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ii



Acknowledgements

I would like to thank my supervisor, Piotr Chruściel, for introducing me to this
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Abstract

The BKL conjecture, stated in the 60s and early 70s by Belinski, Khalatnikov
and Lifshitz, proposes a detailed description of the generic asymptotic dynamics of
spacetimes as they approach a spacelike singularity. It predicts complicated chaotic
behaviour in the generic case, but simpler non-chaotic one in cases with symmetry
assumptions or certain kinds of matter fields.

Here we construct a new class of four-dimensional vacuum spacetimes containing a
spacelike singularities which show non-chaotic behaviour. In contrast with previous
constructions, no symmetry assumptions are made. Rather, the metric is decomposed
in Iwasawa variables and conditions on the asymptotic evolution of some of them are
imposed. The constructed solutions contain five free functions of all space coordinates,
two of which are constrained by inequalities.

We describe the limited coordinate freedom remaining in these solutions after gauge
choices have been made, and investigate continuous and discrete isometries. To put the
new solutions into their proper context, we compare them to previous constructions.
Finally, we give the asymptotic behaviour of the metric components, the Christoffels
and the components of the Riemann tensor.
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Zusammenfassung

Die BKL Vermutung, die in den 60er und 70er Jahren von Belinski, Khalatnikov
und Lifschitz aufgestellt wurde, gibt eine detaillierte Beschreibung der asymptotischen
Dynamik generischer Raumzeiten nahe einer raumartigen Singularität. Für den
allgemeinen Fall sagt sie kompliziertes chaotisches Verhalten voraus, das sich in
symmetrischen Raumzeiten oder bei Anwesenheit von bestimmten Materiefeldern zu
einfacherem nicht-chaotischem reduziert.

Hier konstruieren wir eine neue Klasse vier-dimensionaler Vakuum-Raumzeiten mit
raumartigen Singularitäten, die asymptotisch nicht-chaotisches Verhalten zeigen. Im
Gegensatz zu vorherigen Konstruktionen werden keine Symmetrieannahmen gemacht.
Die Metrik wird stattdessen in Iwasawa Variablen zerlegt und Bedingungen an das
asymptotische Verhalten von einigen von ihnen gestellt. Diese Lösungen enthalten
fünf freie Funktionen die von allen Raumvariablen abhängen, wobei zwei davon durch
Ungleichungen eingeschränkt werden.

Wir beschreiben die eingeschränkte Koordinatenfreiheit, die nach Fixieren von
Eichbedingungen noch besteht, und untersuchen kontinuierliche und diskrete Isometrien.
Wir erläutern das Verhältnis der neuen Lösungen mit bekannten Klassen, die ähnliches
asymptotisches Verhalten zeigen. Schlussendlich geben wir das asymptotische Verhalten
der Metrik Komponenten, der Christoffel Symbole und der Komponenten des Riemann
Tensors.

vii



viii



CONTENTS

1 Introduction 1

1.1 Singularities in general relativity . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The BKL conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Asymptotically simple behaviour . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Conventions, Iwasawa decomposition 4

3 Action and Hamiltonian 5

4 The potential walls 6

4.1 Symmetry walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Gravitational walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Complete Hamiltonian in Iwasawa variables . . . . . . . . . . . . . . . . . . 8

5 Equations of motion and constraints 9

6 Fuchs theorem 10

7 Asymptotic evolution equations and differences 11

7.1 Strategy and evolution equations . . . . . . . . . . . . . . . . . . . . . . . . 11

7.2 Asymptotic momentum constraints . . . . . . . . . . . . . . . . . . . . . . . 14

7.3 Relationship between asymptotic and full constraints . . . . . . . . . . . . 15

8 A new class of asymptotically non-chaotic solutions 16

8.1 Ansatz and evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . 16

8.2 d = 3 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.4 Remaining coordinate freedom . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.5 Killing vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.6 Relationship with previously known solutions . . . . . . . . . . . . . . . . . 26

9 Conclusion 28

A Derivation of Iwasawa variable Hamiltonian 29

A.1 Kinetic and symmetry wall terms . . . . . . . . . . . . . . . . . . . . . . . . 29

A.2 Gravitational wall term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B Iwasawa evolution equations and Einstein equations 32

C Derivation of Iwasawa Variable momentum constraints 33

C.1 Full momentum constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.2 Asymptotic momentum constraints . . . . . . . . . . . . . . . . . . . . . . . 35

D Evolution equations for the constraints 35

E Asymptotic behaviour of ḡαβ, Γαβγ and Rαβγδ 38
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1 INTRODUCTION

1 Introduction

1.1 Singularities in general relativity

When Albert Einstein presented his theory of General Relativity in 1915 he did not give
any non-trivial exact solutions to its field equations. Due to the complicated non-linear
structure of the equations, he did not expect any to exist and calculated physical predictions
using perturbation theory [1]. To his surprise, less than a month later, Karl Schwarzschild
sent him a letter containing the Schwarzschild metric, a spherically symmetric solution of
the vacuum Einstein equations. It is given, in Schwarzschild coordinates, as

ds2 = −
(

1− 2m

r

)−1

dt2 +

(
1− 2m

r

)
dr2 + r2(dθ2 + sin2 θ dϕ2) .

This solution contains, in these coordinates, an apparent singularity at r = 2m where the
tt component of the metric diverges. This is the event horizon, which Schwarzschild set
as the origin of his coordinate system. The solution also contains a real singularity at
r = 0 which was found by David Hilbert in 1917. Hilbert considered both singularities
real, as they could not be removed by an everywhere smooth and invertible coordinate
transformation. In hindsight his requirement was too strict: The fact that in Schwarzschild
coordinates the tt component of the metric diverges at r = 2m simply means that these
coordinates are badly chosen, indeed to transform from coordinates which don’t show the
apparent singularity to Schwarzschild coordinates requires a transformation which diverges
at r = 2m.

In 1921 and 1922 Paul Painlevé and Allvar Gullstrand independently discovered a
spherically symmetric vacuum solution containing only a single singularity at r = 0 [2, 3].
It was not realized at the time that this solution can be obtained from the Schwarzschild
one by a coordinate transformation, i.e. it describes the same physical spacetime. This
was finally discovered by Georges Lemâıtre in 1932, who also correctly identified the
r = 2m singularity as an apparent singularity caused by the choice of coordinates [4]. The
singularity at r = 0 cannot be removed by a coordinate transformation as the Kretschmann
scalar, given by RαβγδRαβγδ, diverges there. This is a scalar quantity, constructed by
contracting all indices of the Riemann tensor with itself, and is therefore independent of
the chosen coordinate system.

Despite this advance, the status of real singularities, such as the one appearing in the
Schwarzschild or the cosmological FLRW solutions, was unclear. It was widely believed that
they were an artifact of the symmetry assumptions made to obtain explicit solutions and
had no relevance for the real world [5]. The idea was that, similarly to the Newtonian case,
if matter was not perfectly symmetrically rushing towards a central point, the resulting
angular momentum would prevent the formation of a singularity.

The singularity theorems of Penrose and Hawking [6, 7] proved the opposite. They
state that, given a trapped surface, an energy condition, and an assumption on the global
structure of spacetime (e.g. no closed timelike curves), a singularity, in the sense of geodesic
incompleteness, has to form. As small perturbations of an explicit solution containing
a singularity would preserve the trapped surface, the perturbed solution also contains a
singularity. These theorems, however, do not give any information about the nature of the
predicted singularities, or about the behaviour of the metric near them. Indeed they do
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1 INTRODUCTION

not even predict diverging curvature, only the existence of some geodesics, which cannot
be extended beyond a finite value of the affine parameter along them.

1.2 The BKL conjecture

In a series of works, beginning in 1963, Belinski, Khalatnikov and Lifschitz (BKL) conjec-
tured, based on heuristic arguments, that the dynamics of a generic spacetime containing
a spacelike singularity would drastically simplify when the singularity is approached [8,
9]. They claimed that time derivatives of the metric would dominate compared to space
derivatives, causing different spatial points to effectively decouple and turning the Einstein
equations into a system of ODEs at each point. The solution of these ODEs is a generali-
sation of the Kasner metric, an explicit, homogeneous (but anisotropic) solution of the
Einstein equations describing a spacetime which expands in some directions and contracts
in others. It is given by

ds2 = −dt2 +

d∑
j=1

t2pj
(
dxj
)2
, (1.1)

with the constants pj fulfilling
∑

j pj = 1 and
∑

j p
2
j = 1 (these conditions imply that at

least one of the pj has to be negative, unless one is 1 and all others 0). The Kasner metric
contains a singularity at t = 0: The determinant of the spatial part of the metric is given
by t and therefore decreases towards 0 as t→ 0.

The behaviour predicted by BKL consists of a series of time periods (often referred to
as Kasner epochs) during which the metric behaves at each spatial point as the Kasner
metric, but with spatially varying exponents. At the end of a Kasner epoch the Kasner
exponents pj change rapidly to a new configuration causing an “oscillation” as previously
expanding directions contract. As the singularity is approached, the Kasner epochs get
shorter and shorter and the transition between epochs becomes sharper.

Chitre [10] and Misner [11] introduced a representation of the BKL behaviour as
a (chaotic) billiard motion in an auxiliary space of the same number of dimensions as
the space part of the spacetime. A “particle”, representing some parts of the metric,
moves along straight, null, lines in a flat Lorentzian space and is elastically reflected off
of (asymptotically) infinitely high potential walls. The straight line motion represents a
Kasner epoch while the (asymptotically) sharp reflections correspond to the transitions
between epochs. This billiard approach is described in detail by Damour, Henneaux and
Nicolai in [12].

Rigorous results concerning this chaotic case of the BKL conjecture are sparse: The only
known example of a spacetime which shows the full chaotic BKL behaviour was constructed
by Berger and Moncrief [13]. They applied a solution generating transformation to a
homogeneous cosmological solution, yielding a U(1) symmetric one. The resulting solution
shows chaotic behaviour but it is very restricted, containing no free functions, and only
three arbitrary constants.

Numerical investigations do, however, provide strong evidence supporting the BKL
conjecture [14]. More recent simulations have shown that, while generically the spatial
derivatives do become negligible, there are exceptional points at which they instead
increase exponentially, giving spikes in the metric components [15]. In the class of Gowdy
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1 INTRODUCTION

spacetimes explicit (non-chaotic) solutions exhibiting this behaviour have been found [16].
The appearance of these spikes hints at more complicated detailed behaviour within the
general dynamics predicted by BKL.

1.3 Asymptotically simple behaviour

Belinski and Khalatnikov argued that coupling a massless scalar field to the Einstein
equations would reduce the BKL behaviour to a simpler, non-oscillatory one, described
by a single Kasner epoch, which is sometimes called AVTD (Asymptotically Velocity
Term Dominated) [17]. This was rigorously proven, including the case of a stiff fluid, by
Andersson and Rendall [18].

If a p-form field is added to the scalar one, the resulting behaviour is either simple
(single Kasner epoch) or chaotic, depending on the coupling constant between them. This
was shown by Damour, Henneaux, Rendall and Weaver [19].

In the billiard picture, the addition of matter increases the dimension of the auxiliary
space, as the particle describes not only the metric components but also the values of the
matter fields. In addition, the evolution equations for the matter fields add additional
potential walls. If a null line in the auxiliary space, which does not intersect any of the
walls, exists, the resulting behaviour is simple, as a single Kasner epoch lasts up to the
singularity.

The addition of matter is not necessary for non-chaotic behaviour: Demaret, Henneaux
and Spindel [20] argued, using similar heuristic arguments as BKL, that in 10 or more
spatial dimension AVTD behaviour is generic.

Even in lower dimensions, where BKL predict chaotic behaviour in the generic case,
solutions which show non-chaotic behaviour exist. They are characterized by symmetry
assumptions or conditions on their asymptotics. These assumptions cause some of the
potential walls in the billiard picture to vanish at least asymptotically.

This reduction was first proven for the polarized Gowdy subclass of the T 2 symmetric
spacetimes by Chruściel, Isenberg and Moncrief [21, 22]. It was later extended to a larger
class of Gowdy spacetimes by Kichenassamy and Rendall [23] using a newly introduced
“Fuchsian” method, which was then applied to more general T 2 symmetric spacetimes by
Isenberg and Kichenassamy [24]. An extension to so-called “half-polarized” T 2 spacetimes
was achieved by Clausen and Isenberg [25]. Ames, Beyer, Isenberg and LeFloch [26]
extended the previous results on T 2 spacetimes to lower regularity. All results on T 2

symmetric spacetimes focused on the case of 3 + 1 dimensions.

U(1) symmetric AVTD solutions, with only one Killing field, were constructed by
Isenberg, Moncrief and Choquet-Bruhat in 3 + 1 dimensions [27, 28, 29].

The results obtained using Fuchsian methods do not necessarily provide generic solutions
in the class of metrics considered, only the existence of families of solutions which contain
a number of arbitrary functions. As these functions specify the asymptotic behaviour of
the solution, there is no obvious link with functions in the initial data. Within the class of
Gowdy spacetimes, genericity of AVTD behaviour was proven by Ringström [30].
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2 CONVENTIONS, IWASAWA DECOMPOSITION

1.4 This work

All previous results on simple behaviour in the vacuum case were obtained by starting
with an ansatz for the metric which included one or more continuous symmetries. In the
billiard picture this causes one or more of the walls to vanish identically at all times.

