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Vorwort

Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil deckt im

wesentlichen Literatur von Vielelektronensystemen in kondensierter Materie

ab und fasst alle theoretischen Grundlagen zusammen, die notwendig sind um

die GW -Näherung der Schwinger-Dyson-Gleichungen mit der Dynamischen

Molekularfeldtheorie (DMFT) zu kombinieren. Die Vereinigung von GW mit

DMFT (besprochen in Kapitel 4) ist theoretisch anspruchsvoll und benötigt

eine detailierte Einführung in die diagramatische Störungstheorie (Kapitel 2

und 3) , um eine konsistente Therminologie für das Verständnis des zweiten

Teils der vorliegenden Disseratation aufzubauen.

Der zweite Teil der vorliegenden Arbeit beinhaltet zwei Kapitel die aus

einer Kollektion von kürzlich publizierten Arbeiten bestehen. Darin werden

methodologische Entwicklungen für das Ausführen von praktischen GW+

DMFT-Rechnungen vorgestellt beginnend mit einem effizienten Algorithmus

für die Berechnung der elektronischen Korrelationsenergie in der Random-

Phase-Approximation (RPA) in Kapitel 5. Da die GW -Näherung mit der

RPA eng verwandt ist, kann der präsentierte RPA-Algorithmus als der erste

Schritt zu einem effizienten GW -Algorithmus betrachtet werden. In Kapi-

tel 6 wird ein vereinfachter GW+DMFT-Zugang vorgestellt. Das beinhaltet

die Ableitung einer beschränkten RPA-Methode (CRPA), welche die Berech-

nung der effektiven Wechselwirkung im korrelierten Unterraum, der durch

die DMFT akkurat beschrieben wird, erlaubt. Um die Spektralfunktion von

SrVO3 zu berechnen, werden im letzten Teil die Quasi-Teilchen-GW - mit

der DMFT-Näherung kombiniert. Das Resultat dieser Kombination führt zu

einer guten Übereinstimmung mit dem Experiment.
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Preface

The present thesis is divided into two parts. The first part covers basic text-

book knowledge about the electronic problem of condensed matter physics

and introduces the theoretical background to merge the GW approxima-

tion of the Schwinger-Dyson equations with dynamical mean field theory

(DMFT). The combination of GW with DMFT (discussed in chapter 4) is

a rather complex topic and the absence of textbooks with a main focus on

this subject requires a detailed introduction into diagramatic perturbation

theory (covered by chapter 2 and 3) to build a consistent terminology for the

second part of the following thesis.

The second part presents recently developed methods to carry out GW+

DMFT calculations from first principles. Emphasize is put on the random

phase approximation (RPA) in chapter 5, where a low scaling algorithm for

the determination of the RPA correlation energy is discussed. Due to the

strong relation between the GW and the random phase approximation, this

algorithm should be seen as a first step towards the improvement and accel-

eration of the commonly applied quasi particle (qp) GW approximation of

Kotani and Schilfgaarde. In chapter 6 a simplified GW+DMFT algorithm is

presented based on the qpGW approximation including a derivation of a con-

strained RPA scheme for the ab initio determination of effective interaction

parameters for DMFT Hamiltonians. The resulting qpGW+DMFT scheme

is applied to SrVO3 finding good agreement with experimentally measured

spectral functions.
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Part I

Theoretical Background
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1

Introduction: Mean Field

Methods

This thesis is dedicated to the many-body problem of condensed matter physics. This

problem can be simply stated as finding the solution of the Schrödinger equation of N

interacting valence electrons in the presence of an attractive periodic Coulomb potential.

The resulting equation is presented in the following section and can be derived from the

Lagrangian of quantum electrodynamics, see appendix A.

There are basically two different routes to the electronic problem. On the one side,

there are mean-field methods based on the first quantization formalism of quantum

physics, such as Hartree-Fock or density functional theory. These methods use a one-

electron picture and assume that the many-body wavefunction can be written as product

of one-electron wavefunctions. The current first chapter serves, apart from a general

introduction to the electronic problem, as an introduction to these mean-field methods.

On the other side, quantum field theory methods, such as GW or dynamical mean

field theory, tackle the problem from an alternative point of view. Here the propagator

functions of the electrons and the photons are in the center of attention, and one tries

to solve a set of three coupled Schwinger-Dyson equations instead. The main route of

this thesis follows this approach and is discussed in chapters 2 to 6.
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1. INTRODUCTION: MEAN FIELD METHODS

1.1 The electronic problem

We consider Na non-interacting atomic nuclei in the primitive cell ordered on a periodic

lattice forming an external attractive potential

ϕ̂(rl) = −1

2

Na∑
i=1

Zi
|r−Ri|

(1.1)

for an electron located at rl. It is assumed that the motion of electrons close to the core

is frozen and can be absorbed in the definition of the potential ϕ̂. Hence, only valence

electrons are considered and, furthermore, it is assumed that relativistic effects, such as

pair creation or spin-orbit coupling, can be safely disregarded.

The kinetic energy of N of these valence electrons is then described by the non-

relativistic term

T̂ = −1

2

N∑
l=1

∆l, (1.2)

whereas the interaction between the considered valence electrons is given by the Coulomb

term

V̂ee =
1

2

N∑
l=1

N∑
n6=l

1

|rn − rl|
. (1.3)

The last three Eqs. describe the total Hamiltonian

Ĥ = T̂ +

N∑
l=1

ϕ̂(rl) + V̂ee (1.4)

of the electronic problem one seeks the solution of following many-body Schrödinger

equation

Ĥ |Ωµ〉 = Ωµ |Ωµ〉 . (1.5)

Here, Ωµ is the eigenenergy of the total wavefunction |Ωµ〉 with µ being a superindex of

quantum numbers describing N interacting electrons at positions r1, · · · , rN
It is well-known that equation (1.5) can be solved analytically for one electron and

one proton, i.e. the hydrogen atom. In this case, the Schrödinger equation is effectively

a two-body problem due to the absence of the electron-electron interaction (1.3). For

more than one electron this term is present and a solution cannot be found exactly, so

that one has to rely on approximations. In the following, we focus ourselves on the

approximate determination of the interacting eigenstates |Ωµ〉 and their energies Ωµ.

4



1.2 The Hartree-Fock Approximation

We consider two different methods to solve Eq. (1.5) approximately, starting with the

Hartree-Fock approximation, which goes back to the early 1930s.

1.2 The Hartree-Fock Approximation

One way to find an approximate estimate for the the many-body wavefunction is to

assume that Ωµ can be written in terms of one-electron orbital functions φα, where α

stands for a set of quantum numbers, like angular momentum lα, magnetic quantum

number mα, energy quantum number nα and spin polarization σα. Furthermore, to

take the Pauli principle into account, the wavefunction must vanish if two electrons have

the same configuration. This is fulfilled for the Slater determinant
∣∣∣Ψ(N)

µ

〉
, see Ref. 1,

defined as

Ψ(N)
µ (r1 · · · rN ) =

[
ε(µ)

]
α1···αNφα1(r1) · · ·φαN (rN ), (1.6)

where the Levi-Civita symbol can be written as, see Ref. 2,

[
ε(µ)

]
α1···αN =

1√
N !

∣∣∣∣∣∣∣
δ1α1 . . . δ1αN

...
. . .

...
δNα1 . . . δNαN

∣∣∣∣∣∣∣ , α1, · · · , αN ∈ I(N)
µ (1.7)

and I
(N)
µ is a set of configurations describing the Slater determinant

∣∣∣Ψ(N)
µ

〉
. For in-

stance, in the ground state
∣∣∣Ψ(N)

0

〉
, the corresponding index set I

(N)
0 contains only the

indices of the N lowest energy states, whereas higher excited states
∣∣∣Ψ(N)

µ>1

〉
are obtained

by replacing occupied indices α = i by unoccupied (or virtual) indices α = a. In the fol-

lowing we stick to this notation and use Latin indices starting with i, j, · · · for occupied,

respectively starting with a, b, · · · for unoccupied states, whereas Greek indices indicate

arbitrary states.

For the time being, we consider a non-interacting system of N electrons and assume

that the one-electron orbitals φα are solutions of the one-electron Schrödinger equation

ĥlφα(rl) = εαφα(rl), (1.8)

where

ĥl = −∆l

2
+ ϕ̂(rl) (1.9)

5



1. INTRODUCTION: MEAN FIELD METHODS

is the non-interacting Hamiltonian for an electron at rl. Furthermore, we assume or-

thogonality of the orbitals

〈φα|φβ〉 = δαβ, (1.10)

which can be achieved always using the orthogonalization method of Löwdin, see Ref. 3

for more details. These properties imply the completeness relation

1 =
∞∑
µ=0

∣∣∣Ψ(N)
µ

〉〈
Ψ(N)
µ

∣∣∣ (1.11)

and the fact that the Slater determinants are an eigensystem of the non-interacting

many-body Schrödinger equation

Ĥ0︸︷︷︸
N∑
l=1

ĥl

∣∣∣Ψ(N)
µ

〉
= E(N)

µ︸ ︷︷ ︸∑
α∈I(N)

µ

εα

∣∣∣Ψ(N)
µ

〉
. (1.12)

In traditional Hartree-Fock (HF) theory, one assumes that the Slater determinant

ansatz (1.6) is valid also in the presence of an interaction term V̂ee. In fact, one can

show that the ansatz

ΩHF
µ (r1 · · · rN ) =

[
ε(µ)

]
α1···αNψα1(r1) · · ·ψαN (rN ), (1.13)

satisfies 〈
ΩHF
µ

∣∣ Ĥ ∣∣ΩHF
µ

〉
= ΩHF

µ , (1.14)

where ΩHF
µ is the so-called Hartree-Fock energy of the Slater determinant

∣∣ΩHF
µ

〉
. Using

the explicit form of the Hamiltonian (1.5) and the ansatz (1.13), the Schrödinger equation

(1.14) becomes effectively an one-electron equation[
ĥ+ V̂h − V̂x

]
|ψα〉 = eα |ψα〉 (1.15)

for the one-electron HF-orbitals |ψα〉 and energies eα, see Ref. 4. Here, we have intro-

duced the common definition of the Hartree potential

V̂h(r) =
∑
β∈Iµ

∫
dr′
|ψβ(r′)|2
|r′ − r| (1.16)

and the exchange potential

V̂x(r) |ψα〉 = −
∑
β∈Iµ

∫
dr′

ψ∗β(r′)ψα(r′)

|r′ − r| |ψβ〉 . (1.17)

6



1.2 The Hartree-Fock Approximation

The Hartree potential is a local quantity and describes the repulsive, classical electro-

static interaction of all electrons, whereas the non-local exchange part can be attractive

or repulsive for an electron at r and is a result of the Pauli principle.

The last two expressions reveal that Eq. (1.15) is as set of N coupled non-linear dif-

ferential equations for the HF one-electron orbitals ψα1 , · · · , ψαN . This set is typically

called the HF equations and must be solved self-consistently. Usually one is interested

in the groundstate
∣∣ΩHF

0

〉
only and one starts with a first guess for the one-electron

orbitals, for instance the non-interacting solution of Eq. (1.8), i.e. the non-interacting

groundstate Slater-determinant
∣∣∣Ψ(N)

0

〉
. In the first step, one determines the corre-

sponding Hartree and exchange contributions V
(0)

h and V
(0)

x using the non-interacting

one-electron orbitals of
∣∣∣Ψ(N)

0

〉
. Using these potentials, the Hartree-Fock equations (1.9)

are solved successively, obtaining a new set of solutions {e(1)
i , ψ

(1)
i }i∈I(N)

0

, followed by

an update of the mean-field potentials obtaining V
(1)

h , V
(1)

x and so on. The procedure

is iterated until a convergence criterion is reached, for instance the variation of the to-

tal energy
∑

i∈I(N)
0

|e(k+1)
i − e

(k)
i | → 0. The final solution of this procedure gives the

HF orbitals {ψi, ei}i∈I(N)
0

and the corresponding HF eigensystem (1.14) for µ = 0. It

is important to mention, that due to the non-linearity of the HF equations (1.15), the

solution
∣∣ΩHF

0

〉
is non-unique. This means that, in general, there might be more than

one set of orbitals {ψi, ei}i∈I(N)
0

giving the same groundstate Hartree-Fock energy ΩHF
0 .1

This energy is in general larger than the true groundstate energy Ω0 of the system.

The remaining piece is called the electronic correlation energy E
(N)
c and is defined as

E(N)
c = ΩHF

0 − Ω
(N)
0 . (1.18)

This part is in general unknown and its accurate determination is the true demanding

part of condensed matter physics and quantum chemistry. The reason for this is, that

the true interacting groundstate |Ω0〉 cannot be described by a single Slater determinant∣∣ΩHF
0

〉
, as it is done in the Hartree-Fock approximation. It is fairly obvious that the

complete many electron Hilbert space is spanned by all Slater determinants
∣∣ΩHF

µ

〉
. Thus,

the true groundstate wavefunction |Ω0〉 must be a linear combination of all possible HF

Slater determinants

|Ω0〉 =

∞∑
µ=1

t(0)
µ

∣∣ΩHF
µ

〉
, t(0)

µ ∈ C (1.19)

1However, degeneracies are seldom in practice. More often, one might get ’stuck’ in local minima.
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1. INTRODUCTION: MEAN FIELD METHODS

This implies that |Ω0〉 contains also contributions of excited Slater-determinants and

thus also originally unoccupied one-electron states |ψa〉.

The expansion coefficients t
(0)
µ can be determined with the so-called configuration

interaction (CI) method. In small molecules, it is sufficient to restrict the considered

basis functions
∣∣ΩHF

µ

〉
to singly, doubly or triply excited determinants, i.e. where one, two

respectively three occupied states in
∣∣ΩHF

0

〉
are replaced by one (singles), two (doubles)

respectively three (triples) excited states. However, the drawback of CI is the large

computation cost of the method scaling exponentially with the system size N and that

it is not size consistent if truncated at finite order, see Ref. 5. This is problematic

for solids, because the correlation energy converges to zero, if the CI expansion (1.19)

truncated and the system size is increased.

A computationally cheaper, but in principle exact method, is density functional

theory and is discussed in the following section.

1.3 Density Functional Theory

Density functional theory (DFT) relies on two theorems, found by Hohenberg and Kohn

published in [6] in the 1960s and are formulated as follows.

Theorem 1.3.1 (Hohenberg-Kohn I) There is exactly one functional F : C∞(R3)→
R, ρ′(r) 7→ F[ρ′(r)] with ϕ = F[ρ(r)] + α, α ∈ R, where ρ(r) = 〈Ω0| r〉 〈r|Ω0〉 is the

groundstate density of the interacting Hamiltonian Ĥ = T̂ +
∑N

l=1 ϕ̂(rl) + V̂ee.

Proof The proof for this theorem is indirect. We assume that two external potentials

ϕ and ϕ′ with corresponding Hamiltonians Ĥ and Ĥ ′ have the same ground state en-

ergy, but differ by a non-constant term. Assume |Ω0〉 and |Ω′0〉 are the correspond-

ing groundstate wavefunctions of Ĥ and Ĥ ′. Since Ĥ 6= Ĥ ′ ⇒ |Ω0〉 6= |Ω′0〉 but

〈Ω0| r〉 〈r|Ω0〉 = ρ(r) = 〈Ω′0| r〉 〈r|Ω′0〉. If follows for the groundstate energies, that

Ω0 = 〈Ω0| Ĥ |Ω0〉 < 〈Ω′0| Ĥ |Ω′0〉 = Ω′0. Strict inequality holds only if the groundstate is

non-degenerate, however, it is not mandatory to assume this, see Ref. 7 for more details.

8



1.3 Density Functional Theory

Furthermore, from rewriting

〈
Ω′0
∣∣ Ĥ ∣∣Ω′0〉 = Ω′0 +

〈
Ω′0
∣∣ Ĥ − Ĥ ′ ∣∣Ω′0〉

= Ω′0 +
〈
Ω′0
∣∣ ϕ̂− ϕ̂′ ∣∣Ω′0〉

= Ω′0 +

∫
dr
[
ϕ(r)− ϕ′(r)

]
ρ(r)

⇒ Ω0 < Ω′0 +

∫
dr
[
ϕ(r)− ϕ′(r)

]
ρ(r).

Analogously, we obtain

Ω′0 < Ω0 +

∫
dr
[
ϕ′(r)− ϕ(r)

]
ρ(r)

and adding both inequalities yields the contradiction

Ω0 + Ω′0 < Ω′0 + Ω0.

Thus two different potentials ϕ,ϕ′ yielding the same groundstate density ρ do not exist,

as assumed above. Therefore ρ is uniquely defined by the external potential ϕ.

Theorem 1.3.2 (Hohenberg-Kohn II) There is exactly one functional E : C∞(R)→
R, ρ′(r) 7→ E[ρ′(r)], where Ω0 = E[ρ(r)] is the groundstate energy and the groundstate

density ρ(r) = 〈Ω0| r〉 〈r|Ω0〉 satisfies δE[ρ]
δρ′

∣∣∣
ρ′=ρ

= 0.

Proof From theorem 1.3.1 follows, that the groundstate density ρ determines ϕ. Since

ϕ determines the full Hamiltonian Ĥ, the corresponding wavefunction |Ω0[ρ]〉 depends

on the density. Therefore the energy functional EHK : C∞(R3)→ R defined as

EHK[ρ′] =
〈
Ω0[ρ′]

∣∣ T̂ + V̂ee

∣∣Ω0[ρ′]
〉

+

∫
drϕ(r)ρ′(r), ρ′ ∈ C∞(R3) (1.20)

satisfies

EHK[ρ′] = Ω0, (1.21)

where Ω0 is the groundstate energy of the interacting groundstate electron density ρ(r).

From this equation it also follows, that

EHK[ρ′] > Ω0, ∀ρ′ 6= ρ.

Hence ρ is the global minimum of the functional EHK[ρ′] and the theorem is proven.

9



1. INTRODUCTION: MEAN FIELD METHODS

These two theorems provide the mathematical basis for density functional theory.

They guarantee the existence of an universal energy functional. Its minimum yields

the interacting groundstate density. For this purpose one needs the explicit form of the

energy functional (1.20), which we want discuss in the following. One usually subdi-

vides the electron-electron interaction functional into a Hartree term Eh and a so-called

exchange-correlation part Exc

〈Ω0[ρ]| V̂ee |Ω0[ρ]〉 = Eh[ρ] + Exc[ρ]. (1.22)

The Hartree term is exactly known from Hartree-Fock theory [compare to Eq. (1.16)]

Eh[ρ] =
1

2

∫
dr′dr

ρ(r′)ρ(r)

|r− r′| (1.23)

and describes the classical electrostatic energy.

The second part Exc contains two contributions

Exc[ρ] = Ex[ρ] + Ec[ρ]. (1.24)

The Fock-exchange functional Ex[ρ], corresponding to the potential (1.17), is well-known

from Hartree-Fock theory and can be determined exactly. However, in practice one

usually approximates this part together with the remaining contribution, the unknown

correlation functional Ec[ρ], that describes all electronic interactions beyond the Hartree-

Fock approximation.

The big success of density functional theory relies on the fact that the complicated

electronic interaction (1.22) is separated into three terms of decreasing importance, where

the Hartree energy is the largest and the correlation energy the smallest contribution.

This allows for approximations to the exchange-correlation functional and we discuss

two of them in section 1.3.2.

1.3.1 Kohn-Sham Equations

The Hohenberg-Kohn theorems presented in the previous section particularly useful as

they stand, since Ec is entirely unknown. Furthermore, they do not tell us how the

functional of the kinetic energy, by far the largest contribution to the total energy, looks

10



1.3 Density Functional Theory

like. The problem hereby is that the kinetic functional T[ρ], is related to the Laplacian

of the many-body wavefunction |Ω0〉

T =
〈

Ω0

∣∣∣− 1

2

N∑
i=1

∆i

∣∣∣Ω0

〉
(1.25)

rather than its density ρ. Kohn and Sham assumed the existence of a non-interacting

system of electrons with the same density as the interacting system, see Ref. 8. In the

following we call this system, the Kohn-Sham (KS) system and write {φ̃i, ε̃i} for the

one-electron orbitals and energies. Using the occupancies f̃i, the KS ansatz is

ρ(r) =

∞∑
i=1

f̃i

∣∣∣φ̃i(r)
∣∣∣2 , (1.26)

where the ground state density ρ integrates to the total number of electrons∫
drρ(r) =

∞∑
i=1

f̃i = N. (1.27)

The exact groundstate wavefunction of the KS system is therefore explicitly known and

is given by the Slater determinant of the Kohn-Sham orbitals φ̃i. Consequently the

kinetic functional of the non-interacting system can be written as

TKS[ρ] = −1

2

∞∑
i=1

f̃i

〈
φ̃i

∣∣∣∆ ∣∣∣φ̃i〉 . (1.28)

Inserting this expression and Eq. (1.26) into the Hohenberg-Kohn functional (1.20), we

end up with the Kohn-Sham energy functional

EKS[ρ̃] = TKS[ρ̃] + Eh[ρ̃] +

∫
drρ̃(r)ϕ(r) + Exc[ρ̃], ρ̃ ∈ C∞(R3). (1.29)

This functional can be varied w.r.t. the density, under the constraint (1.27),i.e.

δ

δρ̃(r)

[
EKS[ρ̃]− λ

(∫
drρ̃(r)−N

)
= 0

]
, λ ∈ R. (1.30)

Here λ is a Lagrangian multiplicator and a priori unknown. By using the chain rule for

the functional derivative

δ

δρ̃(r)
=

(
δρ̃(r)

δφ̃∗j (r)

)−1
δ

δφ̃∗j (r)
(1.31)

11



1. INTRODUCTION: MEAN FIELD METHODS

the factor λ can be identified with the KS energy ε̃j of the orbital φ̃j and we obtain

f̃jφ̃j(r)

{[
−1

2
∆ + ϕ(r) +

∫
dr′

ρ̃(r′)

|r− r′|

]
φ̃j(r) +

δExc[ρ̃]

δφ̃∗j (r)

}
= f̃jφ̃j(r)ε̃jφ̃j(r) (1.32)

for Eq. (1.30). Dividing Eq. (1.32) by f̃jφ̃j(r) yields the Kohn-Sham equations[
−1

2
∆ + ϕ(r) +

∫
dr′

ρ̃(r′)

|r− r′| +
δExc[ρ̃]

δρ̃(r)

]
φ̃j(r) = ε̃jφ̃j(r). (1.33)

This is a set of one-electron Schrödinger equations for a system of N non-interacting

electrons. Because the density ρ̃ depends on the orbitals, the solution {ε̃j , φ̃j} appears

on both sides of these equations and therefore has to be solved self-consistently, similar

to Hartree-Fock theory.

Before we discuss approximations to the exchange-correlation functional Exc, we make

some remarks on the physical meaning of the KS equations. It is important to recall

that the KS orbitals are constructed, such that the non-interacting density (1.26) coin-

cides with the ground-state density of the interacting system. Their physical meaning

is questionable and still a debate in the solid state community, only the energy differ-

ences ε̃a− ε̃j , can be considered as well-defined approximations for excitation energies.[9]

Nevertheless it is common to consider the Kohn-Sham eigensystem {φ̃i, ε̃i}, because,

undoubtedly, it provides a good basis set to study more enhanced methods.

1.3.2 Approximations to the exchange-correlation kernel

In order to solve the Kohn-Sham equations (1.33) in practice, one has to approximate

the exchange-correlation functional Exc. Today, various functionals are known. Here we

mention only the two most important ones, on which most of the functionals rely on. This

is the local density approximation (LDA) and the generalized gradient approximation

(GGA). For a comprehensive review of different density functionals the reader is referred

to Ref. 4.

1.3.2.1 Local Density Approximation

The local density approximation of Exc was proposed by Kohn and Sham in their seminal

paper and relies on ideas used in Thomas-Fermi theory of the homogeneous electronic

gas, see Ref. 8. They assumed that the energy density of a general system can be

12



1.3 Density Functional Theory

approximated locally by the density of the homogenous electron gas (HEG), referred as

εHEG
xc in the following. This gives rise to the following ansatz of the LDA

εLDA
xc [ρ(r)] =

∫
drρ(r)εHEG

xc [ρ(r)]. (1.34)

It is customary to separate the energy density into an exchange and correlation term[10]

εHEG
xc = εHEG

x + εHEG
c (1.35)

and to use the result of Dirac for the former, derived in Ref. 11

εHEG
x = −3

4

(
3ρ(r)

π

) 1
3

. (1.36)

The general expression for the correlation part εHEG
c is unknown, except for the high

and low density limit.

The high density limit can be obtained using diagrammatic techniques and the so-

called random phase approximation (RPA), discussed in chapter 3 in more detail, and

reads (in units of eV)

εRPA
c = 0.846 ln rs − 1.306 + O(rs), rs =

1

a0

(
3

4πρ

) 1
3

. (1.37)

Here a0 = ~2/me2 is the Bohr radius (= 1 in atomic units) and ρ is the electron density

or the inverse volume per electron, so that the Wigner-Seitz radius rs measures roughly

the average distance between electrons in a HEG. The result (1.37) can be obtained

by an infinite summation of specific diagramatic contributions following Gell-Mann and

Brueckner in Ref. 12 and is valid for rs ≈ 0.

In the low density limit rs � 1 the kinetic energy of the electrons vanishes as r−2
s

and the remaining positive charge distribution, which goes with r−1
s , forces the electrons

to form a stable lattice. This was shown first by Wigner, see Ref. 13, who proved that

in general the low-density limit can be expanded in terms of r
− 1

2
s as

εLOW
c =

g0

rs
+
g1

r
3
2
s

+
g2

r2
s

+ O(r
− 5

2
s ), g0, g1, g2 ∈ R. (1.38)

Here g0, g1 and g2 are constants and depend on the considered lattice of the low density

limit. For a collection of different limits, i.e. lattices, the interested reader is referred to

Refs. 14, 15, 16.

13



1. INTRODUCTION: MEAN FIELD METHODS

In the intermediate regime 0� rs �∞ only numerical estimates of εHEG
c are known

and were first computed by Ceperley and Alder by means of quantum Monte Carlo

simulations, see Ref. 17. These results have been used by Vosko, Wilk and Nusair in

order to find an analytic expression for the correlation energy density, which interpolates

the high (1.37) and low density limit (1.38). The resulting expression assumes the

form[18]

εHEG
c (rs) =

A

2

{
ln

x2

X(x)
+

2b√
4c− b2

arctan

√
4c− b2
2x+ b

− bx0

X(x0)

[
ln

(x− x0)2

X(x)
+

2(b+ 2x0)√
4c− b2

arctan

√
4c− b2
2x+ b

]}
(1.39)

with the auxiliary functions

x =
√
rs and X(x) = x2 + bx+ c (1.40)

and the constants A = 0.062, x0 = −0.409, b = 13.072, c = 42.720 for the paramagnetic

case. For the spin-polarized case the interested reader is referred to Ref. 10.

Today the LDA is still used, especially for many uniform systems, like bulk metals,

some semiconductors or ionic crystals. Nevertheless, LDA is far from being perfect and

often fails if inhomogenities play an important role in the considered system. This gives

rise to a further approximation of the exchange-correlation functional.

1.3.2.2 Generalized Gradient Approximation

Real systems are typically far away from the HEG picture and contain typically inho-

mogenities, which LDA neglects completely. One way to describe these inhomogenities

is to consider a more general expression than the LDA ansatz (1.34) and to take also

the gradient of the electronic density ∇ρ into account.

However, a naive decomposition of the exchange-correlation functional in terms of

the density and its derivatives fails. The reason is due to the fact that the corresponding

series is not monotonically decreasing and expansions in terms of the density gradient

∇ρ have to be performed very carefully, as discussed in Ref. 4. This gives rise to the

so-called GGA and in the past thirty years many different GGAs have been developed.

Here we mention only the Perdew-Burke-Ernzerhof (PBE) functional, which is widely

used in the community. A good summary of alternative GGAs can be found in Ref. 4.
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1.3 Density Functional Theory

The PBE functional separates the exchange-correlation functional Exc into a correla-

tion and an exchange part analogously to the LDA. However, the exchange part is given

by

EPBE
x [ρ] =

∫
drεHEG

x (rs)Fx(s) (1.41)

and includes the dimensionless gradient

s =
|∇ρ(r)|

2kF(r)ρ(r)
(1.42)

with the local Fermi vector

kF(r) =
[
3π2ρ(r)

] 1
3 . (1.43)

An appropriate function Fx was suggested by Perdew Burke and Ernzerhof by imposing

four conditions on the exchange functional (1.41). These conditions are found in Ref.

19 and are fulfilled for the following expression

Fx(s) = 1 +
κµs2

κ+ µs2
(1.44)

with κ = 0.804 and µ = 0.2195.

For the correlation part the PBE ansatz reads

EPBE
c [ρ] =

∫
drρ(r)

[
εHEG

c (rs) +H(rs, t)
]

(1.45)

with the function H given by

H(rs, t) = γ ln

(
1 +

βt2

γ

1 + t2A(rs)

1 + t2A(rs) + t4|A(rs)|2
)
. (1.46)

Here the dimensionless gradient t = |∇ρ|/(2kTFρ) depends on the Thomas-Fermi screen-

ing wavevector

kTF =
√
rs

(
16

3π2

) 1
3

, (1.47)

rather than the Fermi vector and the auxiliary function A is

A(rs) =
β

γ

[
exp

(
−ε

HEG
c (rs)

γ

)
+ 1

]−1

(1.48)

with the dimensionless constants β = 0.0667, γ = 0.0311. Spin-polarized expressions are

found in Ref. 19, whereas optimized parameters for solids are found in Ref. 20. In this

work we exclusively use the latter functional.
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1. INTRODUCTION: MEAN FIELD METHODS

DFT provides access only to the groundstate density and the corresponding energy

and there is no denying that LDA and GGA is far from being perfect. These approx-

imations often fail for systems, where effects of excited states play an important role

and cannot be neglected. A way to describe these systems within DFT is to use Hybrid

or Meta hybrid functionals, where the exchange-correlation potential is constructed by

using the exact form of the Hartree-Fock exchange energy (1.17) in combination with

an attenuated Coulomb kernel. These methods often introduce additional parameters,

which are fitted to the experiment, so that the true ab-initio spirit of DFT is lost, see

Refs. 4, 7 for an overview.

An alternative approach, being more versatile, is discussed in the next chapter and

uses methods from high-energy physics.
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2

Quantum Field Theory for

Condensed Matter

Quantum field theory (QFT) was developed during the 1930s and 1940s in order to

understand the physics of highly relativistic electrons interacting with each other. The

underlying equation is the Dirac equation and soon it became clear that a consistent

interpretation of this equation is possible only in terms of a many-particle theory, where

the one-particle picture has to be disregarded. The resulting theory is called quantum

electrodynamics (QED) and is by far the most successful theory we have, in the sense

that the Landé factor of the electron is verified experimentally with an accuracy of

10−11.[21]

The big success of QED relies mostly on its robust formulation in terms of quantized

fields (describing electrons and photons), propagators (describing their motion) and the

concept of renormalization of charge. The latter allows for the perturbative treatment of

interacting systems in terms of a diagrammatic language and was mainly pushed forward

by Schwinger, Feynman, Tomonaga and Dyson in the 1940s. The achievements of QED

were soon recognized by the condensed matter community and physicists started using

the same concepts successfully for the description of liquids, crystals and other non-

relativistic systems. Here, the pioneers of the 1950s, such as Pines, Hubbard, Salam,

Galitskii and Migdal, have to be mentioned followed by Hedin, Baym, Kadanoff and

others, see Ref. 22 for a good overview of these early years.

The aim of this chapter is to give an introductory summary covering the basic con-

cepts of QFT found in these years. This includes the quantization of the free Schrödinger

17



2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

field, discussed in section 2.1, the introduction of the free Feynman propagator in sec-

tion 2.4 and the corresponding interacting field theory, presented in section 2.6. We end

this chapter with the imaginary time formalism in section 2.7.1 to bridge the gap to

statistical physics.

2.1 Second Quantization

In appendix A we recall the Lagrangian field theory of QED and derive from the Dirac

equation the non-relativistic Schrödinger field equation using very basic concepts. The

final field Hamiltonian

H = H0(t) + V (t) (2.1)

is actually time-independent, see Eq. (A.6), and contains a non-interacting term

H0(t) =

∫
d3rψ∗(r, t)

(
−1

2
∆ + qϕ(r)

)
ψ(r, t) (2.2)

and an interacting part

V (t) =
q2

2

∫
d3rd3r′

ψ∗(r, t)ψ(r, t)ψ∗(r′, t)ψ(r′, t)

|r− r′| . (2.3)

In the following the quantization of the free field theory described by the free Hamil-

tonian (2.2) is discussed. Using the equation of motion (A.14) one ends up with the free

Schrödinger equation

i
∂ψs(r, t)

∂t
= ĥψs(r, t) (2.4)

for the Schrödinger field ψs with the one-electron Hamiltonian ĥ given in Eq. (1.9). To

avoid confusion, the Schrödinger picture is indicated with the subscript s in the following.

As a first step, one solves the Schrödinger equation (2.4) for the static case for one

particle

ĥφα(r) = εαφα(r), (2.5)

obtaining the eigensystem {εα, φα}, where α is a set of quantum numbers characterizing

the solution φα. It is assumed that the one-electron orbitals are orthonormalized w.r.t.

the scalar product 〈
φα

∣∣∣ φβ〉 =

∫
d3rφ∗α(r)φβ(r) = δαβ, (2.6)
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2.1 Second Quantization

so that also ∑
α

φ∗α(r)φα(r) = (2π)3δ(r− r′) (2.7)

holds.1 This allows to decompose the static solutions ψ(r) = ψs(r, 0) of Eq. (2.4) into

field modes

ψ(r) =
∑
α

cαφα(r), cα ∈ C. (2.8)

The time-dependent solution of the Schrödinger picture is obtained from

ψs(r, t) = e−iĥtψ(r). (2.9)

In order to treat electrons and holes on the same footing, as it is done in relativistic

QFT, we allow the one-particle energies εα of Eq. (2.5) to take positive and negative

values. In the following we will use the same notation as in section 1.2, where indices a, b

indicate quantum numbers with energy εa > 0, indices i, j describe states with negative

energy εi < 0, whereas εα denote arbitrary energies.

With this notation the fields ψs(r, t) and ψ∗s (r, t) can be decomposed in positive and

negative energy modes [see Ref. 23, 24]

ψs(r, t) =
∑
a

aaφa(r)e−iεat +
∑
i

b∗iφi(r)eiεi t (2.10)

ψ∗s (r, t) =
∑
i

biφ
∗
i (r)e−iεi t +

∑
a

a∗aφ
∗
a(r)eiεat, aa, bi ∈ C. (2.11)

These representations emphasize the Feynman-Stückelberg interpretation of QFT, where

ψs(r, t) describes simultaneously particles with positive energies εa moving forward in

time and antiparticles with negative energies εi moving backward in time. This inter-

pretation, although originally proposed for the Dirac and the Klein-Gordon equation,

see Ref. 25, is a consequence of the charge-parity-time inversion (CPT) theorem and

also valid for non-relativistic theories.2 The exponential factors, highlighting the particle

(positive energy) and anti-particle (negative energy) contributions to the field, appear

explicitly only in the Schrödginer picture.

However, it is advantageous to perform the second quantization in the Heisenberg

picture, where the corresponding field ψ(r) is time-independent and coincide with the

1 If this is not the case one replaces φα(r)→ φα(r)√〈
φα

∣∣∣φα〉 .

2Feynman and Stückelberg proposed this interpretation to understand the Klein-Paradox[26], where

in the one-particle picture the tunneling of a particle is more probable with increasing potential barriers.
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2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

Schrödinger picture ψs(r, t) at t = 0. In the forthcoming, we therefore use only the field

decompositions at zero time

ψ(r) =
∑
a

aaφa(r) +
∑
i

b∗iφi(r) (2.12)

ψ∗(r) =
∑
i

biφ
∗
i (r) +

∑
a

a∗aφ
∗
a(r) (2.13)

with their inverse transformations

aa =
∫

d3rφ∗a(r)ψ(r), bi =

∫
d3rφ∗i (r)ψ(r) (2.14)

a∗a =
∫

d3rφa(r)ψ∗(r), b∗i =

∫
d3rφi (r)ψ∗(r). (2.15)

Under second quantization one understands the promotion of the expansion coeffi-

cients aa, bi , a
∗
a, b
∗
i to operators, âa, b̂i , â

†
a, b̂
†
i . These operators act on states

∣∣∣φ1, φ2, · · ·
〉

in the Fock space F defined as the direct sum

F =

∞⊕
N=1

∧NH (2.16)

of antisymmetrized many-particle Hilbert spaces[27]

∧NH = span
{∣∣∣Ψ(N)

µ

〉}
µ∈I(N)

µ

. (2.17)

Here
∣∣∣Ψ(N)

µ

〉
is a specific Slater-determinant of N particles and was defined in Eq. (1.6).

Considered as an ordinary vector space, the Fock space F contains a null element. This

element is called the vacuum state |0〉 and is defined as[23]

âa |0 〉 = b̂i |0 〉 = 0, ∀a, i. (2.18)

The operators âa, b̂i are called annihilation operators and annihilate electrons (εa > 0)

and holes (εi < 0) respectively. In contrast, the creation operators â†a, b̂
†
i create electrons

|φa〉 and holes |φi〉 from the vacuum |0 〉

â†a |0 〉 = |φa〉 , b̂†i |0 〉 = |φi〉 . (2.19)

General N particle states can be created via∣∣∣Ω(N)
〉

=

∞∑
k=1

∞∑
l=1

(
â†bk

)nk (
b̂†il

)nl |0 〉 , nk, nl ∈ N, (2.20)
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with
∑∞

k=1 nk +
∑∞

l=1 nl = N . This includes the non-interacting Slater determinants∣∣∣Ψ(N)
µ

〉
by choosing the occupancies nk and nl in agreement with the index sets I

(N)
µ .

One postulates the canonical anticommutation rules{
âa, â

†
b

}
= δab

{
b̂i , b̂

†
j

}
= δij (2.21){

âa, b̂
†
i

}
= 0

{
b̂i , â

†
a

}
= 0 (2.22)

with the anticommutator given by{
Â, B̂

}
= ÂB̂ + B̂Â. (2.23)

From these relations follows that the occupation number ni of a state |φi〉 is either 1 or

0. Furthermore, exchanging two states∣∣∣φiφj〉 = b̂†i b̂
†
j |0 〉 = −b̂†j b̂

†
i |0 〉 = −

∣∣∣φjφi〉 , i 6= j, (2.24)

introduces a minus sign. Similar arguments hold for unoccupied states, implying that

Fock states containing two one-particle states with identical quantum numbers are zero.

This is the essence of the Pauli principle and guarantees that the particles described

by the creation and annihilation operators, introduced above, obey the Fermi-Dirac

statistics.[28]

Promoting the Fourier modes aa and bi to operators implies the promotion of the

field ψ(r) to an field operator ψ̂(r). This field operator acts onto arbitrary N particle

states
∣∣Ω(N)

〉
, obtained from Eq. (2.20) by removing a particle located at r and yielding

an N − 1 particle state
∣∣∣ψ̂(r)Ω(N)

〉
. For instance, the action onto the non-interacting

Slater determinants
∣∣∣Ψ(N)

µ

〉
can be written in position space as[29]

〈
r2, · · · , rN

∣∣∣ψ̂(r)Ψ(N)
µ

〉
=
√
N

∫
dr1δ(r− r1)Ψ(N)

µ (r1, · · · , rN ) (2.25)

and reveals, that the field operator ψ̂ acts similar to the annihilation operators âa and

b̂i. In fact, the field operator and its conjugate satisfy{
ψ̂(r), ψ̂†(r′)

}
= iδ(r− r′), (2.26)

which can be shown straightforwardly using the anticommutation rules (2.21).
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2.2 Groundstate Energy and Normal Ordering

Within the second quantization formalism, one is able to express the non-interacting field

Hamiltonian (2.2), in terms of creation and annihilation operators. Inserting the field

representations (2.12)-(2.15) into the field Hamiltonian (2.2) and using the one-particle

eigenvalue Eq. (2.5) with Eq. (2.9) gives

Ĥ0(t) =
∑
ia

e−i(εi+εa)tεab̂i âa

〈
φi

∣∣∣ φa〉+
∑
ab

ei(εa−εb)tεbâ
†
aâb

〈
φa

∣∣∣ φb〉
+

∑
ij

e−i(εi−εj)tεj b̂i b̂
†
j

〈
φi

∣∣∣ φj〉+
∑
ij

ei(εa+εj)tεj âab̂
†
j

〈
φa

∣∣∣ φj〉
=

∑
a

εaâ
†
aâa +

∑
i

εi b̂i b̂
†
i︸︷︷︸

1−b̂†i b̂i

=
∑
a

εaâ
†
aâa −

∑
i

εi b̂
†
i b̂i +

∑
i

εi , (2.27)

where in the last step the anticommutation relation (2.21) was used.

This expression shows that Ĥ0 is indeed time-independent and consistent with the

Schrödinger picture, but has a major deficiency. Due to the presence of the last term one

can reach arbitrary low energies by multiple actions of Ĥ0 on the vacuum |0〉 yielding

ultimately an unstable theory. Fortunately, in physical experiments only energy differ-

ences are measurable, and since the last term in Eq. (2.27) is just a constant one may

replace the naive expression above by the difference Ĥ0 −
∑
i
εi .

The same effect can be achieved in a more elegant way, by introducing the normal

ordering operator : · :. This operator, replaces a product of creation and annihilation

operators by the ordered product, where all annihilation operators are to the right of

the creation operators. For instance

: b̂i b̂
†
j := −b̂†j b̂i , (2.28)

where the minus sign comes from the fact that the r.h.s. follows from an odd number

of interchanges of operators from the l.h.s. Consequently, one obtains for the normal

ordered Hamiltonian in the vacuum state

〈0| : Ĥ0 : |0 〉 =
∑
a

εa 〈0| â†aâa |0 〉 −
∑
i

εi 〈0| b̂
†
i b̂i |0 〉 = 0. (2.29)

This expression is well defined and represents the energy operator, but for a constant

shift. We shall, henceforth, use only normal-ordered Hamiltonians. However, in order to

keep notation simple the normal-ordering symbol : · : is suppressed in the forthcoming.
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2.3 Particle-Hole Transformation

2.3 Particle-Hole Transformation

Instead of decomposing ψ̂ into positive and negative field modes (2.12)-(2.13), one may

decompose the fields ψ̂, ψ̂† into

ψ̂(r) =
∑
α

ĉαφα(r) (2.30)

ψ̂†(r) =
∑
α

ĉ†αφα(r) (2.31)

and relate the operators ĉα, ĉ
†
α to the creation and annihilation operators â†a, b̂

†
i , âa, b̂i by

a Bogoliubov transformation of the form[30]

ĉα =
∑
a

Θ(εα)δαaâa +
∑
i

Θ(−εα)δαib̂
†
i . (2.32)

Here Θ is the step function. This transformation on the other hand implies the anti-

commutation rules {
ĉ†α, ĉβ

}
= δαβ and

{
ĉα, ĉβ

}
= 0, (2.33)

which follow easily from (2.21).

