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Introduction

One of the greatest achievements of the 20th century - general relativity, the geometric

theory of physics of gravity, space and time, was obtained by Albert Einstein exactly one

hundred years ago. Lorentzian geometry and, in particular, causality theory, the math-

ematical foundations of general relativity, have since been considered as part of mathe-

matical physics as well as of differential geometry. The development of the theory hence

branched into many different areas of mathematics and physics and has continued to inspire

researchers even a hundred years after.

Traditionally, the standard references on general relativity and causality theory assume

either smoothness of the spacetime metric, see e.g. [BEE96], [Kr99], [MS08], [ON83],

[Pen72], or C2-differentiability, see e.g. [Chr11], [Cl93], [HE73], [Se98], [GaSe05]. Despite

the mathematical convenience of the C2 assumption there are a number of good reasons

for considering spacetimes with metrics of lower differentiability. From a physical point of

view, one would like to study systems where there is a jump in the material composition

or density as for example, when one crosses the surface of a star. However, the issue

of regularity of the metric becomes apparent when matching different spacetimes over a

common boundary. On matching these regions the matter variables become discontinuous,

forcing the differentiability of the metric via the field equations to be less than C2. The

approach presented by Lichnerowicz in [L55] deals with metrics which are piecewise C3 but

globally are only C1. More extreme cases are seen in the example of impulsive waves (see

e.g. [GP09, Ch. 20]) where the metric is still C3 off the impulse but globally is merely C0.

In addition, from the point of view of PDE theory, the questions of regularity are essential

when solving the initial value problem. In the classical local existence theorem for the

vacuum Einstein equations (see [CG69]) the assumption on the regularity of the metric

is Hs
loc with s > 5/2 and more recent studies have significantly lowered the regularity

([KR05, M06, KRS12]).
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The arguments presented above have led to an increased interest in causality theory with

metrics of low regularity. Various approaches to causal structures and discussions on the

problems that can occur when the regularity of the metric is below C2 have been presented

in [Chr11], [CG12], [Cl93], [HE73], [MS08], [Se98]. As emphasised by Senovilla in [Se98],

the main problem is the existence of normal coordinates and their regularity, as well as

the existence of totally normal (convex) neighborhoods. However, it has recently been

demonstrated in [Chr11] that the entire smooth causality theory can be preserved for

C2-metrics.

Moreover, in the early years of general relativity, the appearance of some kind of irreg-

ularities of spacetimes or a singular behavior of solutions of the Einstein field equations

was thought to be arising from the high degree of symmetry or that it was unphysical in

some way. This way of thinking changed in 1965 with the first modern singularity theorem

presented by Penrose in his paper [Pen65], where it was shown that deviations from spher-

ical symmetry could not prevent gravitational collapse. He also introduced the notion of

closed trapped surface and used geodesic incompleteness to mathematically characterize a

singular spacetime. Shortly afterwards, several papers by Hawking, Penrose, Ellis, Geroch

and others followed, leading to the development of singularity theorems that are considered

to be one of the greatest achievements within general relativity. However, the conclusion

of the singularity theorems is their weak point. In fact, they only show the existence of

an incomplete causal geodesic but do not say much about the nature of the singularity.

In particular, it is not clear whether the curvature blows up (see, however [Cl82, Cl93]

as well as [SeGa14, Sec. 5.1.5] and the references therein) or whether the singularity is

simply a result of the differentiability dropping below C2. Nevertheless, in the case that

the regularity of the metric simply drops to C1,1 (continuously differentiable with locally

Lipschitz first order derivatives, often also denoted by C2−), the curvature is still locally

bounded which, from the physical point of view, would not be regarded as a singular be-

havior since it corresponds to a finite jump in the matter variables. Examples of physically

realistic systems of this type are given by the Oppenheimer-Snyder model of a collapsing

star [OppSny39] and general matched spacetimes, see e.g. [L55, MaSe93].

Therefore a reasonable candidate for the lowest degree of differentiability where one could

expect the standard results of causality theory to remain valid is given by the C1,1 regularity

class. Indeed, it represents the threshold of the unique solvability of the geodesic equation.

Also, as already indicated by Senovilla in [Se98], C1,1 regularity of the metric is the natural

differentiability class from the point of view of the singularity theorems as well. Since
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the existence of normal coordinates, normal neighborhoods and maximal curves is vastly

important when proving the singularity theorems, explicit places where the C2-assumption

enters the proofs of the singularity theorems and the number of technical difficulties a proof

in the C1,1-case would have to overcome is presented in [Se98, Sec. 6.1].

On the other hand, it is well-known that below C1,1 many standard properties cease to be

true: explicit counterexamples by Hartman and Wintner [HW51] show that for metrics of

Hölder regularity C1,α with 0 < α < 1, radial geodesics may fail to be minimizing between

any two points that they contain. Also a recent study of the causality theory for continuous

metrics in [CG12] has proved that many fundamental results of smooth causality are wrong:

light cones need no longer be topological hypersurfaces of codimension one and there may

exist causal curves that are not everywhere null but for which there is no fixed-endpoint

deformation into a timelike curve, i.e., the push-up principle is no longer true in general.

In fact, for any 0 < α < 1 there are metrics of regularity C0,α, called ‘bubbling metrics’,

whose light-cones have nonempty interior, and for whom the push-up principle ceases to

hold. In addition, for metrics which are merely continuous it is still unknown whether or

not the timelike futures remain open. Nevertheless, Chrusciel and Grant established many

key results of causality theory for continuous metrics in [CG12] such as the existence of

smooth time functions on Cauchy developments, see also [FS12].

One of the main ingredients for studying local causality and therefore, singularity theory is

the exponential map. In smooth pseudo-Riemannian geometry, the fact that the exponen-

tial map is a diffeomorphism locally around 0 is highly important for many fundamental

constructions such as normal coordinates, normal neighborhoods, injectivity radius but

also for comparison methods and in the Lorentzian case, for studying local causality the-

ory. However, the standard way of proving this result uses the inverse function theorem

which is no longer applicable in the case of C1,1 metrics as the exponential map is then

only Lipschitz.

The aim of this thesis is to first show that the exponential map of a C1,1 pseudo-Riemannian

metric retains its maximal possible regularity, namely, that is a bi-Lipschitz homeomor-

phism locally around 0. Proving in addition the existence of totally normal neighborhoods

will allow us to establish one of the main results of local causality theory, that is, relat-

ing the causal structure of Minkowski spacetime to that of a manifold in any given point.

Once the key elements of causality theory for C1,1 metrics are developed, we will prove the

Hawking singularity theorem in this regularity.
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This work is organized as follows. In Chapter 1 we give a brief introduction to pseudo-

Riemannian geometry. Using approximation techniques and methods from comparison

geometry, we then prove that the exponential map of a C1,1 pseudo-Riemannian metric is

locally a bi-Lipschitz homeomorphism. We also establish the existence of totally normal

neighborhoods in an appropriate sense.

In Chapter 2, we show that the standard results of local causality theory remain valid for

C1,1 metrics. In particular, we will establish the push-up principle and the existence of

accumulation curves.

Chapter 3 is devoted to the global structure of spacetimes. We review causality conditions

and basic notions such as Cauchy developments and Cauchy hypersurfaces and we further

develop the causality theory for C1,1 metrics.

Finally, in Chapter 4 we provide a detailed proof of Hawking’s singularity theorem in the

regularity class C1,1 using the results on causality theory obtained in previous chapters.
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Chapter 1

Uniqueness and regularity of

geodesics

1.1 Introduction to pseudo-Riemannian Geometry

The aim of this section is to introduce basic definitions and notions that will be used

throughout. In what follows we give a brief historical overview of the development of

pseudo-Riemannian geometry and present its most important results and tools that will

be used in this work based on [Chr11] and [ON83]. Our basic reference for differential

geometry is [ON83].

In the well known geometry of the Euclidian space R3 the notions of length and angles

are defined by means of its natural inner product, that is, the dot product. The natural

isomorphism TpR3 ≈ R3 allows us to deploy the dot product on each tangent space and

therefore perform basic geometric operations such as measuring the length of a tangent

vector or the angle between two tangent vectors. The study of curves and surfaces, together

with their properties, was of great importance even in ancient times, and today these con-

cepts have significant applications to many different fields such as physics. The discovery

of calculus in the 17th century enabled further investigations of curves and surfaces in the

three-dimensional Euclidean space that built the basis for the development of differential

geometry in the 18th and 19th century.

A crucial contribution to the theory of surfaces was made by Carl Friedrich Gauss, who

created the notion of Gaussian curvature and clarified the distinction between intrinsic
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and extrinsic quantities: that is, between geometrical quantities that are observed by the

inhabitants of the surface, hence entirely determined by it, and those which depend on how

the surface is positioned in the surrounding space. This led to the ”Theorema Egregium”,

where it was established that the Gaussian curvature is an intrinsic invariant, i.e., that it

can be determined entirely by measuring distances along paths on the surface itself. Bern-

hard Riemann extended these two special cases to n-dimensional manifolds, introducing

the famous construction central to his geometry, now known as a Riemannian metric. In

the 20th century, after Albert Einstein’s theory of general relativity was introduced, further

generalization appeared: the positive definiteness of the Riemannian metric was weakened

to nondegeneracy, leading to the development of pseudo-Riemannian geometry. With the

very influential text by Hawking and Ellis in the 70’s, [HE73], progress on causality the-

ory, singularity theory and black holes in general relativity has been achieved leading to

increased interest in global Lorentzian geometry, see [BEE96].

Pseudo-Riemannian geometry is the study of smooth manifolds equipped with a nondegen-

erate bilinear symmetric (0, 2)-tensor field of arbitrary signature called pseudo-Riemannian

manifolds. We will denote by (M, g) a smooth pseudo-Riemannian manifold of dimension

n with a metric tensor g for which the regularity will be explicitly stated. Assuming M

to be a C∞-manifold is no loss of generality since any Ck-manifold with k ≥ 1 possesses a

unique C∞-structure that is Ck-compatible with the given Ck-structure on M (see [Hi76,

Th. 2.9]). Riemannian manifolds are an important special class of pseudo-Riemannian

manifolds, for which the metric tensor is positive definite and thus of signature (+, ...,+).

Hence the metric induced on the tangent space of a Riemannian manifold is Euclidean.

Another important case of pseudo-Riemannian manifolds which is our primary interest,

is the case of Lorentzian manifolds that are equipped with a metric tensor of signature

(−,+, ...,+).

If x1, ..., xn is a coordinate system on U ⊆ M then the metric components on U are

gij := g( ∂
∂xi
, ∂
∂xj

), 1 ≤ i, j ≤ n. Thus for vector fields v =
∑
vi ∂
∂xi

, w =
∑
vi ∂
∂xj

, g(v, w) =∑
gijv

iwj. The metric in coordinates is often written as the line element ds2 = gijdx
idxj.

We will often use an alternative notation for g and write g(v, w) = 〈v, w〉 for tangent

vectors v, w ∈ TpM , p ∈M .

In standard references to general relativity, [BEE96], [HE73], [Kr99], [ON83], [Wa84], the

metric is assumed to be smooth. It has recently been demonstrated in [Chr11] that all the

results from smooth causality theory hold true if the regularity of the metric is assumed

to be C2 and the curves considered are locally Lipschitz, unlike in usual treatments of
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causality theory where the corresponding curves are required to be piecewise smooth.

The approach presented in [Chr11] appears to be very convenient for several reasons,

primarily for studying the global causal structure of spacetimes where the key tool is

taking limits of causal curves, see Section 2.5 for more detail. Hence we assume in the

following introductory part that the metric g is C2 and that curves are locally Lipschitz:

Let h be some auxiliary Riemannian metric such that (M,h) is complete- such a metric

always exists, cf. [NO61], and denote by dh the corresponding distance function. A curve

α : I →M is called locally Lipschitz if for every compact set K of I there exists a constant

C(K) such that

∀t1, t2 ∈ K, dh(α(t1), α(t2)) ≤ C(K)|t1 − t2|.

Given a locally Lipschitz curve α : [a, b]→M , its length is defined by:

L(α) :=

∫ b

a

‖α′(t)‖dt,

where

‖α′(t)‖ =
√
g(α′(t), α′(t)).

Remark 1.1.1. By Rademacher’s theorem any locally Lipschitz curve α is differentiable

almost everywhere. Also, this class of curves is independent of the choice of a background

Riemannian metric h and these curves can be parametrized by h arc-length, see for more

details Chapter 2.

Now let (M, g) be a Lorentzian manifold. A nonzero tangent vector v is said to be timelike,

null, causal or spacelike if g(v, v) < 0, = 0, ≤ 0, or ≥ 0, respectively. A locally Lipschitz

curve α is called timelike, null, causal or spacelike if α′(t) has the corresponding property

almost everywhere.

If M admits a continuous, nowhere vanishing, timelike vector field X, then M is said to

be time oriented by X. This vector is used to separate all causal vectors at each point

into two classes called future directed and past directed. A spacetime is then a Lorentzian

manifold (M, g) together with a choice of time orientation.
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1.2 Geodesics

The Levi-Civita connection on a pseudo-Riemannian manifold (M, g) will be denoted by

∇. In a coordinate system x1, ..., xn on U one has (cf. [ON83, Prop. 3.13]):

∇∂i(
∑

W j∂j) =
∑
k

(
∂W k

∂xi
+
∑
j

ΓkijW
j

)
∂k,

where Γkij are the Christoffel symbols given by:

Γkij =
1

2

∑
m

gkm
(
∂gjm
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
.

The natural generalization of a straight line in Euclidean space is in a pseudo-Riemannian

manifold M given by a geodesic: a curve α : I →M whose vector field α′ is parallel, i.e., a

curve of zero acceleration, α′′ = 0. Using a local coordinate system {x1, ..., xn} on U ⊆M ,

the geodesic equation is then given by

d2(xk)

dt2
+
∑
i,j

Γkij
dxi

dt

dxj

dt
= 0, (1.1)

for 1 ≤ k ≤ n, where xi is an abbreviation for the coordinate functions xi ◦ α of a curve

α. Hence, a curve α in U is a geodesic of M if and only if it satisfies the equation (1.1).

Since the geodesic equation can be re-written as a first order system of ordinary differential

equations, the standard existence and uniqueness theorem for ODE’s implies that there is

a unique solution to (1.1).

We summarize the most important properties of geodesics in the following (cf. [ON83,

Chapter 3, Section Geodesics]):

Theorem 1.2.1. Let M be a pseudo-Riemannian manifold. Then:

1. For any p ∈ M and any vector v ∈ TpM there exists a unique maximal geodesic

αv : Iv →M with 0 ∈ Iv, αv(0) = p and α′v(0) = v.

2. For t ∈ Iv and w := α′v(t), Iw = Iv − t and αw(s) = αv(t+ s), ∀s ∈ Iw.

3. If 0 6= λ ∈ R then αλv(t) = αv(λt), ∀t ∈ Iλv = λ−1Iv.



1.2. GEODESICS 17

4. G := {(t, v) | t ∈ Iv} is open in R× TM and the map f : G → M , (t, v) 7→ αv(t) is

smooth on G .

A central object in pseudo-Riemannian geometry and a very important tool in the theory

of general relativity is the Riemann curvature tensor. It is the generalization of Gaus-

sian curvature to arbitrary pseudo-Riemannian manifolds and it is a way of measuring

the curvature of spacetimes. Following [ON83], we define it to be given by R(X, Y )Z =

∇[X,Y ]Z− [∇X ,∇Y ]Z. This convention differs by a sign from that of [HE73]. Other impor-

tant curvature tensors in general relativity can then be defined in terms of the Riemann

curvature tensor: the Ricci tensor by Rab = Rc
abc (which again differs by a sign from that

in [HE73] where Rab = Rc
acb, so overall the two definitions of Ricci curvature agree) and

the scalar curvature S = gabRab = Rb
b.

Another way of describing the curvature of pseudo-Riemannian manifolds is in terms of

the sectional curvature: Let p ∈M and let v, w be any basis of a two-dimensional subspace

P of the tangent space TpM . Then

K(v, w) =
〈Rvwv, w〉

〈v, v〉〈w,w〉 − 〈v, w〉

is called the sectional curvature K(P ) of P .

Note that K is defined only for timelike and spacelike planes since the denominator is

negative in the first case and positive in the second.

A fundamental property of curvature is its control over the relative behavior of nearby

geodesics. The following notion arises naturally when describing the difference between

two infinitesimally close geodesics:

Definition 1.2.2. A vector field J along a geodesic α is called a Jacobi field if it satisfies

the Jacobi equation:
D2

dt2
J(t) +R(J(t), α′(t))α′(t) = 0,

where D is the covariant derivative with respect to the Levi-Civita connection.

Consider now a geodesic α : [0, 1] → M with α(0) = p and α(1) = q. A point q is said to

be conjugate to p if there exists a non-zero Jacobi field J along α such that J(0) = 0 and

J(1) = 0.
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1.3 The exponential map

Now let (M, g) be an n-dimensional pseudo-Riemannian manifold with a smooth metric

tensor g. Let p ∈M . For

Dp := {v ∈ TpM | inextendible geodesic αv is defined at least on [0, 1]},

the exponential map is given by expp : Dp →M such that expp(v) = αv(1) for all v ∈ Dp.

Hence intuitively speaking, the exponential map assigns to a tangent vector v ∈ TpM a

geodesic on the manifold starting at p and going in that direction for a unit time. The

actual distance traveled will depend on the vector v since it corresponds to the velocity

vector of the geodesic.

Given a point p in a Riemannian manifold (M, g) and v ∈ TpM , the geodesic αv will be

locally minimizing in the sense that there exists t > 0 such that

dg(p, α(t)) = L(α|[0,t]).

Generally, a geodesic need not be minimizing. It can happen that there are two different

geodesics of the same length between two points on a manifold or that there are two

conjugate points along a geodesic. Contrary to the Riemannian case, on a Lorentzian

manifold, causal geodesics are locally the longest curves connecting two points.

Now, Dp ⊆ TpM is obviously the largest set on which the exponential map can be defined.

If M is complete, then Dp = TpM , for every point p ∈M . Thinking about the exponential

map with such a property, i.e., being defined on the whole tangent space, justifies the notion

of geodesic completeness : A manifold is said to be geodesically complete if all geodesics can

be defined for all real values of the affine parameter, which is clearly equivalent to the

requirement that the domain of the exponential map is TpM , for every point p ∈M .

The following theorem, due to Hopf and Rinow, in particular shows that compact Rieman-

nian manifolds are geodesically complete:

Theorem 1.3.1. (Hopf-Rinow Theorem) Let (M, g) be a connected Riemannian manifold.

Then the following statements are equivalent:

1. M is a complete metric space (with respect to the Riemannian distance d)

2. M is geodesically complete
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3. The closed and bounded subsets of M are compact.

There is no Lorentzian analogue of this, see [Chr11, Example 2.2.1].

Even if the exponential map is defined on the whole tangent space, it need not be a global

diffeomorphism in general. However, by the fact that its differential at the origin of the

tangent space is the identity map and using the inverse function theorem, one can prove

that it is a local diffeomorphism (cf. [ON83, Prop. 3.30]):

Theorem 1.3.2. Let (M, g) be a pseudo-Riemannian manifold with a smooth metric g

and let p ∈ M . Then there exist neighborhoods Ũ ⊆ TpM around 0 and U ⊆ M around p

such that

expp : Ũ → U

is a diffeomorphism.

Figure 1.1: The exponential map

A subset A of a vector space is called starshaped around 0 if for any vector v ∈ A, it follows

that tv ∈ A, for all t ∈ [0, 1]. Now, if Ũ is starshaped around 0, then U is called a normal

neighborhood of p. Then a special kind of coordinate system can be defined for any normal

neighborhood U , called a normal coordinate system: Fix an orthonormal basis e1, ..., en for

TpM and let

exp−1
p (q) =: xiei, (1.2)

for q ∈ U , i = 1, ..., n. Then ((x1, ..., xn), U) is called the normal coordinate system around

p. We have (cf. [ON83, Lemma 3.14]):

Proposition 1.3.3. Let x1, ..., xn be a normal coordinate system at p ∈ M . Then for all

1 ≤ i, j, k ≤ n, it follows 1. gij(p) = δijεj and 2. Γkij(p) = 0.



20 CHAPTER 1. UNIQUENESS AND REGULARITY OF GEODESICS

Now let (M, g) be a Riemannian manifold, p ∈ M and denote by Bg(0, r) := {v ∈
TpM | 〈v, v〉 < r} the open ball of radius r. By Theorem 1.3.2, there exists r > 0 such that

expp : Bg(0, r) → Bg(p, r) is a diffeomorphism, where Bg(p, r) := {q ∈ M | dg(p, q) < r}.
Once there exist two distinct geodesics between p and some point q, the exponential map

ceases to be injective. On the other hand, if there exist two conjugate points along a

geodesic, the exponential map is no longer a local diffeomorphism. This leads to the

following definition:

Definition 1.3.4. The injectivity radius Inj(p) of (M, g) at p ∈ M is the supremum

of values of radii r such that the exponential map defines a global diffeomorphism from

Bg(0, r) onto its image in M .

In the Lorentzian case, defining the injectivity radius is not as straightforward. The main

obstacle in defining it directly with respect to the Lorentzian metric g is that the Lorentzian

norm of a non-zero vector may vanish. Hence, the definition will depend on the background

Riemannian metric (cf. [CleF08]).

For a complete pseudo-Riemannian manifold M , the exponential maps expp : TpM → M

for all p ∈ M , constitute a single mapping exp : TM → M of the tangent bundle TM .

Define

E : TM →M

E(v) = (π(v), exp(v)),

where π is the natural projection of TM onto M . Explicitly, E(v) = (p, expp(v)), for

v ∈ TpM ⊂ TM .

Whether or not M is complete, exp and E have the same largest domain-the set U of all

vectors v ∈ TM such that the geodesic αv is defined at least on the interval [0, 1]. Again,

by the inverse function theorem, one can show the following:

Theorem 1.3.5. The map E is a diffeomorphism of a neighborhood of TM0 := {0p| p ∈
M} ⊆ TM onto a neighborhood of 4M := {(p, p)| p ∈M} in M ×M .

1.4 The exponential map of a C1,1-metric

In the preceding sections we have seen that in smooth pseudo-Riemannian geometry, the

fact that the exponential map is a local diffeomorphism is the key tool for many funda-
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mental constructions such as normal coordinates, normal neighborhoods, injectivity radius

but also for comparison methods and in the Lorentzian case, for studying local causality

theory, see Chapter 2.

As already indicated in the introduction, the way of proving this result is based on an

application of the inverse function theorem. It is hence possible to do such a proof for

C2 pseudo-Riemannian metrics since the exponential map is then C1. However, lowering

the differentiability of the metric below C2 causes many problems. On the other hand,

it is generally held in the literature that C1,1 (continuously differentiable with Lipschitz

derivatives) delimits the regularity where one can still reasonably expect the ‘standard’

results to remain valid since it is the lowest regularity of the metric for which the geodesic

equation is still uniquely solvable. Nevertheless, the exponential map for C1,1-metrics is

only Lipschitz hence the inverse function theorem is no longer applicable.

The aim of this section is to show that the exponential map of a C1,1 pseudo-Riemannian

metric retains its maximal possible regularity, namely that it is a bi-Lipschitz homeomor-

phism locally around 0, following [KSS14].

Our notation is standard, cf., e.g., [Jo11, ON83]. If K is a compact set in M we write

K bM .

Our strategy is to regularize the metric locally via convolution with a mollifier to obtain

a net gε of smooth metrics of the same signature. We then use methods from comparison

geometry to obtain sufficiently strong estimates on the exponential maps of the regularized

metrics to be able to carry the bi-Lipschitz property through the limit ε → 0. More

precisely, we rely on new comparison methods, developed only recently by B. L. Chen and

P. LeFloch in their studies on the injectivity radius of Lorentzian metrics ([CleF08]). In

the Riemannian case, one may alternatively use the Rauch comparison theorem, as well as

injectivity radius estimates due to Cheeger, Gromov and Taylor, as will be pointed out in

Section 3. To show existence of totally normal neighborhoods we use the uniform estimates

derived above to adapt the standard proof of the smooth case.

We first recall what is known about the exponential map of C1,1 pseudo-Riemannian metrics

due to J. H. C. Whitehead’s paper [Wh32]. Consider a system of ODEs of the form

d2ck

dt2
+ Γkij(c(t))

dci

dt

dcj

dt
= 0, (1.3)

where the Γkij are functions symmetric in i, j. Note that they need not be the Christoffel



22 CHAPTER 1. UNIQUENESS AND REGULARITY OF GEODESICS

symbols of some metric. A curve that satisfies Equation (1.3) is called a path and the

theory of these paths is called the geometry of paths, see [Wh32].

A well known fact in Riemannian geometry is that in a normal neighborhood U around

p and for any q ∈ U the radial geodesic segment between p and q is the unique shortest

curve connecting these two points and is entirely contained in U . Similar question arose in

the geometry of paths: Under which conditions does a neighborhood around some point

exist in which any two points can be connected by a unique path that does not leave that

neighborhood? In [Wh32, Sec. 3] Whitehead proved that only assuming that Γkij(c(t)) are

Lipschitz and symmetric in their lower indices such a neighborhood, called a simple region,

exists. In particular, this result holds when Equation (1.3) is considered as the geodesic

equation of a C1,1 pseudo-Riemannian metric g of arbitrary signature since in this case,

the Christoffel symbols Γkij(c(t)) are Lipschitz. It follows that expgp : (expgp)
−1(S) → S is

continuous and bijective, hence a homeomorphism by invariance of domain, and one has:

Theorem 1.4.1. Let M be a smooth manifold with a C1,1 pseudo-Riemannian metric g

and let p ∈ M . Then there exist open neighborhoods U of 0 ∈ TpM and V of p in M such

that

expgp : U → V

is a homeomorphism.

We thus strengthen Theorem 1.4.1 by additionally establishing the bi-Lipschitz property

of expgp. We note, however, that our proof is self-contained and will not pre-suppose Th.

1.4.1. Rather, it implicitly provides an alternative proof for this result.

Hence we prove the following theorem:

Theorem 1.4.2. Let M be a smooth manifold with a C1,1 pseudo-Riemannian metric g

and let p ∈ M . Then there exist open neighborhoods U of 0 ∈ TpM and V of p in M such

that

expgp : U → V

is a bi-Lipschitz homeomorphism.

As already indicated, our method of proof is to approximate g by a net gε of smooth pseudo-

Riemannian metrics and then use comparison results to control the relevant geometrical

quantities derived from the gε uniformly in ε so as to preserve the bi-Lipschitz property as
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ε→ 0. By Bh(p, r) we denote the open ball around the point p of radius r with respect to

the Riemannian metric h. To distinguish exponential maps stemming from various metrics

we will use a superscript, as in expgp.

Since the result is local, we may assume M = Rn and p = 01. The standard Euclidean

metric on Rn will be denoted by gE or 〈 , 〉E and we write ‖ ‖E for the corresponding

standard Euclidean norm, as well as for mapping norms induced by the Euclidean norm.

Now take ρ ∈ D(Rn) with unit integral and define the standard mollifier ρε := ε−nρ
(
x
ε

)
(ε > 0). We set gε := g ∗ ρε (componentwise convolution).

Remark 1.4.3. For later reference, we note the following properties of the approximating

net gε.

(i) It is well known that gε → g in C1(M). Also, the second derivatives of gε are

bounded, uniformly in ε, on compact sets: For any k ≥ 1, the norm on Ck,1 is given

by

‖f‖Ck,1(U) :=
∑
|s|≤k

‖∂sf‖C0(U) +
∑
|s|=k

Höl1(∂sf, U),

where Höl1(f, S) := sup{ |f(x)−f(y)|
|x−y| | x 6= y, x, y ∈ S} for a closed and bounded set S.

Consider now f ∈ C0,1. Then we have:

|f ∗ ρε(x)− f ∗ ρε(y)|
|x− y|

=

∣∣∣∣∫ f(x− z)− f(y − z)

|x− y|
ρε(z)dz

∣∣∣∣ ≤ Höl1(f, S),

and since |f∗ρε(x)−f∗ρε(y)|
|x−y| → |Df ∗ ρε(x)| as y → x, it follows that ∀ε,∀x ∈ S, |Df ∗

ρε(x)| ≤ Höl1(f, S). Therefore D2gε is uniformly bounded on compact sets.

(ii) On any compact subset of M , for ε sufficiently small, gε is a pseudo-Riemannian

metric. Indeed, for the eigenvalues λi and λiε of g and gε respectively, by [GKOS01,

Lemma 3.2.76], |λi − λiε| ≤ ‖g − gε‖ thus λiε → λi, i.e., all the eigenvalues are of the

same sign for ε small enough. By the above we obtain that the gε form a family of

pseudo-Riemannian metrics of the same signature as g whose Riemannian curvature

tensors Rε are bounded uniformly in ε.

In order to proceed we need to determine a neighborhood of 0 in TpM that is a common

domain for all expgεp for ε sufficiently small. Here, and in several places later on, we will

1Nevertheless we will write p below to distinguish considerations in TpM from those in M .
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make use of the following consequence of a standard result on the comparison of solutions

to ODE [Die80, 10.5.6, 10.5.6.1]:

Lemma 1.4.4. Let F,G ∈ C(H,X) where H is a convex open subset of a Banach space

X. Suppose:

sup
x∈H
‖F (x)−G(x)‖ ≤ α,

G is Lipschitz continuous on H with Lipschitz constant ≤ k, and F is locally Lipschitz on

H. For µ > 0, define

ϕ(ξ) := µeξk + α(eξk − 1)
1

k
, ξ ≥ 0.

