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Abstract. This work describes an algorithm which aims to numerically find an approximation to
the semi-classical limit of a given NC-Brane configuration embedded in Rm defined by a finite set
of finite-dimensional matrices. This approximation is numerically given by a point cloud within Rm

which represents the semi-classical limit as manifold.
To this end an introduction to non-commutative geometry is given and various examples thereof

are discussed. The focus lies on coherent states in the context of non-commutative geometry which
constitute the main ingredient for the theoretical background of the algorithm.

After establishing the algorithm it is applied (amongst other examples) to an interesting solution
of a supersymmetricN = 4 Yang-Mills theory deformed by a cubic potential. This solution is studied
in detail and various results are presented.

Zusammenfassung. Die vorliegende Arbeit beschreibt einen Algorithmus, um numerisch eine Nä-
herung des semi-klassischen Limes einer durch eine endliche Menge an endlich-dimensionalen Ma-
trizen gegebenen NC-Brane Konfiguration zu finden. Diese Näherung ist numerisch beschrieben
durch eine Sammlung von Punkten in Rm, die wiederum eine Mannigfaltigkeit eingebettet in Rm

darstellen sollen.
Zu diesem Zweck wird eine kurze Einführung in die Theorie der sogenannten “nicht-kommutativen

Geometrie” gegeben, die von wichtigen Beispielen begleitet wird. Einen Schwerpunkt dabei bilden
die kohärenten Zustände, die einen Grundstein für den theoretischen Hintergrund dieses Algorithmus
bilden.

Nachdem der Ablauf des Algorithmus begründet und beschrieben wurde, wird dieser unter
anderem auf eine interessante Lösung einer deformierten supersymmetrischen N = 4 Yang-Mills
Theorie angewendet. Diese Lösung wird im Detail diskutiert und diverse sowohl numerische als
auch analytische Resultate werden präsentiert.
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CHAPTER 1

Introduction

Historical remarks. Until now the vast success of the Standard Model in modern particle
physics are indisputable. However, the early formulators of realistic quantum field theories (as for
example QED) were not always satisfied with the situation since the theories contained divergences
like the infamous and well-known UV-divergences. To quote Dirac from 1975:

“Most physicists are very satisfied with the situation. They say: ‘Quantum elec-
trodynamics is a good theory and we do not have to worry about it any more.’
I must say that I am very dissatisfied with the situation, because this so-called
‘good theory’ does involve neglecting infinities which appear in its equations, ne-
glecting them in an arbitrary way. This is just not sensible mathematics. Sensible
mathematics involves neglecting a quantity when it is small – not neglecting it just
because it is infinitely great and you do not want it! ” – Dirac [17], 1975

The negative feelings about renormalization began to vanish in the community when they realized
that the theory should be understood as an effective theory, i.e. the extent of validity of the theory
is limited and breaks down at low distances/high energies. This view was also supported by Heisen-
berg, who brought up the concept of an universal length-scale where new physics is to be expected.

„Wenn man an die umfassenden Änderungen denkt, welche die formale Darstel-
lung der Naturgesetze beim Verständnis der Konstanten c und ~ erfahren hat, so
wird man damit rechnen, dass auch die Länge r0 zu völlig neuen Begriffsbildun-
gen zwingt, die weder in der Quantentheorie noch in der Relativitätstheorie ein
Analogon besitzen.” – Heisenberg [13], 1938

Own translation:
“If one thinks about the extensive modifications of the formal description of the
laws of nature with respect to the understanding of the constants c and ~, one
would anticipate the necessity of new formulations for the understanding of the
length r0, which do not possess an analogon neither in quantum theory nor in the
theory of relativity.”

This problem also leads to the question whether our current mathematical description of spacetime
— as Einstein created it — as pseudo-Riemannien manifold is correct from a fundamental point of
view. The answer to this question might also lead to hints for a satisfying unification of gravity
with the other three fundamental forces of nature, which to this day was not successful.

The following popular (simplified1) argument suggests that the classical description of spacetime
is inappropriate at very short distances, i.e. distances below the Planck scale: In QuantumMechanics
localizing an object at a length scale ∆x requires wave-numbers k ∼ 1/∆x.2 This corresponds to
an energy E = ~k ∼ ~/∆x. The theory of General Relativity predicts that an energy distribution
localized within its Schwarzschild radius R ∼ GE (G being the gravitational constant) forms a black
hole, i.e. one cannot measure what’s inside. Therefore only a length ∆x makes sense which satisfies
∆x & R ∼ G~/∆x or equivalently (∆x)2 & ~G = l2P where lP ≈ 1.6× 10−35 m is the Planck length.

1A more refined version of this argument is given in [9].
2In this context (and only in this context) the symbol ∼ means: “same order of magnitude”.
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8 1. INTRODUCTION

About this thesis. One possible way to achieve such minimal lengths/areas/volumes is to
quantize spacetime itself, which — in contrast to what Heisenberg said — is analogous to the quan-
tization procedure in Quantum Mechanics. The mathematical framework is called non-commutative
geometry. This framework will be the basis of the work for this thesis, therefore a short introduction
with examples is given in chapter 2.

In analogy to Quantum Mechanics one can discuss so-called coherent states on quantized mani-
folds to deepen the understanding of the behavior of quantized spaces. Since in this thesis coherent
states are exhaustively used tools, chapter 3 is dedicated to them.

In chapter 4 a deformed Yang-Mills theory is discussed, which admits the squashed fuzzy CP 2

— a variant of quantized CP 2 — as solution. Since this solution is of main interest for this thesis,
it is treated in great detail. Further, some results with respect to coherent states for this specific
example are presented. More involved calculations are delayed to appendix B to hopefully provide
a more compact and clearer picture of the relevant results.

One of the main goals of this thesis is to establish a numerical algorithm using the notion
of coherent states to extract an approximation of the semi-classical limit from non-commutative
geometries defined by a set of finite dimensional matrices. The semi-classical limit is then given by
a manifold in the usual mathematical sense which is numerically represented by a point cloud as
subset of Rm. This algorithm is further tested on well known examples such as Fuzzy Sphere S2

n

or Fuzzy Torus T 2
n . In addition, this algorithm is applied to Squashed Fuzzy CP 2 which in general

lacks closed expressions for coherent states. As a result some interesting findings can be reported.
This and more is captured in chapter 5.

Since the calculations heavily depend on group theory, especially in the case of CP 2 the group
SU(3), appendix A provides an overview of SU(3) and fixes conventions which are consistently used
throughout the whole thesis.

A word on notation. The author’s aim was to make this thesis readable by master students
of physics with sufficient interest in a reasonable amount of time. To be more concrete the reader
should bring a rudimentary understanding of the mathematical theory of manifolds, s/he should be
familiar with the theory of Lie groups, especially the theory of the groups SU(2) and SU(3), and
of course the ability to use Linear algebra tools without effort is highly recommended.

Therefore, it was attempted to keep “non-standard”3 notation at a minimum. In the case that
“non-standard” notations occur, the relevant expressions are defined on the way, while “standard”
notation is used without further explanation.

3“Standard” refers to notations an average master student of physics is expected to be familiar with at the time
of writing this thesis.



CHAPTER 2

Non-Commutative Geometry

As we have seen there are some good arguments that spacetime should be “quantized” in some
sense. One approach to tackle this problem is to perform a “quantization” — as one knows it from
ordinary Quantum Mechanics — of spacetime itself.

2.1. Quantization Procedure

Loosely speaking this means we replace the commutative algebra of functions C (M )1 on a
manifold M with a non-commutative one, usually End(H ) where H is a Hilbert space. For
reference see e.g. a book by Waldmann [27]. It turns out to define a useful notion of a quantization
map one has to bestow more structure on the manifold M . To make the previous statements more
precise we introduce the following concepts:

Definition 2.1. A map {., .} : C (M )× C (M )→ C (M ) which satisfies
• linearity in one argument
• antisymmetry {f, g} = −{g, f} ∀f, g ∈ C (M ),
• the Leibniz rule {f · g, h} = f · {g, h}+ {f, h} · g,
• and the Jacobi identity {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

is called Poisson structure or Poisson bracket.

Definition 2.2. A manifold M equipped with a Poisson structure {., .} is called a Poisson
manifold (M , {., .}).

Since for a fixed f ∈ C (M ) the map {f, .} : C (M ) → C (M ) satisfies the Leibniz rule and
is linear, {f, .} is a derivation on C (M ) and thus for a point p ∈ M it holds {f, .}(p) ∈ TpM or
alternatively stated the map p 7→ {f, .}(p) is a vector field on M . Since the same arguments hold
for the first slot in the Poisson bracket we can write it in the following form using local coordinates

{f, g} = Θab(∂af)(∂bg), (2.1.1)

with summation over indices appearing twice understood. Because of the antisymmetry property
of the Poisson bracket, Θab is antisymmetric in its indices and obeys the relation

Θak∂kΘ
bc + Θbk∂kΘ

ca + Θck∂kΘ
ab = 0 (2.1.2)

due to the Jacobi identity. We see that the Poisson structure is completely determined by Θab.
In the context of geometric quantization the Poisson structure on the manifold is in some sense

controlling the non-commutativity of the target algebra End(H ) as we will see in the following
definition of the quantization map Q.

Definition 2.3. Let M be a Poisson manifold. A map

Q : C (M )→ End(H ) (2.1.3)

satisfying the axioms
(1) linearity,
(2) Q(1) = 1,

1which is equipped with point-wise addition + and multiplication ·.

9



10 2. NON-COMMUTATIVE GEOMETRY

(3) Q(f)† = Q(f∗) ∀f ∈ C (M ),
(4) correspondence principle:

lim
θ→0

1

θ
(Q−1([Q(f),Q(g)])− i{f, g}) = 0 ∀f, g ∈ C (M ), (2.1.4)

lim
θ→0
Q(fg)−Q(f)Q(g) = 0 ∀f, g ∈ C (M ), (2.1.5)

(5) irreducibility : If {fi, g} = 0 ∀i ∈ I implies g ∝ 1 then [Q(fi), A] = 0 ∀i ∈ I implies A ∝ 1

where [., .] is the commutator and θ some scale parameter is called a quantization map.

In practice these requirements are often tightened or softened as the physical situation requires
it and the definition varies from author to author. Note that we assume here that the limit θ → 0
exists in some appropriate sense. Also note that although we used the symbol Q−1, in general we
do not require Q to be invertible; invertibility on a subspace will suffice.

Property (4) makes it clear that the quantization map cannot be unique since higher order
corrections in θ can be chosen arbitrarily. However, one often fixes this freedom by demanding the
quantization map to respect certain symmetries.

The semi-classical limit is then given by the pre-image of Q in the limit θ → 0 and is below
denoted by the symbol ∼.

2.2. Embedded Non-commutative Brane (NC-Brane)

Having completed a quantization procedure leaves us with a non-commutative algebra consisting
of matrices. The sole algebra contains certainly not enough structure since we would not be able
to retrieve any geometry of our manifold M . But since the quantized space ought to be considered
more fundamental this is a required feature.

Now the key to obtain the required structure is to consider M as an embedded manifold in
RD [23] which is encoded in the embedding map

x : M ↪→ RD (2.2.1)

or equivalently in D coordinate functions denoted by xa ∈ C (M ), a = 1, . . . , D.
Given a manifold M and a quantization Q thereof as in definition 2.3 we gain quantized em-

bedding functions
Xa := Q(xa) ∈ End(H ) (2.2.2)

given by D specific matrices/operators. The crucial point here is that this also works the other way
around: By stating D matrices Xa, the embedded functions are determined by xa = Q−1(Xa) and
so is the geometry of M .

Of course that does not mean that for any set of matrices {Xa| a = 1, . . . , D} the embedded
functions make sense as such. The actual question is: Given some n×n matrices Xa which generate
a matrix algebra A ⊂Matn(C) and interpreting them as quantized embedding functions Xa ∼ xa,
can we make sense of the semi-classical limit, i.e. can we find a manifold M where Q(C (M )) = A
for some quantization map Q? This is in general a hard question for which we try to present at
least partial answers in the following work.
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Examples of Fuzzy Geometries. We will now discuss some examples of such matrix (or
fuzzy) geometries. In practice, it seems that quantizing a given manifold is actually much easier
than finding the semi-classical limit of an algebra generated by a set of quantized embedding func-
tions Xa ∼ xa. Due to this we will present the following well known examples in this “wrong”
way.

2.3. Fuzzy Sphere

One of the simplest and well understood example is the so called fuzzy sphere and goes back to
Madore and Hoppe [18, 14].

Let’s begin with the usual two-sphere

M = S2 = {x ∈ R3|
3∑
i=1

x2
i = 1}. (2.3.1)

Of interest is the sphere’s SO(3) symmetry which acts on S2 ⊂ R3 via matrix multiplication of the
usual SO(3) matrices:

SO(3)× S2 → S2 (2.3.2)
(G,~x) 7→ G.~x

This action induces an action on its algebra of functions C (S2) which is — as we have seen —
of main interest in the quantization procedure. We have

SO(3)× C (S2) → C (S2) (2.3.3)
(G, f) 7→ G . f

(G . f)(~x) := f(G−1 · ~x)

which enables us to decompose the algebra C (S2) into irreducible representations of SO(3). A
basis that respects this decomposition is exactly the set of the well known spherical harmonics Y l

m.
Therefore

C (S2)
.
=
∞⊕
l=0

〈{Y l
m|m = −l, . . . , l}〉. (2.3.4)

Quantization map. At this point it has to be recalled that the quantization map Q with the
axioms defined in 2.3 is not at all unique. Correspondingly, we want to use this freedom now and
demand that the map Q : C (S2)→ End(H ) preserves the SO(3) symmetry, i.e.

Q(G . f) = G .Q(f) ∀G ∈ SO(3) ∀f ∈ C (S2). (2.3.5)

To accomplish this the algebra of n × n matrices Matn(C) equipped with the adjoint SU(2)
action

SU(2)×Matn(C) → Matn(C) (2.3.6)
(G,M) 7→ ΠG ·M ·Π−1

G

has to be considered, where Π is the (unique up to equivalences) n-dimensional representation of
SU(2). This is in general a reducible representation. To decompose it, we can use that End(H ) is
not only isomorphic to H ⊗H ∗ as vector space, but also as representation2 with H carrying the
representation Π. After applying the usual Clebsch-Gordon decomposition we get

Matn(C)
.
= Cn ⊗ Cn∗ .= (1)⊕ (3)⊕ . . .⊕ (2n− 1) (2.3.7)

2We use the extra symbol .
= to emphasize that the isomorphism between spaces is also compatible with the

action. For a usual isomorphism the symbol ∼= is used.
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with (d) denoting the d-dimensional representation of SU(2). We choose a basis that is compatible
with this decomposition and call the basis vectors Ŷ l

m (the reason becomes clear in a moment) so
that (2l + 1) = 〈{Ŷ l

m|m = −l, . . . , l}〉.
Now we are in a position to define a quantization map Q which obviously preserves the SO(3)

symmetry:

Q : C (S2) → Matn(C) (2.3.8)

Y l
m 7→

{
Ŷ l
m 2l + 1 < 2n− 1

0 2l + 1 ≥ 2n− 1

For this reason, we call the matrices Ŷ l
m spherical harmonics of the fuzzy sphere S2

n. It is clear
that this map is surjective. Hence by restricting ourselves to finite dimensional matrices, we were
led to introduce a natural angular momentum cutoff (at l = n− 1).

