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Abstract

Motion estimation is an omnipresent goal in image analysis and computer vi-
sion. An important task within is optical flow computation in a sequence of im-
ages. It addresses the issue of inferring a vector field from intensity variations,
thereby describing the displacements of moving objects. Typically, optical flow
is computed in the plane but is readily generalised to non-Euclidean settings
allowing, for instance, for cell motion analysis in time-lapse microscopy data.

Today, fluorescence microscopy enables high-resolution observations of bio-
logical model organisms, such as the zebrafish, on the scale of single cells. De-
spite its importance for tissue and organ formation, only little is known about
cell migration and proliferation patterns during the zebrafish’s early embryonic
development. Many of the questions raised involve estimating cell motion.

In view of increasing spatial as well as temporal resolutions resulting in
tremendous amounts of data, manual analysis through visual inspection by hu-
mans is impracticable. Therefore, automated cell motion estimation is key to
the large-scale analysis of above-mentioned data. Optical flow delivers quanti-
tative methods and leads to insights into underlying cellular mechanisms and
the dynamic behaviour of cells.

The primary biological motivation for this thesis is the desire to analyse cell
motion in a living zebrafish embryo during early embryogenesis. The data at
hand depict endodermal cells expressing a green fluorescence protein. Laser-
scanning microscopy allows recording (volumetric time-lapse) 4D images of
these labelled cells without capturing the background.

During early development these cells float on a so-called monolayer, mean-
ing that they form a round surface in a single layer. We exploit this situation
and model this layer as a two-dimensional surface deforming over time. The
main idea of this thesis is to conceive cell motion only on this evolving sur-
face. As a direct consequence, one is able to reduce the spatial dimension
of the data, resulting in more efficient motion estimation of afore-mentioned
microscopy data. We formulate the problem of cell motion analysis as a varia-
tional optical flow problem on evolving two-dimensional manifolds. Naturally,
this surface is subject to geometrical approximations.

In the first part, we focus on the embryo’s changing geometry and assume
that the cells’ layer deforms over time. To this end, we translate the origi-
nal (Tikhonov-regularised) Horn-Schunck functional and the spatio-temporal
extension by Weickert and Schnörr to this non-Euclidean and dynamic setting.

In the second part of this thesis, we pay close attention the topology of
the embryo’s surface. First, we assume that it is a static round sphere and
investigate several vector field decomposition functionals. In particular, we
follow recent trends in image decomposition and study u + v and hierarchical

v



vi Abstract

decomposition models for optical flow. The chosen numerical method solves
the problem in a finite-dimensional space spanned by tangential vector spher-
ical harmonics and is advantageous in two ways. It provides great flexibility
with respect to the regularisation functionals and, as a by-product, yields a
Helmholtz decomposition of the flow field.

Second, we consider a more appropriate geometrical model for the ze-
brafish’s embryo, namely evolving sphere-like surfaces. These surfaces can
be parametrised from the 2-sphere and constitute a more natural approxima-
tion of the embryo’s shape. We extend the optical flow functional of Lefèvre
and Baillet for surfaces embedded in R3 to this new setting. The variational
problem is solved by means of a Galerkin method based on tangential vector
spherical harmonics. In order to find the sphere-like surfaces from cell mi-
croscopy data we devise a method for surface interpolation by means of scalar
spherical harmonics expansion.

Finally, we present numerical results on the basis of the afore-mentioned
cell microscopy data of a live zebrafish and picture the results in a visually
adequate manner.



Preface

This manuscript is a cumulative dissertation. It is a collection of four articles,
all of which have been published or submitted to journals. They were written
in the course of three years and are the result of a fruitful collaborative effort.
The purpose of this preface is to serve as a guide to this dissertation.

This thesis is concerned with the analysis of cell motion in fluorescence
microscopy data of a zebrafish by means of variational optical flow. It is struc-
tured in three parts.

The first part, the preamble, is intended as an introductory read to this
thesis and contains three chapters. In Chap. 1, we introduce challenges in the
analysis of fluorescence microscopy data and discuss the biological motivation
for this work. Moreover, we present the particular datasets which triggered
our interest in computationally feasible methods for their analysis and outline
our solution strategy, which exploits a biological fact about the recorded cells.
In Chap. 2, we briefly introduce variational optical flow as a reliable and well-
established method for motion estimation. Most importantly, in Chap. 3, we
discuss the problem in an abstract mathematical setting and present it in a
unified notation, explain our efforts to solve it, and summarise the contributions
of this thesis.

The second part contains the four publications. They are arranged in chap-
ters and are ordered chronologically. Three articles [50, 51, 52] resulted from
joint work with Clemens Kirisits and Otmar Scherzer, whereas [52] is an ex-
tended journal version of [50]. They constitute Chaps. 4–6. It needs to be
mentioned that these articles were submitted previously as part of a thesis
project in [49]. In Chaps. 4 and 5, we transfer optical flow to a new dynamic
non-Euclidean setting of evolving surfaces, whereas in Chap. 6 we consider vari-
ous regularisation functionals for the decomposition of optical flow on the static
sphere. Another article [55] was written together with Otmar Scherzer and is
presented in Chap. 7. There, we consider the scenario of evolving sphere-like
surfaces.

The third part is the appendix. It contains a single bibliography for the
whole manuscript, a German translation of the abstract, and a CV with a focus
on academia.
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Chapter 1

Challenges in the Analysis of
Fluorescence Microscopy Data

In the past decade, a tremendous progress in imaging of biological model or-
ganisms, such as the zebrafish, has been made. High-resolution observations
of entire developing animals became possible. Today, they can be studied in
more detail than ever before. See for instance [43, 44, 45, 46]. Fluorescence
microscopy allows to record time-lapse images on the scale of single cells, see
e.g. [43, 60, 74].

Nevertheless, increasing spatial as well as temporal resolutions result in
vast amounts of data. Therefore, analysis by visual examination, which is
usually carried out by trained biologists, is nearly impracticable, particularly
because biological studies typically require a considerable number of samples.
Thus, automated analysis of such microscopy data poses new challenges to
the imaging community and is key to their large-scale interpretation. See for
instance [64].

The afore-mentioned zebrafish is a popular model organism, see e.g. [89,
Chap. 2]. We point the reader to [48] for many illustrations and an exhaus-
tive discussion of its developmental process. Despite its importance for tissue
and organ formation, only little is known about cell migration and prolifera-
tion patterns during early embryonic development [3, 74]. An urging question
concerning this stage is therefore:

How do cells move and proliferate during early development?

Understanding the complex movement patterns of cells and their life cycle —
including for instance cell division — is of immense interest, see e.g. [66].

The answer to the above question involves computing the cells’ velocities,
respectively their complete trajectories. In Fig. 1.1 we visualise the approxi-
mate movements of endodermal cells in some of our datasets. They have been
computed by a simple heuristic that iteratively matches pairs of closest cell
centres in consecutive frames and simultaneously allows for cell divisions. The
cells’ centres are typically indicated by local maxima in image intensity and
can reliably be found by Gaussian filtering followed by thresholding.

In this thesis we aim at developing novel methods for the quantitative anal-
ysis of cell motion during early embryogenesis and try to assist biologists with
answering the above question. By taking into consideration a crucial fact
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4 1 Challenges in the Analysis of Fluorescence Microscopy Data

Figure 1.1: Approximate trajectories of endodermal cells in a top view. The
colour of each track is assigned randomly and serves for better distinction.
Over time, the cells float from the outside towards the embryo’s body axis. It is
(roughly) aligned with the diagonal from bottom left to top right in the top row,
and from top left to bottom right and almost horizontally in the bottom row.
The trajectories visualise the complex motion patterns, show distinguished
global features, and highlight individual fluctuations. All dimensions are in
micrometer (µm).

about the biological nature of endodermal cells, computationally reasonable
approaches can be achieved.

The data at hand consist of volumetric time-lapse (four-dimensional) im-
ages of a living zebrafish embryo during the gastrula period. These videos
were recorded approximately five to ten hours after fertilisation by means of
confocal laser-scanning microscopy, a common imaging modality that allows
in vivo imaging of organisms, see e.g. [68, 69].1 They depict endodermal cells
expressing a green fluorescence protein [16]. As a consequence, these labelled

1The basic principle of confocal laser-scanning microscopy is to scan the specimen point
by point and to shift the focal plane, thereby capturing a 3D image of the specimen. However,
as light contributions from out of focus points are filtered, a light source of high intensity
(such as a laser) has to be used.
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Figure 1.2: Two consecutive frames of the volumetric zebrafish microscopy
images recorded during early embryogenesis. Endodermal cells floating on the
upper hemisphere of the animal are shown. Fluorescence response is indicated
by blue colour and is proportional to the recorded intensity. All dimensions
are in micrometer (µm).

cells can be recorded without capturing the background and therefore allow for
a separate treatment. Figure 1.2 depicts two frames of the captured sequence,
containing only the upper hemisphere of the animal embryo.

The crucial feature of endodermal cells is the fact that they form a so-called
monolayer during early morphogenesis, see [83]. It means that these cells do
not sit on top of each other but float side by side. In Fig. 1.2 one can see the
nuclei of cells forming a round surface in a single layer. Observe also the noise
present and the sparsity of the data.

This monolayer can be regarded as a surface and allows for the straightfor-
ward extraction of a two-dimensional image sequence. We exploit this situation
and model this layer as an evolving surface. The main intention of this the-
sis is to consider cell motion only on this, potentially moving, two-dimensional
manifold. As a result we are able to reduce the spatial dimension of the data al-
lowing for more efficient motion estimation, simultaneously preserving as much
information as possible.

Optical flow is a popular and well-established framework for dense motion
estimation. It delivers necessary quantitative methods for cell motion anal-
ysis and sheds light on the underlying cellular mechanisms and the dynamic
behaviour of cells. See for example [4, 40, 61, 72, 74] and the references therein.

For the task of quantitative motion estimation in time-lapse image se-
quences optical flow has been considered before, see e.g. [2, 14, 21]. Moreover,
three-dimensional cell motion has been computed, for instance, in [40, 41, 61].
In [4, 72, 74], the optical flow was employed for the analysis of cell motion in
microscopy data. In particular, Schmid et al. [74] followed a similar approach
to ours by exploiting the monolayer structure and modelling the embryo as a
round sphere. There, the the optical flow was computed in map projections.

The central theme of this thesis is to use variational optical flow for the
estimation of endodermal cell motion. We develop mathematical models for
optical flow on evolving manifolds such as the zebrafish endoderm. As op-
posed to computing the optical flow in three-dimensional Euclidean space, this
approach has the advantage of reducing the spatial dimension. Under reason-
able assumptions on the geometry it preserves most information relevant to
cell motion. Furthermore, it outputs dense vector fields and, together with
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appropriate visualisation techniques, yields insights into global trends and the
collective motion of cells. Since the optical flow computes the cells’ velocities,
which under certain assumptions equal the true velocities, one can easily obtain
(approximate) trajectories.



Chapter 2

Variational Optical Flow

Motion estimation is an ubiquitous goal in the analysis of image sequences.
Adding a temporal dimension to a recorded scene allows perceivable motion.
Naturally, objects move through the physical world at different velocities and
their appearance in a recording is typically linked to the sampling frequency.
Furthermore, we can distinguish different types of motions. For instance, some
of the cells in Fig. 1.1 follow smooth trajectories whereas others rather seem
to follow Brownian motion.

By the nature of the human eye, motion is naturally perceived by varia-
tions in intensity. In addition, it sometimes adds a sense of depth to a scene,
e.g. when objects are occluded. However, when observing motion through a
camera — or more precisely as the projection onto an image plane — only the
so-called apparent motion is observable through intensity variations. This is
mainly known as the optical flow [38, 39]. Under certain conditions it equals
the two-dimensional projection or even the true three-dimensional motion in
the recorded scene, see e.g. [81]. Typical counterexamples are changes in il-
lumination or the well-known rotating barber’s pole. We refer to Figs. 5.12
and 5.13 in [8, Sec. 5.3] for illustrations of the discussed.

Typically, optical flow models are based on the assumption of constant
brightness. Given a sequence of images, it presumes that a point moving
through the recorded scene does not change its appearance over time. In other
words, its intensity remains constant. This so-called brightness constancy as-
sumption is reasonable as long as there are no changes in illumination and no
occlusions occur.

In order to formulate the idea more precisely, let us consider a sequence of
images

f : I × Ω→ R,

where I := [0, T ] ⊂ R is a real time interval and Ω ⊂ R2 a planar domain. The
value of f(t, ξ) is the recorded image intensity at a time t ∈ I and at a point
ξ ∈ Ω. Following a smooth trajectory

γ(·, ξ0) : I → Ω

which starts at ξ0 ∈ Ω, the assumption of constant brightness requires that the
value of f(t, γ(t, ξ0)) remains constant over time. In other words,

f(t, γ(t, ξ0)) = f(0, ξ0), (2.1)

7



8 2 Variational Optical Flow

for all times t ∈ I. Assuming that f ∈ C1(I × Ω), it follows that

d

dt
f(t, γ(t, ξ0)) = ∂tf(t, γ(t, ξ0)) +∇R2f(t, γ(t, ξ0)) · ∂tγ(t, ξ0) = 0

must hold true for all ξ0 ∈ Ω and for all times t ∈ I. Here we have denoted by
d/dt the total and by ∂t the partial derivative with respect to time t, and by
∇R2 the (spatial) gradient of R2.

For simplicity, let us denote by

v(t, γ(t, ξ0)) := ∂tγ(t, ξ0)

the velocity of a point moving along γ. Then, the problem of optical flow
estimation is to find a time-dependent vector field v : I × Ω→ R2 satisfying

∂tf +∇R2f · v = 0 (2.2)

for all (t, ξ) ∈ I × Ω. For the sake of brevity we have omitted the arguments.
Under suitable assumptions and with appropriate initial and boundary

conditions, equation (2.2) is an equivalent Eulerian specification of assump-
tion (2.1) and is termed optical flow equation. From that, the original La-
grangian specification in terms of γ can be recovered by solving the initial
value problem

∂tγ(t, ξ0) = v(t, γ(t, ξ0)), for all t ∈ I,
γ(0, ξ0) = ξ0,

(2.3)

or, in other words, by computing the integral curves. Let us mention that (2.2)
is linear in the unknown v and, after discretisation, is reasonable for sufficiently
small displacements.

The optical flow equation (2.2) is underdetermined and uniqueness of a
solution is not guaranteed. One can easily see that if a vector field v(t, ξ)
solves (2.2), adding a flow c∇R2f(t, ξ)⊥ which is orthogonal to the image gra-
dient solves the equation equally well for every c ∈ R, and even for every
c : I × Ω → R. In other words, from (2.2) one can only infer the movement
along the direction of the image gradient, that is, perpendicular to the level
lines of f . This issue is called aperture problem. See also the illustrations in [8,
Sec. 5.3]. A different problem arises whenever ∂tf 6= 0 but ∇R2f = 0. Then,
equation (2.2) can not be fulfilled.

For the above reasons, estimating the optical flow can also be interpreted
as an ill-posed inverse problem. We refer to [49] for a further discussion with
a focus on this matter. For a general treatment of inverse problems and regu-
larisation theory we refer to [25] and to [73], which has a particular focus on
imaging.

We have seen that in order to solve the optical flow equation (2.2), one has
to overcome the above-mentioned problems. For introductory material on this
subject we refer to [8] and for a comparison of various techniques to [10, 27].
Furthermore, the benchmark framework created by Baker et al. [9] is note-
worthy. The corresponding website of the Middlebury College lists currently
leading methods.1

1http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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In this thesis, however, we employ a variational approach for dense optical
flow estimation. A reasonable first idea is to consider solutions to the linear
least squares problem

min
v
‖∂tf +∇R2f · v‖2L2(I×Ω). (2.4)

As discussed before, a solution in general might not exist or, if it exists, it
might not be unique.

However, the so-called normal flow, given by

v† =

−
∂tf

|∇R2f |2
∇R2f, if ∇R2f 6= 0,

0, else,

is a solution to (2.4). Nevertheless, for obvious reasons, the normal flow v† is
of little practical use.2 As a consequence, one needs to restrict the space of
solutions to desirable ones.

A common approach to obtain well-posedness of the optical flow problem,
and with it uniqueness of a solution, is Tikhonov regularisation [78]. It consists
of finding the unique minimiser of

‖∂tf +∇R2f · v‖2L2(I×Ω) + αR(v).

Here, R(v) is a regularisation functional and α > 0 is a regularisation param-
eter balancing the two terms. Typically, the first term is called data term,
whereas the second is called smoothness term. Loosely speaking, the latter
incorporates prior information about favoured solutions.

A natural choice for R(v) is the squared H1(I × Ω) Sobolev seminorm. It
penalises first derivatives with respect to space and time and favours spatial
as well as temporal regularity of the solution. Simply put, the sought velocity
field should vary only smoothly in a small neighbourhood as nearby points are
likely to originate from the same object.

In their seminal work, however, Horn and Schunck [39] did not consider
temporal derivatives. They proposed to compute the minimiser of

‖∂tf +∇R2f · v‖2L2(Ω) + α|v|2H1(Ω).

and considered one pair of frames only. In the sequel we refer to it as the
Horn-Schunck functional. We highlight that, although relatively easy to solve
numerically, the functional entails isotropic regularity and does not allow dis-
continuities in the flow field. Well-posedness of the above functional was first
shown by Schnörr [75], making additional assumptions on ∇f .

Solutions to the above functional can be computed by solving the cor-
responding set of Euler-Lagrange equations following the calculus of varia-
tions [19, Chap. IV]. This system of second-order elliptic partial differential
equations is given by

(∂tf +∇R2f · v)∇R2f − α∆R2v = 0 for all ξ ∈ Ω,
∂nv = 0 for all ξ ∈ ∂Ω.

2The reader is encouraged to picture a moving object attaining constant intensity, i.e.
∇R2f = 0, in the interior.
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Here, ∂n is the normal derivative along the outward unit normal n to Ω.
The above-mentioned spatio-temporal model was first pursued by Weickert

and Schnörr [86] in a slight generalisation. The form relevant to this thesis
reads

‖∂tf +∇R2f · v‖2L2(I×Ω) + α|v|2H1(I×Ω)

and is particularly convenient when trying to recover the trajectories from the
estimated flow, in other words, when solving problem (2.3). In [86] it is men-
tioned that well-posedness of the Horn-Schunck functional readily translates
to this spatio-temporal setting. There, minimisation was done by applying
an explicit (Euler forward) scheme to the associated steepest descent equa-
tions. Compared to estimating the optical flow between each pair of frames it
is computationally more demanding, though.

Let us conclude this chapter with a few remarks. While the above-discussed
functionals are relatively straightforward to minimise, they come with several
drawbacks. For instance, they do not allow for discontinuities in the flow field.
As a remedy, several improvements have been proposed over the last years. For
discontinuity-preserving functionals we refer e.g. to [6, 7] and [36]. A unifying
framework including spatial as well as temporal regularisation functionals was
proposed in [85]. Moreover, we refer to [84] for a survey of numerous optical
flow data and regularisation terms. With regard to efficient numerical methods
we mention primal dual methods developed in [17].

Finally, let us highlight that for certain data it is beneficial to use different
data terms as, for instance, the assumption of brightness is often violated in
practice. With applications to fluid motion estimation we point e.g. to [18, 20,
88] where conservation of mass is assumed and to the framework in [32], which
discusses physical processes.



Chapter 3

Contributions of the Thesis

In this thesis we model the volumetric microscopy data as a time-dependent
non-negative function

fδ : I × Ω ⊂ R3 → [0,∞),

where I = [0, T ], as before, is the time interval of a recorded sequence. The
value of fδ directly corresponds to the fluorescence response of the observed
cells. Here, Ω is the cuboid region captured by the confocal laser-scanning
microscope, see Fig. 1.2 in Chap. 1.

Adapting the concept of optical flow to this new setting is challenging in
several ways:

1. We desire computational feasibility for real-life data.

2. It should be based on plausible (geometric) assumptions.

3. We seek reasonable approximations of the cells’ true velocities.

A straightforward idea, if permitted by the nature of the data, is to project
the data fδ to R2 and then solve the optical flow equation

∂tPfδ +∇R2Pfδ · v = 0

in the plane, as discussed before. Here, P denotes an appropriate projection
operator to R2, such as taking the maximum intensity along the z-coordinate.
This approach is feasible whenever only a section of the sphere-shaped embryo
is considered, see e.g. the data in [61, Fig. 2], and the velocities of the cells can
be approximated reasonably well by their projections to the plane. It is most
closely related to the discussion in Chap. 2.

Another idea is to generalise optical flow to the three-dimensional Euclidean
space. It requires solving

∂tf
δ +∇R3fδ ·V = 0

for the vector field V : I×Ω→ R3. Although this approach is computationally
costly given the sparsity of the data, we stress that it is capable of estimating
the true velocities in R3. This approach was pursued, for instance, in [2, 40,
41, 61] for various kinds of data.

11



12 3 Contributions of the Thesis

For the sake of completeness, let us also mention a conceptually different
approach. In [3], the goal of dense motion estimation is abandoned. Instead,
cells are segmented and the optical flow is computed based on super-voxels
in order to achieve a reduction in the amount of data. For an exhaustive
discussion of various other methods on we refer to the survey [64].

The central idea of this thesis, however, is to consider cell motion with
regard to a restriction of fδ to the developing monolayer, or an approximation
thereof. The temporal evolution of the data can then be tracked by solving an
optical flow problem on this — possibly moving — two-dimensional manifold
M⊂ R3. For the time being, let us define this restriction (literally) by

f̂ := fδ|M.

In the following, we will take more sophisticated attempts such as projecting
the maximum image intensity along surface normals within a narrow band.

In this thesis we are mainly concerned with the following problem: Given
an image sequence f̂ :M→ R living on a manifold, we intend to solve

∂tf̂ +∇Mf̂ · v̂ = 0

on a suitable approximation M of the zebrafish embryo. Here, v̂ : M →
TM is the sought tangent vector field, ∇M denotes the surface gradient, and
dot denotes the standard inner product of R3. We highlight that, while for
static surfaces embedded in R3 this is a sound generalisation of the optical
flow equation (2.2), care must be taken for moving surfaces, see Sec. 3.1, and
Chaps. 4 and 5.

In their seminal work, Imiya et al. [42, 79] discussed the optical flow problem
in a spherical setting. Later, Lefèvre and Baillet [58] adapted the Horn-Schunck
functional (cf. Chap. 2) to surfaces embedded in R3 and established well-
posedness.

The corresponding variational problem is to minimise

‖∂tf̂ +∇Mf̂ · v̂‖2L2(M) + α|v̂|2H1(M,TM). (3.1)

The conceptual difference compared to the Euclidean case is not just the do-
main but the regularisation functional. It involves covariant derivatives, which
are necessary in order to correctly penalise tangent vector fields, see e.g. Ex-
ample 1 in Sec. 5.3.

For a tangent vector field v̂ which is smoothly extended to R3 and denoted
by ˆ̄v, and a tangent vector û, we define the covariant derivative ∇ûv̂ as the
tangential part of the directional derivative of ˆ̄v along û in the embedding
space. That is,

∇ûv̂ = PM∇R3 ˆ̄v(û),

where PM is the orthogonal projector onto the tangent space.
At this point, let us highlight that, by virtue of the Hairy-Ball Theorem,

for the 2-sphere and for closed surfaces homeomorphic to S the H1 Sobolev
seminorm is indeed a norm. The reason is that the only covariantly constant
vector field is v̂ = 0. In the above-mentioned settings well-posedness is based
on this fact. For further discussion we refer to Lefèvre and Baillet [58] and to
Bauer et al. [12].
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However, in this thesis we are concerned with appropriate models of the
embryo’s shape. Clearly, the chosen surface is subject to geometric approxima-
tions. In addition, estimating this surface from microscopy data is an interest-
ing problem on its own, see Sec. 3.3 and Chap. 7.

In this thesis, we consider three major scenarios. First, we devote ourselves
to evolving surfacesM ⊂ R4. As mentioned before, the optical flow equation
requires a considerable adaptation to this new setting. We consider only a
rectangular section of the embryo, represent the surface by a time-varying
height field, and solve the variational optical flow problem in the coordinate
domain.

In the second scenario, we follow the ideas of Schmidt et al. [74] and ap-
proximate the embryo with the static 2-sphere S. However, our approach
is substantially different as we directly solve the variational problem on the
sphere.

Finally, in the third scenario, we consider evolving sphere-like surfaces.
These can be parametrised from the 2-sphere S and, most conveniently, the
associated variational problem can be dealt with on the sphere. The advan-
tage of this representation is that the sphere-like geometry is a very natural
candidate to consider for the approximation of the zebrafish embryo.

In the following, we sketch the above-mentioned scenarios, briefly discuss
the contributions to the analysis of said microscopy data, and summarise our
results.

Concerning the notation, in Chap. 2 we have seen a scalar (intensity) func-
tion f : I×Ω→ R and a vector field v : I×Ω→ R2, both defined in the plane.
In this chapter, we adjust this notation to non-Euclidean settings. We keep
denoting vector fields by boldface letters, however, now distinguish between
lower and upper case boldface letters. The former denote tangent vector fields
whereas the latter denote general vector fields in R3. As a notational conven-
tion, we indicate scalar functions living on the 2-sphere by f̃ and those defined
on a general manifoldsM by f̂ , respectively. Accordingly, tangent vector fields
are denoted by ṽ and v̂, respectively.

3.1 Optical Flow on Evolving Surfaces

In Chaps. 4 and 5 we suppose that the zebrafish embryo can be represented as
a surface which is evolving over time as the animal develops. The goal of these
chapters is to generalise the idea of constant brightness portrayed in Chap. 2
to this setting.

We define an evolving surface as

M :=
⋃
t∈I

(
{t} ×Mt

)
⊂ R4

and assume it is given in terms of a Lagrangian specification φ : I ×M0 → R3

such that φ(0, ·) is the identity and φ(t, ·) is a diffeomorphism betweenMt ⊂ R3

andM0 for every t ∈ I.
In addition, we are given a function f̂ , its domain being M, arising from

the restriction of the microscopy data toM. For a time t ∈ I,

f̂(t, ·) :Mt → R
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is then an image on the surface. Adapting the idea of constant brightness —
as discussed in Chap. 2 — to this new setting requires that along a smooth
trajectory γ(·, x) : t 7→ γ(t, x) ∈ Mt that starts at x ∈ M0 and always stays
on the surface, we must have

f̂(t, γ(t, x)) = f̂(0, x). (3.2)

However, in order to proceed as before and obtain a linearisation of the stated
constraint one needs to define a meaningful derivative with respect to time.