However, the corresponding vacuum
∣∣0̃ 〉, defined by ĉα

∣∣0̃ 〉 = 0, differs from |0〉,
since

ĉα |0 〉 = 0 +
∑
i

Θ(−εα)δαi |φi〉 = Θ(−εα)
∣∣∣φα〉 6= 0. (2.34)

Hence repeated action of occupied annihilation operators on the vacuum yields

N∏
k=1

cαk |0 〉 = Θ(−εα1) · · ·Θ(−εαN )
∣∣∣φα1

, · · · , φαN
〉

=
∣∣∣Ψ(N)

0

〉
, (2.35)

where
∣∣∣Ψ(N)

0

〉
is the non-interacting groundstate of N electrons given in Eq. (1.6).

On the other hand,

âb

∣∣∣Ψ(N)
0

〉
= 0 =

〈
Ψ

(N)
0

∣∣∣ â†b, ∀εb > 0 (2.36)

holds, so that the Fock-vector
∣∣∣Ψ(N)

0

〉
can be seen as a redefined vacuum state and is

therefore often named Fermi vacuum, see Ref. 31. The Fermi vacuum
∣∣∣Ψ(N)

0

〉
is the

state containing no electrons above, respectively no holes below the Fermi level µ = 0.

This requires a redefinition of the hole operators b̂i by postulating

b̂i

∣∣∣Ψ(N)
0

〉
= 0 =

〈
Ψ

(N)
0

∣∣∣ b̂†i , ∀εi < 0, (2.37)
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2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

in order to be consistent with the terminology introduced in section 2.1.1

To exploit both properties, Eq. (2.36) and Eq. (2.37), in real space, it is convenient

to perform the particle-hole transformations by splitting the fields (2.12) and (2.13) into

a particle and hole part

ψ̂(r) = ψ̂>(r) + ψ̂†<(r) (2.38)

ψ̂†(r) = ψ̂†>(r) + ψ̂<(r) (2.39)

Here, the electron and hole field operators are given by

ψ̂>(r) =
∑
α

Θ(εα)φα(r)ĉα =
∑
a

φa(r)âa (2.40)

ψ̂<(r) =
∑
α

Θ(−εα)φ∗α(r)ĉ†α =
∑
i

φ∗i (r)b̂i , (2.41)

where ψ̂†> (ψ̂>) creates (annihilates) electrons above, whereas ψ̂†< (ψ̂<) creates (annihi-

lates) holes below the Fermi level µ = 0.

Consequently,

ψ̂>(r)
∣∣∣Ψ(N)

0

〉
= 0 =

〈
Ψ

(N)
0

∣∣∣ ψ̂†>(r) (2.42)

ψ̂<(r)
∣∣∣Ψ(N)

0

〉
= 0 =

〈
Ψ

(N)
0

∣∣∣ ψ̂†<(r) (2.43)

holds, which turn out to be useful properties for perturbation theory, in particular for

the Wick’s theorem, see Refs. 31, 32. We discuss this in more detail in chapter 3.

2.4 Feynman Propagator

We apply the developed formalism of the previous sections, in order to evaluate the

non-interacting Feynman propagator[33, 34]

G0(r′, r, t) = −iΘ(t)
〈

Ψ
(N)
0

∣∣∣ ψ̂(r, t)ψ̂†(r′)
∣∣∣Ψ(N)

0

〉
+ iΘ(−t)

〈
Ψ

(N)
0

∣∣∣ ψ̂†(r′)ψ̂(r, t)
∣∣∣Ψ(N)

0

〉
,

(2.44)

where ψ̂(r, t) indicates the Heisenberg notation

ψ̂(r, t) = eiĤ0tψ̂(r)e−iĤ0t. (2.45)

1We emphasize that for the redefined operators b̂i |0〉 6= 0 holds, because they annihilate holes w.r.t.

the Fermi vacuum
∣∣∣Ψ(N)

0

〉
rather than the true vacuum |0〉.
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2.4 Feynman Propagator

The propagator is an important function in many-body perturbation theory and we

discuss it in more detail in the following.

The first term on the r.h.s. of Eq. (2.44) describes the undisturbed propagation

of an electron with positive energy forward in time from the spacetime point (r′, 0) to

(r, t), whereas the second term describes the propagation of the corresponding hole with

negative energy from (r, t) to (r′, 0). This becomes evident, when inserting the electron-

hole transformations (2.38), (2.39) in Eq. (2.44) and using the Fermi vacuum identities

(2.42) and (2.43) resulting in

G0(r′, r, t) = Θ(t)G0
>(r′, r, t)−Θ(−t)G0

<(r′, r, t). (2.46)

with the greater and lesser functions defined as

G0
>(r′, r, t) = −i

〈
Ψ

(N)
0

∣∣∣ ψ̂>(r, t)ψ̂†>(r′)
∣∣∣Ψ(N)

0

〉
(2.47)

G0
<(r′, r, t) = −i

〈
Ψ

(N)
0

∣∣∣ ψ̂<(r′)ψ̂†<(r, t)
∣∣∣Ψ(N)

0

〉
(2.48)

For the time being, we concentrate ourselves on the lesser part. Inserting the the com-

pleteness relation of all Slater-determinants (1.11) for N ′ particles into Eq. (2.48) and

using the eigenvalue equation 1.12 yields

G0
<(r′, r, t) = −i

∞∑
ν=0

e
−i
(
E

(N)
0 −E(N′)

ν

)
t 〈

Ψ
(N)
0

∣∣∣ ψ̂<(r′)
∣∣∣Ψ(N ′)

ν

〉〈
Ψ(N ′)
ν

∣∣∣ ψ̂†<(r)
∣∣∣Ψ(N)

0

〉
.

(2.49)

When the field operator ψ̂†<(r) acts on
∣∣∣Ψ(N)

0

〉
it creates a hole at r, i.e. removes an occu-

pied state from
∣∣∣Ψ(N)

0

〉
and yields effectively an N −1 singly excited Slater-determinant.

Thus, only for N ′ = N − 1 and singly excited Slater-determinants
∣∣∣Ψ(N−1)

ν

〉
the ex-

pression above is non-zero. The matrix elements on the r.h.s. of Eq. (2.49) are called

Lehmann amplitudes and are expressible in terms of one-particle orbitals φβ(r)φ∗β(r′),

see appendix (B). For N non-interacting electrons, considered here, the exponent in Eq.

(2.49) may be rewritten in terms of occupied one-particle energies[35]

E
(N)
0 − E(N−1)

ν = εβ < 0. (2.50)

Consequently, the lesser part contains only occupied states with energies εj < 0 and

reads

G0
<(r′, r, t) = −i

∑
j

e−iεjtφj(r)φ∗j (r
′), εj < 0. (2.51)
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Analogously, the greater part contains only unoccupied states with positive energies

G0
>(r′, r, t) = i

∑
a

e−iεatφa(r)φ∗a(r
′), εa > 0 (2.52)

so that the Feynman propagator (2.44) assumes the orbital form

G0(r′, r, t) = −i
∑
β

φβ(r)φ∗β(r′)e−iεβt [Θ(t)Θ(εβ)−Θ(−t)Θ(−εβ)] . (2.53)

We emphasize that for non-vanishing Fermi energy µ 6= 0 the correct representations is

G0(r′, r, t) = −i
∑
β

φβ(r)φ∗β(r′)e−i(εβ−µ)t [Θ(t)Θ(εβ − µ)−Θ(−t)Θ(µ− εβ)] . (2.54)

The Feynman propagator is also often called Green’s function (of the non-interacting

system). The reason for this name is examined in the following section.

2.4.1 Analytic Properties of non-interacting Green’s functions

To investigate the analytic behavior of the Feynman propagator, one notes that G0 is

the inverse of the free Schrödinger equation (2.4)(
i
∂

∂t
− ĥ0(r)

)
G0(r′, r, t− t′) = δ(t− t′)δ(r− r′) (2.55)

and satisfies the boundary conditions

G0(r′, r, t) ≈ −ie−iεat, t > 0, εa > 0 (2.56)

G0(r′, r, t) ≈ +ie−iεit, t < 0, εi < 0. (2.57)

This follows trivially from the identity

dΘ(t)

dt
= δ(t), (2.58)

Eq. (2.53) and the one-electron eigenvalue equation (2.5). The propagator is therefore

also named non-interacting Green’s function in analogy to the theory of partial differ-

ential equations. We examine the Green’s function and its analytic properties in more

detail in the following.

From the mathematical point of view, G0 should be seen as a special boundary value

of a distribution f , see for instance Refs. 36, 37. This distribution is found from the

principal solution of the Fourier representation of the equation (2.55)[
ω − ĥ0(r)

]
f(r′, r, ω) = 1 (2.59)
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2.4 Feynman Propagator

and reads

f(r′, r, ω) =
∑
α

φα(r)φ∗α(r′)

ω − εα
. (2.60)

Allowing for complex arguments ω → z yields a multivalued function on the real axis.

The reason for this is, that one can always add terms of the form

λαδ(z − εα)φα(r)φ∗α(r′), λα ∈ C (2.61)

to Eq. (2.60), because they result in zeros when inserted in Eq. (2.59), due to the

identity zδ(z) = 0. Thus the most general solution of Eq. 2.59 is

f(r′, r, z) =
∑
α

φα(r)φ∗α(r′)

[
P

1

z − εα
+ λαδ(εα − z)

]
, λα,∈ C (2.62)

where the P symbol indicates that the corresponding term in the inverse Fourier trans-

formation

f(r′, r, t) =

∫
dz

2π
f(r′, r, z)e−izt (2.63)

is treated as principle value integral. This integral can be evaluated straightforwardly

and reads

f(r′, r, t) =
∑
α

φα(r)φ∗α(r′)

[
i

2
e−iεαtsgn(−t) +

λα
2π
e−iεαt

]
. (2.64)

To satisfy the boundary conditions (2.56) and (2.57) for instance, the complex constants

λα must read

λα = Θ(−εα)iπ −Θ(εα)iπ, (2.65)

whereas different boundary conditions, yield different coefficients.

One can include all possible boundary conditions in the following contour integral

f(r′, r, t) =

∮
C

dz

2π
e−izt

∑
α

φα(r)φ∗α(r′)

z − εα
(2.66)

by choosing the contour of integration C appropriately, see Ref. 36. Specifically, the

Feynman boundary conditions (2.56), (2.57) are fulfilled, for the contour shown in Fig.

2.1.

Representation (2.66) shows, that the general solution of the differential equation

(including the special one in Eq. (2.59)) has a branch cut along the real axis, where

different Riemannian sheets of the function f(r′, r, z) are glued together. Thereby each

sheet corresponds to specific boundary values imposed on the general solution. Crossing
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2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

CF t > 0

t < 0

µ

Figure 2.1: Complex frequency plane for f(z) defined in (2.66) with branch cut (dashed

line). Blue line: Feynman contour CF for the complex frequency plane. Red line: Contour

for the retarded propagator (2.67). Contours are closed for negative (positive) times and

occupied (unoccupied) energies εµ < 0 in upper (lower) half-plane.

the branch cut means changing the branch of the function f and therefore using different

boundary conditions. This gives rise to different choices for the integration contour in

Eq. (2.66) to reach different branches of the function f . For instance, the physically

relevant retarded solution

G0
r(r
′, r, t) = −iΘ(t)

〈
Ψ

(N)
0

∣∣∣ {ψ̂(rt), ψ̂†(r′)
} ∣∣∣Ψ(N)

0

〉
(2.67)

can be obtained with the red contour in Fig. 2.1, whereas the time-ordered solution, i.e.

the Feynman propagator G0 is obtained with the blue contour.

In practice, the chosen contour is indicated by adding an infinitesimal η in the denom-

inators of f(r′, r, z) and it is understood that the limit η → 0 is taken after the Fourier

transformation into time domain (2.63) is performed. For example for the Feynman

propagator the correct prescription is

G0(r′, r, z) =
∑
α

φα(r)φ∗α(r′)

z − εα − iηsgn(εα)
, (2.68)

whereas for the retarded propagator one writes

G0
r(r
′, r, z) =

∑
α

φα(r)φ∗α(r′)

z − εα − iη
. (2.69)

These representations are known as Lehman representations and are useful to indicate

the considered branch of the distribution f(r′, r, z). We emphasize that the positions

of the poles of the retarded, the Feynman and all other propagators are located always

along the real line at z = εα, because the infinitesimal η in the denominators (2.68) and
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2.5 Interaction Picture and Time Evolution

(2.69) contains only the information about the chosen contour and is not ’shifting’ the

poles away.

So far we have considered the second quantization for the non-interacting field theory

only. In order to extend this formalism to interacting quantum fields we introduce the

convenient interaction picture in the following section.

2.5 Interaction Picture and Time Evolution

The second quantization of the free field theory induces (together with the normal-

ordering prescription from section 2.2) following representation for the Coulomb operator

defined in Eq. (2.3)

V̂ =
q2

2

∫
d3rd3r′

ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)

|r− r′| (2.70)

and the full Hamiltonian (2.1) in second quantization formalism reads

Ĥ = Ĥ0 + V̂ . (2.71)

In order to study interacting quantum fields, especially their time evolution, it is

convenient to work in the interaction picture. We summarize the basic concepts of this

picture, going back to Dirac, in the following.

One makes the observation that the coupling constant q of the electromagnetic in-

teraction appears quadratically in the interaction part V̂ of the many-body Hamilto-

nian (2.70) and linearly in the non-interacting part Ĥ0. Therefore, one often considers

the interaction V̂ as a perturbation to the non-interacting system and separates the

time-dependence of the non-interacting part (described by Ĥ0) from the Schrödinger

eigenstates
∣∣∣Ω(s)

µ

〉
.

For this purpose the state vector |Ωµ(t)〉 in the interaction picture is defined by

|Ωµ(t)〉 = eiĤ0t
∣∣∣Ω(s)

µ (t)
〉

(2.72)

with
∣∣∣Ω(s)

µ (t)
〉

satisfying the Schrödinger equation

i
∂
∣∣∣Ω(s)

µ (t)
〉

∂t
= Ĥ

∣∣∣Ω(s)
µ (t)

〉
=
[
Ĥ0 + V̂

] ∣∣∣Ω(s)
µ (t)

〉
. (2.73)
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Differentiating Eq. (2.72) w.r.t. time and comparing with the time-dependent Schrödinger

equation (2.73) one obtains[34]

i
∂ |Ωµ(t)〉

∂t
= eiĤ0tV̂ e−iĤ0t︸ ︷︷ ︸

=V̂ (t)

|Ωµ(t)〉 (2.74)

and concludes, that in the interaction picture both, the states as well as the operators

depend on the time.

Next, one seeks the time-evolution operator Ŝ defined implicitly via

|Ωµ(t)〉 = Ŝ(t, t0) |Ωµ(t0)〉 . (2.75)

The operator in question can be found quickly, by rewriting Eq. (2.72) into

|Ωµ(t)〉 = eiĤ0t
∣∣∣Ω(s)

µ (t)
〉

︸ ︷︷ ︸
eiĤ(t−t0)

∣∣∣Ω(s)
µ (t0)

〉
︸ ︷︷ ︸

e−iĤ0t0 |Ωµ(t0)〉

(2.76)

and comparing with Eq. (2.75) yields the explicit form of the evolution operator

Ŝ(t, t0) = eiĤ0te−iĤ(t−t0)e−iĤ0t0 . (2.77)

One emphasizes that V̂ and Ĥ0 do not commute, so that the correct order of the operators

Ĥ and Ĥ0 in Eq. (2.77) must be taken care of.

The time-evolution operator Ŝ satisfies the group properties[34]

Ŝ(t, t) = 1 (2.78)

Ŝ(t, t0) = Ŝ(t, t1)Ŝ(t1, t0) (2.79)

Ŝ†(t, t0) = Ŝ−1(t, t0) (2.80)

and the differential equation

i
∂Ŝ(t, t0)

∂t
= V̂ (t)Ŝ(t, t0). (2.81)

The latter follows from Eq. (2.75) and (2.74) and can be integrated to yield

Ŝ(t, t0) = 1− i
t∫

t0

dt1V̂ (t1)Ŝ(t1, t0). (2.82)
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This is a Fredholm equation of the second kind and has as unique solution in terms of

the Liouville-Neumann series[38]

Ŝ(t, t0) = 1 +
∞∑
n=1

(−i)n În(t, t0) (2.83)

În(t, t0) =

t∫
t0

dt1V̂ (t1)

t1∫
t0

dt2V̂ (t2) · · ·
tn−1∫
t0

dtnV̂ (tn). (2.84)

In practice one rewrites the resolvent În in terms of the time-ordering operator T̂ , defined

by[39]

T̂
[
Ô1(t1) · · · Ôn(tn)

]
=
∑
σ∈Sn

sgn(σ)
n−1∏
l=1

Θ
[
tσ(l+1) − tσ(l)

]
Ôσ(l)(tσ(l))Ôσ(n)(tσ(n)) (2.85)

with sgn(σ) = 1 for bosonic operators, such as V̂ , whereas for fermionic operators, like

ψ̂, sgn(σ) = 1 for even and sgn(σ) = −1 for odd permutations σ of the permutation

group Sn. Consequently, one obtains[34]

În(t, t0) =
1

n!

t∫
t0

dt1dt2 · · · dtnT̂
[
V̂ (t1)V̂ (t2) · · · V̂ (tn)

]
(2.86)

and in combination with Eq. (2.83), the evolution operator assumes the form

Ŝ(t, t0) = T̂ e
−i

t∫
t0

dt′V̂ (t′)

. (2.87)

We will use this operator in the next section to relate interacting to non-interacting

eigenstates of the the Hamiltonian.

2.6 Interacting Quantum Fields and Gell-Mann and Low

Theorem

Basically one knows everything about the non-interacting system, described by Ĥ0, in-

cluding groundstate energy and the corresponding one-particle eigensystem
{∣∣∣Ψ(N)

µ

〉
, E

(N)
µ

}
,

see section 2.1. In contrast, the more interesting eigensystem
{∣∣∣Ω(N)

µ

〉
,Ω

(N)
µ

}
in the

presence of the interaction V̂ is unknown (we drop the superscript (N) for the time be-

ing to keep the notation simple). In this section we follow Gell-Mann and Low in order
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to develop the mathematical framework to represent the eigenstates of the interacting

theory in terms of the non-interacting eigensystem.[40]

One replaces the coupling constant q in the interaction term

V̂ (t) =
q2

2
eiĤ0t

∫
d3rd3r′

ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)

|r− r′| e−iĤ0t. (2.88)

by a time-dependent charge

q → q(t) = qe−ηt
2
, η → 0 (2.89)

and denotes the corresponding interaction term by V̂η(t). Let us consider following set

of problems [
Ĥ0 + V̂η(t)

] ∣∣Ωη
µ(t)

〉
= Ωη

µ(t)
∣∣Ωη

µ(t)
〉
, (2.90)

with the properties ∣∣Ωη
µ(±∞)

〉
= |Ψµ〉 and Ωµ(±∞) = Eµ (2.91)∣∣Ωη

µ(0)
〉

= |Ωµ〉 and Ωµ(0) = Ωµ (2.92)

This means that the system for t → ±∞ is described by the known eigenstates of the

non-interacting Hamiltonian Ĥ0, whereas for t = 0 (where the interaction is at its full

strength) the solution of Eq. (2.90) is the unknown interacting eigensystem.

Consider the time evolution operator Ŝη(t, t0) satisfying the analogue of Eq. (2.81)

i
∂Ŝη(t, t0)

∂t
= V̂η(t)Ŝη(t, t0) (2.93)

and implying

|Ωη
0〉 = Ŝη(0,±∞) |Ψ0〉 . (2.94)

This relation is mathematically well-defined for η > 0, provided the time evolution

operator Ŝη satisfies the boundary condition Ŝη(t0, t0) = 1.1 However, in the interesting

limit η → 0, the expression above is ill-defined, and one considers the limit

|Ω0〉
〈Ψ0|Ω0〉

= lim
η→0

Ŝη(0,±∞) |Ψ0〉
〈Ψ0| Ŝη(0,±∞) |Ψ0〉

(2.95)

instead.[34, 40] The Gell-Mann and Low theorem can be formulated as follows.

1The Liouville-Neumann series (2.83) is well-defined for all times, see Ref. 38, so this is fulfilled.
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Theorem 2.6.1 (Gell-Mann and Low) If the limit, defined in Eq.(2.95), exists to

infinite order in perturbation theory and the non-interacting groundstate |Ψ0〉 is not

degenerate, it is an eigenvector of the interacting many-body Hamiltonian Ĥ0 + V̂ .

The proof of this theorem can be found in Refs. 34, 40, 41 and will not be repeated here.

In contrast we rather emphasize that 2.6.1 does not imply that |Ω0〉 is necessarily the

interacting groundstate. In addition, non-degeneracy of the non-interacting groundstate

|Ψ0〉 is demanded.1 In this thesis, however, we assume adiabaticity of the non-interacting

eigenstates, as well as non-degeneracy of |Ψ0〉, so that |Ω0〉 in Eq. (2.95) is the interacting

groundstate.

This implies that the state vectors

|Ωµ〉
〈Ψµ|Ωµ〉

=
Ŝ(0,−∞) |Ψµ〉
〈Ψµ|Ωµ〉

(2.96)

are eigenvectors of the interacting many-body Hamiltonian

Ĥ
|Ωµ〉
〈Ψµ|Ωµ〉

= Ωµ
|Ωµ〉
〈Ψµ|Ωµ〉

(2.97)

with ordered energies Ω0 < Ω1 < Ω2 · · · . In general the states |Ωµ〉 differ from |Ωµ〉 / 〈Ψµ|Ωµ〉
by a phase, see Ref. 34, however it is convenient (and sufficient) to assume the normal-

ization condition

〈Ωµ|
( |Ωµ〉
〈Ψµ|Ωµ〉

)
= 1 (2.98)

Together with Eq. (2.97) this implies for the interacting energy eigenstates

Ωµ =
〈Ωµ| Ĥ |Ωµ〉
〈Ωµ|Ωµ〉

. (2.99)

a representation in terms of non-interacting eigenstates

Ωµ =
〈Ψµ| Ŝ(∞, 0)ĤŜ(0,−∞) |Ψµ〉
〈Ψµ| Ŝ(∞,−∞) |Ψµ〉

. (2.100)

It is possible to exchange the evolution operator Ŝ(∞, 0) with the Hamiltonian in the

numerator, see Ref. 34, such that one obtains

Ωµ =
〈Ψµ| ĤŜ(∞,−∞) |Ψµ〉
〈Ψµ| Ŝ(∞,−∞) |Ψµ〉

. (2.101)

1In fact, recent calculations for a 2×2 dimensional toy model with a degenerate groundstate demon-

strate the breakdown of the Gell-Mann and Low theorem.[42]
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2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

Expanding the time-evolution operators in the nominator and denominator provides the

starting point for a perturbative approximation of the interacting groundstate energy at

zero temperature in terms of the non-interacting system.

Considered from a statistical point of view, however, Eq. (2.101) looks similar to

the ensemble average of the Hamiltonian, where the density operator is replaced by

S(∞,−∞). In the following section we consider this expression in imaginary time to

make this connection manifest.

2.7 Imaginary Time and Statistical Physics

It is possible to establish an intriguing relationship between the inverse temperature

β= T−1 and the imaginary time τ of a system. To see this, one generalizes the adiabatic

charge function Eq. (2.89), to a meromorphic function

q(z) = qe−η|z|
2

(2.102)

and allows for complex times z in the time evolution. Then the integration over the real

axis in the time-evolution operator Ŝ may be written as

−i
∞∫
−∞

dtV̂η(t) = −i
∫
C+

dzV̂η(z), (2.103)

where z is the complex time and the complex path t ∈ C+ is the positive real line

depicted in Fig. 2.2. The index η indicates a finite infinitesimal. Closing the contour as

shown in the same figure, the overall integral vanishes∮
C

dzV̂η(z) = 0, (2.104)

as well as the integration over the quarter circle paths C−∞,C∞. Thus, the integral over

the real line might be rewritten as an integral over the imaginary time axis

−i
∫
C+

dzV̂η(z) = i

∫
Ci

dzV̂η(z) = (−i)2 lim
β→∞

β
2∫

−β
2

dτ V̂η(iτ) = − lim
β→∞

β
2∫

−β
2

dτ V̂η(−iτ).

(2.105)

In the next step one shifts the imaginary time integration by τ → τ + β
2 to the interval
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β
2

C+

Ci

C−∞

C∞

Figure 2.2: Complex contour for the Wick rotation from real time t to imaginary time τ .

0 ≤ τ ≤ β and perform the limit η → 0 to obtain

− lim
β→∞

lim
η→0

β
2∫

−β
2

dτ V̂η(−iτ) = − lim
β→∞

β∫
0

dτe−Ĥ0
β
2 V̂ (−iτ)eĤ0

β
2 , (2.106)

where

V̂ (−iτ) = eĤ0τ V̂ e−Ĥ0τ . (2.107)

With slight abuse of notation, we suppress the −i factor in the following and write

simply V̂ (τ) for V̂ (−iτ) and other analytically continued observables and functions.

Analogously, other operators and functions are analytically continued to the imaginary

time axis and the time-ordering symbol T̂ orders operators along the imaginary time

axis τ in the same way as it does for real times t. Furthermore, the exponential factors

eĤ0
β
2 , e−Ĥ0

β
2 in Eq. (2.106) cancel each other due to time ordering

T̂ e
− lim
β→∞

β∫
0

dτe−Ĥ0
β
2 V̂ (τ)eĤ0

β
2

= T̂ e
− lim
β→∞

β∫
0

dτV̂ (τ)
(2.108)

and are disregarded from now on.

The analytic continuation of the time integration path is an important step in com-

bining statistical physics with QFT and was proposed first by Wick in Ref. 43. Before

we discuss this connection in detail we consider the analytically continued Feynman

propagator G0. The replacement t → −iτ in the zero-temperature Green’s function of

the non-interacting system (2.53) yields

G0(r′, r, τ) = −
∑
β

φβ(r)φ∗β(r′)e−εβτ [Θ(τ)Θ(εβ)−Θ(−τ)Θ(−εβ)] . (2.109)
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2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

Thus, in contrast to real time, the Feynman propagator is a decaying and non-oscillating

function in imaginary time τ . This is a favorable property for practical calculations

allowing for accurate representations of G0 on coarse imaginary time grids. We exploit

this property in chapter 5 extensively.

2.7.1 Finite-Temperature Feynman Propagator

To bridge the gap to statistical physics we follow Ref. 44 and introduce the density

matrix of N non-interacting electrons

ρ̂0 =
e−βĤ0

Z0(β)
, Z0(β) =

∞∑
µ=0

〈Ψµ| e−βĤ0 |Ψµ〉 . (2.110)

with the zero-temperature limit β →∞ given by

lim
β→∞

ρ̂0 = |Ψ0〉 〈Ψ0| . (2.111)

For further reference the notation 〈·〉β is introduced to indicate ensemble averages w.r.t.

the non-interacting system

〈
Ô(τ)

〉
β

=
∞∑
µ=0

〈Ψµ| ρ̂0Ô(τ) |Ψµ〉 = Tr
{
ρ̂0Ô(τ)

}
(2.112)

for an operator Ô. Then (2.109) is the zero-temperature limit β → ∞ of the non-

interacting finite-temperature Green’s function

G0(r′, r, τ) = −
〈
T̂ ψ̂(r, τ)ψ̂†(r′, 0)

〉
β
. (2.113)

We use the same symbol G0 for both, the zero and finite-temperature Green’s function,

because the former can always be recovered from the latter by taking the limit β →∞.

Considering the finite-temperature case has the advantage of exploiting the property,

see Ref. 30, 45,

G0(r′, r, τ + β) = −G0(r′, r, τ), (2.114)
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2.7 Imaginary Time and Statistical Physics

which follows from the antiperiodicity of the trace1

〈
ψ̂(r, τ + β)ψ̂†(r′)

〉
β

=
1

Z0(β)
Tr
{
e−βĤ0e(β+τ)Ĥ0ψ̂(r)e−(β+τ)Ĥ0ψ̂†(r′)

}
=

1

Z0(β)
Tr
{
eτĤ0ψ̂(r)e−τĤ0e−βĤ0ψ̂†(r′)

}
=

1

Z0(β)
Tr
{
e−βĤ0ψ̂†(r′)eτĤ0ψ̂(r)e−τĤ0

}
=
〈
ψ̂†(r′)ψ̂(r, τ)

〉
β

= −
〈
T̂ ψ̂(r, τ)ψ̂†(r′)

〉
β
, τ < 0.

(2.115)

It can be shown, see Ref. 45, that the orbital representation of the finite temperature

Green’s function is given by

G0(r′, r, τ) = −
∑
α

φα(r)φ∗α(r′)e−εατ [Θ(τ)(1− fβ(εα))−Θ(−τ)fβ(εα)] , (2.116)

where fβ is the Fermi occupancy function

fβ(ε) =
1

eβε + 1
. (2.117)

The convergence of the finite-temperature Green’s function G0 is guaranteed only for

the interval −β ≤ τ ≤ β. One, therefore, continues G0(τ) antiperiodically onto the

complete real line, so that the function can be decomposed into a Fourier series

G0(r′, r, τ) =
1

β

∞∑
n=−∞

e−iωnτG0(r′, r, i
πn

β
), (2.118)

with coefficients

G0(r′, r, i
πn

β
) =

1

2

∫ β

−β
dτe

iπn
β
τ
G0(r′, r, τ), n ∈ Z (2.119)

In the zero-temperature limit β →∞, the Fourier spectrum becomes continuous iπnβ →
iω and take arbitrary values on the imaginary frequency axis iω. Consequently, in

agreement with Fourier analysis, the series representation (2.118) becomes a Fourier

integral

G0(r′, r, τ) =
1

2π

∞∫
−∞

dωe−iωτG0(r′, r, iω), β →∞. (2.120)

1The same follows for τ > 0.
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2. QUANTUM FIELD THEORY FOR CONDENSED MATTER

We emphasize that on the imaginary frequency axis the Green’s function is well-behaved,

due to

G0(r′, r, iω) =
∑
α

φα(r)φ∗α(r′)

iω − εα
, (2.121)

and no branch cut is crossed when approaching ω → εα as in the case for real frequencies,

see section 2.4.1. Hence, the imaginary frequency integration in Eq. (2.120) can be

carried out straightforwardly and a deformation of the integration contour, as in (2.68),

is not necessary.

-1

-0.5

0

0.5

1

−β −β
2 0 β

2 β

G
0
(τ

)

τ

Figure 2.3: Typical imaginary time-dependence of the non-interacting propagator G0 il-

lustrating the anti-periodicity property (2.114). Here a two-state model with one occupied

state with energy ε1 = −1.5 eV and an unoccupied state with energy ε2 = 2.3 eV for a

inverse temperature of β = 10 eV−1 is shown.

For finite temperatures, however, it is sufficient to restrict the imaginary time interval

either to 0 ≤ τ ≤ β or to −β
2 ≤ τ ≤

β
2 , as shown in Fig. 2.3. In this work we exclusively

use the former interval 0 ≤ τ ≤ β, where the representations (2.118) and (2.119) read

G0(r′, r, τ) =
1

β

∞∑
n=−∞

e−iωnτG0(r′, r, iωn) (2.122)

G0(r′, r, iωn) =

∫ β

0
dτeiωnτG0(r′, r, τ), n ∈ Z (2.123)
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and the discrete Fourier spectrum iωn is restricted to the fermionic Matsubara frequencies

ωn =
(2n− 1)π

β
, n ∈ Z. (2.124)

This follows from Eqs. (2.118) and (2.119) by shifting the integration variable on the

interval [−β, 0] in Eq. (2.119) to τ → τ + β and using property (2.114), see Ref. 45.

2.7.2 Statistical Physics and Imaginary Time

One introduces the interacting partition function Z(β) and the corresponding density

operator ρ̂ of the system

Z(β) = Tr
{
e−βĤ

}
, ρ̂ =

exp(−βĤ)

Z(β)
(2.125)

where the trace is evaluated w.r.t. the interacting eigenstates |Ωµ〉. This partition

function can be used to compute the ensemble average Tr
{
ρÔH(τ)

}
of an arbitrary

Heisenberg-operator

ÔH(τ) = eβĤÔe−βĤ . (2.126)

With the help of the Gell-Mann and Low theorem and the property

e−βĤ = e−βĤ0 Ŝ(−iβ, 0)︸ ︷︷ ︸
=Ŝ(β)

= Z0(β)ρ̂0Ŝ(β), (2.127)

see Refs. 45, 46,1 the trace w.r.t. interacting eigenstates |Ωµ〉 can be rewritten into

a trace w.r.t. to the non-interacting eigenstates
∣∣∣Ψ(N)

µ

〉
. For instance, the partition

function Z(β) can be expressed as

Z(β) = Z0(β)Tr
{
ρ̂0(β)Ŝ(β)

}
= Z0(β)

〈
Ŝ(β)

〉
β

(2.128)

to separate the grand partition function into

Z(β) = Z0(β)Zv(β) (2.129)

with the interacting part Zv(β) given by

Zv(β) =
〈
Ŝ(β)

〉
β
. (2.130)

1 Eq. (2.127) follows from analytic continuation of (2.77) using t→ −iβ.
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Alternatively, the grand canonical potential Φ of the system can be written as

Φ = − 1

β
lnZ(β) = − 1

β
[lnZ0(β) + lnZv(β)] = Φ0 + Φv (2.131)

or the internal energy E of the system can be computed via

E = − ∂

∂β
lnZ(β) = − ∂

∂β
[lnZ0(β) + lnZv(β)] =

〈
Ĥ0

〉
β

+
Z0(β)

Zv(β)

〈
Ŝ(β)V̂

〉
β
. (2.132)

In particular, one obtains for the zero-temperature limit β →∞, a representation of the

interacting groundstate energy

Ω0 = lim
β→∞

E = 〈Ψ0| Ĥ0 |Ψ0〉︸ ︷︷ ︸
E0

+
〈Ψ0| T̂ e−

∫∞
0 dτV̂ (τ)V̂ |Ψ0〉

〈Ψ0| T̂ e−
∫∞
0 dτV̂ (τ) |Ψ0〉

. (2.133)

It is interesting to compare this expression with the Gell-Mann and Low expression for

the interacting eigenenergies (2.101). It is not difficult to show, see [44, 46], that in

general thermal averages of Heisenberg-operators (2.126) can be expressed as

Tr
{
ρÔH(τ)

}
=

∞∑
µ=0

〈Ωµ| ρ̂ÔH(τ) |Ωµ〉 =

〈
Ŝ(β)T̂ Ô(τ)

〉
β〈

Ŝ(β)
〉
β

. (2.134)

In general, all observables are expressible in terms of field and conjugate field opera-

tors ψ̂, ψ̂†.1 Therefore, it is convenient to introduce the generating functional of QFT,

following Refs. 39, 47,

W[j, j∗] = ln


〈
Ŝ(β)T̂ e

−
β∫
0

dτ
∫

dr(j†(r,τ)ψ̂(r,τ)+ψ̂(r,τ)j∗(r,τ))
〉
β

 (2.135)

from which arbitrary expectation values of the interacting system can be calculated

as functional derivatives w.r.t. source fields j, j∗. Specifically, the interacting finite-

temperature propagator G, discussed in detail in chapter 4.1.1, can be written as

G(r′, r, τ) =

∞∑
µ=0

〈Ωµ| ρ̂T̂ ψ̂H(r, τ)ψ†H(r′) |Ωµ〉 (2.136)

= − δ2W[j, j∗]

δj∗(r′)δj(r, τ)

∣∣∣∣
j,j∗=0

(2.137)

= −

〈
Ŝ(β)T̂ ψ̂(r, τ)ψ†(r′)

〉
β〈

Ŝ(β)
〉
β

. (2.138)

1Similarly in classical Hamiltonian mechanics, every observable is expressible in terms of conjugate

variables q, p.
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All expressions so far are exact. However, in practice one has to evaluate the in-

teracting expectation values (2.134) perturbatively. For this purpose the diagrammatic

method is introduced in the following section.
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3

Many-Body Perturbation Theory

3.1 Perturbation Series of the Grand Canonical Potential

Due to the complex structure of Eq. (2.128) it is hopeless to evaluate the grand canonical

potential Φ with Eq. (2.131) exactly. The same holds true for the zero-temperature case1

Ω0 = lim
β→∞

Φ, (3.1)

so that one has to rely on approximations. Fortunately, the expressions for the parti-

tion function and canonical potential, presented in the previous section, provide a good

starting point.

For this purpose one expands the exponential in the interacting partition function

Zv(β), defined in Eq. (2.130), into a series

Zv(β) =
〈
Ŝ(β)

〉
β

=

〈
T̂ e
−
β∫
0

dτV̂ (τ)
〉
β

(3.2)

allows for a perturbative treatment of the interacting degrees of freedom. In particular,

1This identity holds true, due to our convention µ = 0.
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the zeroth, first and second order terms read

Z(0)
v = 〈1〉β = 1 (3.3)

Z(1)
v = −

β∫
0

dτ
〈
T̂ V̂ (τ)

〉
β

(3.4)

Z(2)
v =

1

2

β∫
0

dτ1dτ2

〈
T̂ V̂ (τ1)V̂ (τ2)

〉
β

(3.5)

and the n order term is

Z(n)
v =

(−1)n

n!

β∫
0

dτ1 · · · dτn
〈
T̂ V̂ (τ1) · · · V̂ (τn)

〉
β

(3.6)

Inserting this expansion into Eq. (2.131) one obtains an approximative formula for the

interacting part Φv of the grand canonical potential

Φv = − 1

β
lnZv(β) = − 1

β
ln
(

1 + Z(1)
v + Z(2)

v · · ·
)
. (3.7)

In summary, the perturbation series of the grand canonical potential reduces to the

evaluation of time-ordered matrix elements of products of Coulomb operators V̂ . In the

following section, we discuss the evaluation of these expectation values in detail.

3.1.1 The Wick Theorem

The Coulomb operator can be written in terms of two-particle integrals

V αβγδ = q2

∫
drdr′

φ∗α(r)φ∗β(r′)φγ(r′)φδ(r)

|r− r′| = 〈φα, φβ| V̂ |φδ, φγ〉 , (3.8)

and the creation and annihilation operators

V̂ (τ) =
1

2
V αβγδ ĉ†α(τ)ĉ†β(τ)ĉγ(τ)ĉδ(τ). (3.9)

This follows from the normal-ordered operator (2.70) and the transformation rules (2.30)

and (2.31). As in the last expression we adopt the Einstein summation convention in the

following. Within this convention, the first order term of the partition function (3.4) is

Z(1)
v = −

β∫
0

dτ
〈
T̂ V̂ (τ)

〉
β

= −1

2
V αβγδ

β∫
0

dτ
〈
T̂ ĉ†α(τ)ĉ†β(τ)ĉγ(τ)ĉδ(τ)

〉
β
. (3.10)
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Suppressing the imaginary time dependence τi for the operators ĉ†αi , · · · ĉδi for the time

being, the nth order term (3.6) of the partition function reads

Z(n)
v (β) =

(−1)n

n!

V α1β1γ1δ1 · · ·V αnβnγnδn

2n

β∫
0

dτ1 · · · dτn
〈
T̂ ĉ†α1

· · · ĉδn
〉
β
. (3.11)

Let us consider the zero-temperature limit β → ∞ of this expression for a moment. In

this limit the ensemble operator ρ̂0 reduces to the groundstate projector (2.111) and〈
T̂ ĉ†α1

· · · ĉδn
〉
∞

= 〈Ψ0| T̂ ĉ†α1
· · · ĉδn |Ψ0〉 , 0 < τ1, · · · , τn <∞ (3.12)

holds. To evaluate the r.h.s. one needs the Wick theorem, which uses the contraction of

two operators. This contraction is defined as

Ô(τ1)Ô(τ2) = T̂ Ô(τ1)Ô(τ2)− : Ô(τ1)Ô(τ2) :, (3.13)

where the normal ordering operator : · : was introduced in Eq. (2.28). Specifically, for

the contraction of an annihilation and creation operator one obtains when applied to

the groundstate

〈Ψ0| ĉα(τ1)ĉ†β(τ2) |Ψ0〉 = 〈Ψ0| T̂ ĉα(τ1)ĉ†β(τ2)− : ĉα(τ1)ĉ†β(τ2) : |Ψ0〉

= 〈Ψ0| T̂ ĉα(τ1)ĉ†β(τ2) |Ψ0〉︸ ︷︷ ︸
=−G0

βα(τ1−τ2)

−0, (3.14)

since the normal ordered product vanishes when acting on the Fermi vacuum, see Eqs.

(2.36) and (2.37). Here the object on the r.h.s. of Eq. (3.14) is the well-known non-

interacting Feynman propagator G0 in the one-particle basis

G0
βα(τ1 − τ2) =

∫
d3rd3r′φα(r′)G0(r′, r, τ1 − τ2)φ∗β(r), (3.15)

where it is diagonal

G0
αβ(τ) = −δαβe−εατ [Θ(τ)Θ(εα)−Θ(−τ)Θ(−εα)] ≡ δαβG0

α(τ). (3.16)

With this definitions the Wick theorem can be formulated in the following way, see

Refs. 34, 46.
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Theorem 3.1.1 (Wick Theorem) A time-ordered product of operators Ôi = Ô(ti) in

the interaction picture, can be decomposed into a normal-ordered sum of all possible

contractions, i.e.

T̂ (Ô1Ô2 · · · Ôn) = : Ô1Ô2Ô3 · · · Ôn : + : Ô1Ô2Ô3Ô4 · · · Ôn :

+ : Ô1Ô2Ô3Ô4 · · · Ôn : + · · · (3.17)

The proof of this statement can be found in every good book about QFT, for instance

Refs. 34, 46, and will not be given here.

The Wick theorem is a powerful utility when applied to the r.h.s. of Eq. (3.12). On

the one side, only contractions between creation and annihilation operators remain, due

to the orthogonality of the Slater determinants〈
Ψ(N)
µ

∣∣∣ Ψ(M)
ν

〉
= δNMδµν . (3.18)

On the other side, only fully contracted terms survive, because terms like

: ĉ†αĉ
†
β ĉγ ĉδ := − : ĉ†αĉγ ĉ

†
β ĉδ := − ĉ†αĉγ : ĉ†β ĉδ : (3.19)

vanish when evaluated for the groundstate

〈Ψ0| − ĉ†αĉγ : ĉ†β ĉδ : |Ψ0〉 = 0. (3.20)

Evidently, all orders of the interacting energy Ω0 at zero-temperature in Eq. (3.1) are

expressible in terms of the non-interacting Green’s function G0
α and the Coulomb matrix

elements Vαβγδ.

This conclusion relies on the Fermi vacuum properties (2.36) and (2.37), implying Eq.

(3.14), and is not valid a priori for finite-temperatures β <∞. This is due to the presence

of excited Slater determinants
∣∣∣Ψ(N)

µ

〉
in the thermal averages 〈· · ·〉β. However, one can

show that all normal-ordered thermal averages
〈

: ĉαĉ
†
β :
〉
β

vanish in the thermodynamic

limit, see Ref. 46, and consequently Eq. (3.14) is ultimately valid also for finite β.

Equipped with this knowledge, we evaluate the first two orders of the partition

function Zv(β) given in Eqs. (3.3)-(3.5) in the next section using the diagrammatic

method.
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δ
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γ

Figure 3.1: Labeled diagram for the interaction matrix element G0
αG

0
βV

αβγδG0
γG

0
δ .

