
Dissertation

Titel der Dissertation

Faster Approximation Algorithms for
Partially Dynamic Shortest Paths Problems

verfasst von

Dipl. Ing. Sebastian Krinninger

angestrebter akademischer Grad

Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, 2015

Studienkennzahl lt. Studienblatt: A 786 880
Dissertationsgebiet lt. Studienblatt: Informatik, IK: Computer-unterstützte Optimierung
Betreuerin: Univ.-Prof. Dr. Monika Henzinger
Zweitbetreuer: Univ.-Prof. Dr. Georg Ch. Pflug

iii

Abstract

We call an algorithm dynamic if it regularly updates the result of its
computations as the input undergoes changes over time. The primary
goal is to be faster than the naive algorithm that recomputes the result
from scratch after each change. In graph algorithms, the changes to the
input graph are usually edge insertions or deletions. In this thesis we
focus on partially dynamic graph algorithms where only one type of
updates is allowed; either insertions (incremental model) or deletions
(decremental model).

We develop faster approximation algorithms for certain variants
of the partially dynamic shortest paths problem with respect to the
total update time, i.e., the sum of the running times needed to update
the result after each change. In this thesis we obtain the following
approximation algorithms:

• A randomized algorithm for the decremental approximate all-pairs
shortest paths (APSP) problem in unweighted undirected graphs
with both a multiplicative error of 1 + ϵ and an additive error of 2
that has a total update time of ̃O(n5/2).

• A deterministic algorithm for the decremental approximate APSP
problem in unweighted undirected graphs with a multiplicative
error of 1 + ϵ and a total update time of O(mn log n).

• A randomized algorithm for the decremental approximate single-
source shortest paths (SSSP) problem inweighted undirected graphs
with a multiplicative error of 1 + ϵ and a total update time of
O(m1+o(1)).

• A randomized algorithm for the decremental single-source reacha-
bility problem in directed graphs with a total update time of o(mn)
and an extension of the technique to the decremental approximate
SSSP problem in weighted directed graphs, achieving o(mn) as
well.

• A deterministic algorithm for the incremental approximate SSSP
problem in unweighted undirected graphs with a multiplicative
error of 1+ϵ and a total update time ofO(m3/2n1/2) and an extension
of the technique to both the incremental and the decremental
approximate SSSP problem in the CONGEST model of distributed
computing.

v

Zusammenfassung

Ein Algorithmus heißt dynamisch wenn seine Eingabe mit der Zeit
immer wieder Änderungen unterworfen ist und er deshalb das Ergebnis
seiner Berechnungen regelmäßig anpasst. Das Hauptziel ist es, schneller
zu sein als ein naiver Algorithmus, der das Ergebnis nach jeder Ände-
rung von Grund auf neu berechnet. Für Graphalgorithmen bestehen die
Änderungen in der Regel aus Kanteneinfügungen und -löschungen. In
dieser Arbeit konzentrieren wir uns auf partiell-dynamische Algorith-
men, die nur eine Art von Änderungen erlauben; entweder Einfügungen
(inkrementelles Modell) oder Löschungen (dekrementelles Modell).

Wir entwickeln schnellere Approximationsalgorithmen für gewisse
Varianten des partiell-dynamischen Kürzeste Wege Problems in Bezug
auf die Gesamtlaufzeit, also die Summe der Laufzeiten, die jeweils benö-
tigt wird, um das Ergebnis nach einer Änderung zu aktualisieren. Als
Ergebnis dieser Arbeit erhalten wir folgende Approximationsalgorith-
men:

• Einen randomisierten Algorithmus für das dekrementelle paar-
weise Kürzeste Wege Problem in ungewichteten ungerichteten
Graphen, der sowohl einen multiplikativen Fehler von 1 + ϵ als
auch einen additiven Fehler von 2 hat und dessen Gesamtlaufzeit

̃O(n5/2) beträgt.
• Einen deterministischen Algorithmus für das dekrementelle paar-
weise Kürzeste Wege Problem in ungewichteten ungerichteten
Graphen mit multiplikativem Fehler 1 + ϵ und Gesamtlaufzeit
O(mn log n).

• Einen randomisierten Algorithmus für das dekrementelle Kürzes-
te Wege Problem mit Startknoten in gewichteten ungerichteten
Graphen mit multiplikativem Fehler 1 + ϵ und Gesamtlaufzeit
O(m1+o(1)).

• Einen randomisierten Algorithmus für das dekrementelle Erreich-
barkeitsproblem mit Startknoten in gerichteten Graphen mit Ge-
samtlaufzeit o(mn) sowie eine Erweiterung der Methode für das
dekrementelle Kürzeste Wege Problem mit Startknoten in gewich-
teten gerichteten Graphen, ebenfalls mit Gesamtlaufzeit o(mn).

• Einen deterministischen Algorithmus für das inkrementelle Kür-
zeste Wege Problem mit Startknoten in ungewichteten ungerichte-
ten Graphen mit multiplikativem Fehler 1 + ϵ und Gesamtlaufzeit
O(m3/2n1/2) sowie eine Erweiterung der Methode für sowohl einen
inkrementellen als auch einen dekrementellen Algorithmus für
das Kürzeste Wege Problem mit Startknoten im CONGEST-Modell
für verteiltes Rechnen.

vii

Acknowledgments

I want to thank Monika for her never-ending guidance and support
over the years, Danupon for the long-lasting and fruitful collaboration,
Ittai and Shiri for inviting me to Microsoft Research, Krishnendu and
Veronika for the interesting collaborations, Aleksander and Pino for
serving on my committee, Prof. Pflug and the IK-members for their
input, Martin for sharing the common path, Birgit and Ulli for keeping
administrative work low, and all other colleagues at TAA for the pleasant
atmosphere. I also want to thank the anonymous reviewers of our
papers for their valuable comments and all developers of the free and
open-source software I use on a daily basis.

Special thanks go to Harald and Lukas for all that jazz and to Elisa-
beth and Peter for TEX, TikZ, and pizza. I am grateful for my family’s
constant support during the past years (even though I’m not becoming
a real doctor); my parents Brigitte and Bruno and my sisters Julia and
Laura were always there for me, and Oma has even sent me letters
overseas. A wholehearted thank you goes to Judith for all her love and
consideration – muxu!

The research leading to these results has received funding from the Univer-
sity of Vienna / IK I049-N, the Austrian Science Fund (FWF) / P23499-N23, and
the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement no. 340506 and grant
agreement no. 317532.

ix

Bibliographic Note

Several results of this thesis were already published in conference
and journal papers and thus the chapters of this thesis are based on the
following papers:

• Chapter 2: MonikaHenzinger, Sebastian Krinninger, andDanupon
Nanongkai. “DynamicApproximateAll-Pairs Shortest Paths: Break-
ing the O(mn) Barrier and Derandomization”. In: SIAM Journal on
Computing (forthcoming). Announced at FOCS’13.

• Chapter 3: MonikaHenzinger, Sebastian Krinninger, andDanupon
Nanongkai. “Decremental Single-Source Shortest Paths on Undi-
rected Graphs in Near-Linear Total Update Time”. In: Symposium
on Foundations of Computer Science (FOCS). 2014, pp. 146–155.

• Chapter 4: MonikaHenzinger, Sebastian Krinninger, andDanupon
Nanongkai. “Sublinear-Time Decremental Algorithms for Single-
Source Reachability and Shortest Paths on Directed Graphs”. In:
Symposium on Theory of Computing (STOC). 2014, pp. 674–683.

• Chapter 4: MonikaHenzinger, Sebastian Krinninger, andDanupon
Nanongkai. “Improved Algorithms for Decremental Single-Source
Reachability on Directed Graphs”. In: International Colloquium on
Automata, Languages and Programming (ICALP). 2015, forthcom-
ing.

• Chapter 5: MonikaHenzinger, Sebastian Krinninger, andDanupon
Nanongkai. “Sublinear-Time Maintenance of Breadth-First Span-
ning Tree in Partially Dynamic Networks”. In: International Collo-
quium on Automata, Languages and Programming (ICALP). 2013,
pp. 607–619.

• Chapters 3 and 5: Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. “A Subquadratic-Time Algorithm for Dy-
namic Single-Source Shortest Paths”. In: Symposium on Discrete
Algorithms (SODA). 2014, pp. 1053–1072.

http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 3
1.3 Preliminaries . 7

2 DynamicApproximateAll-Pairs Shortest Paths: Breaking theO(mn)
Barrier and Derandomization 9
2.1 Introduction . 10

2.1.1 The Problem . 10
2.1.2 Our Results . 11
2.1.3 Techniques . 14
2.1.4 Related Work . 21

2.2 Background . 24
2.2.1 Basic Definitions . 24
2.2.2 Decremental Shortest-Path Tree Data Structure 26
2.2.3 The Framework of Roditty and Zwick 31

2.3 ̃O(n5/2)-Total Time (1 + ϵ, 2)- and (2 + ϵ, 0)-Approximation Algorithms 34
2.3.1 (1, 2, ⌈2/ϵ⌉)-Locally Persevering Emulator of Size ̃O(n3/2) . . 35
2.3.2 Maintaining Distances Using Monotone Even-Shiloach Tree 39
2.3.3 From Approximate SSSP to Approximate APSP 49
2.3.4 Putting Everything Together 55

2.4 Deterministic Decremental (1+ϵ)-Approximate APSPwithO(mn log n)
Total Update Time . 57
2.4.1 Deterministic Moving Centers Data Structure 59
2.4.2 Deterministic Center Cover Data Structure 63
2.4.3 Deterministic Fully Dynamic Algorithm 76

2.5 Conclusion . 77

3 Decremental Single-Source Shortest Paths on Undirected Graphs
in Near-Linear Total Update Time 79
3.1 Introduction . 80
3.2 Preliminaries . 82
3.3 Technical Overview . 83

xi

xii CONTENTS

3.4 From Approximate SSSP to Approximate Balls 92
3.4.1 Relation to Exact Balls . 94
3.4.2 Properties of Approximate Balls 96

3.5 From Approximate Balls to Approximate SSSP 98
3.5.1 Algorithm Description . 100
3.5.2 Running Time Analysis . 101
3.5.3 Definitions of Values for Approximation Guarantee 101
3.5.4 Analysis of Approximation Guarantee 105

3.6 Putting Everything Together . 113
3.6.1 Approximate SSSP . 113
3.6.2 Approximate APSP . 119

3.7 Conclusion . 121

4 Sublinear-Time Decremental Algorithms for Single-Source Reach-
ability and Shortest Paths on Directed Graphs 123
4.1 Introduction . 124
4.2 Preliminaries . 127

4.2.1 Problem Description . 127
4.2.2 Definitions and Basic Properties 128
4.2.3 Algorithm Overview for s-t Reachability 130
4.2.4 Single-Source Shortest Paths 135
4.2.5 Strongly Connected Components 136

4.3 Single-Source Single-Sink Reachability 140
4.3.1 Algorithm Description . 140
4.3.2 Correctness . 143
4.3.3 Running Time Analysis . 143
4.3.4 Extension to Single-Source Reachability 150

4.4 Approximate Shortest Path . 152
4.4.1 Preliminaries . 152
4.4.2 Algorithm Description . 154
4.4.3 Correctness . 155
4.4.4 Running Time . 161

4.5 Faster Single-Source Reachability in Dense Graphs 164
4.5.1 Approximate Path Union Data Structure 164
4.5.2 Reachability via Center Graph 168

4.6 Conclusion . 173

5 Sublinear-Time Maintenance of Breadth-First Spanning Trees in
Partially Dynamic Networks 175
5.1 Introduction . 175
5.2 Main Technical Idea . 180
5.3 Incremental Algorithm . 182

5.3.1 General Framework . 182
5.3.2 Sequential model . 187

CONTENTS xiii

5.3.3 Distributed Model . 188
5.3.4 Removing the Connectedness Assumption 191

5.4 Decremental Algorithm . 191
5.4.1 Analysis of Procedure for Repairing the Tree 193
5.4.2 Analysis of Decremental Distributed Algorithm 196

5.5 Conclusion and Open Problems . 199

Bibliography 201

CHAPTER 1
Introduction

1.1 Problem Statement

Computing shortest paths in graphs is a fundamental problem in computer science.
If the graph for example models a transport network, then the shortest path from a
node x to a node y in the graph gives the fastest way of travelling from location x
to location y. To model more realistic scenarios one might allow the graph to
change over time, where changing usually means inserting and deleting edges. In a
transport network for example edges might be deleted when connections become
temporarily unavailable because of congestion. A naive solution to handle such a
dynamic scenario is to recompute shortest paths from scratch after each change in
the graph by using a static algorithm. However it is usually more efficient to use
special algorithms that are tailored to the dynamic setting. Other typical dynamic
graph problems are minimum spanning tree [48, 52, 62, 71], connectivity [58, 60, 71,
77, 122], matching [15, 25, 56, 101, 102, 118], transitive closure [39, 61, 79, 81, 82, 108,
112, 114, 117], and strongly connected components [20, 21, 90, 109, 114]. Developing
faster algorithms for dynamic shortest paths, in terms of provable upper bounds on
the asymptotic running time, is the goal of this thesis.

A fully dynamic all-pairs shortest paths (APSP) algorithm is a data structure
allowing the following operations for all pairs of nodes u and v of a graph G:

• Insert(u, v): Add the edge (u, v) to G

• Delete(u, v): Remove the edge (u, v) from G

• Query(u, v): Return the distance dG(u, v) from u to v in G

Each insertion or deletion of an edge is called an update of the graph. After every
update the algorithm is allowed to spend some time to adapt to the change so that it
can answer subsequent distance queries. The running time spent by the algorithm

1

2 CHAPTER 1. INTRODUCTION

after each update is called update time and the time needed to answer a query is
called query time. Unless noted otherwise, we assume that query times are small,
i.e., O(1) or O(polylog n). Very often the update time is amortized over a sequence
of updates.

Within this framework, the general problem can be restricted in one or more of
the following ways:

• We say that an algorithm is partially dynamic if it only allows one type of
updates. Incremental algorithms only allow insertions of edges and decremental
algorithms only allow deletions of edges. As we usually want to amortize over
Θ(m) insertions or deletions (where m is the final or initial number of edges
in the graph, respectively), partially dynamic algorithms are usually compared
by their total update time, which is the sum of the running times spent after
each update.

• In the single-source shortest paths (SSSP) problem we maintain the distances
from a distinguished source node s to all other nodes.

• We say that an algorithm provides an (α , β)-approximation (where α ≥ 1 and
β ≥ 0) if upon a query for the distance from u to v it returns a distance estimate
δ(u, v) such that dG(u, v) ≤ δ(u, v) ≤ αdG(u, v) + β . When β = 0, we usually
simply say α-approximation instead of (α , 0)-approximation. We will often
obtain (1 + ϵ)-approximations where 0 < ϵ ≤ 1 is a parameter of the algorithm.

• Further variants of the dynamic shortest paths problem arise by distinguishing
directed and undirected as well as weighted and unweighted graphs.

There are two main motivations for studying restricted versions of the dynamic
shortest paths problem, as done in this thesis. The first motivation is to use specialized
algorithms as building blocks for solving the more general problems, e.g., by using a
decremental algorithm to obtain a fully dynamic algorithm. The second motivation is
to gain efficiency over the more generalized algorithms, e.g., by avoiding bottlenecks
inherent in maintaining distances exactly. In the design of our algorithms we also
consider the goal of obtaining deterministic algorithms, which is orthogonal to
running time improvements. Deterministic algorithms are very desirable for dynamic
algorithms as they do not require to limit the knowledge of the adversary generating
the sequence of updates and queries in any way.

This thesis is organized as follows. We start with the decremental approximate
APSP problem in unweighted undirected graphs in Chapter 2. We obtain both a ran-
domized (1 + ϵ, 2)-approximation with total update time ̃O(n5/2)1 and a deterministic
(1 + ϵ)-approximation with total update time O(mn log n). Prior to this work there
was a randomized (1 + ϵ)-approximation with total update time ̃O(mn). Thus, our
deterministic algorithm matches this running time and our randomized algorithm

1We use ̃O(⋅) notation to hide logarithmic factors.

1.2. RELATED WORK 3

improves it at the cost of a small additive error. We then shift the focus to approxi-
mate SSSP. In Chapter 3 we develop an algorithm for weighted undirected graphs
with almost linear total update time, which is optimal up to subpolynomial factors.
We also extend our technique to obtain a new trade-off between the approximation
guarantee and the total update time for decremental APSP. In Chapter 4 we consider
decremental approximate SSSP in the more general setting of weighted directed
graphs. We obtain a (1+ϵ)-approximation with a total update time of O(mn9/10). This
is the first algorithm that breaks the O(mn) bound, even for the simpler single-source
reachability problem. In Chapter 5 we go back to unweighted undirected graphs, but
this time in the incremental setting. We obtain a simple deterministic algorithm with
a total update time of O(m3/2n1/2). We furthermore extend the technique to both
the incremental and the decremental approximate SSSP problem in the CONGEST
model of distributed computing.

1.2 Related Work

We discuss related work in detail in the individual chapters of this thesis. Here we
only give a big overview over running times of algorithms for fully dynamic APSP
(Table 1.1), decremental APSP (Table 1.2), and decremental SSSP (Table 1.3). It can be
seen that most algorithms have an amortized update time. Furthermore, there has
been a shift from exact solutions to approximate solutions. To gain some intuition
we highlight the following three results:

• Fully dynamic APSP: The algorithm of Demetrescu and Italiano [36] (with
a modification of Thorup [121]) solves the fully dynamic APSP problem on
directed graphswith arbitrary real edgeweights. The algorithm is deterministic
and has an amortized running time of ̃O(n2) per update and constant query
time.

• Decremental APSP: Bernstein [23] gave a decremental algorithm for maintain-
ing (1 + ϵ)-approximate APSP in weighted directed graphs. The algorithm is
randomized and has a total update time of ̃O(mn logW) and constant query
time, if the edge weights are integers from 1 to W .

• Decremental SSSP: Bernstein and Roditty [24] gave a decremental algorithm
for the (1 + ϵ)-approximate SSSP problem in unweighted undirected graphs.
The algorithm is randomized and has a total update time of O(n2+o(1)) and
constant query time.

In the tables below we have not explicitly listed results for the incremental model
as most decremental algorithms also work in the incremental model with slight
modifications. To the best of our knowledge the first incremental algorithms were
given by Ausiello et al. [9, 10].

4 CHAPTER 1. INTRODUCTION

U
pd

at
e
ti
m

e
A
m

or
ti
za

ti
on

Qu
er

y
ti
m

e
A
pp

ro
xi

m
at

io
n

R
an

do
m

iz
at

io
n

G
ra

ph
ty

pe
W

ei
gh

ts
R
ef

er
en

ce
O

(n
9/
7
lo
g
S)

(a
)

am
or

tiz
ed

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

pl
an

ar
di
re
ct
ed

∈
ℤ

[5
9]

̃
O

(n
2.
5 √

W
)

am
or

tiz
ed

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

di
re
ct
ed

∈
{1
,2
,…

,W
}

[7
9]

O
(n

2
lo
g(
nW

)/ϵ
2)

am
or

tiz
ed

O
(1

)
1
+
ϵ

de
te
rm

in
is
tic

di
re
ct
ed

∈
{1
,2
,…

,W
}

[7
9]

̃
O

(n
2)

am
or

tiz
ed

O
(1

)
2
+
ϵ

de
te
rm

in
is
tic

di
re
ct
ed

∈
ℤ

>0
[7
9]

̃
O

(n
2.
5 √

S)
(b
)

am
or

tiz
ed

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

di
re
ct
ed

∈
ℝ

[3
7]

̃
O

(n
2)

am
or

tiz
ed

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

di
re
ct
ed

∈
ℝ

≥0
[3
6]

̃
O

(n
2)

am
or

tiz
ed

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

di
re
ct
ed

∈
ℝ

[1
21

]
̃

O
(n

2.
75

)
w
or

st
-c
as
e

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

di
re
ct
ed

∈
ℝ

≥0
[1
24

]
̃

O
(m

√
n)

am
or

tiz
ed

O
(n

3/
4)

ex
ac

t
ra
nd

om
iz
ed

di
re
ct
ed

un
w
ei
gh

te
d

[1
15

]
̃

O
(m

n/
t)

(c
)

am
or

tiz
ed

O
(t

)(
c)

1
+
ϵ

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[1
13

]
O

(n
1.
93
2)

w
or

st
-c
as
e

O
(n

1.
28
8)

ex
ac

t
ra
nd

om
iz
ed

di
re
ct
ed

un
w
ei
gh

te
d

[1
19

]
̃

O
(m

lo
g
W

)(
d)

am
or

tiz
ed

O
(lo

g
lo
g
lo
g
n)

2
+
ϵ

ra
nd

om
iz
ed

un
di
re
ct
ed

∈
{1
,2
,…

,W
}

[2
2]

̃
O

(m
n/
t)

(e
)

am
or

tiz
ed

O
(t

)(
e)

1
+
ϵ

de
te
rm

in
is
tic

un
di
re
ct
ed

un
w
ei
gh

te
d

C
ha

pt
er

2
̃

O
(m

1/
2 n

1/
k
)(

e)
am

or
tiz

ed
O

(k
2 ρ

2)
(e
)

2O
(ρ
k)

(e
)

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[3
]

(a
)
S
eq

ua
ls

th
e
su

m
of

th
e
ab

so
lu
te

va
lu
es

of
al
ln

eg
at
iv
e
ed

ge
w
ei
gh

ts
(b
)
Ev

er
y
ed

ge
ge

ts
at

m
os

tS
di
ffe

re
nt

w
ei
gh

ts
ov

er
al
lu

pd
at
es

(c
)
t
≤

√
m

(d
)
R
eq

ua
ls

th
e
ra
tio

be
tw

ee
n
th
e
he

av
ie
st

an
d
th
e
lig

ht
es
te

dg
e
w
ei
gh

t
(e
)
t
≤

√
n

(f)
k
≥
1
an

d
ρ
=
1
+

⌈l
og

n1
−1

/k
/l
og

(m
/n

1−
1/
k
)⌉

Ta
bl
e
1.
1:

Ru
nn

in
g
tim

es
of

fu
lly

dy
na

m
ic

al
l-p

ai
rs

sh
or

te
st

pa
th
sa

lg
or

ith
m
s(
n
is

th
e
nu

m
be

ro
fn

od
es
,m

is
th
e
nu

m
be

ro
fe

dg
es
).
Fo

r
si
m
pl
ic
ity

w
e
as
su

m
e
th
at

ϵ
is

a
co

ns
ta
nt
.

1.2. RELATED WORK 5

To
ta

lu
pd

at
e
ti
m

e
Qu

er
y
ti
m

e
A
pp

ro
xi

m
at

io
n

R
an

do
m

iz
at

io
n

G
ra

ph
ty

pe
W

ei
gh

ts
R
ef

er
en

ce
̃

O
(m

n2
/t
+
m
n)

O
(t

)
ex

ac
t

ra
nd

om
iz
ed

di
re
ct
ed

un
w
ei
gh

te
d

[6
1]

̃
O

(n
3 S

)(
a)

O
(1

)
ex

ac
t

ra
nd

om
iz
ed

di
re
ct
ed

∈
ℝ

[3
7]

O
(n

3)
O

(1
)

ex
ac

t
ra
nd

om
iz
ed

di
re
ct
ed

un
w
ei
gh

te
d

[1
6]

O
(n

2 √
m
/ϵ

)
O

(1
)

1
+
ϵ

ra
nd

om
iz
ed

di
re
ct
ed

un
w
ei
gh

te
d

[1
6]

̃
O

(n
16
/9
m

1/
3
+
m
n)

O
(1

)
3

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[1
7]

̃
O

(n
24
/1
3 m

3/
13
+
m
n)

O
(1

)
5

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[1
7]

̃
O

(n
16
/9
m

7/
27
+
m
n)

O
(1

)
7

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[1
7]

̃
O

(m
n)

O
(1

)
1
+
ϵ

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[1
15

]
̃

O
(n

2+
1/
k
)(

b)
O

(k
)(

e)
2k

−
1
+
ϵ

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[2
4]

̃
O

(m
n
lo
g
W

)
O

(1
)

1
+
ϵ

ra
nd

om
iz
ed

di
re
ct
ed

w
ei
gh

te
d

[2
3]

̃
O

(n
2.
5)

O
(1

)
(1

+
ϵ,
2)

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

C
ha

pt
er

2
̃

O
(m

n)
O

(1
)

1
+
ϵ

de
te
rm

in
is
tic

un
di
re
ct
ed

un
w
ei
gh

te
d

C
ha

pt
er

2
O

(n
2.
5+

o(
1)

)
O

(1
)

(1
+
ϵ,
2)

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[2
]

̃
O

(m
n1

/k
)(

c)
O

(k
ρ)

(c
)

2O
(ρ
k)

(c
)

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[3
]

O
(m

1+
1/
k+

o(
1)
lo
g2

W
)(

d)
O

(k
k
)(

d)
(2

+
ϵ)

k
−
1

(d
)

ra
nd

om
iz
ed

un
di
re
ct
ed

w
ei
gh

te
d

C
ha

pt
er

3
(a
)
Ev

er
y
ed

ge
ge

ts
at

m
os

tS
di
ffe

re
nt

w
ei
gh

ts
ov

er
al
lu

pd
at
es

(b
)
2
≤
k
≤
lo
g
n

(c
)
k
≥
1
an

d
ρ
=
1
+

⌈l
og

n1
−1

/k
/l
og

(m
/n

1−
1/
k
)⌉

(d
)
2
≤
k
≤
lo
g
n

Ta
bl
e
1.
2:

Ru
nn

in
g
tim

es
of

de
cr
em

en
ta
la

ll-
pa

irs
sh

or
te
st

pa
th
sa

lg
or

ith
m
s(
n
is

th
e
nu

m
be

ro
fn

od
es
,m

is
th
e
nu

m
be

ro
fe

dg
es
).
Fo

r
si
m
pl
ic
ity

w
e
as
su

m
e
th
at

ϵ
is

a
co

ns
ta
nt
.

6 CHAPTER 1. INTRODUCTION

To
ta

lu
pd

at
e
ti
m

e
Qu

er
y
ti
m

e
A
pp

ro
xi

m
at

io
n

R
an

do
m

iz
at

io
n

G
ra

ph
ty

pe
W

ei
gh

ts
R
ef

er
en

ce
O

(m
n)

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

un
di
re
ct
ed

un
w
ei
gh

te
d

[4
9]

O
(m

n)
O

(1
)

ex
ac

t
de

te
rm

in
is
tic

di
re
ct
ed

un
w
ei
gh

te
d

[6
1]

O
(m

nW
)

O
(1

)
ex

ac
t

de
te
rm

in
is
tic

di
re
ct
ed

∈
{1
,2
,…

,W
}

[7
9]

O
(n

2+
o(
1)

)
O

(1
)

1
+
ϵ

ra
nd

om
iz
ed

un
di
re
ct
ed

un
w
ei
gh

te
d

[2
4]

O
(m

1+
o(
1)

)
O

(1
)

1
+
ϵ

ra
nd

om
iz
ed

un
di
re
ct
ed

w
ei
gh

te
d

C
ha

pt
er

3
O

(m
n0

.9
+o

(1
) l
og

W
)

O
(1

)
1
+
ϵ

ra
nd

om
iz
ed

di
re
ct
ed

w
ei
gh

te
d

C
ha

pt
er

4

Ta
bl
e
1.
3:

Ru
nn

in
g
tim

es
of

de
cr
em

en
ta
ls

in
gl
e-
so

ur
ce

sh
or

te
st

pa
th
sa

lg
or

ith
m
s(
n
is

th
e
nu

m
be

ro
fn

od
es
,m

is
th
e
nu

m
be

ro
fe

dg
es
).

Fo
rs

im
pl
ic
ity

w
e
as
su

m
e
th
at

ϵ
is

a
co

ns
ta
nt
.

1.3. PRELIMINARIES 7

1.3 Preliminaries

We will introduce necessary notation and concepts in the succeeding chapters. Nev-
ertheless two concepts are used so frequently that we discuss them here separately.
The first such concept is the following algorithmic primitive for maintaining shortest
paths trees up to bounded depth.

Theorem 1.3.1 (Even-Shiloach tree [49, 61, 79]). There is a decremental algorithm,
called Even-Shiloach tree (short: ES-tree), that, given a weighted directed graph G
undergoing edge deletions with positive integer edge weights, a source node s, and a
parameter D ≥ 1, maintains a shortest paths tree from s and the corresponding distances
up to depth D with total update time O(mD), i.e., the algorithm maintains dG(s, v) and
the parent of v in the shortest paths tree for every node v such that dG(s, v) ≤ D. By
reversing the edges of G it can also maintain the distance from v to s for every node v
in the same time.

Note that if we want to use the ES-tree to maintain a full shortest paths tree
(i.e., containing all shortest paths from the source), then we have to set D equal to
the maximum (finite) distance from the source. If the graph is unweighted, then
it is sufficient to set D = n − 1 and we can thus maintain a full shortest paths tree
with total update time O(mn). If the graph is weighted and W is the maximum edge
weight, then the maximum distance might be as large as (n − 1)W and the algorithm
then takes time O(mnW), which is less efficient than recomputation from scratch
even if W = n. Similarly, if we want to maintain a shortest paths tree up to h ≤ n − 1
hops (containing all shortest paths with at most h edges), the algorithm above takes
time O(mh) in unweighted graphs and O(mhW) in weighted graphs. Using a scaling
technique [22, 23, 95], the running time in weighted graphs can be reduced if we
allow approximation: we can maintain a (1 + ϵ)-approximate shortest paths tree
containing all shortest paths up to h hops in total time ̃O(mn logW /ϵ).

The second concept used repeatedly in our algorithms is sampling nodes or edges
at random. We say that an event happens with high probability (whp) if it happens
with probability at least 1 − 1/nc , for some constant c. All our randomized algorithms
will be correct whp against an oblivious adversary who fixes its sequence of updates
and queries before the algorithm is initialized, revealing its choices to the algorithm
one after the other. It is well-known, and exploited by many other algorithms for
dynamic shortest paths and reachability, that by sampling a set of nodes with a
sufficiently large probability we can guarantee that certain sets of nodes contain at
least one of the sampled nodes. To the best of our knowledge, the first use of this
technique in graph algorithms goes back to Ullman and Yannakakis [127].

Lemma 1.3.2. Let T be a set of size t and let S1, S2, … , Sk be subsets of T of size at least
q. Let U be a subset of T that was obtained by choosing each element of T independently
with probability p = (a ln (kt))/q, for some parameter a. Then, for every 1 ≤ i ≤ k, the
set Si contains a node of U with high probability (whp), i.e., probability at least 1 − 1/ta,
and the size of U is O((t log (kt))/q) in expectation.

8 CHAPTER 1. INTRODUCTION

Proof. The bound on the size of U simply follows from the linearity of expectation.
For every 1 ≤ i ≤ k let Ei be the event that Si ∩ U = ∅, i.e., that Si contains no node
of U . Furthermore, let E be the event that there is a set Si that contains no node of
U . Note that E = ⋃1≤i≤k Ei .

We first bound the probability of the event Ei for 1 ≤ i ≤ k. The size of Si ∩ U
is determined by a Bernoulli trial with success probability p. The probability that
|Si ∩ U | = 0 is therefore given by

Pr(Ei) = (1 − p)
|Si| ≤ (1 − p)

q
= (1 −

a ln (kt)
q)

q

≤
1

ea ln (kt) =
1

kata
.

Here we use the well-known inequality (1 − 1/y)y ≤ 1/e that holds for every y > 0.
Now we simply apply the union bound twice and get

Pr(E) = Pr
(⋃

1≤i≤k
Ei)

≤ ∑
1≤i≤k

Pr(Ei) ≤ ∑
1≤i≤k

(
1
kt)

a

= k
1

kata
≤

1
ta

.

We now sketch one example of how we intend to use Lemma 1.3.2 for dynamic
graphs. Consider an unweighted graph G undergoing edge deletions. Suppose
that we want the following condition to hold for every pair of nodes x and y with
probability at least 1 − 1/n in all versions of G (i.e., initially and after each deletion):
if dG(x , y) ≥ q, then there is a shortest path from x to y that contains a node in U .
We apply Lemma 1.3.2 as follows. The set T is the set of nodes of G and has size n.
The sets S1, S2, … , Sk are obtained as follows: for every version of G (i.e., after each
deletion) and every pair of nodes x and y such that dG(x , y) ≥ q, we define a set Si
that contains the nodes on the first shortest path from x to y (for an arbitrary, but
fixed order on the paths). As the graph undergoes edge deletions, there are at most
m ≤ n2 versions of the graph. Furthermore, there are n2 pairs of nodes. Therefore we
have k ≤ n4 such sets. Thus, for the property above to hold with probability 1 − 1/n,
we simply have to sample each node with probability (ln kt)/q = (ln n5)/q = (5 ln n)/q
by Lemma 1.3.2.

CHAPTER 2
Dynamic Approximate All-Pairs

Shortest Paths: Breaking the
O(mn) Barrier and
Derandomization

We study dynamic (1 + ϵ)-approximation algorithms for the all-pairs shortest paths
problem in unweighted undirected n-node m-edge graphs under edge deletions. The
fastest algorithm for this problem is a randomized algorithm with a total update
time of ̃O(mn/ϵ) and constant query time by Roditty and Zwick [113]. The fastest
deterministic algorithm is from a 1981 paper by Even and Shiloach [49]; it has a
total update time of O(mn2) and constant query time. We improve these results as
follows:

(1) We present an algorithm with a total update time of ̃O(n5/2/ϵ) and constant
query time that has an additive error of 2 in addition to the 1 + ϵ multiplicative
error. This beats the previous ̃O(mn/ϵ) time when m = Ω(n3/2). Note that the
additive error is unavoidable since, even in the static case, an O(n3−δ)-time (a
so-called truly subcubic) combinatorial algorithm with 1+ϵ multiplicative error
cannot have an additive error less than 2 − ϵ, unless we make a major break-
through for Boolean matrix multiplication [41] and many other long-standing
problems [128].

The algorithm can also be turned into a (2 + ϵ)-approximation algorithm
(without additive error) with the same time guarantees, improving the recent
(3 + ϵ)-approximation algorithm with ̃O(n5/2+O(√log (1/ϵ)/ log n)) running time of
Bernstein and Roditty [24] in terms of both approximation and time guarantees.

9

10 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

(2) We present a deterministic algorithm with a total update time of ̃O(mn/ϵ)
and a query time of O(log log n). The algorithm has a multiplicative error of
1 + ϵ and gives the first improved deterministic algorithm since 1981. It also
answers an open question raised by Bernstein [23]. The deterministic algorithm
can be turned into a deterministic fully dynamic (1 + ϵ)-approximation with
an amortized update time of ̃O(mn/(ϵt)) and a query time of ̃O(t) for every
t ≤ √n.

In order to achieve our results, we introduce two new techniques: (1) A monotone
Even-Shiloach tree algorithm which maintains a bounded-distance shortest-paths
tree on a certain type of emulator called locally persevering emulator. (2) A derandom-
ization technique based on moving Even-Shiloach trees as a way to derandomize the
standard random set argument. These techniques might be of independent interest.

2.1 Introduction

Dynamic graph algorithms is one of the classic areas in theoretical computer science
with a countless number of applications. It concerns maintaining properties of
dynamically changing graphs. The objective of a dynamic graph algorithm is to
efficiently process an online sequence of update operations, such as edge insertions
and deletions, and query operations on a certain graph property. It has to quickly
maintain the graph property despite an adversarial order of edge deletions and
insertions. Dynamic graph problems are usually classified according to the types of
updates allowed: decremental problems allow only deletions, incremental problems
allow only insertions, and fully dynamic problems allow both.

2.1.1 The Problem

We consider the decremental all-pairs shortest paths (APSP) problem where we wish
to maintain the distances in an undirected unweighted graph under a sequence of
the following delete and distance query operations:

• Delete(u, v): delete edge (u, v) from the graph, and

• Distance(x , y): return the distance between node x and node y in the current
graph G, denoted by dG(x , y).

We use the term single-source shortest paths (SSSP) to refer to the special case where
the distance query can be done only when x = s, for a pre-specified source node s.
The efficiency is judged by two parameters: query time denoting the time needed
to answer each distance query, and total update time denoting the time needed to
process all edge deletions. The running time will be in terms of n, the number
of nodes in the graph, and m, the number of edges before any deletion. We use

̃O-notation to hide an O(polylog n) term. When it is clear from the context, we use
“time” instead of “total update time”, and, unless stated otherwise, the query time

2.1. INTRODUCTION 11

is O(1). One of the main focuses of this problem in the literature, which is also the
goal in this chapter, is to optimize the total update time while keeping the query
time and approximation guarantees small. We say that an algorithm provides an
(α , β)-approximation if the distance query on nodes x and y on the current graph G
returns an estimate δ(x , y) such that dG(x , y) ≤ δ(x , y) ≤ αdG(x , y) + β . We call α
and β multiplicative and additive errors, respectively. We are particularly interested
in the case where α = 1 + ϵ, for an arbitrarily small constant ϵ > 0, β is a small
constant, and the query time is constant or near-constant.

Previous Results Prior to our work, the best total update time for determin-
istic decremental APSP algorithms was ̃O(mn2) by one of the earliest papers in
the area from 1981 by Even and Shiloach [49]. The fastest exact randomized algo-
rithms are the ̃O(n3)-time algorithms by Demetrescu and Italiano [37] and Baswana,
Hariharan, and Sen [16]. The fastest approximation algorithm is the ̃O(mn)-time
(1 + ϵ, 0)-approximation algorithm by Roditty and Zwick [113]. If we insist on an
O(n3−δ) running time, for some constant δ > 0, Bernstein and Roditty [24] obtain
an ̃O(n2+1/k+O(1/√log n))-time (2k − 1 + ϵ, 0)-approximation algorithm, for any integer
k ≥ 2, which gives, e.g., a (3 + ϵ, 0)-approximation guarantee in ̃O(n5/2+O(1/√log n))
time. All these algorithms have an O(1) worst case query time. See Section 2.1.4 for
more detail and other related results.

2.1.2 Our Results

We present improved randomized and deterministic algorithms. Our deterministic
algorithm provides a (1 + ϵ, 0)-approximation and runs in ̃O(mn/ϵ) total update time.
Our randomized algorithm runs in ̃O(n5/2/ϵ) time and can guarantee both (1 + ϵ, 2)-
and (2 + ϵ, 0)-approximations. Table 2.1 compares our results with previous results.
In short, we make the following improvements over previous algorithms (further
discussions follow).

• The total running time of deterministic algorithms is improved from Even
and Shiloach’s ̃O(mn2) to ̃O(mn) (at the cost of (1 + ϵ, 0)-approximation and
O(log log n) query time). This is the first improvement since 1981.

• For m = ω(n3/2), the total running time is improved from Roditty and Zwick’s
̃O(mn/ϵ) to ̃O(n5/2/ϵ), at the cost of an additive error of two, which appears

only when the distance is O(1/ϵ) (since otherwise it could be treated as a
multiplicative error of O(ϵ)) and is unavoidable (as discussed below).

• Our (2 + ϵ, 0)-approximation algorithm improves the algorithm of Bernstein
and Roditty in terms of both total update time and approximation guarantee.
The multiplicative error of 2 + ϵ is essentially the best we can hope for, if we
do not want any additive error.

12 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Reference Total Running Time Approximation Deterministic?
[49] ̃O(mn2) Exact Yes
Here ̃O(mn/ϵ) (1 + ϵ, 0) Yes
[16, 37] ̃O(n3) Exact No
[113] ̃O(mn/ϵ) (1 + ϵ, 0) No
Here ̃O(n5/2/ϵ) (1 + ϵ, 2) No
[24] ̃O(n5/2+√log(6/ϵ)/√log n) (3 + ϵ, 0) No
Here ̃O(n5/2/ϵ) (2 + ϵ, 0) No

Table 2.1: Comparisons between our and previous algorithms that are closely related.
For details of these and other results see Section 2.1.4. All algorithms, except our
deterministic algorithm, have O(1) query time. Our deterministic algorithm has
O(log log n) query time.

To obtain these algorithms, we present two novel techniques, called Moving Even-
Shiloach Tree and Monotone Even-Shiloach Tree, based on a classic technique of Even
and Shiloach [49]. These techniques are reviewed in Section 2.1.3.

Improved Deterministic Algorithm In 1981, Even and Shiloach [49] presented
a deterministic decremental SSSP algorithm for undirected, unweighted graphs with a
total update time ofO(mn) over all deletions. By running this algorithm from n differ-
ent nodes, we get an O(mn2)-time decremental algorithm for APSP. No progress on
deterministic decremental APSP has been made since then. Our algorithm achieves
the first improvement over this algorithm, at the cost of a (1 + ϵ, 0)-approximation
guarantee and O(log log n) query time. (Note that our algorithm is also faster than
the current fastest randomized algorithm [113] by a log n factor.) Our deterministic
algorithm also answers a question recently raised by Bernstein [23] which asks for a
deterministic algorithm with a total update time of ̃O(mn/ϵ). As pointed out in [23]
and several other places, this question is important due to the fact that determinis-
tic algorithms can deal with an adaptive offline adversary (the strongest adversary
model in online computation [19, 26]) while the randomized algorithms developed
so far assume an oblivious adversary (the weakest adversary model) where the order
of edge deletions must be fixed before an algorithm makes random choices. Our
deterministic algorithm answers exactly this question. Using known reductions, we
also obtain a deterministic fully dynamic (1 + ϵ)-approximation with an amortized
running time of ̃O(mn/(ϵt)) per update and a query time of ̃O(t) for every t ≤ n.

Improved Randomized Algorithm Our aim is to improve the ̃O(mn) running
time of Roditty and Zwick [113] to so-called truly subcubic time, i.e., O(n3−δ) time
for some constant δ > 0, a running time that is highly sought of in many problems
(e.g., [111, 128, 129]). Note, however, that this improvement has to come at the cost
of worse approximation:

2.1. INTRODUCTION 13

Fact 2.1.1 ([41, 128]). For any α ≥ 1 and β ≥ 0 such that 2α + β < 4, there is
no combinatorial (α , β)-approximation algorithm, not even a static one, for APSP
on unweighted undirected graphs that is truly subcubic, unless we make a major
breakthrough on many long-standing open problems, such as a combinatorial Boolean
matrix multiplication and triangle detection.

This fact can be explained as follows. Due to a reduction by Dor, Halperin, and
Zwick [41], a combinatorial1 algorithm for APSP, even a (2 − ϵ, 0)-approximation
or (1 + ϵ, 1)-approximation one2, with running time O(n3−δ), for any δ > 0, will
imply a combinatorial algorithm for Boolean matrix multiplication with the same
running time, another breakthrough result. Further, due to Vassilevska Williams
and Williams [128, Theorem 1.3], the O(n3−δ)-time combinatorial algorithm will
imply breakthrough results for a few other problems. Since combinatorial dynamic
algorithms can be used to solve static APSP, the same argument applies. In particular,
the additive error of two in our (1 + ϵ, 2)-approximation algorithm is unavoidable if
we wish to get a O(n1−δ) running time (a so-called truly subcubic time) and keep a
small multiplicative error of 1 + ϵ. For the same reason, a multiplicative error of two
in our (2 + ϵ, 0)-approximation algorithm is also unavoidable. Similarly, the running
time of our deterministic algorithm cannot be improved further unless we allow
larger additive or multiplicative errors.

Roditty and Zwick [115] also showed a similar relation for decremental exact
SSSP. In weighted graphs, lower bounds can be obtained even for non-combinatorial
algorithms by assuming the hardness of all-pairs shortest-paths computation [1,
115]. Very recently (after the preliminary version [65] of this work appeared), Hen-
zinger et al. [70] showed that Fact 2.1.1 holds even for non-combinatorial algorithms
assuming that there is no truly subcubic-time algorithm for a problem called online
Boolean matrix-vector multiplication. Henzinger et al. [70] argue that refuting this
assumption will imply the same breakthrough as mentioned in Fact 2.1.1 if the term
“combinatorial algorithm” (which is not a well-defined term) is interpreted in a cer-
tain way (in particular if it is interpreted as “Strassen-like algorithm”, as defined in
[14], which captures all known fast matrix multiplication algorithms). Thus, the best
approximation guarantee we can expect from truly subcubic algorithms is, e.g., a mul-
tiplicative or additive error of at least two. Our algorithms achieve essentially these
best approximation guarantees: in ̃O(n5/2/ϵ) time, we get a (1 + ϵ, 2)-approximation,
and, if we do not want any additive error, we can get a (2 + ϵ, 0)-approximation (see
Theorem 2.3.22 and corollary 2.3.23 for the precise statements of these results).3 We
note that, prior to our work, Bernstein and Roditty’s algorithm [24] can achieve,
e.g., a (3 + ϵ, 0)-approximation guarantee in ̃O(n5/2+O(√1/ log n)) time. This result
is improved by our (2 + ϵ, 0)-approximation algorithm in terms of both time and

1The vague term “combinatorial algorithm” is usually used to refer to algorithms that do not use
algebraic operations such as matrix multiplication.

2In general, the reduction of Dor et al. holds for any (α , β) approximation as long as 2α + β < 4.
3We note that there is still some room to eliminate the ϵ-term, i.e., to get a (1, 2)-approximation

algorithm. But anything beyond this is unlikely to be possible.

14 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

approximation guarantees, and is far worse than our (1 + ϵ, 2)-approximation guar-
antee, especially when the distance is large. Also note that the running time of our
(1 + ϵ, 2)-approximation algorithm improves the ̃O(mn) one of Roditty and Zwick
[113] when m = ω(n3/2), except that our algorithm gives an additive error of two
which is unavoidable and appears only when the distance is O(1/ϵ) (since otherwise
it could be counted as a multiplicative error of O(ϵ)).

2.1.3 Techniques

Our results build on two previous algorithms. The first algorithm is the clas-
sic SSSP algorithm of Even and Shiloach [49] (with the more general analysis of
King [79]), which we will refer to as Even-Shiloach tree. The second algorithm is the
(1 + ϵ, 0)-approximation APSP algorithm of Roditty and Zwick [113]. We actually
view the algorithm of Roditty and Zwick as a framework which runs several Even-
Shiloach trees and maintains some properties while edges are deleted. We wish to
alter the Roditty-Zwick framework but doing so usually makes it hard to bound
the cost of maintaining Even-Shiloach trees (as we will discuss later). Our main
technical contribution is the development of new variations of the Even-Shiloach
tree, called moving Even-Shiloach tree and monotone Even-Shiloach tree, which are
suitable for our modified Roditty-Zwick frameworks. Since there are many other
algorithms that run Even-Shiloach trees as subroutines, it might be possible that
other algorithms will benefit from our new Even-Shiloach trees as well.

Review of Even-Shiloach Tree The Even-Shiloach tree has two parameters: a
root (or source) node s and the range (or depth) R. It maintains a shortest paths tree
rooted at s and the distances between s and all other nodes in the dynamic graph,
up to distance R (if the distance is more than R, it will be set to ∞). It has a query
time of O(1) and a total update time of O(mR) over all deletions. The total update
time crucially relies on the fact that the distance between s and any node v changes
monotonically: it will increase at most R times before it exceeds R (i.e., from 1 to R).
This “monotonicity” property heavily relies on the “decrementality” of the model,
i.e., the distance between two nodes never decreases when we delete edges, and is
easily destroyed when we try to use the Even-Shiloach tree in a more general setting
(e.g., when we want to allow edge insertions or alter the Roditty-Zwick framework).
Most of our effort in constructing both randomized and deterministic algorithms
will be spent on recovering from the destroyed decrementality.

Monotone Even-Shiloach Tree for Improved Randomized Algorithms

The high-level idea of our randomized algorithm is to run an existing decremental
algorithm of Roditty and Zwick [113] on a sparse weighted graph that approximates
the distances in the original graph, usually referred to as an emulator (see Section 2.3.1
for more detail). This approach is commonly used in the static setting (e.g., [6, 12, 31,
33, 41, 44, 47, 125, 130]), and it was recently used for the first time in the decremental

2.1. INTRODUCTION 15

setting by Bernstein and Roditty [24]. As pointed out by Bernstein and Roditty,
while it is a simple task to run an existing APSP algorithm on an emulator in the
static setting, doing so in the decremental setting is not easy since it will destroy the
“decrementality” of the setting: when an edge in the original graph is deleted, we
might have to insert an edge into the emulator. Thus, we cannot run decremental
algorithms on an arbitrary emulator, because from the perspective of this emulator,
we are not in a decremental setting.

Bernstein and Roditty manage to get around this problem by constructing an
emulator with a special property4. Roughly speaking, they show that their emulator
guarantees that the distance between any two nodes changes ̃O(n) times. Based on this
simple property, they show that the (2k − 1, 0)-approximation algorithm of Roditty
and Zwick [113] can be run on their emulator with a small running time. However,
they cannot run the (1 + ϵ, 0)-approximation algorithm of Roditty and Zwick on their
emulator. The main reason is that this algorithm relies on a more general property of
a graph under deletions: for any R between 1 and n, the distance between any two
nodes changes at most R times before it exceeds R (i.e., it changes from 1 to R). They
suggested to find an emulator with this more general property as a future research
direction.

In our algorithm, we manage to run the (1 + ϵ, 0)-approximation algorithm of
Roditty and Zwick on our emulator, but in a conceptually different way from Bernstein
and Roditty. In particular, we do not construct the emulator asked for by Bernstein
and Roditty; rather, we show that there is a type of emulators such that, while edge
insertions can occur often, their effect can be ignored. We then modify the algorithm
of Roditty and Zwick to incorporate this ignorance. More precisely, the algorithm
of Roditty and Zwick relies on the classic Even-Shiloach tree. We develop a simple
variant of this classic algorithm called monotone Even-Shiloach tree that can handle
restricted kinds of insertions and use it to replace the classic Even-Shiloach tree in
the algorithm of Roditty and Zwick.

Our modification to the Even-Shiloach tree is as follows. Recall that the Even-
Shiloach tree can maintain the distances between a specific node s and all other
nodes, up to R, in O(mR) total update time under edge deletions. This is because, for
any node v, it has to do work O(deg(v)) (the degree of v) only when the distance
between s and v changes, which will happen at most R times (from 1 to R) in the
decremental model. Thus, the total work on each node v will be O(R deg(v)) which
sums to O(mR) in total. This algorithm does not perform well when there are edge
insertions: one edge insertion could cause a decrease in the distance between s and v
by as much as Ω(R), causing an additional Ω(R) distance changes. The idea of our
monotone Even-Shiloach tree is extremely simple: ignore distance decreases! It is
easy to show that the total update time of our algorithm remains the same O(mR) as
the classic one. The hard part is proving that it gives a good approximation when

4In fact, their emulator is basically identical to one used earlier by Bernstein [22], which is in turn
a modification of a spanner developed by Thorup and Zwick [125, 126]. However, the properties they
proved are entirely new.

16 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

run on an emulator. This is because it does not maintain the exact distances on an
emulator anymore. So, even when the emulator gives a good approximate distance
on the original graph, our monotone Even-Shiloach tree might not. Our monotone
Even-Shiloach tree does not give any guarantee for the distances in the emulator, but
we can show that it still approximates the distances in the original graph. Of course,
this will not work on any emulator; but we can show that it works on a specific type
of emulators that we call locally persevering emulators.5 Roughly speaking, a locally
persevering emulator is an emulator where, for any “nearby”6 nodes u and v in the
original graph, either

(1) there is a shortest path from u to v in the original graph that also appears in
the emulator, or

(2) there is a path in the emulator that approximates the distance in the original
graph and behaves in a persevering way, in the sense that all edges of this
path are in the emulator since before the first deletion and their weights never
decrease. We call the latter path a persevering path.

Once we have the right definition of a locally persevering emulator, proving that our
monotone Even-Shiloach tree gives a good distance estimate is conceptually simple
(we sketch the proof idea below). Our last step is to show that such an emulator exists
and can be efficiently maintained under edge deletions. We show (roughly) that
we can maintain an emulator, which (1 + ϵ, 2)-approximates the distances and has

̃O(n3/2) edges, in ̃O(n5/2/ϵ) total update time under edge deletions. By running the
̃O(mn)-time algorithm of Roditty and Zwick on this emulator, replacing the classic

Even-Shiloach tree by our monotone version, we have the desired ̃O(n5/2/ϵ)-time (1+
ϵ, 2)-approximation algorithm. To turn this algorithm into a (2 + ϵ, 0)-approximation,
we observe that we can check if two nodes are of distance one easily; thus, we only
have to use our (1 + ϵ, 2)-approximation algorithm to answer a distance query when
the distance between two nodes is at least two. In this case, the additive error of two
can be treated as a multiplicative factor.

Proving theApproximationGuarantee of theMonotoneEven-ShiloachTree
To illustrate why our monotone Even-Shiloach tree gives a good approximation
when run on a locally persevering emulator, we sketch a result that is weaker and
simpler than our main results; we show how to (3, 0)-approximate distances from a
particular node s to other nodes. This fact easily leads to a (3 + ϵ, 0)-approximation

̃O(n5/2/ϵ)-time algorithm, which gives the same approximation guarantee as the
algorithm of Bernstein and Roditty [24], and is slightly faster and reasonably simpler.

5We remark that there are other emulators that can be maintained in the decremental setting,
e.g., [8, 18, 22, 24, 45, 113, 125, 126]. We are the first to introduce the notion of locally persevering
emulators and show that there is an emulator that has this property.

6Note that the word “nearby” will be parameterized by a parameter τ in the formal definition. So,
formally, we must use the term (α , β , τ)-locally persevering emulator where α and β are multiplicative
and additive approximation factors, respectively. See Section 2.3.1 for detail.

2.1. INTRODUCTION 17

To achieve this, we use the following emulator which is a simple modification of
the emulator of Dor et al. [41]: Randomly select ̃Θ(√n) nodes. At any time, the
emulator consists of all edges incident to nodes of degree at most √n and edges
from each random node c to every node v of distance at most 2 from c with weight
equal to the distance between v and c. When the distance exceeds 2, the edge is
deleted from the emulator. It can be shown that this emulator can be maintained in

̃O(mn1/2) = ̃O(n5/2) time under edge deletions. Moreover, it is a (3, 0)-emulator with
high probability, since for every edge (u, v), either

(i) (u, v) is in the emulator, or

(ii) there is a path ⟨u, c, v⟩ of length at most three, where c is a random node.

Observe further that if (ii) happens, then the path ⟨u, c, v⟩ is persevering (as in Item (2)
above):

(ii’) ⟨u, c, v⟩ must be in this emulator since before the first deletion, and the weights
of the edges (u, c) and (c, v) have never decreased.

It follows that this emulator is locally persevering.7 Now we show that when we run
the monotone Even-Shiloach tree on the above emulator, it gives (3, 0)-approximate
distances between s and all other nodes. Recall that the monotone Even-Shiloach tree
maintains a distance estimate, say ℓ(v), between s and every node v in the emulator8.
For every node v , the value of ℓ(v) is regularly updated, except that when the degree
of a node drops to √n and the resulting insertion of an edge, say (u, v), decreases the
distance between v and s in the emulator; in particular, ℓ(v) > ℓ(u) + w(u, v) where
w(u, v) is the weight of edge (u, v). A usual way to modify the Even-Shiloach tree for
dealing with such an insertion [24] is to decrease the value of ℓ(v) to ℓ(u) + w(u, v).
Our monotone Even-Shiloach tree will not do this and keeps ℓ(v) unchanged. In
this case, we say that the node v and the edge (u, v) become stretched. In general, an
edge (u, v) is stretched if ℓ(v) > ℓ(u) + w(u, v) or ℓ(u) > ℓ(v) + w(u, v), and a node is
stretched if it is incident to a stretched edge. Two observations that we will use are

(O1) as long as a node v is stretched, it will not change ℓ(v), and

(O2) a stretched edge must be an inserted edge.

We will argue that ℓ(v) of every node v is at most three times its true distance to s
in the original graph. To prove this for a stretched node v, we simply use the fact
that this is true before v becomes stretched (by induction), and ℓ(v) has not changed
since then (by (O1)). If v is not stretched, we consider a shortest path ⟨v , u1, u2, … , s⟩
from v to s in the original graph. We will prove that

ℓ(v) ≤ ℓ(u1) + 3;
7We note that we are being vague here. To be formal, we later define the notion of (α , β , τ)-locally

persevering emulator in Definition 2.3.2, and the emulator we just defined will be (3, 0, 1)-locally
persevering.

8Here ℓ stands for “level” as ℓ(v) is the level of v in the breadth-first search tree rooted at s.

18 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

thus, assuming that ℓ(u1) satisfies the claim (by induction), ℓ(v) will satisfy the claim
as well. To prove this, observe that if the edge (v, u1) is contained in the emulator
then we know that ℓ(v) ≤ ℓ(u1) + 1 (since v is not stretched), and we are done.
Otherwise, by the fact that this emulator is locally persevering, we know that there
is a path π = ⟨v , c, u1⟩ of length at most three in the emulator, and it is persevering
(see Item (ii’)). By (O2), edges in π are not stretched. It follows that

ℓ(v) ≤ ℓ(c) + w(v , c) ≤ ℓ(u1) + w(v , c) + w(c, u1) ≤ ℓ(u1) + 3,

where w(v , c) and w(c, u1) are the current weights of edges (v , c) and (c, u1), respec-
tively, in the emulator. The claim follows.

In Section 2.3, we show how to refine the above argument to obtain a better
guarantee, namely a (1 + ϵ, 2)-approximation. The first refinement, which is simple,
is extending the emulator above to a (1 + ϵ, 2)-emulator. This is done by adding
edges from every random node c to all nodes at distance at most 1/ϵ from c. The
next refinement, which is the main one, is the formal definition of (α , β , τ)-locally
persevering emulators for some parameters α , β , and τ , and extending the proof
outlined above to show that the monotone Even-Shiloach tree on such an emulator
will give an (α + β/τ , β)-approximate distance estimate. We finally show that our
simple (1 + ϵ, 2)-emulator is a (1, 2, 1/ϵ)-locally persevering emulator.

Moving Even-Shiloach Tree for Improved Deterministic Algorithms

Many distance-related algorithms in both dynamic and static settings use the fol-
lowing randomized argument as an important technique: if we select ̃O(h) nodes,
called centers, uniformly at random, then every node will be at distance at most n/h
from one of the centers with high probability [113, 127] (see Lemma 1.3.2). This
even holds in the decremental setting (assuming an oblivious adversary). Like other
algorithms, the Roditty-Zwick algorithm also heavily relies on this argument, which
is the only reason why it is randomized. Our goal is to derandomize this argument.
Specifically, for several different values of h, the Roditty-Zwick framework selects

̃O(h) random centers and uses the randomized argument above to argue that every
node in a connected component of size at least n/h is covered by a center in the sense
that it will always be within distance at most n/h from at least one center; we call
this set of centers a center cover. It also maintains an Even-Shiloach tree of depth
R = O(n/h) from these h centers, which takes a total update time of ̃O(mR) for each
tree and thus ̃O(hmR) = ̃O(mn) over all trees. To derandomize the above process,
we have two constraints:

(1) the center cover must be maintained (i.e., every node in a component of size
at least n/h has a center nearby), and

(2) the number of centers (and thus Even-Shiloach trees maintained) must be ̃O(h)
in total.

2.1. INTRODUCTION 19

Maintaining these constraints in the static setting is fairly simple, as in the
following algorithm.

Algorithm 2.1.2. As long as there is a node v in a “big” connected component (i.e., of
size at least n/h) that is not covered by any center, make v a new center.

Algorithm 2.1.2 clearly guarantees the first constraint. The second constraint
follows from the fact that the distance between any two centers is more than n/h.
Since understanding the proof for guaranteeing the second constraint is important
for understanding our charging argument later, we sketch it here. Let us label the
centers by numbers j = 1, 2, … , h. For a center with number j, we let Bj be a “ball” of
radius n/(2h); i.e., Bj is a set of nodes at distance at most n/(2h) from center number
j. Observe that Bj and Bj′ are disjoint for distinct centers j and j′ since the distance
between these centers is more than n/h Moreover, |Bj| ≥ n/(2h) since every center is
in a big connected component. So, the number of balls (thus the number of centers)
is at most n/(n/(2h)) = 2h. This guarantees the second constraint. Thus, we can
guarantee both constraints in the static setting.

This, however, is not enough in the dynamic setting since after edge deletions,
some nodes in big components might not be covered anymore and, if we keep
repeating Algorithm 2.1.2, we might have to keep creating new centers to the point
that the second constraint is violated. The key idea that we introduce to avoid this
problem is to allow a center and the Even-Shiloach tree rooted at it to move. We
call this a moving Even-Shiloach tree or moving centers data structure. Specifically,
in the moving Even-Shiloach tree, we view a root (center) s not as a node, but as
a token that can be placed on any node, and the task of the moving Even-Shiloach
tree is to maintain the distance between the node that the root is placed on and
all other nodes, up to distance R. We allow a move operation where we can move
the root to a new node and the corresponding Even-Shiloach tree must be adjusted
accordingly. To illustrate the power of the move operation, consider the following
simple modification of Algorithm 2.1.2. (Later, we also have to modify this algorithm
due to other problems that we will discuss next.)

Algorithm 2.1.3. As long as there is a node v in a big connected component that is
not covered by any center, we make it a center as follows. If there is a center in a small
connected component, we move this center to v ; otherwise, we open a new center at v .

Algorithm 2.1.3 reuses centers and Even-Shiloach trees in small connected com-
ponents9 without violating the first constraint since nodes in small connected com-
ponents do not need to be covered. The second constraint can also be guaranteed
by showing that |Bj| ≥ n/(2h) for all j when we open a new center. Thus, by using
moving Even-Shiloach trees, we can guarantee the two constraints above. We are,
however, not done yet. This is because our new move operation also incurs a cost!
The most nontrivial idea in our algorithm is a charging argument to bound this cost.

9We note the detail that we need a deterministic dynamic connectivity data structure [62, 71] to
implement Algorithm 2.1.3. The additional cost incurred is negligible.

20 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

There are two types of cost. First, the relocation cost which is the cost of construct-
ing a new breadth-first search tree rooted at the new location of the center. This
cost can be bounded by O(m) since we can construct a breadth-first search tree by
running the static O(m)-time algorithm. Thus, it will be enough to guarantee that
we do not move Even-Shiloach trees more than O(n) times. In fact, this is already
guaranteed in Algorithm 2.1.3 since we will never move an Even-Shiloach tree back
to a previous node. The second cost, which ismuch harder to bound, is the additional
maintenance cost. Recall that we can bound the total update time of an Even-Shiloach
tree by O(mR) because of the fact that the distance between its root (center) and
each other node changes at most R times before exceeding R, by increasing from
1 to R. However, when we move the root from, say, a node u to its neighbor v,
the distance between the new root v and some node, say x , might be smaller than
the previous distance from u to x . In other words, the decrementality property is
destroyed. Fortunately, observe that the distance change will be at most one per
node when we move a tree to a neighboring node. Using a standard argument, we
can then conclude that moving a tree between neighboring nodes costs an additional
distance maintenance cost of O(m). This motivates us to define the notion of moving
distance to measure how far we move the Even-Shiloach trees in total. We will be
able to bound the maintenance cost by O(mn) if we can show that the total moving
distance (summing over all moving Even-Shiloach trees) is O(n). Bounding the total
moving distance by O(n) while having only O(h) Even-Shiloach trees is the most
challenging part in obtaining our deterministic algorithm. We do it by using a careful
charging argument. We sketch this argument here. For more intuition and detail,
see Section 2.4.

Charging Argument for Bounding the Total Moving Distance Recall that
we denote the centers by numbers j = 1, 2, … , h. We make a few modifications to
Algorithm 2.1.3. The most important change is the introduction of the set C j for
each center j (which is the root of a moving Even-Shiloach tree). This will lead to a
few other changes. The importance of C j is that we will “charge” the moving cost
of center j to nodes in C j ; in particular, we bound the total moving distance to be
O(n) by showing that the moving distance of center j can be bounded by |C j|, and
C j and C j′ are disjoint for distinct centers j and j′. The other important changes are
the definitions of “ball” and “small connected component” which will now depend
on C j .

• We change the definition of Bj from a ball of radius n/(2h) to a ball of radius
(n/(2h)) − |C j|.

• We redefine the notion of “small connected component” as follows: we say
that a center j is in a small connected component if the connected component
containing it has less than (n/(2h)) − |C j| nodes (instead of n/h nodes).

These new definitions might not be intuitive, but they are crucial for the charging
argument. We also have to modify Algorithm 2.1.3 in a counter-intuitive way: the

2.1. INTRODUCTION 21

most important modification is that we have to give up the nice property that the
distance between any two centers is more than n/(2h) as in Algorithms 2.1.2 and 2.1.3.
In fact, we will always move a center out of a small connected component, and we
will move it as little as possible, even though the new location could be near other
centers. In particular, consider the deletion of an edge (u, v). It can be shown that
there is at most one center j that is in a small connected component (according to
the new definition), and this center j must be in the same connected component
as u or v. Suppose that such a center j exists, and it is in the same connected
component as u, say X . Then, we will move center j to v, which is just enough to
move j out of component X (it is easy to see that v is the node outside of X that is
nearest to j before the deletion). We will also update C j by adding all nodes of X to
C j . This finishes the moving step, and it can be shown that there is no center in a
small connected component now. Next, we make sure that every node is covered
by opening a new center at nodes that are not covered, as in Algorithm 2.1.2. To
conclude, our algorithm is as follows.

Algorithm 2.1.4. Consider the deletion of an edge (u, v). Check if there is a center j
that is in a “small” connected component X (of size less than (n/(2h)) − |C j|). If there
is such a j (there will be at most one such j), move it out of X to a new node which
is the unique node in {u, v} ⧵ X . After moving, execute the static algorithm as in
Algorithm 2.1.2.

To see that the total moving distance is O(n), observe that when we move a
center j out of component X in Algorithm 2.1.4, we incur a moving distance of at
most |X | (since we can move j along a path in X). Thus, we can always bound the
total moving distance of center j by |C j|. We additionally show that C j and C j′ are
disjoint for different centers j and j′. So, the total moving distance over all centers is
at most ∑j |C j| ≤ n. We also have to bound the number of centers. Since we give up
the nice property that centers are far apart, we cannot use the same argument to
show that the sets Bj are disjoint and big (i.e., |Bj| ≥ n/(2h)), as in Algorithm 2.1.3
and Algorithm 2.1.4. However, using C j , we can still show something very similar:
Bj ∪ C j and Bj′ ∪ C j′ are disjoint for distinct j and j′, and |Bj ∪ C j| ≥ n/(2h). Thus, we
can still bound the number of centers by O(h) as before.

2.1.4 Related Work

Dynamic APSP has a long history, with the first papers dating back to 1967 [93,
97]10. It also has a tight connection with its static counterpart (where the graph does
not change), which is one of the most fundamental problems in computer science:
On the one hand, we wish to devise a dynamic algorithm that beats the naive
algorithm where we recompute shortest paths from scratch using static algorithms
after every deletion. On the other hand, the best we can hope for is to match

10The early papers [93, 97], however, were not able to beat the naive algorithm where we compute
APSP from scratch after every change.

22 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

the total update time of decremental algorithms to the best running time of static
algorithms. To understand the whole picture, let us first recall the current situation
in the static setting. We will focus on combinatorial algorithms11 since our and most
previous decremental algorithms are combinatorial. Static APSP on unweighted
undirected graphs can be solved inO(mn) time by simply constructing a breadth-first
search tree from every node. Interestingly, this algorithm is the fastest combinatorial
algorithm for APSP (despite other fast non-combinatorial algorithms based on matrix
multiplication). In fact, a faster combinatorial algorithm will be amajor breakthrough,
not just because computing shortest paths is a long-standing problem by itself, but
also because it will imply faster algorithms for other long-standing problems, as
stated in Fact 2.1.1.

The fact that the best static algorithm takes O(mn) time means two things: First,
the naive algorithm will take O(m2n) total update time. Second, the best total update
time we can hope for is O(mn). A result that is perhaps the first to beat the naive
O(m2n)-time algorithm is from 1981 by Even and Shiloach [49], for the special case
of SSSP. Even and Shiloach actually studied decremental connectivity, but their main
data structure gives anO(mn) total update time withO(1) query time for decremental
SSSP; this implies a total update time of O(mn2) for decremental APSP. Roditty and
Zwick [115] later provided evidence that the O(mn)-time decremental unweighted
SSSP algorithm of Even and Shiloach is the fastest possible by showing that this
problem is at least as hard as several natural static problems such as Boolean matrix
multiplication and the problem of finding all edges of a graph that are contained
in triangles. For the incremental setting, Ausiello, Italiano, Marchetti-Spaccamela,
and Nanni [9] presented an ̃O(n3)-time APSP algorithm on unweighted directed
graphs. (An extension of this algorithm for graphs with small integer edge weights
is given in [10].) After that, many efficient fully-dynamic algorithms have been
proposed (e.g., [37, 38, 50, 59, 79]). Subsequently, Demetrescu and Italiano [36]
achieved a major breakthrough for the fully dynamic case: they obtained a fully
dynamic deterministic algorithm for the weighted directed APSP problem with an
amortized time of ̃O(n2) per update, implying a total update time of ̃O(mn2) over
all deletions in the decremental setting, the same running time as the algorithm of
Even and Shiloach. (Thorup [121] presented a small improvement of this result.)
An amortized update time of ̃O(n2) is essentially optimal if the distance matrix is
to be explicitly maintained, as done by the algorithm of Demetrescu and Italiano
[36], since each update operation may change Ω(n2) entries in the matrix. Even for
unweighted, undirected graphs, no faster algorithm is known. Thus, the O(mn2)
total update time of Even and Shiloach remains the best for deterministic decremental
algorithms, even on undirected unweighted graphs and if approximation is allowed.

For the case of randomized algorithms, Demetrescu and Italiano [37] obtained an
exact decremental algorithm on weighted directed graphs with ̃O(n3) total update
time12 (if weight increments are not considered). Baswana, Hariharan, and Sen [16]

11The vague term “combinatorial algorithm” is usually used to refer to algorithms that do not use
algebraic operations such as matrix multiplication.

12This algorithm actually works in a much more general setting where each edge weight can assume

2.1. INTRODUCTION 23

obtained an exact decremental algorithm on unweighted directed graphs with ̃O(n3)
total update time. They also obtained a (1 + ϵ, 0)-approximation algorithm with

̃O(m1/2n2) total update time. In [17], they improved the running time further on
undirected unweighted graphs, at the cost of a worse approximation guarantee: they
obtained approximation guarantees of (3, 0), (5, 0), (7, 0) in ̃O(mn10/9), ̃O(mn14/13),
and ̃O(mn28/27) time, respectively. Roditty and Zwick [113] presented two improved
algorithms for unweighted, undirected graphs. The first was a (1 + ϵ, 0)-approximate
decremental APSP algorithm with constant query time and a total update time of

̃O(mn). This algorithm remains the current fastest. The second algorithm achieves
a worse approximation bound of (2k − 1, 0), for any 2 ≤ k ≤ log n, but has the
advantage of requiring less space (O(m + n1+1/k)). By modifying the second algo-
rithm to work on an emulator, Bernstein and Roditty [24] presented the first truly
subcubic algorithm which gives a (2k − 1 + ϵ, 0)-approximation and has a total up-
date time of ̃O(n1+1/k+O(1/√log n)). They also presented a (1 + ϵ, 0)-approximation

̃O(n2+O(1/√log n))-time algorithm for SSSP, which is the first improvement since
the algorithm of Even and Shiloach. Very recently, Bernstein [23] presented a
(1 + ϵ, 0)-approximation ̃O(mn logW)-time algorithm for the directed weighted case,
whereW is the ratio of the largest edge weight ever seen in the graph to the smallest
such weight.

We note that the (1 + ϵ, 0)-approximation ̃O(mn)-time algorithm of Roditty and
Zwick matches the state of the art in the static setting; thus, it is essentially tight.
However, by allowing additive error, this running time was improved in the static
setting. For example, Dor, Halperin, and Zwick [41], extending the approach of
Aingworth et al. [6], presented a (1, 2)-approximation for APSP in unweighted undi-
rected graphs with a running time of O(min{n3/2m1/2, n7/3}). Elkin [44] presented
an algorithm for unweighted undirected graphs with a running time of O(mnρ +n2ζ)
that approximates the distances with a multiplicative error of 1 + ϵ and an additive
error that is a function of ζ , ρ and ϵ. There is no decremental algorithm with additive
error prior to our algorithm.

SubsequentWork Independent of our work, Abraham and Chechik [2] developed
a randomized (1+ ϵ, 2)-approximate decremental APSP algorithm with a total update
time of ̃O(n5/2+O(1/√log n)) and constant query time. This result is very similar to
one of ours, except that the running time in [2] is slightly more than ̃O(n5/2). After
the preliminary version of our work ([65]) appeared, we extended the randomized
algorithm in this chapter and obtained the following two algorithms for APSP [63]:
(i) a (1 + ϵ, 2(1 + 2/ϵ)k−2)-approximation with total time ̃O(n2+1/k(37/ϵ)k−1) for any
2 ≤ k ≤ log n (improving the time in this chapter with a larger additive error when
k ≥ 3), and (ii) a (3 + ϵ)-approximation with total time ̃O(m2/3n3.8/3+O(1/√log n)) (it is
faster than the algorithm in this chapter for sparse graphs but causes more multi-

S different values. Note that the amortized time per update of this algorithm is ̃O(Sn), but this holds
only when there are Ω(n2) updates (see [37, Theorem 10]). Also note that the algorithm is randomized
with one-sided error.

24 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

plicative error). These two algorithms heavily rely on the monotone Even-Shiloach
tree introduced in this chapter. In the same paper, the monotone Even-Shiloach
tree was also used in combination with techniques of Chapter 5 to obtain the first
subquadratic-time algorithm for approximate SSSP. Very recently, we obtained an
almost linear total update time for (1 + ϵ)-approximate SSSP in weighted undirected
graphs (see Chapter 3), where the monotone Even-Shiloach tree again played a cen-
tral role. We also obtained the first improvement over Even-Shiloach’s algorithm for
single-source reachability and approximate single-source shortest paths on directed
graphs (see Chapter 4).

2.2 Background

2.2.1 Basic Definitions

In the following we give some basic notation and definitions.

Definition 2.2.1 (Dynamic graph). A dynamic graph 𝒢 is a sequence of graphs
𝒢 = (Gi)0≤i≤k that share a common set of nodes V . The set of edges of the graph Gi (for
0 ≤ i ≤ k) is denoted by E(Gi). The number of nodes of 𝒢 is n = |V | and the initial
number of edges of 𝒢 is m = |E(G0)|. The set of edges ever contained in 𝒢 up to time t
(where 0 ≤ t ≤ k) is Et (𝒢) = ∪0≤i≤tE(Gi). A dynamic weighted graph ℋ is a sequence
of weighted graphs ℋ = (Hi ,wi)0≤i≤k that share a common set of nodes V . For 0 ≤ i ≤ k
and every edge (u, v) ∈ E(Hi), the weight of (u, v) is given by wi(u, v).

Let us clarify how a dynamic graph 𝒢 = (Gi)0≤i≤k is processed by a dynamic
algorithm. The dynamic graph 𝒢 is a sequence of graphs picked by an adversary
before the algorithm starts. In its initialization phase, the algorithm may process the
initial graph G0 and in the i-th update phase, the algorithm may process the graph Gi .
At the beginning of the i-th update phase, the graph Gi is presented to the algorithm
implicitly as the set of updates from Gi−1 to Gi . The algorithm will, for example, be
informed which edges were deleted from the graph. After the initialization phase
and after each update phase, the algorithm has to be able to answer queries. In our
case, these queries will usually be distance queries and the algorithm will answer
them in constant or near-constant time. The total update time of the algorithm is the
total time spent for processing the initialization and all k updates.

Definition 2.2.2 (Updates). For a dynamic graph 𝒢 = (Gi)0≤i≤k we say for an edge
(u, v) that

• (u, v) is deleted at time t if (u, v) is contained in Gt−1 but not in Gt .

• (u, v) is inserted at time t if (u, v) contained in Gt but not in Gt−1.

For a dynamic weighted graph ℋ = (Hi ,wi)0≤i≤k , we additionally say for an edge (u, v)
that

2.2. BACKGROUND 25

• the weight of (u, v) is increased at time t if wt (u, v) > wt−1(u, v) (and (u, v) is
contained in both Gt−1 and Gt).

• the weight of (u, v) is decreased at time t if wt (u, v) < wt−1(u, v) (and (u, v) is
contained in both Gt−1 and Gt).

Every deletion, insertion, weight increase or weight decrease is called an update. The
total number of updates up to time t of a dynamic (weighted) graph 𝒢 is denoted by
ϕt (𝒢).

Definition 2.2.3 (Decremental graph). A decremental graph 𝒢 is a dynamic graph
𝒢 = (Gi)0≤i≤k such that for every 1 ≤ i ≤ k there is exactly one edge deletion at time i.
Note that Gi is the graph after the i-th edge deletion.