In Chaps. 4 and 5 we introduce derivatives along trajectories following the
moving surface. To this end, we consider the surface’s velocity ∂tφ = V̂, its
domain being

⋃
t∈I({t} ×Mt) ⊂ R4. Let us mention that V̂ is in general not

tangent toMt, t ∈ I, and hence in our notation denoted by a boldface capital
letter.

Then,

dV̂
t f̂(t0, x) := d

dt
f̂(t, φ(t, x0))

∣∣∣∣
t=t0

(3.3)

is the time derivative of f̂ at x = φ(t0, x0) along the trajectory φ(·, x0). As a
consequence, one can deduce that

dV̂
t f̂ = dN̂

t f̂ +∇Mf̂ · V̂

holds, see [15]. Here, dN̂
t f̂(t0, x) denotes the time derivative of f̂ in normal

direction. It is defined analogously to (3.3) following a trajectory ψN̂ through
x ∈Mt0 for which ∂tψN̂(t0, x) is orthogonal to the tangent plane TxMt0 at x.

The above relation immediately allows us to formulate the above idea of
constant brightness (3.2) along γ. For simplicity, let us define the velocity of
a point following the trajectory γ by M̂ := ∂tγ. Then, along a moving surface
we require that

dM̂
t f̂ = dN̂

t f̂ +∇Mf̂ · M̂ = 0 (3.4)

must hold. Equation (3.4) is a generalised optical flow equation. In Fig. 3.1
we sketch the various trajectories through the evolving surface and their cor-
responding velocities.

As a consequence, one can derive that the total motion M̂ = ∂tγ of a cell
moving along a trajectory γ can be decomposed into

M̂ = V̂ + v̂, (3.5)

where v̂ is a tangent vector field and V̂ = ∂tφ is the surface velocity. The
above relation states that the total velocity M̂ along a level line of constant
intensity is the sum of a tangential velocity v̂ relative to the prescribed surface
velocity V̂. See Fig. 3.1.

Solving the generalised optical flow equation (3.4), however, is inconvenient
as ψN̂ and, in further consequence, dN̂

t is unknown or hard to estimate from
real microscopy data.

One remedy, which is pursued in Chaps. 4 and 5, is to relate (3.4) and (3.5).
In further consequence, we arrive at the parametrised optical flow equation

dV̂
t f̂ +∇Mf̂ · v̂ = 0.
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Mt0

Mt0+∆t

V̂
M̂

v̂

γψN̂
φ(·, x0)

x

Figure 3.1: Illustration of trajectories through the evolving surface. Their
corresponding velocities and the tangential velocity v̂ are shown in grey.

Solving for the optical flow then means finding a (time-varying) vector field v̂
that is tangent to the surface at all times and satisfies the above equation at
every point x ∈ M on the moving surface. From a numerical point of view
this is particularly convenient as the equation can easily be restated in terms
of the coordinate domain, see Chap. 5, or more general, in terms of a reference
manifold such as S, see Sec. 3.3 and Chap. 7.

Having derived a suitable optical flow equation for moving surfaces, we
generalise the spatio-temporal model by Weickert and Schnörr [86] to this non-
Euclidean and dynamic setting. We minimise the functional∫
I

(
‖dṼ
t f̂ +∇Mf̂ · v̂‖2L2(Mt) + α|v̂|2H1(Mt,TMt) + β‖PMdV̂

t v̂‖2L2(Mt,TMt)

)
dt,

where PMdV̂
t v̂, akin to the covariant derivative, is the projection of the tem-

poral derivative (3.3) of v̂ along the trajectory φ to the tangent space ofM.
We mention that, in general, there exist infinitely many Lagrangian specifi-

cations φ for a given evolving surfaceM. The actual surface velocity, however,
might be unknown or cannot be estimated from the data, as it is the case in this
thesis. As a remedy we impose a surface velocity by choosing a specification φ
which is both convenient from an implementation point of view and relatively
natural given the characteristics of the data.

Moreover, we again stress that the sought tangent vector field v̂ depends
on the chosen φ, or equivalently on V̂, and should be interpreted with care.
The actual trajectories γ though can be reconstructed by finding the integral
curves of (3.5). We refer to Chap. 5 for this precise approach.

3.2 Decomposition of Optical Flow on the Sphere

While in Chaps. 4 and 5 the zebrafish embryo is assumed to change its shape
over time, in Chap. 6 we consider a spherical and static approximation of the
embryo. We choose a sphere S ⊂ R3 of appropriate radius and assume to be
given suitable projections of the microscopy data onto S as

f̃ : I × S → R.
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In further consequence, the optical flow problem asks to solve

∂tf̃ +∇S f̃ · w̃ = 0

on a spherical geometry and the variational problem then reads

‖∂tf̃ +∇S f̃ · w̃‖2L2(S) + α|w̃|2Hs(S,TS),

for an appropriately chosen parameter s ∈ R.
Numerically, we propose to solve the problem by projection to a finite-

dimensional space spanned by tangential vector spherical harmonics. It pro-
vides great flexibility with respect to the chosen norm Hs(S, TS) and allows
for the straightforward generalisation to multiple regularisation terms.

In this part of the thesis we consider several decomposition models for
optical flow. The goal is to compute not just one but several vector fields
capturing different structural parts of the total motion w̃.

The first setting, referred to as ũ + ṽ decomposition, is inspired by the idea
of Meyer [62] and aims at separating cartoon and texture parts. The former
should contain large-scale structural parts and therefore should be piecewise
smooth, whereas the latter should contain the high-frequency oscillations. Con-
sequentially, given two real numbers r, s ∈ R such that r > 0 and r > s, the
idea is to minimise

‖∂tf̃ +∇S f̃ · (ũ + ṽ)‖2L2(S) + α|ũ|2Hr(S,TS) + β|ṽ|2Hs(S,TS),

where α, β > 0 are regularisation parameters balancing the three terms.
The main idea is that ũ ∈ Hr(S, TS) should contain the collective motion

that dictates the movements of a large portion of cells, whereas ṽ ∈ Hs(S, TS)
should indicate individual deviations, such as cell divisions.

In the second part of this chapter, we consider hierarchical decomposition
models. Pioneered by Tadmor et al. [77], they provide a multiscale description
of the input data. We transfer this idea to the optical flow setting. The goal
is to output an arbitrarily fine multiscale description of the total motion w̃.

Given two non-increasing sequences (αk) and (sk), we devise an iterative
scheme and compute

ṽk =


arg min

ṽ
‖∂tf̃ +∇S f̃ · ṽ‖2L2(S) + α1|ṽ|2Hs1 (S,TS), if k = 1,

arg min
ṽ
‖∂tf̃ +∇S f̃ ·

(
ṽ +

k−1∑
i=1

ṽi
)
‖2L2(S) + αk|ṽ|2Hsk (S,TS), if k > 1.

The intention is that the sequence

{
ṽ(k) :=

k∑
i=1

ṽi : k ∈ N
}

of solutions captures cell motion on arbitrarily fine scales.
The third model considered in this chapter is a Helmholtz decomposition

of the total motion. It is based on the fact that every tangential vector field on
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x

ρ̃(t, x)x

S

Mt

Figure 3.2: Schematic illustration of a cut through the surfaces S and Mt

intersecting the origin. The sphere-like surface Mt is a deformation of the
sphere along the depicted radial line.

S has a unique decomposition into a curl-free and divergence-free vector field.
Accordingly, the total motion w̃ is decomposed into ũ + ṽ such that

∇S ·
(
ũ× Ñ

)
= 0,

∇S · ṽ = 0,

where Ñ is the outward surface unit normal to S. Conveniently, the chosen
numerical method by projection to tangential vector spherical harmonics au-
tomatically yields such a Helmholtz decomposition.

3.3 Optical Flow on Evolving Sphere-Like Surfaces

The third part is mainly motivated by the characteristic shape of the zebrafish
endoderm during gastrulation, see Chap. 1 and the references therein. We take
into consideration the topology of the embryo and model the monolayer as a
closed 2-manifold which is deforming over time. Based on what has been said
in Secs. 3.1 and 3.2, we take a step towards better approximation of the true
shape.

In Chap. 7, we consider a closed surfaceMt ⊂ R3 for which the mapping

(t, x) 7→ ρ̃(t, x)x, x ∈ S (3.6)

is a diffeomorphism between the 2-sphere and Mt for every time t ∈ I and
refer to it as evolving sphere-like surface. Figure 3.2 depicts the scenario for a
better understanding.

We adapt the Thikonov-regularised quadratic optical flow functional (3.1)
to this new setting and compute the minimiser of

‖dṼ
t f̂ +∇Mf̂ · v̂‖2L2(Mt) + α|v̂|2Hs(Mt,TMt).

Numerically, the problem is solved by means of a Galerkin method based
on vector spherical harmonics. However, beforehand these vector fields need
to be “transferred” to the sphere-like surface. In other words, the sought tan-
gent vector field is expanded in terms of the pushforward of vector spherical
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harmonics. Conveniently, the simplicity of the chosen parametrisation allows
to rewrite the problem and numerically treat it on the 2-sphere.

Until now, the question of how to actually find this geometrical approxi-
mation of the zebrafish embryo has been neglected. As part of this chapter,
we treat it as a variational problem. We propose surface interpolation with
squared Hs Sobolev seminorm regularisation in order to compute the parame-
trisation (3.6) of the evolving sphere-like surface. We minimise

‖ρ̃− ρ̃δ‖2L2(S) + β|ρ̃|2Hs(S),

where β ∈ R again is a regularisation parameter. Approximate cell centres
serve as sample points ρ̃δ of the surface. Scalar spherical harmonics provide
the necessary flexibility with respect to the chosen space Hs(S) and allow to
easily meet the smoothness requirements of the manifold.

3.4 Discussion and Further Research

Aiming at computationally feasible cell motion analysis in 4D fluorescence mi-
croscopy data of a living zebrafish, we employed variational optical flow in
order to estimate dense velocity fields. We exploited the monolayer property
of the developing zebrafish (cf. Chap. 1) and addressed the problem in two
conceptually different ways.

First, we paid close attention to the dynamic characteristics of the embryo.
To this end, we considered evolving surfaces and developed a generalised optical
flow equation suitable for such changing geometries. Moreover, we showed that
the approximate velocities of cells and from that their approximate trajectories
can be estimated. The key is to compute the tangential velocities relative to
the presumed surface evolution.

Second, we focused on a simple geometry and approximated the embryo
with a round sphere. In contrast to the first model it represents a global model
of the animal. While this neglects the true shape, it allows to easily experi-
ment with various regularisation functionals. To this end, we suggested several
decomposition models, each dividing the total motion of cells into different
aspects and leading to insights about the collective behaviour and individual
fluctuations of cells.

In a further generalisation we translated the idea of changing geometries
to sphere-like surfaces. Such surfaces can be parametrised easily from the 2-
sphere. They constitute a more realistic model of the embryo’s shape and also
are advantageous from a numerical perspective.

Assuming that the geometry can be represented suitably well, our ap-
proaches give reasonable approximations of the cells’ velocities. However, sev-
eral interesting questions remain open.

First, it remains to discuss and evaluate the obtained results together with
trained biologists. A particularly challenging goal is to extract cell divisions
from the computed motion fields. From a mathematical point of view this
problem is interesting as such divisions constitute discontinuities in the flow
field. A first step would be to employ discontinuity-preserving regularisation
functionals paired with efficient numerical methods (see also the references
in Chap. 2). Moreover, data terms could be tailored to appropriately model
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the data recorded with confocal laser-scanning microscopy and to reflect the
physical properties of cell tissue.

Finally, let us point out that the visualisation of evolving surfaces together
with an image is challenging in general and even more so if motion fields are
added. We feel that, in order to provide biologists with satisfying charts and
figures, further research should be done.

All in all, we think that optical flow together with an appropriate model
of the embryo’s shape leads to insights into the movement patterns of cells,
delivers quantitative methods for cell motion estimation, and can hopefully
help answering the question raised in Chap. 1:

How do cells move and proliferate during early development?
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Abstract

We extend the concept of optical flow to a dynamic non-Euclidean set-
ting. Optical flow is traditionally computed from a sequence of flat im-
ages. It is the purpose of this paper to introduce variational motion
estimation for images that are defined on an evolving surface. Volumet-
ric microscopy images depicting a live zebrafish embryo serve as both
biological motivation and test data.

Keywords: Computer Vision, biomedical imaging, optical flow, variational
methods, evolving surfaces, zebrafish, laser-scanning microscopy.

4.1 Introduction

Advances in laser-scanning microscopy and fluorescent protein technology have
increased resolution of microscopy imaging up to a single cell level [60]. They
allow for four-dimensional (volumetric time-lapse) imaging of living organisms
and shed light on cellular processes during early embryonic development. Un-
derstanding cellular development often requires estimation and analysis of cell
motion. However, the amount of data captured is tremendous and therefore
manual analysis is not an option.

The specific biological motivation for this work is to understand the motion
and division behaviour of fluorescently labelled endodermal cells of a zebrafish
embryo. The marked cells develop on the surface of the embryo’s yolk, where
they form a non-contiguous monolayer [83]. Loosely speaking, they only sit
next to each other but not on top of each other. Moreover, the yolk deforms
over time; see Fig. 4.1.

We take these biological facts into account and restrict our attention to
the analysis of cell motion on the yolk’s surface. With this approach it is
possible to reduce the amount of data by one space dimension. The resulting
problem consists in the estimation of motion of brightness patterns that are
restricted to an itself moving surface. We approach this problem by adapting
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Figure 4.1: Sequence of embryonic zebrafish images. The curved mesh repre-
sents a section of the yolk’s surface. Depicted are frames no. 30, 45, 55, and
60 of the entire sequence. All dimensions are in micrometer (µm). See Sec. 4.4
for more details on the microscopy data.

the classical concept of optical flow to the present setting, where the image
domain is both non-Euclidean and dynamic. Note that due to the monolayer
structure cell occlusions cannot occur. This makes the optical flow field a more
reliable approximation to the true motion field.

Our contributions in the field of optical flow are as follows. First, we for-
mulate the optical flow problem on an evolving two-dimensional manifold and
give two equivalent ways of linearising the brightness constancy assumption
(Secs. 4.2 and 4.2). One uses a parametrisation of the evolving surface, the
other one is parameter-independent. Second, we use a generalisation of the
Horn-Schunck model to regularise the optical flow field (Sec. 4.2). For a given
global parametrisation of the evolving surface, we solve the associated Euler-
Lagrange equations in the parameter domain with a finite difference scheme
(Sec. 4.3). Finally, we apply this technique to obtain qualitative results from
the afore-mentioned zebrafish data (Sec. 4.4). Our experiments show that the
optical flow is an appropriate tool for analysing these data. It is capable of es-
timating global trends as well as individual cell movements and, in particular,
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it is able to indicate cell division events.

Related work.

Optical flow is the apparent motion in a sequence of images. Its estimation is
a key problem in Computer Vision. Horn and Schunck [39] were the first to
propose a variational approach assuming constant brightness of moving points
and spatial smoothness of the velocity field. Since then, a vast number of
modifications has been developed. See [9] for a recent survey.

Miura [65] observed that until 2005 optical flow has been mostly disregarded
as a method for motion extraction in cell biological data. Since then, a few
articles have explored this direction: Melani et al. [61] and Hubený et al. [41]
extended variational optical flow methods to volumetric images to obtain 3D
displacement fields. In the former article, the resulting algorithm is also applied
to zebrafish microscopy data. Quelhas et al. [72] use optical flow to detect cell
divisions in a live plant root. However, they work with 2D (plus time) data
only. Therefore, their approach suffers from errors caused by 3D off-plane
motion.

Clearly, certain natural scenarios are more accurately described by a veloc-
ity field on a non-flat surface rather than on a flat domain. With applications
to robot vision, Imiya et al. [42, 79] considered optical flow for spherical images.
In a more general setting, Lefèvre and Baillet [58] extended the Horn-Schunck
method to 2-Riemannian manifolds and showed well-posedness. They solve the
numerical problem with finite elements on a surface triangulation. In all of the
above works the underlying imaging surface is fixed over time, while in this
paper it is not.

4.2 Optical Flow on Evolving Surfaces

Brightness Constancy
Let Mt ⊂ R3, t ∈ I = [0, T ), be a compact smooth two-dimensional man-
ifold evolving smoothly over time. We assume the velocity to be unknown.
Moreover, denote by f̃ a scalar time-dependent quantity defined on the surface

f̃ :
⋃
t∈I

(Mt × {t})→ R.

We begin with a Lagrangian specification of the optical flow field. That is,
for every starting point x0 ∈ M0 we seek a trajectory where the data f̃ are
conserved. More precisely, we want to find a function

γ : M0 × I →
⋃
t∈I
Mt,

such that

1. γ(x0, t) ∈Mt for all t ∈ I, for all x0 ∈M0,

2. γ(·, t) is a diffeomorphism betweenM0 andMt for all t ∈ I,

3. γ(·, 0) = IdM0 ,



4.2 Optical Flow on Evolving Surfaces 27

is fulfilled and which satisfies a “brightness" constancy assumption (BCA)

f̃(x0, 0) = f̃(γ(x0, t), t), for all (x0, t) ∈M0 × I. (4.1)

In classical optical flow computations it is common practice to linearise the
BCA by taking its time derivative and to solve the resulting equation for the
Eulerian unknown γ̇.1 We also take this route, but differentiation of f̃ is more
involved. Observe, for example, that for an arbitrary t0 ∈ I and x ∈ Mt0 the
usual partial derivative

∂tf̃(x, t0) = lim
h→0

1
h

(
f̃(x, t0 + h)− f̃(x, t0)

)
is not well-defined, simply because, in general, x is not an element of Mt0+h
for all h 6= 0.

In the next section we linearise (4.1) in two different ways. First, we use a
global parametrisation to pull the data back to a fixed reference domain and
linearise afterwards. In our second approach we borrow some notions from
continuum mechanics [15] to directly linearise (4.1).

Linearisation
Linearisation after pull-back. Let Ω ∈ R2 be a compact domain and

x : Ω× I → R3, (x1, x2, t) = (x, t) 7→ x(x, t) ∈Mt

be a parametrisation of the evolving surface. Denote by f the coordinate
representation of f̃ , that is,

f(x, t) = f̃(x(x, t), t) (4.2)

and let
β : Ω× I → Ω

be the coordinate counterpart of γ. This means, if we let x0 = x(x0, 0), then
β(x0, t) gives the coordinates of γ(x0, t) ∈ Mt in Ω (see Fig. 4.2). In other
words, we have the identity

γ(x(x0, 0), t) = x(β(x0, t), t), for all (x0, t) ∈ Ω× I. (4.3)

Now, from (4.1), (4.2) and (4.3) we get

f(x0, 0) = f̃(x0, 0)
= f̃(γ(x0, t), t)
= f̃(x(β(x0, t), t), t)
= f(β(x0, t), t),

which is a coordinate version of the BCA. After differentiation with respect to
t it becomes

∇2f · β̇ + ∂tf = 0, (4.4)
where ∇2 = (∂1, ∂2)> is the two-dimensional spatial gradient. Note that the
last equation is nothing but the classical optical flow constraint (OFC) for
Euclidean data f and a displacement field β̇.

1To simplify expressions we use Newton’s notation for those time derivatives that corre-
spond to actual velocities, for example γ̇ = ∂tγ.
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γ(·, t)
x(·, t)

Figure 4.2: Commutative diagram describing the relation between unknowns
β and γ.

Direct linearisation. We turn to our second derivation. While, as pointed
out above, the partial derivative ∂tf̃ is undefined in general, it does make sense
to differentiate f̃ following the surface movement. Let y be a point on Mt0

and ξ : t 7→ ξ(t) ∈ Mt an arbitrary smooth trajectory through the evolving
surface satisfying ξ(t0) = y. Now we can compute

d
dt f̃(ξ(t), t)

∣∣∣∣
t=t0

= lim
h→0

1
h

(
f̃(ξ(t0 + h), t0 + h)− f̃(y, t0)

)
to obtain a valid derivative of f̃ . Since this time derivative only depends on
the vector v = ξ̇(t0), we denote it by dv

t f̃ . A natural candidate for a trajectory
along which to differentiate is given by the parametrisation ξ(t) = x(x, t).
Another possible choice would be a trajectory that is normal to Mt0 . The
resulting normal time derivative is accordingly denoted by dn

t f̃ .
Finally, we also need the surface gradient ∇Mf̃ . If F is a smooth extension

of f̃ to an open neighbourhood of y ∈ Mt0 in R3, then the surface gradient
of F at y is defined as the projection of the three-dimensional spatial gradient
∇3F onto the tangent plane toMt0

∇MF = ∇3F − (∇3F · n̂)n̂,

where n̂ is the unit normal to Mt0 . The surface gradient only depends on
the values of F on the surface; see e.g. [31, p. 389]. Thus, ∇Mf̃ = ∇MF is
well-defined.

The spatial and temporal derivatives of f̃ introduced above are related in
a simple way. As shown in [15], they satisfy the equality

dẋ
t f̃ = ∇Mf̃ · ẋ + dn

t f̃

= ∇Mf̃ · ẋtan + dn
t f̃ ,

(4.5)

where ẋtan is the tangential surface velocity, that is, the projection of ẋ onto the
tangent plane toMt0 . This decomposition of dẋ

t f̃ into normal and tangential
components is clearly valid for any trajectory in place of x, and therefore
in particular for the unknown γ. This means we can use (4.5) in order to
differentiate the BCA (4.1) with respect to t. The resulting OFC reads

∇Mf̃ · γ̇tan + dn
t f̃ = 0. (4.6)

Discussion. We conclude this section with a brief comparison of the two
OFCs derived above. We start by showing how to obtain (4.4) from (4.6) and
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vice versa. To this end we again assume the existence of a global parametri-
sation and rewrite all quantities in (4.6) in terms of x. First observe that, by
(4.3), the velocity of γ equals the surface velocity ẋ plus a purely tangential
component

γ̇ = ẋ + Jβ̇,

where J = (∂1x ∂2x) is the Jacobian matrix of x with respect to x. On the
other hand, by (4.5), the normal time derivative is equal to the time derivative
of f̃ following x minus its tangential component

dn
t f̃ = dẋ

t f̃ −∇Mf̃ · ẋ.

Using the last two equations to rewrite the left-hand side of (4.6) yields

∇Mf̃ · γ̇ + dn
t f̃ = ∇Mf̃ ·

(
ẋ + Jβ̇

)
+ dẋ

t f̃ −∇Mf̃ · ẋ
= ∇Mf̃ · Jβ̇ + dẋ

t f̃ ,

which is already the left-hand side of (4.4) in terms of f̃ . It only remains
to observe that dẋ

t f̃ = ∂tf and to replace the surface gradient ∇Mf̃ by its
coordinate expression Jg−1∇2f , where g = J>J is the coefficient matrix of
the Riemannian metric; see e.g. [56].

We highlight the qualitative difference between the constraints (4.4) and
(4.6). Note that in the former the unknown is β̇, while in the latter it is
γ̇tan = ẋtan + Jβ̇. This means that (4.4) constrains the motion relative to the
tangential surface velocity ẋtan, while (4.6) constrains the absolute tangential
motion.

The nature of our microscopy data suggests a simple global parametrisation
(see Sec. 4.3). We therefore pull the data back to the Euclidean plane and solve
(4.4). However, equation (4.6) is independent of any parametrisation. It can
thus serve as a starting point for alternative numerical approaches.

Regularisation
From now on we fix an arbitrary t0 ∈ I and turn to the actual solution of the
parametrised OFC for (u1(x), u2(x))> = u(x) = β̇(x, t0). Recall that with this
notation u contains the coefficients of the tangential vector field u = Jβ̇ with
respect to the tangential basis (∂1x, ∂2x) ofMt0 . Note also that, by fixing t0,
there is no more time-dependence in our problem which makes it effectively an
optical flow problem on a static surface. Hence we omit any reference to t0
from now on and writeM instead ofMt0 .

The sought vector field is underdetermined by the OFC alone. We over-
come this by minimising a functional that penalises violation of the OFC while
imposing an additional smoothness restriction on u. More precisely, we adopt
a recent extension of the original quadratic Horn-Schunck regularisation to a
Riemannian setting [58]. Basically, they propose to minimise

E(u) = α

2
∥∥∇2f · u+ ∂tf

∥∥2
L2(M) + 1

2
∥∥Du∥∥2

L2(M). (4.7)

Here, α > 0 is the regularisation parameter and Du = (Dju
i) is the 2 × 2

matrix containing the coefficient functions of the covariant derivatives

∇ju =
2∑
i=1

Dju
i∂ix, j = 1, 2,
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of u. Using the Christoffel symbols Γijk (see Sec. 4.3) associated to the para-
metrisation x the coefficients are given by

Dju
i = ∂ju

i +
2∑
k=1

Γijkuk, i, j = 1, 2.

Rewriting (4.7) as an integral over the coordinate domain, we arrive at the
functional

E(u) = 1
2

∫
Ω

[
α
(
∇2f · u+ ∂tf

)2 + ‖Du‖2F
]√

det g dx, (4.8)

where ‖·‖F is the Frobenius norm.

4.3 Numerical Solution

We solve the problem of minimising functional E via its associated
Euler-Lagrange equations. Regarding the integrand of E as a function
G(x, u,∇2u1,∇2u2), they read

Gu1 = ∂1G∂1u1 + ∂2G∂2u1

Gu2 = ∂1G∂1u2 + ∂2G∂2u2 ,

where subscripts of G denote partial derivatives. The resulting pair of linear
PDEs is of the form

∆u1 = ∇2u1 · c+∇2u2 · d+ u · b1 + a1

∆u2 = ∇2u2 · c+∇2u1 · d+ u · b2 + a2.
(4.9)

The coefficient vectors a, b1, b2, c, d are rather lengthy functions of the data f
and metric tensor g, which is why we do not write them out in full here. Letting
Ω = (0, 1)2 for simplicity, the natural boundary conditions of the variational
problem are

∂ju
i +
∑
k

Γijkuk = 0, for xj ∈ {0, 1}, (4.10)

where i, j ∈ {1, 2}. In case of a flat manifold, e.g. M = Ω, the Euler-Lagrange
equations (4.9) reduce to those of the original Horn-Schunck functional and the
boundary conditions become the usual homogeneous Neumann ones. For more
details on the calculus of variations we refer to [19].

Due to the nature of the microscopy data (see Sec. 4.4 and Fig. 4.1), the
manifoldMt modelling the deforming yolk is a surface with boundary that is
most easily parametrised as the graph of a function z : Ω× I → R. Hence, we
set x(x1, x2, t) = (x1, x2, z(x1, x2, t))>. Accordingly, for the metric we get

g = I2 +∇2z∇2z>, det g = 1 + |∇2z|2,

where I2 ∈ R2×2 is the identity matrix. The Christoffel symbols turn out to be

Γijk = 1
2

2∑
m=1

gmi (∂jgkm + ∂kgmj − ∂mgjk) = ∂iz ∂jkz

det g .

