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Abstract 

Abstract 
 

Up to now, most works about “Neogeography” and “Big Geo-Data” focus on using geotagged social 

media information for analysis. But this thesis argues that also non-geotagged websites have 

descriptive capabilities that are of interest. For this, a set of 8 million HTML crawled documents is 

processed. The crawled data is made manageable and transferred into a PostgreSQL database. To 

geotag the HTML documents, an address dataset is created from OpenStreetMap data. Multiple 

variations of each address are then searched for within the HTML documents. Documents containing 

one or more addresses are geotagged with the coordinates of those addresses. Lastly, websites 

linking to geotagged websites are also associated with those geotags. To limit the scope of the data 

that needs to be processed, the HTML documents all have a URL that belongs to the .at top-level 

domain and the addresses stem from the 1st to 9th and 20th districts of Vienna. This processing 

creates an information landscape. 

The second part of the thesis is to explore the analytic capabilities of this information landscape. A 

classification attempt based on the information is made. For this, the HTML documents are 

transformed into a vector in the vector space model. For 9 classes, 18 classification vectors are 

created and compared with cosine similarity to the HTML document vectors. The results are then 

associated and summarized on an address basis. These summarized results are sorted on an address 

level in two steps: once into relevant and irrelevant data and a second time based on whether or not 

they belong to a class. The results of this classification attempt are mixed. While they only achieve 

about 19 to 25% correct classifications, they clearly prove that the data has an underlying structure 

referring to the point of interest they are attached to. 

 

Kurzfassung 
 

Bisher lag der Fokus der Arbeitsfelder “Neogeography“ und “ Big Geo-Data“ auf der Verwendung von 

geotagged Informationen aus sozialen Medien. Diese Arbeit versucht zu zeigen, dass auch 

Webseiten, die keinen geotag im bisherigen Sinne besitzen, den Raum beschreibende Eigenschaften 

besitzen können. Dafür wurden etwa 8 Millionen gecrawlte HTML-Dokumente verarbeitet. Diese 

rohen gecrawlten Daten sind für Analysen handhabbar gemacht worden und in eine PostgreSQL- 

Datenbank überführt worden. Um sie mit geotags zu versehen ist ein Adressdatensatz aus 

OpenStreetMap-Daten erstellt worden. Die HTML-Dokumente sind nach verschiedenen 

Schreibweisen derselben Adressen aus diesem Datensatz durchsucht worden. Dokumente, die so 
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einer Adresse oder mehreren Adressen zugeordnet werden konnten, sind mit den Koordinaten 

dieser Adresse oder Adressen geotagged worden. Um den Umfang der zu verarbeitenden Daten zu 

begrenzen sind die HTML-Dokumente auf diejenigen beschränkt worden, die eine URL besitzen, die 

zu dem Top-level Domain-Bereich von .at gehören und die Adressen sind beschränkt auf den 1. bis 9. 

sowie 20. Gemeindebezirk Wiens. Dies erzeugt eine Informationslandschaft. 

Im zweiten Teil der Arbeit geht es darum, die analytischen Möglichkeiten dieser 

Informationslandschaft zu untersuchen. Dafür sind die HTML-Dokumente in einen Dokumenten-

Vektor im Vektor-Raum-Model überführt worden. Für 9 Klassen werden 18 Klassifizierungsvektoren 

erzeugt und mit Hilfe der Kosinus-Ähnlichkeit werden diese mit den HTML-Dokument-Vektoren 

verglichen. Die Ergebnisse werden dann den Adressen zugeordnet und zusammengefasst. Die so 

zusammen gefassten Ergebnisse werden auf Adressenebene in zwei Schritten sortiert. Erstens 

werden die Daten für jede Klasse und jede Adresse in relevante und nicht relevante Daten 

unterschieden und ein weiteres Mal nach Zugehörigkeit zu einer Klasse oder nicht. Die Ergebnisse 

dieser Klassifizierungsmethode sind durchwachsen. Sie erreichen nur zwischen 19 und 25% korrekte 

Klassifikationen, aber es ist möglich nachzuweisen, dass es eine den Daten zugrunde liegende 

Struktur gibt, die in Verbindung zu den Adressen steht. 
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Introduction 

1. Introduction 
The way people decide where they go when they want to do A or B is increasingly based on 

information found on the Internet. This can be inquiries like finding a grocery store that is still open 

or a scenic hiking route. The Internet is a huge body of information and communication that 

describes all kind of things, but also a space in a geographical sense. This thesis is an attempt to 

utilize parts of the available information.  

 

1.1. Aim of the Thesis 
 

In the last couple of years, there have been research papers that use geotagged information from 

social media sites like Twitter and Flickr. A good example of how useful information from Flickr can 

be is the creation of tourist density attractiveness maps. Spatial photography patterns of users that 

are not residents of a city or area are cumulated, thus creating a tourist attractiveness hot spot map. 

Also, temporal spatial patterns can used be to show in which order attractions are typically visited 

(PLADINO ET AL.; 2015; pp. 1-17). 

Another study uses the geotagged Twitter data related to the University of Kentucky riots after the 

2012 NCAA Championships to criticize the often perceived notion of letting “big” (geo-)data speak 

for itself. This is because social media is often outlier-driven and the user demographics are often 

skewed. Another point the paper raises is that just because information is geotagged does not mean 

that the information is about the place where it is geotagged. Also, the data might include 

information about other places not referenced by the geotag. The study argues for using implicit 

geotags, to integrate temporality and, enhance the big data with non-user generated information 

like census- and social data (CRAMPTON ET AL.; 2012; pp. 1-25). 

The last example for the use of social media sites is a paper that looks at the segregation and 

mobility in Louisville, Kentucky. For this twitter users are identified that live either in the East or 

West End of the city. The daily activity space of those users is analyzed. One of the results of this 

work is Map 1.1. The odds ratio of the map shows when values approach 1 a relative parity for the 

chance that users of West or East End are tweeting within this area. A value smaller than 1 shows a 

higher chance of people from the west end of the city tweeting in this area. In Areas with a value 

above 1 the chances of twitter users from the East end of the city tweeting is higher. 
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Introduction 

 
Map 1.1 Segregated Activity Spaces for Twitter Users of the West and East End in Louisville Kentucky 

(SHELTON ET AL.; 2015; p.9) 

 

The analysis shows that there is a divide but that Users of the predominantly poorer west end 

neighborhood are much more mobile while the users of for the wealthier east end are much more 

confined to their neighborhood (SHELTON ET AL.; 2015; p.1-17). 

While the paper from Crampton et al. (2012) proposes to use other information about places not 

included in geotags there are so far no works on using standard webpages and HTML documents to 

map and analyze space. 

 

1.2. Research question 
 

The aim of this thesis is to bring together the techniques used by information retrieval systems. 

These systems are used as discussed before by humans to gain knowledge about space. The 

information retrieval systems techniques are used on HTML documents that share one or more 

geotags. For this the HTML documents also need to be geotagged. 
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From this three research questions can be formulated.  

1. How can unstructured information be retrieved and made usable? 

2. How can this information be linked to places? 

3. How can context be derived from this now structured and geotagged information? 

 

1.3. Structure of Research design 
 

None of this is do able by out of the box software solutions most tools of this thesis are created by 

translating concepts of the fields data mining, Natural language processing, and information retrieval 

into code. 

The first part of the work is dedicated to created usable data from two big datasets. One consists of 

raw crawled data and the other OpenStreetMap data. From the OpenStreetMap data a dataset for 

geotagging a selected part of the crawled data is created. This creates a landscape of spatially 

distributed information. The geotagged information is then treated with natural language and 

information retrieval methods. Finally an attempt of classification is made for addresses that could 

be matched with HTML documents. The machine classification will be evaluated by a hand 

classification. The scope of the thesis will be the 1st to 9th and 20th district of Vienna, Austria. To 

further limit the scope the crawled dataset will be limited to URLs of the .at top-level domain (TLD). 
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2. Introduction to Data Mining and Big Data 
 

The terms data mining and Big Data both describe the underlying methods and theories in this 

thesis. This chapter is meant to give an introduction and overview about what data mining and Big 

Data is and how it relates to this thesis. 

 

2.1. Data Mining 
 

Data mining as a whole is a very broad field that spans many disciplines, for example statistics, 

database systems, pattern recognition and math, some of which the thesis touches upon. The goal 

that brings all these fields together is to try to discover patterns that are interesting or novel in a 

large amount of data. Data mining analysis can roughly be divided into data exploration, frequent 

pattern mining, classification and clustering. These are the parts of what can be seen as classical data 

mining. Which is a math and statistics heavy approach and assumes the data is already available in a 

mathematical usable way. But data mining is only part of a bigger knowledge discovery process. In 

this process there is a pre and post processing of the data. Examples for pre-processing are data 

extraction, data cleaning, data reduction and feature construction. Pattern and model interpretation 

are typical post-processing steps as well as hypothesis confirmation and generation. Both the 

processing steps and data mining are highly iterative and work interdependent (ZAKI AND MEIRA; 

2014; pp. 25-26). 

Exploratory data analysis utilizes key statistical values to explore features of a data set. These values 

show the centrality, dispersion and shape of the data. Discarding the assumption of independent 

and identically distributed variables or objects, data as a graph approach is a useful tool in the 

exploratory data analysis. Kernel methods to calculate pairwise similarity with the dot product can 

be utilized here. Another part of exploratory data analysis is to reduce the data just to the relevant 

parts. This can either be done by feature selection or by reducing the dimensions. Example methods 

would be principal component analysis and data sampling methods (ZAKI AND MEIRA; 2014; pp. 26-

27). 

Extracting useful or interesting patterns from data is the field of frequent pattern mining. Patterns 

can be co-occurring values or sequences of values. The task is to look for those co-occurrences or 

sequences that differ from the normal value distribution. Relationships between points can be either 

explicit positional, temporal, or arbitrary (ZAKI AND MEIRA; 2014; p. 27). 
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Clustering is the task to find objects that are “naturally” similar and grouping them together into 

groups or clusters. The goal is to have a cluster of objects that are most similar to each other and as 

dissimilar as possible to all other objects. There are a couple of different clustering methods for 

example hierarchy clustering, centroid based clustering, and density based clustering. Every 

clustering method also has different ways to be implemented (ZAKI AND MEIRA; 2014; pp. 28-29). 

Different from clustering, classification is not about finding naturally similar groups, but rather about 

creating a blueprint of one or more groups and labelling the data points according to those groups. 

For this a classifier is needed that uses the blueprint to decide if a data point is part of one of the 

classes. The blueprint for the classes can be either learned or created. In order to learn a 

classification, a group of data points already needs to be correctly classified; these points are called 

the training set. The classifier then can “learn” from the training set and create a blueprint. Examples 

for machine learning algorithms are decision trees, probabilistic classifiers and support vector 

machines. The other option is to create a blueprint for the classifier by hand (ZAKI AND MEIRA; 2014; 

pp. 29-30).  

 

A sub-group that falls within the data mining field is mining text based information from structured 

or unstructured documents. The field can again be divided up in many different groups, but the 

relevant ones for this thesis are text mining, eXtensible Markup Language (XML) mining and web 

mining. What applies to all of them is that they need much pre-processing, as can be also seen in this 

thesis. The increased need for pre-processing is manifold. The main obstacles are the following. The 

data structure has to be analyzed and understood to make the document useable and extract 

information. The text data needs to be transformed in such a way that it becomes mathematical and 

statistically useful. Raw data amount can be very big, text data is unstructured and the meaning can 

be fuzzy (TAN; 1999; pp. 65-71), (COOLEY ET AL.; 1997; pp. 558-567), (NAYAK ET AL.; 2002; pp. 660-666). 

The outline of text mining can be split into two parts. The first part is to transform the text in an 

intermediate format. The kind of intermediate format depends on what analysis is planned in the 

second part. A group of documents can be transformed into a graph that shows how they relate to 

each other or each document can be transferred into an intermediate format. The second part is to 

perform a form of knowledge distillation on the intermediate format, for example to sort the 

documents depending on their content (TAN; 1999; pp. 65-68).  

The term web mining can mean two different things. The first meaning is in the sense of mining 

content from the Internet. The second meaning is web usage mining that analyzes the access 

patterns of web users. For this thesis only the first one is of interest. Slightly different from text 

mining web content mining can exploited the more structured nature of html documents, for 
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example the relationship between documents can be mapped via hyperlinks. But many techniques 

of text mining also apply to web content mining (COOLEY ET AL.; 1997; pp. 558-560). 

XML documents are the most structured of the three discussed sources. XML documents are tree 

like structured documents that can contain different kind of data and information. Examples range 

from quasi HTML like documents to complex 2D or 3D shapes and models. XML mining can be 

separated into content and structure mining. Whereas structure mining refers to analyzing and 

extracting the shape of the XML tree and content mining is about information extraction. Because of 

the rigid structure of XML documents it is possible to extract only specific information from specific 

parts of the XML tree, a feature that will be exploited later in the thesis (NAYAK ET AL.; 2002; pp. 660-

666). 

  

2.2. Big Data 
 

The term Big Data is describing a trend rather than it is a scientific term or a specific x amount of 

data. This trend is driven by the fact that computation has become ubiquitous. Computers are now 

found in smartphones, laptops, TVs, cars, fridges, personal sensors and so on. All these computers 

create a flood of information that can be analyzed with clusters of computers and sophisticated 

software tools. This duality of data creation and analysis on a big scale creates the knowledge 

infrastructure also called Big Data (BOLLIER AND FIRESTONE; 2010; pp. 1-10).  

Examples for the use of this infrastructure can be found with companies like Google, which is using 

search engine queries to predict flu outbreaks and unemployment trends long before government 

statistics can show these information. It is also used by credit card companies to create heuristics 

that detect credit card fraud and identify consumer purchasing patterns. This is done by cross-

examine large amounts of financial, personal and census data (BOLLIER AND FIRESTONE; 2010; pp. 1-9). 

Big data techniques are used in medicine to compare health records on a large scale to find valuable 

correlation between prescribed treatments and outcomes. Social-networking sites data mine the 

information of their users for consumption preferences to create better advertisement or sell the 

information to marketing companies. Also geo-location data can play an influential role, by tracking 

the length of time consumers are willing to travel to a shopping center, it is possible to measure the 

consumer demand in an economy (BOLLIER AND FIRESTONE; 2010; pp. 1-9).  

This knowledge infrastructure can provide valuable and interesting insights into society that were 

not possible before. But it also poses significant threats. Most of the players are large corporations 

and nation states that can use the techniques for surveillance or manipulate persons into buying 

products. This endangers personal privacy, civil liberties and freedom. Also most of the data 
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collection happens without informed consent of the individuals that cannot assess the impact it is 

going to have on their lives (BOLLIER AND FIRESTONE; 2010; pp. 1-9). 

Big Geo-Data is a sub field of Big Data that also uses the spatiality of data in analysis. Most of the 

research done so far focuses on geotagged social media data. Crampton et al. 2015 argues that the 

approach of this field is often limited by two shortcomings. One is that many analyses do not 

account for the limitations of the Big Data. Limitation can for example be that social media is outlier 

driven and generated by a small were skewed fraction of the population. The second shortcoming is 

that many studies attach to much meaning to the geotag. They propose to compensate for those 

short comings in different ways. Spatiality should go beyond the here and now and discover how the 

geotagged data interlocks with other information in information networks. Also bolstering and 

comparing geotagged social media against other data like news reports or census data can help 

order and make sense of the information (CRAMPTON ET AL.; 2012; pp. 1-25). 
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3. The Common Crawl Dataset 
 

This chapter is supposed to give an overview of the Common Crawl dataset that is used for the 

thesis, on how Common Crawl creates the dataset by crawling the Internet. This is followed by a 

discussion about the representativeness of the dataset. This will be done by comparing some basic 

metrics of the dataset with metrics from other sources about the Internet. The following section 

describes the structure of the available files, how they were indexed and how this index is used to 

only download a selected subset of the Common Crawl dataset.  

 

3.1. What is Web Crawling 
 

Web crawling is the process by which webpages are gathered from the Internet. The program doing 

the crawling is either referred to as a crawler, spider or web-spider. These crawlers have certain 

features they must be equipped with and some others that they should be equipped with (MANNING 

ET AL; 2009; p.443).  

Robustness is a must feature, because many web servers contain traps for crawlers, either on 

purpose or by accident. These traps get a crawler stuck in an infinite loop. A crawler must therefore 

be designed to be resistant to such traps. 

Politeness is the second must feature of a crawler. There are certain implicit and explicit policies 

regulating if and how often a website is crawled. Probably best known is the robot.txt which 

specifies if and which directories the crawler is allowed to crawl. 

Features a crawler should provide are: 

Distributed, which means that the crawler can be run parallel across multiple machines. 

Scalability, the crawler scales up its performance as linear as possible when more machines are 

added to the crawling process.  

Performance and efficiency, the crawling system should use the system resources as efficient as 

possible.  

Quality, because a lot of web pages are of poor quality and contain little useful information for the 

user, the crawler should focus first on “useful” webpages. 

Freshness, a crawler should be designed in a way that it crawls a site at the same rate that the 

content on the site changes. 

Extensible, a crawler should be developed in a modular way, so that it can cope with fetch protocols 

and new standards (MANNING ET AL; 2009; pp.443-445 ). 
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The operation of a crawler is fairly simple. The crawler begins with one or more provided seed URLs, 

the seed set. It fetches the page for one of the uniform resource locators (URL) and then parses it. 

On the page, the crawler is looking for new URLs, and adding the parsed text to the search index. 

The newly found links are added to the not yet fetched URLs, also called the URL frontier. Then the 

next URL from the frontier is fetched and so on (MANNING ET AL; 2009; pp.445-448).  

This seemingly simple recursive task is rather complicated because of the heterogeneous nature of 

the web. Many of the problems only occur when the crawler starts crawling real data. For example 

the first Google crawler produced error messages in the middle of a web game, but the error only 

came up after tens of millions of page downloads. To fetch only a small amount of the static web, for 

example one billion webpages within a month, the crawler must still be able to download several 

hundred sites per second (BRIN AND PAGE; 1998; p.10).  

 

3.2 The Common Crawl Dataset 
 

As described in the previous section crawling a large part of the Internet is a complex and resource 

demanding and therefore costly task. Common Crawl is a nonprofit project whose goals are to allow 

access to crawled information to everyone without the costs and complexities that come with 

crawling the Internet independently. The data is accessible through the Amazon Web Service 

(COMMON CRAWL).  

 

Crawled information is stored in the ARC File Format. This format meets certain defined 

requirements. The file must be self-contained. This means that there is no need for an Index file to 

identify and unpack the archive file. The format is extensible in a way that it can be adapted to be 

transferred with different network protocols. It is possible to concatenate multiple archives into one 

data stream. The file is viable and there is no need of an in-file index to guarantee the files integrity.  

A typical arc file is shown in Figure 3.1 (COMMON CRAWL). 
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filedesc://IA-001102.arc 0.0.0.0 19960923142103 text/plain 200 - - 0 
IA-001102.arc 122 
2 0 Alexa Internet 
URL IP-address Archive-date Content-type Result-code Checksum 
Location Offset Filename Archive-length 
 
http://www.dryswamp.edu:80/index.html 127.10.100.2 19961104142103 
text/html 200 fac069150613fe55599cc7fa88aa089d - 209 IA-001102.arc 202 
HTTP/1.0 200 Document follows 
Date: Mon, 04 Nov 1996 14:21:06 GMT 
Server: NCSA/1.4.1 
Content-type: text/html Last-modified: Sat,10 Aug 1996 22:33:11 GMT 
Content-length: 30 
<HTML> 
Hello World!!! 
</HTML>  
Figure 3.1 ARC File example (Archive.org) 

 

There are two main parts to the ARC File: Header and content. The header contains a variety of Meta 

information about what was crawled, when and, by whom. The Content Part contains the actual 

content of what was crawled and begins in the line following the content-length information. 

Common Crawl compresses the ARC files with a compression algorithm and stores them in an 

Amazon S3 bucket (ARCHIVE.ORG), (COMMON CRAWL). 

 

The first available Common Crawl Corpus in October 2011 contained 5 billion individual pages which 

equaled more than 40 TB of data. To put this in perspective Google had downloaded around a trillion 

pages by 2008. But according to Google, most of this was junk information. Common Crawl employs 

a page ranking algorithm to fetch only relevant webpages from the Internet (COMMON CRAWL BLOG; 

Community questions). 

The corpus used for this thesis was released in July 2012. Even though the thesis was written in 2014 

and 2015, it is dependent on the Common Crawl URL index, which was at this time only available for 

the 2012 corpus (COMMON CRAWL ATLASSIAN), (COMMON CRAWL BLOG; URL index).  

 

Spiegler created detailed statistics for the 2012 Corpus. According to the study, the corpus consists 

of 210 TB of data, 3.83 billion individual documents and 41.4 million unique second-level domains 

(SLD). The goal of this paper is to determine how representative the Common Crawl Corpus 2012 is 

for the whole web. For this the frequency of the 75 most common top-level domains (TLD) of the 

Common Crawl Corpus 2012 has been compared to the figures of the web technology survey 

provided by W3Techs. This comparison with a spearman rank correlation coefficient gave a value of 

0.84 for ρ which indicates a high statistical dependency between both datasets. In Table 3.1a the 10 

most over-represented and in Table 3.2b the 10 most under represented TLDs can be found. The 
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value was calculated by dividing the common Crawl frequency with the web technology survey 

frequency (SPIEGLER, 2013, p. 1-6). 

 

a) Over represented TLDs         b) Under represented TLDs 

Table 3.1 a), b) Representativeness of TLDs in the Common Crawl Corpus 2012 (SPIELGER; 2013) 

 

Because of the huge amount of data and the limited resources available, this work will only draw on 

data from URLs with an .at TLD. This includes all the .at special case SLDs .ac.at, .gv.at, .co.at, .or.at 

and .priv.at. The Common Crawl Corpus 2012 includes 317,578 unique URLs that have an .at TLD. 

This results in a relative corpus frequency of 0.0076. In comparison according to the figures of the 

web technology survey .at TLDs account for 0.3% of all TLDs. The .at TLD is therefore over 

represented by 2.5 in the Common Crawl Corpus 2012 (SPIEGLER, 2013, p. 3), (W3TECHS). 

According to nic.at in 2012 there have been 1,121,235 domains registered in the .at TLD Zone; this 

means that the 2012 corpus contains about 28% of all registered .at domains (NIC.AT; .at Report 

2012). 

 

3.3. The Common Crawl Dataset Index 
 

As mentioned before, to use the complete corpus for this thesis is unfeasible because only limited 

resources are available. So the data needs to be narrowed down to a manageable size that has the 

highest probability of containing Viennese street addresses. The decision was made to only include 

URLs that have an .at TLD. But since URLs within the Common Crawl Corpus are unsorted to access 

only specific URLs an Index of the corpus is needed. Robertson did create such an index for the 

Common Crawl Corpus 2012. In the creation of the index, there were a couple of challenges to 

overcome (ROBERTSON; 2013). 

The index needs to be huge because the corpus contains 3.83 Billion URLs. The average URL size is 66 

bytes and an additional pointer to the file segment needs another 28 bytes. In order to merely 

information, a file larger than 360 GB is needed. Because of this large amount of data needed, it is 
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not possible to create the index in random access memory, but it still needs to be fast (ROBERTSON; 

2013). 

The index should be accessible by a wide variety of tools and people. But there is also the need to 

keep hosting and processing costs down, because Common Crawl is a nonprofit organization.  

To meet all these demands the index is also hosted, like the Common Crawl Corpus, in an Amazon S3 

bucket. It is not necessary to download the full index to work with it. The index can be queried and 

searched without a local copy (ROBERTSON; 2013). 

The file format of the index is based on a Prefix B-Tree. These search trees are one of the two broad 

classes for key lookup operations. In the case of this index the keys are the URLs and corresponding 

to them the file pointers to the Common Crawl Corpus 2012 (BAYER AND UNTERAUER; 1977; pp. 11-26). 

 

 

 

Figure 3.2 Example Binary Tree (MANNING ET AL, 2009) 

 

Figure 3.2 depicts a binary tree format. The binary tree owes its name to its structure because every 

node has two branches. The search for a key begins at the root of the tree. If the first letter is within 

the range of A to M the algorithm takes the corresponding branch; if not, it takes the other. This 

process is repeated at every node until it arrives at the final node, which contains the key. An issue 

with binary trees is that they need to be balanced to be effective. The number of keys beneath each 
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subtree on every level must be equal. If a key is added the whole tree needs to be rebalanced. To 

mitigate this problem the number of subtrees of a node in a B-tree (a generalization of a Binary Tree) 

is not fixed to two but can vary within a defined interval. An example can be seen in Figure 3.3 

(MANNING ET AL; 2009; pp.49-53).  

 

 

Figure 3.3 Example B-Tree (MANNING ET AL, 2009) 

 

Prefix B-Trees, like the one used for the Common Crawl index, are a combination of B-Trees and key 

compression techniques to save space (BAYER AND UNTERAUER; 1977; pp. 11-26). 

 

B-Trees are capable of wildcard queries. For example, a query like “tru*” is a trailing wildcard query 

because the wildcard symbol is located at the end of the search string. The structure of a B-Tree 

allows it to handle this query conveniently. The algorithm follows the symbols t then r and then u 

down the tree at which point it encounters a node beneath all keys begin with “tru” (MANNING ET AL; 

2009; pp.49-53). 

For wildcards leading a search string like in, for example, “*paper” an inverted B-Tree is used. That 

means a key in the inverted B-Tree corresponds to a path written backwards. So the term 

newspaper is represented as the path root-r-e-p-a-p-s-w-e-n (MANNING ET AL; 2009; pp.49-53). 

With a combination of a B-tree and an inversed B-tree, queries like “Me*ro” become possible. The 

search string is split at the wildcard symbol. “Me*” is used on the B-Tree and “*ro” on the inversion. 

From both results an intersecting set is created containing all the keys beginning with “Me” and 

ending in “ro” (MANNING ET AL; 2009; pp.49-53). 

Applied to the Common Crawl index, the result looks like the example in Figure 3.4. The index is 

queried for all URLs that point to the SLD derstandard.at. Because the check command is given, the 

index returns just the number of webpages associated with the search term and the compressed size 

of them. The order of URLs in the B-Tree of the Common Crawl index is inversed. A TLD is flowed by 
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an SLD and so on. The script automatically assumes a wild card at the end of the queried URL. So in 

the example the search term could also be read as “at.derstandard*” (ROBERTSON; 2013). 

 

 

Figure 3.4 Index check example derstandard.at 

 

To query the index for the whole .at TLD is therefore simple. The index returns all webpages whose  

URLs end in .at. This includes all the special cases .at SLDs .ac.at, .gv.at, .co.at, .or.at and .priv.at. 

Results can be seen in Figure 3.5. 

 

 

Figure 3.5 Index check example .at TLD 

 

The statistics that the tool generates show, on the one hand, the overall number and size of the arc 

files the data is distributed over and, on the other, the number of webpages and size when only the 

relevant data is extracted from all ARC files (ROBERTSON; 2013). 

 

3.4 Downloading the Common Crawl Dataset 
 

The naïve solution to download the part of the Common Crawl dataset that is needed would be the 

command “remote_copy copy at. --bucket target-bucket-name”. There is the possibility to tweak this 

command by appending “--parallel x”, which defines in how many parallel instances the script should 
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download the data. But the script isn’t error proof and the .at name space is so big errors always 

occurred, leaving the script hung up at some point (ROBERTSON; 2013). 

To circumvent this problem a second script was written that a) split the .at name space into smaller 

pieces b) parallelized the original script further and c) added some error handling. For this a new 

method was created within the remote_copy script called external. This method allowed handing 

over arguments to remote_copy from another script without calling it over the command line like 

the ones above. 

To split the .at name space into smaller pieces, a list of three letter URL stumps was created with the 

code in Figure 3.6. 

 
035 def create_urllist(): 
036      
037     list1 = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q', 

'r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9'] 
038     list2 = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q', 
      'r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','-'] 
039     list3 = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q', 
  'r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','-','.'] 
040     completlist = [] 
041     for first in list1: 
042         for second in list2: 
043             for third in list3: 
044                 completlist.append('at.'+first+second+third) 
045     return completlist 

 

Figure 3.6 Code example URL stump creation 

 

The code in Figure 2.X conforms to all rules set by nic.at for domains in the .at TLD space. They must 

contain at least 3 symbols and an hyphen isn’t allowed as a first symbol. The code above results in a 

list of strings that looks like this: [at.aaa, at.aab, at.aac, …] (NIC.AT; Registration 

Guidelines).  

The next step is to initiate every URL stump as a discrete download process. The easiest way would 

be to process every element on the list sequentially. But this is a rather slow process and it is 

necessary to transfer data related to a couple of URL stumps in parallel. For this though there needs 

to be a threading environment that controls which URL stumps have already been processed and 

that keeps the number of parallel threads to a certain limit. This is what the following code examples 

do. 
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008 class myThread (threading.Thread): 
009     def __init__(self, urlstump, threadid): 
010         threading.Thread.__init__(self) 
011         self.urlstump = urlstump 
012         self.id = threadid 
013     def run(self): 
014         threadLimiter.acquire() 
015         print 'checking for ' + str(self.urlstump) 
016         current_urllist.append(self.urlstump) 
017         remote_copy_external.external('AWS-PUBLIC-KEY', 
018         'AWS-PRIVATE-KEY','tldat','Data2//'+str(self.urlstump), 
019         self.urlstump,parallelconnections,True) 
020          
021         print "Exit Thread: %d of %d" %(self.id, NummberIDs) 
022         urllist.remove(self.urlstump) 
023         current_urllist.remove(self.urlstump) 
024         threadLimiter.release() 

 

Figure 3.7 Threading Code 

 

Figure 3.7 shows the construction code for a new thread object. This creates a parallel python 

process. The lines 9 to 12 define the variables of this thread, which are only the URL stumps that are 

to be downloaded and a thread ID used for identification. Lines 13 to 23 state what the thread does 

as soon as it is started. Lines 15 and 21 just print some console output. Line 16 appends the active 

URL stump of this thread to a list of active URL stumps. This list is later used to check if one of the 

threads is hanging. Line 17 and 18 finally execute the remote_copy script that was modified to be 

started from another python script. If the download was successful the URL stump of this thread is 

deleted from a control list in line 22 and from the current_urllist in line 23 (PYTHON 2.7.10 LIBRARY; 

threading). 
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047 while running:                                                                                               
048     print '' 
049     print 'running threads %s'%(len(threading.enumerate())) 
050     urllist_pickle = list(urllist)                                                       
051     ipickle = iterate_ipickle(ipickle) 
052     picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))        
053      
054     if duds+threadnumber > len(threading.enumerate()):           
055             if threadlist:                                       
056                 element = threadlist[0]                          
057                 threadlist.remove(element) 
058                 myThread(element,ID).start()                     
059                 ID += 1 
060                 continue                                         
061             if not threadlist:                                   
062                 pass 
063      
064     elif threadlist:                                              
065         ipickle = iterate_ipickle(ipickle) 
066         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle)) 
067         time.sleep(1)                                            
068         print current_urllist    
069         continue                                                 
070          
071     elif not threadlist:                                         
072         ipickle = iterate_ipickle(ipickle) 
073         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle)) 
074         pass                                                     
075      
076     while duds < len(threading.enumerate()):                             
077         time.sleep(10)                                           
078                                  
079         print '' 
080         print 'Current Passnumber: %d'%(Passnumber)              
081         print current_urllist                                    
082         urllist_pickle = list(urllist)                           
083         ipickle = iterate_ipickle(ipickle) 
084         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))                            
085         pass 
086      
087     if not urllist:                                               
088         running = False                                          
089         print '' 
090         print 'Script did run Passnumber %d'%(Passnumber) 
091         pass 
092     else:                                                        
093         threadlist      = list(urllist)                          
094         urllist_pickle = list(urllist)                           
095         ipickle = iterate_ipickle(ipickle) 
096         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle)) 
097         print '' 
098         print 'Script did run Passnumber %d'%(Passnumber) 
099         Passnumber =+ 1 

 

Figure 3.8 Starting and controlling threads 

 

The threads need a controlling mechanism. The while running loop in Figure 3.8 is responsible 

for this function. This loop is executed as long as running == True. The lines 50 to 52 are 

responsible for saving the current state of the URL stump list. This is necessary, because the whole 

script runs over the length of a couple of days and in the event that it should crash for an unforeseen 
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reason the last version of the list can be reloaded. Otherwise the script would need to start from the 

beginning again. The if statement in line 54 is responsible for limiting the number of active threads. 

Before the while running loop is started, the number of active threads is saved to the variable 

duds. The test in line 54 checks that the number of active threads does not exceed the number of 

active threads before the loop was started plus the number of parallel download threads intended. If 

this is the case, the subsequent if statement in line 48 is called upon (PYTHON 2.7.10 LIBRARY; Built-in 

types). 

Line 55 checks if there are still URL stumps in the list threadlist, which are not yet downloaded. If 

this is true, one of the URL stumps is removed from the threadlist and a new thread is started. 

Lines 64 to 69 and 71 to 74 also save the URL stump list in different phases of the script. The main 

difference is that lines 71 to 74 are only invoked if the threadlist is empty and pass in line 74 

prompts the script to execute the loop further, while the continue in line 69 makes the loop jump 

back to the beginning in line 47 (PYTHON 2.7.10 LIBRARY;  Built-in types), (PYTHON 2.7.10 LIBRARY;  

pickle). 

Line 76 checks if there are still active download threads running even though the threadlist is 

empty. It does that by testing if the number of threads is still bigger than before the while 

running loop was started. If that is the case, the loop waits for 10 seconds, then saves the current 

version of urllist and performs the active thread check again (PYTHON 2.7.10 LIBRARY;  Built-in 

types). 

Line 87 checks if there are still URL stumps in the urllist. If not, running is set to False, thus 

ending the main while loop. If there are still stumps in the urllist, those are copied again to the 

threadlist in Line 93, the current urllist is saved and the while loop begins again at the top 

(PYTHON 2.7.10 LIBRARY; Built-in types). 

The whole code works with two main lists the threadlist and the urllist. In the beginning, the 

threadlist is a copy of the urllist. During the threading process, one URL stump at a time is 

removed from the threadlist and a new thread is started with this stump. If a thread runs 

successfully to its end, this stump is also removed from urllist (see Figure 3.7 line 23). In the end, 

a check is performed to see if all elements of the urllist have been processed. If not, the 

remaining elements are again copied to the threadlist. This construction was necessary because 

single download threads tended to crash (PYTHON 2.7.10 LIBRARY;  Built-in types). 

All data was copied this way from the Common Crawl Corpus 2012 to the tldat bucket from where it 

was downloaded to a local machine for further processing. 
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4. OpenStreetMap Geocoder 
 

This chapter looks at the extraction of addresses with spatial information, also known as geocoding, 

from an OpenStreetMap (OSM) dataset that is limited to Vienna.  

First, there is a short of overview what OSM is and how data from OSM is structured. The sections 

that follow look at the code used to do the extraction and how the addresses are transferred to the 

database. 

 

4.1. OpenStreetMap 
 

OpenStreetMap is a free volunteer based worldwide geodata set. OSM works similarly to Wikipedia 

but is about geospatial information. The information is freely available in the sense of no attached 

costs. Another difference to other web map providers like Google Maps or Bing Maps is in the sense 

of free as in free speech. The information is not only useable in the form of rendered map tiles but 

the underlying geodata itself is available to every user.  

This kind of data is called volunteer geographic information (VGI). The OSM Project is managed by 

the OSM Foundation. This is a UK based not-for-profit organization that acts as a legal entity for the 

project. The foundation is the custodian of server hardware necessary to host OSM. It also organizes 

fundraisers for the project, organizes an annual conference and supports communication with 

several project workgroups. OSM was founded in 2004 and grew to a base of 640,000 supporters by 

2012 with a wide variety of geospatial information entered into the database (NEIS AND ZIPF, 2012, 

pp. 146-163). 

 

4.2. Data Structure and Source 
 

OSM uses Extensible Markup Language (XML) for data exchange. XML is a meta format that provides 

human readable data exchange. OSM building upon this kind of data exchange has a couple of 

advantages. First, it is a system-independent format. Already existing XML parsers can be easily 

modified to parse OSM data. Second, it is human readable because it has a clear tree structure and 

files have a good compression ratio. The downside of OSM XML (.osm) is that the files are large. 

Therfore it might necessary to decompressing them first and parsing can take a lot of time. An 

example of an OSM XML file can be seen in Figure 4.1 below (NEILS AND ZIPF, 2012, pp. 146-163).  
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<?xml version="1.0" encoding="UTF-8"?> 
<osm version="0.6" generator="CGImap 0.0.2"> 
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" maxlon="12.2524800"/> 
<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO" uid="46882" visible="true" 
version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/> 
<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter" uid="36744" 
visible="true" version="1" changeset="323878" timestamp="2008-05-03T13:39:23Z"/> 
<node id="1831881213" version="1" changeset="12370172" lat="54.0900666" lon="12.2539381" 
user="lafkor" uid="75625" visible="true" timestamp="2012-07-20T09:43:19Z"> 

  <tag k="name" v="Neu Broderstorf"/> 
  <tag k="traffic_sign" v="city_limit"/> 
 </node> 
<way id="26659127" user="Masch" uid="55988" visible="true" version="5" changeset="4142606" 
timestamp="2010-03-16T11:47:08Z"> 
  <nd ref="292403538"/> 
  <nd ref="298884289"/> 
  ... 
  <nd ref="261728686"/> 
  <tag k="highway" v="unclassified"/> 
  <tag k="name" v="Pastower Stra �"/> 
 </way> 
 <relation id="56688" user="kmvar" uid="56190" visible="true" version="28" changeset="6947637" 
timestamp="2011-01-12T14:23:49Z"> 
  <member type="node" ref="294942404" role=""/> 
  ... 
  <member type="node" ref="364933006" role=""/> 
  <member type="way" ref="4579143" role=""/> 
  ... 
  <member type="node" ref="249673494" role=""/> 
  <tag k="name" v="Kstenbus Linie 123"/> 
  <tag k="network" v="VVW"/> 
  <tag k="operator" v="Regionalverkehr Kste"/> 
  <tag k="ref" v="123"/> 
  <tag k="route" v="bus"/> 
  <tag k="type" v="route"/> 
 </relation> 
 ... 
</osm> 

 

Figure 4.1 OSM Data Example (OPENSTREETMAP WIKI; OSM XML) 

 

OSM Data is always structured the same way. First, there is an XML suffix declaring that the 

character set of the file is UTF-8 encoded. This is followed by the <osm> element that contains the 

version of the API with which it was created and the generator tool. The Extent of the data is 

described by a <bounds> block. Next is the nodes block: it contains all nodes displayed within the 

bounds. All nodes have an ID and coordinates that are expressed in the WGS84 reference system. 