Let x0 ∈ H, t0 ∈ R and let u be a solution of x′ = G(x) with u(t0) = x0 defined on

J := (t0 − b, t0 + b) such that ∀t ∈ J, B(u(t), ϕ(|t− t0|)) ⊆ H. Then for every x̃ ∈ H with

‖x̃− x0‖ ≤ µ there exists a unique solution v of x′ = F (x) with v(t0) = x̃ on J with values

in H. Moreover, ‖u(t)− v(t)‖ ≤ ϕ(|t− t0|) for t ∈ J .

We rewrite the geodesic equation for the metric g as a first order system:

dck

dt
= yk(t)

dyk

dt
= −Γkg,ij(c(t))y

i(t)yj(t)

(1.4)

and analogously for the metrics gε. Hence, expgp(v) = c(1) where c(0) = p, y(0) = v. Let

t0 = 0 and x0 = (p, 0). We fix b > 1 and set J = (−b, b). Now take u to be the constant

solution of (1.4) with initial condition x0 = (p, 0), let δ > 0 and set H := B(x0, 2δ) ⊆ R2n.

The Christoffel symbols Γg are Lipschitz functions on H, and by Remark 1.4.3 (i) it follows

that there is a common Lipschitz constant k for Γg and the Γgε on H. Choose α > 0, µ > 0

such that

ϕ(b) = µebk +
α

k
(ebk − 1) < δ.

and choose ε0 > 0 such that ∀ε < ε0 we have supH ‖Γg −Γgε‖ ≤ α. Then B(u(t), ϕ(|t|)) ⊆
H, ∀t ∈ J . By Lemma 1.4.4, for all x̃ = (p, w) ∈ H with ‖x̃− x0‖ = ‖w‖ ≤ µ, there exists

a unique solution uε on (−b, b) of

dck

dt
= yk(t)

dyk

dt
= −Γkgε,ij(c(t))y

i(t)yj(t),
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with values in H and uε(0) = x̃ = (p, w), as well as a unique solution to (1.4) with these

initial conditions. Therefore a common domain of expgp and all expgεp (ε < ε0) is given by

{w ∈ Rn| ‖w‖E < µ} =: BE(0, µ).

Remark 1.4.5. From Remark 1.4.3 we obtain that for some ε0 > 0 we have:

(i) There exists a constant K1 > 0 such that, for ε < ε0, ‖Rε‖E ≤ K1 uniformly on

BE(0, µ).

(ii) For some K2 > 0 and ε < ε0,

‖Γgε‖E ≤ K2,

uniformly on BE(0, µ).

Lemma 1.4.6. Let r1 < min
(

1
2K2

, 1
2
µ
)

. Then for all ε < ε0,

expgεp (BE(0, r1)) ⊆ BE(p, µ).

Proof. Let γ : [0, r1] → M be a gε-geodesic with γ(0) = p and ‖γ′(0)‖E = 1 and set

s0 := sup{s ∈ [0, r1] | γ|[0,s] ⊆ BE(p, µ)}. Then s0 > 0 and for s ∈ [0, s0) we have∣∣∣∣ dds〈γ′(s), γ′(s)〉E
∣∣∣∣ = 2|〈γ′′(s), γ′(s)〉E| = 2 |〈Γgε(γ′(s), γ′(s)), γ′(s)〉E| ≤ 2K2‖γ′(s)‖3

E,

and therefore
∣∣ d
ds
‖γ′(s)‖−1

E

∣∣ ≤ K2. From this, setting f(s) := ‖γ′(s)‖E, for s ∈ [0, s0) we

obtain
f(0)

f(s)
=

∫ s

0

f(0)
d

dτ

(
1

f(τ)

)
dτ + 1 ∈ [1/2, 3/2],

so
1

2
‖γ′(0)‖E ≤ ‖γ′(s)‖E ≤ 2‖γ′(0)‖E (s ∈ [0, s0)). (1.5)

Therefore,

LE(γ|[0,s0]) =

∫ s0

0

‖γ′(s)‖E ds ≤ 2r1‖γ′(0)‖E < µ,

implying that s0 = r1.

We next want to determine a ball around 0 ∈ TpM on which each expgεp is a local diffeomor-

phism. To achieve this, we first need to derive estimates on Jacobi fields along geodesics,

based on [CleF08, Sec. 4].
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Lemma 1.4.7. Set C1 := 2K2, C2 := 4K1 and let

r2 < min

(
r1,

1

C1

log

(
C1 + C2

C1/2 + C2

)
, (2 + C1)−1

)
.

Then for ε < ε0, any gε-geodesic γ : [0, r2] → M with γ(0) = p and ‖γ′(0)‖E = 1

lies entirely in BE(p, µ). Moreover, if J is a gε-Jacobi field along γ with J(0) = 0 and

‖∇gε,γ′J(0)‖E = 1 then ‖J(s)‖E ≤ 1 and 1
2
≤ ‖∇gε,γ′J‖E ≤ 2 for all s ∈ [0, r2].

Proof. By Lemma 1.4.6, γ lies in BE(p, µ). Also, (1.5) implies

max
s∈[0,r2]

‖γ′(s)‖E ≤ 2 max
s∈[0,r2]

‖γ′(0)‖E ≤ 2. (1.6)

Suppose that s0 := sup{s ∈ [0, r2] | ‖J(t)‖E ≤ 1 ∀t ∈ [0, s]} < r2. By assumption, J

satisfies the Jacobi equation

∇gε,γ′∇gε,γ′J(s) = −Rε(J(s), γ′(s))γ′(s)

J(0) = 0, ‖J ′(0)‖E = 1.

Thus by Remark 1.4.5 and (1.6), on [0, s0] we obtain∣∣∣∣ dds〈∇gε,γ′J,∇gε,γ′J〉E
∣∣∣∣ = 2|〈∇E,γ′∇gε,γ′J,∇gε,γ′J〉E|

= 2|〈∇gε,γ′∇gε,γ′J,∇gε,γ′J〉E + (∇E,γ′ −∇gε,γ′)∇gε,γ′J,∇gε,γ′J〉E|

= 2|〈∇gε,γ′∇gε,γ′J,∇gε,γ′J〉E − 〈Γgε(∇gε,γ′J, γ
′),∇gε,γ′J〉E|

≤ 8K1‖∇gε,γ′J‖E + 4K2‖∇gε,γ′J‖2
E,

so that ∣∣∣∣ dds‖∇gε,γ′J‖E
∣∣∣∣ ≤ 4K1 + 2K2‖∇gε,γ′J‖E = C1‖∇gε,γ′J‖E + C2. (1.7)

Taking into account that ‖∇gε,γ′J(0)‖E = 1 by assumption, integration of (1.7) leads to

−C2

C1

+

(
1 +

C2

C1

)
e−C1s ≤ ‖∇gε,γ′J(s)‖E ≤ −

C2

C1

+

(
1 +

C2

C1

)
eC1s.

Due to our choice of r2, this entails

1

2
≤ ‖∇gε,γ′J‖E ≤ 2 (1.8)
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on [0, s0]. From this, we get∣∣∣∣ dds‖J(s)‖E
∣∣∣∣ =

1

‖J(s)‖E
|〈∇gε,γ′J(s), J(s)〉E − 〈Γgε(J(s), γ′(s)), J(s)〉E| ≤ 2 + 2K2.

Therefore,

‖J(s)‖E ≤ (2 + 2K2)s < s/r2 < 1 (1.9)

for s ∈ [0, s0]. For s = s0, this gives a contradiction to the definition of s0.

Lemma 1.4.8. There exists some 0 < r3 < r2 such that, for all ε < ε0, expgεp is a local

diffeomorphism on BE(0, r3).

Proof. For any Jacobi field J as in Lemma 1.4.7 we have:

d

ds
〈∇gε,γ′J, J〉E = 〈∇gε,γ′∇gε,γ′J, J〉E − 〈Γgε(∇gε,γ′J, γ

′), J〉E

+ 〈∇gε,γ′J,∇gε,γ′J〉E − 〈∇gε,γ′J,Γgε(J, γ
′)〉E

Of these four terms, the third one is bounded from below by 1/4 due to (1.8). For the

others, employing Lemma 1.4.7 (see (1.6), (1.8), (1.9)), we obtain for s ∈ [0, r2]:

|〈∇gε,γ′∇gε,γ′J, J〉E(s)| = |〈Rε(J, γ
′)γ′, J〉E(s)| ≤ K1‖γ′(s)‖2

E‖J(s)‖2
E ≤ 4

K1

r2
2

s2

|〈Γgε(∇gε,γ′J, γ
′), J〉E(s)| ≤ K2‖γ′(s)‖E‖∇gε,γ′J(s)‖E‖J(s)‖E ≤ 4

K2

r2

s

|〈∇gε,γ′J,Γgε(J, γ
′)〉E(s)| ≤ K2‖γ′(s)‖E‖J(s)‖E‖∇gε,γ′J(s)‖E ≤ 4

K2

r2

s

From this we obtain an r3 = r3(r2, K1, K2) < r2 such that on [0, r3], d
ds
〈∇gε,γ′J, J〉E is

bounded from below by a positive constant. By the same estimates and (1.8) again, it is

also bounded from above. Hence for some c1 > 0, any ε < ε0 and s ∈ [0, r3] we obtain:

e−c1 ≤ d

ds
〈∇gε,γ′J, J〉E(s) ≤ ec1 ,

and therefore

e−c1s ≤ 〈∇gε,γ′J, J〉E(s) ≤ ec1s.
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Combined with (1.8) and (1.9), this entails:

1

r2

s ≥ ‖J(s)‖E ≥
〈∇gε,γ′J, J〉E(s)

‖∇gε,γ′J(s)‖E
≥ e−c1

2
s.

Altogether, we find c2 > 0 such that for all ε < ε0 and s ∈ [0, r3]:

e−c2s ≤ ‖J(s)‖E ≤ ec2s.

In terms of the exponential map, any Jacobi field as in Lemma 1.4.7 is of the form J(s) =

Tsγ′(0) expgεp (s · w), with w ∈ TpM , ‖w‖E = 1. Thus

e−c2 ≤ ‖Tsγ′(0) expgεp (w)‖E ≤ ec2 (s ∈ [0, r3]).

Since ‖γ′(0)‖E = 1 we conclude that ∀ε < ε0, ∀v ∈ BE(0, r3), ∀w ∈ TpM :

e−c2‖w‖E ≤ ‖Tv expgεp (w)‖E ≤ ec2‖w‖E. (1.10)

In particular, expgεp is a local diffeomorphism on BE(0, r3).

We note that (1.10) can equivalently be formulated as

e−2c2gE ≤ (expgεp )∗gE ≤ e2c2gE (1.11)

for ε < ε0 on BE(0, r3).

Lemma 1.4.9. For r4 < e−c2r3, r5 < e−c2r4 and r̃ := ec2r4 we have, ∀ε < ε0:

expgεp (BE(0, r5)) ⊆ BE(p, r4) ⊆ expgεp (BE(0, r̃)) ⊆ expgεp (BE(0, r3)).

Proof. For q ∈ BE(p, r4), let α : [0, a] → M be a piecewise smooth curve from p to q

in BE(p, r4) of Euclidean length less than r4. Since expgεp is a local diffeomorphism on

BE(0, r3), for b > 0 sufficiently small there exists a unique expgεp -lift α̂ : [0, b] → BE(0, r3)

of α|[0,b] starting at 0. We claim that a′ := sup{b < a| α̂ exists on [0, b]} = a. Indeed,

suppose that a′ < a. Then

L(expgεp )∗gE(α̂|[0,a′)) = LgE(α|[0,a′)) =

∫ a′

0

‖α′(t)‖Edt ≤ r4.
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Hence by (1.11) we obtain LgE(α̂|[0,a′)) ≤ r̃. Now let an ↗ a′. Then α̂(an) ∈ BE(0, r̃), so

some subsequence (α̂(ank)) converges to a point v in BE(0, r̃). Since expgεp is a diffeomor-

phism on a neighborhood of v and expgεp (v) = limα(ank) = α(a′), this shows that α̂ can be

extended past a′, a contradiction. Thus q = expgεp (α̂(a)) ∈ expgεp (BE(0, r̃)).

For the first inclusion, take v ∈ TpM with ‖v‖E ≤ r5 and set q := expgεp (v). Then for the

radial geodesic γ : [0, 1]→M , t 7→ expgεp (tv) from p to q, by (1.10) we obtain for s small:

LE(γ|[0,s]) =

∫ s

0

‖Ttv expgεp (v)‖E dt ≤ ec2‖v‖E < r4

From this we conclude that sup{s ∈ [0, 1] | γ|[0,s] ⊆ BE(p, r4)} = 1, so q ∈ BE(p, r4).

Note that expgεp : BE(0, r̃)→ expgεp (BE(0, r̃)) is a surjective local homeomorphism between

compact Hausdorff spaces, hence is a covering map. Using this, we obtain:

Lemma 1.4.10. For any ε < ε0, expgεp is injective (hence a diffeomorphism) on BE(0, r5).

Proof. Suppose to the contrary that there exist v0, v1 ∈ BE(0, r5), v0 6= v1, and ε < ε0

such that expgεp (v0) = q = expgεp (v1). Hence, γi(t) := expgεp (tvi), i = 0, 1, are two distinct

geodesics starting at p which intersect at the point q. Then γs(t) = sγ1(t) + (1 − s)γ0(t)

is a fixed endpoint homotopy connecting γ0 and γ1 in the ball BE(p, r4). Since expgεp is a

covering map, and using Lemma 1.4.9, we can lift this homotopy to BE(0, r̃). But the lifts

of γ0 and γ1 are t 7→ tvi, i = 0, 1, which obviously are not fixed endpoint homotopic in

BE(0, r̃), a contradiction.

From (1.10) we obtain a uniform Lipschitz constant for all expgεp with ε < ε0: ∃c3 > 0 such

that ∀u, v ∈ BE(0, r5)

‖ expgεp (u)− expgεp (v)‖E ≤ c3‖u− v‖E.

For the corresponding estimate from below we use the following result that provides a mean

value estimate for C1-functions on not necessarily convex domains (cf. [GKOS01, 3.2.47]).

Lemma 1.4.11. Let Ω ⊆ Rn, Ω′ ⊆ Rm be open, f ∈ C1(Ω,Ω′) and suppose that K b Ω.

Then there exists C > 0, such that ‖f(x)−f(y)‖ ≤ C‖x−y‖, ∀x, y ∈ K. C can be chosen

as C1 · supx∈L(‖f(x)‖+ ‖Df(x)‖) for any fixed compact neighborhood L of K in Ω, where

C1 depends only on L.
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Using Lemma 1.4.9 we now pick r7 < r6 =: e−c2 r̂ < r̂ < r5 such that for ε < ε0 we have

expgεp (BE(0, r7)) ⊆ BE(p, r6) ⊆ expgεp (BE(0, r̂)) b expgεp (BE(0, r5)).

Again by (1.10), we have ∀ε < ε0,

e−c2‖ξ‖E ≤ ‖Tq(expgεp )−1(ξ)‖E ≤ ec2‖ξ‖E,

∀q ∈ BE(p, r6),∀ξ ∈ TqM . Thus by Lemma 1.4.11 there exists some c4 > 0 such that

‖(expgεp )−1(q1)− (expgεp )−1(q2)‖E ≤ c−1
4 ‖q1 − q2‖E

∀ε < ε0, ∀q1, q2 ∈ expgεp (BE(0, r7)).

Summing up, for all ε < ε0 and all u, v ∈ BE(0, r7) we have

c4‖u− v‖E ≤ ‖ expgεp (u)− expgεp (v)‖E ≤ c3‖u− v‖E.

Finally, let ε→ 0. Then for all u, v ∈ BE(0, r7) we get

c4‖u− v‖E ≤ ‖ expgp(u)− expgp(v)‖E ≤ c3‖u− v‖E.

Thus, expgp is a bi-Lipschitz homeomorphism on U := BE(0, r7) ⊆ TpM . In particular,

V = expgp(U) is open in M (invariance of domain). This concludes the proof of Theorem

1.4.2.

1.5 The Riemannian case

In this section we point out some alternatives to the reasoning presented in the proof of

Theorem 1.4.2, when the special case of a C1,1 Riemannian metric g is considered. As

already shown in the preceding section, our strategy was to approximate g by a net gε

of smooth pseudo-Riemannian metrics and then use results from comparison geometry,

recently obtained by Chen and LeFloch, see [CleF08]. Methods from comparison geom-

etry appear to be one of the most powerful tools in global Riemannian geometry. Many

important geometrical conclusions can be drawn just by studying manifolds for which only

information about bounds on the sectional curvature is given. One of the fundamental
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results which relates the sectional curvature of a Riemannian manifold to the rate at which

geodesics spread apart is the following version of the Rauch comparison theorem, cf., e.g.,

[Jo11, Cor. 4.6.1].

Theorem 1.5.1. Let (M,h) be a smooth Riemannian manifold and suppose that exphp is

defined on a ball Bhp(0, R), for some R > 0, and that there exist ρ ≤ 0, κ > 0 such

that the sectional curvature K of M satisfies ρ ≤ K ≤ κ on some open set which contains

exphp(Bhp(0, R)). Then for all v ∈ TpM with ‖v‖hp = 1, all w ∈ TpM , and all 0 < t <

min(R, π√
κ
),

snκ(t)

t
‖w‖ ≤ ‖(Ttv exphp)(w)‖ ≤ snρ(t)

t
‖w‖.

Here, for α ∈ R,

snα(t) :=


1√
α

sin(
√
αt) for α > 0

t for α = 0
1√
−α sinh(

√
−αt) for α < 0

As an immediate consequence, we obtain that for any 0 < r < min(R, π√
κ
), there exists

some c > 0 such that ∀v ∈ Bhp(0, r), ∀w ∈ TpM

e−c‖w‖ ≤ ‖(Tv exphp)(w)‖ ≤ ec‖w‖. (1.12)

Remark 1.5.2. Denote by G(k, n) := {k-dimensional subspaces of Rn} the Grassmann

manifold. G(k, n) is an (n− k)k-dimensional manifold diffeomorphic to

O(n)
/

(O(k)× O(n− k)) ,

where O(n) is the orthogonal group of dimension n, hence is compact. For (M, g) a smooth

Riemannian manifold, G(2, TM) =
⊔
p∈M G(2, TpM) is a fiber bundle with compact fibers.

The sectional curvature can be viewed as a smooth function on the 2-Grassmannian bundle

G(2, TM), i.e., K : G(2, TM)→ R and it is given by:

K(v, w) =
〈Rvwv, w〉

〈v, v〉〈w,w〉 − 〈v, w〉
.

Since K is continuous, it is bounded on G(2, TM)|U ∼= U × G(2,Rn), for any relatively

compact subset U of M . However, an analogous argument is not possible in the Lorentzian

(or general pseudo-Riemannian) setting.
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Namely, for a smooth Lorentzian manifold (M, g), its sectional curvature K has quite

different behavior than in the case of Riemannian manifolds, since it is now only defined

on non-degenerate 2-planes, forming an open subbundle of G(2, TM). More precisely, a

Lorentzian manifold has bounded sectional curvature K only in the trivial case where K is

constant ([K79], cf. also [Harris82]). This is the main reason that only timelike planes are

considered in the curvature conditions. However, this was not enough for our considerations

since for obtaining that each expgε is a local diffeomorphism, we had to derive estimates

on Jacobi fields along any causal geodesic, see Section 1.4. In [CleF08], several injectivity

radius estimates for Lorentzian manifolds were established and formulated in terms of a

reference Riemannian metric that is determined by a future directed timelike unit vector

field T , referred to as the reference vector field prescribed on M . One of the reasons

for using a reference Riemannian metric is the fact that a Lorentzian norm of a non-zero

vector may vanish hence the injectivity radius is not supposed to be defined directly for

a Lorentzian metric g. Hence, for p ∈ M , the geodesic ball of radius r in TpM is given

by BT (0, r) := {v ∈ TpM | 〈v, v〉gT < r}, where gT is the reference Riemannian metric

determined by T , and one can also define the geodesic ball B(p, r) := expp(BT (0, r)). Then

the injectivity radius Inj(p,M) is defined as the largest radius r for which the exponential

map is a diffeomorphism from BT (0, r) onto B(p, r) := expp(BT (0, r)). Analogously, the

injectivity radius can be defined for any pseudo-Riemannian metric g. We used similar

methods to the ones obtained in [CleF08], only using the Euclidean metric instead of an

arbitrary Riemannian one.

Now let g be a C1,1 Riemannian metric on M , and let gε be approximating smooth metrics.

Then we may fix some r′ > 0 and some ε0 > 0 such that expgp and expgεp (ε < ε0) are

defined on Bgp(0, r
′). Since expgεp converges locally uniformly to expgp, there exists an open,

relatively compact subset W ⊆ M with
⋃
ε<ε0

expgεp (Bgp(0, r
′)) ⊆ W . On W , by Remarks

1.4.3 (ii) and 1.5.2 we obtain uniform bounds on the sectional curvatures Kε of gε, i.e.,

∃ρ ≤ 0, κ > 0 : ∀ε < ε0 ρ ≤ Kε ≤ κ.

Thus by (1.12), for any r < min(r′, π√
κ
), there exists some c > 0 depending only on ρ and

κ such that for all ε < ε0

e−c‖w‖gε ≤ ‖(Tv expgεp )(w)‖gε ≤ ec‖w‖gε , (1.13)

∀v ∈ Bgp(0, r),∀w ∈ TpM . In particular, by the inverse function theorem every expgεp is a
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local diffeomorphism on Bgp(0, r). Thus we may rewrite (1.13) equivalently as

e−2cgε,p ≤ (expgεp )∗gε ≤ e2cgε,p,

on Bgp(0, r). Since gε → g locally uniformly, by increasing c we obtain (1.11) on a suitable

Euclidean ball and can proceed as in Section 1.4.

Finally, we note that to obtain a common domain (and injectivity) of the approximating

exponential maps expgεp one may alternatively employ the following result of Cheeger, Gro-

mov and Taylor ([CGT82], the formulation below is taken from [CleF08]), which provides

a lower bound on the injectivity radii Injgε(M, p).

Theorem 1.5.3. Let M be a C∞ n-manifold with a smooth Riemannian metric g. Suppose

that Bg(p, 1) b M for some point p in M . Then for any K, v > 0 there exists some

i = i(K, v, n) > 0 such that if

‖Rg‖L∞(B(p,1)) ≤ K, Volg(B(p, 1)) ≥ v,

then the injectivity radius Injg(M, p) at p is bounded from below by i,

Injg(M, p) ≥ i.

Since the distance function dg of the C1,1-metric g induces the manifold topology, Bg(p, 2r)

is an open, relatively compact subset of M for r > 0 sufficiently small. Thus for ε small,

Bgε(p, r) ⊆ Bg(p, 2r) is relatively compact and

Volgε(Bgε(p, r)) ≥ Volgε(Bg(p, r/2)) ≥ 1

2
Volg(Bg(p, r/2)) > 0.

By Theorem 1.5.3, there exists some r0 such that

Inj(gε, p) ≥ r0, ∀ε ≤ ε0,

so expgεp is a diffeomorphism on Bgε(p, r0) ∀ε ≤ ε0. Since Bg(p,
r0
2

) ⊆ Bgε(p, r0) for ε small,

it follows that expgεp is a diffeomorphism on Bg(p,
r0
2

). From here, using Theorem 1.5.1,

we may proceed as in the argument following Lemma 1.4.10 to conclude that expgp is a

bi-Lipschitz homeomorphism on some neighborhood of 0 ∈ TpM .
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1.6 Strong differentiability of the exponential map

An alternative approach to the question of regularity of the exponential map for C1,1-

metrics has recently been presented in [Min13]. In this paper it is shown that both, the

exponential map expp and the map E (see Section 1.3) are not only locally bi-Lipschitz

homeomorphisms, but also strongly differentiable at the origin. In this section we give an

idea of the proof as done in [Min13]. This approach and ours (see Section 1.4) nicely com-

plement each other: in [Min13], there is no regularization or comparison geometry needed.

In fact, the result can be derived without any prior knowledge of pseudo-Riemannian geom-

etry since it is based on the Picard-Lindelöf approximation method and on a version of the

inverse function theorem due to Leach. For this theorem, the notion of strong derivative

and the corresponding notion of strong differential is needed:

Definition 1.6.1. Let X and Y be Banach spaces and let f : X ⊇ S → Y , where S is

open. The strong differential of f at x ∈ S is a bounded linear transformation L : X → Y

for which it holds: for every ε > 0 there is a δ > 0 such that if |y1−x| < δ and |y2−x| < δ,

then:

|f(y1)− f(y2)− L(y1 − y2)| ≤ ε|y1 − y2|. (1.14)

Obviously, if f is strongly differentiable at a point x, it is also classically differentiable and

these differentials coincide. The converse is not true: f(x) = x2 sin( 1
x
) is differentiable but

not strongly differentiable at 0.

The following result is Leach’s inverse function theorem, cf.,e.g., [Min13, Theorem 2] (see

also [Le61], [Nij74]):

Theorem 1.6.2. Let f : S → Rn be a function defined on an open subset S ⊆ Rn and let

L : Rn → Rn be the strong differential of f at x ∈ S. If L is invertible then there exist

an open neighborhood U of x, an open neighborhood Ũ of f(x) and a function g : Ũ → Rn

such that f(U) = Ũ , g(Ũ) = U and f |U and g are inverse to each other. They are both

Lipschitz and g has strong differential L−1 at f(x).

In addition, f is differentiable (resp. strongly differentiable) at y ∈ U iff g is differen-

tiable (resp. strongly differentiable) at f(y), in which case the differentials (resp. strong

differentials) are invertible.

The strong differentiability of the map E is then proved by a local analysis of the geodesic

equation using the Picard-Lindelöf approximation method. The main ingredient in this
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proof is the fact that the right-hand side of the geodesic equation is Lipschitz in both vari-

ables and homogeneous of second degree in the second variable. Now, note that if f(x, y)

is a strongly differentiable function, keeping x fixed, one easily obtains that the function

f(x, .) is strongly differentiable. Moreover, the composition of strongly differentiable func-

tions is strongly differentiable. Since E(v) = (p, expp(v)), we obtain that expp is strongly

differentiable at the origin. Having proved the strong differentiability of E and expp, since

they clearly satisfy the conditions of Theorem 1.6.2, one immediately obtains that their

inverses are also Lipschitz.

1.7 Totally normal neighborhoods

Recall that for a smooth pseudo-Riemannian metric g on a manifold M , a neighborhood

U of p ∈ M is called a normal neighborhood of p if expgp is a diffeomorphism from a

starshaped open neighborhood Ũ of 0 ∈ TpM onto U . U is called totally normal if it is a

normal neighborhood of each of its points. This terminology is in line with [DoCarmo92]

while, e.g., in [ON83] such sets are called geodesically convex.

Analogously, if g is a C1,1-pseudo-Riemannian metric on a smooth manifold M we call a

neighborhood of a point p ∈ M normal if there exists a starshaped open neighborhood Ũ

of 0 ∈ TpM such that expgp is a bi-Lipschitz homeomorphism from Ũ onto U . U is called

totally normal if it is a normal neighborhood of each of its points.

In what follows we adapt the standard proof for the existence of totally normal neighbor-

hoods, cf., e.g., [ON83, Prop. 5.7] (tracing back to [Wh32, Sec. 4]) to the C1,1-situation.

Theorem 1.7.1. Let M be a smooth manifold with a C1,1 pseudo-Riemannian metric g.

Then each point p ∈M possesses a basis of totally normal neighborhoods.

Proof. The main point to note is that the explicit bounds derived in Section 1.4 on the

radius of the ball in TpM where expgp is a bi-Lipschitz homeomorphism depend only on

quantities that can be uniformly controlled on compact sets. Therefore, for any p ∈ M

there exists a neighborhood V ′ of p and some r > 0 such that, ∀q ∈ V ′,

expgq : Bh,q(0, r)→ expgq(Bh,q(0, r)) (1.15)

is a bi-Lipschitz homeomorphism. Here, h is any background Riemannian metric.
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Now define S := {v ∈ TM | π(v) ∈ V ′, ‖v‖h < r}, with π the natural projection of TM

onto M . Let E : TM → M × M , E(v) = (π(v), expg(v)). Then by (1.15) E : S →
E(S) =: W is a continuous bijection, hence a homeomorphism by invariance of domain.

Let (ψ = (x1, ..., xn), V ) be a coordinate system centered at p (in the smooth case ψ is

usually taken to be a normal coordinate system, which is not available to us, but this is in

fact not needed). Define the (0, 2)-tensor field B on V by

Bij(q) := δij −
∑
k

Γkij(q)x
k(q).

Since ψ(p) = 0 we may assume V small enough that B is positive definite on V . In

addition, we may suppose that W ⊆ V × V . Set N(q) :=
∑n

i=1(xi(q))2, and let V (δ) :=

{q ∈ V | N(q) < δ}. Then if δ is so small that V (δ)× V (δ) ⊆ W , E is a homeomorphism

from Uδ := E−1(V (δ)× V (δ)) onto V (δ)× V (δ) and expg([0, 1] · Uδ) ⊆ expg(S) ⊆ V .

We will show that V (δ) is totally normal. For q ∈ V (δ) and Uq := Uδ ∩TqM , expgq = E|Uq :

Uq → V (δ) is a homeomorphism, so it is left to show that Uq is starshaped. Let v ∈ Uq.
Then σ : [0, 1] → M , σ(t) = expgq(tv) is a geodesic from q to σ(1) =: q̃ ∈ V (δ) that lies

entirely in V .

