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Abstract
In order for initial data to evolve to solutions of Einstein’s equations, constraint equa-
tions have to be satisfied. In this thesis, we make use of the “conformal method” of con-
structing solutions to the constraints. This leads to the Lichnerowicz equation, whose
solutions determine the required conformal transformation. We consider data with pos-
itive cosmological constant. We restrict ourselves to axially symmetric and so-called
(t, ϕ)-symmetric data, for which there is a natural definition of angular momentum.

Using theorems by Hebey, Pacard and Pollack we calculate bounds for this angular
momentum required for existence or non-existence of solutions. We also consider a recent
theorem by Premoselli which gives the most efficient results on this issue. We first apply
these general theorems to rotational Bowen-York data on the time-symmetric slice of
the Nariai metric as background. Lastly we apply Premoselli’s theorem to a background
given by the maximal slice of the Kerr-de Sitter spacetime. In particular we construct
data by scaling the extrinsic curvature of this slice suitably, which allows "overspinning"
of Kerr-de Sitter in a certain sense.
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Zusammenfassung
Damit Anfangsdaten zu Lösungen der Einsteingleichungen evolvieren, müssen Zwangs-
bedingungen erfüllt sein. In dieser Arbeit benutzen wir die "konforme Methode" um
Lösungen dieser Zwangsbedingungen zu konstruieren. Dies führt zur Lichnerowicz Glei-
chung, deren Lösungen die verlangte konforme Transformation lieferen. Wir betrachten
Daten mit positiver kosmologischer Konstante. Wir beschränken uns auf axialsym-
metrische und sogenannte (t, ϕ)-symmetrische Daten, für die es eine natürliche Defi-
nition des Drehimpulses gibt.

Unter Verwendung von Theoremen von Hebey, Pacard und Pollack berechnen wir
Schranken für diesen Drehimpuls, die die Existenz bzw. die Nichtexistenz von Lösungen
garantieren. Wir betrachten auch ein vor kurzem von Premoselli bewiesenes Theorem,
das die effizientesten Resultate zu diesem Thema liefert. Wir wenden diese allgemeinen
Theoreme zuerst auf rotierende Bowen-York Daten auf einem zeitsymmetrischen Schnitt
der Nariai Metrik als Hintergrund an. Letztendlich wenden wir Premosellis Theorem auf
einen maximalen Schnitt der Kerr-de Sitter Raumzeit an. Insbesondere konstruieren
wir Daten indem wir die äußere Krümmung dieses Schnittes geeigent skalieren, was in
gewissem Sinn ein "overspinning" von Kerr-de Sitter erlaubt.
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CHAPTER 1. INTRODUCTION

1 Introduction

1.1 The initial value problem with cosmological constant

1.1.1 The basic setup
The framework of this thesis is the initial value problem for the vacuum Einstein equa-
tions with positive cosmological constant Λ

G̃αβ = −Λh̃αβ (1.1)

on a smooth 4-dimensional manifold (Ñ , h̃αβ). Here Greek indices take values from 0
to 3, and the metric has signature (−1, 1, 1, 1). We use units in which the gravitational
constant G and the speed of light c are equal to 1. This entails that the components
h̃αβ of the metric are dimensionless and the cosmological constant has dimension [L−2]
(inverse length squared). We are in particular interested in constructing initial data
which "rotate" in a sense explained below.
In order for the initial value problem to have at least short-time solutions, the con-

straint equations

R̃ + K̃2 − K̃ijK̃
ij = 2Λ, (1.2)

D̃iK̃ij − D̃jK̃ = 0. (1.3)

have to be satisfied for the initial data (M̃, g̃ij, K̃ij) [9, 15] (Latin indices take the
values 1, 2, 3). The initial data consist of a smooth 3-manifold M̃ with metric g̃ij,
corresponding covariant derivative D̃i and scalar curvature R̃, extrinsic curvature K̃ij

and mean curvature K̃. In most of this work (and unless stated otherwise) we take M̃
to be compact and without boundary.
Below (in Sect. 1.1.2) we first review the well-known conformal method of solving

the constraints. We then proceed in Sect. 1.1.3 by sketching the difficulties in solving
the Lichnerowicz equation with positive Λ. In particular we mention the existence and
non-existence results by Hebey [13, 14], and the breakthrough on this problem achieved
very recently by Premoselli [20]. In Sect. 1.2 we briefly describe the achievements of the
present thesis, which mainly consist of applications of the above-mentioned results.

1.1.2 The conformal method
The most common procedure of obtaining solutions to the constraints is the conformal
method [9, 15] which is just sketched in this subsection but recalled in Sect. 2.1 in some

1



1.1. THE INITIAL VALUE PROBLEM WITH COSMOLOGICAL CONSTANT

detail. We consider here a well-known ansatz for solving the momentum constraint
(1.3), namely the so-called (t, ϕ)-symmetric data [2] which describe a rather general
class of axially symmetric, rotating solutions. We recall their construction in Sect.
2.2. In this setting, we have a "background" manifold (M, gij, Kij) with metric gij and
a certain divergence-free and trace-free tensor Kij. Then, for any smooth conformal
transformation φ > 0

g̃ij = φ4gij K̃ij = φ−2Kij (1.4)

the momentum constraint (1.3) is satisfied. In order for (M̃, g̃ij, K̃ij) to satisfy the
Hamiltonian constraint (1.2) as well, it remains to solve the Lichnerowicz equation

(
∆g −

R

8

)
φ = − Σ2

8φ7 −
Λ
4 φ

5, (1.5)

where Σ2 = KijKij. Unless stated otherwise, we always understand by a "solution" a
smooth, positive solution of (1.5) on a compact background manifold. The exceptions
which will be discussed for comparison (in Sect. 2.3) are well-known solutions with
“punctures” (singularities) on asymptotically flat manifolds.

1.1.3 Solving the Lichnerowicz equation
As mentioned already, there are specific problems with solving (1.5) for Λ > 0 which
we expose here briefly. In particular, given (M, gij), solutions cannot exist for large
momenta Σ as the following heuristic argument shows. Assuming existence, φ must
have a minimum somewhere, as it is a smooth function on a compact manifold. Using
∆φ|min ≥ 0 in (1.5), a necessary condition for existence is now that R is positive at
this minimum; a more efficient (still necessary) criterion is that the Yamabe constant
(cf. Sect. 3) of M is positive. However, this is clearly not sufficient: The rhs must not
become “too negative”. Increasing now Σ, the first term in (1.5) would blow up unless
φmin increases correspondingly, but in this case the second term blows up.
For small Σ, however, simple arguments along these lines are inconclusive regarding

existence and non-existence, and the problem is subtle. The first rather general exis-
tence and non-existence results for this case are due to Hebey, Pacard and Pollack [13].
Roughly speaking, they showed that there exist solutions if

∫
M Σ2 is small and no so-

lutions if
∫
M Σ5/6 is large. As published, the results require Σ > 0. This makes them

unsuitable for axially symmetric data for which Σ “typically” (i.e. in all examples we are
aware of, in particular the ones of Sect. 4) vanishes on the axis. However, the required
extension to non-negative Σ is available in Hebey’s IAS lecture notes [14]. Still, the
results of [13, 14] are not optimal in the sense that there is a “Σ-gap”, i.e. a domain of
Σ which is not covered.
The breakthrough for this problem came very recently with the work of Premoselli

[20]. In his work, Σ is split as Σ = b Σ0 for some constant b and a function Σ0.
Keeping now Σ0 fixed and changing b, Premoselli’s main theorem asserts the existence
of a characteristic value b? such that there are at least two solutions for b < b?, precisely
one solution for b = b? and no solutions for b > b?. Important concepts which play a role

2



CHAPTER 1. INTRODUCTION

in Premoselli’s work are the notions of “minimality” and “stability” of solutions (and
of the data generated) under conformal deformations. In particular, for b < b? there is
always a unique stable, minimal solution. Stability of solutions will be a key tool in the
analysis of the KdS example in Sect. 4.2.2.

1.2 Achievements of this thesis

We first elaborate the existence and non-existence criteria of Hebey et al. [14, 13]
in the special case where the compact seed manifold M has constant curvature. We
obtain bounds which depend on this curvature as well as on the volume and the Yamabe
constant of M . We then restrict ourselves further to seed manifolds of topology S2 × S
and we elaborate two classes of examples. Most of the results of this thesis are published
in [4]; however, some results are only announced in this paper. The present exposition
provides the required supplementary material and further observations.