Nodes may contain nested tags. The next block contains all the ways. Ways are a list of ordered 

nodes. When the way is a closed way, that means the starting and ending node are the same node, 

nodes act as vertices of a polygon. If the way is not closed, the way acts as a line feature, again with 

the nodes used as vertices of the feature. Apart from references to the nodes, a way normally 

contains a couple of other tags helping to describe the object depicted by it. Lastly, there are 

relations. These features consist of a group of nodes, ways and other relations, all of them referred 

to as a member of the relation. A typical example for a relation is a feature that has an inner and 

outer edge. For this, two closed ways are combined into a relation: one describes the outer, and the 
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other, the inner edge of the feature. Like a way or a node, a relation can have tags that describe the 

feature depicted (OPENSTREETMAP WIKI; OSM XML).  

 

4.3. Extracting Addresses 
 

Addresses are stored as a group of tags in a node, a way or a relation. An example of the address tag 

is shown in Figure 3.2. 

 
<node id="566992041" visible="true" version="1" changeset="3158538" timestamp="2009-11-
19T10:44:24Z" user="andreas_k" uid="39877" lat="48.2136818" lon="16.3604013"> 
  <tag k="addr:city" v="Wien"/> 
  <tag k="addr:country" v="AT"/> 
  <tag k="addr:housenumber" v="1"/> 
  <tag k="addr:postcode" v="1010"/> 
  <tag k="addr:street" v="Universitätsstraße"/> 
 </node> 

 

Figure 4.2 Example address tag (Openstreetmap.org) 

 

An OSM XML file covering the area of Vienna was downloaded from Cloudmade. This file was then 

parsed for addresses with the following code. For parsing the OSM data, the python sax parser is 

used. Different from more complex parsers available, this parser does not try to recreate the XML 

document as a tree-like object in memory. This is of importance because the whole file containing 

Vienna is about 0.7 GB big in XML and a tree object for this amount of data always exceeds the 

available 8 GB of random access memory (RAM). The sax parser reads the XML file line by line. Using 

the sax parser results in more complex code, but allows it to run on much less RAM (PYTHON 2.7.10 

LIBRARY; xml.sax), (CLOUDMADE). 

 

Figure 3.3 shows the first part of this code; the parser is initiated as the class startendfinder(), 

with the content that should be parsed handed over. The class itself consists of a range of methods 

and a range of variables defined and initiated in the lines 13 to 29. Without getting into each one of 

them now, the most important ones are the self.address object defined in line 13 and the three 

dictionary lines 15 to 17. The method startElement() in line 31 is executed when the parser 

detects that a line is the start of a new XML element. XML elements are opened with 

<ElementName> and closed with the same tag name preceded by a slash, for example, 

</ElementName>. A special case is a tag that is opened and closed in the same line expressed with 

a slash trailing the name, for example, <ElementName/> (PYTHON 2.7.10 LIBRARY; xml.sax). 
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The method contains an if/elif statement that checks the name of the element. If the element is a 

node, the information of this node is saved in a couple of variables. First, the self.address object 

is given the coordinate of the node in line 33, even though, at this point it is unknown if this node 

contains an address. The coordinates are already put into a format ('POINT(%s %s)' % 

(attrs.get('lon'),attrs.get('lat'))) with which they can be easily written into a PostgreSQL 

table with a PostGIS field (PYTHON 2.7.10 LIBRARY; xml.sax), (POSTGIS 2.1.3; documentation), 

(POSTGRESQL 9.3.9; documentation). 

The spatial information of the node is also copied into the self.nodedict dictionary in line 34 with 

the ID of the node as the key and the latitude and longitude as values. This is necessary because all 

other objects (ways and relations) only refer to nodes and do not contain spatial information 

themself. But with this dictionary, it is simple to look up this spatial information. Lastly, the 

self.nodemode is set to True. The two other elif statements that are triggered in the event that 

the element is not a node simply get the ID of the element and set either self.waymode or 

self.relationmode to True (PYTHON 2.7.10 LIBRARY; xml.sax). 
011 class startendfinder(handler.ContentHandler): 
012     def __init__(self): 
013         self.address = ['lat_lon', 'pcode', 'street', 'number'] 
014          
015         self.nodedict = {} 
016         self.waydict = {} 
017         self.relationdict = {} 
018         self.plz = False 
019         self.street = False 
020         self.number = False 
021         self.nodemode = False 
022         self.waymode = False 
023         self.relationmode = False 
024         self.wayid = False 
025         self.relationid = False 
026         self.ndlist = [] 
027         self.memberlist = [] 
028         self.latlist = [] 
029         self.lonlist = [] 
030  
031     def startElement(self, name, attrs): 
032         if name in ('node'): 
033             self.address[0] = 'POINT(%s %s)' % (attrs.get('lon'), 

      attrs.get('lat')) 
034             self.nodedict[int(attrs.get('id'))] = (float(attrs.get('lat')),    
         float(attrs.get('lon'))) 
035              
036             self.nodemode = True 
037  
038         elif name in ('way'): 
039             self.wayid = int(attrs.get('id')) 
040             self.waymode = True 
041  
042         elif name in ('relation'): 
043             self.relationid = int(attrs.get('id')) 
044             self.relationmode = True 

 

Figure 4.3 OpenStreetMap XML parser start element part one 
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The next part of code seen in Figure 4.4 is still part of the startElement() method. The following 

lines 96 to 117 are invoked if self.nodemode is True and the line the parser is parsing is the start of 

an element. Both of these things happen when there is a still an open node element, because of line 

36 in Figure 4.2, and this element contains nested elements (PYTHON 2.7.10 LIBRARY; xml.sax). 

 
096         if self.nodemode == True: 
097             if name == 'tag': 
098                 k, v = (attrs.get('k'), attrs.get('v')) 
099  
100                 if k == 'addr:street': 
101                     self.address[1] = unicode(v) 
102                     self.street = True 
103  
104                 if k == 'addr:housenumber': 
105                     self.address[2] = unicode(v) 
106                     self.number = True 
107  
108                 if k == 'addr:postcode': 
109                     try: 
110                         if int(v) <= 1099: 
111                             self.address[3] = int(v) 
112                             self.plz = True 
113                         elif int(v) >= 1200 and int(v) <= 1209: 
114                             self.address[3] = int(v) 
115                             self.plz = True 
116                     except: 
117                         pass 

 

Figure 4.4 OpenStreetMap XML parser start element part two 

 

Those nested XML elements are then again checked in line 97 for their names. If the name is tag, 

then the attributes of the element 'k' and 'v' are saved to variables with the same name. The lines 

100, 104 and 108 test k if the tag is part of an address. If so, the v is written to the part of the 

address object defined as the street name, house number or postcode. Also, the corresponding 

control variables self.plz, self.number and self.street are set to True indicating that when all 

are True a complete address was obtained from the node element (PYTHON 2.7.10 LIBRARY; xml.sax), 

(OPENSTREETMAP, Wiki Addresses).  

The postcode is a special case because it has to be put in a try/except statement and it filters all 

addresses that are not within the 1st to 9th, or 20th district. To implement this filter, the v variable is 

converted to an integer value and tested to be within a certain value range as can be seen in lines 

110 and 113. This conversion to an integer value is also the reason for the try/except statement. 

Because of errors within the dataset, not all v attributes that correspond to a k attribute of 

'addr:postcode' can be converted to integer (PYTHON 2.7.10 LIBRARY; xml.sax), (OPENSTREETMAP, 

Wiki Addresses). 
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046         if self.relationmode == True: 
047             if name == 'member': 
048                 self.memberlist.append((int(attrs.get('ref')),attrs.get('type'))) 
049             if name == 'tag': 
050                 k, v = (attrs.get('k'), attrs.get('v')) 
 
    [...] 
 
071         if self.waymode == True: 
072             if name == 'nd': 
073                 self.ndlist.append(int(attrs.get('ref'))) 
074             if name == 'tag': 
075                 k, v = (attrs.get('k'), attrs.get('v')) 
 
    [...] 

 

Figure 4.5 OpenStreetMap XML parser start element part three 

 

The self.relationmode and the self.waymode in Figure 4.5 that are called when the top level 

element is a relation or a way work analogously to the way self.nodemode in acquiring an address. 

But there is one key difference: relations of all members of the relation are collected within the 

self.memberlist in line 48 and ways where all nodes are part of the way are collected in a 

self.ndlist in line 73. For this, the nested elements are tested for their name and, if they match 

either 'nd' or 'member', they are appended to the corresponding lists. The self.ndlist only 

contains the references to the nodes because ways can only consist of nodes, while the 

self.memberlist also contains the information about what kind of object (node, way or relation) 

the element refers to (PYTHON 2.7.10 LIBRARY; xml.sax), (OPENSTREETMAP WIKI; OSM XML). 

 
119     def endElement(self, name): 
120         if name in ('node'): 
121             if self.plz is True and self.street is True and self.number is True: 
122                 addresslist.append(tuple(self.address)) 
123  
124             self.nodemode = False 
125             self.plz = False 
126             self.street = False 
127             self.number = False 
128             self.address = ['lat_lon', 'pcode', 'street', 'number'] 

 

Figure 4.6 OpenStreetMap XML parser end element part one 

 

Following startElement() is the endElement() method. As the name implies, this method is 

executed when the end of an element is reached. The arguments passed to the method are self 

and name. Again, what the method does is dependent on the type of element that is closed. The 

code that will be executed if the element is a node can be seen in example Figure 4.6. The if 
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statement in line 121 is executed when an address was successfully extracted for this node (compare 

with Figure 4.4 lines 100 to 115). The self.address object is appended to an addresslist which in 

turn is written to a PostgreSQL/PostGIS Database as soon as the whole OSM XML file is parsed. In 

lines 124 to 128, all switch variables are returned to their default values. When the node is at an 

end, the information is no longer relevant for the rest of the process and the default values are 

needed in order for the process to work correctly (PYTHON 2.7.10 LIBRARY; xml.sax). 

The code for relation and way elements is a bit more complex because, as mentioned before, both 

of those objects only contain references to objects with spatial information and no spatial 

information themselves.  

 
130         if name in ('way'): 
131             for nd in self.ndlist: 
132                 self.latlon = self.nodedict[nd] 
133                 self.latlist.append(self.latlon[0]) 
134                 self.lonlist.append(self.latlon[1]) 
135  
136             self.waydict[self.wayid] = (numpy.mean(self.latlist)), 

    numpy.mean(self.lonlist)) 
137  
138             if self.plz is True and self.street is True and self.number is True: 
139                 self.address[0] = 'POINT(%s %s)' % (numpy.mean(self.lonlist), 

   numpy.mean(self.latlist)) 
140                 addresslist.append(tuple(self.address)) 
141  
142             self.latlist = [] 
143             self.lonlist = [] 
144             self.waymode = False 
145             self.plz = False 
146             self.street = False 
147             self.number = False 
148             self.address = ['lat_lon', 'pcode', 'street', 'number'] 
149             self.ndlist = [] 

 

Figure 4.7 OpenStreetMap XML parser end element part two 

 

The code in Figure 4.7 is still part of the endElement() method. It depicts what is executed when the 

end of a way element is reached. With lines 131 to 134, the collected self.ndlist of this way 

element is used on the self.nodedict (compare Figure 4.5 line 72/73 and Figure 4.3 line 34) 

resulting in a self.latlist containing all latitude values and a self.lonlist with all longitudes 

associated with this way element (PYTHON 2.7.10 LIBRARY; xml.sax). 

The mean value of both latitude and longitude lists is saved to the self.waydict with the ID of the 

way as the key in line 136. If all control variables self.plz, self.number and self.street are True, 

the mean value of the self.latlist and self.lonlist are assumed to be the coordinates of the 

address and added to the self.address object in line 139. Then the object is appended to the 
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addresslist in line 140. After that, all the variables are reset to the default in the lines 142 to 149 

(PYTHON 2.7.10 LIBRARY; xml.sax). 

 
151         if name in ('relation'): 
152             for member in self.memberlist: 
153  
154                 if member[1] == 'node': 
155                     self.latlist.append(self.nodedict[member[0]][0]) 
156                     self.lonlist.append(self.nodedict[member[0]][1]) 
157                 elif member[1] == 'way': 
158                     self.latlist.append(self.waydict[member[0]][0]) 
159                     self.lonlist.append(self.waydict[member[0]][1]) 
160                 elif member[1] == 'relation': 
161                     self.latlist.append(self.relationdict[member[0]][0]) 
162                     self.lonlist.append(self.relationdict[member[0]][1]) 
163  
164                 self.relationdict[self.relationid] = (numpy.mean(self.latlist), 

 numpy.mean(self.lonlist)) 
165  
166                 if self.plz is True and self.street is True and self.number is 

 True: 
167                     self.address[0] = 'POINT(%s %s)' % (numpy.mean(self.lonlist), 
           numpy.mean(self.latlist)) 
168                     addresslist.append(tuple(self.address)) 
169  
170             self.latlist = [] 
171             self.lonlist = [] 
172             self.waymode = False 
173             self.plz = False 
174             self.street = False 
175             self.number = False 
176             self.address = ['lat_lon', 'pcode', 'street', 'number'] 
177             self.memberlist = [] 

 

Figure 4.8 OpenStreetMap XML parser end element part three 

 

The code at the end of a relation element is even more extensive than for a way. Figure 4.8 shows 

the example code for this. In Line 152, every member of the self.memberlist is called. Afterwards, 

depending on what type of object the particular member references to, the corresponding dictionary 

is called and the latitude and longitude values appended to the respective lists are added. Because 

relations can be members of other relations in line 164, the mean value of the coordinates of this 

relation are added to the self.relationdict with the ID as the key. Relations in the XML file are 

ordered in a way that relations which are part of other relations always come before those relations 

which they are a part of. The rest of the code from lines 166 to 177 works similarly to the previously 

described code for nodes and ways (PYTHON 2.7.10 LIBRARY; xml.sax).  
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4.4. Write Addresses to a Database 
 

All addresses are written to the PostgreSQL database with the python psycopg2 library. For this, a 

separate python script is written containing all the structured query language (SQL) handling parts of 

the code. It can be seen in Figure 4.9. 

 
Saxparser file: 
 
180 if __name__ == '__main__': 
181     parser = make_parser() 
182     parser.setContentHandler(startendfinder()) 
183     parser.parse('./vienna.osm') 
184  
185 
186     DBconnector.CreateTable() 
187     DBconnector.WriteToTableMany(addresslist) 
 
---------------------------------------------------------------- 
DBconnector file: 
 
001 import psycopg2 
002  
003  
004 def DBConnect(): 
005  
006     conn    = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres\ 

 password=########") 
007     cur     = conn.cursor() 
008     return conn,cur 
009  
010  
011 def CreateTable(): 
012  
013     conn,cur = DBConnect() 
014     cur.execute("CREATE TABLE IF NOT EXISTS Addresses (id serial PRIMARY KEY,\ 

 geom geometry, street text, Street_number text, pcode integer, 
AddDate integer);") 

015     conn.commit() 
016     conn.close() 
017  
018  
019 def WriteToTableMany(Values): 
020  
021     conn,cur = DBConnect() 
022     cur.executemany("INSERT INTO Addresses (geom, street, Street_number, pcode,\ 

AddDate) VALUES (%s, %s, %s, %s, 24022015)",(Values)) 
023     conn.commit() 
024     conn.close() 

 

Figure 4.9 Database Import and calling database import from the parser 

 

The lines at the top of Figure 4.9 are the initial ones that are executed when the parser is started. In 

lines 180 to 183 is all the code called discussed previously in this chapter. After these lines call this 

code, the addresslist is populated with addresses and their spatial information. What follows is 

the transfer of this python list to the PostgreSQL database. First with line 186, the CreateTable() 
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method shown in line 11 is called. This method in turn calls the DBConnect() method that creates a 

database connection object conn in line 6 and derives out of this connection object a cursor object 

cur in line 7. Both the cursor object and the connection object are returned to the CreateTable() 

method. With the cursor object, SQL can be executed on the database. So in line 14, the SQL 

command for the table creation is executed. Notable is the PostGIS field geometry that later holds 

the spatial information object for each address. The SQL command is committed with 

conn.commit() in line 15 and the connection closed in line 16 (PSYCOPG 2.5.3 LIBARY). 

WriteToTableMany() is then called in line 184 and the addresslist is passed to it. Again, a 

connection and cursor object are created, but this time the cur.executemany() function is used. 

This function allows an iterateable python object to be passed to the psycopg2 library. The 

preceding SQL-like string, with %s as placeholders, works as a blue print for every value in the 

iterateable python object. After all items in the addresslist are inserted into the database, the 

changes are committed in line 15 and the connection closed in line 16. Over-all, 23,830 addresses 

are written to the database (PSYCOPG 2.5.3 LIBARY). 
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Map 4.1 Extracted Addresses 
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Those 23,830 addresses are visualized on Map 4.1. Because the addresses are derived from a 

Wikipedia-like source, they are most probably not complete and may contain some errors. For 

example, there are likely some addresses missing in the north western corner of the 20th district. 

When the address points are overlaid over aerial photography, there seem to be a couple of 

buildings without an address point even though they should have one. Even more easily, one can 

assume that address points outside the designated districts are mistakes. There are four in the 12th 

district, one in the 13th (this one canot be seen on the map) and one in the 17th. All of them have 

been mistakenly added to the dataset because their post-code are incorrect.  

Literature about the correctness and completeness of VGI and OSM based address dataset is spars. 

There is a work by Haklay in 2010, on the overall positional accuracy and completeness that 

compared the Ordinance Survey meridian 2 dataset to OSM data. It shows that relatively wealthy 

and densely populate places are better mapped in OSM. Another study by Teske compared different 

geocoders, but this work is focused on how good given geocoder parses a string for an address 

(HAKLAY; 2010; pp. 682-703), (TESKE; 2014; pp. 161-174).   

But, overall and subjectively juding the errors seem to be sparse. For this thesis a 100% complete 

and error-free dataset is not necessary. 
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5. Common Crawl Database Transfer 
 

The focus of this chapter is how the now downloaded and archived files are transferred to the 

PostgreSQL Database. For this, the folder and file structure is examined how the ARC files are split 

up into individual files and how they are added to the database. 

 

5.1. Folder and file structure 
 

After downloading the Common Crawl Data to an Amazon S3 bucket the data is transferred to a local 

machine. The files are grouped into subfolders according to the parts of the .at TLD space they 

contain. A schematic example of this structure can be seen in Figure 5.1. 

 

Data/ 
 | 
 +-at.001/ 
  | |
 1.gz | +-
  | |
 2.gz | +-
 |  

at.002/  +-
 | | 

1.gz  | +-
 | | 

2.gz  | +-
 | 
[...] 
 at.zzz/ +-
   | 

1.gz    +-
   | 

2.gz    +-
 

Figure 5.1 Schematic example file structure 

 

The <name>.gz compressed files contain an ARC File whose structure is described in Chapter 3.2 and 

Figure 3.1. Those ARC Files contain multiple files, separated only by the header of each document. 

So each ARC file needs to be split up again into single documents. This is what the code Figure 5.2 is 

part of. It shows the first section of what is executed when the script is started. The execution starts 

at line 140, 141 calls a simple test which determines with which database the connection will be 

established. This is important because, at this point the amount of time a script takes to successfully 

pass is very long when all available data is used. For this reason, a smaller database containing only 
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about 1% of all data was created to test and develop scripts before executing them on the actual 

database (PSYCOPG 2.5.3 LIBARY). 

Line 144 calls the method creating the target table to which all the data will be transferred. This 

table has three columns, a unique ID for each HTML document, the URL of this document, and the 

HTML document itself saved as a string (PSYCOPG 2.5.3 LIBARY). 

 
018 def CreateTable(): 
019     conn, cur = DBConnect() 
020     cur.execute("CREATE TABLE IF NOT EXISTS html (id serial PRIMARY KEY, 
         url TEXT, html_file text);") 
021     conn.commit() 
022     conn.close() 
 
132 def current_database(): 
133     conn,cur = DBConnect() 
134     cur.execute('SELECT current_database()') 
135     DB_name = cur.fetchone() 
136     print('#######################') 
137     print('Connecting to %s' % DB_name) 
138     print('#######################') 
 
140 if __name__ == '__main__': 
141     current_database() 
142     raw_input('Please Press the anykey') 
143  
144     CreateTable() 
145     startall = time.time() 
146  
147     PATH = './Data' 
148     open_Paths(PATH) 
149  
150     print('+++++########+++++') 
151     print('complete Operation took %s Minutes' % ((time.time() - startall) / 60)) 
152     print('+++++########+++++') 
153  
154     lines = ReadFromTable() 
155     print(len(lines)) 
156     for line in lines: 
157          print (line[2]) 
158     raw_input('Please Press the anykey') 
 

Figure 5.2 Database transfer script part one 

 

Line 147 calls the open_Paths() method with the path to all data files as a string. Figure 5.3 shows 

this method. Line 119 calls the os.walk() method with which all paths to all files in a specific 

directory (in this case './Data' ) can be  created and this is what is done in line 122. The fullpath 

to a file is then handed over to the gzip.open() method that unpacks the file and returns the 

unpacked file to the variable file. file is then passed on to Database_export(). This method will 

divide the file into individual HTML documents that can then be passed to the database (PSYCOPG 

2.5.3 LIBARY), (Python 2.7.10 library; operating system), (Python 2.7.10 library; gzip). 
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118 def open_Paths(PATH): 
119     for path, dirs, files in os.walk(PATH): 
120         for filename in files: 
121             try: 
122                 fullpath = os.path.join(path, filename) 
123                 print ('####################') 
124                 print('%s Size: %s MB' % (fullpath,  

os.path.getsize(fullpath) / 1048576)) 
125                 file = gzip.open(fullpath, 'rb') 
126                 Database_export(file) 
127                 file.close() 
128             except: 
129                 pass 
 

Figure 5.3 Database transfer Script open_Paths() method 

 

5.2. Subdivide files into individual HTML files 
 

The Database_export() function is quite complex. The reason for this is the file’s internal 

structure. Every file is comprised of either one or a few hundred or thousands of arc files in text 

format. Thus, it is basically a very long text file, which has to be processed line for line. These lines 

are analyzed to determine if they belong to the current file or the following one. Parts of the code 

for this process can be seen in Figure 5.4. 
041 def Database_export(file): 
042     start1 = time.time() 
043     i = ''                                        
044     tup_i = ()                                              
045     url = '' 
046     html_written = 0 
047     mode = False 
048     for line in file.readlines(): 
049         splitline = line.split(' ') 
050         try: 
051           if splitline[0][:7] == 'http://' and splitline[3] =='text/html'   
        and len(splitline) == 5:                   
052  
053                 if len(i) > 0:                   
054                     tup_i = tup_i + ((url, i),)  
055                     url = ''                              
056                     i = ''         
057  
058                 url = splitline[0]     
059                 mode = True                  
060  
061                 if len(tup_i) >= 100:         
062                     print('empty tup_i') 
063                     try: 
064                         WriteManyToTable(tup_i)    
065                     except: 
066                         pass            
067                     tup_i = ()  
068                     print ("html files written to DB %s" % html_written) 
069  
070                 html_written += 1 
 

Figure 5.4 Transfer Script Database_export() method part one 
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Lines 42 to 47 define several controlling variables. Most important are i and tup_i. The variable i 

will contain all lines of the current HTML document, while tup_i holds the already parsed HTML 

documents. These are subdivided into tuples of the specific URL for this document and the content 

of the document itself as a string. 

The file that was passed on from the open_Paths() method is then split into individual lines in line 

48. Every line is again split at every space in line 49. This split line contained in the variable 

splitline is then tested in line 51 if it is the first line of a new document. If so, the current 

document along with the URL of this document is added to tup_i as a tuple in 54. If there is a 

document currently contained within i the if statement in line 53 is executed. The if statement 

tests if there is a document contained within i by checking the length of i. The document and its 

corresponding URL are added to tup_i in line 54 and url and i reset (PYTHON 2.7.10 LIBRARY; string).  

The newly current URL is saved to url and mode is set to True. What follows in line 61 is a test if the 

amount of already parsed HTML documents contained in tup_i has crossed a certain threshold. If so 

the HTML documents are passed on to the WriteManyToTable() method which will be discussed 

later in detail and tup_i is set to an empty tuple. 

 
092         if mode == True:                         
093             try: 
094                 i += unicode(line, "utf-8")       
095             except: 
096                 #i += UnicodeDammit(line).unicode_markup      
097                 pass    
 

Figure 5.5 Transfer Script Database_export() method part two 

 

Figure 5.5 skips a couple of lines to Figure 5.4, which will be discussed later. If mode was set to True 

in line 59, then all of the following lines until the next document is encountered will be appended to 

i in line 94. More precisely, a UTF-8 (Universal Coded Character Set + Transformation Format—8-bit) 

version of the line is appended to i. Text characters can be encoded in several different codecs. 

UTF-8 is one that strives to make it possible to encode all possible know characters. This step is 

necessary because all documents are encoded in a variety of codecs, but the database expects only 

UTF-8 encoded strings (PYTHON 2.7.10 LIBRARY; Unicode), (BEAUTIFUL SOUP 4.3.2 LIBARY;). 

Because certain characters still cannot be encoded into UTF-8, the code sometimes fails to convert a 

line. This is why the code needs to be in a try except block. The original intent was also to convert 

failed lines to UTF-8 with line 96, but this simply takes up too much calculation time, thereby 
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stretching the length it takes to process all files from hours to weeks. Thus, all lines that cannot be 

converted are not included and ignored (UNICODE 7.0.0). 

 
072             elif splitline[0][:7] == 'http://' and \ 

splitline[3] != 'text/html' and len(splitline) == 5:     
073  
074                 if len(i) > 0: 
075                     tup_i = tup_i + ((url, i),) 
076                     url = '' 
077                     i = ''    
078  
079                 mode = False          
080  
081                 if len(tup_i) >= 100:     
082                     print('empty tup_i') 
083                     try: 
084                         WriteManyToTable(tup_i) 
085                     except: 
086                         pass                                                                                             
087                     tup_i = () 
088                     print ("html files written to DB %s" % html_written) 
 

Figure 5.6 Transfer Script Database_export() method part three 

 

In Figure 5.6 we see the case where the script detects the beginning of a new document that is not 

an HTML text file, but something else, for example a picture, a PDF or a Microsoft Word file. When 

this is the case in the ARC file, the binary data of such files is encoded to text. Even though it would 

theoretically be possible to read out a PDF or a Microsoft Word file or other type of text file with 

suitable python libraries it is too time consuming to do so. 

Whenever the parser meets a line of a new document that is not an HTML text file the code in Figure 

5.6 is executed and ignores this file. Again there is the test to determine if a current document exists 

in line 74, and if so, the document, with its URL, is appended to tup_i and the variables url and i 

are reset. The mode is set to False, which has the effect that all of the following lines will not be 

saved to the now empty variable i. And if tup_i crosses the threshold of 100 collected HTML 

documents, those are passed to the WriteManyToTable() method and tup_i is set to an empty 

tuple (PYTHON 2.7.10 LIBRARY; Unicode), (PYTHON 2.7.10 LIBRARY; string). 

 
099     if len(i) > 0: 
100         tup_i = tup_i + ((url, i),) 
101  
102     try: 
103         WriteManyToTable(tup_i)         
104     except: 
105         pass 

 

Figure 5.7 Transfer Script Database_export() method part four 
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Part four shown in Figure 5.7 concludes what is left. Because the end of the ARC file no longer 

contains a new document header, i and url are appended to tup_i and tup_i one last time, no 

matter how many documents it contains is passed to the WriteManyToTable() method. 

4.3. Transfer to Database 

 

The WriteManyToTable() method can be seen in Figure 5.8. The function makes use of the 

.mogrify() method of the cursor object in line 27, a function that works similarly to the 

.execute() method of the cursor object but without executing the SQL statement on the database. 

Instead, it just forms the SQL statement with the given parameters. What line 27 now does is iterate 

through the Values variable, which contains all the URL and HTML document tuples, which were 

formerly known as tup_i, and creates one long SQL statement with all 100 URLs and HTML 

documents contained in it. This statement is then merged in Line 28 with the front part, forming a 

complete statement that is executed on the database inserting all 100 URLs and HTML files into it. 

The transaction is committed in line 29 and the connection is closed in line 30. Overall 8,406,507 

HTML documents are written to the database. 

 
025 def WriteManyToTable(Values): 
026     conn, cur = DBConnect() 
027     args_str = ','.join(cur.mogrify("(%s,%s)", x) for x in Values) 
028     cur.execute("INSERT INTO html (url, html_file) VALUES " + args_str) 
029     conn.commit() 
030     conn.close() 
 

Figure 5.8 WriteManyToTable() method 
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6. HTML Tag Stripper 
 

This chapter is about creating a more refined and relevant subset of the 8,406,507 HTML documents 

and how to strip this subset of all HTML tags and other irregularities and write it back to the 

database.   

 

6.1. Find Vienna 
 

Since not all of the 8.4 million documents are going to be geotagged, it is prudent to only geotag 

those documents which are most likely going to be geotagged and exclude those which will never be 

geotagged to an address in Vienna. A simple way of doing this is to mark all documents in which the 

term ‘Wien’ appears at least once. That is what the code in Figure 6.1 demonstrates. 

 
009 def addvienna(): 
010     conn, cur = DBConnect() 
011     cur.execute("ALTER TABLE html ADD COLUMN Vienna BOOLEAN;") 
012     conn.commit() 
013     conn.close() 
014     return 
015  
016  
017 def setvienna(lower,upper): 
018     conn, cur = DBConnect() 
019     cur.execute("""UPDATE html SET Vienna = TRUE WHERE html_file LIKE 

 '%%' || ' %s ' || '%%' AND ID >= %s AND ID <%s  RETURNING ID;""" % 
        ('Wien',lower,upper)) 

020 
021  
022     conn.commit() 
023     conn.close() 
024     return 
025  
026  
027 addvienna() 
028 lower = 0 
029 increment = 10000 
030 starttime = time.time() 
031 while lower <= 8406507: 
032     setvienna(lower,lower+increment) 
033     delta_time = time.time() - starttime 
034     print lower+increment 
035     print "time till now %.2f Minutes" % (delta_time / 60) 
036     print "time till end %.2f Minutes" % 

(((delta_time/60)/(lower+increment))*(8406507-(lower+increment))) 
037     lower += increment 

 

Figure 6.1 Set Vienna 
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First, there needs to be a column in the html table that can tell us if the string 'Wien' occurs in the 

document. This is done by the addvienna() method called in line 27. Next, the code iterates 

through all IDs and thus documents in chunks of 10,000. For this, an initial lower end is set in line 28 

and the increment size in line 29. The while loop in 31 is executed as long as lower is smaller than 

8,406,507, the number of HTML documents contained in the HTML table. lower and lower plus 

increment of 10,000 are passed to the setvienna() method. The purpose of setvienna() is to 

execute an SQL statement that looks through a range of documents and tests these documents with 

the LIKE operator. The LIKE operator is a string matching operator and the string it tries to match is 

'Wien'. In this case, the string is preceded and followed by a wildcard. All documents where the 

operator matches the column Vienna are set to TRUE. In total, 698,524 documents are matched and 

set to TRUE (PSYCOPG 2.5.3 LIBRARY), (POSTGRESQL 9.3.9). 

 

6.2. Remove HTML Tags 
 

After all documents are marked, the next step is to remove all HTML tags. For this, regular 

expressions are used. Regular expressions are sequences of characters that match a certain pattern 

in a string. The HTML table also needs a column to accommodate documents without HTML tags. In 

line 69 of Figure 6.2, the method createColumn() is called and creates such a column. The DROP 

COLUMN SQL statement is in there because, like all the code, also this part is developed by trial and 

error. It turns out to be much faster to drop a column and then recreate it than to overwrite an old, 

incorrect column with correct values. strippedlist created in line 71 will contain the processed 

documents before they are written to the database. Then in line 74, the variable htmls is populated 

with the first documents. For this, the ReadFromHTML() function is called (PSYCOPG 2.5.3 LIBRARY). 

Because now only those documents where the column Vienna is set to true are of interest, instead 

of a range of IDs, the limit and offset operators are used in the SQL statement. The table is ordered 

by id and then the function of offset is to ignore the first n rows defined by the variable offset. 

Limit defines how many rows are returned in total. When offset and limit are used in combination, 

like in line 16, and offset is iterated higher and higher (see line 104), the database returns the first 

thousand rows, then the next thousand rows and so on. Consistency of order is guaranteed because 

the table is always ordered the same way, by id. With all this set up, the code enters the while loop. 

This loop gets executed as long as htmls is true and htmls is true as long as the database returns 

documents with the just described SQL statement (see line 103 and 104). The database ceases to do 

so as soon as offset is higher than the amount of documents where the column Vienna is true 

(PSYCOPG 2.5.3 LIBRARY), (POSTGRESQL 9.3.9). 
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014 def ReadFromHTML(offset): 
015     conn, cur = DBConnect() 
016     cur.execute("SELECT id,html_file FROM html WHERE vienna = TRUE ORDER BY id 

 limit 1000 offset %s ;" % offset) 
017     data = cur.fetchall() 
018     cur.close() 
019     conn.close() 
020  
021     return data 
 
 
032 def createColumn(): 
033     conn, cur = DBConnect() 
034     cur.execute("ALTER TABLE html DROP COLUMN IF EXISTS stripped_html;") 
035     conn.commit() 
036     cur.execute("ALTER TABLE html ADD COLUMN stripped_html TEXT;") 
037     conn.commit() 
038     cur.close() 
039     conn.close() 
 
 
069 createColumn()  
070 Starttime = time.time() 
071 strippedlist = [] 
072 offset = 0 
073 Starttime2 = time.time() 
074 htmls = ReadFromHTML(offset) 
075 Numberofrows = 8406507 
076  
077  
078  
079 while htmls: 
080  
081     timeregex = time.time() 
082     print("starting Regex") 
083     for row in htmls: 
084         id = row[0] 
085         stripped_html = remove_tags(row[1])  
086         strippedlist.append((stripped_html, id)) 
087     print('Regex took %.2f Minutes' % ((time.time() - timeregex) / 60)) 
    

[...] 
 
103     offset += 1000 
104     htmls = ReadFromHTML(offset) 

 

Figure 6.2 Fetching HTML documents to strip tags 

 

The ReadFromHTML() function returns a list of tuples containing the ID of the row and the content of 

the html_file column. The for loop in line 83 iterates through this list and passes one HTML 

document after another to the remove_tags() method shown in Figure 6.3 (PSYCOPG 2.5.3 LIBRARY). 
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042 def remove_tags(text): 
043     text = TAG_RE.sub('', text) 
044     text = Short.sub('', text) 
045     text = eszt.sub('ß', text) 
046     text = ae.sub('ä', text) 
047     text = AE.sub('Ä', text) 
048     text = oe.sub('ö', text) 
049     text = OE.sub('Ö', text) 
050     text = ue.sub('ü', text) 
051     text = UE.sub('Ü', text) 
052     return text 
053  
054  
055  
056  
057 TAG_RE = re.compile(r'<[^>]+>') 
058 Short = re.compile(r'\S{68,}')           
059 eszt = re.compile(r'&szlig;') 
060 ae = re.compile(r'&auml;') 
061 AE = re.compile(r'&Auml;') 
062 oe = re.compile(r'&ouml;') 
063 OE = re.compile(r'&Ouml;') 
064 ue = re.compile(r'&uuml;') 
065 UE = re.compile(r'&Uuml;') 

 

Figure 6.3 Regular expression tag stripper 

 

Regular expressions are created to match certain string patterns. This ability can be used to find all 

HTML tags in a string and then replace them. The pattern of HTML tags is that they open with a “<” 

and close with a “>” and have a variable amount of characters in between. The regular expression 

defined in line 57 matches this pattern exactly. The r' in front of the string means that special 

characters and character combinations, like for example \t for tab stop, are ignored and are 

interpreted as \t and don’t need to be escaped. Then follows the first character of the pattern <. The 

+ character indicates that a variable amount characters follow the “<”. But “>” is excluded from this 

with the part of the pattern [^>]. Finally, the pattern ends with the >'. So this regular expression 

matches every part of a string that begins with a “<” ends with a “>” and has more than one 

character in between that is not a “>”. All of this is compiled into the TAG_RE variable for later use 

(PYTHON 2.7.10 LIBRARY; regular expression operations). 

The regular expression compiled in 58 to the variable Short matches every string that is 68 

characters or longer because there are a lot of nonsensical strings in the documents. So \S matches 

every non-whitespace character and {68,} defines that the strings can be 68 characters or longer. 

The longest German word excluding numerals is, according to Duden, 

“Grundstücksverkehrsgenehmigungs-zuständigkeitsübertragungsverordnung” which is 67 characters 

long (DUDENKORPUS), (PYTHON 2.7.10 LIBRARY; regular expression operations). 
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Because many HTML documents are encoded in American standard codec two (ASCII) and there are 

no provisions in it for German special characters, HTML uses character entity names for those special 

characters. Now that all documents have been transferred to UTF-8, there is no longer a need for 

this provision and all character entity names can be changed to the correct characters. So the regular 

expressions in line 59 to 65 match the corresponding character entity names so that they can be 

replaced with the character (BRAY ET AL, 2008), (PYTHON 2.7.10 LIBRARY; regular expression operations). 

All those regular expressions are called up one by one in the remove_tags() method. The method 

gets the document passed on to it in line 85 Figure 6.2 as one continuous string. Everything that 

matches within the string is replaced by a defined other string. So TAG_RE.sub('', text) replaces 

everything in text that matches with the regular expressions saved to TAG_RE with an empty string. 

Similar to that ue.sub('ü', text) everything matching the regular expression contained in ue is 

replaced by “ü” (PYTHON 2.7.10 LIBRARY; regular expression operations). 

The cleaned string is returned by the remove_tags() method and appended along with id to 

strippedlist lines 85 and 86 Figure 6.2. When all HTML documents within htmls have been 

processed, strippedlist is passed on to UpdateHTMLwithStrippedHTML() (PSYCOPG 2.5.3 LIBRARY). 