If σ is contained in V (δ) then tv ∈ Uq, ∀t ∈ [0, 1]: suppose to the contrary that t̄ :=

sup{t ∈ [0, 1]| [0, t] · v ∈ Uq} < 1. Then t̄v ∈ ∂Uq and since (expgq |Uq)−1(σ([0, 1])) b Uq,

there exists some t1 < t̄ such that Uq 3 t1v /∈ (expgq |Uq)−1(σ([0, 1])), a contradiction. Hence

the entire segment {tv| t ∈ [0, 1]} lies in Uq, so Uq is starshaped. It remains to show that

σ cannot leave V (δ). If it did, there would exist t0 ∈ [0, 1] such that N(σ(t0)) ≥ δ. Since

N(q), N(q̃) < δ, the function t 7→ N ◦σ has a maximum at some point t̃ ∈ (0, 1). However,

d2(N ◦ σ)

dt2
(t̃) = 2Bσ(t̃)((ψ ◦ σ)′(t̃), (ψ ◦ σ)′(t̃)) > 0 ,

a contradiction.



Chapter 2

Causality theory with C1,1 metrics

2.1 Introduction

Motivated by studies of the Einstein equations in low regularity [KR05], [KRS12], [M06],

there has recently been an increased interest in determining the minimal degree of regularity

of the metric under which the standard results of Lorentzian causality theory remain valid.

The standard references on general relativity and in particular, causality theory, assume

either smoothness of the spacetime metric, see e.g. [BEE96], [Kr99], [MS08], [ON83],

[Pen72], or C2-differentiability, see e.g. [Chr11], [Cl93], [HE73], [Se98], [GaSe05]. These

assumptions on the regularity of the metric may exclude some very important cases from the

physical point of view, such as shock waves or the matching of two different spacetimes over

a common boundary, see [Se98]. Several approaches to causal structures and discussions

on the problems that can occur when the regularity of the metric is below C2 have been

presented in [Chr11], [CG12], [Cl93], [HE73], [MS08], [Se98]. As emphasised by Senovilla

in [Se98], the main problem is the existence of normal coordinates and their regularity, as

well as the existence of totally normal (convex) neighborhoods. However, it has recently

been demonstrated in [Chr11] that the entire smooth causality theory can be preserved for

C2-metrics.

As already indicated, a reasonable candidate for the lowest degree of differentiability where

one could expect the standard results of causality theory to remain valid is given by metrics

of class C1,1 (contin- uously differentiable with locally Lipschitz first order derivatives, often

also denoted by C2−) since it is the threshold where one still has unique solvability of the

geodesic equation. However, it is well-known that below C1,1 many standard properties fail

37
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to be true. In [HW51], Hartman and Wintner show that for metrics of Hölder regularity

C1,α with 0 < α < 1, radial geodesics may fail to be minimizing between any two points

that they contain. Also, in [CG12], Chrusciel and Grant established the existence of so-

called ‘bubbling metrics’, which are of C0,α regularity, 0 < α < 1, whose light-cones have

nonempty interior, and for whom the push-up principle is no longer true. In addition, for

metrics which are merely continuous it is still unknown whether or not the timelike futures

remain open.

As already explained in the preceding chapter, the fundamental tool for studying local

causality is the exponential map. More precisely, using approximation techniques and

methods from comparison geometry, we showed that the exponential map retains its maxi-

mal possible regularity (see Section 1.4). Hence our next goal is to develop the key elements

of local causality theory for C1,1-Lorentzian metrics, essentially based on [KSSV14]. We

will then further develop causality theory following the proofs given in [Chr11], [ON83].

However, an alternative approach to causality theory for C1,1-Lorentzian metrics by E.

Minguzzi has recently appeared in [Min13]. As already indicated in Section 1.6, this pa-

per establishes that expp is a bi-Lipschitz homeomorphism, and in addition shows that

the map E (see Section 1.3) is a bi-Lipschitz homeomorphism on a neighborhood of the

zero-section in TM and is strongly differentiable over this zero section [Min13, Th. 1.11].

In this work, the required properties of the exponential map are derived from a careful

analysis of the corresponding ODE problem based on Picard-Lindelöf approximations, as

well as from an inverse function theorem for Lipschitz maps. In [Min13] the author also

establishes the Gauss Lemma and develops the essential elements of C1,1-causality, thereby

obtaining many of the results that are also contained in this chapter, some even in greater

generality.

Nevertheless, our approach and the one presented in [Min13] nicely complement each other:

Our methods are a direct continuation of the regularization approach of P. Chrusciel and J.

Grant ([CG12]) and are completely independent from those employed in [Min13]. The basic

idea is to approximate a given metric of low regularity (which may be as low as C0) by two

nets of smooth metrics ǧε and ĝε whose light cones sandwich those of g. We then continue

the line of argument of [CG12, KSS14] to establish the key results of causality theory for a

C1,1-metric. The advantage of these methods is that they quite easily adapt to regularity

below C1,1, which as far as we can see is the natural lower bound for the applicability of

those employed in [Min13]. As an example, we note that the push-up lemmas from [CG12],

cf. Prop. 2.3.14 and 2.3.15 below, in fact even hold for C0,1-metrics (or, more generally, for
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causally plain C0-metrics), whereas the corresponding results in [Min13, Sec. 1.4] require

the metric to be C1,1. Moreover, the regularization approach adopted here, together with

methods from Lorentzian comparison geometry as used in [CleF08] and [KSS14], will allow

us to establish the Hawking singularity theorem for C1,1-metrics, see Chapter 4.

2.2 Regularization techniques

As already mentioned, a fundamental tool in our approach is approximating a given metric

of regularity C1,1 by a net gε of C∞-metrics, in the following sense:

Remark 2.2.1. We cover M by a countable and locally finite collection of relatively compact

chart neighborhoods and denote the corresponding charts by (Ui, ψi) (i ∈ N). Let (ζi)i be

a subordinate partition of unity with supp(ζi) b Ui for all i and choose a family of cut-off

functions (χi)i ∈ D(Ui) with χi ≡ 1 on a neighborhood of supp(ζi). Finally, let ρ ∈ D(Rn)

be a test function with unit integral and define the standard mollifier ρε(x) := ε−nρ
(
x
ε

)
(ε > 0). Then denoting by f∗ (respectively f ∗) push-forward (respectively pullback) under

a map f , the following formula defines a family (gε)ε of smooth sections of T 0
2 (M)

gε :=
∑
i

χi ψ
∗
i

((
ψi ∗(ζi g)

)
∗ ρε

)
which satisfies

(i) gε converges to g in the C1-topology as ε→ 0, and

(ii) the second derivatives of gε are bounded, uniformly in ε, on compact sets.

On any compact subset of M , therefore, for ε sufficiently small the gε form a family of

pseudo-Riemannian metrics of the same signature as g whose Riemannian curvature tensors

Rε are bounded uniformly in ε.

Observe that the above procedure can be applied even to distributional sections of any

vector bundle E → M (using the corresponding vector bundle charts) and that the usual

convergence properties of smoothings via convolution are preserved.

As in the preceding chapter, we will write expgεp to distinguish the exponential maps stem-

ming from metrics gε. For brevity we will drop this superscript for the C1,1-metric g itself,



40 CHAPTER 2. CAUSALITY THEORY WITH C1,1 METRICS

though. We shall need the following properties of the exponential maps corresponding to

an approximating net as above:

Lemma 2.2.2. Let g be a C1,1-pseudo-Riemannian metric on M and let gε be a net of

smooth pseudo-Riemannian metrics that satisfy conditions (i) and (ii) of Remark 2.2.1.

Then any p ∈M has a basis of normal neighborhoods U such that, with expp : Ũ → U , all

expgεp are diffeomorphisms with domain Ũ for ε sufficiently small. Moreover, the inverse

maps (expgεp )−1 also are defined on a common neighborhood of p for ε small, and converge

locally uniformly to exp−1
p .

Proof. The claims about the common domains of expgεp , respectively of (expgεp )−1 follow

from Lemma 1.4.4 and Lemma 1.4.9. To obtain the convergence result, we first note that

without loss of generality, given a common domain V of the (expgεp )−1 for ε < ε0, we

may assume that
⋃
ε<ε0

(expgεp )−1(V ) is relatively compact in Ũ : this follows from the fact

that the maps (expgεp )−1 are Lipschitz, uniformly in ε (see the argument following Lemma

1.4.11).

Now if (expgεp )−1 did not converge uniformly to exp−1
p on some compact subset of V then

by our compactness assumptions we could find a sequence qk in V converging to some

q ∈ V and a sequence εk ↘ 0 such that wk := (exp
gεk
p )−1(qk) → w 6= exp−1

p (q). But

since (expgεp ) → expp locally uniformly, we arrive at qk = exp
gεk
p (wk) → expp(w) 6= q, a

contradiction.

In the particular case of g being Lorentzian, a more sophisticated approximation procedure,

adapted to the causal structure of g, was given in [CG12, Prop. 1.2].

To formulate this result, we first recall that a space-time is a time-oriented Lorentzian

manifold, with time-orientation determined by some continuous time-like vector field. In

what follows, all Lorentzian manifolds will be supposed to be time-oriented. Also we recall

from [CG12] that for two Lorentzian metrics g, h, we say that h has strictly wider light

cones than g, denoted by g ≺ h, if for any tangent vector X 6= 0, g(X,X) ≤ 0 implies that

h(X,X) < 0.

We will also need the following technical tools:

Lemma 2.2.3. Let (Km) be an exhaustive sequence of compact subsets of a manifold M

(Km ⊆ K◦m+1, M =
⋃
mKm), and let ε1 ≥ ε2 ≥ · · · > 0 be given. Then there exists some

ψ ∈ C∞(M) such that 0 < ψ(p) ≤ εm for p ∈ Km \K◦m−1 (where K−1 := ∅).
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Proof. See, e.g., [GKOS01, Lemma 2.7.3].

Lemma 2.2.4. Let M , N be manifolds, and set I := (0,∞). Let u : I ×M → N be a

smooth map and let (P) be a property attributable to values u(ε, p), satisfying:

(i) For any K b M there exists some εK > 0 such that (P) holds for all p ∈ K and

ε < εK.

(ii) (P) is stable with respect to decreasing K and ε: if u(ε, p) satisfies (P) for all p ∈
K b M and all ε less than some εK > 0 then for any compact set K ′ ⊆ K and any

εK′ ≤ εK, u satisfies (P) on K ′ for all ε ≤ εK′.

Then there exists a smooth map ũ : I ×M → N such that (P) holds for all ũ(ε, p) (ε ∈ I,

p ∈ M) and for each K b M there exists some εK ∈ I such that ũ(ε, p) = u(ε, p) for all

(ε, p) ∈ (0, εK ]×K.

Proof. See [HKS12, Lemma 4.3].

Based on these auxiliary results, we can prove the following refined version of [CG12, Prop.

1.2]:

Proposition 2.2.5. Let (M, g) be a space-time with a continuous Lorentzian metric, and h

some smooth background Riemannian metric on M . Then for any ε > 0, there exist smooth

Lorentzian metrics ǧε and ĝε on M such that ǧε ≺ g ≺ ĝε and dh(ǧε, g) + dh(ĝε, g) < ε,

where

dh(g1, g2) := sup
06=X,Y ∈TM

g1(X, Y )− g2(X, Y )

‖X‖h‖Y ‖h
.

Moreover, ĝε and ǧε depend smoothly on ε, and if g ∈ C1,1 then ǧε and ĝε additionally

satisfy (i) and (ii) from Rem. 2.2.1.

Proof. First we use time-orientation to obtain a continuous timelike one-form ω̃ (the g-

metric equivalent of a continuous timelike vector field). Using the smoothing procedure

of Rem. 2.2.1, on each Ui we can pick εi > 0 so small that ω̃εi is timelike on Ui. Then

ω :=
∑

i ζiω̃εi is a smooth timelike one-form on M . By compactness we obtain on every Ui

a constant ci > 0 such that

|ω(X)| ≥ ci for all g-causal vector fields X with ‖X‖h = 1. (2.1)
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Next we set on each Ui and for η > 0 and λ < 0

ĝiη,λ = giη + λω ⊗ ω, (2.2)

where giη is as in Remark 2.2.1 (set ε := η there and giη := gη|Ui). Let Λk (k ∈ N)

be a compact exhaustion of (−∞, 0). For each k, there exists some ηk > 0 such that

ηk < minλ∈Λk |λ|, ηk > ηk+1 for all k, and

|giη(X,X)− g(X,X)| ≤ |λ| c
2
i

2
(2.3)

for all g-causal vector fields X on Ui with ‖X‖h = 1, all λ ∈ Λk, and all 0 < η ≤ ηk. Thus by

Lemma 2.2.3 there exists a smooth function λ 7→ η(λ, i) on (−∞, 0) with 0 < η(λ, i) ≤ |λ|
and such that (2.3) holds for all g-causal vector fields X on Ui with ‖X‖h = 1, all λ, and

all 0 < η ≤ η(λ, i).

Combining (2.1) with (2.3) we obtain

ĝiη,λ(X,X) = g(X,X) + (giη − g)(X,X) + λω(X)2 ≤ 0 +
(
|λ|c

2
i

2
+ λc2

i

)
‖X‖2

h < 0,

for all g-causal X and hence g ≺ ĝiη,λ for all λ < 0 and 0 < η ≤ η(λ, i).

Given a compact exhaustion Ek (k ∈ N) of (0,∞), for each k there exists some λk < 0

such that |λk| < minε∈Ek ε, λk < λk+1 for all k, and

dUi(ĝ
i
η(λ,i),λ, g) := sup

0 6=X,Y ∈TUi

|ĝiη(λ,i),λ(X, Y )− g(X, Y )|
‖X‖h‖Y ‖h

<
ε

2i+1
.

for all ε ∈ Ek and all λk ≤ λ < 0. Again by Lemma 2.2.3 we obtain a smooth map

(0,∞)→ (−∞, 0), ε→ λi(ε) such that |λi(ε)| < ε for all ε, and dUi(ĝ
i
η(λi(ε),i),λi(ε)

, g) < ε
2i+1

for all ε > 0. We now consider the smooth symmetric (0, 2)-tensor field on M ,

gε :=
∑
i

χiĝ
i
η(λi(ε),i),λi(ε)

.

By construction, (ε, p) 7→ gε(p) is smooth, and gε converges to g locally uniformly as ε→ 0.

Therefore, for any K b M there exists some εK such that for all 0 < ε < εK , gε is of the

same signature as g, hence a Lorentzian metric on K, with strictly wider lightcones than

g. We are thus in a position to apply Lemma 2.2.4 to obtain a smooth map (ε, p) 7→ ĝε(p)
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such that for each fixed ε, ĝε is a globally defined Lorentzian metric which on any given

K bM coincides with gε for sufficiently small ε.

Then dh(ĝε, g) < ε/2, and ε → 0 implies λi(ε) → 0 and a fortiori η(λi(ε), i) → 0 for each

i ∈ N.

From this, by virtue of (2.2), (i) and (ii) of Remark 2.2.1 hold for ĝε if g ∈ C1,1.

The approximation ǧε is constructed analogously choosing λ > 0.

Remark 2.2.6. (i) From Rem. 2.2.1 and the above proof it follows that, given a Lorentzian

metric of some prescribed regularity (e.g., Sobolev, Hölder, etc.), the inner and outer

regularizations ǧε and ĝε have the same convergence to g as regularizations by con-

volution do locally.

(ii) If g is a metric of general pseudo-Riemannian signature, then since gε in Rem. 2.2.1

depends smoothly on ε, also in this case an application of Lemma 2.2.4 allows one

to produce regularizations g̃ε that are pseudo-Riemannian metrics on all of M of the

same signature as g and satisfy (i) and (ii) from that remark.

Next we wish to prove the Gauss Lemma. In order to proceed, we need to show the

following:

Lemma 2.2.7. Let g be a C1,1-pseudo-Riemannian metric on M , p ∈M , and let f(t, s) :=

expp(t(v+sw)), for t ∈ I, s ∈ J , where I and J are intervals around 0. Then ∂s∂tf(t, s) =

∂t∂sf(t, s) in L∞loc(I × J).

Proof. Without loss of generality, we may assume M = Rn. We start out by rewriting the

geodesic equation as a first order system:

dxk

dt
= yk(t)

dyk

dt
= −Γkg,ij(x(t))yi(t)yj(t)

(2.4)

such that x(0) = x0, y(0) = y0 and let v0 := (x0, y0). Then ‖yk(t, v0) − yk(t, v1)‖L∞(I) ≤
L‖v0 − v1‖ for some L > 0. Hence ‖yk(., v0) − yk(., v1)‖L∞(I) ≤ L‖v0 − v1‖ and there-

fore v0 7→ yk(., v0) ∈ Lip(R2n, C0(I,Rn)). Analogously it follows that v0 7→ xk(., v0) ∈
Lip(R2n, C0(I,Rn)) thus implying s 7→ f(., s) ∈ Lip(J,C1(I,Rn)).
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Similarly, using the fact that the right-hand side of (2.4) is Lipschitz, we obtain:

‖ẏk(t, v0)− ẏk(t, v1)‖ ≤ L̃‖yk(t, v0)− yk(t, v1)‖ ≤ LL̃‖v0 − v1‖.

From this it follows that s 7→ ft(., s) ∈ Lip(J,C1(I,Rn)) and therefore s 7→ f(., s) ∈
Lip(J,C2(I,Rn)).

We next use the Radon-Nikodym property (see e.g. [BeLi00]): A Banach space E has the

Radon-Nikodym property (RNP) if every Lipschitz map α : R→ E is differentiable almost

everywhere. C2(I,Rn) does not have the RNP but every W k,p does since it is reflexive (cf.

[Aj13, Section 7], [BePe96]). Since ∀p, C2(I,Rn) can be continuously embedded in W 2,p(I),

the map s 7→ f(., s) ∈ Lip(J,W 2,p(I)) for all p hence s 7→ ∂sf(., s) ∈ L∞(J,W 2,p(I)). For

p > 2, by the Sobolev embedding of W 2,p(I) into C1(I,Rn), the map s 7→ ∂sf(., s) ∈
L∞(J,C1(I,Rn)) for almost all s and ‖∂sf(., s)‖C1(I,Rn) ≤ L, L > 0. Hence for almost all

s and for all t, (thus for almost all (t, s)), ∂t∂sf(t, s) exists thus ‖∂t∂sf(t, s)‖L∞(I×J) ≤ L

so ∂t∂sf(t, s) ∈ L∞(I × J).

Similarly, since s 7→ f(., s) ∈ Lip(J,C2(I,Rn)), it follows that ∀s, ∀t, ∂tf(t, s) exists and

s 7→ ∂tf(., s) ∈ Lip(J,C1(I,Rn)) ⊆ Lip(J,W 1,p(I)). Now the space W 1,p has the RNP

thus for almost all s and for all t, ∂s∂tf(t, s) ∈ L∞(J,W 1,p(I)). For p > 2, W 1,p(I)

can be embedded in C0(I,Rn) thus for almost all (t, s), s 7→ ∂s∂tf(t, s) exists and s 7→
∂s∂tf(t, s) ∈ L∞(J,C0(I,Rn)) ⊆ L∞(I × J).

Therefore ∂t∂sf(t, s) and ∂s∂tf(t, s) exist for almost all (t, s) ∈ I × J and ∂s∂tf(t, s),

∂s∂tf(t, s) ∈ L∞(I×J) ⊆ L1
loc(I×J) ⊆ D ′(I×J). Thus ∂s∂tf = ∂t∂sf almost everywhere.

Remark 2.2.8. We will define the Levi-Civita connection of a C1,1 metric g via local coor-

dinate expressions, namely:

∇Xi∂i(Y
i∂j) := X i

(
∂Y k

∂X i
+ ΓkijY

j

)
∂k,

X, Y ∈ X(M). This is well defined hence all the properties of the Levi-Civita connection

hold true as they can be expressed in local terms that are identical to the ones in the

smooth case and they also remain true for vector fields X, Y, Z that are Lipschitz along a

curve since they are still differentiable almost everywhere.
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In particular, we have

∂igjk = Γmijgmk + Γmikgmj.

Now let t 7→ α(t) be a Lipschitz curve and let Z : I → TM be Lipschitz such that π◦Z = α.

We set

Z ′(t) :=
∑
k

(
dZk

dt
+
∑
i,j

Γkij(α(t))
dαj

dt
Zi(t)

)
∂k|α(t)

hence Z ′ ∈ L∞loc(I, TM). Thus the usual properties of X 7→ X ′ hold and in particular,

〈X, Y 〉′ = 〈X ′, Y 〉+ 〈X, Y ′〉 (2.5)

holds almost everywhere for X, Y ∈ XLip(α).

Theorem 2.2.9. (The Gauss Lemma) Let g be a C1,1-pseudo-Riemannian metric on M ,

and let p ∈ M . Then p possesses a basis of normal neighborhoods U with the following

properties: expp : Ũ → U is a bi-Lipschitz homeomorphism, where Ũ is an open star-shaped

neighborhood of 0 in TpM . Moreover, for almost all x ∈ Ũ , if vx, wx ∈ Tx(TpM) and vx is

radial, then

〈Tx expp(vx), Tx expp(wx)〉 = 〈vx, wx〉.

Proof. Take U , Ũ as in Lemma 2.2.2 and let x ∈ Ũ be such that Tx expp exists. By

bilinearity, we may assume that x = vx = v and wx = w. Let f(t, s) := expp(t(v + sw)).

Then s 7→ f(., s) ∈ Lip([ε, ε], C2([0, 1],M)). We have that f(t, 0) = expp(tv) thus ft(1, 0) =

Tv expp(v) and f(1, s) = expp(v + sw) so since v is such that Tv expp exists, by the chain

rule we have fs(1, 0) = Tv expp(w). It remains to show that 〈ft(1, 0), fs(1, 0)〉 = 〈v, w〉.
Since t 7→ f(t, s) is a geodesic with initial velocity v+ sw, ftt = 0 hence for some constant

C, using (2.5) we obtain:

〈ft, ft〉 = C = 〈ft(0, s), ft(0, s)〉 = 〈v + sw, v + sw〉.

By Lemma 2.2.7 and again by (2.5),

∂t〈fs, ft〉 = 〈fst, ft〉+ 〈fs, ftt〉 = 〈fts, ft〉 =
1

2
∂s〈ft, ft〉

=
1

2
∂s(〈v + sw, v + sw〉) = 〈v, w〉+ s〈w,w〉.

Thus ∂t〈fs, ft〉(t, 0) = 〈v, w〉 for all t.



46 CHAPTER 2. CAUSALITY THEORY WITH C1,1 METRICS

We have f(0, s) = expp(0) = p for all s hence fs(0, 0) = 0 and 〈fs, ft〉(0, 0) = 0. Therefore,

〈fs, ft〉(t, 0) = t〈v, w〉 and for t = 1, 〈ft(1, 0), fs(1, 0)〉 = 〈v, w〉.

2.3 Local causality theory for C1,1-metrics

A signal can be sent between two points of a spacetime only if they can be joined by a

causal curve. Therefore by causality we refer to the general question of which points in a

Lorentz manifold can be joined by causal curves. This relativistically means, which events

influence or can be influenced by a given event. As in [Chr11] we will base our approach

to causality theory on locally Lipschitz curves: fix a smooth complete Riemannian metric

h (such a metric always exists, cf. [NO61]) and denote the corresponding distance function

by dh. Recall that a curve α : I → M is said to be locally Lipschitz if for every K b I

there is a constant C(K) such that

∀t1, t2 ∈ K dh(α(t1), α(t2)) ≤ C(K)|t1 − t2|.

The class of locally Lipschitz curves is independent on the choice of the background Rie-

mannian metric h (this follows from the proof of [Chr11, Prop. 2.3.1]):

Proposition 2.3.1. Let h1 and h2 be two complete Riemannian metrics on M . Then a

curve α : I → M is locally Lipschitz with respect to h1 if and only if it is locally Lipschitz

with respect to h2.

Proof. For K b I, α(K) is compact. Let Li, i = 1, 2 denote the hi-length of α and set

Ki :=
⋃
t∈K

Bhi(α(t), Li)

where Bhi(p, r) is a geodesic ball with respect to the metric hi. Then the sets Ki are

relatively compact. The sets K̃i ⊂ TM of hi-unit vectors over Ki are relatively compact

as well. Hence there exists a constant CK such that for all v ∈ TpM, p ∈ Ki, we have

C−1
K h1(v, v) ≤ h2(v, v) ≤ CKh1(v, v).
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Let αi denote any hi-minimizing geodesic between α(t1) and α(t2). Then

∀ t1, t2 ∈ K, αi ⊂ Ki.

(It is contained in Bhi(α(t), Li) since the hi-length of α is Li and αi is minimizing hi-

geodesic). It follows that

dh2(α(t1), α(t2)) =

∫ L2(α2)

0

(h2(α′2(t), α′2(t)))
1
2dt

≥ C−1
k

∫ L2(α2)

0

(h1(α′2(t), α′2(t)))
1
2dt

≥ C−1
k inf

α

∫ Li(α)

0

(h1(α′(t), α′(t)))
1
2dt

= C−1
k

∫ L1(α1)

0

(h1(α′1(t), α′1(t)))
1
2dt

= C−1
k dh1(α(t1), α(t2)).

From symmetry with respect to the interchange of h1 and h2 we conclude:

C−1
k dh1(α(t1), α(t2)) ≤ dh2(α(t1), α(t2)) ≤ Ckdh1(α(t1), α(t2))

∀t1, t2 ∈ K and the result follows.

Any locally Lipschitz curve α is differentiable almost everywhere by Rademacher’s theorem,

cf. [EvGa92]. We call α timelike, causal, spacelike or null, if α′(t) has the corresponding

property almost everywhere. If the time-orientation of M is determined by a continu-

ous timelike vector field X then a causal curve α is called future- resp. past-directed if

〈X(α(t)), α′(t)〉 < 0 resp. > 0 almost everywhere.

An important property of locally Lipschitz curves is that they can be parametrized with

respect to the h-arclength. Consider a causal curve α : [a, b)→ M and suppose that α′ is

non-zero almost everywhere. By Rademacher’s theorem, the integral

s(t) =

∫ t

a

|α′|h(u)du

is well-defined, s(t) is a continuous strictly increasing function of t so s : I → s(I) is

bijective and s′(t) = |γ′(t)|h almost everywhere. Now define α̃ := α ◦ s−1. The function
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s−1 is also strictly increasing hence differentiable almost everywhere so we have:

α̃′(t) = α′(s−1(t))(s−1)′(t)

= α′(s−1(t))
1

s′(s−1(t))

= α′(s−1(t))
1

|α′(s−1(t))|h

thus |α̃′(t)|h = 1 almost everywhere. Moreover, α̃ is Lipschitz with Lipschitz constant

smaller or equal to 1:

We claim that dh(α̃(t1), α̃(t2)) ≤ |t1 − t2|. For t1 < t2 and taking the infimum over the

curves α̂ that start at α(t1) and end at α(t2), we calculate:

t2 − t1 =

∫ t2

t1

dt

=

∫ t2

t1

√
〈α̃′, α̃′〉hdt

≥ inf
α̂

∫
α̂

√
〈α̂′, α̂′〉hdt = dh(α̃(t1), α̃(t2)).

Remark 2.3.2. This approach to causal curves differs from that in [Min13], where the

corresponding curves are required to be C1 (see, however, Cor. 2.3.11 below). As one of

the key tools when studying causality theory is taking limits of causal curves, considering

piecewise C1 curves leads to many difficulties. Namely, the limit of such curves will rarely be

piecewise C1, also causing timelike and causal curves to have completely different properties

in which case, separate proofs need to be given. The approach based on Lipschitz curves

overcomes these problems.

With these notions we have:

Definition 2.3.3. Let g be a C0-Lorentzian metric on M . For p ∈ A ⊆ M we define the

relative chronological, respectively causal future of p in A by (cf. [Chr11, 2.4]):

I+(p,A) := {q ∈ A| there exists a future directed timelike curve in A from p to q }

J+(p,A) := {q ∈ A| there exists a future directed causal curve in A from p to q } ∪ A.

For B ⊆ A we set I+(B,A) :=
⋃
p∈B I

+(p,A) and analogously for J+(B,A). We set

I+(p) := I+(p,M). Replacing ‘future directed’ by ‘past-directed’ we obtain the corre-
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sponding definitions of the chronological respectively causal pasts I−, J−.

These sets are of a very simple structure in the case of Minkowski spacetime Rn
1 . Given

p ∈ Rn
1 , future directed null rays emanating from p constitute the future cone at p, namely,

∂I+(p) = J+(p)\I+(p). The chronological future I+(p) is the set of all the points inside the

cone and the causal future J+(p) consists of p, the points inside and on the cone, see Figure

2.3. One of the most important results of causality theory, see Theorem 2.3.10, shows that

locally, any Lorentzian manifold has the same structure as the Minkowski spacetime.

Figure 2.1: The light cone at p

Note that, even though the class of locally Lipschitz timelike curves is considerably wider

than the class of piecewise C1 curves, the resulting sets are the same as the standard ones,

cf. 2.3.11. Below we will formulate all results for I+, J+. By symmetry, the corresponding

claims for chronological or causal pasts follow in the same way.

As usual, for p, q ∈ M we write p < q, respectively p � q, if there is a future directed

causal, respectively timelike, curve from p to q. By p ≤ q we mean p = q or p < q.