Here a new class of non-chaotic vacuum solutions will be constructed without starting
from such an ansatz. Instead, the decay of certain parts of the metric, defined by writing it
in so-called Iwasawa variables, will be required. This causes some of the walls in the billiard
picture to vanish asymptotically. The approach is based on work by Damour and de Buyl
[31] who gave a precise statement of the BKL conjecture using this decomposition of the
metric. Their work is an extension of [12] by Damour, Henneaux and Nicolai. The new
class of solutions includes the polarized Gowdy ones, but not the other classes mentioned
above. It is at the same time more general, as it includes free functions which depend on
all space coordinates, and more specific, as some asymptotically free functions in e.g. the
“half-polarized” T 2 case are here assumed to become constants in space.

In sections 2 to 7 the relevant parts of [31] are described: Section 2 describes the
conventions and choice of gauge used and introduces the Iwasawa decomposition of the
metric. In sections 3 and 4 the action and Hamiltonian in the Iwasawa variable form are
given, including the potential “walls”. Section 6 states the Fuchs theorem, which is the
main tool used in the construction of the new class of solutions. In section 7 the evolution
equations are written in Iwasawa form and the approach to constructing solutions with
specified asymptotic behaviour, as used e.g. by Rendall, is detailed. Finally, in section 8
the new class of solutions is constructed. In sections 8.4 and 8.5 possible isometries of the
solutions are investigated. The relationship with previously known classes is described in
8.6.

In the appendices some of the calculations are given in more detail: In appendix A the
derivation of the Iwasawa form of the Hamiltonian is given in full. Appendix B contains
comments on the form of the evolution equations used. In Appendix C the Iwasawa
form of the momentum constraint equations is derived, following [31]. In Appendix D
the evolution equations for the constraints are derived in the chosen gauge. Appendix E
gives the asymptotic behaviour of the metric components, the Christoffel symbols and the
components of the Riemann tensor for the new class of solutions.

2 Conventions, Iwasawa decomposition

We work with a (−,+, . . . ,+) signature. Greek indices α, β, γ, . . . run from 0 to D = d+ 1,
Latin ones a, b, c, . . . from 0 to d. The metric (in D = d+ 1 dimensions) is written in the
form

ds2 = −N(τ, xi)2dτ2 + gij(τ, x
i)dxidxj ,

i.e. with vanishing shift vector and lapse N(τ, xi) =
√

det gij . This pseudo-gaussian gauge
has the unusual property that changes of the spatial coordinates also change the slicing of
the spacetime.
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3 ACTION AND HAMILTONIAN

The spatial metric is then decomposed into Iwasawa variables βa and N a
i as

gij =
d∑
a=1

e−2βaN a
iN a

j .

Here the βa and N a
i are functions of all coordinates (including time) and N a

i vanishes for
all a > i and is 1 for a = i (i.e. N a

i is upper triangular with ones on the diagonal). As the
determinant of N is 1, the determinant of the metric only depends on the βa and is given
by

det g = e−2
∑
a β

a
. (2.1)

The βa are referred to as “diagonal degrees of freedom” while the N a
i are the “off-diagonal

degrees of freedom” (in fact both are relevant for all the metric components except g11).
This decomposition corresponds to a Gram-Schmidt orthogonalization of the coordinate

coframe dxi.
The Iwasawa variables βa and N a

i have the advantage that they explicitly separate
parts of the metric which have different asymptotic behaviour: As we will see later, the
N a

i go to constants as τ →∞ while the βa approach linear functions.
The Iwasawa coframe and its dual are defined as

θa = N a
i dx

i and ea = (N−1)ia∂i . (2.2)

The structure functions of the Iwasawa coframe, denoted Cabc , are defined by

dθa = −1

2
Cabcθ

b ∧ θc ⇔ [eb, ec] = Cabcea ,

and are given in terms of the N a
i as

Cabc =
∑
i,k

2N a
k (N−1)i[b(N

−1)kc],i . (2.3)

In the θa coframe the metric takes the diagonal form

gijdx
idxj =

d∑
a=1

e−2βaθa⊗ θa .

3 Action and Hamiltonian

Starting from the Einstein-Hilbert action

S[ḡµν ] =

∫
dDx
√
−ḡ︸ ︷︷ ︸

=
√
N2 det g=det g

R̄ ,

where ḡµν is the spacetime metric with determinant ḡ and R̄ its Ricci scalar, the action
can be written in Hamiltonian form as

S[gij , π
ij ] =

∫
dx0

∫
ddx

(
πij ġij −H

)
,

5



4 THE POTENTIAL WALLS

where the πij are the conjugate momenta to the spatial metric components, defined by

πij =
∂L
∂gij

,

and H is the Hamiltonian density given by

H = πij ġij − L = πijπij −
1

d− 1
πiiπ

j
j − gR . (3.1)

This derivation is done e.g. in Appendix E of Wald [32].

The Hamiltonian density can now be written in terms of the Iwasawa variables and
their conjugate momenta πa, corresponding to βa, and P ia , corresponding to N a

i (note
P ia = 0 for a ≥ i) which are defined as

πa =
∂L
∂βa

and P ia =
∂L
N a

i

.

This gives

H =

K︷ ︸︸ ︷
1

4
Gabπaπb +

V︷ ︸︸ ︷∑
A

cA(N , P, ∂xβ, ∂2
xβ, ∂xN , ∂2

xN )e−2ωA(β) , (3.2)

where Gab = (δab(d− 1)− 1)/(d− 1), N = (N a
i ) and P = (P ia ). The d× d matrix Gab is

the inverse of Gab = −
∑

c 6=d δ
c
aδ
d
b , which will appear later. In d = 3 dimensions they are

explicitly given by

(Gab) =

 0 −1 −1
−1 0 −1
−1 −1 0

 and (Gab) =
1

2

 1 −1 −1
−1 1 −1
−1 −1 1

 .

The sum in the second term of (3.2) contains the potential “walls” which will be discussed
in detail in the next section. The derivation of (3.2), including the individual terms in the
second part, is given in appendix A.

The kinetic term K only contains the conjugate momenta of the diagonal βa variables,
the ones for the N a

i are included in the “potential” term V. This makes sense because
asymptotically the N a

i tend to constants while the βa show linear behaviour, as will be
demonstrated later.

4 The potential walls

The structure of the potential term V in the Hamiltonian density (3.2) is crucial for the
asymptotic behaviour. It is that of a sum, each term of which contains a prefactor which,
importantly, does not depend on βa and an exponential term of the form exp(−2ωA(β))
where ωA is some linear form depending on the wall in question. Depending on the kind of
wall, the index A can be a single or a multi-index

6



4 THE POTENTIAL WALLS

The walls are split into two categories: The so-called “dominant” and “subdominant”
walls. The dominant ones are defined as the minimal set of walls such that if their
linear forms are positive, all the others are as well. Crucially for the billiard picture, the
coefficients cA are positive for the dominant walls.

The form of (3.2) allows the following “billiard” interpretation of the asymptotic
dynamics (e.g. [12]): A “particle” with coordinates βa moves through a Lorentzian space
with metric Gab (from the kinetic part K of the Hamiltonian) in a potential of the form
V. The behaviour of the summands in the potential is dominated by the exponential
terms exp(−2ωA(β)). The βa can be decomposed as βa = ργa with Gabγ

aγb = −1 and
a heuristic argument, in analogy to the exact Kasner solution, gives ρ → ∞ as τ → ∞.
In the limit, the potential walls become infinitely sharp as −2ωA(β) = −2ρωA(γ)→ ±∞.
As long as ωA(β) > 0 the potential is negligible and the βa evolve linearly. At the points
where ωA(β) becomes positive the potential diverges and, because cA > 0 for the dominant
walls, the particle is reflected. The subdominant walls do not influence the behaviour as
they lie behind the dominant ones.

This picture depends on the assumption that ρ→∞ as τ →∞ and that none of the
walls vanish (either completely or asymptotically). The following does not depend on these
assumptions, as the billiard picture will not be used.

In the vacuum case there are two types of potential walls: The “symmetry walls”,
coming from the kinetic terms of the off-diagonal metric components and the “gravitational
walls” coming from the curvature term in the Hamiltonian density.

4.1 Symmetry walls

These come from the parts of the first two terms in the Hamiltonian density (3.1) which
are not contained in the kinetic term K in (3.2). The part of V containing the symmetry
walls is ∑

a<b

1

2
(P jaN b

j )2e−2(βb−βa) , (4.1)

where the multi-index A from (3.2) is (a, b) and runs over all a, b ∈ {1, . . . , d}, a < b. The
coefficients (cA) = (cab) are given by (P jaN b

j )2/2 and the linear forms (ωA) = (ωsym ab) by

ωsym ab(β) = βb − βa . (4.2)

The walls with the forms ωa a+1 are the dominant ones among the symmetry walls, because
if they are positive then βa+1 > βa ∀a and therefore all the other ωab(β), a < b are positive
as well.

4.2 Gravitational walls

These come from the curvature term in the Hamiltonian density (3.1). The gravitational
walls split into two classes:

The contribution to V coming from the first class is given by∑
a6=b6=c 6=a

1

4
(Cabc )

2e−2αabc(β) with αabc = 2βa +
∑

e 6=a,b,c
βe , (4.3)

7



4 THE POTENTIAL WALLS

i.e. the index A = (a, b, c) is a multi-index running over all a, b, c ∈ {1, . . . , d}, a 6= b 6= c 6= a.
For d = 3 the sum in the expression for αabc(β) vanishes: There are only three possible
values for the indices which are all occupied by a, b, and c, leaving no possible value for e.
In this case only αabc(β) = 2βa remains.

The second class of gravitational walls has a more complicated form, their contribution
is given by

−
∑
a

Fa(∂
2
xβ, ∂xβ, ∂xC,C)e−2µa(β) with µa(β) =

∑
c6=a

βc , (4.4)

and (all sums explicitly indicated)

Fa =− 2(βa,a)
2 − 2βa,a,a

+
∑
b

(
− 2(Cbab )

2 − 4Cbbaβ
a
,a + 4βb,aβ

a
,a − (βb,a)

2 − 2Cbabβ
b
,a

+ 2βb,a,a + 2Cbab,a

+
∑
c

(
CbbaC

c
ac − βb,aβc,a − CbacCcab/2− 2Cbabβ

c
,a

))
,

(4.5)

where the comma denotes the Iwasawa frame derivative ea, defined in (2.2) and given in
terms of partial derivatives as X,a = (N−1)ia∂iX. Here A is a single index a ∈ {1, . . . , d}.
This term contains second derivatives of βa and N a

i (it contains first derivatives of Cabc
which contains first derivatives of N a

i ) as expected from a curvature expression.
The linear forms µa of the second class can be written as a linear combination of the

ones of the first class, αabc, by

µc = (αabc + αbca)/2 .

This means the first class of walls is dominant and the second subdominant. This is
fortunate as the coefficients of the second class of walls, Fa, can be negative while those of
the first class, (Cabc )

2/4, are always positive.

4.3 Complete Hamiltonian in Iwasawa variables

The complete Hamiltonian density in Iwasawa form (equation (3.2) with the expressions
for the walls inserted) is

H =
1

4
Gabπaπb +

∑
a<b

1

2
(P jaN b

j )2e−2(βb−βa) +
∑

a6=b6=c 6=a

1

4
(Cabc )

2e−2(2βa+
∑
e 6=a,b,c β

e)

−
∑
a

[
− 2(βa,a)

2 − 2βa,a,a +
∑
b

(
− 2(Cbab )

2 − 4Cbbaβ
a
,a + 4βb,aβ

a
,a − (βb,a)

2

− 2Cbabβ
b
,a + 2βb,a,a + 2Cbab,a

+
∑
c

(
CbbaC

c
ac − βb,aβc,a − CbacCcab/2− 2Cbabβ

c
,a

))]
e−2

∑
c6=a β

c

,

(4.6)

with Cabc =
∑

i,k 2N a
k (N−1)i[b(N

−1)kc],i and Gab = (δab(d − 1) − 1)/(d − 1) and where

,a = (N−1)ia∂i.
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5 EQUATIONS OF MOTION AND CONSTRAINTS

5 Equations of motion and constraints

For a Hamiltonian density of the form H[q(x, t), p(x, t), ∂xq, ∂
2
xq] the evolution equations

are given by

q̇(x, t) =
∂H
∂p

,

ṗ(x, t) =− ∂H
∂q

+∇m
∂H

∂(∇mq)
−∇m∇n

∂H
∂(∇m∇nq)

.

Here the variation is taken after choosing lapse and shift, which depend on the metric
(the lapse is given by

√
det g). Appendix B shows that this does not change the resulting

equations.
In the case of the Iwasawa variable Hamiltonian (3.2) this leads to

∂τβ
a =

1

2
Gabπb ,

∂τπa =
∑
A

[
2cA(wA)ae

−2wA(β) + ∂i

(
∂cA

∂(∂iβa)
e−2wA(β)

)

− ∂i∂j
(

∂cA
∂(∂i∂jβa)

e−2wA(β)

)]
,

∂τN a
i =

∑
A

∂cA
∂P ia

e−2wA(β) ,

∂τP
i
a =

∑
A

[
− ∂cA
∂N a

i

e−2wA(β) + ∂j

(
∂cA

∂(∂jN a
i )
e−2wA(β)

)

− ∂j∂k
(

∂cA
∂(∂j∂kN a

i )
e−2wA(β)

)]
,

(5.1)

where the components (ωA)a of the linear form ωA appearing in the second equation are
defined as (ωA)a = ∂ωA(β)/∂βa.