 
024 def UpdateHTMLwithStrippedHTML(Values): 
025     conn, cur = DBConnect() 
026     cur.executemany("UPDATE html SET stripped_html = %s WHERE vienna = TRUE AND id 

 in (%s)", Values) 
027     conn.commit() 
028     cur.close() 
029     conn.close() 

 

Figure 6.4 Writing stripped HTML documents to the database 

 

The Method shown in Figure 6.4 just contains an cur.executemany() where the id contained in the 

strippedlist defines in which row the stripped_html column is updated. With all of this 

information, the HTML documents containing the string 'Wien' are stripped of their html tags, 

character entity names, other irregularities, and written back to the database (PSYCOPG 2.5.3 LIBRARY).  
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7. Geotagging 
 

The focus of this chapter is on how to geotag all those websites and how to do it in a reasonable 

time span. For this, there is a brief introduction into how indexing large datasets in PostgreSQL 

works, followed by how all of this is applied to geotag websites in the thesis. The last part of this 

chapter is a brief interpretation of the first map produced with this method.  

 

7.1. Creating an index in PostgreSQL 
 

At this point, the amount of data is down to around 700,000 HTML documents. This is still too much 

information to pattern match 24,000 addresses against those 700,000 documents because, even if it 

only took on average 1 ms to test one address against one document, the whole process would still 

take 194 days. So the first thing that needs to be done is create a search index on the HTML 

documents. 

 

7.1.1. Converting a text to a list of stemmed tokens 

 

To create such an index, the document needs to be converted into tokens and those tokens need to 

be stemmed. Tokenization is the process of chopping a document into pieces of character sequences 

called tokens. Tokens can be loosely understood as the words that make up a document, but there 

are other cases, for example, dates like 1/1/1970, that can be understood as a token. An example for 

tokenization would be: 

How long, O Catiline, will you abuse our patience? 

Tokenized: How long O Catiline will you abuse our patience 

In this example, the process of tokenization simply divided the words at whitespaces and eliminated 

the punctuation. However, some tokenizations are more complicated. Take, for example, “Mr. 

O’Neill thinks that the boys’ stories about Chile’s capital aren’t amusing.” Finding the correct 

tokenization here is more difficult because what is the correct tokenization of O’Neill: neill, oneill, 

o’neill, o’ neill, o neill, or of aren’t: aren’t, arent, are n’t, aren t (MANNING ET AL; 2009; pp. 22-24)? 

The most common strategy tokenization algorithms use on this problem is to always split on none 

alphanumeric characters. Most tokenization algorithms also allow for provisions, depending on the 

language. But splitting on white spaces can also cause problems, for example, for a group of words 

that should be treated as one token. This can lead to bad search results such as when a search for 
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“York University” only returns results for “New York University”. A challenge that is specifically 

numerous in the German language is compound nouns. An example of this is 

Lebensversicherungsgesellschaftsangestellter (life insurance company employee), which contains 

four nouns. Search results are greatly improved when a compound splitter is used that subdivides 

compound nouns into multiple tokens. But regardless of how the tokenization algorithm works, it is 

imperative that the same algorithm is used for the documents and the search terms (MANNING ET AL; 

2009; pp. 22-25). 

 

Following the tokenization of the documents, it is important to drop stop words. Stop words are 

words that are so common in a language that they hold little to no value when selecting one 

document over another. Examples of this in the English language are: a, but, by, for, had, I, most, 

and so on. A stop wordlist can either be generated by counting the frequency of all words in a corpus 

and hand-selecting the words that go on the list out of the most frequent ones, or, as in the case of 

this thesis, the predefined stop word list of PostgreSQL can be used. With the help of a stop word 

list, the amount of postings that the database needs to store can be significantly reduced. The length 

of a stop list does vary from a very long list with 200 to 300 terms to small list with only 7 to 12 

terms. Modern web search engines don’t use a stop list. As with the tokenization, if a stop list is used 

for documents, it is important that the same list is also used for search terms (MANNING ET AL; 2009; 

pp. 27-28). 

 

Next comes token normalization. Normalization is used to make two character sequences that are 

not quite the same, but have the same meaning match, for example USA and U.S.A. One way to 

accomplish this is by using equivalence classes. For this method, all terms that are put together in 

one class are mapped to the same token. There are a couple of different approaches to create these 

equivalence classes, one is to replace all accents, diacritics, and, in the case of German, ß, are 

replaced by corresponding ASCII characters. Even though diacritics are in many cases the only 

distinguishing factor between two different meanings for a group of characters, the reason why this 

is still done is because many users tend to not use them when they use a search engine (MANNING ET 

AL; 2009; pp. 28-29). 

 

Case-folding is another technique used to normalize tokens. In this strategy, all letters of a token are 

reduced to lower case. This, for example, allows “Automobile” written at the beginning of a 

sentence and therefore capitalized to also match the query “automobile”. It also helps with users’ 

search queries that misspell or incorrectly capitalize words. But this also creates problems because a 
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lot of proper nouns are derived from common nouns, capitalization being the only distinguishing 

factor between the two, for example, in company names (General Motors, The Associate Press), 

government organizations (the Fed vs. fed), and people’s names (Bush, Black) (MANNING ET AL; 2009; 

pp. 30). 

Truecasing is an alternative to case-folding in English. Instead of making all tokens lowercase, only 

some tokens are made lowercase. The simplest rule here is to make all tokens that are at the 

beginning of a sentence and all words occurring in a title lowercase. Words that are in the middle of 

a sentence are left capitalized. In most cases that will keep the distinction between to words. This 

method can be improved by mashing learning algorithms that then take much more than only those 

basic heuristics into account. But also to mitigate for user input errors case-folding is still the most 

practical solution (MANNING ET AL; 2009; pp. 30). 

 

The last step in the process is to stem or lemmatize a token. Both techniques try to accomplish the 

same reduction of a token to the base form of a word. Words differ for grammatical reasons, for 

example, “organize”, “organizes”, and “organizing”, is the same word in different grammatical 

contexts. Also there can be derivationally related words that have similar meanings such as 

democracy, democratic, and democratization. From the perspective of a search engine user, it is 

preferable that in both cases the engine would consider words of all sets to generate results. So the 

goal of stemming and lemmatization is the same, to relate tokens to a common base form. In English 

for example: 

am, are, is -> be 

car, cars, car’s, cars’ -> car 

If used on a complete sentence the results could look something like this: 

 The boy’s cars are different colors -> the boy car be differ color 

The difference between the two is how they try to accomplish this goal. Stemming is mostly a 

heuristic process that chops off the end of a word by a set of rules which try to achieve a base form 

of a word. While lemmatization works with a proper dictionary and morphological analysis of words 

in the aim to only remove the inflectional endings and return the base dictionary form of a word 

know as a lemma (MANNING ET AL; 2009; pp. 32-35). 

To demonstrate the difference between the two, let us compare them through the token “saw”. 

Using a stemmer on the token might just return “s”, while the lemmatization of the word would 

either return “see” or “saw” depending on whether, in the context, it is a noun or a verb. While 

stemming does increase the recall of a search engine, it does also lose precision. Lemmatization 

increases precision, but reduces recall.  
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For this step, the thesis is bound to the tokenization process of PostgreSQL. PostgreSQL uses a 

stemmer for the practical reason that lemmatization needs complex and also time-intensive 

morphological language models (MANNING ET AL; 2009; pp. 32-35). 

 

The option PostgreSQL leaves for tokenization is to provide a language. So a PostgresSQL  query like 

this:  

SELECT * from to_tsvector('german', Die Aufklärung, welche die Freiheiten 
entdeckt hat, hat auch die Disziplinen erfunden.) 

 

uses tokenization, normalization, removing stop words, case-folding, and stemming to create a 

result like this: 

"'aufklar':2 'disziplin':11 'entdeckt':6 'erfund':12 'freiheit':5" 

Only the base words and their position within the original string are preserved (POSTGRESQL 9.3.9; 

documentation). 

 

7.1.2. Creating a Token Index  

 

Even though with tokenization the amount of data can be reduced, there is still a need for an index 

to search quickly through the tokens. PostgreSQL offers two types of Indexes for tsvector columns: a 

Generalized Search Tree (GiST) based index and a Generalized Inverted Index (GIN) based index. The 

GiST index is described as “lossy,” which means that the index itself may produce false matches for 

tokens. This makes it necessary to check the search term against the actual tokens of the matches 

produced by the index, which in turn slows the query speed down (POSTGRESQL 9.3.9; 

documentation). 

A GIN index is not lossy, but its performance depends logarithmically on the number of unique 

tokens. In general, the following performance differences occur between the two types: 

- GIN lookups are comparatively about three times faster. 

- It takes about three times longer to build a GIN index. 

- It is slower to update a GIN index compared to a GiST index. 

- GIN indexes are about two or three times larger than GiST ones. 

Because the data is static and there will be about 21k queries, one for every address, the GIN Index 

will be used (POSTGRESQL 9.3.9; documentation). 
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197 def CreateIndex(): 
198     conn, cur = DBConnect() 
199  
200     cur.execute("ALTER TABLE html ADD COLUMN textsearchable_index_col tsvector;") 
201     conn.commit() 
202     cur.execute("UPDATE html SET textsearchable_index_col = to_tsvector('german', 

 stripped_html) WHERE Vienna = True;") 
203     conn.commit() 
204     cur.execute("CREATE INDEX textsearch_idx ON html USING 

 gin(textsearchable_index_col);") 
205     conn.commit() 
206     cur.close() 
207     conn.close() 

 

Figure 7.1 Index Creation 

 

The whole process of how the index is created in the database is shown in Figure 7.1. First, the 

column of data type tsvector, textsearchable_index_col, is created in line 200. Then, in line 202, 

a tsvector is created from the content in the column stripped_html for all rows where Vienna is 

set to true. Lastly, in line 204, the index is created on the textsearchable_index_col column. Now 

it is possible to search through the column stripped_html without the slow pattern matching 

operator LIKE (PSYCOPG 2.5.3 LIBRARY), (POSTGRESQL 9.3.9; documentation). 

 

7.2. Create a unique set of Addresses and prepare them for Search Queries 
 

Since there are a variety of rules of how to tag addresses in OpenStreetMap and there is no 

consensus in the community, addresses can exist multiple times in the dataset. Because, for 

example, they are attached to every entrance of a building or tagged once just to a node and then to 

a way representing a building or, if addresses apply to multiple buildings, every building can have the 

address or just a relation that encapsulates all those buildings and so on. But for the geotagging 

process, only one instance of every address is needed. Even though it would not make a difference 

to look for the same address multiple times, it would increase the amount of necessary queries 

(OPENSTREETMAP WIKI; Addresses).  

PostgreSQL provides a good way to make the addresses unique with an SQL command. With SELECT 

DISTINCT ON, one field or more that must be unique within the selection can be selected. The best 

way to progress from that is to transfer this unique set into a new table and this is what the code in 

Figure 7.2 does. 
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054 def MakeAddressesUnique(): 
055     conn, cur = DBConnect() 
056      
057     conn.commit() 
058     cur.execute("INSERT INTO 

 AddressesUnique(geom,street,street_number,pcode,AddDate)" 
059                 "SELECT DISTINCT ON (street,street_number) 

 geom,street,street_number,pcode,AddDate FROM Addresses") 
060     conn.commit() 

 

Figure 7.2 Populate Table AddressesUnique 

 

The SQL statement inserts AddressesUnique, the selection of rows that are distinct in the columns 

street and street_number, into the table. The table AddressesUnique was created beforehand. As 

a result, the number of rows is reduced from 23830 to 21246 (PSYCOPG 2.5.3 LIBRARY). 

The now unique addresses are read from the newly created and populated table, but in order to be 

suitable for a search query, some of them need to be modified. Most of this has to do with how the 

tokenization and stemming process works in PostgreSQL (POSTGRESQL 9.3.9; documentation). 

 
157 def CleanStrings(lines): 
158     for row in lines: 
159         StreetName  = row[0] 
160         StreetNumber = row[1] 
161         ID = row[2] 
162         p = re.compile(r' ') 
163         q = re.compile(r'[^-/a-zA-Z0-9_ ]') 
164         r = re.compile(r'[0-9a-zA-Z] [-/] [0-9a-zA-Z]') 
165         s = re.compile(r"'") 
166                             
167         if r.match(StreetNumber): 
168             StreetNumber = p.sub('', StreetNumber)  
169         StreetNumber = q.sub('', StreetNumber ) 
170         StreetName = s.sub("''", StreetName)  
171         row3 = p.sub(' & ', StreetName)  
172         row4 = p.sub(' & ', StreetNumber )  
174         lines.remove(row) 
175         lines.insert(0,(StreetName,StreetNumber,ID,row3,row4)) 
176  
177     return lines 

 

Figure 7.3 Preparing addresses for search queries 

 

What can be seen in Figure 7.3 is not only the preparation for the full text search query, but also for 

a following LIKE query. Again, regular expressions are used to manipulate the strings. All 

modifications have been developed by trial and error to make the addresses work with the various 

database queries. The regular expression in line 180 matches patterns like “8 – 9”, “4a – g”, and “7 / 

8”, when there are spaces in between three defined character groups. This regular expression is 

used in line 167 to identify street numbers with these patterns and check if they match the pattern 
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the spaces in line 168 that are replaced with nothing. This creates “8-9”, “4a-g”, and “7/8” when 

applied to the above examples. This step is necessary because otherwise the symbols would be 

transformed into separated tokens. The regular expression defined in line 163 matches parenthesis 

and is applied to street numbers in line 169. The code removes the parentheses. This is necessary 

because parentheses create a lot of trouble in SQL statements. The expression in line 165 is designed 

for only one particular street in Vienna with the name D’Orsay-Gasse. The inverted comma in the 

name needs to be escaped because it also disrupts SQL statements. The expression is applied in line 

160 replacing every single inverted comma with two inverted commas, thus escaping it in a SQL 

statement. Lastly, the expression defined in line 162 matches all spaces. The application of this 

expression in lines 171 and 172 is with the full text search already in mind. This is because tokens 

can be joined with an ampersand, creating only matches on documents if both tokens exist within 

the document. This is necessary for street names like “Kärtner Ring” or some street numbers named 

for example “Objekt 11”. Note that examples like “Objekt 11” are not changed in line 168 because 

they don’t fit the pattern defined in line 169 (PYTHON 2.7.10 LIBRARY; regular expression), 

(OPENSTREETMAP WIKI; Addresses). 

 

7.3. Preparing the SQL Statement for Geotagging 
 

Because the SQL statement for finding addresses within the HTML documents is relatively complex 

and considers possible abbreviations of an address, they are created in Python before they are 

executed on the database. The function responsible for forming SQL statements out of the address 

list created with the CleanStrings() method depicted in Figure 7.3 is the 

ConstructSQLStatmentSearchAddresses() partly shown in Figure 7.4. 
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077 def ConstructSQLStatmentSearchAddresses(Values): 
078     SQLStatmentdict = {} 
079     conn, cur = DBConnect() 
080  
081     for line in Values: 
082          
083         if line[0][-6:] == 'traße':          
084             SQLStatmentdict[line[2]] = cur.mogrify( 
085   "Select ID FROM HTML WHERE " 
086                 "Vienna = TRUE AND " 
087                 "(textsearchable_index_col @@ to_tsquery('german', 

'"+line[3]+' & '+line[4]+"') AND " 
088                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')" 
089                 "OR" 
090                 "(textsearchable_index_col @@ to_tsquery('german', 

'"+line[3]+' & '+line[4]+"/:*') AND " 
091                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')" 
092                 "OR" 
093                 "(textsearchable_index_col @@ to_tsquery('german', 

'"+line[3][:-4]+'. & '+line[4]+"') AND " 
094                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')" 
095                 "OR" 
096                 "(textsearchable_index_col @@ to_tsquery('german', 

'"+line[3][:-4]+'. & '+line[4]+"/:*') AND " 
097                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')" 
098                 ";") 

 

Figure 7.4 SQL Statement Construction part one 

 

This first part of the SQL statement construction in Figure 7.4 shows the constructions if the address 

ends in “straße”. But before that, the SQLStatmentdict, a python dictionary, is created and will 

contain all SQL statements with the ID of the address as the key at the end. Even though the 

ConstructSQLStatmentSearchAddresses() function does not write anything to the database, a 

database connection is established in line 79 because the .mogrify() method of the cursor class is 

needed. Then starting in line 81, the function iterates through previously prepared addresses 

(PSYCOPG 2.5.3 LIBRARY). 

The address is tested if it ends in “traße” in line 83. Using “traße” instead of “Straße” as a test 

ensures that words where “Straße” is a part of a word, like in “Haupstraße,” or if “Straße” stands on 

its own are included in this if clause (PYTHON 2.7.10 LIBRARY; string).  

What follows is a complex SQL statement that can be broken down into four blocks separated by the 

OR’s in the statement in lines 89, 92 and 95. The outer part of lines 85 and 86 are a Select for an ID 

from the HTML table where the field Vienna is set to TRUE and one of the four blocks of the inner part 

is true as well. All blocks consist of a query to the index described in chapter 7.1., and an ILIKE 

operator query on the table field containing the text that is stripped from HTML tags. Compared to 

the LIKE operator, the ILIKE operator also considers upper- and lowercases of a word. How one of 

the blocks works is that it narrows the possible documents down to only a handful with the help of 

the index query. Then to make sure that the document truly contains the address, the ILIKE query is 
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performed on the set of address selecting only those documents that clearly match the address. To 

give an example for “Kärntner Straße 37” the sql statement for line 87 and 88 would look like this: 
 

"(textsearchable_index_col @@ to_tsquery('german','Kärntner & Straße & 37') AND 
stripped_html ILIKE '% Kärntner Straße 37 %')" 

 

The to_tsquery would match every document that contains all of the given words while ILIKE 

would only match the documents that contain this exact pattern of characters (POSTGRESQL 9.3.9; 

documentation). 

The other blocks separated by OR work with possible abbreviations or deviations in the address 

pattern. The block in lines 91 and 92 appends a slash to the street number in the to_tsquery and 

ILIKE queries. This part of the query now also catches patterns in documents that not only specify 

the street number, but also the door number in the building or the staircase or both. The slash is 

directly followed by a wild card in both queries. The block in line 93 and 94 then works with the 

possible abbreviation of “straße” as “str.,” thereby, basically removing the last 4 letters of “straße” 

and adding a dot.  Other than that, it is similar to the first block in lines 87 and 88. The last block in 

lines 96 and 97 combines the abbreviation of “straße” with the slash added to the street number 

(POSTGRESQL 9.3.9; documentation), (PSYCOPG 2.5.3 LIBRARY).  
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100         elif line[0][-4:] == 'asse':     
101             SQLStatmentdict[line[2]] = cur.mogrify( 
102   "Select ID FROM HTML WHERE " 
103                 "Vienna = TRUE AND " 
104                 "(textsearchable_index_col @@ to_tsquery('german', 

       '"+line[3]+' & '+line[4]+"') AND " 
105                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')" 
106                 "OR" 
107                 "(textsearchable_index_col @@ to_tsquery('german', 

       '"+line[3]+' & '+line[4]+"/:*') AND " 
108                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')" 
109                 "OR" 
110                 "(textsearchable_index_col @@ to_tsquery('german', 
           '"+line[3][:-4]+'. & '+line[4]+"') AND " 
111                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')" 
112                 "OR" 
113                 "(textsearchable_index_col @@ to_tsquery('german', 
                    '"+line[3][:-4]+'. & '+line[4]+"/:*') AND " 
114                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')" 
115                 ";") 
116  
117  
118         else:                                                                                                            
119              SQLStatmentdict[line[2]] = cur.mogrify( 
120                 "Select ID FROM HTML WHERE " 
121                 "Vienna = TRUE AND " 
122                 "textsearchable_index_col @@ to_tsquery('german', 

       '"+line[3]+' & '+line[4]+"') AND " 
123                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %'" 
124                 "OR " 
125                 "textsearchable_index_col @@ to_tsquery('german', 

       '"+line[3]+' & '+line[4]+"/:*') AND " 
126                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%'" 
127                 ";") 
128  
129  
130     return SQLStatmentdict 

 

Figure 7.5 SQL Statement Construction part two 

 

The remaining part of the ConstructSQLStatmentSearchAddresses() function depicted in Figure 7.5 

works similarly to the just described part. The part from lines 100 to 115 works exactly like the one 

described before with the only difference being that it is for street names ending in “gasse”. The last 

part within the else clause catches all names that neither end in “gasse” nor “straße”. Compared to 

the other two, it does not include possible abbreviations of the street name in the SQL query, only 

the slash deviations (POSTGRESQL 9.3.9; documentation), (PSYCOPG 2.5.3 LIBRARY). 
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7.4. Joining Addresses with HTML Documents 
 

Now that the SQL statements for every address have been created, they need to be executed on the 

database. But before that, there needs to be a table that can contain the join. The following SQL 

statement creates this table: 

 

CREATE TABLE IF NOT EXISTS AddressesUniqueJoinedWithURL (id serial PRIMARY 
KEY, AddressesUniqueID INTEGER, HTMLID INTEGER, Original BOOLEAN); 

 

The table AddressesUniqueJoinedWithURL consists of four fields: an ID field, a field containing 

the ID of the address, a field containing the ID of and HTML file joined to the address, and a Boolean 

field used later to indicate that this is a direct connection different from indirect joins created later 

in the thesis (POSTGRESQL 9.3.9; documentation). 

The execution of the SQL statements again happens in the python script and is shown in Figure 7.6. 

 
133 def JoinAddressesUniqueWithURL(SQLStatmentdict): 
134     conn, cur = DBConnect() 
135     i = 1 
136     Starttime = time.time() 
137     Starttime2 = time.time() 
138     Numberofrows = len(SQLStatmentdict) 
139      
140     for ID in SQLStatmentdict: 
141         cur.execute(SQLStatmentdict[ID]) 
142         values = cur.fetchall() 
143         if values: 
144             args_str = ','.join(cur.mogrify("(%s,%s,TRUE)",  

(ID,x[0])) for x in values) 
145             cur.execute("INSERT INTO AddressesUniqueJoinedWithURL 

 (AddressesUniqueID, HTMLID, Original) VALUES " + args_str) 
146             conn.commit() 
147  
148         print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
149         delta_time = time.time() - Starttime 
150         print "time till now %.2f Minutes"%(delta_time/60) 
151         print "time till end %.2f Minutes"%(((delta_time/60)/i)*(Numberofrows-i)) 
152         i += 1 
153         Starttime2 = time.time() 
154     conn.close() 
155     return 

 

Figure 7.6 Perform the join of addresses with HTML documents 

 

Apart from the database connection established in line 134, the first lines up until line 138 of the 

JoinAddressesUniqueWithURL() function create some variables that help to keep track of time and 

calculate how long the function will run. Starting in line 140, the function iterates through the keys 

of the SQLStatmentdict dictionary. As mentioned before, the ID of an address is used in the 
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dictionary as the key to the SQL statement created for this address. So when used as a key in line 

141 the corresponding SQL statement is executed (POSTGRESQL 9.3.9; documentation), (PSYCOPG 2.5.3 

LIBRARY).  

The result of the query is handed over to the values variable in line 142 and the results is tested to 

check if it contains any rows in line 143. If it contains no rows, the next ID of the SQLStatmentdict 

dictionary is called. But if it contains any rows, lines 144 to 146 create an insert into the 

AddressesUniqueJoinedWithURL table. To achieve this, the script iterates through the result in 

line 144 and the created string contained in the args_str could, for example, if the address ID was 

1, look like this: 

 

(1,3,TRUE) ,(1,25,TRUE) ,(1,43,TRUE) ,(1,199,TRUE) 

  

Now combining this string with the rest of the Insert SQL statement would look like this: 

 
INSERT INTO AddressesUniqueJoinedWithURL(AddressesUniqueID, HTMLID, Original) 

VALUES (1,3,TRUE) ,(1,25,TRUE) ,(1,43,TRUE) ,(1,199,TRUE) 

 

This would create 4 new rows in the AddressesUniqueJoinedWithURL table, containing the 

information about which address is joined to which HTML document (POSTGRESQL 9.3.9; 

documentation). 

At the beginning of this chapter, there where around unique 700k HTML documents containing the 

string “Wien” somewhere and about 24k addresses from which a subset of 21,246 is unique. Now 

after the direct joins, there are 6284 unique addresses joined to 41,543 unique HTML documents in 

a total number of 52,586 joins. Map 7.1 shows a spatial visualization of those joins. The Table 7.1 

shows a frequency distribution of those matches. 
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Map 7.1 Distribution of addresses joined to HTML documents 
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Matches per Address Frequency 
0 14962 

1-10 5541 
11-20 360 
21-30 110 
31-40 59 
41-50 65 
51-60 34 
61-70 25 
71-80 10 
81-90 9 

91-100 5 
>100 66 

Table 7.1 Website match Frequency per Address 

 

Rank Streetname Number PostCode Direct Website Matches 
1 Nibelungengasse 13 1010 2197 
2 Neubaugasse 1 1070 1158 
3 Ebendorferstraße 7 1010 1152 
4 Urban-Loritz-Platz 2a 1070 704 
5 Brigittenauer Lände 38 1200 681 
6 Johannesgasse 16 1010 468 
7 Lothringerstraße 16 1030 468 
8 Neubaugasse 8 1070 462 
9 Radetzkystraße 2 1030 455 

10 Rainergasse 38 1050 427 
Table 7.2 Top Ten matched Addresses 

 

7.5. Discussion 
 

Even though it is not the main objective of this thesis to compare different districts and regions of 

Vienna with one another, the Map 7.1 still provides an opportunity to write about it. First of all, due 

to the fact that the addresses are not bought from a provider, like the Österreichische Post AG, the 

dataset is most likely incomplete (see chapter 4.4.). But still there is such an overwhelming amount 

of addresses that observations can be made. The obvious one is that the first district of Vienna 

produces the most matches. The reason for this is probably that this district hosts a mix of a lot of 

commercial companies, tourist attractions, and Austrian government buildings. The first district 

seems to be followed in matches by the seventh and eighth districts. Other interesting areas are in 

the ninth district around the University of Vienna and in the fourth around the Vienna University of 
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Technology. Also visible at the border between the sixth and seventh district is the Maria Hilfer 

Straße, one of the main shopping streets in Vienna. 

Concerning the match frequency shown in Table 7.1, as expected, the overwhelming majority of 

address only turns up on a couple of HTML Documents each, most probably sites like imprints and 

legal disclaimers. Table 7.2, on the other hand shows the top ten addresses with the most matches. 

It might be assumed that there is no real information to gain out of so little information, other than 

that the address is named somewhere on the Internet. To broaden the information associated with 

an address in the next chapter, all web links to a webpage that contains an address are found and 

the websites containing those links are then also joined with the address. 
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8. Finding Links 
 

The topic of this chapter is to broaden the amount of websites that are associated with an address. 

For this, all websites that link to a website that was geotagged in chapter 7 are also associated with 

this address. At the end, there is another look at the derived dataset and a discussion of the map 

created from the data. 

 

8.1. Preparation 
 

To successfully join links with HTML files that have already been geotagged, two python dictionaries 

are necessary. One contains all URLs from the HTML table and their IDs and second a dictionary 

contains all IDs of HTML documents matched to address IDs. The code in Figure 8.1 creates these 

two dictionaries. 

 
047 def URLsWithID(conn, cur): 
048     cur.execute("SELECT URL,ID FROM html;") 
049     data = cur.fetchall() 
050     dictonary = dict(data) 
051     return dictonary 
 

 

013 def GetGeocodedHTMLIDs(conn, cur): 
014  
015     cur.execute("SELECT HTMLID, AddressesUniqueID FROM 

 AddressesUniqueJoinedWithURL WHERE Original = TRUE") 
016     data = cur.fetchall() 
017  
018     datadict = {} 
019     for row in data: 
020         if row[0] in datadict: 
021             datadict[row[0]].append(row[1]) 
022         else: 
023             datadict[row[0]] =[row[1],] 
024  
025     return datadict 
 

 

084 conn, cur = DBConnect() 
085 URLDictonary = URLsWithID(conn, cur) 
086 URLIDWITHAddressIDDictonary = GetGeocodedHTMLIDs(conn, cur) 
 

Figure 8.1 Creating the URL dictionary and the HTML joined to addresses dictionary 

 

The creation of the URL dictionary is relatively straight forward and shown in line 47 to 51. With the 

cursor object, an SQL statement is executed on the database, fetching all URLs and IDs from the 
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table HTML. The database returns them to Python in the form of a list of tuples containing the URL 

and the ID. When this list is given to the dict() function in line 50, it is converted into a dictionary 

with the URLs as keys and the IDs as values. The dictionary is returned and saved to the variable 

URLDictonary in line 85 (PSYCOPG 2.5.3 LIBARY). 

What is slightly more complicated is the creation of the URL joined to addresses dictionary, because 

it is a many to many relationship. This means that one URL can be matched to more than one 

address and one address can be matched to more than one URL. The structure of URLDictonary is 

that HTML IDs act as keys to a list of addresses, because that is the relevant relation in this 

application. In line 15, the cursor object executes the SQL statement on the database, fetching the 

HTMLID and the AddressesUniqueID from the table AddressesUniqueJoinedWithURL. They are 

returned to python again in the form a list of tuples like in the URLsWithID() function. But this time 

instead of just creating a dictionary, the code iterates through the tuple pairs in line 19. The HTML ID 

of each row (row[0]) is tested to see if it already exists in the dictionary as a key in line 20. If so, the 

list of address IDs associated with the HTML ID is appended with one more address ID. But if the key 

does not exist, a new entry is created in the dictionary with the HTML ID as the key and the address 

ID as the first address in the list (PSYCOPG 2.5.3 LIBARY). 

The result is a dictionary with HTML IDs as keys and lists of addresses that are matched to this HTML 

ID as values. The dictionary is returned and saved to the variable URLIDWITHAddressIDDictonary in 

line 86 (PSYCOPG 2.5.3 LIBARY). 

8.1. Link Extraction 
 

The next step is to extract all the links from all 8.4 million websites and, if necessary, convert them to 

full URLs. The part of the code depicted in Figure 8.2 is responsible for accomplishing this. 
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027 def FindLinksInHtml(conn, cur, offset): 
028     NoWhiteSpace = re.compile(r' ') 
029     loadingtime = time.time() 
030     cur.execute("SELECT id,url,html_file FROM html WHERE id > %s AND id <= %s  
       ORDER BY id;",(offset, offset+limit)) 
031     data = cur.fetchall() 
032     print('Loading took %.2f Minutes' % ((time.time() - loadingtime) / 60)) 
033     regextime = time.time() 
034     passeslist = [] 
035     linklist = [] 
036     for row in data: 
037         links = re.findall(r'href=[\'"]?([^\'" >]+)', row[2]) 
038         for link in links: 
039             try: 
040                 linklist.append((row[0], 

NoWhiteSpace.sub('%20',urlparse.urljoin(row[1], link)))) 
041             except: 
042                 passeslist.append((row[1], link)) 
043     print('Regex took %.2f Minutes found links %s' %  

(((time.time() - regextime) / 60), len(linklist))) 
044     return linklist, passeslist 
 

Figure 8.2 Finding links and converting them 

 

The method FindLinksInHtml() gets a connection object, a cursor object and an offset passed on 

to it. It loads the following columns: id, url and html_file from the HTML table. html_file is the 

field that contains the whole html file with all the tags in it, not the one created in chapter 6. Which 

html files are loaded is determined by the offset that changes for every call of the method. Thus, the 

method always reads the next slice of the HTML table.  

The fetched data is saved to the data variable. Next, two result containers are created in line 34 

passeslist and line 35 linklist. passeslist will hold all the found links that are either not 

properly formed or could not be converted into absolute URLs, while linklist will hold the 

information for all found links and in which html document they were found. 

The script then starts to iterate through the fetched data in line 36. Each row contains an ID element 

in position 0, a URL element in position 1 and the html file in position 2. The html file is searched for 

links with the regular expression in line 37. The pattern matching will return all the text of an html 

link tag marked in this example, <a href="http://www.w3.org/"> (PYTHON 2.7.10 LIBRARY; regular 

expression operations). 

The re.findall() method will return these link strings for all the links in the given document in the 

form of a list. Iterating through this list is the next step of the script. In line 40 nested into each other 

there are two methods that process and covert the found links to absolute URLs. The first is the 

urlparse.urljoin() method. In this case, it takes the absolute URL of the page where the link was 

found (contained in row[1]) and creates an absolute URL from a link. This occurs regardless of 

whether it was a relative or absolute link before. For example, if the link found is “/hello/world.htm” 

and the URL of the page it was found on is “http://www.w3.org/test/”, the method would create the 
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following absolute URL “http://www.w3.org/test/hello/world.htm” out of both parts. Table 7.1 

shows a couple of other examples of how urlparse.urljoin() works. No matter how complex the 

links or URLs are, the method derives the correct absolute URL (PYTHON 2.7.10 LIBRARY; regular 

expression operations), (PYTHON 2.7.10 LIBRARY; urlparse). 

 

Link URL Result 

/hello/world.htm http://www.w3.org/test/ http://www.w3.org/test/hello/world.htm 

http://www.w3.org/test/hello/world.
htm 

http://www.w3.org/test/ http://www.w3.org/test/hello/world.htm 

http://www.w3.org/test/ ../hello/world.htm http://www.w3.org/hello/world.htm 

../../test/ http://www.w3.org/test/hello/world.htm http://www.w3.org/test/ 

Table 8.1 urlparse.urljoin() Examples 

The second method simply replaces spaces in URLs. Spaces as an ASCII symbol are not part of the 

URL specification. Nevertheless, a lot of links do contain them and they mostly work fine because 

most modern browsers have error handling capabilities. But the URLs saved in the database are 

saved in the correct format for URLs, where white spaces are encoded with the percent encoding. To 

find those links pointing to those URLs, white spaces also need to be replaced with the percent 

encoding. This is what the NoWhiteSpace.sub() regular expression does. An example of such a 

conversion could be “http://www.w3.org/hello world.htm” is converted to 

“http://www.w3.org/hello%20world.htm”. The converted link is then appended to the linklist 

with the corresponding html file ID (PYTHON 2.7.10 LIBRARY; regular expression operations), (BERNERS-

LEE, ET AL.; 2005; pp.11-14). 

Because there are some malformed links, link conversion is within a try and except block. If the 

conversion fails, the link on which it fails is appended to the passeslist. Overall, there are 72 links 

in the 8.4 million documents that could not be converted. Examples of those can be seen in Figure 

8.3. 

 

'http://[www.boku.ac.at/fachstukofhnw.html') 
'http://cialisqrx.com]buy') 
('http://derstandard.at/1328507079451/Nachlese-Schneechaos-in-weiten-Teilen-
Oesterreichs' 
Figure 8.3 Malformed Link Examples 
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8.2. Geotagging the found linked websites 
 

As the title suggest, this chapter is about how to join those linked websites to already geotagged 

ones and, in turn, geotagging the linked websites as well. As described before, this works by finding 

links to already geotagged websites on other websites. Matching those websites with the same 

address like the one they link to. This process is shown in Figure 8.4. 

 
098     linklist,passes = FindLinksInHtml(conn, cur, offset) 
099  
100     passeslist += passes 
101     URLIDStoLinkIDS = [] 
102     for row in linklist: 
103         if row[1] in URLDictonary: 
104             URLIDStoLinkIDS.append((row[0],URLDictonary[row[1]])) 
105  
106     Newlist = [] 
107     for row in URLIDStoLinkIDS: 
108         if row[1] in URLIDWITHAddressIDDictonary: 
109             for rowx in URLIDWITHAddressIDDictonary[row[1]]: 
110                 Newlist.append((row[0],rowx)) 
111  
112  
113  
114     r += len(Newlist) 
115     WritetoAddressesUniqueJoinedWithURL(Newlist) 
 

 

053 def WritetoAddressesUniqueJoinedWithURL(List): 
054     conn, cur = DBConnect() 
055     args_str = ','.join(cur.mogrify("(%s,%s,FALSE)", x) for x in List) 
056     try: 
057         cur.execute("INSERT INTO AddressesUniqueJoinedWithURL (HTMLID,  

AddressesUniqueID, Original)VALUES " + args_str) 
058         conn.commit() 
059     except: 
060         print "Error Inserting Joins" 
061     cur.close() 
062     conn.close() 
063  
064     return 
 

Figure 8.4 Geotag linked websites 

 

Essential for doing this are the two dictionaries URLDictonary and URLIDWITHAddressIDDictonary 

whose creations are described in subchapter 8.1., and linklist, the result of the previous subchapter. 

URLDictonary contains all of the URLs in string form with their respective IDs. 

URLIDWITHAddressIDDictonary contains all URL IDs that are joined to address IDs. And linklist 

contains all IDs of websites and to which URLs those websites link. So what needs to be done for 

every link found on an HTML document is that the corresponding IDs have to be looked up in the 

URLDictonary. There is a possibility that a link URL can’t be found in URLDictonary, because links 
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could also target none .at websites. If the ID is found, another lookup is done in the 

URLIDWITHAddressIDDictonary dictionary. If this HTML document is already joined to an address, 

the ID of the address is returned by the dictionary and the linked website is now also joined to this 

address. 

To do this in code, the script starts to iterate through the linklist in line 102 and every found link 

URL is tested to see if it is contained in the URLDictonary in line 103. If the link URL is contained in 

URLDictonary, the ID of the website containing the link URL and the ID of the website the link is 

linking to, are appended to the list URLIDStoLinkIDS. The next step is that the script iterates 

through this list in line 107. If the URL ID a link points to is also found in the 

URLIDWITHAddressIDDictonary dictionary, the script iterates through all the addresses this website 

is associated with and appends a tuple consisting of the website ID where the link originated and the 

address ID to the Newlist, thus creating the desired join in line 110. 

This Newlist containing these new joins is then handed over to the 

WritetoAddressesUniqueJoinedWithURL() method in line 115. This utilizes a couple of previously 

discussed techniques to write all joins to the database in one transaction. Especially the 

cur.mogrify() method in line 55. The value in the field original is set to FALSE. This makes it 

possible to discriminate between direct and indirect joins of websites to addresses (PSYCOPG 2.5.3 

LIBARY). 

 

8.3. Discussion 
 

In the previous chapter, there were 6,284 unique addresses joined to 41,543 unique HTML 

documents in a total of 52,586 joins. The number of addresses is constant, but there are now 

269,083 unique HTML documents joined to 6284 addresses in a total of 2,062,981 joins. Those 

numbers are interesting because, while the number of total HTML documents only got about 6.5 

times bigger, the number of joins in comparison massively increased by a factor of 40. That means 

there must be quite a lot of websites that are rather well interconnected to each other and websites 

that link to multiple addresses. 