3.2 Feynman Diagrams

We start with the first order term Z
(1)
v given in Eq. (3.4). Using the Wick theorem 3.17

and suppressing the τ -dependence in the notation, the corresponding interaction matrix

elements (3.10) can be written as〈
T̂ ĉ†αĉ

†
β ĉγ ĉδ

〉
β

= −
〈
T̂ ĉγ ĉ

†
α

〉
β︸ ︷︷ ︸

−G0
αγ(0)

〈
T̂ ĉδ ĉ

†
β

〉
β︸ ︷︷ ︸

−G0
βδ(0)

+
〈
T̂ ĉδ ĉ

†
α

〉
β︸ ︷︷ ︸

−G0
αδ(0)

〈
T̂ ĉβ ĉ

†
γ

〉
β︸ ︷︷ ︸

−G0
βγ(0)

. (3.21)

Hence the first order term of the partition function reads

Z(1)
v = −β

2

(
G0
α(0)G0

β(0)V αβαβ −G0
α(0)G0

β(0)V αββα
)
. (3.22)

Here, we note that the quantity G0
α(0) is always evaluated as lim

τ↗0
G0
α(τ) and corresponds

to the density matrix.

It is convenient to visualize specific contractions, including those above, with the

help of diagrams, originally proposed by Feynman to evaluate matrix elements in QED,

see Ref. 48. This method is adopted as follows. Green’s functions G0
α are represented

by directed lines
α

and interaction matrix elements V αβγδ by wiggly lines .

Particle lines attach to interaction lines at vertices, represented by dots , as shown

in Fig. 3.1. Typically, the horizontal direction represents time, whereas the vertical

direction stands for spatial coordinates. However, as one shall see in a moment, only the

topology of the diagrams is important, so that in the end it does not matter weather the

diagrams are drawn vertically or horizontally.

Using these prescriptions the two terms in Eq. (3.22) can be visualized as shown in

Fig. 3.2 and are called Hartree and Fock diagrams. These names come from the facts

that, the two terms in Eq. (3.22) assume the of form of the Fock-exchange 〈φαφβ| |r −
r′|−1 |φβφα〉 and the Hartree energy 〈φαφβ| |r− r′|−1 |φαφβ〉 [compare to section 1.1].

To gain more insight, one proceeds with the evaluation of higher order terms of the

partition function, however, this must be done carefully. The naive application of the
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3. MANY-BODY PERTURBATION THEORY

β

α

α β

Figure 3.2: Hartree (right) and Fock diagram (left).

β αδ γ δ α γβ

Figure 3.3: Ladder (left) and bubble (right) contraction as labeled diagrams.

Wick theorem to each term of the perturbation series (3.11) is problematic, since the

number of non-zero contractions increases exponentially with order n. For instance in

second order, there are 24 non-trivial contributions, two of them are shown in Fig. 3.3.

For n = 3 one has 6 × 5 × 4 × 3 × 2 = 720 possible contributions and in general for

order n there are in total (2n)! labeled diagrams, see Ref. 32, 39. To deal with this large

number of different contractions we follow Negele and Orland and consider two different

symmetries.

On the one side, one can exploit the symmetry of the interaction matrix elements

V αβγδ = V βαδγ , (3.23)

which follows from the change of the spatial integration variable in Eq. (3.8). This prop-

erty implies that two labeled diagrams are equivalent, if the exchange of two incoming

and outgoing particle lines at one vertex yields topologically the same diagram. In total

there are 2n possible exchanges for a diagram with n interaction lines. On the other side,

one obtains the same contribution if two permutations σ, σ′ ∈ Sn of the time integration

variables τσ(1), · · · , τσ(n) and τσ′(1), · · · , τσ′(n) yield the same diagram. For n interactions

this yields n! possible permutations. In the following, these symmetries are considered

from a more general point of view to deduce a simple summation rule for diagrams.

A general transformation θ from one diagram γ to another diagram θγ = γ′ is a

combination of (3.23) and permutations in τ1 · · · τn. The set of all possible transforma-

tions θ yields a group Γ and has 2nn! elements in total. We call two transformations

θ, θ′ ∈ Γ equivalent θ ' θ′, if they transform topologically into the same graph, that is
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3.2 Feynman Diagrams

Figure 3.4: Disconnected unlabeled diagrams in second order. The symmetry factors (from

left to right) are 8, 4 and 8.

Figure 3.5: Second order irreducible, connected diagrams. With symmetry factors

4, 4, 2, 2, 1 (from left to right).

θγ, θ′γ and γ yield the same contribution to the partition function Z(β). This defines

equivalence classes Hγ , and Sγ denotes the number of elements in Hγ ,i.e. the number of

topologically equivalent diagrams contained in Hγ . Because Hγ is a subgroup of Γ, Sγ

must be a divisor of 2nn! and 2nn!/Sγ ∈ N. Then the diagram γ appears 2nn!/Sγ times

for order n, resulting in an effective 1/Sγ symmetry factor in the partition function Z(β)

for the equivalence class of γ. The diagram γ defining the equivalence class Hγ is called

irreducible and is represented by an unlabeled diagram, where the indices α, β · · · of the

wiggly and particle lines are suppressed.

In practice, one, therefore, translates only the irreducible diagrams for a given order

into integrals and multiplies the result by the corresponding symmetry factor 1/Sγ . As

an consistency check, one may use the following sum rule, valid for each order∑
γ

1

Sγ
=

(2n)!

n!2n
= (2n− 1)(2n− 3)(2n− 5) · · · = (2n− 1)!!, (3.24)

where the sum on the r.h.s. is over all irreducible (topologically equivalent) diagrams

for order n.

As an example we show in Figs. 3.5 and 3.4 all irreducible graphs for the second

order with the corresponding symmetry factors. For instance the symmetry property

of Eq. (3.23) yields 2 × 2 = 4 identical contributions for the first diagram in Fig. 3.4

and for each contribution there are only 2 possible rearrangements of the integration

variables τ1, τ2 yielding topologically the same diagram, so that in total a symmetry
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3. MANY-BODY PERTURBATION THEORY

A B C D
Figure 3.6: Illustration of the symmetry factor of diagram A. Diagram B is obtained from

A using Eq. (3.23) for the upper interaction line, whereas diagram C follows from B using

the same identity for the lower one and diagram D is obtained from C after exchanging

τ1 ↔ τ2. Only diagram A and D belong to the same equivalence class with symmetry factor

Sγ = 2, because they are topologically the same directed graph.

factor of Sγ = 23 = 8 is obtained. The forth diagram in Fig. 3.5 has a symmetry

factor of Sγ = 2, because there is only one symmetry operation giving the same result:

The exchange of both horizontal vertices (using Eq. (3.23)) combined with a change

of the integration variables τ1 ↔ τ2. This symmetry operation is illustrated in Fig.

3.6. Analogously, the symmetry factors of other diagrams are obtained, see Ref. 39

for a comprehensive discussion. In summary, the 24 labeled diagrams for n = 2 can be

grouped into 8 equivalence classes Hγ and the sum over all inverse symmetry factors

1/Sγ , see caption of Figs. 3.5 and 3.4, yields 3 and satisfies Eq. (3.24).

One can reduce the relevant number of diagrams even further using the so-called

linked cluster theorem. This theorem was published by Goldstone in Ref. 49 and proved

for the groundstate energy at zero temperature. However, it can be shown that a similar

theorem holds for finite temperatures, see Ref. 46. Here we present the linked cluster

theorem as formulated by Abrikosov et al.

Theorem 3.2.1 (Linked Cluster Theorem) The perturbation series of lnZβ con-

tains only connected diagrams.

Diagrams as in Fig. 3.4, which separate into smaller order subdiagrams, are called

disconnected, whereas those in Fig. 3.5, are named connected. Hence, only connected,

topologically distinct contractions need to be determined for the perturbative analysis

of the grand canonical potential Φ.

We summarize the results of this section by formulating following Feynman rules

for the diagrammatic expansion of the grand canonical potential. Similar rules for the

Fourier domain can be found elsewhere, see for instance Refs. 34, 39, 46, and are not

discussed here.
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3.2 Feynman Diagrams

Feynman rules in one-particle basis

f1 Draw all connected, topologically distinct diagrams for each order n.

f2 Assign an imaginary time τ and an one-particle index α to each particle line and

include the factor G0
α(τ).

f3 For each interaction line include the factor V αβγδ.

f4 Multiply the result by the factor (−1)n(−1)l

Sγ
, where l is the number of closed particle

loops and Sγ the symmetry factor of the graph.1

f5 Integrate over imaginary times in [0, β] and sum over all one-particle indices.

In analogy to the one-particle basis, similar Feynman rules can be formulated in position

space and imaginary time.

Feynman rules for spacetime domain

F1 Draw all connected, topologically distinct diagrams for each order n.

F2 Assign a spacetime point x = (r, τ) to each vertex.

F3 For each wiggly line starting at x′ = (r′, τ ′) and ending in x = (r, τ) assign a

factor δ(τ−τ ′)
|r−r′| . Analogously, assign a factor G0(r′, r, τ − τ ′) to each particle line

originating in x′ and ending in x.

F4 Multiply the result by the factor (−1)n(−1)l

Sγ
, where l is the number of closed particle

loops and Sγ the symmetry factor of the graph.

F5 Integrate over spacetime points x in the domain [0, β] × C, where C is the unit

cell.

Both sets of rules hold for the zero-temperature case as well, with the difference that

finite-temperature propagators are replaced by their zero-temperature limit and integra-

tion is performed over [0,∞).

Nevertheless, the number of distinct, irreducible and connected diagrams becomes

huge and intractable with increasing order. Even worse, often diagrams, such as the

1The reason for the loop contribution can be found in Ref. 39.
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3. MANY-BODY PERTURBATION THEORY

+ ++ + + · · ·

Figure 3.7: Random Phase Approximation for the grand canonical potential.

bubble graphs in Fig. 3.3 diverge for each order in perturbation theory for prototypical

systems such as the HEG, see Ref. 33. However, Gell-Mann and Brueckner showed that

evaluating the infinite sum of all bubble diagrams yields a finite result, see Ref. 12.

This technique, that is summation over all orders of specific equivalence classes, is the

true power of the diagrammatic method. In the following the rules F1-F5 are applied to

the subset of all bubble graphs and an approximation for the interacting grand canonical

potential is obtained.

3.3 Random Phase Approximation

Restricting the perturbation series of the grand-canonical potential to the subset of all

bubble diagrams, see Fig. 3.7, one obtains the so-called random phase approximation

(RPA). The RPA is widely used in condensed matter physics today, due to two reasons.

First, the RPA yields accurate estimates for the grand canonical potential Φ, respectively

the interacting groundstate energy Ω0, and becomes exact for the HEG in the asymptotic

limit rs ≈ 0 yielding an energy density given by Eq. (1.37). Second, the RPA can be

calculated with a decent computational effort. The latter is due to its simple expression,

which is derived in the following with the methods learned from the previous section.

As a first step, one observes, that the symmetry factor Sγ for each diagram beyond the

first order is twice the number of cyclic permutations of τσ(1) · · · τσ(n), so simply 2n.[39]

Second, it is useful to work with the independent-particle polarizability χ0, defined by

χ0(r′, r, τ − τ ′) = (−1)× x′
x

= −G0(r′, r, τ − τ ′)G0(r, r′, τ ′− τ). (3.25)

With this definition and the Feynman rules F1-F5 from previous section, the second
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3.3 Random Phase Approximation

and third order diagram can be written as

Φ(2) = − 1

β

(−1)2(−1)2

4

β∫
0

dτ1dτ2Tr

[
χ0(r2, r1, τ2 − τ1)χ0(r4, r3, τ1 − τ2)

|r1 − r4||r2 − r3|

]
(3.26)

Φ(3) = − 1

β

(−1)3(−1)3

6

β∫
0

dτ1dτ2dτ3

× Tr

[
χ0(r2, r1, τ2 − τ1)χ0(r4, r3, τ4 − τ2)χ0(r5, r6, τ4 − τ1)

|r1 − r6||r2 − r3||r4 − r5|

]
. (3.27)

Here Tr indicates spatial integration over all coordinates r1, r2, · · · . Higher order terms

contain higher order convolutions in imaginary time.

These expressions can be further simplified by exploiting the periodic property

χ0(r′, r, τ + β) = χ0(r′, r, τ), (3.28)

which follows from the antiperiodicity of the non-interacting propagator (2.114) and is

illustrated in Fig. 3.8 using the same model for G0 as in Fig. 2.3. This allows to

decompose the independent-particle polarizability χ0 into a Fourier series

χ0(r′, r, τ) =
1

β

∞∑
m=−∞

e−iνmτχ0(r′, r, iνm) (3.29)

with coefficients

χ0(r′, r, iνm) =

∫ β

0
dτeiνmτχ0(r′, r, τ), m ∈ Z. (3.30)

Here, the bosonic Matsubara frequencies

νn =
2mπ

β
, m ∈ Z (3.31)

are used in Eqs. (3.29) and (3.30) rather than their fermionic counterparts ωn. Inserting

Eq. (3.29) into Eq. (3.26) and using the completeness relation∫
dτe−iτ(νm−νm′ ) = βδmm′ , (3.32)

the imaginary-time integrals in Eq. (3.26) reduce to a simple Matsubara sum

Φ(2) = − 1

4β

∞∑
n=−∞

Tr

[
χ0(r2, r1, iνn)χ0(r4, r3, iνn)

|r1 − r4||r2 − r3|

]
︸ ︷︷ ︸

Tr[χ0(iνn)V ]2

. (3.33)
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Figure 3.8: Typical imaginary time-dependence of the independent-particle polarizability

χ0 illustrating the periodic property (3.28). Here a two-state model with one occupied state

with energy ε1 = −1.5 eV and an unoccupied state with energy ε2 = 2.3 eV for a inverse

temperature of β = 10 eV−1 is shown.

The same holds true for arbitrary order

Φ(n) = −(−1)2n

2β

∞∑
m=−∞

Tr
[
χ0(iνm)V

]n
n

. (3.34)

Finally, using the power series of the logarithm

ln(1− x) = −
∞∑
n=1

xn

n
, (3.35)

one obtains for the sum of all bubble diagrams

ΦRPA
c =

1

2β

∞∑
m=−∞

Tr
{

ln
[
1− χ0(iνm)V

]
+ χ0(iνm)V

}
. (3.36)

Specifically, for the zero-temperature limit β → ∞, this yields ERPA
c , the correlation

energy of the RPA

ERPA
c =

1

4π

∞∫
−∞

dνTr
{

ln
[
1− χ0(iν)V

]
+ χ0(iν)V

}
, (3.37)
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with the zero-temperature polarizability on the imaginary frequency axis having the

form

lim
β→∞

χ0(r′, r, iν) =
∑
ia

φi (r
′)φ∗i (r)φa(r)φ∗a(r

′)
2ξai

ξ2
ai + ν2

, ξai = εa − εi > 0. (3.38)

Here i indicates an occupied and a an unoccupied one-particle index, see section 1.2.

The last expression follows straightforwardly from the general contraction formula (3.25),

the orbital representation of the Feynman propagator (2.109) and an additional Fourier

transformation to Matsubara space. Expression (3.37) follows also from the so-called

adiabatic connection fluctuation dissipation theorem (ACFDT), so that Eq. (3.37) is

sometimes called the ACFDT formula. The reader is referred to Ref. 50 for more

details.

In practical calculations, one determines the Fourier representation χ0
q(g,g′, iν) of

Eq. 3.38 and calculates the RPA correlation energy as

ERPA
c =

1

4π

n∑
k=1

γk
1

Nq

∑
gg′q

{[
ln
(
1− χ0V

)]
q

(g,g′, iνk) + χ0
q(g,g′, iνk)Vq(g,g′)

}
,

(3.39)

where g,g′ represent reciprocal lattice vectors, q a point in the first Brillouin zone,

{γk, νk}nk=1 a frequency integral quadrature and

Vq(g,g′) =
δgg′

|q + g|2
(3.40)

the Coulomb potential in reciprocal space. It is common to calculate the Fourier repre-

sentation χ0
q(g,g′, iνk) directly from the Adler and Wiser formula[51, 52]

χ0
qg,g′, iν) =

1

Nk

∑
nn′k

2ξai
ξ2
ai + ν2

〈φi| ei(g+q)r |φa〉 〈φa| e−i(g
′+q)r′ |φi〉 , (3.41)

with i = (n,k) denoting the occupied and a = (n′,k + q) the unoccupied Bloch index.

This approach is widely used in the community, although the unfavorable scaling of Eq.

3.41 (roughly with O(N4)) bears an obstacle to compute RPA energies for large systems.

In principle, one is able to evaluate χ0 with O(N3) scaling using the imaginary

time Green’s functions G0(r, r′, τ) and equation (3.25). This approach was discussed by

Rojas et al.[53] and was recently implemented for molecules by Foerster et al.[54] and

by Moussa[55], but a cubic-scaling RPA algorithm for periodic systems has not been

implemented. In chapter 5 we develop an efficient zero-temperature RPA algorithm,
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based on the considerations from this section and apply the method to calculate Si-

defect energies for large unit cells.

So far only the grand potential, respectively total energies have been considered.

In the following chapter we discuss how to determine spectral properties of many-body

systems using a set of coupled equations.
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4

Spectral Properties

In chapter 3 a diagrammatic perturbation series for the interacting grand canonical

potential was derived, respectively the correlation energy at zero-temperature. This

chapter is dedicated to spectral properties, which can be described by the interacting

propagator G as the solution of the Schwinger-Dyson equations. To solve these equations

approximately, in the following two complementary approaches are considered, known

as the GW [see section 4.2.1] and the dynamical mean field approximation [see section

4.5.1].

4.1 Schwinger-Dyson Equations

In this section the diagramatic technique is extended in order to find a set of self-

consistent equations, that describes the spectral properties of the system in terms of

three quantities, the propagator G, the effective interaction W and the vertex function

Γ. The resulting three equations are known as Schwinger-Dyson equations and are

discussed in sections 4.1.1, 4.1.2 and 4.1.3 separately. Fairly heuristic arguments are

used to derive these equations, since the only purpose of this section is to give the basic

idea of this approach. The reader is referred to the literature for a mathematically

rigorous derivation.[44, 56, 57]

4.1.1 Interacting Green’s Function and Self-energy

We start with the interacting Feynman propagator G. This function describes the propa-

gation of an interacting electron (respectively hole) from one spacetime point to another
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4. SPECTRAL PROPERTIES

and was already defined in Eq. (2.138). In analogy to the partition function Z(β), see

section 3.1, the expansion of the S-matrix into a power series yields a perturbation series

for the interacting propagator

G(r′, r, τ) = −
∞∑
n=0

(−1)n

n!

β∫
0

dτ1 · · · dτn

〈
T̂ V̂ (τ1) · · · V̂ (τn)ψ̂(r, τ)ψ̂†(r′)

〉
β

Z
(n)
v (β)

, (4.1)

where Z
(n)
v (β) is the interacting partition function given in Eq. (3.6). The matrix

elements in the denominator and numerator can be evaluated using Wick’s theorem

(3.17) and the resulting contractions can be visualized with Feynman diagrams. Here,

in contrast to the grand canonical potential, each diagram differs topologically, so that

the symmetry factor of each diagram is 1, see Ref. 39 for more details.

However, it can be shown that the denominator in Eq. (4.1) cancels all disconnected

diagrams of the numerator.1 Consequently, as in the case of the grand canonical potential

Φ, the perturbation series (4.1) contains only connected diagrams. We, therefore, neglect

the denominator in the series above and rewrite the expression into

G(r′, r, τ) = −
∞∑
n=0

(−1)n

n!

β∫
0

dτ1 · · · dτn
〈
T̂ V̂ (τ1) · · · V̂ (τn)ψ̂(r, τ)ψ̂†(r′)

〉c

β
, (4.2)

where the superscript c indicates, that only topologically connected diagrams are taken

into account.

The zero order term of Eq. (4.2) reduces to the non-interacting Green’s function G0,

defined in Eq. (2.113), whereas higher order terms can be evaluated with the Feynman

rules F1-F5 or f1-f5 of section 3.2. For instance the first order terms translate to integrals

as follows

x′ x = −
∫

dx1dx2G
0(x′, x1)G0(x1, x)

δ(τ1 − τ2)

|r1 − r2|
G0(x2, x2) (4.3)

x′ x = −
∫

dx1dx2G
0(x′, x1)G0(x1, x2)

δ(τ1 − τ2)

|r1 − r2|
G0(x2, x), (4.4)

1This follows from the Linked Cluster Theorem 3.2.1 and the fact that the propagator G can be

written as the derivative of lnZ, see Ref. 39.
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4.1 Schwinger-Dyson Equations

where we have introduced the abbreviation
∫

dx =
∫

d3r
∫ β

0 dτ for convenience. Anal-

ogously, higher order, for instance the second order terms shown in Fig. 4.1, can be

translated to integrals. Looking at this figure (or Eqs. (4.3), (4.4)), one clearly sees that

Figure 4.1: Second order contributions to the interacting Feynman propagator.

all diagrams have an incoming and an outgoing non-interacting Green’s function ’leg’.

The infinite number of terms between the incoming and outgoing Green’s function de-

fines the self-energy Σ̃, so that the interacting Green’s function satisfies the equation[34]

G(x′, x) = G0(x′, x) +

∫
dx1

∫
dx2G

0(x′, x1)Σ̃(x1, x2)G0(x2, x), x = (r, τ) (4.5)

The two-point quantity

Σ̃ = + + + + + · · ·
(4.6)

contains repeated insets of diagrams (third and forth diagram) and is therefore called

the reducible self-energy. These terms separate into irreducible self-energy diagrams,

if by cutting and removing a particle line, two disconnected self-energy diagrams are

obtained. For instance the third diagram in Eq. (4.6) contains two diagrams of the

first term, whereas the forth term contains the first and second diagram connected by a

propagator G0.

One takes advantage of this fact and defines the irreducible self-energy Σ, containing

only irreducible diagrams. With this, we obtain the first Schwinger-Dyson equation[33,

58]

G(x′, x) = G0(x′, x) +

∫
dx1

∫
dx2G

0(x′, x1)Σ(x1, x2)G(x2, x), (4.7)

which reads diagrammatically

= +
Σ

(4.8)
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4. SPECTRAL PROPERTIES

where the irreducible self-energy Σ is given by

Σ = + + + + · · ·
(4.9)

and we used thick particle lines in Eq. (4.8) to indicate interacting Green’s functions G.

We emphasize that Σ and Σ̃ obey a Dyson equation of the type

Σ(x′, x) = Σ̃(x′, x) +

∫
dx1

∫
dx2Σ̃(x′, x1)G0(x1, x2)Σ(x2, x), (4.10)

which follows trivially from comparison of Eqs. (4.5) and (4.7).[34]

The first term in the irreducible self-energy (4.9)

Σ(1)(x′, x) = −δ(x− x′)
∫

dx3
δ(τ3 − τ ′)
|r3 − r′| G

0(x3, x3) (4.11)

is the time-independent Hartree term and is often absorbed in the non-interacting

Green’s function yielding the Hartree-dressed Green’s function G(1), indicated by a dou-

ble line in the following. The latter is obtained from the truncation of (4.9) after the

first term and solving the corresponding Dyson equation[33]

= + (4.12)

The Dyson equation for the full Green’s function, then reads

G(x′, x) = G(1)(x′, x) +

∫
dx1dx2G

(1)(x′, x1)Σ(>1)(x1, x2)G(x2, x) (4.13)

respectively

= +
Σ(>1)

(4.14)

with Σ(>1) being the exchange-correlation part Σ−Σ(1) of the irreducible self-energy[56]

Σ(>1) = + + + · · ·
(4.15)

We note, that the exchange-correlation part Σ(>1) is expressed in terms of the Hartree

Green’s function G(1) rather than the non-interacting propagator G0. This procedure

above is, however, not restricted necessarily to the Hartree term. Instead, one can include
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4.1 Schwinger-Dyson Equations

more terms in the irreducible self-energy and solve the corresponding Dyson equation

for the interacting Green’s function.

The general procedure is called renormalization and describes the inclusion of ir-

reducible (for instance the first n) self-energy terms in the skeleton (’non-interacting’

Green’s function G0). The resulting Green’s function G(n) is called dressed propagator

and describes physically the propagation of a renormalized quasi-electron (or quasi-hole).

These quasi-particles can be seen as bare electrons (holes) surrounded by a cloud of par-

ticles with heavier effective mass than their undressed counterparts. Due to the latter,

it can be expected that quasi-particles interact via an effective interaction W . This

interaction, also named screened interaction, is usually weaker than the bare interaction

V , so that one can expect that a perturbation series for the self-energy in terms of W

converges faster than Eq. (4.15).[33] As we shall see in a moment, the effective interac-

tion can be obtained by a similar renormalization procedure for the Coulomb interaction

V .

4.1.2 Effective Interaction and Polarizability

The instantaneous Coulomb interaction

V (x, x′) =
δ(τ − τ ′)
|r− r′| , x = (r, τ) (4.16)

can be seen as the (0, 0) component of the undressed electromagnetic Feynman-propagator

D0
µν(x, x′) = −

〈
T̂ Âµ(x)Âν(x′)

〉
β

(4.17)

in the Coulomb gauge, where Âµ is the field operator of the electromagnetic field. For

more information we refer the reader to Refs. 59, 60. Dyson showed (see Ref. 58), that

the corresponding interacting propagator Dµν satisfies an equation of the same kind as

the Dyson equation for the Green’s function (4.7). However, we are mostly interested

in the the (0, 0) components of this equation and write W (x, x′) = D00(x, x′) for the

dressed and V (x, x′) = δ(τ−τ ′)
|r−r′| = D0

00(x, x′) for the bare propagator. Furthermore, we

do not assume that any spatial components of the bare and dressed photon-propagator

mix with the time components, so that W is a functional of V and G only.
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With these assumptions and the considerations from the previous section Eq. (4.5),

the following ansatz is obvious

W (x′, x) = V (x′, x) +

∫
dx1

∫
dx2V (x′, x1)χ̃(x1, x2)V (x2, x) (4.18)

Here χ̃ is called the reducible polarizability and was introduced by Hubbard in Ref. 32. It

describes all possible polarization effects between two interaction lines, like for instance

the bubble polarization appearing in the second term of the self-energy

(4.15). An explicit expression of χ̃ in terms of the density operator is given in section

4.2, here we indicate only the diagrammatic expansion

χ̃ = + + + · · · .
(4.19)

Comparing to (4.6), one sees that χ̃ plays the same role for the screened interaction W

as the self-energy Σ̃ for the Green’s function G. Thus, the validity of the analogue of

Eq. (4.10) can be assumed for the reducible polarizability

χ̃(x′, x) = χ(x′, x) +

∫
dx1

∫
dx2χ(x′, x1)V (x1, x2)χ̃(x′, x), (4.20)

in terms of the irreducible polarizability χ. In analogy to the irreducible self-energy, the

irreducible polarizability χ is defined by those subsets of the polarizability χ, that can

not be separated into more polarizability diagrams by cutting and removing a Coulomb

line V . For instance, the first and third diagram in Eq. (4.19) are irreducible, whereas

the second diagram is reducible.[33, 34]

Diagrams representing the expansion of χ were given first by Hedin in Ref. 56 and

are shown below

χ = + + + + + · · · .
(4.21)

In analogy to the first Schwinger-Dyson equation (4.7), the second Schwinger-Dyson

equation for the screened interaction reads[56]

W (x′, x) = V (x′, x) +

∫
dx1

∫
dx2V (x′, x1)χ(x1, x2)W (x2, x). (4.22)

If indicates W in diagrams, the last expression translates to

= + χ
. (4.23)
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The introduction of the irreducible polarizability χ has two main advantages. First, χ

contains lesser terms than the reducible polarizability χ̃. Second, and more important,

it allows for a partial renormalization of the bare interaction V , i.e. an approximative

determination of the screened interaction W .[56]

One important approximation is obtained by truncating the series (4.21) after the

first term, that is approximating the independent particle polarizability by[34]

χ(x′, x) ≈ χ(1)(x′, x) = −G(n)(x′, x)G(n)(x, x′). (4.24)

Here the superscript n stands either for non-interacting, Hartree Green’s function G(1)

or any other dressed propagator. The RPA-type approximation (4.24) gives rise to the

screened interaction in the RPA

W (1)(x′, x) = V (x′, x) +

∫
dx1

∫
dx2V (x′, x1)χ(1)(x1, x2)W (1)(x2, x) (4.25)

translating to diagrams as

= +
. (4.26)

The advantage of using dressed propagators G(n), respectively screened interactions W (n)

instead of skeleton propagators G0 and bare interactions V becomes evident already for

the first order approximations of Eq. (4.15) and Eq. (4.19). For instance, inserting the

RPA interaction W (1) of Eq. (4.26) for the bare interaction line in the first term of the

self-energy (4.15) generates a whole class of skeleton diagrams

= + + + · · ·
. (4.27)

Higher order terms of the self-energy are then given by

Σ(>1) = + + + · · ·
, (4.28)

where we indicated only one of six different third order terms, see Ref. 56.

Similarly, more terms in the irreducible polarizability can be taken into account

giving rise to other, more accurate, partially screened interactions W (n). Specifically for

W (1), the RPA interaction of (4.26), the screening Eq. (4.22) reads

W (x′, x) = W (1)(x′, x) +

∫
dx1

∫
dx2W

(1)(x′, x1)χ(>1)(x1, x2)W (x2, x). (4.29)
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or
= + χ(>1)

, (4.30)

where χ(>1) = χ− χ(1) and reads in diagrams

χ(>1) = + + + + · · ·
. (4.31)

So far we have discussed the renormalization of the Green’s function and the inter-

action, which are summarized algebraically by Eq. (4.13) and Eq. (4.29), respectively in

terms of diagrams by Eq. (4.14) and Eq. (4.30). Thereby the dressed Green’s function

G(n) is determined by the irreducible self-energy Σ(>n), whereas the dressed interaction

W (n) is determined by the irreducible polarizability χ(>n). For both irreducible quan-

tities only the first few diagrammatic contribution has been given in Eqs. (4.28) and

(4.31). However, algebraic expressions for Σ(>1) and χ(>1) are desirable for practical

calculations. These expressions can be obtained in terms of the irreducible vertex Γ,

which we consider in the following section.

4.1.3 Vertex and Bethe-Salpeter Equation

To keep the notation simple, we use the conventional abbreviation 1 = x1 = (r1, τ1) in

the following.[56]

First, we consider the irreducible polarizability χ given in Eq. (4.21) and try to write

it in a closed form. For this purpose we consider the vertex in diagrams more closely

and generalize its properties to a general vertex Γ. The aim is to find a Dyson equation

for the generalized vertex and to apply the concept of renormalization, known from the

previous sections.

The vertex, in general, is a function Γ(1; 2, 3) connecting one interaction line at 1

with one incoming and one outgoing particle line at 2, respectively 3. For the bare vertex

Γ0, represented by in diagrams, this function is given by

Γ0(1; 2, 3) = δ(1, 2)δ(2, 3) (4.32)

with

δ(1, 2) = δ(x1 − x2) = δ(τ1 − τ2)δ(r1 − r2). (4.33)

To find higher order terms of Γ, represented by in diagrams, we assume that the bare

propagator G0 is dressed by the Hartree term and the bare interaction V is dressed by the
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4.1 Schwinger-Dyson Equations

RPA polarizability χ(1) and choose the following ansatz for the irreducible polarizability

χ =
. (4.34)

This relation reads explicitly in terms of integrals

χ(1, 2) = −
∫

d(1′)d(2′)Γ(1; 1′, 2′)G(1)(2, 1′)G(1)(2′, 2). (4.35)

The idea is to compare the r.h.s. of Eq. (4.34) with the diagrammatic expansion of χ

from Eq. (4.21), respectively Eq. (4.31), to determine the vertex function Γ. This is

straight forward for the first terms and we identify them as

= + + + + + · · ·

(4.36)

Next, we focus on the diagrammatic expansion of the irreducible self-energy Σ. Look-

ing at the diagrammatic expansion (4.28) it seems that the first three terms can be

summarized in following diagram

Σ(>1) =
(4.37)

This relationship can be written explicitly as

Σ(>1)(1, 2) =

∫
d(1′)d(2′)G(1)(1′, 2)W (1)(2′, 2)Γ(2′; 1, 1′) (4.38)

and was proven by Hedin in the 1960s.[56]

With Eqs. (4.38) and Eqs. (4.35) the irreducible self-energy and polarizability in the

Schwinger-Dyson equations for the Green’s function (4.7) respectively for the screened

interaction (4.22) can be eliminated, leaving only three unknown quantities G, W and

Γ. What remains is to find the equation for the irreducible vertex function.

For this reason one takes a close look at the diagrammatic series Eq. (4.36) and

’open’ the left vertex in each graph on the r.h.s. introducing the four-point irreducible

vertex Γ(1, 2; 3, 4) function. This quantity is indicated by

Γ(1, 2; 3, 4) =
2

1

4

3

(4.39)
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in diagrams in the following and satisfies

Γ(1, 1; 3, 4) = Γ(1; 3, 4) =
1

4

3

(4.40)

so that 2, 3 are incoming and 1, 4 are outgoing legs in Eq. (4.39). Similarly indicates

the bare four-vertex function

Γ0(1, 2; 3, 4) = δ(1, 3)δ(2, 4), (4.41)

as a generalization of the three-point quantity of Eq. (4.32).

Then the diagrammatic series (4.36) can be redrawn in a closed Schwinger-Dyson

form[44]

= + I
(4.42)

translating to integrals as

Γ(1, 2; 3, 4) = Γ0(1, 2; 3, 4) +

∫
d(1′) · · · d(6′)

× Γ0(1, 2; 3′, 4′)I(3′, 4′; 5′, 6′)G(1)(1′, 5′)G(1)(6′, 2′)Γ(1′, 2′; 3, 4).(4.43)

This equation is also known as the Bethe-Salpeter equation,[56, 61] where IGG is the

kernel of the equation. This kernel is the analogue of the Σ and χ for the Dyson equations

of the Green’s function (4.7) and the effective potential (4.22). The four-point object I is

called irreducible scattering amplitude and describes all necessary interactions between

particles and holes.[34, 44] To avoid double counting of diagrammatic contributions,

the amplitude contains only terms, irreducible in the particle-hole channel. That is,

diagrams of I do not separate into smaller order diagrams when ’cutting’ vertically

through a particle and a hole line. For instance the following scattering diagrams are

irreducible

and the following are reducible in the particle hole channel
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An explicit expression for the scattering amplitude can be obtained from

I(n)(1, 2; 3, 4) =
δΣ(n)(1, 2)

δG(n−1)(4, 3)
(4.44)

for each order in perturbation theory.[62]

The three Schwinger-Dyson equations (4.43), (4.7) and (4.22) provide an alternative

view on a system of interacting electrons and allow for higher order approximations

beyond the HF or DFT method.[24, 34, 63] Here the approximation degree is determined

by the number of diagrams considered in the scattering amplitude I. For a comprehensive

overview of different approximations the reader is referred to Ref. 57.
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4.2 Hedin Equations and Self-Consistency Limit

The three Schwinger-Dyson equations (4.43), (4.7), (4.22) and the equations for the self-

energy (4.38) and polarizability (4.35) are known as Hedin equations among condensed

matter physicists.[56, 62, 64] The reason for this is mainly due to practical calculations,

where one has to solve the set of equations for Γ, χ, W , Σ and G self-consistently by

means of the scheme depicted in Fig. 4.2. This figure illustrates the iterative algorithm

to solve the Hedin equations

Σ(n) = G(n−1)W (n−1)Γ(n−1) (4.45)

G(n) = G(n−1) +G(n−1)Σ(n)G(n) (4.46)

I(n) =
δΣ(n)

δG(n−1)
(4.47)

Γ(n) = Γ(n−1) + Γ(n−1)I(n)G(n)G(n)Γ(n) (4.48)

χ(n) = −G(n)G(n)Γ(n) (4.49)

W (n) = W (n−1) +W (n−1)χ(n)W (n) (4.50)

with W (0) = V using following prescription[62]

Hedin Algorithm

H1 Calculate the self-energy Σ(n) with Eq. (4.45).

H2 Solve Eq. (4.46) for the dressed propagator G(n).

H3 Determine scattering amplitude from Eq. (4.47) (skip this step for n = 1).

H4 Solve Eq. (4.48) for the dressed vertex Γ(n).

H5 Compute the polarizability χ(n) with Eq. (4.49).

H6 Solve Eq. (4.50) for the dressed interaction W (n).

H7 Iterate H1-H6 until convergence is found.

Each iteration n of H1-H6 dresses the propagator G(n), interaction W (n) and vertex

function Γ(n) with more and more irreducible diagrams, so that in the self-consistency

limit n→∞ the iterative procedure converges to

G(n) → G, W (n) →W, Γ(n) → Γ, χ(n) → χ, Σ(n) → Σ, n→∞. (4.51)
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Σ(n)

W (n)

I(n)

Γ(n)χ(n)

G(n)

Figure 4.2: Hedin scheme for the self-consistent solution of Eqs. (4.45)-(4.50).

In practice, one is hardly able to calculate the vertex function for n = 2 for realistic

systems, due to the increasing computational cost, see Ref. 62. Therefore, the self-

consistency circle is stopped after Eq. (4.46) for n = 2, where the self-energy assumes

the form

Σ(2)(x′, x) = G(1)(x′, x)W (1)(x′, x). (4.52)

The corresponding diagram is shown in Eq. (4.27) and due to the form of the diagram,

this approximation is known as the GW approximation (GWA). It turns out that the

GWA is often sufficiently accurate to calculate spectral properties, band gaps and other

system specific quantities for a wide range of materials.[56, 62, 65, 66, 67, 68] In the

following we discuss the GWA in more detail.

4.2.1 The GW Approximation in Practice

Typically finite-temperature effects are neglected inGW calculations, so that we consider

the zero-temperature limit of Eq. (4.51) and Eq. (4.52) in the following. To understand

how the GWA is used in practice, we consider the Lehman representation of the zero-

temperature Green’s function in real time

G(r, r′, t) = −i
〈

Ω
(N)
0

∣∣∣ T̂ ψ̂H(rt)ψ̂†H(r′)
∣∣∣Ω(N)

0

〉
, (4.53)

where the subscript H indicates the Heisenberg time-evolution and
∣∣∣Ω(N)

0

〉
the interacting

groundstate of N electrons. This representation can be obtained analogously to the non-

interacting propagator, discussed in section 2.4, and reads

G(r′, r, ω) =
∞∑
ν=0

I+
ν (r′, r)

ω − ων + iη
+

I−ν (r′, r)

ω + ων − iη
, (4.54)
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with the interacting Lehman amplitudes

I+
ν (r′, r) = Θ(ων)

〈
Ω

(N)
0

∣∣∣ ψ̂(r)
∣∣∣Ω(N+1)

ν

〉〈
Ω(N+1)
ν

∣∣∣ ψ̂†(r′) ∣∣∣Ω(N)
0

〉
(4.55)

I−ν (r′, r) = Θ(−ων)
〈

Ω
(N)
0

∣∣∣ ψ̂†(r′) ∣∣∣Ω(N−1)
ν

〉〈
Ω(N−1)
ν

∣∣∣ ψ̂(r)
∣∣∣Ω(N)

0

〉
. (4.56)

and excitation energies given by[35]

ων =

{
Ω

(N−1)
ν − Ω

(N)
0 , ων < 0

Ω
(N+1)
ν − Ω

(N)
0 , ων > 0

. (4.57)

It is convenient to introduce the spectral densities

A±(r′, r, ω) =
∞∑
ν=0

I±ν (r′, r)δ(ω ∓ ων) (4.58)

and to rewrite Eq. (4.54) into

G(r′, r, ω) =

∞∫
−∞

dω′
[
A+(r′, r, ω′)

ω − ω′ + iη
+
A−(r′, r, ω)

ω − ω′ − iη

]
, (4.59)

Then the first term of the Lehman representation (4.59) describes the effect of adding

an electron at r′ to a system of N interacting electrons in the groundstate and removing

an electron at r, whereas the second term describes the inverse propagation for a hole.

The same equation shows that the poles of the interacting propagator are all located

along the real axis, so that G has a similar analytic behavior as the non-interacting

propagator G0. In contrast to G0, the Lehman amplitudes cannot be written in terms

of one-electron orbitals φ̃ν , i.e.

I+
ν (r′, r) 6= φ̃ν(r)φ̃∗ν(r′) 6= I−ν (r′, r). (4.60)

This is because in general the interacting groundstate
∣∣∣Ω(N)

0

〉
is not exactly a single

Slater-determinant of the orbitals φ̃ν , but rather a linear combination of all possible

determinants, see end of section 1.2. However, often the interacting groundstate of many

systems can be approximated sufficiently accurate by one single Slater-determinant. For

these systems the GWA, as discuss below, is a good approximation.

The first calculations in the GWA have been done by Hybertsen and Louie for semi-

conductors in the 1980s by solving the eigenvalue problem[64]〈
φ̃µ

∣∣∣ ĥ0 + V̂h + Σ̂(2)(ε̃ν)
∣∣∣φ̃ν〉 = ε̃ν

〈
φ̃µ

∣∣∣ φ̃ν〉 (4.61)
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for the quasi particle (qp) one-particle eigensystem
{∣∣∣φ̃ν〉 , ε̃ν}. Here ĥ0 is the one-

electron Hamiltonian (2.4), V̂h the operator of the Hartree energy (1.16) and Σ̂(2) the

self-energy operator in the GW approximation with spacetime representation given in

Eq. (4.52). Since the eigensystem of Eq. (4.61) is unknown a priori, Hybertsen and

Louie evaluated the operators ĥ0, V̂h, Σ̂
(2) w.r.t. to a DFT one-orbital basis set {φν , εν}.

Furthermore, they linearized the self-energy w.r.t. to the KS energies εν

Σ̂(2)(ε̃ν) = Σ̂(2)(εν) +
dΣ̂(2)(ω)

dω

∣∣∣∣∣
ω=εν︸ ︷︷ ︸

=Σ̂
′(2)(εν)

(ε̃ν − εν) + O
(
(ε̃ν − εν)2

)
, (4.62)

and observed that off-diagonal matrix elements of Eq. (4.61) are negligibly small com-

pared to the diagonal ones, so that they effectively solved〈
φν

∣∣∣ĥ0 + V̂h + Σ̂(2)(εν)− ενΣ̂
′(2)(εν)

∣∣∣φν〉 = ε̃νZ
−1
ν (4.63)

for the quasi-particle energies ε̃ν . Here the renormalization factor

Zν =
1〈

φν

∣∣∣1− Σ̂′(2)(εν)
∣∣∣φν〉 (4.64)

typically increases the band gap of the KS system.

It turns out that this scheme, today known as G0W0 approximation, yields often

very good band gap estimates of semiconductors, see Ref. 64. A success of the G0W0

approach motivated researchers to improve the scheme and allow for self-consistent GW

(scGW) calculations. Specifically, the self-consistent scheme of Kotani and Schilfgaarde,

respectively the slightly reformulated approach of Shishkin et al. should be mentioned

at this point, see Refs. 67, 68. In the latter, the eigenvalue equation[
ĥ0 + V̂h + Σ̂(2)

(
ε(n)
ν

)
− ε(n)

ν Σ̂
′(2)
(
ε(n)
ν

)] ∣∣∣φ(n+1)
ν

〉
= ε(n+1)

ν

[
1− Σ̂

′(2)
(
ε(n)
ν

)] ∣∣∣φ(n+1)
ν

〉
(4.65)

is solved iteratively for the one-electron orbitals φ
(n)
ν and quasi-particle energies ε

(n)
ν until

convergence is found. The advantage of this approach is that the resulting self-consistent

solution {φ̃ν , ε̃ν} is independent from the initial KS basis {φν , εν}. This approach is

advantageous for other many-body calculations, where the KS basis does not provide a

good starting point.
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Typically, GW implementations have an O(N4) scaling and, thus, are limited to

rather small systems, see Ref. 67, 68. The bottleneck for these implementations is the

computation of the independent-particle polarizability (4.24) for which the Adler and

Wiser expression of Eq. (3.41) is employed, as for conventional RPA algorithms. The

computational cost of this step can be reduced to O(N3) provided Hedin’s equations

on the imaginary time respectively imaginary frequency axis are used. This approach is

known as the space-time GW approach and was proposed first by Rojas et al. in Ref. 53

and further developed by Steinbeck et al. in Ref. 69 and Ren et al. in Ref. 70. All these

GW approaches, however, face the same storage problem as discussed in section 5.2 for

the RPA algorithm. As a consequence, conventional space-time GW codes avoid solving

the Dyson equation for the propagator (4.46) by assuming implicitly the non-interacting

orbital form of Eq. (2.109) for the propagator in all computation steps.