1.2.1 Bowen-York data

Our first class of examples is called “Bowen-York data” [5, 3] as it is inspired by the
synonymous ten-parameter family of solutions of (1.3) in flat space. These data consist
of a 3-parameter family of boosted black holes, a 3-parameter family of rotating black
holes, while the physical significance of the remaining ones is less clear. We now focus
on the “rotating” family which we carry over to the "round" S2 × S. In this setting the
Lichnerowicz equation (1.5) has two O(2)-symmetries, an “axial” and a “toroidal” one,
acting on S2 and S, respectively. Corresponding to the axial symmetry we can consider
the (“Komar”-) angular momentum. As to obtaining solutions of (1.5), we first (in
Sect. 4.1) apply the results of Hebey et al. [14, 13] which gives an upper bound on JΛ
as sufficient condition for existence, and a lower bound as sufficient condition for non-
existence, with the expected gap in between. We then (in Sect. 4.2) use the results of
Premoselli [20], together with some numerics carried out in [4], to obtain the following
structure of the axially symmetric solutions in terms of the dimensionless bifurcation
parameter b = 3ΛJ/2: For each value of 0 ≤ b < b∗ ≈ 0.238 we obtain precisely two
solutions φs and φu, which respect both the axial as well as the toroidal symmetry of the
background, and which behave “stably” and “unstably” under conformal deformations.
At b = b∗ these branches coincide at a unique marginally stable solution, while at
b = 0 the “stable” branch terminates at φ ≡ 0, and the “unstable” solution reduces to
φ ≡ 1. Moreover, from the unstable branch, there bifurcate in general other branches of
solutions which break the toroidal symmetry of the background. The number of these
branches depends of the circumference of the S-direction of the background metric. At
b = 0 they reduce to time-symmetric data for the Kottler (Schwarzschild-de Sitter)
family of solutions. We conjecture that there are no solutions which break the axial
symmetry of the background and of the Lichnerowicz equation.
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1.2. ACHIEVEMENTS OF THIS THESIS

1.2.2 “overspinning” Kerr de Sitter data
As the second class of examples, we consider as seed manifold a maximal slice of the
Kerr-de Sitter (KdS) spacetime, which represents stationary, axisymmetric black holes
with angular momentum J and a mass (-parameter) m. We consider the problem of
constructing data for dynamic (non-stationary) black holes by rescaling the KdS angular
momentum (defined from Kij) to a value Ĵ different from the one corresponding to
the parameters of the background. Turning to the Lichnerowicz equation, Premoselli’s
theorem [20] now immediately implies that solutions exist for all 0 ≤ Ĵ ≤ J . More
interestingly, we can show that solutions also exist for Ĵ > J provided both J and |Ĵ−J |
are small enough. Hence KdS can be “overspun” in this sense. The key to obtaining this
subtle result is the “instability” property of the KdS data under conformal deformations.
Together with Premoselli’s theorem, this observation also allows us to conclude that
there must be “stable” data as well, conformal to the given KdS ones and with the same
angular momentum.
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CHAPTER 2. THE LICHNEROWICZ EQUATION WITH BOWEN-YORK DATA

2 The Lichnerowicz equation with
Bowen-York data

2.1 The Lichnerowicz equation
We start here with recalling key steps of the well-known conformal method for solving
the constraints (1.2) and (1.3) cf. e.g. [9, 15]. Up to formula (2.16) we keep the
space dimension n arbitrary. We assume that the trace of K̃ is constant. This reduces
the constraint equation (1.3) to

D̃iK̃ij = 0. (2.1)
For some prescribed metric gij, we will obtain a solution of the constraints by multi-

plying with a power of a smooth, positive function φ

gij = φlg̃ij, (2.2)
where l ∈ R will be fixed shortly.
This relation between the metrics implies the following relation between the corre-

sponding Christoffel symbols

Γijk = Γ̃ijk + l

2φ(δik∂jφ+ δij∂kφ− g̃jkD̃iφ), (2.3)

and for a given trace-free symmetric tensor field Lij

DiL
ij = ∂iL

ij + ΓiikLkj + ΓjikLik (2.4)
= D̃iL

ij + (Γiik − Γ̃iik)Lkj + (Γjik − Γ̃jik)Lik. (2.5)

Inserting (2.3) we obtain the relation

DiL
ij = D̃iL

ij + (n+ 2)l
2φ ∂kφL

kj (2.6)

= φ−(n+2)l/2D̃i

(
φ(n+2)l/2Lij

)
. (2.7)

From this equation it is obvious that if our given tensor Lij is g-divergence free then

D̃i

(
φ(n+2)l/2Lij

)
= 0. (2.8)

5



2.1. THE LICHNEROWICZ EQUATION

We can now set

L̃ij := φ(n+2)l/2Lij, (2.9)

which implies that

DiL
ij = 0 <=> D̃iL̃

ij = 0. (2.10)

So by giving a symmetric, trace-free, and g-divergence free tensor Lij and multiplying
with a conformal factor we get a tensor which satisfies the constraint (2.1). This
property extends to Kij when its trace τ is required to be constant:

K̃ij := L̃ij + τ

n
g̃ij. (2.11)

To fix a convenient value of l we consider the relation between the Ricci scalars R, R̃
of the metrics gij and g̃ij:

R̃φ−l = R + (n− 1)l
φ

∆gφ+ (n− 1)l[(n− 2)l + 4]
4φ2 |dφ|2g. (2.12)

The optimal choice for l is

l = − 4
n− 2 (2.13)

since the last term vanishes, and we are left with the simple formula

R̃φ4/(n−2) = R− 4(n− 1)
(n− 2)φ∆gφ. (2.14)

We now apply definitions (2.9) and (2.11) to the terms in our constraint equation
(1.2)

K̃abK̃
ab − K̃2 = g̃ikg̃jl

(
L̃ij + τ

n
g̃ij
)(

L̃kl + τ

n
g̃kl
)
− τ 2 (2.15)

= φnl|L|2g −
n− 1
n

τ 2. (2.16)

For the rest of chapter 2, we restrict ourselves to dimension n = 3. Combining
equations (1.2), (2.16) and (2.14) we obtain

∆gφ−
R

8 φ = −L
ijLij
8φ7 +

(
τ 2

12 −
Λ
4

)
φ5, (2.17)

This equation is known as the Lichnerowicz equation.

From now on we set τ = 0 so that we have a trace-free K̃ij. This simplifies the
equation to

6



CHAPTER 2. THE LICHNEROWICZ EQUATION WITH BOWEN-YORK DATA

(
∆g −

R

8

)
φ = −K

ijKij

8φ7 − Λ
4 φ

5 (2.18)

which is the form mentioned before, cf. (1.5). The transformations (2.2) and (2.9)
now take the form

g̃ij = φ4gij, (2.19)
K̃ij = φ−10Kij. (2.20)

2.2 (t, ϕ)-symmetric data
We now describe the construction of the so-called (t, ϕ)-symmetric class of data. The
terminology goes back to perfect fluid data [2] and indicates that the evolved spacetimes
are invariant under simultaneous reversal of time and spin. In the following description
we follow in essence [11] (see also [12]). The point is to construct a special class of trace-
free, divergence-free extrinsic curvatures Kij from a rather general class of functions ω.
We start from an axially symmetric metric gij; this means that there is a Killing vector
ηi

Diηj +Djηi = 0 (2.21)
with closed orbits and zeros aligned along a curve ("axis"). Moreover, we assume η to

be hypersurface orthogonal

εijkη
iDjηk = 0. (2.22)

We next choose some axially symmetric function ω, i.e. its Lie derivative with respect
to ηi vanishes

£ηω = 0. (2.23)
From ω we define a vector field

Si = 1
η
εijkηbDcω. (2.24)

Here η = ηiηjgij, εijk is totally antisymmetric with ε123 = 1, and εijk is the volume
form

εijk =
√
|det(g)|εijk, (2.25)

εijk = 1√
|det(g)|

εijk. (2.26)

Using (2.21) and (2.23) it follows for Si that

7



2.2. (T, ϕ)-SYMMETRIC DATA

£ηS
i = 0, (2.27)

Siηi = 0, (2.28)
DiS

i = 0. (2.29)

We can now define the tensor Kij based on this vector field

Kij = 2
η
S(iηj) = 2

η2η
(iεj)klηkDlω. (2.30)

We require that Kij is smooth everywhere, in particular on the axis, which poses a
restriction on ω. The resultingKij is now easily seen to be trace-free and divergence-free.
For the Lichnerowicz equation (2.18) we need KijKij which takes the form

KijKij = 2DiωD
iω

η2 . (2.31)

We mention here the following relation to the axially symmetric spacetime (Ñ , h̃αβ)
which can be constructed out of the data (gij, Kij) defined above. Denoting the space-
time Killing vector by ζ̃α, the spacetime volume form by ε̃αβγδ and covariant derivative
by ∇̃α we can define the twist vector

ω̃α = −1
2 ε̃αβγδ ζ̃

β∇̃γ ζ̃δ. (2.32)

Now Einstein’s equations (1.1) imply that ω̃α is curl-free, i.e. ∇̃[αω̃β] = 0. On a
simply connected domain, it follows that there exists a potential ω̃, defined up to a
constant by

ω̃α = ∂

∂α
ω̃. (2.33)

It can be shown that the restriction of this ω̃ to the initial surface M̃ agrees with the
function ω from which the data were constructed, if the additive constants are adapted.
This justifies the notation.

