DISSERTATION

Titel der Dissertation
„Synthesis of Novel Antimalarials"
verfasst von
Christian Dank, BSc, MSc
angestrebter akademischer Grad
Doktor der Naturwissenschaften (Dr. rer. nat.)

Wien, 2015

Studienkennzahl It. Studienblatt: A 796605419
Dissertationsgebiet It. Studienblatt: Chemie
Betreuer:

Danksagung

An erster Stelle möchte ich Dr. Hubert Gstach dafür danken, dass er mir diese schöne Arbeit ermöglicht hat und dass er mir täglich seinen unvergleichlichen Erfahrungsschatz sowie seine private Laborausrüstung zur Verfügung gestellt hat. Mit seinem unersättlichen Forschergeist wird er mir immer ein Vorbild sein!

Großer Dank gilt Prof. Walther Schmid, unter dessen Ägide diese Arbeit entstand. Für die Bereitstellung des schönsten Labors der Welt (Institut für Medizinische Chemie in der Währingerstraße 10, mit Ausblick auf die altehrwürdige Votivkirche) möchte ich mich bei Prof. Herbert Stangl bedanken. Eine solche Kulisse ist wahrlich kreativitätsfördernd. Darüber hinaus ist es ein Leichtes, mit bereichernden Kollegen wie Richard Wurzer BSc seine Forschung voranzutreiben.

Für das Starten dieses Projekts, an dem ich teilhaben durfte, möchte ich mich bei Prof. Peter Chiba und allen anderen involvierten Personen bedanken. Besonders hervorheben möchte ich dabei Matthias Mastalir MSc, der die meisten Verbindungen, die im Teil Preliminary Data aufgeführt sind, synthetisiert hat.

Ergebenst danke ich den Mitarbeiterlnnen unseres industriellen Kooperationspartners, der Marinomed Biotechnologie GmbH, darunter vor allem Dr. Andreas Grassauer, Dr. Eva Prieschl-Grassauer, Dr. Jan-Marcus Seifert, Dr. Martina Morokutti-Kurz, Franz Amberger sowie Tom Szewczyk.

Maßgeblich zur guten Atmosphäre am Institut und am Mittagstisch beigetragen haben die KollegInnen Dr. Hannes Steinkellner, Mag. Matthias Spork, Dr. Stefanie Fruhwürth, Dr. Yaprak Dönmez und natürlich unsere kommunikationskompetente und hinterfragende Labornachbarin Dr. Monika Praschberger.

Für Messungen am Chemischen Institut bin ich Dr. Hanspeter Kählig, Ing. Susanne Felsinger, Ing. Elena Macoratti, Prof. Eberhard Lorbeer und Dipl Ing. Alexander Roller zu großem Dank verpflichtet. Auch den ehemaligen Arbeitsgruppen Dr. Uwe Rinner und Prof. Johann Mulzer bin ich immer noch sehr dankbar für die einmalige Schule, die ich in diese Arbeit einfließen lassen konnte. Bei Simon Baldauf MSc, Dr. Martin Ariger und Dr. Martin Himmelbauer möchte ich mich darüber hinaus für die Abschiedsgeschenke bedanken.

Ich danke meinen Bandkollegen und Freunden von „Ramazuri" (Helmut Barillari, Michael Barillari, Roland Gager, Sandro Kallinger, Philipp Kogler und Martin Liebentritt) für die schönen und produktiven Ablenkungen (Proben, Konzertreisen, CD-Aufnahmen) von meiner Arbeit. Diese Band begleitet mich schon fast mein halbes Leben, aus diesem Grund könnte ich das mit der Ablenkung fast umgekehrt formulieren.

Für Stimmungshochs und -tiefs, die teilweise wochenweise Periodizität hatten, möchte ich mich bei den Spielern und den Verantwortlichen des Fußballvereins „SK Rapid Wien" bedanken. Das Leid, das durch die Tiefs hervorgerufen wurde, wurde glücklicherweise innerhalb des Fanklubs „PID-Freunde des Spaßes" auf mehrere Schultern verteilt - danke dafür an die treuesten Freunde: Johannes Strehn, Armin Heinrich, Jakob Schnabl, Daniel Reisner, Ronald Heinrich, Georg Wind und Andreas Polt.

Besonders danken möchte ich den lieben Menschen, die mir das Abfüllen von Getränken im Zuge des „Big Frankies-Projects" ermöglicht haben: Georg Wind, Andreas Polt, Paul Wagner und Rainer Haspel. Gleichermaßen danke ich den „Waschbärn 04" für die schönen Jahre, die ich als Teil dieses Freizeitvereins erlebt habe.

Meinen Eltern, Isabella Appel und Gerhard Dank, und meiner Schwester Pia Milena Dank danke ich für einfach alles, das sie jemals für mich gemacht haben. Einen besseren Rückhalt kann man sich nicht wünschen. Dasselbe gilt für meine ganze Familie. Traurigerweise muss ich hier meinen Opa, Andreas Appel, und meinen Onkel, Josef „Pepi" Dank, hervorheben, die die Fertigstellung dieser Arbeit leider nicht mehr erleben durften.

Ganz besonders möchte ich mich bei meiner Freundin Birgit Koch bedanken, die ein beispielloser Beistand in allen Lebenslagen ist.

Table of Contents

ABBREVIATIONS 7

1. GENERAL PART 9
1.1 Malaria 9
1.1.1 Pathogenesis 9
1.1.2 Symptoms and Pathogens 12
1.1.3 Epidemiology 13
1.1.4 History 15
1.2 The Fight Against Malaria 21
1.2.1 Prevention by Insect Control 21
1.2.2 Medications 24
1.3 AMBITION 36
2. RESULTS AND DISCUSSION 38
2.1 SYNTHESIS 38
2.1.1 Retrosynthetic Analysis 38
2.1.2 Synthesis of Salicylanilides 38
2.1.3 Synthesis of Epoxide Compounds 40
2.1.4 Synthesis of Target Molecules 40
2.1.5 Stereochemical Investigations 42
2.2 Structure Activity Relationship Analysis 47
2.2.1 Preliminary Data 83
2.2.2 Data Collected During Thesis 91
2.2.3 Conclusions from SAR 110
2.3 Analysis of Data from Animal Experiments 112
2.4 Other Biological Data 120
2.5 Structural Elucidation 129
3. CONCLUSION 149
4. EXPERIMENTAL PART 151
4.1 General Information 151
4.1.1 Materials and Methods 151
4.1.2 Reaction Monitoring and Purification of Compounds 151
4.1.3 Analytical Characterization 151
4.1.4 Biological Data 154
4.2 General Procedures 157
4.3 Syntheses 160
4.3.1 Anilides 160
4.3.2 Epoxides 185
4.3.3 Final Compounds 225
4.3.4 Additions 344
4.4 SPECTRA 347
4.4.1 Anilides 347
4.4.2 Epoxides 379
4.4.3 Final Compounds 439
4.4.4 Additions 568
4.5 Chiral HPLC 572
4.6 NMR Simulation 576
4.7 Crystallographic Data 579
APPENDIX 582
REFERENCES 583
CURRICULUM VITAE 593
ABSTRACT 595
ZUSAMMENFASSUNG 596

Abbreviations

ACT	artemisinin-based combination therapy
CAS	Chemical Abstracts Service
CAS RN	CAS Registry Number
COSY	correlation spectroscopy
CRT	chloroquine-resistance-transporter
CSP	circumsporozoite protein
d	days
DCC	N, N '-dicyclohexylcarbodiimide
DCM	dichloromethane
DDT	dichlorodiphenyltrichloroethane
DEET	N, N-diethyl-m-toluamide
DHPS	dihydropteroate synthetase
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
ee	enantiomeric excess
er	enantiomeric ratio
ESI	electrospray ionization
FACS	fluorescence-activated cell sorting
FBS	fetal bovine serum
FQ	ferroquine
G6PD	glucose-6-phosphate dehydrogenase
GFP	green fluorescent protein
h	hours
HATU	1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluoro phosphate
hERG	human Ether-à-go-go-Related Gene
HMBC	heteronuclear multiple bond correlation
HOBt	Hydroxybenzotriazole
HPLC	high-performance liquid chromatography
HRMS	high resolution mass spectra
HSPGs	heparan sulfate proteoglycans
HSQC	heteronuclear single quantum coherence
Hz	Hertz
i.p.	intraperitoneal injection
IC_{50}	half maximal inhibitory concentration
IPA	isopropyl alcohol
IRS	indoor residual spraying
ITN	Insecticide-treated bed nets
LCMS	liquid chromatography-mass spectrometry
MDR	multi drug resistance
MHz	Megahertz
min	minutes
mp	melting point

MPLC	middle pressure chromatography
NADPH	nicotinamide adenine dinucleotide phosphate
NMR	nuclear magnetic resonance
NMRI	Naval Medical Research Institute
NOESY	Nuclear Overhauser Enhancement and Exchange Spectroscopy
p.o.	peros (oral administration)
PART	presumptive anti-relapse therapy
PQP	piperaquine phosphate
PV	parasitophorous vacuole
RBC	red blood cell
RDT	rapid diagnosis test
RMS	root mean square
RNA	ribonucleic acid
Swiss	
TPH	Swiss Tropical and Public Health Institute
TLC	thin-layer chromatography
TOF	time-of-flight
TRAP	thrombospondin-related adhesive/anonymous protein
UV	ultraviolet
WHO	World Health Organization

1. General Part

1.1 Malaria

Although the global malaria map has been shrinking over the past decades, today 3.4 billion people worldwide are estimated to be at risk of malaria. ${ }^{1}$ This makes up 48% of the world's population (7.137 billion in mid-2013) ${ }^{2}$, therefore malaria is one of the world's most widespread infectious diseases. ${ }^{3}$

The species of parasite that affect humans all belong to the genus Plasmodium: P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. Plasmodium falciparum, which is beside P. vivax the most important species, is the most deadly form, and it is predominant in Africa. ${ }^{1}$

Access to affordable and effective medicines would be a giant leap in the global fight against malaria. The resistance against chloroquine, the traditional treatment, brought the at least ten times more costly artemisinins to the scene. ${ }^{4}$ The increase of international disbursements to malaria-endemic countries from less than 100 million US \$ in 2000 to nearly 2 billion US \$ in 2013 moved malaria again to the spotlight. The contributions towards the fight against malaria with growth of research groups and scientific publications focused on antimalarial chemotherapy caused that malaria is no longer regarded as neglected tropical disease. ${ }^{5}$

1.1.1 Pathogenesis

The infection of a mammalian host starts by introduction of Plasmodium sporozoites into the skin. The sporozoites are present in the salivary glands of infected female Anopheles mosquitoes. A study published in 2007 showed in a model system that the majority of the infective sporozoites are at the injection site for hours and are slowly released into the circulation. Until then, it was considered that sporozoites immediately enter the circulation to enter hepatocytes, their unique target cell. The migration of the sporozoites from the infection site to the liver may take from 15 minutes to a few hours. It is suggested that not every infectious mosquito bite results in a patent blood stage infection, which leads to the assumption that a change of the host must constitute a bottleneck of the Plasmodium life cycle. ${ }^{6-9}$

Sporozoites movement occurs via gliding motility, which is made possible by the actomyosin motor of the parasite. ${ }^{8,10,11}$ The transmembrane protein TRAP and related proteins mediate this form of substrate dependent locomotion. Sporozoites enter and leave cells by breaching their plasma membrane. ${ }^{8,12}$ It was observed that rapid repair occurred after breaching the plasma membranes of host cells. The cytosols of several cells are traversed by sporozoites, before invading a hepatocyte. ${ }^{13}$

Once, sporozoites entered the blood circulation they rapidly head to the liver. It has been shown that interactions of the circumsporozoite protein (CSP), which is the major surface protein of sporozoites, with heparan sulfate proteoglycans (HSPGs), present on liver cells, is responsible for recognition and strong adhesion. ${ }^{14-17}$ The transition through the sinusoidal barrier, possibly leads through Kupffer cells (liver resident macrophages). Then, sporozoites switch from the cell traversal phenotype to productive invasion phenotype. ${ }^{16,18}$ This culminates in formation of a parasitophorous vacuole (PV), in which sporozoites develop into the next infective stage. It may be essential for completion of the life cycle that sporozoites must traverse several hepatocytes before forming the PV. ${ }^{13}$

The formation of the parasitophorous vacuole starts by constructing an intimate junction, by which the parasite finds its way to an invagination of the cell plasma membrane. Rapid remodeling of the host cell membrane by insertion of parasite proteins generates the membrane of the parasitophorous vacuole. ${ }^{8}$ After productive invasion, Plasmodium sporozoites carry out an act of development and replication, by multiple rounds of nuclear divisions and segmentation, generating thousands of morozoites. This conversion is known as schizogony. Merozoites are contained in the membrane of the PV until they are released into the bloodstream to initiate the blood stage cycle. ${ }^{8,16}$ It has been shown that manipulation of the host cells by the liver-stage parasites ensures migration of parasites into the blood stream and their protection from host immunity. Parasites induce the death and the detachments of their host liver-cell generating merosomes, parasite filled vesicles. These vesicles aid the parasite to safely pass the liver resident immune cells (Kupffer cells). ${ }^{6,19,20}$

A complicated process takes place when merozoites invade erythrocytes. First, recognition and reversible attachment of the merozoite to the membrane happens. Then, after orientation of the apical end of the merozoite towards the surface of the erythrocyte, an irreversible junction is formed. Simultaneous to the formation of a vacuole, invagination of the erythrocyte membrane by movement of the junction happens. This is accompanied by re-
moving the surface coat of the merozoite and resealing of the PV and the erythrocyte membranes, which concludes the invasion procedure. Then asexual division inside the erythrocytes starts and parasites develop therein. The earliest stage is the ring form with its eponymous morphology. Digestion of hemoglobin leads to formation of hemozoin (malaria pigment), a crystalline substance stored in the food vacuole, by polymerization of heme. "Trophozoite" is the term used for the intraerythrocytic growth phase. The final stage is the schizont. Each schizont releases between 16 and 32 merozoites, initiating a new erythrocytic infection cycle within seconds after release, upon rupture of the red blood cell (RBC). ${ }^{6,8,16,21}$

In a cycle of 48 to 72 hours parasites multiply and grow within RBCs, until these burst. Rupture sets free new parasites starting over the cycle again. Destruction of the host cells leads to fever, the guiding symptom of malaria. Increase of the body temperature is triggered by the release of cell components. In this context, glycosylphosphatidylinositol plays a special role, due to its similarity to bacterial antigens. Thereby, a massive fever reaction of the human organism is provoked. ${ }^{22}$

Instead of generating new invasive stages, some merozoites develop into gametocytes after seven to fifteen days for Plasmodium falciparum after starting the initial asexual cycle. This is where the sexual stage of malaria starts. The goal of the Plasmodium parasite is that a constant supply of mature male and female gametocytes, which develop over five stages ${ }^{23}$, is available in mammalian host for uptake by a female Anopheles mosquito. ${ }^{8,24-26}$

When gametocytes reach their destination, they are transformed into gametes and egress out of erythrocytes, triggered by encounter of new compounds (xanthurenic acid, etc.) and an abrupt drop in temperature. Male gametocytes transform into eight highly motile gametes. This flagellar movement through blood was observed by Laveran (see section "1.1.4 History" starting on p .15) which led to the discovery that Plasmodium parasites cause malaria. A diploid zygote is formed upon fertilization of female gametes. A zygote develops further to an ookinete, which penetrates the wall of a cell in the midgut of an Anopheles mosquito, where it evolves to the next stage: an oocyst. Sporozoites are produced within the oocyst until it ruptures to release the sporozoites, which then migrate to the salivary glands of the female Anopheles mosquito, to be transmitted to another mammalian host in the occasion of a blood meal. ${ }^{6,8}$

1.1.2 Symptoms and Pathogens

The first clinical symptoms of a malaria infection occur with the beginning of the erythrocytic phase. People suffer from high fever, cough, respiratory distress, shivering, headache, pain in the limbs, convulsions, nausea, vomiting and diarrhea. Often, a malaria infection is confused with a viral infection, due to similar indications. ${ }^{27}$ Typically, fever attacks return regularly, due to synchronous asexual multiplication cycles (blood schizogony), and anemia may occur in severe cases of malaria. ${ }^{6}$

Malaria tertiana, which is caused by Plasmodium ovale and P. vivax, fever attacks return every 48 hours. P. malariae causes malaria quartana which returns in 72 hour rhythms. P. knowlesi is often misdiagnosed as P. malariae, due to morphological similarities. ${ }^{28,29}$ Malaria tropica, which is caused by Plasmodium falciparum, occurs in irregular intervals. ${ }^{6,22}$ This species is responsible for the most cases and deaths of malaria. Malaria tropica is the most aggressive type of malaria and may even lead to death. An adhesion protein (PfEMP1) mediates parasite binding to various receptors. It is expressed at the surface of infected erythrocytes. ${ }^{30}$ With the adhesion protein on the surface, infected erythrocytes can bind to endothelium of various organs. Parasites are sequestered by themselves in several organs such as heart, lung, brain, liver, kidney, subcutaneous tissues and placenta. It is supposed that sequestration in the brain is associated to fatal cerebral malaria. ${ }^{21,31}$

Malaria is critical to pregnant women. It may cause premature birth or abortion, also maternal death is more likely. The probability for pregnant women to suffer from a severe case of malaria is three times higher compared to non-pregnant women. Severe cases of anemia are common, because the lack of iron and folic acid aggravates the infection. ${ }^{32,33}$

Although P. falciparum infections result in the most deaths, P. vivax is also sometimes complicated and life-threatening. ${ }^{34-36}$ The global economic damage caused by P. vivax is believed to be up to four billion dollars per year. Because the burden of P. vivax, which is sometimes even called benign, is often underestimated, sometimes it is called a neglected disease. ${ }^{37,38}$
P. vivax and P. ovale infections also have an additional feature. In the human liver, hypnozoites are formed, which are in a state of quiescence. These hypnozoites may resume their development to mature schizonts in the liver after a long time, from months up to years after the infection. This means that cycles can start over and over once a human is infected with P. vivax or P. ovale. ${ }^{39-41}$ This was discovered only in $1980 .{ }^{42}$

1.1.3 Epidemiology

Currently, malaria transmission is ongoing in 97 countries and territories. Seven countries are in the prevention of reintroduction phase. In total this sums up to 104 countries and territories in which malaria is presently considered endemic, a map is shown in Figure 1^{43}. Globally, 3.4 billion people are estimated to be at risk of malaria. WHO estimates that 207 million cases of malaria occurred globally in 2012 and 627,000 deaths. Africa is worst affected with 80% of all cases and 90% of all global deaths caused by malaria. The disease is most fatal to children under 5 years of age, with 77% of all global deaths. ${ }^{1}$

Figure 1. Percentage of Population at risk; Population at risk (High+Low): High=population living in areas (reported malaria incidence ≥ 1 per 1000/year) defined at administrative level 2 or lower. Low=population living in areas (reported malaria incidence < 1 per 1000/year). The map was created by the Medicines for Malaria Venture and the WHO Global Malaria Programme based on relevant data from the WHO World Malaria Report 2013. ${ }^{43}$

In West Africa, a region with intense transmission, P. falciparum is predominant. Except for Algeria, where also infections caused by P. vivax are reported. P. vivax is the only parasite species in West Africa. The populations of 15 of the 17 countries in this region are considered at high risk for malaria. In Central Africa also P. falciparum is predominant. In southern African countries with low transmission (Botswana, Namibia, South Africa, Swaziland and Zimbabwe) 80% of the population, about 55 million people, live in areas free of malaria. Nearly all of the reported cases are caused by P. falciparum, but transmission is highly sea-
sonal. In the rest of Africa (East Africa and southern African countries with high transmission) also P. falciparum is the only one parasite species, with the exception of Ethiopia and Eritrea where 45% of the reported cases are due to P. vivax infections. ${ }^{1}$

In both American continents P. falciparum caused less than 30% of all cases, and the disease is focused on very few countries. In 2012, 52% of all cases in this region were reported in Brazil. In this region substantial progress was observed over the past decade, emphasized through the decrease of reported malaria cases from 1.1 million in 2000 to 469,000 in $2012 .{ }^{1}$

In the eastern Mediterranean region high malaria transmission is still ongoing in areas of Afghanistan, Djibouti, Pakistan, Somalia, South Sudan, Sudan and Yemen. In Iran, Iraq and Saudi Arabia malaria case incidences were reduced by more than 75% between 2000 and 2012. The United Arab Emirates and Morocco are certified as malaria free since 2007 and 2010, respectively. Like Iraq, the Syrian Arab Republic, Oman and Egypt are in the prevention of re-introduction phase; Iran and Saudi Arabia are in the elimination phase. Except for Afghanistan, Iran and Pakistan where P. vivax is the dominant malaria species, also P. falciparum is predominant in the eastern Mediterranean region. ${ }^{1}$

In Azerbaijan, Georgia, Kyrgyzstan, Tajikistan, Turkey and Uzbekistan only 235 cases of malaria were reported in 2012. In contrast, 33,400 cases were reported in 2000. Interestingly these countries are termed as "European Region" by the WHO. ${ }^{1}$

One billion people are at high risk of malaria in the Southeastern Asian region, and another 1.6 billion people are at some risk. Except for Sri Lanka and Nepal where the most reported cases are due to P. vivax, P. falciparum is the predominant species of all malaria parasites in this region. Also in this region a decrease of reported cases was observed from the year 2000 (2.9 million) to the year 2012 (2 million). In the Western Pacific region, Papua New Guinea achieved the slowest decrease of malaria transmission since 2000. Unfortunately this is the country with the most reported cases and deaths of this region. ${ }^{1}$

In countries where malaria is eradicated, cases of reimported malaria occur as result of extensive travelling and temporary residence in places where malaria is endemic. Therefore, the possibility of malaria should be considered by physicians whenever a patient, who has recently been in malaria endemic areas, suffers from a febrile illness. ${ }^{27,44}$ Between 1990 and 2000, 924 travel related cases of malaria were reported in Austria. ${ }^{45}$ During the subsequent decade, this number decreased to 615 malaria cases which were reported to federal agen-
cies in Austria. ${ }^{46}$ Currently, malaria prophylaxis recommendations for travellers in Europe are inhomogeneous as are the opinions of experts. ${ }^{47}$ Recommendations regard preventive behavior, which includes the use of bed nets and repellents, chemoprophylaxis and, depending on the circumstances, stand-by emergency treatment. ${ }^{48}$

However, also in Austria Anopheles mosquitoes are endemic, therefore sporadic autochthonous malaria cases cannot be ruled out. Nevertheless, repatriation is hardly probable due to the fact that the Austrian health care system is covering all areas and social classes. Thus, an insufficient amount of gametocyte carriers would be available to keep up the parasite's life cycle. ${ }^{49}$

1.1.4 History

Malaria is accompanying mankind since the Neolithic Revolution, when humans became sedentary. Agriculture needed irrigation, which created suitable breeding places for malaria vectors. Advanced civilizations suffered from infectious diseases during warm periods in the valleys of the rivers Nile, Euphrates, Yellow River and Ganges. ${ }^{50}$ The oldest archaeological finds containing ancient DNA of P. falciparum are mummies from the period of 3,500-1,600 BC. ${ }^{51,52}$ DNA of P. falciparum was also found in Tutankhamun and his ancestors. ${ }^{53}$ It was also discussed if Tutankhamun died because of malaria, sickle cell disease or Gaucher's disease. ${ }^{54}$ Also, the bible passage "Then it happened that night that the angel of the Lord went out and struck 185,000 in the camp of the Assyrians; and when men rose early in the morning, behold, all of them were dead." (2 Kings 19:35), which reports the death of many soldiers in King Sanherib's army, is connected to malaria. Today it is assumed that the soldiers were infected with malaria in the deep and hot Jordan Valley, and that the outbreak came after the ascent of about $1,200 \mathrm{~m}$ to the cool mountain village of Jerusalem. ${ }^{50}$

Herodotus (484-425 BC), a Greek historian, reported that builders of the Egypt pyramids protected themselves from diseases of all kind by consumption of garlic (Allium sativum). It is assumed that the construction of this admired wonder of the world could not have been built without malaria control. Allicin (1), see Figure 2, an organosulfur compound found in garlic, has an insect-repellent effect, which is not yet shown for garlic consumption. ${ }^{55}$ Furthermore, Herodotus made an interesting observation during his Egypt journey. He stated that that people living in the Nile Delta lived in elevated dwellings and slept under fishing nets it to keep out insects. ${ }^{56}$

Figure 2. Historically relevant compounds.
Before malaria transmission was elucidated, people thought that infectious diseases were caused by miasma. This term was coined by Hippocrates of Cos ($\sim 460-377 \mathrm{BC}$), who described it as gaseous substance, caused by rottenness and decomposition, spreading over the air and causing illness. It was considered that infections were not passed from individuals to each other, but that the origin of the miasmata is soil. Hippocrates blamed the mias$m a$ of the swamps for the regular returning fevers that epidemically killed people. Therefore, he recommended not to settle in swampy areas or to drain swamps. ${ }^{57}$ It was also Hippocrates who established the expressions "tertian fever" (tritaios pyretos, febris tertiana) and "quartan fever" (tetartaios pyretos, febris quartana). ${ }^{50}$

At least since 200 BC malaria was endemic in the Campagna, a region surrounding Rome. The importance of malaria in Italy grew until 1,000 AD. The death of the Roman Emperor Titus (81 AD) is also suspected to be caused by a malaria infection. ${ }^{50}$

When Attila the Hun led his army through Northern Italy, refugees built pile dwellings for protection in a saltwater lagoon. This habitation remained generally free of malaria, because local Anopheles mosquitoes do not lay their eggs in saltwater, and the distance between coast and habitation was beyond the action scope of the mosquitoes. The habitation developed to the beautiful trade city Venice, and Attila backed out with an army harassed by malaria to their Asian homeland. ${ }^{50}$

America was free of malaria until 1,500 AD, when European conquerors and conquistadores came, and with them their African slaves. From the local population Spanish missionaries learnt about remedies. Especially the bark of the cinchona, growing in the high forests of the Andes Mountains at 1,200-2,700 m above sea level from Bolivia to Venezuela, was of huge interest. Quinine (2, shown in Figure 2), the active agent of the bark, has a relaxing effect on muscular system and was used to treat muscle tremors in the colds of high mountains. The Jesuit brother Agostino Salumbrino (1561-1642), who also was pharmacist, learned about
the application of cinchona bark from the Quechua people in Lima. The Jesuit Order propagated the use of the bark in Europe since 1632, but because of nondisclosure reasons it was imported as powder and labeled "Jesuit's Powder". Certainly, this label was not welcome in all parts of Europe due to religious conflicts. Oliver Cromwell, the leader of the English Protestants, died 1658 on a malaria infection because he refused the treatment with "Jesuit's Powder". His successor, King Charles II, was successfully treated with quinine (2), in secret, in 1678 or $1679 .{ }^{50,58}$ It was Sir Robert Talbor who cured the English King. Later he travelled through Europe curing hundreds of royal and aristocratic persons. Among them was the son of Louis XIV, which provided him the additional title of Chevalier Talbot, and Louisa Maria, the Queen of Spain.

There are several different opinions about who used the term "malaria" for the first time. For sure it can be translated to "bad air" from Italian or Latin. In some references Francesco Torti ${ }^{57}$ (1658-1741), an Italian physician, is considered as neoterist. But the term was used long before Torti by Leonardo Bruni ${ }^{50}$ in the year 1476, and Cornaro ${ }^{56}$ 1440. But without any doubt, the publication of the opus "Therapeutice Specialis ad Febres Periodicas Perniciosas" in 1712 was Torti's merit. This document was highly popular and prerequisite for the prevalence of cinchona therapies. Giovanni Maria Lancisi, a coeval of Torti, described blackbrownish deposits in the spleen and brain of malaria patients. Lancisi is believed to be the founder of modern hygiene. Black brownish pigments also occurred to the German physician Heinrich Meckel in 1847 during the autopsy of a mentally disordered patient. He did not associate the pigment with malaria, two years later Virchow correctly associated the pigment with hematin crystals. ${ }^{50}$ Now we know that this brown pigment is a product of the digestion of hemoglobin and is produced through biocrystallization by the malaria parasite. ${ }^{59}$ The brown pigment (hemozoin) in organs at autopsy is a strong indicator of malarial infection. ${ }^{60}$

Modern malaria therapy started in 1820, when Pelletier and Caventou successfully isolated quinine (2), the most important alkaloid in cinchona bark. ${ }^{61,62}$ This allowed correct dosage. Before 1820, dried cinchona bark was powdered and mixed with wine before it was drunk. Very often therapeutic effects were not observed due to wrong dosage. ${ }^{50}$ The export of cinchona plants and seeds was then forbidden under death penalty by South American governments to maintain the monopoly on cinchona bark. Despite the risk, the English adventurer Charles Ledger smuggled 14 pounds of cinchona seed to England. In the end, he sold the seeds to the Dutch in 1865, which were planted in Java later. ${ }^{63}$ Through reckless exploi-
tation in the South American Andes Mountains, then the Netherlands had the monopoly on quinine (2) at the end of the $19^{\text {th }}$ century. ${ }^{64}$

Quinine (2) extraction from cinchona bark was expensive, so a cheap synthesis became an attractive task for ambitious chemists. In 1856, when William H. Perkin tried to synthesize Quinine he unfortunately did not reach his initial goal, instead he synthesized mauveine (the first organic chemical dye), which started a veritable industrial revolution. ${ }^{64,65}$ The first synthetic antimalarial was methylene blue (3), which cured two malaria patients in Berlin, is shown in Figure 2. Although it never could challenge the dominant position of quinine (2), methylene blue is currently experiencing a renaissance and is, besides therapy, of importance for the fight on malaria as ingredient of Giemsa stain, used for histopathological diagnosis of malaria. This standard method is nowadays more and more replaced by "Rapid Diagnosis Test" (RDT). ${ }^{50,66}$ The first total synthesis of quinine (2), which was not economical due to its complexity, succeeded in 1944. In fact it was only a formal synthesis, because Woodward and Doering described the synthesis of d-quinotoxine (4), which was converted before to quinine (2) by Rabe and Kindler in 1918. ${ }^{50,65}$ The schematic conversion, which was performed within 3 steps under formation of various side products, is shown in Scheme 1.

Scheme 1. Conversion of 4 to quinine (2).
The presence of parasites in the blood of malaria patients was discovered in 1880^{50} by the French army surgeon Charles Louis Alphonse Laveran. It was Ronald Ross reporting mosquitoes to transmit malaria. ${ }^{6}$ Laveran and Ross were awarded Nobel Prizes in 1907 and 1902, respectively. Giovanni Batista Grassi was the first to report the complete life cycle of P. falciparum in 1989, and to specify the term mosquitoes to female Anopheles, which are the only kind of mosquitoes to infect humans with malaria. There was a huge controversial between Ross and Grassi with Robert Koch interfering, with the more favorable outcome for Ross receiving the Nobel Prize alone. ${ }^{50,67,68}$ Between 1885 and 1892, Camillo Golgi, who received a

Nobel Prize in 1906, fought the common idea that malaria was caused by a bacterium and found that different species of Plasmodium caused different types of malarial fevers. He also stated that rupture and release of merozoites into the bloodstream coincided with the paroxysm of fever. ${ }^{60,69,70}$

chloroquine
6

Figure 3. Approved 4-Aminoquinolines.
The development of synthetic antimalarials was considered as strategic necessity in times of war by developed countries in the beginning of the $20^{\text {th }}$ century. In the Bayer research laboratory in Elberfeld, a municipal subdivision of the German city of Wuppertal, the workgroup of Fritz Mietzsch synthesized atabrine (5), which was shown by Walter Kikuth to be a promising malaria therapeutic. It entered the market as first full-value alternative to quinine (2) in 1932. Remarkably, the German antimalarial atabrine (5) had a huge contribution in the victory of the Allied over Japan in World War II. In 1934, Hans Andersag synthesized chloroquine (6 , in first place he called it "resochin"), which has a quinoline ring instead of the acridine ring in atabrine (5). Chloroquine (6) was erroneously considered as too toxic, which delayed the use by many years. ${ }^{71}$ During the African Campaign, sontochin (7) was used by German Wehrmacht, because it was believed to be less toxic than resochin (6). Hermann Göring may have profited of sontochin (7), because it is believed that he was the only patent proprietor. ${ }^{50}$ In 1945 chloroquine (6) was introduced onto the market by American partners of IG-Farben, which was only known as "Resochin" until then.

artemisinin
8

DDT 9

Figure 4. Important compounds in the second half of the $\mathbf{2 0}{ }^{\text {th }}$ century.

Another natural remedy for malaria was found in the traditional Chinese medicine. At the time of the Vietnam War, the Chinese government initiated a revival of traditional treatments. In 1972 old manuscripts were found, in which for the first time the medicinal plant "quing-hao" (Artemisia, wormwood) is mentioned. According to Ge Hong (284-343), the extract of the plant was obtained by neutral extraction from dry plants at mild heat and drunk without further treatment. Of nearly 400 species of Artemisia, only Artemisia annua, A. apiacea, and A. lancea are known to produce the active antimalarial compound artemisinin (8 , "qinghaosu"). ${ }^{50,72}$ Today, artemisinin (8) is mainly produced in semisynthetic manner starting from a precursor produced by yeast cells. Sanofi planned to produce 50-60 tons of artemisinin in 2014. ${ }^{26,73,74}$

As a result of changes in agricultural practices, land use and house construction and some targeted vector control, malaria was eliminated in the mid of the $20^{\text {th }}$ century from most of Europe and the United States of America. A global eradication program initiated by the development of the highly active residual insecticide DDT (9) in the 1950s and 1960s showed only temporary successes in many countries such as India, Sri Lanka and the Soviet Union. These successes were not permanent, because of the appearance of resistances to DDT (9), the denial of repeated spraying in some communities and the high costs of the program. ${ }^{75}$ The disappearance of malaria from most of Europe and North America led to a loss of interest in drug development for the next 25 years. This is emphasized by the fact that only 3 of 1,223 new drugs that were developed from 1975 to 1996 were antimalarials. ${ }^{76}$

1.2 The Fight Against Malaria

1.2.1 Prevention by Insect Control

Vector control is defined as one of four basic and most effective measures by the WHO. Primarily, vector control is carried out by usage of Insecticide-treated bed nets (ITNs) and Indoor residual spraying (IRS). The extensive use of chemical insecticides began in the 1940s. Organochlorines, organophosphates, carbamates and pyrethroids are compound classes of historically important insecticides. ${ }^{77,78}$

In sub-Saharan Africa, where most of the world's malaria burden occurs, endemic mosquitoes are highly specialized and almost rely on humans (Anopheles funestus and An. gambiae) or humans and their cattle (An. arabiensis). The required malaria transmission level to maintain populations of P. falciparum is exceeded 10,000 times by these exceptional vectors. ${ }^{79}$

Through the use of ITNs and IRS, transmission suppression by two orders of magnitude can be achieved. These methods, however, can rarely contribute towards elimination, since vectors also feed outdoors or upon cattle. Thereby they evade contact with insecticides. Nevertheless, there are some other species of Anopheles mosquitoes that actually were completely eliminated in some areas for some time. For instance, An. funestus disappeared from an area in Tanzania as a result of three years of IRS with dieldrin (10), which is shown with other synthetic insecticides in Figure 5. It took the species five years after the IRS was stopped to re-establish itself in the area. Notably, the speed of the re-appearance indicated that An. funestus was completely gone. ${ }^{79}$ Also An. sinensis, the major malaria vector in China and other countries in Southeast Asia, were reported to possess high levels of resistance against deltamethrin (11), a nonvolatile pyrethroid, in China and Korea. ${ }^{77}$ Pyrethroids are shown in Figure 6.

The same species was also rendered extinct in South Africa by IRS with DDT (9). It remained absent for four decades, and returned when DDT (9) was replaced by pyrethroids. ${ }^{79}$

Spraying DDT (9), which was subject of the Nobel Prize in 1948, is conversely discussed, due to concerns regarding environment and health. Despite these concerns DDT (9) was reported to be used in six African countries as residual spray in 2013. ${ }^{1,80,81}$

dieldrin
10

diethyltouamide
12

icaridin 13

EBAAP
14

dimethyl phthalate
15

Figure 5. Synthetic insecticides.
Originally, N, N-diethyl-m-toluamide (12, DEET) was designed for soldiers of the US-Army. It developed to today's gold standard of repellents. It is estimated that about 200 million people use DEET (12) per year. ${ }^{82,83}$

The organic compounds that are part of pyrethrum, which is a natural insecticide made from different kinds of Chrysanthemum, possessing an insecticidal activity are called pyrethrins. These attack the nervous systems of all insects. In non-lethal amounts they still have an insect repellent effect. Compounds similar to pyrethrins are called pyrethroids. These compounds are the only approved insecticides for use on ITNs, because they pose only very low health risks to human and other mammals but are lethal to insects even at low doses. ${ }^{83}$

11

cyfluthrin
(mixture of 8 stereoisomers)
16

(S)-bioallethrin

17

Figure 6. Pyrethroids 11 and 16-19.

1.2.2 Medications

Medications used to prevent and treat malaria belong to the following substance classes: aminoalcohols, 4-aminoquinolines, 8 -aminoquinolines, artemisinins, antifolates, antibiotics and inhibitors of the respiratory chain. ${ }^{84,85}$

Table 1. The global malaria portfolio (Q2/2014); retrieved in August 2014 from MMV (Medicines for Malaria
Venture, www.mmv.org). Translational stage (preclinical and human volunteers) was omitted.

Development			Access
Patient exploratory	Patient confirmatory	Under review	Post Approval
OZ439/PQP Sanofi	Tafenoquine GSK	Rectal Artesunate CIPLA/Strides/TDR	ArtemetherLumefantrine ${ }^{1}$ Novartis
OZ439/FQ Sanofi	DHA Piperaquine Paediatric Sigma-Tau	Sulfadoxine/Pyrimethamine + Amodiaquine Guilin	Artemether-Lumefantrine Dispersible ${ }^{2}$ Novartis
$\text { KAE609 }^{11}$ Novartis	Co-trimoxazole Bactrim Inst. of Trop. Med.	$\begin{gathered} \text { Arterolane/PQP8 } \\ \quad \text { Ranbaxy } \end{gathered}$	Artesunate ${ }^{3}$ for injection Guilin
KAF156 Novartis	ArtemisininNaphthoquine ${ }^{9}$ KPC		DihydroartemisininPiperaquine ${ }^{4}$ Sigma-Tau
Methylene Blue/AQ Heidelberg	Pyronaridine-Artesunate Paediatric Shin Poong/lowa		Pyronaridine-Artesunate ${ }^{5}$ Shin Poong
SAR97276 Sanofi	Artemether ${ }^{10}$ sublingual spray ProtoPharma Ltd		Artesunate Amodiaquine ${ }^{6}$ Sanofi/DNDi
Fosmidomycin Piperaquine Jomaa Pharma GmbH			Artesunate Mefloquine ${ }^{7}$ CIPLA/DNDi
Artemisone UHKST			
1 Brand name: Coartem ${ }^{\circledR}$, Generics by Ajanta, Cipla, Ipca, Strides, Macleods Pharma Ltd, Mylan Laboratories 2 Brand name: Coartem ${ }^{\circledR}$ Dispersible, Generic by Ajanta 3 Brand name: Artesun ${ }^{\circledR}$ 4 Brand name: Euratesim ${ }^{\circledR}$ 5 Brand name: Pyramax ${ }^{\circledR}$ 6 Brand name: Coarsucam ${ }^{\text {TM }}$, ASAQ/Winthrop ${ }^{\circledR}$, generics by Ajanta, Ipca, Guilin, Cipla, Strides (co-blistered) 7 Also Acino/Mepha product (co-blistered) 8 Brand name: Synriam ${ }^{\text {TM }}$ 9 Brand name: ARCO ${ }^{\oplus}$ 10 Brand name: ArTiMist ${ }^{\text {TM }}$ 11 Formerly known as NITD609			

Aminoalcohols

Aminoalcohols, depicted in Figure 7, have in common a lipophilic aromatic system and a secondary or tertiary amino moiety close to a hydroxyl group. The synthetic compounds lumefantrine (20), halofantrine (21) and mefloquine (22) can be seen as simplification of the complex, historically very important, quinine (2). The mechanism of the antimalarial effect of this substance class is not known yet. The hemoglobin metabolism of the parasites is hindered, an effect which is also caused by 4-aminoquinolines, but apparently by a different mechanism. Aminoalcohols and 4-aminoquinolines may target the same membrane-target, but aminoalcohols hinder the release of Ca^{2+} ions and thereby prevent the fusion of transport-vesicles and the food-vacuole. ${ }^{62,84,86}$

The sensitivity of the parasites against aminoalcohols also depends on multi-drug resistance (MDR) effects. There are also some expectations that MDR1-transporters are the biological target of aminoalcohols. ${ }^{84}$

quinine
2

lumefantrine
20

halofantrine 21

mefloquine (administered racemic)

22

Figure 7. Aminoalcohols used for treatment of malaria.
Pure quinine (2) was used to treat malaria since 1820, nowadays it is still an important therapeutic, especially to parenterally treat complicated malaria. A French preparation, "Quinimax" ${ }^{(®)}$, contains 96% quinine (2). Apart from this, quinine (2) is no longer commercially available in finished dosage forms in most European countries. ${ }^{84}$

Mefloquine (22), see Figure 7, was introduced to the market as Lariam ${ }^{\circledR}$ in 1985 . Due to its long half-life (21 days) administration is only needed once a week. Therefore, this substance was frequently used. Nevertheless, the scope of $\mathbf{2 2}$ is limited due to the high costs compared with other antimalarials and, even worse, it is associated with debilitating neurological effects in a small proportion of patients and milder concerning effects have also been ob-
served. The enantiomers of mefloquine (22), which is marketed in racemic form, differ in biological activity. (-)-11R,12S-Mefloquine possesses the same configuration as quinine (2), while the conformation of the (+)-enantiomer is similar to quinidine (23). These differences are reflected in biological activities, although there have also been studies, stating that all four stereoisomers of mefloquine are equally active against P. berghei. ${ }^{84,87-90}$

Halofantrine (21) shows high activity, but it is no longer available in most western countries, due to cardiac arrhythmias it caused. The structurally related lumefantrine (20) shows much less activity, but no cardiac effects were observed after administration of lumefantrine (20). The bioavailability of lumefantrine (20) is highly dependent on the nutrition. When lumefantrine is ingested with a fat-rich meal the resorption is 16 times higher. Often milk is recommended as best form of fat to increase the resorption. The reasonably priced lumefantrine (20) is only available as fixed dosage (containing 20 mg artemether and 120 mg lumefantrine, Coartem ${ }^{\circledR}$) with artemether (24), shown in Figure 10. The different pharmacokinetics of artemether (24) and lumefantrine (20) create a synergy. While artemether (24) is absorbed in a rapid manner, lumefantrine (20) eradicates the remaining parasites over a longer term. One of the great advantages of this fixed dosage is that only very few parasites are exposed to lumefantrine (20) alone and no parasites are exposed to artemether (24) and its metabolite dihydroartemisinin (25, see Figure 10) alone. Such artemisinin-based combination therapies (ACT) are recommended by WHO to replace artemisinin-based monotherapies to prevent or delay the development of resistances. It was shown that the desbutyl-metabolite of lumefantrine (20) shows even greater antimalarial potency than lumefantrine itself. ${ }^{84,91-96}$

4-Aminoquinolines

The common features of 4-aminoquinolines are a basic side chain connected to the nitrogen atom in the 4 -position of the quinoline ring and a chlorine atom in the 7-position of the quinolone ring. The exact mechanism is also unknown for 4 -aminoquinolines, but it is supposed that 4 -aminoquinolines form stable complexes with the degradation product of hemoglobin. During the blood stage the parasite P. falciparum digests up to 80% of the hemoglobin present in an acidic food vacuole. Normally, hemozoin is formed from degradation products during the blood stage of the parasite, but the ferriprotoporphyrin complexes formed with 4-aminoquinolines are toxic for the parasite. ${ }^{97}$

Before the spread of chloroquine-resistant P. falciparum, chloroquine was considered as perfect antimalarial due to its efficacy, safety (even for pregnant women and newborns),
pharmacokinetics and its low costs. ${ }^{5}$ Chloroquine-resistance-transporter (CRT), which belongs to the drug/metabolite-transporter superfamily, is responsible for the resistance of parasites against chloroquine (6) and other 4-aminoquinolines depicted in Figure 8. The physiological function of CRT, which is located in the membrane of the food vacuole, is unknown. It is also unknown whether the drug is actively transported or if the CRT-protein is just a channel which the drug has to pass in order to leave the food vacuole. The importance of chloroquine (6) nearly vanished, because chloroquine-resistant strains of Plasmodium falciparum can be found in the whole area of distribution of P. falciparum. ${ }^{84}$

Another important representative of the 4-aminoquinolines is amodiaquine (26). The phenyl group and the Mannich base moiety are characteristic for this compound. It is probably the aromatic side chain which is responsible for the reduced affinity of amodiaquine (26) to the CRT. However, in cases of high grade resistant strains against chloroquine (6) also amodiaquine (26) is not effective. Long prophylactic treatment with amodiaquine (26) leads to heavy damage to the liver. Also immune reactions against blood-building systems were observed upon longer treatment. Due to these crucial side effects which only occurred during longer treatment, amodiaquine (26) is used in Africa as cheap therapeutic agent in combination with artesunate (27) or sulfadoxine (28, see Figure 11)/pyrimethamine (29, see Figure 12). ${ }^{84}$

In the molecular structure of ferroquine ($\mathbf{3 0}$, abbreviated as FQ), the first organometallic antimalarial, a ferrocenyl group is flanked by a basic alkylamine and a 4 -aminoquinoline. This compound is currently under development, see Table 1. The antimalarial activity is related to the ability of ferroquine (30) to target lipids. FQ inhibits the formation of hemozoin and generation of reactive oxygen species. ${ }^{98}$ With piperaquine (31) another member of the 4aminoquinoline compound class is also present in four advanced projects (in two of them in phosphate formulation, as PQP) and one even post approval.

chloroquine
6

piperaquine
31

AQ-13
34

amodiaquine
26

hydroxychloroquine
32

ferroquine
30

33

pyronaridine 36

Figure 8. Antimalarial 4-aminoquinolines.

8-Aminoquinolines

The amino alkyl chain connected to the nitrogen atom in the 8-position of the quinolone ring system and the methoxy group in the 6 -position of the quinolone ring system are characteristic parts of 8 -aminoquinolines. Important representatives of this substance class are shown in Figure 9. The first 8-aminoquinoline used against malaria was diethylprimaquine (37), also known as pamaquine or plasmoquine, which was introduced in 1925. It was not widely used due to its toxic properties. The replacement of the diethyl amino group through a simple primary amino group resulted in primaquine (38), which is used since 1952. Primaquine (38) is the only antimalarial that destroys all liver stages of the parasites, including the enduring hypnozoites formed in case of P. vivax or P. ovale infections. Therefore, it can also be used for prophylaxis and for presumptive anti-relapse therapy (PART) in cases of extensive exposure to parasites. A contraindication is deficiency in glucose-6-phosphate dehydrogenase (G6PD), when primaquine would be administered lethal hemolysis may be caused. This also rules out pregnant women, because even a normal level of G6PD of the pregnant women does not tell anything about the fetus. ${ }^{84,99}$

diethylprimaquine
37

primaquine
38

39

bulaquine 40

NPC-1161B
41

Figure 9. 8-Aminoquinolines 37-41.

Artemisinins and Other Endoperoxides

Artemisinin (8) is badly soluble in oil as well as in water. Therefore, only semisynthetic derivatives of artemisinin (8), see Figure 10, are used exclusively today. Dihydroartemisinin (25), which is not suitable to be used in pharmaceutical formulations due to its intrinsic instability, is the active form of all artemisinin related drugs. ${ }^{100}$ Artesunate (27) is converted to dihydroartemisinin (25) during minutes, probably in a non-enzymatic way. The conversion of artemether (24) to dihydroartemisinin (25) happens via oxidative desalkylation and takes much longer. Artemisinins also take effect on ring stages, the early erythrocytic stages. The burden of the parasites is reduced by a factor 10^{4} per asexual cycle. Therefore, artemisinins are the fastest and most effective drugs against malaria known today. ${ }^{84}$ But monotherapies lead to a high rate of recrudescence despite the remarkable activity of artemisinin (8) and all its derivatives. Therefore the use of ACT is not only reasonable due to delay of growing artemisinin resistances but also in view of possible failure of artemisinin monotherapies. ${ }^{101}$

Unfortunately, the cost of ACT may be too high for malaria endemic countries with low income. Another issue is the discovery of upcoming resistances in South East Asia. ${ }^{102,103}$

artemisinin
8

artesunate
27

artemether
24

artemisone
42

dihydroartemisinin 25

arteether
43

OZ439
44

OZ277
45

Figure 10. Artemisinin derivatives and other endoperoxides.
The essential structural feature responsible for antimalarial activity is the endoperoxide moiety. There are various theories about the mechanism of artemisinins. On one hand there is the martial picture of "iron-triggered cluster bombs", which seems unlikely due to occurring resistances against artemisinins which cannot be explained by an unspecific mechanism like this. This thought is also unlikely because compounds without heme reactivity showed high activity. Also inhibition of heme formation does not stop artemisinin (8) from being active. On the other hand there is proposed that artemisinins inhibit a calcium-ATPase (PfATP6). If artemisinins have a specific target, such as PfATP6, then mutations could lead to resistances against artemisinins. This is also not really plausible, since tremendous variations in the artemisinin backbone and stereochemistry do not dramatically affect the antimalarial activity. In a third model artemisinin is believed to be activated by malaria mitochondria and surrounded molecules are non-specifically damaged by generated free radicals from the endoperoxide group. ${ }^{84,104,105}$

OZ277 (45) was the first synthetic ozonide which was clinically evaluated. It is also known as RBx11160 or arterolane maleate. Ozonides and artemisinins have the peroxide moiety in common, which can be seen as pharmacophore. Regardless of the convincing antimalarial activity of OZ277 (45), the half-life is only twice to threefold longer as that of the very instable dihydroartemisinin (25). Whereas OZ439 (44), another synthetic ozonide, is a more promising candidate and can be found in two advanced projects in Table 1. ${ }^{106,107}$

Antifolates

Unlike humans, which have to ingest folic acid with their food, bacteria and protozoa are not depending on the uptake of folic acid to generate the important cofactor tetrahydrofolic acid (46), which plays an important role in many reactions especially in the metabolism of amino acids and nucleic acids. Therefore, inhibition of one of the relevant enzymes, dihydropteroate synthetase (DHPS) or dihydrofolate reductase, is a classical principle in antimicrobial chemotherapy. A simplified pathway is outlined in Scheme 2. ${ }^{84}$

Scheme 2. Tetrahydrofolate synthesis pathway.
The substitution of the diphosphate moiety of 47 with para-amino benzoic acid is catalyzed by the enzyme dihydropteroate synthetase. Sulfonamides, such as these shown in Figure 11, inhibit this reaction due to structural similarity to p-amino benzoic acid. They also react instead of p-amino benzoic acid to give sulfa-dihydropteroates. These compounds show an-
tiparasitic effects, possibly by inhibition of dihydrofolate reductase, the second important enzyme shown in Scheme 2. ${ }^{84}$

Figure 11. Sulfonamides 28, 49, and 50.
Sulfonamides, Figure 11, show only a weak antimalarial effect when they are administered on their own. But in combination with dihydrofolate reductase inhibitors, see Figure 12, a distinct synergism increases the activity of both compounds. In many strains, mutations in the gene of DHPS lead to decreased activity of DHPS inhibitors through replacement of amino acids. Nowadays, a combination of sulfadoxine (28) and pyrimethamine (29), distributed as Fansidar®, is widely used. ${ }^{84}$

pyrimethamine
29

proguanil 52

55

Figure 12. Inhibitors of dihydrofolate reductase.
The inhibitors of the enzyme dihydrofolate reductase, pyrimethamine (29) and proguanil (52) were introduced to malaria therapy in the late 1940s and early 1950s, respectively. Proguanil (52) is a prodrug, which is converted to cycloguanil (53) by oxidation. ${ }^{84}$

Antibiotics

Most of the used antibiotics assumedly take effect on the protein biosynthesis apparatus of the apicoplast. Proteins relevant for biosynthesis in the apicoplast (fatty acid synthesis, isopentenyl diphosphate synthesis, etc.) are coded by the nuclear DNA and are imported to the apicoplast. A variety of antibiotics is shown in Figure 13

60

clindamycin 61

trimethoprim
62

fosmidomycin
63

Figure 13. Antibiotics used for malaria treatment.
Characteristically, parasites show only little effects during the first asexual phase upon treatment with antibiotics. A delayed death effect is observed. It is therefore supposed that antibiotics hinder the synthesis of proteins, relevant for the import and processing of en-
zymes crucial for biosynthesis, in newly generated apicoplasts. If malaria is treated exclusively with antibiotics, improvement of the symptoms can be expected not until four days. This is often too late; hence, treatment with antibiotics is reasonable only in combination with a rapidly effective antimalarial, such as quinine (2) or artesunate (27). ${ }^{84}$

Inhibitors of the Respiratory Chain and Methylene Blue

Atovaquone (65), shown in Figure 14, is the first naphtoquinone which reached importance as an antiprotozoal agent with a broad spectrum in human medicine. It can be seen as structural analogon to ubiquinone, which plays an important role in the electron transport chain in mitochondria. The electron transport in the respiratory chain is interrupted by atovaquone (65) treatment leading to a collapse of the mitochondrial membrane potential. This causes quick die-off of the parasites. Mono therapy leads, however, to a quick selection of resistant mutants, which results in a therapy failure of 30%. Combined treatment of atovaquone (65) and proguanil (52) indicates positive interaction of both compounds. The concentration of atovaquone (65) needed for collapse of the membrane potential is drastically lowered when proguanil is also administered. On the other hand, the conversion of proguanil (52) to cycloguanil (53) is irrelevant to the therapeutic effect of atovaquone (65). The probability that resistances against the combination of atovaquone (65)/proguanil (52) (Malarone ${ }^{\circledR}$) occur is very low. Because of the lipophilicity of atovaquone (65) it is better resorpted with a high-fat diet, in the manner of lumefantrine (20). ${ }^{84}$

methylene blue
3

KAE609
66

NITD609
67

Figure 14. Methylene blue (3), atovaquone (65) and spiroindolones 66 and 67.

Also the world's first synthetic antimalarial is experiencing a renaissance. Methylene blue (3) is currently investigated at the University of Heidelberg. Combination with well-established antimalarials showed increased activity against gametocytes, which would help to prevent transmission back to mosquitoes. This might be helpful regarding malaria control and eradication in endemic areas. ${ }^{108,109}$

Spiroindolones

The compound class of spirotetrahydro- β-carbolines, or spiroindolones, was reported by Novartis in 2010 as a potent compound class for the treatment of malaria. $\mathrm{A}^{35} \mathrm{~S}$-radiolabeled methionine and cysteine incorporation assay revealed that protein synthesis was inhibited more rapidly than by treatment with mefloquine (22) and artemisinin (8), which indicates that the most promising compound KAE609 (66), at this time called NITD609, possessed a different mechanism of action than mefloquine (22) and artemisinin (8). ${ }^{110,111}$

Spiroindolones inhibit a plasma membrane Na^{+}-ATPase (PfATP4) of the parasite that regulates sodium and osmotic homeostasis. ${ }^{112}$ In a phase 2 study two cohorts of adults infected with P. vivax and P. falciparum were successfully treated with KAE609 (66) at a dose of 30 mg per day for 3 days. Only mild adverse effects were observed. ${ }^{113}$

1.3 Ambition

Many antimalarials rapidly lost efficacy. High levels of resistance can occur by accumulation of multiple drug resistance mutations as revealed through the use of dihydrofolate reductase (DHFR)-targeting drugs. ${ }^{114}$ As opposed to this, resistance to drugs, not targeting enzymes, such as chloroquine (6), happens much less rapidly. ${ }^{115}$ Attempts of discovering new chemotypes directed at standing targets were unsuccessful in many cases. This may be caused by the rigid nature of the active sites in common drug targets, such as DHFR and thymidylate. ${ }^{116}$

A major constraint is the relatively small number of low molecular weight scaffolds with in vivo activity against P. falciparum. Even among the compounds that are active in vivo, only a small number of different scaffolds are found in clinical use.

A screen for antimalarial therapeutics done in 2006 identified the propafenone scaffold; see Figure 15 , to have antimalarial activity. ${ }^{117}$ Chiba et al. identified growth inhibitory potential of propafenone (68) and its derivatives in chloroquine resistant strains of P. falciparum. Propafenone (68), a class 1c antiarrhythmic drug, is used for treatment of ventricular arrhythmia. ${ }^{118}$

propafenone (68)

salicylamide ("aza-propafenone")

Figure 15. Propafenone (68) and its aza-derivative (69).
It is known that the β-adrenergic activity of propafenone (68) is decreased by substitution of the methylene group through a nitrogen atom, leading to salicylamide 69, shown in Figure 15. Furthermore, the antiarrhythmic activity of these salicylamide derivatives was that low that these compounds were not capable to be developed to an antiarrhythmic drug. ${ }^{119}$

Unfortunately, the aza-propafenone (69) suffered a dramatic decrease in antimalarial activity compared to propafenone (propafenone 68: IC_{50} (3D7) $=600 \mathrm{nM}$, aza-propafenone 69: IC_{50} (3D7) $=20 \mu \mathrm{M}$; unpublished data from Medical University of Vienna). The activity prob-
lem can be overcome by modification of the amine components, which includes the amide substructure as well as the aminoalcohol moiety. ${ }^{120}$

Within this thesis, compounds similar to salicylamide 69 are synthesized and a structureactivity relationship is deduced.

Goals set are:

- To exceed the potency of approved antimalarial drugs, such as lumefantrine and artesunate, in vitro. Activities of lumefantrine, artesunate and other selected antimalarials are shown in Table 19 on p. 582
- Activity in an animal model (e.g. mouse P. berghei) shall be demonstrated
- Investigate the relevance of the stereogenic center towards antimalarial activity and relevant biological properties in the presented scaffold.
- Determine the structure of highly active compounds in solution (NMR) and in the solid state (X-ray)

2. Results and Discussion

2.1 Synthesis

2.1.1 Retrosynthetic Analysis

The aminoalcohol motif of a desired molecule as $\mathbf{7 0}$ can be derived from epoxide 71. Nucleophilic attack of an amine leads to the desired regioisomer. Epoxide $\mathbf{7 1}$ can be obtained by reaction of anilide $\mathbf{7 2}$ with commercial available epichlorohydrin.

Scheme 3. Retrosynthetic analysis of target compounds.

2.1.2 Synthesis of Salicylanilides

The first step in the synthesis of a compound with an unsubstituted salicyl diversity site (75) was performed by reaction of phenyl salicylate (73) with a derivate of aniline, such as 74, under catalysis of BF_{3} at room temperature. ${ }^{121}$ In some cases BF_{3} had to be added in stoichiometric amounts for completion of the reaction. The major drawback of this method is the bad solubility of phenyl esters of substituted salicylates, which are also not commercially available. Therefore, it was clear that switching to a different protocol for exploration of the salicylic diversity site would maintain the number of synthetic steps.

Scheme 4. Synthesis of anilide 75 via $\mathrm{BF}_{3}{ }^{*} \mathrm{OEt}_{2}$.
Derivatives of salicylic acid, such as 5 -chlorosalicylic acid (72), are widely available. The reaction depicted in Scheme 5 has long reaction times similar to the reaction in Scheme 4, both reactions were stirred overnight. This means that each reaction time was at least 14 hours. The reaction in pyridine needs to be acidified during workup to remove basic molecules.

Scheme 5. Synthesis of anilide 72 via $\mathrm{P}(\mathrm{OPh})_{3}$.
The most convenient method for the reaction of salicylic acids with anilines is shown in Scheme 6. ${ }^{122}$ The greatest advantages of this protocol are the short reaction times, typically no longer than one hour, and that no real workup is needed; the reaction mixture is poured in a beaker while it is still hot. This removes a tarry residue which forms during the reaction. The solution of the product is stirred in a hood until xylenes are gone and pure product remains in the beaker.

Scheme 6. Synthesis of anilide 72 via PCl_{3}.
Beside the above discussed methods also syntheses via activated esters were tried, where HOBt proved to be better than HATU in combination with DCC. The reaction shown in Scheme 7 gave product 77 with 66% yield. Also, the reaction of the aniline with the in situ generated acid chloride did not prove advantageous (not even with acetyl protection of the phenol).

Scheme 7. Synthesis of anilide 77 via coupling reaction with HOBt.
It has to be mentioned that, surprisingly, some of the synthesized phenols are easily deprotonated by treatment with saturated NaHCO_{3} solution during workup; this was observed for 3,5-dichloro-2-hydroxy- N-(3-(trifluoromethyl)phenyl)benzamide (79) and N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyano-2-hydroxybenzamide (80). This basic workup was only needed if unreacted salicylic acid was still present. Unreacted aniline can be removed by
washings with hexanes. Acidification did not make the residual anilines water-soluble in most cases.

2.1.3 Synthesis of Epoxide Compounds

Epoxide intermediates, such as 71 (Scheme 8), can be synthesized by alkylation reactions of potassium salts of salicylanilides, such as $\mathbf{7 2}$, with epichlorohydrin. The same reaction conditions also can be applied to acetyl protected anilides. But acetyl protected salicylic acids did not prove advantageous in comparison to unprotected acids. Therefore, only feasibility of the reaction of acetyl protected anilides is reported herein.

Scheme 8. Synthesis of epoxide 71 via alkylation reaction.
Due to occasionally large amounts of side product (chloroalcohol 81) in this reaction, yields were not steady. A literature known conversion of chloroalcohol to epoxide with KF on Celite ${ }^{\circledR}$ (2 eq) in refluxing acetonitrile for 18 h improves the yield drastically and also simplifies purification. ${ }^{123}$ This reaction, which is shown in Scheme 9, can be implemented directly after gaining the solvent free crude product of the reaction.

Scheme 9. Conversion of chloroalcohols to epoxides.

2.1.4 Synthesis of Target Molecules

The racemic target molecules (71) are obtained by epoxide ring-opening reactions, as shown in Scheme 10, with suitable amines. Epoxide opening at the more substituted site (C-2) was never observed. A variety of amines, which are considered suitable for biological investigations, are shown in Figure 16. Product amounts about 100 milligram and purity above 95% is
considered as sufficient for primary assessment of biological activities and safety (in vitro). For in vivo tests, purity above 98% is considered as sufficient.

Scheme 10. Synthesis of an active molecule from an epoxide intermediate.

82

86

90

83

87

91

84

88

92

85

89

93

Figure 16. Examples for important amine compounds used in syntheses during the thesis.
Target molecules can also be obtained by reaction of 1-(4-benzhydrylpiperazin-1-yl)-3-chloropropan-2-ol (94) with anilides as shown in Scheme 11. Adduct 94, prepared by reaction of benzhydryl piperazine and epichlorohydrin, is the only one of its kind that was synthesized because the synthetic route via 5-Chloro-2-oxiranylmethoxy-N-(3-trifluoromethyl-phenyl)-benzamide (71) enables exploration of the amine diversity site easier. Otherwise, the preparation of epichlorohydrin adducts of each amine would have been necessary.

Scheme 11. Alternative synthetic route to target molecule 95.

2.1.5 Stereochemical Investigations

Enantiopure target molecules (96 and 97) were synthesized using commercially available (S)epichlorohydrin, as shown in Scheme 12, and (R)-epichlorohydrin, respectively. The reaction can proceed via $\mathrm{S}_{\mathrm{N}} 2$ type reactions at the carbon bearing the chlorine atom, or ring opening at the less substituted carbon atom of the oxirane moiety. Varying reaction conditions can change the outcome of such reactions ${ }^{124}$, therefore these investigations were made.

Scheme 12. Nucleophilic attack of phenolate 98 is conceivable at the two different electrophilic sites of epichlorohydrin.

The reaction product of the above shown reaction with (S)-epichlorohydrin was 100. The absolute configuration of the chiral center was determined by epoxide opening with proline menthyl ester 101 as shown in Scheme 13. The structure of 102 was verified by x-ray structure analysis.

Scheme 13. Determining the configuration of epoxide 100 by derivatization.
The crystal structure of $\mathbf{1 0 2}$ (see Figure 17) shows that the nucleophilic attack of the phenolate occurs mainly at the epoxide. Therefore, an inversion of the configuration is observed.

Figure 17. Crystal structure of $(S)-(1 S, 2 R, 5 S)$-2-isopropyl-5-methylcyclohexyl-1-((R)-3-(4-chloro-2-((3-
(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2-carboxylate (102).

Figure 18. ${ }^{1} \mathrm{H}$ spectra of $(S)-(1 S, 2 R, 5 S)$-2-isopropyl-5-methylcyclohexyl-1-((R)-3-(4-chloro-2-((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2-carboxylate (102) and a mixture of 103 and its diastereomer.

Figure 18 shows the ${ }^{1} \mathrm{H}$ spectra of $(S)-(1 S, 2 R, 5 S)$-2-isopropyl-5-methylcyclohexyl-1-((R)-3-(4-chloro-2-((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2-
carboxylate (102) and in the upper traces a mixture of 102 and its diastereomer 103, which was synthesized by reaction of proline menthyl ester 101 and the racemic epoxide 71. Quantification of integrals, shown in the lower set of spectra in Figure 18, leads to an er (enantiomeric ratio) of 95:5 which is in perfect agreement with the er of the epoxide batch (exactly the same er determined by chiral HPLC, data not shown) used as starting material in this reaction. This states that no racemization occurs during the epoxide opening step, as assumed.

The crystal structure of $\mathbf{1 0 2}$ revealed two cooperative three-centered hydrogen bond networks. This intriguing network of hydrogen bonds in $\mathbf{1 0 2}$ is part of ongoing investigations.

With the knowledge that inversion happens, the mechanism was investigated and quantified via chiral HPLC, chromatograms are shown on p. 572. Reactions were performed with commercial available (S)-epichlorohydrin (97% ee) as shown in Scheme 14, as well as with commercial available (R)-epichlorohydrin (98% ee). The reaction products (epoxide and chloroalcohol) were separated and chiral separation was performed for a sample of epoxide first. Because no method to completely separate (baseline separation) enantiomeric chloroalcohols was found, these were converted to the corresponding epoxide via reaction with KF, as shown above in Scheme 9. Then, these epoxides, obtained from the corresponding chloroalcohols, were also separated on chiral HPLC. The results, which also take into account the available ee data of the commercial epichlorohydrin reagents, state that the reaction proceeds 95.3 \% via path b for the depicted reaction with (S)-epichlorohydrin. Consistently, analysis of the reaction with (R)-epichlorohydrin gives percentage of 95.9% for path b.

Scheme 14. Quantification of the mechanisms for reactions of phenolate 98 with epichlorohydrin.
Furthermore, it was observed that the er of chloroalcohol 99/100 never drastically differed from the er of the used epichlorohydrin. Therefore, it can be assumed that all built chloroalcohol is formed by path b, and that no reaction from epoxide to chloroalcohol proceeds under the applied reaction conditions. To clarify, there is no back reaction from epoxide $\mathbf{1 0 0}$ to chloroalcohol 104 and there is no reaction from epoxide 99 to chloroalcohol 105. Hence, (R) chloroalcohol 105 is only formed via path b from (R)-epichlorohydrin present in (S)epichlorohydrin, which consists of $98.5 \%(S)$-epichlorohydrin and $1.5 \%(R)$-epichlorohydrin.

2.2 Structure Activity Relationship Analysis

All available in vitro results, as well as microsomal stability data and cytotoxicity data are shown in Table 2. A [$\left.{ }^{3} \mathrm{H}\right]$-hypoxanthine incorporation assay was used for assessment of inhibition of parasite growth. These tests were performed at Swiss Tropical and Public Health Institute (Swiss TPH, Sergio Wittlin), whereas tests for microsomal stability and cytotoxicity were performed at Marinomed Biotechnologie GmbH. In the course of this thesis more compounds have been synthesized than listed in this table. They were omitted in the table since there were no data available the thesis had to be finished. However, structures and experimental data of those compounds can be found in the respective sections.

Table 2. Structures with corresponding activities on NF54 strain and chloroquine resistant K1 strain of Plasmodium falciparum. Furthermore, microsomal stability and cytotoxicity of tested compounds are listed, if available.

Pos	Structure	NF54 STI	K1 STI				
72		2296.0	1133.00				
95		5.7	1.20			90.3	140.4
96		1.9	0.52	40	23	-0.2	118.3

Sos

Pos	Structure	NF54 STI	K1 STI				
109		968.0	281.00				
110		218.0	73.00				
111		349.0	121.00			92.0	104.0
112		421.0	137.00			94.0	119.8
113		933.0	262.00				

Pos	Structure	NF54 STI	K1 STI				
114		1156.0	433.00			113.0	92.0
115		290.0	132.00				
116		1091.0	510.00			82.0	91.0
117		580.0	212.00				

Pos

Pos	Structure	NF54 STI	K1 STI				
122		881.0	333.00				
123		262.0	70.00			3.0	89.0
124		79.0	20.00				
125		183.0	61.00				
126		57.0	18.00			0.5	104.7

Pos	Structure	NF54 STI	K1 STI				
127		168.0	59.00			98.5	111.0
128		143.0	49.00				
129		670.0	182.00			81.1	125.7
130		281.0	101.00			53.7	115.5

Pos	Structure	NF54 STI	K1 STI				
131		308.0	103.00				
132		96.0	26.00			0.2	66.0
133		614.0	174.00			57.0	99.0
134		<40000	<40000				
135		<40000	4611.00				

Pos	Structure	NF54 STI	K1 STI				
136		101.0	30.00			0.0	119.1
137		27.0	7.90			0.4	86.8
138		148.0	52.00			0.1	107.3
139		134.0	36.00			20.4	113.0
140		5380.0	2260.00				

Pos	Structure	NF54 STI	K1 STI				
141		20.0	5.20			0.4	100.8
142		5.6	1.70			0.5	86.6
143		6.4	1.70			0.2	93.6
144		9.3	3.10			0.1	70.0
145		2.3	0.51			0.5	22.4
146		24.0	8.10			7.0	103.9

Pos	Structure	NF54 STI	K1 STI				
147		63.0	16.00			77.5	112.3
148		333.0	76.00			96.0	110.0
149		2751.0	827.00			94.0	107.0
150		1434.0	356.00				
151		1362.0	371.00			63.4	97.7

Pos	Structure	$\begin{gathered} \text { NF54 } \\ \text { STI } \end{gathered}$	K1 STI				
152		1693.0	467.00			98.0	100.0
153		74.0	18.00			0.1	107.6
154		5.6	1.50			0.5	117.6
155		156.0	72.00			77.0	108.0
156		18.0	5.70			69.9	88.7

Pos	Structure	NF54 STI	K1 STI				
157		26.0	9.00			4.4	107.6
158		16.0	6.80			0.1	105.1
159		14.0	3.70			29.7	81.2
160		51.0	11.00			0.0	89.0
161		38.0	8.30			0.4	104.6

Pos	Structure	NF54 STI	K1 STI				
162		59.0	12.00			13.2	107.6
163		644.0	243.00			46.0	96.0
164		182.0	96.00			0.3	106.9
165		40.0	12.00			0.6	105.5
166		492.0	159.00			40.1	107.6

Pos	Structure	NF54 STI	K1 STI				
167		14.0	3.60			0.5	83.9
168		2.4	0.62			0.4	93.4
169		9.3	2.60			0.5	68.2
170		8.4	2.30			0.5	85.2
171		7.1	1.80			52.1	101.7

Pos	Structure	$\begin{gathered} \text { NF54 } \\ \text { STI } \end{gathered}$	K1 STI				
172		2.3	0.56			0.5	93.8
173		15.0	4.20			0.3	87.8
174		3.2	0.68			0.2	1.7
175		4.8	1.20			0.7	126.7
176		28.0	7.10			0.1	107.2
177		29.0	8.30			1.0	106.8

Pos	Structure	$\begin{gathered} \text { NF54 } \\ \text { STI } \end{gathered}$	K1 STI				
178		65.0	23.00			0.8	83.7
179		1303.0	816.00			53.6	100.1
180		1.5	0.55			0.0	1.5
181		1503.0	921.00			67.7	107.6
182		1572.0	1124.00			47.2	124.1
183		8.8	2.20			1.0	115.6

Pos	Structure	NF54 STI	K1 STI				
184		256.0	105.00			80.5	107.6
185		47.0	11.00			0.5	129.6
186		16.0	3.50			106.8	109.9
187		8.6	2.30			0.9	119.3
188		205.0	74.00			38.7	93.7

Pos	Structure	NF54 STI	K1 STI				
189		36.0	8.60			0.6	108.9
190		3.8	0.99			0.8	131.8
191		5.5	1.30			73.0	118.9
192		258.0	83.00			76.7	116.7
193		24.0	5.90			51.9	98.7

Pos	Structure	$\begin{gathered} \text { NF54 } \\ \text { STI } \end{gathered}$	K1 STI				
194		4.2	0.99	42	12	0.3	91.1
195		17.0	4.00			0.3	64.3
196		15.0	4.10			0.2	65.2
197		3.5	1.40			0.4	1.0
198		6.3	3.10			0.4	0.5
199		2.0	0.51			0.1	15.0

(1)
Sos

Pos	Structure	NF54 STI	K1 STI				
210		0.92	0.25	11	2	0.4	106.0
211		1.3	0.27	11	4	0.4	106.2
212		2.1	0.47	39	15	0.1	100.6
213		2.5	0.50	18	10	0.4	105.1
214		1.2	0.31	12	5	0.3	102.0

Pos
Pos
(1)

Pos	Structure	NF54 STI	K1 STI				
230		18.0	3.80	69	48	79.0	112.2
231		23.0	8.30	38	11	-0.1	101.7
232		611.0	1280.00	7	5	78.3	91.0
233		6.7	1.50	10	2	86.5	119.8
234		1.6	0.31	59	16	0.3	124.6

Pos

Pos	Structure	NF54 STI	K1 STI				
240		6.0	1.70	71	n.a.	0.0	97.0
241		38.0	16.00	32	4	0.0	104.0
242		4.1	0.83	58	20	41.0	93.0
243		5.5	1.50	15	4	60.2	94.7
244		22.0	6.90	20	4	82.0	110.4

Pos
Pos

Pos	Structure	NF54 STI	K1 STI				
255		17.0	5.20	19	8	48.6	103.0
256		11.0	2.50	25	4	78.9	104.2
257		2.4	0.66	38	23	1.2	83.2
258		8.7	2.50	39	19	1.2	93.0
259		3.7	0.96	64	n.a.	0.7	88.9

Pos	Structure	NF54 STI	K1 STI	\qquad			\qquad
260		282.0	78.00	27	2		
261		354.0	114.00	39	2		
262		1.8	0.26	78	35.0		
263		5.8	1.10	57	22.0		
264		3.6	0.61	74	1		

(1)
(1)

Pos	Structure	NF54 STI	K1 STI				
276		4.6	1.40	74		93.6	119.5
277		4968.0	2633.00	10	n.a.	96.3	117.3
278		3.4	0.97	18	4	0.0	83.9
279		13.0	4.90	40	23	2.1	103.6

2.2.1 Preliminary Data

Antiplasmodial activity was determined using two strains of P. falciparum: the drug-sensitive NF54 strain, an airport strain of unknown origin, and the more robust K1 strain, a clone of a strain originating from Thailand, resistant to chloroquine (6) and pyrimethamine (29). The ratio of the IC_{50} values against NF54 and K1 strain are constantly in the same order of magnitude, to that effect that antiplasmodial activity of the presented compounds are two to five times more active against K1 strain than against NF54 strain.

The malaria project at the Medical University of Vienna was started in 2004. This thesis covers the period from late 2012 to mid-2015. In the following, preliminary data of important compounds will be discussed.

Propafenone (68), which was the starting point of this project, showed IC_{50} values of 302 $n M^{118}$ and $1.22 \mu M^{125}$ against 3D7 strain. These values vary due to different assays used for determination of the activity. The 3D7 strain was derived from the NF54 strain by limiting dilution. ${ }^{126}$ The problem with propafenone as lead is the antiarrhythmic activity of the scaffold. When the α carbon atom was replaced by a nitrogen atom, the antiarrhythmic potency was decreased in a manner that this compound was no longer considered as useful in treatment of cardiac diseases. Unfortunately, this modification also decreases malaria activity drastically, resulting in a 70-fold reduced activity against the chloroquine sensitive 3D7 strain. ${ }^{120,127}$

This effect can be overcome by replacement of the propyl residue on the basic nitrogen with more bulky alkyl residues. Data of "aza-propafenone" derivatives are shown in Table 3. For instance, the 2-adamantyl residue increases the activity so that $\mathbf{1 0 6}$ shows moderate antimalarial activity, comparable to that of propafenone (68), while antiarrhythmic activity should be ruled out by the salicylamide moiety. Further increase of activity is achieved by ortho- or para-methoxy substitution $(\mathbf{1 0 7}, \mathbf{1 0 8})$, in the benzylamide diversity site ($\mathrm{R}^{\prime \prime}$). The position of the methoxy group has no noteworthy effect on the activity; $\mathbf{1 0 7}$ and $\mathbf{1 0 8}$ show roughly equal activity on each tested strain.

The 1-adamantyl residue in $\mathbf{1 0 9}$ shows less activity than its 2-adamantyl analog 107. In the 2adamantyl series with unsubstituted benzylamide, the presence of tertiary amines results in varying effects on the activity. While an additional n-pentyl (110), n-propyl (111), or methyl (112) residue increase activity (218 and $73 \mathrm{nM}, 349$ and 121 nM , and 421 and 137 nM , re-
spectively), an additional ethyl (113) or cyclopropyl (114) residue result in loss of activity (933 and 262 nM , and 156 and 433 nM , respectively).

Combining structural beneficial features, ortho-methoxy benzylamide and a tertiary basic nitrogen with a 2-adamantyl residue and an n-propyl side chain in 115 shows an increase over 111, but it is a retrograde step regarding 107. The 3-phenylpropyl residue by itself (116) brings a worsening of activity, although in combination with a 2 -adamantyl residue a bigger increase of activity compared to additional alkyl side chains (110-114) is caused.

The effect of 2-phenylethyl (117) residue is smaller than that of 3-phenylpropyl but still an increase over 106, while substitution with a 2-methoxyphenylmethyl residue (118) leads to a drastic decrease of activity, which may be caused by the polarity of the methoxy group on the aromatic ring. Similar considerations also apply for 119, with a 4-benzoylbenzyl residue on a secondary amine.

4-Trifluoromethyl (120) or 4-tert-butyl (121) groups in the benzylamide moiety act beneficial compared to the parenteral compound $\mathbf{1 0 2}$ containing a tertiary amine with a 2 -adamantyl and a methyl residue. The effect of a cyclooctyl residue (122) in the amine diversity site is negative, whereas the larger cyclododecyl residue (123) increases activity. Activity is drastically increased to an IC_{50} of 79 nM (NF54) and 20 nM (K1) in 124 which features a 1-adamantan-1-ylethyl residue on a secondary amine. Unfortunately, this structure has 4 stereoisomers; therefore the 1-adamantan-1-ylethyl residue is not favorable. But also the ada-mantan-1-ylmethyl shows promising activity (79 nM on NF54 and 20 nM K1, respectively).

The beneficial effect of a 2-methoxy group in the benzylamide site in combination with a 2adamantyl residue (107) seems adverse in combination with a 1-adamantanylmethyl residue on a secondary amine (125). In contrast, the beneficial effect of a 4-trifluoromethyl group in the benzylamide site is also observed in combination with a 1 -adamantanylmethyl residue on a secondary amine (126). The IC_{50} of 57 nM (NF54) and 18 nM (K1) seems promising. Different from the 2-adamantyl series, in combination with adamantan-1-ylmethyl residues in the amine diversity site an additional alkyl group shows a decrease of activity. Within the entire benzylamide series, as far as tested no toxicity against Hep G2 cells was observed and no stability data were collected.

Table 3. Chemical structure and IC_{50} values ($\mathrm{n} M$) of benzylamide derivatives.

	R	R'	R"	IC ${ }_{50}$ NF54	$\mathrm{IC}_{50} \mathrm{~K} 1$
106	2-adamantyl	H	-	757	246
107	2-adamantyl	H	2-methoxy	238	78
108	2-adamantyl	H	4-methoxy	220	90
109	1-adamantyl	H	2-methoxy	968	281
110	2-adamantyl	n-pentyl	-	218	73
111	2-adamantyl	n-propyl	-	349	121
112	2-adamantyl	methyl	-	421	137
113	2-adamantyl	ethyl	-	933	262
114	2-adamantyl	cyclopropyl	-	1156	433
115	2-adamantyl	n-propyl	2-methoxy	290	132
116	3-phenylpropyl	H	-	1091	510
117	2-adamantyl	2-phenylethyl	-	580	212
118	2-adamantyl	2-methoxyphenylmethyl	-	2051	707
119	4-benzoylbenzyl	H	-	2120	995
120	2-adamantyl	methyl	4-trifluoromethyl	161	54
121	2-adamantyl	methyl	4-tert-butyl	261	69
122	cyclooctyl	H	-	881	333
123	cyclododecyl	H	-	262	70
124	1-adamantan-1-ylethyl	H	-	79	20
125	adamantan-1-ylmethyl	H	2-methoxy	183	61
126	adamantan-1-ylmethyl	H	4-trifluoromethyl	57	18
127	2-adamantyl	3-phenylpropyl	-	168	59
128	adamantan-1-ylmethyl	H	-	143	49
129	adamantan-1-ylmethyl	methyl	-	670	182

Table 4 shows more structures of 2-adamantyl derivatives and their activities. Both the 2phenylethyl amide (130) and the 3-phenylpropyl amide (131) have increased activities compared with the benzylamide analog 106. The activity of the 2-phenylethyl amide can still be increased by 5-chloro modification in the salicylic ring (132), which seems to have negative influence on the cytotoxicity of the compound. Also aliphatic amides such as propyl amide 133 have at least moderate antimalarial activity. The importance of the amide group for activity can be shown by the inactive acid analog (134) and the corresponding inactive ester analog (135), respectively.

Table 4. Chemical structure and IC_{50} values (nM) of 2-adamantyl derivatives.

	R	R^{\prime}	$\mathrm{R}^{\prime \prime}$	IC_{50} NF54	$\mathrm{IC}_{50} \mathrm{~K} 1$
130	$\mathrm{NHC}_{2} \mathrm{H}_{4} \mathrm{Ph}$	H	-	281	101
131	$\mathrm{NHC}_{3} \mathrm{H}_{6} \mathrm{Ph}$	H	-	308	103
132	$\mathrm{NHC}_{2} \mathrm{H}_{4} \mathrm{Ph}$	H	$5-\mathrm{Cl}$	96	26
133	$\mathrm{NHC}_{3} \mathrm{H}_{7}$	H	-	614	174
134	OH	Me	-	inactive	inactive
135	OMe	Me	-	inactive	inactive

In the same manner as in the 2-adamantyl variation, the 5 -chloro modification is also applicable to adamantan-1-ylmethyl derivatives; see 136 and 137 in Table 4 . Not only activity is increased from 96 nM to 27 nM on NF54 and 26 nM to 7.9 nM on K1, also cytotoxicity is decreased from 137 to $\mathbf{1 3 2}$. Also, the activity of 138, featuring a 3-phenylpropyl amide succeeds the activity of the 2-adamantyl analog 131. Aliphatic residues on the amide moiety such as isopentyl (139) lead to reasonable activities. The intolerance of the 5 -prop-2-yn-1yloxy group in the salicylic ring of $\mathbf{1 4 0}$ is obvious. Also a naphthalen-1-ylmethyl (141) residue is tolerated at the amide diversity site. Switching to salicyl anilides increases activity further. In combination with adamantan-1-ylmethyl, very high activity was observed for p-tolyl(142), N-4-fluorophenyl- (143), $\quad N$-2,4-difluorophenyl- (144), and N-3(trifluoromethyl)phenylsalicylamide (145).

In the case of N -2-fluorophenylsalicylamide (146) activity is not that high due to sterical reasons; this consideration also affects N-2,4-difluorophenyl analog 144.147 shows that the adamantan-1-ylmethyl residue in the amine diversity site is better on a secondary amine than on a tertiary amine with an additional methyl substituent, this confirms the findings presented in Table 3 (128 and 129).

Table 5. Chemical structure and IC_{50} values (nM) of adamantan-1-ylmethyl derivatives.

	R	R^{\prime}	$\mathrm{R}^{\prime \prime}$	IC_{50} NF54	$\mathrm{IC}_{50} \mathrm{~K} 1$
$\mathbf{1 3 6}$	2-phenylethyl	H	-	101	30
$\mathbf{1 3 7}$	2-phenylethyl	H	5-Cl	27	7.9
$\mathbf{1 3 8}$	3-phenylpropyl	H	-	148	52
$\mathbf{1 3 9}$	isopentyl	H	-	134	36
$\mathbf{1 4 0}$	isopentyl	H	5-prop-2-yn-1-yloxy	5380	2260
$\mathbf{1 4 1}$	naphthalen-1-ylmethyl	H	5-Cl	20	5.2
$\mathbf{1 4 2}$	p-tolyl	H	-	5.6	1.7
$\mathbf{1 4 3}$	4-fluorophenyl	H	-	6.4	1.7
$\mathbf{1 4 4}$	2,4-difluorophenyl	H	-	9.3	3.1
$\mathbf{1 4 5}$	3-(trifluoromethyl)phenyl	H	-	2.3	0.51
$\mathbf{1 4 6}$	2-fluorophenyl	H	-	24	8.1
$\mathbf{1 4 7}$	4-fluorophenyl	Me	-	63	16

Compared to the salicylarylamides the salicylalkylamides presented in Table 6 show only low activities. Unlike lumefantrine (20) ${ }^{96}$, dibutyl 148 shows greater activity than its monobutyl derivative 149. The activities of the compounds 150,151 , and 152 suggest that the amine site has to be substituted with bulky alkyl side chains, which is splendidly confirmed by the activity shown by the 1-adamantan-1-ylethyl compound 153, which is outstanding in respect of the non-ideal alkyl amide substitution.

Table 6. Chemical structure and IC_{50} values (nM) of isopentyl amide derivatives.

	R	R^{\prime}	$\mathrm{IC}_{50} \mathrm{NF54}$	$\mathrm{IC}_{50} \mathrm{~K} 1$
$\mathbf{1 4 8}$	n-butyl	n-butyl	333	76
$\mathbf{1 4 9}$	n-butyl	H	2751	827
$\mathbf{1 5 0}$	benzyl	H	1434	356
$\mathbf{1 5 1}$	4-trifluoromethylbenzyl	H	1362	371
$\mathbf{1 5 2}$	isopentyl	H	1693	467
$\mathbf{1 5 3}$	1-adamantan-1-ylethyl	H	74	18

Activities of salicylanilide derivatives are shown in Table 7. The 1-adamantan-1-ylethyl ana$\log (154)$ of the above seen 142 is equally potent. The propyl amino analog 155 is much less active, which is another proof of the need for bulky alkyl residues in the amine diversity site. But, when changing to an N-4-fluorophenyl amide a minimal chain elongation from propylto butyl- we end up with a very active compound (156) again. More bulky residues do not change activity significantly (see compounds 157-162).

Table 7. Chemical structure and IC_{50} values (nM) of salicylanilide derivatives.

	R	R^{\prime}	$\mathrm{IC}_{50} \mathrm{NF}^{2} 4$	$\mathrm{IC}_{50} \mathrm{~K} 1$
$\mathbf{1 5 4}$	1-adamantan-1-ylethylamino	Me	5.6	1.5
$\mathbf{1 5 5}$	n-propylamino	Me	156	72
$\mathbf{1 5 6}$	n-dibutylamino	F	18	5.7
$\mathbf{1 5 7}$	4-phenylpiperidin-1-yl	F	26	9
$\mathbf{1 5 8}$	4-benzylpiperidin-1-yl	F	16	6.8
$\mathbf{1 5 9}$	4-benzhydrylpiperazin-1-yl	F	14	3.7
$\mathbf{1 6 0}$	1-adamantylamino	F	51	11
$\mathbf{1 6 1}$	3,5-dimethyladamantan-1-ylamino	F	38	8.3
$\mathbf{1 6 2}$	4-(adamantan-1-yl)piperazin-1-yl	F	59	12

163 with a 3,4-dimethylphenylpiperazine in the amine diversity site, see Figure 19, shows moderate activity and low cytotoxicity. The adamantyl derivatives of propafenone, 164 and 165, show good activity. Biphenyl 166 shows moderate activity and low cytotoxicity. It is important to notice that this compound contains no amide or carbonyl group but activity remained. After all, compared with its benzylamido derivative $\mathbf{1 2 1}$ it shows half of the activity and is only slightly more cytotoxic. The naphthalen-1-ylmethylamido structure 167 shows more activity than its adamantan-1-ylmethyl derivative 141. The additional methyl group seems to have a beneficial effect, but this data has to be treated with caution because this data is based on a diastereomeric mixture of compounds.

164
$I_{50}($ NF54 $)=182$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=96$

166
$\mathrm{IC}_{50}($ NF54 $)=492$
$I_{50}(\mathrm{~K} 1)=159$

167
$\mathrm{IC}_{50}($ NF54 $)=14$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=3.6$

Figure 19. Other compounds examined for antiplasmodial activity (nM).
The drawn lessons from comparing preliminary data are quite simple. In the amide site the anilide structure is the most active group. 2-Phenylethyl amides are less active, and least active are the 3-phenylpropyl-, the benzyl, and the isopentylamides. In the amine diversity site the substituted rimantadines are the most active. However, they should be avoided because of the inconvenient, and therefore expensive, handling of diastereomers. Lumefantrine (20), having only one stereogenic center, acts as model because it can be administered as racemic mixture. Hence, adamantan-1-ylmethyl amines are considered as best choice because the shown activities of the presented compounds above (137, 141-146, 154, 156159, and 167) look promising although cytotoxicity might be problematic, but not insurmountable. 2-Adamantyl amines are much less active, but still better than 1-adamantyl derivatives. In summary, the evaluation of preliminary data leads us to the scaffold shown in Figure 20.

Figure 20. Simplified illustration of the ideal scaffold solution found through evaluation of preliminary data.

2.2.2 Data Collected During Thesis

One of the most promising substitution patterns from preliminary results was the N-4-fluoro substitution in the amide region: 143, 147, 156-159, and 162. Therefore this pattern was further investigated, see Table 8. It was considered as important to block the 5-postion in the salicylic ring, to avoid the metabolic production of p-hydroquinone. 168 shows excellent activity and acceptable cytotoxicity. In comparison to their unsubstituted analogs (157-159) the 5 -bromo compounds $(\mathbf{1 6 9}, \mathbf{1 7 0}$, and $\mathbf{1 7 1}$) show better activities. The 4 -phenylpiperidine compound 169 shows more cytotoxic activity than its analog without the bromine atom, while the 5 -bromo substitution seems to be beneficial in combination with a benzhydryl piperazine. When comparing $\mathbf{1 7 2}$ and $\mathbf{1 6 8}$ there seems to be no difference in activity or cytotoxicity between 5-bromo and 5 -chloro substitution. The reduced activity of the 1 adamantane compound $\mathbf{1 7 3}$ in comparison with the CH_{2}-elongated $\mathbf{1 7 2}$ is another confirmation of our findings from evaluation of preliminary data. 5-Fluoro substitution in $\mathbf{1 7 4}$ shows slightly poorer activity than chloro or bromo analogs (168 and 172, respectively) but extreme cytotoxicity issues.

Table 8. Chemical structures and activities (nM) of 4-fluoro salicylanilides in combination with halogen substituents in the 5 -position of the salicylic ring.

	X	R	IC_{50} NF54	$\mathrm{IC}_{50} \mathrm{~K} 1$
$\mathbf{1 6 8}$	Cl	adamantan-1-ylmethylamino	2.4	0.62
$\mathbf{1 6 9}$	Br	4-phenylpiperidin-1-yl	9.3	2.3
$\mathbf{1 7 0}$	Br	4-benzylpiperidin-1-yl	8.4	2.3
$\mathbf{1 7 1}$	Br	4-benzhydrylpiperazin-1-yl	7.1	1.8
$\mathbf{1 7 2}$	Br	adamantan-1-ylmethylamino	2.3	0.56
$\mathbf{1 7 3}$	Br	1-adamantylamino	15	4.2
$\mathbf{1 7 4}$	F	adamantan-1-ylmethylamino	3.2	0.68

Compound 175, shown in Figure 21, shows promising activity. Cytotoxicity data seems to be fair enough. However, in an animal experiment one of three mice treated with $\mathbf{1 7 5}$ died. The bromine atom in the aniline was considered as trigger of this effect. Therefore, incorporation of bromine was avoided hereafter. For the sake of completeness, 1-adamantylamine com-
pound $\mathbf{1 7 6}$ is less active than its adamantan-1-ylmethylamino analog 175. This ranking of amines was observed before.

Figure 21. 2-(3-((Adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4-bromophenyl)benzamide (175) and 2-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)-N-(4-bromophenyl)benzamide (176).

As the diversity site in the salicylic region was not deeper investigated so far, the compounds shown in Figure 22 (177, 178, 179, and 200) were synthesized. 177 is about five-fold less active than the unsubstituted salicylamide analog 143 (Table 5; 6.4 nM on NF54 and 1.7 nM on K1, respectively) while cytotoxicity remains the same. The 1-adamantyl amine 178 shows weaker activity than the 1-adamantyl amine salicyl-compound $\mathbf{1 6 0}$ (Table 7; 51 nM on NF54 and 11 nM on K1, respectively) but roughly on the same level. By installing a 3-hydroxy-1adamantyl residue in the amine diversity site as in $\mathbf{1 7 9}$ activity is significantly reduced. This might be a mimic of potential metabolic intermediates when such a compound is degraded. When a trifluoromethyl group is in the 4-position of the salicylic ring (180) activity is extraordinarily good, but unfortunately at the expense of high cytotoxicity. At a concentration of 1 $\mu \mathrm{M}$ only 1.5% of the tested Hep G2 cells survived.

179
$\mathrm{IC}_{50}($ NF54 $)=1303$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=816$

180
$\mathrm{IC}_{50}($ (NF54) $=1.5$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.55$

Figure 22. Structure and activity (nM) of 2-naphthamides 177, 178, and 179; as well as the highly active 4trifluoromethyl salicyl compound 180.

To validate the low antiplasmodial activity found with 179 other derivatives carrying a 3-hydroxy-1-adamantyl residue $(\mathbf{1 8 1}, \mathbf{1 8 2})$ were synthesized (see Figure 23). Both derivatives revealed IC_{50}-values around $1 \mu \mathrm{M}$. All three of them are nontoxic to Hep G2 cells, which is also positive as it would suggest that metabolites of this type would exert no cytotoxicity.

Figure 23. Derivatives with 3-hydroxy-1-adamantyl residues.
In compound 169 (Table 8; 9.3 nM and 2.3 nM , respectively) the 4-phenyl piperidine in the molecule looked promising. Further, compounds with this amine motif were synthesized and tested. Structures and activities are shown in Table 9.183 showed slightly better but comparable activity while being less cytotoxic. The 2-fluoro group of $\mathbf{1 8 4}$ drastically reduces activity. On the other hand cytotoxicity is also drastically reduced. 185 offers no advantage in terms of cytotoxicity over $\mathbf{1 8 3}$ while being muss less active. The chlorine atom in $\mathbf{1 8 6}$ seems
to reduce activity which was not observed before. This compound has surprisingly very low solubility; the assay therefore might have failed.

Table 9. 4-Phenyl piperidine derivatives 183-186.