The following result shows some elementary properties of futures and pasts (cf. [Chr11,

Prop. 2.4.2]):

Proposition 2.3.4. Let g be a continuous Lorentzian metric on M . Then:
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1. I+(U) ⊂ J+(U)

2. p ∈ I+(q)⇔ q ∈ I−(p)

3. V ⊂ I+(U)⇒ I+(V ) ⊂ I+(U)

Similar properties hold when I+ is replaced with J+.

Proof. 1. is clear.

2. If [0, 1] 3 t→ α(t) is a future directed causal curve from q to p, then [0, 1] 3 t→ α(1−t)
is a past directed causal curve from p to q.

3. Consider αi : [0, 1] → M, i = 1, 2, two causal curves such that α1(1) = α2(0). The

concatenation α1 ∪ α2 is given by:

(α1 ∪ α2)(t) =

{
α1(t), t ∈ [0, 1],

α2(t− 1), t ∈ [1, 2].

Now let r ∈ I+(V ). Then there exists q ∈ V and a future directed timelike curve α2 from

q to r. Since V ⊂ I+(U), there exists a future directed timelike curve α1 from some point

p ∈ U to q. Then the curve α1 ∪ α2 is a future directed timelike curve from U to r so

r ∈ I+(U).

We now recall some definitions that were introduced in [CG12] and results there obtained

which will be of use in this work.

Definition 2.3.5. A locally Lipschitz curve α : [0, 1]→M is said to be locally uniformly

timelike (l.u.-timelike) with respect to the C0-metric g if there exists a smooth Lorentzian

metric ǧ ≺ g such that ǧ(α′, α′) < 0 almost everywhere. Then for p ∈ A ⊆M

Ǐ+
g (p,A) := {q ∈ A| there exists a future directed l.u.-timelike curve in A from p to q}.

Thus Ǐ+
g (A) =

⋃
ǧ≺g I

+
ǧ (A), hence it is open ([CG12, Prop. 1.4]). The following definition

([CG12, Def. 1.8]) introduces a highly useful substitute for normal coordinates in the

context of metrics of low regularity:
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Definition 2.3.6. Let (M, g) be a smooth Lorentzian manifold with continuous metric g

and let p ∈M . A relatively compact open subset U of M is called a cylindrical neighbor-

hood of p ∈ U if there exists a smooth chart (ϕ,U), ϕ = (x0, ..., xn−1) with ϕ(U) = I × V ,

I an interval around 0 in R and V open in Rn−1, such that:

1. ∂
∂x0

is timelike and ∂
∂xi

, i = 1, ..., n− 1, are spacelike,

2. For q ∈ U, v ∈ TqM , if gq(v, v) = 0 then |v0|
‖~v‖ ∈ (1

2
, 2) (where Tqϕ(v) = (v0, ~v), and

‖ ‖ is the Euclidean norm on Rn−1),

3. (ϕ∗g)ϕ(p) = η (the Minkowski metric).

By [CG12, Prop. 1.10], every point in a spacetime with continuous metric possesses a

basis of cylindrical neighborhoods. According to [CG12, Def. 1.16], a Lorentzian manifold

M with C0-metric g is called causally plain if for every p ∈ M there exists a cylindrical

neighborhood U of p such that ∂Ǐ±(p, U) = ∂J±(p, U). This condition excludes causally

‘pathological’ behaviour (bubbling metrics). By [CG12, Cor. 1.17], we have:

Proposition 2.3.7. Let g be a C0,1-Lorentzian metric on M. Then (M, g) is causally plain.

The most important property of causally plain Lorentzian manifolds for our purposes is

given in the following result ([CG12, Prop. 1.21]).

Proposition 2.3.8. Let g be a continuous, causally plain Lorentzian metric and let A ⊆
M . Then

I±(A) = Ǐ±(A). (2.6)

Returning now to our main object of study, for the remainder of this section g will de-

note a C1,1-Lorentzian metric. Then in particular, g is causally plain by Prop. 2.3.7. To

analyze the local causality for g in terms of the exponential map we first introduce some

terminology. Let Ũ be a star-shaped neighborhood of 0 ∈ TpM such that expp : Ũ → U

is a bi-Lipschitz homeomorphism (Th. 1.4.2). On TpM we define the position vector field

P̃ : v 7→ vv and the quadratic form Q̃ : TpM → R, v 7→ gp(v, v). By P , Q we denote the

push-forwards of these maps via expp, i.e.,

P (q) := Texp−1
p (q) expp(P̃ (exp−1

p (q)))

Q(q) := Q̃(exp−1
p (q)).
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As expp is locally Lipschitz, P is an L∞loc-vector field on U , while Q is locally Lipschitz (see,

however, Rem. 2.3.9 below).

Let X be some smooth vector field on U and denote by X̃ its pullback exp∗pX (note that

Tv expp is invertible for almost every v ∈ Ũ). Then by Th. 2.2.9, for almost every q ∈ U
we have, setting q̃ := exp−1

p (q):

〈gradQ(q), X(q)〉 = X(Q)(q) = X̃(Q̃)(q̃) = 〈gradQ̃, X̃〉|q̃ = 2〈P̃ , X̃〉|q̃ = 2〈P,X〉|q.

It follows that gradQ = 2P .

Remark 2.3.9. It is proved in [Min13] that the regularity of both P and Q is better than

would be expected from the above definitions. Indeed, [Min13, Prop. 2.3] even shows

that P , as a function of (p, q) is strongly differentiable on a neighborhood of the diagonal

in M ×M , and by [Min13, Th. 1.18], Q is in fact C1,1 as a function of (p, q). We will

however not make use of these results in what follows and only remark that slightly weaker

regularity properties of P and Q (as functions of q only) can also be obtained directly

from standard ODE-theory. In fact, setting αv(t) := expp(tv) for v ∈ TpM , it follows

that P (q) = α′vq(1), where vq := exp−1
p (q). Since t 7→ (αv(t), α

′
v(t)) is the solution of the

first-order system corresponding to the geodesic equation with initial value (p, v), and since

the right-hand side of this system is Lipschitz-continuous, [Amann90, Th. 8.4] shows that

v 7→ α′v(1) is Lipschitz-continuous. Since also q 7→ vq is Lipschitz, we conclude that P is

Lipschitz-continuous. From this, by the above calculation, it follows that Q is C1,1.

As in the smooth case, we may use expp to introduce normal coordinates. To this end,

let e0, . . . , en be an orthonormal basis of TpM and for q ∈ U set xi(q)ei := exp−1
p (q).

The coordinates xi then are of the same regularity as exp−1
p , i.e., locally Lipschitz. The

coordinate vector fields ∂
∂xi

∣∣
q

= Texp−1
p (q) expp(e

i) themselves are in L∞loc. Note, however,

that in the C1,1-setting we can no longer use the relation gp = η (the Minkowski-metric

in the xi-coordinates), since it is not clear a priori that expp is differentiable at 0 with

T0 expp = idTpM
1. Due to the additional loss in regularity it is also usually not advisable

to write the metric in terms of the exponential chart (the metric coefficients in these

coordinates would only be L∞loc).

The following is the main result on the local causality in normal neighborhoods.

1See, however, [Min13] where it is shown that indeed expp is even strongly differentiable at 0 with
derivative idTpM .
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Theorem 2.3.10. Let g be a C1,1-Lorentzian metric, and let p ∈ M . Then p has a basis

of normal neighborhoods U , expp : Ũ → U a bi-Lipschitz homeomorphism, such that:

I+(p, U) = expp(I
+(0) ∩ Ũ)

J+(p, U) = expp(J
+(0) ∩ Ũ)

∂I+(p, U) = ∂J+(p, U) = expp(∂I
+(0) ∩ Ũ)

Here, I+(0) = {v ∈ TpM | Q̃(v) < 0}, and J+(0) = {v ∈ TpM | Q̃(v) ≤ 0}. In particular,

I+(p, U) (respectively J+(p, U)) is open (respectively closed) in U .

Proof. We first note that the third claim follows from the first two and the fact that

expp is a homeomorphism on U . For the proof of the first two claims we take a normal

neighborhood U that is contained in a cylindrical neighborhood of p. In addition, we pick

a regularizing net ĝε as in Prop. 2.2.5 and let U , Ũ as in Lemma 2.2.2 (fixing a suitable

ε0 > 0).

(⊇) Let v ∈ Ũ and let α := t 7→ expp(tv), t ∈ [0, 1]. Set αε(t) := expĝεp (tv). Then by

continuous dependence on initial data we have that αε → α in C1 (cf. Lemma 1.4.4).

Hence applying the smooth Gauss lemma for each ε it follows that for each t ∈ [0, 1] we

have

g(α′(t), α′(t)) = lim
ε→0

ĝε(α
′
ε(t), α

′
ε(t)) = lim

ε→0
(ĝε)p(v, v) = gp(v, v).

Also, time-orientation is respected by expp since both I(0) ∩ Ũ and I(p, U) (by [CG12,

Prop. 1.10]) have two connected components, and the positive x0-axis in Ũ is mapped to

I+(p, U).

(⊆): We denote the position vector fields and quadratic forms corresponding to ĝε by P̃ε,

Pε and Q̃ε, Qε, respectively.

If α : [0, 1]→ U is a future-directed causal curve in U emanating from p then α is timelike

with respect to each ĝε. Set β := (expp)
−1 ◦ α and βε := (expĝεp )−1 ◦ α. By [Chr11, Prop.

2.4.5], βε([0, 1]) ⊆ I+
ĝε(p)

(0) for all ε < ε0. Then by Lemma 2.2.2 we have that βε → β

uniformly, and that Q̃ε → Q̃ locally uniformly, so Q̃(β(t)) = lim Q̃ε(βε(t)) ≤ 0 for all

t ∈ [0, 1], and therefore β((0, 1]) ⊆ J+(0) ∩ Ũ . Together with the first part of the proof

it follows that expp(J
+(0) ∩ Ũ) = J+(p, U). Now assume that α is timelike. Then by

Prop. 2.3.8, α((0, 1]) ⊆ Ǐ+(p, U). This means that there exists a smooth metric ǧ ≺ g such

that α is ǧ-timelike. Let fǧ, fg denote the graphing functions of ∂I+
ǧ (p, U) and ∂J+(p, U),
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respectively (in a cylindrical chart, see [CG12, Prop. 1.10]). Then by [CG12, Prop. 1.10],

since α lies in I+
ǧ (p, U), it has to lie strictly above fǧ, hence also strictly above fg, and so

α((0, 1]) ∩ ∂J+(p, U) = ∅. But then, since expp is a homeomorphism on U , we have that

β((0, 1])∩ (∂J+(0)∩ Ũ) = β((0, 1])∩ exp−1
p (∂J+(p, U)) = exp−1

p (α((0, 1])∩ ∂J+(p, U)) = ∅

Hence β lies entirely in I+(0) ∩ Ũ , as claimed.

Corollary 2.3.11. Let U ⊆ M be open, p ∈ U . Then the sets I+(p, U), J+(p, U) remain

unchanged if, in Def. 2.3.3, Lipschitz curves are replaced by piecewise C1 curves, or in fact

by broken geodesics.

Proof. Let α : [0, 1] → U be a, say, future directed timelike Lipschitz curve in U . By

Th. 1.7.1 and Th. 2.3.10 we may cover α([0, 1]) by finitely many totally normal open sets

Ui ⊆ U , such that there exist 0 = t0 < · · · < tN = 1 with α([ti, ti+1]) ⊆ Ui+1 and

I+(α(ti), Ui) = expα(ti)
(I+(0) ∩ Ũi) for 0 ≤ i < N . Then the concatenation of the radial

geodesics in Ui connecting α(ti) with α(ti+1) gives a timelike broken geodesic from α(0) to

α(1) in U .

The existence of totally normal neighborhoods allows us to prove the following:

Corollary 2.3.12. If q ∈ I+(p) (resp. q ∈ J+(p)), then there exists a future directed

piecewise broken timelike (causal) geodesic from p to q.

Proof. Let q ∈ J+(p) and let α : [0, 1] → M be a future directed causal curve such that

α(0) = p and α(1) = q. Cover α by totally normal sets Ui, i ∈ N and let p1 ∈ U1. Since

U1 is totally normal, it is a normal neighborhood of each of its points, therefore a normal

neighborhood of p and p1. By definition, Ũ1 is a starshaped neighborhood of 0 ∈ TpM ,

such that expp |Ũ1
is a Lipschitz homeomorphism onto U1. Let q1 = exp−1

p (p1) ∈ Ũ1. The

ray ρ(t) = tq1, (0 ≤ t ≤ 1) lies in Ũ1 since Ũ1 is starshaped. Thus the geodesic segment

expp ◦ρ lies in U1 and runs from p to p1, so we have connected those points with a radial

geodesic. We repeat this procedure for points p1 and p2 ∈ U1 ∩U2 and later on, for pi and

pi+1 ∈ Ui ∩ Ui+1, so we get radial geodesics between each two of these points.

If α is timelike, all the segments are also timelike. Concatenating these segments, we obtain

the desired future directed piecewise broken geodesic from p to q.
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The following analogue of [Chr11, Cor. 2.4.10] provides more information about causal

curves intersecting the boundary of J+(p, U):

Corollary 2.3.13. Under the assumptions of Th. 2.3.10, suppose that α : [0, 1] → U

is causal and α(1) ∈ ∂J+(p, U). Then α lies entirely in ∂J+(p, U) and there exists a

reparametrization of α as a null-geodesic segment.

Proof. Suppose to the contrary that there exists t0 ∈ (0, 1) such that α(t0) ∈ I+(p, U).

Then there exists a future directed timelike curve γ from p to α(t0). Applying Prop. 2.3.15

to the concatenation γ ∪ α|[t0,1] it follows that there exists a future directed timelike curve

from p to α(1). But then α(1) ∈ I+(p, U), a contradiction. Thus α(t) ∈ ∂J+(p, U), ∀t ∈
[0, 1], implying that β(t) = exp−1

p ◦α(t) ∈ ∂J+(0), ∀t ∈ [0, 1], so Q̃(β(t)) = 0, ∀t ∈ [0, 1]

and for almost all t we have

0 =
d

dt
Q̃(β(t)) = gp(gradQ̃(β(t)), β′(t)) = gp(2P̃ (β(t)), β′(t)).

Hence β(t) is collinear with β′(t) almost everywhere, and it is easily seen that this implies

the existence of some v 6= 0, v ∈ ∂J+(0), and of some h : R → R such that β(t) = h(t)v.

The function h is locally Lipschitz since β is, and injective since α is (on every cylindrical

neighborhood there is a natural time function). Thus h is strictly monotonous, and in

fact strictly increasing since otherwise β would enter J−(0). Thus β′(t) = f(t)β(t) where

f(t) := h′(t)
h(t)
∈ L∞loc. From here we may argue exactly as in [Chr11, Cor. 2.4.10]: the

function r(s) :=
∫ s

0
f(τ) dτ is locally Lipschitz and strictly increasing, hence a bijection

from [0, 1] to some interval [0, r0]. Thus so is its inverse r → s(r), and we obtain β(s(r))′ =

β′(s(r))/f(s(r)) = β(s(r)) a.e., where the right hand side is even continuous. It follows

that in this parametrization, β is C1 and in fact is a straight line in the null cone, hence

α can be parametrized as a null-geodesic segment, as claimed.

The following result, called the push-up principle, is one of the essential tools in many

arguments of causality theory. In fact, together with the fact that accumulation curves of

causal curves are again causal (see Section 2.5), it is the main ingredient for developing

causality theory. Note that this result has recently been proved in [CG12] in greater

generality, namely for causally plain metrics (cf. [CG12, Lemma 1.22]) but for consistency

reasons we will include the proof for C1,1-metrics:

Proposition 2.3.14. Let p, q, r ∈ M with p ≤ q and q � r or p � q and q ≤ r. Then

p� r.
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Proof. It suffices to consider the case p < q � r. Let α : [0, 1] → M be causal and

future-directed from p to q and β : [0, 1] → M timelike future-directed from q to r.

Following [Chr11, Lemma 2.4.14], the strategy of proof is to ‘push up’ the concatenation

of α and β slightly to obtain a timelike connection of p and r. To this end, as in the

proof of Cor. 2.3.11 we cover α([0, 1]) by finitely many totally normal open sets Ui ⊆ U

(1 ≤ i ≤ N), such that there exist 0 = t0 < · · · < tN = 1 with α([ti, ti+1]) ⊆ Ui+1 and

I+(α(ti), U) = expα(ti)
(I+(0) ∩ Ũi) for 0 ≤ i < N .

Since β is non-null and intersects UN , by Th. 2.3.10 and Cor. 2.3.13 there exists a timelike

geodesic segment β1 from α(tN−1) to some point in β([0, 1]) ∩ UN . Next, we apply the

same reasoning to β1 to obtain a timelike geodesic segment from α(tN−2) to an element of

UN−1 lying on β1. Continuing in this way, after N − 1 steps we obtain by concatenation a

timelike future-directed curve connecting p and r.

Since the Ui in the proof of Prop. 2.3.14 can be chosen in any given neighborhood of the

concatenation of α and β, we obtain (cf. [CG12, Prop. 1.23] for causally plain metrics):

Corollary 2.3.15. Let α : [0, 1] → M be causal and future-directed from p to q. If there

exist t1 < t2 in [0, 1] such that α|[t1,t2] is timelike, then in any neighborhood of α there exists

a timelike future-directed curve from p to q.

Proposition 2.3.16. Let α be causal curve from p to q in (M, g) which is not a null

geodesic. Then there exists a timelike curve from p to q.

Proof. By Corollary 2.3.12 we may assume without loss of generality that α is a piecewise

broken geodesic. If one of the geodesics forming α is timelike, the result follows from the

previous Corollary. Consider now a piecewise broken null geodesic with a break point,

say p̃. Let a point q on α be in J−(p̃) and close enough to p̃ so that p̃ belongs to a

domain of normal coordinates U centered at q. Then points on α lying to the causal future

of p̃ are not in ∂J+(q, U) by Cor. 2.3.13 (since if they were, α would entirely lie in the

boundary and there would be a reparametrization of it so that it is a null geodesic segment

through q. Therefore, there would be no break points). Hence, they are in I+(q, U) and α

can be deformed within U to a timelike curve. The result follows now from the previous

Corollary.

Corollary 2.3.17. The relation � is open: if p � q then there exist neighborhoods V of

p and W of q such that p′ � q′ for all p′ ∈ V and q′ ∈ W . In particular, for any p ∈ M ,

I+(p) is open in M .
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Proof. Let α be a future-directed timelike curve from p to q and pick totally normal

neighborhoods Np, Nq of p, q as in Th. 2.3.10. Now let p′ ∈ Np and q′ ∈ Nq be points on

α. Then V := I−(p′, Np) and W := I+(q′, Nq) have the required property.

From this we immediately conclude:

Corollary 2.3.18. Let A ⊆ U ⊆M , where U is open. Then

I+(A,U) = I+(I+(A,U)) = I+(J+(A,U)) = J+(I+(A,U)) ⊆ J+(J+(A,U)) = J+(A,U)

We have already established that timelike futures are open. In Minkowski spacetime the

sets J±(p) are closed, with

I±(p) = J±(p). (2.7)

This need not be true in general:

Example 2.3.19. Let (M, g) be the two-dimensional Minkowski space-time R1,1 from which

a point, say (1, 1), has been removed. Taking p as the origin, it is easily seen that no causal

curve reaches the region after the point that has been deleted, which is represented by the

dashed line in Figure 2.3. Hence J+(p,M) is neither open nor closed and since I(p) stays

unchanged, (2.7) does not hold, i.e., J+(p) ( I+(p).

Figure 2.2: J+(p) not closed

Another straightforward consequence of Lemma 2.3.14 is the following property of J :

Corollary 2.3.20. For any p ∈M we have

J+(p) ⊂ I+(p).
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Proof. Let q ∈ J+(p) and consider a sequence of points ri ∈ I+(q) which accumulate at

q. Using the push-up principle (see Prop. 2.3.14), we obtain that ri ∈ I+(J+(p)) = I+(p)

hence q ∈ I+(p).

A consequence of Prop. 2.3.15 is that the causal future of any A ⊆ M consists (at most)

of A, I+(A) and of null-geodesics emanating from A:

Corollary 2.3.21. Let A ⊆ M and let α be a causal curve from some p ∈ A to some

q ∈ J+(A) \ I+(A). Then α is a null-geodesic that does not meet I+(A).

Proof. By Prop. 2.3.15, α has to be a null curve. Moreover, if α(t) ∈ I+(A) for some t then

for some a ∈ A we would have a� α(t) ≤ q, so q ∈ I+(A) by Prop. 2.3.14, a contradiction.

Covering α by totally normal neighborhoods as in Cor. 2.3.11 and applying Cor. 2.3.13

gives the claim.

Following [ON83, Lemma 14.2] we next give a more refined description of causality for

totally normal sets. For this, recall from the proof of Th. 1.7.1 that the map E : v 7→
(π(v), expπ(v)(v)) is a homeomorphism from some open neighborhood S of the zero section

in TM onto an open neighborhood W of the diagonal in M ×M . If U is totally normal

as in Th. 2.3.10 and such that U × U ⊆ W then the map U × U → TM , (p, q) 7→ −→pq :=

exp−1
p (q) = E−1(p, q) is continuous.

Proposition 2.3.22. Let U ⊆M be totally normal as in Th. 2.3.10.

(i) Let p, q ∈ U . Then q ∈ I+(p, U) (resp. ∈ J+(p, U)) if and only if −→pq is future-directed

timelike (resp. causal).

(ii) J+(p, U) is the closure of I+(p, U) relative to U .

(iii) The relation ≤ is closed in U × U .

(iv) If K is a compact subset of U and α : [0, b)→ K is causal, then α can be continuously

extended to [0, b].

Proof. (i) and (ii) are immediate from Th. 2.3.10.

(iii) Let pn ≤ qn, pn → p, qn → q. By (i), −−→pnqn is future-directed causal for all n. By

continuity (see Th. 1.7.1), therefore, 〈−→pq,−→pq〉 ≤ 0, so −→pq is future-directed causal as well.
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(iv) Let 0 < t1 < t2 < · · · → b. Since K is compact, α(ti) has an accumulation point p

and it remains to show that p is the only accumulation point. Suppose that q 6= p is also

an accumulation point. Choose a subsequence tik such that α(ti2k)→ p and α(ti2k+1
)→ q.

Then since α(ti2k) ≤ α(ti2k+1
) ≤ α(ti2k+2

), (iii) implies that p ≤ q ≤ p. By (i), then, −→pq
would be both future- and past-directed, which is impossible.

From this, with the same proof as in [ON83, Lemma 14.6] we obtain:

Corollary 2.3.23. Let A ⊆M . Then

(i) J+(A)◦ = I+(A).

(ii) J+(A) ⊆ I+(A).

(iii) J+(A) = I+(A) if and only if J+(A) is closed.

Finally, as in the smooth case, one may introduce a notion of causality also for general

continuous curves (cf. [HE73, p. 184], [Kr99, Def. 8.2.1]):

Definition 2.3.24. A continuous curve α : I → M is called future-directed causal (resp.

timelike) if for every t ∈ I there exists a totally normal neighborhood U of α(t) such that for

any s ∈ I with α(s) ∈ U and s > t, α(s) ∈ J+(α(t))\{α(t)} (resp. α(s) ∈ I+(α(t))\{α(t)}),
and analogously for s < t with J− resp. I−.

The proof of [Kr99, Lemma 8.2.1]) carries over to the C1,1-setting, showing that any con-

tinuous causal (resp. timelike) curve is locally Lipschitz.

Remark 2.3.25. While a continuous causal curve α need not be a causal Lipschitz curve

in the sense of our definition (cf. [Min13, Rem. 1.28]), it still follows that 〈α′(t), α′(t)〉 ≤ 0

almost everywhere (however, α′(t) might be 0).

To see this, consider first the case where g is smooth. Set p := α(t), pick a normal

neighborhood U around p and set β := exp−1
p ◦α. Then β′(t) = α′(t) and by Def. 2.3.24

and Th. 2.3.10, β(s) ∈ J+(0) for s > t small. Therefore, β′(t) ∈ J+(0), so 〈α′(t), α′(t)〉 ≤ 0.

In the general case, where g is only supposed to be C1,1, pick a regularization ĝε as in Prop.

2.2.5. Then ĝε(α
′(t), α′(t)) ≤ 0 for all ε by the above and letting ε→ 0 gives the claim.
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2.4 Extendible and inextendible curves

When studying causality and singularity theory, a very important notion is that of an

inextendible causal curve. As an object travels through spacetime it follows a future

directed causal curve. Intuitively, an object would travel for ”eternity” if the corresponding

causal curve associated to it ”goes on forever” into the future, i.e., is future inextendible.

Note that in the case of a spacetime having a ”hole”, for example M = R2
1 \ {0, 0}, one

can construct a future directed inextendible causal curve which comes arbitrarily close to

the hole as the time runs to infinity. For a curve that ”stops”, a natural question is if by

concatenation with another curve, it could be made inextendible. This section explains

that concept in more detail following [Chr11].

Definition 2.4.1. A future directed causal curve α : [a, b) → M is future extendible

provided there exists b < c ∈ R ∪ {∞} and a causal curve α̃ : [a, c)→M such that

α̃|[a,b) = α. (2.8)

Then α̃ is called an extension of α.

Definition 2.4.2. Let α : [a, b)→M be a future directed causal curve. A point p is called

a future end point of α if lims→b α(s) = p.

The curve α is said to be future inextendible if it is not future extendible. Notions of past

inextendibility, extendibility and past end points are defined analogously.

For a given future directed causal curve α : [a, b) → M with an end point p, the question

arises under which conditions it can be extended to a causal curve α̃ : [a, b] → M , such

that α̃|[a,b) = α and α̃(b) = p. One of the problems that can occur is that α̃ need not be

locally Lipschitz in general: [0, 1) 3 α(t) = (−
√

1− t, 0) ∈ R1
1 is locally Lipschitz on [0, 1)

but is not on [0, 1]. This is why we now fix an auxiliary complete Riemannian metric h and

denote by dh the corresponding distance function. Let α be a causal curve. We know that

α can be parametrized with respect to the h-arc-length, leading to a Lipschitz curve with

Lipschitz constant 1 (see the argument following Prop. 2.3.1). Then we have the following

result:

Lemma 2.4.3. Let α : [a, b)→M, b <∞, be a Lipschitz curve with an end point p. Then

α can be extended to a Lipschitz curve α̂ : [a, b]→M , with α̂ = p.
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Proof. From the condition that α is Lipschitz,

dh(α(t), α(t′)) ≤ L|t− t′|, ∀s ∈ [a, b), (2.9)

passing from t′ to b in that equation we obtain

dh(α(t), p) ≤ L|t− b|

hence α̂ is also Lipschitz.

Consider now α : [a, b)→M, b ∈ R ∪ {∞}. Then p is said to be an ω-limit point if there

exists a sequence tk → b such that α(tk)→ p. An end point is always an ω-limit point, but

the converse need not be true in general. For example, consider α(s) = exp(is) ∈ C, then

by setting sk = x+ 2πk, we see that every point exp(ix) ∈ S1 ⊂ C1 is an ω-limit point of

α. For Lipschitz curves and b < ∞, the notions of an end point and of an ω-limit point

coincide:

Lemma 2.4.4. Let α : [a, b)→M, b <∞ be a Lipschitz curve. Then every ω-limit point

of α is an end point of α. In particular, α has at most one ω-limit point.

Proof. Let p be an ω-limit point of α. By definition there exists a sequence ti → b such that

α(ti)→ p. Using (2.9) we obtain that dh(α(ti), α(t)) ≤ L|ti − t|. Since dh is a continuous

function of its arguments, letting i→∞, we have

dh(p, α(t)) ≤ L|b− t|,

so p is an end point of α. If exists, the end point is unique, hence the result.

Note that, since a locally Lipschitz curve is Lipschitz on a compact set, any extension α̃

is Lipschitz on the compact subset [a, b] of its domain of definition. But then by (2.8),

α̃|[a,b) is also Lipschitz. Hence, extendibility in the class of locally Lipschitz causal curves

forces a causal curve α : [a, b)→ M to be Lipschitz. This differs from the classical theory

where causality is based on piecewise smooth (C1) curves, since in that case, the resulting

extension need not be a piecewise smooth curve.

So far we have seen how a Lipschitz curve can be extended by adding an end point. But

when this is the case, it easily follows that it can also be extended as a strictly longer

curve:
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Lemma 2.4.5. A Lipschitz curve α : [a, b) → M, b < ∞, is extendible if and only if it

has an end point.

Proof. Let α̂ : [a, b] → M, α̂(b) = p, and let α̃ : [0, d) → M be a future directed causal

geodesic starting at p that can be maximally extended to the future, for an appropriate

d ∈ (0,∞). Since the concatenation of two locally Lipschitz causal curves is again locally

Lipschitz and causal, it follows that α̂ ∪ α̃ is an extension of α.

It fact, the curves considered in the previous lemma are always extendible:

Theorem 2.4.6. Let (M, g) be a spacetime with a continuous metric g. Let α : [0, b) →
M, b ∈ R ∪ {∞}, be a future directed causal curve parameterized by h-arc-length. Then α

is future inextendible if and only if b =∞.

Proof. Suppose to the contrary that b < ∞. By the Hopf-Rinow theorem, (M,dh) is

complete and α([0, b)) ⊆ (M,dh). Since [0, b) is dense in [0, b] and α is Lipschitz on [0, b),

it follows that there exists a unique extension α̂ : [0, b]→ (M,dh).