By our definition decremental graphs are always unweighted. For a weighted
version of this concept it would make sense to additionally allow edge weight
increases. In a decremental graph 𝒢 = (Gi)0≤i≤k we necessarily have k ≤ m because
every edge can be deleted only once. For decremental shortest paths algorithms
the total update time usually does not depend on the number of deletions k. This is
the case because of the amortization argument typically used for these algorithms.
For this reason, it will often suffice for our purposes to bound ϕk(𝒢) or |Ek(𝒢)| by
numbers that do not depend on k.

We now formulate the approximate all-pairs shortest paths (APSP) problem we
are trying to solve.

Definition 2.2.4 (Distance). The distance of a node x to a node y in a graph G is
denoted by dG(x , y). If x and y are not connected in G, we set dG(x , y) = ∞. In a
weighted graph (H ,w) the distance of x to y is denoted by dH ,w(x , y).

Definition 2.2.5. An (α , β)-approximate decremental all-pairs shortest paths (APSP)
data structure for a decremental graph 𝒢 = (Gi)0≤i≤k maintains, for all nodes x and y
and all 0 ≤ i ≤ k, an estimate δi(x , y) of the distance between x and y in Gi . After the
i-th edge deletion (where 0 ≤ i ≤ k), it provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi .

• Distance(x , y): Return an estimate δi(x , y) of the distance between x and r in
Gi such that dGi

(x , y) ≤ δi(x , y) ≤ αdGi
(x , y) + β .

The total update time is the total time needed for performing all k delete operations
and the initialization and the query time is the worst-case time needed to answer a
single distance query. The data structure is exact if α = 1 and β = 0.

Similarly, we define a data structure for decremental single-source shortest paths
(SSSP). We incorporate two special requirements in this definition. First, we are
interested in SSSP data structures that only need to work up to a certain distance

26 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

range13 Rd from the source node which is specified by a parameter Rd. Second, we
demand that the data structure tells us whenever a node leaves this distance range.
The latter is a technical requirement that simplifies some of our proofs.

Definition 2.2.6. An (α , β)-approximate decremental single-source shortest paths
(SSSP) data structure with source (or: root) node r and distance range parameter Rd

for a decremental graph 𝒢 = (Gi)0≤i≤k maintains, for every node x and all 0 ≤ i ≤ k, an
estimate δi(x , r) ∈ {0, 1, … , ⌊αRd + β⌋, ∞} of the distance between x and r in Gi . After
the i-th edge deletion (where 0 ≤ i ≤ k), it provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi and return the set of all nodes x
such that δi(x , r) ≤ αRd + β and δi+1(x , r) > αRd + β

• Distance(x): Return an estimate δi(x , r) of the distance between x and r in Gi
such that δi(x , r) ≥ dGi

(x , r) and if dGi
(x , r) ≤ Rd, then δi(x , r) ≤ αdGi

(x , r) + β .

The total update time is the total time needed for performing all k delete operations
and the initialization and the query time is the worst-case time needed to answer a
single distance query. The data structure is exact if α = 1 and β = 0.

Finally, we define the remaining notions on graphs we will use.

Definition 2.2.7 (Degree). We say that v is a neighbor of u if there is an edge (u, v)
in G. The degree of a node u in the graph G, denoted by degG(u), is the number
of neighbors of u in G. The dynamic degree of a node u in a dynamic graph 𝒢 is
deg𝒢 (u) = |{(u, v) ∣ (u, v) ∈ Ek(𝒢)}|.

Definition 2.2.8 (Paths). Let (H ,w) be a weighted graph and let π be a path in (H ,w)
. The number of nodes on the path π is denoted by |π| and the total weight of the path
(i.e., the sum of the weights of its edges) is denoted by w(π).

Definition 2.2.9 (Connected component). For every graph G and every node x we
denote by CompG(x) the connected component of x in G, i.e., the set of nodes that are
connected to x in G.

2.2.2 Decremental Shortest-Path Tree Data Structure

The central data structure in dynamic shortest paths algorithms is the dynamic
single-source shortest-paths tree introduced by Even and Shiloach, in short ES-tree.
Even and Shiloach [49] developed this data structure for undirected, unweighted
graphs. Later on, Henzinger and King [61] observed that it can be adapted to work
on directed graphs and King [79] gave a modification for directed, weighted graphs
with positive integer edge weights. In the following we review some important
properties of this data structure.

13In this chapter, there are two related parameters Rd (introduced here) representing the “distance
range” of an SSSP data structure (e.g., the Even-Shiloach tree described in Section 2.2.2) and Rc (which
will be introduced in Section 2.2.3) representing the “cover range” of the center cover data structure.

2.2. BACKGROUND 27

level 0

level 1

level 2

level 3

r

ba c

d e

(a)

r

b c

eda

level(a) = 2

lev
el(a

) =
2

level(a) = 2

(b)

r

b c

ea

d

le
ve
l(d

)=
3

lev
el(
d)
= 3

(c)

Figure 2.1: Example of the view of the ES-tree as nodes talking to each other. (a) The
ES-tree before the edge deletion. (b) After deleting the edge (r , a), the level of the
node a changes to 2. The node a sends a message to all neighbors to inform them
about this change. (c) This causes the node d to change its level and thus d sends a
message to inform its neighbors. There are no other changes, so the new ES-tree is
as in (c). Thus, there are 5 messages involved in constructing the new ES-tree, and
Algorithm 2.1 shows that this process can be implemented in 5 time units.

We describe an ES-tree on dynamic weighted undirected graphs for a given root
node r and a given distance range parameter Rd. The data structure can handle
arbitrary edge deletions and weight increases. The data structure maintains, for
every node v, a label ℓ(v), called the level of v. The level of v corresponds to the
distance between v and the root r . Any node v whose distance to r is more than Rd

has ℓ(v) = ∞. Initially, the values of ℓ(v) can be computed in ̃O(m) time using, e.g.,
Dijkstra’s algorithm. The level ℓ(v) implicitly implies the shortest-path tree since
the parent of every node v is a node z such that ℓ(v) = ℓ(z) + w(v , z). (Every node v
such that ℓ(v) = ∞ will not be in the shortest-paths tree.) Every deletion of an edge
(u, v) possibly affects the levels of several nodes. The algorithm tries to adjust the
levels of these nodes as follows.

InformalDescription How the ES-tree handles deletions can be intuitively viewed
as nodes in the input graph talking to each other as follows. Imagine that every
node v in the input graph is a computing unit that tries to maintain its level ℓ(v)
corresponding to its current distance to the root. It knows the levels of its neighbors
and has to make sure that

ℓ(v) = min
u

(ℓ(u) + w(u, v)) (2.1)

28 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

where the minimum is over all current neighbors u of v . When we delete an edge
incident to v , the value of ℓ(v) might change. If this happens, v sends a message to
each of its neighbors to inform about this change, since the levels of these nodes
might have to change as well. Every neighbor of v then updates its level accordingly
and if its level changes, it sends messages to its neighbors (including v), too. (See
Figure 2.1 for an example.) An important point, which we will show soon, is that we
can implement the ES-tree in time proportional to the number of messages. This means
that when a node v’s level is changed, we can bound the time we need to maintain
the ES-tree by its current degree. Thus, the contribution of a node v to the running
time to update the ES-tree after the i-th deletion or weight increase is degGi

(v) times
its level change, i.e., min(Rd, ℓi(v)) − min(Rd, ℓi−1(v)) (the minimum is to avoid the
case where ℓi(v) = ∞). This intuitively leads to the following lemma.

Lemma 2.2.10 (King [79]). The ES-tree is an exact decremental SSSP data structure for
shortest paths up to a given length Rd. It has constant query time and in a decremental
graph 𝒢 = (Gi ,wi)0≤i≤k , its total update time can be bounded by

O
(
ϕk(𝒢) + tSP + ∑

1≤i≤k
∑
v∈V

degGi
(v) (min(Rd, ℓi(v)) − min(Rd, ℓi−1(v))))

where tSP is the time needed for computing a single-source shortest paths tree up to
depth Rd and, for 0 ≤ i ≤ k, ℓi(v) is the level of v after the ES-tree has processed the i-th
deletion or weight increase.

Recall that ϕk(𝒢) is the total number of updates (deletions and weight increases).
Note that when the graph is unweighted, only deletions are allowed. In this case, the
ϕk(𝒢) term can be ignored. Lemma 2.2.10 can be simplified by using two specific
bounds. These bounds are in fact what we need later in this chapter.

Corollary 2.2.11. There is an exact decremental SSSP data structure for paths up
to a given length Rd that has constant query time and in a decremental graph 𝒢 =
(Gi ,wi)0≤i≤k with source node r , its total update time can be bounded by

O
(
ϕk(𝒢) + tSP + ∑

v∈V
degG0

(v) ⋅ (min(Rd, dGk
(v , r)) − min(Rd, dG0

(v , r))))

and O(mRd) where tSP is the time needed for computing a single-source shortest paths
tree up to depth Rd and dG0

(v, r) is the initial distance of r to v and dGk
(v, r) is the

distance of v to r after all k edge deletions.

The first bound in Corollary 2.2.11 is because, for every node v, we can use
degGi

(v) ≤ degG0
(v), and we can express the running time caused by v’s level change

in terms of its initial level (min(Rd, dG0
(v, r)) and its final level (min(Rd, dGk

(v, r))).
We will need this bound in Section 2.4. The second bound follows easily from the
first one and we will need it in Section 2.3.

2.2. BACKGROUND 29

Algorithm 2.1: ES-tree (formulated for weighted undirected graphs)
// Internal data structures:
// N (u): for every node u a heap N (u) whose intended use is to

store for every neighbor v of u in the current graph the
value of ℓ(v) + w(u, v) where w(u, v) is the weight of the edge
(u, v) in the current graph

// Q: global heap whose intended use is to store nodes whose
levels might need to be updated

1 Procedure Initialize()
2 Compute shortest paths tree from r in (G0,w0) up to depth Rd

3 foreach node u do
4 Set ℓ(u) = dG0(u, r)
5 for every edge (u, v) do insert v into heap N (u) of u with key ℓ(v) + w(u, v)

6 Procedure Delete(u, v)
7 Increase(u, v , ∞)

8 Procedure Increase(u, v , w(u, v))
// Increase weight of edge (u, v) to w(u, v)

9 Insert u and v into heap Q with keys ℓ(u) and ℓ(v) respectively
10 Update key of v in heap N (u) to ℓ(v) + w(u, v) and key of u in heap N (v) to

ℓ(u) + w(u, v)
11 UpdateLevels()

12 Procedure UpdateLevels()
13 while heap Q is not empty do
14 Take node y with minimum key ℓ(y) from heap Q and remove it from Q
15 ℓ′(y) ← minz(ℓ(z) + w(y, z))

// ℓ′(y) can be retrieved from the heap N (y).
argminz(ℓ(z) + w(y, z)) is y’s parent in the ES-tree

16 if ℓ′(y) > ℓ(y) then
17 ℓ(y) ← ℓ′(y)
18 if ℓ′(y) > Rd then ℓ(y) ← ∞
19 foreach neighbor x of y do
20 update key of y in heap N (x) to ℓ(y) + w(x , y)
21 insert x into heap Q with key ℓ(x) if Q does not already contain x

30 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Implementation The pseudocode for achieving the above result can be found
in Algorithm 2.1. (For simplicity we show an implementation using heaps, which
causes an extra log n factor in the running time. King [79] explains how to avoid
heaps in order to improve the running time by a factor of log n.) For every node x the
ES-tree maintains a heap N (x) that stores for every neighbor y of x in the current
graph the value of ℓ(y) + w(x , y) where w(x , y) is the weight of the edge (x , y) in
the current graph. (Intuitively, N (x) corresponds to the “knowledge” of x about its
neighbors.) These data structures can be initialized in ̃O(m) time by running, for
example, Dijkstra’s algorithm (see procedure Initialize).14

Edge deletions and weight increases are handled in procedure Delete and In-
crease respectively; in fact, deletion is a special case of weight increase where we
set the edge weight to ∞. Every weight increase of an edge (u, v) might cause the
levels of some nodes to increase. The algorithm uses a heap Q to keep track of such
nodes. Initially (at the time w(u, v) is increased) the algorithm inserts u and v to Q
as the levels of u and v might increase (see Line 9). It also updates N (u) and N (v) as
in Line 10. Then it updates the levels on nodes in Q using procedure UpdateLevels.

Procedure UpdateLevels processes the nodes in Q in the order of their current
level (see the while-loop starting on Line 13). In every iteration it will process the
node y in Q with smallest ℓ(y) (as in Line 14). The lowest level that is possible
for a node y is ℓ′(y) = minz(ℓ(z) + w(y, z)), the minimum of ℓ(z) + w(y, z) over all
neighbors z of y in the current graph (following Equation (2.1)). Therefore every
node y will repeatedly update its level to ℓ′(y) (unless its level already has this value);
see Line 15. (An exception is when the level of a node x exceeds the desired depth
Rd. In this case the level of x is set to ∞ and x will never be connected to the tree
again. See Line 18.) If this updating rule leads to a level increase, the algorithm has
to update the heap N (x) of every neighbor x and put x to the heap Q (since the
level of x might increase) as in the for-loop starting on Line 19 (this is equivalent to
having y send a message to x in the informal description).

The running time analysis takes into account the level increases occurring in
the ES-tree. It is based on the following observation: For every node x processed
in the while-loop of the procedure UpdateLevels in Algorithm 2.1, if the level of x
increases, the algorithm has to spend time O(deg(x) log n) for updating the heaps
N (y) of all neighbors y of x and adding these neighbors to heap Q. If the level of
x does not increase, the algorithm only has to spend time O(log n). In the second
case the running time can be charged to one of the following events that causes x to
be in Q: (1) a weight increase of some edge (x , y) and (2) a level increase of some
neighbor of x . This leads to the result in Lemma 2.2.10.

14Alternatively we could compute the initial shortest paths tree using the Even-Shiloach algorithm
itself: Let G′

0 be the modification of G0 where we add an edge (r , v) of weight 1 for every node
v. We obtain G0 from G′

0 by deleting each such edge. Starting from a trivial shortest paths tree in
G′
0 in which the parent of every node v ≠ r is r , we obtain the shortest paths tree of G0 in time

O(∑v∈V degG0
(v) ⋅ min(Rd, dG0(v , r))) = O(mRd).

2.2. BACKGROUND 31

2.2.3 The Framework of Roditty and Zwick

In the following we review the algorithm of Roditty and Zwick [113] because its main
ideas are the basis of our own algorithms. We will put their arguments in a certain
structure that clarifies for which part of the algorithm we obtain improvements.
Their algorithm is based on the following observation. Consider approximating the
distance dG(x , y) for some pair of nodes x and y. For some 0 < ϵ ≤ 1, we want a
(1 + O(ϵ), 0)-approximate value of dG(x , y). Assume that we know an integer p such
that 2p is a “distance guess” of dG(x , y), i.e.,

2p ≤ dG(x , y) ≤ 2p+1. (2.2)

Now, suppose that there is a node z that is close to x , i.e.,

dG(x , z) ≤ ϵ2p. (2.3)

Then, it follows that we can use dG(x , z) + dG(z, y) as a (1 + 2ϵ)-approximation of
the true distance dG(x , y); this follows from applying the triangle inequality twice
(also see Figure 2.2a):

dG(x , y) ≤ dG(x , z) + dG(z, y) ≤ dG(x , z) + (dG(z, x) + dG(x , y))
≤ (1 + 2ϵ)dG(x , y) . (2.4)

Thus, under the assumption that for any x we only want to determine the distances
from x to nodes y with dG(x , y) in the range from 2p to 2p+1, we only have to make
sure that there is a node z that satisfies Equation (2.3); we call such node z a center.
We will maintain a set U of nodes such that for every node x there is a node z ∈ U
that satisfies Equation (2.3). In fact, we only need this to be true for nodes x that
are in a “big” connected component since if the connected component containing x
is too small then there is no node y that satisfies Equation (2.2). We call such U a
center cover. More precisely:

Definition 2.2.12 (Center cover). Let U be a set of nodes of a graph G, and let Rc be
a positive integer denoting the cover range. We say that a node x is covered by a node
c ∈ U in G if dG(x , c) ≤ Rc. We say that U is a center cover of G with parameter Rc if
every node x that is in a connected component of size at least Rc is covered by some
node c ∈ U in G.

One main component of Roditty-Zwick’s framework as we describe it is the
center cover data structure. This data structure maintains a center cover U as above.
Furthermore, for every center z ∈ U , we will maintain the distance to every node
y such that dG(z, y) ≤ 2p+2. This will allow us to compute dG(x , z) + dG(z, y) as an
approximate value of dG(x , y) (as in Equation (2.4)). In general, we treat the number
2p+2 as another parameter of the data structure denoted by Rd (called distance range
parameter). The values of Rc and Rd are typically closely related; in particular,
Rc ≤ Rd = O(Rc). The center cover data structure is formally as follows (also see
Figure 2.2b).

32 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

x
y

z

2p ≤ dG(x , y) ≤ 2p+1

d G
(x
, z

) ≤
ϵ2

p dG (y , z) ≤ dG (x , y) + ϵ2 p≤ (1 + 2ϵ)dG(x , y)

(a)

x y

z
R
c

R d

(b)

Figure 2.2: (a) depicts Equations (2.2) to (2.4). (b) shows the cover range (small
circle) and distance range (big circle) used by the center cover data structure (Defini-
tion 2.2.13).

Definition 2.2.13 (Center cover data structure). A center cover data structure with
cover range parameter Rc and distance range parameter Rd for a decremental graph
𝒢 = (Gi)0≤i≤k maintains, for every 0 ≤ i ≤ k, a set of centers Ci = {1, 2, … , l} and a set
of nodes Ui = {c1i , c2i , … , cli} such that, Ui is a center cover of Gi with parameter Rc. For
every center j ∈ Ci and every 0 ≤ i ≤ k, we call cji ∈ Ui the location of center j in Gi and
for every node x we say that x is covered by j if x is covered by cji in Gi . After the i-th
edge deletion (where 0 ≤ i ≤ k), the data structure provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi .

• Distance(j, x): Return the distance dGi
(cji , x) between the location cji of center j

and the node x , provided that dGi
(cji , x) ≤ Rd. If dGi

(cji , x) > Rd, then return ∞.

• FindCenter(x): If x is in a connected component of size at least Rc in Gi , return
a center j (with location cji) such that dGi

(x , cji) ≤ Rc. If x is in a connected
component of size less than Rc in Gi , then either return ⊥ or return a center j
(with location cji) such that dGi

(x , cji) ≤ Rc.

The total update time is the total time needed for performing all k delete operations
and the initialization. The query time is the worst-case time needed to answer a single
Distance or FindCenter query.

As the update time of the data structure will depend on the number l of centers,
the goal is to keep l as small as possible, preferably l = ̃O(n/Rc). As an example,
consider the following randomized implementation of Roditty and Zwick [113]:
randomly pick a set U of ((n/Rc) polylog n) nodes as the set of centers. With high
probability, this set will remain a center cover during all deletions (see Lemma 1.3.2).
The Distance and FindCenter queries can be answered inO(1) time by maintaining
an ES-tree of depthmRd for every center. The total time tomaintain this data structure

2.2. BACKGROUND 33

is thus ̃O(mnRd/Rc). We typically set Rc = Ω(Rd). In this case, the total time becomes
̃O(mn).
Note that while the implementation of Roditty and Zwick always uses the same

set of centers U , the center cover data structure that we define is flexible enough to
allow this set to change over time, i.e., it is possible that Ui ≠ Ui+1 for some i. In fact,
our definition separates between the notion of centers (set Ci) and locations (set Ui) as
it will allow one center to change its location over time. This is necessary when we
want to maintain o(n) centers deterministically since if we fix the centers and their
locations, then an adversary can delete all edges adjacent to the centers, making all
non-center nodes uncovered. (The randomized algorithm of Roditty and Zwick can
avoid this by using randomness and assuming that the adversary is oblivious.)

Using Center Cover Data Structure to Solve APSP Given a center cover data
structure, an approximate decremental APSP data structure is obtained as follows.
We maintain ⌈log n⌉ “instances” of the center cover data structure where the p-th
instance has parameters Rc = ϵ2p and Rd = 2p+2 and is responsible for the distance
range from 2p to 2p+1 (for all 0 ≤ p ≤ ⌊log n⌋). Suppose that after the i-th deletion
we want to answer a query for the approximate distance between the nodes x
and y. For every p, we first query for a center covering x from the p-th instance
of the center cover data structure. Denote the location of this center by zp . The
distance estimate provided by the p-th instance is dGi

(zp , x) + dGi
(zp , y). We will

output minp dGi
(zp , x) + dGi

(zp , y) as an estimate of dGi
(x , y). (Note that is possible

that zp = ⊥, i.e., there is no center covering x in the p-th instance. This might
happen if x is in a connected component of size less than Rc. In this case we set
dGi

(zp , x) + dGi
(zp , y) = ∞.)

To see the approximation guarantee, let p∗ be such that 2p
∗
≤ dGi

(x , y) ≤ 2p
∗+1.

Observe that if p = p∗, then dGi
(zp , x)+dGi

(zp , y) is a (1+O(ϵ), 0)-approximate distance
estimate (due to Equation (2.4)), and if p ≠ p∗ then dGi

(zp , x)+dGi
(zp , y) ≥ dGi

(x , y) (by
the triangle inequality). Thus,minp dGi

(zp , x)+dGi
(zp , y) is a (1+O(ϵ), 0)-approximate

value of dGi
(x , y). The query time, which is the time to compute minp dGi

(zp , x) +
dGi

(zp , y), is O(log n).
The query time can be reduced to O(log log n) as follows. Observe that for any

p < p∗, the distance dGi
(zp , x)+dGi

(zp , y) might be∞ if dGi
(zp , y) > Rd; however, if it is

finite, it will provide a (1+ ϵ, 0)-approximation (since dGi
(zp , x) ≤ ϵp). In other words,

it suffices to find the smallest index p∗∗ for which dGi
(zp∗∗ , x) + dGi

(zp∗∗ , y) is finite;
this value will be a (1 + O(ϵ), 0)-approximate value of dGi

(x , y). To find this index,
observe further that for any p > p∗, either zp = ⊥ or dGi

(zp , x)+ dGi
(zp , y) is finite. So,

we can find p∗∗ by a binary search (since for any p, if zp = ⊥ or dGi
(zp , x) + dGi

(zp , y)
is finite, then we know that p∗∗ ≤ p).

Theorem 2.2.14 ([113]). Assume that for all parameters Rc and Rd such that Rc ≤ Rd

there is a center cover data structure that has constant query time and a total update time
of T (Rc, Rd). Then, for every ϵ ≤ 1, there is a (1 + ϵ, 0)-approximate decremental APSP

34 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

data structure with O(log log n) query time and a total update time of ∑p T (Rc
p , Rd

p)
where Rc

p = ϵ2p and Rd
p = 2p+2 (for 0 ≤ p ≤ ⌊log n⌋).

As shown before, Roditty and Zwick [113] obtain a randomized center cover
data structure with constant query time and a total update time of ̃O(mnRd/Rc). By
Theorem 2.2.14 they get a (1 + ϵ, 0)-approximate decremental APSP data structure
with a total update time of ̃O(mn/ϵ) and a query time of O(log log n). Note that the
query time can sometimes be reduced further to O(1), and this is the case for their
algorithm as well as our randomized algorithm in Section 2.3. This is essentially
because there is a (3, 0)-approximation randomized algorithm for APSP, which can
be used to approximate p∗ (we defer details to Lemma 2.3.19). To analyze the total
update time of their data structure for k deletions observe that

⌊log n⌋

∑
p=0

̃O(mnRd
p/Rc

p) =
⌊log n⌋

∑
p=0

̃O(mn2p+1/(2pϵ)) =
⌊log n⌋

∑
p=0

̃O(mn/ϵ)

= ̃O(mn log n/ϵ) = ̃O(mn/ϵ) .

In Section 2.3 we show that we can maintain an approximate version of the center
cover data structure in time ̃O(n5/2Rd/(ϵRc)). Using this data structure, we will get a
(1 + ϵ, 2)-approximate decremental APSP data structure with a total update time of

̃O(n5/2/ϵ) and constant query time. In Section 2.4 we show how to maintain an exact
deterministic center cover data structure with a total update time of O(mnRd/Rc).
By Theorem 2.2.14 this immediately implies a deterministic (1 + ϵ, 0)-approximate
decremental APSP data structure with a total update time of O(mn log n) and a query
time of O(log log n).

2.3 ̃O(n5/2)-Total Time (1 + ϵ, 2)- and
(2 + ϵ, 0)-Approximation Algorithms

In this section, we present a data structure for maintaining all-pairs shortest paths
under edge deletions with multiplicative error 1 + ϵ and additive error 2 that has a
total update time of ̃O(n5/2/ϵ2). The data structure is correct with high probability.
We also show a variant of this data structure with multiplicative error 2 + ϵ and
no additive error. In doing this, we introduce the notion of a persevering path (see
Definition 2.3.1) and a locally persevering emulator (Definition 2.3.2). In Section 2.3.1,
we then present the locally persevering emulator that we will use to obtain our result.
Then, in Section 2.3.2 we explain our main technique, called monotone Even-Shiloach
tree, where we maintain the distances from a single node to all other nodes, up to
some distance Rd, in a locally persevering emulator. (Recall that Rd is a parameter
called “distance range”.) In Section 2.3.3 we show how approximate decremental
SSSP helps in solving approximate decremental APSP. Finally, in Section 2.3.4, we
show how to put the results in Sections 2.3.1 to 2.3.3 together to obtain the desired
(1 + ϵ, 2)- and (2 + ϵ, 0)-approximate decremental APSP data structures.

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 35

Definition 2.3.1 (Persevering path). Let ℋ = (Hi ,wi)0≤i≤k be a dynamic weighted
graph. We say that a path π = ⟨v0, v1, … , vℓ⟩ is persevering up to time t (where t ≤ k)
if for all 0 ≤ i ≤ ℓ − 1,

∀0 ≤ j ≤ t ∶ (vi , vi+1) ∈ E(Hj) and ∀0 ≤ j < t ∶ wj(vi , vi+1) ≤ wj+1(vi , vi+1).

In other words, edges in π always exist in ℋ up to time t and their weights never
decrease.

Wenow introduce the notion of a locally persevering emulator. An (α , β)-emulator
of a dynamic graph 𝒢 = (Gi)0≤i≤k is usually another dynamic weighted graph ℋ =
(Hi ,wi)0≤i≤k with the same set of nodes as 𝒢 that preserves the distance of the original
dynamic graph, i.e., for all i ≤ k and all nodes x and y , there is a path πxy in Hi such
that dGi

(x , y) ≤ wi(πxy) ≤ αdGi
(x , y) + β. The notion of a locally persevering emulator

has another parameter τ . It requires the condition dGi
(x , y) ≤ wi(πxy) ≤ αdGi

(x , y)+β
to hold only when dGi

(x , y) ≤ τ . More importantly, it puts an additional restriction
that the path πxy must be either a shortest path in Gi or a persevering path.

Definition 2.3.2 (Locally persevering emulator). Consider parameters α ≥ 1, β ≥ 0
and τ ≥ 1, a dynamic graph 𝒢 = (Gi)0≤i≤k , and a dynamic weighted graph ℋ =
(Hi ,wi)0≤i≤k . For every i ≤ k, we say that a path π in Gi is contained in (Hi ,wi) if every
edge of π is contained in Hi and has weight 1. We say that ℋ is an (α , β , τ)-locally
persevering emulator of 𝒢 if for for all nodes x and y we have

(1) dGi
(x , y) ≤ dHi ,wi

(x , y) for all 0 ≤ i ≤ k, and

(2) there are t1 and t2 with 0 ≤ t1 < t2 ≤ k + 1 such that the following holds:

a) There is a path π from x to y in ℋ that is persevering (at least) up to time
t1 and satisfies wt (π) ≤ αdGt

(x , y) + β .

b) For every t1 < i ≤ t2, a shortest path from x to y in Gi is contained in
(Hi ,wi).

c) For every i ≥ t2, dGi
(x , y) > τ .

Condition (1) simply says that ℋ does not underestimate the distances in 𝒢 .
Condition (2) says that the distance between x and y must be preserved in ℋ in
the following specific way: In the beginning (see (2)a), it must be approximately
preserved by a single path π (thus π is a persevering path). Whenever π disappears,
the shortest path between x and y must appear in ℋ (see (2)b). However, we can
remove all these conditions whenever the distance between x and y is more than τ
(see (2)c).

2.3.1 (1, 2, ⌈2/ϵ⌉)-Locally Persevering Emulator of Size ̃O(n3/2)

In the following we present the locally persevering emulator that we will use to
achieve a total update time of ̃O(n5/2/ϵ2) for decremental approximate APSP. Roughly

36 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

speaking, we can replace the running time of ̃O(mn/ϵ) by ̃O(n5/2/ϵ2) because this
emulator always has ̃O(n3/2) edges. However, to be technically correct, we have to
use the stronger fact that the number of edges ever contained in the emulator is

̃O(n3/2), as in the following statement.

Lemma 2.3.3 (Existence of (1, 2, ⌈2/ϵ⌉)-locally persevering emulator with ̃O(n3/2)
edges). For every 0 < ϵ ≤ 1 and every decremental graph 𝒢 = (Gi)0≤i≤k , there
is data structure that maintains a dynamic weighted graph ℋ = (Hi ,wi)0≤i≤k in
O(mn1/2 log n/ϵ) total time such that ℋ is a (1, 2, ⌈2/ϵ⌉)-locally persevering emulator
with high probability. Moreover, the number of edges ever contained in the emu-
lator is |Ek(ℋ)| = O(n3/2 log n) and the total number of updates in ℋ is ϕk(ℋ) =
O(n3/2 log n/ϵ).

We construct a dynamic weighted graph ℋ = (Hi ,wi)0≤i≤k as follows. We pick a
set D of nodes by including every node independently with probability (a ln n)/√n
for a large enough constant a. Note that the size of D is O(√n log n) in expectation.
It is well-known that by this type of sampling every node with degree more than
√n has a neighbor in D with high probability (see, e.g., [41, 127]), i.e., D dominates
all high-degree nodes. This is even true for every version Gi of a decremental graph
𝒢 = (Gi)0≤i≤k . For every 0 ≤ i ≤ k, we define that the graph Hi contains the
following two types of edges. For every node x ∈ D and every node y such that
dGi

(x , y) ≤ ⌈2/ϵ⌉ + 1, Hi contains an edge (x , y) of weight dGi
(x , y). For every node

x such that degGi
(x) ≤ √n, Hi contains every edge (x , y) of Gi .15 Note that as edges

are deleted from 𝒢 distances between nodes might increase which in turn increases
the weights of the corresponding edges in ℋ. When the distance between x and y
in 𝒢 exceeds ⌈2/ϵ⌉ + 1, the edge (x , y) is deleted from ℋ.

In the following we prove Lemma 2.3.3 by arguing that the dynamic graph ℋ
described above has the following four desired properties:

• ℋ is a (1, 2, ⌈2/ϵ⌉)-locally persevering emulator of 𝒢 .

• The expected number of edges ever contained in the emulator is |Ek(ℋ)| =
O(n3/2 log n).

• The expected total number of updates in ℋ is ϕk(ℋ) = O(n3/2 log n/ϵ).

• The edges of ℋ can be maintained in expected total time O(mn1/2 log n/ϵ) for
k deletions in 𝒢 .

The last item refers to the time needed to determine, after every deletion in 𝒢 which
edges are contained in ℋ and what their weight is.

15Our construction is very similar to the classic (1, 2)-emulator given by Dor, Halperin, and
Zwick [41]. The main difference is that we can only insert edges of limited weight into the emu-
lator; in particular, we only have edges of weight O(1/ϵ) in the emulator. One reason for this choice is
that it is not known whether the (1, 2)-emulator of Dor et al. can be maintained in ̃O(mn) time under
edge deletions.

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 37

Lemma 2.3.4 (Locally persevering). The dynamic graph ℋ described above is a
(1, 2, ⌈2/ϵ⌉)-locally persevering emulator of 𝒢 with high probability.

Proof. Let t ≤ k and let x and y be a pair of nodes. We first argue that dGt
(x , y) ≤

dHt ,wt
(x , y). It is clear from the construction of (Ht ,wt) that every edge in (Ht ,wt)

corresponds to an edge in Gt or to a path in Gt . Therefore no path in (Ht ,wt) from x
to y can be shorter than the distance dGt

(x , y) of x to y in Gt .
We now argue that ℋ fulfills part two of the definition of a (1, 2, ⌈2/ϵ⌉)-locally

persevering emulator of 𝒢 . Assume that dGt
(x , y) ≤ ⌈2/ϵ⌉ and that no shortest

path from x to y in Gt is also contained in (Ht ,wt). Let π be an arbitrary shortest
path from x to y in Gt . Since π is not contained in Ht , there must be some edge
(u, v) on π such that (u, v) ∉ E(Ht). This can only happen if u has degree more
than √n in Gt . With high probability u has a neighbor z ∈ D in Gt (see, e.g., [41,
127]). Now consider any i ≤ t . Note that dGt

(x , u) ≤ dGt
(x , y) ≤ ⌈2/ϵ⌉ and that

dGi
(x , z) ≤ dGt

(x , z) because distances never decrease in a decremental graph. By the
triangle inequality we get

dGi
(x , z) ≤ dGt

(x , z) ≤ dGt
(x , u) + dGt

(u, z) ≤ ⌈2/ϵ⌉ + 1 .

Therefore, for every i ≤ t , Hi contains an edge (x , z) of weight wi(x , z) = dGi
(x , z),

which means that the edge (x , z) is persevering up to time t . The same argument
shows that Hi also contains an edge (z, y) of weight wi(z, y) = dGi

(z, y) for every
i ≤ t , i.e., (z, y) is also persevering up to time t . Now consider the path π ′ in Ht
consisting of the edges (x , z) and (z, y). Since both edges are persevering up to time t ,
also the path π ′ is persevering up to time t . Furthermore, π ′ guarantees the desired
approximation:

wt (π ′) = wt (x , z) + wt (z, y) = dGt
(x , z) + dGt

(z, y)
≤ dGt

(x , u) + dGt
(u, z) + dGt

(z, u) + dGt
(u, y)

= dGt
(x , u) + dGt

(u, y) + 2
= dGt

(x , y) + 2 .

To explain the last equation, remember that u lies on a shortest path from x to
y and therefore dGt

(x , y) = dGt
(x , u) + dGt

(u, y). Thus, ℋ is a (1, 2, ⌈2/ϵ⌉)-locally
persevering emulator of 𝒢 .

Lemma 2.3.5 (Number of edges). The number of edges ever contained in the dynamic
graph ℋ is |Ek(ℋ)| = O(n3/2 log n) in expectation.

Proof. Every edge in Hi either was inserted at some time or it is an edge that is also
contained in H0. Thus, it is sufficient to bound number of inserted edges and the
number of edges in H0 by O(n3/2 log n).

We first show that the number of edges in H0 is |E(H0)| = O(n3/2 log n). We can
charge each edge in H0 either to a node in D or to a node with degree at most √n.
For every node x ∈ D there might be O(n) edges adjacent to x in H0. Since there

38 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

are O(√n log n) many nodes in D, the number of edges charged to these nodes is
O(n3/2 log n). For nodes with degree at most √n there are O(√n) edges adjacent
to x in H0. Since there are O(n) such nodes, the number of edges charged to these
nodes is O(n3/2). In total, we get

|E(H0)| = O(n3/2 log n) + O(n3/2) = O(n3/2 log n) .

We now show that the number of edges inserted into ℋ over all deletions in 𝒢
is O(n3/2). Every time the degree of a node x changes from degGi

(x) > √n to

degGi+1
(x) = √n (for some 0 ≤ i < k) we insert all √n edges adjacent to x in Gi+1

into Hi+1. In a decremental graph it can happen at most once for every node that the
degree of a node drops to √n. Therefore at most n3/2 edges are inserted in total.

Lemma 2.3.6 (Number of updates). The total number of updates in the dynamic graph
ℋ described above is ϕk(ℋ) = O(n3/2 log n/ϵ) in expectation.

Proof. Only the following kinds of updates appear in ℋ: edge insertions, edge
deletions, and edge weight increases. Every edge that is inserted or deleted has to
be contained in ℋ at some time. Thus, we can bound the number of insertions and
deletions by |Ek(ℋ)|, which is O(n3/2 log n) by Lemma 2.3.5

It remains to bound the number of edge weight increases by O(n3/2 log n/ϵ). All
weighted edges are incident to at least one node in D. The maximum weight of
these edges is ⌈2/ϵ⌉ + 1 and the minimum weight is 1. As all edge weights are
integer, the weight of such an edge can increase at most ⌈2/ϵ⌉ + 1 times. As there
are O(√n log n) nodes in D, each having O(n) weighted edges, the total number of
edge weight increases is O(n3/2 log n/ϵ).

Lemma 2.3.7 (Running time). The edges of the dynamic graph ℋ described above can
be maintained in expected total time O(mn1/2 log n/ϵ) over all k edge deletions in 𝒢 .

Proof. We use the following data structures: (A) For every node, we maintain its
incident edges in ℋ with a dynamic dictionary using dynamic perfect hashing [40]
or cuckoo hashing [103]. This graph representation allows us to perform insertions
and deletions of edges as well as edge weight increases. (B) For every node x , we
maintain the degree of x in 𝒢 . (C) For every node x ∈ D we maintain a (classic)
ES-tree (see Section 2.2.2) rooted at x up to distance ⌈2/ϵ⌉ + 1.

We now explain how to process the i-the edge deletion in 𝒢 of, say, the edge
(u, v). First of all we update (B) by decreasing the number that stores the degree of
u in 𝒢 and then do the same for v. If the degree of u (or v) drops to √n we insert
all edges incident to u (or v) in Gi into Hi in (A). After this procedure, for every
node x ∈ D, we do the following to update (C): First of all, we report the deletion
of (u, v) to the ES-tree rooted at x . Every node y has a level in this ES-tree. If the
level of y increases to ∞, then dGi

(x , y) > ⌈2/ϵ⌉ + 1 and therefore we remove the
edge (x , y) from ℋ in (A). If the level of y increases, but does not reach ∞, then
dGi

(x , y) ≤ ⌈2/ϵ⌉ + 1 and we update the weight of the edge (x , y) in (A).

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 39

We can perform each deletion, insertion and edge weight increase expected
amortized constant time. As there are O(n3/2 log n/ϵ) updates in ℋ in expectation
by Lemma 2.3.6, the expected total time for maintaining (A) is O(n3/2 log n/ϵ). We
need constant time per deletion in 𝒢 to update (B) and thus time O(m) in total.
Maintaining the ES-tree takes total time O(m/ϵ) for each node in D (see Section 2.2.2).
Since in expectation there are O(n1/2 log n) nodes in D, the expected total time for
maintaining (A) is O(mn1/2 log n/ϵ) in total.

Thus, the expected total update time for maintaining ℋ under deletions in 𝒢 is
O(n3/2 log n/ϵ +m +mn1/2 log n/ϵ), which is O(mn1/2 log n/ϵ).

2.3.2 Maintaining Distances Using Monotone Even-Shiloach Tree

In this section, we show how to use a locally persevering emulator to maintain the
distances from a specific node r (called root) to all other nodes, up to distance Rd,
for some parameter Rd. The hope of using an emulator is that the total update time
will be smaller since an emulator has a smaller number of edges. In particular, recall
that if we run an ES-tree on an input graph, the total update time is ̃O(mRd). Now
consider running an ES-tree on an emulator ℋ instead, we might hope to get a
running time of ̃O(m′Rd), where m′ is the number of edges ever appearing in ℋ.
This is beneficial when m′ ≪ m (for example, the emulator we construct in the
previous section has m′ = ̃O(n1.5) which is less than m when the input graph is
dense). The main result of this section is that we can achieve exactly this when ℋ
is a locally-persevering emulator and we run a variant of ES-tree called monotone
ES-tree on ℋ.

Lemma 2.3.8 (Monotone ES-tree + Locally Persevering Emulator). For every distance
range parameter Rd, every source node r , and every decremental graph 𝒢 = (Gi)0≤i≤k
with an (α , β , τ)-locally persevering emulator ℋ = (Hi ,wi)0≤i≤k , the monotone ES-tree
on ℋ is an (α + β/τ , β)-approximate decremental SSSP data structure for 𝒢 . It has
constant query time and a total update time of

O(ϕk(ℋ) + |Ek(ℋ)| ⋅ ((α + β/τ)Rd + β)) ,

where ϕk(ℋ) is the total number of updates in ℋ up to time k and Ek(ℋ) is the set of
all edges ever contained in ℋ up to time k.

Note that we need to modify the ES-tree because although the input graph
undergoes only edge deletions, the emulator might have to undergo some edge
insertions. If we straightforwardly extend the ES-tree to handle insertions, we will
have to keep the level of any node y at ℓ(y) = minz(ℓ(z) + w(y, z)) as in Line 15
of Algorithm 2.1. This might cause the level ℓ(y) of some node y in the ES-tree
to decrease. This destroys the monotonicity of levels of nodes, which is the key to
guarantee the running time of the ES-tree, as shown in Section 2.2.2. The monotone
ES-tree is a variant that insists on keeping the nodes’ levels monotone (thus the
name); it never decreases the level of any node.

40 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Implementation of Monotone ES-Tree Our monotone ES-tree data structure
is a modification of the ES-tree, which always maintains the level ℓ(x) of every node
x in a shortest paths tree rooted at r up to depth Rd, as presented in Section 2.2.2.
Algorithm 2.2 shows the pseudocode of the monotone ES-tree. Our modification can
deal with edge insertions, but does this in a monotone manner: it will never decrease
the level of any node. In doing so, it will lose the property of providing a shortest
paths tree of the underlying dynamic graph, which in our case is the emulator ℋ.
However, due to special properties of the emulator, we can still guarantee that the
level provided by the monotone ES-tree is an approximation of the distance in the
original decremental graph 𝒢 . The distance estimate provided for a node x is the
level of x in the monotone ES-tree.

The overall algorithm now is as follows (see Algorithm 2.2 for details). We
initialize the monotone ES-tree by computing a shortest paths tree in the emulatorH0
up to depth (α + β/τ)Rd + β . For every node x in this tree we set ℓ(x) = dH0

(x , r)
and for every other node x we set ℓ(x) = ∞. Starting with these levels, we maintain
an ES-tree rooted at r up to depth (α + β/τ)Rd + β on the graph ℋ. This ES-tree
alone cannot deal with edge insertions and edge weight increases. Our additional
procedure that is called after the insertion of an edge (u, v) only updates the value of
v in the heap N (u) of u to ℓ(v) + w(u, v). In particular, the level of u is not changed
after such an insertion.

Order of Updates Before we start analyzing our algorithm we clarify a crucial
detail about the order of updates in the locally persevering emulator ℋ. Consider
an edge deletion in the graph Gi that results in the graph Gi+1. In the emulator ℋ,
it might be the case that several updates are necessary to obtain (Hi+1,wi+1) from
(Hi ,wi). There could be several insertions, edge weight increases and edge deletions
at once.16 Our algorithmwill process these updates (using the monotone ES-tree) in a
specific order: First, it processes the edge insertions, one after the other. Afterwards,
we process the edge deletions and edge weight increases (also one after the other).
This order is crucial for the correctness of our algorithm.

Analysis We first argue about the correctness of the monotone ES-tree and after-
wards argue about its running time. In the following we let ℓi(u) be the level of u
in the monotone ES-tree after it has processed the i-th edge deletion in 𝒢 (which
could mean that it has processed a whole series of insertions, weight increases and
deletions of the emulator ℋ). Remember that (Hi ,wi) denotes the emulator after all
updates caused by the i-th deletion in 𝒢 . We say that an edge (u, v) is stretched if
ℓi(u) ≠ ∞ and ℓi(u) > ℓi(v)+wi(u, v). We say that a node u is stretched if it is incident
to an edge (u, v) that is stretched. Note that for a node u that is not stretched we
either have ℓi(u) = ∞ or ℓi(u) ≤ ℓi(v) + wi(u, v) for every edge (u, v) ∈ E(Hi). Our
analysis uses four simple observations about the algorithm. (Recall that a tree edge

16We could also allow edge weight decreases and handle them in exactly the same way as edge
insertions. For simplicity, we omit this case from our description.

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 41

Algorithm 2.2: Monotone ES-tree
// The algorithm is like the usual ES-tree (Algorithm 2.1)

with three modifications:
// 1. The algorithm runs on ℋ = (H0,H1, …) instead of 𝒢.
// 2. The depth of the tree is (α + β/τ)Rd + β instead of Rd

// 3. There are additional procedures for the insertion of
edges and edge weight increases.

// Procedures Delete and Increase are the same as before.
// Line numbers in the form i* indicate lines that are

different from Algorithm 2.1. Blue color marks the changes.

1 Procedure Initialize()
2* Compute shortest paths tree from r in (H0,w0) up to depth (α + β/τ)Rd + β
3 foreach node u do

4* Set ℓ(u) = dH0(u, r)
5 for every edge (u, v) do insert v into heap N (u) of u with key ℓ(v) + w(u, v)

6 Procedure Insert(u, v , w(u, v))
7 Insert v into heap N (u) with key ℓ(v) + w(u, v) and u into heap N (v) with key

ℓ(u) + w(u, v)

8 Procedure UpdateLevels()
9 while heap Q is not empty do

10 Take node y with minimum key ℓ(y) from heap Q and remove it from Q
11 ℓ′(y) ← minz(ℓ(z) + w(y, z))

// minz(ℓ(z) + w(y , z)) can be retrieved from the heap N (y).
argminz(ℓ(z) + w(y, z)) is y’s parent in the ES-tree.

12 if ℓ′(y) > ℓ(y) then
13 ℓ(y) ← ℓ′(y)

14* if ℓ′(y) > (α + β/τ)Rd + β then ℓ(y) ← ∞
15 foreach neighbor x of y do
16 update key of y in heap N (x) to ℓ(y) + w(x , y)
17 insert x into heap Q with key ℓ(x) if Q does not already contain x

42 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

is an edge between any node y and its parent as in Line 11 of Algorithm 2.2; i.e., its
an edge (y, z′) for some node z′ = argminz(ℓ(z) + w(y, z)).)

Observation 2.3.9. The following holds for the monotone ES-tree:

(1) The level of a node never decreases.

(2) An edge can only become stretched when it is inserted.

(3) As long as a node x is stretched, its level does not change.

(4) For every tree edge (u, v) (where v is the parent of u), ℓ(u) ≥ ℓ(v) + w(u, v).

Proof. The only places in the algorithm where the level of a node is modified are in
Line 4 during the initialization and in Line 13. The if-condition in Line 12 guarantees
that the level of a node never decreases and thus (1) holds. Furthermore, whenever
the level of a node y increases in Line 13 we have ℓ(y) = minz(ℓ(z) + w(y, z)) ≤
ℓ(z′) + w(y , z′) for every neighbor z′ of y . Thus, after such a level increase the edge
(y, z′) is non-stretched for every neighbor z′ of y and so is the node y.

To prove (2), consider an edge (x , y) that becomes stretched. This can only
happen if the edge (x , y) was not contained in the graph before and is inserted or if
the edge changes from non-stretched to stretched. When (x , y) is non-stretched we
have ℓ(x) ≤ ℓ(y)+w(x , y). For (x , y) to become stretched (i.e., for ℓ(x) > ℓ(y)+w(x , y)
to hold) either the left hand side of this inequality has to increase or the right hand
side has to decrease. When the left hand side increases, the level of x changes and,
as argued above, this implies that (x , y) will be non-stretched. As the level of y
is non-decreasing, the right hand side can only decrease when the weight of the
edge (x , y) decreases. This can only happen after inserting this edge with a smaller
weight.

We now prove (3). Consider a node x that is stretched. As long as it is stretched,
the level of x does not increase because, as argued above, each level increase imme-
diately makes x non-stretched.

Finally, we prove (4). Consider an edge (u, v) such that v is the parent of u. It
is easy to see that ℓ(u) ≥ ℓ(v) + w(u, v) as long as v stays the parent of u because
the level of u increases if and only if the level of v or the weight of the edge (u, v)
increases. In such a case we have ℓ(u) = ℓ(v) +w(u, v). The only other possibility for
the right hand side of the inequality to change is when the weight of the edge (u, v)
decreases, which can happen after an insertion. But decreasing this value does not
invalidate the inequality.

We now prove that the monotone ES-tree provides an (α + β/τ , β)-approximation
of the true distance if it runs on an (α , β , τ)-locally persevering emulator. We use an
inductive argument to show that, after having processed the i-th deletion of an edge
in 𝒢 , the level of every node x is a (α + β/τ , β)-approximation of the distance of x to
the root, i.e., dGi

(x , r) ≤ ℓi(x) ≤ (α +β/τ)dGi
(x , r)+β . The intuition why this should be

correct is as follows: If the monotone ES-tree gives the desired approximation before

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 43

a deletion in 𝒢 and the deletion does not cause an edge in ℋ to become stretched,
then the structure of the monotone ES-tree is similar to the ES-tree and the same
argument that we use for the ES-tree should show that the monotone ES-tree still
gives the desired approximation. If, however, an edge becomes stretched in ℋ, then
the level of the affected node does not change anymore and, thus, as distances in
decremental graphs never decrease, should still give the desired approximation. This
intuition is basically correct, but the correctness proof also requires the emulator to
be persevering, as a persevering path does not contain any inserted edge and, thus,
no stretched edges.

Remember that processing an edge deletion in 𝒢 might mean processing a series
of updates in ℋ. We will first show that the approximation guarantee holds for every
node that is stretched after the monotone ES-tree has processed the i-th deletion.
Afterwards we will show that it holds for every node.

Lemma 2.3.10. Let 0 < i ≤ k and assume that ℓi−1(x′) ≤ (α + β/τ) ⋅ dGi−1
(x′, r) + β

for every node x′ with ℓi−1(x′) ≠ ∞. Then ℓi(x) ≤ (α + β/τ) ⋅ dGi
(x , r) + β for every

stretched node x .

Proof. Here we need the assumption that the monotone ES-tree sees the updates
in the emulator caused by a single edge deletion in a specific order, namely such
that all edge insertions can be processed before the edge weight increases and edge
deletions. Since x is stretched, there must have been a previous insertion of an edge
(x , y) incident to x such that x is stretched since the time this edge was inserted (see
Observation 2.3.9(2)). Let ℓ′(x) denote the level of x after the insertion of (x , y) has
been processed. By Observation 2.3.9, nodes do not change their level as long as
they are stretched and therefore ℓi(x) = ℓ′(x).

We now show that ℓi(x) = ℓ′(x) = ℓi−1(x). The insertion of (x , y) could either
happen at time i or at some earlier time (i.e., either it was caused by the i-th edge
deletion or by a previous edge deletion). If the insertion was caused by a previous
edge deletion we clearly have ℓi−1(x) = ℓ′(x) because the level of x has not changed
since this insertion. Consider now the case that the insertion was caused by the i-th
edge deletion. Recall that all insertions caused by the i-th deletion are processed
before any other updates of the emulator are processed. Since edge insertions do
not change the level of any node, we have ℓ′(x) = ℓi−1(x). In both cases we have
ℓ′(x) = ℓi−1(x) and thus ℓi(x) = ℓi−1(x). Since ℓi(x) ≠ ∞, we have ℓi−1(x) ≠ ∞. It
follows that

ℓi(x) = ℓi−1(x) ≤ (α + β/τ) ⋅ dGi−1
(x , r) + β ≤ (α + β/τ) ⋅ dGi

(x , r) + β

as desired. The first inequality above follows from the assumptions of the lemma,
and the second one is because 𝒢 is a decremental graph in which distances never
decrease.

In order to prove the approximation guarantee for non-stretched nodes we have
to exploit the properties of the (α , β , τ)-locally persevering emulator ℋ. In the classic

44 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

ES-tree the level of two nodes differs by at most the weight of a path connecting
them—modulo some technical conditions that arise for ES-trees of limited depth.
In the monotone ES-tree this is only true for persevering paths (see Lemma 2.3.12).
Before we can show this we need an even simpler property of the monotone ES-tree:
If two nodes are connected by an edge that is not stretched, then their levels differ
by at most the weight of the edge connecting them. Again, in the classic ES-tree this
holds for any edge.

Lemma 2.3.11. Consider any 0 ≤ i ≤ k and any (x , y) ∈ E(Hi). We have

ℓi(x) ≤ ℓi(y) + wi(x , y)

if ℓi(y) + wi(x , y) ≤ (α + β/τ)Rd + β and either (a) i = 0 or (b) i ≥ 1, ℓi−1(x) ≠ ∞ and
(x , y) is not stretched.

Proof. Note that no edge in H0 is stretched. Thus, (x , y) is not stretched for i ≥ 0.
Hence, we either have ℓi(x) ≤ ℓi(y) + wi(x , y) as desired or ℓi(x) = ∞. Thus, we only
have to argue that ℓi(x) ≠ ∞.

Assume by contradiction that ℓi(x) = ∞. As ℓi−1(x) ≠ ∞, the level of x is not
changed while the monotone ES-tree processes the insertions in ℋ caused by the i-th
deletion in 𝒢 . Thus, the only possibility for the level to be increased to∞ is when the
monotone ES-tree processes the edge deletions and edge weight increases. For every
node v, let ℓ′(v) and w′(u, v) denote the level of every node v and the weight of
every edge (u, v) directly after the level of x has been increased to∞. Since ℓ′(x) = ∞
it must be the case that minz(ℓ′(z) + w′(x , z)) > (α + β/τ)Rd + β and therefore also
ℓ′(y) + w′(x , y) > (α + β/τ)Rd + β . But since levels and edge weights never decrease,
we also have ℓ′(y) + w′(x , y) ≤ ℓi(y) + wi(x , y) ≤ (α + β/τ)Rd + β which contradicts
the inequality we just derived. Therefore it cannot be the case that ℓ′(x) = ∞.

Lemma 2.3.12. For every path π from a node x to a node z that (1) is persevering
up to time i and (2) has the property that ℓi(z) + wi(π) ≤ (α + β/τ)Rd + β , we have
ℓi(x) ≤ ℓi(z) + wi(π).

Proof. The proof is by induction on i and the length of the path π . The claim is
clearly true if i = 0 or the path has length 0. Consider now the induction step. Let
(x , y) denote the first edge on the path. Let π ′ denote the subpath of π from y to z.
Note that ℓi(z) + wi(π ′) ≤ ℓi(z) + wi(π) ≤ (α + β/τ)Rd + β . Therefore we may apply
the induction hypothesis on y and get that ℓi(y) ≤ ℓi(z) + wi(π ′). Thus, we get

ℓi(y) + wi(x , y) ≤ ℓi(z) + wi(π ′) + w(x , y) = ℓi(z) + wi(π) ≤ (α + β/τ)Rd + β .

By the definition of persevering paths, every edge (u, v) on π has always existed
in ℋ since the beginning. Therefore the edge (x , y) has never been inserted which
means that (x , y) is not stretched by Observation 2.3.9(2). Since levels and edge
weights are non-decreasing we have ℓi−1(z)+wi−1(π) ≤ ℓi(z)+wi(π) ≤ (α +β/τ)Rd +β .
By the induction hypothesis for i − 1 this implies that ℓi−1(x) ≤ ℓi−1(z) + wi−1(π) ≠ ∞.
We therefore may apply Lemma 2.3.11 and get that ℓi(x) ≤ ℓi(y) + wi(x , y) ≤ ℓi(z) +
wi(π).

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 45

Using the property above, we would ideally like to do the following: We would
like to split a shortest path from x to the root r into subpaths of length ≤ τ and
replace each subpath by a persevering path such that the length of each subpath and
the persevering path by which it is replaced are approximately the same. Repeated
applications of the inequality of Lemma 2.3.12 would then allow us to bound the level
of x . However, this approach alone does not work because the definition of a locally
persevering emulator does not always guarantee the existence of a persevering path.
Instead of a persevering path, the locally persevering emulator might also provide us
with a shortest path of Gi that is contained in the current emulator Hi . In principle
this is a nice property because a shortest path is even better than an approximate
shortest path. But the problem now is that nodes on this path could be stretched and
only for non-stretched nodes the difference in levels of two nodes can be bounded
by the weight of the edge between them. We can resolve this issue by induction on
the distance to r , which allows us to use the contained path only partially.

Lemma 2.3.13 (Correctness). For every node x and every 0 ≤ i ≤ k, ℓi(x) ≥ dGi
(x , r)

and if dGi
(x , r) ≤ Rd, then ℓi(x) ≤ (α + β/τ) ⋅ dGi

(x , r) + β .

Proof. We start with a proof of the first inequality ℓi(x) ≥ dGi
(x , r). Consider the

(weighted) path π from x to the root r in the monotone ES-tree. Recall that the
parent of node v is a node u = argminz(ℓ(z) +w(y , z)) as in Line 11 in Algorithm 2.2.
For every edge (u, v) on this path, where v is the parent of u, we have ℓi(u) ≥
ℓi(v) + wi(u, v) by Observation 2.3.9(4). By repeated applications of this inequality
for every edge on π we get ℓi(x) ≥ wi(π) + ℓi(r) = wi(π) (since the level of the root
r is always 0). Since π is a path in Hi we have wi(π) ≥ dGi

(x , r) because a locally
persevering emulator never underestimates the true distance by definition.

We now prove the second inequality ℓi(x) ≤ (α + β/τ) ⋅ dGi
(x , r) + β if dGi

(x) ≤ Rd.
The proof is by induction on i and the distance of x to r in Gi .

The claim is clearly true if x is the root node r itself. If i ≥ 1, then note that
dGi−1

(x , r) ≤ dGi
(x , r) ≤ Rd and therefore, by the induction hypothesis for i − 1, we

have ℓi−1(x) ≠ ∞. Therefore we may apply Lemma 2.3.10 which means that the
desired inequality holds if x is stretched. Thus, from now on we assume that x ≠ r
and that x is not stretched. We distinguish two cases.

Case 1: Consider first the case that there is a shortest path from x to r in Gi
such that its first edge (x , y) is contained in (Hi ,wi). Note that dGi

(y, r) < dGi
(x , r).

Therefore wemay apply the induction hypothesis and get ℓi(y) ≤ (α+β/τ)⋅dGi
(y , r)+β .

We now want to argue that ℓi(x) ≤ ℓi(y) + wi(x , y) by applying Lemma 2.3.11. The
edge (x , y) is contained in (Hi ,wi) with weight wi(x , y) = dGi

(x , y) and thus

ℓi(y) + wi(x , y) = ℓi(y) + dGi
(x , y)

≤ (α + β/τ) ⋅ dGi
(y, r) + β + dGi

(x , y)
≤ (α + β/τ) ⋅ (dGi

(x , y) + dGi
(y, r)) + β

= (α + β/τ) ⋅ dGi
(x , r) + β (2.5)

≤ (α + β/τ) ⋅ Rd + β . (2.6)

46 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Remember that (x , y) is not stretched and if i ≥ 1, then ℓi−1(x) ≠ ∞ (as argued
above). Using (2.6) we may now apply Lemma 2.3.11 and together with (2.5) get that

ℓi(x) ≤ ℓi(y) + wi(x , y) ≤ (α + β/τ) ⋅ dGi
(x , r) + β

as desired.
Case 2: Consider now the case that for every shortest path from x to r in Gi its

first edge is not contained in (Hi ,wi). Define the node z as follows. If dGi
(x , r) < τ ,

then z = r . If dGi
(x , r) ≥ τ , then z is a node on a shortest path from x to r in Gi

whose distance to x is τ , i.e., dGi
(x , z) = τ and dGi

(x , r) = dGi
(x , z) + dGi

(z, r). In both
cases there is no shortest path from x to z in Gi that is also contained in (Hi ,wi)
because every shortest path from x to z can be extended to a shortest path from x
to r in Gi and (Hi ,wi) does not contain the first edge of such a path. Since ℋ is an
(α , β , τ)-locally persevering emulator, we know that there is a path π from x to z in
(Hi ,wi) that is persevering up to time i such that wi(π) ≤ αdGi

(x , z) + β .
If z = r , we have ℓi(z) = 0 and therefore we get

ℓi(z) + wi(π) = wi(π) ≤ αdGi
(x , z) + β ≤ (α + β/τ) ⋅ dGi

(x , r) + β

≤ (α + β/τ) ⋅ Rd + β

as desired. Consider now the case that z ≠ r . Since dGi
(z, r) < dGi

(x , r), we may
apply the induction hypothesis on z and get that ℓi(z) ≤ (α + β/τ) ⋅ dGi

(z, r) + β .
Together with dGi

(x , z) = τ , we get

ℓi(z) + wi(π) ≤ (α + β/τ) ⋅ dGi
(z, r) + β + αdGi

(x , z) + β

= (α + β/τ) ⋅ dGi
(z, r) + β + αdGi

(x , z) + β ⋅ dGi
(x , z)/τ

= (α + β/τ) ⋅ dGi
(z, r) + β + (α + β/τ) ⋅ dGi

(x , z)
= (α + β/τ) ⋅ (dGi

(x , z) + dGi
(z, r)) + β

= (α + β/τ) ⋅ dGi
(x , r) + β

≤ (α + β/τ) ⋅ Rd + β .

The last equation follows from the definition of z.
In both cases we have ℓi(z) + wi(π) ≤ (α + β/τ) ⋅ Rd + β . Since π is persevering

up to time i, we may apply Lemma 2.3.12 and get the approximation guarantee:

ℓi(x) ≤ ℓi(z) + wi(π) ≤ (α + β/τ) ⋅ dGi
(x , r) + β .

Finally, we provide the running time analysis. In principle we use the same
charging argument as for the classic ES-tree. We only have to deal with the fact that
the degree of a node might change over time in the dynamic emulator.

Lemma 2.3.14 (Running Time). For k deletions in 𝒢 , the monotone ES-tree has a
total update time of O(ϕk(ℋ) log n + |Ek(ℋ)| ⋅ ((α + β/τ)Rd + β) log n), where Ek(ℋ)
is the set of all edges ever contained in ℋ up to time k.

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 47

Proof. We first bound the time needed for the initialization. Using Dijkstra’s algo-
rithm, the shortest paths tree can be computed in time O(|E(H0)| + n log n), which is
O(|Ek(ℋ)| log n)

We now bound the time for processing all edge deletions in 𝒢 . Remember that
the monotone ES-tree runs on the emulator ℋ. An edge deletion in 𝒢 could result in
several updates in the emulator ℋ. All of these updates have to be processed by the
monotone ES-tree with timeO(log n) per update plus the time needed for running the
procedure UpdateLevels. Therefore the total update time is O(ϕk(ℋ) log n), where
ϕk(ℋ) is the total number of updates in ℋ, plus the cumulated time for running the
reconnection procedure.

We now bound the running time of the procedure UpdateLevels. Here, the
well-known level-increase argument works. We define the dynamic degree of a
node x by degℋ(x) = |{(x , y) ∣ (x , y) ∈ Ek(ℋ)}|. Clearly, the dynamic degree
never underestimates the current degree of a node in the emulator. We charge time
O(degℋ(x) log(x)) to every level increase of a node x and time O(log n) to every
update in ℋ.

We now argue that this charging covers all costs in the procedure UpdateLevels.
Consider a node x that is processed in the while loop of the procedure UpdateLevels
after some update in the emulator. Now the following holds: If the level of x increases,
the monotone ES-tree has to spend time O(degℋ(x) log(x)) because degℋ(x) bounds
the current degree of x in the emulator. If the level of x does not increase, the
monotone ES-tree has to spend time O(log n). We now only have to argue that the
cost of O(log n) in the second case is already covered by our charging scheme.

There are two possibilities why x is in the heap. The first one is that x is processed
directly after the deletion or weight increase of an edge (x , y). The second one is
that it was put there by one of its neighbors. In the first situation we can charge the
running time of O(log n) to the weight increase (or delete) operation. Consider now
the second situation: the level of a node y increases and its neighbor x is put into
the heap for later processing. Later on x is processed but its level does not increase.
Then we can charge the running time of O(log n) to the time O(degℋ(x) log n) that
we already charge to y.

Since the monotone ES-tree is only maintained up to depth (α + β/τ)Rd + β , at
most (α + β/τ)Rd + β level increases are possible for every node. Thus, the total
update time of the monotone ES-tree is

O(ϕk(ℋ) log n + ∑
x∈U

degℋ(x)((α + β/τ)Rd + β) log n) .

As ∑x∈U degℋ(x) ≤ 2|Eℋ(U)|, this becomes

O(ϕk(ℋ) + Eℋ(U)((α + β/τ)Rd + β) log n) .

Eliminating the log n-factor The factor log n in the running time of Lemma 2.3.14
comes from using a heap Q and, for every node u, a heap N (u). We now want to
avoid using these heaps and only charge O(degℋ(u)) to every level increase of a

48 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

node u and time O(1) to every update in ℋ. King [79] explained how to eliminate the
log n-factor for the classic ES-tree. However, we cannot use the same modified data
structures as King because of the possibility of insertions and edge weight increases.

First we explain how to avoid the heap Q. Observe that, every time we increase
the level of a node, it suffices to increase the level by only 1. Thus, instead of a heap
for Q we can also use a simple queue, implemented with a list that allows us to
retrieve and remove its first element and to append an element at its end.

Now we explain how to avoid the heap N (u) of every node u. Remember that
we only want to increase the level of a node u if there is no neighbor v of u such that

ℓ(v) + w(u, v) ≤ ℓ(u) . (2.7)

Therefore we maintain a counter c(u) for every node u such that c(u) = |{v ∣
ℓ(v) + w(u, v) ≤ ℓ(u)}|.17 If the counters are correctly maintained, we can simply
check whether c(u) is 0 to determine whether the level of u has to increase (which
replaces Lines 11 and 12 of Algorithm 2.2). For a node u and its neighbor v the status
of Inequality (2.7) only changes (i.e., the inequality starts or stops being satisfied) in
the following cases:

• The level of u or the level of v increases.

• The weight of the edge (u, v) increases.

• The edge (u, v) is inserted (thus v becomes a neighbor of u).

• The edge (u, v) is deleted (thus v stops being a neighbor of v).

Note that for two nodes u and v we can check whether they satisfy Inequality (2.7)
in constant time. Thus, we can efficiently maintain the counters as follows:

• Every time we update an edge (u, v) (by an insertion, deletion, or weight
increase), we check in constant time whether Inequality (2.7) holds before the
update and whether it holds after the update. Then we increase or decrease
c(v) and c(u) if necessary. These operations take constant time, which we
charge to the update in ℋ.

• Every time ℓ(u) increases, we recompute c(u). This takes time O(degℋ(u)).
Furthermore, for every neighbor v of u, we check in constant time whether
Inequality (2.7) holds before the update and whether it holds after the update.
Then we increase or decrease c(v) if necessary. This takes constant time for
every neighbor of u and thus time O(degℋ(u)) for all of them. We can charge
the running time O(degℋ(u)) to the level increase of u.

Having explained how to maintain the counters, the remaining running time
analysis is the same as in Lemma 2.3.14. The improved running time can therefore
be stated as follows.

17The idea of maintaining this kind of counter has previously been used by Brim et al. [27] in the
context of mean-payoff games.

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 49

Lemma 2.3.15 (Improved Running Time). For k deletions in 𝒢 , the monotone ES-tree
can be implemented with a total update time of O(ϕk(ℋ) + |Ek(ℋ)| ⋅ ((α + β/τ)Rd + β)),
where Ek(ℋ) is the set of all edges ever contained in ℋ up to time k.

Note that the solution proposed above does not allow us to retrieve the parent
of every node in the tree in constant time. This would be desirable because then, for
every node v, we could not only get the approximate distance of v to the root in
constant time, but also a path of corresponding or smaller length in time proportional
to the length of this path.

We can achieve this property as follows. For every node u we maintain a list
L(u) of nodes. Every time a node u and one of its neighbors v start to satisfy
Inequality (2.7), v is appended to L(u). Note that it is not always the case that u and
all nodes v in the list L(u) satisfy Inequality (2.7). We just have the guarantee that
they satisfied it at some previous point in time. However, the converse is true: if
u and its neighbor v currently satisfy Inequality (2.7), then v is contained in L(u).
Using the same argument as above for maintaining the counters, the running time
for appending nodes to the lists is paid for by charging O(1) to every update in ℋ
and O(degℋ(u)) to every level increase of a node u.

We can now decide whether the level of a node u has to increase as follows
(this replaces Lines 11 and 12 of Algorithm 2.2). Look at the first node v in the list
L(u). If u and v still satisfy Inequality (2.7), the level of u does not have to increase.
Otherwise, we retrieve and remove the first element from the list until we find a
node v such that u and v satisfy Inequality (2.7). If no such node v can be found in
the list, then the list will be empty after this process and we know that the level of u
has to increase. Otherwise, the first node in the list L(u) serves as the parent of u in
the tree. The constant running time for reading and removing the first node can be
charged to the previous appending of this node to L(u).

Note that the list L(u) of each node u might require a lot of space because some
nodes might appear several times. If we want to save space, we can do the following.
For every node u we maintain a set S(u) that stores for every neighbor of u whether
it is contained in L(u). Every time we add or remove a node from L(u) we also add
or remove it from S(u). Before adding a node to L(u) we additionally check whether
it is already contained in S(u) and thus also in L(u). We implement S(u) with a
dynamic dictionary using dynamic perfect hashing [40] or cuckoo hashing [103].
This data structure needs time O(1) for look-ups and expected amortized time O(1)
for insertions and deletions. Thus, the running time bound of Lemma 2.3.15 will
still hold in expectation. Furthermore, for every node u, the space needed for L(u)
and S(u) is bounded by O(degℋ(u)). However, this solution is not deterministic
anymore.

2.3.3 From Approximate SSSP to Approximate APSP

In the following, we show how a combination of approximate decremental SSSP data
structures can be turned into an approximate decremental APSP data structure. We

50 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

follow the ideas of Roditty and Zwick [113], who showed how to obtain approximate
APSP from exact SSSP.We remark that one can obtain an efficient APSP data structure
from this reduction, if the running time of the (approximate) SSSP data structure
depends on the distance range that it covers in a specific way.

We first define an approximate version of the center cover data structure and
show how such a data structure can be obtained from an approximate decremental
SSSP data structure by marginally worsening the approximation guarantee. We
slightly modify the notions of a center cover and a center cover data structure we
gave in Section 2.2.3, where we reviewed the algorithmic framework of Roditty and
Zwick [113]. The main idea behind their APSP data structure is to maintain log n
instances of center cover data structures such that the instance p can answer queries
for the approximate distance of two nodes x and y if the distance between them is
in the range from 2p to 2p+1. Arbitrary distance queries can then be answered by
performing binary search over the instances to determine p. We will follow this
approach using approximate instead of exact data structures.

Definition 2.3.16 (Approximate center cover). Let U be a set of nodes in a graph G,
let Rc be a positive integer, the cover range, and let α ≥ 1 and β ≥ 0. We say that a
node x is (α , β)-covered by a node c ∈ U in G if dG(x , c) ≤ αRc + β . We say that U is
an (α , β)-approximate center cover of G with parameter Rc if every node x that is in
a connected component of size at least Rc is (α , β)-covered by some node c ∈ U in G.

Definition 2.3.17. An (α , β)-approximate center cover data structure with cover
range parameter Rc and distance range parameter Rd for a decremental graph 𝒢 =
(Gi)0≤i≤k maintains, for every 0 ≤ i ≤ k, a set of centers Ci = {1, 2, … , l} and a set
of nodes Ui = {c1i , c2i , … , cli} such that Ui is an (α , β)-approximate center cover of Gi
with parameter Rc. For every center j ∈ Ci and every 0 ≤ i ≤ k, we call cji the location
of center j in Gi and for every node x we say that x is (α , β)-covered by j in Gi if x
is (α , β)-covered by cji in Gi . After the i-th edge deletion (where 0 ≤ i ≤ k), the data
structure provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi .

• Distance(j, x): Return an estimate δi(c
j
i , x) of the distance between the location

cji of center j and the node x such that δi(c
j
i , x) ≤ αdGi

(cji , x) + β , provided that
dGi

(cji , x) ≤ Rd. If dGi
(cji , x) > Rd, then either return δi(c

j
i , x) = ∞ or return

δi(c
j
i , x) ≤ αdGi

(cji , x) + β .

• FindCenter(x): If x is in a connected component of size at least Rc, then return
a center j (with current location cji) such that dGi

(x , cji) ≤ αRc + β . If x is in a
connected component of size less than Rc, then either return ⊥ or return a center
j such that dGi

(x , cji) ≤ αRc + β .

The total update time is the total time needed for performing all k delete operations
and the initialization and the query time is the worst-case time needed to answer a
single distance or find center query.

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 51

We now show how to obtain an approximate center cover data structure that is
correct with high probability, which means that, with small probability, the operation
FindCenter(x) might return ⊥ although x is in a connected component of size at
least Rc.

Lemma 2.3.18 (Approximate SSSP implies approximate center cover). Let Rc and
Rd be parameters such that Rc ≤ Rd. If there are (α , β)-approximate decremental SSSP
data structures with distance range parameters Rc and Rd for some α ≥ 1 and β ≥ 0
that have constant query times and total update times of T (Rc) and T (Rd), respectively
(where T (Rd) is Ω(n)), then there is an (α , β)-approximate center cover data structure
that is correct with high probability, has constant query time and an expected total
update time of O((T (Rd)n log n)/Rc).

Proof. Let 𝒢 = (Gi)0≤i≤k be a decremental graph. It is well-known (see Lemma 1.3.2)
that, by random sampling, we can obtain a set U = {c1, c2, … , cl} of expected size
O(n log n/Rc) that is a center cover of Gi for every i ≤ k with high probability.
Clearly, every center cover is also an (α , β)-approximate center cover. Thus, U is an
(α , β)-approximate center cover of Gi for every 0 ≤ i ≤ k. Throughout all deletions,
the set C = {1, 2, … , l} will serve as the set of centers and each center j will always
be located at the same node cj .

We use the following data structures: For every center j, we maintain two
(α , β)-approximate decremental SSSP data structures with source cj : for the first one
we use the parameter Rc and for the second one we use the parameter Rd. As there
are O(n log n/Rc) centers, the total update time for all these SSSP data structures
is O(T (Rd)(n log n)/Rc). For every node x and every center j, let δi(x , cj) denote
the estimate of the distance between x and the location of center j returned by the
second SSSP data structure with source cj after the i-th edge deletion. For every
node x we maintain a set Sx of centers that cover x such that (a) if dGi

(x , cj) ≤ Rc,
then j ∈ Sx and (b) for all j ∈ Sx , δi(x , cj) ≤ αRc + β .

The set Sx can be implemented by using an array of size |C| = O((n log n)/Rc) for
every node x . We initialize Sx in timeO((n log n)/Rc) as follows: for every center j, we
query δ0(x , cj) and insert j into Sx if δ0(x , cj) ≤ αRc+β . Since δ0(x , cj) ≤ αdG0

(x , cj)+β ,
this includes every center j such that dG0

(x , cj) ≤ Rc. To maintain the sets of centers
we do the following after every deletion. Remember that for every center j, the first
SSSP data structure with source cj returns every node x such that δi(x , cj) ≤ αRc + β
and δi+1(x , cj) > αRc+β . For every such node x we remove j from Sx . Note that every
center j with δt (x , cj) > αRc + β (for 0 ≤ t ≤ k) can safely be removed Sx because
δt (x , cj) > αRc + β implies dGt

(x , cj) > Rc and dGi
(x , cj) ≥ dGt

(x , cj) for all i ≥ t .
We can charge the running time for maintaining the sets of centers to the delete
operations in the SSSP data structures. Thus, this running time is already included
in the total update time stated above. For every node x , no center is ever added
to Sx after the initialization. Thus, in the array representing Sx , we can maintain a
pointer to the left-most center time proportional to the size of the array, which is
|C| = O((n log n)/Rc).

52 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

We now show how to perform the operations of an approximate center cover
data structure, as specified in Definition 2.3.17, in constant time. Let i be the index of
the last deletion. Given a center j and a node x we answer a query for the distance
of x to cj by returning δi(x , cj) from the second SSSP data structure of cj , which
gives an (α , β)-approximation of the true distance. Given a node x , we answer a
query for finding a nearby center by returning any center j in the set of centers Sx
of x . If Sx is empty, we return ⊥. Note that for every center j in Sx we know that
dGi

(x , cj) ≤ αRc + β as required because dGi
(x , cj) ≤ δi(x , cj). If x is in a connected

component of size at least Rc we can ensure that we find a center j in Sx because, by
our random choice of centers, we have dGi

(x , cj) ≤ Rc for some center j with high
probability. If dGi

(x , cj) ≤ Rc, then, Sx contains j.

