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Introduction

In 1959 Kolmogorov and Sinai established a substantial definition of entropy for dy-
namical systems of probability spaces. To extend this definition to infinite measure
systems different attempts have been made. In this thesis we will treat three of them,
namely Krengel’s ([14], 1967), Parry’s ([15], 1969) and the so-called Poisson entropy,
introduced by Roy in 2005 (referring to [10]). These are the best established notions of
entropy for dynamical systems with infinite measure. Of course having differing defi-
nition for the same quantity is something one tries to avoid, so investigations have been
made to obtain some relations between them. In 2010 Janvresse, Meyerovitch, Roy
and de la Rue published a paper, [10], which provides a proof of equality of Krengel’s,
Parry’s and the Poisson entropy under quite weak assumptions. To be precise, they
proved equality of Parry’s and Poisson entropy. That Krengel’s and Parry’s entropy
coincide under these assumptions had already been proven by Parry himself in [15].
Be aware that (at least some of) the assumptions are crucial: There is an example con-
strued by Janvress and de la Rue in [9], 2012, for which Krengel’s and Poisson entropy
differ.

One of the main aims of the present master thesis is a detailed elaboration of the result
of Janvresse, Meyerovitch, Roy and de la Rue, [10], mentioned above. In order to do
so, we will in particular consider the theory of canonical systems of measure, which
goes back to Rokhlin, [16], and also give proofs of some basic properties of them,
which are quite hidden in the usual literature. The Poisson entropy is based on the the-
ory of Poisson suspensions, to which we will devote a whole chapter, including a proof
of ergodicity of the Poisson suspension, which is due to Zweimiiller, [25] (a general-
ization of a proof for automorphisms by Grabinsky, [6]). To emphasise the need of a
notion of entropy for infinite measure systems we will give some examples, for which
we will also compute Krengel’s entropy and finally apply some results of [10] to them.

1 Preliminaries

Let us briefly develop the set-out of this thesis and state some classical results for later
use, where we omit well-known or purely topological proofs. We will assume basic
knowledge of measure theory, integration theory and (higher) probability theory. For a
treatment of those principles we refer the reader to [12] or [3].

Throughout the whole thesis we will only consider o-finite measure spaces, that is
there are countably many measurable sets of finite measure whose union already covers
the whole space.

1.1 Names and notations

Let (X,, 1) always denote a o-finite measure space. For sets A, B € B we will write
A C B modulo 1 (or mod ) if only a subset of A of measure zero is not contained in B,
i.e. u(A\ B) = 0. This gives also the definition of A= B mod yt by A C B mod y and
B C A mod . Measurable sets on which the measure is zero are called null-sets. If
something is valid everywhere beside on a null-set, we say it is true almost everywhere
(a.e.), respectively for almost every point. An atom of B (or of 1) is a set A € B with
W(A) # 0, such that VB € B, B C A either A = B mod y or B=0 mod . By abuse
of notation we will write ANF := {ANF : F € §}, for a family § of sets. For two



families §, € of measurable sets we say § C € mod U, if for every element F' € § there
is an element E € & such that E = F mod p. Further we define § = € mod pt as § C €
mod u and § 2 ¢ mod U.

If there is a topology on X we call the o-algebra generated by all open sets Borel-o-
algebra, denoted by B (X). If we are dealing with R or some subset of R, the associated
o-algebra will always be the Borel-c-algebra w.r.t. the usual topology and the measure
the Lebesgue measure A. Recall that a metric space is said to be separable if there is a
countable dense set, and complete if every Cauchy-sequence converges.

Let (¥,2A,7m) be another o-finite measure space. A measurable function f: X — Y
is called invertible if it is injective and f~' : f(X) — X is measurable. The two
measure spaces are called isomorphic, if there is an invertible surjective function f :
X — Y, such that o f~' = 1. Such an f is called an isomorphism. Functions which
fulfill wo f~' = n are called measure-preserving. The spaces are called essentially
isomorphic, denoted by (X,%B,u) ~ (Y,2(,n), if there are measurable sets Xy and Yy
with Xo = X mod p and ¥y =Y mod 1, such that (Xo,B N Xo, 1|nnx,) and (Yo,2AN
Yo, M2y, ) are isomorphic. Given an isomorphism f: (X,B,u) — (Y,2(, 1), we have
{A:Aisanatomin B} = {f'(C): Cis an atom in A}.

A measure space is called complete (w.r.t. the measure) if every subset of a null-set is
measurable, i.e. contained in the c-algebra. For every measure space (X,B, 1) there
exists a so-called completion (X,B, ), that is the smallest complete measure space
with B C B and 1| = u.

By N we denote the natural numbers without zero, by Ny those with zero. Moreover,
N and R stand for NU {ec} and RU {eo} U {—oo}, respectively.

1.2 Standard measure spaces

In some of the following sections we will have to restrict our consideration to measure
spaces of a special kind. This restriction will still allow a wide class of measure spaces
to apply. We adopt the definition from [1]:

Definition. A measurable space (X,B) is called standard, if X is a separable com-
plete metric space and ‘B its Borel-c-algebra. The same is done for measure spaces
(X,B,1).

Remark 1.1. Given a standard measurable space (X,2) and a set A € B, then (A,AN
B) is again a standard measurable space (see e.g. [1]).

The following result is well known in measure theory. A heuristical proof can be
found in [1] and a rigorous one for probability spaces in [3] (Theorem 9.2.2).

Theorem 1.1. Let (X,B, 1) be a o-finite standard measure space without atoms. If
W(X) = oo, then the space is essentially isomorphic to (R, B(R),A). If u(X) =1 then

the space is essentially isomorphic to ([0,1],%([0,1]),A|.1)), furthermore, if we re-

lease the condition on atoms, then the space is essentially isomorphic to ([0, 1],8([0,1]),
V), for some probability measure V.

For every standard measurable space (X,) we can consider the set of all prob-
ability measures defined on this space, which we will denote by P(X,%), and equip
it with the c-algebra & generated by the functions Np which evaluate the probabil-
ity measures on a fixed set B € B, that is Ng(P) := P(B), for all P € P(X,%B), i.e.
® := 6(Np : B €B). Then (P(X,B),®) is again a standard measurable space (refer-
ring to [1]).

The following very useful theorem is proven for instance in [1] (Theorem 1.0.8).



Theorem 1.2 (Disintegration). Let ¢ : (X,B,u) — (Y,D,n) be a measure-preserving
map between two standard probability spaces. Then there is a © NYy-&-measurable
function 'y — py, Yo — P(X,B), on a set Yo € © with Yo =Y mod 1, such that
VBB, VAED,

u(B6~ @) = [ (B dn()

and (9~ ({y})) = L for all y € Yo.

Note that {y} € © for all y € Y, since one-point-sets are closed sets (i.e. comple-
ments of open sets) and ® is the Borel-c-algebra (hence contains the complement of
every open set).

We can also disintegrate a space w.r.t. a sub-c-algebra. This result is proved in a
. . 1 .
very general setting in [20], Theorem 44":

Theorem 1.3. Let (X,B, 1) be a o-finite standard measure space without atoms, and
let € be a o-finite sub-c-algebra of *B, then there exists a disintegration w.r.t. €, that
is there is a family { s } xex of measures on (X,B) such that for every B € B

o the map x — U (B) is measurable w.r.t. €, and

e W(BNC) = [oUx(B) du(x), for every C € €.

Moreover, this family of measures is unique w.r.t. those properties, that is, if there
are two families {l;}rex and {U.}cex of measures on (X,B), which fulfill the listed
properties w.rt. €, then [, = L] for U-a.e. x € X.

2

Remark 1.2. The measures obtained above are conditional measures w.r.t. €, i.e.

VB e B, VxeX:
1x(B) = Ey[15]€](x) = u(B|€)(x).

In particular, they are probability measures for a.e. x € X, because ,(X) = E, [1x|C](x)
= lx(x) =1 for a.e. x € X, since 1y is clearly €-measurable.

Furthermore, we will need a result on sub-c-algebras, shown for probability spaces
e.g. in (Theorem 6.5 and Corollary 5.22) and the last claim is given in [4] (Fact 1.22)
for probability measures.

Theorem 1.4. Let € be a sub-G-algebra of a 6-finite standard space (X,B,1). Then
there is a G-finite standard space (Y,D,Vv) and a measure-preserving map ¢ : Xo —
Yo, such that € = ¢~ (D) mod u, where Xo = X mod u and Yo =Y mod v. If
Niecee C = {x} for every x € Xy, then ¢ is injective. In this case we even can de-
duce that ¢ : (X, €, 1) — (Y,D,V) is an essential isomorphism.

1.3 Some basic ergodic theory

We want to consider the evolution of a o-finite measure space (X,B,u) described
by a measurable transformation 7 : X — X, which is non-singular, that is VB € ‘B:
w(B) =0= u(T~'B) =0, i.e. it shall obey the natural rule, that the set of elements,

!Actually, Theorem 44 of [20] applies in the more general setting of Hausdorff spaces which can be
written as a countable union (mod u) of compact metrizable measurable sets on which the measure is finite.
With our assumptions these conditions are fulfilled by Theorem 1.1.

2For a definition of conditional measures for not necessary finite measures spaces, we refer to [20].



which will be taken to a null set under 7', must not have positive measure, descriptively
spoken, T shall not annihilate information (e.g. mass). The measure Ty := o T~ ! is
called image-measure. To represent this dynamical system we write (X, 8,1, T). We
say T is measure-preserving, respectively that u is T-invariant, if w(B) = u(T~'B)
forall BB, ie. ifu=7Tu.

If T : X — X is an essential isomorphism, then we call T an automorphism. Note, that
in this case, by definition, 3 C T~ !(8) C T~ !(f(8B)) = B mod u, hence T~ !B =B
mod i and T°8 =B mod u.

A dynamical system (X,B,u,T) is called conservative, if beside null-sets there are
no wandering sets, i.e. sets W € B with WN{J,_; T7"W = 0 mod u. We say that
(X,%8,u,T) is ergodic, if for every invariant set B € B, T~'B = B mod u, we have
w(B) =0 or u(B) = 0. Let us denote the c-algebra consisting of all invariant sets
by J. Provided that T is measure-preserving, we call the system weakly mixing if
limy o0 2 Y770 |L(ANT *B) — u(A)u(B)| = 0, VA, B € B. If p is a probability mea-
sure, then weakly mixing implies ergodicity, since if we take e.g. A = B invari-
ant in the above equation, we get 0 = lim, o 1 Y77 |W(ANT*B) — u(A)u(B)| =
W(B) — u(B)u(B), thus i(B) = 0 or u(B) = 1.

Remark 1.3. Let (X,B,u,T) be a 6-finite, conservative and ergodic dynamical sys-
tem. Then every set A € B with u(A) # 0 is a sweep-out set, that is U, T "A =X
mod L.

If additionally T is measure-preserving and [L(X) = oo, then every G-finite sub-o-
algebra € of B, which is sub-invariant, i.e. T-1l¢ C €, has no atoms. (In particular,
for every x € X with {x} € B we get u({x})=0.)

Proof. Let B € B be an arbitrary set with u(B) # 0. Since (X,B, ) is conservative,
we have B C | J;—; T~"B mod u and therefore |J;,_o 7 "B is T-invariant. Thus, due to
ergodicity, U;—o 7 "B =X mod u , since the case |;,_, 7 "B = 0 mod u is forbidden
by p(B) # 0.

Let € be a o-finite sub-invariant ¢-algebra and C be an atom of €, u(C) # 0 by def-
inition. By assumption € is o-finite, so let C, € € with u(C,) < =, Vn € N, and
U,enCr = X, then there is an m € N such that £(CNCp,) # 0, but since C is an atom
of €and C, € €, we get CNC,, =C mod U, i.e. C CC, mod u. Therefore we
have 1(C) < oo. The same argument leads to C C 7~™C mod p, for some m € N,
m > 1, since by conservativity CNJ,—; T7"C # 0@ mod p and T7"C € €, Vn € N, by
sub-invariance. But then we get C = 7""C mod u, because u(7""C) = u(C) and
U(C) < eo. Now, by the first part of this proof, X = ;T "C = UZ;OI T7"C mod u,
hence [ (X) =m- p(C) < oo, a contradiction. O

1.3.1 Ergodic Theorems

We now state a main theorem of ergodic theory. For a proof we refer to [27] or [12]
(Satz 20.14).

Theorem 1.5 (Birkhoff’s Ergodic Theorem). Let (X,B,u,T) be a measure-preserving
dynamical system with [L(X) = 1. Then for every f € L1 (1) :={f : X — R measurable|
J1fl du < o} /{f =0a.e.} there is an f* € L (1) such that

n—so0

lnfl
- ZfOTk—>f* ae,
k=0



[ =f*oT ae. (in particular f* is J-measurable) and [, f* du = [, f du, for every
invariant set A € J.
Especially, if in addition the system is ergodic, then

fo oTH 122 /fdu E[f] ae.

For o-finite systems we get the following. (A nice proof can be found in [24].)

Theorem 1.6 (Hopf-Stepanov’s Ratio Ergodic Theorem). Given a o-finite measure-
preserving dynamical system and Ly (W)-functions f and g on X such that g is non-
negative and [ g du > 0, then one can find a real-valued measurable function Q(f,g)
on X, depending on f and g, such that

k n—1
gk_of o7 O(f,g) ae. on {xeX : :lelgikgag(Tk(x))>O}.

If (X,B,u,T) is conservative, then Q(f,g) = Q(f,g)oT a.e. and [, O(f,8) g du =
Jufau, forallA€3

Especially, if in addition the system is ergodic, then Q(f,g) = LS du

Jgdu

Corollary 1.1. Let (X,B,u,T) be measure-preserving, conservative, ergodic and
W(X) =oo. Then

a.e.

1 n—1

foOTk—>O a.e. forn — oo
Sorevery f € Li(1).
In particular, for C € B with [1(C) < oo, we get

1717]
- Y uenr*c)—»0  forn— oo
n =0

Proof. By Hopf-Stepanov’s Ratio Ergodic Theorem 1.6,
YisofoT*  [fdu
Zz;é goTk Jgdu

forall f,g € L;(u) with [gdu #0.
In particular,

a.e. forn — oo

a.e. forn — =

n—1 k
oT d
1 Z for < Lic 0 f S [fdu
Z" lp 1(B)
for every B € B with (B) < e, f € L(1), but since X is assumed to be infinite and
o-finite, we can choose B arbitrary large, which makes L J (ggl arbitrary small, i.e.

ln_l
—ZfoTk%O a.e. for n — oo.
=

Let C € B be such that (1(C) < oo, then 1¢ € L; (), thus

1= 1
ZlCﬂT e=lc- *ZlcoTk—>0 a.e. for n — oo



Hence by dominated convergence

lnfl
-Y uenr*tc)—»0  forn— e
n =0

1.3.2 Induced transformations

The theory of induced transformations, and in particular first return maps, can be found
in most standard books on ergodic theory (see e.g. [1], [5]), therefore we do not repro-
duce this well-known theory here but only state some results which will be useful later
on.

Let (X,%,u,T) be a conservative non-singular dynamical system, then every set
A € ‘B of positive measure is recurrent, i.e. A C |J,—; T"A, therefore the first return
time map @4 : X — N, @ra(x) := inf{n € N: T"x € A} is finite for a.e. x € X. The
first return map of A is defined as

Th:A— A, Tyx:= 7AWy for a. e. x € A.

If T is an automorphism, we also define @1 4(x) :==inf{n € N: T "x € A}.
The first return time map gives rise to a new dynamical system (A, B NA,|s,T4)
which shares many properties with the original one.

Proposition 1.1. Ler (X,B,u,T) be a non-singular dynamical system and A € B
a sweep-out set. If (X,B,U,T) is conservative, then so is (A, B NA, U|a,Ty). If
(X,8,u,T) is ergodic, then so is (A, BNA, |4, Tx). If H(A) < oo and (X,B,u,T)
is measure-preserving, then (A,BNA, l|a,Ta) is measure-preserving.

Under some assumption, the reverse implications are true, too, which is actually
the more interesting statement in some situations in ergodic theory (referring to [27]
for details).

The following identity will be useful for some calculations. (For a proof we refer
to [26].)

Lemma 1.1. Let (X,B,u,T) be a o-finite measure-preserving dynamical system and
A €B a sweep-out set with |1(A) < co. Then the first return time map @r 4 on A fulfills

pAN{@ra>n})=puA“N{pra=n})

for everyn € N.

1.3.3 Natural extensions

Sometimes it is useful to look at a wider system than the given one, especially if the
original system lacks some properties.
We define the following relations between dynamical systems:

Definition. A non-singular dynamical system (X', B, u',T') is called an extension of
(X,,u,T) (resp. the latter is called a factor of the first), if there are measurable sets



Y=Xmoduand Y’ =X’ mod ' with TY C Y, T'Y’ C Y’ and there exists a measure-
preserving map 7 : Y’ — Y such that zoT’ = Tox on Y'. The map 7 is called

factor map. If & is an isomorphism, then the systems are called isomorphic, denoted
by (X,B,u,T) ~ (X', %', 0, T").
We will see that for every measure-preserving standard measure space there exists a

unique minimal extension which is invertible, that is, the transformation on the system
is an automorphism.

Definition. An invertible extension (X ,%,ﬁ,f) of (X,B,u,T) is called natural ex-
tension, if it is minimal in the following sense:

c({T"n 'BBeB,neNy}) =B mod [i,
where 7 denotes the factor map 7 ‘X — X.

To construct such an extension, one needs the famous Kolmogorov’s Extension
Theorem in the following general version, proven in [23].

Theorem 1.7 (Kolmogorov’s Extension). Let (X®*) 8% be standard measurable
spaces, for each k € N, and denote by (X,,B,,) the product space up to the n-th space,
ie. X=X x X0 8, :=o({(p)'BOB® € BO k=1,....n}), where
pszk) : X, — XW is the canonical projection. Now, let us consider measures Uy on
(Xu,B,,) for every n € N, which are self-consistent, that is

Un(En) = U (E, x XD s ><X(’"))7 Vm e Nwithm>n

for every E, € *B,. If one of the measures U, is C-finite, then there exists a unique
measure [l on the infinite product space (X ,B) such that | Op(kr] = Uy forallk e N,
where X :=[7_ X%, 9B := G({(p(k>)’lB(k)|B(k) e Bk ke N}), and p®) denotes
for the canonical projection X — X ),

Theorem 1.8 (Natural Extension). For every o-finite standard measure space (X, B, I,
T) with a measure-preserving transformation T there exists a natural extension, and
this extension is unique modulo essential isomorphism.

The natural extension can be construed as follows:

X = {(x0,x1,%x2,...)|]xi € X,Txi41 = x;,i € Np},

B := o (B.: B B) for B.:={(x0,x1,x2,...) € X|x; € B},
1(B;) := pu(B)
and B B
T (x0,x1,%2-..) := (Tx0,X0,%1,--.) for (x0,x1,%2,...) €X.
Clearly, (Xv , %,ﬁ) is a o-finite standard measure space and Ta measure-preserving

automorphism.

A proof of this Theorem can be found e.g. in [1], Theorem 3.1.6 (Uniqueness),
Theorem 3.1.5 (Existence), or a more constructive one in [13], Chapter 10, §.4.

One reason why this kind of extension is useful, is that crucial properties like er-
godicity and conservativity carry over. More precisely, we have the following result
(proven e.g. in [1] Theorem 3.1.7 or for probability measures in [13] Chapter 10, §.4,
Theorem 1).

10



Theorem 1.9. Ler (X,B, 1) be a o-finite standard measure space and T a measure-
preserving, conservative transformation on it. Then T is ergodic if and only if T is
ergodic. Moreover, if T is ergodic, then T is also conservative.

1.4 pu-partitions

Let (X,%,1) be a o-finite measure space. By a p-partition of X we understand a
family of pairwise disjoint sets of B, such that the union of all these sets is modulo
equal to X.

Definition. Let o, 8 be p-partitions of X. We call « finer than 3, denoted by o > 3, if
every element of o is contained in an element of 8. The relation o = 8 mod p, means
that there is a measurable set Xy with X = Xy mod p such that ¢ N Xy > BN Xp.

The common refinement of o and B is defined as a vV :={ANB: A€ a, B B}. For
finitely or countably many p-partitions ¢, @, ... of X we write \/}_; o, = a1 V o V
.VoyforneNand Vi, a, = a; Vo V..., respectively.

We say, that & = 8 mod , if there is an X € B with Xop = X mod u such that c N Xy =
BNXo.

Remark 1.4. Note, that o > 8 means that every element B € 8 is, up to a fixed null-
set, a union of elements A; € o for [ in some (not necessarily countable) index set L.
Indeed, if o = B, then by disjointness of the elements of 8, forevery B€ f and A € a
either A C B or AN B = 0 (since there is an B’ € f such that A C B’, by assumption),
therefore B = BN UpcqA = Uaca. acBANB = Upca acgA mod u. (This equality
holds only mod p, since (J4cq A is bnl_y modulo p equal to X.)

Note, that the common refinement ¢ \VV  is again a p-partition of X.

Moreover, & = 3 (mod p) < aV B = o (mod p). And o = 8 (mod p) if and only if
o = B (mod p) and B = a (mod p).

We will look at a wider class of p-partitions than countable ones (i.e. p-partitions
which have finite or countably infinite many elements), which will bear some advan-
tages.

Definition. A u-partition « is called measurable if there exists an at most countable set
A={D;,Dy,...} with D, € B forn=1,2,..., which generates o, that is, ¢ consists of
all (nonempty) sets of the form (,_, S,, where either S, = D,, or S,, = D5, for D, € A.

Example 1.1.

1. Clearly, every countable pl-partition ¢ is measurable, by just taking o itself as
generating set A.

2. Let (X,, 1) be a standard space, then € := {{x} : x € X} is a measurable par-
tition. Indeed, a metric space is separable if and only if its topology contains a
countable basis (2" countability axiom), i.e. there exists a countable family of
open sets, such that every open set is a union of elements of that family. There-
fore, since {x} is closed, it has to be an intersection of complements of elements
of that countable family.

Moreover, we get a trivial ordering € > a = {X,0} for every u-partition o of X.
If we restrict € to a set B € B, then we will denote this by &g := eNB = {{x}:
x € B}. (Confer example 4 below.)

11



3. The common refinement of at most countably many measurable p-partitions is
obviously measurable: Let A, denote a countable, generating set of a u-partition
oy, then (U, A, is countable and generates \/;,_; 0t,.

4. Let o be a measurable pu-partition of some measure space (X,B,u) and C €
B with u(C) > 0. Then aNC is a measurable p-partition of (C,BNC, u|c).
Indeed, let A= {D;,D,D3...} be a generating set of o, then

Ac:={DiNC,DiNC,D,,Ds,...}

is a countable generating set of &« NC: Given A € o, A = (,_; S, with either
Sp =Dy or S, =Dy;. If S =Dy, we have (D;NC)N(D{NC)NSN... =
(D]ﬂCﬁD]ﬂSQﬂ...)U(D]ﬁCﬂCCﬂSQ...)ZD]ﬁCﬂD1052ﬁ...2AﬂC,
and if §| = Df, then (D;NC)*N(D{NC)NS2N...=ANC

5. Let f: X — [0, 1] be a measurable map. Then ot := {f~1({r}) :r€[0,1]}isa
measurable y-partition of X, since, e.g., the set A := {f~!(J) : J interval in [0, 1]
with rational endpoints} is at most countable and generates o.. (Obviously « is a
p-partition of X: UpeqA = Uyepp,i /" ({r}) = £71([0,1]) = X and disjointness
follows since f is a function.)

In fact, the above form of a measurable p-partition is characterizing ([3], Lemma
10.8.2): A u-partition o of X is measurable if and only if there is a measurable
map f:X — [0,1] such that o = {f~'({r}) : r € [0,1]}.

Indeed, let A = {D;,D»,...} be an at most countable collection of measurable
sets, which generates the u-partition . We define a function g : X — {0, 1}
by g(x) := (1p, (x))nen. taking the usual (Borel-)c-algebra on {0, 1}, generated
by the cylinder-sets [ay,. .., an] := {(@n)neny € {0, 1} ax = ar, k=1,...,m}.
In this setting the function g is measurable, because Vim € N: Vay,...,a, €
{0, 1} we have g7 '([a1,...,am]) = Nf_; Rk € B, with Ry := Dy if ap = 1
and Ry := D, if a = 0. Furthermore, {g~ ' ((@y)nen) : (@n)nen € {0,131V} =
{MuerSn : Sy =Dy or S, = D5, for D, € A} = a. Now let i1z {0, 1} — [0, 1]
be a measurable injective map and set f := hog. Then f is a measurable map
from X to [0,1] and {f~'({r}): r € [0,1]} = {g ' (" ({r})) : r € [0,1]} =
{g_l((wn)neN) : (wn)neN € {Ov 1}N} = Q.

Notation. For a measurable pi-partition 7, the following c-algebra will be of interest

o(y):= { U Cl‘ U C; €°B, C; €7, L an arbitrary not necessarily countable index set}.
leL leL

Sometimes we will call 6(y) the o-algebra generated by 7, if there is no confusion
with 6(y) due to the context.

Note that 6(y) is bigger than () in general. Consider for example a standard
measure space (X, 9B, i) with y = g, then o(y) # B, but 6(y) = B.

One of the main advantages of measurable p-partition (compaired with count-
able p-partition) is that every o-finite sub-o-algebra is generated by a measurable
U-partition in the above sense. More precisely, we obtain

Lemma 1.2. Let (X,B, 1) be a 6-finite standard measure space, then every G-finite
sub-c-algebra € of B is modulo | generated by a measurable U-partition y of X, i.e.
6(y) = € mod . Moreover, this W-partition is unique modulo L, in that if there is
another measurable [-partition o of X with 6(a) = € mod L, then & =y mod L.
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Proof. If € =B, then € := {{x}| x € X} is a measurable partition of X (see Example
1.1) with 6 (&) = { Ujer {xi}Uier {1} € B,x; € X, L an arbitrary index set} = B.
Now let € be an arbitrary o-finite sub-c-algebra of 8. Then by Theorem 1.4, there is
a o-finite standard measure space (¥,D, v) and a measurable measure-preserving map
¢ : Xo — Yo with ¢ ~1(®) = € mod v, Xo = X mod v and ¥y = ¥ mod v. Thus by the
first part of the proof there is a measurable v-partition § of ¥ with 6(£) =D mod v.
We will show that y:= {¢~!(Z) : Z € {} is a measurable y-partition for (X, ) with
6(y) =€ mod p. Clearly, 6(¢'(£)) =0 1(6(¢)) = ¢ ' (D) = € mod w, the ele-
ments of y are pairwise disjoint and Uz ¢ (Z) = ¢~ (Uzec Z) = ¢ (Y) =X mod
. Further, for every C € ythere is a Z € { such that C = ¢ ~(Z). Let {F, :n € N} be
a countable family of D N ¥y-measurable sets which generates §, then there is an index
set Iz C N such that Z = ez, F O Nygr, - Thus C = ¢71(Z) = Nyep, 01 (F) N
Nugr, (¢ (F)°, hence {¢ ! (F,) : n € N} is a countable family of €-measurable sets
which generates 7.

To show the uniqueness, let o be another measurable y-partition of X with 6(a) = €
mod pu. Every element C of ¥ lies in €, hence there are A; € «, [ in some index set L
such that C = |J;c;, A; mod u, but A; € € = 6(), hence there are some Cﬁ» € yfor jin
some index set J such that A; = Uqu- mod p, ie. C = Uqu mod p, which
implies that Cﬁ» =Cand |L| =1 = |J|, thus C = A; mod y, which gives y C & mod u.
Analogously, one can show that ¥ O a mod u. Hence, Yy = o mod u. O

Note, that if 6(y) = € mod u, then every element of y of positive measure is mod
U equal to an atom of €.