We can introduce coordinates (r, θ, ϕ) adapted to the hypersurface orthogonal axial
symmetry such that the metric takes the form

g = e−2q
(
dr2 + r2dθ2

)
+ r2 sin2 θdϕ2 (2.34)

with q satisfying

∂ϕq = 0. (2.35)
Our Killing vector is therefore ηi = (∂/∂ϕ) which gives us η = r2 sin2 θ. For the

KijKij-term in (2.18) we obtain from (2.31)

8



CHAPTER 2. THE LICHNEROWICZ EQUATION WITH BOWEN-YORK DATA

KijKij

8φ7 = DiωD
iω

4φ7η2 (2.36)

= e2q (r∂rω)2 + (∂θω)2

4r6 sin4 θφ7 . (2.37)

If ω is chosen such that Kij is regular, its derivatives in the numerator of (2.37) have
to cancel the singular denominator 1/ sin4 θ. This will be explicit in the examples below.

We summarize the construction of the data described above as follows:

1. Choose an ω and check Kij defined by (2.30) for regularity.

2. Use ω to calculate KijKij via (2.37).

3. Solve the Lichnerowicz equation (2.18) to obtain the conformal factor φ .

4. Apply φ to (2.19) and (2.20) to get the desired initial data set (M̃, g̃ij, K̃ij)

We now recall the "Komar-" angular momentum J defined for a two-surface S:

J = − 1
8π

∫
S
Kijη

jdSi. (2.38)

Since the integrand is divergence-free, the integral does not depend on the surface S
within a homology class. Moreover, the above expression is conformally invariant. We
can also write (2.38) as

J = − 1
8π

∫
S
Sin

idS. (2.39)

A simple calculation in adapted coordinates [12] gives still another equivalent expres-
sion for J , namely

J = 1
4 (ω(r, θ = π)− ω(r, θ = 0)) , (2.40)

which only involves the values of ω at the poles.

2.3 Bowen-York on flat space
In this and the next section we recall and extend the so-called Bowen-York class of
data [5, 3]. The simplest example for the conformal method is the construction of time-
symmetric Schwarzschild data from the flat background metric

g = dr2 + r2dΩ2. (2.41)

9



2.3. BOWEN-YORK ON FLAT SPACE

Setting Kij = Λ = R = 0 the Lichnerowicz equation (2.18) reduces to

∆gφ = 0. (2.42)

Clearly the flat metric itself satisfies the vacuum constraint equations, so φ = 1 is
an expected result. By the maximum principle, this is the unique result if we restrict
ourselves to smooth data which satisfy the asymptotic condition

lim
r→∞

φ = 1. (2.43)

To obtain the Schwarzschild metric we require the singular boundary condition

lim
r→0

rφ = m

2 . (2.44)

The unique solution for (2.42) in this case is

φ = 1 + m

2r . (2.45)

Applying the coordinate transformation

r′ = r
(

1 + m

2r

)2
(2.46)

to these "isotropic coordinates" we obtain

g̃ = φ4g (2.47)

=
(

1 + m

2r

)4 (
dr2 + r2dΩ2

)
(2.48)

=
(

1
1− 2m

r′

)
dr′2 + r′2dθ2 + r′2 sin2 θdϕ2, (2.49)

which are the time-symmetric Schwarzschild data in standard coordinates.

We now consider more general extrinsic curvatures, still on a flat background, and
with the aim of constructing data with Λ = 0. Then the corresponding momentum
constraint and the Lichnerowicz equation (2.18) read

DiK
ij = 0 (2.50)

∆φ = −K
ijKij

8φ7 (2.51)

where ∆ and Di now refer to the flat metric. According to [5, 3] there exist solutions
of (2.50) which take the form

10



CHAPTER 2. THE LICHNEROWICZ EQUATION WITH BOWEN-YORK DATA

Kij = 3
2r2 [Pinj + Pjni − (δij − ninj)P ini)] (2.52)

Kij = 6
r3 εkl(iJ

knlnj) (2.53)

Kij = C

r3 (3ninj − δij) (2.54)

Kij = 3
2r4 [−Qinj −Qjni − (δij − 5ninj)Qini], (2.55)

which are known as the Bowen-York solutions. Here ni is the radial unit vector
ni = xi/r, δij is the Kronecker delta function, C is a constant, and Pi, Si and Qi are
constant vectors when referred to Cartesian coordinates.
The simplest case is (2.54). In this case the Lichnerowicz equation becomes

∆φ = −K
ijKij

8φ7 = − 3C2

4r6φ7 . (2.56)

which can be solved under the same regularity and boundary conditions as above,
namely (2.43) and (2.44).
Since the resulting solutions will be spherically symmetric, the constructed spacetimes

will, by Birkhoff’s theorem, still be members of the Schwarzschild family, constructed
via non-time-symmetric data.
Before turning to the other members of the Bowen-York family, we ask if the above

data (2.54) are in the (t, ϕ)-symmetric class considered in Sect. 2.2; In order to check
this, we recall (2.37) and solve

KijKij = 2 [(r∂rω1)2 + (∂θω1)2]
r6 sin4 θ

= 6C2

r6 (2.57)

for ω1, which works indeed:

ω1 =
√

3C
4 (2θ − sin(2θ)). (2.58)

Therefore, it seems that the constant C can be related to the angular momentum
(2.40).
Nevertheless, this interpretation fails as the extrinsic curvature Kij constructed from

ω1 via (2.30) is not regular on the axis. To see this explicitly we use Cartesian coordi-
nates since polar coordinates degenerate on the axis themselves. We have

r =
√
x2 + y2 + z2, (2.59)

θ = arccos
(
z

r

)
, (2.60)

ϕ = arctan
(
y

x

)
. (2.61)

11



2.3. BOWEN-YORK ON FLAT SPACE

For our Killing vector this means

ηi = (0, 0, 1)T −→ ηi = (−y, x, 0)T , (2.62)
η = r2 sin2 θ −→ η = x2 + y2, (2.63)

and ω1 is given by

ω1 =
√

3C
4 [2θ − sin(2θ)] =

√
3C
4

[
2 arccos

(
z

r

)
− sin

(
2 arccos

(
z

r

))]
. (2.64)

Applying (2.24) with the flat metric we get

Sx = 1
η
εxyzηyDzω1 = −

√
3Cx
√
x2 + y2

r4 , (2.65)

Sy = 1
η
εyxzηxDzω1 = −

√
3Cy
√
x2 + y2

r4 , (2.66)

Sz = 1
η

(εzxyηxDyω1 + εzyxηyDxω1) =
√

3Cz
√
x2 + y2

r4 . (2.67)

Inserting these formulas into (2.30) gives

Kxx = 4
√

3Cxy√
x2 + y2r4 ; Kyy = 4

√
3Cxy√

x2 + y2r4 ; Kzz = 0 (2.68)

Kxz = 2
√

3Czy√
x2 + y2r4 ; Kyz = − 2

√
3Czx√

x2 + y2r4 ; Kxy = −2
√

3C
√
x2 + y2

r4 . (2.69)

Considering the poles via lim(x,y)→0 we have no problems for Kxx, Kyy, Kzz and Kxy

but discover singularities for Kxz and Kyz. We conclude that ω1 does not generate reg-
ular data, and hence the data (2.54) are not (t, ϕ)-symmetric.

We next turn to (2.52). The constant Pi can be interpreted as "boost"; in particular,
a boosted Schwarzschild black hole is obtained as follows. We insert (2.52) in (2.51)
which gives

∆gφ = − 9
16r4

P 2 + 2(P ini)2

φ7 . (2.70)

Then we solve this equation with the ansatz

φ = 1 + m

2r + ψ (2.71)

with a ψ that vanishes at r = ∞ and is smooth near r = 0. Using the methods of
[5, 3] it can be proven that there exists a unique positive solution.

12



CHAPTER 2. THE LICHNEROWICZ EQUATION WITH BOWEN-YORK DATA

Considering finally (2.53), we first show that these data fall into the class of (t, ϕ)-
symmetric data considered in the previous section, with angular momentum Ji = (0, 0, J)
in Cartesian coordinates. In fact combining (2.53) with definition (2.30) and (2.40)
and switching to polar coordinates, the generating function ω is of the form [11]

ωBY = J(cos3 θ − 3 cos θ). (2.72)
In these coordinates, the only non-vanishing component of Kij is

Krϕ = 1
η2η

ϕεrϕθηϕDθω = −3J
r4 (2.73)

Krϕ = −3J sin2 θ

r2 (2.74)

From this we get

KijKij

8φ7 = KrϕKrϕ

4φ7 = (2.75)

= 9 sin2 θJ2

4r6φ7 . (2.76)

As desired we got rid of the 1/ sin4 θ term. We now check in detail that the extrinsic
curvature generated from ωBY (2.72) is regular. Switching back to Cartesian coordinates
we find

ωBY = J
[
cos3 θ − 3 cos θ

]
= J

[(
z

r

)3
− 3

(
z

r

)]
. (2.77)

Using formula (2.24) we get

Sx = 1
η
εxyzηyDzωBY = −3Jx(x2 + y2)

r5 , (2.78)

Sy = 1
η
εyxzηxDzωBY = −3Jy(x2 + y2)

r5 , (2.79)

Sz = 1
η

(εzxyηxDyωBY + εzyxηyDxωBY ) = −3Jz(x2 + y2)
r5 . (2.80)

Inserting again into (2.30) gives

Kxx = 6Jxy
r5 ; Kyy = −6Jxy

r5 ; Kzz = 0 (2.81)

Kxz = 3Jyz
r5 ; Kyz = −3Jxz

r5 ; Kxy = 3J(−x2 + y2)
r5 . (2.82)

None of these expressions have singularities at the poles lim(x,y)→0, hence (2.53) indeed
corresponds to (t, ϕ)-symmetric data with angular momentum Ji generated by ωBY .
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2.4. BOWEN-YORK ON NARIAI

2.4 Bowen-York on Nariai
We are now going to introduce a new data set via a conformal transformation of the flat
metric

g = φ4(dr2 + r2dΩ2), (2.83)
with

φ4 = 1
Λr2 , (2.84)

where Λ is a constant which will be interpreted "cosmologically" below. Since (2.84) is
singular at r = 0, the resulting metric (2.83) is only locally conformally flat. Applying
the coordinate transformation

r = eψ (2.85)
we obtain

g = 1
Λ(dψ2 + dΩ2). (2.86)

Identifying ψ periodically with period a (for an arbitrary constant a) (2.86) becomes
the round metric on S×S2 in standard form. The manifold then has Ricci scalar R = 2Λ
and volume V = 4πa/Λ3/2. For short, we call it "Nariai" henceforth since it is the time-
symmetric slice of the Nariai spacetime [18].