	X	R	IC_{50} NF54	IC_{50} K1
$\mathbf{1 8 3}$	H	3-trifluoromethyl	8.8	2.2
$\mathbf{1 8 4}$	H	2-fluoro	256	105
$\mathbf{1 8 5}$	H	4-methyl	47	11
186	Cl	3-trifluoromethyl	16	3.5

Since the 4-phenyl piperidine compounds did not provide satisfying results, the 4-benzyl piperidine motif was investigated. Compounds 187-190, shown in Table 10, show no noteworthy improvement over their 4-phenyl analogs in Table 9. One exception is of course 190 which is much better soluble than its analog 186. Therefore, activity is much better and concomitantly cytotoxicity is observed; this was not the case for 186.

Table 10. 4-Benzyl piperidine derivatives 187-190.

	X	R	IC_{50} NF54	IC_{50} K1
$\mathbf{1 8 7}$	H	3-trifluoromethyl	8.6	2.3
188	H	2-fluoro	205	74
189	H	4-methyl	36	8.6
190	Cl	3-trifluoromethyl	3.8	0.99

When considering the 4-benzylpiperazine derivatives in Table 11 generally low cytotoxicity is observed. This might be an effect related to the benzhydryl piperazine moiety, because it is observed for all compounds shown in Table 11 and also 159 (see Table 7) shows low cytotoxicity. 191, which is not cytotoxic, still shows half of the activity of adamantan-1-ylmethylamino compound 145, which is highly toxic on Hep G2 cells. 192 shows only moderate activity, com-
parable to its piperidine analogs 184 and 188. These also show only weak cytotoxicity; hence, $\mathbf{1 9 2}$ is no real advance and the 2-fluoro anilines can be ruled out as best solution. Benzhydryl piperazine 193 shows five-fold decreased activity than adamantan-1ylmethylamino 142. In return it is less cytotoxic. Interestingly 5-chloro salicyl compound $\mathbf{9 5}$ shows very similar results in activity and cytotoxicity to deschloro analog 191. Both compounds are highly interesting since both offer promising activity, comparable to marketed antimalarial drugs, while being nontoxic on Hep G2 cells.

Table 11. 4-Benzhydryl piperazine derivatives 191-193, and 95.

	X	R	IC_{50} NF54	IC_{50} K1
$\mathbf{9 5}$	Cl	3-trifluoromethyl	5.7	1.2
$\mathbf{1 9 1}$	H	3-trifluoromethyl	5.5	1.3
$\mathbf{1 9 2}$	H	2-fluoro	258	83
$\mathbf{1 9 3}$	H	4-methyl	24	5.9

Hitherto, the trifluoromethyl substituent in the 3 -positon of the aniline has been promising; therefore, many more compounds showing this motif have been synthesized. These are shown in Figure 24. First, anilide $\mathbf{7 2}$ shows only very weak activity. Unfortunately, no toxicological data is available. This would have been interesting regarding the hazardousness of metabolites. Compound 194 shows good activity and acceptable cytotoxicity. The effect of an additional alkyl group on the amine was beneficial in preliminary tests in some cases. Compound 195 shows unfavorable cytotoxicity, while the activity is unrevealing because no comparable compound has been evaluated.

The effect of a 3,4-annulation in the salicylic ring as in compound $\mathbf{1 9 6}$ has unfavorable effects on the activity if it is compared to the simpler salicylic analog $\mathbf{1 4 5}$ which is sevenfold more active. A similar effect was observed above concerning 4,5-annulation, shown with the pair 143 and 177. Both enantiomers, 96 and 97, show the same activity and the same toxicological properties regarding Hep G2 cells. This would suggest that the compounds work the same way as for instance lumefantrine which is also administered as racemic mixture. Sur-
prisingly, the enantiomers show slightly more activity than the racemate. The trifluoromethyladamantyl compounds 197,198 , and 199 show good antimalarial activities but at the same time they are all seriously toxic on the tested Hep G2 cells. On the basis of the promising effect of 1-adamantan-1-ylethyl amine in compound $\mathbf{1 2 4}$ (see Table 3) a symmetrical 2-(adamantan-1-yl)propan-2-amine was incorporated in 200. The result is good activity, comparable to the tested enantiomers $\mathbf{9 6}$ and $\mathbf{9 7}$, but cytotoxicity on this level is unacceptable. The effect of a chloroadamantyl residue is comparable to the effect of the trifluoromethyladamantyl residue in the amine diversity site. 201 also shows good IC_{50}-values while being extremely cytotoxic. 202, the 2-adamantyl version of 194 shows comparable activity and cytotoxicity data as the enantiomers 96 and $\mathbf{9 7}$. Therefore, it can be assumed that the ada-mantan-2-ylmethyl group has no advantage over the adamantan-1-ylmethyl group.

The low activity of 2-allyl anilide 203, see Figure 25, can be overcome when a bulky alkyl residue is presented in the amine diversity site as in 204. 2-Naphthylamine (205) seems to be well tolerated with regard to activity. Compound $\mathbf{2 0 5}$ also shows an acceptable level of cytotoxic activity against liver cells. Both bis(trifluoromethyl) aniline derivatives $\mathbf{2 0 6}$ and $\mathbf{2 0 7}$ are highly active. But chloro compound 207 is less cytotoxic than the deschloro version 206 while being equally active. Chloroadamantyl compound 208 is, similar to its 3trifluoromethyl version, highly cytotoxic. 3-Trifluoromethoxy compound 209 shows very good activity, while being cytotoxic at an acceptable level; even more in contrast to the high activity. Changing the position of the trifluoromethoxy group from 3 to 4 yields 210, which has an impressive IC_{50}-value of 920 pM at the NF54 strain and is even less cytotoxic than 209. Also promising compounds are 211 which features a 3 -iodoaniline and $\mathbf{2 1 2}$ with the iodine in the salicyl diversity site. For both derivatives, activities are good and cytotoxicity is tolerable. Dichloroaniline compounds $\mathbf{2 1 3}$ and $\mathbf{2 1 4}$ show both acceptable cytotoxicity and good activity, whereas the compound with the 3,4 -substitution pattern (214) is twice as active as $\mathbf{2 1 3}$ with the 3,5 -pattern.

72
$\mathrm{IC}_{50}($ NF54 $)=2296$
$I_{50}(K 1)=1133$

96
$\mathrm{IC}_{50}(\mathrm{NF} 54)=1.9$
$I_{50}(K 1)=0.52$

97
$\mathrm{IC}_{50}($ NF54 $)=1.8$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.43$

197
$I_{50}(N F 54)=3.5$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=1.4$

198
$\mathrm{IC}_{50}(\mathrm{NF} 54)=6.3$
$\mathrm{IC} 50(\mathrm{~K} 1)=3.1$

199
$I C_{50}(N F 54)=2.0$
$I C_{50}(\mathrm{~K} 1)=0.51$

Figure 24. Structures and activities (nM) of further compounds containing a 3-trifluoromethyl anilide residue.

203
$\mathrm{IC}_{50}(\mathrm{NF} 54)=2554$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=488$

$\mathrm{IC}_{50}(\mathrm{NF} 54)=1.2$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.26$

204
$\mathrm{IC}_{50}($ NF54 $)=73$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=21$

207
$\mathrm{IC}_{50}(\mathrm{NF} 54)=1.1$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.19$

210
$\mathrm{IC}_{50}($ NF54 $)=0.92$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.25$

213
$\mathrm{IC}_{50}(\mathrm{NF} 54)=2.5$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.50$

205
$\mathrm{IC}_{50}($ NF54 $)=6.2$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=1.8$

208
$\mathrm{IC}_{50}(\mathrm{NF} 54)=3.6$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=1.5$

209
$\mathrm{IC}_{50}($ NF54 $)=1.0$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.20$

211
$\mathrm{IC}_{50}($ NF54 $)=1.3$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.27$

214
$\mathrm{IC}_{50}($ NF54 $)=1.2$

Figure 25. Structures and activities (nM) of compounds 203-214.
3-Azaspiro[5.5]undecan (215) as well as 2 -azaspiro[4.6]undecan (216) show exceptional activity and acceptable cytotoxicity (for structures and activities see Figure 26). Compounds featuring the smaller 2-azaspiro[4.5]decan (217) or the even smaller 2-azaspiro[4.4]nonan (218) also show good activity but considerable cytotoxicity.

215
$\mathrm{IC}_{50}(\mathrm{NF} 54)=2.0$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.48$

217
$\mathrm{IC}_{50}(\mathrm{NF} 54)=1.4$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.48$

216
IC_{50} (NF54) $=1.1$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.35$

218
$\mathrm{IC}_{50}($ NF54 $)=1.8$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.76$

Figure 26. Structures and activities (nM) of spiroamino compounds 215-218.
Compounds disubstituted in the 3 - and 5 - position of the salicylic ring are depicted in Figure 27. An additional chlorine atom on highly active compound 207 (Figure 25; 1.1 nM on NF54 and 0.19 nM K1, respectively) leads to 219 which is fivefold less active and cytotoxicity stays on an equal level. The benzhydryl piperazine derivative $\mathbf{2 2 0}$ shows no cytotoxicity at all and shows impressive results in the microsome stability assay. Unfortunately, activity is not as high as desired. 221 is the dichloro derivative of 194 (Figure 24). Also in this case an additional chlorine atom in the 3-position of the salicylic ring lowers the activity, while no change regarding cytotoxicity was observed. Compound 222, which contains four chlorine atoms, shows acceptable stability as well as antiplasmodial activity, while being less cytotoxic than most other compounds. $\mathbf{2 2 3}$ is the benzhydryl piperazine analog of $\mathbf{1 8 0}$ (Figure 22), which is highly active but also highly cytotoxic. The benzhydryl piperazine analog shows very low toxicity on Hep G2 cells though also lower activity than the adamantan-1-ylmethyl amine analog. 4-Fluoro salicyl compound $\mathbf{2 2 4}$ shows good activity, stability and cytotoxicity on an acceptable level.

Figure 27. Structures and activities (nM) of 3,5-dichlorosalicylic compounds and further compounds substituted in the 4-position of the salicylic ring.

Comparison of the above shown 224 (Figure 27) with a fluorine atom in the 4-position of the salicylic ring with its regiomer 225, having the fluorine atom in the 5-position, reveals that substitution in the 5 -position leads to better activity while substitution in the 4 -position seems to increase stability. Cyano compound 226 shows high stability and acceptable cytotoxicity and also acceptable activity although it clearly underperforms in comparison to other compounds. The adamantan-2-ylmethyl analog $\mathbf{2 2 7}$ is less favorable in all three concerns: activity, stability, and cytotoxicity. The benzhydryl piperazine motif in $\mathbf{2 2 8}$ lowers activity as well as stability and favorably cytotoxicity. Also, adamantan-2-ylmethyl compound $\mathbf{2 2 9}$ is less favorable in all respects than the adamantan-1-ylmethyl analog 207 (Figure 25). These findings (comparison of the pairs 227 / 226 and 229 / 207, respectively) validate the assumption from above that the adamantan-2-ylmethyl group has no advantage over the adamantan-1ylmethyl group which was derived from the comparison of 202 with 194, 96, and 97 (structures are depicted in Figure 24).

Figure 28. Structures and activities (nM) of compounds 225-230.
Surprisingly, the simple structure of $\mathbf{2 3 1}$ showed promising IC_{50} values of 23 nM against NF54 and 8 nM against K1 strain. Cytotoxicity was also on an acceptable level. Benzhydryl piperazine 232 showed only moderate activity on NF54 and, in contrast to all other compounds tested, it is more active against this strain than on the K1 strain. This observation could point towards a different mode of action of this scaffold. The two compounds shown in Figure 29 are the only ones synthesized featuring this simplified scaffold.

231
$\mathrm{IC}_{50}($ NF54 $)=23$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=8$

Figure 29. Structures and activities (nM) of 1-((adamantan-1-ylmethyl)amino)-3-(3,5-
bis(trifluoromethyl)phenoxy)propan-2-ol (231) and 1-(4-benzhydrylpiperazin-1-yl)-3-(3,5-
bis(trifluoromethyl)phenoxy)propan-2-ol (232).

Benzhydryl piperazine compound $\mathbf{2 3 3}$ is sevenfold less active than the corresponding ada-mantan-1-ylmethyl amine 209 (Figure 25), while being less cytotoxic (structures and activities are summarized in Figure 30). The effect of an additional chlorine atom in the 4-position of the aniline fragment of $\mathbf{2 3 4}$ is a decrease in activity, an enhanced stability and it appeals safer in cytotoxic concerns in comparison to 209 (Figure 25). For 235, a similar effect is observed. Instead of adding a chlorine atom in the aniline, the chlorine atom in the salicylic region is replaced by a trifluoromethyl group. In comparison to 209 (Figure 25) activity is lower, but stability is increased while cytotoxicity roughly stays the same. The effect on stability is more marked in $\mathbf{2 3 5}$ than in $\mathbf{2 3 4}$. When an additional trifluoromethoxy group is incorporated in the aniline ring in the 4-position (236) the activity is increased, while stability and cytotoxicity remain on the same level, in comparison to the results of the analog racemic 194 and the enantiopure compounds 96 and 97 (reference substances are shown in Figure 24). The same effects were observed when instead of a trifluoromethoxy group, as in 236, an additional fluorine- (237) or chlorine atom (238) is present in the 4-position of the aniline.

Figure 30. Activities (nM) and structures of analogs of 194 and 209, respectively.
Replacement of the chlorine atom of 194 (Figure 24) by a methyl group, as in $\mathbf{2 3 9}$ depicted in Figure 31, leads to a decrease in activity. Stability and cytotoxicity of these compounds are widely unaffected. A replacement by methoxy group (240) lowers the activity even further
but stability is increased, while cytotoxicity remains at the same acceptable level. The methyl group in the 3-position of $\mathbf{2 4 1}$ drastically reduces activity whereas stability and cytotoxicity are comparable to 194 (Figure 24). Derivative 242, a 4-methyl analog, not only shows the best activity within the methyl series but also stability and cytotoxicity are on a satisfying level.

239
$\mathrm{IC}_{50}(\mathrm{NF} 54)=5.0$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=1.3$

241
$\mathrm{IC}_{50}($ NF54 $)=38$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=16$

Figure 31. Structures and activities (nM) of compounds featuring a methyl or methoxy group in the salicylic part.

Dibutyl compound $\mathbf{2 4 3}$ (see Figure 32) shows promising activity and satisfyingly low cytotoxicity, only the stability is in need of improvement. Although with its dibutyl amine motif $\mathbf{2 4 3}$ is obviously an analog of lumefantrine (20) for which it is known that one butyl group is cleaved rapidly during metabolism. The resulting monodesbutyl metabolite is even more active than lumefantrine itself. ${ }^{91}$ Lumefantrine (20) can be interpreted as prodrug. Similar considerations might be applicable to 243.

Adding a methyl group to the basic amine of 194 (Figure 24) leads to tertiary amine 244. This compound is less active than the desmethyl analog 194 but it is far less cytotoxic. When the methyl group is replaced by the larger butyl group as in $\mathbf{2 4 5}$ activity stays the same while cytotoxicity is even less than in the methylated analog 244, but the greatest improvement is the stability.

When a tertiary anilide is combined with activity supporting substitution patterns on salicyl and amine site, such as in 246, activity is drastically reduced. This observation underscores the importance of the intramolecular hydrogen bridge established within secondary anilides.

Figure 32. Structures and activities (nM) of tertiary adamantan-1-ylmethyl amines 243-245 and tertiary amide 246.

The trifluoromethoxy structure $\mathbf{2 4 7}$ (Figure 33) shows much more activity than the simple methoxy analog 240 (Figure 31). Stability decreased slightly but is still satisfying while also cytotoxicity is acceptable. The effect of a trifluoromethoxy group in the 4-position of the aniline diversity site (248) is comparable to compound $\mathbf{2 3 3}$ (Figure 30), which is the regioisomer carrying the trifluoromethoxy group in the 3-position. A real highlight is $\mathbf{2 4 9}$ which shows very good activity (1.4 nM on NF54 and 0.45 nM on K1 strain, respectively), good stability data, and nearly no cytotoxicity. 250, the cyano analog of highly active $\mathbf{2 1 0}$ (Figure 25), drastically loses activity compared to the chlorine derivative. 251, which is also an analog of 194 and its enantiopure forms 96 and 97 (194, 96, and 97 are shown in Figure 24), shows less activity than both enantiopure forms and additionally offers no advantage in respect of stability and cytotoxicity. Also combined with the benzhydryl piperazine motif the trifluoromethyl group in the salicylic ring (252) shows less activity than the chloro analog 95 (Table 11), which also has the better cytotoxic properties. An additional trifluoromethyl group in the 5 position of the aniline once more reduces activity when $\mathbf{2 5 2}$ and $\mathbf{2 5 3}$ are compared.

However, stability is increased while cytotoxicity results seem paradoxical since $\mathbf{2 5 2}$ seems more cytotoxic than $\mathbf{2 5 3}$ at a concentration of $1 \mu \mathrm{M}$ but is less cytotoxic at a concentration of $10 \mu \mathrm{M}$. Moreover, the 5-chloro salicyl variant (233 shown in Figure 30) of 254, which again features a 3-trifluoromethoxy group in the amide region, also proves the findings from above that a chlorine atom is the better option than a trifluoromethyl group in the 5position of the salicylic ring. In particular, activity is comparable, also in terms of stability no noteworthy benefit was recorded, and chlorine variant $\mathbf{2 3 3}$ (Figure 30) has the more favorable cytotoxicity profile.

Figure 33. Structures and activities (nM) of compounds 247-254.

The trifluoromethyl analog 256, shown in Figure 34, of the all over satisfying compound $\mathbf{2 4 9}$ (Figure 33) is less convincing in every aspect. Cyano analog $\mathbf{2 5 5}$ shows even worse results than trifluoromethyl analog 256. In the adamantan-1-ylmethyl amine version the trifluoromethyl group (257) shows also more activity than the cyano derivative 258. The stabilities of these compounds are similar, but both are not satisfying. Cytotoxicities are also similar and on an acceptable level. The tris(trifluoromethyl) compound $\mathbf{2 5 9}$ shows less activity than other trifluoromethyl salicyl adamantan-1-ylmethyl compounds but it is still on a remarkable niveau. Stability is surprisingly high, while cytotoxicity is on an acceptable level.

$1 \mathrm{C}_{50}($ NF54 $)=17$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=5.2$

IC $\mathrm{F}_{50}($ NF54 $)=11$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=2.5$

Figure 34. Structures and activities (nM) of compounds 255-259.
The drastically reduced activities of compounds $\mathbf{2 6 0}$ and 261, shown in Figure 35, must be attributed to the trifluoromethyl groups in the 6-position of the salicylic ring. Substitution in this position seems momentous. The loss of activity upon substitution of the 6-position with a trifluoromethyl group can be attributed to disturbed resonance of the amide functionality with the aromatic salicyl core. Electronic repulsion between the trifluoromethyl substituent and the carbonyl rotates the amide out of plane of the aromatic ring, which would result in weakening or even loss of the intramolecular hydrogen bond.

260
$I C_{50}($ NF54 $)=282$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=78$

Figure 35. Structures and activities (nM) of 6-trifluoromethylsalicyl compounds.
Compound 262, shown in Figure 36, is slightly less active than 207 (1.1 nM on NF54 and 0.19 nM on K1 strain, respectively), which has a chlorine atom in the salicylic region instead of the trifluoromethoxy group. On the other hand, $\mathbf{2 6 3}$ is much more active than its chloro analog 230 (18.0 nM on NF54 and 3.8 nM on K1 strain, respectively). No significant effect was shown for the additional cyano group in the 4-position of the aniline site; 264 and 265 are not more active than their descant analogs 194 and 95 . Omitting the trifluoromethyl groups (266 and 267) reduces activity further. When the cyano groups are in the 3-position (268 and 269) instead of the 4-position (266 and 267) activity is improved. An additional fluorine atom in the 4-postion of the aniline shows slight beneficial effects on the activity in case of the adamantane compound (270) and unfavorable effects were observed for benzhydryl piperazine derivative 271. The 2,3-dimethylphenyl piperazine compound $\mathbf{2 7 2}$ shows much less activity than the most promising compound 249.

Figure 36. Structures and activities (nM) of compounds 262-272.
The 1-adamantanylethyl series $(\mathbf{2 7 3}, \mathbf{2 7 4}$, and $\mathbf{2 7 5}$) shows no advantages over the 1adamantanylmethyl series. While $\mathbf{2 7 3}$ shows comparable activity to its 1 -adamantanylmethyl analogs (96,97 , and 194) it has more cytotoxic activity. The same is valid for $\mathbf{2 7 4}$ when it is compared to compound $\mathbf{1 4 3}$. Only 275 is an exception. This compound is less active than its 1-adamantanylmethyl analog $\mathbf{1 4 5}$ but concomitantly also less cytotoxic on Hep G2 cells. Bi-
cyclic $\mathbf{2 7 6}$ shows high activity, very good microsomal stability and very low cytotoxicity. Spiroadamantane compound $\mathbf{2 7 7}$ loses antimalarial activity. A diastereomeric mixture of transdecalins (278) showed promising activity.

$\mathrm{IC}_{50}($ NF54 $)=2.7$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=0.95$

276
$\mathrm{C}_{50}(\mathrm{NF} 54)=4.6$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=1.4$

277
$\mathrm{C}_{50}(\mathrm{NF} 54)=4968$
$\mathrm{IC}_{50}(\mathrm{~K} 1)=2633$

278 (mixture of diastereomers) IC_{50} (K1) $=0.97$

Figure 37. Structures and activities (nM) of compounds 273-278.
Also the menthyl proline compound 102, shown in Figure 38, possesses antimalarial activity. This compound was synthesized to determine the configuration of the alcohol moiety which originates from a corresponding epoxide precursor.

Figure 38. Structure and activity (nM) of (S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((R)-3-(4-chloro-2-
((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2-carboxylate (102).

2.2.3 Conclusions from SAR

Blocking the 5-position is a necessity to avoid the formation of quinoidal systems during metabolization. The effect of the substituent in this position on the activity is shown in Table 12. Halogens seem well tolerated at this position which is indicated by very high activities. The trifluoromethoxy substituent also shows very high activity. The cyano group is least suitable.

Table 12. Effects of substituents in the 5-position of the salicylic ring on the activity (nM).

	X	$\mathrm{IC}_{50} \mathrm{NF}^{2} 4$	$\mathrm{IC}_{50} \mathrm{~K} 1$
$\mathbf{1 4 5}$	H	2.3	0.51
$\mathbf{1 9 4}$	Cl	4.2	0.99
$\mathbf{2 1 2}$	I	2.1	0.47
$\mathbf{2 2 5}$	F	1.3	0.42
$\mathbf{2 3 9}$	Me	5.0	1.30
$\mathbf{2 4 0}$	OMe^{2}	6.0	1.70
$\mathbf{2 4 7}$	OCF_{3}	1.4	0.37
$\mathbf{2 5 1}$	CF_{3}	2.8	0.82
$\mathbf{2 7 9}$	CN	13.0	4.90

The effects of the various substitutions in the aniline diversity site on the activity are summarized in Table 13. The chlorine atom in the salicylic region was used in several target compounds. Therefore, it serves as good reference for substitutions in the aniline site. The extraordinary result of $\mathbf{2 1 0}$ which shows an activity of 900 pM on the NF54 strain is followed by its regioisomer 209. In general, bulky substitution by halogens or other substituents with similar electronic effects such as the trifluoromethyl- and the trifluoromethoxy group, which are also bulky show very high activities; 207, 211, 214, 234, 236, 237 and 238, show activities of $1.0-1.6 \mathrm{nM}$ on the NF54 strain. The substitution pattern in both trichloro compounds $\mathbf{2 1 3}$ and $\mathbf{2 1 4}$ has some importance. The 3,4-substituted compound $\mathbf{2 1 4}$ is twice as active as 3,5substituted 213. Compounds bearing cyano groups show weaker but still good activities; $\mathbf{1 9 4}, \mathbf{2 6 6}, \mathbf{2 6 8}, \mathbf{2 6 4}$, and $\mathbf{2 7 0}$ show activities of $3.6-5.6 \mathrm{nM}$ on the NF54 strain.

Table 13. Effects of various substitutions in the aniline diversity site on the antimalarial activity (nM).

	3	4	5	$\mathrm{IC}_{50} \mathrm{NF} 54$	$\mathrm{IC}_{50} \mathrm{~K} 1$
$\mathbf{1 6 8}$	H	F	H	2.4	0.62
$\mathbf{1 9 4}$	CF_{3}	H	H	4.2	0.99
$\mathbf{2 0 7}$	CF_{3}	H	CF_{3}	1.1	0.19
$\mathbf{2 0 9}$	OCF_{3}	H	H	1.0	0.20
$\mathbf{2 1 0}$	H	OCF_{3}	H	0.9	0.25
$\mathbf{2 1 1}$	I	H	H	1.3	0.27
$\mathbf{2 1 3}$	Cl	H	Cl	2.5	0.50
$\mathbf{2 1 4}$	Cl_{2}	Cl	H	1.2	0.31
$\mathbf{2 3 4}$	OCF_{3}	Cl	H	1.6	0.31
$\mathbf{2 3 6}$	CF_{3}	OCF	H	1.3	0.27
$\mathbf{2 3 7}$	CF_{3}	F	H	1.6	0.40
$\mathbf{2 3 8}$	CF_{3}	Cl	H	1.5	0.36
$\mathbf{2 6 4}$	CF_{3}	CN	H	3.6	0.61
$\mathbf{2 6 6}$	H	CN	H	5.6	1.60
$\mathbf{2 6 8}$	CN_{2}	H	H	3.8	1.20
$\mathbf{2 7 0}$	CN^{270}	F	H	3.6	0.70

The adamantan-1-ylmethyl amino- and the benzhydryl piperazine-derivatives are the most promising groups in the amine diversity site. In general, adamantan-1-ylmethyl amino compounds show higher activity while benzhydryl piperazine compounds are safer regarding cytotoxicity. Tertiary adamantan-1-ylmethyl amines showed a similar behavior in the few examples synthesized. The salicyl aryl amide scaffold showed best results. 3,4 Annulations (196) as well as 4,5 annulations (177 and 178) in the salicylic region resulted in worse activities.

2.3 Analysis of Data from Animal Experiments

Animal experiments were performed to show activity of compounds in vivo. Acute toxicity was tested prior to animal experiments involving malaria infections. The compounds tested are shown in Figure 39. Some adverse effects (reduced activity, sunken flanks, increased reaction to touch, and hunching) were observed after administration of compounds 132, 137, and 146, which are depicted in the top row. Even from the observations made for these compounds, no acute toxicity was derived.

Administration of other compounds was well tolerated. Therefore, the compound class can be considered as harmless regarding acute toxicity.

Table 14. Acute toxicology tested at Swiss TPH.

	series of test	route	observations	toxicity
32	1	p.o.	-	-
132	1	i.p.	after $30 \mathrm{mg} / \mathrm{kg}$: reduced activity, after $50 \mathrm{mg} / \mathrm{kg}$: reduced activity, sunken flank	-
137	1	p.o.	- -	-
137	1	i.p	after $30 \mathrm{mg} / \mathrm{kg}$: reduced activity, after $50 \mathrm{mg} / \mathrm{kg}$: reduced activity, sunken flank	,
137	2	i.p.	after $30 \mathrm{mg} / \mathrm{kg}$: reduced activity	-
143	2	i.p.	-	-
144	2	i.p.	-	-
145	2	i.p.	-	-
146	1	p.o.	increased reaction to touch	-
146	1	i.p	after $30 \mathrm{mg} / \mathrm{kg}$: reduced activity, after $50 \mathrm{mg} / \mathrm{kg}$: reduced activity, hunched position, sunken flank	,
183	2	i.p.	-	-
187	2	i.p.	-	-
191	2	i.p.	-	-

143

183

144

187

145

Figure 39. Compounds tested for acute toxicity. Adverse effects were observed for compounds 132, 137, and 146 (top row).

To demonstrate antimalarial activity in vivo, the four days Peter's suppression test ${ }^{128}$ is the most widely used test. Mice were infected with Plasmodium berghei, and afterwards treated for four days with $30 \mathrm{mg} / \mathrm{kg}$ test compound (daily dose). 24 hours after the last administration, residual parasitemia was determined and contrasted with the parasitemia of untreated mice. The column "activity" in Table 15 comprises these results. After the activity was determined, the time until death was determined. Untreated mice infected with Plasmodium berghei would die on day 4-6. Therefore, survival greater than seven days can be considered as prolongation of lifetime. Mice without parasitemia on day 30 post infection are considered cured. I.p. administration of compounds $141,142,143$ and 144 did not prolong the survival of mice. The activities of these compounds were measureable but insufficient. $\mathbf{1 4 5}$ had much greater activity (97.76 \%) but survival was only eight days, so this high activity was reflected in a prolongation of survival time of only one day. 167 and $\mathbf{1 5 4}$ showed insufficient activity to prolongate lifetime. 168 showed high activity (99.78%) and a survival of ten days. 205 showed an activity of 89% but a survival of only five days. 194 had an activity of 99.73%,
all three test mice survived until the experiment was finished after 30 days post infection. $\mathbf{1 7 5}$ and $\mathbf{1 7 2}$ both showed the same, very high activities (99.67% each) but drastically different survival times of 9 and 14 days, respectively. 195 showed only a very low activity. All above discussed results origin from i.p administration, the following results rely on data from p.o. administration. 142, 143, and 144 show less than half of the activity on the p.o. route, survival times were reduced from seven days (i.p.) to four days. Also the activities of $\mathbf{1 4 5}$ and 168 were drastically reduced, which also resulted in reduced survival time. Activity of 194 which cured the mice on the i.p. route was only 89.38% p.o. and survival time was limited to 9.7 days. For this promising compound also smaller daily doses were tested (i.p.), $10 \mathrm{mg} / \mathrm{kg}$ doses achieved an activity of 71.96% and daily doses of $3 \mathrm{mg} / \mathrm{kg}$ achieved an activity of only 13.75\%. 175 and 172, which were also promising in i.p. experiments were also much less active p.o. with activities smaller than 50% and survival times of only four days. 273 (86% activity), 202 (99.8% activity), and 209 (99.64% activity) showed with $10,11.3$ and 11 days the greatest survival times of the p.o. series.

Additional in vivo experiments following the same experimental procedures as at Swiss TPH were performed at Marinomed Biotechnologie GmbH (i.p., data shown in Table 16), in which also 249, $\mathbf{9 7}$ (the (S)-enantiomer of 194), and $\mathbf{2 4 7}$ led to a cure as achieved by treatment with 194 in the tests of Swiss TPH.

The available data show impressively that in vivo tests are much more demanding than in vitro tests. Keeping in mind that not only antimalarial activity plays an important role in animal experiments, but also bioavailability, biological half-life, pharmacokinetics, as well as other possible targets of the tested compounds this becomes very clear. The importance of these issues is sowed quite plainly if i.p. and p.o. experiments are compared with each other. Bioavailability may be much better when compounds are administered via intraperitoneal injection than orally. However, in vivo activity was shown in both types of experiments. Further, by administration of 194 three mice infected with Plasmodium berghei were cured.

Table 15. Results of in vivo experiments performed at Swiss TPH.

route	pos	structure	\% activity	daily dose [mg]	survival [d]
i.p.	142		58.24	30	7
i.p.	141		23.91	30	4
i.p.	143		67.35	30	7
i.p.	144		49.01	30	7
i.p.	145		97.76	30	8
i.p.	167		38.96	30	4

route	pos	structure	\% activity	daily dose [mg]	survival [d]
i.p.	154		75.15	30	5.7
i.p.	168		99.78	30	10
i.p.	205		89.27	30	5
i.p.	194		99.73	30	30/30/30
i.p.	175		99.67	30	9
i.p.	172		99.67	30	14
i.p.	195		24.76	30	4

route
proute

Table 16. Summary of animal experiments performed at Swiss TPH (herein abbreviated as S) and Marinomed Biotechnologie GmbH (M).

	test site	$4 \times 30 \mathrm{mg}$ i.p. \% red. para	survival [d]	$4 \times 30 \mathrm{mg}$ p.o. \% red. para	survival [d]
142	S	58.24	7	26.3	4
141	S	23.91	4		
143	S	67.35	7	25.04	4
144	S	49.01	7	13.38	4
145	S	97.76	8	50.65	7
167	S	38.96	4		
154	S	75.15	6		
168	S	99.78	10	57.75	4
205	S	89.27	5		
194	S/M	99.73	30	89.38	10
175	S	99.67	9	47.5	4
186	M	92.88			
186	M	99.67	11		
172	S	99.67	14	46.85	4
195	S	24.76	4		
273	S			85.52	10
202	S/M	99.62		99.82	11
209	S/M			99.64	11
276	M	84.58			
222	M	99.58			
96	M	99.67			
97	M	99.98	30	75.39	7
220	M	94.07	8		
248	M	93.43	9		
249	M	99.96	30		
245	M	99.59	8		
Lumefantrine	S			99.78	30
Chloroquine	M	99.96	18		

2.4 Other Biological Data

A range of experiments were performed at Cerep (Poitiers, France). These include Ames test, inhibition of hERG channel, and inhibition of adrenergic receptors. Tests were performed with compounds 145 (in the tests at Cerep named: MAM-12.048), $\mathbf{1 6 8}$ (MAM-12.173), 190 (MAM-12.196), and 249 (MAM-12.255).

Inhibition of adrenergic receptors is summarized in Table 17. Only benzhydryl piperazine compound $\mathbf{2 4 9}$ shows no inhibition above 50% on all of the tested receptors. The other three compounds inhibited several adrenergic receptors, whereas the adamantane compounds were better tolerated than 4-benzyl piperidine 190.

WB 4101 (280)

prazosin (281)

yohimbine (282)

atenolol (283)

ICI-118551 (284)

alprenolol (285)

cyanopindolol (286)

Figure 40. Structures of control compounds used by CEREP in the adrenoceptor assays.
Results for bacterial cytotoxicity, which is complementary to the Ames test to prevent wrong readouts, are shown for 145, 168, and 190 in Figure 41 and Figure 42, whereas results for 249 are shown in Figure 43. While 145, 168, and 190 are cytotoxic above concentrations of 5 $\mu \mathrm{M}$, benzhydryl piperazine $\mathbf{2 4 9}$ showed no cytotoxicity as far as $100 \mu \mathrm{M}$.

Table 17. Results for inhibition of adrenergic receptors by compounds 145, 168, 190, and 249 (in this table:
48, 173, 196, and 255). Test concentration: $10 \mu \mathrm{M} .{ }^{129}$

ID	Assay	\% Inhibition of Control Specific Binding	$\begin{gathered} \mathrm{IC}_{50} \\ {[\mathrm{nM}]} \end{gathered}$	Ref Compound	IC_{50} Ref [M]	K_{i} Ref [M]
48	$\alpha_{1 A}(\mathrm{~h})(\mathrm{antrl})$	70		WB 4101	3.1E-10	1.5E-10
173	$\alpha_{1 A}(\mathrm{~h})(\mathrm{antrl})$	86	2600	WB 4101	3.1E-10	1.5E-10
196	$\alpha_{1 A}(\mathrm{~h})(\mathrm{antrl})$	87	320	WB 4101	3.1E-10	1.5E-10
255	$\alpha_{1 A}(\mathrm{~h})(\mathrm{antrl})$	21		WB 4101	2.3E-10	1.2E-10
48	$\alpha_{1 B}(\mathrm{~h})(\mathrm{antrl})$	51		prazosin	2.7E-10	7.3E-11
173	$\alpha_{1 B}(\mathrm{~h})(\mathrm{antrl})$	49		prazosin	2.7E-10	7.3E-11
196	$\alpha_{1 B}(\mathrm{~h})(\mathrm{antrl})$	96	210	prazosin	2.7E-10	7.3E-11
255	$\alpha_{1 B}(\mathrm{~h})(\mathrm{antrl})$	27		prazosin	1.4E-10	3.7E-11
48	$\alpha_{1 D}(\mathrm{~h})(\mathrm{antrl})$	79		prazosin	2.0E-10	8.5E-11
173	$\alpha_{10}(\mathrm{~h})(\mathrm{antrl})$	50		prazosin	1.5E-10	6.4E-11
196	$\alpha_{10}(\mathrm{~h})(\mathrm{ant} \mathrm{rl})$	89		prazosin	$1.5 \mathrm{E}-10$	6.4E-11
255	$\alpha_{10}(\mathrm{~h})(\mathrm{antrl})$	7		prazosin	$1.6 \mathrm{E}-10$	6.7E-11
48	$\alpha_{2 A}(\mathrm{~h})(\mathrm{antrl})$	8		yohimbine	5.7E-09	2.5E-09
173	$\alpha_{2 A}(\mathrm{~h})(\mathrm{antrl})$	16		yohimbine	5.7E-09	2.5E-09
196	$\alpha_{2 A}(\mathrm{~h})(\mathrm{antrl})$	70		yohimbine	5.7E-09	2.5E-09
255	$\alpha_{2 A}(\mathrm{~h})(\mathrm{antrl})$	-3		yohimbine	3.2E-09	1.4E-09
48	$\alpha_{2 B}(\mathrm{~h})(\mathrm{antrl})$	-14		yohimbine	9.2E-09	6.1E-09
173	$\alpha_{2 B}(\mathrm{~h})(\mathrm{antrl})$	-20		yohimbine	9.2E-09	6.1E-09
196	$\alpha_{2 B}(\mathrm{~h})(\mathrm{antrl})$	13		yohimbine	9.2E-09	6.1E-09
255	$\alpha_{2 B}(\mathrm{~h})(\mathrm{antrl})$	-10		yohimbine	3.4E-09	2.3E-09
48	$\alpha_{2 C}(\mathrm{~h})(\mathrm{antrl})$	70		yohimbine	1.6E-09	5.0E-10
173	$\alpha_{2 c}(\mathrm{~h})(\mathrm{antrl})$	31		yohimbine	1.7E-09	5.4E-10
196	$\alpha_{2 C}(\mathrm{~h})(\mathrm{antrl})$	98	140	yohimbine	3.1E-09	1.0E-09
255	$\alpha_{2 C}(\mathrm{~h})(\mathrm{antrl})$	1		yohimbine	3.5E-09	1.1E-09
48	$\beta_{1}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	30		atenolol	2.2E-07	1.3E-07
173	$\beta_{1}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	8		atenolol	2.2E-07	1.3E-07
196	$\beta_{1}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	35		atenolol	2.2E-07	1.3E-07
255	$\beta_{1}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	4		atenolol	2.6E-07	1.5E-07
48	$\beta_{2}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	48		ICI 118551	4.1E-10	1.4E-10
173	$\beta_{2}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	25		ICI 118551	4.1E-10	1.4E-10
196	$\beta_{2}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	35		ICI 118551	4.1E-10	1.4E-10
255	$\beta_{2}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	-5		ICI 118551	8.8E-10	2.9E-10
48	$\beta_{3}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	7		cyanopindolol	2.2E-07	1.2E-07
173	$\beta_{3}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	5		cyanopindolol	2.2E-07	1.2E-07
196	$\beta_{3}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	-34		cyanopindolol	2.2E-07	1.2E-07
255	$\beta_{3}(\mathrm{~h})(\mathrm{ag} \mathrm{rl})$	0		alprenolol	$1.3 \mathrm{E}-07$	9.7E-08

Cerep Compound	Client Compound	Test	\% of Control growth				Cytotoxicity (\% of	Flags		
L.D.	I.D.	Concentration	$1{ }^{\text {et }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	Mean	control)	$1^{\text {ta }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Bacterial cytotoxicity (TA100-S9)										
100010294-1	MAM-12.048	$6.0 \mathrm{E}-07 \mathrm{M}$	103.3	106.6	106.7	105.6	106			
100010294-1	MAM-12.048	1.2E-06 M	99.0	97.8	104.9	100.6	101			
100010294-1	MAM-12.048	$2.5 \mathrm{E}-06 \mathrm{M}$	92.0	91.6	61.0	81.6	82			
100010294-1	MAM-12.048	$5.0 \mathrm{E}-06 \mathrm{M}$	32.1	33.5	39.5	35.0	35	criox	CYTOX	crtox
100010294-1	MAM-12.048	$1.0 \mathrm{E}-05 \mathrm{M}$	32.1	34.4	34.1	33.5	34	crtox	cytox	cytox
100010294-1	MAM-12.048	$2.5 \mathrm{E}-05 \mathrm{M}$	33.0	33.5	44.8	37.1	37	cytox	cytox	crtox
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	33.9	35.2	56.5	41.9	42	criox	cytox	crtox
100010294-1	MAM-12.048	$1.0 \mathrm{E}-04 \mathrm{M}$	42.5	39.6	65.5	49.2	49	cytox	cytox	crtox
100010294-2	MAM-12.173	$6.0 \mathrm{E}-07 \mathrm{M}$	104.2	105.7	106.7	105.6	106			
100010294-2	MAM-12.173	1.2E-06 M	80.8	74.0	93.3	82.7	83			
100010294-2	MAM-12.173	$2.5 \mathrm{E}-06 \mathrm{M}$	69.5	78.4	81.6	76.5	76			
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	32.1	32.6	33.2	32.6	33	cytox	cytox	cytox
100010294-2	MAM-12.173	1.0E-05 M	32.1	33.5	35.0	33.5	34	crtox	cytox	crtox
100010294-2	MAM-12.173	$2.5 \mathrm{E}-05 \mathrm{M}$	38.2	37.9	35.0	37.0	37	criox	cytox	crtox
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	44.3	45.8	40.4	43.5	43	crtox	cytox	crtox
100010294-2	MAM-12.173	$1.0 \mathrm{E}-04 \mathrm{M}$	64.3	67.0	57.4	62.9	63			
100010294-3	MAM-12.196	$6.0 \mathrm{E}-07 \mathrm{M}$	102.5	101.3	101.3	101.7	102			
100010294-3	MAM-12.196	1.2E-06 M	92.0	92.5	100.4	95.0	95			
100010294-3	MAM-12.196	$2.5 \mathrm{E}-06 \mathrm{M}$	66.9	53.7	54.7	58.4	58	cytox	cyTOX	crtox
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	92.0	85.5	96.0	91.2	91			
100010294-3	MAM-12.196	$1.0 \mathrm{E}-05 \mathrm{M}$	43.4	33.5	68.2	48.4	48	cytox	cytox	cytox
100010294-3	MAM-12.196	$2.5 \mathrm{E}-05 \mathrm{M}$	47.8	96.0	51.1	49.4	49	cytox	0. CYtox	crtox
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	59.0	104.0	104.0	104.0	104	3		
100010294-3	MAM-12.196	$1.0 \mathrm{E}-04 \mathrm{M}$	88.6	89.9	85.2	87.9	88			
Bacterial cytotoxicity (TA1535-S9)										
100010294-1	MAM-12.048	$6.0 \mathrm{E}-07 \mathrm{M}$	106.2	109.6	111.2	109.0	109			
100010294-1	MAM-12.048	1.2E-06 M	97.1	106.2	106.0	103.1	103			
100010294-1	MAM-12.048	$2.5 \mathrm{E}-08 \mathrm{M}$	73.3	31.9	88.5	80.8	81		0	
100010294-1	MAM-12.048	$5.0 \mathrm{E}-08 \mathrm{M}$	30.5	31.9	32.4	31.6	32	cytox	cytox	crtox
100010294-1	MAM-12.048	$1.0 \mathrm{E}-05 \mathrm{M}$	30.5	31.9	32.4	31.6	32	criox	cytox	crtox
100010294-1	MAM-12.048	$2.5 \mathrm{E}-05 \mathrm{M}$	31.3	32.8	42.0	35.4	35	criox	cytox	cytox
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	32.1	34.5	36.8	34.5	34	critox	cytox	crtox
100010294-1	MAM-12.048	1.0E-04 M	34.6	43.2	72.7	50.1	50	cytox	cyTox	crtox
100010294-2	MAM-12.173	$6.0 \mathrm{E}-07 \mathrm{M}$	104.5	108.8	111.2	108.2	108			
100010294-2	MAM-12.173	1.2E-06 M	94.7	102.7	108.6	102.0	102			
100010294-2	MAM-12.173	$2.5 \mathrm{E}-06 \mathrm{M}$	78.2	78.6	70.9	75.9	76			
100010294-2	MAM-12.173	$5.0 \mathrm{E}-08 \mathrm{M}$	30.5	31.9	37.7	33.4	33	cytox	cytox	crtox
100010294-2	MAM-12.173	$1.0 \mathrm{E}-05 \mathrm{M}$	32.1	32.8	32.4	32.4	32	criox	cytox	crtox
100010294-2	MAM-12.173	$2.5 \mathrm{E}-05 \mathrm{M}$	40.3	36.3	35.9	37.5	38	crtox	cytox	crtox
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	66.7	46.6	44.7	52.7	53	cytox	cytox	cytox
100010294-2	MAM-12.173	$1.0 \mathrm{E}-04 \mathrm{M}$	54.3	92.4	62.2	69.6	70			
100010294-3	MAM-12.196	$6.0 \mathrm{E}-07 \mathrm{M}$	102.1	107.1	112.1	107.1	107			
100010294-3	MAM-12.196	1.2E-06 M	99.6	107.9	107.7	105.1	105			
100010294-3	MAM-12.196	$2.5 \mathrm{E}-06 \mathrm{M}$	84.8	85.5	120.9	97.0	97			
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	56.8	70.8	70.1	65.9	66			
100010294-3	MAM-12.196	$1.0 \mathrm{E}-05 \mathrm{M}$	51.0	85.5	37.7	58.1	58	cytox	cytox	cytox
100010294-3	MAM-12.196	$2.5 \mathrm{E}-05 \mathrm{M}$	102.1	72.5	125.3	87.3	87			0
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	56.0	64.7	57.8	59.5	60	cytox	cyTox	cytox
100010294-3	MAM-12.196	1.0E-04 M	78.2	82.0	86.7	82.3	82			

Figure 41. Bacterial cytotoxicity of 145 (MAM-12.048), 168 (MAM-12.173), 190 (MAM-12.196). Part 1/2

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	$1^{\text {tt }}$	\% of Control growth			Cytotoxicity (\% of control)	Flags		
				$2{ }^{\text {ma }}$	$3^{\text {rd }}$	Mean		$1{ }^{\text {tt }}$	$2^{\text {nd }}$	$3^{\text {ra }}$
Bacterial cytotoxicity (TA98-S9)										
100010294-1	MAM-12.048	6.0E-07 M	97.0	99.0	97.8	97.9	98			
100010294-1	MAM-12.048	$1.2 \mathrm{E}-06 \mathrm{M}$	94.6	89.9	94.5	93.0	93			
100010294-1	MAM-12.048	$2.5 \mathrm{E}-06 \mathrm{M}$	82.6	79.1	67.1	76.3	76			
100010294-1	MAM-12.048	$5.0 \mathrm{E}-06 \mathrm{M}$	29.4	30.0	29.8	29.7	30	crtox	crtox	crtox
100010294-1	MAM-12.048	1.0E-05 M	29.4	30.8	30.7	30.3	30	cytox	crtox	crtox
100010294-1	MAM-12.048	2.5E-05 M	30.2	33.3	34.0	32.5	32	cytox	crtox	crtox
100010294-1	MAM-12.048	5.0E-05 M	31.8	33.3	40.6	35.2	35	cytox	cytox	crtox
100010294-1	MAM-12.048	$1.0 \mathrm{E}-04 \mathrm{M}$	38.9	37.4	56.4	44.2	44	cytox	crtox	crtox
100010294-2	MAM-12.173	6.0E-07 M	93.0	98.2	95.3	95.5	95			
100010294-2	MAM-12.173	1.2E-06 M	76.3	84.9	86.2	82.5	82			
100010294-2	MAM-12.173	2.5E-06 M	69.9	70.7	92.8	77.8	78			
100010294-2	MAM-12.173	5.0E-06 M	28.6	30.0	29.8	29.5	29	cytox	cytox	crtox
100010294-2	MAM-12.173	1.0E-05 M	31.0	33.3	31.5	31.9	32	cytox	crtox	crtox
100010294-2	MAM-12.173	2.5E-05 M	37.4	39.1	36.5	37.6	38	cytox	crtox	crtox
100010294-2	MAM-12.173	5.0E-05 M	39.7	39.9	40.6	40.1	40	cytox	crtox	cytox
100010294-2	MAM-12.173	1.0E-04 M	67.5	59.1	54.7	60.4	60	cytox	crtox	crtox
100010294-3	MAM-12.196	6.0E-07 M	96.2	98.2	99.4	97.9	98			
100010294-3	MAM-12.196	1.2E-06 M	93.0	91.5	89.5	91.3	91			
100010294-3	MAM-12.196	2.5E-06 M	66.8	67.4	95.3	76.5	76			
100010294-3	MAM-12.196	5.0E-06 M	64.4	101.5	76.2	80.7	81			
100010294-3	MAM-12.196	1.0E-05 M	31.0	84.0	84.5	84.3	84	0		
100010294-3	MAM-12.196	2.5E-05 M	39.7	81.6	126.8	60.6	61			0
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	50.9	56.6	53.0	53.5	53	cytox	crtox	crtox
100010294-3	MAM-12.196	1.0E-04 M	85.8	84.0	79.6	83.1	83			

Bacterial cytotoxicity (TA1537-S9)										
100010294-1	MAM-12.048	6.0E-07 M	102.4	109.2	106.3	106.0	106			
100010294-1	MAM-12.048	$1.2 \mathrm{E}-06 \mathrm{M}$	91.7	85.7	92.1	89.8	90			
100010294-1	MAM-12.048	2.5E-06 M	28.5	29.1	29.4	29.0	29	crtox	crtox	cytox
100010294-1	MAM-12.048	5.0E-06 M	28.5	29.9	28.6	29.0	29	cytox	crtox	cytox
100010294-1	MAM-12.048	1.0E-05 M	28.5	29.9	29.4	29.3	29	cytox	cytox	cytox
100010294-1	MAM-12.048	$2.5 \mathrm{E}-05 \mathrm{M}$	30.0	29.9	37.3	32.4	32	crtox	crtox	crtox
100010294-1	MAM-12.048	5.0E-05 M	31.6	33.2	54.0	39.6	40	cytox	crtox	cytox
100010294-1	MAM-12.048	1.0E-04 M	34.7	66.3	146.0	50.5	50	cytox	crtox	0 , сутох
100010294-2	MAM-12.173	6.0E-07 M	97.0	108.4	105.6	103.7	104			
100010294-2	MAM-12.173	$1.2 \mathrm{E}-06 \mathrm{M}$	54.7	84.1	66.7	68.5	68			
100010294-2	MAM-12.173	2.5E-06 M	28.5	29.9	30.2	29.5	30	cytox	crtox	cytox
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	29.3	29.1	29.4	29.2	29	cytox	crtox	crtox
100010294-2	MAM-12.173	1.0E-05 M	30.8	30.7	30.2	30.6	31	crtox	crtox	crtox
100010294-2	MAM-12.173	2.5E-05 M	36.2	33.2	40.5	36.6	37	cytox	cytox	cytox
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	37.7	38.8	42.9	39.8	40	cytox	crtox	cytox
100010294-2	MAM-12.173	$1.0 \mathrm{E}-04 \mathrm{M}$	51.6	45.3	89.7	48.4	48	crtox	crtox	0 , chtox
100010294-3	MAM-12.196	6.0E-07 M	99.4	105.9	106.3	103.9	104			
100010294-3	MAM-12.196	1.2E-06 M	90.1	88.1	97.6	92.0	92			
100010294-3	MAM-12.196	$2.5 \mathrm{E}-06 \mathrm{M}$	28.5	29.1	29.4	29.0	29	crtox	crtox	crtox
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	29.3	29.1	29.4	29.2	29	crtox	crtox	crtox
100010294-3	MAM-12.196	$1.0 \mathrm{E}-05 \mathrm{M}$	30.8	31.5	31.0	31.1	31	crtox	crtox	crtox
100010294-3	MAM-12.196	$2.5 \mathrm{E}-05 \mathrm{M}$	38.5	40.4	38.9	39.3	39	crtox	crtox	crtox
100010294-3	MAM-12.196	5.0E-05 M	54.7	59.0	55.6	56.4	56	cytox	crtox	cytox
100010294-3	MAM-12.196	$1.0 \mathrm{E}-04 \mathrm{M}$	93.2	91.4	89.7	91.4	91			

Notes:

1. Cytotoxicity is presented as $\%$ of control growth.
2. A cytotoxicity value of less than 60% is flagged, and the compound is considered as toxic at the respective concentration.

CYTOX: Test compound appears to have cytotoxic effect.
0: That replicate was excluded from the calculation

Figure 42. Bacterial cytotoxicity of 145 (MAM-12.048), 168 (MAM-12.173), 190 (MAM-12.196). Part 2/2

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	$1^{\text {et }}$	$2^{\text {na }}$	\%Effect $3^{\text {ra }}$	Mean \%Effect	Cytotoxicity (\% of control)
Bacterial cytotoxicity (TA98-S9)							
100018635-1	MAM-12.255	6.0E-07 M	115.7	103.0	97.1	105.3	105
100018635-1	MAM-12.255	1.2E-06 M	102.2	103.0	102.2	102.4	102
100018635-1	MAM-12.255	2.5E-06 M	97.1	92.0	92.9	94.0	94
100018635-1	MAM-12.255	5.0E-06 M	105.5	96.2	103.8	101.9	102
100018635-1	MAM-12.255	1.0E-05 M	101.3	97.1	99.6	99.3	99
100018635-1	MAM-12.255	2.5E-05 M	109.8	108.1	103.0	106.9	107
100018635-1	MAM-12.255	5.0E-05 M	122.4	112.3	113.1	115.9	116
100018635-1	MAM-12.255	1.0E-04 M	180.7	168.9	171.4	173.6	174
Bacterial cytotoxicity (TA100-S9)							
100018635-1	MAM-12.255	6.0E-07 M	98.3	99.2	108.1	101.9	102
100018635-1	MAM-12.255	1.2E-06 M	108.1	95.3	102.2	101.9	102
100018635-1	MAM-12.255	2.5E-06 M	94.3	94.3	98.3	95.6	96
100018635-1	MAM-12.255	5.0E-06 M	99.2	100.2	99.2	99.6	100
100018635-1	MAM-12.255	1.0E-05 M	104.1	105.1	104.1	104.5	104
100018635-1	MAM-12.255	2.5E-05 M	129.7	121.8	115.0	122.2	122
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	142.5	138.5	146.4	142.5	142
100018635-1	MAM-12.255	1.0E-04 M	195.5	185.7	177.8	186.4	186
Bacterial cytotoxicity (TA1535-S9)							
100018635-1	MAM-12.255	$6.0 \mathrm{E}-07 \mathrm{M}$	103.3	103.3	101.6	102.7	103
100018635-1	MAM-12.255	1.2E-06 M	105.0	101.6	103.3	103.3	103
100018635-1	MAM-12.255	2.5E-06 M	105.8	106.7	107.5	106.7	107
100018635-1	MAM-12.255	5.0E-06 M	114.4	117.8	116.9	116.4	116
100018635-1	MAM-12.255	$1.0 \mathrm{E}-05 \mathrm{M}$	107.5	105.8	113.5	109.0	109
100018635-1	MAM-12.255	2.5E-05 M	114.4	105.8	111.8	110.7	111
100018635-1	MAM-12.255	5.0E-05 M	134.9	125.5	127.2	129.2	129
100018635-1	MAM-12.255	1.0E-04 M	163.9	169.8	175.0	169.6	170
Bacterial cytotoxicity (TA1537-S9)							
100018635-1	MAM-12.255	$6.0 \mathrm{E}-07 \mathrm{M}$	111.2	102.7	98.5	104.2	104
100018635-1	MAM-12.255	1.2E-06 M	110.4	103.6	106.1	106.7	107
100018635-1	MAM-12.255	$2.5 \mathrm{E}-06 \mathrm{M}$	102.7	96.8	98.5	99.3	99
100018635-1	MAM-12.255	5.0E-06 M	98.5	90.8	93.4	94.2	94
100018635-1	MAM-12.255	1.0E-05 M	92.5	92.5	90.8	92.0	92
100018635-1	MAM-12.255	2.5E-05 M	104.4	96.8	101.0	100.8	101
100018635-1	MAM-12.255	5.0E-05 M	128.2	116.3	114.6	119.7	120
100018635-1	MAM-12.255	1.0E-04 M	167.3	162.2	157.1	162.2	162

1. Cytotoxicity is presented as $\%$ of control growth.
2. A cytotoxicity value of less than 60% is flagged, and the compound is considered as toxic at the respective concentration.

Figure 43. Bacterial cytotoxicity of 249 (MAM-12.255).
To test if the compounds can cause mutations 145, 168, 190, and 249 were subjected to the Ames test for mutagenicity. Results are shown in Figure 44 and Figure 45 for compounds 145, 168, and 190. Results for 249 can be found in Figure 46. No mutagenicity was found for the tested compounds.

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	Count (\# of wells)	Positive Significance (- to +++)	Fisher Exact Test (p-value)	Count Flag	Flags
Ames test (TA98 + S9)							
100010294-1	MAM-12.048	$5.0 \mathrm{E}-06 \mathrm{M}$	3	-	0.5000	-	
100010294-1	MAM-12.048	1.0E-05 M	6	-	0.3700		
100010294-1	MAM-12.048	5.0E-05 M	0	-	0.0586	-	
100010294-1	MAM-12.048	1.0E-04 M	1	-	0.1808	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	3	-	0.5000	-	
100010294-2	MAM-12.173	$1.0 \mathrm{E}-05 \mathrm{M}$	5	-	0.5000		
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	5	-	0.5000		
100010294-2	MAM-12.173	$1.0 \mathrm{E}-04 \mathrm{M}$	10	-	0.0732		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-08 \mathrm{M}$	10	-	0.0732		
100010294-3	MAM-12.196	1.0E-05 M	2	-	0.3387	-	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	12	+	0.0264		INTER
100010294-3	MAM-12.196	1.0E-04 M	15	++	0.0046		INTER
Ames test (TA100-S9)							
100010294-1	MAM-12.048	$5.0 \mathrm{E}-08 \mathrm{M}$	0	-	0.5000	-	
100010294-1	MAM-12.048	$1.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-1	MAM-12.048	$1.0 \mathrm{E}-04 \mathrm{M}$	0	-	0.5000	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	0.5000	-	
100010294-2	MAM-12.173	$1.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-2	MAM-12.173	1.0E-04 M	0	-	0.5000	-	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	0.5000	-	
100010294-3	MAM-12.196	1.0E-05 M	0	-	0.5000	-	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-3	MAM-12.196	1.0E-04 M	0	\cdot	0.5000	-	
Ames test (TA100 + S9)							
100010294-1	MAM-12.048	$5.0 \mathrm{E}-06 \mathrm{M}$	10	-	1.0000		
100010294-1	MAM-12.048	$1.0 \mathrm{E}-05 \mathrm{M}$	7	-	0.2969	\cdot	
100010294-1	MAM-12.048	5.0E-05 M	0	-	0.0008	\lll	
100010294-1	MAM-12.048	$1.0 \mathrm{E}-04 \mathrm{M}$	0	-	0.0006	\lll	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	5	-	0.1303	-	
100010294-2	MAM-12.173	$1.0 \mathrm{E}-05 \mathrm{M}$	9	-	0.5000	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	4	-	0.0732	-	
100010294-2	MAM-12.173	1.0E-04 M	1	-	0.0038	<	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	4	-	0.0732	-	
100010294-3	MAM-12.196	1.0E-05 M	2	-	0.0137	$<$	
100010294-3	MAM-12.196	5.0E-05 M	12	-	0.4043		
100010294-3	MAM-12.196	$1.0 \mathrm{E}-04 \mathrm{M}$	4	-	0.0732	-	
Ames test (TA1535-S9)							
100010294-1	MAM-12.048	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	1.0000		
100010294-1	MAM-12.048	1.0E-05 M	0	-	1.0000		
100010294-1	MAM-12.048	5.0E-05 M	0	-	1.0000		
100010294-1	MAM-12.048	1.0E-04 M	0	-	1.0000		
100010294-2	MAM-12.173	$5.0 \mathrm{E}-08 \mathrm{M}$	0	-	1.0000		
100010294-2	MAM-12.173	1.0E-05 M	0	-	1.0000		
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000		
100010294-2	MAM-12.173	$1.0 \mathrm{E}-04 \mathrm{M}$	0	\cdot	1.0000		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-08 \mathrm{M}$	0	-	1.0000		
100010294-3	MAM-12.196	$1.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000		
100010294-3	MAM-12.196	$1.0 \mathrm{E}-04 \mathrm{M}$	0	-	1.0000		

Figure 44. Ames test of 145 (MAM-12.048), 168 (MAM-12.173), 190 (MAM-12.196). Part 1/2

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	Count (\# of wells)	Positive Significance (- to +++)	Fisher Exact Test (p-value)	Count Flag	Flags
Ames test (TA98 - S9)							
100010294-1	MAM-12.048	5.0E-06 M	0	-	1.0000		
100010294-1	MAM-12.048	1.0E-05 M	0	-	1.0000		
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000		
100010294-1	MAM-12.048	1.0E-04 M	0	-	1.0000		
100010294-2	MAM-12.173	$5.0 \mathrm{E}-08 \mathrm{M}$	0	-	1.0000		
100010294-2	MAM-12.173	1.0E-05 M	0	-	1.0000		
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000		
100010294-2	MAM-12.173	1.0E-04 M	0	-	1.0000		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	1.0000		
100010294-3	MAM-12.196	1.0E-05 M	0	-	1.0000		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000		
100010294-3	MAM-12.196	1.0E-04 M	0	-	1.0000		
Ames test (TA1535 + S9)							
100010294-1	MAM-12.048	5.0E-06 M	1	-	0.0556	-	
100010294-1	MAM-12.048	1.0E-05 M	2	-	0.1339	-	
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.0132	$<$	
100010294-1	MAM-12.048	1.0E-04 M	0	-	0.0132	$<$	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	2	-	0.1339	-	
100010294-2	MAM-12.173	1.0E-05 M	0	-	0.0132	$<$	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.0132	$<$	
100010294-2	MAM-12.173	1.0E-04 M	1	-	0.0556	-	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	1	-	0.0556	-	
100010294-3	MAM-12.196	1.0E-05 M	2	-	0.1339	-	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.0132	$<$	
100010294-3	MAM-12.196	1.0E-04 M	0	-	0.0132	$<$	
Ames test (TA1537-S9)							
100010294-1	MAM-12.048	5.0E-06 M	0	-	0.5000	-	
100010294-1	MAM-12.048	1.0E-05 M	0	-	0.5000	-	
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-1	MAM-12.048	1.0E-04 M	0	-	0.5000	-	
100010294-2	MAM-12.173	5.0E-06 M	0	-	0.5000	-	
100010294-2	MAM-12.173	1.0E-05 M	0	-	0.5000	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-	
100010294-2	MAM-12.173	1.0E-04 M	0	-	0.5000	-	
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	4	-	0.1808		
100010294-3	MAM-12.196	1.0E-05 M	1	-	1.0000		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	3	-	0.3085		
100010294-3	MAM-12.196	1.0E-04 M	3	-	0.3085		
Ames test (TA1537 + S9)							
100010294-1	MAM-12.048	$5.0 \mathrm{E}-06 \mathrm{M}$	1	-	0.5000	-	
100010294-1	MAM-12.048	1.0E-05 M	6	-	0.1339		
100010294-1	MAM-12.048	$5.0 \mathrm{E}-05 \mathrm{M}$	4	-	0.3387		
100010294-1	MAM-12.048	1.0E-04 M	0	-	0.2474	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-06 \mathrm{M}$	2	-	1.0000		
100010294-2	MAM-12.173	1.0E-05 M	0	-	0.2474	-	
100010294-2	MAM-12.173	$5.0 \mathrm{E}-05 \mathrm{M}$	2	-	1.0000		
100010294-2	MAM-12.173	1.0E-04 M	7	-	0.0793		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	0.2474	-	
100010294-3	MAM-12.196	1.0E-05 M	2	-	1.0000		
100010294-3	MAM-12.196	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.2474	-	
100010294-3	MAM-12.196	1.0E-04 M	1	-	0.5000	-	

Notes:

1. Weak positive, if $p<0.05$, denoted as " + "

Strong positive, if $p<0.01$, denoted as " ++ "
Very strong positive, if $p<0.001$, denoted as "+++"
2. When possible, compounds which score significantly below background are flagged.

This may indicate low level cytotoxicity undetectable by the growth assay.
The compounds are flagged as described below.
if $p<0.05$, flagged as " $<$ "
if $p<0.01$, flagged as " \lll
if $p<0.001$, flagged as " \lll "
3. Hyphens (-) indicate negative results.

INTER: Test compound interferes with the assay detection method.

Figure 45. Ames test of 145 (MAM-12.048), 168 (MAM-12.173), 190 (MAM-12.196). Part 2/2

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	Count (\# of wells)	Positive Significance (- to +++)	Fisher Exact Test (p-value)	Count Flag
Ames fluctuation test (TA98-S9)						
100018635-1	MAM-12.255	5.0E-06 M	0	-	1.0000	
100018635-1	MAM-12.255	$1.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000	
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000	
100018635-1	MAM-12.255	1.0E-04 M	1	-	0.5000	
Ames fluctuation test (TA98 + S9)						
3100018635-1	MAM-12.255	$5.0 \mathrm{E}-06 \mathrm{M}$	1	-	1.0000	-
100018635-1	MAM-12.255	$1.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-
100018635-1	MAM-12.255	5.0E-05 M	0	-	0.5000	-
100018635-1	MAM-12.255	$1.0 \mathrm{E}-04 \mathrm{M}$	0	-	0.5000	-
Ames fluctuation test (TA100-S9)						
100018635-1	MAM-12.255	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	0.5000	-
100018635-1	MAM-12.255	$1.0 \mathrm{E}-05 \mathrm{M}$	1	-	1.0000	
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-
100018635-1	MAM-12.255	$1.0 \mathrm{E}-04 \mathrm{M}$	1	-	1.0000	
Ames fluctuation test (TA100 + S9)						
100018635-1	MAM-12.255	5.0E-06 M	3	-	0.3085	
100018635-1	MAM-12.255	$1.0 \mathrm{E}-05 \mathrm{M}$	4	-	0.1808	
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.5000	-
100018635-1	MAM-12.255	1.0E-04 M	0	-	0.5000	-
Ames fluctuation test (TA1535-S9)						
100018635-1	MAM-12.255	5.0E-06 M	0	-	1.0000	
100018635-1	MAM-12.255	1.0E-05 M	0	-	1.0000	
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000	
100018635-1	MAM-12.255	$1.0 \mathrm{E}-04 \mathrm{M}$	0	-	1.0000	
Ames fluctuation test (TA1535 + S9)						
100018635-1	MAM-12.255	5.0E-06 M	0	-	0.0586	-
100018635-1	MAM-12.255	1.0E-05 M	2	-	0.3387	-
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.0586	-
100018635-1	MAM-12.255	1.0E-04 M	0	-	0.0586	-
Ames fluctuation test (TA1537-S9)						
100018635-1	MAM-12.255	$5.0 \mathrm{E}-06 \mathrm{M}$	0	-	1.0000	
100018635-1	MAM-12.255	1.0E-05 M	0	-	1.0000	
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	1.0000	
100018635-1	MAM-12.255	$1.0 \mathrm{E}-04 \mathrm{M}$	0	-	1.0000	
Ames fluctuation test (TA1537 + S9)						
100018635-1	MAM-12.255	5.0E-06 M	0	-	0.1211	-
100018635-1	MAM-12.255	$1.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.1211	-
100018635-1	MAM-12.255	$5.0 \mathrm{E}-05 \mathrm{M}$	0	-	0.1211	-
100018635-1	MAM-12.255	1.0E-04 M	0	-	0.1211	-

1. Weak positive, if $p<0.05$, denoted as " + "

Strong positive, if $p<0.01$, denoted as "++"
ery strong positive, if $p<0.001$, denoted as "+++
2. When possible, compounds which score significantly below background are flagged.

This may indicate low level cytotoxicity undetectable by the growth assay.
The compounds are flagged as described below.
if $p<0.05$, flagged as " $<$
if $p<0.01$, flagged as " \lll
if $\mathrm{p}<0.001$, flagged as " \lll "
3. Hyphens (-) indicate negative results.

Figure 46. Ames test of 249 (MAM-12.255).
Cardiac safety testing has been performed at CEREP by assessment of \% inhibition of tail current in an automated hERG patch-clamp assay. All compounds (145 (MAM-12.048), 168 (MAM-12.173), $\mathbf{1 9 0}$ (MAM-12.196), and $\mathbf{2 4 9}$ (MAM-12.255)) were tested at three concentrations $0.1,1.0$ and $10 \mu \mathrm{M}$, respectively. Inhibition of the hERG channel was also tested; results can be found in Figure 47 and Figure 48, respectively. The hERG channel is an undesired molecular target of propafenone (68), the parenteral compound of the salicylamides, also an undesired target of many marketed antimalarial drugs.

Inhibition of tail current at concentrations of 0.1 and $1.0 \mu \mathrm{M}$ was found to be negligible for all four compounds. 168 achieved 50%-inhibition at $10 \mu \mathrm{M}$, slightly more than $\mathbf{2 4 9}$. The remaining derivatives 145 and 190 reduced tail current only by 25% at the highest concentration tested (expected $\mathrm{IC}_{50}>50 \mu \mathrm{M}$).

These results from hERG assay establish a significant advantage over existing drugs used in chemotherapy of malaria. All of the drugs on the market (lumefantrine, quinine, quinidine, mefloquine) containing an aminoalcohol motifs show IC_{50}-values below $10 \mu \mathrm{M}$ for inhibition of $h E R G$.

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	$1^{\text {st }}$	$\begin{aligned} & \text { \% Inhibition of } \\ & \text { Tail current } \\ & 2^{\text {nd }} \end{aligned}$	Mean
hERG (hERG-CHO, automated patch-clamp)					
100010294-1	MAM-12.048	1.0E-07 M	1.7	0.6	1
100010294-1	MAM-12.048	1.0E-06 M	5.9	4.5	5
100010294-1	MAM-12.048	1.0E-05 M	20.3	29.5	25
100010294-2	MAM-12.173	1.0E-07 M	6.0	7.9	7
100010294-2	MAM-12.173	1.0E-06 M	15.8	15.1	15
100010294-2	MAM-12.173	1.0E-05 M	45.1	55.4	50
100010294-3	MAM-12.196	1.0E-07 M	1.1	-3.6	-1
100010294-3	MAM-12.196	1.0E-06 M	1.6	-3.6	-1
100010294-3	MAM-12.196	$1.0 \mathrm{E}-05 \mathrm{M}$	26.9	28.1	28

Figure 47. hERG inhibition of 145 (MAM-12.048), 168 (MAM-12.173), 190 (MAM-12.196).

Cerep Compound I.D.	Client Compound I.D.	Test Concentration	$1^{\text {st }}$	```% Inhibition of Tail current 2nd```	Mean
hERG (hERG-CHO, automated patch-clamp)					
100018635-1	MAM-12.255	1.0E-07 M	12.8	23.3	18.0
100018635-1	MAM-12.255	1.0E-06 M	26.4	35.6	31.0
100018635-1	MAM-12.255	1.0E-05 M	42.4	48.6	45.5

Figure 48. hERG inhibition of 249 (MAM-12.255).

2.5 Structural Elucidation

It was shown that both enantiopure forms (96 and 97) of 194 possess the same antimalarial activity on NF54. It might be reasonably assumed that both enantiomers are able to adjust to an active conformation due to the flexible aminoalcohol moiety, unlike the pair of diastereoisomers shown in Figure 49. In the epiquinine molecule (287), which is practically inactive, the formation of a hydrogen bond in the α-aminoalcohol moiety may force the space demanding substituents in an unfavorable arrangement. ${ }^{130}$ The diastereomeric centers of the quinine (2) molecule are in ideal premise for formation of a hydrogen bond between the hydroxy group and the tertiary amine while leaving the bulky rests in energetically favorable distance. ${ }^{131}$ Unfortunately, no guest-free crystals of quinine (2) and epiquinine (287) are reported so far. ${ }^{132}$

quinine (2)

epiquinine (287)

Figure 49. Quinine (2) and its diastereomer epiquinine (287).
The conformations of the synthesized molecules were investigated for molecules in the solid state via x-ray structure analysis and for molecules in solution via NMR analysis, respectively. The compounds synthesized in the course of this thesis form distinct patterns of hydrogen bondings. Such a network between the amide and the aminoalcohol site is depicted in Figure 50. While the hydrogen of the amide interacts with the phenyl ether as well as with the alcohol oxygen, the amine is interacting with the hydrogen of the hydroxy group. The threecenter hydrogen bonding in combination with the two-center hydrogen bonding has a huge impact on the conformation of the molecules.

Figure 50. Hydrogen bonding network between amide and aminoalcohol site.

The importance of a network between the two regions of the molecule is suggested when the low activity of tertiary amide compound 246 (Figure 51; 579.0 nM on NF54 and 172 nM on K1 strain, respectively) is considered. In this compound no amide hydrogen is present, therefore only a two-centered hydrogen bonding motif can be formed. This two-centered hydrogen bonding of the aminoalcohol alone is enough to cause weak antimalarial activity; conformations similar to Figure 50 are needed to achieve highly active compounds.

Figure 51. Structure of tertiary amide compound 246.
X-ray structure analysis of epoxide 100, structure shown in Figure 52, reveals that the bifurcated hydrogen bond between amide and the glycidyl salicyl ether, which is the precursor of the aminoalcohol site, is already formed in the epoxide stage. The distance between amide nitrogen and glycidyl ether oxygen is $1.89 \AA$ A, while epoxide oxygen is 3.12 to $3.23 \AA$ away from the amide hydrogen atom. It is also noteworthy that the trifluoromethyl group is not interacting with the epoxide in an intramolecular fashion.

Figure 52. Crystal structure of (R)-(+)-5-chloro-2-(oxiran-2-ylmethoxy)- N-(3-(trifluoromethyl)phenyl)benzamide (100).

Figure 53. Assignment of the aminoalcohol signals in epoxide compound 100.
The ${ }^{1} \mathrm{H}$ NMR signals in the aminoalcohol, see Figure 53 , can be assigned due to differences in coupling constants of the respective protons to the methine proton. Therefore, these diastereotopic protons are distinguishable.

The crystal structure of 186, which is the aminoalcohol analog of the above discussed epoxide compound 100, is shown in Figure 54. The network of hydrogen bonds, as depicted in Figure 50 , is clearly visible in the crystal structure. It is also remarkable that the trifluoromethyl group also searches proximity to the piperidine. Interestingly, the three centered interaction between the amide hydrogen, phenyl ether oxygen and alcohol oxygen seems stronger than in the epoxide structure. The distances of $2.11 \AA$ from amide hydrogen to the phenyl ether oxygen, instead of $1.89 \AA$ in the epoxide, and 2.67 from the amide hydrogen to the alcohol oxygen, instead of 3.2 Å to the epoxide oxygen, clearly show that the bifurcation has grown stronger. This can be explained by the cooperative second hydrogen bond from the alcohol to the amine nitrogen. Concomitantly, with the piperidine moiety the trifluoromethyl group has found an intramolecular partner to interact with. This can either be interpreted as cause for the cooperative hydrogen bonding network or simply as result of it.

Figure 54. X-ray structure of 186, which crystallized in two different structures.
NMR spectra of highly active compounds show diastereotopicity of the hydrogens in the C-2 symmetric piperidine ring. As example, a HSQC of compound 190, the benzyl analog of 186, with very good activity (3.8 nM on NF54 and 0.99 nM on K1 strain, respectively) is shown in Figure 55. Axial and equatorial hydrogens of the 2- and 6-position of the piperidine have different shifts (axial hydrogens differ by 124 Hz and equatorial hydrogens differ by 127 Hz , respectively). This is even more apparent when the chemical shifts of the carbons are studied. The chemical shifts of C-2 (55.82 ppm) and C-6 (52.49 ppm) of the piperidine ring differ by 398 Hz . Interactions with the 3-trifluoromethyl aniline are responsible for this effect. It must be stated that these observations are only possible if the piperidine is fixed by the hy-
drogen bond to the alcohol hydrogen; otherwise dynamic effects would make C-2 and C-6 indistinguishable.

Figure 55. HSQC of 190.
Complementary to the crystal structure of 186, also extensive NMR interpretation was carried out. In addition to the obligatory assignment of signals which is found on p. 253, the piperidine and the aminoalcohol spin-systems were simulated and a NOESY experiment was investigated. The simulated spectra and the relevant original regions of the spectrum are shown in Figure 56 and Figure 57, respectively. Input parameters are given on p. 576. The simulation reveals coupling constants for the piperidine spin system, mainly multiplets are observed for this moiety. The apparent coupling constants are in good agreement with the calculated coupling constants from the simulation.

NOESY-related screenshots are shown in Figures 58-63. Under omission of obvious crosspeaks which rise due to connectivity, such as between geminal protons, this NOESY reveals important conformational information. In Figure 59, showing the aliphatic region, crosspeaks between the methine hydrogen (4.25 ppm) and the equatorial hydrogen at C-6 (3.15 ppm) are visible; this is in good agreement with the crystal structure; see the upper structure in

Figure 54. This finding clearly allows attributing the signals to different sides of the molecule, because the equatorial hydrogen at C-2 $(2.82 \mathrm{ppm})$ does not show this interaction. On the other hand this equatorial hydrogen at C-2 (2.82 ppm) shares a cross-peak with one hydrogen atom (2.62 ppm , having a large coupling constant indicating a dihedral angle close to 180° to methine H) of the in vicinity to the tertiary amine and also tells which of the 4 proton signals from 1.73-1.92 ppm must be assigned to C-3 and C-5.

Figure 56. Simulation of the ${ }^{1} \mathrm{H}$ spectrum of the aminoalcohol region in 186 between 2810 and 3050 Hz .

Figure 57. Simulation of the ${ }^{1} \mathrm{H}$ spectrum of 186 . Upper row shows the simulated piperidine spectrum.
Second row shows the simulation of the aminoalcohol which has the amino methylene group in this region $(1180-2250 \mathrm{~Hz})$. In the bottom row the original spectrum is shown.

Figure 58. NOESY of 186- total view.
The carbon backbone of the aminoalcohol motif is obviously not predominantly arranged in a zig-zag manner in solution as the lower structure of Figure 54 suggests; otherwise, both hydrogens of the methylene group near the salicyl moiety (4.04 and 4.33 ppm) would inter-
act with both hydrogens of the methylene group in vicinity to the piperidine (2.51 and 2.62 ppm).

Figure 59. NOESY of 186- aliphatic region.
Interactions between aliphatic and aromatic region are shown in Figure 60 and Figure 61. The proton in the 3-postion of the salicylic ring interacts with both hydrogens of the meth-
ylene group next to the oxygen atom (4.04 and 4.33 ppm) in the same intensity, which is indicating that both hydrogens are symmetrical regarding the salicylic ring. This positioning was also observed in the lower structure in Figure 54.

Also crosspeaks between hydrogen atoms in the 2- and 6-position in the phenyl (7.21-7.24 ppm) and the axial protons attached to the 3 -, 4 -, and 5 -carbon atom in the piperidine ring (1.73-1.82 and 2.54 ppm) are observed; these reasonable interactions are depicted in Figure 60 and Figure 61.

Weak interactions are observed for the hydrogen in the 2-position of the aniline (8.08 ppm) with the methine hydrogen (4.25 ppm) as well as the equatorial hydrogen in the 2-position of the piperidine ring (2.82 ppm); the corresponding crosspeaks are shown in Figure 62 and Figure 63, respectively. This is indicative for the proximity of the aniline region to the rest of the molecule, and an impressive argument for the diastereotopicity of the piperidine, which is also shown above for 190 in Figure 55. Furthermore, it is also shown that distances between $\mathrm{H}-2$ of the aniline and methine H (in crystal structure $3.58 \AA$), as well as the distance between $\mathrm{H}-2$ of the aniline and equatorial hydrogen in the 2 position of the piperidine (in crystal structure 3.89 Å) are also below $4 \AA$ A , which is a typical limit of NOESY experiments.

A closer look on the strong crosspeaks between the amide hydrogen (10.31 ppm) atom and the hydrogen atom in the 2-position of the aniline (8.08 ppm), see Figure 64, reveals that also the hydrogen atom in the 6-position of the aniline (8.10 ppm) interacts with the amide hydrogen. This minor interaction represents rapid exchange between conformations, because NOESY experiments, just as any other NMR experiments, show signals of all conformations averaged over time.

Evaluation of the discussed NOESY experiment, regarding the information from scalar coupling, allows complete consistent assignment of the signals to the respective sides of the molecule. Further, good agreement with crystallographic structure analysis of the same compound was found without any dissent.

Figure 60. NOESY of 186- aliphatic and aromatic interactions \mathbf{I}.

Figure 61. NOESY of 186- aliphatic and aromatic interactions II.

Figure 62. NOESY of 186- cross-peak between methine hydrogen and $\mathbf{H}-2$ of the aniline.

Figure 63. NOESY of 186- cross-peak between the equatorial $\mathrm{H}-2$ in the piperidine and $\mathrm{H}-2$ of the aniline.

Figure 64. NOESY of 186- cross-peak between amide hydrogen and H-2/H-6 of the aniline.

Figure 65. X-ray structure of 288 , which crystallized in two different structures.
When the above discussed cooperative system is disturbed by presence of another acceptor as the fluorine atom in 5-chloro- N -(2-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (288)
then interaction between amide hydrogen and epoxide oxygen is no longer indicated. Distances in crystal structures are $3.82 \AA$ in the right structure depicted in Figure 65, while in the left structure the epoxide is arranged in a manner that would not even let think about interactions because the oxygen is averted from the amide hydrogen. But even in this structures a three-centered hydrogen bond is observed between the amide, the phenyl ether and the fluorine atom. The distances of the noncovalent bonds from the amide hydrogen to the phenyl ether oxygen are $1.9 \AA$, while the distance between the hydrogen and the fluorine atom is $2.24 \AA$, in both structures. This indicates that fluorine atom and the oxygen in the oxirane are competing as acceptors for the amide hydrogen. Fluorine is in better position, because only the binding angle between the nitrogen and the aromatic ring is determining if an hydrogen bond is formed or not. Proximity of the oxirane, on the other hand, depends on three bonding angles (salicylic ring to oxygen, oxygen to methylene, and methylene to methine). As observed in the crystal structure of $(R)-(+)-5-c h l o r o-2-(o x i r a n-2-$ ylmethoxy)- N-(3-(trifluoromethyl)phenyl)-benzamide (100), shown in Figure 66, interactions between oxirane and amide hydrogen are not well-marked, even without presence of another hydrogen acceptor. The bifurcation is distinctive in the cooperative system containing a three-centered and a two-centered interaction, see Figure 50.

Fortunately, also crystals of aminoalcohols featuring the ortho-fluorine anilide could be grown. According to x-ray structures of 184 and 188, see Figure 68, the fluorine atom is involved in hydrogen bonding with the hydrogen of the amide and the methine hydrogen of the aminoalcohol. This additional hydrogen acceptor fluorine displaces the alcohol oxygen from the three-centered hydrogen bonding; a sketch is shown in Figure 67. The consequence regarding antimalarial activity is clearly shown, see Table 2. These ortho-fluorine compounds are drastically less active than their meta-trifluoromethyl analogs. This can be referred to the presence of the fluorine atom in ortho position of the aniline forces a drastical change in the dihedral bonding angles in the aminoalcohol region, which causes larger distances between the piperidine rings and the anilines in 184 and 188.

A HSQC spectrum of 184 is shown in Figure 69. Both, axial and equatorial hydrogens of the 2and 6-position of the piperidine have different shifts (axial hydrogens differ by 0.29 ppm and equatorial hydrogens differ by 0.28 ppm , respectively); this implies that they are diastereotopic which is, as pointed out above, explainable by a hindered rotation of the piperidine ring through the hydrogen bonding in the aminoalcohol motif.

Figure 67. Hydrogen bonding network between amide and aminoalcohol site in ortho-fluoroaniline compounds.

Figure 68. X-ray structures of 184 (top row) and 188 (bottom row) in two angles each.

Compound 184 shows reduced antimalarial activity (256 nM on NF54 and 105 nM on K1 strain, respectively) due to the influence of the ortho-fluoroaniline. In the case of 184 the structure consists of dimers; the formation of these dimers is only possible through the additional hydrogen acceptor in the form of the fluorine atom.

Figure 69. HSQC of 184.

Figure 70. X-ray structure of 184 (dimer).

Distances and dihedral angles of several compounds were compared; data are shown in Table 18. The numbering for the atom labels is shown in Figure 71. As already pointed out above, distances between $\mathrm{N}(1)$ and $\mathrm{O}(3)$ are larger in ortho fluorine aniline compounds. The larger distances are related to larger angles in the dihedral angle ($O(2)-C(8)-C(9)-O(3)$) between the oxygen atoms $O(2)$ and $O(3)$ in the epoxide compounds as well as in the aminoalcohols. Further, it is observable that the dihedral angle in the salicylic ring and the amide nitrogen ($C(2)-C(1)-C(7)-N(1))$ near zero in the fluorine substituted crystal structures while highly active compounds show dihedral angles around 20°.

Other differences between both groups are the dihedral angles between the piperidine and the methine group ($\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(\mathrm{p} 1)$) as well as the dihedral angles between the oxygen and the nitrogen $\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$, which can be referred to communication between the amide and amine region.

Figure 71. Atom numbering pattern in crystal structures, as used in Table 18.

Table 18．Distances and dihedral angles taken from crystal structures．

ع＇غ9	6＊$\angle t$	ع＇6t－	ع＇89	－	－	L＇8t	8＇8t－	T＇LL－	－	－	－	（z）N	（0t）${ }^{\text {a }}$	（6）${ }^{\text {a }}$	（ع） 0
－	6．6－	－	－	－	－	－	－	－	－	－	－	（s）O	（zd） 3	（ td ） 3	（z） N
S＇LLI	0＇tot－	でもくさ	カ＇SLT－	－	－	L＇6LI	L＇6LT	S＇6LT	－	－	－	（zd）	（ Ld ） 3	（z）N	（0t）
でLST－	8．TL	0．09－	て＇SST－	－	－	て＇8L	T＇8L－	か＇8L－	－	－	－	（¢d）	（z）N	（0t）	（6） 3
て＇9くさ－	9＊ 29 T	9＊0くT－	T＇t＜t－	－	－	T＇69T	T＇89T－	て＇99T	－	－	－	（z）N	（0t） 3	（6） 3	（8） 3
S＇8－	L＇土	S＇s－	S＇s－	0＇t－	L＇L－	L＇L	L＇t	S＇0－	ع＇0－	て＇S	0＇t	（ τ ） 0	（L） 3	（ τ ） N	（ τ ） 3
L＇6LT－	I＇t	6． 2 ST	6． 291	でも－	T＂6T	006＇69T－	てZ8＊69	9＇6＜	0＇6LT－	ガ8LT	9＇SLT－	（zt）	（ $\tau \tau)$	（ τ ） N	（L） 3
L＇6LT－	でட८T－	t＇9くT	t＇9くさ	6＇S ${ }^{\text {c }}$ I	9＊0＜I	L＇LLT－	0＜L゙くLT	て＇8LI	L＇6LI		8＇t ${ }^{\text {a }}$－	（ τ ）${ }^{\text {}}$	（L）${ }^{\text {a }}$	（ τ ） N	（ τ ） 3
S＇6T－	－＇I	て＇0て－	て＇0て－	โ＇ε โ	$0^{\circ} \mathrm{Z}$－	T＇T	でし－	S＇ST	0＇L	S＇ε－	$8^{\circ} 0^{-}$	（ τ ） N	（L） 3	（ τ ） 3	（z） 3
$8^{\circ} \mathrm{T}$－	$0^{\circ} \varepsilon$	S＇t－	$8{ }^{\circ} \mathrm{Z}$	S＇S	L＇9	$9^{*} \mathrm{Z}^{-}$	$8{ }^{\text {® }}$	S＇z－	6．0－	$9{ }^{\text {²－}}$	S＇ 8 －	（z） 0	（z）${ }^{\text {a }}$	（ t ）${ }^{\text {a }}$	（ $~(~) ~ 5 ~$
$0^{\circ} L^{-}$	6．8T	［＇6－	6＇とて－	6＇T－	ع＇乙	0．9－	T＇9	でし	で0T	T＇s－	9＇t	（ع） 3	（z） 3	（z） 0	（8） 3
て＇ZくI－	9＇8LI－	で£ ${ }^{\text {c－}}$	L＇09T－	6＇\＆LT－	L＇S $\angle T$－	Z $88.9 \angle T-$	06L＇9くさ	L＇L＜L－	L＇69T	で8くI	ガもくt	（6） 3	（8） 3	（z） 0	（z） 3
0．8S	6．09－	0．6S	S＇SS	8\％0L－	T＇89－	85S＇69T	069＇69T－	6．69	6．88	8＇\＆9โ	でャ8	（ع） 0	（6） 3	（8）${ }^{\text {a }}$	（z） 0
													รว｜\％ư	U0\％！	
T69＇Z	8TL＇て	999＇乙	\＆ $59 \times$	Sz6＇Z	$888^{\prime} \mathrm{Z}$	\＆¢8＇乙	て\＆8＇て	t98＇z	$8 \varepsilon 9{ }^{\circ} \varepsilon$	\＆9т＇ε	ย¢โ＇غ		（ع）0－	（2） 0	
L68＇Z	\＆LL＇乙	9 $288^{\prime} \mathrm{Z}$	S96＇Z	－	－	¢¢ぐて	\＆\＆L＇乙	$660^{\circ} \varepsilon$	－	－	－		（z）N－	（ع） 0	
เ¢9＇ε	$6 \varepsilon 9 \times \varepsilon$	†88＇ε	TSt＇ε	090＇t	986 ＇ε	LOでも	60でt	0カガカ	65＊s	959＇t	E9S＇t		（ع）${ }^{-}$	（ז） N	
Lて9＇て	t9 ${ }^{\circ} \mathrm{Z}$	L\＆s＇乙	6tL＇z	$8 \mathrm{t9} 9^{\circ} \mathrm{Z}$	ャて9＇て	859 ${ }^{\text {² }}$	659＇z	9く9＇Z	L99＇Z	LS9＇Z	\＆ $59 \times$		（z） O	（ τ ） N	
ZLZ	201	9981	\forall 981	9 66	$\forall 66$	9881	$\forall 881$	t81	882	882	$\begin{aligned} & \hline 882 \\ & -(s) \end{aligned}$		［४］${ }^{\text {sº }}$	uetsisp	
						pəャnt！									

To investigate the conformation in polar environment, a series of NMR spectra were taken of 5-chloro-2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (186) in different solvent mixtures (CDCl_{3} and DMSO- d_{6}). Observation of changes of chemical shifts can reveal conformational changes when the solvent is gradually changed. The amide hydrogen and the hydrogen atom in the 6 position of the salicylic ring are nearly not affected from changes of polarity, see Figure 72. This indicates that the hydrogen bond between amide hydrogen and phenyl ether oxygen is still in place in polar environment. Only slight changes are observed for the chemical shift (+0.3 ppm from CDCl_{3} to $\mathrm{DMSO}-\mathrm{d}_{6}$) of the $\mathrm{H}-2$ in the aniline region. This may arise due to increased rotation of the aniline ring.

Figure 72. Conformational analysis of 186 by solvent dependence of ${ }^{1} \mathrm{H}$ spectra - aromatic region. The top row shows a sample of 186 in pure CDCl_{3}, from top to bottom DMSO-d ${ }_{6}$ content is ascending in steps of 10 percent, whereby the bottom row shows a spectrum in pure DMSO- d_{6}.

In the aliphatic region, see Figure 73, the exchange of the alcohol proton is suppressed in presence of DMSO, and the relative positions of a hydrogen of the methylene group next to the phenyl ether oxygen and the methine hydrogen are switched; they have the nearly the same position when the ratio of CDCl_{3} and $\mathrm{DMSO}-\mathrm{d}_{6}$ are 60:40. Further, the equatorial hydrogens at $\mathrm{C}-2$ and $\mathrm{C}-6$ in the piperidine ring change places; coalescence is reached when the ratio of CDCl_{3} and DMSO- d_{6} are 70:30. The axial hydrogen atoms, which are diastereotopic when their environment mainly consists of CDCl_{3}, also share nearly the same chemical shift
in polar environment. Addition of DMSO also cancels the well-defined coupling constants of the protons in the methylene group in vicinity of the amine nitrogen atom.

These observations indicate that the hydrogen bond between amine and alcohol is destroyed in presence of DMSO, while the three-centered interaction between amide hydrogen, phenyl ether and alcohol is still maintained in polar environment. Then, the 4-phenyl piperidine moiety is without fixation and is free to rotate starting with the methylene group.

Figure 73. Conformational analysis of 186 by solvent dependence of ${ }^{1} \mathrm{H}$ spectra - aliphatic region. The top row shows a sample of 186 in pure CDCl_{3}, from top to bottom DMSO-d d_{6} content is ascending in steps of 10 percent, whereby the bottom row shows a spectrum in pure DMSO- d_{6}. The same labels as in the simulation on p. 134 are used.

The loss in activity if the three-centered bond is not formed was shown above by the low activity of tertiary amide compound $\mathbf{2 4 6}$ (Figure 51; 579.0 nM on NF54 and 172 nM on K1 strain, respectively). When the three-centered bond is formed but there is no cooperativity with the two-centered aminoalcohol hydrogen bond the activity is 256.0 nM on NF54 and 105.00 nM on K1 strain, respectively for 184, and the activity of $\mathbf{1 8 8} 205.0 \mathrm{nM}$ on NF54 and 74.00 nM on K1 strain, respectively.

The good agreement of observations made by NMR analysis and x-ray structure analysis suggest that the conformation is predominantly as discussed above in active compounds. Thus, the amide is forming a hydrogen bonding to the phenol ether oxygen and the alcohol oxygen; concomitantly the alcohol and the amine form another hydrogen bonding. As a direct consequence of this network of hydrogen bonds the alkyl part of the amine site and the aniline come in close proximity. If one of the hydrogen bondings is not formed, the contact between aniline and amine alkyl region cannot be established and activity is drastically lost. Each of the criteria must be met in order to establish the needed conformation to provide highly active compounds.

In order to be active against malaria, our aminoalcohols need to be in a hydrogen bonding network which hides away the polarity of the compound through intramolecular interactions. By doing so, no polar groups can interact with other molecules. This hypothesis is also applicable to commercial available aminoalcohols, which also have no more pharmacophore than the aminoalcohol motif, except the quinoline ring in some cases of course.

The compounds show all a very bad solubility, which is also in agreement with the intramolecular interactions. Furthermore, TLC staining with iodine did only develop brown spots after a very long period of time (hours), which is an indication that the alcohol hydrogen is protecting the lone-pair of the nitrogen atom. Therefore, slight staining occurs only slowly, within hours.

3. Conclusion

During this thesis more than 240 compounds were synthesized and characterized. Among these are 125 molecules with antimalarial activity. One of the highly ambitioned goals which were set at the beginning of the thesis was to exceed the potency of approved antimalarial drugs, such as lumefantrine (20) and artesunate (27). A comparison with activities of 37 "current and future" (published in 2012) antimalarial drugs ${ }^{85}$, partly ascertained from persons also directly involved in the in vitro and in vivo testings of compounds presented within this thesis, shows that this goal was accomplished. Table 19 (page 582) shows the activities found in the above mentioned publication. Therein, lumefantrine (20) shows IC_{50} values of 2.8 nM (NF54) and 1.1 nM (K1) and artesunate (27) shows IC_{50} values of 3.5 nM (NF54) and $2.6 \mathrm{nM}(\mathrm{K} 1)$. Within this thesis 34 compounds are presented having a lower IC_{50} value than 2.8 nM on the NF54 strain and 41 compounds having a lower IC_{50} value than 1.1 nM on the K1 strain. The most potent compound (210) on the NF54 strain presented in this thesis showed an IC_{50} value of 0.92 nM , in the above discussed publication only artemisone (42), and atovaquone (65) showed higher potencies, while halofantrine (21) showed roughly the same (0.9 nM) activity. The most potent compound (207) on the K1 strain presented in this thesis showed an IC_{50} value of 0.19 nM ; again, halofantrine (21) showed roughly the same (0.2 nM) activity.