Using the imaginary time and frequency grids, presented in chapter 5, the storage

problem can be solved and a true O(N3) scaling GW algorithm can be implemented.

This approach has the advantage that the Dyson equation for the propagator can be

solved self-consistently on the GWA level. The corresponding algorithm is currently

investigated and will be presented in a future work.

Nevertheless, the GWA often breaks down for systems with partially filled narrow

bands, for instance transition metal oxides. For these systems an alternative view on the

many-body problem is helpful. For this purpose we introduce the path integral concept

in the following.
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4.3 The Path Integral

The path integral (PI) was introduced by Dirac in the 1930s and extensively developed

by Feynman in the 1940s and is a powerful tool for QFT. It connects the classical prin-

ciple of least action, known from Hamiltonian mechanics, with quantum mechanics and

statistical mechanics. The interested reader is referred to Ref. 71, 72 for a histori-

cal overview, respectively more details about the PI. Here we introduce only the basic

concepts of the PI following closely Negele and Orland, see Ref. 39.

We consider a single particle described by the wavefunction ψ and the Hamiltonian

ĥ(r̂, p̂) =
p̂2

2
+ ϕ̂(r̂), (4.66)

where r̂ denotes the position and p̂ the momentum operator. In the Schrödinger picture

the imaginary time evolution of the corresponding wavefunction ψs from τ = 0 to τ = β

is given by

ψs(r, β) =

∫
dr′ 〈r| e−βĥ(r′,p̂)

∣∣r′〉ψ(r′). (4.67)

We slice the time path from 0 to β into M equidistant pieces according to

δτ =
β

M
, τi = iδτ, i = 0, · · · ,M (4.68)

and introduce the notation

ri = r(τi), r0 = r′, rM = r (4.69)

with the eigenvalue equation for the position operator

r̂ |ri〉 = ri |ri〉 (4.70)

Applying this subdivision to Eq. (4.67) and inserting the closure relation

1 =

∫
dri |ri〉 〈ri| , (4.71)

one ends up with

ψs(r, β) =

∫ M∏
i=0

dri 〈r| e−δτĥ(rM−1,p̂) |rM−1〉 · · · 〈r1| e−δτĥ(r0,p̂)
∣∣r′〉ψ(r′) (4.72)
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Any expectation value on the r.h.s. can be rewritten as follows

〈ri+1| e−δτĥ(ri,p̂) |ri〉 = 〈ri+1| ri〉︸ ︷︷ ︸
δ(ri+1−ri)

e−δτh(ri,pi)

=

∫
d3pi
(2π)3

e
δτ
(
pi

ri+1−ri
−iδτ −h(ri,pi)

)
, (4.73)

where in the first step we used the real-space representation pi = −i∇i and the integral

representation for the Dirac delta distribution.

Defining the limits ṙ(τi) = lim
δτ→0

ri+1−ri
−iδτ , the abbreviation

∫
τ =

∫ β
0 dτ and the PI

measure

D[r(t),p(t)] = lim
M→∞

M∏
i=0

d3rid
3pi

(2π)3
, (4.74)

one obtains for Eq. (4.72) in the limit M →∞

ψs(r, β) =

r(β)=r∫
r(0)=r′

D[r(t),p(t)]e
∫
τ [p(τ)ṙ(τ)−ĥ(r(τ),p(τ))]ψ(r). (4.75)

This expression 4.75 is known as the Hamiltonian form of the path integral.[39, 47] If

the Gaussian integral formula (C.2) is used to carry out the integration over momenta

pi, one ends up with the corresponding Lagrangian form[39]

ψs(r, β) =

r(β)=r∫
r(0)=r′

D[r(t)]eSclass[r(τ),ṙ(τ)]ψ(r), (4.76)

where the classical action

Sclass[r(τ), ṙ(τ)] =

∫
τ

{
ṙ2(τ)

2
− ϕ [r(τ)]

}
(4.77)

appears in the exponent of Eq. (4.76).

The last two expressions are intriguing, since they show that the propagation of

a quantum particle from state ψs(r
′, 0) to ψs(r, β) is determined by the sum over all

classical paths between the spacetime points (r′, 0) and (r, β). Furthermore, the path

integral allows to bridge the gap to statistical physics, since the partition function of the

system can be written elegantly as

z(β) =

∫
d3r 〈r| e−βĥ |r〉 =

∫
r(0)=r(β)

D[r(τ),p(τ)]e
∫
τ [p(τ)ṙ(τ)−h(r(τ),p(τ))]. (4.78)
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Here, we emphasize that only periodic paths r(0) = r(β) in the phase space contribute

to z(β).

One can show, see Ref. 39, that the path integral carries the time-ordering sym-

bol T̂ intrinsically in its definition, so that thermal expectation values of time-ordered

observables O(r̂(τ)) are given by

Tr
{
T̂O1(r̂, τ1)O2(r̂, τ2)e−βĥ

}
Tr
{
e−βĥ

} =

∫
D[r(τ)]O1(r(τ1))O2(r(τ2))eS[r(τ),ṙ(τ)]∫

D[r(τ)]eS[r(τ),ṙ(τ)]
(4.79)

Here the trace on the l.h.s. indicates a sum over the position eigenstates.

4.3.1 Path Integral for Quantum Fields

So far we have considered a single particle. In the following, we concentrate ourselves to

quantum fields, starting with bosonic fields φ̂, which satisfy the canonical commutation

relations [
φ̂†(r, τ), φ̂(r′, τ)

]
= iδ(r− r′). (4.80)

In this case, the path integral (4.75) is generalized straightforwardly by applying the

rules of first quantization

p(τ)→ iφ∗(τ), r(τ)→ φ(τ), ṙ =
∂r

∂t
→ i

∂φ

∂τ
(4.81)

in Eq. (4.75) obtaining the grand canonical partition function of bosonic QFT[39]

Zb(β) =

∫
φ(0)=φ(β)

D[φ(τ), φ∗(τ)]e−
∫
τ [φ
∗(τ)( ∂∂τ )φ(τ)+H(φ∗(τ),φ(τ))]. (4.82)

Here H(φ(τ), φ∗(τ)) is the corresponding Hamiltonian of the considered bosonic QFT

and the notation φ(τ) =
∫

d3rφ(r, τ) is used.

However, we are interested in the fermionic case, where the electronic field operators

ψ̂, ψ̂†, satisfy anticommutation rules (2.26) rather than Eq. (4.80). As a consequence, the

fermionic analogue of (4.82) has to be defined, such that the antiperiodicity of the trace,

see Eq. 2.115, is taken into account. This is achieved by introducing Grassmann fields

ψ(τ), ψ∗(τ) with antiperiodic boundary conditions ψ(0) = −ψ(β). A short introduction

of the Grassmann algebra is given in appendix C.1 and more details can be found in

Refs. 39, 47.
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Within this algebra the electronic path integral assumes the same form as for bosons,

with the difference that the PI variables φ, φ∗ are replaced by ψ,ψ∗ and reads

Z(β) =

∫
ψ(0)=−ψ(β)

D[ψ(τ), ψ∗(τ)]e−
∫
τ [ψ
∗(τ)( ∂∂τ +ĥ)ψ(τ)+V (ψ∗(τ),ψ(τ))]. (4.83)

Here, H = H0 + V was used in combination with the field representation of the non-

interacting and interacting Hamiltonians (2.2) and (2.3).

In analogy to chapter 3, the expansion of the factor e−
∫
τ V into a series generates the

perturbation series of the partition function and the same diagramatic tools as in chapter

3 can be used within the PI formalism. For this purpose, we introduce the notation〈〈
O(r′, τ ′)

〉〉
β

=
1

Z0(β)

∫
D[ψ(τ), ψ∗(τ)]O(r′, τ ′)e−

∫
τ ψ
∗(τ)( ∂∂τ +ĥ)ψ(τ) (4.84)

to indicate thermal averaging in terms w.r.t. to the non-interacting system, such that

Z(β) =
〈〈
e−
∫
τ V
〉〉

β
(4.85)

holds. This notation should be contrasted to the conventional notation 〈·〉β defined in

Eq. (2.112).

Following the discussion in section 2.7.2, the generating functional W[j, j∗], defined

in Eq. (2.135), can be written in the PI formalism as

W[j, j∗] = ln

{〈〈
e−
∫
τ [V (τ)+j∗(τ)ψ(τ)+ψ∗(τ)j(τ)]

〉〉
β

}
. (4.86)

Here j, j∗ indicate Grassman source fields, which are set to zero after differentiation. For

instance the interacting Green’s function G reads

G(x1, x2) = − δ2W[j∗, j]

δj(x1)δj∗(x2)

∣∣∣∣
j∗,j=0

, xi = (ri, τi) (4.87)

whereas more general correlation functions can be obtained from

G(x1 · · · , xn, x′1, · · · , x′n) = (−1)n
δ2nW[j∗, j]

δj(x1) · · · δj(xn)δj∗(x′1) · · · j∗(x′n)

∣∣∣∣
j∗,j=0

. (4.88)

In the following we use the PI to gain an alternative perspective on the many-body

problem in terms of effective Hamiltonians, which describe only a small subset of the full

Fock space F. The corresponding effective Hamiltonian can be obtained after specific

degrees freedom of the system are integrated out. For instance integrating out all non-

local degrees yields a purely local effective Hamiltonian, which describes only a small set

of states localized on specific atoms. This is the topic of the following section. For this

purpose it is convenient to consider the many-body Hamiltonian in a localized basis set.
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4.4 Effective Hamiltonians

4.4 Effective Hamiltonians

In this section we consider the many-body problem from a localized point of view. Our

aim is to derive an effective interaction Seff , where all degrees of freedom are integrated

out, except those at R = 0. For this purpose we closely follow Ayral et al.[73] and use

the cavity method described in Ref. 74.

4.4.1 The Many-Body problem in the Wannier Basis

As a starting point, we consider a localized basis set |wα〉 containing a site index α and

a real lattice vector index Rα by bold Greek indices α = (α,Rα), i.e.

〈r |wα〉 = wα(r−Rα) (4.89)

Similarly α = (α,Rα = 0) denotes local and ᾱ = (α,Rα 6= 0) non-local states, that

is states not centered at Rα = 0. The states |wα〉, known as Wannier states and

are obtained from the Bloch states |φnk〉 by an unitary transformation T
(k)
nα with an

additional discrete Fourier transformation[75]

|wα〉 =
1

Nk

∑
nk

eikRαT (k)
nα |φnk〉 . (4.90)

Here Nk represents the number of k-points in the first Brillouin zone. We discuss the

construction of Wannier states in section 6.1 in more detail. Here, we only use the

fact, that field operators can be decomposed into Wannier states (Einstein summation

convention)

ψ̂(r) = wα(r)d̂α, d̂α =

∫
drw∗α(r)ψ̂(r), (4.91)

using the annihilation operator in the Wannier basis

d̂α =
1

Nk

∑
nk

eikRαT (k)
nα ĉnk. (4.92)

Within this notation and the definitions of the hopping and the Coulomb interaction

matrix

tαβ = 〈wα| ĥ |wβ〉 (4.93)

Vαβγδ = 〈wα, wβ| V̂ |wδ, wγ〉 , (4.94)
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the normal-ordered many-body Hamiltonian Ĥ in the interaction picture reads

Ĥ(τ) = tαβd̂†α(τ)d̂β(τ) +
1

2
V αβγδd̂†α(τ)d̂†β(τ)d̂γ(τ)d̂δ(τ). (4.95)

In the following we assume that the Wannier states are sufficiently localized in real space,

such that

Vαβγδ ∝ δ(Rα −Rδ)δ(Rβ −Rγ) (4.96)

is a reasonable approximation.

It is convenient to use the anticommutation rules1

{
d̂†α, d̂β

}
= δαβ, (4.97)

to rewrite the Wannier Hamiltonian (4.95) into the density form

Ĥ(τ) = kαβn̂αβ(τ) +
1

2
V αβγδn̂αδ(τ)n̂βγ(τ) (4.98)

by absorbing the exchange term −1
2V

αγβ
γ into the hopping matrix

kαβ = tαβ − 1

2
V αγβγ (4.99)

and using the number (or density) operator in the Wannier representation

n̂αδ = d̂†αd̂δ. (4.100)

We emphasize, that there is a variety of different rearrangements of the operators in the

interaction term. For instance, one can absorb the Hartree term V αβ δ
β in the hopping

matrix instead, see Ref. 39. However, for reasons that will become clear later on and to

be compatible with the assumption made in Eq. (4.96), we choose the rearrangement

defined in Eqs. (4.98) and (4.99).

4.5 Local effective Hamiltonians

The Wannier representation (4.98) of the Hamiltonian Ĥ defines a path integral

Z(β) =

∫
D [d, d∗] e−S[d,d∗], (4.101)

1 This is a consequence from Eq. (4.92) being a unitary transformation and the canonical anticom-

mutation rules Eq. (2.26).
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with antiperiodic Grassmann variables dα(τ + β) = −dα(τ). Here, the full many-body

action S = S0 + Sv is divided into a non-interacting S0 and interacting action Sv, given

by

S0[d, d∗] =

∫
τ
d∗α(τ)

[
G−1

x (τ)
]αβ

dβ(τ) (4.102)

Sv[d, d
∗] =

1

2

∫
τ
d∗α(τ)dδ(τ)V αβγδd∗β(τ)dγ(τ). (4.103)

For future reference, the exchange Green’s function is introduced

[
G−1

x (τ)
]αβ

=
[
δαβ∂τ − kαβ

]
(4.104)

in analogy to the non-interacting propagator G0, see section 2.4.

To integrate over all non-local Grassman fields d∗ᾱ, dβ̄, we use the bosonic variables

nαβ = d∗αdβ with periodic boundary conditions nαβ(τ + β) = nαβ(τ). The latter prop-

erty allows for a Hubbard-Stratonovich transformation of the kind (C.15) to decouple

the interaction term e−Sv in Eq. (4.101), to obtain

Z(β) ∝
∫

D [d, d∗, φ] e−S[d,d∗,φ] (4.105)

with

S[d, d∗, φ] =

∫
τ
d∗α(τ)

[
G−1

x (τ)
]αβ

dβ(τ)

+
1

2

∫
τ
φαδ(τ)

[
V −1

]αβγδ
φβγ(τ) + i

∫
τ
φαβ(τ)nαβ(τ). (4.106)

using the auxiliary real-valued bosonic fields φαβ(τ).[76]

In the next step, one splits this action into three parts, a local

Sloc[d, d
∗, φ] =

∫
τ
d∗α(τ)

[
G−1

x (τ)
]αβ

dβ(τ)

+
1

2

∫
τ
φαδ(τ)

[
V −1

]αβγδ
φβγ(τ) + i

∫
τ
φαβ(τ)nαβ(τ), (4.107)

a non-local

Snloc[d, d
∗, φ] =

∫
τ
d∗ᾱ(τ)

[
G−1

x (τ)
]ᾱβ̄

dβ̄(τ)

+
1

2

∫
τ
φᾱδ̄(τ)

[
V −1

]ᾱβ̄γ̄δ̄
φβ̄γ̄(τ) + i

∫
τ
φᾱβ̄(τ)nᾱβ̄(τ), (4.108)
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and a mixed term

Smix[d, d∗, φ] = −
∫
τ
tαβ̄
[
d∗α(τ)dβ̄(τ) + d∗β̄(τ)dα(τ)

]
+

∫
τ
φαδ(τ)

[
V −1

]αβ̄γ̄δ
φβ̄γ̄(τ) (4.109)

by appropriately restricting the summation over Wannier statesα into local ᾱ = (α,Rα 6=
0) and non-local states α = (α,Rα = 0) respectively. In arriving at Eqs. (4.107)-(4.109)

Eq. (4.96) was used, which implies both, kαβ̄ = tαβ̄ and φβ̄γn
β̄γ = 0, and reveals the

reason of the rearrangement in the Hamiltonian (4.98). Furthermore, the last term of

Eq. (4.109) was obtained using the relation

1

2
φαδ(τ)

[V −1
]αβ̄γ̄δ

+
[
V −1

]β̄αδγ̄︸ ︷︷ ︸
[V −1]αβ̄γ̄δ

φβ̄γ̄(τ) = φαδ(τ)
[
V −1

]αβ̄γ̄δ
φβ̄γ̄(τ). (4.110)

Now the auxiliary fermionic and bosonic field variables

ηβ̄(τ) = tαβ̄d
α(τ) (4.111)

ζ β̄γ̄(τ) = φαδ(τ)
[
V −1

]αβ̄γ̄δ
(4.112)

are introduced and the mixed term (4.109) is rewritten into

Smix[d, d∗, φ, η∗, η, ζ] = −
∫
τ

[
η∗β̄(τ)dβ̄(τ) + d∗β̄(τ)ηβ̄(τ)

]
+

∫
τ
ζ β̄γ̄(τ)φβ̄γ̄(τ). (4.113)

This expression reveals, that Smix contains all fermionic and bosonic source fields for a

system with a cavity at R = 0. Hence, in analogy to Eq. (4.88) and Eq. (4.86) the

corresponding generating functional W[η∗, η, ζ] for all connected fermionic and bosonic

Green’s functions of the system (with a cavity) is given by

W[η∗, η, ζ] = ln

∫
D [d∗, d, φ]|R6=0 e

−Snloc[d∗,d,φ]−Smix[d∗,d,φ,η∗,η,ζ] (4.114)

and the corresponding interacting correlation functions are obtained as derivatives

Gᾱ1···β̄n(τ1, · · · , τ ′n) = (−1)n
δ2nW[η∗, η, 0]

δη∗ᾱ1
(τ1) · · · δη∗ᾱn(τ ′n)δηβ̄n(τ ′n) · · · δηβ̄1

(τ ′1)

∣∣∣∣∣
η,η∗=0

(4.115)

W ᾱ1···β̄n(τ1, · · · , τ ′n) =
1

2n
δ2nW[0, 0, ζ]

δζᾱ1δ̄1
(τ1) · · · δζᾱnδ̄n(τ ′n)δζβ̄nγ̄n(τ ′n) · · · δζβ̄1γ̄1

(τ ′1)

∣∣∣∣∣
ζ=0

.(4.116)
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We emphasize that G and W is the propagator, respectively the effective interaction, of

a system with removed primitive cell at R = 0. Alternatively, one obtains G and W via

the PIs

Gᾱ1···β̄n(τ1, · · · , τ ′n) =

∫
D[d∗, d]|R6=0dᾱ1(τ1) · · · d∗

β̄n
(τ ′n)e−Snloc−Smix∫

D[d∗, d]|R6=0e−Snloc−Smix
(4.117)

W ᾱ1···β̄n(τ1, · · · , τ ′n) =
1

2n

∫
D[φ]|R6=0φᾱ1δ̄1

(τ1) · · ·φβ̄nγ̄n(τ ′n)e−Snloc−Smix∫
D[φ]|R6=0e−Snloc−Smix

(4.118)

These correlation functions must not be confused with the correlation functions G,W

of the full system.[74]

On the one side, Eqs. (4.115) and (4.116) imply an explicit expression for the cavity

functional (4.114) in terms of correlation functions

W[η, η∗, ζ] =

∞∑
n=1

(−1)n
∫
τ1

· · ·
∫
τ ′n

η∗ᾱ1
(τ1) · · ·Gᾱ1,···β̄n(τ1, · · · , τ ′n)ηβ̄1

(τ ′1) · · ·

+
∞∑
n=1

1

2n

∫
τ1

· · ·
∫
τ ′n

ζᾱ1δ̄1
(τ1) · · ·W ᾱ1β̄1,···γ̄nδ̄n(τ1, · · · , τ ′n)ζβ̄1γ̄1

(τ ′1) · · · .

(4.119)

On the other side, Eqs. (4.111), (4.112) show that W[η, η∗, ζ] depends only on local

variables dα, d
∗
β and φαβ, so that the integration over all non-local states in the partition

function (4.105) can be carried out and yields an factor eW[η,η∗,ζ] in the same path

integral.

The resulting expression has only local terms, so that the partition function of the

complete system reads

Z(β) ∝
∫

D[d, d∗, φ]|R=0 e
−Seff [d,d∗,φ,η,η∗,ζ] (4.120)

and contains the effective local action Seff , we are looking for

Seff [d, d∗, φ, η, η∗, ζ] = Sloc[d, d
∗, φ]−W[η, η∗, ζ]. (4.121)

Finally the φ-integration can be evaluated with the inverse Hubbard-Stratonovich trans-

formation (C.15) and one obtains for the partition function

Z(β) =

∫
D[d, d∗]|R=0 e

−Seff [d,d∗]. (4.122)
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Here the effective action

Seff [d, d∗] =

∫
τ1

∫
τ ′1

d∗α(τ1)
[
G−1

]αβ
(τ1 − τ ′1)dβ(τ ′1)

+
1

2

∫
τ1

∫
τ ′1

nαδ(τ1)Uαβγδ(τ1 − τ ′1)nβγ(τ ′1) (4.123)

contains the correlation functions[
G−1

]αβ
(τ1 − τ ′1) =

[
G−1

x (τ1 − τ ′1)
]αβ

− tαµ̄1
[
Gµ̄1ν̄1(τ1 − τ ′1) + · · ·

]
tβν̄1 (4.124)[

U−1
]
αβγδ

(τ1 − τ ′1) =
[
V −1

]αβγδ
δ(τ1 − τ ′1)

−
[
V −1

]
αµ̄1ν̄1δ

[
W

µ̄1β̄1γ̄1ν̄1(τ1 − τ ′1) + · · ·
] [
V −1

]
β̄1βγγ̄1

,(4.125)

where the dots indicate terms of Eq. (4.119) with n > 1.

Expression (4.123) has the form of an impurity model, where the impurity cell is

located at R = 0 and interacts with an effective, surrounding medium. This medium

is described by the cavity correlation functions G and W , appearing on the r.h.s. of

Eqs. (4.124) and (4.125). These cavity functions correct the local exchange Green’s

function Gαβx and the local bare Coulomb interaction Vαβγδ of the lattice, yielding the

non-interacting impurity propagator Gαβ(τ), respectively the bare impurity interaction

Uαβγδ(τ). The latter describes the interaction between impurity states, whereas the

former can be seen as an undressed propagation from site β to site α. The corresponding

dressed propagation,i.e. the interacting Green’s function of the impurity can be obtained

as a path integral

[Gimp]αβ(τ) =
〈〈
dα(τ)d∗β

〉〉
= −

∫
D[d, d∗]|R=0 dα(τ)d∗βe

−Seff [d,d∗]∫
D[d, d∗]|R=0 e

−Seff [d,d∗]
. (4.126)

We emphasize that [Gimp]αβ is both, the interacting Green’s function of the impurity

model (4.123), as well as the interacting Feynman propagator Gαβ of the full many-body

Hamiltonian (4.98) restricted to the unit cell R = 0. Similar arguments hold for the

dressed impurity interaction Wimp and W , see Ref. 73, so that, we deduce effective

Dyson equations for the impurity model (4.123)

Gαβ(iωn) = Gαβ(iωn) + Gαγ(iωn)Σγδ
imp(iωn)Gδβ(iωn) (4.127)

Wαβγδ(iνn) = Uαβγδ(iνn) + Uαµνδ(iνn)χνµρσimp (iνn)Wρβγσ(iνn). (4.128)
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Here Σimp is the effective, irreducible self-energy and χimp the corresponding bosonic

counterpart (irreducible polarizability) of the impurity model. Since the former is a

fermionic and the latter a bosonic quantity, ωn represents fermionic and νn bosonic

Matsubara frequencies.[73] The fermionic and bosonic self-energies Σimp and χimp differ

from the lattice self-energies Σ and χ, because the non-interacting fermionic and bosonic

propagators G and U of the impurity model differ from G0, respectively V [see (4.124),

(4.125)].

However, one can show that in the limit of infinite dimensions d → ∞, the self-

energies of the impurity coincide with the local self-energies of the full many-body

Hamiltonian Ĥ

lim
d→∞

[Σimp]αβ = Σαβ (4.129)

lim
d→∞

[χimp]αβγδ = χαβγδ. (4.130)

The first limit is the starting point of dynamical mean field theory (DMFT), whereas

the inclusion of the second limit is used in extended DMFT (eDMFT). In the following

we concentrate ourselves on DMFT, more about eDMFT can be found in Ref. 73.

4.5.1 Dynamical Mean Field Theory

We consider standard DMFT in this section, which is traditionally formulated for the

Hubbard model. Within this model the hopping matrix tαβ is restricted to nearest

neighbors, which we indicate by the symbol t<αβ> in the following. Originally, the

Hubbard model takes only static interactions between opposite spins on the same site

into account, see Ref. 77. However, we allow for additional interactions and consider

the following model

Ĥmod = t<αβ>d̂†αd̂β +
1

2
V αββαn̂ααn̂ββ, (4.131)

where the interactions are restricted to the unit cell.

Despite of its simplicity, it turns out that the Hubbard model has a rich phase diagram

and describes a vast number of physical phenomena, including Mott-Hubbard transitions,

the Kondo effect and many kinds of magnetism, see Ref. 78 for an introduction with

selected results. These phenomena stem mostly from partially filled narrow bands around

the Fermi surface, which demand an accurate description of correlation effects beyond
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the mean-field (DFT or HF) or even the GWA level. Therefore, one characterizes these

systems as strongly correlated and often tries to describe them by applying a model of

the Hubbard form (4.131).

However, the attempt to solve (4.131) (or similar models) for d = 3 dimensions often

fails, due to the high dimension of the corresponding Hilbert space. In fact, today only

for d = 1 and one single Wannier state the Hubbard model can be solved analytically, see

Refs. 79, 80. Metzner and Vollhardt tackled this problem not from the low-dimensional,

but from the high-dimensional limit, see Ref. 81. They considered the Hubbard model

for d → ∞ dimensions and showed that a non-trivial limit of Eq. (4.131) is obtained if

the hopping amplitude is scaled simultaneously according to

tαβ →
1√
zd
t̃αβ, (4.132)

where zd ∈ O(d) is the coordination number of the lattice in d dimensions and t̃αβ finite

for d→∞.1 In the case of our model, defined in Eq. (4.131), the second term has to be

scaled as well

V αββγ → 1

zd
Ṽ αββγ (4.133)

(with finite Ṽ ) to yield a non-trivial limit for d→∞, see Ref. 82.

Simple power counting arguments can be used, see Ref. 82, to show that only the first

term in the [·]-brackets of Eqs. (4.124) and (4.125) survive for d → ∞. Consequently,

the effective action Seff of Eq. (4.123) for the model (4.131) in the limit d→∞ assumes

the form

S∞[d, d∗] = lim
d→∞

Seff [d, d∗]

=−
∫
τ

[∫
τ ′
d∗α(τ)

[
G−1

]αβ
(τ − τ ′)dβ(τ ′) +

1

2
nαδ(τ)Uαβγδnαδ(τ)

] (4.134)

with the Weiss field (4.124) given by

[
G−1

]αβ
(τ − τ ′) = δ(τ − τ ′)δαβ∂τ − tαµ̄ Gµ̄ν̄(τ − τ ′)tβν̄ , (4.135)

This result follows from t<αβ> = 0 and the fact that the Hubbard model (4.131) already

has the density form of (4.98).

1 This scaling relation follows from the fact that the density of states for V = 0 and d→∞ is finite,

see Ref. 81.

84



4.5 Local effective Hamiltonians

This expression simplifies on the Matsubara axis iωn,[
G−1

]αβ
(iωn) = δαβiωn − tαµ̄ Gµ̄ν̄(iωn)tβν̄ (4.136)

Furthermore, using simple power counting arguments, see Ref. 74, the cavity Green’s

function can be related to the local lattice propagator G via

Gµ̄ν̄ = Gµ̄ν̄(iωn)−Gµ̄γ(iωn)
[
G−1(iωn)

]γδ
Gδν̄(iωn), (4.137)

which finally results after rewriting Eq. (4.136), see Ref. 73, in[
G−1(iωn)

]
αβ

=
[
G−1(iωn)

]
αβ

+ Σαβ(iωn). (4.138)

This expression reveals the connection between a fictitious impurity model located at

R = 0 (and determined by G and U) and the Hubbard model determined by the renor-

malized Feynman propagator G and its self-energy Σ. This relationship is exact only

in the limit of infinite dimensions. However, it turns out that the identification of the

interacting Green’s function of the impurity with the local interacting Green’s function

of the lattice is an excellent approximation for strongly correlated systems in finite di-

mensions, like d = 3.[81] Therefore, Eq. (4.138) is exploited in practice to solve the

Hubbard model in finite dimensions by determining the Weiss field G in Eq. (4.138)

self-consistently. This can be done using following algorithm

DMFT Algorithm

D1 Start with some initial guess for the Weiss field G and choose a fixed impurity

interaction U.

D2 Compute the impurity propagator Gimp with Eq. (4.126) for the action (4.134)

and extract its self-energy with Σimp = G−1−G−1
imp. This self-energy approximates

the local self-energy of the Hubbard model.

D3 Compute the interacting propagator G of the lattice with G−1 = Σ +G−1
0 , where

G0 is the non-interacting Green’s function of the Hubbard model.

D4 The resulting propagator of D3 is used to determine a new estimate for the Weiss

field via G−1 = Σimp +G−1.

D5 Iterate D2-D4 until
∣∣G(n+1) − G(n)

∣∣→ 0.
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This algorithm yields a good estimate for the interacting Green’s function of the Hubbard

model. However, the Hubbard model cannot describe the physics of real materials in any

detail. Heuristically speaking, DMFT describes only local correlation effects and fails

in general to capture non-local many-body effects. Realistic approaches, on the other

hand, have to take into account both, local and non-local correlations.

For this purpose the LDA+DMFT method was developed, see Ref. 83 for a com-

prehensive overview. Within LDA+DMFT the interacting Green’s function G (used in

step D3) is computed from the KS hopping matrix

t
(k)
αβ = T (k)

αn εnkT
(k)
βn . (4.139)

via [
G−1(iωn)

]
αβ

=
1

Nk

∑
k

[
(iωn + µ)δαβ − t(k)

αβ − Σαβ(iωn) + (tdc)
(k)
αβ

]
. (4.140)

Here Σαβ(iωn) is the local self-energy of the impurity given on the Matsubara axis ωn,

µ the chemical potential and (tdc) the double-counting correction.[84] The last term is

present, due to the fact that the LDA (or any other KS) hopping matrix t
(k)
αβ contains local

correlation terms, which are also included in the local self-energy Σαβ(iωn). In the ideal

case, these terms are described by (tdc)
(k)
αβ , however, in practice this term is unknown,

because of the non-diagrammatic nature of DFT. This issue is known as double counting

problem and is typically treated by approximating (tdc)
(k)
αβ = µdcδαβ and absorbing the

term into the chemical potential. More about the (ambiguous) computation of µdc is

found in Refs. 85, 86 and will not be considered here.

In the following, we follow a more promising route, the combination of the GW with

the DMFT approximation. The reason for this is that in GW+DMFT, studied first

by Biermann et al. in their seminal paper [87], both approaches can be formulated in

the diagrammatic language. This has the advantage that, on the one side, the double

counting terms can be identified in principle unambiguously within GW+DMFT. On

the other side, the GW formalism can be used to determine the effective interaction

matrix U of the impurity model (4.134) and is discussed in detail in section 6.1.3.
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5

Low Scaling Algorithm for the

Random Phase Approximations

The following chapter presents an efficient zero-temperature RPA algorithm, which scales

cubicly with the number of electrons N in the system. To keep the notation simple in

this chapter, we write G instead of G0 for the non-interacting Green’s function, χ for the

independent-particle polarizability χ0 and suppress the imaginary unit i in the frequency

arguments of χ. Furthermore, to avoid confusion we use χ̂ to indicate the imaginary

time polarizabilities.

The following chapter was published in Refs. 88 and 89.

5.1 Computational Scheme

We have implemented an RPA algorithm for periodic systems at zero-temperature,1

which is summarized by the flow diagram shown in Fig. 5.1. This figure shows that the

ACFDT formula Eq. (3.37) is only the last step in the calculation of the RPA correlation

energy ERPA
c . The evaluation of this step was presented in Ref. 90 and will not be dis-

cussed in this thesis. Here, we concentrate on the preceding steps, which are technically

more demanding. We discuss each step of Fig. 5.1 in detail in reverse order starting

with the cosine transformation (CT) of χ from imaginary time to imaginary frequency

1Finite-temperature effects are not considered here, but can be included easily by using finite-

temperature Green’s functions.
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FFT

CT

FFT

GG

ACFDT
ERPA

c

Gk(g,g′, τ)

χk(g,g′, τ)

χ(r, r′, τ)G(r, r′, τ)

χk(g,g′, ν)

Figure 5.1: Calculation scheme for the RPA correlation energy ERPA
c adopted in this paper.

The first and third step is a spatial fast fourier transformation (FFT) described in Sec. 5.3.

The second step is the contraction of two Green’s functions in the space-time domain (GG)

giving the independent-particle polarizability χ (see Sec. 5.4). The cosine transformation

(CT) in the fourth step is described in Sec. 5.2.3. The ACFDT is formulated in Eq. (3.37).

in section 5.2. The fast fourier transformation (FFT) of χ from real to reciprocal space

is discussed in section 5.3 followed by the contraction step (GG) in section 5.4.

5.2 Imaginary Time and Frequency Grids

The following section was published in Ref. 88.

The forth step of the RPA algorithm, denoted as CT, is the transformation of the

polarizability χ0
k(g,g′, τ) to the imaginary frequency domain χ0

k(g,g′, ν). For an accu-

rate discrete Fourier transformation, an equally spaced grid for the time and frequency

domain necessitates a few hundred grid points, see Ref. 69. This makes the calculations

rather expensive, so that the break even point between the traditional O(N4) algorithm

and the lower scaling O(N3) algorithm is reached only for very large systems. Such large

systems are then also difficult to handle, since the storage demands for the polarizability

at many frequency points can easily exceed the available memory even on modern large

scale computers. This implies that the approach can be applied to large systems only if

the number of grid points τi, νk, which are needed for an accurate representation of the

functions χ0
k(g,g′, τ) and χ0

k(g,g′, ν), as well as their Fourier transformation, is kept as

small as possible.
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5.2 Imaginary Time and Frequency Grids

In this section, we first determine tailor-made quadratures for the direct second or-

der Møller-Plesset (MP2) energy in the imaginary frequency domain (as opposed to

the usual imaginary time domain used in the Laplace-transformed MP2 (LT-MP2)

method.[91]). Apart from comparing the Minimax and least square quadratures for

the LT-MP2 method, we show that our frequency grid is also able to integrate the RPA

correlation energy accurately using ≈ 16 quadrature points. In addition, approximat-

ing the Fourier integral of the polarizability by means of a quadrature formula, we find

an elegant method to switch from imaginary time to imaginary frequency polarizabili-

ties (and vice versa) without using an interpolation technique or significantly increasing

the number of grid points. This allows to evaluate RPA energies with well-controlled

approximations (time and frequency grids) with O(N3) scaling.

The section is organized as follows. In section 5.2.1 and 5.2.2 we review the necessary

mathematical background for tailor-made quadrature formulas. In section 5.2.3, we

present a method for the accurate determination of the cosine integral of χ in terms of

the imaginary time counterpart χ̂. In section 5.2.5 and 5.2.6 we compare the convergence

behavior of the Minimax and least square quadratures for MP2 and RPA calculations.

In addition, results for RPA and direct MP2 energies using the non-uniform cosine

transformation established in 5.2.3 are given in section 5.2.5 and 5.2.6.

5.2.1 The Fitting Problem

Given a function f : I = [1, R] → R with R > 1 and a model function y : R × I → R,

the fitting problem is stated as follows: find the set of coefficients α = (α1, · · · , αn),β =

(β1, · · · , βn) ∈ Rn such that the error function

η(α,β, ξ) = f(ξ)−
n∑
i=1

βiy(αi, ξ) (5.1)

is minimal with respect to one of the following norms

‖η‖2 =

∫ R

1
dξ |η(α,β, ξ)|2 (5.2)

‖η‖∞ = max {|η(α,β, ξ)| ∈ R : ξ ∈ I} . (5.3)

Minimization w.r.t. ‖ · ‖2 gives the least square (LS) coefficients α0 and β0. The corre-

sponding fit minimizes the average or mean error, but results in an uneven distribution

of the error in the interval I, with errors depending on the distribution of the points ξ.
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A possible way of computing α0 and β0 for non-linear fitting problems is the Levenberg-

Marquardt algorithm, see Ref. 92, or the variable projection algorithm of Golub and

Pereyra.[93] In this work we use exclusively the latter method.

On the other side, minimizing η w.r.t. ‖ · ‖∞ gives the so called Minimax (MM)

solution α∗,β∗.[94] This means that the maximum error is minimized and the error

is consequently equally distributed inside the interval I. Usually this is desired if the

distribution of the ξ points is unknown. Note that throughout this paper we will always

use an asterisk, α∗i , β
∗
i , when referring to grids and weights corresponding to Minimax

solutions, whereas the conventional least square grids will carry the superscript 0.

Implementations calculating α∗,β∗ use typically the Remez algorithm, which re-

lies on Chebyshev’s alternation theorem.[95] This theorem states that in the Minimax

approximation the error function satisfies

η(α∗,β∗, ξj) = (−1)jε, ∀j = 1, · · · , 2N + 1, ε > 0 (5.4)

where the points ξj are the local extrema of η. In total there are 2N + 1 minima and

maxima leading to 2N + 1 linear independent equations (5.4): 2N equations for the

coefficients α,β and one for the minimized error extremum ε.

Assuming we have a starting guess (say α0 and β0) for the coefficients, we can apply

the Remez algorithm:

R1 Find all extrema {ξj}2N+1
j=1 of η.

R2 Solve (5.4) for α,β and ε at the determined extrema ξj .

R3 Update coefficients and error α,β and ε.

R4 Iterate R1-R4 until convergence.

The solution of the fitting problem can be used in order to find optimal quadrature

formulas for the numerical evaluation of integrals. In the following, we discuss the

application for integrals appearing in RPA and MP2.
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5.2.2 Integral Quadrature Formulas for RPA and Direct MP Energies

We are interested primarily in the numerical evaluation of the RPA correlation energy

at zero-temperature given in Eq. (3.37). To keep notation simple we write χ for χ0 and

focus ourselves only on the frequency, respectively the time dependence of the indepen-

dent particle polarizability. Furthermore the trace symbol in (3.37) will be suppressed

in this chapter.

The lowest contribution (n = 2) to the RPA is the direct MP2 correlation energy

and reads[96, 97]

E(2)
c =

1

8π

∞∫
−∞

dν {χ(ν)V }2 . (5.5)

Instead of evaluating this integral in the imaginary frequency domain, we can insert the

Fourier transformation

χ(ν) =

∫ ∞
−∞

dτ χ̂(τ)eiντ (5.6)

into Eq. (5.5) and use
∫

dνe±iν(τ+τ ′) = 2πδ(τ + τ ′) in order to obtain the corresponding

imaginary time representation

E(2)
c =

1

4

∫ ∞
−∞

dτ{χ̂(τ)V }2. (5.7)

This expression is the Laplace transformed direct MP2 energy used by Häser and Almlöf,

see Ref. 91 for more details.

In obtaining Eq. (5.7), we used the fact that both representations of the polarizability

χ and χ̂ are even functions in their arguments ν, respectively τ as shown in Fig. 3.8.

This implies that the Fourier transformation becomes essentially a cosine transformation

χ(ν) = 2

∫ ∞
0

dτ χ̂(τ) cos(τν) (5.8)

χ̂(τ) =
1

π

∫ ∞
0

dνχ(ν) cos(τν). (5.9)

For the evaluation of the integrals (5.5) and (5.7) only the frequency and time dependence

of the polarizability is relevant. The former is given in (3.38). In the following we rewrite

this expression into

χ(ν) =
∑
µ

χµy(ν, ξµ) (5.10)

χ̂(τ) =
∑
µ

χµŷ(τ, ξµ), (5.11)
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where the introduced auxiliary functions

y(ν, ξ) =
2ξ

ξ2 + ν2
(5.12)

ŷ(τ, ξ) = e−ξ|τ | (5.13)

describe the frequency, respectively the time dependence. In addition, we have adopted

the following notation in Eqs. (5.10) and (5.11):

• µ stands for the compound index (i, a), where i goes over occupied and a over

unoccupied states,

• ξµ = εa− εi > 0 is the transition energy between unoccupied a and occupied states

i,

• and χµ = 〈i | eigr | a〉〈a | e−ig
′r′ | i〉, stands for a matrix χµ with the dimension

given by the number of reciprocal lattice vectors |g|2~/(2m) ≤ Ecut, compare to

Eq. (3.41).

We remind the reader that εmin ≤ ξµ ≤ εmax with εmin being the band gap and εmax the

maximally considered transition energy.

Inserting either expression (5.11) into (5.7), or (5.10) into (5.5), the resulting integrals

can be carried out analytically yielding an exact expression for the direct MP2 energy

E
(2)
c that is often used by quantum chemists:[91, 96, 98]

E(2)
c =

1

2

∑
µµ′

χµV χµ′V
1

ξµ + ξµ′
. (5.14)

Although this expression avoids a frequency respectively time integration, the scaling is

not favorable, because it involves a summation over quadruples (µ, µ′) = (i, a, i′, a′).

If one evaluates the integrals (5.5) and (5.7) numerically by using an appropriate

quadrature

E(2)
c ≈ 1

8π

n∑
k=1

γk{χ(νk)V }2 (5.15)

E(2)
c ≈ 1

4

n∑
i=1

σi{χ̂(τi)V }2, (5.16)

one can avoid the computationally expensive summation over pairs (µ, µ′). In order to

keep the necessary quadrature points n as small as possible, the error stemming from
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the discretization of the frequency, respectively time domain, needs to be investigated.