Our aim is now to carry over the Bowen-York method, which sets out from a flat
background and constructs data with Λ = 0, to construct data with Λ > 0, starting
from the Nariai background (2.86).
We first note that, by local conformal flatness, to every solution of the momentum

constraint (2.1) on a flat background, there exists an equivalent solution on the Nar-
iai background. A complete analysis of the case (2.54) which leads to KijKij only
depending on ψ can be found in [8].
Analogously to the situation on the flat background, the resulting solutions will be

spherically symmetric. Therefore, the constructed spacetimes will, by Birkhoff’s the-
orem, be members of the Schwarzschild-de Sitter family, constructed via non-time-
symmetric data.
From now onwards we restrict ourselves to the rotational case, i.e. to (2.53), which

will again be interpreted as (t, ϕ)-symmetric data.
In particular, considering the generating function (2.72) on the background (2.86),

we obtain

Kψϕ = 1
η2η

ϕεψϕθηϕDθω = −3JΛ5/2 (2.87)

Kψϕ = −3JΛ1/2 sin2 θ (2.88)

14



CHAPTER 2. THE LICHNEROWICZ EQUATION WITH BOWEN-YORK DATA

as the only non-vanishing term. Alternatively, we can get (2.88) directly from (2.74)
via a conformal transformation Kψϕ = φ−2Krϕ

∂r
∂ψ

, using (2.84) and the coordinate
transformation (2.85).

As a third alternative, we can adapt the Bowen-York expression (2.53) which now
takes the form

Kij = 6Λ3/2εkl(iJ
knlnj), (2.89)

where the vector J i reads Λ1/2J(cos θ, sin θ, 0).

Finally, there is yet a fourth way of constructing the data (2.88). For any two
orthogonal Killing vectors ηi and ξj we define the trace-free tensor

Kij = cη(iξj), (2.90)

where c is a constant. This tensor is also divergence free:

Di(cη(iξj)) = c(ξjDiηi + ηiD
iξj + ξiD

iηj + ηjD
iξi) (2.91)

= c(ξjDiηi − ηiDjξi − ξiDjηi + ηjD
iξi) (2.92)

= c(ξjDiηi + ξiD
jηi + ηiD

jξi + ηjD
iξi) (2.93)

= 0. (2.94)

Considering now the Killing vectors

ηi = (∂/∂ϕ) (2.95)
ξj = (∂/∂ψ) (2.96)

on the Nariai background, we see that (2.90) agrees with (2.88) when we set

c = −3JΛ5/2. (2.97)

From (2.88) we can calculate

KijKij = 2KψϕKψϕ = 18J2Λ3 sin2 θ. (2.98)

which will be used in Sect. 4.1.3.
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3 The Yamabe Constant
An important quantity characterizing compact Riemannian manifolds which will be used
below is the Yamabe constant. In the next subsection we recall its definition and its
properties, following in essence [17]. Then in Sect. 3.2 we apply it to the Nariai metric.

3.1 General properties
First we recall equation (2.14) which for n = 3 looks like

R̃φ5 = Rφ− 8∆gφ. (3.1)

The "Yamabe problem" consists of obtaining a metric with constant Ricci scalar R̃ via
a conformal transformation. We rewrite (3.1) as a non-linear eigenvalue problem which
is known as the Yamabe equation

�φ = −λφ5, (3.2)

with

� = 8∆g −R (3.3)

Obviously, we have λ = R̃.

We now quote the following result

Theorem 3.1 (Yamabe, Trudinger, Aubin, Schoen). The Yamabe problem can be solved
on any compact manifold M .

To illustrate key elements of the proof, we consider the functional

Qg(φ) = E(φ)/||φ||26, (3.4)

where

E(φ) =
∫
M

8|Dφ|2 +Rφ2dvg, (3.5)

||φ||6 =
(∫

M
|φ|6dvg

)1/6
. (3.6)

We look for the critical points of Qg(φ); by partial integration we find
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CHAPTER 3. THE YAMABE CONSTANT

d

dt
Qg(φ+ tψ)|t=0 = 2

||φ||26

∫
M

(
8∆φ+Rφ− ||φ||−6

6 E(φ)φ5
)
ψdvg. (3.7)

In order for φ to be a critical point of Qg(φ), (3.7) has to be zero for any ψ, and
therefore the expression in parenthesis has to vanish:

8∆φ+Rφ− ||φ||−6
6 E(φ)φ5 = 0. (3.8)

So φ is a critical point if and only if it satisfies the Yamabe equation with

λ = E(φ)/||φ||66. (3.9)
Now Hölder’s inequality implies that |

∫
M Rφ2dvg| is bounded from above by ||φ||26,

which implies that Qg(φ) is bounded from below. We can therefore define the Yamabe
constant as

Y (M) = inf (Qg(φ) : φ a smooth, positive function on M) (3.10)

= inf
φ∈C∞0 ,φ 6≡0

∫
M 8|Dφ|2 +Rφ2dvg

(
∫
M |φ|6dvg)

1/3 . (3.11)

An important property of this constant is that it is invariant under conformal transfor-
mations which can be seen as follows. For a conformal factor ξ we have

g = ξ−4ĝ, (3.12)
dvg = ξ−6dv̂g, (3.13)
φ = ξφ̂, (3.14)

For the denominator we get
(∫

M
|φ|6dvg

)1/3
=
(∫

M
ξ6|φ̂|6ξ−6dv̂g

)1/3
=
(∫

M
|φ̂|6dv̂

)1/3
. (3.15)

For the numerator we consider the conformal Laplace operator in 3 dimensions

L := R

8 −∆g. (3.16)

which satisfies, for any function f

L(ξf) = ξ5L̂(f). (3.17)
Since we work on a compact manifold the numerator results in

∫
M

8|Dφ|2 +Rφ2dvg =
∫
M
ξ6
(
8|D̂φ̂|2 + R̂φ̂2

)
ξ−6dv̂g =

∫
M

(
8|D̂φ̂|2 + R̂φ̂2

)
dv̂g. (3.18)
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3.2. THE YAMABE CONSTANT FOR NARIAI DATA

If φ ∈ C∞0 then it must also be true that ξ−1φ = φ̂ ∈ C∞0 , and combining this with
(3.15) and (3.18) we get

Y (M) = inf
φ∈C∞0 ,φ 6≡0

∫
M 8|Dφ|2 +Rφ2dvg

(
∫
M |φ|6dvg)

1/3 = inf
φ̂∈C∞0 ,φ̂ 6≡0

∫
M 8|D̂φ̂|2 + R̂φ̂2dv̂g(∫

M |φ̂|6dv̂g
)1/3 . (3.19)

We have shown that the Yamabe constant is conformally invariant.

A last point that should be addressed concerning the Yamabe constant is its relation
to the Ricci scalar. We rewrite (3.4) in terms of g̃ as

Q(g̃) =
∫
M R̃dṽg

(
∫
M dṽg)1/3 . (3.20)

Since we already know that within a conformal class the functional Q(φ) is minimized
for constant Ricci scalar, we can pull the latter out of the integral. Hence we are left
with

Y (M) = inf
φ
R̃

∫
M dṽg

(
∫
M dṽg)1/3 = inf

φ
R̃Ṽ 2/3, (3.21)

with V being the volume V =
∫
M dvg. This expression cannot be simplified further as

the solution of the Yamabe problem is not unique in general, i.e. there may exist more
than one metric with constant Ricci scalar within a conformal class. In any case, we see
that the Yamabe constant is proportional to a constant Ricci scalar.

3.2 The Yamabe constant for Nariai data
We recall the Nariai data (2.86). As shown in [21], for a ∈ (2kπ, 2(k + 1)π] there
exist k + 1 solutions of the Lichnerowicz equation (2.18) which all have constant Ricci
scalar R = 2Λ. One of these is the Nariai metric itself with φ0 = 1, while the remain-
ing k solutions are Schwarzschild-de Sitter data with fundamental periods a, a2 ,

a
3 , ...,

a
k
.