As in the previous chapter, this work yields another map shown as Map 8.1. 
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Map 8.1 Result of joining linked HTML documents to addresses 
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Websites per Address Frequency 
0 14962 

1-10 2264 
11-20 820 
21-30 427 
31-40 294 
41-50 243 
51-60 189 
61-70 142 
71-80 114 
81-90 83 

91-100 77 
>100 1631 

Table 8.2 Associated Website Frequencies per Address 

 

Rank Streetname Number Post 
Code 

Direct Website 
Matches 

Associated Website 
Matches 

1 Viktorgasse 16 1040 323 91575 
2 Urban-Loritz-Platz 2a 1070 704 38684 
3 Stephansplatz 6 1010 370 33545 
4 Neubaugasse 1 1070 1158 30878 
5 Neubaugasse 8 1070 462 29442 
6 Lothringerstraße 16 1030 468 29437 
7 Siebenbrunnengasse 21 1050 374 25010 
8 Brigittenauer Lände 38 1200 681 23174 
9 Gumpendorfer Straße 10-12 1060 280 21385 

10 Schottenring 17 1010 110 21230 
Table 8.3 Associated Website Frequencies per Address 

 

When interpreting Map 8.1, the previous observations still seem to hold true. The 1st Viennese 

District is still the one with the strongest Internet presence. The 1st is followed by the 7th and 8th and 

the areas around the main University and Technology University of Vienna. For the dataset as a 

whole, this seems also to be true. When the coefficient of variation values from websites directly 

matched (10.03) and websites associated with addresses (10.74) are compared to each other. It can 

be deducted that the value dispersion does not change much. Thus, the addresses HTML document 

distribution is the same as before just with higher values. For a picture of the distribution see Table 

8.1. The top ten addresses all have over 20,000 associated websites with the maximum of 91,575. 

See Table 8.2 for the addresses with the most associations (Böhner; 1990; pp. 18-20)  
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9. The Vector Space Model 
 

This chapter is an introduction into the vector space model, which is a way to classify documents 

within a high-dimensional vector space. The Vector Space Model can be used to compare document 

similarity and search queries. It is a useful tool to overcome the limitations of Boolean retrieval 

systems and its main component is a statistically weighted document vector for every document 

within a collection of documents. 

 

9.1. The Document Vector 
 

To understand the idea of the document vector space, the disadvantages of Boolean retrieval have 

to be considered. How Boolean retrieval for a big collection of document works is that if a term in a 

document matches a query used for retrieval, it is retrieved. But in many cases, such a query can be 

too restrictive. A query such as “T1 and T2 and T3” will only retrieve those documents that exactly 

match the query. An OR query for these terms “T1 or T2 or T3,” on the other hand, could be too 

loose. Furthermore, the list of documents is retrieved unordered. But it would be of interest to find 

the most relevant documents to a query. A possible way would be to simply count how many times 

the query term or terms are present in the document and order the retrieved documents by this 

count (SALTON.; 1991; pp. 974).  

 

To do this effectively, the information retrieval system should not count all words in the document 

for every query again and again; rather it would be efficient to count them beforehand. Thus, a new 

representation of the document is created. If every individual term in the set of documents is seen 

as one dimension, all of the documents can now be seen as a vector in this high-dimensional space. 

In this representation, the relative order of words in the document is lost. The two documents “Mary 

is quicker than John” and “John is quicker than Mary” are represented as the same so called bag of 

words. To compensate for different lengths of documents and, thus, different lengths of the 

document vectors, the vectors are normalized to a length of 1 (MANNING ET AL.; 2009; pp. 120-122), 

(SALTON ET AL.; 1975; pp. 613-620). 

To compare two documents to each other, it is now possible to use the vectors of both documents. 

Figure 9.1 shows 3 normalized document vectors  �⃗�𝑣(𝑑𝑑1−3) in a document 2D vector space. It only 

consists of the two words “gossip” and “jealous” (MANNING ET AL.; 2009; pp. 120-122). 
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Figure 9.1 Cosine similarity example (MANNING ET AL.; 2009;) 

 

The similarity between the two documents d1 and d2 can be determined by the cosine of the angle 

theta. The cosine of an angle is bigger the more acute the angle is. A angel of 360°/0° results in a 

cosine of 1 while an angle of 180° results in -1 (MANNING ET AL.; 2009; pp. 120-122).  

In this system, (search)-queries can be treated as just a bag of words as well and made into a 

document vector �⃗�𝑣(𝑞𝑞). This vector can then be compared to the other document vectors. The dot 

product, which is equal to the cosine of the angle, for the query vector and all document vectors is 

created. The documents are then ordered by the cosine similarity to the query (MANNING ET AL.; 2009 

p.123-124).  

 

9.2. Term frequency Inverse Document Frequency  
 

Still open is the question on how to weigh query terms. So far, words in documents and not queries, 

even though in the vector space model both can be seen as equal, are weighed by the term 

frequency. The more often a term occurs in the document, the more the vector is moved in the 

dimensional direction of the word. The reason why there is still a need to introduce some other form 

of term weighing is that not all words are equally important to a document (MANNING ET AL.; 2009 

p.117). 
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There are, for example, stop words. Stop words is a term used for extremely common words that are 

no help when distinguishing documents from each other. A short example stop word list can be seen 

in Figure 9.2. 

 

a an  and are as at be by for 

from has he in is it its of on 

that the to was were will with   

Figure 9.2 Stop word list of 25 words that are common in the Reuters Corpus Volume 1 (MANNING 

ET AL.; 2009) 

 

These words could be not included in the vector space, but the problem of how to weigh different 

terms still persists. For example, in a collection of documents about cake baking, the word sugar 

probably occurs in nearly every of those documents and has, therefore, a very low value in 

distinguishing the documents from one another. What needs to be done is to weigh the term 

frequency of words that are rare in the corpus higher and those that are frequent lower. Because 

the goal is to distinguish documents from each other, it is desirable to count in how many 

documents the term occurs, rather than how many times they occur overall. This can be further 

illustrated by Table 9.1 another example from the Reuters Corpus. The collection frequency is how 

often the term occurs individually and the document frequency is in how many different documents 

the term occurs (MANNING ET AL.; 2009 p.117-118). 

 

Word cf df 

try 10422 8760 

insurance 10440 3997 

Table 9.1 Collection frequency (cf) and document frequency (df) different behavior (Manning et al.; 

2009) 

 

The formula used to calculate the document frequency weight of a term, also called the inverse 

document frequency (idf), is: 

𝑖𝑖𝑑𝑑𝑖𝑖𝑡𝑡 =  log
𝑁𝑁
𝑑𝑑𝑖𝑖𝑡𝑡

 

idft (inverse document frequency of the term), N(total number of documents), dft(Document 

frequency of the term) 
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Table 9.2 shows some example Values for document frequency and the resulting inverse document 

frequency (SALTON; 1991; pp. 976). 

 

Term dft idft 

car 18,165 1.65 

auto 6,723 2.08 

insurance 19,241 1.62 

best 25,235 1.50 

Table 9.2 Examples for idf Values based on the Reuters Collection containing 806,791 documents 

(MANNING ET AL.; 2009) 

 

Finally, the inverse document frequency can be combined with the term frequency by multiplication. 

Now, when combined with the content of sub chapter 9.2., a weighted and normalized vector of a 

document can be created (SALTON; 1991; pp. 976). 
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10. Categories for classification 
 

This chapter is about defining classes in which the addresses can be categorized. For this, there is a 

short look at the Munich-Viennese school of social geography before mixing the findings with some 

newer approaches to define the classes. 

 

10.1. Daseinsgrundfunktionen 
 

The title of this chapter literally translates to “basic existence functions”. It is part of a concept 

developed by the so-called Munich-Viennese school of social geography. The premise of the school 

was that there are social groups that transform space for their needs, those needs being the 

“Daseinsgrundfunktionen.” It was an important step away from the previous approach that the 

natural/physical appearance of space determines the use of this space by humans (MAIER ET AL.; 

1977; p. 18). 

Translated into English, here are the seven “Daseinsgrundfunktionen”: 

- To live somewhere (Wohnen) 

- To work (Arbeiten) 

- To supply (Sich versorgen und konsumieren) 

- To be educated (Sich bilden)  

- To relax (Sich erholen) 

- To take part in traffic (Verkehrsteilnahme) 

- To live in a community (Sich Fortpflanzen und in Gemeinschaft leben) 

(RUPPERT AND SCHAFFER; 1969; pp. 208-209) 

These functions are of interest because, according to the principles of the Munich-Viennese school 

of social geography, these functions have a representation in space. Therefore, they could be 

detected in communication about a space (MAIER ET AL.; 1977; p. 100). 

The concept of the Munich-Viennese school of social geography can be criticized. A main point of 

contention is that the concept of the social groups described within the theories is incompatible with 

the definition of social groups in other disciplines like sociology. In some cases, people would form a 

social group by just doing the same thing, like biking. Also, the basic functions of existence seem to 

be incompatible with sociology (WEICHERT; 2008; pp. 44-53). 

The first approach was to just use the basic functions of existence as classes for the addresses. But 

first a transformation had to be made. Because the system is set up like an information retrieval 

system, the names of the classes needed to be cast more in the form of a search query than a 
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scientific term. But with this transformation into search queries, it became obvious that the classes 

would not cover or, in information retrieval terms, retrieve all places that are part of these classes. 

To illustrate this, the place where a doctor’s office or a hospital is located would be part of the class 

“to live in community.” But a search term corresponding to the class “community” would potentially 

not produce a good score with a doctor’s office or a hospital. On the other extreme, a too narrow 

search term like “health care” would probably score very well with a doctor’s website, but exclude 

everything else that is part of living in community (see chapter 9. about how document vectors 

works). 

With these criteria in mind, in the end it was decided to only keep three of the 

Daseinsgrundfunktionen and develop appropriate search terms for them: 

- Wohnen (To live somewhere) 

- Arbeiten (To work) 

- Sich bilden (To be educated)  

 

10.2. Classes for addresses 
 

With the problem of a too wide or narrow “search term” for classification purposes in mind, it was 

clear that finding enough classes to classify every possible entity was not an option. To broaden the 

scope of classes for entities, literature about functional urban geography was consulted to develop 

further classes. During this review Map 10.1 came up. It shows the Viennese inner city divided up 

into functional quarters. 
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a)  

b)  

Map 10.1 a),b) Functional subdivision of the Viennese inner city a) German b) English translation 

(FASSMAN AND HATZ; 2002; p. 37) 

 

This map is the second source from which classes are derived. Apart from listing a couple of 

functions that could work quite well with the search term paradigm, it provides the possibilities to 

compare the results produced by the classification other than the control group (see chapter 13.). 
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The last resource for classes was the trade groups found in HEINEBERG ET AL. (2014). From those two 

sources the following classes are derived: 

- Kultur (culture) 

- Einkaufen (shopping) 

- Finanzen (finance) 

- Regierung (government) 

- Gaststätte (restaurant, bar) 

- Hotel (hotel) 

(HEINEBERG ET AL.; 2014; pp. 187-189), (FASSMAN AND HATZ; 2002; pp. 35-40) 

The resulting list of classes is far from complete. Almost no services like barbers and plumbers or 

attorneys and doctors are represented by any of those classes. How complete the list is will also 

show the mapping of the control group. Everything that cannot be assigned a class will be put into 

the class “other.” How big the class “other” will be, after creating the control group, will reveal how 

much is not captured by the other classes. 

Lastly, all the classes are transformed into search queries (see Table 10.1). Most of the queries are 

identical to their German class names. Exceptions are “Dienstgebäude” (governmental building) for 

“Regierung” (government). The idea behind this is that buildings that are associated with 

government can be named “Dienstgebäude” and therefore not only target buildings like the 

parliament but also other government agencies. For the finance class, the query “Kreditinstitut” 

(credit institution) was selected. The reason behind this has to do with the co-occurrence groups 

that are going to be explained in Chapter 11., and because a query like “Finanzen” (finance) yielded 

a co-occurrence group that seemed too similar to the Ministry of Finance and government and the 

word “Bank” has more than one meaning in German. 
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Class Query  

Wohnen (To live somewhere) Wohnen 

Arbeiten (To work) Arbeiten 

Sich bilden (To be educated) Bildung 

Kultur (culture) Kultur 

Einkaufen (shopping) Einkaufen 

Finanzen (finance) Kreditinstitut 

Gaststätte (restaurant, bar) Gaststätte 

Hotel (hotel)  Hotel 

Regierung (government) Dienstgebäude 

Table 10.1 Classes and their corresponding queries 
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11. Co-occurrence Groups 
 

This chapter gives an overview of natural language processing and part of speech (POS) tagging, in 

particular, and shows how these techniques are used to create a POS-tagged version of Wikipedia. 

Lastly, from the POS-tagged Wikipedia co-occurrence query, expansion groups are generated for the 

search terms defined in Chapter 10. . 

 

11.1. Introduction Natural Language Processing 
 

The tool of computer linguistics is statistics. Computer linguistics attempts to create a statistical 

model of (natural) human language. The goal is that, with the statistical model, a computer could 

analyze a language or a text in this language and create some result about it, without the necessity 

of understanding language, like humans do. One of the prime examples for natural language 

processing (NLP) and computer linguistics is translation work. Other examples where computer 

linguistics is used today are in the creation of text summaries or detection of plagiarism (MANING AND 

SCHÜTZE; 1999; pp. 3-35). 

The overarching instrument NLP uses is a text corpus. A corpus is a kind of annotated text that can 

be used as a knowledge base. It can be used to answer simple language questions like in what 

frequency some kind of word is used together with another (MANING AND SCHÜTZE; 1999; pp. 3-35).  

 

11.2. Part-of-speech Tagging 
 

Part-of-speech tagging, a discipline within the NLP field, is an important part of the further work in 

this thesis. It is a technique that determines whether every term is a noun, verb, adjective, etc. or if 

the word is part of a compound word. The results are then attached as a label to the word and 

saved. The annotated text is called a corpus (RUSSEL; 2014; p. 194). 

An example for POS-tagged sentence is this: 

The-DT representative-NN put-VBD chairs-NNS on-IN the-DT table-NN. 

Every word has a label that indicates what kind of word it is. The meaning of the labels can be looked 

up in Table 11.1. The example sentence could also be tagged differently as in the next example: 

The-DT representative-JJ put-NN chairs-VBZ on-IN the-DT table-NN. 
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Even though this way of reading is unlikely, the example shows that tagging always has some sort of 

ambiguity. A good tagger then determines which of the syntactic categories for a word is most likely 

for the word in this kind of a sentence (MANING AND SCHÜTZE; 1999; pp. 341-379). 

 

Tag  Description  Example 
CC  conjunction, coordinating and, or, but 
CD  cardinal number five, three, 13% 
DT  determiner the, a, these 
EX  existential there there were six boys 
FW  foreign word mais 
IN  conjunction, subordinating or preposition of, on, before, unless 
JJ  adjective nice, easy  
JJR  adjective, comparative nicer, easier 
JJS  adjective, superlative nicest, easiest 
LS  list item marker   
MD  verb, modal auxiliary may, should 
NN  noun, singular or mass tiger, chair, laughter 
NNS  noun, plural tigers, chairs, insects 
NNP  noun, proper singular Germany, God, Alice 
NNPS  noun, proper plural we met two Christmases ago 
PDT  predeterminer both his children 
POS possessive ending 's 
PRP  pronoun, personal me, you, it 
PRP$  pronoun, possessive my, your, our 
RB  adverb extremely, loudly, hard  
RBR  adverb, comparative better 
RBS  adverb, superlative best 
RP  adverb, particle about, off, up 
SYM  symbol % 
TO  infinitival to what to do? 
UH  interjection oh, oops, gosh 
VB  verb, base form think 
VBZ  verb, 3rd person singular present she thinks  
VBP  verb, non-3rd person singular present I think  
VBD  verb, past tense they thought  
VBN  verb, past participle a sunken ship 
VBG  verb, gerund or present participle thinking is fun 
WDT  wh-determiner which, whatever, whichever 
WP  wh-pronoun, personal what, who, whom 
WP$ wh-pronoun, possessive whose, whosever 
WRB wh-adverb where, when 
Table 11.1 The Peen Treebank II POS tag set (Santorini 1990) 

 

The first large tagged corpus was the Brown Corpus in 1971. It consists of about 1 million words and 

was first tagged by humans over a couple of years. The TAGGIT tagger was developed alongside the 

Brown Corpus. The tagger used lexical Information to narrow down the tags a word could have and 

then apply rules to for tagging it. An example for such a rule could be that a noun very likely follows 
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an article and that a verb following an article is very unlikely. So if the tagger had found a word in the 

text by a lexical lookup that could be a noun or a verb and it is preceded by an article, then the 

tagger would decide it as a noun (MANING AND SCHÜTZE; 1999; pp. 341-379). 

Taggers that were developed later and are, therefore, more advanced make use of Hidden Makrov 

Chains. Makrov Chains try to determine what type of word a word is by looking at the preceding 1 to 

3 words. It calculates the combined possibility of these words occurring in this kind of order for all 

possible combinations and then chooses the combination with the highest possibility. These models 

need to be trained to “know” the possibility of a word sequence occurring (MANING AND SCHÜTZE; 

1999; pp. 317-340). 

 

The performance of a tagger mostly depends on four factors: 

- The amount of training data the tagger has available 

- How big the tag set is. The bigger the tag set, the less reliable a tagger gets 

- How different the trainings corpus and dictionary that are used are from the corpus that 

needs to be tagged 

- How well the tagger can handle words that are unknown to it 

 

Most modern taggers reach an accuracy of 96% to 97%, which seems quite high, but in reality it 

means that in an average-length sentence of 20 words, there is one incorrectly tagged word (MANING 

AND SCHÜTZE; 1999; pp. 371-372). 

 

A German language tagger that is natively available in python as a library is a Brill-Tagger. The Brill-

Tagger works differently than the previously mentioned hidden Makrov Chain tagger, instead it uses 

a learned rule base schema and a lexical lookup. The Brill-Tagger was originally developed for English 

and needed to be trained for German. It works with a pre-tagged corpus that is used as a lexical 

lookup and from which the rules are derived. It is trained in two-steps. First, it assigns all words their 

most common tags found in the trainings corpus. Then, because the tagger learns on a pre-tagged 

corpus, the errors that have been made are recorded. The tagger then tries to find rules that correct 

the mistakes. Each rule is tested against the pre-tagged corpus and the tagger weighs if this corrects 

more mistakes than it introduces. This process is iterated until the error rate plateaus (SCHNEIDER AND 

VOLK; 1998; pp. 2-3).  

The Brill-Tagger generates two sets of rules: lexical rules and context rules. Lexical rules are used for 

unknown words. An example of a lexical rule (shown below) is that words that end in the 4-letter 

suffix -lich 
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LICH HASSUF 4 RB 

The effect of this rule is that every unknown word that has the 4-letter suffix –lich is retagged as an 

adverb independent of what its first tag was (SCHNEIDER AND VOLK; 1998; p. 3). 

An example for a context aware rule is: 

 NN VB PREV-TAG TO 

This rule changes a word that is tagged as a noun to a verb if the word that precedes it is tagged with 

the infinitival “TO” (BRILL; 1992; p. 152-153). 

The described Brill-Tagger for the German language achieved results of around 95 to 96% 

correctness. But a problem with these results is that the Brill-Tagger was validated on the same kind 

of text it was trained on. It was trained on the annual report from the University of Zurich. For the 

training phase, 25% of the corpus was withheld and used as a control group. In this control group, 

the tagger had an error rate of 5%, but it can be assumed that if the tagger was used not to tag 

annual reports from this specific university, but, for example, for journalistic sports publications, that 

the error rate would be higher (SCHNEIDER AND VOLK; 1998; p. 4-7), (MANNING AND SCHÜTZE; 1999; p. 

343-344). 

 

11.3. POS tagging Wikipedia 
 

The python library used for POS tagging uses the Penn Treebank II tag set. This is a tag set developed 

for the English language and, therefore, does not contain provisions for German language 

particularities, like tags for separated verb prefixes. A tag set providing language tags that were 

made for the German language is the Stuttgart-Tübingen Tag-Set (STTS) (SCHNEIDER AND VOLK; 1998; 

p.3). 

But for the sake of simplicity, this paper will continue to use the Peen Treebank II because later only 

two broad word groups, verbs and nouns, are used to create the semantic vectors. It is therefore less 

relevant for this task that the tagger correctly identifies what kind of verb or noun a word is. That 

only broad classes are needed also helps with the second problem the tagger has, that it was created 

from a very specific kind of text. This was described at the end of the previous chapter (MANNING AND 

SCHÜTZE; 1999; pp. 343-344) 

Because of its broad scope of themes, its huge amount of text and that it is freely available, the 

German Wikipedia is a good source for creating co-occurrence groups as they are described in the 

later subchapters 11.4 and 11.5. To generate these groups the words and sentences of Wikipedia 

need to be POS tagged. To POS tag Wikipedia, the content needs to be available as pure text. It is 

possible to download XML dumps from Wikipedia, but they need to be converted to pure text. KOPI, 
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a web portal used to identify plagiarism in English, German and Hungarian, has developed such a 

converter with the following adjustments: 

• The conversion keeps article boundaries 

• Only text information is extracted  

• Info boxes get filtered out 

• Comments, templates and math tags are also filtered out 

• Other types of “written” information like tables are converted to text 

KOPI publishes their converted dumps and makes them available under the Creative Commons 

license 3.0 BY-SA. The newest available German Wikipedia text version from 16.06.2014 was 

downloaded from their site (PATAKI ET AL.; 2012; pp. 48-49). 

The downloaded dump is 7.22 gigabytes of text data when unzipped. It is unzipped into 1321 

individual files, each in an individual subfolder. The POS tagging with the following code took about 2 

days on a modern computer. 

 
045 def createfilepathlist(): 
046     pathlist = [] 
047     subfolders = [x[0] for x in os.walk('./WikiText/')] 
048     for subfolder in subfolders[1:]: 
049         for filename in os.listdir(subfolder): 
050             pathlist.append(subfolder+'/'+filename) 
051  
052     return pathlist 
053  
054  
055 i = 0 
056 filepathlist = createfilepathlist() 
057 len_filelist = len(filepathlist) 
058 Starttime = time.time() 
059  
060 if __name__ == '__main__': 
061  
062     print('Tagging new corpus') 
063     pool = ThreadPool(4) 
064     pool.map(POStag, filepathlist) 
065     pool.close() 
066     pool.join() 
067  
068     print('+++++########+++++') 
069     print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60)) 
070     print('+++++########+++++') 
 

Figure 11.1 Creating the file list 

 

The code in Figure 11.1 creates as its first task a list of all Wikipedia text files in line 56. This method 

is called createfilepathlist(). This function uses a couple of methods in python’s os library for 

example os.walk() in line 47 that returns all subfolders for a main folder. All subfolders are saved 

as a list to the variable subfolder. This list is iterated through, starting in line 48, except for the first 
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element because it is the main folder itself. Within the iteration, all objects in each subfolder are 

again called with os.listdir(). Each subfolder contains exactly one text and in line 50 every 

subfolder is combined with the file into one path and saved to the pathlist. This list is then returned 

in line 52 (PYTHON 2.7.10 LIBRARY; operating system). 

Other variable in the lines 55 to 58 need to be set outside the main thread, too. They need to be 

accessible to the parallel threads created in the main thread. The main thread begins in line 60 and 

makes use of the multiprocessing library in python to POS tag the individual Wikipedia files in 

multiple threads. The ThreadPool is set to 4 workers in line 63. With the pool.map() function, the 4 

threads are spawned. This method needs a function (POStag()) and an iterateable variable 

(filepathlist) to work. It takes the first item from the filepathlist, passes it to the POStag() 

and starts an instance of the function in the first thread. Then the second item is handed to a new 

instance of the function in the second thread and so on. Whenever one thread is finished with the 

current item, it gets a new item from the filepathlist until all items from the list have been 

iterated through. Lines 65 and 66 make sure that all threads are completed and joined again before 

the script moves on (PYTHON 2.7.10 LIBRARY; multiprocessing). 
011 def POStag(filepath): 
012  
013     global i 
014     global len_filelist 
015     i += 1 
016     newcorpustagged = [] 
017     Starttime2 = time.time() 
018  
019     with io.open(filepath, 'r', encoding='utf-8') as mfile: 
020         data = mfile.read() 
021         data = data.splitlines() 
022  
023  
024     for section in data: 
025         section = parse(section) 
026         section = section.split() 
027  
028         for sentence in section: 
029             sent = [] 
030             for token in sentence: 
031                 sent.append((token[0], token[1])) 
032             newcorpustagged.append(sent) 
033  
034  
035     with io.open('./wikicorpuspickeld_2/%s_%s.pos' % (current_thread().ident, i,),  

'wb') as fout: 
036        pickle.dump(newcorpustagged, fout) 
037  
038  
039     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
040     delta_time = time.time() - Starttime 
041     print "time till now %.2f Minutes" % (delta_time/60) 
042     print "time till end %.2f Minutes" % (((delta_time/60)/(i*4))*(len_filelist- 

(i*4))) 
 

Figure 11.2 Executing the POS tagger 
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The POStag() function in Figure 11.2 defines the variables i and len_filelist as global variables 

to access them even though they were defined outside the function. The function also creates a new 

list newcorpustagged that will contain the part of the corpus that will be tagged by the function. It 

then proceeds to open the file at the passed filepath in line 19. Important for opening the file is to 

define the correct encoding of the file, in this case 'utf-8'. The file is read in line 20 and saved to 

the variable data. Now that the text of the file is available as a string, this string is split at every new 

line (\n) symbol with .splitlines() in line 21. New lines occur whenever a paragraph in the 

original Wikipedia article ended. The reason to split the file into paragraphs is to POS tag the string 

not all at once, but bit by bit (PYTHON 2.7.10 LIBRARY; I/O),(PYTHON 2.7.10 LIBRARY; string). 

The string is then POS tagged paragraph by paragraph starting in line 24. The parse() function in 

line 25 POS tags the paragraph. The paragraph is then split into individual sentences with .split() 

in line 26. The code iterates through all sentences in line 28 and then through all now-tagged words 

in line 30. From the individual tokens, only object 0 (word) and object 1 (POS tag) are of interest. 

That is why only those two are appended as a tuple to the new sentence list sent in line 31. This list 

is then appended to the meta list newcorpustagged. This continues until all sentences of all 

paragraphs have been tagged and appended to newcorpustagged, resulting in a list of sentences 

that, in turn, consist of a list of word and POS tag tuples (PATTERN; pattern.de). 

The last step is to save newcorpustagged to the drive so that it can be recalled in later scripts.  For 

this, the python input output library and the pickle library are used. Pickle allows for the serializing 

of python objects, so that they can be saved as a file. To avoid file name conflicts, the files that are 

saved in line 35 and 36 are named with the variable i and the ID of the current thread that is 

checked with current_thread().ident. As mentioned before, the POStag() function is executed in 

4 Parallel threads, on the 1,321 Wikipedia text files. The result is 1,321 pickle objects that are saved 

to the './wikicorpuspickeld_2/' directory (PYTHON 2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; 

pickle).  

 

11.4. Co-occurrence 
 

To simulate human knowledge about words in a machine-processing task, it is necessary to analyze 

the meaning of words. A thesaurus is a typical knowledge representation, in a sense, what words 

mean is described by other words. However, generating a thesaurus manually is very labor-intensive 

and is biased towards the manufacturer (ITO ET AL.; 2008; pp. 817-826).  
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To automatically generate a thesaurus and solve both of these problems, a couple of methods have 

been developed. One of them is co-occurrence. Broadly speaking, co-occurrence measures how 

often one word is used similarly to another word. How close both words have to be is defined by the 

window size. The windows size can range from only one word, resulting in only the words that 

directly proceed and precede a word, to up to 10 words. This becomes more nuanced if the 

frequency of the co- occurrence is also taken into account (ITO ET AL.; 2008; pp. 817-826). 

Co-occurrence word information can be defined in a couple of ways and describes the relation of the 

co-occurring words to each other. 

a) The relation between a super-concept and a sub-concept word. Examples for this co-

occurrence are “country name” and “Canada” or “clothes” and “trousers” 

b) The relation between verb and noun phrase. For example “run, dog, subject” 

c) Compound word relations like in “Canadian” and “Canadian Nationality” or “America” and 

“United States of America” as examples 

d) The synonymous relation between words “America” and “United States of America” are 

used as synonyms as well as “Cutter” and “Sports shirt” 

To also capture how strongly two words correlate with each other, the frequency of their co-

occurrence can be collected. A relation between the word “Chirp” and “Bird” is recorded two times 

in the corpus, so this relation has a co-occurrence frequency of 2 (ITO ET AL.; 2008; pp. 817-826).  

Both aspects, the co-occurrence and the frequency of it, will be used to create a co-occurrence 

group similar to the document vector described earlier (KAZUHIRO ET AL.; 2003; pp. 957-960).  

 

To explore how useful co-occurrence vectors are, a couple of experiments were conducted. For this, 

a corpus of 160 million words from Usenet Newsgroups was queried for co-occurrence. For every 

word that appeared at least 50 times within this corpus, word vectors similar to document vectors 

were calculated. For the calculation of the vectors, the co-occurrence frequency was used.  In the 

next step, the Euclidian distance for each vector to each vector was calculated. Example results 

selected randomly from this processing can be seen in Table 11.2, where for each target the 5 

nearest words are shown (LUND AND BURGESS; 1996; pp.203-205). 
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Target n1 n2 n3 n4 n5 

Jugs Juice Butter Vinegar Bottles Cans 

Leningrad Rome Iran Dresden Azerbaijan Tibet 

Lipstick Lace Pink Cream  Purple Soft 

Cardboard Plastic Rubber Glass Thin Tiny 

Triumph Beauty Prime  Grand Former Rolling 

Monopoly Threat Huge Moral Gun Large 

Table 11.2 Five nearest neighbors for Target words (Source: Lund and Burgess 1996) 

 

The relationship between two vectors appears to be both semantic (jugs-cans, cardboard-plastic) 

and associative (lipstick-lace, monopoly-threat), (LUND AND BURGESS; 1996; pp.203-205).  

A second experiment tested if those vectors carry categorical information. The objective was to see 

if words that are perceived to be in the same category are also grouped by their corresponding 

vectors together in a category. Words that represent the categories animal names, body parts and 

geographical locations were selected for this test. The co-occurrence vectors for each word where 

extracted from the corpus. The Euclidean distance from every vector to every other vector was 

calculated and the resulting multidimensional space was scaled to a two-dimensional solution shown 

in Figure 11.3 (LUND AND BURGESS; 1996; p. 205). 
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Figure 11.3 Multidimensional scaling of co-occurrence vectors. (Source: Lund and Burgess 1996) 

 

The results in Figure 11.3 were enhanced by the lines added to clarify the differentiation of the 

categories. The geographic spaces are unlike either body parts or animals. The separation between 

body parts and animals also works well except for “tooth,” but intuitively it can be guessed that 

tooth is an important body part for animals. This is probably the reason why it gets clustered 

together with the animals. Overall, the experiment validates the assumption that words can be 

categorized to a certain degree using their co-occurrences without human supervision (LUND AND 

BURGESS; 1996; p.205). 

 

11.5. Generating Co-occurrence query expansion groups from Wikipedia 
 

The literature on query expansion is split. On the one hand, it is believed to introduce more noise, 

but increase the recall; on the other hand, query expansion could enhance document classifications. 

The automatic query expansion employed in this thesis based on co-occurrences is a simple one; 

there are more sophisticated methods. Examples of this are exploiting grammatical relationships 

between words, introducing a semantic term weight or utilizing Wikipedia to embed semantic 
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kernels into documents. To test which method works best, the addresses are going to be classified 

with both the query expansion and the search terms defined in Chapter 10. (see Table 10.2), (WANG 

AND DOMENICONI; 2008; pp. 713-721), (LUO ET AL.; 2011; pp. 12708-12716), (MANNING ET AL.; 2009; 189-

194).   

The code in Figure 11.4 generates the co-occurrences used for the query expansion from the now 

POS-tagged Wikipedia. 
025 def CoOccurrence(groups): 
026     Starttime3 = time.time() 
027     Fenster = 10 
028     i = 1 
029     S_list = stopwords_list() 
030     word_dict = {} 
031  
032     Files = [x[2] for x in os.walk('./wikicorpuspickeld_2/')] 
033     for file in Files[0]: 
034  
035         with io.open('./wikicorpuspickeld_2/'+file, 'rb') as fin: 
036             loaded_corpus = pickle.load(fin) 
037  
038  
039         for sentence in loaded_corpus: 
040             for (index, tokentag) in enumerate(sentence): 
041                 (token, tag) = tokentag 
042                 token = token.lower() 
043  
044                 if token in groups: 
045                     term = sentence[index-Fenster:index+Fenster] 
046                     for(term_token, term_tag) in term: 
047  
048                         term_token = term_token.lower() 
049                         if term_token not in S_list and NounVerb(term_tag): 
050  
051                             if token not in word_dict: 
052                                 word_dict[token] = {} 
053                             if term_token in word_dict[token]: 
054                                 word_dict[token][term_token] += 1 
055                             else: 
056                                 word_dict[token][term_token] = 1 
057  
058         print i 
059  
060         delta_time = time.time() - Starttime3 
061         print "time till end %.2f Minutes" %  

(((delta_time/60)/i)*(len(Files[0])-i)) 
062         i += 1 
063  
064     return word_dict 
065  
066 groups = [u'wohnen', u'arbeiten', u'bildung', u'einkaufen', u'gaststätte',  

u'hotel', u'kreditinstitut', u'kultur', u'dienstgebäude',] 
067  
068 Starttime2 = time.time() 
069 CoOccurrenceGroups = CoOccurrence(groups)  
Figure 11.4 Co-occurrence generation from Wikipedia 

 

The groups are the lists of search terms (see chapter 10.). They are passed as a python list to the 

function CoOccurrence(). The purpose of the functions is, if the one of the terms is found to look 
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forward and backward in the same sentence and record any verbs and nouns that occur within this 

window around the term. A couple of variables are defined to make this possible. Number one is 

Fenster containing the size of the window. The Second is S_list. Here the code calls a function not 

shown in Figure 11.4 that delivers the German stop words found in the Natural Language Tool Kit 

(NLTK) in the form of a python list and, lastly, word_dict the dictionary that will contain the 

co-occurrences. The code from lines 32 to 36 opens the POS-tagged Wikipedia generated earlier in 

this chapter. Then, the script iterates through the separate sentences found in the POS-tagged 

Wikipedia. The tokens in the sentence are enumerated in line 40. The resulting index variable is 

used to save the position of the token in the sentence to make the window lookup in line 45 

possible. So if the search term is in the groups list, the lookup gets triggered returning all words 

within the window size as a list of word and POS tag tuples in line 45. The words are then tested if 

they are stop words. Then they are tested again by the NounVerb() function to see if they are a verb 

or noun (see Table 11.1). If a word passes both tests, it is added to the word_dict dictionary. This 

happens in two phases. First, if the search term is not yet present in the dictionary as a key, it is 

added in line 52 containing a subdictionary as a value. Then, the word is either added as a new key 

to this subdictionary in line 56 or, if it is already present, plus one is added to the counter. This not 

only records the words, but also how many times they co-occur with the search term. This statistical 

connection will be used to create a weighted vector (see chapter 9.2. and Chapter 12.2.3.), (NLTK 

3.0 library). 

Table 11.3 shows the now-produced co-occurrence groups. They still contain some non-information, 

like “=” and “]”, that is the result of tagging mistakes of the POS tagger and the way the text version 

of Wikipedia was formatted. These artifacts will be filtered out as soon as the groups are turned into 

vectors (see chapter 12.2.3.).  
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Search Term      

hotel  

(25707) 

* 

(2538) 

=  

(1926) 

]  

(1828) 

wurde  

(1378) 

grand  

(1004) 

gaststätte 

(4111) 

wurde 

(359) 

heute 

(286) 

gebäude  

(145) 

straße  

(134) 

=  

(124) 

arbeiten  

(80323) 

=  

(7759) 

beruf  

(4172) 

rechtsanwal

t 

(3105) 

began 

(2687) 

wurden 

(2109) 

bildung  

(47332) 

= 

(49506

) 

kultur  

(2334) 

forschung 

(2074) 

wissenschaft 

(2059) 

bundeszentral

e 

(1786) 

wohnen 

 (8240) 

=  

(557) 

bauen 

(447) 

menschen 

(434) 

arbeiten 

(272) 

haus 

(270) 

dienstgebäud

e (445) 

= 

(111) 

wurde 

(29) 

berlin 

(26) 

eisenbahndirektio

n (20) 

heute 

(19) 

kreditinstitut 

(1703) 

] 

(970) 

deutschland 

(360) 

schweiz 

(146) 

bank  

(81) 

österreich  

(77) 

einkaufen 

(1118) 

=  

(218)  

gehen  

(74) 

können  

(62) 

geht  

(46) 

konnten  

(29) 

kultur  

(80743) 

= 

(93309

) 

sehenswürdigkeite

n (14092) 

geschichte 

(5554) 

kunst  

(5180) 

wissenschaft 

(2737) 

Table 11.3 Co-occurrence groups with top 5 terms and the number of their occurrences 
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12. Address Classification 
 

This chapter is about bringing together various parts of the previous chapters; namely, the 

document vector and the co-occurrence groups derived from the POS tagged Wikipedia corpus. 

First, the final vector space that will contain all the document vectors will be created out of the 

combination of two other vector spaces. Then the vectors for the co-occurrence groups, the search 

terms and the HTML documents will be calculated and compared to each other. Lastly, the values 

created in this comparison are used to classify the addresses. 

 

12.1. Creating the Vector Space 
 

For classifying documents with document vectors, the vector space these document vectors can 

exist in must be created first. That means that a space exists that contains as many dimensions as 

individual terms or, in this case, stemmed tokens. The reason why individual stemmed tokens are 

used and not every individual word contained in the corpus is the same as described in Chapter 

7.1.1. . The same word can differ for grammatical reasons or words can have similar meanings like in 

the examples “organize”, “organizes”, “organizing” and “democracy”, “democratic”, 

“democratization” (SALTON; 1991; pp. 974-980), (MANNING ET AL.; 2009; p. 123).  

This chapter describes how two vector spaces, one from the HTML documents and one from the 

Wikipedia corpus, are created and merged into a combined vector space. 