We now show why the approximate center cover data structure is useful. If one
can obtain an approximate center cover data structure, then one also obtains an
approximate decremental APSP data structure with slightly worse approximation
guarantee. The proof of this observation follows Roditty and Zwick [113]. In their
algorithm, Roditty and Zwick keep a set of nodes U (which we call centers) such that
every node (that is in a sufficiently large connected component) is “close” to some
node in U . To be able to efficiently find a close center for every node, they maintain,
for every node, the nearest node in the set of centers. However, it is sufficient to
return any center that is close.

Lemma 2.3.19 (Approximate center cover implies approximate APSP). Assume
that for all parameters Rc and Rd such that Rc ≤ Rd there is an (α , β)-approximate
center cover data structure that has constant query time and a total update time of
T (Rc, Rd). Then, for every 0 < ϵ ≤ 1, there is an (α + 2ϵα2, 2β + 2αβ)-approximate
decremental APSP data structure with O(log log n) query time and a total update time
of ̂T = ∑⌊log n⌋

p=0 T (Rc
p , Rd

p) where Rc
p = ϵ2p and Rd

p = αϵ2p +β +2p+1 (for 0 ≤ p ≤ ⌊log n⌋).
The query time can be reduced to O(1) if there is an (α′, β′)-approximate decremen-

tal APSP data structure for some constants α′ and β′ with constant query time and a
total update time of ̂T .

Proof. The data structure uses ⌈log n⌉ many instances where the p-th instance is
responsible for the distance range from 2p to 2p+1. For the p-th instance we maintain
a center cover data structure using the parameters Rc

p = ϵ2p and Rd
p = 2p+1 + αϵ2p + β .

For every center j and every node x , let δpi (cj , x) denote the estimate of the distance
between cj and x provided by the p-th center cover data structure. Let 𝒢 = (Gi)0≤i≤k
be a decremental graph and let i be the index of the last deletion.

For every instance p, we can compute a distance estimate ̂δpi (x , y) for all nodes
x and y as follows. Using the center cover data structure, we first check whether
there is some center j with location cj that (α , β)-covers x , i.e., dGi

(x , cj) ≤ αRc
p + β .

If x is not (α , β)-covered by any center we set ̂δpi (x , y) = ∞. Otherwise we query the
center cover data structure to get estimates δpi (cj , x) and δpi (cj , y) of the distances
between cj and x and between cj and y , respectively. (Remember that these distance

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 53

estimates might be ∞.) We now set ̂δpi (x , y) = δpi (cj , x) + δpi (cj , y). Note that, given
p, we can compute ̂δpi (x , y) in constant time. The query procedure will rely on three
properties of the distance estimate ̂δpi (x , y).

1. The distance estimate never underestimates the true distance, i.e., ̂δpi (x , y) ≥
dGi

(x , y).

2. If dGi
(x , y) ≥ 2p and ̂δpi (x , y) ≠ ∞, then ̂δpi (x , y) ≤ (α + 2α2)dGi

(x , y) + 2β + 2αβ .

3. If x is in a connected component of size at least Rc
p and dGi

(x , y) ≤ 2p+1, then
̂δpi (x , y) ≠ ∞.

The first property is clearly true if ̂δpi (x , y) = ∞ and otherwise follows by applying
the triangle inequality (note that dGi

(cj , y) ≤ δpi (cj , y) in any case):

dGi
(x , y) ≤ dGi

(cj , x) + dGi
(cj , y) ≤ δpi (cj , x) + δpi (cj , y) = ̂δpi (x , y) .

Thus, ̂δpi (x , y) never underestimates the true distance. For the second property
we remark that if ̂δpi (x , y) ≠ ∞, it must be the case that we have found a center j
with location cj that (α , β)-covers x . Therefore dGi

(x , cj) ≤ αRc
p + β . Furthermore

it must be the case that δpi (x , cj) ≠ ∞ and δpi (cj , y) ≠ ∞ and therefore δpi (x , cj) ≤
αdGi

(x , cj) + β and δpi (cj , y) ≤ αdGi
(cj , y) + β . Now simply consider the following

chain of inequalities:

̂δpi (x , y) = δpi (x , cj) + δpi (cj , y) ≤ α(dGi
(cj , x) + dGi

(cj , y)) + 2β
≤ α(dGi

(cj , x) + dGi
(cj , x) + dGi

(x , y)) + 2β
= α(2dGi

(cj , x) + dGi
(x , y)) + 2β

≤ α(2αRc
p + 2β + dGi

(x , y)) + 2β

= α(2αϵ2p + 2β + dGi
(x , y)) + 2β

≤ α(2αϵdGi
(x , y) + 2β + dGi

(x , y)) + 2β
= (α + 2ϵα2)dGi

(x , y) + 2β + 2αβ

We now prove the third property. If x is in a component of size at least Rc
p , then,

with high probability, it is covered by some center j with location cj and we have

dGi
(cj , x) ≤ αRc

p + β = αϵ2p + β ≤ Rd
p .

Therefore we get δpi (cj , x) ≤ αdGi
(cj , x) + β < ∞. Furthermore, we have

dGi
(cj , y) ≤ dGi

(cj , x) + dGi
(x , y) ≤ αϵ2p + β + 2p+1 = Rd

p .

which gives δpi (cj , y) ≤ αdGi
(cj , y) + β < ∞. As both of its components are not ∞, the

sum ̂δpi (x , y) = δpi (cj , x) + δpi (cj , y) is also not ∞, as desired.
A query time of O(log n) is immediate as we can simply return the minimum

of all distance estimates ̂δpi (x , y). A query time of O(log log n) is possible because

54 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

of the following idea: If dGi
(x , y) ≠ ∞, it is sufficient to find the minimum index p

such that ̂δpi (x , y) ≠ ∞. This minimum index can be found by performing binary
search over all log n possible indices. Furthermore, the query time can be reduced to
O(1) if there is a second (α′, β′)-approximate decremental APSP data structure with
constant query time for some constants α′ and β′, We first compute the distance
estimate δ′

i (x , y) of the second data structure for which we know that dGi
(x , y) ∈

[δ′
i (x , y)/α′ − β′, δ′

i (x , y)]. Now there is only a constant number of indices p such
that {2p , … , 2p+1} ∩ [δ′

i (x , y)/α′ − β′, δ′
i (x , y)] ≠ ∅. For every such index we compute

̂δpi (x , y) and return the minimum distance estimate obtained by this process.

Finally, we show how to obtain an approximate decremental APSP data structure
from an approximate decremental SSSP data structure if the approximation guarantee
is of the form (α +ϵ, β). In that case we can avoid the worsening of the approximation
guarantee of Lemma 2.3.18.

Lemma 2.3.20. Assume that for some α ≥ 1 and β ≥ 0, every 0 < ϵ ≤ 1, and all 0 ≤ Rd

there is an (α + ϵ, β)-approximate decremental SSSP data structure with distance range
parameter Rd that has constant query time and a total update time of T ′(Rd, ϵ). Then
there is an (α + ϵ, β)-approximate decremental APSP data structure with a query time
of O(log log n) and a total update time of

̂T =
⌊log n⌋

∑
p=0

(T ′(Rd
p , ̂ϵ)n log n)/Rc

p + nT ′(̂Rd, ̂ϵ)

where ̂ϵ = ϵ/(18α2), ̂Rd = (4α + 8β)/ ̂ϵ, Rc
p = ̂ϵ2p and Rd

p = α ̂ϵ2p + β + 2p+1 (for
0 ≤ p ≤ ⌊log n⌋).

The query time can be reduced to O(1) if there is an (α′, β′)-approximate decremen-
tal APSP data structure for some constants α′ and β′ with constant query time and a
total update time of ̂T .

Proof. By combining Lemma 2.3.18 with Lemma 2.3.19 the approximate decremental
SSSP data structure implies that there is an (̂α , ̂β)-approximate decremental APSP
data structure where ̂α = (α + ̂ϵ) + 2 ̂ϵ(α + ̂ϵ)2 and ̂β = 2β + 2(α + ̂ϵ)β . This APSP data
structure has a query time of O(log log n) and a total update time of

⌊log n⌋

∑
p=0

(T ′(Rd
p , ̂ϵ)(n log n)/Rc

p .

By Lemma 2.3.19 the query time can be reduced to O(1) if, for some constants α′ and
β′, there is an (α′, β′)-approximate decremental APSP data structure with constant
query time and a total update time of ̂T .

The data structure above provides, for every decremental graph 𝒢 = (Gi)0≤i≤k
and all nodes x and y, a distance estimate δi(x , y) such that dGi

(x , y) ≤ δi(x , y) ≤
̂αdGi

(x , y) + ̂β after the i-th deletion. By our choice of ̂ϵ = ϵ/(18α2) we get

̂α = (α + ̂ϵ) + 2 ̂ϵ(α + ̂ϵ)2 ≤ α + ̂ϵα2 + 2 ̂ϵ(α + α)2 = α + 9 ̂ϵα2 = α + ϵ/2

2.3. ̃O(n5/2)-TOTAL TIME APPROXIMATION ALGORITHMS 55

and
̂β = 2β + 2(α + ̂ϵ)β ≤ 2β + 2(α + 1)β = (2α + 4)β

Thus, if dGi
(x , y) ≥ (4α + 8β)/ϵ, then

δi(x , y) ≤ (α + ϵ/2)dGi
(x , y) + (2α + 4)β ≤ (α + ϵ/2)dGi

(x , y) + ϵdGi
(x , y)/2

= (α + ϵ)dGi
(x , y) .

Additionally, we use a second approximate decremental APSP data structure to
deal with distances that are smaller than (4α + 8β)/ϵ (which is less than (4α + 8β)/ ̂ϵ).
For this data structure we simply maintain an (α + ̂ϵ, β)-approximate decremental
SSSP data structure for every node with distance range parameter ̂Rd = (4α + 8β)/ ̂ϵ.
We answer distance queries by returning the minimum of the distance estimates
provided by both APSP data structures. As both APSP data structures never under-
estimate the true distance, the minimum of both distance estimates gives the desired
(α + ϵ, β)-approximation.

2.3.4 Putting Everything Together

In the following we show how the monotone ES-tree of Lemma 2.3.8 together with
the locally persevering emulator of Lemma 2.3.3 can be used to obtain (1 + ϵ, 2)-
and (2 + ϵ, 0)-approximate decremental APSP data structures with ̃O(n5/2/ϵ2) total
update time. These results are direct consequences of the previous parts of this
section. We first show how to obtain a (1 + ϵ, 2)-approximate decremental SSSP data
structure. Using Lemma 2.3.20 we then immediately obtain a (1 + ϵ, 2)-approximate
decremental APSP data structure.

Corollary 2.3.21 ((1+ϵ, 2)-approximatemonotone ES-tree). Given a (1, 2, ⌈2/ϵ⌉)-locally
persevering emulator ℋ (as in Lemma 2.3.3), there is a (1 + ϵ, 2)-approximate decre-
mental SSSP data structure for every distance range parameter Rd that is correct
with high probability, has constant query time, and an expected total update time
of O(n3/2 log n/ϵ + n3/2Rd log n), where the time for maintaining ℋ is not included.

Proof. Let 𝒢 = (Gi)0≤i≤k be a decremental graph and let ℋ be the (1, 2, ⌈2/ϵ⌉)-locally
persevering emulator of Lemma 2.3.3. By Lemma 2.3.8 there is an approximate
decremental SSSP data structure for every source node r and every distance range
parameter Rd. Let δi(x , r) denote the estimate of the distance between x and r
provided after the i-th edge deletion in 𝒢 . By Lemma 2.3.8 we have dGi

(x , c) ≤ δi(x , c),
and furthermore, if dGi

(x , c) ≤ Rd, then

δi(x , c) ≤ (1 + 2/(⌈2/ϵ⌉))dGi
(x , c) + 2 ≤ (1 + ϵ)dGi

(x , c) + 2 .

By Lemma 2.3.3, the number of edges ever contained in the emulator is |Ek(ℋ)| =
O(n3/2 log n) and the total number of updates in ℋ is ϕk(ℋ) = O(n3/2 log n/ϵ). There-
fore, by Lemma 2.3.8, the total update time of the approximate decremental SSSP

56 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

data structure is

O(ϕk(ℋ) + |Ek(ℋ)| ⋅ ((α + β/τ)Rd + β))
= O((n3/2 log n)/ϵ + (n3/2 log n) ⋅ ((1 + ϵ)Rd + 2))

= O((n3/2 log n)/ϵ + n3/2Rd log n) .

Theorem 2.3.22 (Main result of Section 2.3: Randomized (1 + ϵ, 2)-approximation
with truly-subcubic total update time). For any 0 < ϵ ≤ 1, there is a (1+ϵ, 2)-approximate
decremental APSP data structure with constant query time and an expected total update
time of O((n5/2 log3 n)/ϵ) that is correct with high probability.

Proof. We set ̂ϵ = ϵ/18. Let ℋ denote the (1, 2, 2/ ̂ϵ)-locally persevering emulator of
Lemma 2.3.3. The total update time for maintaining ℋ is O(mn1/2 log n/ϵ). Since
m ≤ n2 this is within the claimed total update time. By Corollary 2.3.21 we can
use ℋ to maintain, for every distance range parameter Rd, a (1 + ̂ϵ, 2)-approximate
decremental SSSP data structure that has constant query time and a total update
time of T (Rd) = O((n3/2 log n)/ϵ + n3/2Rd log n).

Using α = 1 and β = 2, it follows from Lemma 2.3.20 that there is a (1 +
ϵ, 2)-approximate decremental APSP data structure whose total update time is pro-
portional to

⌊log n⌋

∑
p=0

(T (Rd
p)n log n)/Rc

p + T (̂Rd)n =
⌊log n⌋

∑
p=0

((n3/2 log n)/ ̂ϵ + n3/2Rd
p log n)(n log n)/Rc

p)

+ ((n3/2 log n)/ ̂ϵ + n3/2 ̂Rd log n)n)

where ̂ϵ = ϵ/18, ̂Rd = 12/ ̂ϵ, Rc
p = ̂ϵ2p , and Rd

p = α ̂ϵ2p + 2p+1 + 2 (for 0 ≤ p ≤ ⌊log n⌋).
Note that 1/ ̂ϵ = O(1/ϵ), ̂Rd = O(1/ϵ) and Rd

p/Rc
p = O(1/ϵ). Therefore the total update

time is O((n5/2 log3 n)/ϵ).
The query time of the APSP data structure provided by Lemma 2.3.20 can be

reduced to O(1). The reason is that Bernstein and Roditty [24] provide, for example,
a (5 + ϵ′, 0)-approximate decremental APSP data structure for some constant ϵ′. The
total update time of this data structure is

̃O (n
2+1/3+O(1/√log n)

)

which is well within O(n5/2).

The (2 + ϵ, 0)-approximate decremental APSP data structure now follows as a
corollary. We simply need the following observation: if the distance between two
nodes is 1, then we can answer queries for their distance exactly by checking whether
they are connected by an edge.

Corollary 2.3.23 (Randomized (2 + ϵ, 0)-approximation with truly-subcubic total
update time). For every 0 < ϵ ≤ 1, there is a (2 + ϵ, 0)-approximate decremental
APSP data structure with constant query time and an expected total update time of
O((n5/2 log3 n)/ϵ) that is correct with high probability.

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 57

Proof. By using the data structure of Theorem 2.3.22 we can, after the i-th edge
deletion in a decremental graph 𝒢 = (Gi)0≤i≤k and for all nodes x and y , query for a
distance estimate δi(x , y) in constant time that satisfies:

dGi
(x , y) ≤ δi(x , y) ≤ (1 + ϵ)dGi

(x , y) + 2

Note that if dGi
(x , y) ≥ 2, then

δi(x , y) ≤ (1 + ϵ)dGi
(x , y) + 2 ≤ (1 + ϵ)dGi

(x , y) + dGi
(x , y) = (2 + ϵ)dGi

(x , y) .

If dGi
(x , y) < 2, then we actually have dGi

(x , y) ≤ 1 because Gi is an unweighted
graph. A distance of 1 simply means that there is an edge connecting x and y in Gi .
Since the adjacency matrix of 𝒢 is maintained anyway, we can find out in constant
time whether dGi

(x , y) = 1. By setting, for all nodes x and y ,

δ′
i (x , y) =

⎧⎪
⎨
⎪⎩

0 if x = y
1 if (x , y) ∈ E(Gi)
δi(x , y) otherwise

we get dGi
(x , y) ≤ δ′

i (x , y) ≤ (2 + ϵ)dGi
(x , y). Clearly, this data structure can answer

queries in constant time by returning the distance estimate δ′
i (x , y) and has the same

total update time as the (1 + ϵ, 2)-approximate decremental APSP data structure,
namely O((n5/2 log3 n)/ϵ).

2.4 Deterministic Decremental (1 + ϵ)-Approximate
APSP with O(mn log n) Total Update Time

In this section, we present a deterministic decremental (1 + ϵ)-approximate APSP
algorithm with O(mn log n/ϵ) total update time.

Theorem 2.4.1 (Main result of Section 2.4: Deterministic O((mn log n)/ϵ) total up-
date time). For every 0 < ϵ ≤ 1, there is a deterministic (1 + ϵ, 0)-approximate
decremental APSP data structure with a total update time of O((mn log n)/ϵ) and a
query time of O(log log n).

Using known reductions, we show in Section 2.4.3 that this decremental algorithm
implies a deterministic fully dynamic algorithm with an amortized running time of

̃O(mn/(ϵt) per update and a query time of ̃O(t) for every t ≤ n.
The main task in proving Theorem 2.4.1 is to design a deterministic version of

the center cover data structure (see Section 2.2.3) with a total deterministic update
time of O(mnRd/Rc) and constant query time. Once we have this data structure,
Theorem 2.4.1 directly follows as a corollary from Theorem 2.2.14. Note that we
cannot use the same idea is in [113] to reduce the query time from O(log log n) to
O(1). This would require a deterministic (α , β)-approximate decremental APSP data
structure for some constants α and β with constant query time and a total update

58 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

time of O((mn log n)/ϵ). To the best of our knowledge such a data structure has not
yet been developed.

Recall that Rc and Rd are the coverage range and distance range parameters where
we want (a) every node (in a connected component of size at least Rc) to be within
distance of at most Rc from some center, and we want (b) to maintain the distance
from each center to every node within distance at most Rd. Roditty and Zwick [113],
following an argument of Ullman and Yannakakis [127] (see also Lemma 1.3.2),
observed that making each node a center independently at random with probability
(a ln n)/Rc, where a is a constant and 1 ≤ Rc ≤ n, gives a set C of centers such that
with probability at least 1 − n−(a−1) the conditions of a center cover with parameter
Rc are fulfilled by C in the initial graph and the expected size of C is O((n log n)/Rc).
The randomized decremental APSP algorithm of [113] simply chooses a large enough
value of a so that with high probability C fulfills the center cover properties with
parameter Rc not only in the initial graph but continues to fulfill them in all the
O(n2) graphs generated during O(n2) edge deletions. This is only possible because it
is assumed that the “adversary” that generates the deletions is oblivious, i.e., does not
know the location of the centers. The main challenge for the deterministic algorithm
is to dynamically adapt the location and number of the centers so that (i) the center
cover properties with size Rc continue to hold, while the graph is modified, and (ii)
the total cost incurred is O(mn). Once we have such a data structure, we can use the
approach of Roditty and Zwick, as discussed in Section 2.2.3, to obtain an algorithm
for maintaining decremental approximate shortest paths.

The new feature of our deterministic center cover data structure is that it some-
times moves centers to avoid opening too many centers (which are expensive to
maintain). As we described in Section 2.1, the key technique behind the new data
structure is what we call amoving Even-Shiloach tree. We note that the moving Even-
Shiloach tree is actually a concept rather than a new implementation: we implement
it in a straightforward way by building a new Even Shiloach tree every time we
have to move it. However, analyzing the total update time needs new insights and a
careful charging argument. To separate the analysis of the moving Even-Shiloach
tree from the charging argument, we describe the data structure in two pieces:

(1) First, in Section 2.4.1, we give themoving centers data structure that can answer
Distance and FindCenter operations, but needs to be told where to move
a center, when a center has to be moved. This data structure is basically an
implementation of several moving Even-Shiloach trees.18

(2) Then, in Section 2.4.2, we show how to determine when a center (with a
moving Even-Shiloach tree rooted at it) has to be moved and, if so, where it
has to move.

Combining these two pieces gives the center cover data structure.
18Later on we want to use the moving centers data structure, and not directly the moving Even-

Shiloach trees, because we will need an additional operation which is not directly provided by the
Even-Shiloach trees (in particular, the FindCenter operation defined in Section 2.4.1).

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 59

2.4.1 Deterministic Moving Centers Data Structure

In the following, we design a deterministic data structure, called moving centers data
structure, and analyze its cost in terms of the number of centers opened (𝔒) and the
moving distance (𝔇). When a center is created, it is given a unique identifier j. The
data structure can handle the following operations.

Definition 2.4.2 (Moving centers data structure). A moving centers data structure
with cover range parameter Rc and distance range parameter Rd for a decremental
graph 𝒢 = (Gi)0≤i≤k maintains, for every 0 ≤ i ≤ k, a set of centers Ci = {1, 2, … , l}
and a set of nodes Ui = {c1i , c2i , … , cli}. For every center j ∈ C and every 0 ≤ i ≤ k, we
call cji ∈ Ui the location of center j in Gi . After the i-th edge deletion (where 0 ≤ i ≤ k),
the data structure provides the following operations:

• Delete(u, v): Delete the edge (u, v) from Gi .

• Open(x): Open a new center at node x and return the ID of the opened center for
later use.

• Move(j, x): Move the center j from its current location cji to node x .

• Distance(j, x): Return the distance dGi
(cji , x) between the location cji of center j

and the node x , provided that dGi
(cji , x) ≤ Rd. If dGi

(cji , x) > Rd, then return ∞.

• FindCenter(x): Return a center j (with location cji) such that dGi
(x , cji) ≤ Rc. If

no such center exists, return ⊥.

The total update time is the total time needed for performing the all delete, open, and
move operations and the initialization. The query time is the worst-case time needed to
answer a single distance or find center query.

Themoving centers data structure is a first step towards implementing the center
cover data structure: It can answer all query operations that are posed to the center
cover data structure, but, unlike the center cover data structure, it needs to be told
where to place the centers and where to open new centers. This information is
determined by the data structure in the next section.

In the rest of Section 2.4.1 we use the following notation: The decremental
graph 𝒢 undergoes a sequence of k edge deletions. By Gi we denote the graph after
the i-th deletion (for 0 ≤ i ≤ k). Each deletion in the graph is reported to the moving
centers data structure by a delete operation. By Ci we denote the set of centers at
the time of the i-th delete operation and by cji we denote the location of center j ∈ Ci
at the time of the i-th delete operation.

Definition 2.4.3 (Moving distance (𝔇)). The total moving distance, denoted by 𝔇,
is defined as 𝔇 = ∑0≤i<k ∑j∈Ci

dGi
(cji , c

j
i+1).

60 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

The main result of this section is that we can maintain a moving centers data
structure in O(m(𝔒Rd +𝔇)) time, as in Proposition 2.4.4 below. The data structure is
actually very simple: we maintain an Even-Shiloach tree of depth at most Rd at every
node for which we open a center and for every node to which we move a center.
Note that our algorithm treats an Even-Shiloach tree at each such node as a new tree,
regardless of whether we open a center or move a center there. While the algorithm
can naively treat each Even-Shiloach tree as a new one, the analysis cannot: if we do
so, we will get a total update time of O((𝔒 + 𝔐)mRd), where 𝔐 is the total number
of move-operations (since maintaining each Even-Shiloach tree takes O(mRd) total
update time). Instead, we bound the cost incurred by the move-operation based on
how far a center is moved, i.e., the moving distance 𝔇. This argument allows us to
replace the unfavorable term 𝔐mRd by 𝔇m. The deterministic center cover data
structure of Section 2.4.2 will generate a sequence of center open and move requests
so that 𝔇 = O(n). For simplifying the analysis, we state the following result under a
technical assumption, that will always be fulfilled by the intended use of the moving
centers data structure in Section 2.4.2.19

Proposition 2.4.4 (Main result of Section 2.4.1: deterministic moving centers data
structure). Let Rc and Rd be parameters such that Rc ≤ Rd. Under the assumption that
between two consecutive delete operations there can be at most one open or delete oper-
ation for each center, there is a moving centers data structure with a total deterministic
update time of O((𝔒Rd + 𝔇)m), where 𝔒 is the number of open operations and 𝔇 is
the total moving distance.20 The data structure can answer each query in constant time.

Proof. Our data structure maintains (1) An ES-tree of depth Rd rooted at every node
that currently hosts a center; and (2) for every node a doubly-linked center list of
centers by which it is covered. Recall that a node is covered by a center iff the node
is contained in the ES-tree of depth Rc of the center. For every center j and node x
we keep a pointer of the node representing x in the ES-tree of j to the list element
representing j in the center list of x .

The data structure is updated as follows: Every time we open a center j at some
node x we build an ES-tree of depth Rd rooted at x . Additionally we add j to the
center list of all nodes covered by j and set the pointers from the ES-tree to the center
lists.

When we move a center j from a node x to another node y we build an ES-tree
of depth Rd rooted at y and stop maintaining the ES-tree rooted at x . Additionally
we use the pointers from the ES-tree rooted at x into the center lists to remove j
from all the center lists of the nodes in the ES-tree rooted x . Then we add j to the
suitable center lists for all nodes in the ES-tree of y and add pointers into these lists
from the ES-tree of y.

19Without this assumption the total update time will be O((𝔒Rd + 𝔐 + 𝔇)m), where 𝔒 is the
number of open operations, 𝔐 is the number of move operations, and 𝔇 is the total moving distance.

20Note that the total moving distance might be ∞ if, after some deletion i, a center j is moved from
c ji to c

j
i+1 such that there is not path between c ji and c

j
i+1 in Gi . In this case we our analysis cannot bound

the total update time of the moving centers data structure.

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 61

After deleting an edge we update all ES-trees of depth Rd. If a node x reaches a
level larger than Rd in the ES-tree of j, it is removed from the ES-tree of j and we
use its pointer in the ES-tree to remove j from x ’s center list. The total work of this
operation is proportional to the amount of time spent updating all the ES-trees.

To answer a distance query for center j and node x we return the distance of x
to the root of the ES-tree of j. To answer a find center query for node u we simply
return the first element of the center list of node u. Both query operations take
constant worst-case time.

We now bound the running time for maintaining the ES-trees of the centers. First
we bound the initialization costs. For each open operation and each move operation
of a center j we spend time O(m) for (re-)initializing the ES-tree of center j. This
leads to a total running time of O(𝔒m + 𝔐m) for all initializations where 𝔐 is the
total number of move operations. Note that we can ignore every move operation that
does not change the location of any center. Every other move operation increases the
total moving distance by at least 1. Therefore we can charge the initialization cost
of O(m) for moving a center to the moving distance which means that the quantity
O(𝔒m + 𝔐m) will be absorbed by O((𝔒Rd + 𝔇)m), the projected total update time.

We are left to bound the time spent for processing the deletions in the ES-trees
of centers. For every center j, we denote by T (i, j) the running time for processing
the i-th edge deletion in the ES-tree of center j. Furthermore, we denote by oj the
index of the delete operation before which the center j has been opened, i.e., center
j was opened before the oj-th and after the (oj − 1)-th delete operation. Remember
that the set of centers never shrinks, i.e., Ci ⊆ Ck for every 0 ≤ i ≤ k. We will show
that ∑0<i≤k ∑j∈Ci

T (i, j) = O((𝔒Rd + 𝔇)m).
The basic idea is that the time spent up to deletion i for node x in the ES-tree of

center j is O(degG0
(x) ⋅ dGi

(x , cji)). After a move operation the distance of x to the

new root cji+1 is at most dGi
(cji+1, c

j
i) smaller than the previous distance and, thus, at

most ∑0≤i<k degG0
(x) ⋅ dGi

(cji , c
j
i+1) additional time will be spent for updating x in the

ES-tree of center j.
Consider the (i + 1)-th edge deletion and let j ∈ Ci+1 be a center. By Corol-

lary 2.2.11, the total time for processing this deletion in the ES-tree of center j
is

T (i + 1, j) = ∑
x∈V

degG0
(x) ⋅ (min(dGi+1

(x , cji+1), Rd
) − min(dGi

(x , cji+1), Rd
)) (2.8)

If j has already been opened before the i-th edge deletion, then, by the trian-
gle inequality, we get dGi

(x , cji) ≤ dGi
(x , cji+1) + dGi

(cji , c
j
i+1) which is equivalent to

dGi
(x , cji+1) ≥ dGi

(x , cji) − dGi
(cji , c

j
i+1) . It follows that

min(dGi
(x , cji+1), Rd

) ≥ min(dGi
(x , cji) − dGi

(cji+1, c
j
i), Rd

)

≥ min(dGi
(x , cji), Rd

) − dGi
(cji , c

j
i+1) .

62 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Therefore we get

T (i + 1, j) ≤ ∑
x∈V

degG0
(x) ⋅ (min(dGi+1

(x , cji+1), Rd
) − min(dGi

(x , cji), Rd
)

+ dGi
(cji , c

j
i+1))

= ∑
x∈V

degG0
(x) ⋅ (min(dGi+1

(x , cji+1), Rd
) − min(dGi

(x , cji), Rd
))

+ ∑
x∈V

degG0
(x) ⋅ dGi

(cji , c
j
i+1)

≤ ∑
x∈V

degG0
(x) ⋅ (min(dGi+1

(x , cji+1), Rd
) − min(dGi

(x , cji), Rd
))

+ 2m ⋅ dGi
(cji , c

j
i+1) .

Summing up all T (i, j) for every deletion i > oj gives a telescoping sum that results
in the following term:

∑
oj<i≤k

T (i, j) = ∑
x∈V

degG0
(x) ⋅ min(dGk

(x , cjk), Rd
)

− ∑
x∈V

degG0
(x) ⋅ min(dGoj

(x , coj), R
d
) + ∑

oj≤i<k
2m ⋅ dGi

(cji , c
j
i+1) .

Consider now a center j and the oj-th edge deletion. By (2.8) we can bound the
running time T (oj , j) as follows:

T (oj , j) ≤ ∑
x∈V

degG0
(x) ⋅ min(dGoj

(x , cjoj), Rd
) .

Therefore the total time for maintaining the moving ES-tree of center j over all
deletions is

∑
oj≤i≤k

T (i, j) = T (oj , j) + ∑
oj<i≤k

T (i, j)

≤ ∑
x∈V

degG0
(x) ⋅ min(dGk

(x , cjk), Rd
) + ∑

oj≤i<k
2m ⋅ dGi

(cji , c
j
i+1)

≤ ∑
x∈V

degG0
(x) ⋅ Rd + ∑

oj≤i<k
2m ⋅ dGi

(cji , c
j
i+1)

≤ 2mRd + ∑
oj≤i<k

2m ⋅ dGi
(cji , c

j
i+1) .

By summing up this quantity over all centers, and switching the order of the double

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 63

sum, we arrive at the following total time:

∑
0<i≤k

∑
j∈Ci

T (i, j) = ∑
j∈Ck

∑
oj≤i≤k

T (i, j)

≤ ∑
j∈Ck

2mRd + ∑
j∈Ck

∑
oj≤i<k

2m ⋅ dGi
(cji , c

j
i+1)

= ∑
j∈Ck

2mRd + 2m ⋅ ∑
0≤i<k

∑
j∈Ci

dGi
(cji , c

j
i+1)

= 2𝔒mRd + 2m𝔇

Therefore the total update time for maintaining the moving centers data structure
over all operations is O((𝔒Rd + 𝔇)m).

2.4.2 Deterministic Center Cover Data Structure

In this section, we present a deterministic algorithm for maintaining the center cover
data structure CenterCover, as defined in Definition 2.2.13. That is, for parameters
Rc and Rd, we show that we can maintain a set of centers with the following two
properties. First, all nodes in a connected component of size at least Rc are covered
by some center, i.e., each of them is at distance at most Rc to some center. Second,
for every center, the distance to every node up to distance Rd is maintained. This
section is devoted to proving the following.

Proposition 2.4.5 (Main result of Section 2.4.2). For every cover range parameter Rc

and every distance range parameter Rd such that Rc ≤ Rd, there is a center cover data
structure with a total deterministic update time of O(mnRd/Rc) and constant query
time.

High-Level Ideas

Our algorithmwill internally use the moving centers data structure from Section 2.4.1
(called MovingCenter). It has to determine how to open and move centers in a way
that ensures that at any time every node in a connected component of size at least
Rc is covered by some center, i.e., its distance to the nearest center is at most Rc. At
a high level, our algorithm is very simple (see Figure 2.3 for an example; note that
q = Rc): For each center j, it maintains two sets Bj and C j , where Bj is always defined
to be the set of nodes whose distance to center j is at most Rc − |C j|. Initially, the
algorithm sets C j = ∅ and chooses a set of centers such that all sets Bj are disjoint
(see Figure 2.3a). The sets C j will never decrease during the algorithm. After an edge
deletion, if a node in a large connected component (size ≥ Rc) that is not covered
by any center anymore (e.g., vq+1 in Figure 2.3b). In this case, the algorithm simply
opens a new center at that node. However, before doing so it has to check whether
|Bj ∪ C j| < Rc/2 for some existing center j. (For example, after edge (vq/4, vq/4+1) is
deleted as in Figure 2.3c, |B1 ∪ C1| = (q/4 + 1) < q/2 = Rc/2.) If this is the case for

64 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

c1 B1

v0 v1 v q
4
v q

4
+1 v q

2
−1 v q

2
v q

2
+1 vq vq+1

(a) Initial center locations

c1 B1 c2B2

v0 v1 v q
4
v q

4
+1 v q

2
−1 v q

2
v q

2
+1 vq vq+1

(b) After edge (v q
2
−1, vq+1) is deleted

c1 B1 c2B2

v0 v1 v q
4
v q

4
+1 v q

2
−1 v q

2
v q

2
+1 vq vq+1

(c) Deleting edge (v q
4
, v q

4
+1) without moving c1

C1 c1 B1 c2B2

v0 v1 v q
4
v q

4
+1 v q

2
−1 v q

2
v q

2
+1 vq vq+1

(d) After moving c1

Figure 2.3: Example of our algorithm for maintaining the center cover data structure using
the moving centers data structure, as in Proposition 2.4.5. We use q = Rc and, for any j, we
let cj denote the location of center j. Boxes filled with colors show sets Bj and C j . (a) shows
a possible initial location of center c1. This makes B1 = {v0, … , vq/2} ∪ {vq+1} and C1 = ∅. All
nodes are covered by center c1. (b) shows what our algorithm does when edge (vq/2−1, vq+1)
is deleted. In this case, vq+1 is not covered by c1 anymore so we open a center c2 at vq+1. (c)
shows what B1 will look like after edge (vq/4, vq/4+1) is deleted, if we do not move center c1.
In particular, |B1 ∪ C1| < q/2. (d) shows what our algorithm will do after edge (vq/4, vq/4+1) is
deleted to maintain the largeness property (i.e., to make sure that |B1 ∪ C1| ≥ q/2): it moves
nodes v0, … , vq/4 from B1 to C1 and moves the first center from v0 to vq/4+1.

center j, it will add all nodes of Bj to C j and move the center j to the end-node of
the deleted edge that is in a different connected component than the old location
of j. As we will show, the nodes in Bj at the new location are not contained in Bj′

for any center j′ ≠ j, i.e., the invariant that all sets Bj are disjoint remains valid.
For example, in Figure 2.3d, the algorithm puts nodes v0, … , vq/4 to C1 and moves
c1 to node vq/4+1, which is the end-node of the deleted edge (vq/4, vq/4+1) that is in a
connected component different from center c1.)

We now give the intuition behind this algorithm and its analysis before going
into details. Recall from Proposition 2.4.4 that opening and maintaining a center
together cost O(mRc) time in total and a move-operation incurs a total time of O(m)
per one unit moving distance. So, to get the desired O(mnRd/Rc) total time bound,
we will make sure that our algorithm uses a limited number of open-operations and
a limited moving distance; in particular, we will make sure that

𝔒 = O(n/Rc) and 𝔇 = O(n).

To guarantee that we open at most O(n/Rc) centers, we imagine that each node
holds a coin at the beginning of the algorithm, which it can give to at most one
center during the algorithm, and we require that each center must receive at least
Rc/2 coins from some nodes in the end. Clearly, this will automatically ensure that
at most 2n/Rc centers will be opened. Since the graph keeps changing, it is hard to
say which node should give a coin to which center at the beginning. Instead, our
algorithm will maintain two sets for each center j: the set Bj of borrowed nodes from

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 65

which center j has borrowed coins but might have to return the coins back, and the
set C j of collected nodes from which center j has collected coins that it will never
return. After all edge deletions, j will hold the coins of all nodes in Bj ∪ C j . Our
algorithm will maintain Bj ∪ C j with two properties:

1. (Largeness) |Bj ∪ C j| ≥ Rc/2 at any time (so that j gets enough coins in the
end), and

2. (Disjointness) Bj ∪ C j is disjoint from Bj′ ∪ C j′ for all centers j ≠ j′ (so that no
node gives a coin to more than one center).

These two properties easily imply that every center will get at least Rc/2 coins in the
end – center j simply collects coins from the nodes in Bj ∪ C j ; consequently, they
guarantee that 𝔒 = O(n/Rc) as desired. Note that Bj and C j are only introduced for
the analysis, our algorithm does not need to maintain them explicitly. If the location
of center j is moved from x to y then we say for every node u on a shortest path
between x to y that the center has been moved through u. To guarantee that the
total moving distance is O(n), we need one more property:

3. (Confinement) The location of center j is moved only through nodes that are
added to C j .

By the disjointness property, no two centers are moved along the same node if the
confinement property is satisfied. So, the total moving distance will be 𝔇 = O(n) as
desired.

It is left to check that the algorithm we have sketched earlier satisfies all three
properties above. The largeness property can be guaranteed using the fact that after
every edge deletion, the algorithm will move every center j such that |Bj ∪C j| < Rc/2
to a new node; the only non-obvious property we have to prove is that Bj will be
large enough after the move, and the key to this proof is the fact that the connected
component containing the new location of center j has size at least Rc/2 − |C j|. For
the disjointness property, we will show two further properties.

(P1) (Initial-disjointness) When we open a center j, Bj is disjoint from Bj′ ∪ C j′ for
all other centers j′.

(P2) (Shrinking) We never add any node to Bj ∪ C j . (For example, B1 ∪ C1 in
Figure 2.3a is a subset of B1 ∪ C1 in Figure 2.3d.)

These two properties are sufficient to guarantee the disjointness property because if
two sets Bj ∪ C j and Bj′ ∪ C j′ are disjoint at the beginning (by Property (P1)), they
will remain disjoint if we never add a node to them (by Property (P2)). The shrinking
property (Property (P2)) can be checked simply by observing the behavior of the
algorithm (see Lemma 2.4.12 for detail). To show the initial-disjointness property
(Property (P1)), we use the fact that j is of distance at least Rc from other centers
when j is opened which implies that Bj ∩ Bj′ = ∅. Additionally, we will prove that
C j′ contains only nodes in connected components of size less than Rc whereas any

66 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

new center j is opened in a connected component of size at least Rc. This implies
that Bj ∩ C j′ = ∅ when j is opened.

Finally, for the confinement property, just observe that before the algorithm
moves a center j, it puts all nodes in the connected component containing the center
j to C j and moves j to a node outside of this connected component. For example, in
Figure 2.3d the algorithm puts nodes v1, … , vq/4 to C1 before moving the first center
through v1, … , vq/4 to vq/4+1.

Algorithm Description

Our algorithm is outlined in Algorithm 2.3. For each center j, the algorithmmaintains
its location cj , which could change over time since centers can be moved. Besides, it
also maintains the set C j and the number r j , which are set to ∅ and Rc/2, respectively,
when center j is opened. The intended value of r j is r j = Rc/2 − |C j| and the
algorithm always updates r j in a way that this is ensured. The algorithm also uses
the moving centers data structure (denoted by MovingCenter and explained in
Section 2.4.1) to maintain the distance between each center j to other nodes in the
graph, up to distance Rd. This helps us to implement CenterCover.FindCenter
and CenterCover.Distance queries in a straightforward way: the algorithm just
invokes the same queries from the moving centers data structure.

Initially, on G0 (i.e., before the graph changes), our algorithm initializes the
moving centers data structure by opening centers in a greedy manner: as long as
there is a node x that is not covered by any center, it opens a center at x . This
process will also be used every time an edge is deleted, to make sure that every
node remains covered by a center. Procedure CenterCover.GreedyOpen proceeds
as follows. For every node x , it checks whether x is not covered; this is the case if
CenterCover.FindCenter(x) returns ⊥ and the size of the connected component
containing x is at least Rc (we refer to Lemma 2.4.21 for how to compute the size of
this component). If x is not covered, the algorithm opens a center at x , stores the
index j of this new center, and initializes the values of C j , r j and cj , as in Line 6. This
completes the GreedyOpen procedure.

The main work of Algorithm 2.3 lies in the Delete operation, since it has to make
sure that all nodes are still covered by some centers after the deletion. Procedure
CenterCover.Delete proceeds as follows. Let us assume that the (i + 1)-th edge
(u, v) is deleted from Gi and let Gi+1 denote the resulting graph. First, the procedure
checks whether there is any center j that is in a large component in Gi and in a small
connected component in Gi+1; i.e., the size of the connected component of cj is at
least r j in Gi and less than r j in Gi+1 (see Line 16 of Algorithm 2.3). Next, if such a
center j in a small connected component exists (in fact, we will show that there exists
at most one such j – see Lemma 2.4.15), we will move j to a different component and
update the values of C j , r j and cj . It is crucial in our analysis that j must be moved
carefully. In particular, we will move j to either u or v , depending on which node is
in a different component from cj , the current location of j. (Note that one of u and v
will be in the same connected component as j and the other will be in a different

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 67

Algorithm 2.3: CenterCover (Deterministic Center Cover Data Structure)
// Given a decremental graph 𝒢 = (Gi)0≤i≤k and integers Rc and Rd,

this data structure maintains a set of centers such that
every node (that is in a connected component of size at
least Rc) has distance at most Rc to at least one center
and we can query the distance between a center and a node
if their distance is at most Rd (otherwise, we will get ∞
in return). It allows four operations: Initialize, Delete,
FindCenter and Distance, as defined in Definition 2.2.13.

1 Procedure CenterCover.GreedyOpen()
2 Let Gi denote the current graph
3 foreach node x do

// The if-statement checks if x is not covered by a
center and the size of the connected component
containing it is larger than Rc. See Lemma 2.4.21 for
the implementation detail.

4 if CenterCover.FindCenter(x) = ⊥ and |CompGi
(x)| ≥ Rc then

// Tell moving centers data structure to open new
center at x. Let j be the index of this center.

5 j ← MovingCenter.Open(x)
6 Set C j ← ∅, r j ← Rc/2, and cj ← x

// Parameters: Initial version G0 of decremental graph 𝒢,
integers Rc and Rd.

7 Procedure CenterCover.Initialize(G0, Rc, Rd)
// Initialize the moving centers data structure.

8 MovingCenter.Initialize(G0, Rc, Rd)
9 CenterCover.GreedyOpen()

10 Procedure CenterCover.FindCenter(v) // Parameter: Node v
11 return MovingCenter.FindCenter(v)

// Parameters: Center index j and node v
12 Procedure CenterCover.Distance(j, v)
13 return MovingCenter.Distance(j, v)

// Parameter: (i + 1)-th deleted edge (u, v)
14 Procedure CenterCover.Delete(u, v)
15 Let Gi denote the graph before deleting (u, v) and let Gi+1 denote the graph

afterwards.
// Find a center j for which the connected component

containing it becomes smaller than r j. See Lemma 2.4.22
for how to find such a center j. (Actually, there will
be at most one such center, see Lemma 2.4.15.)

16 Find a center j such that |CompGi+1
(cj)| < r j .

17 if such a center j exists then
// Move j to either u or v depending on who is in a

different connected component than cj.
18 if u and cj are not connected in Gi+1 then y ← u else y ← v
19 Set C j ← C j ∪ CompGi+1

(cj), r j ← r j − |CompGi+1
(cj)|, and cj ← y

20 MovingCenter.Move(j, y)
// Report edge deletion to moving centers data structure.

21 MovingCenter.Delete(u, v)
22 CenterCover.GreedyOpen()

68 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

component.) We use a variable y ∈ {u, v} to refer to the new location to which we
move center j (see Line 18). We then update the values of C j , r j and cj . In particular,
we put all nodes in the connected component that previously contained center j
(before we move it to y) into C j and update r j to Rc/2 − |C j| and cj to y. Then we
report the move of center j to y to the moving centers data structure. Afterwards,
we report the deletion of the edge (u, v) to the moving centers data structure so that
it updates the distances between centers and nodes to the new distances in Gi+1.
Finally, we execute the CenterCover.GreedyOpen procedure to make sure that
every node remains covered: if there is a node x that is not covered, we open a center
at x . This completes the deletion operation.

Analysis

The correctness of Algorithm 2.3 is immediate. As the procedure GreedyOpen is
called after every edge deletion, every node in a connected component of size at
least Rc will always be covered. In the following we analyze the running time of
Algorithm 2.3.

Our main task is to bound the running time of the moving centers data structure
internally used by the algorithm. In particular we want to use the running time
bound stated in Proposition 2.4.4 which requires to bound the number 𝔒 of open-
operations performed by the algorithm and the total moving distance 𝔇. As outlined
in Section 2.4.2 we assign to each center j the set Bj ∪ C j . The set C j contains all
nodes of connected components in which the center j once was located, as shown
in Algorithm 2.3. The set Bj is the set of all nodes that are at distance at most r j
from the center j in the current graph. We first show that the sets Bj ∪ C j fulfill two
properties: disjointness and largeness. Disjointness says that for all centers j ≠ j′ the
sets Bj ∪ C j and Bj′ ∪ C j′ are disjoint. Largeness says that the set Bj ∪ C j has size at
least Rc/2 for each center j. Using these two properties, we will prove that there are
at most 𝔒 = O(n/Rc) open-operations and that the total moving distance is 𝔇 = O(n).
These bounds will then allow us to obtain a total update time of O(mnRd/Rc) for the
moving centers data structure used by Algorithm 2.3. Afterwards we will show that
all other operations of the algorithm can also be carried out within this total update
time. To make our arguments precise we will use the following notation.

Definition 2.4.6. Let 𝒢 = (Gi)0≤i≤k be a decremental graph for which Algorithm 2.3
maintains a center cover data structure. The graph undergoes a sequence of k deletions
and by Gi we denote the graph after the i-th deletion. We use the following notation:

• For all nodes x and y we denote by di(x , y) = dGi
(x , y) the distance between x

and y in the graph Gi .

• For every node x , we denote byCompi(x) = CompGi
(x) the nodes in the connected

component of x in the graph Gi .

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 69

• For every center j, we denote by cji , r
j
i , and C

j
i the values of cj , r j , and C j after the

algorithm has processed the i-th deletion, respectively (equivalently: the values
before the (i + 1)-th deletion).

• For every center j, we define the set Bj
i by Bj

i = {x ∈ V ∣ di(c
j
i , x) ≤ r ji }, i.e., B

j
i is

the set of all nodes that are within distance r ji to the location cji of center j in the
graph Gi .

Preliminary observations We first state some simple observations that will be
helpful later on.

Observation 2.4.7. Let x be a node, let i ≤ k, and let B′ be the set B′ = {y ∈ V ∣
di(x , y) ≤ r} for some integer r . If |Compi(x)| < r , then Compi(x) = B′. Furthermore,
|Compi(x)| < r if and only if |B′| < r .

Proof. ClearlyB′ ⊆ Compi(x) and thus |B′| ≤ |Compi(x)|. Therefore, if |Compi(x)| <
r also |B′| < r . Now assume that |B′| < r . We first show that Compi(x) ⊆ B′. Let
y be a node in Compi(x) and assume by contradiction that di(x , y) > r . Since
y ∈ Compi(x), x and y are connected and therefore the shortest path from x to
y has to contain some node z such that di(x , z) = r . The shortest path π from x
to z contains di(x , z) = r edges and r + 1 nodes. For every node z′ on π we have
di(x , z′) ≤ r and thus π ⊆ B′. Since |π| = r + 1 we get |B′| ≥ r + 1 which contradicts
our assumption. Therefore di(x , y) ≤ r which means that Compi(x) ⊆ B′. Now
|Compi(x)| ≤ |B′| < r as desired.

Observation 2.4.8. For every center j and every i ≤ k, r ji = Rc/2 − |C j
i |.

Proof. When the center j is opened the algorithm sets r ji = Rc/2 andC j
i = ∅. Therefore

r ji = Rc/2 − |C j
i | trivially holds. Afterwards the algorithm only modifies r j and C j

when a center is moved. Since r j is increased by exactly the amount by which |C j|
is decreased, the equation remains true.

Observation 2.4.9. For every center j and every i ≤ k, |Compi(x)| < Rc for every
node x ∈ C j

i .

Proof. For every node x that is put into C j
i after the i-th edge deletion we have

|Compi(x)| < r ji . Since the size of the connected component of x never increases
in a decremental graph and r ji ≤ Rc for all i ≤ k by Observation 2.4.8, the claim is
true.

Observation 2.4.10. For every center j and every i ≤ k, the sets Bj
i and C

j
i are disjoint.

Proof. The set C j
i only contains nodes in connected components from which the

center j has been moved away, i.e., that do not contain cji . No center will ever be
moved back into such a connected component. Since Bj

i ⊆ Compi(c
j
i), we conclude

that Bj
i and C j

i are disjoint.

70 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Disjointness property We now want to prove the disjointness property. We will
proceed as follows: first we show that, for every center j that is opened, the set
Bj ∪ C j is disjoint from the set Bj′ ∪ C j′ of every other existing center j′. Afterwards
we show that the algorithm never adds any nodes to Bj ∪ C j . These two facts will
imply that all the sets Bj ∪ C j are disjoint.

Lemma 2.4.11 (Initial disjointness). When the algorithm opens a center j after the
i-th edge deletion, the set Bj

i ∪ C
j
i is disjoint from the set Bj′

i ∪ C j′
i for every other center

j ≠ j′.

Proof. Let j be the center that is opened and let j′ ≠ j be an existing center. The
algorithm sets C j

i = ∅ and therefore we only have to argue that Bj
i and Bj′

i ∪ C j′
i

are disjoint. Note that cji is in a connected component of size at least Rc because
otherwise the algorithm would not have opened a center at cji . Observe that the
set Bj

i is contained in the connected component of cji . By Observation 2.4.9 all nodes
of C j′

i are in a connected component of size less than Rc and therefore Bj
i ∩ C

j′
i = ∅.

We now argue that Bj
i ∩B

j′
i = ∅. Suppose that there is some node x contained in both

Bj
i and Bj′

i . By the definition of Bj
i and Bj′

i we get di(c
j
i , x) ≤ r ji = Rc/2 − |C j

i | ≤ Rc/2 as
well as di(c

j′
i , x) ≤ Rc/2. By the triangle inequality we get

di(c
j
i , c

j′
i) ≤ di(c

j
i , x) + di(x , c

j′
i) ≤ Rc/2 + Rc/2 = Rc .

But then cji is covered by cj
′

i . This means that the algorithm would not have opened
a new center at cji which contradicts our assumption.

Lemma 2.4.12 (Shrinking property). For every center j and every i < k, we have
Bj
i ∪ C

j
i ⊆ Bj

i+1 ∪ C
j
i+1.

Proof. Let (u, v) be the (i + 1)-th deleted edge. We only have to argue that the claim
holds for centers that the algorithm has already opened before this deletion. If the
algorithm does not move j, then the values of C j , r j , and cj are not changed at all and
thus C j

i+1 = C j
i , r

j
i+1 = r ji , and cji+1 = cji . Furthermore, since distances never decrease

in a decremental graph we also have Bj
i+1 ⊆ Bj

i and the claim follows.
Now consider the case that the algorithm moves the center j from x = cji to cji+1,

where either cji+1 = u or cji+1 = v . Assume without loss of generality that cji+1 = v . To
simplify notation, let A denote the set A = Compi+1(x). The fact that the algorithm
moves the center implies that |A| < r ji . Note that the algorithm sets C j

i+1 = C j
i ∪ A

and r ji+1 = r ji − |A|.
The observation needed for proving the shrinking property is Bj

i+1 ∪A ⊆ Bj
i . From

this observation we get Bj
i+1 ∪C

j
i+1 = Bj

i+1 ∪C
j
i ∪A ⊆ Bj

i ∪C
j
i as desired. We first prove

A ⊆ Bj
i and then we prove Bj

i+1 ⊆ Bj
i . Let B′ be the set B′ = {z ∈ V ∣ di+1(x , z) ≤ r ji }.

Since |A| < r ji we get A ⊆ B′ by Observation 2.4.7 and since di(x , z) ≤ di+1(x , z) for
every node z we have B′ ⊆ Bj

i . Now A ⊆ B′ and B′ ⊆ Bj
i , and we may conclude that

A ⊆ Bj
i .

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 71

Finally, we prove that Bj
i+1 ⊆ Bj

i . Since we move the center j from x to v it must
be the case, by the way the algorithm works, that |A| = |Compi+1(x)| < |Compi(x)|
and that v is not connected to x in Gi+1. This can only happen if v is connected to x
in Gi . Let z be a node in Bj

i+1 which means that di+1(v , z) ≤ r ji+1. Consider a shortest
path π from x to v in Gi consisting of di(x , v) many edges. Every edge on π except
for the last one (which is (u, v)) is also contained in Gi+1 and therefore all nodes on
π except for v are contained in A. Therefore we get |A| ≥ |π ⧵ {v}| = di(x , v). We
now get z ∈ Bj

i by observing that di(x , z) ≤ r ji , which can be seen from the following
chain of inequalities:

di(x , z) ≤ di(x , v) + di(v , z) ≤ di(x , v) + di+1(v , z) ≤ |A| + r ji+1 = r ji .

Lemma 2.4.13 (Disjointness). Algorithm 2.3 maintains the following invariant: for
all centers j ≠ j′ and every i ≤ k, Bj

i ∪ C
j
i is disjoint from Bj′

i ∪ C j′
i .

Proof. By Lemma 2.4.11 the invariant holds after the initialization. Now consider
the (i + 1)-th edge deletion. Let j ≠ j′ be two different existing centers. By the
induction hypothesis Bj

i ∪ C
j
i and Bj′

i ∪ C j′
i are disjoint. Since Bj

i+1 ∪ C
j
i+1 ⊆ Bj

i ∪ C
j
i

and Bj′
i+1 ∪ C j′

i+1 ⊆ Bj′
i ∪ C j′

i by Lemma 2.4.12, also Bj
i+1 ∪ C j

i+1 and Bj′
i+1 ∪ C j′

i+1 are
disjoint. Now let j be an existing center and let j′ be a center that is opened in the
procedure CenterCover.GreedyOpen (called at the end of the procedure Center-
Cover.Delete). By Lemma 2.4.11 we also have that Bj

i+1 ∪ C
j
i+1 and Bj′

i+1 ∪ C
j′
i+1 are

disjoint. This shows that, for all centers j and j′ such that j ≠ j′, Bj
i+1 ∪ C j

i+1 and
Bj′
i+1 ∪ C

j′
i+1 are disjoint.

Largeness property We now want to prove the largeness property which states
that for every center j the size of the set Bj ∪C j is always at least Rc/2. The largeness
property will follow from the invariant |Bj| ≥ r j . Before we can prove this invariant
we have to argue that our algorithm really moves every center j that fulfills the
“moving condition” |Compi(c

j)| ≥ r j and |Compi+1(c
j)| < r j . Remember that the

algorithm only moves one such center after each deletion. We show that there
actually is at most one center fulfilling the moving condition and therefore it is not
necessary that the algorithm also moves any other center.

Observation 2.4.14. Let (u, v) be the (i + 1)-th deleted edge. If |Compi(c
j
i)| ≥ r ji and

|Compi+1(c
j
i)| < r ji , then u ∈ Bj

i and v ∈ Bj
i .

Proof. Suppose that di(u, c
j
i) > r ji . Let π a shortest path from cji to u in Gi consisting

of di(u, c
j
i) > r ji many edges and thus at least r ji + 1 nodes. The edge (u, v) can only

appear as the last edge on the shortest path π . Therefore, after deleting it, there are
still r ji nodes connected to cji which contradicts the assumption that Compi+1(c

j
i) < r ji .

Thus, di(u, c
j
i) ≤ r ji which means that u ∈ Bj

i . Since the edge (u, v) is undirected the
same argument works for v .

72 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Lemma 2.4.15 (Uniqueness of center to move). Let (u, v) be the (i + 1)-th deleted
edge. If |Bj

i | ≥ r ji for every center j, then there is at most one center j such that
|Compi+1(c

j
i)| < r ji and, in Gi+1, either u is connected to cji (and v is disconnected from

cji) or v is connected to cji (and u is disconnected from cji).

Proof. Let j be a center such that |Compi+1(c
j
i)| < r ji . As |Bj

i | ≥ r ji , we also have
|Compi(c

j
i)| ≥ r ji by Observation 2.4.7. The size of the connected component of cji can

only decrease if the deletion of (u, v) disconnects at least one node from Compi(c
j).

For this to happen, u and v must be connected to cji in Gi and furthermore one of
these nodes (either u or v) must be disconnected from cji in Gi+1 while the other node
stays connected to cji .

Now suppose that there are two centers j ≠ j′ such that |Compi(c
j
i)| ≥ r ji and

|Compi+1(c
j
i)| < r ji , and |Compi(c

j′
i)| ≥ r j

′

i and |Compi+1(c
j′
i)| < r j

′

i . By Observa-
tion 2.4.14, we get u ∈ Bj

i and u ∈ Bj′
i which contradicts the disjointness property of

Lemma 2.4.13. We conclude that there cannot be two such centers j ≠ j′.

Lemma 2.4.16. For every center j and every i ≤ k, Algorithm 2.3 maintains the
invariant |Bj

i | ≥ r ji .

Proof. We first argue that the invariant holds for every center j that we open at
some node x in the greedy open procedure after the i-th deletion. The algorithm
only opens the center if x is in a connected component of size at least Rc. Since
r ji = Rc/2 − |C j

i | ≤ Rc (Observation 2.4.8) we have |Compi(x)| ≥ r ji . Therefore we get
|Bj

i | ≥ r ji by Observation 2.4.7.
We now show that the invariant is maintained for all centers that have already

been opened before we delete the (i + 1)-th edge (u, v). Consider first the case that
|Compi+1(c

j
i)| ≥ r ji . In that case the center j will not be moved and we have C j

i+1 = C j
i ,

Bj
i+1 = Bj

i , and r ji+1 = r ji . Since |Compi+1(c
j
i+1)| ≥ r ji+1 we get |Bj

i+1| ≥ r ji+1 as desired
by Observation 2.4.7.

Now consider the case that |Compi+1(c
j
i)| < r ji . Since the invariant holds for i,

Lemma 2.4.15 applies and thus we can be sure that the algorithm will move center j
from node x to node y (where either y = u or y = v). Remember that we have cji = x ,
cji+1 = y , and r ji+1 = r ji −|Compi+1(x)| in that case. Since x and y were connected in Gi
but are not connected anymore in Gi+1 we get Compi+1(y) = Compi(x) ⧵Compi+1(x).
Due to Compi+1(x) ⊆ Compi(x) it follows that

|Compi+1(y)| = |Compi(x)| − |Compi+1(x)| ≥ r ji − |Compi+1(x)| = r ji+1 .

By Observation 2.4.7, the fact that |Compi+1(y)| ≥ r ji+1 implies that |Bj
i+1| ≥ r ji+1 as

desired.

Lemma2.4.17 (Largeness). For every center j and every i ≤ k, Algorithm 2.3maintains
the invariant |Bj

i ∪ C
j
i | ≥ Rc/2.

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 73

Proof. By Observation 2.4.10, Bj
i and C j

i are disjoint and by Observation 2.4.8 we
have r ji = Rc/2 − |C j

i |. By Lemma 2.4.16 we have |Bj
i | ≥ r ji . Therefore we get the

desired bound as follows:

|Bj
i ∪ C

j
i | = |Bj

i | + |C j
i | ≥ r ji + |C j

i | = Rc/2 − |C j
i | + |C j

i | = Rc/2

where the inequality above follows from Lemma 2.4.16.

Bounding the number of open operations Now that we have established the
disjointness and the largeness property for the sets Bj ∪ C j of every center j, we
can bound the number of open-operations by 𝔒 = O(n/Rc). This will be useful for
our goal of limiting the total update time of the moving centers data structure to
O(mnRd/Rc).

Lemma 2.4.18 (Number of open operations). Over all edge deletions, Algorithm 2.3
performs O(n/Rc) open-operations in its internal moving centers data structure.

Proof. Let Ck denote the set of centers after all k deletions. Note that moving a
center does not change the number of centers. Therefore, the size of Ck is equal to
the total number of centers opened. Due to the disjointness property (Lemma 2.4.13)
the sets Bj

k ∪ C
j
k after all k edge deletions are disjoint for all centers j. When we sum

up over all these sets we do not count any node twice. Therefore we get

∑
j∈Ck

|Bj
k ∪ C

j
k| =

|⋃
j∈Ck

(Bj
k ∪ C

j
k)

|
≤ n

By the largeness property (Lemma 2.4.17) every set Bj
k ∪ C

j
k has size at least Rc/2, i.e.,

|Bj
k ∪ C

j
k| ≥ Rc/2. We now combine both inequalities and get

n ≥ ∑
j∈C

|Bj
k ∪ C

j
k| ≥ ∑

j∈C
Rc/2 = |C|Rc/2

which gives |C| ≤ 2n/Rc as desired.

Bounding the total moving distance Finally, we prove that the total moving
distance of the moving centers data structure used by our algorithm is O(n). For
this proof we will use a property of the algorithm that we call confinement : every
center j will be moved only through nodes that are added to C j .

Lemma 2.4.19 (Confinement). For every move of center j from cji to cji+1 after the
(i + 1)-th edge deletion, let π j

i be the set of nodes on a shortest path from cji to c
j
i+1 in Gi .

Then, for every center j and every 0 ≤ i < k, π j
i ⧵ {cji+1} ⊆ C j

i+1 ⧵ C j
i .

Proof. Let (u, v) be the (i + 1)-th deleted edge. Consider the situation that the
algorithm moves some center j from cji to cji+1. By the rules of the algorithm for

74 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

moving centers we either have cji+1 = u or cji+1 = v. Due to Observation 2.4.14 we
have cji+1 ∈ Bj

i which means that di(c
j
i , c

j
i+1) ≤ r ji .

Now let π j
i be a shortest path from cji to c

j
i+1 in Gi . All nodes in π j

i , except for c
j
i+1,

are connected to cji in Gi+1 since the edge (u, v) only appears as the last edge on the
shortest path due to cji+1 = u or cji+1 = v . Therefore we have π j

i ⧵{cji+1} ⊆ Compi+1(c
j
i).

Since C j
i+1 = C j

i ∪Compi+1(c
j
i), we get π j

i ⧵{cji+1} ⊆ C j
i+1. We also have π j

i ⧵{cji+1} ⊆ Bj
i

because di(c
j
i , c

j
i+1) ≤ r ji . Since Bj

i and C j
i are disjoint (Observation 2.4.10), also

π j
i ⧵ {cji+1} and C j

i are disjoint. It therefore follows that π j
i ⧵ {cji+1} ⊆ C j

i+1 ⧵ C j
i .

Lemma 2.4.20 (Total moving distance). The total moving distance of the moving
centers data structure used by Algorithm 2.3 is 𝔇 = O(n).

Proof. We let Ck denote the set of centers after the algorithm has processed all
deletions. Furthermore, we denote by oj the index of the edge deletion before which
the center j has been opened, i.e., center j was opened before the oj-th and after the
(oj − 1)-th deletion.

Consider the situation that the algorithm moves a center j from cji to cji+1 after
the (i + 1)-th edge deletion and let π j

i be a shortest path from cji to cji+1 in Gi as in
Lemma 2.4.19. The shortest path π j

i consists of di(c
j
i , c

j
i+1) many edges and di(c

j
i , c

j
i+1)+

1 many nodes. Therefore we get di(c
j
i , c

j
i+1) = |π j

i ⧵ {cji+1}|. By Lemma 2.4.19 we have
π j
i ⧵ {cji+1} ⊆ C j

i+1 ⧵ C j
i for every center j and every 0 ≤ i < k. The value of the set C j

after all edge deletions is given by C j
k for every center j. By the disjointness property

(Lemma 2.4.13) we have ∑j∈C |C j
k| = |⋃j∈C C

j
k|. We now obtain the bound 𝔇 ≤ n as

follows.

𝔇 = ∑
j∈Ck

∑
oj≤i<k

di(c
j
i , c

j
i+1) = ∑

j∈Ck
∑
oj≤i<k

|π j
i ⧵ {cji+1}|

≤ ∑
j∈Ck

∑
oj≤i<k

|C j
i+1 ⧵ C j

i | = ∑
j∈Ck

|C j
k| =

|⋃j∈C
C j
k|

≤ n .

Implementation details Before we finish this section we clarify two implemen-
tation details of Algorithm 2.3 and argue that they can be carried out within the total
update time of O(mnRd/Rc).

There are two places in the algorithm where we have to compute the sizes of
connected components. First, in the procedure GreedyOpen, we have to check for
every node that is not covered by any center whether it is in a connected of size at
least Rc. Second, in the procedure Delete, we have to check whether the size of the
connected component of some center j drops below r j . So far we have not explained
explicitly how to carry out these steps. If we could obtain the size of the connected
component deterministically in linear time, the running time analysis we have given
so far would suffice. Remember that the moving centers data structure internally
maintains an ES-tree for every center. Thus, it would seem intuitive to use the
ES-trees for counting the number of nodes in the current component of each center.

2.4. DETERMINISTIC DECREMENTAL (1 + ϵ)-APPROXIMATE APSP 75

However, we do not report edge deletions to the moving centers data structure
immediately. Therefore it is not clear how to use these ES-trees to determine the
size of the connected components of a centers.

Instead, we do the following. In parallel to our own algorithm we use the deter-
ministic (fully) dynamic connectivity data structure of Henzinger and King [62].21
This data structure can answer queries of the form “are the nodes x and y con-
nected?” in constant time. Its amortized time per deletion is O(n1/3 log n). Thus, its
total update time over all deletions is O(mn1/3 log n). Trivially, this data structure
allows us to compute the size of the connected component of a node x in time O(n):
we simply iterate over all nodes and count how many of them are connected to
x . We now explain how to perform the two tasks listed above using the dynamic
connectivity data structure.

Lemma 2.4.21 (Detail of Line 4 in Algorithm 2.3). Given a dynamic connectivity
data structure with constant query time, performing the check in the if-condition of
Line 4 takes time O((n + 𝔒)n) over all deletions, where 𝔒 is the total number of
open-operations.

Proof. Given a node x we have to check whether CenterCover.FindCenter(x)
= ⊥ and |CompGi

(x)| ≥ Rc. We first check whether x is covered by any center by
querying the moving centers data structure (if x is covered, the procedure returns
a center covering x , otherwise it returns ⊥.) This check takes constant time. If
a node x is not covered we additionally have to check whether |Compi(x)| < Rc.
Note that if |Compi(x)| < Rc for some node x we do not have to consider this node
anymore after future deletions because connected components never increase their
size in a decremental graph. Therefore we may spend time O(n) for every node x
to determine |Compi(x)|. If |Compi(x)| < Rc, then we charge this time to the node
and will never process the node again in the future and if |Compi(x)| ≥ Rc, then we
charge this time to the open-operation. Therefore the total running time over all
deletions for performing this check in the if-condition is O((n + 𝔒)n), where 𝔒 is
the total number of open-operations.

Lemma 2.4.22 (Detail of Line 16 of Algorithm 2.3). Given a dynamic connectivity
data structure with constant query time, we can, after the (i + 1)-th deletion, find a
center j such that |Compi+1(c

j
i)| < r ji if it exists in time O(n).

Proof. Let (u, v) be the (i+1)-th deleted edge. For any center j such that |Compi+1(c
j
i)| <

r ji , we have u ∈ Bj
i by Observation 2.4.14. Moreover, by the disjointness property

(Lemma 2.4.13), there can only be at most one center j such that u ∈ Bj
i . The al-

gorithm for finding this center now is simple: We find a center j such that u ∈ Bj
i ,

which is unique if it exists; then, we compute the size of the connected component
containing cji using the dynamic connectivity data structure [62]. In particular, we

21This is the fastest known deterministic dynamic connectivity data structure with constant query
time.

76 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

iterate over all centers in time O(n) to find a candidate center j such that di(u, c
j
i) ≤ r j

(i.e., u ∈ Bj
i) (as argued above at most one such center exists). We can determine the

distance di(u, c
j
i) in constant time by querying the moving centers data structure.

For the candidate center j we now have to check whether |Compi+1(c
j
i)| < r ji . We

determine the size of Compi+1(c
j
i) in time O(n) by using the dynamic connectivity

data structure with constant query time. Thus, the running time for this algorithm
is O(n) per deletion.

Total update time Now we state the total update time of Algorithm 2.3. The
bounds on the number of centers opened and the total moving distance of the
centers allow us to bound the running time of the moving centers data structure
used by the algorithm.

Theorem 2.4.23. The deterministic center cover data structure of Algorithm 2.3 has
constant query time and a total update time of O(mnRd/Rc).

Proof. By Proposition 2.4.4 the moving centers data structure internally used by
Algorithm 2.3 has constant query time and a total deterministic update time of
O(𝔒mRd + 𝔇m) where 𝔒 is the total number of open operations and 𝔇 is the total
moving distance. Algorithm 2.3 delegates all queries to the moving centers data
structure and therefore also has constant query time. By Lemma 2.4.18 the number
of open operations is O(n/Rc) and by Lemma 2.4.20 the total moving distance is O(n).
Therefore the total update time of the moving centers data structure is

O(𝔒mRd + 𝔇m) = O(mnRd/Rc +mn) = O(mnRd/Rc)

because Rc ≤ Rd. As argued in Lemma 2.4.21 and Lemma 2.4.22, all other operations
of the algorithm can be implemented within a total update time of O(mnRd/Rc).
Therefore the claimed running time follows.

2.4.3 Deterministic Fully Dynamic Algorithm

There is a well-known reduction by Henzinger and King [61] for converting a
decremental algorithm into a fully dynamic algorithm. A similar approach has been
used by Roditty and Zwick [113], using the decremental algorithm we derandomized
above as the starting point. In the following we sketch the deterministic fully
dynamic algorithm implied by Theorem 2.4.1. The fully dynamic algorithm allows
two update operations: deleting an arbitrary set of edges and inserting a set of edges
touching a node v , called the center of the insertion.

Theorem 2.4.24. For every 0 < ϵ ≤ 1 and every t ≤ √n there is a deterministic
fully dynamic (1 + ϵ, 0)-approximate APSP data structure with amortized update time
O(mn/(ϵt)) and query time ̃O(t).

Proof. The algorithm works in phases. After each t update operations we start a new
phase. At the beginning of each phase we re-initialize the decremental algorithm of

2.5. CONCLUSION 77

Theorem 2.4.1. We report to this algorithm all future deletions of the phase, but no
insertions. For all nodes u and v let δ1(u, v) denote the (1 + ϵ)-approximate distance
estimate obtained by the decremental algorithm. Additionally, after every update
in the graph, we do the following: Let I denote the set of centers of all insertions
that so far happened in the current phase. For every v ∈ I , we compute the shortest
paths from v to all nodes in the current graph, i.e., where all insertions and deletions
are considered. We use Dijkstra’s algorithm for this task and denote by δ2(u, v) the
distance from u to v computed in this way.

To answer a query for the approximate distance between nodes u and v we
compute and return the following value:

δ(u, v) = min(δ1(u, v), min
x∈I

(δ2(u, x) + δ2(x , v))) .

Let d(u, v) denote the distance from u to v in the current graph. If there is a shortest
path from u to v that that does not use any edge inserted in the current phase, then
the decremental algorithm provides a (1 + ϵ)-approximation of the distance between
u and v, i.e., δ1(u, v) ≤ (1 + ϵ)d(u, v). Otherwise the shortest paths from u to v
contains an inserted node x ∈ I . In that case we have d(u, v) = δ2(u, x) + δ2(x , v) and
thus d(u, v) = minx∈I (δ2(u, x)+δ2(x , v))). This means that δ(u, v) ≤ (1+ϵ)d(u, v). As
both δ1(u, v) and minx∈I (δ2(u, x) + δ2(x , v))) never underestimate the true distance
we also have δ(u, v) ≥ d(u, v).

As the query time of the decremental algorithm is O(log log n), the query time of
the fully dynamic algorithm is O(t + log log n) = ̃O(t). The decremental approximate
all-pairs shortest paths data structure has a total update time of ̃O(mn/ϵ). Amortized
over the whole phase, we have to pay ̃O(mn/(ϵt)) per update for this data structure.
Computing the shortest paths from the inserted nodes takes time ̃O(tm) per update.
This gives an amortized update time of ̃O(mn/(ϵt) + tm). If t ≤ √n, the term tm is
dominated by the term mn/t and thus the amortized update time is ̃O(mn/(ϵt)).

We remark that the fully dynamic result of Roditty and Zwick [113] is still a bit
stronger. Their trade-off is basically the same, but it holds for a larger range of t ,
namely t ≤ m1/2−δ for every fixed δ > 0. The reason is that they use randomization
not only for the decremental algorithm but also for some other part of the fully
dynamic algorithm.

2.5 Conclusion

We obtained two new algorithms for solving the decremental approximate APSP algo-
rithm in unweighted undirected graphs. Our first algorithm is (1 + ϵ, 2)-approximate
and has a total update time of ̃O(n5/2/ϵ) and constant query time. The main idea
behind this algorithm is to run an algorithm of Roditty and Zwick [113] on a sparse
dynamic emulator. In particular, we modify the central shortest paths tree data
structure of Even and Shiloach [49, 79] to deal with edge insertions in a monotone
manner. Our approach is conceptually different from the approach of Bernstein and

78 CHAPTER 2. DYNAMIC APPROXIMATE ALL-PAIRS SHORTEST PATHS

Roditty [24] who also maintain an ES-tree in a sparse dynamic emulator. The sparsi-
fication techniques used here and at other places only work for undirected graphs.
Using a new sampling technique, we recently obtained a (1 + ϵ, 0)-approximation
for decremental SSSP in directed graphs with constant query time and a total update
time of o(mn) (see Chapter 4).

Our second algorithm provides a (1 + ϵ, 0)-approximation and has a deterministic
total update time of O(mn log n/ϵ) and constant query time. We obtain it by deran-
domizing the algorithm of [113] using a new amortization argument based on the
idea of relocating Even-Shiloach trees.

Our results directly motivate the following directions for further research. It
would be interesting to extend our derandomization technique to other randomized
algorithms. In particular, we ask whether it is possible to derandomize the exact
decremental APSP algorithm of Baswana, Hariharan and Sen [16] (total update time

̃O(n3)).
Another interesting direction is to checkwhether ourmonotone ES-tree approach

also works for other dynamic emulators, in particular for weighted graphs. One of
the tools that we used was a dynamic (1 + ϵ, 2)-emulator for unweighted undirected
graphs. Is it also possible to obtain purely additive dynamic emulators or spanners
with small additive error?

Maybe the most important open problem in this field is a faster APSP algorithm
for the fully dynamic setting. The fully dynamic algorithm of Demetrescu and
Italiano [36] provides exact distances and takes time ̃O(n2) per update, which is
essentially optimal. Is it possible to get a faster fully dynamic algorithm that still
provides a good approximation, for example a (1 + ϵ)-approximation?

CHAPTER 3
Decremental Single-Source

Shortest Paths on Undirected
Graphs in Near-Linear Total

Update Time

In the decremental single-source shortest paths (SSSP) problem we want to maintain
the distances between a given source node s and every other node in an n-node
m-edge graphG undergoing edge deletions. While its static counterpart can be easily
solved in near-linear time, this decremental problem is much more challenging even
in the undirected unweighted case. In this case, the classic O(mn) total update time of
Even and Shiloach [49] has been the fastest known algorithm for three decades. At
the cost of a (1 + ϵ)-approximation factor, the running time was recently improved to
O(n2+o(1)) by Bernstein and Roditty [24]. In this chapter, we bring the running time
down to near-linear: We give a (1+ϵ)-approximation algorithm with O(m1+o(1)) total
update time, thus obtaining near-linear time. Moreover, we obtain O(m1+o(1) logW)
time for the weighted case, where the edge weights are integers from 1 to W . The
only prior work on weighted graphs in o(mn logW) time is the O(mn9/10+o(1))-time
algorithm presented in Chapter 4 which works for the general weighted directed
case.