They contain minimal and maximal two surfaces called "black hole" and "cosmological
horizons", respectively. In spherical coordinates (r, θ, ϕ), they look like

gk = dr2

1− 2m
r
− Λr2

3
+ r2(dθ2 + sin2 θdϕ2). (3.22)

where m is a constant determined by Λ, a and k. Since R = 2Λ we need to calculate
the volume if we want to obtain the Yamabe constant. Is is given as

Vn = 8nπ
∫ rC(a/n)

rB(a/n)

r2dr√
Z
, (3.23)

with

18



CHAPTER 3. THE YAMABE CONSTANT

Z = 1− 2m
r
− Λr2

3 , (3.24)

where n = 1, 2, ..., k and rB and rC are the black hole horizon and the cosmological
horizon, respectively.

This integral can only be obtained numerically. As is shown in [21] for a ≥ 2π it is
within the bounds

∫ rC(a/n)

rB(a/n)

r2dr√
Z
∈ π

Λ3/2

(
1, 33/2

4

)
. (3.25)

As a result we also get bounds for the Yamabe constant

Y ∈ 8π4/3
(

1, 3
42/3

)
. (3.26)

The case a ≤ 2π is simpler since there is only the solution φ = 1. Therefore the
Yamabe constant given by (3.21) takes the value

Y (M) = RV 2/3 = 2Λ
( 4πa

Λ3/2

)2/3
= 2(4πa)2/3. (3.27)

19



4 Existence and non-existence of
solutions

The core of this thesis is the application of the theorems of Hebey et al [13] and Premoselli
[20] on existence and non-existence of solutions of the Lichnerowicz equation (2.18). We
first (in Sect. 4.1.1) recall the former theorem in general form, apply it next (in Sect.
4.1.2) to the case of constant Ricci scalar and finally to Bowen-York data in Sect. 4.1.3.
In Sect. 4.2 we recall Premoselli’s theorem and apply it to Nariai and Kerr-de Sitter.

4.1 The theorems of Hebey, Pacard and Pollack
4.1.1 The general case
In Sect. 1.1.3 of the introduction we gave a heuristic argument for non-existence if the
momentum density Σ2 is large. A quantitative version of this statement is Thm. 2.1
of [13], which we recall below, together with the proof. Following the notation of this
paper, we consider an arbitrary dimension n and write the Lichnerowicz equation in the
form

(∆g − h)φ = −Bφ2∗−1 − A

φ2∗+1 , (4.1)

where

2∗ = 2n
n− 2 . (4.2)

Theorem 4.1 (Thm. 2.1 in [13]). Let (M, g) be a smooth compact Riemannian manifold
of dimension n ≥ 3. Let also h,A, and B be smooth functions on M with A ≥ 0 in M .
If B > 0 in M , and

(
nn

(n− 1)n−1

)n+2
4n ∫

M
A

n+2
4n B

3n−2
4n dvg >

∫
M

(h+)
n+2

4 B
2−n

4 dvg. (4.3)

where h+ = max(0, h), then the Lichnerowicz equation (4.1) does not possess any
smooth positive solution.

Proof. Assume existence and integrating (4.1) we obtain∫
M
Bφ2∗−1dvg +

∫
M

Advg
φ2∗+1 =

∫
M
hφdvg (4.4)
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where the ∆φ term vanishes because we have a compact manifold. Reformulating the
rhs and applying the Hölder inequality gives∫

M
hφdvg =

∫
M
hB

2−n
2+nB−

2−n
2+nφdvg (4.5)

≤
(∫

M
(h+)

n+2
4 B

2−n
4 dvg

) 4
n+2

(∫
M
Bφ2∗−1dvg

)n−2
n+2

. (4.6)

Manipulating the expression on the lhs of (4.3) in a similar way yields

∫
M
A

n+2
4n B

3n−2
4n dvg =

∫
M
A

n+2
4n φ

3n2+4n−4
4n2−8n φ

− 3n2+4n−4
4n2−8n B

3n−2
4n dvg (4.7)

≤
(∫

M
Bφ2∗−1dvg

) 3n−2
4n

(∫
M

Advg
φ2∗+1

)n+2
4n

. (4.8)

Combining (4.4), (4.6) and (4.8) we get

X +
(∫

M
A

n+2
4n B

3n−2
4n dvg

) 4n
n+2

X1−n ≤
(∫

M
(h+)

n+2
4 B

2−n
4 dvg

) 4
n+2

(4.9)

for

X =
(∫

M
Bφ2∗−1dvg

) 4
n+2

. (4.10)

As a last step we estimate the lhs from below by replacing X with the quantity for
which this lhs, considered now as polynomial in X, takes its minimal value. This implies
that

(
nn

(n− 1)n−1

)n+2
4n ∫

M
A

n+2
4n B

3n−2
4n dvg ≤

∫
M

(h+)
n+2

4 B
2−n

4 dvg. (4.11)

This has to be fulfilled in order for smooth positive solutions to exist. Hence reversing
the inequality gives the required criterion for non-existence.

We now specify to the quantities appearing in (2.18), namely

h = R

8 , B = Λ
4 , A = KijKij

8 . (4.12)

As a result for n = 3 we get the non-existence criterion
(

33

22

) 5
12 ∫

M

(
KijKij

8

) 5
12
(

Λ
4

) 10
12

dvg >
∫
M

(
R

8

) 5
4
dvg. (4.13)

which will be applied in Sect. 4.1.2.
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We now turn to the existence criterion Thm. 3.1 in [13]. We first define the Sobolev
norm

||ϕ||H1
h

=
(∫

M
(|Dϕ|2 + hϕ2)dvg

) 1
2
. (4.14)

and the Sobolev constant Sh as the smallest positive constant so that

∫
M
|ϕ|2∗ ≤ Sh

(∫
M

(|Dϕ|2 + hϕ2)dvg
) 2∗

2
(4.15)

for all ϕ ∈ H1(M).

Theorem 4.2 (Thm. 3.1 in [13]). Let (M, g) be a smooth compact Riemannian manifold
of dimension n ≥ 3. Let h,A, and B be smooth functions on M for which ∆g − h is
coercive, A > 0 in M , and maxMB > 0. If there exists a smooth positive function ϕ on
M such that

||ϕ||2∗H1
h

∫
M

A

ϕ2∗ dvg ≤
C

(Sh maxM |B|)n−1 (4.16)

and ∫
M
Bϕ2∗dvg > 0 (4.17)

where || · || is defined in (4.14), Sh is defined in (4.15), and

C =
(

1
2(n− 1)

) 2∗
2 2∗ − 2

4 , (4.18)

then the Lichnerowicz equation (4.1) has a smooth positive solution.

For the proof we refer to [13].
To apply the above theorem to the present situation, we specify to n = 3 and make

the assignments (4.12).
This means that (4.14) and (4.15) take the form

||ϕ||H1
h

=
(∫

M
(|Dϕ|2 + R

8 ϕ
2)dvg

) 1
2
, (4.19)∫

M
|ϕ|6 ≤ Sh

(∫
M

(|Dϕ|2 + R

8 ϕ
2)dvg

)3
. (4.20)

Comparing this definition of the Sobolev constant with (3.11) we conclude that we
can replace it by the Yamabe constant via

Sh =
( 8
Y

)3
. (4.21)
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Furthermore, we note that for manifolds with positive Yamabe constant, ∆g − h =
∆g −R/8 is indeed coercive, as required in Thm 4.2.
A subtle problem now arises in the attempt to apply the above theorem to (t, ϕ)-

symmetric data. This concerns the requirement A > 0 of the theorem, which may be
violated on the axis. In fact this happens in the Bowen-York example ωBY (2.72) which
gave (2.76). This expression vanishes at the poles, and the same occurs in the Kerr-de
Sitter example in Sect. 4.2.2. However, there is an extension of the above theorem,
namely theorem 3 in [14], which weakens the above requirement to A ≥ 0, A 6≡ 0.

With the above assignments, we can write the existence criterion (4.16) as

||ϕ||6H1
h

∫
M

KijKij

8ϕ6 dvg ≤
Y 6

4 · 86Λ2 . (4.22)

In this form it will be applied in Sect. 4.1.2.
We conclude this section with a supplement to Thm. 4.2.
Since the Lichnerowicz equation is conformally invariant, optimal criteria for existence

and non-existence should be invariant as well. While the non-existence criterion (4.13)
does not appear to be invariant, we can show the following.

Proposition 4.1. The existence criterion (4.22) for solutions of (2.18) is conformally
invariant.

