group Streaming

Issue Streams should be kept on a central server and be downloaded on de-
mand, bandwidth and transformation in different audio/video formats
is a problem.

Decision I have chosen asynchronous streaming where the sequence of the pack-
ets is important, but not the time.

Assumptions Because of the high amount of students it is important to keep the
bandwidth low when streaming. Because of that, the streaming should
be asynchronous, because it is faster and needs less bandwidth as
synchronous or isochronous streaming.

Positions Alternatives would be synchronous or isochronous streaming, which
are “better” but also need a lot more resources, especially when
streaming to multiple clients like it is done at the university.

Arguments/
Implications

Streaming offers high scalability as it requires less memory usage at
the server side. Also, it is simple to implement and maintain. How-
ever, it cannot support transactional processing or interaction between
different clients. And as I chose the asynchronous streaming I can de-
crease the memory usage even more.

Related Decisions none

Table A.4: Example 4 from UniISExp / Reviewer 1: 9, Reviewer 2: 9

Name Communication between the University-IS and e-learning

Group Communication between the uni-IS and the e-learning

Issue Current system: bad communication between the uni-is and the e-
learning and the information not in time.

Decision Shared repository

Assumptions Invocation parameters are inefficient for large data sets also bad if the
information varies from invocation to invocation.

Positions Very often data needs to be shared between components. In sequential
architectures the only way to share data between the components is
to use invocation parameters but this is inefficient for large data sets.
Also it might be inefficient, if the shared information varies from in-
vocation to invocation. Finally the long-term persistence of the data
requires a centralized data management. Thus, Shared Repository is
used as a central data store, accessed by all other independent com-
ponents. It offers suitable means for accessing the data, for instance,
a query API or language and is scalable to meet the clients’ require-
ments. It must ensure data consistency and must handle problems of
resource contention, for example by locking accessed data. It might
also introduce transaction mechanisms. A Shared Repository main-
tains the common data on which the application’s components oper-
ate, the components themselves access and modify the data in the
shared repository, and the state of the data in the Shared Repository
instigates the control flow of specific components.

Arguments/
Implications

The Shared Repository pattern increases the level of abstraction in the
code. This may decrease understandability for developers who are un-
familiar with the pattern. Although implementing the pattern reduces
the amount of redundant code, it generally increases the number of
classes that must be maintained. The Shared Repository pattern helps
to isolate both the service and the list access code. Isolation makes
it easier to treat them as independent services and to replace them
with mock objects in unit tests. Typically, it is difficult to unit test
the repositories themselves, so it is often better to write integration
tests for them. If the data is being cached in heavily loaded systems,
performance can be an issue.

Related Decisions Faster, better for large data and long term persistence of the data
requires, suitable for accessing the data

Table A.5: Example 5 from UniISExp / Reviewer 1: 6, Reviewer 2: 5

34

Paper H 189

Name D01: Architectural style for distribution

Group System Design

Issue System needs to be deployed on different machines

Decision Design of a service-oriented architecture

Assumptions (1) System needs to be scalable and deployed onto several different ma-
chines. (2) Heterogenous components like e-learning platforms (that
change very fast), research networks and library components need to
be integrated in such a way that changing or replacing one of the
subsystems does not lead to a huge effort in reprogramming the core
application.

Positions A poor alternative to this approach would be to implement each func-
tionality on its own and just access a shared repository where in-
put/output data is stored.

Arguments/
Implications

Service-based architecture is a very well established pattern and meets
all the requirements for this project. As there is a very loose coupling
between the communicating entities, it is no problem to replace or
add subsystems which is very crucial for such a dynamic system.

Related Decisions -

Table A.6: Example 6 from UniISExp / Reviewer 1: 8, Reviewer 2: 9

References

[1] A. Jansen, J. Bosch, Software Architecture as a Set of Architectural Design
Decisions, in: 5th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), Pittsburgh, PA, USA, IEEE Computer Society, 2005, pp.
109–120.

[2] N. B. Harrison, P. Avgeriou, U. Zdun, Using Patterns to Capture Architec-
tural Decisions, IEEE Software 24 (4) (2007) 38–45.

[3] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, N. Schuster,
Reusable Architectural Decision Models for Enterprise Application Devel-
opment, in: 3rd International Conference on Quality of Software Architec-
tures (QoSA), Medford, MA, USA, Springer, 2007, pp. 15–32.

[4] R. Farenhorst, R. Izaks, P. Lago, H. Van Vliet, A Just-In-Time Architec-
tural Knowledge Sharing Portal, in: Seventh Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA), 2008, pp. 125–134.

[5] M. Galster, M. A. Babar, Empirical Study of Architectural Knowledge
Management Practices, in: IEEE/IFIP Conference on Software Architec-
ture (WICSA), 2014, pp. 239–242.

[6] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann, Combining Pattern
Languages and Reusable Architectural Decision Models into a Compre-
hensive and Comprehensible Design Method, in: 7th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Vancouver, BC, Canada,
IEEE Computer Society, 2008, pp. 157–166.

35

190 Paper H

[7] D. Falessi, G. Cantone, R. Kazman, P. Kruchten, Decision-making Tech-
niques for Software Architecture Design: A Comparative Survey, ACM
Computing Survey 43 (4) (2011) 33:1–33:28.

[8] O. Zimmermann, J. Koehler, L. Frank, Architectural Decision Models as
Micro-Methodology for Service-Oriented Analysis and Design, in: D. Lübke
(Ed.), Proceedings of the Workshop on Software Engineering Methods for
Service-oriented Architecture (SEMSOA 2007), Hannover, Germany, 2007,
pp. 46–60.

[9] I. Lytra, S. Sobernig, U. Zdun, Architectural Decision Making for Service-
Based Platform Integration: A Qualitative Multi-Method Study, in: Pro-
ceedings of the 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, WICSA-
ECSA’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 111–
120.

[10] S. Abrams, B. Bloom, P. Keyser, D. Kimelman, E. Nelson, W. Neuberger,
T. Roth, I. Simmonds, S. Tang, J. Vlissides, Architectural Thinking and
Modeling with the Architects’ Workbench, IBM Systems Journal 45 (3)
(2006) 481–500.

[11] J. F. Hoorn, R. Farenhorst, P. Lago, H. van Vliet, The Lonesome Architect,
Journal of Systems and Software 84 (9) (2011) 1424–1435.

[12] U. van Heesch, P. Avgeriou, U. Zdun, N. Harrison, The supportive effect
of patterns in architecture decision recovery – A controlled experiment,
Science of Computer Programming 77 (5) (2012) 551–576.

[13] O. Zimmermann, Architectural Decisions as Reusable Design Assets, IEEE
Software 28 (1) (2011) 64–69.

[14] I. Lytra, H. Tran, U. Zdun, Supporting Consistency Between Architectural
Design Decisions and Component Models Through Reusable Architectural
Knowledge Transformations, in: Proceedings of the 7th European Confer-
ence on Software Architecture (ECSA), ECSA’13, Springer-Verlag, Berlin,
Heidelberg, 2013, pp. 224–239.

[15] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, R. Little,
Documenting Software Architectures: Views and Beyond, Pearson Educa-
tion, 2002.

[16] J. Tyree, A. Akerman, Architecture Decisions: Demystifying Architecture,
IEEE Software 22 (2) (2005) 19–27.

[17] L. Lee, P. Kruchten, Capturing Software Architectural Design Decisions,
in: 2007 Canadian Conference on Electrical and Computer Engineering,
IEEE Computer Society, 2007, pp. 686–689.

36

Paper H 191

[18] M. Shahin, P. Liang, M. R. Khayyambashi, Architectural design decision:
Existing models and tools, in: IEEE/IFIP Conference on Software Archi-
tecture/European Conference on Software Architecture, IEEE, 2009, pp.
293–296.

[19] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. A. Babar, A comparative
study of architecture knowledge management tools, Journal of Systems and
Software 83 (3) (2010) 352–370.

[20] D. Tofan, M. Galster, P. Avgeriou, W. Schuitema, Past and future of soft-
ware architectural decisions – A systematic mapping study, Information
and Software Technology 56 (8) (2014) 850–872.

[21] U. Zdun, M. Strembeck, Reusable Architectural Decisions for DSL Design:
Foundational Decisions in DSL Development, in: Proceedings of 14th Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP 2009),
Irsee, Germany, 2009, pp. 1–37.

[22] C. Mayr, U. Zdun, S. Dustdar, Reusable Architectural Decision Model for
Model and Metadata Repositories, in: F. de Boer, M. Bonsangue, E. Made-
laine (Eds.), Formal Methods for Components and Objects, Vol. 5751 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp.
1–20.

[23] A. MacLean, R. Young, V. Bellotti, T. Moran, Questions, Options, and
Criteria: Elements of Design Space Analysis, Human-Computer Interaction
6 (1991) 201–250.

[24] M. A. Babar, I. Gorton, A Tool for Managing Software Architecture
Knowledge, in: Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design In-
tent, SHARK-ADI’07, IEEE Computer Society, Washington, DC, USA,
2007, pp. 11–.

[25] R. Capilla, F. Nava, J. C. Duenas, Modeling and Documenting the Evo-
lution of Architectural Design Decisions, in: Proceedings of the Second
Workshop on SHAring and Reusing Architectural Knowledge Architecture,
Rationale, and Design Intent, SHARK-ADI’07, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 9–.

[26] A. Zalewski, S. Kijas, D. Sokołowska, Capturing Architecture Evolution
with Maps of Architectural Decisions 2.0, in: Proceedings of the 5th Eu-
ropean Conference on Software Architecture, ECSA’11, Springer-Verlag,
Berlin, Heidelberg, 2011, pp. 83–96.

[27] M. Shahin, P. Liang, M. R. Khayyambashi, Improving Understandability
of Architecture Design Through Visualization of Architectural Design De-
cision, in: Proceedings of the 2010 ICSE Workshop on Sharing and Reusing
Architectural Knowledge, SHARK’10, ACM, New York, NY, USA, 2010,
pp. 88–95.

37

192 Paper H

[28] A. Jansen, J. V. D. Ven, P. Avgeriou, D. K. Hammer, Tool Support for
Architectural Decisions, in: Proceedings of the 6th working IEEE/IFIP
Conference on Software Architecture, IEEE Comp. Soc., 2007, pp. 4–4.

[29] M. Konersmann, Z. Durdik, M. Goedicke, R. H. Reussner, Towards
Architecture-centric Evolution of Long-living Systems (the ADVERT Ap-
proach), in: Proceedings of the 9th International ACM SIGSOFT Confer-
ence on Quality of Software Architectures, QoSA’13, ACM, New York, NY,
USA, 2013, pp. 163–168.

[30] M. Nowak, C. Pautasso, Team Situational Awareness and Architectural
Decision Making with the Software Architecture Warehouse, in: Proceed-
ings of the 7th European Conference on Software Architecture, ECSA’13,
Springer-Verlag, Berlin, Heidelberg, 2013, pp. 146–161.

[31] N. Schuster, O. Zimmermann, C. Pautasso, ADkwik: Web 2.0 Collabora-
tion System for Architectural Decision Engineering, in: Nineteenth Inter-
national Conference on Software Engineering and Knowledge Engineering
(SEKE), Knowledge Systems Institute Graduate School, 2007, pp. 255–260.

[32] D. Ameller, O. Collell, X. Franch, ArchiTech: Tool Support for NFR-guided
Architectural Decision-Making, in: Requirements Engineering Conference
(RE), 2012 20th IEEE International, 2012, pp. 315–316.

[33] T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, B. Benatallah, A Quality-
driven Systematic Approach for Architecting Distributed Software Applica-
tions, in: 27th International Conference on Software Engineering, ICSE’05,
ACM, New York, NY, USA, 2005, pp. 244–253.

[34] M. Shahin, P. Liang, Z. Li, Architectural Design Decision Visualization
for Architecture Design: Preliminary Results of A Controlled Experiment,
in: Proceedings of the 1st Workshop on Traceability, Dependencies and
Software Architecture (TDSA), ACM, 2011, pp. 5–12.

[35] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krog-
mann, H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger, C. Pfaller,
CoCoME - The Common Component Modeling Example, in: The Common
Component Modeling Example: Comparing Software Component Models
[result from the Dagstuhl research seminar for CoCoME, August 1-3, 2007],
2007, pp. 16–53.

[36] W. Bu, A. Tang, J. Han, An Analysis of Decision-centric Architectural
Design Approaches, in: Proceedings of the 2009 ICSE Workshop on Shar-
ing and Reusing Architectural Knowledge, SHARK’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 33–40.

[37] R. Weinreich, I. Groher, A Fresh Look at Codification Approaches for
SAKM: A Systematic Literature Review, in: Proceedings of the 8th Eu-
ropean Conference on Software Architecture (ECSA), ECSA’14, Springer-
Verlag, Berlin, Heidelberg, 2014, pp. 1–16.

38

Paper H 193

[38] U. van Heesch, P. Avgeriou, A. Tang, Does decision documentation help
junior designers rationalize their decisions? A comparative multiple-case
study, Journal of Systems and Software 86 (6) (2013) 1545–1565.

[39] C. Zannier, F. Maurer, A qualitative empirical evaluation of design deci-
sions, ACM SIGSOFT Software Engineering Notes 30 (4) (2005) 1–7.

[40] C. Miesbauer, R. Weinreich, Classification of Design Decisions: An Expert
Survey in Practice, in: Proceedings of the 7th European Conference on
Software Architecture, ECSA’13, Springer-Verlag, Berlin, Heidelberg, 2013,
pp. 130–145.

[41] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, J. Rosenberg, Preliminary Guidelines for Empirical
Research in Software Engineering, IEEE Trans. Softw. Eng. 28 (8) (2002)
721–734.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wess-
lén, Experimentation in Software Engineering: An Introduction, Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[43] R. C. Team, et al., R: A language and environment for statistical comput-
ing, R foundation for Statistical Computing.

[44] G. Vigderhous, The level of measurement and ’permissible’ statistical anal-
ysis in social research, Pacific Sociological Review 20 (2) (1977) 61–72.

[45] H. R. Maurer, Todd J.; Pierce, A Comparison of Likert Scale and Tra-
ditional Measures of Self-Efficacy, Journal of Applied Psychology 83 (2)
(1998) 324–329.

[46] S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality (com-
plete samples), Biometrika 3 (52).

[47] H. B. Mann, W. D. R., On a Test of Whether One of Two Random Variables
is Stochastically Larger than the Other, Annals of Mathematical Statistics
18 (1) (1947) 50–60.

[48] M. Nowak, C. Pautasso, O. Zimmermann, Architectural Decision Mod-
eling with Reuse: Challenges and Opportunities, in: Proceedings of the
2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
SHARK’10, ACM, New York, NY, USA, 2010, pp. 13–20.

39

194 Paper H

Paper I

Automatic Enforcement of

Constraints in Real-time

Collaborative Architectural Decision

Making

The subsequent paper has been submitted and revised as follows:

P. Gaubatz, I. Lytra, and U. Zdun. Automatic Enforcement of Constraints in Real-

time Collaborative Architectural Decision Making. Journal of Systems and Software,

accepted for publication in January 2015.

This paper extends the concepts introduced in Paper H. More specifically, we observed

the fact that existing tools and methods for collaborative architectural decision making

focus mainly on sharing and reusing of knowledge, making trade-offs, and achieving con-

sensus, but do not consider the various stakeholders’ decision making constraints due to

their roles in the development process. Therefore, we proposed a model-driven approach

that provides means for making the decision making process – clearly a collaborative

process – subject to different type of decision making constraints. Conceptually, these

decision making constraints are quite similar to other types of access constraints that

we have considered in our previous work (such as entailment constraints in Paper B or

Paper G). Hence, we could extend CoCoADvISE with additional constraint enforcement

capabilities in a similar way we did before in the case of CoCoForm (i.e., in Paper E, Pa-

per F and Paper G). The evaluation of CoCoADvISE in a controlled experiment showed

that our approach, besides preventing constraint violations, significantly increased both

the time and effort related efficiency, as well as the effectiveness of users in collaborative

decision making.

195

Automatic Enforcement of Constraints in Real-time

Collaborative Architectural Decision Making

Patrick Gaubatz∗, Ioanna Lytra, Uwe Zdun

Faculty of Computer Science, University of Vienna, Austria

Abstract

Making and documenting architectural design decisions becomes increasingly
important in the process of software architecting. However, the remoteness of
different decision stakeholders, ranging from local distribution in an office en-
vironment to globally distributed teams, as well as the different domain knowl-
edge, expertise and responsibilities of the stakeholders hinder effective and effi-
cient collaboration. Existing tools and methods for collaborative architectural
decision making focus mainly on sharing and reusing of knowledge, making
trade-offs, and achieving consensus, but do not consider the various stakehold-
ers’ decision making constraints due to their roles in the development process.
To address this problem, we propose a meta-model for a set of decision making
constraints, with precisely defined semantics, as well as a collaborative archi-
tectural decision making approach based on this meta-model. We also present
tool support, called CoCoADvISE, which automatically enforces the constraints
at runtime. The evaluation of this tool in a controlled experiment with 48
participants shows that our approach, besides preventing constraint violations,
significantly increases both the time and effort related efficiency, as well as the
effectiveness of users in collaborative decision making.