Activity in an animal model was shown in many cases. Furthermore, complete cure was impressively demonstrated for compounds 194, 249, 97, and 247. As far as known, no exclusion criteria by testing for hERG channel blocking, inhibition of adrenergic receptors, cytotoxicity, and mutagenicity were observed for benzhydryl piperazine compound 249.

The relevance of the stereogenic center towards antimalarial activity in the presented scaffold was investigated. The investigations lead to the conclusion that the activity does not depend on the configuration the above mentioned stereogenic center. Also values found for microsome stability and cytotoxicity on Hep G2 cells were at comparable levels for both enantiopure forms of 194.

In addition to the above discussed results, which exceeded all expectations, the structure of highly active compounds was elucidated in solution by methods of NMR spectroscopy. Also crystallographic data are available for highly active compounds, such as the most promising compound 249, which represents the structure in the solid state. The structures in solution
and in the solid state are consistent, which again confirm the assumptions that all hydrogen donors and acceptors of highly active compounds have to form intramolecular hydrogen bonds. This hides away all polar information of the molecules, leaving only apolar regions to communicate with other molecules. This is also reflected in bad solubility, an issue that is also known for the marketed lumefantrine (20). ${ }^{133}$

One of the most important requirements regarding malaria, cheapness of the medications due to poverty in the endemic regions, was also met. Costs for building blocks for the most promising candidate 249 aggregate to less than $1 € / \mathrm{g}$ on a 100 g scale when unambitious yields of 80% for each of the three synthetic steps are calculated, whereas during the thesis was also shown that convergent synthesis is also applicable. Beyond these achievements, structures of highly active compounds were elucidated and structural necessities were hypothesized.

To sum up, a malaria project was started in 2004 with propafenone (68), a class 1c antiarrhythmic drug used for treatment of ventricular arrhythmia, at the Medical University of Vienna. The scaffold was changed to the amidophenoxypropanolamine scaffold (Figure 15, p. 36). A hERG targeting motif was chemically engineered to a novel antimalarial scaffold. A structure-activity relationship was established leading to the salicylanilide motif as most promising amide component. During this thesis, the SAR was further supplemented, leading to highly auspicious candidates for treating malaria. Even full cures in animal experiments were demonstrated.

4. Experimental Part

4.1 General Information

4.1.1 Materials and Methods

Starting materials (amines, salicylic acid derivatives, reagents) were purchased from various commercial sources and were used without further purification. Solvents used in synthesis and chromatographic purification steps were distilled prior use (ethyl acetate, petrol ether, n-hexane). All air and moisture sensitive reactions were performed in vessels dried by repeated heating under vacuum (heat gun) followed by purging with dry argon. Reaction procedures were carried out under slight overpressure of argon (balloon) in dry solvents. Sensitive reagents or solutions were transferred via syringe or cannula through rubber septa.

4.1.2 Reaction Monitoring and Purification of Compounds

Reaction monitoring was performed by thin layer chromatography (TLC) on Merck silica gel $60-\mathrm{F}_{254}$ glass plates, or on Macherey \& Nagel POLYGRAM SIL G/UV 254 foils. The plates were developed with mixtures of hexane/ethyl acetate, neat ethyl acetate, methanol/ethyl acetate/aqueous ammonia. Compound spots were visualized by UV (254 nm) irradiation in a dual lamp CAMAG UV cabinet or in TLC-chamber containing iodine adsorbed on silica gel. Purification of compounds was performed by preparative separation by middle pressure chromatography (MPLC) on silica gel 60 from Merck (0.040-0.063 $\mu \mathrm{m}, 240-400$ mesh). Stationary phase material and MPLC system consisting of unique home-built columns, Fluid Metering pump and Amersham Superfrac fraction collector were provided by H. Gstach from private fund.

4.1.3 Analytical Characterization

NMR Spectroscopy ${ }^{134}$

NMR-spectra were recorded on Bruker Avance 400 MHz and 600 MHz spectrometers (NMRCenter at the Faculty of Chemistry, University of Vienna). The software used for processing of 1D- $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$) and 2D-(COSY, HMBC, HSQC) NMR-spectra was SpinWorks 3.1.8.1 (copyright 2010, Kirk Marat, University of Manitoba). Coupling constants (J) are given in Hertz (Hz) and
refer to $1^{\text {st }}$ order interpretation (apparent coupling constants $\mathrm{J}_{\text {app }}$ are given). ${ }^{\mathrm{x}}$ refers to homonuclear $\mathrm{H}-\mathrm{H}$ coupling over x bonds, ${ }^{\mathrm{x}} \mathrm{JFF}$ refers to heteronuclear ${ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}$ coupling over x bonds, ${ }_{x}{ }^{\text {CF }}$ refers to heteronuclear ${ }^{13} \mathrm{C} /{ }^{19} \mathrm{~F}$ coupling over x bonds; ${ }^{\mathrm{TS}} \mathrm{J}_{\mathrm{CF}}$ refers to through space coupling. Solvents used for NMR spectroscopy: CDCl $_{3}$, chloroform- d_{1} (CAS RN 865-496), was filtered through basic, activated aluminum oxide (Sigma Aldrich) prior use. DMSO-d ${ }_{6}$, hexadeutero dimethyl sulfoxide (CAS RN 2206-27-1), was stored over molecular sieve (4Å). 2-D NMR techniques used for assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonance signals: HSQC (Heteronuclear Single Quantum Coherence), HMBC (Heteronuclear Mutliple Bond Correlation), and COSY (Correlation Spectroscopy). Chemical shift calibration ${ }^{135}: \mathrm{CDCl}_{3}: 1 \mathrm{H} \delta=7.26 ;{ }^{13} \mathrm{C} \delta=$ 77.16; DMSO- $\mathrm{d}_{6}:{ }^{1} \mathrm{H} \delta=2.50 ;{ }^{13} \mathrm{C} \delta=39.52$.

Mass Spectroscopy
 HRMS

Mass spectra are HRMS (high resolution mass spectra). These were taken with a Maxis Bruker spectrometer. The kind of ionization was ESI (electron spray ionization) and a TOF (time of flight) analyzer was used in all cases.

LCMS

LCMS was performed with a Waters Autopurification system. Mass spectra were taken with an ACQUITY QDa Detector (Waters Corporation, Milford, MA, USA). ESI+ and ESI- ionization were used.

HPLC

Chiral HPLC (normal phase) was performed with a module system from Shimadzu (SIL-20AHT auto sampler, CTO-20AC column thermostat, CBM-20A controller, LC-Solution software, UVdetector SPD-20A with temperature adjusted to $35^{\circ} \mathrm{C}$) using a LC-20AT pump with LPGE valve and low pressure gradient unit. Low pressure gradient settings were used; solvents were mixed prior to entering the system without additional pressure.

Melting Point

Melting points (mp) were determined with a Bausch \& Lomb microscope equipped with a Kofler melting-stage and are uncorrected.

Optical Rotation

Optical rotation was measured on a Perkin Elmer Polarimeter 341 in combination with a Julabo 5 thermostat. The measured temperature is stated in all cases. The wavelength of the light used is 589 nm (sodium D line) in all cases.

Crystallographic Structure Determination ${ }^{134}$

X-ray diffraction measurements were performed on Bruker D8 VENTURE diffractometers. Single crystals were positioned at 50, 35, and 40 mm from the detector, and 2281, 2534, and 3016 frames were measured, each for $16,5.6$, and 24 s over a 0.4° scan width for 9,13 , and 14 , correspondingly. The data were processed using SAINT software ${ }^{136}$. Crystal data, data collection parameters and structure refinement details are given below the respective structure. The structures were solved by direct methods and refined by full-matrix least-squares techniques. Non-H atoms were refined with anisotropic displacement parameters. H atoms were inserted in the calculated positions and refined with a riding model. The following computer programs were used: structure solution, SHELXS-97, and refinement, SHELXL97^{137}; molecular diagrams, ORTEP ${ }^{137}$.

4.1.4 Biological Data

Assessment of antimalarial potency (IC_{50})

A [$\left.{ }^{3} \mathrm{H}\right]$-hypoxanthine incorporation assay was used as markers for inhibition of parasite growth as previously described. ${ }^{138} \mathrm{IC}_{50}$ values have been assessed for K1 as well as for NF54 strain of P. falciparum. Chloroquine (6), lumefantrine (20), and artesunate (27) were included as controls. These tests were performed at Swiss Tropical and Public Health Institute (Swiss TPH).

Cytotoxicity on Hep G2 liver cells

Hep G2 cells (10,000 cells/well) were cultured in a 96 well format for 48 hours. The incubated cells were exposed to test compounds (1 and $10 \mu \mathrm{M}$, respectively) dissolved in culture medium (Minimal essential medium, 10\% FBS, nonessential amino acids $1 \mathrm{mM}, 0.2 \%$ DMSO) for 72 hours. Viability was assessed using resazurin (alamarBlue ${ }^{\circledR}$) sodium salt.

Resazurin (289) is reduced to resorufin (290), a highly fluorescent compound that is red in color. Viable cells continuously convert resazurin to resorufin, see Scheme 15. The percentage of viability was determined by comparing to an untreated control (100% viability), whereas staurosporin was used as positive control. ${ }^{139}$ These tests were performed at Marinomed Biotechnologie GmbH.

Scheme 15. Reduction of resazurin (289) to fluorescent resorufin (290).

Microsomal stability

Liver microsomes are a good source for drug metabolizing enzymes including cytochrome P450. These subcellular particles are derived from the endoplasmic reticulum of hepatic cells by homogenization of liver. The microsomes are incubated $\left(37^{\circ} \mathrm{C}\right)$ with test compounds in presence of co-factor NADPH. The disappearance of test compound was monitored over a 60 minute time period.

Reactions are terminated after (0) , 5, 15, 30, and 60 min , respectively by the addition of methanol. Supernatant after centrifugation is analyzed via HPLC. Biological half-life of the substances was calculated from this data. Vinpocetin (291), see Figure 74, was used as a de-
gradable control (half-life of $\mathbf{2 9 1}$ is about $\mathbf{3 ~ m i n}$) to guarantee the functionality of the membranes, because in this assay microsome activity was highly varying. Hence, half-lives were referenced to the half-life of vinpocetin (291) as pointed out in the following formula:

$$
t _1 / 2 \text { normalized to vin }=\frac{t_{-} 1 / 2 \text { of tested compound }}{t_{-} 1 / 2 \text { of vinpocetin }}
$$

In addition, compound 194 was added as positive control. When the referenced half-life of 194 was below 10 the experiments were repeated.

Where possible, an internal standard substance was included into the protocol to account for potential loss of substance during the preparation process. Very highly cleared compounds are generally considered to be unfavorable as they are likely to be rapidly cleared in vivo resulting in a short duration of action. ${ }^{140}$ These tests were performed at Marinomed Biotechnologie GmbH.

Figure 74. Structure of reference compound vinpocetin (291).

Acute toxicity

Acute toxicity was determined using NMRI mice, the same kind of mice used later in the Peters' 4-day suppression test, prior first in vivo experiments to see adverse effects. The first application was $5 \mathrm{mg} / \mathrm{kg}$, 2 hours later $15 \mathrm{mg} / \mathrm{kg}$, 2 hours later $30 \mathrm{mg} / \mathrm{kg}$, and again 2 hours later $50 \mathrm{mg} / \mathrm{kg}$. Observations and were noted and toxicity derived from these observations are listed in Table 14. These tests were performed at Swiss TPH.

In vivo assay: Peters' 4-day suppression test against Plasmodium berghei

The four day Peter's suppression test ${ }^{128}$ is the most widely used test. The efficacy of a compound is assessed by comparison of blood parasitemia and mouse survival time of treated and untreated mice. Starting on day 0, mice of the experimental group (NMRI mice, female, age: 3-4 weeks, $\sim 22 \mathrm{~g}$, three each per compound) are infected with 0.2 mL of aliquot ($2^{*} 10^{7}$ parasitized erythrocytes, Plasmodium berghei ANKA 676m1cl1) intraperitoneally. Parasitemia of placebo treated mice (control group, also three each per series) is compared with the test drug treated group. The drugs are prepared at required concentration, as a solution or
suspension containing 7\% Tween80/3\% ethanol and administered 4 h post infection by appropriate routes.

On day 1 to $3(24,48$, and 72 h after infection), the experimental groups are treated again (same dose and same route) as on day 0 . On day 4 , 96 h after infection, blood is taken and parasitemia is determined by FACS analysis. The transgenic line Plasmodium berghei ANKA 676m1cl1 expresses GFP-Luciferase constitutively during the whole life cycle, which allows determination of parasitemia easily by FACS analysis. The difference between the mean value of the control group (100\%) and those of the experimental groups is calculated and expressed as percent reduction or activity using the following equation:

$$
\text { Activity }=100-\frac{\text { mean parasitemia treated }}{\text { mean parasitemia control }} * 100
$$

Untreated control mice typically die approximately one week after infection. For treated mice the survival-time (in days) is recorded and the mean survival time is calculated in comparison with the untreated and standard drug treated groups. Mice without parasitemia on day 30 of post-infection are considered cured. These tests were performed at Swiss TPH.

4.2 General Procedures

Most of the reactions performed follow the same protocols, below general procedures are described. While there are three different procedures that were carried out for the preparation of various anilides, only one protocol was used for alkylation and also only one protocol was used for epoxide opening to give desired aminoalcohols.

General Procedure A

$\mathrm{BF}_{3} * \mathrm{OEt}_{2}$ (1 eq) was added to a solution of phenyl 2-hydroxybenzoate (1 eq) and the particuIar aniline (1 eq) in toluene (reaction molarity = 1 M).

After 12 h of stirring at room temperature, the reaction mixture was filtered, and the precipitation was washed with hexane or diisopropyl ether.

General Procedure B

Triphenyl phosphite (1 eq) was added to a stirred suspension of the particular salicylic acid (1 eq) and the particular aniline (1 eq) in pyridine (reaction molarity $=2 \mathrm{M}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h .

Then, pyridine was widely removed by rotary evaporation. By addition of $6 \mathrm{M} \mathrm{HCl}, \mathrm{pH}$ was adjusted to 1 . Ethyl acetate was added and the layers were separated. The organic layer was washed three times with 2 M HCl , once each with water, saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was crystallized from diisopropyl ether, filtered and washed with diisopropyl ether.

General Procedure C

To a stirred solution of the particular salicylic acid (1 eq) and the particular aniline (1 eq) in xylenes (reaction molarity $=0.4 \mathrm{M}$) at $160^{\circ} \mathrm{C}$ was added phosphorous trichloride (0.4 eq). After 30 min , the reaction mixture was rapidly transferred while hot by decanting to a beaker and allowed to cool under rapid stirring.

As the solution cooled the precipitated product and was filtered and washed with hexane or diisopropyl ether.

General Procedure D

Potassium hydroxide (1 eq) was loaded to a round bottom flask. MeOH and the particular salicyl anilide (1 eq) were added immediately. MeOH was removed on via rotary evaporation when the mixture was homogenous. An excess of (\pm)-epichlorohydrin (10 eq) was added to the solid residue, and the mixture was stirred at $85^{\circ} \mathrm{C}$.

After complete consumption of anilide was observed, usually 20 min , unreacted epichlorohydrin was removed. The residue was extracted three times with ethyl acetate. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The product was purified through column chromatography (ethyl acetate:hexane $=1: 1$).

General Procedure D (KF method) ${ }^{123}$

Potassium hydroxide (1 eq) was loaded to a round bottom flask. MeOH and the particular salicyl anilide (1 eq) were added immediately. MeOH was removed on via rotary evaporation when the mixture was homogenous. An excess of (\pm)-epichlorohydrin (10 eq) was added to the solid residue, and the mixture was stirred at $85^{\circ} \mathrm{C}$.

After complete consumption of anilide was observed, usually 20 min , unreacted epichlorohydrin was removed. KF on Celite (2 eq) and acetonitrile were added and the mixture was refluxed for 18 h . After full conversion the reaction mixture was filtrated to remove Celite. EtOAc and water were used to extract the solids. The layers were separated and the organic layer was dried over NaSO_{4} and concentrated under reduced pressure. If needed, the product was purified through column chromatography (ethyl acetate:hexane=1:1).

General Procedure E

The particular amine (1 eq) and the particular 2-(oxiran-2-ylmethoxy)- N-phenylbenzamide (1 eq) in $\mathrm{EtOH}(4 \mathrm{~mL})$ were stirred for 8 h at $80^{\circ} \mathrm{C}$ in a screw cap tube.

Then, the reaction mixture was concentrated under reduced pressure and the product was obtained after purification by column chromatography (ethyl acetate containing $2 \% \mathrm{MeOH}$).

4.3 Syntheses

4.3.1 Anilides

5-chloro-2-hydroxy- N-(3-(trifluoromethyl)phenyl)benzamide (72)

72 was prepared following general procedure B, yielding 0.898 g (49%) of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 1580-42$3^{141}$).

2-hydroxy- N-(3-(trifluoromethyl)phenyl)benzamide (75)

75 was prepared following general procedure C, yielding $45.706 \mathrm{~g}(87 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 587-49-5 ${ }^{142}$).

Melting point: $177-179^{\circ} \mathrm{C}$.

4-fluoro-2-hydroxy- N -(3-(trifluoromethyl)phenyl)benzamide (77)

77 was prepared following general procedure C, yielding $0.619 \mathrm{~g}(63 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=6.79-6.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3,5\right.$ salicyl), $7.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}\right.$, $\mathrm{H}-4$ aniline), 7.61 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.94 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.01 (m [dd], ${ }^{3} J=8.7, J_{H F}=6.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.20 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.55 (br s, $1 \mathrm{H}, \mathrm{CONH}$), 12.03 (brs, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=103.81\left({ }^{2} J_{C F}=23.9, C-3\right.$ salicyl), $106.58\left({ }^{2} J_{C F}=\right.$ 22.1, $C-5$ salicyl), $114.79\left({ }^{4} J_{C F}=2.7, C-1\right.$ salicyl), $116.91\left(q,{ }^{3} J_{C F}=4.1, C-2\right.$ aniline), 120.43 (q,
${ }^{3} J_{C F}=3.8, C-4$ aniline), 124.07 ($\mathrm{q},{ }^{1} J_{C F}=-271.9, C F_{3}$ aniline), 124.40 ($C-6$ aniline), 129.44 ($\mathrm{q},{ }^{2} J_{C F}$ $=32.2, C-3$ aniline $), 129.92$ ($C-5$ aniline), 131.54 (${ }^{3} J_{C F}=11.3, C-6$ salicyl), 138.97 (C-1 aniline), $160.22\left({ }^{3} J_{C F}=12.9, C-2\right.$ salicyl), $164.98\left({ }^{1} J_{C F}=-250.0, C_{C}-4\right.$ salicyl), 166.08 (CONH).

Melting point: $190^{\circ} \mathrm{C}$.

3,5-dichloro-2-hydroxy- N-(3-(trifluoromethyl)phenyl)benzamide (79)

79 (CAS: 796-61-2) was prepared following general procedure B, yielding $1.643 \mathrm{~g}(44 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}}^{6}, 23^{\circ} \mathrm{C}$): $\delta=7.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $7.64\left(\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=7.8\right.$, $1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.79-7.82 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.98 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.06-8.08 (m , 1H, H-6 salicyl), 8.13 (br s, 1H, H-2 aniline), 10.82 (br s, 1H, CONH), 11.84-12.81 (br, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta 117.54$ ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.9, \mathrm{C}-2$ aniline $),=119.08\left(C_{\mathrm{q}}-1\right.$ salicyl), 121.11 ($\mathrm{q},{ }^{3}{ }_{C F}=3.7, C-2$ aniline), $118.93\left(C_{q}-3\right.$ salicyl), $122.86\left(C_{q}-5\right.$ salicyl), 124.25 (q, ${ }^{1} J_{C F}=-272.3, C F_{3}$ aniline), 126.12 (C-6 aniline), 127.20 (C-6 salicyl), $129.54\left(\mathrm{q},{ }^{2} J_{C F}=31.5, C-3\right.$ in CF_{3} aniline), 129.87 ($C-5$ aniline), 130.74 ($C-4$ salicyl), 140.91 ($C-1$ aniline), 164.96 ($C-2$ salicyl), 165.65 (CONH).

Na Salt:
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $^{2} \mathrm{~d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.24$ (dd, ${ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7\right.$, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.53 (dd[t], ${ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.63\left(\mathrm{~d},{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 7.75 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.28 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 15.21 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=110.99\left(C_{\mathrm{q}}-5\right.$ salicyl), 115.34 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.0, \mathrm{C}-2$ aniline), 118.46 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=3.8, C-4$ aniline), 118.93 ($C_{q}-3$ salicyl), 122.86 ($C-6$ aniline), 124.25 (q, ${ }^{1} J_{C F}=-272.3, C F_{3}$ aniline $), 126.12\left(C_{q}-1\right.$ salicyl), $127.20\left(C-6\right.$ salicyl), $129.54\left(\mathrm{q},{ }^{2} J_{C F}=31.5, C-3\right.$ in CF_{3} aniline), 129.87 (C-5 aniline), 130.74 (C-4 salicyl), 140.91 ($C-1$ aniline), 164.96 (C-2 salicyl), 165.65 (CONH).

Melting point: $140-143^{\circ} \mathrm{C}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyano-2-hydroxybenzamide (80)

80 was prepared following general procedure C, yielding $0.360 \mathrm{~g}(90 \%)$ of the desired semi crystalline product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}\right.$, $H-5$ aniline), 7.85 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9^{4} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.21 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.31 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.73 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, CONH), 11.72-12.53 (br, 1H, ArOH).
${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=101.38$ (C-5 salicyl), 118.30 ($C-3$ salicyl), 118.68 (CN), 119.07 ($\mathrm{q},{ }^{3} J_{C F}=5.7, C-2$ aniline), $120.95\left(C_{q}-1\right.$ salicyl), $122.69\left(\mathrm{q},{ }^{1} J_{C F}=-273.4, C F_{3}\right.$ aniline), 125.20 ($C-6$ aniline), 124.88 ($\mathrm{q},{ }^{3} J_{C F}=1.5, C-4$ aniline), 126.76 ($\mathrm{q},{ }^{2} J_{C F}=30.3, C-3$ in CF_{3} aniline), 132.16 ($C-5$ aniline), 134.10 ($C-6$ salicyl), 136.58 ($C-4$ salicyl), 137.78 ($C-1$ aniline), 160.83 (C-2 salicyl), 164.74 (CONH).

N-(4-bromophenyl)-5-fluoro-2-hydroxybenzamide (295)

295 was prepared following general procedure B, yielding $0.126 \mathrm{~g}(7 \%)$ of the desired product. Characterization (mp) was in accordance with previously reported values (CAS: 7103-89$\left.1^{143,144}\right)$.

Melting point: $219-221^{\circ} \mathrm{C}$.

N-(3-allyl-4-methylphenyl)-5-chloro-2-hydroxybenzamide (296)

296 was prepared following general procedure C, yielding $1.063 \mathrm{~g}(72 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {trans }}=17.2,{ }^{2} \mathrm{~J}=1.51 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {cis }}=10.1,{ }^{2} \mathrm{~J}=1.5,1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 5.88-6.01 (m, 1H, CH2CH=CH2$), 7.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, H-3\right.$ salicyl), $7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ 7.9, $1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.41-7.52 (m, $3 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-2,6$ aniline), 8.00 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.32 (br s, 1H, CONH), 11.98 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=18.40\left(\mathrm{CH}_{3}\right)$, $37.16\left(\mathrm{CH}_{2} \mathrm{CH}^{2}=\mathrm{CH}_{2}\right)$, 115.89 $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 118.88 ($\mathrm{C}-2$ aniline), 119.05 ($\mathrm{C}_{\mathrm{q}}-1$ salicyl), 119.12 ($\mathrm{C}-3$ salicyl), 121.50 ($\mathrm{C}-6$ aniline), 122.65 ($C_{q}-5$ salicyl), 128.19 ($C-6$ salicyl), 130.14 ($C-5$ aniline), 132.07 ($C-4$ aniline), 133.06 ($C-4$ salicyl), 135.85 ($C-1$ aniline), 136.49 ($\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 138.20 ($\mathrm{C}-3$ aniline), 157.23 (C2 salicyl), 165.03 (CONH).

Melting point: $155-158^{\circ} \mathrm{C}$.
N-(4-fluorophenyl)-3-hydroxy-2-naphthamide (297)

297 was prepared following general procedure $\mathbf{A}^{\mathbf{1 2 1}}$, yielding $2.78 \mathrm{~g}(87 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 6267-93-2 ${ }^{145}$).

5-chloro-N-(4-fluorophenyl)-2-hydroxybenzamide (298)

298 was prepared following general procedure B, yielding $7.1 \mathrm{~g}(66 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 343-$60-2^{141}$).

2-hydroxy- N -(naphthalen-2-yl)benzamide (299)

299 was prepared following general procedure \mathbf{A}^{121}, yielding $1.031 \mathrm{~g}(84 \%)$ of the desired product. Characterization (mp) was in accordance with previously reported values (CAS: 5395-85-7 ${ }^{146}$).

Melting point: $186-188^{\circ} \mathrm{C}$.

N-(2-Allyl-phenyl)-2-hydroxy-benzamide (300)

300 was prepared following general procedure A, yielding 0.654 g (65%) of the desired product.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.47\left(\mathrm{dt}, J=5.9, J=1.6,2 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}\right), 5.15(\mathrm{dd}$, ${ }^{3} J_{\text {trans }}=17.3,{ }^{2} \mathrm{~J}=1.6,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}$), 5.29 (dd, ${ }^{3} \mathrm{~J}_{\text {cis }}=10.1,{ }^{2} \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{HC}=$ $\mathrm{CH}_{\text {cis }} H_{\text {trans }}$), 6.01-6.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}$), 6.88-6.93 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.04 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3$, 1H, $\mathrm{H}-3$ salicyl), 7.18-7.28 (m, 2H, H-3,5 aniline), 7.32-7.37 (m, 1H, H-5 salicyl), 7.41-7.48 (m, $2 \mathrm{H}, \mathrm{H}-6$ aniline $H-4$ salicyl), $7.86\left(\mathrm{~d}^{3}{ }^{3}=8.0,1 \mathrm{H}, H-6\right.$ salicyl), 8.10 (br s, $1 \mathrm{H}, \mathrm{CONH}$), 12.11 (s, $1 \mathrm{H}, \mathrm{OH}$ salicyl).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=37.23\left(\mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}\right), 114.68\left(\mathrm{C}-1\right.$ salicyl), $117.16\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{HC}=\mathrm{CH}_{2}$), 119.07 ($\mathrm{C}-3$ salicyl), 119.12 ($C-4$ aniline), 124.74 ($C-6$ salicyl), 125.41 ($C-6$ aniline), 126.41 ($C-3$ aniline), 127.76 ($C-5$ salicyl), 130.75 ($C-5$ aniline), 131.30 ($C_{q}-2$ aniline), 134.79 ($C-$ 4 salicyl), 135.12 ($\mathrm{C}_{q}-1$ aniline), 136.47 ($\mathrm{CH}_{2}-\mathrm{HC=} \mathrm{CH}_{2}$), 162.17 (CONH).

Melting point: $95-97^{\circ} \mathrm{C}$.

5-fluoro-2-hydroxy-N-(3-(trifluoromethyl)phenyl)benzamide (301)

301 was prepared following general procedure B, yielding $0.554 \mathrm{~g}(15 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: $1417658-34-4^{141}$).

Melting point: $214-215^{\circ} \mathrm{C}$.

5-fluoro-N-(4-fluorophenyl)-2-hydroxybenzamide (302)

302 was prepared following general procedure B, yielding $0.476 \mathrm{~g}(21 \%)$ of the desired product. Characterization (mp) was in accordance with previously reported values (CAS: 363-$\left.28-0^{143,144}\right)$.

Melting point: $201-203^{\circ} \mathrm{C}$.
1-hydroxy-N-(3-(trifluoromethyl)phenyl)-2-naphthamide (303)

303 was prepared following general procedure B, yielding $6.481 \mathrm{~g}(62 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: $442-30-8^{147}$).

N-(3,5-bis(trifluoromethyl)phenyl)-2-hydroxybenzamide (304)

304 was prepared following general procedure A, yielding $0.231 \mathrm{~g}(5 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 744-$\left.58-1^{141}\right)$.
N-(3,5-bis(trifluoromethyl)phenyl)-5-chloro-2-hydroxybenzamide (305)

Sodium methoxide ($0.332 \mathrm{~g}, 6.15 \mathrm{mmol}$) was added to a solution of 5 -chloro-2hydroxybenzoic acid ($1.0618 \mathrm{~g}, 6.15 \mathrm{mmol}$) in MeOH . MeOH was removed via rotary evapo-
ration. Oxalyl chloride ($2.004 \mathrm{~mL}, 22.89 \mathrm{mmol}$) and DCM (5 mL) were added. After gas evolution stopped, drops of DMF were added several times. Excess oxalyl chloride was removed by rotary evaporation. DCM $(8 \mathrm{~mL})$ triethyl amine ($1 \mathrm{~mL}, 7.17 \mathrm{mmol}$) and DMAP (0.075 g , 0.615 mmol) were added. 3,5 -Bis(trifluoromethyl)aniline ($0.983 \mathrm{~mL}, 6.15 \mathrm{mmol}$) in 10 mL DCM was added to an addition funnel. It was added dropwise under ice cooling. The reaction mixture was allowed to warm to room temperature overnight. The reaction mixture was washed three times with ethyl acetate, once with water, three times with NaHCO_{3} and once with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. 305 (CAS: 978-62$1^{141,148}$) was obtained in 31% yield (0.720 g) after column chromatography (ethyl acetate:hexane=2:3).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=7.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1}=8.8\right.$, ${ }^{4} J_{2}=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.83 (br, $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ in $3^{\prime}, 5^{\prime}-\mathrm{diCF}_{3}$), $7.86\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.44 (br, s, 2H, H-2', 6^{\prime} in $3^{\prime}, 5^{\prime}-\mathrm{diCF}_{3}$), 10.84 (br, s, $1 \mathrm{H}, \mathrm{NH}$), 11.26-11.56 (br, 1H, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=116.86$ ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=4.0, \mathrm{C}-2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}-$ diCF $_{3}-$ aniline), 119.03 ($C-3$ salicyl), 120.20 ($C_{q}-1$ salicyl), 120.33 ($q,{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}, 5^{\prime}-$ diCF $_{3}{ }^{-}$ aniline), $122.77\left(C_{q}-5\right.$ salicyl), $123.20\left(q,{ }^{1} J_{C F}=-272.9,2 \times C F_{3}\right), 128.57(C-6$ salicyl), $130.71(q$, ${ }^{2} J_{C F}=33.1, C_{q}-3^{\prime}, 5^{\prime}$ in $3^{\prime}, 5^{\prime}$-diCF 3_{3}-aniline), 133.23 ($C-4$ salicyl), 140.24 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}, 5^{\prime}-$ diCF $_{3^{-}}$ aniline), 156.26 ($C_{q}-2$ salicyl), 165.50 (CONH).

Melting point: $170-172^{\circ} \mathrm{C}$.

5-chloro- N-(3,4-dichlorophenyl)-2-hydroxybenzamide (306)

306 was prepared following general procedure B, yielding $10.949 \mathrm{~g}(56 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 642-84-2 ${ }^{149}$).

5-chloro-2-hydroxy-N-(3-(trifluoromethoxy)phenyl)benzamide (307)

307 (CAS: 634185-96-9) was prepared following general procedure B, yielding 4.536 g (24\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}\right.$, $\mathrm{H}-4$ aniline), $7.45-7.52$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$ aniline, $\mathrm{H}-4$ salicyl), 7.66 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.877.91 (m, 2H, H-2 aniline, H - 6 salicyl), 10.58 (br s, 1H, CONH), 11.42-11.73 (br, 1H, ArOH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=112.68$ ($C-2$ aniline), 116.19 ($C-4$ aniline), 118.99 (C-3 salicyl), 119.20 (C-6 aniline), 120.17 (one part of OCF_{3} aniline visible), 122.70 (C-1 salicyl), 128.48 ($C-6$ salicyl), 130.46 (C-5 aniline), 132.99 ($C-4$ salicyl), 139.83 ($C-1$ aniline), 148.40 (C-3 aniline), 156.37 (C-2 salicyl), 165.08 (CONH), C-5 salicyl not recorded.

Melting point: $190-193^{\circ} \mathrm{C}$.

5-chloro- N -(4-chloro-3-(trifluoromethoxy)phenyl)-2-hydroxybenzamide (308)

308 was prepared following general procedure C, yielding $0.565 \mathrm{~g}(33 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $^{2} \mathrm{~d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{3} \mathrm{~J}\right.$ $=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.58 ($\mathrm{d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 7.86 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $8.13\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), $10.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, CONH), 11.52 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=118.99\left(\mathrm{C}-3\right.$ salicyl), 120.11 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-258.4, \mathrm{OCF}_{3}$ aniline), 120.14 ($C_{q}-1$ salicyl), 120.51 ($C-6$ aniline), 121.98 ($C-2$ aniline), 122.76 ($C_{q}-5$ salicyl), 123.55 ($C-5$ aniline), 126.05 (C-4 aniline), 128.51 (C-6 salicyl), 133.08 (C-4 salicyl), 138.44 (C-1 aniline), 139.76 ($q, J_{C F}=2.0, C-3$ in $3-$ OCF $_{3}$ aniline), 156.27 ($C-2$ salicyl), 165.04 (CONH).

Melting point: $203^{\circ} \mathrm{C}$.
5-chloro-2-hydroxy- N -(4-(trifluoromethoxy)phenyl)benzamide (309)

309 was prepared following general procedure B, yielding $4.736 \mathrm{~g}(25 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 634186-00-8 ${ }^{141}$).

5-chloro-2-hydroxy- N -(3-iodophenyl)benzamide (310)

310 (CAS: 1040325-49-2) was prepared following general procedure B, yielding 5.136 g (60\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}\right.$, $\mathrm{H}-5$ aniline), 7.46 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.68 (d, ${ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.91 (d, ${ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.20 ($\mathrm{m}[\mathrm{t}], 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.42 (s, 1H, CONH), 11.26-12.13 (br, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO-d $_{6}, 23^{\circ} \mathrm{C}$): $\delta=94.43$ (C-3 aniline), 119.04 ($C-3$ salicyl), 119.81 ($C-1$ salicyl), 119.89 (C-6 aniline), 122.69 ($C-5$ salicyl), 128.41 ($C-6$ salicyl), 128.77 ($C-2$ aniline), 130.74 ($C-5$ aniline), 132.72 (C-4 aniline), 133.02 ($C-4$ salicyl), 139.50 ($C-1$ aniline), 156.58 (C 2 salicyl), 164.97 (CONH).

Melting point: $222-225^{\circ} \mathrm{C}$.
5-chloro- N-(4-fluoro-3-(trifluoromethyl)phenyl)-2-hydroxybenzamide (311)

311 was prepared following general procedure C, yielding $3.584 \mathrm{~g}(94 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 439144-73-7 ${ }^{141,148}$).

5-chloro- N-(4-chloro-3-(trifluoromethyl)phenyl)-2-hydroxybenzamide (312)

312 was prepared following general procedure C, yielding 4.718 g (76%) of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: $900-36-7^{141}$).

5-chloro-N-(3,5-dichlorophenyl)-2-hydroxybenzamide (313)

313 was prepared following general procedure B, yielding 4,536 g (23\%) of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: $106480-60-8^{141}$).

N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichloro-2-hydroxybenzamide (314)

314 was prepared following general procedure C, yielding $3.093 \mathrm{~g}(68 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 4554-46-5 $\left.{ }^{141,150}\right)$.

3,5-dichloro- N -(3,5-dichlorophenyl)-2-hydroxybenzamide (315)

315 (CAS: 51543-48-7) was prepared following general procedure C, yielding 3.993 g (99\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.40\left(\mathrm{~m},{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.78-7.84 ($\mathrm{m}, 3 \mathrm{H}$, $H-2,6$ aniline, $H-4$ salicyl), 7.98 ($\mathrm{m}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.75 (br s, $1 \mathrm{H}, \mathrm{NH}$), 11.36$12.53(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=119.28$ (C-2,6 aniline), $119.61\left(C_{\mathrm{q}}-3\right.$ salicyl), 122.58 ($C_{q}-5$ salicyl), 122.75 ($C_{q}-1$ salicyl), 123.89 ($C-4$ aniline), 126.60 ($C-6$ salicyl), 133.07 (C 4 salicyl), 134.01 ($C_{q}-3,5$ aniline), 140.05 ($C_{q}-1$ aniline), 153.93 ($C_{q}-2$ salicyl), 166.41 (CONH).

Melting point: $170-173^{\circ} \mathrm{C}$.

5-chloro-2-hydroxy-N-(4-(trifluoromethoxy)-3(trifluoromethyl)phenyl)benzamide (316)

316 was prepared following general procedure C, yielding $0.998 \mathrm{~g}(57 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{3} \mathrm{~J}\right.$ $=2.5,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.68\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-5\right.$ aniline $), 7.87\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.11 ($\mathrm{d},{ }^{3} \mathrm{~J}=9.1^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.31 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.71 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, CONH), 11.49 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=119.01\left(\mathrm{C}-3\right.$ salicyl), 119.04 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=5.2, \mathrm{C}-2$ aniline), $119.88\left(q,{ }^{1} J_{C F}=-258.3, O C F_{3}\right.$ aniline), $120.04\left(C_{q}-1\right.$ salicyl), $121.67\left(q,{ }^{2} J_{C F}=31.8, C-3\right.$ in CF_{3} aniline), 122.33 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-272.4, \mathrm{CF}_{3}$ aniline), 122.54 ($C-5$ aniline), 122.74 ($C_{\mathrm{q}}-5$ salicyl), 125.87 (C-6 aniline), 128.48 (C-6 salicyl), 133.14 (C-4 salicyl), 137.61 (C-1 aniline), 140.73 (q, ${ }^{3} J_{C F}=2.2, C-4$ in CF $_{3}$ aniline), 156.38 (C-2 salicyl), 165.29 (CONH).

Melting point: $178-180^{\circ} \mathrm{C}$.
2-hydroxy-5-(trifluoromethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (317)

317 was prepared following general procedure C, yielding $1.278 \mathrm{~g}(73 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.45\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{3} \mathrm{~J}\right.$ $=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.49 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.61 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline),
7.84 ($\mathrm{d},{ }^{4} J=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.93 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.21 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.63 (br s, 1H, CONH), 11.69 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=116.74$ ($\mathrm{q},{ }^{3} J_{\text {CF }}=4.0, C-2$ aniline), 118.55 (C-3 salicyl), $119.75\left(C_{q}-1\right.$ salicyl), $120.20\left({ }^{1} J_{C F}=-255.6\right.$, OCF $_{3}$ aniline), $120.51\left(q,{ }^{3} J_{C F}=3.8, C-4\right.$ aniline), 122.02 ($C-6$ salicyl), 124.05 ($q,{ }^{1} J_{C F}=-272.5, C F_{3}$ aniline), 124.22 ($C-6$ aniline), 126.46 ($C-4$ salicyl), 129.49 ($\mathrm{q},{ }^{2} J_{C F}=31.5, C-3$ aniline), 129.97 ($C-5$ aniline), 138.93 ($C-1$ aniline), 140.26 ($J_{C F}=2.0, C_{q^{-}} 5$ salicyl), 156.29 (C-2 salicyl), 164.82 (CONH).

Melting point: $151-152^{\circ} \mathrm{C}$.
2-hydroxy-5-iodo- N -(3-(trifluoromethyl)phenyl)benzamide (318)

318 (CAS: 1494-09-3) was prepared following general procedure C, yielding $4.403 \mathrm{~g}(95 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.49\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.0\right.$, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.61 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1}=8.6,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.94 (br d, ${ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.16\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.19 (br, s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.60 (br, s, 1H, NH), 11.61 (br, $1 \mathrm{H}, \mathrm{OH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO-d ${ }_{6}, 23^{\circ} \mathrm{C}$): $\delta=80.97\left(C_{\mathrm{q}}-5\right.$ salicyl), $116.80\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=4.0, \mathrm{C}-2\right.$ aniline), 119.81 ($C-3$ salicyl), 120.50 ($q,{ }^{3} J_{C F}=3.8, C-4$ aniline), $120.95\left(C_{q}-1\right.$ salicyl), 124.13 (q, ${ }^{1} J_{C F}=-272.4, C F_{3}$), 124.28 (C-6 aniline), 129.44 ($\mathrm{q},{ }^{2} J_{C F}=31.4, C_{q}-3$ aniline), 129.97 ($C-5$ aniline), 137.06 ($C-6$ salicyl), 138.97 ($C_{q}-1$ aniline), 141.62 ($C-4$ salicyl), 157.56 ($C_{q}-2$ salicyl), 165.27 (CONH).

Melting point: $218-220^{\circ} \mathrm{C}$.
2-hydroxy-6-(trifluoromethyl)- N-(3-(trifluoromethyl)phenyl)benzamide (319)

319 was prepared following general procedure C, yielding $0.271 \mathrm{~g}(22 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3,5\right.$ salicyl), $7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.48 (dd [t], ${ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.58 (dd[t], ${ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=8.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.19 (br s, 1H, $\mathrm{H}-2$ aniline), 10.51 (br s, 1H, ArOH), 10.76 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=115.08$ ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.1, \mathrm{C}-2$ aniline), 116.08 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=$ $4.8, C-5$ salicyl), 119.83 ($\mathrm{q}^{3}{ }^{3}{ }_{C F}=3.9, C-4$ aniline), 120.04 ($C-3$ salicyl), 122.69 ($C-6$ aniline), $123.47\left(\mathrm{q},{ }^{3} J_{C F}=2.2, C_{\mathrm{q}}-1\right.$ salicyl), $123.72\left(\mathrm{q},{ }^{1} J_{C F}=-274.1, C F_{3}\right.$ aniline), $126.80\left(\mathrm{q},{ }^{1} J_{C F}=-271.1\right.$, $C F_{3}$ salicyl), 126.92 ($\mathrm{q},{ }^{2} J_{C F}=30.9, C-6$ salicyl), 129.52 ($\mathrm{q},{ }^{2} J_{C F}=31.9, C-3$ aniline), 130.06 (C-4 salicyl), 130.57 (C-5 aniline), 139.91 (C-1 aniline), 154.95 (C-2 salicyl), 163.97 (CONH).

Melting point: $160-166^{\circ} \mathrm{C}$.

2-hydroxy-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide (320)

320 was prepared following general procedure C, yielding $5.026 \mathrm{~g}(89 \%)$ of the desired product. Characterization (NMR, mp) was in accordance with previously reported values (CAS: 1036619-32-5 ${ }^{151}$).

Melting Point: $187-189^{\circ} \mathrm{C}$.

2-hydroxy-5-methyl-N-(3-(trifluoromethyl)phenyl)benzamide (321)

321 (CAS: 16366-33-9) was prepared following general procedure C, yielding 4.926 g (85%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.26\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1}=8.4,{ }^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.47 ($\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.60 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}$ $=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline $), 7.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $7.95\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.21 ($\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.57 ($\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 11.33 ($\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=20.01\left(\mathrm{CH}_{3}\right), 116.80$ ($\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.9, \mathrm{C}-2$ aniline), 117.07 ($C-3$ salicyl), 117.22 ($C_{q}-1$ salicyl), 120.29 ($\mathrm{q}^{3}{ }^{3} J_{C F}=3.8, C-4$ aniline), $124.09\left(\mathrm{q},{ }^{1} J_{C F}=-\right.$
272.5, $C F_{3}$), 124.27 ($C-6$ aniline), 127.78 ($C_{q}-5$ salicyl), 128.98 ($C-6$ salicyl), 129.44 ($\mathrm{q}^{2}{ }^{2} J_{C F}=$ 31.6, $C_{q^{-}}-3$ aniline), 129.91 ($C-5$ aniline), 134.45 ($C-4$ salicyl), 139.13 ($C_{q^{-}}-1$ aniline), 156.05 ($C_{q^{-}}$ 2 salicyl), 166.88 (CONH).

Melting point: $162-163^{\circ} \mathrm{C}$.

2-hydroxy-5-methoxy- N-(3-(trifluoromethyl)phenyl)benzamide (322)

322 was prepared following general procedure C, yielding $4.386 \mathrm{~g}(74 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.08 (dd, ${ }^{3} \mathrm{~J}=8.9,{ }^{3} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.46-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ aniline, $\mathrm{H}-6$ salicyl), 7.61 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.93 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.22 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.61 (br s, 1H, CONH), 11.12 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=55.66\left(\mathrm{OCH}_{3}\right), 112.81$ (C-6 salicyl), 116.85 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}$ $=4.1, C-2$ aniline), 117.79 ($C-1$ salicyl), 118.15 ($C-3$ salicyl), 120.38 ($q,{ }^{3} J_{C F}=3.8, C-4$ aniline), 120.63 ($C-4$ salicyl), 124.09 ($\mathrm{q},{ }^{1} J_{C F}=-272.2, C F_{3}$ aniline), 124.36 ($C-6$ aniline), $129.48\left(\mathrm{q},{ }^{2} J_{C F}=\right.$ 31.6, C-3 aniline), 129.93 (C-5 aniline), 139.06 (C-1 aniline), 151.90 ($C-2$ salicyl), 151.93 ($C-5$ salicyl), 166.25 (CONH).

Melting point: $164^{\circ} \mathrm{C}$.

2-hydroxy-3-methyl-N-(3-(trifluoromethyl)phenyl)benzamide (323)

323 (CAS: 1041580-54-4) was prepared following general procedure C, yielding 3.448 g (56\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.39 ($\mathrm{d},{ }^{3} J_{1}=7.3,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.52 (br d, ${ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.63 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}$, $H-5$ aniline), 7.91 ($\mathrm{d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.02 ($\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.15 (br, s, 1H, H-2 aniline), 10.64 ($\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 12.22 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=15.54\left(\mathrm{CH}_{3}\right), 114.22\left(C_{\mathrm{q}}-1\right.$ salicyl), $117.75\left(\mathrm{q},{ }^{3} \mathrm{~J}_{C F}\right.$ $=4.2, C-2$ aniline), 118.15 (C-5 salicyl), 120.82 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4$ aniline), 124.07 ($\mathrm{q},{ }^{1} J_{C F}=-$ 272.0, $C F_{3}$), 125.18 ($C-6$ aniline), 125.52 ($C-6$ salicyl), 126.26 ($C_{\mathrm{q}}-3$ salicyl), 129.38 ($\mathrm{q}^{2}{ }^{2} \mathrm{~J}_{C F}=$ $31.5, C_{q}-3$ aniline), 129.91 ($C-5$ aniline), 135.30 ($C-4$ salicyl), 138.67 ($C_{q}-1$ aniline), 159.08 ($C_{q^{-}}$ 2 salicyl), 169.39 (CONH).

Melting point: $127-129^{\circ} \mathrm{C}$.

5-chloro-2-hydroxy- N-methyl- N-phenylbenzamide (324)

324 was prepared following general procedure C, yielding 2.153 g (67\%) of the desired product. Characterization (MP) was in accordance with previously reported values (CAS: 54892-12-5 ${ }^{152}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{DMSO}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$ 6.61-6.72 (m, 1H, H-arom), 7.037.12 (m, 2H, H-arom), 7.13-7.18(m, 1H, H-arom), 7.19-7.30(m, 4H, H-arom), 9.96 (br, 1H, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-}\right.$, $23{ }^{\circ} \mathrm{C}$): $\delta=36.70$ (dyn, NCH_{3}), 117.20 (CH-arom), 126.57 ($C_{q}-5$ salicyl), 126.64 ($2 x \mathrm{CH}$-aniline), 127.64 (CH -arom), 128.64 (2 x CH -aniline), 129.46 (CH arom), 143.45 ($C_{q}-1$ aniline), 152.31 ($C_{q}-2$ salicyl), 166.74 (CONH).

Melting point: $143-145^{\circ} \mathrm{C}$.

5-cyano-2-hydroxy- N-(3-(trifluoromethyl)phenyl)benzamide (325)

325 was prepared following general procedure C, yielding 2.484 g (66\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$, $23^{\circ} \mathrm{C}$): $\delta=7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}\right.$, $H-4$ aniline), 7.62 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.8,{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.85\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6,{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.20 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), $8.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.64 (br s, 1H, CONH), 12.13 (br s, 1H, ArOH).
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=101.44$ (C-5 salicyl), 116.56 ($\mathrm{q},{ }^{3} J_{\mathrm{CF}}=4.1, \mathrm{C}-2$ aniline), 118.32 ($C-3$ salicyl), 118.71 (CN), 120.55 ($q,{ }^{3} J_{C F}=3.8, C-4$ aniline), 120.80 ($C-1$ salicyl), 124.06 ($C-6$ aniline), 124.06 ($\mathrm{q},{ }^{1} J_{C F}=-272.1, C F_{3}$ aniline), $129.49\left(\mathrm{q},{ }^{2} J_{C F}=31.6, C-3\right.$ aniline), 130.05 (C-5 aniline), 134.06 ($C-6$ salicyl), 136.56 (C-4 salicyl), 138.99 ($C-1$ aniline), 160.96 (C-2 salicyl), 164.80 (CONH).

Melting point: $224-226^{\circ} \mathrm{C}$.
5-cyano-2-hydroxy-N-(4-(trifluoromethoxy)phenyl)benzamide (326)

326 was prepared following general procedure C, yielding $3.205 \mathrm{~g}(81 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,2 \mathrm{H}\right.$, $\mathrm{H}-3,5$ aniline), 7.83 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 7.85 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.6,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.26 (d , ${ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.54 (br s, 1H, CONH), 12.09-12.50 (br, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=101.42$ ($C-5$ salicyl), 118.33 ($C-3$ salicyl), 118.72 $(C N), 120.13\left({ }^{1} J_{C F}=-256.0\right.$, OCF $_{3}$ aniline), 120.62 ($C-1$ salicyl), 121.63 ($C-3,5$ aniline), 122.00 (C-2,6 aniline), 134.01 (C-6 salicyl), 136.53 (C-4 salicyl), 137.33 (C-1 aniline), 144.29 ($m, C-4$ aniline), 161.08 (C-2 salicyl), 164.58 (CONH).

Melting point: $260-263^{\circ} \mathrm{C}$.

N-(3,5-bis(trifluoromethyl)phenyl)-5-cyano-2-hydroxybenzamide (327)

327 was prepared following general procedure C, yielding $2.701 \mathrm{~g}(59 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 439144-18-0 ${ }^{153}$).

2-hydroxy-5-(trifluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide (328)

328 (CAS: 145132-81-6) was prepared following general procedure C, yielding 1.531 g (90%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.18$ ($\mathrm{d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.50\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=7.7\right.$, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.62 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.77\left(\mathrm{dd},{ }^{3} J_{1}=8.7,{ }^{4} \mathrm{~J}_{2}=1.9,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.95 ($\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, H-6$ aniline), $8.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.21 (br, s , $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.70 (br, s, 1H, NH), 12.10 (br, 1H, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=116.78$ ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.0, \mathrm{C}-2$ aniline), 117.97 (C-3 salicyl), 119.56 ($C_{q}-1$ salicyl), 119.72 ($\mathrm{q}^{2}{ }^{2} J_{C F}=32.6, C_{q}-5$ salicyl), $120.55\left(q,{ }^{3} J_{C F}=3.8, C-4\right.$ aniline), 124.27 (C - 6 aniline), 124.08 ($q,{ }^{1} J_{C F}=-272.2, C F_{3}$ salicyl), 124.31 ($\mathrm{q},{ }^{1} J_{C F}=-271.8, C F_{3}$ aniline), 126.82 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-6$ salicyl), 129.48 ($\mathrm{q},{ }^{2} J_{C F}=32.0, C_{q}-3$ aniline), $129.98\left(q,{ }^{3} J_{C F}=\right.$ 3.8, C-4 salicyl), 130.00 ($C-5$ aniline), 138.98 ($C_{q}-1$ aniline), 160.39 ($C_{q}-2$ salicyl), 165.17 (CONH).

Melting point: $155-157^{\circ} \mathrm{C}$.
2-hydroxy- N-(3-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (329)

329 was prepared following general procedure C, yielding $1.258 \mathrm{~g}(71 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,{ }^{4} \mathrm{~J}=1.1,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=8.7,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.51 (dd[t], ${ }^{3} \mathrm{~J}=8.2,{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 7.77 (dd, ${ }^{3} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.91 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), $8.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ 1.8, 1H, H-6 salicyl), 10.64 (s, 1H, CONH), 12.09 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=112.74$ ($\mathrm{C}-2$ aniline), 116.26 ($\mathrm{C}-4$ aniline), 117.92 (C-3 salicyl), 119.24 (C-6 aniline), 119.76 (C-1 salicyl), 119.78 ($\mathrm{q},{ }^{2} J_{C F}=32.6, C-5$ salicyl), $120.12\left(q,{ }^{1} J_{C F}=-255.3, O C F_{3}\right.$ aniline $), 124.31\left(q,{ }^{1} J_{C F}=-271.0, C F_{3}\right.$ salicyl), $126.86\left(\mathrm{q},{ }^{3} J_{C F}=\right.$
3.9, C-6 salicyl), 129.92 ($\mathrm{q},{ }^{3} J_{C F}=3.5, C-4$ salicyl), 130.49 ($C-5$ aniline), 139.87 ($C-1$ aniline), 148.46 (J ${ }_{C F}=1.4, C-3$ aniline), 160.22 (C-2 salicyl), 165.01 (CONH).

Melting point: $142^{\circ} \mathrm{C}$.

N-(3,5-bis(trifluoromethyl)phenyl)-2-hydroxy-5-(trifluoromethyl)benzamide (330)

330 (CAS: 439144-33-9) was prepared following general procedure C, yielding 1.397 g (66\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.77\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1}=8.8\right.$, ${ }^{4} J_{2}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $8.14\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $8.44(\mathrm{~s}$, 2H, H-2,6 aniline), 10.91 (br s, 1H, NH), 11.94 (br, 1H, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=116.91$ ($\mathrm{m},{ }^{3} J_{C F}=3.8, \mathrm{C}-4$ aniline), 117.94 (C-3 salicyl), 119.71 ($C_{q}-1$ salicyl), 119.77 ($q,{ }^{2} J_{C F}=32.9, C_{q}-5$ salicyl), 120.35 ($q,{ }^{3} J_{C F}=3.3, C-2,6$ aniline), 123.21 ($\mathrm{q},{ }^{1} J_{C F}=-272.7,2 x C F_{3}$), $124.26\left(\mathrm{q},{ }^{1} J_{C F}=-271.2, C F_{3}\right.$ salicyl), 126.93 (q, ${ }^{3} J_{C F}=3.8, C-6$ salicyl), 130.13 ($q,{ }^{3} J_{C F}=3.3, C-4$ salicyl), 130.73 ($q,{ }^{2} J_{C F}=32.8, C_{q}-3,5$ aniline), 140.25 ($C_{q}-1$ aniline), 160.13 ($C_{q}-2$ salicyl), 165.42 (CONH).

Melting point: $163-165^{\circ} \mathrm{C}$.
2-hydroxy-N-(4-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (331)

331 was prepared following general procedure C, yielding $1.323 \mathrm{~g}(73 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.17$ ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.38\left(\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.9\right.$, $2 \mathrm{H}, \mathrm{H}-3,5$ aniline), 7.76 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{1}=8.7,{ }^{4} J_{2}=2.1,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.83\left(\mathrm{~m}[\mathrm{~d}],{ }^{3} \mathrm{~J}=9.1,2 \mathrm{H}, \mathrm{H}-2,6\right.$ aniline), 8.19 ($\mathrm{d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.59 (br, s, $1 \mathrm{H}, \mathrm{NH}$), 12.18 (br, $1 \mathrm{H}, \mathrm{OH}$).
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=117.99$ ($\mathrm{C}-3$ salicyl), 119.37 ($C_{\mathrm{q}}-1$ salicyl), 119.78 ($\mathrm{q},{ }^{2} J_{C F}=32.4, C_{q}-5$ salicyl), 120.15 ($\mathrm{q},{ }^{1} J_{C F}=-256.2, O C F_{3}$ aniline), 121.60 ($C-3,5$ aniline), 122.22 ($C-2,6$ aniline), 124.32 ($\mathrm{q},{ }^{1} J_{C F}=-270.8, C F_{3}$ aniline), $126.80\left(\mathrm{q},{ }^{3} J_{C F}=3.8, C-6\right.$ salicyl), 129.95 ($q,{ }^{3} J_{C F}=3.3, C-4$ salicyl), 137.31 ($C_{q}-1$ aniline), 144.34 ($J_{C F}=1.7, C-4$ aniline), 160.49 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 164.93 (CONH).

Melting point: $160^{\circ} \mathrm{C}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-2-hydroxy-5-(trifluoromethyl)benzamide (332)

332 was prepared following general procedure C, yielding $1.602 \mathrm{~g}(93 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}, 2 \mathrm{C}^{\circ} \mathrm{C}$): $\delta=7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}\right.$, $H-5$ aniline), 7.77 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.14 ($\mathrm{d},{ }^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.31 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.73 (br s, 1 H , CONH), 11.99 (br s, 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=117.93$ (C-3 salicyl), 119.30 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=5.6, C-2$ aniline), 119.72 ($C_{q}-1$ salicyl), 119.76 ($q,{ }^{2} J_{C F}=32.1, C-5$ salicyl), $122.71\left(q,{ }^{1} J_{C F}=-273.0, C F_{3}\right.$ aniline), $124.28\left(\mathrm{q},{ }^{1} J_{C F}=-271.8, C F_{3}\right.$ salicyl), $124.91\left(\mathrm{q},{ }^{3} J_{C F}=2.2, C-4\right.$ aniline), $125.42(C-6$ aniline), 126.75 ($\mathrm{q},{ }^{2} J_{C F}=31.0, C-3$ in $C F_{3}$ aniline), 126.85 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-6$ salicyl), 130.02 (q , ${ }^{3} J_{C F}=3.5, C-4$ salicyl), 132.11 (C-5 aniline), 137.75 (C-1 aniline), 160.17 (C-2 salicyl),165.14 (CONH).

Melting point: $169-173^{\circ} \mathrm{C}$.

5-chloro- N -(3-cyanophenyl)-2-hydroxybenzamide (333)

333 was prepared following general procedure C, yielding 16.318 g (99%) of the desired product. Characterization (mp, NMR) was in accordance with previously reported values (CAS: 380656-56-4 ${ }^{141}$).

Melting point: $234^{\circ} \mathrm{C}$

5-chloro-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxybenzamide (334)

334 was prepared following general procedure C, yielding $3.193 \mathrm{~g}(81 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 634185-61-8 ${ }^{141}$).

5-chloro-N-(4-cyanophenyl)-2-hydroxybenzamide (335)

335 was prepared following general procedure C, yielding $4.961 \mathrm{~g}(62 \%)$ of the desired product. Characterization (NMR, mp) was in accordance with previously reported values (CAS: 612087-80-6 ${ }^{154}$).

Melting point: $245-246^{\circ} \mathrm{C}$.
N-(3,5-bis(trifluoromethyl)phenyl)-2-hydroxy-5-(trifluoromethoxy)benzamide (336)

336 was prepared following general procedure C, yielding $2.583 \mathrm{~g}(76 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.44 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{1}=8.7$, ${ }^{4} \mathrm{~J}_{2}=2.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.79\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 7.82 (br, $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.44 (br, s, 2H, H-2,6 aniline), 10.75-11.34 (br, 2H, NH, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=116.77$ ($\mathrm{q},{ }^{3} J_{\text {CF }}=3.4, \mathrm{C}-4$ aniline), $118.69(\mathrm{C}-3$ salicyl), $119.79\left(C_{q}-1\right.$ salicyl), $120.22\left(q,{ }^{1} J_{C F}=-255.2, O C F_{3}\right), 120.28\left(q,{ }^{3} J_{C F}=3.2, C-2,6\right.$ aniline), 122.13 ($C-6$ salicyl), $123.22\left(\mathrm{q}^{1}{ }^{1}{ }_{C F}=-272.3,2 \times F_{3}\right.$), 126.61 ($C-4$ salicyl), 130.74 (q, ${ }^{2} J_{C F}=32.8, C_{q}-3,5$ aniline $), 140.07$ ($d, J_{C F}=1.2, C_{q}-5$ salicyl), 140.30 ($C_{q}-1$ aniline), 156.55 ($C_{q}-2$ salicyl), 165.11 (CONH).

Melting point: $174-176^{\circ} \mathrm{C}$.

5-chloro- N -(2-fluorophenyl)-2-hydroxybenzamide (337)

337 (CAS 928770-44-9) was prepared following general procedure C, yielding 5.154 g (69%) of the desired product.

1H NMR (400 MHz, DMSO-d6, $23^{\circ} \mathrm{C}$): $\delta=7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.16-7.26 (m, br, $2 \mathrm{H}, \mathrm{H}-4^{\prime}, 5^{\prime}$ in $2^{\prime}-\mathrm{F}$-aniline), $7.29-7.35\left(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ in $2^{\prime}-\mathrm{F}$-aniline), 7.49 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=$ 2.7, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $8.18-8.23\left(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right.$ in $2^{\prime}-\mathrm{F}-$ aniline), 10.67 (s, 1H, NHCO), 12.15 ($s, 1 \mathrm{H}, 2-\mathrm{OH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=115.30$ ($\mathrm{d},{ }^{2} J_{1 C F}=19.3, \mathrm{C}-3^{\prime}$ in 2^{\prime}-F-aniline), 119.10 ($C-3$ salicyl), 119.33 ($C_{q}-1$ salicyl), 123.19 ($C-6^{\prime}$ in $2^{\prime}-F-$ aniline $), 123.35$ ($C_{q}-5$ salicyl), 124.68 ($\mathrm{d},{ }^{4} J_{C F}=3.5, C-5^{\prime}$ in $2^{\prime}-$-F-aniline), 125.39 ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.7, C-4^{\prime}$ in $2^{\prime}-F-$ aniline), 125.91 (d , ${ }^{2} J_{C F}=10.8, C_{q}-1^{\prime}$ in $2^{\prime}-$ F-aniline), 129.38 ($C-6$ salicyl), 133.38 ($C-4$ salicyl), 152.26 ($\mathrm{d},{ }^{1} J_{C F}=-$ 244.0, $C_{q}{ }^{-2}$ ' in $2^{\prime}-$ F-aniline), 155.78 ($C_{q}-2$ salicyl), 163.18 (CONH).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=7.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.15-7.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $3^{\prime}, 4^{\prime}, 5^{\prime}$ in $2^{\prime}-$ F-aniline), 7.42 (dd, ${ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}$), 8.25-8.28 (m, br, 1H, H-6' in 2'-F-aniline), 11.72 ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{OH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=115.29$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{1 C F}=19.0, \mathrm{C}-3^{\prime}$ in $2^{\prime}-\mathrm{F}-$ aniline), 115.51 ($C_{q}-1$ salicyl), 120.68 ($C-3$ salicyl), 122.84 ($C-6^{\prime}$ in 2^{\prime}-F-aniline), 124.01 ($C_{q^{\prime}}-5$ salicyl), 124.93 (d, ${ }^{4} J_{C F}=3.7, C-5^{\prime}$ in $2^{\prime}-F-$ aniline $), 125.14$ ($\mathrm{d},{ }^{2} J_{C F}=10.1, C_{q}-1^{\prime}$ in $2^{\prime}-F$-aniline), 125.32 ($C-6$ salicyl), 125.96 ($\mathrm{d},{ }^{3} J_{C F}=7.8, C-4$ in 2^{\prime}-F-aniline), 135.03 ($C-4$ salicyl), 160.52 ($C_{q}-2$ salicyl), 167.29 (CONH). $C_{q}-2^{\prime}$ in 2^{\prime} - F -aniline missing

Melting point: $227-228^{\circ} \mathrm{C}$.

5-chloro- N-(2,4-difluorophenyl)-2-hydroxybenzamide (338)

338 was prepared following general procedure C, yielding $4.226 \mathrm{~g}(78 \%)$ of the desired product. Characterization ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ was in accordance with previously reported values (CAS: 634189-17-6 ${ }^{141}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.04$ ($\mathrm{d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.09-7.16 ($\mathrm{m}, 1 \mathrm{H}$, $H-5^{\prime}$ in 2,4-difluoroaniline), $7.34-7.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ in 2,4-difluoroaniline), 7.48 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}$ $=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.97\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.07-8.16 (m, $1 \mathrm{H}, \mathrm{H}-6$ ' in $2,4-$ difluoroaniline), 10.57 (s, 1H, CONH),12.11 (s, 1H, 2-OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=104.14\left(\mathrm{dd},{ }^{2} J_{\text {ICF }}=24.1,{ }^{2} J_{1 C F}=26.9, C-3^{\prime}\right.$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 111.33 ($\mathrm{dd},{ }^{2} J_{C F}=21.9,{ }^{4} J_{C F}=3.4, C-5^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 118.97 ($C_{q}-1$ salicyl), 119.12 ($C-3$ salicyl), 122.39 ($\mathrm{dd},{ }^{2} J_{\text {ICF }}=11.1,{ }^{4} J_{C F}=3.5, C_{q}-1^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 123.25 ($C_{q}-5$ salicyl), 124.87 ($\mathrm{dd},{ }^{3} J_{2 C F}=9.6,{ }^{3} J_{2 C F}=2.4, C-6^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 129.19 (C 6 salicyl), 133.44 ($C-4$ salicyl), 153.75 ($\mathrm{dd}^{1}{ }^{1} \mathrm{~J}_{1 C F}=247.0,{ }^{3} \mathrm{~J}_{2 C F}=12.9, C-4$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 156.06 ($C_{q}-2$ salicyl), $158.62\left(\mathrm{dd}^{\prime}{ }^{1} J_{1 C F}=244.2,{ }^{3} J_{2 C F}=12.0, C-2^{\prime}\right.$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 163.60 (CONH).

Melting point: $238-240^{\circ} \mathrm{C}$.

2-hydroxy- N -(p-tolyl)benzamide (339)

339 was prepared following general procedure \mathbf{A}^{121}, yielding $0.81 \mathrm{~g}(76 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: $\left.7164-80-9^{155}\right)$.

Melting point: $155-156^{\circ} \mathrm{C}$.

N-(4-fluorophenyl)-2-hydroxybenzamide (340)

340 was prepared following general procedure \mathbf{A}^{121}, yielding $3.3 \mathrm{~g}(76 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: $\left.7120-46-9^{155}\right)$.

Melting point: $156-157^{\circ} \mathrm{C}$.
N -(4-bromophenyl)-2-hydroxybenzamide (341)

341 was prepared following general procedure \mathbf{A}^{121}, yielding 8.3 g (61\%) of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 2627-77-2 ${ }^{156}$).

Melting point: $170-171^{\circ} \mathrm{C}$.
N -(2-fluorophenyl)-2-hydroxybenzamide (342)

342 was prepared following general procedure \mathbf{A}^{121}, yielding $2.30 \mathrm{~g}(53 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 866034-84-6 ${ }^{155}$).

Melting point: $141-143^{\circ} \mathrm{C}$.
N-(2,4-difluorophenyl)-2-hydroxybenzamide (343)

343 was prepared following general procedure \mathbf{A}^{121}, yielding $2.0 \mathrm{~g}(86 \%)$ of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 316124-58-0 ${ }^{155}$).

Melting point: $180-183^{\circ} \mathrm{C}$.

5-bromo-N-(4-fluorophenyl)-2-hydroxybenzamide (344)

344 was prepared following general procedure B, yielding 2.9 g (68\%) of the desired product. Characterization (NMR) was in accordance with previously reported values (CAS: 4294-$89-7^{157}$).

N-(4-fluorophenyl)-2-hydroxy-4-(trifluoromethyl)benzamide (345)

345 was prepared following general procedure B, yielding 5.8 g (77\%) of the desired product. Characterization (mp) was in accordance with previously reported values (CAS: 175872-26-1 ${ }^{158}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=7.19-7.24$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3,5$ aniline), 7.28 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.71-7.78 (m, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), $7.99\left(\mathrm{~d},{ }^{4} \mathrm{~J}=8.1,1 \mathrm{H}\right.$, H-6 salicyl), 10.51 (br s, 1H, CONH), 11.27-12.47 (br , 1H, ArOH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=113.50\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=3.7, \mathrm{C}-3\right.$ salicyl), $115.33\left(\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=\right.$ 3.8, $C-5$ salicyl), $115.44\left({ }^{2} J_{C F}=22.3, C-3,5\right.$ aniline), $122.45\left({ }^{3} J_{C F}=7.9, C-2,6\right.$ aniline $), 123.50(C-1$ salicyl), $123.62\left({ }^{1} J_{C F}=-272.6, C F_{3}\right), 130.61\left(C-6\right.$ salicyl) $132.56\left({ }^{2} J_{C F}=31.9, C-4\right.$ salicyl), 134.65 $\left({ }^{4} J_{C F}=2.5, C-1\right.$ aniline $), 157.37\left(C-2-\right.$ salicyl), $158.62\left({ }^{1} J_{C F}=-241.1, C-4\right.$ aniline $), 164.76$ (CONH). Melting point: $175-178^{\circ} \mathrm{C}$.

5-chloro- N-(3-cyano-4-fluorophenyl)-2-hydroxybenzamide (346)

346 (CAS: 1455386-89-6) was prepared following general procedure C, yielding 2.240 g (65\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}\right.$ $=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.55 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=9.1,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.86 ($\mathrm{d}^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.99-8.05 (m, 1H, H-6 aniline), 8.20-8.25 (m, 1H, H-2 aniline), 10.61 (br s, 1H, CONH), 11.58 (brs, 1H, OH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO $^{\mathrm{d}} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=100.00$ ($\mathrm{d}, J_{C F}=16.4, C-3$ aniline), 113.86 (CN), 117.08 ($\mathrm{d},{ }^{2} J_{C F}=20.6, C-5$ aniline), 119.04 ($C-3$ salicyl), 119.86 ($C-1$ salicyl), 122.79 ($C-5$ salicyl), 124.76 ($C-2$ aniline), 128.12 ($\mathrm{d},{ }^{3} J_{C F}=8.3, C-6$ aniline), 128.52 ($C-6$ salicyl), 133.17 ($C-4$ salicyl), 135.29 ($\mathrm{d},{ }^{4} J_{C F}=2.8, C-1$ aniline), 156.38 ($C-2$ salicyl), 158.70 ($\mathrm{d},{ }^{1} J_{C F}=253.0, C-4$ aniline), 165.00 (CONH).

Melting point: $219-221^{\circ} \mathrm{C}$.

4.3.2 Epoxides

(\pm)-5-Chloro-2-oxiranylmethoxy- N-(3-trifluoromethyl-phenyl)-benzamide (71)

71 was prepared following general procedure \mathbf{D}, yielding $0.432 \mathrm{~g}(46 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=2.90\left(\mathrm{dd}, \mathrm{J}=4.7, J=2.5,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.02 (dd[t], J=4.5, 1H, CH $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.47-3.53 (m, 1H, OCH $\mathrm{O}_{\mathrm{a}} \mathrm{CHOR}$), $4.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=\right.$ $5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.60\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), 7.37 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.42 (dd, ${ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.46 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.2,^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.92 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.19 ($\mathrm{s}[\mathrm{t}], 1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.22 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.91 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.69$ (CH_{2} epoxide), 49.78 (CHO epoxide), 69.25 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.42 ($\mathrm{C}-3$ salicyl), 117.18 (${ }^{3} J_{C F}=3.8, C-2$ aniline), $120.92\left({ }^{3} J_{C F}=3.8, C-4\right.$ aniline), 123.36 ($C-5$ salicyl), $124.12\left({ }^{1} J_{C F}=-272.3, C F_{3}\right.$ aniline), 123.55 ([verbreitert], $C-6$ aniline), 128.05 ($C-5$ salicyl), 129.63 ($C-5$ aniline), $131.50\left({ }^{2} J_{C F}=32.2, C-3\right.$ aniline), 132.54 ($C-6$ salicyl), 133.20 (C-4 salicyl), 139.00 (C-1 aniline), 154.53 (C-2 salicyl), 162.08 (CONH).

Melting point: $95-104^{\circ} \mathrm{C}$.
(S)-(-)-5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (99)

99 was prepared following general procedure D, using (S)-(+)-epichlorohydrin, yielding 0.235 $g(64 \%)$ of the desired product.

For NMR assignment see (\pm)-5-Chloro-2-oxiranylmethoxy- N-(3-trifluoromethyl-phenyl)benzamide (71).
$[\alpha]_{\mathrm{D}}{ }^{20}=-63.2^{\circ}, \mathrm{c}=1 \mathrm{in} \mathrm{CHCl}_{3}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-38.9^{\circ}, \mathrm{c}=1$ in MeOH .
Melting point: $111-112^{\circ} \mathrm{C}$.

(R)-(+)-5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-
 (trifluoromethyl)phenyl)benzamide (100)

100 was prepared following general procedure \mathbf{D}, using (R)-(-)-epichlorohydrin, yielding $0.277 \mathrm{~g}(58 \%)$ of the desired product.

For NMR assignment see (\pm)-5-Chloro-2-oxiranylmethoxy- N-(3-trifluoromethyl-phenyl)benzamide (71).
$[\alpha]_{\mathrm{D}}{ }^{20}=+64.0^{\circ}, \mathrm{c}=1$ in CHCl_{3}.
$[\alpha]_{\mathrm{D}}{ }^{20}=+37.1^{\circ}, \mathrm{c}=1$ in MeOH .
Melting point: $111-112^{\circ} \mathrm{C}$.
5-chloro- N-(2-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (288)

288 was prepared following general procedure \mathbf{D}, yielding $1.913 \mathrm{~g}(79 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.76$ (dd, $J=4.9, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.00 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.51 ($\mathrm{m}[\mathrm{sext}], 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}$), 4.12 (dd, ${ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=6.3,1 \mathrm{H}$,
$\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}$), $4.41\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=3.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOH}\right.$), $6.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.04-7.14 (m, 2H, H-3', H-4' in $\left.2^{\prime}-F-a n i l i n e\right), ~ 7.15-7.19 ~\left(m[t r], 1 H, H-5^{\prime}\right.$ in $2^{\prime}-\mathrm{F}-$ aniline), 7.42 (dd, ${ }^{3} \mathrm{~J}=8.8,^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.26 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.56 (ddd, ${ }^{3} J={ }^{3} J_{H F}=8.1,{ }^{4} J=1.6,1 \mathrm{H}, H-6$ in 2^{\prime}-F-aniline), $10.14(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.93\left(\mathrm{~d},{ }^{T S} J_{C F}=1.5, \mathrm{CH}_{2}\right.$ oxirane $), 49.41\left(\mathrm{~d},{ }^{T S} J_{C F}=2.6\right.$, CH oxirane), 71.60 (salicyl-OCH2-oxirane), 114.30 ($\mathrm{C}-3$ salicyl), 114.83 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\text {CF }}=19.2, C-3^{\prime}$ aniline), 122.13 ($C-6^{\prime}$ aniline), 123.35 ($C_{q}-5$ salicyl), 124.41 ($\mathrm{d}^{3} J_{C F}=7.9, C-4^{\prime}$ in $2^{\prime}-F-$ aniline), 124.83 ($\mathrm{d},{ }^{4} J_{C F}=3.5, C-5$ ' in $2^{\prime}-\mathrm{F}$-aniline), $126.93\left(\mathrm{~d},{ }^{2} J_{C F}=9.8, C_{q^{-}} 1^{\prime}\right.$ in $2^{\prime}-$ F-aniline), $127.81\left(C_{q^{-}}\right.$ 1 salicyl), 132.51 ($C-6$ salicyl), 133.19 ($C-4$ salicyl), 152.87 ($\mathrm{d},{ }^{1} J_{C F}=-242.6, C_{q}-2^{\prime}$ in $2^{\prime}-F-$ aniline), 154.91 ($C_{q}-2$ salicyl), 161.77 (CONH).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.75$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 2.89 (dd[t], J = 4.5, 1H, CH ${ }_{a} H_{b}$ epoxide), 3.44 (m[sext], $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}$), 4.10 (dd, ${ }^{2} \mathrm{~J}=-11.0,{ }^{3} \mathrm{~J}=$ 6.6, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOH}$), $4.55\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-11.0,{ }^{3} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOH}\right), 7.17-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $3^{\prime}, H-4{ }^{\prime}$ in $2^{\prime}-F$-aniline), 7.28 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.32 ($\mathrm{m}[\mathrm{ddd}], 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ in $2^{\prime}-\mathrm{F}-$ aniline), 7.61 (dd, ${ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.86 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.18 (ddd, ${ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}_{\text {HF }}=7.8,{ }^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in 2^{\prime}-F-aniline), 10.17 (sharp, $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=43.74\left(\mathrm{CH}_{2}\right.$ oxirane), $49.21\left(\mathrm{~d},{ }^{T S} J_{\mathrm{CF}}=1.4, \mathrm{CH}\right.$ oxirane), 71.00 (salicyl-OCH2-oxirane), 115.32 ($\mathrm{d}^{3}{ }^{3} J_{C F}=19.0, C-3^{\prime}$ aniline), 115.75 ($C-3$ salicyl), 123.22 ($C-6^{\prime}$ aniline), 124.08 ($C_{q^{-}}-5$ salicyl), 124.55 ($\mathrm{d},{ }^{4} J_{C F}=3.6, C-5^{\prime}$ in $2^{\prime}-F$-aniline), 125.24 ($C_{q}-1$ salicyl), 125.38 ($\mathrm{d},{ }^{3} J_{C F}=7.9, C-4{ }^{\prime}$ in $2^{\prime}-F$-aniline), $125.94\left(\mathrm{~d},{ }^{2} J_{C F}=9.8, C_{q}-1^{\prime}\right.$ in $2^{\prime}-F-$ aniline), 129.98 (C - 6 salicyl), 132.57 ($C-4$ salicyl), $153.23\left(d^{1}{ }^{1} J_{C F}=-242.6, C_{q^{\prime}} 2^{\prime}\right.$ in $2^{\prime}-F$-aniline), 154.86 ($C_{q}-2$ salicyl), 162.00 (CONH).

Melting point: $146-149^{\circ} \mathrm{C}$.
3,5-dichloro- N-(3,5-dichlorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (347)

347 was prepared following general procedure D, yielding $1.219 \mathrm{~g}(44 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.61\left(\mathrm{dd}, J=5.0, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 2.75 (dd, $J=5.0, J=4.3,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.24-3.29 (m, $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 3.90 ($\mathrm{dd},{ }^{2} J=-11.2$, ${ }^{3} J=6.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.29 (dd, ${ }^{2} \mathrm{~J}=-11.2,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{b} \mathrm{CHOR}$), $7.35\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.8\right.$, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.66 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $7.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.9,2 \mathrm{H}, \mathrm{H}-2,6\right.$ aniline), 7.87 (d , ${ }^{4} J=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 10.78 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=43.41\left(\mathrm{CH}_{2}\right.$ epoxide), 49.65 (CHO epoxide), 76.09 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 118.02 ($C-2,6$ aniline), 123.28 ($C-4$ aniline), 127.81 ($C-6$ salicyl), 128.71 ($C_{\mathrm{q}}-5$ salicyl), 131.62 ($C-4$ salicyl), 133.28 ($C_{q}-3$ salicyl), 134.09 ($C_{q}-3,5$ aniline), 140.85 ($C-1$ aniline), 150.72 ($C-2$ salicyl), 163.12 (CONH). $C_{q}-1$ saclicyl not recorded

Melting point: $163-164^{\circ} \mathrm{C}$.

5-Chloro-N-(4-fluorophenyl)-2-oxiranylmethoxy-benzamide (348)

348 was prepared following general procedure \mathbf{D}, yielding 0.932 g (65%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.88$ (dd, $J=4.8, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.00 (dd $[\mathrm{t}], J=4.4,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{b}$ epoxide), 3.46-3.51 (m, 1H, OCH ${ }_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.08 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=$ $5.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.58\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), $7.00-7.08$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}\left(3,5\right.$)-aniline), 7.40 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.70-7.78 (m, $2 \mathrm{H}, H(2,6)$-aniline), $8.22\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 9.74 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.67\left(\mathrm{CH}_{2}\right.$ epoxide), 49.80 (CHO epoxide), 69.39 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.34 ($\mathrm{C}-3$ salicyl), $115.75\left({ }^{2} J_{C F}=22.6, C-3,5\right.$ aniline), $122.00\left({ }^{3} J_{C F}=8.4, C-2,6\right.$ aniline), 123.86 (C-1 salicyl), 127.96 (C-5 salicyl), 132.48 (C-6 salicyl), 132.90 (C-4 salicyl), 134.52 (${ }^{4}{ }_{C F}=2.5, C-1$ aniline), $154.49\left(C-2\right.$-salicyl), $159.50\left({ }^{1} J_{C F}=-243.6, C-4\right.$ aniline $), 161.75$ (CONH).

Melting point: $102-107^{\circ} \mathrm{C}$.
N-Naphthalen-2-yl-2-oxiranylmethoxy-benzamide (349)

349 (CAS: 1510805-32-9 ${ }^{120}$) was prepared following general procedure \mathbf{D}, yielding 0.156 g (67\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=2.92\left(\mathrm{dd}, J=4.8, J=2.5,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide $), 3.02$ (dd $[\mathrm{t}], J=4.3,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.51-3.56 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{CHOR}$), 4.17 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=$ $5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.61 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $7.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3, \mathrm{~J}=\right.$ $0.4,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.15-7.21$ (m[ddd], $1 \mathrm{H}, \mathrm{H}-5$ salicyl), $7.37-7.42$ (m[ddd], $1 \mathrm{H}, \mathrm{H}-6$ napthalene), 7.43-7.48 (m, 1H, H-7 naphtalene), 7.48-7.52 (m, 1H, H-4 salicyl), 7.69 (dd, $\mathrm{J}=8.7, \mathrm{~J}=$ 2.0, $1 \mathrm{H}, \mathrm{H}-3$ naphtalene), 7.78 ($\mathrm{d}, \mathrm{J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ naphtalene), 7.83 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.0, \mathrm{H}-8$ naphtalene), 7.85 ($\mathrm{d}, \mathrm{J}=8.3,1 \mathrm{H}, \mathrm{H}-4$ naphtalene), 8.33 ($\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.59 (d, ${ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-1$ naphtalene), 9.99 ($\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=44.71$ (CH_{2} epoxide), 49.99 (CHO epoxide), 69.09 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 112.75 ($\mathrm{C}-3$ salicyl), 117.07 ($\mathrm{C}-1$ naphtalene), 120.57 ($\mathrm{C}-3$ naphtalene), 122.51 (C-5 salicyl), 122.67 (C-1 salicyl), 124.93 (C-6 naphtalene), 126.46 (C-7 naphtalene), 127.64 (C-5 naphtalene), 128.04 (C- 8 naphtalene), 128.80 (C-4 Naphtalene), 130.79 (C-2 naphtalene), 132.91 (C-3 naphtalene), 133.33 ($C-4$ salicyl), 134.24 (C-5a naphtalene), 136.21 (C-8a naphthalene), 156.08 (C-2 salicyl), 163.38 (CONH).

Melting point: $96-99^{\circ} \mathrm{C}$.
N-(2-Allyl-phenyl)-2-oxiranylmethoxy-benzamide (350)

350 was prepared following general procedure D, yielding $0.609 \mathrm{~g}(78 \%)$ of the desired product as yellow/brown oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.75$ (dd, $J=4.8, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 2.92 (dd[t], J=4.5, 1H, CH ${ }_{\mathrm{a}} H_{b}$ epoxide), $3.37-3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}\right.$), 3.48 (dt, $\mathrm{J}=6.1, J=$ $1.5,2 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}$), 4.13 (dd[m=überlagert], ${ }^{2} J=-11.6,{ }^{3} J=6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.54 (dd, ${ }^{2} \mathrm{~J}=-11.6,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} H_{b} \mathrm{CHOR}$), $5.02\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\text {trans }}=17.1,{ }^{2} \mathrm{~J}=1.6,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{HC}=\right.$ $\mathrm{CH}_{\text {cis }} H_{\text {trans }}$), $5.10\left(\mathrm{dd},{ }^{3} J_{\text {cis }}=5.8,^{2} \mathrm{~J}=1.6,1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}\right.$), 5.95-6.09 (m, 1H, CH $\mathrm{CH}_{2}-\mathrm{HC}=$ CH_{2}), 7.06 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.12-7.19(\mathrm{~m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-4$ anilide/ $\mathrm{H}-5$ salicyl), 7.23 (dd, ${ }^{3} \mathrm{~J}=7.5 \mathrm{~F}^{4} \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{H}-3$ aniline $), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ aniline $), 7.44-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.00 ($\mathrm{d}^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.28 ($\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.41 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=36.00\left(\mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}\right), 44.81\left(\mathrm{CH}_{2}\right.$ epoxide $)$, 49.81 (CHO epoxide), $70.46\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 113.04 ($\mathrm{C}-3$ salicyl), $116.60\left(\mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}\right.$), 122.36 ($\mathrm{C}-5$ salicyl), 122.76 ($C-1$ salicyl), 124.67 (C-6 aniline), 125.50 (C-4 aniline), 127.24 ($C-5$ aniline), 129.89 (C-3 aniline), 131.57 (C-1 aniline), 132.97 (C-6 salicyl), 133.23 (C-4 salicyl), 136.01 $\left(\mathrm{CH}_{2}-\mathrm{HC}=\mathrm{CH}_{2}\right), 136.14$ ($\mathrm{C}-2$ aniline), 156.33 ($\mathrm{C}-2$ salicyl), 163.66 (CONH).

5-bromo-N-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (351)

351 was prepared following general procedure D, yielding $0.583 \mathrm{~g}(48 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.88\left(\mathrm{dd}, J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.00 (dd[t], $J=4.5,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.46-3.51(m,1H, OCH ${ }_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.08\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=\right.$ $5.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.58\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, H -3 salicyl), 7.01-7.08 (m, $2 \mathrm{H}, \mathrm{H}(3,5)$-aniline), 7.55 (dd, ${ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.717.78 ($\mathrm{m}, 2 \mathrm{H}, H\left(2,6\right.$)-aniline), 8.36 ($\mathrm{d}^{4}{ }^{4}=2.6,1 \mathrm{H}, H-6$ salicyl), 9.72 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.67\left(\mathrm{CH}_{2}\right.$ epoxide), 49.79 (CHO epoxide), 69.31 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.69 ($\mathrm{C}-3$ salicyl), 115.15 ($\mathrm{C}-5$ salicyl), $115.75\left(^{2} J_{C F}=22.1, \mathrm{C}-3,5\right.$ aniline),
$121.99\left({ }^{3} J_{C F}=7.6, C-2,6\right.$ aniline $), 124.19$ ($C-1$ salicyl), $134.53\left({ }^{4} J_{C F}=2.7, C-1\right.$ aniline), 135.44 (C6 salicyl), 135.85 (C-4 salicyl), 155.00 (C-2-salicyl), $159.49\left({ }^{1} J_{C F}=-243.7, C-4\right.$ aniline), 161.64 (CONH).

Melting point: $114-118^{\circ} \mathrm{C}$.

1-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)-2-naphthamide (352)

352 was prepared following general procedure \mathbf{D}, yielding $1.935 \mathrm{~g}(75 \%)$ of the desired product as yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.89\left(\mathrm{dd}, J=4.8, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 2.99 (dd $[\mathrm{t}], J=4.8, J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.49-3.56(m,1H,OCHaHbCHOR), 4.03 (dd, ${ }^{2} J=-$ 11.1, ${ }^{3} J=6.3,1 \mathrm{H}, \mathrm{OCH} H_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.49\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-11.1,{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right), 7.40(\mathrm{~d}, \mathrm{br}$, ${ }^{3} J=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.50 (dd[tr], ${ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.59-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6,7$ napththyl), 7.75 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-4$ napththyl), 7.87-7.93 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$ napththyl), 8.02 (d, br, ${ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.16-8.22 (m, $2 \mathrm{H}, \mathrm{H}-3$ napththyl $\mathrm{H}-8$ napththyl), $8.30\left(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 10.08 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.51$ (CH_{2} oxirane), 50.18 (CH oxirane), 76.28 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 117.35 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=4.1, \mathrm{C}-2$ aniline), 120.90 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 122.21 ($C_{q}-2$ naphthyl), 122.69 ($C-8$ naphthyl), 123.54 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 124.15 ($\mathrm{q},{ }^{1} \mathrm{~J}_{C F}=$ -272.4, $3^{\prime}-$ CF $_{3}$-aniline), 125.52 (C-4 naphthyl), 126.79 (C-3 naphthyl), 127.24 (C-7 naphthyl),
 aniline), 131.45 ($q,{ }^{2} J_{C F}=32.2, C-3^{\prime}$ in $3^{\prime}-C_{3}$-aniline $), 137.01$ ($C_{q}-8$ a naphthyl), $139.07\left(C_{q}-1^{\prime}\right.$ in $3^{\prime}-F_{3}$-aniline), 153.27 ($C_{q}-1$ naphthyl), 163.61 (CONH).

5-fluoro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (353)

353 was prepared following general procedure D, yielding $0.120 \mathrm{~g}(23 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=2.90$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.02 ($\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.48-3.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.12 (dd, ${ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.60\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CHOR}\right), 6.97\left(\mathrm{~m},{ }^{3} \mathrm{~J}=9.0,{ }^{F} J=4.01 \mathrm{H}\right.$, $H-3$ salicyl), $7.18\left(\mathrm{~m},{ }^{3} J=9.0,{ }^{4} J=3.3,{ }^{F} J=10.3,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.47 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.92-8.00$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ aniline, $\mathrm{H}-6$ salicyl) 8.21 (s [t], 1H, $\mathrm{H}-2$ aniline), 10.03 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.69\left(\mathrm{CH}_{2}\right.$ epoxide), 49.87 (CHO epoxide), 69.59 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 114.61\left({ }^{3} J_{C F}=7.8, C-3\right.$ salicyl), 117.23 ($\mathrm{q},{ }^{3} J_{C F}=4.2, C-2$ aniline), $119.11\left(^{2} J_{C F}=\right.$ 25.2, $C-6$ salicyl), 120.07 (${ }^{2} J_{C F}=23.7, C-4$ salicyl), 120.91 ($q,{ }^{3} J_{C F}=3.9, C-4$ aniline), 123.39 ($C-6$ aniline), $124.13\left({ }^{1} J_{C F}=-242.0, C F_{3}\right), 123.77\left({ }^{3} J_{C F}=6.8, C-1\right.$ salicyl), 129.62 ($C-5$ aniline), 131.50 $\left(^{2} J_{C F}=32.6, C-3\right.$ aniline), 139.01 (C-1 aniline), $152.18\left({ }^{4} J_{C F}=2.2, C-2\right.$-salicyl), $157.87\left({ }^{1} J_{C F}=-\right.$ 241.9, C-5 salicyl), 162.15 (${ }^{4} J_{C F}=1.7$, CONH).

5-fluoro-N-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (354)

354 was prepared following general procedure \mathbf{D}, yielding $0.295 \mathrm{~g}(85 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.88\left(\mathrm{dd}, J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $3.00(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.46-3.50(m,1H, OCH ${ }_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.08 (dd, ${ }^{2} J=-10.7,{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.57\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.3,{ }^{F} \mathrm{~J}=4.61 \mathrm{H}\right.$, H-3 salicyl), 7.01-7.08 (m, 2H, H(3,5)-aniline), 7.13-7.19 (m, 1H, H-4 salicyl), 7.73-7.78 (m, 2H, $H(2,6)$-aniline), 7.97 (dd, ${ }^{F} J=9.3,{ }^{4} J=3.3,1 \mathrm{H}, H-6$ salicyl), 9.84 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.65$ (CH_{2} epoxide), 49.89 (CHO epoxide), 69.79 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 114.5\left({ }^{3} J_{C F}=7.6, C-3\right.$ salicyl), $115.73\left({ }^{2} J_{C F}=22.5, C-3,5\right.$ aniline $), 119.05\left({ }^{2} J_{C F}=\right.$ 25.2, C-6 salicyl), 119.72 (${ }^{2} J_{C F}=23.7, C-4$ salicyl), $122.05\left({ }^{3} J_{C F}=7.8, C-2,6\right.$ aniline $), 124.12\left({ }^{3} J_{C F}=\right.$
6.9, C-1 salicyl), 134.53 (${ }^{4} J_{C F}=2.7, C-1$ aniline $), 152.14\left({ }^{4} J_{C F}=2.4, C-2\right.$-salicyl), $157.87\left({ }^{1} J_{C F}=-\right.$ 241.7, C-5 salicyl), $159.50\left({ }^{1} J_{C F}=-243.7, C-4\right.$ aniline $), 160.71\left({ }^{4} J_{C F}=1.5, C O N H\right)$.

Melting point: 102-104

N-(3,5-bis(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)benzamide (355)

355 was prepared following general procedure \mathbf{D}, yielding 0.168 g (71%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{D}_{6}, 27^{\circ} \mathrm{C}$): $\delta=2.74-2.78\left(\mathrm{~m}[\mathrm{dd}] 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $2.84(\mathrm{dd}[\mathrm{t}], \mathrm{J}=$ 4.6, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), $3.38-3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}\right.$), 4.09 (dd, ${ }^{2} \mathrm{~J}=-11.2,{ }^{3} \mathrm{~J}=5.9,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.60 (dd, ${ }^{2} \mathrm{~J}=-11.4,{ }^{3} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), 7.12 (dd [t], ${ }^{3} \mathrm{~J}=7.5, \mathrm{H}-5$ salicyl) 7.23 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.37 (d, ${ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.54 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.2$, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.69 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.80 (br s, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.45 (br s, $1 \mathrm{H}, \mathrm{H}-$ 2,6 aniline), 10.72 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO-D $6,2{ }^{\circ} \mathrm{C}$): $\delta=43.70\left(\mathrm{CH}_{2}\right.$ epoxide), 49.62 (CHO epoxide), 69.13 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 113.43 ($\mathrm{C}-3$ salicyl), 116.27 ($\mathrm{q},{ }^{3} J_{C F}=3.1, C-4^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis- CF_{3}-aniline), 119.21 (q, ${ }^{3} J_{C F}=3.1, C-2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF ${ }_{3}$-aniline $)$, $121.11\left(C-5\right.$ salicyl), $123.21\left({ }^{1} J_{C F}=-271.9, C F_{3}\right)$, 124,21 ($C-1$ salicyl),129.91 ($C-6$ salicyl), $130.81\left(^{2} J_{C F}=32.7, C-3,5\right.$ in $3^{\prime}, 5^{\prime}$-bis-CF 3_{3}-aniline), 132.72 (C-4 salicyl), 140.83 (C - 1 in $3^{\prime}, 5^{\prime}$-bis-CF 3 -aniline), 155.58 (C-2 salicyl), 165.32 (CONH).
N-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)-4-(trifluoromethyl)benzamide (356)

356 was prepared following general procedure \mathbf{D}, yielding $4.560 \mathrm{~g}(98 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.91\left(\mathrm{dd}, \mathrm{J}=4.7, \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $3.03(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.50-3.54(m,1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), 4.15 (dd, ${ }^{2} J=-10.4,{ }^{3} J=5.6,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.67 (dd, ${ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CHOR}$), $7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3,5)$-aniline), $7.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.77 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}(2,6)$-aniline), 8.36 (d, ${ }^{4} J=8.1,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.74 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.71$ (CH_{2} epoxide), 49.70 (CHO epoxide), 69.31 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 109.83\left(\mathrm{q},{ }^{3} J_{C F}=3.8, \mathrm{C}-3\right.$ salicyl), $115.81\left({ }^{2} J_{C F}=22.6, C-3,5\right.$ aniline), 119.11 ($\mathrm{q},{ }^{3} J_{C F}$ $=3.7, C-5$ salicyl), $122.08\left({ }^{3} J_{C F}=7.8, C-2,6\right.$ aniline $), 123.41\left({ }^{1} J_{C F}=-272.8, C F_{3}\right) 125.57(C-1$ salicyl), $133.65\left(C-6\right.$ salicyl), $134.37\left({ }^{4} J_{C F}=2.8, C-1\right.$ aniline $), 134.85\left(^{2} J_{C F}=32.8, C-4\right.$ salicyl), 155.89 (C-2-salicyl), 159.67 (${ }^{1} J_{C F}=-243.9, C-4$ aniline), 161.82 (CONH).