Consider again the geodesic equation as a first order system:

dxk

dt
= yk(t)

dyk

dt
= −Γkg,ij(x(t))yi(t)yj(t),

(2.10)

where x(0) = p and y(0) = v. We have seen in the previous chapter that for C1,1 metrics,

(2.10) is uniquely solvable. Let the solution be defined on a maximal interval I 3 0. I is

called maximal if for another interval I ′ that contains 0 and on which a solution to the

geodesic equation is defined, one has that I ′ ⊂ I. If I is maximal, the geodesic is said

to be maximally extended. Now the question arises if a maximally extended geodesic is

inextendible in the sense we have defined earlier, see Def. 2.4.1. This is not immediate

since even though affinely parameterized geodesics are locally Lipschitz, they need not

be Lipschitz when maximally extended and the inextendibility was defined for Lipschitz

curves. The following result resolves the problem in question (cf. [Chr11, Prop. 2.5.6]):

Proposition 2.4.7. A causal geodesic α : I → M is maximally extended as a geodesic if

and only if it is inextendible as a causal curve.
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Proof. If α is inextendible as a causal curve then clearly, it cannot be extended as a

geodesic.

Now suppose to the contrary, that α is a maximally extended geodesic which is extendible

as a curve. Let α̂ : [0, b] → M be a continuous extension of α and let U be a totally

normal neighborhood of α̂(b). Then there exists a, 0 ≤ a < b, such that α̂[a, b] ⊂ U . Since

U is totally normal, it is a normal neighborhood of α(a) and α|[a,b) is a radial geodesic,

hence it can be geodesically extended until it approaches ∂U or until its domain is [a,∞).

Since α̂(b) ∈ U and not in ∂U , α can be extended past b, which gives a contradiction with

maximality of α as a geodesic.

The following result holds true even for continuous metrics (see also [Chr11, Prop. 2.5.7]):

Theorem 2.4.8. Let (M, g) be a spacetime with a continuous metric g. Let α be a fu-

ture directed causal, respectively timelike, curve. Then there exists an inextendible causal,

respectively timelike, extension of α.

Proof. A simpler case is when g is assumed to be C1,1: If α : [a, b) → M is inextendible,

there is nothing to prove. Otherwise, for α̂ : [a, b]→M, α̂(b) = p, and for any maximally

extended future directed causal geodesic α̃ starting at p, the path α̃ ∪ α̂ provides an

extension which is, by Prop. 2.4.7, inextendible.

Now assume that g is continuous. Suppose that α is extendible with an end point p. Let Ωp

be the collection of all future directed timelike curves starting at p which are parameterized

by h-arc-length. An example of such a curve is an integral curve of a timelike vector field

(which certainly exists since we have a time-orientable manifold hence Ωp is non-empty).

Ωp can be directed using the property of ”being an extension”: by α1 < α2 we mean that

α2 is an extension of α1. Since every chain of curves has an upper bound in Ωp given by

the concatenation of those curves, from the Zorn lemma it follows that Ωp contains at least

one maximal element which provides the existence of inextendible curves in Ωp. If α1 is

any maximal element of Ωp and α̂ : [a, b] → M, α̂(b) = p, then α̂ ∪ α1 is an inextendible

future directed extension of α.

2.5 Accumulation curves

The aim of this section is to establish the existence of accumulation curves. They are one

of the main tools when it comes to studying the global properties of spacetimes. Recall



64 CHAPTER 2. CAUSALITY THEORY WITH C1,1 METRICS

that we have fixed an auxiliary complete Riemannian metric h. We will consider causal

curves that are parametrized with respect to the h-arc-length. By the argument following

Prop. 2.3.1, we obtain that all causal curves are Lipschitz with Lipschitz constant 1.

Definition 2.5.1. Let g be a continuous metric on M and let αn : I → M be a sequence

of curves in (M, g). Then α : I →M is an accumulation curve of the αn’s if there exists a

subsequence αnk that converges to α uniformly on compact subsets of I.

Definition 2.5.2. An elementary neighborhood is an open ball B within the domain of a

normal coordinate neighborhood U around p ∈ M such that B is relatively compact in U

and ∇x0 and ∂x0 are timelike on Ū , where x0 is the time coordinate on U .

Remark 2.5.3. Recall that by g ≺ ĝ we mean that the metric ĝ has strictly wider lightcones

than g. Note that on compact sets, one can always obtain a sequence smaller than a given

metric. Namely, let gn be a sequence of smooth metrics that converges locally uniformly

to a continuous metric g such that g ≺ gn+1 ≺ gn and let K bM . Then for a given metric

g′ � g, there exists an n0 ∈ N such that for all n ≥ n0, gn ≺ g′ on K, see [Sae15, Lemma

1.4].

The following result holds true also for continuous metrics, see [CG12, Prop. 1.5]:

Proposition 2.5.4. Let (M, g) be a spacetime with continuous metric g. A curve α is

causal for g if and only if it is causal for every smooth metric ĝ � g.

Proof. If α : I → M is causal for g, it is clear that it is causal (even timelike) for each

metric ĝ.

Now assume α is causal for every metric ĝ � g and assume to the contrary, that α is

not g-causal. Then there exists a set A ⊆ I of non-zero measure such that the weak

derivative α′ is g-spacelike for all p ∈ A. Since α is locally Lipschitz, by Rademacher’s

theorem it is differentiable almost everywhere hence the set of points B at which α has

classical derivatives has full measure in I. Thus A and A ∩B have the same measure and

in particular, A ∩B is not empty.

For t̃ ∈ A∩B, there is a metric ĝ � g such that α′(t̃) is spacelike for ĝ. Since ĝ is smooth,

there is a normal neighborhood U of α(t̃) such that, for any q ∈ U , there exists a radial

ĝ-geodesic α̂q : [0, 1] → U starting at α(t̃) = α̂q(0) and ending at q = α̂q(1). Define the

function σ : U → R (as in [Chr11, Prop. 2.2.3]) by σ(q) := ĝα(t̃)

(
dα̂q
dt

(0), dα̂q
dt

(0)
)

. By
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Taylor expansion of α we obtain α(t) = α(t̃) + α′(t̃)(t− t̃) + o(t− t̃). Then

σ(α(t)) = ĝα(t̃)(exp−1
α(t̃)

(α(t)), exp−1
α(t̃)

(α(t))).

Let f(α(t)) := exp−1
α(t̃)

(α(t)). Taylor expanding f , we have

f(α(t)) = f(α(t̃) + α′(t̃)(t− t̃) + o(t− t̃))

= f(α(t̃)) +Df(α(t̃))(α(t)− α(t̃)) + o(|α(t)− α̃(t)|2)

= f(α(t̃)) +Df(α(t̃))(α′(t̃)(t− t̃) + o(t− t̃)) + o((t− t̃)2),

and therefore, since f(α(t̃)) = 0 and Df(α(t̃)) = id, σ(α(t)) = ĝα(t̃)(f(α(t)), f(α(t))) =

ĝ(α′(t̃), α′(t̃))(t− t̃)2 +o((t− t̃)2). For t sufficiently close to t̃, the right-hand side is positive

since ĝ(α′(t̃), α′(t̃)) > 0. Then α′(t) is ĝ-spacelike hence the set of points for which α′ is

ĝ-spacelike is also of non-zero measure. This is a contradiction since α was assumed to be

causal for ĝ. Hence A ∩B is empty, i.e., α′ is causal almost everywhere.

As a consequence, we obtain the existence of accumulation curves (cf. [CG12, Thm. 1.6],

[Sae15, Thm. 1.5]):

Proposition 2.5.5. Let (M, g) be a smooth manifold with a continuous metric g. Let

αn : I → M be a sequence of causal curves that accumulates at p ∈ M . Then there exists

a causal curve α : I →M through p which is an accumulation curve of the αn’s.

Proof. Let ĝ � g be any smooth metric. Then the curves αn are causal for ĝ and by the

standard smooth result (see [Chr11, Thm. 2.6.7]), there exists a ĝ-causal accumulation

curve α through p and a subsequence αnk of αn such that αnk → αn locally uniformly.

Now let g′ be any smooth metric such that g ≺ g′ ≺ ĝ (such a metric exists by uniform

convergence and Remark 2.5.3). Then there exists a subsequence αnki of αnk such that the

αnki are g′-causal. Hence they converge to a g′-causal curve which has to be α since it is

a subsequence of a converging sequence. Hence the notion of accumulation curve does not

depend on the metric, i.e., α is ĝ-causal for every ĝ � g thus the result by Prop. 2.5.4.

Next we address the question of inextendibility of accumulation curves. The following

results turn out to be useful (see [Chr11, Lemma 2.6.6] and [Chr11, Lemma 2.6.5]):

Lemma 2.5.6. Let X be a continuous timelike vector field defined on a compact set K.

Then there exists a constant C > 0 such that for all q ∈ K and for all causal vectors
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Y ∈ TqM we have

|g(X, Y )| ≥ C|Y |h. (2.11)

Proof. By homogeneity it suffices to show (2.11) for causal Y ∈ TqM such that |Y |h = 1.

Denote by Uq the set of all such vectors. Since the function⋃
q∈K

Uq 3 Y −→ |g(X, Y )|

is strictly positive and continuous on the compact set
⋃
q∈K Uq, it will have a minimum C

hence the result.

Lemma 2.5.7. Let U be an elementary neighborhood. There exists a constant L such that

for any past-directed causal curve α : I → U the h-length |α|h of α is bounded by L.

Proof. Let x0 be the local time coordinate on U . Since X := ∇x0 is timelike, by Lemma

2.5, for K = U , there exists a constant C such that for any causal curve α in U , we have

|g(X,α′)| ≥ C|α′|h > 0

at all points at which α is differentiable. Then, for t2 ≥ t1,

|x0(α(t2))− x0(α(t1))| =
∫ t2

t1

d

dt
(x0 ◦ α)dt

=

∫ t2

t1

|g(∇x0, α′)|dt

≥ C

∫ t2

t1

|α′|hds = CLt2t1(α).

Then it follows that

Lt2t1(α) ≤ 1

C
sup |x0(α(t2))− x0(α(t1))|

≤ 2

C
sup
U

|x0| =: L <∞.

Finally, we have (see [Chr11, Lemma 2.6.4]):
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Lemma 2.5.8. Let αn be a sequence of dh-parameterized inextendible causal curves con-

verging to α uniformly on compact subsets of R. Then α is inextendible.

Remark 2.5.9. The parameter range of α is R so the result would follow from Theorem

2.4.8 if α were dh-parameterized, but this might not hold: consider R1
1 with the background

Riemannian metric h = dt2 + dx2 and a sequence of null geodesics in R1
1 threading back

and forth around the {x = 0} axis up to a distance 1/n, namely

αn(s) =

{
(s, s) s ∈ [0, 1

n
]

(s,−s) s ∈ [0, 1
n
].

‖α′n‖ =
√

2 so let α̂n(s) = αn(s/
√

2), s ∈ [0,
√

2/n] Then the limit curve α(s) = (s/
√

2, 0)

is not dh-parameterized.

Proof. We need to show that both α|[0,∞) and α|(−∞,0] have infinite length. It suffices to

consider α|[0,∞), for which we will only write α. Assume to the contrary that there exists

a < ∞ so that the reparametrization α̃ = α ◦ f of α with respect to the h-arc length is

defined on [0, a). By Theorem 2.4.8, it can be extended to a causal curve defined on [0, a],

still denoted by α̃.

Now let U be an elementary neighborhood around α̃(a) and let 0 < b < a be such that

α̃(b) ∈ U . By definition of an accumulation curve, there exists a sequence ni ∈ N such

that:

α̃(b) = α(f(b)) = limαni(f(b)), (f(b) = ti).

In particular, αni(f(b)) ∈ U for i large enough. From Lemma 2.5.7 applied to αni it follows

that αni |[f(b),f(b)+L] must leave U . Since αni(f(b)) → α̃(b), then α̃ni(f(b) + L) should

converge to some point between α̃(b) and α̃(a) since α̃(a) is an endpoint, but this cannot

be because they are not in U . Hence, αni |[0,f(b)+L] cannot accumulate at a curve which has

an endpoint α(a) ∈ U hence the result.

It follows from Lemma 2.5.8 together with Proposition 2.5.5 that:

Proposition 2.5.10. Let (M, g) be a Lorentzian manifold with a C1,1 metric. Every

sequence of future directed, inextendible causal curves which accumulates at a point p ∈M
accumulates at some future directed inextendible causal curve through p.
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2.6 Achronal causal curves

A curve α : I →M is called achronal if ∀ s, s′ ∈ I, α(t) /∈ I+(α(t′)), i.e., there are no two

points on α which are timelike related. An example of such curves are spacelike and null

geodesics in Minkowski spacetime. However, there exist spacetimes where null geodesics

need not be achronal. An example is given by the spacetime R × S1 with the flat metric

g = −dt2 + dx2 where x. If we assume that x is an angle-type coordinate along S1 with

periodicity 2π, then the points (0, 0) and (2π, 0) lie on the null geodesic s→ (s, s mod2π)

and are timelike related to each other.

The following result shows that any achronal causal curve is necessarily a null geodesic (cf.

[Chr11, Prop. 2.6.9]):

Proposition 2.6.1. Let α be an achronal causal curve. Then α is a null geodesic.

Proof. Let α : [0, 1] → M be an achronal causal curve and let U be a totally normal

neighborhood around α(0) = p. Then α in U is a causal curve from p to a point q lying

in ∂J+(p, U). Otherwise, we would get a contradiction to the achronality of α. Hence by

Corollary 2.3.13, it lies entirely in ∂J+(p, U) and there exists a reparametrization of α such

that it is a null geodesic segment. Covering α by totally normal neighborhoods Ui, i ∈ N,

the claim follows.

The proof of the following theorem only uses the fact that timelike futures and pasts are

open, cf. Theorem 2.3.10. Hence the result also holds for continuous metrics with this

property and in particular for causally plain metrics (see [Chr11, Thm. 2.6.10] for C2

metrics):

Theorem 2.6.2. Let αn : I → M be a sequence of future directed achronal causal curves

accumulating at α. Then α is achronal.

Remark 2.6.3. Note that by Theorem 2.5.10 it follows that α is inextendible if the αn’s

are.

Proof. Suppose to the contrary that α is not achronal. Then there exist t1, t2 ∈ I such that

α(t2) ∈ I+(α(t1)) hence, a timelike curve α̂ : [t1, t2] → M from α(t1) to α(t2). For some

t̂ ∈ (t1, t2), α(t2) ∈ I+(α̂(t̂)) and since I+(α̂(t̂)) is open, there exists an open neighborhood

U2 of α(t2) such that U2 ⊂ I+(α̂(t̂)). Similarly, there is an open neighborhood U1 of α(t1)

such that U1 ⊂ I−(α̂(t̂)). For any p1 ∈ U1, p2 ∈ U2 one can go from p1 along a timelike
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curve to α̂(t̂) and continue along another timelike curve from α̂(t̂) to p2 so p2 lies in the

timelike future of p1. Passing to a subsequence if necessary, there exist sequences t1,n and

t2,n such that αn(t1,n) converges to α(t1) and αn(t2,n) converges to α(t2). Then, for n large

enough, αn(t1,n) ∈ U1, αn(t2,n) ∈ U2 implying that αn(t2,n) ∈ I+(αn(t1,n)), which is a

contradiction to the achronality of αn.
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Chapter 3

Global structure of spacetimes

As it has already been demonstrated by P. Chruściel in [Chr11], the essential tools needed

to obtain a consistent causality theory are the push-up principle and the existence of

accumulation curves. Using these results and the local causality theory established in the

previous chapter, our next goal will be to further develop causality theory for C1,1 metrics

following [Chr11] and [ON83].

3.1 Causality conditions

In this section we will be concerned with the causal hierarchy of spacetimes. Different

causality conditions can be imposed on a spacetime, each of them having its unique position

in the so-called causal ladder. The higher on the causal ladder a spacetime is, the more

realistic it is considered to be. Indeed, it is reasonable to think that any realistic spacetime

will be on the very top of the causal ladder satisfying the strongest causality condition-

global hyperbolicity.

We start out with a definition of the weakest causality condition. A spacetime is called

totally vicious if I+(p) ∩ I−(p) = M for all points p ∈ M . If there are no closed timelike

curves, a spacetime is said to be chronological. Recall that in general relativity each point

of a spacetime corresponds to an event. Thus the existence of closed timelike curves may

lead to the possibility of time travel and hence the occurrence of many paradoxes such as

the grandfather paradox. Having the ability to travel back in time, one could change the

past thus leading to the future being different from the one where a time traveller had

71
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actually started his journey. Such paradoxes are said to ”violate causality”.

An example of a space-time which is not chronological is provided by S1 ×R with the flat

metric −dt2 + dx2, where t is a local coordinate defined modulo 2π on S1. Then every

circle x = const is a closed timelike curve.

Compact manifolds are pathological from a Lorentzian perspective:

Proposition 3.1.1. (Geroch) Let (M, g) be a compact spacetime with a causally plain

metric g. Then M is not chronological.

Proof. Consider the open covering {I+(p) : p ∈M} of M . By compactness, it has a finite

subcover I+(p1), ..., I+(pk). We can assume that I+(p1) is not contained in any later I+(pi),

otherwise discard I+(p1). But then p1 ∈ I+(p1), that is, there exists a closed timelike curve

through p1. If p1 is in some other I+(pi), then I+(p1) ⊂ I+(pi).

Thus the spacetimes usually considered in general relativity are noncompact.

The next on the causal ladder is the causality condition. A spacetime is said to be causal

if there are no closed causal curves.

Consider now a spacetime which contains a family of causal curves αn with both αn(0) and

αn(1) converging to p. Such curves can be thought of as being ”almost closed”. One can

produce an arbitrarily small deformation of the metric which will allow one to obtain a

closed causal curve in the deformed spacetime. We want to exclude this behaviour. Hence

it is said that the strong causality condition holds at p ∈M if for any given neighborhood

U of p there exists a neighborhood V ⊆ U of p such that every causal curve with endpoints

in V is entirely contained in U . A strongly causal spacetime is necessarily causal. However,

the converse fails to be true. Delete from S1
1 ×R1 two spacelike half-lines whose endpoints

were the endpoints of a short null geodesic. The causality condition holds on M , but the

strong causality condition fails at each point of the null geodesic.

A result often used in causality theory that describes an important property of time func-

tions is the following (cf. [Chr11, Lemma 2.4.8]):

Lemma 3.1.2. Let f be a time function, i.e., a differentiable function with past directed

timelike gradient. For any f0, a future directed causal curve α cannot leave the set {q :

f(q) > f0} (analogously, the result holds for sets {q : f(q) ≥ f0}). In fact, f is strictly

increasing along α.
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Proof. Let α : I → M be a future directed causal curve. Then f ◦ α is locally Lipschitz

since α is, hence:

f(α(t2))− f(α(t1)) =

∫ t2

t1

d(f ◦ α)

du
(u)du

=

∫ t2

t1

〈df, α′〉(u)du

=

∫ t2

t1

g(∇f, α′)(u)du > 0

since∇f is timelike past directed and α′ is causal future directed (it cannot be zero because

when g(X, Y ) = 0 for X, Y causal that means that both X and Y are null and collinear).

Hence the function t→ f(α(t)) is strictly increasing when α is timelike or causal in general

since the integrand is strictly positive almost everywhere.

A spacetime is said to be stably causal if there exists a time function t globally defined on

M . It then easily follows that stable causality implies strong causality, cf. [Chr11, Prop.

2.7.4].

Lemma 3.1.3. Suppose the strong causality condition holds on K bM and let α : [0, b)→
M be a future directed inextendible causal curve that starts in K. Then α eventually leaves

K never to return.

Proof. Assume to the contrary, that α : [0, b) → M is either entirely contained in K or

that each time it leaves K, has to return. Then there exists a sequence si ↗ b with

α(si) ∈ K, ∀i. We can assume without loss of generality that α(si) → p ∈ K. Since α is

future inextendible, there exists another sequence ti → b such that α(ti) does not converge

to p. Choosing a subsequence if necessary, one can additionally assume that there exists

a neighborhood U of p that contains no α(ti). Since both, si and ti, converge to b, they

have subsequences that alternate, i.e., s1 < t1 < s2 < t2 < .... For k large enough, the

causal curves α|[sk,sk+1] start and end arbitrarily close to p, contradicting strong causality

of K.
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3.2 Time separation

We are now ready to define the time separation function of an arbitrary spacetime, in parts

of the literature also referred to as the Lorentzian distance function, see [BEE96].

Definition 3.2.1. Let p, q ∈M . The time separation d(p, q) from p to q is given by

d(p, q) := sup{L(α) : α is a future directed causal curve from p to q}. (3.1)

In particular, d(p, p) = 0 and d(p, q) = 0 for q /∈ J+(p). Otherwise, we calculate d(p, q) for

q ∈ J+(p) as the supremum of the Lorentzian arc length of all future directed causal curves

from p to q. Hence if α is any future directed causal curve from p to q, L(α) ≤ d(p, q).

The time separation function can be thought of as the proper time of the slowest trip

between two points of a spacetime. Comparing it to the Riemannian distance function,

we conclude that it is maximizing rather than minimizing. Also, unlike the Riemannian

distance function, the time separation function need not be finite-valued. If the set of

lengths is unbounded, d(p, q) =∞.

The following lemma gives a useful analogue of the triangle inequality:

Lemma 3.2.2. Let p, q, r ∈M . Then:

(i) d(p, q) > 0 if and only if p� q

(ii) Reverse triangle inequality: If p ≤ q ≤ r, then d(p, q) + d(q, r) ≤ d(p, r).

Proof. (i) If d(p, q) > 0 then by the definition of d there is a future directed causal curve α

from p to q with L(α) > 0. Then there must be an interval [t1, t2] on which α is timelike.

Let p1, q1 ∈ α([t1, t2]), p1 6= q1. Then p ≤ p1 � q1 ≤ q hence by Proposition 2.3.14, p� q.

(ii) We distinguish two cases:

1.) There is a future directed timelike curve from p to q and from q to r. Then either

both d(p, q) and d(q, r) are finite or at least one of them is infinite. In the first case,

let ε > 0, then there exist a future directed causal curve α1 from p to q and a future

directed curve α2 from q to r such that L(α1) ≥ d(p, q)− ε and L(α2) ≥ d(q, r)− ε. Hence

d(p, r) ≥ L(α1 ∪ α2) = L(α1) + L(α2) ≥ d(p, q) + d(q, r)− 2ε, thus the result.
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Assume now d(p, q) = ∞. Then there exists an arbitrarily long future directed timelike

curve from p to q. Concatenating it with a timelike curve from q to r, we obtain an

arbitrarily long future directed timelike curve from p to r hence d(p, r) =∞.

2.) There is no future directed timelike curve from p to q (or analogously from q to r).

Since p ≤ q it follows that p = q thus the inequality holds trivially.

There is the reversed sign in the inequality since causal geodesics in Lorentzian manifolds

locally maximize arc length.

Example 3.2.3. (i) Let M = Rn
1 be Minkowskian spacetime. Then for p < q, d(p, q) =

‖p− q‖: t 7→ tq + (1− t)p, 0 ≤ t ≤ 1, is a future directed causal curve from p to q of

length ‖p− q‖ thus d(p, q) ≥ ‖p− q‖. For the other inclusion, we consider two cases:

1. p − q is timelike. Then without loss of generality, p = (0, ..., 0) and q = (T, ..., 0)

with T = ‖p− q‖. Now let α be a future directed causal curve from p to q. We can

reparametrize it so that α(t) = (t, x(t)), x : [0, T ]→ Rn−1. Then

L(α) =

∫ T

0

‖α′(t)‖dt =

∫ T

0

√
| − 1 + ‖x′(t)2‖|dt

=

∫ T

0

√
1− ‖x′(t)2‖dt ≤

∫ T

0

1dt = T = ‖p− q‖,

hence d(p, q) ≤ ‖p− q‖.

2. p − q is null. In this case, every causal curve connecting p and q is null thus of

length 0. Then d(p, q) = 0 = ‖p− q‖.

(ii) Let M = S1
1 × R1 be the Lorentz cylinder. Then d(p, q) =∞, ∀p, q ∈M .

Lemma 3.2.4. d is lower semi-continuous.

Proof. Let p, q ∈ M . If d(p, q) = 0, there is nothing to prove. Assume 0 < d(p, q) < ∞
and let δ > 0. By the definition of d, there exists a future directed timelike curve α :

[0, 1] → M from p to q with L(α) ≥ d(p, q) − δ/2. Consider now 0 < t1 < t2 < 1 such

that 0 < L(α|[0,t1]) < δ/4 and 0 < L(α|[t2,1]) < δ/4. For p1 := α(t1) and q1 := α(t2), let

U := I−(p1) and V := I+(q1). Since L(α|[0,t1]) > 0 we have d(p, p1) > 0 so by Lemma 3.2.2

(i), p� p1. Also, by Theorem 2.3.10, U is an open neighborhood of p. Analogously, V is
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an open neighborhood of q. Now let (p′, q′) ∈ U × V . Then by Lemma 3.2.2 (ii):

d(p′, q′) ≥ d(p′, p1) + d(p1, q1) + d(q1, q
′) ≥ L(α|[t1,t2])

= L(α)− L(α|[0,t1])− L(α|[t2,1]) ≥ d(p, q)− δ.

Now assume d(p, q) = ∞. Then there is an arbitrarily long future directed causal curve

connecting p and q. As above, there are neighborhoods U of p and V of q such that any

two points from U and V can be connected by arbitrarily long curves.

Let A,B ⊆ M . The time separation d(A,B) is defined as sup{d(a, b) | a ∈ A, b ∈ B}.
Analogously to the preceding lemma, one can show that the functions x 7→ d(x,B) and

y 7→ d(A, y) are lower semi-continuous.

3.3 Global hyperbolicity

The strongest causality condition is that of global hyperbolicity. A spacetime (M, g) is

said to be globally hyperbolic if it is strongly causal and if for every p, q ∈ M the sets

J+(p) ∩ J−(q) are compact. These sets are called causal diamonds and they are denoted

by J(p, q) := J+(p) ∩ J−(q).

Example 3.3.1. 1. Let M = Rn
1 . The Minkowski time x0 provides a time function on M

implying the strong causality condition. Moreover, J(p, q) is compact for all p, q ∈M
hence M is globally hyperbolic.

2. Let M := Rn
1 \ {0}. Then M is not globally hyperbolic since any causal diamond

J(p, q) containing 0 is not compact.

The following result establishes the existence of accumulation curves in globally hyperbolic

spacetimes (cf. [Chr11, Prop. 2.8.1]):

Proposition 3.3.2. Let (M, g) be a globally hyperbolic spacetime and let αn be a family

of causal curves accumulating both at p and q. Then there exists a causal curve α which is

an accumulation curve of the αn’s and which passes through both p and q.

Proof. We can extend the αn’s to inextendible curves and reparametrize them if necessary,

hence assume that they are parametrized by h-arc length, with common domain of defini-

tion I = R and with αn(0) converging to p. If p = q the result follows from Proposition
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2.5.5, hence assume that p 6= q. Define a compact set K̃ by:

K̃ := (J+(p) ∩ J−(q)) ∪ (J+(q) ∩ J−(p)) (3.2)

One of those sets is necessarily empty since a globally hyperbolic spacetime is causal. The

curves αn are causal and by assumption there exists a sequence tn such that αn(0) → p

and αn(tn) → q. Choose p−, q+ ∈ M such that p, q ∈ K = J+(p−) ∩ J−(q+). Then for n

large enough, αn(0), αn(tn) ∈ K. Now, K can be covered by a finite number of elementary

neighborhoods Ui, i = 1, ..., N . By strong causality, we can choose the sets Ui so that for

every n, αn does not come back to Ui once it leaves it. By Lemma 2.5.7 we know that

there exists a constant Li, independent of n, such that the h-length |αn ∩ Ui|h is bounded

by Li. The h-length |αn ∩K|h is bounded by:

|αn ∩K|h ≤ L := L1 + L2 + ...+ LN . (3.3)

Equation (3.3) shows that the sequence tn is bounded hence, perhaps passing to a subse-

quence, we have tn → t∗, for some t∗ ∈ R. Since the αn’s are parameterized with respect

to h-arc length, they are Lipschitz with Lipschitz constant smaller or equal to 1: we have:

dh(αn(t), αn(t′)) ≤ |t− t′|. (3.4)

Thus the family {αn} is equicontinuous. By equation (3.4) and the Arzela-Ascoli theorem,

there exists a curve α : [0, L]→M and a subsequence αni which converges uniformly to α

on [0, L]. αni(tni) converges both to q and α(t∗):

dh(αni(tni), α(t∗)) ≤ dh(αni(tni), αn0(tn))

+ dh(αn0(tn), αn0(t∗))

+ dh(αn0(t∗), α(t∗)).

Now let ε > 0 and let i be such that supt∈[0,L] dh(αni(t), αn0(t)) <
ε
3
. Then it follows that

dh(αni(tni), αn0(tn)) ≤ ε
3
. For n big enough, by continuity of αn0 we have

dh(αn0(tn), αn0(t∗)) ≤
ε

3
.

And for n0 big enough,

dh(αn0(t∗), α(t∗)) ≤
ε

3
,
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hence

dh(αni(tni), α(t∗)) ≤ ε.

Hence α(t∗) = q and α is our desired curve joining p and q.

