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Abstract

Hadamard matrices are an important topic in the field of combinatorical designs and

many applications. In this master thesis all common constructions of Hadamard matri-

ces are detailly explained. The first part is a short summary about the history of this

topic and the second introduces the constructions of Sylvester, Williamson, Paley and

Goethals/Seidl. In addition, a chapter concentrates on the equivalences classes that can

be defined for Hadamard matrices. In between, the basic algebraic knowledge that is

needed to understand some constructions is offered. A special focus of this thesis are

Hadamard designs which are explained in Chapter five. Furthermore, the strong connec-

tion between bent functions and Hadamard matrices is presented at the end of chapter

five. The last chapter has a look on the future of Hadamard constructions, namely co-

cyclic matrices.

Hadamard Matrizen sind ein wichtiges Thema in dem Gebiet der kombinatorischen

Designs und vieler Anwendungen. Diese Masterarbeit beschäftigt sich mit den wichtig-

sten Konstruktionen von Hadamard Matrizen. Das erste Kapitel bietet eine historische

Zusammenfassung dieses Themas. Das zweite Kapitel erklärt die Konstruktionen von

Sylvester, Williamson, Paley und Goethals/Seidl. Zusätzlich konzentriert sich ein Kapi-

tel vollständig auf die Äquivalenzklassen, die man für Hadamard Matrizen definieren

kann. Dazwischen befindet sich ein Kapitel, das das wichtigste algebraische Wissen ver-

mittelt, um alle Konstruktionen verstehen zu können. Diese Arbeit konzentriert sich

weiters speziell auf Hadamard Designs. Diese werden im fünften Kapitel erklärt. Des

Weiteren wird am Ende dieses Kapitels die starke Beziehung zwischen Bentfunktionen

und Hadamard Matrizen präsentiert. Das letzte Kapitel betrachtet die Zukunft der Kon-

struktionen von Hadamard Matrizen, nämlich Kozyklische Matrizen.
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1. Introduction and History

The following brief introduction and summary of Hadamard matrices is general and can be

found in nearly all literature on this topic, but [19] and [10] can be highly recommended.

Hadamard Matrices have been a topic of interest for researchers for nearly 150 years.

A Hadamard matrix A is an n× n matrix formed by ones and minus ones that satisfies

a kind of orthogonality condition, namely that AAT = nI. J. J. Sylvester was the first

person interested in this kind of matrices in 1867 and his idea of constructing Hadamard

matrices is still the easiest one (see [24]). Nevertheless, they are named after Jacques

Salomon Hadamard who was the first to prove simple properties of of Hadamard matrices

in 1893. What makes the matrices so interesting is the following: The easiest questions

on that topic probably have the hardest answers. When you introduce the topic to a

mathematical student who has never heard about it, the first questions that arise seem

to be “left for practice ”-questions. Do Hadamard matrices exist for every size? How

many different Hadamard matrices are there of one size? But in fact these questions are

still unsolved. There are various ways to tackle them.

The first way is to find a construction that leads to Hadamard matrices methodically.

Many ways of constructing Hadamard matrices will be introduced on the next pages.

Paley made a lot of progress on an algebraic way in 1933 [20].

Constructing Hadamard Matrices can also be done in a combinatorical way as Williamson

matrices will show. Although combinatorical designs are still a subdomain of combina-

torics, it has a strong connection to finite fields which will revise in the fourth chapter.

There are also attempts to show just an existence proof (see for instance [17]).

The question how many of them exist will lead to the equivalence classes of Hadamard

matrices, but this topic is even more unresolved then the pure existence.

There is also a significant interest in circulant Hadamard matrices, in more-dimensional

and also in complex Hadamard matrices.

The reason why the Hadamard Conjecture is still of interest now lies in the applications

of the matrices in the field of coding theory, cryptology, signal processing, image analysis

and so on.

Of course, as it is also a part of linear algebra, the determinant of a Hadamard matrix

seems to be interesting, too. This question is easy to answer as it will be shown that it is

n
n
2 . That is just a small part of what Hadamard showed in his paper [6]. A big conjecture

called “the Hadamard determinant problem” is: How can the entries of an n× n matrix

be filled with 1s and -1s, so that it has maximum determinant? Hadamard proved in his

paper that the upper bound of the determinant is n
n
2 and the maximum can be reached

if and only if the matrix is Hadamard.

The second chapter will show the basic definitions, properties and the most common

constructions of Hadamard matrices. The third one will give a sneak peek of the problem
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to find the equivalence classes of Hadmard matrices and the fourth chapter will clarify

some preliminaries that may be used before and needed for the last chapter. The fifth

chapter explains combinatorical ways to find Hadamard matrices.

2. Basic definitions and properties
There are many ways to define Hadamard matrices. One alternative definition is proved

as a lemma. The next section is mostly following [29], [28].

Definition 2.1. An n× n matrix Hn is called a Hadamard matrix if all entries are 1 or

-1 and the rows are orthogonal.

Definition 2.2. In denotes the unit matrix and it is often written I if the size is obvious.

Similary the matrix Jn which is the n × n matrix consisting only of ones is sometimes

written J . en = (1, . . . , 1) is the unit vector with length n and eTn =

1
...

1


Lemma 2.3. Let A be an n×n matrix with entries that are 1 or -1. Then A is Hadamard

if its columns are orthogonal. Or alternatively, A is Hadamard if and only if

AAT = nI.

Proof. The first part means that per definition a Hadamard matrix has orthogonal rows

and columns. This follows from the second part. If the equation AAT = nI holds, then
1√
n
A is orthogonal and hence also the columns must be orthogonal.

For the second part, suppose A = (aij)1≤i,j≤n to be Hadamard. All the off-diagonal entries

in AAT must be zero as A has orthogonal rows. The diagonal entries are
∑n

i=1 a
2
ki : ∀ 1 ≤

k ≤ n. The entries of A can only be 1 and -1. Consequently, the sum must be n. Putting

all together it follows that AAT = nI. On the other hand, from the equation AAT = nI

it follows that for all j 6= k the sum
∑n

i=1 aji · aki is 0. This means that the rows are

orthogonal.

�

The following proposition leads to the Hadamard Conjecture.

Proposition 2.4. There can only exist Hadamard matrices of the size 1,2 and a multiple

of 4.

Proof. A Hadamard matrix of size 1 is (1) and an example of a Hadamard matrix of size

2 is

(
1 1

1 −1

)
. Let A = (aij)1≤i,j≤n be a Hadamard matrix and n ≥ 3. By definition it
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follows that
n∑
k=1

aikajk =

0, if i 6= j

n, if i = j
.

Keeping that in mind, consider the sum

n∑
k=1

(a1k + a2k)(a1k + a3k) =
n∑
k=1

(a21k + a1ka3k + a2ka1k + a2ka3k) =

=
n∑
k=1

a21k +
n∑
k=1

a1ka3k︸ ︷︷ ︸
=0

+
n∑
k=1

a2ka1k︸ ︷︷ ︸
=0

+
n∑
k=1

a2ka3k︸ ︷︷ ︸
=0

=
n∑
k=1

1 = n.

As A is Hadamard (a1k + a2k) and (a1k + a3k) can only be 2, 0 or -2. Therefore, n is

divisible by 4 and therefore a multiple of 4.

�

Immediately the question arises if equivalence is true in the lemma, but this problem

is still unsolved and called the Hadamard Conjecture.

Conjecture 2.5 (Hadamard conjecture). Does a Hadamard matrix exists for every mul-

tiple of 4?

The ad-hoc attempt would be to create a construction that solves the problem and

indeed there are many constructions that solve the problem for some multiple of 4, but

not for all. Currently it seems quite unlikely to find a universal construction for Hadamard

matrices, but most researchers believe that the conjecture is true.

First, some examples are given and basic properties stated.

Example. Here are examples of Hadamard matrices of size 4 and 8.


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 ,



1 1 1 1 1 1 1 1

1 1 −1 −1 −1 1 −1 1

1 1 1 −1 −1 −1 1 −1

1 −1 1 1 −1 −1 −1 1

1 1 −1 1 1 −1 −1 −1

1 −1 1 −1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1

1 −1 −1 −1 1 −1 1 1


Proposition 2.6. The determinant of an n× n Hadamard matrix is nn/2.

Proof. Let Hn be a Hadamard matrix, consequently the equation HnHn
T = nIn holds.

From det(nIn) = nn it follows that det(Hn · Hn
T ) = nn. As det(Hn) = det(HT

n ) the

equation changes to det(Hn)2 = nn, hence the property follows. �

There exists a lower bound of the size of a Hadamard matrix.
6



Proposition 2.7. Let Hn be an n × n Hadamard matrix and Jm a submatrix, then

n ≥ m2.

To prove the proposition we need another important definition and property.

Definition 2.8. A matrix is circulant if it is of the form

(2.1) C =


c0 c1 · · · cn−1

cn−1 c0 · · · cn−2
...

... · · · ...

c1 c2 · · · c0

 .

As C can be deduced from one row, it is also written C = circ(c0, c1, . . . , cn−1).

Remark. A square matrix C is circulant if and only if C = PCP T , where P is the n×n
primary circulant matrix 

0 1 0 · · · 0

0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1

1 0 0 · · · 0

 .

Both directions are easy to show by direct verification as left multiplication with P and

right multiplication with P T is shifting the first column and the first row to the end of the

matrix.

For the proof of the following 2.10 a Lemma of linear algebra has to be revised.

Lemma 2.9. Let f be a polynomial. If A = f(P ) for any matrices A,P and λ is an

eigenvalue of P then f(λ) is an eigenvalue of A.

Proof. Let λ be an eigenvalue for P and v an eigenvector, then Pv = λv. As f is a

polynomial it follows that Av = f(P )v = f(λ)v. Consequently, f(λ) is an eigenvalue of

A. �

Lemma 2.10. Let C be a circulant matrix of the form (2.1) with entries in C and consider

the polynomial f(λ) = c0 + c1λ + · · · + cn−1λ
n−1. Then the eigenvalues of C are f(ωk)

where k ∈ {0, 1, . . . , n− 1} and ω = e
2πi
n denotes the n−th complex root of unity.

Proof. It is easy to see that C = c0In + c1P + · · · + cn−1P
n−1, where P is the primary

circulant matrix (see remark above) and hence f(P ) = C. As a result, it is sufficient to

compute the eigenvalues of P (Lemma 2.9). Using Laplace expansion of determinant on

the first column, it follows that det(λIn − P ) = λn − 1. Hence, the eigenvalues of P are

ωk for k ∈ {0, 1, · · ·n− 1} and the eigenvalues of C are f(ωk). �

With this knowledge, proposition 2.7 can be proved.
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Proof. By changing rows and columns it can be assumed without loss of generality

(w.l.o.g.) that Hn can be written in the form

Hn =

(
Jm X

Y Zs

)
with Zs a (±1)− valued s× s matrix and m+ s = n. As Hn is Hadamard it follows

HnHn
T = (s+m)In

J2
m +XXT = (s+m)Im

XXT = (s+m)Im − J2
m = (s+m)Im −mJm =

s −m · · · −m
−m s · · · −m

...
...

...
...

−m −m · · · s

 .

That matrix is circulant and using Lemma 2.10 with the polynomial f(X) = sX0 −
mX −mX2 − · · · −mXm−1 it follows that the eigenvalues are f(1) = s −m(m − 1) =

s−m2 +m and

f(ωk) = s−m(ωk + (ωk)2 + · · ·+ (ωk)m−1) = s−m · (−1) = s+m

for all k ∈ {1, . . . ,m − 1}. Consequently, the eigenvalue s + m has algebraic multiplic-

ity m − 1. As XXT is positive semi-definite per definition, it only has non-negative

eigenvalues, so it follows that m+ s−m2 ≥ 0⇒ m+ s = n ≥ m2 �

Circulant Hadamard matrices are interesting, but they are rare. In fact, the following

conjecture is nearly proved in [22].

Conjecture 2.11 (Ryser Conjecture). Let Hn be a circulant Hadamard matrix, then

n = 1 or n = 4.

Example. Nevertheless, there are a lot of examples of circulant Hadamard matrices of

order 4. For instance 
1 1 1 −1

−1 1 1 1

1 −1 1 1

1 1 −1 1

 .

There are many other Hadamard matrices with additional properties. The following

definitions list the most important ones. The next part is following mostly [28] and for

partly more detailed proofs see [26].

Definition 2.12. A Hadamard matrix is called regular if the sum of each row is equal

which means that every row contains the same number of +1s, therefore also of (-1)s.
8



Definition 2.13. A Hadamard matrix is normalised if it is Hadamard and the first row

and the first column contain only ones.

Every Hadamard matrix can be normalised. This follows from the following proposi-

tion.

Proposition 2.14. The set of Hadamard matrices is closed under the following trans-

formations

(1) transposing

(2) negating rows or columns

(3) permuting rows or columns

Proof. (1) follows from Lemma 2.3.

(2) and (3) are clear as definition 2.1 can be understood in the following way: A (±1)-

valued n× n matrix is Hadamard if and only if
∑n

k=1 hik · hjk = 0 : i 6= j. The equation

still clearly holds under such transformation. �

Definition 2.15. A Hadamard matrix Hn is skew if it can be written in the form Hn =

S + In with ST = −S.

Lemma 2.16. Let Hn be a skew Hadamard matrix, then SST = (n− 1)In.

Proof. By definition HnH
T
n = nIn and Hn = S + In hold. Putting these together, it

follows that

(In + S) · (In + S)T = nIn

In + ST + S + SST = nIn

In + SST = nIn

SST = (n− 1)In.

�

As a skew Hadamard matrix is (±)1−valued, it can be deduced from the condition

Hn = S + In that the entries on the diagonal of S can only be - 2 or 0, but -2 is

impossible as S is skew-symmetric. Hence, S has a zero diagonal and by multiplying

some rows or columns with (-1) can be chosen to have the form

(2.2) S =

(
0 en−1

−eTn−1 W

)
.

Definition 2.17. Let Hn be a skew Hadamard matrix and Hn = S+In where S is written

in the form 2.2. W is called the kernel of Hn.
9



Definition 2.18. Let M and N be two n × n Hadamard matrices. M is skew and N is

symmetric . The pair is called amicable Hadamard matrices if MN = NMT , as a result

MN is symmetric.

Lemma 2.19. Let M, N be two amicable n × n Hadamard matrices. Let M = S + In,

then SN = NST , hence SN is also symmetric.

Proof. Using MN = NMT leads to

(S + In)N = N(S + In)T

SN +N = NST +N.

�

2.1. Sylvester Hadamard matrices

In this part the first construction of Hadamard matrices is presented which was introduced

by Sylvester in 1867. It can be found in [29], [8] or [28].

Definition 2.20. The Kronecker product of A = (aij)1≤i,j≤m and an n × n - matrices

B1, B2 · · · , Bm is 
a11B1 a12B1 · · · a1mB1

a21B2 a12B2 · · · a1mB2

...
... · · · ...

am1Bm am2Bm · · · ammBm


or compactly written as A ⊗ [B1, B2, · · · , Bm]. If B1 = B2 = · · · = Bm = B then it is

denoted by A⊗B = [aijB]1≤i,j≤m.

Lemma 2.21. If A,B,C and D are any matrices then

(A⊗B)T = AT ⊗BT

(A⊗B)(C ⊗D) = AC ⊗BD.

For the second part AC and BD must exist.

Proof.

(A⊗B)T =

a11B · · · a1mB
... · · · ...

am1B · · · ammB


T

=

a11B
T · · · am1B

T

... · · · ...

a1mB
T · · · ammB

T

 = AT ⊗BT

10



(A⊗B)(C ⊗D) has the (i, j)−block entry∑
k

(aikB)(ckjD) =

(∑
k

aikckj

)
BD

The last bracket term is the (i, j)− entry of AC and the lemma follows. �

Theorem 2.22. If A is an n× n Hadamard matrix and B an m×m Hadamard matrix,

then A⊗B is an mn×mn Hadamard matrix.

Proof. (It is easy to see that the Kronecker product of A and B must be (±1)− valued,

consequently it is left to prove that (A ⊗ B)(A ⊗ B)T = mnImn. Using Lemma 2.21 it

can be calculated that

(A⊗B)(A⊗B)T = (A⊗B)(AT ⊗BT )

= AAT ⊗BBT

= mIm ⊗ nIn
= mnImn

.

The last equation follows by using the definition of the Kronecker product. �

Corollary 2.23. Let Ai be a Hadamard matrix of order mi for 1 ≤ i ≤ t. Then A1 ⊗
A2 ⊗ · · · ⊗Ht =

⊗t
i=1Hi is a Hadamard matrix of order

∏t
i=1mi.

Proof. By induction using theorem 2.22. �

Corollary 2.24. Let S1 =

(
1 1

1 −1

)
, then S1 is Hadamard and St =

⊗t S1 is a

Hadamard matrix of order 2t, for t ≥ 1.

Proof. By direct verification and 2.23. �

Definition 2.25. The Hadamard matrices defined in 2.24 are called Sylvester matrices.

This construction was not only the beginning of Hadamard matrix theory, but it is

still one of the most important constructions as it leads straightforward to Hadamard

matrices of size 2, 4, 8, 16, 32 and so on. With that construction many multiples of 4

can be covered!

2.2. Williamson Hadamard matrices
“The Williamson construction is the simplest of many powerful plug-in methods for find-

ing Hadamard matrices.” ([8], p.15.)
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Lemma 2.26. If there exist (±1)− valued matrices A,B,C and D of order n satisfying

(1) AAT +BBT + CCT +DDT = 4nIn

(2) XY T = Y XT with X, Y ∈ {A,B,C,D}

then

H4n =


A B C D

−B A −D C

−C D A −B
−D −C B A


is a 4n× 4n Hadamard matrix.

Proof. The obviously (±1)-valued matrix H4n has to satisfy H4nH
T
4n = 4nI4n. Hence the

diagonal element AAT +BBT +CCT +DDT has to be 4nIn and this is the precondition

(1).

On the other hand the off-diagonal elements have to be zero. By direct verification via

multiplication it is seen that it is true if XY T = Y XT with X, Y ∈ {A,B,C,D}. �

Definition 2.27. The matrices A,B,C and D defined in 2.26 are called Williamson

matrices, but often that term also refers to the resulting matrix H4n. Note that A,B,C

and D are not required to be symmetric and circulant, but it is often included in the

definition of Williamson matrices.

Keep in mind that if two matrices X, Y are required to be circulant then XY = Y X.

If they are in addition symmetric then XY T = XY = Y X = Y XT . In the following, it is

required that Williamson matrices have to be circulant and symmetric. To comprehend

the requirements, if A,B,C and D are Williamson matrices then the following three

conditions are true

X = XT for X ∈ {A,B,C,D}(2.3)

XY = Y X for X, Y ∈ {A,B,C,D}(2.4)

A2 +B2 + C2 +D2 = 4nIn.(2.5)

In the next part, some ideas are presented that lead to an algorithm for finding

Hadamard matrices. Williamson matrices are now described in a slightly different way.

Consider the permutation matrix

U = circ(0, 1, 0, · · · , 0) =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

. . . . . . . . .
...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


12



Now the Williamson matrices

A = circ(a0, a1, a2, · · · , an−1)

B = circ(b0, b1, b2, · · · , bn−1)

C = circ(c0, c1, c2, · · · , cn−1)

D = circ(d0, d1, d2, · · · , dn−1)

can be written by using U :

A = a0In + a1U + a2U
2 + · · ·+ an−1U

n−1(2.6)

B = b0In + b1U + b2U
2 + · · ·+ bn−1U

n−1(2.7)

C = c0In + c1U + c2U
2 + · · ·+ cn−1U

n−1(2.8)

D = d0In + d1U + d2U
2 + · · ·+ dn−1U

n−1(2.9)

For a better understanding, right-multiplication with U shifts all the elements diag-

onally one position to the right as Un = In. Multiplying with U2 shifts all elements

diagonally two positions to the right and so on. Consequently, for example A is
a0 a1 · · · an−1

an−1 a0 · · · an−2
...

... · · · ...

a1 a2 · · · a0


As these matrices should be Williamson it follows that an−1 = a1, an−2 = a2, · · · . So

in general the entries satisfy

(2.10) an−i = ai, bn−i = bi, cn−i = ci, dn−i = di for 1 ≤ i ≤ n− 1

To summarize:

Lemma 2.28. The matrices defined by 2.6-2.9 are circulant, symmetric Williamson ma-

trices that are defined by equations 2.3 - 2.5 if 2.10 and 2.5 hold.

Proof. It is clear that 2.3 and 2.5 hold. Condition 2.4 is verified directly via multiplication

and using preliminary 2.10. �

Theorem 2.29. If n is odd and the matrices A,B,C,D of order n defined by 2.6 - 2.9

satisfy 2.10 and 2.5, then the coefficients satisfy

ai + bi + ci + di = ±2 : 1 ≤ i ≤ n− 1.