The Hamiltonian and momentum constraints are

H = 0 , (5.2)

−1

2
Ha := ∂̃bπ̃

b
a + Cccb π̃

b
a + Cdac π̃

c
d −

1

2
(∂̃aβ

d)πd

= 0 ,
(5.3)

where ∂̃a = (N−1)ia∂i and

π̃ba =


−1

2πb , if b = a ,
1
2N

b
i P

i
a , if b > a ,

1
2e
−2(βa−βb)N a

i P
i
b , if b < a .

(5.4)

The Iwasawa variable form (5.3) of the momentum constraints is derived in Appendix C.1.
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6 FUCHS THEOREM

6 Fuchs theorem

The following definition and theorem are by Choquet-Bruhat [33], generalizing the result
of Kichenassamy and Rendall [23].

Definition 1 (Fuchsian System). A system of partial differential first order equations
on V = M × R, M an analytic manifold which can be extended to a complex analytic
manifold M̂ ,

t∂tu+A(x)u = tf(t, x, u,Dxu) , (6.1)

with f linear in the first order spatial covariant derivative Dxu, A and f extendable to
holomorphic maps in x and u (on M̂) and continuous in t ∈ [0, T ] is called Fuchsian if
there exist α < 1 and Σ > 0 such that σA(z) := exp(A(z) log σ) satisfies

sup
z∈M̂

∣∣∣σA(t,z)
∣∣∣σα ≤ Σ for t ∈ [0, T ] .

Lemma 6.1. A system of the form (6.1), with M , f as before, is Fuchsian if A is uniformly
bounded on M̂ × [0, T ] with the real part of all its eigenvalues greater than −1.

Theorem 6.2 (Fuchs theorem). A Fuchsian system has a unique solution u, analytic in
x ∈M , C1 in t and such that u = 0 for t = 0 in a neighbourhood of M̂ × {0}.

Replacing t in (6.1) by t′ = t1/µ gives

µ−1t′∂t′u+A(x)u = t′µf(t(t′), x, u,Dxu) ,

and, as the eigenvalues of µ−1A are simply those of A divided by µ, the following corollary
holds.

Corollary 6.3. The theorem holds for

t∂tu+A(x)u = tµf(t, x, u,Dxu)

if all eigenvalues λ of A fulfil Re(λ) > −µ.

The condition that f be linear in the spatial derivatives Dxu can be relaxed to admit
an arbitrary analytic dependence by adding v := Dxu as a new variable. Differentiating
(6.1) gives an evolution equation for v,

t∂tv +DxA(x)u+A(x)v = tDxf = t

(
∂f

∂x
+
∂f

∂u
v +

∂f

∂v
Dxv

)
, (6.2)

which is linear in Dxv. Together with (6.1) this is a system of the form

t∂tû+ Â(x) = f̂(t, x, û,Dxû) (6.3)

for û = (u, v) and with Â the block lower triangular matrix

Â =

(
A 0

DxA A

)
.

10



7 ASYMPTOTIC EVOLUTION EQUATIONS AND DIFFERENCES

The eigenvalues λ of Â fulfil

0 = det(Â− 1λ) = det(A− 1λ)2

and are therefore exactly the eigenvalues of A. Therefore the system (6.3) fulfils the
conditions of definition 1 and is Fuchsian, provided f̂ depends analytically on û, i.e. f
depends analytically on Dxu, and DxA is uniformly bounded.

Corollary 6.4. The existence theorem 6.2 holds for f depending analytically on Dxu if
DxA is uniformly bounded on M̂ × [0, T ].

A change of variables t = e−µτ → τ in (6.1), with M a domain in Rn, gives the form of
the theorem used here.

Corollary 6.5. A system of the form

∂τu−A(x)u = e−µτ f̄(τ, x, u,Dxu) , (6.4)

with A analytic in x and uniformly bounded, µ > 0, f̄ analytic in x, u and Dxu, continuous
in τ and bounded in τ for τ → ∞ and with all eigenvalues λ of A fulfilling Re(λ) > −µ
has a unique solution u(x, τ) with u(x, τ)→ 0 as τ →∞.

The matrices we will consider in the following will be constant and therefore the relevant
conditions will be the boundedness of f̄ as τ → ∞ and the condition λ > −µ on the
eigenvalues of A.

In order to obtain a more precise description of the decay of the solution, we define
ū = eντu, 0 < ν < µ. (6.4) becomes

∂τ ū− (A+ ν1)ū = e−(µ−ν)τ f̄(τ, x, u(ū), ∂xu(ū)) ,

which is again Fuchsian, as the conditions on f̄ are unaffected and the eigenvalues of A+ν1
are shifted up to compensate the change in µ. Therefore ū = eντu

τ→∞−−−→ 0, i.e.

u = O(e−ντ ) , ∀ 0 < ν < µ . (6.5)

7 Asymptotic evolution equations and differences

7.1 Strategy and evolution equations

We will use the strategy introduced by Kichenassamy and Rendall in [23] and used in [31]
to prove the existence of solutions of the Einstein equations with non-chaotic asymptotics.
As a first step we consider a simplified system of evolution equations, which is supposed to
model the asymptotic behaviour, and which can be easily solved. Then we write down
the equations for the differences between solutions of this system and those of the full one,
following from the full evolution equations. If this system can be shown to be Fuchsian (i.e.
if it is of the form (6.4)) then, by the Fuchs theorem, a unique asymptotically vanishing
solution exists. This implies that a solution of the full system of equations exists, which
asymptotically approaches the specified solution of the simplified system.

The constraints will be treated separately, in sections 7.2 and 7.3.
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7 ASYMPTOTIC EVOLUTION EQUATIONS AND DIFFERENCES

Quantities relating to the asymptotic system will be marked with a subscript [0], e.g.
βa[0]. The Hamiltonian of the asymptotic system is obtained by discarding all wall terms in

the full Hamiltonian (3.2), leaving only

H[0] =
1

4
Gabπ[0]aπ[0]b . (7.1)

This gives the asymptotic evolution equations

∂τβ
a
[0] =

1

2
Gabπ[0]b , ∂τπ[0]a = 0 ,

∂τN a
[0] i = 0 , ∂τP

i
[0] a = 0 ,

with solutions

βa[0] = pa◦τ + βa◦ , π[0]a = 2Gabp
b
◦ ,

N a
[0] i = N a

◦ i , P i
[0] a = P i

◦ a .
(7.2)

Now, the differences β̄a, π̄a, N̄ a
i and P̄ ia are defined as the real solutions minus the

asymptotic ones (e.g., β̄a = βa − βa[0]). Inserting them into the full evolution equations

(5.1) gives the following equations for the differences:

∂τ β̄
a − 1

2
Gabπ̄b = 0 , (7.3a)

∂τ π̄a =
∑
A

[
2cA(wA)ae

−2wA(β[0])e−2wA(β̄) + ∂i

(
∂cA

∂(∂iβa)
e−2wA(β[0])e−2wA(β̄)

)

− ∂i∂j
(

∂cA
∂(∂i∂jβa)

e−2wA(β[0])e−2wA(β̄)

)]
,

(7.3b)

∂τ N̄ a
i =

∑
A

∂cA
∂P ia

e−2wA(β[0])e−2wA(β̄) , (7.3c)

∂τ P̄
i
a =

∑
A

[
− ∂cA
∂N a

i

e−2wA(β[0])e−2wA(β̄) + ∂j

(
∂cA

∂(∂jN a
i )
e−2wA(β[0])e−2wA(β̄)

)

− ∂j∂k
(

∂cA
∂(∂j∂kN a

i )
e−2wA(β[0])e−2wA(β̄)

)]
.

(7.3d)

This system of equations is not directly in Fuchsian form, as the right-hand side contains
second order spatial derivatives of the variables. By defining Ba

j := ∂j β̄
a and Na

ij = ∂jN̄ a
i

these can be expressed as first order derivatives. This is only possible if the β̄ and N̄
equations (7.3a) and (7.3c) do not contain spatial derivatives, as otherwise new second
derivative terms would appear in the evolution equations for the new variables. The β̄
equation (7.3a) obviously doesn’t contain spatial derivatives while for the N̄ equation (7.3c)
the sum over the walls only includes the symmetry walls with coefficients (P jaN b

j )2/2, as

the others are independent of P̄ .
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7 ASYMPTOTIC EVOLUTION EQUATIONS AND DIFFERENCES

The additional evolution equations for the new variables are given by

∂τB
a
j =

1

2
Gab∂j π̄b , (7.4)

∂τN
a
ij =

∑
A

∂j

(
∂cA
∂P ia

e−2wA(β[0])e−2wA(β̄)

)
. (7.5)

To ensure that the right-hand side of the equation for Ba
j decays appropriately we replace

π̄ by π̃ defined as π̃a = eετ π̄a with ε > 0. The evolution equation for Ba
j then becomes

∂τB
a
j = e−ετ

1

2
Gab∂j π̃b . (7.6)

The evolution equation for π̃a, which replaces equation (7.3b) is then

∂τ π̃a − επ̃a = eετ
∑
A

[
2cA(wA)ae

−2wA(β[0])e−2wA(β̄) + ∂i

(
∂cA

∂(∂iβa)
e−2wA(β[0])e−2wA(β̄)

)

− ∂i∂j
(

∂cA
∂(∂i∂jβa)

e−2wA(β[0])e−2wA(β̄)

)]
.

(7.7)

with the additional term on the left-hand side and the exponential factor on the right-hand
side coming from

∂τ π̃a = ∂τ (eετ π̄a) = επ̃a + eετ∂τ π̄a .

The full system of equations is now given by the 2d + d(d − 1) + d2 + d2(d − 1)/2
equations (7.3a), (7.7), (7.3c), (7.3d), (7.5) and (7.6).

The asymptotic behaviour of the terms on the right-hand side is dominated by the
exponential terms exp(−2ωA(β[0])). If ωA(β[0]) is strictly increasing with τ for all A, i.e. if
ωA(p◦) > 0 for all A (for all walls) the system fulfils the decay condition required by the
Fuchs theorem (Corollary 6.5). Equation (7.7) includes the exponentially growing term
eετ but as ε can be chosen arbitrarily small, and therefore smaller than the minimum of
ωA(p◦), this does not affect the conditions.

In order to be a Fuchsian system, the condition on the matrix A also has to be fulfilled.
For this system the matrix A is given by

0d (Gab)/2 0d,d? 0d,d? 0d,d2 0d,d??
0d ε1d 0d,d? 0d,d? 0d,d2 0d,d??

0d?,d 0d?,d 0d? 0d? 0d?,d2 0d?,d??
0d?,d 0d?,d 0d? 0d? 0d?,d2 0d?,d??
0d2,d 0d2,d 0d2,d? 0d2,d? 0d2 0d2,d??
0d??,d 0d??,d 0d??,d? 0d??,d? 0d??,d2 0d??

 ,

where d? = d(d− 1)/2, d?? = dd? = d2(d− 1)/2, 0d is the d× d zero matrix, 0d,d? is the
d × d? zero matrix and 1d is the d × d identity matrix. The eigenvalues of this matrix
are 0 and ε. The condition therefore requires Re(0) = 0 > −ωA(p◦) and is fulfilled if
ωA(p◦) > 0 ∀A.
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7 ASYMPTOTIC EVOLUTION EQUATIONS AND DIFFERENCES

In addition to the conditions ωA(p◦) > 0, the asymptotic Hamiltonian constraint,
defined as

H◦ = Gabp
a
◦p
b
◦ = 0 , (7.8)

also constrains the values of the pa◦. For vacuum in dimension d < 10 the conditions
ωA(p◦) > 0 ∀A cannot be satisfied together with the asymptotic Hamiltonian constraint
H◦ = 0 [20]. Therefore it is expected (e.g. [31]) that the generic solution in the vacuum
case is chaotic.

In d = 3 dimensions it is easy to see why the conditions are not compatible: The linear
forms of the dominant walls (these are the only relevant ones) are

ωsym 21(p◦) = p2
◦ − p1

◦ , ωsym 32(p◦) = p3
◦ − p2

◦ , α123(p◦) = 2p1
◦ , (7.9)

(two symmetry walls from (4.2) and one dominant gravitational wall from (4.3)).

The asymptotic Hamiltonian constraint is

H◦ = −p1
◦p

2
◦ − p1

◦p
3
◦ − p2

◦p
3
◦ = 0 . (7.10)

The condition that the three linear forms (7.9) are greater than 0 implies p3
◦ > p2

◦ > p1
◦ > 0

and therefore H◦ < 0 which conflicts with the Hamiltonian constraint (7.10).

7.2 Asymptotic momentum constraints

The asymptotic momentum constraints are obtained from the full momentum constraints
(5.3) by splitting π̃ba (defined in (5.4)) into a strictly upper triangular part π̃ba[+], a strictly

lower triangular part π̃ba[−] and a diagonal part π̃bb = −πb/2, and discarding π̃ba[+]. This
gives

−1

2
Ha[0] =∂̃bπ̃

b
[0] a[−] −

1

2
∂̃aπ[0]a + C c

[0] cb π̃
b

[0] a[−] + C d
[0] ac π̃

c
[0] d[−]

− 1

2
C c

[0] caπ[0]a −
1

2
C d

[0] adπ[0]d −
1

2
(∂̃aβ

d
[0] )π[0]d = 0 ,

(7.11)

where ∂̃a = (N −1
◦ )ia∂i and C a

[0] bc are the structure functions of the asymptotic Iwasawa

coframe, defined as in (2.3) but with N a
i replaced with N a

[0] i = N a
◦ i .