Keywords: Decision Making Constraint, Constraint Enforcement,
Collaborative Decision Making, Architectural Decision Making, Reusable
Architectural Decision Model, Controlled Experiment

1. Introduction

The trend of globally distributed projects in software and IT industries
makes collaboration and coordination within dispersed teams challenging [11].
Unlike co-located project teams, geographically distributed partners need to
overcome collaboration problems caused by the distance, different concerns of

∗Corresponding author: Patrick Gaubatz, Faculty of Computer Science, University of Vi-
enna, Währingerstraße 29, 1090 Vienna, Austria; Phone, +43-1-4277-785 20

Email addresses: patrick.gaubatz@univie.ac.at (Patrick Gaubatz),
ioanna.lytra@univie.ac.at (Ioanna Lytra), uwe.zdun@univie.ac.at (Uwe Zdun)

Preprint submitted to Journal of Systems and Software January 30, 2015

196 Paper I

stakeholders, and different development processes. While these challenges are
particularly problematic in distributed project settings, even in a locally dis-
tributed environment, like offices on multiple different floors, efficient and effec-
tive collaboration is an issue. Software architecture can be seen as a tool for
coordination in distributed software development, as a common understanding
and agreement on issues at the architectural abstraction level can prevent coor-
dination problems in later phases [34]. As architectural decisions have become
a primary means for describing software architecture in recent years, the collab-
oration in architectural decision making and documenting should be supported.
Farenhorst et al. point out the need of explicitly supporting collaboration be-
tween architects with appropriate tools and consider this aspect to be one of
the five most important characteristics of software architecting [7].

Only a few of the existing tools for architectural decision management ad-
dress collaboration in architectural decision making and documentation. Ap-
proaches that target collaborative architectural decision support (see, e.g., [31,
39, 53, 41, 20, 2, 4]) mainly focus on team building, achieving consensus, making
of trade-offs, and sharing of architectural knowledge. However, none of these ap-
proaches considers the various stakeholders’ decision making constraints due to
their roles in the development process. This is despite the fact that such roles
(see, e.g., [30, 45, 6]), their potentially diverging rights and duties and their
potentially conflicting objectives (see, e.g., [36, 29, 34]) within a possibly con-
strained (see, e.g., [3, 18, 14]) decision making process actually do exist. As an
exemplary decision making constraint, consider that a stakeholder with the role
Integration Architect must be in agreement with a stakeholder with the role
Application Architect before an architectural decision that concerns technical
development aspects can be finalized.

In this paper, we therefore present a novel approach for augmenting reusable
architectural decision models with such decision making constraints. Reusable
decision models provide (similar to design patterns [10]) proven solutions – both
application-generic and technology-specific – to various design issues along with
their forces, consequences, and alternative solutions (see, e.g., [66, 67, 68, 65,
21]). We show how CoCoADvISE (Constrainable Collaborative Architectural
Design Decision Support Framework), our prototype implementation, automat-
ically enforces these decision making constraints at runtime. As an example, we
describe how our approach can be applied in an industrial context, i.e., in the
context of service-based platform integration.

So far there are only a few empirical studies on architectural decision mak-
ing (see, e.g., [42, 59, 58]) in general or on the specific aspect of group decision
making (see, e.g., [31, 37, 38]). As our work mainly deals with propositions
about the efficiency and effectiveness of supporting automatic enforcement of
constraints for humans, we decided to evaluate it using a controlled experiment
with 48 participants. Our experiment provides evidence that automatic enforce-
ment of decision making constraints significantly increases both the time and
effort related efficiency and effectiveness of users of decision making tools.

The contributions of this paper are as follows:

2

Paper I 197

• We propose automatic enforcement of decision making constraints, a new
aspect to be considered in collaborative architectural decision making.

• We present CoCoADvISE, a constrainable collaborative decision making
tool supporting automatic enforcement of constraints.

• We precisely specify a set of decision making constraints using first-order
logic based on a formal meta-model (described in the appendix).

• We provide empirical evidence of the time and effort related efficiency and
effectiveness of supporting automatic enforcement of constraints.

The remainder of the paper is structured as follows. We give an overview
of the existing architectural decision management tools and discuss collabora-
tive aspects and their challenges in Section 2. Section 3 motivates our work
and provides a motivating example. In Section 4 we present our collaborative
architectural decision making tool CoCoADvISE. Section 5 exemplifies the ap-
plication of our approach in the context of service-based platform integration,
which was investigated in the context of the EU research project INDENICA.
The following Section 6 and 7 describe our experimental setting and the analysis
of the results of the controlled experiment respectively. Section 8 discusses our
findings, implications, as well as threats to validity, and Section 9 concludes.

2. Related Work

2.1. Architectural Design Decisions

Software architecture is seen more and more as a set of architectural deci-
sions [13]. Capturing architectural design decisions is important for analyzing,
understanding, and sharing the rationale and implications of these decisions and
reducing the problem of architectural knowledge vaporization [10].

Approaches for capturing architectural decisions, using either templates [56],
ontologies [19], or meta-models [66], concentrate on the reasoning on software ar-
chitectures, capturing and reusing of architectural knowledge, as well as sharing
and communicating of design decisions between stakeholders. In addition, pat-
terns are regarded as proven knowledge for capturing architectural decisions and
their rationale [10] and are considered often in the aforementioned approaches.

A substantial amount of work has been done in the direction of document-
ing architectural knowledge using architectural decision modeling (refer to [40]
for a comparison of existing architectural decision models and tools). For
instance, Jansen and Bosch propose a meta-model to capture decisions that
consist of problems, solutions and their attributes [13]. Zimmermann et al.’s
meta-model for capturing architectural decisions [69] consists of Architectural
Decisions (AD) related to one or more ADTopics organized in ADLevels, en-
tailing ADAlternatives, the selection of which leads to an ADOutcome. The
advantage of such decision models is that they are reusable and can be used
as guidance for architectural decision making activities, whenever recurring de-
sign issues emerge. Various reusable architectural decision models have been

3

198 Paper I

documented in the literature, covering Service-oriented Architecture related so-
lutions [67, 68], service-based platform integration [21], the design of domain
specific languages [64], and model and metadata repositories [26]. To moti-
vate and demonstrate our proposal we use such reusable architectural decision
models as basis for decision making that involves different stakeholders.

2.2. Collaboration in Architectural Decision Making

Whereas several tools have been developed to ease capturing, managing and
sharing of architectural decisions [40], only a few target explicitly the collab-
oration needs of distributed teams, i.e., when making architectural decisions
in a group. The sharing of architectural knowledge is one of the main con-
cerns of the architectural decision management tools ADkwik [39], Knowledge
Architect [20], and PAKME [2]. The collaboration in all cases is achieved by
providing central repositories containing design pattern catalogs, documented
architectural decisions, use case scenarios, and so on, accessible to all co-located
or distributed software team members, without any automated support regard-
ing the required collaborative work. In addition, Compendium [41] supports a
visual environment for documenting and visualizing design rationale behind ar-
chitectural design decisions for multiple users. In some cases, also, Wiki-based
tools are proposed [4] to assist architectural knowledge management performed
at geographically separate locations. However, collaborative work is not the
main focus of these tools, and thus, the challenges of making and documenting
architectural decisions collaboratively are not studied in aforementioned works.

Other recent proposals, such as Software Architecture Warehouse [31] and
GADGeT [53], target the consensus making, the communication, and the progress
tracking for group architectural decisions. Proposing, ranking, and voting for
alternatives are main concepts that are integrated in the aforementioned tools.
However, decision making constraints caused by different stakeholder roles, com-
pany policies or processes which may cause inconsistencies and additional effort
are not considered. In our proposal, we extend the concepts of collaborative ar-
chitectural decision making by introducing the automatic enforcement of such
constraints during group decision making. Automatic support is thus an advan-
tage of CoCoADvISE in comparison to the aforementioned tools, which do not
target any automation in collaborative decision making.

Recent literature surveys and reviews that compare approaches and tools
for architectural decision making and documentation (e.g., [40, 55, 38]) consider
collaboration support as an important feature of these tools. In addition, ac-
cording to a survey with 43 architects from industry conducted by Tofan et al.,
most of the architectural decisions are group decisions (86%) [54]. This finding
is also validated in a different study by Miesbauer and Weinreich [27]. How-
ever, little empirical evidence – especially quantitative results – exists with focus
on collaborative decision making by practitioners. Nowak and Pautasso have
collected feedback from more than 50 focus groups of students regarding the
usability and situational awareness support of their tool Software Architecture
Warehouse [31]. Rekha et al. performed an exploratory study to investigate how

4

Paper I 199

architectural design decisions are made in a group, what information is docu-
mented, and which tools are used by practitioners in the industry [37]. In our
work, we target collaborative architectural decision making involving different
stakeholder roles and various constraints.

2.3. Constraint Enforcement in the Context of Security and Access Control

Although constraint enforcement has not been considered in the context of
architectural decision making yet, it is actually a quite well-studied topic in
other contexts, such as security and access control. Especially access control
in the context of business processes and workflows (see, e.g., [62, 15, 49]) in-
troduces the notion of assigning (stakeholder) roles to each task in a process,
which is similar to our notion of assigning a certain role to be responsible for
a specific architectural decision. At runtime, each task/decision can only be
performed/made by a user that owns the required role.

Task-based entailment constraints (see, e.g., [48, 50, 63]), which also orig-
inate from the context of workflows can, for instance, be used to enforce the
four-eyes principle or other separation of duties constraints. In principle, such
separation of duties constraints are similar in definition, checking, and enforce-
ment to decision making constraints that require several stakeholders or roles
to unanimously agree on a concrete solution for a specific architectural decision
(which are, for instance defined in our approach). Unfortunately, to the best of
our knowledge, there are no works that provide empirical evidence about the
positive effects of constraint enforcement in these contexts.

2.4. Constraint Enforcement in the Context of Collaboration

In recent years, there has been a movement to embrace and facilitate col-
laboration in various software engineering tools. For example, numerous real-
time collaborative Web-based Integrated Development Environments, such as
Cloud91, Koding2, Adinda [57] or Collabode [9] have been proposed. In addition,
real-time collaborative Web-based modeling tools, such as Creatly3 or Lucid-
chart4, have also been proposed. Finally, more specialized software engineering
tools, such as the collaborative Web-based software architecture evaluation tool
presented by Maheshwari et al. [24], have emerged.

Similarly to these tools, our CoCoADvISE tool does not require its users
to install or configure any software locally on their computers, which is one
of the main benefits of Web applications. However, the aforementioned tools
– unlike CoCoADvISE – consider different stakeholder roles, permissions and
constraints. As the adoption of such tools in industrial contexts is likely to rise,
this situation will probably change in the future [60]. Also, to the best of our
knowledge, no comparable empirical studies on these tools and their underlying
concepts have been performed.

1http://c9.io
2http://koding.com
3http://creately.com
4http://lucidchart.com

5

200 Paper I

3. Motivation

3.1. Constrained Architectural Decision Making

Our approach provides tool support for architectural decision making con-
straints. Such constraints and the relationships and responsibilities of stake-
holders that are formally expressed in those constraints are frequently discussed
both in academic and industrial contexts. To motivate our approach, we sum-
marize in this section some evidence from the literature.

Nord et al. present a structured approach for reviewing architecture docu-
mentation [30]. They provide an illustrative list of common stakeholder roles
and their concerns in the decision making process. In particular, they also
document the existence of potentially diverging rights and duties withing the
decision making process, such as: “For example, in safety-critical systems, the
safety analyst is one of the most important stakeholders, as this person can of-
ten halt development on the spot if he or she believes the design has let a fault
slip through.”. A study by Smolander et al. reveals and analyzes more than 20
stakeholder roles participating in architecture design in three different software
companies, and concludes that further research on practices and tools for ef-
fective communication and collaboration among the varying stakeholders of the
architecture design process are needed [45]. Eckstein documents experiences of a
lead software architect on global agile projects [6]. This lead software architect
propagates orchestration of the architect roles, i.e., having one lead architect
and several subordinate architects, partitioned according to boundaries of sub-
systems, problem domains and sites. In the context of Enterprise Architecture
(EA), an orthogonal study by van der Raadt et al. concludes that stakeholders
pursue different, potentially conflicting, objectives, related to their specific role
within the organization [36]. They also note that efficient collaboration between
stakeholders is one of the main critical success factors for EA. Nakakawa et al.
conducted a survey on effective execution of collaborative tasks during EA cre-
ation and highlighted – among others – the following challenges, reported by
70 enterprise architects [29]: (1) it is hard to reach consensus due to conflicting
stakeholders’ interests, (2) organization politics result in fuzzy decision making,
(3) stakeholders are not accountable for their decisions, (4) lack of a clear deci-
sion making unit, (5) lack of a governance process that can ensure architecture
compliance, (6) lack of supporting tools and techniques for executing collabora-
tive tasks. Similar results have been reported by Päivi Ovaska et al. In [34] they
conducted a case study in an international ICT company, analyzing coordination
challenges in multi-site environment with geographically dispersed development
teams. Most notably, they observed problems in coordination, such as lack of
overall responsibility (i.e., unclear decision making) in architecture design.

In recent years, software development governance has been recognized as a
key component for steering software development projects. In general, gover-
nance is about deciding the “who, what, when, why, and how ” of (collaborative)
decision making (see, e.g, [3, 5, 16]). Kofman et al. frame the ideal software de-
velopment governance environment [18]: “Every member of a team would know
at any given point of time, what needs to be done, who is responsible for which

6

Paper I 201

task, and how to perform the tasks for which he or she is responsible”. In the
course of developing the IBM Software Development Governor prototype they
also observed and documented the need for decision making constraints. That
is, they mention decision making policies, such as framing the boundaries of
the decision (i.e., who should participate, and when), or specifying how the
decision is to be made (i.e., consensus or voting). Jensen et al. noted that
“there are many issues critical to governing software development, including de-
cision rights, responsibilities, roles, accountability, policies and guidelines, and
processes” [14]. Interestingly, by studying NetBeans, an open source software
project, they could actually identify similarities to these aforementioned gover-
nance issues. In summary, architectural decisions are key decisions, that can –
in certain contexts – be subject to software development governance including
the entailing decision making policies.

3.2. Motivating Example

To illustrate the concept of collaborative architectural decision making and
to motivate the need for automatic enforcement of decision making constraints,
let us consider a fictive online retailer company that wants to provide third-
party online stores with a Web service for purchasing books and electronic gad-
gets. Based on functional requirements, as well as non-functional requirements,
including requirements concerning secure and encrypted transactions, the com-
pany has to decide on what kind of Web service they are eventually going
to deploy. For decisions that have such far-reaching implications throughout
the system, company policies require that the involved software development
teams, which are spread across several, geographically distributed offices, col-
laboratively participate in the decision making process.

In particular, the following decision making constraints can be derived from
the company policies: First, all decision stakeholders with the role Integration
Architect shall unanimously decide on the type of Web service to be exposed.
Application Architects shall decide on technical details like a concrete transport
protocol, and Integration Architects have to confirm and approve these deci-
sions eventually. Security Experts shall propose a solution for the security and
encryption related decisions. Finally, representatives from selected third-party
companies shall be allowed to participate in the decision making process. How-
ever, their votes can be overruled at any time by internal stakeholders of the
retailer company.

The company might now rely on guidelines that tell each stakeholder to ex-
actly know their roles and duties within this decision making process and to
stay compliant to these constraints in any decision process they participate in.
However, with a growing number of stakeholders, stakeholder roles, responsibil-
ities, duties and other forms of constraints, it becomes nearly impossible for a
single participant to not (unintentionally) violate some of these policies (as will
be shown in our controlled experiment in Section 6). Hence, we propose (in Sec-
tion 4) a collaborative architectural decision making tool which automatically
enforces such constraints.

7

202 Paper I

Questionnaire

Decision
Model

Constraint
Model

subject to

Documented
DecisionSoftware Development

Team Member

Software
Architect

uses enforces

generates

transformed
into

Design Time

Execution Time

answers

models

CoCoADvISE
Tool

edits / completes

Figure 1: Overview of CoCoADvISE

4. CoCoADvISE Approach

CoCoADvISE5 is a Web-based, collaborative tool that provides automated
support for architectural decision making and documentation based on reusable
decision models, as well as automatic enforcement of decision making con-
straints. It is based on previously presented work. More precisely, the tool
is built upon the foundations of ADvISE (Architectural Design Decision Sup-
port Framework) [22] and CoCoForm (Constrainable Collaborative Form) [8], a
real-time collaborative Web application framework. The main concepts of our
approach are shown in Figure 1.