Embedding functions. As mentioned in section §2.2 we are especially interested in the quan-
tized embedding functions Xa ∼ xa. To identify them we can consider Y 1

±1 = x1 ± ix2 and
Y 1

0 = x3 where the xi’s are viewed as coordinate functions S2 ↪→ R3, and their quantized versions
Ŷ 1
±1 = X1± iX2 and Ŷ 1

0 = X3. We already know that {Ŷ 1
0 , Ŷ

1
±1} is a basis of a 3-dimensional SU(2)

representation3, hence the Xa have to be the generators of the n-dimensional SU(2) representation
and thus satisfy

[Xa, Xb] = i C εabcX
c (2.3.9)

for some constant C; εabc being the Levi-Civita symbol.
In the semi-classical limit we want to have a sphere with radius 1, therefore we choose C so

that
∑3

i=1(Xi)2 = 1, which implies that C = 2/
√
n2 − 1. It also becomes apparent what the scale

parameter θ in the case of the fuzzy sphere should be. Since we want the commutator to vanish in
semi-classical limit we choose θ = 1/n.

Poisson structure. We have seen in section §2.1 that for a proper quantization map one also
needs a Poisson structure on the manifold S2. Having established equation (2.3.9) and looking at
the correspondence principle in definition 2.3 one can read off (up to leading order in θ = 1/n) the
required Poisson structure

{xa, xb}S2 =
2

n
εabc x

c (2.3.10)

which happens to be the unique (up to a constant factor) SU(2)-invariant Poisson structure on S2.

Remaining quantization map axioms. It can be rigorously shown that the remaining quan-
tization map axioms defined in (2.3) are also true for the Fuzzy Sphere. [8]

We, therefore, conclude that the fuzzy sphere S2
n is indeed a quantization of (S2, {., .}S2).

2.4. Fuzzy CP 2

The sphere S2 can also be seen as co-adjoint orbit of the Lie group SU(2). The complex
projective space CP 2 is a generalization of the fuzzy sphere in the sense that we go from SU(2) to
SU(3). The following construction of fuzzy CP 2 could also be directly generalized to SU(n) and is
based on [3, 12].

Fuzzy CP 2is not only an interesting example for itself, but is also of importance to us since
in chapter 4 it turns out that a variant thereof is a solution of a deformed Yang-Mills theory, which
is studied later.

3also often called a “Vector operator”
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Co-adjoint orbits. First, consider the adjoint orbit of the Lie group G in general. Let g be its
Lie algebra. ThenG has a natural action on g∗ called the co-adjoint action given by g.µ = µ(g·.·g−1)
for a g ∈ G and µ ∈ g∗.

Definition 2.4. The co-adjoint orbit O∗µ of a Lie group G at µ ∈ g∗ is defined as

O∗µ := {µ(g · . · g−1) | g ∈ G}. (2.4.1)

By definition, the co-adjoint orbit O∗µ is invariant under the co-adjoint action. It is an interesting
fact that every orbit of G goes through an element of the dual space of the Cartan algebra g∗0.

One of the reasons why co-adjoint orbits are of relevance to us is because they carry a natural
symplectic form (which implies they also carry a Poisson structure): The tangent space of this
orbit TµOµ can be identified with g/Kµ where Kµ is the Lie algebra of the stabilizer group Kµ of µ.
We are now able to define the G-invariant symplectic form as

ωµ(X,Y ) := µ([X,Y ]) (2.4.2)

which is obviously antisymmetric and since µ([X,Y ]) = 0 ⇐⇒ X ∈ Kµ it is also non-degenerate.
Let us now consider the special case G = SU(3)4. Since the Cartan algebra of su(3) is generated

by two elements t3 and t8 we have two possibilities to get different orbits. For our purpose we choose
µ = t∗8 where t8 ∈ su(3) reads

t8 =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 .

We recognize a two-dimensional and a one-dimensional subspace where t8 acts as a multiple of unity.
Therefore the stabilizer group amounts to Kt∗8

= SU(2)×U(1) and we have found a characterization
of the orbit O∗t∗8 as

O∗t∗8
∼= SU(3)/(SU(2)× U(1)). (2.4.3)

The connection to CP 2. Let us consider S5 embedded in C3. The natural action of SU(3) on
S5 ⊂ C3 is then given by matrix multiplication. This action is transitive according to the definition

of SU(3). Now it is easy to see that a subgroup SU(2) (acting as
(

1 0
0 SU(2)

)
) stabilizes the point

(1, 0, 0) ∈ C3. Therefore,

S5 ∼=
SU(3)

SU(2)
. (2.4.4)

The complex projective space CP 2 is defined as

CP 2 :=
C3\{0}
∼

(2.4.5)

with ξ1 ∼ ξ2 :⇐⇒ ξ1 = λ ξ2, λ ∈ C\{0}. The map ψ

ψ : S5 ⊂ C3 → CP 2 (2.4.6)
(ξ1, ξ2, ξ3) 7→ [ξ1, ξ2, ξ3]

is surjective but not injective because ψ(eiθξ) = ψ(ξ). Hence we get an isomorphism

S5/U(1) ∼= CP 2 (2.4.7)

from which we conclude that the co-adjoint orbit O∗t∗8 and CP 2 are isomorphic.

4For more information on SU(3) see appendix A.
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Characteristic equation. We are now able to show that the elements of O∗t∗8 satisfy a char-
acteristic equation. Let T ∈ su(3), then

T ∗ ∈ O∗H∗8 ⇐⇒ T · T +
1

2
√

3
T − 1

6
= 0 (2.4.8)

Proof. Let T ∗ ∈ O∗t∗8 , then T = g · t8 · g−1 for some g ∈ SU(3) and T · T + 1
2
√

3
T − 1

6 =

g · (t8 · t8 + 1
2
√

3
t8 − 1

6) · g−1 = 0 by explicit calculation.
On the other hand, let T ∈ su(3) and the characteristic equation be true, then the eigenvalues

of T have to satisfy λ2 + 1
2
√

3
λ− 1

6 = 0. This quadratic equation has two solutions λ ∈ {− 1√
3
, 1

2
√

3
}.

Since T is traceless, its diagonal form is D = diag( 1
2
√

3
, 1

2
√

3
,− 1√

(3)
). Therefore, T = U ·D ·U−1 for

some U ∈ SU(3) and T ∗ ∈ O∗t∗8 . �

We can expand equation (2.4.8) in some basis of su(3) ∼= R8, i.e. T =
∑8

a=1 x
ata and obtain

equations for the coordinates xa

xaxbdabc = − 1√
3
xc (2.4.9)

xaxbδab = 1

where dabc are the symmetric structure constants of su(3) (see section §A.1). These equations define
the embedding of CP 2 as 4-dimensional manifold in R8.

The following procedure is performed in close analogy to the fuzzy sphere case.

Decomposition of its algebra of functions. Because of equation (2.4.3) we have — as in
the case of the fuzzy sphere — a natural action on the algebra of functions C (CP 2) which enables
us to decompose it as

C (CP 2)
.
=

∞⊕
p=0

H(p,p), (2.4.10)

herein H(p,p) carries the (p, p) representation of SU(3).

Quantization map. In contrast to the fuzzy sphere case we now demand our quantization
map Q to be compatible with the SU(3) symmetry, i.e.

Q(g . f) = g .Q(f) ∀g ∈ SU(3) ∀f ∈ C (CP 2). (2.4.11)

In analogy to the fuzzy sphere we consider the algebra ofm×mmatricesMatm(C) ∼= End(H(0,n))
5

equipped with the adjoint action of SU(3)

SU(3)×Matm(C) → Matm(C) (2.4.12)

(g,M) 7→ Π(0,n)
g ·M · (Π(0,n)

g )−1

where Π(0,n) is the (0, n) representation of SU(3) (see figure 2.4.1a for a graphical portrayal). Under
this action Matm(C) decomposes as6

Matm(C)
.
= H(0,n) ⊗H ∗

(0,n)
.
=

n⊕
p=0

H(p,p) (2.4.13)

5In accordance with the general formula (A.2.3) m = dim(H(n,0)) = 1
2
(n+ 1)(n+ 2).

6The dual of the (0, n) representation is just (n, 0) (figure 2.4.1a) and its weight space diagram is a reflection of
the (0, n)-diagram at the horizontal axes.



2.4. FUZZY CP 2 15

(a) (4, 0) rep. of SU(3). This triangle
form is typical for (n, 0) representa-
tions and just grows as the number n
increases.

(b) (2, 2) rep. of SU(3). All (n, n)
representations are of this kind (i.e.
a hexagon form); the size of the
hexagon grows as n increases.

Figure 2.4.1. Weight space diagrams of (n, 0) and (n, n) -type representations of SU(3)

and we define the SU(3)-action preserving quantization map Q to be

Q : C (CP 2) → Matm(C) (2.4.14)

Y Λ
(p,p) 7→

{
Ŷ Λ

(p,p) p ≤ n
0 p > n

where Y Λ
(p,p) respectively Ŷ Λ

(p,p) is an appropriate basis of the particular H(p,p) (see figure 2.4.1b).

Quantized embedding functions. Let Xa be the quantized embedding functions, i.e. Xa =
Q(xa) where the coordinate functions xa are defined by equation (2.4.9). Since equation (2.4.11)
holds in particular for the quantized embedding functions Xa we see by applying an infinitesimal
SU(3) transformation that

[dΠ
(0,n)
ta , Xb] = i cabcX

c (2.4.15)
with cabc being the asymmetric structure constants of SU(3) (see section §A.1). Equation (2.4.15)
shows that the 8-dimensional vector space spanned by the matrices Xa, a = 1, . . . , 8 is invariant and
irreducible under the adjoint action of su(3). Therefore, by (2.4.13) it must hold that Xa ∈ H(1,1)

and hence
[Xa, Xb] = i C cabcX

c (2.4.16)
for some constant C. In the end the latter just determines the scale of the CP 2 reached in the semi-
classical limit. Using the quadratic Casimir operator of SU(3) one sees that setting the constant to
C = 1/

√
n(1 + n/3) yields a CP 2 with radius 1 in the semi-classical limit.

Let us emphasize again that these relations are the defining equations of CP 2
n . They contain

enough information to reconstruct the manifold M reached in the semi-classical limit providing
that the matrices Xa are interpreted as quantized embedding functions xa.

The commutation relations (2.4.16) for the quantized embedding functions Xa ∼ xa are com-
patible with the SU(3)-invariant Poisson structure on CP 2 in the sense that the correspondence
principle (see definition 2.3) holds.

This concludes our discussion about Fuzzy CP 2 for now. We will revisit it again in chapter 4.
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2.5. Fuzzy Torus

An example which does not belong to the class of co-adjoint orbits is the torus T 2 = S1 × S1.
It can be embedded in R4 via the relations

x1 + ix2 = eiϕ (2.5.1)

x3 + ix4 = eiψ

where ϕ,ψ ∈ [0, 2π) or more explicitly

x : T 2 ↪→ R4 (2.5.2)

(ϕ,ψ) 7→


(eiϕ + e−iϕ)/2
−i (eiϕ − e−iϕ)/2

(eiψ + e−iψ)/2
−i (eiψ − e−iψ)/2

 =


cos(ϕ)
sin(ϕ)
cos(ψ)
sin(ψ)

 .

It becomes apparent by equation (2.5.1) that T 2 ⊂ S3. Applying a generalized stereographic
projection S3 → R̄3 yields a torus embedded in R3 which resembles the usual doughnut form (see
figure 2.5.1).

We are again interested in symmetry properties of T 2. It can easily be seen that the torus
carries a U(1)× U(1) symmetry which acts simply by a multiplication of a phase factor

(U(1)× U(1))× T 2 → T 2 (2.5.3)
((Φ,Ψ), (ϕ,ψ)) 7→ (ϕ+ Φ, ψ + Ψ)

which again induces an action on the algebra of functions on the torus C (T 2). A basis of C (T 2)
which respects the symmetry is given by the functions φl,k:

φl,k(ϕ,ψ) := eilϕeikψ. (2.5.4)

A function f ∈ C (T 2) expanded in this basis, i.e. f(ϕ,ψ) =
∑∞

l,k=−∞ fl,k φl,k(ϕ,ψ), is nothing but
the Fourier series of f .

Construction of matrix algebra7. To construct the appropriate form of the matrix algebra
Matn(C) we introduce the shift matrix U and the clock matrix V

U =


0 1

0 1
. . .

. . .

0 1
1 0

 , V =


1

q
q2

. . .

qn−1

 (2.5.5)

7For reference see e.g. [22]

Figure 2.5.1. Torus
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with q := e2πi/n. These are unitary matrices with the property Un = V n = 1 obeying the commu-
tation relations

[U, V ] = (q − 1)V · U. (2.5.6)

It is clear that the set of matrices {1, U, U2, . . . , Un} respectively {1, V, V 2, . . . , V n} forms a repre-
sentation of the cyclic group Zn = 〈w〉.

Let us define the matrices Φl,k

Φl,k := U l · V k (2.5.7)

for l, k ∈ {−n−1
2 , . . . 0, . . . , n−1

2 }
8 which are n2 linear independent matrices and, therefore, a basis of

Matn(C). Let us consider now the adjoint action of Zn ×Zn ⊂ U(1)× U(1) on Matn(C) given by

(Zn ×Zn)×Matn(C)→Matn(C) (2.5.8)

((wr, ws),M) 7→ V s · (U r ·M · U−r) · V −s.

We can calculate the action on the basis Φl,k using equation (2.5.6) and get

(wr, ws) . Φl,k = qmin{s,l}qmin{k,r}Φl,k. (2.5.9)

Therefore the one-dimensional subspaces spanned by the basis vectors are invariant under the
Zn ×Zn action.

Quantization map. Now it is easy to construct a quantization map Q which respects the
Zn ×Zn ⊂ U(1)× U(1) symmetry on our algebras.

Q : C (T 2)→Matn(C) (2.5.10)

φl,k 7→

{
q−min{l,k}/2 Φl,k |l|, |k| ≤ (n− 1)/2

0 otherwise
.

The factor q−min{l,k}/2 is necessary for the quantization map Q to fulfill Q(f∗) = Q(f)† (property
(3) of the quantization map axioms 2.3).

Poisson structure. From equation (2.5.6) we also can guess a suitable Poisson structure on
C (T 2). Since [Q(eiϕ),Q(eiψ)] = [U, V ] = (q − 1)U · V = (q − 1)Q(eiψ) · Q(eiϕ) and q = e2πi/n =
1 + 2πi

n +O(( 1
n)2) it must hold by the correspondence principle in definition 2.3 that

2πiQ(eiψ) · Q(eiϕ) = i lim
n→∞

nQ({eiϕ, eiψ}) (2.5.11)

which can be achieved by requesting {eiϕ, eiψ} = 2π
n e

iϕeiψ assuming that Q(f · g)→ Q(f) · Q(g) as
n→∞9. This allows us to conclude that

{ϕ,ψ}T 2 = −2π

n
(2.5.12)

which obviously is U(1) × U(1) invariant since it is constant. Furthermore, it can be proven by
induction that this Poisson structure obeys the correspondence principle for all quantized functions
in Matn(C).