Remark 3.3.3. The result is wrong if one only assumes stable causality: let (M, g) be the

two-dimensional Minkowski spacetime with the origin removed. Let αn be obtained by

following a timelike geodesic from p = (−1, 0) to (0, 1
n
) and then another timelike geodesic

to q = (1, 0). Then αn has two accumulation curves: s → (s, 0) with s ∈ [−1, 0) and

s → (s, 0) with s ∈ (0, 1], none of which passes through both p and q, because (0, 0) has

been removed.

The following result shows that the time separation function has better regularity in case

of globally hyperbolic spacetimes (cf. [BEE96, Lemma 4.5.])

Proposition 3.3.4. Let (M, g) be a globally hyperbolic spacetime. Then the time separation

function d is finite and continuous on M ×M .

Proof. Let p, q ∈M . Since J+(p)∩J−(q) is compact, we can cover it by a finite number of

totally normal neighborhoods Ui, 1 ≤ i ≤ n, such that causal curves which leave Ui never

return and such that every causal curve in Ui has length bounded by some L > 0. Since

any causal curve α from p to q can enter each Ui at most once, it follows that L(α) ≤ Lm.

Hence d(p, q) ≤ Lm thus is finite.

Assume now that d fails to be upper semi-continuous at (p, q) ∈M ×M . Then one could

find δ > 0 and sequences {pn} and {qn} such that pn → p, qn → q and

d(pn, qn) ≥ d(p, q) + 2δ, ∀n. (3.5)

By definition of the time separation function, one may find a future directed causal curve

αn from pn to qn for each n. By Proposition 3.3.2, for the curves αn, there exists an accu-

mulation curve α from p to q. In case of strongly causal spacetimes (by our assumption M

is even globally hyperbolic), it was shown in [Pen72, Thm. 7.5] that the length functional is

upper semi-continuous and since αn → α, we obtain that L(α) ≥ lim supL(αn). Therefore

L(α) ≥ d(p, q) + δ (see also [BEE96, Prop. 3.34] and [BEE96, Remark 3.35]). This is a

contradiction to the definition of the time separation function.

Proposition 3.3.5. Let U ⊆ M be open and globally hyperbolic. Then the causality

relation ≤ of M is closed on U .
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Proof. Let pn, p, qn, q ∈ U such that pn ≤ qn, ∀n, and pn → p, qn → q. We want to show

that p ≤ q. If p = q, the result holds trivially. If pn = qn for infinitely many n, then

p = q. Hence we may assume that p 6= q and pn < qn for all n. Let αn be a future directed

causal curve from pn to qn. As in Proposition 3.3.2 it follows that αn([0, 1]) ⊆ J(p−, q+) for

suitable p−, q+ ∈ U and there exists a future directed causal curve α from p to q. Hence

p < q.

As an immediate consequence, we obtain:

Corollary 3.3.6. Let M be a globally hyperbolic manifold. Then all sets J+(p), J−(q),

and J(p, q) are closed.

3.4 Achronal sets

A set S ⊂ M is said to be achronal if I+(S) ∩ I−(S) = ∅. Analogously, a set is called

acausal if J+(S) ∩ J−(S) = ∅. Every acausal set is necessarily achronal but the converse

need not be true: consider a null geodesic α in Rn
1 . Then B = α([0, b]) is achronal but not

acausal.

Example 3.4.1. Let M = Rn
1 . Then any spacelike hyperplane t = const and the future light

cone in Rn
1 are achronal sets.

Definition 3.4.2. Let S be an achronal set. The edge of S is the set of all points p ∈ S
such that every neighborhood U of p contains a timelike curve from I−(p, U) to I+(p, U)

that does not intersect S.

Example 3.4.3. 1. Let M = Rn
1 . The achronal sets from the preceding example have

empty edge.

2. Let X = {(0, x) | 0 ≤ x ≤ 1} ⊆ R2
1. Then edge(X) = {(0, 0), (0, 1)}. But considered

as a subset of R3
1, edge(X) = X.

Next we wish to show that every achronal set without edge is a hypersurface. It need not

be a smooth hypersurface as is clearly seen in the example of the nullcone in Rn
1 that is

achronal and edgeless.

A Hausdorff space T for which every point has a neighborhood homeomorphic to an open

set in Rn is a topological manifold of dimension n. The following result is a useful conse-

quence of the Brouwer theorem on the invariance of domain: If ϕ : T → T̃ is a one to one
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continuous mapping of n-dimensional topological manifolds, then ϕ is a homeomorphism

onto an open set ϕ(T ) of T̃ .

Definition 3.4.4. A subspace S of a smooth manifoldM is called a topological hypersurface

if for every p ∈ S there exist a neighborhood U of p in M and a homeomorphism ϕ : U → V ,

where V ⊆ Rn is open, such that ϕ(U ∩ S) = V ∩ ({0} × Rn−1).

Remark 3.4.5. Note that subsets of achronal sets are achronal. Also, the closure S̄ of an

achronal set S is achronal as well: assume there existed p, q ∈ S̄ such that p� q. Choose

pn, qn ∈ S so that pn → p and qn → q. By Corollary 2.3.17, pn � qn for n big enough,

which is a contradiction.

Lemma 3.4.6. Let S ⊆M be achronal. Then:

1. S̄ \ S ⊆ edge(S);

2. edge(S) is closed.

Proof. 1. Let p ∈ S̄ \ S and let U be an open neighborhood of p. Consider a curve α

through p going from I−(p, U) to I+(p, U). By the previous remark, S̄ is achronal, hence

α cannot meet S̄ except in p. Since p /∈ S, α has no intersection with S it follows that

p ∈ edge(S).

2. Let p ∈ edge(S). We want to show that p ∈ edge(S). Consider a neighborhood

U of p and choose an open neighborhood V ⊆ U of p such that V ⊆ I+(I−(p, U), U) ∩
I−(I+(p, U), U). Then there exists some q ∈ V ∩edge(S) thus a timelike curve α : [−1, 1]→
V with p1 := α(−1) ∈ I−(q, V ) and p2 := α(1) ∈ I+(q, V ), that does not meet S. Since

p1 ∈ I+(I−(p, U), U), α can be extended to a timelike curve from [−2, 1] to U with α(−2) ∈
I−(p, U). Analogously, we can extend it to a timelike curve from [−2, 2] to U such that

α(2) ∈ I+(p, U).

We show that α|[−2,−1] does not meet S. Analogously, the same follows for α|[1,2]. By p1 ∈
I−(q, V ), we have that q ∈ I+(p1, V ). Since q ∈ edge(S) ⊆ S̄, there exists r ∈ S∩I+(p1, V ).

Let β be a timelike curve connecting p1 and r. Then α|[−2,−1] ∪ β is timelike and meets S

twice, which is impossible since S is achronal.

Hence α : [−2, 2]→ U is a timelike curve from I−(p, U) to I+(p, U) that does not meet S

thus p ∈ edge(S).

Proposition 3.4.7. Let S ⊆M be achronal. Then the following are equivalent:



3.4. ACHRONAL SETS 81

(i) S ∩ edge(S) = ∅;

(ii) S is a topological hypersurface.

Proof. (i)⇒ (ii) Let p ∈ S. Then p /∈ edge(S) hence there exists an open neighborhood U of

p such that every timelike curve from I−(p, U) to I+(p, U) entirely contained in U , intersects

S. Without loss of generality we can have on U a coordinate chart ϕ : U → ϕ(U) ⊆ Rn,

ϕ = (x0, ..., xn−1) with ∂/∂x0 future directed timelike. Using these coordinates we can

obtain an open neighborhood V ⊆ U of p such that:

1. ϕ(V ) = (a− δ, b+ δ)×N ⊆ R× Rn−1

2. {x ∈ V | x0 = a} ⊆ I−(p, U) and {x ∈ V | x0 = b} ⊆ I+(p, U).

Now let y ∈ N ⊆ Rn−1. Then the curve α : [a, b] → V , s 7→ ϕ−1(s, y), is timelike from

I−(p, U) to I+(p, U) hence it meets S. Since S is achronal, there is a unique h(y) ∈ (a, b)

such that ϕ−1(h(y), y) ∈ S.

Next we show that the function h : N → (a, b) is continuous. Let (ym) be a sequence

in N that converges to y and suppose that h(ym) does not converge to h(y). Since

h(N) ⊆ [a, b], passing to a subsequence if necessary, h(ym) converges to r 6= h(y). Now

let q := ϕ−1(h(y), y) ∈ S. The curve s 7→ ϕ−1(s, y) is timelike and contains both, q and

ϕ−1(r, y) 6= q, thus ϕ−1(r, y) ∈ I−(q, V ) ∪ I+(q, V ). This set is open by Theorem 2.3.10

and ϕ−1(h(ym), ym) → ϕ−1(r, y), hence there exists m0 ∈ N such that ϕ−1(h(ym0), ym0) ∈
I−(q, V ) ∪ I+(q, V ), contradicting achronality of S.

Now write ϕ = (ϕ0, ϕ
′) and let ψ : V → Rn, ψ(p) := (ϕ0(p) − h(ϕ′(p)), ϕ′(p)). Then ψ

is continuous and ψ−1(x0, x
′) = ϕ−1(x0 + h(x′), x′). Since ϕ(V ) is open and ψ ◦ ϕ−1(x) =

(x0−h(x′), x′) is continuous and injective on ϕ(V ), by the Brouwer theorem, ψ : V → ψ(V )

is a homeomorphism and ψ(V ) is open as well, hence ψ(V ∩ S) = ψ ◦ ϕ−1({(h(y), y) | y ∈
N}) = {(0, y) | y ∈ N} = ψ(V ) ∩ ({0} × Rn−1). Thus S is a topological hypersurface.

(ii)⇒ (i) Let p ∈ S. By Theorem 2.3.10, we can assume that M = Rn
1 . Let (ϕ,U) be as in

Definition 3.4.4, i.e., ϕ : U → V is a homeomorphism and ϕ(U∩S) = V ∩({0}×Rn−1) =: V1.

In particular, ϕ1 := ϕ|U∩S : U ∩ S → V1 is a homeomorphism. Let π : Rn → Rn−1 be

the projection (x0, x′) 7→ x′. Since S is achronal and every vertical line t 7→ (t, x′) is

timelike, it can intersect it at most once. Hence π|S and therefore π|U∩S is injective. Since

π ◦ ϕ−1 : V1 → π(U ∩ S) is bijective and continuous, by the Brower theorem on the
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invariance of domain, it is also a homeomorphism and thus π(U ∩ S) is open in Rn−1. So

π : U ∩ S → π(U ∩ S) is a homeomorphism.

Now let f : π(U ∩ S) → R, f(x′) := pr0 ◦ π−1(x′). Then f is continuous and U ∩ S =

{(f(x′), x′) | x′ ∈ π(U ∩ S)}. We can assume that U is connected and that U \ S has just

two components, U+ := {(x0, x′) ∈ U | x0 > f(x′)} and U− := {(x0, x′) ∈ U | x0 < f(x′)}.
The sets I−(p, U) and I+(p, U) are open and connected hence since S is achronal, they do

not meet S. Thus they are contained in U+ or U−. The vertical straight line through p

meets both I−(p, U) and I+(p, U), hence also both U− and U+. By U− ∩ I−(p, U) 6= ∅,
I−(p, U) ⊆ U− and analogously, I+(p, U) ⊆ U+. Then every curve α in U that connects

I−(p, U) to I+(p, U) must meet S ∩ U , hence p /∈ edge(S).

Corollary 3.4.8. An achronal set S is a closed topological hypersurface if and only if

edge(S) is empty.

Proof. Assume edge(S) = ∅. Since S∩edge(S) = ∅, by Proposition 3.4.7, S is a topological

hypersurface. From Lemma 3.4.6, we obtain S̄ \ S ⊆ edge(S) = ∅ hence S̄ = S.

Now let S be a closed topological hypersurface. By Proposition 3.4.7, S∩edgeS = ∅. Since

edge(S) ⊆ S̄ and S = S̄, the edge is empty.

A set A ∈ M is called a future set if I+(A) ⊆ A. The causal future J+(A) is a future set

for any set A since I+(J+(A)) ⊆ J+(A).

Remark 3.4.9. Note that if A is a future set, its complement M \ A is a past set : if there

were q ∈M \A such that I−(q) *M \A, there would exist some p ∈ A such that p ∈ I−(q)

hence q ∈ I+(p) ⊆ I+(A) ⊆ A, which is impossible.

Lemma 3.4.10. Let A 6= ∅ be a future set in M . Then the boundary of ∂A is a closed

achronal topological hypersurface.

Proof. By Corollary 3.4.8, we need to show that ∂A is achronal and edge(∂A) = ∅. Con-

sider p ∈ ∂A and let q ∈ I+(p). By Theorem 2.3.10, I−(q) is an open neighborhood of p

thus I−(q) ∩ A 6= ∅. A is a future set thus q ∈ I+(A) ⊆ A. By the openness of I+(A),

I+(A) ⊆ A◦ hence I+(p) ⊆ A◦.

Let p ∈ ∂A and let q ∈ I−(p). Then I+(q) is also an open neighborhood of p ∈ ∂A thus

I+(q) ∩ (M \ A) 6= ∅. By Remark 3.4.9, we have q ∈ I−(M \ A) ⊆ M \ A therefore

q ∈ (M \ A)◦ and hence I−(p) ⊆ (M \ A)◦. Since I+(p) ∩ ∂A = ∅ and I−(p) ∩ ∂A = ∅,
∀p ∈ ∂A, ∂A is achronal.
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On the other hand, for p ∈ edge(A) and α a timelike curve from I−(p) to I+(p), by the

above, it has to go from (M \ A)◦ to B◦ and thus meet ∂A. Therefore edge(∂A) = ∅.

3.5 Cauchy hypersurfaces

Definition 3.5.1. A Cauchy hypersurface is a subset S of M which every inextendible

timelike curve intersects exactly once.

In the smooth case, for spacelike hypersurfaces this definition of a Cauchy hypersurface

is equivalent to the one in [HE73], and this remains true in the C1,1-case, cf. Proposition

3.6.20.

Example 3.5.2. In Rn
1 , the hyperplanes t constant are Cauchy hypersurfaces but the future

light cones Λ+(p) are not.

Lemma 3.5.3. Let S ∈M be a closed set and let α : [0, b)→M \S be a past inextendible

causal curve starting at p that does not meet S. Then:

(i) For any q ∈ I+(p,M \ S) there exists a past inextendible timelike piecewise geodesic

α̃ : [0, b)→M \ S starting at q that does not meet S;

(ii) If α is not a null geodesic, there exists a past inextendible timelike piecewise geodesic

α̃ : [0, b)→M \ S starting at p that does not meet S.

Proof. Since α is past inextendible, we can assume without loss of generality that b = ∞
and that the sequence (α(n))n does not converge. Let d be some metric on M inducing

the topology of M .

(i) We are now only working in an open submanifold M \ S of M and the relation � is

that of M \ S. Let p0 := q � p. Since α(1) ≤ α(0) = p � q, by Proposition 2.3.14,

α(1) � p0. Choose a point p1 ∈ M \ S on a timelike curve from α(1) to p0 such that

0 < d(p1, α(1)) < 1. Then α(2) ≤ α(1)� p1 so we may now choose some p2 ∈M \ S on a

timelike curve from α(2) to p1 such that d(p2, α(2)) < 1/2. Continuing inductively in this

way, we get a sequence pk ∈ M \ S such that α(k) � pk � pk−1 and d(pk, α(k)) < 1/k.

Joining the pk’s by past timelike segments, we obtain a timelike curve α̃ in M \ S such

that α̃(k) = pk. Assume now that α̃ is past extendible in M . Then there exists p∞ ∈ M
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such that α̃(k)→ p∞ as k →∞. Then it follows:

d(α(k), p∞) ≤ d(α(k), pk) + d(pk, p∞)→ 0

hence α(k)→ p∞, contradiction to α being past inextendible.

(ii) To avoid the variational calculus-based proof of [ON83, Lemma 14.30] we need the

following argument:

Lemma 3.5.4. Let S be a closed set and let α : [0,∞)→ M \ S be a past directed causal

curve which is not a null geodesic. Then there exists a > 0 such that α(a) � α(0) (with

� the relation on M \ S).

Proof. Suppose to the contrary that there is no point on the curve α which can be timelike

related to α(0) within M \ S. Using Theorem 1.7.1 we can cover α by totally normal

neighborhoods Ui with Ui ⊆M \ S since M \ S is open. Let t0 = 0 < t1 < t2 ... such that

α|[ti,ti+1] ⊆ Ui+1. By our assumption, it follows that α|[t0,t1] lies in ∂J−(α(0), U1). Hence,

by Corollary 2.3.13, α|[t0,t1] is a null geodesic. Iterating this procedure we obtain that α is

a null geodesic, a contradiction.

In particular, p ∈ I+(α(a),M \ S). Applying (i) to α|[a,∞], we obtain a past directed past

inextendible timelike curve α̃ starting at p.

Proposition 3.5.5. Let S ⊆M be a Cauchy hypersurface. Then:

(i) S is a closed achronal topological hypersurface.

(ii) Every inextendible causal curve meets S.

Proof. (i) Let α be a timelike curve that intersects S twice. Then so does every inextendible

timelike extension α̃ of α, contradicting the assumption that S is a Cauchy hypersurface.

Now we show thatM is a disjoint union of S, I−(S) and I+(S), i.e., M = I−(S) ∪̇ S ∪̇ I+(S):

let p ∈ M and let α be a inextendible timelike curve through p. Let q be the intersec-

tion point of α with S. Then p ∈ I−(S) ∪ S ∪ I+(S). Now assume q ∈ I±(S) ∩ S or

q ∈ I−(S) ∩ I+(S). Then there exists a timelike curve that intersects S twice, contradict-

ing (i). Hence the union is disjoint. In particular, S = M \ (I−(S) ∪ I+(S)) is closed.
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Next, S = ∂I+(S) = ∂I−(S): Since S ∪ I+(S) = M \ I−(S), as well as S ∪ I−(S) =

M \ I+(S), it follows that ∂I+(S) = I+(S)∩M \ I+(S) ⊆ (I+(S) ∪̇ S)∩ (I−(S) ∪̇ S) = S.

On the other hand, S ⊆ ∂I+(S) always holds.

Finally, edge(S) = ∅: we show that every timelike curve α from I−(S) to I+(S) meets S.

If α didn’t meet S, we would get that α([a, b]) = (α([a, b])∩ I+(S)) ∪̇ (α([a, b])∩ I−(S)), a

contradiction to the connectedness of α([a, b]). Then the result follows by Corollary 3.4.8.

(ii) Assume there is an inextendible causal curve α that does not meet S. Since M =

I−(S) ∪̇ S ∪̇ I+(S), without loss of generality α runs in I+(S). Choose p on α and

let q ∈ I+(p,M \ S). By Lemma 3.5.3 (i), there is a past inextendible timelike curve

α̃ : [0, b) → M \ S that does not meet S, hence it has to remain in I+(S). Extending

α̃ to the the future, we obtain a curve that lies entirely in I+(S) hence it is inextendible

timelike and does not meet S, contradicting the fact that S is a Cauchy hypersurface.

3.6 Cauchy developments and Cauchy horizons

Definition 3.6.1. Let S be an achronal set. The future Cauchy development of S is the

set D+(S) of all points p ∈M with the property that every past inextendible causal curve

through p meets S. The past Cauchy development is defined analogously. The Cauchy

development is then given by D(S) := D+(S) ∪D−(S).

Definition 3.6.2. Let S be an achronal set. The future Cauchy horizon H+(S) of S is

defined as

H+(S) := D+(S) \ I−(D+(S)),

with a coresponding definition for the past Cauchy horizon H−(S). One defines the Cauchy

horizon of S as H(S) = H−(S) ∪H+(S).

Note that both, Cauchy development and Cauchy horizon, are defined with locally Lipschitz

causal curves (contrary to [HE73, ON83]). That this does not affect our considerations is

shown in Lemma 3.6.7.

Example 3.6.3. 1. Let M = Rn
1 and A = {x0 = c}. Then D± = {x0 ≥ (≤)c} = J±(A)

so D(A) = Rn
1 .

2. Let M = R1
1 × S1 \ {p}. For a spacelike circle S, the future Cauchy development is

the union of S and the open region between S and the null geodesics α and β while
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Figure 3.1: Cauchy development

the past Cauchy development is just J−(S).

Remark 3.6.4. Some authors define Cauchy developments with timelike curves instead

of causal ones, see for example [Chr11]. When defined with causal curves, the Cauchy

development is open for closed acausal topological hypersurfaces, cf. Proposition 3.6.12.

It is also easier to work with in the case of continuous metrics, cf. [CG12]. On the other

hand, it prevents piecewise null hypersurfaces from being Cauchy hypersurfaces which is

one of the reasons some authors prefer the definition with timelike curves. The analogous

definition of future Cauchy horizon then leads in general to essentially different sets for

continuous metrics. Note that, physically, the Cauchy horizon H+(S) represents the limit

of the region in spacetime that can be predicted from S as can be seen in Figure 3.6.

Figure 3.2: Cauchy horizon

Lemma 3.6.5. Let S ⊆M be achronal. Then:

(i) S ⊆ D±(S) ⊆ S ∪ I±(S)
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(ii) D+(S) ∩ I−(S) = ∅

(iii) D+(S) ∩D−(S) = S

(iv) D(S) ∩ I±(S) = D±(S) \ S.

Proof. (i) Let p ∈ S. Since every causal curve through p meets S at p then p ∈ D±(S). Now

let α be an inextendible timelike curve through p. Then α meets S hence p ∈ S ∪ I±(S).

(ii) Assume to the contrary, that there exists q ∈ D+(S) ∩ I−(S). Since q ∈ I−(S), there

exist p ∈ S and a past directed timelike curve α from p to q. Extending α from q on, one

obtains an intersection with S, a contradiction to S being achronal.

(iii) Using (i) and (ii), we have:

S ⊆ D+(S) ∩D−(S) ⊆ D+(S) ∩ (S ∪ I−(S)) = D+(S) ∩ S = S.

(iv) Again, from (i) and (ii) and the fact that, since S is achronal, I+(S) ⊆ M \ S, it

follows:

D(S)∩ I+(S) = D+(S)∩ I+(S) ⊆ D+(S) \S ⊆ D(S)∩ ((S ∪ I+(S)) \S) = D(S)∩ I+(S).

Lemma 3.6.6. Let S be achronal. Then:

(i) S is a Cauchy hypersurface if and only if D(S) = M .

(ii) Every past directed causal curve that starts in D+(S) and leaves it, has to intersect

S.

(iii) Every inextendible causal curve through any p ∈ S intersects both I−(S) and I+(S).

Proof. (i) (⊆) Let S be a Cauchy hypersurface in M . Then M is the disjoint union of

S, I+(S) and I−(S). In particular, D±(S) = S ∪ I±(S): by Lemma 3.6.5 (i), D±(S) ⊆
S ∪ I±(S). Also, S ⊆ D+(S). It remains to show I+(S) ⊆ D+(S). Let q ∈ I+(S) and

let α be a past extendible causal curve through q. Let α̃ = α ∪ β be a future inextendible

extension of α. By Lemma 3.5.5, α̃ intersects S. If β intersected S, say in q1, then

q1 ∈ J+(q) ⊆ J+(I+(S)) = I+(S). Therefore there exists a timelike curve β̃ from S to
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q1 ∈ S, a contradiction to S being a Cauchy hypersurface. Hence α itself intersects S and

q ∈ D+(S). Thus D(S) = D+(S) ∪D−(S) = M .

(⊇) By the definition of D(S), every inextendible timelike curve meets S. Since S is

achronal, it can meet S at most once, hence exactly once.

(ii) Let α : [0, b] → M be a past directed causal curve with α(0) ∈ D+(S) and α(b) /∈
D+(S). Hence there exists a past inextendible causal curve γ that starts at α(b) and does

not intersect S. Then the concatenation α ∪ γ is a past inextendible causal curve that

starts at α(0) ∈ D+(S) hence it must intersect S. Thus α intersects S.

(iii) Let α : [0,∞) → M be a past inextendible causal curve that starts at α(0) = p ∈
D(S)◦. By Lemma 3.6.5 (i), we getD(S) ⊆ I−(S)∪I+(S)∪S. If p ∈ I−(S), there is nothing

to prove. Now let p ∈ S ∪ I+(S). By Theorem 2.3.10, every neighborhood of p intersects

I+(p). Since D(S) is a neighborhood of p, there exists q ∈ I+(p)∩D(S) = I+(p)∩D+(S).

By Lemma 3.5.3 (i), there is a past inextendible timelike curve α̃ : [0,∞)→M starting at

q. In particular, by the proof of 3.5.3 (i), it follows that for every s ∈ [0,∞) there exists

k ∈ N such that α(k) ∈ I−(α̃)(s): indeed, for k > s one obtains α(k)� pk = α̃(k)� α̃(s).

Now, q ∈ D+(S), hence α̃ meets S in some point α̃(s). The corresponding α(k) is thus in

I−(S).

Lemma 3.6.7. Let S be a closed achronal hypersurface. Then the Cauchy development

defined with Lipschitz curves, D+(S), coincides with the one defined with piecewise C1-

curves, D+
C1(S).

Proof. Obviously, D+(S) ⊆ D+
C1(S). Now suppose there existed some p ∈ D+

C1(S)\D+(S).

Then there would exist a past inextendible Lipschitz causal curve γ from p such that γ∩S =

∅. By Theorem 1.7.1, we may cover γ by totally normal neighborhoods U1, ..., UN , ... such

that γ([si, si+1]) ⊆ Ui+1, ∀i. Then we distinguish two cases: If γ([si, si+1]) ⊆ ∂J+(γ(si), Ui)

for all i, then by Corollary 2.3.13 γ is a piecewise null geodesic and therefore piecewise C1,

a contradiction. The second possibility is that ∃i, ∃t ∈ (si, si+1) such that γ(si) � γ(t).

But then Lemma 3.5.3 (ii) gives a contradiction.

Lemma 3.6.8. Let S be a closed achronal set. Then D+(S) is the set of all points p such

that every past inextendible timelike curve through p meets S.

Proof. Let X := {p ∈M | every past inextendible timelike curve through p meets S}.
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D+(S) ⊆ X: Assume p ∈ D+(S) \X. Then there exists a past inextendible timelike curve

α : [0, b) → M , α(0) = p, that does not meet S. In particular, p /∈ S. Since S is closed,

there exists a totally normal neighborhood U of p such that U ∩ S = ∅. Choose s ∈ [0, b)

such that for q := α(s) it follows that p ∈ I+(q, U). I+(q, U) is an open neighborhood of

p ∈ D+(S), thus there exists r ∈ I+(q, U)∩D+(S). By Theorem 2.3.10, there exists a past

directed timelike geodesic β from r to q in U . As U ∩ S = ∅, β cannot intersect S. But

β ∪ α|[s,b] is a past inextendible timelike curve starting at r ∈ D+(S) hence it must meet

S. Thus α|[s,b] meets S, contradicting our assumption.

X ⊆ D+(S): Let p /∈ D+(S) and choose q ∈ I−(p,M \ D+(S)). In fact, q ∈ M \ D+(S)

so q /∈ D+(S). Hence there exists a past inextendible causal curve α ∈ M starting at q

that does not intersect S. Since q ∈ I−(p,M \ D+(S)), using Lemma 3.6.5 (i), we get

p ∈ I+(q,M \D+(S)) ⊆ I+(q,M \S). By Lemma 3.5.3 (i), there exists a past inextendible

timelike curve through p that does not intersect S. Thus p /∈ X.

Lemma 3.6.9. Let S be a closed achronal set. Then ∂D±(S) = S ∪H±(S).

Proof. First we show S ⊆ ∂D+(S). Assume p ∈ S ∩ D+(S)◦. By Theorem 2.3.10, there

exists q ∈ D+(S)◦∩ I−(p). Let α be a past inextendible timelike curve starting at q. Then

α meets S at some point r. Thus r ∈ I−(q) and q ∈ I−(p) so r ≤ q � p. By Proposition

2.3.14, r � p, r, p ∈ S, contradicting achronality of S.

H+(S) ⊆ ∂D+(S): by the definition of a Cauchy horizon, we have H+(S) ⊆ ∂D+(S).

Assume p ∈ H+(S) ∩D+(S)◦. As above, I+(p) ∩D+(S) 6= ∅, which is a contradiction to

p ∈ H+(S).

∂D+(S) ⊆ S ∪ H+(S): Assume p ∈ ∂D+(S) \ (S ∪ H+(S)). Then p ∈ D+(S) \ S. By

Lemma 3.6.8, p ∈ I+(S). In addition, p ∈ D+(S) \ H+(S), so by Definition 3.6.2 there

exists q ∈ I+(p) ∩ D+(S). In particular, p ∈ I−(q), hence I+(S) ∩ I−(q) is an open

neighborhood of p. It suffices to show that I+(S) ∩ I−(q) ⊆ D+(S), for then p ∈ D+(S)◦

in contradiction to p ∈ ∂D+(S). Let r ∈ I+(S) ∩ I−(q) and let α be a past inextendible

causal curve starting at r. Since r ∈ I−(q), there exists a past directed timelike curve β

from q to r. From r ∈ I+(S), we see that β is entirely contained in I+(S). Since S is

achronal, S ∩ I+(S) = ∅, so β does not meet S. But β ∪ α meets S as q ∈ D+(S) thus α

meets S and r ∈ D+(S).

The next result shows how in the case of achronal sets, Cauchy developments and global

hyperbolicity are closely related (cf. [Chr11, Thm. 2.9.9])
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Theorem 3.6.10. Let S be achronal. Then D(S)◦ is globally hyperbolic.