Melting point: $100-102^{\circ} \mathrm{C}$.
N-(3,5-bis(trifluoromethyl)phenyl)-5-chloro-2-(oxiran-2-ylmethoxy)benzamide (357)

357 was prepared following general procedure D, yielding $0.443 \mathrm{~g}(100 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.93$ (dd, $J=4.8, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.06 (dd[t], $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.51-3.56(m,1H,OCH $\mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.17(dd, ${ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=$ $5.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.64\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), $7.46\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $8.22\left(\mathrm{~d},{ }^{4} \mathrm{~J}=\right.$ $2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.38 (s, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 10.14 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.78\left(\mathrm{CH}_{2}\right.$ epoxide), 49.81 (CHO epoxide), 68.82 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.60 ($C-3$ salicyl), 117.55 ($\mathrm{m},{ }^{3} J_{C F}=3.7, C-4$ aniline), $120.17\left(\mathrm{~m},{ }^{3} J_{C F}=3.6, C-\right.$ 2,6 aniline), 123.07 ($C-1$ salicyl), $123.37\left({ }^{1} J_{C F}=-273.0,2 x C F_{3}\right.$ aniline), $128.27(C-5$ salicyl), 132.40 ($\mathrm{q},{ }^{3} J_{C F}=33.5, C-3,5$ aniline), 132.61 ($C-6$ salicyl), 133.62 ($C-4$ salicyl), 139.93 ($C-1$ aniline) 154.53 (C-2 salicyl), 162.37 (CONH).

Melting point: $114-116^{\circ} \mathrm{C}$.
5-chloro- N -(3,4-dichlorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (358)

358 was prepared following general procedure \mathbf{D}, yielding $2.769 \mathrm{~g}(73 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.89$ (dd, $J=4.8, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.03 (dd $[\mathrm{t}], J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.48-3.53 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{CHOR}$), 4.09 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=$ $5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.60\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, $H-3$ salicyl), 7.38 ($\mathrm{d},{ }^{4} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.42 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.57 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.10\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), $8.19\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}\right.$, H-6 salicyl), 9.82 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.75$ (CH_{2} epoxide), 49.80 (CHO epoxide), 69.19 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 114.37 ($\mathrm{C}-3$ salicyl), 119.62 ($\mathrm{C}-6$ aniline), 122.03 ($\mathrm{C}-2$ aniline), 123.38 ($\mathrm{C}-1$ salicyl), 127.44 (C-4 aniline), 128.05 (C-5 salicyl), 130.59 (C-5 aniline), 132.50 ($C-6$ salicyl), 132.82 (C-3 aniline), 133.25 (C-4 salicyl), 137.95 (C-1 aniline) 154.45 ($C-2$ salicyl), 161.94 (CONH).

Melting point: $180-210^{\circ} \mathrm{C}$.

5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethoxy)phenyl)benzamide (359)

359 was prepared following general procedure D, yielding $0.590 \mathrm{~g}(26 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.89\left(\mathrm{dd}, J=4.7, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.01 (dd[t], J=4.5, 1H, CH $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.46-3.52 (m, 1H, OCH $\mathrm{O}_{\mathrm{a}} \mathrm{CHOR}$), $4.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=\right.$ $5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.60\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), 6.98 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.35 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.1,{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.41\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.9,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline $), 7.89(\mathrm{~s}[\mathrm{t}], 1 \mathrm{H}, \mathrm{H}-$ 2 aniline), 8.22 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.86 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.67\left(\mathrm{CH}_{2}\right.$ epoxide), 49.78 (CHO epoxide), 69.22 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.14 ($\mathrm{C}-2$ aniline), 114.35 ($\mathrm{C}-3$ salicyl), 116.46 ($C-4$ aniline), 118.37 ($C-6$ aniline), $120.64\left({ }^{1} J_{C F}=-256.4, O C F_{3}\right.$ aniline), $123.58(C-1$ salicyl), $128.03(C-5$ salicyl), 130.12 (C 5 aniline), 132.55 ($C-6$ salicyl), 133.16 ($C-4$ salicyl), 139.88 ($C-1$ aniline), 149.75 ($C-3$ aniline), 154.50 (C-2 salicyl), 162.00 (CONH).

Melting point: $83-85^{\circ} \mathrm{C}$.

5-chloro- N -(4-chloro-3-(trifluoromethoxy)phenyl)-2-(oxiran-2ylmethoxy)benzamide (360)

360 was prepared following general procedure D, yielding 0.251 g (54%) of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=2.90$ (dd, $J=4.7, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), $3.04(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), $3.48-3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{a}_{\mathrm{b}} \mathrm{CHOR}\right), 4.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,^{3} \mathrm{~J}=5.5\right.$, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.61 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} H_{b} \mathrm{CHOR}$), $6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.28 ($\mathrm{m}[\mathrm{dq}],{ }^{3} \mathrm{~J}=9.0, J=1.2,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.42\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.64 ($\mathrm{dd},{ }^{3} \mathrm{~J}=9.0^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.12\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), $8.19\left(\mathrm{~d},{ }^{4} \mathrm{~J}\right.$ $=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.87 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.78$ (CH_{2} epoxide), 49.81 (CHO epoxide), 69.18 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 114.41 ($\mathrm{C}-3$ salicyl), 119.42 ($\mathrm{C}-6$ aniline), 120.68 ($\mathrm{q}^{1}{ }^{1}{ }_{\mathrm{CFF}}=-2561, \mathrm{OCF}_{3}$ aniline), 122.34 (C-2aniline), 123.17 (C-5 aniline), 123.31 (C-1 salicyl), 127.95 (C-4 aniline), 128.10 (C-5
salicyl), 132.54 ($C-6$ salicyl), 133.33 ($C-4$ salicyl), 137.92 ($C-1$ aniline), 141.28 ($q, J_{C F}=1.6, C-4$ aniline), 154.48 (C-2 salicyl), 162.02 (CONH).

Melting point: $115-121^{\circ} \mathrm{C}$.

5-chloro-2-(oxiran-2-ylmethoxy)-N-(4-(trifluoromethoxy)phenyl)benzamide (361)

361 was prepared following general procedure D, yielding $3.009 \mathrm{~g}(85 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.89$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.01 (dd[t], J=4.4, 1H, CH $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.47-3.51 (m, 1H, OCH $\mathrm{O}_{\mathrm{a}} \mathrm{CHOR}$), 4.08 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=$ $5.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.59\left(\mathrm{dd}^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), 7.21 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6,2 \mathrm{H}, \mathrm{H}-3,5$ aniline), 7.41 (dd, ${ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.83 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.22 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.83 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.71$ (CH_{2} epoxide), 49.81 (CHO epoxide), 69.36 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 114.35$ ($\mathrm{C}-3$ salicyl), $120.67\left({ }^{1} J_{C F}=-256.2, \mathrm{OCF}_{3}\right.$ aniline), 121.49 ($\mathrm{C}-2,6$ aniline), 121.86 (C-3,5 aniline), 123.71 ($C-1$ salicyl), 128.03 (C-5 salicyl), 132.55 ($C-6$ salicyl), 133.07 (C4 salicyl), 137.16 ($C-1$ aniline), 145.41 ($q, J_{C F}=1.5, C-4$ aniline), 154.50 ($C-2$ salicyl), 161.90 (CONH).

Melting point: $89-95^{\circ} \mathrm{C}$.
5-chloro- N-(3-iodophenyl)-2-(oxiran-2-ylmethoxy)benzamide (362)

362 was prepared following general procedure \mathbf{D}, yielding 2.385 g (72%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.88$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.02 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.46-3.51(m,1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), 4.10 ($\mathrm{dd},{ }^{2} J=-10.5,{ }^{3} J=5.5,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.57 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.061 ($\mathrm{d},{ }^{3} J=8.1,1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.41\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.46 (dq, ${ }^{3} J=7.9, J=0.6,1 \mathrm{H}, H-5$ aniline $), 7.68\left(\mathrm{dq},{ }^{3} J=8.2, J=1.2,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), $8.20\left(\mathrm{~d},{ }^{4} J=2.7\right.$, $1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.28 (s [t], 1H, H-2 aniline), 9.73 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=44.69$ (CH_{2} epoxide), 49.78 (CHO epoxide), 69,39 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 94,38 ($C-3$ aniline), 114,38 ($C-3$ salicyl), 119,53 ($C-6$ aniline), 123,66 ($C-1$ salicyl), 128,00 (C-5 salicyl), 129,13 (C-2 aniline), 130,59 (C-4 aniline), 132,52 (C-6 salicyl), 133,10 (C-4 salicyl), 133,42 (C-5 aniline), 139,61 (C-1 aniline) 154,50 (C-2 salicyl), 161,85 (CONH).

Melting point: $127-128^{\circ} \mathrm{C}$.
5-chloro-N-(4-chloro-3-(trifluoromethyl)phenyl)-2-(oxiran-2ylmethoxy)benzamide (363)

363 was prepared following general procedure D, yielding $1.145 \mathrm{~g}(26 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.91\left(\mathrm{dd}, J=4.7, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.04 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.49-3.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.13 (dd, ${ }^{2} J=-10.4,{ }^{3} \mathrm{~J}=5.2,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.61 (dd, ${ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.44 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.45\left(\mathrm{~m},{ }^{3} \mathrm{~J}=8.9\right.$, teilweise überlagert, 1 H , $\mathrm{H}-5$ aniline), 7.46 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.21 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.23 (d, ${ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-2$ aniline), 9.96 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.76$ (CH_{2} epoxide), 49.81 (CHO epoxide), 69.04 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.49 ($\mathrm{C}-3$ salicyl), 119.47 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=5.6, C-2$ aniline), $122.82\left(\mathrm{q},{ }^{1} J_{C F}=-273.5\right.$, $C F_{3}$ aniline), 123.32 ($C-1$ salicyl), 124.27 ($C-6$ aniline), 126.81 ($C-4$ aniline), 128.18 ($C-5$ salicyl),
128.87 ($\mathrm{q},{ }^{2} J_{C F}=31.5, C-3$ aniline), 132.08 (C-5 aniline), 132.58 (C-6 salicyl), 133.38 (C-4 salicyl), 137.39 (C-1 aniline), 154.50 (C-2 salicyl), 162.12 (CONH).

Melting point: $116-118^{\circ} \mathrm{C}$.

5-chloro- N -(4-fluoro-3-(trifluoromethyl)phenyl)-2-(oxiran-2ylmethoxy)benzamide (364)

364 was prepared following general procedure \mathbf{D}, yielding $1.093 \mathrm{~g}(36 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.90$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.03 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.48-3.53 (m, 1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), 4.10 (dd, ${ }^{2} J=-10.6,{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.60\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.16 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=9.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.41 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.93 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.17 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7, J_{H F}=6.3,1 \mathrm{H}, \mathrm{H}-2$ aniline), $8.18\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 9.91 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.74$ (CH_{2} epoxide), 49.79 (CHO epoxide), 69.08 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 114.49 ($\mathrm{C}-3$ salicyl), $117.40\left(^{2} J_{C F}=21.7, \mathrm{C}-5\right.$ aniline), $118.55\left(\mathrm{dd},{ }^{2} J_{C F}=33.4^{2} J_{C F}=\right.$ 13.3, $C-3$ aniline), 119.00 ($q, J_{C F}=5.2, C-2$ aniline), 122.57 ($q,{ }^{1} J_{C F}=-272.7, C F_{3}$ aniline), 123.29 (C-1 salicyl), 125.42 (${ }^{3} J_{C F}=7.9, C-6$ aniline), 128.05 (C-5 salicyl), 132.44 (C-6 salicyl), 133.26 (C4 salicyl), 134.73 (${ }^{4}{ }_{C F}=3.1, C-1$ aniline), $154.50\left(C-2\right.$ salicyl), $156.05\left({ }^{1} J_{C F}=-253.2, C-4\right.$ aniline $)$, 162.01 (CONH).

Melting point: $123-124^{\circ} \mathrm{C}$.

5-chloro- N -(3,5-dichlorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (365)

365 was prepared following general procedure D, yielding $2.162 \mathrm{~g}(77 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.89$ (dd, $J=4.8, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.05 (dd[t], J=4.4, 1H, CH $\mathrm{a}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.47-3.54 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{CHOR}$), $4.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=\right.$ 5.4, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.60\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), 7.10 ($\mathrm{d},{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.42 (dd, ${ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.77 ($\mathrm{d},{ }^{3} \mathrm{~J}=1.8,2 \mathrm{H}, H-2,6$ aniline), $8.17\left(\mathrm{~d},{ }^{4} J=2.7,1 \mathrm{H}, H-6\right.$ salicyl), 9.91 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.79\left(\mathrm{CH}_{2}\right.$ epoxide), 49.77 (CHO epoxide), 69.24 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 114.42 ($\mathrm{C}-3$ salicyl), 118.63 ($\mathrm{C}-2,6$ aniline), 123.24 ($C-1$ salicyl), 124.28 ($C-4$ aniline), 128.06 (C-5 salicyl), 132.52 (C-6 salicyl), 133.36 (C-4 salicyl), 135.26 (C-3,5 aniline), 140.24 (C-1 aniline), 154.47 (C-2 salicyl), 162.03 (CONH).

Melting point: $150-157^{\circ} \mathrm{C}$.

3,5-dichloro-2-(oxiran-2-ylmethoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (366)

366 was prepared following general procedure D, yielding 1.214 g (100\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.85$ ($\mathrm{dd}, J=4.6, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 2.86 (dd $[\mathrm{t}], J=4.5,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.43-3.49 (m, $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 3.98 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.7,{ }^{3} \mathrm{~J}=$ $6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.50 ($\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.8,{ }^{3} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}\right.$,
$\mathrm{H}-4$ aniline), 7.47 (dd [q], ${ }^{3} \mathrm{~J}=7.9,{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.58 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.96 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.12 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.21 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 9.86 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=44.57\left(\mathrm{CH}_{2}\right.$ epoxide), 49.91 (CHO epoxide), 74.92 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 117.71\left({ }^{3} J_{C F}=4.0, C-2\right.$ aniline $), 121.45\left({ }^{3} J_{C F}=3.7, C-4\right.$ aniline), 123.86 ($C-6$ aniline), $124.07\left({ }^{1} J_{\text {CF }}=-272.1, C F_{3}\right.$ aniline), 129.15 ($C-1$ salicyl), 129.44 ($C-3$ salicyl), 129.61 ($C-5$ aniline), 130.97 ($C-6$ salicyl), 131.49 ($C-5$ salicyl), 133.94 (C-4 salicyl), 138.48 ($C-1$ aniline), 150.73 (C-2 salicyl), 160.99 (CONH). C-3 Aniline not recorded

Melting point: $62-77^{\circ} \mathrm{C}$.

N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichloro-2-(oxiran-2ylmethoxy)benzamide (367)

367 was prepared following general procedure \mathbf{D}, yielding $0.311 \mathrm{~g}(53 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.90\left(\mathrm{dd}, J=4.7, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.01 (dd[t], J=4.5, 1H, CH ${ }_{a} H_{b}$ epoxide), 3.46-3.51 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $3.98\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.7,{ }^{3} \mathrm{~J}=\right.$ $6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.57\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.7,{ }^{3} \mathrm{~J}=1.7,1 \mathrm{H}, O \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $7.61\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}\right.$, H-4 salicyl), 7.65 (br s, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.15 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.41 (br s, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 10.12 (brs, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.68\left(\mathrm{CH}_{2}\right.$ epoxide), 49.90 (CHO epoxide), 74.62 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 118.07 ($\mathrm{m},{ }^{3} J_{C F}=3.8, C-4$ aniline), $120.81\left({ }^{3} J_{C F}=3.3, C-2,6\right.$ aniline), 123.32 (q , $\left.{ }^{1} J_{C F}=-273.3,2 x C_{3}\right), 128.42\left(C_{q}-5\right.$ salicyl $), 129.52\left(C_{q}-3\right.$ salicyl $), 131.09\left(C-6\right.$ salicyl), $131.66\left(C_{q}\right.$ -1 salicyl), 132.37 ($\mathrm{q},{ }^{2} J_{C F}=33.5,2 \times C-3,5$ aniline), 134.36 (C-4 salicyl), 139.41 ($C-1$ aniline), 150.71 (C-2 salicyl), 161.17 (CONH).

Melting point: $150-153^{\circ} \mathrm{C}$.

5-chloro-2-(oxiran-2-ylmethoxy)-N-(4-(trifluoromethoxy)-3(trifluoromethyl)phenyl)benzamide (368)

368 was prepared following general procedure \mathbf{D}, yielding 0.679 g (66%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.92$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.04 ($\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.49-3.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.13 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.62\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.39 ($\mathrm{d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-5$ aniline) 7.44 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.05 (dd , ${ }^{3} \mathrm{~J}=9.0^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ aniline $), 8.21\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $8.25\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline) 9.83 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=44.79$ (CH_{2} epoxide), 49.82 (CHO epoxide), 69.00 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.50 ($C-3$ salicyl), 119.29 ($q, J_{C F}=5.2, C-2$ aniline), 122.08 ($C-5$ aniline), $120.47\left({ }^{1} J_{C F}=-259.1, O C F_{3}\right.$ aniline), 123.22 ($C-1$ salicyl), 123.70 ($\mathrm{q}^{2}{ }^{2} J_{C F}=17.6, C-3$ aniline), 124.44 ($\mathrm{q},{ }^{1} J_{C F}=-273.3, C F_{3}$ aniline), 124.56 ($C-6$ aniline), 128.20 ($C-5$ salicyl), 132.58 ($C-6$ salicyl), 133.44 (C-4 salicyl), 137.09 (C-1 aniline), 142.35 (broadened signal, C-4 aniline), 154.51 (C-2 salicyl), 162.17 (CONH).

Melting point: $100-115^{\circ} \mathrm{C}$.
2-(oxiran-2-ylmethoxy)-5-(trifluoromethoxy)-N-(3(trifluoromethyl)phenyl)benzamide (369)

369 was prepared following general procedure D, yielding $0.566 \mathrm{~g}(73 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.91$ (dd, $J=4.9, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.04 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), $3.49-3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), 4.15 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=5.3$, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.64 (dd, ${ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CHOR}$), 7.02 ($\mathrm{d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.34 (dd, ${ }^{3} \mathrm{~J}=9.0,{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.38 ($\mathrm{d}^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.47 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.93 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.15 ($\mathrm{d},{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.22 ($s[t], 1 \mathrm{H}, \mathrm{H}-2$ aniline), 9.96 (brs, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.71$ (CH_{2} epoxide), 49.77 (CHO epoxide), 69.37 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 114.20$ ($\mathrm{C}-3$ salicyl), 117.22 ($\mathrm{q},{ }^{3} J_{C F}=3.9, \mathrm{C}-6$ aniline), $120.60\left({ }^{1} J_{C F}=-258.0, \mathrm{OCF}_{3}\right.$ salicyl), 121.01 (${ }^{3} J_{C F}=3.8, C-4$ aniline), 123.37 ([verbreitert], $C-6$ aniline), 123.58 ($C-1$ salicyl), $124.10\left({ }^{1} J_{C F}=-273.4, C F_{3}\right.$ aniline), 125.57 (C-6 salicyl), 126.21 (C-4 salicyl), 129.66 ($C-5$ aniline), $131.54\left({ }^{2} J_{C F}=32.2, C-3\right.$ aniline $), 138.93$ (C-1 aniline), $143.96\left(J_{C F}=2.3, C-5\right.$ salicyl), 154.34 (C-2 salicyl), 161.91 (CONH).

Melting point: $109-114^{\circ} \mathrm{C}$.
5-iodo-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (370)

370 was prepared following general procedure D, yielding $3.204 \mathrm{~g}(91 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=2.89$ (dd, $J=4.7, \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.02 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.47-3.52 (m, 1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), 4.11 ($\mathrm{dd},{ }^{2} J=-10.4,{ }^{3} J=5.3,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.58 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $6.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.34-7.40 (m, überlagert, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.46 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.74 (dd, ${ }^{3} \mathrm{~J}=8.5,{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.91 ($\mathrm{d}^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.52 ($\mathrm{d}^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.86 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.71$ (CH_{2} epoxide), 49.76 (CHO epoxide), 69.01 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 85.02 ($C-5$ salicyl), 115.09 ($C-3$ salicyl), 117.18 (${ }^{3} J_{C F}=4.0, C-2$ aniline), 120.92 $\left(^{3} J_{C F}=3.8, C-4\right.$ aniline), 123.35 ($C-6$ aniline), 124.00 ($C-1$ salicyl), $124.11\left(^{1} J_{C F}=-272.6, C F_{3}\right.$ aniline), 129.64 ($C-5$ aniline), $131.50\left({ }^{2} J_{C F}=32.3, C-3\right.$ aniline), 138.96 ($C-1$ aniline), 141.39 ($C-6$ salicyl), 142.10 (C-4 salicyl), 155.82 (C-2 salicyl), 161.95(CONH).

Melting point: $104-107^{\circ} \mathrm{C}$.

2-(oxiran-2-ylmethoxy)-6-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (371)

371 was prepared following general procedure D, yielding $0.202 \mathrm{~g}(86 \%)$ of the desired product as colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.66\left(\mathrm{dd}, J=5.2, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 2.75 (dd, $J=5.2, J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.23-3.28 (m,1H, OCH $\mathrm{a}_{\mathrm{a}} \mathrm{CHOR}$), 4.06 (dd, ${ }^{2} \mathrm{~J}=-11.7$, ${ }^{3} \mathrm{~J}=5.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.48 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-11.7,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CHOR}$), $7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8\right.$ $1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.47 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.41 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.60 (dd [t], ${ }^{3} J=8.4,{ }^{3} J=7.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.66 ($\mathrm{m}[\mathrm{t}], 1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.84 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.14 (br s, 1H, $\mathrm{H}-2$ aniline), 10.84 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=43.30\left(\mathrm{CH}_{2}\right.$ epoxide), 49.53 (CHO epoxide), 69.58 $\left(\mathrm{OCH}_{2} \mathrm{CHOR} \text {), } 115.29 \text { (} \mathrm{q},{ }^{3}\right)_{\text {CF }}=4.1, C-2$ aniline), 117.49 ($C-3$ salicyl), $118.09\left(\mathrm{q},{ }^{3}\right)_{C F}=4.6, C-5$ salicyl), 120.09 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4$ aniline), 122.93 ($C-6$ aniline), $123.50\left(q,{ }^{1} J_{C F}=-274.6, C F_{3}\right.$ aniline), 124.05 ($q,{ }^{1} J_{C F}=-272.6, C F_{3}$ salicyl), $125.35\left(q,{ }^{3} J_{C F}=2.2, C_{q}-1\right.$ salicyl), $126.84\left(q,{ }^{2} J_{C F}=\right.$ 31.1, $C-3$ aniline), 129.57 ($\mathrm{q}^{2}{ }^{2} J_{C F}=31.4, C-6$ salicyl), 130.14 ($C-5$ aniline), 131.07 ($C-4$ salicyl), 139.63 (C-1 aniline), 155.50 (C-2 salicyl), 163.20 (CONH).

4-methyl-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (372)

372 was prepared following general procedure \mathbf{D}, yielding $0.882 \mathrm{~g}(28 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.90\left(\mathrm{dd}, \mathrm{J}=4.7, \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.01 (dd[t], $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), $3.47-3.53$ (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{CHOR}$), 4.14 (dd, $\left.{ }^{2} J=-10.6,{ }^{3} J=5.4,1 \mathrm{H}, O C H_{a} H_{b} C H O R\right), 4.58\left(\mathrm{dd},{ }^{2} J=-10.6,{ }^{3} J=2.3,1 \mathrm{H}, O C H_{a} H_{b} \mathrm{CHOR}\right), 6.79(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), 6.96 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ salicyl), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.45 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.1,{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.11 \mathrm{H}, \mathrm{H}-6\right.$ aniline), $8.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.23 (s, 1H, H-2 aniline), 9.98 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=21.86\left(\mathrm{CH}_{3}\right)$, $44.66\left(\mathrm{CH}_{2}\right.$ epoxide), 49.95 (CHO epoxide), 68.72 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.54 ($C-3$ salicyl), 117.09 ($\mathrm{q}^{3}{ }^{3}{ }_{\mathrm{CF}}=3.9, C-2$ aniline), 119.38 (C 1 salicyl), 120.46 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-4$ aniline), 123.24 ($C-6$ aniline), 123.41 ($C-5$ salicyl), 124.20 (q, ${ }^{1} J_{C F}=-272.5, C F_{3}$ aniline), 129.52 ($C-5$ aniline), 131.43 ($q,{ }^{3} J_{C F}=32.2, C-3$ aniline), 132.77 ($C-6$ salicyl), 139.46 (C-1 aniline), 144.71 (C-4 salicyl), 156.00 (C-2 salicyl), 163.56 (CONH).

Melting point: $119-120^{\circ} \mathrm{C}$.
4-fluoro-2-(oxiran-2-ylmethoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (373)

373 was prepared following general procedure D, yielding $0.241 \mathrm{~g}(60 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.90$ (dd, $J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.03 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), $3.49-3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right), 4.11\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}\right.$,
$\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.59\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, O \mathrm{OCH}_{a} H_{b} \mathrm{CHOR}\right.$), 6.71 (dd, $\mathrm{J}_{\mathrm{HF}}=10.2,{ }^{3} \mathrm{~J}=2.3$, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), $6.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.36 (d, ${ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.46 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=$ $8.1{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.91 ($\mathrm{d}^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), $8.28\left(\mathrm{dd}, \mathrm{J}_{\mathrm{HF}}=7.0,^{2} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 9.83 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=44.68\left(\mathrm{CH}_{2}\right.$ epoxide), 49.66 (CHO epoxide), 69.11 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 100.93\left(\mathrm{~d},{ }^{2} J_{C F}=26.5, C-3\right.$ salicyl), $109.58\left(\mathrm{~d},{ }^{2} J_{C F}=21.1, C-5\right.$ salicyl), 117.13 (q , ${ }^{3} J_{C F}=3.9, C-2$ aniline), 118.42 ($d,{ }^{4} J_{C F}=3.5, C-1$ salicyl), 120.73 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-4$ aniline), 123.29 ($C-6$ aniline), 124.14 ($q,{ }^{1} J_{C F}=-272.5, C F_{3}$ aniline), 129.60 ($C-5$ aniline), 131.50 ($q,{ }^{3} J_{C F}=$ 32.0, C-3 aniline), 134.94 ($\mathrm{d},{ }^{3} J_{C F}=10.8, C-6$ salicyl), 139.18 ($C-1$ aniline), 157.28 ($\mathrm{d},{ }^{3} J_{C F}=10.3$, $C-2$ salicyl), 162.55 (CONH), 165.77 ($d,{ }^{1} J_{C F}=-253.9, C-4$ salicyl).

Melting point: $110-114^{\circ} \mathrm{C}$.

5-methyl-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (374)

374 was prepared following general procedure \mathbf{D}, yielding $0.472 \mathrm{~g}(16 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.89\left(\mathrm{dd}, \mathrm{J}=4.7, \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.00 (dd[t], J = 4.4, 1H, CH ${ }_{a} H_{b}$ epoxide), 3.46-3.51 (m, 1H, OCH $\mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.12 (dd, ${ }^{2} J=-10.7,{ }^{3} J=5.3,1 \mathrm{H}, O C H_{a} H_{b} C H O R$), 4.56 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.7,{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, O C \mathrm{H}_{\mathrm{a}} H_{b} \mathrm{CHOR}$), 6.89 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0, \mathrm{H}-3$ salicyl), 7.28 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.3, \mathrm{H}-4$ salicyl), $7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.46 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.2,{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.94 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.21 \mathrm{H}, \mathrm{H}-6$ aniline), 8.07 ($\mathrm{d},{ }^{4} J=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.22 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.02 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=20.56\left(\mathrm{CH}_{3}\right), 44.65\left(\mathrm{CH}_{2}\right.$ epoxide), 49.99 (CHO epoxide), 68.96 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 112.98 ($\mathrm{C}-3$ salicyl), 117.14 ($\mathrm{q},{ }^{3}{ }_{\mathrm{CF}}=4.2, \mathrm{C}-2$ aniline), 120.56 (q , ${ }^{3} J_{C F}=3.8, C-4$ aniline $), 121.69\left(C-1\right.$ salicyl), 123.28 (C-6 aniline), 124.19 ($\mathrm{q},{ }^{1} J_{C F}=-272.2, C F_{3}$ aniline), 129.54 ($C-5$ aniline), 131.44 ($q,{ }^{2} J_{C F}=32.1, C-3$ aniline), 132.10 ($C-5$ salicyl), 133.08 (C-6 salicyl), 134.09 (C-4 salicyl), 139.39 (C-1 aniline), 154.05 (C-2 salicyl), 163.63 (CONH).

Melting point: $126-128^{\circ} \mathrm{C}$.
5-methoxy-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (375)

375 was prepared following general procedure D, yielding 2.282 g (96%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.89$ (dd, $J=4.7, J=2.8,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.00 ($\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.45-3.52 (m, 1H, OCH ${ }_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.09\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-\right.$ $10.6,{ }^{3} J=5.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.55\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.7 \mathrm{~T}^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6.95(\mathrm{~d}, 1 \mathrm{H}$, ${ }^{3} \mathrm{~J}=9.0, \mathrm{H}-3$ salicyl), 7.04 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=9.0,{ }^{4} \mathrm{~J}=3.0, \mathrm{H}-4$ salicyl), $7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.46 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.81 ($\mathrm{d},{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.93 (d, ${ }^{3} J=8.01 \mathrm{H}, \mathrm{H}-6$ aniline $), 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.13 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.66$ (CH_{2} epoxide), 50.02 (CHO epoxide), 55.97 $\left(\mathrm{OCH}_{3}\right), 69.79\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 114.99$ (C-3 salicyl), 115.76 (C-6 salicyl), 117.23 ($\mathrm{q},{ }^{3}{ }_{\mathrm{CF}}=3.8, \mathrm{C}-2$ aniline), 120.42 ($C-4$ salicyl), 120.69 ($q,{ }^{3} J_{C F}=3.8, C-4$ aniline), 122.82 ($C-1$ salicyl), 123.34 ($C-6$ aniline), 124.18 ($\mathrm{q},{ }^{1} J_{C F}=-272.3, C F_{3}$ aniline), 129.55 ($C-5$ aniline), $131.47\left(\mathrm{q},{ }^{2} J_{C F}=32.5, C-3\right.$ aniline), 139.28 ($C-1$ aniline), 150.27 (C-5 salicyl), 154.87 (C-2 salicyl), 163.23 (CONH).

Melting point: $116-118^{\circ} \mathrm{C}$.
3-methyl-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (376)

376 was prepared following general procedure D, yielding $2.3467 \mathrm{~g}(99 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.80\left(\mathrm{dd}, \mathrm{J}=4.8, \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 2.92 (dd, $J=4.8, J=4.3,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.38-3.42 (m, 1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), 3.83 (dd, ${ }^{2} J=-11.2,{ }^{3} J=6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.26 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-11.2,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 7.22 (dd [t], ${ }^{3} J=7.6,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.36-7.41 (m, $2 \mathrm{H}, \mathrm{H}-4$ aniline, $\mathrm{H}-4$ salicyl), 7.47 (dd [t], ${ }^{3} \mathrm{~J}$ $=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.96 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.01 \mathrm{H}, \mathrm{H}-6$ aniline), $8.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.6,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.22 (s, 1H, H-2 aniline), 9.89 (brs, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=16.17\left(\mathrm{CH}_{3}\right), 44.45\left(\mathrm{CH}_{2}\right.$ epoxide), 50.08 (CHO epoxide), $74.53\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 117.35\left(\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=3.9, C-2\right.$ aniline), $120.85\left(\mathrm{q},{ }^{3} J_{C F}=3.8, C-4\right.$ aniline), 123.53 ($C-6$ aniline), 124.15 ($q,{ }^{1} J_{C F}=-272.1$, teilweise überdeckt aber Wert zuverlässig, $C F_{3}$ aniline), 125.49 (C-5 salicyl), 126.57 ($C-1$ salicyl), 129.51 ($C-5$ aniline), 130.13 ($C-6$ salicyl), 131.45 ($q,{ }^{2} J_{C F}=32.4, C-3$ aniline), 131.75 ($C-3$ salicyl), 135.60 (C-4 salicyl), 139.06 ($C-1$ aniline), 154.51 (C-2 salicyl), 163.68 (CONH).

5-chloro- N-methyl-2-(oxiran-2-ylmethoxy)- N -phenylbenzamide (377)

377 was prepared following general procedure D, yielding $1.349 \mathrm{~g}(56 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.70$ (br s, $1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 2.88 (dd [t], $J=4.5,1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.26 (m [br s], 1H, $\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{NCH}_{3}\right.$), $3.68\left(\mathrm{~m},{ }^{2} \mathrm{~J}=-11.2\right.$, $\left.{ }^{3} J=6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}\right), 4.09\left(\mathrm{~m}[\mathrm{~d}],{ }^{2} \mathrm{~J}=-11.5,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} H_{b} \mathrm{CHOR}\right), 6.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8, \mathrm{H}-\right.$ 3 salicyl), 7.03-7.14 (m, 4H, ArH), 7.14-7.22 (m, 3H, ArH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=37.29\left(\mathrm{CH}_{3}\right), 44.54\left(\mathrm{CH}_{2}\right.$ epoxide), $50.07(\mathrm{CHO}$ epoxide), 69.36 (dyn, $\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.44 ($\mathrm{C}-3$ salicyl), $126.08\left(C_{q}\right), 126.40\left(C_{q}\right), 127.02$ ($2 x$ $\mathrm{CH}), 127.13(\mathrm{CH}), 128.71(\mathrm{CH}), 128.83(2 \times \mathrm{CH}), 129.37(\mathrm{CH}), 130.03(\mathrm{CH}), 143.48$ (C-2 salicyl), 152.60 (CONH).

Melting point: $69-73^{\circ} \mathrm{C}$.

5-cyano-2-(oxiran-2-ylmethoxy)- N -(4-(trifluoromethoxy)phenyl)benzamide (378)

378 was prepared following general procedure D, yielding $0.191 \mathrm{~g}(15 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=2.92\left(\mathrm{dd}, \mathrm{J}=4.6, \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.06 ($\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.51-3.57 (m, 1H, OCH $\mathrm{a}_{\mathrm{a}} \mathrm{CHOR}$), 4.18 (dd, ${ }^{2} J=-10.5,{ }^{3} J=5.6,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.71 (dd, ${ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{OCH}{ }_{a} H_{b} \mathrm{CHOR}$), $7.08\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6, \mathrm{H}-3\right.$ salicyl), 7.22 ($\mathrm{d}^{3} \mathrm{~J}=8.8,2 \mathrm{H}, \mathrm{H}-3,5$ aniline), 7.76 ($\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.82(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.56 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.68 (br s, 1 H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.79\left(\mathrm{CH}_{2}\right.$ epoxide), 49.55 (CHO epoxide), 69.28 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 106.56 ($\mathrm{C}-5$ salicyl), 113.54 (C-3 salicyl), 118.00 (CN), 121.56 ($\mathrm{C}-2,6$ aniline), 121.94 ($C-3,5$ aniline), 123.51 ($C-1$ salicyl), 136.81 ($C-1$ aniline), 136.96 ($C-4$ salicyl), 137.33 ($C-6$ salicyl), 145.62 ($q, J_{C F}=2.3, C-4$ aniline), 158.66 ($C-2$ salicyl), 161.06 (CONH). One part of OCF_{3} aniline (d) at 119.36, second part not visible.

Melting point: $162-164^{\circ} \mathrm{C}$.
2-(oxiran-2-ylmethoxy)-5-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (379)

379 was prepared following general procedure \mathbf{D}, yielding $1.649 \mathrm{~g}(100 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=2.92\left(\mathrm{dd}, \mathrm{J}=4.7, \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.05 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.51-3.56(m,1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), $4.20\left(\mathrm{dd},{ }^{2} J=-10.5,{ }^{3} J=5.4,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.69 (dd, ${ }^{2} \mathrm{~J}=-10.5,^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $7.09\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6, \mathrm{H}-3\right.$
salicyl), 7.38 (d, ${ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.47 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.73 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.3, \mathrm{H}-4$ salicyl), $7.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.01 \mathrm{H}, \mathrm{H}-6\right.$ aniline), $8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.56 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.88 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.74$ (CH_{2} epoxide), 49.67 (CHO epoxide), 69.07 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 113.07 ($C-3$ salicyl), 117.19 ($\mathrm{q},{ }^{3} J_{C F}=4.0, C-2$ aniline), 121.05 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=3.8, C-4$ aniline), 122.59 ($C-1$ salicyl), 123.34 ($C-6$ aniline), 123.83 ($\mathrm{q}^{1}{ }^{1} J_{C F}=-271.8, C F_{3}$ salicyl), 124.09 ($\mathrm{q},{ }^{1} J_{C F}=-272.6, C F_{3}$ aniline), 125.02 ($\mathrm{q},{ }^{2} J_{C F}=33.6, C-5$ salicyl), 129.69 ($C-5$ aniline), 130.48 (q, ${ }^{4} J_{C F}=3.8, C-4$ salicyl), 130.53 ($q,{ }^{4} J_{C F}=3.8, C-6$ salicyl), 131.55 ($q,{ }^{2} J_{C F}=32.2, C-3$ aniline), 138.89 (C-1 aniline), 158.06 (C-2 salicyl), 162.03 (CONH).

Melting point: $104-110^{\circ} \mathrm{C}$.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)-5(trifluoromethyl)benzamide (380)

380 was prepared following general procedure D, yielding $0.743 \mathrm{~g}(57 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.96\left(\mathrm{dd}, J=4.6, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.08 (dd $[\mathrm{t}], J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.54-3.60 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), 4.25 (dd, ${ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=$ 5.1, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.73 ($\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $7.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), 7.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.76\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $8.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-$ 2,6 aniline), 8.56 ($d,{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.10 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.84\left(\mathrm{CH}_{2}\right.$ epoxide), 49.69 (CHO epoxide), 68.67 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.29 ($\mathrm{C}-3$ salicyl), 117.69 ($\mathrm{m},{ }^{3} J_{C F}=3.8, C-4$ aniline), $120.17\left(\mathrm{~m},{ }^{3} J_{C F}=3.4, \mathrm{C}\right.$ $2,6$ aniline $), 122.15$ ($C-1$ salicyl), $123.35\left({ }^{1} J_{C F}=-272.5, C F_{3}\right.$ salicyl), $123.74\left({ }^{1} J_{C F}=-272.5,2 \times C F_{3}\right.$ aniline), 125.26 ($\mathrm{q},{ }^{2} J_{C F}=33.4, C-5$ salicyl), 130.62 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-6$ salicyl), 130.87 ($\mathrm{q},{ }^{3} J_{C F}=$ 3.8, $C-4$ salicyl), 132.47 ($\mathrm{q},{ }^{2} J_{C F}=33.2, C-3,5$ aniline), 139.83 ($C-1$ aniline), 158.08 ($C-2$ salicyl), 162.32 (CONH).

Melting point: $146-150^{\circ} \mathrm{C}$.

2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethoxy)phenyl)-5(trifluoromethyl)benzamide (381)

381 was prepared following general procedure D, yielding $0.774 \mathrm{~g}(57 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.92$ (dd, $J=4.6, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.04 (dd $[\mathrm{t}], \mathrm{J}=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.50-3.55 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{CHOR}$), 4.19 (dd, ${ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=$ $5.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.67 (dd, ${ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $6.99\left(\mathrm{~m}[\mathrm{dt}],{ }^{3} \mathrm{~J}=8.2\right.$, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.08 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.36 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.64 (m [dd], ${ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.72 (dd, ${ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.91 (br s, $1 \mathrm{H}, \mathrm{H}-$ 2 aniline), 8.55 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.82 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.72\left(\mathrm{CH}_{2}\right.$ epoxide), 49.67 (CHO epoxide), 69.04 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.01 ($\mathrm{C}-3$ salicyl), 113.15 ($C-2$ aniline), 116.61 ($C-4$ aniline), 118.35 ($C-6$ aniline), 120.63 ($q,{ }^{1} J_{C F}=-272.5$, OCF $_{3}$ aniline), 122.63 ($C-1$ salicyl), $123.82\left({ }^{1} J_{C F}=-271.3, C F_{3}\right.$ salicyl), 125.00 ($q,{ }^{2} J_{C F}=33.7, C-5$ salicyl), 130.18 (C-5 aniline), 130.44 ($\mathrm{q}^{3}{ }^{3}{ }_{C F}=3.6, C-4$ salicyl), 130.56 ($q,{ }^{3} J_{C F}=3.7, C-6$ salicyl), 139.76 ($C-1$ aniline), 149.76 ($q, J_{C F}=2.4, C-3$ aniline), 158.04 (C-2 salicyl), 161.94 (CONH).

Melting point: $113-116^{\circ} \mathrm{C}$.
N-(4-chloro-3-(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)-5(trifluoromethyl)benzamide (382)

382 was prepared following general procedure D, yielding $1.145 \mathrm{~g}(68 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=2.94\left(\mathrm{dd}, J=4.6, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.06 (dd[t], J=4.4, 1H, CH ${ }_{a} H_{b}$ epoxide), 3.52-3.58 (m, 1H, OCH $\mathrm{H}_{\mathrm{a}} \mathrm{CHOR}$), $4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=\right.$ $5.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.70\left(\mathrm{dd}^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}\right.$, $H-3$ salicyl), 7.47 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.74\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.96 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.25 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-2$ aniline), $8.54\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}\right.$, H-6 salicyl), 9.92(br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.91\left(\mathrm{CH}_{2}\right.$ epoxide), 49.78 (CHO epoxide), 68.94 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.24 ($\mathrm{C}-3$ salicyl), 119.54 ($\mathrm{m},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=5.8, \mathrm{C}-2$ aniline), 121.54122 .45 ($\mathrm{C}-1$ salicyl), $122.90\left({ }^{1} J_{C F}=-273.2, C F_{3}\right.$ aniline $), 123.89\left({ }^{1} J_{C F}=-273.5, C F_{3}\right.$ salicyl), 124.34 (C-6 aniline), 125.22 ($\mathrm{q},{ }^{2} J_{C F}=33.6, C-5$ salicyl), 127.05 ($\mathrm{m},{ }^{3} J_{C F}=1.5, C-4$ aniline), 128.99 ($\mathrm{q},{ }^{2} J_{C F}=$ $31.5, C-3$ aniline), 130.64 ($q,{ }^{3} J_{C F}=3.8, C-6$ salicyl), 130.74 ($q,{ }^{3} J_{C F}=3.7, C-4$ salicyl), 132.22 ($C-$ 5 aniline), 137.37 (C-1 aniline), 158.12 (C-2 salicyl), 162.15 (CONH).

Melting point: $153-156^{\circ} \mathrm{C}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyano-2-(oxiran-2ylmethoxy)benzamide (383)

383 was prepared following general procedure \mathbf{D}, yielding $0.536 \mathrm{~g}(46 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.94\left(\mathrm{dd}, J=4.5, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 3.07 (dd[t], J = 4.4, 1H, CH ${ }_{a} H_{b}$ epoxide), 3.53-3.58 (m, 1H, OCH ${ }_{a} H_{b} C H O R$), $4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=\right.$ 5.3, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.72\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), 7.47 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.77 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.96 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.20\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), $8.53\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}\right.$, H-6 salicyl), 9.81 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.86$ (CH_{2} epoxide), 49.54 (CHO epoxide), 68.96 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 106.66 ($\mathrm{C}-5$ salicyl), 113.69 ($C-3$ salicyl), 117.88 (CN), 119.47 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=5.5, C-2$ aniline), 122.74 (${ }^{1}{ }_{C F}=-273.5, C F_{3}$ aniline), 123.09 ($C-1$ salicyl), 124.30 ($C-6$ aniline), 127.16
($\mathrm{m},{ }^{3} J_{C F}=1.5, C-4$ aniline), 128.91 ($\mathrm{q},{ }^{2} J_{C F}=31.4, C-3$ aniline), 132.16 ($C-5$ aniline), 137.04 (C-1 aniline), 137.20 (C-4 salicyl), 137.31 (C-6 salicyl), 158.64 (C-2 salicyl), 161.25 (CONH).

Melting point: $153-156^{\circ} \mathrm{C}$.
5-cyano-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (384)

384 was prepared following general procedure \mathbf{D}, yielding 1.214 g (93%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.93\left(\mathrm{dd}, \mathrm{J}=4.6, \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $3.06(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.53-3.57(m,1H, OCH $\mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.20 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.71 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}{ }_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.39 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.477 .46 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.3,{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.75\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline $), 8.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.54 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.77 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.79$ (CH_{2} epoxide), 49.53 (CHO epoxide), 69.20 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 106.55 ($C_{q}-5$ salicyl), 113.64 ($C-3$ salicyl), 117.20 (${ }^{3} \mathrm{~J}_{\text {CF }}=4.0, C-2$ aniline), 117.96 $(C N), 121.26\left({ }^{3} J_{C F}=3.7, C-4\right.$ aniline $), 123.33\left(C_{q}-1\right.$ salicyl), 123.42 (C-6 aniline), $124.04\left({ }^{1} J_{C F}=-\right.$ 273.6, $C F_{3}$ aniline), 129.75 ($C-5$ aniline), $131.57\left(^{2} J_{C F}=32.1, C-3\right.$ aniline), 137.06 ($C-6$ salicyl), 137.29 ($C-4$ salicyl), 138.64 ($C_{q}-1$ aniline) 158.69 ($C_{q}-2$ salicyl), 161.26 (CONH).

Melting point: $125-128^{\circ} \mathrm{C}$.
N-(3,5-bis(trifluoromethyl)phenyl)-5-cyano-2-(oxiran-2-ylmethoxy)benzamide (385)

385 was prepared following general procedure D, yielding $1.262 \mathrm{~g}(75 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.96$ (dd, $J=4.4, J=2.4,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.09 (dd[t], $J=4.3,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.55-3.61 (m, $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4.26\left(\mathrm{dd},{ }^{2} J=-10.5,{ }^{3} \mathrm{~J}=\right.$ 5.1, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.75 ($\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}\right.$, $\mathrm{H}-3$ salicyl), $7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline $), 7.80\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $8.36(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-$ 2,6 aniline), 8.56 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.00 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.89\left(\mathrm{CH}_{2}\right.$ epoxide), 49.56 (CHO epoxide), 68.78 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 106.84 ($\mathrm{C}-5$ salicyl), 113.82 ($\mathrm{C}-3$ salicyl), $117.81\left(\mathrm{CN}\right.$), 117.89 ($\mathrm{m},{ }^{3}{ }_{\mathrm{CFF}}=3.8, \mathrm{C}-4$ aniline), 120.21 ($\mathrm{m},{ }^{3} J_{C F}=3.4, C-2,6$ aniline), $122.93\left(C-1\right.$ salicyl), $123.29\left({ }^{1} J_{C F}=-272.6,2 \times C F_{3}\right.$ aniline), 132.52 ($\mathrm{q},{ }^{3} J_{C F}=33.6, C-3,5$ aniline), 137.39 ($C-6$ salicyl), 137.42 ($C-4$ salicyl), 139.62 (C-1 aniline), 158.68 (C-2 salicyl), 161.53 (CONH).

Melting point: $166-168^{\circ} \mathrm{C}$.

5-chloro- N -(4-cyano-3-(trifluoromethyl)phenyl)-2-(oxiran-2ylmethoxy)benzamide (386)

386 was prepared following general procedure D, yielding $0.998 \mathrm{~g}(43 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.93$ (dd, $J=4.6, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.07 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{a} H_{b}$ epoxide), 3.51-3.57 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.14 (dd, ${ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.67\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}{ }_{a} H_{b} \mathrm{CHOR}\right), 6.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.48 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5,1 \mathrm{H}, \mathrm{H}-5\right.$ aniline), 8.18 (dd, ${ }^{3} \mathrm{~J}=8.5,^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.21\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $8.38\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), 10.23 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=44.92$ (CH_{2} epoxide), 49.83 (CHO epoxide), 68.93 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 104.30 ($\mathrm{q},{ }^{3}{ }_{\mathrm{C}_{\mathrm{C}}}=2.2, \mathrm{C}_{\mathrm{q}}-3$ aniline), 114.57 ($\mathrm{C}-3$ salicyl), $115.91(\mathrm{CN}$), 118.22 (q , $J_{C F}=5.2, C-2$ aniline), $122.40\left(q,{ }^{1} J_{C F}=-273.8, C F_{3}\right.$), 122.62 ($C-6$ aniline), 122.82 ($C-1$ salicyl),
128.36 ($C-5$ salicyl), 132.70 (C-6 salicyl), 133.91 (C-4 salicyl), 134.06 ($\mathrm{q},{ }^{2} J_{C F}=32.7, C-3$ aniline), 135.95 ($C-5$ aniline), 142.73 ($C-1$ aniline), 154.53 ($C-2$ salicyl),162.49 (CONH).

Melting point: $187-190^{\circ} \mathrm{C}$.

N-(3,5-bis(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)-5(trifluoromethoxy)benzamide (387)

387 was prepared following general procedure D, yielding 1.062 g (48%) of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.94\left(\mathrm{dd}, \mathrm{J}=4.7, \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $3.07(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.52-3.58(m,1H, OCH $\mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.20 (dd, ${ }^{2} J=-10.5,{ }^{3} J=5.1,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), 4.68 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), $7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.38 (dd, ${ }^{3} J=8.8,^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $8.15\left(\mathrm{~d},{ }^{4} \mathrm{~J}=3.0\right.$, 1H, H-6 salicyl), 8.39 (s, 2H, H-2,6 aniline), 10.18 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.80\left(\mathrm{CH}_{2}\right.$ epoxide), 49.79 (CHO epoxide), 68.99 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right.$), 114.44 ($\mathrm{C}-3$ salicyl), 117.65 ($\mathrm{m},{ }^{3} J_{C F}=3.8, C-4$ aniline), $120.21\left(\mathrm{~m},{ }^{3} J_{C F}=3.3, \mathrm{C}-\right.$ 2,6 aniline), $120.58\left({ }^{1} J_{C F}=-257.8\right.$, OCF $_{3}$ aniline), 123.13 (C-1 salicyl), $123.36\left({ }^{1} J_{C F}=-272.7,2 x\right.$ $C F_{3}$ aniline), 125.61 ($C-6$ salicyl), 126.64 ($C-4$ salicyl), 132.45 ($q,{ }^{2} J_{C F}=33.2, C-3,5$ aniline), 139.88 ($C-1$ aniline), 144.08 ($q, J_{C F}=2.3, C-5$ salicyl), 154.35 ($C-2$ salicyl), 162.20 (CONH).

5-chloro- N -(2,4-difluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (388)

388 was prepared following general procedure D, yielding $0.444 \mathrm{~g}(57 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.77$ (dd, $J=4.6, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), $3.01(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{a} H_{b}$ epoxide), $3.48-3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}\right.$), $4.10\left(\mathrm{dd},{ }^{2} J=-10.6,{ }^{3} J=6.4,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOH}$), $4.45\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=3.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOH}\right), 6.87-6.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$ in 2,4-difluoroaniline), $6.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 8.26 ($\mathrm{d}^{4}{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, H-6$ salicyl), 8.49-8.54 (m, $1 \mathrm{H}, H-6$ ' in 2,4-difluoroaniline), 10.06 (br, s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.87\left(\mathrm{~d},{ }^{T S} J_{C F}=1.1, \mathrm{CH}_{2}\right.$ oxirane $), 49.42\left(\mathrm{~d},{ }^{T S} J_{C F}=2.3\right.$, CH oxirane), 71.51 (salicyl-OCH2-oxirane), $103.63\left(\mathrm{dd},{ }^{2} J_{1 C F}=23.3,{ }^{2} J_{1 C F}=26.7, \mathrm{C}-3^{\prime}\right.$ in $2^{\prime}, 4^{\prime}$ difluoroaniline), 111.41 ($\mathrm{dd},{ }^{2} J_{C F}=21.5,{ }^{4} J_{C F}=3.6, C-5^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 114.22 ($C-3$ salicyl), 122.99 ($\mathrm{dd}^{3}{ }^{3} J_{2 C F}=8.8,{ }^{3} J_{2 C F}=2.1, C-6^{\prime}$ in $2^{\prime}, 4^{\prime}$ difluoro-aniline), $123.03\left(C_{q^{\prime}}-1\right.$ salicyl), 123.27 ($\mathrm{dd},{ }^{2} J_{\text {ICF }}=10.1,{ }^{4} J_{C F}=3.7, C_{q}-1^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 127.83 ($C_{q}-5$ salicyl), 132.49 (C-6 salicyl), 133.30 ($C-4$ salicyl), $152.80\left(\mathrm{dd},{ }^{1} J_{1 C F}=246.0,{ }^{3} J_{2 C F}=11.7, C-4^{\prime}\right.$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), $154.86\left(C_{q}-2\right.$ salicyl), $158.60\left(\mathrm{dd},{ }^{1} J_{1 C F}=246.1,{ }^{3} J_{2 C F}=11.6, C-2^{\prime}\right.$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 161.75 (CONH).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO $^{-d_{6}}, 23^{\circ} \mathrm{C}$): $\delta=2.75$ (dd, $J=5.0, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 2.88 (dd $[\mathrm{t}], J=4.6,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.41-3.45 (m, $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}$), 4.08 (dd, ${ }^{2} \mathrm{~J}=-11.1,{ }^{3} \mathrm{~J}=$ $6.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOH}$), 4.53 (dd, ${ }^{2} \mathrm{~J}=-11.1,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOH}$), $7.11-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 5^{\prime} in 2,4-difluoroaniline), 7.27 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.37-7.42 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$ in $2,4-$ difluoroaniline), 7.60 (dd, ${ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.81 (d, ${ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.06-8.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in 2,4-difluoroaniline), 10.11 ($\mathrm{br}, \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=43.76\left(\mathrm{CH}_{2}\right.$ oxirane), $49.33\left(\mathrm{~d},{ }^{\mathrm{TS}} \mathrm{J}_{\mathrm{CF}}=1.3, \mathrm{CH}\right.$ oxirane), 70.83 (salicyl- OCH_{2}-oxirane), 104.23 ($\mathrm{dd},{ }^{2} \mathrm{~J}_{1 C F}=26.9,{ }^{2} J_{1 C F}=23.8, \mathrm{C}-3^{\prime}$ in $2^{\prime}, 4^{\prime}$ difluoroaniline), 111.31 ($\mathrm{dd},{ }^{2} J_{C F}=21.9,{ }^{4} J_{C F}=3.5, C-5$ ' in $2^{\prime}, 4^{\prime}$-difluoroaniline), 115.73 (C-3 salicyl), 122.56 ($\mathrm{dd},{ }^{2} J_{1 C F}=11.6,{ }^{4} J_{C F}=3.7, C_{q}-1^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoro-aniline), $124.32\left(C_{q}-1\right.$ salicyl), 124.95 (dd, ${ }^{3} J_{\text {2CF }}=11.2,{ }^{3} J_{\text {2CF }}=3.5, C-6^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 125.18 ($C_{q^{-}}-5$ salicyl), 129.88 (C-6 salicyl), 132.53 ($C-4$ salicyl), 153.76 (dd, ${ }^{1} J_{1 C F}=248.2,{ }^{3} J_{2 C F}=12.5, C-4$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), $154.86\left(C_{q}-2\right.$ salicyl), 158.62 ($\mathrm{dd},{ }^{1} J_{1 C F}=244.2,{ }^{3} J_{2 C F}=11.6, C-2^{\prime}$ in $2^{\prime}, 4^{\prime}$ difluoroaniline), 162.32 (CONH).

Melting point: $153-155^{\circ} \mathrm{C}$.

5-chloro- N-(4-cyanophenyl)-2-(oxiran-2-ylmethoxy)benzamide (389)

389 was prepared following general procedure D, yielding $3.709 \mathrm{~g}(68 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2,88\left(\mathrm{dd}, \mathrm{J}=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $3,02(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{a} H_{b}$ epoxide), $3,46-3,54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}\right), 4,05\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=5.8,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), $4,61\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4, \mathrm{~J}^{3} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6,92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7,40 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7,60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,2 \mathrm{H}, \mathrm{H}-3,5\right.$ aniline), 7,91 (d, ${ }^{3} J=8.7,2 \mathrm{H}, \mathrm{H}-2,6$ aniline $), 8,15\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 9,99 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44,77\left(\mathrm{CH}_{2}\right.$ epoxide), 49,74 (CHO epoxide), 69,25 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 107,05 ($\mathrm{C}_{\mathrm{q}}-4$ aniline), 114,33 (C-3 salicyl), 119,11 (CN), 120,28 (C-2,6 aniline), 123,06 ($C_{q}-1$ salicyl), 127,92 ($C_{q}-5$ salicyl), 132,42 (C-6 salicyl), 133,29 (C-3,5 aniline), 133,44 (C-4 salicyl), 142,44 ($C_{q}-1$ aniline), 154,45 ($C_{q}-2$ salicyl), 162,14 (CONH).

Melting point: $158^{\circ} \mathrm{C}$.
5-chloro-N-(3-cyanophenyl)-2-(oxiran-2-ylmethoxy)benzamide (390)

390 was prepared following general procedure D, yielding 0.502 g (16%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.90\left(\mathrm{dd}, J=4.7, J=2.6,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), $3.04(\mathrm{dd}[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.49-3.54 (m, 1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CHOR}$), 4.09 (dd, ${ }^{2} J=-10.5,{ }^{3} \mathrm{~J}=5.7,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.63\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.5,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}\right.$), $6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.36-7.48 (m, 3H, H-4,5 aniline, $H-4$ salicyl), 7.96 (dq, ${ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.20 (d, ${ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.25 (s, 1H, H-2 aniline), 9.94 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.83\left(\mathrm{CH}_{2}\right.$ epoxide), 49.79 (CHO epoxide), 69.30 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 113.12 ($\mathrm{C}-3$ aniline), 114.45 ($\mathrm{C}-3$ salicyl), 118.85 (CN), 123.29 ($\mathrm{C}_{\mathrm{q}}-1$ salicyl), 123.53 (C-2 aniline), 124.51 ($C-6$ aniline), 127.80 ($C_{q^{-}} 5$ salicyl), 128.10 (C-5 aniline), 129.96 (C 4 aniline), 132.56 ($C-6$ salicyl), 133.38 ($C-4$ salicyl), 139.30 ($C_{q}-1$ aniline), 154.51 ($C_{q}-2$ salicyl), 162.16 (CONH).

Melting point: $155-158^{\circ} \mathrm{C}$.
5-chloro-N-(3-cyano-4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (391)

391 was prepared following general procedure D, yielding $0.484 \mathrm{~g}(25 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.91$ (dd, $J=4.6, J=2.5,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 3.05 (dd $[\mathrm{t}]$, $J=4.4,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{b}$ epoxide), 3.49-3.57 (m, 1H, OCH ${ }_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.10 (dd, ${ }^{2} J=-10.4,{ }^{3} J=5.5,1 \mathrm{H}$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $4.65\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.4,{ }^{3} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right), 6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.18 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.43 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.917.99 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.18 (d, ${ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.22-8.28 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 9.95 (brs, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.89\left(\mathrm{CH}_{2}\right.$ epoxide), 49.83 (CHO epoxide), 69.12 ($\mathrm{OCH}_{2} \mathrm{CHOR}$), 101.60 ($\mathrm{d}, J_{\mathrm{CF}}=16.4, \mathrm{C}-3$ aniline), 113.99 (CN), 114.55 (C-3 salicyl), 116.92 (d , ${ }^{2} J_{C F}=20.6, C-5$ aniline $), 123.08$ ($C-1$ salicyl), 124.52 ($C-2$ aniline), 126.81 ($\mathrm{d},{ }^{3} J_{C F}=7.5, C-6$ aniline), 128.14 ($C-5$ salicyl), 132.50 ($C-6$ salicyl), 133.45 ($C-4$ salicyl), 135.37 ($d,{ }^{4} J_{C F}=2.7, C-1$ aniline), 154.48 ($C-2$ salicyl), 159.53 ($\mathrm{d},{ }^{1} J_{C F}=256.6, C-4$ aniline), 162.08 (CONH).

Melting point: $153^{\circ} \mathrm{C}$.

2-(oxiran-2-ylmethoxy)- N-(p-tolyl)benzamide (392)

392 (CAS: 81500-04-1 ${ }^{120,159}$) was prepared following general procedure \mathbf{D}, yielding 1.688 g (43\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.87-2.89$ (m[dd], $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-oxirane), 2.97-2.99 (m[t], 1H, CH a_{b}-oxirane), 3.46-3.50 (m, 1H, CH-oxirane), 4.13 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=$ 5.4, 1 H , salicyl- $\mathrm{OCH}_{a} \mathrm{H}_{b}$-oxirane), 4.55 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.4,1 \mathrm{H}$, salicyl- $\mathrm{OCH}_{a} \mathrm{H}_{b}$-oxirane), 6.97 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.11-7.19 ($\mathrm{m}, \mathrm{AA}^{\prime}$ of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in toluidine, $\mathrm{H}-5$ salicyl), 7.46 (ddd, ${ }^{3} J=7.5,{ }^{3} J=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.67,7.69$ ($B B^{\prime}$ of ${A A^{\prime} B B^{\prime}, 2 H, H-}^{\prime}$ $2^{\prime}, 6^{\prime}$ in toluidine), 8.27 (dd, ${ }^{3} J=7.8,{ }^{4} J=1.8,1 \mathrm{H}, H-6$ salicyl), $9.74(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=21.04$ (CONH$\left.-1^{\prime}-\mathrm{C}_{6} \mathrm{H}_{4}-4^{\prime}-\mathrm{CH}_{3}\right), 44.64\left(\mathrm{CH}_{2}\right.$ oxirane $)$, 49.94 (CH oxirane), 69.07 (salicyl- OCH_{2}-oxirane), 112.73 ($\mathrm{C}-3$ salicyl), 120.32 ($\mathrm{C}-2^{\prime}, 6^{\prime}$ in toluidine), 122.40 ($C-3$ salicyl), 122.77 ($C_{\mathrm{q}}-1$ salicyl), 129.62 (C-3', 5^{\prime} in toluidine), 132.82 ($C-6$ salicyl), 133.12 ($C-4$ salicyl), 133.72 ($C_{q^{-}} 4^{\prime}$ in toluidine), 136.24 ($C_{q^{-}} 1^{\prime}$ in toluidine), 156.01 ($C_{q^{-}}$ 2 salicyl),163.03 (CONH).

Melting point: $136-138^{\circ} \mathrm{C}$.

N-(2-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (393)

393 (CAS: 866034-84-6 ${ }^{120}$) was prepared following general procedure \mathbf{D}, yielding 1.402 g (75\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.76-2.78$ ($\mathrm{m}[\mathrm{dd}], 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-oxirane), 2.99-3.01 (m[t], $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{b}}$-oxirane), 3.51-3.55 (m, $1 \mathrm{H}, \mathrm{CH}$-oxirane), 4.18 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=6.1,1 \mathrm{H}$, salicyl$\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}}$-oxirane), 4.40 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}$, salicyl- $\mathrm{OCH}_{a} H_{b}$-oxirane), $7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2\right.$,

1H, H-3 salicyl), 7.04-7.20 (m,4H, H-3', $4^{\prime}, 5^{\prime}$ in $2^{\prime}-$ F-aniline, $H-5$ salicyl), 7.49 (ddd, ${ }^{3} J_{1}=7.3$, ${ }^{3} J_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.31\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $8.60\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=\right.$ ${ }^{3} J_{H F}=8.1,{ }^{4} J=1.5,1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $2^{\prime}-\mathrm{F}$-aniline), $10.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=45.07,45.09\left(\mathrm{CH}_{2}\right.$ oxirane $)$, 49.53, $49.56(\mathrm{CH}$ oxirane), 71.11 (salicyl-OCH ${ }_{2}$-oxirane), 112.69 ($C-3$ salicyl), 114.79 ($\mathrm{d}^{2}{ }^{2} J_{C F}=19.3, C-3^{\prime}$ in $2^{\prime}-\mathrm{F}-$ aniline), 121.97 ($C_{q^{-}}-1$ salicyl), 122.14 ($b r, C-6^{\prime}$ in $2^{\prime}-F-$ aniline), 122.34 ($C-5$ salicyl), 124.08 (d, ${ }^{3} J_{C F}=7.7, C-4$ ' in 2^{\prime}-F-aniline), 124.80 ($\mathrm{d}^{4}{ }^{4} J_{C F}=3.3, C-5^{\prime}$ in $2^{\prime}-$ F-aniline), 127.29 ($\mathrm{d}^{2}{ }^{2} J_{C F}=9.7$, $C_{q}-1^{\prime}$ in $2^{\prime}-$ F-aniline), 132.92 ($C-6$ salicyl), 133.65 ($C-4$ salicyl), 152.89 ($\mathrm{d},{ }^{1}{ }^{1}{ }_{C F}=-242.6, C_{q}-2^{\prime}$ in 2^{\prime}-F-aniline), 156.43 ($C_{q}-2$ salicyl), 163.17 (CONH).

Melting point: $108-111^{\circ} \mathrm{C}$.

N-(4-Fluoro-phenyl)-2-oxiranylmethoxy-benzamide (394)

394 (CAS 1510805-23-8) ${ }^{120}$ was prepared following general procedure \mathbf{D}, yielding 0.274 g (22\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.88-2.90\left(\mathrm{~m}[\mathrm{dd}], 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$-oxirane), 2.98-3.01 ($\mathrm{m}[\mathrm{t}]$, $1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$-oxirane), 3.47-3.51 (m, $1 \mathrm{H}, \mathrm{CH}$-oxirane), 4.13 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}$, salicyl$\mathrm{OCH}_{a} \mathrm{H}_{b}$-oxirane), 4.59 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}$, salicyl- $\mathrm{OCH}_{a} \mathrm{H}_{b}$-oxirane), 6.98 (dd, ${ }^{3} \mathrm{~J}=8.2$, ${ }^{4} J=0.6,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.01-7.08 (m[tr], $2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), $7.15\left(\mathrm{ddd}[\mathrm{tr}],{ }^{3} \mathrm{~J}_{1}={ }^{3} \mathrm{~J}_{2}=\right.$ $7.6,{ }^{4} \mathrm{~J}=0.8,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.47 (ddd, ${ }^{3} J_{1}=7.3,{ }^{3} \mathrm{~J}_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.75-7.80 (m, 2H, H-2', 6^{\prime} in $4^{\prime}-$ F-aniline), 8.27 (dd, ${ }^{3} J=7.8,{ }^{4} J=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.81 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.66\left(\mathrm{CH}_{2}\right.$ oxirane), $49.96(\mathrm{CH}$ oxirane), 68.91 (salicyl- OCH_{2}-oxirane), 112.78 ($\mathrm{C}-3$ salicyl), 115.68 ($\mathrm{d},{ }^{2} J_{C F}=22.3, C-3^{\prime}, 5^{\prime}$ in 4^{\prime}-F-aniline), 121.94 ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}$ in $4^{\prime}-F-$ aniline $), 122.47\left(C_{q}-1\right.$ salicyl), 122.50 ($C-5$ salicyl), 132.86 (C-6 salicyl), 133.33 ($C-4$ salicyl), 134.87 ($d,{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.7, C_{q^{-1}} 1^{\prime}$ in 4^{\prime}-F-aniline), 156.02 ($C_{q}-2$ salicyl), 159.36 ($\mathrm{d}^{1}{ }^{1}{ }_{C F}=-243, C_{q}-4^{\prime}$ in $4{ }^{\prime}-\mathrm{F}$-aniline), 163.12 (CONH).

Melting point: $113-116^{\circ} \mathrm{C}$.

N-(4-bromophenyl)-2-(oxiran-2-ylmethoxy)benzamide (395)

395 (CAS: 81500-06-3 ${ }^{159}$, no characterization) was prepared following general procedure D, yielding $4.320 \mathrm{~g}(52 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.86-2.88$ ($\mathrm{m}[\mathrm{dd}], 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-oxirane), 2.97-2.99 ($\mathrm{m}[\mathrm{t}]$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-oxirane), 3.46-3.49 (m, $1 \mathrm{H}, \mathrm{CH}$-oxirane), 4.09 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}$, salicyl$\mathrm{OCH}_{a} \mathrm{H}_{b}$-oxirane), 4.59 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}$, salicyl- $\mathrm{OCH}_{a} \mathrm{H}_{b}$-oxirane), 6.96 (dd, ${ }^{3} \mathrm{~J}=8.3$, ${ }^{4} \mathrm{~J}=0.6,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.13 (ddd [tr], ${ }^{3} J_{1}={ }^{3} J_{2}=7.6,{ }^{4} \mathrm{~J}=0.8,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.43, 7.45 (AA' of $A A^{\prime} B^{\prime}, 2 H,\left(H-3^{\prime}, 5^{\prime}\right.$ aniline), 7.46 (ddd, ${ }^{3} J_{1}=7.4,{ }^{3} J_{2}=8.5,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.70. 7.72 (BB^{\prime} of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H},\left(\mathrm{H}-2^{\prime}, 6^{\prime}\right.$ aniline), $8.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 9.84 (s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.64\left(\mathrm{CH}_{2}\right.$ oxirane), 49.92 (CH oxirane), 68.82 (sa-licyl-OCH ${ }_{2}$-oxirane), 112.73 ($C-3$ salicyl), 116.59 ($C_{q}-4^{\prime}$ 'aniline), 121.87 ($C-2^{\prime}, 6^{\prime}$ aniline), 122.26 ($C_{q^{-}}$- salicyl), 122.45 (C-5 salicyl), 132.01 ($C-3^{\prime}, 5^{\prime}$ aniline), 132.79 (C-6 salicyl), 133.46 (C-4 salicyl), 137.89 ($C_{q}-1$ ' aniline), 155.96 ($C_{q}-2$ salicyl), 163.21 (CONH).

Melting point: $110-113^{\circ} \mathrm{C}$.

2-(oxiran-2-ylmethoxy)- N-(3-(trifluoromethyl)phenyl)benzamide (396)

396 (CAS: 1510805-26-1 ${ }^{120}$) was prepared following general procedure D, yielding 22.531 g (75\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.90-2.92\left(\mathrm{~m}[\mathrm{dd}], 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$-oxirane), 3.00-3.03 (dd[t], $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$-oxirane), 3.49-3.53 (m[sext], $1 \mathrm{H}, \mathrm{CH}$-oxirane), 4.16 (dd, ${ }^{2} \mathrm{~J}=-10.6,{ }^{3} \mathrm{~J}=5.3,1 \mathrm{H}$,
salicyl-OCH ${ }_{a} H_{b}$), $4.61\left(\mathrm{dd},{ }^{2} J=-10.6,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}\right.$, salicyl $\left.-\mathrm{OCH}_{\mathrm{a}} H_{b}\right), 7.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=0.6\right.$, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.17 (ddd, ${ }^{3} J_{1}={ }^{3} J_{2}=8.0,{ }^{4} \mathrm{~J}=0.8,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.36 (d, br, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$ in $3^{\prime}-$ CF_{3}-aniline), 7.46 ($\mathrm{m}[\mathrm{tr}], 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $7.49\left({ }^{3} \mathrm{~J}_{1}=7.4,{ }^{3} \mathrm{~J}_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.95 (d, br, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.22 ($\mathrm{m}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.27 (dd, ${ }^{3} J=7.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $10.00(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.69\left(\mathrm{CH}_{2}\right.$ oxirane), 49.94 (CH oxirane), 68.76 (salicyl-OCH H_{2}-oxirane), 112.85 ($C-3$ salicyl), 117.17 ($q,{ }^{3} J_{C F}=3.9, C-2^{\prime}$ in 3^{\prime} - CF_{3}-aniline), 120.64 ($\mathrm{q}^{3}{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 122.18 ($C_{q^{\prime}}-1$ salicyl), 122.59 ($C-5$ salicyl), 123.31 ($C-6^{\prime}$ in 3^{\prime}-CF ${ }_{3}$-aniline), 123.86 ($q,{ }^{1} J_{C F}=-273.3,3^{\prime}-C F_{3}$-aniline), 129.57 ($C-5^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 131.50 ($\mathrm{q},{ }^{2} J_{C F}=32.3, C-3^{\prime}$ in 3^{\prime}-CF 3_{3}-aniline), 132.93 ($C-6$ salicyl), 133.64 ($C-4$ salicyl), 139.34 ($C_{q}-1^{\prime}$ ' in 3^{\prime} - CF $_{3}$-aniline), 156.06 ($C_{q}-2$ salicyl), 163.46 (CONH).

Melting point: $85-87^{\circ} \mathrm{C}$.

N-(2,4-difluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (397)

397 (CAS: 1510805-25-0 ${ }^{120}$) was prepared following general procedure \mathbf{D}, yielding 1.250 g (84\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.76-2.28$ ($\mathrm{m}[\mathrm{dd}], 1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$-oxirane), 2.99-3.01 (dd[t], $1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$-oxirane), 3.49-3.53 (m[sext], $1 \mathrm{H}, \mathrm{CH}$-oxirane), 4.15 (dd, ${ }^{2} \mathrm{~J}=-10.7,^{3} \mathrm{~J}=6.3,1 \mathrm{H}$, salicyl- $\mathrm{OCH}_{a} \mathrm{H}_{b}$), $4.43\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.7,{ }^{3} \mathrm{~J}=3.4,1 \mathrm{H}\right.$, salicyl- $\left.-\mathrm{OCH}_{a} H_{b}\right), 6.86-6.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$ in 2,4-difluoroaniline), 7.01 (d, ${ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.16 (ddd, ${ }^{3} J_{1}={ }^{3} J_{2}=7.6,{ }^{4} \mathrm{~J}=0.8,1 \mathrm{H}, \mathrm{H}-$ 5 salicyl), 7.50 (ddd, ${ }^{3} J_{1}=7.4,{ }^{3} J_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}\right.$, $H-6$ salicyl), 8.52-8.58 (m, 1H, H-6' in 2,4-difluoroaniline), 10.11 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right)$: $\delta=44.96$, $44.97\left(\mathrm{CH}_{2}\right.$ oxirane), 49.52, $49.54(\mathrm{CH}$ oxirane), 71.04 (salicyl-OCH H_{2}-oxirane), $103.57\left(\mathrm{dd},{ }^{2} J_{1 C F}=23.4,^{2} J_{1 C F}=26.6, C-3\right.$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 111.31 ($\mathrm{dd},{ }^{2} J_{C F}=21.5,{ }^{4} J_{C F}=3.6, C-5$ ' in 2^{\prime}, 4^{\prime}-difluoroaniline), 112.70 ($C-3$ salicyl), $121.72\left(C_{q}-1\right.$ salicyl), $122.38\left(C-5\right.$ salicyl), $123.04\left(\mathrm{dd},{ }^{3} J_{2 C F}=8.9,{ }^{3} J_{2 C F}=2.4, C-6^{\prime}\right.$ in 2^{\prime}, 4^{\prime}-difluoroaniline), 123.62 (dd, ${ }^{2} J_{1 C F}=9.9,{ }^{4} J_{C F}=3.8, C_{q}-1$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 132.89 ($C-6$
salicyl), 133.74 (C-4 salicyl), 152.84 (dd, ${ }^{1} J_{1 C F}=246.1,{ }^{3} J_{2 C F}=11.8, C-4{ }^{\prime}$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), $156.41\left(C_{q}-2\right.$ salicyl), $158.47\left(\mathrm{dd},{ }^{1} J_{1 C F}=245.7,{ }^{3} J_{2 C F}=11.8, C-2^{\prime}\right.$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 163.15 (CONH).

Melting point: $117-118^{\circ} \mathrm{C}$.

N-(oxiran-2-ylmethyl)-3,5-bis(trifluoromethyl)aniline (398)

Crushed $\mathrm{KOH}(0.252 \mathrm{~g}, 4.49 \mathrm{mmol})$ was loaded to a 100 mL round bottom flask. 3,5bis(trifluoromethyl)aniline ($0.702 \mathrm{~mL}, 4.49 \mathrm{mmol}$) and epichlorohydrin ($1.475 \mathrm{~mL}, 18.86$ mmol) were added immediately and the mixture was stirred on the roatavapor at $85^{\circ} \mathrm{C}$ bath temperature. After complete consumption was observed via TLC (1h), unreacted epichlorohydrin was removed. The residue was extracted three times with ethyl acetate. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. 398 was obtained as yellow oil in 80% yield (1.025 g).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.70\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-4.7,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$ epoxide), 2.86 (dd, ${ }^{2} \mathrm{~J}=-4.7,{ }^{3} \mathrm{~J}=4.0,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.20-3.31(m,2H,OCH$\left.{ }_{a} \mathrm{H}_{b} \mathrm{CHOR}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}\right)$, 3.61$3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}\right.$), 4.34 (br s, $1 \mathrm{H}, \mathrm{NH}$), 6.99 (s, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 7.18 (s, $1 \mathrm{H}, \mathrm{H}-4$ aniline).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=44.71\left(\mathrm{CH}_{2}\right.$ epoxide), $45.22\left(\mathrm{NCH}_{2} \mathrm{CHOR}\right), 50.57(\mathrm{CH}$ epoxide), 110.97 ($\mathrm{m},{ }^{3} J_{C F}=4.0, C-4$ aniline), 112.28 ($\mathrm{q},{ }^{3} J_{C F}=3.5, C-2,6$ aniline), $123.64\left({ }^{1} J_{C F}=-\right.$ 273.0, $C F_{3}$ aniline), 132.68 ($\mathrm{q}^{2}{ }^{2} J_{C F}=31.9, C-3,5$ aniline), 148.63 ($C-1$ aniline).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 286.07 found: 286.15, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 637.29 found: 637.21.
N-(4-fluorophenyl)-3-(oxiran-2-ylmethoxy)-2-naphthamide (399)

399 (CAS: 1174069-50-1 ${ }^{160}$) was prepared following general procedure \mathbf{D}, yielding 0.217 g (17\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.88$ (dd, $J=4.8, J=2.7,1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ epoxide), 2.97 (dd $[\mathrm{t}], J=4.5,1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b}$ epoxide), 3.49-3.54 (m, $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CHOR}$), 4.04 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-11.2,{ }^{3} \mathrm{~J}=$ 6.4, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOR}$), 4.48 (dd, ${ }^{2} \mathrm{~J}=-11.2,{ }^{3} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOR}$), $7.04-7.11$ (m[tr], 2 H , $\mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 7.59-7.63 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}$-napththyl), 7.75 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}$-napththyl), 7.81-7.86 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ in 4^{\prime}-F-aniline), $7.86-7.92$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}$-napththyl), 8.17-8.22 (m, $2 \mathrm{H}, \mathrm{H}-$ napththyl), 9.86 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=44.80\left(\mathrm{CH}_{2}\right.$ epoxide), 50.57 (CHO epoxide), 77.21 $\left(\mathrm{OCH}_{2} \mathrm{CHOR}\right), 116.03\left(\mathrm{~d},{ }^{2} J_{C F}=22.3, C-3^{\prime}, 5^{\prime}\right.$ in $4^{\prime}-\mathrm{F}$-aniline), $122.49\left(\mathrm{~d}^{3}{ }^{3} J_{C F}=7.6, C-2^{\prime}, 6^{\prime}\right.$ in $4^{\prime}-\mathrm{F}-$ aniline), 123.01 (CH naphthyl), 125.73 (CH naphthyl), 127.24 (CH naphthyl), 127.47 (CH naphthyl), 128.70 (CH naphthyl), 128.81 (CH naphthyl), 137.20 ($C_{q} \mathbf{- 1}^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 153.42 ($C_{q^{-}}-3$ naphthyl), 159.75 (C-4' in 4'-F-aniline) by HMBC, 163.15 (CONH) by HMBC. $C_{q}-2,4 \mathrm{a}, 8 \mathrm{a}$ naphthyl not recorded

Melting point: $108-111^{\circ} \mathrm{C}$.

4.3.3 Final Compounds

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (95)

95 was prepared following general procedure \mathbf{E}, yielding $0.096 \mathrm{~g}(76 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $3,23{ }^{\circ} \mathrm{C}$): $\delta=2.37-2.52$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{NCH}_{\mathrm{ax}}-2^{\prime \prime}, 6^{\prime \prime}, \mathrm{NCH}_{2}-3^{\prime \prime} .5^{\prime \prime}$ of piperazine, $\mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=3.7\right)$), $2.59\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=10.8,1 \mathrm{H}\right.$, $\mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.68-2.78 (m, dyn, $2 \mathrm{H}, \mathrm{NCH}_{\text {eq- }} \mathrm{2}^{\prime \prime}, 6^{\prime \prime}$ of piperazine), 3.99 (dd, ${ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=$ 6.1, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.15-4.22 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-\right.$ $9.4,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.16-7.22(m, 2H, $2 x \mathrm{CH}-4$ phenyl), 7.24-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.33 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.397.44 ($\mathrm{m}, 6 \mathrm{H}, 2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl, $\mathrm{H}-5$ aniline, $\mathrm{H}-4$ salicyl), 8.01-8.07 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.21 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.26 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=51.93\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $53.62\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $59.56\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 64.96(\mathrm{CH}(\mathrm{OH}))$, $71.69\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $76.18\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 114.30 (C-3 salicyl), 117.29 ($\mathrm{q},{ }^{4} J_{C F}=4.1, C-2^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 120.66 ($\mathrm{q},{ }^{4} J_{C F}=3.8, C-4$ in $3^{\prime}-$ CF_{3}-aniline), 123.48 ($C-6$ ' in $3{ }^{\prime}$ - CF_{3}-aniline), 123.62 ($C_{q}-1$ salicyl), 124.15 ($q,{ }^{1} J_{C F}=-272.3,3-$ CF $_{3}$-aniline), 127.17 ($C-4^{\prime \prime}$ phenyl), 127.59 ($C_{q}-5$ salicyl), 128.04 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.66 (C $3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.52 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.29 ($q,{ }^{2} J_{C F}=31.6, C-3^{\prime}$ in $3^{\prime}-C F_{3}$-aniline), 132.39 ($C-6$ salicyl), 133.06 ($C-4$ salicyl), 139.27 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}{ }^{\prime}$ CFF $_{3}$-aniline), 142.64 ($C_{q^{\prime}}-1^{\prime \prime}$ phenyl), 155.14 ($C_{q}-2$ salicyl), 162.37 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 624.2245 found: 624.2241.
Melting point: $66-70^{\circ} \mathrm{C}$.
(S)-(+)-2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (96)

96 was prepared following general procedure E, using (S)-(-)-5-chloro-2-(oxiran-2-ylmethoxy)- N-(3-(trifluoromethyl)phenyl)benzamide (99), yielding 0.224 g (77\%) of the desired product.

For NMR assignment see (\pm)-2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro- N -(3-(trifluoromethyl)phenyl)benzamide (194).
$[\alpha]_{\mathrm{D}}{ }^{20}=14.8^{\circ}, \mathrm{c}=1$ in MeOH .
(R)-(-)-2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (97)

97 was prepared following general procedure \mathbf{E}, using (R)-(+)-5-chloro-2-(oxiran-2-ylmethoxy)- N-(3-(trifluoromethyl)phenyl)benzamide (100), yielding $0.214 \mathrm{~g}(80 \%)$ of the desired product.

For NMR assignment see (\pm)-2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro- N-(3-(trifluoromethyl)phenyl)benzamide (194).
$[\alpha]_{\mathrm{D}}{ }^{20}=15.9^{\circ}, \mathrm{c}=1$ in MeOH .
(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((R)-3-(4-chloro-2-((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2carboxylate (102)

102 was prepared following general procedure \mathbf{E}, yielding $0.137 \mathrm{~g}(75 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), $0.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4,3 \mathrm{H}\right.$, $5-\mathrm{CH}_{3}$ cyclohexyl), $0.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{a}-4\right.$ cyclohexyl), $0.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), 0.91 (m , $1 \mathrm{H}, \mathrm{H}_{a}-6$ cyclohexyl), 0.94-1.07 (m, 1H, $\mathrm{H}_{a}-3$ cyclohexyl), 1.28 (m, 1H, H-5 cyclohexyl), 1.36 (m [tt] $, J=12.0, J=3.1,1 \mathrm{H}, \mathrm{H}-2$ cyclohexyl), 1.58-1.70 (m, $2 \mathrm{H}, \mathrm{H}_{b}-4$ cyclohexyl, $\mathrm{H}_{a}-3$ cyclohexyl), 1.77-2.01 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}$ isopropyl, $H_{b}-6$ cyclohexyl, $H_{a, b}-4$ pyrrolidine, $H_{a}-3$ pyrrolidine), 2.16$2.28\left(\mathrm{~m}, 1 \mathrm{H}, H_{b}-3\right.$ pyrrolidine), $2.66\left(\mathrm{~m}, 1 \mathrm{H}, H_{a}-5\right.$ pyrrolidine), $2.73\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.7,{ }^{3} \mathrm{~J}=3.2,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.94\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.7 \mathrm{I}^{3} \mathrm{~J}=9.2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 3.09-3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{b}-5\right.$ pyrrolidine), $3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2\right.$ pyrrolidine), 3.95-4.03 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=\right.$ $6.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), 4.48-4.63(m,1H , $\mathrm{CH}(\mathrm{OH})), 4.68\left(\mathrm{dd}, \mathrm{J}_{a a}=10.6, J_{a e}=4.3,1 \mathrm{H}, \mathrm{CH}-1\right.$ cyclohexyl), $6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.351 H ($\mathrm{d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), $7.40\left(\mathrm{dd},{ }^{2} \mathrm{~J}=8.8,^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.46 (dd [t], ${ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.98 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.22 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.30 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 10.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=16.09\left(\mathrm{CH}_{3}\right.$ isopropyl), $20.91\left(\mathrm{CH}_{3}\right.$ isopropyl), 21.96 (5-CH3 cyclohexyl), 23.27 (C-3 cyclohexyl), 24.17 (C-4 pyrrolidine), 26.38 (CH isopropyl), 30.74 (C-3 pyrrolidine), 31.41 (C-5 cyclohexyl), 34.22 (C-4 cyclohexyl), 40.93 (C-6 cyclohexyl), 47.10 (C-2 cyclohexyl), 55.91 ($C-5$ pyrrolidine), $58.02\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 66.18 ($C-2$ pyrrolidine), 67.77 $(\mathrm{CH}(\mathrm{OH}))$, $71.53\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $75.37\left(\mathrm{C}-1\right.$ cyclohexyl), $114.18\left(\mathrm{C}-3\right.$ salicyl), $117.32\left(\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=\right.$ 4.0, $\mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.63 ($\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=3.7, \mathrm{C}-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.63 (overlay with C 6^{\prime} aniline, $C_{q}-1$ salicyl), 123.66 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 124.21 ($\mathrm{q},{ }^{1} J_{C F}=-272.5,3-C_{3}$-aniline), 127.43 ($C_{q^{-}}-5$ salicyl), 129.41 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.34 ($q,^{2} J_{C F}=32.2, C-3^{\prime}$ in $3^{\prime}-$ CF $_{3}{ }^{-}$
aniline), 132.40 (C - 6 salicyl), 133.00 (C-4 salicyl), 139.39 ($C_{q^{-}} 1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 155.23 ($C_{q}-2$ salicyl), 162.47 (CONH), 175.43 (COOR).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 625.27 found: $625.37,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 623.25 found: 623.46 . $[\alpha]_{D}{ }^{20}=+14.6^{\circ}, \mathrm{c}=1$ in CHCl_{3}.

Melting point: $150-153^{\circ} \mathrm{C}$.
(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((S)-3-(4-chloro-2-((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2carboxylate (103)

103 was prepared following general procedure E, yielding $0.063 \mathrm{~g}(93 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), 0.79-0.83(m, 1 H , $H_{a}-4$ cyclohexyl), $0.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5,3 \mathrm{H}, 5-\mathrm{CH}_{3}\right.$ cyclohexyl), $0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), 0.90-0.96 (m, 1H, $H_{a}-6$ cyclohexyl), 0.97-1.05 (m, 1H, $H_{a}-3$ cyclohexyl), 1.32-1.44 (m, 2H, H-2 cyclohexyl, $H-5$ cyclohexyl), 1.57-1.69 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{a}-4$ cyclohexyl, $\mathrm{H}_{a}-3$ cyclohexyl), 1.77-1.99 (m, $5 \mathrm{H}, \mathrm{CH}$ isopropyl, H_{b} - 6 cyclohexyl, $H_{a, b}-4$ pyrrolidine, $H_{a}-3$ pyrrolidine), 2.16-2.25 (m, $1 \mathrm{H}, H_{b}-3$ pyrrolidine), $2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{a}-5\right.$ pyrrolidine), $2.72\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=2.2,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.81\left(\mathrm{dd},{ }^{2} J=-12.1,{ }^{3} \mathrm{~J}=10.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 3.30-3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{b}-5\right.$ pyrrolidine), 3.36 (dd, ${ }^{3} \mathrm{~J}=8.6,^{3} \mathrm{~J}=5.7,1 \mathrm{H}, \mathrm{H}-2$ pyrrolidine), $3.99\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-8.5,{ }^{3} \mathrm{~J}=7.0,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 4.20-4.26 (m, 2H, CH(OH), $\mathrm{OCH}_{\mathrm{a}} H_{b} \mathrm{CH}(\mathrm{OH})$), $4.68\left(\mathrm{dd}, \mathrm{J}_{a a}=10.6, \mathrm{~J}_{a e}=4.3,1 \mathrm{H}\right.$, CH-1 cyclohexyl), 6.92 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.35 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3aniline), 7.40 ($\mathrm{dd},{ }^{2} \mathrm{~J}=8.8, \mathrm{~J}^{3} \mathrm{~J}=2.9,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.46 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3aniline), 8.04 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.22 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $8.23(\mathrm{~s}$, br, 1H, H-2" in $3^{\prime \prime}$-CF3-aniline), 10.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=16.06\left(\mathrm{CH}_{3}\right.$ isopropyl), $20.93\left(\mathrm{CH}_{3}\right.$ isopropyl), 22.04 ($5-\mathrm{CH}_{3}$ cyclohexyl), 23.22 (C-3 cyclohexyl), 24.02 (C-4 pyrrolidine), 26.32 (CH isopropyl), 29.86
(C-3 pyrrolidine), 31.47 (C-5 cyclohexyl), 34.23 (C-4 cyclohexyl), 41.06 (C-6 cyclohexyl), 47.12 (C-2 cyclohexyl), 53.48 ($C-5$ pyrrolidine), $57.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 66.05 ($C-2$ pyrrolidine), 67.33 $(\mathrm{CH}(\mathrm{OH})), 72.17\left(\mathrm{OCH} 2 \mathrm{CH}(\mathrm{OH})\right.$), 75.22 ($\mathrm{C}-1$ cyclohexyl), 114.48 ($\mathrm{C}-3$ salicyl), 117.54 ($\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=$ $3.9, C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.60 ($\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.64 (overlay with C 6^{\prime} aniline, $C_{q}-1$ salicyl), 123.82 ($C-6^{\prime}$ in $3^{\prime}-C F_{3}$-aniline), 124.23 ($q,{ }^{1} J_{C F}=-272.5,3-C F_{3}$-aniline), 127.52 ($C_{q^{-}}-5$ salicyl), 129.43 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.20 ($\mathrm{q}^{2}{ }^{2} J_{C F}=32.0, C-3^{\prime}$ in $3^{\prime}-$ CF $_{3^{-}}$ aniline), 132.40 (C - 6 salicyl), 132.97 ($C-4$ salicyl), 139.36 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.24 ($C_{q}-2$ salicyl), 162.49 (CONH), 174.24 (COOR).
$[\alpha]_{D}{ }^{20}=+8.7^{\circ}, \mathrm{c}=1$ in MeOH .
Melting point: $127-135^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(naphthalen-1-ylmethyl)benzamide (141)

141 was prepared following general procedure \mathbf{E}, yielding $0.457 \mathrm{~g}(76 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.41\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.60-1.67 (m, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), $1.69-1.78\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}-$ adamantane), 1.93, 1.96, 1.99, 2,02 ($\mathrm{AB},{ }^{2} \mathrm{~J}_{A B}=-11.7,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), $2.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}\right.$ $\left.=-12.0,{ }^{3} \mathrm{~J}=9.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right)$, $3.40(\mathrm{~m}[\mathrm{sext}], 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 3.81\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=5.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $3.94\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-\right.$ $9.4,{ }^{3} \mathrm{~J}=3.7, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $5.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-14.6,{ }^{3} \mathrm{~J}=4.7,2 \mathrm{H}, \mathrm{CONHCH}_{a} \mathrm{H}_{\mathrm{b}}\right.$-1-naphthyl), 5.14 (dd, ${ }^{2} J=-14.6,{ }^{3} J=5.2,2 \mathrm{H}, \mathrm{CONHCH}_{\mathrm{a}} \mathrm{H}_{b}$-1-naphthyl), $6.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.33 (dd, ${ }^{3} J=8.7,{ }^{4} J=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.45 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}_{1}={ }^{3} \mathrm{~J}_{2}=7.5,1 \mathrm{H}, \mathrm{H}-3^{\prime}$ naphthyl), 7.48-7.57 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}, 7^{\prime}$ in naphthyl), $7.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ in naphthyl), $7.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9,{ }^{4} \mathrm{~J}=\right.$ 1.1, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$ in naphthyl), $8.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-8^{\prime}\right.$ in naphthyl), $8.23\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.6, \mathrm{H}-6\right.$ salicyl), 8.45 (t, br, ${ }^{2} \mathrm{~J}=4.0,1 \mathrm{H}, \mathrm{CONHCH}_{2}-1$-naphthyl).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=28.53$ (CH -adamantane), 33.48 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $37.34\left(\mathrm{CH}_{2}\right.$-adamantane), 40.82 (CH_{2}-adamantane), 42.52 (CONHCH_{2}-1-naphthyl), 51.64 $\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right), 62.02\left(\mathrm{NHCH}_{2}\right.$-1-adamantanyl), $66.73(\mathrm{CH}(\mathrm{OH})), 71.15\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 114.34 ($C-3$ salicyl), 123.61 ($C_{q}-1$ salicyl), 124.13 ($C-8$ in naphthyl), 125.63 ($C-3$ in naphthyl), 126.13 ($C-6$ in naphthyl), 126.73 ($C-7$ in naphthyl), 127.17 ($C-2$ in naphthyl), 128.59 ($C-4$ in naphthyl), 128.78 ($C-5$ in naphthyl), 131.86 ($C_{q}-1$ in naphthyl), 132.19 ($C-6$ salicyl), 132.36 (C 4 salicyl), 133.91 ($C_{q}-8 a$ in 1 naphthyl), 134.11 ($C_{q}-4 a$ in naphthyl), 155.60 ($C_{q}-2$ salicyl), 163.83 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 533.26 found: 533.37, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 531.24 found: 531.27. Melting point: $111-116^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)- N -(p-tolyl)benzamide (142)

142 was prepared following general procedure \mathbf{E}, yielding $0.179 \mathrm{~g}(38 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.50\left(\mathrm{~d}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), $1.60-1.67(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.69-1.77 (m, 3H, CH in CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ adamantane), 2.21, 2.24, 2.29, $2.32\left(\mathrm{AB},{ }^{2} \mathrm{~J}_{A B}=-11.5,2 \mathrm{H},\left(-\mathrm{NHCH}_{2}\right.\right.$-adamantane), $2.33(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.75 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12, .3,^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), $2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,^{3} \mathrm{~J}=3.6,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.02-4.12\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH}), 4.23-4.30(\mathrm{~m}, 1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.11 (dd[t], $2 \mathrm{x}^{3} \mathrm{~J}=7.4,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.13, 7.15 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{AA}^{\prime}$ of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-3^{\prime}, 5^{\prime}$ toluidine), 7.45 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=7.4,{ }^{3} \mathrm{~J}=8.3^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-$ 4 salicyl), $7.68,7.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{BB}^{\prime}\right.$ of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-2^{\prime}, 6^{\prime}$ toluidine), $8.26\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-\right.$ 6 salicyl), 10.04 (s, br, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=21.05$ ($4^{\prime}-\mathrm{CH}_{3}$ toluidine), 28.54 (CH -adamantane), 33.65 ($\mathrm{C}_{q}-1$ adamantane), $37.31\left(\mathrm{CH}_{2}\right.$-adamantane), $40.90\left(\mathrm{CH}_{2}\right.$-adamantane $), 51.86$ $\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 62.45\left(\mathrm{NHCH}_{2}-1^{\prime}\right.$-adamantane), $67.37(\mathrm{CH}(\mathrm{OH})), 71.22\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$,
112.69 ($C-3$ salicyl), 120.56 ($C-2^{\prime}, 6^{\prime}$ toluidine), 121.92 ($C-5$ salicyl), 122.79 ($C_{\mathrm{q}}-1$ salicyl), 129.50 ($C-3^{\prime}, 5^{\prime}$ toluidine), 132.64 ($C-6$ salicyl), 132.99 ($C-4$ salicyl), 133.50 ($C_{q^{-}} 4^{\prime}$ toluidine), 136.50 ($C_{q}-1$ ' toluidine), 156.69 ($C_{q}-2$ salicyl), 163.37 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 449.28 found: $449.35,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 447.27 found: 447.33 .