 

12.1.1. Creating a unique set of HTML documents 

 

Before the HTML file vector space can be created, there is an issue with the HTML documents itself 

that needs to be corrected first. Due to complications in the download process, namely, that it 

crashes or gets stuck a couple of times, it needs to be restarted (see chapter 3.3.). Because of how 

the index works and how the download script is coded, in the event of a crash it is unavoidable that 

some parts of already downloaded data will be downloaded again, thus creating duplicates. To 

create a dataset containing only unique HTML files, the following SQL command needs to be 

executed on the database: 

 

INSERT INTO htmlunique SELECT DISTINCT ON (url) id, url, html_file, Vienna, 
textsearchable_index_col, stripped_html, geocoded FROM html where geocoded 

= TRUE 
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This selects the rows from the table that have a unique URL and are relevant because they are 

already geocoded and copies them exactly into the new table htmlunique. This ensures that the 

records work with the code and the database as they did before except for the index column. If now 

compared with the previous figures, there were 268,338 HTML files that have now been reduced to 

256,180, a reduction of 4.53% (POSTGRESQL 9.3.9; documentation).  

Even though this is only described now in the thesis, all previous chapters created tables, graphics 

and maps use the htmlunique table and not the html table. The reason for not doing this right 

after the import was that it is faster to create a set of unique files from 268,338 files than from 8.4 

Million. 
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12.1.2. Creating the HTML documents Vector Space 

 
045 def Delete_stopwords(Tokens): 
046     return [token for token in Tokens if not token in  

nltk.corpus.stopwords.words('german')] 
047  
048 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
049 tokenizer = RegexpTokenizer(r'\w+') 
050 token_dict = {} 
051 HTMLIDS = get_html_ids() 
052  
053 lower = 0 
054 upper = lower + 1000 
055 Starttime = time.time() 
056 parsedhtmls = 0 
057  
058 while lower <= len(HTMLIDS): 
059  
060     Starttime2 = time.time() 
061     stripped_htmls_list = stripped_htmls(HTMLIDS[lower:upper]) 
062     for html in stripped_htmls_list: 
063         parsedhtmls += 1 
064  
065         time_tokenize = time.time() 
066         tokens = tokenizer.tokenize(html) 
067         tokens = Delete_stopwords(tokens) 
068         token_dict_file = {} 
069  
070         for token in tokens: 
071  
072             stemmedtoken = GermanStemmer.stem(token) 
073  
074             if stemmedtoken in token_dict_file: 
075                 token_dict_file[stemmedtoken] += 1 
076             else: 
077                 token_dict_file[stemmedtoken] = 1 
078  
079         for key in token_dict_file: 
080             if key in token_dict: 
081                 doc_count = token_dict[key][0] + 1 
082                 occurrence_count = token_dict[key][1] + token_dict_file[key] 
083                 token_dict[key] = (doc_count, occurrence_count) 
084             else: 
085                 token_dict[key] = (1, token_dict_file[key]) 
086  
087     print('Number of tokens in dict: %s' % len(token_dict)) 
088     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
089     delta_time = time.time() - Starttime 
090     print "time till now %.2f Minutes"%(delta_time / 60) 
091     print "time till end %.2f Minutes"%(((delta_time/60)/(upper))*(len(HTMLIDS)- 

(upper))) 
092  
093     lower += 1000 
094     upper = lower + 1000 
095  
096 with io.open('./Vector/HTMLVectorSpace.pickle', 'wb') as fout: 
097     pickle.dump(token_dict, fout) 
 

Figure 12.1 HTML Document vector space code 

 

The first vector space created is the one derived from the HTML documents. To accomplish this, the 

code shown in Figure 12.1 first fetches a batch of the HTML files that were stripped of their HTML 
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tags (line 61) as described in Chapter 6.2. The code then iterates through them starting in line 58. 

First, they get tokenized, split into word tokens, in line 66 with the help of the 

tokenizer.tokenize() function defined in line 49. This function returns the document as a list of 

tokens. From this list, with the help of the Delete_stopwords() method displayed in line 45 and 46, 

all German stop words that are defined in the Natural Language Tool Kit (NLTK) are deleted from the 

list (NLTK 3.0 LIBRARY; tokenize). 

Then, the code iterates through all remaining tokens in the document starting in line 70. A token is 

then stemmed in line 72 with the NLTK snowball stemmer defined in line 48. It is then tested to see 

if the token already exists as a key in the token dictionary of this file token_dict_file. If so, plus 

one is added to the counter of the token. If not, the token is added as a new key in line 77 with a 

counter of 1. The dictionary is reset for every document, see line 64 (NLTK 3.0 LIBRARY; tokenize), 

(NLTK 3.0 LIBRARY; stem). 

The keys and counters of token_dict_file are then fed into the token_dict, see lines 79 to 84. It is 

the same principal as used before with the token_dict_file. If a token already exists as a key in 

token_dict, the document frequency is increased by one. The counter for corpus frequency is 

increased by the counter value that the token_dict_file holds. The first count is the document 

frequency and the other one the collection frequency. Both are described in detail in Chapter 9.2. 

The document frequency can later be used to calculate the tf-idf vector of documents. When the 

code has parsed all HTML documents and added all individual tokens to the token_dict, the 

dictionary is serialized with pickle and saved to the drive in lines 96 and 97 (PYTHON 2.7.10 LIBRARY; 

I/O)( PYTHON 2.7.10 LIBRARY; pickle). 

 

12.1.3. Creating the Wikipedia Vector Space 

 

Because the co-occurrence groups for the query expansion are derived from a different corpus, a 

vector space for the Wikipedia corpus also needs to be created. The two vector spaces will then later 

be combined into one vector space. As can be seen in Figure 12.2, the Wikipedia vector space is 

similarly created to the previously described HTML documents vector space. 
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011 def Vector_Calculator(): 
012     Starttime3 = time.time() 
013     i = 1 
014     GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
015     token_dict_file = {} 
016     p = re.compile(ur'^[a-zA-ZäöüßÄÖÜ]{2,}$', re.UNICODE) 
017  
018     Files = [x[2] for x in os.walk('./wikicorpuspickeld_2/')] 
019     for file in Files[0]: 
020         with io.open('./wikicorpuspickeld_2/'+file, 'rb') as fin: 
021             loaded_corpus = pickle.load(fin) 
022  
023         for sentence in loaded_corpus: 
024             for (index, tagtuple) in enumerate(sentence): 
025                 (token, tag) = tagtuple 
026                 token = token.lower() 
027                 if token not in stopword_list: 
028                     if p.match(token): 
029                         stemmedtoken = GermanStemmer.stem(token) 
030  
031                         if stemmedtoken in token_dict_file: 
032                             token_dict_file[stemmedtoken] += 1 
033                         else: 
034                             token_dict_file[stemmedtoken] = 1 
035  
036         delta_time = time.time() - Starttime3 
037         print "time till end %.2f Minutes" % (((delta_time/60)/i)*(len(Files[0])- 

i)) 
038         i += 1 
039  
040     return token_dict_file 
041  
042 stopword_list = [] 
043 for word in stopwords.words('german'): 
044     stopword_list.append(unicode(word.decode('latin-1'))) 
045  
046 Starttime = time.time() 
047 Vectorraum = Vector_Calculator() 
048  
049 with io.open('./Vector/WikiVectorSpace2.pickle', 'wb') as fout: 
050     pickle.dump(Vectorraum, fout) 
051 print('Operation took %.2f Minutes' % ((time.time() - Starttime) / 60)) 

 

Figure 12.2 Wikipedia vector space code 

 

But unlike with HTML documents, vector space it is not necessary to record the document frequency 

for different tokens. The reason behind this is that the Wikipedia corpus is not the corpus that 

information retrieval algorithms are used on. 

The POS tagged Wikipedia corpus is loaded into the code file by file in line 20 and 21. Because this 

corpus is structured as a list of sentences that contain a list of words and POS tag tuples, the tokens 

needs to be unpacked. This is done in lines 23 to 25. The resulting token variable then contains a 

string. This string is changed to all lowercase characters and checked against the stop word list. The 

next step in line 28 is to test if token passes the defined regular expression criteria: to only consist of 

letters and be at least 2 letters long. It is then stemmed in line 29. The token is then either newly 

added as a key with the value 1 to the token_dict_file in line 34 or, if it already exists, plus one is 
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added to the counter. This process is repeated until all Wikipedia corpus files are processed (PYTHON 

2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; pickle), (PYTHON 2.7.10 LIBRARY; regular expression 

operations), (NLTK 3.0 LIBRARY; stem). 

 

12.1.4. Combined Vector Space 

 

Now to combine both vectors spaces, the code in Figure 12.3 is used. 

 
004 with io.open('./Vector/WikiVectorSpace.pickle', 'rb') as fin: 
005     WikiVectorSpace = pickle.load(fin) 
006  
007 with io.open('./Vector/HTMLVectorSpace.pickle', 'rb') as fin: 
008     HTMLVectorSpace = pickle.load(fin) 
009  
010 CombinedVectorSpace = {} 
011  
012 for key in WikiVectorSpace: 
013     if key in HTMLVectorSpace: 
014         CombinedVectorSpace[key] = HTMLVectorSpace[key] 
015  
016 with io.open('./Vector/CombinedVectorSpace.pickle', 'wb') as fout: 
017     pickle.dump(CombinedVectorSpace, fout) 
 

Figure 12.3 Combine Wikipedia and HTML File vector space 

 

Both vector space dictionaries are deserialized in lines 04, 05 and lines 7, 8. Thereby, the 

CombinedVectorSpace dictionary that will contain the new vector space is created. The code then 

iterates through the keys found in WikiVectorSpace. As described in the previous chapters, the keys 

represent the individual tokens found in the respective corpora. In line 13, the code checks if the key 

is also present in HTMLVectorSpace. If this is true, the key is added as a key to the 

CombinedVectorSpace with the document frequency counter and the collection frequency counter 

stored in the HTMLVectorSpace as a value. The CombinedVectorSpace is then serialized in line 16 

and 17 (PYTHON 2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; pickle). 

To combine the two vector spaces with an intersection instead of a union has two main advantages. 

First, it filters out garbage tokens. Because the HTML documents are raw documents from the 

Internet, they contain nonsensical string combinations (xsdf, ddjdj, lkhj) even after the filtering. 

These should not or to a much lesser degree exist in the Wikipedia corpus. The second advantage is 

that, to a certain degree, foreign languages are filtered. Again the same reason as before the HTML 

documents could possibly contain all sorts of none German languages and up until now none 

German languages have not been filtered out. 
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As described later in this chapter, when the document vectors for the HTML documents are created, 

these now no longer existing tokens are simply ignored, like stop words. They have no influence on 

the resulting document vector. The combined vector space consists of 610753 tokens.  

 

12.2. Calculating the idf-tf vectors 
 

With the vector space created, the idf-tf vectors for HTML documents and co-occurrence groups for 

the query expansion can be produced. For this, first the inverse document frequency for every token 

is calculated. Then, the idf-tf vectors for the HTML documents and the co-occurrence groups are 

calculated. 

 

12.2.1. Calculating Inverse Document Frequency per Term 

 

The Inverse document frequency (idf) for every term is calculated with the code in Figure 12.4. 

 
024 with io.open('./Vector/CombinedVectorSpace.pickle', 'rb') as fin: 
025     CombinedVectorSpace = pickle.load(fin) 
026  
027 CombinedVectorSpaceIDFT = {} 
028 DocumentCount = countrows() 
029  
030 for key in CombinedVectorSpace: 
031     idft = numpy.log(numpy.divide(float(DocumentCount),  

float((1+CombinedVectorSpace[key][0])))) 
032  
033     CombinedVectorSpaceIDFT[key] = CombinedVectorSpace[key][0],  

CombinedVectorSpace[key][1], idft 
034  
035 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'wb') as fout: 
036     pickle.dump(CombinedVectorSpaceIDFT, fout) 
037  
038 CombinedVectorSpaceIDFTKeyList = [] 
039  
040 for key in CombinedVectorSpaceIDFT: 
041     CombinedVectorSpaceIDFTKeyList.append(key) 
042  
043 CombinedVectorSpaceIDFTKeyList.sort() 
044  
045 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'wb') as fout: 
046     pickle.dump(CombinedVectorSpaceIDFTKeyList, fout) 
 

Figure 12.4 Code for inverse document frequency calculation 

 

The vector space created in the last subchapter is loaded into the script as CombinedVectorSpace. A 

new dictionary CombinedVectorSpaceIDFT that will, at the end of the script, contain all tokens with 

their respective idf weight is created in line 27. Line 28 calls a function that returns the absolute 
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document count of all unique and geocoded html documents. As described in chapter 9.2., the 

absolute document count is one of the variables used in the idf formula (PYTHON 2.7.10 LIBRARY; I/O), 

(PYTHON 2.7.10 LIBRARY; pickle), (SALTON; 1991; pp. 976). 

The formula is:  

𝑖𝑖𝑑𝑑𝑖𝑖𝑡𝑡 =  log
𝑁𝑁
𝑑𝑑𝑖𝑖𝑡𝑡

 

idft (inverse document frequency of the term), N(total number of documents), dft(document 

frequency of the term) 

The next step is iterating through all tokens in the vector space dictionary. Every token in the the idf 

is calculated utilizing the formula. This happens in line 31 and the NumPy library is used for this. The 

reason for using this specialized library is that floating point calculations are problematic for 

computers and NumPy takes care of these problems.  

The calculate idf stored in the variable idft is then added together with document frequency value 

and the collection frequency value to the new dictionary CombinedVectorSpaceIDFT with the token 

again serving as the key (NumPy 1.8.1 library;). 

CombinedVectorSpaceIDFT is serialized and saved to the drive in lines 35 and 36. There is another 

step to creating the vector space. Because keys in python dictionaries are not always in the same 

order, a vehicle to preserve order needs to be created. This is done by adding all keys to a list in lines 

40 and 41. A list can be sorted, resulting always in the same order. This is important because as soon 

as the vector space is presented mathematically in an array, every token has to always refer to the 

same dimensional position in the array. After the list is sorted, it is also serialized and saved to the 

drive in lines 35 and 36. 

 

12.2.2. Calculating the Term Frequency-Inverse Document Frequency Vector for HTML 

Files 

 

Now with the idf calculated for every token, the vectors for the documents can be calculated. First, 

all HTML documents have to be tokenized and the occurrence of the tokens within the documents 

have to be counted. This is done by the code in Figure 12.5. 
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061 createColumn()   
062  
063 offset = 0 
064 htmls = ReadFromHTML(offset) 
065 tokenizer = RegexpTokenizer(r'\w+') 
066 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
067 Starttime = time.time() 
068 Length = countrows() 
069  
070 while htmls: 
071     print len(htmls) 
072     Starttime2 = time.time() 
073     for html in htmls: 
074         HTMLdict = {} 
075         id, HTMLtext = html 
076         tokens = tokenizer.tokenize(HTMLtext) 
077  
078         for token in tokens: 
079             stemmedtoken = GermanStemmer.stem(token) 
080             if stemmedtoken in CombinedVectorSpace: 
081                 if stemmedtoken in HTMLdict: 
082                     HTMLdict[stemmedtoken] += 1 
083                 else: 
084                     HTMLdict[stemmedtoken] = 1 
085  
086         htmlDictpickeld = pickle.dumps(HTMLdict) 
087         UpdateHtmlUniquewithDict(htmlDictpickeld,id) 
088  
089     offset += 1000 
090     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
091     delta_time = time.time() - Starttime 
092     print "time till now %.2f Minutes"%(delta_time / 60) 
093     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(Length-offset)) 
094     htmls = ReadFromHTML(offset) 
 

Figure 12.5 HTML document tokenization 

 

In line 61, a function is called to create a new column VectorDICT in the htmlunique table that 

will contain an HTML file-specific dictionary of tokens and their number occurrences in the file. The 

column is of the type bytea, a column type that PostgreSQL offers to store binary data. With that, it 

is possible to store pickled objects in the database (POSTGRESQL 9.3.9; documentation). 

The tag stripped HTML documents are fetched from the database and the tokenization is started. It 

works analogously to the HTML vector space creation (see chapter 12.1.2.). The HTMLtext is split 

into tokens with the NLTK RegexpTokenizer() in line 76. The code then iterates through the tokens 

and stems them. Stop words and similar noise are not dismissed, but because they are not part of 

the vector space (see chapter 12.1.), they cannot be mapped to the final document vector. The 

stemmed tokens are added to the HTML document-specific dictionary as keys. If they already exist in 

the dictionary, plus one is added to the token counter. The dictionary is then serialized in line 86 and 

saved to the VectorDICT column of the corresponding html document (PYTHON 2.7.10 LIBRARY; 

pickle), (NLTK 3.0 LIBRARY; tokenize), (NLTK 3.0 LIBRARY; stem). 
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With the HTML files tokenized and the term frequency (tf) for the tokens set, the last step is to 

create the normalized tf-idf document vector. 

 
049 offset = 0 
050 length = countrows() 
051 Starttime = time.time() 
052 createColumn() 
053  
054 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin: 
055     CombinedVectorSpaceIDFT = pickle.load(fin) 
056  
057 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin: 
058     CombinedVectorSpaceIDFTKeyList = pickle.load(fin) 
059  
060 while offset <= length: 
061     dicts = VectorDICTReader(offset) 
062     Starttime2 = time.time() 
063     arraylist = [] 
064     for tuple in dicts: 
065         array = [] 
066         id = tuple[0] 
067         dictionary = pickle.loads(str(tuple[1])) 
068  
069         for key in CombinedVectorSpaceIDFTKeyList: 
070  
071             if key in dictionary: 
072                 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2],  

dictionary[key])) 
073             else: 
074                 array.append(0) 
075         array = numpy.array(array) 
076         array = numpy.divide(array,numpy.linalg.norm(array)) 
077         array = pickle.dumps(array) 
078         array = zlib.compress(array) 
079         arraylist.append((psycopg2.Binary(array),id,)) 
080  
081     UpdateHtmlUniquewithTFIDFlist(arraylist) 
082     offset += 100 
083     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
084     delta_time = time.time() - Starttime 
085     print "time till now %.2f Minutes"%(delta_time / 60) 
086     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset)) 
 

Figure 12.6 tf-idf vector for documents 

 

The code in Figure 12.6 creates another bytea column with the name TFIDFVector in the table 

htmlunique. Also loaded into the script is the combined vector space in lines 54 and 55 and the key 

list for the vector space in lines 57 and 58. The key list makes sure that the tokens are always called 

in the same order and therefore always related to the same dimension in the array created with this 

script. The dictionaries containing the tokens and their respective term frequency are loaded from 

the database in line 61. arraylist is created in line 63 and then the code begins to iterate through 

the fetched dictionary. For every dictionary, a new empty array is generated in line 65. The 

dictionary is deserialized in line 67 and then the code iterates through the 

CombinedVectorSpaceIDFTKeyList. If a key on the list is found in the dictionary belonging to the 
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html file, the term frequency is multiplied by the inverse document frequency and added to array. 

The .append() method makes sure that the product is added to the end of array and, because zero 

is added to array in line 74 in case the key is not found in the HTML file dictionary, the same token is 

always represented by the same position in array (PYTHON 2.7.10 LIBRARY; pickle), (PSYCOPG 2.5.3 

LIBARY), (PYTHON 2.7.10 LIBRARY; I/O). 

The list array is then transformed into a NumPy array with numpy.array() in line 75. This makes it 

possible to use the NumPy library on the array. This library is then used in the next step to normalize 

the vector in line 76. Line 77 serializes the vector and, because a vector consisting of 610,753 

dimensions takes up a lot of space, the serialized object is compressed with zlib.compress() in line 

78. In line 79, array is made into a PostgreSQL binary data object and added together with the id to 

arraylist. arraylist is then passed to the UpdateHtmlUniquewithTFIDFlist() to write the 

normalized tf-idf vectors to the Database (NUMPY 1.8.1 LIBRARY;), (PSYCOPG 2.5.3 LIBARY), (PYTHON 

2.7.10 LIBRARY; zlib). 

 

12.2.3. Calculating the tf-idf Vector for Wikipedia Co-Occurrences groups and search 

terms 

 

Like with the HTML documents, the vector also has to be calculated for co-occurrence groups and 

search terms as well. This is the objective of the code in Figure 12.7. 
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008 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin: 
009     CombinedVectorSpaceIDFT = pickle.load(fin) 
010  
011 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin: 
012     CombinedVectorSpaceIDFTKeyList = pickle.load(fin) 
013  
014 with io.open('./Co-Occurrence.pickle', 'rb') as fin: 
015     CoOc = pickle.load(fin) 
016  
017 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
018  
019  
020 TFIDF_CoOc = {} 
021 for searchterm in CoOc: 
022     TFIDF_CoOc[searchterm] = {} 
023     TFIDF_CoOc[searchterm]['Stemmed'] = {} 
024     for token, counter in CoOc[searchterm]: 
025         token = GermanStemmer.stem(token) 
026         if token in TFIDF_CoOc[searchterm]: 
027            TFIDF_CoOc[searchterm]['Stemmed'][token] =  

TFIDF_CoOc[searchterm]['Stemmed'][token]+counter 
028         else: 
029             TFIDF_CoOc[searchterm]['Stemmed'][token] = counter 
030  
031              
032 for searchterm in TFIDF_CoOc: 
033         array = [] 
034         dictionary = TFIDF_CoOc[searchterm]['Stemmed'] 
035         for key in CombinedVectorSpaceIDFTKeyList: 
036             if key in dictionary: 
037                 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2],  

dictionary[key])) 
038             else: 
039                 array.append(0) 
040         array = numpy.array(array) 
041         array = numpy.divide(array,numpy.linalg.norm(array)) 
042         array = pickle.dumps(array) 
043         array = zlib.compress(array) 
044         TFIDF_CoOc[searchterm]['TFIDF_CoOc'] = array 
045  
046  
047         STarray = [] 
048         searchtermstemmed = GermanStemmer.stem(searchterm) 
049         for key in CombinedVectorSpaceIDFTKeyList: 
050             if key is searchtermstemmed: 
051                 STarray.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2], 1)) 
052             else: 
053                 STarray.append(0) 
054  
055         STarray = numpy.array(STarray) 
056         STarray = numpy.divide(STarray,numpy.linalg.norm(STarray)) 
057         STarray = pickle.dumps(STarray) 
058         STarray = zlib.compress(STarray) 
059         TFIDF_CoOc[searchterm]['TFIDF_ST'] = STarray 
060  
061 with io.open('./Vector/TFIDF_CoOc.pickle', 'wb') as fout: 
062     pickle.dump(TFIDF_CoOc, fout) 
 

Figure 12.7 Normalized tf-idf vector for co-occurrence groups and search terms 

 

Lines 8 to 15 load the combined vector space, the key list for the combined vector space and the co-

occurrence groups, the creation of which Chapter 11.5. describes. A new dictionary TFIDF_CoOc that 

will contain the vector arrays is created in line 20. The code then iterates through the keys of the 
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CoOc dictionary beginning in line 21. For every key or searchterm, a new sub dictionary is created 

within TFIDF_CoOc. In every sub dictionary, another sub dictionary is created in line 35 behind the 

key 'Stemmed' that will contain the stemmed tokens and their counts. The next step is to stem the 

tokens, combine possible duplicates and save the results to the new TFIDF_CoOc in lines 24 to 29. 

The approach is similar to the work earlier described in this chapter (PYTHON 2.7.10 LIBRARY; I/O), 

(PYTHON 2.7.10 LIBRARY; pickle). 

In comparison to Table 11.3, now Table 12.1 contains the cleaned up and tokenized versions of the 

co-occurrence groups. 

 

Search Term      
hotel restaurant 

(578) 
the 
(603) 

heut  
(876) 

grand 
(1004) 

wurd 
(1378) 

hotel 
(25707) 

gaststätte befindet 
(103) 

wohnhaus 
(120) 

strass 
(134) 

gebaud  
(145) 

heut 
(286) 

wurd 
(359) 

arbeiten jahr 
(1300) 

 wurd 
(2109) 

began 
(2687) 

rechtsanwalt  
(3105) 

beruf 
(4172) 

arbeit 
(80323) 

bildung wurd  
(1283) 

bundeszentral 
(1786) 

wissenschaft 
(2059) 

forschung 
(2074) 

kultur 
(2334) 

bildung 
(47332) 

wohnen einwohn 
(255) 

haus 
(270) 

arbeit 
(272) 

mensch 
(434) 

bau 
(447) 

wohn 
(8240) 

dienstgebäude hannov 
(14) 

beflagg 
(14) 

munch 
(17) 

heut 
(19) 

berlin 
(26) 

wurd 
(29) 

kreditinstitut vereinigt 
(73) 

osterreich 
(77) 

bank 
(81) 

schweiz 
(146) 

Deutschland 
(360) 

kreditinstitut 
(1703) 

einkaufen geld 
(20) 

kund 
(23) 

konnt 
(29) 

geht 
(46) 

geh 
(74) 

einkauf 
(1118) 

kultur gesellschaft 
(2618) 

wissenschaft 
(2737) 

kunst 
(5180) 

geschicht 
(5544) 

sehenswurd 
(14092) 

kultur 
(80743) 

Table 12.1 Tokenized co-occurrence groups with top 5 terms and the number of their occurrences 

 

Some predictions and observations can be made about Table 12.1. An interesting irregularity is the 

token “rechtsanwalt” (attorney) in the class “arbeiten” (working). This will make classification in this 

class interesting, because it might classify addresses that have an attorney’s office incorrectly. 

With the term frequency and stemmed tokens available, the actual vector can be created. In this, 

the co-occurrence frequency will be used as the term frequency, thus making the co-occurrence 

groups a kind of pseudo-document on the topic of the search term used to create them. As 

described with the vector creation of the HTML documents, it is important that the sequence of the 

tokens is preserved. That is why the code iterates through the CombinedVectorSpaceIDFTKeyList 

in line 35. If a token on the list is also found in the dictionary containing the tokens of the co-

occurrence group, then the frequency of the co-occurrence is multiplied with the inverse document 

frequency of this token and appended to array in line 37. If the token is not part of the co-
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occurrence group, then zero is added to array in line 39. array is then made into a NumPy array, 

normalized, serialized and compressed in the lines 40 to 43. Finally, it is added to the sub dictionary 

corresponding to the searchterm with the key 'TFIDF_CoOc' in line 44. 

The whole process is repeated for the search terms as well. Because, as described in Chapter 9.1., 

they are to be used as classifiers as well. The search term is stemmed and an array with just the 

search term in it is created. Again, this array is made into a NumPy array, normalized, serialized, 

compressed and added to the sub dictionary with the key 'TFIDF_ST' (NumPy 1.8.1 library;), 

(Python 2.7.10 library; pickle), (Python 2.7.10 library; zlib). 

As soon as this process is repeated for all keys in the TFIDF_CoOc dictionary, it is serialized and saved 

to the drive in line 61 and 62 (Python 2.7.10 library; I/O), (Python 2.7.10 library; pickle). 

It is now possible to create similarity matrixes, shown in Tables 12.2 and 12.3, respectively. 

However, there is not really a point in creating the matrix between the different search terms 

because their vectors represent just one word. The comparison to the co-occurrence groups is 

interesting. It becomes clear that the co-occurrence groups are sometimes similar to each and 

therefore will create more noise but, on the other hand, the recall of each group is broadened (see 

chapter 11.5.). 

Also similarities between co-occurrence that could have been suspected with the help of Table 12.1 

now become clear. There seems to be some similarity between “gaststätte” (restaurant) and “hotel” 

(hotel), as well as between “bildung” (education) and “kultur” (culture). Both don’t intuitively seem 

too surprising. But the similarity between “dienstgebäude” (government building) and “gaststätte” 

(restaurant) is. Intuitively, there seems to be no connection between them. Some same strange 

similarities also exist between the groups “hotel”, “dienstgebäude” and “wohnen”, “dienstgebäude”. 

 hotel gaststätte arbeiten bildung wohnen dienstgebäude kreditinstitut einkaufen kultur 
hotel 1.00 0.17 0.01 0.00 0.02 0.06 0.00 0.00 0.00 
gaststätte 0.17 1.00 0.04 0.02 0.06 0.35 0.01 0.02 0.02 
arbeiten 0.01 0.04 1.00 0.01 0.04 0.03 0.00 0.01 0.01 
bildung 0.00 0.02 0.01 1.00 0.01 0.02 0.00 0.00 0.07 
wohnen 0.02 0.06 0.04 0.01 1.00 0.11 0.00 0.02 0.01 
dienstgebäude 0.06 0.35 0.03 0.02 0.11 1.00 0.01 0.02 0.02 
kreditinstitut 0.00 0.01 0.00 0.00 0.00 0.01 1.00 0.00 0.00 
einkaufen 0.00 0.02 0.01 0.00 0.02 0.02 0.00 1.00 0.00 
kultur 0.00 0.02 0.01 0.07 0.01 0.02 0.00 0.00 1.00 

Table 12.2 Similarity matrix co-occurrence groups 
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Table 12.3 Similarity matrix search terms 

 

 

12.2.4. Cosine Similarity Calculations 

 

To bring this chapter to a close the Cosine Similarity can now be calculated between HTML 

documents, co-occurrence groups and search terms. The code shown in Figure 12.8 is utilized for 

this calculation. 

 

 hotel gaststätte arbeiten bildung wohnen dienstgebäude kreditinstitut einkaufen kultur 
hotel 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
gaststätte 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
arbeiten 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.05 0.00 
bildung 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
wohnen 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
dienstgebäude 0.00 0.00 0.00 0.00 0.00 1.00 0.06 0.02 0.00 
kreditinstitut 0.00 0.00 0.00 0.00 0.00 0.06 1.00 0.00 0.01 
einkaufen 0.00 0.00 0.05 0.00 0.00 0.02 0.00 1.00 0.00 
kultur 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.00 
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065 with io.open('./Vector/TFIDF_CoOc.pickle', 'rb') as fin: 
066     TFIDF_CoOc = pickle.load(fin) 
067  
068 Columnlist = [] 
069 SearchTermList = [] 
070 TFIDFworkingdict = {} 
071  
072 for searchterm in TFIDF_CoOc: 
073     SearchTermList.append(searchterm) 
074     Columnlist.append(TFIDF_CoOc[searchterm]+'_CoOc') 
075     Columnlist.append(TFIDF_CoOc[searchterm]+'_ST') 
076  
077 for searchterm in SearchTermList: 
078     TFIDFworkingdict[searchterm] =  

pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_CoOc'])),\ 
079           pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_ST']))                         
080  
081 for searchterm in Columnlist: 
082     createColumn(searchterm) 
083  
084 sqlstring = Sqlstringconstructor(Columnlist) 
085  
086 offset = 0 
087 range = 1000 
088 length = countrows() 
089  
090 vectors = VectorDICTReader(range,offset) 
091  
092 Starttime = time.time() 
093 while vectors: 
094     Starttime2 = time.time() 
095     updatelist = [] 
096     for vectortup in vectors: 
097         cosinelist = [] 
098         id, vector = vectortup[0], pickle.loads(zlib.decompress(vectortup[1])) 
099         for searchterm in SearchTermList: 
100             cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][0],  

vector),8) 
101             cosinelist.append(cosine) 
102             cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][1],  

vector),8) 
103             cosinelist.append(cosine) 
104  
105         cosinelist.append(id) 
106         updatelist.append(cosinelist) 
107     UpdateHtmlUniquewithCosinelist(sqlstring,updatelist) 
108     offset += range 
109     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
110     delta_time = time.time() - Starttime 
111     print "time till now %.2f Minutes"%(delta_time / 60) 
112     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset)) 
113  
114     vectors = VectorDICTReader(range,offset) 
 

Figure 12.8 Cosine similarity calculation 

 

The first thing is to load the pickled dictionary containing the vectors of the co-occurrence groups 

and search terms in lines 65 and 66. To keep everything in sync, two new lists are needed 

Columnlist and SearchTermList. As described before, those two lists make sure that the iteration 

process stays synchronized. Both lists are filled with items lines 72 to 75. The SearchTermList 

contains the dictionary keys and the Columnlist contains the list columns where the corresponding 
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Euclidean dot product of the cosine similarity calculation is stored. In the database, there will be two 

columns for every search term, one for the co-occurrence groups ending in “_CoOc” and one only for 

the search term ending in “_ST”. All columns are created with lines 81 and 82. The third important 

variable is TFIDFworkingdict, a dictionary that will contain the uncompressed vectors for both 

search terms and co-occurrence groups, after the lines 77 to 79 have been executed. The reason to 

offload the vectors is to not have to uncompress them every time. The function 

Sqlstringconstructor() that is called in line 84 creates an SQL string that contains value place 

holders in the exact order in which the cosine similarity is later calculated in the code. Lastly, the first 

batch HTML document vectors is fetched from the database and stored in the variable vectors 

(PYTHON 2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; pickle), (PYTHON 2.7.10 LIBRARY; zlib). 

The code then iterates through the HTML document vectors and creates cosine similarity products 

for every search term and co-occurrence group. For this, the individual vector is decompressed in 

line 98 and then the code iterates through the search term list, calling the respective vectors from 

the TFIDFworkingdict dictionary. For the calculation of the cosine, the cosine_similarity() 

function from the scikit-learn library is used. The results are added to the temporary cosinelist, 

which in turn is combined with the HTML document ID to the updatelist. All this happens in lines 

99 to 106 and then the updatelist is passed on, together with the blueprint SQL statement, to the 

UpdateHtmlUniquewithCosinelist() function that adds the cosine similarity results to the 

respective columns of the HTML documents table (PYTHON 2.7.10 LIBRARY; pickle), (PYTHON 2.7.10 

LIBRARY; zlib), (SCIKIT LEARN 0.14.1 LIBRARY; Pairwise metrics, Affinities and Kernels). 

 

12.3. Address Classification 
 

Classification happens in two steps because there are two problems to overcome. The first problem 

is how to best summarize the values for every class at every address. The second is to decide to 

which classes the address belongs according to the values. To illustrate the first problem further, 

there is Table 12.4 with some example values. 
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 Class 1 Class 2 class 3 

Website 1 8 0 1 

Website 2 7 1 0 

Website 3 9 0 2 

Website 4 6 0 1 

Website 5 5 10 2 

Website 6 3 10 3 

Website 7 5 9 0 

Website 8 10 0 0 

Website 9 9 0 0 

Website 10 7 2 2 

Mean 6.9 3.2 1.1 

Proposal 8.3 9.6 2.25 

Table 12.4 Classification problem number one 

 

Table 12.4 is a fictional example of Websites 1 to 10 that are all associated with the same address. 

There are 3 classes and the websites are rated between highly associated with the class (10) and not 

associated with the class (0). Now, the classes that the address is associated with need to be 

selected. The first approach would be to create the mean value for every class leading to an 

unsatisfactory result for class 2. The data shows that there are 3 websites that suggest a strong 

association with class 2, but because the other websites show no association, the mean value is 

relatively low. This can be a problem with the real data as well. It is possible that an address is 

associated with 60 websites, 50 point towards the restaurant class and 10 towards a shopping class. 

Maybe there are just more websites describing the restaurant than the store. But dismissing the 

shopping class would probably be an error because there are 10 other websites indicating this class. 

To overcome this problem, the code in Figure 12.9 is used implementing a simplified clustering 

algorithm. 
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062 def Breaks(valuelist, index): 
063     firstrun = True 
064     highlist = [] 
065     lowlist = [] 
066     newlist = [] 
067  
068     for item in valuelist: 
069         newlist.append(item[index]) 
070  
071     while newlist: 
072  
073         high = max(newlist) 
074         low = min(newlist) 
075  
076         if firstrun and len(newlist) == 1: 
077             highlist.append(high) 
078             newlist.remove(high) 
079             lowlist.append(low) 
080             firstrun = False 
081  
082         elif firstrun: 
083             highlist.append(high) 
084             newlist.remove(high) 
085             lowlist.append(low) 
086             newlist.remove(low) 
087             firstrun = False 
088  
089         elif high == low: 
090             if numpy.absolute(high-numpy.mean(highlist)) < numpy.absolute(high- 

numpy.mean(lowlist)): 
091                 highlist.append(high) 
092                 newlist.remove(high) 
093             else: 
094                 lowlist.append(high) 
095                 newlist.remove(high) 
096         else: 
097             if numpy.absolute(high-numpy.mean(highlist)) < numpy.absolute(high- 

numpy.mean(lowlist)): 
098                 highlist.append(high) 
099                 newlist.remove(high) 
100             else: 
101                 lowlist.append(high) 
102                 newlist.remove(high) 
103  
104             if numpy.absolute(low-numpy.mean(lowlist)) < numpy.absolute(low- 

numpy.mean(highlist)): 
105                 lowlist.append(low) 
106                 newlist.remove(low) 
107             else: 
108                 highlist.append(low) 
109                 newlist.remove(low) 
110  
111     return numpy.mean(highlist) 
 

Figure 12.9 Breaks code example 

 

The implementation is loosely based on clustering values that are clumped together by similarity. 

The advantage of one-dimensional data is that minimum and maximum are known. And that is 

where the algorithm starts. After presorting the list in lines 68 and 69, which has to do with the 

format returned from the database, minimum and maximum are fetched from newlist in line 73 

and 74 and saved to the variables high and low. If firstrun is True and newlist is only 1 long (i.e. 
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only one website is associated with the address), the special case in line 76 to 80 is invoked. This 

essentially does nothing but return the one value back in line 111. If newlist is longer though, then 

highlist and lowlist are appended with their first values high and low, lines 82 to 87, respectively. 

After this, firstrun is set to False. Both high and low are removed from newlist and the iteration 

begins again in lines 73 and 74 getting a new high and low, now the new highest and lowest value in 

the newlist. Both high and low have now been tested, whose mean value of highlist and lowlist is 

closer to their own value. They are then appended to the list that is more similar (closer) to them 

and removed from newlist. This process is repeated until no values are left in newlist. All of this 

happens in lines 96 to 109. One special case that can happen when, for example, only one value left 

in newlist is handled by the code in lines 89 to 95. In the end, the function returns the mean value 

of highlist (BAHRENBERG ET AL.; 2008; pp. 259 - 262), (NUMPY 1.8.1 LIBRARY).  

The code clusters the data series in two parts: one containing the low values and one containing the 

high values and in the end dismissing the low values and just returning the mean of the high values. 

The results when used with the data in Table 12.4 can be seen in the “proposal” row. Now the 

address gets high values in both class 1 and 2. A class that only contains low values will still return a 

low value as seen with class 3. But like in the example of class 2, if there are a few high values, a high 

overall class value is calculated (BAHRENBERG ET AL.; 2008; pp. 259 - 262), (NUMPY 1.8.1 LIBRARY). 