CoCoADvISE follows the reusable decision model approach (discussed al-
ready in Section 2.1) in which the documented reusable decisions can be instan-
tiated as concrete decisions and thus used as guidance for architectural decision
making activities, whenever recurring design issues emerge. The advantage
of this approach is that the decisions must be created only once for a recur-
ring design situation. In similar application contexts, a single decision model
is reused multiple times for making multiple concrete decisions. A decision
model can be (re-)used by transforming it into interactive questionnaires using
model-driven techniques (see Section 4.1). Based on the outcomes of the ques-
tionnaires answered by Software Development Team Members, CoCoADvISE can
automatically resolve potential constraints and dependencies (e.g., reveal follow-

5A demo of CoCoADvISE is available at: https://piri.swa.univie.ac.at/cocoadvise.
Use the following user names to log in: experiment1 or experiment2 (no password required).

8

Paper I 203

Decision Question

Option

Documented
Decision*

*

2..*

*

*

*

triggers

provides

provides

incompatible

triggers

enforces
*

*

1

1

*

1

decision

Decision
Model

*

leadsTogeneratedFrom

Solution

leadsTo

*
*

Figure 2: Conceptual Overview of CoCoADvISE’s Decision Meta-model

on questions and decisions, deactivate options), recommend best-fitting design
solutions, and eventually generate semi-complete architectural design decision
(ADD) documentations (see Section 4.1).

The real-time collaboration features of CoCoADvISE enable multiple, possi-
bly geographically dispersed software architects and stakeholders (i.e., Software

Development Team Members) to participate in the group decision making and
documentation process. In order to be applicable in industrial contexts, such
as intra- and cross-organizational businesses, CoCoADvISE provides means for
making this decision making process subject to constraints. It employs a model-
driven approach in which reusable decision models are made subject to con-
straints, as can be seen in Figure 1 (see Section 4.2 and 4.3 for details).

The CoCoADvISE approach requires Software Architects to define abstract
and reusable decision models at design time. If the decision making process
has to be made subject to constraints, the Software Architects are supposed to
formalize these requirements by defining constraint models and relating them
to the corresponding decision models. Note that reusable decision models and
constraints can only be defined and created using the ADvISE tool [22] while
CoCoADvISE provides means for actually using these models.

4.1. Supporting Decision Making and Documentation

CoCoADvISE relies on reusable architectural decision models based on Ques-
tions, Options, and Criteria [23] that can be reused many times by the software
architects in form of questionnaires, in order to guide architectural decision
making. Such reusable architectural decision models are defined for recurring
design situations, both domain and technology dependent and independent.

In particular, software architects define architectural decision models by cre-
ating instances of CoCoADvISE’s decision meta-model at design time. While
a detailed and formal representation of this meta-model can be found in Ap-
pendix A, Figure 2 provides a conceptual and graphical overview that may be
more suitable for quickly grasping the core concepts and abstractions. Note
that Figure 2, as well as the following Figure 3, 6, 7 and 8 represent UML2.2

9

204 Paper I

Q1: Question

text = ''What kind of
 data format [...]''

O1: Option

text = ''only XML''

O2: Option

text = ''XML, JSON or other
 valid MIME type''

ADD1: Decision

name = ''RESTful HTTP or
 SOAP/WS-*''

S1: Solution

text = ''use SOAP/WS-*''

S2: Solution

text = ''use RESTful HTTP''

Q2: Question

text = ''Which protocol
 will be used [...]''

... ...

Figure 3: Exemplary Decision Model

Class and Object Diagrams with a minor syntactical deviation from the corre-
sponding standard [33]. More precisely, we symbolize a relation’s navigability

with a filled arrowhead (i.e.,) instead of an open arrowhead.
As we can see, an architectural Decision Model consists of Decisions, Ques-

tions, Options, Solutions and relationships among them. Note that the usage of
sans serif font indicates a reference to a class, e.g., Decision Model in Figure 2.
These relationships allow for expressing consistency constraints and prescribing
control flows like:

• If users choose Option x they must also choose Option y (enforces).

• If users choose Option x they must not choose Option y (incompatible).

• If users choose Option x they must also answer Question y (triggers).

• If users choose Option x they must also decide on Decision y (triggers).

The object diagram in Figure 3 depicts an excerpt of a very simplistic deci-
sion model that might be helpful in a situation where software architects have
to decide on the kind of Web service to be deployed (as has been suggested in
the motivating example from Section 3.2). This exemplary model consists of
a single decision (i.e., ADD1) which has exactly one question (i.e., Q1). The
question deals with the Web service’s payload data format and can be answered
by one of two options (i.e., O1 and O2). Finally, we can see, that each option
leads to different solutions (i.e., S1 for O1 and S2 for O2). In general, Decisions

10

Paper I 205

RESTful HTTP or SOAP

only XML

XML, JSON or other valid MIME type

ADD1:

Q1: What kind of data format [...]

Figure 4: Exemplary Decision Questionnaire

ADD Template

Which type of Web service?

Decide for RESTful HTTP or SOAP/WS-*

Group

Name

Issue

Decision

Web Services

Use RESTful HTTP

Figure 5: Exemplary Decision Template

capture the essence of reusable architectural design decisions. Questions always
belong to a particular superordinate Decision and are supposed to guide the
software architect towards finding Solutions for the respective Decision. Finding
Solutions involves choosing Options, thereby answering Questions.

In similar application contexts, software architects can reuse suitable ar-
chitectural decision models. More precisely, reusing a decision model means
instantiating the decision model and generating questionnaires which are used
at execution time of the collaborative Web application by software development
team members. As indicated in Figure 4 a questionnaire consists of questions
and each question has to be answered by choosing exactly one option from a set
of possible options. Thus, by answering these questionnaires, the best-fitting
design solutions are recommended to the software development team members.
CoCoADvISE takes the responsibility of verifying and guaranteeing the consis-
tency of the decision model instances by automatically revealing follow-on ques-
tions and decisions, hiding, showing, enabling and/or disabling specific parts of
the questionnaires in a way that users simply can not leave the questionnaire
in an inconsistent state. For instance, whenever a user selects a specific option,
the system automatically disables all other incompatible options.

Eventually, the selected options and gathered solutions can automatically
be transformed into semi-completed architectural decision documentation tem-
plates similar to the one proposed by Tyree and Akerman [56]. For instance, if
we consider the exemplary questionnaire depicted in Figure 4 and assume that
a user has selected Option 2 (i.e., “XML, JSON or other valid MIME type”), we
can transform this particular questionnaire into a decision documentation tem-
plate (i.e., Documented Decision in Figure 1) like the one depicted in Figure 5.
As we can see, many fields of these templates, such as “Name”, “Group”, “Issue”

11

206 Paper I

staticConstraint constraint

*

Unanimity ...
Role

Unanimity
Responsible

Subject

1..*

1..*

* *

owner

«enumeration»

Permission

selectOption
generateDecision

...

RequiredPermission

permission: Permission[1..*]

Role

permission: Permission[*]
Subject

Constraint Decision
(from Decisionmodel)

Decision
Model

(from Decisionmodel) *

1..*

1..*role

* *

(a) Constraint Model Extension

Option
Selection

selectingSubject

selectingRole

11*

*

*

selection

Subject
(from Constraintmodel)

Role
(from Constraintmodel)

Option
(from Decisionmodel)

1 Documented
Decision

(from Decisionmodel)

generatingSubject

generatingRole
11 *

*

(b) Runtime Model Extension

Figure 6: Conceptual Overview of CoCoADvISE’s Constrainable Decision Meta-model

and “Decision” can be completed (semi-)automatically by combining information
that is encoded in the decision model (see, e.g., Figure 3) with user-provided
input gathered via questionnaires (see, e.g., Figure 4).

4.2. Definition and Enforcement of Decision Making Constraints

In CoCoADvISE, reusable decision models are augmented with additional
constraint elements. This section gives an overview of the generic meta-model
for the specification of decision making constraints for reusable architectural
decision models and details how these constraints are enforced at runtime.

The class diagrams depicted in Figure 6 provide a conceptual overview of
the essential concepts of a Constrainable Decision Meta-model including Sub-

jects, Roles, Permissions, and various types of Constraints. Technically, the Con-
strainable Decision Meta-model extends the previously presented Decision Meta-
model (see Figure 2 and Section 4.1) with additional elements, relevant at design
time (i.e., Figure 6(a)) and execution time (i.e., Figure 6(b)).

12

Paper I 207

Ce: ResponsibleRole
IArch: Role

name = ''Integration Architect''
C1: Unanimity

ADD1: Decision

name = ''RESTful HTTP or SOAP/WS-*''

Figure 7: Exemplary Constraint Model

In our approach, Roles are used to model different job positions and scopes
of duty within an organization. These Roles are equipped with the Permissions

to perform certain tasks. Human users (i.e., Subjects) are assigned to Roles

according to their work profile (see, e.g., [47]). This relation is a many-to-many
relation, which means that a Subject can be assigned to numerous Roles and
each Role can be owned by numerous Subjects.

CoCoADvISE provides two separate mechanisms for defining decision mak-
ing constraints. First of all, we can make particular reusable architectural de-
cisions subject to decision making constraints by assigning Constraints to Deci-

sions. In addition, all reusable architectural decisions of a decision model can
be made subject to decision making constraints at once by assigning the corre-
sponding Constraints to the Decision Model, instead of a single decision. These
two mechanisms are inherited by all subclasses of the abstract Constraint class
(e.g., Unanimity or Responsible Subject).

As an example, let us revisit the motivating example from Section 3.2. Fig-
ure 7 depicts how the first set of decision making constraints can be imple-
mented in CoCoADvISE. More precisely, we augment the previously defined
exemplary decision model (see Figure 3) by attaching decision making con-
straints. By defining both a Responsible Role and a Unanimity constraint we can
formalize the requirement that stakeholders with the role Integration Architect
have to unanimously decide on the type of Web service. Note that we have to
parametrize the Responsible Role constraint by assigning the Role object, which
represents the Integration Architect role, to it. On the contrary, a Unanimity

constraint can and does not need any further parametrization. According to
Figure 6(a) the three additional classes that are used for parametrization of
some constraints are: Subject, Role, and Permission. A Subject represents a per-
son, i.e., a user/stakeholder of the system (see, e.g., [49]). Roles are assigned
to subjects, and through their roles the subjects are granted Permissions. A
Permission models a right to perform a certain action within the system. In
CoCoADvISE we mainly focus on constraining two fundamental actions, i.e.,
selecting options and generating decisions. Figure 6 reflects this circumstance
by explicitly listing the corresponding permissions selectOption and generateDe-

cision. Other permissions could be added to the tool as extensions.
Figure 6(b) shows how we extend our original decision meta-model of Fig-

ure 2 with additional runtime-specific elements and relations. For the purpose of

13

208 Paper I

O1: Option

text = ''only XML''

s1: Option Selection

R2: Role

Bob: Subject

IArch: Role

d1: Documented Decision

selectingRole

selectingSubjectgeneratingSubject

generatingRole

selection

role

role

owner

owner

Figure 8: Exemplary Constraint Runtime Model

enforcing certain decision making constraints we have to introduce – among oth-
ers – the concept of an Option Selection. At execution time, the existence of an
Option Selection object means that the corresponding Option has been selected
by a user (i.e., executing a selectOption action). More precisely, the relations
selectingSubject and selectingRole of this Option Selection object are supposed to
point to the user’s corresponding Subject respective Role objects. Analogously,
the generatingSubject and generatingRole relations of a Documented Decision ob-
ject are supposed to refer to the Subject and Role objects of the user who has
generated a decision (i.e., executing a generateDecision action). Figure 8 exem-
plifies these runtime-specific elements and relations. In this particular example,
there is one Subject (i.e., Bob), that owns two different Roles (i.e., IArch and R2).
Assuming, that Bob selects Option O1 at runtime, Option Selection s1 is newly
instantiated. In addition, the selectingSubject and selectingRole relations of s1

are set to Bob and IArch (hereby assuming that IArch is the Role that Bob is cur-
rently using). In summary, s1 captures the fact that Bob has selected O1 using
the Role IArch. Later, Bob generates a Documented Decision d1 using another
Role, i.e., R2. As a result, the generatingSubject and generatingRole relations of
d1 are set to Bob and R2 to capture the Subject and Role responsible for this
event.

4.3. Logical Specification of Decision Making Constraints

In this section, we present the precise definition of the decision making con-
straints using first-order logic as a formalism that is abstract and technology-
independent but can still easily be mapped to different existing constraint lan-
guages used in modeling and software development, such as OCL6, the Check

6http://www.omg.org/spec/OCL/

14

Paper I 209

language of the Eclipse M2T project7, or Frag’s FCL constraints8. In order to
enable this precise definition, we needed to map the meta-models from Figures 2
and 6 to first-order logic as well. For the sake of completeness we provide this
formalization in Appendix A. The reader can refer to Appendix A for a com-
plete reference of the semantics of the constraint meta-model but we note that
this is not necessary for understanding the constraint types and their applica-
tion. In particular, Definition A.1 provides a list of elements and their relations,
Definition A.2 presents crucial model invariants to be considered at design time,
and Definition A.3 lists model invariants relevant at execution time.

The following list of Constraint Type (CT) Definitions constitutes our pro-
posed set of decision making constraints. Each Constraint Type Definition con-
sists of a narrative description, a formal definition of model invariants, expressed
using first-order logic (see, e.g., [46]), as well as an exemplary application of the
respective constraint type. A constrainable decision model that fulfills the in-
variants of a Constraint Type Definition CTn is said to be compliant with CTn.
Note that this list is not an exhaustive list of all possible constraint types. In-
stead, we selected a set of constraint types that we believe to be representative
and common in real-life scenarios.

The following three Constraint Types (CT1−3) belong to the family of Una-
nimity constraints. Such constraints can be used to enforce consensus finding
among a particular set of stakeholders. As has been mentioned in Section 4.2,
CoCoADvISE focuses on constraining the process of selecting options and gen-
erating decisions. In connection with this, Unanimity constraints concern the
option selection process.

CT1 (General) Unanimity: Each question of a decision that is subject to
a (general) unanimity constraint has to be answered unanimously. More
precisely, a question is said to be answered unanimously if all subjects
have agreed on the concrete set of options to select. This is the case when
all subjects (i.e., “users”) have selected the same set of options.

In order to be able to express this model invariant, we need to define the
following required mappings first:

cd(c) = {d1, ..., dn} Set of decisions {d1, ..., dn} that is constrained
by constraint c (see Definition A.1.19)

qda(d) = {q1, ..., qn} Set of questions {q1, ..., qn} that belong to de-
cision d (see Definition A.1.2)

oqa(q) = {o1, ..., on} Set of options {o1, ..., on} that belong to ques-
tion q (see Definition A.1.3)

soa(o) = {os1, ..., osn} Set of (option) selections {os1, ..., osn} that
belong to option o (see Definition A.1.9)

In addition, the following set needs to be defined (see Definition A.1):

7https://www.eclipse.org/modeling/m2t/
8http://frag.sourceforge.net/

15

210 Paper I

CU An element of CU is called Unanimity Con-
straint

D An element of D is called Decision
Q An element of Q is called Question
O An element of O is called Option
OS An element of OS is called Option Selection

Therefore:

For each unanimity constrained question (q), if one option (ox) has been
selected (soa(ox) 6= ∅), all other options (oy 6= ox) must not be selected
(soa(oy) = ∅).

∀c ∈ CU (∀d ∈ cd(c)(∀q ∈ qda(d)(∀ox ∈ oqa(q)(∀oy ∈ oqa(q)(

ox 6= oy ∧ soa(ox) 6= ∅ ⇒ soa(oy) = ∅)))))

Example: Suppose there is a decision (d1 ∈ D), a question (q1 ∈ Q),
two options ({o1, o2} ⊆ O), a unanimity constraint (c1 ∈ CU) and two
option selections ({os1, os2} ⊆ OS). The question belongs to the deci-
sion (qda(d1) = {q1}) and the options belong to the question (oqa(q1) =
{o1, o2}). Finally, the decision is made subject to the unanimity con-
straint (cda(d1) = {c1}). If we assume that option o1 has been selected
twice by different “users” (soa(o1) = {os1, os2}), then o2 could not have
been selected (soa(o2) = ∅) and decision d1 is said to be compliant re-
garding the unanimity constraint c1. Hereby, an option selection such as
os1 (and os2 respectively) maps to exactly one subject and one role (see
Definition A.1.10, Definition A.1.11 and Figure 6(b)). In other words,
an option selection links a particular option with a subject/role combi-
nation (i.e., a “user”). Conversely, if both o1 and o2 have been selected
once (soa(o1) = {os1} and soa(o2) = {os2}), the invariant would not be
fulfilled and the unanimity constraint c1 is said to be violated.

CT2 Role Unanimity: Contrary to an ordinary unanimity constraint, the
role unanimity constraint allows for precisely specifying the set of subjects
that are supposed to unanimously agree on a decision. More specifically,
it allows for providing a specific set of roles. All subjects that own at least
one of these roles have to unanimously agree on the same set of options
for the questions of a decision.