1.4.1 The space of a y-partition

Corresponding to every measurable p-partition 3 of X, one can construct a new mea-
sure space (Xg,Bg, L) by setting

Xp =P, %ﬁ ZZ?‘Eﬁ&([)’), up ZZ[,LOJ'Eil,

where 7g : X — B is the map which assigns to each element x of X the unique element
B, of B, which contains x , i.e. 7tg(x) := B, (in case x is not contained in an element of
B we just set B, := 0 and define @ € ), and, as above, 6(f3) is the o-algebra consisting
of arbitrary (possibly uncountable) measurable unions of elements of 3.

The map 7g is B-Bg-measurable: Every element of Bg = mgc(f) is of the form
g (UWEW BW) , for B,, € B, W some arbitrary index set such that |,,cyy Bw € B, hence
717‘;1 (mg (Uwew Bw)) = 7':51 ({Byw:weW}) =U,ew Bw € 6(B) € B. In particular, g
is 6 (3)-Bg-measurable.

Note, that g (B) = ,u(nﬁ_l(ﬁ)) = 1(UsepA) = 1(X). Moreover, one can show, that
if (X,) is a standard measurable space, then so is (Xg,Bg), according to [16], p. 31.
Hence, if 6(B) is o-finite and (X,B, ) is a standard space, then (Xg,Bg,ug) is a
o-finite standard measure space. When speaking about such a measure space we will
always assume that the y-partition is such that the corresponding o-algebra is o-finite.
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If B is such that 7~!'B < B and &(p) is o-finite, then we can define a transforma-
tion Tﬁ on (Xﬁ,%ﬁ,,uﬁ), by

Tg(B) =D ¢ D€ B suchthat TB C D,

for B € B.

Indeed, this is a well-defined map, since by T~!8 < B, for every B € B there exists a
DeBwithBC T 'D = TBCTT~'DC D, and if there were D,D’ € B, D # D',
such that TB C D and TB C D/, then TB C DN D' = 0, a contradiction if B # @ (for
B =0 we set Tg(B) := 0).

Proposition 1.2. The properties measurablility, non-singularity, measure-preserving-
ness, conservativity and ergodicity carry over from T o Tg (i.e. if T is conservative,
then so is Ty, and analogous for the other properties).

Proof. Let {D;:D; € B,l € L} € B for some arbitrary index set L, then

Tﬁ"{Dl|D1eB,leL}:{BeﬁBleL:TBQDZ}:n[;( U B):
Bep : el : TBSD,

= ( U B)=m (U (BnUT 1)) =

Bef : 3leL : BAT~'D;=B Bep leL
=x((UB)n(UT™'m1)) =5 (17 (UD1)) =17 (m5 (D1 € 1Y),
Bef leL leL

since BNT~'D; = B or = 0 by the assumption § > T~'B, and TBC D; < BC
T-'D; < BNT 'D;=Bfor B+#0,because also DD TB = T-'DD> T 'TBDB.
With the above identity

(1) T,;l :nBoT_lon'ﬁ_l,

we can easily compute that many properties of T carry over to 7.

The map 7 is measurable, since {D;|D; € B,1 € L} € B if and only if ;e D; €
8, hence by measurability of 7', we have 7! (UleLDl) € 9B, thus since 771D, €
T8, we get T~ (Ui D1) = Uje, T7'Dy € 6(T 7! B) by definition. Therefore, by
),

T, DD € Bl L} = mg (T’I(UD1)> € Byo15 C By,
leL
es(T1p)

since T~'B < B.
For the verification of the measure-depending properties, first note, that

ﬂgl(nﬁ( U B,-)) = |J B forB;epwith | JB;ec(B),

B;eB, iel B;eB, iel iel

viewing the image and the preimage of 7 as functions 7g : 6(f8) — Bg and Ty L

Bg — 6(B), one may write the above as

) nl;l omg = idz gy on G(B).

14



Moreover, T o 77:[; = idsy s on B Bs by surjectivity of g. Note, that (2) also holds on
5‘(T‘1B), since G(T_lﬁ) Cao(B), by T‘lﬁ < B.
Using (1) and (2), we deduce

g oTB_l :uon’l;lonﬁoT_lonﬁ_l ZI.LOT_IOTEEl on Bg = mg(c(B)),

ie.
(o Tz (D D€ BreLy) = (uor™)( U D),
Djep, IeL
for {D; : D; € B,l € L} € Bg. Hence, T is measure-preserving if and only if Tj is
measure-preserving.

Further, by (1), T[;z = (mg onnonl;l)*l = (7‘[1;1)71 onnon'El =g oT*”oTCﬁ*],
since (77,'/3’ 1)_1 = 7g, by uniqueness of the inverse function. Hence, for n € N, we get
3) TE" =nmgoT "o 71?51.

Note, that 6(T ") C &(B), hence again ngl o g = idz () on G(T~"B).
Now, let T be conservative, i.e. every C € ‘B is recurrent, thus u (Cﬁ ﬂnzl T‘"Cc) =0.
Then,

up (10 1€ LyN T3 (Dr 1 e 1)) =

n>1

= (w5 o eLhnag (N mp (T (x5 ({01 € L)))) ) =

n>1

= ”((lELJLD1> mnolT—"((leULDl)c)) -0,

by recurrence of (J;c;, Dy € B w.r.t. T. Hence, Tp is conservative.

Similar, if 7 is ergodic, then so is 7: Let T be ergodic, i.e. H(A A T"A) =0=
HU(A) =0or u(A°) =0. Let {D; : D; € B,1 € L} € B be such that 0 = ug({D; : l €
L} A Tﬁ’l{Dl :1eL})=pu(Uer Di AT ' (UierDi)). hence by ergodicity of T, we

get that either 0 = it (U Di) = pg({Dy : 1€ LY) or 0= p((Ujer. D)%) = pp({Ds :
1€ L})°). Thus, Ty is ergodic, too. O

Let (X,%B, 1, T) be conservative and 7~ '8 < B. Since in that case (Xg,Bpg, g, T5)
is conservative, too, we can consider the first return map (73) xg(4) Of T on 7g (A) e
Bg = ng(c(B)) for (fixed) A € 6(B), A = U, B, for B; € B. On the other hand,
the first return map 7 of 7 on A € 6(B) C B fulfills 7, '(BNA) < BNA. Indeed,
given B € BNA then T, 'B =, T "BNANT'A°N..NT™HANT A =
U1 T"BOUie BINT ! (Up,epigr Bi) N .NT " (Upep igr. Bi) VT (Ujer Br)
= UBjeﬁ;amzI,T’”’BQB/mﬂ;":‘l Tk (UBiEB,i¢LBi) #,Bj, since either B;NT*B; =0 or B;N
T~*B; = B, due to the assumption 7! 8 < B, which obviously implies 7% < j3.
Having TA_l(ﬁ NA) X BNA, we can consider the map (74)pns defined like before.
Moreover,

(Ta)gra = (Tp) zg(a)-
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To verify this identity, let B € B, B C A be fixed. For x € B, TPie B (x)x € UL Brs ie.
75 ¥y ¢ By, for some u € L, but then T~'B < B implies that 7Mic5 g CB,,
which can be written as Tﬁ%’ELB’ Wp— B,.. (Obviously, (7 e ™) )pB = (Tg)MreLb: W,
since (T5)*B =D € B <> T*B C D for every k € N.) Thus, Uy, B, (X) = O¢pcry (B)

for every x € B, since @\),_, p,(x) is minimal such that T ®ieL5: @y e Ui Bi- Hence,

. B
(Tﬁ)ﬂﬁ @) = Tﬁ(p{Bl’leL}( >B = B, and on the other hand, (Tx)gra(B) = (Tx)g(B) = By if
and only if B, D TyB = {T™ee#Wx: x € B} = {1P81e) By .y € B} = 7011y B,

?1p,:1e1}(B)

which is exactly B, = Tﬁ B, which completes the argument.

1.4.2 The canonical system of measures

Consider a o-finite standard space (X,B, i) and a measurable p-partition ¥ on X such
that 6 () is o-finite. Due the the previous section, we can speak of almost every C € 7,
by considering u,-null-sets in (7, B,).

The theory of canonical systems of measures, studied in-depth in [16], is crucial
for Parry’s definition of entropy, respectively, for the definition of conditional entropy.

Theorem 1.10. Ler (X,B, ) be a standard probability space and y be a measurable
u-partition of X. Then for ly-almost all C € y there is a 0-algebra B¢ on C and a
measure Uc on B, such that (C, B¢, Uc) is a standard probability space, and for all
B €8 we have

e BNC € B¢, for Uy-almost all C € 7,

o the map C — uc(CNB) is measurable w.r.t. By, and
o 1(B) = [x, 1uc(CNB) duy(C).

The system of measures {lic }ccy obtained in this way is called canonical system w.r.t.
7.

Moreover, this system is uniquely determined modulo Ly, i.e. if there is another system
{ul-Ycey with the above properties, then for py-a.e. C € ¥ we have lic = /..

To prove the statement, we just need to apply the Theorem of Disintegration (The-
orem 1.2).

Proof. The map @y : X — ¥, x — %, considered before, is a measurable, measure-
preserving map between two standard spaces, thus we can apply Theorem 1.2 and
achieve for uy-almost every C € y a probability measure pc on (X,B) with 1 =
tic(m, ' ({C})) = ue(C), which means that we can regard fic as a measure on (C,%B N
C) =: (C,B¢) (by Remark 1.1 (1) a standard space).

Furthermore, the map C +— pi¢ is measurable w.r.t. (¥,By) and (P(X,B),®), i.e. for
every (fixed) B € B we have {C: uc € Ny ' ({[a,b]})} = {C: uc(B) € [a,b]} € B, for

3By induction: For (Tﬁ)z(B) =T (T5(B)) = D, and T (B) = Dy with D; € 3, i € N, we get by definition,
that T (75 (B)) C Dy and T(B) C Dy, hence T(T'(B)) C T(D1) = T(T5(B)) C D,. Now, assume that we the
claim is true for k — 1-iterations, k € N, then (7 VB = Dy = T((Tﬁ)k’l(B)) C Dy, now for (Tﬁ)k’l (B) =
Dy we know that TB C Dy_y, hence T(T*~'(B)) C T(Dy—1) = T((T3)*~'(B)) C D.
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a,b € [0,1], which is measurablility of C — pc(B) = pc(CNB).
Moreover, for all B € B fixed, we see that

s (m( U ) =u(Bn U C ::/ B) dit,(C),
'u< ! ! WLEJW ! g WLEJW W) {Cviwew} .U'C( ) ‘uY( )
for every U,,cw Cw € 6(7), Cy € 7, W some index set, and especially,
u@)=n(BnlJc) /uc BNC) dity(C).
Cey
To show the uniqueness, let {11/} ccy be another canonical system of y. Then for

every M C vy, M € B, and every A € ‘B fixed, we obtain

,#e(A0€) diy(€) = [ peAnC)u(C) din(€) = [ peancrm () dus€) =

= pAn; (40) = | peancO; ! (1) duy(C) = [ ANC) di(C),

since 1y(C) =1 CNm, ' (M) =Cand 1(C) =0 < CNm, ' (M) =0, forallC€ .
We can take M := {C € y|uc(ANC) < u-(ANC)}, because by assumption C — (AN
C) and C — u/-(ANC) are B-measurable, and therefore M is B,-measurable. This
gives

/u(’;(AﬁC)—uC(AﬂC) dit,(C) =0 and p-(ANC) — He(ANC) > 0for C € M
M

and analogously for M€, thus
pc(ANC) = uc(ANC) for By-almost every C € .

Now, A € B was arbitrary chosen, and for fixed C € y we have B¢ = {ANC|A € B},
hence pic = pg., for By-almost every C € . O

Let us now state some useful properties of the canonical system of measures, ob-
tained above.

Proposition 1.3. Let (X,B, 1) be a o-finite standard measure space and 'y a measur-
able u-partition of X.

1. The theorem above is also true for G-finite spaces, if G(Y) is O-finite, i.e. then
there is a (unique) canonical system of probability measures { lic }cey which ful-
fills the properties given in Theorem 1.10.

2. If u(C) # 0, for C € v, then the canonical measure Uc is just the conditional
measure w.r.t. C:
tc(BNC) = u(B|C),

forall B € 5.
3. Infact, for A € B fixed we obtain
b (AN (X)) = H(AIG (1)) (x)
for almost all x € X, when viewing the canonical measure as map from X to

[0, 1], given by x — Uz (1) (AN Ty (x)).
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4. Forall A €5,
U(A) =0 <= puc(ANC) =0 for uy-a.e. C<y.
Further, for B,B' € B with B= B’ mod U,
uc(CNB) = uc(CNB') for py-ae. C €.

In particular,
mod [l < mod Uc for Uy-a.e. C €Y.

5. Let ¥ be another measurable W-partition of X which is modulo W equal to Y.
Then the corresponding canonical systems are equal: For every fixed A € B, we
have

M) (AN (x)) = Mz (x) (AN7y (x)) for p-a.e. x€X .

Since the domain of a measure is defined by the measure itself, we sometimes
drop the restricting set and just write

M, (x)(A) = Mz (x) (A) for p-a.e. x€ X .

6. Consider another c-finite standard measure space (Y,©,Vv) and a measurable,
measure-preserving map ¢ : X — Y and let { be a measurable v-partition of Y
such that 6(§) is o-finite. Then, ¢ preserves the measures of the corresponding
canonical systems:

-1
Vi (0() = Hay oy (09 lm (o)) for H-a.e. x € X.

Moreover,
q)’l O oY =Ty ©) U-almost everywhere.

In fact, by (5), instead of ¢ we rather can take a map ¢’ : Xo — Yo, for Xo = X
mod W and Yy =Y mod v with the above properties.

In particular, if (Y,D,V) and ¢ are as in Theorem 1.4 w.r.t. the o-finite sub-o-
algebra 6 (), then ¢~1({) = y mod u and

vﬂ'g(d)(x)) = ,un-y(x) O¢_1|ﬂ§(¢()‘)) fOl’ H-a.e. x cX.

Consider the case of a measure-preserving automorphism T : X — X. Then we
obtain
Urc = peoT ! for almost all C € .

Proof. 1. Let 6(y) be o-finite. Then the elements of y can be collected to count-
able many sets of positive measure: Denote ¥ = {C,,|w € W} for a (possibly
uncountable) index set W, then there exists U; C W, i in a countable index set I,
such that

Di:=|J C,e€B, u(D;) <o, Vicland | JD; =X mod .

uel; il

We can choose the sets D;, i € I, to be disjoint and of positive measure. Then
(D;, B N D;, uP), with uPi := u(-|D;), is a standard probability space (ref. Re-
mark 1.1) and yND; = {C € y|C C D;} a measurable pu-partition on this space
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(see Example 1.1 (4)). Thus we can apply Theorem 1.10 to obtain a system of
canonical measures

{ué)"}cmpi on (D;,BND;, u"").

The measures /Jé) "actually do not depend on the choice of the collection {D; }ies
with the above properties: Given another collection D = UVEV G, for jelJ

countable, p(D;) < oo with e, D = X (mod w. For D; (i € 1) fixed, we
know by Theorem 1.10, that (C,8NC, /J'C ') is unique for umDi-almost every

C € yND;. Clearly, there is a j € J such that D; ﬂD; # (. We are going to show
that

D'
@) W(Di) -y, = 1Y) oy on yNDIND),

then we get ,uc = ,uC’ for umD -a. e. (:HJ'YOD/ -a.e. CeyND; ﬁD’ And since
{D;ND;|l € I,k € J} is a countable p-partition of X, we get a unlque canonical

measure for every C € ¥, which we can now denote by ¢ := /J,C , for [ € I such
that C C Dy. Still, E4 : C — uc(ANC) is measurable, for every fixed A € B,
since
ESN(0)=JynDin  Ealp (0) €%y,
i€l ~—
€By G(%ﬁDi)m[)iQ‘By

for every O € B(R).

With the notation of section 1.4, equation (4) follows easily: u%l)i = ﬁ po

2L hence u(Di)-u2, | on N AR
yND; H(Di) - Kyap, DD, = u mDle—.u i .UWD; yND;ND);-

. Let B € ‘B be fixed. The map 7y is measurable, so we can use the transformation
formula, and by the theorem above we obtain

u(B) = [ 1e(CnB) d(pom NC) = [ Haygo () NB) dia(v).

Thus for a fixed C € y we get
RICNE) = [ ey (7,(x) NBOC) diax) = [ M, (1) 1B () ) =

= Uc(CNB)u(C),
i.e., if u(C) # 0, then uc(CNB) = u(B|C).

. By definition of the conditional expectation, we obtain for every fixed A € B that
[ BAIG()(x) dit(x) = fy La(x) dia(x) = p(A), since X € G(). Also by def-
inition, x — w(A|6(y))(x) is 6(y)-measurable. Now, 7y (x) — Uy, () (A N7y (x))
is 7,0 (y)-measurable if and only if p.(AN-) o Ty 1 x = Uy () (AN Ty (X)) is G(7)-
measurable. Indeed, let 7, (x) — fiz, (1) (AN 7y(x)) be m,0(y)-measurable, then,
since 7y is G(7)-m,0(y)-measurable, we get that (.(AN-) o my 1 x — Ty(x) —
M, (x) (ANTy(x)) is 6 (y)-measurable. On the other hand, if x — Uz, () (AN 7y (x))
is G (y)-measurable, i.e. m, ' (1 (AN-)"!([a,b])) € G(y) for a < b € [0,1], then
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m,6(y) 3 ny(ny_l (.(AN-)"([a,b]))) = u.(AN-) "1 ([a, b]), by surjectivity of 7.
Therefore in the definition of a canonical system of measures we can replace the
condition that 7y (x) — Uy, () (AN 7y(x)) is 7,0 (y)-measurable by the condition
that f1.(AN-) 0 Tty 1 X = Hy () (AN Ty(x)) is G(y)-measurable. The latter condi-
tion is fulfilled by p(A|G (7)), thus by uniqueness of the canonical system, we
get
1(:[o(7)(x) = Mz, )

for py-almost all 7y (x) € 7, hence the equation is in particular true for p-almost
all x € X, since py({G;: ey, l €L}) = (UC,ey,leLCl)-

. Let A € B, then
/uc(CﬂA) diy(C) = (A) =0 & pc(CNA) =0 for y-ae. C€ 7.
Y

For B =B’ mod u set N; := B\ B’ and N, := B’ \ B, then by the above yc(CN
N;j) =0for j = 1,2, hence

Uc(CNB) = uc(CN(B\ N1 UNy)) = uc(CNB\Np) + uc(CNNy) =
= Ue(CNB\Na) = pe(CNB).

. Let A € ‘B fixed and denote

M :={x € X|lz, ) (ANTy(x)) < Mz (x) (ANmy(x))}.

(This set is clearly measurable, since x — y(x) and 7y(x) — [z, (y) are mea-
surable, and analogous for Y.) Let x € M and C := my(x) and let C’ € ¥ such
that C = C' mod (, then either x € C A C’/, which is a null-set, or x € C'. Now,
for u-ae. y € C we know that y € C', hence in the case x € C' we see that
Tty (x) = 7y (y) and therefore p-a.e. y € C lies in M, thus

mty(x) € M mod p, fora.e. x € M,
more precisely,
Ty (x) \ (my(x) A1y (x)) €M forae. x e M.

Analogously, 7, (x) \ (my(x) Am,(x)) C M for a.e. x € M. Thus by (4), for a.e.
x €M we get

Hry 0 (1) NMN4) = i (m\ (U €2 U €) na) =
Cey C'ey

=l (M () N1A).
Now,

u(AmM):/Yuc(AmcmM))d(uyon;l)(c) _

= [ M (AN (N0 dit(0) = [ iy (AN 7)) s () da )
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In the same way we deduce that

RANM) = [ by ANy (3) - L) ).

Hence,

| B A00) d) = [ e 9 (AN () (),

which implies by the choice of M, that
Mz, (x) (ANmy(x)) = uﬂ}/(x) (AN Ty (x)) for p-ae. xeM .
And we can deduce the same result on M¢. So we have shown, that

M) (AN (x)) = Mz (x) (ANmy(x)) for p-ae. x€X .

. First note that ~'({) is a measurable y-partition of X. The last statement will
follow by the first and (5), if we verify that

¢9~'({) = ymod i,

but this follows by uniqueness of the generator (Lemma 1.2), since &(¢~'({)) =
0"1(6(8)) = ¢ (D) = € mod u (because by Theorem 1.4 6({) =D mo
v=po¢p ).

Our first claim,

o

Vi (o) = ‘u,r oo~ 1|,,c ) for p-ae x€X,
can be rewritten as

Vg (6(s) = Bg1(mg(9()) © 9 Imp(o(x) Tor Hoa.e. x €X
since
®) Ty—1(¢)(X) = ¢! (7 (9(x)) for p-ae. xe€X,

because x € 9~ 1(£)  0(x) € {, hence 7,1 (x) = (6 () = 0~ (o)) =
0! (77 (9(x))). By uniqueness, it is sufficient to show that for fixed D € D,

(27w H¢—1(Z>(¢7l (ZN D)) is measurable

and
/u¢ ~(znD)) dv,(2).

By definition, Ep : ¢~ (Z) — Ho—1(z)) (¢~ '(ZND)) is measurable w.r.t. By-1(¢)s
i.e. forevery a < b, a,b € [0, 1] fixed, we have

Ep'(la,b]) = {07 (Z) 1k € K} € By1(¢) = Ty-115)(6(07(L))),

where K shall be the index set of those Z; € { for which s -1, (=1 (zxND)) €
[a,b]. This means that

Uo~' @) =07 (Uz) € 567 =97'(E(L)),

kek kek
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thus

UZk € 6’(§)

kek
(More precisely, we first obtain that ¢ ' (Urex Zx) = 0 ' (Ujc Z1). for some
UleL,Zleg Z; € 6(§), but this implies that U ‘Pil (Zk) = ¢7l (UkeKkaUleLZl)
=Ujeknt ¢~1(Z;), since the elements of ¢ are disjoint, hence L = K).
Therefore,
{Zk 1k e K} S 7175(6(47) = %C’
i.e. Z > Wy1(2)) (971 (ZN D)) is measurable w.r.t. By,

Now, using the transformation formula, we get

[ o107 (Z0D)) dlvors)(2) =

= [ o) (67 w0 07 (D)) g (0) =
= [ b 1o (9 (R (0 M9~ () ) ) =

= /X B,y o ) (1) () N9 (D)) d() (x) = (9~ (D) = v(D),

again due to identity (5).

Parallel to the above arguments, one can show

Theorem 1.11. Let (X,B, 1) be a o-finite complete standard measure space without
atoms such that W(X) = oo and € a o-finite complete sub-c-algebra of B - thus by
Theorem 1.1 there is an essential isomorphism ¢ : (X, €, 1) — (R,B(R),A) - then
there exists a standard measurable space (Y,2)) and a family of probability measures
{m, },cr on this space, such that there is an essential isomorphism

0:(X,B,u) — RxY,BR)®9,1)
with
H(E x A) = /Em,(A) () = /R5,®m,(E x A) dA(r), VE € B(R), A € ),
and
0~ '(BR)xY)=0"'(B(R)) =C.

Note, that the map r — 6, @ m,(Q) is measurable for fixed Q € B(R) ®9), hence the
above integration is defined.

There are some basic properties of measures of the form like [f above, which will
be useful later on:

Remark 1.5. Let (X,X,n) be a o-finite measure space such that € := {{x}|x €
X,{x} € X} is a measurable y-partition of X (e.g. let X be complete w.r.t. 1), hence
X =0 (¢), and let (Z,2) be another measurable space on which a system of probability
measures Py are defined for n-a.e. x € X. Then

V(F) ::/XSX@)PX(F) dn(x), VF € X0
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defines a measure on the product space (X x Z, X @), which? satisfies the following
properties.

1. The measure Vv is o-finite: This follows directly by
V(E x D) < n(E),

as P, <1for E € X, D €%, and 7 since is o-finite.
Further, if i) is atomless, then so is v: Atoms have to be of the form {x} x D, for
some D € 2, x € X, but

V(b x D)= [ R(D) dn(x) = (D) n({x}) =0

2. The special form of v gives

/szg(x,z) dv(x,z) = /X/Zg(x,z) dP(z) dn(x),

for every measurable map g : X x Z — [0, o0].

Proof. If g =1, for F € X®%, then

o 1rle) dvixy) = viF) = [ (B0 P)(F) dnx) =

_///leyd5 ) dP(y) dn (x //1nydP ) dn(x),

by using Fubini’s Theorem (see e.g. [12], Satz 14.16). By linearity we can de-
duce the claim for elementary functions (i.e. function of the from )", ¢, 1¢, for
C, measurable, ¢, € R n,m € N) and by approximation (this is standard method
of integration theory, which can be found in [12] for instance) we get the general
statement. O

3. The canonical measures of v w.rt. € x Z are nothing but the measures {5, ®

PX}XGX? i.e.
Vixyxz = O0x @ Py|(x)xz forn-ae. x€X.

Proof. First note that 7, : x — {x}, x € X is an isomorphism (7; ! is measurable
since X = 6 (&) = 6(S, : n € N) for {S, : n € N} a generating set of € and clearly
T (Sy) € me(0(€)) = Xe).
By uniqueness of a canonical system we just have to check the defining proper-
ties: For fixed Q € X @2

{y} xZ+— {y} = y— 6,®P,(Q) is measurable,

since the projection p; to the first coordinate and 7, ! are measurable. It is left
to show that

B /sxzay@)Py(({y} x Z) ﬁQ) (VOTESXY)({)’} X Z)-

“In particular, all this is true for every product measure v = y; ® Uy, with i, a o-finite measure on
(X,X) and p, a probability measure on (Z,2), since t; @ U (F) = [y io({z € Z: (x,2) € F}) dpi(x) =
Jx Ox ® 2 (F) dpy (x) for every F € X ® U (see e.g. [7]), hence, with the notation above, Py := iy, Vx € X.
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By the transformation formula and the fact that y = ;' (p; ({y} x Z)), the right
hand side is

/xXz O (1 (2 x:) © P i (e )y (T2 (1,2) N1 Q) dv (3,2) =

— '/Max@px(({x} xZ)NQ)dv(x,z) = /

X x

; 6 @ P (Q) dv(x,z),

which by (2) is equal to

[ [8en@ a0 = [ §oR(Q) dnw) =vi),
XJZ X

since P, is a probability measure. O

1.5 Some examples of infinite measure systems

There are well-studied ([6], [14], [21], [26] and many more) examples of dynamical
systems with infinite measure. In this section we will roughly introduce a few of them,
and turn back to them later on, when considering the entropy.

There is a wide class of dynamical systems, which turned out to behave quite nicely.
This class has been studied by Maximilian Thaler, [21], therefore, we will call them
just Thaler-maps.

Definition ([21]). A transformation T on [0, 1] is called Thaler-map, if there exists a
countable A-partition = {B; : i € I'} of [0, 1], with |I| > 2, such that:

1. For all i € I, we have that T'|p, is twice differentiable, the closure of TB; (w.r.t.
the usual metric in R) is equal to [0, 1] and B; contains one and only one fixed
point, denoted by y;. Moreover, |[{y € X : T'(y) = 1} is finite.

2. For every € > 0 there exists a p(€) > 1 in R such that 7'(x) > p(€) > 1 for all
x € Uier Bi \U;e; (vi — €,y; + €). Further, there shall exist an 17 > 0 such that 7’
is increasing on B; N (y;,y; + 1) and decreasing on B; N (y; — 1,y;) fori € L.