Partial derivatives of z and of the projected data f were approximated by
central differences. The system (4.9) with boundary conditions (4.10) was
then solved with a standard finite difference scheme. In the following section
numerical results are presented.
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4.4 Experiments

Data
As mentioned before, the biological motivation for this work are cellular im-
age data of a zebrafish embryo. Endoderm cells expressing green fluorescent
protein were recorded via confocal laser-scanning microscopy resulting in time-
lapse volumetric (4D) images; see [60] for the imaging techniques. This type
of image shows a high contrast at cell boundaries and a low signal-to-noise
ratio in general. Our videos were obtained during the gastrula period, which
is an early stage in the animal’s developmental process and takes place ap-
proximately five to ten hours post fertilisation. In short, the fish forms on
the surface of a spherical-shaped yolk; see e.g. [48] for many illustrations and
detailed explanations. For the biological methods such as the fluorescence
marker and the embryos used in this work we refer to [66]. The important
aspect about endodermal cells is that they are known to form a monolayer
during gastrulation [83], meaning that the radial extent is only a single cell.
This crucial fact allows for the straightforward extraction of a surface together
with a two-dimensional image of the stained cells. Since only a cuboid region
of approximately 860 × 860 × 340µm3 of the pole region is captured by the
microscope, this surface can easily be parametrised; cf. Sec. 4.3. The spatial
resolution of the Gaussian filtered images is 512× 512 pixels and all intensities
are given in the interval [0, 1]. Our sequence contains 77 frames recorded in
intervals of 240 s with clearly visible cellular movements and cell divisions.

Numerical results
In the following we present qualitative results and demonstrate the feasibility
of our approach. For every subsequent pair of frames we minimised the func-
tional (4.8) as outlined in Sec. 4.3. We chose grid size as well as temporal
displacement as h = 1 and the regularisation parameter was set to α = 10.
For demonstration purpose we make use of the standard flow colour-coding [9],
which maps (normalised) flow vectors to a colour space defined inside the unit
circle. It is easy to see that the same colours are valid all over the manifold
due to the parametrisation.

As representative candidates for this discussion we chose the displacement
field between frames 57 and 58 for the following reasons. First, the surface is
distinctly developed. Second, a considerable number of cells is present in the
image, and third, the interval contains cell divisions. Figure 4.3, left, shows
the colour-coded tangential vector field and the colour space whereas Fig. 4.3,
right, displays the same motion field as computed in the parameter space.2 A
visual inspection of the dataset shows that cells tend to move towards the em-
bryo’s body axis, which roughly runs along the main diagonal in Fig. 4.3, right.
Clearly, the velocity field is sufficiently smooth and suggests this behaviour in
an adequate manner on a large scale. The expected change in orientation along
the body axis is well represented by the colour shift from orange-yellow below
the main diagonal to purplish blue in the region above. On the contrary, the
choice of the regularisation parameter ensures that individual movements are
well preserved as can be observed from the image.

2Some figures may appear in colour only in the online version.
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Figure 4.3: Optical flow field between frames 57 and 58 of the sequence. Colours
indicate direction whereas darkness of a colour indicates the length of the
vector. Note that the colour circle has been enlarged for better visibility.

Figure 4.4 gives a detailed view of the section outlined by a (red) rectangle
in Fig. 4.3, right. This section was chosen because it depicts a cell division.
Figure 4.4, left, and Fig. 4.4, right, display the frames before and after the
event, respectively. Moreover, in Fig. 4.4, left, the velocity field is shown. From
the raw data we observed that when a cell actually splits, the two daughter cells
drift apart in a 180 ◦ angle with respect to the mother cell. The displacement
field clearly shows the anticipated pattern caused by the diverging daughter
cells. In Fig. 4.3, right, the event is point up by two areas which are coloured
mutually opposite with respect to the colour space. Our results suggest that cell
division can be indicated reasonably well by our model. Both implementation
and data are available on our website.3

4.5 Conclusion

Aiming at efficient motion analysis of 4D cellular microscopy data, we gener-
alised the Horn-Schunck method to videos defined on evolving surfaces. The
biological fact that the observed cells move along an itself deforming surface
allows for motion estimation in 2D (plus time). In the course of this work,
we presented two ways to linearise the brightness constancy assumption and
showed that one could be obtained from the other and vice versa. The re-
sulting optical flow constraint was solved by means of quadratic regularisation
and verified on the basis of the afore-mentioned data. Our qualitative results
suggest that both global trends as well as individual movements including cell
division are well shown in the surface velocity field. However, so far we only
laid the basic groundwork in terms of a mathematical model.

Acknowledgements. We thank Pia Aanstad from the University of Inns-
bruck for sharing her biological insight and for kindly providing the microscopy

3http://www.csc.univie.ac.at
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Figure 4.4: Detailed view of a cell division occurring between frames 57 (left)
and 58 (right). All vectors are scaled and only every fourth vector is shown.
Intensities are interpolated for smooth illustration
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Abstract

We extend the concept of optical flow with spatiotemporal regularisa-
tion to a dynamic non-Euclidean setting. Optical flow is traditionally
computed from a sequence of flat images. The purpose of this paper is
to introduce variational motion estimation for images that are defined
on an evolving surface. Volumetric microscopy images depicting a live
zebrafish embryo serve as both biological motivation and test data.

Keywords: biomedical imaging, Computer Vision, evolving surfaces, optical
flow, spatiotemporal regularisation, variational methods.

5.1 Introduction

Motivation
Advances in laser-scanning microscopy and fluorescent protein technology have
increased resolution of microscopy imaging up to a single cell level [60]. They
allow for four-dimensional (volumetric time-lapse) imaging of living organisms
and shed light on cellular processes during early embryonic development. Un-
derstanding cellular processes often requires estimation and analysis of cell
motion. However, the amount of data that is recorded is tremendous and
therefore in many cases automated image analysis is necessary.

The specific biological motivation for this work is to understand the mo-
tion and division behaviour of fluorescently labelled endodermal cells of a ze-
brafish embryo. Although of considerable importance for developmental biol-
ogy, knowledge about the migration patterns of these cells is scarce [74]. The
dataset under consideration consists of volumetric time-lapse images taken by
a laser-scanning microscope. The recorded sequence depicts a cuboid section
S ⊂ R3 of said zebrafish embryo, whose endodermal cells express a fluorescent
protein. We model this sequence by a scalar function

F̄ : [0, T ]× S → R

36
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that assigns to every pair (t, x) ∈ [0, T ] × S a nonnegative value F̄ (t, x) pro-
portional to the fluorescence response of point x at time t.

Optical flow methods are used regularly to estimate cellular motion, see
Sec. 5.1. Applying them directly to our data F̄ to obtain a dense 3D velocity
field

m : [0, T ]× S → R3

is possible but problematic from a computational point of view [4], even more
so if temporal regularisation is to be included. We propose a solution to this
by adapting our model according to biological facts about the nature of the
marked cells.

Endodermal cells develop on the surface of the embryo’s yolk, where they
form a non-contiguous monolayer [83]. Loosely speaking, they only sit next to
each other but not on top of each other. Moreover, the yolk’s shape is roughly
spherical and deforms over time. This means that the yolk’s surface can be
modelled by an embedded two-dimensional manifold Mt ⊂ R3, the subscript
indicating dependence on time. In practice,Mt can be approximated by fitting
piecewise polynomials, for instance, to the cell centres.1 Consequently it is
possible to reduce the data dimension by only considering the restriction F of
F̄ to this moving surface; see Fig. 5.2. More details on the acquisition and
preprocessing of the microscopy data are given in Sec. 5.5. This dimension
reduction, in turn, necessitates the development of an optical flow model for
data defined on an evolving surface, which is the main contribution of this
article.

Let t0 be a fixed instant of time and x0 ∈Mt0 . Assume a cell located at x0,
indicated by a relatively high value of F (t0, x0), moves with velocity m(t0, x0).
On the other hand, suppose the yolk’s surface has velocity V(t0, x0). The
purely tangential vector

u(t0, x0) = m(t0, x0)−V(t0, x0) (5.1)

describes the cell’s velocity relative to V. Put differently, the total observed
velocity m of a cell is the sum of the surface velocity V and the cell’s tangential
velocity u. Compare Fig. 5.1. While the former is a quantity extrinsic to the
surface the latter is intrinsic. A motion estimation method dealing with the
full 4D dataset F̄ would directly try to calculate m for all (t, x) ∈ [0, T ] × S.
The method proposed in this article, however, only computes the tangential
field u for a given surface velocity V. The total velocity can then be recovered
by adding the two vector fields.

In practice the true velocity of a moving surface might not be known and
might even be impossible to determine from available data. This is also the
case for the microscopy data considered in this paper. Our solution consists in
picking one surface velocity V that is consistent with Mt, of which there are
infinitely many in general, and to estimate the tangent field u relative to this
chosen surface velocity. While the resulting u must be interpreted with care,
it is reasonable to assume that the sum u+V is close to the true total velocity
m. The selected surface velocity ideally strikes a balance between being easy
to implement while being not too unnatural. While modelling the optical flow

1Sometimes it is possible to already capture the yolk’s surface with the microscope in a
second sequence of images. We do not, however, use such additional data in this article.
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Mt0

Mt0+∆t

V

u

m

γ

Figure 5.1: Sketch of a cell (indicated by a black ellipse) moving along a tra-
jectory γ on a moving surface. The cell’s velocity is given by ∂tγ = m, which
can be decomposed into surface velocity V and relative tangential motion u.

Figure 5.2: Frame no. 50 (top row) and 61 (bottom row) of the embryonic
zebrafish image sequence. The left images illustrate the raw volumetric data
F̄ . Intensity corresponds to fluorescence response. In the middle images, the
curved mesh represents surfaces fitted to the cell’s centres. The right images
depict only the surface and the extracted two-dimensional image F . All di-
mensions are in micrometer (µm). For more details on the microscopy data
and the preprocessing steps see Sec. 5.5.

on an evolving surface is the main novelty of this article, from the viewpoint
of our particular application, it can be regarded as a subproblem making the
computation of 3D velocities feasible, namely by reducing the data dimension
while keeping as much accuracy as possible.

Contribution
The contributions of this article are as follows. First, we formulate the optical
flow problem on an evolving two-dimensional manifold and derive a generalised
optical flow constraint. Second, we translate the classical functional by Horn
and Schunck [39] and its spatiotemporal extension by Weickert and Schnörr [86]
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to the setting of moving manifolds. The associated Euler-Lagrange equations
are solved with a finite difference scheme requiring a global parametrisation of
the moving manifold. Finally, we apply this technique to obtain qualitative
results from the aforementioned zebrafish data. Our experiments show that
the optical flow is an appropriate tool for analysing these data. It is capable
of visualising global trends as well as individual cell movements. In particular,
the computed flow field can indicate cell divisions, while its integral curves
approximate cell trajectories.

Finally, we address a point raised in the recent publication by Schmid et
al. [74], who also analysed endodermal cell dynamics in a zebrafish embryo.
They approximated the surface by a sphere, used different map projections to
reduce the amount of data by one dimension, and subsequently computed cell
motion in the plane. They acknowledge, however, the need for more exact, and
supposedly slower, imaging techniques that do not discard any 3D information.
While our approach still requires the volume data to be projected onto a surface
and thus is faster than comparable 3D approaches, it does not require the
surface to be very simple — e.g. spherical or planar — or static.

This article is structured as follows. In the next subsection we review
related literature. Section 5.2 is devoted to providing the necessary mathemat-
ical background, notations, and definitions. Sections 5.3 and 5.4 introduce our
variational model of optical flow on evolving surfaces and contain the continu-
ous and discretised optimality conditions, respectively. In Sec. 5.5 we explain
our microscopy data and the necessary preprocessing steps, summarise our
approach, and finally present numerical results.

Related work
Optical flow is the apparent motion in a sequence of images. Its estimation is
a key problem in Computer Vision. Horn and Schunck [39] were the first to
propose a variational approach assuming constant brightness of moving points
and spatial smoothness of the velocity field. Since then, a vast number of
modifications have been developed. See [9, 84] for recent surveys.

Using optical flow to extract motion information from cell biological data
has gained popularity over the last decade. See, for example [2, 4, 14, 21, 41,
61, 65, 72, 74]. In these works displacement fields are computed either from
3D images or from 2D projections of the 3D data. While projections can suffer
from inaccuracies [72, 74], the extraction of dense velocities from volumetric
time-lapse data poses computational challenges [4]. In the present article we
avoid both of these problems.

Many natural scenarios are more accurately described by a velocity field on
a non-flat surface rather than on a flat domain. With applications to robot
vision, Imiya et al. [42, 79] considered optical flow for spherical images. Lefèvre
and Baillet [58] extended the Horn-Schunck method to general 2-Riemannian
manifolds, showed well-posedness, and applied it to brain imaging data. They
solved the numerical problem with finite elements on a surface triangulation.
In all of the above works the underlying imaging surface is fixed over time,
while in this paper it is not.

A preliminary version of this paper appeared in [50]. The main differences
to the present article are as follows. First, our current implementation allows us
to regularise spatiotemporally as well as only spatially. In [50] we only treated
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spatial regularisation. Second, the spatial regularisation functional has been
improved in the sense that it is now parametrisation invariant. We have also
conducted new experiments with the cell microscopy data and, in contrast to
[50], computed approximate cell trajectories. Finally, we added some recent
references.

5.2 Notation and Background

Whenever convenient we make use of the Einstein summation convention. Ev-
ery index that appears exactly twice in an expression, once as a sub- and once
as a superscript, is summed over.

Evolving Surfaces
Let M = (Mt)t∈I be a family of compact smooth 2-manifolds Mt ⊂ R3

indexed by a time interval I = [0, T ]. Each Mt is assumed to be oriented
by the unit normal field N(t, ·). For every t ∈ I and x ∈ Mt the orthogonal
projector onto the tangent plane TxMt is given by

P(t, x) := Id−N(t, x)N(t, x)>. (5.2)

We callM an evolving surface, if there is a smooth function

φ : I ×M0 → R3

such that φ(t, ·) is a diffeomorphism between M0 and Mt for every t, and
φ(0, ·) is the identity onM0. Note that φ cannot be unique in general. With
every φ there is associated a surface velocity. Denote the inverse of φ(t, ·) by
φ−1
t (·). The surface velocity at a point x ∈Mt is then defined by

V(t, x) := ∂tφ
(
t, φ−1

t (x)
)
. (5.3)

In contrast to φ the domain of V is not I ×M0, but rather the 3-manifold

M̄ :=
⋃
t∈I

({t} ×Mt) ⊂ R4.

In other words, V is a Eulerian specification of M, while φ is a Lagrangian
one. Even though different functions φ, φ′ give rise to different velocities V,V′,
the normal velocity ofM is independent of the choice of φ. That is, V ·N =
V′ · N. We provide a short proof of this statement in Proposition 1 in the
Appendix. Given a Eulerian specification V of M, we can obtain, at least
locally, a Lagrangian one by solving the ordinary differential equation (5.3) for
φ with initial condition φ(0, x0) = x0. From now on we consider φ and V fixed.
See Sec. 5.5 for the specific φ and V we use in the numerical computations.

Let x0 : Ω ⊂ R2 → R3 be a parametrisation of M0 mapping local coordi-
nates ξ =

(
ξ1, ξ2) to points x =

(
x1, x2, x3) of Euclidean space. By composing

φ and x0 we obtain a parametrisation of the evolving surfaceM

x : I × Ω→ R3, x(t, ξ) = φ (t,x0(ξ)) . (5.4)

With this convention we always have ∂tx = V. Differentiation with respect
to ξi will be denoted by ∂i. The set {∂1x(t, ξ), ∂2x(t, ξ)} forms a basis of
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Tx(t,ξ)Mt. Note that this basis is not orthonormal in general. Using dot
notation for the standard inner product of R3, the components of the first
fundamental form g = (gij) are given by

gij = ∂ix · ∂jx. (5.5)

The elements of its inverse are denoted by upper indices g−1 =
(
gij
)
.

Let F : M̄ → R be a scalar function and f : I × Ω → R its coordinate
representation,2 that is

F (t,x(t, ξ)) = f(t, ξ).

The integral of F over the evolving surface is then given by∫
I

∫
Mt

F dA dt :=
∫
I

∫
Ω
f
√

det g dξ dt,

where dA denotes the surface measure.
We refer to [15], [24] and the references therein for more information on

evolving surfaces. Eulerian and Lagrangian coordinates can be read up in
Sec. 2.1 of [11], for example.

Derivatives on Evolving Surfaces
Spatial Derivatives. The spatial differential operators introduced below are
not different from those on static manifolds. Therefore t ∈ I can be considered
fixed in this paragraph.

The surface gradient ∇MF of F is the tangent vector field which points in
the direction of greatest increase of F . In local coordinates it is given by

∇MF = gij∂if∂jx, (5.6)

where we omitted the arguments (t,x(t, ξ)) on the left and (t, ξ) on the right
hand side, respectively. The surface gradient is just the tangential part of
the R3 gradient. More precisely, if F̂ is a smooth extension of F to an open
neighbourhood ofMt in R3, then

∇MF = P∇R3 F̂ .

Note that the last expression does not depend on the choice of F̂ .
Similarly, for two tangent vector fields u, v onMt the covariant derivative

∇vu of u along v is the tangential part of the conventional directional derivative
of u along v. That is

∇vu = P∇R3 û(v),

where û is an extension of u as above and ∇R3 û(v) is the Jacobian of û applied
to v. Let u := ui∂ix and v := vi∂ix be their representations in the coordinate
basis. The covariant derivative then reads

∇vu =
(
vi∂iu

j + viukΓjik
)
∂jx. (5.7)

2Distinguishing between a surface quantity and its coordinate representation is often
avoided. We decided, however, to make this distinction for the data F , and only for F , as
we found it helpful especially in Sec. 5.3.
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The Christoffel symbols Γjik are defined by the action of ∇ on the coordinate
basis

∇∂ix∂kx = Γjik∂jx. (5.8)

An explicit expression for the Christoffel symbols in terms of the first funda-
mental form is given by

Γjik = 1
2g

mj (∂igkm + ∂kgmi − ∂mgik).

Recall that the coordinate basis is in general not orthonormal. In Sec. 5.4,
however, we want to rewrite the regularisation functional in terms of an or-
thonormal basis in order to simplify subsequent calculations. Therefore we now
make the little extra effort of expressing the covariant derivative ∇vu in terms
of an arbitrary, possibly non-coordinate, frame {e1, e2}. Writing u = wiei and
v = ziei in this basis, the corresponding formula reads

∇vu =
(
∇vw

j + ziwkΓ̃jik
)

ej . (5.9)

For scalar functions like wj the covariant derivative ∇vw
j is just the directional

derivative along v. It can be computed by using linearity of the covariant
derivative with respect to its lower argument

∇vw
j = ∇vi∂ixw

j = vi∇∂ixwj = vi∂iw
j .

The Γ̃jik are the symbols associated to the new frame {e1, e2}. In analogy to
(5.8), they are defined by

∇eiek = Γ̃jikej . (5.10)

For an orthonormal frame {e1, e2} the following transformation law describes
the relation between the two types of symbols

Γ̃jik = δjpαhpghm
(
α`i∂`α

m
k + α`iα

n
kΓm`n

)
, (5.11)

where αji is the ∂jx-coordinate of ei, that is, ei = αji∂jx and δjp is the Kro-
necker delta. We give a short derivation of the equation above in Lemma 3 in
the Appendix.

The covariant derivative of u at a point (t, ξ) is a linear operator on
Tx(t,ξ)Mt, mapping tangent vectors v to tangent vectors ∇vu. Its 2-norm
(Frobenius norm) can be computed via

‖∇u(t, ξ)‖22 = |∇e1u(t, ξ)|2 + |∇e2u(t, ξ)|2, (5.12)

where {e1, e2} now is an arbitrary orthonormal basis of the tangent space
Tx(t,ξ)Mt, that is, ei · ej = δij . Note that, if x is a global parametrisation,
then we can obtain a frame {e1, e2} which is orthonormal everywhere by Gram-
Schmidt orthonormalisation of the coordinate basis {∂1x, ∂2x}.

For a thorough treatment of the concepts introduced in this section we refer
to [23, 56]. More basic differential geometry texts are [22, 54], for example.
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Mt0

Mt0+∆t

V
m

γψN
φ(·, x0)

Figure 5.3: Sketch of different trajectories through the evolving surface giving
rise to different temporal derivatives. Corresponding velocities are depicted in
grey.

Temporal Derivatives. Let x ∈ Mt0 . Denote by ψ : t 7→ ψ(t) ∈ Mt a
trajectory through M with ψ(t0) = x. We define the time derivative of F
following ψ at x as3

dψt F (t0, x) := d
dtF (t, ψ(t))

∣∣∣∣
t=t0

. (5.13)

There are a few special cases of this derivative that are worth mentioning. Let
ψN be a trajectory for which the vector ∂tψ(t0) is orthogonal to TxMt0 . The
corresponding derivative is called normal time derivative and denoted by

dN
t F (t0, x) := d

dtF (t, ψN(t))
∣∣∣∣
t=t0

. (5.14)

Every Lagrangian coordinate system φ of M engenders a time derivative like
(5.13) in a natural way. For x = φ(t, y) ∈Mt the time derivative of F following
φ is defined by

dV
t F (t0, x) := d

dtF (t, φ(t, y))
∣∣∣∣
t=t0

. (5.15)

We choose the notation dN
t F and dV

t F , because the derivative (5.13) in fact
only depends on the velocity of ψ at x, see Lemma 1. Finally, if M is
parametrised according to (5.4), which we assume from now on, then dV

t F =
∂tf . For illustration see Fig. 5.3.

We stress that if V is the physical surface velocity, then dV
t is the natural

time derivative for functions defined on M̄, since it measures the temporal
change along trajectories φ(·, y) of surface points. These trajectories are not
cell trajectories in general. They coincide only if the cells do not move by
themselves and all the motion is surface motion.

Lemma 1. With the definitions from above, we have

dV
t F = dN

t F +∇MF ·V.

3Note that this composition of F with ψ is necessary, because the conventional partial
derivative ∂tF (t0, x) is meaningless in general.
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Proof. The main idea in this derivation from [15] is to consider the normally
constant extension F̂ of F : Let N̄ ⊂ R4 be an open neighbourhood of M̄. If
N̄ is chosen sufficiently small, it is possible to define a function F̂ : N̄ → R
that is smooth, constant on normal lines through Mt for every t, and agrees
with F on M̄. Therefore

d
dtF (t, φ(t, y)) = d

dt F̂ (t, φ(t, y))

= ∂tF̂ +∇R3 F̂ · ∂tφ
= dN

t F +∇MF ·V

The last equality holds because, by construction, ∇R3 F̂ equals ∇MF and

dN
t F = d

dt F̂ (t, ψN(t)) = ∂tF̂ +∇R3 F̂ · ∂tψN = ∂tF̂ .

Finally, note that by definition (5.3) we have ∂tφ = V.

Note that, since ∇MF is tangential, dV
t F actually only depends on the

tangential part PV of V. Here P is the orthogonal projector defined in (5.2).
Let u be a tangent vector field on the evolving surfaceM, that is, a function

u : M̄ → R3 such that
u(t, ·) :Mt → TMt

for all t. In analogy to the covariant derivative (5.7) and to (5.15), we define
the following time derivative

∇tu = PdV
t u, (5.16)

where application of dV
t to u is understood componentwise. Again we have

dV
t u = ∂tu. A normal time derivative for u could be defined as well but will

not be needed in the sequel. As in the scalar case, ∇tu can be considered the
natural time derivative for a tangent vector field u, if V is the physical surface
velocity. By setting

∇t∂ix = Γj0i∂jx (5.17)
we arrive at the following expression for ∇tu in local coordinates

∇tu =
(
∂tu

j + uiΓj0i
)
∂jx.

The new symbols have the explicit representation

Γj0i = gjk∂tix · ∂kx, (5.18)

which can be verified by taking inner products of both sides of (5.17) with the
coordinate basis vectors.

Again, in order to simplify calculations later on, we want to express this
derivative in terms of an orthonormal frame {e1, e2}. We have

∇tu =
(
∂tw

j + wiΓ̃j0i
)

ej , (5.19)

where the symbols Γ̃j0i are defined as before and satisfy an analogous transfor-
mation law

Γ̃j0i = δjpαhpghm
(
∂tα

m
i + αki Γm0k

)
. (5.20)

The derivation is analogous to (5.11) and can be found in Lemma 3 in the
Appendix.
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5.3 Model Statement

Generalised Optical Flow Equation
We assume to be given an evolving surface M together with a known La-
grangian specification φ or, equivalently, a Eulerian one V. In addition we are
given scalar data F onM which we want to track over time.

Our optical flow model is based on the so-called brightness constancy as-
sumption. For every x ∈ M0 we seek a trajectory γ(·, x) : t 7→ γ(t, x) ∈ Mt

along which F is constant. In other words, we assume existence of a Lagrangian
specification γ ofM such that

F (t, γ(t, x)) = F (0, x). (5.21)

This implies that the time derivative of F following γ has to vanish identically.
We deduce from Lemma 1 that the following generalised optical flow equation
has to hold

dN
t F +∇MF · ∂tγ = 0, (5.22)

where dN
t F is the normal time derivative as defined in (5.14) and ∇MF is the

surface gradient of F , cf. (5.6).
Let us continue the discussion of Sec. 5.1. According to our definition of γ,

a cell located at x0 ∈Mt0 moves with velocity

∂tγ(t0, γ−1
t0 (x0)) = m(t0, x0) = u(t0, x0) + V(t0, x0), (5.23)

where γ−1
t0 is the inverse of γ(t0, ·), m is the total observed velocity of a cell as

introduced in Sec. 5.1 and u is its velocity relative to V. The second equality
above is due to decomposition (5.1). According to our assumptions at the
beginning of this section, we consider V as given so that the actual unknown
is u.

The remaining part of this subsection is devoted to rewriting (5.22) in terms
of local coordinates. First, we give an interpretation of the coordinates ui of
u with respect to the basis {∂1x, ∂2x}. Let β =

(
β1, β2) : I × Ω → Ω be the

coordinate counterpart of γ, defined by the equation

γ(t,x0(ξ)) = x(t, β(t, ξ)).

See also Fig. 5.4. Taking time derivatives on both sides and dropping arguments
yields

m = V + ∂tβ
i∂ix,

since ∂tx = V. We can conclude that ui = ∂tβ
i, which means that (u1, u2)

is just the 2D velocity of the parametrised trajectory β. It remains to rewrite
(5.22) in terms of u1 and u2.