A role unanimity constraint may be used to enforce the exemplary require-
ment “stakeholders with the role Integration Architect shall unanimously
decide on the type of Web service” from the motivating example in Sec-
tion 3.2.

Required mappings:

sr(os) = r Role r that has been used to perform selec-
tion os (see Definition A.1.11)

rruca(c) = {r1, ..., rn} Set of roles {r1, ..., rn} that must unanimously
agree on decisions that are constrained by con-
straint c (see Definition A.1.14)

16

Paper I 211

Required sets:

CUR
An element of CUR

is called Role Unanimity
Constraint

R An element of R is called Role

Therefore:

For each role unanimity constrained question (q), if one option (ox) has
been selected (soa(ox) 6= ∅) by one of the specified roles (sr(ox) ∈ rruca(c)),
all other options must not be selected (soa(oy) = ∅).

∀c ∈ CUR
(∀d ∈ cd(c)(∀q ∈ qda(d)(∀ox ∈ oqa(q)(∀oy ∈ oqa(q)(

ox 6= oy ∧ soa(ox) 6= ∅ ⇒ soa(oy) = ∅ ∧ ∀osx ∈ soa(ox)(

sr(osx) ∈ rruca(c)))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and
os2), we assume that the decision (d1) is made subject to a role unanim-
ity constraint (c1 ∈ CUR

and cda(d1) = {c1}). The constraint requires
that subjects with a particular role (r1 ∈ R and r1 ∈ rruca(c1)) have to
unanimously agree on a particular option. If we assume that option o1
has been selected twice by different “users” (soa(o1) = {os1, os2}) with
that particular role (sr(os1) = sr(os2) = r1), then o2 could not have been
selected (soa(o2) = ∅) and decision d1 is said to be compliant regarding
the role unanimity constraint c1. Conversely, if both o1 and o2 have been
selected once (soa(o1) = {os1} and soa(o2) = {os2}), the invariant would
not be fulfilled and the role unanimity constraint c1 is said to be violated.
The constraint is also violated if either option has been selected by a role
other than the required one (sr(os1) /∈ {r1} or sr(os2) /∈ {r1}).

CT3 Subject Unanimity: The subject unanimity constraint is similar to the
role unanimity constraint, but instead of specifying a set of roles (supposed
to unanimously agree on a decision), it allows for directly specifying a set
of subjects.

Required mappings:

ss(os) = s Subject s that has performed selection os (see
Definition A.1.10)

ssuca(c) = {s1, ..., sn} Set of subjects {s1, ..., sn} that must unani-
mously agree on decisions that are constrained
by constraint c (see Definition A.1.15)

Required sets:

CUS
An element of CUS

is called Subject Unanimity
Constraint

S An element of S is called Subject

Therefore:

For each subject unanimity constrained question (q), if one option (ox)
has been selected (soa(ox) 6= ∅) by one of the specified subjects (ss(ox) ∈

17

212 Paper I

ssuca(c)), all other options must not be selected (soa(oy) = ∅).

∀c ∈ CUS
(∀d ∈ cd(c)(∀q ∈ qda(d)(∀ox ∈ oqa(q)(∀oy ∈ oqa(q)(

ox 6= oy ∧ soa(ox) 6= ∅ ⇒ soa(oy) = ∅ ∧ ∀osx ∈ soa(ox)(

ss(osx) ∈ ssuca(c)))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and os2),
we assume that the decision (d1) is made subject to a subject unanim-
ity constraint (c1 ∈ CUS

and cda(d1) = {c1}). The constraint requires
that particular subjects ({s1, s2} ⊆ S and {s1, s2} ⊆ ssuca(c1)) have to
unanimously agree on a particular option. If we assume that option o1
has been selected twice (soa(o1) = {os1, os2}) by that particular subjects
(ss(os1) ∈ {s1, s2} and ss(os2) ∈ {s1, s2}), then o2 could not have been
selected (soa(o2) = ∅) and decision d1 is said to be compliant regarding
the subject unanimity constraint c1. Conversely, if both o1 and o2 have
been selected once (soa(o1) = {os1} and soa(o2) = {os2}), the invariant
would not be fulfilled and the subject unanimity constraint c1 is said to
be violated. The constraint is also violated if either option has been se-
lected by a subject other than the required ones (ss(os1) /∈ {s1, s2} or
ss(os2) /∈ {s1, s2}).

The following two Constraint Types (CT4−5) belong to the family of Re-
sponsibility constraints. Such Responsibility constraints concern the decision
generation process and can be used to precisely specify which particular set of
stakeholders shall be entitled to eventually make (i.e., generate) a decision.

CT4 Responsible Role: Each decision that is subject to a responsible role
constraint shall be transformable into documented decisions only by sub-
jects that own at least one of given set of roles. In other words, this
constraint allows for preventing subjects that do not own specific roles
from making (i.e., generating) certain decisions.

A responsible role constraint may be used to enforce the exemplary re-
quirement “Security Experts shall propose a solution for the security and
encryption related decisions” from the motivating example in Section 3.2.

Required mappings:

dda(d) = {dd1, ..., ddn} Set of documented decisions {dd1, ..., ddn}
that have been generated from decision d (see
Definition A.1.6)

gr(dd) = r Role r that has been used to generate docu-
mented decision dd (see Definition A.1.8)

rrrca(c) = {r1, ..., rn} Set of roles {r1, ..., rn} that are responsible for
generating decisions that are constrained by
constraint c (see Definition A.1.16)

Required sets:

18

Paper I 213

CRR
An element of CRR

is called Responsible Role
Constraint

Therefore:

If documented decisions (dd) have been generated from a responsible role
constrained decision (d), these decisions have to be generated by a subject
using one of the specified (responsible) roles (gr(dd) ∈ rrrca(c)).

∀c ∈ CRR
(∀d ∈ cd(c)(∀dd ∈ dda(d)(gr(dd) ∈ rrrca(c))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and
os2), we assume that the decision (d1) is made subject to a responsible
role constraint (c1 ∈ CRR

and cda(d1) = {c1}). The constraint requires
that subjects with a particular role (r1 ∈ R and r1 ∈ rrrca(c1)) have to
generate decisions that are based on d1. If we assume that decision dd1 has
been generated from d1 (dd1 ∈ dda(d1)) by a subject with that particular
role (gr(dd1) = r1), then decision d1 is said to be compliant regarding the
responsible role constraint c1. Conversely, if dd1 had been generated by a
role other than the required one (gr(dd1) /∈ {r1}), the invariant would not
be fulfilled and the responsible role constraint c1 is said to be violated.

CT5 Responsible Subject: Similarly to the responsible role constraint, the
responsible subject constraint allows for precisely specifying a set of sub-
jects that are supposed to make (i.e., generate) certain decisions. Con-
versely, all other subjects shall not be allowed to do so.

Required mappings:

gs(dd) = s Subject s that has generated documented de-
cision dd (see Definition A.1.7)

srsca(c) = {s1, ..., sn} Set of subjects {s1, ..., sn} that are responsible
for generating decisions that are constrained
by constraint c (see Definition A.1.17)

Required sets:

CRS
An element of CRS

is called Responsible Sub-
ject Constraint

Therefore:

If documented decisions (dd) have been generated from a responsible subject
constrained decision (d), these decisions have to be generated by one of the
specified (responsible) subjects (gs(dd) ∈ srsca(c)).

∀c ∈ CRS
(∀d ∈ cd(c)(∀dd ∈ dda(d)(gs(dd) ∈ srsca(c))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and
os2), we assume that the decision (d1) is made subject to a responsible
subject constraint (c1 ∈ CRS

and cda(d1) = {c1}). The constraint requires
that a particular subject (s1 ∈ S and s1 ∈ srsca(c1)) has to generate
decisions that are based on d1. If we assume that decision dd1 has been

19

214 Paper I

generated from d1 (dd1 ∈ dda(d1)) by that particular subject (gs(dd1) =
s1), then decision d1 is said to be compliant regarding the responsible
subject constraint c1. Conversely, if dd1 had been generated by a subject
other than the required one (gs(dd1) /∈ {s1}), the invariant would not be
fulfilled and the responsible subject constraint c1 is said to be violated.

The following Constraint Type (CT6) can be considered a generic Access
Control constraint. In the context of CoCoADvISE it concerns constraining
the set of stakeholders that shall be authorized to select options or generate
decisions. Whereas CT6 concerns authorization (i.e., who shall potentially be
entitled to do what), CT2−5 concerns obligation (i.e., who must do what).

CT6 Required Permission: A required permission constrained decision re-
spective decision model enforces that subjects that do not own certain
permissions (i.e., via their roles) within the system must not perform the
corresponding actions.

Required mappings:

prpca(c) = {p1, ..., pn} Set of permissions {p1, ..., pn} that are re-
quired for performing actions concerning deci-
sions that are constrained by constraint c (see
Definition A.1.18)

pra−1(r) = {p1, ..., pn} Set of permissions {p1, ..., pn} that are owned
by role r (see Definition A.1.5)

Required sets:

CP An element of CP is called Required Permis-
sion Constraint

Therefore:

If documented decisions (dd) have been generated from a decision (d)
that is subject to a required permission constraint (c), the generating role
(gr(dd)) must own the corresponding permission (generateDecision ∈
pra−1(gr(dd))) to generate decisions.

∀c ∈ CP (generateDecision ∈ prpca(c) ⇒ ∀d ∈ cd(c)(

∀dd ∈ dda(d)(generateDecision ∈ pra−1(gr(dd)))))

If options of a decision (d) that is subject to a required permission con-
straint (c) have been selected (os), the selecting role (sr(os)) must own the
permission to select options (selectOption ∈ pra−1(sr(os))).

∀c ∈ CP (selectOption ∈ prpca(c) ⇒ ∀d ∈ cd(c)(

∀q ∈ qda(d)(∀o ∈ oqa(q)(∀os ∈ soa(o)(selectOption ∈ pra−1(sr(os)))))))

Note that similar invariants for other actions, such as deleting question-
naires or decisions, have been omitted for brevity.
Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and os2),

20

Paper I 215

XML, [...]

[...]ADD1:

Q1: What kind [...]

only XML

XML, [...]

[...]ADD1:

Q1: What kind [...]

User 1

Integration
Architect

User 2

Application
Architect

generate generate

selects
selects

clicks
only XML

Figure 9: Enforcing Exemplary Constraints at Execution Time

we assume that the decision model is made subject to a required permis-
sion constraint (c1 ∈ CP). The constraint mandates – among other things
– that all option selections have to be performed by subjects owning the
required selectOption role. If we assume that option selection os1 has been
performed by a subject using a role (r1 ∈ R) that owns that particular
permission (selectOption ∈ pra−1(r1)), then the decision model is said to
be compliant regarding the required permission constraint c1. Conversely,
if r1 did not own that particular permission (selectOption /∈ pra−1(r1)),
the invariant would not be fulfilled and the required permission constraint
c1 is said to be violated.

At execution time, CoCoADvISE interprets constrainable decision models
and constantly checks the system’s compliance to the defined constraints while
the software development team members are making and documenting deci-
sions. The actual constraint enforcement logic is mainly embedded in the user
interface of the collaborative Web application. The constraints are automati-
cally enforced in the same way, the system also guarantees the consistency of
the decision model instances, i.e., by automatically hiding, showing, disabling,
etc. specific parts of the questionnaires and the user interfaces in a way that
users simply can not violate any defined constraints at all. Figure 9 visualizes a
possible runtime situation of the previously defined decision (see Figure 3) and
constraint model (see Figure 7). We can see that the specified responsible role
constraint is enforced by showing the “generate” button only to those users that
own the required role (i.e., User 1, which owns the role Integration Architect),
while hiding it for all other users (i.e., User 2). Given that User 1 chooses op-
tion 2 and User 2 chooses another option 1, the system correctly enforces the
unanimity constraint by disabling the “generate” button. As soon as all users
have unanimously agreed on the same set of options, the system will eventually
enable the button again, allowing User 1 to generate a documented decision.

4.4. Implementation Details

CoCoADvISE is a real-time collaborative Single-page Web application that
is founded on Google’s Web application framework AngularJS9. Thus, it is exe-

9http://angularjs.org

21

216 Paper I

cuted mostly client-side (i.e., in the user’s Web browser). The model invariants
for each constraint type (i.e., CT1−6) have been transformed manually into
client-side executable code. A key component of real-time collaborative Web
applications is a real-time model synchronization engine that allows for syn-
chronizing the shared application state with all clients. CoCoADvISE leverages
Racer10 for synchronizing the decision making process with all clients. Racer
consists of both client-side and server-side executed code. All server-side code
is executed in Node.js11, an asynchronous event driven framework and run-
time environment based on Google’s V812 JavaScript engine. The back-end of
this Thin Server Architecture persists the application state using MongoDB13,
a document-oriented (i.e., NoSQL) database. According to the tool CLOC14

(Count Lines of Code), the application consists of nearly 2100 lines of client-
side executed JavaScript code, roughly 1000 lines of HTML code and 150 lines
of server-side executed Javascript code.

In addition to collaborative editing of questionnaires and architectural design
decisions, CoCoADvISE also provides a simple chat, which allows all stakehold-
ers to participate in discussions concerning the decision making process.

4.5. Motivating Example Resolved

In the course of revisiting the motivating example from Section 3.2, Fig-
ure 10 shows screenshots of CoCoADvISE, currently displaying the mentioned
decision model excerpt from an Integration Architect’s point of view. 1 indi-
cates that another Software Architect with the name “experiment1” has currently
selected a different option than “we”. Due to the Unanimity constraint, the sys-
tem automatically disables the corresponding “Generate decision” button 2 .
By selecting the same option as “experiment1” 3 “we” can successfully resolve
this constraint violation and eventually the system allows for generating the
corresponding documented decision 4 . Finally, 5 displays an excerpt of this
generated decision.

5. Application of Constrainable Collaboration in Service-based Plat-
form Integration

In practice, more than two roles with various intertwining responsibilities,
rights, and permissions are involved in decision making on architectural-related
issues. In this section, we present the application of constrainable collaborative
architectural decision making in the domain of service-based platform integra-
tion. In particular, we discuss the implementation of our approach to support
architecture governance in tailoring of heterogeneous domain-specific platforms,

10http://github.com/codeparty/racer
11http://nodejs.org
12http://code.google.com/p/v8
13http://mongodb.org
14http://cloc.sourceforge.net

22

Paper I 217

1

2

5

4

3

Figure 10: Screenshots of CoCoADvISE

23

218 Paper I

which was investigated in the context of the EU research project INDENICA15,
which included project partners from the industry. INDENICA and in particu-
lar one of its technical reports [44] on role-based governance originally inspired
us to devising the approach presented in this paper.

Building domain-specific service platforms is necessary for fulfilling specific
requirements of various domains – sometimes incompatible to each other – in
order to ease the development of services and applications within the domain.
Such domain-specific service platforms may form a family of platforms, in which
member platforms share assets. In this way, the INDENICA approach tailors the
platforms towards the application domains and provides methods and tools for
designing and implementing a Virtual Domain-Specific Service Platform (VSP).
As described in the technical report [44], this approach requires the implemen-
tation and application environment to be considered from an organizational and
human behavior point of view. This can be addressed by introducing different
types of governance, such as Corporate Governance, Business Process Man-
agement Governance (BPM Governance), Information Technology Governance
(IT Governance), Enterprise Architecture Governance (EA Governance), SOA
Governance, and Architecture Governance in the different software processes.
We will focus on Architecture Governance which concentrates on system and
platform architecture related aspects.

Architecture Governance is defined as “the practice and orientation by which
enterprise architectures and other architectures are managed and controlled at an
enterprise-wide level” [52]. To develop a consistent architecture and ensure the
evolution, adaptation, and modification of integrating domain-specific service
platforms in INDENICA, architecture governance is of key importance. That
is, without such governance the risk of e.g., wrong usage of services, project
failure, over-complex applications, and design erosion increases. During design
time, the following key participating roles have been defined:

Platform Provider is a technology expert and describes the current variabil-
ity and the variability binding process of the existing platform he owns.

Platform Variant Creator is responsible for binding unresolved variability
in base platform(s) and for creating an executable platform variant.

Platform Architect is responsible for VSP requirements, variability within
VSP, baseline architecture and adaptation behavior of VSP.

Platform Integrator generates the VSP instance.

In Table 1, we list 16 decision categories related to service-based platform
integration design that have been described in [44]. These decision categories
include decision points that need to be considered, discussed, and eventually,
resolved by the various stakeholders in collaboration. For instance, for Decision

15http://www.indenica.eu

24

Paper I 219

Decision Category Constraints

CRR
CUR

01. Decide variability modeling (describing the current
variability and the variability binding process of the
base platform).