For this purpose we subtract Eq. (5.14) from Eq. (5.15) and substitute χ(ν) by (5.10)

obtaining:

1

2

∑
µµ′

χµV χµ′V

{
1

ξµ + ξµ′
− 1

4π

n∑
k=1

γky(νk, ξµ)y(νk, ξµ′)

}
. (5.17)

The terms in the curly braces can be considered to be the error made when approximating

the integral (5.5) by a discrete sum (5.15). This means the error for each pair (ξ, ξ′) ∈
[εmin, εmax]× [εmin, εmax] (where (ξ, ξ′) are representatives of a pair (ξµ, ξµ′)) is described

by the function

E(γ,ν, ξ, ξ′) =
1

ξ + ξ′
− 1

4π

n∑
k=1

γky(νk, ξ)y(νk, ξ
′). (5.18)

Analogously, subtracting Eq. (5.14) from (5.16), one can define an error function Ê for

the time domain, which reads

Ê(σ, τ , ξ + ξ′) =
1

ξ + ξ′
− 1

2

n∑
i=1

σi ŷ(τi, ξ)ŷ(τi, ξ
′)︸ ︷︷ ︸

e−(ξ+ξ′)τi

. (5.19)

The quadrature (γ,ν) (respectively (σ, τ )) is accurate, if the error E (respectively Ê)

for each pair (ξ, ξ′) ∈ [εmin, εmax]× [εmin, εmax] is small. For Eq. (5.19) the error function

depends on ξ + ξ′ and is consequently one-dimensional. Therefore, one can find the

desired quadrature (σ, τ ) by solving the corresponding fitting problem for f(ξ + ξ′) =

(ξ + ξ′)−1 (compare Sec. 5.2.1).[99]

However, the error function in the frequency domain (5.18) depends on two linearly

independent variables ξ and ξ′, so that a two-dimensional fitting problem needs to be

solved. The corresponding least square solution (i.e. minimum of ‖E‖2) can be found

relatively easily by means of the Levenberg-Marquardt algorithm, which works for arbi-

trary dimensions. On the contrary, the Minimax solution is much harder to determine.

In fact, a generalization of the Remez algorithm to two (or even higher) dimensions does

not exist to our knowledge.

Fortunately, the largest errors of E are on the diagonal ξ = ξ′ as can be seen in Fig.

5.2. Therefore, it is a good approximation to consider the one-dimensional problems
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Figure 5.2: Least square error surface E(γ0,ν0, ξ, ξ′) measured in [eV−1] for εmin =

1, εmax = 10 and n = 3. The largest errors are located along the diagonal ξ = ξ′.

with the following error and model functions:

η(γ,ν, ξ) =
1

ξ
− 1

2π

n∑
k=1

γky
2(νk, ξ) (5.20)

η̂(σ, τ , ξ) =
1

ξ
−

n∑
i=1

σiŷ
2(τi, ξ). (5.21)

At this point, we note that the scaling relations of the coefficients between the cases

ξ ∈ [εmin, εmax] and ξ ∈ I = [1, R] with R = εmax/εmin are trivial (primed coefficients

correspond to ξ ∈ [1, R] ):

γ′k = εminγk, ν ′k = εminνk (5.22)

σ′i = σi/2εmin, τ ′i = τi/2εmin. (5.23)

Hence, we can rely on the considerations of the previous section and minimize η and

η̂ w.r.t. either ‖ · ‖2 or ‖ · ‖∞. This yields least square (γ0
k , ν

0
k), (σ0

i , τ
0
i ) and Minimax

(γ∗k , ν
∗
k), (σ∗i , τ

∗
i ) quadratures for the frequency and time domain.
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It is not entirely obvious, which integration method is preferable, but since the exact

matrix elements χµ as well as the density of the transition energies ξ are not known a

priori, a rigorous mathematical analysis suggests that the Minimax grid is superior.[100]

If the distribution of the transition energies in the interval [1, R] is taken into account,

least square algorithms can become competitive to the Minimax algorithm.[101] In this

thesis we have chosen an exponentially decaying distribution of the transition energies

centered around ξ = 1. This has the advantage of reducing the error for small ξ, i.e.

the dominating contribution to the polarizability χ. A direct comparison between both

methods for the time as well as the frequency domain can be found in section 5.2.5 and

5.2.6.

At the end of previous chapter we showed that the direct MP2 energy E
(2)
c , with the

exact representations (5.5), (5.7) and (5.14), can be seen as the first contribution to the

RPA correlation energy ERPA
c defined in Eq. (3.37). Now if |E(n)

c | < |E(2)
c | for n > 2,

the same must be true for the corresponding errors. In this case, we can expect that

the quadrature error of Eq. (3.37) using least square or Minimax coefficients for the

frequency domain is of the same order as for Eq. (5.15). Indeed this is shown in section

5.2.5 and 5.2.6.

5.2.3 Non-uniform Cosine Transformation

In this section we consider the duality of a given time and frequency grid for the polar-

izability. Assume we have given the polarizability χ̂ on a time grid, say τ∗i . Is it possible

to compute the corresponding Fourier transformed polarizability χ at frequency ν∗k accu-

rately without using an interpolation technique or increasing the number of quadrature

points n significantly?

In order to answer this question, we first observe that the Fourier transform in our

case reduces to a cosine transformation [cf. Eqs. (5.8) and (5.9)]. Second, we note

that in general the Minimax grid points ν∗k , τ
∗
i are non-equally distributed.1 Thus the

vector {χ∗k}nk=1 cannot be written as a Z-transform of the vector {χ̂i}ni=1 (as for fast

Fourier transforms) and evaluation of the cosine transform in n ln(n) steps is not straight

forward, see Ref. 102 for more details. However, since for our applications the number

of grid points is small (n ≤ 20, cf. Sec. 5.2.5 and 5.2.6), a computational cost of n2

1The same holds true for the least square points (ν0
k , τ

0
i ).
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is not prohibitive, and we can evaluate the cosine integral directly. Therefore, we may

reformulate our problem as follows: we seek a transformation matrix αki relating the

vectors χ̂i, χk by

χk =

n∑
i=1

αkiχ̂i, ∀k = 1, · · · , n (5.24)

and due to (5.8) we choose the following ansatz for the coefficients

αki = γki cos(ν∗kτ
∗
i ). (5.25)

Analogously to section 5.2.2, the coefficients γki are determined only by the time and

frequency dependence of χ̂ and χ. After inserting expressions for the polarizability in

imaginary frequency (5.10) and time (5.11) into (5.24), we end up with the following

error function at each frequency point ν∗k for a specific energy difference ξ ∈ [εmin, εmax]:

ηc(γk, ξ) =y(ν∗k , ξ)−
n∑
i=1

γki cos(ν∗kτ
∗
i )ŷ(τ∗i , ξ) (5.26)

In contrast to section 5.2.1, now only the coefficients γki are variational and the abscissas

τ∗i are kept fixed.

On the one hand, we found that ηc has more than n + 1 extrema ξj . This means

that the system of equations (5.4) is over-determined, which implies that the Remez

algorithm from 5.2.1 can not be used.

On the other hand, the fitting problem is linear in γki. Consequently, we can find the

least square solution in a stable way by using the singular value decomposition of the

design matrix D
(k)
ij = cos(ν∗kτ

∗
i )ŷ(τ∗i , ξj). Hence we may use the following sloppy Remez

algorithm, originally proposed for rational approximations in Ref. 92:

S1 Choose one frequency point ν∗k .

S2 Find all extrema ξj of ηc.

S3 Tabulate the deviations rj from the median absolute deviation (MAD) r for each

ξj .

S4 Solve the over-determined linear system of equations ηc(γk, ξj) + sgn(rj)r = 0 for

γk in the least-square sense, i.e. find the minimum of

‖ηc(γk, ξ) + sgn(r − ξ)r‖2
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on the discrete set ξ ∈ {ξj}.

S5 Repeat S1-S4 until convergence is found.

This yields a set of coefficients γ∗ki for i = 1, · · · , n for a specific point ν∗k .

Alternatively, one can use simply the LS cosine transformation coefficients γ0
ki ob-

tained from finding the minimum of ‖ηc(γk, ξ)‖2 in the minimization interval [1, R]. We

found that the sloppy MM coefficients γ∗ki tend to increase the error for small transition

energies in order to minimize the overall MAD, whereas the LS solution|ηc(γ0
k, ξ)‖2 has

typically smaller errors close to ξ = 1. The latter comes from the choice of the sampling

points (5.28), discussed in the next subsection, and implies that LS cosine coefficients

yield effectively more accurate cosine transformations than the MM ones. We, therefore

use exclusively the LS solutions γ0
ki in the forthcoming

The reader may have noticed that the procedure described above is applicable to

any, arbitrary frequency point ν ∈ R. In principle the set of coefficients {γ0
k}nk=1 can

be considered to be a vector-valued function γ : R → Rn, ν 7→ γ(ν) with the property

that γ(ν∗k) = γ0
k. Hence, we can actually seek the LS solution min‖ηc(ν)‖2 and vary

the frequency ν continuously. We have done this for various Minimax time grids, i.e.

for different values of R and n. In all cases, we found that the error ‖ηc(ν)‖2 has a

frequency dependence as shown in Fig. 5.3. That is, for a time grid τ∗i , the minima of

‖ηc(ν)‖2 are exactly at the Minimax frequency points ν = ν∗k .

Conversely, the transformation from the frequency grid to the time grid possesses a

similar behavior: for a chosen Minimax frequency grid ν∗k , the optimal time points of

the inverse cosine error function

η̂c(σ(τ), ξ) = ŷ(τ, ξ)−
n∑
k=1

σk(τ) cos(ν∗kτ)y(ν∗k , ξ) (5.27)

are exactly at the Minimax time points τ∗i , as shown in Fig. 5.3 (b). Analogously,

if the least square time grid τ0
i is chosen, one finds that ν0

k are the minima of the

function min‖ηc(ν)‖2, and the converse holds for the back transformation. Therefore we

can make the statement that the two grid pairs {ν∗k}nk=1,{τ∗i }ni=1 and {ν0
k}nk=1,{τ0

i }ni=1

are dual w.r.t. the cosine transformation. A rigorous mathematical proof is presently,

however, not known to us.
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Figure 5.3: (a) Cosine transformation (CT) error min ‖ηc‖2 as a function of the frequency

ν for a MM time grid {τ∗i }Ni=1 with transition energy ratio R = 100 and 5 grid points. (b)

transformation error in the time domain min ‖η̂c‖2 for the corresponding MM frequency

grid. The error is minimal at the MM points ν∗k in (a) and τ∗i in (b) (red dots).

In the following sections, we show the convergence behavior of the Minimax and least

square grids for MP2 as well as the RPA correlation energy and investigate the accuracy

of the non-uniform cosine transformation.

5.2.4 Technical Details

We have implemented the required code to calculate the least square and Minimax grids

for both the imaginary frequency and time domain in VASP.[103, 104]

For the calculation of the least square grid, the nonlinear fitting problem (discussed

in section 5.2.1) is solved using the variable projection method presented in Refs. 93

and 105 with uniform starting guesses for (γ0,ν0), (σ0, τ 0). This is done for R =

εmax/εmin. The resulting coefficients are then scaled for the proper interval [εmin, εmax]

using the relations (5.22). Furthermore, in order to reduce the error for small transition

energies (dominating contributions in the polarizability), the minimization interval [1, R]

is sampled with points ξi corresponding to an exponentially decaying distribution with

maximum density towards ξ = 1. More precisely, we have chosen the following sampling

points

ξj = e
lnR+cos

[
2(2M−j)+1

4M
π
]

lnR
, j = 1, · · · ,M (5.28)
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Figure 5.4: Minimax error functions for the time η̂ (blue line) and frequency η (red line)

domain for R7 = 28387 and n = 7. Both functions decay strictly for ξ > R7.

where M represents the total number of points.

The LS coefficients are used as starting values for the setup of the correspond-

ing error function. To optimize the error function obtaining Minimax quadratures

(γ∗,ν∗), (σ∗, τ ∗), we have implemented a Remez algorithm. This algorithm determines

the absolute maximum ε of η (respectively η̂) in [1, R] and the ξj (set of all local ex-

trema including the boundaries 1 and R in [1, R]). In the next step the non-linear set of

equations (5.4) is solved using a standard damped Newton-Raphson algorithm. Finally,

the procedure is iterated until convergence is reached.

We note that for any given n, an upper bound Rn exists, so that the corresponding

error functions η(ξ), η̂(ξ) decay strictly for all ξ > Rn. Fig. 5.4 shows an example of

this case. If for a given n, the transition energy ratio R is larger than Rn, the error

is minimized in the interval [1, Rn] instead of [1, R], because the total error for both

intervals coincide (see Ref. 100 for more details).

The convergence behavior of the cosine transform (5.24) is tested by first calculat-

ing the polarizability on an imaginary time grid and then performing the cosine trans-

form. The code first determines the coefficients γ0
ki by minimizing the error function

‖ηc(γk, ξ)‖2 using a singular value decomposition (cf. section 5.2.3). In the next step

the polarizability χ̂ is evaluated at the Minimax time grid τ∗i and the cosine transform is

101



5. LOW SCALING ALGORITHM FOR THE RANDOM PHASE
APPROXIMATIONS

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

6 8 10 12 14 16 18 20 22 24

A
b

so
lu

te
er

ro
r

[e
V

]

quadrature points n

ZnO

MM time
LS time
MM freq
LS freq

Figure 5.5: Convergence of direct MP2 energy E
(2)
c for the least square (LS) and Minimax

(MM) quadratures for ZnO.

calculated using Eq. (5.24) with αki = γ0
ki cos(ν∗kτ

∗
i ). In the final step, the RPA correla-

tion energy ERPA
c is calculated with (3.37) using the Minimax quadrature {ν∗k , γ∗k} for the

frequency integral in Eq. (3.37). For the evaluation of ln(1−χV ) the method described

in Ref. 90 is applied. The same procedure is tested for the least square quadrature

{ν0
k , γ

0
k} as well.

5.2.5 Grid Convergence for ZnO and Si

We have calculated the RPA and direct MP2 energies of zinc-blende ZnO and fcc Si

using lattice constants of a = 4.58 Å and a = 5.43 Å, respectively. The Brillouin zone

was sampled with 4× 4× 4 k-points (including the Γ-point) and the sum over g-vectors

and bands in the polarizability were restricted to an energy cutoff of 250 eV and 256

bands respectively.

These two examples are representative of cases, where the number of valence- con-

duction band pairs is of the order of several millions, so that standard MP2 algorithms

are already exceedingly expensive and (at least with our code) hardly doable. However,

the single particle gap is sizable in both cases, and does not pose a significant challenge

to the numerical quadrature.
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Figure 5.6: Minimax (blue line) and least square error (red line) functions for R = 500

and n = 7 in the time (a) and frequency domain (b). For small ξ (dominating terms in χ

and χ̂) the least square solution is more accurate.

Fig. 5.5 shows the absolute integration error for the direct MP2 energy E
(2)
c of ZnO

calculated using an imaginary time (squares) and imaginary frequency grid (circles).

Here, the polarizabilities were calculated directly on the imaginary time and imaginary

frequency axis, respectively (not applying cosine transformations). We found that for

both, the least square as well the Minimax grid, the direct MP2 contribution can be

evaluated with an accuracy of 1 meV with only 9 quadrature points. Note that these

calculations were performed using density functional theory orbitals and one-electrons

energies (as opposed to the conventionally used Hartree-Fock orbitals). The imaginary

time integration converges slightly faster than the frequency integration. This is related

to larger errors in the frequency domain as one can see from Fig. 5.6 (a) and (b).

From a direct comparison of the Minimax (MM) with the least square (LS) grid

(filled and empty points in Fig. 5.5) one clearly sees that the convergence of the least

square grid is competitive with the Minimax quadrature for the direct MP2 energies of

ZnO. The situation is similar for the RPA correlation energy shown in Fig. 5.7 (filled

and empty circles) and little difference between the MM and LS error for ZnO and Si is

observed. Here, and in the MP2 case, µeV accuracy is reached with approximately 13

points using both grids (filled and empty circles in Figs. 5.5 and 5.7). This is mainly due

to the fact that we have chosen an exponentially decaying distribution for the transition
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Figure 5.7: Convergence of RPA correlation energy ERPA
c for ZnO and Si w.r.t. the number

of grid points n for the LS (red line) and MM (blue line) quadratures. If polarizabilities

are determined by cosine transformations (CT) from the time to the frequency axis, larger

errors are obtained (purple and green line).

energies ξ, see Eq. (5.28), leading to smaller LS errors for small transition energies and

vice versa for large energies. This behavior of the LS solution is depicted by the red

lines in Figs. 5.6.

We have also investigated the accuracy of the non-uniform cosine transform described

in section 5.2.3. The results for the RPA correlation energy for the Minimax and least

square grids are given by the filled and empty squares in Fig. 5.7. One sees clearly

that the cosine transformation CT of χ̂(τi) can be carried out without loss of accuracy,

i.e. convergence of ERPA
c within 1 meV (1 µeV) is achieved for 9 (12) grid points.1

This is a remarkable result, since it shows the duality of the MM/LS time and frequency

grids. Furthermore, when the polarizability is calculated via a cosine transformation and

the ACFDT formula is integrated with the MM weights γ∗k , both grids show the same

convergence. This comes from the aforementioned similarity of the two error functions

in both domains as shown in Fig. 5.6.

A final remark is in place here. For Si the 3s and 3p states and for ZnO the Zn-3d

1The grid convergence is deteriorated using the ’sloppy’ MM coefficients γ∗ki and about 30 − 40 %

more points for the same accuracy as presented in Figs. 5.7 (a) and (b) are needed, see Ref. 88.
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and O-2s and O-2p are treated as valence electrons yielding a minimization interval of

[1, 525] for the former and [1, 470] for the latter. This results in the good grid convergence

shown in Figs. 5.5 and 5.7. In the presence of shallow core electrons the minimization

intervals will increase slightly, since the core electrons lie typically 100 to 200 eV lower

in the energy than the valence electrons. This will not deteriorate the grid convergence

considerably, because the presented integration method converges exponentially with the

number of grid points.

5.2.6 Grid Convergence for Al and Nb atom

From the previous discussion, it is clear that the convergence of RPA energies for systems

with small gaps is harder to achieve, since a small gap will necessarily increase the width

of the interval onto which we map [1,R]. For vanishing or zero gap, the direct MP energies

tend to diverge E
(n)
c →∞, whereas the RPA energy ERPA

c =
∑∞

n=0E
(n)
c usually remains

finite.[33] Hence we consider only the RPA correlation energy in this section.

We have studied the convergence of the Minimax grid and the corresponding non-

uniform cosine transformation for atomic Al and Nb. Both atoms are characterized

by a tiny one-electron gap in density functional theory when the PBE functional is

used.[19, 106] For Al, for instance a symmetry broken solution is found where the three

(degenerate) p-orbitals split into one occupied and two unoccupied states separated by

an energy difference of 80 meV. Analogously, for Nb the one electron Kohn-Sham gap

is about 15 meV, so that we can consider both, the Al and Nb atom as particularly

challenging model systems for small gap systems. Note that the exact magnitude of the

one-electron gap might vary between different implementations and box sizes, but this

is irrelevant for the present case, since we only want to demonstrate that reasonably

accurate answers can be obtained even in such problematic cases.

The calculations of the RPA correlation energies were done at the Γ-point only in

a 7 × 8 × 9 Å3 cell. An energy cutoff of 250 eV for Al and 286 eV for Nb was chosen.

The sum over bands for the polarizability was restricted to 8000 for Al and to 5760 for

Nb respectively. The convergence of the Minimax frequency quadrature and the cosine

transformation are shown in Fig. 5.8.

One clearly recognizes that the accuracy for the Al and Nb atom is poor compared

to ZnO and Si. In order to obtain results with similar accuracy, we need for Al about

30 % more grid points (n = 12) as for the semiconductors and for Nb even a denser
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Figure 5.8: Convergence of RPA correlation energy ERPA
c for Al and Nb w.r.t. the number

of grid points n for the LS (red line) and MM (blue line) quadratures. If polarizabilities

are determined by cosine transformations (CT) from the time to the frequency axis similar

errors are obtained (purple and green line).

grid is necessary (n = 15). Still at least for Al µeV precision can be reached with about

n ≈ 18 frequency points. The reason for this behavior is the required large minimization

interval (R = 38218 for Nb and R = 5390 for Al) in order to capture also very small

energy transitions in the polarizability. This is also indicated by the slightly better

convergence of Al due to a smaller value of R compared to Nb.

Although the necessity of dense grids for small gap systems is not surprising, we

believe that grids of the order n ≈ 20 for accurate RPA energies of systems with gaps

between 10 and 100 meV are acceptable.

When the response function is calculated first in imaginary time and then cosine

transformed, as in the case of the semiconductors, we observe no loss of accuracy. This

demonstrates, once again, the strict duality between the non-linear time and frequency

grids.
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5.2.7 Conclusion

In this section, we have discussed the construction of optimized imaginary time and

frequency grids for the independent particle polarizability χ and the corresponding co-

sine transformation. The cosine transformation between imaginary time and imaginary

frequency polarizabilities is used in the forth step of the low-scaling RPA algorithm pre-

sented in Fig. 5.1. In section 5.2, we have pointed out, that this algorithm will benefit

from optimized imaginary time and frequency grids that keep the number of grid points

small.

In order to achieve this goal, we have used non-equally spaced grids based on quadra-

tures for the RPA integral (3.37) and its lowest order contribution, the direct MP2 energy

E
(2)
c . Since the latter can be evaluated efficiently on the imaginary time as well, as the

imaginary frequency axis, we have first focused our attention on the MP2 integral rep-

resentations in imaginary time (5.7) and imaginary frequency (5.5).

The construction of imaginary time quadratures is a well studied problem and ap-

pears in Laplace transformed Møller-Plesset perturbation theory. Here we have com-

pared Minimax and weighted least square quadratures, finding that the latter is com-

petitive with the former for the materials considered here (see section 5.2.5).

To evaluate the RPA correlation energy using Eq. (3.37) an imaginary frequency

quadrature is needed. In order to obtain accurate frequency grids, we have proceeded

analogously to the construction of the time grid, i.e. we have minimized the quadrature

error of the imaginary frequency representation (5.5) of the direct MP2 energy. In

section 5.2.5, we have shown that the resulting frequency quadratures can be used for

an accurate frequency integration of the MP2 and RPA energies. For gapped systems,

such as ZnO and Si, both quadratures (the Minimax and weighted least square) reach

µeV accuracy of E
(2)
c and ERPA

c around 13 frequency points (see Figs. 5.7 and 5.5).

Furthermore, in section 5.2.6, we have briefly explained the challenge of determining

ERPA
c for small-gap systems. Due to the existence of tiny transition energies in the

independent particle polarizability χ(iν) more grid points are necessary for an accurate

frequency integration. We have seen that for systems with band gaps of a few 10 meV

(atomic Al and Nb), meV accuracy of ERPA
c is only attained around 14 grid points.

The main achievement of the present section is the numerical cosine transformation

of the polarizability from the imaginary time to the imaginary frequency axis presented
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in section 5.2.3. We have approximated the cosine integral (5.8) by a discrete sum and

subsequently minimized the corresponding error (5.26). This gives rise to a non-uniform

cosine transformation allowing for an accurate switching between imaginary time and

frequency polarizabilities without using an interpolation technique or increasing the

number of grid points n. Since the computational time, as well as the working memory

depend linearly on n, an optimized frequency and time grid helps to reduce the storage

and the computational cost of the low scaling RPA algorithm illustrated in Fig. (5.1).

Remarkably, we observe a strict ”duality” between the Minimax time and frequency

grids: for a given Minimax time grid, errors due to the cosine transform are minimal

at the Minimax frequency points, and vice versa. This duality is at first sight maybe

somewhat unexpected. For instance, the small frequencies present on the frequency grid

imply rapid oscillations as a function of time, and one might then ask, why coarse grids

at large imaginary time are sufficient and optimal to represent such oscillations. We

have no formal mathematical justification for that observation. However, one should

keep in mind that in imaginary time τ a transition, at the energy ξ on the real axis

results in an exponentially decaying function exp(−τξ). The corresponding functions in

imaginary frequency ν are decaying rational functions of the form ξ/(ξ2 + ν2). None

of these functions are oscillatory: they are smooth and decay towards zero at infinite

(imaginary) time and frequency. The spacing of the time and frequency grids are most

likely optimal to represent such functions.

We have investigated the convergence of the cosine transform with respect to the

number of time and frequency grid points in section 5.2.5. For Si and ZnO, the trans-

formation of χ̂(iτi)→ χ(iνk) and subsequent calculation of the RPA correlation energy

can be performed with meV (µeV) accuracy with 10 (14) grid points. An accuracy of

about 1 meV for systems with a tiny one electron gap, such as the Al and Nb atom,

is reached around 14 grid points, and with 18 grid points, the error approaches about

10 µeV. This should be adequate for most materials and is small compared to errors

incurred by the random phase approximation itself. To achieve the same accuracy, the

cosine transformation based algorithm requires approximately the same number of time

and frequency points, than a direct calculation of the polarizability on the frequency

grid.

In the following section we discuss the remaining steps of our RPA algorithm.
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5.3 Fast Fourier Transforms within supercells

The remaining part of this chapter was published in [89].

This section is dedicated to the spatial FFTs in step one and three in Fig. 5.1. Using

supercells allows to achieve linear scaling with respect to the number of k-points in the

contraction step GG [discussed in 5.4]. Before continuing, we review a few basic relations

between real and reciprocal space and introduce a concise terminology.

Given a unit cell C, the corresponding first Brillouin zone will be denoted by C∗. We

call the set of all translation vectors of the unit cell Lc, and vice versa, L∗c indicates the

set of all translation vectors vectors of C∗. The vectors g ∈ L∗c are the usual reciprocal

lattice vectors (large dots in Fig. 5.9). If the unit cell C is replicated N times along

each direction, a supercell S containing N3 copies of the original unit cell C is obtained.

Then the corresponding Brillouin zone S∗ is a subset of C∗. Their origins, the Γ-point,

coincide (cf. Fig. 5.9).[7] Analogously to the unit cell, we write Ls and L∗s for the

translational vector sets of the supercell S. It follows immediately that[7, 107]

L∗c ⊆ L∗s. (5.29)

The reciprocal superlattice vectors G build a uniform N×N×N lattice Kc∗ containing

Nk vectors k in the first Brillouin zone of the original unit cell C∗. These are the k-points

(see Fig. 5.9) used to sample the Brillouin zone in the original primitive computational

cell. In the following, we will distinguish between reciprocal superlattice vectors G ∈ L∗s

and the k-points k ∈ K∗c .

Quantities, such as the response function χ or the Green’s function G are periodic

in space

G(r + a, r′ + a) = G(r, r′), ∀a ∈ Lc. (5.30)

This implies that the Fourier representation of G can be written as[108]

G(r, r′) =
1

Nk

∑
k∈K∗c

Gk(r, r′), (5.31)

where

Gk(r, r′) =
∑

gg′∈L∗c

e−i(k+g)rGk(g,g′)ei(k+g′)r′ (5.32)
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k + g G g

C*
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g ’

Figure 5.9: Illustration of relation between reciprocal cell C∗ (dark gray cell), k-point grid

K∗c (red dots in dark gray square) and reciprocal supercell S∗ (small light gray square) for

a two dimensional cubic cell with S = (2× 2)C. The vector g is a reciprocal lattice vector

of C∗ and G is a reciprocal lattice vector of S∗. The set of all reciprocal lattice vectors L∗c
is represented by big dots and is a subset of L∗s, the set of all reciprocal superlattice vectors

(small and big dots). The k-point k coincides with the reciprocal superlattice vector G′ and

every vector k + g can be represented by a reciprocal superlattice vector G.
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and Nk = N3 denotes the number of k-points in the first Brillouin zone of the unit cell.

In the last expression the notation

Gk(g,g′) = G(k + g,k + g′), ∀k ∈ K∗c ,g ∈ L∗c (5.33)

was used, which indicates that for each k ∈ K∗c a different set of points in the reciprocal

space k + g,k + g′ form a matrix Gk with indices g,g′ ∈ L∗c . We note that for each k,

the set {k + g}g∈L∗c covers a different subset of L∗s, so that

L∗s =
⋃

k∈K∗c

{k + g}g∈L∗c (5.34)

holds. This implies that G = k + g is a reciprocal lattice vector of the supercell (dashed

vector in Fig. 5.9) and that the Fourier transform (5.31) alternatively can be written as

G(r, r′) =
∑

GG′∈L∗s

e−iGrG(G,G′)eiG
′r′ . (5.35)

The notation G(G,G′) indicates a single huge matrix with indices G,G′ ∈ L∗s. However,

one has to keep in mind that this matrix is essentially block diagonal. That is, for two

reciprocal lattice vectors G = k + g and G′ = k′ + g′, the matrix reads

G(G,G′) = δkk′Gk(g,g′). (5.36)

Therefore, the two representations (5.35) and (5.31) have the same complexity.

In analogy, using inverse arguments for the polarizability, one obtains the two real

space Fourier representations

χk(g,g′) =
∑

rr′∈C
ei(k+g)rχ(r, r′)e−i(k+g′)r′ (5.37)

χ(G,G′) =
∑

RR′∈S
eiGRχ(R,R′)e−iG

′R′ . (5.38)

We summarize the most important result of this subsection so far. The relations

(5.31) and (5.35) imply that the Fourier transformation can be evaluated in two different

ways. In Eq. (5.31) the Fourier transformation Gk(g,g′) is a set of N×N×N individual

matrices ”centered” at k ∈ K∗c with reciprocal lattice vectors of the unit cell g ∈ L∗c .

Alternatively, the Green’s function (5.35) can be considered to be a single huge block

diagonal matrix G(G,G′) with matrix indices G,G′ of the reciprocal lattice of the

supercell L∗s. We note that Steinbeck et al. used similar strategies [see Ref. 69], but with

111



5. LOW SCALING ALGORITHM FOR THE RANDOM PHASE
APPROXIMATIONS

one crucial difference: in their work an auxiliary supercell Green’s function is defined

without the Bloch phase factors e−ik(r−r′). Although elegant, we found no way to extend

this prescription to the projector augmented wave (PAW) methodology discussed below.

The present strategy is equally efficient, but exploits the translational symmetry relations

G(r− a, r′) = G(r, r′ + a) (5.39)

G(r, r′) = G∗(r′, r) (5.40)

instead.

These relations follow trivially from the orbital representation of the Green’s function

(2.109) and imply the symmetry of the matrix G(R,R′) illustrated in Fig. 5.10 with the

irreducible stripe G(r,R′) depicted by the thick rectangle. This stripe is obtained from

the primitive block Gk(r, r′) using

Gk(r,R′ = r′ + a) = e−ikaGk(r, r′) (5.41)

with (5.31) and contains all necessary data in order to determine the remaining matrix

elements of the super matrix G(R,R′).

In practice, we exploit these symmetries and evaluate the Fourier transformation of

the Green’s function in two steps:

G(r,k + g′) =
∑

g∈L∗c
Gk(g,g′)ei(k+g)r, (5.42)

G(r,R′) =
∑

G′∈L∗s
e−iG

′R′G(r,G′). (5.43)

The first spatial index of the Green’s function G is determined by an FFT using the

unit cell C, and the second spatial index by an FFT with respect to the supercell S.

In the second FFT, G′ is in the union of k + g′ as specified in Eq. (5.34). Hence, the

first spatial index of G is restricted to the unit cell, whereas the second extends over the

entire supercell building the irreducible stripe G(r,R′).

Analogously, the FFT of the RPA polarizability from real space to reciprocal space

is determined by

χ(r,G′) =
∑

R′∈S
χ(r,R′)eiG

′R′ (5.44)

χk(g,g′) =
∑
r∈C

e−i(k+g)rχ(r,k + g′). (5.45)
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Figure 5.10: Symmetry of the Green’s function matrix in real space G(R,R′) for a S =

(2× 2)C supercell with the irreducible stripe G(r,R′) (thick rectangle). Due to Eq. (5.40)

the blocks below the diagonal are complex conjugated.

Because of |L∗s| = Nk|L∗c | = NkNb (with Nb being the total number of considered basis

vectors g) the time complexity for all steps (5.42)-(5.45) is of the order

ln(N2
bNk)N

2
bNk ≈ ln(N2Nk)N

2Nk, (5.46)

i.e. roughly linear in Nk and quadratic in the system size N .

A final remark concerning the first FFT in Fig. 5.1 is in place here. In principle, the

FFT step for the Green’s functions from reciprocal to real space can be avoided by eval-

uating the Green’s function directly on the real space grid. However, this would require

considerably more storage for the Green’s function and would increase the compute cost,

since the number of real space points is at least twice but often up to 8 times larger than

the number of plane wave coefficients.

5.4 Forming G(τ)G(−τ) in the PAW Basis

In analogy to the previous section, here and in the following small bold letters indicate

vectors of the unit cell, whereas capital letters represent vectors in the super cell.
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In this section we discuss step two of Fig. 5.1, the contraction of two Green’s functions

in the space-time domain (3.25) yielding the independent-particle polarizability [53, 69]

χ(r,R′, τ) = −G∗(r,R′, τ)︸ ︷︷ ︸
=G(R′,r,τ)

G(r,R′,−τ). (5.47)

For the PAW basis, this is a rather involved step and requires careful consideration. We

start with a short review of the PAW method.

Within the PAW approach, the all-electron orbital φi is represented by the corre-

sponding pseudo orbital φ̃i via the linear transformation[104, 109]

|φi〉 =
∣∣∣φ̃i〉+

∑
µ

(
|ψµ〉 −

∣∣∣ψ̃µ〉) 〈p̃µ| φ̃i〉. (5.48)

Here the second term acts only within the augmentation sphere ΩR enclosing the atoms.

The index µ = (Rµ, nµ, lµ,mµ) is an abbreviation for the atomic site Rµ, the energy

quantum number nµ and angular momentum numbers (lµ,mµ) characterizing the solu-

tion ψµ of the Schrödinger equation for a reference atom. The pseudo counterparts ψ̃µ

are smooth functions coinciding with ψµ outside ΩR. They are dual to the projectors p̃µ

within ΩR

〈p̃µ| ψ̃ν〉 = δµν . (5.49)

For further information about the chosen projectors p̃µ and pseudo partial waves ψ̃µ we

refer the reader to the literature.[104, 109]

Representing the all-electron orbitals φi by pseudo orbitals φ̃i using Eq. (5.48),

additional contributions to χ appear. These contributions stem from the evaluation of

the all-electron matrix elements[104, 110]

〈φi| ei(k+g)r |φa〉 =
〈
φ̃i

∣∣∣ ei(k+g)r
∣∣∣φ̃a〉+

∑
µν,r∈C

ei(k+g)r〈φ̃i | p̃µ〉Qµν(r)〈p̃µ | φ̃a〉 (5.50)

and can be identified with the help of Eq. (3.41). Here

Qµν(r) = ψ∗µ(r)ψν(r)− ψ̃∗µ(r)ψ̃ν(r) (5.51)

describes the difference between the charge density of the pseudo and all electron partial

waves. Typically, this function is oscillatory in the augmentation sphere ΩR, so that in

practice further approximations to Qµν are applied. In the present code, the function

is expanded in an orthogonal set of functions, and the rapid spatial oscillations are
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neglected beyond a certain plane wave energy cutoff. More details about this topic can

be found in Refs. 104, 111.

Using Eqs. (5.50) and Fourier transforming the RPA response function (3.41) to real

space and imaginary time iτ , the resulting expression for χ(r,R′, τ) contains four terms

χ(r,R′, τ) =

4∑
j=1

χ(j)(r,R′, τ). (5.52)

Each contribution χ(j) is characterized as follows: χ(1) contains a summation of pseudo

terms only

χ(1)(r,R′, τ) ∝ ŷ(τ, ξia)φ̃i(r)φ̃∗i (R
′)φ̃∗a(r)φ̃a(R

′) (5.53)

and is represented on a plane wave grid. The function ŷ was defined in Eq. (5.13) and

ξia indicates the transition energy and appeared in Eq. (3.38) for the first time. The

second χ(2) and third contribution χ(3) contain terms from one augmentation sphere

χ(2)(r,R′, τ) ∝ ŷ(τ, ξia)φ̃i(r)φ̃∗a(r)
∑
αβ

〈φ̃i | p̃α〉Qαβ(R′)〈p̃β | φ̃a〉 (5.54)

χ(3)(r,R′, τ) ∝ ŷ(τ, ξia)φ̃
∗
i (R

′)φ̃a(R
′)
∑
µν

〈φ̃a | p̃µ〉Qµν(r)〈p̃ν | φ̃i〉. (5.55)

The fourth term contains only augmentation terms

χ(4)(r,R′, τ) ∝ ŷ(τ, ξia)
∑
µναβ

〈φ̃a | p̃µ〉Qµν(r)〈p̃ν | φ̃i〉〈φ̃i | p̃α〉Qαβ(R′)〈p̃β | φ̃a〉. (5.56)

All terms need to be accounted for when computing the RPA polarizability from Green’s

functions using the contraction formula (5.47). For this purpose, we define the following

auxiliary functions

G
(1)
k (g,G′, τ) =

∑
n

〈φ̃nk | g〉〈G′ | φ̃nk〉e−εnkτ (5.57)

G
(2)
k (µ,G′, τ) =

∑
n

〈φ̃nk | p̃µ〉〈G′ | φ̃nk〉e−εnkτ (5.58)

G
(3)
k (g, α, τ) =

∑
n

〈φ̃nk | g〉〈p̃α | φ̃nk〉e−εnkτ (5.59)

G
(4)
k (µ, α, τ) =

∑
n

〈φ̃nk | p̃µ〉〈p̃α | φ̃nk〉e−εnkτ (5.60)
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where the notation

〈φ̃nk | g〉 =
∑
r∈C

φ̃∗nk(r)eigr (5.61)

〈φ̃nk | G〉 =
∑

R′∈S
φ̃∗nk(R′)eiGR′ (5.62)

was used, the Fermi energy was set to µ = 0 and G = k + g is assumed for Eqs.

(5.57)-(5.59). For each function G(j) two representatives G
(j)
< , G

(j)
> , for occupied and

unoccupied states, are stored. They should be seen as lesser and greater parts of the

Feynman propagator, see section 2.4 and Eq. (2.46). Lesser Green’s functions (εi < 0)

are thereby evaluated on the negative, greater functions (εi > 0) on the positive time

axis τ only. In this way, the resulting Green’s functions G(j) are linear combinations of

decaying exponentials and bounded in time.

The computational cost for each term G(j) is

NωNkN
3
b ≈ NωNkN

3, (5.63)

where Nω is the number of imaginary time/frequency points. Using the FFTs (5.42)

and (5.43) from the previous section, the real-space Green’s functions are contracted as

follows:

χ(r,R′, τ) = G
(1)
> (r,R′, τ)G

∗(1)
< (r,R′,−τ)

+
∑
µν

G
(2)
> (µ,R′, τ)G

∗(2)
< (ν,R′,−τ)Qµν(r)

+
∑
αβ

G
(3)
> (r, α, τ)G

∗(3)
< (r, β,−τ)Qαβ(R′)

+
∑
µναβ

G
(4)
> (µ, α, τ)G

∗(4)
< (ν, β,−τ)Qµν(r)Qαβ(R′), τ > 0 (5.64)

Here, the atom positions Rµ,Rν are restricted to the unit cell C, whilst Rα,Rβ take

values within the supercell S (cf. Sec. 5.3).[69] From χ(r,R′, τ), χk(g,g′) is finally

determined at individual k-points using Eqs. (5.44) and (5.45). After a successive cosine

transformation, discussed in the previous section, the correlation energy in the random

phase approximation is then determined in the usual manner at each k-point.[90]

Considering the computational time for each step (5.64), (5.63), (5.46) and (5.24)

for the evaluation of ERPA
c shows that the present algorithm determines the RPA energy

with a computational cost of ≈ NkN
3
b . This reduces the time complexity by a factor

≈ NkNb compared to previous implementations.
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5.5 Symmetry

The present code allows to use symmetry partially. For instance, the density functional

theory calculations are performed using only the irreducible wedge of the Brillouin zone,

and furthermore the RPA correlation energy is only calculated for the irreducible k-

points k using χk(g,g′) [compare Eq. (5.45)]. The Green’s function Gk(g,g′) could

be also constructed in the irreducible wedge, however, presently we first use symmetry

to construct the orbitals at all k-points and then construct the Green’s function for all

k-points in the full Brillouin zone.

Currently we disregard any symmetry, whenever a supercell index G or R is involved.

This implies that all quadratically scaling steps fail to benefit from symmetry, whereas

the cubically scaling steps (except the construction of Gk(g,g′)) exploit symmetry. This

seems to be a reasonable compromise between the implementation effort and the compute

cost.

5.6 Technical details

In the present work, all calculations were performed with the Vienna Ab initio Simulation

Package (VASP) using the projector augmented wave method of Blöchl in the implemen-

tation of Kresse and Joubert.[104, 109] The Si potential was constructed to conserve

the scattering properties of the atoms well up to about 15 Ry above the vacuum level.

This was achieved by using additional projectors above the vacuum level. Core radii

of 1.90 a.u. were used. Specifically, the Si GW potential released with vasp.5.2 was

employed.

All plane waves with the kinetic energy Ecut lower then 250 eV are used in the DFT

calculations, and the DFT calculations are performed using the PBE functional.[19] The

exact exchange (EXX)+RPA@PBE calculations are performed at the same plane wave

cutoff. When summations over unoccupied Kohn-Sham states are required (virtual or-

bitals), all orbitals spanned by the basis set are determined by exact diagonalization of

the Kohn-Sham Hamiltonian. The correlation energy in the random phase approxima-

tion ERPA
c is then calculated as discussed in the previous section.

The response function itself is also expanded in a plane wave basis set. The plane

wave cutoff for this basis set is set to 120-166 eV (smaller than the basis set for the
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orbitals), and the correlation energy is extrapolated to the infinite basis set limit as-

suming that the basis set error falls off like the inverse of the number of plane waves

included in the basis set for the response function.[90] In the VASP code, this requires a

single calculation, as the response function is truncated at different cutoffs after calcu-

lation at the largest basis set of 166 eV. The extrapolation is performed automatically

by the code, requiring a minimum of extra computation time. The structures used for

the calculations were determined by relaxing all internal degrees of freedom at the PBE

level (keeping the cell shape and volume fixed). In the subsequent RPA calculations, the

PBE structures were used, since forces and the stress-tensor are presently not available.

Similar strategies are also routinely adopted in diffusion Monte-Carlo simulations and

most quantum chemistry, e.g. coupled cluster, calculations.

5.7 Application to Si Defect Energies

5.7.1 Bulk properties

With the present PAW potentials the volume per atom is 20.46 Å3 and 15.35 Å3 for

cubic diamond and β-Sn for PBE. As a first test, we calculated the volume per atom for

the RPA for these two phases. Using 6 × 6 × 6 k-points and 10 × 10 × 10 k-points for

diamond and β-Sn respectively, the predicted atomic volumes are 20.0 Å3 and 15.25 Å3,

slightly smaller than the PBE volumes. Per atom, the RPA energy difference between

the two phases is 380 meV. A similar energy difference of 390 meV using the same PAW

potentials was also calculated by Xiao et al. in Ref. 112.

This is 100 meV larger than the energy difference predicted by the PBE functional

(280 meV). Using diffusion Monte Carlo (DMC) Batista et al., Alfè et al. and Henning

et al. predicted values of 480±50 meV,[113] 475±10 meV,[114] and 424±20 meV,[115]

respectively (the latter two values are including core polarization contributions). In this

case, the DMC does not seem to be suitable to gauge the quality of the RPA, since

the transition pressure from diamond to the β-Sn phase predicted from the DMC data

is about 16.5 GPa[113] and 14.0 ± 1.0 GPa,[115] respectively, which is larger than the

experimental estimates of 10.3-12.5 GPa.[114] The energy difference predicted by the

RPA (380 meV), however, corresponds to a transition pressure of about 13.5 GPa in

reasonable agreement with the experimental estimates. The origin of the error of the

DMC is not known, but we believe it could be related to the fixed node approximation,
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or insufficient convergence of the sampling of the Brillouin zone for the metallic β-Sn

phase.