Proof. We use the conformal factor ĝij = ξ4gij and recall the formulas

Kij = ξ10K̂ij (4.23)
Kklg

ikgjl = ξ10K̂klĝ
ikĝjl (4.24)

Kklg
ikgjl = ξ10K̂klξ

−4gikξ−4gjl (4.25)
Kkl = ξ2K̂kl (4.26)

KijKij = ξ12K̂ijK̂ij. (4.27)

We first show invariance of the norm (4.19) by using (3.17)

||ϕ||H1
h

=
(∫

M
(|Dϕ|2 + R

8 ϕ
2)dvg

) 1
2

=
(∫

M
ξ6(|D̂ϕ̂|2 + R̂

8 ϕ̂
2)ξ−6dv̂g

) 1
2

= ||ϕ̂||H1
h
,

(4.28)
while invariance of the momentum term follows from

∫
M

KijKij

8ϕ6 dvg =
∫
M

ξ12K̂ijK̂ij

8ξ6ϕ̂6 ξ−6dv̂ =
∫
M

K̂ijK̂ij

8ϕ̂6 dv̂ (4.29)

Since we have already shown invariance of the Yamabe constant Y , we have proven
invariance of (4.22).
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4.1.2 Constant Ricci scalar
We first specify here the non-existence result Thm. 4.1 to obtain the following

Theorem 4.3. Assume that∫
M

(
KijKij

)5/12
dvg > 3−5/4R5/4V Λ−5/6. (4.30)

holds on a manifold (M, g) with volume V and constant Ricci scalar R. Then the
Lichnerowicz equation (4.1) for n = 3 does not have any smooth, positive solutions.

Proof. Pulling out the Ricci scalar from the integral (4.13) yields

(
33

22

)5/12 ∫
M

(
KijKij

8

)5/12 (Λ
4

)10/12

dvg >
(
R

8

)5/4 ∫
M
dvg (4.31)

∫
M

(
KijKij

)5/12
dvg >

(
R

8

)5/4
V

(
22

33

)5/12 ( 4
Λ

)5/6
85/12 (4.32)

∫
M

(
KijKij

)5/12
dvg >

(
222423

2933

)5/12

R5/4V Λ−5/6 (4.33)

which proves the assertion.

We can also adapt the existence result Thm. 4.2 to the present setting, which gives

Theorem 4.4. Assuming that
∫
M
KijKijdvg ≤

Y 6

256Λ2R3V 3 . (4.34)

holds on a manifold (M, g) with volume V constant Ricci scalar R and Yamabe con-
stant Y , the Lichnerowicz equation (4.1) for n = 3 has a smooth, positive solution.

Proof. We set

||ϕ||H1
h

= 1. (4.35)
without loss of generality and ϕ = const. with loss of generality, i.e. by this restriction

we are likely to miss the optimal bound.
The constant is determined as follows:

1 = ||ϕ||H1
h

=
(∫

M
(|Dϕ|2 + R

8 ϕ
2)dvg

)1/2
=
(∫

M

R

8 ϕ
2dvg

)1/2
=
(
RV

8 ϕ2
)1/2

(4.36)

=> ϕ =
( 8
RV

)1/2
(4.37)
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=> 1
ϕ6 = R3V 3

83 (4.38)

Inserting this into (4.22) gives

∫
M
KijKij

R3V 3

84 dvg ≤
Y 6

4 · 86Λ2 , (4.39)

which immediately implies the claim (4.34).

4.1.3 Rotational Bowen-York data

We recall our calculations for the Nariai and Bowen-York data from (2.98) and replace
a ( ψ ∈ (0, a)) by a = 2πλ. From now onwards, we assume J ≥ 0 without loss of
generality.
Starting again with the bound for non-existence we find

Theorem 4.5. The Lichnerowicz equation (2.18) with rotational Bowen-York data
(2.72) and angular momentum J has no smooth, positive solution if

J >
26/5

3

(
22

33

)1/2 (∫ π

0
sin11/6 θ

)−6/5
Λ−1 ≈ 0.1647Λ−1. (4.40)

Proof. We insert into (4.30) and obtain for the left side

∫
M

(
KijKij

) 5
12 dvg = 1

Λ3/2

∫ 2π

0

∫ π

0

∫ 2πλ

0
(18Λ3J2 sin2 θ)5/12 sin θdψdθdϕ (4.41)

= 185/12Λ5/4J5/6 1
Λ3/2 2πλ2π

∫ π

0
sin11/6 θ (4.42)

= 4π2λ185/12Λ−1/4J5/6
∫ π

0
sin11/6 θ. (4.43)

The right side gives

3−5/4R5/4V Λ−5/6 = 3−5/48π2λΛ−3/2(2Λ)5/4Λ−5/6 = 3−5/48π225/4λΛ−13/12 (4.44)

=
(2

3

)5/4
8π2λΛ−13/12. (4.45)

Combining the two sides again results in
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J5/6
∫ π

0
sin11/6 θ > 18−5/12

(2
3

)5/4
2Λ−5/6 (4.46)

J
(∫ π

0
sin11/6 θ

)6/5
> 18−1/2

(2
3

)3/2
26/5Λ−1 (4.47)

J > 18−1/2
(2

3

)3/2
26/5

(∫ π

0
sin11/6 θ

)−6/5
Λ−1 (4.48)

J >
26/5

3

(
22

33

)1/2 (∫ π

0
sin11/6 θ

)−6/5
Λ−1. (4.49)

A Mathematica calculation shows

26/5

3

(
22

33

)1/2 (∫ π

0
sin11/6 θ

)−6/5
≈ 0.1647 (4.50)

which proves the claim.

Turning now to the existence criterion, we have the following result.

Theorem 4.6. The Lichnerowicz equation (2.18) with rotational Bowen-York data
(2.72) and angular momentum J has a smooth, positive solution if

J ≤ 1
61/223Λλ2 ≈ 0.051 1

Λλ2 (4.51)

for λ > 1.

Proof. Compared to the non-existence result, the left side of (4.34) is now easier to
calculate due to the absence of the exponent on the momentum term. We find

∫
M
KijKijdvg = 1

Λ3/2

∫ 2π

0

∫ π

0

∫ 2πλ

0
18Λ3J2 sin2 θ sin θdψdθdϕ (4.52)

= 18Λ3J2 1
Λ3/2 2πλ2π

∫ π

0
sin3 θ (4.53)

= 4π2λ18Λ3/2J2 4
3 (4.54)

= 253π2λΛ3/2J2. (4.55)

For the right side we get

Y 6

256Λ2R3V 3 = Y 6

28Λ2(2Λ)3(Λ−3/28π2λ)3 (4.56)

= Y 6

220Λ1/2π6λ3 (4.57)
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Combining the two sides results in

253π2λΛ3/2J2 ≤ Y 6

220Λ1/2π6λ3 (4.58)

J2 ≤ Y 6

2253Λ2π8λ4 (4.59)

J ≤ Y 3

61/2212Λπ4λ2 . (4.60)

We now require λ > 1 and recall the estimate (3.26) for the Yamabe constant. Since
the theorem guaranties smooth positive solutions for J smaller than a certain value we
have to consider the lower bound

Y ≥ 8π4/3. (4.61)
Inserting gives

J ≤ 29π4

61/2212Λπ4λ2 (4.62)

J ≤ 1
61/223Λλ2 . (4.63)

For λ ≤ 1 we get from (3.27)

Y = 8π4/3λ2/3, (4.64)
therefore our bound becomes

J ≤ 1
61/223Λ . (4.65)

This finishes the proof.

We conclude this section with the following remark. In (4.36) we made the assumption
that we have a constant ϕ which is unlikely to be the optimal choice. We will now make
an attempt of improving the inequality (4.22) for the Nariai metric and ωBY by setting

ϕ = c sinx θ (4.66)
where c and x are constants. This function ϕ is in general not regular at the poles.

However, for the present purposes it suffices that it has finite Sobolev norm, which holds
for suitably chosen x as we will see shortly.
We rewrite (4.22) as

||ϕ||6H1
h

∫
M

KijKij

ϕ6 dvg ≤ A (4.67)

27



4.1. THE THEOREMS OF HEBEY, PACARD AND POLLACK

with

A = Y 6

4 · 85Λ2 . (4.68)

Inserting (2.98) we get

||ϕ||6H1
h

∫
M

sin2 θ

ϕ6 dvg ≤ B (4.69)

with

B = A

18J2Λ3 . (4.70)

We are now interested in the minimum of the left side of (4.69). We obtain

||ϕ||H1
h

=
(∫

M
(|Dϕ|2 + Λ

4 ϕ
2)dvg

)1/2

(4.71)

=
(∫

M
(|D(c sinx θ)|2 + Λ

4 c
2 sin2x θ)dvg

)1/2

(4.72)

=
(

2π
Λ3/2

∫ π

0
(c2x2 sin2x−1 θ cos2 θ + Λ

4 c
2 sin2x+1 θ)dθ

)1/2

, (4.73)

for x 6= 0, which converges for x > 0. We further get

∫
M

sin2 θ

ϕ6 dvg =
∫
M

sin2 θ

c6 sin6x θ
dvg (4.74)

= 2π
Λ3/2

∫ π

0

sin3−6x θ

c6 dθ (4.75)

which converges for x < 2
3 . So we can say that for x ∈ (0, 2

3) we can choose ϕ = c sinx θ
and possibly get a better bound than for ϕ = c. However, numerical calculations of this
function show that the minimum is achieved at x = 0. Therefore ϕ = c yields a less
restrictive condition for existence, and we will not consider ϕ of the form ϕ = c sinx θ
any further.
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4.2 Premoselli’s theorem
As sketched in the introduction already, a breakthrough in the existence theory of the
Lichnerowicz equation was achieved by Premoselli [20]. Setting 2∗ = 2n/(n − 2) as
before, his general result reads

Theorem 4.7 (Thm. 1.1 in [20]). Let (M, g) be a n-dimensional closed Riemannian
manifold with 3 ≤ n ≤ 5, and let h, B, a be smooth functions on M and κ ∈ R a positive
constant. Assume that ∆g − h is coercive, d ≥ 0, d 6≡ 0, and maxMB > 0.
Then there exist 0 < κ1 ≤ κ2 ≤ +∞ such that the Lichnerowicz equation

∆gφ− hφ = −Bφ2∗−1 − κd

φ2∗+1 (4.76)

• has at least two solutions if κ < κ1

• has no solutions for κ > κ2

• has at least one solution if κ1 ≤ κ < κ2

In case B > 0, κ2 is finite, there holds κ1 = κ2, and (4.76) has a unique solution for
κ = κ1 = κ2 = κ∗, at least two solutions for κ < κ∗, and no solution for κ > κ∗.