T"(x

3. There is a constant A < e in R such that | (T’(x)))z | <A forall x € U Bi.

There is a strong result about this class of systems, namely, that every Thaler-
map has an invariant measure, which is equivalent to A, and the system is ergodic and
conservative w.r.t. that measure. (See [21] for a proof.)

Example 1.2 (Boole’s Transformation). The map 7Tx :=x — % on R is called Boole’s
transformation. The system (R,B(R),A,T) is measure-preserving, conservative, er-
godic and A(R) = eo. (Ergodicity can be obtained by looking at the induced transfor-
mation Ty with ¥ = [—%, %], confer [27].) Further, one can show that

(R,B(R),A,T) =~ ((0,1),B((0,1)),n,S)

where .
al —x)2 forx € (0,3),
_ 1



forx € (0,1) and ,
1, b)) ::/a (ﬁﬂ%)dx

fora < bin (0,1). Note, that 1] is S-invariant and, still, 17((0, 1)) = oo, caused by the in-
different fixed points 0 and 1 with §'(0) =1, §'(1) = 1. Moreover, ((0,1),B((0,1)),n,S)
is a Thaler-map. (See [26] for more details.)

Example 1.3 (Markov shifts).

1. Markov shifts: Let (Y,)nen, be a Markov chain with discrete time steps with
values in a countable state space ¥ := {ay,ay,...}, defined on some probability
space (Q,€,P) ie. ¥, : Q — X is €-F(X)- measurable and P(Y,41 = b|Y, =
a,Y, 1= Aiy_qs5-- LY = aio) :P(Yn—H = b|Yn :Cl) = pap for a,b,a,-nfl,...,aio S
¥, Vn € Ny. The probabilities p,;, of going from state a to state b (called tran-
sition probabilities) form a stochastic matrix ( Pa,«uj)i, jen. Further, let u,, be the
probability of starting at state a; such that u,, =Y ,c5 UaPag; for every i € N (sta-
tionary distribution).

Formally, let us consider (X, &, i, S) with X :=XN, .= o ([a;, ...a;,] 1 ai, - .., a;,
eX,neN)for(a; ...a;,] :={x=(x1,x2,...) X :xi=a;,,Yke {l,...,n}} and
u(lai, ...a;)) = Ua;, Pai aiy -+ Pa; i, for all g;, ...,a;, € X, n € N (note that
this indeed defines a unique measure on (X,*B) since {[a;, ...a;,] : ai|,...,a;, €
¥, n € N} is an intersection-stable, o-finite generator of B), and S the shift on X,
ie. S((ail y iy Aigs - - )) = (a,-z,a,-3, . )

This defines a Markov process: (X, =0 | Xi = ai,....Xo—2 =a;, ,, Xu—1 =
d) = Uaj, Paj,aj, ~-Pa; _,aPab

aiy -

-pa[niza
able assigning to each chain x = (xg,x1,...) € X its nth entry x,,.

ajy -
M”il Pail

= pap = LW(X, = b|X,—1 = a), for X,, the random vari-

Clearly, S is measure-preserving, since for iy,...,i, € N,n € N,
us ay o)) = Ulaa, ai,)) = ¥ ullaa, ..ai,)) =
aexr acxr

= Z UaPaa; Pa; ajy -+ Pa;, a4y, = Uay Pajyaiy - -+ Paj_ a, = .u([ail .- 'ain])v
acxr

because ug; = Y je5 UaPDa;-

Moreover, if the Markov chain is null-recurrent, then S is conservative (see e.g.
[14] and references given there). Further, if we assume that from every state one
can go to any other state, that is, the process is irreducible, then S is ergodic.

2. Renewal chains: Let us consider a renewal chain on N, in that, starting at state 1
the probability to go to state m € N shall be positive, say f,;, and },,cn fin = 1.
Being at state m the probability to go to state m — 1 shall be 1 for every n € N.
So we obtain the stochastic matrix

fi 2 f3
1 0 O

(Pij)ijen=10 1 0o .. |-

for p;; denoting the probability of going from state i to state j. Clearly, this
defines an irreducible and recurrent process.
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The starting probabilities (1, )men shall fulfill u,, = Y ;e uipim for every m € N,
hence in our setting,

Uy = Z UiPim = U1 fn + Umy1, Vm € N.
ieN
We want to start at state 1 with probability 1, therefore the above recursion is
Uil = Uy — fm. So, for m > 2, we have w1 =up—1 — fu-1 —fm=... =

ui *Zz;lfk =1 *Zz;lfk = Z;O:l Ji *er{n:lfk = Z‘zx’:mﬂ fi.ie.
Un = Z fl

I>m

Let (X,,u,S) be the corresponding shift space as in Example (1) above. We

have
ue) =p(Um) = ¥ uli) = ¥ u =
neN neN neN
=Y Y A=Y i+t Y i+ Y it =At2h+3f+...= ) kfi.
n=1k>n k>1 k>2 k>3 k=1
We are interested in the case when p(X) = oo, hence we want Y';” | kfj to be
infinite. So, set, for example,

fi := ck~17% for some a € (0,1) and ¢ € (0,c0) constant.

(Of course, it would be enough to assume that f} is asymptotically equivalent to
ck~'=%) Then, clearly, Y kfi =cYli kia = oo. Moreover, this process then
is null-recurrent, since f; is also the probability to return to 1 in exactly k steps,
thus if 1 is recurrent and Y ;7_; kfi = oo, then 1 is null-recurrent by [8], hence the
system is null-recurrent, since 1 is recurrent and 1 is the only state to start with
(with positive probability). Thus, the shift S is conservative and ergodic.

Let us consider ¥ := [1] = {(1,a2,a3...) € X 1 a; € N;i = 2,3...}, the set of
all chains starting at the state 1. This set has positive finite measure: u(Y) =
1([1]) = Laenu1 P14 = u1 = 1. Moreover, since the system is conservative and
ergodic, we get that ¥ is a sweep-out set (confer Remark 1.3). So, (¥, BN
Y,uly,Sy) is a conservative and ergodic dynamical system with a probability
measure, by Proposition 1.1.

3. Random walk on 7Z: Let us now consider a Markov chain which behaves very
randomly, namely the random walk on Z with pj;;1 = % = pji—1 and u; = 1 for
every state i in Z. (Then, obviously, the condition u; = ZjeZ ujpji = %u,-_l +
%I/li+] is fulfilled.) This process is obviously irreducible. Moreover, it is well
known, that this process is null-recurrent. Hence the corresponding shift space is
conservative and ergodic with infinite measure. (Clearly, 1 (X) = Y;cz u; = .)

1.6 Prerequisites from probability theory

Now let us consider a probability space (Q,2(,P). A family of real-valued random
variables (X,),en, (i.e. X, : @ — R measurable) is called a (sub-)martingale w.r.t.
to a filtration (S’l)neNo (i.e. §, are sub-c-algebras of /A and F, C Fnr1, Vn € Np),
if X, is §,-measurable for every n € Ny, E[|X,|] < oo, Vn € Ny, and E[X,)|Fn] = X
(resp. E[X,|Tm) > Xim), for all m < n, m € Ny. For such concepts we have the following
convergence result, proven e.g. in [12], Satz 11.4.
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Theorem 1.12 (Martingale convergence). For every sub-martingale (X,)cn, w.r:t. a fil-
tration (Fn)neny, with sup,cy, E[max(X,,0)] < o, there is a 6 (U,cn, §n)-measurable
random variable X. with E|[|Xw|] < oo and X, — Xo a.e. for n — oo,

1.6.1 Random measures

We will shortly introduce the concept of random measures which will be useful later
on. For a detailed elaboration we refer to [29] or [12].

Definition. Let (2,2, P) be a probability space and (X,5) a measure space. A map
Z:QxB —R
is called a random measure on (X,B), if

e for every fixed B € B the map ® — Z(®,B) for ® € Q is measurable, i.e.
Z(-,A) =:Z(A) is a random variable, and

o forevery fixed w € Q the map B+— Z(, B) for B € *B defines a measure Z(®, ) =:
Zy on (X,*B).

Random measures on the real line can be identified with choosing points randomly
as the next Theorem (given e.g. in [29]) points out

Theorem 1.13. Let Z be a random measure on ([0,0),B([0,0))) which takes values
in No such that Z([0,t]) < o almost everywhere for t € [0,00), then there are countably
many random variables X1,X, ... taking values in ([0,0],2B([0,0])) with

8

Z([0,2]) = }_ Ljog0Xn = Z 0x,(([0,2]) almost everywhere,
1 n=1

n

fort €0,00).
(For a measure space (X,B), let 8, denote the Dirac measure for x € X, as usual
defined as 6;(B) := 1 ifx € B and equal to zero if x ¢ B, for B € B.)

The proof follows [29]:

Proof. Let (Q,2, P) denote the underlying probability space of Z. For @ € Q define
X, () :=inf{s € [0,] : Z(w,[0,s]) > n},

for each n € N. We set inf@ := oo. The map X, is a random variable on (Q,%2l, P) since
for ¢ € [0, 0] we have

{X, € 10,¢]} = {inf{s € [0,0] : Z([0,s]) > n} <t} ={3s € [0,¢] : Z([0,s]) > n} =

={Z([0,¢]) >n} €A

(since Z([0,7]) is a random variable), because Z([0,s]) < Z([0,7]) for s < ¢, as Zg is a
measure.

Further, X;, < X,,+1, for every n € N: This is obvious, since Z([0,#]) <n+1=-Z([0,#]) <
n.

Consider Q' := Q\ {w € Q|Fr € [0,0) : Z(®,[0,7]) = o}. This set is measurable be-
cause, since {® € Q|Z(®,[0,7]) < =} D {w € Q|Z(w,[0,m]) < e} for m € N with
m > t, we can write Q' = ,,cn{® € Q|Z(®,[0,m]) < o} € 2. And by assumption we
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get Q = Q' mod P. Since by assumption Z takes only values in Ny, we have for ® € Q'
that Z(, [0,7]) € N, for fixed ¢ € [0,0), thus for @ € Q' we can write

Y L (@) = Y Lizogzn (@) =
n=1 n=1

= l{pea:z(0,04)>1} (@) + {oca:z(o,(0.))>2} (@) + ... = Z(®,[0,1]),

ie. Zy =Y, 0x,(w) on {[0,¢] : t € [0,0)}, which generates B([0,0)) and is stable
under intersections and Z is o-finite on it. Hence by uniqueness of measures ([28],
Satz 2.4) we get Zp = Y7 Ox, () On B([0,%0)) for @ € &', thus for almost every
®ecQwegetZy =Y, |0 () O

For random measures on R, we just need to extend the defining sequence of ran-
dom variables canonically: Let Z be an Ny-valued random measure on (R, B(R)) with
Z([a,b]) < oo almost surely for every a < b € R, then

Z= Z Ox, almost everywhere,
keZ\{0}

for countably many random variables X; taking values in R := RU{—o0} U {eo}. In-
deed, if we additionally define

X_n(®) :=sup{r € [-e,0) : Z(®,[,0)) > n}
forn e N, o € Q, then, as above, we getfora<binRand 0 € Q' :={w € Q|Z(w, [a, b))
<o, Va<beR} =Npen{® € QZ(0,[0,m]) <oo}NNen{® € QZ(w,[—m,0]) <
oo}
Y. Sxo((a.b]) =) 8, w)([a,b]N[0,0)) + ) & @) ([a,0]N(=,0)) =
keZ\{0} neN neN
=Z(,[a,b]N[0,%)) + Z(w, [a,b] N (—,0)) = Z(®, [a,b]).
In fact, we get

Corollary 1.2. The above Theorem is still true for random measures on standard
spaces, i.e. let Z be an Ny-valued random measure on some standard measurable space
(X,B) such that [ Z(®) dP(®) - called the intensity of Z - is o-finite, then there are
countably many random variables X; for i € Z, with values in (X U{x},c(BU{x})),

for some y ¢ X, such that X U{)} is contained in some separable complete space w.
1. t. the same metric as X, which determine Z, i.e.

Z=Y 8.

i€Z

Proposition 1.4. The distribution PoZ~" of a random measure Z on (X ,B) is uniquely
determined, if PoZ~" is given on {ﬂﬁlegil(E) :E € € By,...B; € B disjoint |l €
N } where € is an intersection-stable generator of B(R) and Np the evaluation map,
Np(v) = v(B) for every measure v on (X,B), Np : {v measure on (X,B)} — [0, ).

This result is proven e.g. in [29].

Since Z, is a measure for @ €  we can consider integrals w.r.t. Z,. Especially,
Zw(B) = [ 1p dZg, for B € B. This leads to the notion of a random integral:
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Definition. Let Z be a random measure on (X,B) and f : X — [0,c] a measurable
function. The map

Z(f) ::/de: wH/deah
for o € Q, is called the random integral of f w.r.t. Z.

One can show that the random integral is measurable.

With the above definition we can adapt the Laplace transform of measures to ran-
dom measures:

Definition. The Laplace functional of Z is defined by
Y, (f) ::E{e_-/'f dM} :/e_ffdM dP,

for f: (X,B) — [0,0] measurable.

This definition is as useful as the usual one for (non-random) measures (for a proof
see e.g. [12], Satz 24.7):

Proposition 1.5. The Laplace functional of Z uniquely determines the distribution P o
Z v ofZ.

2 The Poisson suspension

In this chapter let (X, 1) be a o-finite standard measure space.

We will construct a standard probability space out of (X,95, ) together with a trans-
formation which will inherit important properties from 7. The possibility to switch
from an infinite space to a special probability space bears some advantages (especially
for handling the notion of entropy).

2.1 Construction and basic properties
Let us consider the set
X*:={v:%B — Ny|v measure on X }.

For any fixed B € B, we want the function Np : X* — Ny, Np(Vv) := v(B), which
assigns to each measure v € X* its evaluation at B, to be measurable. So we equip X*
with the generated o-algebra

B*:=0(Np:BeDB).
The Poisson distribution with parameter A will be denoted by Poiy, i.e. Poiy (n) =
A’l’l
e‘k—' for n € Ng. We set Poiy () := 0 and Poie := 8.
n!
The following proposition provides a special probability measure on (X*,B*).

Proposition 2.1. Let (X,B,1) be a o-finite standard measure space and (X*,B*)
constructed as above. There exists a unique probability measure U* on (X*,B*), such
that
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e forany fixedl € N, if with By, ...,B; € *B are pairwise disjoint, then the random
variables Np, ,...,Np, are independent, and

e Np is Poisson distributed with parameter LL(B) for every B € B, i.e.

B)" <
[.L*[NB = I’l] = Poiu(m(}’l) = €_H(B) “E/l') ) Vn € No.

Proof. To obtain a probability measure u* on X* with the above properties, we will
use a construction by [12] (Satz 24.12) of a probability space (Q,2,P) and a random
measure Z : Q x B — Ny, such that

PoZ ' =u*.
We first consider the case p(X) < co. (As usual we will disregard the case 1 (X) =0.)
In this setting, we can define a probability measure 1 on (X,B) by n(B) := ((X))’
for B € ‘B. Roughly speaking, we want to consider randomly many randomly picked

points in (X,B, it). In order to do so we consider the infinite product space
(Q,2,P) := (No, 2(No), Poiy(x)) ® (X, B,m) @ (X, B,1) @

forn := )) the normalized measure. (The set &?(M) denotes the power set of a set

M.) By constructlon, the projections Y; of (Q,2, P) to (N, QZ(NO),Poi“(X)) for j =0,
respectively to (X,2,n) for j = 1,2,..., are independent random variables, which
satisfy Py, = Poiy(x) and Fy; =1, for j> > 1.

Now, we define

%
B):=Y lzoY;
j=1

for B € 9B, where we define ): == =0 (and we set H?:l := 1 for later purposes). This

is an Ny-valued random variable on (Q,2(,P) and Z(®) = Zf(’:(fo ) Oy, (w) is a measure
on (X,B) for every @ € Q. '

We show that Z(B) is Poisson distributed for fixed B € 95. To this end, we can use char-
acteristic functions (since Ny can be embedded in R by mapping o to a fixed real but
not natural number, hence we are allowed to treat Z(B) and Yy like real valued random
variables). The random variables 1poY,1p0Y>,... are independent and all Bernoulli
distributed with parameter 1(B), because Y1,Y»,... are independent and P[lgoY; =
1] = P[Y; € B] = Py;(B) = 1(B) and P[lgoY; = 0] = P[Y; ¢ B| = n(B°) = 1 —1(B)
for j =1,2,.... So by P[Yy = o] = Poiy,(x) () = 0 and the convention 0 := 0, we
obtain

Qzp) (1) = E[~#P)> Z E[ljy, e 15Nt H15otn)] 4 Py = o] E[e®] =
m=0
= Z P[YO :m}H mBOY Z POI” )H(PlBoyj(l)
m=0 j=1 j=1
o _ X m m
= Y B 0)” = exp (X)) — () =
m=0 .

= exp(L(X)(1-n(B)+n(B)e" —1)) =exp(u(B)(e" —1))  Vi€R,
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which is the characteristic function of the Poisson distribution with parameter u(B),
hence we get
Pz(p) = Poiyp),

since characteristic functions uniquely determine a distribution.

We claim that Z(B;),...,Z(B;) are independent, for pairwise disjoint sets By, ...,B;
€ B, for fixed / € N. Indeed, the tuples (15, 0Y1,...,15,0Y1),(1p,0Y2,...,1p,0Y2),...
defined on Q are independent, identically distributed and independent of ¥, so a similar
computation as above leads to

Oz(By),...z8)) (T1s- -5 11) = exp(nu(X)((P(lBloYl,...,IBIOYI)(tl7'"7tl) - 1)) =

—exp(u0)( f[exn(i L utn o) ar-1)) -
= exp((x) (;e”kpm-lwk» +p(r(( LiJBkr)) ~1)) =
et £ (m e 1)) oo £ e 1) -

k=1

I
T-
s

since Z(By) is Poisson distributed with parameter p(By), for all k = 1,...,l. (In the
third equality disjointedness of By, ...,B; is used.) As a standard result of probability
theory (see for instance [2]), independence follows.

The map Z : Q — X*, which assigns to each element @ of Q the Ny-valued mea-
sure Z(w), is measurable, since Z7\ (NG ({n})) = - {0 € QINp(Z(w)) =n} = {w €
Q|Z(w)(B) = n} = Z(B)~({n}) € 2, for all n € Ny and all B € B (and preimages
respect set-operations). In particular, we have

6) NpoZ =Z(B).
Now, we are finally ready to define a probability measure on (X*,2B*) by
[J* = PZa
—1
ie. u*: X* Z,0l, [0,1].
From what we have shown before we can easily deduce the claimed properties: For all

n € Ny and B € B we see that

W Ng =n] =P(Z" (N5 ' ({n}))) = P(Z(B) "' ({n})) = Poiyg)(n),

due to (1) and the construction of Z on (Q, 2, P), which also gives

W [Ng, =ni,....Ng, =n)] :P(Z%hNBkI({nk} ) = (ﬂz B~ ({m})) =
k=1

! ! ]
= [1PB) " (n}) = [TPZ ' (N5, ({e}))) = [Tw" [Ne, = mil

k=1 k=1 k=1



for By, ...,B; pairwise disjoint sets in B and np,...,n; € Ny with [ € N fixed.

We now consider the general case 1 (X) € (0,09].
Since (X,, ) is o-finite, there exists an increasing sequence (Cy)pmen in B, such
that u(C,) < e and U;;_,C,, = X. Define

wi(B) = u(CiNB) and  tu(B) = 1((Cu\ Cu 1) NB),
form > 2, B € *B. Applying the above construction to this finite measures on X, we ob-
tain for every m € N a probability measure i, on (X*,8%) such that p,;, o Ng = Poi, ()
for all B € B and w;[Ng, = ni,...,Ng, = nj) = [Ts_; 1[N, = n] for all disjoint sets
Bi,....B; €8, | € N and for all n,...,n; € Ng. Denote by W,, the projection of
(5,8,0) = Qen(X*,B*, 1x) to (X*,B*, 1), forall m = 1,2,.... Analogous to (1)
we have Ng o W, = W,,(B), when setting W, (B)(x) := W, (x)(B) forx € E and B € ‘B.
Define W :=Y ;" W, (again a random measure), then by

u = 0w,

we get a probability measure on (X*,28*), which satisfies the postulated properties.
Indeed, independence of Wi, W, ... yields independence of W;(B),W»(B),..., since
Wy (B) = NgoW,,, m € N and Np is measurable, for fixed B € 9B. Therefore

u*oNg' =QoW 'oNg' = Qyp = Oy=_ w,(B) = Owy(B) * Owy(B) *--- =

=puy ONg1 *[J,goNB_l * ... = Poiy, (g) * Poiy, g * ... = POi):‘;;:lum(B) = Poiyp),

for all B € *B.
Furthermore, W, (B1), ..., W,,(B;) are independent for disjoint sets By,...,B; € B and
fixed m € N, because

(ﬁ ) () = o (W, (ﬁNBkl<{nk}>)) =u,;(hNB;<{nk}>) =
k=1 k=1

k=1

/
:H#Z(Nz?kl({nk} HQ “({me})).

Thus Yo Wiu(B1),..., Y Win(B;) are independent for disjoint sets By,...,B; € B,
since by definition W (B;, ), W»(Bi, ), . .. are independent for all iy,i>... € {1,...,l}. So
we compute

(ﬂNBk () = 0 WB) () = [TQ0V (B (fne)) =

k=1 k=1

!
H NBk {nk} ) Vni,...,n; € Np.
Hence, Np,,...,Np, are independent with respect to u*.
The uniqueness of u* follows by Proposition 1.4, since ,u*(ﬂf{:l Ng, 1({nk})) =

[T, w*(Ng B ")) = HlkzlPoi“(Bk>(nk) for all disjoint By,...,B; € B, ny,...,n; €
Np with [ € N. ]

The above constructed measure space (X*,B*, u*) will be called Poisson suspen-
sion of (X,B, 1) in the following.
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Remark 2.1.

1. Note, that the intensity of the random measure Z, respectively W in the proof
above is nothing else than the measure y, since

/Q Z(B)(w) dP(®) = /N nd(Poz(B))n) = X n-Poiya () =

= MO (B) = p(B),

if u(B) # oo, and [, Z(B)(®) dP(®) = oo - Poiy(g)() = oo, if u(B) = oo, for
B € B. The same is true for W (w.r.t. the space (0, €, Q) of the proof above).
From now on we will only write Z and (,%, P), meaning both Z on (Q, 2, P)
and W on (&, €, Q). Using the transformation formula and y* := PoZ~ !, wecan
rewrite the above integration as

/vdu /Z ®) dP(®) = .

Since u is o-finite, by Corollary 1.2, the random measure Z is given by

= S0

i€Z

for random variables X; with values in (X,5).
Note, that Z(A;),...,Z(A,) are independent random variables, forA;,...,A; €B
disjoint and Z(A) is P01sson distributed with parameter u(A) for A € %.

2. Further, u*-a.e. element v of X* is given by Z(w) (respectively W (®)) for some
o € Q,ie. by (1) we get

®) =) O, (o)

jez

Indeed, {Z(w): @ € Q} CX* and u*({Z(w): 0 € Q}) =P(Z7'({Z(0) : ® €
Q}))=P(Q) =1, hence X* = {Z(w) : ® € Q} mod u*.

3. Observe, that for B € B
p(B)=0 & u*({veXx*|v(B)=0}) =1,

i.e. w(B) =0if and only if u*-a.e. v € X* fulfills v(B) = 0. This follows directly
by the definition of u*:

w0 (10 = (U N3 () = £ e # @I =0 = up) =0
neN ne

for B € B with u(B) # oo. If u(B) = o, then we obtain u*(Ng'({0})) =

Y, e Poie(n) =1 #0.
This implies that for A, B € 28 we have A = B mod u if and only if A = B mod v
for u*-a.e. v € X*.
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The following Lemma (given e.g. in [10], Lemma 2.1) guarantees that almost every
measure of X* assigns at most mass 1 to each point of X, provided the space bears no
atoms.

Lemma 2.1. Let (X,B, 1) be a o-finite standard space without atoms and (X*,B*, u1*)
its Poisson suspension, then

w({vexrex : v({x}) >2}) =0.

Remark 2.2. The above Lemma in particular implies, that in that case for p*-a.e.
v € X* the above notation v = Y;c7 Ox,(e) is unique, since v({x}) <1 for all x € X
implies that v({X;(w)}) = 1, and therefore it cannot happen that X;(®) = X;(w) for
i # jin Z, i.e. the random variables X; are up to permutation of the indices uniquely
determined. The sets {X;(®)} are precisely the atoms of v.

Since {X;(®)};cz only depends on v, we can also write x;(v) € X instead of X;(®), i.e.

V=13 8w

i€Z

Remark 2.3. Note that the Possion extension (X*,8*,u*) of a standard measure
space (X,B, 1) is again a standard measure space, according to [18].

Lemma 2.2. Let Z be a random measure corresponding to L* (i.e. with the notation
of the proof of Proposition 2.1 we mean either Z or W), then the Laplace functional of
Z is given by

Pr(f) e (-~ [(1-e ) du)
forevery f: X — [0,09].
For a proof we refer to [12], Satz 24.10.

Remark 2.4. Note that the Laplace functional
Vo) = [ [exw (= [ 100) @Z(@)))] dP(@)
Q X
of a random measure Z, corresponding to u* = PoZ~! as above, can also be written as
Ve (F) =200 = [ [exp (= [ £ aviw)] du ),
X* X

by using the transformation formula® w.r.t. Z, and since by Remark 2.1 (2), Z(Q) = X*
mod p*. In this case we will call the Laplace functional of Z also the Laplace functional

of u*.

Regarding this, the above Lemma can be stated as

[ oo (= [ avio)] aurv) =exp ([ [exp(=r() = 1] dut)-

This identity will be very useful later on.

SNote that the map g : v +— [ f dv is measurable: For f = 1 with B € B we have g~!([a,b]) = {v €
X*: [1pdv €a,b]} = UneNU,ne[a.h] Ngl({n}) € B* and and if f = Y c; - 1p;, for B; € B, i € I count-

able, then g~ ([a,b]) = UnieNo ey crmicfan) Nier NB_‘_1 ({ni}) € B*, and the general case follows by the usual
approximation argument for measurable functions.
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The Poisson suspension respects isomorphisms:

Remark 2.5. Let (X,B,u), (Z,2,1n) be two o-finite standard spaces, then
(X, B,u) ~ (Z,2,n) = (X7, B",0") =~ (Z°,24%,0),

where = stands for (essential) isomorphic to. Indeed, let ¥ : (X,B,u) — (Z,2(,n)
be an (essential) isomorphism, then

VXY, yr(v)i=voy ! forveX*

provides an (essential) isomorphism: First note that, though ¥ might be only up to a
null-set defined on Y and X, we can extend vo y~!, for u*-a.e. v € X* and no y, for
n*-a.e. N € Y'*, to measures on whole Y and X, respectively, since by Remark 2.1 (3)

U(N)=0 < v(N)=0for u*-ae. veXx*,

for N € 9B and analogously for A. Clearly, w* is bijective, because ¥ is so, thus
for 1 € Y* we have v '(n) = v* !(nowoy ') =noy. Moreover, y* and
*~1 are measurable, as y and y~! are: for every R € 2 and n € Ny, we compute
Ng (1)) = {v € Xy (V)(R) =n} =N, L, ({n}) € B since v~ (R) €
B, and for every B € B we have (y* ) "INy '({n})) = (n e Y*: v '()(B) =
n}= Ny ({n}) since y(B) € 2l. Further, y* is measure-preserving: Let n; € Ny and

R e be dlS]Olnt for i in a countable index set 1, then u* (y* ' (Nie; Ny, ({n}))) =
—u(w (R —L(R))"i ZA(R) AR _

icre ¥ (&))W = [licse MR‘)% = A*(Mier Ny, ({ni})), hence, by

Proposition 1.4, u*oy* 1 = A*,

2.1.1 The corresponding transformation on X*

Let (X,%,u,T) be a non-singular dynamical system.
A reasonable way of defining a transformation 7* on X* is by

T*(v):=voT !, VYveX*
So, T* is measurable, since by
No(T*(v) = Na(voT ") = v(T ™ (B)) = Ny-15(v),
forall B € B, v € X*, we get T* (N ' ({n})) = NTillB({n}) € B*, for every n € N.