8We assume here and in the following text that n is odd. If n is not odd, we can just shift the indices l, k ∈
{−n

2
, . . . 0, . . . , n

2
− 1}.

9This can be seen by using φl,kφn,m = φl+n,k+m.
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Quantized embedding functions. From equation (2.5.2) we can directly read off the quan-
tized embedding functions Xa = Q(xa):

X1 = (U + U †)/2 (2.5.13)

X2 = −i (U − U †)/2

X3 = (V + V †)/2

X4 = −i (V − V †)/2



CHAPTER 3

Coherent States

Having discussed some examples of quantized spaces in chapter 2 by means of a bottom-up
approach, we now want to turn around and address the problem within a top-down course of
action. A powerful tool which provides a lot of insight is the so called coherent state.

Coherent states loosely speaking are localized states which are in some sense closest to the
corresponding classical states; “closest” often means having minimum uncertainty. They correspond
so to speak to points in classical space, i.e. states of the classical system. Extensive and differing
treatments of coherent states were presented amongst others in [20, 29, 21, 19, 5, 11]. Nevertheless
we follow a group theoretical approach of Perelomov [20] which fits quite well into the framework
of non-commutative geometry - especially for those spaces that arise from co-adjoint orbits of Lie
groups — and seems quite suitable for our needs.

Furthermore, coherent states provide the theoretical basis for the numerical algorithm which
will be developed to retrieve the classical limit of a given brane configuration.

3.1. Localization and Dispersion

Given some matrices {Xa, a = 1, . . . , d} and interpreting them as quantized embedding func-
tions Xa ∼ xa of a classical manifold embedded in Rd which generate a matrix algebra A ⊂
Matn(C) acting on a Hilbert space Hn we can interpret a normalized vector |Ψ〉 ∈Hn as quantized
function on the fuzzy brane, i.e. |Ψ〉 〈Ψ| ∈ A . Hence we can calculate the expectation value of Xa

given by

~p(Ψ)a := 〈Xa〉Ψ = tr(Xa |Ψ〉 〈Ψ|) = 〈Ψ|Xa |Ψ〉 , (3.1.1)

similar to ordinary quantum mechanics. In analogy we can calculate the square of its standard
deviation (∆ΨX

a)2 as

(∆ΨX
a)2 := 〈Ψ| (Xa)2 |Ψ〉 − 〈Ψ|Xa |Ψ〉2 . (3.1.2)

A good measure for its localization is the dispersion δ(Ψ)

0 ≤ δ(Ψ) :=
d∑
a=1

(∆ΨX
a)2 . (3.1.3)

The dispersion δ will be a guidepost for our definition of a coherent state. We would like the
dispersion of states classified as coherent to be minimal. However, this requirement seems only to
be realizable in very symmetric fuzzy spaces.1 Consequently, in general we will weaken this criterion
to allow states which are “near”2 the minimum of δ.

1We will see that the fuzzy branes obtained by co-adjoint orbits of Lie groups are candidates thereof.
2What is meant by “near” should become clearer in chapter 5.

19
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3.2. Coherent States on the fuzzy sphere S2
n

Recall that the fuzzy sphere S2
n is defined by three n × n matrices Xa ∼ xa which satisfy the

commutation relations

[Xa, Xb] = i
2√

n2 − 1
εabcX

c (3.2.1)

and generate the whole matrix algebra Matn(C) which acts on the carrier space Hn
∼= Cn.

Dispersion in the fuzzy sphere case. In the fuzzy sphere case we can simplify the disper-
sion (3.1.3) to

0 ≤ δ(Ψ) =
3∑

a=1

(∆ΨX
a)2 = 〈Ψ|

3∑
i=1

(Xa)2 |Ψ〉 − ~p(Ψ)2 = 1− |~p(Ψ)|2, (3.2.2)

noticing that
∑3

i=1(Xa)2 = 1 is the quadratic Casimir of SU(2). Since 0 ≤ δ(Ψ) this relation
also shows that |~p(Ψ)| ≤ 1. Since the expectation value square |~p(Ψ)|2 is maximal for Ψ being an
extremal weight vector Ψ0, δ(Ψ0) is minimal.

In equation (3.2.2) we explicitly see that in the case of the fuzzy sphere S2
n the dispersion

is minimized for states which are localized at (or near) the unit sphere S2. The fact that the
dispersion is determined only by the localization of a state seems to be a little counter intuitive,
but it only means that states localized near the unit sphere are forced to possess little dispersion in
each direction because of the high symmetry.

Construction of coherent states. Since (Xa)a=1,2,3 is a vector operator, ~p also transforms
as a vector, i.e. for R ∈ SO(3) and Un(R) the n-dimensional representation of R we have

pa(Un(R) ·Ψ) =
3∑
b=1

Rab p
b(Ψ) (3.2.3)

and since |~p(Ψ)|2 is an SO(3)-invariant expression it follows that δ is invariant under the SU(2)
action. Because of the SU(2)-invariance of the dispersion δ we can rotate the state Ψ0 and obtain
a class of states

OΨ0 := {U(g) ·Ψ0 | g ∈ SU(2)} (3.2.4)

which are all optimally localized. One can also show that this is the only class that offers optimal
locality (quantified by δ in equation (3.1.3)). Since the stabilizer group KΨ0 is U(1) (acting with
eiX3t yields a phase shift), we have OΨ0

∼= SU(2)
U(1)

∼= S2, which at first sight looks promising.
Let us now explicitly calculate the dispersion and the expectation value for this orbit. For this

purpose we consider the highest weight vector

Ψ0 =

∣∣∣∣n− 1

2
,
n− 1

2

〉
∈Hn,

written in standard QM notation. One can calculate the expected location of this state and the
dispersion using standard knowledge of SU(2) representations and we get

~p(Ψ0) =

 0
0√
n−1
n+1

 =

0
0
1

+O(
1

n
), (3.2.5)

δ(Ψ0) = 1− n− 1

n+ 1
=

2

n+ 1
= O(

1

n
). (3.2.6)
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Furthermore, because of property (3.2.3) and equation (3.2.5) we get that the image of the orbit
OΨ0 under ~p is

~p(OΨ0) = S2 + “O(
1

n
) ”, (3.2.7)

which implies that in the limit n → ∞ the coherent states are localized at the unit sphere S2.
Additionally, their dispersion δ(OΨ0) goes to zero as n tends to infinity. So in the limit the coherent
states — which we can think of as quantized functions — become Dirac-δ-functions localized at the
unit sphere; this leads us to the conclusion that we really retrieved S2 from fuzzy S2

n in the limit
n→∞!

3.3. Coherent States on fuzzy CP 2
n

Fuzzy CP 2
n was defined by 8 matrices Xa which obey the commutation relation

[Xa, Xb] = i
1√

n(1 + n/3)
cabcX

c, (3.3.1)

cabc being the antisymmetric structure constants of SU(3) given in section §A.1 which generate the
matrix algebra Matn(C) that acts on H(0,n).

The construction of coherent states on CP 2
n is conducted in complete analogy with the fuzzy

sphere S2
n. In fact, for all quantized spaces which arise from co-adjoint orbits this construction is

valid as shown in [20].
The recipe works as follows: Take the highest weight vector Ψ0 ∈H of the given representation.

Consider the orbit OΨ0 generated by the group action. One easily recognizes that the orbit OΨ0

is isomorphic to the co-adjoint orbit of G. Furthermore, Ψ0 minimizes the dispersion δ defined
in equation (3.1.3) when considering G = SU(n). Since δ is group invariant, the whole orbit OΨ0

minimizes the dispersion δ.

Explicit calculation for CP 2
n . Let us evaluate the expectation value and the dispersion of

the highest weight vector Ψ0 ∈H(0,n) explicitly for CP 2
n . Having a look at equation (3.2.2) we see

that the relation is still valid when we replace the SU(2) generators with SU(3) ones:

0 ≤ δ(Ψ) =

8∑
a=1

(∆ΨX
a)2 = 1− |~p(Ψ)|2. (3.3.2)

For the expectation value we get

~p(Ψ0) =



0
0
0
0
0
0
0√
n

3+n


=



0
0
0
0
0
0
0
1


+O(

1

n
), (3.3.3)
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and therefore,

pa(Ψ0) pb(Ψ0) δab =
n

3 + n
= 1 +O(

1

n
), (3.3.4)

pa(Ψ0) pb(Ψ0) dabc =



0
0
0
0
0
0
0

− 1√
3

n
3+n


c

= −pc(Ψ0) +O(
1

n
),

which reproduces the characteristic equations of CP 2 (2.4.9) in the limit n→∞.3 The dispersion δ
is then easily calculated:

δ(Ψ0) = 1− n

n+ 3
=

3

n+ 3
= O(

1

n
) (3.3.5)

and goes to zero as n tends to infinity as expected.
And since these equations transform correctly under the SU(3)-action they are valid for the

whole orbit OΨ0
∼= CP 2.

Note that H(0,n) has three extremal weight vectors (see figure 2.4.1a) and we could also have
evaluated the other two since they lie on the same orbit generated by the SU(3)-action.

3The reason for choosing H(0,n) and not H(n,0) for CP 2 in the first place is that we would only reproduce
equation (2.4.9) up to a sign and therefore get a different embedding in R8 which would not match the embedding
arisen from the co-adjoint orbit.



CHAPTER 4

Squashed CP 2

Having discussed some examples of non-commutative geometry and methods to find their semi-
classical limit we will now look into the applications to physics. For this reason we will study the
N = 1 supersymmetric U(N) Yang-Mills (SYM) theory reduced to 4 dimensions modified by a
cubic potential [24]. We will then determine the equation of motions for static scalar fields.

After establishing the setup, a modification of CP 2
n , namely Squashed CP 2

n [24] will be intro-
duced in section §4.2 which — as we will see — is a solution to the model introduced below.

4.1. Supersymmetric Yang-Mills Theory

10-dimensional SYM. The action of the N = 1 supersymmetric U(N) Yang-Mills theory in
10 dimensions can be written as

SYM =

ˆ
d10x

(
1

g2
FIJF

IJ − i Ψ̄ΓIDIΨ

)
, (4.1.1)

which after a dimensional reduction [4] to 4 dimensions reads

SYM =

ˆ
d4x trN

(
− 1

g2
FµνFµν −

1

2
DµΦaDµΦa +

1

4
g2 [Φa,Φb][Φa,Φb]+

+Ψ̄γµDµΨ + g Ψ̄Γa[Φa,Ψ]

)
(4.1.2)

with Fµν being the antisymmetric field strength tensor, Dµ the covariant derivative,

Fµν = ∂µAν − ∂νAµ + g [Aµ, Aν ],

Dµ = ∂µ − i [Aµ, .],

Φa, a ∈ {1, . . . , 6}matrix valued scalar fields and Ψ a dimensionally reduced matrix valued Majorana-
Weyl spinor of SO(9, 1) (i.e. Ψ ∈ C24/2 ⊗ C26/2 ⊗MatN (C)). The symbol γµ denotes the usual 4
Dirac-Gamma matrices (i.e. a representation of the Clifford algebra C`3,1(R)) while {Γa, a = 1, . . . , 6}
forms a representation of C`6(R).

The action (4.1.2) is interpreted as field theory on M4 × K6 where M4 is a 4-dimensional
manifold with Minkowski metric signature and K6 ⊂ R6 an internal 6-dimensional compact fuzzy
space. Hence the scalar fields Φa are to be interpreted as quantized embedding functions on K6.

Deformed model. For our purpose we consider the model deformed by a (soft supersymmetry
breaking) cubic potential,

SYM +

ˆ
d4x trN

(
i

2
g3/2fabcΦ

aΦbΦc

)
(4.1.3)

where fabc is a constant tensor antisymmetric in all indices.
At this point we are only interested in static solutions of the scalar fields Φa. After absorbing

the coupling constant g by the substitution Xa :=
√
gΦa we get the resulting 6-dimensional matrix

23
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model

S[X] = tr

(
1

4
[Xa, Xb][Xa, Xb] +

i

2
fabcX

aXbXc

)
. (4.1.4)

Symmetries. The action (4.1.4) is invariant under gauge transformations

Xa 7→ UXaU−1, U ∈ U(N), (4.1.5)

which can be seen by noting that [Xa, Xb] 7→ U [Xa, Xb]U−1 and using cyclic permutations under
the trace operation.

Additionally, it is symmetric under translations

Xa 7→ Xa + ca1 (4.1.6)

which is obvious for the first term [Xa, Xb][Xa, Xb] while the second term transforms as

fabcX
aXbXc 7→ fabcX

aXbXc + fabc(X
aXbcc +XacbXc + caXbXc)

but since fabc is antisymmetric in all indices we can use that fabcXaXb = fabc
1
2 [Xa, Xb] and thus

the trace of the extra terms yields zero.

Equations of motion. As usual the equations of motion can be obtained via the equations

dS[X]

dXa
= 0 (4.1.7)

where usual matrix calculus can be applied.
Evaluating the derivative of the first term making heavy use of the Leibniz rule and cyclic

permutations under the trace yields1

0 = d

(
tr

1

4
[Xa, Xb][Xa, Xb]

)
= −tr

(
[Xb, [Xb, Xa]] dX

a
)

while the second term reads

0 = d

(
tr
i

2
fabcX

aXbXc

)
= tr

(
3

2
i fabcX

bXc dXa

)
.

Therefore after introducing the matrix Laplace operator � := δab [Xa, [Xb, .]] the equations of
motion for the quantized embedding functions Xa can be written as:

�Xa =
3

2
i fabcX

bXc (4.1.8)

4.2. Squashed Fuzzy CP 2 As Solution

To begin with we consider again CP 2
n described by eight 1

2(n + 1)(n + 2) × 1
2(n + 1)(n + 2)

matrices Xa interpreted as quantized embedding functions Xa ∼ xa which satisfy

[Xa, Xb] = i
1√

n(1 + n/3)
cabcX

c. (4.2.1)

1Note that throughout this paper Xa = Xa.
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00

Figure 4.2.1. The (1, 1) representation of SU(3). One sees that |1, 0〉1 ∼= X+
1 ,∣∣∣−1

2 ,
√

3
2

〉
1

∼= X+
2 ,
∣∣∣12 , √3

2

〉
1

∼= X+
3 and so on.

Squashed fuzzy CP 2 is then defined by six of the eight matrices {Xa, a ∈ I = {1, 2, 4, 5, 6, 7}}
which corresponds2 to a squashed CP 2 in the semiclassical limit defined by the projection

Π : R8 → R6 (4.2.2)
(xa)a=1,...,8 7→ (xa)a∈I

as squashed 4-dimensional manifold embedded in R6, Π(CP 2) ↪→ R6. Since the Cartan generators
X3 and X8 can be generated by Xa, a ∈ I due to the commutator relations, the algebra generated
by them is as in the non-squashed case the full matrix algebra Matm(C).