2-(3-((-adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4fluorophenyl)benzamide (143)

143 was prepared following general procedure E, yielding $0.206 \mathrm{~g}(44 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.45-1.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.60-1.67 (m , br, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.70-1.79 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.99 (s, br, 3 H , CH -adamantane), 2.22, 2.25, 2.30, 2.33 ($\mathrm{AB},{ }^{2} \mathrm{~J}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} H_{\mathrm{b}}$-1-adamantane), 2.73 $\left(d d,{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=9.2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 2.85\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.07-4.13(m,1H,CH(OH)), $4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 6.99-7.06 ($\mathrm{m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), $7.40\left(\mathrm{dd},{ }^{2} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.74-7.79 (m, 2H, $H-2^{\prime}, 6^{\prime}$ in 4^{\prime} F-aniline), 8.22 ($\mathrm{d}^{4}{ }^{4}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.49$ (CH -adamantane), 33.64 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), $40.89\left(\mathrm{CH}_{2}\right.$-adamantane), $51.63\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.41\left(\mathrm{NHCH}_{2}-1\right.$ adamantanyl), $67.13(\mathrm{CH}(\mathrm{OH})), 71.78\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $114.32\left(\mathrm{C}-3\right.$ salicyl), $115.58\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ 22.5, $C-3^{\prime}, 5^{\prime}$ in $4^{\prime}-F$-aniline), 122.24 ($\mathrm{d}^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}$ in $4^{\prime}-F-$ aniline), 123.99 ($C_{q^{\prime}}-1$ salicyl), 127.47 ($C_{q}-5$ salicyl), 132.34 ($C-6$ salicyl), 132.76 ($C-4$ salicyl), 134.83 ($d,{ }^{4} J_{C F}=2.2, C_{q^{-}} 1^{\prime}$ in $4^{\prime}-$ F-aniline), 155.20 ($C_{q^{\prime}}-2$ salicyl), 159.43 ($\mathrm{d}^{1}{ }^{1} J_{C F}=-243, C-4^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 162.11 (CONH-4'-Faniline).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 453.25 found: $453.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 451.24 found: 451.30 .
Melting point: $120-125^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(2,4difluorophenyl)benzamide (144)

144 was prepared following general procedure E, yielding $0.194 \mathrm{~g}(42 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.51\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), $1.60-1.67(\mathrm{~m}, 3 \mathrm{H}$, CH_{2}-adamantane), 1.69-1.77 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.22, 2.25, 2,29, 2,32 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), $2.72\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=\right.$ 8.6, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), $2.87\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right.$), 4.09-4.16 ($\mathrm{m}[\mathrm{sext}], 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.17-4.24 (m, $2 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})$), 6.84-6.93 (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 7.05 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.13\left(\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}_{1}={ }^{3} \mathrm{~J}_{2}=7.5,1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.48 (ddd, ${ }^{3} J_{1}=7.5,{ }^{3} J_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.26\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.40-8.48 (m, 1H, H-6' in 2^{\prime}, 4'-difluoroaniline), 10.05 ($\mathrm{s}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.54$ (CH -adamantane), $33.67\left(\mathrm{C}_{\mathrm{q}}-1\right.$ " adamantane $)$, $37.31\left(\mathrm{CH}_{2}\right.$-adamantane), $40.91\left(\mathrm{CH}_{2}\right.$-adamantane), $52.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.60\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $67.43\left(\mathrm{CH}(\mathrm{OH})\right.$ doublet), $72.02\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 103.59\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{1 C F}=23.6,{ }^{2} \mathrm{~J}_{1 C F}=\right.$ 26.4, C-3' in 2^{\prime}, 4^{\prime}-difluoroaniline), 111.28 (dd, ${ }^{2} J_{C F}=21.5,{ }^{4} J_{C F}=3.8, C-5^{\prime}$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 113.02 ($C-3$ salicyl), 121.76 ($C_{q}-1$ salicyl), 122.00 ($C-5$ salicyl), 123.42 (dd, ${ }^{2} J_{2 C F}=10.3,{ }^{4} J_{1 C F}=3.8, C_{q}-1$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), $123.91\left(\mathrm{dd},{ }^{3} J_{1 C F}=2.4,{ }^{3} J_{2 C F}=9.1, C-6{ }^{\prime}\right.$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), 132.72 (C-6 salicyl), 133.65 (C-4 salicyl), 154.37, 154.48 (part of $C_{q}-4^{\prime}$ in $2^{\prime}, 4^{\prime}$-difluoroaniline), $156.96\left(C_{q}-2\right.$ salicyl), $158.66\left(\mathrm{dd},{ }^{1} J_{1 C F}=245,{ }^{3} J_{2 C F}=11.7, C_{q^{\prime}}-2^{\prime}\right.$ in $2^{\prime}, 4^{\prime}-$ difluoroaniline), 163.57 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]+$: calculated.: 471.2458 found: 471.2459 .
Melting point: $101-105^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (145)

145 was prepared following general procedure \mathbf{E}, yielding $0.209 \mathrm{~g}(13 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.48-1.53\left(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.60-1.67 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.68-1.77 (m, br, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.98 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.23, 2.26, 2.30, 2.33 ($\mathrm{AB},{ }^{2} \mathrm{~J}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-1$-adamantane), 2.75 (dd, $\left.{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=9.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.05\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.09-4.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.31\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.14 (dd $[\mathrm{t}]$, ${ }^{3} J_{1}={ }^{3} J_{2}=7.5,{ }^{4} J_{2}=0.8,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.34 (d, br, ${ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4$ in $3{ }^{\prime}$-CFF - aniline), 7.44 (dd $[\mathrm{t}],{ }^{3} J_{1}={ }^{3} J_{2}=7.8,1 \mathrm{H}, \mathrm{H}-5^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 7.48 (ddd, ${ }^{3} J_{1}=7.4,{ }^{3} \mathrm{~J}_{2}=8.4,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.09 ($\mathrm{d}, \mathrm{br},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.14 ($\mathrm{s}[\mathrm{t}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}{ }^{-}$ aniline), 8.26 (dd, ${ }^{3} \mathrm{~J}=7.8,^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $10.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.51$ (CH -adamantane), 33.60 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $37.28\left(\mathrm{CH}_{2}\right.$-adamantane), $40.83\left(\mathrm{CH}_{2}\right.$-adamantane), $51.55\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.23\left(\mathrm{NHCH}_{2}-1-\right.$ adamantanyl), $67.00\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.34\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $112.78\left(\mathrm{C}-3\right.$ salicyl), $117.35\left(\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=3.9\right.$, $C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.38 ($\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=3.8, C-4^{\prime}$ in 3^{\prime} - CF_{3}-aniline), 122.10 ($C-5$ salicyl), 122.20 ($C_{q}-1$ salicyl), 123.56 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 129.44 ($C-5^{\prime}$ in $3^{\prime}-C_{3}$-aniline), $131.29\left(^{2} J_{C F}=32.6\right.$, C-3' in 3^{\prime}-CF ${ }_{3}$-aniline), 132.74 (C - 6 salicyl), 133.48 ($C-4$ salicyl), 139.67 ($C_{q}-1^{\prime}$ in 3^{\prime}-CF F_{3}-aniline), 156.77 ($C_{\mathrm{q}}-2$ salicyl), 163.79 (CONH). CF $_{3}$ not recorded

HRMS: $[\mathrm{M}+\mathrm{H}]+$: calculated.: 503.2515 found: 503.2521.
Melting point: $123-127^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(2fluorophenyl)benzamide (146)

146 was prepared following general procedure E, yielding 0.436 g (100\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.48-1.53\left(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.59-1.67 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.68-1.76 (m, br, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.97 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.22, 2.25, 2.29, 2.32 ($\mathrm{AB},{ }^{2} \mathrm{~J}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-1-adamantane), 2.73 (dd, ${ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $2.89\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}\right.$, $\mathrm{NCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 4.12-4.27 (m, 3H, salicyl- $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}}, \mathrm{CH}(\mathrm{OH})$), 7.02-7.12 (m, 3H, H-3 salicyl, $\mathrm{H}-$ $3, \mathrm{H}-5$, in $2^{\prime}-\mathrm{F}$-aniline), 7.12-7.20 (m, 2H, H-4 in $2^{\prime}-\mathrm{F}-$ aniline, $\mathrm{H}-5$ salicyl), 7.49 (ddd, ${ }^{3} \mathrm{~J}_{1}=7.4$, ${ }^{3} J_{2}=8.4,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.28 (dd, ${ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.53 (ddd, ${ }^{3} \mathrm{~J}=$ $7.5,{ }^{4} J_{H F}=7.5,{ }^{4} \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{H}-6$ in $2^{\prime}-\mathrm{F}$-aniline) , $10.12(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=28.56$ (CH -adamantane), 33.68 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $37.34\left(\mathrm{CH}_{2}\right.$-adamantane), $40.91\left(\mathrm{CH}_{2}\right.$-adamantane), $52.51\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right), 62.63\left(\mathrm{NHCH}_{2}-1\right.$ adamantane), $67.51\left(\mathrm{CH}(\mathrm{OH})\right.$, doublet), $72.08\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 112.98 ($\mathrm{C}-3$ salicyl), 114.86 (d, ${ }^{2} J_{C F}=19.3, C-3$ in $2^{\prime}-F-$ aniline $), 121.95$ ($C-5$ salicyl), 121.97 ($C_{q}-1$ salicyl), 122.78 (br, C-6' in 2'-F-aniline), 124.25 ($\mathrm{d},{ }^{3} J_{C F}=7.7, C-4$ in $2^{\prime}-F$-aniline), 124.78 ($\mathrm{d},{ }^{4} J_{C F}=3.3, C-5$ ' in $2^{\prime}-F$-aniline), 127.17 ($\mathrm{d},{ }^{2} J_{C F}=10.0, C^{-}-1^{\prime}$ in 2^{\prime} - F-aniline), 132.75 ($C-6$ salicyl), 133.59 ($C-4$ salicyl), 153.08 (d, ${ }^{1} J_{C F}=-243.4, C_{q}-2^{\prime}$ in $2^{\prime}-F$-aniline), 156.94 ($C_{q}-2$ salicyl), 163.55 (CONH-4'-F-aniline).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 453.25 found: $453.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 451.24 found: 451.22 .
Melting point: $66^{\circ} \mathrm{C}$.
2-(3-((1-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)- N -(p-tolyl)benzamide (154)

154 was prepared following general procedure \mathbf{E}, yielding 0.122 g (25\%) of the desired diastereomeric products.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.962,0.967$ (d, $3 \mathrm{H}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)$-1-adamantane), 1.391.50 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, 3 \mathrm{H}$ in CH_{2}-adamantane), 1.55-1.67 (m, br, $6 \mathrm{H}, 6 \mathrm{H}$ in CH_{2}-adamantane), 1.681.76 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, 3 \mathrm{H}$ in CH_{2}-adamantane), 1.94-2.07(m, br, $4 \mathrm{H}, \mathrm{NHCH}\left(\mathrm{CH}_{3}\right)$-1-adamantane, 3 x CH -adamantane), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ toluidine), 2.53 (dd, ${ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=9.6,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$, D1), 2.76-2.85 (m, 2H, NCH $\left.H_{b} \mathrm{CH}(\mathrm{OH}), \mathrm{D} 2\right), 3.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=3.7,1 \mathrm{H}, \mathrm{NCH} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$, D1), 3.98-4.14 (m, $\left.2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}), \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.23-4.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=8.2,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.09-7.16 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5$ salicyl, AA^{\prime} of $A A^{\prime} \mathrm{BB}^{\prime}, H-3^{\prime}, 5^{\prime}$ toluidine), 7.45 (ddd, ${ }^{3} J=7.6,{ }^{3} J=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.65, 7.67; 7.69, 7.71 ($B B^{\prime}$ of $A A^{\prime}{ }^{\prime} B B^{\prime}, 2 \mathrm{H}, \mathrm{H}-$ $2^{\prime}, 6^{\prime}$ toluidine, D1; D2), 8.25, $8.26\left(2 x \mathrm{~d}[\mathrm{t}] \mathrm{d}[\mathrm{t}],{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl, D1, D2), 10.02, 10.08 (2 x s, br, 1H, CONH, D1, D2).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=13.73$ ($\mathrm{NHCH}(\mathrm{CH} 3)$-1-adamantane, D1), 14.27 $(\mathrm{NHCH}(\mathrm{CH} 3)-1$-adamantane, D 2$), 21.05\left(4^{\prime}-\mathrm{CH}_{3}\right.$ toluidine), 28.65 (CH -adamantane, D 2), 28.68 (CH-adamantane, D1), 37.41 (CH_{2}-adamantane, D1, D2), 36.25 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), 38.87 $\left(\mathrm{CH}_{2}\right.$-adamantane, D1), 38.93 (CH_{2}-adamantane, D2), $49.23\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH}), \mathrm{D} 1\right), 50.88$ $\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH}), \mathrm{D} 2\right), 61.71\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right)\right.$-1-adamantane, D1), $63.88\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right)\right.$-1-adamantane, D2), $67.32(\mathrm{CH}(\mathrm{OH}), \mathrm{D} 1), 68.98(\mathrm{CH}(\mathrm{OH}), \mathrm{D} 2), 70.95\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}), \mathrm{D} 2\right), 71.37\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$, D1), 112.63 ($C-3$ salicyl, D1), 112.68 ($C-3$ salicyl, D2), 120.51 ($C-2^{\prime}, 6^{\prime}$ toluidine, D1), 120.70 (C$2^{\prime}, 6^{\prime}$ toluidine, D2), 121.91 ($C-5$ salicyl), 122.82 ($C_{q^{-1}}$ salicyl), by HMBC 129.47 ($C-3^{\prime}, 5^{\prime}$ toluidine, D1), 129.52 ($C-3^{\prime}, 5^{\prime}$ toluidine, D2), 132.65 ($C-6$ salicyl), 132.99 ($C-4$ salicyl), 133.70 ($C_{q}-1^{\prime}$ toluidine), by HMBC 136.43 ($C_{q}-4^{\prime}$ toluidine), by HMBC 156.84 ($C_{q}-2$ salicyl), by HMBC 163.21 (CONH). Concentration to low for recording of all quaternary carbons

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 463.30 found: $463.36,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 461.28 found: 461.26 .

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4fluorophenyl)benzamide (159)

159 was prepared following general procedure \mathbf{E}, yielding $0.761 \mathrm{~g}(66 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.22-2.54\left(\mathrm{~m}, \mathrm{br}[\mathrm{dyn}], 6 \mathrm{H}, \mathrm{H}\right.$-piperazine), 2.46 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-$ $\left.12.3,{ }^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 2.63\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=10.9,1 \mathrm{H}, \mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right)$, 2.672.79 (m,br[dyn], 2H, H-piperazine), 3.80-4.00 (br, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.02 (dd, ${ }^{2} \mathrm{~J}=-9.6^{3}{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.13-4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.30\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=\right.$ 2.8, $1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.95\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 6.97-7,03 (m[tr], $2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime}-$ F-aniline), 7.12 (ddd $[t r],{ }^{3} J_{1}={ }^{3} J_{2}=7.6,{ }^{4} \mathrm{~J}=0.6,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.16-7.22 (m[tr], $2 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$ $\mathrm{CH}(\text { phenyl })_{2}$), $7.26-7.31$ ($\mathrm{m}[\mathrm{tr}], 4 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime} \mathrm{CH}(\text { phenyl) })_{2}$), $7.38-7.42$ ($\mathrm{m}[\mathrm{d}], 4 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime}$ CH (phenyl) $)_{2}, 7.45\left(\mathrm{ddd}^{3}{ }^{3} \mathrm{~J}_{1}=7.6,{ }^{3} \mathrm{~J}_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.71-7.77 (m,2H$, \mathrm{H}-2^{\prime}, 6^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 8.24 (dd, ${ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=51.98$ (sharp, C-piperazine), 53.57 (br[dyn], Cpiperazine), $59.73\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $65.09\left(\mathrm{CH}(\mathrm{OH}), 70.97\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.20\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)\right.$, 112.70 ($\mathrm{C}-3$ salicyl), $115.50\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\text {CF }}=22.3, C-3^{\prime}, 5^{\prime}\right.$ in $4^{\prime}-\mathrm{F}$-aniline), 122.04 ($\mathrm{C}-5$ salicyl), 122.08 ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.5, \mathrm{C}-2^{\prime}, 6^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), $122.48\left(C_{q^{\prime}}-1\right.$ salicyl), $127.19\left(C-4^{\prime \prime} \mathrm{NCH}(\text { phenyl })_{2}\right), 128.05$ (C-3", $5^{\prime \prime} \mathrm{NCH}(\text { pheny })_{2}$), 128.67 ($C-2^{\prime \prime}, 6^{\prime \prime} \mathrm{NCH}(\text { pheny })_{2}$), 132.67 (C-6 salicyl), 133.20 ($C-4$ salicyl), $135.08\left(\mathrm{~d},{ }^{4} J_{C F}=2.5, C_{q}-1\right.$ in $4 '-F$-aniline $), 142.52,142.59\left(C_{q}-1 \mathrm{NCH}(\text { phenyl })_{2}\right), 156.58$ ($C_{q}-2$ salicyl), 159.24 ($\mathrm{d}^{1}{ }^{1} J_{C F}=-242, C_{q}-4^{\prime}$ in 4'-F-aniline), 163.42 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]+$: calculated.: 540.2664 found: 540.2662.
Melting point: $150-153^{\circ} \mathrm{C}$.

2-(3-((1-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(naphthalen-1-ylmethyl)benzamide (167)

167 was prepared following general procedure \mathbf{E}, yielding $0.243 \mathrm{~g}(47 \%)$ of the diastereomeric product.
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): 13.50, 14.20 ($\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)$-1-adamantane), 28.65, 28.62 (CH -adamantane), 36.43, 36.01 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), 37.43, $37.40\left(\mathrm{CH}_{2}\right.$-adamantane), 38.82, $38.79\left(\mathrm{CH}_{2}\right.$-adamantane), 42.53, $42.38\left(\mathrm{CONHCH}_{2}\right.$-1-naphthyl), 50.61, $48.92\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right)$, 63.56, $61.48\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right)\right.$-1-adamantane), $68.58,66.85(\mathrm{CH}(\mathrm{OH})), 71.53,70.83\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 114.30, 114.43 ($C-3$ salicyl), 123.57, 123.72 ($C_{q}-1$ salicyl), $123.97,124.18$ ($C-8$ in naphthyl), 125.59, 125.65 (C-3 in naphthyl), $126.07,126.13$ (C-6 in naphthyl), 126.66 (C-7 in naphthyl, D1), 126.70 (C-2 in naphthyl, D1), 126.73 (C-7 in naphthyl, D2), 127.25 (C-2 in naphthyl, D2), $128.45,128.62$ (C-4 in naphthyl), 128.77, 128.82 ($C-5$ in naphthyl), $131.78,131.89$ ($C_{q}-1$ in naphthyl), 132.14, 132.22 (C-6 salicyl), 132.35 ($2 x$ C-4 salicyl), $133.95,134.07$ ($C_{\mathrm{q}}-8 \mathrm{a}$ in 1 naphthyl), $134.15,133.90$ ($C_{q}-4 a$ in naphthyl), $155.61,155.65$ ($C_{q}-2$ salicyl), $163.82,163.92$ (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: : 547.2727 found: 547.2747.
2-(3-((-adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4fluorophenyl)benzamide (168)

168 was prepared following general procedure E, yielding $0.142 \mathrm{~g}(40 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.45-1.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.60-1.67 (m, br, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.70-1.79 (m, br, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.99 (s, br, 3 H ,

CH -adamantane), 2.22, 2.25, 2.30, 2.33 ($\mathrm{AB},{ }^{2} \mathrm{~J}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-1-adamantane), 2.73 (dd, $\left.{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=9.2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.85\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.07-4.13(m,1H,CH(OH)), 4.27 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 6.99-7.06 ($\mathrm{m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), 7.40 ($\mathrm{dd},{ }^{2} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.74-7.79 (m, 2H, $H-2^{\prime}, 6^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), 8.22 ($\mathrm{d}^{4}{ }^{4}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.49$ (CH -adamantane), 33.64 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), $40.89\left(\mathrm{CH}_{2}\right.$-adamantane), $51.63\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.41\left(\mathrm{NHCH}_{2}-1\right.$ adamantanyl), $67.13(\mathrm{CH}(\mathrm{OH})), 71.78\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $114.32\left(\mathrm{C}-3\right.$ salicyl), $115.58\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ 22.5, $C-3^{\prime}, 5^{\prime}$ in $4^{\prime}-F$-aniline), 122.24 ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}$ in $4^{\prime}-F-$ aniline), $123.99\left(C_{q^{\prime}}-1\right.$ salicyl), 127.47 ($C_{q}-5$ salicyl), 132.34 ($C-6$ salicyl), 132.76 ($C-4$ salicyl), 134.83 ($d,{ }^{4} J_{C F}=2.2, C_{q^{-}} 1^{\prime}$ in $4^{\prime}-$ F-aniline), $155.20\left(C_{q}-2\right.$ salicyl), 159.43 ($d,{ }^{1} J_{C F}=-243, C-4^{\prime}$ in $4^{\prime}-F$-aniline), 162.11 (CONH-4'-Faniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 487.2154 found: 487.2163.
Melting point: $148-149^{\circ} \mathrm{C}$.
5-bromo-N-(4-fluorophenyl)-2-(2-hydroxy-3-(4-phenylpiperidin-1yl)propoxy)benzamide (169)

169 was prepared following general procedure \mathbf{E}, yielding $0.134 \mathrm{~g}(95 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.71-1.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}-3,5\right.$ in piperidine), $2.16(1 \mathrm{H})$, (ddd, ${ }^{2} J=-11.8,{ }^{3} J_{\text {axax }}=11.8,{ }^{3} J_{\text {axea }}=2.1,1 \mathrm{H}, H_{\text {ax }}-6$ in piperidine), 2.46 (ddd, ${ }^{2} J=-11.3,{ }^{3} J_{\text {axax }}=$ $11.3,{ }^{3} J_{\text {axeq }}=2.9,1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-2$ in piperidine), $2.50\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right.$), $2.55\left(\mathrm{tt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\text {axax }}={ }^{3} \mathrm{~J}_{2 \text { axax }}=11.8,{ }^{3} J_{\text {1axeq }}={ }^{3} J_{2 \text { aeqx }}=3.9\right.$, piperidine- $\mathrm{CH}-4^{\prime}$-phenyl), $2.64\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$ $\left.-12.1,{ }^{3} J=10.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right)$, $2.84(1 \mathrm{H})$, ($\mathrm{m}[\mathrm{d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{\text {eq }}-2$ in CH_{2} piperidine), 3.14 ($\mathrm{m}[\mathrm{d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-6$ in CH_{2} piperidine), $4.02\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=5.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.18-
$4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.31\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-\right.$ 3 salicyl), 7.00-7.07 ($\mathrm{m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), $7.20-7.25(3 \mathrm{H}),\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right.$ phenyl, $H-4^{\prime \prime}$ phenyl), 7.30-7.36 (m, 2H, H-3", $5^{\prime \prime}$ phenyl), $7.54\left(\mathrm{dd}^{2}{ }^{2} J=8.7,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.73-7.79 (m, 2H, H-2', 6^{\prime} in 4'F-aniline), 8.36 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=33.40\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $33.74\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 42.35 (piperidine- $\mathrm{CH}-4$-phenyl), 52.94 ($\mathrm{NCH}_{2} \mathrm{CH}_{2}$-piperidine), $56.31\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), $59.99\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $65.16\left(\mathrm{CH}(\mathrm{OH}), 71.51\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)\right.$, 114.65 ($\mathrm{C}-5$ salicyl), 114.68 (C-3 salicyl), 115.57 ($\mathrm{d},{ }^{2} J_{C F}=22.3, C-3^{\prime}, 5^{\prime}$ in $4^{\prime}-$ F-aniline), $122.20\left(\mathrm{~d},{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}\right.$ in $4^{\prime}-\mathrm{F}$-aniline), 124.29 ($C_{q^{\prime}}-1$ salicyl), 126.51 ($C-4^{\prime \prime}$ phenyl), 126.88 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.66 (C-3", $5^{\prime \prime}$ phenyl), 134.79 ($\mathrm{d},{ }^{4} J_{C F}=2.2, C_{q}-1^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 135.24 ($C-6$ salicyl), 135.73 (C-4 salicyl), 145.79 ($C_{q}-1^{\prime \prime}$ phenyl), $155.62\left(C_{q}-2\right.$ salicyl), 159.41 ($\mathrm{d}^{1}{ }^{1} J_{C F}=-243, C-4^{\prime}$ in $4^{\prime}-F$-aniline), 162.01 (CONH-4'-F-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 527.1351 found: 527.1345.
Melting point: $137-149^{\circ} \mathrm{C}$.
2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (170)

170 was prepared following general procedure \mathbf{E}, yielding $0.146 \mathrm{~g}(95 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.23-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}\right.$ in $3,5-\mathrm{CH}_{2}$ piperidine), 1.50-1.60 (m , $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)$-phenyl), 1.61-1.70 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}$ in $3,5-\mathrm{CH}_{2}$ piperidine), 1.97 (ddd, ${ }^{2} \mathrm{~J}=-11.8,^{3} \mathrm{~J}_{a a}=$ $11.8,{ }^{3} J_{a e}=2.2,1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), 2.27 (ddd, ${ }^{2} J=-11.7,{ }^{3} J_{a a}=11.6,{ }^{3} J_{a e}=2.3,1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), $2.42\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.6,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.53-2.61(\mathrm{~m}, 3 \mathrm{H}$, CH_{2}-benzyl, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), $2.70\left(\mathrm{~m}[\mathrm{~d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}\right.$ in $2,6-\mathrm{CH}_{2}$ piperidine), $2.99(\mathrm{~m}[\mathrm{~d}], \mathrm{br}, 1 \mathrm{H}$, H in $2,6-\mathrm{CH}_{2}$ piperidine), $3.97\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=5.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.13-4.20(m, 1 H , $\mathrm{CH}(\mathrm{OH})), 4.26\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 6.99-7.06 (m[t], 2H, H-3', 5^{\prime} in 4'F-aniline), 7.11-7.16 (m[d], 2H, H-2'", $6^{\prime \prime \prime}$ phenyl), 7.18-7.23
($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime \prime}$ phenyl), 7.25-7.32 (m[t], 2H, H-3"', $5^{\prime \prime \prime}$ phenyl), $7.52\left(\mathrm{dd},{ }^{2} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}\right.$, H-4 salicyl), 7.71-7.77 (m, 2H, H-2', 6^{\prime} in $4^{\prime} F-$ aniline), 8.34 ($\mathrm{d}^{4}{ }^{4}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.04 (s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=32.10\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $32.43\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 37.76 ($\mathrm{CH}-4{ }^{\prime \prime \prime}$ piperidine), $43.13\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)\right.$-phenyl), $52.57\left(\mathrm{NCH}_{2}\right.$-piperidine), $55.78\left(\mathrm{NCH}_{2}\right.$-piperidine), $59.89\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $65.04(\mathrm{CH}(\mathrm{OH}))$, $71.49\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.63$ ($C-5$ salicyl), 114.65 ($C-3$ salicyl), $115.56\left(d,{ }^{2} J_{C F}=22.3, C-3^{\prime}, 5^{\prime}\right.$ in $4{ }^{\prime}-F-$ aniline $), 122.19\left(d,{ }^{3} J_{C F}=\right.$ 7.8, $C-2^{\prime}, 6^{\prime}$ in $4^{\prime}-F-$ aniline), 124.29 ($C_{q^{-1}}$ salicyl), 126.09 ($C-4^{\prime \prime}$ phenyl), 128.39 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.23 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 134.78 ($\mathrm{d}^{4}{ }^{4} \mathrm{~J}_{C F}=2.2, C_{q^{-}} 1^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 135.23 ($C-6$ salicyl), 135.70 ($C-4$ salicyl), $140.42\left(C_{q}-1^{\prime \prime}\right.$ phenyl), $155.61\left(C_{q}-2\right.$ salicyl), $159.41\left(d,{ }^{1} J_{C F}=-243, C-4^{\prime}\right.$ in 4'-F-aniline), 162.00 (CONH-4'-F-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 541.1495 found: 541.1502.
Melting point: $96-102^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (171)

171 was prepared following general procedure \mathbf{E}, yielding $0.166 \mathrm{~g}(100 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.35-2.52(6 \mathrm{H})$, ($\mathrm{m}[\mathrm{dyn}], \mathrm{br}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}-3,5$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), $2.46\left(\mathrm{dd},{ }^{2} J=-12.3,{ }^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right.$), 2.61 (dd , $\left.{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=10.7,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 2.67-2.78(2 \mathrm{H}),\left(\mathrm{m}[\mathrm{d}], \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\text {eq }}-2,6\right.$ in CH_{2} piperazine), $3.98\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=5.8,1 \mathrm{H}, \mathrm{OCH}{ }_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.12-4.20(m, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right), 4.26$ (s, $\left.1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}{ }_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 6.96-7.03 (m[t], 2H, H-3', 5^{\prime} in 4^{\prime} F-aniline), $7.16-7.22$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl), $7.25-$ 7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $7.38-7.44(4 \mathrm{H}),\left(\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right.$ phenyl), $7.53\left(\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=\right.$
$8.7,^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.68-7.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right.$ in $4^{\prime} \mathrm{F}$-aniline), $8.35\left(\mathrm{~d}^{4}{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.02 (s, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=51.92\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 53.55 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.63\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $64.99(\mathrm{CH}(\mathrm{OH})), 71.43\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.18\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 114.65 ($C-5$ salicyl), 114.69 ($C-3$ salicyl), 115.57 ($\left(,^{2} J_{C F}=22.3, C-3^{\prime}, 5^{\prime}\right.$ in $4{ }^{\prime}-F-$ aniline $), 122.14$ ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}$ in 4^{\prime}-F-aniline), 124.28 ($C_{q}-1$ salicyl), 127.20 ($C-4^{\prime \prime}$ phenyl), 128.05 (C $2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.68 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 134.75 ($\mathrm{d}^{4}{ }^{4} J_{C F}=2.2, C_{q^{-1}} 1^{\prime}$ in $4^{\prime}-F-$ aniline), 135.27 ($C-6$ salicyl), 135.72 ($C-4$ salicyl), 142.47 ($C_{q}-1^{\prime \prime}$ phenyl[1]), 142.54 ($C_{q}-1^{\prime \prime}$ phenyl[2]), $155.59\left(C_{q}-2\right.$ salicyl), 159.38 ($\mathrm{d}^{1}{ }^{1} \mathrm{~J}_{C F}=-243, C-4{ }^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 161.97 (CONH-4'-F-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 618.1762 found: 618.1767.
Melting point: $135-152^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (172)

172 was prepared following general procedure E, yielding $0.067 \mathrm{~g}(46 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.48-1.54$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}$ in CH2 -adamantane), 1.60-1.67 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.70-1.77 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}$, CH -adamantane), 2.22, 2.25, 2.29, 2.32 ($\mathrm{AB},{ }^{2} \mathrm{~J}=-11.7,2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{b}$-1-adamantane), 2.70 (dd, $\left.{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=9.2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.83\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}\right.$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), $4.00\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=6.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.05-4.11 (m[oct], 1 H , $\mathrm{CH}(\mathrm{OH})), 4.24\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 6.97-7.04 ($\mathrm{m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), 7.51 ($\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.727.78 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), 8.34 ($\mathrm{d}^{4}{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.09 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.49$ (CH -adamantane), 33.64 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), 40.89 (CH_{2}-adamantane), $51.64\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.44\left(\mathrm{NHCH}_{2}-1\right.$ adamantanyl), $67.18(\mathrm{CH}(\mathrm{OH})), 71.73\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.58(\mathrm{C}-5$ salicyl), $114.70(\mathrm{C}-3$ salicyl),
115.54 ($\mathrm{d},{ }^{2} J_{C F}=22.3, C-3^{\prime}, 5^{\prime}$ in 4^{\prime}-F-aniline), 122.21 ($\mathrm{d},{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6{ }^{\prime}$ in $4^{\prime}-F$-aniline), 124.22 ($C_{q^{-}}-1$ salicyl), 134.83 ($\left(,^{4} J_{C F}=2.2, C_{q^{-}}-1^{\prime}\right.$ in $4^{\prime}-F-$ aniline), 135.19 ($C-6$ salicyl), 135.70 (C 4 salicyl), 155.70 ($C_{q}-2$ salicyl), 159.40 ($\mathrm{d}^{1}{ }^{1} J_{C F}=-243, C-4{ }^{\prime}$ in 4 '-F-aniline), 162.02 (CONH-4'-Faniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 531.1666 found: 531.1658.
Melting point: $132-147^{\circ} \mathrm{C}$.
2-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (173)

173 was prepared following general procedure \mathbf{E}, yielding $0.090 \mathrm{~g}(64 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.41-1.52\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.54-1.62 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.94 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.59-2.70 (m, 2 H , $\left.\mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 3.83-3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=5.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right)$, $4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=4.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 7.14-7.20\left(\mathrm{~m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$ in $4^{\prime} \mathrm{F}$-aniline), $7.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.76-7.82 (m, 2 H , $H-2^{\prime}, 6^{\prime}$ in $4^{\prime}-$ F-aniline), 7.89 ($d,{ }^{4} J=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.34 ($\mathrm{s}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.88$ (CH -adamantane), $36.21\left(\mathrm{CH}_{2}-\right.$ adamantane), 41.97 (CH_{2}-adamantane), $42.79\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 49.79 ($\mathrm{C}_{\mathrm{q}-1}$ adamantane), $68.86(\mathrm{CH}(\mathrm{OH})), 71.94\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $112.31\left(\mathrm{C}-5\right.$ salicyl), $115.26\left(\mathrm{~d},{ }^{2} J_{C F}=22.2, C-3^{\prime}, 5^{\prime}\right.$ in $4^{\prime}-$ F-aniline), 116.07 ($C-3$ salicyl), 121.61 ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}$ in $4{ }^{\prime}$-F-aniline), 125.59 ($C_{q}-1$ salicyl), 132.50 ($C-6$ salicyl), 134.99 ($C-4$ salicyl), 135.07 ($d,{ }^{4} J_{C F}=2.7, C_{q^{-}} 1^{\prime}$ in $4^{\prime}-F$-aniline), 155.53 ($C_{\mathrm{q}}-2$ salicyl), 158.31 ($\mathrm{d},{ }^{1} J_{C F}=-240, C-4^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 162.14 (CONH-4'-F-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 517.1495 found: 517.1502.
Melting point: $131-139^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-fluoro-N-(4fluorophenyl)benzamide (174)

174 was prepared following general procedure \mathbf{E}, yielding $0.093 \mathrm{~g}(45 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.39-1.46\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.52-1.60 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.62-1.69 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.89 (br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.13 (s, 2H, NHCH 2 -1-damantane), 2.59-2.71 (m, 2H, CH(OH)CH2NH), 3.93-4.02 (m, 1H, $\mathrm{CH}(\mathrm{OH})), 4.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=5.8,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=4.1,1 \mathrm{H}\right.$, $\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 7.15-7.22 (m, 2H, $\mathrm{H}(3,5)$-aniline), $7.26\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.1,{ }^{\mathrm{F}} J=4.31 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.35-7.42 (m, 1H, H-4 salicyl), 7.60 (dd, ${ }^{F} J=9.1,{ }^{4} J=3.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.77-7.83 (m, 2H, $H(2,6)$-aniline), 10.41 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\left._{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.81$ (CH -adamantane), $33.23\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), $36.73\left(\mathrm{CH}_{2}\right.$-adamantane), $40.26\left(\mathrm{CH}_{2}\right.$-adamantane), $53.34\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.37\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane $), 67.90(\mathrm{CH}(\mathrm{OH})), 72.24\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.31\left(^{2} \mathrm{~J}_{C F}=22.2, \mathrm{C}-\right.$ 3,5 aniline), $115.58\left({ }^{3} J_{C F}=7.8, C-3\right.$ salicyl), $116.49\left({ }^{2} J_{C F}=24.1, C-6\right.$ salicyl), $119.14\left({ }^{2} J_{C F}=22.7\right.$, $C-4$ salicyl), $121.59\left({ }^{3} J_{C F}=7.9, C-2,6\right.$ aniline $), 135.09\left({ }^{4} J_{C F}=2.7, C-1\right.$ aniline $), 152.68\left({ }^{4} J_{C F}=1.7\right.$, C-2-salicyl), $156.21\left({ }^{1} J_{C F}=-237.7, C-5\right.$ salicyl), $158.31\left({ }^{1} J_{C F}=-240.6, C-4\right.$ aniline $), 162.20\left({ }^{4} J_{C F}\right.$ $=1.5, C O N H)$. C-1 salicyl not recorded

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 471.2469 found: 471.2459 .
Melting point: $135-143^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4bromophenyl)benzamide (175)

175 was prepared following general procedure E, yielding $0.300 \mathrm{~g}(41 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=1.51$ (br s[d], $J=1.9,6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), $1.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}=\right.$ -12.2, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.74 ($\mathrm{d},{ }^{2} \mathrm{~J}=-12.2,3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.99 (br s, $3 \mathrm{H}, \mathrm{CH}$ adamanthyl), 2.23 ($\mathrm{d},{ }^{2} \mathrm{~J}=-11.6,1 \mathrm{H}, \mathrm{RNHCH}_{a} \mathrm{H}_{\mathrm{b}}$-adamanthyl), 2.34 ($\mathrm{d},{ }^{2} \mathrm{~J}=-11.6,1 \mathrm{H}$, RNHCH ${ }_{a} H_{b}$-adamanthyl), 2.74 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.7,1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHOHCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NHR}$), 2.86 ($\mathrm{dd},{ }^{2} \mathrm{~J}$ $\left.=-12.3,^{3} \mathrm{~J}=9.3,1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{COHCH}_{\mathrm{a}} H_{b} \mathrm{NHR}\right), 4.04$ (dd, ${ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=6.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}$), $4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHOCH}_{2} \mathrm{NHR}\right), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=2.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CHOH}\right), 6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.4,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.43 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,2 \mathrm{H}, H(3,5)$-aniline), $7.45(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4$ salicyl), 7.74 ($\mathrm{d}^{3} \mathrm{~J}=8.8,2 \mathrm{H}, \mathrm{H}(2,6)$-aniline), $8.23\left(\mathrm{dd}^{3} \mathrm{~J}=7.9,^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.17 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=28.47$ (tert-CH-adamanthyl), $33.60\left(\mathrm{C}_{\mathrm{q}}\right.$-adamanthyl), 37.21 (chair- CH_{2}-adamanthyl), $40.83 \quad\left(\mathrm{CH}_{2}\right.$-adamanthyl next to $\left.\mathrm{C}_{\mathrm{q}}\right), 51.93$ $\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 62.42$ (RHNCH_{2}-adamanthyl), $67.17\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 71.21$ ($\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}$), 112.73 ($\mathrm{C}-3$ salicyl), 116.45 ($\mathrm{C}-4$ aniline), 122.04 ($\mathrm{C}-5$ salicyl), 122.17 (C 2,6 aniline), 122.38 (C-1 salicyl), 131.91 ($C-3,5$ aniline), 132.65 ($C-6$ salicyl), 133.34 ($C-4$ salicyl), 138.18 (C-1 aniline), 156.64 (C-2 salicyl), 163.59 (CONH).
HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 513.1747 found: 513.1753.
Melting point: $125-130^{\circ} \mathrm{C}$.

2-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)-N-(4-bromophenyl)benzamide (176)

176 was prepared following general procedure \mathbf{E}, yielding $0.119 \mathrm{~g}(82 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.52-1.69\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 2.04 ($\mathrm{s}[\mathrm{br}]$, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.72 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $2.90\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}\right.$ $\left.=2.8,1 \mathrm{H}, \mathrm{NCH}_{\mathrm{a}} H_{b} \mathrm{CH}(\mathrm{OH})\right), 4.02-4.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}(\mathrm{OH}), \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})\right), 6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}\right.$,

H-3 salicyl), 7.12 (m [t], 1H, $\mathrm{H}-4$ salicyl), 7.40-7.49 (m, 3H, H-5 salicyl, $\mathrm{H}-3^{\prime}, 5^{\prime}$ in 4'bromoaniline), 7.71-7.76 (m, $2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ in 4^{\prime}-bromoaniline), 8.21 (dd, ${ }^{3} J=7.8,{ }^{4} \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{H}-$ 6 salicyl), 10.13 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=29.53$ (CH -adamantane), $36.49\left(\mathrm{CH}_{2}\right.$-adamantane), $42.35\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $42.42\left(\mathrm{CH}_{2}\right.$-adamantane), $51.72\left(\mathrm{C}_{\mathrm{q}}\right.$-adamantane), $67.89(\mathrm{CH}(\mathrm{OH}), 71.29$ $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 112.67$ ($\mathrm{C}-3$ salicyl), 116.47 ($\mathrm{C}_{\mathrm{q}}-4^{\prime}$ in 4^{\prime}-bromoaniline), 122.02 ($\mathrm{C}-5$ salicyl), 122.31 ($C-2^{\prime}, 6^{\prime}$ in 4^{\prime}-bromoaniline), 122.43 ($C_{q^{-}}-1$ salicyl), 131.87 ($C-3^{\prime}, 5^{\prime}$ in 4^{\prime}-bromoaniline), 132.60 (C-6 salicyl), 133.31 ($C-4$ salicyl), 138.13 ($C_{q}-1^{\prime}$ in 4^{\prime}-bromoaniline), 156.61 ($C_{q}-2$ salicyl), 163.64 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 499.1591 found: 499.1596.
Melting point: $129-139^{\circ} \mathrm{C}$.

3-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)- N -(4-fluorophenyl)-2naphthamide (177)

177 was prepared following general procedure E, yielding 0.050 g (31%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.51(6 \mathrm{H})$, ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.67 (3H), ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.77 (3H), (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), $1.98(3 \mathrm{H}),(\mathrm{s}, \mathrm{br}, 3 \mathrm{H}$, CH -adamantane), $2.26(1 \mathrm{H}), \quad\left(\mathrm{d},{ }^{2} \mathrm{~J}=-11.6,1 \mathrm{H}, \quad \mathrm{RNHCH}_{a} \mathrm{H}_{\mathrm{b}}\right.$-1-adamantane $)$, [2.24/2.27/2.30/2.33] $2.32(1 \mathrm{H}),\left(\mathrm{d},{ }^{2} \mathrm{~J}=-11.6,1 \mathrm{H}, \mathrm{RNHCH}_{\mathrm{a}} \mathrm{H}_{b}\right.$-1-adamantane), 2.79 (1 H), (dd, $\left.{ }^{2} \mathrm{~J}=-11.9,{ }^{3} \mathrm{~J}=8.6-8.9,1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHOHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{NHR}\right), 2.86(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-11.9,{ }^{3} \mathrm{~J}=4.1,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{COHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{NHR}\right)$, 4.07-4.13 (m, $\left.1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CHOH}\right)$, 4.14-4.21 (m, $2 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 7.06 (m, $2 \mathrm{H}, H(3,5)$-aniline), 7.59 ($\mathrm{m}, 2 \mathrm{H}, H-7,9$ naphthyl), 7.73 ($\mathrm{d}, \mathrm{J}=8.7,1 \mathrm{H}, \mathrm{H}-1$ naphthyl), 7.84 (m, 2H, H(2,6)-aniline), 7.89 (m, 1H, H-9 naphthyl), 8.20 (m, 1H, H-6 naphthyl), 8.24 (d, J $=8.7,1 \mathrm{H}, \mathrm{H}-4$ naphthyl), 10.16 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.51$ (CH -adamantane), 33.63 (C_{q}-adamantane), $37.28\left(\mathrm{CH}_{2}\right.$-adamantane $), 40.90\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $51.64\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 62.45$
(RHNCH 2 - $1^{\prime \prime}$-adamantane), $68.06\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right)$, $78.53\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 115.54$ ($\mathrm{d},{ }^{2} J_{C F}=22.2, \mathrm{C}-3^{\prime}, 5^{\prime}$ in 4^{\prime}-F-aniline), 122.39 ($\mathrm{C}_{\mathrm{q}}-2$ naphthalene), $122.60\left(\mathrm{~d},{ }^{3} J_{C F}=7.8, \mathrm{C}-2^{\prime}, 6^{\prime}\right.$ in 4'-F-aniline), 122.99 (CH naphthyl), 125.07 (C-1 naphthyl), 126.89 (CH), 127.08 (C-4 naphthyl), $127.60\left(C_{q}\right), 128.23(C H), 128.46\left(C-9\right.$ naphthyl), 134.83 (${ }^{4} J_{C F}=2.8, C-1$ aniline), 136.97 $\left(C_{q}\right), 153.90$ ($C-3$ naphthyl), 159.49 ($\mathrm{d},{ }^{1} J_{C F}=-243, C-4^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 163.51 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 503.2721 found: 503.2710.
Melting point: $138-151^{\circ} \mathrm{C}$.

3-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)-N-(4-fluorophenyl)-2naphthamide (178)

178 was prepared following general procedure \mathbf{E}, yielding $0.074 \mathrm{~g}(51 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.55-1.81(12 \mathrm{H}), 2.10(3 \mathrm{H}), 2.89(1 \mathrm{H}), 3.02(1 \mathrm{H}), 4.12$ $(1 \mathrm{H}), 4.17(1 \mathrm{H}), 4.35(1 \mathrm{H}), 7.00-7.07(2 \mathrm{H}), 7.71(1 \mathrm{H}), 7.78-7.88(3 \mathrm{H}), 8.14-8.20(2 \mathrm{H}), 9.99(1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}, 23^{\circ} \mathrm{C}\right): \delta=29.41,36.24,41.42,53.52,68.11,78.21,115.58$, $122.53,122.72,122.89,125.13,126.89,126.99,127.49,128.24,128.45,134.69,136.88$, 153.63, 159.53, 163.67.

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 489.2559 found: 489.2553.
Melting point: $147-149^{\circ} \mathrm{C}$.
N-(4-fluorophenyl)-3-(2-hydroxy-3-((3-hydroxyadamantan-1-yl)amino)propoxy)-2-naphthamide (179)

179 was prepared following general procedure E, yielding $0.028 \mathrm{~g}(19 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.32-1.50(12 \mathrm{H}), 2.07(2 \mathrm{H}), 2.61-2.73(2 \mathrm{H}), 3.87-3.94$ $(1 \mathrm{H}), ~ 4.01-4.12(2 \mathrm{H}), 7.15-7.24(2 \mathrm{H}), 7.61-7.66(2 \mathrm{H}), 7.71-7.87(4 \mathrm{H}), 7.97-8.02(1 \mathrm{H}), 8.38-8.43$ (1H), $10.51(1 \mathrm{H})$.
${ }^{13}{ }^{2}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=30.14,35.02,40.79,43.24,43.54$ $\left(\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), \quad 44.39 \quad\left(\mathrm{CH}_{2}\right.$-adamantane $), 44.40 \quad\left(\mathrm{CH}_{2}\right.$-adamantane $), 49.12\left(\mathrm{CH}_{2}{ }^{-}\right.$ adamantane), $\quad 50.09 \quad\left(\mathrm{CH}_{2}\right.$-adamantane $), \quad 67.15 \quad\left(\mathrm{C}_{\mathrm{q}}-3 \quad\right.$ adamantane $), \quad 69.48$ $\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right)$, $78.28\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 115.21\left({ }^{2} \mathrm{~J}_{\mathrm{CF}}=22.1, \mathrm{C}-3,5\right.$ aniline $)$, 121.84 $\left(^{3} J_{C F}=7.6, C-2,6\right.$ aniline $), 123.06$ (C-9 naphthyl), $123.70(C H), 124.38$ (C-3 naphthyl), 125.84 (C-1 naphthyl), 126.62 (C-4 naphthyl), 127.36 (C-5 naphthyl), 127.75 (C-6 naphthyl), 127.94 (CH), $135.40\left({ }^{4} J_{C F}=2.9, C-1\right.$ aniline), 135.43 (C-10 naphthyl), 152.83 (C-2 naphthyl), 158.29 (${ }^{1} J_{C F}=-241.0, C-4$ aniline), 164.62 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 505.2501 found: 505.2502.
Melting point: $152-155^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4-fluorophenyl)-4(trifluoromethyl)benzamide (180)

180 was prepared following general procedure E, yielding $0.226 \mathrm{~g}(57 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.45-1.52\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.55-1.63 (m , $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.67-1.76 (m, $3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.97 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ adamantane), $2.36,2.39,2.57,2.60\left(\mathrm{AB},{ }^{2} \mathrm{~J}_{A B}=-11.4,2 \mathrm{H}, \mathrm{NHCH}_{2}\right.$-1-damantane), 3.01 ($\mathrm{dd},{ }^{2} \mathrm{~J}=$ $\left.-12.1,{ }^{3} \mathrm{~J}=10.0,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 3.12\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=3.2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right)$, $4.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=4.8,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $4.30\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=3.1,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.50-4.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right.$), $6.98-7.05\left(\mathrm{~m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$ in $4^{\prime}-\mathrm{F}$-aniline), 7.16
($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.39 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=9.1,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.74-7.81 (m, $2 \mathrm{H}, H-2^{\prime}, 6^{\prime}$ in $4^{\prime}-\mathrm{F}-$ aniline), 8.28 ($\mathrm{d}^{3}{ }^{3}=7.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $9.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=28.06$ (CH -adamantane), 32.97 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $36.60\left(\mathrm{CH}_{2}\right.$-adamantane), $40.06\left(\mathrm{CH}_{2}\right.$-adamantane), $52.41\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 61.55\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $65.47\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.26\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 109.89\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.7, \mathrm{C}-3\right.$ salicyl) 115.73 ($\mathrm{d}^{2}{ }^{2} J_{C F}=22.2, \mathrm{C}-3^{\prime}, 5^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), $118.98\left(\mathrm{q},{ }^{3} J_{C F}=3.6, \mathrm{C}-5\right.$ salicyl), $122.30\left(\mathrm{~d},{ }^{3} J_{C F}=7.8, \mathrm{C}\right.$ $2^{\prime}, 6^{\prime}$ in $4^{\prime}-F$-aniline), 126.20 ($C_{q}-1$ salicyl), 133.33 ($C-6$ salicyl), 134.58 ($d,{ }^{4} J_{C F}=2.4, C_{q^{-}} 1^{\prime}$ in $4^{\prime}-$ F-aniline), 134.71 ($\mathrm{q},{ }^{2} J_{C F}=31, C_{q}-4$ salicyl), $156.20\left(C_{q}-2\right.$ salicyl), $159.55\left(d,{ }^{1} J_{C F}=-243, C_{q^{-}}-4^{\prime}\right.$ in 4'-F-aniline),162.34 (CONH). CF $_{3}$ not recorded

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 521.24 found: $521.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 519.23 found: 519.29.
Melting point: $195-200^{\circ} \mathrm{C}$.

2-(2-hydroxy-3-((-3-hydroxyadamantan-1-yl)amino)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (181)

181 was prepared following general procedure E, yielding $0.074 \mathrm{~g}(79 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.31-1.51\left(\mathrm{~m}, \mathrm{br}, 13 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 2.05 (s, br, $2 \mathrm{H}, \mathrm{CH}$-adamantane), $2.69\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-11.5,{ }^{3} \mathrm{~J}=7.1,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 2.74\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-11.5,{ }^{3} \mathrm{~J}\right.$ $\left.=5.1,1 \mathrm{H}, \mathrm{NCH}_{\mathrm{a}} H_{b} \mathrm{CH}(\mathrm{OH})\right), 3.90-3.98(\mathrm{~m}[\mathrm{q}], 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.14-4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right)$, $7.11\left(\mathrm{~d}, \mathrm{~d}[\mathrm{t}], 1 \mathrm{H},\left(\mathrm{dd}[\mathrm{t}],{ }^{3} J_{1}={ }^{3} \mathrm{~J}_{2}=7.4,1 \mathrm{H}, \mathrm{H}-5\right.\right.$ salicyl), $7.22\left(\mathrm{~d}, 1 \mathrm{H},\left(\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3\right.\right.$ salicyl), 7.43 (d, $1 \mathrm{H},\left(\mathrm{d}, \mathrm{br},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $7.51-7.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4\right.$ salicyl, $\mathrm{H}-5^{\prime}$ in 3^{\prime} -CF_{3}-aniline), 7.83 ($\mathrm{dd},{ }^{3} \mathrm{~J}=7.7,{ }^{4} \mathrm{~J}=1.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $7.96\left(\mathrm{~d}, \mathrm{br}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.3, H-6^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3^{-}}$ aniline), 8.35 ($s, 1 \mathrm{H}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 10.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left._{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=30.07\left(\mathrm{CH}\right.$ of adamantane), $34.92\left(\mathrm{CH}_{2}\right.$ of adamantane), $40.22\left(\mathrm{CH}_{2}\right.$ of adamantane), $43.12\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 44.29\left(\mathrm{CH}_{2}\right.$ of adamantane), 49.55 ($\mathrm{CH}_{2}-2$ of adamantane), 53.56 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), 67.56 ($\mathrm{C}_{\mathrm{q}}-3-\mathrm{OH}$ adamantane), 68.35
$(\mathrm{CH}(\mathrm{OH}))$, $71.44\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $113.52\left(\mathrm{C}-3\right.$ salicyl), $115.84\left({ }^{4} \mathrm{~J}_{\mathrm{CF}}=4.1, C-2^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline $)$, 119.85 (${ }^{4} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 121.00 ($C-5$ salicyl), 123.17 ($C_{q^{-}}-1$ salicyl), 123.40 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $124.14\left(q, C_{q},{ }^{1} J_{C F}=-272.3,3^{\prime}-C F_{3}\right.$-aniline), $129.51\left(^{2} J_{C F}=31.6, C-3^{\prime}\right.$ in $3^{\prime}-C F_{3^{-}}$ aniline), 129.89 ($C-5^{\prime}$ in $3^{\prime}-$ CFF $_{3}$-aniline), 130.57 ($C-6$ salicyl), 133.02 ($C-4$ salicyl), 139.71 ($C_{q}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 156.28 ($C_{q^{-}}$-2 salicyl), 164.27 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 505.2320 found: 505.2314.
Melting point: $139-145^{\circ} \mathrm{C}$.

N-(4-bromophenyl)-2-(2-hydroxy-3-((3-hydroxyadamantan-1yl)amino)propoxy)benzamide (182)

182 was prepared following general procedure E, yielding $0.122 \mathrm{~g}(81 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.33-1.49\left(\mathrm{~m}, \mathrm{br}, 12 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), $2.06(\mathrm{~s}, \mathrm{br}$, 2H, CH-adamantane), 2.61-2.70 (m, $2 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 3.84-3.92 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), 4.12 (dd, $\left.{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=6.0,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.22\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=4.0,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), 7.10 (dd[t], 1H, H-5 salicyl), 7.21 (d, ${ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.48-7.56$ (m, $3 \mathrm{H}, \mathrm{H}-4$ salicyl, H $3^{\prime}, 5^{\prime}$ in 4^{\prime}-bromoaniline), 7.77 ($\mathrm{m}[\mathrm{d}], 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ in 4^{\prime}-bromoaniline), $7.83\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.6,{ }^{4} \mathrm{~J}=\right.$ $3.5,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.40 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=30.20\left(\mathrm{CH}\right.$ of adamantane), $35.10\left(\mathrm{CH}_{2}\right.$ of adamantane), $40.83\left(\mathrm{CH}_{2}\right.$ of adamantane), $43.28\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 44.42\left(\mathrm{CH}_{2}\right.$ of adamantane), 50.11 ($\mathrm{CH}_{2}-2$ of adamantane), 53.07 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), 67.73 ($\mathrm{C}_{\mathrm{q}}-3-\mathrm{OH}$ adamantane), 68.94 $(\mathrm{CH}(\mathrm{OH})), 71.60\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 113.56\left(\mathrm{C}-3\right.$ salicyl), $115.23\left(\mathrm{C}_{\mathrm{q}}-\mathrm{C}^{\prime}\right.$ in 4^{\prime}-bromoaniline), 121.04 ($C-5$ salicyl), 121.79 ($C-2^{\prime}, 6^{\prime}$ in 4^{\prime}-bromoaniline), 123.21 ($C_{q^{\prime}}-1$ salicyl), 130.66 ($C-6$ salicyl), 131.56 ($C-3^{\prime}, 5^{\prime}$ in 4^{\prime}-bromoaniline), 133.01 ($C-4$ salicyl), 138.34 ($C_{q}-1^{\prime}$ in 4^{\prime}-bromoaniline), 156.33 ($C_{q}-2$ salicyl), 163.84 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 515.1553 found: 515.1545.
Melting point: $179-194^{\circ} \mathrm{C}$.

2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (183)

183 was prepared following general procedure E, yielding $0.074 \mathrm{~g}(43 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.74-1.94$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3,5$ in piperidine), 2.18 (ddd, 1 H , $H_{a x}-2$ in piperidine), 2.42-2.59 (m, $3 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-6$ in piperidine, $\mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{H}_{\mathrm{ax}}-4$ in piperidine), 2.69 (dd[t], $1 \mathrm{H}, \mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.86-2.92 (m, $1 \mathrm{H}, \mathrm{H}_{\text {eq- }}$ - in piperidine), 3.15-3.22 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {eq- }}$ - in piperidine), $4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.1,{ }^{3} \mathrm{~J}=5.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.24-4.35 (m, $\left.2 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH})\right), 4.35-4.55(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 6.97\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.14 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.20-7.25 (m, 3H, H-2", $6^{\prime \prime}$-phenyl, $\mathrm{H}-4$ phenyl), 7.307.37 (m, 3H, H-3", $5^{\prime \prime}$-phenyl, $\mathrm{H}-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 7.42-7.50 (m, 2H, H-4 salicyl, $\mathrm{H}-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 8.10 (d, br, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.16 (s , br, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 8.25 (dd, ${ }^{3} \mathrm{~J}=7.8,^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.37 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=33.15\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $33.43\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 42.27 (piperidine- $\mathrm{CH}-4$-phenyl), $52.88\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $56.25\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), $60.07\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $65.20\left(\mathrm{CH}(\mathrm{OH}), 71.27\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)\right.$, 112.73 ($\mathrm{C}-3$ salicyl), $117.25\left(\mathrm{q},{ }^{3} J_{C F}=3.9, C-2^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.38 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.7, \mathrm{C}-4^{\prime}$ in $3^{\prime}-\mathrm{CFF}_{3}$-aniline), 122.08 (C-5 salicyl), 122.17 ($C_{q}-1$ salicyl), 123.47 ($C-6^{\prime}$ in $3^{\prime}-$ CFF $_{3}$-aniline), 124.08 ($q,{ }^{1} J_{C F}=-272,3^{\prime}-$ CF $_{3^{-}}$ aniline), 126.48 ($C-4^{\prime \prime}$ phenyl), 126.88 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.63 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.46 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $131,23\left(\mathrm{q},{ }^{2} J_{C F}=32.6, C-3^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 132.63 ($C-6$ salicyl), 133.50 ($C-4$ salicyl), 139.60 (C - 1^{\prime} in 3^{\prime}-CF $_{3}$-aniline), 145.74 ($C_{q}-1^{\prime \prime}$ phenyl), 156.65 ($C_{q}-2$ salicyl), 163.82 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 499.2206 found: 499.2208.
Melting point: $154-159^{\circ} \mathrm{C}$.

N-(2-fluorophenyl)-2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)benzamide (184)

184 was prepared following general procedure E, yielding 0.148 g (95\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.72-1.92$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ax}} \mathrm{Heq}_{\mathrm{eq}}-3,5$ in piperidine), 2.14 (ddd, ${ }^{2} \mathrm{~J}$ $=-11.6,{ }^{3} J_{\text {axax }}=11.3,{ }^{3} J_{\text {axeq }}=2.5,1 \mathrm{H}, \mathrm{Hax}_{\mathrm{ax}} 6$ in piperidine), $2.43\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=-11.3,{ }^{3} \mathrm{~J}_{\text {axax }}=11.3\right.$, ${ }^{3} J_{\text {axeq }}=3.1,1 \mathrm{H}, \quad \mathrm{H}_{\mathrm{ax}}-2$ in piperidine $), 2.48-2.67(\mathrm{~m}, 2 \mathrm{H}$, piperidine-CH-4'-phenyl, $\mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.85-2.92 (m[d], br, $1 \mathrm{H}, \mathrm{H}_{\text {eq }}-2$ in CH_{2} piperidine), 3.13-3.20 (m[d], br, 1 H , $\mathrm{H}_{\text {eq }}-6$ in CH_{2} piperidine), 4.22-4.32 (m, 2H, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH})$), 7.03-7.25 (m, 8H, H$2^{\prime \prime}, 6^{\prime \prime}$ phenyl, $H-3,5$ salicyl, $3^{\prime}, 4^{\prime}, 5^{\prime}$ aniline, $4^{\prime \prime}$ phenyl), 7.28-7.34 (m, 2H, H-3", $5^{\prime \prime}$ phenyl), $7.50\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{1}=7.4,{ }^{3} \mathrm{~J}_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $8.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.53 (ddd, ${ }^{3} \mathrm{~J}=8.0,{ }^{4} \mathrm{~J}_{\mathrm{HF}}=7.5,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6$ in $2^{\prime}-\mathrm{F}$-aniline), 10.10 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=33.45\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $33.80\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 42.48 (piperidine-CH-4-phenyl), $52.91\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $56.17\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), $60.75\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65.21\left(\mathrm{CH}(\mathrm{OH}), 72.16\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 113.00(\mathrm{C}-3\right.$ salicyl), 114.87 ($\mathrm{d},{ }^{2} J_{C F}=19.3, C-3^{\prime}$ in $2^{\prime}-\mathrm{F}$-aniline), 121.99 ($C-5$ salicyl), 122.08 ($C_{q}-1$ salicyl), 122.90 (br, C-6' in 2^{\prime}-F-aniline), 124.32 ($\mathrm{d},{ }^{3} J_{C F}=7.7, C-4{ }^{\prime}$ in $2^{\prime}-F$-aniline), 124.74 ($\mathrm{d},{ }^{4} J_{C F}=3.5, C-5$ ' in $2^{\prime}-F-$ aniline), 126.41 ($C-4^{\prime \prime}$ phenyl), 126.93 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 127.12 ($\mathrm{d},{ }^{2} J_{C F}=10.1, C_{q^{\prime}} 1^{\prime}$ in $2^{\prime}-$ F-aniline), 128.61 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 132.75 ($C-6$ salicyl), 133.58 ($C-4$ salicyl), 146.08 ($C_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 153.14 ($\mathrm{d},{ }^{1} J_{C F}=-243.4, C_{q}-2^{\prime}$ in 2^{\prime}-F-aniline), 156.93 ($C_{q}-2$ salicyl), 163.60 (CONH-2'-F-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 449.2254 found: 449.2240.
Melting point: $72-92^{\circ} \mathrm{C}$.

2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)- N-(p-tolyl)benzamide (185)

185 was prepared following general procedure E, yielding $0.150 \mathrm{~g}(96 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.71-1.93(4 \mathrm{H}),\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}-3,5\right.$ in piperidine), 2.14 $(1 \mathrm{H}),\left(\right.$ ddd, ${ }^{2} J=-11.6,{ }^{3} J_{\text {axax }}=11.3,{ }^{3} J_{\text {axe }}=2.5,1 \mathrm{H}, H_{a x}-6$ in piperidine), $2.32(3 \mathrm{H}),(\mathrm{s}, 3 \mathrm{H}, 4-$ $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCO}$), $2.44(1 \mathrm{H})$, (ddd, ${ }^{2} \mathrm{~J}=-11.3,{ }^{3} \mathrm{~J}_{\text {axax }}=11.3,{ }^{3} \mathrm{~J}_{\text {axeq }}=3.1,1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-2$ in piperidine), 2.48-2.58 (2H), (m, 2H, piperidine- $\mathrm{CH}-4^{\prime}$-phenyl; ${ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.5, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.70 (1H), (dd, $\left.{ }^{2} J=-12.2,{ }^{3} J=10.9,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 2.79-2.86(1 \mathrm{H}),\left(\mathrm{m}[\mathrm{d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2\right.$ in CH_{2} piperidine), 3.12-3.19 (1H), (m[d], br, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-6$ in CH_{2} piperidine), $4.08(1 \mathrm{H})$, ($\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}$ $\left.=5.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.19-4.26(1 \mathrm{H}),(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.33(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=3.0\right.$, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $6.98(1 \mathrm{H}),\left(\mathrm{dd}[\mathrm{d}],{ }^{3} \mathrm{~J}=8.2,{ }^{4} \mathrm{~J}=0.6,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.10-7.18(3H), (m, 3H, H-5 salicyl, H-3', 5^{\prime} toluidine), 7.20-7.25 (3H), H-4" phenyl. H-2", $6^{\prime \prime}$ phenyl), 7.29-7.36 (2H), $\mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $7.46(1 \mathrm{H}),\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{1}=7.7,{ }^{3} \mathrm{~J}_{2}=8.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.66-7.72 $(2 \mathrm{H}),\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right.$ toluidine $), 8.26(1 \mathrm{H}),\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $10.02(1 \mathrm{H}),(\mathrm{s}$, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=21.04\left(4-\mathrm{CH}_{3}\right.$ in toluidine), $33.45\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 33.80 ($\mathrm{NCH}_{2} \mathrm{CH}_{2}$-piperidine), 42.43 (piperidine- $\mathrm{CH}-4$-phenyl), $52.85\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), $56.30\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $60.17\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65.25(\mathrm{CH}(\mathrm{OH})), 70.94$ $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 112.63 ($C-3$ salicyl), 120.55 ($C-2^{\prime}, 6^{\prime}$ toluidine), 121.97 ($C-5$ salicyl), 122.84 ($C_{q^{-}}$ 1 salicyl), 126.47 ($C-4^{\prime \prime}$ phenyl), 126.92 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 128.65 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.48 (C 3',5' toluidine), 132.67 ($C-6$ salicyl), 133.02 (C-4 salicyl), 133.57 ($C_{q}-4^{\prime}$ toluidine), 136.47 ($C_{q}-1^{\prime}$ toluidine), 145.97 ($C_{q}-1^{\prime \prime}$ phenyl), 156.62 ($C_{q}-2$ salicyl), 163.39 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 445.2495 found: 445.2491 .
Melting point: $129-140^{\circ} \mathrm{C}$.

5-chloro-2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (186)

186 was prepared following general procedure E, yielding $0.087 \mathrm{~g}(60 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.55-1.72(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3,5$ in piperidine), 1.96-2.09 (2H), (m, 2H, $\mathrm{H}_{\mathrm{ax}}-2,6$ in piperidine), 2.35-2.56 (3H), (m, $2 \mathrm{H}, \mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{H}_{\mathrm{ax}}-4$ in piperidine), 2.83-2.91 (1H), (m[d], br, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}-2}$ in CH_{2} piperidine), 2.92-3.01 (1H), (m[d], br, 1 H , $H_{\text {eq- }}-6$ in CH_{2} piperidine), 4.03-4.11 (1H), ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.12-4.27 (2H), (m, 2 H , $\left.\mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})\right), 5.19(1 \mathrm{H}),(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})) 7.14-7.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}\right.$ phenyl), 7.24-7.34 (m, $3 \mathrm{H}, \mathrm{H}-3$ salicyl, $\mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.46 ($\mathrm{m}[\mathrm{d}], 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $7.56-7.64$ (m, 2 H , $H-4$ salicyl, $H-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 7.79 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.99 (d, br, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-$ CF_{3}-aniline), 8.29 (s, br, 1H, H-2" in 3"-CF3-aniline), 10.62 (s, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=33.08\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), 41.67 (piperidineCH -4-phenyl), $54.46\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $61.13\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.38(\mathrm{CH}(\mathrm{OH}), 72.32$ $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 115.81 ($\mathrm{C}-3$ salicyl), 115.90 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=3.8, \mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.13 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}$ $=3.7, C-4^{\prime}$ in $3^{\prime}-$ CFF $_{3}$-aniline), 123.41 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 124.58 ($\mathrm{q},{ }^{1} J_{C F}=-272.3,3-\mathrm{CF}_{3}$ aniline), 124.82 ($C_{q}-1$ salicyl), 125.10 ($C_{q}-5$ salicyl), 125.93 ($C-4$ " phenyl), 126.59 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.28 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.51 ($q,{ }^{2} J_{C F}=31.6, C-3^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 129.61 ($C-5^{\prime}$ in 3^{\prime}-CF F $_{3}$-aniline), 129.99 ($C-6$ salicyl), 132.34 ($C-4$ salicyl), 139.45 ($C-1$ 1' in $3^{\prime}-$ CF $_{3}$-aniline), 146.24 ($C_{q}-1^{\prime \prime}$ phenyl), 155.18 ($C_{q}-2$ salicyl), 162.93 (CONH).
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.73-1.82$ ($\mathrm{m}\left[2 \mathrm{x}\right.$ dddd], $2 \mathrm{H}, \mathrm{H}-3_{\mathrm{ax}} / \mathrm{H}-5_{\mathrm{ax}}$ in piperidine), 1.82-1.86 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {eq }}-3$ in piperidine), 1.87-1.92 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-5$ in piperidine), 2.15 (ddd, 1 H , $H_{\mathrm{ax}}-6$ in piperidine), 2.47 (ddd, $1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-2$ in piperidine), 2.51 (dd, ${ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.4,1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.54 (tt, $1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-4$ in piperidine), 2.62 (dd, ${ }^{2} \mathrm{~J}=-12.2,^{3} \mathrm{~J}=11.2,1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.82 (m[d], br, $1 \mathrm{H}, \mathrm{H}_{\text {eq }}-2$ in piperidine), 3.15 ($\mathrm{m}[\mathrm{d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{\text {eq- }} 6$ in piperi-
dine), $4.04\left(\mathrm{~m}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=-9.2,^{3} \mathrm{~J}=6.0, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.25(\mathrm{~m}[$ octet] $, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})) 4.33(\mathrm{~m}$, $\left.1 \mathrm{H},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.6, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.21-7.24(m,3H,H$2^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.31-7.34 (m, 2H, H-3', $5^{\prime \prime}$ phenyl), 7.36 (m[d], $1 \mathrm{H}, \mathrm{H}-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $7.43\left(\mathrm{~m}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=-8.7,{ }^{3} \mathrm{~J}=2.7, \mathrm{H}-4\right.$ salicyl), 7.47 (m[t], $1 \mathrm{H}, \mathrm{H}-5^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.08 (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in 3^{\prime}-CF3-aniline), 8.10 ($\mathrm{d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.23 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.31 (s, 1H (CONH).
${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=33.42\left(\mathrm{NCH}_{2} \mathrm{C}(5) \mathrm{H}_{2}\right.$-piperidine $), 33.75\left(\mathrm{NCH}_{2} \mathrm{C}(3) \mathrm{H}_{2}-\right.$ piperidine), 42.45 (piperidine- CH -4-phenyl), 52.77 ($\mathrm{NC}(6) \mathrm{H}_{2} \mathrm{CH}_{2}$-piperidine), 56.38 ($\mathrm{NC}(2) \mathrm{H}_{2} \mathrm{CH}_{2}$-piperidine), $59.87\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65.11\left(\mathrm{CH}(\mathrm{OH}), 71.74\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.30\right.$ (C-3 salicyl), 117.34 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 120.70 ($\mathrm{q},{ }^{3} J_{C F}=3.4, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}-$ aniline), 123.54 ($C-6$ ' in $3^{\prime}-$ CF $_{3}$-aniline), $123.66\left(C_{q}-1\right.$ salicyl), $124.18\left(q,{ }^{1} J_{C F}=-272, C F_{3}\right)$, 126.49 (C-2', $6^{\prime \prime}$ phenyl), 126.92 (br, C-3'", 4', 5" phenyl), 127.60 ($C_{q}-5$ salicyl), 128.66 (C$2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.57 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.33 (${ }^{2} J_{C F}=32.1, C-3^{\prime}$ in $3_{q}{ }^{\prime}-C_{3}$-aniline), 132.41 (C-6 salicyl), 133.09 (C-4 salicyl), 139.30 ($C-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 145.89 ($C_{q}-1^{\prime \prime}$ phenyl), 155.19 ($C_{q}-2$ salicyl), 162.43 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 533.1831 found: 533.1819.
Melting point: $198-202^{\circ} \mathrm{C}$.

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (187)

187 was prepared following general procedure E, yielding 0.147 g (96\%) of the desired product as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.24-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}\right.$ in $3,5-\mathrm{CH}_{2}$ piperidine), 1.50-1.59 (m, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)$-phenyl), $1.59-1.71\left(\mathrm{~m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}\right.$ in $3,5-\mathrm{CH}_{2}$ piperidine), $1.97\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=-11.7,{ }^{3} \mathrm{~J}_{a a}=\right.$ 11.6, ${ }^{3} J_{a e}=2.2,1 \mathrm{H}, \mathrm{Hax}_{\mathrm{ax}}-2$ piperidine), $2.27\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=-11.6,{ }^{3} J_{a a}=11.7,{ }^{3} J_{a e}=2.3,1 \mathrm{H}, H_{\mathrm{ax}}-6\right.$ piperidine), 2.43 (dd, $\left.{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.52-2.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)-\right.$
phenyl, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.67-2.74 (m[d], br, $1 \mathrm{H}, \mathrm{H}_{\text {eq- }}-6$ in piperidine), 2.97-3.04 (m[d], br, $1 \mathrm{H}, \mathrm{H}_{\text {eq }}-2$ in piperidine), $3.99\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=5.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.15-4.23(br, 1 H , $\mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} H_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.11 (ddd $[\mathrm{t}],{ }^{3} \mathrm{~J}_{1}={ }^{3} \mathrm{~J}_{2}=7.5,{ }^{4} \mathrm{~J}=0.7,1 \mathrm{H}, \mathrm{H}-5$ salicyl), $7.13-7.17$ (m, $2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$-phenyl), 7.187.24 (m, 1H, H-4'-phenyl), 7.27-7.32 (m, 3H, H-3' ${ }^{\prime \prime}, 5^{\prime \prime}$-phenyl), 7.33-7.37 (d, br, 1H, H-4' in $3^{\prime}-$ CF_{3}-aniline), $7.40-7.47$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.07 ($\mathrm{d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-$ CF_{3}-aniline), 8.18 (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.24 ($\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.39 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=32.04$ ($\mathrm{NCH}_{2} \mathrm{CH}_{2}$-piperidine), $32.29\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 37.69 (piperidine- $\left.4-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), \quad 43.08\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)\right.$-phenyl), $52.47\left(\mathrm{NCH}_{2}-\right.$ piperidine), $\quad 55.65\left(\mathrm{NCH}_{2}\right.$-piperidine), $\quad 59.85\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), \quad 65.10(\mathrm{CH}(\mathrm{OH}), \quad 71.26$ $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 112.70 ($\mathrm{C}-3$ salicyl), 117.20 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=3.9, \mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.28 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}$ $=3.7, C-4$ ' in $3^{\prime}-$ CFF $_{3}$-aniline), 121.94 ($C-5$ salicyl), 122.01 ($C_{q^{-}}-1$ salicyl), 123.40 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 124.22 ($\mathrm{q},{ }^{1} J_{C F}=-272,3^{\prime}-$ CF $_{3}$-aniline), 125.98 ($C-4^{\prime \prime}$ phenyl), 128.30 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.16 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.39 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.15 ($\mathrm{q}^{2}{ }^{2} J_{C F}=32.6, C-3^{\prime}$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 132.51 ($C-6$ salicyl), 133.44 ($C-4$ salicyl), 139.58 ($C-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 140.46 ($C_{q^{-}} 1^{\prime \prime}$ phenyl), 156.64 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 163.76 ($\mathrm{CONH}^{\prime} \mathbf{3}^{\prime}-\mathrm{CF}_{3}$-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 513.2359 found: 513.2365.

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)- N -(2-fluorophenyl)benzamide (188)

188 was prepared following general procedure E, yielding $0.151 \mathrm{~g}(94 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.22-1.36(2 \mathrm{H})\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}\right.$ in $3,5-\mathrm{CH}_{2}$ piperidine), $1.48-$ $1.59(1 \mathrm{H}),\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)\right.$-phenyl), 1.59-1.69 (2H), (m[t], 2H, H in 3,5-CH2 piperidine), 1.93 (1H), (ddd, ${ }^{2} J=-11.7,{ }^{3} J_{a a}=11.7,{ }^{3} J_{a e}=2.3,1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), $2.23(1 \mathrm{H})$, (ddd, ${ }^{2} \mathrm{~J}=-$ $11.6,{ }^{3} J_{a a}=11.7,{ }^{3} J_{a e}=2.3,1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), 2.47-2.57 $(4 \mathrm{H}),\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)-\right.$
phenyl, $\mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.69-2.76 (1H), (m[d], br, $1 \mathrm{H}, \mathrm{H}$ in 2,6- CH_{2} piperidine), 2.96-3.03 (1H), (m[d], $1 \mathrm{H}, \mathrm{H}$ in 2,6- CH_{2} piperidine), 4.16-4.26 (3H), (m, $3 \mathrm{H}, \mathrm{CH}(\mathrm{OH}), \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 7.02-7.22 (8 H), ($\mathrm{m}, 8 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl, $H-3,5$ salicyl, $3^{\prime}, 4^{\prime}, 5^{\prime}$ aniline, $4^{\prime \prime}$ phenyl), 7.24-7.32 (2H), (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $7.48(1 \mathrm{H}),\left(\mathrm{ddd},{ }^{3} J_{1}=7.4,{ }^{3} \mathrm{~J}_{2}=8.3,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $8.28(1 \mathrm{H}),\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $8.51(1 \mathrm{H}),\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.0,{ }^{4} \mathrm{~J}_{\mathrm{HF}}=7.5,{ }^{4} \mathrm{~J}=1.7\right.$, $1 \mathrm{H}, \mathrm{H}-6$ in $2^{\prime}-\mathrm{F}$-aniline), $10.09(1 \mathrm{H})(\mathrm{s}, 1 \mathrm{H}(\mathrm{CONH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=32.30\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $32.60\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 37.88 (piperidine- $4-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $43.26\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)\right.$-phenyl), $52.52 \quad\left(\mathrm{NCH}_{2}-\right.$ piperidine), $55.64\left(\mathrm{NCH}_{2}\right.$-piperidine $)$, $60.66\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $65.13(\mathrm{CH}(\mathrm{OH})$, doublet), 72.22 $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 112.98 ($\mathrm{C}-3$ salicyl), 114.87 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\text {CF }}=19.3, C-3^{\prime}$ in 2^{\prime}-F-aniline), 121.95 ($\mathrm{C}-5$ salicyl), 122.04 ($C_{q}-1$ salicyl), 122.89 ($\mathrm{br}, \mathrm{C}-6^{\prime}$ in 2^{\prime}-F-aniline), 124.29 ($\mathrm{d},{ }^{3} J_{C F}=7.7, C-4^{\prime}$ in $2^{\prime}-\mathrm{F}$ aniline), 124.71 ($\mathrm{d}^{4}{ }^{4} J_{C F}=3.5, C-5$ ' in $2^{\prime}-$ F-aniline), 126.01 ($C-4{ }^{\prime \prime}$ phenyl), $127.12\left(\mathrm{~d}^{2}{ }^{2}{ }_{C F}=10.1\right.$, $C_{q^{-}} 1^{\prime}$ in $2^{\prime}-F-$ aniline $), 128.35$ ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.24 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 132.75 (C - 6 salicyl), 133.55 ($C-4$ salicyl), 140.66 ($C_{q}-1^{\prime \prime}$ phenyl), 153.14 ($\left(,^{1} J_{C F}=-243.4, C_{q}-2^{\prime}\right.$ in $2^{\prime}-F$-aniline), 156.95 ($C_{q}-2$ salicyl), 163.58 (CONH-2'-F-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 463.2404 found: 463.2397.
Melting point: $120-126^{\circ} \mathrm{C}$.
2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)- N -(p-tolyl)benzamide (189)

189 was prepared following general procedure E, yielding $0.136 \mathrm{~g}(80 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.25-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}\right.$ in $3,5-\mathrm{CH}_{2}$ piperidine), 1.49-1.70 (m , $3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)$-phenyl, 2 H in $3,5-\mathrm{CH}_{2}$ piperidine), 1.96 (ddd, ${ }^{2} \mathrm{~J}=-11.7,{ }^{3} J_{a a}=11.6,{ }^{3} J_{a e}=2.2,1 \mathrm{H}$, H in $2,6-\mathrm{CH}_{2}$ piperidine), 2.24 (ddd, ${ }^{2} \mathrm{~J}=-11.6,{ }^{3} J_{a a}=11.6,{ }^{3} \mathrm{~J}_{a e}=2.2,1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCO}\right), 2.43\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $2.55\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0, \mathrm{CH}\left(\mathrm{CH}_{2}\right)\right.$-phenyl), $2.62(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=10.5,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 2.66-2.72 (m[d], br, $1 \mathrm{H}, \mathrm{H}$ in 2,6- CH_{2} piperidine), 2.96-3.04 (m[d], br, $1 \mathrm{H}, \mathrm{H}$ in 2,6- CH_{2}
piperidine), $4.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=5.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right)$, 4.14-4.22(m, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right), 4.28$ (dd, ${ }^{2} J=-9.5,{ }^{3} J=3.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 6.95 (dd, ${ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.08-7.17 (m, 5H, H-3', 5^{\prime} toluidine, $\mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl, $\mathrm{H}-5$ salicyl), 7.18-7.23 (m, 1H, H-4" phenyl), 7.27-7.32 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.43 (ddd, ${ }^{3} \mathrm{~J}_{1}=7.6,{ }^{3} \mathrm{~J}_{2}=8.4,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.64-7.70 (H$2^{\prime}, 6^{\prime}$ toluidine), $8.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.00 (s, 1 H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=21.03$ ($4-\mathrm{CH}_{3}$ in toluidine), $32.09\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}-\right.$ piperidine), 32.39 ($\mathrm{NCH}_{2} \mathrm{CH}_{2}$-piperidine), 37.74 (piperidine-4- $\mathrm{CH}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 43.15 (piperidine-$4-\mathrm{CH}\left(\mathrm{CH}_{2}\right)$-phenyl), $52.53\left(\mathrm{NCH}_{2}\right.$-piperidine), $55.69\left(\mathrm{NCH}_{2}\right.$-piperidine), $60.12\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $65.14\left(\mathrm{CH}(\mathrm{OH}), 70.96\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 112.61\right.$ ($\mathrm{C}-3$ salicyl), 120.51 ($\mathrm{C}-2^{\prime}, 6^{\prime}$ toluidine), 121.90 (C-5 salicyl), 122.79 ($C_{q}-1$ salicyl), 126.06 ($C-4^{\prime \prime}$ phenyl), 128.36 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.21 (C $2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.45 ($C-3^{\prime}, 5^{\prime}$ toluidine), 132.59 ($C-6$ salicyl), 132.98 ($C-4$ salicyl), 133.49 ($C_{q^{-}}$ 4' toluidine), 136.44 ($C_{q^{-}} 1^{\prime}$ toluidine), 140.49 ($C_{q}-1^{\prime \prime}$ phenyl), 156.58 ($C_{q}-2$ salicyl), 163.37 (CONH-toluidine).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 459.2641 found: 459.2647.

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (190)

190 was prepared following general procedure \mathbf{E}, yielding $0.074 \mathrm{~g}(49 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.24-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}\right.$ in $3,5-\mathrm{CH}_{2}$ piperidine), 1.49-1.72 (m, $3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)$-phenyl), H in $3,5-\mathrm{CH}_{2}$ piperidine), 1.97 (ddd, ${ }^{2} \mathrm{~J}=-11.6,{ }^{3} J_{a a}=11.6,{ }^{3} J_{a e}=2.4,1 \mathrm{H}$, H in $2,6-\mathrm{CH}_{2}$ piperidine), 2.29 (ddd, ${ }^{2} \mathrm{~J}=-11.7,{ }^{3} \mathrm{~J}_{a a}=11.6,{ }^{3} J_{a e}=2.2,1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), $2.43\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.4,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 2.52-2.60 (m, $3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)-$ phenyl), $\mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.70 ($\mathrm{m}[\mathrm{d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), 3.01 ($\mathrm{m}[\mathrm{d}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}$ in $2,6-\mathrm{CH}_{2}$ piperidine), $4.00\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=6.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.16-4.24(m, 1 H , $\mathrm{CH}(\mathrm{OH})$), $4.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4 \mathrm{r}^{3} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.12-7.16 (m[d], 2H, H-2"', $6^{\prime \prime \prime}$ phenyl), 7.17-7.22 (m, 1H, H-4"' phenyl), 7.24-7.32 (m[t], 2H,
$H-3^{\prime \prime \prime}, 5^{\prime \prime \prime}$ phenyl), 7.37 (d, $1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}-\mathrm{CF} 3-$ aniline), 7.42 (dd, ${ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.46 (t, 1H, H-5" in $3^{\prime \prime}$-CF3-aniline), 8.08 (m[d], 2H, H-2", H-6" in $3^{\prime \prime}$-CF3-aniline), 8.22 ($\mathrm{d}^{3}{ }^{3}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.28 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=32.13\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$-piperidine), $32.40\left(\mathrm{NCH}_{2} \mathrm{CH}_{2^{-}}\right.$ piperidine), 37.80 ($\mathrm{CH}-4^{\prime \prime \prime}$ piperidine), $43.15\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)\right.$-phenyl), 52.49 (NCH_{2}-piperidine), $55.82\left(\mathrm{NCH}_{2}\right.$-piperidine), $59.78\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65.03(\mathrm{CH}(\mathrm{OH})), 71.80\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.32$ ($C-3$ salicyl), 117.35 ($q,{ }^{4} J_{C F}=3.8, C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 120.68 ($q,{ }^{4} J_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 123.55 (C - 6^{\prime} in $3^{\prime}-$ CF $_{3}$-aniline), 123.69 ($C_{q}-1$ salicyl), 124.21 ($q,{ }^{1} J_{C F}=-272.3,3-F_{3^{-}}$ aniline), 126.07 ($C-4^{\prime \prime \prime}$ phenyl), 127.58 ($C_{q}-5$ salicyl), 128.39 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 129.23 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.55 (C-5' in $3^{\prime}-$ CF $_{3}$-aniline), 131.31 ($q,{ }^{2} J_{C F}=31.6, C_{q}-3^{\prime}$ in $3^{\prime}-C_{3}$-aniline), 132.39 (C-6 salicyl), 133.06 (C-4 salicyl), 139.31 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 140.51 ($C_{q}-1^{\prime \prime}$ phenyl), 155.19 ($C_{q}-2$ salicyl), 162.43 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 547.1968 found: 547.1975.
Melting point: $101-109^{\circ} \mathrm{C}$.
2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)- N -(3(trifluoromethyl)phenyl)benzamide (191)

191 was prepared following general procedure E, yielding $0.081 \mathrm{~g}(47 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.3,23^{\circ} \mathrm{C}\right): \delta=2.34-2.48(6 \mathrm{H}),\left(\mathrm{m}, \mathrm{dyn}, 6 \mathrm{H}, \mathrm{NCH}_{\mathrm{eq}}-2^{\prime \prime}, 6{ }^{\prime \prime}, \mathrm{NCH}_{2}-3^{\prime \prime} .5^{\prime \prime}\right.$ of piperazine), $2.49(1 \mathrm{H}),\left(\mathrm{dd}^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.4,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 2.63(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2\right.$, ${ }^{3} \mathrm{~J}=10.8,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.69-2.79 (2H), (m, dyn, $2 \mathrm{H}, \mathrm{NCH}_{\mathrm{ax}}-2^{\prime \prime}, 6^{\prime \prime}$ of piperazine), 4.04 (1H), (dd, $\left.{ }^{2} J=-9.4,{ }^{3} J=5.7,1 H, O C H_{a} H_{b} C H(O H)\right), 4.18-4.25(1 \mathrm{H}),(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.26(1 \mathrm{H})$, (s, 1H, NCH($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$), $4.33(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 6.97(1 \mathrm{H}),\left(\mathrm{d},{ }^{3} \mathrm{~J}=\right.$
8.2, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.14(1 \mathrm{H})$, (ddd $[\mathrm{t}],{ }^{3} \mathrm{~J}_{1}={ }^{3} \mathrm{~J}_{2}=7.5,{ }^{4} \mathrm{~J}=0.7,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.16-7.22 (2H) ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl), $7.24-7.31(4 \mathrm{H}),\left(\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right.$ phenyl), $7.33(1 \mathrm{H}),\left(\mathrm{d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $7.39-7.44(5 \mathrm{H}),\left(\mathrm{m}, 5 \mathrm{H}, 2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right.$ phenyl, $\mathrm{H}-5^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 7.48 (1 H), (ddd, ${ }^{3} J_{1}=7.4,{ }^{3} J_{2}=8.4,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl, $8.06(1 \mathrm{H})$, (d, br, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $8.09(1 \mathrm{H})$, (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $8.26(1 \mathrm{H}),\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8,^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.32 (1H); (s, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=51.92$ (dyn, $\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}$ piperazine), 53.58 (br), (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.72\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $65.05(\mathrm{CH}(\mathrm{OH}))$, $71.15\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.19$ $\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 112.72\left(\mathrm{C}-3\right.$ salicyl), $117.25\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=4.1, \mathrm{C}-2^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), $120.40\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=\right.$ 3.7, $C-4^{\prime}$ in 3^{\prime} - CFF $_{3}$-aniline), 122.16 ($C-5$ salicyl), 122.19 ($C_{q^{-}}-1$ salicyl), 123.43 ($C-6^{\prime}$ in $3^{\prime}{ }^{\prime}$ CFF $_{3}{ }^{-}$ aniline), 127.17 ($C-4^{\prime \prime}$ phenyl), 128.05 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.67 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.47 ($C-5^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 132.74 ($C-6$ salicyl), 133.50 ($C-4$ salicyl), 139.57 ($C-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 142.62 ($C_{q}-1^{\prime \prime}$ phenyl), 142.66 ($C_{q}-1^{\prime \prime}$ phenyl), 156.66 ($C_{q}-2$ salicyl), 163.76 (CONH). $C_{3}, C-3^{\prime}$ in 3^{\prime} - CF_{3}-aniline not recorded

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 590.2634 found: 590.2630.
Melting point: $67-70^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(2fluorophenyl)benzamide (192)

192 was prepared following general procedure E, yielding $0.164 \mathrm{~g}(88 \%)$ of the desired product as oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.34-2.50\left(\mathrm{~m}\right.$, dyn, $6 \mathrm{H}, \mathrm{NCH}_{\mathrm{ax}}-2^{\prime \prime}, 6^{\prime \prime}, \mathrm{NCH}_{2}-3^{\prime \prime} .5^{\prime \prime}$ of piperazine), 2.54 ($\mathrm{dd},{ }^{2} J=-12.2,{ }^{3} J=4.0,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $2.60\left(\mathrm{dd},{ }^{2} J=-12.2,{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}\right.$, $\mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.65-2.78 (m , dyn, $2 \mathrm{H}, \mathrm{NCH}_{\mathrm{eq}}-2^{\prime \prime}, 6^{\prime \prime}$ of piperazine), 4.17-4.27 (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH}), \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$), $7.00-7.22$ (m, 7H H-3,5 salicyl, $\mathrm{H}-3,4,5$ aniline, $2 \times \mathrm{CH}-4$
phenyl), 7.23-7.32 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH-3"}, 5^{\prime \prime}$ phenyl), 7.37-7.43 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.48 (m , $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.27 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.51 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$ F-aniline), 10.08 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$: $\delta=52.06\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $53.50\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $60.35\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65.12\left(\mathrm{CH}(\mathrm{OH})\right.$, doublet), $72.15\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.31(\mathrm{~N}-$ $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 112.97$ ($\mathrm{C}-3$ salicyl), 114.87 ($\mathrm{d},{ }^{2} \mathrm{~J}_{C F}=19.3, \mathrm{C}-3^{\prime}$ in $2^{\prime}-\mathrm{F}$-aniline), 121.99 ($\mathrm{C}-5$ salicyl), 122.04 ($C^{q}-1$ salicyl), 122.87 (br, $C-6^{\prime}$ in $2^{\prime}-F$-aniline), 124.29 ($\mathrm{d}^{3}{ }^{3} J_{C F}=7.7, C-4^{\prime}$ in $2^{\prime}-F-$ aniline), 124.72 ($\mathrm{d},{ }^{3} J_{C F}=3.2, C-5^{\prime}$ in $2^{\prime}-F-$ aniline), 127.13 ($C-4^{\prime \prime}$ phenyl), 128.05 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.65 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 132.76 ($C-6$ salicyl), 133.56 ($C-4$ salicyl), $142.73,142.78,2 \times\left(C_{q^{-}} 1^{\prime \prime}\right.$ phenyl), 153.10 ($\mathrm{d},{ }^{1} J_{C F}=-243.4, C_{q}-2^{\prime}$ in $2^{\prime}-\mathrm{F}$-aniline), 156.91 ($C_{q}-2$ salicyl), 163.56 (CONH). $C_{q}-1$ aniline not recorded.