The resulting value distribution of those calculations for every class in Table 10.1 are shown in Figure 

12.10 a) - i). Every value distribution features the values of the co-Occurrence groups and the search 

term vectors. 
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b)  

c)  

d)  
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e)  

f)  

g)  
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h)  

i)  

Figure 12.10 a)-i) Value distribution for all classes at the addresses for co-occurrence groups and 

search terms (N= 6284) 

 

As can be seen in Figure 12.10 and was to be expected, all the co-occurrence groups deliver higher 

values over just the search terms. Now for these value distributions a threshold needs to be 

determined  

to decide at which value an address belongs to the class. Again, the same method as depicted in 

Figure 12.9 is used to cluster the data into two sets. But this time, not the mean but the lowest value 

of the highlist is of interest, as it should constitute said threshold. Afterwards, every address 

possessing a value in this class above the threshold is set in the database as belonging to the class. 

The value ranges of “Gaststätte” co-occurrence group, “Einkaufen” co-occurrence group and 

“Kultur” search term had very strong outliers. As a result, the method classified only a handful of 

addresses. Therefore, the outliers in those classes have been reduced to the highest non-outlier 

value. These are the changes made: 
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"Update Addressesunique set gaststätte_cooc = 0.186 where gaststätte_cooc > 

0.186"  

3 rows affected 

"Update Addressesunique set einkaufen_cooc = 0.322 where einkaufen_cooc > 

0.322"  

7 rows affected 

"Update Addressesunique set kultur_st = 0.094 where kultur_st > 0.094"  

1 row affected 

 

The results of the classification and the different categories can be seen on maps Map 12.1 a) – r) 
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a)  

b)  
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c)  

d)  
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e)  

f)  
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g)  

h)  
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i)  

j)  
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k)  

l)  
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m)  

n)  
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o)  

p)  
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q)  

r)  

Map 12.1 a) - r) Classification Results for every individual category and method 

 

Superficially, the classification outcome of many maps doesn’t look as expected, especially maps like 

e) because there are definitely not so many governmental buildings in Vienna. Another good 
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example of where the classification probably did not work is maps g) and h). There are most likely 

more places that are shopping-related in Vienna than those shown on the maps. On the other hand, 

maps like c), k) and i) could be more plausible. The comparison with the control group in the next 

chapter will clarify this. Because the noisy results a comparison with Map 10.1 makes little sense. 
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13. Mapping 
 

The first part of this chapter is about how to select a representative random sample of addresses 

and by what criteria they are mapped. The Second part compares the mapping and the machine 

classification to each other and draws some first conclusions. 

 

13.1. Selecting and Mapping a Control Group 
 

There are now existing 18 categories for each class two categories. One classification is by search 

term vector and another is by co-occurrence group vector. To represent each category adequately, 

the random selection for mapping includes at least 10 addresses from each category. In practice, this 

means that from the database, all addresses belonging to one category are retrieved and a subset of 

10 is selected with a programming function for random selection. This is repeated for all 18 

categories. With 8 double selections, this resulted in 176 unique addresses, which constitute the 

control group. Map 13.1 shows the spatial distribution of those 176 addresses (BAHRENBERG ET AL.; 

2010; pp. 19-23). 

 
Map 13.1 Randomly selected control group 
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Apart from creating a random sample, it is important to be as consistent as possible when mapping. 

The orientation for mapping the addresses is to map the functions that a place fulfills for most 

people, as described in the social geography. So if there is a shop, the function would be shopping 

and not working, even though there are people working there. This is because the number of people 

working is just a few in comparison to the amount people going there to shop. The same is true for 

other places like schools. Most people going there are students who are learning and not the 

teachers who are working. If there is more than one class present at an address, for example a café 

and a hotel, both are mapped. Lastly, because the classes (Wohnen, Arbeiten, Bildung, …) cannot 

accommodate all possibilities, the class “other” is added to the mapping catalogue. Corner buildings 

are mapped according to where the entrance to the building with the door number is. To ensure an 

unbiased mapping, all vector classifications from the control group were hidden during the mapping 

process (BAHRENBERG ET AL.; 2010; pp. 19-23), (KRUKER AND RAUH; 2005; pp.84-90), (MAIER ET AL.; 1977; 

pp. 100-157). 

 

13.2. Comparing the Control Group to Vector Classification 
 

With the control group mapped, it is now possible to make a comparison on the diagrams in Figure 

13.1 a)-i). The figure shows 3 values for every category. The value “Mapped and Identified” is the 

number of objects in the control group that were mapped as belonging to a class and identified by 

vector classification as belonging to the class. Value “Mapped” is the number of objects in the 

control group that, according to the mapping, belong to this class. Lastly, the Value “Identified” is 

the number of addresses in the control group that the vector classification identified as belonging to 

the class. There are a couple of key statics put on the figure as well. The First two precision and recall 

are common to evaluate information retrieval systems. Recall measures how many of the relevant 

documents were retrieved, in the case of the thesis how many of the addresses that where mapped 

as X where classified as X. Precision shows how many of the retrieved documents where relevant, in 

terms of the thesis this means correctly classified addresses compared to all classified addresses. The 

Values correspond to the data shown on the figure (MANNING ET AL; 2009; pp. 153-157).  

The formula for recall is: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑀𝑀𝑀𝑀
𝑀𝑀

 

MI (Mapped and Identified), M (Mapped) 
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The formula for precision is:  

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =
𝑀𝑀𝑀𝑀
𝑀𝑀

 

MI (Mapped and Identified), I (Identified) 

(MANNING ET AL; 2009; pp. 155) 

The last statistical value is the p-value. It shows how likely the null hypothesis is, i.e. that the 

correctly identified elements are identified simply by chance. The markup of every category is a 

finite population (N=176) with discrete values of which some belong to the class and others do not. 

This resembles the urn problem. The urn problem is an urn with N marbles, of which M are black and 

from it n marbles are drawn. It is then determined how likely it was that with n draws k number of 

black marbles are drawn. This is solved with a hypergeometric function the formula of which is: 

𝑖𝑖(𝑘𝑘) =
�𝑀𝑀𝑘𝑘 � × �𝑁𝑁 −𝑀𝑀

𝑝𝑝 − 𝑘𝑘 �

�𝑁𝑁𝑝𝑝�
 

N (Population Size), M (success states in population), n (size of sample), k (success states in sample) 

 

In the context of a category, N is the size of the control group, M is the number mapped objects in 

the control group, n is the number of objects identified by vector classification and k is the number 

of correctly mapped and identified objects. However, this only gives the odds of exactly drawing k 

elements for the p-value, although the possibility of drawing k or more elements is needed. To 

achieve this, the odds for all values 0 to k-1 are calculated, summed up and subtracted from 1. The 

resulting value is the p-value the probability that the correct classification was just by chance 

(BAHRENBERG ET AL.; 2010; pp. 128-129). 
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b)  

c)  

d)  
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e)  

f)  

g)  
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h)  

i)  

Figure 13.1 a)-i) Comparing control group to vector classification 

 

Here two factors are striking: the recall is low and the precision aswell. The low precision was to be 

expected with respect to the results displayed on Map 12.1 a)-r). Also interesting is the high 

variability of the p value within a class (see d) and g)) and between classes. Even though the vector 

classification does not work well enough to create a map of, for example, all hotels in Vienna, some 

vector classifications show, with a p ≤ 0.1, that they picked up an underlying structure. It is clear that 

there are big class to class differences on how well the vector classification works. It would also be 

interesting to see if there is also a connection between how many HTML documents are associated 

with an address and the classification performance. A value that should reflect the correctness is 

calculated for every address. If, for example, a cultural place is mapped in the control group and 

either the search term vector or the Co-occurrence Vector has also classified this place as a cultural 

place, then this is counted as correct for either the co-occurrence or the search term classification. 

7 49 25 
0

10
20
30
40
50
60
70
80
90

100

Einkaufen Search Term 

Mapped and Identified

Mapped

Identified

Recall:  0.14 
Precision:  0.28 
p-value: 0.58  

4 49 14 
0

10
20
30
40
50
60
70
80
90

100

Einkaufen Co-Occurrence 

Mapped and Identified

Mapped

Identified

Recall:  0.08 
Precision:  0.28  
p-value: 0.58 

7 27 31 
0

10
20
30
40
50
60
70
80
90

100

Kultur Search Term 

Mapped and Identified

Mapped

Identified

Recall:  0.26 
Precision:  0.23  
p-value: 0.17 

12 27 40 
0

10
20
30
40
50
60
70
80
90

100

Kultur Co-Occurrence 

Mapped and Identified

Mapped

Identified

Recall:  0.44 
Precision:  0.3  
p-value:  0.005   

126 
 



Mapping 

But if one or both of the vector classifications has not mapped this place, this is counted as incorrect 

for the respective group. In the end, the correct count is divided by the sum of the correct and 

incorrect counts. This yields a value between 1 and 0. 1 means all classifications are correct and 0 

means none are correct. The method excludes false positives. The value is then correlated with the 

original count and complete count (see chapters 7.4. and 8.2.). The result can be seen in Figure 13.2 

a)-b).  

 

a)    

b)   

Figure 13.2 a),b) Correlation between original count, complete count and vector classification 

 

All four scatter plots and r2 values in Figure 13.2 clearly show that there is no correlation between 

how many documents are associated with a website and how well the classification worked 

(BAHRENBERG ET AL.; 2010; pp. 183-191). 
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 Search Term 

Vector 

Co-Occurrence Group 

Vector 

Mean p 0.34 0.32 

Mean Precision 0.25 0.246 

Mean Recall 0.31 0.37 

Addresses with at least 1 correct 

Classification 

50 62 

Mean Correctness 0.19 0.25 

Table 13.1 Search term vector co-occurrence group vector fitness comparison 

A comparison between search term vectors and co-occurrence group vectors can be seen in Table 

13.1. It summarizes the values of this subchapter. Overall, the co-occurrence group classification 

performs better than the search term classification. Both don’t show good mean p values, but the 

variability between the different classes is very high. The mean precison is slightly in favor of the 

search term method, but only by 0.04. In particular, this point is interesting because the concern 

with the co-occurrence groups was that they would create more noise. The co-occurrence groups 

also produce more addresses with at least 1 correct classification and have a slightly higher mean 

correctness. 

The others category was used 92 times because something at an address could not fit within one of 

the 9 classes. Mostly as predicted it was expected in Chapter 10.2. services could not be classified. 

Subjectively a high proportion of tertiary and quaternary services like doctors, attorneys and, 

engineers have been mapped. 

Finally, a short paragraph about the quality of the address data set, even though it is no longer a 

valid random sample because the addresses have been filtered by being matched to HTML 

documents. Of the 176 mapped addresses, only two were wrong. One did not exist, but if it had 

existed, the geo-coordinates would have been correct. The address in question is Daffingerstraße 1. 

On the whole side of Daffingerstraße where number 1 would have been, there was no entrance 

door. Other web map applications point to the same coordinates, so maybe it is an address that 

exists on paper but not in reality. The second error was Freyung 4, an address that exists, but had 

the wrong coordinates. Even with this no longer representative dataset, the quality of the address 

data set seemed to be very good. 

  

128 
 



Conclusion 

14. Conclusion 
 

For the conclusion, the three research questions formulated in the Introduction need to be 

examined.  

4. How can unstructured information be retrieved and made usable? 

5. How can this information be linked to places? 

6. How can context be derived from this now structured and geotagged information? 

This thesis shows ways and methods of how to engage and solve the first two questions. There are 

extensive explanations and instructions in chapters 3, 5, and 6 about how to transfer a selective 

subset of raw crawled data from an amazon s3 bucket into a database and how to processes this 

data to make it suitable for analyses. Chapter 4 shows how to create an addresses data set that is 

useable for geocoding and this dataset is used on the HTML document dataset in chapter 7. Finally, 

the data associated with an address is expanded by also including all documents that are linked to a 

document that is joined with this address in chapter 8. With this, the first two questions could 

sufficiently be answered.  

To derive context from this processed information, the vector space model was selected. This 

method is used in the field of information retrieval for document classification and retrieval. The 

concept was to create a classifier with which the addresses could be classified. The addresses should 

be assigned to one or more of the classes developed in chapter 12. The classes are derived from the 

“Daseinsgrundfunktionen” and other concepts related to space use, found in functional urban 

geography. For each of the 9 classes, two classifiers where created- one just relying on one term for 

the whole class, in the context of this work the so-called “search term classifier,” and the other 

based on the query expansion method. For this, a co-occurrence group for each of the 9 classes is 

created from a part of speech tagged Wikipedia and this group is used as the classifier. The 

classification was conducted in chapter 12 and a control group of 176 addresses was mapped to 

evaluate the machine classification.  

The results of this evaluation are mixed. This was to be expected because already Map 12.1 a) - r) 

did not match the subjective expectations. When viewed individually, the results from class to class 

vary a lot (see Figure 13.1 a)-i)). The two worst performing classes are “Arbeiten,” “Wohnen” and 

“Einkaufen”.  

The class “Arbeiten” probably performed badly because it is wide term that, when stemmed, just 

gets wider. In German, it can mean labor, work in physics, a school assessment, a work of art and 

academic writing. Also, the co-occurrence group picked up the German term for lawyer quite a lot, 

probably skewing the classification (many places with law offices where mapped). Lastly, in a west 
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European inner city environment, places that are devoted to production and labor, like, for example, 

factories, no longer exist.  

The classification for “Wohnen” mostly performed badly because a lot of buildings had the function 

living, but the classification didn’t pick it up. The probable reason for not being picked up is that the 

function living is not something that gets advertised on websites. The only exception for this is if the 

flat or house is for rent or for sale. Except for that, “Wohnen” has the highest precision. 

The class “Einkaufen” in the group of bad performing classes is a bit surprising. This is because the 

subjective expectation was that there is a motivation to communicate that shopping is possible at a 

place. Already in the classification process there were problems leading to the elimination of strong 

outlier values. But that did not help much, still only a few places were classified as belonging to the 

class “Einkaufen”. 

It is likely that the wrong terms were chosen for the classes “Kreditinstitut” and “Gaststätte.” Instead 

of “Kreditinstitut”, the term “Bank” could have been a better choice. Even though it overlaps in 

German with a word for siting furniture, it is probably much more common. The attempt to include 

bar, café, and restaurant with “Gaststätte” in one term is probably the reason why this did not work. 

Instead, using just one of the three could have yielded better results. 

The classes “Kultur,” “Bildung” and “Dienstgebäude” worked comparatively well, with either the 

search term or the co-occurrence group classification. Noticeable about all three is that they are not 

“commercial” classes within limits, entrance to a Museum or a theater is mostly not free and 

education can be “bought” at some places. The classes “Kultur” and “Bildung” also span a multitude 

of different places that can be assigned to either class. For both classes, also the co-occurrence 

group classification worked better than the search term classification.  

The distinction between the two classification methods for “Dienstgebäude” is not so clear. The class 

has results that would have been naively expected for the co-occurrence group and search term 

classification. The search term classification results in higher precision, but also a reduced recall. 

Comparatively, the co-occurrence group classification delivers a higher recall and a lower precision. 

Overall, the co-occurrence group classification as discussed at the end of chapter 13 performs 

noticeably better than the search term classification. It has a higher recall. It classifies 62 of 176 

addresses with at least one correct result. It has a higher mean correctness of 0.25 to 0.19 and a 

nearly equal precision. Also the mean p-value is lower and, therefore, better for the co-occurrence 

group classification. 

A problem with the evaluation of the results has so far only been addressed within the context of 

the class “Wohnen”. The problem with mapping places that have no website or other form of 

Internet presence is that any classification attempt with this method is impossible. 
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Lastly, there is the class of “Hotel” that, by a wide margin, performs the best in the recall domain. It 

is a narrow term describing a place in common language and about a class that subjectively relies on 

a visible web presence. But this is also the term that most clearly shows why the 3rd research 

question cannot be answered by this thesis. The recall is high but the precision is low. Since the 

recall does not perfectly identify or nearly identify all mapped objects correctly, it can be assumed 

that the only strategy in context of this thesis is to have higher thresholds for classification. But to 

reduce the rate of false positives could also reduce the number of correctly mapped places. To 

substantiate this point, Figure 14.1 shows the search term classification value and the co-occurrence 

group classification value of the correctly identified addresses with the value range for both as a 

backdrop. The values are distributed over the whole class range. 

 

 
Figure 14.1 Correctly Classified Hotel addresses compared to classification value range 

 

The tool developed in the second part of this thesis is too blunt for classification work. Nevertheless, 

it produces interesting results because what the p-values from the classification show is that there is 

a connection between the information associated with a place and what actually is at this place. The 

tool works well enough to detect that, but is too blunt to generate any useable information from it. 

In conclusion, this thesis creates an entry point into how to aggregate spatial information from 

unordered and non-georeferenced web-based information. However, the tools to analyze this 

information need more refinement. 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800

Classified as Hotel Value Range 

Search Term

Co-Occurrence group

Co-Occurrence group Correct

Search Term Correct

Co-occurence  Threshold: 0.21 
Search Term Threshold: 0.023 

131 
 



References 

15. References 

15.1. Scientific References 
 

Bahrenberg, G.; Giese, E.; Mevenkamp, N.; Nipper, J. (2008): Statistische Methoden in der 

Geographie. Band2: Multivariate Statistik, 3. Auflage;  Gebr. Brontraeger Verlagsbuchhandlung; 

Berlin, Stuttgart 

 

Bahrenberg, G.; Giese, E.; Mevenkamp, N.; Nipper, J. (2010): Statistische Methoden in der 

Geographie. Band1: Univariate und bivariate Statistik, 5. Auflage;  Gebr. Brontraeger 

Verlagsbuchhandlung; Berlin, Stuttgart 

 

Bayer, R.; Unterauer, K. (1977); Prefix B-Trees; In: ACM Transactions on Database Systems, Vol. 2, 

No. 1. March 1977, pp. 11-26 

 

Berners-Lee, T.; Fielding, R.; Masinter, L. (2005); Uniform Resource Identifier (URI): Generic Syntax; 

Network Working Group 

 

Böhner, J. (1990); Statistik für Geographen oder: „Jetzt rechne ich selbst“ 

 

Bollier, D.; Firestone, C., M. (2010); The promise and peril of big data; Washington, DC, USA: Aspen 

Institute, Communications and Society Program. 

 

Bray, T.; Paoli, J.; Sperberg-McQueen, C.; Maler, E.; Yergeau, F. (2008); "Character and Entity 

References"; http://www.w3.org/TR/REC-xml/#sec-references; Citied: 03.07.2015 

 

Brill, E. (1992); A Simple Rule-Based Part of Speech Tagger; In: HLT '91 Proceedings of the workshop 

on Speech and Natural Language; pp. 112-116; Association for Computational Linguistics; 

Stroudsburg 

 

Brin, S.; Page, L.(1998); The Anatomy of a Large-Scale Hypertextual Web Search Engine; Proc. 

Seventh World Wide Web Conf. (WWW7); International World Wide Web Conference Committee 

(IW3C2), 1998, pp. 107-117 

 

132 
 



References 

Crampton, J. W.; Graham, M.; Poorthuis, A.; Shelton, T.; Stephens, M.; Wilson, M. W.; Zook, M. 

(2012); Beyond the Geotag. Deconstructing Big Data and Leveraging the Potential of the Geoweb; 

Lexington, KY: Department of Geography, University of Kentucky. 

 

Cooley, R; Mobasher, B.; Srivastava, J. (1997); Web mining: Information and pattern discovery on the 

world wide web; In: Tools with Artificial Intelligence, 1997. Proceedings., Ninth IEEE International 

Conference on, pp. 558-567; IEEE. 

 

 

Fassman, H.; Hatz, G. (2002); Wien Stadtgeographische Exkursion; im Autrag des Ortsausschusses 

des 28. Deutschen Schulgeographentages (Wien 2002); Ed. Hölzel GmbH; Wien 

 

Haklay, M. (2010); How good is volunteered geographical information? A comparative study of 

OpenStreetMap and Ordnance Survey datasets; In: Environment and planning B: Planning & design, 

vol. 37, pp. 682-703 

 

Heineberg, H.; Kraas, F.; Krajewski, C. (2014); Stadtgeographie 4. Auflage; Ferdinand Schöningh, UTB 

 

Ito, M.; Nakayama, K.; Hara, T.; Nishio, S. (2008); Association thesaurus construction methods based 

on link co-occurrence analysis for wikipedia. In: Proceedings of the 17th ACM conference on 

Information and knowledge management, pp. 817-826; ACM 

 

Kazuhiro, M.; El-Sayed, A.; Masao F.; Kazuhiko, T.; Masaki O.; Jun-ichi A. (2003); Word classification 

and hierarchy using co-occurrence word information; In: Information Processing & Management, 

2003, Vol. 40, Issue 6, pp. 957-972 

 

Kruker, V., M.; Rauh, J. (2005); Arbeitsmethoden der Humangeographie; Wiss. Buchges.; Darmstadt 

 

Lund, K.; Burgess, C. (1996); Producing high-dimensional semantic spaces from lexical co-occurrence; 

In: Behavior Research Methods, Instruments, & Computers, Vol. 28, Issue 2, pp. 203-208 

 

Maier, J.; Paesler, R.; Ruppert, K.; Schaffer, F. (1977); Sozialgeographie; Das Geographische Seminar ; 

Westermann; Braunschweig 

 

133 
 



References 

Manning, C., D.; Schütze, H. (1999); Foundations of Statistical Natural Language Processing; The MIT 

Press, Massachusettes, London, England 

 

Manning, C., D.; Raghavan, P.; Schütze, H. (2009); An Introduction to Information Retrieval; 

Cambridge; Cambridge University Press 

 

Nayak, R.; Witt, R.; Tonev, A. (2002); Data Mining and XML documents; In: Proceedings International 

Conference on Internet Computing, IC'2002 3, pp. 660-666; Las Vegas, Nevada  

 

Neis, P.; Zipf, A. (2012) Analyzing the Contributor Activity of a Volunteered Geographic Information 

Project — The Case of OpenStreetMap In: ISPRS International Journal of Geo-Information, vol. 1, pp. 

146-165 

 

Pataki, M.; Vajna, M.; Marosi, A. (2012); Wikipedia as Text; In: Ercim News - Special theme: Big Data. 

2012, Vols. 89; pp. 48-49 

 

Pladino, S.; Bojic I.; Sobolevsky, S.; Ratti, C.; González, M. C. (2015); Urban magnetism through the 

lens of geo-tagged photography; In: EPJ Data Science 4(1), pp. 1-17 

 

Luo, Q.; Chen, E.; Xiong, H. (2011); A semantic term weighting scheme for text categorization; In: 

Expert Systems with Applications, vol. 38, issue 10, pp. 12708-12716 

 

Robertson, S. (2013); Common Crawl URL Index; https://github.com/trivio/common_crawl_index 

Citied: 01.07.2015 

 

Ruppert, .K; Schaffer, F. (1969) Zur Konzeption der Sozialgeographie; In: Geographische Rundschau, 

vol. 21, Issue 6, pp. 205-214. 

 

Russel, A., R. (2014): Mining the Social Web (second edition); O’Reilly Media Inc.; Beijing, Cambridge, 

Farnham, Köln, Sebastopol, Tokyo 

 

Salton, G.; Wong, A.; Yang, C., S. (1975) A Vector Space Model for Automatic Indexing; In: 

Communications of the ACM, Vol. 18, Issue 11, pp. 613-620 

 

134 
 



References 

Salton, G. (1991) Developments in Automatic Text Retrieval; In: Science, Vol. 253, pp 974-980 

 

Santorini, B. (1990); Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd Revision, 

2nd printing); 

 

Schneider, G.; Volk, M. (1998); Adding manual constraints and lexical look-up to a brill-tagger for 

German; Zurich Open Repository and Archive; University of Zurich; Zurich 

 

Shelton, T.; Poorthuis, A.; Zook, M. (2015); Social media and the city: Rethinking urban socio-spatial 

inequality using user-generated geographic information; Landscape and Urban Planning 

 

Spiegler, S. (2013); Statistics of the Common Crawl Corpus 2012 

 

Tan, A., H. (1999); Text mining: The state of the art and the challenges; In: Proceedings of the PAKDD 

1999 Workshop on Knowledge Disocovery from Advanced Databases , vol. 8, pp. 65-71 

 

Teske, D. (2014); Geocoder Accuracy Ranking; In: Process Design for Natural Scientists, CCIS 500, pp. 

161-174; Springer-Verlag; Berlin, Heidelberg 

 

Wang, P.; Domeniconi, C. (2008); Building semantic kernels for text classification using Wikipedia; In: 

Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data 

mining pp. 713-721; ACM 

 

Weichert, P. (2008); Enticklungslinien der Sozialgeographie von Hans Bobek bis Benno Werlen; Franz 

Steiner Verlag, Stuttgart 

 

Zaki, M., J.; Meira Jr, W. (2014); Data mining and analysis: fundamental concepts and algorithms. 

Cambridge University Press. 

 

15.2. Programming Library References and Technical Documentations 
 

Beautiful Soup 4.3.2 libary; http://www.crummy.com/software/BeautifulSoup/bs4/doc/ 

 

 

135 
 



References 

NLTK 3.0 library;  

stem; http://www.nltk.org/api/nltk.stem.html#module-nltk.stem 

tokenize; http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize 

 

NumPy 1.8.1 library; http://docs.scipy.org/doc/numpy-1.8.1/reference/ 

 

Pattern library; pattern.de; http://www.clips.ua.ac.be/pages/pattern-de 

 

PostGIS 2.1.3; documentation; http://postgis.net/docs/manual-2.1/ 

 

PostgreSQL 9.3.9; documentation; http://www.postgresql.org/docs/9.3/static/ 

 

Psycopg 2.5.3 libary; http://initd.org/psycopg/docs/ 

 

Python 2.7.10 library;  

 Built-in types; https://docs.python.org/2/library/stdtypes.html 

 I/O; https://docs.python.org/2/library/io.html 

gzip; https://docs.python.org/2/library/gzip.html 

 multiprocessing; https://docs.python.org/2/library/multiprocessing.html 

operating system; https://docs.python.org/2/library/os.html 

pickle; https://docs.python.org/2/library/pickle.html 

regular expression operations; https://docs.python.org/2/library/re.html 

xml.sax; https://docs.python.org/2/library/xml.sax.html 

string; https://docs.python.org/2/library/string.html 

threading; https://docs.python.org/2/library/threading.html 

Unicode; https://docs.python.org/2/howto/unicode.html 

urlparse; https://docs.python.org/2/library/urlparse.html 

zlib; https://docs.python.org/2/library/zlib.html 

 

Scikit learn 0.14.1 library; Pairwise metrics, Affinities and Kernels; 

http://scikit-learn.org/stable/modules/metrics.html 

 

Unicode 7.0.0; http://www.unicode.org/versions/Unicode7.0.0/ 

 

136 
 



References 

15.3. Websites 
 

Archive.org; https://archive.org/web/researcher/ArcFileFormat.php; Cited: 15.06.2015 

 

Cloudmade; http://downloads.cloudmade.com; Data Downloaded 01.06.2014 

 

Common Crawl; http://commoncrawl.org/the-data/get-started/ Cited: 15.6.02015 

 

Common Crawl atlassian; 

https://commoncrawl.atlassian.net/wiki/display/CRWL/About+the+Data+Set Cited: 15.06.2015 

 

Common Crawl Blog; http://blog.commoncrawl.org;  

Community questions; http://blog.commoncrawl.org/2011/11/answers-to-recent-

community-questions/; Cited: 15.06.2015 

Crawl data; http://blog.commoncrawl.org/2012/07/2012-crawl-data-now-available/; Cited: 

15.06.2015 

URL Index; http://blog.commoncrawl.org/2013/01/common-crawl-url-index/; Cited: 

15.06.2015 

 

Dudenkorpus; 

http://www.duden.de/sprachwissen/sprachratgeber/die-laengsten-woerter-im-dudenkorpus; Citied: 

03.07.2015 

 

nic.at; https://www.nict.at; 

.at Report 2012 

https://www.nic.at/fileadmin/www.nic.at/documents/at-report/at-report_2012-

1_EN.pdf; Cited:  16.06.2015 

Registration Guidelines 

https://www.nic.at/en/service/legal-information/registration-guidelines/#c4341 Cited:  

16.06.2015 

 

Openstreetmap.org; https://www.openstreetmap.org; Cited 25.06.2015 

 

 

137 
 



References 

OpenStreetMap Wiki; https://wiki.openstreetmap.org/wiki/Main_Page; 

 OSM XML https://wiki.openstreetmap.org/wiki/OSM_XML Cited 25.06.2015 

 Addresses https://wiki.openstreetmap.org/wiki/Addresses 

 

W3Techs; http://w3techs.com/technologies/history_overview/top_level_domain/ms/y Cited: 

15.6.2015 

 

 

Ich habe mich bemüht, sämtliche Inhaber der Bildrechte ausfindig zu machen und ihre Zustimmung 

zur Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheberrechtsverletzung 

bekannt werden, ersuche ich um Meldung bei mir. 

 

138 
 



Annex 

Annex 

Source Code 

Threading Example 
 

001 import remote_copy_external,  
002 import threading 
003 import time 
004 import pickle 
005 import os 
006  
007  
008 class myThread (threading.Thread): 
009     def __init__(self, urlstump, threadid): 
010         threading.Thread.__init__(self) 
011         self.urlstump = urlstump 
012         self.id = threadid 
013     def run(self): 
014         threadLimiter.acquire() 
015         print 'checking for ' + str(self.urlstump) 
016         current_urllist.append(self.urlstump) 
017         remote_copy_external.external('AWS-PUBLIC-KEY', 
018         'AWS-PRIVATE-KEY','tldat','Data2//'+str(self.urlstump), 
019         self.urlstump,parallelconnections,True) 
020          
021         print "Exit Thread: %d of %d" %(self.id, NummberIDs) 
022         urllist.remove(self.urlstump) 
023         current_urllist.remove(self.urlstump) 
024         threadLimiter.release() 
025  
026 def iterate_ipickle(ipickle): 
027     if ipickle < 10: 
028         return ipickle +1 
029     else: 
030         return 0 
031  
032 duds                = len(threading.enumerate()) 
033 threadnumber        = 20 
034 parallelconnections = 50 
035 threadLimiter       = threading.BoundedSemaphore(threadnumber) 
036 print 'starting threads %s'%(duds) 
037  
038 current_urllist     = [] 
039 running             = True 
040  
041 NummberIDs          = len(urllist)   
042 ID                  = 1 
043 Passnumber          = 1 
044 threadlist          = list(urllist) 
045 ipickle             = 0                                          
046  
047 while running:                                                                                               
048     print '' 
049     print 'running threads %s'%(len(threading.enumerate())) 
050     urllist_pickle = list(urllist)                                                       
051     ipickle = iterate_ipickle(ipickle) 
052     picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))        
053      
054     if duds+threadnumber > len(threading.enumerate()):           
055             if threadlist:                                       
056                 element = threadlist[0]                          
057                 threadlist.remove(element) 
058                 myThread(element,ID).start()                     
059                 ID += 1 
060                 continue                                         
061             if not threadlist:                                   
062                 pass 
063      
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064     elif threadlist:                                              
065         ipickle = iterate_ipickle(ipickle) 
066         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle)) 
067         time.sleep(1)                                            
068         print current_urllist    
069         continue                                                 
070          
071     elif not threadlist:                                         
072         ipickle = iterate_ipickle(ipickle) 
073         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle)) 
074         pass                                                     
075      
076     while duds < len(threading.enumerate()):                             
077         time.sleep(10)                                           
078                                  
079         print '' 
080         print 'Current Passnumber: %d'%(Passnumber)              
081         print current_urllist                                    
082         urllist_pickle = list(urllist)                           
083         ipickle = iterate_ipickle(ipickle) 
084         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))                            
085         pass 
086      
087     if not urllist:                                               
088         running = False                                          
089         print '' 
090         print 'Script did run Passnumber %d'%(Passnumber) 
091         pass 
092     else:                                                        
093         threadlist      = list(urllist)                          
094         urllist_pickle = list(urllist)                           
095         ipickle = iterate_ipickle(ipickle) 
096         picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle)) 
097         print '' 
098         print 'Script did run Passnumber %d'%(Passnumber) 
099         Passnumber =+ 1 
 

DBconnector 

 
001 import psycopg2 
002  
003  
004 def DBConnect(): 
005  
006     conn    = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres 
password=########") 
007     cur     = conn.cursor() 
008     return conn,cur 
009  
010  
011 def CreateTable(): 
012  
013     conn,cur = DBConnect() 
014     cur.execute("CREATE TABLE IF NOT EXISTS Addresses (id serial PRIMARY KEY,geom 
geometry,street text, Street_number text, pcode integer);") 
015     conn.commit() 
016     conn.close() 
017  
018  
019 def WriteToTableMany(Values): 
020  
021     conn,cur = DBConnect() 
022     cur.executemany("INSERT INTO Addresses (geom, street, Street_number, pcode, AddDate) 
VALUES (%s, %s, %s, %s, 24022015)",(Values)) 
023     conn.commit() 
024     conn.close() 
025  
026 def addcolumn(): 
027     conn,cur = DBConnect() 
028  
029     cur.execute( """ 
030                     DO $$ 
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031                     BEGIN 
032                         BEGIN 
033                             ALTER TABLE Addresses ADD COLUMN AddDate INT; 
034                         EXCEPTION 
035                             WHEN duplicate_column THEN RAISE NOTICE 'column Addresses 
already exists in AddDate.'; 
036                         END; 
037                     END; 
038                     $$ 
039                  """    
040                     ) 
041     conn.commit() 
042     conn.close() 
043  
044 def finddoubles(addresslist): 
045     newlist = [] 
046     conn, cur = DBConnect() 
047     for address in addresslist: 
048         cur.execute('SELECT ID FROM Addresses where street = %s and Street_number = %s and 
pcode = %s',(address[1],address[2],address[3],)) 
049         data = cur.fetchall() 
050         if not data: 
051             newlist.append(address) 
052  
053     WriteToTableMany(newlist) 
054     return newlist 
055  
056 def ReadFromTable(): 
057  
058     conn,cur = DBConnect() 
059     cur.execute("SELECT * FROM Addresses;") 
060     data = list(cur.fetchall()) 
061     conn.close() 
062  
063     return data 
064  
065 def DeleteFromTable(): 
066  
067     conn,cur = DBConnect() 
068     cur.execute("DELETE * FROM Addresses;") 
069     conn.commit() 
070     conn.close() 
071  
072  
073 def DropTable(): 
074     conn,cur = DBConnect() 
075     cur.execute("DROP TABLE Addresses") 
076     conn.commit() 
077     conn.close() 
 

OSM Parser 

 
001 # -*- coding: utf-8 -*- 
002 import sys, numpy, DBconnector 
003 from xml.sax import make_parser, handler 
004  
005 endaddress = '0' 
006 startaddress = '0' 
007 start = '0' 
008 end = '0' 
009 addresslist = [] 
010  
011 class startendfinder(handler.ContentHandler): 
012     def __init__(self): 
013         self.address = ['lat_lon', 'pcode', 'street', 'number'] 
014          
015         self.plz = False 
016         self.street = False 
017         self.number = False 
018         self.nodemode = False 
019         self.waymode = False 
020         self.relationmode = False 
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021         self.nodedict = {} 
022         self.wayid = False 
023         self.relationid = False 
024         self.relationdict = {} 
025         self.waydict = {} 
026         self.ndlist = [] 
027         self.memberlist = [] 
028         self.latlist = [] 
029         self.lonlist = [] 
030  
031     def startElement(self, name, attrs): 
032         if name in ('node'): 
033             self.address[0] = 'POINT(%s %s)' % (attrs.get('lon'), attrs.get('lat')) 
034             self.nodedict[int(attrs.get('id'))] = (float(attrs.get('lat')), 
float(attrs.get('lon'))) 
035              
036             self.nodemode = True 
037  
038         elif name in ('way'): 
039             self.wayid = int(attrs.get('id')) 
040             self.waymode = True 
041  
042         elif name in ('relation'): 
043             self.relationid = int(attrs.get('id')) 
044             self.relationmode = True 
045  
046         if self.relationmode == True: 
047             if name == 'member': 
048                 self.memberlist.append((int(attrs.get('ref')),attrs.get('type'))) 
049             if name == 'tag': 
050                 k, v = (attrs.get('k'), attrs.get('v')) 
051  
052                 if k == 'addr:street': 
053                     self.address[1] = unicode(v) 
054                     self.street = True 
055  
056                 if k == 'addr:housenumber': 
057                     self.address[2] = unicode(v) 
058                     self.number = True 
059  
060                 if k == 'addr:postcode': 
061                     try: 
062                         if int(v) <= 1099: 
063                             self.address[3] = int(v) 
064                             self.plz = True 
065                         elif int(v) >= 1200 and int(v) <= 1209: 
066                             self.address[3] = int(v) 
067                             self.plz = True 
068                     except: 
069                         pass 
070  
071         if self.waymode == True: 
072             if name == 'nd': 
073                 self.ndlist.append(int(attrs.get('ref'))) 
074             if name == 'tag': 
075                 k, v = (attrs.get('k'), attrs.get('v')) 
076  
077                 if k == 'addr:street': 
078                     self.address[1] = unicode(v) 
079                     self.street = True 
080  
081                 if k == 'addr:housenumber': 
082                     self.address[2] = unicode(v) 
083                     self.number = True 
084  
085                 if k == 'addr:postcode': 
086                     try: 
087                         if int(v) <= 1099: 
088                             self.address[3] = int(v) 
089                             self.plz = True 
090                         elif int(v) >= 1200 and int(v) <= 1209: 
091                             self.address[3] = int(v) 
092                             self.plz = True 
093                     except: 
094                         pass 
095  
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096         if self.nodemode == True: 
097             if name == 'tag': 
098                 k, v = (attrs.get('k'), attrs.get('v')) 
099  
100                 if k == 'addr:street': 
101                     self.address[1] = unicode(v) 
102                     self.street = True 
103  
104                 if k == 'addr:housenumber': 
105                     self.address[2] = unicode(v) 
106                     self.number = True 
107  
108                 if k == 'addr:postcode': 
109                     try: 
110                         if int(v) <= 1099: 
111                             self.address[3] = int(v) 
112                             self.plz = True 
113                         elif int(v) >= 1200 and int(v) <= 1209: 
114                             self.address[3] = int(v) 
115                             self.plz = True 
116                     except: 
117                         pass 
118  
119     def endElement(self, name): 
120         if name in ('node'): 
121             if self.plz is True and self.street is True and self.number is True: 
122                 addresslist.append(tuple(self.address)) 
123  
124             self.nodemode = False 
125             self.plz = False 
126             self.street = False 
127             self.number = False 
128             self.address = ['lat_lon', 'pcode', 'street', 'number'] 
129  
130         if name in ('way'): 
131             for nd in self.ndlist: 
132                 self.latlon = self.nodedict[nd] 
133                 self.latlist.append(self.latlon[0]) 
134                 self.lonlist.append(self.latlon[1]) 
135  
136             self.waydict[self.wayid] = (numpy.mean(self.latlist)), 
numpy.mean(self.lonlist)) 
137  
138             if self.plz is True and self.street is True and self.number is True: 
139                 self.address[0] = 'POINT(%s %s)' % 
(numpy.mean(self.lonlist),numpy.mean(self.latlist)) 
140                 addresslist.append(tuple(self.address)) 
141  
142             self.latlist = [] 
143             self.lonlist = [] 
144             self.waymode = False 
145             self.plz = False 
146             self.street = False 
147             self.number = False 
148             self.address = ['lat_lon', 'pcode', 'street', 'number'] 
149             self.ndlist = [] 
150  
151         if name in ('relation'): 
152             for member in self.memberlist: 
153  
154                 if member[1] == 'node': 
155                     self.latlist.append(self.nodedict[member[0]][0]) 
156                     self.lonlist.append(self.nodedict[member[0]][1]) 
157                 elif member[1] == 'way': 
158                     self.latlist.append(self.waydict[member[0]][0]) 
159                     self.lonlist.append(self.waydict[member[0]][1]) 
160                 elif member[1] == 'relation': 
161                     self.latlist.append(self.relationdict[member[0]][0]) 
162                     self.lonlist.append(self.relationdict[member[0]][1]) 
163  
164                 self.relationdict[self.relationid] = (numpy.mean(self.latlist), 
numpy.mean(self.lonlist)) 
165  
166                 if self.plz is True and self.street is True and self.number is True: 
167                     self.address[0] = 'POINT(%s %s)' % (numpy.mean(self.lonlist), 
numpy.mean(self.latlist)) 
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168                     addresslist.append(tuple(self.address)) 
169  
170             self.latlist = [] 
171             self.lonlist = [] 
172             self.waymode = False 
173             self.plz = False 
174             self.street = False 
175             self.number = False 
176             self.address = ['lat_lon', 'pcode', 'street', 'number'] 
177             self.memberlist = [] 
178  
179  
180 if __name__ == '__main__': 
181     parser = make_parser() 
182     parser.setContentHandler(startendfinder()) 
183     parser.parse('./vienna.osm') 
184  
185 
186     DBconnector.CreateTable() 
187     DBconnector.WriteToTableMany(addresslist) 
188  
 