PP PP

02. Implement base platform relevant requests. PP
03. Bind unresolved variability in base platform. PVC
04. Create an executable platform variant optional. PVC
05. Decide additional functionality not covered by the

base platform.
PVC PP, PVC

06. Decide variability modeling of additional functional-
ity.

PVC PP, PVC

07. Implement domain platform relevant change re-
quests.

PVC PP, PVC

08. Design the VSP Capabilities (requirements manage-
ment).

PA

09. Decide the variability within VSP. PA
10. Decide the VSP constraints. PA
11. Decide the VSP orchestration. PA
12. Create the baseline architecture. PA PA, PI
13. Create the baseline adaptation behavior of VSP. PA PA, PI
14. Decide/Implement monitoring/adaptation rules. PI PA, PI
15. Decide integration of appropriate platforms. PI PA, PI
16. Generate the integration of the domain platforms to

the VSP.
PI

PP: Platform Provider PVC: Platform Variant Creator PA: Platform Architect
PI: Platform Integrator

Table 1: Role Constraints for Service-based Platform Integration

Category 15 (i.e., “Decide integration of appropriate platforms”) we list exem-
plary architectural decisions regarding the integration of heterogeneous domain
platforms to the VSP:

• Decide on the type of component for integrating the platform service into
the VSP.

• Decide on the connection of heterogeneous systems (in terms of synchro-
nization and queuing behavior).

• Decide on the protocol(s) for accessing the VSP from the integrating plat-
forms.

• Decide on how to accommodate diverse protocol requirements of integrat-
ing platforms.

25

220 Paper I

For each Decision Category, the report [44] also provides governance rules,
i.e., a detailed description of the rights and duties of each involved stakeholder
role. As these stakeholders and stakeholder roles belong to different organiza-
tions and domains, collaboratively deciding and making ADDs while complying
to all governance rules is very complicated and error-prone. Using our previ-
ously described approach for supporting decision making and documentation
(see Section 4), we can precisely formalize the described governance rules in
the form of decision making constraints (see Section 4.2) and rely on CoCoAD-
vISE’s automatic constraint enforcement capabilities in order to stay compliant
to these governance rules. For instance, the governance rules for Decision Cat-
egory 1 from Table 1 can be formalized and enforced by defining a Responsible
Role constraint (i.e., CRR

), with a (responsible) stakeholder role of “Platform
Provider” (i.e., PP) and a corresponding Role Unanimity constraint (i.e., CUR

).
At runtime, these two constraints will enforce, that only a stakeholder with the
role PP will be responsible for deciding on variability modeling (i.e., Responsi-
ble Role) and that the other participating stakeholders with the role PP have to
decide unanimously (i.e., Role Unanimity) on this matter. In a similar way, our
approach can be used to enforce the governance rules of the remaining Decision
Categories 2–16 too (as can be seen in Table 1).

6. Empirical Evaluation

In order to collect empirical evidence about the effectiveness and efficiency
of our proposed concepts, we conducted a controlled experiment with computer
science students. We designed and executed our controlled experiment follow-
ing the guidelines of Kitchenham [17] and analyzed and evaluated the results
according to Wohlin et al.’s advice [61]. The following subsections discuss the
goals and hypotheses of the controlled experiment, as well as its design and
execution in detail.

6.1. Goals and Hypotheses

The goal of the experiment is twofold. On the one hand, we want to study
and quantify the benefits of automatically enforcing constraints in a collabora-
tive architectural decision making tool. On the other hand, we want to analyze
and quantify the adverse effects of constraint violations in detail. Consequently,
we postulate the following hypotheses:

Automatic enforcement of constraints in CoCoADvISE. . .

H01 has no effect or decreases the effectiveness of its users.

H1 increases the effectiveness of its users.

H02 has no effect or decreases the time related efficiency of its users.

H2 increases the time related efficiency of its users.

26

Paper I 221

H03 has no effect or decreases the effort related efficiency of its users.

H3 increases the effort related efficiency of its users.

We expect that the corresponding null hypotheses can be rejected. That is,
we expect that automatic enforcement of constraints in CoCoADvISE increases
both the effectiveness and the time and effort related efficiency of its users. In
particular, we expect that users will manage to achieve more of the imposed work
tasks than users that can not rely on automatic enforcement of constraints. We
also expect that the former will have to invest both less effort (i.e., by performing
less work steps/actions) and less time in order to achieve the same results.

6.2. Parameters and Values

During the experiment several dependent and independent variables have
been observed. Table 2 provides a detailed description, including the type, scale
type, unit and range of those variables.

Dependent Variables. All dependent variables have been extracted automati-
cally from CoCoADvISE’s database. In particular, we instrumented its source
code in such a way that we could precisely record all user activities within the
system. The variable time indicates a single user’s total time spent logged in
(i.e., the sum of all session durations). Similarly, the variable actions counts
a user’s total number of essential actions or work steps within the system. In
particular, we consider the following actions in CoCoADvISE to be essential:
create/remove a questionnaire, generate/remove/copy a decision, and select an
option to a question. The variable violations indicates how many violations
of decision making constraints a single user has caused. Finally, the variable
work represents how much of the required work tasks in percent could actually
be achieved. For instance, users that completed 3 out of 6 work tasks got a
value of 50 for their work variable. The concrete number of work tasks depends
on the role that is randomly assigned to each user. That is, the role Software
Architect had to perform 7 tasks and the Application Developer 6, respectively.

Derived Variables. To allow for a meaningful comparison of time and actions,
we decided to introduce two additional derived variables: timeNorm and act-
ionsNorm. In particular, we normalize the time and actions variables by di-
viding them by work. As a result, timeNorm can be interpreted as the total
time a user would have needed to finish all work tasks. Comparing, for instance,
timeNorm instead of time, rules out the possibility that the participants of one
treatment group needed less time only because they “worked less” (i.e., in terms
of work) than the participants of the other group.

Independent Variables. The independent variables group, exp and commExp
can potentially influence the dependent variables. In particular, group contains
a participant’s treatment group, and exp and commExp concern their program-
ming experience and commercial programming experience, respectively.

27

222 Paper I

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

S
c
a
le

T
y
p
e

U
n
it

R
a
n
g
e

D
ep

en
d
en

t
ti
m
e

O
v
er

a
ll

ti
m

e
n
ee

d
ed

to
m

ak
e

an
d

d
o
c-

u
m

en
t

d
ec

is
io

n
s

R
at

io
M

in
u
te

s
P
os

it
iv

e
n
at

u
ra

l
n
u
m

b
er

s
in

-
cl

u
d
in

g
0

a
ct
io
n
s

N
u
m

b
er

of
a
ct

io
n
s

p
er

fo
rm

ed
R

at
io

–
P
os

it
iv

e
n
at

u
ra

l
n
u
m

b
er

s
in

-
cl

u
d
in

g
0

v
io
la
ti
on

s
N

u
m

b
er

of
co

n
st

ra
in

t
v
io

la
ti

on
s

ca
u
se

d
R

at
io

–
P
os

it
iv

e
n
at

u
ra

l
n
u
m

b
er

s
in

-
cl

u
d
in

g
0

w
or
k

P
er

ce
n
ta

ge
o
f

w
or

k
th

at
a

si
n
gl

e
u
se

r
is

su
p
p
o
se

d
to

p
er

fo
rm

R
at

io
–

0
(l

ow
es

t)
to

10
0

(h
ig

h
es

t)

D
er

iv
ed

ti
m
eN

or
m

(=
ti
m

e
w
o
r
k
)

T
im

e
th

at
w

ou
ld

b
e

n
ee

d
ed

to
p
er

fo
rm

10
0
%

o
f
w
or
k

R
at

io
M

in
u
te

s
P
os

it
iv

e
n
at

u
ra

l
n
u
m

b
er

s
in

-
cl

u
d
in

g
0

a
ct
io
n
sN

or
m

(=
a
c
ti
o
n
s

w
o
r
k
)

N
u
m

b
er

o
f
ac

ti
on

s
th

at
w

ou
ld

n
ee

d
to

b
e

p
er

fo
rm

ed
to

ac
co

m
p
li
sh

10
0%

of
w
or
k

R
at

io
–

P
os

it
iv

e
n
at

u
ra

l
n
u
m

b
er

s
in

-
cl

u
d
in

g
0

In
d
ep

en
d
en

t
g
ro
u
p

T
re

a
tm

en
t

gr
o
u
p

N
om

in
al

–
E

it
h
er

“e
x
p
er

im
en

t”
or

“c
on

tr
ol

”
ex

p
P

ro
g
ra

m
m

in
g

ex
p
er

ie
n
ce

O
rd

in
al

Y
ea

rs
4

cl
as

se
s:

0-
1,

1-
3,

3-
6,

>
6

co
m
m
E
x
p

C
om

m
er

ci
a
l

p
ro

gr
am

m
in

g
ex

p
er

ie
n
ce

in
in

d
u
st

ry
O

rd
in

al
Y

ea
rs

4
cl

as
se

s:
0-

1,
1-

3,
3-

6,
>

6

T
a
b
le

2
:

O
b
se

rv
ed

a
n
d

D
er

iv
ed

V
a
ri
a
b
le

s

28

Paper I 223

6.3. Experiment Design

The controlled experiment was conducted in the context of Information Sys-
tem Technologies lecture at the Faculty of Computer Science, University of
Vienna, Austria, in January 2014.

Participants. From the 48 students of the lecture, 26 participated in the control
group and 22 in the experiment group, in teams of two students. The experi-
ment was part of a practical exercise on architectural decisions for service-based
software systems. The practical exercises took place in four separate groups (in
different rooms) to which the students were randomly assigned. All students
had background in Java programming, Web services, and design patterns.

Objects. As the basis for making and documenting pattern-based architectural
decisions collaboratively and remotely, a list of documented architectural design
patterns, as well as a set of reusable architectural decision models, were provided
in the CoCoADvISE tool. The design patterns and architectural decision models
were selected based on the lecture materials known to the students and the
students’ experiences from the previous practical exercises.

Instrumentation. In the preparation phase, all participants were given an intro-
duction to CoCoADvISE and were asked to study the catalog of architectural
design patterns and related technologies. Before starting with the experiment
tasks, all participants had to fill in a short questionnaire regarding their pro-
gramming experiences. Afterwards, all participants were provided with a de-
scription and requirements of the system to be designed (“An Online Retailer
for Selling Books and Gadgets”), a description of the different stakeholder roles,
their responsibilities, as well as a description of additional constraints regarding
the collaborative decision making process. In Table 3 we give an example of the
software system’s requirements, and in Table 4 we summarize the two stake-
holder roles along with an excerpt of their privileges and responsibilities. Note
that in reality a larger number of roles would be needed, but in order to reach a
controlled environment we had to simplify the roles used in the experiment. In
total, the students had to consider three groups of requirements (Expose Web
Services to a Web Shop, Customer Login, and Manage Different Formats for
Inventories), given in descriptive form. Additionally, some hints were provided
with information about the concrete decisions that were expected. Each require-
ment had to be covered by one or more documented architectural decisions.

Eventually, all participants were given access to the CoCoADvISE tool. For
the needs of the controlled experiment a detailed list of related architectural
design patterns and three reusable architectural decision models with use in-
structions were provided in the tool. The functionality of CoCoADvISE is de-
scribed in Section 4 and the setting provided to the students can be viewed at
https://piri.swa.univie.ac.at/cocoadvise16. The participants needed to

16Use the following user names (no password required): experiment1, experiment2, control1
or control2.

29

224 Paper I

Name Description

Customer
Login

A customer needs to login in order to purchase books and gadgets
online and is responsible for saving his/her session in order to keep
the state of his/her orders (stateful remote objects). If the session
is inactive for a predefined time period the session should expire
and the customer gets automatically logged out. Decide how to
implement the creation and lifecycle management of the sessions.
Hint: Create a questionnaire based on the Resource and Lifecycle
Management decision model.

Table 3: Online Retailer Requirement Example

Software
Architect

The Software Architect is responsible for high-level decisions
rather than for implementation details.

Application
Developer

The Application Developer is responsible for decisions that refer
to low-level design and implementation details.

Privileges Only the Software Architect should be able to create the ques-
tionnaires giving a name already agreed/edited by both the Soft-
ware Architect and the Application Developer. Also, only the
creator of questionnaires and decisions is able to remove them,
i.e., you are not allowed to delete questionnaires or decisions of
your partner. [...] The Software Architect will make the final
decision (generate decision) about the type of Web Service that
will be exposed by the Online Retailer (as well as the transport
protocol) but has to agree with the Application Developer on
this before he/she makes the final decision. The same applies
for the architectural decision regarding the service discovery.
Once the decision about the type of web service has been made,
the Application Developer can proceed with deciding the secu-
rity and encryption of the web service. Only the Application
Developer is responsible for deciding on security issues and the
Software Architect should not interfere in this issue. [...]

Table 4: Decision Making Roles with their Privileges

30

Paper I 225

reuse three architectural decision models (Resource and Lifecycle Management,
Message Transformations, and Web Services) in teams, in order to make and
document the architectural decisions related to the given requirements.

The crucial difference between the experiment and the control group was
that we completely disabled the automatic constraint enforcement functionality
for users belonging to the control group. In other words, the control group’s
members were completely responsible on their own for working in a way that
no constraints are violated. In particular, they had to detect violations on their
own and they also had to resolve them “manually”. In contrast, these tasks have
been automated for the experiment group.

Note that for the purpose of this experiment only the following constraint
types have been considered: Unanimity, ResponsibleRole and RequiredPermission.

6.4. Execution

As described in the previous section, the experiment was executed in the con-
text of the Information System Technologies lecture at the Faculty of Computer
Science, University of Vienna in the Winter Semester 2013/2014.

The participants were randomly divided into groups of two persons and also
randomly assigned to experiment and control group. As two of the four course
groups with different numbers of students took place simultaneously at a time
and the collaborating students were not allowed to work in the same room, we
had to divide the participants in unequal groups of 22 (experiment group) and
26 (control group) participants. Three participants of the experiment group
were excluded, as they did not hand in any results (that is, they did not edit
any questionnaires or decisions).

As we can see in Figure 11 the programming experience, as well as the
industry programming experience of the participants are comparable in both
treatment groups with the control group having slightly longer programming
experience and most of the students having more than 2.5 years of programming
experience but very few having experience in industrial projects (0-1 years).

The same materials were handed out to all participants in the beginning
of the exercise. The experiment group used the different version of CoCoAD-
vISE where the constraints (such as the ones in Table 4) were integrated and
automatically enforced (i.e., they could not be violated in any way).

The experiment was executed in two sessions of 90 minutes. In this time
period, the students had to read, understand and execute the exercise. They
were allowed to finish with the tasks earlier. Access to the tool was given only
during these sessions to avoid offline work or discussion among students.

The collection of the participants’ data has been performed automatically
during the experiment. In particular, all relevant information, such as created
questionnaires, selected options, and exchanged messages, as well as all relevant
events, such as deletions or modifications of architectural decisions and changes
of selected options were saved in a database.

No deviations from the initial study design occurred and no situations in
which participants behaved unexpectedly.

31

226 Paper I

0

5

10

15

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience

0

5

10

15

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience in Industry

Figure 11: Participants’ Programming Experience

7. Analysis of Results

The following statistical analysis has been carried out using R language and
environment for statistical computing [51]. Note that the raw data as well as
the corresponding R script for calculating these results are available online at
https://piri.swa.univie.ac.at/cocoadvise-experiment.

7.1. Descriptive Statistics

As a first step in our analysis, we use descriptive statistics to compare ob-
served variables related to the efficiency and the effectiveness of making and
documenting architectural decisions. That is, Table 5 and Figure 12 display the
mean and median values for the number of actions the participants of each treat-
ment group needed to perform in order to complete the exercise (actions), the
total time they needed (time), the percentage of tasks they completed (work),
and the number of constraint violations they caused (violations).

It is clearly noticeable that the experiment group spent less time working
on the exercise and had to perform less actions than the control group. A user
of the control group caused 5.23 constraint violations on average, which are
automatically prevented for the experiment group by our tool. The experiment
group could finish more work tasks than the control group (i.e., 85.03% vs.
71.79% on average). Given these results, it makes sense to take a closer look at
our derived variables (i.e., timeNorm and actionsNorm). We can see that the
gap between both treatment groups gets wider when we look at these derived
variables. That is, the experiment group would need roughly 41% less time and
nearly 44% less actions in order to completely finish all required work tasks.

32

Paper I 227

Variable Means Medians

control experiment control experiment

time (min) 163.72 120.53 148.33 120.21
timeNorm (min) 244.25 146.72 221.41 142.57
actions 95.15 67.05 88.50 57.00
actionsNorm 140.81 80.08 127.20 60.00
violations 5.23 – 3.50 –
work (%) 71.79 85.03 71.43 85.71

Table 5: Means and Medians of Observed Variables

Constraint Type Means Medians

Unanimity 0.27 0.00
ResponsibleRole 3.38 2.00
RequiredPermission 1.85 0.00

Table 6: Observed Constraint Violations per User in the Control Group

Finally, Table 6 provides the mean and median values of the observed con-
straint violations per type and per user in the control group. We notice that, on
average, ResponsibleRole constraints were violated 3.38 times per user, followed
by RequiredPermission constraints, which were violated 1.85 times per user.