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 540.2670 found: 540.2662.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(p-tolyl)benzamide (193)

193 was prepared following general procedure \mathbf{E}, yielding $0.193 \mathrm{~g}(100 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.29$ ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHCO}$), 2.34-2.53 (m, dyn, 6H, $\mathrm{NCH}_{\mathrm{ax}}-2^{\prime \prime}, 6^{\prime \prime}, \mathrm{NCH}_{2}-3^{\prime \prime} .5^{\prime \prime}$ of piperazine), 2.46 (dd, ${ }^{2} \mathrm{~J}=-12.3,^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 2.61-2.76 (m, dyn, $2 \mathrm{H}, \mathrm{NCH}_{\text {eq- }} 2^{\prime \prime}, 6^{\prime \prime}$ of piperazine), $2.65\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=10.8,1 \mathrm{H}\right.$, $\left.\mathrm{NCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=5.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.12-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $6.95\left(\mathrm{dd}[\mathrm{d}],{ }^{3} \mathrm{~J}=8.2\right.$, ${ }^{4} J=0.6,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.07-7.14 (m, $3 \mathrm{H}, \mathrm{H}-5$ salicyl, $\mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ toluidine), 7.16-7.22 (m, 2H, 2 x CH-4 phenyl), 7.25-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH-3"}{ }^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.38-7.47 (m,5H, H-4 salicyl, $2 \mathrm{x} \mathrm{H-2"}, 6^{\prime \prime}$
phenyl), 7.62-7.67 (m, 2H, H-2", $6^{\prime \prime}$ toluidine), 8.24 (dd, ${ }^{3} \mathrm{~J}=7.8,^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.99 (s, 1H (CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=20.85$ ($4-\mathrm{CH}_{3}$ in toluidine), 51.86 (dyn, $\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}$ piperazine), 53.40 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.63\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $64.96(\mathrm{CH}(\mathrm{OH}))$, 70.73 $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $76.09\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 112.46 ($\mathrm{C}-3$ salicyl), 120.33 ($\mathrm{C}-2^{\prime \prime}, 6^{\prime \prime}$ toluidine), 121.79 ($\mathrm{C}-$ 5 salicyl), 122.64 ($C_{q}-1$ salicyl), 127.01 (C-4 phenyl), 127.89 (C-2",6"phenyl), 128.50 (C$3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.30 (C-3", $5^{\prime \prime}$ toluidine), 132.48 ($C-6$ salicyl), 132.83 (C-4 salicyl), 133.33 ($C_{q}{ }^{-}$ 4^{\prime} toluidine), 136.26 ($C_{q}-1$ toluidine), 142.46 ($C_{q}-1^{\prime \prime}$ phenyl[1]), $142.52\left(C_{q}-1^{\prime \prime}\right.$ pheny[2]I), 156.42 ($C_{q}-2$ salicyl), 163.18 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 536.2923 found: 536.2913.
Melting point: $125-138^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (194)

194 was prepared following general procedure E, yielding $0.599 \mathrm{~g}(41 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.49-1.53$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.67 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.67-1.77 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.24, 2.27,2.31,2.33 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.73 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,^{3} \mathrm{~J}=9.8$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.84 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.7,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), $4.01\left(\mathrm{dd},{ }^{2} J=-9.2,{ }^{3} \mathrm{~J}\right.$ $\left.=6.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.09-4.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2 \mathrm{I}^{3} \mathrm{~J}=2.3,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,^{4} \mathrm{~J}=1.7,1 \mathrm{H}, H-3\right.$ salicyl), 7.33-7.47 (m,3H, $H-4$ salicyl, $H-$ $4^{\prime \prime}, H^{\prime \prime} 5^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.07 ($\mathrm{d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.11 (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$ -CF3-aniline), 8.22 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $10.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.49\left(\mathrm{CH}\right.$-adamantane), $33.5733 .09\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), $37.25\left(\mathrm{CH}_{2}\right.$-adamantane), $40.80\left(\mathrm{CH}_{2}\right.$-adamantane), $51.46\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.20$
(NHCH_{2}-1"-adamantane), $66.86\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.84\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.36 ($\mathrm{C}-3$ salicyl), 117.40 ($\mathrm{q},{ }^{4} J_{C F}=4.0, C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.66 ($\mathrm{q},{ }^{4} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.62 ($\mathrm{C}-6^{\prime}$ in 3^{\prime}-CFF ${ }_{3}$-aniline), 123.58 ($C_{q}-1$ salicyl), 124.17 ($q,{ }^{1} J_{C F}=-272.0,3^{\prime}-C F_{3}$-aniline), 127.54 ($C_{q}-5$ salicyl), 129.50 (C - 5^{\prime} in $3^{\prime}-$ CF $_{3}$-aniline), 131.32 ($q,{ }^{2} J_{C F}=31.6, C_{q^{\prime}}-3^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 132.39 (C-6 salicyl), 133.04 ($C-4$ salicyl), 139.35 ($C_{q^{-}} 1^{\prime}$ in 3^{\prime}-CF F_{3}-aniline), 155.25 ($C_{q}-2$ salicyl), 162.44 (CONH).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.37-1.42\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.52-1.58 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.68 (m, 3H, CH_{2}-adamantane), 1.87 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.08 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.56-2.67 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.91-3.99 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), 4.12-4.23 (m, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $5.25\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right.$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.46 ($\mathrm{brd},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.56-7.62$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-5$ aniline), 7.78 (d , ${ }^{3} J=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.96 ($\mathrm{br} \mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.28 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.59 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.81$ (CH-adamantane), $33.24\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), $36.75\left(\mathrm{CH}_{2}\right.$-adamantane), $40.27\left(\mathrm{CH}_{2}\right.$-adamantane $), 53.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.40\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.92(\mathrm{CH}(\mathrm{OH})), 71.99\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.74(\mathrm{C}-3$ salicyl), 115.87 ($q,{ }^{4} J_{C F}=4.2, C-2$ aniline), $120.13\left(q,{ }^{4} J_{C F}=4.0, C-4\right.$ aniline), $123.33\left(C-6^{\prime}\right.$ in $3^{\prime}-C F_{3}{ }^{-}$ aniline), $124.12\left(q,{ }^{1} J_{C F}=-272.3,3^{\prime}-C F_{3}\right.$-aniline $), 124.81\left(C_{q}-1\right.$ salicyl), $125.03\left(C_{q^{-}}\right.$- salicyl), 129.54 ($\mathrm{q},{ }^{2} J_{C F}=31.3, C_{q-3}$ aniline), 129.63 ($C-6$ aniline), 129.97 ($C-5$ aniline), 132.35 ($C-4$ salicyl), 139.43 ($C_{q}-1$ aniline), 155.15 ($C_{q}-2$ salicyl), 162.90 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 537.2124 found: 537.2132.
Melting point: $110-120^{\circ} \mathrm{C}$.

2-(3-(adamantan-1-yl(ethyl)amino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (195)

195 was prepared following general procedure E, yielding $0.174 \mathrm{~g}(73 \%)$ of the desired product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=1.07(3 \mathrm{H}), 1.49-1.75(12 \mathrm{H}), 1.99(\mathrm{br}, 3 \mathrm{H}), 2.50-2.61(1 \mathrm{H})$, $2.63(1 \mathrm{H}), 2.75(1 \mathrm{H}), 2.79-2.89(1 \mathrm{H}), 3.99-4.07(2 \mathrm{H}), 4.31(1 \mathrm{H}), 7.00(1 \mathrm{H}), 7.14(1 \mathrm{H}), 7.33(1 \mathrm{H})$, $7.44(1 \mathrm{H}), 7.48(1 \mathrm{H}), 8.10(1 \mathrm{H}), 8.16(1 \mathrm{H}) 8.26(1 \mathrm{H}), 10.43(1 \mathrm{H})$.
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=17.13\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 29.64$ (CH-adamantane), 36.64 (CH_{2}-adamantane), $40.20\left(\mathrm{CH}_{2}\right.$-adamantane), $42.95\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 49.52\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right), 55.64$ ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $66.05\left(\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right.$), 71.74 (salicyl- $\left.\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}\right)$, $112.78(\mathrm{C}-3$ salicyl), $117.60\left(\mathrm{q}^{3}{ }^{3} J_{C F}=3.9, \mathrm{C}-2^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.30 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 122.04 (C-5 salicyl), 122.28 ($C_{q}-1$ salicyl), 123.73 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 129.39 ($C-5^{\prime}$ in $3^{\prime}{ }^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 132.69 ($C-6$ salicyl), 133.43 ($C-4$ salicyl), 139.68 ($C_{q^{-}}$- $^{\prime}$ in 3^{\prime} ' $^{-}$CF $_{3}$-aniline), 156.87 ($C_{q}-2$ salicyl), 163.84 (CONH). CF $3, C-3^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline not recorded

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 517.2682 found: 517.2678.
Melting point: $90-92^{\circ} \mathrm{C}$.

1-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3-(trifluoromethyl)phenyl)-2-naphthamide (196)

196 was prepared following general procedure E, yielding $0.078 \mathrm{~g}(11 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.33-1.40\left(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.511.57 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.60-1.68 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.86 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.04 (br s, $2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), $2.60\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=\right.$ $6.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), $2.67\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right), 3.95-4.02(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.02-4.13 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $5.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})) 7.46\left(\mathrm{~d}, \mathrm{br}^{3}{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}\right.$, H-4' in $3^{\prime}-$ CFF $_{3}$-aniline), 7.57-7.69 (m, 3H), 7.74-7.83 (m [q], 2H), 7.98-8.05 (m, 2 H), 8.33 (br s, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 8.38 ($\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=7.5,{ }^{4} \mathrm{~J}=1.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $10.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.79$ (CH -adamantane), $33.13\left(\mathrm{C}_{\mathrm{q}}-1\right.$ adamantane), 36.73 (CH_{2}-adamantane), $40.24\left(\mathrm{CH}_{2}\right.$-adamantane), $53.38\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.36\left(\mathrm{NHCH}_{2}\right.$-1-adamantanyl), $68.62\left(\mathrm{CH}(\mathrm{OH})\right.$), $78.60\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 116.01\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.8, \mathrm{C}\right.$ 4^{\prime} in 3^{\prime}-CF3-aniline), 119.94 ($q,^{3}{ }^{3}{ }_{C F}=3.8, C^{\prime} 2^{\prime}$ in 3^{\prime}-CF3-aniline), 123.04 (C - 6 salicyl), 123.49 (C - 6^{\prime} in 3^{\prime}-CF3-aniline), $123.81,124.00$ ($C_{q}-1$ salicyl), 124.12 ($\mathrm{q}^{1}{ }^{1} J_{C F}=-273.2, C F_{3}$ in $3^{\prime}-$ CF $_{3^{-}}$ aniline), $125.77,126.69,127.33$ ($C_{q}-3$ salicyl), 127.90, 127.97, 129.43 ($q,{ }^{2} J_{C F}=31.6, C-3^{\prime}$ in 3^{\prime} -CF_{3}-aniline),129.82, 135.54 (Cq-4 salicyl), 139.78 ($C_{q}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 153.13 ($C_{q}-2$ salicyl), 165.08 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 553.2682 found: 553.2678.

5-chloro-2-(2-hydroxy-3-((3-(trifluoromethyl)adamantan-1-yl)amino)propoxy)N -(3-(trifluoromethyl)phenyl)benzamide acetate (197)

197 was prepared following general procedure \mathbf{E} and subsequent reaction with acetic acid, yielding $0.090 \mathrm{~g}(58 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.53-1.76$ ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ acetate), 2.20 (br s, $2 \mathrm{H}, \mathrm{CH}$-adamantane), 2.91 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-11.8,{ }^{3} \mathrm{~J}=9.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.97 ($\left.\mathrm{dd},{ }^{2} \mathrm{~J}=-11.8,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right), 4.09\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=5.0,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.23\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{OCH}{ }_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.26-4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}))$, 6.87 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.35 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.40 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.6$, $5^{5} \mathrm{~J}=0.9,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.44 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.14 ($\mathrm{dd},{ }^{4} \mathrm{~J}=2.6,{ }^{5} \mathrm{~J}=0.9,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.15 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), $10.10(\mathrm{~s}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=22.81\left(\mathrm{CH}_{3}\right.$-acetate), 28.20 (2 x CH -adamantane), 33.54 ($2 \times \mathrm{CH}_{2}$-adamantane), 34.77 (CH_{2}-adamantane), 37.95 (CH_{2}-adamantane), $39.29\left(\mathrm{CH}_{2}-\right.$ adamantane), 39.54 (CH_{2}-adamantane), 41.02 ($\mathrm{q},{ }^{2} \mathrm{~J}_{C F}=26.1, \mathrm{C}_{\mathrm{q}}-3$ adamantane), 42.95 $\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $53.89\left(\mathrm{C}_{\mathrm{q}}-1\right.$ adamantane), $66.67(\mathrm{CH}(\mathrm{OH}))$, $71.38\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $114.27(\mathrm{C}-3$ salicyl), 117.38 ($\mathrm{q}^{3}{ }^{3} \mathrm{~J}_{C F}=3.9, \mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.81 ($\mathrm{q},{ }^{3} J_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline),
123.71 ($C-6$ ' in $3^{\prime}-$ CFF $_{3}$-aniline), 123.94 ($C_{q}-1$ salicyl), 124.15 ($\mathrm{q},{ }^{1} J_{C F}=-272.0,3-C_{3}$-aniline), $127.58\left(\mathrm{q},{ }^{1} \mathrm{~J}_{C F}=-272.3,3-\mathrm{CF}_{3}\right.$-adamantane), $127.72\left(C_{\mathrm{q}}-5\right.$ salicyl), $129.57\left(C-5^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 131.34 ($q,{ }^{2} J_{C F}=32.3, C-3^{\prime}$ in $3^{\prime}-C F_{3}$-aniline), 132.24 ($C-6$ salicyl), 133.07 ($C-4$ salicyl), 139.17 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 154.85 ($C_{q}-2$ salicyl), 162.63 (CONH) 177.95 (COO ${ }^{-}$).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 591.1840 found: 591.1849.
Melting point: $139^{\circ} \mathrm{C}$.
2-(2-hydroxy-3-((3-(trifluoromethyl)adamantan-1-yl)amino)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (198)

198 was prepared following general procedure \mathbf{E}, yielding $0.261 \mathrm{~g}(80 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.50-1.89\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), $2.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}-$ adamantane), 2.97-3.18 (br s. $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 4.14-4.20 (m [br d], $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.21-4.29 (m [br d], 1H, OCH $\mathrm{a}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.41-4.57 (m, 1H, CH(OH)), $6.92\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.14 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.33 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.43 (dd [t$],{ }^{3} \mathrm{~J}$ $=7.6,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.45-7.50(m, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.89 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.14 (dd, ${ }^{3} J=7.8,{ }^{4} J=1.8,1 \mathrm{H}, H-6$ salicyl), 8.25 (s, br, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.02 ($\mathrm{s}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.03$ (2 x CH -adamantane), 33.27 ($2 \mathrm{x} \mathrm{CH} \mathrm{CH}^{-}$ adamantane), 34.41 (CH_{2}-adamantane), 36.64 ($\mathrm{br}, \mathrm{CH}_{2}$-adamantane), 37.79 (br, $\mathrm{CH}_{2}{ }^{-}$ adamantane), 38.10 ($\mathrm{br}, \mathrm{CH}_{2}$-adamantane), 41.01 ($\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=27.1, \mathrm{C}_{\mathrm{q}}-3$ adamantane), 43.44 $\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 56.04\left(\mathrm{C}_{\mathrm{q}}-1\right.$ adamantane), $65.74(\mathrm{CH}(\mathrm{OH})), 70.73\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 112.68(\mathrm{C}-3$ salicyl), 117.31 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.62 ($\mathrm{q},{ }^{3} J_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 122.36 (C - 5 salicyl), 122.60 ($C_{q}-1$ salicyl), 123.65 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 124.18 ($\mathrm{q},{ }^{1} J_{C F}=-$ 272.5, $C F_{3}$ aniline), 127.32 ($\mathrm{q},{ }^{1} J_{C F}=-280.1, C F_{3}$ adamantane), 129.55 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.34 ($\mathrm{q},{ }^{2} J_{\text {CF }}=32.3, C-3^{\prime}$ in 3^{\prime}-CF F_{3}-aniline), 132.44 ($C-6$ salicyl), 133.55 ($C-4$ salicyl), 139.35 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 156.13 ($C_{q}-2$ salicyl), 164.16 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 557.2223 found: 557.2239.

2-(3-(allylamino)-2-hydroxypropoxy)-N-(2-allylphenyl)benzamide (203)

203 was prepared following general procedure E, yielding $0.080 \mathrm{~g}(67 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.39-2.64(2 \mathrm{H}, \mathrm{br}),(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{NH}), 2.69(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-\right.$ 12.1, $\left.{ }^{3} J=9.2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.85(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right)$, 3.16-3.29 (2H), (m, 1H, CH ${ }_{2}=\mathrm{CHCH}_{2}-\mathrm{NH}-\mathrm{CH}(\mathrm{OH})$), $3.47(2 \mathrm{H}),\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{z}^{\prime}\right.$-aniline), 4.04-4.12 (1H), (m, 1H, CH(OH)), 4.14(1H), (dd, $\left.{ }^{2} J=-9.8,{ }^{3} \mathrm{~J}=6.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.26$ $(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.8,{ }^{3} \mathrm{~J}=3.4,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.98-5.18(4 \mathrm{H}),\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{NH}-\right.$ $\mathrm{CH}(\mathrm{OH}), \mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}$-aniline), 5.74-5.87(1H), (m, $1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{NH}-\mathrm{CH}(\mathrm{OH})$), 5.93-6.05 (1H), ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}$-2'-aniline), $7.04(1 \mathrm{H})$, ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.12(1 \mathrm{H})$, (dd $[\mathrm{t}]$, ${ }^{3} J={ }^{3} J=7.5,1 \mathrm{H}, \mathrm{H}-5$ salicyl), , 7.17(1H), (m, H-4 aniline), 7.21-7.30(2H), (m,H-3 aniline, H-5 aniline), $7.46(1 \mathrm{H})$, (ddd, ${ }^{3} J_{1}=8.4,{ }^{3} J_{2}=7.6,{ }^{4} J_{2}=1.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl,), $7.80(1 \mathrm{H}),\left(\mathrm{d},{ }^{3} \mathrm{~J}=7.8\right.$, $1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.18(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} J=7.8,{ }^{3} J=1.0,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $9.42(1 \mathrm{H})$; $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=36.06\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}\right.$-aniline $)$, $50.84\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 52.11 $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{NH}-\mathrm{CH}(\mathrm{OH})\right)$, $67.77\left(\mathrm{CH}(\mathrm{OH})\right.$), $72.10\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $113.38(\mathrm{C}-3$ salicyl), $116.54\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}\right.$-aniline), $116.81\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{NH}-\mathrm{CH}(\mathrm{OH})\right.$), 122.01 ($\mathrm{C}-5$ salicyl), 123.05 ($C_{q^{-1}}$ 1 salicyl), 125.56 ($C-6^{\prime}$ aniline), 125.89 ($C-4^{\prime}$ aniline), 127.12 ($C-5^{\prime}$ aniline), 129.84 ($C-3^{\prime}$ aniline), 132.44 ($C-6$ salicyl), 132.93 ($C_{q^{-}}{ }^{\prime}$ ' aniline), 133.07 ($C-4$ salicyl), 136.05 ($C_{q^{-}} 1^{\prime}$ aniline), $136.09\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{NH}-\mathrm{CH}(\mathrm{OH})\right.$), $136.39\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right.$-2'-aniline), 156.87 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 164.25 (CONH-2'-allyl-aniline).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 367.2018 found: 367.2021.
Melting point: $98-99^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(2allylphenyl)benzamide (204)

204 was prepared following general procedure \mathbf{E}, yielding $0.083 \mathrm{~g}(53 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta=1.40-1.48$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.54-1.62 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.65-1.73 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.89-1.98 (s, br, $3 \mathrm{H}, \mathrm{CH}-$ adamantane), 2.20, 2.23, 2.40, 2.43, ($\mathrm{AB}, \mathrm{J}_{A B}=-11.9,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.76-2.88 $\left(d d,{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=9.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.92-3.02\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=1.8,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 3.40-3.52\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-\mathrm{Z}^{\prime}\right.$-aniline $), 4.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=4.8,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.22\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,^{3} \mathrm{~J}=5.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.24-4.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.99-5.10 ($\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}$-aniline), 5.90-6.03 $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}\right.$-aniline), 7.02 (dd, ${ }^{3} \mathrm{~J}=7.8,{ }^{4} \mathrm{~J}=$ 1.7, $1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.12 (dd[t], ${ }^{3} J={ }^{3} J=7.5,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.09-7.19 (m, H-4 aniline), 7.217.29 (m, H-3 aniline, $H-5$ aniline), 7.46 (ddd, $\mathrm{br},{ }^{3} J_{1}=8.2,{ }^{3} J_{2}=7.5,{ }^{4} J_{2}=1.5,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.78 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.15 (dd, ${ }^{2} \mathrm{~J}=7.7,{ }^{3} \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 9.37 (s, 1 H , CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.20$ (CH -adamantane), 33.09 ($\mathrm{C}_{\mathrm{q}}-1$ " adamantane), 36.11 ($\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$-2'-aniline), 36.83 (CH_{2}-adamantane), $40.22\left(\mathrm{CH}_{2}\right.$-adamantane), 52.45 $\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 61.67\left(\mathrm{NHCH}_{2}\right.$-1"-adamantane), $66.02(\mathrm{CH}(\mathrm{OH})), 71.56\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 113.34$ (C-3 salicyl), 116.61 ($\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}$-aniline), 122.09 ($\mathrm{C}-5$ salicyl), 123.17 ($\mathrm{C}_{\mathrm{q}}-1$ salicyl), 125.49 (C-6' aniline), 125.93 ($C-4^{\prime}$ aniline), 127.11 ($C-5^{\prime}$ aniline), 129.89 ($C-3^{\prime}$ aniline), 132.37 ($C-6$ salicyl), 133.06 ($C-4$ salicyl), 133.09 ($C-4$ salicyl), 136.00 ($C_{q}-1^{\prime}$ aniline), $136.32\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-2^{\prime}-\right.$ aniline), 156.68 ($C_{q}-2$ salicyl), 164.30 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 475.2961 found: 475.2960 .

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(naphthalen-2yl)benzamide (205)

205 was prepared following general procedure \mathbf{E}, yielding $0.076 \mathrm{~g}(50 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.45-1.50(6 \mathrm{H})$, (s, br, $6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.55-1.63 $(3 \mathrm{H}),\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.66-1.74 (3H), (m, 3H, CH 2 -adamantane), 1.91-1.97 (3H), (s, br, 3H, CH-adamantane), 2.19-2.34 (2 H), 2.19, 2.22, 2.31, 2.34 ($\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{2}-1-$ adamantane)), $2.79(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.86(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-\right.$ $12.2,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 3.57-3.98 (br, $2 \mathrm{H}, \mathrm{OH}, \mathrm{NH}$), $4.04(1 \mathrm{H}),\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=\right.$ 5.6, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.18-4.28(2H), (m, $\left.2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}), \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.93(1 \mathrm{H}),\left(\mathrm{d},{ }^{3} \mathrm{~J}=\right.$ $8.2,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.12(1 \mathrm{H}),\left(\mathrm{dd}[\mathrm{t}],{ }^{3} J_{1}={ }^{3} \mathrm{~J}_{2}=7.8,1 \mathrm{H}, \mathrm{H}-5\right.$ salicyl), 7.34-7.39(1H),(m,1H,Hnaphthalene), $7.40-7.46(2 \mathrm{H}),\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.73(1 \mathrm{H}),\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right.$ naphthalene), 7.76$7.79(2 \mathrm{H}),\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ naphthalene), $7.83(1 \mathrm{H}),\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$-naphthalene), $8.27(1 \mathrm{H})$, ($\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=$ $7.8,{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $8.53(1 \mathrm{H})$, (s, br, $1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}$ naphthalene), $10.26(1 \mathrm{H})$; $(\mathrm{s}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=28.39$ (CH -adamantane), 33.43 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.10\left(\mathrm{CH}_{2}\right.$-adamantane), $40.65\left(\mathrm{CH}_{2}\right.$-adamantane), $52.07\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.16\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.96(\mathrm{CH}(\mathrm{OH})), 71.09\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 112.65 ($\mathrm{C}-3$ salicyl), $117.14\left(\mathrm{C}-1^{\prime}\right.$ naphthalene), 120.89 ($C-6^{\prime}$ naphthalene), 121.96 ($C-5$ salicyl), 122.58 ($C_{q}-1$ salicyl), 124.83 (C $4 a^{\prime}$ naphthalene), 126.33 ($C-7$ ' naphthalene), 127.58 (CH), 127.96 (C-4' naphthalene), 128.60 $(C H), 130.70\left(C_{q^{-}}\right.$naphthalene $), 132.57$ ($C-6$ salicyl), 133.21 ($C-4$ salicyl), 134.17 ($C_{q^{-}}-4 a^{\prime}$ naphthalene), 136.48 ($C_{q}-1$ ' naphthalene), 156.62 ($C_{q}-2$ salicyl), 163.76 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 485.2808 found: 485.2804 .

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5bis(trifluoromethyl)phenyl)benzamide (206)

206 was prepared following general procedure E, yielding $0.095 \mathrm{~g}(50 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.48-1.55$ (br, $6 \mathrm{H}, \mathrm{CH}$ in CH CH_{2}-adamantane), 1.59-1.78 (br, $6 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.98 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 2.25, 2.28, 2.31, 2.34 ($\mathrm{AB},{ }^{2} \mathrm{~J}_{A B}=-11.4,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-damantane), 2.70-2.88 (m, 2H, CH(OH)CH2${ }_{2} \mathrm{NH}$), 3.98-4.05 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.12-4.27 (m, 2H, OCH $2 \mathrm{CH}(\mathrm{OH})$), 7.00 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{H}-5$ salicyl), $7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=8.3,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.80 (br s, $1 \mathrm{H}, \mathrm{H}-4-$ aniline), 7.81 (dd, ${ }^{3} \mathrm{~J}=7.8$, 1H, H-6 salicyl), 8.44 (br s, 2H, H-2,6-aniline), 10.68 (s, 1H, CONH).
${ }^{13}$ C $\left.^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=28.50$ (CH -adamantane), $33.55\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), $40.79\left(\mathrm{CH}_{2}\right.$-adamantane), $51.28\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 62.07 ($\mathrm{NHCH}_{2}-1$ "'-adamantane), $66.76(\mathrm{CH}(\mathrm{OH}))$, $71.51\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 112.92 ($\mathrm{C}-3$ salicyl), 116.96 ($\mathrm{q}^{3}{ }^{3} \mathrm{~J}_{C F}=3.7, \mathrm{C}-4^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF ${ }_{3}$-aniline), 120.31 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=3.4, \mathrm{C}-2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis- CF $_{3}{ }^{-}$ aniline), 121.70 ($C_{q}-1$ salicyl), 122.27 ($C-5$ salicyl), 123.52 ($q, C_{q},{ }^{1} J_{C F}=-272.0,3^{\prime}, 5^{\prime}$-bis-CF $3_{3}-$ aniline), 132.13 ($\mathrm{q},{ }^{2} J_{C F}=33.2, C_{q}-3^{\prime}, 5^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF ${ }_{3}$-aniline), 132.77 ($C-6$ salicyl), 133.86 (C 4 salicyl), 140.65 ($C_{q}-1^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis- CF $_{3}$-aniline), 156.81 ($C_{q}-2$ salicyl), 164.04 (CONH).

HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.2402 found: 571.2395.
Melting point: $144-161^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-fluoro-N-(3(trifluoromethyl)phenyl)benzamide (225)

225 was prepared following general procedure E, yielding $0.104 \mathrm{~g}(35 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}, 23^{\circ} \mathrm{C}$): $\delta=1.37-1.44\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.51-1.58 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.68 (m, 3H, CH CH_{2}-adamantane), 1.88 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.57-2.69 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.92-3.99 (m, 1 H , $\mathrm{CH}(\mathrm{OH})), 4.14\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.20\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.1,{ }^{4} \mathrm{~J}=4.3,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.37-7.44 (m, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.46 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=7.6, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), $7.55-7.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3-aniline, $\mathrm{H}-6$ salicyl), 7.97 ($\mathrm{d}, \mathrm{br}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.4, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), $8.30\left(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3aniline), 10.65 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO-d $_{6}, 23^{\circ} \mathrm{C}$): $\delta=27.82$ (CH -adamantane), $33.25\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), $36.75\left(\mathrm{CH}_{2}\right.$-adamantane $), 40.28\left(\mathrm{CH}_{2}\right.$-adamantane $), \quad 53.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.41$ $\left(\mathrm{NHCH}_{2}-1{ }^{\prime \prime}\right.$-adamantane), $67.98(\mathrm{CH}(\mathrm{OH})), 72.27\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=7.6, \mathrm{C}-3\right.$ salicyl), $115.91\left(\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=4.1, C-2{ }^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}$-aniline), 116.48 ($\mathrm{d},{ }^{2} J_{C F}=24.9, C-6$ salicyl), 119.35 ($\mathrm{d}^{2}{ }^{2} J_{C F}=23.1, C-4$ salicyl), 120.12 ($\mathrm{q},{ }^{4} J_{C F}=3.9, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $123.36\left(C-6^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 124.08 ($\mathrm{q},{ }^{1} J_{C F}=-272.3, C F_{3}$-aniline), $124.42\left(\mathrm{~d},{ }^{3} J_{C F}=6.8, C_{q}-1\right.$ salicyl), $129.55\left(\mathrm{q},{ }^{2} J_{C F}\right.$ $=31.5, C_{q^{\prime}}-3^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 129.96 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 139.42 ($C_{q^{\prime}}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 152.76 ($\mathrm{q},{ }^{4} J_{C F}=1.5, C_{q}-2$ salicyl), 156.20 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\text {CF }}=-238.0, C_{q}-5$ salicyl), $162.88\left(\mathrm{q},{ }^{4} J_{C F}=1.5\right.$, CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 521.24 found: 521.39, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 519.23 found: 519.42.
Melting point: $125-130^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-chlorobenzamide (207)

207 was prepared following general procedure E, yielding $0.112 \mathrm{~g}(32 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.34-1.39$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}$ in CH CH_{2}-adamantane), 1.49-1.57 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.60-1.67 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.86 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), $2.05\left(2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$-1-adamantane), 2.56-2.69 (2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right)$, 3.91-3.98 (m, 1H, CH(OH)), 4.13-4.18 (2H, $\mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $5.31\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right.$), $7.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.60 (dd, ${ }^{3} \mathrm{~J}_{2}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.76\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 7.82 (s, br, H-4 aniline), 8.46 (s, br, H-2, H-6 aniline), 10.88 (br, 1H, CONH).
${ }^{13}$ C $\left.^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.78$ (CH-adamantane), $33.15\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), $36.70\left(\mathrm{CH}_{2}\right.$-adamantane), $40.19\left(\mathrm{CH}_{2}\right.$-adamantane), $53.27\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.22\left(\mathrm{NHCH}_{2}-1\right.$ "-adamantane), $67.74(\mathrm{CH}(\mathrm{OH}))$, $71.90\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.76(\mathrm{C}-3$ salicyl),
 aniline), 123.18 ($q, C_{q},{ }^{1} J_{C F}=-272.0,3^{\prime}, 5^{\prime}$-bis- $C_{F_{3}}$-aniline), $124.81\left(C_{q}-1\right.$ salicyl), 124.96 ($C_{q}-5$ salicyl), 129.48 ($C-6$ salicyl), 130.86 ($\mathrm{q}^{2}{ }^{2} J_{C F}=32.8, C_{q}-3^{\prime}, 5^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF 3_{3}-aniline), 132.56 (C-4 salicyl), 140.58 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}, 5^{\prime}-$ bis-CF $_{3}$-aniline), 155.14 ($C_{q^{-}}-2$ salicyl), 163.57 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 605.20 found: 605.29.
Melting point: $135-148^{\circ} \mathrm{C}$.
5-chloro-2-(3-(((3-chloroadamantan-1-yl)methyl)amino)-2-hydroxypropoxy)-N-(4-fluorophenyl)benzamide (208)

208 was prepared following general procedure E, yielding $0.332 \mathrm{~g}(72 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.30-1.37\left(\mathrm{~m}, \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.371.44 ($\mathrm{m}, \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.44-1.51 (m, br, $1 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.551.62 ($\mathrm{m}, \mathrm{br}, 1 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.81-1.85 (br s, $2 \mathrm{H}, \mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{CCl}$-adamantane), 1.921.99 ($\mathrm{m}, \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 2.00-2.07 ($\mathrm{m}, \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 2.11 (2 H), ($\mathrm{s}, \mathrm{br}, 2 \mathrm{H}, \mathrm{CH}$-adamantane), 2.19 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.58-2.69 (m, 2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right), 3.92-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.13\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=5.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.22 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-9.8,{ }^{3} \mathrm{~J}=4.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $7.15-7.22$ ($\mathrm{m}[\mathrm{t}], 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ in $4^{\prime} \mathrm{F}$-aniline), $7.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.57\left(\mathrm{dd},{ }^{2} \mathrm{~J}=8.9,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.76-7.84(3 \mathrm{H}, \mathrm{H}-6$ salicyl, $H-2^{\prime}, 6^{\prime}$ in $4^{\prime} F$-aniline), 10.36 ($s, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=31.04$ (CH -adamantane), $34.52\left(\mathrm{CHCH}_{2} \mathrm{CH}-\right.$ adamantane), $\quad 38.22\left(\mathrm{CHCH}_{2} \mathrm{C}_{\mathrm{q}}\right.$-adamantane $), \quad 46.89 \quad\left(\mathrm{CHCH}_{2} \mathrm{CCl}\right.$-adamantane $), \quad 50.28$ ($\mathrm{C}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{CCl}$-adamantane), $\quad 53.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), \quad 60.92$ (NHCH_{2}-1-adamantanyl), 67.96 $(\mathrm{CH}(\mathrm{OH})), 70.30\left(\mathrm{C}_{\mathrm{q}} \mathrm{Cl}\right.$-adamantane $), 71.94\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.33\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=22.2, \mathrm{C}-3^{\prime}, 5^{\prime}\right.$ in $4^{\prime}-\mathrm{F}-$ aniline), 115.72 ($C-3$ salicyl), 121.56 ($\mathrm{d},{ }^{3} J_{C F}=7.8, C-2^{\prime}, 6^{\prime}$ in $4^{\prime}-F-$ aniline $), 124.81\left(C_{q^{\prime}}-1\right.$ salicyl), 125.11 ($C_{q}-5$ salicyl), 129.69 ($C-6$ salicyl), 132.15 ($C-4$ salicyl), 135.09 ($d,{ }^{4} J_{C F}=2.3, C_{q}-1^{\prime}$ in $4^{\prime}-$ F-aniline), 155.10 ($C_{q}-2$ salicyl), 158.30 ($d,{ }^{1} J_{C F}=-243, C-4^{\prime}$ in 4^{\prime}-F-aniline), 162.16 (CONH). Ada- C_{q} not recorded

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 521.18 found: 521.24, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 519.16 found: 519.22.
Melting point: $125-131^{\circ} \mathrm{C}$.
5-chloro-2-(3-(((3-chloroadamantan-1-yl)methyl)amino)-2-hydroxypropoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (201)

201 was prepared following general procedure E, yielding $0.300 \mathrm{~g}(79 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.28-1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\right.$ of CH ${ }_{2}$ adamantane), 1.43-1.50 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 1.54-1.62, ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 1.78-1.84 (m , $2 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 1.91-2.06 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 2.07-2.12 ($\mathrm{s}, \mathrm{br}, 2 \mathrm{H}$, CH -adamantane), 2.17 (br, $2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.58-2.70 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 3.91-3.99 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.12-4.23 (m, $2 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), $7.55-7.63$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3aniline), 7.78 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.96 ($\mathrm{d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.28 (s, br, 1H, H-2"'in 3"-CF3-aniline), 10.59 ($s, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=31.03$ (CH -adamantane), $34.50\left(\mathrm{CH}_{2}-\right.$ adamantane $), 38.17\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime} \quad\right.$ adamantane $), \quad 38.19\left(\mathrm{CH}_{2}\right.$-adamantane $), 46.87\left(\mathrm{CH}_{2^{-}}\right.$ adamantane $), \quad 50.25\left(\mathrm{CH}_{2}\right.$-adamantane $), \quad 53.28\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), \quad 60.83 \quad\left(\mathrm{NHCH}_{2}-1^{\prime \prime}-\right.$ adamantane), $67.87(\mathrm{CH}(\mathrm{OH})), 70.22\left(\mathrm{C}-3^{\prime \prime}\right.$, adamantane), $71.89\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.71(\mathrm{C}-3$ salicyl), 115.82 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=3.9, C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.13 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.32 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $124.07\left(C_{q},{ }^{1} J_{C F}=-272.0,3-\right.$ CF $_{3}$-aniline), $124.82\left(C_{q}-1\right.$ salicy $)$ 125.07 ($C_{q}-5$ salicyl), 129.56 ($q,{ }^{2} J_{C F}=31.5, C_{q}-3^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 129.63 ($C-6$ salicyl), 129.98 (C-5' in 3^{\prime} - $^{\prime}$ CF $_{3}$-aniline), 132.34 ($C-4$ salicyl), 139.45 ($C_{q^{\prime}}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 155.13 ($C_{q}-2$ salicyl), 162.91 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.17 found: $571.26,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 569.16 found: 569.23.
Melting point: $99-133^{\circ} \mathrm{C}$.

5-chloro-2-(2-hydroxy-3-(((3-(trifluoromethyl)adamantan-1-yl)methyl)amino)propoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (199)

199 was prepared following general procedure E, yielding $0.303 \mathrm{~g}(88 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.32-1.45\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\right.$ of CH ${ }_{2}$ adamantane), 1.52-1.68 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 2.01-2.08 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 2.17 (br, 2 H ,
NHCH_{2}-1-adamantane), 2.58-2.70 (m, 2H, CH(OH)CH CHH_{2}), 3.91-4.00 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), 4.11$4.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 7.28 ($\mathrm{d}^{3}{ }^{3}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.44-7.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right.$ in $3^{\prime \prime}$ -CF3-aniline), $7.55-7.62$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.77 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.97 ($\mathrm{d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.27 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 10.59 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=26.83$ (CH -adamantane), $33.19\left(\mathrm{CH}_{2}-\right.$ adamantane), 33.71 (br, CH_{2}-adamantane), $35.21\left(\mathrm{C}_{\mathrm{q}}-\mathrm{I}^{\prime \prime}\right.$ adamantane), $37.00\left(\mathrm{CH}_{2^{-}}\right.$ adamantane), $38.38\left(\mathrm{C}_{\mathrm{q}}-3^{\prime \prime}\right.$ adamantane), $38.89\left(\mathrm{CH}_{2}\right.$-adamantane), $53.33(\mathrm{NCH} 2 \mathrm{CH}(\mathrm{OH})$), $61.27\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.84(\mathrm{CH}(\mathrm{OH})), 71.88\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $115.69(\mathrm{C}-3$ salicyl), $115.84\left(q,{ }^{3} J_{C F}=4.0, C-2^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}$-aniline), $120.10\left(q^{3}{ }^{3}{ }_{C F}=3.7, C-4^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.31 (C - 6^{\prime} in 3^{\prime} - CF $_{3}$-aniline), $124.06\left(C_{q},{ }^{1} J_{C F}=-272.0,3^{\prime}\right.$ - CF $_{3}$-aniline), $124.81\left(C_{q}-1\right.$ salicyl), 125.14 ($C_{q}-5$ salicyl), $128.53\left(C_{q},{ }^{1} J_{C F}=-281,3^{\prime \prime}-C F_{3}\right.$-adamantane), $129.56\left(q,{ }^{2} J_{C F}=31.5, C_{q}-3^{\prime}\right.$ in $3^{\prime}-$ CF_{3}-aniline), 129.59 ($C-6$ salicyl), 129.97 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 132.30 ($C-4$ salicyl), 139.46 ($C_{q}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 155.11 (C_{q}-2 salicyl), 162.95 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 605.20 found: $605.25,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 603.19 found: 603.22 .
Melting point: $127-129^{\circ} \mathrm{C}$.

2-(3-((2-(adamantan-1-yl)propan-2-yl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (200)

200 was prepared following general procedure \mathbf{E}, yielding $0.245 \mathrm{~g}(81 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=0.78$ ($\mathrm{NHC}^{2}\left[\mathrm{CH}_{3 \mathrm{a}} \mathrm{CH}_{3 \mathrm{~b}}\right]$-1-adamantane), 0.80 ($\left.\mathrm{NHC}_{2} \mathrm{CH}_{3 \mathrm{a}} \mathrm{CH}_{3 \mathrm{~b}}\right]$-1-adamantane), 1.49-1.64 (m, 12H, CH of CH_{2} adamantane), $1.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}$ of CH_{2} adamantane), 2.61-2.69 (m, $\left.2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right)$, 3.87-3.95 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.15-4.24 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH} \mathrm{C}_{2} \mathrm{CH}(\mathrm{OH})$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.43-7.48 (br d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7, H-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.55-7.61 (m, 2H, H-4 salicyl, H-5" in $3^{\prime \prime}$-CF3-aniline), 7.77 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-$

6 salicyl), 7.96 ($\mathrm{d}, \mathrm{br},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.27 (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime \prime}$-CF3aniline), 10.60 (s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=19.81\left(\mathrm{NHC}^{\circ} \mathrm{CH}_{3 \mathrm{a}} \mathrm{CH}_{3 b}\right]$-1-adamantane), 19.89 ($\mathrm{NHC}\left[\mathrm{CH}_{3 \mathrm{a}} \mathrm{CH}_{3 \mathrm{~b}}\right]$-1-adamantane), 28.11 (CH -adamantane), 35.46 (CH_{2}-adamantane), 36.71 (CH_{2}-adamantane), 38.29 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $44.95\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $56.17\left(\mathrm{NHC}\left(\mathrm{CH}_{3}\right)_{2}-1\right.$ adamantane), $68.76\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.97\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $115.66\left(\mathrm{C}-3\right.$ salicyl), $115.90\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.0\right.$, $C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 120.12 ($\mathrm{q},{ }^{3} J_{C F}=3.7, C-4{ }^{\prime}$ in $3^{\prime}-$ CFF $_{3}$-aniline), 123.33 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 124.77 ($C_{q}-1$ salicyl), $125.10\left(C_{q}-5\right.$ salicyl), 129.51 ($q,{ }^{2} J_{C F}=31.5, C_{q}-3^{\prime}$ in $3^{\prime}-C_{3}{ }^{-}$ aniline), 129.59 ($C-6$ salicyl), 129.95 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 132.31 ($C-4$ salicyl), 139.42 ($C_{q^{\prime}}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.13 ($C_{q}-2$ salicyl), 162.94 (CONH). CF3 not recorded

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 565.24 found: $565.42,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 563.23 found: 563.24.
Melting point: 129-138.

2-(3-((adamantan-2-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (202)

202 was prepared following general procedure E, yielding 0.220 g (65%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27^{\circ} \mathrm{C}$): $\delta=1.50-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.68-1.93 ($\mathrm{m}, 13 \mathrm{H}$, $\mathrm{CH}_{2}, \mathrm{CH}$--adamantane,), 2.70 (dd, , ${ }^{2} \mathrm{~J}=-11.8,{ }^{3} \mathrm{~J}=7.0,1 \mathrm{H}, \mathrm{NHCH}_{a}$-2-adamantane)), 2.75-2.84 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NHCH}_{b}$-2-adamantane, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), $2.90\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.3,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=6.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.13-4.21(m,1H,CH(OH)), $4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.90\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=0.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.34 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.37-7.46 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3aniline), 7.99 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.14 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.19 ($\mathrm{m},{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.28 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27{ }^{\circ} \mathrm{C}\right): \delta=27.84$ (CH -adamantane), 28.23 (CH -adamantane), 30.31 (CH -adamantane), 30.49 (CH -adamantane), $31.68\left(\mathrm{CH}_{2}\right.$-adamantane), $31.78\left(\mathrm{CH}_{2}{ }^{-}\right.$ adamantane), 38.11 (CH_{2}-adamantane), 38.85 (CH_{2}-adamantane), 38.89 (CH_{2}-adamantane), 44.35 ($\mathrm{RNHCH}_{2} \mathrm{CH}$-adamantane), $51.04\left(\mathrm{NHCH}_{2}\right.$-2" ${ }^{\prime \prime}$-adamantane), $51.93\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.93$ $\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right.$), $71.66\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.20 ($\mathrm{C}-3$ salicyl), 117.22 ($\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=4.0, \mathrm{C}-2^{\prime}$ in 3^{\prime}-CF ${ }_{3}$-aniline), 120.54 ($\mathrm{q},{ }^{4} J_{\text {CF }}=3.6, C-4^{\prime}$ in 3^{\prime} - CF_{3}-aniline), 123.43 ($C-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.48 ($C_{q}-1$ salicyl), 124.02 ($\mathrm{q}^{1}{ }^{1} J_{C F}=-272.9,3-$ CF $_{3}$-aniline), $127.40\left(C_{q}-5\right.$ salicyl), $129.33(C-5$) in $3^{\prime}-$ CF $_{3}$-aniline), 131.14 ($q,{ }^{2} J_{C F}=32.1, C_{q}-3^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 132.18 ($C-6$ salicyl), 132.90 (C 4 salicyl), 139.14 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.02 ($C_{q}-2$ salicyl), 162.32 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 537.21 found: 537.34, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 535.20 found: 535.24.
Melting point: $115-125^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethoxy)phenyl)benzamide (209)

209 was prepared following general procedure E, yielding $0.216 \mathrm{~g}(50 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.49-1.53\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.60-1.66 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.76 (m, 3H, CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.25, 2.28,2.36,2.39 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.9,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.77 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2^{3}{ }^{3} \mathrm{~J}=9.5$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), $2.88\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right.$), 4.02 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}$ $\left.=6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.16-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2 \mathrm{I}^{3} \mathrm{~J}=2.9,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 6.91 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 6.96 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.33 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-5$ aniline $), 7.40\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8, \mathrm{~J}^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-\right.$ 6 aniline), $7.84(\mathrm{~s}[\mathrm{t}], 1 \mathrm{H}, \mathrm{H}-2$ aniline $), 8.20\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $10.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.42$ (CH -adamantane), 33.48 ($\mathrm{C}_{\mathrm{q}}-1$ " adamantane), $37.13\left(\mathrm{CH}_{2}\right.$-adamantane), $40.69\left(\mathrm{CH}_{2}\right.$-adamantane), $51.72\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.12\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.71(\mathrm{CH}(\mathrm{OH}))$, $71.72\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $113.30\left(\mathrm{C}-2^{\prime}\right.$ in $3^{\prime}-\mathrm{OCF}_{3}$-aniline), 114.30 (C-3 salicyl), 116.26 ($C-4$ ' in 3^{\prime}-OCF $_{3}$-aniline), 118.66 ($C-6{ }^{\prime}$ in $3^{\prime}{ }^{\prime}$ OCF $_{3}$-aniline), $120.66\left({ }^{1} J_{C F}=-\right.$ 258.0, OCF $_{3}$ aniline), 123.75 ($C-1$ salicyl), 127.57 ($C-5$ salicyl), 129.99 ($C-5^{\prime}$ in $3^{\prime}-$ OCF $_{3}$-aniline), 132.39 ($C-6$ salicyl), 133.01 ($C-4$ salicyl), 140.21 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 149.66 ($C-3^{\prime}$ in $3^{\prime}-$ OCF $_{3}$-aniline), 155.14 ($C_{q}-2$ salicyl), 162.39 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 553.21 found: 553.36, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 551.19 found: 551.32.
Melting point: $94-107^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4(trifluoromethoxy)phenyl)benzamide (210)

210 was prepared following general procedure \mathbf{E}, yielding $0.167 \mathrm{~g}(41 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.39-1.44\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.52-1.59 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.61-1.68 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.88 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), $2.10\left(\mathrm{~s}, 2 \mathrm{H}, \quad \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$-1-adamantane), 2.57-2.67 (m, 2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 3.92-3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.13\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=5.7,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=4.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.35 ($\mathrm{d},{ }^{4} \mathrm{~J}=8.7,2 \mathrm{H}, \mathrm{H}-3,5$ aniline), 7.57 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.78 (d , ${ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.88 (m [d], ${ }^{3} \mathrm{~J}=9.0,2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 10.47 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.82$ (CH -adamantane), $33.26\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), 36.75 (CH_{2}-adamantane), $40.31\left(\mathrm{CH}_{2}\right.$-adamantane), $53.43\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.50\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.97(\mathrm{CH}(\mathrm{OH})), 72.03\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 115.73 ($\mathrm{C}-3$ salicyl), 120.12 (${ }^{1} J_{C F}=-256.4$, OCF $_{3}$ aniline), 121.17 ($C-2,6$ aniline), 121.57 ($C-3,5$ aniline), 124.82 ($C-1$ salicyl), 125.00 ($C_{q^{-}}-5$ salicyl), 129.68 ($C-6$ salicyl), 132.28 ($C-4$ salicyl), 137.85 ($C_{q^{-}}-1$ aniline) 143.93 ($J_{C F}=1.5, C_{q}-4$ aniline), 155.14 ($C_{q}-2$ salicyl), 162.46 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 553.21 found: 553.36, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 551.19 found: 551.26. Melting point: $123-140^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3iodophenyl)benzamide (211)

211 was prepared following general procedure E, yielding $0.165 \mathrm{~g}(40 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.48-1.54\left(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH_{2}-adamantane), 1.59-1.66 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.68-1,76 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.97 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.25, 2.28, 2.33, $2.36\left(\mathrm{AB},{ }^{2} \mathrm{~J}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right.$-1-adamantane), 2.75 (dd, $\left.{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=9.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.85\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 4.00\left(\mathrm{dd},{ }^{2} J=-9.4,{ }^{3} J=6.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), 4.10-4.17(m,1H,CH(OH)), $4.24\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.03\left(\mathrm{~m}[\mathrm{t}],{ }^{2} \mathrm{~J}\right.$ $=8.0,1 \mathrm{H}, \mathrm{H}-5^{\prime}$ in $3^{\prime}-1$-aniline), $7.38\left(\mathrm{dd},{ }^{3} J_{1}=8.8,{ }^{4} J_{2}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.42\left(\mathrm{~d}[\mathrm{dt}],{ }^{3} J_{1}=\right.$ $7.9,{ }^{4} J_{2}=1.21 \mathrm{H}, \mathrm{H}-4^{\prime}$ in $3^{\prime}-1$-laniline), 7.80 (dd, ${ }^{3} J_{1}=8.2,{ }^{4} J_{2}=1.81 \mathrm{H}, \mathrm{H}-6^{\prime}$ in $3^{\prime}-1$-laniline), 8.17 ($d^{4}{ }^{\prime} J=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.20 ($\mathrm{s}[\mathrm{t}], \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$ in $3^{\prime}-\mathrm{l}$-aniline), 10.08 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.46$ (CH -adamantane), 33.53 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), 37.19 (CH_{2}-adamantane), $40.76\left(\mathrm{CH}_{2}\right.$-adamantane $), \quad 51.62\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), \quad 62.07\left(\mathrm{NHCH}_{2}-1\right.$ adamantanyl), $66.67(\mathrm{CH}(\mathrm{OH}))$, $71.68\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $94.19\left(\mathrm{C}_{\mathrm{q}}-3^{\prime}\right.$ in 3^{\prime}-l-aniline), $114.29(\mathrm{C}-3$ salicyl), 119.77 ($C-6^{\prime}$ in $3^{\prime}-1$-aniline), 123.72 ($C_{q^{-}}-1$ salicyl), 127.46 ($C_{q}-5$ salicyl), 129.30 ($C-2^{\prime}$ in $3^{\prime}-1$-aniline), 130.50 (C-5' in $3^{\prime}-1$--aniline), 132.29 ($C-6$ salicyl), 132.95 (C-4 salicyl), 133.17 (C-4' in $3^{\prime}-1$-aniline), 139.97 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}-1$-aniline), 155.14 ($C_{q^{\prime}}-2$ salicyl), 162.24 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 595.12 found: 595.21, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 593.11 found: 593.27.
Melting point: $127-143^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-iodo-N-(3(trifluoromethyl)phenyl)benzamide (212)

212 was prepared following general procedure E, yielding $0.215 \mathrm{~g}(50 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.49-1.52\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.60-1.65 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.76 (m, 3H, CH_{2}-adamantane), 1.98 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.24, 2.27, 2.33, 2.36 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.8,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.75 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=9.5$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), 2.85 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.9,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), 4.01 (dd, ${ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}$ $\left.=6.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.13-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=2.9,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 6.74 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 7.44 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.7,{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-5$ aniline $), 7.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl$), 8.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.3,1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), $8.51\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.26 (br s, 1 H , CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.44$ (CH -adamantane), 33.50 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), 37.17 (CH_{2}-adamantane), $40.72\left(\mathrm{CH}_{2}\right.$-adamantane), $51.57\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.10\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.69(\mathrm{CH}(\mathrm{OH})), 71.58\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 84.47 ($\mathrm{C}-5$ salicyl), 115.11 ($\mathrm{C}-3$ salicyl), 117.39 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-2$ aniline), 120.67 ($\mathrm{q},{ }^{3}{ }_{\text {JFF }}=3.9, C-4$ aniline), 123.60 ($C-6$ aniline), 124.17 $\left({ }^{1} J_{C F}=-272.6, C F_{3}\right.$ aniline $), 124.22\left(C-1\right.$ salicyl), 129.51 (C-5 aniline), $131.32\left({ }^{2} J_{C F}=32.1, C-3\right.$ aniline), 139.32 (C-1 aniline), 141.20 (C-6 salicyl), 141.92 (C-4 salicyl), 156.48 (C-2 salicyl), 162.29 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 629.15 found: 629.28, $[\mathrm{M}-\mathrm{H}]^{-}:$calculated.: 627.13 found: 627.18. Melting point: $135-138^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3,5dichlorophenyl)benzamide (213)

213 was prepared following general procedure \mathbf{E}, yielding 0.210 g (44%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.41-1.44$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}$ in CH CH_{2}-adamantane), 1.54-1.59 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.62-1.67 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.89 (s, br, 3H, CH-adamantane), 2.12 (s, $2 \mathrm{H}, \quad \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-1-adamantane), 2.59-2.70 (m, 2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 3.93-3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}))$, 4.12-4.18 (m, $2 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $7.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $9.0,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.32 (d, ${ }^{4} \mathrm{~J}=1.9,1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.58\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.72 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $7.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.8,2 \mathrm{H}, \mathrm{H}-2,6\right.$ aniline), 10.58 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.80$ (CH -adamantane), $33.15\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), 36.70 (CH_{2}-adamantane), $40.19\left(\mathrm{CH}_{2}\right.$-adamantane), $53.23\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $62.13\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.59(\mathrm{CH}(\mathrm{OH})), 71.83\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 115.69 ($\mathrm{C}-3$ salicyl), 117.86 (C-2,6 aniline), 122.98 (C-4 aniline), 124.79 ($C-1$ salicyl), 125.11 ($C-5$ salicyl), 129.48 (C-6 salicyl), 132.39 (C-4 salicyl), 134.12 (C-3,5 aniline), 141.00 (C-1 aniline) 155.02 (C-2 salicyl), 163.16 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 537.15 found: 537.26, $\left.[\mathrm{M}-\mathrm{H}]\right]^{-}$: calculated.: 535.13 found: 535.24.

Melting point: $160-190^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3,4dichlorophenyl)benzamide (214)

214 was prepared following general procedure E, yielding $0.106 \mathrm{~g}(39 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.39-1.41\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\right.$ in CH CH_{2}-adamantane), 1.53-1.58 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.62-1.67 ($\mathrm{m}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$ in CH_{2}-adamantane), 1.88 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.06 ($\mathrm{s}, 2 \mathrm{H}, \quad \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-1-adamantane), 2.55-2.68 (m, 2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right)$, 3.89-3.97 (m, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right)$, 4.10-4.19 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $7.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.57 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-5\right.$ aniline), 7.72 (dd, ${ }^{3} J=8.9,{ }^{3} J=2.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), $7.73\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.11 (d , ${ }^{4} J=2.4,1 \mathrm{H}, \mathrm{H}-5$ aniline $), 10.52$ (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.83$ (CH -adamantane), $33.24\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), 36.75 (CH_{2}-adamantane), $40.29\left(\mathrm{CH}_{2}\right.$-adamantane), $53.46\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.43\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.90(\mathrm{CH}(\mathrm{OH})), 71.92\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.70(\mathrm{C}-3$ salicyl), 119.75 ($C-6$ aniline), 120.92 ($C-2$ aniline), 124.79 ($C_{q}-1$ salicyl), 125.11 ($C_{q}-5$ salicyl), 125.26 ($C_{q}-4$ aniline), 129.50 ($C-6$ salicyl), 130.67 ($C-5$ aniline), 131.05 ($C_{q}-3$ aniline), 132.32 ($C-4$ salicyl), 138.77 ($C_{q}-1$ aniline), 155.07 ($C_{q}-2$ salicyl), 162.86 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 537.15 found: $537.26,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 535.13 found: 535.16.
Melting point: $122-139^{\circ} \mathrm{C}$.

5-chloro-2-(2-hydroxy-3-(3-azaspiro[5.5]undecan-3-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (215)

215 was prepared following general procedure \mathbf{E}, yielding $0.367 \mathrm{~g}(100 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}$): $\delta=1.30-1.37$ ($\mathrm{m}, 4 \mathrm{H}$, dyn, CH_{2}-2,6-cyclohexyl), 1.39-1.43 ($\mathrm{m}, 6 \mathrm{H}$, dyn, $\mathrm{CH}_{2}-3,4,5$-cyclohexyl), 1.44-1.52 ($\mathrm{m}, 4 \mathrm{H}, ~, 3,5$ piperidine CH_{2}), 2.31-2.36 (m, 2 H , $\mathrm{CH}_{\mathrm{ax}}-2,6$ piperidine), 2.46 (dd, , ${ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.57 (dd [t], ${ }^{2} \mathrm{~J}=-$ $12.1,{ }^{3} \mathrm{~J}=10.1,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}$), 2.61-2.66 (m, $2 \mathrm{H}, \mathrm{CH}_{\text {eq }}-2,6$ piperidine), 3.99 ($\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-$
$\left.9.2,{ }^{3} \mathrm{~J}=6.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.19-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3aniline), 7.40 (dd, ${ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.45\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3aniline), 7.99 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.5,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.14 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.20 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.29 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$): $\delta=21.57$ (C-3,5-cyclohexyl), 26.90 (C -4-cyclohexyl), 30.77 (C_{q}-spiro undecane), 36.28 ($C-3,5$ piperidine, C - 2,6 -cyclohexyl), 49.63 ($C-2,6$ piperidine), $59.85\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 64.92\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 71.84\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $114.29(\mathrm{C}-3$ salicyl), 117.33 ($\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=4.1, \mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.67 ($\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=3.7, \mathrm{C}-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.53 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.63 ($C_{q}-1$ salicyl), 124.17 ($q,^{1} J_{C F}=-272.2,3-C F_{3}$-aniline), 127.51 ($C_{q^{-}}-5$ salicyl), 129.52 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 131.31 ($q,{ }^{2} J_{C F}=32.2, C_{q^{-}}{ }^{\prime}$ in $3^{\prime}-$ CF $_{3^{-}}$ aniline), 132.34 (C - 6 salicyl), 133.05 (C-4 salicyl), 139.29 ($C_{q^{-}} 1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 155.19 ($C_{q^{\prime}}-2$ salicyl), 162.45 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 525.21 found: $525.28,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 523.20 found: 523.10 .
Melting point: $139-142^{\circ} \mathrm{C}$.
5-chloro-2-(2-hydroxy-3-(2-azaspiro[4.6]undecan-2-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (216)

216 was prepared following general procedure \mathbf{E}, yielding $0.400 \mathrm{~g}(91 \%)$ of the desired product as orange oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=1.38-1.50\left(\mathrm{~m}, 4 \mathrm{H}\right.$, dyn, CH_{2} spiro-alkyl), 1.50-1.60 (m , $8 \mathrm{H}, \mathrm{dyn}, \mathrm{CH}_{2}$ spiro-alkyl), 1.64 (dd [t], J = 7.0, $2 \mathrm{H}, \mathrm{CH}_{2}$ spiro-alkyl), 2.32 (d, ${ }^{2} J=-9.2,1 \mathrm{H} \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}$), $2.48\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0, \mathrm{~J}^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.2,1 \mathrm{H}, \mathrm{H}\right.$ in $\left.\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}\right.$, überlagert H in $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.80\left(\mathrm{~m}, 1 \mathrm{H}\right.$, überlagert H in $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.85$ (dd, $\left.{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=10.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right), 4.01\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=6.1,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right)$, 4.16-4.23 (m, 1H, CH(OH)), 4.28(dd, ${ }^{2} J=-9.3,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$),
6.91 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.35 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.40 ($\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=$ $8.8,^{4} J=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.44 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3-aniline), 8.11 (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.21 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.29 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=23.95\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $23.99\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), 29.57 ($2 x \mathrm{CH}_{2}$ spiro-alkyl), $39.16\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $41.42\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $41.55\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), 45.42 (C_{q} spiro-alkyl), $53.83\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 57.77\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.48\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right)$, $67.70\left(\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}\right), 71.80\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $114.32\left(\mathrm{C}-3\right.$ salicyl), 117.38 ($\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=3.9, \mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}{ }^{-}$ aniline), 120.67 ($\mathrm{q}^{4}{ }^{4} J_{C F}=3.9, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.55 ($C_{q}-1$ salicyl), 123.67 ($C-6^{\prime}$ in 3^{\prime} -CF_{3}-aniline), 124.17 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-272.4,3-\mathrm{CF}_{3}$-aniline), 127.55 ($C_{q}-5$ salicyl), 129.52 ($C-5{ }^{\prime}$ in $3^{\prime}-$ CF_{3}-aniline), 131.32 ($\mathrm{q},{ }^{2} \mathrm{~J}_{\text {CF }}=32.1, C-3^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 132.36 ($C-6$ salicyl), 133.05 ($C-4$ salicyl), 139.32 ($C_{q^{-}}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.19 ($C_{q}-2$ salicyl), 162.44 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 525.21 found: $525.28,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 523.20 found: 523.26 .

5-chloro-2-(2-hydroxy-3-(2-azaspiro[4.5]decan-2-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (217)

217 was prepared following general procedure E, yielding $0.389 \mathrm{~g}(93 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=1.33-1.49\left(\mathrm{~m}, 10 \mathrm{H}\right.$, dyn, CH_{2}-spiro-alkyl), 1.61-1.65 (m , $2 \mathrm{H}, \mathrm{CH}_{2}$-spiro-alkyl), 2.31 ($\mathrm{d},{ }^{2} \mathrm{~J}=-9.0,1 \mathrm{H} \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}$), 2.43 (dd, ${ }^{2} \mathrm{~J}=-11.9,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.54-2.58 (m, $1 \mathrm{H}, \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.1,1 \mathrm{H}, \mathrm{H}\right.$ in $\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}$), 2.75$2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\right.$ in $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.82\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-11.9,{ }^{3} \mathrm{~J}=11.0,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right.$), $4.00\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$ $\left.-9.2,{ }^{3} J=6.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.15-4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3aniline), 7.40 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.44\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right.$ in $3^{\prime \prime}$-CF3aniline), 8.05 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.10 ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), $8.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.29 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=23.69\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $23.71\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), 26.06 $\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $37.37\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $38.35\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $38.50\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), 42.07 (C_{q} spiro-alkyl), $53.73 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), \quad 57.62 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), \quad 66.40 \quad\left(\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}\right), \quad 66.52$ $\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right.$), $71.78\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.30 ($\mathrm{C}-3$ salicyl), 117.34 ($\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=4.0, \mathrm{C}-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.64 ($\mathrm{q},{ }^{4} J_{C F}=3.6, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.51 ($C-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.57 ($C_{q}-1$ salicyl), 124.16 ($\mathrm{q}^{1}{ }^{1} J_{C F}=-272.9,3-$ CF $_{3}$-aniline), 127.49 ($C_{q^{\prime}}-5$ salicyl), 129.51 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $131.29\left(\mathrm{q}^{2}{ }^{2} J_{C F}=32.3, C_{q}-3^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}$-aniline), 132.34 ($C-6$ salicyl), 133.05 (C 4 salicyl), 139.31 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.20 ($C_{q}-2$ salicyl), 162.42 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 511.20 found: $511.28,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 509.18 found: 509.26 . Melting point: $80-88^{\circ} \mathrm{C}$.

5-chloro-2-(2-hydroxy-3-(2-azaspiro[4.4]nonan-2-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (218)

218 was prepared following general procedure \mathbf{E}, yielding $0.423 \mathrm{~g}(95 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=1.33-1.66\left(\mathrm{~m}, 8 \mathrm{H}\right.$, dyn, CH_{2}-spiro-alkyl), 1.71-1.80 (m , $2 \mathrm{H}, \mathrm{CH}_{2}$-spiro-alkyl), 2.52 (d, ${ }^{2} \mathrm{~J}=-9.2,1 \mathrm{H} \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{C}_{\mathrm{q}}$), $2.59\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=3.2,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right)$, 2.70-2.78 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{C}_{q}$), 2.87-2.95 (m, $2 \mathrm{H}, \mathrm{H}$ in $\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), $4.02\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=5.8,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.20-4.25 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.27\left(\mathrm{dd},{ }^{2} J=-9.2,{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.35 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.39 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.44 ($\mathrm{t},{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.04 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), $8.12(\mathrm{~s}$, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.18 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=24.40\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $24.41\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), 37.83 (CH_{2} spiro-alkyl), $39.27\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), $39.39\left(\mathrm{CH}_{2}\right.$ spiro-alkyl), 49.58 (C_{q} spiro-alkyl), 54.34 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 58.18\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.28\left(\mathrm{NCH}_{2} \mathrm{C}_{q}\right), 66.38\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), \quad 71.70$
$\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.28\left(C-3\right.$ salicyl), $117.32\left(\mathrm{q},{ }^{4} \mathrm{~J}_{\text {CF }}=4.0, C-2^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}$-aniline), $120.67\left(\mathrm{q},{ }^{4} \mathrm{~J}_{\text {CF }}\right.$ $=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.55 ($J_{C F}=0.4, C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.65 ($C_{q^{-}}-1$ salicyl), 124.15 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-272.5,3-\mathrm{CF}_{3}$-aniline), 127.51 ($C_{q}-5$ salicyl), 129.53 ($C-5^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 131.28 ($\mathrm{q},{ }^{2} J_{C F}=32.3, C_{q^{-}} 3^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 132.28 ($C-4$ salicyl), 133.04 ($C-6$ salicyl), 139.28 ($C_{q^{\prime}} 1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.11 ($C_{q}-2$ salicyl), 162.48 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 497.18 found: $497.28,[\mathrm{M}-\mathrm{H}]^{-}:$calculated.: 495.17 found: 495.18 .

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichlorobenzamide (219)

219 was prepared following general procedure \mathbf{E}, yielding 0.137 g (20\%) of the desired semicrystalline product.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=1.50-1.53$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.65 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.74 (m, 3H, CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.28, 2.31,2.35,2.38 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.7,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), $2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3^{3} \mathrm{~J}=9.6\right.$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), 2.91 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=4.0,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), 4.03 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}$ $\left.=5.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.09-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,^{3} \mathrm{~J}=2.2,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 7.58 (dd, ${ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $8.18\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8\right.$, 1H, H-6 salicyl), 8.43 (s, 2H, H-2,6 aniline), 10.56 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.44$ (CH -adamantane), 33.54 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.17\left(\mathrm{CH}_{2}\right.$-adamantane), $40.72\left(\mathrm{CH}_{2}\right.$-adamantane), $50.97\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.01\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.99(\mathrm{CH}(\mathrm{OH})), 76.57\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 117.77\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.8, \mathrm{C}-4^{\prime}\right.$ in $3^{\prime}, 5^{\prime}$-bis- $\mathrm{CF}_{3}{ }^{-}$ aniline), 121.22 ($\mathrm{q},{ }^{3} J_{C F}=3.1, C-2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis- $-F_{3}$-aniline), $123.42\left({ }^{1} J_{C F}=-273.4,2 \times C F_{3}\right.$ aniline), 128.36 (C-5 salicyl), 129.40 (C-1 salicyl), 131.15 (C-3 salicyl), 131.19 (C-6 salicyl), $132.10\left(^{2} J_{C F}=33.6, C-3,5\right.$ in $3^{\prime}, 5^{\prime}$-bis-CFF ${ }_{3}$-aniline), 134.24 ($C-4$ salicyl), 139.81 ($C-1$ in $3^{\prime}, 5^{\prime}$-bis-CF_{3}-aniline) 151.38 (C-2 salicyl), 161.35 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 639.16 found: 639.16, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 637.15 found: 637.06 .

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichlorobenzamide (220)

220 was prepared following general procedure E, yielding $0.194 \mathrm{~g}(34 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.33-2.61$ ($\mathrm{m}[\mathrm{dyn}], \mathrm{br}, 7 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, H_{\mathrm{ax}} H_{\text {eq- }}-3,5$ in piperazine, $H_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 2.68-2.81 (m,3H, $\mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 4.02\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=5.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.11-4.18(m,1H,CH(OH)), $4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{x}$ $\mathrm{CH}-4$ phenyl), 7.25-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.37-7.46(m,4H,2x H-2", $6^{\prime \prime}$ phenyl), 7.58 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.63 (br s, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.18 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.39 (br s, 2H, H-2,6 aniline), 10.51 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=51,96\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 52.85 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $58,88\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65,31(\mathrm{CH}(\mathrm{OH})), 76,25\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76,26\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, $117,84\left(\mathrm{~m},{ }^{3} J_{C F}=3.9, C-4\right.$ aniline), 121.25 ($C-2,6$ aniline), $122.31\left(C_{q}-1\right.$ salicyl), $123.40\left({ }^{1} J_{C F}=-\right.$ 273.2, $2 \times$ CF $_{3}$ aniline), 127,20 ($C-4^{\prime \prime}$ phenyl), 128,01 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128,29 ($C-3$ salicyl), $128,70\left(C-3^{\prime \prime}, 5^{\prime \prime}\right.$ phenyl), 129,35 (C-5 salicyl), 131,20(C-6 salicyl), 132.08 ($\mathrm{d}^{2}{ }^{2} J_{C F}=33.4, C-3,5$ aniline), 134,29 ($C-4$ salicyl), 139,73 ($C-1$ aniline), 142,66 ($2 \times C_{q^{q}}-1^{\prime \prime}$ phenyl), 151,32 ($C_{q}-2$ salicyl), 161,32 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 726.17 found: $726.27,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 724.16 found: 724.24 .
Melting point: $78-82^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-3,5-dichloro-N-(3(trifluoromethyl)phenyl)benzamide (221)

221 was prepared following general procedure E, yielding $0.087 \mathrm{~g}(21 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.34-1.38\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.60-1.65 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.74 (m, 3H, CH H_{2}-adamantane), 1.87 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 1.99 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.78 (m , von DMSO überlagert, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), $2.61\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=4.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 3.81-3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 3.95-4.01(m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), 7.48 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.60 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.67 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.84 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.22 (s, 1H, H-2 aniline), 10.78 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13}$ C $\left.^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=27.77$ (CH -adamantane), 33.04 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $36.69\left(\mathrm{CH}_{2}\right.$-adamantane), $40.14\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $53.41\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.02$ $\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $68.03(\mathrm{CH}(\mathrm{OH})), 77.25(\mathrm{OCH} 2 \mathrm{CH}(\mathrm{OH})), 115.97\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.0, \mathrm{C}-2\right.$ in $3 \mathrm{CF}_{3}$-aniline) 120.34 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=3.6, \mathrm{C}-4$ in $3 \mathrm{CF}_{3}$-aniline), 123.44 (slightly broadened $\sim 0.5 \mathrm{~Hz}, \mathrm{C}-4$ in 3 CF $_{3}$-aniline), 124.06 (${ }^{1} J_{C F}=-272.6, C F_{3}$ aniline), 127.96 ($C-6$ salicyl), 128.32 ($C-5$ salicyl), 128.37 ($C-1$ salicyl), 129.49 ($^{2} J_{C F}=31.4, C-3$ in $3-$ CFF $_{3}$-aniline), 129.98 (slightly broadened ~ 0.8 $\mathrm{Hz}, \mathrm{C}-5$ in $3 \mathrm{CF}_{3}$-aniline), 131.58 ($C-4$ salicyl), 133.07 (C-3 salicyl), 139.38 ($C-1$ in $3 \mathrm{CF}_{3}$-aniline), 151.05 (C-2 salicyl), 163.00 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.17 found: 571.28, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 569.16 found: 569.25.
Melting point: $132-134^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-3,5-dichloro-N-(3,5dichlorophenyl)benzamide (222)

222 was prepared following general procedure E, yielding $0.200 \mathrm{~g}(47 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.49-1.53$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.66 (m , 3H, CH_{2}-adamantane), 1.69-1.76 (m, 3H, CH_{2}-adamantane), 1.97 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.27, 2.29,2.32,2.35 ($\mathrm{AB}, J_{A B}=-11.7,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.81-2.89 (m, 2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right)$, $3.99-4.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH})\right), 4.23\left([\mathrm{~d}],{ }^{3} \mathrm{~J}=7.2,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $7.11\left(\mathrm{~m}[\mathrm{t}],{ }^{4} \mathrm{~J}=1.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $7.55\left(\mathrm{dd},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.81 ($\mathrm{d},{ }^{4} \mathrm{~J}=1.8,2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.11 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.15 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=28.48$ (CH -adamantane), 33.61 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.23\left(\mathrm{CH}_{2}\right.$-adamantane), $40.82\left(\mathrm{CH}_{2}\right.$-adamantane), $51.13\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.24\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $67.30(\mathrm{CH}(\mathrm{OH}))$, $76.81\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $119.63(\mathrm{C}-2,6$ in 3,5 -di-Cl-aniline), 124.62 (C-4 in 3,5-di-Cl-aniline), 128.81 (C-6 salicyl), 129.23 (C-5 salicyl), 130.93 (C-1 salicyl), 131.00 ($C-3$ salicyl), 134.00 ($C-4$ salicyl), 135.05 ($C_{q}-3,5$ aniline), 140.07 ($C_{q}-1$ in $3,5-\mathrm{di}-\mathrm{Cl}-$ aniline), 151.41 (C-2 salicyl), 161.26 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.11 found: 571.16, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 569.09 found: 569.12.
Melting point: $99-102^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4-fluorophenyl)-4(trifluoromethyl)benzamide (223)

223 was prepared following general procedure \mathbf{E}, yielding $0.190 \mathrm{~g}(61 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.35-2.59\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 7 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, H_{\mathrm{ax}} H_{\text {eq- }}-3,5\right.$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), $2.65\left(\mathrm{dd},{ }^{2} J=-12.3,{ }^{3} \mathrm{~J}=10.7,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right.$), 2.70-2.78 ($\mathrm{m}[\mathrm{t}], \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), $4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=5.8,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.17-4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=\right.$ 2.6, $1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 7.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ aniline), 7.17-7.22 (m, $3 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl, $\mathrm{H}-3$ salicyl) 7.26-7.31 (m, 4H, $2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.37-7.43 (m, 5H, H-5 salicyl, $2 x \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.74 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ aniline), 8.35 ($\mathrm{d}^{4}{ }^{4} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.04 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=51.86\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 53.65 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.64\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $64.93(\mathrm{CH}(\mathrm{OH}))$, $71.51\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.16\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, $109.84\left(q,{ }^{3} J_{C F}=3.6, C-3\right.$ salicyl), $115.63\left(d,{ }^{2} J_{C F}=22.3, C-3,5\right.$ aniline), $118.73\left(q,{ }^{3} J_{C F}=3.7, C-5\right.$ salicyl), 122.23 ($\mathrm{d},{ }^{4} J_{C F}=7.7, C-2,6$ aniline), $123.51\left(\mathrm{q},{ }^{1} J_{C F}=-272.6, C F_{3}\right.$ salicyl), $125.74\left(C_{q}-1\right.$ salicyl), 127.23 (C-4" phenyl), 128.04 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.69 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 133.48 ($C-6$ salicyl), 134.64 ($\mathrm{d},{ }^{4} J_{C F}=2.6, C-1$ aniline), 134.70 ($\mathrm{q},{ }^{2} J_{C F}=32.7, C-4$ salicyl), $142.44\left(C_{\mathrm{q}}-1\right.$ " phenyl[1]), $142.50\left(C_{q}-1^{\prime \prime}\right.$ phenyl[2]), $156.51\left(C_{q}-2\right.$ salicyl), $159.47\left(\mathrm{~d},{ }^{1} J_{C F}=-244.1, C-4\right.$ aniline), 162.11 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 608.25 found: 608.36, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 606.34 found: 606.24 .
Melting point: $77-80^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-4-fluoro-N-(3(trifluoromethyl)phenyl)benzamide (224)

224 was prepared following general procedure E, yielding $0.130 \mathrm{~g}(44 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.48-1.55$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.67 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.77 (m, 3H, CH CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.23, 2.26, 2.30, 2.32 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.73 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3^{3}{ }^{3} \mathrm{~J}=9.5$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), $2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 4.01\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}\right.$ $=6.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.09-4.16(m, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-10.2,^{3} \mathrm{~J}=2.3,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 6.69 (dd, $\mathrm{J}_{\mathrm{HF}}=10.2,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $6.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.34 (d, ${ }^{3} J=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.43 (dd [t], ${ }^{3} J=8.1,{ }^{3} J=7.8,1 \mathrm{H}, H-5$ aniline), $8.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-\right.$ 6 aniline), 8.12 (s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.27 (dd, $J_{H F}=6.8,{ }^{2} J=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 10.24 (br s, 1 H , CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.49$ (CH -adamantane), 33.58 ($\mathrm{C}_{\mathrm{q}}-1$ " adamantane), $37.25\left(\mathrm{CH}_{2}\right.$-adamantane), $40.81\left(\mathrm{CH}_{2}\right.$-adamantane), $51.40\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.21\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.80(\mathrm{CH}(\mathrm{OH})), 71.68\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 100.79\left(\mathrm{~d},{ }^{2}{ }_{\mathrm{JFF}}=26.0, \mathrm{C}-3\right.$ salicyl), 109.10 ($\mathrm{d},{ }^{2} J_{C F}=21.1, C-5$ salicyl), $117.30\left(\mathrm{q},{ }^{3} J_{C F}=3.9, C-2\right.$ aniline $), 118.45\left(\mathrm{~d},{ }^{4} J_{C F}=3.0, C-1\right.$ salicyl), 120.47 ($\mathrm{q},{ }^{3} J_{C F}=3.7, C-4$ aniline), 123.51 ($C-6$ aniline), 124.20 ($\mathrm{q},{ }^{1} J_{C F}=-272.8, C F_{3}$ aniline), 129.46 ($C-5$ aniline), 131.28 ($\mathrm{q},{ }^{2} J_{C F}=32.2, C-3$ aniline), 134.71 ($\mathrm{d},{ }^{3} J_{C F}=10.8, C-6$ salicyl), 139.51 (C-1 aniline), 158.03 ($\mathrm{d},{ }^{3} J_{C F}=10.7, C-2$ salicyl), 162.90 (CONH), $165.78\left(\mathrm{~d},{ }^{1} J_{C F}=-253.9\right.$, C-4 salicyl).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 521.24 found: 521.32, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 519.23 found: 519.29.
Melting point: $143-144^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-cyanobenzamide (226)

226 was prepared following general procedure \mathbf{E}, yielding $0.108 \mathrm{~g}(30 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2 \mathrm{C}^{\circ} \mathrm{C}$): $\delta=1.50-1.53$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.66 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.71-1.77 (m, 3H, CH CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), $2.25,2.28,2.31,2.34\left(\mathrm{AB}, J_{A B}=-11.5,2 \mathrm{H}\right.$, überlagert von Austauschpeak $\mathrm{NHCH}_{2}-1-$ adamantane), $2.72\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=9.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.86\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=\right.$ 3.8, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.06\left(\mathrm{~m},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=7.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.15-4.21(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH})$), $4.40\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $7.09\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.7, \mathrm{H}-3\right.$ salicyl), 7.61 (s, 1H, H-4 aniline), 7.78 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.2, \mathrm{H}-4$ salicyl), 8.40 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.56 (d, $1 \mathrm{H},{ }^{4} \mathrm{~J}=2.2, \mathrm{H}-6$ salicyl), 10.48 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=28.45$ (CH -adamantane), 33.54 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.21\left(\mathrm{CH}_{2}\right.$-adamantane), $40.77\left(\mathrm{CH}_{2}\right.$-adamantane $), 50.97\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.08\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.42(\mathrm{CH}(\mathrm{OH})), 72.09\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 106.31 ($\mathrm{C}-5$ salicyl), 113.79 ($\mathrm{C}-3$ salicyl), $117.59\left(J_{C F}=3.8, C-4\right.$ aniline $), 118.03(C N), 120.40\left(J_{C F}=3.4, C-2,6\right.$ aniline $), 123.02$ ($C-1$ salicyl), $123.38\left(q,{ }^{1} J_{C F}=-272.6,2 x C F 3\right), 132.30\left(q,{ }^{2} J_{C F}=33.2, C-3,5\right.$ aniline $), 137.26(C-4,6$ salicyl), 140.03 ($C-1$ aniline), 159.49 ($C-2$ salicyl), 161.85 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 596.23 found: 596.38, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 594.22 found: 594.28 .
Melting point: $143-145^{\circ} \mathrm{C}$.

2-(3-((adamantan-2-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-cyanobenzamide (227)

227 was prepared following general procedure \mathbf{E}, yielding $0.267 \mathrm{~g}(61 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27^{\circ} \mathrm{C}$): $\delta=1.51-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.70-1.93 ($\mathrm{m}, 13 \mathrm{H}$, $\mathrm{CH}_{2}, \mathrm{CH}$-adamantane,), 2.67-2.83 (m, $3 \mathrm{H}, \mathrm{NHCH}_{2}$-2-adamantane, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.93 (dd, $\left.{ }^{2} J=-12.2,{ }^{3} J=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 4.09\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=7.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.15-4.22 (m, 1H, CH(OH)), $4.41\left(\mathrm{dd},{ }^{2} J=-9.0,^{3} J=2.6,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})\right), 7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6\right.$, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.78 (dd, ${ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.39(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.56 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $10.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27{ }^{\circ} \mathrm{C}\right.$): $\delta=28.02$ (CH -adamantane), 28.44 (CH -adamantane), 30.52 (CH -adamantane), 30.68 (CH -adamantane), $31.84\left(\mathrm{CH}_{2}\right.$-adamantane), $31.96\left(\mathrm{CH}_{2}{ }^{-}\right.$ adamantane), 38.29 (CH_{2}-adamantane), 39.04 (CH_{2}-adamantane), 39.09 (CH_{2}-adamantane), 44.91 ($\mathrm{RNHCH}_{2} \mathrm{CH}$-adamantane), $50.70\left(\mathrm{NHCH}_{2}\right.$-2" ${ }^{\prime \prime}$-adamantane), $52.10(\mathrm{NCH} 2 \mathrm{CH}(\mathrm{OH})), 66.83$ $\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 72.02\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 106.33 ($\mathrm{C}_{\mathrm{q}}-5$ salicyl), 113.80 ($\mathrm{C}-3$ salicyl), 117.62 ($\mathrm{m}, J_{C F}=3.8, C-4$ aniline), $118.02(C N), 120.39\left(q,{ }^{3} J_{C F}=3.3, C-2,6\right.$ aniline), $123.02\left(C_{q}-1\right.$ salicyl), $123.73\left(q,{ }^{1} J_{C F}=-273.1,2 x C F_{3}\right.$), $132.31\left(q,{ }^{2} J_{C F}=33.5, C_{q}-3,5\right.$ aniline $), 137.27(C-4,6$ salicyl), 140.00 ($C_{q}-1$ aniline), 159.49 ($C_{q}-2$ salicyl), 161.84 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 596.23 found: 596.30, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 594.22 found: 594.20.
Melting point: $187-188^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-cyanobenzamide (228)

228 was prepared following general procedure \mathbf{E}, yielding $0.139 \mathrm{~g}(46 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $6,23{ }^{\circ} \mathrm{C}$): $\delta=$ 2.12-2.47 (m[dyn], br, $10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}}$ $H_{\text {eq }}-3,5$ in piperazine, $H_{\text {ax }} H_{\text {eq }}-2,6$ in CH_{2} piperazine), 3.93-4.02 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ 4.6, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $4.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 7.17(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-4$ phenyl), 7.27 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{H-3"}, 5^{\prime \prime}$ phenyl), $7.34-7.43$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-3$ salicyl, $2 \mathrm{x} \mathrm{H-2",6"} \mathrm{phenyl)}$, 7.79 (s, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.00 ($\mathrm{dd},{ }^{4} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.11 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.41 (s, 2H, H-2',6' aniline), 10.88 (s, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=51.40\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $53.46\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $60.79\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $66.02(\mathrm{CH}(\mathrm{OH}))$, $72.13\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.10\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 103.32 (C-5 salicyl), 114.61 (C-3 salicyl), 116.61 ($\mathrm{m}, \mathrm{C}-4^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF B_{3}-aniline), 118.33 (CN), 119.29 ($q,{ }^{3} J_{C F}=3.1, C-2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF 3_{3}-aniline), 123.15 (${ }^{1} J_{C F}=-272.9,2 x^{\prime} C_{3}$ aniline), 125.24 ($C-1$ salicyl), 126.77 ($C-4^{\prime \prime}$ phenyl), 127.47 (C-2", $6^{\prime \prime}$ phenyl), 128.42 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $130.87\left(^{2} J_{C F}=32.8, C-3,5\right.$ in $3^{\prime}, 5^{\prime}-$ bis $^{\prime}-$ CF $_{3}$-aniline), 133.98 ($C-6$ salicyl), 136.85 ($C-4$ salicyl), 140.56 (C-1 in $3^{\prime}, 5^{\prime}$-bis- CF $_{3}$-aniline), 142.84 ($C_{q}-1^{\prime \prime}$ phenyl), 142.89 ($C_{q}-1^{\prime \prime}$ phenyl), 159.35 ($C_{q}-$ 2 salicyl), 163.50 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}:$calculated.: 683.25 found: 683.33, $[\mathrm{M}-\mathrm{H}]{ }^{-}$: calculated.: 681.23 found: 681.36.

2-(3-((adamantan-2-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-chlorobenzamide (229)

229 was prepared following general procedure \mathbf{E}, yielding $0.119 \mathrm{~g}(22 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.36-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.57-1.82 (m , $13 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}$-adamantane, $), 2.52$ ($\mathrm{m}, 2 \mathrm{H}$, überlagert von DMSO, NHCH_{2}-2-adamantane), 2.61-2.73 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.92-4.00 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.17(\mathrm{~d}, \mathrm{~J}=4.9,2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $7.29\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8, \mathrm{H}-3\right.$ salicyl), $7.60\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8, \mathrm{H}-4\right.$ salicyl), 7.76 ($\mathrm{d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.8, H-6$ salicyl), 7.81 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.46 (s, $2 \mathrm{H}, H-2,6$ aniline), 10.88 (br, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.32$ (CH -adamantane), 27.73 ($\mathrm{CH}-$ adamantane), 29.66 (CH -adamantane), 29.72 (CH -adamantane), 31.24 ($2 \times \mathrm{CH}_{2}$-adamantane), 37.74 (CH_{2}-adamantane), 38.47 ($2 \times \mathrm{CH}_{2}$-adamantane), 43.67 ($\mathrm{RNHCH}_{2} \mathrm{CH}$-adamantane), 51.82 (NHCH_{2}-2"-adamantane), $52.15\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $67.69\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 71.89$ $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 115.76 ($\mathrm{C}-3$ salicyl), 116.61 ($\mathrm{m},{ }^{4} \mathrm{~J}_{C F}=3.9, C-4$ aniline), $119.49\left(\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=3.5, C-\right.$ 2,6 aniline), 123.20 ($\mathrm{q},{ }^{1} J_{C F}=-273.1,2 \times \mathrm{CF}_{3}$-aniline), $124.83\left(C_{q}-1\right.$ salicyl), $124.87\left(C_{q}-5\right.$ salicyl $)$, 129.55 ($C-6$ salicyl), 130.85 ($\mathrm{q},{ }^{2} J_{C F}=32.7, C_{q}-3,5$ aniline), $132.60\left(C-4\right.$ salicyl), $140.58\left(C_{q}-1\right.$ aniline), 155.15 ($C_{q}-2$ salicyl), 163.57 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 605.20 found: $605.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 603.19 found: 603.22 .
Melting point: $143-146^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-chlorobenzamide (230)

230 was prepared following general procedure \mathbf{E}, yielding $0.167 \mathrm{~g}(22 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.35-2.56$ (m[dyn], br, $8 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}-3,5$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 2.69-2.79 ($\mathrm{m}[\mathrm{t}]$, br, $2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), 3.97 $\left(d d,{ }^{2} J=-9.2,{ }^{3} \mathrm{~J}=6.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.19-4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.26(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.31\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,^{3} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.19 ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CH}$-4 phenyl), 7.26-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.39-7.45 (m,5H, H-4 salicyl, $2 x \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.58 (s, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.21 ($\mathrm{d}^{4}{ }^{4}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.37 (s, $2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ aniline), 10.55 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=51.92\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $52.94\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $59.35\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 64.89(\mathrm{CH}(\mathrm{OH})), 72.02\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.15\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 114.46 (C-3 salicyl), 117.26 ($\mathrm{m}, J_{C F}=3.6, C-4^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis- CF $_{3}$-aniline), 120.23 ($\mathrm{q},{ }^{3} J_{C F}=3.4, C-$ $2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF 3_{3}-aniline), 123.12 (C-1 salicyl), 123.42 (${ }^{1} J_{C F}=-272.5,2 \times C F_{3}$ aniline), 127.18 (C-4" phenyl), 127.81 (C-5 salicyl), 128.03 (C-2", $6^{\prime \prime}$ phenyl), 128.67 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 132.19 $\left(^{2} J_{C F}=33.5, C-3,5\right.$ in $3^{\prime}, 5^{\prime}$-bis-CF ${ }_{3}$-aniline), 132.43 (C-6 salicyl), 133.46 (C-4 salicyl), 140.24 (C-1 in $3^{\prime}, 5^{\prime}$-bis- CF_{3}-aniline), $142.60\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ phenyl), 142.63 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 155.17 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 162.63 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 692.21 found: $692.28,[\mathrm{M}-\mathrm{H}]^{-}:$calculated.: 690.20 found: 690.34 .
Melting point: $180-181^{\circ} \mathrm{C}$.