Disassemble HTML 
 

001 import psycopg2 
002 import gzip 
003 from bs4 import UnicodeDammit 
004 import os 
005 import time 
006  
007  
008  
009  
010  
011  
012 def DBConnect(): 
013     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=########") 
014     cur = conn.cursor() 
015     return conn, cur 
016  
017  
018 def CreateTable(): 
019     conn, cur = DBConnect() 
020     cur.execute("CREATE TABLE IF NOT EXISTS html (id serial PRIMARY KEY, url TEXT, 
html_file text);") 
021     conn.commit() 
022     conn.close() 
023  
024      
025 def WriteManyToTable(Values): 
026     conn, cur = DBConnect() 
027     args_str = ','.join(cur.mogrify("(%s,%s)", x) for x in Values) 
028     cur.execute("INSERT INTO html (url, html_file) VALUES " + args_str) 
029     conn.commit() 
030     conn.close() 
031  
032  
033 def ReadFromTable(): 
034     conn, cur = DBConnect() 
035     cur.execute("SELECT * FROM html;") 
036     lines = cur.fetchall() 
037     conn.close() 
038     return lines 
039  
040  
041 def Database_export(file): 
042     start1 = time.time() 
043     i = '' 
044     tup_i = () 
045     url = '' 
046     html_written = 0 
047     mode = False 
048     for line in file.readlines(): 
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049         splitline = line.split(' ') 
050         try: 
051             if splitline[0][:7] == 'http://' and splitline[3] == 'text/html' and 
len(splitline) == 5: 
052  
053                 if len(i) > 0: 
054                     tup_i = tup_i + ((url, i),) 
055                     url = '' 
056                     i = '' 
057  
058                 url = splitline[0] 
059                 mode = True 
060  
061                 if len(tup_i) >= 100: 
062                     print('empty tup_i') 
063                     try: 
064                         WriteManyToTable(tup_i) 
065                     except: 
066                         pass 
067                     tup_i = () 
068                     print ("html files written to DB %s" % html_written) 
069  
070                 html_written += 1 
071  
072             elif splitline[0][:7] == 'http://' and splitline[3] != 'text/html' and 
len(splitline) == 5: 
073  
074                 if len(i) > 0: 
075                     tup_i = tup_i + ((url, i),) 
076                     url = '' 
077                     i = '' 
078  
079                 mode = False 
080  
081                 if len(tup_i) >= 100: 
082                     print('empty tup_i') 
083                     try: 
084                         WriteManyToTable(tup_i) 
085                     except: 
086                         pass                                                                                             
087                     tup_i = () 
088                     print ("html files written to DB %s" % html_written) 
089         except: 
090             pass 
091  
092         if mode == True: 
093             try: 
094                 i += unicode(line, "utf-8") 
095             except: 
096                 #i += UnicodeDammit(line).unicode_markup  # Benoetigt Extrem Viele 
resourcen 
097                 pass 
098  
099     if len(i) > 0: 
100         tup_i = tup_i + ((url, i),) 
101  
102     try: 
103         WriteManyToTable(tup_i) 
104     except: 
105         pass 
106     html_written += len(tup_i) 
107     print('parsing %s took %s Minutes \n' % (file, (time.time() - start1) / 60)) 
108     start = time.time() 
109      
110  
111      
112     print ("html files written to DB %s" % html_written) 
113     print('export to database took %s Minutes' % ((time.time() - start) / 60)) 
114     print('complete Operation took %s Minutes' % ((time.time() - start1) / 60)) 
115     print('####################\n') 
116  
117  
118 def open_Paths(PATH): 
119     for path, dirs, files in os.walk(PATH): 
120         for filename in files: 
121             try: 
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122                 fullpath = os.path.join(path, filename) 
123                 print ('####################') 
124                 print('%s Size: %s MB' % (fullpath, os.path.getsize(fullpath) / 1048576)) 
125                 file = gzip.open(fullpath, 'rb') 
126                 Database_export(file) 
127                 file.close() 
128             except: 
129                 pass 
130  
131              
132 def current_database(): 
133     conn,cur = DBConnect() 
134     cur.execute('SELECT current_database()') 
135     DB_name = cur.fetchone() 
136     print('#######################') 
137     print('Connecting to %s' % DB_name) 
138     print('#######################') 
139  
140 if __name__ == '__main__': 
141     current_database() 
142     raw_input('Please Press the anykey') 
143  
144     CreateTable() 
145     startall = time.time() 
146  
147     PATH = 'E:\Data' 
148     open_Paths(PATH) 
149  
150     print('+++++########+++++') 
151     print('complete Operation took %s Minutes' % ((time.time() - startall) / 60)) 
152     print('+++++########+++++') 
153  
154     lines = ReadFromTable() 
155     print(len(lines)) 
156     for line in lines: 
157          print (line[2]) 
158     raw_input('Please Press the anykey') 
 

SetVienna 
 

001 import psycopg2 
002 import gzip 
003 from bs4 import UnicodeDammit 
004 import os 
005 import time 
006  
007  
008  
009  
010  
011  
012 def DBConnect(): 
013     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=########") 
014     cur = conn.cursor() 
015     return conn, cur 
016  
017  
018 def CreateTable(): 
019     conn, cur = DBConnect() 
020     cur.execute("CREATE TABLE IF NOT EXISTS html (id serial PRIMARY KEY, url TEXT, 
html_file text);") 
021     conn.commit() 
022     conn.close() 
023  
024      
025 def WriteManyToTable(Values): 
026     conn, cur = DBConnect() 
027     args_str = ','.join(cur.mogrify("(%s,%s)", x) for x in Values) 
028     cur.execute("INSERT INTO html (url, html_file) VALUES " + args_str) 
029     conn.commit() 
030     conn.close() 
031  
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032  
033 def ReadFromTable(): 
034     conn, cur = DBConnect() 
035     cur.execute("SELECT * FROM html;") 
036     lines = cur.fetchall() 
037     conn.close() 
038     return lines 
039  
040  
041 def Database_export(file): 
042     start1 = time.time() 
043     i = '' 
044     tup_i = () 
045     url = '' 
046     html_written = 0 
047     mode = False 
048     for line in file.readlines(): 
049         splitline = line.split(' ') 
050         try: 
051             if splitline[0][:7] == 'http://' and splitline[3] == 'text/html' and 
len(splitline) == 5: 
052  
053                 if len(i) > 0: 
054                     tup_i = tup_i + ((url, i),) 
055                     url = '' 
056                     i = '' 
057  
058                 url = splitline[0] 
059                 mode = True 
060  
061                 if len(tup_i) >= 100: 
062                     print('empty tup_i') 
063                     try: 
064                         WriteManyToTable(tup_i) 
065                     except: 
066                         pass 
067                     tup_i = () 
068                     print ("html files written to DB %s" % html_written) 
069  
070                 html_written += 1 
071  
072             elif splitline[0][:7] == 'http://' and splitline[3] != 'text/html' and 
len(splitline) == 5: 
073  
074                 if len(i) > 0: 
075                     tup_i = tup_i + ((url, i),) 
076                     url = '' 
077                     i = '' 
078  
079                 mode = False 
080  
081                 if len(tup_i) >= 100: 
082                     print('empty tup_i') 
083                     try: 
084                         WriteManyToTable(tup_i) 
085                     except: 
086                         pass                                                                                             
087                     tup_i = () 
088                     print ("html files written to DB %s" % html_written) 
089         except: 
090             pass 
091  
092         if mode == True: 
093             try: 
094                 i += unicode(line, "utf-8") 
095             except: 
096                 #i += UnicodeDammit(line).unicode_markup  # Benoetigt Extrem Viele 
resourcen 
097                 pass 
098  
099     if len(i) > 0: 
100         tup_i = tup_i + ((url, i),) 
101  
102     try: 
103         WriteManyToTable(tup_i) 
104     except: 
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105         pass 
106     html_written += len(tup_i) 
107     print('parsing %s took %s Minutes \n' % (file, (time.time() - start1) / 60)) 
108     start = time.time() 
109      
110  
111      
112     print ("html files written to DB %s" % html_written) 
113     print('export to database took %s Minutes' % ((time.time() - start) / 60)) 
114     print('complete Operation took %s Minutes' % ((time.time() - start1) / 60)) 
115     print('####################\n') 
116  
117  
118 def open_Paths(PATH): 
119     for path, dirs, files in os.walk(PATH): 
120         for filename in files: 
121             try: 
122                 fullpath = os.path.join(path, filename) 
123                 print ('####################') 
124                 print('%s Size: %s MB' % (fullpath, os.path.getsize(fullpath) / 1048576)) 
125                 file = gzip.open(fullpath, 'rb') 
126                 Database_export(file) 
127                 file.close() 
128             except: 
129                 pass 
130  
131              
132 def current_database(): 
133     conn,cur = DBConnect() 
134     cur.execute('SELECT current_database()') 
135     DB_name = cur.fetchone() 
136     print('#######################') 
137     print('Connecting to %s' % DB_name) 
138     print('#######################') 
139  
140 if __name__ == '__main__': 
141     current_database() 
142     raw_input('Please Press the anykey') 
143  
144     CreateTable() 
145     startall = time.time() 
146  
147     PATH = './Data' 
148     open_Paths(PATH) 
149  
150     print('+++++########+++++') 
151     print('complete Operation took %s Minutes' % ((time.time() - startall) / 60)) 
152     print('+++++########+++++') 
153  
154     lines = ReadFromTable() 
155     print(len(lines)) 
156     for line in lines: 
157          print (line[2]) 
158     raw_input('Please Press the anykey') 
 

Tag Stripper 

 
001 # -*- coding: UTF-8 -*- 
002 import psycopg2 
003 import time 
004 from HTMLParser import HTMLParser 
005 import re 
006  
007  
008 def DBConnect(): 
009     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=########") 
010     cur = conn.cursor() 
011     return conn, cur 
012  
013  
014 def ReadFromHTML(offset): 
015     conn, cur = DBConnect() 
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016     cur.execute("SELECT id,html_file FROM html WHERE vienna = TRUE ORDER BY id limit 1000 
offset %s ;" % offset) 
017     data = cur.fetchall() 
018     cur.close() 
019     conn.close() 
020  
021     return data 
022  
023  
024 def UpdateHTMLwithStrippedHTML(Values): 
025     conn, cur = DBConnect() 
026     cur.executemany("UPDATE html SET stripped_html = %s WHERE vienna = TRUE AND id in 
(%s)", Values) 
027     conn.commit() 
028     cur.close() 
029     conn.close() 
030  
031      
032 def createColumn(): 
033     conn, cur = DBConnect() 
034     cur.execute("ALTER TABLE html DROP COLUMN IF EXISTS stripped_html;") 
035     conn.commit() 
036     cur.execute("ALTER TABLE html ADD COLUMN stripped_html TEXT;") 
037     conn.commit() 
038     cur.close() 
039     conn.close() 
040  
041  
042 def remove_tags(text): 
043     text = TAG_RE.sub('', text) 
044     text = Short.sub('', text) 
045     text = eszt.sub('ß', text) 
046     text = ae.sub('ä', text) 
047     text = AE.sub('Ä', text) 
048     text = oe.sub('ö', text) 
049     text = OE.sub('Ö', text) 
050     text = ue.sub('ü', text) 
051     text = UE.sub('Ü', text) 
052     return text 
053  
054  
055  
056  
057 TAG_RE = re.compile(r'<[^>]+>') 
058 Short = re.compile(r'\S{68,}')      
059 eszt = re.compile(r'&szlig;') 
060 ae = re.compile(r'&auml;') 
061 AE = re.compile(r'&Auml;') 
062 oe = re.compile(r'&ouml;') 
063 OE = re.compile(r'&Ouml;') 
064 ue = re.compile(r'&uuml;') 
065 UE = re.compile(r'&Uuml;') 
066  
067  
068  
069 createColumn()  
070 Starttime = time.time() 
071 strippedlist = [] 
072 offset = 0 
073 Starttime2 = time.time() 
074 htmls = ReadFromHTML(offset) 
075 Numberofrows = 8406507 
076  
077  
078  
079 while htmls: 
080  
081     timeregex = time.time() 
082     print("starting Regex") 
083     for row in htmls: 
084         id = row[0] 
085         stripped_html = remove_tags(row[1])  
086         strippedlist.append((stripped_html, id)) 
087     print('Regex took %.2f Minutes' % ((time.time() - timeregex) / 60)) 
088  
089     print("Starting DB Update") 

xxiii 
 



Annex 

090     timeDBupdate = time.time() 
091     UpdateHTMLwithStrippedHTML(strippedlist) 
092     print('DB Update took %.2f Minutes' % ((time.time() - timeDBupdate) / 60)) 
093  
094     print offset 
095     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
096     delta_time = time.time() - Starttime 
097     print "time till now %.2f Minutes"%(delta_time / 60) 
098     print "time till end %.2f Minutes"%(((delta_time/60)/(offset+1000))*(Numberofrows-
(offset+1000))) 
099  
100  
101     Starttime2 = time.time() 
102     strippedlist = [] 
103     offset += 1000 
104     htmls = ReadFromHTML(offset) 
105  
106  
107  
108 # for row in ReadFromHTML(): 
109 #     print row[0] 
110 #     print row[1] 
111 #     print row[2] 
112  
113  
114 print('+++++########+++++') 
115 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60)) 
116 print('+++++########+++++') 
 

Geo Tagging 
 

001 # -*- coding: utf-8 -*- 
002 import psycopg2 
003 import time 
004 import re 
005  
006 def DBConnect(): 
007     conn = psycopg2.connect("dbname=TEST_DB user=postgres 
password=############")#Master_DB_spatial2 
008     cur = conn.cursor() 
009     return conn, cur 
010  
011  
012 def CreateTables(): 
013     conn, cur = DBConnect() 
014     cur.execute("CREATE TABLE IF NOT EXISTS AddressesUnique (id serial PRIMARY KEY,geom 
geometry, street text, street_number text, pcode integer);") 
015     cur.execute("CREATE TABLE IF NOT EXISTS AddressesUniqueJoinedWithURL (id serial 
PRIMARY KEY, AddressesUniqueID INTEGER, HTMLID INTEGER, Original BOOLEAN);") 
016     conn.commit() 
017     conn.close() 
018  
019 def addcolumn(): 
020     conn,cur = DBConnect() 
021  
022     cur.execute(""" 
023                     DO $$ 
024                     BEGIN 
025                         BEGIN 
026                             ALTER TABLE AddressesUnique ADD COLUMN AddDate INT; 
027                         EXCEPTION 
028                             WHEN duplicate_column THEN RAISE NOTICE 'column 
AddressesUnique already exists in AddDate.'; 
029                         END; 
030                     END; 
031                     $$ 
032                     """ 
033                     ) 
034     conn.commit() 
035  
036     cur.execute(""" 
037                 DO $$ 
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038                 BEGIN 
039                     BEGIN 
040                         ALTER TABLE AddressesUniqueJoinedWithURL ADD COLUMN AddDate INT; 
041                     EXCEPTION 
042                         WHEN duplicate_column THEN RAISE NOTICE 'column 
AddressesUniqueJoinedWithURL already exists in AddDate.'; 
043                     END; 
044                 END; 
045                 $$ 
046                 """ 
047                 ) 
048     conn.commit() 
049  
050  
051     conn.close() 
052  
053  
054 def MakeAddressesUnique(): 
055     conn, cur = DBConnect() 
056      
057     conn.commit() 
058     cur.execute("INSERT INTO AddressesUnique(geom,street,street_number,pcode,AddDate)" 
059                 "SELECT DISTINCT ON (street,street_number) 
geom,street,street_number,pcode,AddDate FROM Addresses") 
060     conn.commit() 
061     return 
062  
063  
064 def ReadFromTableAddressesUnique(): 
065     conn, cur = DBConnect() 
066     cur.execute("SELECT street,street_number,id FROM AddressesUnique;") 
067     return cur.fetchall() 
068  
069  
070 def FindVienna(): 
071     conn, cur = DBConnect() 
072     cur.execute("""UPDATE html SET Vienna = TRUE WHERE html_file LIKE '%%' || ' %s ' || 
'%%';""" % 'Wien') 
073     conn.commit() 
074     conn.close() 
075  
076  
077 def ConstructSQLStatmentSearchAddresses(Values): 
078     SQLStatmentdict = {} 
079     conn, cur = DBConnect() 
080  
081     for line in Values: 
082          
083         if line[0][-6:] == 'traße':                                                                                   
#Berücksichtigt mögliche groß und klein schreibung von Straße 
084             SQLStatmentdict[line[2]] = cur.mogrify( 
085                                 "Select ID FROM HTML WHERE " 
086                                 "Vienna = TRUE AND " 
087                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3]+' & '+line[4]+"') AND " 
088                                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')" 
089                                 "OR" 
090                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3]+' & '+line[4]+"/:*') AND " # für address format 18/9 
091                                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')" 
092                                 "OR" 
093                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"') AND " 
094                                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')" 
095                                 "OR" 
096                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"/:*') AND " # für address format 18/9 
097                                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')" 
098                                 ";") 
099  
100         elif line[0][-4:] == 'asse':                                                                                    
#Berücksichtigt mögliche groß und klein schreibung von Gasse 
101             SQLStatmentdict[line[2]] = cur.mogrify( 
102                                 "Select ID FROM HTML WHERE " 
103                                 "Vienna = TRUE AND " 
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104                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3]+' & '+line[4]+"') AND " 
105                                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')" 
106                                 "OR" 
107                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3]+' & '+line[4]+"/:*') AND " # für address format 18/9 
108                                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')" 
109                                 "OR" 
110                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"') AND " 
111                                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')" 
112                                 "OR" 
113                                 "(textsearchable_index_col @@ 
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"/:*') AND " # für address format 18/9 
114                                 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')" 
115                                 ";") 
116  
117  
118         else:                                                                                                           
# Nimmt den Rest auf 
119              SQLStatmentdict[line[2]] = cur.mogrify( 
120                                 "Select ID FROM HTML WHERE " 
121                                 "Vienna = TRUE AND " 
122                                 "textsearchable_index_col @@ 
to_tsquery('german','"+line[3]+' & '+line[4]+"') AND " 
123                                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %'" 
124                                 "OR " 
125                                 "textsearchable_index_col @@ 
to_tsquery('german','"+line[3]+' & '+line[4]+"/:*') AND " # für address format 18/9 
126                                 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%'" 
127                                 ";") 
128  
129  
130     return SQLStatmentdict 
131  
132  
133 def JoinAddressesUniqueWithURL(SQLStatmentdict): 
134     conn, cur = DBConnect() 
135     i = 1 
136     Starttime = time.time() 
137     Starttime2 = time.time() 
138     Numberofrows = len(SQLStatmentdict) 
139     cur.execute("TRUNCATE AddressesUniqueJoinedWithURL RESTART IDENTITY;") 
140     for ID in SQLStatmentdict: 
141         cur.execute(SQLStatmentdict[ID]) 
142         values = cur.fetchall() 
143         if values: 
144             args_str = ','.join(cur.mogrify("(%s,%s,TRUE)", (ID,x[0])) for x in values) 
145             cur.execute("INSERT INTO AddressesUniqueJoinedWithURL (AddressesUniqueID, 
HTMLID, Original) VALUES " + args_str) 
146             conn.commit() 
147  
148         print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
149         delta_time = time.time() - Starttime 
150         print "time till now %.2f Minutes"%(delta_time/60) 
151         print "time till end %.2f Minutes"%(((delta_time/60)/i)*(Numberofrows-i)) 
152         i += 1 
153         Starttime2 = time.time() 
154     conn.close() 
155     return 
156  
157 def CleanStrings(lines): 
158     for row in lines: 
159         StreetName  = row[0] 
160         StreetNumber = row[1] 
161         ID = row[2] 
162         p = re.compile(r' ') 
163         q = re.compile(r'[^-/a-zA-Z0-9_ ]') 
164         r = re.compile(r'[0-9a-zA-Z] [-/] [0-9a-zA-Z]') 
165         s = re.compile(r"'") 
166                             
167         if r.match(StreetNumber):                   # Match adress nummer die so aussehen 
"8 - 9" "4a - g" und "7 / 8" angepasst durch fehlern die ausgeworfen wurden 
168             StreetNumber = p.sub('', StreetNumber)          # ersetzt die leer zeichen mit 
nichts  
169         StreetNumber = q.sub('', StreetNumber ) # Klammer in der Nummer 
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170         StreetName = s.sub("''", StreetName) # fügt einen weiteren qoute ' hinzu um denn 
ersten im to_tsquery und ilike zu escapen 
171         row3 = p.sub(' & ', StreetName) # ersetzt Leer zeichen im straßen nahmen mit ' & ' 
sonst gehen sie nicht durch to_tsquery 
172         row4 = p.sub(' & ', StreetNumber ) # ersetzt Leer zeichen im Straßen Nummern namen 
mit ' & ' bsp.: "Objekt 11" wird zu "Objekt & 11" sonst gehen sie nicht durch to_tsquery 
173  
174         lines.remove(row) 
175         lines.insert(0,(StreetName,StreetNumber,ID,row3,row4)) 
176  
177     return lines 
178  
179  
180 def CreateIndex(): 
181     conn, cur = DBConnect() 
182  
183     cur.execute("ALTER TABLE html ADD COLUMN textsearchable_index_col tsvector;") 
184     conn.commit() 
185     cur.execute("UPDATE html SET textsearchable_index_col = to_tsvector('german', 
stripped_html) WHERE Vienna = True;") 
186     conn.commit() 
187     cur.execute("CREATE INDEX textsearch_idx ON html USING 
gin(textsearchable_index_col);") 
188     conn.commit() 
189     cur.close() 
190     conn.close() 
191  
192  
193  
194 Starttime = time.time() 
195 CreateTables() 
196 addcolumn() 
197 print("creating Index") 
198 CreateIndex() 
199 print("Make Addresses Unique") 
200 MakeAddressesUnique() 
201 lines = ReadFromTableAddressesUnique() 
202 print lines 
203  
204 lines = CleanStrings(lines) 
205 print lines 
206 print len(lines) 
207 SQLStatmentdict = ConstructSQLStatmentSearchAddresses(lines) 
208 print SQLStatmentdict 
209 JoinAddressesUniqueWithURL(SQLStatmentdict) 
210  
211  
212  
213 print('+++++########+++++') 
214 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60)) 
215 print('+++++########+++++') 

 

Find Links 
 

001 # -*- coding: utf-8 -*- 
002 import psycopg2 
003 import time 
004 import re 
005 import urlparse 
006  
007  
008 def DBConnect(): 
009     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres 
password=###########") 
010     cur = conn.cursor() 
011     return conn, cur 
012  
013 def GetGeocodedHTMLIDs(conn, cur): 
014  
015     cur.execute("SELECT HTMLID, AddressesUniqueID FROM AddressesUniqueJoinedWithURL WHERE 
Original = TRUE") 
016     data = cur.fetchall() 

xxvii 
 



Annex 

017  
018     datadict = {} 
019     for row in data: 
020         if row[0] in datadict: 
021             datadict[row[0]].append(row[1]) 
022         else: 
023             datadict[row[0]] =[row[1],] 
024  
025     return datadict 
026  
027 def FindLinksInHtml(conn, cur, offset): 
028     NoWhiteSpace = re.compile(r' ') 
029     loadingtime = time.time() 
030     cur.execute("SELECT id,url,html_file FROM html WHERE id > %s AND id <= %s ORDER BY 
id;",(offset, offset+limit)) 
031     data = cur.fetchall() 
032     print('Loading took %.2f Minutes' % ((time.time() - loadingtime) / 60)) 
033     regextime = time.time() 
034     passeslist = [] 
035     linklist=[] 
036     for row in data: 
037         links = re.findall(r'href=[\'"]?([^\'" >]+)', row[2]) 
038         for link in links: 
039             try: 
040                 linklist.append((row[0],NoWhiteSpace.sub('%20', urlparse.urljoin(row[1], 
link)))) #makes the links absolut and removes Whitespaces 
041             except: 
042                 passeslist.append((row[1], link)) 
043     print('Regex took %.2f Minutes found links %s' % (((time.time() - regextime) / 60), 
len(linklist))) 
044     return linklist, passeslist 
045  
046  
047 def URLsWithID(conn, cur): 
048     cur.execute("SELECT URL,ID FROM html;") 
049     data = cur.fetchall() 
050     dictonary = dict(data) 
051     return dictonary 
052  
053 def WritetoAddressesUniqueJoinedWithURL(List): 
054     conn, cur = DBConnect() 
055     args_str = ','.join(cur.mogrify("(%s,%s,FALSE)", x) for x in List) 
056     try: 
057         cur.execute("INSERT INTO AddressesUniqueJoinedWithURL (HTMLID, AddressesUniqueID, 
Original)VALUES " + args_str) 
058         conn.commit() 
059     except: 
060         print "Error Inserting Joins" 
061     cur.close() 
062     conn.close() 
063  
064     return 
065  
066  
067 def get_html_ids(): 
068     conn, cur = DBConnect() 
069     cur.execute("SELECT id FROM html") 
070     data = cur.fetchall() 
071  
072     cur.close() 
073     conn.close() 
074  
075     return data 
076  
077  
078  
079  
080 conn, cur = DBConnect() 
081 Starttime = time.time() 
082  
083  
084 print('getting URLDictonary and URLIDWITHAddressIDDictonary') 
085 URLDictonary = URLsWithID(conn, cur) 
086 URLIDWITHAddressIDDictonary = GetGeocodedHTMLIDs(conn, cur) 
087  
088 limit = 1000 
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089 offset = 0 
090 passeslist = [] 
091  
092 Numberofrows = 8406507 
093  
094 r = 0 
095 while offset <= Numberofrows: 
096     Starttime2 = time.time() 
097     print offset 
098     linklist,passes = FindLinksInHtml(conn, cur, offset) 
099  
100     passeslist += passes 
101     URLIDStoLinkIDS = [] 
102     for row in linklist: 
103         if row[1] in URLDictonary: 
104             URLIDStoLinkIDS.append((row[0],URLDictonary[row[1]])) 
105  
106     Newlist = [] 
107     for row in URLIDStoLinkIDS: 
108         if row[1] in URLIDWITHAddressIDDictonary: 
109             for rowx in URLIDWITHAddressIDDictonary[row[1]]: 
110                 Newlist.append((row[0],rowx)) 
111  
112  
113  
114     r += len(Newlist) 
115     WritetoAddressesUniqueJoinedWithURL(Newlist) 
116  
117     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
118     delta_time = time.time() - Starttime 
119     print('time till now %.2f Minutes'%(delta_time / 60)) 
120     print('time till end %.2f Minutes'%(((delta_time/60)/(offset+1000))*(Numberofrows-
(offset+1000)))) 
121  
122     offset += limit 
123  
124 cur.close() 
125 conn.close() 
126 print('Passes %s' % len(passeslist)) 
127 print passeslist 
128 print r 
129 print('+++++########+++++') 
130 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60)) 
131 print('+++++########+++++') 

 

Wikipedia POS Tagging 

 
001 # -*- coding: utf-8 -*- 
002 import time 
003 from pattern.de import parse 
004 import os 
005 import io 
006 import cPickle as pickle 
007 from multiprocessing import Pool as ThreadPool 
008 from threading import current_thread 
009  
010  
011 def POStag(filepath): 
012  
013     global i 
014     global len_filelist 
015     i += 1 
016     newcorpustagged = [] 
017     Starttime2 = time.time() 
018  
019     with io.open(filepath, 'r', encoding='utf-8') as mfile: 
020         data = mfile.read() 
021         data = data.splitlines() 
022  
023  
024     for section in data: 
025         section = parse(section) 
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026         section = section.split() 
027  
028         for sentence in section: 
029             sent = [] 
030             for token in sentence: 
031                 sent.append((token[0], token[1])) 
032             newcorpustagged.append(sent) 
033  
034  
035     with io.open('./wikicorpuspickeld_2/%s_%s.pos' % (current_thread().ident, i,), 'wb') 
as fout: 
036        pickle.dump(newcorpustagged, fout) 
037  
038  
039     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
040     delta_time = time.time() - Starttime 
041     print "time till now %.2f Minutes" % (delta_time/60) 
042     print "time till end %.2f Minutes" % (((delta_time/60)/(i*4))*(len_filelist-(i*4))) 
043  
044  
045 def createfilepathlist(): 
046     pathlist = [] 
047     subfolders = [x[0] for x in os.walk('./WikiText/')] 
048     for subfolder in subfolders[1:]: 
049         for filename in os.listdir(subfolder): 
050             pathlist.append(subfolder+'/'+filename) 
051  
052     return pathlist 
053  
054  
055 i = 0 
056 filepathlist = createfilepathlist() 
057 len_filelist = len(filepathlist) 
058 Starttime = time.time() 
059  
060 if __name__ == '__main__': 
061  
062     print('Tagging new corpus') 
063     pool = ThreadPool(4) 
064     pool.map(POStag, filepathlist) 
065     pool.close() 
066     pool.join() 
067  
068     print('+++++########+++++') 
069     print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60)) 
070     print('+++++########+++++') 

 

Co-occurrence Group Generation 
 

001 # -*- coding: utf-8 -*- 
002 import time 
003 from nltk.corpus import stopwords 
004 import os 
005 import io 
006 import cPickle as pickle 
007  
008  
009 def NounVerb(tag): 
010     noun_verb_list = [u'nn', u'nns', u'nnp', u'nnps', u'vb', u'vbz', u'vbp', u'vbd', 
u'vbn', u'vbg'] 
011  
012     if tag.lower() in noun_verb_list: 
013         return True 
014  
015     return False 
016  
017  
018 def stopwords_list(): 
019     new_list = [] 
020     for word in stopwords.words('german'): 
021         new_list.append(unicode(word.decode('latin-1'))) 
022     return new_list 
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023  
024  
025 def CoOccurrence(groups): 
026     Starttime3 = time.time() 
027     Fenster = 10 
028     i = 1 
029     S_list = stopwords_list() 
030     word_dict = {} 
031  
032     Files = [x[2] for x in os.walk('./wikicorpuspickeld_2/')] 
033     for file in Files[0]: 
034  
035         with io.open('./wikicorpuspickeld_2/'+file, 'rb') as fin: 
036             loaded_corpus = pickle.load(fin) 
037  
038  
039         for sentence in loaded_corpus: 
040             for (index, tokentag) in enumerate(sentence): 
041                 (token, tag) = tokentag 
042                 token = token.lower() 
043  
044                 if token in groups: 
045                     term = sentence[index-Fenster:index+Fenster] 
046                     for(term_token, term_tag) in term: 
047  
048                         term_token = term_token.lower() 
049                         if term_token not in S_list and NounVerb(term_tag): 
050  
051                             if token not in word_dict: 
052                                 word_dict[token] = {} 
053                             if term_token in word_dict[token]: 
054                                 word_dict[token][term_token] += 1 
055                             else: 
056                                 word_dict[token][term_token] = 1 
057  
058         print i 
059  
060         delta_time = time.time() - Starttime3 
061         print "time till end %.2f Minutes" % (((delta_time/60)/i)*(len(Files[0])-i)) 
062         i += 1 
063  
064     return word_dict 
065  
066 groups = [u'wohnen', u'arbeiten', u'bildung', u'einkaufen', u'gaststätte', u'hotel', 
u'kreditinstitut', u'kultur', u'dienstgebäude',] 
067  
068 Starttime2 = time.time() 
069 CoOccurrenceGroups = CoOccurrence(groups) 
070  
071  
072 directory = './topics/' 
073 if not os.path.exists(directory): 
074     os.makedirs(directory) 
075  
076 with io.open(directory+'CoOccurrenceGroups.pickle', 'wb') as fout: 
077     pickle.dump(CoOccurrenceGroups, fout) 
078  
079 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
080 delta_time = time.time() - Starttime 

 

Inverse Document Frequency 
 

001 import cPickle as pickle 
002 import io 
003 import psycopg2 
004 import numpy 
005 import random 
006 import sys 
007  
008  
009 def DBConnect(): 
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010     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres 
password=#####")#Master_DB_spatial2 
011     cur = conn.cursor() 
012     return conn, cur 
013  
014  
015 def countrows(): 
016     conn, cur = DBConnect() 
017     cur.execute("SELECT count(*) FROM HtmlUnique;") 
018     data = cur.fetchone() 
019     cur.close() 
020     conn.close() 
021     return data[0] 
022  
023  
024 with io.open('./Vector/CombinedVectorSpace.pickle', 'rb') as fin: 
025     CombinedVectorSpace = pickle.load(fin) 
026  
027 CombinedVectorSpaceIDFT = {} 
028 DocumentCount = countrows() 
029  
030 for key in CombinedVectorSpace: 
031     idft = numpy.log(numpy.divide(float(DocumentCount), 
float((1+CombinedVectorSpace[key][0])))) 
032  
033     CombinedVectorSpaceIDFT[key] = CombinedVectorSpace[key][0], 
CombinedVectorSpace[key][1], idft 
034  
035 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'wb') as fout: 
036     pickle.dump(CombinedVectorSpaceIDFT, fout) 
037  
038 CombinedVectorSpaceIDFTKeyList = [] 
039  
040 for key in CombinedVectorSpaceIDFT: 
041     CombinedVectorSpaceIDFTKeyList.append(key) 
042  
043 CombinedVectorSpaceIDFTKeyList.sort() 
044  
045 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'wb') as fout: 
046     pickle.dump(CombinedVectorSpaceIDFTKeyList, fout) 
 

Wikipedia Vector Space 

 
001 # -*- coding: utf-8 -*- 
002 import time 
003 from nltk.corpus import stopwords 
004 import nltk 
005 import re 
006 import os 
007 import io 
008 import cPickle as pickle 
009  
010  
011 def Vector_Calculator(): 
012     Starttime3 = time.time() 
013     i = 1 
014     GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
015     token_dict_file = {} 
016     p = re.compile(ur'^[a-zA-Z��}[◌֜2,}$', re.UNICODE) 
017  
018     Files = [x[2] for x in os.walk('E:/Tools/Topic Generation/wikicorpuspickeld_2/')] 
019     for file in Files[0]: 
020         with io.open('E:/Tools/Topic Generation/wikicorpuspickeld_2/'+file, 'rb') as fin: 
021             loaded_corpus = pickle.load(fin) 
022  
023         for sentence in loaded_corpus: 
024             for (index, tagtuple) in enumerate(sentence): 
025                 (token, tag) = tagtuple 
026                 token = token.lower() 
027                 if token not in stopword_list: 
028                     if p.match(token): 
029                         stemmedtoken = GermanStemmer.stem(token) 
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030  
031                         if stemmedtoken in token_dict_file: 
032                             token_dict_file[stemmedtoken] += 1 
033                         else: 
034                             token_dict_file[stemmedtoken] = 1 
035  
036         delta_time = time.time() - Starttime3 
037         print "time till end %.2f Minutes" % (((delta_time/60)/i)*(len(Files[0])-i)) 
038         i += 1 
039  
040     return token_dict_file 
041  
042 stopword_list = [] 
043 for word in stopwords.words('german'): 
044     stopword_list.append(unicode(word.decode('latin-1'))) 
045  
046 Starttime = time.time() 
047 Vectorraum = Vector_Calculator() 
048  
049 with io.open('./Vector/WikiVectorSpace2.pickle', 'wb') as fout: 
050     pickle.dump(Vectorraum, fout) 
051 print('Operation took %.2f Minutes' % ((time.time() - Starttime) / 60)) 

 