In contrast to the previous results which rely on maintaining a sparse emulator,
our algorithm relies on maintaining a so-called sparse (h, ϵ)-hop set introduced by
Cohen [32] in the PRAM literature. An (h, ϵ)-hop set of a graph G = (V , E) is a
set F of weighted edges such that the distance between any pair of nodes in G
can be (1 + ϵ)-approximated by their h-hop distance (given by a path containing at
most h edges) on G′ = (V , E ∪ F). Our algorithm can maintain an (no(1), ϵ)-hop set
of near-linear size in near-linear time under edge deletions. It is the first of its kind
to the best of our knowledge. To maintain approximate distances using this hop set,

79

80 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

we extend the monotone Even-Shiloach tree of Chapter 2 and combine it with the
bounded-hop SSSP technique of Bernstein [22, 23] and Mądry [95]. These two new
tools might be of independent interest.

3.1 Introduction

Dynamic graph algorithms refer to data structures on graphs that support update and
query operations. They are classified according to the type of update operations they
allow: decremental algorithms allow only edge deletions, incremental algorithms
allow only edge insertions, and fully dynamic algorithms allow both insertions and
deletions. In this chapter, we consider decremental algorithms for the single-source
shortest paths (SSSP) problem on undirected graphs. The unweighted case of this
problem allows the following operations.

• Delete(u, v): delete the edge (u, v) from the graph, and

• Distance(x): return the distance dG(s, x) between node s and node x in the
current graph G.

The weighted case allows an additional operation Increase(u, v , Δ)) which increases
the weight of the edge (u, v) by Δ. We allow positive integer edge weights in the
range from 1 to W , for some parameter W . For any α ≥ 1, we say that an algorithm
is an α-approximation algorithm if, for any distance query Distance(x), it returns
a distance estimate δ(s, x) such that dG(s, x) ≤ δ(s, x) ≤ αdG(s, x). There are two
time complexity measures associated with this problem: query time denoting the
time needed to answer each distance query, and total update time denoting the time
needed to process all edge deletions. The running time will be in terms of n, the
number of nodes in the graph, and m, the number of edges before the first deletion.
For the weighted case, we additionally have W , the maximum edge weight. We use

̃O-notation to hide O(polylog n) terms. In this chapter, we focus on algorithms with
small (O(1) or O(polylog n)) query time, and the main goal is to minimize the total
update time, which will simply be referred to as time when the context is clear.

Related Work The static version of SSSP can be easily solved in ̃O(m) time using,
e.g., Dijkstra’s algorithm. Moreover, due to the deep result of Thorup [123], it can
even be solved in linear (O(m)) time in undirected graphs with positive integer
edge weights. This implies that in our setting we can naively solve decremental
SSSP in O(m2) time by running the static algorithm after every deletion. The first
non-trivial decremental algorithm is due to Even and Shiloach [49] from 1981 and
takesO(mn) time in unweighted undirected graphs. This algorithmwill be referred to
as ES-tree throughout this chapter. It has many applications such as for decremental
strongly-connected components [109] and multicommodity flow problems [95]; yet,
the ES-tree has resisted many attempts of improving it for decades. Roditty and
Zwick [115] explained this phenomenon by providing evidence that the ES-tree
is optimal for maintaining exact distances even on unweighted undirected graphs,

3.1. INTRODUCTION 81

unless there is a major breakthrough for Boolean matrix multiplication and many
other long-standing problems [128]. After the preliminary version [64] of this work
appeared, Henzinger et al. [70] showed that O(mn) is essentially the best possible
total update time for maintaining exact distances under the assumption that there
is no “truly subcubic” algorithm for a problem called online Boolean matrix-vector
multiplication. It is thus natural to shift the focus to approximation algorithms.

The first improvement for unweighted undirected graphs was due to Bernstein
and Roditty [24] who presented a (1 + ϵ)-approximation algorithm an expected
total update time of O(n2+O(1/√log n)).1 This time bound is only slightly larger than
quadratic and beats the O(mn) time of the ES-tree unless the input graph is very
sparse. For the more general cases, Henzinger and King [61] observed that the
ES-tree can be easily adapted to directed graphs. King [79] later extended the ES-tree
to an O(mnW)-time algorithm for weighted directed graphs. A scaling techniques
used in recent algorithms of Bernstein [22, 23] and Mądry [95], as well as ear-
lier papers on approximate shortest paths [31, 130], gives a (1 + ϵ)-approximate

̃O(mn logW)-time algorithm for weighted directed graphs. Very recently, we ob-
tained a (1 + ϵ)-approximation algorithm with total update time O(mn9/10+o(1)) for
decremental approximate SSSP in weighted directed graphs if W ≤ 2log

c n for some
constant c (see Chapter 3). This gives the first o(mn) time algorithm for the directed
case, as well as other important problems such as single-source reachability and
strongly-connected components [90, 109, 114]. Also very recently, Abboud and Vas-
silevska Williams [1] showed that “deamortizing” our O(mn9/10+o(1))-time algorithms
might not be possible: a combinatorial algorithm with worst case update time and
query time of O(n2−δ) (for some δ > 0) per deletion implies a faster combinatorial
algorithm for Boolean matrix multiplication and, for the more general problem of
maintaining the number of reachable nodes from a source under deletions (which
our algorithms can do) a worst case update and query time of O(m1−δ) (for some
δ > 0) will falsify the strong exponential time hypothesis.

Our Results Given the significance of the decremental SSSP problem, it is im-
portant to understand its time complexity. In this chapter, we obtain a near-linear
time algorithm for decremental (1 + ϵ)-approximate SSSP in weighted undirected
graphs. It has a total update time of O(m1+O(√log log n/ log n) logW) and maintains an
estimate of the distance between the source node and every other node, guarantee-
ing constant worst-case query time. The algorithm is randomized and assumes an
oblivious adversary who fixes the sequence of updates in advance; it is correct with
high probability and the bound on its total update time holds in expectation. In the
unweighted case, our algorithm significantly improves our previous algorithm in
[63] as discussed above. There was no previous algorithm designed specifically for
weighted undirected graphs, and the previous best running time for this case comes
from our O(mn9/10+o(1)) time for weighted directed graphs (Chapter 3).

1To enhance readability we assume that ϵ is a constant when citing related work, thus omitting
the dependence on ϵ in the running times.

82 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

As a consequence of our techniques we also obtain an algorithm for the all-pairs
shortest paths (APSP) problem. For every integer k ≥ 2 and every 0 < ϵ ≤ 1, we obtain
a decremental ((2 + ϵ)k − 1)-approximate APSP algorithm with query time O(kk)
and total update time O(m1+1/k+O(log5/4((log n)/ϵ)/ log1/4 n) log2W). We remark that for
k = 2 and 1/ϵ = O(polylog n) our result gives a (3 + ϵ)-approximation with constant
query time and total update time O(m1+1/2+o(1) logW). For very sparse graphs with
m = Θ(n), this is almost optimal in the sense that it almost matches the static running
time [125] of O(m√n), providing stretch of 3 + ϵ instead of 3 as in the static setting.
Our result on approximate APSP has to be compared with the following prior work.
For weighted directed graphs Bernstein [23] gave a decremental (1 + ϵ)-approximate
APSP algorithm with constant query time and total update time ̃O(mn logW). For
unweighted undirected graphs there are two previous results that improve upon this
update time at the cost of larger approximation error. First, for any fixed integer k ≥ 2,
Bernstein and Roditty gave a decremental (2k − 1 + ϵ)-approximate APSP algorithm
with constant query time and total update time ̃O(mn1/k). Second, for any integer
k ≥ 2, Abraham, Chechik, and Talwar [3] gave a decremental 2O(ρk)-approximate
APSP algorithm for unweighted undirected graphs with query time O(kρ) and total
update time ̃O(mn1/k), where ρ = (1 + ⌈(log n1−1/k)/ log (m/n1−1/k)⌉).

3.2 Preliminaries

In this chapter we want to maintain approximate shortest paths in an undirected
graph G = (V , E) with positive integer edge weights in the range from 1 to W , for
some parameter W . The graph undergoes a sequence of updates, which might be
edge deletions or edge weight increases. This is called the decremental setting. We
denote by V the set of nodes of G and by E the set of edges of G before the first edge
deletion. We set n = |V | and m = |E|.

For every weighted undirected graph G = (V , E), we denote the weight of an
edge (u, v) in G by wG(u, v). The distance dG(u, v) between a node u and a node v
in G is the weight of the shortest path, i.e., the minimum-weight path, between u
and v in G. If there is no path between u and v in G, we set dG(x , y) = ∞. For every
set of nodes U ⊆ V we denote by E[U] the set of edges incident to the nodes of U ,
i.e., E[U] = {(u, v) ∈ E ∣ u ∈ U }.2 Furthermore, for every set of nodes U ⊆ V , we
denote by G|U the subgraph of G induced by the nodes in U , i.e., G|U contains all
edges (u, v) such that (u, v) is contained in E and u and v are both contained in U ,
or short: G|U = (U , E ∩ U 2). Similarly, for every set of edges F ⊆ V 2 and every set
of nodes U ⊆ V we denote by F |U the subset of F induced by U .

We say that a distance estimate δ(u, v) is an (α , β)-approximation of the true
distance dG(u, v) if dG(u, v) ≤ δ(u, v) ≤ αdG(u, v) + β , i.e., δ(u, v) never underesti-
mates the true distance and overestimates it with a multiplicative error of at most
α and an additive error of at most β . If there is no additive error, we simply say
α-approximation instead of (α , 0)-approximation.

2Since G is undirected, this definition is equivalent to E[U] = {(u, v) ∈ E ∣ u ∈ U or v ∈ U }.

3.3. TECHNICAL OVERVIEW 83

In our algorithms we will use graphs that do not only undergo edge deletions and
edge weight increases, but also edge insertions. For such a graph H , we denote by
ℰ(H) the number of edges ever contained in H , i.e., the number of edges contained in
H before any deletion or insertion plus the number of inserted edges. We denote by
𝒲 (H) the number of edge weight increases in H . Similarly, for a set of edges F , we
denote by ℰ(F) the number of edges ever contained in F and by 𝒲 (F) the number
of edge weight increases in F .

Recent approaches for solving approximate decremental SSSP and APSP use
special graphs called emulators. An (α , β)-emulator H of a graph G is a graph
containing the nodes of G such that dG(u, v) ≤ dH (u, v) ≤ αdG(u, v) + β for all
nodes u and v .3 Maintaining exact distances on H provides an (α , β)-approximation
of distances in G. As good emulators are sparser than the original graph this is
usually more efficient than maintaining exact distances on G. However, the edges
of H also have to be maintained while G undergoes updates. For unweighted,
undirected graphs undergoing edge deletions, the emulator of Thorup and Zwick
(based on the second spanner construction in [126]), which provides a relatively
good approximation, can be maintained quite efficiently [24]. However the definition
of this emulator requires the occasional insertion of edges into the emulator. Thus,
it is not possible to run a purely decremental algorithm on top of it.

There have been approaches to design algorithms that mimic the behavior of the
classic ES-tree when run on an emulator that undergoes insertions. The first approach
by Bernstein and Roditty [24] extends the ES-tree to a fully dynamic algorithm and
analyzes the additional work incurred by the insertions. The second approach was
introduced in Chapter 2 and is calledmonotone ES-tree. It basically ignores insertions
of edges into H and never decreases the distance estimate it maintains. However,
this algorithm does not provide an (α , β)-approximation on any (α , β)-approximate
emulator as it needs to exploit the structure of the emulator. In Chapter 2 we gave
an analysis of the monotone ES-tree when run on a specific (1 + ϵ, 2)-emulator and
in this chapter we use a different analysis for our new algorithms. If we want to use
the monotone ES-tree to maintain (α , β)-approximate distances up to depth D we
will set the maximum level in the monotone ES-tree to L = αD + β . The running time
of the monotone ES-tree as analyzed in Chapter 2 is as follows.

Lemma 3.2.1. For every L ≥ 1, the total update time of a monotone ES-tree up to
maximum level L on a graph H undergoing edge deletions, edge insertions, and edge
weight increases is O(ℰ(H) ⋅ L + 𝒲 (H)).

3.3 Technical Overview

In the following we explain the main ideas of this chapter, which lead to an algorithm
for maintaining a hop set of a graph undergoing edge deletions.

3For the related notion of a spanner we additionally have to require that H is a subgraph of G.

84 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

General Idea With the well-known algorithm of Even and Shiloach we can main-
tain a shortest paths tree from a source node up to a given depth D under edge
deletions in time O(mD). In unweighted graphs, all simple paths have length at most
n and therefore we can set D = n to maintain a full shortest paths tree. In weighted
graphs with positive integer edge weights from 1 to W , all simple paths have length
at most nW and therefore we can set D = nW to maintain a full shortest paths
tree. Using an established scaling technique [22, 23, 31, 95, 98, 130], one can use
this algorithm to maintain (1 + ϵ)-approximate single-source shortest paths up to h
hops in time O(mh log (nW)/ϵ). With this algorithm we can set h = n to maintain a
full-length approximate shortest paths tree, even in weighted graphs. This algorithm
would be very efficient if the graph had a small hop diameter, i.e., if for any pair of
nodes there is a shortest path with a small number of edges. Our idea is to artificially
construct such a graph.

To this end we will use a so-called hop set. An (h, ϵ)- hop set F of a graph
G = (V , E) is a set of weighted edges F ⊆ V 2 such that in the graph H = (V , E ∪ F)
there exists, for every pair of nodes u and v, a path from u to v of weight at most
(1 + ϵ)dG(u, v) and with at most h edges. If we run the approximate SSSP algorithm
on H , we obtain a running time of O((m + |F |)h log (nW)/ϵ). In our algorithm we
will obtain an (O(no(1)), ϵ)-hop set of size O(m1+o(1)) and thus the running time will
be O(m1+o(1) log (nW)/ϵ). It is however not enough to simply construct the hop set
at the beginning. We also need a dynamic algorithm for maintaining the hop set
under edge deletions in G. We will present an algorithm that performs this task also
in almost linear time over all deletions.

Roughly speaking, we achieve the following. Given a graph G = (V , E) undergo-
ing edge deletions, we can maintain a restricted hop set F such that, for all pairs of
nodes u and v if the shortest path from u to v in G has h ≥ n1/q hops, in the shortcut
graph H = (V , E ∪ F) there is a path from u to v of weight at most (1 + ϵ)dG(u, v)
and with at most ⌈h/n1/q⌉ log n hops. Our high-level idea for maintaining an (un-
restricted) (no(1), ϵ) hop set is the following hierarchical approach. We start with
H0 = G to maintain a hop set F1 of G, which reduces the number of hops by a factor
of log n/n1/q at the cost of a multiplicative error of 1+ϵ. Given F1, we use the shortcut
graph H1 = (V , E ∪ F1) to maintain a hop set F2 of G that reduces the number of
hops by another factor of log n/n1/q introducing another error of 1 + ϵ. By repeating
this process q times we arrive at a hop set that guarantees, for all pairs of nodes u
and v , a path of weight at most (1 + ϵ)qdG(u, v) and with at most (log n)qn1/q hops.
Figure 3.1 visualizes this hierarchical approach.

The notion of hop set was first introduced by Cohen [32] in the PRAM literature
and is conceptually related to the notion of emulator. It is also related to the notion
of shortest-paths diameter used in distributed computing (e.g., [78, 98]). To the best
of our knowledge, the only place that this hop set concept was used before in the
dynamic algorithm literature (without the name being mentioned) is Bernstein’s
fully dynamic (2+ϵ)-approximation algorithm for all-pairs shortest paths [22]. There,
an (no(1), ϵ)-hop set is essentially recomputed from scratch after every edge update,
and a shortest-paths data structure is maintained on top of this hop set.

3.3. TECHNICAL OVERVIEW 85

u v

(1 + ϵ)n1/q
log n hops

(1 + ϵ)n1/q
log n hops

(1 + ϵ)n1/q
log n hops

(1 + ϵ)2n2/q
log2 n hops

n1/q n1/q n1/q

n2/q

Figure 3.1: Illustration of the hierarchical approach for maintaining the hop set
reduction. Here q = Θ(√log n) and u and v are nodes that are at distance n2/q from
each other. In the first layer we find a hop set that shortcuts all subpaths of weight
n1/q by paths of weight at most (1 + ϵ)n1/q and with at most log n hops. In the second
layer, we use the shortcuts of the first layer to find a hop set that shortcuts the path
from u to v of weight n2/q by a path of weight at most (1 + ϵ)2n2/q and with at most
log2 n hops.

Static Hop Set We first assume that G = (V , E) is an unweighted undirected graph
and for simplicity we also assume that ϵ is a constant. We explain how to obtain a
hop set of G using a randomized construction of Thorup and Zwick [126] based on
the notion of balls of nodes. We describe this construction and the hop-set analysis
in the following.

Let 2 ≤ p ≤ log n be a parameter and consider a sequence of sets of nodes
A0,A1, … ,Ap obtained as follows. We set A0 = V and Ap = ∅ and for 1 ≤ i ≤ p − 1 we
obtain the set Ai by picking each node of V independently with probability 1/ni/p .
The expected size of Ai is n1−i/p . For every node u we define the priority of u as the
maximum i such that u ∈ Ai . For a node u of priority i we define

B(u) = {v ∈ V ∣ dG(u, v) < dG(u,Ai+1)}

where dG(u,Ai+1) = minv∈Ai+1
dG(u, v). Note that dG(u,Ap) = ∞ and thus if u ∈ Ap−1,

then B(u) = V . For each node u of priority i the size of B(u) is n(i+1)/p in expectation
by the following argument: Order the nodes in non-decreasing distance from u. Each
of these node belongs to Ai+1 with probability 1/n(i+1)/p and therefore, in expectation,
we need to see n(i+1)/p nodes until one of them is contained in Ai+1. It follows that
the expected size of all balls of priority i is at most n1+1/p (the expected size of Ai
times the expected size of B(u) for each node u of priority i) and the expected size of
all balls, i.e., ∑u∈V |B(u)|, is at most pn1+1/p .

86 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Let F be the set of edges F = {(u, v) ∈ V 2 ∣ v ∈ B(u)} and give each edge
(u, v) ∈ F the weight wF (u, v) = dG(u, v). By the argument above, the expected size
of F is at most pn1+1/p . An argument of Thorup and Zwick [126] shows that the
weighted graph H = (V , F) has the following property for every pair of nodes u
and v and any 0 < ϵ ≤ 1 such that 1/ϵ is integer:4

dG(u, v) ≤ dH (u, v) ≤ (1 + ϵ)dG(u, v) + 2(2 +
2
ϵ)

p−2

In the literature, such a graph H is known as an emulator of G with multiplicative
error (1 + ϵ) and additive error 2(2 + 2/ϵ)p−2.5 Roughly speaking, the strategy in their
proof is as follows. Let u′ be the node following u on the shortest path from u to v
in G. If the edge (u, u′) is also contained in H , then we can shorten the distance to
v by 1 without introducing any approximation error (recall that we assume that G
is unweighted). Otherwise, one can show that there is a path with at most p edges
in H from u to a node v′ closer to v than u such that the ratio between the weight
of this path and the weight of the shortest path from u to v′ is at most (1 + ϵ), and,
if v′ = v, then the weight of this path is at most 2(2 + 2/ϵ)p−2. The proof needs the
following property of the balls: for every node u of priority i and every node v either
v ∈ B(u) or there is some node v′ of priority j > i such that u ∈ B(v′). We illustrate
the proof strategy in Figure 3.2.

Observe that the same strategy can be used to show the following: Given any
integer Δ ≤ n, let u′ be the node that is at distance Δ from u on the shortest path
from u to v in G. If the edge (u, u′) is contained in H , then we can shorten the
distance to v by Δ without introducing any approximation error. Otherwise, one
can show that there is a path with at most p edges in H from u to a node v′ closer
to v than u such that the ratio between the weight of this path and the weight of the
shortest path from u to v′ is at most (1 + ϵ), and, if v′ = v, then the weight of this
path is at most 2(2 + 2/ϵ)p−2 ⋅ Δ. Every time we repeat this argument the distance to
v is shortened by at least Δ. Therefore there is a path from u to v in H with at most
p⌈dG(u, v)/Δ⌉ edges that has weight at most (1 + ϵ)dG(u, v) + 2(2 + 2/ϵ)p−2 ⋅ Δ. One
can show that this statement would also be true if we had removed all edges from F
of weight more than (1 + 2/ϵ)(2 + 2/ϵ)p−2, which is the maximum weight of the edge
to v′ in the proof strategy above. We will need this fact in the dynamic algorithm as
it allows us to limit the depth of the balls.

By a suitable choice of p = Θ(√log n) (as a function of n and ϵ) we can guarantee
that 2(2 + 2/ϵ)p−2 ≤ ϵn1/p and n1/p = no(1). Now define q = p and Δk = nk/q for each

4The requirement that 1/ϵ must be integer is not needed in the paper of Thorup and Zwick; we
have added it here to simplify the exposition.

5In their paper, Thorup and Zwick [126] actually define a graph H ′ whose set of edges is the
union of the shortest paths trees from every node u to all nodes in its ball. This graph has the same
approximation error and the same size as H ; since H ′ is a subgraph of G it is called a spanner of G.

3.3. TECHNICAL OVERVIEW 87

u0

u1

u2

v0 v1 v2 v

decreasing distance to v

in
cr
ea

si
ng

pr
io
rit

y

Figure 3.2: Illustration of the hop reduction for p = 3 priorities. The dotted line
is the shortest path π from u0 to v in G. The blue edges are the edges of F used
to decrease the distance to v. The dashed blue edges are not contained in F and
imply the existence of edges to nodes of increasing priority. Starting from u0, a
node of priority 0, we let v0 be the node on π such that dG(u0, v0) = r0 = 1, i.e., the
neighbor of u0 on π . If the edge (u0, v0) is not contained in F , then F contains and
edge (u0, u1) to a node u1 of priority at least 1 such that dG(u0, u1) ≤ r0. Let v1 be the
node on π such that dG(u1, v1) ≤ r1 = 1 + 2/ϵ. If the edge (u1, v1) is not contained
in F , then F contains an edge (u1, u2) to a node u2 of priority at least 2 such that
dG(u1, u2) ≤ r1. Let v2 be the node on π such that dG(u2, v2) = r2 = (1 + 2/ϵ)(2 + 2/ϵ).
Since 2 is the highest priority, u2 contains the edge (u2, v2). Note that the weight of
these three edges from F is at most r0 + r1 + r2 and dG(u0, v2) ≥ r2 − (r0 + r1). Since
r2 = (1 + 2/ϵ)(r0 + r1), the ratio between these two quantities is (1 + ϵ).

0 ≤ k ≤ q − 2. Then we have, for every 0 ≤ k ≤ q − 2 and all pairs of nodes u and v

dG(u, v) ≤ dH (u, v) ≤ (1 + ϵ)dG(u, v) + 2(2 +
2
ϵ)

p−2

⋅ Δk

≤ (1 + ϵ)dG(u, v) + ϵn1/p ⋅ Δk

= (1 + ϵ)dG(u, v) + ϵΔk+1 .

Thus, if Δk+1 ≤ dG(u, v) ≤ Δk+2, then there is a path from u to v in H of weight at
most

(1 + ϵ)dG(u, v) + ϵΔk+1 ≤ (1 + ϵ)dG(u, v) + ϵdG(u, v) = (1 + 2ϵ)dG(u, v)

and with at most p⌈dG(u, v)/Δk⌉ ≤ (p + 1)Δk+2/Δk = (p + 1)n2/q = no(1) edges. It
follows that F is a (2ϵ, no(1)) hop set of size O(pn1+1/p) = O(n1+o(1)). By running the
algorithm with ϵ′ = ϵ/2 we obtain an (ϵ, no(1)) hop set of size O(n1+o(1)).

Efficient Construction So far we have ignored the running time for computing
the balls and thus constructing F , even in the static setting. Thorup and Zwick [126]
have remarked that a naive algorithm for computing the balls takes time O(mn). We
can reduce this running time by sampling edges instead of nodes.

88 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Wemodify the process for obtaining the sequence of sets A0,A1, … ,Ap as follows.
We set A0 = V and Ap = ∅ and for 1 ≤ i ≤ p − 1 we obtain the set Ai by picking each
edge of E independently with probability 1/mi/p and adding both endpoints of each
sampled edge to Ai . The priority of a node u is the maximum i such that u ∈ Ai . We
define, for every node u of priority i, B(u) as the set of nodes

B(u) = {v ∈ V ∣ dG(u, v) < dG(v ,Ai+1)} .

Note that the expected size of Ai is O(m1−i/p) for every 1 ≤ i ≤ p − 1.
The balls can now be computed as follows. First, we compute dG(u,Ai) =

minv∈Ai
dG(u, v) for every node u and every 1 ≤ i ≤ p − 1. Using Dijkstra’s al-

gorithm on a graph where we add an artificial source node si that is connected to
every node in Ai by an edge of weight 0, this takes time O(p(m + n log n)). Sec-
ond, we compute for every node u of priority i a shortest paths tree up to depth
dG(u,Ai+1) − 1 to obtain all nodes contained in B(u). Using an implementation of
Dijkstra’s algorithm that only puts nodes into its queue upon their first visit this
takes time O(|E[B(u)]| log n) where E[B(u)] = {(u, v) ∈ E ∣ u ∈ B(u) or v ∈ B(u)}
is the set of edges incident to B(u). By the sampling of edges we have, using the
same ordering argument as before, that the expected size of B(u) is m(i+1)/p . For
0 ≤ i ≤ p−1 the expected size of Ai is O(m1−i/p) and thus these Dijkstra computations
take time O(m1+1/p log n) for all nodes of priority i. By choosing p = Θ(√log n) as
described above we havem1/p = O(mo(1)) and thus the balls can be computed in time
O(m1+o(1)).

We define F as the set of edges F = {(u, v) ∈ V 2 ∣ v ∈ B(u)} and give each edge
(u, v) ∈ F the weight wF (u, v) = dG(u, v). The distance-preserving and hop-reducing
properties of F still hold as stated above and its expected size is O(pm1+1/p). Note
that F is not a sparsification of G anymore (as the bound on its size is even more than
m). For our purposes the sparsification aspect is not relevant, we only need the hop
reduction. Thus in the static setting, we can compute an (ϵ,mo(1))-hop set (which is
also an (ϵ, no(1))-hop set) of expected size O(m1+o(1)) in expected time O(m1+o(1)).

Maintaining Balls Under Edge Deletions As the graph G undergoes deletions
the hop set has to be updated as well. We can achieve this by maintaining the balls
w.r.t. a fixed sequence of randomly chosen sets A0,A1, … ,Ap , where A0 = V and
Ap = ∅ and for 1 ≤ i ≤ p − 1 we obtain Ai by picking each edge of E independently
with probability c ln n/mi/p , for some large enough constant c, and adding both
endpoints of each sampled edge to Ai . Note that now, for every 1 ≤ i ≤ p − 1,
the expected size of Ai is O(m1−i/p log n) and the size of E[B(u)] for every node u of
priority i is at mostm(i+1)/p with high probability (whp) at any time, i.e., in any version
of the graph. This holds because by deleting edges there can only be a polynomial
number of different versions of G. Unfortunately, we do not know how to maintain
the balls efficiently. However we can maintain for all nodes u the approximate ball

B(u,D) = {v ∈ V ∣ log dG(u, v) < ⌊log dG(u,Ai+1)⌋ and dG(u, v) ≤ D}

3.3. TECHNICAL OVERVIEW 89

(where u has priority i) in time O(pm1+1/pD logD). Note that B(u,D) differs from the
definition of B(u) in the following ways. First, we use the inequality log dG(u, v) <
⌊log dG(u,Ai+1)⌋ instead of the inequality dG(u, v) < dG(u,Ai+1). This alone increases
the additive error of the hops set from 2(2+2/ϵ)p−2 to 4(3+4/ϵ)p−2, which can easily be
compensated. Second, we limit the balls to a certain depth D. By using a small value
of D we will only obtain a restricted hop set that provides sufficient hop reduction for
nodes that are relatively close to each other. We will show later that this is enough
for our purposes. Despite of these modifications we clearly have B(u,D) ⊆ B(u) and
therefore all size bounds still apply.

In the first part of the algorithm for maintaining the balls we maintain dG(u,Ai)
every 1 ≤ i ≤ p − 1 and every node u. We do this by adding an artificial source node
si that has an edge of weight 0 to every node in Ai and maintain an ES-tree up to
depth D from si . This step takes time O(pmD).

Now, for every node u of priority i we maintain B(u,D) as follows. We maintain
an ES-tree up to depth

min (2⌊log dG(u,Ai+1)⌋ − 1,D)

and every time 2⌊log dG(u,Ai+1)⌋ increases, we restart the ES-tree. Naively, we incur a
cost ofO(mD) for each instance of the ES-tree. However we can easily implement the
ES-tree in a way that it never looks at edges that are not contained in E[B(u)].6 Thus,
the cost of each instance of the ES-tree is O(|B(u)|D). Remember that B(u,D) ⊆ B(u)
and that by the random sampling of edges the size of E[B(u)] is at most m(i+1)/p

whp. As 2⌊log dG(u,Ai+1)⌋ can increase at most logD times until it exceeds D, we
initialize at most logD ES-trees for the node u. Therefore the total time needs for
maintaining B(u,D) is O(m(i+1)/pD logD). As there are at most ̃O(m1−i/p) nodes of
priority i in expectation, the total time needed for maintaining all approximate balls
is ̃O(pm1+1/pD logD) in expectation.

Decremental Approximate SSSP Let us first sketch an algorithm for main-
taining shortest paths from a source node s with a running time of O(m1+1/2+o(1))
for which we use q = 2 layers and p = Θ(√log n) priorities. We set Δ = √n,
D = 2(3 + 4/ϵ)p−2Δ, and p such that 2(3 + 4/ϵ)p−2 ≤ ϵn1/p and n1/p = O(no(1)). We
maintain single-source shortest paths up to depth D from s using the ES-tree, which
takes time O(mD) = O(mn1/2+o(1)). To maintain approximate shortest paths to nodes
that are at distance more than D from s we use the following approach. We maintain
B(u,D) for every node u, as sketched above, which takes time ̃O(pm1+1/pD logD) =
O(m1+1/2+o(1)) in expectation. At any time, we set the hop set F to be the set of
edges F = {(u, v) ∈ V 2 ∣ ∃v ∈ B(u,D)} and give each edge (u, v) ∈ F the weight
wF (u, v) = dG(u, v). By our arguments above, the weighted graph H = (V , F) has

6If we prefer to use the ES-tree as a “black box” we can, in a preprocessing step, find the initial
set B(u,D) and only build an ES-tree for this ball. All other nodes will never be contained in B(u,D)
anymore as long as the value of 2⌊log dG(u,Ai+1)⌋ remains unchanged and therefore we can remove them.
This can be done in time O(|E[B(u,D)]| log n) by using an implementation of Dijkstra’s algorithm that
only puts nodes into its queue upon their first visit.

90 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

the following property: for every pair of nodes u and v such that dG(u, v) ≥ D ≥ Δ
there is a path π in H of weight at most (1+2ϵ)dG(u, v) and with at most pdG(u, v)/Δ
edges.

To maintain approximate shortest paths for nodes at distance more than D from
s we will now use the hop reduction in combination with the following scaling
technique. We set φ = ϵΔ/p and let H ′ be the graph resulting from rounding up
every edge weight in H to the next multiple of φ. By using H ′ instead of H we incur
an error of φ for every edge on the approximate shortest path path π . Thus in H ′, π
has weight at most

(1 + 2ϵ)dG(u, v) + (pdG(u, v)/Δ) ⋅ φ = (1 + 2ϵ)dG(u, v) + ϵdG(u, v) ≤ (1 + 3ϵ)dG(u, v) .

The efficiency now comes from the observation that we can run the algorithm on
the graph H″ where every edge weight in H ′ is scaled down by a factor of 1/φ. The
graphH″ has integer weights and the weights of all paths inH ′ andH″ differ exactly
by the factor 1/φ. Thus, instead of maintaining a shortest paths tree up to depth n in
H we only need to maintain a shortest paths tree in H″ up to depth n/φ = p√n/ϵ.
In this way we obtain a (1 + 3ϵ)-approximation for all nodes such that dG(u, v) ≥ D.

However, we cannot simply use the ES-tree on H″ because as edges are deleted
fromG, nodes might join the approximate balls and therefore edges might be inserted
into F and thus intoH″. This means that a dynamic shortest paths algorithm running
on H″ would not find itself in a purely decremental setting. However the insertions
have a “nice” structure. We can deal with them by using a previously developed
technique, called monotone ES-tree. The main idea of the monotone ES-tree is to
ignore the level decreases suggested by inserting edges. The hop-set proof still goes
through, even though we are not arguing about the current distance in H″ anymore,
but the level of a node u in the monotone ES-tree. Maintaining the monotone
ES-tree for distances up to D in H″ takes time O(|ℰ(H)|D) where ℰ(H″) is the set
of edges ever contained in H″ (including those that are inserted over time) and
D = O(n1/2+1/p) as explained above. Each insertion of an edge into F corresponds to
a node joining B(u,D) for some node u. For a fixed node u of priority i there are at
most logD possibilities for nodes to join B(u,D) (namely each time ⌊log dG(u,Ai+1⌋
increases) and every time at mostm(i+1)/p nodes will join whp. It follows that |ℰ(H)|
is O(m1+o(1)) whp and the running time of this step is O(m1+1/2+o(1)) in expectation.

The almost linear-time algorithm is just slightly more complicated. Here we use
p = Θ(√log n) priorities and q = √p layers and set Δk = nk/q for each 0 ≤ k ≤ q − 2.
In the algorithm we will maintain, for each 0 ≤ k ≤ q − 2 a hop set Fk such that for
every pair of nodes u and v with Δk+1 ≤ dG(u, v) ≤ Δk+2 there is a path from u to v in
Hk = (V , Fk) of weight at most (1+ 2ϵ)dG(u, v) and with at most pdG(u, v)/Δk ≤ pn2/q

hops. To achieve this we use the following hierarchical approach. Given the hop
set Fk we canmaintain approximate shortest paths up to depthΔk+2 in timeO(m1+o(1))
and given a data structure for maintaining approximate shortest paths up to depth Δk
we can maintain approximate balls and thus the hop set Fk+1 in time O(m1+o(1)). The
hierarchy “starts” with using the ES-tree as an algorithm for maintaining an (exact)

3.3. TECHNICAL OVERVIEW 91

shortest paths tree up to depth n2/q . Thus, running efficient monotone ES-trees on
top of the hop sets and maintaining the hop sets (using efficient monotone ES-trees)
go hand in hand.

There are two obstacles in implementing this hierarchical approach when we
want to maintain the approximate balls in each layer. First, in our algorithm for
maintaining the approximate balls we have used the ES-tree as an exact decremental
SSSP algorithm. In the multilayer approach we have to replace the ES-tree with the
monotone ES-tree which only provides approximate distance estimates. This will
lead to approximation errors that increase with the number of layers. Second, by
the arguments above the number of edges in Fk is O(m1+1/p) for each 0 ≤ k ≤ q − 2.
In the algorithm for maintaining the approximate balls for the next layer, this bound
however is not good enough because we run a separate instance of the monotone
ES-tree for each node u. We deal with this issue by running the monotone ES-tree
in the subgraph of G induced by the nodes initially contained in B(u). For a node u
of priority i this subgraph contains mi = m(i+1)/p edges whp and we can recursively
run our algorithm on this smaller graph. By this process we incur a factor of m1/p in
the running time each time each time we increase the depth of the recursion. This
results in a total update time of ̃O(m1+q/p) which is ̃O(m1+1/q) = O(m1+o(1)) since
q = √p.

Extension to Weighted Graphs The hop set construction described above was
only for unweighted graphs. However, the main property that we needed was
dG(u, v) ≤ n for any pair of nodes u and v . Using the scaling technique mentioned
above, we can construct for each 0 ≤ i ≤ ⌊log nW ⌋ a graph Gi such that for all pairs
of nodes u and v with 2i ≤ dG(u, v) ≤ 2i+1 we have dGi

(u, v) ≤ 4n/ϵ for some small γ
and the shortest path in Gi can be turned into a (1 + ϵ)-approximate shortest path
in G by scaling up the edge weights. We now run O(log (nW)) instances of our
algorithm, one for each graph Gi , and maintain the hop set and approximate SSSP
for each of them.

We only need to refine the analysis of the hop-set property in the following
way. Remember that in the analysis we considered the shortest path π from u to v
and defined the node u′ that is at distance Δ from u on π . If the hop set contained
the edge (u, u′) we could reduce the distance to v by Δ. In weighted graphs (even
after the scaling), we cannot guarantee there is a node at distance Δ from u on π .
Therefore we define u′ as the furthest node that is at distance at most Δ from u on
π . Furthermore we define u″ as the neighbor of u′ on π , i.e., u″ is at distance at
least Δ from u. Now if the hop set contains the edge (u, u′) we first use the edge
(u, u′) from the hop set, and then the edge (u′, u″) from the original graph to reduce
the distance to v by at least Δ with only 2 hops. Note that for unweighted graphs it
was sufficient to only use the edges of the hop set. For weighted graphs we really
have to add the edges of the hop set to the original graph in our algorithm.

92 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Outline As sketched above, our algorithm uses the following hierarchical ap-
proach: Given a decremental approximate SSSP algorithm for distances up to Di
with total update time O(m1+o(1)), we can maintain approximate balls for distances
up to Di with total time O(m1+o(1)) as well. And given a decremental algorithm
for maintaining approximate balls for distances up to Di with total update time
O(m1+o(1)) we can use the approximate balls to define a hop set which allows us to
maintain approximate shortest paths for distances up to Di+1 = no(1)Di with total
update time O(m1+o(1)). This scheme is repeated until Di is large enough to cover
the full distance range.

We have formulated the two parts of this scheme as reductions. In Section 3.4
we give a decremental algorithm for maintaining approximate balls that internally
uses a decremental approximate SSSP algorithm. In Section 3.5 we give a decremen-
tal approximate SSSP algorithm that internally uses a decremental algorithm for
maintaining approximate balls. In Section 3.6 we explain the hierarchical approach
for putting these two parts together and obtain the decremental (1 + ϵ)-approximate
SSSP algorithm with a total update time of O(m1+o(1)) for the full distance range. In
addition to this result, the algorithm for maintaining approximate balls, together
with a suitable query algorithm, gives us a decremental approximate APSP algorithm.
This algorithm is also given in Section 3.6.

3.4 From Approximate SSSP to Approximate Balls

In the following we show how to maintain the approximate balls of every node if
we already have an algorithm for maintaining approximate shortest paths. In our
reduction we will use the algorithm for maintaining approximate shortest paths as a
“black box”, requiring only very few properties. Formally, we prove the following
statement in this section.

Proposition 3.4.1. Assume there is a decremental approximate SSSP algorithm Ap-
proxSSSP with the following properties, using fixed values α ≥ 1, β ≥ 0, and D ≥ 1:
Given a weighted graph G = (V , E) undergoing edge deletions and edge weight increases
and a fixed source node s ∈ V , ApproxSSSP maintains for every node v ∈ V a distance
estimate δ(s, v) such that:

A1 δ(s, v) ≥ dG(s, v)

A2 If dG(s, v) ≤ D, then δ(s, v) ≤ αdG(s, v) + β . .

A3 After every update in G, ApproxSSSP returns, for every node v such that δ(s, v)
has changed, v together with the new value of δ(s, v).

We denote the total update time of ApproxSSSP by T (m, n).
Then there is a decremental algorithm ApproxBalls for maintaining approximate

balls with the following properties: Given a weighted graph G = (V , E) undergoing
edge deletions and edge weight increases and parameters 2 ≤ k ≤ log n and 0 < ϵ ≤ 1,

3.4. FROM APPROXIMATE SSSP TO APPROXIMATE BALLS 93

it assigns to every node u ∈ V a number from 0 to k − 1, called the priority of u, and
maintains for every node u ∈ V a set of nodes B(u) and a distance estimate δ(u, v) for
every node v ∈ B(u) such that:

B1 For every node u and every node v ∈ B(u) we have dG(u, v) ≤ δ(u, v) ≤
αdG(u, v) + β .

B2 Let s(⋅, ⋅) be a non-decreasing function such that, for all x ≥ 1, and l ≥ 1,

s(x , l) ≥ a(a + 1)l−1dG(u, v) + ((a + 1)l − 1)b/a ,

where a = (1 + ϵ)α and b = (1 + ϵ)β + 1. Then for every node u of priority i and
every node v such that s(dG(u, v), p − 1 − i) ≤ D, either (1) v ∈ B(u) or (2) there is
some node v′ of priority j > i such that u ∈ B(v′) and dG(u, v′) ≤ s(dG(u, v), j−i).

B3 If, for every node u, ℬ(u) denotes the set of nodes ever contained in B(u), then
∑u∈V |ℬu| = ̃O(m1+1/k logD/ϵ) in expectation.

B4 The update time of ApproxBalls is

t(m, n, k, ϵ) = ̃O
(
m1+1/k logD

ϵ
+ ∑

0≤i≤k−1
m1−i/k ⋅ T (mi , ni)

logD
ϵ

+ T (m, n)
)

,

where, for each 0 ≤ i ≤ k − 1, mi = m(i+1)/k and ni = min(mi , n).

B5 After every update in G, ApproxBalls returns all pairs of nodes u and v such
that v joins B(u), v leaves B(u), or ̂δ(u, v) changes.

Our algorithm for maintaining the approximate balls B(u) for every node u ∈ V
is as follows:

1. At the initialization we set F0 = E and Fk = ∅ and for 1 ≤ i ≤ k−1, a set of edges
Fi is obtained from sampling each edge of E independently with probability
(c ln n)/mi/k (for a large enough constant c). For every 0 ≤ i ≤ k − 1 we set
Ai = {v ∈ V ∣ ∃(v,w) ∈ Fi} and for every node v ∈ V , we set the priority of u
to be the maximum i such that v ∈ Ai .

2. For each 1 ≤ i ≤ k − 1 we run an instance of ApproxSSSP with depth D from
an artificial source node si that has an edge of weight 0 to every node in Ai .
We denote the distance estimate provided by ApproxSSSP δ(u,Ai) and set
δ(u,Ak) = ∞ for every node u ∈ V .

3. For every 0 ≤ i ≤ k − 1 and every node u ∈ V of priority i, we maintain the
value

r(u) = min
(

(1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ − β
α

,D
)

.

and at the initialization and each time r(u) increases we do the following:

94 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

a) Compute the set of nodes R(u) = {v ∈ V ∣ dG(u, v) ≤ r(u)}.

b) Run an instance of ApproxSSSP with depth D from u in G|R(u), the
subgraph of G induced by R(u). Let δ(u, v) denote the estimate of the
distance between u and v in G|R(u) maintained by ApproxSSSP.

c) Maintain B(u) = {v ∈ V ∣ δ(u, v) ≤ αD + β}: every time δ(u, v) changes
for some node v we check whether v is still contained in B(u).

Note that ApproxBalls has Property B5, i.e., it returns changes in the approxi-
mate balls and the distance estimates, which is possible because ApproxSSSP has
Property A3.

3.4.1 Relation to Exact Balls

In the following we compare the approximate balls maintained by our algorithm to
the exact balls, as used byThorup and Zwick [126]. We show how themain properties
of exact balls translate to approximate balls. We use the following definition of the
(exact) ball of a node u of priority i:

B(u) = {v ∈ V ∣ dG(u, v) < dG(u,Ai+1)} .

The balls have the following simple property: If v ∉ B(u), then there is a node v′ of
priority j > i such that dG(u, v′) ≤ dG(u, v). We show that a relaxed version of this
statement also holds for the approximate balls.

Lemma 3.4.2. Let u be a node of priority i and let v be a node such that dG(u, v) ≤ D.
If v ∉ B(u), then there is a node v′ of priority j > i such that dG(u, v′) ≤ adG(u, v) + b,
where a = (1 + ϵ)α and b = (1 + ϵ)β + 1.

Proof. We show the following: If dG(u,Ai+1) ≥ adG(u, v), then v ∈ B(u). The claim
then follows from contraposition: If v ∉ B(u), then dG(u,Ai+1) < adG(u, v) + b
and thus there exists some node v′ ∈ Ai+1 that has priority j ≥ i + 1 such that
dG(u, v′) < adG(u, v) + b.

Assume that dG(u,Ai+1) ≥ adG(u, v) + b. Remember that we have set

r(u) = min
(

(1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ − β
α

,D
)

.

Since δ(u,Ai+1) ≥ dG(u,Ai+1) by Property A1 we have

δ(u,Ai+1) ≥ dG(u,Ai+1) ≥ adG(u, v) + b = (1 + ϵ)(αdG(u, v) + β) + 1

which is equivalent to

dG(u, v) ≤
δ(u,Ai+1)−1

1+ϵ
− β

α
.

3.4. FROM APPROXIMATE SSSP TO APPROXIMATE BALLS 95

Since (1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ ≥ (1 + ϵ)log1+ϵ (δ(u,Ai+1)−1)−1 = (δ(u,Ai+1) − 1)/(1 + ϵ) it
follows that

dG(u, v) ≤
(1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ − β

α
Since we have assumed that dG(u, v) ≤ D we get dG(u, v) ≤ r(u) which implies that
dG|R(u)(u, v) ≤ r(u) ≤ D as well. Thus, by Property A2, it follows that δ(u, v) ≤
αdG|R(u) + β ≤ αD + β and v ∈ B(u) as desired.

We now show that the approximate balls are contained in the exact balls. The
exact balls are useful in our analysis because we can easily bound their size.

Lemma 3.4.3. At any time B(u) ⊆ B(u) for every node u.

Proof. Let R(u) = {v ∈ V ∣ dG(u, v) ≤ r(u)} denote the set of nodes at distance at
most r(u) from u at the last time r(u) has increased. Note that B(u) is a set of nodes
of the graph G|R(u) and therefore B(u) ⊆ R(u). It remains to show that R(u) ⊆ B(u).

If i = k − 1, then the claim is trivially true because B(u) contains all nodes that
are connected to u in G. In the case 0 ≤ i < k − 1 remember that

r(u) = min
(

(1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ − β
α

,D
)

.

If dG(u,Ai+1) > r(u), we trivially have dG(u, v) ≤ r(u) < dG(u,Ai+1). If dG(u,Ai+1) ≤
r(u), then in particular dG(u,Ai+1) ≤ D and by Property A2 we have δ(u,Ai+1) ≤
αdG(u,Ai+1) + β . It follows that

dG(u, v) ≤ r(u) ≤
(1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ − β

α

≤
(1 + ϵ)log1+ϵ (δ(u,Ai+1)−1) − β

α
≤
δ(u,Ai+1) − 1 − β

α
≤ dG(u,Ai+1) −

1
α

.

This is implies that dG(u, v) < dG(u,Ai+1) because the distances are integer and
1/α > 0. In both cases we get dG(u, v) < dG(u,Ai+1) and as this is the defining
property of B(u) we have v ∈ B(u).

Lemma 3.4.4. At any time the size of B(u) is O(m(i+1)/k) whp for every node u of
priority i.

Proof. Note that the claim is trivially true for i = k−1. Therefore assume i < k−1 in the
following. For every edge e = (v ,w) ∈ E we define dG(u, e) = min(dG(u, v), dG(v ,w)).
Let F ⊆ E be the set consisting of the m(i+1)/k edges that are closest to u according to
this definition of dG(u, e) for each edge e, where ties are broken in an arbitrary but
fixed order. (Note that if less than m(i+1)/k edges are connected to u, then the claim
is true anyway).

Let U be the set of nodes U = {v ∈ V ∣ ∃(v,w) ∈ F}. By the random sampling
(Lemma 1.3.2), F contains an edge (v,w) of Fi+1 with high probability. Assume

96 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

without loss of generality that dG(u, v) ≤ dG(v,w), i.e., dG(u, e) = dG(u, v). Let
v′ ∈ B(u) and let e′ = (v′,w′) be some edge incident to v′. Since the node v is
contained in Ai+1 we have

dG(u, e′) ≤ dG(u, v′) < dG(u,Ai+1) ≤ dG(u, v) = dG(u, e) .

Therefore we have e′ ∈ F and thus v′ ∈ U . It follows that B(u) ⊆ U . Observe that
|U | ≤ 2|F | and thus |B(u)| ≤ |U | ≤ 2|F | = 2m(i+1)/k whp.

3.4.2 Properties of Approximate Balls

We now show that the approximate balls and the corresponding distance estimate
have the Properties B1–B4. We first show that the distance estimates for nodes in
the approximate balls have the desired approximation guarantee, although they have
been computed in subgraphs of G.

Lemma 3.4.5 (Property B1). For every pair of nodes u and v such that v ∈ B(u) we
have dG(u, v) ≤ δ(u, v) ≤ αdG(u, v) + β .

Proof. By PropertyA1we have δ(u, v) ≥ dG|R(u)(u, v) and since G|R(u) is a subgraph
of G we have dG|R(u)(u, v) ≥ dG(u, v). Therefore the inequality δ(u, v) ≥ dG(u, v)
follows.

Since v ∈ B(u) we have δ(u, v) ≤ αD + β . If dG(u, v) ≥ D, then trivially δ(u, v) ≤
αD + β ≤ αdG(u, v) + β . If dG(u, v) ≥ D, then there is a path k from u to v in G of
weight at most D. This path was also contained in previous versions of G, possibly
with smaller weight, and in particular at the time the algorithm has computed R(u),
the set of nodes that are at distance at most D from u in G, for the last time. It
follows that k is also contained in G|R(u) and thus dG|R(u)(u, v) = dG(u, v) ≤ D. By
Property A2 we then have δ(u, v) ≤ αdG|R(u) + β = αdG + β .

We show now that the approximate balls have a certain structural property that
either allows us shortcut the path between two nodes or helps us in finding a nearby
node of higher priority.

Lemma 3.4.6 (Property B2). Let s(⋅, ⋅) be a non-decreasing function such that, for all
x ≥ 1, and l ≥ 1,

s(x , l) ≥ a(a + 1)l−1dG(u, v) + ((a + 1)l − 1)b/a ,

where a = (1 + ϵ)α and b = (1 + ϵ)β + 1. Then for every node u of priority i and every
node v such that s(dG(u, v), p − 1 − i) ≤ D, either (1) v ∈ B(u) or (2) there is some
node v′ of priority j > i such that u ∈ B(v′) and dG(u, v′) ≤ s(dG(u, v), j − i).

Proof. We first define the following series: let f (1) = adG(u, v) + b and for all l ≥ 1
let f (l + 1) = f (l) + af (l) + b. It is easy to verify that for all l ≥ 1 we have

f (l) =
a2(a + 1)l−1dG(u, v) + ((a + 1)l − 1)b

a
≤ s(dG(u, v), l) .

3.4. FROM APPROXIMATE SSSP TO APPROXIMATE BALLS 97

Note that since s(⋅, ⋅) is non-decreasing we have, for all 1 ≤ l ≤ k − 1 − i, f (l) ≤
s(dG(u, v), l) ≤ s(dG(u, v), p − 1 − i) ≤ D.

If v ∈ B(u), then we are done. Otherwise, by Lemma 3.4.2, there is some node v1
of priority p1 ≥ i + 1 such that

dG(v1, u) ≤ adG(u, v) + b = f (1) ≤ D .

Thus, if u ∈ B(v1), then we are done. Otherwise, by Lemma 3.4.2, there is some node
v2 of priority p2 ≥ p1 + 1 ≥ i + 2 such that

dG(v2, v1) ≤ adG(v1, u) + b ≤ af (1) + b .

By the triangle inequality we have

dG(v2, u) ≤ dG(v2, v1) + dG(v1, u) ≤ af (1) + b + f (1) = f (2) ≤ D .

We now repeat this argument to obtain nodes v1, v2, …vl of priorities p1, p2, …, pl such
that dG(vl , u) ≤ f (l) ≤ D and pl ≥ i+l until the inequality dG(vl ,Apl+1) ≥ adG(vl , u)+b
is fulfilled. This happens eventually since Ak = ∅ and thus dG(u,Ak) = ∞.

Next, we bound the size of the system of approximate balls we maintain. Here
we use the fact that we can easily bound the size of the exact ball B(u) for every
node u and that by our definitions we ensure that the approximate balls are subsets
of the exact balls.

Lemma 3.4.7 (Size of Approximate Balls (Property B3)).

If, for every node u, ℬ(u) denotes the set of nodes ever contained in B(u), then
∑u∈V |ℬu| = ̃O(m1+1/k logD /ϵ) in expectation.

Proof. We first bound ℬu , the number of nodes ever contained in the approximate
ball B(u), of some node u of priority i. Remember that nodes are joining B(u) only
when r(u) increases and that

r(u) = min
(

(1 + ϵ)⌊log1+ϵ (δ(u,Ai+1)−1)⌋ − β
α

,D
)

.

Thus, r(u) can only increase if ⌊log1+ϵ (δ(u,Ai+1) − 1)⌋ increases and the left term in
the minimum is at most D. Since 1 + ϵ ≥ 1 and β ≥ 0 it follows that r(u) increases
only O(log1+ϵ D) = O(logD/ϵ) times. As B(u) ⊆ B(u) by Lemma 3.4.3, after every
increase of r(u) only nodes contained in B(u) can join B(u). By Lemma 3.4.4 the
size of B(u) is O(m(i+1)/k) whp. Thus, the number of nodes ever contained in B(u) is
|ℬ(u)| = O(m(i+1)/k logD/ϵ) whp.

As the number of nodes of priority i is ̃O(m/mi/k) in expectation, the number of
nodes ever contained in the approximate balls is ∑u∈V |ℬ(u)| ̃O(m1+1/k logD/ϵ) in
expectation.

98 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Finally, we analyze the running time of our algorithm for maintaining the ap-
proximate balls. Since we use the data structure ApproxSSSP as a black box, the
running time of our algorithm depends on the running time of ApproxSSSP.

Lemma 3.4.8 (Running Time (Property B4)). The total time needed for maintaining
the sets B(u) for all nodes u ∈ V is

̃O
(
m1+1/k logD/ϵ + ∑

0≤i≤k−1
T (mi , ni) logD/ϵ + T (m, n)

)
,

where, for each 0 ≤ i ≤ k − 1, mi = m(i+1)/k and ni = min(mi , n).

Proof. The initialization in Step 1 of the algorithm, where we determine the sets
A0, … ,Ap takes time O(pm). In Step 2, we run for each 1 ≤ i ≤ k − 1 an instance of
ApproxSSSP with depth D. This takes time kT (m, n). Step 3, where we maintain for
every node u of priority i the approximate ball and corresponding distance estimates
can be analyzed as follows. Remember that every time r(u) increases we first compute
R(u), the set of nodes that are at distance at most r(u) from u. Using a suitable
implementation of Dijkstra’s algorithm, this takes time O(|E[R(u)]| log n), where
E[R(u)] is the set of edges incident to R(u). By Lemma 3.4.3 we have R(u) ⊆ B(u)
and by Lemma 3.4.4 we have |B(u)| = O(m(i+1)/k) whp. Thus, computing R(u) takes
time ̃O(m(i+1)/k) whp. We then maintain an instance of ApproxSSSP up to depth D
on G|R(u), the subgraph of G induced by R(u). Note that G|R(u) has mi = m(i+1)/k

edges and ni = min(mi , n) nodes and therefore this takes time T (mi , ni). As r(u)
increases O(logD/ϵ) times and the number of nodes of priority i is ̃O(m/mi/k) in
expectation, maintaining B(u) for all nodes u of priority i (and the corresponding
distance estimates) takes time

∑
0≤i≤k−1

̃O (
m
mi/k logD/ϵ ⋅ (m(i+1)/k + T (mi , ni)) =

̃O
(
m1+1/k logD/ϵ + ∑

0≤i≤k−1
m1−i/k ⋅ T (mi , ni) logD/ϵ)

.

Since k ≤ log n, the claimed running time follows.

3.5 From Approximate Balls to Approximate SSSP

In the following we show how to maintain an approximate shortest paths tree if
we already have an algorithm for maintaining approximate balls. Our main tool in
this reduction is a hop set that we define from the approximate balls. We will add
the “shortcut” edges of the hop set to the graph and scale down the edge weights,
maintaining the approximate shortest paths with a monotone ES-tree, as introduced
in Chapter 2. Formally, we prove the following statement in this section.

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 99

Proposition 3.5.1. Assume there is a decremental algorithm ApproxBalls for main-
taining approximate balls with the following properties, using fixed values a ≥ α ≥ 1,
b ≥ β ≥ 0, and ̂D ≥ 1. Given a weighted graph G = (V , E) undergoing edge deletions
and edge weight increases and a parameters 2 ≤ k ≤ log n, it assigns to every node
u ∈ V a number from 0 to k − 1, called the priority of u, and maintains for every node
u ∈ V a set of nodes B(u) and, for every node v ∈ B(u), a distance estimate ̂δ(u, v) such
that:

B1 For every node u and every node v ∈ B(u) we have dG(u, v) ≤ ̂δ(u, v) ≤
αdG(u, v) + β .

B2 There is a function s(⋅, ⋅) such that, for all x ≥ 1, s(x , 1) = ax + b for some a ≥ α
and b ≥ β and, for all l ≥ 1,

s(x , l + 1) ≤
a(α + 1 + ϵ)(αs(x , l) + β) + β

ϵ
+ b .

guaranteeing the following: For every node u of priority i and every node v such
that s(dG(u, v), p − 1 − i) ≤ ̂D, either (1) v ∈ B(u) or (2) there exist some node
v′ ∈ V of priority j > i such that u ∈ B(v′) and dG(u, v′) ≤ s(dG(u, v′), j − i).

B3 After every update in G, ApproxBalls returns all pairs of nodes u and v such
that v joins B(u), v leaves B(u), or ̂δ(u, v) changes.

For every node u, let ℬ(u) denote the set of nodes ever contained in B(u) and let
t(m, n, k) denote the total update time of ApproxBalls.

Then there is an approximate SSSP data structure ApproxSSSP with the following
properties: Given a weighted graph G undergoing edge deletions and edge weight
increases, a fixed source node s, and parameters p, Δ, D, and ϵ such that

2 ≤ p ≤
√log n

√log(
4a3

ϵ)

,

Δ ≥ b, n1/pΔ ≤ ̂D, D ≥ Δ and 0 < ϵ ≤ 1, it maintains a distance estimate δ(s, v) for
every node v ∈ V such that:

A1 δ(s, v) ≥ dG(s, v)

A2 If dG(s, v) ≤ D, then δ(s, v) ≤ (α + ϵ)dG(s, v) + ϵn1/pΔ

A3 The total update time of ApproxSSSP is

T (m, n,Δ,D, ϵ) = ̃O((αD/Δ + n1/p) ∑
u∈V

(m + |ℬ(u)|)/ϵ + t(m, n, p)) .

A4 After every update in G, ApproxSSSP returns, for every node v such that δ(s, v)
has changed, v together with the new value of δ(s, v).

100 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

We assume without loss of generality that the distance estimate maintained by
ApproxBalls is non-decreasing. If ApproxBalls ever reports a decrease we can
ignore it because Property B1 will still hold as distances in G are non-decreasing
under edge deletions and edge weight increases.

3.5.1 Algorithm Description

The algorithm ApproxSSSP maintains the set of edges F = {(u, v) ∈ V 2 ∣ v ∈ B(u)}
such that each edge (u, v) ∈ F has weight wF (u, v) = δ(u, v). We update F every time
in ApproxBalls a node joins or leaves an approximate ball or if the distance estimate
δ(u, v) increases for some pair of nodes u and v . By Property B3 this information is
returned by ApproxBalls after every update in G. Thus the set of edges F undergoes
insertions, deletions, and weight increases.

In the following we will define a shortcut graph H″ with scaled-down edge
weights and our algorithm ApproxSSSP will simply run a monotone ES-tree from
s in H″. Note that the monotone ES-tree trivially has properties A1 and A4. We
denote the weight of an edge (u, v) in G by wG(u, v) and define H as a graph that
has the same nodes as G and contains all edges of G and F that have weight at most
D+n1/pΔ. We set the weight of every edge (u, v) inG towH = min(wG(u, v),wF (u, v)).
We set

φ =
ϵΔ
p + 1

and define H ′ as the graph that has the same nodes and edges as H and in which
every edge (u, v) has weight

wH ′(u, v) = ⌈
wH (u, v)

φ ⌉ φ ,

i.e., we round every edge weight to the next multiple of φ. Furthermore, we define
H″ as the graph that has the same nodes and edges as H ′ and in which every edge
(u, v) has weight

wH″(u, v) =
wH ′(u, v)

φ
= ⌈

wH (u, v)
φ ⌉ ,

i.e., we scale down every edge weight by a factor of 1/φ. We maintain a monotone
ES-tree with maximum level

L = (α + 2ϵ)D/φ + (p + 1)n1/p

from s and denote the level of a node v in this tree by ℓ(v). For every node v our
algorithm returns the distance estimate δ(s, v) = ℓ(v) ⋅φ. Note that the graph H″ has
integer edge weights and, as F might undergo insertions, deletions, and edge weight
increases, the same type of updates might occur in H″. Furthermore, observe that
the rounding guarantees that

wH (u, v) ≤ wH ′(u, v) ≤ wH (u, v) + φ

for every edge (u, v) of H ′.

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 101

3.5.2 Running Time Analysis

We first provide the running time analysis. We run the algorithm in a graph in which
we scale down the edge weights by a factor of φ. This makes the algorithm efficient.

Lemma 3.5.2 (Running Time (Property A3)). The expected total update time of a
monotone ES-tree with maximum level L = (α + 2ϵ)D/φ + (p + 1)n1/p on H″ is

̃O
((αD/Δ + n1/p) (

m + ∑
u∈V

|ℬ(u)|
)
/ϵ

)
.

Proof. By Lemma 3.2.1 the total time needed for maintaining the monotone ES-tree
with maximum level L on H″ is

O(ℰ(H″) ⋅ L + 𝒲 (H″))

where ℰ(H″) is the number of edges ever contained in H″ and 𝒲 (H″) is the number
of updates (i.e., edge deletions, edge weight increases, and edge insertions) on H″.

Remember that φ = ϵΔ/(p+1). Since ϵ ≤ 1 and p ≤ log n we have L = ̃O(αD/(ϵΔ)+
n1/p). We now bound ℰ(H″) and 𝒲 (H″). Note that at any time H″ has the same
edges as H and each edge of H either is also an edge in G, which contains m edges,
or is an edge from F . As F is defined via the approximate balls (i.e., (u, v) ∈ F if
and only v ∈ B(u)), the number of edges ever contained in F is at most ∑u∈v |ℬ(u)|,
the total number of nodes ever contained in the approximate balls. It follows that
ℰ(H″) = ̃O(m + ∑u∈v |ℬ(u)|) in expectation. Note that every edge contained in
H″ can be inserted and deleted at most once and its weight can increase at most
(D + n1/pΔ)/φ times as we have limited the maximum edge weight in H to D + n1/pΔ.
Note that (D + n1/pΔ)/φ = (D + n1/pΔ)(p + 1)/(ϵΔ) = ̃O((D/Δ + n1/p)/ϵ). Therefore we
have

𝒲 (H″) ≤ 2ℰ(H″) + ℰ(H″) ⋅ (D + n1/pΔ)/φ = ̃O((m + ∑
u∈v

|ℬ(u)|) ⋅ (D/Δ + n1/p)/ϵ) .

We conclude that

ℰ(H″) ⋅ L + 𝒲 (H″) = ̃O((αD/Δ + n1/p)(m + ∑
u∈v

|ℬ(u)|)/ϵ)

and thus the claimed running time follows.

3.5.3 Definitions of Values for Approximation Guarantee

Before we analyze the approximation guarantee we define the following values. We
set

r0 = Δ

102 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

and for every 0 ≤ i ≤ p − 1 we set

si = ari + b ,
wi = αsi + β , and

ri =
(α + 1 + ϵ) ∑0≤j≤i−1 wj + β

ϵ
(if i ≥ 1) .

Finally, we set
γp−1 = β

and, for every 0 ≤ i ≤ p − 2,

γi = γi+1 + (α + 1 + ϵ)wi = (α + 1 + ϵ) ∑
i≤j≤p−2

wj + β .

We also set
γ = γ0 + 2ϵΔ .

Lemma 3.5.3. For all 0 ≤ i ≤ p − 1, ϵri = γ0 − γi + β

Proof. First, observe that for all 0 ≤ i ≤ p − 1 we have

γi = (α + 1 + ϵ) ∑
i≤j≤p−2

wj + β .

Thus, for all 0 ≤ i ≤ p − 1, we get

γ0 − γi + β = (α + 1 + ϵ) ∑
0≤j≤p−2

wj − (α + 1 + ϵ) ∑
i≤j≤p−2

wj + β

= (α + 1 + ϵ) ∑
0≤j≤i−1

wj + β = ϵri .

Lemma 3.5.4. (4a3/ϵ)p = n1/p

Proof. Remember that we have

p ≤
√log n

√log(
4a3

ϵ)

.

We only need to simplify both expressions as follows:

n1/p = 21/p⋅log n ≥ 2
√log (

4a3
ϵ)

√log n
⋅log n

= 2√log (
4a3

ϵ)⋅√log n

(
4a3

ϵ)

p

= 2
p⋅log (

4a3

ϵ) ≤ 2

√log n

√log (
4a3
ϵ)

⋅log (
4a3

ϵ)

= 2
√log n⋅√log (

4a3

ϵ) .

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 103

Lemma 3.5.5. For all 0 ≤ i ≤ p − 1 we have

ri ≤
3 ⋅ 4i−1a3iΔ + (9 ⋅ 4i−1 − 2)a3i−1b

ϵ i

and

∑
0≤j≤i

wj ≤
4ia3i+2Δ + (3 ⋅ 4i − 1)a3i+1b

ϵ i
.

Proof. Remember that ϵ ≤ 1 ≤ α ≤ a. Now observe that for all 1 ≤ i ≤ p − 1 we have

ri =
(α + 1 + ϵ) ∑0≤j≤i−1 wj + β

ϵ
≤

(a + 1 + ϵ) ∑0≤j≤i−1 wj + b

ϵ
≤
3a ∑0≤j≤i−1 wj + b

ϵ

and for all 0 ≤ i ≤ p − 1 we have

wi = αsi + β ≤ asi + b = a(ari + b) + b = a2ri + ab + b ≤ a2ri + 2ab .

We now prove the inequalities induction on i. We begin with the base case i = 0
where r0 = Δ and

∑
0≤j≤0

wj = w0 ≤ a2r0 + 2ab = a2Δ + 2ab =
40a3⋅0+2Δ + (3 ⋅ 40 − 1)a3⋅0+1b

ϵ0
.

In the induction step we assume that i ≥ 1:

ri ≤
3a ∑0≤j≤i−1 wj + b

ϵ

≤
3a(4i−1a3(i−1)+2Δ + (3 ⋅ 4i−1 − 1)a3(i−1)+1b) + b

ϵ i

=
3 ⋅ 4i−1a3iΔ + (9 ⋅ 4i−1 − 2)a3i−1b

ϵ i

∑
0≤j≤i

wj = ∑
0≤j≤i−1

wj + wi

≤ ∑
0≤j≤i−1

wj + a2ri + 2ab

≤
4i−1a3(i−1)+2Δ + (3 ⋅ 4i−1 − 1)a3(i−1)+1b

ϵ i−1
+ a2ri + 2ab

≤
4i−1a3(i−1)+2Δ + (3 ⋅ 4i−1 − 1)a3(i−1)+1b

ϵ i−1

+
3 ⋅ 4i−1a3i+2Δ + (9 ⋅ 4i−1 − 2)a3i+1b

ϵ i
+ 2ab

≤
4i−1a3(i−1)+2Δ + (3 ⋅ 4i−1 − 1)a3(i−1)+1b

ϵ i

104 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

+
3 ⋅ 4i−1a3i+2Δ + (9 ⋅ 4i−1 − 2)a3i+1b + 2ab

ϵ i

≤
4i−1a3i+2Δ + (3 ⋅ 4i−1 − 1)a3i+1b

ϵ i

+
3 ⋅ 4i−1a3i+2Δ + (9 ⋅ 4i−1 − 2)a3i+1b + 2a3i+1b

ϵ i

=
(1 + 3) ⋅ 4i−1a3i+2Δ + (3 ⋅ 4i−1 − 1 + 9 ⋅ 4i−1 − 2 + 2)a3i+1b

ϵ i

=
4ia3i+2Δ + (3 ⋅ 4i − 1)a3i+1b

ϵ i
.

Lemma 3.5.6. aγ + b ≤ ϵn1/pΔ.

Proof. Remember that we have ϵ ≤ 1 ≤ α ≤ a and β ≤ b ≤ Δ. By Lemma 3.5.5 we
have

∑
0≤j≤p−2

wj ≤
4p−2a3(p−2)+2Δ + (3 ⋅ 4p−2 − 1)a3(p−2)+1b

ϵp−2
≤
4p−2a3p−2Δ + 3 ⋅ 4p−2a3p−2Δ

ϵp−1

We now get:

aγ + b
ϵ

=
aγ0 + 2ϵaΔ + β

ϵ

=
a(α + 1 + ϵ) ∑0≤j≤p−2 wj + αβ + 2ϵaΔ + β

ϵ

≤
a(a + 1 + ϵ) ∑0≤j≤p−2 wj + aΔ + 2aΔ + Δ

ϵ

≤
3a2 ∑0≤j≤p−2 wj + 4aΔ

ϵ

≤
3 ⋅ 4p−2a3pΔ + 9 ⋅ 4p−2a3pΔ + 4aΔ

ϵp

≤
3 ⋅ 4p−2a3pΔ + 9 ⋅ 4p−2a3pΔ + 4p−2a3pΔ

ϵp

=
(3 + 9 + 1) ⋅ 4p−2a3pΔ

ϵp

≤
4pa3pΔ
ϵp

= (4a3/ϵ)pΔ ≤ n1/pΔ .

The last inequality follows from Lemma 3.5.4.

Lemma 3.5.7. arp−1 + b ≤ n1/pΔ.

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 105

Proof. By the definitions of rp−1 and γ0 we have rp−1 = γ0/ϵ. Since γ0 ≤ γ and
aγ + b ≤ ϵn1/pΔ by Lemma 3.5.6, we have

arp−1 + b = a
γ0
ϵ
+ b ≤

aγ0 + b
ϵ

≤
aγ + b

ϵ
≤ n1/pΔ .

Lemma 3.5.8. For all 0 ≤ i < j ≤ p − 1, s(ri , j − i) ≤ s(rj−1, 1)

Proof. Fix some 0 ≤ i ≤ p − 2. The proof is by induction on j. In the base case j = i + 1
the claim holds trivially. Consider now the induction step where we assume that
the inequality holds for j ≥ i + 1 and have to show that it also holds for j + 1. First,
observe that

rj =
(α + 1 + ϵ) ∑0≤j′≤j−1 wj′ + β

ϵ
≥

(α + 1 + ϵ)wj−1 + β
ϵ

=
(α + 1 + ϵ)(αsj−1 + β) + β

ϵ

and thus

s(rj , 1) = arj + b ≥
a(α + 1 + ϵ)(αsj−1 + β) + β

ϵ
+ b

=
a(α + 1 + ϵ)(αs(rj−1, 1) + β) + β

ϵ
+ b

By the Property B2 we have

s(ri , j − 1) ≤
a(α + 1 + ϵ)(αs(ri , j − i − 1) + β) + β

ϵ
+ b

and by the induction hypothesis we have s(ri , j − i − 1) ≤ s(rj , j − 1). Therefore it
follows that

s(ri , j − 1) ≤
a(α + 1 + ϵ)(αs(rj , j − 1) + β) + β

ϵ
+ b ≤ s(rj , 1) .

3.5.4 Analysis of Approximation Guarantee

We now analyze the approximation error of a monotone ES-tree maintained on H″.
This approximation error consists of two parts. The first part is an approximation
error that comes from the fact that the monotone ES-tree only considers paths from
s with a relatively small number of edges and therefore has to use edges from the
hop set F . The second part is the approximation error we get from rounding the
edge weights. We first give a formula for the approximation error that depends on
the priority of the nodes and their distance to the root of the monotone ES-tree.

Before we give the proof we review a few properties of the monotone ES-tree
(see Chapter 2 for the full algorithm). Similar to the classic ES-tree, the monotone
ES-tree with root s maintains a level ℓ(v) for every node v . The monotone ES-tree

106 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

is initialized by computing a shortest paths tree up to depth L from s in H″ and
thus, initially, ℓ(v) = dH″(s, v). A single deletion or edge weight increase in G might
result in a sequence of deletions, weight increases and insertions in F , and thus H″.
The monotone ES-tree first processes the insertions and then the deletions and edge
weight increases. It handles deletions and edge weights increases in the same way
as the classic ES-tree. The procedure for handling the insertion of an edge (u, v) is
trivial: it only stores the new edge and in particular does not change ℓ(u) or ℓ(v).
Once the level ℓ(u) of a node u exceeds the maximum level L, we set ℓ(u) = ∞. The
pseudocode of the monotone ES-tree can be found in Algorithm 2.2 in Chapter 2.

For the analysis of the monotone ES-tree we will use the following notions, just
like in Chapter 2. We say that an edge (u, v) is stretched if ℓ(u) > ℓ(v) + wH″(u, v).
We say that a node u is stretched if it is incident to an edge (u, v) that is stretched.
Note that for a node u that is not stretched we have ℓ(u) ≤ ℓ(v) +wH″(u, v) for every
edge (u, v) contained in H″. In our proof we will use the following properties of the
monotone ES-tree from Chapter 2.

Observation 3.5.9. The following holds for the monotone ES-tree:

(1) The level of a node never decreases.

(2) An edge can only become stretched when it is inserted.

(3) As long as a node x is stretched, its level does not change.

(4) For every tree edge (u, v) (where v is the parent of u), ℓ(u) ≥ ℓ(v) + w(u, v).

A second prerequisite from Chapter 2 tells us when we may apply a variant of
the triangle inequality to argue about the levels of nodes.

Lemma 3.5.10. Let (u, v) be an edge of H″ such that ℓ(v) +wH″(u, v) ≤ L. If (u, v) is
not stretched and after the previous update in G the level of u was less than ∞, then for
the current level of u we have ℓ(u) ≤ ℓ(v) + wH″(u, v).

Note that condition (2) simply captures the property of the monotone ES-tree
that once the level of a node exceeds L it is set to ∞ and will never be decreased
anymore. At the initialization (i.e., before the first update in H″), conditions (1)
and (2) are fulfilled automatically.

To count the additive error from rounding the edge weights, we define, for every
node u and every 0 ≤ i ≤ p − 1, the function h(u, i) as follows:

h(u, i) =
{

0 if u = s

(p + 1) ⌈
max(dG(u,s)−ri ,0)

Δ ⌉ + p + 1 − i otherwise
.

The intuition is that h(u, i) bounds the number of hops from u to s, i.e., the number
of edges required to go from u to s while at the same time providing the desired
approximation guarantee. The approximation guarantee can now formally be stated
as follows

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 107

Lemma 3.5.11 (Approximation Guarantee). For every node u of priority i with
dG(u, s) ≤ D + ∑0≤i′≤i−1 si′ we have

δ(s, u) ≤ (α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ .

Once we have proved this lemma, the desired bound on the approximation error
(Property A2) follows easily because h(u, i) ⋅ φ ≤ ϵdG(u, v) + 2ϵΔ (as we show below)
and thus

δ(s, u) ≤ (α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ
≤ (α + ϵ)dG(u, s) + γ0 + h(u, i) ⋅ φ
≤ (α + ϵ)dG(u, s) + γ0 + ϵdG(u, v) + 2ϵΔ
= (α + 2ϵ)dG(u, s) + γ .

Lemma 3.5.12. For every node u and every 0 ≤ i ≤ p − 1,

h(u, i) ⋅ φ ≤ ϵdG(u, s) + 2ϵΔ

Proof.

h(u, i) ⋅ φ = ((p + 1) ⌈
max(dG(u, s) − ri , 0)

Δ ⌉ + p + 1 − i) ⋅ φ

≤ ((p + 1) ⌈
dG(u, s)

Δ ⌉ + p + 1) ⋅ φ

≤ ((p + 1) (
dG(u, s)

Δ
+ 1) + p + 1) ⋅ φ

= (
(p + 1)dG(u, s)

Δ
+ 2(p + 1)) ⋅ φ

= (
(p + 1)dG(u, s)

Δ
+ 2(p + 1)) ⋅

ϵΔ
p + 1

= ϵdG(u, s) + 2ϵΔ .

Proof of Lemma 3.5.11. The proof is by double induction first on the number of up-
dates in G and second on h(u, i). Let u be a node of priority i such that dG(u, s) ≤
D + ∑0≤i′≤i−1 si′ . Remember that δ(u, s) = ℓ(u) ⋅ φ, where ℓ(u) is the level of u in
the monotone ES-tree of s. We know that after the last previous in G the distance
estimate gave an approximation of the true distance in G. Since distances in G are
non-decreasing it must have been the case that the level of u was less than ∞ after
the previous.