Including the 2s and 2p electrons in the valence for the RPA calculations has a neg-

ligible effect on the predicted volumes.[116] However, it still lowers the energy difference

between the two phases to 340 meV. A similar reduction from core polarization was

also predicted in DMC calculations.[114] This lowers the predicted transition pressure

to 12 GPa, now in excellent agreement with the experimental estimates. Overall, these

results support the quality of the RPA predictions. For a more detailed discussion of

RPA results obtained with the same code, for instance inclusion of zero point vibration

effects, we refer to Xiao et al.[112]

5.7.2 Time complexity for large supercells
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Figure 5.11: Computational time for 64, 128 and 216 atoms as a function of the number

of k-points (in the full Brillouin zone). The total (wall clock) time is shown for 64, 128

and 224 cores. The computational demand increases linearly in the number of k-points and

cubically in the number of atoms. The deviation from linearity is related to the need to

double the number of cores for 3 × 3 × 3 k-points (64 atoms) and 2 × 2 × 2 k-points (128

atoms), and the non perfect scaling with the number of cores. The corresponding reported

compute time has been doubled.

The results for the Si self interstitials and Si vacancies will be discussed in the next

section. Here we briefly elaborate on the required computation time. The present cal-
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culations were performed for 64, 128 and 216 atom supercells (and 256 for the vacancy).

The RPA corrections were determined for various k-point grids starting with the Γ-point.

For the smallest cell, we could perform RPA calculations for up to 3× 3× 3 k-points in

less than 4 hours on 128 cores, a very modest computational effort. Calculations with

more k-points are difficult, since the memory requirements would force us to increase

the number of cores, but the parallel efficiency of the present code version is not yet

very good making such calculations rather inefficient. The loss of efficiency is already

witnessed for 3×3×3 k-points, where we had to increase the number of cores from 64 to

128, gaining only little speedup from the additional 64 cores (compare Fig. 5.11). This is

the reason why the reported computation time for 64 atoms and 3×3×3 k-points (scaled

back to 64 nodes) deviates from the straight line behavior. For 128 atoms we performed

Γ-only calculations and calculations using 2 × 2 × 2 k-points. Again calculations using

2 × 2 × 2 k-points required an increase in the number of cores, here from 128 to about

200. A k-point sampling with 4 k-points was also realized by using only every second

k-point of the 2 × 2 × 2 grid, corresponding to an fcc sub-grid of the full simple cubic

grid. For 216 atoms, the calculations were performed with a single k-point and two and

four k-points. The second k-point corresponds to the coordinates (1/4, 1/4, 1/4) 2π/a

or a bcc sub-grid of a 2× 2× 2 mesh.

In order to investigate the scaling with system size in more detail, we performed

RPA calculations for 54, 128 and 250 bcc unit cells using the Γ point, see Tab. 5.1. The

timings reported in Tab. 5.1 and Fig. 5.11 clearly confirm that the present code scales

linear in the number of k-points, and roughly cubically with the number of atoms as

discussed at the end of Sec. 5.4.

A few final comments are in place here. First, the reported timings were obtained

using a complex code version. At the Γ-point, however, the response function is real

valued, which allows to reduce the computational time by a factor two compared to

the reported values. The corresponding calculations take 6 minutes for 64 atoms on

64 cores, or about 1 hour for 216 atoms on 224 cores. The scaling is very close to the

expected scaling. We can also compare the computational time to our previous code

version that scales quadratically with the number of k-points and with the fourth power

of the number of atoms. For 64 atoms and the real Γ-point version, the old version

required a reasonable 30 minutes (only a factor 5 slower than the new version), however,

for 4 k-points the calculations are already a factor 10 slower, and for 3× 3× 3 k-points
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we expect the factor to be around 100. Considering common run time constraints on

supercomputers, this would make the calculations almost impossible using the previous

RPA implementation.[90]

Table 5.1: Timings in minutes for an RPA calculation for different bulk Si bcc cells. The

calculations are done for the Γ point only and the number of cores is increased with system

size. Since one of the computational steps scales only quadratically with system size, the

total scaling is better than cubic.

atoms cores time time×cores/atoms3 × 103

54 32 14.3 2.91

128 64 83.2 2.54

250 128 299.9 2.45

5.7.3 Interstitial and vacancy

5.7.3.1 Considered structures and k-points sampling

We start with a brief discussion of the various self interstitials. The energetically most

stable self-interstitial is the so called dumbbell configuration (X), in which two Si atoms

reside at the position originally occupied by a single Si atom. The “dimer” is placed

symmetrically in this position and oriented parallel to the [110] direction. The second

most favorable position is the hexagonal hollow (H), where the Si interstitial is coordi-

nated to six Si atoms forming a hexagonal ring. In PBE, this position is unstable, and

the central Si atom tends to move slightly away from the central position in a direction

orthogonal to the hexagonal ring.[117] As for instance done by Rinke et al., we denote

this lower symmetry 6 fold coordinated position as C3v (corresponding to the symmetry

of this configuration).[118] Somewhat higher in energy than the other interstitial sites

is the tetragonal site (T), in which the additional Si atom is coordinated to 4 nearest

Si neighbors, so that the local coordination of the interstitial is identical to the other

Si atoms. This position is unique insofar that the highest occupied orbital is three fold

degenerate (t2 symmetry) but only occupied by 2 electrons. This would suggest that

the position is susceptible to a Jahn-Teller distortion, but at least in PBE and for 64

atoms, a calculation of all vibrational modes does not show any instabilities. Likewise

the vacancy (V) is characterized by a three fold degenerate t2 highest orbital that is
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also occupied by 2 electrons. This configuration is known to undergo a Jahn-Teller dis-

tortion to a D2d symmetry with slow supercell convergence.[119] In PBE, we observe

the distortion from the 216 atom cell on, with the distortion fully developed only for a

256 atom cell; e.g. the magnitude of the structural distortion is about 25 % smaller in

the 216 atom cell than in the 256 atom cell. For the smaller cells, the distortion only

occurs if the k-point mesh is chosen artificially coarse (e.g. 2× 2× 2 for 64 atoms), and

we have used such k-point sets to prepare the symmetry reduced Jahn-Teller distorted

vacancy (VJT) configuration. The energy difference to the undistorted configuration is,

however, small and only of the order of 20 meV and can be safely disregarded for the

present purpose.

The DFT calculations were carefully converged. In agreement with other studies we

found that 4×4×4 k-points are usually sufficient for 64 atom cells, and 2×2×2 k-points

for 216 atom cells.[119, 120] The only exception is the metallic T configuration, which

in our calculations only converged to meV accuracy using slightly more k-points. The

final PBE values reported in Tab. 5.2 were obtained using 8× 8× 8, 6× 6× 6, 4× 4× 4

and 3×3×3 k-points for 16, 64, 128 and 216 atoms. For the Si vacancy also a 256 atom

cell with 3 × 3 × 3 k-points was used. With these settings the values are converged to

within a few meV. Except for a constant offset the present PBE values agree well with

the values reported by Gao et al.[120] It is gratifying that two very different codes can

obtain some 10 meV agreement for tiny relative energy differences, when the setups are

carefully converged.

5.7.3.2 Energetics of point defects

The results for Si self interstitials and Si vacancies are summarized in Tab. 5.2. The RPA

energies were evaluated using 16 frequency points. For 64 atoms, increasing the number

of frequency points from 16 to 20 changed the results by less than 0.5 meV supporting the

previous claim that few µeV accuracy per atom can be attained (the changes are largest

for the defects with very small or even vanishing Kohn-Sham one electron gaps). Here we

adopted the strategy to evaluate the difference between RPA+EXX and PBE at various

k-point set. This strategy seems to work quite well: even though the PBE energies are

wrong by more than 1.2 eV using the Γ-point only (see lines marked X(PBE)), the error

in the difference between RPA+EXX and PBE is at most 150 meV at the Γ-point for

64 atoms. First useful corrections to DFT can hence be obtained already with a rather

122



5.7 Application to Si Defect Energies

Table 5.2: The second, third and fourth columns report the difference between RPA

and PBE formation energies for different defect configurations, k-points and supercells,

with the k-point set indicated in the first row (all values in eV). The second row in each

set reports the k-point convergence of the PBE formation energies. The columns PBE and

RPA report the final converged formation energies. The RPA value was calculated by adding

the most accurate corrections to the k-point converged PBE values. The range separated

range separated RPA (rsRPA) values are from Ref. 121, and the values for Heyd-Scuseria-

Ernzerhof (HSE)+van der Waals (vdW) are from Ref. 120.

16 atoms 23 33 43 PBE RPA

X(PBE) 2.525 3.481 3.541 3.561

X 0.824 0.706 0.711 3.561 4.27

C3v 0.855 0.800 0.745 3.644 4.39

H 0.830 0.750 0.707 3.740 4.45

T 0.930 0.882 0.868 3.659 4.53

V 0.426 0.444 0.446 3.023 3.47

X→H 0.862 0.809 0.760 3.783 4.54

64 atom Γ 23 33 PBE RPA rsRPA

X(PBE) 2.440 3.616 3.611 3.614

X 0.818 0.659 0.654 3.614 4.27 4.50

C3v 0.849 0.788 0.745 3.651 4.40

H 0.820 0.753 0.708 3.658 4.37 4.65

T 1.025 1.080 1.046 3.790 4.84

VJT 0.851 0.813 0.781 3.642 4.42 4.24

X→H 0.789 0.770 0.698 3.924 4.62 4.99

128 atom Γ 4 23 PBE RPA

X(PBE) 2.662 3.603 3.571 3.610

X 0.814 0.670 0.683 3.610 4.29

C3v 0.843 0.839 0.817 3.647 4.46

H 0.832 0.775 0.755 3.654 4.41

T 1.153 1.078 1.112 3.766 4.88

VJT 0.855 0.795 0.829 3.636 4.47

216 atom Γ 2 4 PBE RPA vdW+HSE

X(PBE) 3.256 3.341 3.571 3.566

X 0.724 0.710 0.632 3.566 4.20 4.41

C3v 0.820 0.812 0.743 3.619 4.36 4.40

H 0.789 0.779 0.707 3.626 4.33

T 1.105 1.144 1.139 3.791 4.93 4.51

VJT 0.789 0.755 0.742 3.646 4.39 4.38

256 atom Γ 2 PBE RPA

VJT(PBE) 3.272 3.518 3.589

VJT 0.839 0.745 3.589 4.33
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coarse sampling. With 2 × 2 × 2 k-points the errors in the RPA correction are below

50 meV, which is most likely acceptable for many purposes. For 128 atoms, the difference

between 4 k-points (the fcc grid) and 8 k-points is a rather modest 20 meV. As a general

rule of thumb, it seems that the k-point errors in the RPA corrections are about 1/3

of the k-point errors of the PBE energies. This also suggests that 4 and 2 k-points will

yield only errors of about 10-20 meV for the calculation of the RPA correction for the

216 and 256 atom cell, respectively.

Considering the Γ-point only, the errors in the DFT energies and the RPA corrections

are 300 meV and 100 meV, respectively, for the largest cells (216 and 256 atoms). This

confirms the observation of many previous studies that calculations at the Γ-point should

be considered with caution. Furthermore, we note that the convergence with the number

of atoms of both, the DFT energies and the corrections is not monotonic but shows some

residual fluctuations. This might be expected, since the cell shape – simple cubic for

64 and 216 atoms, but fcc for 128 atoms – influences the electronic dispersion, the long

range electrostatic, as well as elastic interactions between the defects.[119, 122] For the

present case, the k-point converged RPA formation energies vary by at most 100 meV

between different super cells.

We start with a comparison with the most accurate theoretical values presently

available, DMC data. Our results yield consistently lower formation energies than all

DMC calculations, although the agreement with the latest DMC data is overall very

good, in particular, for relative energies. Parker et al. predicted values of 4.4(1), 5.1(1),

and 4.7(1) for X, T and H using DMC,[123] compared to our values of 4.20, 4.93 and 4.33

(largest supercell). We tend to believe that the residual underestimation by 200 meV

is an error of the RPA, since the DMC values are so consistently higher in energy.[113,

123, 124] However, one should also keep in mind that most DMC calculations were

performed with fairly small 16-atom supercells [113] with extrapolation to the dilute

limit based on DFT energies. Likewise the k-point sampling in the DMC calculations

was always limited to a single k-point, which might affect the predicted energies. In

most DMC calculations, however, many-electron k-point errors due to the discretization

of the momentum transfer between two k-points are estimated using the structure factor

method, a method we could but have not applied in our RPA calculations.[123, 125] This

implies that the k-point errors that we observe in the RPA are not transferable to well
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extrapolated DMC calculations, where many electron k-point errors are expected to be

much smaller.

The present formation energies are also very well within the range of experimental

values and, furthermore, agree reasonably well with the HSE calculations of Gao et

al.,[120] and to a lesser extend with the vdW+HSE calculations by the same authors.

Specifically, the most stable structure is the dumbbell configuration X, followed by the

interstitial in the hexagonal hole H, which is about 100 meV higher in energy, in excellent

agreement with HSE calculations. The main discrepancy to the results of Gao is our

instability of the tetragonal site.[120] In our calculations, this site is 600 meV above

the dumbbell configuration X (in agreement with DMC data). In HSE, the difference is

only 300 meV, and in vdW+HSE it is just 100 meV. In vdW-DFT this configuration is

lowered compared to HSE by an increase of the polarization at the four nearest neighbor

sites in the vdW+HSE calculations. In agreement with this observation, our negative

correlation energy is largest for this metallic configuration, almost 2 eV lower than for

the other interstitial sites. However, the unfavorable EXX energy of this configuration

more than makes up for this increase in the correlation energy. The origin for the

unfavorable EXX energy is the “metal” like behavior of this specific configuration with

three degenerate partially occupied p orbitals at the Fermi-level: As for any metallic

configuration, exact exchange penalizes this configuration, here by more than 2 eV. This

is also the reason why this configuration is less favorable in hybrid functionals. We

believe that the present seamless approach should give a better description than an

introduction of vdW corrections on top of a hybrid functional with an ad hoc mixture

between exact exchange and semi-local exchange. After all, vdW-DFT is derived from

the RPA correlation energy expression considering the interaction between two coupled

quantum harmonic oscillators.[126] However, one also needs to concede that the accuracy

of the RPA for configurations with symmetry degenerate states at the Fermi-level is

certainly not yet fully established and this issue might require further studies. Before

continuing, we finally note that the RPA does predict the hexagonal hole to be lower in

energy than the symmetry broken C3v configuration. This is consistently observed for

all supercell sizes. In this case, RPA clearly does not favor a symmetry broken solution,

whereas PBE does.
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5.7.3.3 Diffusion barrier of interstitial

The final quantity we consider is the diffusion barrier of the interstitial Si atom. In all

recent publications, including rsRPA and vdW corrected HSE, it was agreed that the

lowest activation barrier for diffusion is encountered for the diffusion of one atom from

the dumbbell configuration X to the hexagonal hole H.[120, 121] We first tested this

conjecture by performing finite temperature molecular dynamics at 800 K for the 64

atom cell, the PBE functional and a 3 × 3 × 3 k-point mesh. Indeed, Si diffuses fairly

rapidly with all diffusion events occurring from the dumbbell configuration X to the

hollow site H, followed by a rapid jump from H to another site X’.

In the RPA calculations, the estimated activation enthalpy for interstitial diffusion

is 4.62 eV (64 atom cell), in very good agreement with estimates of 4.69 eV,[127] but

smaller than the estimates of Bracht et al. (4.95±0.03 eV).[128] The diffusion barrier

from X to H is calculated to be 350 meV, only slightly larger than the recent value

predicted from HSE+vdW (290 meV).[120] Both values are in reasonable, but certainly

not great, agreement with the best experimental estimates of 200 meV measured at

cryogenic temperatures (from −273 to −150◦ C).[129] The remaining difference between

RPA and HSE+vdW could be related to the fact that we have used PBE geometries

throughout this work, whereas Gao et al. performed the calculations consistently using

geometries determined by HSE+vdW.

Our present estimate for the diffusion barrier differs from the value of 490 meV

obtained using rsRPA by Bruneval.[121] Furthermore, whereas the vacancy formation

energy of 4.33 eV is identical to rsRPA, our interstitial formation energies are about 200-

300 meV lower than those predicted using rsRPA.[121] Since the technical parameters

of the calculations of Bruneval are similar to our setups, this is either a consequence of

different pseudopotentials or range separation. Although range separation is an approach

that allows to reduce the number of occupied orbitals with little impact on accuracy,

the results, to some extend, always depend on the range separation parameter, and the

optimal choice varies between systems with small lattice constants (large Fermi-vector)

and systems with large lattice constants (small Fermi-vector). Also, range separation

spoils the basis set extrapolation: For standard RPA the extrapolation with the basis

set size of the response function strictly follows a one over basis set size behavior for all

systems we have yet considered. This is not the case, when range separation is used,
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so that residual errors are difficult to control and estimate. In general, we hence prefer,

whenever computable, the standard RPA to an approximate method.

5.7.3.4 Small unit cells

Finally, we would like to comment on the smallest 16 atom unit cell, since most high level

DMC calculations are performed for such a small unit cell. Except for the tetragonal

site and vacancy, the results are in reasonable agreement with the larger unit cells, both

on the level of the PBE, as well as, on the level of the RPA. Furthermore, the calculated

energy correction PBE-RPA are accurate to about 50 meV, except again for the vacancy

and tetragonal site. We recall that these are the two configurations resulting in partially

filled states. Obviously aggregation of such defects reduces their formation energy. This

effect is most pronounced and only relevant for the vacancy, which is predicted to be

much more stable in the 16 atom unit cell than in the larger unit cells. In fact, our

results imply that, configuration entropy disregarded, vacancies should cluster. This is

in agreement with Ref. 130, where diffusion of vacancies in Si has been investigated.

5.8 Discussion and Conclusions

In this chapter we have discussed a cubic scaling algorithm for the calculation of the RPA

correlation energy and have shown practical applications of the algorithm to supercells

containing up to 256 atoms.

The main strategy of the cubic scaling algorithm is to determine the Green’s function

for positive and negative imaginary time and, concomitantly, occupied and unoccupied

states. This step scales like Norbitals ×Nb ×Nb, where Nb specifies the basis set size for

the orbitals [see Eq. (5.63)].

The independent particle polarizability is then trivially given by the point wise con-

traction in real-space of these two Green’s functions at any considered time point [cf.

Eq. (5.47)]. The contraction is formally only a step scaling like Nreal × Nreal, where

Nreal is the number of grid points in real space. In practice, this step is fairly involved

in the PAW method, so that the computational time of this step is often similar to the

calculation of the Green’s functions itself [see Eq. (5.64) in Sec. 5.4].

The final step is the Fourier transformation from imaginary time to imaginary fre-

quency. This step is discussed in detail in section 5.2 also elaborating on the issue
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of optimal time and frequency grids and their duality. We, however, stress here that

an accuracy of few µeV/atom can be attained using about 16 imaginary time and fre-

quency points. After the Fourier transformation to imaginary frequency, the calculations

proceed in the same manner as standard RPA calculations, by diagonalization of the po-

larizability using the plasmon formula for the correlation energy [cf. Eq. (3.37)].

As demonstrated here, calculations for 64 Si atoms and 3 × 3 × 3 k-points can be

performed in about 5 hours on 128 cores. About the same time is required for 216 Si

atoms and 2 k-points. Because the polarizability is real valued at the Γ-point, the Γ-point

only calculations are much cheaper, requiring about 6 minutes for 64 atoms on 64 cores,

or one hour for 216 atoms on 224 cores. To put the effort for all the RPA calculations into

perspective: the computation time for calculating all occupied and unoccupied orbitals

spanned by the basis set using an efficient parallel scaLAPACK routine– a prerequisite for

RPA calculations –requires about one third to one half of the computational time of the

final RPA step. We hope that this high efficiency, makes RPA calculations sufficiently

cheap, to perform them routinely a posteriori for any system of interest.

The main physical objective of the present work was a study of the Si interstitial and

Si mono-vacancy energies at the level of the RPA. The most stable interstitial defect is

the dumbbell configuration with a formation energy of 4.20 eV. The activation energy for

diffusion from the dumbbell configuration to the hollow site is predicted to be 350 meV.

These values are in reasonable agreement with very recent HSE calculations including

semi-empirical van der Waals corrections (dumbbell energy 4.41 eV and migration barrier

290 meV, respectively). The vacancy formation energy is calculated to be 4.38 eV, also

in excellent agreement with the HSE+vdW calculations (4.41 eV). We, however, observe

that metallic configurations such as the tetragonal interstitial site are significantly higher

in energy than predicted with HSE and HSE+vdW, and generally the energy landscape

is not as ’washed’ out and featureless as in the HSE+vdW prescription. All in all, our

result are closer to the straight HSE calculations than the HSE+vdW results, except for

the diffusion barrier agreeing well with the HSE+vdW results.

Comparison of the present values with, in principle, highly accurate DMC values is

also very gratifying. In general, all predicted interstitial energies are roughly 0.2 eV

lower than in DMC. The origin of this small shift might be related to cell size issues in

the DMC or an error of the RPA. Finally, we have reported that the RPA yields a very

good prediction for the transition pressure between diamond Si and β-Si of about 12
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GPa (when 2s and 2p electrons are included in the valence). Compared to experiment

(10-12 GPa), this is slightly better than the best DMC estimates of about 14 GPa. In

general, the present work again confirms that the RPA is a promising and quite accurate

method to estimate correlation energies. With the present cubically scaling algorithm,

defect calculations and the calculation of adsorption energies on surfaces should become

a routine task.
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6

Merging GW with DMFT

In this chapter we discuss how to merge the GW approximation with DMFT. As ex-

plained at the end of previous chapter, using the GW method instead of LDA allows, in

principle, to avoid a double counting of perturbation terms as well as the determination

of the effective interaction matrix U. The general recipe for GW+DMFT calculations is

well known, see Ref. [87], and was derived in section (4.5). In summary the two Dyson

equations Eq. (4.127) and (4.128) for the propagator G and screened interaction W

need to be solved self-consistently in the limit d → ∞ with the constraints (4.129) and

(4.130). That is, the following (local) equations need to be solved self-consistently for

the undressed impurity propagator G and undressed impurity interaction U[
G−1(iωn)

]
αβ

=
[
G−1(iωn)

]
αβ

+ Σαβ(iωn) (6.1)[
U−1(iνn)

]
αβγδ

=
[
W−1(iνn)

]
αβγδ

+ χαβγδ(iνn), (6.2)

where G is the dressed propagator, W the screened interaction, Σ and χ the local self-

energy and the local polarizability of the considered system, respectively.

Following Ref. [131], a self-consistent GW+DMFT algorithm can be formulated as

follows

GW+DMFT Algorithm

GWD1 Obtain the fermionic and bosonic propagators GGW and WGW in the GW approx-

imation as solutions of

G−1
GW = G−1

0 − ΣGW (6.3)

W−1
GW = V −1 − χGW (6.4)
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In the first iteration use ΣGW = G0W and χGW = G0G0.

GWD2 Undress local (i.e. k-integrated) contributions of ΣGW and χGW in the fermionic

and bosonic propagators G and W to obtain the undressed impurity correlation

functions

G−1 = G−1
GW + Σloc

GW (6.5)

U−1 = W−1
GW + χloc

GW (6.6)

GWD3 Compute the dressed impurity propagators Gimp and χimp with the eDMFT action

S∞[d, d∗] = −
∫
τ

∫
τ ′

[
d∗α(τ)

[
G−1(τ − τ ′)

]αβ
dβ(τ ′)

+
1

2
nαδ(τ)Uαβγδ(τ − τ ′)nαδ(τ ′)

] (6.7)

using G and U from previous step.

GWD4 Extract the fermionic and bosonic impurity self-energies

Σimp = G−1 −G−1
imp (6.8)

χimp = U−1 −W−1
imp (6.9)

GWD5 Replace local contributions in the GW self-energies ΣGW and χGW by impurity

self-energies

Σnew
GW = ΣGW − Σloc

GW + Σloc (6.10)

χnew
GW = χGW − χloc

GW + χloc (6.11)

GWD6 If the convergence criteria |Σnew
GW − ΣGW | → 0 and |χnew

GW − χGW | → 0 are fulfilled

the calculation is finished, otherwise go back to GWD1 and solve Eq. (6.3) and

(6.4) with updated self-energies.

First GW+DMFT results using this algorithm were presented only recently in Refs.

[131], however, only for a single-band Hubbard model. Application of this algorithm

to realistic systems is missing so far. This is mainly due to the heavy computational

effort of the algorithm, originating in taking the frequency-dependence of the impurity

interaction U into account as well as the frequency-dependence of the GW self-energy.

In this work, we follow an alternative route, based on the following approximations:
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• A static impurity interaction

Uαβγδ = lim
ν→0

Uαβγδ(iν) (6.12)

is considered and Eq. (6.9) is neglected (DMFT instead of eDMFT).

• The G0W0 scheme, as described in section 4.2.1 with the linearized frequency-

dependence of ΣGW is used.

• The double counting correction of Eq. (6.5) is treated on the LDA+DMFT level,

see Eq. (4.140).

• A single iteration is computed, that is step GWD5 is neglected.

These simplifications reduce the computational cost remarkably, and the resulting algo-

rithm, named qpGW+DMFT in the following, can be applied to realistic systems, see

section 6.3.

However, we emphasize that the calculation of the static interaction Uαβγδ is still

controversially discussed in the literature, especially if states described by the Hub-

bard Hamiltonian are strongly entangled with the environment. The reason for this

is explained in the following section and a general method to compute effective model

interactions U from first principles is given.
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6.1 Constrained Random Phase Approximation

The following section was submitted to Physical Review B in June 2015.

6.1.1 Terminology

In this section, we focus our attention on the determination of the effective impurity

interaction matrix Uαβγδ for the real lattice vector R = 0. This term describes the effec-

tive interaction between two electron-hole pairs (wα, wδ), (wβ, wγ) and can be written as

the expectation value of an effectively screened Coulomb kernel U via Eq. (6.12). This

was first pointed out by Aryasetiawan et al., see Ref. 132, and the method is named

constrained random phase approximation (CRPA).

Following Aryasetiawan, we separate the Fockspace into two subspaces

F = D⊕ D̄, (6.13)

where states within D are described by the impurity model, i.e. on the DMFT level.

This space is named correlated or target subspace in the following and it is assumed

that D contains only a few strongly localized states ND around the Fermi level. The

complement D̄ is described by the GWA (or alternatively DFT) and contains a large

number of (usually delocalized) states.

It is convenient to average over the specific matrix elements of the static interactions

Uαβγδ and to introduce the so-called Hubbard-Kanamori parameters[132]

U =
1

ND

ND∑
α=1

Uαααα (6.14)

U ′ =
1

ND(ND − 1)

ND∑
α 6=β=1

Uαββα (6.15)

J =
1

ND(ND − 1)

ND∑
α 6=β=1

Uαβαβ . (6.16)

For cubic symmetry, there are in fact only three linearly independent parameters.[133]

Additionally, it will be interesting to consider the bare and fully screened Coulomb
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interaction averages in the same basis

V̄ =
1

ND

ND∑
α=1

Vαααα (6.17)

W̄ =
1

ND

ND∑
α=1

Wαααα. (6.18)

The corresponding matrix elements are obtained analogously to (6.12) by replacing the

impurity interaction U with the bare Coulomb kernel V (r, r′) = |r−r′|−1 or the solution

of the Dyson equation

W (iν) = V + V χ(iν)W (iν). (6.19)

Due to the nature of the GW approximation, here χ is the independent particle polariz-

ability χ0, describing all polarization effects on the RPA level, see chapter 4 and section

4.2.1 or Refs. 12, 16, 134, 135, 136.

In the CRPA the effective kernel U is obtained formally from the effective polariz-

ability

χr(iν) = χ0(iν)− χd(iν) (6.20)

and the bare Coulomb interaction V by

U(iν) = V + V χr(iν)U(iν). (6.21)

The effective polarizability χr contains all polarization effects, except those within the

correlated space D. These contributions are described by the correlated part χd, see

Ref. 137. The last expression is consistent with the DMFT limit (6.2), which in our

terminology translates into

W−1(iν) = V −1 − χ0(iν)

= V −1 − χr(iν)︸ ︷︷ ︸
U−1(iν)

−χd(iν) (6.22)

This equation may be rewritten into

W (iν) = U(iν) + U(iν)χd(iν)W (iν) (6.23)

meaning, that in the ideal case χd represents only local polarization effects on the RPA

level. This case is studied in section (6.2).
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Here we assume that D contains also non-local states |wα〉 with lattice vectors Rα

not necessarily restricted to the unit cell at Rα = 0. This on the other hand implies

that the separation (6.13) is trivial in the Bloch domain, only if the correlated space

D forms an isolated set of bands. In this case, it is namely always possible to find a

minimal Wannier basis without including itinerant states such as s- or p-states from D̄,

see Ref. 138. For these systems, the effective polarizability takes the constrained form

of the Adler and Wiser expression (3.41)

χdq(g,g′, iν) =
1

Nk

∑
k,n,n′∈D

y(ν, ξai) 〈φi| ei(g+q)r |φa〉 〈φa| e−i(g
′+q)r′ |φi〉 , (6.24)

where |φi=nk〉 is an occupied,
∣∣φa=n′k+q

〉
an unoccupied Bloch state and the function y

with the shorthand ξai = εa − εi was defined in Eq. (5.12):

y(ν, ξ) =
2ξ

ξ2 + ν2
(6.25)

However, isolated target bands are rare and more often d- and f-states are entangled

with other non-correlated s- and/or p-states. Consequently the separation of the sub-

space D described by the impurity model in DMFT can be defined unambiguously only

in the localized Wannier basis. In general, Wannier states are related to Bloch states

by a unitary rotation T
(k)
nα combined with a discrete Fourier transformation w.r.t. the

k-points, see Eq. (4.90) or Ref. 75.

At this point the arbitrariness of the unitary matrices T
(k)
nα has to be mentioned and

was first studied by Kohn in Ref. 75.1 It was proposed to use the maximally localized

Wannier scheme of Marzari and Vanderbilt, see Refs. 140, 141, where a spread functional

is minimized yielding maximally localized Wannier functions (MLWFs). However, in

practice one often uses the so-called first guess, as presented in Ref. 142, for the rotation

in Eq.(4.90)

T (k)
nα = 〈φnk | Yα〉, (6.26)

where |Yα〉 indicates eigenfunctions of the hydrogen atom. This is due to the fact, that

Eq. (6.26) yields Wannier functions resembling atomic orbitals, whereas MLWF often

have different symmetry. In this section, we use Wannier functions obtained from (6.26)

exclusively and consider MLWF only in section 6.2 and 6.3.

1 A good review about Wannier functions can be found in Ref. 139.
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We emphasize that, in general, the existence of exponentially localized Wannier func-

tions is guaranteed only, if a complete composite Bloch band, that is the Bloch bands are

isolated and do not cross other bands, is transformed into the Wannier domain.1 This is

the case for instance in SrVO3 or La2CuO4 shown in Fig. 6.9 and Fig. 6.1 respectively.

Only in this case equation (4.90) can be seen as a well-defined transformation between

the Bloch and Wannier domain. In section 6.1.3 we show that in this context a consis-

tent CRPA framework can be defined, even if the target space D is smaller than space

spanned by the Wannier basis.

If the considered Bloch bands are entangled, i.e. no composite Bloch band can be

defined, Wannier functions cannot be obtained straightforwardly. For instance this is the

case for the 3d transition metal series, investigated in section 6.1.6. For these systems the

Wannier states have to be obtained as a projection from Bloch states using an energy

window in combination with a disentanglement scheme, for instance the approach of

Souza et al. [see Ref. 143 for more details]. In principle there are two projections possi-

ble. Either one projects the Bloch bands onto a minimal Wannier basis set, which forms

the correlated subspace D, or one includes additional functions in order to reproduce the

original Bloch band structure as well as possible.

To our knowledge there are currently two different CRPA schemes, associated with

the two Wannier projection schemes:

(i) Disentangling method introduced in Ref. 144.

(ii) Weighted method proposed in Refs. 145 and 146.

The disentanglement scheme of Miyake and coworkers projects the Bloch states onto

a minimal basis set spanning only the correlated space D. In the second step, the

Hamiltonian of the system is diagonalized separately in D and the remaining Fock space,

so that a disentangled Kohn-Sham eigensystem {φ̃nk, ε̃nk} for the states around the

Fermi level is obtained. If the full polarizability is determined w.r.t. this disentangled

eigensystem, giving χ̃, one can use Eq. (6.24) to remove the correlated polarizability

χ̃d. The approach seems quite elegant, but suffers from the deficiency, that the minimal

basis set (and therefore the effective interactions) depends strongly on the chosen energy

window.[147]

1The interested reader is referred to the excellent article [138] for more details.
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This dependency is weakened in the weighted scheme by including non-correlated

delocalized s- and/or p-states in the Wannier projection and using the weighted CRPA

formula[145, 146]

χdq(g,g′, iν) =
1

Nk

∑
k,n,n′

Υ(ν, ξai)y(ν, ξai) 〈φi| ei(g+q)r |φa〉 〈φa| e−i(g
′+q)r′ |φi〉 (6.27)

with

Υ(ν, ξai) = γi,ay(ν, ξai), i = nk, a = n′k + q (6.28)

instead. This expression seems reasonable, because the weights

γia =
∑
α∈D

∣∣∣T (k)
αn

∣∣∣2∑
β∈D

∣∣∣T (k+q)
βn′

∣∣∣2 (6.29)

account for the correlated character of every (occupied-unoccupied) Bloch pair (i =

nk,a = n′k + q). It was claimed that expression (6.27) follows from the general Kubo-

Nakano formula for the fluctuation response of the correlated subspace[145]

χd(r, r′, τ) = 〈Ψ0|T
[
δn̂d(r, τ)δn̂d(r

′)
]
|Ψ0〉 , (6.30)

where δnd(r, τ) is the correlated fluctuation density operator in imaginary time t = −iτ .

The latter counts the number of particles in the correlated subspace D relative to the

groundstate and is defined in Eq. (6.45) of following section. We show in section 6.1.3,

that this claim is incorrect and that expression (6.30) yields a different result involving

the correlated projectors

P (k)
nm =

∑
α∈D

T ∗(k)
αn T (k)

αm (6.31)

with the correlated Bloch functions

∣∣φ̄nk〉 =
∑
m

P (k)
nm |φmk〉 (6.32)

rather than the probabilities (6.29). The derivation provides the basis for a consistent

CRPA framework.
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6.1.2 Correlated Subspaces and Wannier Representation

To keep the notation as simple as possible, we use bold Latin indices n,m, · · · to indicate

Bloch states n = (n,kn) and Greek indices to indicate Wannier states. Here, bold indices

α stand for the composite index (α,Rα), whereas α indicates the site index at Rα = 0.

The index s will be used to denote an arbitrary Slater determinant |Ψs〉, defined in

Eq.(1.6), with corresponding eigenenergies

Es =
∑
n∈Is

εn. (6.33)

Each determinant |Ψs〉 contains a specific set of occupied and unoccupied states indicated

by the index set Is. The set {|Ψs〉 , Es}∞s=1 forms a complete eigenset for the non-

interacting many-body Hamiltonian (2.2) and is naturally given in the Bloch domain, see

section 1.2. A transformation to the Wannier basis is easily performed by a replacement

of
[
ε(s)

]
in Eq. (1.6) by the weighted Levi-Civita tensor[

τ(s)

]α1···αN =
[
ε(s)

]n1···nN Tα1
n1
· · ·TαNnN . (6.34)

Here and in the following we adopt the Einstein convention and use the abbreviation

Tαn = eiknRαTαn, (6.35)

such that the Wannier-Bloch transformation pair reads

|wα〉 = T n
α |φn〉 (6.36)

|φn〉 = T ∗αn |wα〉 . (6.37)

The Fock space of the non-interacting and interacting system is spanned by single,

double and higher excited Slater determinants |Ψs〉. For instance singly excited states

are obtained by replacing one occupied state φi in the groundstate |Ψ0〉 by an unoccupied

state φa and defining the index set Is appropriately.

We focus on the field operators ψ̂(r) and its conjugate ψ̂†(r) for a moment. Con-

venient representations of the field operators are the Bloch and Wannier representation

and their inverses

ψ̂(r) = φn(r)ĉn, ĉn =

∫
drφ∗n(r)ψ̂(r) (6.38)

ψ̂(r) = wα(r)d̂α, d̂α =

∫
drw∗α(r)ψ̂(r). (6.39)
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The product of both operators gives the density operator

n̂(r) = ψ̂†(r)ψ̂(r), (6.40)

which is diagonal in real-space and identified as the number operator. The insertion of

Eqs. (6.38) and (6.39) into Eq. (6.40) yields the Bloch and Wannier representations

n̂(r) = φ∗n(r)φm(r)ĉ†nĉm (6.41)

n̂(r) = w∗α(r)wβ(r)d̂†αd̂β. (6.42)

The corresponding fluctuation operator δn̂(r) is given by

δn̂(r) = n̂(r)− 〈Ψ0| n̂(r) |Ψ0〉 (6.43)

and measures the fluctuation of the density w.r.t. the groundstate |Ψ0〉, see Ref. 34.

Kubo and Nakano showed that the expectation value of δn̂(r, τ)δn̂(r′) in the ground-

state describes the density fluctuation at (r, τ) to linear order, which is induced by a

density change at (r′, 0). This is the essence of linear response theory and it can be

shown that

χ0(r, r′, τ) = 〈Ψ0| T̂
[
δn̂(r, τ)δn̂(r′)

]
|Ψ0〉 (6.44)

holds, see for instance Ref. 34.

However, we are mainly interested in Eq. (6.30), so that we restrict the sum in Eq.

(6.42) to correlated states only, i.e. the subspace D and obtain the correlated density

operator

n̂d(r) =
∑
αβ∈D

w∗α(r)wβ(r)d̂†αd̂β. (6.45)

Writing n̂r(r) for the remaining terms in (6.42) induces the simple separation for the

full particle number operator

n̂(r) = n̂d(r) + n̂r(r). (6.46)

The fluctuation operator δn̂d(r) measures the density fluctuation in the correlated sub-

space and is obtained analogously to Eq. (6.45) by

δn̂d(r) = n̂d(r)− 〈Ψ0| n̂d(r) |Ψ0〉 . (6.47)

We are now ready to derive an explicit expression for the correlated Kubo response

function (6.30).
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Figure 6.1: Composite band of La2CuO4 consisting of 17 Bloch bands. Red bands indicate

strong copper d-character, blue bands indicate strong oxygen p-character. The plot was

obtained using the Wannier90 library[142]

6.1.3 CRPA in the Kubo formalism

We consider a system with a composite Bloch band around the Fermi level. Such a band is

defined as a collection of bands, which do not cross other bands, see Ref. 138. However,

it is assumed that the Bloch states in the composite band have k-dependent atomic

orbital character. A prototype of such a composite band is the set of 17 Bloch bands

in La2CuO4 shown in Fig. 6.1. The reason why we restrict our consideration to these

systems is, that a composite band guarantees the existence of exponentially decaying

Wannier functions, i.e. the existence of a bijective map between Bloch and Wannier

states (4.90).[138] This is crucial, since we will switch from Wannier to Bloch space in

the following whenever convenient. For instance, we seek a reciprocal expression for the

correlated polarizability χd, similar to Eq. (6.27) or Eq. (6.24). On the other side the

correlated subspace D (d-/f-states) is in general a subspace of the composite band, so

that the separation of correlated from non-correlated states is defined in the Wannier

space.

We start our derivation by inserting a complete eigenset of the non-interacting many-

body system

1 =

∞∑
s=0

|Ψs〉 〈Ψs| (6.48)

into Eq. (6.30) and using Eq. (6.47). Due to the definition of the fluctuation operator
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(6.47) the s = 0 contributions drops out and we obtain

χd(r, r′, τ) = Θ(+τ)
∞∑
s=1

e(E0−Es)τ 〈Ψ0| n̂d(r) |Ψs〉 〈Ψs| n̂d(r′) |Ψ0〉

+ Θ(−τ)

∞∑
s=1

e(Es−E0)τ 〈Ψ0| n̂d(r′) |Ψs〉 〈Ψs| n̂d(r) |Ψ0〉 . (6.49)

Here we used the Heisenberg relation n̂d(r, τ) = eĤ0τ n̂d(r)e−Ĥ0τ and the fact that |Ψs〉
is an eigenvector of the non-interacting Hamiltonian Ĥ0 of the complete Fock space F,

defined in Eq. (2.2), with corresponding eigenenergy Es.

From Eq. (6.49) the desired expression can obtained in two steps. Both steps are

explained in detail in the following.

Step One: Matrix elements in Wannier Representation

Here the matrix elements 〈Ψ0| n̂d(r) |Ψs〉 of Eq. (6.49) are evaluated. This is achieved

by using expression (6.45) for the correlated fluctuation operator in combination with

the inverse representation of Eq. (6.39) and yields

〈Ψ0| n̂d(r) |Ψs〉 =
∑
αβ∈D

w∗α(r)wβ(r)

∫
dr1dr2wα(r1)w∗β(r2) 〈Ψ0| ψ̂†(r1)ψ̂(r2) |Ψs〉

(6.50)

Now we focus on the evaluation of the expectation value on the r.h.s. For a Slater

determinant |Ψs〉 the action of the field operator ψ(r2) onto the N electron state

Ψs(r
′
1, · · · , r′N ) is given by Eq. (2.25), together with the adjoint relation we obtain:

〈Ψ0| ψ̂†(r1)ψ̂(r2) |Ψs〉 = N

∫
dr′2 · · · dr′NΨ∗0(r1, r

′
2, · · · , r′N )Ψs(r2, r

′
2, · · · , r′N )

= N
[
τ∗(0)

]α1α2···αN [
τ(s)

]β1

α2···αN
w∗α1

(r1)wβ1
(r2)

(6.51)

The contraction of the τ tensors in the last line can be evaluated using the identity[47]

[
ε(0)

]n1n2···nN [ε(s)

]m1

n2···nN
=

(N − 1)!

N !
δn1

i(s)δ
m1

a(s), (6.52)

where i(s) is the occupied state (contained in I0) and is replaced by the unoccupied

state a(s) in the index set Is, and with Eq. (6.34) obtaining[
τ∗(0)

]α1α2···αN [
τ(s)

]β1

α2···αN
=

(N − 1)!

N !
T ∗α1

i(s)T
β1

a(s). (6.53)
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Therefore, only singly excited Slater determinants |Ψs〉 contribute to the matrix element

(6.50), which may be written as

〈Ψ0| n̂d(r) |Ψs〉 =
∑
αβ∈D

w∗α(r)wβ(r)T ∗α1

i(s)T
β1

a(s) 〈wα1
|wα〉︸ ︷︷ ︸

δ
α

α1

〈wβ
∣∣wβ1

〉︸ ︷︷ ︸
δ

β
β1

(6.54)

and results in

〈Ψ0| n̂d(r) |Ψs〉 =
∑
αβ∈D

T ∗αi(s)w
∗
α(r)wβ(r)Tβa(s). (6.55)

Consequently, the Kubo formula (6.49) yields after a Fourier transformation to frequency

domain

χd(r, r′, iν) =
∑

αβγδ∈D

∞∑
s=1

[
Ξ(s)(iν)

]αβγδ
w∗α(r)wβ(r)w∗γ(r′)wδ(r

′) (6.56)

with the tensor

[
Ξ(s)(iν)

]αβγδ
=
T ∗αi(s)T

β
a(s)T

∗γ
a(s)T

δ
i(s)

Es − E0 + iν
+
T ∗αa(s)T

β
i(s)T

∗γ
i(s)T

δ
a(s)

Es − E0 − iν
(6.57)

The sum over singly excited Slater determinants
∑

s can be rewritten into a double sum

of Bloch indices i = (n,k),a = (n′,k′) using occupancy functions fi = f(εi) as follows

∞∑
s=1

[
Ξ(s)(iν)

]αβγδ
=

1

N2
k

∑
nn′kk′

fi(1− fa)

×
(
T ∗αiT

β
aT
∗γ
aT

δ
i

εa − εi + iν
+
T ∗αaT

β
iT
∗γ
iT
δ
a

εa − εi − iν

)

=
1

N2
k

∑
nn′kk′

fi(1− fa)− fa(1− fi)
εa − εi + iν

T ∗αiT
β
aT
∗γ
aT

δ
i (6.58)

In the second term on the r.h.s. the indices (i,a) ↔ (a, i) have been swapped. Conse-

quently, Eq. (6.56) can be rewritten into

χd(r, r′, iν) =
∑

αβγδ∈D

1

N2
k

∑
nn′kk′

fi − fa
εa − εi + iν

T ∗αiT
β
aT
∗γ
aT

δ
iw
∗
α(r)wβ(r)w∗γ(r′)wδ(r

′).