Proof. We first show that the causality condition holds on D(S)◦: Suppose there exists

a closed causal curve α through p ∈ D(S)◦. Circling along α repeatedly leads to an

inextendible causal curve α̂ which meets S repeatedly, contradicting achronality of S.

Next we show that the strong causality condition holds on D(S)◦: Suppose that strong

causality is violated at p ∈ D(S)◦. Then there exists a neighborhood U of p such that

for every n there exists an inextendible causal curve αn parameterized by h-arc length

such that αn(0) ∈ B(p, 1
n
), a sequence sn such that αn(sn) → p and 0 < tn < sn so that

αn(tn) /∈ U . Note that we may without loss of generality assume, changing time orientation

if necessary, that p ∈ I−(S) ∪ S.

Then there exists a causal curve α through p that is an accumulation curve of the αn’s such

that, passing to a subsequence if necessary, the αn’s converge uniformly to α on compact

subsets of R. By the assumption, p ∈ D(S) thus by Lemma 3.6.6 (iii) there exist s± ∈ R
such that α(s−) ∈ I−(S) and α(s+) ∈ I+(S). By achronality of S and the fact that α is

future directed, it follows that s− < s+. The sets I±(S) are open and αn(s±) → α(s±)

thus αn(s±) ∈ I±(S) for n large enough.

The simplest case to exclude is the one where the sequence {sn} is bounded. There exists

t > 0 such that tn > t, ∀n: Choose r > 0 such that Bh(p, r) ⊆ U . If dh(αn(0), p) < r
2

then

tn >
r
2

hence take t := r
2
.

Then sn ≥ tn ≥ t > 0, ∀n. So there exists s∗ ∈ R such that, passing again to a subsequence

if necessary, it follows that sn → s∗. Thus

d(αn(s∗), p) ≤ d(αn(s∗), αn(sn)) + d(αn(sn), p)

≤ L|sn − s∗|+ d(αn(sn), p)→ 0

hence αn(s∗)→ p. Since αn|[0,s∗] converges uniformly to α|[0,s∗], there exists an inextendible

periodic causal curve α′ through p obtained by repeatedly circling from p to p along α|[0,s∗].
By Lemma 3.6.6, α′ meets all of S, I+(S) and I−(S), which is a contradiciton to the

achronality of S.

Note that p ∈ I−(S) cannot occur. If p were in I−(S), it would follow that sn ≤ s+ for n

large enough. Otherwise, for n large, we could follow αn in the future from αn(s+) ∈ I+(S)

to αn(sn) ∈ I−(S) (since αn(sn) → p and p ∈ I−(S)), which cannot happen since S is
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achronal. But then the sequence sn would be bounded which we have excluded.

Thus the only possibility remaining is p ∈ S. We need the following result (see [Had10,

Prop. 4.1.1], [HP69, Lemma 2.10]):

Lemma 3.6.11. Let S be chronological and suppose that strong causality fails at p ∈ S.

Then there exists an inextendible null geodesic α through p such that strong causality fails

at α(t) for all t.

Proof. Assume strong causality fails at p. Then there exists an open neighborhood O of

p such that O is compact and there exist neighborhoods Vk ⊆ O and causal curves βk

from pk ∈ Vk to rk ∈ Vk which leave Vk. Without loss of generality we may assume that

there exists a totally normal neighborhood U of p, such that O b U . Let qk be the first

intersection of βk with ∂U . Since ∂U is compact, we may assume that qk → q ∈ ∂O, as

k →∞, so q ∈ U . Therefore, there exists a unique geodesic αpq from p to q.

We next show that αpq is a null geodesic. The curves βk are causal, thus qk ∈ J+(pk, U),

for all k. Since pk → p, qk → q, by Proposition 2.3.22 we get p ≤ q, so the vector −→pq is

causal. It remains to show that −→pq is null. Suppose −→pq is timelike. Then by Corollary

2.3.17 there exists k ∈ N and there is a neighborhood W of q such that rk � qk for all

rk ∈ Vk and for all qk ∈ W . Since rk � qk � rk, by Proposition 2.3.14 we conclude that

rk � rk, contradicting the chronology condition on S.

We next show that the strong causality fails at each point of αpq: we will first show this in

q. Choose neighborhoods Ṽk of q such that Ṽk ⊆ U ′ for a fixed totally normal neighborhood

U ′ of q, and such that rk /∈ U ′, ∀k ∈ N. Now let q̃k ∈ I+(q) ∩ Ṽk. Then q ∈ I−(q̃k) and

we may assume without loss of generality (by choosing a subsequence if necessary) that

qk ∈ I−(q̃k)\Vk for all k ∈ N. In fact, I−(q̃k) is an open neighborhood of p since p ≤ q � q̃k

and rk → p so it follows that without loss of generality we may assume that rk ∈ I−(q̃k)

for all k ∈ N.

Now let β̃k be a future directed timelike curve from rk to q̃k and let β̌k := βk ∪ β̃k. Then

β̃k is a future directed causal curve from qk to qk which leaves Ṽk hence contradicting the

strong causality assumption at q.

Finally we show that strong causality fails at each point q̂ on αpq. Note that there exists a

neighborhood Û ⊂ O with the same properties as O above so that any such q̂ lies on the

boundary of Û . We may assume that {αpq} ∩ ∂Û = {q̂} and Vk ⊆ Û for all k ∈ N. Also

we may replace the initial part of βk from pk to qk by the geodesic αpkqk connecting pk and
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qk in U . Let q̂k be the first intersection of αpkqk with ∂Û . Then the causal vector −−→pkqk
is the initial velocity of αpkqk and by construction, there exists some ck ∈ [0, 1] such that
−−→
pkq̂k = ck

−−→pkqk. ∂Û is compact thus without loss of generality we have that ck → c ∈ [0, 1]

and q̂k → q̆ ∈ ∂Û . Hence
−→
pq̆ = c−→pq and therefore q̆ ∈ {αpq}. Also, q̆ ∈ ∂Û ∩ {αpq} = {q̂},

i.e., q̆ = q̂ thus the strong causality fails at q̆ = q̂.

Hence by the above, there is a totally normal neighborhood Ũ of q such that β̃k starting

from qk leaves Ũ and re-enters Ṽk. Therefore, we may repeat the construction from the

beginning (when we proved that strong causality fails at p) with q instead of p and Ũ

instead of O. Since β̂k coincides with βk within Ũ (before it leaves it), the new sequence

of boundary points {sk}k∈N was obtained by the αk themselves. Hence we obtain

s = lim
k→∞

sk

and a null geodesic αqs along which the strong causality fails. We want to show that αqs

extends αpq as an unbroken null geodesic. Suppose this is not the case. Then by Proposition

2.3.16, it follows that p � r and thus by Corollary 2.3.17 there exists a neighborhood W̃

and some k ∈ N such that for all yk ∈ Vk and for all sk ∈ W̃ , yk � sk. Then for some

sk ∈ W̃ ∩ {βk}, using Proposition 2.3.14 we have:

sk ≤ yk � sk ⇒ sk � sk.

By iterating this procedure both into the future and into the past to obtain an inextendible

null geodesic α along which strong causality fails.

Now by Lemma 3.6.6, since α is null (hence causal) it must intersect both I−(S) and I+(S)

which means that there is a point in I−(S)∩D(S)◦ at which strong causality fails and we

have already excluded this case.

Finally we prove compactness of the causal diamonds J+(p)∩J−(q), p, q ∈ D(S)◦. Consider

a sequence pn ∈ J+(p)∩J−(q). Then either pn ∈ I−(S)∪S for all n ≥ n0, or there exists a

subsequence, still denoted by pn, such that pn ∈ I+(S). In the second case we can reduce

the analysis to the first one by changing time-orientation, passing to a subsequence and

renaming p and q hence leading to p ∈ I−(S) ∪ S. By definition, there exists a future

directed causal curve α̂n from p to q passing through pn:

α̂n(tn) = pn. (3.6)
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Let αn be any h-arc length parameterized future directed inextendible causal curves which

are extensions of α̂n with αn(0) = p. Denote by α an inextendible accumulation curve of the

curves αn. Then α is a future inextendible causal curve through p ∈ (D−(S)∪ S)∩D(S)◦

(p /∈ I+(S) because otherwise we would have pn ∈ I+(S) and we have already excluded

that). By Lemma 3.6.6 there exists t′ such that α(t′) ∈ I+(S). Without loss of generality we

have that the αn’s converge uniformly to α on [0, t′] which implies that the αn’s enter I+(S)

for n large enough. Hence the sequence tn defined by (3.6) is bounded, i.e., 0 ≤ tn ≤ t′.

Otherwise, we would have:

tn > t′ ⇒ I−(S) 3 pn = α(tn) ≥ α(t′) ∈ I+(S).

Passing to another subsequence, we have tn → t̃, for some t̃ ∈ R. Then

dh(α(t̃), pn) ≤ dh(α(t̃), α(tn)) + dh(α(tn), αn(tn))

≤ dh(α(t̃), α(tn)) + sup
s∈[0,t′]

dh(α(s), αn(s))→ 0,

thus pn → α(t̃) ∈ J+(p) ∩ J−(q), which we wanted to prove.

The following result has recently been established in [CG12] even for continuous metrics

in the case of acausal spacelike C1-hypersurfaces (cf. [CG12, Prop. 2.4.]):

Proposition 3.6.12. Let S be a closed acausal topological hypersurface. Then D(S) is

open.

Proof. We first show that S ⊆ D(S)◦. Assume there is p ∈ S \D(S)◦. Then there exist an

open set U and a totally normal open neighborhood V such that p ∈ U ⊆ U b V ⊆ I(S).

Since p /∈ D(S)◦, there is a sequence rn ∈ M \ D(S) such that rn → p. Without loss of

generality we may assume that rn ∈ U for all n. As rn ∈ M \ D(S) ⊆ M \ S, rn must

be in I+(S) or I−(S). Again without loss of generality, we have that rn ∈ I+(S) ∩ U .

Since rn /∈ D+(S), there exists a past directed past inextendible causal curve αn starting

at rn that does not intersect S. By Proposition 2.3.22 (iv), as U is contained in V and

αn is a past inextendible causal curve starting at rn ∈ U , it must leave U . Let qn be the

first intersection of αn with ∂U . Since ∂U is compact, a subsequence of qn, without loss of

generality, qn itself, converges to q ∈ ∂U . Also, qn ≤ rn hence by Proposition 2.3.22 (iii)

q ≤ p. As p ∈ U and q ∈ ∂U , we have that q < p. Then there are three possibilities:
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1. q ∈ I+(S). Then there exists q′ ∈ S such that q′ � q. Since q′ � q < p by

Proposition 2.3.14, q′ � p, contradiction to S being achronal.

2. q ∈ S. Then q < p ∈ S hence a contradiction to achronality of S.

3. q ∈ I−(S). By Corollary 2.3.17 I−(S) is open hence there exists n such that qn =

α(tn) ∈ I−(S). Thus αn is a causal curve from rn ∈ I+(S) to qn ∈ I−(S). Then there

are timelike curves β and γ from s1 ∈ S to rn and from qn to s2 ∈ S respectively.

The curve β ∪αn ∪ γ is causal and intersects S twice, again contradiction to S being

achronal.

Now assume that D(S) is not open. By changing the time orientation if necessary, we may

without loss of generality assume that there is a point p ∈ D+(S), a sequence of points

pn → p and a sequence of inextendible causal curves αn through pn that do not intersect

S. An accumulation curve α of the αn’s is an inextendible causal curve through p ∈ D+(S)

hence by definition, it must meet S. Then for n large enough, αn’s need to intersect D(S)◦

hence also meet S.

Lemma 3.6.13. Let S ∈M be achronal. Then H±(S) is closed and achronal.

Proof. Since I∓(D±(S)) is open, H± = D±(S) \ I∓(D±(S)) is closed. Since I+(H+(S))

is open, by Definition 3.6.2, I+(H+(S)) ∩D+(S) = ∅ hence I+(H+(S)) ∩D+(S) = ∅ and

therefore I+(H+(S)) ∩H+(S) = ∅.

Proposition 3.6.14. Let S be a closed acausal topological hypersurface. Then

1. H+(S) = I+(S) ∩ ∂D+(S) = D+(S) \D+(S);

2. H+(S) ∩ S = ∅;

3. H+(S) is either empty or a closed achronal topological hypersurface;

4. H+(S) is generated by past inextendible null geodesics that are entirely contained in

H+(S).

Proof. 1. By the definition of a Cauchy horizon and Lemma 3.6.8, it follows that

H+(S) ⊆ D+(S) ⊆ I+(S) ∪ S. (3.7)
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Also, H+(S) ∩ D+(S) = ∅: assume p ∈ H+(S) ∩ D+(S). By Proposition 3.6.12, D(S) is

open hence by Theorem 2.3.10, I+(p)∩D(S) 6= ∅. S is achronal, thus I+(p)∩D−(S) = ∅:
if there was q ∈ I+(p) ∩ D−(S) there would exist a timelike curve α connecting p and q.

An inextendible extension α̃ of α intersects S either before p since p ∈ D+(S), or after q

since q ∈ D−(S), which is impossible. Thus I+(p)∩D+(S) 6= ∅, contradicting p ∈ H+(S).

So H+(S)∩D+(S) = ∅ hence H+(S)∩S = ∅ and by (3.7), H+(S) ⊆ I+(S). Using Lemma

3.6.9 and the fact that I+(S) ∩ S = ∅ since S is achronal, we get:

I+(S) ∩ ∂D+(S) = I+(S) ∩ (S ∪H+(S)) = I+(S) ∩H+(S) = H+(S),

hence the first equality.

Now, by H+(S) ∩ D+(S) = ∅ we have that H+(S) ⊆ D+(S) \ D+(S). Conversely, let

p ∈ D+(S) \ D+(S) and q ∈ I+(p). Then there is a past directed timelike curve α from

q to p. Since p ∈ D+(S), by the openness of I−(S) and Lemma 3.6.5, p /∈ I−(S) and

p /∈ D+(S) so p ∈ S ∪ I−(S). Hence α does not intersect S. By p /∈ D+(S), there exists an

inextendible causal curve β starting at p and does not intersect S. Then the concatenation

β ∪ α starting at q does not meet S and it is inextendible causal hence q /∈ D+(S).

2. Using I+(S) ∩ S = ∅, we have H+(S) ∩ S = S ∩ I+(S) ∩ ∂D+(S) = ∅.

3. Let A := D+(S) ∪ I−(S). We show that A is a past set, i.e., I−(A) ⊆ A. It suffices

to show I−(D+(S)) ⊆ A since I−(A) = I−(D+(S)) ∪ I−(I−(S)). Assume q ∈ I−(D+(S))

and let γ be a past directed timelike curve from p ∈ D+(S) to q. If q ∈ D+(S), there is

nothing to prove. Otherwise, there exists a past directed timelike curve α starting at q

that does not meet S. As p ∈ D+(S), γ ∪ α meets S hence γ meets S in some point r.

Thus q ∈ S ⊆ D+(S) if q = r or q ∈ I−(r) if r � q.

4. Suppose p ∈ H+(S) = D+(S) \ D+(S). Since p /∈ D+(S) there exists an inextendible

causal curve α starting at p that does not meet S. By Lemma 3.6.8, no such curve can

be timelike, or deformed to a timelike curve, that starts at p and does not meet S. By

Lemma 3.5.3 (ii), α is a null geodesic. It remains to show that α runs in H+(S).

Since α does not meet S, it cannot intersect D+(S). By (i), it suffices to show that α is

contained in D+(S). Assume there exists some t such that α(t) /∈ D+(S). Then there

exists a normal neighborhood U of α(t) such that U ∩D+(S) = ∅. By Theorem 2.3.10, we

can connect α(t) with some q ∈ U by a future directed timelike curve β. As q /∈ D+(S),

there exists an inextendible causal curve γ starting at q that does not meet S. Hence
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α∪ β ∪ γ is an inextendible causal curve which is not a null geodesic thus by Lemma 3.5.3

(ii), it cannot meet S. Therefore there is an inextendible timelike curve α̃ starting at p

that does not intersect S: contradiction to our assumption.

Lemma 3.6.15. Let S be a spacelike hypersurface and let p ∈ S. Then there exists a

neighborhood V of p such that V ∩ S is a Cauchy hypersurface in V .

Proof. Let ĝε be smooth metrics approximating g from the outside as in Prop. 2.2.5. Then

given any compact neighborhood W of p in M there exists some ε > 0 such that W ∩ S
is spacelike for ĝε. From the smooth theory (e.g., [BGPf07, Lemma A.5.6]) we obtain that

there exists a neighborhood V ⊆ W such that V ∩S is a Cauchy hypersurface in V for ĝε,

and consequently also for g.

Lemma 3.6.16. Let S be an achronal set in M and let p ∈ D(S)◦ \ I−(S). Then J−(p)∩
D+(S) is compact.

Proof. Consider a sequence of points rn ∈ J−(p) ∩ D+(S). For every n, there is a past

directed causal curve α̃n from p to rn such that α̃n(tn) = rn. If there is a convergent

subsequence of rn to p, there is nothing to prove. Otherwise, let αn be an h-arc length

parametrized past directed past inextendible causal curve which extends α̃n. An accumu-

lation curve α of the curves αn is a past directed past inextendible causal curve through

p ∈ D(S)◦ hence by Lemma 3.6.6, there exists t− such that α(t−) ∈ I−(S). Since the αn’s

converge to α uniformly on [0, t−], the αn’s enter I−(S) for n large enough. Similarly to the

proof of Theorem 3.6.10, the sequence tn has to be bounded, otherwise we would obtain

a contradiciton to the achronality of S. Hence 0 ≤ tn ≤ t̃. Passing to a subsequence, we

obtain tn → t̂, for some t̂ ∈ R. Therefore rn → α(t̂), as we wanted to show.

The following two results follow from [BGPf07, Lemma A.5.3] and [BGPf07, Cor. A.5.4]:

Lemma 3.6.17. Let K be a compact subset of M and let A ⊆ M be such that, ∀p ∈ M ,

A∩J+(p), respectively A∩J−(p), is relatively compact in M . Then A∩J+(K), respectively

A ∩ J−(K), is relatively compact in M .

Proof. We only consider the case of A∩J+(K), the result analogously follows for A∩J−(K).

Consider an open covering I−(p), p ∈ M , of M and cover K by finitely many such sets,

K ⊆ I−(p1) ∪ ... ∪ I−(pk). By Corollary 2.3.18,

J−(K) ⊆ J−(I−(p1) ∪ ... ∪ I−(pk)) ⊆ J−(p1) ∪ ... ∪ J−(pk).
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By the assumption, each A∩ J+(pi), i = 1, ..., k, is relatively compact hence A∩ J−(K) ⊂⋃k
i=1(A ∩ J+(pi)) is contained in a compact set.

Corollary 3.6.18. Let S be a Cauchy hypersurface in a globally hyperbolic manifold M

and let K be compact in M . Then S ∩ J±(K) and J∓(S) ∩ J±(K) are compact.

Proof. Since S is a Cauchy hypersurface and therefore D(S)◦ = M , by Lemma 3.6.16

we have that J+(S) ∩ J−(p) is compact for all p ∈ M . Then we may apply Lemma

3.6.17 to A := J+(S) to obtain that J−(K) ∩ J+(S) is relatively compact in M . By

Proposition 3.3.5 and Corollary 3.3.6, we know that J+(S) and the relation ≤ are closed,

hence J−(K) ∩ J+(S) is closed and thus compact.

S is a closed subset of J+(S) hence J−(K) ∩ S is also compact. The statements for

J+(K) ∩ S and J+(K) ∩ J−(S) follow analogously.

We give a proof of the following result, again to avoid the variational calculus-based argu-

ment in [ON83, Lemma 14.42].

Lemma 3.6.19. Any achronal spacelike hypersurface S is acausal.

Proof. Let α : [0, 1]→ M be a future directed causal curve with endpoints α(0) and α(1)

in S. If α is not a null-geodesic, by Proposition 2.3.14, we can connect α(0) with α(1) also

by a timelike curve, which is a contradiction to the achronality of S. Now let α be a null

geodesic. By Lemma 3.6.15, there exists a neighborhood U around α(0) in which S ∩U is

a Cauchy hypersurface. Since α is C2 and causal, it must be transversal to S, so it contains

points in J+(S, U) \ S. Then we can connect any such point with some point in S ∩ U by

a timelike curve within U . Concatenating this curve with the remainder of α, we obtain a

curve that is not entirely null and meets S twice. As above, this gives a contradiction to

achronality.

Proposition 3.6.20. Let S be a spacelike hypersurface in M . Then S is a Cauchy hyper-

surface if and only if every inextendible causal curve intersects S precisely once.

Proof. Let S be a Cauchy hypersurface and let α be an inextendible causal curve. By

Lemmas 3.5.5(i), 3.6.19, α intersects S at most once. Also, by Lemma 3.5.5 (ii), it has to

intersect S at least once, hence the result.

A very important consequence of the Proposition 3.6.12 is the following:
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Lemma 3.6.21. If M contains a Cauchy hypersurface, then M is globally hyperbolic.

Proof. By Theorem 3.6.10, D(S)◦ is globally hyperbolic. By Lemma 3.6.6, D(S) = M ,

hence also D(S)◦ = M .

Now let S be a spacelike hypersurface in M with a Lorentzian metric g. By N(S) we denote

the set of vectors perpendicular to S with respect to the metric g and by (N(S), π) the

normal bundle of S in M , where π : N(S)→ S is the map carrying each vector v ∈ Tp(S)⊥

to p ∈ S. The exponential map with respect to the metric g generalizes in the following

way: the normal exponential map

exp⊥ : N(S)→M

assigns to a vector v ∈ N(S) the point cv(1) in M , where cv is the geodesic with initial

velocity v. Thus exp⊥ carries radial lines in TpS to geodesics of M that are normal to S

at p.

The remaining statements serve to justify that in the proof of the main result in Section

4.5 we may without loss of generality assume S to be achronal. This is done using a

covering argument, as in [HE73, ON83]. A key ingredient in adapting this construction to

the C1,1-setting is the following consequence of [Min13, Th. 1.39]:

Theorem 3.6.22. Let M be a smooth manifold with a C1,1 Lorentzian metric and let

S be a semi-Riemannian submanifold of M . Then the normal bundle N(S) is Lipschitz.

Moreover, there exist neighborhoods U of the zero section in N(S) and V of S in M such

that

exp⊥ : U → V

is a bi-Lipschitz homeomorphism.

Concerning curve-lengths in normal neighborhoods, [Min13, Th. 1.23] gives:

Proposition 3.6.23. Let U be a normal neighborhood of p ∈M . If p� q for a point q ∈
U , then the radial geodesic segment σ is the unique longest timelike curve in U connecting

p and q.

Lemma 3.6.24. Let S be a connected closed spacelike hypersurface in M .
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(i) If the homomorphism of fundamental groups i] : π1(S) → π1(M) induced by the

inclusion map i : S ↪→M is onto, then S separates M (i.e., M \S is not connected).

(ii) If S separates M , then S is achronal.

The proof carries over from [ON83, Lemma 14.45] using Theorem 3.6.22, Theorem 2.3.10

and a result from intersection theory, namely, that a closed curve which intersects a closed

hypersurface S precisely once and there transversally, is not freely homotopic to a closed

curve which does not intersect S, cf. [GP74, p. 78]. The only change to [ON83, Lemma

14.45] is that for the curve σ we take a geodesic, which automatically is a C1-curve (in

fact, even C2), so that the intersection theory argument applicable.

Theorem 3.6.25. Let S be a closed, connected, spacelike hypersurface in M . Then there

exists a Lorentzian covering ρ : M̃ → M and an achronal closed spacelike hypersurface S̃

in M̃ which is isometric under ρ to S.

The proof carries over from [ON83, Prop. 14.48] using Lemma 3.6.24.

The results 3.1.3-3.2.4, 3.3.5-3.6.9, 3.6.13, 3.6.14, 3.6.16, 3.6.20 and 3.6.21 follow from

[ON83, Section 14].
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Chapter 4

Singularity Theorems

The purpose of this chapter is to discuss the singularities of spacetimes and prove the

Hawking singularity theorem in regularity C1,1. The proof is based on the results from C1,1

causality theory that were obtained in the previous chapters and regularization techniques

from [CG12]. We will base our approach on [HE73], [KSSV15] and [ON83].

4.1 What Is a Singularity?

Unfortunately, it is not an easy task to give a precise meaning to what singularities actu-

ally are. Intuitively, one can imagine a singularity as a location in spacetime where the

curvature explodes, where the metric tensor is not defined or is not regular enough. How-

ever such points can be cut out from the spacetime and the remaining manifold is then

considered as a non-singular spacetime. This is a natural thing to do since spacetimes are

solutions of Einstein’s equations, which are not defined where curvature is infinite. Thus

the problem of seeing whether the given spacetime has a singularity is detecting if some

points have been cut out. This is done by the concept of geodesic incompleteness, namely

by proving the existence of at least one incomplete causal geodesic, i.e., a geodesic that can

only be extended for a finite time as measured by an observer travelling along it. Hence one

can distinguish three types of geodesic incompleteness: timelike, null and spacelike. Again

intuitively speaking, a spacelike singularity would mean that the matter is compressed to

a point and a timelike singularity is the one where certain light rays come from a region

with infinite curvature.

101
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The significance of spacelike incompleteness is not very clear since nothing moves along

spacelike curves. However, timelike geodesic incompleteness is very important from the

physical point of view since it represents the possible existence of an observer or a par-

ticle whose histories cease to exist after a finite interval of proper time. Similarly, null

geodesics represent the histories of zero restmass particles. Hence, if we want to talk about

singularity-free spacetimes, we should at least exclude timelike and null geodesic incom-

pleteness. However, not all spacetimes can be classified as the ones having an incomplete

timelike geodesic or the ones that have an incomplete null geodesic, as seen in the example

by Geroch in [Ge68], where he constructed a geodesically complete spacetime which con-

tains an inextendible timelike curve of bounded acceleration and finite length. Therefore,

we need a stronger condition so that we could say that a spacetime has no singularities.

In particular, a generalization of an affine parameter to all curves is needed, not only

geodesics. This is taken care of in the following way:

Let α : I → M be any locally Lipschitz curve through p ∈ M and choose t0 ∈ I and

any orthonormal basis {ei} for Tα(t0)M that is parallelly propagated along α in order to

to obtain a basis for Tα(t)M for almost all t ∈ I. Then the tangent vector v ∈ Tα(t)M

expressed in terms of the basis is v =
∑

i v
i(t)Ei, where Ei is the parallel field along α such

that Ei(t0) = ei. Then the generalized affine parameter is defined by:

λ =

∫ t

t0

√∑
i

vividt.

Clearly, λ depends on p and the chosen orthonormal basis. The important property is that

α has finite arc length with respect to the generalized affine parameter λ if and only if it

has finite arc length with respect to any other generalized affine parameter obtained by

choosing another orthonormal basis, see [HE73, Section 8.1]. This justifies the following

definition:

Definition 4.1.1. The spacetime (M, g) is called b-complete if every locally Lipschitz curve

that has finite arc length as measured with respect to the generalized affine parameter has

an endpoint in M .

Hence a spacetime is said to be singularity-free if it is b-complete.
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4.2 Singularity theorems

The phenomenon of some kind of irregularities of spacetimes or a singular behavior of

solutions of the Einstein field equations was noticed in the very early years of General

Relativity. However, it was believed that these singularities were the result of the high

degree of symmetry or were unphysical in some way. This changed considerably with the

first modern singularity theorem due to Penrose, who showed in his 1965 paper [Pen65]

that deviations from spherical symmetry could not prevent gravitational collapse. In this

paper, the concept of closed trapped surface was introduced and the notion of geodesic

incompleteness was used to characterize a singular spacetime. Shortly afterwards Hawking

realized that by considering a closed trapped surface to the past one could show that

an approximately homogeneous and isotropic cosmological solution must have an initial

singularity. This initiated the development of modern singularity theorems, one of the

greatest achievements within general relativity. (See the recent review paper [SeGa14] for

details.) All the resulting theorems have the same general structure described by Senovilla

in [Se98] as a “pattern singularity theorem”.

Pattern Singularity Theorem. If a spacetime with a C2-metric satisfies

(i) a condition on the curvature

(ii) a causality condition

(iii) an appropriate initial and/or boundary condition

then it contains endless but incomplete causal geodesics.

However, the conclusion of the singularity theorems is their weak point. In fact, they only

show that the spacetime is timelike or null geodesically incomplete but say little about the

nature of the singularity. In particular, it is not claimed that the curvature blows up (see,

however [Cl82, Cl93] as well as [SeGa14, Sec. 5.1.5] and the references therein) and it could

be that the singularity is simply a result of the differentiability dropping below C2.

However, as already indicated by Senovilla in [Se98] and in Chapter 2, C1,1 regularity

of the metric is the natural differentiability class from the point of view of the singularity

theorems. In [HE73, Sec. 8.4] Hawking and Ellis presented a scheme of a proof of Hawking’s

singularity theorem based on an approximation of the C1,1-metric by a 1-parameter family

of smooth metrics. However the C2-differentiability assumption plays a key role in many
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places in the singularity theorems and it is not obvious that these can all be dealt with

without having further information about the nature of the approximation. In addition,

the existence of normal coordinates and normal neighborhoods, as well as the existence of

maximal curves is of high importance when proving the singularity theorems. In [Se98, Sec.