For the complicated proof, we refer to [20].

A key concept both in the proof of this theorem, as well as in its subsequent appli-
cations, is the (in)stability of solutions under conformal deformations. The definition
below involves the (negative) linearized operator Lφ of the Lichnerowicz equation (4.76)

Lφγ = −(∆g − h)γ − (2∗ − 1)Bφ2∗−2γ + (2∗ + 1) κd

φ2∗+2γ. (4.77)

Definition 4.1. A solution φ of the Lichnerowicz equation (4.76) is called strictly
stable (stable, marginally stable, unstable, strictly unstable) if the lowest eigenvalue σ
of the linearized operator (which satisfies Lφζ = σζ) is positive (non-negative, zero,
non-positive, negative) respectively.

Corollary 4.1 (Proposition 6.1. of [20]). Under the requirements of Thm. 4.7 and with
B > 0, there is a unique strictly stable solution φ(κ) for all κ < κ∗ which is "minimal"
in the sense that for any positive solution with φ 6≡ φ∗ there holds φ > φ∗. Moreover,
the unique solution φκ∗ = φ∗ for κ = κ∗ is marginally stable.

The final statement of the Corollary means that there exists a positive "principal
eigenfunction" ζ ∈ C∞(M) such that

−∆gζ +
[
h− (2∗ − 1)Bφ2∗−2

∗ + (2∗ + 1) κ∗d

φ2∗+2
∗

]
ζ = 0 (4.78)
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We can use the stability of solutions to define stability of the initial data themselves,
in terms of the lowest eigenvalue of the trivial solution φ ≡ 1 in (4.77). This means
that we call initial data strictly stable if φ ≡ 1 is strictly stable, and analogously for the
other four definitions. For further properties of this concept of stability cf [4].
In the following applications, we specify to n = 3 and adopt the assignments (4.12).

4.2.1 Rotational Bowen-York data
We return to the Nariai data (2.86) on which we put the rotational Bowen-York initial
data (2.72). The following description of the solutions is a slightly shortened version of
Sect. 3.3.3 of [4].
We recall (2.98) which we rewrite as

KijKij = 18J2Λ3 sin2 θ = 8b2Λ sin2 θ (4.79)

with b = 3JΛ/2. Inserting into the Lichnerowicz equation (2.18) gives

− ∂2φ

∂α2︸ ︷︷ ︸
Aφ

−
(

∆2 −
1
4

)
φ︸ ︷︷ ︸

Bφ

−1
4φ

5 − b2 sin2 θ

φ7 = 0, (4.80)

∆2 being the Laplacian on the 2-sphere S2. The resulting linearized operator of this
equation around φ reads

Lφ
Λ γ = −

(
A+B + 5

4φ
4 − 7b2 sin2 θ

φ8

)
γ. (4.81)

We now apply Premoselli’s theorem to these two equations. We first restrict ourselves
to solutions which only depend on θ, i.e. φ = φ(θ), and we assume equatorial symmetry,
i.e. φ(θ) = φ(π − θ). Since stable solutions preserve the symmetries of the equation (cf.
e.g. Proposition 2 of [4]), this class of solutions will include the unique stable, minimal
branch whose existence is guaranteed by the Corollary 4.1 to Premoselli’s theorem. For
some purposes, in particular numerical calculation, it is useful to regularise this branch
near b = 0 which can be done by substituting ψ = b−1/4φ. This gives for (4.80)

Bφ+ 1
4φ

5 + b2 sin2 θ

φ7 = Bψ + b

4ψ
5 + sin2 θ

ψ7 = 0. (4.82)

Using numerical methods for this case gives 4.1
A numerical analysis now yields the unique stable, minimal branch (green) as well

as an unstable branch (red) Fig. 4.1. However, we know from chapter 3.2 that these
two branches cannot comprise all solutions since for b = 0 there exist Schwarzschild-de
Sitter solutions. We conclude that there must exist solutions which also depend on ψ,
φ = φ(ψ, θ) (while we still assume axial symmetry, i.e. independence of φ) . Now from
Proposition 2 of [4] it also follows that symmetry breaking, which "generates" such so-
lutions, can only occur when the linearized operator has a zero mode. There exist k
such modes for the periods T ∈ (2πk, 2π(k + 1)]. In particular, considering T = 5π
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Figure 4.1: The stable (green) and the unstable (red) axially symmetric solutions of
(4.82) at the equator. The blue dots are the bifurcation points of the sec-
ondary branches for the sample period T = 5π.

as an example, we get two zero modes which are marked by the blue dots on the un-
stable principal branch in 4.1. Starting from these points, there emanate secondary
branches of solutions φ = φ(ψ, θ) (not shown in the diagrams) which continue till the
Schwarzschild-de Sitter solutions at b = 0. (For the latter statement we do not have an
analytic proof, but numerical support).

Numerics gives us as a bound for the existence of smooth positive solutions b∗ ≈ 0.238,
which means

J = 2b∗
3Λ = 0.158 1

Λ . (4.83)

Comparing this to our results (4.40) and (4.51) we see that the present example
exceeds the latter (lower) bound, necessary for existence, significantly, while it comes
quite close to the former (upper) bound, necessary for non-existence.

4.2.2 Kerr-de Sitter data
In this final section we consider the maximal slice of the Kerr-de Sitter (KdS) data as
background, on which we construct data by "spinning up" (via scaling) the extrinsic
curvature of KdS.
We first consider the spacetime metric

h̃ = ρ2
(
dr2

∆r

+ dθ2

∆θ

)
+ sin2 θ

∆θ

ρ2

(
adt− (r2 + a2)dϕ

1 + Λa2/3

)2

− ∆r

ρ2

(
dt− a sin2 θdϕ

1 + Λa2/3

)2

(4.84)
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where

∆r = (r2 + a2)
(

1− Λr2

3

)
− 2mr, (4.85)

∆θ = 1 + Λ
3 a

2 cos2 θ, (4.86)

ρ2 = r2 + a2 cos2 θ. (4.87)

This spacetime has been discussed at many places, see e.g. [1, 6, 7, 19]. The key
quantity whose zeros determine the location of the horizons is

∆r = (r2 + a2)
(

1− Λr2

3

)
− 2mr = −Λ

3 (r − r+)(r − r−)(r − rc)(r − r−−). (4.88)

Below we focus on the generic case in which ∆r has four distinct zeros, three of which,
called r− < r+ < rC are necessarily non-negative. We also include the "extreme" cases in
which two positive zeros coincide. In the generic case, the smallest of the non-negative
zeros is located at r = 0 iff a = 0. The largest two zeros, r+ ≤ rc, are called "black hole"
and "cosmological" horizons, respectively; ∆r is positive in the range r ∈ (r+, rc).
We first discuss the case a = 0. The condition for extremality reads

∆r(rc) =0 (4.89)
∆′r(rc) =0. (4.90)

which determines the location of the extreme horizon

∆r(rc) = rc −
Λr3

c

3 − 2m = 0⇒ m = 3rc − Λr3
c

6 (4.91)

∆′r(rc) = 1− Λr2
c = 0⇒ rc = 1√

Λ
, (4.92)

and combining these two equalities gives m = 1/3
√

Λ.
This calculation also implies that in the case a = 0 the mass parameter has to satisfy

0 < m ≤ 1
3
√

Λ
. (4.93)

and the region of interest is determined by horizons whose location depends on m and
Λ, viz. 0 < r+(m,Λ) ≤ r < rc(m,Λ).
We now turn to the case a 6= 0. We first give a qualitative discussion, and then

formulate a precise statement in which we restrict ourselves to small a (compared to
Λ−1/2).
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The allowed parameter range for m and a, for which we still obtain two distinct pos-
itive roots of ∆r = 0 with ∆r > 0 in between, can be understood qualitatively from the
following diagram (schematic, not a result of calculation except for the marked points;
for a precise diagram of this kind cf. [19]):

a

m

(2
√

3− 3)3/2 1
3
√

Λ

√
3(7± 4

√
3) 1√

Λ

0

1
3
√

Λ

Figure 4.2: Schematic visualization of the allowed values for a and m (shaded region)

The allowed range for r now also depends on a and m, i.e. 0 < r+(m, a,Λ) ≤ r <
rc(m, a,Λ); the dependence of this range for fixed a and Λ but different values of m is
illustrated in the following diagrams for which we have set Λ = 1 and a = 0.1, the re-
sulting m bounds being approx. 0.1 < m < 0.337. Fig. 4.3 shows the resulting function
∆r for some intermediate value of m.
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Figure 4.3: Allowed radii between r+ and rc marked in red. Values for Λ = 1, a = 0.1
and m = 0.2

As m gets smaller the range for r increases as seen in Fig. 4.4. If m reaches the lower
bound, called m−(a,Λ), the two black hole horizons r+ and r− coincide.