1-((adamantan-1-ylmethyl)amino)-3-((3,5-
 bis(trifluoromethyl)phenyl)amino)propan-2-ol (231)

231 was prepared following general procedure \mathbf{E}, yielding $0.181 \mathrm{~g}(70 \%)$ of the desired product as yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.46-1.49$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.55-1.61 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.63-1.70 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.91 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.17 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.51-2.59 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NHCH}_{2}$-1"-adamantane), 3.01-3.09 (m, $1 \mathrm{H}, \operatorname{ArNHCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 3.22-3.29 (m, $1 \mathrm{H}, \mathrm{ArNHCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 3.66-3.73 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $6.70(\mathrm{~m}[\mathrm{t}], \mathrm{J}=5.7,1 \mathrm{H}, \mathrm{NH}$-aniline), $6.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.14(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline).
 adamantane), 36.77 (CH_{2}-adamantane), $40.39\left(\mathrm{CH}_{2}\right.$-adamantane), 47.11 ($\mathrm{ArNHCH} 2 \mathrm{CH}(\mathrm{OH})$), $54.60\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $62.56\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $68.07(\mathrm{CH}(\mathrm{OH}))$, $106.64\left(\mathrm{~m},{ }^{3} J_{C F}=3.8, C-4\right.$ aniline), 111.12 (broadened, $C-2,6$ aniline), $123.71\left({ }^{1} J_{C F}=-272.1\right.$, 2 xCF $_{3}$ aniline), 130.83 ($q,{ }^{2} J_{C F}=31.7, C-3,5$ aniline), 150.30 ($C-1$ aniline).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 451.22 found: 451.40.
1-(4-benzhydrylpiperazin-1-yl)-3-((3,5-
bis(trifluoromethyl)phenyl)amino)propan-2-ol (232)

1-Benzhydrylpiperazine (0.229 g, 0.908 mmol$)$ and N-(oxiran-2-ylmethyl)-3,5bis(trifluoromethyl)aniline ($398,0.259 \mathrm{~g}, 0.908 \mathrm{mmol}$) in EtOH (4 mL) were stirred for 5 h at $80^{\circ} \mathrm{C} .232$ was obtained in 62% yield (0.300 g) as yellow oil after column chromatography (ethyl acetate:hexane=1:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27^{\circ} \mathrm{C}$): $\delta=2.37-2.55\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 8 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\text {eq- }}-3,5\right.$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 2.65-2.77 ($\mathrm{m}[\mathrm{t}]$, $\mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\text {eq }}-2,6$ in CH_{2} piperazine), 3.05 $\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=6.2,1 \mathrm{H}, \mathrm{ArNHCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $3.30\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}\right.$, $\operatorname{ArNHCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})$), 3.92-3.99 (m, 1H, CH(OH)), $4.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, $6.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 7.14 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.17-7.21$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl), 7.26-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{H-}$ 3",5" phenyl), 7.39-7.44 (m, 4H, 2x H-2", 6" phenyl).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=47.13\left(\mathrm{ArNHCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $52.04\left(\mathrm{CH}_{2}\right.$, piperazine), 52.68 (dyn- CH_{2}, piperazine), 61.28 (pip- $\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})$), $64.93\left(\mathrm{CH}(\mathrm{OH})\right.$), $76.30\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, $110.42\left(\mathrm{~m},{ }^{3} J_{C F}=4.0, C-4\right.$ aniline $), 112.25\left(q,{ }^{3} J_{C F}=3.3, C-2,6\right.$ aniline $), 123.71\left(q,{ }^{1} J_{C F}=-273.6\right.$, $2 x C_{3}$ aniline), 127.16 ($C-4^{\prime \prime}$ phenyl), 128.03 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.67 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $132.49\left(q,{ }^{2} J_{C F}=32.2, C-3,5\right.$ aniline $), 142.67\left(C_{q}-1\right.$ " phenyl), $142.69\left(C_{q}-1\right.$ phenyl), $149.15\left(C_{q}{ }^{-}\right.$ 1 aniline).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 538.23 found: 538.35, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 536.21 found: 536.17.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethoxy)phenyl)benzamide (233)

233 was prepared following general procedure \mathbf{E}, yielding 0.266 g (100%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.25-2.50\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 7 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, H_{\mathrm{ax}} H_{\text {eq- }}-3,5\right.$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), $2.53\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=10.7,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right.$), 2.62-2.71 ($\mathrm{m}[\mathrm{t}], \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), $3.91\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=6.0,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right)$, 4.09-4.15 (m, 1H, $\left.\mathrm{CH}(\mathrm{OH})\right)$, $4.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=\right.$ 2.7, $1 \mathrm{H}, \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 6.82 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $6.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.10-7.15 (m, 2H, $2 x$ CH-4 phenyl), 7.18-7.24 (m, 5H, H-5 aniline, $2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.30-
7.36 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-4$ salicyl, $2 \mathrm{x} \mathrm{H-2"}, 6^{\prime \prime}$ phenyl), 7.66 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.69 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $H-2$ aniline), 8.13 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.13 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=51.90\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 53.56 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.56\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $64.95(\mathrm{CH}(\mathrm{OH})), 71.62\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.22\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 113.11 (C-2 aniline), 114.26 ($C-3$ salicyl), 116.22 (C-4 aniline), 118.54 (C-6 aniline), 120.66 $\left({ }^{1} J_{C F}=-257.1\right.$, OCF $_{3}$ aniline), $123.66\left(C_{q}-1\right.$ salicyl), 127.18 ($C-4{ }^{\prime \prime}$ phenyl), 127.56 ($C-5$ salicyl), 128.04 (C-2", $6^{\prime \prime}$ phenyl), 128.66 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 130.00 ($C-5$ aniline), 132.39 ($C-6$ salicyl), 133.02 ($C-4$ salicyl), 140.14 ($C-1$ aniline), 142.57 ($d, J_{C F}=3.4, C-3$ aniline), $149.60\left(C_{q}-1^{\prime \prime}\right.$ phenyl[1]), 149.61 ($C_{q}-1^{\prime \prime}$ phenyl[2]), 155.10 ($C_{q}-2$ salicyl), 162.30 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 640.22 found: $640.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 638.20 found: 638.30 .
Melting point: $71-74^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-chloro-3-(trifluoromethoxy)phenyl)benzamide (234)

234 was prepared following general procedure \mathbf{E}, yielding $0.144 \mathrm{~g}(56 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.51-1.54$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.67 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.71-1.76 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.26, 2.28, 2.31, 2.34 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.72 (dd, ${ }^{2} \mathrm{~J}=-12.2^{3} \mathrm{~J}^{3} \mathrm{~J}=9.6$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.84$ ($\left.\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.9,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right), 3.99\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}\right.$ $\left.=6.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.09-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.91\left(\mathrm{~d}^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.26\left(\mathrm{~m}[\mathrm{dq}],{ }^{3} \mathrm{~J}=9.0, \mathrm{~J}=1.2,1 \mathrm{H}, \mathrm{H}-5\right.$ aniline), 7.40 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.0^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.04 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.19 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.28 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.49$ (CH -adamantane), 33.63 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.25\left(\mathrm{CH}_{2}\right.$-adamantane), $40.87\left(\mathrm{CH}_{2}\right.$-adamantane), $51.33\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.24\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ -
adamantane), $66.87\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.89\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.38 ($\mathrm{C}-3$ salicyl), 119.68 ($\mathrm{C}-6$ aniline), 120.71 (${ }^{1} J_{C F}=-2561$, OCF $_{3}$ aniline), 122.49 ($C-2$ aniline), 123.02 ($C-5$ aniline), 123.43 ($C-1$ salicyl), 127.57 ($C-5$ salicyl), 127.69 (C-4 aniline), 132.36 (C-6 salicyl), 133.16 ($C-4$ salicyl), 138.33 (C-1 aniline), 141.12 (C-3 aniline), 155.23 (C-2 salicyl), 162.41 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 587.17 found: $587.36,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 585.15 found: 585.20 .
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (235)

235 was prepared following general procedure \mathbf{E}, yielding $0.226 \mathrm{~g}(54 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.39-1.43\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.52-1.58 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.68 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.88 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.11 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.59-2.71 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.96-4.02 (m, 1 H , $\mathrm{CH}(\mathrm{OH})$), 4.21-4.29 ($\mathrm{d}^{3}{ }^{3}=4.8,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $7.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.48 (dd[t], ${ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.71 (dd, ${ }^{3} \mathrm{~J}=8.2,{ }^{4} \mathrm{~J}=1.1,1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.89 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.95 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.06 (d, ${ }^{4} \mathrm{~J}=$ 2.2, 1H, H-6 salicyl), 10.56 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}^{-\mathrm{d}_{6}}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.82$ (CH -adamantane), $33.21\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), 36.73 (CH_{2}-adamantane), $40.24\left(\mathrm{CH}_{2}\right.$-adamantane), $53.25(\mathrm{NCH} 2 \mathrm{CH}(\mathrm{OH}))$, $62.30\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.72(\mathrm{CH}(\mathrm{OH}))$, $71.88\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 111.90 ($\mathrm{C}-2$ aniline), 114.35 ($C-3$ salicyl), 115.85 ($C-4$ aniline), 118.40 ($C-6$ aniline), $120.10\left({ }^{1} J_{C F}=-256.1\right.$, OCF $_{3}$ aniline), $121.46\left({ }^{2} J_{C F}=32.5, C-5\right.$ salicyl), $124.11\left({ }^{1} J_{C F}=-271.6, C F_{3}\right.$ salicyl), $124.22(C-1$ salicyl), 127.35 ($q, J_{C F}=3.7, C-6$ salicyl), 129.77 ($q, J_{C F}=3.3, C-4$ salicyl), 130.52 ($C-5$ aniline), 140.28 (C-1 aniline), 148.53 ($q, J_{C F}=1.5, C-3$ aniline), 158.95 ($C-2$ salicyl), 162.97 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 587.23 found: $587.36,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 585.22 found: 585.39 .
Melting point: $130-133^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-(trifluoromethoxy)-3-(trifluoromethyl)phenyl)benzamide (236)

236 was prepared following general procedure E, yielding $0.168 \mathrm{~g}(41 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta=1.51-1.53\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.61-1.65 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.71-1.76 (m, 3H, CH CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.26, 2.29, 2.34, 2.37 ($\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.74 (dd, ${ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=$ 9.9, 1H, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.87 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 4.00 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-$ $\left.9.2,{ }^{3} \mathrm{~J}=6.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.14-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-5\right.$ aniline), 7.42 (dd, ${ }^{3} J=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, H-4$ salicyl), 8.16-8.22 (m, $3 \mathrm{H}, \mathrm{H}-2,6$ aniline, $H-6$ salicyl), 10.43 (br s, 1 H , CONH).
${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.44$ (CH -adamantane), 33.54 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.17\left(\mathrm{CH}_{2}\right.$-adamantane), $40.76\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $51.42\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.15\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.72(\mathrm{CH}(\mathrm{OH})), 71.90\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $114.46\left(\mathrm{C}-3\right.$ salicyl), $119.50\left(\mathrm{q}, J_{C F}=5.2\right.$, $C-2$ aniline), $120.50\left({ }^{1} J_{C F}=-2561, O C F_{3}\right.$ aniline $), 121.95\left({ }^{3} J_{C F}=1.4, C-5\right.$ aniline), 123.38 (C-1 salicyl), 124.75 ($C-6$ aniline), 125.23 ($\mathrm{q},{ }^{1} J_{C F}=-273.6, C F_{3}$ aniline), 127.72 ($C-5$ salicyl), 132.41 (C-6 salicyl), 133.27 (C-4 salicyl), 137.48 (C-1 aniline), 142.18 (C-4 aniline), 155.21 (C-2 salicyl), 162.52 (CONH). C-3 aniline not recorded

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 621.20 found: $621.27,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 619.18 found: 619.25 .
Melting point: $146-148^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-fluoro-3(trifluoromethyl)phenyl)benzamide (237)

237 was prepared following general procedure E, yielding $0.202 \mathrm{~g}(58 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.49-1.53\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.61-1.67 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.71-1.77 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.98 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.24, 2.27, 2.30, 2.33 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.8,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.71 (dd, ${ }^{2} \mathrm{~J}=-12.2^{3}{ }^{3} \mathrm{~J}=9.6$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,,^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 3.99\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}\right.$ $=6.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 4.08-4.14 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,^{3} \mathrm{~J}=2.7,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.92\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.15 (dd [t], ${ }^{3} \mathrm{~J}=9.6,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.41 (dd, ${ }^{3} J=8.7,{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.06-8.12 (m, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), $8.20\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-\right.$ 6 salicyl), 10.35 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=28.49$ (CH -adamantane), 33.60 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.25\left(\mathrm{CH}_{2}\right.$-adamantane), $40.84\left(\mathrm{CH}_{2}\right.$-adamantane $), 51.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.27\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.91(\mathrm{CH}(\mathrm{OH}))$, $71.94\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $114.45\left(\mathrm{C}-3\right.$ salicyl), $117.23\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\text {CF }}=\right.$ 21.7, C-5 aniline), 118.36 ($\mathrm{dd},{ }^{2} J_{C F}=32.9^{2} J_{C F}=13.0, C-3$ aniline), 119.22 ($\mathrm{q}, J_{C F}=4.7, C-2$ aniline), 122.65 ($q,{ }^{1} J_{C F}=-273.2, C F_{3}$ aniline), 123.46 ($C-1$ salicyl), $125.65\left({ }^{3} J_{C F}=7.8, C-6\right.$ aniline), 127.60 ($C-5$ salicyl), 132.33 ($C-6$ salicyl), 133.11 ($C-4$ salicyl), 135.11 (${ }^{4} J_{C F}=3.2, C-1$ aniline), 155.24 (C-2 salicyl), $155.95\left(1^{1} J_{C F}=-253.3, C-4\right.$ aniline), 162.37 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 555.20 found: $555.31,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 553.19 found: 553.29 . Melting point: $140-143^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-chloro-3-(trifluoromethyl)phenyl)benzamide (238)

238 was prepared following general procedure \mathbf{E}, yielding $0.167 \mathrm{~g}(41 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.50-1.53\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.62-1.67 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.71-1.78 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.99 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.23, 2.26, 2.30, 2.33 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.70 (dd, ${ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=9.7$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,,^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 3.98\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}\right.$ $\left.=6.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.08-4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})) 4.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.92\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.41\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.44 (m , überlagert $J=8.3,1 \mathrm{H}, \mathrm{H}-5$ aniline), 8.11 ($\mathrm{dd},{ }^{3} J=8.7,{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.14 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.20 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.40 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.50$ (CH -adamantane), 33.61 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), $40.85\left(\mathrm{CH}_{2}\right.$-adamantane), $51.33\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.27\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.90\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.93\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $114.42\left(\mathrm{C}-3\right.$ salicyl), $119.69\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=5.8\right.$, $C-2$ aniline), 122.90 ($\mathrm{q},{ }^{1} J_{C F}=-273.5, C F_{3}$ aniline), 123.36 ($C-1$ salicyl), 124.47 ($C-6$ aniline), 126.48 (C-4 aniline), 127.62 ($C-5$ salicyl), 128.63 ($q,{ }^{2} J_{C F}=30.9, C-3$ aniline), 131.94 ($C-5$ aniline), 132.36 (C-6 salicyl), 133.21 (C-4 salicyl), 137.77 (C-1 aniline), 155.24 (C-2 salicyl), 162.45 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.17 found: $571.26,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 569.16 found: 569.08 .
Melting point: $128-130^{\circ} \mathrm{C}$

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-methyl-N-(3(trifluoromethyl)phenyl)benzamide (239)

239 was prepared following general procedure \mathbf{E}, yielding $0.160 \mathrm{~g}(21 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.48-1.53$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.66 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.76 (m, 3H, CH CH_{2}-adamantane), 1.98 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.23, 2.26, 2.31, 2.34 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.8,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.76 (dd, $\left.{ }^{2} J=-12.2,{ }^{3} J=9.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.84\left(\mathrm{dd},{ }^{2} J=-12.2,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right)$, $4.02\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.10-4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4\right.$, ${ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})$), $6.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.3, \mathrm{H}-3\right.$ salicyl), $7.27\left(\mathrm{dd}, 1 \mathrm{H}\right.$, überlagert, ${ }^{4} \mathrm{~J}=$ 2.3, $\mathrm{H}-4$ salicyl), 7.34 (d, ${ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.44 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), $8.05-$ 8.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ aniline, $H-6$ salicyl), $8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.40 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=20.59\left(\mathrm{CH}_{3}\right), 28.48\left(\mathrm{CH}\right.$-adamantane), $33.55\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), $37.23\left(\mathrm{CH}_{2}\right.$-adamantane), $40.78\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $51.61\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.16\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $66.96(\mathrm{CH}(\mathrm{OH})), 71.45\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 112.86(\mathrm{C}-3$ salicyl), 117.34 ($\mathrm{q},{ }^{3} J_{C F}=3.9, C-2$ aniline), 120.33 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4$ aniline), 121.73 ($C-1$ salicyl), 123.53 (C-6 aniline), 129.43 ($C-5$ aniline), 131.26 ($q,{ }^{2} J_{C F}=32.3, C-3$ aniline), 131.57 ($C-5$ salicyl), 132.91 (C-6 salicyl), 133.96 (C-4 salicyl), 139.69 ($C-1$ aniline), 154.70 ($C-2$ salicyl), 163.97 (CONH). CF_{3} not recorded

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 517.27 found: 517.38, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 515.25 found: 515.41 .
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-methoxy-N-(3(trifluoromethyl)phenyl)benzamide (240)

240 was prepared following general procedure E, yielding 0.251 g (44\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.49-1.52\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.60-1.66 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.76 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.97 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.22, 2.25, 2.29, $2.32\left(\mathrm{AB}, \mathrm{J}_{A B}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{2}\right.$-1-adamantane), $2.72\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=9.7\right.$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.82\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.99\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,^{3} \mathrm{~J}=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.06-4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3\right.$, $\left.{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.92\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.9, \mathrm{H}-3\right.$ salicyl), $7.02\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.0,{ }^{4} \mathrm{~J}=3.2\right.$, H-4 salicyl), 7.34 (d, ${ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.43 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.80 (d, $1 \mathrm{H},{ }^{4} \mathrm{~J}=3.2, \mathrm{H}-6$ salicyl), 8.06 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.18 (s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.52 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=28.49(\mathrm{CH}$-adamantane$)$, 33.57 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane $), 40.81\left(\mathrm{CH}_{2}\right.$-adamantane $), 51.52\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 55.96\left(\mathrm{OCH}_{3}\right), 62.22$ ($\mathrm{NHCH}_{2}-1^{\prime \prime}$-adamantane), $67.10(\mathrm{CH}(\mathrm{OH})), 72.14\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.67 ($\mathrm{C}-3$ salicyl), 115.56 (C-6 salicyl), 117.41 ($\mathrm{q},{ }^{3} J_{C F}=4.1, C-2$ aniline), 120.33 (C-4 salicyl), 120.42 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4$ aniline), 122.66 (C-1 salicyl), 123.57 (C-6 aniline), 124.23 ($\mathrm{q},{ }^{1} J_{C F}=-272.2, C F 3$), 129.39 ($C-5$ aniline), 131.26 ($\mathrm{q},{ }^{2} J_{C F}=32.1, C-3$ aniline), 139.59 (C-1 aniline), 150.99 (C-5 salicyl), 154.47 (C-2 salicyl), 163.56 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 533.26 found: $533.30,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 531.25 found: 531.27.
Melting point: $133-136^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-3-methyl-N-(3(trifluoromethyl)phenyl)benzamide (241)

241 was prepared following general procedure E, yielding $0.132 \mathrm{~g}(27 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.46-1.51\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.60-1.65 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.75 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.96 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane),
2.21, 2.24, 2.27, $2.30\left(\mathrm{AB}, \mathrm{J}_{A B}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{2}\right.$-1-adamantane), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73$ (dd, $\left.{ }^{2} J=-12.1,{ }^{3} J=9.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.80\left(\mathrm{dd},{ }^{2} J=-12.1,{ }^{3} J=4.1,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right)$, 3.87 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-9.9,{ }^{3} \mathrm{~J}=6.2,1 \mathrm{H}, \quad \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $3.97\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.9,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.01-4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 7.20\left(\mathrm{dd}[\mathrm{t}], 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7, \mathrm{H}-5\right.$ salicyl), $7.37(\mathrm{~m}[\mathrm{t}]$, $2 \mathrm{H}, \mathrm{H}-4$ aniline, $\mathrm{H}-4$ salicyl), 7.45 (dd [t], ${ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 8.07 (m [d], $2 \mathrm{H}, \mathrm{H}-6$ aniline, H-6 salicyl), 8.18 (s, 1H, H-2 aniline), 10.23 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=16.38\left(\mathrm{CH}_{3}\right)$, 28.49 (CH -adamantane), $33.58\left(\mathrm{C}_{\mathrm{q}}-\mathrm{-}^{11}\right.$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), $40.82\left(\mathrm{CH}_{2}\right.$-adamantane $), 51.44\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.26\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.70\left(\mathrm{CH}(\mathrm{OH})\right.$), $76.52\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 117.75\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.0, \mathrm{C}\right.$ 2 aniline), 120.61 ($q,{ }^{3} J_{C F}=3.7, C-4$ aniline), 123.90 ($C-6$ aniline), 125.13 ($C-5$ salicyl), 126.38 (C-1 salicyl), 129.35 (C-5 aniline), 130.19 (C-6 salicyl), 131.70 (C-3 salicyl), 135.59 (C-4 salicyl), 139.34 (C-1 aniline), 155.17 (C-2 salicyl), 163.80 (CONH). C-3 Aniline and CF3 not recorded.

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 517.27 found: 517.32, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 515.25 found: 515.35.
Melting point: $55-58^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-4-methyl-N-(3(trifluoromethyl)phenyl)benzamide (242)

242 was prepared following general procedure E, yielding $0.134 \mathrm{~g}(45 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.48-1.54\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.61-1.66 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.76 (m, 3H, CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.23, 2.26, 2.30,2.33 ($\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=-11.5,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), $2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75$ (dd, $\left.{ }^{2} J=-12.2,{ }^{3} J=9.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.83\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right)$, $4.02\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.08-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3\right.$, $\left.{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $6.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.9, \mathrm{H}-5\right.$ salicyl), $7.32(\mathrm{~d}$, ${ }^{3} J=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.42 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=7.7,{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-5$ aniline), $8.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-\right.$ 6 aniline), 8.12-8.16 (m, $2 \mathrm{H}, \mathrm{H}-2$ aniline, $H-6$ salicyl), 10.37 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=21.87\left(\mathrm{CH}_{3}\right)$, $28.49(\mathrm{CH}$-adamantane $)$, $33.56\left(\mathrm{C}_{\mathrm{q}}-1^{1 "}\right.$ adamantane), $37.26\left(\mathrm{CH}_{2}\right.$-adamantane), $40.80\left(\mathrm{CH}_{2}\right.$-adamantane), $51.59\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.20\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.01(\mathrm{CH}(\mathrm{OH})), 71.23\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 113.43(\mathrm{C}-3$ salicyl), 117.26 ($\mathrm{q},{ }^{3}{ }_{\text {CF }}=3.9, C-2$ aniline), 119.35 ($C-1$ salicyl), 120.21 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4$ aniline), 122.93 ($C-5$ salicyl), 123.47 ($C-6$ aniline), 126.96 ($q,{ }^{1} J_{C F}=-271.7, C F 3$), 129.39 ($C-5$ aniline), 131.21 ($\mathrm{q},{ }^{2} J_{C F}=32.1, C-3$ aniline), 132.58 ($C-6$ salicyl), 139.76 ($C-1$ aniline), 144.50 ($C-4$ salicyl), 156.68 (C-2 salicyl), 163.90 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 517.27 found: 617.27, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 515.25 found: 515.25.
Melting point: $144-148^{\circ} \mathrm{C}$.

5-chloro-2-(3-(dibutylamino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (243)

243 was prepared following general procedure \mathbf{E}, yielding $0.495 \mathrm{~g}(68 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.87\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$ 1.19-1.33 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{XCH}_{2}$) 1.34-1.45 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{XCH}_{2}$) 2.42-2.45 (2H), 2.50-2.62 (m, $4 \mathrm{H}, 2 \mathrm{XCH}_{2}$) 2.75-3.26(m, br, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})$), $3.99\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=6.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.10-4.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3\right.$, $\left.{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.39-7.47 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-5$ aniline)), 8.07-8.11 ($\mathrm{m}, 2 \mathrm{H} \mathrm{H}-2,6$ aniline), 8.22 ($\mathrm{d},{ }^{4} \mathrm{~J}=$ 2.8, 1H, H-6 salicyl), 10.35 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{\left\{^{1} \mathrm{H}\right\} \mathrm{NMR} \quad\left(100 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 23{ }^{\circ} \mathrm{C}\right): \quad \delta=14.04 \quad\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), \quad 20.57\right.$ $\left(\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), \quad 29.35 \quad\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), \quad 54.01 \quad\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\right), \quad 56.29$ ($\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 65.54(\mathrm{CH}(\mathrm{OH})), 71.85\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.28\left(\mathrm{C}-3\right.$ salicyl), 117.47 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}$ $=4.0, C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 120.64 ($q,{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $123.63\left(C-6^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), $124.17\left(q,{ }^{1} J_{C F}=-272.5, C F_{3}\right), 124.23\left(C_{q}-1\right.$ salicyl), $127.51\left(C_{q}-5\right.$ salicyl), $129.46(C-5)$
in $3^{\prime}-$ CF $_{3}$-aniline), 131.27 ($\mathrm{q},{ }^{2} J_{C F}=32.3, C_{q}-3^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 132.37 ($C-6$ salicyl), 133.03 (C 4 salicyl), 139.32 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.23 ($C_{q}-2$ salicyl), 162.44 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 501.21 found: $501.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 499.20 found: 499.22 .
Melting point: $58-60^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)(methyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (244)

244 was prepared following general procedure \mathbf{E}, yielding $0.599 \mathrm{~g}(93 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.45-1.50\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.53-1.60 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.64-1.72 (m, 3H, CH CH_{2}-adamantane), 1.91 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.09-2.18 (m [s mit starken 13 C Satelliten], $2 \mathrm{H}, \mathrm{NCH}_{2}$-1-adamantane)), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.47-2.58 (m, 2H, CH(OH)CH CNH_{2}), $4.00\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=6.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.09-4.16 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right.$), $4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.35 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.39-7.47 (m, $2 \mathrm{H}, \mathrm{H}-5$ aniline, $\mathrm{H}-4$ salicyl), 8.08 ($\mathrm{d},{ }^{3} \mathrm{~J}$ $=8.1,1 \mathrm{H}, \mathrm{H}-6$ aniline $), 8.14(\mathrm{~s}[\mathrm{t}], 1 \mathrm{H}, H-2$ aniline $), 8.23\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 10.36 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.47$ (CH -adamantane), 34.90 ($\mathrm{C}_{\mathrm{q}}-1$ " adamantane), 37.12 (CH_{2}-adamantane), 41.42 (CH_{2}-adamantane), $45.80\left(\mathrm{NCH}_{3}\right), 62.74\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.28$ $(\mathrm{CH}(\mathrm{OH})), 71.78\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 72.17\left(\mathrm{~N}_{(}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right.$-1-adamantane), 114.34 ($\mathrm{C}-3$ salicyl), 117.48 ($q,{ }^{3} J_{C F}=4.0, C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 120.65 ($q,{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.60 (C - 6^{\prime} in $3^{\prime}-$ CF $_{3}$-aniline), 123.64 ($C_{q}-1$ salicyl), 124.19 ($\mathrm{q}^{1}{ }^{1}{ }^{\text {CF }}=-271, C F 3$), $127.56\left(C_{q^{\prime}}-5\right.$ salicyl), 129.47 (C - 5^{\prime} in 3^{\prime} - CF $_{3}$-aniline), 131.28 ($q,{ }^{2} J_{C F}=32.3, C_{q^{\prime}} 3^{\prime}$ in 3^{\prime} - CFF $_{3}$-aniline), 132.40 ($C-6$ salicyl), 133.04 ($C-4$ salicyl), 139.33 ($C_{q^{-}} 1^{\prime}$ in $3^{\prime}{ }^{\prime}$ CFF $_{3}$-aniline), 155.20 ($C_{q}-2$ salicyl), 162.40 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 551.23 found: 551.34, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 549.21 found: 549.24.

Melting point: $140-143^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)(butyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (245)

245 was prepared following general procedure E, yielding 0.467 g (97%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.29-1.36 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.43-1.46 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.49-1.52 ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.54-1.61 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}{ }^{-}$ adamantane), 1.66-1.72 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.93 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.10, 2.14, 2.21, $2.24\left(\mathrm{AB}, \mathrm{J}_{A B}=-14.1,2 \mathrm{H}, \mathrm{NHCH}_{2}\right.$-1-adamantane), 2.37-2.46 (m, 1H, $\mathrm{NHCH}_{a} \mathrm{H}_{b} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.47-2.60 (m, 3H, CH(OH)CH $2 \mathrm{NH}, \mathrm{NHCH}_{a} H_{b} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.00 (dd, ${ }^{2} \mathrm{~J}=-$ $\left.9.1,{ }^{3} J=6.9,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.07-4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.1,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.41 ($\mathrm{d},{ }^{3} \mathrm{~J}$ $=8.8,^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.43 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-5$ aniline), $8.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.16 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.24 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.38 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=14.09\left(\mathrm{CH}_{3}\right), 20.63\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.52(\mathrm{CH}-$ adamantane), $29.73\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 34.66\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), $37.13\left(\mathrm{CH}_{2}\right.$-adamantane), $41.66\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $57.16\left(\mathrm{NCH}_{2}\right), 59.23\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.16(\mathrm{CH}(\mathrm{OH})), 69.32$ ($\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$-1-adamantane), $71.91\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.34 ($\mathrm{C}-3$ salicyl), $117.53\left(\mathrm{q},{ }^{3} \mathrm{~J}_{C F}=3.9, \mathrm{C}\right.$ 2^{\prime} in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.63 ($\mathrm{q}^{3}{ }^{3} J_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.60 ($C-6^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.65 ($C_{q}-1$ salicyl), 124.21 ($\mathrm{q}^{1}{ }^{1} J_{C F}=-272.9, C_{3}$), $127.56\left(C_{q}-5\right.$ salicyl), $129.42\left(C-5^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 131.29 ($q,{ }^{2} J_{C F}=32.2, C_{q^{\prime}} 3^{\prime}$ in $3^{\prime}-C_{3}$-aniline), 132.42 ($C-6$ salicyl), 133.02 ($C-4$ salicyl), 139.38 ($C_{q}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 155.24 ($C_{q}-2$ salicyl), 162.39 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 593.28 found: $593.42,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 591.26 found: 519.25 .
Melting point: $129-133^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro- N -methyl- N phenylbenzamide (246)

246 was prepared following general procedure E, yielding 0.163 g (46%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta=1.51-1.55\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.62-1.66 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.69-1.74 (m, 3H, CH CH_{2}-adamantane), 1.97 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.25, 2.28, 2.30, 2.33 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.66-2.81 (m, 2 H , $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.46 (br s, $3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{NCH}_{3}$), 3.87-3.95 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 3.97-4.05 (m, 2 H , $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 6.70 (d, ${ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 6.96 (br s, $1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.04-7.23 (m, 6 H ArH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=28.55$ (CH -adamantane), 33.66 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$, adamantane), $37.32\left(\mathrm{CH}_{2}\right.$-adamantane), $37.35\left(\mathrm{C}(\mathrm{O}) \mathrm{NCH}_{3}\right), 40.93\left(\mathrm{CH}_{2}\right.$-adamantane), $52.51\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.84\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $68.03\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $72.99(\mathrm{CH}(\mathrm{OH}))$, 115.09 ($\mathrm{C}-3$ salicyl), 125.86 ($C-1$ salicyl), 126.71 ($C-2,6$ aniline), 127.36 ($C-4$ aniline), 128.26 ($C-6$ salicyl), 128.95 (C-5 salicyl), 129.15 (C-3,5 aniline), 130.07 (C-4 salicyl), 143.53 (C-1 aniline), 154.00 (C-2 salicyl), 168.02 (CONMe).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 483.24 found: 483.35 .
Melting point: $83-90^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-(trifluoromethoxy)N -(3-(trifluoromethyl)phenyl)benzamide (247)

247 was prepared following general procedure \mathbf{E}, yielding $0.019 \mathrm{~g}(42 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.50-1.53\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.61-1.65 ($\mathrm{m}, 3 \mathrm{H}$, CH_{2}-adamantane), 1.70-1.76 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.26, 2.29, 2.35, 2.38 ($\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=-11.7,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.78 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=9.7$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), 2.89 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}$), 4.05 (dd, ${ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}$ $\left.=6.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.30\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2 \mathrm{I}^{3} \mathrm{~J}=2.8,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 6.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.32\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), 7.36 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.45 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), $8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.0,1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.13 ($\mathrm{d},{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.15 (s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.33 (br s, 1 H , CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.43$ (CH -adamantane), 33.51 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.15\left(\mathrm{CH}_{2}\right.$-adamantane), $40.71\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $51.71\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.13\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.69(\mathrm{CH}(\mathrm{OH})), 71.90\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $114.09\left(\mathrm{C}-3\right.$ salicyl), $117.43\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.9\right.$, $C-2$ aniline), $120.64\left({ }^{1} J_{C F}=-257.7\right.$, OCF $_{3}$ aniline), 120.77 ($q,{ }^{3} J_{C F}=-3.8, C-4$ aniline), 123.64 (C-6 aniline), 124.17 (${ }^{1} J_{C F}=-273.0, C F_{3}$ aniline), 125.42 ($C-6$ salicyl), 126.08 ($C-4$ salicyl), 129.53 (C 5 aniline), $131.37\left(^{2} J_{C F}=32.1, C-3\right.$ aniline), 139.27 ($C-1$ aniline), 143.69 ($q, J_{C F}=1.5, C-5$ salicyl), 155.01 (C-2 salicyl), 162.27 (CONH). C-1 salicyl not recorded

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 587.23 found: $587.28,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 585.22 found: 585.18.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4(trifluoromethoxy)phenyl)benzamide (248)

248 was prepared following general procedure \mathbf{E}, yielding $0.178 \mathrm{~g}(93 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=2.30-2.56\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 7 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, H_{\mathrm{ax}} H_{\text {eq- }}-3,5\right.$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 2.61 (dd, ${ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=10.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 2.66-2.80 ($\mathrm{m}[\mathrm{t}], \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), $3.98\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=5.9,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.15-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=\right.$ 2.8, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.14-7.22 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$ aniline, 2 x CH-4 phenyl), 7.26-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.37-7.43 (m,5H, H-4 salicyl, $2 \mathrm{x} \mathrm{H-2"}, 6^{\prime \prime}$ phenyl), 7.79 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$ aniline), 8.20 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.12 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=51.87\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 53.63 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.62\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 64.97(\mathrm{CH}(\mathrm{OH})), 71.54\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.17\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 114.30 ($C-3$ salicyl), 120.65 (${ }^{1} J_{C F}=-257.1$, OCF $_{3}$ aniline), $121.66(C-2,6$ aniline), 121.68 ($C-3,5$ aniline), 123.82 ($C_{q}-1$ salicyl), 127.22 ($C-4^{\prime \prime}$ phenyl), 127.56 ($C-5$ salicyl), 128.04 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.67 (C-3", $5^{\prime \prime}$ phenyl), 132.37 ($C-6$ salicyl), 132.94 ($C-4$ salicyl), 137.38 (C-1 aniline), 142.46 ($\mathrm{d}^{3}{ }^{3} J_{C F}=8.3, C-4$ aniline), $145.26\left(C_{q}-1^{\prime \prime}\right.$ phenyl[1]), 145.28 ($C_{q^{-}} 1^{\prime \prime}$ phenyl[2]), 155.07 ($C_{q}-2$ salicyl), 162.24 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 640.22 found: $640.25,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 638.20 found: 638.15 . Melting point: $155-165^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4-chloro-3(trifluoromethyl)phenyl)benzamide (249)

249 was prepared following general procedure E, yielding 0.311 g (95\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.36-2.63$ ($\mathrm{m}[\mathrm{dyn}]$, br, $8 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}, H_{\mathrm{ax}} H_{\text {eq- }}-3,5$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 2.72-2.80 (m[t], br, $2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), $3.97\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=6.4,1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), 4.19-4.26(m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.29\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.6\right.$, überlagert, 1 H ,
$\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $6.89\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.17-7.22 (m, $2 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl), 7.257.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $7.39-7.45$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-5$ aniline, $\mathrm{H}-4$ salicyl, $2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 8.07-8.11 (m, 2H, H-2,6 aniline), 8.19 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.32 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right.$): $\delta=51.77\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 53.63 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.52\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $64.91(\mathrm{CH}(\mathrm{OH}))$, $71.81\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $76.13\left(\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 114.36 ($\mathrm{C}-3$ salicyl), 119.56 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=5.5, \mathrm{C}-2$ aniline), $122.87\left({ }^{1} \mathrm{~J}_{C F}=-273.1, C F_{3}\right.$ aniline), 123.38 ($C_{q^{-1}}$ salicyl), 124.33 ($C-6$ aniline), 126.54 ($C-4$ aniline), 127.22 ($C-4^{\prime \prime}$ phenyl), 127.70 ($C-5$ salicyl), 128.04 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.69 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 131.98 ($C-5$ aniline), 132.37 ($C-6$ salicyl), 133.22 ($C-4$ salicyl), 137.70 ($C-1$ aniline), 142.48 ($C_{q}-1^{\prime \prime}$ phenyl[1]), $142.52\left(C_{q}-1^{\prime \prime}\right.$ phenyl[2]), 155.08 ($C_{q}-2$ salicyl), 162.39 (CONH). Only one part of the quartett of $C-3$ aniline visible at 128.44

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 658.18 found: $658.29,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 656.17 found: 656.19 .
Melting point: $162-165^{\circ} \mathrm{C}$; diphosphate: $191-195^{\circ} \mathrm{C}$, citrate: $155-156$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-cyano-N-(4(trifluoromethoxy)phenyl)benzamide (250)

250 was prepared following general procedure E, yielding $0.057 \mathrm{~g}(19 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.49-1.54$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.65 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.71-1.76 (m, 3H, CH_{2}-adamantane), 1.98 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.25, 2.28, 2.34, 2.36 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.6,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.75 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=9.4$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.89\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.7,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}\right), 4.10\left(\mathrm{~m},{ }^{2} \mathrm{~J}=-9.1,{ }^{3} \mathrm{~J}\right.$ $\left.=6.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.14-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.1,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 7.05 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6, \mathrm{H}-3$ salicyl), 7.16-7.21 (m, 2H, H-3,5 aniline), 7.73 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.2, \mathrm{H}-4$ salicyl), 7.81-7.85 (m, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), $8.53\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.2, \mathrm{H}-6\right.$ salicyl), 10.07 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.41$ (CH -adamantane), 33.56 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ adamantane), $37.13\left(\mathrm{CH}_{2}\right.$-adamantane), $40.79\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $51.56\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.32\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.78(\mathrm{CH}(\mathrm{OH}))$, $71.77\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 105.99 ($\mathrm{C}-5$ salicyl), 113.61 ($\mathrm{C}-3$ salicyl), 118.20 (CN), 121.73 (C-3,5 aniline), 121.77 (C-2,6 aniline), 123.63 ($C-1$ salicyl), 136.83 (C-4 salicyl), 137.14 ($C-6$ salicyl), 145.32 ($q, J_{C F}=1.5, C-4$ aniline), 159.41 ($C-2$ salicyl), 161.47 (CONH). C-1 aniline and OCF3 not recorded.

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 544.24 found: $544.34,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 542.23 found: 542.16 . Melting point: $90-93^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-(trifluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide (251)

251 was prepared following general procedure E, yielding $0.145 \mathrm{~g}(40 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.37-1.41\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.51-1.57 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.66 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.87 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.07 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.59-2.68 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.94-4.00 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH})$), 4.21-4.29 (m, 2H, $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), 7.42-7.49 (m, $2 \mathrm{H}, \mathrm{H}-4$ aniline, $\mathrm{H}-3$ salicyl), 7.60 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline $), 7.90\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-\right.$ 6 aniline), 8.06 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.28 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.61 (br s, 1 H, CONH).
${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.83$ (CH -adamantane), $33.26\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), $36.76\left(\mathrm{CH}_{2}\right.$-adamantane), $40.28\left(\mathrm{CH}_{2}\right.$-adamantane), $53.37\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.42\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.86(\mathrm{CH}(\mathrm{OH})), 71.92\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.36(\mathrm{C}-3$ salicyl), 115.88 ($q,{ }^{3} J_{C F}=3.8, C-2$ aniline), 120.21 ($q,{ }^{3} J_{C F}=3.6, C-4$ aniline), 121.44 ($q,{ }^{2} J_{C F}=32.7, C-5$ salicyl), 123.34 (C-6 aniline), $124.09\left({ }^{1} J_{C F}=-272.6, C F_{3}\right.$ aniline), $124.11\left({ }^{1} J_{C F}=-271.7, C F_{3}\right.$ salicyl), 124.28 ($C-1$ salicyl), 127.30 ($q, J_{C F}=3.9, C-6$ salicyl), 129.58 ($\mathrm{q}^{2}{ }^{2} J_{C F}=31.6, C-3$ aniline), 129.77 ($q, J_{C F}=3.5, C-4$ salicyl), 130.03 (C-5 aniline), 139.43 ($C-1$ aniline), 158.98 ($C-2$ salicyl), 163.10 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.24 found: 571.33, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 569.22 found: 569.23.
Melting point: $118-120^{\circ} \mathrm{C}$.
2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (252)

252 was prepared following general procedure \mathbf{E}, yielding 0.193 g (54%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.36-2.57$ (m[dyn], br, $7 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\left(^{2} \mathrm{~J}=-12.3\right.$, $\left.{ }^{3} J=3.6\right), H_{\text {ax }} H_{\text {eq }}-3,5$ in piperazine, $H_{a x}-2,6$ in CH_{2} piperazine), 2.61 (dd, ${ }^{2} J=-12.3,{ }^{3} \mathrm{~J}=10.7$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.71-2.77 ($\mathrm{m}[\mathrm{t}], \mathrm{br}, 2 \mathrm{H}, \mathrm{Heq}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), $4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}\right.$ $\left.=6.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.19-4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.37\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$ $-9.4,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.17-7.22(m,2H,2xCH-4 phenyl), 7.26-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH-3} \mathrm{\prime}, 5^{\prime \prime}$ phenyl), 7.34 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.40-7.46 ($\mathrm{m},{ }^{3} \mathrm{~J}=7.8$, $5 \mathrm{H}, \mathrm{H}-5$ aniline, $2 \mathrm{x} \mathrm{H-2"}, 6^{\prime \prime}$ phenyl), 7.71 (dd, ${ }^{3} \mathrm{~J}=8.7,^{3} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.3,1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), $8.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), $10.23(\mathrm{~s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=51.89\left(\mathrm{CH}_{2}\right.$-dyn, piperazine $)$, $52.83\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $59.51\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $64.86(\mathrm{CH}(\mathrm{OH}))$, $71.61\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $76.17\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 113.00 ($C-3$ salicyl), 117.28 ($\mathrm{q},{ }^{3}{ }^{3}{ }_{C F}=4.0, C-2$ aniline), 120.79 ($q,{ }^{3} J_{C F}=3.7, C-4$ aniline), 122.69 (C-1 salicyl), 123.46 ($C-6$ aniline), 123.93 (${ }^{1} J_{C F}=-272.0, C F_{3}$ aniline), $124.12\left({ }^{1} J_{C F}=-273.0, C F_{3}\right.$ salicyl), 124.63 (${ }^{2} J_{C F}=33.6, C-5$ salicyl), 127.19 ($C-4$ " phenyl), 128.03 (C-2", $6^{\prime \prime}$ phenyl), 128.67 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.58 ($C-5$ aniline), 130.34 ($,^{3} J_{C F}=3.6, C-4$ salicyl), $130.39\left(q,{ }^{3} J_{C F}=3.8, C-\right.$ 6 salicyl), $131.34\left({ }^{2} J_{C F}=32.1, C-3\right.$ aniline $), 139.17$ ($C-1$ aniline), 142.57 ($C_{q}-1$ " phenyl), 142.60 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 158.69 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 162.33 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 658.25 found: $658.37,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 656.24 found: 656.27 .

Melting point: $70-72^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (253)

253 was prepared following general procedure \mathbf{E}, yielding $0.176 \mathrm{~g}(56 \%)$ of the desired semicrystalline product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.41-2.61$ (m[dyn], br, $8 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}-3,5 \mathrm{in}$ piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 2.72-2.80 ($\mathrm{m}[\mathrm{t}], \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), 4.05 ($\mathrm{dd},{ }^{2} J=-9.2,{ }^{3} \mathrm{~J}=7.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.22-4.29(m,2H, CH(OH), $\left.\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.39(\mathrm{dd}$, ${ }^{2} J=-9.2,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $7.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.17-7.22(m,2H,2x $\mathrm{CH}-4$ phenyl), 7.27-7.31 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.38-7.45 (m, $4 \mathrm{H}, 2 \mathrm{xH} \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.59 (s, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.75 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7 \mathrm{~T}^{3} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 8.55 (d, ${ }^{4} \mathrm{~J}=2.4,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.52 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right)$: $\delta=51.89\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $52.55\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $59.27\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 64.81(\mathrm{CH}(\mathrm{OH}))$, $71.99\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.14\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 113.19 ($C-3$ salicyl), 117.39 ($\mathrm{m}, J_{C F}=3.9, C-4^{\prime}$ in $3^{\prime}, 5^{\prime}-$ bis $^{\prime}-$ CF $_{3}$-aniline), $120.22\left(q,{ }^{3} J_{C F}=3.3, C-\right.$ $2^{\prime}, 6^{\prime}$ in $3^{\prime}, 5^{\prime}$-bis-CF ${ }_{3}$-aniline), 122.21 ($C-1$ salicyl), $123.40\left({ }^{1} J_{C F}=-273.0,2 x^{\prime} C_{3}\right.$ aniline), 123.84 $\left({ }^{1} J_{C F}=-272.0, C F_{3}\right.$ salicyl), $124.85\left(^{2} J_{C F}=33.7, C-5\right.$ salicyl), 127.19 (C-4" phenyl), 128.03 (C$2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.68 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 130.45 ($\mathrm{q}^{3}{ }^{3}{ }_{C F}=3.6, C-6$ salicyl), 130.71 ($\mathrm{q}^{3}{ }^{3} J_{C F}=3.6$, $C-4$ salicyl), $132.26\left(^{2} J_{C F}=33.5, C-3,5\right.$ in $3^{\prime}, 5^{\prime}$-bis-CFF ${ }_{3}$-aniline), 140.15 ($C-1$ in $3^{\prime}, 5^{\prime}$-bis-CF 3^{-} aniline), 142.58 ($C_{q}-1^{\prime \prime}$ phenyl), 142.60 ($C_{q}-1^{\prime \prime}$ phenyl), 158.74 ($C_{q}-2$ salicyl), 162.59 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 726.24 found: $726.29,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 724.22 found: 724.45 .

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (254)

254 was prepared following general procedure \mathbf{E}, yielding 0.133 g (32%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=2.39-2.52$ ($\mathrm{m}[\mathrm{dyn}], \mathrm{br}, 7 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-\right.$ 12.3, ${ }^{3} \mathrm{~J}=3.6$), $H_{\mathrm{ax}} H_{\mathrm{eq}}-3,5$ in piperazine, $H_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), $2.62\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=\right.$ 10.8, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), 2.71-2.78 (m[t], br, $2 \mathrm{H}, \mathrm{H}_{\mathrm{eq}}-2,6$ in CH_{2} piperazine), 4.06 (dd, ${ }^{2} \mathrm{~J}=-$ $\left.9.4,{ }^{3} \mathrm{~J}=6.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.19-4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 4.37$ (dd, ${ }^{2} J=-9.4,{ }^{3} J=2.6,1 \mathrm{H}, \mathrm{OCH}_{a} H_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7\right.$, 1H, H-3 salicyl), 7.19 (m, 2H, $2 \mathrm{xCH}-4$ phenyl), 7.28 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.32 (dd [t], ${ }^{3} \mathrm{~J}$ $=8.1,1 \mathrm{H}, \mathrm{H}-5$ aniline), $7.41\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right.$ phenyl), 7.71 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{3} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.74 (m, $1 \mathrm{H}, \mathrm{H}-6$ aniline), 7.77 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.54 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.17 (s, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=51.91\left(\mathrm{CH}_{2}\right.$-dyn, piperazine $)$, $52.97\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $59.48\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 64.86(\mathrm{CH}(\mathrm{OH}))$, $71.53\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.22\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 112.96 (C-3 salicyl), 113.10 (C-2 aniline), 116.36 (C-4 aniline), 118.53 (C-6 aniline), 120.63 $\left({ }^{1} J_{C F}=-257.2\right.$, OCF $_{3}$ aniline), 122.74 (C-1 salicyl), $123.93\left({ }^{1} J_{C F}=-271.8, C F_{3}\right.$ salicyl), 124.62 (q, ${ }^{2} J_{\text {CF }}=33.5, C-5$ salicyl), 127.20 (C-4" phenyl), 128.04 (C-2",6" phenyl), 128.68 (C-3", $5^{\prime \prime}$ phenyl), 130.07 ($C-5$ aniline), 130.30 ($q, J_{C F}=3.5, C-6$ salicyl), 130.43 ($q, J_{C F}=3.8, C-4$ salicyl), 140.05 ($C-1$ aniline), 142.54 ($C_{q}-1^{\prime \prime}$ phenyl), 142.58 ($C_{q}-1^{\prime \prime}$ phenyl), 149.63 (broadened, $C-3$ aniline), 158.67 ($C_{q}-2$ salicyl), 162.25 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 674.24 found: 674.31, $\left.[\mathrm{M}-\mathrm{H}]\right]^{-}$: calculated.: 672.23 found: 672.21 .

Melting point: $69-72^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyanobenzamide (255)

255 was prepared following general procedure E, yielding $0.209 \mathrm{~g}(69 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $6,23^{\circ} \mathrm{C}$): $\delta=2.10-2.47$ (m[dyn], br, $10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}}$ $H_{\text {eq }}-3,5$ in piperazine, $H_{\text {ax }} H_{\text {eq }}-2,6$ in CH_{2} piperazine), 3.94-4.03 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), $4.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 4.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 5.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 7.17(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}-4$ phenyl), 7.27 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.36-7.42 (m,5H, H-3 salicyl, $2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.69 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.7, \mathrm{H}-5$ aniline), 7.98 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.02 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,{ }^{4} \mathrm{~J}=2.3$, $1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.10 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.28 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.65 (s , 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=51.43\left(\mathrm{CH}_{2}\right.$, piperazine $)$, $53.48\left(\mathrm{CH}_{2}\right.$, piperazine $)$, $60.75(\mathrm{NCH} 2 \mathrm{CH}(\mathrm{OH})), 66.03(\mathrm{CH}(\mathrm{OH})), 72.12\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.10\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 103.30(\mathrm{C}-5$ salicyl), 122.65 ($\mathrm{q},{ }^{1} \mathrm{~J}_{C F}=-272.9, C F_{3}$ aniline), $114.60\left(C-3\right.$ salicyl), $118.32\left(\mathrm{q},{ }^{3} J_{C F}=5.5, C-2\right.$ aniline), $118.37(C N), 124.37$ ($C_{q}-6$ aniline), 124.51 ($C-4$ aniline), 125.36 ($C_{q}-1$ salicyl), 126.78 ($C-44^{\prime \prime}$ phenyl), 126.82 ($q,{ }^{2} J_{C F}=30.5, C-3$ aniline), 127.51 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.44 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 132.20 ($C-5$ aniline), 134.01 ($C-6$ salicyl), 136.70 ($C-4$ salicyl), 138.12 ($C_{q}-1$ aniline), 142.85 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 142.87 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 159.34 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 163.00 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 649.22 found: $649.27,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 647.20 found: 647.25 .
Melting point: $209-211^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4-chloro-3-(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (256)

256 was prepared following general procedure \mathbf{E}, yielding 0.305 g (94%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.16-2.48$ ($\mathrm{m}[\mathrm{dyn}], \mathrm{br}, 10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}}$ $H_{\text {eq }}-3,5$ in piperazine, $H_{\text {ax }} H_{\text {eq }}-2,6$ in CH_{2} piperazine), 4.00-4.04 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), 4.16 (dd, ${ }^{2} \mathrm{~J}=$ $\left.-9.7,{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.19-4.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right)$, $5.15(\mathrm{~m}$, 1H, $\mathrm{CH}(\mathrm{OH})$), 7.17 ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl), 7.27 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{H-3"}, 5^{\prime \prime}$ phenyl), 7.36-7.44 (m, $5 \mathrm{H}, \mathrm{H}-3$ salicyl, $2 \mathrm{xH}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.70 ($\mathrm{d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.8, \mathrm{H}-5$ aniline), $7.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=\right.$ 2.3, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.01-8.06 (m, $2 \mathrm{H}, \mathrm{H}-6$ aniline, $\mathrm{H}-6$ salicyl), 8.31 (d, ${ }^{4} \mathrm{~J}=2.5,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.67 ($s, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=51.44\left(\mathrm{CH}_{2}\right.$, piperazine $)$, $53.50\left(\mathrm{CH}_{2}\right.$, piperazine $)$, $60.77\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.07(\mathrm{CH}(\mathrm{OH})), 72.18\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.11\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 114.38(\mathrm{C}-3$ salicyl), 118.46 ($\mathrm{q},{ }^{3} J_{C F}=5.3, C-2$ aniline), 121.45 ($\mathrm{q},{ }^{2} J_{C F}=32.3, C-5$ salicyl), $122.67\left(\mathrm{q},{ }^{1} J_{C F}=-\right.$ 273.3, $C F_{3}$ aniline), 124.08 ($q,{ }^{1} J_{C F}=-271.8, C F_{3}$ salicyl), $124.32\left(C_{q}-1\right.$ salicyl), 124.49 ($C-6$ aniline), 124.53 ($C_{q}-4$ aniline), 126.78 ($C-4^{\prime \prime}$ phenyl), 126.82 ($\mathrm{q}^{2} \mathrm{~J}_{C F}=30.7, C-3$ aniline), 127.15 (broadened, $C-6$ salicyl), 127.51 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.44 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.81 ($\mathrm{q}^{3} J_{C F}=$ 3.7, $C-4$ salicyl), 132.17 ($C-5$ aniline), 138.12 ($C_{q^{-}}-1$ aniline), 142.85 ($C_{q^{-}}-1^{\prime \prime}$ phenyl), 142.88 ($C_{q^{-}}$ 1" phenyl), 158.92 ($C_{q}-2$ salicyl), 163.27 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 692.21 found: 692.12, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 690.20 found: 690.10 .

Melting point: $162-167^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)- N -(4-chloro-3-(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (257)

257 was prepared following general procedure E, yielding $0.187 \mathrm{~g}(47 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.36-1.40\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.51-1.57 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.67 (m, 3H, CH CH_{2}-adamantane), 1.87 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.04 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.57-2.65 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.92-3.98(m, 1H, $\mathrm{CH}(\mathrm{OH})), 4.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.9,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 7.43\left(\mathrm{~d}^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8\right.$, $1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.89 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.00-8.05 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ aniline, $\mathrm{H}-6$ salicyl), 8.35 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.21 \mathrm{H}, \mathrm{H}-2$ aniline), 10.69 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13}$ C 1 H\}NMR (100 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.83$ (CH-adamantane), $33.22\left(C_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), 36.75 (CH_{2}-adamantane), 40.27 (CH_{2}-adamantane), $53.44\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 62.42 ($\mathrm{NHCH}_{2}-1^{\prime \prime}$-adamantane), $67.82\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.83\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 114.33$ ($\mathrm{C}-3$ salicyl), 118.39 ($q, J_{C F}=5.9, C-2$ aniline), 121.44 ($q,{ }^{2} J_{C F}=32.9, C-5$ salicyl), $122.69\left({ }^{1} J_{C F}=-273.0, C F_{3}\right.$ aniline), $124.10\left({ }^{1} J_{C F}=-271.4, C_{3}\right.$ salicyl), 124.32 ($C-1$ salicyl), 124.47 ($C-6$ aniline), 124.55 (C4 aniline), 126.86 ($q,{ }^{2} J_{C F}=30.7, C-3$ aniline), 127.17 ($q, J_{C F}=3.7, C-6$ salicyl), 129.82 ($q, J_{C F}=$ 3.3, C-4 salicyl), 132.21 (C-5 aniline), 138.16 (C-1 aniline), 158.92 (C-2 salicyl), 163.29 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 605.20 found: $605.25,[\mathrm{M}-\mathrm{H}]^{-}:$calculated.: 603.19 found: 603.22 .
Melting point: $144-148^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)- N -(4-chloro-3-(trifluoromethyl)phenyl)-5-cyanobenzamide (258)

258 was prepared following general procedure E, yielding $0.149 \mathrm{~g}(51 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}, 23^{\circ} \mathrm{C}$): $\delta=1.34-1.39\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.51-1.57 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.66 (m, 3H, CH2-adamantane), 1.87 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.00-2.07 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.54-2.67 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.90-3.97 (m , $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.8,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.7,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ 8.8, $1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.97-8.03 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ aniline, $\mathrm{H}-4$ salicyl), 8.10 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.32 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.3,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.67 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.80$ (CH -adamantane), $33.15\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), $36.71\left(\mathrm{CH}_{2}\right.$-adamantane), $40.20\left(\mathrm{CH}_{2}\right.$-adamantane), $53.33\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.25\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.60(\mathrm{CH}(\mathrm{OH})), 71.72\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $103.30(\mathrm{C}-5$ salicyl), 114.54 (C-3 salicyl), 118.25 ($\mathrm{q},{ }^{3} J_{C F}=5.5, C-2$ aniline), $118.37(C N), 122.68\left({ }^{1} J_{C F}=-272.9, C F_{3}\right.$ aniline), 124.36 ($C-6$ aniline), 124.55 ($C-4$ aniline), 125.41 ($C-1$ salicyl), $126.87\left({ }^{2} J_{C F}=30.5, C-3\right.$ aniline), 132.23 (C-5 aniline), 134.01 ($C-6$ salicyl), 136.70 ($C-4$ salicyl), 138.17 ($C-1$ aniline), 159.31 (C-2 salicyl), 163.03 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 562.21 found: $562.23,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 560.19 found: 560.13.
Melting point: $146-148^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (259)

259 was prepared following general procedure E, yielding $0.166 \mathrm{~g}(54 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.34-1.38$ (s, br, $6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.49-1.54 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.66 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.85 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.03 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.57-2.66 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.93-3.98(m, 1 H , $\mathrm{CH}(\mathrm{OH})), 4.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$
aniline), 7.91 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 8.04 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $8.46(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 10.90 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.80$ (CH -adamantane), 33.19 ($\mathrm{C}_{\mathrm{q}}-\mathrm{I}^{1 \prime}$ adamantane), $36.72\left(\mathrm{CH}_{2}\right.$-adamantane), $40.23\left(\mathrm{CH}_{2}\right.$-adamantane), $53.34\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 62.32 (NHCH_{2}-1"-adamantane), $67.77\left(\mathrm{CH}(\mathrm{OH})\right.$), $71.84\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 114.37 ($\mathrm{C}-3$ salicyl), 116.67 ($\mathrm{m}, \mathrm{C}-4$ aniline), 119.44 ($q, J_{C F}=3.5, C-2,6$ aniline), $121.46\left({ }^{2} J_{C F}=32.6, C-5\right.$ salicyl), $123.19\left({ }^{1} J_{C F}=-272.5,2 \times C F_{3}\right.$ aniline), $124.07\left({ }^{1} J_{C F}=-272.5, C F_{3}\right.$ salicyl), 124.18 (C-1 salicyl), 127.19 ($q, J_{C F}=3.8, C-6$ salicyl), 129.98 ($q, J_{C F}=3.9, C-4$ salicyl), $130.90\left({ }^{2} J_{C F}=32.9, C-3,5\right.$ aniline), 140.57 (C-1 aniline), 158.97 (C-2 salicyl), 163.76 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 639.23 found: 639.39, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 637.29 found: 637.21 .
Melting point: $120-121^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-6-(trifluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide (260)

260 was prepared following general procedure \mathbf{E}, yielding 0.048 g (63%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.41-1.43$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.53-1.57 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.65-1.69 (m, 3H, CH CH_{2}-adamantane), 1.92 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.20, 2.22, 2.29, 2.31 ($\mathrm{AB}, \mathrm{J}_{A B}=-11.4,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.96 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.1,{ }^{3} \mathrm{~J}=9.8$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 3.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=2,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.05-4.08(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), 4.24-4.29 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $7.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.3, \mathrm{H}-3\right.$ salicyl), $7.19\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ 7.8, H-5 salicyl), 7.34 (dd [t], $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2, \mathrm{H}-4$ salicyl), 7.39 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.45 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.86 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.8,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 9.30 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=27.90\left(\mathrm{CH}\right.$-adamantane), $32.50\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), $36.37\left(\mathrm{CH}_{2}\right.$-adamantane), $39.51\left(\mathrm{CH}_{2}\right.$-adamantane), $52.79\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 60.93\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $65.51(\mathrm{CH}(\mathrm{OH})), 70.54\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 116.38\left(\mathrm{C}-3\right.$ salicyl), $116.97\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.0\right.$, $C-2$ aniline), 118.93 ($q,{ }^{3} J_{C F}=4.2, C-5$ salicyl), $121.30\left(q,{ }^{3} J_{C F}=3.7, C-4\right.$ aniline $), 123.30\left({ }^{1} J_{C F}=\right.$
274.0, $C F_{3}$ aniline), 123.59 ($C-6$ aniline), $124.01\left({ }^{1} J_{C F}=272.2, C F_{3}\right.$ salicyl), $124.99\left(J_{C F}=1.7, C-1\right.$ salicyl), 128.82 (${ }^{2} J_{C F}=31.8, C-6$ salicyl), 129.80 (C-5 aniline), 131.11 (C-4 salicyl), $131.48\left(^{2} J_{C F}=\right.$ 32.4, C-3 aniline), 138.82 (C-1 aniline), 155.29 ($C-2$ salicyl), 164.42 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 571.24 found: $571.35,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 569.22 found: 569.44.
Melting point: $130-132^{\circ} \mathrm{C}$.
2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-6-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (261)

261 was prepared following general procedure \mathbf{E}, yielding $0.095 \mathrm{~g}(89 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27^{\circ} \mathrm{C}$): $\delta=2.22-2.63\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\left({ }^{2} \mathrm{~J}=-12.6\right.\right.$, $\left.{ }^{3} J=3.4\right), \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{\mathrm{b}} \mathrm{NH}\left({ }^{2} \mathrm{~J}=-12.6,{ }^{3} \mathrm{~J}=9.9\right), \mathrm{H}_{\mathrm{ax}} H_{\text {eq }}-3,5$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 3.98-4.03 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH})$), 4.13-4.17 (m, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.20 (br s, 1H, NCH $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$), 7.15 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.17-7.20(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}-4$ phenyl), 7.25-7.29 (m, 4H, $2 x \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.32 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-5$ salicyl), 7.34 ($\mathrm{d},{ }^{3} \mathrm{~J}=$ 7.8, $1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.37-7.39 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{H-2"} \mathrm{I}^{\prime \prime} 6^{\prime \prime}$ phenyl), 7.42 (dd [t], ${ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline, 7.46 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.1,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2\right.$ aniline), $7.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6\right.$ aniline), 8.48-8.52 (br, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=51.47\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $53.83\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $59.56\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 65.24(\mathrm{CH}(\mathrm{OH})), 71.93\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 76.04\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, $116.72\left(\mathrm{q},{ }^{3} J_{C F}=4.0, C-2\right.$ aniline $), 117.03\left(C-3\right.$ salicyl), $119.15\left(\mathrm{q},{ }^{3} J_{C F}=4.8, C-5\right.$ salicyl), 121.11 ($\mathrm{q},{ }^{3} J_{C F}=3.7, C-4$ aniline), 123.30 ($C-6$ aniline), $123.42\left({ }^{1} J_{C F}=274, C F_{3}\right.$ aniline), $123.96\left({ }^{1} J_{C F}=\right.$ 272.0, $C F_{3}$ salicyl), 125.36 ($\mathrm{q}^{3}{ }^{3}{ }_{C F}=1.8, C-1$ salicyl), 127.17 ($C-4$ " phenyl), 127.97 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.65 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $129.44\left(^{2} J_{C F}=33.2, C-6\right.$ salicyl), 129.73 ($C-5$ aniline), 131.14 (br, C-4 salicyl), $131.47\left(^{2} J_{C F}=32.5, C-3\right.$ aniline), 138.73 (C-1 aniline), $142.50\left(C_{q}-1^{\prime \prime}\right.$ phenyl), 142.52 ($C_{q}-1^{\prime \prime}$ phenyl), 156.16 ($C_{q}-2$ salicyl), 163.69 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 658.25 found: $658.36,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 656.23 found: 656.51 .
Melting point: $85^{\circ} \mathrm{C}$.
2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethoxy)benzamide (262)

262 was prepared following general procedure E, yielding 0.242 g (44%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.33-1.39\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.49-1.55 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.67 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.85 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.04 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.56-2.68 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.92-3.99 (m, 1H, $\mathrm{CH}(\mathrm{OH})), 4.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.1,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.58\left(\mathrm{dd},{ }^{3} \mathrm{~J}=\right.$ $8.7,{ }^{4} \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.72 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.9,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $7.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.47 (s, 2H, H-2,6 aniline), 10.91 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100 MHz, DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.80$ (CH -adamantane), 33.15 ($\mathrm{C}_{\mathrm{q}}-1^{1 \prime}$ adamantane), $36.71\left(\mathrm{CH}_{2}\right.$-adamantane), $40.20\left(\mathrm{CH}_{2}\right.$-adamantane $)$, $53.26\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.23\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.75(\mathrm{CH}(\mathrm{OH})), 72.00\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $115.40(\mathrm{C}-3$ salicyl), 116.66 ($\mathrm{m}, \mathrm{C}-4$ aniline), 119.46 ($q, J_{C F}=3.5, C-2,6$ aniline), $120.13\left({ }^{1} J_{C F}=255.7, O C F_{3}\right.$ salicyl), 122.82 ($C-6$ salicyl), $123.19\left({ }^{1} J_{C F}=-273.8,2 x^{C F} 3\right.$ aniline), $124.49(C-1$ salicyl), $125.99(C-4$ salicyl), $130.90\left({ }^{2}{ }_{C C F}=32.9, C-3,5\right.$ aniline $), 140.53$ ($C-1$ aniline), 141.67 ($J_{C F}=1.6, C-5$ salicyl), 155.14 (C-2 salicyl), 163.43 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 655.22 found: $655.30,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 653.21 found: 653.46 .
Melting point: $158-160^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethoxy)benzamide (263)

263 was prepared following general procedure \mathbf{E}, yielding 0.381 g (61%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.14-2.48\left(\mathrm{~m}[\mathrm{dyn}]\right.$, br, $10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\left({ }^{2} \mathrm{~J}=-\right.$ 12.5, $\left.{ }^{3} J=6.8\right), \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{\mathrm{b}} \mathrm{NH}\left({ }^{2} J=-12.5,{ }^{3} J=5.7\right) H_{\mathrm{ax}} H_{\text {eq }}-3,5$ in piperazine, $H_{\mathrm{ax}} H_{\text {eq- }}-2,6$ in CH_{2} piperazine), 3.98-4.05 (m, 1H, CH(OH)), 4.12-4.17 (m, 2H, OCH $2 \mathrm{CH}(\mathrm{OH})$), $4.20(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 5.15-5.26 (br, 1H, CH(OH)), 7.14-7.19 (m, 2H, 2x CH-4 phenyl), 7.24-7.29 (m, 4H, $2 x \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.33-7.40 (m,5H, H-3 salicyl, $2 x \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.56 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{3} \mathrm{~J}=$ $2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.71 ($\mathrm{d},{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$ aniline), $8.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-$ 2,6 aniline), 10.91 (s, 1H (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}\right): \delta=51.42\left(\mathrm{CH}_{2}\right.$, piperazine $)$, $53.47\left(\mathrm{CH}_{2}\right.$, piperazine $)$, $60.78\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.14(\mathrm{CH}(\mathrm{OH})), 72.38\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.13\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 115.46(\mathrm{C}-3$ salicyl), 116.58 ($\mathrm{m}, \mathrm{C}-4$ aniline), 119.49 ($\mathrm{q},{ }^{3} J_{C F}=3.4, C-2,6$ aniline), 120.12 (${ }^{1} J_{C F}=255.0$, OCF $_{3}$ salicyl), 122.78 ($C-6$ salicyl), $123.16\left({ }^{1} J_{C F}=272.4,2 \times C F_{3}\right.$ aniline), 124.53 ($C-1$ salicyl), 125.95 (C 4 salicyl), 126.77 (C-4" phenyl), 127.47 (C-2", $6^{\prime \prime}$ phenyl), 128.41 (C-3", $5^{\prime \prime}$ phenyl), 130.86 $\left(^{2} J_{C F}=32.6, C-3,5\right.$ aniline), 140.51 ($C-1$ aniline), 141.68 ($d, J_{C F}=1.4, C-5$ salicyl), 142.85 ($C_{q}-1$ " phenyl), 142.89 ($C_{q}-1^{\prime \prime}$ phenyl), 155.14 ($C_{q}-2$ salicyl), 163.43 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 742.23 found: $742.31,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 740.22 found: 740.53 . Melting point: $188-190^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-cyano-3(trifluoromethyl)phenyl)benzamide (264)

264 was prepared following general procedure \mathbf{E}, yielding $0.170 \mathrm{~g}(46 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.33-1.40\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.51-1.57 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.68 (m, 3H, CH CH_{2}-adamantane), 1.87 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.03 (s, 2H, NHCH 2 -1-adamantane), 2.53-2.68 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.89-3.96 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), 4.09-4.19 (m, 2H, $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $7.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.60\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9\right.$, ${ }^{4} J=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.74 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.11-8.20 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5,6$ aniline), 8.43 (br s, 1H, H-2 aniline), 10.76-11.22 (br, 1H, CONH).
${ }^{13}{ }^{1}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.81$ (CH-adamantane), 33.18 ($\mathrm{C}_{\mathrm{q}}-1^{1 \prime}$ adamantane), 36.73 (CH_{2}-adamantane), $40.25\left(\mathrm{CH}_{2}\right.$-adamantane), $53.40\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $62.34\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.79(\mathrm{CH}(\mathrm{OH})), 71.88\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 102.13\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=2.2, \mathrm{C}^{-}\right.$ 4 aniline), $115.69(C N), 115.71$ ($C-3$ salicyl), 117.04 ($q, J_{C F}=5.4, C-2$ aniline), 122.42 (${ }^{1} J_{C F}=-$ 273.7, $C F_{3}$), 122.54 ($C-6$ aniline), 124.82 ($C_{q}-1$ salicyl), 124.90 ($C_{q}-5$ salicyl), 129.48 ($C-6$ salicyl), 131.81 ($\mathrm{q},{ }^{2} J_{C F}=31.7, C-3$ aniline), 132.69 ($C-4$ salicyl), 136.58 ($C-5$ aniline), 143.26 (C 1 aniline), 155.14 ($C_{q}-2$ salicyl), 163.77 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 562.21 found: 562.32, $\left.[\mathrm{M}-\mathrm{H}]\right]^{-}$: calculated.: 560.19 found: 560.35. Melting point: $163-165^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4-cyano-3(trifluoromethyl)phenyl)benzamide (265)

265 was prepared following general procedure \mathbf{E}, yielding $0.480 \mathrm{~g}(94 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $6,23^{\circ} \mathrm{C}$): $\delta=2.05-2.49\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\text {eq- }}\right.$ 3,5 in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), $3.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right.$), 4.04-4.09 ($\mathrm{d},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}$ $=5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.14 ($\mathrm{d},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=4.1,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $4.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\left.\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 5.12-5.26 (m, 1H, CH(OH)), 7.14-7.20 (m, 2H, $2 \mathrm{xCH}-4$ phenyl), 7.24-7.31 (m,5H,
 $2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.74 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.13 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6,1 \mathrm{H}, \mathrm{H}-5$ aniline), 8.19 (dd, ${ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.39 ($\mathrm{d},{ }^{4} \mathrm{~J}=1.7,1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.94 (br, 1 H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=51.37\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $53.46\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $60.74\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.04(\mathrm{CH}(\mathrm{OH})), 72.25\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.08\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 102.11(\mathrm{q}$, $J_{C F}=2.2, C_{q}-4$ aniline), $115.70(C N), 115.78$ ($C-3$ salicyl), 117.12 ($q, J_{C F}=5.0, C-2$ aniline), $122.39\left({ }^{1} J_{C F}=-274.0, C F_{3}\right), 122.57(C-6$ aniline $), 124.82\left(C_{q}-1\right.$ salicyl), $124.85\left(C_{q^{-}}-5\right.$ salicyl), 126.79 ($C-4^{\prime \prime}$ phenyl), 127.50 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.45 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.52 ($C-6$ salicyl), 131.76 ($\mathrm{q},{ }^{2} J_{C F}=31.9, C-3$ aniline), 132.71 ($C-4$ salicyl), 136.55 ($C-5$ aniline), 142.82 ($C_{q}-1$ " phenyl), 142.84 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 143.21 ($\mathrm{C}-1$ aniline), 155.14 ($\mathrm{C}_{\mathrm{q}}-2$ salicyl), 163.72 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 649.22 found: $649.33,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 647.20 found: 647.42 .
Melting point: $160-162^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4cyanophenyl)benzamide (266)

266 was prepared following general procedure E, yielding $0.242 \mathrm{~g}(41 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.36-1.44\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.52-1.59 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.68 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.84-1.92 (s, br, $3 \mathrm{H}, \mathrm{CH}$ adamantane, H in exchange), 2.08 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.55-2.69 (m, 2H, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right), 3.92-4.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})\right.$), 4.09-4.21(m,2H, OCH ${ }_{2} \mathrm{CH}(\mathrm{OH})$), $7.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9\right.$, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.58 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.73 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,2 \mathrm{H}, H-3,5\right.$ aniline $), 7.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6,2 \mathrm{H}, \mathrm{H}-2,6\right.$ aniline $), 10.70(\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH})$.
${ }^{13}$ C $\left.^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.79$ (CH -adamantane), $33.15\left(\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}\right.$ adamantane), 36.69 (CH_{2}-adamantane), $40.19\left(\mathrm{CH}_{2}\right.$-adamantane), $53.34\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.17\left(\mathrm{NHCH}_{2}-1\right.$ "-adamantane), $67.59(\mathrm{CH}(\mathrm{OH})), 71.80\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 105.52\left(\mathrm{C}_{\mathrm{q}}-4\right.$ aniline $)$, 115.64 ($C-3$ salicyl), 118.97 (CN), 119.81 ($C-2,6$ aniline), 124.75 ($C_{q}-1$ salicyl), 125.22 ($C_{q}-5$ salicyl), 129.52 ($C-6$ salicyl), 132.38 ($C-4$ salicyl), 133.28 ($C-3,5$ aniline), 142.89 ($C_{q}-1$ aniline), 155.05 (C_{q}-2 salicyl), 163.24 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 494.22 found: 494.37, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 492.21 found: 492.46 .
Melting point: $174-176^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4cyanophenyl)benzamide (267)

267 was prepared following general procedure \mathbf{E}, yielding $0.721 \mathrm{~g}(100 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $6,23^{\circ} \mathrm{C}$): $\delta=2.08-2.47$ (m[dyn], br, $10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\text {eq- }}$ 3,5 in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 3.97-4.04 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.07\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}\right.$ $=6.0,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.18 (d, ${ }^{2} \mathrm{~J}=-9.5,^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.23 (br s, 1 H , $\left.\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 5.13-5.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 7.15-7.20 (m, $2 \mathrm{H}, 2 \mathrm{xCH}-4$ phenyl), 7.24-7.31 (m,5H, $\mathrm{H}-3$ salicyl, $2 \mathrm{x} \mathrm{H}^{\prime \prime} 3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.37-7.41 (m, $4 \mathrm{H}, 2 \mathrm{xH}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.57 ($\mathrm{dd}^{3}{ }^{3} \mathrm{~J}=8.7,^{4} \mathrm{~J}=$ $2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.75 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.79 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6,2 \mathrm{H}, \mathrm{H}-3,5$ aniline), 7.94 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6,2 \mathrm{H}, \mathrm{H}-2,6$ aniline), 10.64 (br, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=51.45\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $53.51\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $60.80\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.05(\mathrm{CH}(\mathrm{OH})), 72.26\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.10\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 105.55\left(\mathrm{C}_{\mathrm{q}}-4\right.$ aniline), 115.77 ($C-3$ salicyl), $118.95(C N), 119.87$ ($C-2,6$ aniline), 124.83 ($C_{q}-1$ salicyl), 124.96 ($C_{q^{-}}-5$ salicyl), 126.79 ($C-4^{\prime \prime}$ phenyl), 127.53 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.46 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 129.63 ($C-6$ salicyl), 132.48 ($C-4$ salicyl), 133.23 ($C-3,5$ aniline), 142.81 ($C_{q}-1$ aniline), 142.84 ($C_{q}-1$ " phenyl), 142.85 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl), 155.12 (C-2 salicyl), 163.09 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 581.23 found: $581.33,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 579.22 found: 579.35 . Melting point: $174-176^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3cyanophenyl)benzamide (268)

268 was prepared following general procedure E, yielding 0.151 g (49\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.39-1.43$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.53-1.59 (m , $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.62-1.68 (m, 3H, CH CH_{2}-adamantane), 1.88 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.09 (s, $2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.57-2.68 (m, 2H, CH(OH)CH ${ }_{2} \mathrm{NH}$), 3.92-3.99 (m, 1H, $\mathrm{CH}(\mathrm{OH})$), $4.13\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=5.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.20\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=4.3,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.55-7.61 (m,3H, H-4,5 aniline, $\mathrm{H}-4$ salicyl), 7.77 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.01-8.07 (m, $1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.20 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.59 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left._{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.83$ (CH -adamantane), $33.25\left(\mathrm{C}_{\mathrm{q}}-1^{1 \prime}\right.$ adamantane), 36.75 (CH_{2}-adamantane), 40.29 (CH_{2}-adamantane), $53.40\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $62.43\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$-adamantane), $67.88(\mathrm{CH}(\mathrm{OH}))$, $72.00\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 111.69 ($\mathrm{C}-3$ aniline), 115.80 (C-3 salicyl), 118.63 (CN), 122.43 ($C-2$ aniline), 124.35 ($C-6$ aniline), 124.85 ($C_{\mathrm{q}}-1$ salicyl), 124.91 ($C_{q}-5$ salicyl), 127.34 ($C-5$ aniline), 129.64 ($C-6$ salicyl), 130.29 ($C-4$ aniline), 132.46 (C-4 salicyl), 139.49 ($C_{q^{-}}-1$ aniline), 155.15 ($C_{q}-2$ salicyl), 162.94 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 494.22 found: 494.37, $[\mathrm{M}-\mathrm{H}]^{-}:$calculated.: 492.21 found: 492.46. Melting point: $149-152^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3cyanophenyl)benzamide (269)

269 was prepared following general procedure \mathbf{E}, yielding $0.320 \mathrm{~g}(90 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=2.12-2.49\left(\mathrm{~m}[\mathrm{dyn}], \mathrm{br}, 10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\text {eq }}-\right.$ 3,5 in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), 3.98-4.06 (m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), $4.08\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}\right.$ $=5.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.18 ($\mathrm{d},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 4.23 (br s, 1 H , $\left.\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 5.18-5.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 7.13-7.20 (m, 2H, 2 CH CH phenyl), 7.24-7.31 (m, 5H, $\mathrm{H}-3$ salicyl, $2 \times \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.36-7.41 (m, 4H, $2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.52-7.55 (m, $2 \mathrm{H}, \mathrm{H}-4,5$ aniline), 7.57 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.77 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.00-8.06 (m, 1H, H-6 aniline), 8.20 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.58 (br, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=51.45\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $53.53\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $60.84\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.04(\mathrm{CH}(\mathrm{OH})), 72.33\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.11\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 111.63(\mathrm{C}-3$ aniline), 115.85 (C-3 salicyl), 118.63 (CN), 122.49 (C-2 aniline), 124.39 ($C-6$ aniline), 124.80 ($C_{q}-1$ salicyl), 124.88 ($C_{q}-5$ salicyl), 126.77 ($C-4^{\prime \prime}$ phenyl), 127.30 ($C-5$ aniline), 127.53 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.46 (C-3", $5^{\prime \prime}$ phenyl), 129.67 (C-6 salicyl), 130.23 (C-4 aniline), 132.48 (C-4 salicyl), 139.45 ($C_{q}-1$ aniline), 142.86 ($C_{q}-1^{\prime \prime}$ phenyl), 142.87 ($C_{q}-1^{\prime \prime}$ phenyl), 155.15 ($C_{q}-2$ salicyl), 162.87 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 581.23 found: $581.39,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 579.22 found: 579.35 .
Melting point: $189^{\circ} \mathrm{C}$.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3-cyano-4fluorophenyl)benzamide (270)

270 was prepared following general procedure \mathbf{E}, yielding $0.152 \mathrm{~g}(51 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.38-1.44$ ($\mathrm{s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.53-1.59 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.62-1.68 (m, 3H, CH 2 -adamantane), 1.88 ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.10 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane)), 2.58-2.68 (m, $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), 3.93-4.00 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH})), 4.12\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.8,{ }^{3} \mathrm{~J}=5.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.19\left(\mathrm{~d},{ }^{2} \mathrm{~J}=-9.8,{ }^{3} \mathrm{~J}=4.4,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 7.28 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.52-7.61$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$ aniline, $\mathrm{H}-4$ salicyl) 7.75 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), $8.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.22 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.61 (br s, 1H, CONH).
 adamantane), $36.73\left(\mathrm{CH}_{2}\right.$-adamantane), $40.26\left(\mathrm{CH}_{2}\right.$-adamantane $), 53.38\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $62.37\left(\mathrm{NHCH}_{2}-1\right.$ "-adamantane), $67.79(\mathrm{CH}(\mathrm{OH})), 71.99\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 100.04\left(\mathrm{~d}, J_{\mathrm{CF}}=16.2, \mathrm{C}-\right.$ 3 aniline), 113.86 (CN), 115.83 ($C-3$ salicyl), 117.16 ($\left(,^{2} J_{C F}=20.5, C-5\right.$ aniline), 123.52 (C-2 aniline), $124.85,124.86$ ($C-1,5$ salicyl), 127.05 ($\mathrm{d},{ }^{3} J_{C F}=8.2, C-6$ aniline), 129.57 ($C-6$ salicyl), 132.46 ($C-4$ salicyl), 135.86 ($\mathrm{d},{ }^{4} J_{C F}=1.4, C-1$ aniline), 155.13 ($C-2$ salicyl), 158.43 ($\mathrm{d},{ }^{1} \mathrm{~J}_{C F}=$ 252.5, C-4 aniline), 162.86 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 512.21 found: 512.36.
Melting point: $140-141^{\circ} \mathrm{C}$.

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3-cyano-4fluorophenyl)benzamide (271)

271 was prepared following general procedure E, yielding $0.305 \mathrm{~g}(87 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $6,23^{\circ} \mathrm{C}$): $\delta=2.13-2.48$ (m[dyn], br, $10 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\text {eq- }}$ 3,5 in piperazine, $\mathrm{H}_{\mathrm{ax}}-2,6$ in CH_{2} piperazine), $3.98-4.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}), \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right)$, 4.18 ($\mathrm{d},^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=3.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $4.23\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 5.18-5.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH})$), 7.14-7.19 (m, 2H, $2 \mathrm{xCH}-4$ phenyl), 7.24-7.31 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-3$ salicyl, $2 \mathrm{x} \mathrm{H-3"}, 5^{\prime \prime}$ phenyl), 7.36-7.42 (m, 4H, $2 \times \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 7.52 ($\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=9.1,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.57 (dd, ${ }^{3} \mathrm{~J}=8.7$, ${ }^{4} J=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.76 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,, 1 \mathrm{H}, \mathrm{H}-6$ salicyl), 8.04-8.10 (m, $1 \mathrm{H}, \mathrm{H}-6$ aniline), $8.20-8.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.60 ($\mathrm{br}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- $\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=51.45\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $53.54\left(\mathrm{CH}_{2}\right.$ piperazine $)$, $60.86\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.02(\mathrm{CH}(\mathrm{OH})), 72.36\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 75.11\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 100.00(\mathrm{~d}$, $J_{C F}=16.2, C-3$ aniline), $113.88(C N)$, 115.91 ($C-3$ salicyl), 117.11 ($\left(,^{2} J_{C F}=20.6, C-5\right.$ aniline), 123.62 (C-2 aniline), 124.64 (C-1 salicyl), 124.91 ($C-5$ salicyl), 126.78 (C-4" phenyl), 127.11 (d, ${ }^{3} J_{\text {CF }}=8.2, C-6$ aniline), 127.52 (C-2", $6^{\prime \prime}$ phenyl), 128.45 (C-3", $5^{\prime \prime}$ phenyl), 129.65 (C-6 salicyl), 132.53 ($C-4$ salicyl), 135.80 ($\mathrm{d}^{4}{ }^{4}{ }_{C F}=1.7, C-1$ aniline), 142.85 ($C_{q}-1{ }^{\prime \prime}$ phenyl), 142.87 ($C_{q}-1{ }^{11}$ phenyl), 155.16 ($C-2$ salicyl), 158.41 ($d,{ }^{1} J_{C F}=-252.5, C-4$ aniline), 162.75 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 599.22 found: 599.38, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 597.21 found: 597.41.
Melting point: $211-213^{\circ} \mathrm{C}$.

5-chloro-N-(4-chloro-3-(trifluoromethyl)phenyl)-2-(3-(4-(2,3-dimethylphenyl)piperazin-1-yl)-2-hydroxypropoxy)benzamide (272)

272 was prepared following general procedure E, yielding $0.305 \mathrm{~g}(70 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=2.22\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 2.53-2.69$ ($\mathrm{m}[\mathrm{dyn}], 4 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}, 2 \mathrm{H}$ in piperazine), 2.83-3.02 (m[dyn], br, 6 H in piperazine), 4.02 $\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.0,{ }^{3} \mathrm{~J}=6.5,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.13(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.24-4.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.34$ (dd, ${ }^{2} J=-9.0,{ }^{3} J=2.3,1 \mathrm{H}, \mathrm{OCH}_{a} H_{b} \mathrm{CH}(\mathrm{OH})$), 6.90-6.97 (m,3H,H-3 salicyl, H-4,6 phenyl), 7.11 ($\mathrm{d}^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-5$ phenyl), 7.43 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.7,^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-\right.$ 5 aniline), 8.11 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.16 ($\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,{ }^{4} \mathrm{~J}=2.1,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.21 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.38 ($\mathrm{s}, 1 \mathrm{H}$ (CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=14.06\left(2-\mathrm{CH}_{3}\right), 20.77\left(3-\mathrm{CH}_{3}\right), 52.25\left(\mathrm{CH}_{2}-3^{\prime \prime}, 5^{\prime \prime}\right.$ piperazine), 54.96 (dyn, $\mathrm{CH}_{2}-2^{\prime \prime}, 6^{\prime \prime}$ piperazine), $59.61\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $64.99(\mathrm{CH}(\mathrm{OH})$), 71.84 $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 114.34 ($\mathrm{C}-3$ salicyl), 116.80 ($\mathrm{C}-6$ phenyl), 119.53 ($\mathrm{q},{ }^{3} J_{C F}=5.6, C-2$ aniline), $122.89\left({ }^{1} J_{C F}=-273.0, C F_{3}\right.$ aniline), 123.34 ($C_{q^{-}}-1$ salicyl), 124.31 ($C-6$ aniline), 125.40 (C-4 phenyl), 126.09 ($C-5$ phenyl), 126.47 ($,^{3} J_{C F}=2.2, C-4$ aniline), 127.70 ($C_{q}-5$ salicyl), 128.61 (q, ${ }^{2} J_{C F}=31.3, C-3$ aniline), 131.37 ($C_{\mathrm{q}}-2$ phenyl), 132.02 (C-5 aniline), 132.39 ($C-6$ salicyl), 133.25 (C-4 salicyl), 137.73 ($C-1$ aniline), 138.22 ($C_{q}-3$ phenyl), 151.28 ($C_{q}-1$ phenyl), 155.11 ($C_{q}-2$ salicyl), 162.40 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 596.17 found: 596.26.
Melting point: $186-190^{\circ} \mathrm{C}$.

2-(3-((2-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (273)

273 was prepared following general procedure E, yielding $0.164 \mathrm{~g}(53 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.21-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.32-1.41(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}$, CH_{2}-adamantane), 1.53-1.60 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.61-1.68 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.84-1.92 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), 2.54-2.63 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.78\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=\right.$ $7.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}$), $2.89\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=4.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{NH}\right), 4.06-4.14(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})$), 4.14-4.23 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})$), $7.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), 7.57 ($\mathrm{d},{ }^{3} \mathrm{~J}=9.0,{ }^{4} \mathrm{~J}=2.6,1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.57-7.61 (m, $1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.72 ($\mathrm{d},{ }^{4} J=2.8,1 \mathrm{H}, H-6$ salicyl), 7.95 ($\mathrm{d},{ }^{4} \mathrm{~J}=8.3,1 \mathrm{H}, H-6$ aniline), 8.32 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 10.67 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.91$ (CH -adamantane), 31.18 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), $36.47\left(\mathrm{CH}_{2}\right.$-adamantane $), 41.35\left(\mathrm{CH}_{2}\right.$-adamantane $), 41.71\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2}-1\right.$ adamantane), $43.20\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right.$-1-adamantane), $50.86\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.20(\mathrm{CH}(\mathrm{OH}))$, 71.27 $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 115.49 ($\mathrm{C}-3$ salicyl), 115.79 ($\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=3.9, C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.09 ($\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{CF}}$ $=3.7, C-4{ }^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.39 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 124.76 ($C_{q}-1$ salicyl) 124.09 (q, C_{q}, ${ }^{1} J_{C F}=-272.0,3-$ CF $_{3}$-aniline $), 125.70(C q)\left(C_{q}-5\right.$ salicyl), 129.42 ($C-5$ ' in 3^{\prime} - CF $_{3}$-aniline), 129.51 ($\mathrm{q},{ }^{2} J_{C F}=31.5, C_{q}-3^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 129.94 ($C-6$ salicyl), 132.05 ($C-4$ salicyl), 139.53 ($C_{q}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 154.73 (C_{q}-2 salicyl), 163.29 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 551.23 found: 551.26, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 549.21 found: 549.16.
Melting point: $210^{\circ} \mathrm{C}$.

2-(3-((2-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-N-(4fluorophenyl)benzamide (274)

274 was prepared following general procedure \mathbf{E}, yielding $0.129 \mathrm{~g}(50 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.16-1.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 1.38-1.45 (s, br, $6 \mathrm{H}, \mathrm{CH}_{2}{ }^{-}$ adamantane), 1.54-1.60 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.60-1.69 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.89 (s, br, 3H, CH-adamantane), 2.46-2.51 (m, 2H, CH2CH2N), 2.68 (dd, ${ }^{2} \mathrm{~J}=-12.0,{ }^{3} \mathrm{~J}=6.9,1 \mathrm{H}$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.75\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.0,^{3} \mathrm{~J}=5.1,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right)$, 3.99-4.07(m, 1 H , $\mathrm{CH}(\mathrm{OH})$), $4.14\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=5.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.7,{ }^{3} \mathrm{~J}=4.3,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), 7.06-7.12 (m, 1H, H-5 salicyl), 7.13-7.19 (m, 2H, H-3,5 aniline), 7.21 (d, ${ }^{3} \mathrm{~J}=$ 8.4, $1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.49-7.54 (m, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.79-7.87 (m, 3H, H-2,6 aniline, H-6 salicyl), 10.38 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right.$): $\delta=27.99$ (CH -adamantane), 31.28 ($\mathrm{C}_{\mathrm{q}}-1$ adamantane), 36.58 (CH_{2}-adamantane), 41.98 (CH_{2}-adamantane), 43.20 ($\mathrm{NHCH}_{2} \mathrm{CH}_{2}$-1-adamantane), 43.60 ($\mathrm{NHCH}_{2} \mathrm{CH}_{2}$-1-adamantane), $51.99\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $67.45(\mathrm{CH}(\mathrm{OH}))$, $71.36\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 113.43 ($C-3$ salicyl), 115.22 ($\mathrm{d},{ }^{2} J_{C F}=22.1, C-3{ }^{\prime} 5^{\prime}$ in $4{ }^{\prime}-F$-aniline), 120.95 ($C-5$ salicyl), 121.44 ($\mathrm{d},{ }^{3} J_{C F}=7.7, C-2^{\prime}, 6^{\prime}$ in $4^{\prime}-\mathrm{F}$-aniline), 123.40 ($C_{q}-1$ salicyl), 130.55 (C-6 salicyl), 132.72 (C-4 salicyl), 135.41 ($\mathrm{d},{ }^{4} J_{C F}=2.4, C_{q^{-}} 1^{\prime}$ in $4{ }^{\prime}-F$-aniline $), 156.15\left(C_{q}-2\right.$ salicyl), $158.14\left(\mathrm{~d},{ }^{1} J_{C F}=-240\right.$, C_{q} - $^{\prime}$ in 4^{\prime}-F-aniline), 163.58 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 467.27 found: $\left.467.40,[\mathrm{M}-\mathrm{H}]\right]^{-}$: calculated.: 465.26 found: 465.38.
Melting point: $128-130^{\circ} \mathrm{C}$.

2-(3-((2-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (275)

275 was prepared following general procedure E, yielding $0.122 \mathrm{~g}(32 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.14-1.21(2 \mathrm{H}), 1.36-1.41(6 \mathrm{H}), 1.51-1.68(6 \mathrm{H}), 1.88$ (br, 3H), 2.46-2.54 (2H), 2.67-2.81 (2H), 3.97-4.05 (1H), 4.12-4.23 (2H), $7.12(1 \mathrm{H}), 7.23(1 \mathrm{H})$, 7.42-7.47 (1H), 7.51-7.61 (2H), 7.81 (1H), 7.93-7.98 (1H), $8.34(1 \mathrm{H}), 10.59(1 \mathrm{H})$.
$\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 23{ }^{\circ} \mathrm{C}\right): \delta=27.95$ (CH -adamantane), $31.24\left(\mathrm{C}_{\mathrm{q}}-1\right.$ adamantane), $36.54\left(\mathrm{CH}_{2}\right.$-adamantane), $41.91\left(\mathrm{CH}_{2}\right.$-adamantane $), 42.97\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right.$-1adamantane), $43.55\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right.$-1-adamantane), $51.78\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 67.29(\mathrm{CH}(\mathrm{OH}))$, 71.26 $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 113.45 ($\mathrm{C}-3$ salicyl), 115.76 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\text {CF }}=4.0, C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 119.84 ($\mathrm{q},{ }^{3} \mathrm{~J}_{C F}$ $=3.7, C-4$ in 3^{\prime} - CF $_{3}$-aniline), 121.00 ($C-5$ salicyl), 123.27 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.34 ($C_{q^{-}}-1$ salicyl), 129.89 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 130.48 ($C-6$ salicyl), 132.95 ($C-4$ salicyl), 139.73 ($C_{q^{\prime}}-1^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 156.15 ($C_{q}-2$ salicyl), 164.36 (CONH). $C F_{3}, C-3$ aniline not recorded.

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 517.27 found: 517.35, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 515.25 found: 515.25.
Melting point: $78^{\circ} \mathrm{C}$.
2-(3-(3-azabicyclo[3.2.1]octan-3-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (276)

276 was prepared following general procedure E, yielding $0.127 \mathrm{~g}(34 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=1.23-1.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{dyn}, \mathrm{CH}\right.$ in CH_{2}), 1.33-1.40 ($\mathrm{m}, 1 \mathrm{H}$, dyn, CH in CH_{2}), 1.42-1.59 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{XCH}_{2}$), 1.95-2.05 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}, 2 \mathrm{xCH}$ in CH_{2}), 2.32-2.44 (m , $2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 2.50-2.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$ in CH_{2}, DMSO interfering), 2.59-2.64 (m, 1H CH in CH_{2}), 3.98-4.05 (m, 1H, CH(OH)), $4.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=5.4,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.24\left(\mathrm{dd},{ }^{2} \mathrm{~J}\right.$ $=-9.6,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $7.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), $7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-\right.$ $4^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.56-7.62 (m, 2H, H-4 salicyl, $H-5^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 7.80 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=2.9$, 1H, H-6 salicyl), 7.98 ($\mathrm{d}^{3}{ }^{3}=8.3,1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $3^{\prime \prime}$-CF3-aniline), 8.26 (s, br, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ in $3^{\prime \prime}$-CF3aniline), 10.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=28.21\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $28.36\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 34.60 $\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), \quad 34.69 \quad\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), \quad 37.05\left(\mathrm{CHCH}_{2} \mathrm{CH}\right), \quad 60.02 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 60.04$ $\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 60.58\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 66.20\left(\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{NHR}\right), 72.19\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 115.74(\mathrm{C}-3$ salicyl), 115.92 ($\mathrm{q},{ }^{4} \mathrm{~J}_{C F}=4.0, C-2^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.12 ($\mathrm{q},{ }^{4} J_{C F}=3.7, C-4^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 123.36 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 124.06 ($q,{ }^{1} J_{C F}=-271.8,3-$ CF $_{3}$-aniline), $124.83\left(C_{q}-1\right.$ salicyl), 124.92 ($C_{q}-5$ salicyl), 129.69 ($C-6$ salicyl), 129.97 ($C-5^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 132.44 ($C-4$ salicyl), 139.41 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.31 ($C_{q}-2$ salicyl), 162.83 (CONH). C-3 Aniline not recorded LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 483.17 found: $483.27,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 481.15 found: 481.17 . Melting point: $122-143^{\circ} \mathrm{C}$.

5-chloro-2-(2-hydroxy-3-(spiro[adamantane-2,4'-piperidin]-1'-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (277)

277 was prepared following general procedure E, yielding $0.271 \mathrm{~g}(57 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 23^{\circ} \mathrm{C}$): $\delta=1.41-1.52\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.53-1.59 (m , $4 \mathrm{H}, \mathrm{CH}_{2}$-3,5-piperidine), 1.62 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.78 (br s, $2 \mathrm{H}, \mathrm{CH}$-adamantane), 1.89-1.98 (m [d], 4H, CH_{2}-adamantane), 2.27 (m [t], 4H, CH_{2}-2,6-piperidine), 2.32-2.45 (s, 2H,
NHCH_{2}-1-adamantane)), 3.99-4.05 (m, 1H, CH(OH)), $4.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.6,{ }^{3} \mathrm{~J}=5.3,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 4.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.5,{ }^{3} \mathrm{~J}=4.2,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right), 5.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 7.27$ ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.45 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-6$ aniline), $7.55-7.61$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4$ salicyl, $\mathrm{H}-$ 5 aniline)), 7.76 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 7.98 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.3,1 \mathrm{H}, \mathrm{H}-4$ aniline), 8.26 (s, 1H, H-2 aniline), 10.59 (br s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 23{ }^{\circ} \mathrm{C}$): $\delta=27.62$ (CH -adamantane), $31.77\left(\mathrm{CH}_{2}-\right.$ adamantane, $\mathrm{CH}_{2} 3,5$-piperidine), 33.59 (CH_{2}-adamantane), 34.80 (C_{q}-2" adamantane), 39.01 (CH_{2}-adamantane), $49.02\left(\mathrm{NCH}_{2} 2,6\right.$-piperidine), $61.26\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.18(\mathrm{CH}(\mathrm{OH})), 72.31$ $\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 115.76 ($\mathrm{C}-3$ salicyl), 115.86 ($\mathrm{q},{ }^{3} J_{\text {CF }}=4.1, C-2$ aniline), $120.06\left(\mathrm{q},{ }^{3} J_{C F}=3.6, C-4\right.$ aniline), 123.35 ($C-6$ aniline), $124.07\left({ }^{1} J_{C F}=-272.3, C F_{3}\right.$ aniline), 124.80 ($C-1$ salicyl), 125.18 (C 5 salicyl), $129.50\left({ }^{2} J_{C F}=31.6, C-3\right.$ aniline), 129.56 (C-6 salicyl), 129.92 (C-5 aniline), 132.29 (C4 salicyl), 139.45 (C-1 aniline), 155.13 (C-2 salicyl), 162.95 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 577.24 found: $577.32,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 575.23 found: 575.30.
Melting point: $163-165^{\circ} \mathrm{C}$.

5-chloro-2-(2-hydroxy-3-(octahydroquinolin-1(2H)-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (278)

278 was prepared following general procedure \mathbf{E}, yielding $0.387 \mathrm{~g}(54 \%)$ of the desired diastereomeric products.

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 511.20 found: 511.28, $[\mathrm{M}-\mathrm{H}]^{\prime}$: calculated.: 509.18 found: 509.18.