Further, let W1 = (A+ B + C −D)/2 ,W2 = (A+ B − C +D)/2, W3 = (A− B + C +

D)/2, W4 = (−A+B+C+D)/2, then 2.5 is equivalent to W 2
1 +W 2

2 +W 2
3 +W 2

4 = 4nIn.
13



Proof. It can assumed w.l.o.g. that a0 = b0 = c0 = d0 = 1, because if any of these entries

is (−1) then multiplying with (−1) does not change the preliminaries. The Williamson

matrices can be rewritten in the form A = P1−N1, B = P2−N2, C = P3−N3, D = P4−N4

with

P1 =
∑

0≤i≤n−1
ai=1

U i, N1 =
∑

0≤i≤n−1
ai=−1

U i

P2 =
∑

0≤i≤n−1
bi=1

U i, N2 =
∑

0≤i≤n−1
bi=−1

U i

P3 =
∑

0≤i≤n−1
ci=1

U i, N3 =
∑

0≤i≤n−1
ci=−1

U i

P4 =
∑

0≤i≤n−1
di=1

U i, N4 =
∑

0≤i≤n−1
di=−1

U i

Furthermore, it is easy to see that Ni + Pi = Jn for 1 ≤ i ≤ 4. From 2.28 it follows that∑4
i=1(Pi−Ni)

2 = 4nIn and that leads to
∑4

i=1(2Pi−Jn)2 = 4nIn. As U iJn = Jn = JnU
i,

it follows that PiJn = JnPi for all i. Let P = {i |0 ≤ i ≤ n − 1 ∧ ai = 1} and let

p1 = |P| and p2, p3, p4 defined analogously. This definition leads to JnPi = PiJn = piJn

by definition of pi. As a consequence the equation
∑4

i=1(2Pi − Jn)2 = 4nIn can be

simplified to

4∑
i=1

(4P 2
i − 4PiJn + J2

n) = 4nIn

4∑
i=1

4P 2
i −

4∑
i=1

4PiJn +
4∑
i=1

J2
n = 4nIn

4
4∑
i=1

P 2
i − 4

4∑
i=1

piJn + 4nJn = 4nIn | : 4

4∑
i=1

P 2
i =

(
4∑
i=1

pi − n

)
Jn + nIn

Combining a0 = b0 = c0 = d0 = 1 and 2.10 with the fact that n is odd, leads to the

conclusion that pi has to be odd for all i. As a result, the sum of the four pi is even and

so
∑4

i=1 pi − n is odd. It follows that∑
0≤i≤n−1
ai=1

U2i +
∑

0≤i≤n−1
bi=1

U2i +
∑

0≤i≤n−1
ci=1

U2i +
∑

0≤i≤n−1
di=1

U2i ≡ Jn + In mod 2.

From the right side of the equation it follows that the sum on the left side has to be 0 mod

2 on the diagonal which appears naturally as it is assumed that a0 = b0 = c0 = d0 = 1.

On the other hand, the sum has to be 1 mod 2 off-diagonal. A sum of possible four 1s
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can only be 1 mod 2 if there appears only one 1 or if there are three 1s. In conclusion, the

family {ai, bi, ci, di}, i 6= 0 contains one or three ones. That leads to ai+ bi+ ci+di = ±2.

The equivalence of 2.5 and W 2
1 +W 2

2 +W 2
3 +W 2

4 = 4nIn is given as the matrices A,B,C,D

are commutative by 2.4 and the following remark. �

Remark. Note that A,B,C,D can easily be reconstructed from W1,W2,W3,W4 with

A = (W1 + W2 + W3 −W4)/2, B = (W1 + W2 −W3 + W4)/2, C = (W1 −W2 + W3 +

W4)/2, D = (−W1 +W2 +W3 +W4)/2.

Lemma 2.30. Let n be odd and A,B,C,D defined as in theorem 2.29. They exist if and

only if there exist symmetric W1,W2,W3,W4 satisfying

(1) W 2
1 +W 2

2 +W 2
3 +W 2

4 = 4nIn

(2) Wi = I ± 2 U j1 ± 2 U j2 ± · · · ± 2 U js

for {j1, j2, . . . , js} ⊆ {1, 2, . . . , n− 1}
(3) Every U js-term from (2) appears in only one Wi, 1 ≤ i ≤ 4

Proof. The if-part follows mainly from theorem 2.29.

As A,B,C,D are symmetric, W1 = (A+B+C−D)/2, W2 = (A+B−C+D)/2, W3 =

(A−B + C +D)/2, W4 = (−A+B + C +D)/2 are symmetric, too.

The first proposition follows directly from 2.29. Furthermore, in theorem 2.29 it is shown

that ai+ bi+ ci+di = ±2 for 1 ≤ i ≤ n−1. This leads to ai+ bi+ ci−di ∈ {−4, 0, 4} and

comparing this with the definition of W1 it leads to W1 = I± 2 U j1± 2 U j2±· · ·± 2 U js

where {j1, j2, . . . js} ⊆ {1, 2, . . . , n− 1} and ajk + bjk + cjk − djk = ±4 for 1 ≤ k ≤ s. Of

course, the same is valid for the other Wis. As ajk , bjk , cjk , djk can only be one or minus

one, the sum ajk +bjk +cjk−djk = ±4 implies that there are only two possibilities, namely

ajk = bjk = cjk = 1 ∧ djk = −1 or ajk = bjk = cjk = −1 ∧ djk = 1. If in that sum the

minus is changed to a plus and one plus to a minus, then the sum is zero. Therefore, (3)

has been shown.

On the other hand, all conditions are fulfilled if the construction to get A,B,C,D back

is used. �

From Lemma 2.10 it follows that U can be decomposed in U = SDS−1 with D being

the diagonal matrix diag(1, ω2, · · · , ωn−1) and S is a non-singular matrix. Consequently,

from 2.30 it follows that the Williamson matrices Wi can be written in the form

Wi = S(I ± 2 Dj1 ± · · · ± 2 Djs)S−1.

And condition (3) in Lemma 2.29 changes to

4∑
i=1

(I ± 2 Dji ± · · · ± 2 Djs)2 = 4nIn.

Comparing the (1, 1) entry on both sides of the matrix equation, it follows that
15



(2.11)

(1±2±2±· · ·±2)2+(1±2±2±· · ·±2)2+(1±2±2±· · ·±2)2+(1±2±2±· · ·±2)2 = 4n.

Keep in mind that there can only be (n − 1) summands ±2 in the whole sum on the

left side (compare Lemma 2.29 (2), (3)).

The last step, before writing down the algorithm, is the following theorem by Lagrange.

A proof can be found in nearly every number theory book.

Theorem 2.31 (Lagrange’s four square theorem). Every positive integer n can be de-

composed into the sum of squares n = a2 + b2 + c2 + d2. Moreover, if n is odd, then 4n

can be decomposed into the summation of four odd squares.

Algorithm. (1) For a given n decompose 4n into the sum of four odd squares.

(2) Compare the solution of (1) with equation 2.11 and note Lemma 2.30 (2),(3).

Then the jk of Lemma 2.30 are found.

(3) Calculate the Wis with Lemma 2.30 (2).

(4) Calculate A, B, C and D from the Wis with the use of 2.26.

Example. To give an easy example of how the algorithm works, we take n = 5. In this

way a Hadamard matrix of size 20 can be found.

(1) To find a decomposition for 20 is not hard. 20 = 32 + 32 + 12 + 12.

(2) As there are only four ji to find, the possibilties to decompose the sum have to be

(1± ± ± ± )2 +(1± ± ± ± )2 +(1± ± ± ± )2 +

(1 +± ± ± ± )2. Keep in mind that if in one bracket an empty space

is filled with 2 or -2, then the space is zero in the other brackets and of course the

first two brackets have to sum up to three and the others to 1.

One possibilty to decompose is

(1− 2± 0± 0− 2)2 + (1± 0− 2− 2± 0)2 + (1± 0± 0± 0± 0)2 + (1± 0± 0± 0± 0)2.

A special order is chosen in this decomposition, but other orders also lead to

Hadamard matrices which are maybe different or equivalent to other orders of the

sum. In our order we have for W1 : j1 = 1, j2 = 4,W2 : j1 = 2, j2 = 3,W3,W4 :

ji = 0. Finally, we have W1 = I5−2U1−2U4,W2 = I5−2U2−2U3,W3 = I5 = W4

(3) It follows that

W1 =


1 −2 0 0 −2

−2 1 −2 0 0

0 −2 1 −2 0

0 0 −2 1 −2

−2 0 0 −2 1

 ,W2 =


1 0 −2 −2 0

0 1 0 −2 −2

−2 0 1 0 −2

−2 −2 0 1 0

0 −2 −2 0 1

 ,W3 = W4 = I5.

Obviously these matrices are symmetric. By computation it can be seen that

W 2
1 +W 2

2 +W 2
3 +W 2

4 = 20I5.
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(4) Reconstructing A,B,C,D, leads to

A = B =


1 −1 −1 −1 −1

−1 1 −1 −1 −1

−1 −1 1 −1 −1

−1 −1 −1 1 −1

−1 −1 −1 −1 1



C =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1

 D =


1 1 −1 −1 1

1 1 1 −1 −1

−1 1 1 1 −1

−1 −1 1 1 1

1 −1 −1 1 1

 .

Consequently,

H20 =


A B C D

−B A −D C

−C D A −B
−D −C B A


is a Hadamard matrix of size 20.

2.3. Paley Hadamard matrices
The next chapter follows mostly [28] and [7].

Definition 2.32. Let GF (q) be a Galois field with q an odd prime power and the function

χ on the cyclic group GF (q)∗ is defined as

χ(g) =

1 if g is a perfect square

−1 if g is not a perfect square.
.

It is extended on GF (q) by χ(0) = 0. An element g in GF (q) is a perfect square if there

exists an element a of GF (q), so that g = a2.

Consider that if q is a prime, then χ(g) is the Legendre symbol
(
g
q

)
. Some well-known

properties of the Legendre symbol are also true for the map χ.

Lemma 2.33. Let q be an odd prime power and let g ∈ GF (q)∗, then

(1) |PS(q)| = |NPS(q)| = q−1
2

, if PS is the set of perfect squares and NPS is the

set of non perfect squares of GF (q)∗,

(2) g
q−1
2 =

1 if and only if g is a perfect square

−1 if and only if g is not a perfect square,

(3) χ(gh) = χ(g)χ(h) : ∀g, h ∈ GF (q) and

(4) χ : GF (q)∗ ⇒ {±1} is a homomorphism.
17



Proof. (1) As the multiplication group of GF (q) has order q − 1 and is cyclic with

a primitive element a, the quadratic elements are a0, a2, a4, . . . . Hence, there are
q−1
2

perfect squares and q−1
2

non perfect squares.

(2) The polynomial Xq−1 − 1 = 0 has q − 1 solutions in GF (q) as all elements a

of GF (q)∗ fullfill aq−1 = 1 (Lagrange). The factorization of this polynomial is

(X
q−1
2 − 1) · (X q−1

2 + 1) = 0 and both factors have q−1
2

different solutions. If g is

a perfect square then ∃a ∈ GF (q) : g = a2 ⇒ g
q−1
2 = aq−1 = 1. To sum it up all

perfect squares are the roots of X
q−1
2 − 1 and the set NPS(q) must be equal to

the roots of X
q−1
2 + 1.

(3) Let g, h ∈ GF (q) be two perfect squares then ∃x, y ∈ GF (q) : g = x2 , h = y2 ⇒
gh = (xy)2 ⇒ 1 = χ(gh) = 1 · 1 = χ(g) · χ(h). If g or h is zero, then gh = 0 and

0 = χ(gh) = χ(g) ·χ(h). If g and h are both non perfect squares, then (2) implies

that g
q−1
2 · h q−1

2 = (−1) · (−1) = 1 and so the product of two non perfect squares

is a perfect square ⇒ 1 = χ(gh) = χ(g) · χ(h) = (−1) · (−1). The last case where

one of g, h is not a perfect square, but the other is one, is similar to (2).

(4) This follows from (3) and clearly χ(1) = 1.

�

Definition 2.34. Let q be an odd prime power and GF (q) = {g0 = 0, · · · , gq−1}. The

corresponding q × q Jacobsthal matrix is defined as

Q = (χ(gi − gj))0≤i,j≤q−1.

As a result, the Jacobsthal matrix consists only of ones, zeros and minus ones. The

following properties are important for constructing Paley Hadamard matrices.

Lemma 2.35. Let Q be the q × q Jacobsthal matrix, then

(1) QJq = JqQ = 0

(2) Q is

symmetric for q ≡ 1 mod 4

skew-symmetric for q ≡ 3 mod 4

(3) QQT = qIq − Jq
(4) Q+ Iq is circulant if q is a prime and GF (q) has its natural order.

Proof. (1) The first property follows from Lemma 2.33, because in other words (1)

means that there are as many 1s as (-1)s in a row and in a column of Q.

(2) Let q = pn = 2k + 1, as q is odd and a a primitive element of GF (q)∗. Then

consider the equation aq−1 = 1⇒ a2k = 1. The equation x2− 1 = 0 has solutions

a0 = 1 and ak = −1 in GF (q) . Consequently, if k is even then χ(−1) = 1, if it is

odd then χ(−1) = −1.

q = 2k − 1 ≡

1 mod 4 if k is even

3 mod 4 if k is odd
.
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Denote the elements of Q by (qij), then

qij = χ(gi − gj) = χ(−1) · χ(gj − gi) =

χ(gj − gi) = qji if q ≡ 1 mod 4

−χ(gj − gi) = −qji if q ≡ 3 mod 4
.

(3) Let QQT = (rij)0≤i,j≤q−1, then

rij =

q−1∑
k=0

χ(gi − gk)χ(gj − gk)

=
∑
k 6=i,j

χ(gi − gk)χ(gj − gk)

=
∑
k 6=i,j

χ(gi − gk)χ(gj − gi + gi − gk)

=
∑
k 6=i,j

χ(gi − gk)χ((gi − gk)[(gj − gi)(gi − gk)−1 + 1])

=
∑
k 6=i,j

χ(gi − gk)2︸ ︷︷ ︸
=1

χ((gj − gi)(gi − gk)−1 + 1)

Hence if i = j then
∑

k 6=i,j χ((gj − gi)(gi− gk)−1 + 1) =
∑

k 6=i,j χ(1) = q− 1. This

shows that the diagonal elements of QQT are q − 1.

If i 6= j then it is clear that the set {(gj − gi)(gi − gk)
−1 + 1|k 6= i, j} cannot

contain 0 or 1 ((gj−gi)(gi−gk)−1 +1 = 0⇔ (gj−gi)(gi−gk)−1 = −1⇔ gj−gi =

gk − gi ⇔ k = j and (gj − gi)(gi − gk)−1 + 1 = 1 ⇔ (gj − gi)(gi − gk)−1 = 0 ⇔
gj − gi = 0 ⇔ j = i), but all others elements of the group GF (q). Lemma 2.33

(1) implies that
∑q−1

i=0 χ(gi) = 0. That leads to

∑
k 6=i,j

χ((gj − gi)(gi − gk)−1 + 1) =

q−1∑
i=0

χ(gi)− χ(0)− χ(1) = 0− 0− 1 = −1.

So the off-diagonal elements of QQT are -1.

(4) follows from the fact GF (q) ∼= Z/qZ and Z/qZ has a natural ordering 0, 1, . . . , q−
1.

�

Theorem 2.36. Let t ≥ 0, l ≥ 0, ei ≥ 1, pi be a prime satisfying peii ≡ 3 mod 4 for 1 ≤
i ≤ l. If m = 2t

∏l
i=1(p

ei
i + 1) then there exist amicable Hadamard matrices of order m.

Proof. Denote by M,N the amicable Hadamard matrices that will be proved to exist. In

the case that m = 1, the parameters t, l are both zero and M = N = (1) and if m = 2,
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then t = 1, l = 0 and

M =

(
1 1

−1 1

)
, N =

(
1 1

1 −1

)
are by definition amicable.

For a more general case let m 6= 1, 2 and m = pe+1, therefore t = 0, l = 1, p1 = p, e1 = e

and define q := pe. As q is odd, it is possible to order GF (q) = {g0 = 0, · · · , gq−1} in a

way that

gq−i = −gi : 1 ≤ i ≤ q − 1.

Now define

A :=

(
0 −e
eT Q

)
where Q is the Jacobsthal matrix.

From 2.35 it follows

AAT =

(
eeT −eQT

−QeT eT e+QQT

)
=

(
q 0

0 Jq +QQT

)

=

(
q 0

0 qIq

)
= qIq+1 = qIm.

Define M = A+ Im, then M is ±1− valued and

MMT =

(
eeT + 1 e− eQT − eIq

eT −QeT − IqeT eT e+ (Q+ Iq)(Q
T + Iq)

)

=

(
q + 1 0

0 Jq +QQT + (IqQ
T +QIq) + IqIq

)

=

(
q + 1 0

0 qIq + Iq

)
= (q + 1)Iq+1 = mIm.

In conclusion M is a skew Hadamard matrix of order m.

To construct a symmetric Hadamard matrix of order m, define the (q − 1) × (q − 1)

permutation matrix P =


0 0 · · · 0 1

0 0 · · · 1 0
...

. . . . . . . . .
...

1 0 · · · 0 0

 and V =

(
1 0

0 P

)
. As P T = P, P 2 =

Iq−1 it follows that V T = V, V 2 = Iq. Let N :=

(
1 0

0 −V

)
·M =

(
1 −e
−eT −V Q− V

)
.

Consequently, N is symmetric if (V Q)T = V Q.

Let V Q = (bij)0≤i,j≤q−1 =


χ(g0 − g0) χ(g0 − g1) · · · χ(g0 − gq−1)
χ(gq−1 − g0) χ(gq−1 − g1) · · · χ(gq−1 − gq−1)

...
... · · · ...

χ(g1 − g0) χ(g1 − g1) · · · χ(g1 − gq−1)

 , then the
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first row of V Q is (with the ordering of GF (q) set above)

b0j = χ(g0 − gj) = χ(−gj − 0) = χ(gq−j − g0) = bj0 for j ≥ 1.

For i, j 6= 0

bij = χ(gq−i − gj) = χ(−gi − gj)

bji = χ(gq−j − gi) = χ(−gj − gi)

⇒ bij = bji. Hence, N is symmetric and

NNT =

(
1 0

0 −V

)
(mIm)

(
1 0

0 −V

)
= mIm.

As a result, N is a symmetric Hadamard matrix of order m. To show that M,N is a pair

of amicable Hadamard matrices, it is left to prove that MN = NMT . As N is symmetric

it is clear that (MN)T = MN .

MN = M ·NT = M ·MT ·

(
1 0

0 −V

)
= (q + 1) ·

(
1 0

0 −V

)

(MN)T = (q + 1) ·

(
1 0

0 −V

)T

= (q + 1) ·

(
1 0

0 −V

)
.

The general case is still missing for t + l ≥ 2. To show that l > 1 can be constructed, it

is sufficient to show that: If there exists a pair of amicable Hadamard matrices of order

m and h, then there exists a pair of amicable Hadamard matrices of order mh.

Let Mm, Nm be a pair of amicable Hadamard matrices of order m and Mh, Nh be a pair of

amicable Hadamard matrices of order h, then by definition Mm = Sm + Im,Mh = Sh + Ih

with Sm, Sh being anti-symmetric.

Mhm := Ih ⊗Mm + Sh ⊗Nm

Nhm := Nh ⊗Nm.

By definition of the Kronecker product Nmh is symmetric and Mhm is skew, because

Mhm − Ihm = Ih ⊗ (Sm + Im) + Sh ⊗Nm − Ihm
= Ih ⊗ Sm + Ihm + Sh ⊗Nm − Ihm = Ih ⊗ Sm + Sh ⊗Nm

(Mhm − Ihm)T = ITh ⊗ STm + STh ⊗NT
m

= In ⊗ (−Sm) + (−Sh)⊗Nm = −(Mnm − Inm).
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Using Lemma 2.19 shows that Mhm, Nhm are amicable

MhmNhm = (Ih ⊗Mm + Sh ⊗Nm)(Nh ⊗Nm)

= (Ih ⊗Mm)(Nh ⊗Nm) + (Sh ⊗Nm)(Nh ⊗Nm)

= Nh ⊗MmNm + ShNh ⊗N2
m

= Nh ⊗ (MmNm)T +NhS
T
h ⊗N2

m

= (Nh ⊗Nm)(Ih ⊗MT
m) + (Nh ⊗Nm)(STh ⊗Nm)

= (Nh ⊗Nm)(Ih ⊗MT
m + STh ⊗Nm)

= NhmM
T
hm.

Using the construction of Sylvester (compare: Corollary 2.23) for every 2t
∏l

i=1(p
ei
i + 1)

a pair of amicable Hadamard matrices can be constructed. �

Definition 2.37. The Hadamard matrices constructed in theorem 2.36 are called Paley

type I Hadamard matrices.

This construction leads to Hadamard matrices of order 8 = 7 + 1, 12 = 11 + 1, 20 =

19 + 1, 24 = 23 + 1, . . . .