Moreover, we have the following crucial property: If T is measure-preserving, then
so is T*. Indeed, for all By,...,B; € *B pairwise disjoint, ny,...,n; € Ny we have

(1 (19 () ) = (17 0 () ) =
k=1 k=1
1

:ﬂ*(ﬂNT lBk ({me})) ) fI,u Ny 113 ({me}))) HPOI lBk ) =
k=1

— k=1

I !
I:[Pm“ (B) (k) H/.L NBA ({me})) (ﬂNBk {nk})

k=1
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since T~'By,..., T~ !B, are pairwise disjoint, too. Thus by Proposition 1.4 we get
‘U* — ,LL* o T**l

(Trivially, this also shows non-singularity of 7* for measure-preserving 7', and we will
only be concerned with such 7T'.)

The above obtained dynamical system (X*,B*, u*,T*) is called the Poisson sus-
pension of (X,B,u,T).

2.2 Ergodicity of the Poisson suspension

From now on we assume (X, it) to be a standard space. Our next goal is to prove
that ergodicity of (X,%,u,T) carries over to (X*,B* u*, T*). First we will establish
this in case of T’ being an automorphism, following [6] and then release this restriction,
which is done in [25].

Theorem 2.1 ([6]). Let (X,B, 1) be a o-finite standard measure space with (X)) = oo
and T a measure-preserving automorphism on X, which is ergodic and conservative.
Then the corresponding Poisson suspension (X*,B*,u*,T*) is weakly mixing (and
therefore in particular ergodic as well).

In order to prove this theorem, let us first introduce the following notation and a
Lemma of [6]: For every C € B with y1(C) < o we consider the sub-c-algebra

(BNC) :=0(N4:A€BNC)
of B*, for C € B and following [6] we define
p((BNC)", (BND)) :=

= sup{|u*(MOM') — w*(M)u*(M)| : M € (BNC)*,M' € (BND)"},

for C,D € B, u(C) < o, u(D) < . For n going to infinity, |u*(M NT"M') —
u*(M)pu*(M')| characterizes "how far” the sets M and M’ are “away from mixing”,
roughly spoken.

Lemma 2.3. Under the assumption of the theorem above, for C,E € B such that
U(C) < o and P(E) < oo, we obtain, that 1211 wW(CNT"E) =0 implies 1211 p((BN
n—oo n—oo

O, (BNT"E)*)=0.
Proof. The first step of the proof is to verify, that
% p((BND1)",(BN(CUD,))") = p((BND1)",(BNC)") =

=p((BND)*,(BN(C\D2))")

for Dy, D, € ‘B with y(Dl ﬂDz) =0 and ‘U(Dl) < oo, ,u(Dz) < oo,
Clearly, p((BND)*, (BN(CUDL))*) > p((BND;)*,(BNC)*) > p((BND)*, (BN
(C\ Dy))*), hence it is sufficient to show that

®) p((BND1)", (BN(C\D2))") = p((BND1)", (BN (CUDL))Y).
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Define

M= { UMjﬂWj’Mj € (BNDy)* pairwise disjoint, W; € (BN (C\Dy))*,J ﬁnite}.
jel

This set is an algebra®. To see this, let Mj» € (BNDy)*, W} € (BN(C\Dy))* for
j=1,....k(i) for k(i) e N, i=1,...,m for m € N and M{,Mé,...,M,i(i) be pairwise
disjoint for fixed i € {1,...,m}. Then

= (M} mWﬂ)u...u(M,}(l) mW,}(l)))m...m (M7 AW U U (M W) =

= U . U Mn.omMaw, 00w

ny

which lies in .2, since (L M}, € (BNDy)*, (L W € (BN (C\D,))* and for fixed
ni,hi € {1,...,k(i)},i=1,...,m, such that there is at least one [ € {1,...,m} such that
hy # ., we have (N M}, ) N (N, M}iz,-) = (), because M,ll, ﬂM}l’l = ( by assumption.
Using this finite intersection stability, we also obtain that the complement of every
element Uc; M; NW; of . is contained in .#. This follows by writing

c
(Untinw;) = (\m5uws = (a5 0 (5 W) U (v, W) =
jeJ jeJ jeJ

= 025N X" U (1; W),
jeJ

Clearly X* € ./ .
The algebra . satisfies o(.#) = (BN (CUD,))*. Indeed, 6(A4) = o(Ng|BC D,V
BCC\D;,B€®B)=0(Ng|BCCUD,,B € B),since for BN(C\D;y) #0 A BND;y #
0, we can write Ny ' ({n}) = Uk!meﬁ()’Hm:nNgA(C\Dz)({k}) ﬁNgmlDz({m}) for B € B,
neN.
Assume V € (BND;)* and V' € .4 to be given, ie. V' =U;c;M;NW;, for certain
pairwise disjoint sets M; € (BN Dy)* and W; € (BN (C\ Dy))*, where J is a finite
index set. By construction of the Poisson suspension M; and W; are independent (w.r.t.
u*), because D> N (C\ D7) = 0. The same is true for M; and W; NV, since D> N ((C'\
D,)UDy) = 0. So we see that

W (VAV) = (V)ps (V) < Y [ (VOMnWy) — p(V)p* (M0 Wp)| =
jer

= XM (VO (V) () <
je
< ¥ 1w (M)p((BADY), (BN (C\D2))") =

jer

= (UM,;)p((BND1)*,(BN(C\D2))") < p((BODI), (BN (C\D2))").

jeJ

6An algebra .Z is a family of subsets of X such that X € .#,VD,E € &#: DNE € & and D° € .Z.
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Since ./ is an algebra, every element of U € 6(.#) = (BN (CUD,))* can be ap-
proximated by a (w.l.o.g. monotonically increasing) sequence (V,)),cn in .#, such that
lgn ur (V) = u*(U) (see e.g. [19], 5.4.2 Folgerung). Thus

n—yoo

WV OU) — g (V) (U)] = Tim |0 (V V) — (V) (V)] <

<p((BNDY)", (BN(C\D2))").

Because this inequality holds for all V € (BN D;)* and U € (BN (CUD;))*, we can
take the supremum and get (8):

p((BND)*, (BN (CUDy))) =
= sup{[*(VNU) =@ (V)u"(U)[:V € (BND1)" U € (BN (CUD,))"} <
<p((BND1)*,(BN(C\D2))"),

hence (7) is proven.

Now applying (7) twice, we see, that
p((BNO),(BNTTE))=p((BNC),(BNT"E\C)") =
=p((BNC),(BNTT"ENC) ) =p(BNTT"ENC)*,(BNC)") =
=p((BNTTENC)*,(BNC\(TT"E)))=p((BNT"ENC)*,(BNT"ENC)").
Thus it is left to show, that li_r>n p((BNT"ENC)*,(BNT"ENC)*) =0, if 1i_r>n u(cn

n—oo n—oo

T-"E) = 0.

For B € B with BC T "ENC, we have NTil,lEmC({O}) C Nz'({0}) and N5 ' ({n}) N
N o ({0}) =0,if n #0,n €N, since Np(v) = v(B) < V(T "ENC) = Ny-ngnc(V)
for all v e X*. Every M € (BNT"ENC)* is an (at most countable) combina-
tion of countable unions and intersections of elements N, 2 1({n}) with BC T"ENC,
B € B, ne Ny, because (N;'({n})) = Unemg\ny Ng~ ({m}). Therefore there are
only two possible cases for M € (BNT"ENC)*, namely either NT_,lnEnC({O}) M
or MNN, ., -({0}) =0.ie. M C (N, ({0}))°. Let My, M € (BNT "ENC)*
be sets which attain the supremum of p((BNT "ENC)*,(BNT "ENC)*). In every
of the four cases u*(M;) > ,u*(NTilnEmC({O})) or u*(M;) <1-— u*(N;J'IEmC({O})) for
i=1,2, we obtain

p((BATENC)",(BNTENC)*) < 1— (N, ({0}) =
= 1-exp(—u(T"ENC)),

*
. M
since u*(My N Ma) — p*(My)p*(Mz) < p* (M) (1 — p*(My)) < ﬁl (ufEM )
- h)y
k,h € {1,2} such that k # h. (Respectively, if u*(M;NMp) — pu* (M) u*(Mz) < 0, then
the inequality follows by u* (M) )u*(Ma) — u*(My NMy) < u*(M;), fori = 1,2, except
when both M| D NT’,I,,EQC({O}) and M, D NT’,IHEQC({O}), but then p*(M;)u*(Ms) —
WM NMp) <1 —p*(MyNM) < 1= (N ({01))
Now since lign w(T"ENC) =0 implies 1211 exp(—u(T"ENC)) =1, we get
n—o0 n—oo

for

p(BNTENC)*,(BNT"ENC)*) >0  forn — o.
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Proof of Theorem 2.1. Let C € B be such that 4 (C) < eo. By Corollary 1.1 we know

that

ln_l

- Y uenr*c)—-0  forn— e
=0

Moreover, the sequence {f(CNT*C)};ey is bounded by p(C) < . Therefore, we
can apply a well-known result (see e.g. [22], Theorem 1.20), which states that the
above convergence is equivalent to the existence of a subsequence (k;);en in NY such
that

p(CNTHC) =0 fork — oo

with

‘{0’1"'"’”71}\{1":161\]}‘ — 0 for n — oo. Thus by Lemma 2.3,

p((BNC)*,(BNTHC)*) =0 fork; — oo

for (k;)en with 1131 Ho’l"”’"*;}\{k’:leN}l = 0. So, again by Theorem 1.20 of [22], we
n—yoo
obtain

n—1

) %Zp((%mc)*,(%mrkcy) — 0 forn — oo,
k=0

Now, let M, W € (B NC)* be arbitrary fixed, then T* W e (BNT*C)*, because
T**Ng'({n}) = {ve X :v(T*(B)) =n} = NT_,lkB({n}) for every B € B, n € Ny,
hence

T {Np:D e BNC} = {Nyipypic:BEB}C (N : E € BNT*C)
since T—*8B C 9B, thus
T**6({Np :DeBNC}) =o(T* *{Np:DeBNC}) Co(Ng: E € BNTXC).

Therefore by T*-invariance

n—1
% Y s (MOT W) — (M) (W) =
k=0

n—1

=Y M AT W) - () (1 W) <
k=0

lnfl
<- Y p((BNC)*,(BNT"C)*) = 0 forn — oo,
k=0

by (9). Let C, € B be such that u(C,) < o0, C;, C Cyy1, Vo € N and U,enCn = X.
If we have shown that {(B N C,)*},en is an increasing sequence of c-algebras such
that the algebra |,y (B NC,)* generates B*, i.e. 0(U,en(BNCy)*) = B*, then the
proof is complete, since it is sufficient to verify the (weakly) mixing property only
on a generating (semi-)algebra (see [22], Theorem 1.17), which is done by replacing
C by C, in the computation above. Clearly, (B NC,)* C (BNC,1)* for every n €
N. Since 6(U,en(BNCy)*) C B* it is enough to show that every Np is measurable
w.rt. 6(U,en(BNC,)*Y), for B € B arbitrary fixed. By continuity of the measure we
have }EQQNBQCH(V) = ,}LII}OV(BQC") = v(B) = Np(v) for every v € X*, hence Ng =
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lim Npnc, is 6((B NCy)* : n € N)-measurable, since Npnc, is for every n € N. So,
n—yoo

it is left to show that | J,cn (B NC,)* is an algebra. Obviously, X € J,en(BNCy)*.
Given D,E € ey (B NCy)*, then there exists n,m € N such that D € (B NC,)* and

€ (BNCy)*, hence DNE € (BN Crpaxfnm))* € Unen(BNEG,)* and D € (BN
Co)* CUnen(BNECy)* . O

Theorem 2.2. Let (X,B, 1) be as in Theorem 2.1 and T a measure-preserving trans-
formation on X which is conservative and ergodic. Then the Poisson suspension
(X*,B*, u*,T™) is ergodic.

Proof. Let (X,B,[1,T) be the natural extension of (X,%,u,T). Since (X,B,u) is
conservative and ergodic, the same is true for (X B TR T) (recall Theorem 1.9). By

Theorem 2.1 the Poisson suspension (X ) %*, u 7T*) of (X , %, i, T) is ergodic.
Following [25], we will show that the Poisson suspension of the natural extension is
the natural extension of the Poisson suspension, i.e.

(10) (X*, 8%, 1%, T%) = (X*, 8%, 1=, T%).

Note, that the Poisson suspension is a standard space, by Remark 2.3, so we can build
its natural extension. If we have verified (10), then the proof is complete because
ergodicity of an extension immediately implies ergodicity of the underlying system:
Suppose that T* is not ergodic, but an extension 7* of 7* is. Then there exists an
M € B* with u ( ) € (0,1) such that T*~'M = M mod u*. By the > properties of the

factor map T : X* —» X* of the extenswn we have M := 7'M € B* and u*(M) =
-1
(M) = (M) € (0,1) and T M =T t'M=t'T""'M=1t'M=M
modulo u*, a contradiction.
Let us consider the map

T: X" — X5, (V) :=vor !, WveX*,

where 7 : X — X is the factor map of the natural extension of (X,B, L, T)
B CB, lon ' =y, 10T =Tomand 6(T"x'B:Bc B,meN) =B (mod

u>.
We will show, that 7 is a natural extension, then by uniqueness (up to isomorphic sys-
tems), we get (10). Hence we have to check that

1. 718 C B

2. ot l=p*

3. ToT*=T*o71

4. o((T*)"17'G: G € B*,m e N) = B* (mod Ii*).

The sets {Nz ' ({n})|B € B,n € Ny} and {Ngl({n}ﬂﬁe B,n € Ny} generate B* and
B*, respectively, where ﬁg(?) :=V(B), ¥V € X*. Hence, (1) follows from 7~ 'N5 ' ({n})
={veX"t(V)(B) = n} = {V e X*|v(n'B) = n} = N_!, ,({n}) € B*, because
n’iB € %B. For every B € B, v € X* we obtain ©(T*(V))(B) = T*(V)(n'B) =
V(T (z~'B)) = v(z~Y(T~'B)) = T*(t(V)(B)), which establish (3). Again using
the properties of the extension 7 and of the Poisson suspension itself, we can deduce

that f* (7~ (Mi=y Ng,' ({me}))) = ﬁ*(ﬂi:11v;313k({nk})) = [T Poijg(r15) () =
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Tl Poiyy s, (mi) TTimy 1% (N3, (mi)) = ¥ (Miey N, (mi)), for By, ..., By € B pairwise
disjoint and n,...,n; € Ny. Thus, fi* o 7~ ! equals u* on an intersection-stable gener-
ator of B*, which implies (2).

Using the definition of the Poisson suspension, we compute (7*)"t~'N; ! ({n}) =
(T)"N 1 p({n}) = (Vo T ™"V e X*, V(n'B)=n} = {p € X*|p(T"(n'B)) =

n}= ]Vf_"}(rlg) ({n}), for some m € N, n € Np and B € B, since T is an automorphism.

Now because O'(T’"n’lB :BeB,meN)= B (mod f), we can deduce (4). O

Note, that the Poisson suspension is conservative by the Theorem of Poincaré, since
u* is finite and T*-invariant.

3 Entropy: Definition and basic properties

To quantify how chaotic and unpredictable a dynamical system behaves, the notion of
entropy is used.
First let us have a look at the entropy of a y-partition.

3.1 Static entropy

We will try to provide the following definitions in a rather general setting. For the def-
inition of the information function we follow [10]. The concept of conditional entropy
for not necessarily countable partitions introduced in the following has already been
considered by Kornfeld and Sinai, [13], and by Rokhlin, [17], for probability spaces,
and by Parry, [15], for o-finite standard measure spaces.

By log we will denote the natural logarithm with base e.

Definition. Let (X,B, ) be a 6-finite measure space and ¢ a measurable -partition
of X. The so-called information function of « is defined by

1
- log(m):—logm(ax» for p1(at,) € (0,0),
Iu(@)(x) := 9 o for u(ay) =0,
0 for p(ot) = o0

for x € X (where we define o, := 0, if x ¢ Uscq A). The (static) entropy of o is defined
as the expectation of the information function, if ¢ is equal to a countable u-partition
modulo u:

JIu(a)(x) du(x), if a = acountable p-partition of X modulo u
Hy(a) = (X
oo else.

)

Note, that in the first case we actually obtain

Hu(o) = [Lu(@)(x) du(x) = ¥ (A)log(u(4).
X

Aca
H(A)<e

To exclude the possibility of having negative entropy, we will always require that o
is fine enough such that for every A € a we either have t(A) <1 or i(A) = o when
using the above definition.
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Note, that by the convention oo -0 = 0 we get p (o)l (et)(x) = 0 if u(oy) =0 or
p(0y) = oo.
The condition, that o is modulo t equal to a countable p-partition o of X actually
means that o consists of countably many sets, which already build a p-partition of X,
and arbitrary many (possible uncountably many) null-sets whose union is a null-set’.
In this case we clearly have Hy (o) = Hy (o).
The integration in the first case of the definition makes sense, because if & is a count-
able u-partition together with some (possibly uncountably many) null sets, then 7, () :
X — RU{eo} is measurable: Given a < b € R, we have I, (&) "!((a,b)) is an at most
countable union of elements of & and therefore contained in B, and I, (ct) ~! ({eo}) is
the union of all null-set in ¢ and the null set X \ (UgcqA), hence measurable.

Remark 3.1. The only way for a u-partition ¢ to be not countable modulo u, is
that it bears uncountably many null-sets, whose union is no null set any more. This
is a consequence of the fact that in a o-finite setting it cannot happen that there are
uncountably many disjoint measurable sets of positive measure: Consider D; € ‘B dis-
joint with p(D;) =: nj < oo for all j in a countable index set J and {J;c; D; = X mod
u. Let j € J be fixed. If there are uncountably many disjoint sets £; € BND;, [l € L, in
(Dj,BNDj, i|p;) with L(E;) > 0 for every I € L (L an uncountable index set), then®

o =Y M(E) == sup YiepM(Ef)= sup u( U Ey) < nj, a contradic-
FCL, F finite FCL, F finite feF
———
§n,~

tion. Thus, (D;,B NDj,u|p;) cannot contain uncountably many disjoint measurable
sets of positive measure, for every j € J, and since J is countable the same is true for
(X, B, ).

That there are only at most countably many elements in o of positive measure in par-
ticular implies that the union of all null-sets in ¢ is measurable.

The Poisson distribution plays a crucial role in our consideration, so let us compute
its entropy:

Example 3.1. The entropy of the Poisson distribution is given by the entropy of an
arbitrary random variable which is Poisson distributed. Therefore, let (Q,2, P) be a
probability space and Z an Ny-valued random variable on it which is Poisson distributed
with parameter A € [0, o). The entropy of a random variable taking values in an at most
countable set is defined as the entropy of the P-partition given by the random variable’s
preimages. So we consider the partition o := {Z~!({n})|n € Ny}. Then

H(Poiy) := Hp(Z) := Hp(a) = — Y} P(Z"'({n}))log(P(Z"'({n}))) =

HGN()

o Ang—A ng—4
=— Z Poil(n)log(POiA(”)):*Z )Un! log(ln! )

HENO n=0

"Note that the union of all null-sets in such a y-partition is always measurable, since it is the complement
of the at most countable union of sets of positive measure in the (-partition (and maybe a null-set of elements,
which are not contained in elements of the u-partition).

8Intuitively it is clear that a sum of uncountably many positive elements is infinite. Formally, this follows
from then revers direction oft the fact, that if ¥ pc, g(F) < oo, for some non-negative function g, then {F €
a|g(F) # 0} is countable. Proof: Let m € N be arbitrary fixed and set L, := {F € &t|g(F) > L1}. Then
Yrca&(F) > YL, thus |Ly| < mYrcq g(F) < oo, hence {F € a|g(F) > 0} = Uyen Lm is a countable

m

union of finite sets, which is our claim.
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c
--%

n=

(nlog(A) — A —log(n!)) =

oo n o 4n+l o An,—A |
Z ;L —l log ) A, e_l n Z ), e 1'0g(}’l) _
n:1 n=0 : n=0 n
= Ae *log(n!)
— _Alog(A)+ A+ Z T

Definition. Let o and Y be measurable y-partitions of X and let y be countable, then
the conditional information of a given 7 is set to be

) gy (@) () for () # oo,
ulelni) = {Iﬁ(ay\/ {1, X\ % })(x) else.

For formal reasons, if (1(7;) = 0, we define 1 (+|7;) to be just some probability measure
with (£ (¥%|1) = 1. If X is a standard space and G(y) is o-finite, then we use canonical
measures and set (-|%) := Hy,. Actually, we do not have to care much about this
cases, since they vanish in the entropy as long as 7y is countable: The conditional (static)
entropy of o given v, for y countable, is defined as

Hu(oly) i= [T dux) =
X

= Y —H(ANC)log(1(A[C))+ Y —H(ANC)log(1(ANC)),
Aea, Cey Aca, Cey
B(C)eo, H(A|C)Feo B(C)=c0, HL(ANC)Feo

if @ is modulo u equal to a countable p-partition,

and as
Hy (et]y) := oo, if o is not equal to a countable p1-partition modulo u.

Analogous to the previous definition we require that & and 8 are such that for all A € a,
C € ywe have that u(ANC) <1 or u(ANC) = co.

For the case, when 7 is not necessarily countable, we have to pay more attention to
null-sets, since their union need not be a null set anymore. We will use the previously
developed theory of canonical systems of measures. In order to do so, we now have
to restrict our considerations to the case when (X,B, 1) is a standard measure space
and 6(7) a o-finite sub-c-algebra (confer Proposition 1.3 (1)). Then, according to
Theorem 1.10, there exists a system of probability measures {c}y,-ae. cey and we can
define conditional entropy as follows:

Definition. Let (X,B, 1) be a o-finite standard measure space and ¢, ¥ measurable
U-partitions of X such that 6(y) is o-finite, then the conditional (static) entropy of o
given Y is given by

Hy(aly) : /HHC anC) dy(C /HH” o (@N () ().
Xy
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This definition makes sense (and we were allowed to use the transformation for-
mula for the second equality), since for ty-a.e. C € X, we have that o N C is a measur-
able p-partition of (C,B¢) (see Example 1.1 (4)) and C — H,.(aNC) is measurable.
Indeed, let us denote

G: C— Hy.(anNC) =

Y Uc(ANC)log(uc(ANC)), if aNC = a countable y-partition of

C modulo ¢
oo, else,

defined for uy-a.e. C € Xy, then by Theorem 1.10 we know that the map
Es: C— uc(ANC)

is By-measurable, for every A € a (and py-almost all C € y), thus for every set U €
%B(RR), which does not contain o, we clearly have G~ (U) € B (since the sum in the
first case is countable and the logarithm is continuous). While,

G l({e}) =
= {C € Y|oNC = a countable p-partition of C modulo yc and
Y uc(AnC)log(uc(ANC)) =} U{C € | @NC is not equal to a countable yi-par-
Aca
tition of C modulo yc },

where ¥ denotes the set of elements of ¥ for which ¢ exists. With the same argument
as above, we get that the first set of the above union is measurable w.r.t. B, so let
us treat the second one. Let C € ¥ be such that & NC is not equal to a countable -
partition of C modulo ¢, i.e. there are uncountably many A; € «, [ € L, such that
pc(UseryAiNC) > 0 for every countable J C L with ;e\ ;AiNC € BNC. Since by
Remark 3.1 there are at most countably many elements of positive measure in o, we

can neglect them in the above collection of A; € o, / € L and further add all (remaining)
null-sets of a. Hence,

{C € y| aNC is not equal to a countable y-partition of C modulo ¢ } =

_ {c € y‘uc(Aea LHJ(A):OA mc) > o} =BG (01 € By,

The definition of conditional entropy for measurable Li-partitions coincides with
the one given before for countable p-partitions: Assume ¢ and Y to be countable, then

[ Hucl@n€) dtuem (€)= ¥l (1€) Huclon ) =
Y €Y

= )Y 1O Hype) (@),
Cey.u(C)#£0
due to Proposition 1.3 (2), which by (4) of the next Proposition 3.1 is exactly the con-
ditional entropy for countable p-partitions.

The following example illustrates the idea of defining the conditional entropy that

way and shows that even for uncountable pi-partitions whose elements are all null sets,
the conditional entropy turns out to be finite.

44



Example 3.2. Let X =[0,1] x [0,1], B = B([0,1]) @ B([0,1]), u = A ® A, where
A denotes the one-dimensional Lebesgue measure and set I := [0,1]. We are con-
sidering the partition y:= {{x} xI : x € 1,} of X. This partition is uncountable
and every element has measure zero. But y is measurable, since e.g. A:={J x1 :
J subinterval of I with rational endpoints} generates ¥ countably. Further, we take the
measurable p-partition o := {{x} x (0,x] : x e [FU{{x} x (x,1] : x &I} of X. This u-
partition is finer than ¥, and for every fixed x € I the set {{x} x (0,x] , {x} x (x,1]} =:
A, is a u-partition of 7.

We are going to show that Hy (c|y) is finite, though Hy (o) = Hy () = oo.

Using the Theorem of Fubini, the fact that 7y(x,y) = {x} x I =: ¥ does not depend on
y and that A (I) = 1, we compute

Hy(aly) = /HMX any) dA@A)(x,y) /HMX ) dA(x) =

= [t (0.5 Tog (i} x (0.5))

—Hy ({2} x (x 1]) log (py ({2}  (x,1]))) d(A) (%)

Now, by Remark 1.5 (3), we know that fiy, = (A ® A)(,1,; = 6 @A, thus the above is
equal to

/I(—l((OaX])log(l((Oﬁ])) —A((x, 1)) log(A((x,1]))) dA (x) =

~ [(~xtog(x) — (1 ~x)log(1 —x)) dA(x) = [ H(Ber(qy ) dh(x),
1 1

where H (Ber(xvl,x)) shall denote the entropy of the Bernoulli distribution with param-
eter x, i.e. H(Ber(yi_y) := Hp({Z '({0}),Z7'({0})}) for Z a Bernoulli distributed
random variable (with parameter x).

In particular [, H(Ber(, | _y)) dA(x) < A(I) - I?SI)((H(Ber<x71,x))) = H(Ber )) =

=

(3,

—log(}) =1og(2) < o (see e.g. [4] for the maximum result).

Remark 3.2. There is one more way of defining the conditional information, namely,
if r is a countable p-partition of a standard space (X,B) and 6 () is o-finite, then the
conditional entropy of o given 6 () is defined by

Lu(alo(y))(x) := Y 1a(x)(~log(n(A[S (7)) (x)))

Aco

for x € X. This definition has been considered by Krengel, [14].
This definition clearly coincides with the previous one modulo u, since for almost

every x € A we have I, ([6(7))(x) = —log(i(A|o(y))(x)) = —log(y (AN %)) =
—log(y, (0N ) = Iu(|y)(x), using Proposition 1.3 (3) and the fact that p1(7,) < oo
due to o-finiteness of & (7).