Squashed CP 2
n as solution of the matrix model. We want to show that these matrices are

a solution of the matrix model (4.1.4) discussed above. To this end we consider now the natural
Laplace operator � on squashed CP 2

n

� :=
∑
a∈I

[Xa, [Xa, .]] (4.2.3)

which can be written as � =
∑8

i=1 ad
2
Xa−ad2

X3−ad2
X8 where ad denotes the adjoint representation

of su(3). The first term can be identified with the quadratic Casimir operator of SU(3). Choosing
a basis

|λ, y〉p ∈Matm(C)
.
=

n⊕
p=0

V(p,p)

so that |λ, y〉p ∈ V(p,p) and adπ(p,p)(t3) |λ, y〉p = λ |λ, y〉p respectively adπ(p,p)(t8) |λ, y〉p = y |λ, y〉p one
can immediately read off the eigenvectors respectively eigenvalues as

� |λ, y〉p = c2
n

(
p(2 + p)− (λ2 + y2)

)
|λ, y〉p (4.2.4)

with 1/c2
n = n(1 + n/3).

In particular since the vectors |λ, y〉1 correspond to the roots of SU(3) (see figure 4.2.1) we find
that �X±i = 2c2

nX
±
i and hence

�Xa = 2c2
nX

a ∀a ∈ I. (4.2.5)

2This claim will be justified in section §4.3 and later supported by numerical calculations.
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Let us now define the reduced structure constants gabc where the indices are confined to I and
gabc = cabc ∀a, b, c ∈ I. Then∑

c∈I
i gabcX

c =
8∑
c=1

i cabcX
c

︸ ︷︷ ︸
1/cn [Xa,Xb]

−
∑
c=3,8

i cabcX
c

and hence ∑
b∈I

∑
c∈I

i gabc[X
b, Xc] =

1

cn

∑
b∈I

[Xb, [Xa, Xb]]︸ ︷︷ ︸
−�Xa

−
∑
b∈I

∑
c=3,8

i cabc [Xb, Xc]︸ ︷︷ ︸∑8
d=1 i cn cbcdX

d

= − 1

cn
�Xa + cn

8∑
d=1

∑
c=3,8

∑
b∈I

cabccbcd


︸ ︷︷ ︸

δad

Xd

= − 1

cn
�Xa + cnX

a

and using equation (4.2.5) we get

i gabc[X
b, Xc] = −cnXa

or equivalently
�Xa = −i 4 cn gabcX

bXc (4.2.6)
which is in agreement with [24] apart from discrepancies due to different conventions.

Recalling the equations of motion (4.1.8) of the matrix model in consideration, we see that for

fabc = −8

3
cn gabc (4.2.7)

the squashed fuzzy CP 2 is a solution of this model!

4.3. Coherent States on Squashed CP 2
n

For the squashed co-adjoint orbit the situation is not as easy as in section §3.3 since we lost the
SU(3) symmetry. Nevertheless, it turns out that explicit calculations even for squashed CP 2 are
possible.

Essential is, of course, again the dispersion δ which serves as measure for localization and is
defined as in the general case (3.1.3)

δ(Ψ) :=
∑
a∈I

(∆ΨX
a)2. (4.3.1)

A U(1) × U(1) symmetry as remnant of SU(3). We can rewrite the dispersion δ in terms
of the roots of SU(3) (see section §A.1) given by

X±1 = X4 ± iX5, (4.3.2)

X±2 = X6 ± iX7,

X±3 = X1 ± iX2 = ±[X±1 , X
∓
2 ].

After the substitution the dispersion reads

δ(Ψ) =
1

2

3∑
i=1

(〈
X+
i X

−
i

〉
Ψ

+
〈
X−i X

+
i

〉
Ψ
− 2

〈
X+
i

〉
Ψ

〈
X−i
〉

Ψ

)
. (4.3.3)
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Rewriting the dispersion δ into the form (4.3.3) makes it clear that it is invariant under a
U(1)× U(1) group acting as

X±i 7→ AdϕT3+ϑT8

(
X±i
)

= e±iϕie±iϑiX±i , (4.3.4)

since expressions like X+
i X

−
i transform as

X+
i X

−
i 7→

(
e+iϕie+iϑiX+

i

)(
e−iϕie−iϑiX−i

)
= X+

i X
−
i , (4.3.5)

i.e. they are invariant.
Note that also the norm of the expectation values |~p(Ψ)| is invariant under U(1)× U(1) trans-

formations since |~p(Ψ)|2 can be written as

|~p(Ψ)|2 =
3∑
i=1

(〈
X+
i

〉
Ψ

〈
X−i
〉

Ψ

)
. (4.3.6)

Explicit calculations. For explicit calculations it seems, nevertheless, more convenient to
write the dispersion in the form

δ(Ψ) = 〈Ψ|
8∑

a=1

(Xa)2

︸ ︷︷ ︸
1

|Ψ〉 −
∑
i=3,8

〈Ψ| (Xi)2 |Ψ〉 − |~p(Ψ)|2 . (4.3.7)

Evaluating the expectation value ~p(Ψ) and the dispersion δ(Ψ) explicitly for the extremal weight
state |Ψ0〉 is possible and yields

~p(Ψ0) = 0 (4.3.8)
and

δ(Ψ0) = 1− n

3 + n
− 0 =

3

n+ 3
= O(

1

n
). (4.3.9)

We see that in the squashed case the extremal weight states are now located at the origin while
the dispersion is the same as in the non-squashed case (cf. equation (3.3.5)). Since in addition
δ(Ψ0) also tends to zero as n goes to infinity the highest weight state |Ψ0〉 is a good candidate
for a coherent state. The same is true for the other two extremal states because of the remaining
SU(3)-Weyl symmetry.

Rotations of the highest weight state. Let us investigate how SU(3) rotations of the highest
weight state affect the location and the dispersion. First of all, since T±3 = T 1 ± iT 2 annihilate
|Ψ0〉 and T 3, T 8 are only acting via a phase shift3, we are left with 4 non-trivial directions4 which
correspond to rotation generators T 4, T 5, T 6, T 7. Calculating the expectation values ~p of the
rotated vectors

|ϕ〉 := exp
(
iϕ1T

4 + iϕ2T
5 + iϕ3T

6 + iϕ4T
7
)
|Ψ0〉 (4.3.10)

with ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) yields (see appendix B for details)

~p(ϕ) = cn
n

2

1

|ϕ|



(ϕ1ϕ3+ϕ2ϕ4)
|ϕ| (cos |ϕ| − 1)

2 (ϕ1ϕ4−ϕ2ϕ3)
|ϕ| sin2 |ϕ|

2

ϕ2 sin |ϕ|
−ϕ1 sin |ϕ|
ϕ4 sin |ϕ|
−ϕ3 sin |ϕ|


, (4.3.11)

3This corresponds to the stabilizer of |Ψ0〉, KΨ0 = SU(2)× U(1).
4The same consideration is true for the non-squashed CP 2 which is one way of reasoning that it must be a

4-dimensional manifold.
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and since cn n2 = 1
2

√
n

1+n/3 , the norm |~p(ϕ)| fulfills

|~p(ϕ)|2 = (cn
n

2
)2︸ ︷︷ ︸

3
4

+O( 1
n

)

(
(ϕ1ϕ3 + ϕ2ϕ4)2

|ϕ|2
(cos |ϕ| − 1)2 + 4

(ϕ1ϕ4 − ϕ2ϕ3)2

|ϕ|2
sin4 |ϕ|

2
+ sin2 |ϕ|

)
.

(4.3.12)

Note that we could also have considered a different parametrization, that is

eiϑ1T 4
eiϑ2T 5

eiϑ3T 6
eiϑ4T 7 |Ψ0〉 , (4.3.13)

but the obtained expressions get hopelessly long.
To calculate the dispersion δ we have to take care of the second term in equation (4.3.7).

See appendix B for the calculation details and the full expression. Plugging the results into the
dispersion (4.3.7) and simplifying provides the final result:

δ(ϕ) =
3

8 (3 + n)

1

|ϕ|4
{

4(ϕ2
1 + ϕ2

2)(ϕ2
3 + ϕ2

4) cos |ϕ|

+
(
ϕ4

1 + ϕ4
2 + ϕ2

1(2ϕ2
2 + ϕ2

3 + ϕ2
4) + ϕ2

2(ϕ2
3 + ϕ2

4) + (ϕ2
3 + ϕ2

4)2
)

cos 2|ϕ|
+
(
7 (ϕ4

1 + ϕ4
2) + 7 (ϕ2

3 + ϕ2
4)2 + 11ϕ2

2(ϕ2
3 + ϕ2

4)
)}
. (4.3.14)

Here we see that the dispersion δ vanishes as n goes to infinity, which means that even after squashing
the rotated states can be considered to be coherent as they become completely localized in the semi-
classical limit! This strongly supports the claim that the semi-classical limit of squashed CP 2

n is in
fact Π(CP 2).

Moreover, one can check that the dispersion (4.3.14) satisfies the sharp inequality
2

3 + n
≤ δ(ϕ) ≤ 3

3 + n
(4.3.15)

which surprisingly implies that the highest weight vector |Ψ0〉 actually has the highest dispersion
in this class of states (and not the lowest as one might have guessed).

Let us discuss some limits to check the plausibility of the formulas (4.3.14) and (4.3.11).

Limit |ϕ| → 0. First it can easily be seen that in the limit |ϕ| → 0 the expectation value ~p(ϕ)
goes to zero as expected. Furthermore

lim
|ϕ|→0

δ(ϕ) =
3

3 + n
(4.3.16)

which correctly reproduces the dispersion of the highest weight state in formula (4.3.9).

Limit ϕ1, ϕ3 → 0. In the limit ϕ1 → 0, ϕ3 → 0 the expectation values read

lim
ϕ1,ϕ3→0

~p(ϕ) = cn
n

2

1

|ϕ|



ϕ2ϕ4

|ϕ| (cos |ϕ| − 1)

0
ϕ2 sin |ϕ|

0
ϕ4 sin |ϕ|

0

 , (4.3.17)

so this corresponds to a section of squashed CP 2 through the x2 = x5 = x7 = 0 hyperplane.5

Plotting this 2-dimensional manifold reproduces figure 4.3.1 first published in [24].

5Remember: the numbering was chosen to be consistent with the non-squashed scheme. Since x3 and x8 where
“projected away”, the third component in ~p corresponds to x4 and so on.
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Figure 4.3.1. A 3-dimensional section of Π(CP 2) through x2 = x5 = x7 = 0 plane,
originally printed in [24]. The color indicates the corresponding scaled and shifted
dispersion δ̄, which has its minimum at 0 (, 2

3+n) and maximum at 1 (, 3
3+n). The

lines represent contour lines of δ̄.

The dispersion (4.3.14) reduces in the limit to

lim
ϕ1,ϕ3→0

δ(ϕ) =
3

8 (3 + n)

1

|ϕ|4
{

4ϕ2
2 ϕ

2
4 cos |ϕ|

+
(
ϕ4

2 + ϕ2
2 ϕ

2
4 + ϕ4

4

)
cos 2|ϕ|

+ 7 (ϕ4
2 + ϕ4

4) + 11ϕ2
2 ϕ

2
4

}
(4.3.18)

whose global minima lie at

|ϕ2| = |ϕ4| =
√

2 arctan(
√

2). (4.3.19)

This corresponds to 4 points on Π(CP 2), namely

cn
n

3


−1
0
1
0
1
0

 , cn
n

3


1
0
1
0
−1
0

 , cn
n

3


−1
0
−1
0
−1
0

 , cn
n

3


1
0
−1
0
1
0

 ,

which can be seen in figure 4.3.1 as centers of the blue zones.

Limit ϕ3, ϕ4 → 0. Another interesting case is the limit ϕ3, ϕ4 → 0. We are only allowing
rotations by T 4 and T 5 and since {T 4, T 5, T 8} form the su(3)-subalgebra su(2), this case essentially



30 4. SQUASHED CP 2

Figure 4.3.2. Semi-classical limit of the squashed fuzzy sphere. The color indicates
the corresponding scaled dispersion δ̄ which has its minimum at 0 (, 2

3+n) and
maximum at 1 (, 3

3+n). The lines represent contour lines of δ̄.

resembles the squashed fuzzy sphere6. Here we have

lim
ϕ3,ϕ4→0

~p(ϕ) = cn
n

2

1

|ϕ|


0
0

ϕ2 sin |ϕ|
ϕ1 sin |ϕ|

0
0

 , (4.3.20)

which implies that the image of ~p in this limit is the disk DR = {x, y ∈ R, x2 + y2 ≤ R2 = cn
n
2 }

which is of course nothing else but the ordinary squashed sphere.
The dispersion 4.3.14 reduces to

lim
ϕ3,ϕ4→0

δ(ϕ) =
3

8 (3 + n)
(7 + cos(2|ϕ|)) . (4.3.21)

The minima are obviously given by |ϕ| =
√
ϕ2

1 + ϕ2
2 = π/2, which corresponds to the boundary of

the disk ∂DR. In figure 4.3.2 a picture of the 2-dimensional squashed fuzzy sphere with indicated
dispersion is given.

Numerical considerations. To support the calculations above we will establish an algorithm
in chapter 5 for numerical calculations of coherent states and in doing so (hopefully) find an adequate
approximation to the semi-classical limit. This algorithm can then not only be used for the special
case of squashed CP 2

n but for arbitrary matrix configurations which allow the existence of coherent
states, i.e. arguably every matrix configuration with physical viability.

6The squashed fuzzy sphere is defined in analogy to squashed CP 2 by omitting the Cartan generator X3.



CHAPTER 5

Numerical Analysis of Coherent States

So far we have studied coherent states by Perelomov for simple examples of non-commutative
geometries and also for a more complicated space, the squashed fuzzy CP 2, as a solution of the
Yang-Mills theory introduced in section §4.2. Our aim now is to extend the idea of coherent states to
arbitrary matrix configurations, which should allow a more general numerical study of semi-classical
limits of fuzzy spaces described by such matrices.

In the following chapter we will try to find an appropriate definition for a more general coherent
state which fits our context. This definition will be chosen in such a way that it will be accessible
by numerical means. In the already discussed examples this definition should of course essentially
reduce to coherent states defined by Perelomov.

Subsequently, a numerical algorithm will be established, which should capture the coherent
states defined below. This algorithm will be tested on various matrix configurations. As an impor-
tant example will serve squashed CP 2

n .

5.1. Definition of Coherent States

Setup. For our purpose it is useful to consider the following concepts: Given is a sequence
of matrix algebras An ⊂ Matm(n)(C) acting on Hilbert spaces Hn and a sequence of quantized
embedding functions Xa

n ∈ An for every a ∈ {1, . . . , d}. The expectation value ~p(Ψ) of Xa
n in a

state |Ψn〉 ∈Hn is defined on
⊕∞

n=1 Hn as

~p(Ψn) = 〈Ψn|Xa
n |Ψn〉 (5.1.1)

while the dispersion δ on
⊕∞

n=1 Hn is defined as

δ(Ψn) =
∑
a

(∆ΨnX
a
n)2 . (5.1.2)

The semi-classical limit of the expectation value ~p and the dispersion δ of a sequence of states
(|Ψn〉)∞n=1 are then simply given by

~p∞ = lim
n→∞

~p(Ψn), (5.1.3)

δ∞ = lim
n→∞

δ(Ψn). (5.1.4)

Coherent states. The question now is: How should we define a coherent state in Hn?
First, note that, since we want to use coherent states to describe the semi-classical limit of

some fuzzy brane, we demand that the coherent state becomes completely localized in this limit;
i.e. ~p∞ <∞ and δ∞ = 0. Thus in our context a first naive attempt to define a coherent state is to
define a sequence of states which obeys the following two conditions:

Definition 5.1 (Weak Coherent State Sequence). A sequence (|Ψn〉)∞n=1 , |Ψn〉 ∈ Hn is called
a weak coherent state sequence if

• the semi-classical limit of the sequence of expectation values ~p(Ψn)a = 〈Xa
n〉Ψn exists:

lim
n→∞

~p(Ψn) = ~p∞ <∞,

31
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• and the dispersion δ vanishes in the semi-classical limit:

lim
n→∞

δ(Ψn) = 0.