If u = s, the claim is trivially true because ℓ(s) = 0. Assume that u ≠ s. If u is
stretched in the monotone ES-tree, then the level of u has not changed since the
previous deletion in G and thus the claim is true by induction. If u is not stretched,
then ℓ(u) ≤ ℓ(v) +wH″(u, v) for every edge (u, v) in H″. Define the nodes v and x as
follows. If dG(u, s) ≤ ri , then v = s. If dG(u, s) > ri , then consider a shortest path π

108 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

from u to s in G and let v be the furthest node from u on π such that dG(u, v) ≤ ri
(which implies dG(v, s) ≥ dG(u, s) − ri). Furthermore let x be the neighbor of v on
the shortest path π that is closer to s than v. Note that dG(u, x) ≥ ri (and thus
dG(x , s) ≤ dG(u, s)− ri) and in particular G contains the edge (v , x). Note that (v , x) is
also contained in H (and thus in H ′ and H″) because for dG(u, s) ≤ D + ∑0≤i′≤i−1 si′
to hold it has to be the case that wG(v , x) ≤ D +∑0≤i′≤i−1 si′ . Note that ∑0≤i′≤i−1 si′ ≤
∑0≤i′≤i−1 wi′ ≤ rp−1 ≤ n1/pΔ by Lemma 3.5.7. Thus, wG(v, x) ≤ D + n1/pΔ, which by
the definition of H means that the edge (v , x) is contained in H .

Note that s(dG(u, v), p − 1 − i) ≤ s(ri , p − 1 − i) since the function s(⋅, ⋅) is non-
decreasing. By Lemma 3.5.8 we have s(ri , p − 1 − i) ≤ s(rp−2, 1) and by the definition
of s(⋅, 1) and Lemma 3.5.7 we have s(rp−2, 1) = arp−2 + b ≤ arp−1 + b ≤ n1/pΔ ≤ ̂D. Thus,
by Property B2 we know that either v ∈ B(u) or there is a node v′ of priority j′ > i
such that dG(u, v′) ≤ s(dG(u, v), j − i). Note that in the first case the set of edges F
contains the edge (u, v) and in the second case it contains the edge (u, v′).
Case 1: v ∈ B(u)

If v ∈ B(u), then F contains an edge (u, v) such that

wF (u, v) = ̂δ(u, v) ≤ αdG(u, v) + β (3.1)

Since dG(u, v) ≤ ri we have wF (u, v) ≤ αri + β ≤ αrp−1 + β ≤ n1/pΔ, where the last
inequality holds by Lemma 3.5.7. Thus, (u, v) is contained in H and thus also in H ′

and H″.
If dG(u, s) ≤ ri , then we have v = s. First observe that by the definition of H″ we

have wH″(u, s) = wH ′(u, s)/φ. Furthermore the rounding of the edge weights in H ′

guarantees that wH ′(u, s) ≤ wH (u, s) + φ. We therefore get

wH″(u, s) = ≤
wF (u, s) + φ

φ

≤
αdG(u, s) + β + φ

φ

≤
α (D + ∑0≤i′≤i−1 si′) + β + φ

φ

≤
αD + (α + 1 + ϵ) ∑0≤i′≤p−2 wi′ + β + φ

φ

=
αD + γ0 + φ

φ

=
αD + γ0 +

ϵΔ

p+1

φ

≤
αD + γ0 + 2ϵΔ

φ

=
αD + γ

φ
≤
αD + ϵn1/pΔ

φ
≤

(α + 2ϵ)D
φ

+ (p + 1)n1/p = L .

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 109

Here we have used the inequality γ ≤ ϵn1/pΔ from Lemma 3.5.6. Since the maximum
level in the monotone ES-tree is L and u is not stretched, it follows from Lemma 3.5.10
that ℓ(u) ≤ ℓ(s)+wH″(u, s) = wH″(u, s). Together with the observation that h(u, i) ≥ 1
since u ≠ s and β ≤ γ0 we therefore get

δ(s, u) = ℓ(u) ⋅ φ ≤ wH″(u, s) ⋅ φ ≤ αdG(u, s) + β + φ

≤ αdG(u, s) + β + h(u, i) ⋅ φ ≤ (α + ϵ)dG(u, s) + γ0 + h(u, i) ⋅ φ .

Consider now the case dG(u, s) > ri . Let j denote the priority of x . We first prove
the following inequality, which will allow us among other things to use the induction
hypothesis on x .

Claim 3.5.13. If dG(u, s) > ri , then h(x , j) + 2 ≤ h(u, i).

Proof. Remember that i ≤ p − 1. The assumption dG(u, s) > ri implies that dG(x , s) ≤
dG(u, s) − ri . If dG(x , s) < rj , we have

h(x , j) + 2 ≤ p + 1 − j + 2 ≤ p + 1 + 2 ≤ p + 1 + p + 1 − i

≤ (p + 1) ⌈
dG(u, s) − ri

Δ ⌉ + p + 1 − i = h(u, i) .

Here we use the inequality ⌈(dG(u, s)− rj)/Δ⌉ ≥ 1which follows from the assumption
dG(u, s) > ri .

If dG(x , s) ≥ rj , then, using rj ≥ r0 ≥ Δ, we get

h(x , j) + 2 = (p + 1) ⌈
dG(x , s) − rj

Δ ⌉ + p + 1 − j + 2

≤ (p + 1) ⌈
dG(x , s) − Δ

Δ ⌉ + p + 1 + 2

= (p + 1) ⌈
dG(x , s)

Δ
− 1⌉ + p + 1 + 2

= (p + 1) (⌈
dG(x , s)

Δ ⌉ − 1) + p + 1 + 2

= (p + 1) ⌈
dG(x , s)

Δ ⌉ + 2

≤ (p + 1) ⌈
dG(x , s)

Δ ⌉ + p + 1 − i

≤ (p + 1) ⌈
dG(u, s) − ri

Δ ⌉ + p + 1 − i

≤ (p + 1) ⌈
max(dG(u, s) − ri , 0)

Δ ⌉ + p + 1 − i = h(u, i) .

Here the last inequality follows from dG(u, s) − ri ≤ max(dG(u, s) − ri , 0), a trivial
observation.

110 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Having proved this claim, we go on with the proof of the lemma. We will now
show that

ℓ(x) + wH″(v , x) + wH″(u, v) ≤
(α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ

φ
(3.2)

as follows. If dG(u, s) > ri , then we have dG(u, x) ≥ ri by the choice of x . Remember
that the edge (v , x) lies on a shortest path from u to s in G. It is therefore contained
in G since before the first deletion and thus will never be stretched. We also may
apply the induction hypothesis on x since

dG(x , s) = dG(u, s) − dG(u, x) ≤ dG(u, s) − ri ≤ D + ∑
0≤i′≤i−1

si′ − ri ≤ D

due to ∑0≤i′≤i−1 si′ ≤ ri by the definition of ri . Therefore we get

(ℓ(x) + wH″(v , x) + wH″(u, v)) ⋅ φ
≤ δ(s, x) + wH″(v , x) ⋅ φ + wH″(u, v) ⋅ φ (definition of δ(s, x))

= δ(s, x) + wH ′(v , x) + wH ′(u, v) (definition of H ′)

≤ δ(s, x) + wH (v , x) + φ + wH (u, v) + φ (property of wH ′)

≤ δ(s, x) + wG(v , x) + φ + wF (u, v) + φ ((v , x) ∈ E and (u, v) ∈ F)

≤ (α + ϵ)dG(x , s) + γj + h(x , j) ⋅ φ + wG(v , x) + φ + wF (u, v) + φ (induction hypothesis)

= (α + ϵ)dG(x , s) + γj + wF (u, v) + wG(v , x) + (h(x , j) + 2) ⋅ φ (rearranging terms)

≤ (α + ϵ)dG(x , s) + γj + wF (u, v) + wG(v , x) + h(u, i) ⋅ φ (Claim 3.5.13)

≤ (α + ϵ)dG(x , s) + γ0 + wF (u, v) + wG(v , x) + h(u, i) ⋅ φ (γj ≤ γ0)

≤ (α + ϵ)dG(x , s) + γ0 + αdG(u, v) + β + wG(v , x) + h(u, i) ⋅ φ (by Inequality (3.1))

= (α + ϵ)dG(x , s) + γ0 + αdG(u, v) + β + dG(v , x) + h(u, i) ⋅ φ ((v , x) on shortest path)

≤ (α + ϵ)dG(x , s) + γ0 + αdG(u, v) + β + αdG(v , x) + h(u, i) ⋅ φ (α ≥ 1)

= (α + ϵ)dG(x , s) + α(dG(u, v) + dG(v , x)) + β + γ0 + h(u, i) ⋅ φ (rearranging terms)

= (α + ϵ)dG(x , s) + αdG(u, x) + β + γ0 + h(u, i) ⋅ φ (v on shortest path)

= (α + ϵ)dG(x , s) + αdG(u, x) + β + γ0 − γi + γi + h(u, i) ⋅ φ (rearranging terms)

= (α + ϵ)dG(x , s) + αdG(u, x) + ϵri + γi + h(u, i) ⋅ φ (by Lemma 3.5.3)

≤ (α + ϵ)dG(x , s) + αdG(u, x) + ϵdG(u, x) + γi + h(u, i) ⋅ φ (dG(u, x) ≥ ri)

= (α + ϵ)(dG(u, x) + dG(x , s)) + γi + h(u, i) ⋅ φ (rearranging terms)

= (α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ (x on shortest path) .

By Lemma 3.5.12 we have h(u, i) ⋅ φ ≤ ϵdG(u, s) + 2ϵΔ and thus Inequality (3.2)

3.5. FROM APPROXIMATE BALLS TO APPROXIMATE SSSP 111

implies that

ℓ(x) + wH″(v , x) + wH″(u, v) ≤
(α + 2ϵ)dG(u, s) + γi + 2ϵΔ

φ

≤
(α + 2ϵ) (D + ∑0≤i′≤i−1 si′) + γi + 2ϵΔ

φ

≤
(α + 2ϵ)D + (α + 1 + ϵ) (∑0≤i′≤i−1 wi′) + γi + 2ϵΔ

φ

≤
(α + 2ϵ)D + γi + 2ϵΔ

φ

=
(α + 2ϵ)D + γ

φ

≤
(α + 2ϵ)D

φ
+ (p + 1)n1/p = L .

As themaximum level in themonotone ES-tree is L and the edge (v , x) is not stretched,
it follows from Lemma 3.5.10 that ℓ(v) ≤ ℓ(x)+wH″(v , x) and since u is not stretched,
we have

ℓ(u) ≤ ℓ(v) + wH″(u, v) ≤ ℓ(x) + wH″(v , x) + wH″(u, v) .

and thus

δ(s, u) = ℓ(u) ⋅ φ ≤ (ℓ(x) +wH″(v , x) +wH″(u, v)) ⋅ φ ≤ (α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ

Case 2: v ∉ B(u)
By Property B2 we know that there is some node v′ of priority j′ > i such that

u ∈ B(v′) and dG(u, v′) ≤ s(dG(u, v), j′ − i). By Lemma 3.5.8 we therefore have

dG(u, v′) ≤ s(ri , j′ − i) ≤ s(rj′−1, j′ − 1) = sj′−1 .

From the definition of F and Property B1 it now follows that F contains the edge
(u, v′) of weight

dG(u, v′) ≤ wF (u, v′) = ̂δ(u, v′) ≤ αdG(u, v′) + β ≤ αsj′−1 + β = wj′−1

Since j′ ≤ p − 1 we have wj′−1 ≤ wp−2 ≤ rp−1. As rp−1 ≤ n1/pΔ, by Lemma 3.5.7, we
conclude that the edge (u, v′) is contained H and thus also in H ′ and H″.

We first prove the following inequality, which will allow us among other things
to use the induction hypothesis on x .

Claim 3.5.14. h(v′, j′) + 1 ≤ h(u, i)

Proof. Remember that j′ ≥ i + 1. If dG(v′, s) < rj′ , we get

h(v′, j′) + 1 ≤ p + 1 − j′ + 1 ≤ p + 1 − i ≤ h(u, i) .

112 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

If dG(v′, s) ≥ rj′ , then we use the inequality ri + sj′−1 ≤ rj′ (which easily follows
from the definition of rj′) and get

h(v′, j′) + 1 = (p + 1) ⌈
dG(v′, s) − rj′

Δ ⌉ + p + 1 − j′ + 1

≤ (p + 1) ⌈
dG(v′, s) − rj′

Δ ⌉ + p + 1 − i − 1 + 1

≤ (p + 1) ⌈
dG(u, s) + dG(v′, u) − rj′

Δ ⌉ + p + 1 − i

≤ (p + 1) ⌈
dG(u, s) + sj′−1 − rj′

Δ ⌉ + p + 1 − i

≤ (p + 1) ⌈
dG(u, s) − ri

Δ ⌉ + p − i

≤ (p + 1) ⌈
max(dG(u, s) − ri , 0)

Δ ⌉ + p + 1 − i = h(u, i) .

Having proved this claim, we go on with the proof of the lemma. Note that we
may apply the induction hypothesis on v′ because by the triangle inequality we
have

dG(v′, s) ≤ dG(u, s) + dG(v′, u) ≤ D + ∑
0≤i′≤i−1

si′ + dG(v′, u)

≤ D + ∑
0≤i′≤i−1

si′ + sj′−1 ≤ D + ∑
0≤i′≤j′−1

si′ .

We will now show that

ℓ(v′) + wH″(u, v′) ≤
(α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ

φ
(3.3)

as follows:

(ℓ(v′) + wH″(u, v′)) ⋅ φ (u not stretched)

= δ(v′, s) + wH″(u, v′) ⋅ φ (definition of δ(v′, s))

= δ(v′, s) + wH ′(u, v′) (definition of H″)

≤ δ(v′, s) + wH (u, v′) + φ (property of wH ′(u, v′))

≤ δ(v′, s) + wF (u, v′) + φ (definition of H)

≤ (α + ϵ)dG(v′, s) + γj′ + h(v′, j′) ⋅ φ + wF (u, v′) + φ (induction hypothesis)

= (α + ϵ)dG(v′, s) + γj′ + wF (u, v′) + (h(v′, j′) + 1) ⋅ φ (rearranging terms)

≤ (α + ϵ)dG(v′, s) + γj′ + wF (u, v′) + h(u, i) ⋅ φ (Claim 3.5.14)

≤ (α + ϵ)(dG(v′, u) + dG(u, s)) + γj′ + wF (u, v′) + h(u, i) ⋅ φ (triangle inequality)

3.6. PUTTING EVERYTHING TOGETHER 113

≤ (α + ϵ)(wF (u, v′) + dG(u, s)) + γj′ + wF (u, v′) + h(u, i) ⋅ φ (by Inequality 3.5.4)

= (α + ϵ)dG(u, s) + γj′ + (α + ϵ + 1)wF (u, v′) + h(u, i) ⋅ φ (rearranging terms)

≤ (α + ϵ)dG(u, s) + γj′ + (α + ϵ + 1)wj′−1 + h(u, i) ⋅ φ (by Inequality 3.5.4)

= (α + ϵ)dG(u, s) + γj′−1 + h(u, i) ⋅ φ (definition of γj′−1)

≤ (α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ (γi ≥ γj′−1 as j′ ≥ i + 1) .

By Lemma 3.5.12 we have h(u, i) ⋅ φ ≤ ϵdG(u, s) + 2ϵΔ and thus Inequality (3.3)
implies that

ℓ(v′) + wH″(u, v′) ≤
(α + 2ϵ)dG(u, s) + γi + 2ϵΔ

φ
≤

(α + 2ϵ)D
φ

+ (p + 1)n1/p = L .

As the maximum level in the monotone ES-tree is L and u is not stretched, it follows
from Lemma 3.5.10 that ℓ(u) ≤ ℓ(v′) + wH″(u, v′) and thus

δ(s, u) = ℓ(u) ⋅ φ ≤ (ℓ(v′) + wH″(u, v′)) ⋅ φ ≤ (α + ϵ)dG(u, s) + γi + h(u, i) ⋅ φ .

3.6 Putting Everything Together

In the following we combine our results of Section 3.4 and Section 3.5 to obtain
decremental algorithms for approximate SSSP and approximate APSP.

3.6.1 Approximate SSSP

We first show how to obtain an algorithm for approximate SSSP. First, we obtain an
algorithm that provides approximate distance for all nodes that are at distance at
most R from the source, where R is some range parameter. We use a hierarchical
approach to obtain this algorithm: Given an algorithm for maintaining approximate
shortest paths, we obtain an algorithm for maintaining approximate balls, which in
turn gives us an algorithm for maintaining approximate shortest paths for a larger
range of distances than the initial algorithm. This scheme is repeated several times
and can be “started” with the (exact) ES-tree.

Lemma 3.6.1. For every R ≥ n and every 0 < ϵ ≤ 1, there is a decremental approximate
SSSP algorithm that, given a fixed source node s, maintains, for every node v , a distance
estimate δ(s, v) such that δ(s, v) ≥ dG(s, v) and if dG(s, v) ≤ R, then δ(s, v) ≤ (1 +
ϵ)dG(s, v). It has a total update time of ̃O(m1+3(log log R)/qR2/q), where

q =

⎢
⎢
⎢
⎢
⎢
⎣

√√√√√√√

⎷

⎢
⎢
⎢
⎢
⎢
⎣

√log n

√log(
8⋅43 log n

ϵ)

⎥
⎥
⎥
⎥
⎥
⎦

⎥
⎥
⎥
⎥
⎥
⎦

and, after every update in G, returns, for every node v such that δ(s, v) has changed, v
together with the new value of δ(s, v).

114 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Proof. In the proof we will use the following values. We set a = 4,

p =

⎢
⎢
⎢
⎢
⎢
⎣

√log n

√log(
8a3 log n

ϵ)

⎥
⎥
⎥
⎥
⎥
⎦

and q = ⌊√p⌋. Furthermore we set ϵ′ = ϵ/2(q − 2) and for every 0 ≤ k ≤ q − 2 we set
αk = 1 + 2kϵ′ ≤ 1 + ϵ, Δk = Rk/p , and Dk = R(k+2)/p .

The heart of our proof is the following claim which gives us decremental approx-
imate SSSP algorithms for larger and larger depths, until finally the full range R is
covered.

Claim 3.6.2. For every 0 ≤ k ≤ q − 2, there is a decremental approximate SSSP
algorithm ApproxSSSPk with the following properties:

A1 δ(s, v) ≥ dG(s, v)

A2 If dG(s, v) ≤ Dk , then δ(s, v) ≤ αkdG(s, v).

A3 The total update time of ApproxSSSPk is

Tk(m) = ̃O(2km1+k/pR2/q(log R)k/ϵ′) .

A4 After every update in G, ApproxSSSPk returns, for every node v such that δ(s, v)
has changed, v together with the new value of δ(s, v).

Proof. We prove the claim by induction on k. In the base case k = 0 we use the
(exact) ES-tree, which for distances up to D ≤ D0 has a total update time of O(mD0) =
O(mR2/q) and thus has all claimed properties

We now consider the induction step. We apply Proposition 3.4.1 to obtain a
decremental algorithm ApproxBallsk (with parameters ̂k = p and ̂ϵ = 1) that
maintains for every node u ∈ V a set of nodes Bk(u) and a distance estimate ̂δk(u, v)
for every node v ∈ B(u) such that:

B1 For every node u and every node v ∈ Bk(u) we have dG(u, v) ≤ ̂δk(u, v) ≤
αk−1dG(u, v).

B2 Let s(x , l) = a(a + 1)lx . For every node u of priority i ≤ k − 1 and every node v
such that s(dG(u, v), p − 1 − i) ≤ Dk either v ∈ B(u) or there is some node v′ of
priority j > i such that dG(u, v′) ≤ s(dG(u, v), j − i).

B3 In expectation, ∑u∈V |ℬk(u)| = ̃O(m1+1/k logDk), where ℬk(u) denotes the
set of nodes ever contained in Bk(u).

B4 The update time of ApproxBallsk is

tk(m) = ̃O
(
m1+1/p logDk + ∑

0≤i≤p−1
m1−i/p ⋅ Tk−1(m(i+1)/p) logDk + T (m)

)
.

3.6. PUTTING EVERYTHING TOGETHER 115

Note that Dk ≤ R and thus logDk ≤ log R and remember that by the induction
hypothesis we have

Tk−1(m) = ̃O(2k−1m1+(k−1)/pR2/q(log R)k−1/ϵ′) .

We now analyze m1−i/p ⋅ Tk−1(m(i+1)/p) for each 0 ≤ i ≤ p − 1. The algorithm
ApproxSSSPk−1 is run on a graph with mi = m(i+1)/p edges and ni = n nodes. Using
the parameter pi = p, it has a total update time of ̃O(m1+1/pi

i) = ̃O(m1+1/p
i). Further-

more, we have

1−i/p+((i+1)/p)⋅(1+(k−1)/p) = 1+1/p+((i+1)/p)((k−1)/p) ≤ 1+1/p+(k−1)/p = 1+k/p

Thus, m1−i/p ⋅ Tk−1(m(i+1)/p) = ̃O(2k−1m1+k/pR2/q(log R)k−1/ϵk) and since k ≥ 1 it
follows that

tk(m) = ̃O(2km1+k/pR2/q(log R)k/ϵ′) .

We now want to argue that we may apply Proposition 3.5.1 to obtain an approxi-
mate decremental SSSP algorithm ApproxSSSP′

k (with parameters p, Δk Dk , and ϵ′).
We first show that

p ≤
√log n

√log(
4a3

ϵ)

,

First note that q ≤ log n and thus ϵ′ = ϵ(2(q −2) ≥ ϵ/(2q) ≥ ϵ/(2 log n). It follows that

√log n

√log(
4a3

ϵ)

≥
√log n

√log(
8a3 log n

ϵ)

≥

⎢
⎢
⎢
⎢
⎢
⎣

√log n

√log(
8⋅43 log n

ϵ)

⎥
⎥
⎥
⎥
⎥
⎦

= p .

Note also that for all x ≥ 1 and l ≥ 1 we have

sk(x , l + 1) = (a + 1)sk(x , l) ≥ 2ask(x , l) ≥ a(αk−1 + 1 + ϵ′)αk−1s(x , l)/ϵ′ .

We therefore may apply Proposition 3.5.1 to obtain an approximate decremental
SSSP algorithm ApproxSSSP′

k (with parameters p, Dk , and ϵ′) that maintains, for
every node v ∈ V , a distance estimate δ′(s, v) such that:

A1’ δ′(s, v) ≥ dG(s, v)

A2’ If dG(s, v) ≤ Dk , then δ′(s, v) ≤ (αk + ϵ′)dG(s, v) + ϵ′n1/pΔk

A3’ The total update time of ApproxSSSP′
k is

T ′
k (m) = ̃O((αkDk/Δk + n1/p) ∑

u∈V
(m + |ℬ(u)|)/ϵ′ + tk(m, n, p, n1/pΔ)) .

A4’ After every update in G, ApproxSSSP′
k returns, for every node v such that

δ(s, v) has changed, v together with the new value of δ(s, v).

116 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

Its total update time is

Tk(m) = ̃O((αkDk/Δk + n1/p) ∑
u∈V

(m + |ℬk(u)|)/ϵ′ + tk(m, n, n1/pΔk))

Note that αk ≤ 1 + ϵ ≤ 2 and Dk/Δk = R2/q . Since q ≤ p and R ≥ n we have n1/p ≤ R2/q .
We also have ∑u∈V |ℬk(u)| = ̃O(m1+1/p log R). Therefore the total update time of
ApproxSSSP′

k is

T ′
k (m) = ̃O(m1+1/pR2/q log R/ϵ′ + 2km1+k/pR2/q(log R)k/ϵ′)

Since k ≥ 1 it follows that

Tk(m) = ̃O(2km1+k/pR2/q(log R)k/ϵ′) .

Let ApproxSSSPk denote the algorithm that internally runs ApproxSSSP′
k and

ApproxSSSPk−1 and additionally maintains, for every node v, the value δk(s, v) =
min(δ′

k(s, v), δk−1(s, v)). Since both ApproxSSSP′
k and ApproxSSSPk−1 return, after

each update in G, every node v for which δ(s, v) has changed, and the minimum can
be computed in constant time, ApproxSSSPk has the same asymptotic total update
time as ApproxSSSP′

k . It remains to show that δk(s, v) fulfills the desired approxi-
mation guarantee for every node v. Since both δ′

k(s, v) ≥ dG(s, v) and δk−1(s, v) ≥
dG(s, v) also δk(s, v) ≥ dG(s, v). Furthermore, we know that if dG(s, v) ≤ Dk , then
δ′
k(s, v) ≤ ϵn1/pΔk . Let v be a node such that dG(s, v) ≤ Dk . If dG(s, v) ≤ Dk−1, then
δk(s, v) ≤ δk−1(s, v) ≤ αk−1dG(s, v) ≤ αkdG(u, v). If dG(s, v) ≥ Dk−1, then

δk(s, v) ≤ δ′
k(s, v) ≤ (αk−1 + ϵ′)dG(s, v) + ϵ′n1/pΔk

≤ (αk−1 + ϵ′)dG(s, v) + ϵ′Dk−1

≤ (αk−1 + 2ϵ′)dG(s, v) = αkdG(s, v) .

This finishes the proof of the claim.

The lemma now follows from the claim by observing that ApproxSSSPq−2 is the
desired decremental approximate SSSP algorithm. The correctness simply follows
from Dq−2 = R. The total update time is

Tq−2(m) = ̃O(2q−2m1+(q−2)/pR2/q(log R)q−2/ϵ′) .

Remember that q = ⌊√p⌋ and thus (q − 2)/p ≤ q/p ≤ 1/√p ≤ 1/q. By the definition
of p we have (2/ϵ′)p ≤ n1/p and thus (2/ϵ′)q ≤ (2/ϵ′)p ≤ n1/p ≤ n1/q and furthermore
(log R)q ≤ (log R)p = (2p)log log R ≤ (n1/p)log log R = n(log log R)/p ≤ n(log log R)/q . It follows
that the total update time is

Tq−2(m) = ̃O(m1+3(log log R)/qR2/q) .

We can turn the algorithm above into an algorithm for the full distance range by
using the scaling technique once more.

3.6. PUTTING EVERYTHING TOGETHER 117

Theorem3.6.3. For every 0 < ϵ ≤ 1, there is a decremental approximate SSSP algorithm
that, given a fixed source node s, maintains, for every node v , a distance estimate δ(s, v)
such that dG(s, v) ≤ δ(s, v) ≤ (1 + ϵ)dG(s, v). It has constant query time and a total
update time of

O(m1+O(log5/4((log n)/ϵ)/ log1/4 n) logW) .

If 1/ϵ = O(polylog n), then the total update time is O(m1+o(1) logW).

Proof. For every 0 ≤ i ≤ ⌊log(nW)⌋ we define

φi =
ϵ2i

n
.

Let G′
i be the graph that has the same nodes and edges as G and in which every edge

weight is rounded to the next multiple of φi , i.e., every edge (u, v) in G′
i has weight

wG′
i
(u, v) = ⌈

wG(u, v)
φi ⌉ ⋅ φi

where wG(u, v) is the weight of (u, v) in G. This rounding guarantees that

wG(u, v) ≤ wGi
(u, v) ≤ wG(u, v) + φi

for every edge (u, v) of G. Furthermore we define G″
i to be the graph that has the

same nodes and edges as G′
i and in which every edge weight is scaled down by a

factor of 1/φi , i.e., every edge (u, v) in G″
i has weight

wG″
i

(u, v) =
wG′

i
(u, v)
φi

= ⌈
w(u, v)

φi ⌉ .

The algorithm is as follows: For every 0 ≤ i ≤ ⌊log(nW)⌋ we use the algorithm of
Lemma 3.6.1 on the graph G″

i with R = 4n/ϵ to maintain a distance estimate δi(s, v)
for every node v that satisfies

• δi(s, v) ≥ dG″
i

(s, v) and

• if dG″
i

(s, v) ≤ R, then δi(s, v) ≤ (1 + ϵ)dG″
i

(s, v).

We let our algorithm return the distance estimate

δ(s, v) = min
0≤i≤⌊log nW ⌋

φiδi(s, v) .

We now show that there is some 0 ≤ i ≤ ⌊log(nW)⌋ such that φiδi(s, v) ≤ (1 +
3ϵ)dG(s, v). As δ(s, v) is the minimum of all the distance estimates, this implies that
δ(s, v) ≤ (1+3ϵ)dG(s, v). In particular, we know that there is some 0 ≤ i ≤ ⌊log(nW)⌋
such that 2i ≤ dG(s, v) ≤ 2i+1 since W is the maximum edge weight and all paths
consist of at most n edges. Consider a shortest path π from v to s in G whose weight
is equal to dG(s, v). Let wG(π) and wG′

i
(π) denote the weight of the path π in G

118 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

andG′
i , respectively. Since π consists of at most n edges we havewG′

i
(π) ≤ w(π)+nφi .

Therefore we get

dG′
i
(s, v) ≤ wG′

i
(π) ≤ w(π)+nφi = dG(s, v)+ϵ2i ≤ dG(s, v)+ϵdG(s, v) = (1+ϵ)dG(s, v) .

Now observe the following:

dG″
i

(s, v) =
dG′

i
(s, v)
φi

≤
(1 + ϵ)dG(s, v)

φi
≤
2dG(s, v)

φi
=
2dG(s, v)n

ϵ2i

≤
2 ⋅ 2i+1n
ϵ2i

=
4n
ϵ

= R .

Since dG″
i

(s, v) ≤ R we get δi(s, v) ≤ (1 + ϵ)dG″
i

(s, v) by Lemma 3.6.1. Thus, we get

φiδi(s, v) ≤ φi((1 + ϵ)dG″
i

(s, v)) = (1 + ϵ)dG′
i
(s, v) ≤ (1 + ϵ)2dG(s, v)

≤ (1 + 3ϵ)dG(s, v)

as desired.
We now analyze the running time of this algorithm. By Lemma 3.6.1, for

every 0 ≤ i ≤ ⌊log (nW)⌋, maintaining δi(s, v) on G″
i for every node s takes time

̃O(m1+3(log log R)/qR2/q), where

q =

⎢
⎢
⎢
⎢
⎢
⎣

√√√√√√√

⎷

⎢
⎢
⎢
⎢
⎢
⎣

√log n

√log(
8⋅43 log n

ϵ)

⎥
⎥
⎥
⎥
⎥
⎦

⎥
⎥
⎥
⎥
⎥
⎦

By our choice of R = 4n/ϵ, the total update time for maintaining all these ⌊log (nW)⌋
distance estimates is ̃O(m1+5(log log (4n/ϵ))/q logW /ϵ), where

q =

⎢
⎢
⎢
⎢
⎢
⎣

√√√√√√√

⎷

⎢
⎢
⎢
⎢
⎢
⎣

√log n

√log(
8⋅43 log n

ϵ)

⎥
⎥
⎥
⎥
⎥
⎦

⎥
⎥
⎥
⎥
⎥
⎦

To obtain a (1 + ϵ) approximation (instead of a (1 + 3ϵ)-approximation, we simply
run the whole algorithm with ϵ′ = ϵ/3. This results in a total update time of

̃O(m1+5(log log (12n/ϵ))/q logW /ϵ), where

q =

⎢
⎢
⎢
⎢
⎢
⎣

√√√√√√√

⎷

⎢
⎢
⎢
⎢
⎢
⎣

√log n

√log(
24⋅43 log n

ϵ)

⎥
⎥
⎥
⎥
⎥
⎦

⎥
⎥
⎥
⎥
⎥
⎦

3.6. PUTTING EVERYTHING TOGETHER 119

Now observe that 1/ϵ ≤ n1/q and that

5(log log(
12n
ϵ))

q
= O

⎛
⎜
⎜
⎜
⎝

(log log(
n

ϵ)) (log(
log n
ϵ))

1/4

(log n)1/4

⎞
⎟
⎟
⎟
⎠

= O
⎛
⎜
⎜
⎜
⎝

(log(
log n
ϵ))

5/4

(log n)1/4

⎞
⎟
⎟
⎟
⎠

.

Since ̃O(1) = O(polylog n) = O(nO(log5/4((log n)) the total update time therefore is

O(m1+O(log5/4((log n)/ϵ)/ log1/4 n) logW) .

If 1/ϵ = O(polylog n), then the total update time is O(m1+log5/4 log n/ log1/4 n logW),
which is O(m1+o(1) logW) since limx→∞(log5/4 log n/ log1/4 n) = 0.

The query time of the algorithm described above is O(log(nW)) as it has to
compute δ(s, v) = min0≤i≤⌊log nW ⌋ δi(s, v)⋅φi when asked for the approximate distance
from v to s. We can reduce the query time to O(1) by using a min-heap for every
node v that stores δi(s, v) for all 0 ≤ i ≤ ⌊log(nW)⌋. This allows us to query for
δ(s, v) in constant time.

3.6.2 Approximate APSP

We now show how to use our techniques to obtain a decremental approximate
APSP algorithm. This is conceptually simple now. We simply use the approximate
SSSP algorithm from Theorem 3.6.3 and plug it into the algorithm for maintaining
approximate balls from Proposition 3.4.1. By using an adequate query procedure we
can use the distance estimates maintained for the approximate balls to return the
approximate distances between any two nodes.

Theorem 3.6.4. There is a decremental approximate APSP algorithm that upon a query
for the approximate between any pair of nodes u and v returns a distance estimate
δ(u, v) such that dG(u, v) ≤ δ(u, v) ≤ ((2 + ϵ)k − 1)dG(u, v). It has a query time of
O(kk) and a total update time of

O(m1+1/k+O(log5/4((log n)/ϵ)/ log1/4 n) log2W)

If 1/ϵ = O(polylog n), then the total update time is O(m1+o(1) log2W).

Proof. We use the approximate SSSP algorithm of Theorem 3.6.3 that provides a
(1 + ϵ)-approximation and has a total update time of

T (m, n) = O(m1+O(log5/4((log n)/ϵ)/ log1/4 n) logW)

and if 1/ϵ = O(polylog n), then the total update time is T (m, n) = O(m1+o(1) logW).
By Proposition 3.4.1 we can maintain approximate balls with a total update time of

t(m, n, k, ϵ) = ̃O
(
m1+1/k logD/ϵ + ∑

0≤i≤k−1
m1−i/k ⋅ T (mi , ni) logD/ϵ + T (m, n)

)
,

120 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

where, for each 0 ≤ i ≤ k − 1, mi = m(i+1)/k and ni = min(mi , n). Using similar ar-
guments as above we get that t(m, n, k, ϵ) = O(m1+1/k+O(log5/4((log n)/ϵ)/ log1/4 n) log2W)
and O(m1+o(1) log2W) if 1/ϵ = O(polylog n).

Additionally we maintain, for every node v ∈ V , the node ci(v) which is a node
with minimum δ(u, v) among all nodes u of priority j such that v ∈ B(u). This can
be done as follows. For every node v we maintain a heap containing all nodes u of
priority i such that v ∈ B(u) using the key δ(u, v). Every time v joins or leaves B(u)
we insert or remove u from the heap of v. Every time δ(u, v) changes, we update
the key of u in the heap of v. After each insert, remove, or update in the heap of
some node v , we find the minimal element ci(v) of the heap. As each heap operation
takes logarithmic time, the total update time of the algorithm of Proposition 3.4.1
only increases by a logarithmic factor.

Procedure 3.1: Query(u, v)
1 if v ∈ B(u) then
2 δ′(u, v) ← δ(u, v)
3 else
4 Set i to the priority of u
5 foreach j = i + 1 to k − 1 do
6 if cj(u) exists then
7 v″ ← cj(u)
8 δ′(v″, v) ← Query(v″, v)
9 δ′

j (u, v) ← δ(v , v″) + δ′(v″, v)
10 else
11 δ′

j (u, v) ← ∞

12 δ′(u, v) ← mini+1≤j≤k−1 δ′
j (u, v)

13 return δ′(u, v)

To answer a query for the approximate distance between a pair of nodes u and v
we use Procedure 3.1. This procedure first tests whether v ∈ B(u) and if yes returns
δ(u, v). Otherwise it does the following for every j ≥ i + 1, where i is the priority
of u: It first computes the node cj(u), which among the nodes v′ of priority j with
u ∈ B(v′) is the one with the minimum value of δ(v′, u). Then it recursively queries
for the approximate distance δ′(cj(u), v) from cj(u) to v and sets the distance estimate
via cj(u) to δ′

j (u, v) = δ(v , cj(u)) + δ′(cj(u), v). Finally, it returns the minimum of all
distance estimates δ′

j (u, v).
Note that in each instance there are O(k) recursive calls and with each recursive

call the priority of u increases by at least one. Thus the running time of the query
procedure is O(kk).

Claim 3.6.5. For every pair of nodes u and v the distance estimate δ′(u, v) computed
by Procedure 3.1 satisfies δ′(u, v) ≤ (((1 + ϵ)2 + 1)k−i − 1)dG(u, v), where i is the priority
of u.

3.7. CONCLUSION 121

Proof. The proof is by induction on the priority i of u. Let δ′(u, v) denote the distance
estimate returned by Procedure 3.1. If i = k − 1, then we know that v ∈ B(u) and
thus δ′(u, v) = δ(u, v) ≤ (1 + ϵ)dG(u, v). If i < k − 1 we distinguish between the two
cases v ∈ B(u) and v ∉ B(u). If v ∈ B(u), then δ′(u, v) = δ(u, v) ≤ (1 + ϵ)dG(u, v).
If v ∉ B(u), then by Proposition 3.4.1 there is a node v′ of priority j > i such that
u ∈ B(v′) and dG(u, v′) ≤ (1 + ϵ)2((1 + ϵ)2 + 1)j−i−1dG(u, v).

We will now argue that δ′
j (u, v) ≤ 2((1 + ϵ)3 + 1)k−1−i − 1)dG(u, v), which implies

the same upper bound for δ′(u, v). Set v″ ← cj(u). As both v″ and v′ have priority j
and u ∈ B(v′) as well as v ∈ B(v″) we have δ(u, v″) ≤ δ(u, v′) by the definition of v″.
Since δ(u, v′) ≤ (1 + ϵ)dG(u, v′), we have

δ(u, v″) ≤ (1 + ϵ)dG(u, v′) ≤ (1 + ϵ)3((1 + ϵ)2 + 1)j−i−1dG(u, v)
≤ (1 + ϵ)3((1 + ϵ)3 + 1)j−i−1dG(u, v) .

To simplify the presentation in the following we set a = (1 + ϵ)3 and thus have
δ(u, v″) ≤ a(a + 1)j−i−1dG(u, v). By the triangle inequality we have

dG(v″, v) ≤ dG(v″, u) + dG(u, v) ≤ δ(v″, u) + dG(u, v)
≤ (a(a + 1)j−i−1 + 1)dG(u, v)

and by the induction hypothesis we have

δ′(v″, v) ≤ (2(a + 1)k−1−j − 1)dG(v″, v)
≤ (2(a + 1)k−1−j − 1)(a(a + 1)j−i−1 + 1)dG(u, v) .

Since j ≥ i + 1 we get

δ′
j (u, v) = δ(u, v″) + δ′(v″, v)

≤ (a(a + 1)j−i−1 + (2(a + 1)k−1−j − 1)(a(a + 1)j−i−1 + 1)) dG(u, v)
= (2(a + 1)k−1−j(a(a + 1)j−i−1 + 1) − 1) dG(u, v)
= (2a(a + 1)k−1−(i+1) + 2(a + 1)k−1−j) − 1) dG(u, v)
≤ (2a(a + 1)k−1−(i+1) + 2(a + 1)k−1−(i+1)) − 1) dG(u, v)
= (2(a + 1)k−1−(i+1)(a + 1) − 1) dG(u, v)
= (2(a + 1)k−1−i − 1)dG(u, v)

Note that 2 ≤ ((1 + ϵ)3 + 1) and therefore we have δ′(u, v) ≤ (((1 + ϵ)3 +
1)k−i − 1)dG(u, v). Furthermore, (1 + ϵ)3 ≤ 1 + 7ϵ and in the worst case i = 0.
Thus, by running the whole algorithm with ϵ′ = ϵ/7, we can guarantee that
δ′(u, v) ≤ ((2 + ϵ)k − 1)dG(u, v).

3.7 Conclusion

In this chapter, we showed that single-source shortest paths in undirected graphs can
be maintained under edge deletions with near-linear total update time and constant

122 CHAPTER 3. DECREMENTAL SSSP ON UNDIRECTED GRAPHS

query time. The main approach is to maintain an (no(1), ϵ)-hop set of near-linear
size in near-linear time. We leave two major open problems. The first problem is
whether the same total update time can be achieved for directed graphs. This problem
is very challenging because such a hop set is not known even in the static setting.
Moreover, improving the current ̃O(mn9/10+o(1)) total update time of Chapter 4 for the
decremental reachability problem is already very interesting. The second major open
problem is to derandomize our algorithm. The major task here is to deterministically
maintain the priorities and corresponding balls of the nodes, which is the key to
maintaining the hop set. A related question is whether the algorithm of Roditty and
Zwick [113] for decrementally maintaining the original distance oracle of Thorup
and Zwick (and the corresponding spanners and emulators) can be derandomized.
(Note however that the distance oracle of Thorup and Zwick can be constructed
deterministically in the static setting [110].)

CHAPTER 4
Sublinear-Time Decremental
Algorithms for Single-Source

Reachability and Shortest Paths
on Directed Graphs

We consider dynamic algorithms for maintaining Single-Source Reachability (SSR)
and approximate Single-Source Shortest Paths (SSSP) on n-node m-edge directed
graphs under edge deletions (decremental algorithms). The previous fastest algorithm
for SSR and SSSP goes back three decades to Even and Shiloach [49]; it has O(1)
query time andO(mn) total update time (i.e., linear amortized update time if all edges
are deleted). This algorithm serves as a building block for several other dynamic
algorithms. The question whether its total update time can be improved is a major,
long standing, open problem.

In this chapter, we answer this question affirmatively. We obtain a randomized
algorithm with an expected total update time of O(min(m7/6n2/3+o(1),m3/4n5/4+o(1))) =
O(mn9/10+o(1)) for SSR and (1 + ϵ)-approximate SSSP if the edge weights are integers
from 1 to W ≤ 2log

c n and ϵ ≥ 1/ logc n for some constant c. We also extend our
algorithm to achieve roughly the same running time for Strongly Connected Com-
ponents (SCC), improving the algorithm of Roditty and Zwick [114]. Our algorithm
is most efficient for sparse and dense graphs. When m = Θ(n) its running time
is O(n1+5/6+o(1)) and when m = Θ(n2) its running time is O(n2+3/4+o(1)). For SSR
we also obtain an algorithm that is faster for dense graphs and has a total update
time of O(m2/3n4/3+o(1) +m3/7n12/7+o(1)) which is O(n2+2/3) when m = Θ(n2). All our
algorithms have constant query time in the worst case and are correct with high
probability against an oblivious adversary.

123

124 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

4.1 Introduction

Dynamic graph algorithms are data structures that maintain a property of a dynami-
cally changing graph, supporting both update and query operations on the graph. In
undirected graphs fundamental properties such as the connected, 2-edge connected,
and 2-vertex connected components as well as a minimum spanning forest can be
maintained very quickly, i.e., in polylogarithmic time per operation ([58, 71, 77, 122]),
where an operation is either an edge insertion, an edge deletion, or a query. Some of
these properties, such as connectivity, can even be maintained in polylogarithmic
worst-case time. More general problems, such as maintaining distances, also admit
sublinear amortized time per operation as long as only edge deletions are allowed [63,
64].

These problems when considered on directed graphs, however, become much
harder. Consider, for example, a counterpart of the connectivity problem where
we want to know whether there is a directed path from a node u to a node v, i.e.,
whether u can reach v. In fact, consider a very special case where we want to
maintain whether a fixed node s can reach any node v under edge deletions only. This
problem is called single-source reachability (SSR) in the decremental setting. It is one
of the simplest, oldest, yet most useful dynamic graph problems. It is a special case
of and was used as a subroutine for solving many dynamic graph problems, such as
single-source shortest paths (SSSP), all-pairs shortest paths, and strongly connected
components (SCC). Yet, no algorithm with sublinear update time was known for
this problem.

Related Work The previously fastest decremental SSR algorithm was published
in 1981 and takes O(mn) total update time [49]1, i.e., linear time (O(n) time) per
update if we delete all m edges; here, n and m are the number of nodes and edges,
respectively. For directed acyclic graphs, Italiano [74] gave a decremental algorithm
with a total update time of O(m). For the incremental version of the problem, where
we only allow insertions of edges, a total update time of O(m) is sufficient in general
directed graphs [72]. For the fully dynamic version of the problem, where both
insertions and deletions of edges are allowed, Sankowski obtained an algorithm with
a worst-case running time of O(n1.575) per update, resulting in a total update time of
O(Δn1.575), where Δ is the number of updates.2

King [79] showed how to extend the algorithm of Even and Shiloach to weighted
graphs, giving the first decremental single-source shortest path algorithm with total
update time O(mnW), where W is the maximum edge weight (and all edge weights
are positive integers)3. Using a scaling technique [22, 23, 95] this can be turned

1It was actually published for undirected graphs and it was observed by Henzinger and King [61]
that it can be easily adapted to work for directed graphs.

2Sankowski’s worst-case update time for the fully dynamic single-source single-sink reachability
(stR) problem is O(n1.495).

3The total update time is actually O(md), where d is the maximum distance, which could be
Θ(nW).

4.1. INTRODUCTION 125

into a (1 + ϵ)-approximate single-source shortest paths algorithm with total update
time ̃O(mn logW), where the ̃O(⋅) notation hides factors polylogarithmic in n. The
situation is similar for decremental strongly connected components: The fastest
decremental SCC algorithms take total update time O(mn) ([90, 109, 114]). Thus
many researchers in the field have asked whether the O(mn) total update time for
the decremental setting can be improved upon for these problems while keeping the
query time constant or polylogarithmic [80, 90, 114].

Our Results We improve the previous O(mn)-time algorithms for decremental
SSR, approximate SSSP, and SCC in directed graphs. We also give algorithms for
s-t reachability (stR), where we want to maintain whether the node s can reach
the node t , and approximate s-t shortest path (stSP) where we want to maintain
the distance from s to t . We summarize our results in the following theorem. In
Figure 4.1 we compare the running times of our new algorithms with the previous
solution using Even and Shiloach for different densities of the graph.

Theorem 4.1.1. There exist decremental algorithms for reachability and shortest path
problems in directed graphs with the following expected total update times.

• SSR and SCC: ̃O(min(m7/6n2/3,m3/4n5/4+o(1),m2/3n4/3+o(1) + m3/7n12/7+o(1))) =
O(mn9/10+o(1)).

• stR: ̃O(min(m5/4n1/2,m2/3n4/3+o(1)) = O(mn6/7+o(1)).

• (1 + ϵ)-approximate SSSP: O(min(m7/6n2/3+o(1),m3/4n5/4+o(1))) = O(mn9/10+o(1)).

• (1 + ϵ)-approximate stSP: O(min(m5/4n1/2+o(1),m2/3n4/3+o(1)) = O(mn6/7+o(1)).

The algorithms are correct with high probability against an oblivious adversary and have
constant query time. Our algorithms can maintain (1 + ϵ)-approximate shortest paths
in integer-weighted graphs with largest edge weight W if W ≤ 2log

c n and ϵ ≥ 1/ logc n
for some constant c.

Discussion Our main result are dynamic algorithms with constant query time
and sublinear update time for single source reachability and (1 + ϵ)-approximate
single source shortest paths in directed graphs undergoing edge deletions. There is
some evidence that it is hard to generalize our results in the following ways.

• (All pairs vs. single source) The naive algorithm for computing all-pairs reacha-
bility (also called transitive closure) in a directed graph takes time O(mn) even
in the static setting. To date no combinatorial algorithm (not relying on fast
matrix multiplication) is known that gives a polynomial improvement over
this running time. Thus, unless there is a major breakthrough for static transi-
tive closure, we cannot hope for a combinatorial algorithm for decremental
all-pairs reachability with a total update time of o(mn) and small query time.

126 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 1.2 1.4 1.6 1.8 2

Ru
nn

in
g
tim

e
β

Graph density α

Comparison of running times

Even-Shiloach (SSSP and SSR)
(1 + ϵ)-approximate SSSP
(1 + ϵ)-approximate stSP

SSR

Figure 4.1: Running times of our decremental reachability and approximate shortest
paths algorithms as a function of the density of the initial graph in comparison to
the Even-Shiloach algorithm with total update time O(mn). A point (α , β) in this
diagram means that for a graph with m = Θ(nα) the algorithm has a running time of
O(nβ+o(1)).

• (Amortized update time) The total update time of our single-source reachabil-
ity algorithms is o(mn) which gives an amortized update time of o(n) over
a sequence of Ω(m) deletions. It recently has been shown by Abboud and
VassilevskaWilliams [1] that a combinatorial algorithmwithworst-case update
time and query time of o(n2) per deletion implies a faster combinatorial algo-
rithm for Boolean matrix multiplication and, as has been shown by Vassilevska
Williams and Williams [128], for other problems as well. Furthermore, for the
more general problem of maintaining the number of reachable nodes from a
source under deletions (which our algorithms can do) worst-case update and
query times of both o(m) falsifies the strong exponential time hypothesis. It
might therefore not be possible to deamortize our algorithms.

• (Approximate vs. exact) Our SSSP algorithms only provide approximate so-
lutions. It has been observed by Roditty and Zwick [115] that any exact
combinatorial SSSP algorithm handling edge deletions that has a total up-
date time of o(mn) and small query time implies a faster combinatorial for
Boolean matrix multiplication. After the preliminary version [68] of this work
appeared, Henzinger et al. [70] showed that O(mn) is essentially the best pos-

4.2. PRELIMINARIES 127

sible total update time for maintaining exact distances under the assumption
that there is no “truly subcubic” algorithm for a problem called online Boolean
matrix-vector multiplication. Both of these hardness results apply even for
unweighted undirected graphs. Thus, approximation might be necessary to
break the O(mn) barrier.

Organization We first introduce the notation and basic concepts shared by all
our algorithms in Section 4.2. To provide some intuition for our approach we
sketch two basic s-t reachability algorithms in Section 4.2.3. We give the reductions
for extending our results to SSSP (and SSR) and SCC in Sections 4.2.4 and 4.2.5,
respectively. In Section 4.3 we give a hierarchical s-t reachability algorithm, which
in turn gives algorithms for SSR and SCC. In Section 4.4 we extend this idea to
(1 + ϵ)-approximate stSP and SSSP. Finally, in Section 4.5 we give an SSR algorithm
with improved total update time for dense graphs. We conclude this chapter by
discussing open problems.

4.2 Preliminaries

4.2.1 Problem Description

We are given a directed graph G that might be weighted or unweighted. The graph
undergoes a sequence of updates in the form of edge deletions, i.e., its set of edges
shrinks over time (whereas its set of nodes remains the same). This is called the
decremental setting. We say that a node v is reachable from u (or u can reach v) if
there is a path from u to v in G. The distance dG(x , y) of a node x to a node y in G is
the weight of the shortest path, i.e., the minimum-weight path, from x to y in G. If
there is no path from x to y in G we set dG(x , y) = ∞.

Our goal is to design efficient dynamic algorithms for the following problems.

Definition 4.2.1 (Single-source single-sink reachability). A decremental single-
source reachability (stR) algorithm for a directed graph G undergoing edge deletions,
a source node s, and a sink node t maintains the information whether s can reach t . It
supports the following operations:

• Delete(u, v): Delete the edge (u, v) from G.

• Query(): Return ‘yes’ if s can reach t and ‘no’ otherwise.

Definition 4.2.2 (Single-source reachability). A decremental single-source reacha-
bility (SSR) algorithm for a directed graph G undergoing edge deletions and a source
node s maintains the set of nodes reachable from s in G. It supports the following
operations:

• Delete(u, v): Delete the edge (u, v) from G.

• Query(v): Return ‘yes’ if s can reach v and ‘no’ otherwise.

128 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Definition 4.2.3 (Strongly connected components). A decremental strongly con-
nected components (SCC) algorithm for a directed graph G undergoing edge deletions
maintains a set of IDs of the strongly connected components of G and, for every node v ,
the ID of the strongly connected component that contains v . It supports the following
operations:

• Delete(u, v): Delete the edge (u, v) from G.

• Query(v): Return the ID of the strongly connected component that contains v .

Definition 4.2.4 (α-approximate stSP). A decremental α-approximate single-source
single-sink shortest path (stSP) algorithm for a weighted directed graph G undergoing
edge deletions, a source node s, and a sink node t maintains a distance estimate δ(s, t)
such that dG(s, t) ≤ δ(s, t) ≤ αdG(s, t). It supports the following operations:

• Delete(u, v): Delete the edge (u, v) from G.

• Query(): Return the α-approximate distance estimate δ(s, t).

Definition 4.2.5 (α-approximate SSSP). A decremental α-approximate single-source
shortest paths (SSSP) algorithm for a weighted directed graph G undergoing edge
deletions and edge weight increases and a source node s maintains, for every node v,
a distance estimate δ(s, v) such that dG(s, v) ≤ δ(s, v) ≤ αdG(s, v). It supports the
following operations:

• Delete(u, v): Delete the edge (u, v) from G.

• Query(v): Return the α-approximate distance estimate δ(s, v).

The algorithms we design will have constant query time and we will compare
them by their total update time over all deletions. They are randomized and will
be correct with high probability (whp) against an oblivious adversary. We assume
that arithmetic operations on integers can be performed in constant time. The total
update times we state are in expectation. We use ̃O-notation to hide logarithmic
factors, i.e., we write ̃O(t(m, n,W)) as an abbreviation for ̃O(t(m, n,W) logc n) when
c is a constant. Similarly, we use the notation ̂O(t(m, n)) as an abbreviation for
O(t(m, n) ⋅ no(1)). The approximation factors we obtain will be of the form α = 1 + ϵ
such that 0 < ϵ ≤ 1. In this chapter we assume that ϵ ≥ 1/ logc n for some constant c.

4.2.2 Definitions and Basic Properties

In the following introduce the notation and the basic concepts shared by all our
algorithms.

Let G = (V , E) be a weighted directed graph, where V is the set of nodes of G
and E is the set of edges of G. We denote by n the number of nodes of G and by m
the number of edges of G before the first edge deletion. We denote the weight of an
edge (u, v) in G by wG(u, v). In the weighted case we consider positive integer edge

4.2. PRELIMINARIES 129

weights and denote the maximum edge weight by W . We assume that W ≤ 2log
c n

for some constant c. In unweighted graphs we think of every edge weight as equal
to 1. For every path π = ⟨v0, v2, … , vk⟩ we denote its weight in G by w(π ,G) =
∑0≤i≤k−1 wG(vi , vi+1) and its number of edges (also called hops) by |π| = k. We say
that the length of a path is its weight, but, to avoid ambiguity, we reserve this notion
for unweighted graphs where the length of a path is equal to its number of edges. For
every integer h ≥ 1 and all nodes x and y in a directed graph G, the h-hops distance
dhG(x , y) is the minimum weight of all paths from x to y in G consisting of at most h
edges. Note that dG(u, v) = dnG(u, v). For every graph G = (V , E) and every subset
of nodes U ⊆ V , G|U = (U , E ∩ U 2) is the subgraph of G induced by U . We set the
weight of every edge in G|U equal to its weight in G. We denote by E(U) = E ∩ U 2

the set of edges of G|U . For sets of nodes S ⊆ V and T ⊆ V we let E(S, T) denote
the set of edges (u, v) ∈ E such that u ∈ S and v ∈ T , i.e., E(S, T) = E ∩ (S × T).

We now introduce the main new concept used by our algorithms, the path union
of a pair of nodes.

Definition 4.2.6. For every directed graph G, every D ≥ 1, and all pairs of nodes x
and y of G, the path union 𝒫 (x , y ,D,G) ⊆ V is the set containing all nodes that lie on
some path π from x to y in G of weigh wG(π) ≤ D.

Note that if the shortest path from x to y in G has weight at most D, then the
subgraph of G induced by the path union 𝒫 (x , y,D,G) contains this shortest path.
Thus, instead of finding this shortest path in G directly we can also find it in this
potentially smaller subgraph of G. In our algorithms we will be able to bound the
number of the path union subgraphs, which makes them very useful. Observe that
for a fixed value of D, the path union can be computed in nearly linear time.

Lemma 4.2.7. For every directed graph G, every D ≥ 1 and all pairs of nodes x and y
of G, we have 𝒫 (x , y ,D,G) = {v ∈ V ∣ dG(x , v) + dG(v , y) ≤ D}. We can compute this
set in time ̃O(m) in weighted graphs and O(m) in unweighted graphs, respectively.

Proof. Clearly, if dG(x , v) + dG(v , y) ≤ D, then the concatenation of the shortest path
from x to v and the shortest path from v to y is a path from x to y of weight at
most D and thus v ∈ 𝒫 (x , y,D,G). Conversely, if v ∈ 𝒫 (x , y,D,G), then there is a
shortest path π from x to y containing v of weight at most D. Let π1 and π2 be the
subpaths of π from x to v and from v to y, respectively. Then dG(x , v) + dG(v , y) ≤
wG(π1) + wG(π2) = wG(π) ≤ D.

Using Dijkstras algorithmwe compute dG(x , v) and dG(v , y) for every node v ∈ V
in time ̃O(m). Afterwards, we iterate over all nodes and check for every node v
whether dG(x , v) + dG(v, y) ≤ D in total time O(n). In unweighted graphs we can
compute dG(x , v) and dG(v, y) for every node v ∈ V in time O(m) by performing
breadth-first search (BFS).

Observe that path unions are monotone in the decremental setting, i.e., the path
union can only shrink under deletions in the graph for a fixed value of D. This means

130 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

that once we have computed the path union we can also use it for future versions of
the graph, as long as we do not want to consider larger weights of the paths.

Lemma 4.2.8. Let G be a directed graph and let G′ be the result of deleting some edges
from G. Then for every D ≥ 1 and all pairs of nodes x and y of G, 𝒫 (x , y, h,G′) ⊆
G|𝒫 (x , y , h,G).

Proof. Let v ∈ 𝒫 (x , y, h,G′), i.e., there is a path π from x to y in G′ of weight at
most D. All edges of π are also contained in G and thus there is a path from x
to y in G′ of weight wG(π) = wG′(π) ≤ D. Thus, every node of π is contained
in 𝒫 (x , y, h,G) which implies that all edges of π are contained in G|𝒫 (x , y, h,G).
Therefore wG|𝒫 (x ,y,h,G)(π) = wG(π) ≤ D and thus every node on π , and in particular
v , is contained in G|𝒫 (x , y, h,G).

The last property of path unions we will use repeatedly is that we can update
them by “computing the path union of the path union”. This rebuilding of path
unions will be useful later to restrict the overlap of path unions of different pairs of
nodes.

Lemma 4.2.9. For every directed graph G, every D ≥ 1, every pair of nodes x and y,
and every set of nodes Q such that 𝒫 (x , y ,D,G) ⊆ Q ⊆ V we have 𝒫 (x , y ,D,G|Q) =
𝒫 (x , y ,D,G).

Proof. Let v ∈ 𝒫 (x , y,D,G|Q), which means that v lies on a path π from x to y of
weight at most D. As G|Q is a subgraph of G, this path is also contained in G (with
the same weight) and thus v ∈ 𝒫 (x , y,D,G).

Now let v ∈ 𝒫 (x , y,D,G), which means that v lies on a path π from x to y
of weight at most D. By the assumption 𝒫 (x , y,D,G) ⊆ Q every node v′ of π is
contained inQ and thus π is contained inG|Q (and has the sameweight as inG). As v
lies on a path from x to y of weight at most D in G, we have v ∈ 𝒫 (x , y ,D,G|Q).

4.2.3 Algorithm Overview for s-t Reachability

In this section, we illustrate our main ideas by giving simple algorithms for the
s-t reachability problem (stR). At the heart of all our algorithms is a new way of
maintaining reachability or distances between some nearby pairs of nodes using
small path unions.

Decremental Bounded-Hop Multi-Pair Reachability

We first give an algorithm for solving the following “restricted” reachability problem:
We are given k pairs of sources and sinks (s1, t1), …, (sk , tk) and a parameter h. We
want to maintain, for each 1 ≤ i ≤ k, whether dG(si , ti) ≤ h.

In this algorithm we use the following set B ⊆ V of hubs of size ̃O(b) (for
some parameter b). Let U ⊆ V be a set of nodes obtained by sampling each node
independently with probability ab ln n/n and let F ⊆ E be a set of edges obtained by

4.2. PRELIMINARIES 131

sampling each edge independently with probability ab ln n/m from the initial graph
(for a large enough constant a). We let B be the set containing U and the endpoints
of every edge in F . For every pair of nodes u and v we define the hub-distance from
u to v as dB(u, v) = minx∈B dG(u, x) + dG(x , v).

The hubs are useful in combination with the path unions in the following
way. Intuitively, instead of maintaining whether dG(si , ti) ≤ h, we can maintain
whether dG|𝒫 (si ,ti ,h,G)(si , ti) ≤ h since G|𝒫 (si , ti , h,G) (the subgraph of G induced by
𝒫 (si , ti , h,G)) contains all si-ti paths of length at most h in G. This could be helpful
when 𝒫 (si , ti , h,G) is much smaller than V . Our first key idea is the observation that
all (si , ti) pairs with large 𝒫 (si , ti , h,G) can use their paths through a small number
of hubs to check whether dG|Q(si ,ti)(si , ti) ≤ h (thus the name “hub”). In particular,
consider the following algorithm. We maintain the distance from each si to each ti
in two ways.

1. Maintain dB(si , ti), for each 1 ≤ i ≤ k, as long as dB(si , ti) ≤ h.

2. Once dB(si , ti) > h, constructQ(si , ti) = 𝒫 (si , ti , h,G) andmaintain dG|Q(si ,ti)(si , ti)
up to value h.

Our outputs dG(si , ti) ≤ h if and only if either dB(si , ti) ≤ h or dG|Q(si ,ti)(si , ti) ≤ h. The
correctness is obvious: either dB(si , ti) ≤ h which already implies that dG(si , ti) ≤ h
or otherwise we maintain dG|Q(si ,ti)(si , ti) which captures all h-hop si-ti paths. The
more important point is the efficiency of maintaining both distances. Our analysis
mainly uses the following lemma.

Lemma 4.2.10 (Either hub-distance or path-union graph is small). With high proba-
bility, for each i, either dB(si , ti) ≤ h, or G|𝒫 (si , ti , h,G) has at most min(m/b, n2/b2)
edges.

Proof Sketch. By the random sampling of the hubs, if G|𝒫 (si , ti , h,G) has more than
n/b nodes, then one of these nodes, say x , will have been sampled by the algorithm
and thus contained in B whp (Lemma 1.3.2). By definition, x lies on some si-ti
path of length at most h. Thus, dB(si , ti) ≤ dG(si , x) + dG(x , ti) ≤ h. Similarly, if
G|𝒫 (si , ti , h,G) has more than m/b edges, then one of these edges, say (x , y), will
have been sampled by the algorithm whp. This means that x will be contained in B,
and thus dB(si , ti) ≤ dG(si , x)+dG(x , ti) ≤ h. As the number of edges ofG|𝒫 (si , ti , h,G)
can be at most |𝒫 (si , ti , h,G)|2, the stated bound follows.

Lemma 4.2.10 guarantees that when we constructQ(si , ti), its induced subgraph is
much smaller thanG whp, and so it is beneficial to maintain the distance inG|Q(si , ti)
instead ofG. For each 1 ≤ i ≤ k, we canmaintain dG|Q(si ,ti)(si , ti) by running an ES-tree
rooted at si up to distance h in G|Q(si , ti), which takes time ̃O(|E(Q(si , ti))|h) (where
E(Q(si , ti)) denotes the set of edges of G|Q(si , ti)). As |E(Q(si , ti))| ≤ min(m/b, n2/b2)
this takes timeO(khmin(m/b, n2/b2)). By Lemma 4.2.7 we can construct eachQ(si , ti)
in O(m) time for each 1 ≤ i ≤ k, resulting in a total cost of O(km) for computing the

132 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

path unions. Finally, the time needed for maintain the hub distances can be analyzed
as follows.

Lemma 4.2.11 (Maintaining all dB(si , ti)). We can maintain whether dB(si , ti) ≤ h, for
all 1 ≤ i ≤ k, in total time ̃O(bmh + kbh).

Proof Sketch. For each hub v ∈ B, we maintain the values of dG(si , v) and dG(v, ti)
up to h using ES-trees up to distance h rooted at each hub. This takes ̃O(bmh) total
update time. Every time dG(si , v) or dG(v , ti) changes, for some hub v ∈ B and some
1 ≤ i ≤ k, we update the value of dG(si , ti) = minv∈B dG(si , v) + dG(v, ti), incurring

̃O(b) time. Since the value of each of dG(si , v) and dG(v, ti) can change at most h
times, we need ̃O(kbh) time in total.

It follows that we can maintain, for all 1 ≤ i ≤ k, whether dG(si , ti) ≤ h with a
total update time of

̃O(bmh + kbh⏟⏟⏟⏟⏟⏟⏟
maintain dB(si , ti)
(Lemma 4.2.11)

+ km⏟
construct Q(si , ti)

+ kh ⋅ min(m/b, n2/b2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
maintain dG|Q(si ,ti)(si , ti)

) . (4.1)

Note that, previously, the fastest way of maintaining, for all 1 ≤ i ≤ k, whether
dG(si , ti) ≤ h was to maintain an ES-tree separately for each pair. This takes O(mhk)
time.

Decremental s-t reachability in Dense Graphs

In the following we are given a source node s and a sink node t and want to maintain
whether s can reach t . In our algorithm we use a set of centers C ⊆ V of size ̃O(c) (for
some parameter c) obtained by sampling each node independently with probability
ac ln n/n (for some large enough constant a). Using these centers, we define the
center graph, denoted by 𝒞 , as follows. The nodes of 𝒞 are the centers in C and for
every pair of centers u and v in C , there is a directed edge (u, v) in 𝒞 if and only if
dG(u, v) ≤ n/c.

Lemma 4.2.12 (𝒞 preserves s-t reachability). Whp, s can reach t in G if and only if
s can reach t in 𝒞 .

Proof Sketch. Since we can convert any path in 𝒞 to a path in G, the “if” part is
clear. To prove the “only if” part, let π be an s-t path in G. By the random sampling
of centers, there is a set of centers c1, c2, … , ck on π such that c1 = s, ck = t , and
dG(ci , ci+1) ≤ n/c for all i whp (Lemma 1.3.2). The last property implies that the edge
(ci , ci+1) is contained in 𝒞 for all i. Thus s can reach t in 𝒞 .

Lemma 4.2.12 implies that to maintain s-t reachability in 𝒞 it is sufficient to
maintain the edges of 𝒞 and to maintain s-t reachability in 𝒞 . To maintain the edges
of 𝒞 , we simply have to maintain the distances between all pairs of centers up to
n/c. This can be done using the bounded-hop multi-pair reachability algorithm from

4.2. PRELIMINARIES 133

before with k = c2 and h = n/c, where we make each pair of centers a source-sink
pair. By plugging in these values in Equation (4.1), we obtain a total update time
of ̃O(bmn/c + bcn + c2m + cn3/b2) for this this bounded-hop multi-pair reachability.
To maintain s-t reachability in 𝒞 , note that 𝒞 is a dynamic graph undergoing only
deletions. Thus, we can simply maintain an ES-tree rooted at s in 𝒞 As 𝒞 has ̃O(c)
nodes and ̃O(c2) edges this takes time ̃O(c3). It follows that the total update time of
this s-t reachability algorithm is

̃O(bmn/c + bnc⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
maintain dB(⋅, ⋅)
(Lemma 4.2.11)

+ c2m⏟
construct Q(⋅, ⋅)

+ cn3/b2⏟
maintain dG|Q(si ,ti)(⋅, ⋅)

+ c3⏟
maintain d𝒞 (s, t)

) . (4.2)

By setting4 b = n8/7/m3/7 and c = (bn)1/3 = n5/7/m1/7, we get a total update time of5
̃O (m5/7n10/7 + n20/7/m4/7). This is o(mn) if m = ω(n3/2).

Decremental s-t reachability in Sparse Graphs

Maintaining s-t reachability in sparse graphs, especially when m = Θ(n), needs a
slightly different approach. Carefully examining the running time of the previous
algorithm in Equation (4.2) reveals that we cannotmaintain dG|Q(u,v)(u, v) for all pairs
of centers u and v at all times: this would cost ̃O(min(cmn/b, cn3/b2))—the third term
of Equation (4.1)—but we always need c = ω(b) to keep the first term of Equation (4.1)
to bmn/c = o(mn) and, since b ≤ n, cmn/b = ω(mn) and cn3/b2 = ω(n2) = ω(mn).
The new strategy is to maintain dG|Q(u,v)(u, v) only for some pairs of centers at each
time step.

Algorithm As before, we sample ̃O(b) hubs ̃O(c) centers, and maintain dB(⋅, ⋅)
between all centers which takes ̃O(mbn/c + bnc) time (Lemma 4.2.11). The algorithm
runs in phases. At the beginning of each phase i, the algorithm does the following.
Compute a BFS-tree T on the outgoing edges of every node rooted at the source s
in G. If T does not contain t , then we know that s cannot reach t anymore and there
is nothing to do. Otherwise, let L = (c1, c2, … , ck) be the list of centers on the shortest
path from s to t in T ordered increasingly by their distances to s. For simplicity, we
let c0 = s and ck+1 = t . Note that we can assume that

∀i, dG(ci , ci+1) ≤ n/c and dG(ci , ci+2) > n/c . (4.3)

The first inequality holds because the centers are obtained from random sampling
(Lemma 1.3.2) and the second one holds because, otherwise, we can remove ci+1 from

4Note that we have to make sure that 1 ≤ b ≤ n and 1 ≤ c ≤ n. It is easy to check that this is the
case using the fact that m ≤ n2.

5 Detailed calculation: First note that c ≤ n5/7 ≤ m. So, the term c3 is dominated by the term
mc2. Observe that b = (n3/mc)1/2, thus n3c/b2 = mc2. So, the fourth term is the same as the third
term (mc2). Using c = (bn)1/3, we have that the first and third terms are the same. Now, the third
term is mc2 = m(n5/7/m1/7)2 = m1−2/7n10/7 = m5/7n10/7. For the second term, using bn = c3, we have
bnc = c4 = n20/7/m4/7.

134 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

the list L without breaking the first inequality. Observe that L would induce an s-t
path in the “center graph”. Our intention in this phase is to maintain whether s can
still reach t using this path; in otherwords, whether dGci , ci+1) ≤ n/c for all i. (We start
a new phase if this is not the case.) We do this using the framework of Section 4.2.3:
For each pair (ci , ci+1), we know that dG(ci , ci+1) ≤ n/c when dB(ci , ci+1) ≤ n/c. Once
dB(ci , ci+1) > n/c, we construct Q(ci , ci+1) = 𝒫 (ci , ci+1, n/c,G). After each deletion of
an edge (u, v) in this phase, we find every index i such that u and v are contained in
Q(ci , ci+1) and, using the static BFS algorithm, check whether dG|Q(ci ,ci+1)(ci , ci+1) ≤ n/c.
We start a new phase when dG(ci , ci+1) for some pair of centers (ci , ci+1) changes from
dG(ci , ci+1) ≤ n/c to dG(ci , ci+1) > n/c.

Running Time Analysis First, let us bound the number of phases. As for each
pair (ci , ci+1) the distance dG(ci , ci+1) can only become larger than n/c at most once,
there are at most ̃O(c2) phases. At the beginning of each phase, we have to construct
a BFS-tree in G, taking O(m) time and contributing ̃O(c2m) to the total time over
all phases. During the phase, we have to construct Q(ci , ci+1) for at most c pairs
of center, taking ̃O(cm) time (by Lemma 4.2.7) and contributing ̃O(c3m) total time.
Moreover, after deleting an edge (u, v), we have to update dG|Q(ci ,ci+1)(ci , ci+1) for
every Q(ci , ci+1) containing both u and v, by running a BFS algorithm. This takes
O(|E(Q(ci , ci+1)|) time for each Q(ci , ci+1), which is ̃O(m/b) whp, by Lemma 4.2.10.
The following lemma implies that every node will be contained in only a constant
number of such setsQ(ci , ci+1); so, we need ̃O(m2/b) time to update dG|Q(ci ,ci+1)(ci , ci+1)
over all m deletions.

Lemma 4.2.13. For any i and j ≥ i + 3, Q(ci , ci+1) and Q(cj , cj+1) are disjoint.

Proof. First, we claim that dG(ci , cj+1) > 2n/c. To see this, let G′ be the version
of the graph at the beginning of the current phase. We know that dG′(ci , ci+4) =
dG′(ci , ci+2)+dG′(ci+2, ci+4) > 2n/c,where the equality holds because at the beginning
of the current phase (i.e., in G′), every ci lies on the shortest s-t path, and the
inequality holds because of Equation (4.3). Since j + 1 ≥ i + 4 and both ci+4 and cj+1 lie
on the shortest s-t path in G′, dG′(ci , cj+1) ≥ dG′(ci , ci+4) > 2n/c. The claim follows
since the distance between two nodes never decreases after edge deletions.

Now, suppose for the sake of contradiction that there is some node v that is
contained in both Q(ci , ci+1) = 𝒫 (ci , ci+1, n/c,G) and Q(cj , cj+1) = 𝒫 (cj , cj+1, n/c,G).
This means that v lies in some ci-ci+1 path and some cj-cj+1 path, each of length at
most n/c. This means that dG(ci , v) ≤ n/c and dG(v, cj+1) ≤ n/c and therefore we
get dG(ci , cj+1) ≤ dG(ci , v) + dG(v, cj+1) ≤ 2n/c. This contradicts the lower bound
above.

Thus, the total update time is

̃O(mbn/c + bnc⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
maintain dB(⋅, ⋅)
(Lemma 4.2.11)

+ mc2⏟
construct BFS

tree in every phase

+ mc3⏟
construct Q(ci , ci+1)

in every phase

+ m2/b⏟
update dG|Q(ci ,ci+1)(ci , ci+1)

) .

4.2. PRELIMINARIES 135

By setting c = (mn)1/7 and b = c4/n = m4/7/n3/7, we get a running time of ̃O (m10/7n3/7).6
This is o(mn) if m = o(n4/3).

4.2.4 Single-Source Shortest Paths

In the following we show a reduction of decremental approximate single-source
single-sink shortest path to decremental approximate single-source shortest paths.
The naive way of doing this would be to use n instances of the approximate single-
source single-sink shortest path algorithm, one for every node. We can use much
fewer instances by randomly sampling the nodes at which we maintain single-source
single-sink shortest path and by using Bernstein’s shortcut edges technique [23].

Theorem 4.2.14. Assume we already have the following decremental algorithm that,
given a weighted directed graph G undergoing edge deletions, a source node s, and
a set of sinks T of size k, maintains, for every sink t ∈ T , a distance estimate δ(s, t)
such that dG(s, t) ≤ δ(s, t) ≤ αdG(s, t)) for some α ≥ 1 with constant query time
and a total update time of T (k,m, n). Then, for any k ≤ n, there exists a decremental
(1+ϵ)α-approximate SSSP algorithmwith constant query time and expected total update
time O(T (O(k log n),m, n) +mn log (nW)/(ϵk)) that is correct with high probability
against an oblivious adversary.

Proof. At the initialization we randomly sample each node of G with probability
ak ln n/n (for a large enough constant a). We call the sampled nodes sinks. We use the
decremental algorithm for a set of sinks from the assumption to maintain a distance
estimate δ(s, t) for every sink t such that dG(s, t) ≤ δ(s, t) ≤ αdG(s, t). Additionally,
we maintain a graph G′ which consists of the graph G augmented by the following
edges: for every sink t we add an edge (s, t) of weight w′(s, t) = (1 + ϵ)⌈log1+ϵ δ(s,t)⌉

(these edges are called shortcut edges). We maintain G′ by updating the weights of
these edges every time the distance estimate δ(s, t) of some sink t changes its value.
On G′ we use Bernstein’s decremental (1 + ϵ)-approximate SSSP algorithm [23] with
source s and hop count h = n/k. This algorithm maintains a distance estimate δ′(s, v)
for every node v such that dG′(s, v) ≤ δ′(s, v) ≤ (1 + ϵ)dhG′(s, v).