Lemma 2. The optical flow equation (5.22) is equivalent to

dV
t F +∇MF · u = 0.

In local coordinates it reads

∂tf + ui∂if = 0.
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Ω Ω

M0 Mt

x0(·)

β(t, ·)

γ(t, ·)
x(t, ·)

Figure 5.4: Commutative diagram describing the relation between β and γ.

Proof. We prove the assertion in two steps. First we show that

dN
t F +∇MF · ∂tγ = dV

t F +∇MF · u,

and afterwards rewrite the right hand side in local coordinates.
By Lemma 1 the normal time derivative can be written as

dN
t F = dV

t F −∇MF ·V

The other summand of (5.22) rewrites as

∇MF · ∂tγ = ∇MF · (V + u) .

Note that V is not assumed to be normal to Mt, so that the term ∇MF ·V
does not vanish in general. However, it does appear twice with opposite signs.
Finally recall that dV

t F = ∂tf and by the definition of the first fundamental
form

∇MF · u = gij∂if∂jx · uk∂kx
= gijgjk∂ifu

k

= ∂ifu
i.

It is worth noting that the parametrised optical flow equation has precisely
the same form as the classical 2D equation.

Regularisation
Directly solving the optical flow equation in the new setting is just as ill-
posed as it is in the classical setting. We use variational regularisation to
overcome this. In particular, we propose to minimise the following quadratic
spatiotemporal functional to recover a vector field u describing the tangential
motion of data F .∫

I

∫
Mt

( (
dV
t F +∇MF · u

)2 + λ0|∇tu|2 + λ1‖∇u‖22
)

dA dt (5.24)

Here λ0 ≥ 0 and λ1 > 0 are regularisation parameters. Recall from Sec. 5.2
that u is temporally regularised according to the assumed surface motion V.
Functional (5.24) is a generalisation of the one presented in [86] for the Eu-
clidean setting.
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Moreover, if λ0 = 0, minimisation of (5.24) is equivalent to minimising∫
Mt

((
dV
t F +∇MF · u

)2 + λ1‖∇u‖22
)

dA (5.25)

for every instant t ∈ I separately. If Mt = M0 for all t, the functional
reduces to that of [58]. The spatial regularisation term as defined in (5.12) is
independent of the chosen parametrisation. This is an improvement over the
functional chosen in [50].

Example 1. We end this section with a brief explanation, from an applied
point of view, of why we regularise with covariant derivatives. Consider as a
toy manifold the non-moving unit circle Mt = S1 ⊂ R2 with parametrisation
x(θ) = (cos θ, sin θ)>, θ ∈ [0, 2π) and tangent basis {∂θx}. Consider the tan-
gent vector vector field u = c∂θx, where c 6= 0 is a fixed number. This field
would describe a uniform translation of data F along the circle, and thus should
not be penalised by a regularisation term that enforces spatial smoothness. But
while conventional differentiation does not yield a vanishing vector field

∂θu = c∂θθx = −cx,

covariant differentiation does

∇θu = P∂θu = −cPx = −c(x− xx>x) = 0.

Here we used the fact that N = x and x>x = 1.
An analogous argument explains our penalisation of ∇tu of γ instead of the

unprojected derivative ∂tu.

5.4 Euler-Lagrange Equations

To simplify matters from now on we will assume having a global parametri-
sation x0 of M0 and thus a global parametrisation x of the whole evolving
surface, cf. (5.4). In addition, we express the functional (5.24) in an orthonor-
mal non-coordinate basis {e1, e2} with

ei = αji∂jx. (5.26)

This leads to wearisome calculations at first, which however pay off eventually
when we compute the optimality conditions for the coordinates of u with re-
spect to this frame. Note that an orthonormal coordinate basis does not exist
in general [56].

In this section we use the following notational convention. First, we identify
t with ξ0. In addition, Latin indices are always understood to run over the set
{1, 2}, while Greek indices are reserved for {0, 1, 2}.

Rewriting Functional (5.24)

Let
u = wiei (5.27)
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be the representation of the unknown u in the orthonormal frame (5.26). It
follows that uj = wiαji . Recall from (5.9), (5.19) that the derivatives of u read

∇eiu =
(
αki ∂kw

j + wkΓ̃jik
)

ej ,

∇tu =
(
∂tw

j + wiΓ̃j0i
)

ej .

If we set α0
µ = δ0

µ and αµ0 = δµ0 , the coefficients of ej above can be rewritten
using the unified notation

Dµw
j = ανµ∂νw

j + wiΓ̃jµi,

where µ = 0, 1, 2 and j = 1, 2. Consequently, defining the operator D =
(D0, D1, D2)>, the integrand of the regularisation term becomes a weighted
2-norm of the matrix Dw = (Dµw

j)µj . The parametrised version of energy
functional (5.24) now takes the following compact form∫ T

0

∫
Ω

( (
∂tf + wjαij∂if

)2 +
∑
µ,j

λµ
(
Dµw

j
)2 )√det g dξ dt, (5.28)

where λ1 = λ2 and g is the first fundamental form as introduced in (5.5).
Observe that the simple form of the regulariser originates from representing
∇eiu and ∇tu in an orthonormal basis. This also simplifies the computation
of the optimality conditions.

Optimality System
Denote the interior of I × Ω ⊂ R3 by D. Functional (5.28) takes the general
form

E(w) =
∫
D

L(w,∇w) dξ,

where the Lagrangian L is a smooth function of all wi and ∂µw
i. Denote

partial derivatives of L by subscripts. A minimiser (w1, w2) of E has to satisfy
the following second-order elliptic system

Lwm =
∑
µ

∂µL∂µwm , in D,

0 =
∑
µ

nµL∂µwm , on ∂D,
(5.29)

for m = 1, 2 and where n = (n0, n1, n2)> is the outward normal to D. The
derivatives of the Lagrangian read

Lwm =
√

det g
(
αim∂if

(
wjαkj ∂kf + ∂tf

)
+
∑
µ,j

λµΓ̃jµmDµw
j
)
,

L∂νwm =
√

det g
∑
µ

λµα
ν
µDµw

m.

System (5.29) in terms of derivatives of w together with explicit formulas for
all coefficients can be found in the Appendix. For more details on variational
calculus we refer to [19, 30].
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Figure 5.5: Eleven point stencil arising from the discretisation.

Remark 1. If M is a fixed plane, then ανµ = δνµ and all connection symbols
vanish. Consequently, the boundary conditions become standard Neumann ones
and system (5.29) reduces to the one derived in [39] or [86], respectively.

Discretisation and Numerical Aspects
We solve the Euler-Lagrange equations (5.29) with a standard finite difference
scheme. The spatiotemporal domain D is assumed to be the unit cube (0, 1)3

and is approximated by a Cartesian grid with spacing of hσ in the direction of
ξσ, where h1 = h2. Grid points are denoted by p. Thus, wmp := wm(p) refers
to the numerical approximation of wm at p ∈ D. Partial derivatives of the
unknowns are approximated using central differences. They read

∂σw
m(p) ≈ 1

2hσ

(
wmN+

σ (p) − w
m
N−σ (p)

)
,

∂σσw
m(p) ≈ 1

h2
σ

(
wmN+

σ (p) − 2wmp + wmN−σ (p)

)
,

and

∂νσw
m(p) ≈ 1

4hνhσ

(
wmN++

νσ (p) − w
m
N+−
νσ (p) − w

m
N−+
νσ (p) + wmN−−νσ (p)

)
,

where the symbols N±σ (p) and N±±νσ (p) denote the neighbours of wmp in the
grid along coordinates σ and ν, σ, respectively. From the choice of the discrete
derivatives an eleven-point stencil is obtained; see Fig. 5.5. Derivatives of the
data f and the surface parametrisation x are handled likewise, using central
differences in the interior and inward differences at the boundaries.

However, the resulting (sparse) linear system is underdetermined from equa-
tions (5.29) alone, because the approximations used for the mixed derivatives
of wm refer to points not occurring in any boundary condition. Thus, at every
grid point p ∈ C ⊂ ∂D with

C :=
(
{ξ1 = 0} ∪ {ξ1 = 1}

)
∩
(
{ξ2 = 0} ∪ {ξ2 = 1}

)
(5.30)

additional boundary conditions are needed. At these points we set
n = (0,±1,±1)> in the boundary condition (5.29), which is a vector pointing



50 5 Optical Flow on Evolving Surfaces

in the direction of the undetermined grid neighbour. This leads to expressions
of the form ±∂1w

m± ∂2w
m, which, interpreted as a directional derivative, can

be approximated by

1
2
√

2hσ

(
wmN±±

ij
(p) − w

m
N∓∓
ij

(p)

)
.

5.5 Experiments

Zebrafish Microscopy Data
As mentioned before, the biological motivation for this work are cellular image
sequences of a zebrafish embryo. Endoderm cells expressing green fluorescent
protein were recorded via confocal laser-scanning microscopy resulting in time-
lapse volumetric (4D) images. See e.g. [60] for the imaging techniques.

The microscopy images were obtained during the gastrula period, which is
an early stage in the animal’s developmental process and takes place approx-
imately five to ten hours post fertilisation. In short, the fish forms on the
surface of a spherical-shaped yolk, which itself deforms over time. Detailed ex-
planations and numerous illustrations can be found in [48]. For the biological
methods such as the fluorescence marker and the embryos used in this work we
refer to [66].

The captured area is approximately 540 × 490 × 340µm3 and shows the
pole region of the yolk. Figure 5.2, left column, depict two frames of the raw
data. The sequence contains 77 frames recorded in intervals of 240 s with clearly
visible cellular movements and cell divisions. The spatial resolution of the data
is 512× 512× 44 voxels. Intensities are in the range [0, 1]. In the following we
denote by

F̄ δ ∈ [0, 1]77×512×512×44

the unprocessed microscopy data approximating F̄ from Sec. 5.1.
The important aspect about endodermal cells is that they are known to

form a monolayer during gastrulation [83]. In other words, the radial extent is
only a single cell. This crucial fact allows for the straightforward extraction of
a surface together with an image of the stained cells. Figure 5.2 illustrates the
idea for two particular frames.

Preprocessing and Acquisition of Surface Data
In this section, we relate the mathematical concepts introduced in Sec. 5.2 to
the 4D microscopic images. We give a concrete global parametrisation suitable
for this type of data and discuss the necessary preprocessing steps leading to
an approximation of the evolving surface M̄ together with an approximation
of the scalar quantity F .

The first step is to extract approximate cell centres from the raw microscopy
data. As the positions of cells are characterised by local maxima in intensity
they can be reliably obtained as follows. For every frame, a Gaussian filter
is applied to the volumetric data F̄ δ. Then, local maxima with respect to
intensity are computed and treated as cell centres whenever they exceed a
certain threshold.
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Figure 5.6: Sequence of embryonic zebrafish images. Depicted are frames no.
46 to 60 of the entire sequence (aligned left to right, top to bottom).

Next we fit a surface to the cell positions. For every frame, this is done by
least squares fitting of a piecewise linear function combined with first-order reg-
ularisation. From that we get a height field zδ ∈ R77×512×512 which completely
describes the discrete evolving surface. Finally, the numerical approximation
fδ of f is calculated by linear interpolation of F̄ δ and evaluation at surface
points determined by zδ.

The combination of all processing steps described above turns the original
4D array F̄ δ into two three-dimensional arrays

fδ ∈ [0, 1]77×512×512,

zδ ∈ R77×512×512.

Figure 5.2, right column, illustrates both surfaces and the obtained images for
two particular frames. In Fig. 5.6, a segment of the sequence is shown.

Let us quickly relate zδ to the quantities introduced in Sec. 5.2. The map-
ping

(t, ξ1, ξ2) 7→ (ξ1, ξ2, zδ(t, ξ1, ξ2)),

where (t, ξ1, ξ2) ranges over a 77× 512× 512 grid, is the discrete parametrisa-
tion. The corresponding φ is the function that identifies surface points with
identical (ξ1, ξ2) coordinates. Thus, the surface motion V occurs only in direc-
tion of x3. However, we stress that this particular parametrisation was chosen
due to the lack of knowledge about the true motion of material points on the
surface.

Solving for the Velocity Fields
After the preprocessing of the microscopy data as explained above, the following
steps lead to the desired solution:

1. From the parametrisation compute approximations of ∂ix, g, Γkij , α
j
i , Γ̃kµj

as explained in Sec. 5.2. Like all other quantities the αji are functions of
space and time. They can be computed, for example, by Gram-Schmidt
orthonormalisation of the coordinate basis {∂1x, ∂2x}.
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2. Discretise optimality system (5.33) as described in Sec. 5.4.

3. Compute coefficients (5.34) of discretised optimality system from the
quantities calculated in step 1.

4. Solve resulting linear system for unknowns w, see Sec. 5.5.

5. Compute relative tangential velocity u via (5.27) and recover total veloc-
ity m = u + V.

6. Finally, cell trajectories can be approximated by computing the integral
curves of m, see (5.32) in Sec. 5.5.

Visualisation
In order to illustrate the computed tangential velocity fields we apply the stan-
dard flow colour-coding from [9].4 This coding turns R2 vector fields into colour
images according to a particular 2D colour space.

However, we are interested in visualising tangential vector fields on an em-
bedded manifold, which are functions with values in R3. To be able to apply
the colour-coding mentioned above we turn the computed optical flow fields u
into R2 vector fields in the following way

u 7→ |u|
|Px3u|Px

3u, (5.31)

where Px3 : (x1, x2, x3) 7→ (x1, x2, 0) is the orthogonal projection onto the x1-
x2 plane. If the scaling factor |u|

|Px3 u| were omitted, the new vector field would
simply be the original one as viewed from above. The reason for including
this scaling are vectors having a large x3-component, which would otherwise
seem unnaturally short. Finally, the image resulting from the colour-coding
of vector field (5.31) is painted back on the surface. Figure 5.7 illustrates the
colour-coded tangential vector field u and the colour space. In all figures the
surface is slightly smoothed for better visual effect.

Numerical results
We conducted four experiments with different parameter settings and min-
imised functional (5.24) as outlined in Sec. 5.5. Due to a low cell density near
the boundaries we only worked with a part of the whole dataset. The grid di-
mensions were (N0, N1, N2) = (30, 370, 370). Accordingly, grid spacing was set
to hσ = 1/Nσ. Our implementation was done in Matlab and all experiments
were performed on an Intel Xeon E5-1620 3.6GHz workstation with 128GB
RAM. We used the Generalized Minimal Residual Method (GMRES) to solve
the resulting linear system. As a termination criterion we chose a relative resid-
ual of 0.02 and a maximum number of 2000 iterations with a restart every 30
iterations. The resulting runtime was approximately two hours. In Table 5.1,
the parameters for all experiments are listed, and the resulting running times
and relative residuals are given. Implementation and data are available on our
website.5

4Some figures may appear in colour only in the online version.
5http://www.csc.univie.ac.at

http://www.csc.univie.ac.at
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Figure 5.7: Optical flow field between frames 60 and 61 of the sequence. Colours
indicate direction whereas darkness of a colour indicates the length of the vec-
tor. Note that the colour circle has been enlarged for better visibility. Param-
eters are λ0 = c/100 and λ1 = λ2 = c, where c := 0.5.

No. λ0 λ1 = λ2 Runtime Rel. residual
1 c c 2.05 h 0.075
2 c/10 c 2.07 h 0.086
3 c/100 c 2.09 h 0.103
4 c/100 c/10 2.14 h 0.016

Table 5.1: Runtimes and relative residuals of the experiments. For convenience,
we define c := 0.5.

Regularisation. In a first experiment, we compared different regularisation
parameters. They were chosen such that individual movements of cells are
well preserved and the velocity field is sufficiently homogeneous both in time
and space. Figure 5.8 depicts these results. A visual inspection of the dataset
shows that cells tend to move towards the embryo’s body axis which roughly
runs from the bottom left to the top right corner in Fig. 5.7, right. This
behaviour is clearly visible from the obtained velocity fields. In Fig. 5.9, we
show the optical flow field for the sequence depicted in Fig. 5.6.

Cell Trajectories. In order to reconstruct the paths travelled by individual
cells, we computed the integral curves of m. By (5.23), for every starting
point x0 ∈ M0 the trajectory γ(·, x0) is the solution of the following ordinary
differential equation

∂tγ(t, x0) = m(t, γ(t, x0)),
γ(0, x0) = x0,

(5.32)

where m is the total velocity of a cell; cf. Sec. 5.2. As discussed in Sec. 5.5,
a local maximum of F at x0 ∈ M0 indicates the approximate position of a
cell. Hence, we chose local maxima as initial values and approximated (5.32)
by solving the projection of

γ̂(t+ 1, x0) = γ̂(t, x0) + sm(t, γ̂(t, x0))
γ̂(0, x0) = x0,
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Figure 5.8: Resulting velocity field u between frames 60 and 61 obtained with
different regularisation parameters. Denote c := 0.5. Top left: λ0 = λ1 = λ2 =
c. Top right: λ0 = c/10 and λ1 = λ2 = c. Bottom left: λ0 = c/100 and
λ1 = λ2 = c. Bottom right: λ0 = c/100 and λ1 = λ2 = c/10.

Figure 5.9: Sequence of colour-coded tangential velocity fields. Depicted are
the same frames as in Fig. 5.6. Parameters are λ0 = c/100 and λ1 = λ2 = c/10.
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Figure 5.10: Integral curves for frames {40, . . . , 60} for the identical regularisa-
tion parameters as in Fig. 5.8. The colour gradient of a trajectory from yellow
to green (bright to dark) indicates temporal progress. Local intensity maxima
at the first frame serve as initial values. The embryo’s body axis runs from
bottom left to top right.

to the x1-x2-plane, because it allows for a better illustration. The parameter s
is a step size and was chosen as s := 10. Figure 5.10 shows the projection Px3 γ̂
of the computed curves for several values of the regularisation parameters. The
effect on the smoothness of the trajectories is clearly visible.

Cell Divisions. Figure 5.11 shows two cell divisions in more detail. The
displacement field clearly resembles the splitting of the mother cell and the
diverging daughter cells. Our results suggest that cell divisions can be indicated
reasonably well by the proposed model.
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Figure 5.11: Detailed view of two cell divisions occurring between frames 41 and
44 (top, left to right) and frames 55 and 58 (bottom, left to right). Parameters
are λ0 = c/100 and λ1 = λ2 = c/10. Vectors are scaled and only every second
vector is shown. Data intensities are interpolated for smooth illustration.

5.6 Conclusion

Aiming at an accurate and efficient motion analysis of 4D cellular microscopy
data, we generalised both the Horn-Schunck and Weickert-Schnörr functionals
to images defined on evolving surfaces. The resulting optical flow constraint
was solved by means of quadratic regularisation and verified on the basis of real
data. Our experimental results suggest that cell movements including divisions
are well captured by our model.
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Appendix

We first sketch a proof about the statement from Sec. 5.2 that the normal
velocity of an evolving surface is independent of φ.
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Proposition 1. Let φ be a Langrangian specification of M and V the corre-
sponding velocity as defined in (5.3). Then V ·N is independent of the chosen
specification.

Proof. We can represent M̄ locally as the level set of a real-valued function
G(t, x), whose gradient does not vanish, see e.g. [57, Prop. 5.16]. We now
express V ·N solely in terms of G and thereby prove the assertion. Observing
that the composition of G with φ is constant, we calculate

0 = d
dtG(t, φ(t, x0)) = ∂tG+∇R3G ·V = ∂tG+ |∇R3G|V ·N.

The second equality holds, because∇R3G is normal to the surface. We conclude
that

V ·N = − ∂tG

|∇R3G|
.

In other words, different specifications of a surface can only differ in their
respective tangential velocities.

Next we prove the transformation law (5.11), (5.20) for the connection
coefficients Γ̃jµj .

Lemma 3. The symbols defined by (5.10) are given by (5.11).

Proof. Take inner products on both sides of (5.11) with ej to get

ej · ∇eiek = Γ̃jik.

Next express both terms on the left hand side in the coordinate basis by using
ej = αmj ∂mx and formula (5.7). The assertion follows now immediately.

An analogous calculation yields formula (5.20).
For our implementation the Euler-Lagrange equations (5.29) are needed in

the following form

dνσ∂νσw
m + cσmi ∂σw

i + bmi w
i = am, in D,

qνσ∂σw
m + pνmi wi = 0, on {ξν = 0} ∪ {ξν = 1},

(5.33)

where we assumed D = (0, 1)3. As usual the system is to be understood for
m = 1, 2 and ν = 0, 1, 2. Below we give the exact coefficients.

am = −αim∂if∂tf

bmi = αjmα
k
i ∂jf∂kf +

∑
µ λµ

(∑
j Γ̃jµmΓ̃jµi −GνανµΓ̃mµi + ∂ν

(
ανµΓ̃mµi

))
cσmi =

∑
µ λµ

(
ασµΓ̃iµm − ασµΓ̃mµi − δim

(
Gνα

ν
µα

σ
µ + ∂ν(ανµασµ)

) )
dνσ = −

∑
µ λµα

ν
µα

σ
µ

pνmi =
∑
µ λµα

ν
µΓ̃mµi

qνσ =
∑
µ λµα

ν
µα

σ
µ

(5.34)
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Here we used the shorthand

Gν = ∂ν
√

det g
2
√

det g
.

Recall that the functional without time regularisation (5.25) leads to a sequence
of decoupled systems for every instant t. Each of those has the form

djk∂jkw
m + ckmi ∂kw

i + bmi w
i = am, in D,

qjk∂kw
m + pmji wi = 0, on {ξj = 0} ∪ {ξj = 1}.

Note that, in comparison to system (5.33), we only replaced Greek indices by
Latin ones. The coefficients a, b, c, d, p, q of this simpler system can be obtained
from the list above by setting λ0 = 0.
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Abstract

We propose a number of variational regularisation methods for the es-
timation and decomposition of motion fields on the 2-sphere. While
motion estimation is based on the optical flow equation, the presented
decomposition models are motivated by recent trends in image analy-
sis. In particular we treat u + v decomposition as well as hierarchical
decomposition. Helmholtz decomposition of motion fields is obtained
as a natural by-product of the chosen numerical method based on vector
spherical harmonics. All models are tested on time-lapse microscopy data
depicting fluorescently labelled endodermal cells of a zebrafish embryo.

6.1 Introduction

Motion estimation is a fundamental task for the analysis of spatiotemporal
data, the prototypical example of which are sequences of images taken by a
camera. The term optical flow has been coined to designate the apparent
motion in such data. Its accurate and efficient estimation has been a major
topic in the fields of computer vision and image processing for more than 30
years. However, the applicability of optical flow algorithms is by no means
limited to flat two-dimensional projections of real world scenes. The advance
of microscopy techniques has led to a particularly promising application of
optical flow: cell motion analysis. Reliable optical flow algorithms supplied
with microscopy images of sufficiently high spatial and temporal resolution can
obviously help understanding cellular dynamics in transparent organisms, see
for example [4, 61, 72, 74].

The particular dataset we are working with in this article depicts a living
zebrafish embryo during early embryogenesis. Main feature of this dataset are
the embryo’s endodermal cells, which have been labelled with a fluorescent
protein and are known to develop on the surface of the zebrafish’s spherical
yolk, see Fig. 6.1 and Sec. 6.5. The distribution of these cells can be modelled
by a nonnegative function F depending on time t and position x on the 2-
sphere, such that the number F (t, x) is directly proportional to the fluorescence
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Figure 6.1: Frames no. 57 (left) and 58 (right) of the zebrafish microscopy
image sequence. Blue colour indicates fluorescence response. The spherical
image is obtained by a radial projection of the unfiltered data onto a fitted
sphere. Top and bottom row differ by a rotation of 180 degrees around the
z-axis. See Sec. 6.5 for more details on the data and preprocessing.

response of a point x at time t. The models we propose below are motivated,
but surely not restricted, to this specific type of data. We argue that the
problem of extracting and analysing motion from spherical data is sufficiently
general so as to be of potential interest to a wider audience.

Our motion models are based on the optical flow equation

∇SF (t, x) · u(t, x) + ∂tF (t, x) = 0, (6.1)

which every vector field u describing the temporal evolution of F should (ap-
proximately) satisfy for all x and t. Here ∇S denotes the surface gradient on
the sphere. We derive this equation in more detail in Sec. 6.3. Directly solving
the optical flow equation for u is infeasible. We therefore use Tikhonov regular-
isation to compute an approximate solution to (6.1). Tikhonov regularisation
consists in minimising a functional which is a weighted sum of two terms. The
first one, usually called data or similarity term, is the squared L2 norm of the
left hand side of (6.1). The second term is a regularising functional R(u),
which in this article will always be a Sobolev Hs norm (Sec. 6.3). These norms
are introduced in Sec. 6.2.

Next, we extend the motion estimation method outlined above to two types
of decomposition models that are also variational in nature (Sec. 6.3). While
the input of those is again F , their outputs are now two or more vector fields
capturing different structural parts of the total motion. Both models are adap-
tations of recently proposed image decomposition techniques to the optical
flow setting. The first one is a u + v decomposition. Its idea is to replace u
in the data term with a sum u+ v, and then to add two different regularising
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functionals, one for u and one for v. The second one is a hierarchical model.
Roughly speaking, one repeatedly minimises an optical flow functional, while
the amount of regularisation is constantly decreased. In every iteration, the u
in the data term is replaced by a sum u+

∑
i ui, where only u is optimised and

the ui are the results from previous iterations.
Finally, all optimisation problems are solved by projecting them onto finite

dimensional spaces spanned by vector spherical harmonics (Sec. 6.4). One ad-
vantage of this method is that it automatically yields Helmholtz decompositions
of all computed vector fields. Mathematical background on (vector) spherical
harmonics is presented in Secs. 6.2 and 6.2. In Sec. 6.5 we provide details of
our implementation, give a more detailed account of the used microscopy data,
and show experimental results with these data.

To summarise, the main novelties presented in this article are decomposi-
tion models for optical flow on the sphere together with their application to
microscopy data.

Related Work
The first variational optical flow method is usually attributed to [39], where
they used an H1 seminorm for regularisation. In [75] it was shown that this
particular choice leads to a well-posed problem. We refer to [8] for a gentle
introduction to optical flow, to [84] for an overview of different optical flow
functionals and to [9] for a recent survey and benchmark.

Optical flow algorithms have only recently been extended to data defined on
non-Euclidean domains. In [42, 79] images defined on the sphere were treated,
whereas in [58] the original functional by Horn and Schunck was generalised
to 2-Riemannian manifolds and well-posedness was verified. Most recently,
optical flow on evolving manifolds has been considered in [50, 52].