Example. A Paley type I Hadamard matrix of size 12 = 11 + 1 will be constructed. As

11 is prime, GF (11) is simply Z/11Z. Choosing as primitive element 2, then {22 ≡ 4

mod 11, 24 ≡ 5 mod 11, 26 ≡ 9 mod 11, 28 ≡ 3 mod 11, 210 ≡ 1 mod 11} are the

quadratic elements. The Jacobsthal matrix Q is circulant developed by the first row

(
0 χ(−1) χ(−2) χ(−3) χ(−4) χ(−5) χ(−6) χ(−7) χ(−8) χ(−9) χ(−10)

)
=
(

0 χ(10) χ(9) χ(8) χ(7) χ(6) χ(5) χ(4) χ(3) χ(2) χ(1)
)

=
(

0 −1 1 −1 −1 −1 1 1 1 −1 1
)

and the Hadamard matrix of size 12 is H12 =

(
1 −e
eT Q+ I11

)
.

Theorem 2.38. Let t ≥ 1, l ≥ 0, ei ≥ 1, t ≥ l, pi be an odd prime satisfying peii ≡
1 mod 4 for 1 ≤ i ≤ l. If m = 2t

∏l
i=1(p

ei
i + 1) then there exists a symmetric Hadamard

matrix of order m.

Proof. Let P =

(
0 e

eT Q

)
with Q Jacobsthal matrix for q = pe ≡ 1 mod 4 and R =

P + Iq+1. Obviously R is ±1−valued and P is symmetric by Lemma 2.35. Calculation

of P 2 using Lemma 2.35 leads to

(2.12) P 2 = PP T =

(
eeT eQ

QeT Jq +QQT

)
= qIq+1.
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It will be shown that the symmetric matrix

H =

(
−R P − Iq+1

P − Iq+1 R

)
=

(
−P − Iq+1 P − Iq+1

P − Iq+1 P + Iq+1

)
is a Hadamard matrix of order 2(q + 1). Clearly, H is ±1-valued and it is symmetric as(
−P − Iq+1 P − Iq+1

P − Iq+1 P + Iq+1

)T

=

(
−P T − ITq+1 P T − ITq+1

P T − ITq+1 P T + ITq+1

)
=

(
−P − Iq+1 P − Iq+1

P − Iq+1 P + Iq+1

)
.

It is left to show that H is Hadamard. Multiplication gives

HHT =

(
R2 + (P − Iq+1)

2 −R(P − Iq+1) +R(P − Iq+1)

−R(P − Iq+1) +R(P − Iq+1) (P − Iq+1)
2 +R2

)

=

(
2P 2 + 2I2q+1 0

0 2P 2 + 2I2q+1

)

= 2

(
qIq+1 + Iq+1 0

0 qIq+1 + Iq+1

)
= 2(q + 1)I2(q+1).

The rest follows from Lemma 2.21, because it shows that the Kronecker product of two

symmetric matrices is again symmetric and from Corollary 2.23. �

Definition 2.39. The matrix H defined in the proof of theorem 2.38 is called Paley-type

II Hadamard matrix.

2.4. Goethals - Seidel construction

There is another way to construct skew Hadamard matrices. The important plug-in

construction was observed by Goethals and Seidel in 1969 [4].

Theorem 2.40. If A,B,C,D are four square, circulant and (±1)−valued matrices of

order m and

AAT +BBT + CCT +DDT = 4mIm,

then the matrix

H =


A BR CR DR

−BR A −DTR CTR

−CR DTR A −BTR

−DR −CTR BTR A


is a 4m× 4m Hadamard matrix with R = (rij)1≤i,j≤m being defined as

rij =

1 if i+ j = m+ 1

0 else

.
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Proof. R is the back-diagonal (0,1)-matrix. It has the matrix form: R =

0 · · · 1
...

1 · · · 0

 .

It is a circulant permutation matrix. Hence, it follows that RT = R = R−1 and R2 = I.

Furthermore, it is easy to see that RX = XTR for X ∈ {A,B,C,D}. As A,B,C,D are

circulant, it was already stated that XY = Y X for X, Y ∈ {A,B,C,D}. Computation of

HHT shows that the diagonal entries are obviously AAT +BBT +CCT +DDT = 4mIm

and the off-diagonal entries are zero as, for instance, the entry in the first row and second

column is

A(−RBT ) + (BR)AT + CR(−RD) +DRRC = −ABR +BAR− CD +DC

= (−AB +BA)R = 0.

Similar computation can be done for all entries. �

Corollary 2.41. Let B,C,D be four square, circulant and (±1)−valued matrices of order

m. Furthermore, let A be a skew matrix of order m with zero diagonal entries and all

other entries are (±1). If these matrices fulfill

AAT +BBT + CCT +DDT = 4mIm,

then the matrix

H =


A+ I BR CR DR

−BR A+ I −DTR CTR

−CR DTR A+ I −BTR

−DR −CTR BTR A+ I


is a 4m× 4m skew Hadamard matrix with R = (rij)1≤i,j≤m being defined as

rij =

1 if i+ j = m+ 1

0 else

.

Example. The first example of a 36 × 36 Hadamard matrix was given in [4]. In their

paper Goethals and Seidel used their construction with A being the circulant matrix devel-

oped by
(

1 1 1 −1 1 −1 1 −1 −1
)

, B by
(
−1 1 1 −1 −1 1 1 −1 1

)
,

C by
(

1 −1 1 1 1 1 1 1 −1
)

and D by
(

1 1 1 −1 1 1 −1 1 1
)

. Com-

putation shows that AAT +BBT +CCT +DDT = 4mIm and a Hadamard matrix of size

36 was found.

Remark. This construction can easily be generalised, if A,B,C,D are required to be

group-invariant (chapter 5). Group-invariant matrices are circulant. They are equivalent

to orthogonal designs. [14]
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3. Equivalence classes
As long as not explicitly stated the chapter follows mainly [8] ,[22].

Having Lemma 2.14 in mind, the equivalence of two Hadamard matrices will be defined.

Definition 3.1. Two Hadamard matrices are equivalent if one can be obtained from the

other by permuting rows or columns or negations of rows or columns.

It is obvious to see that:

Lemma 3.2. The Hadamard equivalence is a equivalence relation and therefore Hadamard

matrices can be ordered in equivalence classes.

The number of equivalence classes of Hadamard matrices of order n is easy to compute

if n is very small. On the other hand, this problem is very difficult if n is big.

In general, every equivalence class must contain one normalised representative as every

Hadamard matrix can be normalised.

If h(n) denotes the number of equivalence classes of Hadamard matrices of order n,

then h(1) = 1, h(2) = 1. The second statement can be found by using the fact that in

every equivalence class one normalised Hadamard matrix exists. Therefore it is sufficient,

for finding the number of equivalence classes, to compute the number of normalised

Hadamard matrices which are not equivalent to each other. For Hadamard matrices of

order 2 that ansatz leads to H2 =

(
1 1

1 x

)
which leads to the only possibility x = −1,

but what is h(4)? With the same ansatz H4 =


1 1 1 1

1 a1 b1 c1

1 a2 b2 c2

1 a3 b3 c3

 we derive the equations

1 + ai + bi + ci = 0 : 1 ≤ i ≤ 3 and 1 + x1 + x2 + x3 = 0 : x ∈ {a, b, c} as all rows

(columns) are orthogonal to the first row (column). Only one of the three variables can

be 1 and the other two must be -1. So there are six possibilities for H4 and all of these

are equivalent to each other by simple permutation of the rows. Consequently h(4) = 1.

h(8) = 1 can be seen as there is only one normalised Hadamard matrix of size 2 and the

Kronecker product of H2 and H4 is a normalised representative of H8. By computation

it can be seen that all other possibilities are equivalent to it.

Far more computation shows h(12) = 1, h(16) = 5, h(20) = 3, h(24) = 60, h(28) = 487.

For n = 32 there are at least 3.578.000 equivalence classes! So the number can grow

rapidly and for some larger n only lower bounds are investigated. The question how

many equivalence classes exist for n = 32, 36, 40, 44,... might even be more difficult to

answer than the Hadamard conjecture.
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Lemma 3.3. Two Hadamard matrices H,H ′ are equivalent if and only if two monomial

matrices U, V exist so that UTHV = H ′. A matrix is monomial if it has only entries in

{0,±1} and there is only one non-zero entry per row and column.

Proof. A monomial matrix just performs combinatorial spoken the permutation of rows

(if multiplied by left) and columns (if multiplied by right) and negation of some rows

or columns, hence exactly the operations that are defined above for two matrices being

equivalent. �

Lemma 3.4. Let H and H ′ be Hadamard matrices, then

(1) -H is equivalent to H

(2) H ⊗H ′ is equivalent to H ′ ⊗H
(3) HT in general is not equivalent to H.

Proof. (1) Multiplying every row with (-1)

(2) Using Lemma 3.3, we have to find two monomial matrices U, V so that

U · (H ′ ⊗H) · V T = H ⊗H ′.

Let H be a n × n matrix and H ′ a m ×m matrix. The two monomial matrices

that perfom that transformation are mn ×mn matrices. We try to construct U

intuitively by comparing H ′⊗H and H ⊗H ′. The first m×mn block of U must

be of the form

1stcolumn︷︸︸︷
1 · · · 0 · · · 0 · · · 0

0 · · ·
(n+1)thcolumn︷︸︸︷

1 · · · 0 · · · 0
... · · · 0 · · · ... · · · 0

0 · · · 0 · · ·
((m−1)·n+1)thcolumn︷︸︸︷

1 · · · 0


.

The second m×mn block of the n blocks that U will be filled with, is

0

2ndcolumn︷︸︸︷
1 · · · 0 0 · · · 0 · · · 0

0 0 · · · 0

(n+2)thcolumn︷︸︸︷
1 · · · 0 · · · 0

...
... · · · ... 0 · · · ... · · · 0

0 0 · · · 0 0 · · ·
((m−1)·n+2)thcolumn︷︸︸︷

1 · · · 0


.

Completing the process, there can be seen by direct verification that

U · (H ′ ⊗H) · V T = H ⊗H ′

with V = U .
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(3) To find a counterexample, we use that h(1) = h(2) = h(4) = h(8) = h(12) = 1,

h(16) = 5 and the fact that transposing does not effect normalisation. That

means that the class H16 can be the first equivalence class which can offer a

counterexample and it does so with the matrix H. To see this requires a lot of

work. It can be intuitively seen that negating or switching rows and columns

will not bring H back from HT . The remark following that Lemma will explain

another more common and efficient method.

H =



+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + − − − −
+ + + + − − − − + + + + − − − −
+ + + + − − − − − − − − + + + +

+ + − − + + − − + + − − + + − −
+ + − − + + − − − − + + − − + +

+ + − − − − + + + + − − − − + +

+ + − − − − + + − − + + + + − −
+ − + − + − + − + − + − + − + −
+ − + − + − + − − + − + − + − +

+ − + − − + − + + − − + + − − +

+ − + − − + − + − + + − − + + −
+ − − + + − − + + − − + + − − +

+ − − + + − − + − + + − − + + −
+ − − + − + + − + − + − − + − +

+ − − + − + + − − + − + + − + −


where + = 1 and − = −1.

�

Remark. “Precise determination of whether or not two given Hadamard matrices are

equivalent is not easy, but it is possible to employ efficient computer programs. Perhaps

the best approach uses the graph of a Hadamard matrix.”([26], p.236)

The graph of an n×n Hadamard matrix can be deduced in the following way. Interpret the

rows with the symbols r+1 , r
+
2 , · · · , r+n and r−1 , r

−
2 , · · · , r−n , the columns with c+1 , c

+
2 , · · · , c+n

and c−1 , c
−
2 , · · · , c−n as vertices. As a result, the graph has 4n vertices. The edges are

loops on the vertices r+i , r
−
i

between r+i and c+j resp. r−i and c−j if hij = 1

between r+i and c−j resp. r−i and c+j if hij = −1

.

A proof showing that two such graphes are isomorphic if and only if the Hadamard ma-

trices are equivalent can be found in [2]. Many different algorithms exist to check if two

graphs are isomorphic.
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Now a question arises: Do all the constructions discussed lead to the same equivalence

class or to completely different ones?

Theorem 3.5. Let q ≡ 1 mod 4 be a prime power and P a Paley-Type II Hadamard

matrix then P is equivalent to a Williamson matrix with circulant symmetric components.

To prove this Lemma we have to give some definitions and prove an important property.

Definition 3.6. A (0, 1,−1)−valued matrix W := W (p, k), p ≥ k of order p is called a

weighing matrix of order p and weight k if WW T = kIp.

Example. (1) All n × n Hadamard matrices are weighing matrices of order n and

weight n.

(2) W =

(
0 e

(−1)(p−1)/2eT Q

)
with Q being the Jacobsthal matrix is a weighing matrix

of order p+1 and weight p. (Compare proof of theorem 2.36 and 2.38.)

Theorem 3.7. Let q ≡ 1 mod 4 be a prime power. Then there exists a weighing matrix

W (q + 1, q) of the form S =

(
A B

B −A

)
where A and B are cyclic and symmetric and A

has a zero diagonal.

Proof. Let α be a primitive element of GF (q2). Let V be a basis of the vector space

GF (q2) over GF (q). Note that α0, αq+1, α2(q+1), . . . , α(q−1)(q+1) ≡ 1 is in GF (q) and from

this it follows that α
q2−1

2 = α(q+1) q−1
2 ∈ GF (q) as q is odd. Also keep in mind that no

smaller exponent k than q+1
2

achieves that α(q−1)·k is in GF (q). Based on the basis, a

matrix

(v) = 1/2

(
αq−1 + α1−q (αq−1 − α1−q)α

q+1
2

(αq−1 − α1−q)α−
q+1
2 αq−1 + α1−q

)
can be defined. The elements of (v) are in GF (q), because α1−q = αq

2−1−(q−1) = α(q−1)q

and (αq−1 − α1−q)α
q+1
2 = α

q2−1
2 + α−

q2−1
2 ∈ GF (q). Computation shows det(v) = 1 and

the eigenvalues are αq−1 and α1−q. Consequently, (v) can be diagonalized and with the

diagonal matrix (
αq−1 0

0 α1−q

)
.

Therefore, (v) acts on the (q + 1) point of PG(GF (q)) = {(0, 1)} ∪ {(1, x)|x ∈ GF (q)}
as a permutation with period (q + 1)/2 and without any fixed points. Hence, the points

of PG(GF (q)) can be divided into two sets |v1| = |v2| = q+1
2

. Furthermore, we define

(w) =

(
0 αq+1

1 0

)
and as αq+1 is in GF (q), it follows that all elements of (w) are in GF (q). In addition,

det(w) = −αq+1. The eigenvalues are α
q+1
2 and −α q+1

2 . Both squares of these eigenvalues
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are in GF (q). Consequently, (w) acts as a permutation of period 2 which maps each

point of v1 into v2.

Keep in mind that χ det(w) = χ(−1)χ(αq+1) = −χ(−1) = −1 as q ≡ 1 mod 4 and

αq+1 can not be a quadratic residue in GF (q). In addition wv = vw.

We use the action of (w) and (v) on the set PG(GF (q)) to split the set into two as

we want to split the rows and columns of S into two. The arguments above show that

the set x = x1, vx = x2, v
2x = x3, . . . , v

q−1
2 x = x q+1

2
, w(x) = x q+1

2
+1, vw(x) =

x q+1
2

+2, v
2w(x) = x q+1

2
+3, . . . , v

q−1
2 w(x) = xq+1 with any x ∈ PG(GF (q)) represents all

different points of PG(GF (q)).

To define the weighting matrix S we use the map χ defined in the section of Paley

matrices.

S = [χ(det(xi, xj))]1≤ i,j ≤ q+1

with det being a bilinear form on V. Obviously, S is (0, 1,−1)-valued. Furthermore,

SST = (q + 1)I, because S is equivalent to

(
0 e

eT Q

)
. To see this, choose x1 = (0, 1). It

is obvious that the diagonal of S is zero. All off-diagonal elements of the first row and

the first column are one, because χ(det

((
0 1

1 x

))
= χ(1) = 1 with x ∈ GF (q). And all

other elements have the form χ(det

((
1 1

x y

))
= χ(y − x) with x, y ∈ GF (q) and this

is the definition of Q. Choosing another x1 produes an equivalent matrix S.

In the end, it is just left to prove that S has the form

(
A B

B −A

)
with

A = [χ(det(vix, vjx))]0 ≤i,j≤ q−1
2

and

B = [χ(det(vix, vjw(x)))]0 ≤i,j≤ q−1
2

being cyclic and symmetric. Keep in mind that det(Ax,Ay) = det(A) · det(x, y) for all

A being a linear mapping. Hence,

det(vix, vjx) = det(vi) · det(x, vj−ix).

Consequently, A is circulant, analogously it follows that B is circulant.

χ(det(viw(x), vjw(x))) = χ(det(w)) · χ(det(vix, vjx))

= (−1) · χ(det(vix, vjx))

χ(det(vix, vjw(x))) = −χ(det(viw(x), vjx))

= χ(det(vjx, viw(x)))
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These equations show that S has the form

(
A B

B −A

)
as required. From the fact that

χ(−1) = 1 it follows that both A,B are symmetric. �

Now it is possible to prove theorem 3.5.

Proof. From theorem 3.7 it follows that

(
0 e

eT Q

)
can be written in the form

(
A B

B −A

)
with A,B circulant and symmetric and A has a zero diagonal. So P can be rewritten

(compare proof of theorem 2.38, matrix H)

P =


−A− I −B A− I B

−B A− I B −A− I
A− I B A+ I B

B −A− I B −A+ I

 .

Define the two monomial matrices

U =


1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 −1

 , V =


1 0 0 0

0 0 0 −1

0 1 0 0

0 0 1 0

 .

From Lemma 3.3 it follows that

P ∼ UTPV =


−A− I A− I B B

−A+ I −A− I −B B

−B B −A− I −A+ I

−B −B A− I −A− I


Let A′ = −A− I, B′ = A− I, C ′ = B = D′, then

P ∼ UTPV =


A′ B′ C ′ D′

−B′ A′ −D′ C ′

−C ′ D′ A′ −B′

−D′ −C ′ B′ A′

 .

and hence P is equivalent to a Williamson matrix. �

Remark. Another method to study the equivalence class of Hadamard matrices is to

consider the automorphism group Aut(H) of a Hadamard matrix H. The automorphism

group Aut(H) of a Hadamard matrix H of size n is the ordered set of monomial matrices

(U, V ) so that UTHV = H. These pairs clearly form a group with the operation (U, V ) ·
(U ′, V ′) = (UU ′, V V ′) and (I, I) ∈ Aut(H) .

Moreover, it is easy to see that if H ∼ H ′ ⇒ Aut(H) ∼ Aut(H ′). In the article [12]

the automorphism group of the Paley-Type-I matrices are determined and in [16] the

automorphism group of the Paley-Type-II matrices is fully described. As a result, it
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is possible to declare that these two constructions do not lead to equivalent Hadamard

matrices if and only if the size of the Hadamard matrix is not 12.

Proposition 2.7 shows that there exists a lower bound on the size of Hadamard matrices.

Analogously it is now proved that there is a lower bound on the number of Hadamard

matrices with the help of Z-equivalent classes. The next part can be reread in [26].

Definition 3.8. Two matrices H,G are Z-equivalent or integrally equivalent if G can be

obtained by H by

(1) negating rows

(2) permuting rows

(3) adding a multiple of one row to another row

(4) doing the same actions on the columns

In other words, these row operations can be fulfilled by left multiplication with a matrix

with integer entries and its inverse is again an integer matrix, because there must be a

matrix to undo these actions. It is easy to prove that:

Lemma 3.9. Let A be an n× n matrix with integer entries, then there is an equivalence

between

(1) A−1 has integer entries as well, and

(2) det(A) = ±1.

Proof. (1)⇒ (2)

In general the equation 1 = det(A · A−1) = det(A) · det(A−1) is true. As A and A−1

have integer entries, both det(A) and det(A−1) are in Z, but this can only be possible if

det(A) = ±1 (⇒ det(A−1) = ±1).

(2)⇒ (1)

That follows from the two facts that the determinant of a matrix with integer entries

must be an integer, that the determinant is ±1 and using the Cramer’s rule. �

As a corollary from the previous Lemma, Z-equivalence can also be seen as:

Corollary 3.10. Two matrices A,B are Z-equivalent if and only if there exist two uni-

modular matrices P,Q such that PAQ = B. A matrix is unimodular if it has only integer

entries and its determinant is ±1.

Lemma 3.11. (1) The inverse of a unimodular matrix is unimodular.

(2) The product of two unimodular matrices is unimodular.

(3) The Kronecker product of two unimodular matrices is unimodular.

(4) A matrix is Z-equivalent to its transpose.

Proof. (1), (2) trivial

(3) Let A be an n × n unimodular matrix and B an m × m unimodular matrix, then
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det(A⊗ B) = det(A)n · det(B)m = 1n · 1m = 1 and A⊗ B obviously has integer entries.

(4) Using basic linear algebra it is known that every matrix is row equivalent to its row

echelon form and every transposed matrix is row equivalent to the column echelon form

of the original matrix. �

3.10 and Lemma 3.3 result in the next Lemma which is the basis of the calculation of

a lower bound on the number of Hadamard equivalence classes.

Lemma 3.12. Two equivalent Hadamard matrices are Z-equivalent.