A closer examination of definition (5.1) reveals a lot of problems. For finite n practically any
state could be an element of a weak coherent state sequence, and, of course, this would destroy the
purpose of this definition.

One way to remedy this problem would be to require members of the sequence to minimize the
dispersion δ on Hn, but we have already seen that this only makes sense for very symmetric fuzzy
branes and is too restrictive.

However, we can go a different route. Since we would like to have a good approximation of
the semi-classical limit already for finite n, it seems appropriate to require that the expectation
value ~pn(Ψn) for finite n is optimal, in the sense that there is no |Ψ〉 ∈H n so that |~p∞−~pn(Ψn)| >
|~p∞ − ~pn(Ψ)|. This leads to the following definition of an “optimal localized state”:

Definition 5.2 (Optimal Localized State). Let ~p be a point in the target space Rd. A state
|Ψ〉 ∈Hn is called an optimal localized state at ~p ∈ Rd, if the following properties hold:

(1) The expectation values ~p(Ψ) are optimal, i.e.

|~p− ~p(Ψ)| = min
|ψ〉∈Hn

|~p− ~p(ψ)| . (5.1.5)

(2) Let L ⊂Hn be the set of states obeying property (1). We demand that the dispersion is
optimal with respect to all states in L , i.e.

δ(Ψ) = min
|λ〉∈L

δ(λ). (5.1.6)

This definition captures the notion of a state which can be thought of as “the best” approximation
of a classical point ~p ∈ Rd. It is obvious that for each ~p ∈ Rd there exists at least one optimal
localized state.1 So this can certainly not be the sole criterion on how to select coherent states (which
in the end have to represent the semi-classical limit). In order to justify that optimal localized states
“become” points in the semiclassical limit, the dispersion δ has to go to zero as n tends to infinity.

With the aim to make these vague statements more precise we firstly state the definition for a
coherent state sequence as:

Definition 5.3 (Coherent State Sequence). Let ~p ∈ Rd be a fixed point in the target space Rd.
A sequence of optimal localized states at ~p ∈ Rd (in the sense of definition (5.2)) (|Ψn〉)∞n=1 , |Ψn〉 ∈
Hn is called a coherent state sequence if it satisfies the conditions

(1) The semi-classical limit of the sequence of expectation values ~p(Ψn)a = 〈Xa
n〉Ψn

exists and
is identical with ~p ∈ Rd:

lim
n→∞

~p(Ψn) = ~p <∞. (5.1.7)

(2) The sequence of dispersion (δ(Ψn))∞n=1 is monotonically decreasing and tends to zero in
the semi-classical limit:

δ(Ψn) ≤ δ(Ψn+1) ∀n ∈ N, (5.1.8)
lim
n→∞

δ(Ψn) = 0. (5.1.9)

An element |Ψn〉 ∈H n of a coherent state sequence (|Ψn〉)∞n=1 is called a coherent state.

1This is the reason why the “optimality condition” (1) in definition (5.2) is deliberately chosen very carefully. The
naive approach would be to just demand that ~p(Ψ) = ~p. However, this cannot always be satisfied as the example in
section §5.4 will show.
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So if for a point ~p ∈ Rd there exists a coherent state |Ψn〉, then ~p ∈ Rd is an element of the
manifold resembling the semi-classical limit. But since the numerical machinery is only served
with the algebra An for a fixed and finite n, the limit of the dispersion δ can, of course, not
be determined in any exact way by numerical means. However, we will argue below that under
reasonable assumptions, it is nevertheless possible to extract valuable information providing that n
is “high enough”.

Considerations regarding finite n. First, one observes that because of property (2) in def-
inition (5.3) there exists a finite n so that the dispersion of a coherent state is smaller than the
dispersion of non-coherent (but nevertheless optimal localized) states. Therefore, one expects re-
gions in state-space C S ⊂ Hn where the dispersion is lower than in its “complement”. From now
on we will assume that such a “gap” for high enough n in the dispersion of states exists. It is in the
following referred to as the “hierarchy” of dispersion. The details on how such a hierarchy can be
determined are discussed later in section §5.3.

It is not clear that states with low dispersion (with respect to this hierarchy) are optimal located
states in general although we will see this to be true for all discussed examples below. Let us merely
assume that for the moment. We would now have reduced the problem to finding a sub-manifold
C S ⊂ CPm ∼= Sm−1/U(1) ⊂ Hm/U(1) equipped with the Fubini-Study metric [25] for which the
dispersion

δ(Ψ) =
∑
a

(∆ΨX
a)2 (5.1.10)

is minimal or near the minimum with respect to a given hierarchy. Their expectation values ~p(C S )
would then produce a manifold M = ~p(C S ) which would hopefully be a good approximation to
the semi-classical limit.

It was attempted to implement this idea directly and it turned out to work for simple spaces
where a good hierarchy exists even for low dimensional matrices. For more complicated spaces such
as squashed CP 2 the problem gets too high-dimensional and the corresponding computational effort
is too large to produce results in a reasonable time frame.

For this reason, we investigate a different path in the next section, the intersecting point probe.
Intersecting fuzzy branes and the idea of a point probe are for example studied in [7, 6].

Connection to Perelomov coherent states. Consider for example the fuzzy sphere. For
each n we are given the n-dimensional SU(2) representation acting on Hn. Each such Hilbert
space Hn has a highest weight state |Ψn

0 〉 ∈Hn.
Let us have a look at the sequence s0 = (|Ψn

0 〉)
∞
n=1. We know that the dispersion δ is minimized,

hence equation (3.2.2) tells us that |~pn(Ψn
0 )|2 is maximized and smaller than 1. Since |~p∞| =

limn→∞ |~p(Ψn
0 )| = 1 (see equation (3.2.5)), the distance |~p∞ − ~p(Ψn

0 )| is obviously minimized and
hence every state in the sequence s0 is an optimally localized state according to definition (5.2).
Furthermore, as shown in section 3.2 on page 20 the properties (1) and (2) of definition (5.3) are
certainly satisfied.

Therefore, the sequence s0 is a coherent state sequence and |Ψn
0 〉 is a coherent state in the sense

of definition 5.3. The same considerations hold for the SU(2)-rotated sequences.
According to this reasoning Perelomov coherent states agree with the coherent states in the

sense above on the fuzzy sphere. The same reasoning is valid for CP 2
n and should also be valid for

other co-adjoint orbits.
For the squashed orbit Π(CP 2

n) the situation again is not that clear. Considering the highest
weight state sequence s0, it is evident that, since ~p(Ψn

0 ) = 0 = ~p∞ for all n, the sequence s0

is a coherent state sequence indeed although the states’ dispersion is not minimized. This fact
supports the above definition. There is also reason to believe (based on numerical evidence) that
the expectation values are optimal at least with respect to the SU(3)-orbit OΨ0 .
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5.2. Intersecting Point Probe

In the following section we develop yet another (only slightly different) definition of coherent
states — which was also investigated in [16] by Ishiki, although differently motivated —, a definition
based on the intersecting point probe. Heuristically speaking one measures the energies of strings
connecting the probe with the fuzzy brane, c.f. Berenstein [6]. Coherent states can then be selected
by probe locations where the energies are “low”.

Despite the different perspective, we will see in the detailed quantitative description in sec-
tion §5.2 that this method has strong similarities with coherent states defined above.

Zero-dimensional brane. First let us consider the special case of a fuzzy brane defined by d
real 1× 1 matrices pa ∈ Mat1(C) ∼= C, a = 1, . . . , d interpreted as quantized embedding functions.
In any case they generate the algebra of complex numbers C which acts on a one-dimensional
Hilbert space H1

∼= C. Since these embedding functions are all just constant numbers, they can
only describe a single point

~p = (p1, . . . , pd) ∈ Rd (5.2.1)
in the target space Rd. This can also be seen in the context of coherent sates: Every element in this
algebra has expectation value (p1, . . . , pd) and zero dispersion. Hence these numbers pa describe a
zero-dimensional point-brane embedded in Rd.

Stack of branes. We now go back to our original matrix configuration Xa which characterizes
some fuzzy brane embedded in Rd and generates a matrix algebra A ⊂Matm(C). Given a second
fuzzy brane defined by a set of matrices Y a generating the algebra B ⊂ Matl(C), we can describe
the two branes in one target space Rd simultaneously simply by constructing the new quantized
embedding functions Xa,

Xa := Xa ⊕ Y a, a = 1, . . . , d (5.2.2)
or explicitly in matrix form

Xa =

(
Xa 0
0 Y a

)
, a = 1, . . . , d (5.2.3)

acting on Hm ⊕Hl (see [7]). They generate the algebra A ⊕B ⊂Matm(C)⊕Matl(C).
So far we got nothing new physically. The issue becomes more interesting if we consider not

only the algebra Matm(C) ⊕Matl(C) (i.e. matrices in block-diagonal form) but the whole matrix
algebra Matm+l(C), that is including the off-diagonal blocks which are elements of Hm ⊗ H ∗

l
respectively Hl⊗H ∗

m. Since these blocks connect the two branes (which means the branes “interact”
in some way non-locally), they can be interpreted as oriented strings connecting the two branes
described by the matrices Xa and Y a.

Point probe. Now we combine the ideas of the point brane and brane interactions in the
following way: Given a fuzzy brane embedded in some target space Rd one can place a point brane
as a probe at a definite location in this space. Then we are able to measure the energies of the
strings connecting the brane and the probe. By varying the position of the probe the energies of
the connecting strings will change. In particular, if the brane is not “too fuzzy”2, there should be a
region in space where the energies are relatively low compared to other regions which then can be
regarded as an approximation of the semi-classical limit.

The quantized embedding functions are given by

Xa =

(
Xa 0
0 pa

)
, a = 1, . . . , d (5.2.4)

with d real numbers pa.

2Not “too fuzzy” means that there exists a hierarchy of energies of the strings. We again refer to section §5.3 for
a more precise treatment.
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5.2.1. Laplace operator. The energy of scalar fields is measured by the Laplacian �p :
Matm+1(C)→Matm+1(C),

�p =

d∑
a=1

[Xa, [Xa, .]]. (5.2.5)

Since we are only interested in the energies of the string connecting the probe with the brane,
we consider an element Φ ∈Matm+1(C) ∼= Matm(C)⊕ (Hm ⊗ C)⊕ (C⊗Hm) of the form

Φ =


0 · · · 0
...

. . .
...

0 · · · 0

|φ〉

〈φ| 0

 ∈Matm(C)⊕ (Hm ⊗ C)⊕ (C⊗Hm) (5.2.6)

with |φ〉 ∈Hm. Considering the action of the Laplacian �p on Φ yields

�pΦ =
∑
a

[Xa, [Xa,Φ]] =
∑
a

(XaXaΦ + ΦXaXa − 2XaΦXa)

=


0 · · · 0
...

. . .
...

0 · · · 0

∑
a

(Xa − pa)2 |ϕ〉

〈ϕ|
∑
a

(Xa − pa)2 0

 (5.2.7)

and thus the Laplace operator �p can be written as

�p =
d∑
a=1

(Xa − pa)2 (5.2.8)

when restricted to Hm ⊗ C ∼= Hm, cf. (5.2.6).
Let us consider the corresponding quadratic form 1

2tr(Φ† �p Φ). It can be written as
1

2
tr(Φ† �p Φ) = 〈φ|�p |φ〉 =

∑
a

(∆φX
a)2 +

∑
a

(〈φ|Xa |φ〉 − pa)2

= δ(φ) + |~p(φ)−~p|2. (5.2.9)

This means that low energies are given by states which have low dispersion δ and are also localized
near the point probe.

As we can see there is a strong similarity between the method of the point probe and the
method of coherent states in section §5.1 since the eigenstate of �p with the lowest eigenvalue
minimizes (5.2.9) and hence also the dispersion δ. In particular for co-adjoint orbits O this method
is even equivalent since we can just minimize the second term in (5.2.9) by choosing ~p = ~p(φ). In
doing so the second term vanishes and the states are selected by minimizing δ(φ) which are exactly
the coherent states on the quantized co-adjoint orbits.

Numerical consequences. The formulation of the problem in this particular way has two
implications which are important for the numerical computation of coherent states.

First, the function which is to be minimized3 is now written as a quadratic form 〈φ| �p |φ〉,
where �p is linear. This is a blessing because we can easily find minima by numerically solving the
eigenvalue problem, which can be done very efficiently computational-wise.

Second, having handled the eigenvalue issue, the problem is reduced to a d-dimensional one
where d is the dimension of the target space Rd which is independent of the size of the matrices.

3Minimizing in this context means not only finding exact minima, but also states “near” the minima with respect
to some given hierarchy.
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This is a huge progress since in many cases one has to increase the size of the matrices to get a better
hierarchy of energies. For example a satisfying hierarchy for the squashed CP 2 case is achieved for
SU(3)-representations (0, 20) and upward which according to formula (A.2.3) corresponds to a 231-
(and more) dimensional state space. In contrast, the dimension of the target space in this case is
d = 6.

It is remarkable that a method motivated exclusively by physical means can help to reduce the
complexity of a problem to such an extent.

5.2.2. Dirac operator. In analogy to the Laplace operator we shall also define the Dirac
operator /Dp ∈ End(Cq ⊗Matm+1(C)), q = 2b

d
2
c for fermionic modes as

/Dp =

d∑
a=1

γa ⊗ [Xa, .] (5.2.10)

with {γa, a = 1, . . . , d} forming a representation of the Clifford algebra C`d(R).
Again we are only interested in the off-diagonal entries of an element Ψ ∈ Cq ⊗Matm+1(C):

Ψ =


0 · · · 0
...

. . .
...

0 · · · 0

|s, ψ〉

〈s, ψ| 0

 . (5.2.11)

In this case |s, ψ〉 ∈ Cq ⊗Hm. Thus the action of the Dirac operator /Dp on Ψ is given by

/DpΨ =
∑
a

γa[Xa,Ψ] =
∑
a

γa(XaΨ−ΨXa)

=


0 · · · 0
...

. . .
...