Horn and Schunck [39] numerically solved the variational problem by ap-
plying a finite difference scheme to the Euler-Lagrange equations. A similar
approach was adopted in [50, 52] after parametrisation of the surface. In [58],
however, the problem was solved by finite elements on a surface triangulation.
Finally, we mention the work by Schuster and Weickert [76], where they used
projection methods to solve the optical flow equation in the plane. Instead of
Tikhonov-regularising their solution, they solely relied on regularisation by dis-
cretisation. The main reason for choosing a numerical method based on vector
spherical harmonics in this article is that Hs-type regularisers, for arbitrary
real s, are handled very easily in contrast to most other methods.

The aim of u + v image decomposition models, as pioneered in [62], is to
separate the cartoon and texture parts of images. While the cartoon com-
ponent should capture large-scale structural components and should therefore
be piecewise smooth, the texture component is supposed to consist of high-
frequency oscillating patterns. Since the original model was promising but
hard to implement, a large number of modifications and approximations have
been proposed. In some of them the problematic g-norm was approximated by
an H−1 norm [67, 82]. Recently, u + v models have been extended to the R2

optical flow setting [1]. Hierarchical models, originally introduced in [77] for
image analysis, have not yet been tried in combination with optical flow. They
have, however, the preferable property of producing arbitrarily fine multiscale
descriptions of input data. As a concluding remark about vector field decom-
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positions, let us remark that Helmholtz-Hodge decompositions of motion fields
have enjoyed a certain degree of attention in recent years, not only in the plane
[53, 90, 91], but also on surfaces [47].

Applying optical flow algorithms to cell microscopy data has become in-
creasingly popular lately. See for example [4, 50, 52, 61, 74] and the references
therein. We highlight the article [74], where also endodermal cells of zebrafish
embryos have been analysed. There the authors point out that, although of
immense importance for developmental biology, only little is known about the
motion behaviour of this type of cells.

6.2 Notation and Background

Scalar Spherical Harmonics
Let

S = {x ∈ R3 : |x| = 1}
be the two-sphere embedded in R3. For functions F : S → R we define the
Laplace-Beltrami operator by

∆SF = −∆F̄ ,

where ∆ is the usual Laplacian of R3 and F̄ (x) = F (x/|x|) is the radially
constant extension of F to R3 \ {0}. The eigenvalues of ∆S are

λn = n(n+ 1), n ∈ N0. (6.2)

The corresponding eigenspaces Harmn have dimension 2n+1 and are mutually
orthogonal in L2(S). Their direct sum equals L2(S). Every eigenfunction
Yn ∈ Harmn lies in C∞(S) and is called (scalar) spherical harmonic of degree
n. Their name derives from the equivalent characterisation of Harmn as the
restriction to S of the space of harmonic polynomials P : R3 → R that are
homogeneous of degree n. From now on

{Ynj : n ∈ N0, 1 ≤ j ≤ 2n+ 1} (6.3)

always refers to a particular orthonormal basis of L2(S) consisting of real-
valued spherical harmonics. For numerical experiments we use the so-called
fully normalised spherical harmonics, see [63, Sec. 5.2] for a detailed construc-
tion.

Vector Spherical Harmonics
Denote by ν the outward unit normal to S and let

∇SF = ∇F̄

be the surface gradient of F : S → R.

Definition 1. Let n ∈ N0 and Yn ∈ Harmn. Whenever a function y : S → R3

that does not vanish identically admits one of the following three representations

y =


y

(1)
n := Ynν,

y
(2)
n := ∇SYn,
y

(3)
n := ∇SYn × ν,

(6.4)
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then y = y
(i)
n is called a vector spherical harmonic of degree n and type i.

For obvious reasons we refer to types 2 and 3 as tangential vector spherical
harmonics.

Note that there is no tangential spherical harmonic of degree 0.
We are mainly interested in the space L2(S, TS) of square integrable tan-

gent vector fields on S endowed with the inner product

〈u, v〉 =
∫
S
u · v dS,

where dS is the usual surface measure on the sphere. An orthonormal basis of
this space is obtained from (6.3) by setting

y
(2)
nj = λ−1/2

n ∇SYnj ,

y
(3)
nj = λ−1/2

n ∇SYnj × ν
(6.5)

for all n ∈ N and 1 ≤ j ≤ 2n + 1. In Fig. 6.2 a handful of the elements of
both bases (6.3) and (6.5) are depicted. Every v ∈ L2(S, TS) has the following
Fourier series representation

3∑
i=2

∞∑
n=1

2n+1∑
j=1
〈v, y(i)

nj 〉y
(i)
nj .

In particular, we have Parseval’s identity

‖v‖2L2(S,TS) =
∑
i,n,j

〈v, y(i)
nj 〉

2.

For a comprehensive and unified treatment of both scalar and vector spherical
harmonics we refer to [28].

Sobolev Spaces on the Sphere
For an arbitrary real number s, the space Hs(S) is commonly defined as the
domain of ∆s/2

S . See [59, p. 37] or [63, Sec. 6.2] for example. In this section we
introduce the spaces Hs(S, TS) by means of the vectorial counterpart of ∆S .

For tangent vector fields v we define the Laplace-Beltrami operator by

∆Sv = P∆Sv,

where application of ∆S to v is understood componentwise and P = P(x) is the
orthogonal projector onto the tangent plane TxS, compare [28, Def. 5.26]. The
tangential vector spherical harmonics introduced in Def. 1 are eigenfunctions
of this operator to the same eigenvalues as their scalar counterparts: If we let

harmn = span
{
y

(i)
nj : 1 ≤ j ≤ 2n+ 1, i = 2, 3

}
,

then
∆Syn = λnyn



6.2 Notation and Background 65

Figure 6.2: Fully normalised scalar and corresponding vector spherical har-
monics of degree n = 2. Scalar spherical harmonics are depicted using a blue
to red colour bar. Type 2 vector spherical harmonics are visualised with red
arrows, type 3 ones with blue arrows. Note that the length of the vectors has
been scaled for better illustration.
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for every yn ∈ harmn. The λn are as defined in (6.2), the only difference being
that now n > 0 and therefore the spectrum of ∆S is strictly positive. Applying
functional calculus, we formally define the s-th power of ∆S by

∆s
Sv =

∑
i,n,j

λsn〈v, y
(i)
nj 〉y

(i)
nj .

Finally, for every s ∈ R, set

‖v‖2Hs(S,TS) := ‖∆s/2
S v‖2L2(S,TS) =

∑
i,n,j

λsn〈v, y
(i)
nj 〉

2. (6.6)

Note that, in contrast to the scalar setting, this functional is an actual norm,
rather than only a seminorm. We therefore define, for every real s, Hs(S, TS)
as the space of all distributions v ∈ C∞(S, TS)′ for which the series in (6.6) is
finite. Clearly, if (µn)n is any sequence satisfying

cµn ≤ λsn ≤ Cµn (6.7)

for two positive constants c, C and for all n, then replacing λsn with µn in (6.6)
leads to an equivalent norm and thus to the same space. For every sequence of
positive numbers µn we denote the resulting norm simply by ‖ · ‖µn .

6.3 Decomposition Models for Optical Flow

Optical Flow on the Sphere
Let I = [0, T ] ⊂ R be a time interval. We assume to be given a scalar time-
varying (brightness) function

F : I × S → R.

The problem of estimating optical flow consists in tracking the temporal evolu-
tion of the data F by means of a time-dependent vector field. Our optical flow
model is based on the so-called brightness constancy assumption: We assume
existence of a function φ : I × S → S satisfying

F (t, φ(t, x)) = F (0, x), (6.8)
φ(0, x) = x,

for all x and t. Intuitively this means that for every starting point x on the
sphere, the function F remains constant along the trajectory t 7→ φ(t, x). In
addition we require that φ(t, ·) is a diffeomorphism of S for every t. The first
equation in (6.8) implies that

d
dtF (t, φ(t, x)) = ∇SF (t, φ(t, x)) · ∂tφ(t, x) + ∂tF (t, φ(t, x)) = 0.

This equation is typically written in terms of the vector field u : I × S → TS
whose integral curves are the trajectories t 7→ φ(t, x), which is defined by the
equation u(t, φ(t, x)) = ∂tφ(t, x). The resulting optical flow equation reads

∇SF · u+ ∂tF = 0. (6.9)
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Regularisation
Solving the optical flow equation directly is problematic. In general, a solution
to (6.9) need not exist, and if it exists, it cannot be unique. The typical remedy
is Tikhonov regularisation, where one minimises a functional of the form

‖∇SF · u+ ∂tF‖2L2(I×S) + αR(u). (6.10)

with R being a regularising functional that incorporates a-priori knowledge
about desirable solutions. The parameter α > 0 controls the amount of reg-
ularisation. In the context of optical flow one usually tries to enforce spatial
(and temporal) smoothness on the solution. A natural candidate for R would
then be the squared Sobolev H1(I ×S, TS) (semi-)norm, which penalises first
derivatives in space and time equally, compare [52, 86]

Another, and in fact more popular, possibility is to drop time regularisation,
in which case minimisation of (6.10) is equivalent to minimising

‖∇SF · u+ ∂tF‖2L2(S) + α‖u‖2H1(S,TS) (6.11)

for each instant t separately. This corresponds to the original approach of Horn
and Schunck [39]. From now on we denote the above data term by D(u, F ).
Instead of (6.11) we consider the more general class of optical flow functionals

Eµn(u) := D(u, F ) + ‖u‖2µn . (6.12)

The regularisation parameter is omitted, as it can be considered a constant
factor in the sequence (µn)n. Functional (6.12) forms the basic optical flow
setting of this article. All variational models considered here are extensions of
(6.12).

Optical Flow Decomposition
The following two decomposition models are inspired by techniques that have
recently been developed in the context of image analysis. The fact that motion
estimation based on (6.9) can be viewed as denoising of vector-valued images
suggests the translation of said image decomposition models to the optical flow
setting [1].

u+ v Models

The aim is now not to extract one, but two vector fields u and v in such a way
that they capture different structural parts of the total motion u+v of F . The
idea is to solve the following variational problem

min
u,v
Eµn,νn(u, v)

where the functional Eµn,νn is defined as

Eµn,νn(u, v) := D(u+ v, F ) + ‖u‖2µn + ‖v‖2νn . (6.13)

Choosing, for instance, the two regularisers to be H1(S, TS) and H−1(S, TS)
norms, respectively, would lead to a model which, in spirit, comes closest to
the image decomposition model considered in [82]. Generalising (6.13) to a
decomposition into k ∈ N, instead of two, constituents is possible, but will not
be considered here [29].
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Hierarchical Models

Hierarchical image decomposition models have been introduced in [77]. There,
an original image is decomposed by repeatedly applying denoising steps. The
input of one such step is the residual of the previous one. In every step the
degree of regularisation is decreased. In contrast to u+ v models, hierarchical
decomposition models provide multiscale descriptions of the input data.

This iterative procedure can be transferred to the optical flow setting as
follows. Let ‖ · ‖2

µ
(k)
n

, k ∈ N, be a sequence of norms as defined in Section 6.2,
such that

µ(k+1)
n ≤ µ(k)

n (6.14)

for all n and k. For every such sequence of sequences we propose the following
iterative scheme,

uk =


arg min

u
E
µ

(1)
n

(u), if k = 1,

arg min
u

D
(
u+

∑k−1
i=1 ui, F

)
+ ‖u‖2

µ
(k)
n

, if k > 1.
(6.15)

The resulting sequence of accumulated solutions

{
u(k) :=

k∑
i=1

ui : k ∈ N
}

provides a multiscale representation which, with an appropriate choice of se-
quences µ(k)

n , can be made arbitrarily fine.
The hierarchical model as formulated above is a slight generalisation of

the originally proposed one, in the sense that the sequences of regularising
functionals considered in [77] are always of the form α−kR(·). That is, the
regularising functional of step k is the same as the one of previous steps save for
a smaller regularisation parameter. Requirement (6.14) allows a more general
setup.

Helmholtz Decomposition

The Helmholtz decomposition theorem states that every continuously differ-
entiable tangent vector field w on the sphere can be uniquely represented as
the sum of a consoidal (curl-free) and a toroidal (divergence-free) vector field.
More precisely, there exist two uniquely determined tangent vector fields w(2)

and w(3) satisfying

∇S ·
(
w(2) × ν

)
= 0,

∇S · w(3) = 0,
w(2) + w(3) = w.

See [28, Sec. 5.3], for example.
The projection method we use to numerically solve the variational problems

presented above leads to solutions w that are finite Fourier sums

w =
∑
i,n,j

winjy
(i)
nj ,
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where winj ∈ R. Now, from the definition of basis (6.5), and the fact that
∇S · (∇SY × ν) = 0 for all sufficiently smooth functions Y , the Helmholtz
decomposition of w is obtained immediately

w =
∑
n,j

w2
njy

(2)
nj +

∑
n,j

w3
njy

(3)
nj

= ∇S
(∑
n,j

w2
njλ
−1/2
n Ynj

)
w(2)

+∇S
(∑
n,j

w3
njλ
−1/2
n Ynj

)
× ν

w(3)

.

6.4 Numerical Solution

In the first subsection below we describe the numerical optimisation of the op-
tical flow functional (6.12) based on the optical flow equation (6.9) and explain
the modifications necessary for the hierarchical decomposition. Subsection 6.4
is dedicated to the u + v decomposition model. Finally, we explain how the
resulting spherical integrals are approximated (Sec. 6.4).

For convenience we relabel the orthonormal basis (6.5) using a single index
p ∈ N and write, for example, u =

∑
p upyp from now on.

Optical Flow
Let s ∈ R and let (µn)n be a sequence comparable to (λsn)n in the sense of
(6.7). Then, a minimiser of Eµn , if it exists, has to be in Hs(S, TS). We solve
the problem of finding

min
u∈Hs(S,TS)

Eµn(u)

by a projection method. That is, we let u range only over a finite-dimensional
subspace U of Hs(S, TS), where

U = span{yp : p ∈ IU}

and IU ⊂ N is a finite index set. The unknown vector field can now be written
as

u =
∑
p∈IU

upyp (6.16)

and the problem of finding an optimal u ∈ Hs(S, TS) simplifies to a minimisa-
tion problem over R|IU |. Plugging (6.16) into the optical flow functional gives

Eµn(u) =
∫
S

( ∑
p∈IU

up(∇SF · yp) + ∂tF
)2

dS +
∑
p∈IU

µpu
2
p, (6.17)

which is minimal, if the optimality conditions ∂Eµn/∂up = 0, for all p ∈ IU ,
are satisfied. They read∑
q∈IU

uq

∫
S

(∇SF · yp)(∇SF · yq) dS + µpup = −
∫
S
∂tF∇SF · yp dS, p ∈ IU ,

or in matrix-vector form
(A+D)w = b, (6.18)
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where w = (u1, . . . , u|IU |)> is the vector of unknown coefficients, the elements
of matrix A = (apq)pq read

apq =
∫
S

(∇SF · yp)(∇SF · yq) dS, (6.19)

D = diag(µ1, . . . , µ|IU |) is a diagonal matrix that corresponds to the regulari-
sation term and the right hand side b = (b1, . . . , b|IU |)> is given by

bp = −
∫
S
∂tF∇SF · yp dS. (6.20)

With a slight abuse of notation we identified the set IU with {1, . . . , |IU |} in
the definitions of A,D,w, b. We continue to do so below.

Hierarchical Decomposition

The hierarchical model only needs a minor modification for the case k > 1. We
can rewrite the data term from (6.15) as

D
(
u+ u(k−1), F

)
= ‖∇SF · u+ ∂tF̃‖2L2(S),

where ∂tF̃ = ∂tF + ∇SF · u(k−1). Therefore, only the right hand side of the
optimality system (6.18) has to be updated in every step. For simplicity we
can assume that the approximation space U is the same in every step, so that
u(k−1) has the representation

∑
p∈IU c

k−1
p yp, where the coefficients ck−1

p are
already known from previous steps. Letting bk denote the right hand side of
the optimality system for step k, we calculate

bkp = −
∫
S
∂tF̃∇SF · yp dS

= bp −
∑
q∈IU

ck−1
q apq,

or simply
bk = b−Ack−1.

u+ v Decomposition
The projection approach explained above is easily adapted to the u+v decom-
position problem. Again, let r 6= s be real numbers and choose two sequences
(µn)n, (νn)n so that ‖ · ‖µn is a norm for Hr(S, TS) and ‖ · ‖νn is one for
Hs(S, TS). Now, we solve

min
(u,v)∈U×V

Eµn,νn(u, v),

where

U = span{yp : p ∈ IU},
V = span{yp : p ∈ IV}
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are finite dimensional spaces. Proceeding as in the previous section, we obtain
the following optimality conditions∑

p∈IU

upakp +
∑
q∈IV

vqakq + µkuk = −bk, k ∈ IU ,∑
p∈IU

upa`p +
∑
q∈IV

vqa`q + ν`v` = −b`, ` ∈ IV ,

where the coefficients apq and bp are as defined in (6.19) and (6.20), respectively.
Concatenating the two coefficient vectors (up)p and (vq)q into a single vector
w ∈ R|IU |+|IV |, so that the up occupy the first |IU | entries while the vq occupy
the last |IV | entries, the linear system reads

Ãw = b̃.

The matrix Ã is given by

Ã =
(
U +D1 W
W> V +D2

)
,

where

U = (apq)p,q∈IU ,
V = (apq)p,q∈IV ,
W = (apq)p∈IU ,q∈IV ,
D1 = diag(µ1, . . . , µ|IU |),
D2 = diag(ν1, . . . , ν|IV |),

and b̃ is concatenated from two versions of b in the same way as w.

Evaluation of Integrals
It remains to discuss the numerical evaluation of the integrals (6.19), (6.20).
First, we approximate the 2-sphere S with a polyhedron Ŝ = (V, T ) defined
by a set V = {v1, . . . vm} ⊂ S of vertices and a set T = {T1, . . . , Tn} ⊂
V × V × V of triangular faces. Each triangle Ti ∈ T is associated with a
tuple (i1, i2, i3) identifying the corresponding vertices (vi1 , vi2 , vi3). How the
triangulated sphere is obtained in practice, is explained in Sec. 6.5.

Second, in every experiment data F are given only at the vertices and for
two time steps t = 0 and t = 1. We set F0(·) := F (0, ·) and F1(·) := F (1, ·)
and extend both functions to all of Ŝ by linear interpolation on every triangle.
Thus we obtain two continuous piecewise linear functions F̂0, F̂1. The time
derivative of F is approximated by a simple forward difference

∂tF̂ = F̂1 − F̂0,

which is again piecewise linear on Ŝ. The surface gradient ∇SF is replaced by
a vector field ∇Ŝ F̂ that is constant on every triangle. It is given by

∇Ŝ F̂ |Ti =
(
F̂ (vi1)− F̂ (vi2)

) hi2
|hi2 |2

+
(
F̂ (vi1)− F̂ (vi3)

) hi3
|hi3 |2

,
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Figure 6.3: Top view of frames no. 57 (left) and 58 (right) of the processed
zebrafish images. The embryo’s body axis runs from bottom left to top right.

where hij ∈ R3 is the height vector of the triangle Ti pointing from vertex vij
to the opposite side, compare [13, Sec. 3.3.3].

Finally, we also replace the fully normalised scalar spherical harmonics Ynj
by their piecewise linear approximations Ŷnj defined on Ŝ. As before we ob-
tain piecewise constant approximations ŷp of yp. The resulting approximated
integrals read∫

S
(∇SF · yp)(∇SF · yq) dS ≈

∫
Ŝ

(∇Ŝ F̂ · ŷp)(∇Ŝ F̂ · ŷq) dŜ

=
n∑
i=1

(∇Ŝ F̂ |Ti · ŷp|Ti)(∇Ŝ F̂ |Ti · ŷq|Ti)Ai,

where Ai denotes the area of Ti, and∫
S
∂tF∇SF · yp dS ≈

∫
Ŝ
∂tF̂∇Ŝ F̂ · ŷp dŜ

=
n∑
i=1

(∇Ŝ F̂ |Ti · ŷp|Ti)
∫
Ti

∂tF̂ dTi

=
n∑
i=1

(∇Ŝ F̂ |Ti · ŷp|Ti)
Ai
3

3∑
j=1

∂tF̂ (vij ).

6.5 Experiments

Description of Microscopy Data
The data which motivated the study of the proposed decomposition models are
time-lapse volumetric (4D) images. The obtained sequence depicts a live ze-
brafish embryo during the gastrula period, approximately five to ten hours after
fertilisation. With the help of confocal laser-scanning microscopy, endoderm
cells expressing a green fluorescence protein were recorded separately from the
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background. For details on the imaging techniques and the fluorescence marker
we refer to [60] and [66], respectively.

The sequence obtained by the microscope captures a cuboid region of ap-
proximately 860×860×340µm3. The spatial resolution is 512×512×44 voxels
and the intensity is in the range {0, . . . , 255}. A total number of 77 images were
taken, one every 240 s. In the following, the microscopic data will be denoted
by

F δ ∈ {0, . . . , 255}77×512×512×44.

During this early stage, endodermal cell proliferation is known to take place
on a so-called monolayer [83]. In other words, cells move and divide without
stacking and, as the yolk is ball-shaped, admit for the extraction of a spherical
image sequence. For further explanations and numerous illustrations of the
developmental process of zebrafish embryos we refer to [48].

Acquisition of Spherical Data
We extracted spherical images from the dataset by first fitting a sphere to the
approximate cell centres in each pair of consecutive frames. For simplicity we
restrict our attention to one such pair of frames which we denote by F δ0 , F δ1 .
Cell centres are typically characterised by local maxima in intensity and can be
found by applying a Gaussian filter and simple thresholding. Without loss of
generality the radius of the fitted sphere is assumed to be 1. In a second step,
we created a point grid V ⊂ S starting from an icosahedron inscribed in the
sphere. In each iteration every triangular face is split into four sub-triangles
by connecting the edge midpoints with each other and projecting them onto
the sphere. Thus, the total number of faces is 20 · 4k, where k is the number
of refinements. In our experiments we found that k = 7 iterations suffice.

In order to project the volumetric time-lapse data F δj , onto the grid V, we
define

F̂j(vi) := max
c∈[1−ε,1+ε]

F̄ δj (cvi),

for the said pair of consecutive frames j = 0, 1. Here F̄ δj (x) is a piecewise
linear extension to R3 of F δj and ε > 0 is sufficiently large. Deviations of the
monolayer from a perfect sphere are thereby corrected. The obtained data are
subsequently scaled to the range [0, 1]. Note that, in contrast to our previous
work [50], here we consider the unfiltered microscopy data for optical flow
estimation.

The support of the obtained data is contained in the northern hemisphere.
Thus, it suffices to consider only half of the triangulation leading to a total
number of around 164000 faces. Figure 6.1 depicts a sample of two frames F̂j .
In Fig. 6.3, a top view of the two frames is shown.

Visualisation of Tangent Vector Fields
In order to visualise our results we will apply the standard flow colour-coding [9]
using a colour disk. Figure 6.4 (rightmost image) depicts this colour space.
Each vector is assigned a colour determined by its angle and length. However,
this colour-coding is defined for planar vector fields only. As a possible remedy
we suggest to first project tangential velocities to the plane and then correct
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Figure 6.4: The first image shows a tangential velocity field with the adjusted
colour-coding. The second image depicts the colour space in the unit circle.
The third and fourth images portray the vector field and the colour space,
respectively, but in a top view.

Figure 6.5 left 6.5 mid 6.5 right 6.7 left 6.7 mid 6.7 right 6.8 6.9 6.11 6.12
R 0.0081 0.0046 0.0014 0.0110 0.0045 0.0009 0.0204 0.0102 0.0280 0.0267

Table 6.1: Radii R of the colour disks used in the different experiments below.

the length. To this end, let Px3 : (x1, x2, x3)> 7→ (x1, x2, 0)> be the orthogonal
projector of R3 onto the x1-x2-plane. Accordingly, given a tangent vector field
v, the planar vector field which we visualise is

|v|
|Px3v|

Px3v.

This construction is chosen so that it preserves the length of v. This additional
rescaling is different to [50]. The resulting colour image is finally mapped back
onto the hemisphere. Figure. 6.4 shows a tangent vector field visualised with
the proposed approach.1 From now on we will visualise velocity fields only in
top view, as in the right hand side of Fig. 6.4. In addition, for every figure
the colour disk’s radius R was chosen to be equal to the length of the longest
vector under consideration. Specific values of R are given in Table 6.1.

As a second way of illustrating steady velocity fields, we employ streamlines,
see e.g. [87]. In all our experiments we consider time as fixed and compute the
optical flow v for one pair of frames, cf. Sec. 6.3. Given a tangential velocity
field v and a starting point x0 ∈ S, a streamline γ(·, x0) on S is the solution to
the ordinary differential equation

∂τγ(τ, x0) = v(γ(τ, x0)),
γ(0, x0) = x0.

(6.21)

Numerically, we approximated (6.21) by solving

γ̂(τ + 1, x0) = γ̂(τ, x0) + hv(γ̂(τ, x0)),
γ̂(0, x0) = x0,

where h is a step size, for a number of approximately 1300 initial points x0 ∈ Ŝ
and τ = 50 iterations. The step size was chosen as h = (10‖v‖L∞(S,TS))−1.

1Some figures may appear in colour only in the online version of this article.
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This use of integral curves is different from [52], where we computed approxi-
mate cell trajectories in a nonsteady velocity field. The visualisation by means
of the colour coding is rich in detail and is even capable of indicating individ-
ual cell motion. Nevertheless, it fails to deliver intuition about the Helmholtz
decomposition. Streamlines provide the anticipated effect.

Experimental Results
We performed numerous experiments and minimised functionals (6.12), (6.13),
and (6.15) as outlined in Sec. 6.4 for the two frames shown in Fig. 6.1 and
Fig. 6.3. In all experiments the finite-dimensional spaces introduced in Sec. 6.4
were chosen as

U = V = span
{
y

(i)
nj : 1 ≤ n ≤ 100, 1 ≤ j ≤ 2n+ 1, i = 2, 3

}
.

