

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Geospatial Information Retrieval for POIs with the use of
a Data Mining System“

verfasst von / submitted by

Alexander Czech BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2015 / Vienna 2015

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 856

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Masterstudium
 Kartographie und Geoinformation UG2002

Betreut von / Supervisor:

Mitbetreut von / Co-Supervisor:

Ass.-Prof. Mag. Dr. Andreas Riedl

-

Table of Contents

Table of Contents

Table of Contents .. ii

Table of Figures .. vi

Table of Maps... viii

Table of Tables ... ix

List of Abbreviations ... x

Abstract .. xi

Kurzfassung .. xi

1. Introduction .. 1

1.1. Aim of the Thesis .. 1

1.2. Research question .. 2

1.3. Structure of Research design ... 3

2. Introduction to Data Mining and Big Data .. 4

2.1. Data Mining .. 4

2.2. Big Data .. 6

3. The Common Crawl Dataset ... 8

3.1. What is Web Crawling .. 8

3.2 The Common Crawl Dataset ... 9

3.3. The Common Crawl Dataset Index... 11

3.4 Downloading the Common Crawl Dataset .. 14

4. OpenStreetMap Geocoder .. 19

4.1. OpenStreetMap ... 19

4.2. Data Structure and Source ... 19

4.3. Extracting Addresses .. 21

4.4. Write Addresses to a Database .. 27

5. Common Crawl Database Transfer ... 31

ii

Table of Contents

5.1. Folder and file structure .. 31

5.2. Subdivide files into individual HTML files .. 33

6. HTML Tag Stripper .. 37

6.1. Find Vienna .. 37

6.2. Remove HTML Tags .. 38

7. Geotagging .. 42

7.1. Creating an index in PostgreSQL .. 42

7.1.1. Converting a text to a list of stemmed tokens .. 42

7.1.2. Creating a Token Index ... 45

7.2. Create a unique set of Addresses and prepare them for Search Queries 46

7.3. Preparing the SQL Statement for Geotagging ... 48

7.4. Joining Addresses with HTML Documents ... 52

7.5. Discussion ... 55

8. Finding Links .. 57

8.1. Preparation .. 57

8.1. Link Extraction .. 58

8.2. Geotagging the found linked websites .. 61

8.3. Discussion ... 62

9. The Vector Space Model ... 65

9.1. The Document Vector .. 65

9.2. Term frequency Inverse Document Frequency ... 66

10. Categories for classification .. 69

10.1. Daseinsgrundfunktionen .. 69

10.2. Classes for addresses ... 70

11. Co-occurrence Groups .. 74

11.1. Introduction Natural Language Processing .. 74

11.2. Part-of-speech Tagging .. 74

11.3. POS tagging Wikipedia ... 77

iii

Table of Contents

11.4. Co-occurrence .. 80

11.5. Generating Co-occurrence query expansion groups from Wikipedia 83

12. Address Classification ... 87

12.1. Creating the Vector Space ... 87

12.1.1. Creating a unique set of HTML documents .. 87

12.1.2. Creating the HTML documents Vector Space ... 89

12.1.3. Creating the Wikipedia Vector Space ... 90

12.1.4. Combined Vector Space .. 92

12.2. Calculating the idf-tf vectors .. 93

12.2.1. Calculating Inverse Document Frequency per Term... 93

12.2.2. Calculating the Term Frequency-Inverse Document Frequency Vector for HTML Files ... 94

12.2.3. Calculating the tf-idf Vector for Wikipedia Co-Occurrences groups and search terms 97

12.2.4. Cosine Similarity Calculations ... 101

12.3. Address Classification .. 103

13. Mapping .. 121

13.1. Selecting and Mapping a Control Group .. 121

13.2. Comparing the Control Group to Vector Classification ... 122

14. Conclusion ... 129

15. References .. 132

15.1. Scientific References .. 132

15.2. Programming Library References and Technical Documentations .. 135

15.3. Websites .. 137

Annex ..xiii

Source Code ..xiii

Threading Example..xiii

DBconnector ... xiv

OSM Parser ... xv

Disassemble HTML .. xviii

iv

Table of Contents

SetVienna ... xx

Tag Stripper .. xxii

Geo Tagging .. xxiv

Find Links .. xxvii

Wikipedia POS Tagging ... xxix

Co-occurrence Group Generation .. xxx

Inverse Document Frequency ... xxxi

Wikipedia Vector Space ... xxxii

HTML Vector Space ... xxxiii

Combined Vector Space .. xxxiv

HTML Tokenization .. xxxv

TFIDF Vector HTML Documents .. xxxvi

TFIDF Vector for Search Term and Co-ccurence Groups ... xxxvii

Cosine Similarity .. xxxviii

Address Classification .. xl

Database Schema ..xlii

Mapping Results... xliii

Lebenslauf ... liii

v

Table of Figures

Table of Figures

FIGURE 3.1 ARC FILE EXAMPLE (ARCHIVE.ORG) .. 10

FIGURE 3.2 EXAMPLE BINARY TREE (MANNING ET AL, 2009) ... 12

FIGURE 3.3 EXAMPLE B-TREE (MANNING ET AL, 2009) ... 13

FIGURE 3.4 INDEX CHECK EXAMPLE DERSTANDARD.AT .. 14

FIGURE 3.5 INDEX CHECK EXAMPLE .AT TLD ... 14

FIGURE 3.6 CODE EXAMPLE URL STUMP CREATION ... 15

FIGURE 3.7 THREADING CODE ... 16

FIGURE 3.8 STARTING AND CONTROLLING THREADS ... 17

FIGURE 4.1 OSM DATA EXAMPLE (OPENSTREETMAP WIKI; OSM XML) .. 20

FIGURE 4.2 EXAMPLE ADDRESS TAG (OPENSTREETMAP.ORG)... 21

FIGURE 4.3 OPENSTREETMAP XML PARSER START ELEMENT PART ONE ... 22

FIGURE 4.4 OPENSTREETMAP XML PARSER START ELEMENT PART TWO .. 23

FIGURE 4.5 OPENSTREETMAP XML PARSER START ELEMENT PART THREE .. 24

FIGURE 4.6 OPENSTREETMAP XML PARSER END ELEMENT PART ONE ... 24

FIGURE 4.7 OPENSTREETMAP XML PARSER END ELEMENT PART TWO .. 25

FIGURE 4.8 OPENSTREETMAP XML PARSER END ELEMENT PART THREE... 26

FIGURE 4.9 DATABASE IMPORT AND CALLING DATABASE IMPORT FROM THE PARSER .. 27

FIGURE 5.1 SCHEMATIC EXAMPLE FILE STRUCTURE ... 31

FIGURE 5.2 DATABASE TRANSFER SCRIPT PART ONE .. 32

FIGURE 5.3 DATABASE TRANSFER SCRIPT OPEN_PATHS() METHOD ... 33

FIGURE 5.4 TRANSFER SCRIPT DATABASE_EXPORT() METHOD PART ONE .. 33

FIGURE 5.5 TRANSFER SCRIPT DATABASE_EXPORT() METHOD PART TWO ... 34

FIGURE 5.6 TRANSFER SCRIPT DATABASE_EXPORT() METHOD PART THREE ... 35

FIGURE 5.7 TRANSFER SCRIPT DATABASE_EXPORT() METHOD PART FOUR .. 35

FIGURE 5.8 WRITEMANYTOTABLE() METHOD .. 36

FIGURE 6.1 SET VIENNA ... 37

FIGURE 6.2 FETCHING HTML DOCUMENTS TO STRIP TAGS .. 39

FIGURE 6.3 REGULAR EXPRESSION TAG STRIPPER ... 40

FIGURE 6.4 WRITING STRIPPED HTML DOCUMENTS TO THE DATABASE ... 41

FIGURE 7.1 INDEX CREATION ... 46

FIGURE 7.2 POPULATE TABLE ADDRESSESUNIQUE ... 47

FIGURE 7.3 PREPARING ADDRESSES FOR SEARCH QUERIES ... 47

FIGURE 7.4 SQL STATEMENT CONSTRUCTION PART ONE .. 49

FIGURE 7.5 SQL STATEMENT CONSTRUCTION PART TWO .. 51

FIGURE 7.6 PERFORM THE JOIN OF ADDRESSES WITH HTML DOCUMENTS .. 52

vi

Table of Figures

FIGURE 8.1 CREATING THE URL DICTIONARY AND THE HTML JOINED TO ADDRESSES DICTIONARY... 57

FIGURE 8.2 FINDING LINKS AND CONVERTING THEM ... 59

FIGURE 8.3 MALFORMED LINK EXAMPLES.. 60

FIGURE 8.4 GEOTAG LINKED WEBSITES .. 61

FIGURE 9.1 COSINE SIMILARITY EXAMPLE (MANNING ET AL.; 2009;) .. 66

FIGURE 9.2 STOP WORD LIST OF 25 WORDS THAT ARE COMMON IN THE REUTERS CORPUS VOLUME 1 (MANNING ET AL.; 2009)

 ... 67

FIGURE 11.1 CREATING THE FILE LIST .. 78

FIGURE 11.2 EXECUTING THE POS TAGGER .. 79

FIGURE 11.3 MULTIDIMENSIONAL SCALING OF CO-OCCURRENCE VECTORS. (SOURCE: LUND AND BURGESS 1996) 83

FIGURE 11.4 CO-OCCURRENCE GENERATION FROM WIKIPEDIA .. 84

FIGURE 12.1 HTML DOCUMENT VECTOR SPACE CODE ... 89

FIGURE 12.2 WIKIPEDIA VECTOR SPACE CODE ... 91

FIGURE 12.3 COMBINE WIKIPEDIA AND HTML FILE VECTOR SPACE .. 92

FIGURE 12.4 CODE FOR INVERSE DOCUMENT FREQUENCY CALCULATION .. 93

FIGURE 12.5 HTML DOCUMENT TOKENIZATION ... 95

FIGURE 12.6 TF-IDF VECTOR FOR DOCUMENTS .. 96

FIGURE 12.7 NORMALIZED TF-IDF VECTOR FOR CO-OCCURRENCE GROUPS AND SEARCH TERMS... 98

FIGURE 12.8 COSINE SIMILARITY CALCULATION ... 102

FIGURE 12.9 BREAKS CODE EXAMPLE .. 105

FIGURE 12.10 A)-I) VALUE DISTRIBUTION FOR ALL CLASSES AT THE ADDRESSES FOR CO-OCCURRENCE GROUPS AND SEARCH TERMS

(N= 6284).. 109

FIGURE 13.1 A)-I) COMPARING CONTROL GROUP TO VECTOR CLASSIFICATION ... 126

FIGURE 13.2 A),B) CORRELATION BETWEEN ORIGINAL COUNT, COMPLETE COUNT AND VECTOR CLASSIFICATION 127

FIGURE 14.1 CORRECTLY CLASSIFIED HOTEL ADDRESSES COMPARED TO CLASSIFICATION VALUE RANGE 131

vii

Table of Maps

Table of Maps

MAP 1.1 SEGREGATED ACTIVITY SPACES FOR TWITTER USERS OF THE WEST AND EAST END IN LOUISVILLE KENTUCKY (SHELTON ET

AL.; 2015; P.9) ... 2

MAP 4.1 EXTRACTED ADDRESSES ... 29

MAP 7.1 DISTRIBUTION OF ADDRESSES JOINED TO HTML DOCUMENTS ... 54

MAP 8.1 RESULT OF JOINING LINKED HTML DOCUMENTS TO ADDRESSES .. 63

MAP 10.1 A),B) FUNCTIONAL SUBDIVISION OF THE VIENNESE INNER CITY A) GERMAN B) ENGLISH TRANSLATION (FASSMAN AND

HATZ; 2002; P. 37) .. 71

MAP 12.1 A) - R) CLASSIFICATION RESULTS FOR EVERY INDIVIDUAL CATEGORY AND METHOD .. 119

MAP 13.1 RANDOMLY SELECTED CONTROL GROUP .. 121

viii

Table of Tables

Table of Tables

TABLE 3.1 A), B) REPRESENTATIVENESS OF TLDS IN THE COMMON CRAWL CORPUS 2012 (SPIELGER; 2013) 11

TABLE 7.1 WEBSITE MATCH FREQUENCY PER ADDRESS ... 55

TABLE 7.2 TOP TEN MATCHED ADDRESSES ... 55

TABLE 8.1 URLPARSE.URLJOIN() EXAMPLES .. 60

TABLE 8.2 ASSOCIATED WEBSITE FREQUENCIES PER ADDRESS ... 64

TABLE 8.3 ASSOCIATED WEBSITE FREQUENCIES PER ADDRESS ... 64

TABLE 9.1 COLLECTION FREQUENCY (CF) AND DOCUMENT FREQUENCY (DF) DIFFERENT BEHAVIOR (MANNING ET AL.; 2009) 67

TABLE 9.2 EXAMPLES FOR IDF VALUES BASED ON THE REUTERS COLLECTION CONTAINING 806,791 DOCUMENTS (MANNING ET AL.;

2009) .. 68

TABLE 10.1 CLASSES AND THEIR CORRESPONDING QUERIES ... 73

TABLE 11.1 THE PEEN TREEBANK II POS TAG SET (SANTORINI 1990) ... 75

TABLE 11.2 FIVE NEAREST NEIGHBORS FOR TARGET WORDS (SOURCE: LUND AND BURGESS 1996) .. 82

TABLE 11.3 CO-OCCURRENCE GROUPS WITH TOP 5 TERMS AND THE NUMBER OF THEIR OCCURRENCES 86

TABLE 12.1 TOKENIZED CO-OCCURRENCE GROUPS WITH TOP 5 TERMS AND THE NUMBER OF THEIR OCCURRENCES 99

TABLE 12.2 SIMILARITY MATRIX CO-OCCURRENCE GROUPS .. 100

TABLE 12.3 SIMILARITY MATRIX SEARCH TERMS .. 101

TABLE 12.4 CLASSIFICATION PROBLEM NUMBER ONE ... 104

TABLE 13.1 SEARCH TERM VECTOR CO-OCCURRENCE GROUP VECTOR FITNESS COMPARISON .. 128

ix

List of Abbreviations

List of Abbreviations

CF - Corpus Frequency

DF - Document Frequency

HTML - HyperText Markup Language

IDF - Inverse Document Frequency

IDF -TF - Inverse Document Frequency - Term Frequency

NLP - Natural Language Processing

NLTK - Natural Language Tool Kit

OSM - OpenStreetMap

POS - Part of Speech

SLD - Second Level Domain

SQL - Structured Query Language

TF - Term Frequency

TLD - Top Level Domain

URL - Uniform Resource Locator

UTF-8 - (Universal Coded Character Set + Transformation Format—8-bit)

VGI - volunteer geographic information

XML - Extensible Markup Language

x

Abstract

Abstract

Up to now, most works about “Neogeography” and “Big Geo-Data” focus on using geotagged social

media information for analysis. But this thesis argues that also non-geotagged websites have

descriptive capabilities that are of interest. For this, a set of 8 million HTML crawled documents is

processed. The crawled data is made manageable and transferred into a PostgreSQL database. To

geotag the HTML documents, an address dataset is created from OpenStreetMap data. Multiple

variations of each address are then searched for within the HTML documents. Documents containing

one or more addresses are geotagged with the coordinates of those addresses. Lastly, websites

linking to geotagged websites are also associated with those geotags. To limit the scope of the data

that needs to be processed, the HTML documents all have a URL that belongs to the .at top-level

domain and the addresses stem from the 1st to 9th and 20th districts of Vienna. This processing

creates an information landscape.

The second part of the thesis is to explore the analytic capabilities of this information landscape. A

classification attempt based on the information is made. For this, the HTML documents are

transformed into a vector in the vector space model. For 9 classes, 18 classification vectors are

created and compared with cosine similarity to the HTML document vectors. The results are then

associated and summarized on an address basis. These summarized results are sorted on an address

level in two steps: once into relevant and irrelevant data and a second time based on whether or not

they belong to a class. The results of this classification attempt are mixed. While they only achieve

about 19 to 25% correct classifications, they clearly prove that the data has an underlying structure

referring to the point of interest they are attached to.

Kurzfassung

Bisher lag der Fokus der Arbeitsfelder “Neogeography“ und “ Big Geo-Data“ auf der Verwendung von

geotagged Informationen aus sozialen Medien. Diese Arbeit versucht zu zeigen, dass auch

Webseiten, die keinen geotag im bisherigen Sinne besitzen, den Raum beschreibende Eigenschaften

besitzen können. Dafür wurden etwa 8 Millionen gecrawlte HTML-Dokumente verarbeitet. Diese

rohen gecrawlten Daten sind für Analysen handhabbar gemacht worden und in eine PostgreSQL-

Datenbank überführt worden. Um sie mit geotags zu versehen ist ein Adressdatensatz aus

OpenStreetMap-Daten erstellt worden. Die HTML-Dokumente sind nach verschiedenen

Schreibweisen derselben Adressen aus diesem Datensatz durchsucht worden. Dokumente, die so

xi

Kurzfassung

einer Adresse oder mehreren Adressen zugeordnet werden konnten, sind mit den Koordinaten

dieser Adresse oder Adressen geotagged worden. Um den Umfang der zu verarbeitenden Daten zu

begrenzen sind die HTML-Dokumente auf diejenigen beschränkt worden, die eine URL besitzen, die

zu dem Top-level Domain-Bereich von .at gehören und die Adressen sind beschränkt auf den 1. bis 9.

sowie 20. Gemeindebezirk Wiens. Dies erzeugt eine Informationslandschaft.

Im zweiten Teil der Arbeit geht es darum, die analytischen Möglichkeiten dieser

Informationslandschaft zu untersuchen. Dafür sind die HTML-Dokumente in einen Dokumenten-

Vektor im Vektor-Raum-Model überführt worden. Für 9 Klassen werden 18 Klassifizierungsvektoren

erzeugt und mit Hilfe der Kosinus-Ähnlichkeit werden diese mit den HTML-Dokument-Vektoren

verglichen. Die Ergebnisse werden dann den Adressen zugeordnet und zusammengefasst. Die so

zusammen gefassten Ergebnisse werden auf Adressenebene in zwei Schritten sortiert. Erstens

werden die Daten für jede Klasse und jede Adresse in relevante und nicht relevante Daten

unterschieden und ein weiteres Mal nach Zugehörigkeit zu einer Klasse oder nicht. Die Ergebnisse

dieser Klassifizierungsmethode sind durchwachsen. Sie erreichen nur zwischen 19 und 25% korrekte

Klassifikationen, aber es ist möglich nachzuweisen, dass es eine den Daten zugrunde liegende

Struktur gibt, die in Verbindung zu den Adressen steht.

xii

Introduction

1. Introduction
The way people decide where they go when they want to do A or B is increasingly based on

information found on the Internet. This can be inquiries like finding a grocery store that is still open

or a scenic hiking route. The Internet is a huge body of information and communication that

describes all kind of things, but also a space in a geographical sense. This thesis is an attempt to

utilize parts of the available information.

1.1. Aim of the Thesis

In the last couple of years, there have been research papers that use geotagged information from

social media sites like Twitter and Flickr. A good example of how useful information from Flickr can

be is the creation of tourist density attractiveness maps. Spatial photography patterns of users that

are not residents of a city or area are cumulated, thus creating a tourist attractiveness hot spot map.

Also, temporal spatial patterns can used be to show in which order attractions are typically visited

(PLADINO ET AL.; 2015; pp. 1-17).

Another study uses the geotagged Twitter data related to the University of Kentucky riots after the

2012 NCAA Championships to criticize the often perceived notion of letting “big” (geo-)data speak

for itself. This is because social media is often outlier-driven and the user demographics are often

skewed. Another point the paper raises is that just because information is geotagged does not mean

that the information is about the place where it is geotagged. Also, the data might include

information about other places not referenced by the geotag. The study argues for using implicit

geotags, to integrate temporality and, enhance the big data with non-user generated information

like census- and social data (CRAMPTON ET AL.; 2012; pp. 1-25).

The last example for the use of social media sites is a paper that looks at the segregation and

mobility in Louisville, Kentucky. For this twitter users are identified that live either in the East or

West End of the city. The daily activity space of those users is analyzed. One of the results of this

work is Map 1.1. The odds ratio of the map shows when values approach 1 a relative parity for the

chance that users of West or East End are tweeting within this area. A value smaller than 1 shows a

higher chance of people from the west end of the city tweeting in this area. In Areas with a value

above 1 the chances of twitter users from the East end of the city tweeting is higher.