(6.59)

Before continuing with step two, we make two short remarks: Firstly, Eq. (6.59) is the

Wannier representation for the independent particle polarizability (derived by Hanke
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and Sham in Refs. 148 and 149), but restricted to the target space D. Secondly, Eq.

(6.59) can be rewritten into1

χd(r, r′, iν) =
∑

αβγδ∈D

1

N2
k

∑
nn′kk′

y(ν, ξai)T
∗α
iT
β
aT
∗γ
aT

δ
iw
∗
α(r)wβ(r)w∗γ(r′)wδ(r

′),

(6.60)

where i and a are strictly restricted to occupied and unoccupied Bloch indices respec-

tively. Looking at the Bloch representation (6.24), reveals that χd is a contracted four-

point propagator and needs to be transformed to the Bloch domain as a four-point rather

than a two-point tensor. This is done in the next step, where we show that Eq. (6.60)

picks up four additional Wannier transformation matrices Tnα proving that the weighted

expression (6.27) of the target polarizability (containing the diagonal of only four T−
matrices) does not follow from the Kubo formula (6.30).

Step Two: Fourier Transformation

In the second step, the Fourier transformation is performed to reciprocal space. The

general prescription for this procedure is described in Ref. 108 and given by:

χdq(g,g′, iν) =

∫
dr

∫
dr′ei(g+q)rχd(r, r′, iν)e−i(g

′+q)r′ . (6.61)

Decomposing the Wannier functions into Bloch functions and using n1 = (n1,k1) as in

Eq. (6.37) we obtain

χdq(g,g′, iν) =
1

N2
k

∑
nn′kk′

1

N4
k

∑
n1n2n3n4

∑
αβγδ∈D

y(ν, ξia)

T ∗(k)
αn T (k1)

αn1
〈φn1 | ei(g+q)r |φn2〉T

∗(k2)
βn2

T
(k′)
βm

T ∗(k
′)

γm T (k3)
γn3
〈φn3 | e−i(g

′+q)r′ |φn4〉T
∗(k4)
δn4

T
(k)
δn∑

Rα

eiRα(k1−k)
∑
Rβ

e−iRβ(k2−k′)
∑
Rγ

eiRγ(k3−k′)
∑
Rδ

e−iRδ(k4−k)

(6.62)

1 To see this, first one decomposes the factor (ξai+ iν)−1 into a symmetric and antisymmetric tensor

in a, i. That is
1

ξai + iν
=

ξai
ξ2
ai + ν2︸ ︷︷ ︸

1
2
y(ν,ξai)

−i ν

ξ2
ai + ν2

.

In the next step, one uses the fact that both, the factor (fi − fa) as well as the first term on the r.h.s.

are odd tensors in i,a and therefore are non-zero, whereas the second term is an even tensor in i,a and

vanishes.
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The sum over lattice vectors R can be carried out using the simple identity[108]∑
R

eikR =
∑
g

δkg. (6.63)

and restricts the k-vectors

k1 = k + g1, k2 = k′ + g2, k3 = k′ + g3, k4 = k + g4, (6.64)

where g1 · · ·g4 are reciprocal lattice vectors. Furthermore, the periodicity condition[139]

T (k)
nα = T (k+g)

nα (6.65)

allows to carry out the sum over lattice sites α · · · δ resulting in four projectors defined

in Eq. (6.31). Hence, the sum over reciprocal lattice vectors g1, · · · ,g4 yields four times

the same contribution, namely

χdq(g,g′, iν) =
1

N2
k

∑
nn′kk′

y(ν, ξai)
〈
φ̄i
∣∣ ei(g+q)r

∣∣φ̄a〉 〈φ̄a∣∣ e−i(g′+q)r′
∣∣φ̄i〉 , (6.66)

where the definition of the correlated Bloch functions (6.32) have been used with the

short hands i = (n,k) and a = (n′,k′). Pointing out, that the matrix elements on the

r.h.s. of Eq. (6.66) are invariant under the transformations r→ r + R and r′ → r′ −R

reveals the restriction on the primed k-point

k′ = k + q. (6.67)

This removes an additional factor N−1
k and we obtain the main result of this section

χdq(g,g′, iν) =
1

Nk

∑
nn′k

y(ν, ξai)
〈
φ̄i
∣∣ ei(g+q)r

∣∣φ̄a〉 〈φ̄a∣∣ e−i(g′+q)r′
∣∣φ̄i〉 , (6.68)

with i = (n,k) representing the occupied and a = (n′,k + q) the unoccupied indices.

If the composite band consists only of target states, i.e. the target space D forms an

isolated set of Bloch bands, the projectors (6.31) become diagonal and expression (6.68)

reduces to the constrained Adler and Wiser form (6.24). The weighted expression of

Şaşıoğlu et al. (respectively and Shih and coworkers) Eq. (6.27) follows only from the

replacement ∣∣φ̄nk〉→√
P

(k)
nn |φnk〉 (6.69)

in Eq. (6.68), which seems, to be an unjustifiable ad-hoc step.
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6.1.3.1 Technical details

In this section we discuss technical details of our CRPA implementation. The derivation

of Eq. (6.68) holds strictly for an isolated set of Bloch bands (composite Bloch band)

that can be represented by the localized Wannier functions

|wαk〉 =
∑
n

T (k)
αn |φnk〉 . (6.70)

For systems, where such a set of bands is absent (for instance the 3d transition metals

series Sc-Ni), expression (6.68) is not uniquely defined. From the practical point of view,

this is due to the ill-conditioned ”inverse projection” of Eq. (4.90). However, we found

that one can use the regularized projectors

P̄ (k)
nm = Θ(k)

m P (k)
nm (6.71)

instead. Here the window function Θ
(k)
m is either 0 (for a null-vector) or 1 (for a rank-

vector) and is obtained from the Jacobi diagonalization of the original projector P
(k)
nm .[92,

150]

To illustrate this regularization procedure, we consider the case where Bloch bands

are projected onto Wannier states via the projector

T (k)
nα =



� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �


,

with � and � indicating a non-zero and zero entry respectively. In this specific example

the Bloch bands φ2, · · · , φ5 are projected onto the Wannier states w1, w2 and w3. The

corresponding correlated projector P
(k)
nm assumes the form

P (k)
nm =



� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
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and the resulting (N − ND) × (N − ND) non-zero sub-block (here N − ND = 4) has

rank ND. For instance, if the Jacobi diagonalization of P
(k)
nm yields diag(1, 1, 0, 1) for this

sub-block, the regularized projector P̄
(k)
nm is

P̄ (k)
nm = Θ(k)

m P (k)
nm =



� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �


and has ultimately the same number of rows and columns as T

(k)
nm .

Once the correlated polarizability (6.68) is determined, we subtract it from the full

polarizability (3.41), yielding the effective polarizability χr. In the next step the screen-

ing equation (6.21) is solved for the effective kernel Ugg′(q, iν) for every k-point q in

the irreducible wedge of the Brillouin zone. In the final step the interaction matrix is

evaluated via

Uαβγδ =
1

N2
k

∑
qk

∑
gg′

Ugg′(q, 0) 〈wαk| ei(q+g)r |wδk+q〉 〈wβk+q| e−i(q+g′)r′ |wγk〉 , (6.72)

with the mixed basis representations (6.70).

We emphasize that our approach, i.e. the correlated polarizability (6.68) and effec-

tively the matrix elements (6.72), differ from the disentanglement method of Miyake and

coworkers, since in contrast to Ref. 145 we do not change the original band structure.

6.1.4 Computational details

We have considered the high temperature superconductor La2CuO4 and the 3d transition

metal series Sc up to Ni. The lattice constants for the latter are obtained by minimizing

the PBE density functional[106] and are summarized in Tab. 6.1. For the cuprate the

lattice constant a = 3.86 Å and a ratio of c/a = 3.41 for the bct unit cell was used

with the positions given in Tab. 6.2. Convergence of the effective interaction matrix

(6.72) w.r.t. the plane wave basis set is reached using the same method as described

in Ref. 151. First, the effective matrix elements (6.72) are determined using a rather

low energy cutoff Ecut for the CRPA polarizability χr on a plane wave grid. This result

is corrected by the difference of the bare Coulomb interaction Vαβγδ obtained with the
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Table 6.1: Used structures for the transition metal (TM) series. Lattice constants are

given in Å and obtained from PBE.

Sc Ti V Cr Mn Fe Co Ni

fcc fcc bcc bcc bcc bcc fcc fcc

4.64 4.13 2.99 2.85 2.78 2.77 3.47 3.52

Table 6.2: Atomic positions in La2CuO4 in direct coordinates

Atom Position

x y z

La 0.64 0.64 0.00

La 0.36 0.36 0.00

Cu 0.00 0.00 0.00

O 0.00 0.50 0.50

O 0.50 0.00 0.50

O 0.19 0.19 0.00

O 0.81 0.81 0.00
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same cutoff on the same grid and Vαβγδ obtained using the exact all-electron method

described in Ref. 96 with a higher cutoff Ecut. This is justified, since the high energy

contributions to the polarizability χr vanish and the screening becomes ineffective for

large g vectors.[151]

In all calculations we included 128 bands and plane wave contributions up to a cutoff

of Ecut = 400 eV in the calculation of the CRPA polarizability. For the high cutoff Ecut

700 eV and for the PAW basis set a cutoff of 500 eV was chosen. In order to obtain

a well-converged groundstate, a dense k-point grid of 16 × 16 × 16 points was used in

combination with the tetrahedron method of Blöchl et al.[152] with a smearing factor of

σ = 0.2 eV−1.

6.1.5 Wannier basis

The quality of the Wannier basis is a crucial point for all CRPA methods. Therefore,

we discuss here in detail, how the localized basis is obtained.

We start with the superconductor La2CuO4, which possesses an isolated composite

band of 17 Bloch bands. These states correspond to the 12 p-states centered at the four

oxygen atoms and the five d-states centered at the copper atom in the unit cell. We,

therefore, transform these bands to 17 Wannier states and call this the dp basis in the

following. The quality of the Wannier transformation is investigated by diagonalizing

the corresponding Wannier Hamiltonian and comparing with the original PBE band

structure. The comparison is given in Fig. 6.1 and shows that the match is perfect

already at a rather coarse k-point mesh of 8 × 8 × 8 points. We have used this k-point

setting for both, the Wannier transformation as well as the CRPA calculations.

In contrast to the cuprate, the 3d transition metals do not possess an isolated set

of bands. However, a one to one correspondence between six Wannier states and six

bands around the Fermi level, five narrow bands (mainly of d-character) and a crossing

s-like band, can be achieved. Thereby the location of the s-state was chosen at the

reciprocal coordinates (0.25, 0.25, 0.25) for the fcc and at (0.5, 0.5, 0.5) for the bcc unit

cells, whereas the d-states are centered at the TM. We call this basis set the ds basis in

the following and show in Fig. 6.2 (a) a comparison between the original PBE bands

of Ni and the eigenvalues of the Hamiltonian in the ds basis. One clearly sees that

the ds basis reproduces most symmetry lines accurately, but has difficulties to represent

the symmetry points W and K of the s-state. This is due to the fact, that these
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Figure 6.2: Bands of fcc Ni with d-character resolution obtained from Wannier90. Red

bands indicate strong d-character, blue bands indicate strong s-character. (a) d-character

resolution in ds basis. (b) Comparison of disentangled system (red and blue bands) with

original system (gray bands) in d basis.

Table 6.3: Used energy windows in [eV] for the construction of the d basis in the 3d series.

The Fermi level is set to 0 eV.

Sc Ti V Cr Mn Fe Co Ni

Emin −3.0 −4.0 −4.5 −4.5 −6.0 −6.0 −6.5 −7.5

Emax +5.0 +5.0 +5.5 +5.5 +5.0 +5.0 +4.0 +3.5

points are crossing points with higher energy states and since the Wannier basis is

lacking this information, the eigenvalues of the Wannier Hamiltonian start to oscillate.

Consequently, the representability of the ds basis is never perfect, as it is in the case of

the aforementioned dp basis for La2CuO4. To compensate this defect, we have decided

to use a very dense 16× 16× 16 k-point grid for the Wannier projection.

In addition to the ds basis, we considered a third basis set. The d basis contains

only five d-states and is obtained as a projection of the same six Bloch bands using the

energy windows given in Tab. 6.3 for the method of Souza.[143] For Ni we show in Fig.

6.2 (b) the eigenvalues of the Hamiltonian in this basis (red bands). The same figure

shows, in addition, the original PBE bands and the disentangled s-band (blue band),

which was obtained by applying the method of Miyake et al.[147]

Last but not least, we have compared the spatial spread of the two basis sets, given

in Fig.6.3. It can be seen that the inclusion of the s-state tends to yield more localized
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Figure 6.3: Average spread of Wannier d-functions of the TM series in the d (squares) and

ds (points) basis. For comparison data of Ref. 153 (†) is given for the d basis.

(delocalized) Wannier functions in the fcc (bcc) unit cells. The general decreasing spread

towards the right in the series is evident and expected.

6.1.6 Transition metals

In the following subsection, we discuss our results for the bare V̄ , fully screened W̄

and effective interaction averages U , defined in Eqs. (6.17), (6.18) and (6.14) for the

transition metal series Sc-Ni. For the CRPA calculations we have considered three

distinct models, summarized in Tab. 6.4. Model (i) corresponds to the disentanglement

method of Ref. 147, model (ii) is the the weighting method in the ds basis of Refs. 145

and 146, whereas model (iii) is the CRPA approach derived in section 6.1.3.

Table 6.4: Used models.

model basis applied to χd

(i) d TMs Eq.(6.24)

(ii) ds/dp TMs/La2CuO4 Eq.(6.27)

(iii) ds/dp TMs/La2CuO4 Eq.(6.68)

6.1.6.1 Bare Coulomb interaction

As a starting point of our investigation we have evaluated the bare Hubbard-Kanamori

interaction V̄ for both basis sets d and ds. For the latter we have averaged only over the

d-states of the TMs. The results in the d basis are shown in Fig. 6.4 (a) (red points)
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together with published values. We see good agreement with Shih et al.1 and for the

early transition metals Sc, Ti, and V with an increasing discrepancy for the later TMs,

reaching the largest difference of 2.76 eV for Ni. This can be related to the second

energy window used in Ref. 154 yielding ultimately a different basis than in the present

work. If the same Wannier settings are chosen (compare to Ref. 153) one obtains almost

identical interactions.
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Figure 6.4: Bare Coulomb repulsion V in [eV] of 3d TMs series in d (a) and ds basis (b).

For comparison Ref.]146, Ref.†153, Ref.§145 and Ref.‡155 are given

The inclusion of the s-state in the localized basis set (basis ds) tends to yield more

localized d-states in the fcc unit cells. The consequence is that the bare interaction in

the ds basis is larger than in the d basis, as can be seen in Fig. 6.4 (b), for Sc, Ti, Co and

Ni. Despite the fact, that the spread of the d-states in the ds basis is slightly larger (see

Fig. 6.3), the bare interaction is still slightly larger in the ds basis than in the minimal

basis set. For instance the difference to the d basis for bcc Cr is around 1.7 eV. Hence,

we conclude that the presence of the additional s-state compensates the larger spread

in the ds basis. Compared to literature, we obtain excellent agreement with Şaşıoğlu et

al.[145, 155] and Shih et al.[154].

6.1.6.2 Fully screened RPA interaction

Next, we investigated the fully screened interaction W̄ on the random phase approxima-

tion level in both basis sets d and ds. In contrast to the ds basis, the minimal d basis

allows for two different calculations.[147] On the one side, the original PBE eigensystem

[gray bands in Fig. 6.2 (b)] can be used for the determination of the RPA polarizability

1See Ref. 146 and references therein.
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Figure 6.5: (a) On-site fully screened d-Coulomb repulsion measured in [eV] in d basis of

disentangled (squares) and original Kohn-Sham system (circles). (b) Full RPA interaction

of original system in ds basis. For comparison Ref.♦ 147, Ref.§ 145 and Ref.‡ 155 are shown.

in Eq. (6.19). On the other side, the latter can be computed using the disentangled

system [blue and red bands in 6.2 (b)]. In both cases the resulting interaction kernel

WGG′(q, ω) is evaluated in the d basis [red bands in Fig. 6.2 (b)].

The results for the TMs with the original Kohn-Sham system are given by the red

points in Fig. 6.5 (a), whereas the filled squares show W̄ obtained from disentanglement.

Comparing the latter with the red points in Fig. 6.5 (a) shows that the disentanglement

effect can be safely disregarded. The same figure shows, in addition, previously published

data of Ref. 147 (circles and empty squares). All in all, the agreement is good, except

for Mn and Fe, where we obtain considerably larger interactions. Most probably, as

discussed below, this can be related to the pseudo potentials, even tough we used slightly

different energy windows in our calculations (see previous section).

The fully screened interaction in the ds basis is shown in Fig. 6.5 (b) (filled circles).

Comparing to the minimal d basis, the interactions are again slightly larger due to the

stronger localization of the d-states [compare dots in Fig. 6.5 (a) and (b)]. The same

figure shows in addition published data of Şaşıoğlu et al. in 2011 (empty squares) and

2013 (empty circles) respectively.[145, 155] Here we observe excellent agreement for early

metals up to bcc Cr with small deviations starting at bcc Mn and increasing towards

Ni. We mainly make the used pseudo potentials responsible for the discrepancies to the

literature.

153



6. MERGING GW WITH DMFT

0

1

2

3

4

5

6

7

8

Sc Ti V Cr Mn Fe Co Ni

(a)

♦
†
(i)

0

1

2

3

4

5

6

7

8

Sc Ti V Cr Mn Fe Co Ni

(b)

§
‡
]
(ii)

Figure 6.6: On-site effective d-Coulomb repulsion U in [eV] for different models. (a) model

(i), disentanglement method in basis d. (b) model (ii), weighted CRPA method in ds basis.

For comparison Ref.♦ 147 Ref.†153, Ref.‡155 Ref.§145 and Ref.]146 are shown.

6.1.6.3 Effective Coulomb interaction

In this section we compare our CRPA approach with the conventionally applied models

(i) and (ii), i.e. the disentanglement and weighted method Eq. (6.27), respectively.

We start with a comparison of our results of model (i) and (ii) with the literature.

The results for the effectively screened interaction U obtained from the disentanglement

method in the d basis is shown in Fig. 6.6 (a). Comparing Ref. 147 (circles) with our

results (red points) shows good agreement for the complete TM series, whereas recent

calculations, done by Sakuma and Aryasetiawan,[153] show almost a perfect match. It

is gratifying that two distinct code packages can agree on the same interactions for the

same method.

The results for the effective interaction of the weighted method, model (ii) are given

in Fig. 6.6 (b) (red dots) and are in reasonable agreement with Ref. 155 for early TMs

and with Ref. 154 for late TMs. All in all our results lie somewhere in between those

of Şaşıoğlu et al.[145] and Shih et al.[146] However, the scatter in the literature is huge

compared to model (i), especially for Cr, Mn and Fe. Even worse, our results tend

to decrease as one moves from Cr to Ni, whereas the opposite behavior is obtained by

Şaşıoğlu et al.[145, 155] and Shih et al.[146]

There may be various reasons for this, most probably, the used pseudo potentials

should be made responsible for these discrepancies. In summary, we may say that the

disentanglement method is numerically more robust than the weighting approach, as can

be seen from Fig. 6.6 (a) and (b).
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Figure 6.7: Comparison of present CRPA approach, model (iii) (red points), with disen-

tangling (i) and weighted method (ii).

We complete this subsection with the discussion of results obtained with our ap-

proach, i.e. model (iii). A comparison with model (i) and (ii) is given in Fig. 6.7. First,

we observe that the overall trend of model (ii) (squares) and (iii) (points) is similar and

differs from model (i) (circles). This might be related to the disentanglement used in

model (i). Second, comparing model (ii) with (iii) one sees that our approach yields in

general larger interactions than (ii). This comes from the fact, that Eq. (6.68) removes

more screening effects than the weighted formula (6.27), since also off-diagonal terms of

the projectors (6.31) are taken into account in the correlated polarizability. The result-

ing effective polarizability is smaller, the corresponding screening is less effective and

shifts the effective interaction U of model (iii) towards the values of model (i). However,

the shift is not constant and varies from system to system. In general, we observe a

smaller shift for the fcc than for the bcc structures.

Last but not least we have investigated the low frequency dependence of model (i)-

(iii) for fcc Ni and bcc Cr. The frequency regime shown in Fig. 6.8 might be of interest

for frequency dependent DMFT calculations. The solid red line represents model (iii),

the dashed green curve model (ii) and the dashed blue curve stands for model (i). One

observes a rather flat low frequency behavior for model (i) in Ni and Cr. However,

model (ii) and (iii) show more structure. Whereas the difference between the weighted

and our CRPA approach is negligible for fcc Ni, the difference in bcc Cr is clearly visible

around 3 eV and approaches the analytically continued data of Şaşıoğlu et al. for higher

frequencies. This implies that the conventionally chosen static approximation (6.12) of

the CRPA might be problematic and needs to be further investigated.
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Figure 6.8: Frequency dependence of effectively screened interaction for fcc Ni and bcc

Cr in model (i) (blue), model (ii) (green) and model (iii) (solid line). The gray line shows

analytically continued data of model (ii) published in Ref. 155.

6.1.7 La2CuO4

La2CuO4 is the prototype of a high temperature superconductor and has been heavily

studied in the condensed-matter community since the 1980s. In the following, we want

to sketch only the most important aspects of this compound, which are necessary for the

computation of the effective interaction in the one-band and five-band Hubbard model.

The interested reader is referred to literature.[156, 157, 158, 159]

PBE yields the band structure given in Fig. 6.1. The single band crossing the Fermi

surface makes this compound interesting for single-band DMFT studies. This band is

often referred to as the dx2−y2 state of Cu, however, Fig. 6.1 shows that it is strongly

entangled with the surrounding oxygen p-states. Therefore the dp basis mentioned in

section 6.1.5 is a good choice to study the interactions of this compound.

As for the TM series, we first determined the bare and fully screened interactions

V̄ and W̄ . The complete interaction matrices Vααββ , Vαβαβ ,Wααββ and Wαβαβ of the

d-submanifold are given in the appendix E. It can be seen that the dx2−y2-dx2−y2 matrix

element has the largest value, 28.7 eV for the bare and 2.6 eV for the fully screened

interaction.

Next we have considered the effective interaction of the one-band model. Here only

the intra dx2−y2-dx2−y2 screening effects are removed. Using the CRPA method devel-

oped in this paper we obtain an effective interaction of U = 3.0. This is only 0.1 eV larger
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than in the weighting approach of model (ii) and both models are in reasonable agree-

ment with the chosen U in recent one-band DMFT studies of this compound.[160, 161]

If, however, the complete d-manifold is considered as target space in the CRPA

the difference between the weighting and our model becomes evident. For model (ii) we

obtain an averaged interaction of U = 3.7, whereas model (iii) yields U = 5.7 eV. Recent

multi-orbital LDA+DMFT calculations used interaction parameters between 4 and 10

eV.[162] The complete Hubbard matrices Uααββ and Uαβαβ of model (iii) are given in

Tab. 6.5.

Table 6.5: Effective Hubbard interaction matrices Uααββ and Uαβαβ for La2CuO4 obtained

with model (iii).

dxy dxz dyz dx2−y2 dz2 dxy dxz dyz dx2−y2 dz2

dxy 5.8 4.4 4.4 3.5 3.5 5.4 0.7 0.7 1.1 1.1

dzy 4.4 5.7 3.9 3.7 3.7 0.7 5.3 0.9 1.0 0.9

dyz 4.4 3.9 5.7 3.7 3.7 0.7 0.9 5.3 1.0 0.9

dx2−y2 3.5 3.7 3.7 5.6 4.4 1.1 1.0 1.0 5.2 0.6

dz2 3.5 3.7 3.7 4.4 5.5 1.1 0.9 0.9 0.6 5.1
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6.2 Unscreening Method for Isolated Target States

Large parts of the following section have been published in Ref. 151.

In this section we consider the special case, where the correlated subspace D is

restricted to the target states located the impurity cell R = 0. This means that only

local excitations are neglected in the RPA screening process. We shall see in moment

that this approach is applicable only for isolated target bands, where a minimal Wannier

basis can be found. The method relies on the general recipe given already in Eq. (6.2)

and requires the knowledge of both, the on-site fully screened interaction Wαβγδ as well

as the independent particle polarizability χ0
αβγδ in the Wannier basis at R = 0. One

can say that the effective matrix elements Uαβγδ are obtained from unscreening the fully

screened interaction using the impurity polarization.

Eq. (6.2) can be rewritten into the common Dyson form

Wαβγδ = Uαβγδ + Uαρτδχ0
ρµντW

µβγν . (6.73)

In the previous sections we have determined the on-site fully screened interaction matrix

Wαβγδ. What remains, to solve the equation above for the matrix elements Uαβγδ, is to

determine the correlated polarizability tensor χ0
αβγδ. Fortunately, this follows trivially

from Hanke’s expression, derived in (6.59), by renaming δ → γ, β → δ, γ → β and

restricting the lattice vectors Rα −Rδ to the impurity cell R = 0. One then obtains

χαβγδ0 (iν) =
1

N2
k

∑
ia

y(ν, ξai)T
∗α
iT

β
aT
∗γ
aT

δ
i, (6.74)

with i = (nk) denoting the occupied and a = (n′k + q) the unoccupied Bloch index.

We introduce the composite indices {(α, δ), (β, γ), (ρ, τ), (µ, ν)} to represent the cor-

responding matrix elements in Eq. (6.73) by conventional matrices U ,χ0,W . This

allows us to rewrite the equation into the computationally convenient matrix form

U = W · (1 + χ0 ·W )−1. (6.75)

However, a closer look to Eq. (6.73) reveals a problem if the target space is smaller

than the space spanned by the Wannier states, like for instance for the systems investi-

gated in the previous section. In this case the correct unscreening equation is

Wαβγδ = Uαβγδ +
∑

ρµντ∈D
Uαρτδχ0

ρµντW
µβγν (6.76)
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and is ill-defined, because the corresponding matrix equation (6.75) contains matrices of

different dimensions, see Ref. 163 for a similar discussion. To our knowledge there is no

unambiguous regularization scheme for such equations, so that the unscreening method

described above is ultimately restricted to a small class of materials. One example for

such a system is SrVO3 and is discussed in section 6.2.2.

6.2.1 Implementation Details

We have implemented this method into VASP using the same technique as in section

section 6.1.3.1, with one noteworthy difference. We impose an energy cutoff of 1000 eV−1

on the polarizability tensor χ0 to be consistent with metallic screening, Wq→0(0,0, 0)→
0. We found that this approach improves remarkably the stability of the unscreening

method.

6.2.2 Application to SrVO3

We have compared the unscreening method with the CRPA approach, derived in section

(6.1.3) for the test bet material SrVO3. This material is a d1 metal and one of the

most benchmarked systems within LDA+DMFT.[83] We have considered the the ideal

perovskite structure, shown in Fig. 6.9 with a lattice constant of a = 3.78 Å. The

perovskite is characterized by Sr atoms located between octahedral crystal fields (red

octahedra) build by six oxygen atoms with a V atom (not visible) in the center. The

octahedral crystal field splits the five-fold energetically degenerate atomic d-states of V

into two subgroups, the t2g- and eg-states consisting of three, respectively two states

with same energy. More precisely, the eg-group contains the dz2- and dx2−y2-states and

lies higher in energy than the t2g-group consisting of the dxy-, dxz- and dyz-state. This

becomes evident by considering the band structure of the system shown in Fig. 6.9,

where the two blue bands above Fermi level (at µ = 0 eV) are mainly of eg character

and the the three bands crossing the Fermi surface are the t2g-states.

These properties have two advantages. First, considering the t2g-states as target

space for DMFT is computationally convenient, due to the presence of only three cor-

related states. Second, the t2g manifold is topologically separated from the remaining

Fock space and forms a composite Bloch band.[138] We, therefore, are able to compare

the unscreening method, presented above, with the CRPA approach of section 6.1.3.
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Figure 6.9: Left: Crystal structure of SrVO3. Sr atoms (green) are located between the

oxygen crystal fields indicated by red octahedra with a V atom in the center. Right: Band

structure of SrVO3. The three t2g-states of V cross the chemical potential chosen at µ = 0

eV.

6.2.3 Comparison with CRPA

We have chosen maximally localized Wannier states as basis for our calculations. [140]

These states were obtained from the Wannier90 library by excluding all, except the

three t2g-bands of V, in the projection.[142] The plane wave cutoff energies for the

orbitals and the CRPA-polarizability have been set to 414 eV and 350 eV respectively.

Extrapolation to a high energy cutoff of 500 eV was performed as described in section

6.1.4 and a Methfessel-Paxton smearing function was chosen for the Fermi occupancies

with σ = 0.1.[164]

Due to the ideal perovskite structure any interaction matrix of SrVO3, including

the effective matrix Uαβγδ are determined by the three Hubbard-Kanamori parameters

(6.14)-(6.16). They are given in Tab. 6.6 for the unscreening U and the CRPA method,

denoted by UCRPA. The same table shows, in addition, the Hubbard-Kanamori parame-

ter for the bare Coulomb and fully screened interaction. The bare Coulomb interactions

(∼ 16 eV) are largely screened by the high-energy bands to give UCRPA ∼ 3 eV. In the

present case of SrVO3, the unscreened U turns out to have a value similar to UCRPA.

It can be shown that the unscreened U and U ′ depend strongly on the filling of the

system, which is mainly due to an oscillatory antiscreening effect induced by non-local
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Table 6.6: On-site bare (V ), fully screened RPA (W ), constrained RPA UCRPA and

unscreening interaction (U).

V W UCRPA U

U 16.0 1.12 3.36 3.46

U ′ 14.8 0.30 2.35 2.47

J 0.55 0.39 0.49 0.47

polarizations. This effect is absent in the CRPA method, because here on-, as well as

off-center terms are removed completely in screening and consequently the screening

oscillations are ’flatten out’. The small difference of 0.1 eV between U and UCRPA is

just a consequence of an accidental cancellation of the antiscreening by the non-local

polarizations with the screening by the long-range interaction. More details about this

effect can be found in Ref. 151.

However, we found that apart form the limited applicability of the unscreening

method, the additional antiscreening effect can cause serious issues for other systems.

This effect is not present for the method presented in previous section and it seems

that CRPA is much more reliable than the unscreening scheme. We, therefore, suggest

to apply the CRPA approach whenever possible to determine effective interactions for

model Hamiltonians.
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6.3 Quasi Particle GW+DMFT

In this section we apply the qpGW+DMFT algorithm to the test bed material SrVO3.

In addition, a comparison with conventional LDA+DMFT calculations are given.

The following subsection were published in Ref. 165.

6.3.1 Comparing qpGW+DMFT and LDA+DMFT for SrVO3

The starting point of our calculation is the GW implementation within VASP. Specifically,

we first performed Kohn-Sham density functional theory calculations within the settings

mentioned in section 6.2.2 to obtain one-electron orbitals φnk and one-electron energies

εnk. The position of the GW quasi particle peaks ε̃nk were calculated by solving the

linearized Eq. (4.65) for the diagonal

ε̃nk = εnk + ZnkRe
[
〈φnk| T̂ + ϕ̂+ V̂h + Σ̂(k, εnk) |φnk〉 − εnk

]
, (6.77)

where Σ̂ is the G0W0 self-energy and Znk the renormalization factor

Znk =
1

1− Re 〈φnk| ∂Σ̂(k,ω
∂ω

∣∣∣
ω=εnk

|φnk〉
. (6.78)

The original Kohn-Sham orbitals are maintained at this step and expressed in the pro-

jector augmented wave basis. Using Wannier90 these orbitals are projected onto the

minimal t2g Wannier basis, presented in section 6.2.2. To construct an effective low-

energy Hamiltonian for the vanadium t2g orbitals, we follow Faleev, van Schilfgaarde,

and Kotani and approximate the frequency dependent G0W0 self-energy by an hermitian

operator

Σnm,k =
1

2
〈φnk| Σ̂†(εnk) + Σ̂(εnk) |φmk〉 . (6.79)

This qp approximation is commonly used in GW calculations, in particular for self-

consistent calculations, since fully frequency dependent calculations are computationally

very demanding, see section 4.2.1 for more details.

In practice, for the present calculations, we have applied the slightly more involved

procedure to derive an hermitian approximation outlined in Ref. 65, although this yields

essentially an almost identical hermitian operator Σnmk. Furthermore, the off-diagonal

components are found to be negligibly small, and henceforth disregarded. The final

hermitian and k-point dependent operator is transformed to the Wannier basis and
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passed on to the DMFT code, where it is used to construct the k-dependent self-energy

by adding the local DMFT self-energy.

This qpGW+DMFT procedure allows us to maintain the structure and outline of the

common DFT+DMFT scheme and can be easily adopted in any DMFT code. Instead

of the LDA one-electron matrix elements, the qpGW ones are passed to the DMFT.

This procedure neglects lifetime broadening and any frequency dependence of the GW

self-energy beyond its linear part. Subtracting the local part of this qpGW hermitian

operator (to avoid a double counting) does not yield a constant shift for the degenerate

t2g orbitals, see for instance Tomczak et al.[166]. However, due to an implementation

error, the calculations have been performed, such that the removal of the local self-energy

terms results in a constant shift of the G0W0 energies. Our approach is, therefore, similar

to LDA+DMFT, but with renormalized band structure. Let us also note that hitherto

we did not perform self-consistency on the GW part.
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Figure 6.10: (Color online) Left panel: G0W0 quasi particle bands (red) in comparison to

LDA (gray). The Fermi level sets our zero of energy and is marked as a line. Right panel:

Wannier projected t2g band structure from G0W0 (red) and LDA (gray). The t2g target

bands bandwidth is reduced by ∼ 0.7 eV in GW .

Figure 6.10 shows the obtained G0W0 band structure, which for the t2g vanadium

target bands is about 0.7 eV narrower than for the LDA. The oxygen p band (below −2

eV) is shifted downwards by 0.5 eV compared to the LDA, whereas the vanadium eg

bands (located about 1.5 eV above the Fermi level) are slightly shifted upwards by 0.2

eV. In the LDA, the top most vanadium t2g band at the M point is slightly above the
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lowest eg band at the Γ point, whereas the G0W0 correction opens a gap between the

t2g and eg states.

Within this Wannier basis, we use an interaction value of Unl = 3.4 eV, as obtained

from the unscreening method described in section 6.2. It can be expected, that the

CRPA interaction of UCRPA = 3.3 eV will yield similar results, however, this might not

be the case for other materials and doping levels. We carefully compare qpGW+DMFT

with LDA+DMFT calculations and experiment. In both cases, we use (frequency-

independent) interaction. The Kanamori interaction parameters as derived from the

locally unscreened RPA are listed in Tab. 6.6 and are almost identical to the CRPA. In

constrained LDA (CLDA), on the other hand, somewhat larger interaction parameters

were obtained and are employed by us for the corresponding calculations UCLDA = 5.05

eV, U ′CLDA = 3.55 eV and JCLDA = 0.75 eV.1[167]

For the subsequent DMFT calculation we employ the Würzburg-Wien w2dynamics

code,[168] based on the hybridization-expansion variant [169] of the continuous-time

quantum Monte Carlo (CT-QMC) method.[170] This algorithm is particularly fast since

it employs additional quantum numbers for a rotationally invariant Kanamori interaction.[171]

The maximum entropy method is employed for the analytic continuation of the imagi-

nary time and (Matsubara) frequency CT-QMC data to real frequencies, see Ref. 172

for more details.

All our calculations are without self-consistency, which is to some extent justi-

fied for SrVO3. Since the three t2g bands of SrVO3 are degenerate, DMFT does not

change the charge density of the low-energy t2g manifold and hence self-consistency

effects are expected to be small for LDA+DMFT. This is, in principle, different for

qpGW+DMFT. Here the frequency dependence of the DMFT self-energy might yield

some feedback already for a simplified Faleev, van Schilfgaarde and Kotani quasi par-

ticle self-consistency.[173, 174] Finally, we also test the ZB-factor renormalized GW

bandwidth with ZB = 0.7 obtained in Ref. 175 for mimicking the frequency dependence

of the CRPA interaction.

1Note that CLDA tends to overestimate the Hund’s exchange, see Ref. 83 so that in subsequent

LDA+DMFT calculations smaller values of have been employed. For the system SrVO3 this smaller

value of mainly influences the upper Hubbard band.

164



6.3 Quasi Particle GW+DMFT

6.3.2 Results

For analyzing the differences between qpGW+DMFT and LDA+DMFT we analyze and

compare five different calculations in the following:

(1) LDA+DMFT@U
′cLDA(conventional LDA+DMFT calculation with the CLDA in-

teraction U
′CLDA = 3.55 eV).

(2) LDA+DMFT@U
′nl(LDA+DMFT calculation but with the locally unscreened RPA

interaction U
′nl = 2.49 eV).

(3) qpGW+DMFT@U
′nl(qpGW+DMFT calculation with U

′nl = 2.49 eV).

(4) qpGW+DMFT@U
′cLDA(qpGW+DMFT calculation with U

′CLDA = 3.55 eV).

(5) qpGW+DMFT@U
′nl,ZB = 0.7 (as 3 but with a Bose renormalization factor ZB).

Let us first turn to the imaginary part of the local self-energy which is shown as

a function of (Matsubara) frequency in Fig. 6.11. The self-energy yields a first im-

pression of how strong the electronic correlations are in the various calculations. The

LDA+DMFT@U
′nl self-energy is the least correlated one, somewhat less correlated

than LDA+DMFT@U
′CLDA due to the smaller locally unscreened Coulomb interaction

(U
′nl = 2.49 < 3.55 eV= U

′CLDA). For the same reason also the qpGW+DMFT@U
′nl

self-energy is less correlated than that of a qpGW+DMFT@U
′CLDA calculation.

If we compare LDA+DMFT and qpGW+DMFT on the other hand, the LDA+DMFT

self-energy is less correlated than the qpGW+DMFT one, if the Coulomb interaction is

kept the same. This is due to the 0.7 eV smaller GW t2g bandwidth in comparison to

LDA. This observation also reflects in the DMFT quasi particle renormalization factor

Z, which were obtained from a forth-order fit to the lowest for Matsubara frequencies, see

Tab. 6.7. Also there is an additional GW renormalization factor reducing the bandwidth

in comparison to LDA.

However, the effect of the smaller GW bandwidth partially compensates with the

smaller U
′nl interaction strength. Altogether this yields rather similar self-energies of

the standard approaches: LDA+DMFT@U
′cLDAand qpGW+DMFT@U

′nl, see lower

panel of Fig. 6.12. This also reflects in very similar renormalization factors in Table 6.7,
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Figure 6.11: Comparison of the imaginary part of the DMFT t2g self-energies Σ vs (Mat-

subara) frequency ω for SrVO3 at inverse temperature β = 40 eV1 as computed in five

different ways: employing qpGW and LDA Wannier bands, the locally unscreened RPA

interaction U
′nl = 2.49 eV and the CLDA U

′CLDA = 3.55 eV, as well as the ZB = 0.7

renormalization.[175].

Z = 0.51 vs. Z = 0.57, which both agree well with experimental estimates of 0.5− 0.6.1

[167, 176]

Since one important difference is the strength of the interaction, it is worthwhile

recalling that U
′nl is defined as the local interaction strength at low frequencies. While

this value is almost constant within the range of the t2g bandwidth, it approaches the bare

Coulomb interaction at larger energies, exceeding 10 eV. It has been recently argued and

shown in model calculations, see Ref. 175, that the stronger frequency dependence of the

screened Coulomb interaction at high energies is of relevance and can be mimicked by a

ZB renormalization of the GW bandwidth. The latter has been determined as ZB = 0.7

for SrVO3. We have tried to take this into account in the qpGW+DMFT@U
′nl,ZB =

0.7 calculation. Due to he additional bandwidth renormalization, this calculation is

very different from all others and yields the largest quasi particle renormalization,i.e.

Z = 0.36 is smallest.

This too small quasi particle weight can be understood as follows: The ZB factor

mimics the frequency dependence of CRPA screened Coulomb interaction, which is much

1Note that due to the presence of kinks there are actually two such renormalization factors: A Fermi

liquid for the renormalization at the lowest energies and a second for higher energies. The latter also

corresponds to the overall weight of the central peak. With the energy resolution in Fig. 6.12 being

limited by the discrete Matsubara frequencies the of Table 6.7 still rather corresponds to as do the

experimental values of Refs. 167 and 176.
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Table 6.7: DMFT quasi particle renormalization factors Z from the five different calcula-

tions at inverse temperature β = 40 eV−1. Also shown are the pairwise double occupations

within the same orbital dintra and between different orbitals with the same d↑↑inter and oppo-

site spin d↑↓inter. The ’standard’ LDA+DMFT@U
′CLDA and qpGW+DMFT@U

′nl calcula-

tions are similarly correlated and agree well with experiment. Using the CLDA interaction

U
′CLDA for qpGW+DMFT or the locally unscreened RPA U

′nl for LDA+DMFT yields a

too strongly and too weakly correlated solution in comparison to experiment, respectively.

Note that qpGW+DMFT becomes even more strongly correlated if the Bose renormalization

factor is included.

Scheme Z dintra d↑↑inter d↑↓inter

LDA+DMFT@U
′CLDA 0.51 0.004 0.013 0.009

LDA+DMFT@U
′nl 0.67 0.007 0.016 0.013

qpGW+DMFT@U
′nl 0.57 0.005 0.014 0.010

qpGW+DMFT@U
′CLDA 0.39 0.003 0.010 0.007

qpGW+DMFT@U
′nl,ZB = 0.7 0.36 0.003 0.009 0.006

Experiment ∼ 0.5− 0.6

larger at high frequencies. In a fully frequency dependent GW calculation, this is prop-

erly matched by a correspondingly large GW self-energy at large frequencies. However,

within the quasi particle treatment of the GW self-energy (which represents a linear

approximation to its frequency dependence, see section 4.2.1) such high frequency con-

tributions of the GW self-energy are not included. As our results show, in this case,

it is hence more consistent not to include the frequency dependence for the Coulomb

interaction only, which the ZB factor emulates.