All resulting linear systems were solved using the Generalized Minimal Resid-
ual Method (GMRES) on an Intel Xeon E5-1620 3.6 GHz workstation with
128 GB RAM. Solutions converged to a relative residual of 0.02 within 100 iter-
ations. The runtime was governed by the evaluation of the integrals, cf. Sec. 6.4,
and amounts to approximately five hours for the chosen bases and the chosen
triangulation. Nevertheless, once the integrals are computed they can be used
in all of the proposed models and the linear systems can be solved in a few sec-
onds for different parameters and different norms. Our Matlab implementation
and the data are available on our website.2

Optical Flow

In the first experiment, we minimised functional Eµn as defined in (6.12) for
µn = αλsn and different values of s and α. Figure 6.5, top row, depicts the
optical flow field for s = 1 and values α = 1, α = 10, and α = 100. The
presented results are in accordance with our findings in [50, 52]. As explained
in Sec. 6.3, a Helmholtz decomposition w = w(2)+w(3) is obtained immediately.
Figure 6.5, middle row, shows w(2) whereas Fig. 6.5, bottom row, shows w(3).
Furthermore, in Fig. 6.6, streamlines for the same velocity fields are portrayed
and the individual plots are arranged accordingly. In addition, Fig. 6.7 shows
the velocity fields for parameters s = 0.5, α = 10, α = 102, and α = 103.

u+ v Decomposition

In a next experiment, we computed a minimiser for functional (6.13) in order to
obtain a u+v decomposition of the optical flow. The sequences (µn)n and (νn)n
were chosen as µn = αλrn and νn = βλsn, respectively. In Figs. 6.8 and 6.9,
the resulting decomposition is shown for two different parameter settings. The
motion field in Fig. 6.8 was obtained with parameters r = 1, s = −1, α = 10−1,
and β = 106. As anticipated, u and v capture different structural parts of the
motion. u is sufficiently smooth whereas v contains spatial oscillations.

The result in Fig. 6.9 was computed by setting r = 2, s = −1, α = 10−3,
and β = 107. Expectedly, the velocity field u is, by choice of r, smoother than
in the previous setting. In addition, Fig. 6.10 illustrates the characteristics of

2http://www.csc.univie.ac.at

http://www.csc.univie.ac.at
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Figure 6.5: Minimiser of Eµn (top), with µn = αλsn, s = 1, and increasing
values α = 1, α = 10, and α = 100 from left to right. The middle row depicts
the curl-free component whereas the bottom row depicts the divergence-free
component. The embryo’s body axis roughly runs from bottom left to top
right in all images.

the velocity fields during a cell division in more detail. While u is smooth, v
clearly indicates the cell division.

Hierarchical Decomposition

As a final experiment, we computed two types of hierarchical decompositions
as proposed in Sec. 6.3. First we chose µ(k)

n = 21−kαλsn such that α is halved in
every iteration. Solutions (u(k))k=1,...,16 were obtained using parameters s = 1
and α = 1000. In Fig. 6.11, the subsequence (u(k))k=8,...,16 is shown. As k
increases, the motion field expands on the details. In a second run, µ(k)

n was set
to αλs−

k−1
4

n , decreasing the exponent of λn by 0.25 in every step. We iteratively
computed solutions (u(k))k=1,...,9 with parameters s = 2 and α = 1, which were
kept constant this time. Figure 6.12 depicts the subsequence (u(k))k=2,...,7.
Note that in Figs. 6.11 and 6.12 the colour-coded visualisation is relative to



6.6 Conclusion 77

Figure 6.6: Streamlines illustrating the velocity fields from Fig. 6.5. With
increasing parameter τ the streamlines change colours from yellow (bright)
to green (dark). The top row shows the total motion whereas middle and
bottom rows depict the curl-free and divergence-free parts of the Helmholtz
decomposition, respectively. Images are arranged in accordance with Fig. 6.5.

the chosen subsequence. As an exception, here we allowed a maximum number
of 1000 iterations instead of 100 for the linear system solve to ensure a relative
residual of 0.025 in the first step of the hierarchical decomposition.

6.6 Conclusion

We provided a set of variational methods for the analysis of motion fields. While
their applicability is limited to data given on the sphere, the proposed models
have great flexibility in terms of possible regularising functionals. In fact, the
chosen numerical method based on tangential vector spherical harmonics allows
for a straightforward usage of Sobolev Hs norms for any real s. Combined
with both u + v and hierarchical decomposition models, which we adapted to
the spherical optical flow setting, this flexibility makes it possible to capture
different motion characteristics with ease. Feasibility of the proposed models
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Figure 6.7: Colour-coded velocity fields for sequence µn = αλsn are shown in
the top row. Parameters were chosen as s = 0.5 and α = 10, α = 102, and
α = 103 and are arranged from left to right. The bottom row depicts the
corresponding streamlines.

Figure 6.8: Decomposition of the total motion u+ v (left) into structural parts
u (middle) and v (right). Sequences were chosen as µn = αλrn and νn = βλsn
and parameters were set to r = 1, s = −1, α = 10−1, and β = 106.
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Figure 6.9: Decomposition of the total motion u+ v (left) into structural parts
u (middle) and v (right). Sequences were chosen as µn = αλrn and νn = βλsn
and parameters were set to r = 2, s = −1, α = 10−3, and β = 107.

Figure 6.10: Detailed view of a cell division. The same parameters as in Fig. 6.9
are used. The top left image depicts F̂0 with u + v superimposed. The top
right image shows F̂1. The bottom left image illustrates u whereas the bottom
right image shows v. For better illustration, F̂0 and F̂1 have been lightened up
and vectors have been scaled.
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Figure 6.11: Solutions (u(k))k=8,...,16 of velocity fields obtained by the hierar-
chical decomposition. Images are aligned from left to right and top to bottom.
At iteration k the sequence was set to µ(k)

n = 21−kαλsn with parameters s = 1
and α = 1000.

was verified on a microscopy dataset depicting endodermal cells of a zebrafish
embryo.
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Figure 6.12: Solutions (u(k))k=2,...,7 of velocity fields obtained by the hierar-
chical decomposition. Images are aligned from left to right and top to bottom.
At iteration k the sequence was set to µ(k)

n = αλ
s− k−1

4
n with parameters s = 2

and α = 1.
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Abstract

In this work we consider optical flow on evolving Riemannian 2-manifolds
which can be parametrised from the 2-sphere. Our main motivation is to
estimate cell motion in time-lapse volumetric microscopy images depict-
ing fluorescently labelled cells of a live zebrafish embryo. We exploit the
fact that the recorded cells float on the surface of the embryo and allow
for the extraction of an image sequence together with a sphere-like sur-
face. We solve the resulting variational problem by means of a Galerkin
method based on vector spherical harmonics and present numerical re-
sults computed from the aforementioned microscopy data.

7.1 Introduction

Motion estimation is a fundamental problem in image analysis and computer
vision. An important task within is optical flow computation. It is concerned
with the inference of a vector field describing the displacements of brightness
patterns, such as moving objects, in a sequence of images. Ever since the sem-
inal work of Horn and Schunck [39] a variety of reliable and efficient methods
have been proposed and successfully applied in a wide number of fields.

Primarily, optical flow is computed in the plane. However, it is readily
generalised to non-Euclidean settings allowing, for instance, for cell motion
analysis in time-lapse microscopy data. It has been only recently that high-
resolution observations of biological model organisms such as the zebrafish
became possible. Despite its importance for tissue and organ formation, little
is known about cell migration and proliferation patterns during the zebrafish’s
early embryonic development [3, 74]. Fluorescence microscopy nowadays allows
to record time-lapse images on the scale of single cells, see e.g. [43, 60, 74]. In-
creasing spatial as well as temporal resolutions result in vast amounts of data,
rendering extraction of information through visual inspection carried out by
humans impracticable. Automated cell motion estimation therefore is key to
large-scale analysis of such data. Optical flow computation delivers necessary

84
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Figure 7.1: Frames 70 (left) and 71 (right) of the volumetric zebrafish mi-
croscopy images recorded during early embryogenesis. The sequence contains
a total number of 75 frames. Fluorescence response is indicated by blue colour
and is proportional to the observed intensity. All dimensions are in micrometer
(µm).

quantitative methods and leads to insights into the underlying cellular mecha-
nisms and the dynamic behaviour of cells. See, for example, [4, 61, 72, 74] and
the references therein.

The primary biological motivation for this work is the desire to analyse cell
motion in a living zebrafish during early embryogenesis. The data at hand
depict endodermal cells expressing a green fluorescent protein. By virtue of
laser-scanning microscopy, (volumetric time-lapse) 4D images of these labelled
cells can be recorded without capturing the background. It is known that endo-
dermal cells float on a so called monolayer during early embryonic development
meaning that they do not stack on top of each other [83]. Figure 7.1 depicts
two frames of the captured sequence, containing only the upper hemisphere of
the animal embryo. Observe the salient formation of the cells and the noise
present in the images. More precisely, one can see the nuclei of cells forming
a round surface in a single layer. For more details on the microscopy data we
refer to Sec. 7.5.

We exploit this situation and model this layer as an evolving surface. A
natural candidate for a parametrisation of such a zebrafish embryo is a sphere-
like surface. It is topologically diffeomorphic to the 2-sphere S2 and most
commonly defined as the set of points

{ρ̃(x)x : x ∈ S2}.

The function ρ̃ : S2 → (0,∞) can be thought of as a radial deformation of S2

and will have a dependence on time in the present paper. As a consequence,
changes in the embryo’s geometry are attributed accordingly, albeit valid only
during early stages of its development as cells tend to cluster subsequently.
The main intention of this work is to conceive cell motion only on this moving
2-dimensional manifold. As a result we are able to reduce the spatial dimension
of the data allowing for more efficient motion estimation in microscopy data.
Figure 7.2 depicts two frames of the surface together with images obtained by
restriction of the volumetric microscopy data in Fig. 7.1.

In this work we model the data as a time-dependent non-negative function
f̂ . Its value directly corresponds to the fluorescence response of the observed
cells. For a fixed time instant t ∈ [0, T ], the domain of f̂ is presumed to be a
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Figure 7.2: Depicted are frames no. 70 (left) and 71 (right) of the processed
zebrafish microscopy sequence. Top and bottom row differ by a rotation of 180
degrees around the x3-axis. All dimensions are in micrometer (µm).

closed surfaceMt ⊂ R3. We assume that this surface can be parametrised by
a smooth radial map from the 2-sphere. The temporal evolution of the data f̂
can then be tracked by solving an optical flow problem on this moving surface
or, more conveniently, an equivalent problem on the round sphere.

Traditionally, the starting point for optical flow is the assumption of con-
stant brightness: a point moving along a trajectory does not change its intensity
over time. On a moving domainM = {Mt}t one equivalently seeks, for every
time t ∈ [0, T ], a tangent vector field v̂ that solves a generalised optical flow
equation

dV̂
t f̂ +∇Mf̂ · v̂ = 0 (7.1)

at every point x ∈M, where f̂ is the image sequence living onM. Here, for a
fixed time t, ∇M denotes the (spatial) surface gradient, dot the standard inner
product, and dV̂

t f̂ an appropriate temporal derivative.
The optical flow problem is ill-posed meaning that equation (7.1) is not

uniquely solvable. A common approach to deal with non-uniqueness is Tikho-
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nov regularisation, which consists of computing a minimiser of

Eα(v̂) = D(v̂, f̂) + αR(v̂).

The first term of the sum is usually the squared L2 norm of the left-hand side
of (7.1) and, in the present article, the second term will be an H1 Sobolev
norm.

Contributions

The primary concern of this article is optical flow computation on evolving 2-
dimensional Riemannian manifolds which can be parametrised from the sphere.
Motivated by the aforementioned zebrafish microscopy data we consider closed
surfaces for which the mapping

(t, x) 7→ ρ̃(t, x)x, x ∈ S2 (7.2)

is a diffeomorphism between the 2-sphere andMt for every time t ∈ [0, T ]. As
a prototypical example we restrict ourselves to radially parametrised surfaces
as they suit quite naturally to the given data.

The contributions of this work are as follows. First, we give a variational
formulation of optical flow on 2-dimensional closed Riemannian manifolds. We
assume a dependence on time and speak of evolving surfaces. The main idea is
to solve the problem by a Galerkin method in a finite-dimensional subspace of
an appropriate (vectorial) Sobolev space. We take advantage of the fact that
tangential vector spherical harmonics form a complete orthonormal system for
L2(S2, TS2). The sought vector field is thus uniquely determined when ex-
panded in terms of the pushforward—by means of the differential of (7.2)—of
these functions. From that we arrive at a minimisation problem over Rn, where
n is the dimension of the finite-dimensional space, and state the optimality con-
ditions. They can be written purely in terms of spherical quantities and solved
on the 2-sphere. To this end, we use a standard polyhedral approximation
and locally interpolate spherical functions by piecewise quadratic polynomi-
als. For numerical integration we employ appropriate quadrature rules on the
approximated sphere.

Second, to obtain the smooth sphere-like surface, which is described by the
map (7.2), from the observed microscopy data, we formulate another variational
problem on the sphere. The problem is essentially surface interpolation with
Hs Sobolev seminorm regularisation. Approximate cell centres serve as sample
points of the surface. In particular, our microscopy data are supported only on
the upper hemisphere, see Figs. 7.1 and 7.2. Scalar spherical harmonics are the
appropriate choice for the numerical solution of the surface fitting problem, as
they provide great flexibility with respect to the chosen space Hs.

Finally, we present numerical experiments on the basis of the mentioned cell
microscopy data of a live zebrafish. To this end we compute an approximation
of the sphere-shaped embryo and obtain a sequence of images living on this
moving surface. Eventually, we solve for the optical flow and present the results
in a visually adequate manner.
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Related Work

The first variational formulation of optical flow is commonly attributed to
Horn and Schunck [39]. They attempted to compute a displacement field in R2

by minimising a Tikhonov-regularised energy functional. It favours spatially
regular vector fields by penalising its squared H1 Sobolev seminorm. For in-
troductory material on the subject we refer to [6, 8] and to [84] for a survey on
various optical flow functionals. Well-posedness of the aforementioned energy
was first shown by Schnörr [75]. Moreover, there the problem was extended to
irregular planar domains and solved by means of finite elements.

Weickert and Schnörr [86] considered a spatio-temporal model by extending
the domain to R2 × [0, T ]. It additionally favours temporal regularity of the
solution by including first derivatives with respect to time. Such models are of
particular interest whenever trajectories are to be computed from the optical
flow field. A unifying framework including several spatial as well as temporal
regularisers was proposed in [85]. For the purpose of evaluation and flow field
visualisation a framework was created by Baker et al. [9].

Recently, generalisations to non-Euclidean domains have gained increasing
attention. In [42] and [79] optical flow was considered in a spherical setting.
Lefèvre and Baillet [58] adapted the Horn-Schunck functional to surfaces em-
bedded in R3. Following Schnörr [75], they proved well-posedness of their
formulation and employed a finite element method for solving the discrete
problem on a triangle mesh. With an application to cell motion analysis,
Kirisits et al. [50, 52] recently considered optical flow on evolving surfaces
with boundary. They generalised the spatio-temporal model in [86] to a non-
Euclidean and dynamic setting. Eventually, the problem was tackled numeri-
cally by solving the corresponding Euler-Lagrange equations in the coordinate
domain. Similarly, Bauer et al. [12] studied optical flow on time-varying do-
mains, with and without spatial boundary. They proposed a treatment on
surfaces parametrised by product manifolds, constructed an appropriate Rie-
mannian metric, and proved well-posedness of their formulation.

In Kirisits et al. [51], the authors considered various decomposition models
for optical flow on the 2-sphere. The proposed functionals were solved by
means of projection to a finite-dimensional space spanned by vector spherical
harmonics. Concerning projection methods, Schuster and Weickert [76] solved
the optical flow problem in R2 solely based on regularisation by discretisation.

Regarding sphere-like surfaces and spherical harmonics expansion of closed
surfaces we refer to [71] and the references therein.

Finally, let us mention [4, 61, 72, 74], where optical flow was employed for
the analysis of cell motion in microscopy data. In particular, in Schmid et al.
[74] the embryo of a zebrafish was modelled as a round sphere and motion of
endodermal cells computed in map projections.

The remainder of this article is structured as follows. In Sec. 7.2, we for-
mally introduce evolving sphere-like surfaces, recall the definition of vectorial
Sobolev spaces on manifolds, and discuss both scalar and vector spherical har-
monics on the 2-sphere. Section 7.3 is dedicated to optical flow on evolving
surfaces and our variational formulation. In Sec. 7.4 we discuss the numerical
solution. In particular, we propose to solve the resulting energy in a finite-
dimensional subspace and rewrite the optimality conditions to be defined solely
on the 2-sphere. Moreover, we show how to fit a sphere-like surface to the la-
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belled cells in the microscopy data. Finally, in Sec. 7.5, we solve for the optical
flow field and visualise the results. The appendix contains deferred material.

7.2 Notation and Background

Sphere-Like Surfaces
Let

S2 = {x ∈ R3 : ‖x‖ = 1}
be the 2-sphere embedded in the 3-dimensional Euclidean space. The norm of
Rn, n = {2, 3}, is denoted by ‖x‖ =

√
x · x. By

x : Ω ⊂ R2 → R3 (7.3)

we denote a smooth (local) parametrisation of S2 mapping coordinates ξ =
(ξ1, ξ2)> ∈ Ω to points x = (x1, x2, x3)> ∈ S2.

Furthermore, let I := [0, T ] ⊂ R denote a time interval and let M =
{Mt}t∈I be a family of closed smooth 2-manifoldsMt ⊂ R3. EachMt, t ∈ I,
is assumed to be regular and oriented by the outward unit normal field N̂(t, x) ∈
R3, x ∈Mt. We assume thatM (locally) admits a smooth parametrisation of
the form

y : I × Ω→ R3, (t, ξ1, ξ2)> 7→ ρ̃(t,x(ξ1, ξ2))x(ξ1, ξ2) ∈Mt (7.4)

and callM an evolving sphere-like surface.
We denote by f̂ : M → R a smooth function on the moving surface. Its

coordinate representation f : I × Ω → R and its corresponding spherical rep-
resentation f̃ : I × S2 → R are given by

f(t, ξ) = f̃(t,x(ξ)) = f̂(t,y(t, ξ)). (7.5)

As a notational convention we indicate functions living on S2 with a tilde
and functions onM with a hat, respectively. Their corresponding coordinate
version is treated without special indication.

For convenience, we define smooth extensions of f̃ and f̂ to R3 \ {0} by

˜̄f(t, x) := f̃

(
t,

x

‖x‖

)
and ˆ̄f(t, x) := f̂

(
t, ρ̃

(
t,

x

‖x‖

)
x

‖x‖

)
, (7.6)

respectively. Note that, while ˜̄f is constant in the direction of the surface
normal of S2, the extension ˆ̄f in general is not. We point at Fig. 7.3 illustrating
the setting.

Similarly, for vector-valued functions ũ : I ×S2 → R3 and û :M→ R3 the
extensions to R3\{0} are defined component-wise and for all times t ∈ I. They
are denoted by ˜̄u and ˆ̄u, respectively. As a notational convention, boldface
letters are used to denote vector fields. Moreover, we distinguish between lower
and upper case boldface letters. The former identify tangent vector fields and
their extensions to R3 \ {0} whereas the latter indicate general vector fields in
R3.

For a differentiable function f : I×Ω→ R, we write ∂if as an abbreviation
for the partial derivative of f with respect to ξi. That is, ∇R2f = (∂1f, ∂2f)>,
where ∇R2 is the gradient of R2.
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x

ρ̃(t, x)x
N̂

Ñ

S2

Mt

Figure 7.3: Schematic illustration of a cut through the surfaces S2 and Mt

intersecting the origin. In addition, a radial line along which the extensions ˜̄f
and ˆ̄f are constant is shown. The surface normals are shown in grey.

The tangent plane at a point y(t, ξ) ∈Mt is denoted by Ty(t,ξ)Mt and the
tangent bundle by TMt =

{
{y(t, ξ)} × Ty(t,ξ)Mt : ξ ∈ Ω

}
. The orthogonal

projector onto the tangent plane TxMt at x ∈Mt, t ∈ I, is given by

PM(t, x) = Id− N̂(t, x)N̂(t, x)> ∈ R3×3.

In particular ifMt = S2, that is ρ̃ in (7.4) is identically one for all t ∈ I, the
outward unit normal and the orthogonal projector are given by Ñ and PS2 ,
respectively.

In what follows, we define spatial differential operators. As they are identi-
cal to those on static surfaces we consider time t ∈ I arbitrary but fixed. Then,
the surface gradient of f̂ , as given in (7.5), is defined by

∇Mf̂ := PM∇R3
ˆ̄f ∈ R3, (7.7)

where ∇R3 denotes the usual gradient of the embedding space. Let us stress
that it is independent of the chosen extension, see e.g. [31, p. 389].

We emphasise that, in particular, ifMt = S2 for all t ∈ I it follows that

∇R3
˜̄f = PS2∇R3

˜̄f + (Id− PS2)∇R3
˜̄f.

The last term of the sum on the right hand side is the normal derivative of ˜̄f ,
which according to the definition of the extension in (7.6) vanishes. Thus,

∇S2 f̃ = PS2∇R3
˜̄f = ∇R3

˜̄f. (7.8)

For convenience let us observe that, by taking ∂if in (7.5), we arrive at

∂if(t, ξ) = ∇R3
˜̄f(t,x(ξ)) · ∂ix(ξ) = ∇S2 f̃(t,x(ξ)) · ∂ix(ξ) (7.9)

due to the chain rule and the projection onto the tangent plane Tx(ξ)S2.
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Analogously to the surface gradient we define the spherical
Laplace-Beltrami of f̃ : I × S2 → R as

∆S2 f̃ = −∆R3
˜̄f, (7.10)

where ∆R3 is the standard Laplacian of R3.
The set

{∂1y(t, ξ), ∂2y(t, ξ)} ⊆ R3, (7.11)

where y is the parametrisation defined in (7.4), forms a basis of the tangent
space Ty(t,ξ)Mt at y(t, ξ). Its elements form the gradient matrix Dy, which is
derived as follows.

Let ˜̄ρ be the extension of ρ̃ : I × S2 → (0,∞) according to (7.6). Then, y
from (7.4) can be rewritten as

y(t, ξ) = ˜̄ρ(t,x(ξ))x(ξ).

By the chain rule,

∂iy(t, ξ) =
(
∇R3 ˜̄ρ(t,x(ξ)) · ∂ix(ξ)

)
x(ξ) + ˜̄ρ(t,x(ξ))∂ix(ξ).

Using (7.8) and the fact that ˜̄ρ equals ρ̃ on S2 gives

∂iy =
(
∇S2 ρ̃ · ∂ix

)
x + ρ̃∂ix,

where we have omitted the arguments (t, ξ) and (ξ) for better readability.
Whenever convenient and no confusion will arise we will continue to do so.

By applying (7.9) backwards and the fact that ρ̃(t,x(ξ)) = ρ(ξ) we have
shown

Dy =
(
∂1y ∂2y

)
=
(
(∂1ρ)x (∂2ρ)x

)
+ ρDx ∈ R3×2,

(7.12)

where Dx = (∂1x, ∂2x) is the gradient matrix associated with x.
As a consequence, we can uniquely represent a tangent vector û ∈ Ty(t,ξ)Mt

as û =
∑2
i=1 u

i∂iy, where u = (u1, u2)> ∈ R2 is its coordinate representation,
see e.g. [57, Prop. 3.15]. We call ui the components of û.

In the sequel we will use Einstein summation convention. We sum over
every index letter that appears exactly twice in an expression, once as a sub-
and once as a superscript. For instance, we write û = ui∂iy for the sake of
brevity.

We underline that the coordinate basis (7.11) is not orthogonal in general.
We will, however, require an orthonormal frame {ê1(t, ξ), ê2(t, ξ)} of the tan-
gent space Ty(t,ξ)Mt from Sec. 7.2 onwards. In the coordinate basis it reads

êi = αji∂jy, (7.13)

where αji : I × Ω → R, i, j = {1, 2}, are functions obtained from the Gram-
Schmidt process.

Combining (7.5) and (7.9) with the expressions derived for Dx and Dy we
can conveniently state that

∇R2f = Dx>∇S2 f̃ and ∇R2f = Dy>∇Mf̂ . (7.14)
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Let us derive the following useful generalisation of (7.9). For a tangent
vector ṽ = vi∂ix ∈ TxS2, x ∈ S2, the directional derivative of f̃ along ṽ at x
is

∇S2 f̃ · ṽ = ∇S2 f̃ · vi∂ix = (Dx>∇S2 f̃) · v = ∇R2f · v = vi∂if, (7.15)

where the third equality follows from the first equation in (7.14). Analogously,
for v̂ = vi∂iy ∈ TxMt, with x ∈Mt and t ∈ I, one can derive

∇Mf̂ · v̂ = vi∂if. (7.16)

As soon as we have established the relation between v̂ and ṽ it will conveniently
allow us to switch between (7.15) and (7.16).

Moreover, the coordinate representation of the surface gradient (7.8) is
derived as follows. Let us start out with the first equation in (7.14). By
writing ∇S2 f̃ in the coordinate basis, that is ∇S2 f̃ = Dxu for some u, we
obtain from (7.14)

∇R2f = Dx>Dxu.

Multiplying with (Dx>Dx)−1 from the left yields

(Dx>Dx)−1∇R2f = u.

Thus,
∇S2 f̃ = Dxu = Dx(Dx>Dx)−1∇R2f. (7.17)

Furthermore, let t ∈ I be fixed and let f̂(t, ·) : Mt → R. The surface
integral of f̂ is ∫

Mt

f̂ dMt =
∫

Ω
fJy dξ, (7.18)

where Jy is the Jacobian of y. According to Theorem 3 in [26, p. 88], it is
given by

(Jy)2 = det(Dy>Dy)

and by using (7.12) yields

(Jy)2 = ρ2 ((∂1ρ)2∂2x · ∂2x + (∂2ρ)2∂1x · ∂1x
+ρ2(∂1x · ∂1x)(∂2x · ∂2x)− 2∂1ρ∂2ρ(∂1x · ∂2x)− ρ2(∂1x · ∂2x)2 ).

(7.19)
Note that x · x = 1 and thus, terms of the form ∂ix · x vanish. By the differ-
entiability of x, ones has

∂i(x · x) = 0.

Therefore, ∂ix · x = 0, meaning that tangential and normal vectors are or-
thogonal. We emphasise that Dy>Dy is commonly referred to as Riemannian
metric. It is positive definite and thus, (Jy(t, ξ))2 > 0 for all (t, ξ) ∈ I × Ω.

The parametrisations x and y defined in (7.3) and (7.4), respectively, sug-
gest the straightforward construction of a smooth map φ̃(t, ·) : S2 →Mt. It is
given by the composition (y ◦ x−1)(t, ·), that is

φ̃(t, x) : x 7→ ρ̃(t, x)x.



7.2 Notation and Background 93

The differential Dφ̃(t, x) : TxS2 → Tφ̃(t,x)Mt of φ̃ is a linear map and is given
by

Dφ̃(t, x) = ρ̃(t, x)Id + x∇S2 ρ̃(t, x)> ∈ R3×3. (7.20)
It follows from a direct calculation akin to the derivation of Dy in (7.12).