1

Introduction

Map 1.1 Segregated Activity Spaces for Twitter Users of the West and East End in Louisville Kentucky

(SHELTON ET AL.; 2015; p.9)

The analysis shows that there is a divide but that Users of the predominantly poorer west end

neighborhood are much more mobile while the users of for the wealthier east end are much more

confined to their neighborhood (SHELTON ET AL.; 2015; p.1-17).

While the paper from Crampton et al. (2012) proposes to use other information about places not

included in geotags there are so far no works on using standard webpages and HTML documents to

map and analyze space.

1.2. Research question

The aim of this thesis is to bring together the techniques used by information retrieval systems.

These systems are used as discussed before by humans to gain knowledge about space. The

information retrieval systems techniques are used on HTML documents that share one or more

geotags. For this the HTML documents also need to be geotagged.

2

Introduction

From this three research questions can be formulated.

1. How can unstructured information be retrieved and made usable?

2. How can this information be linked to places?

3. How can context be derived from this now structured and geotagged information?

1.3. Structure of Research design

None of this is do able by out of the box software solutions most tools of this thesis are created by

translating concepts of the fields data mining, Natural language processing, and information retrieval

into code.

The first part of the work is dedicated to created usable data from two big datasets. One consists of

raw crawled data and the other OpenStreetMap data. From the OpenStreetMap data a dataset for

geotagging a selected part of the crawled data is created. This creates a landscape of spatially

distributed information. The geotagged information is then treated with natural language and

information retrieval methods. Finally an attempt of classification is made for addresses that could

be matched with HTML documents. The machine classification will be evaluated by a hand

classification. The scope of the thesis will be the 1st to 9th and 20th district of Vienna, Austria. To

further limit the scope the crawled dataset will be limited to URLs of the .at top-level domain (TLD).

3

Introduction to Data Mining and Big Data

2. Introduction to Data Mining and Big Data

The terms data mining and Big Data both describe the underlying methods and theories in this

thesis. This chapter is meant to give an introduction and overview about what data mining and Big

Data is and how it relates to this thesis.

2.1. Data Mining

Data mining as a whole is a very broad field that spans many disciplines, for example statistics,

database systems, pattern recognition and math, some of which the thesis touches upon. The goal

that brings all these fields together is to try to discover patterns that are interesting or novel in a

large amount of data. Data mining analysis can roughly be divided into data exploration, frequent

pattern mining, classification and clustering. These are the parts of what can be seen as classical data

mining. Which is a math and statistics heavy approach and assumes the data is already available in a

mathematical usable way. But data mining is only part of a bigger knowledge discovery process. In

this process there is a pre and post processing of the data. Examples for pre-processing are data

extraction, data cleaning, data reduction and feature construction. Pattern and model interpretation

are typical post-processing steps as well as hypothesis confirmation and generation. Both the

processing steps and data mining are highly iterative and work interdependent (ZAKI AND MEIRA;

2014; pp. 25-26).

Exploratory data analysis utilizes key statistical values to explore features of a data set. These values

show the centrality, dispersion and shape of the data. Discarding the assumption of independent

and identically distributed variables or objects, data as a graph approach is a useful tool in the

exploratory data analysis. Kernel methods to calculate pairwise similarity with the dot product can

be utilized here. Another part of exploratory data analysis is to reduce the data just to the relevant

parts. This can either be done by feature selection or by reducing the dimensions. Example methods

would be principal component analysis and data sampling methods (ZAKI AND MEIRA; 2014; pp. 26-

27).

Extracting useful or interesting patterns from data is the field of frequent pattern mining. Patterns

can be co-occurring values or sequences of values. The task is to look for those co-occurrences or

sequences that differ from the normal value distribution. Relationships between points can be either

explicit positional, temporal, or arbitrary (ZAKI AND MEIRA; 2014; p. 27).

4

Introduction to Data Mining and Big Data

Clustering is the task to find objects that are “naturally” similar and grouping them together into

groups or clusters. The goal is to have a cluster of objects that are most similar to each other and as

dissimilar as possible to all other objects. There are a couple of different clustering methods for

example hierarchy clustering, centroid based clustering, and density based clustering. Every

clustering method also has different ways to be implemented (ZAKI AND MEIRA; 2014; pp. 28-29).

Different from clustering, classification is not about finding naturally similar groups, but rather about

creating a blueprint of one or more groups and labelling the data points according to those groups.

For this a classifier is needed that uses the blueprint to decide if a data point is part of one of the

classes. The blueprint for the classes can be either learned or created. In order to learn a

classification, a group of data points already needs to be correctly classified; these points are called

the training set. The classifier then can “learn” from the training set and create a blueprint. Examples

for machine learning algorithms are decision trees, probabilistic classifiers and support vector

machines. The other option is to create a blueprint for the classifier by hand (ZAKI AND MEIRA; 2014;

pp. 29-30).

A sub-group that falls within the data mining field is mining text based information from structured

or unstructured documents. The field can again be divided up in many different groups, but the

relevant ones for this thesis are text mining, eXtensible Markup Language (XML) mining and web

mining. What applies to all of them is that they need much pre-processing, as can be also seen in this

thesis. The increased need for pre-processing is manifold. The main obstacles are the following. The

data structure has to be analyzed and understood to make the document useable and extract

information. The text data needs to be transformed in such a way that it becomes mathematical and

statistically useful. Raw data amount can be very big, text data is unstructured and the meaning can

be fuzzy (TAN; 1999; pp. 65-71), (COOLEY ET AL.; 1997; pp. 558-567), (NAYAK ET AL.; 2002; pp. 660-666).

The outline of text mining can be split into two parts. The first part is to transform the text in an

intermediate format. The kind of intermediate format depends on what analysis is planned in the

second part. A group of documents can be transformed into a graph that shows how they relate to

each other or each document can be transferred into an intermediate format. The second part is to

perform a form of knowledge distillation on the intermediate format, for example to sort the

documents depending on their content (TAN; 1999; pp. 65-68).

The term web mining can mean two different things. The first meaning is in the sense of mining

content from the Internet. The second meaning is web usage mining that analyzes the access

patterns of web users. For this thesis only the first one is of interest. Slightly different from text

mining web content mining can exploited the more structured nature of html documents, for

5

Introduction to Data Mining and Big Data

example the relationship between documents can be mapped via hyperlinks. But many techniques

of text mining also apply to web content mining (COOLEY ET AL.; 1997; pp. 558-560).

XML documents are the most structured of the three discussed sources. XML documents are tree

like structured documents that can contain different kind of data and information. Examples range

from quasi HTML like documents to complex 2D or 3D shapes and models. XML mining can be

separated into content and structure mining. Whereas structure mining refers to analyzing and

extracting the shape of the XML tree and content mining is about information extraction. Because of

the rigid structure of XML documents it is possible to extract only specific information from specific

parts of the XML tree, a feature that will be exploited later in the thesis (NAYAK ET AL.; 2002; pp. 660-

666).

2.2. Big Data

The term Big Data is describing a trend rather than it is a scientific term or a specific x amount of

data. This trend is driven by the fact that computation has become ubiquitous. Computers are now

found in smartphones, laptops, TVs, cars, fridges, personal sensors and so on. All these computers

create a flood of information that can be analyzed with clusters of computers and sophisticated

software tools. This duality of data creation and analysis on a big scale creates the knowledge

infrastructure also called Big Data (BOLLIER AND FIRESTONE; 2010; pp. 1-10).

Examples for the use of this infrastructure can be found with companies like Google, which is using

search engine queries to predict flu outbreaks and unemployment trends long before government

statistics can show these information. It is also used by credit card companies to create heuristics

that detect credit card fraud and identify consumer purchasing patterns. This is done by cross-

examine large amounts of financial, personal and census data (BOLLIER AND FIRESTONE; 2010; pp. 1-9).

Big data techniques are used in medicine to compare health records on a large scale to find valuable

correlation between prescribed treatments and outcomes. Social-networking sites data mine the

information of their users for consumption preferences to create better advertisement or sell the

information to marketing companies. Also geo-location data can play an influential role, by tracking

the length of time consumers are willing to travel to a shopping center, it is possible to measure the

consumer demand in an economy (BOLLIER AND FIRESTONE; 2010; pp. 1-9).

This knowledge infrastructure can provide valuable and interesting insights into society that were

not possible before. But it also poses significant threats. Most of the players are large corporations

and nation states that can use the techniques for surveillance or manipulate persons into buying

products. This endangers personal privacy, civil liberties and freedom. Also most of the data

6

Introduction to Data Mining and Big Data

collection happens without informed consent of the individuals that cannot assess the impact it is

going to have on their lives (BOLLIER AND FIRESTONE; 2010; pp. 1-9).

Big Geo-Data is a sub field of Big Data that also uses the spatiality of data in analysis. Most of the

research done so far focuses on geotagged social media data. Crampton et al. 2015 argues that the

approach of this field is often limited by two shortcomings. One is that many analyses do not

account for the limitations of the Big Data. Limitation can for example be that social media is outlier

driven and generated by a small were skewed fraction of the population. The second shortcoming is

that many studies attach to much meaning to the geotag. They propose to compensate for those

short comings in different ways. Spatiality should go beyond the here and now and discover how the

geotagged data interlocks with other information in information networks. Also bolstering and

comparing geotagged social media against other data like news reports or census data can help

order and make sense of the information (CRAMPTON ET AL.; 2012; pp. 1-25).

7

The Common Crawl Dataset

3. The Common Crawl Dataset

This chapter is supposed to give an overview of the Common Crawl dataset that is used for the

thesis, on how Common Crawl creates the dataset by crawling the Internet. This is followed by a

discussion about the representativeness of the dataset. This will be done by comparing some basic

metrics of the dataset with metrics from other sources about the Internet. The following section

describes the structure of the available files, how they were indexed and how this index is used to

only download a selected subset of the Common Crawl dataset.

3.1. What is Web Crawling

Web crawling is the process by which webpages are gathered from the Internet. The program doing

the crawling is either referred to as a crawler, spider or web-spider. These crawlers have certain

features they must be equipped with and some others that they should be equipped with (MANNING

ET AL; 2009; p.443).

Robustness is a must feature, because many web servers contain traps for crawlers, either on

purpose or by accident. These traps get a crawler stuck in an infinite loop. A crawler must therefore

be designed to be resistant to such traps.

Politeness is the second must feature of a crawler. There are certain implicit and explicit policies

regulating if and how often a website is crawled. Probably best known is the robot.txt which

specifies if and which directories the crawler is allowed to crawl.

Features a crawler should provide are:

Distributed, which means that the crawler can be run parallel across multiple machines.

Scalability, the crawler scales up its performance as linear as possible when more machines are

added to the crawling process.

Performance and efficiency, the crawling system should use the system resources as efficient as

possible.

Quality, because a lot of web pages are of poor quality and contain little useful information for the

user, the crawler should focus first on “useful” webpages.

Freshness, a crawler should be designed in a way that it crawls a site at the same rate that the

content on the site changes.

Extensible, a crawler should be developed in a modular way, so that it can cope with fetch protocols

and new standards (MANNING ET AL; 2009; pp.443-445).

8

The Common Crawl Dataset

The operation of a crawler is fairly simple. The crawler begins with one or more provided seed URLs,

the seed set. It fetches the page for one of the uniform resource locators (URL) and then parses it.

On the page, the crawler is looking for new URLs, and adding the parsed text to the search index.

The newly found links are added to the not yet fetched URLs, also called the URL frontier. Then the

next URL from the frontier is fetched and so on (MANNING ET AL; 2009; pp.445-448).

This seemingly simple recursive task is rather complicated because of the heterogeneous nature of

the web. Many of the problems only occur when the crawler starts crawling real data. For example

the first Google crawler produced error messages in the middle of a web game, but the error only

came up after tens of millions of page downloads. To fetch only a small amount of the static web, for

example one billion webpages within a month, the crawler must still be able to download several

hundred sites per second (BRIN AND PAGE; 1998; p.10).

3.2 The Common Crawl Dataset

As described in the previous section crawling a large part of the Internet is a complex and resource

demanding and therefore costly task. Common Crawl is a nonprofit project whose goals are to allow

access to crawled information to everyone without the costs and complexities that come with

crawling the Internet independently. The data is accessible through the Amazon Web Service

(COMMON CRAWL).

Crawled information is stored in the ARC File Format. This format meets certain defined

requirements. The file must be self-contained. This means that there is no need for an Index file to

identify and unpack the archive file. The format is extensible in a way that it can be adapted to be

transferred with different network protocols. It is possible to concatenate multiple archives into one

data stream. The file is viable and there is no need of an in-file index to guarantee the files integrity.

A typical arc file is shown in Figure 3.1 (COMMON CRAWL).

9

The Common Crawl Dataset

filedesc://IA-001102.arc 0.0.0.0 19960923142103 text/plain 200 - - 0
IA-001102.arc 122
2 0 Alexa Internet
URL IP-address Archive-date Content-type Result-code Checksum
Location Offset Filename Archive-length

http://www.dryswamp.edu:80/index.html 127.10.100.2 19961104142103
text/html 200 fac069150613fe55599cc7fa88aa089d - 209 IA-001102.arc 202
HTTP/1.0 200 Document follows
Date: Mon, 04 Nov 1996 14:21:06 GMT
Server: NCSA/1.4.1
Content-type: text/html Last-modified: Sat,10 Aug 1996 22:33:11 GMT
Content-length: 30
<HTML>
Hello World!!!
</HTML>
Figure 3.1 ARC File example (Archive.org)

There are two main parts to the ARC File: Header and content. The header contains a variety of Meta

information about what was crawled, when and, by whom. The Content Part contains the actual

content of what was crawled and begins in the line following the content-length information.

Common Crawl compresses the ARC files with a compression algorithm and stores them in an

Amazon S3 bucket (ARCHIVE.ORG), (COMMON CRAWL).

The first available Common Crawl Corpus in October 2011 contained 5 billion individual pages which

equaled more than 40 TB of data. To put this in perspective Google had downloaded around a trillion

pages by 2008. But according to Google, most of this was junk information. Common Crawl employs

a page ranking algorithm to fetch only relevant webpages from the Internet (COMMON CRAWL BLOG;

Community questions).

The corpus used for this thesis was released in July 2012. Even though the thesis was written in 2014

and 2015, it is dependent on the Common Crawl URL index, which was at this time only available for

the 2012 corpus (COMMON CRAWL ATLASSIAN), (COMMON CRAWL BLOG; URL index).

Spiegler created detailed statistics for the 2012 Corpus. According to the study, the corpus consists

of 210 TB of data, 3.83 billion individual documents and 41.4 million unique second-level domains

(SLD). The goal of this paper is to determine how representative the Common Crawl Corpus 2012 is

for the whole web. For this the frequency of the 75 most common top-level domains (TLD) of the

Common Crawl Corpus 2012 has been compared to the figures of the web technology survey

provided by W3Techs. This comparison with a spearman rank correlation coefficient gave a value of

0.84 for ρ which indicates a high statistical dependency between both datasets. In Table 3.1a the 10

most over-represented and in Table 3.2b the 10 most under represented TLDs can be found. The

10

The Common Crawl Dataset

value was calculated by dividing the common Crawl frequency with the web technology survey

frequency (SPIEGLER, 2013, p. 1-6).

a) Over represented TLDs b) Under represented TLDs

Table 3.1 a), b) Representativeness of TLDs in the Common Crawl Corpus 2012 (SPIELGER; 2013)

Because of the huge amount of data and the limited resources available, this work will only draw on

data from URLs with an .at TLD. This includes all the .at special case SLDs .ac.at, .gv.at, .co.at, .or.at

and .priv.at. The Common Crawl Corpus 2012 includes 317,578 unique URLs that have an .at TLD.

This results in a relative corpus frequency of 0.0076. In comparison according to the figures of the

web technology survey .at TLDs account for 0.3% of all TLDs. The .at TLD is therefore over

represented by 2.5 in the Common Crawl Corpus 2012 (SPIEGLER, 2013, p. 3), (W3TECHS).

According to nic.at in 2012 there have been 1,121,235 domains registered in the .at TLD Zone; this

means that the 2012 corpus contains about 28% of all registered .at domains (NIC.AT; .at Report

2012).

3.3. The Common Crawl Dataset Index

As mentioned before, to use the complete corpus for this thesis is unfeasible because only limited

resources are available. So the data needs to be narrowed down to a manageable size that has the

highest probability of containing Viennese street addresses. The decision was made to only include

URLs that have an .at TLD. But since URLs within the Common Crawl Corpus are unsorted to access

only specific URLs an Index of the corpus is needed. Robertson did create such an index for the

Common Crawl Corpus 2012. In the creation of the index, there were a couple of challenges to

overcome (ROBERTSON; 2013).

The index needs to be huge because the corpus contains 3.83 Billion URLs. The average URL size is 66

bytes and an additional pointer to the file segment needs another 28 bytes. In order to merely

information, a file larger than 360 GB is needed. Because of this large amount of data needed, it is

11

The Common Crawl Dataset

not possible to create the index in random access memory, but it still needs to be fast (ROBERTSON;

2013).

The index should be accessible by a wide variety of tools and people. But there is also the need to

keep hosting and processing costs down, because Common Crawl is a nonprofit organization.

To meet all these demands the index is also hosted, like the Common Crawl Corpus, in an Amazon S3

bucket. It is not necessary to download the full index to work with it. The index can be queried and

searched without a local copy (ROBERTSON; 2013).

The file format of the index is based on a Prefix B-Tree. These search trees are one of the two broad

classes for key lookup operations. In the case of this index the keys are the URLs and corresponding

to them the file pointers to the Common Crawl Corpus 2012 (BAYER AND UNTERAUER; 1977; pp. 11-26).

Figure 3.2 Example Binary Tree (MANNING ET AL, 2009)

Figure 3.2 depicts a binary tree format. The binary tree owes its name to its structure because every

node has two branches. The search for a key begins at the root of the tree. If the first letter is within

the range of A to M the algorithm takes the corresponding branch; if not, it takes the other. This

process is repeated at every node until it arrives at the final node, which contains the key. An issue

with binary trees is that they need to be balanced to be effective. The number of keys beneath each

12

The Common Crawl Dataset

subtree on every level must be equal. If a key is added the whole tree needs to be rebalanced. To

mitigate this problem the number of subtrees of a node in a B-tree (a generalization of a Binary Tree)

is not fixed to two but can vary within a defined interval. An example can be seen in Figure 3.3

(MANNING ET AL; 2009; pp.49-53).

Figure 3.3 Example B-Tree (MANNING ET AL, 2009)

Prefix B-Trees, like the one used for the Common Crawl index, are a combination of B-Trees and key

compression techniques to save space (BAYER AND UNTERAUER; 1977; pp. 11-26).

B-Trees are capable of wildcard queries. For example, a query like “tru*” is a trailing wildcard query

because the wildcard symbol is located at the end of the search string. The structure of a B-Tree

allows it to handle this query conveniently. The algorithm follows the symbols t then r and then u

down the tree at which point it encounters a node beneath all keys begin with “tru” (MANNING ET AL;

2009; pp.49-53).

For wildcards leading a search string like in, for example, “*paper” an inverted B-Tree is used. That

means a key in the inverted B-Tree corresponds to a path written backwards. So the term

newspaper is represented as the path root-r-e-p-a-p-s-w-e-n (MANNING ET AL; 2009; pp.49-53).

With a combination of a B-tree and an inversed B-tree, queries like “Me*ro” become possible. The

search string is split at the wildcard symbol. “Me*” is used on the B-Tree and “*ro” on the inversion.

From both results an intersecting set is created containing all the keys beginning with “Me” and

ending in “ro” (MANNING ET AL; 2009; pp.49-53).

Applied to the Common Crawl index, the result looks like the example in Figure 3.4. The index is

queried for all URLs that point to the SLD derstandard.at. Because the check command is given, the

index returns just the number of webpages associated with the search term and the compressed size

of them. The order of URLs in the B-Tree of the Common Crawl index is inversed. A TLD is flowed by

13

The Common Crawl Dataset

an SLD and so on. The script automatically assumes a wild card at the end of the queried URL. So in

the example the search term could also be read as “at.derstandard*” (ROBERTSON; 2013).

Figure 3.4 Index check example derstandard.at

To query the index for the whole .at TLD is therefore simple. The index returns all webpages whose

URLs end in .at. This includes all the special cases .at SLDs .ac.at, .gv.at, .co.at, .or.at and .priv.at.

Results can be seen in Figure 3.5.