Moreover,

[ (@S0 dux) = Ha(aly)

for o countable. Indeed, by definition of the conditional expectation,

/xlAlog(u(Alff(Y))( )) du(x) /Eu Lalog(u(Alo(¥))(x))IG (V)] d(x) =
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/XEu[lAl?f(Y)](x) log(u(Alo(7))(x)) du(x) = /X My, (AN %) log(ty (AN ) dpt(x) =

:Hﬂ(a|7)a

since logopt(A|G(y)) is 6(y)-measurable.

3.1.1 Properties of static entropy

For the rest of the thesis, when considering the conditional entropy given a Ll-partition
Y of X and ¥ is not equal to a countable p-partition of X mod u, then we will always
assume that (X,B, ) is a standard measure space and () is o-finite.

Remark 3.3. The above definitions are robust w.r.t. the measure in that, if a, o', ¥, ¥
are measurable y-partitions, such that o = o’ mod it and ¥ = ¥ mod (, then

Li(0)(x) = I (o)(x) and I, (et|y)(x (o|7)(x) for almost every x € X,

and
Hy (@) :Hﬂ(a/)v Hy(aly) = Hu(a,h/)-

If v is countable, then the claim follows by robustness of the canonical system of mea-
sures (Proposition 1.3 (1) ,(4), (5)) :

Ha(ol7) = | e (@n€)dty(€) = [ Tt (AN7p(0)) 08t (AN () di () =

X Aca

AA b ) (A" 0 () 1ot 1) (A Ny (1)) it () = H (7).
/Eal
if @NC is mod ¢ equal to a countable u-partition for uy-a.e. C € . If this is not the
case, then

Hy(a|y) = o= Hy(a'Y),

since if there is a C € ¥ not contained in a p,-null-set such that & N C is not equal to a
countable -partition mod fic, then for C' € ¥ with C' = C mod u, we get that C' is not
contained in a py-null-set (since 0 # py(C) = p(m, ' (C)) = u(C) = u(C') = uy (C'))
and oo N C’ is not equal to a countable p-partition modulo pc, because pc, - are just
the conditional measure w.r.t C, rep. C’ (Proposition 1.3 (2)), since pt(C) = u(C') #0,
which gives Uc = Uer.

Due to this Remark, we do not have to distinguish u-partitions, which differ only
on a null-set, when considering the entropy. Thus, we will e.g. write H (o) instead of
being precise and writing Hy, (N Xp) for X = Xy mod p in some cases.

Notation. For o-finite sub-c-algebras 2(, € of B one can always find generating
measurable p-partitions ¢, ¥ of X which are unique mod u (ref. Lemma 1.2) and
thus by the remark above the following notation is (almost everywhere) well-defined:
We will write [, () := Iy (@), I, (A|€) := 1, (e|y), Hy (A) := Hy (o) and H, (A|€) :=
Hy(aly).

Remark 3.4. Let (X,B,u), (Y,D,v) be two o-finite standard measure spaces and
¢ : Xo — Yy a measure-preserving map with X = Xp mod ¢t and Y = ¥y mod v. Then
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for o-finite sub-c-algebras &, $ of © such® that & D 6, we get that ¢ preserves the
entropy””:

Hu(¢7' ()¢~ (%)) = Hy(8]9).

In particular, if we are in the situation of Theorem 1.4, i.e. we have o-finite sub-o-
algebras 2, € of B, A DO €, then we already know that there is a o-finite standard
measure space (Y,2l',v) and a measure-preserving map ¢ : Xo — Yy, with ¥y =Y
mod v, Xo = X mod u such that ¢~ (21') = A mod p. Thus by the claim above, we get

Hy (U[€) = Hy (A']),

where ¢’ := {C" € A'|¢p~!(C’) € € mod u}, which is a o-finite sub-c-algebra'® of 2’
with ¢~!(¢’) = ¢ mod u (since every element of € can be written mod y as preimage
of an element of 2').

Indeed, let & be the measurable v-partition which generates & and Y those of §). By
Remark 3.3 we can w.l.o.g. assume that Xo = X and Yo = Y. Clearly, ¢~ !(«) and
¢~ !(7y) are measurable u-partitions which generate ¢~ (&) and ¢~ (§)), respectively.
Thus, using the transformation formula, we see that

Hul(aly) = [ Hy,, (@0m0) dod o) = [ Hu (@07(0(5) du).

1

Now, because for p1-almost every x € X we know that vz (5 (x)) = M,y ) © ¢~ and
Y

o (my(9(x))) = Ty-1(y)(x) due to Proposition 1.3 (6), the above is equal to
[ 07 (@007 (7 (0(3) dux) =
X o= ()

= [ e,y 0 (07 H@N 71 (0) die) = Hu(6™ ()]0 ().
Le. Hy(&19) = Hu (¢~ (8)[9~1(9)).
Let us list some basic properties of static entropy:

Proposition 3.1. Let (X,B,u,T) be a 6-finite dynamical system and a, B, ¥ measur-
able [-partitions of X.

1. If et is finite then so is Hy (o).

2. Iy(a|{X,0}) =1, (a) and Hy (a|{X,0}) = Hu (@), if W is a probability measure
or (X)) = oo
3. Hy(alB) =Hu(aV BIB).

4. Hy(a|B) = Ypep (B) Hy()(@), if B is equal to a countable [i-partition mod-
ulo p and L(B) < oo, VB € B.

9 Actually, the condition & D ) is no restriction, since by Proposition 3.1 Hy (6|9) = Hy (& V $H9H),
where we denote &V $):= 6({GNH : G € 6,H € H}), thus we could just replace & by &V §.

10Clearly, ¢’ is a c-algebra, since € is one and set-operations are respected by preimages. Moreover, ¢’
is o-finite: By o-finiteness of € there are C, € € with u(C,) <o (n € N) and U,y Cr = X mod u, then
because ¢! (') = A D & mod p, for every n € N, there is a C}, € 2 with ¢~!(C!)) = C, mod . Clearly,
C, € @, further v(C) = pu(¢~1(C})) = u(Cy) < oo for all n € N, and V(Y \ (U,enCl)) = u(¢~(¥) N
(Unen ¢HC))) = (X \ (Unen€Gn)) =0.
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- Ay(avB) =l (e|B) +1u(B), Hy(aV B) = Hy (x| B) +Hyu(B) and
(00 V BI7) () = L (BI7) () + (@B 7) (4), for x € X such that p(y,) #0, and
Hy (aV Bly) = Hu(B|y) + Hu(|B V' y), where we assume that | is a probability
measure in case Y is not equal to a countable |L-partition modulo [L.

. a2y Hy(aly) =0, i.e. roughly speaking, if we have already the whole (or
even more) information of what we want to know, there is no uncertainty (or
chaos) left, hence the entropy is zero, and vice-versa.

Moreover, if W is a probability measure, then Hy () =0 < o = {X,0} mod p.

. If u is a probability measure, then, clearly, H,(a) > 0 and Hy(ct|y) > 0. For
o-finite |1, we still have H, (a|y) > 0, as long as 6 () is o-finite.

Moreover, a0 = B = Hy(a) < Hu(B) for u o-finite.

If v is mod W equal to a countable LL-partition or | is a probability measure,
then o X B = Hy(aly) < Hu(By)-

If u(X) = 1, then we can deduce that B <y = Hy(a|B) > H, (et|y) and, espe-
cially, Hy (o) = Hy (a|{X,0}) > Hy(a]y).

. If T is measure-preserving, then

\/T—ka Iy (a)(T" %) +ZI,J a\\/T—ka T 1=my)

m=1 k=1

for x € X such that u((\/7—| T‘koc) ) # 0. If i is a probability or (X)) = oo, we
set &) := {X,0} and write Y"1, (at| /i, T~ ) o T"1=™ for the right hand
side above.

If T is a measure-preserving automorphism, then almost everywhere we have

\/Tk ) =Iy(c)oT™ "1+21 a|\/T" om=(n=1),

respectively
n—1
L(\/ Tra) ZI,L a|\/T" om=(n=1)
k=0

for Vo, T*ou := {X,0} in case u(X) =1 or u(X) =
If o is countable, then

. n—1 n—-1 . m
/1,1(\/ T ) dy:/lu(a) du+Y / Lo(a \/ T~*a) du
X k=0 X m=1"X k=1

Before proving this Proposition, let us remark a simple property about refinements

of p-partitions:

Remark 3.5. Note, that @V f3 is equal to a countable py-partition modulo u if and
only if a and 8 are equal to countable p-partitions mod g.

Proof of Proposition 3.1. 1. This is obvious by just noting that if @(ay) = oo then

I, (@) (x) = 0 by definition, and if 7, (&) (x) = oo then p(0) =0, and by definition
-0=0.
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2. By definition, if p(X) = oo, then we get I, (a|{X,0}) = I, (aNX) = I, (). If
p(X) =1, then pu(-|X) = u and therefore I, (at[{X,0}) = I x) () = Iu ().
For o equal to a countable -partition mod p and p(X) # o, we compute

HANX)N
Hy(a[{X,0}) = Agxu (ANX)log (W> =

== Y (u(A)log(u(A)) — u(A)log(u(X))) = Hy (o) + 1 (X) log (1 (X)),

Aco

and the second term of this sum is equal to zero for p(X) = 1. (Note, that we
always assume that p(X) # 0.) If « is not equal to a countable p-partition mod
U, then we get H, (a|{X,0}) = oo = Hy (o).

Now, if (1(X) = oo, then by definition,

Hy (al{X,0}) = — Z( ) H(ANX)log(u(ANX)) = Hy (),
Aca, p(A)F#oo

if o is mod pu equal to a countable p-partition, and Hy, (a|{X,0}) = o = Hy (x),
if not.

3. If 6(B) is o-finite, then

H(ocV BIB) = [ Huy (0 B) ditp(B) =

——[ ¥ ws(AnDOB)log(us(ANDOB) dutg (B) =
ﬁAea Dep

== [} X (A1) og(un(ANB) dup(B) = Hy o] ),

B Aca
if N B is equal to a countable u-partition modulo up for ug-a.e. B € B, and if
this is not the case, then H, (Vv B|B) = oo = H, (at|B).
If B is equal to a countable p-partition modulo g and &(f8) not necessary o-
finite, then

HiaVBlB)=— Y ¥ wAnDIB)log(u(AnDIB))

BEP,u(B)#wAca,DEP

- Y Y, w(AnNDNB)log(u(ANDNB)) =
BeB,u(B)=wAca,DEf
W(ANB)#co

==, L L nas)og(u(als)

BeB,u(B)#£~Aca

— Y Y uAnB)log(u(AnB)) = Hu(alB),

BeB,u(B)=wAca
W(ANB)#co

if or is modulo u equal to a countable y-partition, and else again Hy, (aV B|B) =
oo = Hy(a[B).
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4. If a is equal to a countable p-partition modulo u, then

Hy(alB)=~3) ) u(AnB)log(u(A|B)) =

Bef,Aca

=~ ¥ ¥ u(B)(AIB) log(u(AlB)) = X u(B)Hyp)(c0).

BeBAca Bep

If a is not equal to a countable y-partition modulo u, then we have by definition
H, (ct|B) = e and also due to countability of 8 there has to be an B € B with
W(B) > 0 such that BN ¢t is not countable modulo p (else o would be a countable
union of mod [ countable y-partitions, a contradiction). Hence, H,; (.5 () =0
by definition.

5. First, let x € X such that (o, N PBy) # 0 and (o, N By) # eo. (Note that this in
particular implies that @ (B;) # 0.) If w(By) # oo, then

Iy(@V B)(x) = ~log(u (0t NBy)) = —log (W I

axm X
— —tog (KB tog(u(8) = 1 (@) + 14 B) o).
If 1 (By) = oo, we get by definition I, (a|B)(x) =1, (Vv B)(x) and since I, (B)(x)
= 0, the claimed equality follows. (Recall that the information function cannot
take the value —co by definition.)

Now, if x € X is such that p (o N ) =0, then I, (Vv B)(x) = oo, and I, (| B) (x)
= oo, if u(By) # 0, or, if this is not the case, then I, (B)(x) = oo, hence I, (a V
B)(x) = o0 = 1 (a|) (x) + I (B) x).

If (o, N Py) = oo for x € X, then clearly p(ay) = o and u(fy) = oo. Thus, by
definition 7, (aV B)(x) =0, I, (B)(x) = 0 and I, (a|B)(x) = Iy (e V B)(x) = 0.
Hence, we have verified that

Iy (v B)(x) = Iy (et B)(x) + 1u(B) (x) for all x € X.

If ¢V B is modulo i equal to a countable p-partition, then so are ¢ and f3, by
Remark 3.5, and we obtain

Hu<avﬁ>:/xzu<avﬁ><x> dui(x) =

= [ 1u(@lB)() du)+ [ 14(B)(0) da() = Hu(lB) + Hy(B):

Let us consider the case when o V 3 is not equal to a countable -partition
modulo g, then & or 8 have to be unequal to a countable p-partition modulo
w. If B is not equal to a countable p-partition modulo u, then we immedi-
ately get H, (aV B) = oo = Hy(a|B)+Hyu(B). So, let & be uncountable modulo
u and B be equal to a countable p-partition modulo , but then by definition
H, (ot|B) = oo and we get the same equality as above.

The equation I, (e V B|y) = I (B|Y) + 1. (a|B Vv 7) follows by the first part of the
proof:

Lu(aVBVY) =1l (a|BVy) +1u(BVY) = Lu(a|BVY) +1u(Bly) +1u(7),
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and if x € X is such that u (%) # 0 which is equivalent to 1, () (x) < oo, then this
gives

Lu(aV BV Y)(x) = 1u (V) (x) = Lu (@] BV ) (x) +1u (B]7) (%),

which is exactly

u(aV Bly)(x) = I (a|B V) (x) + 1. (B]Y)(x),

again by the first part of the proof.
Hence, if 7 is equal to a countable u-partition modulo i, we can neglect the
null-sets in ¥ and obtain

J (o BV (o) = [ 1u(@lBVE) dul)+ [ L(BINE) du).

If additionally B is equal to a countable p-partition modulo u, too, then we
have shown that Hy (Vv B|y) = Hy(et|B Vv y) +Hy(B|y). If B is not equal to a
countable p-partition modulo u, but  is, then Hy (ot V B|y) = oo and H, (B|y) =
Now, let us consider the case when 7 is not countable modulo p. We assume that
6(y) and 6(yV B) are o-finite. Then, by the first part of the proof,

Hu(avﬁ‘Y):AHm(aVﬁ)dﬂV(C) :/y(Huc(alﬁHHuc(B)) duy(C) =

:/};H,‘C(am) dity(C) +Hyu (BlY).

If B NC; is not countable modulo yic, for some (non-negligible) sets C; € v,/ € L
with u(U;er Cr) # 0, then Hy, (aV ) =ocoand Hye,(B) =0 and

Hy (v Bly) = /y Hye (00 B) dity(C) = 00 = Hy (| BV Y) + /y Hye (B) dity(C) =

= Hy(a|BVY)+Hu(Bly).

If o NC is not equal to a countable u-partition modulo g, for some C; € ¥y
with u(U;er Cr) > 0, then, since B is countable, there has to be a B €  with
W (B) > 0 such that &« NC; N B is equal to a not countable p-partition mod pc,np
for some C; € v with u(U;c; Cr) > 0. (Recall, that by Proposition 1.3 (4) mod
Uc for py-ae. C €y mod U < Ucnp for pyg-ae. CNB € yVp.) Thus
Hy (| Vy) =oo= [ Hyo(|B) duy(C).

For proof of the case when o N C and 8 NC are equal to countable p-partitions
modulo pic for almost all C € v, but ¥ is uncountable, we refer the reader to [15],
Theorem 5.6. where this case is treated in probability spaces.

. For u a probability measure, we clearly have Hy ({X,0}) = —u(X)log(u(X)) —
0-c0 = —log(1) = 0. Moreover, if Hy, (&) = 0, then, by definition, « is equal to a
countable p-partition mod i, hence Hy, (00) = — Y ac g, pu(4) 00,0 L (A) log((A)) =
0, thus (A) = 1 for all A € a, but this implies that A = X modulo u, VA € «.
Let p be arbitrary now. By definition, Hy (a|y) = [, Hyu (N C) dp,(C) and
Uc is a probability measure on C. Hence by the above Hy.(aNC) =0 <
oNC={C,0t mod u = a <7.
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7. Note that if 4 is a probability measure, then H, (o) = Y acq —M(A)log(1(A)) >
—~—
<1
—_———
<0

0 or Hy (o) = oo > 0. Thus, if () is o-finite, then

Hu(e]y) = [ Huc(@) duy(C) >0,
>0

since lic is a probability measure for (a.e.) C € .

Let a < B. If « is not equal to a countable y-partition modulo u, then B is not
equal to a countable pi-partition mod 1, and we get Hy (B) = o = Hy (o). If o
is equal to a countable y-partition modulo i, then, due to (5), Hy(B) = Hu (B V
a) = Hy(a) + Hy(B|a), and by the above Hy, (B|c) > 0 since being equal to
a countable pi-partition modulo u, o(a) is clearly o-finite, hence H, (B) >
Hy (o).

If y is countable or y is a probability measure, then again by (5), Hy (ot V B|y) =
Hy(o|y) +Hy(Bloevy). If a < B, then ot vV B = B, thus

Hy(Bly) = Hy(aV Bly) = Hu(aly) +Hu (Bl vV y),

hence H, (B|y) < Hu(a]y), since Hy (Bla Vv y) > 0.
For the proof of B <y = Hy(a|B) > Hu(aly) we refer to [15], Theorem 5.1.

8. Let n € N be fixed and x € X such that u((\/z;i T *a),) # 0. By repeated
application of (5) we get

I (n\_/1 T a)(x) =1y (T’”“ av n\_/sza) (x) =
k=0 k=0
=L,(T" " a)(x) + 1y (n\/2 T *a|r ! a) (x) =
k=0

n—3
= I, ()(T" %) + 1, (T’””a v\ T a7 a) (x) =
k=0
=1y (a)(T" %) + 1 (TP a|T ) (x)+
n—3
L(\/ T *aT " avT " a)(x) =
k=0
= Iy (o) (T" ') + Iy (| T~ ) (T"2x) +
n—4
I (T*”“oc v\/ T *alT " av T*"”a) (x) =
k=0

= Iu(0)(T" ) + Iy (@ T~ o) (T"2x) + L (| T o vV T 20) (T )+

n—1

...+1u(a\ \/T’ka)(x):
k=1
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n—1 m
@+ L (o 77 (271 ),
m= k=1

where we have used that, due to T-invariance, 1, (T~ o) (x) = I, (o) (T" " 'x)
and similar for the conditional information. To verify this, set Otpn-1, =: A.
Clearly, T" 'x € A & x € T™"*!A, hence T""'A = (T~""'a),. Now, the
information function only depends on t(A), but u(A) = u(T"*'A), therefore

L(T " ) () = L (@) (1" ).
This also implies that
I“(T’”H(x\T*”H Oc)(x) = Iﬂ(,‘(rn+1a)x>(T7”+206)(x) =

= a7 Va0 ) (@I = (@[T o) (7" 2)

for u((T~"*'ax),) # oo, because

g gty — ET (O ) NI ) s)
S (S (AT N)) R

-1
ey 2 = (a7 o))

and for pu((T7" &), ) = o0, we have

L(T "2 T o) () = Ly (T @) N T 20 (x) =

= I (T ) 2, N 0) (T 20) = I (@ T~ ) (T %),

If « is countable, then so is Vz;% T *a, and we can neglect all null-sets of it.
Thus, by integrating and using the transformation formula and T -invariance, the
last claim follows.

O

The following Lemma provides us with convergence in information.

Lemma 3.1. Ler (Q,21, P) be a probability space, o a P-partition of Q with Hp() < oo
and A, sub-c-algebras of A, such that A, C Ay, 11 for alln € No and A = 6(U,en, An)-
Then

Ip(a|2y) — Ip(o|A) in L1 (P) and P-a.e.

asn — o,
In particular,

lim [ Ip(al2)(0) dP(0) = / In(a|20)(@) dP(®).
n—e [0 Q

Proof. By the assumption Hp () < oo we know that & is modulo P equal to a countable
P-partition, so by Remark 3.3 we can w.l.0.g. assume that ¢ is countable.

For fixed A € o the process X, := E[14|,] = P(A|2) is a martingal w.r.t. 2, for
n € Ny, because conditional expectation is adapted by definition and for every k € N we
have E[X,+1|Uy] = E[E[14|p11]|2s] = E[14|2,] = X,. Since sup{E[X,]:n € No} <
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oo, we can use the martingale convergence theorem 1.12 and obtain a 6(U,cn, &n)-

measurable random variable X.., such that X, — X, a.e. for n — oo. Clearly, X, =

E[14]21], because for every B € 6 (U,en, An) = 2, we have E[X..15] = lim E[X,15] =
n—yoo

lim E[E[1A|Q[,JIB} = lim E[IA 13} = E[lAIB]. Thus
n—oo n—yoo
P(A|2L,) — P(A|l)  P-ae.

For every x € A, P(0,|2,,,) = P(A|2,) (x), where 2, denotes the element of the corre-
sponding P-partition which contains x, hence Ip(a|2,,) = —logoP(A|2,) and therefore

Ip(al2,) — Ip(a|2)  P-ae.

Convergence in L; (P) then follows by dominated convergence, if we show

aan /sup In(a|2,) dP < Hp(a) + 1,

neNy

since by assumption Hp(@) < o, hence the function sup,,cyy, Ip([2l,) dominates the
map Ip(at|2,,) for every n € Ny and satisfies [sup,cy, Ip(|2l,) dP < oo.

To prove (11), we define f(x) := sup,ep, Ip(@|2A,)(x) for x € Q and F(a) := P({x €
Q: f(x) >a})=P(f '((a,*)])) for a € [0,). Then

/fdP = /‘wF(a) da.
o Jo
Indeed, [§F(a) da= [ [o1-1(40) AP da= [o [ L(ae © f da dP and 11, (f(x)) =

(1) ;Exi za = lj,f(x)(a) for x € Q because a > 0, thus ["1 (5. (f(x)) da =
, fx)<a ’

Jo Vo0 (@) da = f(x).

Furthermore,

F(a) = P({x € Q| sup [—log(P(0u|2uy))] > a}) =

neNy

= Z P({x € A| inf P(a,|2,,) <e “}) =
Aca nENO

oo

=Y Y PAN{x € QIP(0o|2A,) <% P(oy|Ar,) > € Yk <n}) =

Acan=0
~ Y Y [ulear= ¥ ¥ [ Pai,)ap
Acan=079 Acan=07Cn

by definition of the conditional expectation, where we set C, := {x € Q|P (0, |2,,) <
e, P(oy|Usy) > e @ Vk < n}, which is 2,-measurable. Now, by definition of C,,
Yoo anP(A|an) dP<Y> e *P(C,) = e P(Uy-yCy) < e~ and therefore

F(a) < Z min(P(A),e ).
Aca
Combining the above (in)equations, we finally get

/Qf dP:/OooF(a) da < /wz min(P(A),e ) da =Y

0 Aca Aca

/mein(P(A),efa) da=
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 log(P(4) - L -
-y /0 P(A)da+ [ oy da= X (P(A)log(P(4) + P(4) =

Aca Aca
= Hp(a) + 1,
since Hp(a) = [olp(Q) dP =Y pcq [4—10g(P(A)) dP =Y scq —P(A)log(P(A)). Thus
(4) is shown and therefore the proof is complete. O

3.2 Entropy of dynamical systems with a probability measure

Now, let us define the entropy of a dynamical system in the sense of Kolmogorv and
Sinaj. For this end we have to restrict our considerations to measure spaces with a finite
measure. For simplicity, let us take a probability measure. But before doing so, let us
introduce the following notation:

Notation. Let T be a non-singular transformation on (X,8, 1) and ¢ a y-partition of
X. The common refinement of the preimages of o under 7 will be denoted as follows:

form,nENo,mSn.

Definition. Let 7 be a measure-preserving transformation on a measure space (X, B,
u) with u(X) = 1. The (dynamical) entropy of the system (X,B, i, T) with respect to
« is given by

1
h(X,B,u,T,a) = lim —Hy (af ")

n—eo

If ¢ is countable then
1 1
h(X,B,u,T, o) = lim —Hy (o ") = inf ~H, (0!
( ) ,‘U, ) ) ng{}on IJ( 0 ) V}QNI’Z IJ( 0 )7

by the next Corollary 3.1.
Finally, the (Kolmogorov-Sinai) entropy of the dynamical system is defined by

h(X,B,u,T) :=sup{h(X,B,u,T,a): aa u-partition of X with Hy (&) < oo}.

Note, that in fact we always can take a countable p-partition & in the definition
above, since the condition Hy (&) < oo implies that o is modulo u equal to a countable
u-partition o’ of X, and h(X,B,u,T,a) = h(X,B,u,T,a) by Remark 3.3.

Lemma 3.2. Let (a,)nen be a sequence of real numbers. If (an)nen is subadditive, that
is apam < ap+ ay for all n,m € N, then lim La, = inf 1q,.
n—oo neN "

Ifay € [0,00), Vn €N, such that an1 — ay > ayi2 —ay—1, Vn € Nand a; > ap —ay, i.e.
the sequence has decreasing increments, then the sequence is subadditive and fulfills
Jim i = fnf o = Jim a1 =)

For proofs of these well-known statements we refer to [4], Fact 2.1.1, respectively
to [11], Lemma 9.13, for the first claim.

Corollary 3.1. Let (X,B, ) be a probability space, T a measure-preserving trans-
formation on it and & a countable p-partition of X, then H(og™ ™"~ ") < H(af'™") +
H(og™") and lim (o) = infuen 1H (™).
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Proof. Using Proposition 3.1 (5) and (7), we compute
H (o) = o™ v 1) = Hy (o) H(ogy o) <

< Hy(o )+ Hu (g™ 1) = (o) + Hy (T "o 1) =
= Hy () + Hu(T "o ),

due to T-invariance.
If Hy (0t) = oo, then Hy (0~ ') > Hy (@) = oo for all n € N, hence

e

If Hy (@) < oo, then we also have Hy (o) ') < oo for every n € N, since otherwise we
could choose a minimal n € N such that Hy (o) ") = o, but by subadditivity we know
that Hy, (o) ') = Hy () %) + Hy (@) < o, a contradiction. Therefore, if Hy (o) < oo,
then a, := Hy ('), n € N, defines a subadditive sequence in [0,0)" and by applying
Lemma 3.2 we obtain nlgrolo %H(agil) =inf,ey %H(otof1 ). O

Remark 3.6. If u is a T-invariant probability measure, and o is a measurable u-
partition of X such that Hy () < oo, then we can rewrite the entropy as

h(X,B,u,T,a)=H, (oc|k<=71 T*"a) =Hy (kZT"mkg T’ka).