The only time dependent term in (7.11) is −∂̃aβd[0]π[0]d/2 = τ(∂̃ap
d
◦)p◦d/2. This term

vanishes if pd◦ p◦d = 0, i.e. if the asymptotic Hamiltonian constraint is fulfilled, because the
metric Gab is constant and therefore

(∂̃ap
b
◦)p

c
◦Gbc = Gbc

1

2

(
(∂̃ap

b
◦)p

c
◦ + (∂̃ap

c
◦)p

b
◦

)
=

1

2
(∂̃a(p

b
◦p
c
◦Gbc︸ ︷︷ ︸

=pb◦p◦b=0

)) = 0 .

The asymptotic constraints are therefore preserved under the asymptotic evolution given
by (7.1).
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7 ASYMPTOTIC EVOLUTION EQUATIONS AND DIFFERENCES

7.3 Relationship between asymptotic and full constraints

We want to show that if the solution (7.2) of the asymptotic evolution system fulfils the
asymptotic constraints, the corresponding solution of the full evolution equations fulfils
the full constraints (5.2), (5.3).

The evolution equations for the full constraints coming from the full evolution equations
(5.1), in Iwasawa variables, are

∂τH = e−2
∑
b β

b
∑
a

(
∂̃aH

a − 2
∑
c

(∂̃aβ
c)Ha

)
, (7.12)

∂τHa = ∇aH +
H

g
∂̃ag , (7.13)

with Ha = e2βaHa (derivation in appendix D). The right-hand side of (7.12) can be
rewritten as ∑

a

e−2µa(β)

[
∂̃aHa + 2(∂̃aβ

a)Ha − 2
(
∂̃a
∑
c

βc
)
Ha

]
,

with µa(β) =
∑

b 6=a β
b the subdominant gravitational wall forms. Defining H̄ = eητH,

with η > 0, gives the system

∂τ H̄ − ηH̄ =
∑
a

eη−2µa(β)

[
∂̃aHa + 2(∂̃aβ

a)Ha − 2
(
∂̃a
∑
c

βc
)
Ha

]
,

∂τHa = e−ητ
(
∇aH +

H

g
∂̃ag

)
,

(7.14)

which is Fuchsian if η < 2µa(β). The term ∇aH in the second equation is equal to
g∂̃a(H/g) +HO(Cabc) = g∂̃a(H/g) +HO(1) where the first part comes from the density
character of H and the second from the connection coefficients in a non-coordinate basis.
The system (7.14) is homogeneous and therefore the unique solution such that

H̄
τ→∞−−−→ 0 and Ha

τ→∞−−−→ 0 (7.15)

guaranteed by the Fuchs theorem is Ha = H̄ = H = 0. We therefore need to check that
(7.15) holds, i.e. that the constraints are asymptotically fulfilled.

The differences between the asymptotic constraints and the full ones consist only of
terms which vanish asymptotically: The Asymptotic Hamiltonian (7.1) is exactly the
part K of the full Hamiltonian (3.2) which does not contain the exponential wall terms
exp(−2ωa(β)), which go to zero if the conditions ωA(p◦) > 0 are fulfilled. The asymptotic
momentum constraints were obtained from the full momentum constraints by discarding
π̃ba[+] = e−2(βa−βb)N a

i P
i
b /2, a > b, which is an exponentially decreasing term if the

symmetry wall conditions (4.2) are fulfilled. This means that if the asymptotic constraints
are fulfilled, the full constraints H and Ha vanish asymptotically. To verify (7.15) we still
need to make sure that the definition of H̄ does not change the asymptotic behaviour.
This is the case as η can be chosen arbitrarily small, and therefore smaller than 2(βa− βb),
a > b, while still preserving the Fuchsian form of (7.14).
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8 A NEW CLASS OF ASYMPTOTICALLY NON-CHAOTIC SOLUTIONS

This means, provided the solution of the asymptotic evolution equations satisfies the
asymptotic constraints, (7.15) is fulfilled. As the evolution equations for the full constraints
are a homogeneous Fuchsian system, the unique solution which vanishes asymptotically is
the zero solution. Therefore it suffices to impose the asymptotic constraints at one time
(as they are preserved by the asymptotic evolution), to guarantee that the corresponding
unique solution of the full evolution equations satisfies the full constraints at all times.

8 A new class of asymptotically non-chaotic solutions

While generic solutions in the vacuum case are expected to be chaotic, there exist examples
of vacuum spacetimes which show non-chaotic behaviour. As described in the introduction,
all previous examples were at least U(1) symmetric. These were constructed by starting
with a symmetric ansatz for the metric, postulating asymptotic behaviour for its components
and proving, via some sort of Fuchs theorem, that solutions with this asymptotic behaviour
exist.

Here, no symmetries of the metric will be assumed. The idea is to choose an ansatz for
the N a

i such that some of the walls in (7.3) asymptotically vanish. This means that their
linear forms can be negative but the resulting exponentially increasing term is countered
by an exponential decrease of the coefficients cA.

8.1 Ansatz and evolution equations

The following ansatz is chosen for N a
i :

N a
i (x

j , τ) = N a
◦ i + e−γτN a

s i (x
j , τ) . (8.1)

N a
◦ i is a constant, upper triangular matrix, with ones on the diagonal, which depends

neither on space nor time. This ansatz for N a
i will cause the dominant gravitational

walls to vanish asymptotically. It can be simplified to N◦ = 1 by the space coordinate
transformation xi → yi(xj) defined by

y1 = x1 +N 1
◦ 2 x

2 +N 1
◦ 3 x

3 ,

y2 = x2 +N 2
◦ 3 x

3 ,

y3 = x3 ,

which does not affect the βa.

P ia , βa and πa are decomposed as before in (7.2), giving d? + 2d = d(d+ 3)/2 functions
of space P i

◦ a , pa◦ and βa◦ .

As before, the second derivatives on the right-hand side of the evolution equations are
eliminated by defining Ba

j := ∂j β̄
a and N a

s ij = ∂jN̄ a
s i and π̄ is replaced by π̃a = eετ π̄a.

The evolution equations for β̄a, π̃a, N a
s i , P̄

i
a , Ba

j and N a
s ij are now

∂τ β̄
a − 1

2
Gabπ̄b = 0 , (8.2a)
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8 A NEW CLASS OF ASYMPTOTICALLY NON-CHAOTIC SOLUTIONS

∂τ π̃a − επ̃a = eετ
∑
A

[
2cA(wA)ae

−2wA(β[0])e−2wA(β̄)

+ ∂i

(
∂cA

∂(∂iβa)
e−2wA(β[0])e−2wA(β̄)

)
− ∂i∂j

(
∂cA

∂(∂i∂jβa)
e−2wA(β[0])e−2wA(β̄)

)]
,

(8.2b)

∂τN a
s i − γN a

s i = eγτ
∑
A

∂cA
∂P ia

e−2wA(β[0])e−2wA(β̄) , (8.2c)

∂τ P̄
i
a =

∑
A

[
− ∂cA
∂N a

i

e−2wA(β[0])e−2wA(β̄)

+ ∂j

(
∂cA

∂(∂jN a
i )
e−2wA(β[0])e−2wA(β̄)

)
− ∂j∂k

(
∂cA

∂(∂j∂kN a
i )
e−2wA(β[0])e−2wA(β̄)

)]
,

(8.2d)

∂τN
a
s ij = eγτ

∑
A

∂j

(
∂cA
∂P ia

e−2wA(β[0])e−2wA(β̄)

)
, (8.2e)

∂τB
a
j = e−ετ

1

2
Gab∂j π̃b . (8.2f)

The additional term on the left-hand side of the N a
s i equation and the exponential

factor on the right-hand side come from

∂τ
(
e−γτN a

s i

)
= −γe−γτN a

s i + e−γτ∂τN a
s i .

The matrix A is now



0d (Gab)/2 0d,d? 0d,d? 0d,d2 0d,d??
0d ε1d 0d,d? 0d,d? 0d,d2 0d,d??

0d?,d 0d?,d γ1d? 0d? 0d?,d2 0d?,d??
0d?,d 0d?,d 0d? 0d? 0d?,d2 0d?,d??
0d2,d 0d2,d 0d2,d? 0d2,d? 0d2 0d2,d??
0d??,d 0d??,d 0d??,d? 0d??,d? 0d??,d2 0d??

 ,

with eigenvalues 0, ε > 0 and γ > 0 and therefore fulfils the conditions for a Fuchsian
system.

To show the system (8.2) is Fuchsian, each term on the right-hand side has to be shown
to be exponentially decreasing.

To simplify the argument the decay rates as τ → ∞ of the coefficients cA and their
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8 A NEW CLASS OF ASYMPTOTICALLY NON-CHAOTIC SOLUTIONS

derivatives, with the ansatz (8.1) for N a
i , are now listed:

csym = (P jaN b
j )2/2 = O(1) ,

∂csym
∂P

= O(1) ,
∂csym
∂N a

i

= O(1) ,

∂csym
∂(∂jN a

i )
= 0 ,

∂csym
∂(∂j∂kN a

i )
= 0 ,

cd.g. = (Cabc )
2 ∝ (N,i )2 = O(e−2γτ ) ,

∂cd.g.
∂N a

i

= O(e−2γτ ) ,
∂cd.g.
∂P ia

= 0 ,

∂cd.g.
∂(∂jN a

i )
∝ N,j = O(e−γτ ) ,

∂cd.g.
∂(∂j∂kN a

i )
= 0 ,

cs.d.g. = O(τ2) ,
∂cs.d.g.
∂N a

i

∝ βa,iN,j = O(τe−γτ ) ,
∂cs.d.g.
∂P ia

= 0 ,

∂cs.d.g
∂(∂jN a

i )
= O(τ) ,

∂cs.d.g
∂(∂j∂kN a

i )
= O(1) .

(8.3)
Here csym stands for the symmetry wall coefficients (P jaN b

j )2/2, cd.g. for the dominant

gravitational ones, (Cabc )
2/4, and cs.d.g. for the subdominant gravitational ones defined in

(4.5).
As the β̄a equation (8.2a) has no terms on the right-hand side we consider first the π̄a

equation (8.2b). The key terms are the exponentials exp(−2ωA(β)) and the cA and their
derivatives. The overall space derivatives in the second and third part are innocuous as
they can only bring down polynomial expressions in τ from the exponentials.

Beginning with the (relevant terms of the) first part,
∑

A cAe
−2wA(β[0]), we look at the

three kinds of walls (symmetry, dominant gravitational and subdominant gravitational)
separately:

symmetry The coefficients do not decay (see (8.3)). The whole term decays exponentially
only if

ωsym(p◦) > ε , (8.4)

i.e., as ε is arbitrarily small, if the symmetry wall conditions are fulfilled (this means
that p1

◦ < p2
◦ < · · · < pd◦).

dom. grav. The coefficients decay as e−2γτ . The whole term shows exponential decay if

− 2γ − 2ωd.g.(p◦) + ε < 0⇔ γ > −ωd.g.(p◦) + ε . (8.5)

subdom. grav. The coefficients do not decay, the whole term only decays if

ωs.d.g(p◦) > ε , (8.6)

i.e. if the subdominant gravitational wall conditions are fulfilled.

The second and third parts of the π̄a equation (8.2b) include only the subdominant
gravitational walls, as these are the only ones containing derivatives of β. To guarantee
exponential decay in these terms, the subdominant wall conditions ωs.d.g(p◦) > ε have to
be fulfilled, as in (8.6).
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8 A NEW CLASS OF ASYMPTOTICALLY NON-CHAOTIC SOLUTIONS

The N a
s i equation, (8.2c), contains only the symmetry wall term, as the P ia derivative

of the other coefficients vanishes. Because of the exponentially increasing term exp(γτ),
decay requires that

2ωsym(p◦) > γ . (8.7)

The first part of the P̄ ia equation (8.2d) (containing N a
i derivatives of the coefficients)

decays exponentially if the following conditions are satisfied for the different wall types:

symmetry The symmetry wall conditions ωsym(p◦) > 0 have to be fulfilled (as in (8.4)).

dom. grav. γ > −ωd.g.(p◦) (as in (8.5)).

subdom. grav. ωs.d.g(p◦) > 0 (as in (8.6)).

The second and third part of the P̄ ia equation involve only the gravitational walls, as the
symmetry wall coefficients don’t contain any spatial derivatives of N a

i . Both the dominant
and subdominant gravitational wall coefficients include first order (spatial) derivatives
of N a

i , but only the subdominant walls contain second order derivatives. The dominant
gravitational wall term gives the condition

γ > −2ωd.g.(p◦) (8.8)

(2 because the decay of the derivative of the coefficient is only of order O(exp(−γτ)) instead
of O(exp(−2γτ))). The subdominant wall terms require ωs.d.g(p◦) > 0, as before.

The N a
s ij equation (8.2e) requires the same conditions as the N a

s i equation (8.2c), as
the overall space derivative only adds polynomial terms.

Decay of the right-hand side of the Ba
j equation (8.2f) requires only ε > 0.

Summarising, the conditions are

ωsym(p◦) > ε , γ + ωd.g.(p◦) > ε , ωs.d.g(p◦) > ε ,

2ωsym(p◦) > γ , γ + 2ωd.g(p◦)> 0 , ε > 0 ,
(8.9)

and the asymptotic Hamiltonian constraint∑
a6=b

pa◦p
b
◦ = 0 . (8.10)

Additionally, the asymptotic momentum constraint equation has to be fulfilled. This will
be discussed in detail later.