Figure 3.5 Index check example .at TLD

The statistics that the tool generates show, on the one hand, the overall number and size of the arc

files the data is distributed over and, on the other, the number of webpages and size when only the

relevant data is extracted from all ARC files (ROBERTSON; 2013).

3.4 Downloading the Common Crawl Dataset

The naïve solution to download the part of the Common Crawl dataset that is needed would be the

command “remote_copy copy at. --bucket target-bucket-name”. There is the possibility to tweak this

command by appending “--parallel x”, which defines in how many parallel instances the script should

14

The Common Crawl Dataset

download the data. But the script isn’t error proof and the .at name space is so big errors always

occurred, leaving the script hung up at some point (ROBERTSON; 2013).

To circumvent this problem a second script was written that a) split the .at name space into smaller

pieces b) parallelized the original script further and c) added some error handling. For this a new

method was created within the remote_copy script called external. This method allowed handing

over arguments to remote_copy from another script without calling it over the command line like

the ones above.

To split the .at name space into smaller pieces, a list of three letter URL stumps was created with the

code in Figure 3.6.

035 def create_urllist():
036
037 list1 = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q',

'r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9']
038 list2 = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q',
 'r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','-']
039 list3 = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q',
 'r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','-','.']
040 completlist = []
041 for first in list1:
042 for second in list2:
043 for third in list3:
044 completlist.append('at.'+first+second+third)
045 return completlist

Figure 3.6 Code example URL stump creation

The code in Figure 2.X conforms to all rules set by nic.at for domains in the .at TLD space. They must

contain at least 3 symbols and an hyphen isn’t allowed as a first symbol. The code above results in a

list of strings that looks like this: [at.aaa, at.aab, at.aac, …] (NIC.AT; Registration

Guidelines).

The next step is to initiate every URL stump as a discrete download process. The easiest way would

be to process every element on the list sequentially. But this is a rather slow process and it is

necessary to transfer data related to a couple of URL stumps in parallel. For this though there needs

to be a threading environment that controls which URL stumps have already been processed and

that keeps the number of parallel threads to a certain limit. This is what the following code examples

do.

15

The Common Crawl Dataset

008 class myThread (threading.Thread):
009 def __init__(self, urlstump, threadid):
010 threading.Thread.__init__(self)
011 self.urlstump = urlstump
012 self.id = threadid
013 def run(self):
014 threadLimiter.acquire()
015 print 'checking for ' + str(self.urlstump)
016 current_urllist.append(self.urlstump)
017 remote_copy_external.external('AWS-PUBLIC-KEY',
018 'AWS-PRIVATE-KEY','tldat','Data2//'+str(self.urlstump),
019 self.urlstump,parallelconnections,True)
020
021 print "Exit Thread: %d of %d" %(self.id, NummberIDs)
022 urllist.remove(self.urlstump)
023 current_urllist.remove(self.urlstump)
024 threadLimiter.release()

Figure 3.7 Threading Code

Figure 3.7 shows the construction code for a new thread object. This creates a parallel python

process. The lines 9 to 12 define the variables of this thread, which are only the URL stumps that are

to be downloaded and a thread ID used for identification. Lines 13 to 23 state what the thread does

as soon as it is started. Lines 15 and 21 just print some console output. Line 16 appends the active

URL stump of this thread to a list of active URL stumps. This list is later used to check if one of the

threads is hanging. Line 17 and 18 finally execute the remote_copy script that was modified to be

started from another python script. If the download was successful the URL stump of this thread is

deleted from a control list in line 22 and from the current_urllist in line 23 (PYTHON 2.7.10 LIBRARY;

threading).

16

The Common Crawl Dataset

047 while running:
048 print ''
049 print 'running threads %s'%(len(threading.enumerate()))
050 urllist_pickle = list(urllist)
051 ipickle = iterate_ipickle(ipickle)
052 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
053
054 if duds+threadnumber > len(threading.enumerate()):
055 if threadlist:
056 element = threadlist[0]
057 threadlist.remove(element)
058 myThread(element,ID).start()
059 ID += 1
060 continue
061 if not threadlist:
062 pass
063
064 elif threadlist:
065 ipickle = iterate_ipickle(ipickle)
066 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
067 time.sleep(1)
068 print current_urllist
069 continue
070
071 elif not threadlist:
072 ipickle = iterate_ipickle(ipickle)
073 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
074 pass
075
076 while duds < len(threading.enumerate()):
077 time.sleep(10)
078
079 print ''
080 print 'Current Passnumber: %d'%(Passnumber)
081 print current_urllist
082 urllist_pickle = list(urllist)
083 ipickle = iterate_ipickle(ipickle)
084 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
085 pass
086
087 if not urllist:
088 running = False
089 print ''
090 print 'Script did run Passnumber %d'%(Passnumber)
091 pass
092 else:
093 threadlist = list(urllist)
094 urllist_pickle = list(urllist)
095 ipickle = iterate_ipickle(ipickle)
096 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
097 print ''
098 print 'Script did run Passnumber %d'%(Passnumber)
099 Passnumber =+ 1

Figure 3.8 Starting and controlling threads

The threads need a controlling mechanism. The while running loop in Figure 3.8 is responsible

for this function. This loop is executed as long as running == True. The lines 50 to 52 are

responsible for saving the current state of the URL stump list. This is necessary, because the whole

script runs over the length of a couple of days and in the event that it should crash for an unforeseen

17

The Common Crawl Dataset

reason the last version of the list can be reloaded. Otherwise the script would need to start from the

beginning again. The if statement in line 54 is responsible for limiting the number of active threads.

Before the while running loop is started, the number of active threads is saved to the variable

duds. The test in line 54 checks that the number of active threads does not exceed the number of

active threads before the loop was started plus the number of parallel download threads intended. If

this is the case, the subsequent if statement in line 48 is called upon (PYTHON 2.7.10 LIBRARY; Built-in

types).

Line 55 checks if there are still URL stumps in the list threadlist, which are not yet downloaded. If

this is true, one of the URL stumps is removed from the threadlist and a new thread is started.

Lines 64 to 69 and 71 to 74 also save the URL stump list in different phases of the script. The main

difference is that lines 71 to 74 are only invoked if the threadlist is empty and pass in line 74

prompts the script to execute the loop further, while the continue in line 69 makes the loop jump

back to the beginning in line 47 (PYTHON 2.7.10 LIBRARY; Built-in types), (PYTHON 2.7.10 LIBRARY;

pickle).

Line 76 checks if there are still active download threads running even though the threadlist is

empty. It does that by testing if the number of threads is still bigger than before the while

running loop was started. If that is the case, the loop waits for 10 seconds, then saves the current

version of urllist and performs the active thread check again (PYTHON 2.7.10 LIBRARY; Built-in

types).

Line 87 checks if there are still URL stumps in the urllist. If not, running is set to False, thus

ending the main while loop. If there are still stumps in the urllist, those are copied again to the

threadlist in Line 93, the current urllist is saved and the while loop begins again at the top

(PYTHON 2.7.10 LIBRARY; Built-in types).

The whole code works with two main lists the threadlist and the urllist. In the beginning, the

threadlist is a copy of the urllist. During the threading process, one URL stump at a time is

removed from the threadlist and a new thread is started with this stump. If a thread runs

successfully to its end, this stump is also removed from urllist (see Figure 3.7 line 23). In the end,

a check is performed to see if all elements of the urllist have been processed. If not, the

remaining elements are again copied to the threadlist. This construction was necessary because

single download threads tended to crash (PYTHON 2.7.10 LIBRARY; Built-in types).

All data was copied this way from the Common Crawl Corpus 2012 to the tldat bucket from where it

was downloaded to a local machine for further processing.

18

OpenStreetMap Geocoder

4. OpenStreetMap Geocoder

This chapter looks at the extraction of addresses with spatial information, also known as geocoding,

from an OpenStreetMap (OSM) dataset that is limited to Vienna.

First, there is a short of overview what OSM is and how data from OSM is structured. The sections

that follow look at the code used to do the extraction and how the addresses are transferred to the

database.

4.1. OpenStreetMap

OpenStreetMap is a free volunteer based worldwide geodata set. OSM works similarly to Wikipedia

but is about geospatial information. The information is freely available in the sense of no attached

costs. Another difference to other web map providers like Google Maps or Bing Maps is in the sense

of free as in free speech. The information is not only useable in the form of rendered map tiles but

the underlying geodata itself is available to every user.

This kind of data is called volunteer geographic information (VGI). The OSM Project is managed by

the OSM Foundation. This is a UK based not-for-profit organization that acts as a legal entity for the

project. The foundation is the custodian of server hardware necessary to host OSM. It also organizes

fundraisers for the project, organizes an annual conference and supports communication with

several project workgroups. OSM was founded in 2004 and grew to a base of 640,000 supporters by

2012 with a wide variety of geospatial information entered into the database (NEIS AND ZIPF, 2012,

pp. 146-163).

4.2. Data Structure and Source

OSM uses Extensible Markup Language (XML) for data exchange. XML is a meta format that provides

human readable data exchange. OSM building upon this kind of data exchange has a couple of

advantages. First, it is a system-independent format. Already existing XML parsers can be easily

modified to parse OSM data. Second, it is human readable because it has a clear tree structure and

files have a good compression ratio. The downside of OSM XML (.osm) is that the files are large.

Therfore it might necessary to decompressing them first and parsing can take a lot of time. An

example of an OSM XML file can be seen in Figure 4.1 below (NEILS AND ZIPF, 2012, pp. 146-163).

19

OpenStreetMap Geocoder

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.0.2">
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" maxlon="12.2524800"/>
<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO" uid="46882" visible="true"
version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/>
<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter" uid="36744"
visible="true" version="1" changeset="323878" timestamp="2008-05-03T13:39:23Z"/>
<node id="1831881213" version="1" changeset="12370172" lat="54.0900666" lon="12.2539381"
user="lafkor" uid="75625" visible="true" timestamp="2012-07-20T09:43:19Z">

 <tag k="name" v="Neu Broderstorf"/>
 <tag k="traffic_sign" v="city_limit"/>
 </node>
<way id="26659127" user="Masch" uid="55988" visible="true" version="5" changeset="4142606"
timestamp="2010-03-16T11:47:08Z">
 <nd ref="292403538"/>
 <nd ref="298884289"/>
 ...
 <nd ref="261728686"/>
 <tag k="highway" v="unclassified"/>
 <tag k="name" v="Pastower Stra �"/>
 </way>
 <relation id="56688" user="kmvar" uid="56190" visible="true" version="28" changeset="6947637"
timestamp="2011-01-12T14:23:49Z">
 <member type="node" ref="294942404" role=""/>
 ...
 <member type="node" ref="364933006" role=""/>
 <member type="way" ref="4579143" role=""/>
 ...
 <member type="node" ref="249673494" role=""/>
 <tag k="name" v="Kstenbus Linie 123"/>
 <tag k="network" v="VVW"/>
 <tag k="operator" v="Regionalverkehr Kste"/>
 <tag k="ref" v="123"/>
 <tag k="route" v="bus"/>
 <tag k="type" v="route"/>
 </relation>
 ...
</osm>

Figure 4.1 OSM Data Example (OPENSTREETMAP WIKI; OSM XML)

OSM Data is always structured the same way. First, there is an XML suffix declaring that the

character set of the file is UTF-8 encoded. This is followed by the <osm> element that contains the

version of the API with which it was created and the generator tool. The Extent of the data is

described by a <bounds> block. Next is the nodes block: it contains all nodes displayed within the

bounds. All nodes have an ID and coordinates that are expressed in the WGS84 reference system.

Nodes may contain nested tags. The next block contains all the ways. Ways are a list of ordered

nodes. When the way is a closed way, that means the starting and ending node are the same node,

nodes act as vertices of a polygon. If the way is not closed, the way acts as a line feature, again with

the nodes used as vertices of the feature. Apart from references to the nodes, a way normally

contains a couple of other tags helping to describe the object depicted by it. Lastly, there are

relations. These features consist of a group of nodes, ways and other relations, all of them referred

to as a member of the relation. A typical example for a relation is a feature that has an inner and

outer edge. For this, two closed ways are combined into a relation: one describes the outer, and the

20

OpenStreetMap Geocoder

other, the inner edge of the feature. Like a way or a node, a relation can have tags that describe the

feature depicted (OPENSTREETMAP WIKI; OSM XML).

4.3. Extracting Addresses

Addresses are stored as a group of tags in a node, a way or a relation. An example of the address tag

is shown in Figure 3.2.

<node id="566992041" visible="true" version="1" changeset="3158538" timestamp="2009-11-
19T10:44:24Z" user="andreas_k" uid="39877" lat="48.2136818" lon="16.3604013">
 <tag k="addr:city" v="Wien"/>
 <tag k="addr:country" v="AT"/>
 <tag k="addr:housenumber" v="1"/>
 <tag k="addr:postcode" v="1010"/>
 <tag k="addr:street" v="Universitätsstraße"/>
 </node>

Figure 4.2 Example address tag (Openstreetmap.org)

An OSM XML file covering the area of Vienna was downloaded from Cloudmade. This file was then

parsed for addresses with the following code. For parsing the OSM data, the python sax parser is

used. Different from more complex parsers available, this parser does not try to recreate the XML

document as a tree-like object in memory. This is of importance because the whole file containing

Vienna is about 0.7 GB big in XML and a tree object for this amount of data always exceeds the

available 8 GB of random access memory (RAM). The sax parser reads the XML file line by line. Using

the sax parser results in more complex code, but allows it to run on much less RAM (PYTHON 2.7.10

LIBRARY; xml.sax), (CLOUDMADE).

Figure 3.3 shows the first part of this code; the parser is initiated as the class startendfinder(),

with the content that should be parsed handed over. The class itself consists of a range of methods

and a range of variables defined and initiated in the lines 13 to 29. Without getting into each one of

them now, the most important ones are the self.address object defined in line 13 and the three

dictionary lines 15 to 17. The method startElement() in line 31 is executed when the parser

detects that a line is the start of a new XML element. XML elements are opened with

<ElementName> and closed with the same tag name preceded by a slash, for example,

</ElementName>. A special case is a tag that is opened and closed in the same line expressed with

a slash trailing the name, for example, <ElementName/> (PYTHON 2.7.10 LIBRARY; xml.sax).

21

OpenStreetMap Geocoder

The method contains an if/elif statement that checks the name of the element. If the element is a

node, the information of this node is saved in a couple of variables. First, the self.address object

is given the coordinate of the node in line 33, even though, at this point it is unknown if this node

contains an address. The coordinates are already put into a format ('POINT(%s %s)' %

(attrs.get('lon'),attrs.get('lat'))) with which they can be easily written into a PostgreSQL

table with a PostGIS field (PYTHON 2.7.10 LIBRARY; xml.sax), (POSTGIS 2.1.3; documentation),

(POSTGRESQL 9.3.9; documentation).

The spatial information of the node is also copied into the self.nodedict dictionary in line 34 with

the ID of the node as the key and the latitude and longitude as values. This is necessary because all

other objects (ways and relations) only refer to nodes and do not contain spatial information

themself. But with this dictionary, it is simple to look up this spatial information. Lastly, the

self.nodemode is set to True. The two other elif statements that are triggered in the event that

the element is not a node simply get the ID of the element and set either self.waymode or

self.relationmode to True (PYTHON 2.7.10 LIBRARY; xml.sax).
011 class startendfinder(handler.ContentHandler):
012 def __init__(self):
013 self.address = ['lat_lon', 'pcode', 'street', 'number']
014
015 self.nodedict = {}
016 self.waydict = {}
017 self.relationdict = {}
018 self.plz = False
019 self.street = False
020 self.number = False
021 self.nodemode = False
022 self.waymode = False
023 self.relationmode = False
024 self.wayid = False
025 self.relationid = False
026 self.ndlist = []
027 self.memberlist = []
028 self.latlist = []
029 self.lonlist = []
030
031 def startElement(self, name, attrs):
032 if name in ('node'):
033 self.address[0] = 'POINT(%s %s)' % (attrs.get('lon'),

 attrs.get('lat'))
034 self.nodedict[int(attrs.get('id'))] = (float(attrs.get('lat')),
 float(attrs.get('lon')))
035
036 self.nodemode = True
037
038 elif name in ('way'):
039 self.wayid = int(attrs.get('id'))
040 self.waymode = True
041
042 elif name in ('relation'):
043 self.relationid = int(attrs.get('id'))
044 self.relationmode = True

Figure 4.3 OpenStreetMap XML parser start element part one

22

OpenStreetMap Geocoder

The next part of code seen in Figure 4.4 is still part of the startElement() method. The following

lines 96 to 117 are invoked if self.nodemode is True and the line the parser is parsing is the start of

an element. Both of these things happen when there is a still an open node element, because of line

36 in Figure 4.2, and this element contains nested elements (PYTHON 2.7.10 LIBRARY; xml.sax).

096 if self.nodemode == True:
097 if name == 'tag':
098 k, v = (attrs.get('k'), attrs.get('v'))
099
100 if k == 'addr:street':
101 self.address[1] = unicode(v)
102 self.street = True
103
104 if k == 'addr:housenumber':
105 self.address[2] = unicode(v)
106 self.number = True
107
108 if k == 'addr:postcode':
109 try:
110 if int(v) <= 1099:
111 self.address[3] = int(v)
112 self.plz = True
113 elif int(v) >= 1200 and int(v) <= 1209:
114 self.address[3] = int(v)
115 self.plz = True
116 except:
117 pass

Figure 4.4 OpenStreetMap XML parser start element part two

Those nested XML elements are then again checked in line 97 for their names. If the name is tag,

then the attributes of the element 'k' and 'v' are saved to variables with the same name. The lines

100, 104 and 108 test k if the tag is part of an address. If so, the v is written to the part of the

address object defined as the street name, house number or postcode. Also, the corresponding

control variables self.plz, self.number and self.street are set to True indicating that when all

are True a complete address was obtained from the node element (PYTHON 2.7.10 LIBRARY; xml.sax),

(OPENSTREETMAP, Wiki Addresses).

The postcode is a special case because it has to be put in a try/except statement and it filters all

addresses that are not within the 1st to 9th, or 20th district. To implement this filter, the v variable is

converted to an integer value and tested to be within a certain value range as can be seen in lines

110 and 113. This conversion to an integer value is also the reason for the try/except statement.

Because of errors within the dataset, not all v attributes that correspond to a k attribute of

'addr:postcode' can be converted to integer (PYTHON 2.7.10 LIBRARY; xml.sax), (OPENSTREETMAP,

Wiki Addresses).

23

OpenStreetMap Geocoder

046 if self.relationmode == True:
047 if name == 'member':
048 self.memberlist.append((int(attrs.get('ref')),attrs.get('type')))
049 if name == 'tag':
050 k, v = (attrs.get('k'), attrs.get('v'))

 [...]

071 if self.waymode == True:
072 if name == 'nd':
073 self.ndlist.append(int(attrs.get('ref')))
074 if name == 'tag':
075 k, v = (attrs.get('k'), attrs.get('v'))

 [...]

Figure 4.5 OpenStreetMap XML parser start element part three

The self.relationmode and the self.waymode in Figure 4.5 that are called when the top level

element is a relation or a way work analogously to the way self.nodemode in acquiring an address.

But there is one key difference: relations of all members of the relation are collected within the

self.memberlist in line 48 and ways where all nodes are part of the way are collected in a

self.ndlist in line 73. For this, the nested elements are tested for their name and, if they match

either 'nd' or 'member', they are appended to the corresponding lists. The self.ndlist only

contains the references to the nodes because ways can only consist of nodes, while the

self.memberlist also contains the information about what kind of object (node, way or relation)

the element refers to (PYTHON 2.7.10 LIBRARY; xml.sax), (OPENSTREETMAP WIKI; OSM XML).

119 def endElement(self, name):
120 if name in ('node'):
121 if self.plz is True and self.street is True and self.number is True:
122 addresslist.append(tuple(self.address))
123
124 self.nodemode = False
125 self.plz = False
126 self.street = False
127 self.number = False
128 self.address = ['lat_lon', 'pcode', 'street', 'number']

Figure 4.6 OpenStreetMap XML parser end element part one

Following startElement() is the endElement() method. As the name implies, this method is

executed when the end of an element is reached. The arguments passed to the method are self

and name. Again, what the method does is dependent on the type of element that is closed. The

code that will be executed if the element is a node can be seen in example Figure 4.6. The if

24

OpenStreetMap Geocoder

statement in line 121 is executed when an address was successfully extracted for this node (compare

with Figure 4.4 lines 100 to 115). The self.address object is appended to an addresslist which in

turn is written to a PostgreSQL/PostGIS Database as soon as the whole OSM XML file is parsed. In

lines 124 to 128, all switch variables are returned to their default values. When the node is at an

end, the information is no longer relevant for the rest of the process and the default values are

needed in order for the process to work correctly (PYTHON 2.7.10 LIBRARY; xml.sax).