Proof. A monomial matrix is clearly unimodular and then Lemma 3.3, corollary 3.10. �

Remark. To do some calculation on the number of Z-equivalent matrices, a normal form

for matrices is used, the Smith normal form. The proof of the Smith normal form can be

found, for instance in [3]. It says that:

Let R be a principal ideal ring and A ∈ Mm×n(R) with rank r, then

SAT =



d1 0 0 . . . 0 . . . 0

0 d2 0 . . . 0 . . . 0
...

...
. . . . . .

... . . .
...

0 0 . . . dr 0 . . . 0

0 0 . . . 0 0 . . . 0
...

... . . .
...

...
. . .

...

0 0 . . . 0 0 . . . 0


,

where S ∈ Mm(R) and T ∈ Mn(R) and this matrix is called the Smith normal form of

A. Both matrices are obtained by elementary row or column operations as explained in

definition 3.8 . Furthermore, di|di+1 for i = 1, . . . r−1, di are unique up to multiplication

with a unit and can be obtained by di = di(A)
di−1(A)

with di(A) being the greatest common

divisor of all i× i minors of A.

Lemma 3.13. Let A be a square matrix with integer entries, then A is Z-equivalent

to a diagonal matrix D = diag(d1, d2, . . . , dk, 0, 0, . . . , 0), where r is the rank of the ma-

trix A. The di are all positive and di|di+1. The greatest common divisor of the k × k

subdeterminants of A is d1d2 . . . dk. If A is Z-equivalent to(
D1 0

0 E

)
,

with D1 = diag(d1, d2, . . . , dk), then the greatest common divisor of the nonzero elements

of E is dk+1.

Proof. Using the remark above SAT = diag(d1, d2, . . . , dr, 0, 0, . . . , 0) with S, T being

unimodular. With corollary 3.10 the first part of the proposition is shown. That all di

are positive results from the fact that all di are unique up to multiplication with a unit
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and hence the di can be chosen positive. The rest can be seen directly if the remark is

used. �

If we consider the Smith normal form of an n× n Hadamard matrix H, then we know

that no diagonal element is zero as H has rank n = 4m. Consequently, the diagonal

matrix has the form D = diag(d1, d2, . . . , d4m).

Lemma 3.14. Let H be a 4m× 4m matrix with Smith normal form

D = diag(d1, d2, . . . , d4m),

then

di · d4m−i+1 = 4m

for i ∈ {1, . . . , 4m}.

Proof. Using Lemma 3.13, there exist unimodular matrices P,Q such that PHQ = D

and

(PHQ)(Q−1HTP−1) = PHHTP−1 = 4mPP−1 = 4mI.

As PHQ is D and the inverse of D is diag
(

1
d1
, 1
d2
, . . . , 1

d4m

)
, it follows that Q−1HTP−1 =

diag
(

4m
d1
, 4m
d2
, . . . , 4m

d4m

)
. After reordering, this diagonal matrix, HT has the Smith normal

form

diag

(
4m

d4m
,

4m

d4m−1
, . . . ,

4m

d1

)
,

because then the condition d′i|d′i+1 is fulfilled. Lemma 3.11 (4) shows that a matrix is

Z-equivalent to its transpose and as a result H and HT are Z-equivalent. Therefore the

equations

diag

(
4m

d4m
,

4m

d4m−1
, . . . ,

4m

d1

)
= diag(d1, d2, . . . , d4m)

⇔ 4m

d4m−i+1

= di

hold and the proof is completed. �
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Theorem 3.15. Let H be a 4m× 4m matrix with Smith normal form

D = diag(d1, d2, . . . , d4m)

and m square-free, then D has the form

2
m
th
r
o
w

←−
−−
−−

2
m
+
1
th
r
o
w

←
−−
−−
−−

4
m
−
1
th
r
o
w

←
−−
−−
−−

4
m
th
r
o
w

←−
−−
−−



1 0 0 . . . 0 . . . 0 0

0 2 0 . . . 0 . . . 0 0
...

. . .
... . . .

...
...

0 0 0 2 0 . . . 0 0

0 . . . . . . 0 2m . . . 0 0

0 . . . . . . 0 0 . . . 2m 0

0 . . . . . . 0 0 . . . 0 4m


.

Proof. W.l.o.g. it is assumed that H is normalised. Start by subtracting the first row

from every other and the first column from every other column, then H has the form(
1 0

0 K

)
and every element in K has to be zero or ±2. Hence, d1 = 1. By reordering

rows and multiplying with -1, it can be assumed that d2 = 2. Consequently, d4m = 4m

and d4m−1 = 2m using Lemma 3.14. These facts are true in general, from now on it is

used that m is square-free.

For i ≤ 2m it is true that di|d4m−i+1. Consequently, there ∃α with d4m−i+1 = αdi and

the equation of Lemma 3.14 leads to αd2i = 4m. As m is square-free di must be 1 oder 2.

Of course d1 = 1, but if i 6= 1, then d2 = 2 divides di. So there are (2m− 1) dis that are

2 and the others must be 2m. �

Corollary 3.16. Any two Hadamard matrices of size 4m with m being square-free are

Z-equivalent.

There is a lower bound for the entry 2 in the Smith normal form of a Hadamard matrix.

That can be proved by using a Lemma that was shown in the paper [25].

Lemma 3.17. Let A be an n× n matrix with entries 0 or 1 and det(A) 6= 0, then A has

at least blog2 nc+ 1 entries 1 in its Smith normal form.

Sketch of proof. Let t denote blog2 nc. This means that t is the unique solution of the

inequality chain 2t ≤ n < 2t+1. It will be proved that A is Z−equivalent to

(
It 0

0 D

)
and the greatest common divisor of the entries in D is 1.

The first step is done by an algorithm that leads to a matrix where the 2i− 1th and the
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2ith column have the same entries for the first i − 1 rows and then different entries in

row i, for i ∈ {1, . . . , t}.

Algorithm. (1) Choose two columns which have two different entries in the first row.

Reorder A so that these two columns are now the first two columns of A.

(2) Choose two columns which have the same entry in the first row and and then

reorder the other rows in such a way that the second row has two different entries.

Reorder the columns after the two columns chosen in the first step.

(k) Choose from the remaining n− (2k− 2) columns in the matrix resulting from step

k − 1 two columns which are similar in the first k − 1 rows and then reorder the

rows so that entries in the k-th row differ.

These steps can always be performed if k ≤ t, because no columns can be identical as

det(A) 6= 0 and there are only 2k−1 different (0, 1)-vectors with length k − 1.

The second step is to find two columns a, b that have the same entries for the first t rows

and then reorder the other rows in a way that the t+1th row has different entries. If this

step is not possible, because there are no further two columns that have the same entries

in the first t rows, then n = 2t. In that case the first 2t rows present all the different

possible 2t (0, 1)-vectors. Therefore, there is one column, say a, that has only zeros in

the first t rows. Reorder the rows in a way that there is a one in the t+ 1th row. In the

end, reorder the columns in a way that in the new matrix the number a is even and if

b was chosen before, the number of the column should be even as well. The last step is

also an algorithm that leads to the Smith normal form.

Algorithm. For i = 1, . . . , t:

Subtract column 2k from 2k−1. Then the (k, 2k−1)-entry is ±1. Add a suitable multiple

of the 2k − 1th column to all the following columns so that the entry of the row k is zero

in these columns. As a result, only the entry (k, 2k − 1) is nonzero in the row k.

If in step k a certain multiple of the column 2k − 1 was added to column 2i, then the

same multiple was added to 2i−1, because the entries (k, 2i) and (k, 2i−1) are the same

as the previous algorithm ensures. That is the reason why the algorithm works at every

step. The same arguments show that if in the second step, two columns were chosen then

these columns still differ by one after the algorithm. If just the column a is chosen in the

second step then the last algorithm does not alter this column, because the first t entries

in the column are zero and therefore they need not to be changed.

Finally, reorder the first t− 1 odd columns so that they are the first columns. Then the

matrix A has the form (
It 0

0 D

)
,

where D has two entries which differ by one, or one entry is 1. Therefore, the common

divisor of the entries in D is one. �
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Corollary 3.18. A Hadamard matrix of size 4m has at least blog2(4m− 1)c+ 1 entries

2 in its Smith normal form.

Proof. W.l.o.g. let H be normalised and subtract the first row from any other row and

the first column from any other column, then the matrix has the form


1 0 . . . 0

0
... −2B

0


with B being a 4m − 1 × 4m − 1 matrix with entries zero or 1, and det(B) 6= 0. Using

Lemma 3.17 and multiplying with (−1) shows that there are at least blog2(4m− 1)c+ 1

entries 2 in the Smith normal form. �

Definition 3.19. Let H be a 4m×4m matrix and m = f ·g2, where f, g are coprime and

square-free. Then d1 = 1 and d4m = 4m in the Smith normal form. There are at least

blog2(4m− 1)c+ 1 entries 2 and therefore as many entries that are 2m. All the others di

must be divisors of 4m. From Lemma 3.14 it follows that di|di+1, 4m/di must also be an

entry in the Smith normal form and therefore especially that 2|di. As a result, only 2g

and 2fg can be entries in the Smith normal form of H, because all others combinations

would not work as f, g are supposed to be coprime. The Smith normal form is

diag(1, 2(α times), 2g(β times), 2fg(β times), 2m(α times), 4m),

with 2α + 2β = 4m− 2. As a result, α completely describes the Smith normal form and

is therefore called the Smith class of H.

Example. The Smith class of the Hadamard matrices of size 16 = 4·4 is now described. It

gives a lower bound for the Z−equivalence of Hadamard matrices of order 16. Corollary

3.18 shows that α ≥ blog2(15)c + 1 = 3 + 1 = 4 and by definition 3.19 the equation

α + β = 7 = 2 · 4 − 1 has to be fulfilled. Consequently, α can only be 4,5,6 or 7, hence

there are at least four equivalence classes. Above it is described that h(16) = 5. In the

proof of Lemma 3.4 (3) the matrices H and HT can be found. These are examples of

Hadamard matrices with size 16 and with Smith class 7.

4. Some Theory

In the next chapters some theory that was already used or will be used for the next part

is provided. Proofs may occasionally be left out.
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4.1. Finite Fields
Some of the basic definitions and results of the theory of finite fields are listed in the

next chapter. As the chapter is intended to be a small summary of well-known facts, the

proofs ar omitted, but can be looked up in [18], [11].

Definition 4.1. A finite field (X,+, ·) is a field with finite set of elements X.

Definition 4.2. For a prime p, let Fp be {0, 1, . . . , p − 1} and χ : Z/pZ → Fp, χ([a]) =

a : a ∈ Z/pZ. Then Fp endowed with the field structure induced by χ is a finite field,

called the Galois field of order p.

Definition 4.3. Fp[x] (or later GF (p)[x]) denotes the ring of polynomials in the inde-

terminante x with coefficients in Fp (or later GF (p)).

Theorem 4.4. Let Fp be a field and f ∈ Fp[x] with deg(f) = n ≥ 0. The residue class

ring Fp/(f) is a field if and only if f is irreducible. The number of elements of Fp/(f) is

pn.

Example. Consider the irreducible polynomial f(x) = x2+x+1 ∈ F2[x]. As deg(f) = 2,

the number of elements of F2/(f) is 22 = 4. [0], [1] must be elements of GF (2)[x]/(f)

and the others are [x] and [x+ 1]. As a result, the tabels are

+ [0] [1] [x] [x+ 1]

[0] [0] [1] [x] [x+ 1]

[1] [1] [0] [x+ 1] [x]

[x] [x] [x+ 1] [0] [1]

[x+ 1] [x+ 1] [x] [1] [0]

· [0] [1] [x] [x+ 1]

[0] [0] [0] [0] [0]

[1] [0] [1] [x] [x+ 1]

[x] [0] [x] [x+ 1] [1]

[x+ 1] [0] [x+ 1] [1] [x]

This is the first example of a finite field of 22 elements, obviously not a prime.

Theorem 4.5. For every prime p and and every positive integer n there exists a finite

field with pn elements. Any finite field with q = pn elements is isomorphic to the splitting

field of xq− x over Fp. This uniqueness leads to the notation to denote the finite field or

the Galois field with q elements by GF (q).

Theorem 4.6. For every finite field GF (q) the multiplication group GF (q)∗ is cyclic,

of order q − 1 and has φ(q − 1) generators (primitive elements) where φ denotes Euler’s

totient function.

Corollary 4.7. If GF (r) is a field extension of GF (q), then GF (r) is a simple algebraic

extension of GF (q). Let α be a primitive element of GF (r), then GF (q)(α) = GF (r).

Corollary 4.8. For n ≥ 1 there exists an irreducible polynomial of degree n in GF (q)[x].
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Theorem 4.9. Consider the finite field GF (q) and an irreducible polynomial f of degree

m in GF (q)[x], then f has a root α in GF (qm). All the roots of f are simple and given

by α, αq, αq
2
, . . . , αq

m−1
.

Corollary 4.10. If f is an irreducibel polynomial of degree n of GF (q)[x], then the

splitting field of f over GF (q) is GF (qn).

A finite field F = GF (qn) can be seen as a vector space over the field K = GF (q) with

dimension n over K. Using the notation that results in:

Corollary 4.11. If α is a root of an irreducible polynomial f in K[x] with deg(f) = n,

then {1, α, α2, . . . , αn−1} is a basis for the vector space F = K(α).

Lemma 4.12. Let the number of k−dimensional subspaces of a vector space V = GF (qn)

over GF (q) be G(n, k), then

G(n, k) =
(qn − 1) · (qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1) · (qk−1 − 1) · · · (q − 1)
.

Proof. Denote the number of all k−tupels of linearly indepedent vectors of V with

N(n, k). This number is calculated combinatorically: There are qn − 1 possibilities to

choose the first vector of such a tupel, as there are qn different vectors, but per definition

the null vector is always linearly dependent. To choose the second vectors there are qn−1

possible vectors, but q − 1 are multiples of the first vector. Let the first i − 1 vectors

be v1, . . . , vi−1. In general, choosing the next vi has (qn − 1) − (qi−1 − 1) possibilities.

To see that, mind that there are qn − 1 vectors, but the set {v1, . . . , vi} has to be lin-

early indepedent. Hence the number of vis not to choose is the same number as choosing

aj ∈ GF (q) : 1 ≤ j ≤ i− 1 for a1v1 + a2v2 + · · · aivi−1(= vi). This number is qi−1, but of

course a1 = · · · = ai−1 = 0 is not allowed.

Now counting in two ways will be used as N(n, k) can also be found by choosing a

k−dimensional subspace W of V and then choosing a k−tupel of linearly independent

vectors of W . This number is denoted by L(k, k) and is (qk − 1) · (qk − q) · · · (qk − qk−1).
In the end, it is shown that L(k, k) ·G(n, k) = N(n, k) and therefore

G(n, k) =
N(n, k)

L(k, k)
,

and the proposition is shown. �

Definition 4.13. Let V = GF (qn) be the vector space over K = GF (q). Let α ∈ V ,

then the trace of α is defined by

TrV/K(α) = α + αq + · · ·+ αq
n−1

.

Lemma 4.14. The trace function defined in 4.13 is a linear mapping from V into K.

Sketch of proof. It is easy to see that TrV/K(α)q = TrV/K(α). The fixpoints of the Frobe-

nius mapping x → xq are the roots of the polynomial xq − x = 0, but these are the all
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the elements of GF (q) = K. Therefore, TrV/K mappes V into K. This mapping is linear

using Freshman’s Rule (x+ y)q = xq + yq and the fact that cq
i

= c : ∀i ≥ 0,∀c ∈ K. �

Lemma 4.15. The kernel of the trace function TrV/K defined in 4.13 has dimension

n− 1 over K.

Proof. Clear as

dim(kernel(TrV/K)) + dim(im(TrV/K)) = dim(GF (qn))

dim(kernel(TrV/K)) + 1 = n.

�

There is even a stronger theorem for the elements that are in the kernel of the trace

function:

Theorem 4.16. Let the trace function be defined as 4.13 and α ∈ V , then Tr(α) = 0⇔
∃β ∈ V such that α = βq − β.

Sketch of proof. The sufficiency of the condition follows from Lemma 4.14 and its proof.

For the necessity, let α ∈ V with TrV/K(α) = 0 and β a root of xq−x−α in an extension

field of V . Then βq − β = α and

0 = TrV/K(α) = TrV/K(βq − β) = βq
n − β ⇔ β = βq

n ⇔ β ∈ V.

�

The next theorem is very important in general and will be used later:

Theorem 4.17. The notations of the definition 4.14 are used. All the linear transfor-

mations from V into K are exactly the mappings Lβ : β ∈ V where Lβ(α) = TrV/K(βα)

for α ∈ V . In addition, Lβ 6= Lγ if β 6= γ, β, γ ∈ V .

Proof. As β ∈ V and |V | = qn, Lβ yields qn different linear transformations from V into

K. On the other hand, a linear mapping from V into K can be done by assigning the q

elements of K to the n elements of the basis of V . There are qn possibilities for that.

If β 6= γ, β, γ ∈ V , then for a suitable α ∈ V the equation chain Lβ(α) − Lγ(α) =

TrV/K(βα)− TrV/K(γα) = TrV/K((β − γ)α) 6= 0 holds. �

Corollary 4.18. Let K be a finite field and V a finite field extension of K, then the

number of linear mappings from V into K is the number of distinct elements of V .

4.2. Finite Geometry
Definition 4.19. A finite affine plane is a finite set of points P and a non-empty multiset

L of subsets of P that are called lines. They fulfill the conditions that

A1 There is one and only one line containing two given points.
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A2 There are four points no three of which belong to the same line.

A3 If a line l does not contain a point p, then there must be exactly one line q con-

taining p, but l and q do not intersect. Consequently, l is parallel to q.

By A2 every affine plane has at least four points. There is a plane with four points

which is denoted by AG(2, 2). It has 6 lines and three pairs with parallel lines.

Lemma 4.20. A finite affine plane is characterised by a parameter n. Every line contains

n points and every point lies on n + 1 lines. Therefore, an affine plane is denoted by

AG(2, n).

Proof. If the points of the plane are contained in two lines, then it is AG(2, 2). So it can

be assumed that not all points are contained in two lines. Let these two lines be l and m

and p a point that lies on neither one of them. There is a parallel line q of l that contains

the point p. Suppose that the line l contains n points, namely a1, . . . , an. Then consider

the set D of n+ 1 lines through p and a1, p and a2, . . . , p and an, q. A3 shows that there

is one line parallel to m as p does not lie on m, but that line must intersect l in a point

ai. Therefore, this parallel line is the line through ai and p. The other n lines of D meet

m in n points. Suppose there were more lines that intersect m, then these lines would

have to be parallel to l (as these lines would not have intersection points with l). Let

a be an intersection point of one of these lines with m. Then the line through a and p

would be parallel to l and contain p, but this is a contradiction to A3. As l,m, p were

chosen arbitrary every line contains n points and, every point lies on n+ 1 lines. �

An affine plane AG(2, n) is a BIBD!

Theorem 4.21. Consider the points of an AG(2, n) as treatments and the lines as blocks,

then it is BIBD with parameters (n2, n2 + n, n+ 1, n, 1).

Proof. Lemma 4.20 shows that k = n and r = n + 1. A1 implies that λ = 1. Using 5.3

(2) then we have v = n2 and with (1) b = n(n+ 1). �

Remark. The converse of theorem 4.21 is of course also true, but the proof is left out.

Definition 4.22. A finite projective plane consists of a finite set P of points and a

multiset L of subsets of P . A set of L is a line. They fulfill:

P1 Any two points lie exactly on one line.

P2 There exist four points no three of which belong to the same line.

P3 Two lines always have exactly one point in common.

Like AG(2, n), projective planes also have an unique parameter n, hence they can be

denoted by PG(2, n). They can be constructed from affine planes which is shown in the

next Lemma.

Lemma 4.23. There exists an AG(2, n)and therefore a (n2, n2 + n, n+ 1, n, 1)−BIBD if

and only if a (n2 + n+ 1, n+ 1, 1)−SBIBD exists.
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Sketch of proof. It is quite easy to see that the set of lines with size n2 + n can be

partitioned into n+ 1 sets with n members that represent the parallel class of lines. Let

these subsets of L be L1, L2, . . . , Ln+1. The new design (i.e. PG(2, n)) is formed by

adding n + 1 points of infinity denoted by p1, p2, . . . , pn+1. So the design has n2 + n + 1

treatments. The new blocks and hence the new lines are formed by the next algorithm:

If the line l belongs to a set Li then let the new line be l∗ = l ∪ pi and additionally add

l∞ = {p1, p2, . . . , pn+1}. Therefore the design has n2 + n+ 1 blocks. (Keep in mind that

adding these pis makes it possible that P3 can be fulfilled, as every pair of parallel lines

now has a point in common.) It is left to prove that that design is still balanced with

λ = 1. Every pair of points from the original set of points P that belonged to a line l

now still belongs only to l∗. The pair (p, pi) : p ∈ P only belongs to the one line of Li

that contains p. Finally (pi, pj) belongs only to l∞. �

The last proof results in:

Theorem 4.24. The projective plane is a (n2 + n + 1, n + 1, 1)−SBIBD. Every line

contains n+ 1 points and can therefore be denoted by PG(2, n).