0 · · · 0

∑
a
γa(Xa − pa) |s, ψ〉

〈s, ψ|
∑
a
γa(Xa − pa) 0

 (5.2.12)

and hence the operator /Dp when restricted to Cq ⊗Hm reads

/Dp =
d∑
a=1

γa(Xa − pa). (5.2.13)

Note that

/D
2
p = �p + Σab[Xa, Xb] (5.2.14)

with Σab := 1
4 [γa, γb]. Writing |s, ψ〉 ∈ Cq ⊗Hm as |s, ψ〉 = |s〉 ⊗ |ψ〉 the corresponding quadratic

form reads

1

2
tr(Ψ† /D

2
pΨ) = 〈s, ψ| /D2

p |s, ψ〉 = 〈ψ|�p |ψ〉+
d∑

a,b=1

〈s|Σab |s〉 〈ψ| [Xa, Xb] |ψ〉

= δ(ψ) + |~p(ψ)−~p|2 +
d∑

a,b=1

〈s|Σab |s〉 〈ψ| [Xa, Xb] |ψ〉 . (5.2.15)
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The third term in equation (5.2.15) can be physically interpreted recalling the mathematically
equivalent form of Heisenberg’s uncertainty relation ∆ΨX

a∆ΨX
b ≥ 1

2

∣∣〈Ψ| [Xa, Xb] |Ψ〉
∣∣, hence

∣∣∣∣∣∣
d∑

a,b=1

〈s|Σab |s〉 〈ψ| [Xa, Xb] |ψ〉

∣∣∣∣∣∣ ≤ 2
d∑

a,b=1

≤ 1
2︷ ︸︸ ︷∣∣∣〈s|Σab |s〉

∣∣∣∆ΨX
a∆ΨX

b

≤ δ(Ψ) +

d∑
a6=b

∆ΨX
a∆ΨX

b. (5.2.16)

Minimizing the absolute value of the energy given by the Dirac operator corresponds to min-
imizing the function (5.2.15). In particular, the Dirac operator /Dp has zero modes if and only if
/D

2
p has zero modes. This is the case when (5.2.15) has roots. Berenstein [6] showed that indeed

in many cases /Dp has exact zero modes on the whole manifold which constitutes the semi-classical
limit of a given fuzzy brane.

An interesting question is whether the states selected by the Dirac operator yield the same
manifold M as the Laplacian. We will come back to this in section §5.4, section §5.5 and section §5.6
where we revisit our examples and show our numerical as well as analytic results.

5.3. Numerically finding coherent states

Now we want to investigate ways how to numerically calculate coherent states defined by the
Laplacian �p as well as the Dirac operator /Dp for fixed n. In contrast to the theoretical situation
above, where a whole sequence of algebras is given, in practice we are only served with a set of
matrices Xa, a = 1, . . . , d which are to be interpreted as quantized embedding functions Xa ∼ xa.
They generate an algebra A ⊂ Matm(C). Nevertheless, let us assume such a sequence “exists”
although not explicitly known.

The f-function. So far we have seen that finding coherent states can be done by finding states
which have low-energies (defined by the Laplacian �p respectively Dirac operator /Dp) compared to
energy levels of the whole state space. We try to clarify this vague statement in this section. For
the sake of brevity we call such states quasi-minima from now on. Typically, there are an infinite
number of quasi-minimal states which form a sub-manifold C S of CPm ⊂Hm. Their expectation
values produce a manifold M = ~p(C S ) which is an approximation to the semi-classical limit. Thus
the problem is to rasterize the manifold M . To this end we consider the function f

f : Rd → R (5.3.1)

~p 7→
∣∣∣λ~pmin

∣∣∣
where λ~pmin is the smallest (with respect to the modulus) eigenvalue of �p respectively /Dp. Conse-
quently, finding quasi-minimal energy regions in Rd is equivalent to finding quasi-minima of f .

Obviously, the function f is continuous everywhere. Furthermore, f is differentiable everywhere
except on

• a countable set where the two smallest eigenvalues become equal and cross each other,
• the set {x ∈ Rd | f(x) = 0} due to the modulus in (5.3.1).

However, for our numerical purpose we will completely ignore the non-differentiability since in
any case we are working with finite differential quotients, where we assume that the function f
nevertheless behaves in a way that is “smooth enough” with respect to the finite differential quotients.
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Identify the “hierarchy” using the f-function. Consider a global minimum x0 of f . In
this case the point x0 is an element of M = ~p(C S ).

We can write the change of the function f in some direction ε up to second order in |ε| as

|f(x0)− f(x0 + ε)| = 1

2
|εTHx0ε|+O(|ε|3) (5.3.2)

where Hx0 is the Hesse matrix at the point x0. Thus, the amount of change in some direction is
characterized by the eigenvalues of H. If the coherent states form a continuous subset of Rd, one
should observe a hierarchy of “small” and “large” eigenvalues. Consequently, the directions
corresponding to the small eigenvalues constitute a basis of the tangent space Tx0M of M at x0.
Hence x0 +ε is approximately an element of M for ε being an eigenvector corresponding to a “small”
eigenvalue and |ε| being sufficiently small. One also observes that the number of small eigenvalues
constitutes the dimension k of the manifold M .

If x0 is not a local minimum of f the change of f(x0) in a direction ε is given by

f(x0)− f(x0 + ε) = ∇fx0 · ε+
1

2
εTHx0ε+O(|ε|3) (5.3.3)

with (∇fx0)i = (∂if) (x0) denoting the gradient of f at point x0. In the regime of quasi-minima of
f the norm of the gradient |∇fx0 | is assumed to be small compared to “large” eigenvalues of Hx0 .
Therefore, it is assumed that the change in directions corresponding to large eigenvalues can be
approximated by

|f(x0)− f(x0 + ε)| = 1

2
|εTHx0ε|+O(|ε|3), (5.3.4)

which selects a (d − k)-dimensional subspace. Hence the orthogonal complement represents the
k-dimensional subspace which corresponds to small changes |f(x0)− f(x0 + ε)| and is spanned by
the eigenvectors corresponding to “small” eigenvalues of Hx0 .

The previous considerations provide the basis for the algorithm to rasterize the manifold M .
Locally we can find the tangent space Tx0M by using algorithm 1 which is written as so-called
pseudo-code.

Algorithm 1 Select directions corresponding to a “small” change in f
1: function GetDirections(function f , point x0, dimension k)
2: H ← HesseMatrix(x0) . Calculate Hesse Matrix Hx0 at point x0.
3: {(λ, ε)} ← Diag(H) . Diagonalize Hx0 with eigenvectors ε corresponding to eigenvalues λ.
4: return Select({(λ, ε)},k) . Return eigenvectors corresponding to k smallest eigenvalues.
5: end function

On each point obtained by x = x0 + ε we can subsequently apply algorithm 1 and gather points
of M . Then each point x represents an open neighborhood U|ε|(x) ∈ U (M ) of the manifold M .
Of course, if this is done blindly then a lot of points are gathered twice or more often. To exclude
the redundant information one can for example attempt a nearest neighborhood search [30] with
respect to the euclidean metric to prevent accepting points which are already assimilated.

One also has to introduce some kind of stopping mechanism which prevents points to be accepted
when the given hierarchy is broken down. There is a number of possibilities:

A local stop is necessary if
• f exceeds a certain value fcrit,
• the norm of the gradient |∇f | exceeds a certain value (∇f)crit,
• the hierarchy of eigenvalues of the Hessian matrix Hx does not exist any more, i.e. the ratio
of the highest “small” eigenvalue λ and the lowest “large” eigenvalue Λ exceeds a certain
value (λ/Λ)crit.
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Since the given hierarchy depends on the limiting process of a sequence which in general is not
known, these values cannot be determined by theoretical considerations and must be adjusted for
each example individually.

This procedure is strictly speaking arbitrary. However, the situation can be compared to taking
a picture with an ordinary photo camera. When taking a picture the photographer has to adjust
the focus of the lenses to get a sharp image. In principle this action is arbitrary too. However, the
photographer can adjust the focus in such a way as for the image to capture a maximal amount of
information.

A simple unoptimized form of an algorithm which provides a complete point cloud of M is
presented by algorithm 2 where standard programming structures are used.4

Algorithm 2 Successively apply alg. 1 to gather a complete point cloud of M .
1: function Rasterize(function f , startpoint x0, dimension k)
2: pc← List . List of points which constitute the point cloud.
3: q ← Queue . FIFO Queue which holds new unchecked points.
4:
5: add point x0 to pc
6: add point x0 to q
7:
8: while q not empty do
9:
10: x← take next element from q . Current point to process.
11: dirs← GetDirections(f ,x,k)
12:
13: for all directions ε in dirs do
14: if IsLegal(x+ ε) is true then . This refers to the considerations above.
15: add point x+ ε to pc
16: add point x+ ε to q
17: end if
18: end for
19:
20: end while
21:
22: return pc
23: end function

Another issue to be considered is that we have to restrict the search to a compact subset of Rd
for the obvious reason that the procedure should be deterministic. For compact manifolds M this
is automatically satisfied. Otherwise, one has to choose more or less arbitrary compact regions and
confine the rasterize procedure to those.

The result is a point cloud which is an approximation of M = ~p(C S ) (or a compact subset
thereof if M itself is not compact). The quality of the approximation depends on three aspects.
Obviously it is determined by the step length |ε|. Furthermore, the separation of the hierarchy
has an impact which is itself dependent on the dimension of the given m ×m matrices. At last,
the approximation is affected by one of the above mentioned cut-off parameters fcrit, (∇f)crit or
(λ/Λ)crit.

4See for reference [28].
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5.4. Fuzzy Sphere revisited

With the discussion above in mind let us recall the example of the fuzzy sphere defined by the
three matrices Xa, a = 1, . . . , 3 which satisfy the commutation relations

[Xa, Xb] = i
2√

n2 − 1
εabcX

c. (5.4.1)

5.4.1. The point probe Laplacian �p. For the simple case of the fuzzy sphere we can
explicitly evaluate the the function (5.3.1), i.e. the minimal eigenvalue of the point probe Laplacian5

�p =

3∑
a=1

(Xa − pa)2 = 1− 2

3∑
a=1

paXa +

3∑
a=1

papa. (5.4.2)

Since this expression is invariant under SO(3)-rotations, it suffices to consider the operator at the
north pole ~p = (0, 0, p3) which corresponds to

U−1 �p U = 1+ |~p|2 − 2|~p|X3 (5.4.3)

for a suitable unitary matrix U . Obviously, eigenvectors of the operator U−1 �p U are eigenvectors
of X3 and vice versa. The form (5.4.3) makes it clear that the eigenvalues are minimized for the
highest state vectors

∣∣n−1
2 , n−1

2

〉
. Using X3

∣∣n−1
2 , n−1

2

〉
=
√

n−1
n+1

∣∣n−1
2 , n−1

2

〉
the minimal eigenvalue

of U−1 �p U as a function of p is given by

f(~p) = 1 + |~p|2 − 2|~p|
√
n− 1

n+ 1
(5.4.4)

whose minima are given by |~pmin| =
√

n−1
n+1 = 1 + O( 1

n). By definition the approximation of the
semi-classical limit is then given by

M = {x ∈ R3 : |x| =
√
n− 1

n+ 1
= 1 +O(

1

n
)}. (5.4.5)

This shows that in the fuzzy sphere context the coherent states defined by the point probe
Laplacian are equivalent to coherent states defined by Perelomov coherent states in section §3.2.
Also the manifold M agrees with the expectation values of the coherent states ~p(C S ) = M and
minimizes the dispersion δ(Ψ) =

∑3
a=1(∆ΨX

a)2.

A test of the numerical procedure. Independent of the above computations we check the
implementation of the numerical algorithm in this well understood case. As input are given three
10×10 matrices X1, X2, X3 which resemble the generators of SU(2) with the correct normalization
factor to be consistent with equation (5.4.1). They are explicitly given by

X1 =
2√
99
× diag2

(
3

2
, 2,

√
21

2
,
√

6,
5

2
,
√

6,

√
21

2
, 2,

3

2

)
+ h.c.,

X2 = − 2 i√
99
× diag2

(
3

2
, 2,

√
21

2
,
√

6,
5

2
,
√

6,

√
21

2
, 2,

3

2

)
+ h.c.,

X3 =
2√
99
× diag

(
9

2
,
7

2
,
5

2
,
3

2
,
1

2
,−1

2
,−3

2
,−5

2
,−7

2
,−9

2

)
(5.4.6)

where diag2(. . . ) represents a matrix with entries in the second diagonal.
The numerical procedure then tries to find a global minimum of f which in this case was

determined as
~pmin ≈ (0.0801529, −0.585913, 0.684444)

5This is also calculated in [16]
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(a) Full picture of M . (b) A cut through the x1, x3-plane
to show that there are no points
inside.

Figure 5.4.1. Visualization of the semi-classical limit of the fuzzy sphere S2
n con-

structed from S2
10.

with function value
f(~pmin) ≈ 0.181818

which is in perfect agreement with the theoretical minimum 1− n−1
n+1 = 1− 9

11 ≈ 0.181818 and the

norm |~pmin| =
√

n−1
n+1 ≈ 0.904534.

The moduli of the eigenvalues of the Hesse matrix at this point ~pmin are given by ≈ (1.1 ×
10−6, 2.4× 10−6, 2.) where a hierarchy can be determined without problems. Obviously, two direc-
tions are in the category “small”.

After applying algorithm 2 the result is a point cloud representing the manifold M . Under the
assumption that the point cloud constitutes a two-dimensional manifold, one can build a mesh of
polygons connecting these points to create a visualization of M . A picture is shown in figure 5.4.1.
As expected one gets the sphere S2 with radius R =

√
n−1
n+1 reasonably approximated.

5.4.2. The point probe Dirac operator /Dp. Similar considerations are possible for the
Dirac operator

/Dp =
3∑

a=1

σa (Xa − pa) (5.4.7)

with σa being the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
. (5.4.8)
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Again due to the SO(3) symmetry it is enough to consider the north pole ~p = (0, 0, p3) respec-
tively

U−1 /DpU =
3∑

a=1

σaXa − σ3|~p| (5.4.9)

whose eigenvectors with minimal eigenvalues
(√

n−1
n+1 − |~p|

)
are given by |↑〉 ⊗

∣∣n−1
2 , n−1

2

〉6. Thus

the function f with respect to the Dirac operator /Dp is given by

f(~p) =

∣∣∣∣∣
√
n− 1

n+ 1
− |~p|

∣∣∣∣∣ . (5.4.10)

Its minima (which at the same time are roots of f) are obviously given by |~pmin| =
√

n−1
n+1 as in the

Laplacian case, which means that we get the same result for the semi-classical limit M

M = {x ∈ R3 : |x| =
√
n− 1

n+ 1
= 1 +O(

1

n
)}. (5.4.11)

We have shown that the definition of the coherent states for the fuzzy sphere with respect to the
Laplacian �p is in some sense equivalent to the definition with respect to the Dirac operator /Dp.
Nevertheless, in a numerical context the method using the Dirac operator has some advantages due
to the fact that the minima of f are roots for all n. This fact ensures an existent good hierarchy
even for very low n; thus low-dimensional matrices can be used for the computation of coherent
states. However, for the sake of comparability the 10× 10 matrices in (5.4.6) are used.

Numerical test. For the Dirac case our numerical implementation finds a global minimum at

~pmin ≈ (0.0801524, −0.585913, 0.684444)

which corresponds to the function value

f(~pmin) ≈ 9.011× 10−10,

hence in good approximation f(~pmin) ≈ 0.
The eigenvalue moduli of the numerical Hesse matrix at point~pmin are given by≈ (5.1, 7.7, 136.4).

Note that one has to be very careful interpreting the values of these numbers because the function
f is actually not differentiable at 0 and hence the values are strongly dependent on the arbitrary
chosen step size of the finite differential quotient. However, the eigenvectors of the Hesse matrix
should at least provide the correct directions for small enough steps |ε|.