8.2 d = 3 case

In 3 + 1 dimensions the conditions (8.9) are explicitly (without removing redundant ones)

ωsym(p◦) > ε ⇒ p3
◦ − p2

◦ > ε , p3
◦ − p1

◦ > ε , p2
◦ − p1

◦ > ε , (8.11a)

γ + ωd.g(p◦) > ε ⇒ γ + 2p1
◦ > ε , γ + 2p2

◦ > ε , γ + 2p3
◦ > ε , (8.11b)

ωs.d.g(p◦) > ε ⇒ p1
◦ + p2

◦ > ε , p1
◦ + p3

◦ > ε , p2
◦ + p3

◦ > ε , (8.11c)

2ωsym(p◦) > γ ⇒ 2(p3
◦ − p2

◦) > γ , 2(p3
◦ − p1

◦) > γ , 2(p2
◦ − p1

◦) > γ , (8.11d)

γ + 2ωd.g(p◦) > 0 ⇒ γ + 4p1
◦ > 0 , γ + 4p2

◦ > 0 , γ + 4p3
◦ > 0 , (8.11e)

ε > 0 , (8.11f)
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and the asymptotic Hamiltonian constraint is

p1
◦p

2
◦ + p1

◦p
3
◦ + p3

◦p
2
◦ = 0 . (8.12)

Let us show that they can be fulfilled simultaneously:

The Hamiltonian constraint (8.12) gives

p1
◦ = − p2

◦p
3
◦

p2
◦ + p3

◦
. (8.13)

The conditions (8.11a) follow from (8.11d) by choosing ε < γ/2. Likewise, (8.11b) follows
from (8.11e) by choosing ε < −2p1

◦ (as γ > 0 and p1
◦ < 0). The second and third condition

in (8.11c) follow from the first and from p3
◦ > p2

◦ > 0 > p1
◦ (from (8.11a)), as does the first

when inserting (8.13) and choosing ε sufficiently small. The second condition in (8.11d)
follows from the first. The remaining ones are now

min
{

2(p3
◦ − p2

◦), 2(p2
◦ − p1

◦)
}
> γ > −4p1

◦ ,

(the last two conditions in (8.11e) follow from p3
◦ > p2

◦ > 0 and γ > 0). 2(p2
◦ − p1

◦) > −4p1
◦

follows from p2
◦ > 0 after inserting (8.13). The last remaining condition, 2(p3

◦− p2
◦) > −4p1

◦,
gives (

√
2− 1)p3

◦ > p2
◦.

Summarizing, the conditions on pa◦ (at each spatial point) are

p3
◦ > 0 , 0 < p2

◦ < (
√

2− 1)p3
◦ and p1

◦ = − p2
◦p

3
◦

p2
◦ + p3

◦
. (8.14)

The remaining free parameters are the six functions of the space coordinates P i
◦ a and βa◦ .

8.3 Constraints

In addition to the evolution equations, the constraints (5.2) and (5.3) also have to be
fulfilled. The asymptotic Hamiltonian constraint was already included in the conditions
discussed in the last section. We start by considering the asymptotic momentum constraints
and then show that the full constraints are satisfied if the asymptotic ones are.

Inserting the ansatz (8.1) (with N◦ = 1) into the asymptotic momentum constraint
(7.11) gives

1

2

∑
b

b>a

P b
◦ a,b −

(
Gacp

c
◦,a + βd◦,ap

f
◦Gdf

)
= 0 ∀a , (8.15)

(all terms containing C a
[0] bc vanish).

This is equivalent to

β1
◦,3 = −(p2

◦ + p3
◦)
−1(p2

◦,3 + p1
◦,3 + β2

◦,3(p1
◦ + p3

◦) + β3
◦,3(p1

◦ + p2
◦)) ,

P 3
◦ 2,3 = 2

(
G2cp

c
◦,2 + βd◦,2p

f
◦Gdf

)
,

P 3
◦ 1,3 = −P 2

◦ 1,2 + 2
(
G1cp

c
◦,1 + βd◦,1p

f
◦Gdf

)
. (8.16)
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Given any functions β2
◦ , β

3
◦ , P

2
◦ 1 and p1

◦, p
2
◦, p

3
◦ fulfilling (8.14) one can determine β1

◦ , P
3
◦ 2

and P 3
◦ 1 from (8.16), obtaining thus a solution of the asymptotic constraint equations.

The full constraints are fulfilled if the asympotic ones are, following the arguments
of section 7.3. The condition that the (modified) evolution equations for the constraints
(7.14) are of Fuchsian form requires that the subdominant gravitational wall conditions
are satisfied, which is the case here (see (8.9)). To ensure the full momentum constraints
converge to the asymptotic ones the symmetry wall conditions have to be fulfilled, which
is also the case. Finally, the Hamiltonian converges to the asymptotic Hamiltonian if
all terms after the first one in (4.6) vanish asymptotically. For the terms coming from
the symmetry and subdominant gravitational walls this is ensured by the decay of the
exponential terms, as for the general ansatz. For the dominant gravitational wall terms it
follows from the decay of the coefficients, which contain spatial derivatives of N a

i , and the
resulting inequalities (8.11e).

8.4 Remaining coordinate freedom

We wish, now, to analyse how the ansatz (8.1), with the choice N◦ = 1, constrains the
remaining coordinate freedom.

In [12] it is asserted that transformations mixing time and space coordinates are
prohibited by the choice of lapse and shift and the assumption that the singularity is
approached as τ →∞. Presumably this should follow from the resulting equations

gij
∂xi

∂τ̃

∂xj

∂yk
= det g

∂τ

∂τ̃

∂τ

∂yk
, (8.17)

−det g

(
∂τ

∂τ̃

)2

+ gij
∂xi

∂τ̃

∂xj

∂τ̃
= −det

(
−det g

(
∂τ

∂yk

)2

δkl + gij
∂xi

∂yk
∂xj

∂yl

)
, (8.18)

(assuming a transformation τ, xi → τ̃(τ, xj), yi(τ, xj)). However, the assertion is not clear.
An attempt was made to construct a Fuchsian system by starting from the transforma-

tion law of the Christoffels. Defining

Aαβ :=
∂yα

∂xβ
,

and writing the transformation in terms of it gives

∂Aαβ
∂xγ

= AδγA
ε
βΓ̃αδε −AαδΓδγβ . (8.19)

We split Aαβ into Aαβ = A◦
α
β + δAαβ with the assumptions A◦

0
β = A◦

α
0 = 0, A◦

a
b =

A◦
a
b(x

i) and A◦
0

0 = A◦
0

0(τ). Inserting this into the γ = 0 equation of (8.19) gives

∂τδA
α
β = −δατ δτβ∂τA◦τ τ + (δAδτ Γ̃αδε +A◦

τ
τ Γ̃iτε)(A◦

ε
β + δAεβ)− (A◦

α
δ + δAαδ)Γ

δ
τβ .

(8.20)
This system is unfortunately not of Fuchsian form, as many of the Γαβγ diverge as τ →∞
(see appendix E).

Assuming nevertheless a transformation of the form

(τ, xi)→ (τ̃(τ, xi), yi(xj)) ,
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and inserting into (8.17) gives ∂τ/∂yk = 0 and therefore τ̃ = τ̃(τ). (8.18) then leads to(
∂τ

∂τ̃

)2

= det

(
∂xi

∂yj

)2

,

which implies that the Jacobi determinant of the spatial transformation is constant (in
space and time) and that τ̃ is an affine function of τ .

g̃kl =
∑
a

e−2βaN a
iN a

j

∂xi

∂yk
∂xj

∂yl
=
∑
a

e−2β̃aÑ a
k Ñ a

l . (8.21)

For g̃11 this gives

g̃11 = e−2β1

(
∂x1

∂y1

)2

+O(X) = e−2β̃1
, (8.22)

with O(X) = O(exp(−(2p1
◦ + γ)τ)) denoting higher order terms (2p1

◦ + γ is positive by
(8.11d)). Assuming ∂xi/∂yi 6= 0, which is necessary to preserve the conditions p3

◦ > p2
◦ > p1

◦
(8.11a), this implies β̃1 = β1 − log(∂x1/ ∂y1).

The equation for g̃12 is

g̃12 = e−2β1 ∂x1

∂y1

∂x1

∂y2
+O(X) = e−2β̃1Ñ 1

2 . (8.23)

Inserting exp(−2β̃1) from (8.22) yields

Ñ 1
2 =

∂x1/ ∂y2

∂x1/ ∂y1
+O(X) . (8.24)

Requiring Ñ a
i = δai +O(exp(−γ̃τ)) we obtain the condition ∂x1/∂y2 = 0. Similarly, from

the g̃13 equation of (8.21), we get

Ñ 1
3 =

∂x1/ ∂y3

∂x1/ ∂y1
+O(X) , (8.25)

and therefore ∂x1/ ∂y3 = 0.
Using these conditions on x1, the g̃22 equation becomes

g̃22 = e−2β2

(
∂x2

∂y2

)2

+O(X̃) = e−2β̃2
+ (Ñ 1

2 )2e−2β̃1
, (8.26)

where O(X̃) = O(exp(−(2p2
◦ + γ23)τ)) (γ23 > 0 is defined in Appendix E) denotes higher

order terms and therefore β̃2 = β2 − log(∂x2/ ∂y2).
The g̃23 equation is

g̃23 = e−2β2 ∂x2

∂y2

∂x2

∂y3
+O(X̃) = Ñ 1

2 Ñ 1
3 e
−2β̃1︸ ︷︷ ︸

=O(X̃)

+Ñ 2
3 e
−2β̃2

(8.27)

and yields

Ñ 2
3 =

∂x2/ ∂y3

∂x2/ ∂y2
+O(X) (8.28)

22



8 A NEW CLASS OF ASYMPTOTICALLY NON-CHAOTIC SOLUTIONS

which implies ∂x2/ ∂y3 = 0.
The conditions on the coordinate transformation are now

x1 = x1(y1) ,

x2 = x2(y1, y2) ,

x3 = x3(y1, y2, y3) .

(8.29)

Under such a coordinate change the asymptotic functions N a
◦ i , p

a
◦ and βa◦ transform as

Ñ a
◦ i = N a

◦ i = δai , p̃a◦ = pa◦ , β̃a◦ = βa◦ − log

(
∂xa

∂ya

)
. (8.30)

As the pa◦ remain unchanged, the conditions (8.14) are unaffected. Therefore γ can be
chosen to have the same value in the new coordinates, i.e. γ̃ = γ.

The transformations (8.30) reduce the possible isometries of the constructed solutions:
Spatial isometries would have to be of the form (8.29) as otherwise the asymptotic
evolutions would not match (a Ñ◦ 6= 1 would not give an asymptotically diagonal metric
and transformations which exchange the order of the βa would change the asymptotics of the
diagonal terms). As p2

◦ and p3
◦ are only constrained by the inequalities 0 < p2

◦ < (
√

2− 1)p3
◦

but otherwise free functions of all space coordinates, which are not influenced by coordinate
transformations of this form, we have the following proposition:

Proposition 8.1. For a generic choice of the asymptotic functions p2
◦ and p3

◦, the corre-
sponding solutions have no (continuous or discrete) isometries φ : M → M of the form
τ(φ(q)) = τ(q), ∀q ∈M , i.e. involving only the spatial coordinates.

8.5 Killing vectors

In this section we wish to investigate continuous symmetries of the constructed solutions.
This requires an analysis of the Killing equations:

LXgµν = Xσ∂σgµν + ∂µX
σgσν + ∂νX

σgσµ . (8.31)

From the results above there exist numbers γ > 0 and ν > 0 so that

βa = pa◦τ + βa◦ +O(e−ντ ) , N a
i = δai +O(e−(γ+ν)τ ) . (8.32)

Setting
σp◦ = p1

◦ + p2
◦ + p3

◦ > 0 , σβ◦ = β1
◦ + β2

◦ + β3
◦ , (8.33)

the leading order behaviour of the metric components, and those of its inverse, is

g00 = −e−2σp◦τ−2σβ◦ (1 +O(e−2ντ )) , g00 = −e2σp◦τ+2σβ◦ (1 +O(e−2ντ )) ,

g0i ≡ 0 , g0i ≡ 0 ,

gii = e−2pi◦τ−2βi◦(1 +O(e−2ντ )) , gii = e2pi◦τ−2βi◦(1 +O(e−2ντ )) ,

g12 = O(e(−2p1◦−γ12−ν)τ )→ 0 , g12 = O(e(2p2◦−γ12−ν)τ )→ 0 ,

g13 = O(e(−2p1◦−γ13−ν)τ )→ 0 , g13 = O(e(2p3◦−γ13−ν)τ )→ 0 ,

g23 = O(e(−2p2◦−γ23−ν)τ )→ 0 , g23 = O(e(2p3◦−γ23−ν)τ ) ,
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where the γij are defined using the modified ansatz described in appendix E and with the
behaviour above preserved under differentiation in the obvious way. We will seek Killing
vectors of the form X = Xτ∂τ +Xi∂i, with

Xτ = O(e−ντ ) , (8.34)

and we will assume that the behaviour above is also preserved under differentiation. This
ansatz is more general than the assumption of purely spatial isometries in the previous
section, which would imply Xτ = 0. It does, however, only include isometries which can
be described by Killing vectors, i.e. continuous but not discrete ones.