Let us exhibit the action of Dφ̃(t, x), for x = x(ξ) and t ∈ I, onto a tangent
vector ṽ = vi∂ix ∈ TxS2. We have

Dφ̃(t, x)(ṽ) = ρ̃(t, x)ṽ + x(∇S2 ρ̃(t, x) · ṽ)
(7.15)= ρ̃(t, x)ṽ + xvi∂iρ(ξ)

= ρ̃(t, x)vi∂ix + xvi∂iρ(ξ)
= vi

(
ρ̃(t, x)∂ix + x∂iρ(ξ)

)
(7.12)= vi∂iy(ξ).

(7.21)

In other words, the components (v1, v2)> are preserved whenever a tangent
vector is mapped from S2 toMt via the differential (7.20).

As a matter of fact, given a tangent vector field ṽ = vi∂ix on S2, the
differential Dφ̃ gives rise to a unique tangent vector field v̂ = vi∂iy on Mt,
see [57, Chapter 8]. Whenever we use ṽ and v̂ in the sequel we refer to their
unique identification via the differential (7.20) and call v̂ the pushforward of
ṽ. At this point, the reader might find it helpful to have a look at Fig. 7.5.

With the above definitions at hand we are able to relate the surface inte-
gral (7.18) to an integral on S2 via a change of variables. The key is to compute
a meaningful surface element as |det(Dφ̃)| is the magnitude of the change of
the volume element. The following lemma provides the required form.

Lemma 4. Let x : [0, π]× [0, 2π)→ R3 be the standard parametrisation of S2,

(ξ1, ξ2)> 7→ (sin ξ1 cos ξ2, sin ξ1 sin ξ2, cos ξ1)>,

and let f̂ :M→ R and ρ̃ : I × S2 → (0,∞) be as above. Then, for t ∈ I,∫
Mt

f̂ dMt =
∫
S2
f̃ ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2.

Proof. Let us denote by ẽ1(ξ) and ẽ2(ξ) the orthogonal unit vectors on S2

in direction of ξ1 and ξ2, respectively, which are obtained by normalising the
coordinate basis {∂1x(ξ), ∂2x(ξ)}. That is,

ẽ1(ξ) = ∂1x(ξ) and ẽ2(ξ) = ∂2x(ξ)
‖∂2x(ξ)‖ . (7.22)

Moreover, a straightforward calculation gives

Dx>Dx =
(

1 0
0 sin2 ξ1

)
and thus, the surface gradient of ρ̃ in spherical coordinates (7.17) is given by

∇S2 ρ̃(t,x(ξ)) = ∂1ρ(ξ) ∂1x(ξ) + 1
sin2 ξ1 ∂2ρ(ξ) ∂2x(ξ)

(7.22)= ∂1ρ(ξ) ẽ1(ξ) + 1
sin ξ1 ∂2ρ(ξ) ẽ2(ξ),
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where we have replaced the coordinate basis with the orthonormal basis.
Using Dx>Dx in (7.19), the Jacobian Jy can be written as

(Jy)2 = ρ2((∂1ρ)2 sin2 ξ1 + (∂2ρ)2 + ρ2 sin2 ξ1)
= ρ2((∂1ρ)2 + 1

sin2 ξ1 (∂2ρ)2 + ρ2) sin2 ξ1

= ρ2(‖∇S2 ρ̃‖2 + ρ2) sin2 ξ1.

Here, we have omitted the argument (t,x(ξ)) of ∇S2 ρ̃. Then, the integral turns
out to be ∫

Mt

f̂ dMt =
∫ 2π

0

∫ π

0
fJy dξ

=
∫ 2π

0

∫ π

0
fρ
√
‖∇S2 ρ̃‖2 + ρ2 sin ξ1 dξ

=
∫
S2
f̃ ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2,

where the last equation follows from (7.18) ifMt = S2, the fact that sin ξ1 ≥ 0,
and

Jx =
√

det(Dx>Dx) = sin ξ1.

The concepts introduced above, and further properties thereof, may be
found in any standard differential geometry book. For instance, in [22, 23, 56,
57].

Vectorial Sobolev Spaces on Manifolds
We briefly introduce the appropriate function spaces required for the variational
optical flow formulation on Riemannian manifolds. Again, let us consider time
t ∈ I arbitrary but fixed.

For a tangent vector field v̂ on Mt we denote by ∇ûv̂(x) the covariant
derivative of v̂ at x ∈ Mt along the direction of a tangent vector û ∈ TxMt.
We define it as the tangential part of the usual directional derivative of the
extension ˆ̄v along û in the embedding space, that is,

∇ûv̂ := PM∇R3 ˆ̄v(û). (7.23)

It is a linear operator ∇v̂(x) : TxMt → TxMt and its Hilbert-Schmidt
norm is given by

‖∇v̂(x)‖22 =
2∑
i=1
‖∇êi v̂(x)‖2, (7.24)

where {ê1, ê2} denotes the orthonormal basis of the tangent space TxMt,
cf. (7.13). We stress that (7.24) is invariant with respect to the chosen pa-
rametrisation.

For each t ∈ I, we define the Sobolev spaceH1(Mt, TMt) as the completion
of the space of vector fields C∞(Mt, TMt) with respect to the norm

‖v̂‖2H1(Mt,TMt) :=
∫
Mt

‖∇v̂‖22 dMt, (7.25)
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where the surface integral is defined in (7.18). Let us emphasise that (7.25)
is indeed a norm whenever Mt is diffeomorphic to the 2-sphere. The reason
is that, by virtue of the Hairy Ball Theorem, there is no covariantly constant
tangent vector field but v̂ = 0, see e.g. [37, p. 125].

Alternatively, one can define Sobolev spaces of vector fields such that each
component of a vector field originates from a scalar Sobolev space. See, for
instance, Lefèvre and Baillet [58]. On the 2-sphere, however, they are typically
introduced by means of the spherical Laplace-Beltrami operator, see e.g. [63,
Chapter 6.2] and Sec. 7.2 for the scalar counterpart. For a thorough treatment
of Sobolev spaces on Riemannian manifolds we refer to the books [33, 80].

Spherical Harmonics

We denote by Harmn the space of homogeneous harmonic polynomials of degree
n ∈ N0 with their domain restricted to S2. Its dimension is

dim(Harmn) = 2n+ 1.

An element Ỹn ∈ Harmn, n ∈ N0, is called a (scalar) spherical harmonic.
It is an infinitely often differentiable eigenfunction of the Laplace-Beltrami
operator ∆S2 , defined in (7.10), with corresponding eigenvalue

λn = n(n+ 1).

We refer to Theorem 5.6 and Lemma 5.8 in [63, Sec. 5.1] for detailed proofs of
the previous statements.

The set {
Ỹnj : n ∈ N0, j = 1, . . . , 2n+ 1

}
(7.26)

is a complete orthonormal system of L2(S2) with respect to the inner product
〈·, ·〉L2(S2) on S2. In further consequence, for a function f̃ ∈ L2(S2), we have
the Fourier series representation

f̃ =
∞∑
n=0

2n+1∑
j=1
〈f̃ , Ỹnj〉L2(S2)Ỹnj ,

Again, we refer to [63, Sec. 5.1] for the proofs, in particular to Theorem 5.25.
In the present article we employ fully normalised spherical harmonics. For the
explicit construction see [63, Sec. 5.2].

Moreover, the norm of L2(S2) is readily stated in terms of the coefficients
in the above expansion via Parseval’s identity

‖f̃‖2L2(S2) =
∑
n,j

〈f̃ , Ỹnj〉2L2(S2).

For an arbitrary real number s ∈ R, we define the Sobolev space Hs(S2) as
the completion of all C∞(S2) functions with respect to the norm

‖f̃‖2Hs(S2) := ‖(∆S2 + 1)s/2f̃‖2L2(S2) =
∑
n,j

(λn + 1)s〈f̃ , Ỹnj〉2L2(S2).
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We stress that, by (7.10), ∆S2 f̃ = −∆R3
˜̄f and we have λn ≥ 0 for all n ∈ N0

yielding a sound definition. Accordingly, for s ∈ R, we define the Hs seminorm
of order s by

|f̃ |2Hs(S2) := ‖∆s/2
S2 f̃‖2L2(S2) =

∑
n,j

λsn〈f̃ , Ỹnj〉2L2(S2). (7.27)

Now that the space L2(S2) is endowed with a basis, we can proceed to
define an orthonormal system for square integrable tangent vector fields on
the sphere. This will immediately allow us to treat vector-valued problems
consistently.

Let Ỹn ∈ Harmn be a scalar spherical harmonic of degree n ∈ N0. Any
vector field ỹ : S2 → R3 that can be written in the form ỹ = ỹ(i)

n , where

ỹ(1)
n := ỸnÑ,

ỹ(2)
n := ∇S2 Ỹn,

ỹ(3)
n := ∇S2 Ỹn × Ñ,

is called a vector spherical harmonic of degree n and type i, cf. [28, Defini-
tion 5.2]. Recall that Ñ is the outward unit normal to S2.

By definition, ỹ(1)
n is a normal field whereas ỹ(2)

n and ỹ(3)
n are tangent vector

fields. Consequently, the latter are called tangential vector spherical harmonics.
Note that, by means of the Hairy-Ball Theorem, no tangential vector spherical
harmonics of degree zero exist.

In further consequence, let us denote by L2(S2, TS2) the space of square
integrable tangent vector fields on S2 equipped with the inner product

〈ũ, ṽ〉L2(S2,TS2) =
∫
S2

ũ · ṽ dS2.

Here, dS2 denotes the usual spherical surface measure, see also Lemma 4.
Since (7.26) is an orthonormal set for L2(S2), the set{

ỹ(i)
nj : n ∈ N, j = 1, . . . , 2n+ 1, i = 2, 3

}
, (7.28)

is an orthonormal system for L2(S2, TS2), where we have defined

ỹ(2)
nj = λ−1/2

n ∇S2 Ỹnj ,

ỹ(3)
nj = λ−1/2

n ∇S2 Ỹnj × Ñ,
(7.29)

for orthonormalisation purpose, see [28, Sec. 5.2]. Thus, every vector field
ṽ ∈ L2(S2, TS2) can be written uniquely as

ṽ =
3∑
i=2

∞∑
n=1

2n+1∑
j=1
〈ṽ, ỹ(i)

nj 〉L2(S2,TS2)ỹ
(i)
nj .

We refer to the books [28, 63] for further details on the subject. Table 7.1
contains a summary of notation used in the sequel.
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Ω coordinate domain
I time interval
S2 2-sphere
M family of sphere-like surfacesMt

TxS2 tangent plane at x ∈ S2

TyMt tangent plane at y ∈Mt

Ñ, N̂ outward unit normals to S2 andM
x, y parametrisations of S2 andM
Dx, Dy gradient matrix of x and y
{∂1x, ∂2x} basis for TS2

{∂1y, ∂2y} basis for TM
{ê1, ê2} orthonormal basis for TMt

V̂ surface velocity ofM
φ̃,Dφ̃ smooth map from S2 toM and its differential
f̃ , f̂ , f scalar function on S2,M, and their coordinate version
∇S2 f̃ ,∇Mf̂ surface gradient on S2 andMt

ṽ, v̂, v tangent vector fields on S2,M, and their coordinate version
∇ûv̂ covariant derivative of v̂ along direction û onMt

Ỹnj scalar spherical harmonic of degree n and order j
ỹ(i)
nj vector spherical harmonic of degree n, order j, and type i

ŷ(i)
nj pushforward of ỹ(i)

nj via the differential Dφ̃

Table 7.1: Summary of notation used throughout the paper.

7.3 Optical Flow on Evolving Surfaces

Generalised Optical Flow
Optical flow models are typically based on the assumption of constant bright-
ness. Given a sequence of (planar) images

f : I × Ω ⊂ R× R2 → R

such that f ∈ C1(I×Ω), it assumes that the intensity f(t, γ(t, ξ)) stays constant
over time when moving along a trajectory γ(·, ξ) : I → Ω starting at ξ ∈ Ω. In
other words, in the planar setting, we have

d

dt
f(t, γ(t, ξ)) = ∂tf +∇R2f · ∂tγ = 0,

which is termed optical flow equation and must hold for all ξ ∈ Ω and all t ∈ I.
For the sake of consistency, we denote by ∂t the partial and by d/dt the total
derivative with respect to time.

It is possible to generalise the idea to a non-Euclidean setting where the
image lives on a, potentially moving, manifold. To this end, let us be given an
evolving surface

M :=
⋃
t∈I

(
{t} ×Mt

)
⊂ R4

specified by a parametrisation y : I × Ω → R3 as in (7.4) together with a
function f̂ , its domain beingM. For a time t ∈ I,

f̂(t, ·) :Mt → R
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is then an image on the surface. Adapting the above idea of constant bright-
ness to the new setting requires that, along a smooth trajectory γ(·, x) : t 7→
γ(t, x) ∈ Mt that starts at x ∈ M0 and always stays on the surface, we must
have

f̂(t, γ(t, x)) = f̂(0, x). (7.30)

However, in order to proceed as above one needs to define a meaningful deriva-
tive with respect to time.

One possibility, which is pursued in [50, 52], is to consider derivatives along
trajectories following the moving surface. Let y be as above and let ∂ty = V̂
be the surface velocity, its domain being

⋃
t∈I({t}×Mt) ⊂ R4. We emphasise

that V̂ is in general not tangent to Mt, t ∈ I, and hence in our notation
denoted by a boldface capital letter. Then,

dV̂
t f̂(t0, x0) := d

dt
f̂(t,y(t, ξ))

∣∣∣∣
t=t0

(7.31)

is the time derivative of f̂ at x0 = y(t0, ξ) along the parametrisation y(·, ξ).
As a consequence, one can deduce that

dV̂
t f̂ = dN̂

t f̂ +∇Mf̂ · V̂

holds, where dN̂
t f̂(t0, x0) is the time derivative of f̂ in normal direction. It is

defined analogously to (7.31) albeit following a trajectory ψN̂ through x0 ∈Mt0

for which ∂tψN̂(t0, x0) is orthogonal to Tx0Mt0 .
From that one can immediately formulate the above idea of constant bright-

ness (7.30) along γ. To this end, we define by M̂ := ∂tγ the velocity of a point
moving along the trajectory γ and demand that

dM̂
t f̂ = dN̂

t f̂ +∇Mf̂ · M̂ = 0 (7.32)

must hold. Equation (7.32) is a generalised optical flow equation. In Fig. 7.4
we sketch the various trajectories through the evolving surface and their cor-
responding velocities.

Since we are, however, interested in a coordinate representation of γ, we
define a family of trajectories β : I × Ω→ Ω such that

γ(t,y(0, ξ)) = y(t, β(t, ξ))

holds for all t ∈ I and all ξ ∈ Ω. In other words, we want the composition of
β with y, and γ to coincide. By taking the total derivative d/dt on both sides
of the above equation we get

∂tγ = ∂ty + ∂tβ
i∂iy.

Let us denote v̂ := ∂tβ
i∂iy and recall that ∂ty = V̂ is the surface velocity.

The above relation states that the total velocity M̂ = ∂tγ along a level line of
constant intensity is

M̂ = V̂ + v̂ (7.33)

and v̂ is a tangential velocity relative to the prescribed surface velocity V̂.
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Mt0

Mt0+∆t

V̂
M̂

v̂

γ(·, x0)ψN̂
y(·, ξ)

x0

Figure 7.4: Illustration of trajectories through the evolving surface. Their
corresponding velocities are shown in grey.

Solving the generalised optical flow equation (7.32), however, is inconve-
nient as ψN̂ and, in further consequence, dN̂

t is unknown or hard to estimate.
Nevertheless, one can relate (7.32) and (7.33), as shown in [52, Lemma 2], and
arrive at the parametrised optical flow equation

dV̂
t f̂ +∇Mf̂ · v̂ = 0. (7.34)

Solving for the optical flow then means finding a (time-varying) vector field v̂
that is tangent to the surface at all times and satisfies the above equation at
every point x ∈M on the moving surface.

Let us conclude this subsection with a remark that, in general, there exist
infinitely many parametrisations y for a given evolving surface. The actual
surface velocity however might be unknown or cannot be estimated from the
data, as it is the case in this work. As a remedy we impose a surface velocity
by choosing a natural surface parametrisation y. For a further discussion of
this matter we refer to [12].

Moreover, we again stress that the sought tangent vector field v̂ depends
on the chosen y, or equivalently on V̂, and should be interpreted with care.
The actual trajectories γ though can be reconstructed by finding the integral
curves of (7.33). For this precise approach we point the reader to [52].

Variational Formulation
The optical flow equation (7.34) derived above is underdetermined and, in
general, a unique solution is not ensured. A common technique to deal with
non-uniqueness is Tikhonov regularisation, where one finds a minimiser of

‖dV̂
t f̂ +∇Mf̂ · v̂‖2L2(M) + αR(v̂).

Here, R(v̂) is a regularisation functional and α > 0 a regularisation parameter,
balancing the two terms. The first term is typically referred to as data term
whereas the second is called smoothness term. The latter enforces uniqueness
and incorporates prior knowledge about favoured solutions.

A common choice for R(v̂) is the squared H1 Sobolev seminorm, involv-
ing first derivatives with respect to space and time. It favours spatial as well
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as temporal regularity and is of particular interest when trying to estimate
trajectories of objects, albeit computationally more demanding. See, for exam-
ple [52, 86] and [12].

Alternatively, one can omit temporal regularisation leading to a regulariser
of the form

R(v̂) =
∫
I

‖v̂(t, ·)‖2H1(Mt,TMt) dt,

which is equivalent to solving for each time instant separately. It resembles the
original formulation in [39] and its extension to 2-manifolds [58]. In the present
article we follow this approach and attempt in finding the unique minimiser
v̂ ∈ TMt of the energy

Eα(v̂) := ‖dV̂
t f̂ +∇Mf̂ · v̂‖2L2(Mt) + α‖v̂‖2H1(Mt,TMt) (7.35)

for each time instant t ∈ I separately. Superimposing temporal regularisation
however is straightforward, see [52, Sec. 2.2.2], but not considered here.

7.4 Numerical Solution

Finite-dimensional Projection
For the subsequent discussion we let t ∈ I be arbitrary but fixed and assume
to be given a parametrisation y(t, ·) : Ω → Mt as defined in (7.4). We defer
the question of how to find it to Sec. 7.4. Moreover, for notational convenience,
we relabel the set of tangential vector spherical harmonics (7.28) using a single
index letter p ∈ N. For instance, for the expansion of a tangent vector field on
S2 we simply write ũ =

∑
p upỹp, where up ∈ R are the coefficients.

We intend to approximate the solution of the problem

min
v̂∈H1(Mt,TMt)

Eα(v̂)

in a finite-dimensional subspace U ⊂ H1(Mt, TMt), where Eα is defined
in (7.35). We define this space as

U = span{ŷp : p ∈ JU},

where JU ⊂ N is a finite index set and ŷp is the pushforward of a particular
vector spherical harmonic ỹp via the differentialDφ̃, see (7.20). Figure 7.5 gives
a descriptive view of the relation between the introduced spaces and tangent
vector fields.

The sought vector field is then uniquely expanded as

v̂ =
∑
p∈JU

vpŷp, (7.36)

with vp ∈ R, p ∈ JU , being the coefficients. Minimisation of functional (7.35)
results in a finite-dimensional optimisation problem over R|JU |. Plugging ansatz
(7.36) into (7.35) and writing out definition (7.25) of the SobolevH1(Mt, TMt)
norm gives

Eα(v̂) =
∫
Mt

((
dV̂
t f̂ +

∑
p∈JU

vp(∇Mf̂ · ŷp)
)2 + α‖

∑
p∈JU

vp∇ŷp‖22
)
dMt. (7.37)
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R2 TS2 TMt

Ω S2 Mt

Dx Dφ̃(t, ·)

x φ̃(t, ·)

Dy(t, ·)

y(t, ·)

yp ỹp ŷp

Figure 7.5: Commutative diagram relating spaces Ω, S2, andMt, and tangent
vector fields. We highlight that yp is the coordinate representation, see Sec. 7.2,
of a particular tangential vector spherical harmonic ỹp and ŷp is its uniquely
identified tangent vector field onMt.

By applying the definition of the Hilbert-Schmidt norm (7.24), using lin-
earity of the covariant derivative ∇ûv̂ with respect to v̂, and the definition of
the norm of R3 we obtain the representation

‖∇
∑
p∈JU

vpŷp‖22 =
2∑
i=1
‖
∑
p∈JU

vp∇êi ŷp‖2

=
2∑
i=1

(∑
p∈JU

vp∇êi ŷp ·
∑
q∈JU

vq∇êi ŷq
)

=
2∑
i=1

∑
p,q∈JU

vpvq
(
∇êi ŷp · ∇êi ŷq

)
for the regularisation term.

The optimality conditions for the discrete minimisation problem (7.37) are
obtained by taking ∂Eα/∂vp = 0, for all p ∈ JU , and are given by

∑
q∈JU

vq

∫
Mt

((
∇Mf̂ · ŷp

)(
∇Mf̂ · ŷq

)
+ α

2∑
i=1

(
∇êi ŷp · ∇êi ŷq

))
dMt

= −
∫
Mt

dV̂
t f̂
(
∇Mf̂ · ŷp

)
dMt, p ∈ JU .

(7.38)

In matrix form they read
(A+ αD)v = b,

where v = (v1, . . . , v|JU |)> ∈ R|JU | is the vector of unknowns. The entries of
the matrix A = (apq)pq are

apq =
∫
Mt

(
∇Mf̂ · ŷp

)(
∇Mf̂ · ŷq

)
dMt,
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the entries of the matrix D = (dpq)pq associated with the regularisation term
are given by

dpq =
∫
Mt

2∑
i=1

(
∇êi ŷp · ∇êi ŷq

)
dMt,

and the entries of the vector b = (bp)p are

bp = −
∫
Mt

dV̂
t f̂
(
∇Mf̂ · ŷp

)
dMt.

Rewriting the Optimality Conditions
Even tough directly solving the derived optimality conditions (7.38) is perfectly
legitimate, we take a different approach. The goal of this section is to rewrite
the optimality conditions in terms of quantities defined on the 2-sphere, thereby
allowing a more general treatment. On the one hand, we want to deal with all
surfacesMt for all t ∈ I in a unified manner and, on the other hand, we aim
at evaluating (7.38) numerically on the (approximated) sphere without having
to deal with multiple charts, see e.g. [22].

The following is a straight-forward generalisation of [52, Lemma 2].

Lemma 5. Consider time t ∈ I arbitrary but fixed. Let ṽ = vi∂ix and
v̂ = vi∂iy be two tangent vector fields on S2 and Mt, respectively, such that
they are related via the differential (7.20). Then, the parametrised optical flow
equation (7.34) is equivalent to

∂tf̃ +∇S2 f̃ · ṽ = 0.

Proof. According to the definitions (7.31) and (7.5), we have

dV̂
t f̂(t,y(t, ξ)) = d

dt
f̂(t,y(t, ξ))

= d

dt
f̃(t,x(ξ))

= ∂tf̃(t,x(ξ))

and it remains to show the identity

∇Mf̂ · v̂ = ∇S2 f̃ · ṽ,

where we have omitted the arguments (t,y(t, ξ)) on the left and (t,x(ξ)) on
the right hand side, respectively. It follows directly from the coordinate repre-
sentation of the directional derivatives (7.15) and (7.16).

In order to give coordinate expressions for the terms in (7.38) arising from
the regularisation term we locally choose an orthonormal frame
{ê1(t, ξ), ê2(t, ξ)} of the tangent space, see (7.13). As a consequence, the sought
tangent vector field v̂ can be written as

v̂ = wiêi (7.39)

for some components (w1, w2)>. The reason for expressing the unknown in an
orthonormal frame, rather than the coordinate frame, is to simplify matters
with regard to the Hilbert-Schmidt norm (7.24) of the covariant derivative.
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However, the chosen Galerkin method expands the unknown v̂ in terms of
the pushfoward of vector fields which are defined on the 2-sphere, cf. (7.36).
We necessarily need to establish the relation between the intended form (7.39)
and the expression in terms of the coordinate frame.

Lemma 6. Again, let t ∈ I be arbitrary but fixed and let ũ = ui∂ix be a
tangent vector field on S2. Then, for a tangent vector field v̂ = wiêi on Mt,
we have v̂ = Dφ̃(ũ) if and only if wi = (α−1)i`u`.

Proof. (⇐) First, note that αji (α−1)i` = δj`. Expanding v̂ gives

v̂ = wiêi = wiαji∂jy = (α−1)i`u`α
j
i∂jy = uj∂jy = Dφ̃(ũ),

where we have used (7.21), cf. also Fig. 7.5.
(⇒) Suppose v̂ = Dφ̃(ũ). Let us take the inner product with êi on both

sides. For the left hand side we have

v̂ · êi = wj êj · êi = wjδji = wi.

For the right hand side we first observe that, by inversion of the matrix α
in (7.13), it holds that ∂jy = (α−1)`j ê`. Then,

Dφ̃(ũ) · êi = u`∂`y · êi
= u`(α−1)j` êj · êi
= u`(α−1)j`δji
= u`(α−1)i`

and we conclude that wi = u`(α−1)i` as required.

With the above relation at hand we obtain the following form.

Lemma 7. Let t ∈ I and let û = ui∂iy and v̂ = vi∂iy be two tangent vector
fields onMt. Then, we have

∇êi û · ∇êi v̂ =
2∑
j=1

Diu
jDiv

j ,

where
Diu

j := αki ∂k
(
(α−1)j`u

`
)

+ (α−1)k`u`Γ̂
j
ik, i, j = {1, 2},

and Div
j are defined accordingly.

Γ̂jik denote the Christoffel symbols with regard to the orthonormal frame
{ê1, ê2} and are defined as

∇êi êk = Γ̂jikêj . (7.40)

We refer to [52, Lemma 3] for their derivation.
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Proof. First let us show that, for û = wj êj as in (7.39), it holds that

∇êi û = Diu
j êj .

By the product rule for the covariant derivative (7.23),

∇êiw
j êj = êj∇êiw

j + wj∇êi êj . (7.41)

Consider the first term of the sum and let êi be represented in the coordinate
basis as in (7.13). Then,

∇êiw
j = ∇αk

i
∂kyw

j .

Linearity of the lower argument of the covariant derivative with respect to
C∞(Mt) functions, cf. (7.16), yields

∇αk
i
∂kyw

j = αki∇∂kyw
j

and by realising that ∇∂kyw
j is just the directional derivative (7.16) along ∂ky

we obtain
αki∇∂kyw

j = αki ∂kw
j .

Moreover, in the second term of the sum in (7.41) we use definition (7.40).
Thus, by summing up all terms in (7.41) we obtain

∇êiw
j êj =

(
αki ∂kw

j + wjΓ̂jik
)
êj .