7.2. Data Set Reduction

Studying the deviations from the means for each of the four variables that
we observed we noticed a few outliers, i.e., points that are either much higher or
much lower than the mean values. As these potential candidate data points for
exclusion correspond to different participants (for instance, a student delivered
more required work in less time) these single outlier points do not necessarily
make the participant an outlier. Thus, we decided to exclude only participants
who did not perform any action and delivered 0% of the required work tasks,
and who therefore would make the study results vulnerable. This was done,
however, before the data analysis (see explanation in Section 6.4); at this stage,
we did not perform any further data set reduction.

7.3. Hypotheses Testing

Testing for Normal Distribution. In order to see whether we can apply para-
metric tests like the t-test that assume the normal distribution of the analyzed
data, we tested the normality of the data by applying the Shapiro-Wilk test [43].
The null hypothesis of the Shapiro-Wilk test states that the input data is nor-
mally distributed. It is tested at the significance level of α = 0.05 (i.e., the level
of confidence is 95%). That is, if the calculated p-value is lower than 0.05 the
null hypothesis is rejected and the input data is not normally distributed. If the

33

228 Paper I

0

25

50

75

control experiment

actions

0

50

100

control experiment

actionsNorm

0

50

100

150

control experiment

time (min)

0

50

100

150

200

250

control experiment

timeNorm (min)

0

25

50

75

control experiment

work (%)

mean

median

Figure 12: Means and Medians of Observed Variables

34

Paper I 229

Variable p-Value

control experiment

time 0.0571 0.8451
actions 0.0092 0.0017
violations 0.0045 –
work 0.0850 0.0047

Table 7: Shapiro-Wilk Normality Test

p-value is higher than 0.05, we can not reject the null hypothesis that the data
is normally distributed.

Table 7 lists the p-values of the Shapiro-Wilk normality test for each observed
variable and treatment group. We can see that only time exhibits a very weak
tendency of being normally distributed, while for all other variables it can not
be concluded that they are normally distributed. As a result, we decided to
pursue non-parametric statistical tests with our data.

Comparing the Means of Variables. To compare the means of variables, we
applied the Wilcoxon rank-sum test [25]. The one-tailed Wilcoxon rank-sum
test is a non-parametric test for assessing whether one of two data samples
of independent observations is stochastically greater than the other. Its null
hypothesis, which is appropriate for the hypotheses in our experiment, is that
the means of the first variable’s distribution is less than or equal to the means
of the second variable’s distribution, so that we can write H0 : A ≤ B. The
Wilcoxon rank-sum test tries to find a location shift in the distributions, i.e.,
the difference in means of two distributions. The corresponding alternative
hypothesis HA could be written as HA : A > B. If a p-value for the test is
smaller than 0.05 (i.e., the level of confidence is 95%), the null hypothesis is
rejected and the distributions are shifted. If a p-value is larger than 0.05, the
null hypothesis can not be rejected, and we can not claim that there is a shift
between the two distributions.

Table 8 contains the p-values of five Wilcoxon rank-sum tests that were
performed to test our hypotheses (see Section 6.1). It also contains the cor-
responding null hypotheses (e.g., H01 is the null hypothesis of H1) and their
assumptions regarding the means of a specific variable. Based on the obtained
p-values, we can assess that all distributions show a statistically significant shift
between each other and that all null hypotheses can be rejected.

Testing Hypothesis H1. In our experiment, we observed that the experiment
group was able to perform more work tasks than the control group, i.e., their
participants were more effective than the participants of the other group. With a
p-value of 0.0093 we can reject the null hypothesis H01 (i.e., automatic enforce-
ment of constraints in CoCoADvISE has no effect or decreases the effectiveness
of its users). Hence, we can accept H1.

35

230 Paper I

Hypothesis Assumption Variable (µ) p-Value

H01 µexp ≤ µcontrol work 0.0093
H02 µexp ≥ µcontrol time 0.0040

timeNorm 0.0003
H03 µexp ≥ µcontrol actions 0.0018

actionsNorm 0.0001

Table 8: Hypothesis Testing Results

That is, there is evidence that the automatic enforcement of constraints
increases the effectiveness of its users.

Testing Hypothesis H2. We also found that the experiment group needed less
time than the control group, i.e., its members were more efficient in terms of
time invested than the members of the other group. This observation holds for
both the observed variable time and the derived variable timeNorm. Hence,
we tested the null hypothesis H02 (i.e., automatic enforcement of constraints in
CoCoADvISE has no effect or decreases the time related efficiency of its users)
for both variables. As both p-values were below 0.05 (i.e., 0.0040 in the case of
time and 0.0003 in the case of timeNorm) we can reject H02 and accept H2.

That is, there is evidence that automatic enforcement of constraints increases
the time related efficiency of its users.

Testing Hypothesis H3. Finally, we discovered that the experiment group per-
formed less actions than the control group, i.e., its participants were more ef-
ficient in terms of effort invested than the participants of the other group. As
this observation holds for both actions and actionsNorm we tested the null hy-
pothesis H02 (i.e., automatic enforcement of constraints in CoCoADvISE has
no effect or decreases the effort related efficiency of its users) for both variables.
The p-values of 0.0018 and 0.0001 led us to reject H03 and accept H3.

Hence, we conclude that there is evidence that automatic enforcement of
constraints also increases the effort related efficiency of its users.

7.4. Regression Analysis

In order to better understand the adverse effects of constraint violations,
this section presents a linear regression analysis. Table 9 depicts three different
linear regression models that can be used to quantify the effect of constraint
violations (violations) on a user’s effectiveness (work) and efficiency (actions
and time). In particular, it shows the explained variable, the value of the
coefficient (i.e., violations) and the p-value of the corresponding (two-tailed)
t-test, the regression’s R2 and the p-value of the corresponding F -test as well
as the number of outliers that had to be excluded from the regression.

The null hypothesis of the t-test assumes that the corresponding coefficient
has a value of 0. At the significance level of α = 0.05, a p-value lower than 0.05
provides evidence that the coefficient is significantly different from 0. R2, the

36

Paper I 231

Variable Coefficient (violations) R2 p-Value # Outliers

Value p-Value

time 5.6230 0.0039 0.1671 0.0039 0
actions 4.1728 0.0000006 0.4596 0.0000006 5
work −1.2032 0.0468 0.0868 0.0468 2

Table 9: Linear Regression Models

coefficient of determination, is used as an indicator of how well a linear regres-
sion fits a set of data. The statistical test of significance for R2 is the F -test.
Linear regressions require the following four crucial assumptions to hold: Lin-
earity, Homoscedasticity, Uncorrelatedness and Normality. Pena et al. proposed
a procedure for testing these assumptions [35]. We used the corresponding gvlma

R package for assuring (at a significance level of α = 0.05) that the four assump-
tions hold for our linear regressions. Note that we had to iteratively increase the
number of outliers to be excluded from the regressions until the gvlma package
confirmed that all assumptions are justified. Eventually we had to exclude 5
participants from the regression that explains actions and 2 for the regression
explaining work.

As we can see, the p-values of all t-tests and F -tests are below 0.05. Hence,
we consider all coefficient values and the R2 for each regression to be statisti-
cally significant at the significance level of α = 0.05. Each regression model can
be used to quantify the effect of a single constraint violation on each of the ex-
plained variables. For instance, regarding time our model predicts that a single
constraint violation increases the overall time needed to make and document
decisions by nearly 6 minutes. Similarly, a violation increases actions, i.e., the
number of actions that a user performs, by roughly 4. With an R2 of 0.4596
it can also be noted, that the coefficient violations “can explain” nearly 46%
of actions variability. Finally, there is a negative relation between violations
and work. According to our model, a single constraint violation reduces the
percentage of work tasks that a user manages to accomplish by roughly 1.2%.

In summary, these regression models fortify and complement our main find-
ings. While our hypotheses dealt with finding evidence that automatic enforce-
ment of constraints is beneficiary in terms of effectivity and efficiency in general,
the regression models provide further insights into (1) what exactly are the ad-
verse effects of constraint violations and (2) to which extent they influence the
effectivity and efficiency of users.

8. Discussion

The following subsections discuss our main findings and their implications
as well as their threats to validity.

37

232 Paper I

8.1. Evaluation of Results and Implications

Increased Effectiveness. Hypothesis H1 and the corresponding null hypothesis
H01 concern the effectiveness of users of collaborative and constrained archi-
tectural decision making tools. In Section 7.3 we could provide evidence that
the null hypothesis H01 can be rejected. Thus, automatic enforcement of con-
straints increases the effectiveness of its users.

We interpret this finding as follows. The concrete set of work tasks a specific
user has to complete stems from the role that has been assigned to the user. In
our experiment, the duties of each role have been described textually, as can be
seen in Table 4. For instance, a concrete work task of users with the role Software
Architect is that they are supposed to generate the decision about the type of
Web service to be deployed. If the other user generates the decision instead,
we do not increment the number of successfully accomplished work tasks of the
Software Architect. In Table 6 we can see that ResponsibleRole constraints were
violated 3.38 times per user (on average). Thus, it seems that many users were
unsure or confused about who is supposed to do what in the decision making
process. In fact, similar issues have been documented in [28] and [1].

As many users performed tasks that were supposed to be performed by
another user and the fact that our approach for calculating the percentage of
accomplished work penalizes these “deviations from the prescribed regulations”,
we conclude that our experiment provides evidence that automatic enforcement
of constraints increases the effectiveness of its users.

Increased Efficiency. In Section 7.3 we could provide evidence that both null
hypotheses H02 and H03 can be rejected. The corresponding alternative hy-
potheses H2 and H3 concern the efficiency of users of collaborative and con-
strained architectural decision making tools. Thus, automatic enforcement of
constraints increases the efficiency of its users. To be exact, it increases both
the time and effort related efficiency.

We have the following explanation for these findings. In order to be able
to “manually” detect and prevent constraint violations, users have to read and
understand the description and meaning of each defined constraint type first.
Then, during working on their work tasks and performing actions, they have to
be careful not to (unintentionally) cause constraint violations. In case a viola-
tion happens anyway, there are two possibilities. If the violation gets detected,
the users have to resolve the violation, e.g., by revoking and redoing already
performed tasks. In general, detecting and resolving constraints requires an ad-
ditional investment of both time and effort. Violations which are not detected
decrease – among other things – the effectiveness of users. To this end, espe-
cially our linear regression model (see Section 7.4) can be interpreted as a good
estimator for predicting the effort reduction to be expected when introducing
automatic enforcement of constraints. For instance, if we would expect an av-
erage of 5.23 constraint violations per user (which is the actual observed mean
for violations in our experiment), our model predicts that we can anticipate
our users to require 21.82 additional work steps needed to resolve these viola-

38

Paper I 233

tions again. Analogously, these additional work steps are predicted to cost 34.64
additional minutes.

In summary, we can conclude that our experiment provides evidence that
automatic enforcement of constraints increases the efficiency of users, because
it takes away the burden of detecting, preventing and resolving constraint vio-
lations “manually” from the user.

Initial Development and Modeling Effort. A possible limitation of our approach
is that automatic enforcement of decision making constraints, as proposed in
this paper, is only possible if the required amount of time and effort gets in-
vested into modeling decision and constraint specifications before the tool is
used. In addition, in the rare case that a new constraint type is introduced,
developers have to augment the tool with additional constraint checking and
enforcement logic. As our approach is based on reusable architectural decision
models that are supposed to be instantiated more than once, the modeling effort
is only required once per reusable decision model and constraint type. Nowak
et al. envision the idea of collaboration and knowledge exchange between dif-
ferent architectural knowledge repositories (i.e., repositories containing reusable
architectural decision models) [32]. When applied to our context, this means a
further reduction of initial modeling effort. Thus, models are shared, reused and
adapted instead of built from scratch. Hence, except for rarely used decisions
or constraint types this limitation should be negligible.

8.2. Threats to Validity

To ensure the validity of our results, we consider the categorization of validity
threats of Wohlin [61] and discuss each of them separately in the context of our
controlled experiment.

Conclusion Validity. The conclusion validity focuses on the relationship be-
tween the treatment we used in the experiment and the actual outcome, i.e., on
the existence of a significant statistical relationship.

The way we measured the working time of the students automatically from
the database entries may pose a threat to conclusion validity, as users might
have spent some observed working time idle or with other tasks, or they might
have worked offline without the system noticing the working time. In addition,
to measure the actual time spent on working with the CoCoADvISE tool is very
difficult, if not impossible, as the participants may have spent some time reading
the tasks or familiarizing with the tool. However, we think that idle working
times, times spent on other tasks, or offline work can largely be excluded due
to the limited experiment time of 180 minutes in which the participants needed
to work in a concentrated manner in order to get the work done.

The number of participants (48 students) may also affect the statistical va-
lidity of the results.

39

234 Paper I

Internal Validity. The internal validity refers to the extent to which treatment
or independent variables caused the effects seen on the dependent variables.

In order to reduce this kind of validity threats, we made sure that the par-
ticipants of both groups had at least medium experience in programming and
design – with slight differences – and that they were aware of the architectural
design patterns they had to use for making and documenting architectural de-
cisions (they had also implemented some of them during the practical course
before the experiment).

Also, the experiment was carried out in a controlled environment and the
group members were in different rooms and did not know the identity of their
partner. An observer in the room ensured that no interactions between the par-
ticipants of the same room occurred. The students did not know the goals of the
experiment or the group they belong to, nor could they realize that the control
and experiment groups were working with different versions of CoCoADvISE.

Our inability, to effectively prevent the participants from using external Web
sites (i.e., search engines, social networks, chats, wikis, etc.) during the experi-
ment, might also pose a potential – but arguably negligible – threat to validity.
We believe, that it is very unlikely, that any of these external Web sites might
have been advantageous in actually preventing constraint violations.

A threat to validity was introduced by the execution of the experiment in
two different sessions. To limit this threat, we did not allow any access to
CoCoADvISE and the accompanying materials outside these two sessions.

Construct Validity. The construct validity focuses on the suitability of the ex-
periment design for the theory behind the experiment and the observations.

The students worked in their task assignment only on a single software sys-
tem with an excerpt of the full list of requirements. However, it is likely that
this did not (heavily) affect the validity of the results because the constraints in
the collaboration were our focus. We regard the amount and type of the con-
straints introduced in the experiment to be grounded in real-life collaborative
architectural decision making scenarios.

The variables that have been observed in the experiment are regarded as
accurate and objective as they are related to the actual use of tools and were
automatically extracted from the database.

Also, for calculating the completed work per participant, we first extracted
a list of required tasks from the exercise description which was afterwards used
to calculate the completion of work automatically from the database entries.

External Validity. The external validity is concerned with whether the results
are generalizable outside the scope of our study.

The subjects of the experiment have medium programming experience and
were familiar with the architectural design decisions they were asked to make.
However, only few students have experience in the industry. We hence consider
the group under study to be representative for novice software developers or
architects and plan to test the same hypotheses with other target groups as well.

40

Paper I 235

Kitchenham et al. regard students close to practitioners, as they are considered
to be the next generation of software professionals [17].

As mentioned before, the measurements were extracted from the tool data-
base, avoiding any bias by the experimenters.

The system under study and the corresponding architectural decision models
and patterns are representative for Web and enterprise information systems, and
hence it is likely that the findings can be generalized to similar system domains
and decision models. It would require additional experiments to determine if
they can be generalized to vastly different system domains, such as software
systems operating close to the hardware.

Finally, in our experiment we observed group decision making with groups
of only two members. In our point of view, it is highly likely that the results
are similar for slightly larger groups (e.g., of 3 or 4 members). However, it is
unclear, if the results can be generalized to larger groups of decision makers.

8.3. Inferences

In principle, our observations are coherent with the findings of similar studies
in slightly different contexts. For instance, Herbsleb et al. present a theory that
models collaborative software engineering as a distributed constraint satisfac-
tion problem [12]. They also found that backtracking, as a result of constraint
violations, increases both the time and effort to be invested. This is a further in-
dication that our findings should be generalizable. In particular, we believe that
virtually any kind of collaborative process that concerns different stakeholder
roles and demands to be restricted by various domain and context specific con-
straints will benefit from automatic constraint enforcement in a similar way to
CoCoADvISE.

9. Conclusions and Future Work

The approach presented in this paper is the first one to consider the precise
definition and automatic enforcement of constraints in real-time collaborative
architectural decision making. CoCoADvISE ensures that stakeholders with
different roles make and document collaborative architectural design decisions
consistently. We demonstrate the applicability of our approach in an industrial
context and with the help of a controlled experiment we are also able to report
strong evidence that the automatic enforcement of constraints leads to increased
time and effort related efficiency and effectiveness of the users while making and
documenting architectural decisions.