The code for relation and way elements is a bit more complex because, as mentioned before, both

of those objects only contain references to objects with spatial information and no spatial

information themselves.

130 if name in ('way'):
131 for nd in self.ndlist:
132 self.latlon = self.nodedict[nd]
133 self.latlist.append(self.latlon[0])
134 self.lonlist.append(self.latlon[1])
135
136 self.waydict[self.wayid] = (numpy.mean(self.latlist)),

 numpy.mean(self.lonlist))
137
138 if self.plz is True and self.street is True and self.number is True:
139 self.address[0] = 'POINT(%s %s)' % (numpy.mean(self.lonlist),

 numpy.mean(self.latlist))
140 addresslist.append(tuple(self.address))
141
142 self.latlist = []
143 self.lonlist = []
144 self.waymode = False
145 self.plz = False
146 self.street = False
147 self.number = False
148 self.address = ['lat_lon', 'pcode', 'street', 'number']
149 self.ndlist = []

Figure 4.7 OpenStreetMap XML parser end element part two

The code in Figure 4.7 is still part of the endElement() method. It depicts what is executed when the

end of a way element is reached. With lines 131 to 134, the collected self.ndlist of this way

element is used on the self.nodedict (compare Figure 4.5 line 72/73 and Figure 4.3 line 34)

resulting in a self.latlist containing all latitude values and a self.lonlist with all longitudes

associated with this way element (PYTHON 2.7.10 LIBRARY; xml.sax).

The mean value of both latitude and longitude lists is saved to the self.waydict with the ID of the

way as the key in line 136. If all control variables self.plz, self.number and self.street are True,

the mean value of the self.latlist and self.lonlist are assumed to be the coordinates of the

address and added to the self.address object in line 139. Then the object is appended to the

25

OpenStreetMap Geocoder

addresslist in line 140. After that, all the variables are reset to the default in the lines 142 to 149

(PYTHON 2.7.10 LIBRARY; xml.sax).

151 if name in ('relation'):
152 for member in self.memberlist:
153
154 if member[1] == 'node':
155 self.latlist.append(self.nodedict[member[0]][0])
156 self.lonlist.append(self.nodedict[member[0]][1])
157 elif member[1] == 'way':
158 self.latlist.append(self.waydict[member[0]][0])
159 self.lonlist.append(self.waydict[member[0]][1])
160 elif member[1] == 'relation':
161 self.latlist.append(self.relationdict[member[0]][0])
162 self.lonlist.append(self.relationdict[member[0]][1])
163
164 self.relationdict[self.relationid] = (numpy.mean(self.latlist),

 numpy.mean(self.lonlist))
165
166 if self.plz is True and self.street is True and self.number is

 True:
167 self.address[0] = 'POINT(%s %s)' % (numpy.mean(self.lonlist),
 numpy.mean(self.latlist))
168 addresslist.append(tuple(self.address))
169
170 self.latlist = []
171 self.lonlist = []
172 self.waymode = False
173 self.plz = False
174 self.street = False
175 self.number = False
176 self.address = ['lat_lon', 'pcode', 'street', 'number']
177 self.memberlist = []

Figure 4.8 OpenStreetMap XML parser end element part three

The code at the end of a relation element is even more extensive than for a way. Figure 4.8 shows

the example code for this. In Line 152, every member of the self.memberlist is called. Afterwards,

depending on what type of object the particular member references to, the corresponding dictionary

is called and the latitude and longitude values appended to the respective lists are added. Because

relations can be members of other relations in line 164, the mean value of the coordinates of this

relation are added to the self.relationdict with the ID as the key. Relations in the XML file are

ordered in a way that relations which are part of other relations always come before those relations

which they are a part of. The rest of the code from lines 166 to 177 works similarly to the previously

described code for nodes and ways (PYTHON 2.7.10 LIBRARY; xml.sax).

26

OpenStreetMap Geocoder

4.4. Write Addresses to a Database

All addresses are written to the PostgreSQL database with the python psycopg2 library. For this, a

separate python script is written containing all the structured query language (SQL) handling parts of

the code. It can be seen in Figure 4.9.

Saxparser file:

180 if __name__ == '__main__':
181 parser = make_parser()
182 parser.setContentHandler(startendfinder())
183 parser.parse('./vienna.osm')
184
185
186 DBconnector.CreateTable()
187 DBconnector.WriteToTableMany(addresslist)

--
DBconnector file:

001 import psycopg2
002
003
004 def DBConnect():
005
006 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres\

 password=########")
007 cur = conn.cursor()
008 return conn,cur
009
010
011 def CreateTable():
012
013 conn,cur = DBConnect()
014 cur.execute("CREATE TABLE IF NOT EXISTS Addresses (id serial PRIMARY KEY,\

 geom geometry, street text, Street_number text, pcode integer,
AddDate integer);")

015 conn.commit()
016 conn.close()
017
018
019 def WriteToTableMany(Values):
020
021 conn,cur = DBConnect()
022 cur.executemany("INSERT INTO Addresses (geom, street, Street_number, pcode,\

AddDate) VALUES (%s, %s, %s, %s, 24022015)",(Values))
023 conn.commit()
024 conn.close()

Figure 4.9 Database Import and calling database import from the parser

The lines at the top of Figure 4.9 are the initial ones that are executed when the parser is started. In

lines 180 to 183 is all the code called discussed previously in this chapter. After these lines call this

code, the addresslist is populated with addresses and their spatial information. What follows is

the transfer of this python list to the PostgreSQL database. First with line 186, the CreateTable()

27

OpenStreetMap Geocoder

method shown in line 11 is called. This method in turn calls the DBConnect() method that creates a

database connection object conn in line 6 and derives out of this connection object a cursor object

cur in line 7. Both the cursor object and the connection object are returned to the CreateTable()

method. With the cursor object, SQL can be executed on the database. So in line 14, the SQL

command for the table creation is executed. Notable is the PostGIS field geometry that later holds

the spatial information object for each address. The SQL command is committed with

conn.commit() in line 15 and the connection closed in line 16 (PSYCOPG 2.5.3 LIBARY).

WriteToTableMany() is then called in line 184 and the addresslist is passed to it. Again, a

connection and cursor object are created, but this time the cur.executemany() function is used.

This function allows an iterateable python object to be passed to the psycopg2 library. The

preceding SQL-like string, with %s as placeholders, works as a blue print for every value in the

iterateable python object. After all items in the addresslist are inserted into the database, the

changes are committed in line 15 and the connection closed in line 16. Over-all, 23,830 addresses

are written to the database (PSYCOPG 2.5.3 LIBARY).

28

OpenStreetMap Geocoder

Map 4.1 Extracted Addresses

29

OpenStreetMap Geocoder

Those 23,830 addresses are visualized on Map 4.1. Because the addresses are derived from a

Wikipedia-like source, they are most probably not complete and may contain some errors. For

example, there are likely some addresses missing in the north western corner of the 20th district.

When the address points are overlaid over aerial photography, there seem to be a couple of

buildings without an address point even though they should have one. Even more easily, one can

assume that address points outside the designated districts are mistakes. There are four in the 12th

district, one in the 13th (this one canot be seen on the map) and one in the 17th. All of them have

been mistakenly added to the dataset because their post-code are incorrect.

Literature about the correctness and completeness of VGI and OSM based address dataset is spars.

There is a work by Haklay in 2010, on the overall positional accuracy and completeness that

compared the Ordinance Survey meridian 2 dataset to OSM data. It shows that relatively wealthy

and densely populate places are better mapped in OSM. Another study by Teske compared different

geocoders, but this work is focused on how good given geocoder parses a string for an address

(HAKLAY; 2010; pp. 682-703), (TESKE; 2014; pp. 161-174).

But, overall and subjectively juding the errors seem to be sparse. For this thesis a 100% complete

and error-free dataset is not necessary.

30

Common Crawl Database Transfer

5. Common Crawl Database Transfer

The focus of this chapter is how the now downloaded and archived files are transferred to the

PostgreSQL Database. For this, the folder and file structure is examined how the ARC files are split

up into individual files and how they are added to the database.

5.1. Folder and file structure

After downloading the Common Crawl Data to an Amazon S3 bucket the data is transferred to a local

machine. The files are grouped into subfolders according to the parts of the .at TLD space they

contain. A schematic example of this structure can be seen in Figure 5.1.

Data/
 |
 +-at.001/
 | |
 1.gz | +-
 | |
 2.gz | +-
 |

at.002/ +-
 | |

1.gz | +-
 | |

2.gz | +-
 |
[...]
 at.zzz/ +-
 |

1.gz +-
 |

2.gz +-

Figure 5.1 Schematic example file structure

The <name>.gz compressed files contain an ARC File whose structure is described in Chapter 3.2 and

Figure 3.1. Those ARC Files contain multiple files, separated only by the header of each document.

So each ARC file needs to be split up again into single documents. This is what the code Figure 5.2 is

part of. It shows the first section of what is executed when the script is started. The execution starts

at line 140, 141 calls a simple test which determines with which database the connection will be

established. This is important because, at this point the amount of time a script takes to successfully

pass is very long when all available data is used. For this reason, a smaller database containing only

31

Common Crawl Database Transfer

about 1% of all data was created to test and develop scripts before executing them on the actual

database (PSYCOPG 2.5.3 LIBARY).

Line 144 calls the method creating the target table to which all the data will be transferred. This

table has three columns, a unique ID for each HTML document, the URL of this document, and the

HTML document itself saved as a string (PSYCOPG 2.5.3 LIBARY).

018 def CreateTable():
019 conn, cur = DBConnect()
020 cur.execute("CREATE TABLE IF NOT EXISTS html (id serial PRIMARY KEY,
 url TEXT, html_file text);")
021 conn.commit()
022 conn.close()

132 def current_database():
133 conn,cur = DBConnect()
134 cur.execute('SELECT current_database()')
135 DB_name = cur.fetchone()
136 print('#######################')
137 print('Connecting to %s' % DB_name)
138 print('#######################')

140 if __name__ == '__main__':
141 current_database()
142 raw_input('Please Press the anykey')
143
144 CreateTable()
145 startall = time.time()
146
147 PATH = './Data'
148 open_Paths(PATH)
149
150 print('+++++########+++++')
151 print('complete Operation took %s Minutes' % ((time.time() - startall) / 60))
152 print('+++++########+++++')
153
154 lines = ReadFromTable()
155 print(len(lines))
156 for line in lines:
157 print (line[2])
158 raw_input('Please Press the anykey')

Figure 5.2 Database transfer script part one

Line 147 calls the open_Paths() method with the path to all data files as a string. Figure 5.3 shows

this method. Line 119 calls the os.walk() method with which all paths to all files in a specific

directory (in this case './Data') can be created and this is what is done in line 122. The fullpath

to a file is then handed over to the gzip.open() method that unpacks the file and returns the

unpacked file to the variable file. file is then passed on to Database_export(). This method will

divide the file into individual HTML documents that can then be passed to the database (PSYCOPG

2.5.3 LIBARY), (Python 2.7.10 library; operating system), (Python 2.7.10 library; gzip).

32

Common Crawl Database Transfer

118 def open_Paths(PATH):
119 for path, dirs, files in os.walk(PATH):
120 for filename in files:
121 try:
122 fullpath = os.path.join(path, filename)
123 print ('####################')
124 print('%s Size: %s MB' % (fullpath,

os.path.getsize(fullpath) / 1048576))
125 file = gzip.open(fullpath, 'rb')
126 Database_export(file)
127 file.close()
128 except:
129 pass

Figure 5.3 Database transfer Script open_Paths() method

5.2. Subdivide files into individual HTML files

The Database_export() function is quite complex. The reason for this is the file’s internal

structure. Every file is comprised of either one or a few hundred or thousands of arc files in text

format. Thus, it is basically a very long text file, which has to be processed line for line. These lines

are analyzed to determine if they belong to the current file or the following one. Parts of the code

for this process can be seen in Figure 5.4.
041 def Database_export(file):
042 start1 = time.time()
043 i = ''
044 tup_i = ()
045 url = ''
046 html_written = 0
047 mode = False
048 for line in file.readlines():
049 splitline = line.split(' ')
050 try:
051 if splitline[0][:7] == 'http://' and splitline[3] =='text/html'
 and len(splitline) == 5:
052
053 if len(i) > 0:
054 tup_i = tup_i + ((url, i),)
055 url = ''
056 i = ''
057
058 url = splitline[0]
059 mode = True
060
061 if len(tup_i) >= 100:
062 print('empty tup_i')
063 try:
064 WriteManyToTable(tup_i)
065 except:
066 pass
067 tup_i = ()
068 print ("html files written to DB %s" % html_written)
069
070 html_written += 1

Figure 5.4 Transfer Script Database_export() method part one

33

Common Crawl Database Transfer

Lines 42 to 47 define several controlling variables. Most important are i and tup_i. The variable i

will contain all lines of the current HTML document, while tup_i holds the already parsed HTML

documents. These are subdivided into tuples of the specific URL for this document and the content

of the document itself as a string.

The file that was passed on from the open_Paths() method is then split into individual lines in line

48. Every line is again split at every space in line 49. This split line contained in the variable

splitline is then tested in line 51 if it is the first line of a new document. If so, the current

document along with the URL of this document is added to tup_i as a tuple in 54. If there is a

document currently contained within i the if statement in line 53 is executed. The if statement

tests if there is a document contained within i by checking the length of i. The document and its

corresponding URL are added to tup_i in line 54 and url and i reset (PYTHON 2.7.10 LIBRARY; string).

The newly current URL is saved to url and mode is set to True. What follows in line 61 is a test if the

amount of already parsed HTML documents contained in tup_i has crossed a certain threshold. If so

the HTML documents are passed on to the WriteManyToTable() method which will be discussed

later in detail and tup_i is set to an empty tuple.

092 if mode == True:
093 try:
094 i += unicode(line, "utf-8")
095 except:
096 #i += UnicodeDammit(line).unicode_markup
097 pass

Figure 5.5 Transfer Script Database_export() method part two

Figure 5.5 skips a couple of lines to Figure 5.4, which will be discussed later. If mode was set to True

in line 59, then all of the following lines until the next document is encountered will be appended to

i in line 94. More precisely, a UTF-8 (Universal Coded Character Set + Transformation Format—8-bit)

version of the line is appended to i. Text characters can be encoded in several different codecs.

UTF-8 is one that strives to make it possible to encode all possible know characters. This step is

necessary because all documents are encoded in a variety of codecs, but the database expects only

UTF-8 encoded strings (PYTHON 2.7.10 LIBRARY; Unicode), (BEAUTIFUL SOUP 4.3.2 LIBARY;).

Because certain characters still cannot be encoded into UTF-8, the code sometimes fails to convert a

line. This is why the code needs to be in a try except block. The original intent was also to convert

failed lines to UTF-8 with line 96, but this simply takes up too much calculation time, thereby

34

Common Crawl Database Transfer

stretching the length it takes to process all files from hours to weeks. Thus, all lines that cannot be

converted are not included and ignored (UNICODE 7.0.0).

072 elif splitline[0][:7] == 'http://' and \

splitline[3] != 'text/html' and len(splitline) == 5:
073
074 if len(i) > 0:
075 tup_i = tup_i + ((url, i),)
076 url = ''
077 i = ''
078
079 mode = False
080
081 if len(tup_i) >= 100:
082 print('empty tup_i')
083 try:
084 WriteManyToTable(tup_i)
085 except:
086 pass
087 tup_i = ()
088 print ("html files written to DB %s" % html_written)

Figure 5.6 Transfer Script Database_export() method part three

In Figure 5.6 we see the case where the script detects the beginning of a new document that is not

an HTML text file, but something else, for example a picture, a PDF or a Microsoft Word file. When

this is the case in the ARC file, the binary data of such files is encoded to text. Even though it would

theoretically be possible to read out a PDF or a Microsoft Word file or other type of text file with

suitable python libraries it is too time consuming to do so.

Whenever the parser meets a line of a new document that is not an HTML text file the code in Figure

5.6 is executed and ignores this file. Again there is the test to determine if a current document exists

in line 74, and if so, the document, with its URL, is appended to tup_i and the variables url and i

are reset. The mode is set to False, which has the effect that all of the following lines will not be

saved to the now empty variable i. And if tup_i crosses the threshold of 100 collected HTML

documents, those are passed to the WriteManyToTable() method and tup_i is set to an empty

tuple (PYTHON 2.7.10 LIBRARY; Unicode), (PYTHON 2.7.10 LIBRARY; string).

099 if len(i) > 0:
100 tup_i = tup_i + ((url, i),)
101
102 try:
103 WriteManyToTable(tup_i)
104 except:
105 pass

Figure 5.7 Transfer Script Database_export() method part four

35

Common Crawl Database Transfer

Part four shown in Figure 5.7 concludes what is left. Because the end of the ARC file no longer

contains a new document header, i and url are appended to tup_i and tup_i one last time, no

matter how many documents it contains is passed to the WriteManyToTable() method.

4.3. Transfer to Database

The WriteManyToTable() method can be seen in Figure 5.8. The function makes use of the

.mogrify() method of the cursor object in line 27, a function that works similarly to the

.execute() method of the cursor object but without executing the SQL statement on the database.

Instead, it just forms the SQL statement with the given parameters. What line 27 now does is iterate

through the Values variable, which contains all the URL and HTML document tuples, which were

formerly known as tup_i, and creates one long SQL statement with all 100 URLs and HTML

documents contained in it. This statement is then merged in Line 28 with the front part, forming a

complete statement that is executed on the database inserting all 100 URLs and HTML files into it.

The transaction is committed in line 29 and the connection is closed in line 30. Overall 8,406,507

HTML documents are written to the database.

025 def WriteManyToTable(Values):
026 conn, cur = DBConnect()
027 args_str = ','.join(cur.mogrify("(%s,%s)", x) for x in Values)
028 cur.execute("INSERT INTO html (url, html_file) VALUES " + args_str)
029 conn.commit()
030 conn.close()

Figure 5.8 WriteManyToTable() method

36

HTML Tag Stripper

6. HTML Tag Stripper

This chapter is about creating a more refined and relevant subset of the 8,406,507 HTML documents

and how to strip this subset of all HTML tags and other irregularities and write it back to the

database.

6.1. Find Vienna

Since not all of the 8.4 million documents are going to be geotagged, it is prudent to only geotag

those documents which are most likely going to be geotagged and exclude those which will never be

geotagged to an address in Vienna. A simple way of doing this is to mark all documents in which the

term ‘Wien’ appears at least once. That is what the code in Figure 6.1 demonstrates.

009 def addvienna():
010 conn, cur = DBConnect()
011 cur.execute("ALTER TABLE html ADD COLUMN Vienna BOOLEAN;")
012 conn.commit()
013 conn.close()
014 return
015
016
017 def setvienna(lower,upper):
018 conn, cur = DBConnect()
019 cur.execute("""UPDATE html SET Vienna = TRUE WHERE html_file LIKE

 '%%' || ' %s ' || '%%' AND ID >= %s AND ID <%s RETURNING ID;""" %
 ('Wien',lower,upper))

020
021
022 conn.commit()
023 conn.close()
024 return
025
026
027 addvienna()
028 lower = 0
029 increment = 10000
030 starttime = time.time()
031 while lower <= 8406507:
032 setvienna(lower,lower+increment)
033 delta_time = time.time() - starttime
034 print lower+increment
035 print "time till now %.2f Minutes" % (delta_time / 60)
036 print "time till end %.2f Minutes" %

(((delta_time/60)/(lower+increment))*(8406507-(lower+increment)))
037 lower += increment

Figure 6.1 Set Vienna

37

HTML Tag Stripper

First, there needs to be a column in the html table that can tell us if the string 'Wien' occurs in the

document. This is done by the addvienna() method called in line 27. Next, the code iterates

through all IDs and thus documents in chunks of 10,000. For this, an initial lower end is set in line 28

and the increment size in line 29. The while loop in 31 is executed as long as lower is smaller than

8,406,507, the number of HTML documents contained in the HTML table. lower and lower plus

increment of 10,000 are passed to the setvienna() method. The purpose of setvienna() is to

execute an SQL statement that looks through a range of documents and tests these documents with

the LIKE operator. The LIKE operator is a string matching operator and the string it tries to match is

'Wien'. In this case, the string is preceded and followed by a wildcard. All documents where the

operator matches the column Vienna are set to TRUE. In total, 698,524 documents are matched and

set to TRUE (PSYCOPG 2.5.3 LIBRARY), (POSTGRESQL 9.3.9).