Applying the previous lemma gives coefficients Diu
j and Div

j in the intended
form. Finally, it remains to observe that

∇êi û · ∇êi v̂ = Diu
j êj ·Div

j êj

=
2∑
j=1

Diu
jDiv

j ,

since by definition êi · êj = δij .

Finally, by combining Lemmas 4, 5, and 7 we are able to express the opti-
mality conditions (7.38) in terms of integrals on the 2-sphere. Thus, we arrive
at the optimality conditions

∑
q∈JU

vq

∫
S2

((
∇S2 f̃ · ỹp

)(
∇S2 f̃ · ỹq

)
+ α

2∑
i,j=1

Diy
j
pDiy

j
q

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2

= −
∫
S2
∂tf̃
(
∇S2 f̃ · ỹp

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2, p ∈ JU ,

(7.42)
where ρ̃

√
‖∇S2 ρ̃‖2 + ρ̃2 arises from the Jacobian (7.19), see also Lemma 4.

The entries of the matrices A, D and of the vector b, respectively, are then
given by

apq =
∫
S2

(
∇S2 f̃ · ỹp)(∇S2 f̃ · ỹq

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2, (7.43)
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dpq =
∫
S2

2∑
i,j=1

Diy
j
pDiy

j
q ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2, (7.44)

and
bp = −

∫
S2
∂tf̃
(
∇S2 f̃ · ỹp

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2. (7.45)

Surface Parametrisation
In order to actually compute the above optimality conditions it remains to
determine the radius ρ̃ : I×S2 → (0,∞) in the presumed parametrisation (7.4).
Again, we continue the discussion for one particular but fixed time t ∈ I and
drop the argument whenever convenient.

Estimating ρ̃(t, ·) : S2 → (0,∞) is closely related to surface interpolation
from scattered data. Given noisy data ρ̃δ and a parameter β > 0, it amounts
to finding the unique minimiser of the functional

Fβ(ρ̃) := ‖ρ̃− ρ̃δ‖2L2(S2) + β|ρ̃|2Hs(S2), (7.46)

where s > 0 is a sufficiently large real number, cf. definition (7.27). The
first term penalises deviation from the observed data whereas the second term
enforces spatial regularity of the solution.

In practice, however, N > 0 evaluations {ρ̃δ(xi) : xi ∈ S2}Ni=1 are given
at pairwise distinct points on the 2-sphere. In our particular application these
correspond to taking the norm in R3 of pairwise distinct sampling points lying
on the sphere-like surfaceMt:

ρ̃δ(x̄i) = ‖xi‖, xi ∈ R3 \ {0}, i = 1, . . . , N, (7.47)

where x̄i = xi/‖xi‖ is the radial projection onto S2. We again point the reader
to Fig. 7.3.

Furthermore, before turning to the numerical solution of (7.46), let us
briefly discuss the regularity requirements. In [12], the authors demand twice
continuous differentiability for both the manifold Mt and the map y(t, ·) to
obtain well-posedness of the optical flow problem. By definition of the para-
metrisation (7.4) we require that ρ̃(t, ·) ∈ C2(S2). As a consequence of Theo-
rem 2.7 in [34, Chapter 2.6] regarding Sobolev embeddings, the space Hs(S2)
for s > 3 is the appropriate choice, i.e. Hs(S2) ⊂ C2(S2).

Numerically, we approximate the solution of the problem

min
ρ̃∈Hs(S2)

Fβ(ρ̃)

by considering a finite-dimensional subspace Q ⊂ Hs(S2) and point evalua-
tions (7.47). In contrast to above, the space

Q = span{Ỹp : p ∈ JQ},

where JQ ⊂ N0 again is an index set, is spanned by scalar spherical harmonics.
The sought function is expanded as

ρ̃ =
∑
p∈JQ

ρpỸp,
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where the unknowns are the coefficients ρp ∈ R, for p ∈ JQ. Plugging
into (7.46), applying definition (7.27), and taking ∂F/∂ρp, for all p ∈ JQ,
gives the optimality conditions

∑
q∈JQ

ρq

( N∑
i=1

Ỹp(x̄i)Ỹq(x̄i)
)

+ βλspρp =
N∑
i=1
‖xi‖Ỹp(x̄i), p ∈ JQ. (7.48)

Denoting by % = (ρ1, . . . , ρ|JQ|)> ∈ R|JQ| the vector of unknown coefficients,
the equations (7.48) can be written in matrix-vector form as

(L+ βM)% = c,

The entries of the matrix L = (lpq)pq are

lpq =
N∑
i=1

Ỹp(x̄i)Ỹq(x̄i),

the matrix M = diag(λs1, . . . , λs|JQ|) is a diagonal matrix, and

cp =
N∑
i=1
‖xi‖Ỹp(x̄i).

Numerical Approximation
Let us finally discuss the numerical solution of the optimality conditions (7.42).
In particular, one needs to (approximately) evaluate the integrals (7.43), (7.44),
and (7.45). Even though integrals on the 2-sphere can be computed exactly
and quadrature rules exist up to a certain degree, see e.g. [5, 35], we instead
prefer to use a triangulation together with an appropriate quadrature. The
reason is that numerical quadrature on the sphere would have to be of rather
high degree to reproduce small details and features of the data, contrary to
the chosen quadrature, which can easily be refined up to the desired precision.
Finally let us mention that, for a more accurate evaluation of the integrals, one
can introduce an intermediate (radial) map from the polyhedron to geodesic
triangles. See e.g. [35, Sec. 7.2].

We use a polyhedral approximation S2
h = (V, T ) of the 2-sphere S2. It is de-

fined by a set V = {v1, . . . , vn} ⊂ S2 of vertices and a set T = {T1, . . . , Tm} ⊂
V × V × V of triangular faces. Each triangle is most easily parametrised using
barycentric coordinates, see e.g. [13, Chapter 5]. We associate with each trian-
gle Ti ∈ T a tuple (i1, i2, i3) identifying the corresponding vertices (vi1 , vi2 , vi3),
which are arranged in clockwise order. The parametrisation (7.3) then reads

xi(ξ) = vi1 + ξ1(vi3 − vi1) + ξ2(vi2 − vi1)

with
Ω = {ξ ∈ R2 : ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1− ξ1]},

which is referred to as the reference triangle. The gradient matrix of Ti is then
simply

Dxi =
(
∂1xi ∂2xi

)
=
(
vi3 − vi1 vi2 − vi1

)
.
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vi

(1− ε)ρ̃h(j, vi)vi

(1 + ε)ρ̃h(j, vi)vi

S2

v`

ρ̃h(j, v`)v`

Figure 7.6: Illustration of a triangular face (filled gray) intersecting the sphere
S2 at the vertices (hollow circles). The six nodal points consist of the vertices of
the triangle together the edge midpoints (filled black dots). The approximated
sphere-like surface is shown by the hatched gray area. A radial line passing
through the vertex vi is shown. The hollow circle indicates the intersection
with S2 at which ˜̄f(vi) in (7.49) is taken. ˜̄f itself, as described in Sec. 7.5, is
assigned by taking the maximum image intensity along the drawn radial line
between the two cross marks.

The surface normal is constant on Ti and is denoted by Ñi.
We approximate all functions on S2 by corresponding functions on the

polyhedron S2
h. A continuous function f̃ : S2 → R is replaced by its piecewise

polynomial interpolation f̃h : S2
h → R on S2

h. We define it as

f̃h(·) :=
Nh∑
j=1

˜̄f(vj)ϕ̃j(·). (7.49)

Here, {ϕ̃j} areNh = 6 quadratic shape functions forming a nodal basis together
with nodal points {vj} ⊂ S2

h and ˜̄f is the usual radially constant extension,
cf. (7.6) in Sec. 7.2. In other words, f̃h is both a radial projection from the
2-sphere to the polyhedron S2

h and to piecewise quadratic functions. Note that
the shape functions are defined on the triangular faces Ti. Whenever a function
f̃ has a dependence on time we simply compute its approximation f̃h separately
for all times t ∈ I. We point the reader to Fig. 7.6 for a figurative illustration.

In further consequence, the fully normalised scalar spherical harmonics,
which were introduced in (7.26), are substituted with their corresponding ap-
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proximations on S2
h. For Ỹ ∈ Harmn, n ∈ N0 , we have

Ỹh(·) =
Nh∑
j=1

˜̄Y (vj)ϕ̃j(·). (7.50)

We chose piecewise quadratic approximations for Ỹ so that we can ade-
quately apply ∇S2

h
and obtain piecewise linear vector fields. Accordingly, we

define approximations of the vector spherical harmonics, introduced in (7.29),
as follows.

Proposition 2. Let Ỹ ∈ Harmn, n ∈ N. The piecewise linear interpolations
of the corresponding tangential vector spherical harmonics on a triangular face
Ti ∈ T are

ỹ(2)
h (xi(ξ)) = λ−1/2

n

Nh∑
j=1

˜̄Y (vj)∇S2
h
ϕ̃j(xi(ξ)), (7.51)

ỹ(3)
h (xi(ξ)) = λ

−1/2
n

2|Ti|

Nh∑
j=1

˜̄Y (vj)
(
∂2ϕj(ξ)∂1xi(ξ)− ∂1ϕj(ξ)∂2xi(ξ)

)
. (7.52)

Their derivation is deferred to the appendix.
Without loss of generality, let f̃h(0, ·) and f̃h(1, ·) be the approximations of

the data f̃ at two subsequent frames. We define the derivative with respect to
time by the forward difference

∂tf̃h(·) := f̃h(1, ·)− f̃h(0, ·).

Moreover, we replace the surface gradient ∇S2 f̃ of a function on S2 with its
counterpart ∇S2

h
f̃h on S2

h, which is computed according to (7.17). The func-
tion ρ̃ is obtained by solving (7.48) and, for numerical computations, is further
replaced with its piecewise quadratic interpolation ρ̃h as in (7.49). Coefficients
αji are computed by the Gram-Schmidt process at the nodal points. For nu-
merical computations piecewise quadratic approximations, as defined in (7.49),
are used.

Finally, for the calculation of the integrals we employ the standard quadra-
ture on triangulated spheres, see e.g. [5, 35]. Let ξc = (1/3, 1/3)> be the
centroid of the reference triangle Ω. Then, we approximate the spherical inte-
gral over a function f̃ : S2 → R on the 2-sphere by∫

S2
f̃ dS2 ≈

∫
S2
h

f̃h dS2
h ≈

m∑
i=1
|Ti|f̃h(xi(ξc)).

7.5 Experiments

Microscopy Data
The present data consist of volumetric time-lapse (4-dimensional) images of a
live zebrafish embryo during the gastrula period. These videos were recorded
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approximately five to ten hours after fertilisation by means of confocal laser-
scanning microscopy and feature endodermal cells expressing a green fluores-
cence protein. As a consequence, these labelled cells are recorded without
background and allow for a separate treatment. We refer the reader to [48] for
many illustrations and a detailed discussion of the zebrafish’s developmental
process. Regarding the imaging techniques used during data acquisition we
refer to [60] and for the treatment of the specimen we point the reader to [66].

The crucial feature of endodermal cells is the fact that they form a so-called
monolayer during early morphogenesis, see [83]. Essentially, it means that the
labelled cells do not sit on top of each other but float side by side forming an
artificial sphere-shaped layer. It can be regarded as a surface and allows for the
straightforward extraction of an image sequence. Clearly, this surface is subject
to geometric approximations. For instance, in [51, 74] it is assumed an ideal
sphere, whereas in [12] and [52] only a fraction of the data is considered and
modelled as a moving manifold and a height field, respectively, both possessing
a boundary.

The recorded data features a cuboid region of approximately 860 × 860 ×
320µm3 of the animal hemisphere. The spatial resolution is 512×512×44 voxels
and the recorded image intensities are in the range {0, . . . , 255}. Our sequence
contains 75 images with a temporal interval of 240 s. For the further discussion,
we denote the data by

fδ ∈ {0, . . . , 255}75×512×512×44.

Preprocessing and Surface Data Acquisition
Let us briefly discuss the preprocessing steps required to obtain an image se-
quence together with the evolving surface. We limit our consideration to two
consecutive frames and denote the respective volumetric data by fδ0 and fδ1 .

For each frame, the approximate surface is found by minimising the func-
tional (7.46) with approximate cell centres acting as sample points. They
appear as local maxima in image intensity and are readily located by Gaussian
filtering followed by plain thresholding. However, beforehand the points are
centred around the origin by first fitting a sphere and subsequently subtracting
the spherical centre.

The triangle mesh S2
h is obtained by iterative refinement of an icosahedron

that is inscribed in the 2-sphere, see e.g. [13, Chapter 1.3.3]. Every refinement
step halves the edge lengths by connecting the edge midpoints and projecting
them to the unit sphere. Consequentially, every triangular face is split into
four smaller triangles and the total number of faces after k ∈ N0 subdivisions
is 20 · 4k. In our case, k = 7 refinements are required to resolve the data
adequately.

It remains to discuss the acquisition of the approximations f̃h(0, ·) and
f̃h(1, ·) on the polyhedron. For a frame j ∈ {0, 1}, we define the value at a
nodal point vi ∈ S2

h in (7.49) via the projection

˜̄f(j, vi) := max
c∈[1−ε,1+ε]

f̊δj (cρ̃h(j, vi)vi),

where ε > 0 is chosen sufficiently large. f̊δj denotes the piecewise linear exten-
sion of fδj to R3, which is necessary for gridded data. The above projection
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Figure 7.7: Frames no. 70 (left) and 71 (right) of the processed image sequence
in a top view. The embryo’s body axis is oriented from bottom left to top right.

within the narrow band

[(1− ε)ρ̃h(j, vi)vi, (1 + ε)ρ̃h(j, vi)vi]

corrects for small deviations of the cells from the fitted surface. Again, we
refer to Fig. 7.6 for illustration. Finally, all intensities are scaled to the interval
[0, 1]. Figure 7.2 shows two frames of the extracted image sequence defined on
the sphere-like evolving surface. Figure 7.7 depicts the same matter but in a
top view. For better illustration we have added an artificial mesh. Its radius
has been widened by one percent.

Visualisation of Results
We employ the standard flow colour-coding [9] for the visualisation of the
computed vector fields. Its purpose is to create a colour image by assigning
every vector a colour from a pre-defined colour disk. The colour associated is
determined by a vector’s angle and its length.

However, it was originally defined for planar vector fields and requires adap-
tation to our particular purpose of tangent vector field visualisation. To this
end, we follow the idea developed in [51] by first projecting each vector to the
plane and then rescaling its length. Let us denote by Px3 : (x1, x2, x3)> 7→
(x1, x2, 0)> the orthogonal projector of R3 onto the x1-x2-plane. For a tangent
vector field v̂ we apply the colour-coding to the planar vector field

‖v̂‖
‖Px3 v̂‖Px3 v̂.

It is constructed so that the length of individual vectors is preserved. Subse-
quently, the obtained colour image is mapped back onto the surface. Clearly,
in the above construction, one has to distinguish the cases where x3 ≥ 0 and
x3 < 0. Moreover, Px3 is required to be injective in either case.

The radius R of the colour disk is chosen to be equal to the longest vector in
the respective vector field we attempt to visualise. Table 7.2 lists all values of
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Figure 7.10 7.11 (a) 7.11 (b) 7.11 (c) 7.11 (d) 7.12 (a) 7.12 (b) 7.12 (c) 7.12 (d)
R 5.18 9.86 5.18 3.64 2.52 9.86 5.18 3.64 2.52

Table 7.2: Radii R of the colour disks used for colour-coded visualisation of
tangent vector fields.

R for the different figures in this section. In Fig. 7.10 we show a colour-coded
tangent vector field together with the colour disk.

For simplicity reasons, for image functions as well as surfaces we plot their
piecewise linear approximations. Moreover, the visualised vector fields are
evaluated at the centroids and result in piecewise constant colour-coded images.

Results
We performed several experiments on said zebrafish microscopy data. In or-
der to obtain an approximation of the evolving surface, we minimised func-
tional (7.46) by solving the optimality conditions (7.48). As mentioned in
Sec. 7.5, approximate cell centres serve as input. The parameter of the Sobolev
space Hs(S) was chosen as s = 3 + ε, where ε = 2.2204 · 10−16 is the machine
precision, cf. also the discussion regarding theoretical requirements in Sec. 7.4.
The regularisation parameter was set to β = 10−4 and the finite-dimensional
subspace was chosen as

Q = span
{
Ỹnj : n = 0, . . . , 30, j = 1, . . . , 2n+ 1

}
.

In the second step, we computed a minimiser of functional (7.35) as outlined
in Sec. 7.4. Here, the finite-dimensional subspace was chosen as

U = span
{

ŷ(i)
nj : n = 1, . . . , 50, j = 1, . . . , 2n+ 1, i = 2, 3

}
.

The linear systems resulting from optimality conditions (7.42) and (7.48)
were solved by means of the General Minimal Residual Method (GMRES) us-
ing an Intel Xeon E5-1620 3.6 GHz workstation equipped with 128 GB RAM.
Solutions to (7.42) and (7.48) converged within 1000 and 100 iterations, re-
spectively, to a relative residual of 10−2. The overall runtime was dominated
by the evaluation of the integrals (7.43), (7.44), and (7.45). In our Matlab
implementation it amounts to several hours. However, the resulting linear sys-
tem can typically be solved within seconds. Both implementation and data are
available on our website.1

Figures 7.8 and 7.9 portray a minimising function of Fβ for frames 70 and
71 of the image sequence. The resulting surface is depicted in Fig. 7.2 and
in Fig. 7.7. Clearly, it reflects the geometry appropriately and contains the
desired cell features, cf. also the unprocessed microscopy data in Fig. 7.1.

In a second step we solved for minimisers of Eα for different values of the
regularisation parameter α. Figure 7.10 depicts the optical flow field for α =
10−1. The tangent vector field is visualised as discussed in Sec. 7.5. Note that
in all figures the colour disk has been scaled for better illustration. In Fig. 7.11,
we illustrate tangent vector fields by means of the colour-coding obtained for
α = 10−2, α = 10−1, α = 1, and α = 10. Finally, in Fig. 7.12 we show the
same results but in a top view.

1http://www.csc.univie.ac.at

http://www.csc.univie.ac.at
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Figure 7.8: Function ρ̃h obtained by minimising Fβ for frames 70 (left) and 71
(right). Colour corresponds to the radius of the fitted surface. S2

h is depicted
in a top view.

7.6 Conclusion

With the goal of efficient cell motion analysis we considered optical flow on
evolving surfaces. As a prototypical example we restricted ourselves to surfaces
parametrised from the round sphere and showed that 4D microscopy data of a
living zebrafish embryo can be faithfully represented in this way. In contrast to
previous works, where only a section of the embryo or a spherical approximation
was considered, our approach fully attributes the geometry and models the
embryo as as closed surface of genus zero. The resulting energy functional was
solved by means of a Galerkin method based on vector spherical harmonics.
Moreover, the parametrisation of the moving sphere-like surface was obtained
from the data by solving a surface interpolation problem. Scalar spherical
harmonics expansion allows to easily meet the smoothness requirements of the
surface. Finally, we conducted several experiments based on said microscopy
data. Our results show that cell motion can be indicated reasonably well by
the proposed approach.
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Appendix

It remains to give the calculations regarding the piecewise linear approxima-
tions of vector spherical harmonics on S2

h. Both equations in Prop. 2 follow
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Figure 7.9: Illustration of the function ρ̃h for frames 70 (left column) and 71
(right column). The bottom row differs from the top row by a rotation of 180
degrees around the x3-axis.

directly by expanding the definitions of the tangential vector spherical harmon-
ics (7.29). For the fist identity, that is (7.51), we have

ỹ(2)
h = λ−1/2

n ∇S2
h
Ỹh = λ−1/2

n

Nh∑
j=1

˜̄Y (vj)∇S2
h
ϕ̃j .

The second identity, that is (7.52), follows by the fact that

2|Ti| = |∂1xi × ∂2xi|, Ñi = ∂1xi × ∂2xi
|∂1xi × ∂2xi|

,
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Figure 7.10: Tangent vector field minimising Eα. Depicted is the colour-coded
optical flow field computed between frames 70 and 71. The right image differs
from the left by a rotation of 180 degrees around the x3-axis.

Figure 7.11: Visualisation of the optical flow field obtained for different values
of α. The bottom row differs from the top view by a rotation of 180 degrees
around the x3-axis. From left to right: a) α = 10−2, b) α = 10−1, c) α = 1,
and d) α = 10.

and by application of the vector triple product rule, yielding

ỹ(3)
h = λ−1/2

n ∇S2
h
Ỹh × Ñi

= λ−1/2
n ∇S2

h
Ỹh ×

∂1xi × ∂2xi
|∂1xi × ∂2xi|

= λ
−1/2
n

2|Ti|
(
(∇S2

h
Ỹh · ∂2xi)∂1xi − (∇S2

h
Ỹh · ∂1xi)∂2xi

)
,

where the last equality results from the definition of the interpolation (7.50) of



7.6 Conclusion 115

Figure 7.12: Top view of the optical flow field computed for different values of
α. From left to right, top to bottom: a) α = 10−2, b) α = 10−1, c) α = 1, and
d) α = 10.

Ỹh and the directional derivative (7.9) on the triangular face, that is

∇S2
h
Ỹh · ∂kxi =

Nh∑
j=1

˜̄Y (vj)∂kϕj .
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Zusammenfassung

Die Bestimmung von Bewegungen in Videos ist ein allgegenwärtiges Ziel im Ge-
biet der mathematischen Bildanalyse und der Computer Vision. Ein zentrales
Anliegen stellt die Berechnung des optischen Flusses in einer Bildsequenz dar.
Dessen erklärtes Ziel ist es, aus Fluktuationen der Bildintensität ein Vektorfeld
zu bestimmen welches die Bewegungen von Objekten in einer aufgenommenen
Szene erfasst.

Üblicherweise wird der optische Fluss in planaren Bildsequenzen bestimmt.
Generalisierungen auf nichteuklidische Räume ermöglichen beispielsweise die
Analyse von Zellbewegungen in Zeitraffer-Mikroskopaufnahmen.

Fluoreszenzmikroskopie erlaubt heutzutage hochauflösende Beobachtungen
von biologischen Modellorganismen wie zum Beispiel dem Zebrafisch. Trotz we-
sentlicher Bedeutung für die Organ- und Gewebebildung ist nur wenig bekannt
hinsichtlich der Bewegungs- und Proliferationsmuster von Zellen während des-
sen frühen Entwicklungsstadiums. Die Beantwortung vieler Fragen bezüglich
dieser Aspekte basiert auf dem Wissen um Zellbewegungen.

Steigende räumliche und zeitliche Auflösung von bildgebenden Verfahren
und die dabei entstehenden beachtlichen Datenmengen machen die manuelle,
von Menschen durchgeführte Bildanalyse, impraktikabel. Automatische Aus-
wertung ist unausweichlich um Zellbewegungen in den oben erwähnten Mi-
kroskopdaten zu verfolgen. Die Bestimmung des optischen Flusses trägt zur
Erforschung von Zellmechanismen und dem dynamischen Verhalten von Zellen
bei und liefert das dazu notwendige quantitative Verfahren.

Die primäre biologische Motivation für diese Dissertation ist der Wunsch,
Zellbewegungen in einem lebenden Zebrafischembryo während dessen Embryo-
genese zu analysieren. Die vorliegenden Bilddaten zeigen endoderme Zellen,
welche mit einem grün fluoreszierenden Protein markiert wurden. Anhand ei-
nes Laser-Scanning-Mikroskops lassen sich vierdimensionale Bildsequenzen von
den markierten Zellen aufnehmen.

Während des frühen Entwicklungsstadiums des Zebrafisches formen endo-
derme Zellen einen sogenannten Monolayer. Dies bedeutet, dass Zellen dieses
Typs nebeneinander auf einer gekrümmten Oberfläche angeordnet sind. Die
wesentliche Idee dieser Dissertation ist es, diesen Umstand zu nützen und diese
Schicht als bewegte zweidimensionale Oberfläche zu modellieren und Zellbewe-
gungen nur bezüglich dieser sich deformierenden Mannigfaltigkeit zu betrach-
ten. Da sich die räumliche Dimension verringert, folgt daraus als Konsequenz
eine Reduzierung der zu untersuchenden Datenmenge und ermöglicht so eine
effiziente Bewegungsanalyse in den obengenannten Bildsequenzen.

In dieser Dissertation formulieren wir die Bestimmung von Zellbewegungen
als Variationsproblem und behandeln den optischen Fluss auf einer bewegten
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128 Zusammenfassung

zweidimensionalen Mannigfaltigkeit. Je nach Wahl der Geometrie liegen ver-
schiedene Approximationen zugrunde.

Im ersten Teil der Arbeit nehmen wir die Oberfläche des Embryos als
veränderlich an und übertragen das (Tikhonov-regularisierte) Horn-Schunck-
Funktional und dessen raumzeitliche Generalisierung von Weickert und Schnörr
auf dieses nichteuklidische und dynamische Szenario.

Im zweiten Teil widmen wir uns der Topologie des Embryos. Zuerst nehmen
wir an, es sei eine statische Kugel und untersuchen verschiedene Zerlegungs-
funktionale für Vektorfelder. Wir orientieren uns an aktuellen Trends in der
Bildzerlegung und ergründen u + v und hierarchische Zerlegungsmodelle für
den optischen Fluss. Die gewählte numerische Optimierungsmethode appro-
ximiert die Lösung in einem endlich-dimensionalen Raum aufgespannt durch
Vektor Spherical Harmonics. Daraus ergibt sich der Vorteil großer Flexibilität
bezüglich der Regularisierungsfunktionale und eine automatische Helmholtz-
Zerlegung des Flussfelds.

Ferner widmen wir uns der genaueren geometrischen Modellierung des Ze-
brafischembryos. Wir betrachten diesen als sphärenähnliche Oberfläche, die
sich im Laufe der Entwicklung des Embryos verformt. Zu diesem Zwecke er-
weitern wir das Optische-Fluss-Funktional von Lefèvre und Baillet um das
Szenario einer veränderlichen sphärenähnlichen Mannigfaltigkeit. Das Variati-
onsproblem lösen wir anhand einer Galerkinmethode basierend auf tangentia-
ler Vector Spherical Harmonics. Um die sphärenähnliche Oberfläche aus den
Mikroskopiedaten zu bestimmen, formulieren wir dieses Problem ebenfalls als
Variationsproblem und lösen dieses mittels Expansion in skalaren Spherical
Harmonics.

Schlussendlich präsentieren wir numerische Ergebnisse basierend auf den
obengenannten Zellmikroskopiedaten eines lebenden Zebrafischembryos und
veranschaulichen diese mit adäquaten Visualisierungsmethoden.
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