We consider our approach and accompanying tool to be relevant and useful
for other collaborative software engineering tools as well, which involve various
stakeholder roles and distributed teams. Therefore, we plan to extend CoCoAD-
vISE to cover other constrainable collaborative activities with focus on software
architecture processes.

In our future work, we will also collect more empirical evidence about the
supportive effect of automatic enforcement of constraints in collaborative ar-
chitectural decision making tools on the efficiency and effectiveness of users, by

41

236 Paper I

conducting similar controlled experiments. Our main goal is to test our assump-
tions with practitioners, receive feedback regarding the usability of our tool, and
test our approach with different group sizes, in different system domains, and
with different decision models.

Acknowledgments

We would like to thank all students of the Information System Technologies
lecture in the Winter Semester 2013/2014 for participating in the experiment.

Appendix A. Generic Meta-model for Decision Making Constraints

This appendix provides the complete formal definition of the Constrainable
Decision Meta-model introduced in Section 4.3. In particular, Definition A.1
provides a list of elements and their relations, Definition A.2 presents crucial
model invariants to be considered at design time, and Definition A.3 lists model
invariants relevant at execution time.

To provide a self-contained view in this paper, the following formal meta-
model repeats the core definitions regarding the concepts of subjects, roles and
permissions from [49], which form the basis for our approach.

Definition A.1 (Constrainable Decision Meta-model)
A Constrainable Decision Model CDM = (E,M) where E = DM ∪ D ∪ Q ∪
O ∪S ∪R∪P ∪DD ∪OS ∪C refers to pairwise disjoint sets of the meta-model
and M = dma ∪ qda ∪ oqa ∪ rsa ∪ pra ∪ dda ∪ gs ∪ gr ∪ soa ∪ ss ∪ sr ∪ cda ∪
cma ∪ rruca ∪ ssuca ∪ rrrca ∪ srsca ∪ prpca ∪ cd to mappings that establish
relationships, such that:

• For the sets of the meta-model:

– An element of DM is called Decision Model. DM 6= ∅.

– An element of D is called Decision. D 6= ∅.

– An element of Q is called Question. Q 6= ∅.

– An element of O is called Option. O 6= ∅.

– An element of S is called Subject. S 6= ∅.

– An element of R is called Role. R 6= ∅.

– An element of P is called Permission. P ⊇ {selectOption, generate-
Decision}.

– An element of DD is called Documented Decision. DD 6= ∅.

– An element of OS is called Option Selection.

– An element of C is called Constraint. C = CU ∪CUR
∪CUS

∪CRR
∪

CRS
∪ CP

– An element of CU is called Unanimity Constraint.

42

Paper I 237

– An element of CUR
is called Role Unanimity Constraint.

– An element of CUS
is called Subject Unanimity Constraint.

– An element of CRR
is called Responsible Role Constraint.

– An element of CRS
is called Responsible Subject Constraint.

– An element of CP is called Required Permission Constraint.

In the list below, we iteratively define the partial mappings of the Decision
Making Constraint Model and provide corresponding formalizations (P refers
to the power set):

1. A decision model consists of many decisions and each decision belongs to
exactly one decision model.
Formally: The injective mapping dma : DM 7→ P(D) is called decision-
to-decision-model assignment. For dma(dm) = Ddm we call dm ∈
DM decision model and Ddm ⊆ D is called the set of decisions assigned
to dm. The mapping dma−1 : D 7→ DM returns the decision model a
decision is assigned to.

2. A decision consists of many questions and each question belongs to exactly
one decision.
Formally: The injective mapping qda : D 7→ P(Q) is called questions-
to-decision assignment. For qda(d) = Qd we call d ∈ D decision and
Qd ⊆ Q is called the set of questions assigned to d. The mapping qda−1 :
Q 7→ D returns the decision a question is assigned to.

3. A question provides many options and each option belongs to exactly one
question.
Formally: The injective mapping oqa : Q 7→ P(O) is called option-to-
question assignment. For oqa(q) = Oq we call q ∈ Q question and Oq ⊆
O is called the set of options assigned to q. The mapping oqa−1 : O 7→ Q
returns the question an option is assigned to.

4. Roles are assigned to subjects (i.e., human users), and through their roles
the subjects acquire the rights to perform certain tasks (see [49]). The
role-to-subject assignment relation is a many-to-many relation, so that
each subject may own several roles and each role can be assigned to differ-
ent subjects. For example, in case the “Software Architect” role is assigned
to two subjects called Alice and Bob, both can perform all tasks assigned
to the “Software Architect” role.
Formally: The injective mapping rsa : S 7→ P(R) is called role-to-
subject assignment. For rsa(s) = Rs we call s ∈ S subject and Rs ⊆ R
the set of roles assigned to this subject (the set of roles owned by s). The
mapping rsa−1 : R 7→ P(S) returns all subjects assigned to a role (the set
of subjects owning a role).

5. Permissions are assigned to roles. The permission-to-role assignment re-
lation is a many-to-many relation, so that each role may own several per-
missions and each permission can be assigned to different roles.

43

238 Paper I

Formally: The injective mapping pra : R 7→ P(P) is called permission-
to-role assignment. For pra(r) = Pr we call r ∈ R role and Pr ⊆ P
the set of permissions assigned to this role (the set of permissions owned
by r). The mapping pra−1 : P 7→ P(R) returns all roles assigned to a
permission (the set of roles owning a permission).

6. At runtime, users can generate documented decisions which are based on
a reusable decision. Thus, when a user generates a documented decision,
a new documented decision is assigned to the corresponding (reusable)
decision (see Figure 2).
Formally: The mapping dda : D 7→ P(DD) is called documented-
decision-to-decision assignment. For dda(d) = DDd we call d ∈ D
decision and DDd ⊆ DD is called the set of documented decisions assigned
to d.

7. As defined in Definition A.1.6, documented decisions are assigned to de-
cisions whenever users generate documented decisions. The generating-
subject mapping is used to hold the exact subject that generated a docu-
mented decision.
Formally: The mapping gs : DD 7→ S is called generating-subject
mapping. For gs(dd) = s we call s ∈ S the generating subject and
dd ⊆ DDS is called the documented decision.

8. Similarly to Definition A.1.7, we define the role that is used to generate a
documented decision to be called the generating-role of the corresponding
documented decision.
Formally: The mapping gr : DD 7→ R is called generating-role map-
ping. For gr(dd) = r we call r ∈ R the generating role and dd ⊆ DDS is
called the documented decision.

9. At runtime, users of a decision model can select options. Thus, when a user
selects an option, a new option selection is assigned to the corresponding
option (see Figure 6(b)).
Formally: The mapping soa : O 7→ P(OS) is called selection-to-option
assignment. For soa(o) = OSo

we call o ∈ O option and OSo
⊆ OS is

called the set of option selections assigned to o.
10. As defined in Definition A.1.9, option selections are assigned to options

whenever users select options. The purpose of an option selection is to
hold the subject and role that is used to select a certain option. For ex-
ample, if subject Alice selects the option “only JSON”, the corresponding
option selection holds a reference to the subject “Alice”.
Formally: The mapping ss : OS 7→ S is called selecting-subject map-
ping. For ss(os) = s we call s ∈ S the selecting subject and os ⊆ OS is
called the option selection.

11. Similarly to Definition A.1.10, we define the role that is used to select a
certain option to be called the selecting-role of the corresponding option
selection.
Formally: The mapping sr : OS 7→ R is called selecting-role mapping.
For sr(os) = r we call r ∈ R the selecting role and os ⊆ OS is called the
option selection.

44

Paper I 239

12. Particular reusable architectural decisions can be made subject to deci-
sion making constraints. For example, the decision “RESTful HTTP vs.
SOAP/WS-*” (see Figure 3), which is required to be decided unanimously
by all stakeholders, may be made subject to a unanimity constraint. More
precisely, decisions are made subject to constraints by assigning them to
constraints.
Formally: The injective mapping cda : D 7→ P(C) is called constraint-
to-decision assignment. For cda(d) = Cd we call d ∈ D decision and
Cd ⊆ C is called the set of constraints assigned to d. The mapping
cda−1 : C 7→ P(D) returns the set of decisions a constraint is assigned
to.

13. All reusable architectural decisions of a decision model can be made sub-
ject to decision making constraints at once. For instance, all decisions of
a decision model can statically be made subject to a Required Permission
constraint by assigning the corresponding constraint to the decision model.
Formally: The injective mapping cma : DM 7→ P(C) is called constraint-
to-decision-model assignment. For cma(dm) = Cdm we call dm ∈
DM decision model and Cdm ⊆ C is called the set of constraints assigned
to dm. The mapping cma−1 : C 7→ P(DM) returns the set of decision
models a constraint is assigned to.

14. A Role Unanimity Constraint enforces that all subjects that own at least
one of a specific set of roles have to unanimously agree on the same set
of options, at runtime. Thus, these roles are assigned to role unanimity
constraints. The role-to-role-unanimity-constraint assignment relation is
a many-to-many relation, so that each role may be assigned to several role
unanimity constraints and each role unanimity constraint can be assigned
to different roles.
Formally: The injective mapping rruca : CUR

7→ P(R) is called role-to-
role-unanimity-constraint assignment. For rruca(ruc) = Rruc we
call ruc ∈ CUR

role unanimity constraint and Rruc ⊆ R the set of roles
assigned to this role unanimity constraint. The mapping rruca−1 : R 7→
P(CUR

) returns all role unanimity constraints assigned to a role.
15. A Subject Unanimity Constraint enforces that a specific set of subjects

have to unanimously agree on the same set of options, at runtime. Thus,
these subjects are assigned to subject unanimity constraints. The subject-
to-subject-unanimity-constraint assignment relation is a many-to-many
relation, so that each subject may be assigned to several subject una-
nimity constraints and each subject unanimity constraint can be assigned
to different subjects.
Formally: The injective mapping ssuca : CUS

7→ P(S) is called subject-
to-subject-unanimity-constraint assignment. For ssuca(suc) = Ssuc

we call suc ∈ CUS
subject unanimity constraint and Ssuc ⊆ S the set

of subjects assigned to this subject unanimity constraint. The mapping
ssuca−1 : S 7→ P(CUS

) returns all subject unanimity constraints assigned
to a subject.

16. A Responsible Role Constraint enforces that only subjects that own at

45

240 Paper I

least one of a specific set of roles shall be allowed to make and gener-
ate a specific decision. Thus, these roles are assigned to responsible role
constraints. The role-to-responsible-role-constraint assignment relation is
a many-to-many relation, so that each role may be assigned to several
responsible role constraints and each responsible role constraint can be
assigned to different roles.
Formally: The injective mapping rrrca : CRR

7→ P(R) is called role-to-
responsible-role-constraint assignment. For rrrca(rrc) = Rrrc we
call rrc ∈ CRR

responsible role constraint and Rrrc ⊆ R the set of roles
assigned to this responsible role constraint. The mapping rrrca−1 : R 7→
P(CRR

) returns all responsible role constraints assigned to a role.
17. A Responsible Subject Constraint enforces that only a specific set of sub-

jects shall be allowed to make and generate a specific decision. Thus, these
subjects are assigned to responsible subject constraints. The subject-to-
responsible-subject-constraint assignment relation is a many-to-many re-
lation, so that each subject may be assigned to several responsible subject
constraints and each responsible subject constraint can be assigned to dif-
ferent subjects.
Formally: The injective mapping srsca : CRS

7→ P(S) is called subject-
to-responsible-subject-constraint assignment. For srsca(rsc) = Srsc

we call rsc ∈ CRS
responsible subject constraint and Srsc ⊆ S the set

of subjects assigned to this responsible subject constraint. The mapping
srsca−1 : S 7→ P(CRS

) returns all responsible subject constraints assigned
to a subject.

18. A Required Permission Constraint enforces that only subjects that own
certain permissions (i.e., via their roles) within the system are allowed to
perform the corresponding activities. For example, consider permission
“Generate Decision” is only assigned to role “Software Architect”, then
only subjects that own the role “Software Architect” shall be allowed to
generate decisions. The permissions to be enforced have to be assigned to
required permission constraints. The permission-to-required-permission-
constraint assignment relation is a many-to-many relation, so that each
permission may be assigned to several required permission constraints and
each required permission constraint can be assigned to different permis-
sions.
Formally: The injective mapping prpca : CP 7→ P(P) is called permiss-
ion-to-required-permission-constraint assignment.
For prpca(rpc) = Prpc we call rpc ∈ CP required permission constraint
and Prpc ⊆ P the set of permissions assigned to this required permission
constraint. The mapping prpca−1 : P 7→ P(CP) returns all required per-
mission constraints assigned to a permission.

19. A decision can effectively be constrained either by a constraint that is di-
rectly assigned to the decision (i.e., using a constraint-to-decision assign-
ment, see, Definition A.1.12), or by a constraint that is assigned to the
corresponding decision model (i.e., using a constraint-to-decision-model
assignment, see, Definition A.1.13). The constrained-decision mapping

46

Paper I 241

aggregates the set of decisions that are constrained by a constraint.
Formally: The mapping cd : C 7→ P(D) is called constrained-decision
mapping, such that for each constraint c ∈ C the set of decisions that are
effectively constrained by c are returned, i.e., cd(c) = dma(cma−1(c)) ∪
cda−1(c).

Definition A.2 (Design Time CDM Meta-model Invariants)
Let CDM = (E,M) be a Constrainable Decision Model. CDM is said to be
statically correct if the following requirements hold:

1. A constraint either constrains a single decision or a complete decision
model. It is either assigned to a decision or a decision model. Therefore:

∀c ∈ C(cda−1(c) = ∅ ⊕ cma−1(c) = ∅)

Note that the ⊕ symbol represents the XOR (i.e., exclusive or) operation.

2. All roles that are assigned to a responsible role constraint must own the
permission “generate decision”. Therefore:

∀r ∈ R(rrrca−1(r) 6= ∅ ⇒ generateDecision ∈ pra(r))

3. All subjects that are assigned to a responsible subject constraint must
own a role that owns the permission “generate decision”. Therefore:

∀s ∈ S(srsca−1(s) 6= ∅ ⇒ ∃r ∈ rsa(s)(generateDecision ∈ pra(r)))

4. Each permission that is assigned to a required permission constraint must
be owned by at least one role. Therefore:

∀c ∈ CP , p ∈ prpca(c)(pra−1(p) 6= ∅)

5. When an unanimity constraint is used there must be at least one subject
that has the permission “select option”. Therefore:

∀c ∈ CU ⇒ ∃r ∈ R(selectOption ∈ pra(r))

6. All roles that are assigned to role unanimity constraints must have the
permission “select option”. Therefore:

∀r ∈ R(rruca−1(r) 6= ∅ ⇒ selectOption ∈ pra(r))

7. All subjects that are assigned to subject unanimity constraints must have
the permission “select option”. Therefore:

∀s ∈ S(ssuca−1(s) 6= ∅ ⇒ ∃r ∈ rsa(s)(selectOption ∈ pra(r)))

47

242 Paper I

8. Subject unanimity constraints and role unanimity constraints may poten-
tially conflict. More precisely, if both constraint types are used simulta-
neously, it is required that each subject assigned to the subject unanim-
ity constraint owns each role assigned to the role unanimity constraint.
Therefore:

∀dm ∈ DM(∀d ∈ dma(dm)(∀cr ∈ cda(d) ∪ cma(dm)(

∀cs ∈ cda(d) ∪ cma(dm)(cr ∈ CUR
∧ cs ∈ CUS

⇒ ∀s ∈ ssuca(cs)(rsa(s) ⊇ rruca(cr))))))

Definition A.3 (Execution Time CDM Meta-model Invariants)
Let CDM = (E,M) be a Constrainable Decision Model. CDM is said to be
dynamically correct if the following requirements hold:

1. For each option selection, the selecting subject must own the correspond-
ing selecting role. Therefore:

∀os ∈ OS(sr(os) ∈ rsa(ss(os)))

2. A subject may only select a single option for each question. Therefore:

∀q ∈ Q(∀o ∈ oqa(q)(∀osx ∈ soa(o)(∀osy ∈ soa(o)(

osx 6= osy ∧ ∃ss(osx) ⇒ ss(osx) 6= ss(osy)))))

3. All subjects must choose an option for each question. Therefore:

∀q ∈ Q(∀s ∈ S(∃o ∈ oqa(q)(∃os ∈ soa(o)(ss(os) = s))))

4. All decision making constraint type definitions (i.e., CT1 through CT6, see
Section 4.3) must be met. Therefore:

∀dm ∈ DM(CT1 ∧ CT2 ∧ CT3 ∧ CT4 ∧ CT5 ∧ CT6)

References

[1] N. D. Anh and D. S. Cruzes. Coordination of software development teams
across organizational boundary – an exploratory study. In 8th IEEE Inter-
national Conference on Global Software Engineering (ICGSE), pages 216–
225, Aug 2013.