The τi killing equation states

LXgτi = ∂τX
jgji + ∂iX

τgττ = 0.

Contracting with gik gives

∂τX
k = −gikgττ∂iXτ = O(e−

( >0︷ ︸︸ ︷
2p2
◦ − 2p1

◦+ν
)
τ ) = O(e−ντ ) ,

i.e. the τ derivative of the spatial components of the Killing field decay exponentially.
Considering the ττ component of the Killing equation gives

LXgττ = Xi∂igττ +Xτ∂τgττ + 2gττ∂τX
τ

= 2e−2σp◦τ−2σβ◦

[ (
1 +O(e−ντ )

)
Xi∂i (σp◦τ + σβ◦) + σp◦X

τ − ∂τXτ︸ ︷︷ ︸
=O(e−ντ )

]
. (8.35)

The term of order one inside the bracket is non-zero for large times unless

Xi
◦∂iσp◦ = 0 and Xi

◦∂iσβ◦ = 0 . (8.36)

The ii component of the Killing equation gives

LXgii =Xk∂kgii +Xτ∂τgii + 2∂iX
kgki =

e−2(pi◦τ+βi◦)(1 +O(e−ντ ))

[
− 2Xk

◦ ∂k(p
i
◦τ + βi◦)− 2Xτpi◦︸ ︷︷ ︸

=O(e−ντ )

]
+ 2∂iX

i
◦O(e−2(pi◦τ+βi◦)) ,

(8.37)

which is certainly non-zero unless the highest order term, containing pi◦τ , vanishes. This
requires

Xk
◦ ∂kp

i
◦ = 0 . (8.38)

There are no solutions Xµ fulfilling these conditions in general: The second equation of
(8.36) and (8.38) can be combined into AikX

k = 0, with A containing the derivatives of p2
◦,

p3
◦ and σβ◦ . If the determinant of A is non-zero the only solution is Xk

◦ = 0. If this holds
in the neighbourhood of a point, the Killing vector vanishes everywhere. We conclude that
our solutions will not have any Killing vectors of the form (8.34) in general.

Proposition 8.2. For a generic choice of the asymptotic functions p2
◦, p

3
◦ and βa◦ the

corresponding solutions contain no Killing vectors X = Xτ∂τ + Xi∂i satisfying Xτ =
O(e−ντ ) for any ν > 0.
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Considering now a general Killing vector field Xµ, satisfying

∇µXν +∇νXµ = 0 , (8.39)

we start with the expression ∇τ∇αXβ. Using the definition of the Riemann tensor we
obtain

∇τ∇αXβ = gβγ∇τ∇αXγ = ∇α∇τXγ +RβγταX
α .

Using the antisymmetry of the Riemann tensor and the first Bianchi identity gives

∇τ∇αXβ = ∇α∇τXγ −RγβταXγ = ∇α∇τXγ + (Rγταβ +Rγαβτ )Xγ .

Applying (8.39) and using the definition of the Riemann tensor again leads to

∇τ∇αXβ = RγταβX
γ −∇α∇βXτ

RγαβτX
γ︷ ︸︸ ︷

−∇β∇τXα +∇τ∇βXα

= RγταβX
γ −∇α∇βXτ +∇β∇αXτ −∇τ∇αXβ

= 2RγταβX
γ −∇τ∇αXβ ,

and therefore

∇τ∇αXβ = RγταβX
γ .

Introducing

Fαβ =
1

2
(∇αXβ −∇βXα) = ∇αXβ ,

we thus have the following system of equations for the pair (X,F ) if X is a Killing vector:{
∇τXσ = gλσFτσ ,

∇τFαβ = RλταβX
λ .

(8.40)

This has the general structure of a Fuchsian system, but does not fulfil the conditions given
in section 6, as we will now show. The asymptotic behaviour of the Γαβγ , which appear
in the covariant derivatives, and of the components of the Riemann tensor are given in
appendix E. The equation for X2 is

∂τX
2 = g2λF0λ − Γ2

0λX
λ . (8.41)

The first term on the right-hand side contains g22F02 = O(exp(2p2
◦τ))F02 which diverges

as τ →∞. This can be compensated by defining a new variable F̄02 = exp(2p2
◦)F02 which

turns it into a term of order 1. However the new equation for F̄02 is then given by

∂τ F̄02 = 2p2
◦F̄02 + e2p2◦τ

(
Rλ002X

λ + Γλ00Fλ2 + Γλ02F0λ

)
, (8.42)

with the curvature term containing exp(2p2
◦τ)R2002X

2. As the R2002 component of the
Riemann tensor is of orderO(τ exp(−2p2τ)), this expression isO(τ), violating the conditions
of the Fuchs theorem. Redefining X2 cannot change this, as any change would also affect
the X2 equation (8.41) requiring a further redefinition of F̄02.
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8.6 Relationship with previously known solutions

The first class of vacuum spacetimes for which asymptotically simple behaviour was shown
was the polarized Gowdy class [21, 22]. This is a class of solutions containing two commuting
spacelike Killing vector fields (the polarization condition) with constant t hypersurfaces
which are compact without boundary and orientable (the Gowdy condition). The topology
of spacelike slices of these spacetimes is constrained to one of T 3, S2 × S1, S3 or a Lens
space L(p, q). In the following only the T 3 case will be considered. The metric for this
case is given by

ds2 = eλ/2t−1/2(−dt2 + dx2) + t(e−Zdy2 + eZdz2) , (8.43)

where λ and Z are functions of t and x which are 2π periodic in x [23].
Redefining the t coordinate as t = e−τ transforms the metric to

ds2 = −eλ/2−3/2τdτ2 + eλ/2+τ/2dx2 + e−τ−Zdy2 + e−τ+Zdz2 ,

which is directly in the form used here: The shift vanishes and the lapse eλ/2−3/2τ is equal
to the determinant of the spatial part of the metric. Comparing with (9.1) shows

e−2β1
= eλ/2+τ/2 ⇒ β1 = −λ+ τ

4
,

e−2β2
= e−τ−Z ⇒ β2 =

τ + Z

2
,

e−2β3
= e−τ+Z ⇒ β3 =

τ − Z
2

,

N 1
2 = N 2

3 = N 1
3 = 0 .

The results of Chruściel, Isenberg and Moncrief show that solutions of this form are
parametrised by two functions of the x coordinate, π and ω, appearing in the asymptotic
expansion of λ and Z [21]. The expansion is

Z = (2π(x) + 1)τ + ω +O(τe−τ ) ,

λ = (−4π(x)2 − 4π(x)− 1)τ + 4(α+ a0(π, ω)(x)− ω(x)) +O(τe−τ ) ,

where α is a constant and a0 a function of x which can be determined from π and ω. This
gives for the pa◦

p1
◦ =

1

4
(π2 − 1) , p2

◦ =
1

2
(1− π) , p3

◦ =
1

2
(1 + π) . (8.44)

These satisfy the asymptotic Hamiltonian constraint (7.8) but not necessarily the
inequalities (8.14). These would imply

√
2− 1 < π < 1 but there are solutions of the form

(8.43) for any function π. The assumption that the metric coefficients only depend on
the x space coordinate and N a

i ≡ 1 causes some of the potential walls to vanish: The
coefficients of the dominant gravitational walls are proportional to N a

i,j and therefore

vanish identically. For N a
i to be constant, P ia has to vanish, which causes the symmetry

walls to vanish. The coefficients of the subdominant gravitational walls (4.5) contain terms
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8 A NEW CLASS OF ASYMPTOTICALLY NON-CHAOTIC SOLUTIONS

which are not proportional to N a
i,j . These do, however, contain spatial derivatives of the

β, most of which are zero here. As β only depends on t and x, only one of the walls, with
linear form µ1(β) = β2 + β3, remains. Therefore, assuming that the metric coefficients
depend only upon x1 and that N a

i ≡ 1, the only conditions left in (8.14) are

p1
◦ = − p2

◦p
3
◦

p2
◦ + p3

◦
and p2

◦ + p3
◦ > 0 . (8.45)

These conditions are satisfied by (8.44) which implies p2
◦ + p3

◦ = 1 and p1
◦ = −p2

◦p
3
◦.

(One should note that not every solution satisfying (8.45) is of polarized Gowdy type,
as p2

◦ and p3
◦ can still be independently specified.)

More general (non-Gowdy) T 2 symmetric spacetimes have also been shown to exhibit
simple asymptotic behaviour. These take the general form

ds2 = e2(η−U)(−αdt2 + dx2) + e2U (dy +Adz + (G1 +AG2)dx)2 + e−2U t2(dz +G2dx)2 ,

with η, U , α, A, G1 and G2 depending only on t and x [26]. To obtain simple behaviour
either polarization, corresponding to A = const, or half-polarization, corresponding to a
restriction on the asymptotic behaviour of A, has to be assumed. In both cases the resulting
spacetimes are not contained in the class constructed here. The functions G1 and G2 tend
to constant (in t) functions of x, but they appear in the N a

i in the Iwasawa decomposition.
This conflicts with the assumption N → 1 (or→ const) made in constructing the new class.
In this sense the new class is therefore more restricted than the polarized and half-polarized
T 2 classes. However it includes free functions depending on all space coordinates, not just
one.

The Killing vectors of these T 2 spacetimes are of the form considered in section 8.5,
as they do not include derivatives with respect to t. These are therefore in general not
present in the class of solutions constructed here.
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9 CONCLUSION

9 Conclusion

We have constructed a new class of four-dimensional (analytic) solutions to the vacuum
Einstein equations which show asymptotically simple behaviour near a spacelike singularity,
approached as τ →∞. The metric takes the form

ds2 = −e−2
∑
a β

a
dτ2 +

∑
a

e−2βaN a
iN a

j dxidxj , (9.1)

with βa and N a
i depending on all coordinates τ , xi and behaving asymptotically as

βa = βa◦ + τpa◦ +O(e−ντ ) and N a
i = δai +O(e−(γ+ν)τ ) , (9.2)

where γ and ν are positive constants.
The class of solutions includes three completely free functions of all space coordinates,

β2
◦ , β

3
◦ , P

3
◦ 1 (P 3

◦ 1 does not appear in (9.1) and (9.2) but influences the exponentially
decaying terms) and two functions, p2

◦ and p3
◦, also depending on all space coordinates,

which are constrained by the inequalities

p3
◦ > 0 , 0 < p2

◦ < (
√

2− 1)p3
◦ .

The gauge conditions chosen constrain the coordinate freedom, allowing only a limited
class of space coordinate transformation, describable by one function of all three space
coordinates, one of two coordinates and one of a single coordinate.

For a generic choice of the free functions, the solutions have no continuous or discrete
spatial isometries, and no continuous isometries described by Killing vectors Xµ∂µ satisfying
Xτ = O(e−ετ ), ε > 0.
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A Derivation of Iwasawa variable Hamiltonian

Here we will give the derivation of the Hamiltonian density in Iwasawa form (4.6), from
the standard form of the Hamiltonian (3.1).

In the following the spatial metric and its inverse will be used in their Iwasawa forms
gij =

∑
a e
−2βaN a

iN a
j and gij =

∑
a e

2βa(N−1)ia(N−1)ja.

A.1 Kinetic and symmetry wall terms

The kinetic term K and the symmetry wall term come from the first two terms in the
Hamiltonian (3.1). These are

πijπij −
1

2
πiiπ

j
j . (A.1)

The conjugate momenta in Iwasawa variables, πa and P ia , can be expressed in terms of
πij as

πa =
∂L
∂β̇a

=
∂L
∂ġij︸︷︷︸
=πij

∂ġij

∂β̇a
= −2e−2βaN a

iN a
j π

ij , (A.2)

and
P ia = 2πije−2βaN a

j . (A.3)

We start by considering the first term in (A.1), πijπij . Lowering an index in the first
component and raising one in the second (using the Iwasawa form (??) of the metric) gives∑

a,b

e−2βbN b
jN b

l π
l
i e

2βa(N−1)ia(N−1)kaπ
j
k =

∑
a,b

e2(βa−βb)(πjkN
b
j (N−1)ka)

2 .

The double sum can be split into a diagonal and off-diagonal part∑
a

(πjkN
a
j (N−1)ka)

2 +
∑
a6=b

e2(βa−βb)(πjkN
b
j (N−1)ka)

2 . (A.4)

Raising the index k on πjk in the first, diagonal, part leads to

∑
a

(∑
b

πjle−2βbN b
kN b

lN a
j (N−1)ka

)2

=
∑
a

(
e−2βaπjlN a

lN a
j

)2
=

1

4

∑
a

π2
a ,

where in the last step the definition of πa, (A.2), was used. This, together with the second
part of (A.1), gives

1

4

∑
a

π2
a −

1

2
(gijπ

ij)2 =
1

4

(∑
a

π2
a −

1

2
(2gijπ

ij)2

)

=
1

4

(∑
a

π2
a −

1

2
(2
∑
a

e−2βaN a
iN a

j π
ij)

)

=
1

4

(∑
a

π2
a −

1

2
(
∑
a

πa)
2

)
=

1

4
Gµνπµπν ,
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which is the kinetic part K of the Hamiltonian (3.2).
Raising the index k in πjk in the second, off-diagonal, part of (A.4) gives∑

b6=a
e2(βa−βb)(πjle−2βaN a

lN b
j )2 =

∑
b6=a

e−2(βa+βb)(πjlN a
lN b

j )2 .