First, observe that dG(s, v) = dG′(s, v) as the new shortcut edges never under-
estimate the true distances in G. We now claim that dhG′(s, v) ≤ (1 + ϵ)αdG(s, v). If
dG(s, v) = ∞, then the claim is trivially true. Otherwise let π be the shortest path
from s to v in G. All edges of this path are also contained in G′. Thus, if π has at
most h edges, then dhG′(s, v) = dG(s, v). If π has more than h edges, then we know
that the set of nodes consisting of the last h nodes of π contains a sink t whp by
Lemma 1.3.2 as the sinks are obtained by sampling from the nodes with probability
ak ln n/n = a ln n/h. Thus, the graph G′ contains a shortcut edge (s, t) of weight
w′(s, t) ≤ (1+ϵ)δ(s, t) ≤ (1+ϵ)αdG(s, t). Now let π ′ be the path from s to v that starts

6 Detailed calculation: First note that the third term (mc2) is dominated by the fourth term
(mc3). Using b = c4n, the first term is the same as the fourth term (mc3). Now, the fourth term is
mc3 = m(mn)3/7 = m10/7n3/7. For the second term, using bn = c4, we have bnc = c5 = (mn)5/7 which is
at most m10/7n3/7 (using n ≤ m). For the last term, m2/b = m2/(m4/7/n3/7) = m(14−4)/7n3/7.

136 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

with this edge (s, t) and then follows the path π from t to v . Clearly, the path π ′ has
at most h edges and is contained in G′. As the weight of π ′ is w′(s, t) + dG(t , v) we
get

dhG′(s, v) = w′(s, v) + dG(t , v) ≤ (1 + ϵ)αdG(s, t) + dG(t , v) ≤ (1 + ϵ)αdG(s, v) .

Putting everything together, we get that the distance estimate δ′(s, v) fulfills

dG(s, v) = dG′(s, v) ≤ δ′(s, v) ≤ (1 + ϵ)dhG′(s, v) ≤ (1 + ϵ)2αdG(s, v)
≤ (1 + 3ϵ)αdhG′(s, v)

By running the whole algorithm with ϵ′ = ϵ/3 we obtain a (1 + ϵ)α-approximation
instead of a (1 + ϵ)α-approximation.

Finally, we argue about the running time. Our running time has two parts.
(1) Bernstein’s decremental (1 + ϵ)-approximate SSSP algorithm [23] has constant
query time and a total update time of O(mh log (nW)/ϵ) (here we also use the fact
that w′(u, t) increases O log (nW)/ϵ times for every sink t). Thus, our decremental
algorithm also has constant query time and by our choice of h = n/k, our total update
time contains the term mn log (nW)/(ϵk). (2) Furthermore, we have O(k log n) sinks
in expectation. Thus, the expected total update time of the decremental algorithm
for a set of sinks from the assumption is T (O(k log n),m, n).

4.2.5 Strongly Connected Components

In the following we reduce decremental strongly connected components to decre-
mental single-source reachability. Our reduction is almost identical to the one of
Roditty and Zwick [114], but in order to work in our setting we have to generalize
their running time analysis. They show that an O(mn) algorithm for single-source
reachability implies an O(mn) algorithm for strongly connected components. We
show that in fact o(mn) time for single-source reachability implies o(mn) time for
strongly connected components. In the following we will often just write “compo-
nent” instead of “strongly connected component”.

In contrast to the rest of this chapter, we will here impose the following technical
condition on the decremental single-source reachability algorithm: when we update
the algorithm after the deletion of an edge, the update procedure will return all
nodes that were reachable before the deletion, but are not reachable anymore after
this deletion. Note that all the reachability algorithms we present in this chapter
fulfill this condition.

Algorithm The algorithm works as follows. For every component we, uniformly
at random, choose among its nodes one representative. In an array, we store for
every node a pointer to the representative of its component. Queries that ask for the
component of a node v are answered in constant time by returning (the ID of) the
representative of v’s component. Using the decremental SSR algorithm, we maintain,

4.2. PRELIMINARIES 137

for every representative w of a component C , the sets I (w) and O(w) containing all
nodes that reach w and that can be reached by w , respectively. Note that, for every
node v, we have v ∈ C if and only if v ∈ I (w) and v ∈ O(w). After the deletion of
an edge (u, v) such that u and v are contained in the same component C we check
whether C decomposes. This is the case only when, after the deletion, u ∉ I (w) or
v ∉ O(w) (which can be checked with the SSR algorithm of w).

We now explain the behavior of the algorithm when a component C decom-
poses into the new components C1, … ,Ck . The algorithm chooses a new random
representative wi for every component Ci and starts maintaining the sets I (wj) and
O(wj) using two new decremental SSR algorithms. There is one notable exception:
If the representative w of C is still contained in one of the components Cj . For this
component we do not choose a new representative. Instead, Cj reuses w and its SSR
algorithms without any re-initialization. The key to the efficiency of the algorithm
is that a large component Ci has a high probability of inheriting the representative
from C .

Note that before choosing the new representatives we actually have to determine
the new components C1, … ,Ck . We slightly deviate from the original algorithm of
Roditty and Zwick to make this step more efficient. If w ∈ Cj , then it is not necessary
to explicitly compute Cj as all nodes in Cj keep their representative w. We only
have to explicitly compute C1, … ,Cj−1,Cj+1, …Ck . This can be done as follows: Let A
denote the set of nodes that were contained in I (w) before the deletion of (u, v) and
are not contained in I (w) anymore after this deletion. Similarly, let B denote the set
of nodes that were contained in O(w) before the deletion and are not contained in
O(w) anymore afterwards. The nodes in A ∪ B are exactly those nodes of C that are
not contained in Cj . Let G′ denote the subgraph of G induced by A ∪ B. Then the
components of G′ are exactly the desired components C1, … ,Cj−1,Cj+1, …Ck . Note
that the sets A and B are returned by the update-procedure of the SSR algorithms
of w , which allows us to compute A∪B. The graph G′ can be constructed by iterating
over all outgoing edges of A ∪ B and the components of G′ can be found using a
static SCC algorithm.

Analysis The correctness of the algorithm explained above is immediate. For the
running time we will argue that, up to a log n-factor, it is the same as the running
time of the SSR algorithm. When the running time of SSR is of the form ̃O(mαnβ),
our argument works when α ≥ 1 or β ≥ 1. To understand the basic idea (for
β ≥ 1), consider the case that the graph decomposes into only two components
C1 and C2 (with n1, n2 ≤ n and m1,m2 ≤ m being the corresponding number of
nodes and edges). We know that one of the two components still contains the
representative w . For this component we do not have to spawn a new decremental
SSR algorithm. This is an advantage for large components as they have a high
probability of containing the representative. The probability of w being contained
in C1 is n1/n and it is n2/n for being contained in C2. Thus, the expected cost of
the decomposition is O(mα

2 n
β
2n1/n +mα

1 n
β
1n2/n). We charge this cost to the smaller

138 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

component, say C1. As C1 has n1 nodes, the average cost we charge to every node
in C1 is O(mα

2 n
β
2 /n +mα

1 n
β−1
1 n2/n). This amounts to an average cost of O(mαnβ−1) per

node. As we will charge each node only when the size of its component has halved,
the total update time is O(mαnβ log n).

Theorem 4.2.15 (From SSR to SCC). If there is a decremental SSR algorithm with
constant query time and a total update time of O(nt1(m, n) + mt2(m, n)) such that
t1(m, n) ≥ 1, t2(m, n) ≥ 1, and t1(m, n) and t2(m, n) are non-decreasing7 in m and
n, then there exists a decremental SCC algorithm with constant query time and an
expected total update time of O((nt1(m, n) +mt2(m, n)) log n).

Proof. Let us first analyze the costs related to the decomposition of a component.
Assume that the component C0 decomposes into C1, … ,Ck . Let ni and mi denote
the number of nodes and edges in component i, respectively. Let m′

i denote the
sum of the out-degrees of the nodes in Ci in the initial graph (i.e., before the first
deletion). Note that m′

i is an upper bound on mi . Furthermore we have ∑k
i=1 ni = n0,

∑k
i=1mi ≤ m0, and ∑k

i=1m
′
i = m′

0.
Assume that the representativew of C0 is contained in Ci after the decomposition.

First of all, for every j ≠ i we have to pay a cost of O(njt1(mj , nj) +mjt2(mj , nj)) for
initializing and updating the decremental SSR algorithm of the new representative
of Cj . Second, we have to pay for computing the new components. This consists of
three steps: (a) computingA∪B, (b) computingG′, and (c) computing the components
of G′. Remember that A ∪ B is the union of A, the set of nodes that cannot reach w
anymore after deleting (u, v), and B, the set of nodes that w cannot reach anymore
after deleting (u, v). After deleting (u, v) the incoming SSR algorithm of w outputs A
and the outgoing SSR algorithm ofw outputs B. Thus, the cost of computingA∪B can
be charged to the reachability algorithms ofw (which have to outputA and B anyway).
The graph G′ is the subgraph of G induced by the nodes in A ∪ B. We construct G′

by checking, for every node in A ∪ B, which of its outgoing edges stay in A ∪ B. This
takes time O(∑j≠i m

′
j). Using Tarjan’s linear time algorithm [120], we can compute

the strongly connected components of G′ in the same running time. As m′
j ≥ mj the

total cost of Cj is O(njt1(mj , nj) +m′
j t2(mj , nj)) = O(njt1(m, n) +m′

j t2(m, n))
By the random choice of the representatives, the probability that w is contained

in Ci is ni/n0. Thus, the expected cost of the decomposition of C0 is proportional to

k

∑
i=1

ni
n0 ∑

j≠i
(njt1(m, n) +m′

j t2(m, n)) =

k

∑
i=1

ni
n0 ∑

j≠i
njt1(m, n) +

k

∑
i=1

ni
n0 ∑

j≠i
m′

j t2(m, n) . (4.4)

We analyze each of these terms individually.
7The technical assumption that t1(m, n) and t2(m, n) are non-decreasing in m and n is natural as

usually the running time of an algorithm does not improve with increasing problem size.

4.2. PRELIMINARIES 139

Consider first the cost of O(∑k
i=1 ni/n0 ∑j≠i njt1(m, n)). For every pair i, j such

that i ≠ j we have to pay a cost of O(ninj(t1(m, n) + n)/n0). If ni ≤ nj we charge this
cost to the component Ci , otherwise we charge it to Cj (i.e., we always charge the
cost to the smaller component). Note that the component to which we charge the
cost has at most n0/2 nodes (otherwise it would not be the smaller one). For a fixed
component i, the total charge is proportional to

∑
j≠i

ninj(t1(m, n) + n)
n0

= ni(t1(m, n) + n) ⋅
∑j≠i nj
n0

≤ ni(t1(m, n) + n) .

We share this cost equally among the nodes in Ci and thus charge O(t(m, n) + n) to
every node in Ci . Every time we charge a node, the size of its component halves.
Thus, every node is charged at most log n times and the total update time for the
first term in Equation (4.4) is O(nt(m, n) log n).

Consider now the cost of O(∑k
i=1 ni/n0 ∑j≠i m

′
j t2(m, n)). Note that

k

∑
i=1

ni
n0 ∑

j≠i
m′

j =
k

∑
i=1

m′
i ∑

j≠i

nj
n0

=
k

∑
i=1

m′
i
n0 − ni
n0

.

We now charge m′
i (n0 − ni)/n0 to every component Ci (1 ≤ i ≤ k). In particular we

charge (n0 − ni)/n0 to every edge (u, v) of the initial graph such that u ∈ Ci . We now
argue that in this way every edge is charged only O(log n) times, which will imply
that the total update time for the second term in Equation (4.4) is O(mt2(m, n) log n).
Consider an edge (u, v) and the component containing u. We only charge the edge
(u, v) when the component containing u decomposes. Let a0 denote the initial
number of nodes of this component and let ap its number of nodes after the p-th
decomposition. As argued above, we charge (ap−1 − ap)/ap−1 to (u, v) for the p-th
decomposition. Thus, for q decompositions we charge ∑1≤p≤q(ap−1 − ap)/ap−1. Now
observe that

∑
1≤p≤q

ap−1 − ap
ap−1

≤ ∑
1≤p≤q

ap−1−ap−1

∑
i=0

1
ap−1

≤ ∑
1≤p≤q

ap−1−ap−1

∑
i=0

1
ap−1 − i

= ∑
1≤p≤q

ap−1

∑
i=ap+1

1
i
=

a0

∑
i=aq+1

1
i

.

Since a0 ≤ n, this harmonic series is bounded by O(log n).
Finally, we bound the initialization cost. Let C1, … ,Ck denote the initial com-

ponents and let ni and mi denote the number of nodes and edges of component Ci ,
respectively. The initial components can be computed in time O(m) with Tarjan’s
algorithm [120]. Furthermore, each component starts two decremental SSR algo-
rithms and we have to pay for the total update time of these algorithms. This time is
proportional to
k

∑
i=1

(nit1(mi , ni)+ t2(mi , ni)) ≤ t1(m, n)
k

∑
i=1

ni + t2(m, n)
k

∑
i=1

mi ≤ nt1(m, n)+mt2(m, n) .

140 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

4.3 Single-Source Single-Sink Reachability

In this section we give an algorithm for maintaining a path from a source node s
to a sink node t in a directed graph undergoing edge deletions, i.e., we solve the
decremental stR problem. Using the reduction of Section 4.2.4, this implies an
algorithm for the decremental single-source reachability (SSR) problem.

4.3.1 Algorithm Description

Our s-t reachability algorithm has a parameter k ≥ 1 and for each 1 ≤ i ≤ k
parameters bi ≤ n and ci ≤ n. We determine suitable choices of these parameters in
Section 4.3.3. For each 1 ≤ i ≤ k − 1, our choice will satisfy bi ≥ bi+1 and ci ≥ 2ci+1.
We also set bk+1 = 1, c0 = n, ck+1 = 1, and hi = n/ci for all 0 ≤ i ≤ k + 1. Note that this
implies hi+1 ≥ 2hi for all 1 ≤ i ≤ k. Intuitively, bi and ci are roughly the number of
i-hubs and i-centers used by our algorithm and hi is the hop range of the i-centers.
In the algorithm we will often consider ordered pairs of centers of the form (x , y).

Initialization At the initialization (i.e., before the first deletion), our algorithm
determines sets of nodes B1 ⊇ B2 ⊇ … ⊇ Bk and C0 ⊇ C1 ⊇ … ⊇ Ck+1 as follows.
For each 1 ≤ i ≤ k, we sample each node of the graph with probability abi ln n/n
and each edge with probability abi ln n/m (for a large enough constant a). The set
Bi then consists of the sampled nodes and the endpoints of the sampled edges. We
set C0 = V and Ck+1 = {s, t}. For each 1 ≤ i ≤ k, we sample each node of the graph
with probability aci ln n/n (for a large enough constant a). The set Ci then consists
of the sampled nodes together with the nodes in Ci+1. For every 1 ≤ i ≤ k we call
the nodes in Bi i-hubs and for every 0 ≤ i ≤ k + 1 we call the nodes in Ci i-centers.
Note that the number of i-hubs is ̃O(bi) in expectation and the number of i-centers
is ̃O(ci) in expectation.

Data Structures Our algorithm uses the following data structures:

• For every i-hub z (with 1 ≤ i ≤ k) an ES-tree up to depth 2hi in G (outgoing
tree of z) and an ES-tree up to depth 2hi in the reverse graph of G (incoming
tree of z)

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k) the set of i-hubs from Bi
linking x to y.

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k) a set of nodes Q(x , y , i), which
is initially empty.

• For every pair of i-centers (x , y) (with 0 ≤ i ≤ k) a list of pairs of (i + 1)-centers
called (i + 1)-parents of (x , y).

4.3. SINGLE-SOURCE SINGLE-SINK REACHABILITY 141

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k+1) a list of pairs of (i−1)-centers
called (i − 1)-children of (x , y).

Maintaining Hub Links For every 1 ≤ i ≤ k, we say that an i-hub z links an
i-center x to an i-center y if dG(x , z) ≤ 2hi and dG(z, y) ≤ 2hi . The hub links of every
pair of i-centers (x , y), for all 1 ≤ i ≤ k, can be maintained as follows. After every
edge deletion in the graph, we report the deletion to the ES-trees maintained by the
hubs. Initially, and after each deletion, the level of a node v in the incoming (outgoing)
tree of an i-hub z is at most 2hi if and only if dG(v, z) ≤ 2hi (dG(z, v) ≥ 2hi). Thus,
we can check whether an i-hub z links an i-center x to an i-center y by summing
up the levels of x and y in the incoming and outgoing ES-tree of z, respectively.
Thus, for every priority i and every pair of i-centers (x , y) we can initialize the set
of i-hubs linking x to y by iterating over all hubs. We can maintain these sets under
the edge deletions in G as follows: Every time the level of some i-center x in the
incoming ES-tree of some i-hub z exceeds 2hi , we iterate over all i-centers y and
remove z from the set of hubs linking x to y. We proceed similarly if the level of
some i-center y in the outgoing ES-tree of some i hub z exceeds 2hi . In this way, we
can also generate, after every edge deletion, a list of pairs of i-centers (x , y) such
that x is not linked to y by an i-hub anymore (but was linked to an i-hub before the
deletion).

Main Algorithm Initially, the algorithm computes the shortest path π from s to t
in G. It then determines a sequence of k-centers v1, … , vl on π . For each 1 ≤ j ≤ l − 1,
the algorithm now tries to maintain a path from vj to vj+1 under the edge deletions
in G. If it fails to do so, it recomputes the shortest path from s to t in G. We call this
a refresh operation.

For each 1 ≤ j ≤ l − 1, the path from vj to vj+1 is maintained as follows. The first
case is that there is a k-hub linking vj to vj+1. As long as such a hub exists, we know
that there is a path from vj to vj+1. If there is no k-hub linking vj to vj+1 anymore, the
algorithm computes the path union 𝒫 (vj , vj+1, 2hk ,G). It then recursively maintains
the path from vj to vj+1 in G|𝒫 (vj , vj+1, 2hk ,G) using (k − 1)-centers and (k − 1)-hubs.
To keep track of this recursive hierarchy, we make, for every 1 ≤ j ≤ l − 1, each pair
(vj , vj+1) an (i − 1)-child of (x , y) and (x , y) an i-parent of (vj , vj+1). The end of the
recursion is reached in layer 0, where the set of 0-centers consists of all nodes. The
only paths between 0-centers the algorithm considers are the edges between them.

Algorithm 4.1 shows the pseudocode for these procedures. A crucial ingredient
of our algorithm is the computation of path unions for pairs of centers. For every
1 ≤ i ≤ k and all i-centers (x , y) the path union from the last recomputation is stored
in Q(x , y, i). To simplify the formulation of the algorithm we set Q(s, t , k + 1) = V
(which is consistent with our choice of hk+1 = n). Thus, the procedure Refresh(s, t ,
k + 1) simply checks whether there exists a path from s to t in G.

142 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Algorithm 4.1: Algorithm for decremental s-t reachability
1 Procedure Refresh(x , y , i)
2 Compute shortest path π from x to y in G|Q(x , y , i)
3 if length of π > hi then
4 if i = k + 1 then
5 Stop and output “s cannot reach t”
6 foreach (i + 1)-parent (x′, y′) of (x , y) do
7 Refresh(x′, y′, i + 1)

8 else
9 RemoveChildren(x , y , i)

10 Determine (i − 1)-centers v1, … , vl on π in order of appearance on π such that
v1 = x , vl = y and, for each 1 ≤ j ≤ l − 2, vj+1 is the first (i − 1)-center
following vj on π at distance at least hi−1/2 from vj .
// If i = 1 then the 0-centers are all nodes on π because

h0 = 1.
11 foreach 1 ≤ j ≤ l − 1 do
12 Make (vj , vj+1) an (i − 1)-child of (x , y) and (x , y) an i-parent of (vj , vj+1)
13 if vj+1 not linked to vj by an i-hub then
14 ComputePathUnion(vj , vj+1, i − 1)
15 Refresh(vj , vj+1, i − 1)

16 Procedure ComputePathUnion(x , y , i)
17 if Q(x , y, i) = ∅ then
18 Let (x′, y′) be any (i + 1)-parent of (x , y)
19 Q(x , y , i) ← 𝒫 (x , y , 2hi ,G|Q(x′, y′, i + 1))
20 else
21 Q(x , y , i) ← 𝒫 (x , y , 2hi ,G|Q(x , y , i))

22 Procedure RemoveChildren(x , y , i)
23 foreach (i − 1)-child (x′, y′) of (x , y) do
24 Remove (x′, y′) from (i − 1)-children of (x , y) and remove (x , y) from

i-parents of (x′, y′)
25 if (x′, y′) has no i-parents anymore and i ≥ 1 then
26 RemoveChildren(x′, y′, i − 1)

27 Procedure Initialize()
28 foreach 1 ≤ i ≤ k and all i-centers (x , y) do Q(x , y , i) ← ∅
29 Q(s, t , k + 1) ← V
30 Refresh(s, t , k + 1)
31 Procedure Delete(u, v)
32 foreach 1-parent (x , y) of (u, v) do
33 Refresh(x , y , 1)
34 For every 1 ≤ i ≤ k and every pair of i-centers (x , y) that is not linked by an i-hub

anymore: Refresh(x , y , i)

4.3. SINGLE-SOURCE SINGLE-SINK REACHABILITY 143

4.3.2 Correctness

It is obvious that the algorithm correctly maintains, for all pairs of i-centers (x , y),
the set of i-hubs linking x to y. Furthermore, the algorithm only stops if it has
correctly detected that there is no path from s to t in the current graph G. Thus,
it remains to show that, as long as the algorithm does not stop, there there is a
path from s to t . We say that a pair of i-centers (x , y) is active if it has at least one
(i + 1)-parent. We further define the pair (s, t), the only pair of (k + 1)-centers, to be
active.

Lemma 4.3.1. After finishing the delete-operation, for every 0 ≤ i ≤ k + 1 and every
active pair of i-centers (x , y), there is a path from x to y in the current graph G.

Proof. The proof is by induction on i. If y is linked to x by some i-hub z, we know
that in G there is a path from x to z as well as a path from z to y . Their concatenation
is a path from x to y in G.

Consider now the case that there is no i-hub linking x to y. If i = 0, we know
that there is an edge from x to y in G as otherwise the pair (x , y) would not be
active. If i ≥ 1, let (v1, v2), (v2, v3), … , (vl−1, vl) with v1 = x and vl = y denote the
(i + 1)-children of (x , y) found at the time of the last refresh of (x , y). Note that
all these children are active since (x , y) is their i-parent. Thus, by the induction
hypothesis, we know that there is a path from vj to vj+1 in G for all 1 ≤ j ≤ l − 1. The
concatenation of these paths gives a path from x to y in G, as desired.

4.3.3 Running Time Analysis

Important Properties In the running time analysis we will need some properties
of the path unions computed by our algorithm.

Lemma 4.3.2. Let (x′, y′) be pair of nodes such that dG(x′, y′) ≤ hi+1 and let (x , y)
be a pair of nodes such that x and y lie on a shortest path from x to y in G (and x
appears before v on this shortest path). Then 𝒫 (x , y, 2hi ,G) ⊆ 𝒫 (x′, y′, 2hi+1,G).

Proof. Let v ∈ 𝒫 (x , y, 2hi ,G). We first apply the triangle inequality:

dG(x′, v) + dG(v , y′) ≤ dG(x′, x) + dG(x , v) + dG(v , y) + dG(y, y′) .

Since x and y (in this order) lie on the shortest path from x′ to y′, we have dG(x′, x)+
dG(y, y′) ≤ dG(x′, y′) and by our assumption we have dG(x′, y′) ≤ hi+1. Since
v ∈ 𝒫 (x , y , 2hi ,G), we have dG(x , v)+dG(v , y) ≤ 2hi As 2hi ≤ hi+1 by our assumptions
on the parameters we get

dG(x′, v) + dG(v , y′) ≤ hi+1 + 2hi ≤ hi+1 + hi+1 = 2hi+1

which implies that v ∈ 𝒫 (x′, y′, 2hi+1,G).

Lemma 4.3.3. For every 1 ≤ i ≤ k and every pair of i-centers (x , y), if Q(x , y, i) ≠ ∅,
then 𝒫 (x , y, 2hi ,G) ⊆ Q(x , y, i).

144 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Proof. The proof is by induction on i. We first argue that it is sufficient to show that
after the first initialization of Q(x , y , i) in Line 19 we have Q(x , y , i) = 𝒫 (x , y , 2hi ,G).
After the initialization, and before Q(x , y , i) is recomputed, Q(x , y , i) might be “out-
dated” due to deletions in G, i.e., not be equal to 𝒫 (x , y , 2hi ,G) anymore. However,
since 𝒫 (x , y, 2hi ,G) only “loses” nodes through the deletions in G, it is still the
case that 𝒫 (x , y, 2hi ,G) ⊆ Q(x , y, i) ⊆ V . Thus, this is also true directly before
Q(x , y, i) is recomputed for the first time in Line 21. There Q(x , y, i) is updated to
𝒫 (x , y, 2hi ,G|Q(x , y, i)). By Lemma 4.2.9 we know that 𝒫 (x , y, 2hi ,G|Q(x , y, i)) =
𝒫 (x , y, 2hi ,G), i.e., after the recomputation, Q(x , y, i) is equal to 𝒫 (x , y, 2hi ,G)
again. By repeating this argument, we get that 𝒫 (x , y , 2hi ,G) ⊆ Q(x , y , i) ⊆ V .

We now show that after the first initialization of Q(x , y, i) in Line 19 we have
Q(x , y, i) = 𝒫 (x , y, 2hi ,G). Let (x′, y′) be the (i + 1)-parent of (x , y) used in the
initialization. We will show that 𝒫 (x , y, 2hi ,G|Q(x′, y′, i + 1)) = 𝒫 (x , y, 2hi ,G).
For i = k the claim is trivially true because (s, t) is the only (k + 1)-parent of (x , y)
and Q(s, t , k + 1) = V . For i ≤ k − 1, we know by the induction hypothesis that
𝒫 (x′, y′, 2hi+1,G) ⊆ Q(x′, y′, i + 1). We also know that x and y lie on the shortest
path from x′ to y′ in G|Q(x′, y′, i + 1) such that x precedes y on this shortest path
and the path has length at most hi . AsG|Q(x′, y′, i+1) is a subgraph ofG, this path is
also contained in G. Thus, dG(x′, x)+dG(y , y′) ≤ hi . By Lemma 4.3.2 this implies that
𝒫 (x , y, 2hiG) ⊆ 𝒫 (x′, y′, 2hi+1,G). It follows that 𝒫 (x , y, 2hi ,G) ⊆ Q(x′, y′, i + 1).
Thus, by Lemma 4.2.9, we have 𝒫 (x , y, 2hi ,G|Q(x′, y′, i + 1)) = 𝒫 (x , y, 2hi ,G) as
desired.

Lemma 4.3.4. Let (x , y) be an active pair of i-centers and let (x′, y′) be an (i+1)-parent
of (x , y). Then Q(x , y , i) ⊆ Q(x′, y′, i + 1).

Proof. Consider the point in time when (x′, y′) becomes an (i + 1)-parent of (x , y).
This can only happen in the else-branch of Refresh(x , y , i +1). Then we know that x
and y lie on a path from x′ to y′ of length at most hi+1 in G|Q(x′, y′, i + 1) such that
x precedes y on this path and thus dG(x′, x) + dG(y , y′) ≤ hi+1. From Lemma 4.3.2 it
follows that 𝒫 (x , y , 2hi ,G) ⊆ 𝒫 (x′, y′, 2hi+1,G). Furthermore, 𝒫 (x′, y′, 2hi+1,G) ⊆
Q(x′, y′, i +1) by Lemma 4.3.3. As the path-union of (x , y) is recomputed when (x , y)
becomes an i-child of (x′, y′), we also have Q(x , y, i) = 𝒫 (x , y, 2hi ,G). Therefore
we get that Q(x , y, i) ⊆ Q(x′, y′, i + 1). Furthermore, every time the algorithm
recomputes Q(x′, y′, i + 1), (x′, y′) will stop being an (i + 1)-parent of (x , y). It might
immediately become in (i + 1)-parent again and in this case our argument above
applies again.

Lemma 4.3.5. For every 1 ≤ i ≤ k + 1 and every pair of i-centers (x , y), we have that
if dG|Q(x ,y,i)(x , y) > hi , then dG(x , y) > hi .

Proof. We show that dG(x , y) ≤ hi implies dG|Q(x ,y,i)(x , y) ≤ hi . If dG(x , y) ≤ hi , then
also dG|𝒫 (x ,y,2hi ,G)(x , y) ≤ hi as 𝒫 (x , y, 2hi ,G) contains all paths from x to y in G
of length at most 2hi . Since 𝒫 (x , y, 2hi ,G) ⊆ Q(x , y, i) by Lemma 4.3.3, we have
dG|Q(x ,y,i)(x , y) ≤ dG|𝒫 (x ,y,2hiG)(x , y). It follows that dG|Q(x ,y,i)(x , y) ≤ hi .

4.3. SINGLE-SOURCE SINGLE-SINK REACHABILITY 145

Lemma 4.3.6. For every 1 ≤ i ≤ k + 1 and every pair of i-centers (x , y) the graph
G|Q(x , y, i) has at most min(m/bi , n2/b2i) edges whp.

Proof. As no edges are ever added to G, we only have to argue that the claim
is true at the first initialization of Q(x , y, i) in Line 19, where Q(x , y, i) is equal to
𝒫 (x , y , 2hi ,G) (see proof of Lemma 4.3.4). We argue that at that timeG|𝒫 (x , y , 2hi ,G)
as at most min(m/bi , n2/b2i) edges. Note to this end it is sufficient to show that
G|𝒫 (x , y , 2hi ,G) has at most n/bi nodes and m/bi edges.

Suppose that 𝒫 (x , y , 2hi ,G) contains more than n/bi nodes. Then, by the random
sampling of i-hubs, one of these nodes, say v , would have been sampled whp while
determining the set Bi at the initialization by Lemma 1.3.2, making v an i-hub. If
G|𝒫 (x , y , 2hi ,G) contains more than m/bi edges, then one of these edges, say (u, v),
would have been sampled whp while determining the set Bi at the initialization by
Lemma 1.3.2, making both u and v i-hubs.

In both cases, 𝒫 (x , y , 2hi ,G) contains some i-hub v , for which dG(x , v)+dG(v , y) ≤
2hi by Lemma 4.2.7. But this means that x is linked to y by the i-hub v and the
algorithm would not have executed Line 19, which contradicts our assumption.

Lemma 4.3.7. Let 1 ≤ i ≤ k and consider a pair of active (i + 1)-centers (x′, y′) and
their i-children (xj , yj)1≤j≤l (which are active i-centers). Then, for every node v, there
are at most q = 8 pairs of i-children (xj , yj) of (x′, y′) such that v ∈ Q(xj , yj , i).

Proof. We show that at the last time the algorithm has called Refresh(x′, y′, i + 1)
(where it determined the current i-children of (x′, y′)) there are at most q = 8 pairs
of i-children (xj , yj) of (x′, y′) such that v ∈ 𝒫 (xj , yj , 2hi ,G) as, for each 1 ≤ i ≤ l,
Q(xj , yj , i) (even if initialized later) will always be a subset of this set.

Suppose that v is contained in q > 8 path unions 𝒫 (xj , yj , 2hi ,G) of i-children
(xj , yj) of (x′, y′). Let j1, … , jq be the corresponding indices and assume without
loss of generality that j1 < j2… < jq . The children of (x′, y′) all lie on the shortest
path from x′ to y′ and by the way we have selected them we even more have
dG(xj , yj) ≥ hi/2 for all 1 ≤ j ≤ l and thus

dG(xj1 , yjq) ≥ ∑
j∈{j1,…,jq}

dG(xj , yj) ≥ ∑
j∈{j1,…,jq}

hi/2 = qhi/2 . (4.5)

Furthermore, since v ∈ 𝒫 (xj1 , yj1 , 2hi ,G), v lies on a shortest path from xj1 to yj1
of length at most hi in G and thus dG(xj1 , v) ≤ 2hi . By the same argument we have
dG(v , yjq) ≤ 2hi . We now have

dG(xj1 , yjq) ≤ dG(xj1 , v) + dG(v , yjq) ≤ 4hi (4.6)

by the triangle inequality. Observe that the upper bound 4.6 and the lower bound 4.5
contradict each other for q > 8 and thus q ≤ 8.

Lemma 4.3.8. For every 1 ≤ i ≤ k + 1 and every node v , there are at most qk−i+1 pairs
of active i-centers (x , y) such that v ∈ Q(x , y , i).

146 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Proof. The proof is by induction on i. The base case is i = k + 1 and is trivially
true because the only pair of (k + 1)-centers is the pair (s, t). Consider now the
case 1 ≤ i ≤ k and fix some node v. Consider a pair (x , y) of active i-centers such
that v ∈ Q(x , y, i). Let (x′, y′) be a pair of (i + 1)-centers that is an (i + 1)-parent of
(x , y) (such a parent must exist because otherwise (x , y) would not be active). Since
Q(x , y, i) ⊆ Q(x′, y′, i + 1) by Lemma 4.3.4, v ∈ Q(x′, y′, i + 1). Thus, v ∈ Q(x , y, i)
only if there is an (i + 1)-parent (x′, y′) such that v ∈ Q(x′, y′, i + 1).

By the induction hypothesis, the number of pairs of active (i + 1)-centers (x′, y′)
such that v ∈ Q(x′, y′, i + 1) is at most qk−(i+1)+1 = qk−i . Let (x′, y′) be such a pair of
(i + 1)-centers. By Lemma 4.3.7, the number of i-children (x , y) of (x′, y′) such that
v ∈ Q(x , y, i) is at most q. Therefore the total number of active pairs of i-centers
(x , y) such that v ∈ Q(x , y , i) is at most q ⋅ qk−i = qk−i+1 as desired.

Lemma 4.3.9. For every 0 ≤ i ≤ k, each active pair of i-centers has at most qk−i ≤ qk

(i + 1)-parents.

Proof. Consider any active pair of i-centers (x , y) and fix some node v ∈ Q(x , y, i).
Let the pair of (i + 1)-centers (x′, y′) be an (i + 1)-parent of (x , y). By Lemma 4.3.4
Q(x , y , i) ⊆ Q(x′, y′, i + 1). Thus, v ∈ Q(x′, y′, i + 1) for every (i + 1)-parent of (x , y).
If (x , y) had more than qk−i (i + 1)-parents, then v would be contained in more than
qk−i = qk−(i+1)+1 path unions Q(x′, y′, i + 1) of (i + 1)-parents (x′, y′), contradicting
Lemma 4.3.8.

Maintaining Hub Links For every i-hub, we maintain an incoming and an
outgoing ES-tree of depth 2hi = 2n/ci , which takes time O(mn/ci). As there are

̃O(bi) hubs of priority i, the total time needed for maintaining all these ES-trees is
̃O(∑1≤i≤k bimn/ci). For every pair of i-centers (x , y), the list of hubs linking x to y is

initialized by iterating over all i-hubs. As there are ̃O(ci) i-centers and ̃O(bi) i-hubs,
this takes time ̃O(∑1≤i≤k bic

2
i). Every time the level of an i-center x in the ES-tree

of an i-hub z exceeds 2hi , we have to remove z from the set of hub links for every
possible partner y of x . As this event can occur only once for every i-center x and
every i-hub z over the course of the algorithm, maintaining the sets of linking hubs
takes time ̃O(∑1≤i≤k bic

2
i).

Computing Path Unions We now argue about the time needed for maintaining
the sets Q(x , y, i) for all pairs of i-centers (x , y) and each 1 ≤ i ≤ k. We will
show that we can pay for this cost by charging O(min(m/bi+1, n2/b2i+1)) to every pair
of i-centers and O(qk min(m/bi+1, n2/b2i+1)) to every refresh operation of the form
Refresh(x′, y′, i + 1) for some pair of (i + 1)-centers (x′, y′). Note that when i = k
then min(m/bk+1, n2/b2k+1) = m since we have set bk+1 = 1.

Fixing some pair of i-centers (x , y), we first bound the cost for the first initial-
ization of Q(x , y, i), as performed in Line 19 of Algorithm 4.1. There we have to
compute 𝒫 (x , y , 2hi ,G|Q(x′, y′, i+1)), where (x′, y′) is an (i+1)-parent of (x , y). By
Lemma 4.2.7 this takes time proportional to the number of edges in G|Q(x′, y′, i + 1).

4.3. SINGLE-SOURCE SINGLE-SINK REACHABILITY 147

If i = k, then Q(x′, y′, i + 1) = V (and actually x′ = s and y′ = t) and thus
computing 𝒫 (x , y, 2hi ,G) for all pairs of k-centers (x , y) takes time ̃O(c2km). If
1 ≤ i ≤ k −1, then G|Q(x′, y′, i+1) has O(min(m/bi+1, n2/b2i+1)) edges by Lemma 4.3.6.
Thus, the first computation of Q(x , y, i) for all pairs of i-centers (x , y) takes time

̃O(c2i min(m/bi+1, n2/b2i+1)).
Now consider the cost of computing Q(x , y , i) after it has already been initialized

for the first time. Let Q′(x , y , i) = 𝒫 (x , y , 2hi ,G|Q(x , y , i)) denote the updated path
union as computed in Line 21 of Algorithm 4.1. The cost of computing Q′(x , y, i)
is proportional to |E(Q(x , y, i))|, the number of edges in G|Q(x , y, i) before the
recomputation. Since Q′(x , y , i) ⊆ Q(x , y , i), we have E(Q(x , y , i)) = E(Q′(x , y , i)) ∪
E(Q(x , y, i)) ⧵ E(Q′(x , y, i)). Note that Q′(x , y, i) is equal to 𝒫 (x , y, 2hi ,G). We
pay for this cost by charging O(|E(Q(x , y, i)) ⧵ E(Q′(x , y, i))|) to the pair (x , y) and
|E(𝒫 (x , y, 2hi ,G))| to the refresh operation on the (i + 1)-parent of (x , y) which
causes the recomputation.

As the initial size of G|Q(x , y, i) is O(min(m/bi+1, n2/b2i+1)) and we only charge
edges to the pair (x , y) that will never be contained in G|Q(x , y, i) anymore, the
total time charged to (x , y) is O(min(m/bi+1, n2/b2i+1)), which results in a cost of
O(∑1≤i≤k−1 c

2
i min(m/bi+1, n2/b2i+1) + c2km) over all path union computations. It re-

mains to bound the total cost charged to each refresh operation Refresh(x′, y′,
i + 1) for some pair of (i + 1)-centers (x′, y′). Below we will then separately an-
alyze the total cost of the refresh operations. During the refresh operation we
recompute Q(x , y, i) for every i-child (x , y) of (x′, y′), for which we have to pay
O(|E(𝒫 (x , y , 2hi ,G))|) per child. By Lemma 4.3.4Q(x , y , i) ⊆ Q(x′, y′, i+1) for every
i-child (x , y) of (x′, y′). By Lemma 4.3.8, each node is contained in at most qk path
unions of i-children of (x′, y′). Therefore every edge of G|Q(x′, y′, i +1) is contained
in the subgraphs of G induced by the i-path union of at most qk i-children of (x′, y′).
Thus, the total cost charged to the refresh operation isO(qk|E(Q(x′, y′, i+1)|), which
is O(qk min(m/bi+1, n2/b2i+1)).

Cost of Refresh Excluding the recursive calls, each refresh operation of the form
Refresh(x , y, i), where 1 ≤ i ≤ k + 1 and (x , y) is a pair of i-centers, is domi-
nated by two costs: (1) the time needed for computing the shortest path from x
to y in G|Q(x , y, i) and (2) the time needed for computing Q(x′, y′, i − 1) for every
(i − 1)-child (x′, y′) of (x , y) if i ≥ 2. As G|Q(x , y , i) has at most min(m/bi+1, n2/b2i+1)
edges by Lemma 4.3.6, computing the shortest path takes time ̃O(min(m/bi+1, n2/b2i+1)).
We have argued above that to pay for step (2) the time we charge to that particular
refresh is O(qk min(m/bi+1, n2/b2i+1)). It remains to analyze how often the refresh
operation is called.

We say that a pair of i-centers (x , y) (for 0 ≤ i ≤ k) causes a refresh if the
algorithm calls Refresh (x′, y′, i + 1) (in line 7), where (x′, y′) is an (i + 1)-parent of
(x , y), after detecting that the distance from x to y in G|Q(x , y , i) is more than hi . If
a fixed pair of i-centers (x , y) causes a refresh after some deletion in the graph, it will
do so for each of its (i +1)-parents. By Lemma 4.3.9 the number of (i +1)-parents is at

148 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

most qk . Note that each pair of i-centers (x , y) will only cause these qk refreshes of its
parents once. At the time the algorithm makes (x , y) the child of some (i + 1)-center
we have dG(x , y) ≤ hi whp as by the initial random sampling of i-centers, every
shortest path consisting of hi/2 − 1 edges contains an i-center whp (Lemma 1.3.2).
Furthermore, the pair (x , y) will never cause a refresh anymore in the future as the
refresh implies that dG(x , y) > hi by Lemma 4.3.5 and thus (x , y) will never be active
anymore.

Now whenever we refresh a pair of (i +1)-centers (x′, y′), we charge the running
time of ̃O(qk min(m/bi+1, n2/b2i+1)) to the i-child (x , y) causing the refresh. By the
argument above, each pair of i-centers will be charged at most qk times. Thus, the
total time needed for all refresh operations on pairs of (i + 1)-centers over the course
of the algorithm is ̃O(q2kc2i min(m/bi+1, n2/b2i+1)) if i ≥ 1. For i = 0, we can bound
this by ̃O(q2km ⋅ min(m/b1, n2/b21)) because every node is a 0-center and thus a pair
of 0-centers (x , y) can only be active if the graph contains the edge (x , y).

Total Running Time Putting everything together, the total running time of our
algorithm using k layers is

̃O
(∑

1≤i≤k
bic2i + ∑

1≤i≤k

bimn
ci

+ q2km ⋅ min(
m
b1
,
n2

b21)

+ ∑
1≤i≤k−1

q2kc2i min(
m
bi+1

,
n2

b2i+1) + q2kc2km)
.

We first balance the terms to obtain a running time of ̃O(m5/4n1/2). We achieve this
by setting the parameters to k = ⌈log logm⌉ and, for every 1 ≤ i ≤ k,

bi =
m

3⋅(2k−2(i−1))
2(k+2)−3

n
2(k+1)−2i

2(k+2)−3

ci = 2k−im
2(k+1)−3⋅2(i−1)

2(k+2)−3 n
2i−1

2(k+2)−3 .

With this choice of the parameters we get (for all 1 ≤ i ≤ k), bi ≥ bi+1, ci ≥ 2ci+1,

bimn
ci

≤
m2

b1
= m

5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 ,

c2i m
bi+1

≤ c2km ≤ 22km
5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 , and

bic2i ≤ 22k
m

7⋅2k−9⋅2(i−1)

2(k+2)−3

n
2(k+1)−3⋅2i+2

2(k+2)−3

≤ 22km
5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 ,

4.3. SINGLE-SOURCE SINGLE-SINK REACHABILITY 149

where the last inequality holds due to m ≤ n2 and i ≥ 0. Thus, the total update time
is

̃O (k22kq2km
5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3

) .

Now observe that

m
5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 = m

5
4
+ 3
4
⋅ 1
2(k+2)−3n

1
2
− 1
2

1
2(k+2)−3 ≤ m

5
4
+ 3
4
⋅ 1
2(k+2)−3n

1
2 .

By our choice of k = ⌈log logm⌉ we have

m
3
4
⋅ 1
2(k+2)−3 ≤ m

1
2k ≤ m

1
2log log m = m

1
log m = 2 .

Thus, the running time of our algorithm is ̃O(kq2km5/4n1/2). With k = ⌈log logm⌉
and q = 8 this is ̃O(m5/4n1/2).

We now balance the terms to obtain a running time of O(m4/3n2/3+o(1)). We
achieve this by setting the parameters to k = ⌊√log n/ log q⌋ and, for every 1 ≤ i ≤ k,

bi =
n(k+2i−1)/(3k+1)

m(4i−k−3)/(6k+2)

ci = 2k−in2i/(3k+1)m(3k+1−4i)/(6k+2) .

With this choice of the parameters we get (for all 1 ≤ i ≤ k), bi ≥ bi+1, ci ≥ 2ci+1,

bimn
ci

≤
m2

b1
= n4k/(3k+1)m(2k+2)/(3k+1) ,

c2i m
bi+1

≤ c2km ≤ 22kn4k/(3k+1)m(2k+2)/(3k+1) ,

and

bic2i ≤ 22kn(k+6i−1)/(3k+1)m(7k+5−12i)/(6k+2)

= 22kn(k−1)/(3k+1)m(3k+1)/(6k+2)m(2k+2)/(3k+1)n6i/(3k+1)m−6i/(3k+1)

≤ 22kn4k/(3k+1)m(2k+2)/(3k+1) ,

where the last inequality holds due to n ≤ m and m ≤ n2. Thus, the total update time
is

̃O (k22kq2kn4k/(3k+1)m(2k+2)/(3k+1)) .
Now observe that

m
2k+2
3k+1n

4k
3k+1 = m

2
3
+ 4
3
⋅ 1
3k+1n

4
3
− 4
3
⋅ 1
3k+1 ≤ m

2
3
+ 4
3
⋅ 1
3k+1n

4
3 ≤ m

2
3
+ 1
k n

4
3

By our choice of k = ⌊√log n/ log q⌋ we have 2k ≤ qk ≤ n1/k . Since k ≤ log n and
q = 8 we thus obtain a total update time of O(m2/3n4/3+O(1/√log n)) = O(m2/3n4/3+o(1)).

Theorem 4.3.10. There is a decremental stR algorithm with constant query time and
expected update time

̃O(min(m5/4n1/2,m2/3n4/3+o(1))) = O(mn6/7+o(1))

that is correct with high probability against an oblivious adversary.

150 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

4.3.4 Extension to Single-Source Reachability

The algorithm above maintains reachability from a single source s to a single sink t .
We can easily modify the algorithm to maintain reachability for a set of source-sink
pairs (si , ti)1≤i≤p . We simply run p instances of the algorithm, each with a different
source-sink pair. Note however that the algorithm can use the same set of hubs and
centers for all instances. Thus, the cost of maintaining the ES-trees does not have to
be multiplied by p. We therefore get a total running time of

̃O
(∑

1≤i≤k
bic2i + ∑

1≤i≤k

bimn
ci

+ pq2km ⋅ min(
m
b1
,
n2

b21)

+ ∑
1≤i≤k−1

pq2kc2i min(
m
bi+1

,
n2

b2i+1) + pq2kc2km)
.

By setting

bi =
m

3⋅(2k−2(i−1))
2(k+2)−3 p

2(k+1)−2i

2(k+2)−3

n
2(k+1)−2i

2(k+2)−3

ci =
m

2(k+1)−3⋅2(i−1)

2(k+2)−3 n
2i−1

2(k+2)−3

p
2i−1

2(k+2)−3

we get

pc2km = pm2/b1 = bimn/ci = pc2i m/bi+1 = m
5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 p

2(k+1)−1
2(k+2)−3 .

bimn
ci

≤
pm2

b1
= p

2(k+1)−1
2(k+2)−3m

5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 ,

pc2i m
bi+1

≤ pc2km ≤ 22kp
2(k+1)−1
2(k+2)−3m

5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 , and

bic2i ≤ 22k
p

2(k+1)−3⋅2i+2
2(k+2)−3 m

7⋅2k−9⋅2(i−1)

2(k+2)−3

n
2(k+1)−3⋅2i+2

2(k+2)−3

≤ 22kp
2(k+1)−1
2(k+2)−3m

5⋅2k−3
2(k+2)−3n

2(k+1)−2
2(k+2)−3 ,

and by setting

bi =
p(k+1−i)/(3k+1)n(k+2i−1)/(3k+1)

m(4i−k−3)/(6k+2)

ci =
n2i/(3k+1)m(3k+1−4i)/(6k+2)

pi/(3k+1) .

4.3. SINGLE-SOURCE SINGLE-SINK REACHABILITY 151

we get

bimn
ci

≤
pm2

b1
= p(k+1)/(3k+1)n4k/(3k+1)m(2k+2)/(3k+1) ,

pc2i m
bi+1

≤ pc2km ≤ 22kp(k+1)/(3k+1)n4k/(3k+1)m(2k+2)/(3k+1) ,

and

bic2i = 22kp(k+1−3i)/(3k+1)n(k+6i−1)/(3k+1)m(7k+5−12i)/(6k+2)

≤ 22kp(k+1)/(3k+1)n4k/(3k+1)m(2k+2)/(3k+1) .

By the same choices of k as in the s-t reachability algorithm above we get a run-
ning times of ̃O(p1/2m5/4n1/2) and O(p1/3m2/3n4/3+o(1)), respectively, for maintaining
reachability between p source-sink pairs.

Corollary 4.3.11. There is a decremental algorithm for maintaining reachability of p
source-sink pairs with constant query time and expected update time

̃O(min(p1/2m5/4n1/2, p1/3m2/3n4/3+o(1)))

that is correct with high probability against an oblivious adversary.

Using the reduction of Theorem 4.2.14 this immediately implies single-source
reachability algorithm with a total update time of ̃O(m7/6n2/3) (we balance the
terms p1/2m5/4n1/2 and mn/p by setting p = n1/3/m1/6) and O(m3/4n5/4+o(1)) (balance
p1/3m2/3n4/3 and mn/p by setting p = m1/4/n1/4).

Corollary 4.3.12. There is a decremental SSR algorithm with constant query time and
expected update time

̃O(min(m7/6n2/3,m3/4n5/4+o(1))) = O(mn9/10+o(1))

that is correct with high probability against an oblivious adversary.

Furthermore, the reduction of Theorem 4.2.15 gives a decremental algorithm for
maintaining strongly connected components.

Corollary 4.3.13. There is a decremental SCC algorithm with constant query time
and expected update time

̃O(min(m7/6n2/3,m3/4n5/4+o(1))) = O(mn9/10+o(1))

that is correct with high probability against an oblivious adversary.

152 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

4.4 Approximate Shortest Path

In the following we assume that G is a weighted graph with integer edge weights
from 1 to W undergoing edge deletions. We are given some parameter 0 < ϵ ≤ 1 and
our goal is to maintain (1 + ϵ)-approximate shortest paths. Similar to the reachability
algorithm, we first give an algorithm for maintaining a (1 + ϵ) shortest path from a
given source s to a given sink t . We then extend it to an algorithm for maintaining
(1 + ϵ)-approximate shortest paths from a fixed source node to all other nodes. We
give an algorithm that maintains a (1 + ϵ)2k+2-approximate shortest path from s to
t . Note that by running the whole algorithm with ϵ′ = ϵ/(4k + 2) instead of ϵ we
obtain a (1 + ϵ)-approximate shortest path.

4.4.1 Preliminaries

The first new aspect for approximate shortest paths, compared to reachability, is
that we maintain, for each 1 ≤ i ≤ k + 1 and every pair of i-centers (x , y), an
index r(x , y, i) such that dhG(x , y) ≥ (1 + ϵ)r(x ,y,i) and, whenever (x , y) is active,
dG(x , y) ≤ (1 + ϵ)r(x ,y,i)+2i . Thus, r(x , y , i) indicates the current range of the distance
from x to y . Roughly speaking, the algorithmwill maintain a sequence of centers and
for each pair of consecutive centers (x , y) a path from x to y of weight corresponding
to the range of the distance from x to y. This will be done in a way such that
whenever the algorithm cannot find such a path from x to y, then the range has
increased. By charging this particular increase in the distance from x to y, it can
afford updating the sequence of centers. As in the case of reachability such paths
from x to y will either be found via a hub or in a path union graph.

The second new aspect is that now we maintain approximate shortest paths up
to hi hops for certain pairs of i-centers, whereas in the reachability algorithm hi was
an unweighted distance. This motivates the following modification of the path union
that limits allowed paths to a fixed number of hops.

Definition 4.4.1. For all nodes x and y of a graph G and all integers h ≥ 1 and D ≥ 1,
the h-hop path union 𝒫 h(x , y ,D,G) is the set containing every node that lies on some
path π from x to y in G that has |π| ≤ h edges (hops) and weight w(π ,G) ≤ D.

Observe that 𝒫 (x , y,D,G) = 𝒫 n(x , y, R,G) by Definition 4.2.6. Dealing with
exact bounded-hop paths is usually computationally more expensive than dealing
with unbounded paths, even in the static setting.8 The bounded hop path unions
will henceforth only be used in the analysis of the algorithm. In the algorithm itself
we will compute unbounded (i.e., n-hop) path unions in graphs with modified edge
weights. For every h ≥ 1 and every r ≥ 0 we define a graph ̃Gh,r that has the same
nodes and edges as G and in which we round the weight of every edge (u, v) to the

8For example, one can compute the shortest paths among all paths with at most h edges from a
source node in time O(mh) by running the first h iterations of the Bellman-Ford algorithm. This is not
efficient enough for our purposes, as we would only like to spend nearly linear time.

4.4. APPROXIMATE SHORTEST PATH 153

next multiple of ϵ(1 + ϵ)r /h by setting

w ̃Gh,r (u, v) = ⌈
wG(u, v) ⋅ h
ϵ(1 + ϵ)r ⌉ ⋅

ϵ(1 + ϵ)r

h
.

Note that the definition of ̃Gh,r implicitly depends on ϵ as well. To gain some intuition
for these weight modifications, observe that for every path π in G consisting of h′

edges we have

w ̃Gh,r (π) ≤ wG(π) + h′ ⋅
ϵ(1 + ϵ)r

h
.

Thus, for every path π of weight wG(π) ≥ (1 + ϵ)r consisting of at most h edges we
have

w ̃Gh,r (π) ≤ (1 + ϵ)r + ϵ(1 + ϵ)r = (1 + ϵ)r+1 .

As additionally wG(u, v) ≤ w ̃Gh,r (u, v) for every edge (u, v) we obtain the following
guarantees.

Lemma 4.4.2. Let h ≥ 1 and r ≥ 0. For all pairs of nodes x and y we have dG(x , y) ≤
d ̃Gh,r (x , y) and if dhG(x , y) ≥ (1 + ϵ)r , then d ̃Gh,r (x , y) ≤ (1 + ϵ)r+1.

Now observe that h-hop path unions can be computed “approximately” by
computing the (unbounded) path union in ̃Gh,r , which can be done in nearly linear
time (Lemma 4.2.7). In our case the unbounded path union in ̃Gh,r will contain the
h-hop path union and we will later argue that all unbounded path unions computed
by our algorithm have small size. In our analysis the following lemma will have the
same purpose as Lemma 4.2.9 for the s-t reachability algorithm.

Lemma 4.4.3. Let (x , y) be a pair of nodes, let h ≥ 1, r ≥ 0, and α ≥ 1, and let Q ⊆ V
be a set of nodes such that 𝒫 h(x , y, α(1 + ϵ)r ,G) ⊆ Q. Then 𝒫 h(x , y, α(1 + ϵ)r ,G) ⊆
𝒫 (x , y, α(1 + ϵ)r+1, ̃Gh,r |Q).

Proof. Let v ∈ 𝒫 h(x , y, α(1 + ϵ)r ,G), i.e., there is a path π from x to y in G with at
most h edges and weight at most α(1 + ϵ)r containing v . The weight of π in ̃Gh,r is

w ̃Gh,r (π) ≤ wG(u, v) + h ⋅
ϵ(1 + ϵ)r

h
≤ α(1 + ϵ)r + ϵ(1 + ϵ)r ≤ α(1 + ϵ)r+1 .

By our assumption all nodes of π are contained in Q and thus π is a path in ̃Gh,r |Q
of weight at most α(1 + ϵ)r+1. Thus, all nodes of π , including v, are contained in
𝒫 (x , y, α(1 + ϵ)r+1, ̃Gh,r |Q).

The advantage of the graph ̃Gh,r is that its edge weights are multiples of ϵ(1+ϵ)r /h.
Thus, after scaling down the edge weights by a factor of h/(ϵ(1 + ϵ)r) we still have
integer weights. This observation can be used to speed up the pseudopolynomial
algorithm of Even and Shiloach at the cost of a (1 + ϵ)-approximation [22, 23, 95].

154 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

4.4.2 Algorithm Description

Our approximate s-t shortest path algorithm has a parameter k ≥ 1 and for each
1 ≤ i ≤ k parameters bi ≤ n and ci ≤ n. We also set bk+1 = 1, c0 = n, ck+1 = 1, and
hi = n/ci for all 0 ≤ i ≤ k + 1. Our algorithm determines sets of nodes B1 ⊇ B2 ⊇
… ⊇ Bk and C0 ⊇ C1 ⊇ … ⊇ Ck+1 by random sampling as described in Section 4.3.1
for the s-t reachability algorithm. For each 1 ≤ i ≤ k we order the set of i-hubs in
an arbitrary way such that Bi = {b1, b2, … , b|Bi|}. Our algorithm uses the following
variables and data structures:

• An estimate δ(s, t) of the distance from s to t in G

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k) an index r(x , y, i) such that
0 ≤ r(x , y , i) ≤ log1+ϵ(nW) for the current range of the distance from x to y .

• For every i-hub z (with 1 ≤ i ≤ k) and every 0 ≤ r ≤ log1+ϵ(nW) an ES-tree up
to depth (1 + ϵ)r+i+1 in ̃G8hi/ϵ,r (outgoing tree of z) and an ES-tree up to depth
(1 + ϵ)r+i+1 in the reverse graph of ̃G8hi/ϵ,r (incoming tree of z)

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k) an index l(x , y, i) such
that 1 ≤ l(x , y, i) ≤ |Bi| + 1 that either gives the index l(x , y, i) of the i-hub
bl(x ,y,i) ∈ Bi that links x to y for the current value of r(x , y, i) or, if no such
i-hub exists, is set to l(x , y , i) = |Bi| + 1.

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k) a set of nodes Q(x , y , i), which
is initially empty.

• For every pair of i-centers (x , y) (with 0 ≤ i ≤ k) a list of pairs of (i + 1)-centers
called (i + 1)-parents of (x , y).

• For every pair of i-centers (x , y) (with 1 ≤ i ≤ k+1) a list of pairs of (i−1)-centers
called (i − 1)-children of (x , y).

• For every 1 ≤ i ≤ k, a list Ai of i-centers called active i-centers.

Besides the generalizations for weighted graphs introduced in Section 4.4.1,
our approximate s-t shortest path algorithm also deviates from the s-t reachability
algorithm in the way it maintains the hub links. The main difference to before is
that now we maintain the hub links only between pairs of active centers. In the new
algorithm we say, for 1 ≤ i ≤ k, that an i-hub z ∈ Bi links an i-center x to an i-center
y if

d ̃G8hi/ϵ,r(x ,y,i)(x , z) + d ̃G8hi/ϵ,r(x ,y,i)(z, y) ≤ (1 + ϵ)r(x ,y,i)+2i+1 .

The algorithm can check whether z links x to y by looking up d ̃G8hi/ϵ,r(x ,y,i)(x , z) and
d ̃G8hi/ϵ,r(x ,y,i)(z, y) in the incoming and outgoing ES-tree of z, respectively. For every
1 ≤ i ≤ k, and every pair of active i-centers x and y, the algorithm uses the index
l(x , y, i) to maintain an i-hub bl(x ,y,i) that links x to y. If the current i-hub bl(x ,y,i)
does not link x to y anymore, the algorithm increases l(x , y, i) until either such an

4.4. APPROXIMATE SHORTEST PATH 155

i-hub is found, or l(x , y, i) = |Bi| + 1. As soon as l(x , y, i) = |Bi| + 1, the algorithm
computes the path union between x and y and maintains an approximate shortest
path from x to y in the subgraph induced by the path union. If the algorithm does
not find such a path anymore it increases the value of r(x , y , i) and sets l(x , y , i) to 1
again, i.e., making the first i-hub the candidate for linking x to y for the new value of
r(x , y , i). The generalization of the s-t reachability algorithm is now straightforward
and the pseudocode can be found in Algorithm 4.2.

4.4.3 Correctness

To establish the correctness of the algorithm we will show that

dG(s, t) ≤ δ(s, t) ≤ (1 + ϵ)2k+1dG(s, t) .

By running the whole algorithm with ϵ′ = ϵ/(4k + 2) (instead of ϵ), we then obtain a
(1 + ϵ)-approximation (see Lemma 4.4.7 below).

We will achieve this by showing that with the value of r(x , y, i) of a pair of
i-centers (x , y) the algorithm keeps track of the range of the distance from x to y.
In particular, we will show that dhiG (x , y) ≥ (1 + ϵ)r(x ,y,i) for every pair of i-centers
(x , y) and dG(x , y) ≤ (1 + ϵ)r(x ,y,i)+2i+1 for every pair of active i-centers (x , y) ∈ Ai .
Both inequalities are obtained by a “bottom up” analysis of the algorithm. In order
to prove the lower bound on dhiG (x , y) we have to show that the subgraph Q(x , y, i)
computed by the algorithm indeed contains the corresponding path union. In fact
those two invariants rely on each other and we will prove them mutually.

Lemma 4.4.4. Algorithm 4.2 correctly maintains the following invariants whp:

(I1) For every 1 ≤ i ≤ k and every pair of i-centers (x , y),

dhiG (x , y) ≥ (1 + ϵ)r(x ,y,i) .

(I2) For every 1 ≤ i ≤ k and every pair of active i-centers (x , y) ∈ Ai ,

𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) ⊆ Q(x , y, i) .

Proof. Both invariants trivially hold directly before the first refresh in Line 36 of the
initialization is called because we set r(x , y, i) = 0 for all 1 ≤ i ≤ k and no pairs of
centers are active yet.

We first give a proof of Invariant (I1). As distances are non-decreasing in G
we only have to argue that the invariant still holds after each time the algorithm
changes the value of r(x , y , i). The only place where r(x , y , i) is changed is in Line 8
(where it is increased by 1) and if this line is reached the condition

d ̃Ghi ,r(x ,y,i)|Q(x ,y,i)(x , y) > (1 + ϵ)r(x ,y,i)+2

holds.

156 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Algorithm 4.2: Algorithm for decremental approximate s-t shortest path
1 Procedure Refresh(x , y , i)
2 RemoveChildren(x , y , i)
3 if i = k + 1 then
4 Compute shortest path π from s to t in G and set δ(s, t) ← (1 + ϵ)2k+1dG(s, t)
5 else
6 Compute shortest path π from x to y in ̃Ghi ,r(x ,y,i)|Q(x , y , i)(x , y)
7 if d ̃Ghi ,r(x ,y ,i)|Q(x ,y,i)(x , y) > (1 + ϵ)r(x ,y,i)+2 then // Range has increased
8 r(x , y , i) ← r(x , y , i) + 1
9 l(x , y , i) ← 1

10 foreach (i + 1)-parent (x′, y′) of (x , y) do Refresh(x′, y′, i + 1)
11 break

12 Determine (i − 1)-centers v1, … , vl in order of appearance on π
13 foreach 1 ≤ j ≤ l − 1 do
14 Add (vj , vj+1) to Ai−1
15 Make (vj , vj+1) an (i − 1)-child of (x , y) and (x , y) an i-parent of (vj , vj+1)
16 if i ≥ 1 then
17 UpdateHubLinks(vj , vj+1, i − 1, r(vj , vj+1, i − 1))
18 if li(vj , vj+1) = |Bi| + 1 then
19 Q(vj , vj+1, i − 1) ←

𝒫 (vj , vj+1, (1 + ϵ)r(vj ,vj+1,i−1)+2i−1, ̃G8hi−1/ϵ,r(vj ,vj+1,i−1)|Q(x , y , i))
20 Refresh(vj , vj+1, i − 1)

21 Procedure UpdateHubLinks(x , y , i, r)
22 while l(x , y, i) ≤ |Bi| and

d ̃G8hi/ϵ,r(x ,y ,i)(x , bl(x ,y,i)) + d ̃G8hi/ϵ,r(x ,y,i)(bl(x ,y ,i), y) > (1 + ϵ)r(x ,y,i)+2i+1 do
23 l(x , y , i) ← l(x , y , i) + 1
24 if l(x , y , i) = |Bi| + 1 then
25 Let (x′, y′) be any (i + 1)-parent of (x , y)
26 Q(x , y, i) ← 𝒫 (x , y, (1 + ϵ)r(x ,y,i)+2i+1, ̃G8hi/ϵ,r(x ,y ,i)|Q(x′, y′, i + 1))

27 Procedure RemoveChildren(x , y , i)
28 foreach (i − 1)-child (x′, y′) of (x , y) do
29 Remove (x′, y′) from (i − 1)-children of (x , y) and (x , y) from i-parents of

(x′, y′)
30 if (x′, y′) has no i-parents anymore then
31 Remove (x′, y′) from Ai−1
32 if i ≥ 1 then RemoveChildren(x′, y′, i − 1)

33 Procedure Initialize()
34 foreach 1 ≤ i ≤ k and all i-centers (x , y) do r(x , y , i) ← 0, l(x , y , i) ← 1,

Q(x , y, i) ← ∅
35 foreach 1 ≤ i ≤ k do Ai ← ∅
36 Refresh(s, t , k + 1)
37 Procedure Delete(u, v)
38 foreach 1-parent (x , y) of (u, v) do Refresh(x , y , 1)
39 foreach 1 ≤ i ≤ k and (x , y) ∈ Ai do
40 UpdateHubLinks(x , y , i, r(x , y , i))
41 if l(x , y , i) = |Bi| + 1 then Refresh(x , y , i)

4.4. APPROXIMATE SHORTEST PATH 157

Suppose that in G there is a path π from x to y with at most hi edges and weight
less than (1 + ϵ)r(x ,y,i)+1. The weight of π in ̃Ghi ,r(x ,y,i) is

w ̃Ghi ,r(x ,y ,i)(π) ≤ wG(π) + hi ⋅
ϵ(1 + ϵ)r(x ,y,i)

hi
≤ (1 + ϵ)r(x ,y,i)+1 + ϵ(1 + ϵ)r(x ,y,i)

≤ (1 + ϵ)r(x ,y,i)+2

≤ (1 + ϵ)r(x ,y,i)+2i .

By Invariant (I2) all nodes of π are contained in Q(x , y, i). Therefore

d ̃Ghi ,r(x ,y,i)|Q(x ,y,i)(x , y) ≤ w ̃Ghi ,r(x ,y ,i)(π) ≤ (1 + ϵ)r(x ,y,i)+2

which contradicts the assumption that the algorithm has reached Line 8. Thus,
the path π does not exist and it follows that dhiG (x , y) ≥ (1 + ϵ)r(x ,y,i)+1 as desired.
Therefore Invariant (I1) still holds when the algorithm increases the value of r(x , y , i)
by 1.

We now give a proof of Invariant (I2). The proof is by induction on i. There are
two places in the algorithm where the value of Q(x , y, i) is changed: Line 19 and
Line 26. Note that r(x , y , i) is non-decreasing and l(x , y , i) decreases only if r(x , y , i)
increases. Therefore, for a fixed value of r(x , y, i), the algorithm will “recompute”
Q(x , y , i) in Line 19 only if it has “initialized” it in Line 26 before.

Consider first the case that Q(x , y, i) is “initialized” (Line 26) and let (x′, y′) be
the (i +1)-parent of (x , y) used in this computation. If i ≤ k −1, then by the induction
hypothesis we know that

𝒫 8hi+1/ϵ(x′, y′, (1 + ϵ)r(x′,y′,i+1)+2(i+1),G) ⊆ Q(x′, y′, i + 1) . (4.7)

If i = k, then this inclusion also holds because in that case x′ = s and y′ = t (as s
and t are the only (k + 1)-centers) and we have set Q(s, t , k + 1) = V . We will show
below that, at the last time the algorithm has called Refresh(x′, y′, i + 1) (where it
sets (x , y) as an i-child of (x′, y′) and (x′, y′) as an (i + 1)-parent of (x , y)), we have

𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) ⊆ 𝒫 8hi+1/ϵ(x′, y′, (1 + ϵ)r(x′,y′,i+1)+2(i+1),G)

and thus (together with (4.7))

𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) ⊆ Q(x′, y′, i + 1) . (4.8)

As distances in G are non-decreasing, (4.8) will still hold at the time the algorithm
sets

Q(x , y , i) = 𝒫 (x , y, (1 + ϵ)r(x ,y,i)+2i+1, ̃G8hi/ϵ,r(x ,y,i)|Q(x′, y′, i + 1)) . (4.9)

according to Line 26. By Lemma 4.4.3, (4.8) will imply that

𝒫 8hi/ϵ(x , y , (1 + ϵ)r(x ,y,i)+2i ,G)
⊆ 𝒫 (x , y , (1 + ϵ)r(x ,y,i)+2i+1, ̃G8hi/ϵ,r(x ,y,i)|Q(x′, y′, i + 1)) = Q(x , y , i)

158 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

as desired. Note again that, since distances in G are nondecreasing, the inclusion
𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) ⊆ Q(x , y, i) will then continue to hold until Q(x , y, i)
is “recomputed” (Line 19) for the first time. Whenever this happens, it will set new
the value of Q(x , y , i) equal to 𝒫 (x , y , (1 + ϵ)r(x ,y,i)+2i+1, ̃G8hi/ϵ,r(x ,y,i)|Q(x , y , i)). Thus,
by Lemma 4.4.3 we will again have 𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) ⊆ Q(x , y, i) as
demanded by Invariant (I2).

It remains to show that at the last time the algorithm has called Refresh(x′, y′,
i + 1) and sets (x′, y′) as an (i + 1)-parent of (x , y), we have

𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) ⊆ 𝒫 8hi+1/ϵ(x′, y′, (1 + ϵ)r(x′,y′,i+1)+2(i+1),G) .

Let π ′ denote the shortest path from x′ to y′ in ̃Ghi+1,r(x′,y′,i+1)|Q(x′, y′, i + 1)
computed at the beginning of the last execution of Refresh(x′, y′, i + 1). To
enhance the readability of this part of the proof we use the abbreviation H =

̃Ghi+1,r(x′,y′,i+1)|Q(x′, y′, i + 1). By the if-condition in Line 7 we know that w(π ′,H) =
dH (x′, y′) ≤ (1 + ϵ)r(x′,y′,i+1)+2.

Consider some node v ∈ 𝒫 8hi/ϵ(x , y, (1 + ϵ)r(x ,y,i)+2i ,G) which means that v
lies on a path π from x to y in G that has at most 8hi/ϵ edges and weight at most
(1+ϵ)r(x ,y,i)+2i . Remember that x and y are consecutive i-centers on π ′. Let π ′

1 and π ′
2

denote the subpaths of π ′ from x′ to x and y to y′, respectively. The concatenation
π″ = π ′

1 ∘ π ∘ π ′
2 is a path from x to y in G. We will show that π″ has at most 8hi+1/ϵ

edges and weight at most (1 + ϵ)r(x′,y′,i+1)+2(i+1). This then proves that all nodes on π
are contained in 𝒫 8hi+1/ϵ(x , y, (1 + ϵ)r(x′,y′,i+1)+2(i+1),G).

As 2hi ≤ hi+1, the number of edges of π is at most 8hi/ϵ ≤ 4hi+1/ϵ. Remember
that the edge weights of H are multiples of ϵ(1 + ϵ)r(x′,y′,i+1)/hi+1. Thus, each edge
of H has weight at least ϵ(1 + ϵ)r(x′,y′,i+1)/hi+1. As the weight of π ′ in H is at most
(1 + ϵ)r(x′,y′,i+1)+2, the number of edges of π ′ is at most

(1 + ϵ)r(x′,y′,i+1)+2hi+1
ϵ(1 + ϵ)r(x′,y′,i+1) =

(1 + ϵ)2hi+1
ϵ

≤
4
ϵ

.

It follows that the number of edges of π″ is at most 4hi+1/ϵ + 4hi+1/ϵ = 8hi+1/ϵ.
By Invariant (I1) we have dhiG (x , y) ≥ (1 + ϵ)r(x ,y,i) and thus

wG(π) ≤ (1 + ϵ)r(x ,y,i)+2i ≤ (1 + ϵ)2idhiG (x , y) .

By the initial random sampling of i-centers, every shortest path consisting of hi − 1
edges contains an i-center whp (Lemma 1.3.2). Thus, the subpath of π ′ from x to y
has at most hi edges. Since π ′ is a shortest path in H we have dH (x , y) = dhiH (x , y).
It follows that

wG(π) ≤ (1 + ϵ)2idhiG (x , y) ≤ (1 + ϵ)2idhiG|Q(x′,y′,i+1)(x , y) ≤ (1 + ϵ)2idhiH (x , y)

= (1 + ϵ)2idH (x , y) .

4.4. APPROXIMATE SHORTEST PATH 159

Furthermore we have dH (x′, y′) = dH (x′, x) + dH (x , y) + dH (and in particular
dH (x , y) ≤ dH (x′, y′)). As wG(π ′

1) ≤ dH (x′, x) and wG(π ′
2) ≤ dH (y, y′) the weight of

the path π″ in G can be bounded as follows:

wG(π″) = wG(π ′
1) + wG(π ′

2) + wG(π)
≤ dH (x′, x) + dH (y, y′) + wG(π)
≤ dH (x′, y′) − dH (x , y) + wG(π)
≤ dH (x′, y′) − dH (x , y) + (1 + ϵ)2idH (x , y)
= dH (x′, y′) + ((1 + ϵ)2i − 1)dH (x , y)
≤ dH (x′, y′) + ((1 + ϵ)2i − 1)dH (x′, y′)
= (1 + ϵ)2idH (x′, y′)

≤ (1 + ϵ)2i(1 + ϵ)r(x′,y′,i+1)+2

= (1 + ϵ)r(x′,y′,i+1)+2(i+1)

Lemma 4.4.5. For every 1 ≤ i ≤ k and every active pair of i-centers (x , y) ∈ Ai we
have dG(x , y) ≤ (1 + ϵ)r(x ,y,i)+2i+1 whp after the algorithm has finished its updates.

Proof. The proof is by induction on i. If l(x , y, i) ≤ |Bi|, then there is some i-hub z
that links x to y. By the triangle inequality we then have

dG(x , y) ≤ dG(x , z) + dG(z, y)
≤ d ̃G8hi/ϵ,r(x ,y,i)(x , z) + d ̃G8hi/ϵ,r(x ,y,i)(z, y)
≤ (1 + ϵ)r(x ,y,i)+2i+1 .

If l(x , y, i) = |Bi| + 1, then consider the last time the algorithm has called Re-
fresh(x , y, i). Let G′ and Q′(x , y, i) denote the versions of G and Q(x , y, i) at
the beginning of the refresh operation and let π be the shortest path from x to y
in (̃G′)hi ,r(x ,y,i)|Q′(x , y, i) computed by the algorithm. To enhance readability we
set H = (̃G′)hi ,r(x ,y,i)|Q′(x , y, i) in this proof. The algorithm ensures that dH (x , y) ≤
(1 + ϵ)r(x ,y,i)+2 as otherwise, by the if-condition in Line 7, (x , y) would have either be-
come inactive (i.e., removed from Ai) or the algorithm would have called Refresh(x ,
y, i) again. Let v1, … , vl denote the (i − 1)-centers in order of appearance on π , i.e.,
dH (x , y) = ∑1≤j≤l−1 dH (vj , vj+1).

If i = 1, then remember that the set of 0-centers is equal to V . Note that no
edge (u, v) of π has been deleted from G since the last time the algorithm has called
Refresh(x , y, i) because (x , y) is a 1-parent of (u, v). Therefore all edges of π still
exist in G. Since r(x , y, i) is non-decreasing this means that dG(x , y) ≤ dH (x , y) ≤
(1 + ϵ)r(x ,y,i)+2 as desired.

If i ≥ 2, then let 1 ≤ j ≤ l − 1. First of all, note that the value of r(vj , vj+1, i) has
not changed since the last time the algorithm has called Refresh(x , y, i) because
otherwise after Line 8, the algorithmwould call Refresh(x , y , i) as (x , y) is an i-parent
of (vj , vj+1). Therefore, by Invariant (I1) of Lemma 4.4.4, we have dhi−1G′ (vj , vj+1) ≥
(1 + ϵ)r(vj ,vj+1,i−1). Note that H has the same nodes and edges as G′ and the weight of

160 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

each edge in H is at least its weight in G′. Therefore dhi−1H (vj , vj+1) ≥ dhi−1G′ (vj , vj+1) and
thus dhi−1H (vj , vj+1) ≥ (1+ϵ)r(vj ,vj+1,i−1). By the initial random sampling of (i−1)-centers,
every shortest path consisting of hi−1 − 1 edges contains an (i − 1)-center whp
(Lemma 1.3.2). Thus, the subpath of π from vj to vj+1 has at most hi−1 edges which
means that dH (vj , vj+1) = dhi−1H (vj , vj+1) ≥ (1 + ϵ)r(vj ,vj+1,i−1).

By the induction hypothesis we have dG(vj , vj+1) ≤ (1 + ϵ)r(vj ,vj+1,i−1)+2(i−1)+1 in
the current version of G, which by the argument above implies that dG(vj , vj+1) ≤
(1 + ϵ)2(i−1)+1dH (vj , vj+1). Thus, by the triangle inequality we get

dG(x , y) ≤ ∑
1≤j≤l−1

dG(vj , vj+1)

≤ ∑
1≤j≤l−1

(1 + ϵ)2(i−1)+1dH (vj , vj+1)

= (1 + ϵ)2i−1dH (x , y)
≤ (1 + ϵ)2i−1(1 + ϵ)r(x ,y,i)+2

= (1 + ϵ)2i+1

as desired.