Example. PG(2, 2) is the four point projetive plane. Consider GF (2) and the affine

plane AG(2, 2). The set of points is P = {(0, 0), (0, 1), (1, 0), (1, 1)}. There are six lines

containing each two points of P .

(1) y = 0 containing (0, 0), (1, 0)

(2) x = 0 containing (0, 0), (0, 1)

(3) y + 1 = 0 containing (0, 1), (1, 1)

(4) x+ 1 = 0 containing (1, 0), (1, 1)

(5) x+ y = 0 containing (0, 0), (1, 1)

(6) x+ y + 1 = 0 containing (1, 0), (0, 1)

(1) and (3), (2) and (4), (5) and (6) are parallel, respectively. Adding three points

p1, p2, p3 to P and to the lines (blocks) in the way that was described in the proof of

Lemma 4.23, then the lines of PG(2, 2) are

{(0, 0), (1, 0), p1}, {(0, 1), (1, 1), p1}, {(0, 0), (0, 1), p2}, {(1, 0), (1, 1), p2},

{(1, 1), (0, 0), p3}, {(0, 1), (1, 0), p3}, {p1, p2, p3}.

There is a strong existence statement: For every prime n there exists such a projective

plane PG(2, n).

Theorem 4.25. For every prime power q ≥ 2 there exists a projective plane of order q.

Therefore, a (q2 + q + 1, q + 1, 1)−SBIBD exists.

Proof. Consider GF (q) and let V be the three-dimensional space over GF (q). The vectors

of this space are denoted by (x1, x2, x3). This vector space has subspaces of dimension one
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and two. Let V1 consist of all one-dimensional subspaces and V2 of the two-dimensional

subspaces. For all W ∈ V2, define the set

AW = {A ∈ V1 : A ⊆ W}

and let A be the multiset of all these sets AW : W ∈ V1. It is left to prove that (V1,A)

is the projective plane of order q.

Lemma 4.12 shows |V1| = G(3, 1) = q3−1
q−1 = q2 + q + 1 and |V2| = G(3, 2) = (q3−1)(q3−q)

(q2−1)(q2−q) =

q2 + q + 1. Therefore, the design (V1,A) has q2 + q + 1 treatments and as many blocks,

because for every two dimensional subspace there is a block AW . Let C be in V1 and

W ∈ V2. Observe that |C| = q and |W | = q2. The sets C \ {(0, 0, 0)} partition the set

W \ {(0, 0, 0)}. Therefore |AB| = |W |−1
|C|−1 = q2−1

q−1 = q + 1. That means that the symmetric

design has blocks with q + 1 elements. It is left to show that the covalency number is 1.

C,D ∈ V1 with C 6= D. There is a unique two-dimensional space B that contains both

C and D. B determines the one block that contains both C and D. �

The theorem and also its proof can be generalised:

Theorem 4.26. Let q ≥ 2 be a prime power and d ≥ 2 is an integer. Then there is a(
qd+1 − 1

q − 1
,
qd − 1

q − 1
,
qd−1 − 1

q − 1

)
− SBIBD.

Proof. Let V = GF (qd+1) and V1 be again the set of all one-dimensional subspaces.

Furthermore, let Vd be the set of all d−dimensional subspaces. Every d−subspace gives

rise to a block as in the proof of theorem 4.25. �

Remark. The design of Theorem 4.26 also corresponds to a geometric object, namely

the finite geometry of dimension d over GF (q). They are often termed PG(d, n).

5. Hadamard matrices and combina-

torial designs

5.1. Basics
The first question is: “What is design theory? Architecture in mathematics?”. This is

not completely false. It is a part of combinatorical mathematics and a design is a way

of picking subset of a finite set under special conditions. For example, a graph G(V,E)

with vertices V and edges E is a design. Block designs will be of particular interest to

us. The next chapter is a short summary of [26].

Definition 5.1. A design is formed of the set S. The members of the universal set S

are called treatments or varieties. If the formed subsets of S are just unordered sets, then
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the combinatorical design is called block design. If all blocks are different, the design is

called simple.

Example. An example of a design that is not a block design is a Latin square. It is a

n×n matrix picked from a set with n treatments and its entries satisfy the condition that

each row and each column is a permutation of the set S. For example1 2 3

3 1 2

2 3 1


is a Latin square of size 3. Ever row or every column can be interpreted as an ordered

set and therefore is not a block design.

Definition 5.2. A regular block design is a block design where each treatment occurs

equally often in a block. The size of the set of treatments is denoted by v. The number of

occurrence of a treatment is r and r is universal if it is a regular block design. It is also

called replication number or frequency. The size of a block is k and the number of blocks

is b. Consequently a block design is a (v, b, r, k)−design.

A design is called incomplete if k 6= v, otherwise it is called complete.

It is very interesting to study the covalency number or index λxy for two treatments

x, y. That number is the number of blocks which contain both x and y. A balanced

incomplete block design is an incomplete block design where λxy is constant and therefore

independent of the choice of x, y. As a result, this design is referred to BIBD in short

or a (v, b, r, k, λ)−design. If λ = 0, then the design would be trivial, but since a BIBD

should not be complete, the special law is excluded and the index is restricted to λ ≥ 1.

Proposition 5.3. In a (v, b, r, k, λ)−design the parameters fulfill:

(1) bk = vr

(2) r(k − 1) = λ(v − 1)

Proof. (1) The proof technique of counting in two ways is used. On the one hand, the

pairs (x, z) where a treatment x belongs to a block z, is counted and this number

is vr as every of the v treatments belongs to r blocks. On the other hand there

are b blocks and every treatments belongs to k of the blocks and therefore there

are also bk such pairs (x, z).

(2) A special treatment x occurs in r blocks. If we list all the treatments that are

in all of these r blocks, then x will be listed r times and all the other (v − 1)

treatments λ times. In the end the list has rk entries. So it follows that

rk = r︸︷︷︸
occurrence of x

+ λ(v − 1)︸ ︷︷ ︸
occurrence of the other treatments in the list

.

Bringing r on the other side of the equation shows the property.

�
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Definition 5.4. Consider a (v, b, r, k, λ)−design. A treatment xi is incident with a

block bj if xi ∈ bj. This connection can be shown in the v × b incidence matrix A =

(aij)1≤i≤v,1≤j≤b with

aij =

0 if xi /∈ bj
1 if xi ∈ bj

.

Example. Let S be {1, 2, 3, 4, 5, 6} and hence v = 6. 10 blocks are chosen from the set

with size 3 and every treatment has to belongto 5 of these blocks. For instance

123, 124, 135, 146, 145, 236, 245, 256, 345, 346

is such a design and the incidence matrix is

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1


.

Definition 5.5. Two block designs are isomorphic if the incidence matrix can be trans-

formed by permuting rows or columns.

Proposition 5.6. If A is the incidence matrix of a (v, b, r, k, λ)−design then

AAT = (r − λ)Iv + λJv and JvA = kJv×b.

Conversely, if there is a v × b matrix A with entries zero or one that satisfies these two

equations, then the equations

v =
r(k − 1)

λ
+ 1 and b =

vr

k

hold and therefore, A is the incidence matrix of a (v, b, r, k, λ)−design.

Proof. Let A be an incidence matrix of a (v, b, r, k, λ)−design. The entry (i, j) of AAT is∑b
n=1 ainajn and ainajn is not zero if both xi and xj belong to the same block n. If i = j,

then xi belongs to r blocks, but if i 6= j, then xi and xj are only together in λ blocks. It

results in AAT = (r − λ)Iv + λJv. The second equation follows easily as multiplication

with J sums up the entries of a column which means to sum up the treatments that

belong to a certain block, and this number is k.

On the other hand, let A be a v × b matrix with entries zero or one that satisfies the

equations then an incomplete block design can be produced. Blocks B1, B2, . . . , Bb are

formed of treatments t1, t2, . . . , tv in such a way that

ti ∈ Bj ⇔ aij = 1.
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Similar arguments show that it is a (v, b, r, k, λ)−design and the rest follows from Propo-

sition 5.3.

�

Lemma 5.7. Consider a (v, b, r, k, λ)−design and its incidence matrix A. The determi-

nant of AAT is (r − λ)v−1(r + (v − 1)λ).

Proof. Proposition 5.6 shows that AAT has the form
r λ . . . λ

λ r . . . λ
...

. . .
...

λ λ . . . r

 .

Transform the matrix by subtracting the first column from every other column then the

matrix has the form:

det


r λ− r . . . λ− r
λ r − λ . . . 0
...

. . .
...

λ 0 . . . r − λ

 = det


r + (v − 1)λ 0 . . . 0

λ r − λ . . . 0
...

. . .
...

λ 0 . . . r − λ


= (r + (v − 1)λ)(r − λ)v−1.

In the second step all other rows are added to row 1. �

Theorem 5.8 (Fischer’s inequality). In a (v, b, r, k, λ)−design the inequality b ≥ v holds.

Proof. Let A be the incidence matrix of that design. Since k must be naturally smaller

than v, the equality λ(v − 1) = r(k − 1) shows r > λ and using Lemma 5.7 shows that

det(AAT ) 6= 0, and therefore rank(AAT ) = v. As v = rank(AAT ) ≤ rank(A) ≤ min(v, b)

the inequality b ≥ v holds. �

Definition 5.9. The dual of a regular (v, b, r, k)− design with incidence matrix A is a

(b, v, k, r)−design with incidence matrix AT .

It is easy to see that if a design is incomplete, then its dual is incomplete, too.

If an incomplete block design is balanced then Fischer ’s inequality gives b ≥ v and

consequently its dual is balanced, as well, if and only if v = b. It is proved in Lemma

5.39 in detail.

Definition 5.10. A (v, b, r, k, λ)−design is symmetric if v = b and with Proposition 5.3

it follows that r = k. As a result, these designs are (v, r, λ)−designs and are denoted by

SBIBD.

Theorem 5.11. A Hadamard matrix of size n = 4m exists if and only if a

(4m− 1, 2m− 1,m− 1)−SBIB design exists.
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Proof. Proposition 5.6 is used to show that the Hadamard matrix H4m leads to the

incidence matrix of a (4m − 1, 2m − 1,m − 1)− design and conversely. Let H4m be

normalised, then

H4m =

(
1 e

eT Q

)
.

Q is called the core. It is a matrix with row sum and columns sum (-1), as every row or

column must be orthogonal to the first row or first column, respectively. In other words

QJ4m−1 = J4m−1Q = −J4m−1. As HHT = 4mI, it follows that QQT = 4mI − J . Let

C = 1
2
(Q+ J), then C is (0, 1)−valued.

J4m−1C =

1

2
J(Q+ J) =

1

2
(JQ+ JJ) =

1

2
(−J + (4m− 1)J) =

1

2
(4m− 2)J = (2m− 1)J4m−1

CCT =

1

2
(Q+ J)

1

2
(QT + JT ) =

1

4
(QQT +QJ + JQT + JJ) =

1

4
(4mI − J − J − J + (4m− 1)J) =

1

4
(4mI + (4m− 4)J) = mI + (m− 1)J

Consequently, from Proposition 5.6 it follows that C is the incidence matrix of a design

with parameters v = 4m − 1 = b, k = 2m − 1 and λ = m − 1. By solving the equation

r−λ = m it can be concluded that r = 2m− 1, and H4m leads to a (4m− 1, 2m− 1,m−
1)−SBIBD.

On the other hand, let A be the incidence matrix of a (4m − 1, 2m − 1,m − 1)−design

and define B = 2A− J . Furthermore set

C =

(
1 e

eT B

)
.

It is left to prove CCT = 4mI4m. Using Proposition 5.6

CCT =

(
1 e

eT 2A− J

)(
1 e

eT 2AT − JT

)
=

(
1 + eeT e+ 2eA− eJ

eT + 2AeT − JeT eeT + (2A− J)(2AT − J)

)

=

(
4m e+ 2(2m− 1)e− (4m− 1)e

eT + 2(2m− 1)eT − (4m− 1)eT J + 4AAT − 2AJ − 2JAT + JJ

)

=

(
4m 0

0 J + 4(mI + (m− 1)J)− 2(2m− 1)J − 2(2m− 1)J + (4m− 1)J

)

=

(
4m 0

0 4mI

)
= 4mI4m.
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Definition 5.12. The SBIBD−designs with parameters v = 4m − 1, k = 2m − 1, λ =

m− 1 are called Hadamard (2-)designs.

Definition 5.13. Consider a (v, b, r, k, λ)−design with blocks B1, B2, . . . , Bb formed from

the set S. Then the complementary design is the design with sets S\B1, S\B2, . . . , S\Bb.

Obviously its treatments are from S.

Example. In the example above a (6, 10, 5, 3, 2)−design is shown. The complementary

design of

123, 124, 135, 146, 145, 236, 245, 256, 345, 346

is

456, 356, 246, 235, 236, 145, 136, 134, 126, 125.

Proposition 5.14. The complementary designs of a (v, b, r, k, λ)−design is a BIBD-

design with parameters (v, b, b− r, v − k, b− 2r + λ), if b− 2r + λ 6= 0.

Proof. It is easy to see that the complementary design will still have v treatments and

b blocks. A treatment that was previously in r blocks will then belong to b − r blocks.

Furthermore, the cardinality of a block in a complementary design is v − k. The orginal

design fulfills vr = bk and the complementary design (v, b, b − r, v − k) still fulfills this

equation with v · (b − r) = b · (v − k). Finally, if two treatments x, y both belonged to

λ sets of the original design then there are 2 · (r − λ) blocks which contain only one of

the treatments x, y. In the original design there are b− λ blocks which do not contain x

and y and 2 · (r− λ) blocks which do not contain just one of them. In the end, there are

b− 2r + λ blocks which do not contain x or y and this is the number of covalency in the

complementary design. �

Theorem 5.15. If there is a Hadamard matrix of size n = 4m, then there are BIBDs

with the parameters

(1) (2m− 1, 4m− 2, 2m− 2,m− 1,m− 2)

(2) (2m, 4m− 2, 2m− 1,m,m− 1)

(3) (2m− 1, 4m− 2, 2m,m,m).

Proof. In the proof of theorem 5.11 it is shown that a 4m× 4m Hadamard matrix leads

to a (4m− 1, 2m− 1,m− 1)−SBIB design. Let A be the incidence matrix of the design.

Then in every column of A there are 2m − 1 ones as k = 2m − 1, and therefore every

treatment is element of 2m − 1 blocks. As a result, there are 4m − 1 − (2m − 1) = 2m

elements that are zero in every column. Consequently, A can be reordered as(
e B

0 C

)
,
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where e is the unit vector of length 2m− 1. Taking theorem 5.6 in account, the equation

mI + (m− 1)J =

(
eeT +BBT BCT

CBT CCT

)
=

(
J +BBT BCT

CBT CCT

)
follows. If the left and right sides of the above equation is compared, then it can be

concluded that

mI2m−1 + (m− 1)J2m−1 = J2m−1 +BBT

mI2m−1 + (m− 2)J2m−1 = BBT

mI2m + (m− 1)J2m = CCT

On the other hand, AT is also an incidence matrix of a (4m− 1, 2m− 1,m− 1)−design

and therefore

mI + (m− 1)J =

(
eeT eTB

BT e BTB + CTC

)
=

(
2m− 1 eTB

BT e BTB + CTC

)
.

Again comparing the left and right sides shows that eTB = (m−1)(1, . . . , 1) and therefore

JB = (m− 1)J is true, as well. In other words B has (m− 1) ones in every column and

therefore the diagonal of BTB must be a vector where all 4m− 2 entries are m− 1. As

BTB+CTC must bemI+(m−1)J , the diagonal entry of CTC ism+(m−1)−(m−1) = m.

By the same argumentation it follows that JC = mJ . Using theorem 5.6, it is shown that

a (2m− 1, 4m− 2, 2m− 2,m− 1,m− 2)−design and a (2m, 4m− 2, 2m− 1,m,m− 1)−
design exist. (3) is just the complementary design of (1). �

Often it is important to know explicitly the elements of the set of treatments and the

blocks of a design. As a result, (X,A) is a (v, b, r, k, λ)−BIBD if X is the v−set of

treatments and A is the multiset of blocks with size k. A must contain b blocks. Every

treatment occurs in r blocks and λ must be the covalency number.

Definition 5.16. Consider two designs (X,A) and (Y,B) with |X| = |Y |. These two

designs are isomorphic if there exists a bijection α : X → Y such that

{{α(x) : x ∈ A} : A ∈ A} = B.

Every block of A is transformed to a block of B.

Example.

X = {1, 2, 3, 4, 5, 6, 7},A = {123, 145, 167, 246, 257, 347, 356}

Y = {a, b, c, d, e, f, g},B = {abd, bce, cdf, deg, aef, bfg, acg}

(X,A) and (Y,B) are isomorphic through

α(1) = a, α(2) = b, α(3) = d, α(4) = c, α(5) = g, α(6) = e, α(7) = f.
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Remark. The next two facts are easy to verify:

Let A = (aij)1≤i≤v,1≤j≤b, B = A = (bij)1≤i≤v,1≤j≤b be two incidence matrices of two

(v, b, r, k, λ)− BIBD.

(1) Then these two designs are isomorphic if and only if

aij = bβ(i),γ(j)

where β and γ are permutations of {1, . . . , v} and {1, . . . , b}, respectively.

(2) Then these two designs are isomorphic if and only if there exist two permutation

matrices P with size v and Q with size b such that

A = QBP.

Definition 5.17. An automorphism of a design (X,A) is an isomorphism of the design

with itself. It is easy to see that the set of automorphisms of a design form a group

Aut(X,A). It is a subgroup of the symmetric group S|X|.

The identity mapping of X is of course always an automorphism, but there are also

other automorphisms.

Example.

X = {1, 2, 3, 4, 5, 6, 7},A = {123, 145, 167, 246, 257, 347, 356}

α(1) = 1, α(2) = 2, α(3) = 3, α(4) = 5, α(5) = 4, α(6) = 7, α(7) = 6

α is an automorphism.

Suppose that (X,A) is a (v, k, λ)− SBIBD and α ∈ Aut(X,A). Then α is a permuta-

tion of X and can therefore be written in a composition of disjoint cycles whose lengths

sum up to v. Hence, it is possible to talk about the cycle type of α or fixed points of α,

but α also induces a permutation α∗ on the multiset of the blocks A. A block that will

be fixed through α∗ is called a fixed block.

Lemma 5.18. (X,A) is a (v, k, λ)− SBIBD and α an automorphism with f fixed points,

then α∗ fixes f blocks.

Proof. Let F be the number of blocks that will be fixed by α∗ and

I = {(x,A) : x ∈ X,A ∈ A and {x, α(x)} ⊆ A}

|I| will be computed in two different ways. First it is considered that the number of

treatments determine |I|. Secondly, |I| is also determined by the blocks of A. # means
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‘number of ’.

|I| =
∑
x∈X

|{A ∈ A : {x, α(x)} ⊆ A}|

=
∑
x∈X
α(x)=x

|{A ∈ A : {x, α(x)} ⊆ A}|︸ ︷︷ ︸
# blocks which contain one treatment x

+
∑
x∈X
α(x)6=x

|{A ∈ A : {x, α(x)} ⊆ A}|︸ ︷︷ ︸
# blocks in which x,α(x) belong

= fk + (v − f)λ

|I| =
∑
A∈A

|{x ∈ X : {x, α(x)} ⊆ A}|

=
∑
A∈A

α∗(A)=A

| {x ∈ X : {x, α(x)} ⊆ A}︸ ︷︷ ︸
=A as α∗(A)=A⇒α(x)∈A:∀x∈A

|

︸ ︷︷ ︸
=k

+
∑
A∈A

α∗(A) 6=A

| {x ∈ X : {x, α(x)} ⊆ A}︸ ︷︷ ︸
{x,α(x)}⇔x ∈ A∩(α∗)−1(A)

|

︸ ︷︷ ︸
=λ

= Fk + (v − F )λ

⇒ fk + (v − f)λ = Fk + (v − F )λ

k(f − F ) = λ(f − F ).

From Proposition 5.3 it follows that in a SBIBD λ 6= k. Therefore, the equation before

shows f = F . �

A similar statement is true for the cycle length. This will be proved with a useful

combinatorical technique.

Definition 5.19. The Möbius function µ : N→ {−1, 0, 1} is defined as

µ(n) =


1 if n = 1

(−1)k if n is square-free and k is the number of distinct prime factors of n

0 if n has squared prime factors.

.

Theorem 5.20 (Möbius Inversion Formula). Let f, g : N→ R be functions and

f(j) =
∑
i|j

g(i),

then

g(i) =
∑
j|i

µ

(
i

j

)
f(j).

Lemma 5.21. (X,A) a symmetric (v, k, λ)−SBIBD and α ∈ Aut(X,A). The cycle type

of the induced permutation α∗ is the same as the cycle type of α.
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Proof. Let ci be the number of cycles of length i of a permutation α of a finite set and fj

the number of fixpoints of αj. Then

fj =
∑
i|j

i · ci.