6.2. Remove HTML Tags

After all documents are marked, the next step is to remove all HTML tags. For this, regular

expressions are used. Regular expressions are sequences of characters that match a certain pattern

in a string. The HTML table also needs a column to accommodate documents without HTML tags. In

line 69 of Figure 6.2, the method createColumn() is called and creates such a column. The DROP

COLUMN SQL statement is in there because, like all the code, also this part is developed by trial and

error. It turns out to be much faster to drop a column and then recreate it than to overwrite an old,

incorrect column with correct values. strippedlist created in line 71 will contain the processed

documents before they are written to the database. Then in line 74, the variable htmls is populated

with the first documents. For this, the ReadFromHTML() function is called (PSYCOPG 2.5.3 LIBRARY).

Because now only those documents where the column Vienna is set to true are of interest, instead

of a range of IDs, the limit and offset operators are used in the SQL statement. The table is ordered

by id and then the function of offset is to ignore the first n rows defined by the variable offset.

Limit defines how many rows are returned in total. When offset and limit are used in combination,

like in line 16, and offset is iterated higher and higher (see line 104), the database returns the first

thousand rows, then the next thousand rows and so on. Consistency of order is guaranteed because

the table is always ordered the same way, by id. With all this set up, the code enters the while loop.

This loop gets executed as long as htmls is true and htmls is true as long as the database returns

documents with the just described SQL statement (see line 103 and 104). The database ceases to do

so as soon as offset is higher than the amount of documents where the column Vienna is true

(PSYCOPG 2.5.3 LIBRARY), (POSTGRESQL 9.3.9).

38

HTML Tag Stripper

014 def ReadFromHTML(offset):
015 conn, cur = DBConnect()
016 cur.execute("SELECT id,html_file FROM html WHERE vienna = TRUE ORDER BY id

 limit 1000 offset %s ;" % offset)
017 data = cur.fetchall()
018 cur.close()
019 conn.close()
020
021 return data

032 def createColumn():
033 conn, cur = DBConnect()
034 cur.execute("ALTER TABLE html DROP COLUMN IF EXISTS stripped_html;")
035 conn.commit()
036 cur.execute("ALTER TABLE html ADD COLUMN stripped_html TEXT;")
037 conn.commit()
038 cur.close()
039 conn.close()

069 createColumn()
070 Starttime = time.time()
071 strippedlist = []
072 offset = 0
073 Starttime2 = time.time()
074 htmls = ReadFromHTML(offset)
075 Numberofrows = 8406507
076
077
078
079 while htmls:
080
081 timeregex = time.time()
082 print("starting Regex")
083 for row in htmls:
084 id = row[0]
085 stripped_html = remove_tags(row[1])
086 strippedlist.append((stripped_html, id))
087 print('Regex took %.2f Minutes' % ((time.time() - timeregex) / 60))

[...]

103 offset += 1000
104 htmls = ReadFromHTML(offset)

Figure 6.2 Fetching HTML documents to strip tags

The ReadFromHTML() function returns a list of tuples containing the ID of the row and the content of

the html_file column. The for loop in line 83 iterates through this list and passes one HTML

document after another to the remove_tags() method shown in Figure 6.3 (PSYCOPG 2.5.3 LIBRARY).

39

HTML Tag Stripper

042 def remove_tags(text):
043 text = TAG_RE.sub('', text)
044 text = Short.sub('', text)
045 text = eszt.sub('ß', text)
046 text = ae.sub('ä', text)
047 text = AE.sub('Ä', text)
048 text = oe.sub('ö', text)
049 text = OE.sub('Ö', text)
050 text = ue.sub('ü', text)
051 text = UE.sub('Ü', text)
052 return text
053
054
055
056
057 TAG_RE = re.compile(r'<[^>]+>')
058 Short = re.compile(r'\S{68,}')
059 eszt = re.compile(r'ß')
060 ae = re.compile(r'ä')
061 AE = re.compile(r'Ä')
062 oe = re.compile(r'ö')
063 OE = re.compile(r'Ö')
064 ue = re.compile(r'ü')
065 UE = re.compile(r'Ü')

Figure 6.3 Regular expression tag stripper

Regular expressions are created to match certain string patterns. This ability can be used to find all

HTML tags in a string and then replace them. The pattern of HTML tags is that they open with a “<”

and close with a “>” and have a variable amount of characters in between. The regular expression

defined in line 57 matches this pattern exactly. The r' in front of the string means that special

characters and character combinations, like for example \t for tab stop, are ignored and are

interpreted as \t and don’t need to be escaped. Then follows the first character of the pattern <. The

+ character indicates that a variable amount characters follow the “<”. But “>” is excluded from this

with the part of the pattern [^>]. Finally, the pattern ends with the >'. So this regular expression

matches every part of a string that begins with a “<” ends with a “>” and has more than one

character in between that is not a “>”. All of this is compiled into the TAG_RE variable for later use

(PYTHON 2.7.10 LIBRARY; regular expression operations).

The regular expression compiled in 58 to the variable Short matches every string that is 68

characters or longer because there are a lot of nonsensical strings in the documents. So \S matches

every non-whitespace character and {68,} defines that the strings can be 68 characters or longer.

The longest German word excluding numerals is, according to Duden,

“Grundstücksverkehrsgenehmigungs-zuständigkeitsübertragungsverordnung” which is 67 characters

long (DUDENKORPUS), (PYTHON 2.7.10 LIBRARY; regular expression operations).

40

HTML Tag Stripper

Because many HTML documents are encoded in American standard codec two (ASCII) and there are

no provisions in it for German special characters, HTML uses character entity names for those special

characters. Now that all documents have been transferred to UTF-8, there is no longer a need for

this provision and all character entity names can be changed to the correct characters. So the regular

expressions in line 59 to 65 match the corresponding character entity names so that they can be

replaced with the character (BRAY ET AL, 2008), (PYTHON 2.7.10 LIBRARY; regular expression operations).

All those regular expressions are called up one by one in the remove_tags() method. The method

gets the document passed on to it in line 85 Figure 6.2 as one continuous string. Everything that

matches within the string is replaced by a defined other string. So TAG_RE.sub('', text) replaces

everything in text that matches with the regular expressions saved to TAG_RE with an empty string.

Similar to that ue.sub('ü', text) everything matching the regular expression contained in ue is

replaced by “ü” (PYTHON 2.7.10 LIBRARY; regular expression operations).

The cleaned string is returned by the remove_tags() method and appended along with id to

strippedlist lines 85 and 86 Figure 6.2. When all HTML documents within htmls have been

processed, strippedlist is passed on to UpdateHTMLwithStrippedHTML() (PSYCOPG 2.5.3 LIBRARY).

024 def UpdateHTMLwithStrippedHTML(Values):
025 conn, cur = DBConnect()
026 cur.executemany("UPDATE html SET stripped_html = %s WHERE vienna = TRUE AND id

 in (%s)", Values)
027 conn.commit()
028 cur.close()
029 conn.close()

Figure 6.4 Writing stripped HTML documents to the database

The Method shown in Figure 6.4 just contains an cur.executemany() where the id contained in the

strippedlist defines in which row the stripped_html column is updated. With all of this

information, the HTML documents containing the string 'Wien' are stripped of their html tags,

character entity names, other irregularities, and written back to the database (PSYCOPG 2.5.3 LIBRARY).

41

Geotagging

7. Geotagging

The focus of this chapter is on how to geotag all those websites and how to do it in a reasonable

time span. For this, there is a brief introduction into how indexing large datasets in PostgreSQL

works, followed by how all of this is applied to geotag websites in the thesis. The last part of this

chapter is a brief interpretation of the first map produced with this method.

7.1. Creating an index in PostgreSQL

At this point, the amount of data is down to around 700,000 HTML documents. This is still too much

information to pattern match 24,000 addresses against those 700,000 documents because, even if it

only took on average 1 ms to test one address against one document, the whole process would still

take 194 days. So the first thing that needs to be done is create a search index on the HTML

documents.

7.1.1. Converting a text to a list of stemmed tokens

To create such an index, the document needs to be converted into tokens and those tokens need to

be stemmed. Tokenization is the process of chopping a document into pieces of character sequences

called tokens. Tokens can be loosely understood as the words that make up a document, but there

are other cases, for example, dates like 1/1/1970, that can be understood as a token. An example for

tokenization would be:

How long, O Catiline, will you abuse our patience?

Tokenized: How long O Catiline will you abuse our patience

In this example, the process of tokenization simply divided the words at whitespaces and eliminated

the punctuation. However, some tokenizations are more complicated. Take, for example, “Mr.

O’Neill thinks that the boys’ stories about Chile’s capital aren’t amusing.” Finding the correct

tokenization here is more difficult because what is the correct tokenization of O’Neill: neill, oneill,

o’neill, o’ neill, o neill, or of aren’t: aren’t, arent, are n’t, aren t (MANNING ET AL; 2009; pp. 22-24)?

The most common strategy tokenization algorithms use on this problem is to always split on none

alphanumeric characters. Most tokenization algorithms also allow for provisions, depending on the

language. But splitting on white spaces can also cause problems, for example, for a group of words

that should be treated as one token. This can lead to bad search results such as when a search for

42

Geotagging

“York University” only returns results for “New York University”. A challenge that is specifically

numerous in the German language is compound nouns. An example of this is

Lebensversicherungsgesellschaftsangestellter (life insurance company employee), which contains

four nouns. Search results are greatly improved when a compound splitter is used that subdivides

compound nouns into multiple tokens. But regardless of how the tokenization algorithm works, it is

imperative that the same algorithm is used for the documents and the search terms (MANNING ET AL;

2009; pp. 22-25).

Following the tokenization of the documents, it is important to drop stop words. Stop words are

words that are so common in a language that they hold little to no value when selecting one

document over another. Examples of this in the English language are: a, but, by, for, had, I, most,

and so on. A stop wordlist can either be generated by counting the frequency of all words in a corpus

and hand-selecting the words that go on the list out of the most frequent ones, or, as in the case of

this thesis, the predefined stop word list of PostgreSQL can be used. With the help of a stop word

list, the amount of postings that the database needs to store can be significantly reduced. The length

of a stop list does vary from a very long list with 200 to 300 terms to small list with only 7 to 12

terms. Modern web search engines don’t use a stop list. As with the tokenization, if a stop list is used

for documents, it is important that the same list is also used for search terms (MANNING ET AL; 2009;

pp. 27-28).

Next comes token normalization. Normalization is used to make two character sequences that are

not quite the same, but have the same meaning match, for example USA and U.S.A. One way to

accomplish this is by using equivalence classes. For this method, all terms that are put together in

one class are mapped to the same token. There are a couple of different approaches to create these

equivalence classes, one is to replace all accents, diacritics, and, in the case of German, ß, are

replaced by corresponding ASCII characters. Even though diacritics are in many cases the only

distinguishing factor between two different meanings for a group of characters, the reason why this

is still done is because many users tend to not use them when they use a search engine (MANNING ET

AL; 2009; pp. 28-29).

Case-folding is another technique used to normalize tokens. In this strategy, all letters of a token are

reduced to lower case. This, for example, allows “Automobile” written at the beginning of a

sentence and therefore capitalized to also match the query “automobile”. It also helps with users’

search queries that misspell or incorrectly capitalize words. But this also creates problems because a

43

Geotagging

lot of proper nouns are derived from common nouns, capitalization being the only distinguishing

factor between the two, for example, in company names (General Motors, The Associate Press),

government organizations (the Fed vs. fed), and people’s names (Bush, Black) (MANNING ET AL; 2009;

pp. 30).

Truecasing is an alternative to case-folding in English. Instead of making all tokens lowercase, only

some tokens are made lowercase. The simplest rule here is to make all tokens that are at the

beginning of a sentence and all words occurring in a title lowercase. Words that are in the middle of

a sentence are left capitalized. In most cases that will keep the distinction between to words. This

method can be improved by mashing learning algorithms that then take much more than only those

basic heuristics into account. But also to mitigate for user input errors case-folding is still the most

practical solution (MANNING ET AL; 2009; pp. 30).

The last step in the process is to stem or lemmatize a token. Both techniques try to accomplish the

same reduction of a token to the base form of a word. Words differ for grammatical reasons, for

example, “organize”, “organizes”, and “organizing”, is the same word in different grammatical

contexts. Also there can be derivationally related words that have similar meanings such as

democracy, democratic, and democratization. From the perspective of a search engine user, it is

preferable that in both cases the engine would consider words of all sets to generate results. So the

goal of stemming and lemmatization is the same, to relate tokens to a common base form. In English

for example:

am, are, is -> be

car, cars, car’s, cars’ -> car

If used on a complete sentence the results could look something like this:

 The boy’s cars are different colors -> the boy car be differ color

The difference between the two is how they try to accomplish this goal. Stemming is mostly a

heuristic process that chops off the end of a word by a set of rules which try to achieve a base form

of a word. While lemmatization works with a proper dictionary and morphological analysis of words

in the aim to only remove the inflectional endings and return the base dictionary form of a word

know as a lemma (MANNING ET AL; 2009; pp. 32-35).

To demonstrate the difference between the two, let us compare them through the token “saw”.

Using a stemmer on the token might just return “s”, while the lemmatization of the word would

either return “see” or “saw” depending on whether, in the context, it is a noun or a verb. While

stemming does increase the recall of a search engine, it does also lose precision. Lemmatization

increases precision, but reduces recall.

44

Geotagging

For this step, the thesis is bound to the tokenization process of PostgreSQL. PostgreSQL uses a

stemmer for the practical reason that lemmatization needs complex and also time-intensive

morphological language models (MANNING ET AL; 2009; pp. 32-35).

The option PostgreSQL leaves for tokenization is to provide a language. So a PostgresSQL query like

this:

SELECT * from to_tsvector('german', Die Aufklärung, welche die Freiheiten
entdeckt hat, hat auch die Disziplinen erfunden.)

uses tokenization, normalization, removing stop words, case-folding, and stemming to create a

result like this:

"'aufklar':2 'disziplin':11 'entdeckt':6 'erfund':12 'freiheit':5"

Only the base words and their position within the original string are preserved (POSTGRESQL 9.3.9;

documentation).

7.1.2. Creating a Token Index

Even though with tokenization the amount of data can be reduced, there is still a need for an index

to search quickly through the tokens. PostgreSQL offers two types of Indexes for tsvector columns: a

Generalized Search Tree (GiST) based index and a Generalized Inverted Index (GIN) based index. The

GiST index is described as “lossy,” which means that the index itself may produce false matches for

tokens. This makes it necessary to check the search term against the actual tokens of the matches

produced by the index, which in turn slows the query speed down (POSTGRESQL 9.3.9;

documentation).

A GIN index is not lossy, but its performance depends logarithmically on the number of unique

tokens. In general, the following performance differences occur between the two types:

- GIN lookups are comparatively about three times faster.

- It takes about three times longer to build a GIN index.

- It is slower to update a GIN index compared to a GiST index.

- GIN indexes are about two or three times larger than GiST ones.

Because the data is static and there will be about 21k queries, one for every address, the GIN Index

will be used (POSTGRESQL 9.3.9; documentation).

45

Geotagging

197 def CreateIndex():
198 conn, cur = DBConnect()
199
200 cur.execute("ALTER TABLE html ADD COLUMN textsearchable_index_col tsvector;")
201 conn.commit()
202 cur.execute("UPDATE html SET textsearchable_index_col = to_tsvector('german',

 stripped_html) WHERE Vienna = True;")
203 conn.commit()
204 cur.execute("CREATE INDEX textsearch_idx ON html USING

 gin(textsearchable_index_col);")
205 conn.commit()
206 cur.close()
207 conn.close()

Figure 7.1 Index Creation

The whole process of how the index is created in the database is shown in Figure 7.1. First, the

column of data type tsvector, textsearchable_index_col, is created in line 200. Then, in line 202,

a tsvector is created from the content in the column stripped_html for all rows where Vienna is

set to true. Lastly, in line 204, the index is created on the textsearchable_index_col column. Now

it is possible to search through the column stripped_html without the slow pattern matching

operator LIKE (PSYCOPG 2.5.3 LIBRARY), (POSTGRESQL 9.3.9; documentation).

7.2. Create a unique set of Addresses and prepare them for Search Queries

Since there are a variety of rules of how to tag addresses in OpenStreetMap and there is no

consensus in the community, addresses can exist multiple times in the dataset. Because, for

example, they are attached to every entrance of a building or tagged once just to a node and then to

a way representing a building or, if addresses apply to multiple buildings, every building can have the

address or just a relation that encapsulates all those buildings and so on. But for the geotagging

process, only one instance of every address is needed. Even though it would not make a difference

to look for the same address multiple times, it would increase the amount of necessary queries

(OPENSTREETMAP WIKI; Addresses).

PostgreSQL provides a good way to make the addresses unique with an SQL command. With SELECT

DISTINCT ON, one field or more that must be unique within the selection can be selected. The best

way to progress from that is to transfer this unique set into a new table and this is what the code in

Figure 7.2 does.

46

Geotagging

054 def MakeAddressesUnique():
055 conn, cur = DBConnect()
056
057 conn.commit()
058 cur.execute("INSERT INTO

 AddressesUnique(geom,street,street_number,pcode,AddDate)"
059 "SELECT DISTINCT ON (street,street_number)

 geom,street,street_number,pcode,AddDate FROM Addresses")
060 conn.commit()

Figure 7.2 Populate Table AddressesUnique

The SQL statement inserts AddressesUnique, the selection of rows that are distinct in the columns

street and street_number, into the table. The table AddressesUnique was created beforehand. As

a result, the number of rows is reduced from 23830 to 21246 (PSYCOPG 2.5.3 LIBRARY).

The now unique addresses are read from the newly created and populated table, but in order to be

suitable for a search query, some of them need to be modified. Most of this has to do with how the

tokenization and stemming process works in PostgreSQL (POSTGRESQL 9.3.9; documentation).

157 def CleanStrings(lines):
158 for row in lines:
159 StreetName = row[0]
160 StreetNumber = row[1]
161 ID = row[2]
162 p = re.compile(r' ')
163 q = re.compile(r'[^-/a-zA-Z0-9_]')
164 r = re.compile(r'[0-9a-zA-Z] [-/] [0-9a-zA-Z]')
165 s = re.compile(r"'")
166
167 if r.match(StreetNumber):
168 StreetNumber = p.sub('', StreetNumber)
169 StreetNumber = q.sub('', StreetNumber)
170 StreetName = s.sub("''", StreetName)
171 row3 = p.sub(' & ', StreetName)
172 row4 = p.sub(' & ', StreetNumber)
174 lines.remove(row)
175 lines.insert(0,(StreetName,StreetNumber,ID,row3,row4))
176
177 return lines

Figure 7.3 Preparing addresses for search queries

What can be seen in Figure 7.3 is not only the preparation for the full text search query, but also for

a following LIKE query. Again, regular expressions are used to manipulate the strings. All

modifications have been developed by trial and error to make the addresses work with the various

database queries. The regular expression in line 180 matches patterns like “8 – 9”, “4a – g”, and “7 /

8”, when there are spaces in between three defined character groups. This regular expression is

used in line 167 to identify street numbers with these patterns and check if they match the pattern

47

Geotagging

the spaces in line 168 that are replaced with nothing. This creates “8-9”, “4a-g”, and “7/8” when

applied to the above examples. This step is necessary because otherwise the symbols would be

transformed into separated tokens. The regular expression defined in line 163 matches parenthesis

and is applied to street numbers in line 169. The code removes the parentheses. This is necessary

because parentheses create a lot of trouble in SQL statements. The expression in line 165 is designed

for only one particular street in Vienna with the name D’Orsay-Gasse. The inverted comma in the

name needs to be escaped because it also disrupts SQL statements. The expression is applied in line

160 replacing every single inverted comma with two inverted commas, thus escaping it in a SQL

statement. Lastly, the expression defined in line 162 matches all spaces. The application of this

expression in lines 171 and 172 is with the full text search already in mind. This is because tokens

can be joined with an ampersand, creating only matches on documents if both tokens exist within

the document. This is necessary for street names like “Kärtner Ring” or some street numbers named

for example “Objekt 11”. Note that examples like “Objekt 11” are not changed in line 168 because

they don’t fit the pattern defined in line 169 (PYTHON 2.7.10 LIBRARY; regular expression),

(OPENSTREETMAP WIKI; Addresses).