HTML Vector Space 
 

001 # -*- coding: UTF-8 -*- 
002 import nltk 
003 from nltk.tokenize import RegexpTokenizer 
004 import psycopg2 
005 import time 
006 import cPickle as pickle 
007 import io 
008 import re 
009  
010  
011 def DBConnect(): 
012     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres 
password=##########")#Master_DB_spatial2 
013     cur = conn.cursor() 
014     return conn, cur 
015  
016  
017 def stripped_htmls(ID_list): 
018     conn, cur = DBConnect() 
019     data = [] 
020     for ID in ID_list: 
021         cur.execute("SELECT stripped_html FROM HtmlUnique WHERE ID = %s ",ID) 
022         html = cur.fetchone() 
023         if html: 
024             data.append(html) 
025         else: 
026             error += 1 
027     print "Number of Errors %s" % error 
028     cur.close() 
029     conn.close() 
030  
031     return data 
032  
033      
034 def get_html_ids(): 
035     conn, cur = DBConnect() 
036     cur.execute("select DISTINCT HTMLID FROM AddressesUniqueJoinedWithURL ORDER BY 
HTMLID") 
037     data = cur.fetchall() 
038  
039     cur.close() 
040     conn.close() 
041  
042     return data 
043  
044      
045 def Delete_stopwords(Tokens): 
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046     return [token for token in Tokens if not token in 
nltk.corpus.stopwords.words('german')] 
047  
048 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
049 tokenizer = RegexpTokenizer(r'\w+') 
050 token_dict = {} 
051 HTMLIDS = get_html_ids() 
052  
053 lower = 0 
054 upper = lower + 1000 
055 Starttime = time.time() 
056 parsedhtmls = 0 
057  
058 while lower <= len(HTMLIDS): 
059  
060     Starttime2 = time.time() 
061     stripped_htmls_list = stripped_htmls(HTMLIDS[lower:upper]) 
062     for html in stripped_htmls_list: 
063         parsedhtmls += 1 
064  
065         time_tokenize = time.time() 
066         tokens = tokenizer.tokenize(html) 
067         tokens = Delete_stopwords(tokens) 
068         token_dict_file = {} 
069  
070         for token in tokens: 
071  
072             stemmedtoken = GermanStemmer.stem(token) 
073  
074             if stemmedtoken in token_dict_file: 
075                 token_dict_file[stemmedtoken] += 1 
076             else: 
077                 token_dict_file[stemmedtoken] = 1 
078  
079         for key in token_dict_file: 
080             if key in token_dict: 
081                 doc_count = token_dict[key][0] + 1 
082                 occurrence_count = token_dict[key][1] + token_dict_file[key] 
083                 token_dict[key] = (doc_count, occurrence_count) 
084             else: 
085                 token_dict[key] = (1, token_dict_file[key]) 
086  
087     print('Number of tokens in dict: %s' % len(token_dict)) 
088     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
089     delta_time = time.time() - Starttime 
090     print "time till now %.2f Minutes"%(delta_time / 60) 
091     print "time till end %.2f Minutes"%(((delta_time/60)/(upper))*(len(HTMLIDS)-(upper))) 
092  
093     lower += 1000 
094     upper = lower + 1000 
095  
096 with io.open('./Vector/HTMLVectorSpace.pickle', 'wb') as fout: 
097     pickle.dump(token_dict, fout) 
098  
099 print 'parsed HTML Files %s' % parsedhtmls 
 

Combined Vector Space 

 
001 import io 
002 import cPickle as pickle 
003  
004 with io.open('./Vector/WikiVectorSpace.pickle', 'rb') as fin: 
005     WikiVectorSpace = pickle.load(fin) 
006  
007 with io.open('./Vector/HTMLVectorSpace.pickle', 'rb') as fin: 
008     HTMLVectorSpace = pickle.load(fin) 
009  
010 CombinedVectorSpace = {} 
011  
012 for key in WikiVectorSpace: 
013     if key in HTMLVectorSpace: 
014         CombinedVectorSpace[key] = HTMLVectorSpace[key] 
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015  
016 with io.open('./Vector/CombinedVectorSpace.pickle', 'wb') as fout: 
017     pickle.dump(CombinedVectorSpace, fout) 
 

HTML Tokenization 

 
001 import nltk 
002 from nltk.tokenize import RegexpTokenizer 
003 import psycopg2 
004 import time 
005 import cPickle as pickle 
006 import io 
007 import re 
008  
009  
010 def DBConnect(): 
011     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres 
password=#######")#Master_DB_spatial2 
012     cur = conn.cursor() 
013     return conn, cur 
014  
015  
016 def createColumn(): 
017     conn, cur = DBConnect() 
018     cur.execute("ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS VectorDICT;") 
019     conn.commit() 
020     cur.execute("ALTER TABLE HtmlUnique ADD COLUMN VectorDICT bytea;") 
021     conn.commit() 
022     cur.close() 
023     conn.close() 
024  
025      
026 def ReadFromHTML(offset): 
027     conn, cur = DBConnect() 
028     cur.execute("SELECT id,stripped_html FROM ORDER BY id limit 1000 offset %s ;", 
(offset,)) 
029     data = cur.fetchall() 
030     cur.close() 
031     conn.close() 
032  
033     return data 
034  
035      
036 def Delete_stopwords(Tokens): 
037     return [token for token in Tokens if not token in 
nltk.corpus.stopwords.words('german')] 
038  
039      
040 def UpdateHtmlUniquewithDict(Dict,ID): 
041     conn, cur = DBConnect() 
042     cur.execute("UPDATE HtmlUnique SET VectorDICT = %s WHERE id = %s", 
(psycopg2.Binary(Dict), ID,)) 
043     conn.commit() 
044     cur.close() 
045     conn.close() 
046  
047  
048 def countrows(): 
049     conn, cur = DBConnect() 
050     cur.execute("select count(id) from HtmlUnique;") 
051     data = cur.fetchone() 
052     cur.close() 
053     conn.close() 
054     return data[0] 
055  
056  
057 with io.open('.\Vector\CombinedVectorSpace.pickle', 'rb') as fin: 
058     CombinedVectorSpace = pickle.load(fin) 
059  
060  
061 createColumn()   
062  
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063 offset = 0 
064 htmls = ReadFromHTML(offset) 
065 tokenizer = RegexpTokenizer(r'\w+') 
066 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
067 Starttime = time.time() 
068 Length = countrows() 
069  
070 while htmls: 
071     print len(htmls) 
072     Starttime2 = time.time() 
073     for html in htmls: 
074         HTMLdict = {} 
075         id, HTMLtext = html 
076         tokens = tokenizer.tokenize(HTMLtext) 
077  
078         for token in tokens: 
079             stemmedtoken = GermanStemmer.stem(token) 
080             if stemmedtoken in CombinedVectorSpace: 
081                 if stemmedtoken in HTMLdict: 
082                     HTMLdict[stemmedtoken] += 1 
083                 else: 
084                     HTMLdict[stemmedtoken] = 1 
085  
086         htmlDictpickeld = pickle.dumps(HTMLdict) 
087         UpdateHtmlUniquewithDict(htmlDictpickeld,id) 
088  
089     offset += 1000 
090     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
091     delta_time = time.time() - Starttime 
092     print "time till now %.2f Minutes"%(delta_time / 60) 
093     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(Length-offset)) 
094     htmls = ReadFromHTML(offset) 
 

TFIDF Vector HTML Documents 

 
001 import cPickle as pickle 
002 import io 
003 import psycopg2 
004 import numpy 
005 import time 
006 import zlib 
007  
008 def DBConnect(): 
009     conn = psycopg2.connect("dbname=TEST_DB user=postgres password=######") 
010     cur = conn.cursor() 
011     return conn, cur 
012  
013  
014 def countrows(): 
015     conn, cur = DBConnect() 
016     cur.execute("SELECT count(*) FROM HtmlUnique;") 
017     data = cur.fetchone() 
018     cur.close() 
019     conn.close() 
020     return data[0] 
021  
022 def VectorDICTReader(offset): 
023     conn, cur = DBConnect() 
024     cur.execute("SELECT id,VectorDICT FROM HtmlUnique order by id limit 100 offset %s 
;",(offset,)) 
025     data = cur.fetchall() 
026     cur.close() 
027     conn.close() 
028     return data 
029  
030  
031 def UpdateHtmlUniquewithTFIDFlist(Values): 
032     conn, cur = DBConnect() 
033     cur.executemany("UPDATE HtmlUnique SET TFIDFVector = %s WHERE id = %s", Values) 
034     conn.commit() 
035     cur.close() 
036     conn.close() 
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037  
038  
039 def createColumn(): 
040     conn, cur = DBConnect() 
041     cur.execute("ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS TFIDFVector;") 
042     conn.commit() 
043     cur.execute("ALTER TABLE HtmlUnique ADD COLUMN TFIDFVector bytea;") 
044     conn.commit() 
045     cur.close() 
046     conn.close() 
047  
048      
049 offset = 0 
050 length = countrows() 
051 Starttime = time.time() 
052 createColumn() 
053  
054 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin: 
055     CombinedVectorSpaceIDFT = pickle.load(fin) 
056  
057 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin: 
058     CombinedVectorSpaceIDFTKeyList = pickle.load(fin) 
059  
060 while offset <= length: 
061     dicts = VectorDICTReader(offset) 
062     Starttime2 = time.time() 
063     arraylist = [] 
064     for tuple in dicts: 
065         array = [] 
066         id = tuple[0] 
067         dictionary = pickle.loads(str(tuple[1])) 
068  
069         for key in CombinedVectorSpaceIDFTKeyList: 
070  
071             if key in dictionary: 
072                 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2], 
dictionary[key])) 
073             else: 
074                 array.append(0) 
075         array = numpy.array(array) 
076         array = numpy.divide(array,numpy.linalg.norm(array)) 
077         array = pickle.dumps(array) 
078         array = zlib.compress(array) 
079         arraylist.append((psycopg2.Binary(array),id,)) 
080  
081     UpdateHtmlUniquewithTFIDFlist(arraylist) 
082     offset += 100 
083     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
084     delta_time = time.time() - Starttime 
085     print "time till now %.2f Minutes"%(delta_time / 60) 
086     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset)) 
 

TFIDF Vector for Search Term and Co-ccurence Groups 

 
001 import cPickle as pickle 
002 import io 
003 import nltk 
004 import numpy 
005 import zlib 
006  
007  
008 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin: 
009     CombinedVectorSpaceIDFT = pickle.load(fin) 
010  
011 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin: 
012     CombinedVectorSpaceIDFTKeyList = pickle.load(fin) 
013  
014 with io.open('./Co-Occurrence.pickle', 'rb') as fin: 
015     CoOc = pickle.load(fin) 
016  
017 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True) 
018  
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019  
020 TFIDF_CoOc = {} 
021 for searchterm in CoOc: 
022     TFIDF_CoOc[searchterm] = {} 
023     TFIDF_CoOc[searchterm]['Stemmed'] = {} 
024     for token, counter in CoOc[searchterm]: 
025         token = GermanStemmer.stem(token) 
026         if token in TFIDF_CoOc[searchterm]: 
027            TFIDF_CoOc[searchterm]['Stemmed'][token] = 
TFIDF_CoOc[searchterm]['Stemmed'][token]+tuple[1] 
028         else: 
029             TFIDF_CoOc[searchterm]['Stemmed'][token] = tuple[1] 
030  
031              
032 for searchterm in TFIDF_CoOc: 
033         array = [] 
034         dictionary = TFIDF_CoOc[searchterm]['Stemmed'] 
035         for key in CombinedVectorSpaceIDFTKeyList: 
036             if key in dictionary: 
037                 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2], 
dictionary[key])) 
038             else: 
039                 array.append(0) 
040         array = numpy.array(array) 
041         array = numpy.divide(array,numpy.linalg.norm(array)) 
042         array = pickle.dumps(array) 
043         array = zlib.compress(array) 
044         TFIDF_CoOc[searchterm]['TFIDF_CoOc'] = array 
045  
046  
047         STarray = [] 
048         searchtermstemmed = GermanStemmer.stem(searchterm) 
049         for key in CombinedVectorSpaceIDFTKeyList: 
050             if key in searchtermstemmed: 
051                 STarray.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2], 1)) 
052             else: 
053                 STarray.append(0) 
054  
055         STarray = numpy.array(STarray) 
056         STarray = numpy.divide(STarray,numpy.linalg.norm(STarray)) 
057         STarray = pickle.dumps(STarray) 
058         STarray = zlib.compress(STarray) 
059         TFIDF_CoOc[searchterm]['TFIDF_ST'] = STarray 
060  
061 with io.open('./Vector/TFIDF_CoOc.pickle', 'wb') as fout: 
062     pickle.dump(TFIDF_CoOc, fout) 
 

Cosine Similarity 
 

001 import cPickle as pickle 
002 import io 
003 import psycopg2 
004 import time 
005 import zlib 
006 from sklearn.metrics.pairwise import cosine_similarity 
007  
008  
009 def DBConnect(): 
010     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=######") 
011     cur = conn.cursor() 
012     return conn, cur 
013  
014  
015 def VectorDICTReader(range,offset): 
016     conn, cur = DBConnect() 
017     cur.execute("SELECT id,TFIDFVector FROM HtmlUnique order by id limit %s offset %s 
;",(range,offset,)) 
018     data = cur.fetchall() 
019     cur.close() 
020     conn.close() 
021     return data 
022  
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023  
024 def createColumn(column): 
025     conn, cur = DBConnect() 
026     sqlstring = "ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS %s;" % column 
027     cur.execute(sqlstring) 
028     conn.commit() 
029     sqlstring = "ALTER TABLE HtmlUnique ADD COLUMN %s FLOAT;" % column 
030     cur.execute(sqlstring) 
031     conn.commit() 
032     cur.close() 
033     conn.close() 
034  
035  
036 def Sqlstringconstructor(Columnlist): 
037  
038     sqlstring = "UPDATE HtmlUnique SET " 
039     for key in Columnlist[:-1]: 
040         sqlstring += key+' = %s, ' 
041     sqlstring += Columnlist[-1]+' = %s' 
042     sqlstring += ' WHERE id = %s' 
043     print sqlstring 
044     return sqlstring 
045  
046  
047 def UpdateHtmlUniquewithCosinelist(sqlstring,Values): 
048     conn, cur = DBConnect() 
049     cur.executemany(sqlstring, Values) 
050     conn.commit() 
051     cur.close() 
052     conn.close() 
053  
054  
055 def countrows(): 
056     conn, cur = DBConnect() 
057     cur.execute("SELECT count(*) FROM HtmlUnique;") 
058     data = cur.fetchone() 
059     cur.close() 
060     conn.close() 
061     return data[0] 
062  
063 ############################################################ 
064  
065 with io.open('./Vector/TFIDF_CoOc.pickle', 'rb') as fin: 
066     TFIDF_CoOc = pickle.load(fin) 
067  
068 Columnlist = [] 
069 SearchTermList = [] 
070 TFIDFworkingdict = {} 
071  
072 for searchterm in TFIDF_CoOc: 
073     SearchTermList.append(searchterm) 
074     Columnlist.append(TFIDF_CoOc[searchterm]+'_CoOc') 
075     Columnlist.append(TFIDF_CoOc[searchterm]+'_ST') 
076  
077 for searchterm in SearchTermList: 
078     TFIDFworkingdict[searchterm] = 
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_CoOc'])),\ 
079                                    
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_ST'])) 
080  
081 for searchterm in Columnlist: 
082     createColumn(searchterm) 
083  
084 sqlstring = Sqlstringconstructor(Columnlist) 
085  
086 offset = 0 
087 range = 1000 
088 length = countrows() 
089  
090 vectors = VectorDICTReader(range,offset) 
091  
092 Starttime = time.time() 
093 while vectors: 
094     Starttime2 = time.time() 
095     updatelist = [] 
096     for vectortup in vectors: 
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097         cosinelist = [] 
098         id, vector = vectortup[0], pickle.loads(zlib.decompress(vectortup[1])) 
099         for searchterm in SearchTermList: 
100             cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][0], vector),8) 
101             cosinelist.append(cosine) 
102             cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][1], vector),8) 
103             cosinelist.append(cosine) 
104  
105         cosinelist.append(id) 
106         updatelist.append(cosinelist) 
107     UpdateHtmlUniquewithCosinelist(sqlstring,updatelist) 
108     offset += range 
109     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
110     delta_time = time.time() - Starttime 
111     print "time till now %.2f Minutes"%(delta_time / 60) 
112     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset)) 
113  
114     vectors = VectorDICTReader(range,offset) 
 

Address Classification 
 

001 import cPickle as pickle 
002 import io 
003 import psycopg2 
004 import time 
005 import zlib 
006 from sklearn.metrics.pairwise import cosine_similarity 
007  
008  
009 def DBConnect(): 
010     conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=######") 
011     cur = conn.cursor() 
012     return conn, cur 
013  
014  
015 def VectorDICTReader(range,offset): 
016     conn, cur = DBConnect() 
017     cur.execute("SELECT id,TFIDFVector FROM HtmlUnique order by id limit %s offset %s 
;",(range,offset,)) 
018     data = cur.fetchall() 
019     cur.close() 
020     conn.close() 
021     return data 
022  
023  
024 def createColumn(column): 
025     conn, cur = DBConnect() 
026     sqlstring = "ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS %s;" % column 
027     cur.execute(sqlstring) 
028     conn.commit() 
029     sqlstring = "ALTER TABLE HtmlUnique ADD COLUMN %s FLOAT;" % column 
030     cur.execute(sqlstring) 
031     conn.commit() 
032     cur.close() 
033     conn.close() 
034  
035  
036 def Sqlstringconstructor(Columnlist): 
037  
038     sqlstring = "UPDATE HtmlUnique SET " 
039     for key in Columnlist[:-1]: 
040         sqlstring += key+' = %s, ' 
041     sqlstring += Columnlist[-1]+' = %s' 
042     sqlstring += ' WHERE id = %s' 
043     print sqlstring 
044     return sqlstring 
045  
046  
047 def UpdateHtmlUniquewithCosinelist(sqlstring,Values): 
048     conn, cur = DBConnect() 
049     cur.executemany(sqlstring, Values) 
050     conn.commit() 
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051     cur.close() 
052     conn.close() 
053  
054  
055 def countrows(): 
056     conn, cur = DBConnect() 
057     cur.execute("SELECT count(*) FROM HtmlUnique;") 
058     data = cur.fetchone() 
059     cur.close() 
060     conn.close() 
061     return data[0] 
062  
063 ############################################################ 
064  
065 with io.open('./Vector/TFIDF_CoOc.pickle', 'rb') as fin: 
066     TFIDF_CoOc = pickle.load(fin) 
067  
068 Columnlist = [] 
069 SearchTermList = [] 
070 TFIDFworkingdict = {} 
071  
072 for searchterm in TFIDF_CoOc: 
073     SearchTermList.append(searchterm) 
074     Columnlist.append(TFIDF_CoOc[searchterm]+'_CoOc') 
075     Columnlist.append(TFIDF_CoOc[searchterm]+'_ST') 
076  
077 for searchterm in SearchTermList: 
078     TFIDFworkingdict[searchterm] = 
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_CoOc'])),\ 
079                                    
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_ST'])) 
080  
081 for searchterm in Columnlist: 
082     createColumn(searchterm) 
083  
084 sqlstring = Sqlstringconstructor(Columnlist) 
085  
086 offset = 0 
087 range = 1000 
088 length = countrows() 
089  
090 vectors = VectorDICTReader(range,offset) 
091  
092 Starttime = time.time() 
093 while vectors: 
094     Starttime2 = time.time() 
095     updatelist = [] 
096     for vectortup in vectors: 
097         cosinelist = [] 
098         id, vector = vectortup[0], pickle.loads(zlib.decompress(vectortup[1])) 
099         for searchterm in SearchTermList: 
100             cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][0], vector),8) 
101             cosinelist.append(cosine) 
102             cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][1], vector),8) 
103             cosinelist.append(cosine) 
104  
105         cosinelist.append(id) 
106         updatelist.append(cosinelist) 
107     UpdateHtmlUniquewithCosinelist(sqlstring,updatelist) 
108     offset += range 
109     print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60)) 
110     delta_time = time.time() - Starttime 
111     print "time till now %.2f Minutes"%(delta_time / 60) 
112     print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset)) 
113  
114     vectors = VectorDICTReader(range,offset) 
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Mapping Results 
ID Street street_n

umber 
post 
code 

hotel gaststätte arbeiten bildung wohnen dienstgebäude kreditinstitut einkaufen kultur other Notes 

87 Aegidigasse 7-11 1060     t       

143 Albertgasse 1a 1080          t Rechtsanwalt, Immobilien, 
PR-Agentur, edv, Ärzte 
Flugambulanz 

329 Alser Straße 71 1080          t Pensionistenclub 

440 Am Hof 13 1010        t  t Gewürz geschafft, 
Kosmetikgeschäft, 
Consulting, 
Medienproduktion, 

707 Argentinierstraß
e 

14 1040      t     Griechische Botschaft 

724 Argentinierstraß
e 

30 1040         t  Funkhaus 

725 Argentinierstraß
e 

30A 1040  t       t  Funkhaus, kaffee 

732 Argentinierstraß
e 

39 1040     t    t  Rumänisches 
Kulturinstitut, 
Ingenieurbüro 

834 Augasse 11 1090        t   Supermarkt 

849 Augustinerstraße 1 1010  t     t  t  Museum, restaurant, 
museum geschäft 

918 Bacherplatz 11 1050          t Film und Design verleih 

933 Bäckerstraße 10 1010     t   t   Schmuckgeschäft 

1245 Baumgasse 83 1030 t          Hotel 

1297 Bechardgasse 18 1030     t       

1372 Bennogasse 1 1080       t   t Bank, post 

1373 Bennogasse 10 1080     t     t Arzt, edv 

1440 Berggasse 32 1090     t     t Schuhservice, Vorbeugung 
von sexuellem Missbrauch 
von Kindern 

1952 Bräuhausgasse 37 1050        t  t Ingenieurbüro, 
Steuerberatung, 
Kindergarten, 
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Investmentberatung 

2084 Brigittaplatz 18 1200     t   t  t Aquarien Fachgeschäft, 
Elektrik fachgeschäft, 
psychotherapie, 
Heilpraktiker 

2091 Brigittaplatz 9 1200     t   t   Küchenmöbel 

2262 Burggasse 28-32 1070     t     t Werbeagentur, Fotografie, 
film, Kommunikation 

2288 Burggasse 56 1070          t Fotografie 

2312 Burggasse 81 1070  t   t   t   Hochzeitsgeschäft, 
Schneiderei, Bäcker, 
Gemüse Händler, Café  

2576 Daffingerstraße 1 1030           Nichts 

2677 Dannebergplatz 12 1030     t       

2816 Diehlgasse 28 1050     t       

3009 Dorotheergasse 2 1010  t   t     t Restaurant, architekt, 

3036 Dr.-Karl-Renner-
Ring 

3 1010      t     Parlament 

3114 Dresdner Straße 68 1200          t Baugesellschaft, Pipelines, 
EDV, arzt, telefon, 
ingenieur, Reisebüro 

3131 Dresdner Straße 87 1200 t     t  t  t MA 42, österreichische 
Patentamt, hotel 
management, trafik  

3195 Ebendorferstraß
e 

7 1010    t t      Österreichischer 
Austauschdienst, 
wohnraumverwaltung 
GmbH 

3227 Einsiedlergasse 19 1050 t          Appartementhaus 

3296 Elisabethstraße 13 1010     t     t Arzt, physiotherapie, 
rechtsanwalt, Fischerei 
Gesellschaft, Model 
Management, Immobilien, 
Kunden Forschung, 
marketing 

3709 Erzherzog-
Johann-Platz 

1 1040    t       Universität 

3724 Eslarngasse 11 1030     t       
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3774 Esteplatz 5 1030     t     t Rechtsanwalt, Kochkurse 

3857 Fasangasse 35-37 1030  t  t t     t Gaststätte, arzt, reinigung, 
bücherei, beauty 

3862 Fasangasse 4 1030    t     t  Kloster, handelsakademie 

3941 Favoritenstraße 52 1040 t          Hotel 

4122 Fischhof 3 1010        t  t Kleidungsgeschäft, 
business center 

4145 Fleischmarkt 24 1010 t t         Hotel, restaurant 

4173 Florianigasse 16 1080     t     t Rechtsanwalt, FPÖ, 
Aktionsgemeinschaft 
unabhängiger, architekt 

4181 Florianigasse 24 1080     t     t Hilfswerk, architekt, 
Immobilien, ingenieur 

4283 Frankenberggass
e 

11 1040        t   Schmuckmanufaktur 

4411 Franzensgasse 4 1050     t     t Esoterik 

4448 Freyung 4 1010  t       t t Friseur, Beauty, restaurant, 
Auktionshaus, events 

4451 Freyung 6a 1010    t     t  Kirche, kirche Museum 

4468 Friedrich-Engels-
Platz 

21 1200     t   t  t Schuhgeschäft, 
schuhservice, friseur, 
installateur 

4490 Friedrichstraße 10 1010       t  t t Immobilien, erste Stiftung, 
art collection, reisebüro, 
Möbel geschäft, Verlag  

5115 Gonzagagasse 1 1010          t Arzt, Consulting, Logistik, 
rechtsanwalt, 
Eventmanagement, 
Werbeagentur, Design, 
wirkwaren und 
Strickwaren 

5169 Graben 7 1010        t   Apotheke, 
Kleidungsgeschäft, 
Kosmetikgeschäft, 

5395 Große Pfarrgasse 2 1020  t   t       Restaurant 

5503 Große 
Stadtgutgasse 

31 1020 t t         Hotel, restaurant 

5520 Grünangergasse 6 1010     t   t t  Galerie, Schmuckgeschäft, 

5751 Gumpendorfer 9 1060  t  t t    t t Restaurant, bar,institut 
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Straße Kultur Konzepte, Gemüse 
groß Händler  

5929 Hahngasse 2 1090    t       Universität 

6594 Herrengasse 13 1010      t   t  Außenministerium, 
Kunstraum 
Niederösterreich 

6605 Herrengasse 7 1010      t     Bundesinnenministerium 

6731 Himmelpfortgass
e 

4 1010    t  t     Bundeskanzleramt 
Finanzen Archiv, 
Bundesfinanzministerium 
Bibliothek 

6808 Hofenedergasse 3 1020     t     t Rechtsanwalt, 
sicherheitstechnik, city 
wheel 

6937 Hollandstraße 15 1020  t   t   t  t Restaurant, apotheke, 
Werbeagentur 

6985 Hornbostelgasse 16-18 1060     t     t Ingenieurbüro, grafiker 

7267 Johann-Böhm-
Platz 

1 1020   t t   t   t Österreichischer 
Gewerkschaftsbund, bfi, 
EDV, post, bank, Verlag 

7433 Josefsplatz 5 1010        t t  Antiquitäten 

7502 Josefstädter 
Straße 

7 1080        t  t Friseur, Consulting, 
Kleidungsgeschäft 

7573 Judenplatz 8 1010  t  t     t  Museum, kaffee, 
Bibliothek, Archiv 

7649 Kaiserstraße 26 1070     t      Psychotherapie, edv 

7896 Karlsplatz 5 1010         t  Kunst museum 

7929 Kärntner Ring 42190 1010  t      t  t Shopping center, 
Rechtsanwalt, consulting, 
Steuerberater, 
Versicherungen, Film 
Produktion,  

7947 Kärntner Straße 21-23 1010  t     t t  t Kaffee, Kleidungsgeschäft, 
Kreditkarten firma, 
Immobilienfirma, 
consulting 

8214 Kirchengasse 1 1070 t       t  t Kleidungsgeschäft, Hotel, 
rechtsanwalt, Consulting 

8251 Kirchengasse 44 1070  t   t   t   Kaffee, möbelgeschäft 
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8637 Kohlmarkt 11 1010     t   t t t Zahnarzt, rechtsanwalt, 
Atelier, Kleidungsgeschäft, 
apotheke, 
schmuckgeschäft, 
parfümerie 

8702 Kollergasse 14 1030          t Holzgroßhandel 

9167 Lammgasse 8 1080    t t      Universitäts Institut 

9362 Landstraßer 
Hauptstraße 

8 1030     t   t  t Arzt, notar, möbelgeschäft, 
elektronikgeschäft 

9397 Lange Gasse 25 1080  t   t     t Schneiderei, restaurant 

9480 Lassallestraße 7b 1020          t Edv, Consulting, und 
Schinnerl buero, 
marketing, M and A 

9514 Laudongasse 26 1080     t   t  t Parkett geschäft, 
physiotherapeut, 
spiegelgeschäft 

9564 Laudongasse 8 1080 t t         Hotel, restaurant 

9792 Leopold-Rister-
Gasse 

5 1050     t     t Beauty, Consulting, Arzt 

10411 Linke Wienzeile 102 1060  t       t t Restaurants, 
Beratungszentrum, 
Kulturzentrum 

10548 Lothringerstraße 16 1030     t     t Rechtsanwalt, consulting, 
Finanzberatung,, 

10608 Löwengasse 37 1030        t  t Second hand geschäft, 
Kleidungsgeschäft, bäcker, 
friseur 

10988 Margaretenstraß
e 

33 1040     t   t   Möbelgeschäft 

11006 Margaretenstraß
e 

52 1040  t   t   t  t Architekt, Restaurant, 
Kleidungsgeschäft 

11118 Mariahilfer 
Straße 

111 1060        t   Kleidungsgeschäft 

11123 Mariahilfer 
Straße 

117 1060  t   t   t   Restaurant, beauty, 
Kleidungsgeschäft, arzt, 
psychotherapie, consulting 

11146 Mariahilfer 
Straße 

22 1070  t  t  t t t   Restaurant, 
Kleidungsgeschäft, Technik 
geschäft, Bank, militärische 
schule, militärisches 
Immobilien Management 
Zentrum 
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11160 Mariahilfer 
Straße 

4 1070     t   t  t Kleidungsgeschäft, Medien 
firma, cortical.io 

11165 Mariahilfer 
Straße 

49 1060        t   Kleidungsgeschäft, 
werkzeuggeschäft,, 
Kosmetikgeschäft, Sex 
geschäft 

11193 Mariahilfer 
Straße 

76 1070     t   t  t Rechtsanwalt, 
Kleidungsgeschäfte, 
orthopädie 

11540 Messeplatz 1 1020  t         Messe Wien 

11658 Minoritenplatz 3 1010    t  t     Bildungsministerium 

11692 Mittersteig 13 1040          t Architekt, IT, Großküche, 
Sachverständiger 

12125 Naglergasse 25 1010        t   Stahlgroßhandel, 
Badutensilien geschäft, 
Filmproduktion 

12283 Neubaugasse 38 1070         t t Theater, Tanzstudio, 
kaffeemaschinen Vertrieb 

12289 Neubaugasse 43 1070    t      t Fortbildung, 
Finanzberatung, zeitarbeit, 
Consulting, reisen, edv, 
rechtsanwalt 

12391 Neulinggasse 29 1030  t    t     Botschaft Elfenbeinküste, 
Consulting, restaurant 

12424 Neustiftgasse 101 1070  t   t      Kaffee, Reisebüro 

12438 Neustiftgasse 115a 1070     t     t Verlag, PR Agentur, 
erneuerbare 
energien,Ingenieur 

12472 Neustiftgasse 23 1070  t   t   t   Eisgeschäft, 
Kleidungsgeschäft, Tier 
Erziehung 

12656 Nordbergstraße 6 1090  t        t Physiotherapie, arzt, 
restaurant 

12948 Obere 
Donaustraße 

12 1020  t   t    t t Hundertwasser 
Geburtstags, friseur, 
gaststätte 

13126 Opernring 2 1010  t      t t  Opa, restaurant, Bücher 
und musik geschäft 

13233 Paniglgasse 14 1040  t         Restaurant 

13247 Pannaschgasse 6 1050    t t      Bibliothek 
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13495 Petersplatz 7 1010       t    Bank 

13681 Plößlgasse 4 1040    t t      Sprachreisen 

13777 Postgasse 19 1010     t     t Arzt, Garage 

13833 Praterstraße 14 1020     t   t  t Kleidungsgeschäft, 
Büchergeschäft, 
elterntreff. 

13939 Prinz-Eugen-
Straße 

16 1040     t t    t Botschaft San Marino, 
Steuerberatung ärzte 

14004 Rabengasse 3 1030     t    t  Theater, spö 

14022 Radetzkyplatz 2 1030  t        t Restaurant, Zahnarzt 

14026 Radetzkystraße 1 1030    t  t     Berufsrettung 

14037 Radetzkystraße 2 1030  t    t  t  t Gesundheitsministerium, 
am bäcker, friseur, 
restaurant, kindergarten 

14049 Radetzkystraße 3 1030  t   t   t   Gaststätte, bäckerei 

14247 Rathausstraße 11 1010  t   t     t Restaurant, Cafe, 
rechtsanwalt, Consulting, 
Steuerberater, edv 

14526 Reisnerstraße 40 1030     t      Rechtsanwälte, consulting, 
sport, Inkasso, mode 

14580 Rembrandtstraß
e 

5 1020     t       

14610 Rennweg 16 1030 t t         Hotel, restaurant 

14644 Rennweg 51 1030 t t         Hotel, restaurant, bar 

14700 Resselgasse 4 1040    t       Universität 

14958 Rotenkreuzgasse 11 1020     t       

14977 Rotenlöwengass
e 

19 1090     t     t Steuerberatung, 
consulting, 
medizinprodukte 

15129 Rudolfsplatz 2 1010  t   t     t Bar, sport, werbung, 
Immobilien, 

15275 Salmgasse 8 1030     t     t Ingenieur 

15575 Schiffamtsgasse 11 1020     t    t t  Kunstraum, beauty 

15626 Schimmelgasse 42222 1030     t       

15825 Schnirchgasse 14 1030      t     Gesundheitsdienst stadt 
wien 
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16040 Schönburgstraße 42285 1040      t     Botschaft belgien 

16045 Schönlaterngass
e 

11 1010  t   t     t Gaststätte, bar, arzt, 
Immobilien, 
gebäudereinigung 

16096 Schottenfeldgass
e 

42096 1070  t      t  t Kaffee, Kleidungsgeschäft, 
architekt, arzt, Consulting 

16189 Schottenring 16 1010          t Business center 

16190 Schottenring 17 1010      t t t t t Versicherung, 
eisenwarengeschäft, 
münzgeschäft, bank, 
Honorarkonsulat von 
rumänien, Consulting, 
Finanzberatung, 

16233 Schreygasse 14 1020     t       

16273 Schrotzbergstraß
e 

6 1020     t     t Beauty, Eventmanagement 

16304 Schubertring 11 1010 t      t t  t Hotel, Bäcker, Arzt, 
Steuerberater, investment 
Beratung,  

16462 Schwarzenbergpl
atz 

16 1010    t  t  t  t Rechtsanwalt, französische 
OSZE, französische UN, 
Privat Bank, Arzt, super 
markt 

16508 Schwarzspanierst
raße 

13 1090  t  t t    t  Albert-schweitzer-haus 

16561 Schwindgasse 14 1040     t    t t Kroatischer Kulturverein, 
Ingenieurbüro, 
Eventmanagement 

16606 Sechskrügelgasse 2 1030  t   t   t  t Growshop, 
Kleidungsgeschäft, kaffee, 
sportgeschäft, 
Pflanzengeschäft, Beauty, 
apotheke 

16687 Seidengasse 27 1070     t       

16709 Seidengasse 9 1070          t Verlag, Dachverband 
soziale Einrichtungen, 
Consulting, Krankenhaus 
bedarf, Logistik, customer 
management, hotel 
grosshandel, EDV 

16768 Seilerstätte 11 1010     t     t Aluminium Großhandel, 
Verlag, arzt 
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16825 Sensengasse 3 1090    t      t Ärzte Zentrum, Bibliothek 

17050 Sigmundsgasse 16 1070     t     t Immobilien, 
Schmuckdesign 

17064 Simon-Denk-
Gasse 

42159 1090    t t      Bibliothek 

17094 Singerstraße 27 1010          t Rechtsanwalt, Beauty, 
Consulting, 

17193 Sonnenfelsgasse 19 1010    t  t     Österreichische Akademie 
der Wissenschaft, Institut 
für 
Informationsverarbeitung, 
Publikums Forschung, 
Seelsorgezentrum 

17952 Stubenring 1 1010    t  t     Bundesministerium für 
Wissenschaft Forschung 
und Wirtschaft, 
Bundesministerium für 
Land und Forstwirtschaft 

18020 Stumpergasse 65 1060     t  t    Bank 

18179 Taborstraße 81 1020   t  t     t Personalvermittlung 

18304 Theobaldgasse 9 1060  t   t   t   Schmuckgeschäft, 
Kleidungsgeschäft, bar 

18643 Türkenstraße 8 1090          t Architekt, psychologe, 
Kommunikation 

18959 Veithgasse 3 1030     t    t  Serbische orthodoxe Kirche 

18961 Veithgasse 5 1030     t t     Australische Botschaft 

19446 Währinger 
Straße 

68 1090  t   t   t   Restaurant, 
elektrofachgeschäft 

19478 Walfischgasse 13 1010    t  t     Tüv österreich 

19498 Wallensteinplatz 8 1200  t     t  t  Konzerte, bar, Bank, post 

19610 Wallnerstraße 3 1010        t  t Kleidungsgeschäft, 
rechtsanwalt, Consulting, 
Steuerberater, friseur, 
vermögensberatung 

19696 Wassergasse 2 1030     t     t Psychotherapie 

19765 Webgasse 43 1060     t   t  t Kaffeegeschäft, arzt, 
sportstudio, 
Psychotherapie 

20126 Widerhofergasse 3 1090     t     t Steuerberatung 
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20139 Wiedner Gürtel 16 1040     t      Geschlossenes lokal 

20253 Wiedner 
Hauptstraße 

46 1040     t      Rechtsanwalt, Foto Büro 

20448 Wimmergasse 7 1050     t     t Hausverwaltung 

20468 Windmühlgasse 15 1060     t   t  t Kleidungsgeschäft, 
blumengeschäft, 
psychotherapie 

20481 Windmühlgasse 32 1060  t   t    t t Restaurant, bar, Ingenieur, 
Künstlermanagement 

20838 Ziegelofengasse 37 1050  t   t      Restaurant, Filmemacher, 
Ausstellungs utensilien 

20987 Zirkusgasse 28 1020     t     t Autowerkstatt 

21021 Zollergasse 13 1070          t Sport, Design, Fotografie, 
neos 

21049 Zollergasse 5 1070  t   t     t Café, Bar, Marketing 

21132 Lindengasse 22 1070     t   t  t Geschäft, 
Kleidungsgeschäft, 
Finanzberatung, 

21193 Schönbrunner 
Straße 

47 1050     t     t Werbeagentur, Maler 

21218 Webgasse 6 1060     t     t Beauty 
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