The Möbius inversion formula shows with g(i) = ici and fj = f(j) that

i · ci =
∑
j|i

µ

(
i

j

)
fj

and therefore,

ci =
1

i

∑
j|i

µ

(
i

j

)
fj.(5.1)

If α ∈ Aut(X,A), then αj ∈ Aut(X,A). Lemma 5.18 shows that fj is the same number

for αj as for the induced automorphism (α∗)j. From equation 5.1 it follows that the cycle

type is the same for both automorphisms. �

These two lemmata will be used in the next chapter.

5.2. Difference sets
If not stated otherwise this chapter follows mainly the chapter “difference sets” in [23].

Definition 5.22. Let (G,+) be a finite group of order v with identity element 0. Let λ

and k be positive integers with 2 ≤ k < v. Then a (v, k, λ)−difference set in (G,+) is a

subset B with k elements and the multiset {x− y|x, y ∈ B, x 6= y} contains every element

of the set G \ {0} λ times.

Remark. G need not to be Abelian, but in examples G = Zn = (Z/nZ,+) is often used.

Here are some examples of difference sets.

Examples. (1) Let G = Z/7Z = Z7 = {0, 1, 2, 3, 4, 5, 6} and B = {1, 2, 4}. Obviously

v = b = 7 and k = r = 3. This is a difference set with λ = 1, because

(1, 2) has difference 1

(2, 4) has difference 2

(1, 4) has difference 3

(4, 1) has difference −3 = 4

(4, 2) has difference −2 = 5

(2, 1) has difference −1 = 6

and no other combinations are possible.

(2) G = Z5 and B = {1, 2, 3, 4}. B is a (5,4,3) difference set.

(3) Let G = S3 = {id, π1 = (12), π2 = (23), π3 = (13), σ1 = (132), σ2 = (123)}, obvi-

ously a non-Abelian group. Then G has 6 elements. We want to find a difference
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set in this group. For the size of the difference set B, it is impossible to choose

2,3 or 4, as the multiset {x− y|x, y ∈ B, x 6= y} would have 2, 6 or 12 members.

Thus, it is impossible that the multiset would contain every member of |S \ id| = 5

exactly λ times. If B had 5 elements, then the multiset would have 20 elements.

It would be possible if λ = 4. Try D = {π1, π2, π3, σ1, σ2}. Using the group table

of S3,

◦ id π1 π2 π3 σ1 σ2

id id π1 π2 π3 σ1 σ2

π1 π1 id σ1 σ2 π2 π3

π2 π2 σ2 id σ1 π3 π1

π3 π3 σ1 σ2 id π1 π2

σ1 σ1 π3 π1 π2 σ2 id

σ2 σ2 π2 π3 π1 id σ1

it is easily seen that that the set D is a (6, 5, 4)−difference set.

Difference sets can be used to generate SBIBDs.

Definition 5.23. Let B be a (v, k, λ)−difference set of the group (G,+) with order v,

then the design generated from B consists of the blocks

{B + g|g ∈ G}.

A set B + g is called translate of B and Dev(B) is the collection of all v translates of B.

So it follows that the design generated from B is a block design with v treatments and

v blocks. Every block consists of k treatments. An h ∈ G satisfies h ∈ B + g if and only

if g ∈ B − h. There are exactly |B| = k such g and therefore r = k.

Under which conditions the design is balanced is explained by the next Lemma.

This proof can be found in [26], but not in such a detail.

Lemma 5.24. If the subset B of an abelian group (G,+) with order v contains λi ordered

pairs whose difference is gi and x, y is a pair in G whose difference is gi, then x,y is a

subset of λi blocks in the design generated by B.

Proof. Let (a1, b1), (a2, b2), · · · , (aλi , bλi) be all the ordered pairs in B2 that have difference

bj − aj = gi : ∀j ∈ {1, . . . , λi}. If x, y is a pair in G with difference x− y = gi, then x, y

is contained in the blocks B + (x − b1), B + (x − b2), · · · , B + (x − bλi). To understand

this statement consider for example the first block: b1 ∈ B ⇒ b1 + (x − b1) = x and

a1 ∈ B ⇒ a1 + (x − b1) = x + (a1 − b1) = x − gi = y. As all these blocks are different,

the pair x, y is contained in at least λi blocks. Suppose x, y is contained in B + d. Then

gi = x− y = (x− d)− (y− d), but x− d and y− d are in B. In other words (y− d, x− d)

must be one of the pairs (aj, bj) listed above. Consequently, exactly λi blocks contain

x, y. �
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From Lemma 5.24 follows:

Corollary 5.25. The design (G,Dev(B) generated from a (v, k, λ) difference set is a

(v, k, λ)−SBIBD.

Using Proposition 5.3 the next corollary can be easily seen.

Corollary 5.26. A (v, k , λ) difference set satisfies (v − 1)λ = k(k − 1).

Example. Above we have seen that B = {1, 2, 4} is a (7, 3, 1)−difference set in G =

Z7 = {0, 1, 2, 3, 4, 5, 6}. The design generated from B and therefore the multiset Dev(B)

is

(1, 2, 4), (2, 3, 5), (3, 4, 6), (0, 4, 5), (1, 5, 6), (0, 2, 6), (0, 1, 3).

The design has the incidence matrix

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0


.

The question arises if corollary 5.25 also has a converse. Indeed, with some precondi-

tions there is a converse.

Theorem 5.27. Let (X,A) be a (v, k, λ)−SBIBD and α ∈ Aut(X,A) with α having only

one cycle (therefore, the cycle has length v). Then there is a (v, k, λ)− difference set in

(Z/vZ = Zv,+).

Proof. W.l.o.g. it is assumed that for the set X = {x0, x1, . . . , xv−1} the automorphism

α is α(xi) = xi+1 mod v : 0 ≤ i ≤ v − 1. As a result,

α = (x0 x1 . . . xv−1).

Choose a block A0 ∈ A and define

Aj = {αj(x) : x ∈ A0} = {xi+j mod v : xi ∈ A0}.

Aj is a block in A as αj ∈ Aut(X,A). Clearly α(Aj) = Aj+1 mod v and from Lemma 5.21

it follows that α∗ is a cycle of length v. In conclusion it is proved that

A = {A0 (= Av), A1, . . . , Av−1} and α∗ = (A0 A1 . . . Av−1).

The difference set D of (Zv,+) can now be defined as

D = {i : xi ∈ A0}.
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D has k members, as every block of A has size k and is a subset of Zv. Keep in mind

that if Ail ∈ A and xk ∈ Ail , then the definition of the blocks Aj implies that xk−il ∈ A0.

That will be used in the to show that D is a difference set.

Let g ∈ Zv, g 6= 0. The pair {x0, xg} appears in λ blocks, say Ai1 , . . . , Aiλ .

{x0, xg} ⊆ Aij ⇔ {x−ij mod v, xg−ij mod v} ⊆ A0 ⇒ {−ij mod v, g − ij mod v} ⊆ D

⇔ (g − ij mod v)− (−ij mod v) = g.

In other words, there are λ distinct pairs in D with difference g. As g was chosen

arbitrarily it is proved that D is a (v, k, λ) difference set of (Zv,+). �

The theorem can be generalised for arbitary finite groups by using sharply transitive

groups.

Definition 5.28. Suppose that G ⊆ Sv is a permutation group acting on the v-set X. G

acts sharply transitive if ∀x1, x2 ∈ X ∃!g ∈ G : g(x1) = x2.

Similar to the proof of theorem 5.27 it is proved in [1] that:

Theorem 5.29. Let G be a finite group and D a proper subset. Then the following

statements are equivalent.

(1) D is a (v, k, λ) difference set in G.

(2) Dev(D) is a (v, k, λ)−SBIBD with G a sharply transitive subgroup of Aut(X,A).

Theorem 5.30. Let v = 4t− 1 be a prime power congruent 3 mod 4, then there exists a

(4t− 1, 2t− 1, t− 1)− difference set.

Proof. Let D be the set of all perfect squares of the cyclic multiplicative group of G =

GF (v) which has v − 1 = 4t− 2 elements. The group D has 2t− 1 elements as Lemma

2.33 showed. Simple combinatorics shows that there are (2t− 1)(2t− 2) = (t− 1)(4t− 2)

pairs of different elements of D. We need to prove that for every element of a ∈ GF (v)

there are λ = t− 1 such pairs that have difference a.

Let x, y be a pair in D that has difference 1 and suppose there are λ such pairs. The

proof will show that there are x, y ∈ D with x − y = 1. Multiplying with any perfect

squares q leads to qx− qy = q and as qx and qy are perfect square themselves, the pair

(qx, qy) ∈ D2 has difference q. Hence, there are λ pairs in D that have difference q. On

the other hand if a pair x, y has differnce q then q−1x, q−1y has difference 1.

Considering that every element which is not a perfect square is a negative of a perfect

square: Let a be a perfect square, then χ(a) = 1 ⇒ χ(−a) = χ(−1)χ(a) = −1. As the

number of perfect squares is 2t − 1, this leads to 2t − 1 non perfect squares and adding

(−1) these are all the non perfect squares.

The pair (qy, qx) has difference −q and there are λ of these pairs. With the help of

corollary 5.26 every element of GF (v) must appear (4t−2)(t−1)
4t−2 = t− 1 times in a block.

�
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Definition 5.31. The difference sets constructed in theorem 5.30 are called Paley dif-

ference sets. Generally, difference sets with parameters (4t − 1, 2t − 1, t − 1) are called

Hadamard difference sets.

Clearly, every Hadamard difference set leads to a Hadamard matrix due to theorem

5.11. Sometimes difference sets with the parameters
(
q, q−1

2
, q−3

4

)
are called Paley differ-

ence sets, but keep in mind that this is the same as if 4t− 1 is substituted by q.

There are three big families of Hadamard difference sets:

(1) Paley difference sets with parameters (q, q−1
2
, q−3

4
) in (GF (q),+).

(2) Singer difference sets with parameters (2t−1, 2t−1−1, 2t−2−1) with t ≥ 2. (Clearly

they also fulfill the parameters of Hadamard difference sets).

(3) Twin prime power difference sets with parameters (q(q+2), q(q+2)−1
2

, q(q+2)−3
4

) with

q and q + 2 both being prime powers.

In design theory Singer difference sets are more general and this difference sets will be

explained now. For the next proof recall theorem 4.25 and theorem 4.26.

Theorem 5.32. If q is a prime power,then there exists a (q2 + q + 1, q + 1, 1) difference

set in (Zq2+q+1,+).

Proof. As in the proof of theorem 4.25 V = GF (q3). V1 contains all the one-dimensional

vector spaces over GF (q) and V2 the two-dimensional spaces over GF (q). Let ω be

a primitive element of GF (q3) and define the mapping f : V → V, f(z) = ωz. f is

a GF (q)−linear mapping and therefore preserves subspaces of V . Consequently every

subspace of V1 or V2 is mapped into a subspace of V1 or V2, respectively. Section 5.2

shows that f is an automorphism of the resulting (q2 + q + 1, q + 1, 1)−SBIBD. It was

already used before that GF (q) = {w(q2+q+1)·i : 0 ≤ i ≤ q− 2}∪{(0, 0, 0)}. This explains

f q
2+q+1(W ) = W for any subspace W of V . As a consequence, f permutes every element

of V1 in a single cycle of length q2+q+1. Applying theorem 5.27 shows the statement. �

Similar to Section 5.2, identical arguments show:

Theorem 5.33. Suppose q is a prime power and d ≥ 2 is an integer, then there exists a(
qd+1 − 1

q − 1
,
qd − 1

q − 1
,
qd−1 − 1

q − 1

)
idifference set in Z(qd+1−1)/(q−1),+).

Definition 5.34. The difference sets from theorem 5.33 are called Singer difference sets.

As mentioned before, they are Hadamard difference sets for q = 2 and d+ 1 = t.

Although Singer difference sets are very interesting and there are a lot of different

possibilities to construct them, they are equivalent to an important class of Hadamard

matrices, namely Sylvester Hadamard matrices. This will be shown by using two different
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construction possibilities for these two kind of matrices. The definitions of the next part

can be found in [8], p. 11, 15.

Sylvester Hadamard matrices were defined by using corollary 2.24. The definition

shows straightforwardly that:

Lemma 5.35. Using the notation of corollary 2.24, for t ≥ 1

St = S1 ⊗ St−1

Lemma 5.36. Let St = (si,j)0≤i,j≤2t−1 be the Sylvester of size 2t, then

St =
(
(−1)<i,j>

)
0≤i,j≤2t−1(5.2)

where i, j are the indices of St written in binary representation as a vector of length

t over GF (2) and <,>=<,>2 is the scalar product of two vectors over GF (2), hence

< (x1x2 . . . xn), (y1y2 . . . yn) >2= x1 · y1 + x2 · y2 + · · ·+ xn · yn mod 2.

Proof. From Lemma 5.35 it follows that the Sylvester Hadamard matrices can be defined

recursively. Mathematical induction is used to proof the statement.

Let t = 1, then

S1 =

(
1 1

1 −1

)
=

(
1(0,0) 1(0,1)

1(1,0) −1(1,1)

)
=

(
(−1)<0,0> (−1)<0,1>

(−1)<1,0> (−1)<1,1>

)
=

(
1 1

1 −1

)
.

Suppose that the statement holds for t− 1. The inductive step shows that the statement

holds for St, as well. Using Lemma 5.35 shows that

St = S1 ⊗ St−1 =

(
(−1)<0,0> (−1)<0,1>

(−1)<1,0> (−1)<1,1>

)
⊗ [(−1)<i,j>]0≤i,j≤2t−2

=

(
(−1)<0,0> · [(−1)<i,j>]0≤i,j≤2t−2 (−1)<0,1> · [(−1)<i,j>]0≤i,j≤2t−2

(−1)<1,0> · [(−1)<i,j>]0≤i,j≤2t−2 (−1)<1,1> · [(−1)<i,j>]0≤i,j≤2t−2

)

=

(
[(−1)<0,0>+<i,j>]0≤i,j≤2t−2 [(−1)<0,1>+<i,j>]0≤i,j≤2t−2

[(−1)<1,0>+<i,j>]0≤i,j≤2t−2 [(−1)<1,1>+<i,j>]0≤i,j≤2t−2

)

=

(
[(−1)<0i,0j>]0≤i,j≤2t−2 [(−1)<0i,1j>]0≤i,j≤2t−2

[(−1)<1i,0j>]0≤i,j≤2t−2 [(−1)<1i,1j>]0≤i,j≤2t−2

)
=
(
(−1)<i,j>

)
0≤i,j≤2t−1 .

�

Now the Singer difference sets are proved to exists using the trace function. The next

proof was more general given in [5] and adapted.

Lemma 5.37. Let q be a prime power and q ≥ 3. Consider F = GF (qn) which is a

vector space over K = GF (q). Let α be a primitive element of F ∗, hence αq
n−1 = 1. The
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trace (compare: 4.13) can be used to define

D = {αi : 0 ≤ i < qn − 1, T rF ∗/K∗(αi) = 0}.(5.3)

D is a Singer difference sets with parameters ( q
n−1
q−1 ,

qn−1−1
q−1 , q

n−2−1
q−1 ) in the quotient group

GF (qn)∗/GF (q)∗.

Proof. Obviously the quotient group GF (qn)∗/GF (q)∗ has qn−1
q−1 elements and is a group.

By definition D is a subset of this group. From Lemma 4.15 it follows that D has qn−1−1
q−1

elements. It is left to prove that in the set of differences, each element of F ∗/K∗ occurs

exactly λ times. The set of differences is

{α−i+j : i, j ⊂ {0, 1, . . . , qn − 2}, T rF ∗/K∗(αi) = 0 and TrF ∗/K∗(αj) = 0}.

Let αb be any (non zero) element in F ∗ and αb /∈ K. It is claimed that there exist αi and

αj in D such that αb = α−i · αj. Then αb+i = αj ⇒ TrF ∗/K∗(αj) = TrF ∗/K∗(αb+i) = 0.

Using the notation of theorem 4.17, it can be rewritten as Lαj(1) = Lαi(α
b) = 0. Corollary

4.18 shows that there are qn−1−1
q−1 different linear Lαj mappings. Again the kernel of the

mapping has dimension qn−2−1
q−1 . In conclusion, every element αb occurs λ = qn−2−1

q−1 times

in the difference set of D.

�

The next proof is from [8], p.19.

Theorem 5.38. The Hadamard matrix that is constructed from the difference set 5.37

with F = GF (qt) is equivalent to the Sylvester matrices defined by 5.36.

Sketch of proof. Let α be a generator of GF (2t)∗ and GF (2t) is ordered by the induced

order, therefore GF (2t) = {0, αi : 0 ≤ i ≤ 2t−1}. Let

A = [TrGF (2t)/GF (2)(gh)]g,h∈GF (2t) and H = [(−1)TrGF (2t)/GF (2)(gh)]g,h∈GF (2t)

Keep in mind that H is the incidence matrix induced by the Singer difference. This is a

consequence of (−1)α
i

= 1 ⇔ TrGF (2t)∗/GF (2)∗(αi) = 0 ⇔ αi is an element of the Singer

difference set. Furthermore, the first row and column in the Hadamard matrix of a design

(compare the proof of theorem 5.11) has to be the unit vector e or eT .

As the trace function is a linear map from (GF (2)t,+) to {0, 1}, A has rank t over

GF (2). Therefore, a set of t linearly indepedent vectors of A exists and A has columns

consisting of every vector in (Z/2Z)t. Consider the map log : (−1)k 7→ k. Then A2t =

[log((−1)<i,j>)]0≤i,j≤2t−1 is the binary version of St. As the log function is also a linear

transformation, A2t has also t lineary indepedent rows and columns consisting of every

vector of (Z/2Z)t. Hence, there is a column permutation that changes the t linearly

indepedent rows of A to the t linearly indepedent rows of A2t . These column permutation

expanded to all rows of A convert also H to St. �
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5.3. Regular Hadamard matrices and their de-

signs
Recalling the definition 2.12, a Hadamard matrix is regular if every row has the same

number of ones. There is an important connection between special SBIBD and regular

Hadamard matrices. To prove that we need a generalization of proposition 5.6.

Lemma 5.39. Let A be a v×v nonsingular matrix with entries one or zero that satisfies

one of

(A1) AAT = (k − λ)I + λJ

(A2) ATA = (k − λ)I + λJ

and one of

(B1) JA = kJ

(B2) JAT = kJ .

Then A satisfies all four equations and it is an incidence matrix of a (v, k, λ)−SBIBD.

Furthermore, the equation

k(k − 1) = λ(v − 1)

holds.

Proof. Proposition 5.6 shows that if (A1) and (B2) are true, then A is an incidence matrix

of a (v, k, λ)−SBIBD and k(k − 1) = λ(v − 1) are true as well.

As A is nonsingular, it follows that both AAT and ATA have nonzero determinant and

as a result, Lemma 5.7 implies that

k − λ 6= 0 and λ(v − 1) + k 6= 0.

First it is shown that (A1) and (B1) imply (A2) and (B2).

Multiplying (A1) with J from the left gives

JAAT = (k − λ)Jv · Iv + λJ2
v

kJAT = (k − λ)Jv + λvJv

kJAT = (k − λ+ λv)J.

In the second equation (B1) is used. Now multiplying again with J from the right:

kJATJ = (k − λ+ λv)J2

kJ(JA)T = (k − λ+ λv)J2

kJ(kJ)T = (k − λ+ λv)J2

k2J2 = (k − λ+ λv)J2.
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⇒ k2 = k− λ+ λv = λ(v− 1) + k 6= 0. Substituting this in kJAT = (k− λ+ λv)J leads

to kJAT = k2J . As k 6= 0, (B2) is shown. (A2) can be seen as AJ = (JAT )T = (kJ)T =

kJ = JA and that is substituted in

ATA = (A−1A)ATA = A−1(AAT )A

= (k − λ)A−1IA+ λA−1JA

= (k − λ)I + λA−1AJ

= (k − λ)I + λJ.

Next suppose that (A1) and (B2) are true and (A2) and (B1) have to be shown. Using

the precondition, (A1) in the next equation chain shows that

AT = A−1(AAT ) = (k − λ)A−1 + λA−1J.

It follows from (B2) that AJ = kJ and so

J = kA−1J.(5.4)

Therefore,

AT = (k − λ)A−1 + λk−1J.(5.5)

Substituting AT in (B2) shows that

kJ = JAT

= (k − λ)JA−1 + λk−1J2

= (k − λ)JA−1 + λk−1vJ

This equation is now transformed in a way that JA−1 is isolated. It is possible as k−λ 6= 0.

A subsequent mulitiplication with J from the right results in

JA−1J =
(k − λk−1v)J2

k − λ
=
k − λk−1v
k − λ

(vJ).(5.6)

On the other hand we have vk−1J = k−1J2 =︸︷︷︸
equation 5.4

k−1J(kA−1J) = JA−1J . Using this

in equation 5.6 shows vk−1J = k−λk−1v
k−λ (vJ). As v can be cancelled out, comparing the

entries of these two matrices gives

k−1 =
k − λk−1v
k − λ

.(5.7)
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It can be reduced to

k − λ = k2 − λv

k(k − 1) = λ(v − 1)

and therefore a part of the claim is shown. Using equation 5.7 in equation 5.6 shows

(B1). Returning to equation 5.5 and using (B1) shows (A2):

ATA = (k − λ)A−1A+ λk−1JA

= (k − λ)I + λk−1kJ

= (k − λ)I + λJ.