Lemma 4.4.6. After the algorithm has finished its updates we have dG(s, t) ≤ δ(s, t) ≤
(1 + ϵ)k+1dG(s, t) whp.

Proof. Consider the last time the algorithm has called Refresh(s, t , k + 1). Let G′

denote the versions of G at the beginning of the refresh operation and let π be
the shortest path from x to y in G computed by the algorithm. Note that δ(s, t) =
(1 + ϵ)2k+1dG′(s, t). As distances are non-decreasing under deletions in G we trivially
have δ(s, t) ≤ (1 + ϵ)k+1dG(s, t).

Let v1, … , vl denote the k-centers in order of appearance on π , i.e., dG′(x , y) =
∑1≤j≤l−1 dG′(vj , vj+1), and let 1 ≤ j ≤ l − 1. The value of r(vj , vj+1, k) has not changed
since the last time the algorithm has called Refresh(x , y , i) because otherwise after
Line 8, the algorithm would call Refresh(s, t , k) as (s, t) is a (k +1)-parent of (vj , vj+1).
By Lemma 4.4.4, we have dhkG′(vj , vj+1) ≥ (1 + ϵ)r(vj ,vj+1,k) and by Lemma 4.4.5 we have
dG(vj , vj+1) ≤ (1 + ϵ)r(vj ,vj+1,k)+2k+1. It follows that dG(vj , vj+1) ≤ (1 + ϵ)2k+1dG′(vj , vj+1).

By the initial random sampling of k-centers, every shortest path consisting of
hk − 1 edges contains a k-center whp (Lemma 1.3.2). Thus, the subpath of π from vj
to vj+1 has at most hk edges which means that dG′(vj , vj+1) = dhkG′(vj , vj+1). Thus, by
the triangle inequality we get

dG(s, t) ≤ ∑
1≤j≤l−1

dG(vj , vj+1)

≤ ∑
1≤j≤l−1

(1 + ϵ)2k+1dG′(vj , vj+1)

= (1 + ϵ)2k+1dG′(s, t)
= δ(s, t)

4.4. APPROXIMATE SHORTEST PATH 161

Lemma 4.4.7. For all 0 ≤ x ≤ 1 and all y > 0,

(1 +
x
2y)

y

≤ 1 + x .

Proof. Let e denote Euler’s constant. We will use the following well-known inequal-
ities: (1 + 1/z)z ≤ e (for all z > 0), ez ≤ 1/(1 − z) (for all z < 1), and 1/(1 − z) ≤ 1 + 2z
(for all 0 ≤ z ≤ 1/2). We then get:

(1 +
x
2y)

y

=
⎛
⎜
⎜
⎝
(1 +

x
2y)

2y
x ⎞

⎟
⎟
⎠

x

2

≤ e
x

2 ≤
1

1 − x

2

≤ 1 + x .

4.4.4 Running Time

The running time analysis follows similar arguments as for the s-t reachability
algorithm in Section 4.3.3. For every pair of i-centers (x , y), the algorithm never de-
creases r(x , y , i) and (x , y) causes a refresh only if r(x , y , i) increases, which happens
O(logW /ϵ) times. Furthermore it can be argued in a straightforward way that for
every 1 ≤ i ≤ k+1 and every pair of i-centers (x , y) the graph G|Q(x , y , i) has at most
min(m/bi , n2/b2i) edges whp. Now the only differences compared to the running time
analysis of the s-t reachability algorithm are the number of path unions of active
pairs of centers each node is contained in and the time needed for maintaining the
hub links, both of which are analyzed below.

Lemma 4.4.8. Let 1 ≤ i ≤ k and consider a pair of active (i + 1)-centers (x′, y′)
and their i-children (xj , yj)1≤j≤l (which are active i-centers). Then, for every node v,
there are at most q = 22i+2⌈log1+ϵ(nW)⌉ pairs of i-children (xj , yj) of (x′, y′) such that
v ∈ Q(xj , yj , i).

Proof. We show that at the last time the algorithm has called Refresh(x′, y′, i +
1) (where it determined the current i-children of (x′, y′)) there are at most q =
22i+2⌈log1+ϵ(nW)⌉ pairs of i-children (xj , yj) of (x′, y′) such that

v ∈ 𝒫 (xj , yj , (1 + ϵ)r(xj ,yj ,i)+2i+1, ̃G8hi/ϵ,r(xj ,yj ,i)|Q(x′, y′, i + 1)) .

Note that, for each 1 ≤ i ≤ l , r(xj , yj , i) has not changed since the last refresh (as such
a change implies refreshing (x′, y′)). Thus, for each 1 ≤ i ≤ l, Q(xj , yj , i) is a subset
of the path union above, which means that the lemma will be implied by this claim.
Now we actually prove the following slightly stronger claim: for every every node v
and every 0 ≤ r ≤ ⌊log1+ϵ(nW)⌋ , there are at most q′ = 22i+2 pairs of i-children
(xj , yj) of (x′, y′) such that

v ∈ 𝒫 (xj , yj , (1 + ϵ)r+2i+1, ̃G8hi/ϵ,r |Q(x′, y′, i + 1)) and dhiG (xj , yj) ≥ (1 + ϵ)r .

In this proof we use the abbreviation H = ̃G8hi/ϵ,r |Q(x′, y′, i + 1). Suppose that v
is contained in q′ > 22i+2 path unions 𝒫 (xj , yj , (1 + ϵ)r+2i+1,H) of i-children (xj , yj)

162 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

such that dhiG (xj , yj) ≥ (1 + ϵ)r . Let j1, … , jq′ be the corresponding indices and assume
without loss of generality that j1 < j2… < jq′ . By the initial random sampling of
i-centers, every shortest path consisting of hi − 1 edges contains an i-center whp
(Lemma 1.3.2). Therefore, for every 1 ≤ j ≤ l, there is a shortest path between xj
and yj in H with at most hi edges, i.e., dH (xj , yj) = dhiH (xj , yj). Furthermore, for every
j ∈ {j1, … , jq′}, we have dhiG (xj , yj) ≥ (1 + ϵ)r by our assumption and thus

dH (xj1 , yjq′) ≥ ∑
j∈{j1,…,jq′}

dH (xj , yj) = ∑
j∈{j1,…,jq′}

dhiH (xj , yj)

≥ ∑
j∈{j1,…,jq′}

dhiG (xj , yj) ≥ ∑
j∈{j1,…,jq′}

(1 + ϵ)r = q′(1 + ϵ)r (4.10)

We now derive an upper bound on dH (xj1 , yjq′) contradicting this lower bound.
Since v is contained in the path union 𝒫 (xj , yj , (1 + ϵ)r+2i+1,H), we know by the
definition of the path union that v lies on a shortest path from xj1 to yj1 in H of
weight at most (1 + ϵ)r+2i+1 and thus dH (xj1 , v) ≤ (1 + ϵ)r+2i+1. The same argument
shows that dH (v , yjq′) ≤ (1 + ϵ)r+2i+1. By the triangle inequality we therefore have

dH (xj1 , yjq′) ≤ dH (xj1 , v) + dH (v , yjq′) ≤ 2(1 + ϵ)r+2i+1 (4.11)

By combining Inequalities (4.10) and (4.11) we get q′ ≤ 2(1 + ϵ)2i+1, which is a
contradictory statement for q′ > 22i+2 because ϵ ≤ 1. Thus, v is contained in at
most q′ = 22i+2 path unions 𝒫 (xj , yj , (1 + ϵ)r ,H) of i-children (xj , yj) such that
dhiG (xj , yj) ≥ (1 + ϵ)r .

We now bound the time needed for maintaining the hub links as follows. For
every i-hub z (with 1 ≤ i ≤ k) and every 0 ≤ r ≤ log1+ϵ(nW) we maintain both an
incoming and an outgoing ES-tree up to depth (1+ϵ)r+2i+1 in ̃G8hi/ϵ,r . In ̃G8hi/ϵ,r every
edge weight is a multiple of ρ = ϵ2(1 + ϵ)r /(8hi) and thus we can scale down the edge
weights by the factor 1/ρ and maintain the ES-tree in the resulting integer-weighted
graph up to depth

(1 + ϵ)r+2i+1

ρ
≤
22k+1(1 + ϵ)r

ρ
=
22k+1(1 + ϵ)r8hi

ϵ2(1 + ϵ)r
= O(22khi/ϵ2) .

Thus, maintaining these two trees takes time O(22kmhi/ϵ2) which is O(22kmn/(ciϵ2))
as hi = n/ci . As we have O(log1+ϵ(nW)) = ̃O(logW /ϵ) such trees for every i-hub
and there are ̃O(bi) i-hubs in expectation, maintaining all these trees takes time

̃O(∑1≤i≤k 2
2kbimn logW /(ciϵ3)) in expectation.

We now bound the time needed for maintaining the index l(x , y , i) for every pair
of i-centers (x , y). First, observe that l(x , y , i) assumes integer values from 1 to |Bi|
(the number of i-hubs) and it only decreases (to 0) if r(x , y, i) increases. The index
r(x , y , i) on the other hand is non-decreasing and assumes integer values from 0 to
⌈log1+ϵ(nW)⌉ = ̃O(logW /ϵ). As |Bi| = ̃O(bi) in expectation, the value of l(x , y, i)

4.4. APPROXIMATE SHORTEST PATH 163

therefore changes ̃O(bi logW /ϵ) times. As there are ̃O(2kci) i-centers in expectation,
the indices of all pairs of centers together change at most ̃O(∑1≤i≤k 2

2kbic2i logW /ϵ)
times. It remains to bound the time spent in total for calls of the form Update-
HubLinks(x , y , i, r) in which the index l(x , y , i) does not increase but the algorithm
still spends constant time for checking whether l(x , y, i) should increase. In such
a case we charge the running time to the pair of i-centers (x , y). Note that the call
UpdateHubLinks(x , y , i, r) has either happened because (x , y) is made an i-child of
some pair of i + 1-centers or because (x , y) is an active pair of i-centers (i.e., in Ai)
after the deletion of a node. We only have to focus on the second case because in
the first case the charge of O(1) on (x , y) can be neglected. As argued above, at any
time, there are at most O(qk log1+ϵ(nW)) active i-centers. Furthermore, there are at
most m deletions in G. Therefore the total time needed for maintaining all indices
l(x , y , i) is ̃O(∑1≤i≤k 2

2kbic2i logW /ϵ + qkm logW + ϵ).
Putting everything together, the total running time of our algorithm using k

layers is

̃O
(∑

1≤i≤k

bic2i logW
ϵ

+ ∑
1≤i≤k

bimn logW
ciϵ3

+ q2km ⋅ min(
m
b1
,
n2

b21)

+ ∑
1≤i≤k−1

q2kc2i min(
m
bi+1

,
n2

b2i+1) + 22kq2kc2km)

where q = 22k+2⌊log1+ϵ W ⌉. Assuming that W ≤ 2log
c n and ϵ ≥ 1/ logc n and setting

k = ⌊log1/4 n⌋ we get 2kq = O(nO(log log n/ log1/4 n)) = O(no(1)). We now simply set the
parameters bi ≤ n and ci ≤ n for each 1 ≤ i ≤ k in the same way as in Section 4.3.3 to
obtain the same asymptotic running time (in terms of polynomial factors) as for the
s-t reachability algorithm.

Theorem 4.4.9. For every W ≥ 1 and every 0 < ϵ ≤ 1 such that W ≤ 2log
c n and

ϵ ≥ 1/ logc n for some constant c, there is a decremental (1 + ϵ)-approximate stSP
algorithm with constant query time and expected update time

O(min(m5/4n1/2+o(1),m2/3n4/3+o(1))) = O(mn6/7+o(1))

that is correct with high probability against an oblivious adversary.

Similar to the s-t reachability algorithm we can extend the (1 + ϵ)-approximate
stSP algorithm in the following ways.

Corollary 4.4.10. For every W ≥ 1 and every 0 < ϵ ≤ 1 such that W ≤ 2log
c n and

ϵ ≥ 1/ logc n for some constant c, there is a decremental (1 + ϵ)-approximate algorithm
for maintaining shortest paths between p source-sink pairs with constant query time
and expected update time

O(min(p1/2m5/4n1/2+o(1), p1/3m2/3n4/3+o(1)))

that is correct with high probability against an oblivious adversary.

164 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Corollary 4.4.11. For every W ≥ 1 and every 0 < ϵ ≤ 1 such that W ≤ 2log
c n and

ϵ ≥ 1/ logc n for some constant c, there is a decremental (1 + ϵ)-approximate SSSP
algorithm with constant query time and expected update time

O(min(m7/6n2/3+o(1),m3/4n5/4+o(1))) = O(mn9/10+o(1))

that is correct with high probability against an oblivious adversary.

4.5 Faster Single-Source Reachability in Dense Graphs

In this section we first introduce a path union data structure that is more efficient
than the naive approach for repeatedly computing path unions between one fixed
node and other variable nodes. We then show how to combine it with a multilayer
approach to obtain a faster decremental single-source reachability algorithm for
dense graphs.

4.5.1 Approximate Path Union Data Structure

In the following we present a data structure for a graph G undergoing edge deletions,
a fixed node x and a parameter h. It has a procedure ApproximatePathUnion(y).
When this procedure is called for any node y, it computes an “approximation” of
the path union 𝒫 (x , y, h,G). Using a simple static algorithm a path union can be
computed in timeO(m) for each pair (x , y). We give an (almost) output-sensitive data
structure for this problem, i.e., using our data structure the time will be proportional
to the size of G|𝒫 (x , y, h,G) which might be o(m). Additionally, we have to pay a
global cost of O(m) that is amortized over all approximate path union computations
for the node x and all nodes y. This will be useful because in our reachability
algorithm we can use probabilistic arguments to bound the size of the path union
we want to compute.

Algorithm Description

Internally, the data structure maintains a set R(x) of nodes such that the following
invariant is fulfilled at any time: all nodes that can be reached from x by a path
of length at most h are contained in R(x) (but R(x) might contain other nodes as
well). Observe that thus R(x) contains the path union 𝒫 (x , y , h,G) for every node y .
Given some node y , the path union 𝒫 (x , y , h,G) can be computed on the subgraph
of G induced by R(x) as follows. We first determine all nodes that are at distance
at most h to y using breadth-first-search (BFS). Then, on the subgraph induced by
these nodes, we run a second BFS to determine all nodes that are at distance at most
h from x . The nodes visited by the second BFS are exactly the nodes in the path
union 𝒫 (x , y , h,G).

The running time of this algorithm would be proportional to the number of edges
of the subgraph induced by the first BFS. However, we only want to charge time
proportional to the number of edges of the subgraph induced by the second BFS,

4.5. FASTER SINGLE-SOURCE REACHABILITY IN DENSE GRAPHS 165

which is usually smaller. In our new algorithm we solve this problem by charging
the additional work to a set of nodes that will be removed from R(x) and thus will
never be visited anymore in any future path union computation. The algorithm
ensures that this set only contains nodes that can safely be removed, i.e., nodes that
will never be contained in any path union 𝒫 (x , y, h,G) for some node y anymore.
For this charging scheme to work the algorithm has to make sure that the number
of nodes removed from R(x) (more specifically its number of incident edges) is large
enough. As long as this is not the case, the algorithm redoes the computation and
each time allows an additional h in the depth of the first BFS. Note that the result of
the algorithm might now contain more nodes than the actual path union. However,
we show that the depth required in the first BFS is at most O(h log n) and thus the
path union is approximated well enough. Procedure 4.3 shows the pseudocode of
the algorithm.

Procedure 4.3: ApproximatePathUnion(y)
// All calls of ApproximatePathUnion(y) use fixed x and h.

1 X0 ← ∅ and m0 ← 0
2 for i = 1 to ⌈logm⌉ + 1 do
3 Compute Bi = {v ∈ R(x) ∣ dG|R(x)(v , y) ≤ ih} // backward BFS to y in

subgraph induced by R(x)
4 Compute Fi = {v ∈ Bi ∣ dG|Bi(x , v) ≤ h} // forward BFS from x in

subgraph induced by Bi
5 Xi ← Bi ⧵ Fi
6 mi ← |E(Bi ,Bi)|
7 if mi ≤ 2mi−1 then
8 Remove Xi−1 ∩ Xi from R(x)
9 return Fi

Correctness

For the algorithm to be correct we have to argue that the algorithm returns a set of
nodes Fi that approximates the path union 𝒫 (x , y, h,G). Here, approximating the
path union means that 𝒫 (x , y , h,G) ⊆ Fi and furthermore that for every node v ∈ Fi
the shortest path from x to y through v has length O(h log n).

Observe first that Bi ⊆ Bi+1 and Fi ⊆ Fi+1 for all 1 ≤ i ≤ ⌈logm⌉. However it is
not necessarily the case that Xi ⊆ Xi+1. We now show the invariant that the set R(x)
always contains all nodes that are at distance at most h from x . This is true initially
as we initialize R(x) to be the full graph G and we now show that it remains true
because we only remove nodes with distance more than h from x . The argument is
as follows: Consider a node v ∈ Xi−1 ∩ Xi (which is necessary for v to be removed).
(a) From v ∈ Xi−1 ⊆ Bi−1 we know that there exists a path of length at most (i − 1)h
from v to y in R(x). (b) From v ∈ Xi we know that v ∉ Fi , i.e., there is no path from
x to v of length at most h in Bi , which implies that there is no path from x to y

166 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

through v of length at most ih in R(x). From (a) and (b) it follows that there is no
path from x to v of length at most h in R(x). By the invariant any such path of G
would be contained in R(x). Therefore it follows that no such path exists in G. Thus,
we have proved the following lemma.

Lemma 4.5.1. Let 1 ≤ i ≤ ⌈logm⌉ + 1 and assume that R(x) contains every node v
such that dG(x , v) ≤ h. Then for every node v ∈ Xi−1 ∩ Xi , we have dG(x , v) > h.

We now complete the correctness proof by first showing that the set of nodes
returned by the algorithm approximates the path union.

Lemma 4.5.2. Procedure 4.3 returns a set of nodes Fi∗ such that 𝒫 (x , y, h,G) ⊆ Fi∗ ,
where i∗ denotes the final value of i in the algorithm.

Proof. We first argue that the algorithm actually returns some set of nodes Fi∗ . If
m1 = 0, the algorithm returns the set F1 (as m0 = 0). If m1 ≥ 1, the algorithm
guarantees that mi∗ ≥ 2i

∗−1. As mi∗ counts the size of a set of edges and the total
number of edges is at most m, the condition mi ≤ 2mi−1 must eventually be fulfilled
for some 2 ≤ i ≤ ⌈logm⌉ + 1.

Note that Fj ⊆ Fj+1 for every 1 ≤ j ≤ i∗ − 1. Therefore it is sufficient to show that
𝒫 (x , y , h,G) ⊆ F1 . Let v ∈ 𝒫 (x , y , h,G), which means that v lies on a path π from
x to y of length at most h. For every node v′ on π we have dG(x , v′) ≤ h, which by
the invariant means that v′ ∈ R(x). Thus, the whole path π is contained in G|R(x).
Therefore dG|R(x)(v′, y) ≤ h for every node v′ on π which means that π is contained
in G|B1. Then clearly we also have dG|B1(x , v) ≤ h which means that v ∈ F1.

Lemma 4.5.3. Let Fi∗ denote the set of nodes returned by Procedure 4.3. For every node
v ∈ Fi∗ , dG(x , v) + dG(v , y) ≤ (logm + 3)h.

Proof. By the definition of Fi∗ we have dG|Bi∗(x , v) ≤ h. Clearly, dG(x , v) ≤ dG|Bi∗(x , v)
and thus dG(x , v) ≤ h. As Fi∗ ⊆ Bi∗ we also have dG|Bi∗(v, y) ≤ ih ≤ (⌈logm⌉ + 1)h ≤
(logm + 2)h. Clearly, dG(v, y) ≤ dG|Bi∗(v, y) and thus dG(v, y) ≤ (logm + 2)h. It
follows that dG(x , v) + dG(v , y) ≤ (logm + 3)h.

Running Time Analysis

Lemma 4.5.4. The running time of Procedure 4.3 is

O(|E(Fi∗ , Fi∗)| + |E(Xi∗−1 ∩ Xi∗ , R(x))| + |E(R(x),Xi∗−1 ∩ Xi∗)|)

where i∗ denotes the final value of i in the algorithm, Fi∗ is the set of nodes returned by
the algorithm, and Xi∗−1 ∩ Xi∗ is the set of nodes the algorithm removes from R(x).

Proof. The running time in iteration j ≤ i∗ is O(|E(Bj ,Bj)|) as this is the cost of the
breadth-first-search performed to compute Bj and the cost of the breadth-first search

4.5. FASTER SINGLE-SOURCE REACHABILITY IN DENSE GRAPHS 167

performed to compute Fj is dominated by this cost. In iteration i∗, the running time
is proportional to

|E(Bi∗ ,Bi∗)| + |E(Xi∗−1 ∩ Xi∗ , R(x))| + |E(R(x),Xi∗−1 ∩ Xi∗)|

as we additionally remove the nodes in Xi∗−1 ∩ Xi∗ from R(x). Thus the total running
time is proportional to

∑
1≤j≤i∗

|E(Bj ,Bj)| + |E(Xi∗−1 ∩ Xi∗ , R(x))| + |E(R(x),Xi∗−1 ∩ Xi∗)| .

Remember that mj = |E(Bj ,Bj)| for all 1 ≤ j ≤ i∗. By checking the size bound in
Line 7 of Procedure 4.3 we have mj > 2mj−1 for all 1 ≤ j ≤ i∗ − 1 and mi∗ ≤ 2mi∗−1.
By repeatedly applying the first inequality it follows that ∑1≤j≤i∗−1mj ≤ 2mi∗−1.
Therefore we get

∑
1≤j≤i∗

|E(Bj ,Bj)| = ∑
1≤j≤i∗

mj = ∑
1≤j≤i∗−1

mj +mi∗

≤ 2mi∗−1 + 2mi∗−1 = 4mi∗−1 = 4|E(Bi∗−1,Bi∗−1)|

and thus the running time is proportional to

E(Bi∗−1,Bi∗−1) + |E(Xi∗−1 ∩ Xi∗ , R(x))| + |E(R(x),Xi∗−1 ∩ Xi∗)| .

Now remember that Fi∗−1 ⊆ Fi∗ and Bi∗−1 ⊆ Bi∗ and observe that Bi∗−1 = (Xi∗−1∩Xi∗)∪Fi∗ :

(Xi∗−1 ∩ Xi∗) ∪ Fi∗ = (Xi∗−1 ∪ Fi∗) ∩ (Xi∗ ∪ Fi∗)
= (Bi∗−1 ⧵ Fi∗−1 ∪ Fi∗) ∩ (Bi∗ ⧵ Fi∗ ∪ Fi∗) = (Bi∗−1 ∪ Fi∗) ∩ Bi∗ = Bi∗ .

It follows that

E(Bi∗−1,Bi∗−1) ⊆ E(Fi∗ , Fi∗) ∪ E(Xi∗−1 ∩ Xi∗ ,Xi∗−1 ∩ Xi∗)
∪ E(Xi∗−1 ∩ Xi∗ , Fi∗) ∪ E(Fi∗ ,Xi∗−1 ∩ Xi∗)

⊆ E(Fi∗ , Fi∗) ∪ E(Xi∗−1 ∩ Xi∗ , R(x)) ∪ E(R(x),Xi∗−1 ∩ Xi∗) .

Therefore the running time is proportional to

|E(Fi∗ , Fi∗)| + |E(Xi∗−1 ∩ Xi∗ , R(x))| + |E(R(x),Xi∗−1 ∩ Xi∗)| .

As each node is removed from R(x) at most once, the time spent on all calls of
Procedure 4.3 is O(m) plus the sizes of the subgraphs induced by the approximate
path unions returned in each call.

168 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

4.5.2 Reachability via Center Graph

We now show how to combine the approximate path union data structure with a
hierarchical approach to get an improved decremental reachability algorithm for
dense graphs. The algorithm has a parameter 1 ≤ k ≤ log n and for each 1 ≤ i ≤ k a
parameter ci ≤ n. We determine suitable choices of these parameters in Section 4.5.2.
For each 1 ≤ i ≤ k − 1, our choice will satisfy ci ≥ ci+1 and ci = ̂O(ci+1). Furthermore,
we set hi = (3 + logm)i−1n/c1 for 1 ≤ i ≤ k. At the initialization, the algorithm
determines sets of nodes C1 ⊇ C2 ⊇ … ⊇ Ck such that s, t ∈ C1 as follows. For each
1 ≤ i ≤ k, we sample each node of the graph with probability aci ln n/n (for a large
enough constant a), where the value of ci will be determined later. The set Ci then
consists of the sampled nodes, and if i ≤ k − 1, it additionally contains the nodes
in Ci+1. For every 1 ≤ i ≤ k we call the nodes in Ci i-centers. In the following we
describe an algorithm for maintaining pairwise reachability between all 1-centers.

Algorithm Description

Data Structures The algorithm uses the following data structures:

• For every i-center x and every i ≤ j ≤ k an approximate path union data
structure (see Section 4.5.1) with parameter hj .

• For every k-center x an incoming and outgoing ES-tree of depth hk in G.

• For every pair of an i-center x and a j-center y such that l ∶= max(i, j) ≤ k − 1,
a set of nodes Q(x , y, l) ⊆ V . Initially, Q(x , y, l) is empty and at some point
the algorithm might compute Q(x , y , l) using the approximate path union data
structure of x .

• For every pair of an i-center x and a j-center y such that l ∶= max(i, j) ≤ k − 1
an ES-tree of depth hl from x in Q(x , y , l).

• For every pair of an i-center x and a j-center y such that l ∶= max(i, j) ≤ k − 1
a set of (l + 1)-centers certifying that x can reach y.

Certified Reachability Between Centers (Links) The algorithm maintains the
following limited path information between centers, called links, in a top-down
fashion. Let x be a k-center and let y be an i-center for some 1 ≤ i ≤ k − 1. The
algorithm links x to y if and only if y is contained in the outgoing ES-tree of depth
hk of x . Similarly the algorithm links y to x if and only if y is contained in the
incoming ES-tree of depth hk of x . Let x be an i-center and let y be a j-center such
that l ∶= max(i, j) ≤ k − 1. If there is an (l + 1)-center z such that x is linked to z and
z is linked to y, the algorithm links x to y (we also say that z links x to y or that
z certifies that x can reach y). Otherwise, the algorithm computes Q(x , y, l) using
the approximate path union data structure of x and starts to maintain an ES-tree
from x up to depth hl in G|Q(x , y, l). It links x to y if and only if y is contained in

4.5. FASTER SINGLE-SOURCE REACHABILITY IN DENSE GRAPHS 169

the ES-tree of x . Using a list of centers z certifying that x can reach y , maintaining
the links between centers is straightforward.

Center Graph The algorithm maintains a graph called center graph. Its nodes
are the 1-centers and it contains the edge (x , y) if and only if x is linked to y. The
algorithm maintains the transitive closure of the center graph. A query asking
whether a center y is reachable from a center x in G is answered by checking the
reachability in the center graph. As s and t are 1-centers this answers s-t reachability
queries.

Correctness

For the algorithm to be correct we have to show that there is a path from s to t in
the center graph if and only if there is a path from s to t in G. We will in fact show
in more generality that this is the case for any pair of 1-centers.

Lemma 4.5.5. For every pair of an i-center x and a j-center y , if x is linked to y , then
there is a path from x to y in G.

Proof. The proof is by induction on l = max(i, j). As x is linked to y, one of the
following three cases applies:

1. j = k and x is contained in the incoming ES-tree of depth hk of y in G.

2. i = k and y is contained in the outgoing ES-tree of depth hk of x in G.

3. There is an (l + 1)-center z such that x is linked to z and z is linked to y .

4. y is contained in the ES-tree of depth hl of x in G|Q(x , y, l).

In the first two cases there obviously is a path from x to y in G by the correctness of
the ES-tree. In the third case we may apply the induction hypothesis and find a path
from x to z as well as a path from z to y in G. The concatenation of these paths is a
path from x to y in G. In the fourth case we know by the correctness of the ES-tree
that there is a path from x to y in G|Q(x , y , l) and therefore also in G.

Lemma 4.5.6. For every pair of an i-center x and a j-center y , if dG(x , y) ≤ hl , then x
is linked to y .

Proof. Set l = max(i, j). If l = k, then assume that l = i (the proof for l = j is
symmetric). Since dG(x , y) ≤ hk , y is contained in the outgoing ES-tree of depth hk
of x by the correctness of the ES-tree. Thus, x is linked to y .

If l ≤ k − 1 and there is an (l + 1)-center z such that x is linked to z and z is
linked to y , then also x is linked to y . If this is not the case, then the algorithm has
computed Q(x , y, l) using the approximate path union data structure and at that
time we have 𝒫 (x , y, hl ,G) ⊆ Q(x , y, l) by Lemma 4.5.2. By Lemma 4.2.8 the set
Q(x , y, l) contains 𝒫 (x , y, hl ,G), also in the current version of G. As dG(x , y) ≤ hl ,

170 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

all nodes on the shortest path from x to y in G are contained in 𝒫 (x , y, hl ,G) and
thus in Q(x , y , l). Therefore the ES-tree from x up to depth hl in G|Q(x , y , l) contains
y which means that x is linked to y .

Lemma 4.5.7. For every pair of 1-centers x and y, there is a path from x to y in the
center graph if and only if there is a path from x to y in G.

Proof. Assume that there is a path from x to y in the center graph. Every edge
(x′, y′) in the center graph (where x′ and y′ are 1-centers) can only exist if the
algorithm has linked x′ to y′. By Lemma 4.5.5 this implies that there is a path from
x′ to y′ in G. By concatenating all these paths we obtain a path from x to y in G.

Now assume that there is a path from x to y in G. Consider the shortest path π
from x to y in G and any two consecutive 1-centers x′ and y′ on π . By the initial
random sampling of 1-centers, every shortest path consisting of h1 −1 edges contains
a 1-center whp (Lemma 1.3.2) and thus dG(x′, y′) ≤ h1. By Lemma 4.5.6 the algorithm
has linked x′ to y′ and thus there is an edge from x′ to y′ in the center graph. As
such an edge exists for all consecutive 1-centers on π , there is a path from x to y in
the center graph.

Running Time Analysis

The key to the efficiency of the algorithm is to bound the size of the graphs Q(x , y , l).

Lemma4.5.8. Let x be an i-center and let y be a j-center such that l ∶= max(i, j) ≤ k−1.
If x is not linked to y by an (l + 1)-center, then Q(x , y , l) contains at most n/cl+1 nodes
with high probability.

Proof. Suppose that Q(x , y , l) contains more than n/cl+1 nodes. Then by the random
sampling of centers, Q(x , y, l) contains an (l + 1)-center z with high probability by
Lemma 1.3.2. By Lemma 4.5.3 we have dG(x , z) + dG(z, y) ≤ (3 + logm)hl = hl+1 and
thus dG(x , z) ≤ hl+1 and dG(z, y) ≤ hl+1. It follows that x is linked to z and z is linked
to y by Lemma 4.5.6. But then x is linked to y, contradicting our assumption.

With the help of this lemma we first analyze the running time of each part of
the algorithm and argue that our choice of parameters gives the desired total update
time.

Parameter Choice We carry out the running time analysis with regard to two
parameters 1 ≤ b ≤ c ≤ n which we will set at the end of the analysis. We set

k =
⌈

log (c/b)

√log n ⋅ log log n⌉
+ 1

4.5. FASTER SINGLE-SOURCE REACHABILITY IN DENSE GRAPHS 171

ck = b and ci = 2√log n⋅log log nci+1 = ̂O(ci+1) for 1 ≤ i ≤ k − 1. Note that the number of
i-centers is ̃O(ci) in expectation. Observe that

(3 + logm)k−1 = O((log n)k) ≤ O((log n)√log n/ log log n)

= O(2√log n⋅log log n) = O(n√log log n/ log n) = O(no(1)) .

Furthermore we have

c1 = (2
√log n⋅log log n

)
k−1

ck ≥ 2log (c/b)b =
c
b
⋅ b = c

and by setting k′ = (log (c/b))/(√log n ⋅ log log n) we have k ≤ k′ + 2 and thus

c1 = (2
√log n⋅log log n

)
k−1

ck ≤ (2
√log n⋅log log n

)
k′+1

ck = 2√log n⋅log log nc = ̂O(c) .

Remember that hi = (3+logm)i−1n/c1 for 1 ≤ i ≤ k. Therefore we have hi = ̂O(n/c1) =
̂O(n/c).

Maintaining ES-Trees For every k-center we maintain an incoming and an out-
going ES-tree of depth hk , which takes time O(mhk). As there are ̃O(ck) k-centers,
maintaining all these trees takes time ̃O(ckmhk) = ̂O(bmn/c).

For every i-center x and every j-center y such that l ∶= max(i, j) ≤ k − 1, we
maintain an ES-tree up to depth hl in G|Q(x , y, l). By Lemma 4.5.8 Q(x , y, l) has at
most n/cl+1 nodes and thus G|Q(x , y, l) has at most n2/c2l+1 edges. Maintaining this
ES-tree therefore takes time O((n2/c2l+1) ⋅ hl) = ̂O(n2/c2l+1(n/c1)) = ̂O(n3/(c1c2l+1)). In
total, maintaining all these trees takes time

̂O
(∑

1≤i≤k−1
∑
1≤j≤i

cicj
n3

c1c2i+1)
= ̂O

(∑
1≤i≤k−1

∑
1≤j≤i

cic1n3

ci+1c1ck)

= ̂O
(∑

1≤i≤k−1
∑
1≤j≤i

n3

ck)
= ̂O (k2

n3

ck) = ̂O (
n3

b) .

Computing Approximate Path Unions For every i-center x and every i ≤ j ≤ k
we maintain an approximate path union data structure with parameter hj . As a
consequence of Lemma 4.5.4 this data structures has a total running time of O(m)
and an additional cost of O(|E(G|Qj(x , y))|) each time the approximate path union
Q(x , y, j) is computed for some j-center y. By Lemma 4.5.8 the number of nodes
of Q(x , y, j) is n/cj+1 with high probability and thus its number of edges is n2/c2j+1
Therefore, computing all approximate path unions takes time

̃O
(∑

1≤i≤k−1
∑
i≤j≤k

(cim + cicj
n2

c2j+1))
= ̃O

(∑
1≤i≤k−1

∑
i≤j≤k

(c1m +
c1cjn2

cj+1ck))

= ̂O
(∑

1≤i≤k−1
∑
i≤j≤k

(c1m +
c1n2

ck))
= ̂O(k2c1m + k2c1n2/ck) = ̂O(cm + cn2/b) .

172 CHAPTER 4. DECREMENTAL SSR AND SSSP ON DIRECTED GRAPHS

Maintaining LinksBetweenCenters For each pair of an i-center x and a j-center
y there are at most ̃O(cl+1) (l + 1)-centers that can possibly link x to y. Each such
(l + 1)-center is added to and removed from the list of (l + 1)-centers linking x
to y at most once. Thus, the total time needed for maintaining all these links is

̃O(∑1≤i≤k−1 ∑1≤j≤i cicjci+1) = ̃O(k2c31) = ̃O(c3).

Maintaining Transitive Closure in Center Graph The center graph has ̃O(c1)
nodes and thus ̃O(c21) edges. During the algorithm edges are only deleted from the
center graph and never inserted. Thus we can use known O(mn)-time decremental
algorithms for maintaining the transitive closure [90, 114] in the center graph in
time ̃O(c31) = ̃O(c3).

Total Running Time Since the term cn2/b is dominated by the term n3/b, we
obtain a total running time of ̂O (bmn/c + n3/b + cm + c3). By setting b = n5/3/m2/3

and c = n4/3/m1/3 the running time is ̂O(m2/3n4/3 + n4/m) and by setting b = n9/7/m3/7

and c = m1/7n4/7 the running time is ̂O(m3/7n12/7 +m8/7n4/7).

Decremental Single-Source Reachability

The algorithm above works for a set of randomly chosen centers. Note that the
algorithm stays correct if we add any number of nodes to C1, thus increasing the
number of 1-centers for which the algorithm maintains pairwise reachability. If the
number of additional centers does not exceed the expected number of randomly
chosen centers, then the same running time bounds still apply. Thus, from the
analysis above, we obtain the following result.

Theorem 4.5.9. Let S ⊆ V be a set of nodes. If |S| ≤ n4/3/m1/3, then there is a
decremental algorithm for maintaining pairwise reachability between all nodes in S
with constant query time and a total update time of ̂O(m2/3n4/3+n4/m). If |S| ≤ m1/7n4/7,
then there is a decremental algorithm for maintaining pairwise reachability between all
nodes in S with constant query time and a total update time of ̂O(m3/7n12/7 +m8/7n4/7).

Using the reduction of Theorem 4.2.14 this also gives us a single-source reacha-
bility algorithm.

Corollary 4.5.10. There is a decremental single-source reachability algorithm with
constant query time and a total update time of ̂O(m2/3n4/3 +m3/7n12/7).

Proof. First, set c1 = n4/3/m1/3 and observe that by Theorem 4.5.9 we have an algo-
rithm that can maintain reachability from a source to c1 sinks with a total update time
of ̂O(m2/3n4/3 + n4/m). By Theorem 4.2.14 this implies a decremental single-source
reachability algorithm with a total update time of ̂O(m2/3n4/3 + n4/m +mn/c1). The
same argument gives a decremental single-source reachability algorithm with a total
update time of ̂O(m3/7n12/7 +m8/7n4/7 +mn/c2) where c2 = m1/7n4/7.

4.6. CONCLUSION 173

Ifm ≥ n8/5 we havem2/3n4/3 ≤ n4/m andmn/c1 = m4/3/n1/3 ≤ m2/3n4/3. Ifm ≤ n8/5

we have m8/7n4/7 ≤ m3/7n12/7 and mn/c2 = m6/7/n3/7 ≤ m3/7n12/7. Thus, by running
the first algorithm if m ≥ n8/5 and the second one if m < n8/5 we obtain a total
update time of ̂O(m2/3n4/3 +m3/7n12/7) (Note that m3/7n12/7 ≤ m2/3n4/3 if and only if
m ≥ n8/5).

Furthermore, the reduction of Theorem 4.2.15 gives a decremental algorithm for
maintaining strongly connected components.

Corollary 4.5.11. There is a decremental SCC algorithm with constant query time
and expected update time

̂O(m2/3n4/3 +m3/7n12/7)

that is correct with high probability against an oblivious adversary.

4.6 Conclusion

In this chapter we have presented decremental algorithms for maintaining approx-
imate single-source shortest paths (and thus also single-source reachability) with
constant query time and a total update time of o(mn). This first step motivates the
search for faster and simpler algorithms for this problem. Further motivation comes
from the fact that decremental approximate SSSP in undirected graphs can be solved
with almost linear total update time (Chapter 3).

Given recent progress in lower bounds for dynamic graph problems [1, 70,
104], it might also be possible that an almost linear update time is not possible for
decremental approximate SSSP and SSR in directed graphs. However, it might be
challenging to prove this as all known constructions give the same lower bounds for
both the incremental and the decremental version of a problem. As incremental SSR
has a total update time of O(m) we cannot hope for lower bounds for decremental
SSR using these known techniques. This only leaves the possibility of finding a lower
bound for decremental approximate SSR or of developing stronger techniques. It also
motivates studying the incremental approximate SSSP problem which is intuitively
easier than its decremental counterpart, but no as easy as incremental SSR.

Finally, we ask whether it is possible to remove the assumption that the adversary
is oblivious, i.e., to allow an adaptive adversary that may choose each new update
or query based on the algorithm’s previous answers. This would automatically be
guaranteed by a deterministic algorithm.

CHAPTER 5
Sublinear-Time Maintenance of
Breadth-First Spanning Trees in

Partially Dynamic Networks

We study the problem of maintaining a breadth-first spanning tree (BFS tree) in
partially dynamic distributed networks modeling a sequence of either failures or
additions of communication links (but not both). We present deterministic (1 + ϵ)-
approximation algorithms whose amortized time (over some number of link changes)
is sublinear in D, the maximum diameter of the network.

Our technique also leads to a deterministic (1 + ϵ)-approximate incremental
algorithm for single-source shortest paths (SSSP) in the sequential (usual RAM)
model. Prior to our work, the state of the art was the classic exact algorithm of Even
and Shiloach [49] that is optimal under some assumptions [70, 115]. Our result is
the first to show that, in the incremental setting, this bound can be beaten in certain
cases if some approximation is allowed.

5.1 Introduction

Complex networks are among the most ubiquitous models of interconnections
between a multiplicity of individual entities, such as computers in a data center,
human beings in society, and neurons in the human brain. The connections between
these entities are constantly changing; new computers are gradually added to data
centers, or humans regularly make new friends. These changes are usually local as
they are known only to the entities involved. Despite their locality, they could affect
the network globally; a single link failure could result in several routing path losses
or destroy the network connectivity. To maintain its robustness, the network has to
quickly respond to changes and repair its infrastructure. The study of such tasks has

175

176 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

been the subject of several active areas of research, including dynamic, self-healing,
and self-stabilizing networks.

One important infrastructure in distributed networks is the breadth-first spanning
(BFS) tree [94, 105]. It can be used, for instance, to approximate the network diameter
and to provide a communication backbone for broadcast, routing, and control. In
this chapter, we study the problem of maintaining a BFS tree from a root node on
dynamic distributed networks. Our main interest is repairing a BFS tree as fast as
possible after each topology change.

Model We model the communication network by the CONGEST model [105],
one of the major models of (locality-sensitive) distributed computation. Consider a
synchronous network of processors modeled by an undirected unweighted graphG =
(V , E), where nodes model the processors and edges model the bounded-bandwidth
links between the processors. We let V and E denote the set of nodes and edges of
G, respectively, and let s be a specified root node. For any node u and v , we denote
by dG(u, v) the distance between u and v in G. The processors (henceforth, nodes)
are assumed to have unique IDs of O(log n) bits and infinite computational power.
Each node has limited topological knowledge; in particular, it only knows the IDs
of its neighbors and knows no other topological information (such as whether its
neighbors are linked by an edge or not). The communication is synchronous and
occurs in discrete pulses, called rounds. All the nodes wake up simultaneously at
the beginning of each round. In each round each node u is allowed to send an
arbitrary message of O(log n) bits through each edge (u, v) that is adjacent to u, and
the message will reach v at the end of the current round. There are several measures
to analyze the performance of such algorithms, a fundamental one being the running
time, defined as the worst-case number of rounds of distributed communication.

We model dynamic networks by a sequence of attack and recovery stages fol-
lowing the initial preprocessing. The dynamic network starts with a preprocessing
on the initial network denoted by G0, where nodes communicate on G0 for some
number of rounds. Once the preprocessing is finished, we begin the first attack stage
where we assume that an adversary, who sees the current network G0 and the states
of all nodes, inserts and deletes an arbitrary number of edges in G0. We denote the
resulting network by G1. This is followed by the first recovery stage where we allow
nodes to communicate on G1. After the nodes have finished communicating, the
second attack stage starts, followed by the second recovery stage, and so on. For any
algorithm, we let the total update time be the total number of rounds needed by nodes
to communicate during all recovery stages. Let the amortized update time be the
total time divided by q which is defined as the number of edges inserted and deleted.
Important parameters in analyzing the running time are n, the number of nodes
(which remains the same throughout all changes) and D, the maximum diameter,
defined to be the maximum diameter among all networks in {G0,G1, …}. If some
network Gt is not connected, we define its diameter as the diameter of the connected
component containing the root node. Note that D ≤ n according to this definition.

5.1. INTRODUCTION 177

Following the convention from the area of (sequential) dynamic graph algorithms,
we say that a dynamic network is fully dynamic if both insertions and deletions
can occur in the attack stages. Otherwise, it is partially dynamic. Specifically, if
only edge insertions can occur, it is an incremental dynamic network. If only edge
deletions can occur, it is decremental.

Our model highlights two aspects of dynamic networks: (1) How quickly a
network can recover its infrastructure after changes and (2) how edge failures and
additions affect the network. These aspects have been studied earlier but we are
not aware of any previous model identical to ours. To highlight these aspects, a
few assumptions are inherent in our model. First, it is assumed that the network
remains static in each recovery stage. This assumption is often used (e.g., [57, 84,
87, 96]) and helps to emphasize the running time aspect of dynamic networks. Also
note that we assume that the network is synchronous, but our algorithms will also
work in an asynchronous model under the same asymptotic time bounds, using a
synchronizer [11, 105]. Furthermore, we consider amortized update time which is
similar in spirit to the amortized communication complexity heavily studied earlier
(e.g., [13]). Finally, the results in this chapter are on partially dynamic networks.
While fully dynamic algorithms are more desirable, we believe that the partially
dynamic setting is worth studying, for two reasons. The first reason, which is our
main motivation, comes from an experience in the study of sequential dynamic
algorithms, where insights from the partially dynamic setting often lead to improved
fully dynamic algorithms. Moreover, partially dynamic algorithms can be useful
in cases where one type of changes occurs much more frequently than the other
type. For example, links constantly fail in physical networks, and it might not be
necessary that the network has to be fixed (by adding a link) immediately. Instead,
the network can try to maintain its infrastructures under a sequence of failures until
the quality of service cannot be guaranteed anymore, e.g., the network diameter
becomes too large. Partially dynamic algorithms for maintaining a BFS tree, which
in turn maintains the approximate network diameter, are quite suitable for this type
of applications.

Problem We are interested inmaintaining an approximate BFS tree. Our definition
of approximate BFS trees below is a modification of the definition of BFS trees in
[105, Definition 3.2.2].

Definition 5.1.1 (Approximate BFS tree). For any α ≥ 1, an α-approximate BFS tree
of a graph G with respect to a given root s is a spanning tree T such that for every node
v connected to s, dT (v , s) ≤ αdG(v , s). If α = 1, then T is an (exact) BFS tree.

Note that, for any spanning tree T of G, dT (v, s) ≥ dG(v, s). Our goal is to
maintain an approximate BFS tree Tt at the end of each recovery stage t in the sense
that every node v knows its approximate distance to the preconfigured root s in Gt
and, for each neighbor u of v , v knows if u is its parent or child in Tt . Note that for
convenience we will usually consider dG(v , s), the distance of v to the root, instead

178 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

of dG(s, v), the distance of v from the root. In an undirected graph both values are
the same.

Naive Algorithm As a toy example, observe that we can maintain a BFS tree
simply by recomputing a BFS tree from scratch in each recovery stage. By using the
standard algorithm (see, e.g., [94, 105]), we can do this in time O(Dt), where Dt is
the diameter of the graph Gt . Thus, the update time is O(D).

Results Our main results are partially dynamic algorithms that break the naive
update time of O(D) in the long term. They can maintain, for any constant 0 < ϵ ≤ 1,
a (1 + ϵ)-approximate BFS tree in time that is sublinear in D when amortized over
ω(n/D) edge changes. To be precise, the amortized update time over q edge changes
is

O (
n1/3D2/3

ϵ2/3q1/3) and O (
n1/5D4/5

ϵq1/5)

in the incremental and decremental setting, respectively. For the particular case
of q = Ω(n), we get amortized update times of O(D2/3/ϵ2/3) and O(D4/5/ϵ) for the
incremental and decremental cases, respectively. Our algorithms do not require any
prior knowledge about the dynamic network, e.g., D and q. We have formulated the
algorithms for a setting that allows insertions or deletions of edges. The guarantees
of our algorithms also hold when we allow insertions or deletions of nodes, where
the insertion of a node also inserts all its incident edges and the deletion of a node
also deletes all its incident edges. In the running time, the parameter q then counts
the number of node insertions or node deletions, respectively.

We note that, while there is no previous literature on this problem, one can
parallelize the algorithm of Even and Shiloach [49] (see also [79, 115]) to obtain an
amortized update time of O(nD/q+1) over q changes in both the incremental and the
decremental setting. This bound is sublinear in D when q = ω(n). Our algorithms
give a sublinear time guarantee for a smaller number of changes, especially in
applications where D is large. They are faster than the Even-Shiloach algorithm
when q = ω(ϵn√D) (incremental) and q = ω(ϵ7/12nD1/6) (decremental).

In the sequential (usual RAM) model, our technique also gives an (1 + ϵ)-approx-
imation algorithm for the incremental single-source shortest paths (SSSP) problem
with an amortized update time of O(mn1/4 log n/√ϵq) per insertion and O(1) query
time, where m is the number of edges in the final graph, and q is the number of edge
insertions. Prior to this result, only the classic exact algorithm of Even and Shiloach
[49] from the 80s, with O(mn/q) amortized update time, was known. No further
progress has been made in the last three decades. Roditty and Zwick [115] provided
an explanation for this by showing that the algorithm of Even and Shiloach [49]
is likely to be the fastest combinatorial exact algorithm, assuming that there is no
faster combinatorial algorithm for Boolean matrix multiplication. More recently
Henzinger et al. [70] showed that by assuming a different conjecture, called Online
Matrix-Vector Multiplication Conjecture, this statement can be extended to any

5.1. INTRODUCTION 179

algorithm (including non-combinatorial ones). Bernstein and Roditty [24] showed
that, in the decremental setting, this bound can be broken if some approximation is
allowed. Our result is the first one of the same spirit in the incremental setting; i.e.,
we break the bound of Even and Shiloach for the case q = o(n3/2), which in particular
applies when m = o(n3/2). The techniques introduced in this chapter (first presented
in the preliminary version [69]) together with techniques from Chapter 2 also led to
a decremental algorithm [63] that improves the result of [24]. We finally obtained a
near-optimal algorithm in the decremental setting [64] (see Chapter 3), which is a
significant improvement over [24]. We note that the algorithm in this chapter is still
the fastest deterministic algorithm when q = o(n3/2) (and thus when m = o(n3/2)). In
fact, there is no deterministic algorithm faster than Even and Shiloach’s algorithm,
even for some range of parameters, except this one.

Related Work The problem of computing on dynamic networks is a classic prob-
lem in the area of distributed computing, studied from as early as the 70s; see, e.g.,
[13] and references therein. The main motivation is that dynamic networks better
capture real networks, which experience failures and additions of new links. There
is a large number of models of dynamic networks in the literature, each empha-
sizing different aspects of the problem. Our model closely follows the model of
the sequential setting and, as discussed earlier, highlights the amortized update
time aspect. It is closely related to the model in [86] where the main goal is to
optimize the amortized update time using static algorithms in the recovery stages.
The model in [86] is still slightly different from ours in terms of allowed changes. For
example, the model in [86] considers weighted networks and allows small weight
changes but no topological changes; moreover, the message size can be unbounded
(i.e., the static algorithm in the recovery stage operates under the so-called LOCAL
model). Another related model the controlled dynamic model (e.g., [5, 85]) where
the topological changes do not happen instantaneously but are delayed until getting
a permit to do so from the resource controller. Our algorithms can be used in this
model as well since we can delay the changes until each recovery stage is finished.
Our model is similar to, and can be thought of as a combination of, two types of
models: those in, e.g., [57, 84, 87, 96] whose main interest is to determine how fast a
network can recover from changes using static algorithms in the recovery stages,
and those in, e.g., [4, 13, 43], which focus on the amortized cost per edge change.
Variations of partially dynamic distributed networks have also been considered (e.g.,
[28, 29, 73, 107]).

The problem of constructing a BFS tree has been studied intensively in various
distributed settings for decades (see [105, Chapter 5], [94, Chapter 4] and references
therein). The studies were also extended to more sophisticated structures such
as minimum spanning trees (e.g., [34, 42, 46, 53, 83, 88, 91, 92, 106]) and Steiner
trees [78]. These studies usually focus on static networks, i.e., they assume that the
network never changes and want to construct a BFS tree once, from scratch. While
we are not aware of any results on maintaining a BFS tree on dynamic networks,

180 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

there are a few related results. Much attention (e.g., [13]) has previously been given
to the problem of maintaining a spanning tree. In a seminal paper by Awerbuch,
Cidon, and Kutten [13], it was shown that the amortized message complexity of
maintaining a spanning tree can be significantly smaller than the cost of the previous
approach of recomputing from scratch [4].1 Our result is in the same spirit as [13]
in breaking the cost of recomputing from scratch. An attempt to maintain spanning
trees of small diameter has also motivated a problem called best swap. The goal is
to replace a failed edge in the spanning tree by a new edge in such a way that the
diameter is minimized. This problem has recently gained considerable attention in
both sequential (e.g., [7, 35, 54, 75, 76, 99, 100, 116]) and distributed (e.g., [51, 55])
settings.

In the sequential dynamic graph algorithms literature, a problem similar to
ours is the single-source shortest paths (SSSP) problem on undirected graphs. This
problem has been studied in partially dynamic settings and has applications to other
problems, such as all-pairs shortest paths and reachability. As we have mentioned
earlier, the classic bound of [49], which might be optimal [70, 115], has recently been
improved by randomized decremental approximation algorithms [24, 63, 64], and
we achieve a similar result in the incremental setting with a deterministic algorithm.
Since our algorithms use the algorithm of [49] as a subroutine, we formally state
its guarantees in the following. As mentioned above, this algorithm has not been
considered in the distributed model before, but its analysis from the sequential model
immediately carries over to the distributed model.2 Since we will need this result
later in this chapter, we state it here (see also Theorem 1.3.1)

Theorem 5.1.2 ([49]). There is a partially dynamic algorithm for maintaining a
shortest paths tree from a given root node up to depth X ≤ n under edge insertions
(deletions) in an unweighted, undirected graph. Its total running time over q insertions
(deletions) is O(mX) in the sequential model and O(nmin(X ,D) + q) in the distributed
model.

5.2 Main Technical Idea

All our algorithms are based on a simple idea of modifying the algorithm of Even and
Shiloach [49] with lazy updates, which we call lazy Even-Shiloach tree. Implementing
this idea on different models requires modifications to cope with difficulties and
to maximize efficiency. In this section, we explain the main idea by sketching a

1A variant of their algorithm was later implemented as a part of the PARIS networking project at
IBM [30] and slightly improved [89].

2In the sequential model, the algorithm has to perform work proportional to the degree of each
node whose distance to the root decreases (increases). As each node’s distance to the root can increase
(decrease) at most X times, the total running time is O(mX). In the distributed model, sending a
message to all neighbors takes one round and thus we only charge constant time to each level increase
(decrease) of a node, resulting in a total time of O(nmin(X ,D) + q). The additional q comes from the
fact that we have to spend constant time per insertion (deletion), which in the sequential model is
dominated by other running time aspects.

5.2. MAIN TECHNICAL IDEA 181

simple algorithm and its analysis for the incremental setting in the sequential and
the distributed model. We start with an algorithm that has additive error: Let κ
and δ be parameters. For every recovery stage t , we maintain a tree Tt such that
dTt (v , s) ≤ dGt

(v , s) ≤ dTt (v , s)+κδ for every node v . We will do this by recomputing a
BFS tree from scratch repeatedly, specifically O(q/κ + nD/δ2) times during q updates.

During the preprocessing, our algorithm constructs a BFS tree of G0, denoted
by T0. This means that every node u knows its parent and children in T0 and the
value of dT0(u, s). Suppose that, in the first attack stage, an edge is inserted, say
(u, v) where dG0

(u, s) > dG0
(v , s). As a result, the distance from u to s might decrease,

i.e. dG1
(u, s) < dG0

(u, s). In this case, the distances from s to some other nodes (e.g.,
the children of v in T0) could decrease as well, and we may wish to recompute the
BFS tree. Our approach is to do this lazily: We recompute the BFS tree only when
the distance from v to s decreases by at least δ ; otherwise, we simply do nothing!
In the latter case, we say that v is lazy. Additionally, we regularly “clean up” by
recomputing the BFS tree after each κ insertions.

To prove an additive error of κδ , observe that errors occur for this single insertion
only when v is lazy. Intuitively, this causes an additive error of δ since we could
have decreased the distance of v and other nodes by at most δ , but we did not. This
argument can be extended to show that if we have i lazy nodes, then the additive
error will be at most iδ . Since we do the cleanup each κ insertions, the additive error
will be at most κδ as claimed.

To bound the number of BFS tree recomputations, first observe that the cleanup
clearly contributes O(q/κ) recomputations in total, over q insertions. Moreover, a
recomputation also could be caused by some node v , whose distance to s decreases by
at least δ . Since every time a node v causes a recomputation, its distance decreases by
at least δ , and dG0

(v , s) ≤ D, v will cause the recomputation at most D/δ times. This
naive argument shows that there are nD/δ recomputations (caused by n different
nodes) in total. This analysis is, however, not enough for our purpose. A tighter
analysis, which is crucial to all our algorithms relies on the observation that when v
causes a recomputation, the distance from v’s neighbor, say v′, to s also decreases
by at least δ − 1. Similarly, the distance of v′’s neighbor to s decreases by at least
δ − 2, and so on. This leads to the conclusion that one recomputation corresponds
to (δ + (δ − 1) + (δ − 2) + …) = Ω(δ2) distance decreases. Thus, the number of
recomputations is at most nD/δ2. Combining the two bounds, we get that the
number of BFS tree computations is O(q/κ + nD/δ2) as claimed above. We get a
bound on the total time when we multiply this number by the time needed for a
single BFS tree computation. In the sequential model this takes time O(m), where
m is the final number of edges, and in the distributed model this takes time O(D),
where D is the dynamic diameter of the network.

To convert the additive error into a multiplicative error of (1 + ϵ), we execute
the above algorithm only for nodes whose distances to s are greater than κδ/ϵ. For
other nodes, we can use the algorithm of Even and Shiloach [49] to maintain a BFS
tree of depth κδ/ϵ. This requires an additional time of O(mκδ/ϵ) in the sequential
model and O(nκδ/ϵ) in the distributed model.

182 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

By setting κ and δ appropriately, the above incremental algorithm immediately
gives total update times ofO(mn2/5q2/5/ϵ2/5) andO(q2/5n3/5D4/5/ϵ2/5) in the sequential
and distributed model, respectively. To obtain the running time bounds claimed
in the introduction of this chapter, we need one more idea called layering, where
we use different values of δ and κ depending on the distance of each node to s. In
the decremental setting, the situation is much more difficult, mainly because it is
expensive for a node v to determine how much its distance to s has increased after a
deletion. Moreover, unlike the incremental case, nodes cannot simply “do nothing”
when an edge is deleted. We have to cope with this using several other ideas, e.g.,
constructing an virtual tree (in which edges sometimes represent paths).

5.3 Incremental Algorithm

In this section we present a framework for an incremental algorithm that allows up
to q edge insertions and provides an additive approximation of the distances to a
distinguished node s. Subsequently we will explain how to use this algorithm to get
(1+ϵ)-approximations in the sequential model and the distributed model, respectively.
For simplicity we assume that the initial graph is connected. In Section 5.3.4 we
explain how to remove this assumption.

5.3.1 General Framework

The algorithm (see Algorithm 5.1) works in phases. At the beginning of every phase
we compute a BFS tree T0 of the current graph, say G0. Every time an edge (u, v) is
inserted, the distances of some nodes to s in G might decrease. Our algorithm tries to
be as lazy as possible. That is, when the decrease does not exceed some parameter δ ,
our algorithm keeps its tree T0 and accepts an additive error of δ for every node.
When the decrease exceeds δ , our algorithm starts a new phase and recomputes the
BFS tree. It also starts a new phase after each κ edge insertions to keep the additive
error limited to κδ . The algorithm will answer a query for the distance from a node
x to s by returning dG0

(x , s), the distance from x to s at the beginning of the current
phase. It can also return the path from x to s in T0 of length dG0

(x , s). Besides δ
and κ, the algorithm has a third parameter X which indicates up to which distance
from s the BFS tree will be computed. In the following we denote by G0 the state
of the graph at the beginning of the current phase and by G we denote the current
state of the graph after all insertions.

As we show below the algorithm gives the desired additive approximation by
considering the shortest path of a node x to the root s in the current graph G. By
the main rule in Line 4 of the algorithm, the inequality dG0

(u, s) ≤ dG0
(v , s) + δ holds

for every edge (u, v) that was inserted since the beginning of the current phase
(otherwise a new phase would have been started). Since at most κ edges have been
inserted, the additive error is at most κδ .

5.3. INCREMENTAL ALGORITHM 183

Algorithm 5.1: Incremental algorithm
1 Procedure Insert(u, v)
2 k ← k + 1
3 if k = κ then Initialize()
4 if dG0(u, s) > dG0(v , s) + δ then Initialize()

5 Procedure Initialize() // Start new phase
6 k ← 0
7 Compute BFS tree T of depth X rooted at s and current distances dG0(⋅, s)

Lemma 5.3.1 (Additive Approximation). For every κ ≥ 1 and δ ≥ 1, Algorithm 5.1 pro-
vides the following approximation guarantee for every node x such that dG0

(x , s) ≤ X :

dG(x , s) ≤ dG0
(x , s) ≤ dG(x , s) + κδ .

Proof. The algorithm can only provide the approximation guarantee for every node
x such that dG0

(x , s) ≤ X because other nodes are not contained in the BFS tree of the
current phase. It is clear that dG(x , s) ≤ dG0

(x , s) because G is the result of inserting
edges into G0. In the following we argue about the second inequality.

Consider the shortest path π = xl , xl−1, … x0 of length l from x to s in G (where
xl = x and x0 = s). Let Sj (with 0 ≤ j ≤ l) denote the number of edges in the subpath
xj , xj−1, … , x0 that were inserted since the beginning of the current phase.

Claim 5.3.2. For every integer j with 0 ≤ j ≤ l we have dG0
(xj , s) ≤ dG(xj , s) + Sjδ .

Clearly the claim already implies the inequality we want to prove since there
are at most κ edges that have been inserted since the beginning of the current phase
which gives the following chain of inequalities:

dG0
(x , s) = dG0

(xl , s) ≤ dG(xl , s) + Slδ ≤ dG(x , s) + κδ .

Now we proceed with the inductive proof of the claim The induction base j = 0
is trivially true because xj = s. Now consider the induction step where we assume
that the inequality holds for j and we have to show that it also holds for j + 1.

Consider first the case that the edge (xj+1, xj) is one of the edges that have been
inserted since the beginning of the current phase. By the rule of the algorithm
we know that dG0

(xj+1, s) ≤ dG0
(xj , s) + δ and by the induction hypothesis we have

dG0
(xj , s) ≤ dG(xj , s) + Sjδ . By combining these two inequalities we get dG0

(xj+1, s) ≤
dG(xj , s) + (Sj + 1)δ . The desired inequality now follows because Sj+1 = Sj + 1 and
because dG(xj , s) ≤ dG(xj+1, s) (on the shortest path π , xj is closer to s than xj+1).

Now consider the case that the edge (xj+1, xj) is not one of the edges that have
been inserted since the beginning of the current phase. In that case the edge (xj+1, xj)
in contained in the graph G0 and thus dG0

(xj+1, s) ≤ dG0
(xj , s) + 1. By the induction

hypothesis we have dG0
(xj , s) ≤ dG(xj , s) + Sjδ . By combining these two inequalities

we get dG0
(xj+1, s) ≤ dG(xj , s) + 1 + Sjδ . Since xj+1 and xj are neighbours on the

184 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

shortest path π in G we have dG(xj+1, s) = dG(xj , s)+1. Therefore we get dG0
(xj+1, s) ≤

dG(xj+1, s) + Sjδ . Since Sj+1 = Sj , the desired inequality follows.

Remark 5.3.3. In the proof of Lemma 5.3.1 we need the property that at most κ edges
on the shortest path to the root have been inserted since the beginning of the current
phase. If we allow inserting κ/2 nodes (together with their set of incident edges)
we will see at most κ inserted edges on the shortest path to the root as each node
appears at most once on this path and contributes at most 2 incident edges. Thus,
we can easily modify our algorithms to deal with node insertions with the same
approximation guarantee and asymptotic running time.

If we insert an edge (u, v) such that the inequality dG0
(u, s) ≤ dG0

(v , s)+δ does not
hold, we cannot guarantee our bound on the additive error anymore. Nevertheless
the algorithm makes progress in some sense: After the insertion, u has an edge to v
whose initial distance to s was significantly smaller than the one from u to s. This
implies that the distance from u to s has decreased by at least δ since the beginning
of the current phase. Thus testing whether dG0

(u, s) > dG0
(v, s) + δ is a fast way of

testing whether dG0
(u, s) ≥ dG(u, s) + δ , i.e., whether the distance between u and s

has decreased so much that a rebuild is necessary.

Lemma 5.3.4. If an edge (u, v) is inserted such that dG0
(u, s) > dG0

(v, s) + δ , then
dG0

(u, s) ≥ dG(u, s) + δ .

Proof. We have inserted an edge (u, v) such that dG0
(u, s) > dG0

(v, s) + δ (which is
equivalent to dG0

(v , s) ≤ dG0
(u, s) − δ − 1). In the current graph G, we already have

inserted the edge (u, v) and therefore dG(u, s) ≤ dG(v , s) + 1. Since G is the result of
inserting edges into G0, distances in G are not longer than in G0, and in particular
dG(v , s) ≤ dG0

(v , s). Therefore we arrive at the following chain of inequalities:

dG(u, s) ≤ dG(v , s) + 1 ≤ dG0
(v , s) + 1 ≤ dG0

(u, s) − δ − 1 + 1 = dG0
(u, s) − δ

Thus, we get dG0
(u, s) ≥ dG(u, s) + δ .

Since we consider undirected, unweighted graphs, a large decrease in distance
for one node also implies a large decrease in distance for many other nodes.

Lemma 5.3.5. LetH = (V , E) andH ′ = (V , E′) be unweighted, undirected graphs such
thatH is connected and E ⊆ E′. If there is a node y ∈ V such that dH (y , s) ≥ dH ′(y , s)+δ ,
then ∑x∈V dH (x , s) ≥ ∑x∈V ′ dH ′(x , s) + Ω(δ2).

Proof. Let π denote the shortest path from y to s of length dH (y, s) in H . We first
bound the distance change for single nodes.

Claim 5.3.6. For every node x on π we have dH (x , s) ≥ dH ′(x , s) + δ − dH (x , y) −
dH ′(x , y).

5.3. INCREMENTAL ALGORITHM 185

Proof of Claim. By the triangle inequality we have dH ′(x , s) ≤ dH ′(x , y) + dH ′(y, s),
which is equivalent to dH ′(y, s) ≥ dH ′(x , s) − dH ′(x , y). By this inequality and the
fact that x lies on the shortest path from y to s we have

dH (y, x) + dH (x , s) = dH (y, s) ≥ dH ′(y , s) + δ ≥ dH ′(x , s) − dH ′(x , y) + δ .

Since dH (y, x) = dH (x , y) the claimed inequality follows.

From the claim and the fact that dH ′(x , y) ≤ dH (x , y) we conclude that

∑
x∈π

dH (x ,y)<δ/2

dH (x , s) ≥ ∑
x∈π

dH (x ,y)<δ/2

(dH ′(x , s) + δ − 2dH (x , y))

= ∑
x∈π

dH (x ,y)<δ/2

dH ′(x , s) + ∑
x∈π

dH (x ,y)<δ/2

(δ − 2dH (x , y))

≥ ∑
x∈π

dH (x ,y)<δ/2

dH ′(x , s) +
⌊δ/2⌋

∑
j=1

(δ − 2j)

= ∑
x∈π

dH (x ,y)<δ/2

dH ′(x , s) + δ(⌊δ/2⌋) − ⌊δ/2⌋(⌊δ/2⌋ + 1)

= ∑
x∈π

dH (x ,y)<δ/2

dH ′(x , s) + Ω(δ2)

Finally, we get:

∑
x∈V

dH (x , s) = ∑
x∈π

dH (x ,y)<δ/2

dH (x , s) + ∑
x∉π or

dH (x ,y)≥δ/2

dH (x , s)⏟
≥dH′(x ,s)

≥ ∑
x∈π

dH (x ,y)<δ/2

dH ′(x , s) + Ω(δ2) + ∑
x∉π or

dH (x ,y)≥δ/2

dH ′(x , s)

= ∑
x∈V

dH ′(x , s) + Ω(δ2)

The quadratic distance decrease is the key observation for the efficiency of our
algorithm as it limits the number of times a new phase starts, which is the expensive
part of our algorithm.

Lemma 5.3.7 (Running Time). For every κ ≥ 1 and δ ≥ 1, the total update time of
Algorithm 5.1 is O(TBFS(X) ⋅ (q/κ + nX /δ2 + 1) + q), where TBFS(X) is the time needed
for computing a BFS tree up to depth X .

Proof. Besides the constant time per insertion we have to compute a BFS tree of depth
X at the beginning of every phase. The first cause for starting a new phase is that the
number of edge deletions in a phase reaches κ, which can happen at most q/κ times.
The second cause for starting a new phase is that we insert an edge (u, v) such that

186 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

dG0
(u, s) > dG0

(v , s) + δ . By Lemmas 5.3.4 and 5.3.5 this implies that the sum of the
distances of all nodes to s has increased by at least Ω(δ2) since the beginning of the
current phase. There are at most n nodes of distance at most X to s which means that
the sum of the distances is at most nX . Therefore such a decrease can occur at most
O(nX /δ2) times. The overall running time thus is O(TBFS(X) ⋅ (q/κ + nX /δ2 + 1) + q).
The 1-term is just a technical necessity as the BFS tree has to be computed at least
once.

The algorithm above provides an additive approximation. In the following we
turn this into a multiplicative approximation for a fixed distance range. Using a
multi-layer approach we enhance this to a multiplicative approximation for the full
distance range in Section 5.3.2 (sequential model) and in Section 5.3.3 (distributed
model).

Lemma 5.3.8 (Multiplicative Approximation). Let 0 < ϵ ≤ 1, X ≤ n, and set γ =
ϵ/4. If γ 2qX ≥ n and γnX 2 ≥ q, then by setting κ = q1/3X 1/3γ 2/3/n1/3 and δ =
n1/3X 2/3γ 1/3/q1/3, Algorithm 5.1 has a total update time of

O (TBFS(X) ⋅
q2/3n1/3

ϵ2/3X 1/3 + q) ,

where TBFS(X) is the time needed for computing a BFS tree up to depth X . Furthermore,
it provides the following approximation guarantee: dG0

≥ dG(x , s) for every node x and
dG0

(x , s) ≤ (1 + ϵ)dG(x , s) for every node x such that X /2 ≤ dG0
(x , s) ≤ X .

Proof. To simplify the notation a bit we define A = κδ , which gives A = γX .

O (TBFS(X) ⋅ (
q
κ
+
nX
δ2

+ 1) + q) .

It is easy to check that by our choices of κ and δ the two terms appearing in the
running time are balanced and we get

q
κ
=
nX
δ2

=
q2/3n1/3

γ 2/3X 1/3 = O (
q2/3n1/3

ϵ2/3X 1/3) .

Furthermore the inequalities γ 2qX ≥ n and γnX 2 ≥ q ensure that κ ≥ 1 and δ ≥ 1.
We now argue that the approximation guarantee holds. By Lemma 5.3.1, we

already know that
dG(x , s) ≤ dG0

(x , s) ≤ dG(x , s) + A

for every node x such that dG0
(x , s) ≤ X . We now show that our choices of κ and δ

guarantee that A ≤ ϵdG(x , s), for every node x such that dG0
(x , s) ≥ X /2, which

immediately gives the desired inequality.
Assume that dG0

(x , s) ≤ dG(x , s) + A and that dG0
(x , s) ≥ X /2. We first show that

γ ≤
1

2(1 + 1
ϵ
)

.

5.3. INCREMENTAL ALGORITHM 187

Since ϵ ≤ 1 we have 2(ϵ + 1) ≤ 4. It follows that

1

2(1 + 1
ϵ
)
≥
ϵ
4
= γ .

Therefore we get the following chain of inequalities:

(1 +
1
ϵ)A = (1 +

1
ϵ) γX ≤

(1 +
1
ϵ)X

2(1 + 1
ϵ
)

=
X
2
≤ dG0

(x , s) .

We now subtract A from both sides and get

A
ϵ
≤ dG0

(x , s) − A .

Since dG0
(x , s) − A ≤ dG(x , s) by assumption, we finally get A ≤ ϵdG(x , s).

5.3.2 Sequential model

It is straightforward to use the abstract framework of Section 5.3.1 in the sequential
model. First of all, note that in the sequential model computing a BFS tree takes time
O(m), regardless of the depth. We run O(log n) “parallel” instances of Algorithm 5.1,
where each instance provides a (1 + ϵ)-approximation for nodes in some distance
range from X /2 to X . However, when X is small enough, then instead of maintaining
the approximate distance with our own algorithm it is more efficient to maintain
the exact distance using the algorithm of Even and Shiloach [49].

Theorem 5.3.9. In the sequential model, there is an incremental (1 + ϵ)-approximate
SSSP algorithm for inserting up to q edges with total update timeO(mn1/4√q log n/√ϵ),
where m is the number of edges in the final graph. It answers distance and path queries
in optimal worst-case time.

Proof. If q ≤ 8n1/2/ϵ, we recompute a BFS tree from scratch after every insertion.
This takes time O(mq) = O(mq1/2q1/2) = O(mn1/4q1/2/ϵ1/2).

If q > 8n1/2/ϵ, the algorithm is as follows. LetX ∗ be the smallest power of 2 greater
than or equal to 2n1/4q1/2/ϵ1/2 (i.e., X ∗ = 2⌈log (2n1/4q1/2/ϵ1/2)⌉). First of all, we maintain
an Even-Shiloach tree up to depth X ∗, which takes time O(mX ∗) = O(mn1/4q1/2/ϵ1/2)
by Theorem 5.1.2. Additionally, we run O(log n) instances of Algorithm 5.1, one for
each logX ∗ ≤ i ≤ ⌈log n⌉. For the i-th instance we set the parameter X to Xi = 2i
and κ and δ as in Lemma 5.3.8. Every time we start a new phase for instance i, we
also start a new phase for every instance j such that j ≤ i. This guarantees that if
a node leaves the range [Xi/2,Xi] it will immediately be covered by a lower range.
Since the graph is connected we now have the following property: for every node v
with distance more than X ∗ to s there is an index i such that at the beginning of the
current phase of instance i the distance from v to s was between Xi/2 and Xi . By
Lemma 5.3.8 this previous distance is a (1 + ϵ)-approximation of the current distance.

188 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

The cost of starting a new phase for every instance j ≤ i is O(m log n) since we
have to construct a BFS tree up to depth Xj for all j ≤ i. By Lemma 5.3.8 the running
time of the i-th instance of Algorithm 5.1 therefore is O(mq2/3n1/3 log n/(ϵ2/3X 1/3

i)),
which over all instances gives a running time of

O
(∑

log X ∗≤i≤⌈log n⌉

mq2/3n1/3 log n
ϵ2/3X 1/3

i)
= O (

mq2/3n1/3 log n
ϵ2/3X ∗1/3)

= O (
mn1/4q1/2 log n

ϵ2/3) .

Note that for each instance i of Lemma 5.3.8 only applies if γ 2qXi ≥ n and γnX 2
i ≥ q.

These two inequalities hold because q and X ∗ are large enough:

γ 2qXi = ϵ2qXi/16 ≥ ϵ2qX ∗/16 ≥ ϵ3/2q3/2n1/4/8 ≥ ϵ3/2n3/4n1/4/ϵ3/2 = n

γnX 2
i = ϵnX 2

i /4 ≥ ϵn(X ∗)2/4 ≥ 4ϵn3/2q/(4ϵ) = n3/2q ≥ q

Finally, we argue that the number q of insertions does not have to be known
beforehand. We use a doubling approach for guessing the value of q where the i-th
guess is qi = 2i . When the number of insertions exceeds our guess qi , we simply
restart the algorithm and use the guess qi+1 = 2qi from now on. The total running time
for this approach is O(∑⌈log q⌉

i=0 mn1/4q1/2i log n/ϵ1/2) which is O(mn1/4q1/2 log n/ϵ1/2).

5.3.3 Distributed Model

In the distributed model we use the same multi-layer approach as in the sequential
model. However, we have to consider some additional details for implementing
the algorithm because not all information is globally available to every node in the
distributed model. Computing a BFS tree up to depth X takes time TBFS = O(X) in
the distributed model. In the running time analysis of Lemma 5.3.7 we thus charge
time O(X) to every phase and constant time to every insertion. We now argue that
this is enough to implement the algorithm in the distributed model.

After the insertion of an edge (u, v) the nodes u and v have to compare their
initial distances dG0

(u, s) and dG0
(v, s). They can exchange these numbers with a

constant number of messages which we account for by charging constant time to
every insertion.