It is of little surprise that the visual result is the same as in the Laplacian case and is not
repeated here for this reason.

5.5. Fuzzy Torus revisited

Recall, the fuzzy torus T 2
n is defined by the quantized embedding functions Xa ∼ xa given by

four n× n matrices

X1 = (U + U †)/2 (5.5.1)

X2 = −i (U − U †)/2

X3 = (V + V †)/2

X4 = −i (V − V †)/2

6The vector |↑〉 is defined in the usual way as eigenvector of σ3 with the positive eigenvalue 1.
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with U and V being the shift and clock matrix,

U =


0 1

0 1
. . .

. . .

0 1
1 0

 , V =


1

q
q2

. . .

qn−1

 , (5.5.2)

and q = e2πi/n.

5.5.1. The point probe Laplacian �p. The Laplace operator �p is then defined as

�p =

4∑
a=1

(Xa − pa)2 = 1+ |~p|2 − 2

4∑
a=1

Xapa

= 1+ |~p|2 − U
(
p1 − ip2

)
− U †

(
p1 + ip2

)
− V

(
p3 − ip4

)
− V †

(
p3 + ip4

)
. (5.5.3)

In this case we will skip an analytic treatment — although possible (see [16]) — and directly
turn towards the numerical results.

To visualize the resulting point cloud which represents a two-dimensional manifold embedded
in R4, M ⊂ S3 ⊂ R4, one can use a generalized stereographic projection P : S3 → R̄3 defined by

P : S3 ⊂ R4 → R̄3 (5.5.4)
p1

p2

p3

p4

 7→ 1

1− p4

p1

p2

p3

 .

The result P(M ) is a two-dimensional manifold embedded in R3 which is shown in figure 5.5.1.

5.5.2. The point probe Dirac operator /Dp. The Dirac operator /Dp is given by

/Dp =
4∑

a=1

γa (Xa − pa) (5.5.5)

while the following matrices can be used as representation for the Clifford algebra C`4(R):

γ1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ2 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ,

γ3 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , γ4 =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 . (5.5.6)

The numerical procedure yields the same point cloud as in figure 5.5.1a. Remarkably, even for
low dimensional matrices the hierarchy is clearly visible. Additionally, for 5×5 matrices the explicit
numerical computation shows that for the torus T 2 we have

f(T 2) < 4.9× 10−7

which suggests that the Dirac operator /Dp has exact zero modes at T 2 ∈ R4.
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(a) The raw point cloud which
is generated by the numerical
procedure.

(b) A polygon mesh generated
from the point cloud in fig-
ure 5.5.1a.

(c) A cut through the torus to
show its hollowness.

Figure 5.5.1. Visualization of the semi-classical limit of the fuzzy torus T 2
n con-

structed from T 2
20.

5.6. Squashed CP 2
n revisited

Now let us turn to squashed fuzzy CP 2 given by six matrices Xa ∼ xa, a ∈ I = {1, 2, 4, 5, 6, 7}
which obey the su(3) commutation relations

[Xa, Xb] = i
1√

n(1 + n/3)
cabcX

c. (5.6.1)

5.6.1. The point probe Laplacian �p. The point probe Laplacian �p is naturally given by

�p =
∑
a∈I

(Xa − pa)2 . (5.6.2)

To be able to visualize the numerical result, one can restrict oneself to a 3-dimensional subspace
of the target space R6. An interesting choice is to consider the limit x2 = x5 = x7 → 07 which can
be achieved by simply setting p2 = p5 = p7 = 0 in equation (5.6.2). This fits the limit in section §4.3.

Taking n = 30, i.e. the representation (0, 30), one gets a global minimum at
~pmin ≈ {0.546391, −0.546396, 0.546392}

7Again recall that the indices take values in I = {1, 2, 4, 5, 6, 7} for reasons discussed above.
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Figure 5.6.1. The numerically obtained expectation values ~p(φ) of Laplace coher-
ent states φ ∈H(0,30) of CP 2

30.

with corresponding function value

f(~pmin) ≈ 0.052891.

The expectation values ~p(φ) of the coherent state φ corresponding to this minimum agree with
~pmin for at least 6 decimal digits. Hence f(~pmin) ≈ δ(φ) to a very good approximation.8

In section §4.3 the theoretical considerations for Perelomov states were done and led to a minimal
function value

f th
min =

2

3 + n

n=30
≈ 0.0606061

which implies a relative deviation of ≈ 15% from the numerical value. The predicted norm of the
expectation values |~p(φ)| is

|~p(φ)| =
√

3cnn
n=30
≈ 0.953463

which deviates by 0.7% from the numerically obtained norm.
Thus the numerical evidence suggests that the Laplace coherent states for the squashed fuzzy CP 2

are not exactly the Perelomov coherent states but even better ones if one takes the dispersion δ(φ)
as a measure for quality. Nevertheless, the deviation of the expectation values are small, therefore
the Perelomov states should suffice as a suitable approximation. This can also be seen in figure 5.6.1
which approximately looks like figure 4.3.1 in section §4.3.

5.6.2. The point probe Dirac operator /Dp. It remains to examine the Dirac operator /Dp

which in this case is defined as
/Dp =

∑
a∈I

γa (Xa − pa) (5.6.3)

8See the general considerations above, especially equation (5.2.9).
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with the six gamma matrices γa given by

γ1 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, γ2 =



0 0 0 0 −i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i
i 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 i 0 0 0 0


,

γ4 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0


, γ5 =



0 0 −i 0 0 0 0 0
0 0 0 −i 0 0 0 0
i 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 i
0 0 0 0 −i 0 0 0
0 0 0 0 0 −i 0 0


,

γ6 =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


, γ7 =



0 −i 0 0 0 0 0 0
i 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 0 i 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0


. (5.6.4)

In this case we carry out the computations taking n = 3. As it turns out this value for n is high
enough since a hierarchy is visible even for low n. The explicit matrices are given in appendix A.3.1.

Searching for a global minimum yields

~pmin ≈ {−0.0608956, −0.582712, −0.291495}

with function value
f(~pmin) ≈ 4.32× 10−9.

A visualization of the computation result for Dirac coherent states can be seen in figure 5.6.2.
This is the first example where the Dirac coherent states do not agree with the Laplace coherent

states, although some similarity can be recognized. Remarkably, the calculated states C S satisfy

f(~p(C S )) < 1.3× 10−8

which again suggests that these states could be exact zero modes of the Dirac operator /Dp and
indeed we will see in the following section that this is the case.

Zero modes of /D(p1,0,p4,0,p6,0) on C8⊗(0, 1). We claim that for the Dirac operator /D(p1,p4,p6) :=
/D(p1,0,p4,0,p6,0) acting on C8 ⊗ (0, 1) there exists at least a connected set Z ⊂ R3, so that /DZ = 0

on an at least one-dimensional subspace of C8 ⊗ (0, 1).
To this end let us consider a smooth curve γ : R→ R3 and the corresponding smooth curve of

Dirac operators
t 7→ /Dγ(t) (5.6.5)

on the curve γ.
Then we can make use of the following theorem by Alekseevsky et al. [1]:
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(a) A two-dimensional polygon mesh
generated from the numerical point
cloud.

(b) A cut through
one of the vaults
of 5.6.2a to show its
hollowness.

Figure 5.6.2. Visualization of Dirac coherent states of CP 2
(0,3).

Theorem (Alekseevsky et al. [1]). Let A(t) = (Aij(t)) be a smooth curve of complex hermitian
(n× n)-matrices, depending on a real parameter t ∈ R, acting on a hermitian space V = Cn, such
that no two of the continuous eigenvalues meet of infinite order at any t ∈ R if they are not equal
for all t. Then all the eigenvalues and all the eigenvectors can be chosen smoothly in t, on the whole
parameter domain R.

Choosing a curve γ so that the conditions of the above theorem are fulfilled, we are able to
numerically track eigenvalues due to the continuity of its eigenvectors. Note that the continuity
of the eigenvalues is not enough to track them, because crossing of two different eigenvalues may
occur, while the eigenvectors are always orthogonal to each other, and therefore the choice is always
unique (at least if considering only one-dimensional eigenspaces).

With this knowledge we are able to numerically generate a smooth function t 7→ λ(t), where
λ(t) is an eigenvalue of /Dγ(t), to arbitrary high resolution ∆T . Further, we can scan this function
for sign changes, i.e. for a T ∈ R, so that sign(λ(T )) 6= sign(λ(T + ∆T )). Then, because of the
Intermediate Value Theorem, we know, that there exists a root of λ(t) between T and T + ∆T .

Hence we found a method to numerically prove the existence of zero modes on a one parameter
curve γ.

Let us now choose a concrete curve Γ, practically a straight line through 0 and (1, 1,−1),

Γ(t) =
1√
3

 1
1
−1

 t+

0
κ
0

 e−(t−1/10)2
(5.6.6)

setting κ very small. The reason for the (small) second term is, that the eigenvalues on Γ̄(t) =
(1, 1,−1) t seem to be degenerate, which we want to avoid for the sake of simplicity.
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0.5
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λ(t)

(a) A plot of the 12 lowest eigenvalues. The
highest and the third highest eigenvalues
possess a multiplicity of 2 (which can not
be seen in this picture).
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-0.05
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0.10

0.15
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(b) A plot of the two lowest eigenvalues.
They clearly exhibit two roots.

Figure 5.6.3. Visualization of tracked eigenvalues of /DΓ(t), indicated by dif-
fering colors, Γ(R) practically being a straight line through the origin and the
point (1, 1,−1).

To get an idea of the behavior of the eigenvalues of /DΓ(t) we track the 12 lowest eigenvalues at
point Γ(t = 1/10).9 They are visualized in figure 5.6.3a. Further, only the lowest two eigenvalues
are plotted in figure 5.6.3b.

One clearly observes the two sign changes; one at the origin and one near Γ(t ≈ 0.45). Having
a zero mode at Γ(t = 0) is not surprising, this can even be seen without numerical aid. However,
the second root is not self-evident and could only be asserted by numerical means.

Now, considering not only a one-parameter curve of Dirac operators, but Dirac operators de-
pending on three variables

(p1, p4, p6) 7→ /D(p1,p4,p6), (5.6.7)
the eigenvalues (p1, p4, p6) 7→ λ(p1, p4, p6) are continuous too (see e.g. [26]). Also observe the two
points x1 = Γ(0.3) and x2 = Γ(0.5). We saw above that there exists a corresponding continuous
eigenvalue function λ(t) so that λ(0.3) > 0 and λ(0.5) < 0. Since the eigenvalues are continuous on
R3, on every curve

γ : [0, 1]→ R3 (5.6.8)
with

γ(0) = x1, γ(1) = x2,

there must exist an eigenvalue which changes sign on the curve γ, otherwise λ(t) would not be able
to exist. Therefore, on every such curve γ from x1 to x2 there must exist at least one zero mode.
Thus, the set Z ⊂ R3 where /Dp has zero modes has to enclose x1 respectively x2 and is connected.

9This is of course a completely arbitrary decision.



CHAPTER 6

Conclusion

This work shows, that in the unexplored realm of non-commutative geometry coherent states
form a powerful instrument to enhance the understanding of novel non-commutative geometries
arising from Yang-Mills theories, such as squashed fuzzy CP 2, and their special features. As we
have seen with the help of coherent states, one is fully capable of extracting an approximation
to the semi-classical limit which is not only vital for an intuitive perception of non-commutative
geometries but also lays the foundation for grasping features going beyond the semi-classical limit.

While the numerical procedure to collect coherent states developed in this thesis is mainly
used to visualize the corresponding classical manifolds, their applications do not end here, since
the numerical data constitute more than just the position expectation values of coherent states.
For example, expectation values of various observables with respect to coherent states might be of
interest and could be calculated numerically with ease.

Although this work strongly focuses on squashed fuzzy CP 2, this algorithm is not restricted
to this example, but applicable to the whole zoo of matrix geometries one can think of. Thus it
provides a viable tool to assist further studies in this field.

One may have noticed that only the basic principles of the used algorithm are presented in
this thesis. Since the print format chosen for this work is not appropriate to publish implemen-
tation details, the author hopes to publish the full implementation of the package (i.e. a Wolfram
Mathematica package) including documentation in the future.

Despite the fact that this work concentrates on states which live in a finite dimensional Hilbert
space, their application is, of course, not bound to this setup. However, at first sight it is not evident,
how the established numerical procedure should be expanded to support infinite dimensional Hilbert
spaces. The investigation of this is left to future research.
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APPENDIX A

The Lie group SU(3)

A.1. Definition

The set SU(3) is defined as a set of all unitary 3× 3 matrices with unit determinant:

SU(3) := {U ∈Mat3(C) |U−1 = U †, detU = 1}. (A.1.1)

The set forms a group with respect to usual matrix multiplication.
Every group element U can be written in the form

U = eiT (A.1.2)

where T is an element of the so called Lie algebra su(3) which is defined as the set of tracefree
hermitian matrices

su(3) := {T ∈Mat3(C) |T † = T, tr(T ) = 0}.
They form an algebra with respect to the commutator [., .]. A well known basis of su(3) is the set
of Gell-Mann matrices[10]:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2


and accordingly their scaled version ta := λa/2.

They satisfy the commutation relations

[ta, tb] = i cabc tc (A.1.3)

where cabc are the so called antisymmetric structure constants of su(3) given by

c123 = 1 (A.1.4)
c147 = c165 = c246 = c257 = c345 = c376 = 1/2

c458 = c678 =
√

3/2,

while all the others are 0. They completely determine the structure of the Lie algebra respectively
Lie group. Furthermore, they obey the relations

8∑
a,b=1

cabicabj = 3 δij

which can be checked by hand.
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On the other hand, we can define the symmetric structure constants dabc of su(3) by the relation

[ta, tb]+ =
1

3
δab + dabc tc (A.1.5)

where [a, b]+ := a · b+ b · a represents the anti-commutator. They are given by

d118 = d228 = d338 = −d888 = 1/
√

3 (A.1.6)

d448 = d558 = d668 = d778 = −1/(2
√

3)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1/2.

Root generators. Often needed are so-called root generators (or also termed ladder operators)
t±1 , t

±
2 , t

±
3 defined by

t±1 := t4 ± it5, (A.1.7)

t±2 := t6 ± it7,
t±3 := t1 ± it2 = ±[t±1 , t

∓
2 ].

Together with the Cartan generators t3 and t8 they form a basis of the adjoint representation
(see subsection A.2.3).

A.2. Representations

Formally, a representation of an abstract group is a realization of the group as linear maps on
a vector space or more accurately a representation of a Lie group G is a Lie group homomorphism1

Π : G→ End(H ) (A.2.1)

for some vector space H which is often called carrier space. In our case H is always a vector space
over the field of complex number C.

It turns out one can fully classify representations of compact Lie groupsG via the representations
π of their corresponding Lie algebra g

π : g→ End(H ), (A.2.2)

in particular SU(3). We are only interested in finite dimensional representations which can always be
made unitary. For SU(3) finite dimensional irreducible representations are completely determined
by a tuple of integers (n,m) (in contrast to SU(2) where a representation is fully determined by
one integer, usually called spin j).