The other two cases are just A replaced by AT and therefore are shown analogously. �

Corollary 5.40. The dual of a balanced incomplete block design is balanced if and only

if the design is symmetric.

Proof. (1) If b > v then its dual would have more treatments than blocks and that

would contradict Fischer’s inequality.

(2) If b = v then Lemma 5.39 shows that its dual is a BIBD, too.

(3) b < v is impossible because of it would contradict Fischer’s inequality, too.

�

Theorem 5.41. The existence of a 4m × 4m regular Hadamard matrix is equivalent to

the existence of a symmetric balanced incomplete block design with parameters.

(1) v = b = 4m

(2) k = r = 2m±m1/2

(3) λ = m±m1/2

Proof. ⇒
Let H be a regular Hadamard matrix. Then every row has the same number of ones, say

h and so every row has 4m− h minus ones. From theorem 2.3 it follows that

HHT = 4mI

HJ = hJ − (4m− h)J = (2h− 4m)J.

The last equation is true as multiplying with J from the right is a summation of the row

entries. Let A = 1
2
(H + J). Then A is a 4m × 4m matrix with entries zero or one. We
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want to use Lemma 5.39 and therefore (A1) und (B2) are shown.

AAT =
1

4
(H + J) · (HT + JT )

=
1

4
(HHT +HJT + JHT + JJT )

=
1

4
(4mI + (2h− 4m)J + (HJT )T + 4mJ)

= mI +
1

4
(2hJ − 4mJ + 2hJ − 4mJ + 4mJ) = mI + hJ −mJ

AJ =
HJ + J2

2

=
(2h− 4m+ 4m)J

2
= hJ.

Therefore, A is the incidence matrix of a SBIBD with parameters v = b = 4m, k = r =

h, λ = h −m. Equation r(k − 1) = λ(v − 1) leads to h · (h − 1) = (h −m) · (4m − 1).

Multiplication and using the quadratic formula shows h = 2m ±
√

4m2 − 4m2 +m =

2m±
√
m. Consequently, one direction is shown.

On the other hand, let A be the incidence matrix of a (4m, 2m±
√
m,m±

√
m)−design,

then AAT = mI + (m±
√
m)J and JA = JAT = AJ = (2m±

√
m)J . Let H be 2A− J ,

then H is a regular Hadamard matrix, because

HHT = 4AAT − 2AJ − 2JAT + JJT

= 4mI + 4(m±
√
m)J − 4(2m±

√
m)J + 4mJ

= 4mI

HJ = 2AJ − J2

= ±2
√
mJ ⇒ He = ±2

√
me.

Therefore, H is a Hadamard matrix with every row having the same sum and consequently

it is regular. �

Corollary 5.42. If there exists a regular Hadamard matrix of size n, then n is a perfect

square.

Proof. The proof of theorem 5.41 shows that if n = 4m, then m is a perfect square and

therefore n is a perfect square, too, as 4 = 22. It is easily shown that there is no regular

Hadamard matrix of order 2 and there is only the trivial Hadamard matrix (1) of size 1

which can be assumed regular as 12 = 1. �

Corollary 5.43. Let H be an n × n regular Hadamard matrix and n = 4u2, then H is

equivalent to a (4u2, 2u2 ± u, u2 ± u)−SBIBD.

Proof. Theorem 5.41 and using m = u2. �

From this corollary another corollary follows, namely:
61



Corollary 5.44. The three properties are equivalent:

(1) H is a regular Hadamard matrix.

(2) HT is a regular Hadamard matrix, hence H has regular columns.

(3) H has the same number of ones in every column and every row, therefore the row

sum and column sum is constant.

Proof. corollary 5.43 shows that the design is symmetric if and only if H has regular

rows, therefore HT has regular columns, but HT is also equivalent to this design as the

dual of an SBIBD has the same parameters. �

Lemma 5.45. If two Hadamard matrices are regular, then the Kronecker product is

regular, too.

Proof. Recall the Kronecker product of A = (aij)1≤i,j≤m and an n× n - matrix B is

A⊗B =


a11B a12B · · · a1mB

a21B a12B · · · a1mB
...

... · · · ...

am1B am2B · · · ammB

 .

If A has l ones in a row (column) and B has k ones in a row (column), then in every

column of A ⊗ B are l blocks with k ones in a row (column) and (m − l) blocks with

(n− l) ones in a row (column). In the end the sum of every column is l ·k+(m− l) ·(n− l)
and so A⊗B is regular. �

Corollary 5.46. If regular Hadamard matrices of size n and m exist, then a regular

Hadamard matrix of size n·m exists. In particular, for m = n there is a regular Hadamard

matrix of size n2 always if a Hadmard matrix of size n was found.

It is easy to obtain an infinite class of regular Hadamard matrices by:

Proposition 5.47. Let a, b be non-negative integers and a ≥ b, then there exists a regular

matrix of size 4a9b.

Proof. If a = b = 0, then (1) is the trivial regular Hadamard matrix. If a = 1, then

eg. circ(−1, 1,−1,−1) is regular and therefore a + b ≥ 1 can be assumed. Rewrite

4a9b = 4a4−b4b9b = 4a−b36b and by computation it is seen that

D = {(0, i) : 1 ≤ i ≤ 5} ∪ {(i, 0) : 1 ≤ i ≤ 5} ∪ {(i, i) : 1 ≤ i ≤ 5}

is a (35, 15, 6)−difference set in (Z6×Z6,+). Therefore, corollary 5.43 shows that a regular

Hadamard matrix of size 36 exists. Using Lemma 5.45 shows that regular Hadamard

matrices of size 4a−b and 36b exist and the product of these is of course also a regular

Hadamard matrix. �

Before group-developed matrices and their connection with regular Hadamard are ex-

plained matrices, the interesting term “excess”, is shortly explained.
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Definition 5.48. The excess of an n× n Hadamard matrix H = (hij) is defined as

excess(H) =
n∑

1≤i,j≤n

hij.

Therefore, the excess is the sum of all row sums (column sums) or, taking into account

that the name is excess, it is the number of 1s that exceeds the number of (-1)s.

Definition 5.49.

σ(n) = max{excess(H) : His a Hadamard matrix of order n}

Of course, σ(n) can only be defined if a Hadamard matrix of order n exists.

The following simple, but important lemma gives an upper bound for the maximum

excess of a Hadamard matrix. This was also proved in [13]. In this paper it is also shown

how the excess can be used to construct Hadamard matrices. J. Seberry gives a short

overview of this topic in [27].

Lemma 5.50. σ(n) ≤ n×
√
n.

Proof. Let H = (hij)1≤i,j≤n be a Hadamard matrix. Define the column sum of the k−th

column as

sk =
n∑
i=1

hi,k.

Clearly, the excess is the sum of all sks. Therefore

excess(H) =
n∑
k=1

sk.(5.8)

Let r1, . . . , rn be the row vectors of H, then the sum
∑n

i=1

∑n
j=1 < ri, rj > will be counted

in two ways. On the one hand, it is obvious that < ri, rj >= n if and only if i = j and

zero if i 6= j as H is Hadamard. Hence,

n∑
i=1

(
n∑
j=1

< ri, rj >

)
=

n∑
i=1

n = n · n = n2.

On the other hand,

n∑
i=1

n∑
j=1

< ri, rj > =
n∑
i=1

n∑
j=1

n∑
k=1

hi,khj,k

=
n∑
k=1

(
n∑
i=1

hik

)(
n∑
j=1

hjk

)

=
n∑
k=1

sk · sk =
n∑
k=1

s2k.
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Consequently,
n∑
k=1

s2k = n2.

Using the Cauchy-Schwartz inequality (
∑n

k=1 xkyk)
2 ≤ (

∑n
k=1 x

2
k)·(
∑n

k=1 y
2
k) where x1, . . . , xn,

y1, . . . , yn are real numbers, it follows that(
n∑
k=1

xk · sk

)2

≤

(
n∑
k=1

x2k

)
·

(
n∑
k=1

s2k

)
.

If xk = 1 : k ∈ {1, . . . , n}, then the equation simplifies to(
n∑
k=1

sk

)2

≤ n ·

(
n∑
k=1

s2k

)
.

Therefore,

n2 =
n∑
k=1

s2k ≥
(
∑n

k=1 sk)
2

n

and using 5.8 shows that σ(n) ≤ n3/2. �

Proposition 5.51. Let H be a Hadamard matrix of order n = 4m. Then σ(4m) =

σ(n) = n3/2 = 8m3/2 if and only if H is regular.

Proof. Let h denote the constant number of ones in a row (column), then h = n±
√
n

2
. This

was shown in the proof of theorem 5.41. W.l.o.g., it can be assumed that h = n+
√
n

2
(as

it is the dual design), then −H has n− n+
√
n

2
= n−

√
n

2
ones in every row (column). Hence

the regular Hadamard matrix H has excess

n

(
n+
√
n

2
− n−

√
n

2

)
= n3/2.

To prove the necessary condition, it is used that equality occurs in the Cauchy-Schwarz

inequality if and only if y1
x1

= · · · = yk
xk

. Consequently,(
n∑
k=1

sk

)2

= n ·

(
n∑
k=1

s2k

)
⇔ s1 = · · · = sk.

As a result H has regular columns and from corollary 5.44 it follows that H is regular. �

To summarize proposition 5.51 and corollary 5.43:

Corollary 5.52. The following three conditions are equivalent:

(1) There exists a regular Hadamard matrix of order 4m.

(2) There exists a Hadamard matrix of order 4m with maximum excess 8m3/2.

(3) There exits a SBIBD with parameters (4m, 2m±
√
m,m±

√
m).

64



5.4. Group-developed Hadamard matrices
In the beginning of this chapter group-developed matrices are defined and then their

equivalence to a difference set is proved. See [8] and [22].

Definition 5.53. Let (G, ·) be a group of order v with a fixed order {g1, g2, . . . , gv} and

S a set. Index the entries of a matrix H with entries from S by the elements of G, then

H = (hi,j) is group developed over G or G-developed if a map φ : G→ S exists such that

hi,j = hgi,gj = φ(gigj). A G-developed matrix induced by φ is denoted by

[φ(gigj)]1≤i,j≤v.

A group-invariant or G-invariant has the entry φ(gig
−1
j ) for 1 ≤ i, j ≤ v.

Schmidt [22] defines a group-invariant as:

Definition 5.54. If G is a group of order n and H = (ha,b)a,b∈G a matrix indexed by

elements of G, then H is group-invariant or G-invariant if hac,bc = ha,b for all a, b, c ∈ G.

It is easy to see that these definitions are equivalent, but it is also proved in the

next lemma. A matrix is called group-developed and also group-invariant as it can be

constructed from one single row (or column). This is clear observing definition 5.54. Let

H be a group-developed matrix defined by 5.53 and g ∈ G a fixed element, then the row

[φ(ggi)]1≤i≤v indexed by g can be obtained by the row [φ(gi)]1≤i≤v indexed by the unit

element 1.

Lemma 5.55. There is an equivalence between the two definitions 5.53 and 5.54 of group

invariant matrices.

Proof. Let H = hi,j = hgi,gj = φ(gigj) be group-invariant as defined in 5.53. Then,

hik,jk = hgigk,gjgk = φ(gigk(gjgk)
−1) = φ(gig

−1
j ) = hi,j.

On the other hand, let H = (ha,b)a,b∈G be a group-invariant matrix as defined in 5.54

and S the set of entries of H. There is per definition 5.54 a special order of the elements

(that order is already set by the first row). Let φ : G → S be a map determined by the

first row of H. Then,

hac,bc = ha,b ⇔ φ(acbc) = φ(ab) : ∀a, b, c ∈ G.

If c = b−1 in the equation above, then φ(ab−1) = φ(ab). �

Lemma 5.56. Let H be a G-developed matrix as defined in 5.53 with entries in an ablian

group (S,+), then H has constant row sum and column sum.

Proof. The lemma follows from the fact that a group-developed matrix can be constructed

from one row (column). Therefore, the row (column) sum of each row (column) is always

the same sum with a different order of the summands. Hence, these sums are equal if

and only if S is abelian. �
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Corollary 5.42 shows that a regular Hadamard matrix exists only if the order is a

perfect square. Therefore a Hadamard matrix can only be group-developed if its order

is a perfect square. But as group-developed matrices are defined more generally, a more

general statement is true.

Corollary 5.57. Let W = W (m,n) be a G-developed weighing matrix (defined in chapter

3 with entries only ±1), then n = s2 for some integer s. The number of entries 1s in

each row (column) is s(s+ 1)/2.

Proof. Recall that WW T = nIm. On the one hand, (WW T )J can be easily computed

by (WW T )J = (nI)J = nJ . On the other hand, let s be the sum of all entries in each

row (column), then (WW T )J = W (W TJ) = WsJ = s(WJ) = s2J . Hence n = s2 and

s = s1 − (s2 − s1), where s1 is the number of 1s in a row (column). �

Example. An example of a group-developed Hadamard matrix will be given in the cyclic

group (Z4,+). Hence, the Z4-developed matrices have to be circulant, too. For instance,

define φ(0) = φ(1) = φ(2) = −1 and φ(3) = 1. The table of the group and the group-

developed matrix is

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

φ−→


−1 −1 −1 1

−1 −1 1 −1

−1 1 −1 −1

1 −1 −1 −1

 .

This matrix is back-circulant, but it is not group-invariant as φ(3) = φ(0 + 3) 6=
φ(0 + 1) = φ(1), whereas the following matrix is Z4 - invariant and circulant:

−1 1 −1 −1

−1 −1 −1 1

−1 −1 −1 1

1 −1 −1 −1

 .

Remark. To find group-developed matrices the natural approach would be to search in the

cyclic group Z/4u2Z = Z4u2 with u an integer, but the only example of a group-developed

matrix over the cyclic groups Z4u2 that was ever found, is the example above with u = 1.

In fact, this strongly supports the Ryser Conjecture 2.11. Schmidt showed in [26] with

the help of algebraic number theory, that there is no circulant Hadamard matrix of order

4u2 = v ≤ 1011, v 6= 4 with the possible exceptions of u ∈ {164, 11715, 82005}.

Group-developed (and hence regular) Hadamard matrices have a combinatorical con-

struction. In [9], Horadam showed the next theorem.
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Theorem 5.58. Let G be a group of order v = 4u2 and φ : G → {±1} a set map.

Let H be a G-developed matrix as defined in 5.53, then H is Hadamard if and only if

{g ∈ G : φ(g) = −1} is a (4u2, 2u2 ± u, u2 ± u) difference set in G.

Definition 5.59. Difference sets with the parameters (4u2, 2u2 ± u, u2 ± u) are called

Menon difference sets or Menon-Hadamard difference sets.

We will prove the equivalence between group-invariant matrices and Menon-Hadamard

difference sets. Before the equivalence can be proved, some basic definitions from homo-

logical algebra will be revised.

Definition 5.60. Let G be a group, then the (left) G-module is a pair (A, ε) where A is

an abelian group and ε : G→ Aut(A)op a homomorphism.

Remark. Aut(A)op is chosen in the definition above as the left group action is standard,

but in the automorphism group usually right multiplication is used. Denote a category by

C, then switching in the opposite category Cop solves the problem .

Lemma 5.61. The G-module (A, ε) defined in 5.60 is indeed a (classically defined) G-

module.

Proof. Let g ∈ G and a ∈ A, then the expression ε(g)(a) will be simplified to g.(a) or g.a.

Hence, ε induces a map G × A → A, (g, a) 7→ εg(a) = g.a and as ε is a homomorphism

the following statements are true

(1) g.(a+ b) = g.a+ g.b : ∀g ∈ G : ∀a, b ∈ A,

(2) 1.a = a : ∀a ∈ A,

(3) (gh).a = g.(h.a) : ∀g, h ∈ G : ∀a ∈ A.

Therefore, A is a (classically defined) G-module. �

The question rises if there exists a ring R, such that a G−module is a R-module. The

answer is given by the following definition and the next lemma.

Definition 5.62. Let (G,+) be an abelian group, then the group ring Z[G] is defined as

the formal sums

a = a(x) =
∑
g∈G

agx
g,

where ag ∈ Z are the coefficients with ag = 0 for all, but finitely many g and x is an

indeterminante. Let Z[G] 3 a =
∑

g∈G agx
g and Z[G] 3 b =

∑
g∈G bgx

g, then the sum

and the product can be defined as

a+ b = a(x) + b(x) =
∑
g∈G

(ag + bg)x
g and a · b = a(x) · b(x) =

∑
g∈G

∑
h∈G

(agbh)x
g+h.

With these operations Z[G] is clearly a commutative ring, where the additive unit element

is 0 =
∑

g∈G 0 · xg and the unit element of multiplication is 1 = 1 · x0 +
∑

g 6=0 0 · xg.
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Remark. The operation of G is written additively as the multiplication of two elements of

Z[G] looks quite familiar. Also in the definition of a difference set the group was written

additive. Nevertheless, keep in mind that in the definition 5.53 the group was written

multiplicatively. We will have to switch between the two notations, when required.

Lemma 5.63. (A, ε) is a G-module if and only if it is a Z[G]-module.

Proof. If (A, ε) is a G-module and r =
∑

g∈G rgx
g ∈ Z[G], then set

r · a =

(∑
g∈G

rgx
g

)
a =

∑
g∈G

rg(g.a) : ∀a ∈ A.

It is easy to verify that the module properties are fulfilled and therefore (A, ε) is a Z[G]-

module. On the other, the restriction of the scalar multiplication Z[G] × A → A on G

induces a map G× A→ A. Consequently, a Z[G]-module is a G-module. �

Definition 5.64. Some notations have to be defined. Let (G,+) be an abelian group,

Z[G] the group ring and a(x) =
∑

g∈G agx
g ∈ Z[G], then define

a(xm) =
∑
g∈G

agx
mg, a(x−1) =

∑
g∈G

agx
−g,

a(1) =
∑
g∈G

ag, G(x) =
∑
g∈G

xg.

Suppose that D is a difference set in G. Finally, define D(x) =
∑

g∈D x
g.

Lemma 5.65. Let (G,+) be an abelian group. D is (v, k, λ) difference set if and only if

D(x)D(x−1) = λG(x) + (k − λ)x0.(5.9)

Proof. Taking a closer look at D(x)D(x−1) shows that

D(x)D(x−1) =
∑
g,h∈D

xg−h =
∑
d∈D

αdx
d,

where αd = |{(g, h) ∈ D ×D : g − h = d}|. The definition of a difference set shows that

αd =

k if d = 0

λ if d 6= 0
⇔ D is a(v, k, λ) difference set.

Furthermore,

αd =

k if d = 0

λ if d 6= 0
⇔
∑
d∈D

αdx
d = λG(x)− λx0 + kx0.

�
68



Definition 5.66. A G-invariant matrix H = (hg,k) can be identified with the element∑
g∈G h1,gx

g of Z[G]. Therefore,

H(x) =
∑
g∈G

h1,gx
g.

.

This definition makes sense as every group-invariant matrix can be constructed by

its first row and therefore, it is completely determined by the first row. In addition,

HT (x) = H(x−1), because if H = (ha,b) = (h1,b−a) is identified with
∑

g∈G h1,gx
g, then

HT = (hb,a) = (h1,a−b) can be identified with
∑

g∈G h1,gx
−g.

Lemma 5.67. A matrix H is a G-invariant weighing matrix W (m,n) if and only if

H(x)H(x−1) = n.

Proof. H is a G-invariant weighing matrix W (m,n) if and only if the equation chain∑
g∈G

hi,ghj,g =
∑
g∈G

h1,i−gh1,j−g = δi,jn

holds as HHT = nIm. Furthermore, H(x)H(x−1) =
∑

g,k∈G h1,gh1,kx
g−k. Set l = g − k,

then the sum changes to
∑

l∈G

(∑
g∈G h1,gh1,g−l

)
xl. Hence, if H is a G-invariant weighing

matrix, then H(x)H(x−1) =
∑

l∈G n δ0,lx
l = n. In turn, if H(x)H(x−1) = n the equation

above holds. �

Theorem 5.68. A G-invariant Hadamard matrix of order |G| > 1 exists if and only if

there is a Menon-Hadamard difference set in G.

Proof. Let (G,+) be an abelian group and H a G-invariant matrix, then by corollary

5.57 it can be assumed that |G| = 4u2 for some integer u. Define

D∗(x) = (G(x) +H(x)) /2.

Since H(x) has only coefficients ±1 and G(x) has only coefficients 1, the coefficients of

D∗(x) can only be 0, 1. Hence D∗(x) determines a subset D of G. Note that H has

2u2± u ones in a row and therefore, its row sum is ±2u. Obviously, G(x) = G(x−1). For

a better understanding it is useful to show a(x)G(x) = a(1)G(x) : ∀a(x) ∈ Z[G].

a(x)G(x) =
∑
g,h∈G

agx
g+h

=
∑
i∈G

(∑
g∈G

ag

)
xi where g + h = i

=
∑
i∈G

a(1)xg+h = a(1)G(x)
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Hence using lemma 5.67 shows,

4D∗(x)D∗(x
−1) = H(x)H(x−1) +H(x)G(x) +H(x−1)G(x) +G(x)G(x)

= H(x)H(x−1) +H(1)G(x) +H(1)G(x) +G(1)G(x)

= 4u2 + (±2u± 2u+ 4u2)G(x).