Indeed, applying Proposition 3.1 (5) and using the fact that H, o T = Hy, due to
T-invariance of U, we compute

n—1

h(X,%B, 1T, o) = lim ~H, (av \/ T‘ka) -

n—oo P

— lim 1 (Hu ((x|:\/]l T—k(x) +Hy, (T_l (:\/(Z)T—k(x))) =

n—oo

n—oo N

1 n—1 n—2
= lim - (H, (@] \/ 7)) + By (\/ T ™)) =
k=1 k=0
1 n—1 n—2 n—3
— Tim & —k —k -1 —k _
}ggon(Hu<a|l{\/lT (x)+Hu((xk\/]T o)+ Hy (T (k\/OT «)))

n

il (“'k\j/l ra)),

:...:liml(

n—oeo n

where we define \/{_; T %ot := {X,0}. If Hy () < oo (which in particular implies that
Hy (o Vj_, T~*at) < Hy (@) < o0), then the sequence A, := X'~ Hy (| Vi_ T *at)
has decreasing increments: Clearly, by Proposition 3.1 (7), we get that A, — A, =
Hy(a| Vi T*a) > Hy(a| ViE T*a) = Ayio — Aps1, and we see that Ay = Hy (o) >
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Hy(a|T'a)=Hy(a)+H,(a|T'a) — Hy () = A2 —A;. So, by Lemma 3.2, we ob-
tain lim 1A, = lim (A, — A,_1), hence
n—soo

n—o0

1 n—1 J . n—1 . o .
lim7< H,(x T‘a):limH a T "a)=H,(«x T "),
pim (X P V7)) = Jim Hy(al \/ T4a) = (o] V 77400

where the convergence is a consequence of the fact, that (Hy (a| V=] T7*a)),en is
a decreasing sequence in the (extended) real line, which is bounded from below by
Hy(a| Vi T a).

By Proposition 3.1 (3) we can write Hy, (a| 5 T *at) as Hy (Voo T *t| Vi T ).

Proposition 3.2. Let (X,B,u,T) be a measure-preserving dynamical system with
w(X)=1and o, B be measurable p-partitions of X.

1. o =< B implies h(X,B,u,T,o0) <h(X,B,u,T,B).

2. We always have h(X,o(a),u,T) <h(X,6(a), 1, T,a) = h(X,B,u,T, ).
If Hy (o) < oo then we obtain equality: h(X,6(ot), 10, T) = h(X,B,u,T, ).

3. If B C B, are two o-finite sub-c-algebras of B, then we get h(X,B,u,T) <
hX,B1,u,T) <h(X,B,u,T,a). Especially, if there is an increasing sequence
of o-finite sub-c-algebras B, of B with n € N such that 6 (U,cn Bn) = B mod
U, then r}i_r)rgoh(X,EBn,u,T) =h(X,B,u,T).

Proof. 1. Clearly, o < B implies that ol ' < By~ for every n € N, hence the claim
follows by Proposition 3.1 (7).

2. Since |
h(X,B,u,T, o) = lim —H, (o) =

n—oo

1
limy,_ye0 — ( Y u(A) log(y(A)))7 if a = a countable p-partition mod u

= n Meo
oo, else

depends only!! on those elements of B, which also lie in « , it is no restriction
to consider 6 () instead of B, i.e.

h(X,o(a),u,T,o0) =h(X,B,u,T, o).

By definition, h(X,0(a),u,T) = sup h(X,o(a),u,T, ), but
B p-partition of (X,o(a), i)
Hy (B)<e

for every countable p-partition 8 C (&) we obviously have 8 < o, hence by
(1), we obtain h(X,c (o), 1, T,B) < h(X,0(a),u,T, ), for every countable fi-
partition 8 of (X, 6 (o), ), and therefore
h(X.6(a), 1, T) = sup h(X,0(a),u,T,B) <
B p-partition of (X,0(a), 1)
Hy (B)<ee

<h(X,6(a),u,T, ).

Recall, that the condition that ¢ is equal to a countable u-partition, whose elements are almost those of
a, can in fact be reduces to & having countably many elements, which already build a p-partition of X.
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Thus, if Hy (@) < oo, we immediately get

h(X,o(a),u,T)=h(X,6(a),u,T,a).

3. Using (2), we see that

h(X7%l7”7T): Sup h(X7%]7|LL7T7B):
BB, Hu(B)<es

= sup h(X,B,u,T,B) < sup h(X,B,u,T,B) =
BBy, Hy(B)<eo BBy, Hy(B)<eo

:h(X7%1,,LL,T)7

since, trivially, every B; C 9B is also a subset of B5.
Now, since (7(X,B,,U,T))qen is a monotonously increasing sequence of posi-
tive extended real numbers, which is bounded from above by i(X,2B,u,T), the
sequence converges (or is equal to infinity but in this case also h(X,B,u,T) =
00).

O

One of the main reasons, why entropy is of such big interest is, that it is an invariant
for isomorphic systems. This will be stated in the next proposition, together with other
useful properties.

Proposition 3.3. Let (X,B,u,T) and (Y,D,n,S) be two G-finite measure-preserving
dynamical systems.

1. If (X,B) is a standard measurable space and (X,B,,T) and (Y,D,n,S) are
isomorphic, then every measurable |L-partition ¥ of X, with &(Y) being o-finite,
satisfies

Hu(1T™'y) = Ho(F(1)IS” (1)),
where f: X — Y denotes an isomorphism between (X,B,1,T) and(Y,D,n,S).

2. Let u and 1 be probability measures. If (X,B,1,T) is a factor of (Y,D,1,S5),
then
h(Xa%au7T) < h(Yaganvs)

If the two systems are isomorphic, then

h(X,‘B,H»T) = h(Yagvn,S)

3. Ifu(X) =1 and B is a measurable u-partition of X such that B,T~'B,...T~"B
are independent, then *H, (\/}_o T~*B) = Hy(B), in particular for Hy (B) < =,
we get

h(X7%7“aT7ﬁ) :HH(B)

4. If B is a measurable u-partition such that &(\/y T ~*B) = B modulo p with
H, (B) < oo, and W is a probability measure, then

h(X,B,u,T)=h(X,B,u,T,B).

We will only prove the first statement, the other facts are well-know and simple to
prove (see e.g. [4]).
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Proof. With the notation as above, due to Proposition 1.3 (6) we get, by using the
transformation formula,

(T 19) = [ H o (071,00 () =
—/Hﬂ oy 0T 0)) () =
- /YHn,[m,lw(y)Wm i ) () =

= [, (10510 (90) ) = Ha (OIS (),

if yNmy-1,(x) is equal to a countable partition of 7;1,(x) modulo u (according to
Proposition 1.3 (4). If this is not the case, then f(YN7y-1,(x) is not equal to a countable

partition mod (1, neither, so we obtain Hy (Y|T~1y) = e = Hy (f(7)[S7' £(7)). O

3.3 Tools for infinite measure systems

Let (X,%,u,T) be a o-finite measure-preserving, conservative dynamical system.
We define a special kind of p-partitions of X (also considered in [10] and [15]), which
allows us to reduce the static entropy of an infinite space to a finite one:

Definition. A p-partition o of X is called local with core A € B, 0 < U(A) < oo, if
A¢ € ovand Hy (o) < oo.

Note that Hy (&) < oo implies that & is mod u equal to a countable u-partition,
hence by Remark 3.3 we may w.l.0.g. assume that « is countable, when studying prop-
erties of the entropy of ¢. The advantage of this definition is that, if £(A¢) = oo, then
Hy (o) = Ypcapu(p)<e —H(B)log(u(B)) = Hy|, (\ {A}), i.e. we are actually left
with treating the entropy of the finite-measure space (A,B NA, U|4).

Be aware, that if 1(X) = oo and o is a local p-partition with core A, then &() is not
o-finite unless we restrict it to A.

Local p-partitions always exist in o-finite measure spaces (not empty modulo mea-
sure), because, as long as there is an A € ‘B with positive finite measure, we can con-
struct a local p-partition with core A: As a trivial example, just take o := {A,A°}, then
Hy (o) = pu(A)log(p(A)) < oo, if p(X) = oo and, clearly, Hy (o) = p(A)log(u(A)) +
KA log(1(A°)) < oo, if p(X) < oo,

Of course, the (abstract) concept of a local p-partition is primarily of interest in
infinite measure systems. Therefore, when dealing with local p-partitions, we will
mostly restrict our considerations to infinite measure systems.

By conservativity every measurable set A of positive measure is recurrent, and so
we can partition A by the time steps which are needed to take the elements of A again
back to A the original set (considered also in [10] and [15]):

Definition. For A € 9B with 0 < p(A) < oo the first return time [-partition of A is
defined as

n—1
pra = {AQT_"AQ ﬂ T /A :n EN} ={{ora=n}:neN},
j=1

where we set (" i—1 :=X. (By ¢ra we denote the first return map w.r.t. T, confer
section 1.3.2.)
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If T is an automorphism, we obtain also the last visit time [L-partition of A

n—1
proai={ANT"AN( T/ :n e N},
j=1

Note that these p-partitions are countable.

The following definition of [10] (similar in [15] and [14]) will be a crucial condition
for the equality of the different notions of entropy.

Definition. Let (X,®B,u,T) be as in the definition above. A set A € B with u(A) €
(0,00) is called quasi finite if
Hy), (pra) <ee.

And the whole system (X,B,u,T) is called quasi finite if it contains a quasi finite
sweep-out set of positive finite measure. Further, we say that a local y-partition o of
X with core A € B is quasi finite, if A is a quasi finite set and pra < a\ {A°}.

If T is an automorphism, we call the local p-partition o with core A inverse quasi
finite, if A is a quasi finite set and py—1 4 < a0\ {A“}.

Remark 3.7. Note, that if 7' is an automorphism, then
HlJ.lA (pT-A) <o & H,U‘A (pT’I.A) < o,

since 7" ({@ra =n}) = T"(ANT "ANT'A°N...AT"HA = T"ANANT"'A°N
T'AC = {9714 = n}, hence by using T-invariance we see that u({@ra = n}) =
(T (T grn = n}) = BT {@ra = n}) = H({@y-1, = n}).

Similar to the case of probability measures, we consider the quantity

n—o 1

. 1 n—1
h(X,B,u,T, ) = liminffHH( \/ Tka),
k=0

following [10].
Note that if o is countable and T is a measure-preserving automorphism, then

n—1 n—1
Ho(\/ 774a) =y (\/ Ta)
k=0 k=0

for every n € N, because

H, <n\/1 ) =

k=0
=- Y pAoN...AT " A, )log(u(AoN...nT" A, 1)) =
Apeak=0,....n—1
((AgN..OT A, p)7#oo
=— Yy (WoT" H(AgN...NT " A, )

Ap€ak=0,...,n—1
(oT™ 1) (AgN..n T 1A, | )7eo

log((uoT™ N (AgN...NnT A, 1)) =
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= — Z ‘I.L(Tn_lA()ﬂ...ﬂAnfl)IOg(,u(T”_leﬂ...ﬁAnfl)):

W(T" 1 AgN...NA,_ 1 )Foeo

:Hu(n\/lTka)

k=0

If we additionally require that 1 is a probability measure, then }Az(X B, 1, T, a) is noth-
ing else than the dynamical entropy A(X,B, 1, T, o), since in that case

n—e p

. 1 n—1 . 1 n—1 7k
hX,B,u,T,a)= hrrlglgf;Hu( \/ T a) = hmlnffHu( \/ T Ot) =
k=0 k=0
1 n—1
— im — —k _
- nlgrolonH”( \/ T a) = h(X,B,u,T,q),
k=0
because by Lemma 3.2 we know that the series converges for pt < 1.

We can deduce the same identity for A(X,%,u,T,a) as for h(X,B,u,T,a) in
Remark 3.6 in the following case:

Lemma 3.3. Ler (X,B,1,T) be a o-finite dynamical system with [1(X) = oo such that
T is a measure-preserving automorphism and let o be a quasi finite local |L-partition
of X, whose core A € B is a sweep-out set w.rt. the inverse of T, i.e. X = U,en, T"A
mod [, then

h(X,%,u,T,a) = H, (a|I§Z Tka> —H, (goTkmg Tk(x).

Moreover,
H (el \/ T8a) = Hyy, (anal(\/ T*a) na).
k=1 k=1

If we assume that o is an inverse quasi finite local W-partition whose core is a
sweep-out set (w.r.t. T), then we get

(X, B,u,T,a) =h(X,B,u,T" " a) :Hu(\/ T *al\/ T’ka).
k=0 k=1

The proof follows [10].

Proof. By Proposition 3.1 (8) we know that
n—1 n—1 m
(V1) = Y fu(al\/ T'a) o700,
k=0 m=0 k=1
where \/?_, T*or := {X,0}. Hence,

R o 1 n—1 L
h(X,‘B,,u,T,Oc)—11r1lg1£fn/xlu(k\/0T @) (x) dua(x) =
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_l1r£g1£fn "le/ IH a|\n}Tk(X>(Tm7("71)x) d,u(x)) =
_11m1nf Z /Iu oc|\/Tk ) ))7

by the transformation formula and T-invariance.
We will show that

/I,J(a|\/Tk x) d(x —>/I,1 oc|\/Tk ) 1 (x) for n — oo,

which implies that

h,gg}f,,Z/lu a|\/Tk ) du) = [ (o \/ 7)) ),

k=1

and this is precisely the desired equality.
We will compute that

I (a| \/ Tka) (x) =0 for every x € A° with u(ocm (k\’}lTka)x) £0

Clearly, elements for which p (o, N (Vi_; T*a) ) = 0 vanish in the entropy (since
o and \/i_; T*o are countable, so the definition of conditional entropy uses just set-
theoretical conditional measures).

Let x € A° be fixed such that (\/j_; T¥et) - # 0 mod y, and let us write (\/}_, T*a) =
T'A\N...NT"A, forAy,...,A, € a. Since this set is not a null-set, it is a subset (mod
w) of Ujen, TJA, because A is a sweep out set w.r.t. T-!. Hence, there has to be an
i€ Nwith (T'A;N...NT"A,)NT'A # 0 mod u. (Note, that we can assume that i > 1,
since T'A;N...NT"A, cannot be covered by A, since by assumption, ANT'A;N...N
T"A, # 0 mod p.) If n is large enough, then i < n, thus A;NA # 0@ mod u, i.e. A; CA,
because « is a local u-partition with core A. In particular, for n large enough,

w(T'A N...NT"A,) < u(T'A;) = u(A;) < u(A) <

thus by definition
n
Iy (0‘\ V Tka) (%) =Ly 14,7, (06) ().
k=1

Moreover, by assumption pr.4 < ¢|4, hence if A; T A # @ mod , then all elements
of A; have to lie in A€ after i (time) steps of 7', i.e. A; C T7'A° mod u. In particular, if
WASN(T'A;N...T"A,)) #0, then A; C T~'A° mod p, which is equivalent to T°A; C
AC¢. Hence, in that case we obtain

AN(T'AN...NTAN...NT"A,) =T'A N...NTA;N...NT"A,
modulo u, which implies

RAN(T'AIN...NT"A,))
u(T'AyN...NT"4,)

R(A|T'A N...NT"A,) =
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and therefore

I (0 V/ T4@) () = By ay ) (@) () =
k=1

= —log(L(A°N(T'A1N...NT"A,)|T'A;N...NT"A,)) = 0.

Analogously, we deduce that
I, (a| \/ Tkoc> (x) =0
k=1

for x € A¢ such that (Oc V Ve Tka)x # @ mod p. (Note, that we use the definition of
conditional entropy given in Remark 3.2 here, since \/{_; T¥& could be uncountable
modulo u.)

Now, the case u(A°N (T'A;N...NT"A,)) = 0 (and in particular the case u(T'A; N
...NT"A,) = 0) vanishes in the definition of the static conditional entropy. Thus, all
in all we have shown that

Jotu(@ V7 (3) duax) =0

k=1

for n sufficiently large. Analogously, [, I, (Ot| Vo, T (X) (x) du(x) = 0. Therefore,
n n n
Hy (o) \/ That) = /XI” (e V/ 740t (x) da () = /Azﬂ (e \/ 740t (x) da () =
k=1 k=1 k=1

=Hy, (omA\ ( \i/ T"a) ﬂA>,

and

H, (ock\7l Tk(x) :/XI# (aSZTka) (x) du () :/AI# (alpl Tka) (x) du(x) =

— Hy, (@nal (5/1 T*a)nA).

Now, by (A) < e we can use Lemma 3.1 on (4, BNA, ), because

B
1(A)

_ u(D) D)y _
ity (o) = _DGZ;Z‘A u(A) 1Og(u(A)> -

_ ! (D) o
= o) T G 0B ) = () + log(u4) <=

since « is a local u-partition. So, Lemma 3.1 gives

lim H s (Aﬂa\(Aﬁ\n/Tka)) —H u (anal(an {O/T"a)).

n—eo  u(A) u(A)
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Further,

/A%) (a|(Aml>7]Tka))(x) dﬂg‘) (x) =

u(DNT'A|N...NT"A,)

_ p(DNTAN...NT"A,) B TR
- Deza| - vy o8 (o) =
Aea, k=1, u(A)
— 1 ! k
- @ /Alu(mkle &) () du(x)

Analogous for the infinite refinement:

o0 u | o
I (a(Aﬂ T"a))d—:—/l (a Ta)d.
A | k\=/1 w(A)  u(A) Jat |k\:/1 H
Putting those things together, we obtain
n

tim | 1, (ak\ZTka) (x) du(x) :}E‘JQAI“ (a| \/Tka)(x) du(x) =

n—so0
k=1

= timp(a) [ 1y (al(An\ Ta)) () d s () =

f—yoo A H@ o u(A)

=p(a) [ Ly <a|(Aﬂk\:/1Tka>)(x) dué‘A) (x)—/AI#((X|k\=/1Tka>(x) du(x) =

:/qu(oq {}rka)(x) du (x).
k=1

Replacing T by T~! we obtain the claim for inverse quasi finite local y-partitions.
O

4 Concepts of entropy for infinite measure systems

From now on let us assume that (X,B, ) is a o-finite standard measure space with a
measure-preserving, conservative and ergodic transformation 7.

There are different concepts of entropy of a dynamical system with infinite mea-
sure. We will now introduce Krengel’s, Parry’s and Poisson entropy. Let us start with
the most recent one, introduced 2005 by Emmanuel Roy:

4.1 Poisson entropy

In section 2 we have construed a probability space from an infinite measure space.
For this probability system we can use the Kolmogorov Sinai entropy and obtain the
following
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Definition. Let (X*,B*, u*, T*) be the Poisson suspension of (X,B,u,T) with u(X) =
oo, Then the entropy of (X*,%8*, u*,T*) is called the Poisson entropy of (X,B,u,T),
ie.

i (X, B, 1, T) i= h(X*, 8", 1", T").

Notation. Corresponding to a given countable p-partition o of X one can construct a
U*-partition o* of X*, by using the evaluation map:

{ﬂN ({ma}): nA)AeaeNl ‘}.

Aco

The static entropy of the p*-partition o as above is strongly related to the entropy
of the underlying system in the following sense:

Lemma 4.1. Ler (X,B, 1) be a 6-finite measure space with [L(X) = o and o a local
U-partition of X, then o* is equal to a countable u*-partition modulo u*, and

Hy(0*) =Y H(Poiya)).
Aca

More precisely,

H(A; )10g(n|)
n!

Hys (%) = Hy (o) + Y p(A) + i i K(A)"e”

i=1 i=1n=0

)

where A1,Az, ... shall denote all elements of a. beside the complement of the core of .
In particular, Hy= (o) < oo,

Proof. By the assumption of being local, we know that & is mod u equal to a countable
U-partition. So w.l.o.g. let o be countable. Let A denote the core of «, i.e. A is
a positive finite measure set with A° € @, (t(A°) = oo, and let A;, i = 1,2,..., denote
those elements of @ which are subsets of A. Now, u*-a.e. element of * is of the form

ﬂNA_[_l({n,'}) NN ({0}), for ny,ma, ... in Ny such that Zn,- < oo,
i=1 i=1

since all elements in o* different from the above form are contained in the p*-null
set Ny ' ({eo}) U Unen, Ny ({n}). Now, the condition, that ¥'* | n; < oo actually means
that only finitely many elements among np,n;y,... can be non-zero. And the set of all
countably infinite sequences of natural numbers, with at most finitely many non-zero
entries, is countable:

{(n)i) € NG Z”z<°°}|—\U U {(ni)) NG iy =0,V1 ¢ Ji}| =

k= OJkCN |Jk| k

= J{ N, =k} = [ JN.

k=0 k=0
Hence o* is modulo p* equal to the countable p*-partition {;=, NAjl ({n ) NN ({oo}) :
(n:)7., € N such that Y7 n; < oo},
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Now, we can compute the entropy of a* as follows: Let us set Ay := A¢. Using
independence of Ny, Ny, ,... W.r.t. 1™, we get

i@ 5 e (finn) (e () -

o ~N.N =
(ni),‘:OENO 0 J=0

oo =

= ¥ T ) (X~ log(u N (1)) =

(ni) €N 0 K=0 =0
=Y ¥ (—logu (N ({n D)) (V) (1)

[T wovy (),
(ni)ievg\{ j}€No o KENo\{J}

where we were allowed to reorder the summations, since we clearly have that
u*(NA’kI({nk}))( log(u*(N, ({nj})))) > 0, hence if the sum converges, then it con-

(m)ieng\( j1€No i Tlkero\ B (N, ({mi})) = 1, because
Y em, & (N ({ni})) = 1 for all i € No \ {j}, thus

verges absolutely. Now, Z

Z Y (log(u* (N ' ({n ) (Ny  ({n})) =

Jj= On_ €Ny
= Y Ny, ({no}))(—log(u* (N, ({n0})))+
nOGNO
Y W Ny () (= log(u* (N, ({ma}))) +
nIENO
= Z Z Poiy ) (n)(—log(Poiyp)(n Z H(Poiyp)).
BeanENo Bea
More precisely, since ¥, .y, —P0ie(n)log(Poiw(n)) = 0, we have
Hpy(o)= Y, H(Poiyg)= Y, H(Poiyg)).
Beat,ju(B)#oo Bea\{Ac}

Further, by Example 3.2, we get

- ne=HA) Jog(n!
Hy (o)=Y (—u(A)log(u(A))+u(A)+Z“(A) M log(nl)y _
A€, [1(A)F#e n=0 n!
—H(A; )]Og(n')

a)+iu +ZZ uiA

i=1n=

Clearly, H, (&) < oo by definition of a local p-partition, and };° | 1(A;) = p(A) < eo.

Further, for n € N, n > 2, we have 1°gn(! n) _ j log( ) < n= lzlllog< n < ‘) 0 12)
and therefore

i i L(A;)"e F A Tog(n!) i i B(A) e HA)

i=1n=0 n! S5 -2
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Hence, all in all, we get Hy«(a*) < oo. O
Remark 4.1. For countable p-partitions ¢ we have

o(a’) 2 (o(a))",
where, as before, (6(«))* = o(Ng : E € 6(a)) and 6(a*) = {Up,eqr e M1 € B* :
L arbitrary index set}. If & is a local p-partition, then
o(a”)=(c(a))* mod u*.
(Note that actually 6 (o) = o (@) since ¢ is countable.)

Proof. To see that (o(a))* C 6(a*), let E =, A € o(a) for A; €  and n € N

be arbitrary. Then
N {mh) = U (I, (i) =

my EN(),IELIGL
Yiepm=n

—1 ~1

= U NN Amb)n (N {mid),
myeNg,leLULC [€L leL¢

YieLmy=n

ca*
where L° shall denote the index set of the remaining elements of & when taking away
those with index in L. So, Nz ' ({n}) is a union of elements of a* and N ' ({n}) € B*,
thus Nz ' ({n}) € 6(a*). Thus 6(Ng : E € o(a)) C &(a*).

If o is a local p-partition, then o* is equal to a countable p*-partition or*’ of X*
mod p*, by Lemma 4.1. W.lo.g. let a*’ C o*. Thus, 6(a*) = 6(a*) = o(a*’)
modulo p*. Now, since o is countable we clearly have a* C 6(Ng : E € 6(t)). Hence,
o(a*) Co(Ng:E € o(a)), for a*’ C a*. Therefore,

6(a*) =o(a*') C o(Ng : E € o(a)) mod pu*.
Thus, with the above, 6(a*) = 6(Ng : E € o(a)) mod pu*. 0

The following Lemma of [10] (Lemma 4.2) provides equality of the conditional
static entropy for the Poisson suspension and its underlying system.

Lemma 4.2. Ler (X,B, L) be a complete standard measure space and [L G-finite with-
out atoms such that [1(X) = co. Then, for G-finite sub-c-algebras A and € of B, € C 2,
both without atoms, we obtain

Hu* (WIQ*) = Hu (2[|Q:),

where A* := 0 (Na: A € ), € := 0 (N¢: C € €) and U* is the probability measure of
the Poisson suspension (X*,8*) of (X,B,1).

(Note, that 2{ having no atoms implies that all elements of the generating p-partition
are null sets and therefore the p-partition cannot be equal to a countable (t-partition
modulo u, hence Hy, () = oo. And analogously, H,,(C) = eo.)

We are following the proof of [10]:
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Proof. W.l.o.g. we can assume, that 2 = *B, since by Theorem 1.4 there is a o-finite
standard measure space (Y,2',v) and a o-finite sub-c-algebra €' of 2’ such that by
Remark 3.4, Hy (|€) = H, ('|¢’), i.e. it is sufficient to show the claim for the Borel-
o-algebra 2’ on this standard space, but for simplicity we just use the notation of the
original standard space (X, 1t). Note that we do not lose generality by the assump-
tion of completeness, since adding null-sets which are contained in null-sets already
taken into account does not change the entropy'2. So let us assume that € is complete.
Then by Theorem 1.11 there is a standard measurable space (¥,©) and a family of
(measurable) measures {m; };cr on this space, such that there is an essential isomor-
phism

0=(v.f): (X,B,u) — RxY,B(R)®D,1) with i (E x D) := /Em,(D) dA(t)

for E € B(R),D € ® and
6~'(B(R) x¥) =y~ (B(R)) = €.

Clearly, (R x Y,B(R) ® ©,11) is a standard measure space, so we can consider its
Poisson suspension ((R x Y)*, (B(R) @ ©)*,*). Due to Remark 2.2 [i*-a.e. element
v of (R x Y)* can be written as

V= Z 5(li(V)-,yx'(V))’
i€Z.
for t;(v) € R and y;(v) € Y, moreover let (t;);cz be ordered such that ; < #;, for all
i € Z (unless both are equal to +oo or —e0) and #; < 0 fori <0and ¢ > 0 fori > 1. Note,
that choosing an ordering guarantees uniqueness of the sequence of tuples ((f;,y;))icz

for fixed v, confer Remark 2.2.
‘We will show that

(RxY)",(BR)®D)" ") ~ (R xY*, B(R)* @D, P)
with
P(MXN):= / Ry ) (N) dA (1), WM € B(R)*, N € DE.
M ez,
Note that () is defined for A*-a.e. 1 € R*, because #;(n) # +oo for A*-ae. N €
R*: Those n € R*, which are represented by a finite sum, form a null set: A*({n €

R*:n =Yz 61,-(17) <oo}) = ZneNO A*(Nﬂil ({n})) = ZneNo Poi(n) = 0as A(R) = .
(Obviously, P is a probability, as m;,, and A* are probabilities.)
To this end, let us consider the map

d:v= Z 5(ti7yi) — (Z 6t,~> ()’i)ieZ)

i€Z i€Z

121 et { be the measurable j-partition which generates a sub-c-algebra € of a complete o-finite standard
measure space (X,B, 1) and let  be the measurable y-partition which generates the completion € of €.
Hence C is obtained by replacing all null sets in { by all one-element subsets of it, thus ¢ = mod pu, since
for every Z € § either p1(Z) # 0 which implies Z € § or u(Z) =0, but then {x} € § forx € Z and {x} =Z
mod 1, i.e. {2 ¢ mod u, and analogously { C ¢ mod u. Therefore, we get Hy(8)=Hy (£). Further
for another measurable p-partition £ and E the u-partition which generates the completion of 6 (&) (again
& =& mod ) by Proposition 1.3 (5) we see Hy (§[C) = [ Hy, (ENC,) du(x) = [Hy (EN &) du(x) =
JHu,, (EN &) du(x) = Hu(E]L), since for every E € &, either u(E) = 0, but then py (ENE) =0 by
Proposition 1.3 (4), or (E) # 0 which implies E € €.