This is symmetric in a and b and can be written as

2
∑
a<b

e2(βa−βb)(πjle−2βaN a
lN b

j )2 =
1

2

∑
a<b

e−2(βb−βa)(P jaN b
j )2 = Vs ,

which is the potential term coming from the symmetry walls.

A.2 Gravitational wall term

The gravitational wall term comes from the term −gR in the Hamiltonian (3.1).
We will calculate the curvature scalar in the Iwasawa frame. The Cartan formulas for

the connection one-form ωab are

dθa +
∑
b

ωab ∧ θb = 0 , (A.5)

dγab = ωab + ωba , (A.6)

where
γab = δab exp(−2βa) = δabA

2
a ,

with Aa := exp(−βa), is the metric in the Iwasawa frame. We will also use the definition
of the structure functions

dθa = −1

2
Cabcθ

b ∧ θc . (A.7)

ωab can be obtained by considering the expression (no summation)

A2
bdθ

b(ej , ea) +A2
jdθ

j(eb, ea)−A2
adθ

a(ej , eb) . (A.8)

Using (A.7) this is equal to

−A2
bC

b
ja −A2

jC
j
ba +A2

aC
a
jb . (A.9)

Starting again from (A.8) but using (A.5) gives

A2
b

(
ωbj (ea)− ωba(ej)

)
+A2

j

(
ωjb(ea)− ω

j
a(eb)

)
−A2

a

(
ωaj (eb)− ωab(ej)

)
.

Lowering the upper index on ω with γab and using (A.6) in the form ωab(ec) = −ωba(ec) +
δab(A

2
a),c (with , c denoting the frame derivative by ec) we obtain

δjb(A
2
j ),a + 2ωab(ej)− δab(A2

a),j − δaj(A2
a),b . (A.10)

Setting (A.9) equal to (A.10) and raising one index using γab = δabA−2
a gives ωab as

ωab(ej) =
1

2A2
a

(
A2
bC

b
aj +A2

jC
j
ab +A2

aC
a
jb + δab(A

2
a),j + δaj(A

2
a),b − δjb(A2

j ),a

)
.

(A.11)

30
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The curvature scalar can now be computed using

Ωa
b = dωab +

∑
c

ωac ∧ ωcb

=
1

2

∑
e,f

Rabefθ
e ∧ θf ,

(A.12)

as

R =
∑
a,b,c

γbcRacab =
1

2

∑
e,f,a,b

A−2
b Rabef (θe ∧ θf )(ea, eb)

=
∑
a,b

A−2
b Ωa

b(ea, eb) .
(A.13)

We start by calculating
∑

a,bA
−2
b dωab (ea, eb). This gives (with summation over all indices

which occur more than once)

A−2
b dωab (ea, eb) = A−2

b [ea(ω
a
b(eb))− eb(ωab(ea))− Ccabωab(ec)]

= A−2
b

[
− (A2

a),a
2A4

a

(
2A2

bC
b
ab + 2δab(A

2
b),b − (A2

b),a

)
+

1

2A2
a

(
2(A2

b),aC
b
ab + 2δab(A

2
b),b,b − (A2

b),a,a + 2A2
bC

b
ab,a

)
+

(A2
a),b

2A4
a

(
2A2

aC
a
ab + (A2

a),b
)
− 1

2A2
a

(
2(A2

a),bC
a
ab + (A2

a),b,b + 2A2
aC

a
ab,b

)
−
Ccab
2A2

a

(
A2
bC

b
ac +A2

cC
c
ab +A2

aC
a
cb + δab(A

2
b),c + δac(A

2
a),bδcb(A

2
b),a

)]
= −Cbab

(A2
a),a
A4
a

−
(A2

b),b(A
2
b),b

A6
b

+
(A2

b),a(A
2
a),a

2A4
aA

2
b

+ 2Cbab
(A2

b),a
A2
aA

2
b

+
(A2

b),b,b
A4
b

−
(A2

b),a,a
A2
aA

2
b

+ 2
Cbab,a
A2
a

+
(A2

a),b(A
2
a),b

2A4
aA

2
b

−
CcabC

b
ac

A2
a

− (Ccab )
2 A2

c

2A2
aA

2
b

− Ccbb
(A2),c
2A4

b

.

The second term,
∑

a,b,cA
−2
b (ωac ∧ ωcb)(ea, eb), gives (again with all sums implied)

A−2
b

(
ωac(ea)ω

c
b(eb)− ωac(eb)ωcb(ea)

)
=

1

4A2
b

[
+

(
2Caac +

(A2
a),c
A2
a

)(
2Cbcb

A2
b

A2
c

+
2δcb(A

2
b),b

A2
b

−
(A2

b),c
A2
c

)
−
(
Cbac

A2
b

A2
a

+ Ccab
A2
c

A2
a

− Cacb +
δac(A

2
a),b

A2
a

+
δab(A

2
b),c

A2
b

−
δcb(A

2
b),a

A2
a

)
·
(
Cacb

A2
a

A2
c

+ Cbca
A2
b

A2
c

− Ccba +
δcb(A

2
b),a

A2
b

+
δca(A

2
a),b

A2
a

−
δba(A

2
b),c

A2
c

)]
= CaacC

b
cb

1

A2
c

+ Caab
(A2

b),b
A4
b

+
(A2

a),b(A
2
b),b

2A2
aA

4
b

−
(A2

a),c(A
2
b),c

4A2
aA

2
bA

2
c

+ (Cacb )
2 A2

a

4A2
cA

2
b

+CacbC
b
ca

1

2A2
c

−
(A2

b),b(A
2
b),b

2A6
b

+
(A2

b),a(A
2
b),a

4A2
aA

4
b

+ Caca
(A2

b),c
A2
cA

2
b

− Cbab
(A2

b),a
A2
bA

2
a

.
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Adding the two expressions and substituting (A2
a),b = −2A2

aβ
a
,b we obtain the curvature

scalar

R = −1

4

∑
a,b,c

(Cacb )
2 A2

a

A2
cA

2
b

+
∑
a

{
− 2

(βa,a)
2

A2
a

− 2
βa,a,a
A2
a

+
∑
b

[
− 4Caab

βb,b
A2
b

+ 4
βa,bβ

b
,b

A2
b

−2Cbab
βb,a
A2
a

−
(βb,a)

2

A2
a

+ 2
βb,a,a
A2
a

+ 2
Cbab,a
A2
a

+ Cabb
βb,a
A2
b

+
∑
c

(
1

A2
c

CaacC
b
cb −

βa,cβ
b
,c

A2
c

− 1

2A2
c

CacbC
b
ca − 2Caca

βb,c
A2
c

)]}
.

(A.14)

Multiplying this with −g = − exp(−2
∑

a β
a) gives the gravitational wall terms (4.3)

and (4.4) in the Iwasawa variable Hamiltonian.

B Iwasawa evolution equations and Einstein equations

To obtain the evolution equations (5.1) the variation was taken after choosing lapse N
and shift Na with the lapse given as

√
det g, i.e. dependent on the metric, and the shift

vanishing.
The general Hamiltonian density, with lapse and shift still free, is

H =
√

det g

{
N

[
−R+ (det g)−1πijπij −

1

2
(det g)−1(πii)

2

]
− 2Nj [∇i((det g)−1/2πij)] + 2∇i((det g)−1/2Njπ

ij)

}
,

(B.1)

(Equation (E.2.32) in Wald [32]).
Taking the variation of the Hamiltonian H̄ =

∫
Hd3x with regards to N and Na gives

the Hamiltonian and momentum constraints, respectively:

δH̄

δN
= −R+ (det g)−1πijπij −

1

2
(det g)−1(πii)

2 , (B.2)

δH̄

δNi
= ∇j((det g)−1/2πji) = ∇jπji . (B.3)

Varying now with respect to πij and gij gives the Einstein equations in Hamiltonian
form as

ġij =
δH̄

δπij
= 2(det g)−1/2N

(
πij −

1

2
gijπ

k
k

)
+ 2∇(iNj) , (B.4)

π̇ij = − δH̄
δgij

=−N
√

det g

(
Rij − 1

2
Ngij

)
+

1

2
N(det g)−1/2gij

(
πklπ

kl − 1

2
(πkk)2

)
(B.5)

− 2N(det g)−1/2

(
πacπ

b
c −

1

2
πkkπ

ij

)
−
√

det g(∇i∇jN − gij∇k∇kN)

+∇k(Nkπij)− 2πk(i∇cN j) ,
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(Equations (E.2.35) and (E.2.36) in Wald [32]).

Choosing Na = 0, either before or after varying, just removes the terms containing Na

in the evolution equations. Choosing N =
√

det g before varying adds an additional term
in (B.5). This term is, however, proportional to −R + (det g)−1πijπij − 1

2(det g)−1(πii)
2

which is zero, by the Hamiltonian constraint (B.2).

The terms in (B.5) which contain covariant derivatives of the lapse also vanish, as the
determinant of the metric is covariantly constant.

The transformation to Iwasawa variables is a point canonical transformation and
therefore doesn’t change the equations.

C Derivation of Iwasawa Variable momentum constraints

In this section we will give the derivation of the momentum constraints in Iwasawa variables
and the definition of their asymptotic equivalent, following section 3.2 of [31].

C.1 Full momentum constraints

We start with the momentum constraints in the form

∇iπij = 0 (C.1)

(see e.g. equation (E.2.34) in Wald [32]).

The calculation is simpler when done in the Iwasawa frame (2.2), so we first calculate
the Iwasawa frame components of πij , in terms of the Iwasawa variable conjugate momenta
P ia and πa. These are denoted by π̃ab and defined as

π̃ab := π(θa, θb) = πij(θa)i(θ
b)j = πijN a

iN b
j .

Starting from ġijπ
ij = β̇aπa + Ṅ a

i P
i
a and writing the left side in Iwasawa variables

gives ∑
a

2e−2βa
(
Ṅ a

i (N−1)icπ̃
ca − β̇aπ̃aa

)
= β̇aπa + Ṅ a

i P
i
a . (C.2)

Using the diagonal form of the metric in the Iwasawa frame, γab = exp(−2βa)δab, we obtain

π̃aa = −1

2
πa (no summation), (C.3)

(N−1)icπ̃
c
a =

1

2
P ia for i > a , (C.4)

by comparison. This can be written as a matrix equation

(N−1)ic (+)π̃
c
a =

1

2
P ia [−] +Xi

a (+) (C.5)

(for all i and a) where the subscript (+)/(−) designates an upper/lower triangular matrix
and [+]/[−] a strictly upper/lower triangular one. The matrix Xi

a(+) is defined by this
equation.
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Multiplying (C.5) by N b
i = N b

i (+) gives

π̃ba =
1

2
N b

i (+) P
i
a [−] +N b

i (+)X
i
a(+) .

The strictly lower triangular part of π̃ba, π̃ba [−], is given explicitly by

π̃ba [−] =
1

2
N b

i (+) P
i
a [−] θ(b− a) with θ(x) :=

{
0 if x ≤ 0 ,

1 if x > 0 .

Because of the symmetry of π̃ab this also gives the upper triangular part via

π̃ba [+] =θ(a− b)e−2βa π̃ba = θ(a− b)e−2βa π̃ab

=e−2(βa−βb)π̃abθ(a− b) = e−2(βa−βb)π̃ab [−] .

Finally, also including the diagonal term from (C.3), we arrive at

π̃ba =
1

2


−πb for a = b ,

N b
i P

i
a for b > a ,

e−2(βa−βb)N a
i P

i
b for a > b .

(C.6)

Writing the momentum constraint (C.1) in the Iwasawa frame and expanding the
covariant derivative gives

∇bπ̃ba = π̃ba,b + Γbdbπ̃
d
a − Γdabπ̃

b
d − Γccbπ̃

b
a , (C.7)

where the last term comes from the fact that π̃ba is a tensor density of weight 1 and Γabc
are the connection coefficients in the Iwasawa frame, given by

Γabc =
1

2

∑
σ

gaσ(gσc,b + gbσ,c − gbc,σ − Cσbc + Cbσc + Ccσb)

=
1

2
e2βa

(
δac(e

−2βa),b + δab(e
−2βa),c − δbc(e−2βb),a

− e−2βaCabc + e−2βbCbac + e−2βcCcab
)
,

(C.8)

(no implicit summation) with the comma denoting the derivative in the Iwasawa frame.

Inserting (C.8) into (C.7) gives

∇bπ̃ba = π̃ba,b + Cccb π̃
b
a + Cbac π̃

c
b −

1

2
βb,aπb , (C.9)

which is the momentum constraint (5.3).
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C.2 Asymptotic momentum constraints

The asymptotic momentum constraints are obtained from the full ones by discarding the
contribution of the strictly upper triangular part of π̃ba: Indeed, this part (the last line
of (C.6)) contains exponential terms which vanish asymptotically if the symmetry wall
conditions are fulfilled.

Splitting π̃ba into π̃ba = π̃ba [+] + π̃ba [−] − δ
a
bπa/2, discarding π̃ba [+] and inserting into

(C.9) gives

∇bπ̃ba
τ→∞−−−→ π̃ba[−],b −

1

2
πa,a + Cccb π̃

b
a[−] + Cbac π̃

c
b[−]

− 1

2
Cccaπa −

1

2
Cbabπb −

1

2
βb,aπb ,

which is the asymptotic momentum constraint (7.11).
Inserting the ansatz (8.1) (which implies Cabc = 0 asymptotically) and the asymptotic

evolution of the βa, βa[0] = pa◦τ + βa◦ gives

∇bπ̃ba
τ→∞−−−→

∑
b

π̃ b
[0] a[−],b −

1

2
π[0]a,a −

1

2

∑
b

β b
[0] ,aπ[0]b

=
∑
b>a
i

1

2
N b
◦ i P

i
◦ a,b −

∑
b

Gabp
b
◦,a −

∑
b,c

(βb◦,a + τpb◦,a)Gbcp
c
◦ .