Figure 4.4: Allowed radii between r+ and rc marked in red. Values for Λ = 1, a = 0.1
and m = 0.1
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For increasing m the range for r decreases as seen in Fig. 4.5. If m reaches the upper
bound, called m+(a,Λ), the black hole horizon r+ and the cosmological horizon rc co-
incide. Both cases m = m−(a,Λ) and m = m+(a,Λ) give us an extreme Kerr-de Sitter
metric.

Figure 4.5: Allowed radii between r+ and rc marked in red. Values for Λ = 1, a = 0.1
and m = 0.3

From these diagrams it seems that the allowed range of r for any value of m is a subset
of the allowed range for m = m−. However, we do not have an analytic proof of this
observation, and it will not be needed below.
Restricting ourselves now to small a (compared to Λ−1/2, the allowed range for m

becomes [16]

a2
[
1 +O(a4Λ2)

]
< m2 <

1
9Λ

[
1 + 2a2Λ +O(a4Λ2)

]
, (4.94)

The only information which will be needed below and which is obvious from the
previous discussion is

Lemma 4.1. For 0 < m < 1
3
√

Λ and sufficiently small a
√

Λ, the Kerr-de Sitter metric
(4.84) has a black hole horizon r+(m, a,Λ) > 0 and a cosmological horizon rc(m, a,Λ) >
r+(m, a,Λ) in the sense that ∆r(r+) = 0 = ∆r(rc), and ∆r(r) > 0 for r ∈ (r+, rc).

We now turn to other properties of the Kerr de Sitter metric needed below.
The fact that its coefficients do not depend on φ is a necessary condition for axial

symmetry; to confirm the latter property we show that the curve θ = 0 is an "axis", i.e.
the unique location where the Killing vector η̃α = ∂/∂φ vanishes. Defining C via
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η̃ = h̃αβ η̃
αη̃β = h̃ϕϕ = sin2 θ

ρ2(1 + a2)2 [∆θ(r2 + a2)2 −∆ra
2 sin2 θ] = sin2 θ

ρ2(1 + a2)2C (4.95)

we have the estimate

C =
(
a2 + r2

)2
(1

3a
2Λ cos2 θ + 1

)
− a2 sin2 θ

((
a2 + r2

)(
1− Λr2

3

)
− 2mr

)
≥ (4.96)

(
a2 + r2

)2
− a2

(
a2 + r2

)(
1− Λr2

3

)
+ 2mra2 = (4.97)

(
a2 + r2

)
r2
[
1 + Λa2

3

]
+ 2mra2 > 0 (4.98)

which proves the claim, since as discussed above we restrict ourselves to a domain
0 < r+(m, a,Λ) ≤ r ≤ rc(m, a,Λ).
We next determine the twist potential from (2.32) related to the Killing vector ζ̃ =

∂/∂t.
The calculation for the case Λ = 0 can be found in [12], the results are

ω̃θ = −1
2 ε̃θφrth̃

rrh̃tt∂r ζ̃t −
1
2 ε̃θφrth̃

rrh̃tϕ∂rζ̃ϕ (4.99)

= J
∂

∂θ

(
cos3 θ − 3 cos θ − a2 cos θ sin4 θ

ρ2

)
, (4.100)

ω̃ = ω = J

(
cos3 θ − 3 cos θ − a2 cos θ sin4 θ

ρ2

)
. (4.101)

where J = am. For Λ 6= 0 the results are identical but J generalizes to

J = am

Ξ2 , (4.102)

Ξ = 1 + Λa2

3 . (4.103)

From (2.40), J is the Komar angular momentum.
We now restrict ourselves to the maximal hypersurface given by t = const. in (4.84).

The induced metric reads

g = ρ2
(
dr2

∆r

+ dθ2

∆θ

)
+ sin2 θ

ρ2(1 + a2)2

[
∆θ(r2 + a2)2 −∆ra

2 sin2 θ
]
dϕ2 (4.104)

Theorem 4.8. For a fixed m and small angular momenta the Kerr-de Sitter data given
by (4.104) and generated from (4.101) are strictly unstable.
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Proof. Using (2.18) and the linearized operator (4.77) for n = 3, we get for the principal
eigenfunction ζ and the principal eigenvalue σ,

−∆gζ +
[
R∗

8 − 5Λ
4 φ

5
∗ + 7K

ijKij

8φ8
∗

]
ζ = σζ, (4.105)

with KijKij as in (2.31). We now set φ = 1 since we are interested in the principal
eigenvalue of the Kerr-de Sitter data themselves. This simplifies our equation to

−∆gζ +
[
R

8 − 5Λ
4 + 7K

ijKij

8

]
ζ = σζ. (4.106)

Since R is difficult to calculate we replace it using the constraint (1.2) for the maximal
case K = 0,

R

8 = KijKij

8 + Λ
4 . (4.107)

Inserting this into (4.106) yields

−∆gζ +
[
KijKij

8 + Λ
4 − 5Λ

4 + 7K
ijKij

8

]
ζ = −∆gζ +

[
KijKij − Λ

]
ζ = σζ. (4.108)

This equation can be rewritten as

∆gζ = (α− σ) ζ, (4.109)
with

α = KijKij − Λ. (4.110)
Using (2.31), we get

α = 2DiωD
iω

η2 − Λ (4.111)

= 2
η2

(
∆r

ρ2 (Drω)2 + ∆θ

ρ2 (Dθω)2
)
− Λ. (4.112)

Inserting (4.101) gives after some calculation

α = 2J2 (a2 + 1)4 (AB2/24 + 4a4r2∆r cos2 θ sin4 θ)
(a2 cos2 θ + r2)3C2

− Λ, (4.113)

where

A = a2Λ cos(2θ) + a2Λ + 6 (4.114)
B = sin θ

(
a4 − 3a2r2 + a2(a− r)(a+ r) cos(2θ)− 6r4

)
, (4.115)

and C as in (4.95). From this we can conclude that α is negative for
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1. m fixed between the bounds 0 < m ≤ 1
3
√

Λ ,

2. J (and therefore a) small enough, where J is given by (4.102).

We have already seen in figure 4.2 that we can choose our J arbitrarily small for an
m between these bounds.

Since the principal eigenfunction ζ is positive we can divide (4.109) by ζ and integrate,
∫
M

(
|Dζ|2

ζ2 − α
)
dvg = −σV. (4.116)

We now choose J and m such that α is negative and therefore the lhs is positive. As
a result the eigenvalue σ has to be negative. According to definition 4.1 this means our
Kerr-de Sitter data are strictly unstable.

Definition 4.2. On the background metric (4.104) we generate an extrinsic curvature
Kij via (2.30) from the twist potential

ω = Ĵ

(
cos3 θ − 3 cos θ − a2 cos θ sin4 θ

ρ2

)
, (4.117)

where Ĵ ∈ R+.

Note that Ĵ is no longer defined as in (4.102) but an arbitrary constant. According
to (2.40), Ĵ would be the angular momentum of the new data if we could show that
the Lichnerowicz equation (2.18) had a solution. This now follows from Premoselli’s
theorem under the following restrictions on Ĵ2 (which can be taken as the parameter κ
in (4.76)).

Corollary 4.2. For (gij, Kij) given in Definition 4.2, the Lichnerowicz equation (2.18)
has an unstable solution if

1. m fixed between the bounds 0 < m ≤ 1
3
√

Λ ,

2. J (and therefore a) small enough, where J is given by (4.102).

3. either Ĵ ≤ J or if Ĵ ≥ J , then Ĵ − J small enough.

Therefore (g̃ij, K̃ij) defines new (t, ϕ)-symmetric data.

Proof. As we have shown in 4.8, the KdS data themselves are unstable. Therefore, set-
ting κ = Ĵ2, Premoselli’s theorem 4.7, together with Corollary 4.1, shows the assertion.

Corollary 4.3. To all the (unstable) data constructed in Corollary 4.2, there exist stable,
minimal data with the same angular momenta, conformal to the above ones. This implies
in particular to the Kerr-de Sitter data themselves.
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Proof. The existence of the stable data follows again from Corollary 4.1. These data
have the same angular momentum J since (2.38) is conformally invariant.

We finally remark that the data constructed in Corollary 4.3 can be evolved in time
(which is beyond the scope of this thesis). This should constitute an interesting model
for a rotating dynamic black hole which might finally “settle down” to a member of
the Kerr-de Sitter family. In any case, the angular momentum will be preserved in this
evolution.
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