Next, we compare the k-integrated spectrum in Fig. 6.13. At low frequency we find

the same trends as for the self-energy results: the qpGW+DMFT@U
′nland LDA+DMFT

at U
′nl and U

′CLDA, respectively, yield a rather similar spectrum. In particular, the quasi

particle peak has a similar weight and shape. However, a difference is found at larger

frequencies: The qpGW+DMFT@U
′nlHubbard bands are closer to the Fermi level in

comparison to LDA+DMFT (see Sec. 6.3.3). If we perform qpGW+DMFT@U
′nland

LDA+DMFT at the ’wrong’ interaction strength (i.e., U
′CLDA and U

′nl, respectively),

we obtain a noticeably stronger and weaker correlated solution, respectively. This trend

is also reflected in the double occupations presented in Table 6.7. Finally, as in the case
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Figure 6.12: Spectral function for SrVO3 ( t2g orbitals only) computed in five different

ways as in Fig. 6.11. At lower temperatures the central peak gets only slightly sharper and

higher, although the temperature effects from β = 25 to 40 eV−1 are small.

of the self-energy, the qpGW+DMFT@U
′nl, ZB = 0.7 solution is much more strongly

correlated, with Hubbard side bands at much lower energies.

6.3.3 Comparison to Photoemission Spectroscopy

An obvious question is whether LDA+DMFT or qpGW+DMFT yields ’better’ results.

This question is difficult to answer and for the time being we resort to a comparison

with experimental photoemission spectroscopy (PES).[167] However, one should be well

aware of the limitations of such a comparison. On the theory side, the involved approx-

imations common to the calculations, as, e.g., neglecting non-local correlations beyond

the DMFT and GW level, or further effects, such as the electron-phonon coupling or

the photoemission matrix elements, might bias the theoretical result in one way or the

other. On the experimental side, care is in place, as well, although the PES results have

considerably improved in the last years due to better photon sources. Furthermore, in

Ref. 167 an oxygen p background has been subtracted, which by a construction removes
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6.3 Quasi Particle GW+DMFT

all spectral weight below the region identified as the lower Hubbard band.

Figure 6.13 compares the proposed LDA+DMFT and qpGW+DMFT (with and

without Bose renormalization) with PES experiment. To this end, the theoretical results

have been multiplied with the Fermi function at the experimental temperature of 20 K

and broadened by the experimental resolution of 0.1 eV. The height of the PES spectrum

has been fixed so that its integral yields 1,i.e., accommodates one t2g electron, as in

theory.

Figure 6.13: Comparison of LDA+DMFT@U
′CLDA, qpGW+DMFT@U

′nl(without and

with Bose renormalization ZB = 0.7), and experiment. The position of the lower Hub-

bard band is better reproduced in qpGW+DMFT, whereas the central peak is similar in

LDA+DMFT and qpGW+DMFT. The Bose renormalization qpGW+DMFT differs con-

siderably (photoemission spectra reproduced from Ref. 167).

The qpGW+DMFT@U
′nland LDA+DMFT@U

′cLDAhave a quite similar quasi par-

ticle peak, which also well agrees with experiment, as it was already indicated by the

quasi particle renormalization factor. A noteworthy difference is the position of the

lower Hubbard band which is at −2 eV for LDA+DMFT@U
′cLDAand ∼ −1.6 eV for

qpGW+DMFT@U
′nl. The latter is in agreement with experiment and a result of the re-

duced GW bandwidth. Let us note that the sharpness and height of the lower Hubbard

band very much depends on the maximum entropy method, which tends to overestimate

the broadening of the high-energy spectral features. Hence, only the position and weight

is a reliable result of the calculation.
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As we have already seen, the Bose-factor renormalized qpGW+DMFT@U
′nl, ZB =

0.7 calculation is distinct from both qpGW+DMFT@U
′nland LDA+DMFT@U

′cLDA.

It is also different from experiment with a much more narrow quasi particle peak and a

lower Hubbard band much closer to the Fermi level. A similar difference between static

U on the one side and frequency dependent U was reported in Ref. 177. A difference of

this magnitude is hence to be expected. Recently we became aware of Ref. 178, in which

Tomczak et al. report a qpGW+DMFT calculation with the full frequency dependence

of the CRPA interaction for SrVO3 obtaining good agreement with experiment as well.
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Conclusion

The aim of this thesis was to develop algorithms and approximate techniques to solve the

electronic problem of condensed matter. In general, there are two possible approaches

to solve a system of interacting electrons.

On the one hand, there are the mean-field methods such as Hartree-Fock and density

functional theory, which are summarized in chapter 1. Both approaches allow for an

accurate determination of the groundstate energy of N interacting electrons with a

rather low computational cost, provided the groundstate wavefunction of the system is

described well by one Slater determinant (1.6). However, often this is an inaccurate

approximation and one has to either include additional Slater determinants, see Eq.

(1.19) or use more advanced density functionals to solve the Kohn-Sham equations (1.33).

In this thesis we used a different route to the electronic structure problem based

on the second quantization formalism of QFT and diagrammatic perturbation theory.

For this purpose we have introduced the necessary framework in the chapters 2 and 3.

We have discussed three different approaches including the RPA, GW approximation

and DMFT. While the former, RPA, yields a post-mean-field estimate for the correla-

tion energy of the interacting system [see section 3.3], GW and DMFT provide access

to spectral properties of the materials in terms of interacting electron and effectively

screened photon propagator functions [see chapter 4 and 4.5.1].

We have seen that GW and RPA are strongly related with each other, since both

approximations restrict the polarizability of the system to the independent particle bub-

ble of Eq. (3.25) resulting in the well-known GW diagram of the self-energy (4.27). To

be able to compute RPA correlation energies of large systems we have implemented a
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low scaling RPA algorithm in VASP, which is based on the discovery of dual non-uniform

imaginary time and frequency grids for the polarizability [see chapter 3.3]. Using this

algorithm we have calculated the RPA energy of Si for supercells of up to 256 atoms and

obtained defect formation energies in excellent agreement with recent DMC calculations.

This shows that RPA and GW describes accurately weakly correlated systems, where

delocalized correlation effects are dominating.

In contrast, DMFT provides access to the full, but local self-energy diagrams of a

system by mapping the many-body Hamiltonian to an auxiliary impurity problem [see

section 4.5.1]. We have seen that the mapping to the impurity model is exact only in

infinite dimensions, but gives an excellent description of the local correlation effects of

partially filled narrow bands. However, the solution of the impurity problem is typically

found using quantum Monte Carlo methods making DMFT calculations ultimately very

expensive, so that one effectively has to downfold the full many-body Hamiltonian onto

a small low energy model. To describe realistic systems this downfolded model Hamilto-

nian has to include non-local correlation effects as well. In section 4.5.1 we have shown

how commonly non-local correlation effects are incorporated in the DMFT approach

using LDA. We have seen that every LDA+DMFT scheme suffers necessarily from the

double counting problem, due to the fact that DFT is not a diagrammatic theory.

In contrast to the commonly used LDA+DMFT scheme, both theories, GW and

DMFT, can be formulated in a diagrammatic language [see 4.2.1 and 4.5.1], so that

the double counting problem of LDA+DMFT can be avoided. For this purpose we

elaborated on the combination of the GW approximation with DMFT by introducing

the PI formalism in section 4.3 and integrating out all, but local degrees of freedom using

the cavity method in section 4.5. This results in the general Dyson equations (4.127)

for the propagator and the effective interaction (4.128) and shows that formally, in a

true GW+DMFT framework, both propagators must be determined self-consistently

[see GW+DMFT algorithm in chapter 6].

This requires a true first-principles downfolding method of the full many-body Hamil-

tonian on a low energy model including the ab initio computation of the effective inter-

action of the model. To find such a prescription we have investigated the constrained

CRPA in detail in section 6.1, where screening effects within the DMFT target space

are neglected. We have shown that the CRPA approach is well-defined only in the

case of isolated target states, such as the t2g states of V in SrVO3, with ambiguities
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appearing for entangled target bands. For entangled target states, there are two differ-

ent CRPA approaches known, both suffering from deficiencies and not derivable from

first-principles [see 6.1.1]. To obtain a well-defined CRPA prescription we have used

the Kubo-Nakano formula (6.30) for the correlated subspace and derived an expression

for the target polarizability obtaining a similar expression to the Adler and Wiser for-

mula [see Eq. (6.68)]. We have applied our CRPA method to the 3d TMs series Sc-Ni,

where these functions are absent, obtaining effective interactions lying in between the

two known CRPA approaches [see Fig. 6.7]. Similar results have been obtained for the

superconductor La2CuO4 and shown in section 6.1.7.

In section 6.3, we have presented a simple GW+DMFT algorithm based on the qp

approximation of the GW self-energy [see section 4.2.1] and applied our qpGW+DMFT

scheme to the test material SrVO3. Using our qpGW+DMFT approach, which can

be seen as an LDA+DMFT scheme where G0W0 quasi-particle energies replace the KS

energies, we have obtained excellent agreement for the spectral function with experi-

mental data measured using PES [see Fig. 6.13]. We have seen that our qpGW+DMFT

method outperforms conventional LDA+DMFT calculations, that clearly underestimate

the lower Hubbard band.

These results show that combining GW with DMFT is a promissing route to go and

to investigate in future. Here, additional questions about the correct treatment of the

double counting terms in a qp or fully frequency dependent GW picture are raised, side

by side with the question how to include the effective potential in the self-consistency

GW+DMFT cycle. This will be investigated in future work.
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Appendix A

From QED to the Many-Body

Problem

In this appendix the many-body Hamiltonian of QFT from the QED Lagrangian is

derived. For this purpose, the Einstein summation convention is employed and the

Minkowski metric ηµν with signature (+ − −−) is used, where Latin indices i = 1, 2, 3

indicate space indices and Greek indices µ = 0, · · · , 3 arbitrary indices with µ = 0

representing the time index. Within this notation the QED Lagrangian in units of

~ = 1 = c reads (see for instance Bjorken and Drell[25])

L = Ψ (iγµ∂
µ −m− qγµV µ

ext) Ψ + qΨγµΨAµ − 1

16π
FµνF

µν , (A.1)

where Fµν is the electromagnetic field tensor. Here, γµ is the four-vector of the 4 × 4-

matrices

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A.2)

with σi representing the Pauli spin matrices. This implies that the field spinor Ψ is a

vector with four entries, see Ref. 24.

We are interested primarily in the conserved energy of the Lagrangian (A.1), i.e. a

scalar that is invariant under time shifts. This is obtained by Noether’s theorem, which

tells us that the energy-momentum density tensor[60]

Tµν = ∂νAα
∂L

∂(∂µAα)
+ ∂νΨ

∂L

∂(∂µΨ)
− ηµνL, (A.3)

obeys the four conservation laws

∂µT
µν = 0. (A.4)
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Integrating this expression over the full space, and using the divergence theorem of Gauss

∫
d3r∂iT

iν = 0, (A.5)

one finds for ν = 0 that

∂0

∫
d3rT00 = 0. (A.6)

This is the conservation law for the energy and one therefore associates the T00 with the

Hamiltonian density H. The latter is obtained from Eq. (A.3)

H =
∂L

∂∂0Aα︸ ︷︷ ︸
=Πµ

∂0Aα +
∂L

∂∂0Ψ︸ ︷︷ ︸
=Π

∂0Ψ− L (A.7)

and yields, when integrated, the Hamilton function1

H(t) =

∫
d3rH. (A.8)

Now, one looks for an explicit expression of the Hamilton function H(t).

For the Lagrangian of Eq. (A.1), the conjugate field momenta of the Dirac Π and

Maxwell field Πµ are

Π = iΨγ0 = iΨ† (A.9)

Πµ =
1

4π

(
0,−F 0i

)
=

1

4π

(
0, Ei

)
(A.10)

Where the definition of the electric field

F 0i = ∂0Ai − ∂iA0 = −Ei (A.11)

in the last step of Eq. (A.10) was used. Combining these momenta with the result for

the kinetic Maxwell term

FµνF
µν =

(
BiBi − EiEi

)
(A.12)

and the electron four-current jµ = ΨγµΨ one obtains the Hamiltonian density

H = Ψ†
(
iαi∂i +m

)
Ψ + qjµV ext

µ − 1

8π

(
BiBi + EiEi

)
+

1

4π
Ei∂iA0 − qjµAµ. (A.13)

Here the Dirac matrices αi = γ0γi have been used. From the density (A.13) and the

Hamiltonian equation of motion

∂Ψ

∂t
=
∂H

∂Π
, (A.14)

1We emphasize that Eq. (A.7) is the Legendre transformation of the Lagrangian (A.1).
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follows the Dirac equation in the Hamilton form[25]

i
∂Ψ

∂t
=
[
iαi∂i +m+ qγµ(V ext

µ −Aµ)
]

Ψ. (A.15)

So far no specific gauge condition on the electromagnetic field or any reference frame

was assumed. For our considerations it s advantageous to choose the rest frame of the

nuclei as the reference frame. Assuming fixed locations of the nuclei in space, this implies

that the external potential can be written as

V µ
ext = (ϕ, 0, 0, 0). (A.16)

Customary gauges are the Lorentz gauge ∂µA
µ = 0 and the Coulomb (or radiation)

gauge condition

∂iA
i = 0. (A.17)

The former is suitable for maintaining co-variance, whereas the latter is useful if the

radiating part of the electromagnetic field should be separated, see Ref. 59 for more

details. Electromagnetic radiation will not be considered in this thesis, since in most

cases it can be neglected for condensed matter. Therefore Eq. (A.17) is chosen as gauge

condition for the electromagnetic field in the following.

To achieve this, the co-variance notation is dropped in the forthcoming and one

concentrates on the last two terms of the Hamiltonian density (A.13). It is convenient

to split the electric field ~E into its normal

~E⊥ = −∂
~A

∂t
(A.18)

and parallel components[179]

~E‖ = −~∇φ. (A.19)

Integrating the density H one obtains for the last three terms of the Hamilton function

H(t) (A.13)

1

8π

∫
d3r

(
~B2 + ~E2

⊥

)
+

1

4π

∫
d3r ~E⊥ · ~E‖ +

1

8π

∫
d3r ~E2

‖

+
1

4π

∫
d3r ~E · ~∇φ− q

∫
d3rρφ+ q

∫
d3r~j · ~A, (A.20)

where jµ = (ρ,~j) was used.
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The second term vanishes, which follows from partial integration and the fact that

~∇ · ~E⊥ = 0 holds within the Coulomb gauge. Partial integration of the forth term with

additional usage of the Maxwell equation

~∇ · ~E = 4πqρ (A.21)

cancels term five. Furthermore, the third contribution in (A.20) can be rewritten into

1

8π

∫
d3r ~E2

‖ =
1

8π

∫
d3r~∇ ·

(
φ~∇φ

)
︸ ︷︷ ︸

=0

− 1

8π

∫
d3rφ ∆φ︸︷︷︸

−4πqρ

(A.22)

by using the Maxwell equation in the Coulomb gauge

−∆φ = 4πqρ. (A.23)

The general solution of this equation is the well-known Poisson integral

ρ(r, t) = q

∫
d3r′

ρ(r′, t)

|r− r′| (A.24)

and can be inserted into the last term of Eq. (A.22) as well as into Eq. (A.20). Collecting

all terms of the Hamiltonian (A.13) and using ρ = Ψ†Ψ yields finally

H(t) =

∫
d3rΨ†

(
~α · ~∇+m+ qβϕ

)
Ψ

+
e2

2

∫
d3rd3r′

Ψ†(r, t)Ψ(r, t)Ψ†(r′, t)Ψ(r′, t)

|r− r′|

+
1

8π

∫
d3r

(~∇× ~A
)2

+

(
∂ ~A

∂t

)2

+ q~j · ~A

 (A.25)

In the second line of this expression the instantaneous Coulomb interaction of two charge

distributions ρ at different positions appears. The third term describes the energy of the

electromagnetic field and explains how an electron current interacts with the magnetic

field.

Finding solutions of the corresponding field equations for the Hamiltonian (A.25)

is not feasible for any but the simplest systems.[180] So, before one continues with the

quantization of the field theory, it is time to make three assumption.

Firstly, we are mostly interested in the physics of condensed matter and the inter-

actions of bound valence electrons in solid matter. For this purpose a static external

potential ϕ(r, t) = ϕ(r) is an sufficiently accurate approximation for our considerations.
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Secondly, electrostatic systems, where the electronic current ~j is small compared to

the Coulomb interaction between the charges ρ are considered only. Hence the last term

in (A.25) is neglected.

Lastly, valence electrons have typically small energies compared to its rest mass m,

so that the non-relativistic limit of the first term in Eq. (A.25) is appropriate. For this

purpose, we reintroduced the constants ~ and c and consider the corresponding Dirac

equation of the first term in Eq. (A.25), which reads

i~
∂Ψ

∂t
=

c~α ·
−i~~∇︸ ︷︷ ︸

=~p

−q
c
~A

+ βmc2 + qβϕ

Ψ. (A.26)

Following Bjorken and Drell[25], one inserts the two-component ansatz Ψ = e−i
mc2

~ t(ψ, χ)

for the Dirac spinor Ψ into Eq. (A.26) and obtains

i~
∂

∂t

(
ψ
χ

)
= c~σ · ~π

(
χ
ψ

)
− 2mc2

(
0
χ

)
+ qϕ

(
ψ
χ

)
, ~π = ~p− q

c
~A. (A.27)

In the next step, small energies and field interactions of the positron

i~
∂χ

∂t
≈ 0 ≈ qϕχ (A.28)

are assumed and the identity1

(~σ · ~π)2 = ~π · ~π − q~
c
~σ · ~B (A.29)

is used to derive the Pauli equation for the following Schrödinger field spinor

i~
∂ψ

∂t
=

[
1

2m
(~π · ~π)2 − q~

2mc
~σ · ~B + qϕ

]
ψ. (A.30)

This equation can be further simplified for constant and weak magnetic fields ~B0 with

corresponding vector potential ~A = 1
2
~B0 × ~r to end up with the Schrödinger equation

i~
∂ψ

∂t
=

[
1

2m
~p2 − q~

2mc

(
~L+ 2~S

)
· ~B0 + qϕ

]
ψ. (A.31)

Here the second term on the r.h.s. contains the angular momentum ~L = ~r × ~p and

spin operator ~S = ~/2~σ and can be safely disregarded for the systems considered in this

thesis, i.e. by performing the limit c → ∞. Then Eq. (A.31) assumes the form of the

non-interacting Schrödinger equation with the Hamiltonian given in Eq. (2.2).

1This follows from the commutation relations of the Pauli spin matrices [σi, σj ] = 2iεijkσ
k, see Ref.

25 for more details.
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Appendix B

Non-Interacting Lehman

Amplitudes

In this appendix the Lehman amplitudes

A
(∗)±
<(>)(r) =

〈
Ψ(N±1)
ν

∣∣∣ ψ̂(†)
<(>)(r)

∣∣∣Ψ(N)
0

〉
(B.1)

appearing in the expression of the lesser part of the non-interacting propagator (2.49)

are evaluated. We focus our attention on the special case

A∗−< (r) =
〈

Ψ(N−1)
ν

∣∣∣ ψ̂†<(r)
∣∣∣Ψ(N)

0

〉
, (B.2)

since, as one shall see in a moment, the result can be generalized easily to all amplitudes

of the form (B.1).

In the first step, the completeness relation

1 =

∫
dr2 · · · drN |r2 · · · rN 〉 〈r2 · · · rN | (B.3)

is inserted into Eq. (B.2) and Eq. 2.25 is used to obtain

A∗−< (r) =
〈

Ψ(N−1)
ν

∣∣∣ ψ̂†<(r)× 1
∣∣∣Ψ(N)

0

〉
=
√
N

∫
dr2 · · · drNΨ∗(N−1)

ν (r2, · · · , rN )Ψ
(N)
0 (r, r2, · · · , rN ). (B.4)

Next, the explicit form of the Slater determinants (1.6) is used to derive

A∗−< (r) =
√
N
[
ε(ν)

]α2···αN [ε(0)

]i1···iN φi1(r) 〈φα2 | φi2〉 · · · 〈φαN | φiN 〉 , (B.5)
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where the indices α2, · · · , αN and i1, · · · , iN are restricted to the sets

α2, · · · , αN ∈ I(N−1)
ν and i2, · · · , iN ∈ I(N)

0 . (B.6)

The orthogonality of the Bloch functions (1.10) implies that Eq. (B.5) reduces to

A∗−1
< (r) =

√
N
[
ε(ν)

]α2···αN [ε(0)

]i1
α2···αN

φi1(r). (B.7)

The contraction of the Levi-Civita tensors can be determined by writing explicitly[
ε(0)

]i1
α2···αN

=
∑
j∈I(N)

0

δ i1
j

[
ε(0)

]j
α2···αN

(B.8)

and using the saturated contraction formula (see Ref. 47)[
ε(ν)

]α1···αN [ε(ν)

]
α1···αN

= N ! (B.9)

for each term in (B.8). This results in

[
ε(ν)

]α2···αN [ε(0)

]i1
α2···αN

=
(−1)1+|i1|
√
N

δ i1
ν , i1 ∈ I(N)

0 , ν ∈ I(N)
0 \ {i1}, (B.10)

where |i1| denotes the position of the index i1 in the set I
(N)
0 . The restriction on the

indices in combination with Eq. (B.7) shows that

A∗−< (r) = (−1)1+|ν|φν(r)Θ(−εν), ν ∈ I(N)
0 ∩ I(N−1)

ν (B.11)

This result is generalized straightforwardly to other matrix elements (B.1), such as

A∗+> (r) =
〈

Ψ(N+1)
ν

∣∣∣ ψ̂>(r)
∣∣∣Ψ(N)

0

〉∗
= (−1)1+|ν|φ∗ν(r)Θ(εν), ν ∈ I(N)

0 ∩ I(N+1)
ν (B.12)

A last remark is in place here. The factor (−1)1+|ν| always drops out in the Lehman rep-

resentation of the Green’s function (2.49), because only absolute values of the amplitudes

(B.1) contribute.
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Appendix C

Functional Integral Identities

The Gaussian integral formula

∞∫
−∞

dp

2π
e−λp

2
=

1√
2πλ

, λ ∈ R (C.1)

can be generalized to

∞∫
−∞

dnp

(2π)n
e−

1
2
p·V·p+j·p =

e
1
2
j·V−1·j√
|V|(2π)n

, j ∈ Rn (C.2)

where V is a real matrix with non-zero determinant |V| of dimension n× n. Similarly,

one has for complex variables[47]∫
dnz∗

(2πi)
n
2

dnz

(2πi)
n
2

e−z
∗·H·z+j∗·z+z∗·j =

ej
∗·H·j

|H| , (C.3)

where H is a non-singular hermitian matrix of dimension n× n.

C.1 Grassmann Algebra

Grassman numbers are defined by

ψ1ψ2 = −ψ2ψ1, (C.4)

so that

ψ2 = 0. (C.5)
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Due to this property the power series of an analytic functions f in ψ contains only two

terms

f(ψ) = f(0) + f ′(0)ψ, (C.6)

respectively four terms for a function in ψ and ψ∗

A(ψ∗, ψ) = A(0, 0) + ∂1A(0, ψ)ψ∗ + ∂2A(ψ∗, 0)ψ + ∂1∂2A(0, 0)ψ∗ψ∗. (C.7)

Here one defines the derivative as

∂

∂ψ∗
(ψ∗ψ) = ψ (C.8)

implying that following identities hold

∂

∂ψ
(ψ∗ψ) = −∂

∂ψ
(ψψ∗) = −ψ∗ (C.9)

∂2

∂ψ2
= −∂

2

∂ψ2
= 0. (C.10)

The integration is defined as the inverse of the derivative as∫
dψψ = 1,

∫
dψ = 0, (C.11)

which yields for Eqs. (C.6) and (C.7)∫
dψf(ψ) = f ′(0),

∫
dψA(ψ∗, ψ) = ∂2A− ∂1∂2ψ

∗. (C.12)

Gaussian integrals of Grassman variables are evaluated trivially by∫
dψ∗dψe−ψ

∗λψ =

∫
dψ∗dψ(1− ψ∗λψ) = λ (C.13)

and the generalization of this result to vectors yields[39, 47]∫
dψ∗dψe−ψ

∗·H·ψ+j∗·ψ+j·ψ∗ = |H|ej·H−1·j, (C.14)

where R is a matrix with determinant |R| and j, j∗ arbitrary Grassmann vectors.
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C.2 Hubbard-Strotonovich Transformation

Replacing j→ ±iρ, V → V−1 and writing φ instead of p in Eq. (C.2) yields the useful

identity

e−
1
2
ρ·V·ρ =

1√
|V|(2π)n

∞∫
−∞

dnφe−
1
2
φ·V−1·φ±iρ·φ, ρ ∈ Rn (C.15)

where ρ = (ρ1, · · · , ρn) is an n dimensional vector. This identity is known as Hubbard-

Strotonovich transformation[76] and allows to decouple the Coulomb interaction term

in partition functions by means of introducing additional degrees of freedom, described

by φ.
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Appendix D

Analytic Continuation of Spectral

Functions

In section 2.4.1, we have seen that the retarded propagator (2.69) and the Feynman

propagator (2.68) of the non-interacting system are only different branches of a more

general function f . Looking at the Lehman representation (4.59), it becomes evident

that the analyticity holds true for the interacting case as well.[35] That is, the inter-

acting Feynman and retarded propagators G(r′, r, ω), Gr(r
′, r, ω) correspond to specific

branches of a more general function F (r′, r, z).

Consequently, by analytic continuation of the Feynman or retarded propagator to

complex frequencies z one obtains all branches of the function F (r′, r, z), where the

branch cut of the function F is located at z ∈ R. This is insofar of interest, because only

the retarded Green’s function Gr is measurable. More precisely, the spectral density

function Ar of the retarded propagator Gr, defined implicitly by the Hilbert transform

Gr(r
′, r, z) =

∫
dω′

π

Ar(r
′, r, ω′)

z − ω′ − iη , z ∈ C, η → 0 (D.1)

can be measured only for real frequencies ω′, e.g. using the angle resolved photoemission

spectroscopy (ARPES) method, see Refs. 181, 182 for more details about the measuring

principle.

In contrast DMFT or the GWA provides access to the time-ordered propagator G

only. A comparison of theoretical with experimental data is, therefore, only possible for

real frequencies. This is problematic if DMFT (or GW ) calculations are performed on the

imaginary frequency line yielding {G(iωn)}Nωn=1 for a finite set of imaginary frequency (or
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time) points. The reason for this is, that mathematically the extraction of the spectral

density function Ar(ω) on the real frequency axis from a finite set of points {G(iωn)}Nωn=1

can be formulated as the inversion of a Laplace transform.[183] The latter is known to be

an ill-posed problem, implying that the reconstruction of the spectral density function

cannot be done unambiguously for the complete real frequency line.

Fortunately, in the neighborhood of the chemical potential z = µ (which in our case

is chosen to be 0) the spectral density function can be recast sufficiently accurate with

various methods. At this point, the interested reader is referred to the literature, e.g.

Refs. 172, 183, 184, 185.
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Appendix E

Interaction Matrices for La2CuO4

and the 3d TM series

This appendix list additional effective interactions for the TM series Sc-Ni and the

superconductor La2CuO4.

Table E.1: Bare, fully and effectively screened exchange interaction J in [eV] for transition

metals in model (iii).

Sc Ti V Cr Mn Fe Co Ni

0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.8

0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6

0.4 0.4 0.6 0.6 0.6 0.6 0.7 0.7
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SERIES

Table E.2: Bare interaction matrices Vααββ and Vαβαβ in La2Cu04.

dxy dxz dyz dx2−y2 dz2 dxy dxz dyz dx2−y2 dz2

dxy 27.1 25.7 25.7 25.5 24.9 27.1 0.7 0.7 1.2 1.1

dzy 25.7 27.0 25.0 25.8 25.2 0.7 27.0 1.0 1.0 1.0

dyz 25.7 25.0 27.0 25.8 25.2 0.7 1.0 27.0 1.0 1.0

dx2−y2 25.5 25.8 25.8 28.7 27.0 1.2 1.0 1.0 28.7 0.6

dz2 24.9 25.2 25.2 27.0 27.5 1.1 1.0 1.0 0.6 27.5

Table E.3: Fully screened interaction matrices Wααββ and Wαβαβ in La2CuO4.

dxy dxz dyz dx2−y2 dz2 dxy dxz dyz dx2−y2 dz2

dxy 3.8 2.4 2.4 1.1 1.3 3.8 0.7 0.7 0.9 1.1

dzy 2.4 3.5 1.8 1.3 1.4 0.7 3.5 0.9 0.9 0.9

dyz 2.4 1.8 3.5 1.3 1.4 0.7 0.9 3.5 0.9 0.9

dx2−y2 1.1 1.3 1.3 2.6 1.7 0.9 0.9 0.9 2.6 0.5

dz2 1.3 1.4 1.4 1.7 2.9 1.1 0.9 0.9 0.5 2.9
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[91] M. Häser and J. Almlöf. Laplace transform tech-

niques in MøllerPlesset perturbation theory. J.

Chem. Phys., 96:489–494, 1992. 91, 93, 94

[92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipes 3rd Edition: The Art of Sci-

entific Computing. Cambridge University Press, 2007.

92, 98, 146

[93] G. Golub and V. Pereyra. Separable nonlinear least

squares: the variable projection method and its

applications. Inverse Problems, 19:R1, 2003. 92, 100

[94] D. Braess. Nonlinear Approximation Theory. Springer

Series in Computational Mathematics. Springer, 2011.

92

203

http://link.aps.org/doi/10.1103/PhysRevLett.99.246403
http://link.aps.org/doi/10.1103/PhysRevLett.99.246403
http://link.aps.org/doi/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://link.aps.org/doi/10.1103/PhysRevLett.81.5374
http://link.aps.org/doi/10.1103/PhysRevLett.81.5374
http://link.aps.org/doi/10.1103/PhysRevLett.81.5374
http://link.aps.org/doi/10.1103/PhysRevB.83.115108
http://link.aps.org/doi/10.1103/PhysRevB.83.115108
http://link.aps.org/doi/10.1103/PhysRevB.83.115108
http://www.sciencedirect.com/science/article/pii/S001046559900466X
http://www.sciencedirect.com/science/article/pii/S001046559900466X
http://stacks.iop.org/1367-2630/14/i=5/a=053020
http://stacks.iop.org/1367-2630/14/i=5/a=053020
http://stacks.iop.org/1367-2630/14/i=5/a=053020
http://stacks.iop.org/1367-2630/14/i=5/a=053020
http://link.aps.org/doi/10.1103/RevModPhys.20.367
http://link.aps.org/doi/10.1103/RevModPhys.20.367
http://link.aps.org/doi/10.1103/PhysRevB.87.125149
http://link.aps.org/doi/10.1103/PhysRevB.87.125149
http://link.aps.org/doi/10.1103/PhysRevB.87.125149
http://link.aps.org/doi/10.1103/PhysRevB.87.125149
http://link.aps.org/doi/10.1103/RevModPhys.68.13
http://link.aps.org/doi/10.1103/RevModPhys.68.13
http://link.aps.org/doi/10.1103/RevModPhys.68.13
http://link.aps.org/doi/10.1103/PhysRevB.7.4388
http://link.aps.org/doi/10.1103/PhysRevB.7.4388
http://link.aps.org/doi/10.1103/PhysRevLett.3.77
http://rspa.royalsocietypublishing.org/content/276/1365/238
http://rspa.royalsocietypublishing.org/content/276/1365/238
http://stacks.iop.org/0953-8984/10/i=20/a=004
http://stacks.iop.org/0953-8984/10/i=20/a=004
http://link.aps.org/doi/10.1103/PhysRevLett.45.379
http://link.aps.org/doi/10.1103/PhysRevLett.45.379
http://dx.doi.org/10.1007/BF01341708
http://link.aps.org/doi/10.1103/PhysRevLett.62.324
http://link.aps.org/doi/10.1103/PhysRevLett.62.324
http://juser.fz-juelich.de/record/155829
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://juser.fz-juelich.de/record/136342
http://juser.fz-juelich.de/record/136342
http://dx.doi.org/10.1002/pssb.200642053
http://dx.doi.org/10.1002/pssb.200642053
http://www.sciencedirect.com/science/article/pii/S0368204810001222
http://www.sciencedirect.com/science/article/pii/S0368204810001222
http://link.aps.org/doi/10.1103/PhysRevLett.90.086402
http://link.aps.org/doi/10.1103/PhysRevLett.90.086402
http://link.aps.org/doi/10.1103/PhysRevLett.90.086402
http://link.aps.org/doi/10.1103/PhysRevLett.90.086402
http://link.aps.org/doi/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://dx.doi.org/10.1021/ct5001268
http://link.aps.org/doi/10.1103/PhysRevB.90.054115
http://link.aps.org/doi/10.1103/PhysRevB.90.054115
http://link.aps.org/doi/10.1103/PhysRevB.90.054115
http://link.aps.org/doi/10.1103/PhysRevB.77.045136
http://link.aps.org/doi/10.1103/PhysRevB.77.045136
http://link.aps.org/doi/10.1103/PhysRevB.77.045136
http://scitation.aip.org/content/aip/journal/jcp/96/1/10.1063/1.462485
http://scitation.aip.org/content/aip/journal/jcp/96/1/10.1063/1.462485
http://stacks.iop.org/0266-5611/19/i=2/a=201
http://stacks.iop.org/0266-5611/19/i=2/a=201
http://stacks.iop.org/0266-5611/19/i=2/a=201


REFERENCES

[95] E. I. A. Remez. General computational methods of Cheby-

shev approximation: The problems with linear real param-

eters. U. S. Atomic Energy Commission, Division of

Technical Information, 1962. 92
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[155] E. Şaşıoğlu, C. Friedrich, and S. Blügel. Strength of
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Ŝ Time-evolution operator. 30, 31

G Interacting Feynman propagator. 40, 57–62, 65, 68–70, 76, 85, 86, 131,
132

G0 Non-interacting Feynman propagator. 24–26, 28, 35–38, 45, 53, 58, 60,
61, 64, 70, 79, 83, 85, 89, 193

G0
> Greater non-interacting Green’s function. 25, 26

G0
< Lesser non-interacting Green’s function. 25

χd Correlated part of independent particle polarizability describing
screening with target space D. 135, 136, 138, 141–145

χr Effective independent particle polarizability of constrained random
phase approximation. 135

χ0 Indepentent particle polarizability. 52–55, 89, 135, 140, 194
χ Irreducible polarizability. 62–66, 68, 83, 131, 135

212



Glossary

W Screened interaction in Schwinger-Dyson equations. 57, 61–63, 65, 68,
82, 131, 132, 135

Σ Irreducible self-energy of interacting Feynman propagator. 59, 60, 65,
66, 68, 83, 85, 131

Γ Irreducible vertex function. 57, 64–66, 68

Seff Effective action for local degrees of freedom. 77, 81, 82, 84
S Full many-body action of the system. 79
Sv Interacting part of the many-body action. 79
S0 Non-interacting part of the many-body action. 79
V̄ On-site bare Hubbard-Kanamori interaction. 135, 151, 156
W̄ On-site fully RPA-screened Hubbard-Kanamori interaction. 135,

151–153, 156
U Effective on-site Hubbard-Kanamori interaction. 133, 134, 151,

154–157, 164, 196
J Effective Hund interaction. 134
U Retarted interaction of auxillary impurity model or bare impurity

interaction. 82, 83, 85, 86, 131, 132, 134, 135
χimp Irreducible polarizability (bosonic self-energy) of impurity model. 83,

132
Gimp Fully dressed (fermionic) propagator of impurity model. 82, 85, 132
Wimp Fully dressed interaction (bosonic propagator) of impurity model. 82
Σimp Irreducible (fermionic) self-energy of impurity model. 83, 85, 132
G Weiss field of auxillary impurity model or non-interacting impurity

propagator. 82–85, 131, 132

D Correlated subspace described by model Hamiltonian solved with
DMFT. 134–138, 140, 141, 144, 145, 158

ND Number of states in the correlated subspace D. 134
N System size, i.e. total number of electrons considered. 3, 4, 7, 8, 12, 20,

21, 23, 25, 55, 69, 70, 72, 89–91, 113, 142, 171
F Fock space of the many-body problem. 20, 76, 134, 142
∧NH Antisymmetrized Hilbert space H of N particles. 20

C Set of complex numbers. 7

I
(N)
µ Index set of N quantum numbers defining the µth non-interacting

eigenstate
∣∣∣Ψ(N)

µ

〉
. 5, 21

Z Set of all integer numbers. 37–39, 53
N Set of natural numbers (positive integers). 20
R Set of real numbers. 8
C∞(R3) Set of all smooth functions defined on R3. 8, 9[
ε(µ)

]
Levi-Civita tensor with indices are restricted to the index set I

(N)
µ . 5,

6, 139

213



Glossary
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Zusammenfassung

Der erste Teil der vorliegenden Arbeit deckt grundlegende Literatur zum

Thema Vielelektronensysteme in kondensierter Materie ab. Dies beinhaltet

die zugehörige Schrödingergleichung sowie die beiden Näherungsverfahren

Hartree-Fock- und Dichtefunktionaltheorie. Dieser Abschnitt sollte als eine

kurze Einleitung zum Thema betrachtet werden, da der Hauptfokus der vor-

legenden Arbeit auf quantenfeldtheoretischen Zugängen liegt. Aus diesem

Grund wird in Kapitel 2 die Zweite Quantisierung des Schrödingerfeldes be-

sprochen, um anschließend (in Kapitel 3) Feynman-Regeln für die Störungsreihe

des Großkanonischen Potentials abzuleiten. Das Beschränken der Reihe auf

sogenannte Ringdiagramme ergibt die bekannte Random-Phase-Approximation

(RPA) des Großkanonischen Potentials bzw. die elektronische Korrelation-

senergie am absoluten Nullpunkt.

Um die Vereinigung der GW - mit der Dynamischen Molekularfeldtheorie-

(DMFT) Näherung des Elektronenpropagators zu untersuchen, werden die

Schwinger-Dyson-Gleichungen und das Konzept des Pfadintegrals in Kapi-

tel 4 eingeführt. Die GW -Näherung wird über die Dysongleichung für den

Elektronenpropagator hergeleitet indem die Selbstenergiebeiträge auf Ring-

diagramme beschränkt werden. Im Gegensatz dazu erhält man die DMFT-

Näherung durch das Ausintegrieren von nicht-lokalen Feldvariablen in der

großkanonischen Zustandssumme im Grenzwert von unendlich vielen Di-

mensionen. Daraus folgt, dass die DMFT- eine akkuratere Bestimmung

aller lokalen Selbstenergiediagramme des Elektronenpropagators als die GW -

Approximation erlaubt. Anschließend wird der Wechselwirkungsterm des

Hamiltonoperators mit einer Hubbard-Stratonovich-Transformation entkop-

pelt, um zu zeigen, dass eine konsistente Kombination von GW - und DMFT-
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Näherung nur dann möglich ist, wenn sowohl die fermionische als auch die

bosonische Dysongleichung selbst-konsistent gelöst wird.

Der zweite Teil der vorliegenden Arbeit beinhaltet zwei Kapitel die aus

einer Kollektion von kürzlich publizierten Arbeiten bestehen. Darin werden

methodologische Entwicklungen für das Ausführen von praktischenGW+DMFT-

Rechnungen vorgestellt beginnend mit einem effizienten RPA-Algorithmus

in Kapitel 5. Dieser Algorithmus basiert auf optimierten imaginären Zeit-

und Frequenzgittern für die Møller-Plesset-Störungstheorie und erlaubt eine

genaue Bestimmung der RPA-Korrelationsenergie mit einem Rechenaufwand,

der kubisch mit der Systemgröße skaliert. Die Algorithmuseffizienz wird

durch das Berechnen der Defektformationsenergien von Si mit Superzellen

von bis zu 256 Atomen demonstriert. Da die GW -Näherung mit der RPA

eng verwandt ist, kann der präsentierte RPA-Algorithmus als der erste Schritt

zu einem effizienten GW -Algorithmus betrachtet werden.

In Kapitel 6 wird ein vereinfachter GW+DMFT-Zugang vorgestellt. Das

beinhaltet die Ableitung einer beschränkten RPA-Methode (CRPA), die auf

der Kubo-Formel für die Dichte-Dichte-Antwortfunktion basiert. Die so

hergeleitete CRPA erlaubt die Berechnung der effektiven Wechselwirkung

in korrelierten Unterraum, der durch die DMFT akkurat beschrieben wird.

Um die Spektralfunktion von SrVO3 zu berechnen, wird im letzten Teil die

Quasi-Teilchen-GW - in Kombination mit der DMFT-Näherung verwendet.

Es wird gezeigt, dass das Resultat zu einer guten Übereinstimmung mit dem

Experiment führt.

216



Abstract

Part one of the present thesis covers basic textbook knowledge about the

many-body problem of condensed matter physics introduced in chapter 1

by means of Hartree-Fock and density functional theory. The main part of

this work, however, is focused on quantum field theory methods to solve the

many-body problem. For this purpose the second quantization technique for

the many-body Hamiltonian is used to derive Feynman rules for the per-

turbation expansion of the grand canonical potential in terms of Feynman

diagrams. Restricting the series to ring diagrams the random phase approx-

imation (RPA) of the grand potential, respectively the correlation energy at

zero-temperature is obtained.

To investigate the combination of the GW and dynamical mean field theory

(DMFT) approximation of the electron propagator, the Schwinger-Dyson

equations as well as the path integral formalism of condensed matter physics

are introduced. The GW approximation is explained using the Dyson equa-

tion for the electron propagator and showing that it is obtained by restricting

the self-energy to RPA bubble diagrams. In contrast we derive the DMFT

approximation of the propagator by integrating out all non-local field vari-

ables and using the infinite dimensional limit. This reveals, that DMFT

allows for an accurate determination of all local self-energy diagrams of the

electron propagator.

To merge GW with DMFT, we decouple the interaction term of the Hamilto-

nian using a Hubbard-Stratonovich transformation to show that a consistent

GW+DMFT approach is possible only if the Dyson equation for the fermionic

as well as for the bosonic propagator is solved self-consistently. The latter in-

cludes the effective, purely local interaction between DMFT target states and



has to be determined from first principles by downfolding the full many-body

Hamiltonian onto a small localized basis set.

Part two of this thesis is covered by chapter 5 and 6 and consists of a collec-

tion of recently published papers, presenting methodological developments to

carry out practicalGW+DMFT calculations from first principles. Emphasize

is put on a low scaling RPA algorithm, presented in chapter 5. This algorithm

is based on optimized imaginary time and frequency grids for Møller-Plesset

perturbation theory and allows for an accurate determination of the RPA

correlation energy with a computational effort scaling cubicly with the sys-

tem size. The performance of the algorithm is demonstrated by computing

RPA defect formation energies for Si using supercells with up to 256 atoms.

Due to the strong relation of the GW with the random phase approxima-

tion, the presented RPA algorithm should be seen as a first step towards the

improvement and acceleration of quasi particle (qp) GW calculations.

In chapter 6 a simplified qpGW+DMFT algorithm is presented and applied

to SrVO3. This includes a derivation of a constrained RPA (CRPA) scheme

based on the Kubo formula of the density-density response function, which

is used to determine effective interaction parameter for DMFT Hamiltonians

from first principles. In contrast to conventionally applied CRPA methods,

our approach does not change the original band structure and follows from

basic principles without additional ad-hoc steps. In the next step the quasi

particle GW approximation is combined with DMFT to a qpGW+DMFT

scheme and the algorithm is applied to SrVO3 finding good agreement with

experimentally measured data.
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Leif-Eric Hintzsche, Andreas Grüneis, Doris Vogtenhuber, Cesare Franchini,

Tobias Sander, Felix Hummel, Kerstin Hummer, Gerald Jordan, Emanuele

Maggio, Menno Bokdam, Lubomir Benko, Laurids Schimka, Ronald Starke,
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