In particular the dimension of the vector space H(n,m) can be calculated as

dim(H(n,m)) =
1

2
(n+ 1)(m+ 1)(n+m+ 2). (A.2.3)

We can always choose the basis of H(n,m) in such a way that π(t3) and π(t8) are diagonal in that
basis. Plotting the eigenvalues of these two matrices on a two-dimensional sheet (often called weight
space) provides an overview of the Hilbert space in question. It turns out for SU(3) the weight
space has a special structure, see figure A.2.1a.

A.2.1. Example: The representation (1, 0). As we can see from equation (A.2.3) the di-
mension of the carrier space is dim(H(1,0)) = 3. The three blue dots in figure A.2.1b correspond to
the three basis vectors with different weights.

The action of SU(3) on H(1,0) is given by simple matrix multiplication of SU(3) matrices

g . |ψ〉 = g · |ψ〉 , (A.2.4)

hence it is in some sense the most obvious non-trivial representation.

1A Lie group homomorphism is a smooth group homomorphism.
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(a) The x-axis indicates the eigen-
value of π(t3) while the y-axis corre-
sponds to π(t8). Weights are only al-
lowed to take values indicated by the
circles.

(b) Weight lattice of the representa-
tion (1, 0) in blue, (0, 1) in red and
(1, 1) in orange.

Figure A.2.1. Weight lattice of SU(3).

A.2.2. Example: The representation (0, 1). Using again equation (A.2.3) we see that this
representation also acts on a 3-dimensional space. This shows that representations with equal
dimensions do not necessarily have to be equivalent. Again a graphical representation is given in
figure A.2.1b in red color.

The action on H(0,1) is given by

g . |ψ〉 = ḡ · |ψ〉 , (A.2.5)

where ḡ denotes complex conjugation of g.

A.2.3. Example: The representation (1, 1). This 8-dimensional representation is usually
defined on the Lie algebra su(3) ∼= R8 itself, that is by conjugation:

g . T = g · T · g−1. (A.2.6)

As one can see the weight lattice in figure A.2.1b (orange) only has 7 dots. That means that
there must be a degenerate weight. In fact it is the weight (0, 0) which belongs to two eigenvectors,
that is t3 and t8, which is easy to check since ei t8,3 . t8,3 = t8,3.

A.3. Constructing matrices for arbitrary representations (n,m)

Gelfand and Tsetlin provided the theory to construct arbitrary su(N) representations, cf. [15, 2].
The key here is to consider the so calledGelfand-Tsetlin patterns. These are triangular arrangements
of integers which are in 1–1 correspondence to basis vectors of an irreducible su(N) representation.
The crucial point is that this is in contrast to labeling the basis vectors by their weight, where
degeneracies can arise (i.e. two linear independent vectors can have the same weight).
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A general Gelfand-Tsetlin pattern M looks like

M =


m1,N m2,N · · · mN−1,N mN,N

m1,N−1 mN−1,N−1

. . . . .
.

m1,2 m2,2

m1,1

 (A.3.1)

where the entries in the top row specify the irreducible representation, while the others are subject
to the so-called betweenness condition

mk,l ≥ mk,l−1 ≥ mk+1,l 1 ≤ k < l ≤ N (A.3.2)

and label a basis vector for each allowed combination.
For SU(3) the representation (n,m) in our convention corresponds to the set of patterns where

the top line is given by (n+m,n, 0):

(n,m)↔ (n+m,n, 0). (A.3.3)

A closed form has been found by Gelfand and Tsetlin for the matrix elements of the raising and
lowering operators which acts on the particular representations:

−
〈
M −Mk,l

∣∣∣ J (l)
− |M〉

2 =

l∏
k′=1

(mk′,l+1 −mk,l + k − k′ + 1)
l−1∏
k′=1

(mk′,l−1 −mk,l + k − k′)

l∏
k′=1
k′ 6=k

(mk′,l −mk,l + k − k′ + 1)(mk′,l −mk,l + k − k′)
(A.3.4)

where Mk,l is a pattern with mk,l = 1 and zero elsewhere.
Equipped with this knowledge one can easily generate all possible patterns (i.e. all patterns that

satisfy the betweenness condition (A.3.2)) for a irreducible representation and then calculate the
raising and lowering operators with equation (A.3.4).

In the special case SU(3) this procedure gives two raising respectively lowering operators T±2 =
π(t±2 ) and T±3 = π(t±3 ).2 Defining T±1 := ±[T±2 , T

±
3 ] the generators T a = π(ta) can then be found

by the relations

T 1 =
1

2

(
T+

3 + T−3
)

T 5 =
1

2i

(
T+

1 − T
−
1

)
(A.3.5)

T 2 =
1

2i

(
T+

3 − T
−
3

)
T 6 =

1

2

(
T+

2 + T−2
)

T 3 =
1

2
[T+

1 , T
−
1 ] T 7 =

1

2i

(
T+

2 − T
−
2

)
T 4 =

1

2

(
T+

1 + T−1
)

T 8 =
1

2
√

3
([T+

2 , T
−
2 ] + [T+

3 , T
−
3 ]).

The matrices T a then satisfy the commutation relations

[T a, T b] = i cabc T
c (A.3.6)

with cabc being the structure constants defined in (A.1.4).

2This specific choice of numbering is due to the convention used in this paper.
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A.3.1. Example: The representation (0, 3). Since this representation is used for numerical
calculations in section §5.6 the explicit matrices are provided here.

T 1 =



0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0 0 0 0

0 0 0 1√
2

0 1√
2

0 0 0 0

0 0 0 0 1√
2

0 0 0 0 0

0 0 0 0 0 0 0
√

3
2 0 0

0 0 0 0 0 0
√

3
2 0 1 0

0 0 0 0 0 0 0 1 0
√

3
2

0 0 0 0 0 0 0 0
√

3
2 0



,

T 2 =



0 0 0 0 0 0 0 0 0 0
0 0 − i

2 0 0 0 0 0 0 0
0 i

2 0 0 0 0 0 0 0 0
0 0 0 0 − i√

2
0 0 0 0 0

0 0 0 i√
2

0 − i√
2

0 0 0 0

0 0 0 0 i√
2

0 0 0 0 0

0 0 0 0 0 0 0 −1
2

(
i
√

3
)

0 0

0 0 0 0 0 0 i
√

3
2 0 −i 0

0 0 0 0 0 0 0 i 0 −1
2

(
i
√

3
)

0 0 0 0 0 0 0 0 i
√

3
2 0


,

T 3 =



0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0
0 0 −1

2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 3

2 0 0 0
0 0 0 0 0 0 0 1

2 0 0
0 0 0 0 0 0 0 0 −1

2 0
0 0 0 0 0 0 0 0 0 −3

2


,

T 4 =



0 0 −
√

3
2 0 0 0 0 0 0 0

0 0 0 0 − 1√
2

0 0 0 0 0

−
√

3
2 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1
2 0 0

0 − 1√
2

0 0 0 0 0 0 − 1√
2

0

0 0 −1 0 0 0 0 0 0 −
√

3
2

0 0 0 0 0 0 0 0 0 0
0 0 0 −1

2 0 0 0 0 0 0
0 0 0 0 − 1√

2
0 0 0 0 0

0 0 0 0 0 −
√

3
2 0 0 0 0



,
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T 5 =



0 0 i
√

3
2 0 0 0 0 0 0 0

0 0 0 0 i√
2

0 0 0 0 0

−1
2

(
i
√

3
)

0 0 0 0 i 0 0 0 0
0 0 0 0 0 0 0 i

2 0 0
0 − i√

2
0 0 0 0 0 0 i√

2
0

0 0 −i 0 0 0 0 0 0 i
√

3
2

0 0 0 0 0 0 0 0 0 0
0 0 0 − i

2 0 0 0 0 0 0
0 0 0 0 − i√

2
0 0 0 0 0

0 0 0 0 0 −1
2

(
i
√

3
)

0 0 0 0


,

T 6 =



0
√

3
2 0 0 0 0 0 0 0 0√

3
2 0 0 1 0 0 0 0 0 0
0 0 0 0 1√

2
0 0 0 0 0

0 1 0 0 0 0
√

3
2 0 0 0

0 0 1√
2

0 0 0 0 1√
2

0 0

0 0 0 0 0 0 0 0 1
2 0

0 0 0
√

3
2 0 0 0 0 0 0

0 0 0 0 1√
2

0 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0



,

T 7 =



0 −1
2

(
i
√

3
)

0 0 0 0 0 0 0 0
i
√

3
2 0 0 −i 0 0 0 0 0 0
0 0 0 0 − i√

2
0 0 0 0 0

0 i 0 0 0 0 −1
2

(
i
√

3
)

0 0 0
0 0 i√

2
0 0 0 0 − i√

2
0 0

0 0 0 0 0 0 0 0 − i
2 0

0 0 0 i
√

3
2 0 0 0 0 0 0

0 0 0 0 i√
2

0 0 0 0 0

0 0 0 0 0 i
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0


,

T 8 =



√
3 0 0 0 0 0 0 0 0 0

0
√

3
2 0 0 0 0 0 0 0 0

0 0
√

3
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

3
2 0 0 0

0 0 0 0 0 0 0 −
√

3
2 0 0

0 0 0 0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 0 0 0 −
√

3
2


.

They obey the relations [T a, T b] = i cabcT
c with cabc given by equation (A.1.4).



APPENDIX B

Calculations for coherent states of Squashed CP 2

B.1. Expectation values

Let the rotation U(ϕ) with ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) be defined as

U(ϕ) = eiϕ1T 4+iϕ2T 5+iϕ3T 6+iϕ4T 7
(B.1.1)

with T a = π(0,n)(t
a). Additionally, let us define the rotated vector |ϕ〉 as

|ϕ〉 := U(ϕ) |Ψ0〉 , (B.1.2)

where |Ψ0〉 is the highest weight vector of a (0, n) representation. We want to calculate the quantity

~p(ϕ)a = 〈ϕ|Xa |ϕ〉 . (B.1.3)

To this end consider the adjoint action of SU(3) on Matm(C) given by U−1MU for some M ∈
Matm(C) and U = Π(0,n)(g) belonging to the (0, n) representation. Since Matm(C)

.
=
⊕n

p=0 H(p,p)

where T a ∈H(1,1), the SU(3) action leaves H(1,1) invariant and we can write

Ad(T a) = U−1T aU =
8∑
b=1

RabT
b (B.1.4)

for an orthogonal 8 × 8 matrix R. Since the representations Ad(T a) and Ad(ta) are equivalent
there exists an isomorphism f : H(1,1) → su(3) such that f(Ad(T a)) = Ad(f(T a)). Applying f
to equation (B.1.4) we get

Ad(ta) =
8∑
b=1

Rabt
b. (B.1.5)

Using the natural scalar product on su(3) given by (A,B) := 2 tr(A · B) chosen such that the set
{ta, a = 1, . . . , 8} forms an orthonormal basis we can explicitly calculate the matrix coefficients of
R via

Rab = (ta, Ad(tb)) = 2 tr(taU−1tbU) (B.1.6)

which for U = U(ϕ) can be carried out by computer algebra systems.
Expression (B.1.3) can now be written as

~p(ϕ)a =
8∑
b=1

Rab 〈Ψ0|Xb |Ψ0〉 = cn

8∑
b=1

Rab 〈Ψ0|T b |Ψ0〉

and since 〈Ψ0|T 8 |Ψ0〉 = n√
3
is the only non-zero component we get

~p(ϕ)a = cnRa8
n√
3
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and after plugging in the coefficients Ra8 we recover equation (4.3.11):

~p(ϕ) = cn
n

2

1

|ϕ|



(ϕ1ϕ3+ϕ2ϕ4)
|ϕ| (cos |ϕ| − 1)

2 (ϕ1ϕ4−ϕ2ϕ3)
|ϕ| sin2 |ϕ|

2

ϕ2 sin |ϕ|
−ϕ1 sin |ϕ|
ϕ4 sin |ϕ|
−ϕ3 sin |ϕ|


. (B.1.7)

B.2. Dispersion

Next we want to evaluate the dispersion (4.3.1) which reads

δ(ϕ) = 1−
∑
i=3,8

〈ϕ| (Xi)2 |ϕ〉 − |~p(ϕ)|2. (B.2.1)

Having calculated the third term already we are left with the second term
∑

i=3,8 〈ϕ| (Xi)2 |ϕ〉
which can be written as∑

i=3,8

〈ϕ| (Xi)2 |ϕ〉 =
∑
i=3.8

8∑
a,b=1

RiaRib 〈Ψ0|XaXb |Ψ0〉 . (B.2.2)

The expression Mab := 〈Ψ0|XaXb |Ψ0〉 = c2
n 〈Ψ0|T aT b |Ψ0〉 can be calculated explicitly and yields

M = c2
n

n

4



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 i 0 0 0
0 0 0 −i 1 0 0 0
0 0 0 0 0 1 i 0
0 0 0 0 0 −i 1 0
0 0 0 0 0 0 0 4n

3


. (B.2.3)

With this we can compute (B.2.2) and get a long expression for the second term∑
i=3,8

〈ϕ| (Xi)2 |ϕ〉 = c2
n

n

48

1

|ϕ|4
e−2i|ϕ|×

×
(

12ei|ϕ|(n− 1)(ϕ2
1 + ϕ2

2)(ϕ2
3 + ϕ2

4) + 12e3i|ϕ|(n− 1)(ϕ2
1 + ϕ2

2)(ϕ2
3 + ϕ2

4)

+3(n− 1)
(
ϕ4

1 + ϕ4
2 + ϕ2

2(ϕ2
3 + ϕ2

4) + (ϕ2
3 + ϕ2

4)2 + ϕ2
1(2ϕ2

2 + ϕ2
3 + ϕ2

4)
)

+3e4i|ϕ|(n− 1)
(
ϕ4

1 + ϕ4
2 + ϕ2

2(ϕ2
3 + ϕ2

4) + (ϕ2
3 + ϕ2

4)2 + ϕ2
1(2ϕ2

2 + ϕ2
3 + ϕ2

4)
)

+2e2i|ϕ| ((3 + 5n)ϕ4
1 + (3 + 5n)ϕ4

2 + (15 + n)ϕ2
2(ϕ2

3 + ϕ2
4) + (3 + 5m)(ϕ2

3 + ϕ2
4)2

+ϕ2
1

(
2(3 +m)ϕ2

2 + (15 +m)(ϕ2
3 + ϕ2

4)
)) )

. (B.2.4)

Plugging (B.1.7) and (B.2.4) into equation (B.2.1) and simplifying thankfully yields a more
compact relation for the dispersion

δ(ϕ) =
3

8 (3 + n)

1

|ϕ|4
{

4(ϕ2
1 + ϕ2

2)(ϕ2
3 + ϕ2

4) cos |ϕ|

+
(
ϕ4

1 + ϕ4
2 + ϕ2

1(2ϕ2
2 + ϕ2

3 + ϕ2
4) + ϕ2

2(ϕ2
3 + ϕ2

4) + (ϕ2
3 + ϕ2

4)2
)

cos 2|ϕ|
+
(
7 (ϕ4

1 + ϕ4
2) + 7 (ϕ2

3 + ϕ2
4)2 + 11ϕ2

2(ϕ2
3 + ϕ2

4)
)}

(B.2.5)

which concludes the calculation.
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