[2] M. A. Babar and I. Gorton. A Tool for Managing Software Architec-
ture Knowledge. In Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design In-
tent, SHARK-ADI’07, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[3] M. Cantor and J. D. Sanders. Operational IT governance. Technical report,
IBM developerWorks, 2007.

48

Paper I 243

[4] V. Clerc, E. de Vries, and P. Lago. Using wikis to support architectural
knowledge management in global software development. In Proceedings of
the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
pages 37–43. ACM, 2010.

[5] Y. Dubinsky, A. Yaeli, and A. Kofman. Effective Management of Roles and
Responsibilities: Driving Accountability in Software Development Teams.
IBM J. Res. Dev., 54(2):173–183, Mar. 2010.

[6] J. Eckstein. Agile Software Development with Distributed Teams: Staying
Agile in a Global World. Dorset House, 2010.

[7] R. Farenhorst, P. Lago, and H. Van Vliet. Effective Tool Support for Ar-
chitectural Knowledge Sharing. In Proceedings of the First European Con-
ference on Software Architecture, ECSA’07, pages 123–138, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[8] P. Gaubatz and U. Zdun. Supporting Entailment Constraints in the Con-
text of Collaborative Web Applications. In 28th Symposium On Applied
Computing, pages 736–741, USA, March 2013. ACM.

[9] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding
in a web ide. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST’11, pages 155–164, New York,
NY, USA, 2011. ACM.

[10] N. B. Harrison, P. Avgeriou, and U. Zdun. Using Patterns to Capture
Architectural Decisions. IEEE Software, 24(4):38–45, 2007.

[11] J. D. Herbsleb and R. E. Grinter. Architectures, Coordination, and Dis-
tance: Conway’s Law and Beyond. IEEE Software, 16(5):63–70, Sept. 1999.

[12] J. D. Herbsleb, A. Mockus, and J. A. Roberts. Collaboration in software
engineering projects: A theory of coordination. In Proceedings of the In-
ternational Conference on Information Systems (ICIS), page 38, 2006.

[13] A. Jansen and J. Bosch. Software Architecture as a Set of Architectural
Design Decisions. In 5th Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA), pages 109–120. IEEE Computer Society, 2005.

[14] C. Jensen and W. Scacchi. Governance in Open Source Software Devel-
opment Projects: A Comparative Multi-level Analysis. In Open Source
Software: New Horizons, volume 319 of IFIP Advances in Information
and Communication Technology, pages 130–142. Springer Berlin Heidel-
berg, 2010.

[15] M. Jensen and S. Feja. A security modeling approach for web-service-based
business processes. In 16th Annual IEEE International Conference on the
Engineering of Computer Based Systems (ECBS’09), pages 340–347, 2009.

49

244 Paper I

[16] M. Kalumbilo. Effective Specification of Decision Rights and Accountabil-
ities for Better Performing Software Engineering Projects. In Proceedings
of the 34th International Conference on Software Engineering, ICSE’12,
pages 1503–1506, Piscataway, NJ, USA, 2012. IEEE Press.

[17] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary Guidelines for Em-
pirical Research in Software Engineering. IEEE Transactions on Software
Engineering, 28(8):721–734, Aug. 2002.

[18] A. Kofman, A. Yaeli, T. Klinger, and P. Tarr. Roles, Rights, and Respon-
sibilities: Better Governance Through Decision Rights Automation. In
Proceedings of the 2009 ICSE Workshop on Software Development Gover-
nance, SDG’09, pages 9–14, Washington, DC, USA, 2009. IEEE Computer
Society.

[19] P. Kruchten. An Ontology of Architectural Design Decisions. In Proceedings
of 2nd Workshop on Software Variability Management, pages 54–61, 2004.

[20] P. Liang, A. Jansen, and P. Avgeriou. Knowledge Architect: A Tool Suite
for Managing Software Architecture Knowledge. Technical report, Univer-
sity of Groningen, 2009.

[21] I. Lytra, S. Sobernig, and U. Zdun. Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method Study. In
Joint 10th Working IEEE/IFIP Conference on Software Architecture & 6th
European Conference on Software Architecture (WICSA/ECSA), Helsinki,
Finland, pages 111–120. IEEE Computer Society, 2012.

[22] I. Lytra, H. Tran, and U. Zdun. Supporting Consistency Between Architec-
tural Design Decisions and Component Models Through Reusable Archi-
tectural Knowledge Transformations. In Proceedings of the 7th European
Conference on Software Architecture (ECSA), ECSA’13, pages 224–239,
Berlin, Heidelberg, 2013. Springer-Verlag.

[23] A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, Options,
and Criteria: Elements of Design Space Analysis. Human-Computer Inter-
action, 6:201–250, 1991.

[24] P. Maheshwari and A. Teoh. Supporting ATAM with a collaborative Web-
based software architecture evaluation tool. Science of Computer Program-
ming, 57(1):109–128, 2005.

[25] H. B. Mann and W. D. R. On a Test of Whether One of Two Random
Variables is Stochastically Larger than the Other. Annals of Mathematical
Statistics, 18(1):50–60, 1947.

[26] C. Mayr, U. Zdun, and S. Dustdar. Reusable Architectural Decision Model
for Model and Metadata Repositories. In F. de Boer, M. Bonsangue, and

50

Paper I 245

E. Madelaine, editors, Formal Methods for Components and Objects, vol-
ume 5751 of Lecture Notes in Computer Science, pages 1–20. Springer
Berlin Heidelberg, 2009.

[27] C. Miesbauer and R. Weinreich. Classification of Design Decisions: An Ex-
pert Survey in Practice. In Proceedings of the 7th European Conference on
Software Architecture, ECSA’13, pages 130–145, Berlin, Heidelberg, 2013.
Springer-Verlag.

[28] A. Nakakawa, P. v. Bommel, and H. A. Proper. Challenges of involving
stakeholders when creating enterprise architecture. In B. v. Dongen and
H. Reijers, editors, Proceedings of the 5th SIKS/BENAIS Conference on
Enterprise Information Systems (EIS-2010), Eindhoven, The Netherlands,
pages 43–55, November 2010.

[29] A. Nakakawa, P. van Bommel, and H. A. Proper. Supplementing Enterprise
Architecture Approaches with Support for Executing Collaborative Tasks -
a Case of TOGAF ADM. International Journal of Cooperative Information
Systems, 22(2), 2013.

[30] R. Nord, P. C. Clements, D. Emery, and R. Hilliard. A Structured Ap-
proach for Reviewing Architecture Documentation (CMU/SEI-2009-TN-
030). Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 2009.

[31] M. Nowak and C. Pautasso. Team Situational Awareness and Architec-
tural Decision Making with the Software Architecture Warehouse. In 7th
European Conference on Software Architecture, ECSA’13, pages 146–161,
Berlin, Heidelberg, 2013. Springer-Verlag.

[32] M. Nowak, C. Pautasso, and O. Zimmermann. Architectural Decision Mod-
eling with Reuse: Challenges and Opportunities. In Proceedings of the
2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
SHARK’10, pages 13–20, New York, NY, USA, 2010. ACM.

[33] Object Management Group. OMG Unified Modeling Language (OMG
UML): Superstructure (Version 2.2). URL: http://www.omg.org/spec/
UML/2.2/, February 2009.

[34] P. Ovaska, M. Rossi, and P. Marttiin. Architecture as a Coordination Tool
in Multi-site Software Development. Software Process: Improvement and
Practice, 8(4):233–247, Oct./Dec. 2003. Special Issue: Global Software
Development: Growing Opportunities, Ongoing Challenges.

[35] E. A. Peña and E. H. Slate. Global Validation of Linear Model Assump-
tions. Journal of the American Statistical Association, 101(473):341–354,
2006.

51

246 Paper I

[36] B. Raadt, S. Schouten, and H. Vliet. Stakeholder Perception of Enterprise
Architecture. In Proceedings of the 2nd European Conference on Software
Architecture, ECSA’08, pages 19–34, Berlin, Heidelberg, 2008. Springer.

[37] V. S. Rekha and H. Muccini. A Study on Group Decision-Making in Soft-
ware Architecture. In IEEE/IFIP Conference on Software Architecture
(WICSA), pages 185–194, 2014.

[38] S. Rekha V. and H. Muccini. Suitability of Software Architecture Decision
Making Methods for Group Decisions. In Software Architecture, volume
8627 of Lecture Notes in Computer Science, pages 17–32. Springer Interna-
tional Publishing, 2014.

[39] N. Schuster, O. Zimmermann, and C. Pautasso. ADkwik: Web 2.0 Col-
laboration System for Architectural Decision Engineering. In SEKE, pages
255–260. Knowledge Systems Institute Graduate School, 2007.

[40] M. Shahin, P. Liang, and M. Khayyambashi. Architectural design deci-
sion: Existing models and tools. In Software Architecture, 2009 European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, pages 293–296, Sept 2009.

[41] M. Shahin, P. Liang, and M. R. Khayyambashi. Improving Understand-
ability of Architecture Design Through Visualization of Architectural De-
sign Decision. In Proceedings of the 2010 ICSE Workshop on Sharing and
Reusing Architectural Knowledge, SHARK’10, pages 88–95, New York, NY,
USA, 2010. ACM.

[42] M. Shahin, P. Liang, and Z. Li. Architectural Design Decision Visualization
for Architecture Design: Preliminary Results of A Controlled Experiment.
In Proceedings of the 1st Workshop on Traceability, Dependencies and Soft-
ware Architecture (TDSA), pages 5–12. ACM, 2011.

[43] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 3(52), 1965.

[44] Siemens AG, Politecnico di Milano, Telcordia, and TU Vienna. D3.2 Archi-
tecture for Role-Based Governance of Virtual Service Platforms. Technical
report, INDENICA Project, February 2012.

[45] K. Smolander and T. Päivärinta. Describing and Communicating Software
Architecture in Practice: Observations on Stakeholders and Rationale. In
Proceedings of the 14th International Conference on Advanced Informa-
tion Systems Engineering, CAiSE’02, pages 117–133, London, UK, 2002.
Springer.

[46] R. M. Smullyan. First-order logic, volume 21968. Springer, 1968.

[47] M. Strembeck. Scenario-driven Role Engineering. IEEE Security & Privacy,
8(1), January/February 2010.

52

Paper I 247

[48] M. Strembeck and J. Mendling. Generic algorithms for consistency checking
of mutual-exclusion and binding constraints in a business process context.
In Proceedings of the 18th International Conference on Cooperative Infor-
mation Systems (CoopIS), pages 204–221, 2010.

[49] M. Strembeck and J. Mendling. Modeling Process-related RBAC Models
with Extended UML Activity Models. Information and Software Technol-
ogy, 53(5):456–483, May 2011.

[50] K. Tan, J. Crampton, and C. A. Gunter. The consistency of task-based
authorization constraints in workflow systems. In 17th IEEE workshop on
Computer Security Foundations (WCSF), pages 155–169, 2004.

[51] R. C. Team et al. R: A language and environment for statistical computing,
2005.

[52] The Open Group. TOGAF 9 - The Open Group Architecture Framework
Version 9, 2009.

[53] D. Tofan and M. Galster. Capturing and making architectural decisions: An
open source online tool. In Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW’14, pages 33:1–33:4, New York,
NY, USA, 2014. ACM.

[54] D. Tofan, M. Galster, and P. Avgeriou. Difficulty of Architectural Decisions
– A Survey with Professional Architects. In 7th European Conference on
Software Architecture, ECSA’13, pages 192–199, 2013.

[55] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema. Past and future of
software architectural decisions – A systematic mapping study. Information
and Software Technology, 56(8):850–872, 2014.

[56] J. Tyree and A. Akerman. Architecture Decisions: Demystifying Architec-
ture. IEEE Software, 22(2):19–27, 2005.

[57] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman, M. Pinzger, and
A. Guzzi. Adinda: A knowledgeable, browser-based ide. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 2, ICSE’10, pages 203–206, New York, NY, USA, 2010. ACM.

[58] U. van Heesch, P. Avgeriou, and A. Tang. Does decision documentation
help junior designers rationalize their decisions? A comparative multiple-
case study. Journal of Systems and Software, 86(6):1545–1565, 2013.

[59] U. van Heesch, P. Avgeriou, U. Zdun, and N. Harrison. The supportive ef-
fect of patterns in architecture decision recovery – A controlled experiment.
Science of Computer Programming, 77(5):551–576, 2012.

[60] J. Whitehead. Collaboration in software engineering: A roadmap. In 2007
Future of Software Engineering, FOSE’07, pages 214–225, Washington, DC,
USA, 2007. IEEE Computer Society.

53

248 Paper I

[61] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[62] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel. Model-
driven business process security requirement specification. Journal of Sys-
tems Architecture, 55:211–223, 2009.

[63] C. Wolter, A. Schaad, and C. Meinel. Task-based entailment constraints
for basic workflow patterns. In 13th ACM Symposium on Access Control
Models and Technologies (SACMAT), pages 51–60. ACM, June 2008.

[64] U. Zdun and M. Strembeck. Reusable Architectural Decisions for DSL
Design: Foundational Decisions in DSL Development. In Proceedings of
14th European Conference on Pattern Languages of Programs (EuroPLoP),
pages 1–37, Irsee, Germany, July 2009.

[65] O. Zimmermann. Architectural Decisions as Reusable Design Assets. IEEE
Software, 28(1):64–69, 2011.

[66] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster.
Reusable Architectural Decision Models for Enterprise Application Devel-
opment. In 3rd International Conference on Quality of Software Architec-
tures (QoSA), pages 15–32. Springer, 2007.

[67] O. Zimmermann, J. Koehler, and L. Frank. Architectural Decision Mod-
els as Micro-Methodology for Service-Oriented Analysis and Design. In
D. Lübke, editor, Proceedings of the Workshop on Software Engineering
Methods for Service-oriented Architecture 2007 (SEMSOA 2007), Han-
nover, Germany, online CEUR-WS.org/Vol-244/, pages 46–60, May 2007.

[68] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster.
Managing architectural decision models with dependency relations, in-
tegrity constraints, and production rules. Journal of Systems and Software,
82(8):1249–1267, Aug. 2009.

[69] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann. Combining Pat-
tern Languages and Reusable Architectural Decision Models into a Compre-
hensive and Comprehensible Design Method. In 7th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Vancouver, BC, Canada,
pages 157–166. IEEE Computer Society, 2008.

54

Paper I 249

Curriculum Vitæ

Personal Information

Name Patrick Gaubatz

Email patrick.gaubatz@univie.ac.at

Web http://cs.univie.ac.at/patrick.gaubatz

Education

10/2010–01/2015 Ph.D. in Business Administration and Economics, University

of Vienna

10/2005–10/2010 MSc. in Business Administration, Vienna University of Eco-

nomics and Business

Work Experience

10/2014–ongoing Lecturer, Faculty of Computer Science, University of Vienna

11/2013–10/2014 Researcher in the “Field Force” project

10/2010–10/2014 Research Assistant, Software Architecture Group, Faculty of

Computer Science, University of Vienna

Professional Activities

Talks • 29th Symposium On Applied Computing (2014)

• 13th International Conference on Web Engineering (2013)

• 28th Symposium On Applied Computing (2013)

• 4th International Workshop on Lightweight Integration on

the Web (2012)

Reviewer/PC Mem-

ber (Excerpt)

• IEEE Transactions on Services Computing

• Information and Software Technology

• Journal of Systems and Software

• International Workshop on DSL Architecting & DSL-based

Architectures

• Working IEEE/IFIP Conference on Software Architecture

• Symposium On Applied Computing

• IEEE International Conference on Service Oriented Com-

puting & Applications

• International Conference on Software Reuse

Teaching • Information Systems Technology, University of Vienna

• Software Architecture, University of Vienna

mailto:patrick.gaubatz@univie.ac.at
http://cs.univie.ac.at/patrick.gaubatz

	Declaration of Authorship
	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	Introduction
	Background
	Business Processes and Workflows
	Real-time Collaborative Web Applications
	Access Control and Constraints

	Problem Statement
	Problem Domain and Context
	Research Questions

	Research Results and Contributions
	Design Science Research Method
	Publication Overview
	Scientific Contributions

	Conclusions
	Research Questions Revisited
	Future Work

	Bibliography
	An Integrated Approach for Identity and Access Management in a SOA Context
	Enforcement of Entailment Constraints in Distributed Service-based Business Processes
	Consistency Checking and Resolution Strategies for Runtime Conflicts Resulting from Changes in Process-related RBAC Models
	UML2 Profile and Model-Driven Approach for Supporting System Integration and Adaptation of Web Data Mashups
	Supporting Entailment Constraints in the Context of Collaborative Web Applications
	Supporting Customized Views for Enforcing Access Control Constraints in Real-time Collaborative Web Applications
	Enforcing Entailment Constraints in Offline Editing Scenarios for Real-time Collaborative Web Documents
	Two Controlled Experiments on Model-based Architectural Decision Making
	Automatic Enforcement of Constraints in Real-time Collaborative Architectural Decision Making
	Curriculum Vitæ