6.1], Senovilla lists where explicitly the C2-assumption enters the proofs of the singularity

theorems, indicating the number of technical difficulties a proof in the C1,1-case would have

to overcome.

As we have developed the key elements of causality theory in the previous chapters, we

now approach the singularity theorems for C1,1-metrics. Indeed, we will show that the

tools now available allow one to prove singularity theorems with C1,1-regularity and we

illustrate this by providing a rigorous proof of Hawking’s theorem in the C1,1-regularity

class. To be precise we establish the following result:

Theorem 4.2.1. Let (M, g) be a C1,1-spacetime. Assume

(i) For any smooth timelike local vector field X, Ric(X,X) ≥ 0.

(ii) There exists a compact spacelike hypersurface S in M .

(iii) The future convergence k of S is everywhere strictly positive.

Then M is future timelike geodesically incomplete.

Remark 4.2.2.

(i) Since g is C1,1, its Ricci-tensor is of regularity L∞. In particular, it is in general only

defined almost everywhere. For this reason, we have cast the curvature condition (i)

in the above form. For any smooth vector field X defined on an open set U ⊆ M ,

Ric(X,X) ∈ L∞(U), so Ric(X,X) ≥ 0 means that Ricp(X(p), X(p)) ≥ 0 for almost

all p ∈ U . Since any timelike X ∈ TpM can be extended to a smooth timelike

vector field in a neighborhood of p, (i) is equivalent to the usual pointwise condition

(Ric(X,X) ≥ 0 for any timelike X ∈ TM) if the metric is C2.

(ii) Concerning (iii) in the Theorem, our conventions (in accordance with [ON83]) are

that k = tr SU/(n− 1) and SU(V ) = −∇VU is the shape operator of S, where U is

the future pointing unit normal, ∇ denotes the connection on M and V is any vector

field on the embedding S ↪→M .
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(iii) In the physics literature, the negative of what we call the future convergence is often

denoted as the expansion of S.

(iv) Finally, we note that an analogous result for past timelike incompleteness holds if the

convergence in (iii) of the Theorem is supposed to be everywhere strictly negative.

In proving this theorem we will follow the basic strategy outlined in [HE73, Sec. 8.4].

However, in our proof we will make extensive use of the results of C1,1-causality theory.

4.3 Regularization techniques

In the proof of Theorem 4.2.1 for C1,1-metrics, regularization techniques play an important

role, as was already clearly pointed out in [HE73, Sec. 8.4]. However, we shall see at

several places below that a straightforward regularization via convolution in charts (as in

[HE73, Sec. 8.4]) is insufficient to actually reach the desired conclusions. Rather, techniques

adapted to the causal structure as introduced in [CG12] will be needed. This remark, in

particular, applies to the results on the existence of maximizing curves (Lemma 4.4.2 and

Proposition 4.4.3) below as well as to the proof of the main result in Section 4.5. The key

result that we are going to use is Proposition 2.2.5.

One essential assumption in the singularity Theorem 4.2.1 is the curvature condition (i)

for the C1,1-metric g. We now derive from it a (weaker) curvature condition for any

approximating sequence ǧε as in Proposition 2.2.5, which is vital in our proof of the main

theorem. This should be compared to condition (4) on p. 285 of [HE73].

Lemma 4.3.1. Let M be a smooth manifold with a C1,1-Lorentzian metric g and smooth

background Riemannian metric h. Let K be a compact subset of M (K bM) and suppose

that Ric(X,X) ≥ 0 for every g-timelike smooth local vector field X. Then

∀C > 0 ∀δ > 0 ∀κ < 0 ∃ε0 > 0 ∀ε < ε0 ∀X ∈ TM |K
with g(X,X) ≤ κ and ‖X‖h ≤ C we have Ricε(X,X) > −δ.

(4.1)

Here Ricε is the Ricci-tensor corresponding to a metric ǧε as in Proposition 2.2.5.

Proof. Let (Ui, ψi) (i ∈ N) be a countable and locally finite collection of relatively compact

charts of M and denote by (ζi)i a subordinate partition of unity with supp(ζi) b Ui (i.e.,
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supp(ζi) is a compact subset of Ui) for all i. Moreover, choose a family of cut-off functions

χi ∈ D(Ui) with χi ≡ 1 on a neighborhood of supp(ζi). Finally, let ρ ∈ D(Rn) be a non-

negative test function with unit integral and define the standard mollifier ρε(x) := ε−nρ
(
x
ε

)
(ε > 0). By f∗ (resp. f ∗) we denote push-forward (resp. pullback) under a smooth map f .

It then follows from (2.2) in the proof of Proposition 2.2.5 that

ǧε −
∑
i

χi ψ
∗
i

((
ψi ∗(ζi g)

)
∗ ρη(λi(ε),i)

)
→ 0 in C2(M). (4.2)

Since η(λi(ε), i) → 0 as ε → 0 and {X ∈ TM |K | ‖X‖h ≤ C} is compact, we conclude

that in order to establish the result it will suffice to assume that M = Rn, ‖ . ‖h = ‖ . ‖ is

the Euclidean norm, to replace ǧε by gε := g ∗ ρε (component-wise convolution), and prove

(4.1) for Ricε calculated from gε.

We first claim that

Rεjk −Rjk ∗ ρε → 0 uniformly on compact sets. (4.3)

We have Rjk = ∂xiΓ
i
kj − ∂xkΓiij + ΓiijΓ

m
kj − ΓikmΓmij . In this expression, all terms involving

at most first derivatives of g are uniform limits of the corresponding terms in Rεjk, while

the remaining terms are of the form gimaijkm, where aijkm consists of second derivatives of

g. These observations imply that (4.3) will follow from the following mild variant of the

Friedrichs lemma:

Claim: Let f ∈ C 0(Rn), a ∈ L∞loc(Rn). Then (f · a) ∗ ρε − (f ∗ ρε) · (a ∗ ρε) → 0 locally

uniformly.

In fact,

((f · a) ∗ ρε − (f ∗ ρε) · (a ∗ ρε))(x) =

∫
(f(y)− (f ∗ ρε(x)))a(y)ρε(x− y) dy

=

∫
(f(y)− f(x))a(y)ρε(x− y) dy +

∫
(f(x)− (f ∗ ρε(x)))a(y)ρε(x− y) dy,

(4.4)

so for any L b Rn we obtain

sup
x∈L
|(f · a) ∗ ρε − (f ∗ ρε) · (a ∗ ρε)|(x) ≤ ( max

x∈L
|x−y|≤ε

|f(y)− f(x)|) · sup
d(y,L)≤ε

|a(y)|

+ (sup
x∈L
|f(x)− fε(x)|) · sup

d(y,L)≤ε
|a(y)| → 0

(4.5)
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as ε→ 0, so (4.3) follows.

Since g is uniformly continuous on K there exists some r > 0 such that for any p, x ∈ K
with ‖p − x‖ < r and any X ∈ Rn with ‖X‖ ≤ C we have |gp(X,X) − gx(X,X)| < −κ.

Now let p ∈ K and let X ∈ Rn be any vector such that gp(X,X) ≤ κ and ‖X‖ ≤ C. Then

on the open ball Br(p) the constant vector field x 7→ X (i.e., the map that assigns to each

x ∈ Br(p) this same vector X ∈ Rn), which we again denote by X, is g-timelike.

Let

R̃jk(x) :=

{
Rjk(x) for x ∈ Br(p)

0 otherwise
(4.6)

By our assumption and the fact that ρ ≥ 0 we then have (R̃jkX
jXk) ∗ ρε ≥ 0 on Rn.

Moreover, for ε < r it follows that (Rjk ∗ ρε)(p) = (R̃jk ∗ ρε)(p). Thus for such ε we have

|Rεjk(p)X
jXk − ((R̃jkX

jXk) ∗ ρε)(p)| = |(Rεjk(p)− (Rjk ∗ ρε)(p))XjXk|

≤ C2 sup
x∈K
|Rεjk(x)−Rjk ∗ ρε(x)|. (4.7)

Using (4.3) we conclude from this estimate that, given any δ > 0 we may choose ε0 such

that for all ε < ε0, all p ∈ K and all vectors X with gp(X,X) ≤ κ and ‖X‖ ≤ C we have

Rεjk(p)X
jXk > −δ, which is (4.1).

4.4 Existence of maximal curves

The next key step in proving the main result is to establish the existence of geodesics

maximizing the distance to a spacelike hypersurface. To prove this statement we will

employ a net ǧε (ε > 0) of smooth Lorentzian metrics whose lightcones approximate those

of g from the inside as in Proposition 2.2.5. We first need some auxiliary results.

Lemma 4.4.1. Let (M, g) be a C1,1-spacetime that is globally hyperbolic. Let h be a

Riemannian metric on M and let K b M . Then there exists some C > 0 such that the

h-length of any causal curve taking values in K is bounded by C.

Proof. It follows, e.g., from the proof of [ON83, Lemma 14.13] that (M, g) is non-totally

imprisoning, i.e., there can be no inextendible causal curve that is entirely contained in K.

Now suppose that, contrary to the claim, there exists a sequence σk of causal curves valued

in K whose h-lengths tend to infinity. Parametrizing σk by h-arclength we may assume
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that σk : [0, ak]→ K, where ak →∞. Also, without loss of generality we may assume that

σk(0) converges to some q ∈ K. Then by point of [M08, Th. 3.1(1)]1 one may extract a

subsequence σkj that converges locally uniformly to an inextendible causal curve σ in K,

thereby obtaining a contradiction to non-total imprisonment.

Lemma 4.4.2. Let (M, g) be a globally hyperbolic C1,1-spacetime and let gε (ε > 0) be a

net of smooth Lorentzian metrics such that gε converges locally uniformly to g as ε → 0,

and let K b M . Then for each δ > 0 there exists some ε0 > 0 such that for each ε < ε0

and each g-causal curve σ taking values in K, the lengths of σ with respect to g and gε,

respectively, satisfy:

Lg(σ)− δ < Lgε(σ) < Lg(σ) + δ. (4.8)

Proof. Since gε → g uniformly on K, given any η > 0 there exists some ε0 > 0 such that

for all ε < ε0 and all X ∈ TM |K with ‖X‖h = 1 we have

‖X‖g − η ≤ ‖X‖gε ≤ ‖X‖g + η. (4.9)

Consequently, for any X ∈ TM |K we have

‖X‖g − η‖X‖h ≤ ‖X‖gε ≤ ‖X‖g + η‖X‖h. (4.10)

Now if σ : [a, b]→ K is any g-causal curve it follows that, for ε < ε0,

Lg(σ)− ηLh(σ) =

∫ b

a

‖σ′(t)‖g dt− η
∫ b

a

‖σ′(t)‖h dt ≤
∫ b

a

‖σ′(t)‖gε dt = Lgε(σ)

≤ Lg(σ) + ηLh(σ).

(4.11)

Finally, by Lemma 4.4.1 there exists some C > 0 such that Lh(σ) ≤ C for any σ as above.

Hence, picking η < δ/C establishes the claim.

Proposition 4.4.3. Let (M, g) be a future timelike-geodesically complete C1,1-spacetime.

Let S be a compact spacelike acausal hypersurface in M , and let p ∈ D+(S) \ S. Then

(i) dǧε(S, p)→ d(S, p) (ε→ 0).

(ii) There exists a timelike geodesic γ perpendicular to S from S to p with L(γ) = d(S, p).

1Note that the required result remains valid for C1,1-metrics (in fact, even for continuous metrics): this
follows exactly as in [CG12, Th. 1.6]
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Here we have dropped the subscript from the time separation function dg(S, p) and the

length Lg(γ) of the C1,1-metric g to simplify notations. Also we remark that the proof

of (i) below neither uses geodesic completeness of M nor compactness of S and hence the

ǧε-distance converges even on general M for any closed spacelike acausal hypersurface S.

Proof. (i) Since p 6∈ S we have c := d(S, p) > 0. Let 0 < δ < c. Then there exists

a g-causal curve α : [0, b] → M from S to p with Lg(α) > d(S, p) − δ. In particular,

α is not a null curve, hence there exist t1 < t2 such that α|[t1,t2] is nowhere null. In

what follows we adapt the argument from [Chr11, Lemma 2.4.14] to the present situation.

Without loss of generality we may assume that t2 = b. By Theorem 1.7.1 we may find

0 = s0 < s1 < · · · < sN = b and totally normal neighborhoods Ui (1 ≤ i ≤ N) such that

α([si, si+1]) ⊆ Ui for 0 ≤ i < N . By Proposition 2.3.14 we obtain that α(sN−1) � α(b),

hence by Proposition 3.6.23, the radial geodesic σN from α(sN−1) to p is longer than

α|[sN−1,b], and it is timelike. Next, we connect α(sN−2) via a timelike radial geodesic σN−1

to some point on σN that lies in UN−1. Concatenating σN−1 with σN gives a timelike curve

longer than α|[sN−2,b]. Iterating this procedure we finally arrive at a timelike piecewise

geodesic σ from α(0) = σ(0) ∈ S to p of length Lg(σ) ≥ Lg(α) > d(S, p)− δ.

Since Lǧε(σ) → Lg(σ), we conclude that Lǧε(σ) > d(S, p) − δ for ε sufficiently small.

Moreover, σ is g-timelike and piecewise C2, hence is ǧε-timelike for small ε. Therefore,

dǧε(S, p) ≥ Lǧε(σ) > d(S, p)− δ for ε small.

Conversely, if σ is any ǧε-causal curve from S to p then σ is also g-causal, hence lies entirely

in the set K := J−(p)∩J+(S,D(S)). Since D(S) is globally hyperbolic by Theorem 3.6.10

and Proposition 3.6.12, K is compact by Corollary 3.6.18. Then by Lemma 4.4.2 (applied

to the globally hyperbolic spacetime (D(S), g)), for ε sufficiently small we have

Lǧε(σ) < Lg(σ) + δ ≤ d(S, p) + δ. (4.12)

Consequently, dǧε(S, p) ≤ d(S, p) + δ for ε sufficiently small. Together with the above this

shows (i).

(ii) Since ǧε has narrower lightcones than g, for each ε the point p lies in D+
ǧε(S) \ S.

Also, we may assume ε to be so small that S is ǧε-spacelike as well as ǧε-acausal. Then

by smooth causality theory (e.g., [ON83, Th. 14.44]) there exists a ǧε-geodesic γε that

is ǧε-perpendicular to S and satisfies Lǧε(γε) = dǧε(S, p). Let h be some background

Riemannian metric on M and let γε(0) =: qε ∈ S, γ′ε(0) =: vε. Without loss of generality
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we may suppose ‖vε‖h = 1. Since {v ∈ TM | π(v) ∈ S, ‖v‖h = 1} is compact, there exists

a sequence εj ↘ 0 such that qεj → q ∈ S and vεj → v ∈ TqM . Denote by γv the g-geodesic

with γ(0) = q, γ′(0) = v. To see that γ is g-orthogonal to S, let w ∈ TqS and pick any

sequence wj ∈ TqεjS converging to w. Then g(v, w) = lim ǧεk(vεj , wj) = 0. Consequently,

γ is g-timelike.

Since g is timelike geodesically complete, γv is defined on all of R, so by standard ODE-

results (cf., e.g., Section 1.4) for any a > 0 there exists some j0 such that for all j ≥ j0 the

curve γεj is defined on [0, a] and γεj → γ in C1([0, a]) (in fact, it follows directly from this

and the geodesic equation that this convergence even holds in C2([0, a])).

For each j, let tj > 0 be such that γεk(tj) = p. Then by (i) we obtain

d(S, p) = lim dǧεk (S, p) = lim

∫ tj

0

‖γ′εj(t)‖ǧεk dt = lim tj‖vεj‖ǧεk = ‖v‖g lim tj, (4.13)

so tj → d(S,p)
‖v‖g =: a. Finally, for j sufficiently large, all γεk are defined on [0, 2a] and we

have p = γεk(tj)→ γ(a), so p = γ(a), as well as

d(S, p) = lim

∫ tj

0

‖γ′εj(t)‖ǧεk dt =

∫ a

0

‖γ′(t)‖g dt = La0(γ). (4.14)

4.5 Proof of the main result

To prove Theorem 4.2.1, we first note that without loss of generality we may assume S

to be connected. Moreover, by Theorem 3.6.25 we may also assume S to be achronal,

and thereby acausal by Lemma 3.6.19 (replacing, if necessary, M by a suitable Lorentzian

covering space M̃ and S by its isometric image S̃ in M̃). Note that since the light cones of

ǧε approximate those of g from the inside it follows that for ε small S is a spacelike acausal

hypersurface with respect to ǧε as well.

We prove the theorem by contradiction and assume that (M, g) is future timelike geodesi-

cally complete. Hence we may apply Proposition 4.4.3 to obtain (using the notation from

the proof of that result) for any p ∈ D+(S) \ S:

(A) ∃ g-geodesic γ ⊥g S realizing the time separation to p, i.e., L(γ) = d(S, p).
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(B) ∃ ǧε-geodesics γε ⊥ǧε S realizing the time separation to p, i.e., Lǧε(γε) = dǧε(S, p).

(C) ∃ εj ↘ 0 such that γεj → γ in C1([0, a]) for all a > 0 (in fact, even in C2([0, a])).

We proceed in several steps.

Step 1. D+(S) is relatively compact.

The future convergence of S is given by k = 1/(n − 1)trSU , with SU(V ) = −∇VU and

U the future pointing g-unit normal on S. Analogously, for each εj as in (C) we obtain

the future convergence kj of S with respect ǧεk , and we denote the future-pointing ǧεk-

unit normal to S and the corresponding shape operator by Uj and SUj , respectively. By

Proposition 2.2.5 (i), kj → k uniformly on S. Let m := minS trSU = (n − 1) minS k, and

mj := minS trSUj = (n − 1) minS kj. By assumption, m > 0, and by the above we obtain

mj → m as j →∞.

Let

b :=
n− 1

m
(4.15)

and assume that there exists some p ∈ D+(S) \ S with d(S, p) > b. We will show that this

leads to a contradiction.

Since each γεj as in (C) is maximizing until p = γεj(tj), it contains no ǧεk-focal point to

S before tj. Setting t̃j := (1 − 1
j
)tj it follows that exp⊥ǧε is non-singular on [0, t̃j]γ

′
εj

(0) =

[0, t̃j]vεj . As this set is compact there exist open neighborhoodsWj of [0, t̃j]vεj in the normal

bundle Nǧεk
(S) and Vj of γεj([0, t̃j]) in M such that exp⊥ǧεk

: Wj → Vj is a diffeomorphism.

Due to Dǧεk
(S) being open, we may also assume that Vj ⊆ Dǧεk

(S).

On Vj we introduce the Lorentzian distance function rj := dǧεk (S, .) and set Xj :=

−grad(rj). Denote by γ̃j the re-parametrization of γεj by ǧεk-arc length:

γ̃j : [0, t̃j‖vεj‖ǧεk ]→M γ̃j(t) := γεj(t/‖vεj‖ǧεk ). (4.16)

Then since γ̃j is maximizing from S to p in D+
ǧεk

(S), hence in particular in Vj ∩ J+
ǧεk

(S), it

follows that Xj(γ̃j(t)) = γ̃′j(t) for all t ∈ [0, t̃j‖vεj‖ǧεk ]. Next we define the shape operator

corresponding to the distance function rj by Srj(Y ) := ∇ǧεk
Y (grad(rj)) for Y ∈ X(Vj). Then

Srj |S∩Vj = SUj |S∩Vj and the expansion θ̃j := −trSrj satisfies the Raychaudhuri equation

(cf., e.g., [Nat05])

Xj(θ̃j) + tr(S2
rj

) + Ricǧεk (Xj, Xj) = 0 (4.17)
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on Vj. Consequently, we obtain for θj(t) := θ̃j ◦ γ̃j(t):

d(θ−1
j )

dt
≥ 1

n− 1
+

1

θ2
j

Ricǧεk (γ̃′j, γ̃
′
j). (4.18)

Now since by (C) the γ̃j converge in C1 to the g-timelike geodesic γ, it follows that there

exist κ < 0 and C > 0 such that for all j sufficiently large we have g(γ̃′j(t), γ̃
′
j(t)) ≤ κ as

well as ‖γ̃′j(t)‖h ≤ C for all t ∈ [0, t̃j‖vεj‖ǧεk ].

We are therefore in the position to apply Lemma 4.3.1 to obtain that, for any δ > 0,

d(θ−1
j )

dt
>

1

n− 1
− δ

θ2
j

(4.19)

for j large enough. Pick any c with b < c < d(S, p) and fix δ > 0 so small that

b <
n− 1

αm
< c, (4.20)

where m is as in (4.15) and α := 1− (n− 1)m−2δ. Analogously, let αj := 1− (n− 1)m−2
j δ,

so that αj → α as j →∞. Setting dj := t̃j‖vεj‖ǧεk , θj is defined on [0, dj]. Note that, for j

large, (4.20) implies the right hand side of (4.19) to be strictly positive at t = 0. Thus θ−1
j

is initially strictly increasing and θj(0) < 0, so (4.19) entails that θ−1
j (t) ∈ [−m−1

j , 0) on its

entire domain. From this we conclude that θj has no zero on [0, dj], i.e., that θ−1
j exists on

all of [0, dj]. It then readily follows, again using (4.19), that θ−1
j (t) ≥ fj(t) := −m−1

j + t
αj
n−1

on [0, dj]. Hence θ−1
j must go to zero before fj does, i.e., θ−1

j (t) → 0 as t ↗ T for some

positive T ≤ n−1
αjmj

.

Here we note that due to lim dj = lim tj‖vεj‖ǧεk = d(S, p), for j sufficiently large we have

by (4.20)
n− 1

αjmj

< c < dj. (4.21)

This, however, means that θ−1
j → 0 within [0, dj], contradicting the fact that θj is smooth,

hence bounded, on this entire interval.

Together with (A) this implies that D+(S) is contained in the compact set β(S × [0, b])

where

β : S × [0, b]→M, (q, t) 7→ expg(t U(q)), (4.22)

Hence also the future Cauchy horizon H+(S) = D+(S) \ I−(D+(S)) is compact.
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From here, employing the causality results developed in Chapter 2 and Chapter 3 we may

conclude the proof exactly as in [ON83, Th. 14.55B]. For completeness, we give the full

argument.

Step 2. The future Cauchy horizon of S is nonempty.

Assume to the contrary that H+(S) = ∅. Then I+(S) ⊆ D+(S): for p ∈ S, a future-

directed timelike curve γ starting at p lies initially in D+(S) (using Proposition 3.6.12,

or Lemma 3.6.15). Hence if γ leaves D+(S), it must meet ∂D+(S) and by Lemma 3.6.9

it also meets H+(S) (since S is achronal it can’t intersect S again). But then H+(S)

wouldn’t be empty, contrary to our assumption. Hence I+(S) ⊆ D+(S). By Step 1, then,

I+(S) ⊆ {p ∈ M | d(S, p) ≤ b} and hence L(γ) ≤ b for any timelike future-directed curve

emanating from S, which is a contradiction to timelike geodesic completeness of M .

Step 3. The following extension of (A) holds:

(A’) ∀ q ∈ H+(S) ∃ g-geodesic γ ⊥g S realizing the time separation and L(γ) = d(S, q) ≤
b.

Consider the set B ⊆ N(S) consisting of the zero section and all future pointing causal

vectors v with ‖v‖ ≤ b. B is compact by the compactness of S.

By definition there is a sequence qk in D+(S) that converges to q. For any qk there is a

geodesic as in (A) and hence a vector vk ∈ B with expp(vk) = qk. By the compactness of

B we may assume that vk → v for some v ∈ B and hence by continuity qk → expp(v).

Moreover, we have by construction that ‖vk‖ = d(S, qk). Since d is lower semicontinuous

(Lemma 3.2.4), ‖v‖ ≥ d(S, q).

As γv is perpendicular to S, hence timelike, our completeness assumption implies that it

is defined on [0, 1]. Thus it runs from S to q and has length ‖v‖, which implies d(S, q) =

‖v‖ ≤ b.

Step 4. The map p 7→ d(S, p) is strictly decreasing along past pointing generators of

H+(S).

By Proposition 3.6.14 (iii), H+(S) is generated by past-pointing inextendible null geodesics.

Suppose that α : I →M is such a generator, and let s, t ∈ I, s < t. Using (A’) we obtain a

past pointing timelike geodesic γ from α(t) to γ(0) ∈ S of length d(S, α(t)). Then arguing
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as in the proof of Proposition 4.4.3 (i) we may construct a timelike curve σ from α(s) to

γ(0) that is strictly longer than the concatenation of α|[s,t] and γ. Therefore,

d(S, α(s)) ≥ L(σ) > L(α|[s,t] + γ) = L(γ) = d(S, α(t)). (4.23)

Step 5. (M, g) is not future timelike geodesically complete.

By step 1, H+(S) is compact and by Lemma 3.2.4 p 7→ d(S, p) is lower semicontinuous,

hence attains a finite minimum at some point q in H+(S). But then taking a past point-

ing generator of H+(S) emanating from q according to Proposition 3.6.14 (iii) gives a

contradiction to step 4. 2
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[BePe96] Bessaga, C., Pe lczyński A., On extreme points in separable conjugate spaces, Isr.

J. Math., 4, 262-264, 1996.

[Ca70] Carter, B.: Causal structure in space-time. Gen. Relativ. Gravit. 1(4), 249-391,

1970.

[CGT82] Cheeger, J., Gromov, M., Taylor, M., Finite propagation speed, kernel estimates

for functions of the Laplace operator, and the geometry of complete Riemannian

manifolds, J. Diff. Geom. 17, 15–53, 1982.

[CleF08] Chen, B.-L., LeFloch, P., Injectivity Radius of Lorentzian Manifolds, Comm.

Math. Phys. 278, 679–713, 2008.

[CG69] Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general

relativity, Commun. Math. Phys. 14, 329–335, 1969.
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[EvGa92] Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions,

CRC Press, Boca Raton, FL, 1992.

[FS12] Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Phil. Soc.

152(02), 303–339, 2012.

[GaSe05] Garćıa-Parrado, A., Senovilla, J. M. M.: Causal structures and causal bound-

aries. Classical Quantum Gravity 22, R1-R84, 2005.

[Ge68] Geroch, R.P., What is a singularity in General Relativity?, Ann. Phys. 48, New

York, 526-540, 1968.
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Abstract

This thesis studies the causality theory with low differentiability metrics, in particular,

with metrics of C1,1 regularity class. One of the key tools for studying local causality and

therefore, singularity theory is the exponential map. In smooth pseudo-Riemannian geom-

etry, the fact that the exponential map is a local diffeomorphism is of central importance

for many fundamental constructions such as normal coordinates, normal neighborhoods,

injectivity radius and comparison methods. There has for some time been considerable

interest in determining the lowest degree of differentiability where one could expect the

standard results of causality theory to remain valid. A reasonable candidate is given by the

C1,1 regularity class as it represents the threshold of the unique solvability of the geodesic

equation.

Hence our aim is to show that the exponential map of a C1,1 pseudo-Riemannian metric

retains its maximal possible regularity, namely, that is a local bi-Lipschitz homeomorphism.

This will allow us to prove the existence of totally normal neighborhoods and establish the

key results of local causality theory.

The next goal is to further develop causality theory for C1,1 metrics. We also study the

global structure of spacetimes, reviewing the causality conditions that can be imposed on

a spacetime and the main properties of Cauchy developments and Cauchy horizons.

The last part is devoted to the study of singularity theorems. Having the key elements of

causality theory for C1,1 metrics developed, we prove the Hawking singularity theorem in

this regularity.
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Kurzfassung

Diese Dissertation befasst sich mit der Kausalitätstheorie von Metriken niedriger Differen-

zierbarkeitsklasse, insbesondere solchen der Klasse C1,1.

Eines der Hauptwerkzeuge um lokale Kausalität und damit Singularitätentheorie zu stu-

dieren ist die Exponentialabbildung. In der pseudo-Riemannschen Geometrie mit glat-

ter Metrik ist die Exponentialabbildung ein lokaler Diffeomorphismus, was von zentraler

Bedeutung für viele grundlegende Konstruktionen wie Normalkoordinaten, normale Um-

gebungen, Injektivitätsradius und Vergleichssätze ist. In jüngster Zeit gab es verstärkte

Bemühungen, die niedrigste Differenzierbarkeitsklasse zu finden, für welche die üblichen

Ergebnisse der Kausalitätstheorie noch gültig sind. Ein plausibler Kandidat dafür ist die

Klasse C1,1, welche die Grenze darstellt für die die Geodätengleichung noch eindeutig lösbar

ist.

Das erste Ziel dieser Arbeit ist deshalb zu zeigen, dass die Exponentialabbildung einer

C1,1 pseudo-Riemannschen Metrik so regulär wie möglich ist, d.h. dass sie ein lokaler bi-

Lipschitz-Homöomorphismus ist. Damit zeigen wir die Existenz von total normalen Umge-

bungen und erhalten zentrale Aussagen der lokalen Kausalitätstheorie in diesem Kontext.

Das nächste Ziel ist die Weiterentwicklung der Kausalitätstheorie für C1,1-Metriken. Da-

bei untersuchen wir die globale Struktur von Raumzeiten und betrachten mögliche Kau-

salitätsbedingungen und die wichtigsten Eigenschaften von Cauchy-Entwicklungen und

Cauchy-Horizonten.

Der letzte Teil ist dem Studium von Singularitätentheoremen gewidmet. Mit den zuvor

entwickelten Grundbausteinen der Kausalitätstheorie für C1,1-Metriken beweisen wir das

Singularitätentheorem von Hawking für diese Regularitätsklasse.
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