The root node s has to coordinate the phases and thus needs to gather some
special information. The first cause for starting a new phase is when the level of
some node decreases by at least δ . If a node detects a level decrease by at least δ , it
has to inform the root s about the decrease so that s can initiate the beginning of the
next phase. The tree maintained by our algorithm, which has depth at most X , can be
used to send this message. Therefore the total time needed for sending this message
is O(X), which we charge to the current phase. Note that, similar to recomputing the
BFS tree, this happens in a recovery stage during which no new edges are inserted.

5.3. INCREMENTAL ALGORITHM 189

The second cause for starting a new phase is that the number of edge insertions
since the beginning of the current phase exceeds κ. Therefore it is necessary that
the root s knows the number of edges that have been inserted. After the insertion of
an edge (u, v) the node v sends a message to the root to inform it about the edge
insertion. Again, the tree maintained by our algorithm, which has depth at most X ,
can be used to send these messages. During each recovery stage we spend time
O(X /κ) to ensure that every insertion message that has not arrived at the root yet
decreases its level in the tree by at least X /κ. We can avoid congestion by aggregating
insertion messages because it only matters how many edges have been inserted.
Accumulated over 2κ insertions the total time for sending the insertion messages
is O(κX /κ) = O(X), which we charge to the current phase. In this way, the first
insertion message arrives at the root after κ recovery stages and after κ insertions
the first κ/2 messages have arrived. Thus, to get the same approximation guarantee
and the same asymptotic running time as in Section 5.3.3 we slightly modify the
algorithm to start a new phase if the root has received κ/2 insertion messages.

Theorem 5.3.10. In the distributed model, there is an incremental algorithm for
maintaining a (1 + ϵ)-approximate BFS tree under up to q insertions with total update
time O(q2/3n1/3D2/3/ϵ2/3), where D is the dynamic diameter.

Proof. Our algorithm consists of O(logD) layers. For each 0 ≤ i ≤ ⌈logD⌉ we set
Xi = 2i and do the following: (1) If q ≤ 16n/(ϵ2Xi), we recompute a BFS tree up to
depth Xi from scratch after every insertion. (2) If q > 16n/(ϵ2Xi) and Xi ≤ 4√q/√ϵn,
we maintain an Even-Shiloach tree up to depth Xi . (3) If q > 16n/(ϵ2Xi) and Xi >
4√q/√ϵn we run an instance of Algorithm 5.1 with parameters Xi = 2i and κi and δi
as in Lemma 5.3.8. We use the following slight modification of Algorithm 5.1: every
time a new phase starts for instance i, we re-initialize all instances j of Algorithm 5.1
such that j ≤ i by computing a BFS tree up to depth Xj . Note that if D is not known in
advance, our algorithm can simply increase the number of layers until the BFS tree
computed at the initialization of the current layer contains all nodes of the graph.

We first argue that this algorithm provides a (1+ϵ)-approximation. The algorithm
maintains the exact distances for all nodes that are at distance at most 16n/(ϵ2q) or
4√q/√ϵn from the root as in these cases the distances are obtained by recomputing
the BFS tree from scratch or by the Even-Shiloach tree. For all other nodes we have to
argue that our multi-layer version of Algorithm 5.1 provides a (1 + ϵ)-approximation.
Note that for each instance i the result of Lemma 5.3.8 only applies if γ 2qXi ≥ n and
γnX 2

i ≥ q. These two inequalities hold because q and Xi are large enough:

γ 2qXi = ϵ2qXi/16 ≥ ϵ2(16n/(ϵ2Xi))Xi/16 = n

γnX 2
i = ϵnX 2

i /4 ≥ ϵn(4√q/√ϵn)2/4 = q .

In each instance i, the approximation guarantee of Lemma 5.3.8 holds for all nodes
whose distance to the root was between Xi/2 and Xi since the last initialization of
instance i. Every time we re-initialize instance i, some nodes that before were in the
range [Xi/2,Xi] might now have a smaller distance and will thus not be “covered” by

190 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

instance i anymore. By re-initializing all instances j ≤ i as well we guarantee that
such nodes will immediately be “covered” by some other instance of the algorithm
(or by the exact BFS tree we maintain for small depths). Since the graph is connected
we thus have the following property: for every node v with distance more than
4√q/√ϵn to the root there is an index i such that at the beginning of the current
phase of instance i the distance from v to the root was between Xi/2 and Xi . By
Lemma 5.3.8 this previous distance is a (1 + ϵ)-approximation of the current distance.

We will now bound the running time. We will argue that the running time
in every layer i is O(q2/3n1/3X 2/3

i /ϵ2/3). If the number of insertions is at most q ≤
16n/(ϵ2Xi), then computing a BFS tree from scratch up to depthXi after very insertion
takes time O(qXi) in total, which we can bound as follows:

qXi = q2/3q1/3Xi =
q2/3n1/3X 2/3

i

ϵ2/3
.

By Theorem 5.1.2 maintaining an Even-Shiloach tree up to depth Xi ≤ 4√q/√ϵn
takes time O(nXi) = O(√qn/√ϵ). Since we only do this in the case q > 16n/(ϵ2Xi),
we can use the inequality

n <
ϵ2qXi

16
≤
qX 4

i

ϵ
to obtain

nXi =
√qn

√ϵ
=
n1/3n1/6√q

√ϵ
≤
n1/3q1/6X 4/6

i √q

√ϵ ⋅ ϵ1/6
=
q2/3n1/3X 2/3

i

ϵ2/3
.

Finally we bound the running time of our slight modification of Algorithm 5.1 in
layer i. Every time we start a new phase in layer i, we re-initialize the instances of
Algorithm 5.1 in all layers j ≤ i. The re-initialization takes in each layer j takes time
O(Xj) as we have to compute a BFS tree up to depth Xj . Thus, the cost of starting a
new phase in layer i is proportional to

∑
0≤j≤i

Xj = ∑
0≤j≤i

2j ≤ 2i+1 = 2Xi

which asymptotically is the same as only the time needed for computing a BFS tree
up to depth Xi . Thus, by Lemma 5.3.8 the running time of instance i of Algorithm 5.1
is O(q2/3n1/3X 2/3

i /ϵ2/3 + q). Since q ≤ ϵnX 2
i /4 as argued above we have q ≤ nX 2

i and
thus

q2/3n1/3X 2/3
i

ϵ2/3
≥ q2/3n1/3X 2/3

i = q2/3(nX 2
i)1/3 ≥ q2/3q1/3 = q .

It follows that the running time of instance i is O(q2/3n1/3X 2/3
i /ϵ2/3) and the total

running time over all layers is

O
(∑

0≤i≤⌈log D⌉

q2/3n1/3X 2/3
i

ϵ2/3)
= O

(∑
0≤i≤⌈log D⌉

q2/3n1/3(2i)2/3

ϵ2/3)

= O (
q2/3n1/3D2/3

ϵ2/3) .

5.4. DECREMENTAL ALGORITHM 191

By using a doubling approach for guessing the value of qwe can run the algorithm
with the same asymptotic running time without knowing the number of insertions
beforehand.

5.3.4 Removing the Connectedness Assumption

The algorithm above assumes that the graph is connected. We now explain how to
adapt the algorithm to handle graphs where this is not the case.

Note that an insertion might connect one or several nodes to the root node. For
each newly connected node, every path to the root goes through an edge that has just
been inserted. In such a situation we extend the tree maintained by the Algorithm 5.1
by performing a breadth-first search among the newly connected nodes. Using this
modified tree, the argument of Lemma 5.3.1 to prove the additive approximation
guarantee still goes through. Note that each node can become connected to the
root node at most once. Thus, we can amortize the cost of the breadth-first searches
performed to extend the tree over all insertions.

This results in the following modification of the running time of Lemma 5.3.7:
In the sequential model we have an additional cost of O(m) as each edge has to be
explored at most once in one of the breadth-first searches. In the distributed model
we have an additional cost of O(n) as every node is explored at most once in one
of the breadth-first searches. The total update time of the (1 + ϵ)-approximation
in the sequential model (Theorem 5.3.9) clearly stays unaffected from this mod-
ification as we anyway have to consider the cost of O(m) for computing a BFS
tree. In the distributed model the argument is as follows. In the proof of The-
orem 5.3.10 we bound the running time of each instance i of Algorithm 5.1 by
O(q2/3n1/3X 2/3

i /ϵ2/3). Since q and Xi satisfy the inequality q > 16n/(ϵ2Xi) ≥ n/Xi
we have q2/3n1/3X 2/3

i /ϵ2/3 ≥ q2/3n1/3X 2/3
i ≥ n. Thus the additional O(n) is already

dominated by O(q2/3n1/3X 2/3
i /ϵ2/3) and the total update time stays the same as stated

in Theorem 5.3.10. Note that if the number of nodes n is not known in advance
because of the graph not being connected we can use a doubling approach to guess
the right range of n.

5.4 Decremental Algorithm

In the decremental setting we use an algorithm of the same flavor as in the incremen-
tal setting (see Algorithm 5.2). However, the update procedure is more complicated
because it is not obvious how to repair the tree after a deletion. Our solution exploits
the fact that in the distributed model it is relatively cheap to examine the local neigh-
borhood of a node. As in the incremental setting, the algorithm has the parameters
κ, δ , and X .

The Procedure RepairTree of Algorithm 5.2 either computes a (weighted) tree T
that approximates the true distances with an additive error of κδ , or it reports a
distance increase by at least δ since the beginning of the current phase. Let T0 denote
the BFS tree computed at the beginning of the current phase, let F0 be the forest

192 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

Algorithm 5.2: Decremental algorithm
// At any time, T0 is the BFS tree computed at the beginning of

the current phase, F0 is the forest resulting from removing
all deleted edges from T0 and T is the current approximate
BFS tree

1 Procedure Delete(u, v)
2 k ← k + 1
3 if k = κ then
4 Initialize()
5 else
6 Remove edge (u, v) from F0
7 RepairTree()
8 if RepairTree() reports distance increase by at least δ then Initialize()

9 Procedure Initialize() // Start new phase
10 k ← 0
11 Compute BFS tree T0 of depth X rooted at s.
12 Compute current distances dG0(⋅, s)
13 T ← T0
14 F0 ← T0

15 Procedure RepairTree()
16 F ← F0
17 U ← {u ∈ V ∣ u has no outgoing edge in F and u ≠ s}
18 foreach u ∈ U do // Search process
19 Perform breadth-first search from u up to depth δ and try to find a node v

such that (1) dG0(v , s) < dG0(u, s) and (2) dG(u, v) ≤ δ .
20 if such a node v could be found then
21 Add edge (u, v) of weight dwF (u, v) = dG(u, v) to F
22 else
23 return “distance increase by at least δ”

24 T ← F

resulting from removing those edges from T0 that have already been deleted in the
current phase, and the let U be the set of nodes (except for s) that have no parent
in F0. After every deletion, the Procedure RepairTree tries to construct a tree T
by starting with the forest F0. Every node u ∈ U tries to find a “good” node v to
reconnect to and if successful will use v as its new parent with a weighted edge (u, v)
(whose weight corresponds to the current distance between u and v). Algorithm 5.2
imposes two conditions (Line 19) on a “good” node v. Condition (1) avoids that
the reconnection introduces any cycles and Condition (2) guarantees that the error
introduced by each reconnection is at most δ and that a suitable node v can be found
at distance at most δ to u. As δ is relatively small, this is the key to efficiently finding
such a node. In the following, we denote the distance between two nodes x and y
in a graph F with weighted edges by dwF (x , y). Note that here we have formulated

5.4. DECREMENTAL ALGORITHM 193

the algorithm in a way such that the Procedure RepairTree always starts with a
forest F0 that is the result of removing all edges from T0 that have been deleted so
far in the current phase, regardless of trees previously computed by the Procedure
RepairTree.

5.4.1 Analysis of Procedure for Repairing the Tree

In the following we first analyze only the Procedure RepairTree. Its guarantees can
be summarized as follows.

Lemma 5.4.1. The Procedure RepairTree of Algorithm 5.2 either reports “distance
increase” and guarantees that there is a node x with dG0

(x , s) ≤ X such that

dG(x , s) ≥ dG0
(x , s) + δ ,

or it returns a tree T such that for every node x with dG0
(x , s) ≤ X we have

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ .

It runs in time O(κδ) after every deletion.

We first observe that the graph returned by the Procedure RepairTree is actually
a tree. The input of the procedure is the forest F0 obtained from removing some
edges from the BFS tree T0. In this forest we have dG0

(v , s) = dG0
(u, s) − 1 for every

child u and parent v . In the Procedure RepairTree, we add, for every node u that
is missing a parent, an edge to a parent v such that dG0

(v, s) < dG0
(u, s). Thus, the

decreasing label dG0
(v , s) for every node v guarantees that T is a tree.

Lemma 5.4.2. The graph T computed by the Procedure RepairTree is a tree.

We will show next that the Procedure RepairTree is either successful, i.e., every
node in U finds a new parent, or the algorithm makes progress because there is some
node whose distance to the root has increased significantly.

Lemma 5.4.3. For every node u ∈ U , if dG(u, s) < dG0
(u, s) + δ , then there is a node

v ∈ V such that

(1) dG0
(v , s) < dG0

(u, s) and

(2) dG(u, v) ≤ δ .

Proof. If dG(u, s) ≤ δ , then set v = s. As dG0
(s, s) = 0 and u ≠ s, this satisfies both

conditions.
If dG(u, s) > δ , then consider the shortest path from u to s and define v as the

node that is at distance δ from u on this path, i.e., such that dG(v, s) = dG(u, s) − δ .
We then have

dG0
(v , s) ≤ dG(v , s) = dG(u, s) − δ < dG0

(u, s) + δ − δ = dG0
(u, s) .

194 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

Note that in the proof above we know exactly which node v we can pick for
every node u ∈ U . In the algorithm however the node u does not know its shortest
path to s in the current graph and thus it would be expensive to specifically search
for the node v on the shortest path from u to s defined above. However, we know
that v is contained in the local search performed by u. Therefore u either finds v or
some other node that fulfills Conditions (1) and (2).

We now show that every reconnection made by the Procedure RepairTree adds
an additive error of δ , which sums up to κδ for at most κ reconnections (one per
previous edge deletion).

Lemma 5.4.4. For the tree T computed by the Procedure RepairTree and every node x
such that dG0

(x , s) ≤ X we have

dG(x , s) ≤ dwT (x , s) ≤ dG0
(x , s) + κδ .

Proof. We call the weighted edges inserted by the Procedure RepairTree artificial
edges. In the tree T there are two types of edges: those that were already present in
the BFS tree T0 from the beginning of the current phase and artificial edges added in
the Procedure RepairTree.

First, we prove the inequality dG(x , s) ≤ dwT (x , s). Consider the unique path from
x to s in the tree T consisting of the nodes x = xl , xl−1, … x0 = s. We know that
every edge (xj+1, xj) in T either was part of the initial BFS tree T0, which means that
dwT (xj+1, xj) = 1 = dG(xj+1, xj), or was inserted later by the algorithm, which means
that dwT (xj+1, xj) = dG(xj+1, xj). This means that in any case we have dwT (xj+1, xj) =
dG(xj+1, xj) and therefore we get

dwT (x , s) =
l−1

∑
j=0

dwT (xj+1, xj) =
l−1

∑
j=0

dG(xj+1, xj) ≥ dG(x , s) .

Second, we prove the inequality dwT (x , s) ≤ dG0
(x , s) + κδ . Consider the shortest

path π = xl , xl−1, … x0 from x to s in T , where xl = x and x0 = s. Let Sj (with 0 ≤ j ≤ l)
denote the number of artificial edges on the subpath xj , xj−1, … x0. For every edge
deletion we add at most one artificial edge on π . Therefore we have Sj ≤ κ for all
0 ≤ j ≤ l. Now consider the following claim.

Claim 5.4.5. For every 0 ≤ j ≤ l we have dwT (xj , s) ≤ dG0
(xj , s) + Sjδ .

Assuming the truth of the claim, the desired inequality follows straightforwardly
since xl = x , x0 = s, and Sl ≤ κ.

In the following we prove the claim by induction on j. In the induction base
we have j = 0 and thus xj = s and Sj = 0. The inequality then trivially holds
due to dwT (s, s) = 0. We now prove the inductive step from j to j + 1. Note that
Sj ≤ Sj+1 ≤ Sj + 1 since the path is exactly one edge longer. Consider first the case
that (xj+1, xj) is an edge from the BFS tree T0 of the graph G0. In that case we have
dwT (xj+1, xj) = dG0

(xj+1, xj) = 1. Furthermore, since (xj+1, xj) is an edge in the BFS
tree T0 we know that xj lies on a shortest path from xj+1 to s in G0. Therefore we

5.4. DECREMENTAL ALGORITHM 195

have dG0
(xj+1, s) = dG0

(xj+1, xj) + dG0
(xj , s). Together with the induction hypothesis

we get:

dwT (xj+1, s) = dwT (xj+1, xj)⏟⏟⏟⏟⏟⏟⏟⏟⏟
=dG0(xj+1,xj)

+ dwT (xj , s)⏟⏟⏟
≤dG0(xj ,s)+Sj ⋅δ (by IH)

≤ dG0
(xj+1, xj) + dG0

(xj , s)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=dG0(xj+1,s)

+ Sj⏟
=Sj+1

⋅δ

= dG0
(xj+1, s) + Sj+1 ⋅ δ .

The second case is that (xj+1, xj) is an artificial edge. In that case we have
dwT (xj+1, xj) = dG(xj+1, xj) and by the algorithm the inequality dG(xj+1, xj)+dG0

(xj , s)+ ≤
dG0

(xj+1, s) + δ holds. Note also that Sj+1 = Sj + 1. We therefore get the following:

dwT (xj+1, s) = dwT (xj+1, xj)⏟⏟⏟⏟⏟⏟⏟⏟⏟
=dG(xj+1,xj)

+ dwT (xj , s)⏟⏟⏟
≤dG0(xj ,s)+Sj ⋅δ (by IH)

≤ dG(xj+1, xj) + dG0
(xj , s)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤dG0(xj+1,s)+δ

+Sj ⋅ δ

= dG0
(xj+1, s) + (Sj + 1)⏟

=Sj+1

⋅δ

= dG0
(xj+1, s) + Sj+1 ⋅ δ .

Remark 5.4.6. In the proof of Lemma 5.4.4 we need the property that after up to κ
edge deletions there are at most κ “artificial” edges on the shortest path to the root
in T . This also holds if we allow deleting nodes (together with their set of incident
edges). Thus, we can easily modify our algorithm to deal with node deletions with
the same approximation guarantee and asymptotic running time.

To finish the proof of Lemma 5.4.1 we analyze the running time of the Procedure
RepairTree and clarify some implementation details for the distributed setting. In
the search process, every node u ∈ U tries to find a node v to connect to that fulfills
certain properties. We search for such a node v by examining the neighborhood of
u in G up to depth δ using breadth-first search, which takes time O(δ) for a single
node. Whenever local searches of nodes in U “overlap” and two messages have to
be sent over an edge, we arbitrarily allow to send one of these messages and delay
the other one to the next round. As there are at most κ nodes in U , we can simply
bound the time needed for all searches by O(κδ).

Weighted Edges The tree computed by the algorithm contains weighted edges.
Such an edge e corresponds to a path π of the same distance in the network. We
implement weighted edges by a routing table for every node v that stores the next
node on π if a message is sent over v as part of the weighted edge e.

196 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

Broadcasting Deletions The nodes that do not have a parent in F0 before the
procedure RepairTree starts do not necessarily know that a new edge deletion has
happened. Such a node only has to become active and do the search if there is a
change in its neighborhood within distance δ , otherwise it can still use the weighted
edge in the tree T that it previously used because the two conditions imposed by
the algorithm will still be fulfilled. After the deletion of an edge (x , y), the nodes x
and y can inform all nodes at distance δ about this event. This takes time O(δ) per
deletion, which is within our projected running time.

5.4.2 Analysis of Decremental Distributed Algorithm

The Procedure RepairTree provides an additive approximation of the shortest paths
and a means for detecting that the distance of some node to s has increased by at
least δ since the beginning of the current phase. Using this procedure as a subroutine
we can provide a running time analysis for the decremental algorithm that is very
similar to the one of the incremental algorithm.

Lemma 5.4.7. For every X ≥ 1, κ ≥ 1, and δ ≥ 1 the total update time of Algorithm 5.2
is O(qX /κ + nX 2/δ2 + qκδ + n) and it provides the following approximation guarantee:
If dG0

(x , s) ≤ X , then

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ .

Proof. Using the distance increase argument of Lemma 5.3.5, we can bound the
number of phases by O(q/κ + nX 2/δ2). To every phase, we charge a running time
of O(X), which is the time needed for computing a BFS tree up to depth X at the
beginning of the phase. Additionally we charge a running time of κδ to every
deletion since the Procedure RepairTree, which is called after every deletion, has a
running time of O(κδ) by Lemma 5.4.1.

As in the incremental distributed algorithm we have to enrich the decremental
algorithm with a mechanism that allows the root node to coordinate the phases. We
explain these implementation details and analyze their effects on the running time
in the following.

Reporting Distance Increase When a node v detects a distance increase by more
than δ , it tries to inform the root about the distance increase by sending a special
message. It sends the message to all nodes at distance at most 2X from v in a
breadth-first manner, which takes time O(X). If the root is among these nodes,
the root initiates a new phase and the cost of O(X) is charged to the new phase.
Otherwise, the nodes at distance at most X from v know that their distance to the
root is more than X . In that case in particular all nodes in the subtree of v in F0 have
received the message and know that their distance to the root is more than X now.
All nodes that are at distance at most X from v do not have to participate in the
algorithm anymore. Thus, we can charge the time of O(X) for sending the message
to these at least X nodes. This give a one-time charge of O(1) to every node and

5.4. DECREMENTAL ALGORITHM 197

adds O(n) to the total update time. A special case is when v becomes disconnected
from the root and its new component has size less than X . In that case the time for
sending the message to all nodes in the component takes time proportional to the
size of the component, which again results in a charge of O(1) to each node.

Counting Deletions The root has to count the number of deletions. Observe that
we do not have to count those deletions that result in a distance increase by more
than δ because after such an event either a new phase starts or the deletion only
affects nodes whose distance to the root has increased to more than X after the
deletion. The remaining deletions can be counted by using the tree maintained by
the algorithm to send one message per deletion to the root. Note that the level of
a node in the tree might increase by at most κδ with every deletion. Therefore we
spend time O(X /κ + κδ) during each recovery stage to ensure that every deletion
message that has not arrived at the root yet decreases its level by at least X /κ. In
this way, the first deletion message arrives after κ deletions and after 2κ deletions
all κ messages have arrived and the root starts a new phase. This process takes time
O(X + κ2δ) for 2κ deletions. We can charge O(X) to the current phase and O(κδ)
to each deletion of the phase. To obtain an additive approximation of exactly κδ ,
we slightly modify the algorithm to start a new phase if the root has received κ/2
deletion messages.

We use a similar approach as in the incremental setting for the (1+ϵ)-approximation.
We run i “parallel” instances of the algorithmwhere each instance covers the distance
range from 2i to 2i+1. By an appropriate choice of the parameters κ and δ for each
instance we can guarantee a (1 + ϵ)-approximation.

Lemma 5.4.8. Let 0 < ϵ ≤ 1 and assume that ϵ5qX /32 ≥ n and nX 3/2 ≥ q.
Then, by setting κ = q1/5X 1/5/n1/5 and δ = n2/5X 3/5/q2/5, Algorithm 5.2 runs in time
O(q4/5n1/5X 4/5). Furthermore, it provides the following approximation guarantee: For
every node x such that dG0

(x , s) ≤ X we have

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s)

and for every node x such that dG(x , s) ≥ X /2 we additionally have

dwT (x , s) ≤ (1 + ϵ)dG0
(x , s) .

Proof. Since ϵ5qX /32 ≥ n implies qX ≥ n we have κ ≥ 1 and since nX 3/2 ≥ q we
have δ ≥ 1. It is easy to check that by our choices of κ and δ the three terms in the
running time of Lemma 5.4.7 are balanced and we get:

q
κ
⋅ X =

nX
δ2

⋅ X = qκδ = q4/5n1/5X 4/5 .

Furthermore, since qX ≥ n we have q4/5n1/5X 4/5 ≥ n1/5(qX)4/5 ≥ n1/5n4/5 = n and
therefore the running time of the algorithm is O(q4/5n1/5X 4/5).

198 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

We now argue that the approximation guarantee holds. By Lemma 5.4.7, we
already know that

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ

for every node x such that dG0
(x , s) ≤ X . We now show that our choices of κ and δ

guarantee that κδ ≤ ϵdG0
(x , s), for every node x such that dG0

(x , s) ≥ X /2, which
immediately gives the desired inequality. By our assumptions we have n ≤ ϵ5qX /32
and therefore we get

κδ =
q1/5X 1/5

n1/5
⋅
n2/5X 3/5

q2/5
=
n1/5X 4/5

q1/5
≤
ϵq1/5X 1/5X 4/5

2q1/5
=
ϵX
2

≤ ϵdG0
(x , s) .

Theorem 5.4.9. In the distributed model, there is a decremental algorithm for main-
taining a (1 + ϵ)-approximate BFS tree over q deletions with a total update time of
O(q4/5n1/5D4/5/ϵ), where D is the dynamic diameter.

Proof. Our algorithm consists of O(logD) layers. For each 0 ≤ i ≤ ⌈logD⌉ we set
Xi = 2i and do the following: If q ≤ 32n/(ϵ5Xi), we recompute a BFS tree up to
depth Xi from scratch after every deletion. If q > 32n/(ϵ5Xi) and Xi ≤ (q/n)2/3, we
maintain an Even-Shiloach tree up to depth Xi . If q > 32n/(ϵ5Xi) and Xi > (q/n)2/3
we run an instance of Algorithm 5.2 with parameters Xi = 2i and κi and δi as in
Lemma 5.4.8. Note that D might increase over the course of the algorithm due
to edge deletions (or might not be known in advance). Therefore, whenever we
initialize the algorithm in the layer with the current largest index, we do a full BFS
tree computation. If the depth of the BFS tree exceeds Xi , we increase the number of
layers accordingly and charge the running time of the BFS tree computation to the
layer with new largest index.

We first argue that this algorithm provides a (1+ϵ)-approximation. The algorithm
maintains the exact distances for all nodes that are at distance at most 32n/(ϵ5q) or
(q/n)3/4 from the root as in these cases the distances are obtained by recomputing the
BFS tree from scratch or by the Even-Shiloach tree. For all other nodes we have to
argue that our multi-layer version of Algorithm 5.2 provides a (1 + ϵ)-approximation.
Note that the approximation guarantee of Lemma 5.3.8 only applies if ϵ5qXi/32 ≥ n
and nX 3/2

i ≥ q. These two inequalities hold because q and Xi are large enough:

ϵ5qXi/32 ≥ ϵ5(32n/(ϵ5Xi))Xi/32 = n

nX 3/2
i ≥ n((q/n)2/3)3/2 = q .

In each instance i of Algorithm 5.2, the approximation guarantee of Lemma 5.3.8
holds for all nodes whose distance to the root at the beginning of the current phase
of instance i was at most Xi and whose current distance to the root is at least Xi/2.
Whenever an instance i starts a new phase there might be some nodes who before
were contained in the tree of instance i, but are not contained in the new tree anymore
because their distance to the root has increased to more than Xi . Since Xi = Xi+1/2

5.5. CONCLUSION AND OPEN PROBLEMS 199

we know that those node will immediately be “covered” by an instance with larger
index. Thus, after each recovery stage every node that is connected to the root will be
contained in the tree of some instance i such that the preconditions of Lemma 5.3.8
apply and thus the distance to the root in that tree provides a (1 + ϵ)-approximation.
In particular each node simply has to pick the tree of the smallest index containing
it.

We will now bound the running time. We will argue that the running time in
every layer i isO(q4/5n1/5X 4/5

i /ϵ). If the number of insertions is at most q ≤ 32n/(ϵ5Xi),
then computing a BFS tree from scratch up to depth Xi after very insertion takes
time O(qXi) in total, which we can bound as follows:

qXi = q4/5q1/5Xi =
q4/5321/5n1/5X 4/5

i

ϵ
= O

(
q4/5n1/5X 4/5

i

ϵ)
.

By Theorem 5.1.2 maintaining an Even-Shiloach tree up to depth Xi ≤ (q/n)2/3 takes
time O(nXi) = O(q2/3n1/3). Since we only do this in the case q > 32n/(ϵ5Xi), we can
use the inequality

n <
ϵ5qXi

32
≤ ϵ5qXi ≤

qX 6
i

ϵ15/2

to obtain

nXi = q2/3n1/3 = q2/3n1/5n2/15 ≤ q2/3n1/5
q2/15X 4/5

i

ϵ
=
q4/5n1/5X 4/5

i

ϵ
.

Finally we use Lemma 5.4.8 to bound the running time of Algorithm 5.1 in layer i by
O(q4/5n1/4X 4/5

i /ϵ) as well. Thus, the running time over all layers is

O
(∑

0≤i≤⌈log D⌉

q4/5n1/4X 4/5
i

ϵ)
= O

(∑
0≤i≤⌈log D⌉

q4/5n1/4(2i)4/5

ϵ)

= O (
q4/5n1/4D4/5

ϵ) .

By using a doubling approach for guessing the value of q we can run the algorithm
with the same asymptotic running time without knowing the number of deletions
beforehand.

5.5 Conclusion and Open Problems

In this chapter, we showed that an approximate breadth-first search spanning tree
can be maintained in amortized time per update that is sublinear in the diameter
D in partially dynamic distributed networks. Many problems remain open. For
example, can we get a similar result for the case of fully-dynamic networks? How
about weighted networks (even partially dynamic ones)? Can we also get a sublinear
time bound for the all-pairs shortest paths problem? Moreover, in addition to the

200 CHAPTER 5. SUBLINEAR-TIME MAINTENANCE OF BFS TREES

sublinear-time complexity achieved in this chapter, it is also interesting to obtain
algorithms with small bounds on message complexity and memory.

We believe that the most interesting open problem is whether the sequential
algorithm in this chapter can be improved to obtain a deterministic incremental
algorithm with near-linear total update time. As noted earlier, techniques from this
chapter have led to a randomized decremental algorithmwith near-linear total update
time as presented in Chapter 3 (the same algorithm also works in the incremental
setting). Whether this algorithm can be derandomized was left as a major open
problem. As the incremental case is usually easier than the decremental case, it is
worth obtaining this result in the incremental setting first.

Bibliography

[1] Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures imply
strong lower bounds for dynamic problems”. In: Symposium on Foundations
of Computer Science (FOCS). 2014, pp. 434–443.

[2] Ittai Abraham and Shiri Chechik. “Dynamic Decremental Approximate Dis-
tance Oracles with (1 + ϵ, 2) stretch”. In: CoRR abs/1307.1516 (2013).

[3] Ittai Abraham, Shiri Chechik, and Kunal Talwar. “Fully Dynamic All-Pairs
Shortest Paths: Breaking the O(n) Barrier”. In: International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX).
2014, pp. 1–16.

[4] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. “Applying Static Network
Protocols to Dynamic Networks”. In: Symposium on Foundations of Computer
Science (FOCS). 1987, pp. 358–370.

[5] Yehuda Afek, Baruch Awerbuch, Serge A. Plotkin, and Michael E. Saks. “Local
Management of a Global Resource in a Communication Network”. In: Journal
of the ACM 43.1 (1996). Announced at FOCS’87, pp. 1–19.

[6] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and RajeevMotwani. “Fast
Estimation of Diameter and Shortest Paths (Without Matrix Multiplication)”.
In: SIAM Journal on Computing 28.4 (1999). Announced at SODA’96, pp. 1167–
1181.

[7] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
“Maintaining Information in Fully Dynamic Trees with Top Trees”. In: ACM
Transactions on Algorithms 1.2 (2005). Announced at ICALP’97 and SWAT’00,
pp. 243–264.

[8] Giorgio Ausiello, Paolo Giulio Franciosa, and Giuseppe F. Italiano. “Small
Stretch Spanners on Dynamic Graphs”. In: Journal of Graph Algorithms and
Applications 10.2 (2006). Announced at ESA’05, pp. 365–385.

[9] Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and
Umberto Nanni. “Incremental Algorithms for Minimal Length Paths”. In:
Journal of Algorithms 12.4 (1991). Announced at SODA’90, pp. 615–638.

201

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://arxiv.org/abs/1307.1516
http://arxiv.org/abs/1307.1516
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.1109/SFCS.1987.7
http://dx.doi.org/10.1109/SFCS.1987.7
http://dx.doi.org/10.1109/SFCS.1987.7
http://dx.doi.org/10.1145/227595.227596
http://dx.doi.org/10.1145/227595.227596
http://dx.doi.org/10.1145/227595.227596
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1137/S0097539796303421
http://dx.doi.org/10.1145/1103963.1103966
http://dx.doi.org/10.1145/1103963.1103966
http://dx.doi.org/10.1145/1103963.1103966
http://dx.doi.org/10.1145/1103963.1103966
http://dx.doi.org/10.7155/jgaa.00133
http://dx.doi.org/10.7155/jgaa.00133
http://dx.doi.org/10.7155/jgaa.00133
http://dx.doi.org/10.1016/0196-6774(91)90036-X
http://dx.doi.org/10.1016/0196-6774(91)90036-X
http://dx.doi.org/10.1016/0196-6774(91)90036-X

202 BIBLIOGRAPHY

[10] Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and
Umberto Nanni. “On-Line Computation of Minimal and Maximal Length
Paths”. In: Theoretical Computer Science 95.2 (1992), pp. 245–261.

[11] Baruch Awerbuch. “Complexity of Network Synchronization”. In: Journal of
the ACM 32.4 (1985). Announced at STOC’84, pp. 804–823.

[12] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. “Near-
Linear Time Construction of Sparse Neighborhood Covers”. In: SIAM Journal
on Computing 28.1 (1998). Announced at FOCS’93, pp. 263–277.

[13] Baruch Awerbuch, Israel Cidon, and Shay Kutten. “Optimal Maintenance of
a Spanning Tree”. In: Journal of the ACM 55.4 (2008). Announced at FOCS’90,
18:1–18:45.

[14] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. “Graph Expan-
sion and Communication Costs of Fast Matrix Multiplication”. In: Journal of
the ACM 59.6 (2012). Announced at SPAA’11, 32:1–32:23.

[15] Surender Baswana, Manoj Gupta, and Sandeep Sen. “Fully Dynamic Maximal
Matching in O(log n) Update Time”. In: SIAM Journal on Computing 44.1
(2015). Announced at FOCS’11, pp. 88–113.

[16] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Improved decre-
mental algorithms for maintaining transitive closure and all-pairs shortest
paths”. In: Journal of Algorithms 62.2 (2007). Announced at STOC’02, pp. 74–
92.

[17] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Maintaining All-
Pairs Approximate Shortest Paths Under Deletion of Edges”. In: Symposium
on Discrete Algorithms (SODA). 2003, pp. 394–403.

[18] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. “Fully Dynamic
Randomized Algorithms for Graph Spanners”. In: ACM Transactions on Algo-
rithms 8.4 (2012). Announced at ESA’04, and SODA’08, 35:1–35:51.

[19] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi
Wigderson. “On the Power of Randomization in On-Line Algorithms”. In:
Algorithmica 11.1 (1994). Announced at STOC’90, pp. 2–14.

[20] Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. “A New Approach
to Incremental Topological Ordering”. In: Symposium on Discrete Algorithms
(SODA). 2009, pp. 1108–1115.

[21] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert Endre Tarjan.
“A New Approach to Incremental Cycle Detection and Related Problems”. In:
CoRR abs/1112.0784 (2011).

[22] Aaron Bernstein. “Fully Dynamic (2 + ϵ) Approximate All-Pairs Shortest
Paths with Fast Query and Close to Linear Update Time”. In: Symposium on
Foundations of Computer Science (FOCS). 2009, pp. 693–702.

http://dx.doi.org/10.1016/0304-3975(92)90267-J
http://dx.doi.org/10.1016/0304-3975(92)90267-J
http://dx.doi.org/10.1016/0304-3975(92)90267-J
http://dx.doi.org/10.1145/4221.4227
http://dx.doi.org/10.1145/4221.4227
http://dx.doi.org/10.1137/S0097539794271898
http://dx.doi.org/10.1137/S0097539794271898
http://dx.doi.org/10.1137/S0097539794271898
http://dx.doi.org/10.1145/1391289.1391292
http://dx.doi.org/10.1145/1391289.1391292
http://dx.doi.org/10.1145/1391289.1391292
http://dx.doi.org/10.1145/2395116.2395121
http://dx.doi.org/10.1145/2395116.2395121
http://dx.doi.org/10.1145/2395116.2395121
http://dx.doi.org/10.1137/130914140
http://dx.doi.org/10.1137/130914140
http://dx.doi.org/10.1137/130914140
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dx.doi.org/10.1016/j.jalgor.2004.08.004
http://dl.acm.org/citation.cfm?id=644108.644171
http://dl.acm.org/citation.cfm?id=644108.644171
http://dl.acm.org/citation.cfm?id=644108.644171
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1145/2344422.2344425
http://dx.doi.org/10.1007/BF01294260
http://dx.doi.org/10.1007/BF01294260
http://dx.doi.org/10.1007/BF01294260
http://dx.doi.org/10.1137/1.9781611973068.120
http://dx.doi.org/10.1137/1.9781611973068.120
http://dx.doi.org/10.1137/1.9781611973068.120
http://arxiv.org/abs/1112.0784
http://arxiv.org/abs/1112.0784
http://arxiv.org/abs/1112.0784
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16

BIBLIOGRAPHY 203

[23] Aaron Bernstein. “Maintaining Shortest Paths Under Deletions in Weighted
Directed Graphs”. In: Symposium on Theory of Computing (STOC). 2013,
pp. 725–734.

[24] Aaron Bernstein and Liam Roditty. “Improved Dynamic Algorithms for Main-
taining Approximate Shortest Paths Under Deletions”. In: Symposium on
Discrete Algorithms (SODA). 2011, pp. 1355–1365.

[25] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. “Deter-
ministic Fully Dynamic Data Structures for Vertex Cover and Matching”. In:
Symposium on Discrete Algorithms (SODA). 2015, pp. 785–804.

[26] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analy-
sis. Cambridge University Press, 1998, pp. I–XVIII, 1–414.

[27] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-
François Raskin. “Faster algorithms for mean-payoff games”. In: Formal Meth-
ods in System Design 38.2 (2011). Announced at MEMICS’09, and GAMES’09,
pp. 97–118.

[28] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, and Daniele
Frigioni. “Partially dynamic efficient algorithms for distributed shortest
paths”. In: Theoretical Computer Science 411.7-9 (2010). Announced at IC-
CTA’07, pp. 1013–1037.

[29] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Fri-
gioni, and Alberto Petricola. “Partially Dynamic Algorithms for Distributed
Shortest Paths and their Experimental Evaluation”. In: Journal of Computers
2.9 (2007). Announced at ICCTA’07, pp. 16–26.

[30] Israel Cidon, Inder S. Gopal, Marc A. Kaplan, and Shay Kutten. “A Distributed
Control Architecture of High-Speed Networks”. In: IEEE Transactions on
Communications 43.5 (1995). Announced at PODC’90, pp. 1950–1960.

[31] Edith Cohen. “Fast Algorithms for Constructing t-Spanners and Paths with
Stretch t”. In: SIAM Journal on Computing 28.1 (1998). Announced at FOCS’93,
pp. 210–236.

[32] Edith Cohen. “Polylog-Time and Near-Linear Work Approximation Scheme
for Undirected Shortest Paths”. In: Journal of the ACM 47.1 (2000). Announced
at STOC’94, pp. 132–166.

[33] Edith Cohen and Uri Zwick. “All-Pairs Small-Stretch Paths”. In: Journal of
Algorithms 38.2 (2001). Announced at SODA’97, pp. 335–353.

[34] AtishDas Sarma, StephanHolzer, Liah Kor, Amos Korman, DanuponNanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. “Distributed Veri-
fication and Hardness of Distributed Approximation”. In: SIAM Journal on
Computing 41.5 (2012). Announced at STOC’11, pp. 1235–1265.

http://dx.doi.org/10.1145/2488608.2488701
http://dx.doi.org/10.1145/2488608.2488701
http://dx.doi.org/10.1145/2488608.2488701
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973730.54
http://dx.doi.org/10.1137/1.9781611973730.54
http://dx.doi.org/10.1137/1.9781611973730.54
http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1016/j.tcs.2009.11.008
http://dx.doi.org/10.1016/j.tcs.2009.11.008
http://dx.doi.org/10.1016/j.tcs.2009.11.008
http://dx.doi.org/10.1016/j.tcs.2009.11.008
http://dx.doi.org/10.4304/jcp.2.9.16-26
http://dx.doi.org/10.4304/jcp.2.9.16-26
http://dx.doi.org/10.4304/jcp.2.9.16-26
http://dx.doi.org/10.4304/jcp.2.9.16-26
http://dx.doi.org/10.1109/26.387408
http://dx.doi.org/10.1109/26.387408
http://dx.doi.org/10.1109/26.387408
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1006/jagm.2000.1117
http://dx.doi.org/10.1006/jagm.2000.1117
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X

204 BIBLIOGRAPHY

[35] Shantanu Das, Beat Gfeller, and Peter Widmayer. “Computing All Best Swaps
for Minimum-Stretch Tree Spanners”. In: Journal of Graph Algorithms and
Applications 14.2 (2010). Announced at ISAAC’08, pp. 287–306.

[36] Camil Demetrescu and Giuseppe F. Italiano. “A New Approach to Dynamic
All Pairs Shortest Paths”. In: Journal of the ACM 51.6 (2004). Announced at
STOC’03, pp. 968–992.

[37] Camil Demetrescu and Giuseppe F. Italiano. “Fully dynamic all pairs shortest
paths with real edge weights”. In: Journal of Computer and System Sciences
72.5 (2006). Announced at FOCS’01, pp. 813–837.

[38] Camil Demetrescu and Giuseppe F. Italiano. “Improved Bounds and New
Trade-Offs for Dynamic All Pairs Shortest Paths”. In: International Colloquium
on Automata, Languages and Programming (ICALP). 2002, pp. 633–643.

[39] Camil Demetrescu and Giuseppe F. Italiano. “Trade-offs for Fully Dynamic
Transitive Closure on DAGs: Breaking through the O(n2) Barrier”. In: Journal
of the ACM 52.2 (2005). Announced at FOCS’00, pp. 147–156.

[40] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert Endre Tarjan. “Dynamic Perfect
Hashing: Upper and Lower Bounds”. In: SIAM Journal on Computing 23.4
(1994). Announced at FOCS’88, pp. 738–761.

[41] Dorit Dor, Shay Halperin, and Uri Zwick. “All-Pairs Almost Shortest Paths”.
In: SIAM Journal on Computing 29.5 (2000). Announced at FOCS’96, pp. 1740–
1759.

[42] Michael Elkin. “A faster distributed protocol for constructing a minimum
spanning tree”. In: Journal of Computer and System Sciences 72.8 (2006). An-
nounced at SODA’04, pp. 1282–1308.

[43] Michael Elkin. “A Near-Optimal Distributed Fully Dynamic Algorithm for
Maintaining Sparse Spanners”. In: Symposium on Principles of Distributed
Computing (PODC). 2007, pp. 185–194.

[44] Michael Elkin. “Computing Almost Shortest Paths”. In: ACM Transactions on
Algorithms 1.2 (2005). Announced at PODC’01, pp. 283–323.

[45] Michael Elkin. “Streaming and Fully Dynamic Centralized Algorithms for
Constructing and Maintaining Sparse Spanners”. In: ACM Transactions on
Algorithms 7.2 (2011). Announced at ICALP’07, 20:1–20:17.

[46] Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Panduran-
gan. “CanQuantum Communication Speed Up Distributed Computation?” In:
Symposium on Principles of Distributed Computing (PODC). 2014, pp. 166–175.

[47] Michael Elkin and David Peleg. “(1+ ϵ, β)-Spanner Constructions for General
Graphs”. In: SIAM Journal on Computing 33.3 (2004). Announced at STOC’01,
pp. 608–631.

http://dx.doi.org/10.7155/jgaa.00208
http://dx.doi.org/10.7155/jgaa.00208
http://dx.doi.org/10.7155/jgaa.00208
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1016/j.jcss.2005.05.005
http://dx.doi.org/10.1007/3-540-45465-9_54
http://dx.doi.org/10.1007/3-540-45465-9_54
http://dx.doi.org/10.1007/3-540-45465-9_54
http://dx.doi.org/10.1145/1059513.1059514
http://dx.doi.org/10.1145/1059513.1059514
http://dx.doi.org/10.1145/1059513.1059514
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1137/S0097539797327908
http://dx.doi.org/10.1137/S0097539797327908
http://dx.doi.org/10.1137/S0097539797327908
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1145/1281100.1281128
http://dx.doi.org/10.1145/1281100.1281128
http://dx.doi.org/10.1145/1281100.1281128
http://dx.doi.org/10.1145/1103963.1103968
http://dx.doi.org/10.1145/1103963.1103968
http://dx.doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1145/2611462.2611488
http://dx.doi.org/10.1145/2611462.2611488
http://dx.doi.org/10.1145/2611462.2611488
http://dx.doi.org/10.1137/S0097539701393384
http://dx.doi.org/10.1137/S0097539701393384
http://dx.doi.org/10.1137/S0097539701393384

BIBLIOGRAPHY 205

[48] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.
“Sparsification—A Technique for Speeding Up Dynamic Graph Algorithms”.
In: Journal of the ACM 44.5 (1997). Announced at FOCS’92, pp. 669–696.

[49] Shimon Even and Yossi Shiloach. “An On-Line Edge-Deletion Problem”. In:
Journal of the ACM 28.1 (1981), pp. 1–4.

[50] Jittat Fakcharoenphol and Satish Rao. “Planar graphs, negative weight edges,
shortest paths, and near linear time”. In: Journal of Computer and System
Sciences 72.5 (2006). Announced at FOCS’01, pp. 868–889.

[51] Paola Flocchini, Antonio Mesa Enriques, Linda Pagli, Giuseppe Prencipe, and
Nicola Santoro. “Point-of-Failure Shortest-Path Rerouting: Computing the
Optimal Swap Edges Distributively”. In: IEICE Transactions on Information
and Systems 89-D.2 (2006), pp. 700–708.

[52] Greg N. Frederickson. “Data Structures for On-Line Updating of Minimum
Spanning Trees, with Applications”. In: SIAM Journal on Computing 14.4
(1985). Announced at STOC’83, pp. 781–798.

[53] Juan A. Garay, Shay Kutten, and David Peleg. “A sublinear time distrib-
uted algorithm for minimum-weight spanning trees”. In: SIAM Journal on
Computing 27 (1998). Announced at FOCS’93, pp. 302–316.

[54] Beat Gfeller. “Faster Swap Edge Computation in Minimum Diameter Span-
ning Trees”. In: Algorithmica 62.1-2 (2012). Announced at ESA’08, pp. 169–
191.

[55] Beat Gfeller, Nicola Santoro, and Peter Widmayer. “A Distributed Algorithm
for Finding All Best Swap Edges of a Minimum-Diameter Spanning Tree”. In:
IEEE Transactions on Dependable and Secure Computing 8.1 (2011). Announced
at DISC’07, pp. 1–12.

[56] Manoj Gupta and Richard Peng. “Fully Dynamic (1 + ϵ)-Approximate Match-
ings”. In: Symposium on Foundations of Computer Science (FOCS). 2013, pp. 548–
557.

[57] Thomas P. Hayes, Jared Saia, and Amitabh Trehan. “The Forgiving Graph:
a distributed data structure for low stretch under adversarial attack”. In:
Distributed Computing 25.4 (2012). Announced at PODC’09, pp. 261–278.

[58] Monika Rauch Henzinger and Valerie King. “Randomized Fully Dynamic
Graph Algorithms with Polylogarithmic Time per Operation”. In: Journal of
the ACM 46.4 (1999). Announced at STOC’95, pp. 502–516.

[59] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subra-
manian. “Faster Shortest-Path Algorithms for Planar Graphs”. In: Journal of
Computer and System Sciences 55.1 (1997). Announced at STOC’94, pp. 3–23.

[60] Monika Rauch Henzinger and Mikkel Thorup. “Sampling to provide or to
bound: With applications to fully dynamic graph algorithms”. In: Random
Structures & Algorithms 11.4 (1997). Announced at ICALP’96, pp. 369–379.

http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1093/ietisy/e89-d.2.700
http://dx.doi.org/10.1093/ietisy/e89-d.2.700
http://dx.doi.org/10.1093/ietisy/e89-d.2.700
http://dx.doi.org/10.1093/ietisy/e89-d.2.700
http://dx.doi.org/10.1137/0214055
http://dx.doi.org/10.1137/0214055
http://dx.doi.org/10.1137/0214055
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1007/s00453-010-9448-3
http://dx.doi.org/10.1007/s00453-010-9448-3
http://dx.doi.org/10.1007/s00453-010-9448-3
http://dx.doi.org/10.1109/TDSC.2009.17
http://dx.doi.org/10.1109/TDSC.2009.17
http://dx.doi.org/10.1109/TDSC.2009.17
http://dx.doi.org/10.1109/TDSC.2009.17
http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1007/s00446-012-0160-1
http://dx.doi.org/10.1007/s00446-012-0160-1
http://dx.doi.org/10.1007/s00446-012-0160-1
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1145/320211.320215
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X

206 BIBLIOGRAPHY

[61] Monika Henzinger and Valerie King. “Fully Dynamic Biconnectivity and
Transitive Closure”. In: Symposium on Foundations of Computer Science (FOCS).
1995, pp. 664–672.

[62] Monika Henzinger and Valerie King. “Maintaining Minimum Spanning
Forests in Dynamic Graphs”. In: SIAM Journal on Computing 31.2 (2001).
Announced at ICALP’97, pp. 364–374.

[63] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A Sub-
quadratic-Time Algorithm for Dynamic Single-Source Shortest Paths”. In:
Symposium on Discrete Algorithms (SODA). 2014, pp. 1053–1072.

[64] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Decre-
mental Single-Source Shortest Paths on Undirected Graphs in Near-Linear
Total Update Time”. In: Symposium on Foundations of Computer Science (FOCS).
2014, pp. 146–155.

[65] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dy-
namic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier
and Derandomization”. In: Symposium on Foundations of Computer Science
(FOCS). 2013, pp. 538–547.

[66] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dy-
namic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier
and Derandomization”. In: SIAM Journal on Computing (forthcoming). An-
nounced at FOCS’13.

[67] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Im-
proved Algorithms for Decremental Single-Source Reachability on Directed
Graphs”. In: International Colloquium on Automata, Languages and Program-
ming (ICALP). 2015, forthcoming.

[68] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sub-
linear-Time Decremental Algorithms for Single-Source Reachability and
Shortest Paths on Directed Graphs”. In: Symposium on Theory of Computing
(STOC). 2014, pp. 674–683.

[69] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublin-
ear-Time Maintenance of Breadth-First Spanning Tree in Partially Dynamic
Networks”. In: International Colloquium on Automata, Languages and Pro-
gramming (ICALP). 2013, pp. 607–619.

[70] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatch-
aphol Saranurak. “Unifying and Strengthening Hardness for Dynamic Prob-
lems via the Online Matrix-Vector Multiplication Conjecture”. In: Symposium
on Theory of Computing (STOC). 2015.

[71] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. “Poly-Logarithmic
Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Span-
ning Tree, 2-Edge, and Biconnectivity”. In: Journal of the ACM 48.4 (2001).
Announced at STOC’98, pp. 723–760.

http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1007/3-540-63165-8_214
http://dx.doi.org/10.1007/3-540-63165-8_214
http://dx.doi.org/10.1007/3-540-63165-8_214
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1007/978-3-642-39212-2_53
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/502090.502095

BIBLIOGRAPHY 207

[72] Giuseppe F. Italiano. “Amortized Efficiency of a Path Retrieval Data Structure”.
In: Theoretical Computer Science 48.3 (1986), pp. 273–281.

[73] Giuseppe F. Italiano. “Distributed Algorithms for Updating Shortest Paths”.
In: InternationalWorkshop on Distributed Algorithms on Graphs (WDAG/DISC).
1991, pp. 200–211.

[74] Giuseppe F. Italiano. “Finding Paths and Deleting Edges in Directed Acyclic
Graphs”. In: Information Processing Letters 28.1 (1988), pp. 5–11.

[75] Giuseppe F. Italiano and Rajiv Ramaswami. “Maintaining Spanning Trees
of Small Diameter”. In: Algorithmica 22.3 (1998). Announced at ICALP’94,
pp. 275–304.

[76] Hiro Ito, Kazuo Iwama, Yasuo Okabe, and Takuya Yoshihiro. “Single backup
table schemes for shortest-path routing”. In: Theoretical Computer Science
333.3 (2005). Announced at SIROCCO’03, pp. 347–353.

[77] Bruce M. Kapron, Valerie King, and Ben Mountjoy. “Dynamic graph con-
nectivity in polylogarithmic worst case time”. In: Symposium on Discrete
Algorithms (SODA). 2013, pp. 1131–1142.

[78] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal
Talwar. “Efficient distributed approximation algorithms via probabilistic tree
embeddings”. In: Distributed Computing 25.3 (2012). Announced at PODC’08,
pp. 189–205.

[79] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest
Paths and Transitive Closure in Digraphs”. In: Symposium on Foundations of
Computer Science (FOCS). 1999, pp. 81–91.

[80] Valerie King. “Fully Dynamic Transitive Closure”. In: Encyclopedia of Algo-
rithms. 2008.

[81] Valerie King and Garry Sagert. “A Fully Dynamic Algorithm for Maintaining
the Transitive Closure”. In: Journal of Computer and System Sciences 65.1
(2002). Announced at STOC’00, pp. 150–167.

[82] Valerie King andMikkelThorup. “A Space Saving Trick for Directed Dynamic
Transitive Closure and Shortest PathAlgorithms”. In: International Computing
and Combinatorics Conference (COCOON). 2001, pp. 268–277.

[83] Liah Kor, Amos Korman, and David Peleg. “Tight Bounds for Distributed
Minimum-Weight Spanning Tree Verification”. In: Theory of Computing Sys-
tems 53.2 (2013). Announced at STACS’11, pp. 318–340.

[84] Amos Korman. “Improved Compact Routing Schemes for Dynamic Trees”. In:
Symposium on Principles of Distributed Computing (PODC). 2008, pp. 185–194.

[85] Amos Korman and Shay Kutten. “Controller and Estimator for Dynamic Net-
works”. In: Information and Computation 223 (2013). Announced at PODC’07,
pp. 43–66.

http://dx.doi.org/10.1016/0304-3975(86)90098-8
http://dx.doi.org/10.1016/0304-3975(86)90098-8
http://dx.doi.org/10.1007/BFb0022448
http://dx.doi.org/10.1007/BFb0022448
http://dx.doi.org/10.1007/BFb0022448
http://dx.doi.org/10.1016/0020-0190(88)90136-6
http://dx.doi.org/10.1016/0020-0190(88)90136-6
http://dx.doi.org/10.1007/PL00009225
http://dx.doi.org/10.1007/PL00009225
http://dx.doi.org/10.1007/PL00009225
http://dx.doi.org/10.1016/j.tcs.2004.06.033
http://dx.doi.org/10.1016/j.tcs.2004.06.033
http://dx.doi.org/10.1016/j.tcs.2004.06.033
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1007/978-0-387-30162-4_158
http://dx.doi.org/10.1007/978-0-387-30162-4_158
http://dx.doi.org/10.1006/jcss.2002.1883
http://dx.doi.org/10.1006/jcss.2002.1883
http://dx.doi.org/10.1006/jcss.2002.1883
http://dx.doi.org/10.1007/3-540-44679-6_30
http://dx.doi.org/10.1007/3-540-44679-6_30
http://dx.doi.org/10.1007/3-540-44679-6_30
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1145/1400751.1400777
http://dx.doi.org/10.1145/1400751.1400777
http://dx.doi.org/10.1016/j.ic.2012.10.018
http://dx.doi.org/10.1016/j.ic.2012.10.018
http://dx.doi.org/10.1016/j.ic.2012.10.018

208 BIBLIOGRAPHY

[86] Amos Korman and David Peleg. “Dynamic Routing Schemes for Graphs
with Low Local Density”. In: ACM Transactions on Algorithms 4.4 (2008).
Announced at ICALP’06, 41:1–41:18.

[87] Danny Krizanc, Flaminia L. Luccio, and Rajeev Raman. “Compact Routing
Schemes for Dynamic Ring Networks”. In: Theory of Computing Systems 37.5
(2004). Announced at IPPS/SPDP’99, pp. 585–607.

[88] Shay Kutten and David Peleg. “Fast Distributed Construction of Small k-
Dominating Sets and Applications”. In: Journal of Algorithms 28.1 (1998).
Announced at PODC’95, pp. 40–66.

[89] Shay Kutten and Avner Porat. “Maintenance of a Spanning Tree in Dynamic
Networks”. In: International Symposium on Distributed Computing (DISC).
1999, pp. 342–355.

[90] Jakub Łącki. “Improved Deterministic Algorithms for Decremental Reacha-
bility and Strongly Connected Components”. In: ACM Transactions on Algo-
rithms 9.3 (2013). Announced at SODA’11, p. 27.

[91] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. “Distributed MST for con-
stant diameter graphs”. In: Distributed Computing 18.6 (2006). Announced at
PODC’01, pp. 453–460.

[92] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. “Minimum-
Weight Spanning Tree Construction in O(log log n) Communication Rounds”.
In: SIAM Journal on Computing 35.1 (2005). Announced at SPAA’03, pp. 120–
131.

[93] P.S. Loubal and Bay Area Transportation Study Commission. A Network
Evaluation Procedure. Bay Area Transportation Study Commission, 1967.

[94] Nancy A. Lynch. Distributed Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 1996.

[95] Aleksander Mądry. “Faster Approximation Schemes for Fractional Multicom-
modity Flow Problems via Dynamic Graph Algorithms”. In: Symposium on
Theory of Computing (STOC). 2010, pp. 121–130.

[96] Navneet Malpani, Jennifer L. Welch, and Nitin H. Vaidya. “Leader Election
Algorithms for Mobile Ad Hoc Networks”. In: Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and Communications (DIAL-M).
2000, pp. 96–103.

[97] John D. Murchland. The effect of increasing or decreasing the length of a
single arc on all shortest distances in a graph. Tech. rep. LBS-TNT-26. London
Business School, Transport Network Theory Unit, 1967.

[98] Danupon Nanongkai. “Distributed Approximation Algorithms for Weighted
Shortest Paths”. In: Symposium onTheory of Computing (STOC). 2014, pp. 565–
573.

http://dx.doi.org/10.1145/1383369.1383372
http://dx.doi.org/10.1145/1383369.1383372
http://dx.doi.org/10.1145/1383369.1383372
http://dx.doi.org/10.1007/s00224-004-1080-z
http://dx.doi.org/10.1007/s00224-004-1080-z
http://dx.doi.org/10.1007/s00224-004-1080-z
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1007/3-540-48169-9_24
http://dx.doi.org/10.1007/3-540-48169-9_24
http://dx.doi.org/10.1007/3-540-48169-9_24
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1007/s00446-005-0127-6
http://dx.doi.org/10.1007/s00446-005-0127-6
http://dx.doi.org/10.1007/s00446-005-0127-6
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/345848.345871
http://dx.doi.org/10.1145/345848.345871
http://dx.doi.org/10.1145/345848.345871
http://dx.doi.org/10.1145/345848.345871
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850

BIBLIOGRAPHY 209

[99] Enrico Nardelli, Guido Proietti, and Peter Widmayer. “Finding All the Best
Swaps of aMinimumDiameter Spanning Tree Under Transient Edge Failures”.
In: Journal of Graph Algorithms and Applications 5.5 (2001). Announced at
ESA’98, pp. 39–57.

[100] Enrico Nardelli, Guido Proietti, and Peter Widmayer. “Swapping a Failing
Edge of a Single Source Shortest Paths Tree Is Good and Fast”. In:Algorithmica
35.1 (2003). Announced at COCOON’99, pp. 56–74.

[101] Ofer Neiman and Shay Solomon. “Simple Deterministic Algorithms for Fully
Dynamic Maximal Matching”. In: Symposium onTheory of Computing (STOC).
2013, pp. 745–754.

[102] Krzysztof Onak and Ronitt Rubinfeld. “Maintaining a Large Matching and a
Small Vertex Cover”. In: Symposium on Theory of Computing (STOC). 2010,
pp. 457–464.

[103] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: Journal of
Algorithms 51.2 (2004). Announced at ESA’01, pp. 122–144.

[104] Mihai Patrascu. “Towards Polynomial Lower Bounds for Dynamic Problems”.
In: Symposium on Theory of Computing (STOC). 2010, pp. 603–610.

[105] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Philadel-
phia, PA, USA: SIAM, 2000.

[106] David Peleg and Vitaly Rubinovich. “A Near-Tight Lower Bound on the Time
Complexity of Distributed Minimum-Weight Spanning Tree Construction”.
In: SIAM Journal on Computing 30.5 (2000). Announced at FOCS’99, pp. 1427–
1442.

[107] K. V. S. Ramarao and S. Venkatesan. “On Finding and Updating Shortest Paths
Distributively”. In: Journal of Algorithms 13.2 (1992). Announced at Allerton
Conference’86, pp. 235–257.

[108] Liam Roditty. “A Faster and Simpler Fully Dynamic Transitive Closure”. In:
ACM Transactions on Algorithms 4.1 (2008). Announced at SODA’03.

[109] Liam Roditty. “Decremental maintenance of strongly connected components”.
In: Symposium on Discrete Algorithms (SODA). 2013, pp. 1143–1150.

[110] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Deterministic Constructions
of Approximate Distance Oracles and Spanners”. In: International Colloquium
on Automata, Languages and Programming (ICALP). 2005, pp. 261–272.

[111] Liam Roditty and Roei Tov. “Approximating the Girth”. In: ACM Transactions
on Algorithms 9.2 (2013). Announced at SODA’11, 15:1–15:13.

[112] Liam Roditty and Uri Zwick. “A Fully Dynamic Reachability Algorithm for
Directed Graphs with an Almost Linear Update Time”. In: Symposium on
Theory of Computing (STOC). 2004, pp. 184–191.

http://dx.doi.org/10.7155/jgaa.00039
http://dx.doi.org/10.7155/jgaa.00039
http://dx.doi.org/10.7155/jgaa.00039
http://dx.doi.org/10.7155/jgaa.00039
http://dx.doi.org/10.1007/s00453-002-0988-z
http://dx.doi.org/10.1007/s00453-002-0988-z
http://dx.doi.org/10.1007/s00453-002-0988-z
http://dx.doi.org/10.1145/2488608.2488703
http://dx.doi.org/10.1145/2488608.2488703
http://dx.doi.org/10.1145/2488608.2488703
http://dx.doi.org/10.1145/1806689.1806753
http://dx.doi.org/10.1145/1806689.1806753
http://dx.doi.org/10.1145/1806689.1806753
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1016/0196-6774(92)90017-7
http://dx.doi.org/10.1016/0196-6774(92)90017-7
http://dx.doi.org/10.1016/0196-6774(92)90017-7
http://dx.doi.org/10.1145/1328911.1328917
http://dx.doi.org/10.1145/1328911.1328917
http://dx.doi.org/10.1137/1.9781611973105.82
http://dx.doi.org/10.1137/1.9781611973105.82
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1145/2438645.2438647
http://dx.doi.org/10.1145/2438645.2438647
http://dx.doi.org/10.1145/1007352.1007387
http://dx.doi.org/10.1145/1007352.1007387
http://dx.doi.org/10.1145/1007352.1007387

210 BIBLIOGRAPHY

[113] Liam Roditty and Uri Zwick. “Dynamic Approximate All-Pairs Shortest
Paths in Undirected Graphs”. In: SIAM Journal on Computing 41.3 (2012).
Announced at FOCS’04, pp. 670–683.

[114] Liam Roditty and Uri Zwick. “Improved Dynamic Reachability Algorithms
for Directed Graphs”. In: SIAM Journal on Computing 37.5 (2008). Announced
at FOCS’02, pp. 1455–1471.

[115] Liam Roditty and Uri Zwick. “On Dynamic Shortest Paths Problems”. In:
Algorithmica 61.2 (2011). Announced at ESA’04, pp. 389–401.

[116] Aleksej Di Salvo and Guido Proietti. “Swapping a failing edge of a shortest
paths tree by minimizing the average stretch factor”. In:Theoretical Computer
Science 383.1 (2007). Announced at SIROCCO’04, pp. 23–33.

[117] Piotr Sankowski. “Dynamic Transitive Closure via Dynamic Matrix Inverse”.
In: Symposium on Foundations of Computer Science (FOCS). 2004, pp. 509–517.

[118] Piotr Sankowski. “Faster Dynamic Matchings and Vertex Connectivity”. In:
Symposium on Discrete Algorithms (SODA). 2007, pp. 118–126.

[119] Piotr Sankowski. “Subquadratic Algorithm for Dynamic Shortest Distances”.
In: International Computing and Combinatorics Conference (COCOON). 2005,
pp. 461–470.

[120] Robert Endre Tarjan. “Depth-First Search and Linear Graph Algorithms”.
In: SIAM Journal on Computing 1.2 (1972). Announced at SWAT’71 (FOCS),
pp. 146–160.

[121] MikkelThorup. “Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing
Negative Cycles”. In: Scandinavian Workshop on Algorithm Theory (SWAT).
2004, pp. 384–396.

[122] Mikkel Thorup. “Near-optimal fully-dynamic graph connectivity”. In: Sympo-
sium on Theory of Computing (STOC). 2000, pp. 343–350.

[123] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Inte-
ger Weights in Linear Time”. In: Journal of the ACM 46.3 (1999). Announced
at FOCS’97, pp. 362–394.

[124] Mikkel Thorup. “Worst-Case Update Times for Fully-Dynamic All-Pairs
Shortest Paths”. In: Symposium onTheory of Computing (STOC). 2005, pp. 112–
119.

[125] Mikkel Thorup and Uri Zwick. “Approximate Distance Oracles”. In: Journal
of the ACM 52.1 (2005). Announced at STOC’01, pp. 74–92.

[126] Mikkel Thorup and Uri Zwick. “Spanners and emulators with sublinear
distance errors”. In: Symposium on Discrete Algorithms (SODA). 2006, pp. 802–
809.

[127] JeffreyD. Ullman andMihalis Yannakakis. “High-Probability Parallel Transitive-
Closure Algorithms”. In: SIAM Journal on Computing 20.1 (1991). Announced
at SPAA’90, pp. 100–125.

http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1007/s00453-010-9401-5
http://dx.doi.org/10.1007/s00453-010-9401-5
http://dx.doi.org/10.1016/j.tcs.2007.03.046
http://dx.doi.org/10.1016/j.tcs.2007.03.046
http://dx.doi.org/10.1016/j.tcs.2007.03.046
http://dx.doi.org/10.1109/FOCS.2004.25
http://dx.doi.org/10.1109/FOCS.2004.25
http://dl.acm.org/citation.cfm?id=1283397
http://dl.acm.org/citation.cfm?id=1283397
http://dx.doi.org/10.1007/11533719_47
http://dx.doi.org/10.1007/11533719_47
http://dx.doi.org/10.1007/11533719_47
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1007/978-3-540-27810-8_33
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1145/1044731.1044732
http://dx.doi.org/10.1145/1044731.1044732
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006

BIBLIOGRAPHY 211

[128] Virginia Vassilevska Williams and Ryan Williams. “Subcubic Equivalences
between Path, Matrix and Triangle Problems”. In: Symposium on Foundations
of Computer Science (FOCS). 2010, pp. 645–654.

[129] Virginia Vassilevska, RyanWilliams, and Raphael Yuster. “All Pairs Bottleneck
Paths and Max-Min Matrix Products in Truly Subcubic Time”. In: Theory of
Computing 5.1 (2009). Announced at STOC’07, pp. 173–189.

[130] Uri Zwick. “All Pairs Shortest Paths using Bridging Sets and Rectangular
Matrix Multiplication”. In: Journal of the ACM 49.3 (2002). Announced at
FOCS’98, pp. 289–317.

http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.4086/toc.2009.v005a009
http://dx.doi.org/10.4086/toc.2009.v005a009
http://dx.doi.org/10.4086/toc.2009.v005a009
http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1145/567112.567114

Curriculum Vitæ

Education

2011-2015 PhD studies, Computer Science, University of Vienna, Austria
Thesis title: Faster Approximation Algorithms for Partially Dynamic
Shortest Paths Problems
Thesis supervisor: Prof. Monika Henzinger

2008–2011 Master studies, Computational Intelligence, Vienna University of
Technology, Austria
Thesis title: Combining Supervaluation and Fuzzy Logic Based Theories
of Vagueness
Thesis supervisor: Ao.Prof. Christian Fermüller

2005–2008 Bachelor studies, Computer Science, University of Passau, Germany
Thesis title: On-line Identification Using Handwritten Passwords
Thesis supervisor: Prof. Bernhard Sick

Employment

2014 Intern, Microsoft Research, Silicon Valley Lab, Mountain View, USA
Mentors: Ittai Abraham and Shiri Chechik

since 2011 Research assistant, Theory and Applications of Algorithms group,
University of Vienna, Austria

2010–2011 Student assistant, Theory and Applications of Algorithms group, Uni-
versity of Vienna, Austria

2008 Student assistant, Computationally Intelligent Systems group, Uni-
versity of Passau, Germany

2007 Student assistant, Institute for Information Systems and Software
Technology, University of Passau, Germany

2005–2008 Intern during semester breaks, InfraServ Gendorf, Burgkirchen, Ger-
many

Scholarships

2011 Diploma thesis scholarship, Vienna University of Technology

2008–2011 Max Weber-Program (Bavarian scholarship system)

2008–2010 GermanNational Academic Foundation (Studienstiftung desDeutschen
Volkes)

	Introduction
	Problem Statement
	Related Work
	Preliminaries

	Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization
	Introduction
	The Problem
	Our Results
	Techniques
	Related Work

	Background
	Basic Definitions
	Decremental Shortest-Path Tree Data Structure
	The Framework of Roditty and Zwick

	 O (n5/2) -Total Time (1+ε, 2)- and (2+ε, 0)-Approximation Algorithms
	(1, 2, 2 / ε)-Locally Persevering Emulator of Size O (n3/2)
	Maintaining Distances Using Monotone Even-Shiloach Tree
	From Approximate SSSP to Approximate APSP
	Putting Everything Together

	Deterministic Decremental (1 + ε) -Approximate APSP with O(mn97=79798=79899=799100=7100101=7101102=7102103=7103104=7104105=7105106=7106107=7107108=7108109=7109110=7110111=7111112=7112113=7113114=7114115=7115116=7116117=7117118=7118119=7119120=7120121=7121122=7122104=7104119886=797119887=798119888=799119889=7100119890=7101119891=7102119892=7103119893=7104119894=7105119895=7106119896=7107119897=7108119898=7109119899=7110119900=7111119901=7112119902=7113119903=7114119904=7115119905=7116119906=7117119907=7118119908=7119119909=7120119910=7121119911=71228462=710465=76566=76667=76768=76869=76970=77071=77172=77273=77374=77475=77576=77677=77778=77879=77980=78081=78182=78283=78384=78485=78586=78687=78788=78889=78990=790119860=765119861=766119862=767119863=768119864=769119865=770119866=771119867=772119868=773119869=774119870=775119871=776119872=777119873=778119874=779119875=780119876=781119877=782119878=783119879=784119880=785119881=786119882=787119883=788119884=789119885=790945=7945946=7946947=7947948=7948949=7949950=7950951=7951952=7952953=7953954=7954955=7955956=7956957=7957958=7958959=7959960=7960961=7961962=7962963=7963964=7964965=7965966=7966967=7967968=7968969=79691013=71013977=79771008=71008981=79811009=71009982=7982120572=7945120573=7946120574=7947120575=7948120576=7949120577=7950120578=7951120579=7952120580=7953120581=7954120582=7955120583=7956120584=7957120585=7958120586=7959120587=7960120588=7961120589=7962120590=7963120591=7964120592=7965120593=7966120594=7967120595=7968120596=7969120598=71013120599=7977120600=71008120601=7981120602=71009120603=7982913=7913914=7914915=7915916=7916917=7917918=7918919=7919920=7920921=7921922=7922923=7923924=7924925=7925926=7926927=7927928=7928929=7929930=7930931=7931932=7932933=7933934=7934935=7935936=7936937=79371012=71012120546=7913120547=7914120548=7915120549=7916120550=7917120551=7918120552=7919120553=7920120554=7921120555=7922120556=7923120557=7924120558=7925120559=7926120560=7927120561=7928120562=7929120563=7930120564=7931120565=7932120566=7933120567=7934120568=7935120569=7936120570=7937120563=7101248=74849=74950=75051=75152=75253=75354=75455=75556=75657=7578706=78706120597=787068711=78711120571=78711305=7305120484=7305567=7567120485=756797=79798=79899=799100=7100101=7101102=7102103=7103104=7104105=7105106=7106107=7107108=7108109=7109110=7110111=7111112=7112113=7113114=7114115=7115116=7116117=7117118=7118119=7119120=7120121=7121122=7122104=7104119886=797119887=798119888=799119889=7100119890=7101119891=7102119892=7103119893=7104119894=7105119895=7106119896=7107119897=7108119898=7109119899=7110119900=7111119901=7112119902=7113119903=7114119904=7115119905=7116119906=7117119907=7118119908=7119119909=7120119910=7121119911=71228462=710465=76566=76667=76768=76869=76970=77071=77172=77273=77374=77475=77576=77677=77778=77879=77980=78081=78182=78283=78384=78485=78586=78687=78788=78889=78990=790119860=765119861=766119862=767119863=768119864=769119865=770119866=771119867=772119868=773119869=774119870=775119871=776119872=777119873=778119874=779119875=780119876=781119877=782119878=783119879=784119880=785119881=786119882=787119883=788119884=789119885=79048=74849=74950=75051=75152=75253=75354=75455=75556=75657=757913=7913914=7914915=7915916=7916917=7917918=7918919=7919920=7920921=7921922=7922923=7923924=7924925=7925926=7926927=7927928=7928929=7929930=7930931=7931932=7932933=7933934=7934935=7935936=7936937=79371012=71012120546=7913120547=7914120548=7915120549=7916120550=7917120551=7918120552=7919120553=7920120554=7921120555=7922120556=7923120557=7924120558=7925120559=7926120560=7927120561=7928120562=7929120563=7930120564=7931120565=7932120566=7933120567=7934120568=7935120569=7936120570=7937120563=71012945=7945946=7946947=7947948=7948949=7949950=7950951=7951952=7952953=7953954=7954955=7955956=7956957=7957958=7958959=7959960=7960961=7961962=7962963=7963964=7964965=7965966=7966967=7967968=7968969=79691013=71013977=79771008=71008981=79811009=71009982=7982120572=7945120573=7946120574=7947120575=7948120576=7949120577=7950120578=7951120579=7952120580=7953120581=7954120582=7955120583=7956120584=7957120585=7958120586=7959120587=7960120588=7961120589=7962120590=7963120591=7964120592=7965120593=7966120594=7967120595=7968120596=7969120598=71013120599=7977120600=71008120601=7981120602=71009120603=7982logn) Total Update Time
	Deterministic Moving Centers Data Structure
	Deterministic Center Cover Data Structure
	Deterministic Fully Dynamic Algorithm

	Conclusion

	Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time
	Introduction
	Preliminaries
	Technical Overview
	From Approximate SSSP to Approximate Balls
	Relation to Exact Balls
	Properties of Approximate Balls

	From Approximate Balls to Approximate SSSP
	Algorithm Description
	Running Time Analysis
	Definitions of Values for Approximation Guarantee
	Analysis of Approximation Guarantee

	Putting Everything Together
	Approximate SSSP
	Approximate APSP

	Conclusion

	Sublinear-Time Decremental Algorithms for Single-Source Reachability and Shortest Paths on Directed Graphs
	Introduction
	Preliminaries
	Problem Description
	Definitions and Basic Properties
	Algorithm Overview for s-t Reachability
	Single-Source Shortest Paths
	Strongly Connected Components

	Single-Source Single-Sink Reachability
	Algorithm Description
	Correctness
	Running Time Analysis
	Extension to Single-Source Reachability

	Approximate Shortest Path
	Preliminaries
	Algorithm Description
	Correctness
	Running Time

	Faster Single-Source Reachability in Dense Graphs
	Approximate Path Union Data Structure
	Reachability via Center Graph

	Conclusion

	Sublinear-Time Maintenance of Breadth-First Spanning Trees in Partially Dynamic Networks
	Introduction
	Main Technical Idea
	Incremental Algorithm
	General Framework
	Sequential model
	Distributed Model
	Removing the Connectedness Assumption

	Decremental Algorithm
	Analysis of Procedure for Repairing the Tree
	Analysis of Decremental Distributed Algorithm

	Conclusion and Open Problems

	Bibliography