68



for ; € R and y; € Y depending on v € X*. By the above,
®: (RxY)*"\G— R* x Y~

for some fr*-null set G. For every M € B(R)* we have

P(M x Y% /®m, (YZ) dA* (1) = A*(M).

i€Z

In particular, this implies that if M is a A*-null set, then M x N is a P-null set for every
N € D97, since

0=A%(M)=P(M xY%) > P(M xN) forevery N € D%

Now, (R,B(R),1) is a o-finite standard space without atoms, thus by Remark 2.2,

A*-almost every element 17 € R* is uniquely determined by a sequence (;);cz in RZ,
ordered as above, with N = Y;c5 &,. (From now on we will only consider sequences
ordered as above, without stating it again.) So, by the above, P-a.e. (1,(yi)icz) €
R* x Y2 is of the form (¥;cz &, (i)icz), for a uniquely determined sequence (#;);c7
with #; € R.

This immediately implies (a.e.-) injectivity of the map ®: If

(Z O, (yi)iez) = (Z Js; (G)ieZ)

icZ icZ

for (ordered) sequences (t;)icz, (si)icz € @Z, vi,zi €Y, then y; = z; Vi € Z and, by
uniqueness of the sequence, t; = s; for all i € Z, hence @ is injective everywhere beside
on a P-null set of (R* x Y% B(R)* @ D¥Z) .

Clearly, @ is a.e. surjective: Given two sequences (¢;);cz € RZ and (y;);icz € Y%, then
V= Yic7 0, defines an Np-valued measure on R x Y. Hence, since P-a.e. element
of R* x YZ is given by such sequences, ® reaches P-a.e. element.

Moreover, given B € 98, n; € N, [ in some countable index set L and D; € D, i € Z,

then
(UNB {I’ll} XHD)
leL i€Z
{th)ﬁ RXY \G‘HZEL 251 —”laYiGDi7Vi€Z}:
i€Z icZ
{26”[ (RxY) \G’EIGL Y 84y (BXY)=ny,
i€z i€Z
Z5<ti«}’i)({tj} xDj)=1Vje€ Z} =
i€Z

= U (Ngly(m}) mm Wb, (1)) €0(Ne:Ce BR)©D) = (BR)2D)"

leL
This shows measurabhhty of @, because preimages respect set operations and the set
{Uner Nz '({n}) x [iczDi : Di €D,B € B,L C Ny} generates B(R)* @ D%, since
there is a sequence (A,)cn, of element of this set such that A, C A, for all n € Np
and U7 oA, = B(R)*, e.g. Ag := Ny ' ({0}), A, 1= UZ;(I)NI;I({k}) UNg ! ({e}) (see
e.g. Bemerkung 6.1 of [28]).
Similarly, we see that @~ ! is measurable.
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To prove that ® is measure-preserving, we will use the Laplace functional of I,
which, by Lemma 1.5, uniquely determines [I*, i.e. if we can show, that

¥poo(f) =Yg (f),
for every non-negative measurable function f of (R x Y, B(R)®D), then
Pod®=n".

Recall, that by Remark 2.4 the Laplace functional of the Poisson suspension of a stan-
dard measure space (Z, %2, Q) fulfills the following identity:
(12)

Por (1) = [ [ew (= [ mw) av(w))] do"(v) =exp ( [ [exp(=h(w))~1] do(@)).
for every measurable function & : Z — [0, o]

Let f be a non-negative measurable function of (R x ¥,*B(R) ® ©, 1), then, again by
Remark 2.4, and using the transformation formula w.r.t. o ! we get

Ypoo(f) = /

(RxY)*

~ [ sty aviey)] dpe@)(v) -
JRXY

= ./R*xyz exp {—/Mf(x,y) d(qu(n,(yi)iez))(x,y)} dP(n, (i)iez) =
:/]R*XYZ / fx.y) d 2611 i) (% )’)} dP(n, (yi)iez) =

i€Z

= [ exp = X A0 dP(n. ().

R*x i€Z

By definition P = [p. Oy ® @my,(y) dA*(N). Due to this form, we can split the inte-
gration (confer Remark 1.5 (2)), and pursue the computation (using the Theorem of
Fubini):

Vroo(f) = [ [ exp [ E 16050 d@my ) (3)icz) dh” () =

i€Z i€

= [ TTeploam. . dmoo) dim (). " () =
= [ IL(fyewo [ = statm.] dmn ) ar*n) =
= [, (X (tog (], expls ) dmia) ) ) =

= [ ([ (02 ( [expl-s) m) ) d(E 8,0)0)) ()

i€Z

= [ ew( [ (1og( [ expl=sie] dm()) o)) @2 (n),

R*
where we used the Theorem of Fubini, and by (12) this is equal to

exp ([ (exp[tog [ [ expl—s(e.y)] dm()]] 1) ah(e) =
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—oxp ([ ([ expl=fle.n)) dm() ~1) dr0) =
=exp (/}R (/Y(exp[—f(t,yﬂ —1) dmt()’)) dA(t) =
—exp( [ (expl—f(t.)] ~ 1) dE(1.5)) = ¥ (1),

again by (12). (Recall that T = [ & ® m; dA(t), so we could glue the integration
together like in Remark 1.5 (2).)
Thus we finally have verified that ® is an essential isomorphism, hence

(RxY)*, (B(R)@D)*,T*) ~ (R* x Y2 B(R)* @ D, P).
Now, Remark 2.5 states that
(X, B, 1)~ (RxY,BR)@D, 1) = (X*,B",u") = (RxY)",(BR)©D)", 1),
thus combining this with the above, we gain
(X*,B*, 1) ~ (R* x Y2 B(R)* @ D%Z, P),
with corresponding isomorphism
0 :=®o06*, where 0*(y) :=y00~ !, Vye X*.
Recall that 81 (B(R) x Y) = €, thus we can deduce that
O (B(R)* xY%) =¢*.
Indeed,
O ' (BR) xYL) =0 (@ '({ExYL:Eco(Ng:BEB(R))}) ="
=0 (@ (o(Ngx Y2 :BEB(R)))) =60 (c(® ' (NgxY?:BeB(R)))) ="
=0(0" (Npxy :BEB(R))) =0 (Npuy 00 :BEB(R)) = 6(Np-1(5,y) : BEB(R)) =
=0(Nc:Ce@€)=¢".
So, using Remark 3.4, we obtain
Hy+ (B*|€*) = Hy (07 (BR)* @D“%) |0 (B(R)* x ¥%)) =
= Hp(B(R)* @ DZ|B(R)* x Y7Z).
Because eg = {{t} : t € R} generates ‘B(R), we get that

o(er) = B(R)",

13(This quality holds since, clearly, (Np, x YZ)¢ = (R* x 0) U (N§ x YZ) = N§ x YZ, Njes (N, % Y7%) =
(NjesNB;) % Y% and Uj]g(NB/. xY?) = (Ujes NB;) % Y% for B; € B(R), j in a countable index set J.)

"Note, that q)il(N[; ({n}) xY%) = {Liez 6(1,:)7) eRxY)": Ziez‘sri (B) =n} ={Yicz S(Ii_m € (Rx
Y)*: Yiez 8y (BXY) =n} = Ngly({n}), for every B € B(R), n € Ny.

71



where eg« := {{n} : n € R*}: Ae. element n of R* is of the form 1 = };c7 §, for
some t; € R, thus

my= () N YNNG, (0} € B,

(€7 tiF o0

hence €g+ builds a u*-partition of R* (with 6(€*) C B(R)*) and since it is the finest
U*-partition, we see G (eg+) = B(R)*. Thus, using Remark 1.5, we compute

Hp(B(R)* @ D°Z|B(R)* x YZ) =

= H (’7<‘->iez)((%( ) ©®Z) SR*XYZ(n’(yi)iGZ)) dP(n, (i)icz) =

P
R* XYZ NS]R* XYZ ’ }l

= [ Hocom o (BRI D)0 ({1 <) ARy (i) dr () =

i€Z

_/* vz ®,€th (n> @®Z d®mt yl)IEZ) d)y / H®z€th (@@Z) dl*( )
i€Z

since the map under the integral does no longer depend on (y;)iez and ®;cz,my, ) (Y 2y =
1.

Let n = Yz 6, € R* be fixed for the moment, and let for each i € Z, {; denote the
measurable m;,-partition of (¥,,m;,) which generates ©, then

={...xAj,xAj, x...:A;; €§,jeL}

is a measurable &), my,-partition of YZ which generates D%.

We first consider the case that every m -partition {; is equal to a countable m;, -partition
modulo m;,. Then, w.l.o.g., we can assume that {; contains no my,-null sets for every
i € Z, which implies that A is equal to a countable &),z m;,-partition modulo &)<z 1.
Indeed, if A contains uncountably many sets, then by Remark 3.1 they - up to countably
many - have to be @),z m;,-null sets, but there are none, since @,z m;, ([TiczAj;) =0
if and only if there is an i € Z such that m;; (A ;) = 0, which is forbidden. Thus, similar
to the proof of Lemma 4.1,

H®;ezmr, (©® Z ®mtk 10g(®mti(F)) =

FEAkeZ i€Z
= T X (- TIman (L rogtm(4,))) =
A_,'OEC()A“ eg keZ i€Z
Y Y ( =T (Aj) log(miy (Ajy)) = T [ e (A ) Tog(my, (Aj,)) — ):
AjOECOAjIECI kEZ keZ
X X (s X maag) T (40 loglmg (45,))
Ajy€oAj, €6 Aj€d keZ\{1}
——_———

=1

PClearly, Hs,\00({n} x {) = Lreg 8y ® Q({n} x F) -log(8(yy ® Q({n} x F)) = Lreg Q(F) -
log(Q(F)) = Ho(&) or H{S{n}@Q({n} x §) = oo = Hy({), for Q some o-finite measure on 6(§) with §
a measurable Q-partition.
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N Z m[' i Hml' log mtl(AJ‘I))i".>:

Aj, eg i€Z
= = Z Z mll Ji log mtl l Z Hmt
i€LAj€G; i€l

In case, there is an / € Z such that {; is not equal to a countable m;,-partition modulo
my,, then'® A is not equal to a countable ®;cz,m,-partition modulo &);czm;,, hence

H,m, (D) =0 =Yiep Hy, (D).
With the above, we get

Hp(B(R)' 9D BR)" xY%) = | Heiym,, (0°%) A (m) =

~ [ Lt @ am) = [ [ Hn (@) d( L 6 ) 1) dA*(n) =

i€Z i€Z

—/ /me dn d)“* /Hmt
R*

since by Remark 2.1 (1) _
2= [ nam),
JR*

and similar to Remark 1.5 (2), we get [ f(t) dA(t) = [« & f(t) dn(t) dA*(n), for
any measurable non-negative map f on R.
While, analogous to a previous computation, we have

Hyy(B|€) = Hy (67! (B(R)© D)6~ (B(R) x ¥)) = Hy(B(R) @ D|B(R) x ¥) =

= Hy 1y x D) du(t /Hm,
= [ Higo () )

which is exactly the expression above. Hence, we finally obtain
Hy (B*|€*) = Hp(B(R)* @ DB (R)* x ¥Z) = / Hy,, (D) dA(t) = H, (B|©).
R

O

Lemma 4.3 ([10]). Given an ergodic, conservative, measure-preserving, o-finite dy-
namical system (X,B,u,T) such that W(X) = oo and T is an automorphism, then

n—1
limsup 3 u(B)|Be \/ T *a, u(B) € (0,0) { =0,
n—roo { ‘ k\:/O }

for every local [-partition o of X.

Proof. Let o be a local p-partition of X with core A € B, (A) < . We already
know (see Remark 1.3) that under the stated assumptions every set of positive mea-
sure is a sweep-out set, i.e. X = J,>07 "A mod . Since T is an automorphism, we
can adapt this result to the system (X,%,u,T~") (note that T~'5B = B mod u) and

16To see this, let {4}, }ucv» Aj, € &, be an uncountable family of my,-null-sets with my, (U,ey Aj,) # 0,
and let A, € {; be such that m;(A; ) # 0 (such sets clearly exist, since {; is a m;;-partition and m;(Y) # 0 by
deﬁmtlon) forie Z\{i}, then L, :=[T;</Aj; X Aj, X1~ Aj; € A with ®;czm;, (Ly) =0 for all u € U, but

®1€Z my (UMEUL ) HIEZ\{I} my ( ) my (UuEUAJu) 7& 0.
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get X = U,>07T"A mod p. Therefore, the first return time map @r4(x) := min{n >
1|77 (x) € A} and wyu(x) := {n > 1|T"x € A} are both finite for almost every x € A.
By ((A) < oo, we get ,}E{L“(A N{@ra >n})=pu(AN{@rs =oo})=0and analogously
for yy. Thus, given € > 0, we can choose N € N such that u(AN{@rs > N}) < € and
uAN{ys >N}) <e.
Now, let B € \/¥" T *a for arbitrary fixed n € N with 0 < p(B) < e, ie. B=
f{vﬁo T KAy, for some Ay € a. (Such an element exists, as long as \/5{\’20 T—*A, contains
elements of positive measure, since (B) < u(T*A;) = u(A), and a contains ele-
ments of finite measure by assumption. If there are only null sets in \/fc\/:"o T %A, then
we immediately get sup{u(B)|B € /2", T %Ay, u(B) € (0,00)} = SUP[0,.0) (@) =0 and
the proof is done.) Denote by k| < ... < k; (with [ € N) those indices of the intersec-
tion, for which Ay ,...Ay, are subsets of A. (Since A is a sweep-out set, there exist
such indices, if only #n is large enough.) By definition of a local u-partition, all other
elements Ay with k ¢ {ki,...,k } are equal to A“:

B=ANT'An..nT MHAnThA N NTNAc,

for example if 1 < k; and k; # Nn.

We will distinguish three cases. If k; > N orif k;; —k; > N forsome i € {1,...,]—1},
then B C T M[AN{ys > N}, and B C T~%+1[AN{ys > N}], respectively, since for
any element in B after k; (resp. k;y1) time steps forward, it takes more than k; (resp.
ki+1), and especially more than N, time steps backwards to reach A. Hence by T-
invariance, we get (B) < (AN{y4 > N}) < &, in this case.

If Nn—k; > N, then we have B C TM[AN{@r4 > N}] and therefore 1 (B) < (AN
{(PT,A > N}) < g, too.

The remaining case is that every of the above distances is less than or equal to N, which
implies BC T M[AN{@ra <N} N{@raoTy <N}N...N{@raoT; <N}, since in
this case we have [ > n. We will show that

lim 1(C,) =0 for Gy := AN{@ra <N} {graoTy <N}N...0{@rac T} <N}

which gives u(B) < € for n large enough and completes the proof. Note that lim (C,) =
n—soo

U(Co) for Coo :=(y—; Cy, since (C, )nen is a decreasing sequence and p(Cy) < pu(A) <
oo. To obtain a contradiction, let us suppose that (t(C.) > 0. Since A is a finite mea-
sure sweep-out set, Ty is conservative, ergodic and measure-preserving ([27]). So, by
Remark 1.3, C.. is a sweep-out set w.r.t. Ty, i.e. U, —o TA_’"COQ = A mod u, hence

UAn{eraoT{ <N}N{@rao Ty <N}N...=A mod p.

m=0

But u(AN{@ra > N}) > 0, because by Lemma 1.1 u(AN{@ra >1}) = u(A°nN
{ora=1})foralll € N, and ¥ ;e u(A°N{@ra =1}) = U(A®) = oo, thus infinitely
many elements A° N {¢@r 4 = [} have to have positive measure, so in particular there
has to be an / > N such that £(A°N{@ra =1}) >0, hence 0 < u(A°N{Qra=1}) =
wAN{ora>1}) <puAn{era > N}). So, since

AN{era >N} C | JAN{@rao Ty <N}N{@rao Ty <N}N... modp,

m=0

there has to be a k € N such that

(AN{ora>NNNAN{@raoTf <NYN{@raoTi <N}N...) #0 mod p.
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Let k be minimal with that property, i.e. let AN{@ra > N}N{@raoT" <N} =0 mod
u for all m < k. We claim that

Wi=AN{@ra >N}N{@raoTf <N}N{@racoTf™ <N}N...

is a wandering set w.r.t. 4. This would yield a contradiction, since (W) > 0 and Ty is
conservative. By minimality of k, AN{@r 4 > N}N{@raoTy" >N} =AN{@ra >N}
mod u for all m < k. Hence, we can rewrite W in particular as

W=AN{pra >N} {oraoT{ ' > NIN{@raoTf <N}N... mod u.

Thus,

WAT ' W =WN(AN{@raoT ' > N}N{@raoTf > NN {@raoTF 1 <N}N..)=
=0

modulo u. Similar, for j < iin N, we get

T7WNT, /W =
— (AN{@raoT| >Ny {@rao T <N}N...0{@raoT{™" " <N}N..)
NAN{@raoTI ™ 'S Ny {@raoT/™ <N}n...) =

=0,

since by i < j we have i+k < j+k, hencei+k < j+k— 1. So, we have shown that
W is a wandering set of positive measure, a contradiction. [

Proposition 4.1 ([10]). Given a measure-preserving, conservative and ergodic auto-
morphism T of (X,B, L), where U(X) = oo, and let o be a local W-partition of X,
then

h(X*7 (6-(()‘000))*’”*7 T*) < il(X7 B, U, T~ ) Ot).

Proof. Let p,n € N be arbitrary fixed. First note that (o )*)2~! < (o~ '7)*, since
n+p—1
%

. . ~ |
for every given sequence (JAoﬂ-ﬂT’""’“An+p—1 )AONAHW,@ €N, , we have
1 .
a1 C
Aﬂ NAoﬁ...ﬁT*"“*l’An,HP({JAOQWQT ntl pAan»p}) =
€a
i:(l),m,p
—1 —1
ﬂ NAOQ...QT*PAP({kO}) n ﬂ NT*IAIm..nTﬂHAp+1 ({kip)n...
A,’G(X A,'EOC
i=0,...p i=1,...,p+1
—1
N ﬂ NT’”JrlA,,,]F‘I.A.F‘IT’”+1’PA”,|+I,({knfl})’
Aica
zfnfl,f..,an»p
forko:= ¥ JAgN..NT=PA,NT~P=1B|N..NT—P-1+1B, and
Biceo
i=1,....n—1
kiz=" X Jgyn.ar-1+1B,_,AT1AN..OTPA,, ,AT-I-P-1B...AT-+1-rB, , forevery L€
Bw -1 1 I+p 1
1
i=0,....n—2
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{1,...,n—1}.
Thus by Proposition 3.1 (7) we get

(13) Hyx(((0)")5 ") < Hys (05 7)").
And by Lemma 4.1 we know that

Hy (g ")) = Y H(Poiyp) = Y, H(Poiypy),
Deof P

u(D)
since H(Poiw) = ¥, Poics (k) 10g(Poiss (k)) = 0. We have already computed, that

= oA log(k')

H(Poiy) = —Alog(A) +X+Z AK,

for A € R . Therefore, H(Poiy ) is asymptotically equivalent to —A log(4) for A — 0,
denoted by
H(Poijy) ~ —Alog(A) for A — 0T,

where A — 0" denotes the approach to 0 from the right (positive) hand side. Indeed,

H(Poiy) 1 > log(kDAKL 1

=1 1ford —0F
“Alog(A) T Zlog(d) +k§) K¢ Tiogay T rATEn
. w log(k)AKT AR
since!’ Yo og( k)! e Ailofg( <Yio, =G —2 lolg(l) :Ailofg(m —0for A —
0" (confer proof of Lemma 4.1), hence Y log(k')lkil e —0forA — 0T,

k! log()L)
since log(k,?!lkil et log( 7 > 0. Further, ;lpio% — 1 for A — 07, can (by definition)
be formulated as Ve > 0 there is an Ag(€) € R such that VA < Ay(e) with A > 0:
xﬁ;l —1|<¢g,ie!®

(1—€)(—Alog(A)) < H(Poiy) < (1+€)(—Alog(R)).

Now, by Lemma 4.3, we can choose 7 so large, that u(D) < Ag(g) forall D € o' 7

with ((D) # o0,0. (Clearly, (D) approaches 0 from the right hand side.) Hence
(1-¢) ) —wD)loguD) < Y, H(Poiyp) <

DEOC” I+p DE(X” I+p
wD )%w-, w(D )#m-,
<(1+e) ), —u(D)log(n(D)))
DG(X" I+p
u(D )#w,

17Note that we are allowed to interchange the limit in A with the infinite sum: The power series

Yo log Dk converges for A < 1, since lo;,;(( ) < 1, and thus converges uniformly on compact subsets

of [0, 1) to which we can restrict our computatlon since we are only interested in A close to zero, anyway.

Poi (Poi
181f l(log?)) —1>0, then | Mog* — 1| < € gives H(Poijy) < (1+¢)(—Alog(1)), since —Alog(A) #

0. For (P‘"?)) —1 < 0 we immediately have H(Poi;) < —Alog(1) < (1+¢€)(—Alog(A)). The other

inequality follows analogously.
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for n large enough. Thus, for n — oo,

Hu*(((x(')'*ler)*) — Z H(POiIJ(D)) ~ Z _“(D) log(,u(D)) ZHM((X371+I’).

Deg' 1P Dea)~ P
w(D)#e0,0 1 (D)#e0,0
So,
lim ~H (o Py = liminf LH NG liminf -H (o 1HPy =
n—son M 0 ne o H 0 n—e g A0

. ..ntp 1 n+p—1 ~
=1 f —H, (0, =h(X,8,u,T,a).
lr{glofol n ntp u( 0 ) ( y O, M, 1 )

Putting this together with inequality (13), we get

1 n
lim ~ Hy« (((0)))5 ™) < h(X, B, 1, T, ).

n—e

Now we want to take p to infinity: We just have shown, that there is an N € N, such
that for all n € N with n > N, we obtain

. 1
h(X T, ) > liminf— [ I (((a?)))(z) du*(z) >
(X,8,u,T, o) > iminf= | (((o) ) )(z) du*(z) >

1 1
> Z liminf 7, « Py\x\n—1 du* :7/1* oo\ x\n—1 du*
=z 5 Jiminf s (((ag)")g ) (@) du™(e) = | L (((057) ) ) (2) dp (2),
where we used countability of (of})* (and thus of ((&f)*)a™"), to write the entropy

as integral, and the Lemma of Fatou (see e.g. [7]), since (Iy((af)*)a™"))pen are

non-negative measurable functions, because p* is a probability measure, and the last
equality follows by continuity of the measure from above and continuity of the loga-
rithm.
Hence

~ . 1 00\ K\ 11— * * gk ok 00\ %
h(Xa%vuvTva)Zr}gl;lo;H#*(((aO) )0 1):h(X 7% 7.u 7T 7(a0) )

If (o)™ is equal to a countable u*-partition (w.l.o.g. is countable itself), then & ( (o )*)
D (o(0g))* by Remark 4.1, thus using Proposition 3.2 (2), (3) we obtain

h(X, B, 1, T,0t) > h(X*,B*, 1", T*, (0)") = h(X*, & ((0g")"), u*, T*) >

> WX (& (o))" 18 7).
If (o°)* cannot be written as a countable p*-partition of X* by neglecting a null-set,
then by definition 2(X*,B*, u*,T*, (0’ )*) = oo, which trivially implies that

h(X*, 8%, 1", T", (a5)") = h(X™, (6 (ag))", u*, T7),

hence we get the same inequality as above. O

77



4.2 Parry’s entropy

In [15] Parry used the concept of conditional entropies and a well-known identity for
the entropy of a probability space to extend the notion of entropy to infinite measure-
preserving dynamical systems.

Definition. The Parry entropy is defined as

hpa(X,B,11,T) := sup Hy (¢T7'¢) =
T-lece,
¢ o-finite sub-c-algebra of B
= sup Hy(1IT™").
T ly=y,

¥ measurable y-partition of X, 6(y) o-finite

Descriptively spoken, one may view this value as the entropy of the present, con-
ditioned by knowing the past. Hence, actually, we consider only one time step in our
dynamical system. In this context, one could interpret the condition 7-'¢ C ¢ in the
following way: Whenever we go one time step further we gain more information about
the system, which seems rather natural.

Remark 4.2. This definition coincides with the previous definition of entropy, if i is
a T-invariant probability measure. Indeed, given a measurable p-partition y of X with
H, () < oo, then by Remark 3.6 we know that

h(X,B,u,T,7) =Hy(\/ T\ T*y) = Ho(\/ T 9T~ (\/ T ),
k=0 k=1 k=0 k=0
hence
h(X,B,u,T) = sup h(X,B,u,T,7)= sup Hy(\/T*NT'(\/ T7)
Vi Hy(y)<eo Vi Hy(y)<eo k=0 k=0
Now, setting € := &(\/5_y T *y), we obtain T~'¢ = 6(\/i_, T *y) C &, thus

h(X,B,u,T,y) =Hy(C|T'€) < sup Hy(D|T 'D) = hpo(X,B,u,T),
DO7T- 1D

hence
h(X,B,u,T) =sup{h(X,B,u,T,y): ysuch that H,(y) < oo} < hp,(X,B,1,T).

On the other hand, let y be such that 7'y < y and for the moment assume that H u(y) <
w. Since T 'y <y & T lyvy=v & Vo T *y=7. we have

H/J(}/‘T_l’}/):Hu(\/T_kﬂ VT_k}/):h(X,sB,u,T7'}/)§ sup h(X’sBauvT7Y):
k=0 k=1 Vi Hu(y)<eo
=h(X,B,u,T).

Now, we follow [15], Theorem 5.14, and consider!® a refining sequence of countable
u-partitions ¥,, n € N, with Hy () < oo such that \/;’_; %, = 7. Then, using Proposition

9Such a sequence always exists: Let A := {E|,Ey,...} be a generating set of ¥, like in the definition of a
measurable p-partition. Then, we can e.g. define ¥, := {E1,Ef}, v» := {E\ NE2,E{ NE>,E; NES,E{ NES},
and so on. Clearly, all this p-partitions have finite static entropy, since they are finite itself. And \/;_q %, =
{Mm=iRn : Ry=E,orR, =ES}=7.
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3.1(7),

Hy(m|T'y) =Hu (%l \/ T7%9) <Hu (5 \/ T %) =h(X, B, 1, T, %) <h(X,B,u,T)
k=1 k=1

for every n € N. Now, also by Proposition 3.1 (7), we see Hy (| T~ 'y) < Hy (Y1 [T 'y)
< Hy(y|T~'y), thus

lim Hy (v|T~'y) = Hu(Y|T " 'y).

n—oo

Combing this with the above, we get

Hy (y|T™"y) = lim Hy (%|T~"y) < h(X,B, . T).

Since y was an arbitrary measurable u-partition with 7!y < 7, we finally get

hpa(X, 8,1, T) = sup Hy(y|T"'y) <h(X,B,u.T).
y: T ly=y

Remark 4.3. Analogous to Remark 3.2 (3) we have
th(X,%l,,U,,T) < th(X7%2hu'aT) < hPll(Xa%nu'vT)
for o-finite sub-c-algebras ‘B C B, of B and

11_I>l'1 hPa(XagnvuvT) = hPu(X7$B7u7T)

for a monotonously increasing sequence of o-finite sub-c-algebras (2B,),cn With
0 (UnenBn) = B mod u. This is obvious, since

hpa(X, By, 10, T) = sup Hy (€T7'¢) <
Co-finite sub-c-algabra of 8
T-lece
< sup Hy(C|T7'€) = hpo(X, B2, u,T).
¢ o-finite sub-c-algabra of B,
T-lece

Theorem 4.1. If T is a conservative, ergodic, measure-preserving transformation on
a o-finite standard measure space (X ,B, 1) with (X)) = oo, then

hpa(X,B,u,T) < h(X*,B8*,u*,T").