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-cyano-N-(3(trifluoromethyl)phenyl)benzamide (279)

279 was prepared following general procedure E, yielding $0.132 \mathrm{~g}(45 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=1.46-1.53\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$-adamantane), 1.60-1.66 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$-adamantane), 1.70-1.77 (m, 3H, CH CH_{2}-adamantane), 1.98 (s, br, $3 \mathrm{H}, \mathrm{CH}$-adamantane), $2.25,2.28,2.32,2.35$ ($\mathrm{AB}, \mathrm{J}_{A B}=-11.4,2 \mathrm{H}, \mathrm{NHCH}_{2}$-1-adamantane), 2.76 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=9.6$, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.87\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.8,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right), 4.10\left(\mathrm{~m},{ }^{2} \mathrm{~J}=-9.1,{ }^{3} \mathrm{~J}\right.$ $\left.=6.6,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.15-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.37\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.1,{ }^{3} \mathrm{~J}=2.6,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $7.06\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.7, \mathrm{H}-3\right.$ salicyl), $7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), 7.45 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 7.73 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6,{ }^{4} \mathrm{~J}=2.3, \mathrm{H}-4$ salicyl), $8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4,1 \mathrm{H}, \mathrm{H}-\right.$ 6 aniline), 8.08 (s, 1H, $H-2$ aniline), 8.53 (d, 1H, ${ }^{4} \mathrm{~J}=2.3, \mathrm{H}-6$ salicyl), 10.19 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=28.42$ (CH -adamantane), 33.51 ($\mathrm{C}_{\mathrm{q}}-1^{1 \prime}$ adamantane), 37.16 (CH_{2}-adamantane), 40.73 (CH_{2}-adamantane), $51.36\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 62.13\left(\mathrm{NHCH}_{2}-1^{\prime \prime}\right.$ adamantane), $66.56(\mathrm{CH}(\mathrm{OH})), 71.84\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, 106.03 ($\mathrm{C}-5$ salicyl), 113.65 ($\mathrm{C}-3$ salicyl), $117.40\left(\mathrm{q},{ }^{3} J_{C F}=4.0, C-2\right.$ aniline $), 118.17(C N), 120.98\left(q,{ }^{3} J_{C F}=3.7, C-4\right.$ aniline $), 121.01(C-1$ salicyl), 123.67 ($C-6$ aniline), 124.09 ($\mathrm{q},{ }^{1} J_{C F}=-272.3, C F 3$), 129.61 ($C-5$ aniline), 131.74 ($\mathrm{q},{ }^{2} J_{C F}$ $=32.1, C-3$ aniline), 136.93 (C-4 salicyl), 137.14 (C-6 salicyl), 139.01 (C-1 aniline), 159.45 (C-2 salicyl), 161.64 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 528.25 found: 528.32, $[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 526.23 found: 526.29. Melting point: $110-112^{\circ} \mathrm{C}$.

2-(3-(butylamino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (292)

292 was prepared following general procedure E, yielding $0.302 \mathrm{~g}(81 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.91\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.42$1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.55-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73\left(\mathrm{dd},^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=9.3,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right)$, 2.87 ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.3,{ }^{3} \mathrm{~J}=3.9,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} H_{b} \mathrm{NH}$), $4.02\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=6.5,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.07-4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.2,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right.$), 6.90 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.34 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8\right.$, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.43 (dd [t], ${ }^{3} \mathrm{~J}=7.9,1 \mathrm{H}, \mathrm{H}-5$ aniline), 8.02 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-6$ aniline), 8.11 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.20 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.31 (br s, $1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=14.03\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $20.39\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $32.39\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 49.43\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.03\left(\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{~N}\right), 67.37(\mathrm{CH}(\mathrm{OH}))$, $71.86\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $114.33\left(\mathrm{C}-3\right.$ salicyl), $117.33\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=4.1, \mathrm{C}-2^{\prime}\right.$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 120.67 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 123.53 ($C_{q}-1$ salicyl), 123.58 ($C-6^{\prime}$ in 3^{\prime}-CF ${ }_{3}$-aniline), 124.18 ($\mathrm{q},{ }^{1} J_{C F}=-272.0, C F_{3}$), $127.48\left(C_{q}-5\right.$ salicyl), $129.50\left(C-5{ }^{\prime}\right.$ in $3^{\prime}-C_{3}$-aniline), $131.27\left(q,{ }^{2} J_{C F}=\right.$ 32.0, $C_{q^{-}}{ }^{\prime}{ }^{\prime}$ in $3^{\prime}-F_{3}$-aniline), 132.32 ($C-6$ salicyl), 133.05 ($C-4$ salicyl), 139.29 ($C_{q^{\prime}} \mathbf{1}^{\prime}$ in $3^{\prime}{ }^{\prime}$ CFF $_{3^{-}}$ aniline), 155.21 ($C_{q}-2$ salicyl), 162.46 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 445.15 found: $445.29,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 443.14 found: 443.32 .
Melting point: $87-89^{\circ} \mathrm{C}$.
5-chloro-2-(2-hydroxy-3-(((trimethylsilyl)methyl)amino)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (293)

293 was prepared following general procedure E, yielding $0.364 \mathrm{~g}(91 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=0.06\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{SiCH}_{3}\right), 1.97,2.00,2.17,2.21\left(\mathrm{AB}, \mathrm{J}_{A B}=-\right.$ 13.4, $\left.2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.74-2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}\right), 4.01\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=6.6,1 \mathrm{H}\right.$, $\left.\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right), 4.12-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.3,{ }^{3} \mathrm{~J}=2.7,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})\right)$, 6.9091 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3$ salicyl), $7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7,1 \mathrm{H}, \mathrm{H}-4\right.$ aniline), $7.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,4^{4} \mathrm{~J}=2.8\right.$, $1 \mathrm{H}, \mathrm{H}-4$ salicyl), 7.43 (dd $[\mathrm{t}],{ }^{3} \mathrm{~J}=8.2,1 \mathrm{H}, \mathrm{H}-5$ aniline), 8.07 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.08 ($\mathrm{m}, 1 \mathrm{H}$, $H-6$ aniline), 8.20 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6$ salicyl), 10.33 (br s, 1H, CONH).
${ }^{13}{ }^{2}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=-2.74(3 \mathrm{x} \mathrm{SiCH} 3), 39.79\left(\mathrm{CH}_{2} \mathrm{SiCH}_{3}\right), 55.07$ $\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 66.46(\mathrm{CH}(\mathrm{OH})), 71.88\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $114.31\left(\mathrm{C}-3\right.$ salicyl), 117.31 ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=$ $4.0, C-2^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 120.63 ($q,{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $123.51\left(C_{q}-1\right.$ salicyl), $124.17\left(q^{1}{ }^{1} J_{C F}=-272.4, C F_{3}\right.$), 123.56 ($C-6^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 127.46 ($C_{q}-5$ salicyl), 129.51 ($C-5^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), $131.26\left(\mathrm{q}^{2}{ }^{2} J_{C F}=32.5, C_{q^{\prime}}-3^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}$-aniline), 132.33 ($C-6$ salicyl), 133.04 (C 4 salicyl), 139.32 ($C_{q}-1^{\prime}$ in $3^{\prime}-$ CF $_{3}$-aniline), 155.23 ($C_{q}-2$ salicyl), 162.43 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 475.14 found: $475.30,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 473.13 found: 473.33 . Melting point: $95-99^{\circ} \mathrm{C}$.

2-(3-(tert-butylamino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (294)

294 was prepared following general procedure E, yielding $0.344 \mathrm{~g}(87 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=1.07\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{XCH}_{3}\right), 2.63\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{NH}\right), 2.87\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-12.2,{ }^{3} \mathrm{~J}=3.6,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}\right)$, 3.96-4.06(m, 2 H , $\mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH})$), 4.23-4.30(m, $1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), $6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.34 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}-4$ aniline), $7.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8,^{4} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4\right.$ salicyl), $7.44\left(\mathrm{dd}[\mathrm{t}],{ }^{3} \mathrm{~J}=8.0\right.$,
$1 \mathrm{H}, \mathrm{H}-5$ aniline), 8.03 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.0,1 \mathrm{H}, H-6$ aniline), 8.13 (br s, $1 \mathrm{H}, \mathrm{H}-2$ aniline), 8.20 ($\mathrm{d},{ }^{4} \mathrm{~J}=2.8$, 1H, H-6 salicyl), 10.32 (br s, 1H, CONH).
$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}\right): \delta=29.21\left(3 \times \mathrm{CH}_{3}\right), 44.10\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $50.72\left(\mathrm{C}_{\mathrm{q}}\right.$-tertbutyl), $68.25(\mathrm{CH}(\mathrm{OH}))$, $71.96\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $114.32\left(\mathrm{C}-3\right.$ salicyl), $117.43\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.9, C-2^{\prime}\right.$ in 3^{\prime} - CF $_{3}$-aniline), 120.67 ($\mathrm{q},{ }^{3} J_{C F}=3.8, C-4^{\prime}$ in $3^{\prime}-$ CFF $_{3}$-aniline), 123.58 ($C_{q}-1$ salicyl), 123.67 ($C-6^{\prime}$ in 3^{\prime} - CF $_{3}$-aniline), 124.19 ($\mathrm{q}^{1}{ }^{1} J_{C F}=-272.4, C F_{3}$), $127.47\left(C_{q^{\prime}}-5\right.$ salicyl), $129.49\left(C-5^{\prime}\right.$ in $3^{\prime}-$ CF $_{3}{ }^{-}$ aniline), 131.24 ($\mathrm{q},{ }^{2} J_{C F}=32.4, C_{q^{-}} 3^{\prime}$ in $3^{\prime}-\mathrm{CF}_{3}$-aniline), 132.33 ($C-6$ salicyl), 133.04 ($C-4$ salicyl), 139.28 ($C_{q}-1^{\prime}$ in 3^{\prime}-CF ${ }_{3}$-aniline), 155.25 ($C_{q}-2$ salicyl), 162.47 (CONH).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 445.15 found: $445.29,[\mathrm{M}-\mathrm{H}]^{-}$: calculated.: 443.14 found: 473.32 .
Melting point: $114-127^{\circ} \mathrm{C}$.
(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl

1-((R)-3-(4-chloro-2-((2-fluorophenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2-carboxylate (400)

400 was prepared following general procedure \mathbf{E}, yielding $0.171 \mathrm{~g}(96 \%)$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), $0.80-0.85(\mathrm{~m}, 1 \mathrm{H}$, $H_{a}-4$ cyclohexyl), $0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.7,3 \mathrm{H}, 5-\mathrm{CH}_{3}\right.$ cyclohexyl), $0.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), 0.91-0.98 (m, 1H, $H_{a}-6$ cyclohexyl) 1.00-1.08 (m, 1H, $H_{a}-3$ cyclohexyl), 1.34-1.41 (m [tt], 1H, H-2 cyclohexyl), 1.41-1.50 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$ cyclohexyl), 1.64-1.70 (m, $3 \mathrm{H}, \mathrm{H}_{a}-4$ pyrrolidine, $H_{b}-4$ cyclohexyl, CHOH), 1.78-1.89 (m, 3H, CH isopropyl, $H_{b}-3$ cyclohexyl, $H_{b}-4$ yrrolidine), 1.89$1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{b}-6\right.$ cyclohexyl, $H_{a}-3$ pyrrolidine), 2.13-2.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{b}-3$ pyrrolidine), 2.62 (m [$\mathrm{q},{ }^{3} \mathrm{~J}=8.1$], $1 \mathrm{H}, \mathrm{H}_{a}-5$ pyrrolidine), 2.86 (dd, $\left.{ }^{2} J=-12.9,{ }^{3} \mathrm{~J}=4.1,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{NH}\right), 2.90$ ($\mathrm{dd},{ }^{2} \mathrm{~J}=-12.9,{ }^{3} \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{NH}$), 3.09-3.13(m,1H, $\mathrm{H}_{b}-5$ pyrrolidine), 3.29 ($\mathrm{dd},{ }^{3} \mathrm{~J}$ $=9.3,{ }^{3} J=5.2,1 \mathrm{H}, \mathrm{H}-2$ pyrrolidine $), 4.06-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.20\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=5.7,1 \mathrm{H}\right.$, $\mathrm{OCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})$), $4.27\left(\mathrm{dd},{ }^{2} \mathrm{~J}=-9.4,{ }^{3} \mathrm{~J}=5.0,1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{\mathrm{b}} \mathrm{CH}(\mathrm{OH})\right.$), $4.71\left(\mathrm{ddd}, \mathrm{J}_{a a}=11.0, \mathrm{~J}_{a e}=\right.$ $4.3,1 \mathrm{H}, \mathrm{CH}-1$ cyclohexyl), 7.03 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3$ salicyl), 7.05-7.09 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ in $2^{\prime \prime}-\mathrm{F}-$ aniline), 7.09-7.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$ in $2^{\prime \prime}$-F-aniline), 7.15-7.19 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$ in 2"-F-aniline), 7.42
(dd, ${ }^{2} J=8.8,{ }^{3} J=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.45-8.49(m, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in 2"-F-aniline), 10.08 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}$): $\delta=16.10\left(\mathrm{CH}_{3}\right.$ isopropyl), $20.94\left(\mathrm{CH}_{3}\right.$ isopropyl), 22.10 ($5-\mathrm{CH}_{3}$ cyclohexyl), 23.25 (C-3 cyclohexyl), 24.12 (C-4 pyrrolidine), 26.33 (CH isopropyl), 30.35 (C-3 pyrrolidine), 31.50 ($C-5$ cyclohexyl), 34.27 (C-4 cyclohexyl), 40.97 (C-6 cyclohexyl), 47.14 (C-2 cyclohexyl), 55.51 ($C-5$ pyrrolidine), $58.24\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 66.42 ($C-2$ pyrrolidine), 67.63 ($\mathrm{d}^{T S}{ }^{T S} \mathrm{~J}_{\mathrm{CF}}=1.3, \mathrm{CH}(\mathrm{OH})$), $72.32\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 75.13 ($\mathrm{C}-1$ cyclohexyl), 114.55 ($\mathrm{C}-3$ salicyl), 114.92 ($^{2} J_{C F}=19.2, C-3^{\prime}$ in $2-F-$ aniline $), 122.78$ ($C-6^{\prime}$ in $2^{\prime} F$-aniline), 123.23 ($C_{q^{-}}-1$ salicyl), $124.59\left({ }^{3} J_{C F}=7.7, C-4^{\prime}\right.$ in $2^{\prime}-F$-aniline $), 124.80\left({ }^{4} J_{C F}=3.7, C-5^{\prime}\right.$ in $3^{\prime}-F-$ aniline $), 126.79\left({ }^{2} J_{C F}=\right.$ 10.2, $C_{q}-1^{\prime}$ in 2-F-aniline), 127.31 ($C_{q}-5$ salicyl), 132.32 ($C-6$ salicyl), 133.18 ($C-4$ salicyl), 153.08 ($\mathrm{d},{ }^{1} J_{C F}=-243.4, C-2^{\prime}$ in $2-\mathrm{F}$-aniline), 155.40 ($C_{q}-2$ salicyl), 162.21 (CONH), 175.07 (COOR).
$[\alpha]_{\mathrm{D}}{ }^{20}=-4.0^{\circ}, \mathrm{c}=1$ in MeOH .
Melting point: $106-116^{\circ} \mathrm{C}$.
(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((S)-3-(4-chloro-2-((2-fluoro-5-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2carboxylate (401)

401 was prepared following general procedure E, yielding 0.180 g (100\%) of the desired product.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), $0.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{a}-4\right.$ cyclohexyl), 0.86 ($\mathrm{d},{ }^{3} \mathrm{~J}=6.6,3 \mathrm{H}, 5-\mathrm{CH}_{3}$ cyclohexyl), $0.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), $0.90-$ 0.96 (m, 1H, $H_{a}-6$ cyclohexyl), 1.00-1.06 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{a}-4$ pyrrolidine), 1.32-1.39 (m [tt], 1H, H-2 cyclohexyl), 1.40-1.49 (m, 1H, H-5 cyclohexyl), 1.63-1.69 (m, 2H, $\mathrm{H}_{a}-4$ cyclohexyl, $\mathrm{H}_{a}-3$ cyclohexyl), 1.79-1.87 (m, 2H, CH isopropyl, $H_{b}-3$ cyclohexyl), 1.87-1.97 (m, $3 \mathrm{H}, \mathrm{H}_{b}-6$ cyclohexyl, $H_{a}-3$ pyrrolidine, $H_{b}-4$ pyrrolidine), 2.13-2.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{b}-3$ pyrrolidine), 2.38-2.43 (m, $1 \mathrm{H}, \mathrm{H}_{a}-5$ pyrrolidine), 2.74-2.82 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}$), $3.28-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2\right.$ pyrrolidine, $\mathrm{H}_{b}-5$ pyrrolidine), 4.13 (dd, ${ }^{2} \mathrm{~J}=-11.5,{ }^{3} \mathrm{~J}=7.3,1 \mathrm{H}, \mathrm{OCH}_{a} \mathrm{H}_{b} \mathrm{CH}(\mathrm{OH})$), 4.21-4.26(m,2H,OCH $\mathrm{O}_{b} \mathrm{CH}(\mathrm{OH})$,
$\mathrm{CH}(\mathrm{OH})$), $4.69\left(\mathrm{dd}, J_{a a}=10.9, J_{a e}=4.4,1 \mathrm{H}, \mathrm{CH}-1\right.$ cyclohexyl), $7.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}-3\right.$ salicyl), 7.06-7.13 (m, 2H, H-3,4" in 2"-F-aniline), 7.15-7.19 (m, 1H, H-5" in 2"-F-aniline), 7.42 ($\mathrm{dd}^{\prime \prime}{ }^{2} \mathrm{~J}$ $=8.8,^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-4$ salicyl), $8.23\left(\mathrm{~d}^{3} \mathrm{~J}=2.8,1 \mathrm{H}, \mathrm{H}-6\right.$ salicyl), 8.46-8.50(m, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$ in $2^{\prime \prime}-$ F-aniline), 10.09 (s, 1H, CONH).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=16.09\left(\mathrm{CH}_{3}\right.$ isopropyl), $20.94\left(\mathrm{CH}_{3}\right.$ isopropyl), 22.08 ($5-\mathrm{CH}_{3}$ cyclohexyl), 23.21 ($\mathrm{C}-3$ cyclohexyl), 23.99 ($\mathrm{C}-4$ pyrrolidine), 26.28 (CH isopropyl), 29.74 (C-3 pyrrolidine), 31.50 ($C-5$ cyclohexyl), 34.25 (C-4 cyclohexyl), 41.03 (C-6 cyclohexyl), 47.06 (C-2 cyclohexyl), 53.43 ($C-5$ pyrrolidine), $58.21\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), 66.14 ($\mathrm{C}-2$ pyrrolidine), 67.14 (d, $\left.{ }^{T S} J_{C F}=1.5, \mathrm{CH}(\mathrm{OH})\right), 72.91\left(\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH})\right.$), $75.06(\mathrm{C}-1$ cyclohexyl), 114.74 ($\mathrm{C}-3$ salicyl), $114.90\left(^{2} J_{C F}=19.3, C-3\right.$ in $2-F$-aniline), 122.76 ($C-6^{\prime}$ in $2^{\prime} F$-aniline), $123.30\left(C_{q^{-}}-1\right.$ salicyl), $124.55\left(^{3} J_{C F}=7.7, C-4^{\prime}\right.$ in $2^{\prime}-F$-aniline $)$, $124.77\left({ }^{4} J_{C F}=3.5, C-5\right.$ in $3^{\prime}-$ F-aniline $), 126.84\left({ }^{2} J_{C F}=\right.$ 10.1, $C_{q}-1^{\prime}$ in 2-F-aniline), 127.36 ($C_{q}-5$ salicyl), 132.28 ($C-6$ salicyl), 133.18 ($C-4$ salicyl), $153.10\left(\mathrm{~d},{ }^{1} J_{C F}=-243.7, C-2^{\prime}\right.$ in $2-F-$ aniline $), 155.49\left(C_{q}-2\right.$ salicyl), 162.19 (CONH), 174.21 (COOR).
$[\alpha]_{D}{ }^{20}=+12.5^{\circ}, \mathrm{c}=1$ in MeOH.
Melting point: $70-75^{\circ} \mathrm{C}$.

4.3.4 Additions

1-(4-benzhydrylpiperazin-1-yl)-3-chloropropan-2-ol (94)

An excess of (\pm)-epichlorohydrin ($3.1 \mathrm{~mL}, 10 \mathrm{eq}$) was added to 1-benzhydrylpiperazine (1.021 g), and the mixture was stirred at $85^{\circ} \mathrm{C}$.

After complete consumption of anilide was observed (3h) unreacted epichlorohydrin was removed. The residue was extracted three times with ethyl acetate. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give 0.552 g colorless oil (40% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 27^{\circ} \mathrm{C}$): $\delta=2.33-2.52$ ($\mathrm{m}[\mathrm{dyn}], \mathrm{br}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}-3,5$ in piperazine, $\mathrm{H}_{\mathrm{ax}}-$ 2,6 in CH_{2} piperazine), 2.61-2.73 ($\mathrm{m}[\mathrm{t}], \mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\text {eq- }}-2,6$ in CH_{2} piperazine), 3.51-3.59 ($\mathrm{m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Cl}\right), 3.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.3,2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 3.86-3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$), 7.16-7.21 (m, 2H, $2 \mathrm{xCH}-4$ phenyl), 7.24-7.30 (m, 4H, $2 \mathrm{x} \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), 7.397.43 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{xH}-2^{\prime \prime}, 6^{\prime \prime}$ phenyl).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=45.90\left(\mathrm{NCH}_{2} \mathrm{CH}(\mathrm{OH})\right)$, $47.26\left(\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})\right), 52.02$ $\left(\mathrm{CH}_{2}\right.$-dyn, piperazine), $53.65\left(\mathrm{CH}_{2}\right.$-dyn, piperazine $)$, $66.58(\mathrm{CH}(\mathrm{OH}))$, $76.27\left(\mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 127.08 ($C-4^{\prime \prime}$ phenyl), 127.99 ($C-2^{\prime \prime}, 6^{\prime \prime}$ phenyl), 128.61 ($C-3^{\prime \prime}, 5^{\prime \prime}$ phenyl), $142.70\left(\mathrm{C}_{q^{-}} 1^{\prime \prime}\right.$ phenyl), 142.72 ($\mathrm{C}_{\mathrm{q}}-1^{\prime \prime}$ phenyl).
(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl pyrrolidine-2-carboxylate (101)

A reaction mixture of L -prolin ($5.76 \mathrm{~g}, 50 \mathrm{mmol}$), ($1 \mathrm{~S}, 2 \mathrm{R}, 5 \mathrm{~S}$)-(+)-menthol ($12.03 \mathrm{~g}, 77 \mathrm{mmol}$), p-toluenesulfonic acid monohydrate ($12.00 \mathrm{~g}, 63.1 \mathrm{mmol}$) and 100 mL toluene were refluxed in a Dean and Stark distillation apparatus for 16 hr . The nascent water ($\sim 2 \mathrm{~mL}$) was removed azeotropically. The insoluble materials were removed by filtration, and the solvent was evaporated to about 30 mL in vacuo. To this was added about 30 mL of ether, and then the acidic material was extracted with 8% sodium hydrogen carbonate. The organic layer was washed once with water and dried with anhydrous sodium sulfate. The dried solution was concentrated in vacuo, then 20 mL hydrogen chloride (4M) in dioxane were added. Crystallization was started by addition of hexane and cooling to $0^{\circ} \mathrm{C}$. The crystals were filtered and washed with ether and petroleum ether. Two crops gave $7.385 \mathrm{~g}(51 \%)$ of the hydrochloride as colorless crystals. 1 g of the hydrochloride was neutralized with 2 M NaHCO 3 to yield $0.856 \mathrm{~g}(98 \%)$ of the free base as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23^{\circ} \mathrm{C}$): $\delta=0.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}\right.$ isopropyl), $0.80-0.87(\mathrm{~m}, 1 \mathrm{H}$, $H_{a}-4$ cyclohexyl), 0.89 ($\mathrm{d},{ }^{3} \mathrm{~J}=7.0,3 \mathrm{H}, \mathrm{CH}_{3}$ isopropyl), $0.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.4,3 \mathrm{H}, 5-\mathrm{CH}_{3}\right.$ cyclohexyl), 0.93-1.10 (m, 2H, $\mathrm{H}_{a}-6$ cyclohexyl, $\mathrm{H}_{a}-3$ cyclohexyl), 1.40 (m [tt], $\mathrm{J}=11.0, \mathrm{~J}=3.0,1 \mathrm{H}, \mathrm{H}-2 \mathrm{cy}-$ clohexyl), 1.45-1.55 (m, 1H, H-5 cyclohexyl), 1.63-1.91 (m, 6H, $\mathrm{H}_{a}-3$ cyclohexyl, H_{b}-4 cyclohexyl, $H_{a, b}-4$ pyrrolidine, $H_{a}-3$ pyrrolidine, CH isopropyl, $1.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{b}-6\right.$ cyclohexyl), 2.06 (br s, 1H, NH), 2.09-2.18 (m, 1H, $H_{b}-3$ pyrrolidine), 2.85-2.92 (m, 1H, $H_{a}-5$ pyrrolidine), 3.05$3.12\left(\mathrm{~m}, 1 \mathrm{H}, H_{b}-5\right.$ pyrrolidine), $3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2\right.$ pyrrolidine), 4.70 (dd, $J_{a a}=10.8, \mathrm{~J}_{a e}=4.4,1 \mathrm{H}$, CH-1 cyclohexyl).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 23{ }^{\circ} \mathrm{C}\right): \delta=16.19\left(\mathrm{CH}_{3}\right.$ isopropyl), $20.94\left(\mathrm{CH}_{3}\right.$ isopropyl), 22.13 ($5-\mathrm{CH}_{3}$ cyclohexyl), 23.38 ($\mathrm{C}-3$ cyclohexyl), 25.66 ($\mathrm{C}-4$ pyrrolidine), 26.36 (CH isopropyl), 30.64 (C-3 pyrrolidine), 31.53 ($C-5$ cyclohexyl), 34.37 (C-4 cyclohexyl), 40.97 (C-6 cyclohexyl), 47.14 (C-5 pyrrolidine), 47.16 (C-2 cyclohexyl), 60.30 (C-2 pyrrolidine), 74.98 (C-1 cyclohexyl), 175.19 (COOR).

LCMS: $[\mathrm{M}+\mathrm{H}]^{+}$: calculated.: 254.21 found: 254.29.
$[\alpha]_{D}{ }^{20}=+36.2^{\circ}, \mathrm{c}=1$ in MeOH .

4.4 Spectra

4.4.1 Anilides

4-fluoro-2-hydroxy- N -(3-(trifluoromethyl)phenyl)benzamide (77)

3,5-dichloro-2-hydroxy- N-(3-(trifluoromethyl)phenyl)benzamide (79)

CD 240

CD 240

sodium 2,4-dichloro-6-((3-(trifluoromethyl)phenyl)carbamoyl)phenolate (Na salt of 79)
CD 214

CD 214

N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyano-2-hydroxybenzamide (80)
CD 465

CD386

sodium 2-((4-chloro-3-(trifluoromethyl)phenyl)carbamoyl)-4-cyanophenolate
(Na salt of 80)

CD386

N-(3-allyl-4-methylphenyl)-5-chloro-2-hydroxybenzamide (296)
CD363 F4

CD363 F4

N-(2-allylphenyl)-2-hydroxybenzamide (300)

5-chloro-2-hydroxy-N-(3-(trifluoromethoxy)phenyl)benzamide (307)
RW 20

RW 20

5-chloro- N -(4-chloro-3-(trifluoromethoxy)phenyl)-2-hydroxybenzamide (308)
CD 259

CD 259

5-chloro-2-hydroxy- N -(3-iodophenyl)benzamide (310)
RW 15

RW 15

3,5-dichloro- N -(3,5-dichlorophenyl)-2-hydroxybenzamide (315)

CD 242

CD 242

5-chloro-2-hydroxy-N-(4-(trifluoromethoxy)-3(trifluoromethyl)phenyl)benzamide (316)
CD 258

CD 258

2-hydroxy-5-(trifluoromethoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (317)

CD 260

2-hydroxy-5-iodo-N-(3-(trifluoromethyl)phenyl)benzamide (318)
CD 269

CD 269

2-hydroxy-6-(trifluoromethyl)- N-(3-(trifluoromethyl)phenyl)benzamide (319)
CD 286 F5-8

CD 286 F5-8

2-hydroxy-5-methyl-N-(3-(trifluoromethyl)phenyl)benzamide (321)
CD 302

CD 302

2-hydroxy-5-methoxy-N-(3-(trifluoromethyl)phenyl)benzamide (322)

CD 302

5-chloro-2-hydroxy- N-methyl- N-phenylbenzamide (324)
CD 317

CD 317

5-cyano-2-hydroxy-N-(3-(trifluoromethyl)phenyl)benzamide (325)
CD345

CD345

										1	
PPM	200	180	160	140	120	100	80	60	40	20	0

5-cyano-2-hydroxy- N-(4-(trifluoromethoxy)phenyl)benzamide (326)

CD 346 Saeule

2-hydroxy-5-(trifluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide (328)
CD365 F1

CD365 F1

2-hydroxy-N-(3-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (329)
CD368

CD368

N-(3,5-bis(trifluoromethyl)phenyl)-2-hydroxy-5-(trifluoromethyl)benzamide (330)

CD366

2-hydroxy-N-(4-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (331)

CD369

N-(4-chloro-3-(trifluoromethyl)phenyl)-2-hydroxy-5-(trifluoromethyl)benzamide (332)

CD380(2)

5-chloro- N -(3-cyanophenyl)-2-hydroxybenzamide (333)
CD423

CD423

N-(3,5-bis(trifluoromethyl)phenyl)-2-hydroxy-5-(trifluoromethoxy)benzamide (336)

CD 411

5-chloro- N -(2-fluorophenyl)-2-hydroxybenzamide (337)

CD 479 DMSO

\| 4		

5-chloro- N -(2-fluorophenyl)-2-hydroxybenzamide (337)
CD 479

CD 479

5-chloro- N-(2,4-difluorophenyl)-2-hydroxybenzamide (338)

CD 477 DMSO

$\frac{1514 y}{}$	414910

N-(4-fluorophenyl)-2-hydroxy-4-(trifluoromethyl)benzamide (345)
MM 378

MM 378

5-chloro- N-(3-cyano-4-fluorophenyl)-2-hydroxybenzamide (346)
CD 424

CD 424

4.4.2 Epoxides

5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (71)

CD 039

(S)-(-)-5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (99)

(R)-(+)-5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-
(trifluoromethyl)phenyl)benzamide (100)

CD 273

5-chloro-N-(2-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (288)

CD 481 CDCl 3

CD 481 DMSO

CD 481 DMSO

2-hydroxy-3-methyl-N-(3-(trifluoromethyl)phenyl)benzamide (323)
CD 303

CD 303

3,5-dichloro- N-(3,5-dichlorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (347)

CD 246

5-chloro- N-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (348)
CD 002 F76-116

CD 002 F76-116

N-(naphthalen-2-yl)-2-(oxiran-2-ylmethoxy)benzamide (349)
CD 014 F11-25

CD 014 F11-25

N-(2-allylphenyl)-2-(oxiran-2-ylmethoxy)benzamide (350)

CD 020

CD 065

1-(oxiran-2-ylmethoxy)- N -(3-(trifluoromethyl)phenyl)-2-naphthamide (352)

CD 135 F19-23

5-fluoro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (353)

CD247 2.5

5-fluoro- \boldsymbol{N}-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (354)

CD 138 F41-80

N-(3,5-bis(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)benzamide (355)

CD 145 F18-36
Bitte dieses Roehrchen nicht mehr verwenden (Flacher Boden!!!)
Danke Susanne

CD 145 F18-36

N-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)-4-(trifluoromethyl)benzamide (356)

CD 153 2. Saeule

N-(3,5-bis(trifluoromethyl)phenyl)-5-chloro-2-(oxiran-2-ylmethoxy)benzamide (357)

CD 189 2. Saeule

5-chloro-N-(3,4-dichlorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (358)
 CD 231 2. Saeule

5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethoxy)phenyl)benzamide (359)

CD 219

5-chloro- N -(4-chloro-3-(trifluoromethoxy)phenyl)-2-(oxiran-2ylmethoxy)benzamide (360)

CD 263

5-chloro-2-(oxiran-2-ylmethoxy)-N-(4-(trifluoromethoxy)phenyl)benzamide (361)

5-chloro- N -(3-iodophenyl)-2-(oxiran-2-ylmethoxy)benzamide (362)

CD 202

5-chloro-N-(4-chloro-3-(trifluoromethyl)phenyl)-2-(oxiran-2ylmethoxy)benzamide (363)

CD 278

5-chloro- N -(4-fluoro-3-(trifluoromethyl)phenyl)-2-(oxiran-2ylmethoxy)benzamide (364)

CD 277

5-chloro-N-(3,5-dichlorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (365)

CD 218

3,5-dichloro-2-(oxiran-2-ylmethoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (366)

CD 245

N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichloro-2-(oxiran-2ylmethoxy)benzamide (367)

CD 478 S1

5-chloro-2-(oxiran-2-ylmethoxy)-N-(4-(trifluoromethoxy)-3(trifluoromethyl)phenyl)benzamide (368)

CD 262

2-(oxiran-2-ylmethoxy)-5-(trifluoromethoxy)-N-(3(trifluoromethyl)phenyl)benzamide (369)

CD 264

5-iodo-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (370)

CD 276

2-(oxiran-2-ylmethoxy)-6-(trifluoromethyl)- N -(3(trifluoromethyl)phenyl)benzamide (371)

CD 289

4-methyl-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (372)

CD 309 P

4-fluoro-2-(oxiran-2-ylmethoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (373)

CD 310 F29-50

5-methyl-2-(oxiran-2-ylmethoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (374)

CD 311 F 33-51

5-methoxy-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (375)

CD 312 F55-76

3-methyl-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (376)

CD 313 F48-54

5-chloro- N -methyl-2-(oxiran-2-ylmethoxy)- N -phenylbenzamide (377)

CD 330 F52-75

5-cyano-2-(oxiran-2-ylmethoxy)-N-(4-(trifluoromethoxy)phenyl)benzamide (378) CD354

CD354

2-(oxiran-2-ylmethoxy)-5-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (379)

CD374 F22

N-(3,5-bis(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)-5(trifluoromethyl)benzamide (380)

CD382

2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethoxy)phenyl)-5(trifluoromethyl)benzamide (381)

CD381

N-(4-chloro-3-(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)-5(trifluoromethyl)benzamide (382)

CD385

N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyano-2-(oxiran-2ylmethoxy)benzamide (383)

CD 391

5-cyano-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (384) CD353

CD353

N-(3,5-bis(trifluoromethyl)phenyl)-5-cyano-2-(oxiran-2-ylmethoxy)benzamide (385)

CD 392 F40

5-chloro- N -(4-cyano-3-(trifluoromethyl)phenyl)-2-(oxiran-2ylmethoxy)benzamide (386)

CD427

N-(3,5-bis(trifluoromethyl)phenyl)-2-(oxiran-2-ylmethoxy)-5(trifluoromethoxy)benzamide (387)
CD415

CD415

5-chloro- N -(2,4-difluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (388)

CD 483

CD 483

5-chloro- N-(4-cyanophenyl)-2-(oxiran-2-ylmethoxy)benzamide (389)

CD428

5-chloro-N-(3-cyanophenyl)-2-(oxiran-2-ylmethoxy)benzamide (390)

CD429

5-chloro- N -(3-cyano-4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (391)

CD430

2-(oxiran-2-ylmethoxy)-N-(p-tolyl)benzamide (392)

MM 198

N-(2-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (393)

MM 246

N-(4-fluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (394)

CD 001P XI-52

N-(4-bromophenyl)-2-(oxiran-2-ylmethoxy)benzamide (395)

MM 222

2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (396)

MM 250

Spektrum N-(2,4-difluorophenyl)-2-(oxiran-2-ylmethoxy)benzamide (397)

MM 315

N -(oxiran-2-ylmethyl)-3,5-bis(trifluoromethyl)aniline (398)

CD 370

N-(4-fluorophenyl)-3-(oxiran-2-ylmethoxy)-2-naphthamide (399)

CD066 F1-3

4.4.3 Final Compounds

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (95)

CD 063

(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((R)-3-(4-chloro-2-((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2carboxylate (102)

CD452

(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((S)-3-(4-chloro-2-((3-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2carboxylate (103)

CD 487

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(naphthalen-1-ylmethyl)benzamide (141)

MM 222

MM 222

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)- N -(p-tolyl)benzamide (142)

MM 201

2-(3-((-adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4fluorophenyl)benzamide (143)
CD-027

CD-027

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(2,4difluorophenyl)benzamide (144)

MM 316

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (145)

CD 092 S2 F36-72

CD 092 S2 F36-72

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(2fluorophenyl)benzamide (146)

MM 251

2-(3-((1-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-N-(p-tolyl)benzamide (154)

MM 202

MM 202

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4fluorophenyl)benzamide (159)

CD 126

2-(3-((1-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(naphthalen-1-ylmethyl)benzamide (167)

MM 223

2-(3-((-adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro- N -(4fluorophenyl)benzamide (168)
CD 121

CD 121

5-bromo-N-(4-fluorophenyl)-2-(2-hydroxy-3-(4-phenylpiperidin-1yl)propoxy)benzamide (169)

CD 071

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (170)

CD 072

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (171)

CD 073

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (172)

CD 074

2-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)-5-bromo-N-(4fluorophenyl)benzamide (173)

CD 075

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-fluoro-N-(4fluorophenyl)benzamide (174)

CD 143

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4bromophenyl)benzamide (175)

CD 052

2-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)- N -(4-bromophenyl)benzamide (176)

 CD 053

3-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4-fluorophenyl)-2naphthamide (177)

CD 067

3-(3-(adamantan-1-ylamino)-2-hydroxypropoxy)-N-(4-fluorophenyl)-2naphthamide (178)

CD 068

N-(4-fluorophenyl)-3-(2-hydroxy-3-((3-hydroxyadamantan-1-yl)amino)propoxy)-2-naphthamide (179)

CD 069

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4-fluorophenyl)-4(trifluoromethyl)benzamide (180)

CD 161 F 45-59

2-(2-hydroxy-3-((-3-hydroxyadamantan-1-yl)amino)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (181)

CD 037

N -(4-bromophenyl)-2-(2-hydroxy-3-((3-hydroxyadamantan-1yl)amino)propoxy)benzamide (182)

CD054 2.Saeule 2

												1
PPM	200	180	160	140	120	100	80	60	40	20	0	

2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)-N-(3-

 (trifluoromethyl)phenyl)benzamide (183)

CD 031

N-(2-fluorophenyl)-2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)benzamide (184)

CD 055

2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)- N-(p-tolyl)benzamide (185)

 CD 058

5-chloro-2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (186)

CD 061/2

5-chloro-2-(2-hydroxy-3-(4-phenylpiperidin-1-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (186)

CD 113

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (187)

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)- N -(2-fluorophenyl)benzamide

 (188)

CD 056

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-N-(p-tolyl)benzamide (189)

CD 059

2-(3-(4-benzylpiperidin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (190)

CD 062

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (191)

CD 033 F2

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(2fluorophenyl)benzamide (192)

CD 057

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)- N -(p-tolyl)benzamide (193)

CD 060

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (194)

CD112

CD 112

2-(3-(adamantan-1-yl(ethyl)amino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (195)

CD 098

1-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3-(trifluoromethyl)phenyl)-2-naphthamide (196)

CD 141 MF2S

	1	\|	\|		\|						
PPM	200	180	160	140	120	100	80	60	40	20	0

5-chloro-2-(2-hydroxy-3-((3-(trifluoromethyl)adamantan-1-yl)amino)propoxy)N -(3-(trifluoromethyl)phenyl)benzamide acetate (197)

CD 176

2-(2-hydroxy-3-((3-(trifluoromethyl)adamantan-1-yl)amino)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (198)

CD175 neutral

5-chloro-2-(2-hydroxy-3-(((3-(trifluoromethyl)adamantan-1-yl)methyl)amino)propoxy)- N -(3-(trifluoromethyl)phenyl)benzamide (199)

CD 196

	1	1	1	1	1	1	1	1	1	1	1
PPM	200	180	160	140	120	100	80	60	40	20	0

2-(3-((2-(adamantan-1-yl)propan-2-yl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (200)

CD 200

5-chloro-2-(3-(((3-chloroadamantan-1-yl)methyl)amino)-2-hydroxypropoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (201)

CD 192

2-(3-((adamantan-2-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (202)

CD 212

2-(3-(allylamino)-2-hydroxypropoxy)- N-(2-allylphenyl)benzamide (203)

CD-026

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(2allylphenyl)benzamide (204)

CD 035

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)- N -(naphthalen-2yl)benzamide (205)

CD 042

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5bis(trifluoromethyl)phenyl)benzamide (206)

CD 146

	1	1	1				\|	1	,	1	
PPM	200	180	160	140	120	100	80	60	40	20	0

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-chlorobenzamide (207)

5-chloro-2-(3-(((3-chloroadamantan-1-yl)methyl)amino)-2-hydroxypropoxy)-N-(4-fluorophenyl)benzamide (208)

CD 191

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethoxy)phenyl)benzamide (209)

CD 220 F1

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4(trifluoromethoxy)phenyl)benzamide (210)

CD 248

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3iodophenyl)benzamide (211)

CD 203

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-iodo-N-(3(trifluoromethyl)phenyl)benzamide (212)

CD 283

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3,5dichlorophenyl)benzamide (213)

CD 221

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3,4dichlorophenyl)benzamide (214)

CD 249

5-chloro-2-(2-hydroxy-3-(3-azaspiro[5.5]undecan-3-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (215)

CD 215

5-chloro-2-(2-hydroxy-3-(2-azaspiro[4.6]undecan-2-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (216)

CD 224

5-chloro-2-(2-hydroxy-3-(2-azaspiro[4.5]decan-2-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (217)

CD 225

5-chloro-2-(2-hydroxy-3-(2-azaspiro[4.4]nonan-2-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (218)

CD 226

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichlorobenzamide (219)

CD 253 2. Saeule

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-3,5-dichlorobenzamide (220)

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-3,5-dichloro-N-(3(trifluoromethyl)phenyl)benzamide (221)

CD 254

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-3,5-dichloro-N-(3,5dichlorophenyl)benzamide (222)

CD 255

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4-fluorophenyl)-4(trifluoromethyl)benzamide (223)

CD 307

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-4-fluoro-N-(3(trifluoromethyl)phenyl)benzamide (224)

CD 344

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-fluoro-N-(3(trifluoromethyl)phenyl)benzamide (225)

CD 252

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-cyanobenzamide (226)

CD358

2-(3-((adamantan-2-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-cyanobenzamide (227)

CD401 2

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-cyanobenzamide (228)

CD390 washed

2-(3-((adamantan-2-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-chlorobenzamide (229)

CD394

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-chlorobenzamide (230)

CD395 2

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethoxy)phenyl)benzamide (233)

CD 306

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-chloro-3-(trifluoromethoxy)phenyl)benzamide (234)

CD 267

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (235)

CD403 F1

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-(trifluoromethoxy)-3-(trifluoromethyl)phenyl)benzamide (236)

CD 266

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-fluoro-3(trifluoromethyl)phenyl)benzamide (237)

CD 284

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-chloro-3-(trifluoromethyl)phenyl)benzamide (238)

CD 285

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-methyl-N-(3(trifluoromethyl)phenyl)benzamide (239)

CD324 2.5

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-methoxy-N-(3(trifluoromethyl)phenyl)benzamide (240)

CD325 2.5

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-3-methyl-N-(3(trifluoromethyl)phenyl)benzamide (241)

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-4-methyl-N-(3(trifluoromethyl)phenyl)benzamide (242)

CD 343

5-chloro-2-(3-(dibutylamino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (243)

CD 321

2-(3-((adamantan-1-ylmethyl)(methyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (244)

CD 322 DIPE

2-(3-((adamantan-1-ylmethyl)(butyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (245)

CD 338

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-methyl- N phenylbenzamide (246)

CD 342

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-(trifluoromethoxy)N -(3-(trifluoromethyl)phenyl)benzamide (247)

CD 268

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4(trifluoromethoxy)phenyl)benzamide (248)

CD 305

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4-chloro-3(trifluoromethyl)phenyl)benzamide (249)

CD 308

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-cyano-N-(4(trifluoromethoxy)phenyl)benzamide (250)

CD357

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-(trifluoromethyl)-N-

 (3-(trifluoromethyl)phenyl)benzamide (251)

CD408

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (252)

CD 400

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (253)

CD 398 F2

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)benzamide (254)

CD 397

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyanobenzamide (255)

CD396 washed

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(4-chloro-3-(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (256)

CD399

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4-chloro-3-(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (257)

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(4-chloro-3-(trifluoromethyl)phenyl)-5-cyanobenzamide (258)

CD402

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethyl)benzamide (259)

CD406

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-6-(trifluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide (260)

CD 417

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-6-(trifluoromethyl)-N-(3(trifluoromethyl)phenyl)benzamide (261)

CD 418

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethoxy)benzamide (262)

CD 420

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-N-(3,5-bis(trifluoromethyl)phenyl)-5-(trifluoromethoxy)benzamide (263)

CD 421

	1	1	1		,		I			1	1
PPM	200	180	160	140	120	100	80	60	40	20	0

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4-cyano-3(trifluoromethyl)phenyl)benzamide (264)

CD 438

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4-cyano-3(trifluoromethyl)phenyl)benzamide (265)

CD 439

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(4cyanophenyl)benzamide (266)

CD456

	1		1									1
PPM	200	180	160	140	120	100	80	60	40	20	0	

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(4cyanophenyl)benzamide (267)

CD 437

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3cyanophenyl)benzamide (268)

CD434

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3cyanophenyl)benzamide (269)

CD 435

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3-cyano-4fluorophenyl)benzamide (270)

CD 432

2-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropoxy)-5-chloro-N-(3-cyano-4-

 fluorophenyl)benzamide (271)

CD 433

5-chloro-N-(4-chloro-3-(trifluoromethyl)phenyl)-2-(3-(4-(2,3-dimethylphenyl)piperazin-1-yl)-2-hydroxypropoxy)benzamide (272)

CD 463

2-(3-((2-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (273)

CD 178

2-(3-((2-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-N-(4fluorophenyl)benzamide (274)

CD 179

2-(3-((2-(adamantan-1-yl)ethyl)amino)-2-hydroxypropoxy)-N-(3(trifluoromethyl)phenyl)benzamide (275)

CD 201

2-(3-(3-azabicyclo[3.2.1]octan-3-yl)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (276)

CD 216

5-chloro-2-(2-hydroxy-3-(spiro[adamantane-2,4'-piperidin]-1'-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (277)

CD 274

										1		
PPM	200	180	160	140	120	100	80	60	40	20	0	

5-chloro-2-(2-hydroxy-3-(octahydroquinolin-1(2H)-yl)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (278)

CD 282

2-(3-((adamantan-1-ylmethyl)amino)-2-hydroxypropoxy)-5-cyano-N-(3(trifluoromethyl)phenyl)benzamide (279)

CD356

2-(3-(butylamino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (292)

CD 320 neutral

5-chloro-2-(2-hydroxy-3-(((trimethylsilyl)methyl)amino)propoxy)-N-(3(trifluoromethyl)phenyl)benzamide (293)

CD 472 neutral

2-(3-(tert-butylamino)-2-hydroxypropoxy)-5-chloro-N-(3(trifluoromethyl)phenyl)benzamide (294)

CD 473 neutral

(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl

1-((R)-3-(4-chloro-2-((2-
fluorophenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2-carboxylate (400)

CD 490

(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl-1-((S)-3-(4-chloro-2-((2-fluoro-5-(trifluoromethyl)phenyl)carbamoyl)phenoxy)-2-hydroxypropyl)pyrrolidine-2carboxylate (401)

CD 491

CD 491

4.4.4 Additions

1-(4-benzhydrylpiperazin-1-yl)-3-chloropropan-2-ol (94)

CD393

(S)-(1S,2R,5S)-2-isopropyl-5-methylcyclohexyl pyrrolidine-2-carboxylate (101)

CD447 neutral

1-((adamantan-1-ylmethyl)amino)-3-((3,5-
bis(trifluoromethyl)phenyl)amino)propan-2-ol (231)

CD 296 F26-49

1-(4-benzhydrylpiperazin-1-yl)-3-((3,5-
bis(trifluoromethyl)phenyl)amino)propan-2-ol (232)

CD404

4.5 Chiral HPLC

Experiment description

Separtation method for 5-Chloro-2-oxiranylmethoxy-N-(3-trifluoromethyl-phenyl)benzamide:

Column: Chiralpak AS-3 150×4.6 mm

Solvent System: n-Heptan $+0.1 \%$ IPA/EtOH 9:1

Flow: $0.5 \mathrm{~mL} / \mathrm{min}$
$\mathrm{T}=25^{\circ} \mathrm{C}$
$P=24$ bar
(\pm)-5-Chloro-2-oxiranylmethoxy-N-(3-trifluoromethyl-phenyl)-benzamide (71)

mV

Detector A Channel 1210 nm
PeaktiRet. Time Area

	16,675	38959807	49,879
Total		77731735	100,121

Detector A Channel 2254 nm

(R)-(+)-5-chloro-2-(oxiran-2-ylmethoxy)-N-(3(trifluoromethyl)phenyl)benzamide (100)
mV
Chromatogram

mV

Chromatogram
mV

$\mathrm{m} V$

from chloroalcohol via KF
(S)-(-)-5-chloro-2-(oxiran-2-ylmethoxy)-N-(3-(trifluoromethyl)phenyl)benzamide (99)
mV
Chromatogram

mV

mV

Detector A Channel 1210 nm			
Peakt	et. Time	Area	Area\%
1	10,081	1684813	1,518
2	10.529	69928867	63,008
3	14,869	1105721	0,996
4	16,509	38264589	34,478
Total		110983990	100,000
Detector A Channel 2254 nm			
Peaki	et. Time	Area	Area\%
1	10,082	329450	1,523
2	10,504	13498928	62,383
3	14,871	218213	1,008
4	16,510	7592092	35,086
Total		21638683	100,000

4.6 NMR Simulation

Simulations were performed in SpinWorks 3.1.7 (copyright 2010, Kirk Marat, University of Manitoba). Here, input parameters are listed, coupling constants and chemical shifts are given in Hz :

Piperidine Spin-System of 186

Opimize shifts and couplings $=0$ Ignore bad transitions = 1
Auto assign observed peaks $=1$
Maximum number of iterations $=30$
RMS convergence limit $=\quad 0.020$
RMS below this for autoassign $=0.250$
Trans. freq. this * RMS ignored $=2.400$

Groups and chemical shifts:

\#	name	shift	spins	species spin		sym
1	A	1507.391	1	1	1	1
2	B	2206.870	1	1	1	1
3	C	1239.020	1	1	1	1
4	D	1328.600	1	1	1	1
5	E	1777.726	1	1	1	1
6	F	1290.215	1	1	1	1
7	G	1255.340	1	1	1	1
8	H	1979.006	1	1	1	1
9	I	1732.637	1	1	1	1

Scalar coupling constants:

$\mathrm{j}[1,2]=$	$\mathrm{j}[\mathrm{A}, \mathrm{B}]=$	-12.000000
$\mathrm{j}[1,3]=$	$\mathrm{j}[\mathrm{A}, \mathrm{C}]=$	12.600000
$\mathrm{j}[1,4]=$	$\mathrm{j}[\mathrm{A}, \mathrm{D}]=$	2.200000
$\mathrm{j}[1,5]=$	$\mathrm{j}[\mathrm{A}, \mathrm{E}]=$	0.000000
$\mathrm{j}[1,6]=$	$\mathrm{j}[\mathrm{A}, \mathrm{F}]=$	0.000000
$\mathrm{j}[1,7]=$	$\mathrm{j}[\mathrm{A}, \mathrm{G}]=$	0.000000

$j[1,8]=$	$j[A, H]=$	0.000000
$j[1,9]=$	$j[A, I]=$	0.000000
$j[2,3]=$	$j[B, C]=$	3.800000
$j[2,4]=$	$j[B, D]=$	2.200000
$j[2,5]=$	$j[B, E]=$	0.000000
$j[2,6]=$	$j[B, F]=$	0.000000
$j[2,7]=$	$j[B, G]=$	0.000000
$j[2,8]=$	$j[B, H]=$	2.000000
$j[2,9]=$	$j[B, I]=$	0.000000
$j[3,4]=$	$j[C, D]=$	-12.500000
$j[3,5]=$	$j[C, E]=$	12.500000
$j[3,6]=$	$j[C, F]=$	0.000000
$j[3,7]=$	$j[C, G]=$	0.000000
$j[3,8]=$	$j[C, H]=$	0.000000
$j[3,9]=$	$j[C, I]=$	0.000000
$j[4,5]=$	$j[D, E]=$	3.500000
$j[4,6]=$	$j[D, F]=$	2.500000
$j[4,7]=$	$j[D, G]=$	0.000000
$j[4,8]=$	$j[D, H]=$	0.000000
$j[4,9]=$	$j[D, I]=$	0.000000
$j[5,6]=$	$j[E, F]=$	3.500000
$j[5,7]=$	$j[E, G]=$	12.500000
$j[5,8]=$	$j[E, H]=$	0.000000
$j[5,9]=$	$j[E, I]=$	0.000000
$j[6,7]=$	$j[F, G]=$	-12.500000
$j[6,8]=$	$j[F, H]=$	2.200000
$j[6,9]=$	$j[F, I]=$	2.300000
$j[7,8]=$	$j[G, H]=$	3.800000
$j[7,9]=$	$j[G, I]=$	12.400000
$j[8,9]=$	$j[H, I]=$	-11.700000

Aminoalcohol Spin-System of 186

Opimize shifts and couplings $=0$
Ignore bad transitions = 1
Auto assign observed peaks = 1
Maximum number of iterations $=30$
RMS convergence limit $=\quad 0.020$

RMS below this for autoassign $=0.250$
Trans. freq. this * RMS ignored $=\quad 2.400$

Groups and chemical shifts:

\#	name	shift	spins	species spin		sym
1	A $^{\prime}$	1760.011	1	1	1	1
2	B $^{\prime}$	1836.295	1	1	1	1
3	C' $^{\prime}$	2975.348	1	1	1	1
4	D $^{\prime}$	2824.991	1	1	1	1
5	E' $^{\prime}$	3033.545	1	1	1	1

Scalar coupling constants:

$j[1,2]=$	$j\left[A^{\prime}, B^{\prime}\right]=$	-12.140000
$j[1,3]=$	$j\left[A^{\prime}, C^{\prime}\right]=$	3.570000
$j[1,4]=$	$j\left[A^{\prime}, D^{\prime}\right]=$	0.000000
$j[1,5]=$	$j\left[A^{\prime}, E^{\prime}\right]=$	0.000000
$j[2,3]=$	$j\left[B^{\prime}, C^{\prime}\right]=$	10.900000
$j[2,4]=$	$j\left[B^{\prime}, D^{\prime}\right]=$	0.000000
$j[2,5]=$	$j\left[B^{\prime}, E^{\prime}\right]=$	0.000000
$j[3,4]=$	$j\left[C^{\prime}, D^{\prime}\right]=$	6.040000
$j[3,5]=$	$j\left[C^{\prime}, E^{\prime}\right]=$	2.740000
$j[4,5]=$	$j\left[D^{\prime}, E^{\prime}\right]=$	-9.440000

4．7 Crystallographic Data

（¢） $\mathrm{IO}^{\circ} \mathrm{o}^{-}$	（s） $800{ }^{\circ}$	（s）tio＇0－	
$6 \varepsilon^{*} 0$－／ts 0	61．0－／とャ゙0	$88^{\circ} 0 / \mathrm{sc}{ }^{\circ} 0$	
LEOT＇0＝乙४M＇9¢t0＇0＝โ		T $\angle 90^{\circ} 0={ }^{\text {r }} \mathrm{ym}$＇0820＇0 $=$＇y	
		t990＇0 $=$＇ym＇t9z0＇0 $=^{\text {² }} \mathrm{y}$	
£90＇โ	$6 \mathrm{t} 0^{\circ} \tau$	180＇โ	${ }_{2}$ U0 7＋f－fo－5szupoos
95t／ז／\＆${ }^{\text {c }}$ S	L6E／T／SちTS	ऽદz／0／દ๖¢є	
			suo！̣ว्ञ｜jə ұuәpuədəpu｜
とてを6โ	9LZLZ	9¢Etโ	
			sa8ue」 xapul
	てع0＇LEI O＋9LS＇9	796．98t of 989\％	
	（8LTVS＇T＝र）oxn		uo！pe！pey
		S90＇0 $\times 90{ }^{\circ} \mathrm{O} \times 96 \mathrm{C}^{\circ} 0$	
OZSI	t99	968	（000） $\boldsymbol{1}$
62＇0	\＆ว9＇乙	ZくT＊9	${ }_{\text {T }-1 . ~}^{\text {mm／rl }}$
tSc＇I	てLS＇โ	โ9＇โ	
8	乙	万	Z
（t） $\mathrm{t}^{\prime} 8 \angle \tau \varepsilon$	（L） $89 . \varepsilon$ 切	（6）s6．6โ8โ	
06	06	06	\％$/ \lambda$
	（8）9886 ${ }^{\text {t66 }}$	06	\％／d
06	06	06	\％／0
（6โ） 78 \％$^{\circ} 0$ ¢	（t） $868 \mathrm{t}^{\circ} \mathrm{E}$ ¢	（s） $2666{ }^{\circ} \angle \tau$	$8 / 0$
（s）8Lt¢゙L	（L） $68 \angle 6{ }^{\circ} \mathrm{E}$ z	（t）t \angle IT＇S	\forall / q
（ τ ）ozst＇t	（0t）08988＇t	（て）5889＇9	\forall / e
2כ	「てd	${ }^{\text {² }}$ でて「てd	dno＾8 əวeds
ग！！！アouou	ग！！！pouou		
00t	00T	00T	x／aınłeגədura
ع＜＇TLE	St＇¢t9	60＇ttt	
عON\＆	$\left.{ }^{9} \mathrm{O}^{2} \mathrm{~N}^{2} \mathrm{~J}^{2} 1\right)^{98} \mathrm{H}^{25}$		
	โZd 8t $^{\text {ep }}$ ¢	IZIZIZd ${ }^{- \text {S8tepu }}$	әроэ ио！̣еэ！！！¢
66	882	882－（s）	

	（ع）00＊0			
$67^{\circ} 0-/ \angle 9^{\circ} 0$	9 $L^{\circ} 0-/ \downarrow \angle{ }^{\circ} 0$	8で0－／sع＇0		
			［еұер ॥е］sәхәри！у ןеu！	
			［（।）\circ ¢＝＜ı］səxəpu！¢ ¢eu！	
$\varepsilon \varepsilon 0^{\prime} \tau$	T $\angle 0 \cdot \tau$	ャ0し＇โ	${ }_{2}$ U0＋！+ －¢0－5səupoog	
ャ9\＆／0／Lて08	688／โ／929S	L0t／9t／009t		
			suo！̣วə｜fə」 ұuәpuədəpu｜	
S\＆โt9	てヤヤ0て	SL6IS		
sIs			səsiue」 хәри｜	
8ST＇09 O＋ヤ8¢＇ε	カ69＊0S Of \downarrow ¢ L^{\prime}＇乙	9LL＇OS O＋7 85＇t		
（ $\varepsilon \angle 0 \tau \angle{ }^{\text {co }}=\chi$ ）DYOW	（ $\varepsilon \angle 0 L \angle{ }^{\circ} 0=\chi$ ）DYOW	$(\varepsilon \angle O T \angle ' 0=\gamma)$ DYOW	uo！	
で0 \times で0 \times Sで0	カโ0＇0 $\times 980^{\circ} 0 \times 260^{\circ} 0$			
0ヵてI	099	てIIT	（000）」	
カ6で0	カ8t．0	60で0	${ }_{\tau}$－ $\mathrm{mm} / \mathrm{rd}$	
てカガし	$\downarrow \varepsilon^{\prime} \tau$	カーナ゙て	${ }_{\varepsilon} \mathrm{mJ} / \mathrm{B}^{\text {¹玉 }} \mathrm{d}$	
†	乙	†	Z	
	（0ヶ）sで6ャ¢T		$\varepsilon \forall / \partial \mathrm{m} \\| \bigcirc \wedge$	
06	06	06	${ }^{\circ} / \lambda$	
（で） 2 ¢6で56	（ $\angle \tau) 88 \angle \tau \cdot 26$	（9โ）$\angle \tau \angle \tau \cdot \tau 6$	\％／ठ	
06	06	06	。／0	
（9）s9tを＇\＆	（9）9 $906{ }^{\circ} \downarrow \tau$	（6）とโ0でヤて	\forall / \bigcirc	
（ \downarrow ） $8890{ }^{\circ} \downarrow \tau$	（L）6Z65＇07	（ヵ）$¢ 9 \tau \tau$	\forall / q	
（て）0โIナ＊8	（て）ZOS0＊s	（ع） $1768^{\circ} \mathrm{L}$	\forall / e	
ग／てd	${ }^{\text {²}} \mathrm{Z} \mathrm{d}$	${ }^{\text {T}}$ てd	dno」s əoeds	
गฺu！｜วouou	ग！u！｜ગouou	ग！u！｜כouou		
001	001	00T	入／əıņe」əduə」	
9＊＊96s	โT＇Sて9	L6＇て¢s		
$\left.{ }^{\varepsilon} O^{\varepsilon} N^{\varepsilon}\right]^{2}\left(J^{0 \varepsilon} H^{62}\right)$				
		フัてd ${ }^{\text {¢ }}$ ¢โерч	әроэ ио！чеכ！！！	
ZLZ	ZOT	981		

ε－vサ＇ə $889^{\circ} 0$－pue $608{ }^{\circ} 0$		
		（eұер ॥｜e）sәכ！pu！y
		［（1）em8！！sz＜＜］seग！pu！y ןeu！
L66 0	20＇โ	χ_{vj} uo 7 ！f－fo－55zupoog
$\varepsilon \angle 乙 / \tau / 0 z \varepsilon t$	662／0／8T／9	
		рочәu ұиәшəu！fวy
78680 ${ }^{\text {pue }} \mathrm{78} 86^{\circ} 0$	8896．0 pue \＆ $666^{\circ} 0$	
\％6＇86 6L＇89	\％L＇66 てT＇0¢	
［9Lt0＊$=$（7u！）¢］0zEt／ 8069 z		
		səsueı xəpu｜
＇sop 6L＇89 Of tS＇ε	－\％op てで0¢ Of 66．	
	UW $90^{\circ} 0 \times \angle \tau^{\circ} 0 \times 5 \varepsilon^{\circ} 0$	
886	9 2 t	（000）${ }^{\text {¢ }}$
โ－v wim 0¢＜ 0	โ－v umu 06000	ұuә！？！yəoo uo！ddıosq才
$\varepsilon^{2} \mathrm{~m} /{ }^{\circ} \mathrm{W} 90 \varepsilon^{\prime} \tau$＇t		
	£v＊（8）0¢＇9ヵIT	әun！$¢$
	＇8วр（ $\dagger \tau) \varepsilon \angle \downarrow て ゙ \varepsilon 9=$ eqzq $\quad \forall(\mathrm{S}) \tau 59 \varepsilon \cdot \tau \tau=9$	suo！suəm！p｜｜әכ т！un
	T－d＇गuu！p！	
	$\forall \varepsilon \angle O L L^{\circ} 0$	478иәәəлем
$x(z) 00 \tau$	$x(z) 00 \tau$	
Ss＇Z9\％	てS＇8tt	
		e｜nuıof leכ！udm
9950ер4＞	Scoepy	әроэ uo！peot！！
88 I	¢85	

Appendix

Table 19．${ }^{85}$ The numerical potencies of selected antimalarials against asexual blood stages．Taken from the Supportin Information of＂The Activities of Current Antimalarial Drugs on the Life Cycle Stages of

Plasmodium：A Comparative Study with Human and Rodent Parasites＂by Delves，M．；Plouffe，D．；Scheurer， C．；Meister，S．；Wittlin，S．；Winzeler，E．A．；Sinden，R．E．；Leroy，D．Plos Med 2012， 9.

	（1）
	人⿹⿺⿻⿻一㇂㇒丶⿱口一心夊力
 	¢
 	（ᄌ⿹弋工力

References

(1) World Health Organisation World Malaria Report 20132013.
(2) Stiftung Weltbevölkerung Datenreport 20132013.
(3) Wells, T. N. C.; Alonso, P. L.; Gutteridge, W. E. Nat Rev Drug Discov 2009, 8, 879.
(4) Laxminarayan, R.; Gelband, H. Health Affair 2009, 28, 949.
(5) Teixeira, C.; Vale, N.; Perez, B.; Gomes, A.; Gomes, J. R.; Gomes, P. Chemical reviews 2014.
(6) Tuteja, R. Febs J 2007, 274, 4670.
(7) Yamauchi, L. M.; Coppi, A.; Snounou, G.; Sinnis, P. Cell Microbiol 2007, 9, 1215.
(8) Hafalla, J. C.; Silvie, O.; Matuschewski, K. Immunol Rev 2011, 240, 297.
(9) Tall, A.; Sokhna, C.; Perraut, R.; Fontenille, D.; Marrama, L.; Ly, A. B.; Sarr, F. D.; Toure, A.; Trape, J. F.; Spiegel, A.; Rogier, C.; Druilhe, P. Malaria journal 2009, 8.
(10) Menard, R. Cell Microbiol 2001, 3, 63.
(11) Baum, J.; Richard, D.; Healer, J.; Rug, M.; Krnajski, Z.; Gilberger, T. W.; Green, J. L.; Holder, A. A.; Cowman, A. F. J Biol Chem 2006, 281, 5197.
(12) Sultan, A. A.; Thathy, V.; Frevert, U.; Robson, K. J. H.; Crisanti, A.; Nussenzweig, V.; Nussenzweig, R. S.; Menard, R. Cell 1997, 90, 511.
(13) Mota, M. M.; Pradel, G.; Vanderberg, J. P.; Hafalla, J. C. R.; Frevert, U.; Nussenzweig, R. S.; Nussenzweig, V.; Rodriguez, A. Science 2001, 291, 141.
(14) Coppi, A.; Pinzon-Ortiz, C.; Hutter, C.; Sinnis, P. J Exp Med 2005, 201, 27.
(15) Montagna, G. N.; Matuschewski, K.; Buscaglia, C. A. Front Biosci-Landmrk 2012, 17, 726.
(16) Silvie, O.; Mota, M. M.; Matuschewski, K.; Prudencio, M. Curr Opin Microbiol 2008, 11, 352.
(17) Frevert, U.; Engelmann, S.; Zougbede, S.; Stange, J.; Ng, B.; Matuschewski, K.; Liebes, L. Plos Biol 2005, 3, 1034.
(18) Baer, K.; Roosevelt, M.; Clarkson, A. B.; van Rooijen, N.; Schnieder, T.; Frevert, U. Cell Microbiol 2007, 9, 397.
(19) Sturm, A.; Amino, R.; van de Sand, C.; Regen, T.; Retzlaff, S.; Rennenberg, A.; Krueger, A.; Pollok, J. M.; Menard, R.; Heussler, V. T. Science 2006, 313, 1287.
(20) Graewe, S.; Rankin, K. E.; Lehmann, C.; Deschermeier, C.; Hecht, L.; Froehlke, U.; Stanway, R. R.; Heussler, V. Plos Pathog 2011, 7.
(21) Miller, L. H.; Baruch, D. I.; Marsh, K.; Doumbo, O. K. Nature 2002, 415, 673.
(22) Stich, A. Pharmazie in unserer Zeit 2009, 38, 508.
(23) Field, J. W.; Shute, P. G. The microscopic diagnosis of human malaria; Malaya: Kuala Lumpur, 1948.
(24) Talman, A. M.; Domarle, O.; McKenzie, F. E.; Ariey, F.; Robert, V. Malaria journal 2004, 3.
(25) Kooij, T. W. A.; Matuschewski, K. Curr Opin Microbiol 2007, 10, 547.
(26) Saul, A. Nat Med 2004, 10, 455.
(27) Falisevac, J. Bulletin of the World Health Organization 1974, 50, 159.
(28) Lee, K. S.; Cox-Singh, J.; Brooke, G.; Matusop, A.; Singh, B. Int J Parasitol 2009, 39, 1125.
(29) Cox-Singh, J.; Davis, T. M. E.; Lee, K. S.; Shamsul, S. S. G.; Matusop, A.; Ratnam, S.; Rahman, H. A.; Conway, D. J.; Singh, B. Clin Infect Dis 2008, 46, 165.
(30) Baruch, D. I. Best Pract Res Cl Ha 1999, 12, 747.
(31) Taylor, T. E.; Fu, W. J.; Carr, R. A.; Whitten, R. O.; Mueller, J. S.; Fosiko, N. M.; Lewallen, S.; Liomba, N. G.; Molyneux, M. E. Nat Med 2004, 10, 435.
(32) Bruce-Chwatt, L. J. Br Med J (Clin Res Ed) 1983, 286, 1457.
(33) Schantz-Dunn, J.; Nour, N. M. Reviews in obstetrics and gynecology 2009, 2, 186.
(34) Kumar, S.; Melzer, M.; Dodds, P.; Watson, J.; Ord, R. Scand J Infect Dis 2007, 39, 255.
(35) Saleri, N.; Gulletta, M.; Matteelli, A.; Caligaris, S.; Tomasoni, L. R.; Antonini, B.; Perandin, F.; Castelli, F. Journal of travel medicine 2006, 13, 112.
(36) Beg, M. A.; Khan, R.; Baig, S. M.; Gulzar, Z.; Hussain, R.; Smego, R. A. Am J Trop Med Hyg 2002, 67, 230.
(37) Carlton, J. M.; Sina, B. J.; Adams, J. H. Plos Neglect Trop D 2011, 5.
(38) Price, R. N.; Tjitra, E.; Guerra, C. A.; Yeung, S.; White, N. J.; Anstey, N. M. Am J Trop Med Hyg 2007, 77, 79.
(39) Dembele, L.; Franetich, J. F.; Lorthiois, A.; Gego, A.; Zeeman, A. M.; Kocken, C. H. M.; Le Grand, R.; Dereuddre-Bosquet, N.; van Gemert, G. J.; Sauerwein, R.; Vaillant, J. C.; Hannoun, L.; Fuchter, M. J.; Diagana, T. T.; Malmquist, N. A.; Scherf, A.; Snounou, G.; Mazier, D. Nat Med 2014, 20, 307.
(40) Collins, W. E.; Jeffery, G. M. Clin Microbiol Rev 2005, 18, 570.
(41) Barnwell, J. W.; Galinski, M. R. Nat Med 2014, 20, 237.
(42) Cui, L. W.; Escalante, A. A.; Imwong, M.; Snounou, G. Trends Parasitol 2003, 19, 220.
(43) World Health Organization "Global Malaria Mapper" 2014, http://www.worldmalariareport.org/.
(44) Gkrania-Klotsas, E.; Lever, A. M. L. Blood Rev 2007, 21, 73.
(45) Strauss, R.; Pfeifer, C. Euro surveillance : bulletin Europeen sur les maladies transmissibles $=$ European communicable disease bulletin 2003, 8, 91.
(46) Auer-Hackenberg, L.; Staudinger, T.; Bojic, A.; Locker, G.; Leitner, G. C.; Graninger, W.; Winkler, S.; Ramharter, M.; Worel, N. Malaria journal 2012, 11.
(47) Calleri, G. Infection 2014, 1.
(48) Castelli, F.; Odolini, S.; Autino, B.; Foca, E.; Russo, R. Pharmaceuticals 2010, 3, 3212.
(49) Seidel, B.; Silbermayr, K.; Kolodziejek, J.; Indra, A.; Nowotny, N.; Allerberger, F. Wien Klin Wochenschr 2013, 125, 139.
(50) Hempelmann, E.; Tesarowicz, I.; Oleksyn, B. J. Pharmazie in unserer Zeit 2009, 38, 500.
(51) Nerlich, A. G.; Schraut, B.; Dittrich, S.; Jelinek, T.; Zink, A. R. Emerg Infect Dis 2008, 14, 1317.
(52) Khairat, R.; Ball, M.; Chang, C. C. H.; Bianucci, R.; Nerlich, A. G.; Trautmann, M.; Ismail, S.; Shanab, G. M. L.; Karim, A. M.; Gad, Y. Z.; Pusch, C. M. J Appl Genet 2013, 54, 309.
(53) Hawass, Z.; Gad, Y. Z.; Ismail, S.; Khairat, R.; Fathalla, D.; Hasan, N.; Ahmed, A.; Elleithy, H.; Ball, M.; Gaballah, F.; Wasef, S.; Fateen, M.; Amer, H.; Gostner, P.; Selim, A.; Zink, A.; Pusch, C. M. Jama-J Am Med Assoc 2010, 303, 638.
(54) Timmann, C.; Meyer, C. G. Trop Med Int Health 2010, 15, 1278.
(55) Katz, T. M.; Miller, J. H.; Hebert, A. A. J Am Acad Dermatol 2008, 58, 865.
(56) Retief, F., Cilliers, L. Acta Classica 2004, 47.
(57) Stagl, V.; Sattmann, H.; Horweg, C. Wien Klin Wochenschr 2010, 122, 6.
(58) Reiter, P. Emerg Infect Dis 2000, 6, 1.
(59) Hempelmann, E. Parasitology research 2007, 100, 671.
(60) Hempelmann, E.; Krafts, K. Malaria journal 2013, 12.
(61) Kaufman, T. S.; Ruveda, E. A. Angew Chem Int Edit 2005, 44, 854.
(62) Dassonville-Klimpt, A. J., A.; Pillon, M.; Mullié, C.; Sonnet, P. Science against microbial pathogens: communicating current research and technological advances 2011, 1, 23.
(63) Bruce-Chwatt, L. J. Br Med J (Clin Res Ed) 1988, 296, 1486.
(64) Souza, K. A. F. D.; Porto, P. A. J Chem Educ 2012, 89, 58.
(65) Seeman, J. I. Angew Chem Int Edit 2007, 46, 1378.
(66) Abba, K.; Deeks, J. J.; Olliaro, P.; Naing, C. M.; Jackson, S. M.; Takwoingi, Y.; Donegan, S.; Garner, P. Cochrane Db Syst Rev 2011.
(67) Manson-Bahr, P. Proceedings of the Royal Society of Medicine 1961, 54, 91.
(68) Capanna, E. Int Microbiol 2006, 9, 69.
(69) Muscatello, U. Brain Res Rev 2007, 55, 3.
(70) Cox, F. E. G. Parasite Vector 2010, 3.
(71) Baird, J. K. Antimicrob Agents Ch 2004, 48, 4075.
(72) Hsu, E. Brit J Clin Pharmaco 2006, 61, 666.
(73) Hale, V.; Keasling, J. D.; Renninger, N.; Diagana, T. T. Am J Trop Med Hyg 2007, 77, 198.
(74) Kupferschmidt, K. Science 2012, 336, 798.
(75) Greenwood, B.; Mutabingwa, T. Nature 2002, 415, 670.
(76) Trouiller, P.; Olliaro, P. L. International journal of infectious diseases : IIID : official publication of the International Society for Infectious Diseases 1998, 3, 61.
(77) Zhong, D. B.; Chang, X. L.; Zhou, G. F.; He, Z. B.; Fu, F. Y.; Yan, Z. T.; Zhu, G. D.; Xu, T. L.; Bonizzoni, M.; Wang, M. H.; Cui, L. W.; Zheng, B.; Chen, B.; Yan, G. Y. Plos One 2013, 8.
(78) Yakob, L.; Dunning, R.; Yan, G. Y. J R Soc Interface 2011, 8, 799.
(79) Killeen, G. F.; Seyoum, A.; Sikaala, C.; Zomboko, A. S.; Gimnig, J. E.; Govella, N. J.; White, M. T. Parasite Vector 2013, 6.
(80) Bouwman, H.; van den Berg, H.; Kylin, H. Environ Health Persp 2011, 119, 744.
(81) Seagren, E. A. J Environ Eng-Asce 2005, 131, 1617.
(82) Kitau, J.; Oxborough, R.; Matowo, J.; Mosha, F.; Magesa, S. M.; Rowland, M. Parasite Vector 2014, 7.
(83) M. Altenkämper, M. S. Pharmazeutische Zeitung 2008, 18.
(84) Schlitzer, M. Pharmazie in unserer Zeit 2009, 38, 512.
(85) Delves, M.; Plouffe, D.; Scheurer, C.; Meister, S.; Wittlin, S.; Winzeler, E. A.; Sinden, R. E.; Leroy, D. Plos Med 2012, 9.
(86) Foley, M.; Tilley, L. Pharmacol Therapeut 1998, 79, 55.
(87) Karle, J. M.; Karle, I. L. Antimicrob Agents Ch 2002, 46, 1529.
(88) Skorska, A.; Sliwinski, J.; Oleksyn, B. J. Bioorg Med Chem Lett 2006, 16, 850.
(89) Dow, G. S.; Heady, T. N.; Bhattacharjee, A. K.; Caridha, D.; Gerena, L.; Gettayacamin, A.; Lanteri, C. A.; Obaldia, N.; Roncal, N.; Shearer, T.; Smith, P. L.; Tungtaeng, A.; Wolf, L.; Cabezas, M.; Yourick, D.; Smith, K. S. Antimicrob Agents Ch 2006, 50, 4132.
(90) Basco, L. K.; Gillotin, C.; Gimenez, F.; Farinotti, R.; Lebras, J. Brit J Clin Pharmaco 1992, 33, 517.
(91) Wong, R. P. M.; Salman, S.; Ilett, K. F.; Siba, P. M.; Mueller, I.; Davis, T. M. E. Antimicrob Agents Ch 2011, 55, 1194.
(92) Djimde, A.; Lefevre, G. Malaria journal 2009, 8.
(93) Basco, L. K.; Bickii, J.; Ringwald, P. Antimicrob Agents Ch 1998, 42, 2347.
(94) Kokwaro, G.; Mwai, L.; Nzila, A. Expert Opin Pharmaco 2007, 8, 75.
(95) Colussi, D.; Parisot, C.; Legay, F.; Lefevre, G. Eur J Pharm Sci 1999, 9, 9.
(96) Starzengruber, P.; Wernsdorfer, G.; Parizek, M.; Rojanawatsirivet, C.; Kollaritsch, H.; Wernsdorfer, W. H. Wien Klin Wochenschr 2007, 119, 60.
(97) de Villiers, K. A.; Egan, T. J. Molecules 2009, 14, 2868.
(98) Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Molecules 2008, 13, 2900.
(99) Hill, D. R.; Baird, J. K.; Parise, M. E.; Lewis, L. S.; Ryan, E. T.; Magill, A. J. Am J Trop Med Hyg 2006, 75, 402.
(100) Jansen, F. H. Malaria journal 2010, 9.
(101) Teuscher, F.; Gatton, M. L.; Chen, N. H.; Peters, J.; Kyle, D. E.; Cheng, Q. JInfect Dis 2010, 202, 1362.
(102) Ashley, E. A.; Dhorda, M.; Fairhurst, R. M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J. M.; Mao, S.; Sam, B.; Sopha, C.; Chuor, C. M.; Nguon, C.; Sovannaroth, S.; Pukrittayakamee, S.; Jittamala, P.; Chotivanich, K.; Chutasmit, K.; Suchatsoonthorn, C.; Runcharoen, R.; Hien, T. T.; Thuy-Nhien, N. T.; Thanh, N. V.; Phu, N. H.; Htut, Y.; Han, K. T.; Aye, K. H.; Mokuolu, O. A.; Olaosebikan, R. R.; Folaranmi, O. O.; Mayxay, M.; Khanthavong, M.; Hongvanthong, B.; Newton, P. N.; Onyamboko, M. A.; Fanello, C. I.; Tshefu, A. K.; Mishra, N.; Valecha, N.; Phyo, A. P.; Nosten, F.; Yi, P.; Tripura, R.; Borrmann, S.; Bashraheil, M.; Peshu, J.; Faiz, M. A.; Ghose, A.; Hossain, M. A.; Samad, R.; Rahman, M. R.; Hasan, M. M.; Islam, A.; Miotto, O.; Amato, R.; MacInnis, B.; Stalker, J.; Kwiatkowski, D. P.; Bozdech, Z.; Jeeyapant, A.; Cheah, P. Y.; Sakulthaew, T.; Chalk, J.; Intharabut, B.; Silamut, K.; Lee, S. J.; Vihokhern, B.; Kunasol, C.; Imwong, M.; Tarning, J.; Taylor, W. J.; Yeung, S.; Woodrow, C. J.; Flegg, J. A.; Das, D.; Smith, J.; Venkatesan, M.; Plowe, C. V.; Stepniewska, K.; Guerin, P. J.; Dondorp, A. M.; Day, N. P.; White, N. J. The New England journal of medicine 2014, 371, 411.
(103) Dondorp, A. M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A. P.; Tarning, J.; Lwin, K. M.; Ariey, F.; Hanpithakpong, W.; Lee, S. J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S. S.; Yeung, S.; Singhasivanon, P.; Day, N. P.; Lindegardh, N.; Socheat, D.; White, N. J. The New England journal of medicine 2009, 361, 455.
(104) Li, J.; Zhou, B. Molecules 2010, 15, 1378.
(105) Tang, Y. Q.; Dong, Y. X.; Vennerstrom, J. L. Med Res Rev 2004, 24, 425.
(106) Charman, S. A.; Arbe-Barnes, S.; Bathurst, I. C.; Brun, R.; Campbell, M.; Charman, W. N.; Chiu, F. C. K.; Chollet, J.; Craft, J. C.; Creek, D. J.; Dong, Y. X.; Matile, H.; Maurer, M.; Morizzi, J.; Nguyen, T.; Papastogiannidis, P.; Scheurer, C.; Shackleford, D. M.; Sriraghavan, K.; Stingelin, L.; Tang, Y. Q.; Urwyler, H.; Wang, X. F.; White, K. L.; Wittlin, S.; Zhou, L.; Vennerstrom, J. L. P Natl Acad Sci USA 2011, 108, 4400.
(107) O'Neill, P. M.; Amewu, R. K.; Nixon, G. L.; ElGarah, F. B.; Mungthin, M.; Chadwick, J.; Shone, A. E.; Vivas, L.; Lander, H.; Barton, V.; Muangnoicharoen, S.; Bray, P. G.; Davies, J.; Park, B. K.; Wittlin, S.; Brun, R.; Preschel, M.; Zhang, K. S.; Ward, S. A. Angew Chem Int Edit 2010, 49, 5693.
(108) Coulibaly, B.; Pritsch, M.; Bountogo, M.; Meissner, P. E.; Nebie, E.; Klose, C.; Kieser, M.; Berens-Riha, N.; Wieser, A.; Sirima, S. B.; Breitkreutz, J.; Schirmer, R. H.; Sie, A.; Mockenhaupt, F. P.; Drakeley, C.; Bousema, T.; Muller, O. J Infect Dis 2014.
(109) Coulibaly, B.; Zoungrana, A.; Mockenhaupt, F. P.; Schirmer, R. H.; Klose, C.; Mansmann, U.; Meissner, P. E.; Muller, O. Plos One 2009, 4.
(110) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H. P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175.
(111) Yeung, B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang, S. H.; Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E. K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E. A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T. T.; Keller, T. H. J Med Chem 2010, 53, 5155.
(112) Spillman, N. J.; Allen, R. J. W.; McNamara, C. W.; Yeung, B. K. S.; Winzeler, E. A.; Diagana, T. T.; Kirk, K. Cell Host Microbe 2013, 13, 227.
(113) White, N. J.; Pukrittayakamee, S.; Phyo, A. P.; Rueangweerayut, R.; Nosten, F.; Jittamala, P.; Jeeyapant, A.; Jain, J. P.; Lefevre, G.; Li, R. B.; Magnusson, B.; Diagana, T. T.; Leong, F. J. New Engl J Med 2014, 371, 403.
(114) Sridaran, S.; McClintock, S. K.; Syphard, L. M.; Herman, K. M.; Barnwell, J. W.; Udhayakumar, V. Malaria journal 2010, 9, 247.
(115) Sanchez, C. P.; Dave, A.; Stein, W. D.; Lanzer, M. Int J Parasitol 2010, 40, 1109.
(116) Guiguemde, W. A.; Shelat, A. A.; Garcia-Bustos, J. F.; Diagana, T. T.; Gamo, F. J.; Guy, R. K. Chem Biol 2012, 19, 116.
(117) Weisman, J. L.; Liou, A. P.; Shelat, A. A.; Cohen, F. E.; Guy, R. K.; DeRisi, J. L. Chem Biol Drug Des 2006, 67, 409.
(118) Tasanor, O.; Ernst, M.; Thriemer, K.; Ecker, G. F.; Noedl, H.; Chiba, P. Wien Klin Wochenschr 2007, 119, 83.
(119) Brana, M. F.; Rodriguez, M. L. L.; Moran, M. An Quim 1990, 86, 565.
(120) Gstach, H.; Chiba, P.; Mastalir, M. AU2013276702 (A1) 2012-06-13.
(121) Mastalir, M. Bachelor Thesis, University of Natural Resources and Life Sciences, Vienna 2011.
(122) Wood, R. D.; McLeod, R.; Mui, E.; Fomovska, A.; Welsh, W. US 2013/0324555 A1 2013-05-29.
(123) Pace, V.; Hoyos, P.; Sinisterra, J. V.; Alcantara, A. R.; Holzer, W. Synlett 2011, 1831.
(124) McClure, D. E.; Arison, B. H.; Baldwin, J. J. J Am Chem Soc 1979, 101, 3666.
(125) Lotharius, J.; Gamo-Benito, F. J.; Angulo-Barturen, I.; Clark, J.; Connelly, M.; FerrerBazaga, S.; Parkinson, T.; Viswanath, P.; Bandodkar, B.; Rautela, N.; Bharath, S.; Duffy, S.; Avery, V. M.; Mohrle, J. J.; Guy, R. K.; Wells, T. Malaria J 2014, 13.
(126) Walliker, D.; Quakyi, I. A.; Wellems, T. E.; Mccutchan, T. F.; Szarfman, A.; London, W. T.; Corcoran, L. M.; Burkot, T. R.; Carter, R. Science 1987, 236, 1661.
(127) Brana, M. F.; Lopez Rodriguez, M. L.; Moran, M. An. Quim. 1990, 86, 565.
(128) Peters, W. Annals of tropical medicine and parasitology 1975, 69, 155.
(129) Townsend-Nicholson, A.; Schofield, P. R. J Biol Chem 1994, 269, 2373.
(130) Karle, J. M.; Karle, I. L. Acta Crystallogr C 1992, 48, 1975.
(131) Silva, T. H. A.; Oliveira, A. B.; Dos Santos, H. F.; De Almeida, W. B. Struct Chem 2001, 12, 431.
(132) Hisaki, I.; Hiraishi, E.; Sasaki, T.; Orita, H.; Tsuzuki, S.; Tohnai, N.; Miyata, M. ChemAsian J 2012, 7, 2607.
(133) Ashley, E. A.; Stepniewska, K.; Lindegårdh, N.; Annerberg, A.; Kham, A.; Brockman, A.; Singhasivanon, P.; White, N. J.; Nosten, F. Trop Med Int Health 2007, 12, 195.
(134) Dank, C.; Kirchknopf, B.; Mastalir, M.; Kahlig, H.; Felsinger, S.; Roller, A.; Arion, V. B.; Gstach, H. Molecules 2015, 20, 1686.
(135) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J Org Chem 1997, 62, 7512.
(136) Pressprich, M. R.; Chambers, J. SAINT-Plus, version 7.06a and APEX2; Bruker-Nonius AXS Inc.: Madison, WI, USA, 2004.
(137) Sheldrick, G. M. Acta Crystallogr A 2008, 64, 112.
(138) Fidock, D. A.; Rosenthal, P. J.; Croft, S. L.; Brun, R.; Nwaka, S. Nat Rev Drug Discov 2004, 3, 509.
(139) Miret, S.; De Groene, E. M.; Klaffke, W. J Biomol Screen 2006, 11, 184.
(140) Asha, S.; Vidyavathi, M. Appl Biochem Biotech 2010, 160, 1699.
(141) Lee, I. Y.; Gruber, T. D.; Samuels, A.; Yun, M.; Nam, B.; Kang, M.; Crowley, K.; Winterroth, B.; Boshoff, H. I.; Barry, C. E. Bioorgan Med Chem 2013, 21, 114.
(142) Chang, D.; Huang, H. US2012/0232105 (A1) 2012-06-13.
(143) Waisser, K.; Hladuvkova, J.; Kunes, J.; Kubicova, L.; Klimesova, V.; Karajannis, P.; Kaustova, J. Chem Pap-Chem Zvesti 2001, 55, 121.
(144) Ciampa, G.; Grieco, C. Chim Ind-Milan 1966, 48, 748.
(145) Gonec, T.; Kos, J.; Zadrazilova, I.; Pesko, M.; Govender, R.; Keltosova, S.; Chambel, B.; Pereira, D.; Kollar, P.; Imramovsky, A.; O'Mahony, J.; Coffey, A.; Cizek, A.; Kralova, K.; Jampilek, J. Molecules 2013, 18, 9397.
(146) Senier, A.; Shepheard, F. G. J Chem Soc 1909, 95, 441.
(147) Gonec, T.; Kos, J.; Zadrazilova, I.; Pesko, M.; Keltosova, S.; Tengler, J.; Bobal, P.; Kollar, P.; Cizek, A.; Kralova, K.; Jampilek, J. Bioorgan Med Chem 2013, 21, 6531.
(148) Muto, S.; T., N.; Saotome, T.; Itai, A. EP1352650 (A1) 2003-10-15.
(149) SDBSWeb: http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology, d. o. a.
(150) Muto, S.; Itai, A. EP1510210 (A1) 2005-03-02.
(151) Yuan, M.; Li, J. M.; He, G. W.; Zhong, G. C.; Zhang, Y. C. Yao xue xue bao = Acta pharmaceutica Sinica 2013, 48, 874.
(152) Schraufstatter, E.; Gonnert, R.; Meiser, W. Z Naturforsch Pt B 1961, B 16, 95.
(153) Kang, S.; Min, H. J.; Kang, M. S.; Jung, M. G.; Kim, S. Bioorg Med Chem Lett 2013, 23, 1748.
(154) Waisser, K.; Bures, O.; Holy, P.; Kunes, J.; Oswald, R.; Jiraskova, L.; Pour, M.; Klimesova, V.; Kubicova, L.; Kaustova, J. Arch Pharm 2003, 336, 53.
(155) Zhu, Z. W.; Shi, L.; Ruan, X. M.; Yang, Y.; Li, H. Q.; Xu, S. P.; Zhu, H. L. J Enzym Inhib Med Ch 2011, 26, 37.
(156) Waisser, K.; Pesina, M.; Holy, P.; Pour, M.; Bures, O.; Kunes, J.; Klimesova, V.; Buchta, V.; Kubanova, P.; Kaustova, J. Arch Pharm 2003, 336, 322.
(157) Kral'ova, K.; Sersen, F.; Pesko, M.; Waisser, K.; Kubicova, L. Chem Pap 2014, 68, 46.
(158) Kuhnt, D.; Haug, M.; Jelich, K.; Stenzel, K.; Dehne, H. W.; Hänszler, G.; WachendorffNeumann, U.; Erdelen, C.; Kugler, M.; Schrage, H. DE4428380 (A1) 1996-02-15.
(159) Kulkarni, V. M.; Achhra, C. V. Eur J Med Chem 1982, 17, 93.
(160) Vattipalli, R.; Shirodkar, P. Y.; Somani, R. R.; Kadam, V. J. Indian J Chem B 2008, 47, 1587.

Curriculum Vitae

Personal Data

Name:
Date of Birth
Place of Birth:
Citizenship:

School and Education

August/2013
March/2013

January/2013

October/2012

April/2011

May/2011

December/2009
Oct/2004-Sep/2005

October/2005
October/2004
Sep/1996 - June/2004
Sep/1996 - June/2000

Christian Dank, MSc
January $\mathrm{B}^{\text {th }}, 1986$
Oberpullendorf, Burgenland, Austria
Austria

Setting up a company for production of food
Immatriculation at Vienna University of Economics and Business for the Bachelor program in Business Administration

Beginning with doctoral thesis "New Antiinfective Agents" under supervision of Dr. Hubert Gstach and Prof. Dr. Walther Schmid

Obtaining the academic degree „Master of Science" (MSc) at the university of Vienna

Beginning with master's thesis "Concise and flexible synthesis of the five-membered ring synthon of highly oxygenated jatrophane diterpenes" under supervision of Prof. Dr. Johann Mulzer

Obtaining the academic degree „Bachelor of Science" (BSc) at the university of Vienna after a change of the curriculum

End of the first study section
Community service in the hospital "Barmherzige Brüder" in Eisenstadt, Austria

Start of diploma study in chemistry, University of Vienna
Matriculation
"Oberstufenrealgymnasium Oberpullendorf"
"Gymnasium und Realgymnasium Oberpullendorf"

Publications

Dank, C.; Kirchknopf, B.; Mastalir, M.; Kählig, H.; Felsinger, S.; Roller, A.; Arion, V.B.; Gstach, H. Hybrids of Salicylalkylamides and Mannich Bases: Control of the Amide Conformation by Hydrogen Bonding in Solution and in the Solid State. Molecules 2015, 20, 1686-1711.

Presentations at Conferences

$14^{\text {th }}$ Austrian Chemistry Days: Towards the Total Synthesis of Euphosalicin: Synthesis of the Important 5-Membered Ring Fragment - Poster presentation

Abstract

Despite its big role in history, nearly half of the world's population is estimated to be at risk of malaria at the present day. World Health Organization (WHO) estimates that 207 million cases of malaria occurred globally in 2012 and estimates that 627,000 deaths are attributable to malaria. There is still a long way to go until malaria will be eradicated and a vast number of medications became useless due to development of resistances. Therefore, new antimalarial agents are still much in demand.

Within this thesis, a structure-activity relationship of amidophenoxypropanolamines, which were primordially derived from the antiarrhythmic agent propafenone, is presented. Among them are a vast number of highly active compounds, more active than lumefantrine and artesunate. Furthermore, mice infected with Plasmodium berghei were cured with compounds synthesized in the course of this thesis. This proves the drug-likeness featured by the presented compounds. In addition, cytotoxicity, receptor binding, genetic toxicity and cardiac toxicity assays were performed, stating that the tested class of compounds may serve as a rich source for serious drug candidates.

Structural elucidation with crystallographic structure analysis and methods of nuclear magnetic resonance (NMR) spectroscopy revealed an intriguing intramolecular network of hydrogen bonds in these aminoalcohols is responsible for the antimalarial activity.

Zusammenfassung

Die Tropenkrankheit Malaria spielte eine große und einflussreiche Rolle in der Geschichte der Menschheit. Noch am heutigen Tag ist beinahe die halbe Weltbevölkerung gefährdet, mit Malaria infiziert zu werden. Nach Schätzungen der Weltgesundheitsorganisation (WHO) gab es im Jahr 2012 noch 207 Millionen Fälle von Malariainfektionen mit 627.000 Todesopfern. Nachdem die vollständige Ausrottung von Malaria in weiter Ferne scheint und eine Vielzahl von eingeführten Medikamenten durch Resistenzentwicklung der Parasiten unbrauchbar wurde, ist die Entwicklung neuer Wirkstoffe mit neuen Wirkmechanismen und verbesserten pharmakologischen Profilen ein Gebot der Stunde.

Synthese und Ableitung einer Struktur-Wirkungsbeziehung von Amidophenoxypropanolaminen, deren Struktur ursprünglich vom Antiarrhythmikum Propafenon abgeleitet wurde, ist Gegenstand dieser Dissertation. Unter den synthetisierten Verbindungen befindet sich eine Vielzahl hochaktiver Verbindungen, die aktiver als Lumefantrin und Artesunat sind. Darüber hinaus konnte die Tauglichkeit der synthetisierten Derivate in Tierversuchen durch die vollständige Heilung von mit Plasmodium berghei infizierten Mäusen gezeigt werden. Zusätzlich wurde durch eine Reihe von Assays (Zytotoxizität, Ligandenbindungstests, Ames-Test, Kardiotoxizitätstests) gezeigt, dass die präsentierte Verbindungsklasse eine reichhaltige Quelle für potenzielle Wirkstoffe darstellen kann.

Strukturaufklärung an ausgewählten Verbindungen mit Hilfe von Kristallstrukturanalysen und Methoden der Kernspinresonanzspektroskopie enthüllten ein neuartiges Netzwerk von kooperativen Wasserstoffbrückenbindungen in den präsentierten Aminoalkoholen, dessen Integrität direkt mit der Antimalaria-Aktivität verknüpft ist.