7.3. Preparing the SQL Statement for Geotagging

Because the SQL statement for finding addresses within the HTML documents is relatively complex

and considers possible abbreviations of an address, they are created in Python before they are

executed on the database. The function responsible for forming SQL statements out of the address

list created with the CleanStrings() method depicted in Figure 7.3 is the

ConstructSQLStatmentSearchAddresses() partly shown in Figure 7.4.

48

Geotagging

077 def ConstructSQLStatmentSearchAddresses(Values):
078 SQLStatmentdict = {}
079 conn, cur = DBConnect()
080
081 for line in Values:
082
083 if line[0][-6:] == 'traße':
084 SQLStatmentdict[line[2]] = cur.mogrify(
085 "Select ID FROM HTML WHERE "
086 "Vienna = TRUE AND "
087 "(textsearchable_index_col @@ to_tsquery('german',

'"+line[3]+' & '+line[4]+"') AND "
088 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')"
089 "OR"
090 "(textsearchable_index_col @@ to_tsquery('german',

'"+line[3]+' & '+line[4]+"/:*') AND "
091 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')"
092 "OR"
093 "(textsearchable_index_col @@ to_tsquery('german',

'"+line[3][:-4]+'. & '+line[4]+"') AND "
094 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')"
095 "OR"
096 "(textsearchable_index_col @@ to_tsquery('german',

'"+line[3][:-4]+'. & '+line[4]+"/:*') AND "
097 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')"
098 ";")

Figure 7.4 SQL Statement Construction part one

This first part of the SQL statement construction in Figure 7.4 shows the constructions if the address

ends in “straße”. But before that, the SQLStatmentdict, a python dictionary, is created and will

contain all SQL statements with the ID of the address as the key at the end. Even though the

ConstructSQLStatmentSearchAddresses() function does not write anything to the database, a

database connection is established in line 79 because the .mogrify() method of the cursor class is

needed. Then starting in line 81, the function iterates through previously prepared addresses

(PSYCOPG 2.5.3 LIBRARY).

The address is tested if it ends in “traße” in line 83. Using “traße” instead of “Straße” as a test

ensures that words where “Straße” is a part of a word, like in “Haupstraße,” or if “Straße” stands on

its own are included in this if clause (PYTHON 2.7.10 LIBRARY; string).

What follows is a complex SQL statement that can be broken down into four blocks separated by the

OR’s in the statement in lines 89, 92 and 95. The outer part of lines 85 and 86 are a Select for an ID

from the HTML table where the field Vienna is set to TRUE and one of the four blocks of the inner part

is true as well. All blocks consist of a query to the index described in chapter 7.1., and an ILIKE

operator query on the table field containing the text that is stripped from HTML tags. Compared to

the LIKE operator, the ILIKE operator also considers upper- and lowercases of a word. How one of

the blocks works is that it narrows the possible documents down to only a handful with the help of

the index query. Then to make sure that the document truly contains the address, the ILIKE query is

49

Geotagging

performed on the set of address selecting only those documents that clearly match the address. To

give an example for “Kärntner Straße 37” the sql statement for line 87 and 88 would look like this:

"(textsearchable_index_col @@ to_tsquery('german','Kärntner & Straße & 37') AND
stripped_html ILIKE '% Kärntner Straße 37 %')"

The to_tsquery would match every document that contains all of the given words while ILIKE

would only match the documents that contain this exact pattern of characters (POSTGRESQL 9.3.9;

documentation).

The other blocks separated by OR work with possible abbreviations or deviations in the address

pattern. The block in lines 91 and 92 appends a slash to the street number in the to_tsquery and

ILIKE queries. This part of the query now also catches patterns in documents that not only specify

the street number, but also the door number in the building or the staircase or both. The slash is

directly followed by a wild card in both queries. The block in line 93 and 94 then works with the

possible abbreviation of “straße” as “str.,” thereby, basically removing the last 4 letters of “straße”

and adding a dot. Other than that, it is similar to the first block in lines 87 and 88. The last block in

lines 96 and 97 combines the abbreviation of “straße” with the slash added to the street number

(POSTGRESQL 9.3.9; documentation), (PSYCOPG 2.5.3 LIBRARY).

50

Geotagging

100 elif line[0][-4:] == 'asse':
101 SQLStatmentdict[line[2]] = cur.mogrify(
102 "Select ID FROM HTML WHERE "
103 "Vienna = TRUE AND "
104 "(textsearchable_index_col @@ to_tsquery('german',

 '"+line[3]+' & '+line[4]+"') AND "
105 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')"
106 "OR"
107 "(textsearchable_index_col @@ to_tsquery('german',

 '"+line[3]+' & '+line[4]+"/:*') AND "
108 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')"
109 "OR"
110 "(textsearchable_index_col @@ to_tsquery('german',
 '"+line[3][:-4]+'. & '+line[4]+"') AND "
111 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')"
112 "OR"
113 "(textsearchable_index_col @@ to_tsquery('german',
 '"+line[3][:-4]+'. & '+line[4]+"/:*') AND "
114 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')"
115 ";")
116
117
118 else:
119 SQLStatmentdict[line[2]] = cur.mogrify(
120 "Select ID FROM HTML WHERE "
121 "Vienna = TRUE AND "
122 "textsearchable_index_col @@ to_tsquery('german',

 '"+line[3]+' & '+line[4]+"') AND "
123 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %'"
124 "OR "
125 "textsearchable_index_col @@ to_tsquery('german',

 '"+line[3]+' & '+line[4]+"/:*') AND "
126 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%'"
127 ";")
128
129
130 return SQLStatmentdict

Figure 7.5 SQL Statement Construction part two

The remaining part of the ConstructSQLStatmentSearchAddresses() function depicted in Figure 7.5

works similarly to the just described part. The part from lines 100 to 115 works exactly like the one

described before with the only difference being that it is for street names ending in “gasse”. The last

part within the else clause catches all names that neither end in “gasse” nor “straße”. Compared to

the other two, it does not include possible abbreviations of the street name in the SQL query, only

the slash deviations (POSTGRESQL 9.3.9; documentation), (PSYCOPG 2.5.3 LIBRARY).

51

Geotagging

7.4. Joining Addresses with HTML Documents

Now that the SQL statements for every address have been created, they need to be executed on the

database. But before that, there needs to be a table that can contain the join. The following SQL

statement creates this table:

CREATE TABLE IF NOT EXISTS AddressesUniqueJoinedWithURL (id serial PRIMARY
KEY, AddressesUniqueID INTEGER, HTMLID INTEGER, Original BOOLEAN);

The table AddressesUniqueJoinedWithURL consists of four fields: an ID field, a field containing

the ID of the address, a field containing the ID of and HTML file joined to the address, and a Boolean

field used later to indicate that this is a direct connection different from indirect joins created later

in the thesis (POSTGRESQL 9.3.9; documentation).

The execution of the SQL statements again happens in the python script and is shown in Figure 7.6.

133 def JoinAddressesUniqueWithURL(SQLStatmentdict):
134 conn, cur = DBConnect()
135 i = 1
136 Starttime = time.time()
137 Starttime2 = time.time()
138 Numberofrows = len(SQLStatmentdict)
139
140 for ID in SQLStatmentdict:
141 cur.execute(SQLStatmentdict[ID])
142 values = cur.fetchall()
143 if values:
144 args_str = ','.join(cur.mogrify("(%s,%s,TRUE)",

(ID,x[0])) for x in values)
145 cur.execute("INSERT INTO AddressesUniqueJoinedWithURL

 (AddressesUniqueID, HTMLID, Original) VALUES " + args_str)
146 conn.commit()
147
148 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
149 delta_time = time.time() - Starttime
150 print "time till now %.2f Minutes"%(delta_time/60)
151 print "time till end %.2f Minutes"%(((delta_time/60)/i)*(Numberofrows-i))
152 i += 1
153 Starttime2 = time.time()
154 conn.close()
155 return

Figure 7.6 Perform the join of addresses with HTML documents

Apart from the database connection established in line 134, the first lines up until line 138 of the

JoinAddressesUniqueWithURL() function create some variables that help to keep track of time and

calculate how long the function will run. Starting in line 140, the function iterates through the keys

of the SQLStatmentdict dictionary. As mentioned before, the ID of an address is used in the

52

Geotagging

dictionary as the key to the SQL statement created for this address. So when used as a key in line

141 the corresponding SQL statement is executed (POSTGRESQL 9.3.9; documentation), (PSYCOPG 2.5.3

LIBRARY).

The result of the query is handed over to the values variable in line 142 and the results is tested to

check if it contains any rows in line 143. If it contains no rows, the next ID of the SQLStatmentdict

dictionary is called. But if it contains any rows, lines 144 to 146 create an insert into the

AddressesUniqueJoinedWithURL table. To achieve this, the script iterates through the result in

line 144 and the created string contained in the args_str could, for example, if the address ID was

1, look like this:

(1,3,TRUE) ,(1,25,TRUE) ,(1,43,TRUE) ,(1,199,TRUE)

Now combining this string with the rest of the Insert SQL statement would look like this:

INSERT INTO AddressesUniqueJoinedWithURL(AddressesUniqueID, HTMLID, Original)

VALUES (1,3,TRUE) ,(1,25,TRUE) ,(1,43,TRUE) ,(1,199,TRUE)

This would create 4 new rows in the AddressesUniqueJoinedWithURL table, containing the

information about which address is joined to which HTML document (POSTGRESQL 9.3.9;

documentation).

At the beginning of this chapter, there where around unique 700k HTML documents containing the

string “Wien” somewhere and about 24k addresses from which a subset of 21,246 is unique. Now

after the direct joins, there are 6284 unique addresses joined to 41,543 unique HTML documents in

a total number of 52,586 joins. Map 7.1 shows a spatial visualization of those joins. The Table 7.1

shows a frequency distribution of those matches.

53

Geotagging

Map 7.1 Distribution of addresses joined to HTML documents

54

Geotagging

Matches per Address Frequency
0 14962

1-10 5541
11-20 360
21-30 110
31-40 59
41-50 65
51-60 34
61-70 25
71-80 10
81-90 9

91-100 5
>100 66

Table 7.1 Website match Frequency per Address

Rank Streetname Number PostCode Direct Website Matches
1 Nibelungengasse 13 1010 2197
2 Neubaugasse 1 1070 1158
3 Ebendorferstraße 7 1010 1152
4 Urban-Loritz-Platz 2a 1070 704
5 Brigittenauer Lände 38 1200 681
6 Johannesgasse 16 1010 468
7 Lothringerstraße 16 1030 468
8 Neubaugasse 8 1070 462
9 Radetzkystraße 2 1030 455

10 Rainergasse 38 1050 427
Table 7.2 Top Ten matched Addresses

7.5. Discussion

Even though it is not the main objective of this thesis to compare different districts and regions of

Vienna with one another, the Map 7.1 still provides an opportunity to write about it. First of all, due

to the fact that the addresses are not bought from a provider, like the Österreichische Post AG, the

dataset is most likely incomplete (see chapter 4.4.). But still there is such an overwhelming amount

of addresses that observations can be made. The obvious one is that the first district of Vienna

produces the most matches. The reason for this is probably that this district hosts a mix of a lot of

commercial companies, tourist attractions, and Austrian government buildings. The first district

seems to be followed in matches by the seventh and eighth districts. Other interesting areas are in

the ninth district around the University of Vienna and in the fourth around the Vienna University of

55

Geotagging

Technology. Also visible at the border between the sixth and seventh district is the Maria Hilfer

Straße, one of the main shopping streets in Vienna.

Concerning the match frequency shown in Table 7.1, as expected, the overwhelming majority of

address only turns up on a couple of HTML Documents each, most probably sites like imprints and

legal disclaimers. Table 7.2, on the other hand shows the top ten addresses with the most matches.

It might be assumed that there is no real information to gain out of so little information, other than

that the address is named somewhere on the Internet. To broaden the information associated with

an address in the next chapter, all web links to a webpage that contains an address are found and

the websites containing those links are then also joined with the address.

56

Finding Links

8. Finding Links

The topic of this chapter is to broaden the amount of websites that are associated with an address.

For this, all websites that link to a website that was geotagged in chapter 7 are also associated with

this address. At the end, there is another look at the derived dataset and a discussion of the map

created from the data.

8.1. Preparation

To successfully join links with HTML files that have already been geotagged, two python dictionaries

are necessary. One contains all URLs from the HTML table and their IDs and second a dictionary

contains all IDs of HTML documents matched to address IDs. The code in Figure 8.1 creates these

two dictionaries.

047 def URLsWithID(conn, cur):
048 cur.execute("SELECT URL,ID FROM html;")
049 data = cur.fetchall()
050 dictonary = dict(data)
051 return dictonary

013 def GetGeocodedHTMLIDs(conn, cur):
014
015 cur.execute("SELECT HTMLID, AddressesUniqueID FROM

 AddressesUniqueJoinedWithURL WHERE Original = TRUE")
016 data = cur.fetchall()
017
018 datadict = {}
019 for row in data:
020 if row[0] in datadict:
021 datadict[row[0]].append(row[1])
022 else:
023 datadict[row[0]] =[row[1],]
024
025 return datadict

084 conn, cur = DBConnect()
085 URLDictonary = URLsWithID(conn, cur)
086 URLIDWITHAddressIDDictonary = GetGeocodedHTMLIDs(conn, cur)

Figure 8.1 Creating the URL dictionary and the HTML joined to addresses dictionary

The creation of the URL dictionary is relatively straight forward and shown in line 47 to 51. With the

cursor object, an SQL statement is executed on the database, fetching all URLs and IDs from the

57

Finding Links

table HTML. The database returns them to Python in the form of a list of tuples containing the URL

and the ID. When this list is given to the dict() function in line 50, it is converted into a dictionary

with the URLs as keys and the IDs as values. The dictionary is returned and saved to the variable

URLDictonary in line 85 (PSYCOPG 2.5.3 LIBARY).

What is slightly more complicated is the creation of the URL joined to addresses dictionary, because

it is a many to many relationship. This means that one URL can be matched to more than one

address and one address can be matched to more than one URL. The structure of URLDictonary is

that HTML IDs act as keys to a list of addresses, because that is the relevant relation in this

application. In line 15, the cursor object executes the SQL statement on the database, fetching the

HTMLID and the AddressesUniqueID from the table AddressesUniqueJoinedWithURL. They are

returned to python again in the form a list of tuples like in the URLsWithID() function. But this time

instead of just creating a dictionary, the code iterates through the tuple pairs in line 19. The HTML ID

of each row (row[0]) is tested to see if it already exists in the dictionary as a key in line 20. If so, the

list of address IDs associated with the HTML ID is appended with one more address ID. But if the key

does not exist, a new entry is created in the dictionary with the HTML ID as the key and the address

ID as the first address in the list (PSYCOPG 2.5.3 LIBARY).

The result is a dictionary with HTML IDs as keys and lists of addresses that are matched to this HTML

ID as values. The dictionary is returned and saved to the variable URLIDWITHAddressIDDictonary in

line 86 (PSYCOPG 2.5.3 LIBARY).

8.1. Link Extraction

The next step is to extract all the links from all 8.4 million websites and, if necessary, convert them to

full URLs. The part of the code depicted in Figure 8.2 is responsible for accomplishing this.

58

Finding Links

027 def FindLinksInHtml(conn, cur, offset):
028 NoWhiteSpace = re.compile(r' ')
029 loadingtime = time.time()
030 cur.execute("SELECT id,url,html_file FROM html WHERE id > %s AND id <= %s
 ORDER BY id;",(offset, offset+limit))
031 data = cur.fetchall()
032 print('Loading took %.2f Minutes' % ((time.time() - loadingtime) / 60))
033 regextime = time.time()
034 passeslist = []
035 linklist = []
036 for row in data:
037 links = re.findall(r'href=[\'"]?([^\'" >]+)', row[2])
038 for link in links:
039 try:
040 linklist.append((row[0],

NoWhiteSpace.sub('%20',urlparse.urljoin(row[1], link))))
041 except:
042 passeslist.append((row[1], link))
043 print('Regex took %.2f Minutes found links %s' %

(((time.time() - regextime) / 60), len(linklist)))
044 return linklist, passeslist

Figure 8.2 Finding links and converting them

The method FindLinksInHtml() gets a connection object, a cursor object and an offset passed on

to it. It loads the following columns: id, url and html_file from the HTML table. html_file is the

field that contains the whole html file with all the tags in it, not the one created in chapter 6. Which

html files are loaded is determined by the offset that changes for every call of the method. Thus, the

method always reads the next slice of the HTML table.

The fetched data is saved to the data variable. Next, two result containers are created in line 34

passeslist and line 35 linklist. passeslist will hold all the found links that are either not

properly formed or could not be converted into absolute URLs, while linklist will hold the

information for all found links and in which html document they were found.

The script then starts to iterate through the fetched data in line 36. Each row contains an ID element

in position 0, a URL element in position 1 and the html file in position 2. The html file is searched for

links with the regular expression in line 37. The pattern matching will return all the text of an html

link tag marked in this example, (PYTHON 2.7.10 LIBRARY; regular

expression operations).

The re.findall() method will return these link strings for all the links in the given document in the

form of a list. Iterating through this list is the next step of the script. In line 40 nested into each other

there are two methods that process and covert the found links to absolute URLs. The first is the

urlparse.urljoin() method. In this case, it takes the absolute URL of the page where the link was

found (contained in row[1]) and creates an absolute URL from a link. This occurs regardless of

whether it was a relative or absolute link before. For example, if the link found is “/hello/world.htm”

and the URL of the page it was found on is “http://www.w3.org/test/”, the method would create the

59

Finding Links

following absolute URL “http://www.w3.org/test/hello/world.htm” out of both parts. Table 7.1

shows a couple of other examples of how urlparse.urljoin() works. No matter how complex the

links or URLs are, the method derives the correct absolute URL (PYTHON 2.7.10 LIBRARY; regular

expression operations), (PYTHON 2.7.10 LIBRARY; urlparse).

Link URL Result

/hello/world.htm http://www.w3.org/test/ http://www.w3.org/test/hello/world.htm

http://www.w3.org/test/hello/world.
htm

http://www.w3.org/test/ http://www.w3.org/test/hello/world.htm

http://www.w3.org/test/ ../hello/world.htm http://www.w3.org/hello/world.htm

../../test/ http://www.w3.org/test/hello/world.htm http://www.w3.org/test/

Table 8.1 urlparse.urljoin() Examples

The second method simply replaces spaces in URLs. Spaces as an ASCII symbol are not part of the

URL specification. Nevertheless, a lot of links do contain them and they mostly work fine because

most modern browsers have error handling capabilities. But the URLs saved in the database are

saved in the correct format for URLs, where white spaces are encoded with the percent encoding. To

find those links pointing to those URLs, white spaces also need to be replaced with the percent

encoding. This is what the NoWhiteSpace.sub() regular expression does. An example of such a

conversion could be “http://www.w3.org/hello world.htm” is converted to

“http://www.w3.org/hello%20world.htm”. The converted link is then appended to the linklist

with the corresponding html file ID (PYTHON 2.7.10 LIBRARY; regular expression operations), (BERNERS-

LEE, ET AL.; 2005; pp.11-14).

Because there are some malformed links, link conversion is within a try and except block. If the

conversion fails, the link on which it fails is appended to the passeslist. Overall, there are 72 links

in the 8.4 million documents that could not be converted. Examples of those can be seen in Figure

8.3.

'http://[www.boku.ac.at/fachstukofhnw.html')
'http://cialisqrx.com]buy')
('http://derstandard.at/1328507079451/Nachlese-Schneechaos-in-weiten-Teilen-
Oesterreichs'
Figure 8.3 Malformed Link Examples

60

Finding Links

8.2. Geotagging the found linked websites

As the title suggest, this chapter is about how to join those linked websites to already geotagged

ones and, in turn, geotagging the linked websites as well. As described before, this works by finding

links to already geotagged websites on other websites. Matching those websites with the same

address like the one they link to. This process is shown in Figure 8.4.