As a result, D∗(x)D∗(x
−1) = u2x0 + (u2 ± u)G(x) and 5.65 shows that D is a Menon

difference set. Conversely, lemmata 5.65 and 5.67 show that H := 2D−G gives a Menon

difference set. �

5.5. Bent functions

The existence of bent functions is, on the one hand, equivalent to the existence of a

Hadamard matrix and on the other hand, equivalent to a special difference set. Further-

more, bent functions are important in the application of Hadamard matrices in cryptog-

raphy, see [8]. The following can be reread in [26].

Definition 5.69. A function f : (Z/2Z)n = Zn2 → Z/2Z = Z2 is called boolean of n

variables. For every boolean function the vector of its values is denoted by ψ(f). Note

that the vector ψ(f) has length 2n and ψ(f) ∈ (Z2)
2n. Let Bn be the set of boolean

functions of n variables, then obviously |Bn| = 22n. Furthermore, define for every f ∈ Bn
the function (−1)f : (Z2)

n → Z2, ((−1)f )(x) 7→ (−1)f(x). In other words, (−1)f replaces

0 by 1 and 1 by -1. For the inner product < x, y >: x, y,∈ (Z2)
n the short form x · y will

be used. Finally, define the Fourier transform F̂ (x) =
∑

y∈(Z2)n
(−1)x·yF (y) of a function

F : (Z2)
n → R.

Lemma 5.70. Let y ∈ (Z2)
n and 0 the null vector, then the following equation holds:∑

x∈(Z2)n

(−1)x·y = 2nδy,0.

Proof. If y 6= 0, then the sum clearly contains the same number of ones and minus ones

and is therefore zero. If y = 0, then obviously the sum is 2n. �

In the following, let Sn be the Sylvester matrix defined by the equation 5.36. Note

that Sn is symmetric by definition and hence 2nIn = SnSn = (Sn)2.

Lemma 5.71. Let a real function F be defined on (Z2)
n, then ψ(F̂ ) = ψ(F )Sn.

Proof. The equation follows directly from comparing the definition of the Fourier trans-

form and the Sylvester matrix. �

Lemma 5.72. Suppose that F : {0, 1}n → R. Then
̂̂
F = 2nF .
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Proof.

ψ(F̂ ) = ψ(F )Sn

ψ(F̂ )Sn = ψ(F )SnSn

ψ(
̂̂
F ) = ψ(F )2nI2n (Sn is Hadamard and symmetric and 5.71)̂̂
F = 2nF.

�

Example. Suppose that n = 2 and let f(x1, x2) = x1x2, F = (−1)f , then ψ(f) =

(f(0, 0), f(0, 1), f(1, 0), f(1, 1)) = (0, 0, 0, 1) and ψ(F ) = (1, 1, 1,−1).

S2 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⇒ ψ(F̂ ) = (1, 1, 1,−1)


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 = (2, 2, 2,−2).

Note that the absolute value of the Fourier transform F̂ (x) is 2 for all x ∈ (Z2)
n.

Theorem 5.73. Suppose that f ∈ Bn, F = (−1)f , y ∈ (Z2)
n, then

∑
x∈(Z2)n

F̂ (x)F̂ (x+ y) =

22n if y = 0

0 if y 6= 0
.

Proof.

∑
x∈(Z2)n

F̂ (x)F̂ (x+ y) =
∑

x∈(Z2)n

∑
u∈(Z2)n

(−1)x·uF (u)

 ∑
v∈(Z2)n

(−1)(x+y)·vF (v)


=

∑
x∈(Z2)n

∑
u∈(Z2)n

∑
v∈(Z2)n

(−1)x·u+(x+y)·vF (u)F (v)

=
∑

u∈(Zn)n

∑
v∈(Z2)n

(−1)y·vF (u)F (v)

 ∑
x∈(Z2)n

(−1)x·(u+v)

 .

From lemma 5.70 it follows that the sum
∑

x∈(Z2)n
(−1)x·(u+v) is 2nδu+v,0, but δu+v,0 =

δu,−v = δu,v as u, v ∈ (Z2)
n. Note, that it has not been used yet that F = (−1)f , hence

the simplification∑
x∈(Z2)n

F̂ (x)F̂ (x+ y) =
∑

u∈(Zn)n

∑
v∈(Z2)n

(−1)y·vF (u)F (v)2nδu,v = 2n
∑

u∈(Zn)n
(−1)y·vF (u)2
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holds for any real valued function F defined on (Z2)
n. Now, it is used that F = (−1)f

can only have values ±1, therefore F (u)2 = 1.∑
x∈(Z2)n

F̂ (x)F̂ (x+ y) = 2n
∑

u∈(Zn)n
(−1)y·v

5.70︷︸︸︷
= 2n · 2nδy,0 = 22nδy,0.

�

In the proof of the last theorem it was already stressed that most of the proof is true

for a general F .

Corollary 5.74. Let F : (Z2)
n → R and y ∈ (Z2)

n, then the equation∑
x∈(Z2)n

F̂ (x)F̂ (x+ y) = 2n
∑

u∈(Zn)n
(−1)y·vF (u)2

holds.

Corollary 5.75 (Parseval’s Equation). Suppose that f ∈ Bn and F = (−1)f , then∑
x∈(Z2)n

(
F̂ (x)

)2
= 22n.

Proof. Special case of theorem 5.73 (y = 0). �

Definition 5.76. Let f, g ∈ Bn, then the distance between f and g is defined as

d(f, g) = |{x ∈ (Z2)
n : f(x) 6= g(x)}|.

A boolean function f is linear if ∃a ∈ (Z2)
n such that f(x) = La = a · x : ∀x ∈ (Z2)

n. f

is an affine function if ∃a ∈ (Z2)
n such that f = La or f = La + 1.

The number of linear boolean functions in Bn is obviously 2n and the number of affine

functions is 2n+2n = 2n+1. The distance of two function f, g is equivalent to the Hamming

distance between the vectors φ(f) and φ(g).

Theorem 5.77. Suppose that f ∈ (Z2)
n and F = (−1)f . Let a ∈ (Z2)

n. Then

d(f, La) = 2n−1 − 1

2
F̂ (a) and d(f, La + 1) = 2n−1 +

1

2
F̂ (a).

Proof.

F̂ (a) =
∑

y∈(Z2)n

(−1)a·y(−1)f(y) =
∑

y∈(Z2)n

(−1)a·y+f(y)

= |{y ∈ (Z2)
n : a · y = f(y)}|︸ ︷︷ ︸

|{y∈(Z2)n}|−|{y∈(Z2)n:a·y 6=f(y)}|

−|{y ∈ (Z2)
n : a · y 6= f(y)}|

= 2n − 2|{y ∈ (Z2)
n : a · y 6= f(y)}|

= 2n − 2d(f, La)
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⇒ d(f, La) = 2n−1 − 1
2
F̂ (a).

The other equation follows from the fact that f(y) = a · y + 1⇔ f(y) 6= a · y and hence,

d(f, La + 1) = 2n − d(f, La).

�

Definition 5.78. The nonlinearity of a boolean function f , denoted by Nf , is defined as

Nf = min{d(f, La), d(f, La + 1) : a ∈ (Z2)
n}. f is a bent function if |F̂ (x)| = 2n/2 : ∀x ∈

(Z2)
n and F = (−1)f .

A bent function can only exist if n is even, because F̂ (x) is always an integer. In the

example given before, f is clearly bent.

From theorem 5.77 it follows that:

Corollary 5.79. Nf = 2n−1 − 1
2

max{|F̂ (a)| : a ∈ (Z2)
n}.

Proposition 5.80. Let f ∈ Bn, then Nf ≤ 2n−1 − 2n/2−1 and equality holds if and only

if f is a bent function.

Proof. Define M = max{|F̂ (a)| : y ∈ (Z2)
n} then from corollary 5.79 it follows that,

Nf = 2n−1 −M/2. The Parseval’s equation will be used next.

22n =
∑

x∈(Z2)n

(F̂ (x))2 ≤
∑

x∈(Z2)n

M2 = 2nM2

⇒M ≥ 2n/2 and M = 2n/2 ⇔ |F̂ (x)| = 2n/2 for all x ∈ (Z2)
n. �

In the following, the equivalence between bent functions and Hadamard matrices will

be proved.

Theorem 5.81. Let f ∈ Bn and F = (−1)f . Define Hf = (hx,y) = (F (x + y)) : ∀x, y ∈
(Z2)

n where the elements of (Zn2 ) are lexicographically ordered. Then Hf is Hadamard if

and only if f is a bent function.

Proof. For the necessary condition, suppose that f is bent and define G = 1
2n/2

F̂ . Using

Lemma 5.72, then the Fourier transform of G is Ĝ = 1
2n/2

̂̂
F = 1

2n/2
2nF = 2n/2F .∑

z∈(Z2)n

hx,zhy,z =
∑

z∈(Z2)n

F (x+ z)F (y + z)

=
∑

w∈(Z2)n

F (w)F (x+ y + w)

=
1

2n/2
· 1

2n/2

∑
w∈(Z2)n

Ĝ(w)Ĝ(x+ y + w)
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In the last step it is used that F = 1
2n/2

Ĝ. Note that there has to be a function g ∈ Bn
such that (−1)g = G as f is bent and therefore theorem 5.73 can be used to show that∑

z∈(Z2)n

hx,zhy,z =
1

2n
22nδx+y,0 = 2nδx,y.

Hence, Hf is Hadamard.

Conversely, suppose that Hf is Hadamard and define again the real valued function

G = 1
2n/2

F̂ . As Hf is Hadamard, the equation 2nδx,y =
∑

z∈(Z2)n
hx,zhy,z : ∀x, y ∈ (Z2)

n

holds. Choose y = 0. Therefore,

2nδx,0 =
∑

z∈(Z2)n

hx,zh0,z

=
∑

z∈(Z2)n

F (x+ z)F (z)

=
1

2n/2
1

2n/2

∑
z∈(Z2)n

Ĝ(z)Ĝ(x+ z)

=
∑

z∈(Z2)n

(−1)x·zG(z)2 Corollary 5.74

=
1

2n

∑
z∈(Z2)n

(−1)x·z(F̂ (z))2.

⇒ 22nδx,0 =
∑

z∈(Z2)n
(−1)x·z(F̂ (z))2

δx,0 6= 0⇔ x = 0⇔ δx,0 = 1

Furthermore, using lemma 5.36 it is possible to obtain that (Now it is used that (Z2)
n is

ordered lexographically)

22n(1, 0, . . . , 0) = ψ(F̂ (z)2)Sn

22n(1, 0, . . . , 0)Sn = ψ(F̂ (z)2)SnSn

22n(1, 1, . . . , 1) = 2nψ(F̂ (z)2)

2n(1, 1, . . . , 1) = ψ(F̂ (z)2).

|F̂ (z)| = 2n/2 : ∀z ∈ (Z2)
n ⇒ f is bent. �

The next theorem will show the equivalence between bent functions and difference sets.

Theorem 5.82. The existence of a bent function f : (Z2)
n → Z2 is equivalent to the

existence of a (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2) difference set in (Z2)
n.

Proof. First, suppose that f is bent, then Hf is a Hadamard matrix by 5.81. Hf is

regular, as every row is a permutation of the values F (x) : x ∈ (Z2)
n. Hf is a Hadamard

matrix of order 2n. Using theorem 5.41 with 4u2 = 2n ⇒ u = 2(n−2)/2, Hf is equivalent

to a (2n, 2n−1± 2(n−2)/2, 2n−2± 2(n−2)/2)−SBIBD. It will be shown that (Z2)
n is a sharply

transitive automorphism group of Hf and therefore of the design induced by Hf . Let
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w ∈ (Z2)
n, then define tw : (Z2)

n → (Z2)
n, x 7→ x + w. It is clear that tw is a bijection

and hence a permutation for all w ∈ (Z2)
n. Consider the set

T = {tw : w ∈ (Z2)
n},

then |T | = 2n and as a consequence T is sharply transitive. In addition, every tw is an

automorphism of Hf , because

htw(x),tw(y) = hw+x,w+y = F (w + x+ w + y) = F (x+ y) = hx,y.

From theorem 5.29 follows that a (2n, 2n−1± 2(n−2)/2, 2n−2± 2(n−2)/2) difference set exists

in (Z2)
n.

From the existence of a (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2) difference set follows the

existence of a (2n, 2n−1±2(n−2)/2, 2n−2±2(n−2)/2)−SBIBD with (Z2)
n a sharply transitive

group. From theorem 5.41 it follows that the Hadamard matrix of order 2n induced

by the symmetric block design is a regular matrix with (Z2)
n as a sharply transitive

automorphism group. By the definition of a sharply transitive group, the equation

hu+x,u+y = hx,y

holds ∀u, x, y ∈ (Z2)
n. Furthermore, define the boolean function f as

f(x) =

0 if hx,0 = 1

1 if hx,0 = −1
.

Hence,

hx,y = hx+y,y+y = hx+y,0 = (−1)f(x+y) : ∀x, y ∈ (Z2)
n.

In summary, it is shown that hx,y = F (x+y), where F = (−1)f . Theorem 5.81 completes

the proof. �

Corollary 5.83. Let f ∈ Bn. Then the following three statements are equivalent.

(1) f is bent.

(2) The (Z2)
n-developed matrix [(−1)f(u+v)] is a Menon Hadamard matrix.

(3) There exists a Menon difference set with parameters (2n, 2n−1 ± 2(n−2)/2, 2n−2 ±
2(n−2)/2). These difference sets are called elementary Hadamard difference sets.

Proof. These equivalences follow from theorem 5.82, 5.81 and 5.58. �

Remark. It is not hard to see that for every n = 2m the a boolean function

f(x1, x2, . . . , x2m) = x1x2 + x3x4 + . . . , x2m−1x2m mod 2

is bent.
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6. Cocyclic Hadamard matrices
“To date, cocyclic construction of Hadamard matrices is the most successful uniform

technique known.”([29], p. 114)

The cocyclic construction of matrices is based on ideas of group cohomology. To give a

proper explanation of this construction would exceed this work by far, but an introduction

and the link between the constructions that were already explained, is provided. Padraig

O Cathain, who is now a reseacher on the field of cocyclic matrices, focused only on

cocyclic Hadamard matrices in his master thesis and described in detail the theory which

mostly K. Horadam, W. de Launey and D. Flannery developed in the last 20 years. The

next chapter is mostly based on [14], [8]. For a basic introduction in cohomology [21] can

be recommended.

In the next definition the term G-module will be used again. Recall definition 5.60.

Definition 6.1. Let (A, ε) be a G-modul. For n ≥ 0, define Cn(G,A) as the set of

n-cochains which are the functions f : Gn → A, f(x1, . . . , xn) = 0 if xi = 1 for some i.

Define C0 ∼= {0}.
Note that Cn(G,A) is an abelian group with the group operation given by pointwise

addition, as A is abelian.

To obtain a cochain complex, the bar resolution ∂n(f) : Cn(G,A) → Cn+1(G,A) is

used. It is defined by

∂n(f)(x1, . . . , xn+1) = x1.f(x2, . . . , xn+1) +
n∑
i=1

(−1)if(x1, . . . , xi−1, xixi+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn).

Hence,

· · · ←∂3 C3(G,A)←∂2 C2(G,A)←∂1 C1(G,A)←∂0 {0}

is a complex, therefore ∂n ◦ ∂n−1 = 0. These maps are called coboundaries. Furthermore,

define Zn
ε (G,A) = kernel(∂n), Bn

ε (G,A) = im(∂n−1) and Hn
ε (G,A) = Zn

ε (G,A)/Bn
ε (G,A).

Zn
ε (G,A) is the additive group of cocycles and Bn

ε (G,A) is the addtive group of cobound-

aries. Hn
ε (G,A) = Zn

ε (G,A)/Bn
ε (G,A) is the nth-cohomology group.

Examples. (1) n = 0

A 0-cochain is a function {0} = G0 → A and therefore just a constant a ∈ A.

The 1-coboundary is the map

∂0 : G→ A : g 7→ g.a− a.

As a result the 0-cocycles are the elements of a ∈ A that are fixed by g. If G acts

trivial on A then, ∂0 = 0 and the 0-cocycles are all the elements of A.
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(2) n = 1

A 1-cochain is a function f : G → A with f(1) = 0 and its 2-coboundary is the

map

∂1(f) : G×G→ A, (g, h) 7→ g.f(h)− f(gh) + f(g).

The 1-cocycles are the functions f ∗ : G → A that satisfy 0 = g.f ∗(h) − f ∗(gh) +

f ∗(g). If G acts trivial on A, then the 1-cocycles are the homomorphisms G→ A.

It is obvious that every 1-coboundary is a 1-cocycle.

(3) n = 2

A 2-cochain is a function f : G×G→ A. Its 3-coboundary is

∂3(f) : G3 → A, (g, h, k) 7→ g.f(h, k)− f(gh, k) + f(g, hk)− f(g, h).

The 2-cocycles are the functions f ∗ : G × G → A with f(gh, k) + f(g, h) =

g.f(h, k) + f(g, hk) for g, h, k ∈ G.

For the rest of this chapter the group G will act trivial (ε = 1) on the G-modul A. It is

easy to check that f is a cochain if and only −f is a cochain. So, w.l.o.g. this change is

made. In addition, only 2-coboundaries and 2-cocycles will be interesting. From now on,

A will be written multiplicatively and denoted by C. Finally, the definition for cocycles

and coboundaries is given that will be used to construct Hadamard matrices.

Definition 6.2. Let (C, ε = 1) be a G-modul. Then a normalised cocycle is a map

ψ : G×G→ C and the equations

ψ(gh, k) + ψ(g, h) = ψ(h, k) + ψ(g, hk) and ψ(g, 1) = 1 = ψ(1, g)

hold for g, h, k ∈ G.

Let φ : G→ C be a 1-cochain, then the coboundary ∂φ is a cocycle of the form ∂φ(g, h) =

φ(g)−1(φ(h))−1φ(gh).

Definition 6.3. Let G be a finite group of order v and C be an abelian group. A v × v
matrix with entries in C is a G−cocycle matrix over C if there are a cocycle ψ ∈ Z2(G,C)

and an ordering of G such that M is equivalent in the sense of 3.1 to the normalised matrix

Mψ = [ψ(gi, gj)]1≤i,j≤v.

In the end, nearly all Hadamard matrices constructed until now are cocycle.

6.0.1. Menon difference sets/Group-developed matrix

Using the definition of a 1-cochain φ : G→ C, it is easy to see that [φ(gi, gj)]1≤i,j≤v is a

group-developed matrix over C. Its normalisation has the entries φ(gi)
−1φ(gj)

−1φ(gigj) :

∀1 ≤ i, j ≤ v. Hence, the entries of the normalised group-developed matrix takes the

same value as the coboundary ∂φ(gi, gj). If φ(1) = 1, then

∂φ(1, h) = ∂φ(g, 1) = 1.
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Hence, the coboundary is a cocycle and if G is finite then M∂φ is the normalised version

of a group-developed matrix.

6.0.2. Syvlvester matrices/Singer difference sets

Let G = ((Z2)
n,+) and C = {±1} ∼= (Z2,+), then G is obviously finite. The vector

product is a cocycle ψ, where ψ(u, v) = (−1)<u,v> as defined in Chaper 5.2, because

(−1)<u,v> + (−1)<u+v,z> − (−1)<v,z> − (−1)<u,v+z>

= (−1)<u,v> + (−1)<u,z> + (−1)<v,z> − (−1)<v,z> − (−1)<u,v> − (−1)<u,z>

= 0 : ∀u, v, z ∈ (Z2)
n.

Note that (−1)<a,b>+<a,c> = (−1)<a,b> + (−1)<a,c> : ∀a, b, c ∈ (Z2)
n follows from the

fact that < a, b > can only be ±1. Furthermore, ψ(0, v) = ψ(u,0) = −1. As a result,

Sylvester matrices are cocycle matrices.

6.0.3. Paley Type II matrices/Williamson matrices

In [15] it is proved that Williamson matrices are Zt × (Z2)
2-cocyclic.

6.0.4. Paley Type II matrices

The fact that Paley Type II matrices are cocyclic is shown by using that the automor-

phism group of these matrices is fully described [12], [16].

Every Hadamard matrix of order ≤ 20 is cocycle. This can be reread in detail in the

master thesis of Padraig O Cathain. It was already shown that:

Theorem 6.4. A cocycle Hadamard matrix is known for 4t ≤ 200 except t = 47.

Hence, the following unsolved question rises:

Conjecture 6.5. There is a cocycle Hadamard matrix for every multiple of 4.

Nevertheless, one construction was not showed to be cocyclic and this problem is still

open, too.

Conjecture 6.6. Is the Goethals-Seidl Hadamard matrix cocyclic?
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