Proof. Given a o-finite sub-invariant c-algebra € of B, i.e. T~'¢ C €&, we know by
Remark 1.3, that it has no atoms. Since null-sets (which are contained in a null-set)
do not have any impact on the entropy??, we may w.l.o.g. assume that B is complete.
Thus Lemma 4.2 gives

Hy (€|T71¢) = Hye (€*|T* &),

since (T'€)* =6 (Ns:A€T '€)=6(Ny10:CeC) =0 (T 'NcCe @) =T*"1¢*,
because NT_,IIC({n}) ={veX :v(T7!C) =n} ={veX : (T*(v))(C) =n} =

20 Confer footnote in proof of Lemma 4.2
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7' (Nz'({n})) for C € €, n € Ny.
Thus,
Hy(CIT7'¢) < sup  Hy= (DT 'D%),
T**I’D*QD*

where ©* shall be a sub-o-algebra of 6*. Therefore,

hpa(X,B,0,T) = sup Hy(CT7'€)<  sup  Hy (DT 'D%).
T-lece T+~ 1D*CD*

And since p* is a T*-invariant probability measure, we obtain by Remark 4.2, that
sup  Hy (D*|T*'D%) = h(X*, 8%, u*,T*). O

T*flg*gga*

4.3 Krengel’s entropy

Krengel’s idea ([14]) was to fix measurable set and to look at the dynamics of the set
given by the first return map of that set.

Definition. Krengel’s entropy is defined by
(B0 T) = s (A)-hAB A, R 7
AEB, 0<p1(A)<oo p(A)
where Ty is the first return map of 7 on A (see section 1.3.2).

A proof of the following well-known Proposition can be found in [14] and refer-
ences given there.

Proposition 4.2. In fact, we have

e (X, B, 1,T) = 1(A) - h(A, B N4, 2 7,

w(A)
for every arbitrary A € B of positive finite measure.

In particular, this Proposition shows that Krengel’s entropy indeed extends the

Kolmogorov-Sinai entropy: For p(X) = 1 the above identity holds for the positive finite
measure set X, i.e. g (X, B,u,T) =pu(X) -h(X,BNX, %,TX) =h(X,B,u,T).

Note, that the Krengel entropy of two isomorphic dynamical systems is equal (see
[14]).
4.3.1 Computing Krengel’s entropy: Some examples

Due to the following theorem of [21], the well-known Rokhlin-formular for the entropy
of probability systems carries over to the infinite case, at least for a large class of
systems:

Theorem 4.2. Let T be a Thaler-map on [0,1] and Q. be a T-invariant measure on
([0,1],B([0,1])), then

hicr (0,1, B0, 1]), 1, T) = /[0 Joa(T' () du(x).

For a proof we refer to [21].
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Example 4.1 (Boole’s transformation). Let us consider Boole’s transformation 7x =
x— 1 on R and its isomorphic system ((0,1),8((0,1)),n,S) with

x(1—x) 1
b 1 1 ——5  forxe(0,5),
nab) = [ ( 5 )dx, S =4 15371 .
a \(1—x)2  x2 2x—1 1
ZTS forx e (5,1)

Since 1 is S-invariant and S is a Thaler-map we can use the theorem above and obtain

(B, B(E),A,T) = i ((0,1),B((0,1).m.5) = [ log('(1)) i (x) =

-/,
J

Example 4.2 (Renewal chains). Let us consider an irreducible null-recurrent renewal
chain on N with p1, = fin,pmm—1 = 1 for m > 2 and uy,, = Y, f; for every m € N.
Further, let S be the shift of the corresponding space (X,95, i) (confer Example 1.3).
The cylinder set ¥ := [1] is a sweep-out set with u(¥) = 1, thus

_ 2
log ((11 —Z;ijz;;Z) ((1 —1x)2 x1

1
2

_ 2
I)IOg((;x—z;_'——zf)z) ((1 —lx)2 + : )

=2m.

2
1 x

hiy (X, B, 1,8) = w(Y) - h(Y,BNY, ﬁ,sy) = h(Y,BOY, 1, Sy).

Let us consider the countable partition f§ := {[1m] : m € N} of Y. In fact, § is (modulo
) the first return time partition pg ;] of the set [1]. This will be useful later on. Now,

o(\/ Sy B)=BnY =0((lay...as) : az,...a, € N,n € N) mod p,
k=0

because for ay,...a, € Nyn € N with pu([lay...ay)) # 0 there exist my,my,...,m; €
N, ! € N such that modulo ¢t we get the following equality

[lay...an) = [Ilmimy —1...dmymy —1...1m3...my] =

= [lmy] NSy [Ima] NSy 2 [Ima] NN Sy [ 1my].

(Note that we could assume that the cylinder ends at m; because [...m;] = [...mm; —
1...my—k]=1...m;...1] modulo u for every k < m;.)
Further,

B,Sy'B,...,S," B are independent.
Indeed, let k <! € N and my1,m;+; € N be fixed, then

Sy [mg 11N Sy [lmy 1] =

=)

=J U .1 i dmeganJ U Daedngdng o mgyy) =

i=1yk ~_; i=1y! —
! 1):,]:1”j—’ i 1):1.:111!—1
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:U U [lnl...lng...lmk+1...lnl...lmZH]:
=1yl =i

= U [lnl...lnz‘..lmk_‘_l...lnl..‘lml_H]
n],...JllEN
(since the intersection is only not empty if n; = 7, Vi < k), hence

#(S;k[lmk+l]ms;l[1ml+l]): Z ,ll([ll’l] ...lnz...lmkﬂ...ln[...1m1+1]) =

ny,...,n €N

= Z ulplnl lplnz plmk_H ---pln/ ~--p1m,+| :plmk+1p11n,+1 =

= p(Sy [t e (Sy " [tmya]),

because Y ,,cn pin = 1.
Now, since B is a generator of BNY and f,S,'B,...S;" B are independent for every
n € N, we can use Theorem 3.3 and obtain

h(Y,BNY,1,Sy) = h(Y, BOY, 1Sy, B) = Hu(B).

And
Hy(B) =— Z Pimlog(pim) = — Z Jmlog(fin),

meN meN

so if we choose f;, such that f, = Cﬁ for o € (0,1), ¢ € (0,00) fixed, we get

Z c 10g( ll+a> =

meN

:C(_Zml log(c Z - Tra (1+a)log(m ))

meN

. -1
To ensure that ¥, f, = 1, one can just take ¢ = (L,en -1z) - then

1

0B = (L ra) (L prvatoe (L i) + X g (1 eotoston)) =

1

meN

Thus,

hl,2.9 = HutP) =1 (B ) <0+ (8 ) B

neN neN meN

In general, Krengel’s entropy of any null-recurrent Markov-chain is given by an
explicit formula, proven in [14]:

Theorem 4.3. Let S be the Markov shift, as in Example 1.3, corresponding to a null-
recurrent Markov chain on the countable state space ¥ = {ay,a,,...}, defined by
the transition matrix (pa,a;)i jen and the stationary distribution (uUg;)ien With uq; =
ZjeN Ua;Paja;> Vi € N. Then,

hKr(X B, u, S Z Ug ZpablOg pab
acX  bex
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where X :=XN, B is the G-algebra generated by the cylinders lai, ...a;,] :={(x1,x2,...) €
N Xy = ai,,Vk € {1,...,n}} foriy,...i, €N, n € N, and p the measure given by
u(lai, -..ai,]) = Uay Pagai, -+~ Pai,_ ay,» and S is the shift on X.

1
Example 4.3 (Renewal chain). With the notation of Example 4.2, the above Theorem
gives

hKr(X,SB,H,S) = — Z Ug Z pablog(pab) =

aeN  beN
=—Y pwloglpi)— Y. Y firaa—1108(paa—1) ==Y frlog(fy),
beN aeN,a>11>a — beN

=0
which was exactly the entropy of the induced system in Example 4.2.

Example 4.4 (Random walk on Z). Let pya+1 = % = paa—1 and u, = 1 for all a € Z.
By Theorem 4.3,

hKr(X7%a.u>S) = - Z Uq Z pub]Og(pab) =
ac€Z  beZ

=- Z (Paa—110g(Paa—1) + Paa+110g(Paa+1)) = - 1log(2) = oo.
ac’Z

Remark 4.4. The entropy of a Thaler-map and the entropy of an irreducible null-
recurrent Markov chain are always positive. Indeed, since the image of a Thaler-
map 7 is equal to [0, 1] when taking the closure, its slope must be at least as big as
the slope of the map x — x on almost every point, hence 7’ > 1, thus log(7’) > 0.
Moreover, since a Thaler-map has at most finitely many points with slope 1, we get
Jio1j log(T'(x)) du(x) > 0.

For an irreducible null-recurrent Markov chain, we have Y ,cs g Y pes Pap(—10g(pap))
> O if there is an a € X and an b € X such that p,;, € (0, 1). If for every a,b € ¥ we would
have p,, = 0 or p,p = 1, then the process cannot be2! null-recurrent and irreducible.

4.4 Equality of Poisson entropy, Krengel’s entropy and Parry’s en-
tropy
Now we are finally able to formulate and prove the main result about the relations of
the different notions of entropy, which is due to [10] and [15].
In [15] Parry has proven that his notion of entropy and Krengel’s coincide in the

following case (see [15], Theorem 10.10, for a proof)

Theorem 4.4. Let T be an ergodic, conservative, measure-preserving automorphism
on a o-finite standard measure space (X,B, ). If there exists a set A € B such that
0 < 1(A) < oo which is quasi finite, then

/’lpa(X,%7/.l,T) :hKV(X7%nu7T)'

Due to [10] (Theorem 9.1) we obtain equality of all three definitions of entropy
under these assumptions:

21 Assume that for every a,b € X, pp is equal to 1 or to 0. By Y ey ppa = 1 for every b € X, if py, = 1,
then p,. = 0 for all ¢ € £, ¢ # b. By irreducibility, every element has to be visited somehow. So, Paj aj;, = 1,

Pajyaj, =1, ... for aj,,aj,,... € T all distinct and such that {a;, : k € N} = X. But, since X is infinite by
null-recurrence, there is no positive probability of going back to a state again, a contradiction to recurrence.
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Theorem 4.5. Let (X,B, 1) be a o-finite standard measure space with |1(X) = oo and
T a measure-preserving, conservative, ergodic automorphism on X, such that there is
a quasi finite set of finite positive measure. Then the different notions of entropy are
equal:

h(X*,B* u* T*) = hpy(X,B,u,T) = hg, (X, 8,u,T).

We are following [10].

Proof. By Theorem 4.4 we already know that Parry’s and Krengel’s entropy coincide
under these assumptions. Thus, we only need to show that Parry’s entropy and the
entropy of the corresponding Poisson suspension are equal.

Let A € B, u(A) € (0,), be a quasi finite set and let & be a local p-partition of X,
whose core is A. (Recall, that to every measurable set of positive finite measure we can
find a local p-partition such that this set is its core.) W.Lo.g. let o\ {A} = pp1 4.
(Indeed, if o\ {A°} is not finer than py-14, then we just replace it by (a\ {A°}) Vv
Pr-1 4.) Moreover, let a be such that its elements have measure smaller or equal to 1
or equal to infinity. By Proposition 4.1 we know, that

o . R
h(x*, (6( \/ T’ka)) ,u*,T*) <h(X,B,u, T, q)
k=0
and by Lemma 3.3 we have
h(X, %0, T a)=H, ( \/ T *al\/ T’ka),
k=0 k=1

since, due to ergodicity and conservativity, A is a sweep-out set by Remark 1.3.

Note, that 6 (\/;_oT *a) is o-finite, since X = {J,>oT "A mod y, u(T"A) =
H(A) <ecand T"A € G (Vi T *at). (Indeed, T"A = Uy, c g, 2ac ke Nio T A,

which is a uncountable union of elements of ¢ and, moreover, T "A € ‘B, thus
T "A e cN)'(a(‘T).)

Further,
Hy(\/ T7al \/ T™a) = Hy(\ 747 (\/ T™a)) <
k=0 k=1 k=0 k=0
< sup Hu(¢|T’1(’:):hpa(X,6<\/ T’ka),u,T>
€ o-finite sub-c-algebra of &(Vi T ¥ ) k=0

T-lece

since, clearly, T~ (6 (Vieo T *a)) =6 (Vie T *a) C6(Vieo T *a).
Moreover, by Theorem 4.1 we have

(.3 (V 1)) <n(xe (5 V 7-4a) ).

k=0

Hence, we have shown that

(e (3(V 7-te)) ) ik m e r e =
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—H, ( {7 T "q Q T’ka) < hpy (X,&( {} T’ka),u,T> <

k=0 k=1 k=0
e (6(Yra)) )
k=0

thus

(14) h(X*, (6(9;"0;))*,;1*, T*) —H, (S/OTka]S}l T’ka) -

~hra(x.5(\/ 740 T,
k=0

Let us now construct a sequence of refining p-partitions (0, )men, Which are all inverse
quasi finite with core A, such that (U0 0 (VieoT *(0tm))) = B = 6(¢) mod p.
By measureability of € (confer Example 1.1), there is a countable set A = {D1,D,...}
such that {x} = ,en Sy for all x € X with either S, = D, or S, = D5, for all n € N.
Let us take an explicit set for A, namely let us consider an isomorphism y : X — R
(which exists by Theorem 1.1) and take A = {D;, D5, ...} such that its images under y
are the Dyadic intervals in R, i.e. Dy := Y~ (U,ez[4%. %)) for every m=1,2,....
We define:
oy:=0o
(ala NDT) U{A}

o = (OC|A ﬂDl) ]
0 :=(a|]aND1NDy)U(at|aND{NDy) U (at|]a "Dy NDS) U (e|]a ND{NDS) U{A}

Oy i = U (a|Aﬂ ﬁS”)U{A"}.

Sp=Dy, or S,=D§ n=1

Then, clearly, these are (countable) local ii-partitions with core A such that pr—1 4 <
a=0p =0 30 =<....So, ay, corresponds to the dyadic intervals of y(A) of level m,
Le. W(om) = (W(A) NN Unezlas, 57)) U{w(A)}. The dyadic intervals generate
the Borel-o-algebra of R, therefore,

0 (O4p|a : m € Nyg) =B NA mod p.
For k € Ny fixed we have
(T X(otu|a) :meNy) =T BNA) =BNT *Amod pu,

since 7 is an automorphism. Hence

G( U o(T " (ctmla) :meNo)) = G( U %QT"‘A) =B mod U,
keNy keNy

because A is a sweep-out set. In particular, we obtain that

(U a(kQOT—kam))

meNy
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= c({ Un T’kAl(:O ’Al(;") € o, | J N T’kAl(;") €98, L some index set,m € No}) 2
IELk=0 IELk=0

> c( U o(T ™ (amla) :m e N0)> — % mod 1,
keNg

thus

~ °° —k _
G(mgoo(k\/OT ocm)) =B mod u.

Similarly, one can deduce that

o(U (3(Vre))) = modp-

meNy

Therefore, Proposition 3.2 (3) gives

m—soo

° *
lim h(X*, (6( \/ T‘k(xm>) ,mT*) — h(X*,B*, 1, T).
k=0
Now, using equation (14) with ¢, instead of ¢, we can deduce the desired equality:

m—yoo

h(X*, 9%, u*, T*) = lim h(X*, (6( {} T_kocm))*,u*,T*) -
k=0

— 1im hp (x&( {o/ T‘kam),u,T) = hpa(X, B, 1,T),

m—oo
k=0
by Remark 4.3. O

If all assumptions of the theorem above are fulfilled beside the one of 7' being an
automorphism, we can pass to the natural extension to apply the theorem. In order to
receive a result for the underlying space, we need the following remark:

Remark 4.5. Let T be a measure-preserving, conservative, ergodic transformation
on a o-finite standard measure space (X,B, 1) with w(X) = oo and let (X,B,11,T)
be its natural extension, w.l.o;g. constructed like in Theorem 1.8. We consider B' :=
T’IN(B) = {(x0,x1,%2,...) € X|x0 € B} corresponding to a given set B € B, where
T : X —> X denotes the factor map of the natural extension.

1. A set A € B is a quasi finite set of positive finite measure if and only ifA'isa
quasi finite set in (X,B, {1, T) of positive finite measure.

2. Since the natural extension of the Poisson suspension is the Poisson suspension
of the natural extension due to [25] (see proof of Theorem 2.2), we obtain

heoi(X, B[, T) = h(X*, %", 1", T*) = h(X*, B, 1, T*) = hpoi(X, B, 1, T),
since the entropy is invariant under isomorphisms (Proposition 3.3) and the dy-

namical entropy of a probability system equals the dynamical entropy of the nat-
ural extension of that system (see e.g. [4], Fact 4.3.2).
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3. Let us have a closer look at the Krengel entropy of the natural extension: For
B € B fixed such that [1(B) < e we see that

(X, B, 1, T) = (B -h(B, BB, - Ty) =
hK( 7%7‘17 ) nu'( )h( ,%ﬂ ’.LL(B/)7 B)

— w(B)-h(B,BNB, - Ty) = u(B)-h(B, BB,

u(B) u(B)
since the induced system of a natural extension is isomorphic to the natural ex-
tension of the induces system, i.e.

K 7TB) :hKr<Xa%7.u7T)7

T~ ; H - ~ NNL 7
(B,%OB,@,(T)B/)N(B,SBQB,H(B),(TB)).

4. Moreover, o _
hPa(X,%,ﬁ,T) ZhPH(Xv%’“aT)'

Proof of (1). Let us state some simple properties of B', C’ corresponding to B,C € B
given: Clearly,

T 8B = {(x0,x1,x2,...) € X|(T*x0, T* 'x0,... ,x0,x1,...) € B’} = (T*BY,

(B') = {(x0,x1,...) € X|xo ¢ B} = (B,
and
B'NC = (BNC).

Therefore, for a given set A € B, we deduce that

Y.
neN}z{(AmT ”AﬁleT kAC) ‘neN}.

n—1
pra = {ANT AT
k=1

Thus, since [1(B') = u(B) for every B € B, we get

Hy (7 4) = Hu(Pr.A)-
Hence, A’ is quasi finite if and only if A is quasi finite. Moreover, (t(A’) = u(A). O
Proof of (4). Using the transformation formula and 7'-invariance, we compute

hPa(Xa%vlJ'aT): sup Hﬂ(ﬂT_l’}/):
¥ measurable partition of X,
G(y) o-finite, T~ y=y

= sup / Hy, W (VNI () d p (x)=
¥ measurable partition of X /X v ~~
G(y) o-finite, T~ 1y=y =fiot~!

— sup JoHue oy (0010 (3)) )
¥ measurable partition of X /X Ty
G(y) o-finite, T~ ly=<y

Now by Proposition 1.3 (6),

- -1 -1 —
“anlyor(y) = ”ﬂf—w—ly(y) oT " and T 0Mp-1,0T =T 171,
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Thus the supremum above is equal to

sup [ Hu et (10 (g1, 070)) () =
¥ measurable partition of X /X i1yl
G(y) o-finite, T~ y=<y

(@A omp 1 0t()) dii(y) =

= sup / Huﬂ
y measurable partition of X JX ir-ly
G(y) o-finite, T~ ly=<y
-1
- oup /NH“”rlely(,V) ((T Y) mnrlT*Iy) ‘{ﬁ()’) =

¥ measurable partition of X /X
G(y) o-finite, T~ ly=<y

= sup Hy(t 'yt '17ly) =
¥ measurable partition of X
G(y) o-finite, T~ ly=<y
= sup Hy(z 'y ey,
7~y measurable partition of X
G(t'y) o-finite, T~ 't~ ly<7~ 1y
since G(7) is o-finite if and only if 6(77'y) = 7'6(y) is o-finite (w.r.t. 1) and
T—'y < yifand only if 7~'77!y < 7=!y. Thus we have shown that
hpa(X, 8,1, T) = sup Hy (e 'y e 'y).
7~ !y measurable partition of X
G(t1y) o-finite, T~ 'z~ ly<7~1y
This obviously gives o
hPa(Xa%7u7T) < hPll(Xv%mu'a T)
O

Corollary 4.1. Let (X,B,u,T) be a measure-preserving, conservative, ergodic dy-
namical system with W(X) = oo such that (X,B,L) is a o-finite standard measure
space. If there exists a quasi finite measurable set of finite positive measure in (X,B8,u,T),
then

h(X*,B* 0™, T") = hgr(X,8,u,T).
Proof. We need just to apply Theorem 4.5 to the? natural extension (f ,%,ﬁ, f) of
(X,%,u,T). Recall that the natural extension is a o-finite standard measure space
together with a conservative, ergodic, measure-preserving automorphism and ﬂ()? )=
U (X) = oo (confer section 1.3.3). Moreover, by Remark 4.5, the set A’ = {(xo,x1,...) €
X|xo € A} is quasi finite for (X,%,[I,7) and of positive finite measure. Thus, the
assumptions of Theorem 4.5 are satisfied and we obtain

hP()i(j(v7%7ﬁaT) = hPa(jza%aILf) = hKr(j(vv%vﬁaf)-
Now, again by Remark 4.5,
hPoi(j\(ia%aﬁaf) = thi(X,%,,u,T)

and o
hKr(Xa%aﬁaT) = hKr(X7%7.u'aT)

Therefore,

hPoi(X,%,lJ.,T) = hPOi(ij%vﬁvf) = hKr(ivgaﬁvf) = hKr(X,%,,LL,T).

22W.l.o.g. we may take the one formulated in Theorem 1.8.

88



4.4.1 Application to some examples

Example 4.5 (Boole’s transformation). The set ¥ = [— f f] is quasi finite for

Boole’s transformation 7: Clearly, A(Y) = V2 < o0. We claim that the elements of
the first return time partition pry = {Y N{@ry =n} : n € N} fulfill

(15) AYN{ory =n})~ \/;?forn—wo.
Then
Hy(pry)=— Y A¥N{pry =n})logA(Y N {pry =n})) ~ Y —— log(r)
neN neN

forn — e, and ¥, cn ﬁ log(v2n3) < . Hence

H) (pry) <
Thus, due to Corollary 4.1
h(R*v %(R)*a ‘U.*, T*) = hKV(Ra %(R),,U, T) =

by Example 4.1.

To verify (15) we follow [26]: We define a sequence of elements x, in R*, starting at
X i= %, by Tx, = x,—; forall n € N, ie. [x,_1,x,) = R" N{@ry = n}. Thus, by
symmetry of T and Lemma 1.1, we get A(Y N{@ry >n}) =AY N{ory =n}) =

2(x, —x,—1) for all n € N. By definition of T and (x;,),cn, We have x,_; = Tx, =
Xn— i, which yields x2 —x2 | =x2 — (x2 -2+ xiz) =2- xLZ for every n € N. Therefore
2 2 n n
xn 0 1 1
-4 - — —2 forn— o
" n ; xk 1 n Z z orn 5

since x, — oo for n — oo, Thus

X, ~ V2n forn — oo,

(This follows by a simple case distinction from 2(1 —¢) < 7% <2(1—¢)fore>0
arbitrary small (w.l.o.g. € < 1) and x;,, > 0.) Then,

Xp —Xp—1 =X, —()c—i)—l L
n n—1 n n , X, \/—7
hence
2
AY O {ery > np) =200 —xn-1) ~ 4/

Now, A(Y N {@ry >n}) = Loy AY N{@ry = k}) :=g(n) and g(n— 1) —g(n) =
A(Y N {@ry =n}). So

z(m{w,yzn})m/nfl —\/f,
and\/i [ % \/> (n=1)—n) = \/21?

hence

MO (pry =nh~ .
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Example 4.6 (Renewal chain). Given a shift space (X,B,u,S) of a renewal chain
as in Example 1.3 (2) and Example 4.2 with f;; = (Euen ﬁ)_l L for o € (0,1)

mita
arbitrary fixed. Then, the cylinder set [1] is quasi finite: In Exanr;lple 4.2, we have
already computed the entropy of the first return time p-partition pg ;) = {[1n] : n € N}

(denoted with 3 in Example 4.2):

Hy(psy) = — Y u([1n])log(u([1n])) =

neN

g (¥ o) v L ) L e

meN meN neN

1 log(m)
because ZnEN nlFo < eoand ZmeN mi+o <o

Therefore, by Theorem 4.5 and Remark 4.5, we see that

hPa(iv%’ﬁvg) = h(X*a%*au*aS*) = ]’l[(r(X,%,,Ll,S) = Z fnlOg(fn)v

neN
referring to Example 4.3.

Using Theorem 4.5 and Theorem 4.3 one can show that the Poisson entropy of an
invertible Markov shift is given by the same formula as the Krengel entropy without
assuming the existence of a quasi finite set (see [10], Corollary 9.2, for a proof):

Theorem 4.6. Let S be an invertible*> Markov shift on (X,B,u) with X = X% for ¥
countable, which corresponds to a null-recurrent, irreducible Markov chain, and let
the transition probabilities denote by p,p, for a,b € X and the stationary distribution by
(tg)qey, then

hPa(X,%,‘U.,S) = hKr(X?%au7S) = h(X*,%*,,Ll*,S*) = - Z Ug Z puhlog(pab)'
acl  beX

In particular, we obtain for the two-sided random walk on Z

Example 4.7 (Two sided random walk on Z). It is not obvious if there exists a quasi
finite set for the two-sided shift space (X,B, i,S) corresponding to a random walk, but
applying the Theorem above, we obtain (for u, = 1, p,, = % forb=a—1lorb=a+1,
Va € 7)

hPa(Xv%ﬂIJvS) = h(X*,%*,[J*,S*) = hKr(Xa%vlJﬂS) = .

2The construction of this process is analogous to that of Example 1.3 (1), see e.g. [10] for a detailed
definition.
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Appendix
Abstract (english)

Main topic of this master thesis is the notion of entropy for measure-preserving dy-
namical systems with an infinite measure. We will introduce Parry’s Krengel’s and
Roy’s idea of defining this quantity and state some results about their relation. Fi-
nally, we will prove that these different definitions coincide for ergodic, conservative,
measure-preserving automorphisms under a weak additional assumption, by following
[10]. Additionally, we note that the equality of Krengel’s and Roy’s entropy can be
extended to not necessarily invertible transformations.

We will investigate Poisson suspensions, canonical systems of measures (studied by
[16]) and some examples.

Abstract (deutsch)

In der vorliegenden Masterarbeit werden Entropie-Begriffe fiir mafltreue dynamische
Systeme mit unendlichem MaB, anhand von Krengel-, Parry- und Poisson-Entropie,
behandelt, wobei besonderes Augenmerk auf deren Beziehung zueinander gelegt wird.
Wir werden uns an [10] orientieren und einen Satz beweisen, der die Gleichheit dieser
Entropien fiir eine grofle Klasse von ergodischen, konservativen und maftreuen Au-
tomorphismen auf Standard MaBrdaumen liefert. Beziiglich Krengel- und Poisson En-
tropie lésst sich dieser Satz auf allgemeine (nicht notwendigerweise invertierbare) Trans-
formation iibertragen.

Weitere Theorien, die hier ausgefiihrt werden, sind Poisson Suspensionen und kanon-
ische Systeme von Maflen gemil Rokhlin, [16]. AuBerdem werden wir die Krengel-
Entropie von einigen Beispielen mit unendlichem MaB berechnen und diese auf die
Anwendbarkeit des oben erwihnten Satzes hin untersuchen.
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