098 linklist,passes = FindLinksInHtml(conn, cur, offset)
099
100 passeslist += passes
101 URLIDStoLinkIDS = []
102 for row in linklist:
103 if row[1] in URLDictonary:
104 URLIDStoLinkIDS.append((row[0],URLDictonary[row[1]]))
105
106 Newlist = []
107 for row in URLIDStoLinkIDS:
108 if row[1] in URLIDWITHAddressIDDictonary:
109 for rowx in URLIDWITHAddressIDDictonary[row[1]]:
110 Newlist.append((row[0],rowx))
111
112
113
114 r += len(Newlist)
115 WritetoAddressesUniqueJoinedWithURL(Newlist)

053 def WritetoAddressesUniqueJoinedWithURL(List):
054 conn, cur = DBConnect()
055 args_str = ','.join(cur.mogrify("(%s,%s,FALSE)", x) for x in List)
056 try:
057 cur.execute("INSERT INTO AddressesUniqueJoinedWithURL (HTMLID,

AddressesUniqueID, Original)VALUES " + args_str)
058 conn.commit()
059 except:
060 print "Error Inserting Joins"
061 cur.close()
062 conn.close()
063
064 return

Figure 8.4 Geotag linked websites

Essential for doing this are the two dictionaries URLDictonary and URLIDWITHAddressIDDictonary

whose creations are described in subchapter 8.1., and linklist, the result of the previous subchapter.

URLDictonary contains all of the URLs in string form with their respective IDs.

URLIDWITHAddressIDDictonary contains all URL IDs that are joined to address IDs. And linklist

contains all IDs of websites and to which URLs those websites link. So what needs to be done for

every link found on an HTML document is that the corresponding IDs have to be looked up in the

URLDictonary. There is a possibility that a link URL can’t be found in URLDictonary, because links

61

Finding Links

could also target none .at websites. If the ID is found, another lookup is done in the

URLIDWITHAddressIDDictonary dictionary. If this HTML document is already joined to an address,

the ID of the address is returned by the dictionary and the linked website is now also joined to this

address.

To do this in code, the script starts to iterate through the linklist in line 102 and every found link

URL is tested to see if it is contained in the URLDictonary in line 103. If the link URL is contained in

URLDictonary, the ID of the website containing the link URL and the ID of the website the link is

linking to, are appended to the list URLIDStoLinkIDS. The next step is that the script iterates

through this list in line 107. If the URL ID a link points to is also found in the

URLIDWITHAddressIDDictonary dictionary, the script iterates through all the addresses this website

is associated with and appends a tuple consisting of the website ID where the link originated and the

address ID to the Newlist, thus creating the desired join in line 110.

This Newlist containing these new joins is then handed over to the

WritetoAddressesUniqueJoinedWithURL() method in line 115. This utilizes a couple of previously

discussed techniques to write all joins to the database in one transaction. Especially the

cur.mogrify() method in line 55. The value in the field original is set to FALSE. This makes it

possible to discriminate between direct and indirect joins of websites to addresses (PSYCOPG 2.5.3

LIBARY).

8.3. Discussion

In the previous chapter, there were 6,284 unique addresses joined to 41,543 unique HTML

documents in a total of 52,586 joins. The number of addresses is constant, but there are now

269,083 unique HTML documents joined to 6284 addresses in a total of 2,062,981 joins. Those

numbers are interesting because, while the number of total HTML documents only got about 6.5

times bigger, the number of joins in comparison massively increased by a factor of 40. That means

there must be quite a lot of websites that are rather well interconnected to each other and websites

that link to multiple addresses.

As in the previous chapter, this work yields another map shown as Map 8.1.

62

Finding Links

Map 8.1 Result of joining linked HTML documents to addresses

63

Finding Links

Websites per Address Frequency
0 14962

1-10 2264
11-20 820
21-30 427
31-40 294
41-50 243
51-60 189
61-70 142
71-80 114
81-90 83

91-100 77
>100 1631

Table 8.2 Associated Website Frequencies per Address

Rank Streetname Number Post
Code

Direct Website
Matches

Associated Website
Matches

1 Viktorgasse 16 1040 323 91575
2 Urban-Loritz-Platz 2a 1070 704 38684
3 Stephansplatz 6 1010 370 33545
4 Neubaugasse 1 1070 1158 30878
5 Neubaugasse 8 1070 462 29442
6 Lothringerstraße 16 1030 468 29437
7 Siebenbrunnengasse 21 1050 374 25010
8 Brigittenauer Lände 38 1200 681 23174
9 Gumpendorfer Straße 10-12 1060 280 21385

10 Schottenring 17 1010 110 21230
Table 8.3 Associated Website Frequencies per Address

When interpreting Map 8.1, the previous observations still seem to hold true. The 1st Viennese

District is still the one with the strongest Internet presence. The 1st is followed by the 7th and 8th and

the areas around the main University and Technology University of Vienna. For the dataset as a

whole, this seems also to be true. When the coefficient of variation values from websites directly

matched (10.03) and websites associated with addresses (10.74) are compared to each other. It can

be deducted that the value dispersion does not change much. Thus, the addresses HTML document

distribution is the same as before just with higher values. For a picture of the distribution see Table

8.1. The top ten addresses all have over 20,000 associated websites with the maximum of 91,575.

See Table 8.2 for the addresses with the most associations (Böhner; 1990; pp. 18-20)

64

The Vector Space Model

9. The Vector Space Model

This chapter is an introduction into the vector space model, which is a way to classify documents

within a high-dimensional vector space. The Vector Space Model can be used to compare document

similarity and search queries. It is a useful tool to overcome the limitations of Boolean retrieval

systems and its main component is a statistically weighted document vector for every document

within a collection of documents.

9.1. The Document Vector

To understand the idea of the document vector space, the disadvantages of Boolean retrieval have

to be considered. How Boolean retrieval for a big collection of document works is that if a term in a

document matches a query used for retrieval, it is retrieved. But in many cases, such a query can be

too restrictive. A query such as “T1 and T2 and T3” will only retrieve those documents that exactly

match the query. An OR query for these terms “T1 or T2 or T3,” on the other hand, could be too

loose. Furthermore, the list of documents is retrieved unordered. But it would be of interest to find

the most relevant documents to a query. A possible way would be to simply count how many times

the query term or terms are present in the document and order the retrieved documents by this

count (SALTON.; 1991; pp. 974).

To do this effectively, the information retrieval system should not count all words in the document

for every query again and again; rather it would be efficient to count them beforehand. Thus, a new

representation of the document is created. If every individual term in the set of documents is seen

as one dimension, all of the documents can now be seen as a vector in this high-dimensional space.

In this representation, the relative order of words in the document is lost. The two documents “Mary

is quicker than John” and “John is quicker than Mary” are represented as the same so called bag of

words. To compensate for different lengths of documents and, thus, different lengths of the

document vectors, the vectors are normalized to a length of 1 (MANNING ET AL.; 2009; pp. 120-122),

(SALTON ET AL.; 1975; pp. 613-620).

To compare two documents to each other, it is now possible to use the vectors of both documents.

Figure 9.1 shows 3 normalized document vectors �⃗�𝑣(𝑑𝑑1−3) in a document 2D vector space. It only

consists of the two words “gossip” and “jealous” (MANNING ET AL.; 2009; pp. 120-122).

65

The Vector Space Model

Figure 9.1 Cosine similarity example (MANNING ET AL.; 2009;)

The similarity between the two documents d1 and d2 can be determined by the cosine of the angle

theta. The cosine of an angle is bigger the more acute the angle is. A angel of 360°/0° results in a

cosine of 1 while an angle of 180° results in -1 (MANNING ET AL.; 2009; pp. 120-122).

In this system, (search)-queries can be treated as just a bag of words as well and made into a

document vector �⃗�𝑣(𝑞𝑞). This vector can then be compared to the other document vectors. The dot

product, which is equal to the cosine of the angle, for the query vector and all document vectors is

created. The documents are then ordered by the cosine similarity to the query (MANNING ET AL.; 2009

p.123-124).

9.2. Term frequency Inverse Document Frequency

Still open is the question on how to weigh query terms. So far, words in documents and not queries,

even though in the vector space model both can be seen as equal, are weighed by the term

frequency. The more often a term occurs in the document, the more the vector is moved in the

dimensional direction of the word. The reason why there is still a need to introduce some other form

of term weighing is that not all words are equally important to a document (MANNING ET AL.; 2009

p.117).

66

The Vector Space Model

There are, for example, stop words. Stop words is a term used for extremely common words that are

no help when distinguishing documents from each other. A short example stop word list can be seen

in Figure 9.2.

a an and are as at be by for

from has he in is it its of on

that the to was were will with

Figure 9.2 Stop word list of 25 words that are common in the Reuters Corpus Volume 1 (MANNING

ET AL.; 2009)

These words could be not included in the vector space, but the problem of how to weigh different

terms still persists. For example, in a collection of documents about cake baking, the word sugar

probably occurs in nearly every of those documents and has, therefore, a very low value in

distinguishing the documents from one another. What needs to be done is to weigh the term

frequency of words that are rare in the corpus higher and those that are frequent lower. Because

the goal is to distinguish documents from each other, it is desirable to count in how many

documents the term occurs, rather than how many times they occur overall. This can be further

illustrated by Table 9.1 another example from the Reuters Corpus. The collection frequency is how

often the term occurs individually and the document frequency is in how many different documents

the term occurs (MANNING ET AL.; 2009 p.117-118).

Word cf df

try 10422 8760

insurance 10440 3997

Table 9.1 Collection frequency (cf) and document frequency (df) different behavior (Manning et al.;

2009)

The formula used to calculate the document frequency weight of a term, also called the inverse

document frequency (idf), is:

𝑖𝑖𝑑𝑑𝑖𝑖𝑡𝑡 = log
𝑁𝑁
𝑑𝑑𝑖𝑖𝑡𝑡

idft (inverse document frequency of the term), N(total number of documents), dft(Document

frequency of the term)

67

The Vector Space Model

Table 9.2 shows some example Values for document frequency and the resulting inverse document

frequency (SALTON; 1991; pp. 976).

Term dft idft

car 18,165 1.65

auto 6,723 2.08

insurance 19,241 1.62

best 25,235 1.50

Table 9.2 Examples for idf Values based on the Reuters Collection containing 806,791 documents

(MANNING ET AL.; 2009)

Finally, the inverse document frequency can be combined with the term frequency by multiplication.

Now, when combined with the content of sub chapter 9.2., a weighted and normalized vector of a

document can be created (SALTON; 1991; pp. 976).

68

Categories for classification

10. Categories for classification

This chapter is about defining classes in which the addresses can be categorized. For this, there is a

short look at the Munich-Viennese school of social geography before mixing the findings with some

newer approaches to define the classes.

10.1. Daseinsgrundfunktionen

The title of this chapter literally translates to “basic existence functions”. It is part of a concept

developed by the so-called Munich-Viennese school of social geography. The premise of the school

was that there are social groups that transform space for their needs, those needs being the

“Daseinsgrundfunktionen.” It was an important step away from the previous approach that the

natural/physical appearance of space determines the use of this space by humans (MAIER ET AL.;

1977; p. 18).

Translated into English, here are the seven “Daseinsgrundfunktionen”:

- To live somewhere (Wohnen)

- To work (Arbeiten)

- To supply (Sich versorgen und konsumieren)

- To be educated (Sich bilden)

- To relax (Sich erholen)

- To take part in traffic (Verkehrsteilnahme)

- To live in a community (Sich Fortpflanzen und in Gemeinschaft leben)

(RUPPERT AND SCHAFFER; 1969; pp. 208-209)

These functions are of interest because, according to the principles of the Munich-Viennese school

of social geography, these functions have a representation in space. Therefore, they could be

detected in communication about a space (MAIER ET AL.; 1977; p. 100).

The concept of the Munich-Viennese school of social geography can be criticized. A main point of

contention is that the concept of the social groups described within the theories is incompatible with

the definition of social groups in other disciplines like sociology. In some cases, people would form a

social group by just doing the same thing, like biking. Also, the basic functions of existence seem to

be incompatible with sociology (WEICHERT; 2008; pp. 44-53).

The first approach was to just use the basic functions of existence as classes for the addresses. But

first a transformation had to be made. Because the system is set up like an information retrieval

system, the names of the classes needed to be cast more in the form of a search query than a

69

Categories for classification

scientific term. But with this transformation into search queries, it became obvious that the classes

would not cover or, in information retrieval terms, retrieve all places that are part of these classes.

To illustrate this, the place where a doctor’s office or a hospital is located would be part of the class

“to live in community.” But a search term corresponding to the class “community” would potentially

not produce a good score with a doctor’s office or a hospital. On the other extreme, a too narrow

search term like “health care” would probably score very well with a doctor’s website, but exclude

everything else that is part of living in community (see chapter 9. about how document vectors

works).

With these criteria in mind, in the end it was decided to only keep three of the

Daseinsgrundfunktionen and develop appropriate search terms for them:

- Wohnen (To live somewhere)

- Arbeiten (To work)

- Sich bilden (To be educated)

10.2. Classes for addresses

With the problem of a too wide or narrow “search term” for classification purposes in mind, it was

clear that finding enough classes to classify every possible entity was not an option. To broaden the

scope of classes for entities, literature about functional urban geography was consulted to develop

further classes. During this review Map 10.1 came up. It shows the Viennese inner city divided up

into functional quarters.

70

Categories for classification

a)

b)

Map 10.1 a),b) Functional subdivision of the Viennese inner city a) German b) English translation

(FASSMAN AND HATZ; 2002; p. 37)

This map is the second source from which classes are derived. Apart from listing a couple of

functions that could work quite well with the search term paradigm, it provides the possibilities to

compare the results produced by the classification other than the control group (see chapter 13.).

71

Categories for classification

The last resource for classes was the trade groups found in HEINEBERG ET AL. (2014). From those two

sources the following classes are derived:

- Kultur (culture)

- Einkaufen (shopping)

- Finanzen (finance)

- Regierung (government)

- Gaststätte (restaurant, bar)

- Hotel (hotel)

(HEINEBERG ET AL.; 2014; pp. 187-189), (FASSMAN AND HATZ; 2002; pp. 35-40)

The resulting list of classes is far from complete. Almost no services like barbers and plumbers or

attorneys and doctors are represented by any of those classes. How complete the list is will also

show the mapping of the control group. Everything that cannot be assigned a class will be put into

the class “other.” How big the class “other” will be, after creating the control group, will reveal how

much is not captured by the other classes.

Lastly, all the classes are transformed into search queries (see Table 10.1). Most of the queries are

identical to their German class names. Exceptions are “Dienstgebäude” (governmental building) for

“Regierung” (government). The idea behind this is that buildings that are associated with

government can be named “Dienstgebäude” and therefore not only target buildings like the

parliament but also other government agencies. For the finance class, the query “Kreditinstitut”

(credit institution) was selected. The reason behind this has to do with the co-occurrence groups

that are going to be explained in Chapter 11., and because a query like “Finanzen” (finance) yielded

a co-occurrence group that seemed too similar to the Ministry of Finance and government and the

word “Bank” has more than one meaning in German.

72

Categories for classification

Class Query

Wohnen (To live somewhere) Wohnen

Arbeiten (To work) Arbeiten

Sich bilden (To be educated) Bildung

Kultur (culture) Kultur

Einkaufen (shopping) Einkaufen

Finanzen (finance) Kreditinstitut

Gaststätte (restaurant, bar) Gaststätte

Hotel (hotel) Hotel

Regierung (government) Dienstgebäude

Table 10.1 Classes and their corresponding queries

73

Co-occurrence Groups

11. Co-occurrence Groups

This chapter gives an overview of natural language processing and part of speech (POS) tagging, in

particular, and shows how these techniques are used to create a POS-tagged version of Wikipedia.

Lastly, from the POS-tagged Wikipedia co-occurrence query, expansion groups are generated for the

search terms defined in Chapter 10. .

11.1. Introduction Natural Language Processing

The tool of computer linguistics is statistics. Computer linguistics attempts to create a statistical

model of (natural) human language. The goal is that, with the statistical model, a computer could

analyze a language or a text in this language and create some result about it, without the necessity

of understanding language, like humans do. One of the prime examples for natural language

processing (NLP) and computer linguistics is translation work. Other examples where computer

linguistics is used today are in the creation of text summaries or detection of plagiarism (MANING AND

SCHÜTZE; 1999; pp. 3-35).

The overarching instrument NLP uses is a text corpus. A corpus is a kind of annotated text that can

be used as a knowledge base. It can be used to answer simple language questions like in what

frequency some kind of word is used together with another (MANING AND SCHÜTZE; 1999; pp. 3-35).

11.2. Part-of-speech Tagging

Part-of-speech tagging, a discipline within the NLP field, is an important part of the further work in

this thesis. It is a technique that determines whether every term is a noun, verb, adjective, etc. or if

the word is part of a compound word. The results are then attached as a label to the word and

saved. The annotated text is called a corpus (RUSSEL; 2014; p. 194).

An example for POS-tagged sentence is this:

The-DT representative-NN put-VBD chairs-NNS on-IN the-DT table-NN.

Every word has a label that indicates what kind of word it is. The meaning of the labels can be looked

up in Table 11.1. The example sentence could also be tagged differently as in the next example:

The-DT representative-JJ put-NN chairs-VBZ on-IN the-DT table-NN.

74

Co-occurrence Groups

Even though this way of reading is unlikely, the example shows that tagging always has some sort of

ambiguity. A good tagger then determines which of the syntactic categories for a word is most likely

for the word in this kind of a sentence (MANING AND SCHÜTZE; 1999; pp. 341-379).

Tag Description Example
CC conjunction, coordinating and, or, but
CD cardinal number five, three, 13%
DT determiner the, a, these
EX existential there there were six boys
FW foreign word mais
IN conjunction, subordinating or preposition of, on, before, unless
JJ adjective nice, easy
JJR adjective, comparative nicer, easier
JJS adjective, superlative nicest, easiest
LS list item marker
MD verb, modal auxiliary may, should
NN noun, singular or mass tiger, chair, laughter
NNS noun, plural tigers, chairs, insects
NNP noun, proper singular Germany, God, Alice
NNPS noun, proper plural we met two Christmases ago
PDT predeterminer both his children
POS possessive ending 's
PRP pronoun, personal me, you, it
PRP$ pronoun, possessive my, your, our
RB adverb extremely, loudly, hard
RBR adverb, comparative better
RBS adverb, superlative best
RP adverb, particle about, off, up
SYM symbol %
TO infinitival to what to do?
UH interjection oh, oops, gosh
VB verb, base form think
VBZ verb, 3rd person singular present she thinks
VBP verb, non-3rd person singular present I think
VBD verb, past tense they thought
VBN verb, past participle a sunken ship
VBG verb, gerund or present participle thinking is fun
WDT wh-determiner which, whatever, whichever
WP wh-pronoun, personal what, who, whom
WP$ wh-pronoun, possessive whose, whosever
WRB wh-adverb where, when
Table 11.1 The Peen Treebank II POS tag set (Santorini 1990)

The first large tagged corpus was the Brown Corpus in 1971. It consists of about 1 million words and

was first tagged by humans over a couple of years. The TAGGIT tagger was developed alongside the

Brown Corpus. The tagger used lexical Information to narrow down the tags a word could have and

then apply rules to for tagging it. An example for such a rule could be that a noun very likely follows

75

Co-occurrence Groups

an article and that a verb following an article is very unlikely. So if the tagger had found a word in the

text by a lexical lookup that could be a noun or a verb and it is preceded by an article, then the

tagger would decide it as a noun (MANING AND SCHÜTZE; 1999; pp. 341-379).

Taggers that were developed later and are, therefore, more advanced make use of Hidden Makrov

Chains. Makrov Chains try to determine what type of word a word is by looking at the preceding 1 to

3 words. It calculates the combined possibility of these words occurring in this kind of order for all

possible combinations and then chooses the combination with the highest possibility. These models

need to be trained to “know” the possibility of a word sequence occurring (MANING AND SCHÜTZE;

1999; pp. 317-340).

The performance of a tagger mostly depends on four factors:

- The amount of training data the tagger has available

- How big the tag set is. The bigger the tag set, the less reliable a tagger gets

- How different the trainings corpus and dictionary that are used are from the corpus that

needs to be tagged

- How well the tagger can handle words that are unknown to it

Most modern taggers reach an accuracy of 96% to 97%, which seems quite high, but in reality it

means that in an average-length sentence of 20 words, there is one incorrectly tagged word (MANING

AND SCHÜTZE; 1999; pp. 371-372).

A German language tagger that is natively available in python as a library is a Brill-Tagger. The Brill-

Tagger works differently than the previously mentioned hidden Makrov Chain tagger, instead it uses

a learned rule base schema and a lexical lookup. The Brill-Tagger was originally developed for English

and needed to be trained for German. It works with a pre-tagged corpus that is used as a lexical

lookup and from which the rules are derived. It is trained in two-steps. First, it assigns all words their

most common tags found in the trainings corpus. Then, because the tagger learns on a pre-tagged

corpus, the errors that have been made are recorded. The tagger then tries to find rules that correct

the mistakes. Each rule is tested against the pre-tagged corpus and the tagger weighs if this corrects

more mistakes than it introduces. This process is iterated until the error rate plateaus (SCHNEIDER AND

VOLK; 1998; pp. 2-3).