The last term, which contains a time dependence, is zero if the asymptotic Hamiltonian
constraint Gbcp

b
◦p
c
◦ = 0 is fulfilled. Expressing the Iwasawa frame derivative in terms of

the coordinate derivative ∂i leads to

∇bπ̃ba
τ→∞−−−→ 1

2

∑
b>a
i,j

N b
◦ i (N −1

◦ )jb∂jP
i
◦ a −

∑
j

(N −1
◦ )ja

∑
c

Gac∂jp
c
◦ +

∑
d,f

Gdfp
f
◦∂jβ

d
◦

 ,

which is (8.15) with arbitrary (constant) N a
◦ i .

D Evolution equations for the constraints

Here we will give the derivation of the evolution equations for the constraints in our choice
of gauge. Our treatment is similar to, but not identical with appendix A of [31].

The first order action corresponding to the Einstein equations is given by

S[gij , π
ij , Ñ , N i] =

∫
dx0ddx(ġijπ

ij − ÑH −N iHi) , (D.1)

with Ñ the “rescaled lapse” defined as Ñ = N/
√
g and N i the shift vector. In our choice

of gauge Ñ = 1 and N i = 0. From (D.1) the equations of motions, the Hamiltonian
constraints and the momentum constraints can be obtained by varying with respect to gij ,
Ñ and N i respectively.
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We will compare the resulting equations with those coming from variation of the
standard Einstein-Hilbert action SH =

∫
dDx
√
−ḡR̄, which is (neglecting boundary terms)

δSH =

∫
dDx
√
−ḡḠµνδgµν , (D.2)

with Ḡ denoting the Einstein tensor.

As the spacetime metric ḡµν is defined, in terms of Ñ , Ni and gij , as

(ḡµν) =

(
NkN

k − Ñ2g Nj

Ni gij

)
,

the variation of SH with respect to gij , Ñ and Ni following from (D.2) is given by

δSH
δgij

= Ñg(−Ḡij + Ñ2gG00gij) +O(Nk) , (D.3)

δSH

δÑ
= 2Ḡ00Ñ2g2 +O(Nk) , (D.4)

δSH
δNi

= −2ÑgḠi0 +O(Nk) , (D.5)

where O(Nk) denotes terms proportional to Nk which vanish in our gauge. Here
√
−ḡ = Ñg

and δg/δgij = ggijδgij were used.

From the first order action (D.1) we obtain

δS

δÑ
= −H , (D.6)

δS

δNi
= −H i . (D.7)

Identifying (D.4) with (D.6) and (D.5) with (D.7) yields

H = −2g2Ñ2Ḡ00 +O(Nk) = − 2

Ñ2
G00 +O(Nk) , (D.8)

H i = 2gÑḠi0 +O(Nk) = − 2

Ñ
gijG0j +O(Nk) . (D.9)

Using (D.8) to rewrite the equations of motion δSH/δgij = 0 from (D.3) leads to

Ḡij = − 1

2g
Hgij +O(Nk) . (D.10)

We now consider the (vanishing) divergence of the Einstein tensor ∇νḠνµ = 0. Using
the identity

Γννµ =
∂µ
√
−ḡ√
−ḡ

,
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this can be rewritten as

0 = ∇νḠνµ = ∂νG
ν
µ + ΓνναG

α
µ − ΓανµG

ν
α

= ∂νG
ν
µ +

∂α
√
−ḡ√
−ḡ

Gαµ −
1

2
gασ(∂νgσµ + ∂µgνσ − ∂σgνµ)Gνµ

=
∂ν(Gνµ

√
−ḡ)√

−ḡ
− 1

2
Gνσ∂µgνσ .

Expressing the components of the Einstein tensor using (D.8), (D.9) and (D.10) gives for
µ = 0 (with ∂τ = ∂0)

O(Nk) =
1

Ñg

(
∂i(g00H

i/2)− ∂τ
(
g00

H

2gÑ

))
− H

4g2Ñ2
∂τ (Ñ2g) +

H

4g
gij∂τgij

= − H i

2Ñg
∂i(Ñg)− Ñ

2
∂iH

i +
1

2g
∂τH +

H

2Ñg
∂τ Ñ −

H

4g2Ñ2
∂τ (Ñ2g) +

H

4g
gij∂τgij .

(D.11)
The last three terms cancel as ∂τg = ggij∂τgij .

Doing the same for the µ = i equations, we obtain

O(Nk) =
∂τHi

2Ñg
− 1

2
∂i

(
H

g

)
− H

2g2
∂ig −

H

Ñ
∂iÑ . (D.12)

As Ñ is a scalar density of weight −1, H a scalar density of weight 2 and Hi a tensor
density of weight 1 their covariant derivatives are given by

∇iÑ = ∂i(Ñ
√
g)/
√
g , ∇iH = g∂i(H/g) and ∇iHj = ∂iHj − ΓkijHk − ΓkkiHj .

The divergence of H i can therefore be expressed as ∇iH i = ∂i(g
ijHi) . Inserting this into

(D.11) and (D.12) and applying our gauge choice Nk = 0, Ñ = 1 yields

∂τH = g∇iH i +H i∂ig , (D.13)

∂τHi = ∇iH +
H

g
∂ig . (D.14)

The last term of equation (D.14) seems to have been overlooked in the derivation of [31]. It
does not affect the arguments of section 7.3 concerning the relationship between asymptotic
and full constraints.

Equations (D.13) and (D.14) can be expressed in the Iwasawa frame as

∂τH = g∇aHa +Ha∂̃ag , (D.15)

∂τHa = ∇aH +
H

g
∂̃ag , (D.16)

using Hidx
i = Haθ

a = HaN a
i dx

i with Ha the components of the momentum constraint
in the Iwasawa frame and ∂̃a = (N−1)ia∂i the Iwasawa frame derivative.
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E Asymptotic behaviour of ḡαβ, Γαβγ and Rαβγδ

In this section the asymptotic behaviour of the spacetime metric ḡαβ, the Christoffel
symbols and the Riemann tensor for the class of solutions constructed in section 8 will be
given.

The ansatz (8.1) contains a single decay coefficient γ for all components of N a
i . By

changing it to
N a

i = 1 + e−γaiN a
s i (x

j , τ) , (E.1)

i.e. introducing separate decay coefficients γai, faster decay of the metric components can
be achieved. The coefficients can be chosen such that γ12 + γ23 = γ13 and γ13 > γ23 > γ12,
where the first condition gives the same decay for N i

j as for (N−1)ij . The behaviour of
the metric components and the components of the inverse metric then changes to

ḡ00 = −e−2σp◦τ−2σβ◦ (1 +O(e−2ντ )) , ḡ00 = −e2σp◦τ+2σβ◦ (1 +O(e−2ντ )) ,

ḡ0i ≡ 0 , ḡ0i ≡ 0 ,

ḡii = e−2pi◦τ−2βi◦(1 +O(e−2ντ )) , ḡii = e2pi◦τ−2βi◦(1 +O(e−2ντ )) ,

ḡ12 = O(e(−2p1◦−γ12−ν)τ )→ 0 , ḡ12 = O(e(2p2◦−γ12−ν)τ )→ 0 ,

ḡ13 = O(e(−2p1◦−γ13−ν)τ )→ 0 , ḡ13 = O(e(2p3◦−γ13−ν)τ )→ 0 ,

ḡ23 = O(e(−2p2◦−γ23−ν)τ )→ 0 , ḡ23 = O(e(2p3◦−γ23−ν)τ ) .

The exponents fulfil

−2p3
◦ < −2p2

◦ − γ23 − ν = −2p1
◦ − γ13 − ν ,

2p3
◦ − γ13 = 2p2

◦ − γ12 < 0 ,

−2p2
◦ < −2p1

◦ − γ12 ,

i.e. the ḡ33 component of the metric might decay faster than the off-diagonal ones and
similarly for ḡ11.

The Christoffel symbols are defined as

Γαβγ =
1

2
ḡασ(ḡσγ,β + ḡβσ,γ − ḡβγ,σ) ,

and show the following behaviour:

Γ0
00 = −σp◦(1 +O(e−ντ )) , Γ0

i0 = (τσp◦,i + σβ◦,i)(1 +O(e−ντ )) ,

Γi0i = −pi◦(1 +O(e−ντ )) (no sum) , Γ0
11 = −p1

◦e
2(p2+p3)τ (1 +O(e−ντ )) ,

Γ0
22 = −p2

◦e
2(p1+p3)τ (1 +O(e−ντ )) , Γ0

33 = −p3
◦e

2(p1+p2)τ (1 +O(e−ντ )) ,

Γ0
21 = O(e(−ν+2(p2◦+p

3
◦)−γ12)τ ) , Γ0

31 = O(e(−ν+2(p2◦+p
3
◦)−γ13)τ ) ,

Γ0
32 = O(e(−ν+2(p1◦+p

3
◦)−γ23)τ ) , Γ1

00 = O(e(−ν−2(p1◦+p
2
◦)−γ13)τ )→ 0 ,

Γ1
11 = O(τe(−ν−2p1◦+2p3◦−γ13)τ ) , Γ1

20 = O(e(−ν−γ12)τ )→ 0 ,

Γ1
21 = O(τ) , Γ1

22 = O(τe(−ν−2p2◦+2p3◦−γ13)τ )→ 0 ,
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Γ1
30 = O(e(−ν−γ13)τ )→ 0 , Γ1

31 = O(τ) ,

Γ1
32 = O(τe(−ν−γ12)τ )→ 0 , Γ1

33 = O(τe(−ν−γ13)τ )→ 0 ,

Γ2
00 = O(e(−ν−2(p1◦+p

2
◦)−γ23)τ )→ 0 , Γ2

10 = O(e(−ν−2p1◦+2p2◦−γ12)τ ) ,

Γ2
11 = O(τe(−ν−2p1◦+2p3◦−γ23)τ ) , Γ2

21 = O(τe(−2ν−2p1◦+2p3◦−γ12−γ23)τ ) ,

Γ2
22 = O(τe(−ν−2p2◦+2p3◦−γ23)τ ) , Γ2

30 = O(e(−ν−γ23)τ )→ 0 ,

Γ2
31 = O(τe(−ν−2p1◦+2p2◦−γ12)τ ) , Γ2

32 = O(τ) ,

Γ2
33 = O(τe(−ν−γ23)τ )→ 0 , Γ3

00 = O(e(−2(p1◦+p
2
◦))τ )→ 0 ,

Γ3
10 = O(e(−ν−2p1◦+2p3◦−γ13)τ ) , Γ3

11 = O(τe(−2p1◦+2p3◦)τ ) ,

Γ3
20 = O(e(−ν−2p2◦+2p3◦−γ23)τ ) , Γ3

21 = O(τe(−ν−2p1◦+2p3◦−γ12)τ ) ,

Γ3
22 = O(τe(−2p2◦+2p3◦)τ ) , Γ3

31 = O(τe(−ν−2p1◦+2p3◦−γ13)τ ) ,

Γ3
32 = O(τe(−ν−2p2◦+2p3◦−γ23)τ ) , Γ3

33 = O(τ) ,

with all decaying ones marked “→ 0” and σp◦ and σβ◦ defined as

σp◦ = p1
◦ + p2

◦ + p3
◦ > 0 , σβ◦ = β1

◦ + β2
◦ + β3

◦ .

The components of the Riemann tensor can be calculated from the Christoffel symbols as

Rλ0αβ = ḡλσ(Γσ0β,α − Γσ0α,β + ΓσαδΓ
δ
0β − ΓσβδΓ

δ
0α) ,

giving the following asymptotic behaviour:

R1010 = O(τe−2p1◦τ ) , R2010 = O(τe(−ν−2p1◦−γ12)τ )→ 0 ,

R2020 = O(τe(−2p2◦)τ )→ 0 , R2110 = O(τe(−ν−2p1◦−2p2◦+2p3◦−γ23)τ ) ,

R2120 = O(τe(−2ν−2p1◦−2p2◦+2p3◦−γ12−γ23)τ )→ 0 , R2121 = O(τe2p3◦τ ) ,

R3010 = O(τe(−ν−2p1◦−γ13)τ )→ 0 , R3020 = O(τe(−ν−2p2◦−γ23)τ )→ 0 ,

R3021 = O(τe(−ν−2p1◦−γ12)τ )→ 0 , R3030 = O(τe−2p3◦τ )→ 0 ,

R3110 = O(τe−2p1◦τ ) , R3120 = O(τe(−ν−2p1◦−γ12)τ )→ 0 ,

R3121 = O(τe(−ν+2p3◦−γ23)τ ) , R3130 = O(τe(−ν−2p1◦−γ13)τ )→ 0 ,

R3131 = O(τe2p2◦τ ) , R3210 = O(τe(−ν−2p1◦−γ12)τ )→ 0 ,

R3220 = O(τe−2p2◦τ )→ 0 , R3221 = O(τe(−ν+2p3◦−γ13)τ )→ 0 ,

R3230 = O(τe(−ν−2p2◦−γ23)τ )→ 0 , R3231 = O(τe(−ν+2p2◦−γ12)τ )→ 0 ,

R3232 = O(τe2p1◦τ )→ 0 .
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