The Brill-Tagger generates two sets of rules: lexical rules and context rules. Lexical rules are used for

unknown words. An example of a lexical rule (shown below) is that words that end in the 4-letter

suffix -lich

76

Co-occurrence Groups

LICH HASSUF 4 RB

The effect of this rule is that every unknown word that has the 4-letter suffix –lich is retagged as an

adverb independent of what its first tag was (SCHNEIDER AND VOLK; 1998; p. 3).

An example for a context aware rule is:

 NN VB PREV-TAG TO

This rule changes a word that is tagged as a noun to a verb if the word that precedes it is tagged with

the infinitival “TO” (BRILL; 1992; p. 152-153).

The described Brill-Tagger for the German language achieved results of around 95 to 96%

correctness. But a problem with these results is that the Brill-Tagger was validated on the same kind

of text it was trained on. It was trained on the annual report from the University of Zurich. For the

training phase, 25% of the corpus was withheld and used as a control group. In this control group,

the tagger had an error rate of 5%, but it can be assumed that if the tagger was used not to tag

annual reports from this specific university, but, for example, for journalistic sports publications, that

the error rate would be higher (SCHNEIDER AND VOLK; 1998; p. 4-7), (MANNING AND SCHÜTZE; 1999; p.

343-344).

11.3. POS tagging Wikipedia

The python library used for POS tagging uses the Penn Treebank II tag set. This is a tag set developed

for the English language and, therefore, does not contain provisions for German language

particularities, like tags for separated verb prefixes. A tag set providing language tags that were

made for the German language is the Stuttgart-Tübingen Tag-Set (STTS) (SCHNEIDER AND VOLK; 1998;

p.3).

But for the sake of simplicity, this paper will continue to use the Peen Treebank II because later only

two broad word groups, verbs and nouns, are used to create the semantic vectors. It is therefore less

relevant for this task that the tagger correctly identifies what kind of verb or noun a word is. That

only broad classes are needed also helps with the second problem the tagger has, that it was created

from a very specific kind of text. This was described at the end of the previous chapter (MANNING AND

SCHÜTZE; 1999; pp. 343-344)

Because of its broad scope of themes, its huge amount of text and that it is freely available, the

German Wikipedia is a good source for creating co-occurrence groups as they are described in the

later subchapters 11.4 and 11.5. To generate these groups the words and sentences of Wikipedia

need to be POS tagged. To POS tag Wikipedia, the content needs to be available as pure text. It is

possible to download XML dumps from Wikipedia, but they need to be converted to pure text. KOPI,

77

Co-occurrence Groups

a web portal used to identify plagiarism in English, German and Hungarian, has developed such a

converter with the following adjustments:

• The conversion keeps article boundaries

• Only text information is extracted

• Info boxes get filtered out

• Comments, templates and math tags are also filtered out

• Other types of “written” information like tables are converted to text

KOPI publishes their converted dumps and makes them available under the Creative Commons

license 3.0 BY-SA. The newest available German Wikipedia text version from 16.06.2014 was

downloaded from their site (PATAKI ET AL.; 2012; pp. 48-49).

The downloaded dump is 7.22 gigabytes of text data when unzipped. It is unzipped into 1321

individual files, each in an individual subfolder. The POS tagging with the following code took about 2

days on a modern computer.

045 def createfilepathlist():
046 pathlist = []
047 subfolders = [x[0] for x in os.walk('./WikiText/')]
048 for subfolder in subfolders[1:]:
049 for filename in os.listdir(subfolder):
050 pathlist.append(subfolder+'/'+filename)
051
052 return pathlist
053
054
055 i = 0
056 filepathlist = createfilepathlist()
057 len_filelist = len(filepathlist)
058 Starttime = time.time()
059
060 if __name__ == '__main__':
061
062 print('Tagging new corpus')
063 pool = ThreadPool(4)
064 pool.map(POStag, filepathlist)
065 pool.close()
066 pool.join()
067
068 print('+++++########+++++')
069 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60))
070 print('+++++########+++++')

Figure 11.1 Creating the file list

The code in Figure 11.1 creates as its first task a list of all Wikipedia text files in line 56. This method

is called createfilepathlist(). This function uses a couple of methods in python’s os library for

example os.walk() in line 47 that returns all subfolders for a main folder. All subfolders are saved

as a list to the variable subfolder. This list is iterated through, starting in line 48, except for the first

78

Co-occurrence Groups

element because it is the main folder itself. Within the iteration, all objects in each subfolder are

again called with os.listdir(). Each subfolder contains exactly one text and in line 50 every

subfolder is combined with the file into one path and saved to the pathlist. This list is then returned

in line 52 (PYTHON 2.7.10 LIBRARY; operating system).

Other variable in the lines 55 to 58 need to be set outside the main thread, too. They need to be

accessible to the parallel threads created in the main thread. The main thread begins in line 60 and

makes use of the multiprocessing library in python to POS tag the individual Wikipedia files in

multiple threads. The ThreadPool is set to 4 workers in line 63. With the pool.map() function, the 4

threads are spawned. This method needs a function (POStag()) and an iterateable variable

(filepathlist) to work. It takes the first item from the filepathlist, passes it to the POStag()

and starts an instance of the function in the first thread. Then the second item is handed to a new

instance of the function in the second thread and so on. Whenever one thread is finished with the

current item, it gets a new item from the filepathlist until all items from the list have been

iterated through. Lines 65 and 66 make sure that all threads are completed and joined again before

the script moves on (PYTHON 2.7.10 LIBRARY; multiprocessing).
011 def POStag(filepath):
012
013 global i
014 global len_filelist
015 i += 1
016 newcorpustagged = []
017 Starttime2 = time.time()
018
019 with io.open(filepath, 'r', encoding='utf-8') as mfile:
020 data = mfile.read()
021 data = data.splitlines()
022
023
024 for section in data:
025 section = parse(section)
026 section = section.split()
027
028 for sentence in section:
029 sent = []
030 for token in sentence:
031 sent.append((token[0], token[1]))
032 newcorpustagged.append(sent)
033
034
035 with io.open('./wikicorpuspickeld_2/%s_%s.pos' % (current_thread().ident, i,),

'wb') as fout:
036 pickle.dump(newcorpustagged, fout)
037
038
039 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
040 delta_time = time.time() - Starttime
041 print "time till now %.2f Minutes" % (delta_time/60)
042 print "time till end %.2f Minutes" % (((delta_time/60)/(i*4))*(len_filelist-

(i*4)))

Figure 11.2 Executing the POS tagger

79

Co-occurrence Groups

The POStag() function in Figure 11.2 defines the variables i and len_filelist as global variables

to access them even though they were defined outside the function. The function also creates a new

list newcorpustagged that will contain the part of the corpus that will be tagged by the function. It

then proceeds to open the file at the passed filepath in line 19. Important for opening the file is to

define the correct encoding of the file, in this case 'utf-8'. The file is read in line 20 and saved to

the variable data. Now that the text of the file is available as a string, this string is split at every new

line (\n) symbol with .splitlines() in line 21. New lines occur whenever a paragraph in the

original Wikipedia article ended. The reason to split the file into paragraphs is to POS tag the string

not all at once, but bit by bit (PYTHON 2.7.10 LIBRARY; I/O),(PYTHON 2.7.10 LIBRARY; string).

The string is then POS tagged paragraph by paragraph starting in line 24. The parse() function in

line 25 POS tags the paragraph. The paragraph is then split into individual sentences with .split()

in line 26. The code iterates through all sentences in line 28 and then through all now-tagged words

in line 30. From the individual tokens, only object 0 (word) and object 1 (POS tag) are of interest.

That is why only those two are appended as a tuple to the new sentence list sent in line 31. This list

is then appended to the meta list newcorpustagged. This continues until all sentences of all

paragraphs have been tagged and appended to newcorpustagged, resulting in a list of sentences

that, in turn, consist of a list of word and POS tag tuples (PATTERN; pattern.de).

The last step is to save newcorpustagged to the drive so that it can be recalled in later scripts. For

this, the python input output library and the pickle library are used. Pickle allows for the serializing

of python objects, so that they can be saved as a file. To avoid file name conflicts, the files that are

saved in line 35 and 36 are named with the variable i and the ID of the current thread that is

checked with current_thread().ident. As mentioned before, the POStag() function is executed in

4 Parallel threads, on the 1,321 Wikipedia text files. The result is 1,321 pickle objects that are saved

to the './wikicorpuspickeld_2/' directory (PYTHON 2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY;

pickle).

11.4. Co-occurrence

To simulate human knowledge about words in a machine-processing task, it is necessary to analyze

the meaning of words. A thesaurus is a typical knowledge representation, in a sense, what words

mean is described by other words. However, generating a thesaurus manually is very labor-intensive

and is biased towards the manufacturer (ITO ET AL.; 2008; pp. 817-826).

80

Co-occurrence Groups

To automatically generate a thesaurus and solve both of these problems, a couple of methods have

been developed. One of them is co-occurrence. Broadly speaking, co-occurrence measures how

often one word is used similarly to another word. How close both words have to be is defined by the

window size. The windows size can range from only one word, resulting in only the words that

directly proceed and precede a word, to up to 10 words. This becomes more nuanced if the

frequency of the co- occurrence is also taken into account (ITO ET AL.; 2008; pp. 817-826).

Co-occurrence word information can be defined in a couple of ways and describes the relation of the

co-occurring words to each other.

a) The relation between a super-concept and a sub-concept word. Examples for this co-

occurrence are “country name” and “Canada” or “clothes” and “trousers”

b) The relation between verb and noun phrase. For example “run, dog, subject”

c) Compound word relations like in “Canadian” and “Canadian Nationality” or “America” and

“United States of America” as examples

d) The synonymous relation between words “America” and “United States of America” are

used as synonyms as well as “Cutter” and “Sports shirt”

To also capture how strongly two words correlate with each other, the frequency of their co-

occurrence can be collected. A relation between the word “Chirp” and “Bird” is recorded two times

in the corpus, so this relation has a co-occurrence frequency of 2 (ITO ET AL.; 2008; pp. 817-826).

Both aspects, the co-occurrence and the frequency of it, will be used to create a co-occurrence

group similar to the document vector described earlier (KAZUHIRO ET AL.; 2003; pp. 957-960).

To explore how useful co-occurrence vectors are, a couple of experiments were conducted. For this,

a corpus of 160 million words from Usenet Newsgroups was queried for co-occurrence. For every

word that appeared at least 50 times within this corpus, word vectors similar to document vectors

were calculated. For the calculation of the vectors, the co-occurrence frequency was used. In the

next step, the Euclidian distance for each vector to each vector was calculated. Example results

selected randomly from this processing can be seen in Table 11.2, where for each target the 5

nearest words are shown (LUND AND BURGESS; 1996; pp.203-205).

81

Co-occurrence Groups

Target n1 n2 n3 n4 n5

Jugs Juice Butter Vinegar Bottles Cans

Leningrad Rome Iran Dresden Azerbaijan Tibet

Lipstick Lace Pink Cream Purple Soft

Cardboard Plastic Rubber Glass Thin Tiny

Triumph Beauty Prime Grand Former Rolling

Monopoly Threat Huge Moral Gun Large

Table 11.2 Five nearest neighbors for Target words (Source: Lund and Burgess 1996)

The relationship between two vectors appears to be both semantic (jugs-cans, cardboard-plastic)

and associative (lipstick-lace, monopoly-threat), (LUND AND BURGESS; 1996; pp.203-205).

A second experiment tested if those vectors carry categorical information. The objective was to see

if words that are perceived to be in the same category are also grouped by their corresponding

vectors together in a category. Words that represent the categories animal names, body parts and

geographical locations were selected for this test. The co-occurrence vectors for each word where

extracted from the corpus. The Euclidean distance from every vector to every other vector was

calculated and the resulting multidimensional space was scaled to a two-dimensional solution shown

in Figure 11.3 (LUND AND BURGESS; 1996; p. 205).

82

Co-occurrence Groups

Figure 11.3 Multidimensional scaling of co-occurrence vectors. (Source: Lund and Burgess 1996)

The results in Figure 11.3 were enhanced by the lines added to clarify the differentiation of the

categories. The geographic spaces are unlike either body parts or animals. The separation between

body parts and animals also works well except for “tooth,” but intuitively it can be guessed that

tooth is an important body part for animals. This is probably the reason why it gets clustered

together with the animals. Overall, the experiment validates the assumption that words can be

categorized to a certain degree using their co-occurrences without human supervision (LUND AND

BURGESS; 1996; p.205).

11.5. Generating Co-occurrence query expansion groups from Wikipedia

The literature on query expansion is split. On the one hand, it is believed to introduce more noise,

but increase the recall; on the other hand, query expansion could enhance document classifications.

The automatic query expansion employed in this thesis based on co-occurrences is a simple one;

there are more sophisticated methods. Examples of this are exploiting grammatical relationships

between words, introducing a semantic term weight or utilizing Wikipedia to embed semantic

83

Co-occurrence Groups

kernels into documents. To test which method works best, the addresses are going to be classified

with both the query expansion and the search terms defined in Chapter 10. (see Table 10.2), (WANG

AND DOMENICONI; 2008; pp. 713-721), (LUO ET AL.; 2011; pp. 12708-12716), (MANNING ET AL.; 2009; 189-

194).

The code in Figure 11.4 generates the co-occurrences used for the query expansion from the now

POS-tagged Wikipedia.
025 def CoOccurrence(groups):
026 Starttime3 = time.time()
027 Fenster = 10
028 i = 1
029 S_list = stopwords_list()
030 word_dict = {}
031
032 Files = [x[2] for x in os.walk('./wikicorpuspickeld_2/')]
033 for file in Files[0]:
034
035 with io.open('./wikicorpuspickeld_2/'+file, 'rb') as fin:
036 loaded_corpus = pickle.load(fin)
037
038
039 for sentence in loaded_corpus:
040 for (index, tokentag) in enumerate(sentence):
041 (token, tag) = tokentag
042 token = token.lower()
043
044 if token in groups:
045 term = sentence[index-Fenster:index+Fenster]
046 for(term_token, term_tag) in term:
047
048 term_token = term_token.lower()
049 if term_token not in S_list and NounVerb(term_tag):
050
051 if token not in word_dict:
052 word_dict[token] = {}
053 if term_token in word_dict[token]:
054 word_dict[token][term_token] += 1
055 else:
056 word_dict[token][term_token] = 1
057
058 print i
059
060 delta_time = time.time() - Starttime3
061 print "time till end %.2f Minutes" %

(((delta_time/60)/i)*(len(Files[0])-i))
062 i += 1
063
064 return word_dict
065
066 groups = [u'wohnen', u'arbeiten', u'bildung', u'einkaufen', u'gaststätte',

u'hotel', u'kreditinstitut', u'kultur', u'dienstgebäude',]
067
068 Starttime2 = time.time()
069 CoOccurrenceGroups = CoOccurrence(groups)
Figure 11.4 Co-occurrence generation from Wikipedia

The groups are the lists of search terms (see chapter 10.). They are passed as a python list to the

function CoOccurrence(). The purpose of the functions is, if the one of the terms is found to look

84

Co-occurrence Groups

forward and backward in the same sentence and record any verbs and nouns that occur within this

window around the term. A couple of variables are defined to make this possible. Number one is

Fenster containing the size of the window. The Second is S_list. Here the code calls a function not

shown in Figure 11.4 that delivers the German stop words found in the Natural Language Tool Kit

(NLTK) in the form of a python list and, lastly, word_dict the dictionary that will contain the

co-occurrences. The code from lines 32 to 36 opens the POS-tagged Wikipedia generated earlier in

this chapter. Then, the script iterates through the separate sentences found in the POS-tagged

Wikipedia. The tokens in the sentence are enumerated in line 40. The resulting index variable is

used to save the position of the token in the sentence to make the window lookup in line 45

possible. So if the search term is in the groups list, the lookup gets triggered returning all words

within the window size as a list of word and POS tag tuples in line 45. The words are then tested if

they are stop words. Then they are tested again by the NounVerb() function to see if they are a verb

or noun (see Table 11.1). If a word passes both tests, it is added to the word_dict dictionary. This

happens in two phases. First, if the search term is not yet present in the dictionary as a key, it is

added in line 52 containing a subdictionary as a value. Then, the word is either added as a new key

to this subdictionary in line 56 or, if it is already present, plus one is added to the counter. This not

only records the words, but also how many times they co-occur with the search term. This statistical

connection will be used to create a weighted vector (see chapter 9.2. and Chapter 12.2.3.), (NLTK

3.0 library).

Table 11.3 shows the now-produced co-occurrence groups. They still contain some non-information,

like “=” and “]”, that is the result of tagging mistakes of the POS tagger and the way the text version

of Wikipedia was formatted. These artifacts will be filtered out as soon as the groups are turned into

vectors (see chapter 12.2.3.).

85

Co-occurrence Groups

Search Term

hotel

(25707)

*

(2538)

=

(1926)

]

(1828)

wurde

(1378)

grand

(1004)

gaststätte

(4111)

wurde

(359)

heute

(286)

gebäude

(145)

straße

(134)

=

(124)

arbeiten

(80323)

=

(7759)

beruf

(4172)

rechtsanwal

t

(3105)

began

(2687)

wurden

(2109)

bildung

(47332)

=

(49506

)

kultur

(2334)

forschung

(2074)

wissenschaft

(2059)

bundeszentral

e

(1786)

wohnen

 (8240)

=

(557)

bauen

(447)

menschen

(434)

arbeiten

(272)

haus

(270)

dienstgebäud

e (445)

=

(111)

wurde

(29)

berlin

(26)

eisenbahndirektio

n (20)

heute

(19)

kreditinstitut

(1703)

]

(970)

deutschland

(360)

schweiz

(146)

bank

(81)

österreich

(77)

einkaufen

(1118)

=

(218)

gehen

(74)

können

(62)

geht

(46)

konnten

(29)

kultur

(80743)

=

(93309

)

sehenswürdigkeite

n (14092)

geschichte

(5554)

kunst

(5180)

wissenschaft

(2737)

Table 11.3 Co-occurrence groups with top 5 terms and the number of their occurrences

86

Address Classification

12. Address Classification

This chapter is about bringing together various parts of the previous chapters; namely, the

document vector and the co-occurrence groups derived from the POS tagged Wikipedia corpus.

First, the final vector space that will contain all the document vectors will be created out of the

combination of two other vector spaces. Then the vectors for the co-occurrence groups, the search

terms and the HTML documents will be calculated and compared to each other. Lastly, the values

created in this comparison are used to classify the addresses.

12.1. Creating the Vector Space

For classifying documents with document vectors, the vector space these document vectors can

exist in must be created first. That means that a space exists that contains as many dimensions as

individual terms or, in this case, stemmed tokens. The reason why individual stemmed tokens are

used and not every individual word contained in the corpus is the same as described in Chapter

7.1.1. . The same word can differ for grammatical reasons or words can have similar meanings like in

the examples “organize”, “organizes”, “organizing” and “democracy”, “democratic”,

“democratization” (SALTON; 1991; pp. 974-980), (MANNING ET AL.; 2009; p. 123).

This chapter describes how two vector spaces, one from the HTML documents and one from the

Wikipedia corpus, are created and merged into a combined vector space.

12.1.1. Creating a unique set of HTML documents

Before the HTML file vector space can be created, there is an issue with the HTML documents itself

that needs to be corrected first. Due to complications in the download process, namely, that it

crashes or gets stuck a couple of times, it needs to be restarted (see chapter 3.3.). Because of how

the index works and how the download script is coded, in the event of a crash it is unavoidable that

some parts of already downloaded data will be downloaded again, thus creating duplicates. To

create a dataset containing only unique HTML files, the following SQL command needs to be

executed on the database:

INSERT INTO htmlunique SELECT DISTINCT ON (url) id, url, html_file, Vienna,
textsearchable_index_col, stripped_html, geocoded FROM html where geocoded

= TRUE

87

Address Classification

This selects the rows from the table that have a unique URL and are relevant because they are

already geocoded and copies them exactly into the new table htmlunique. This ensures that the

records work with the code and the database as they did before except for the index column. If now

compared with the previous figures, there were 268,338 HTML files that have now been reduced to

256,180, a reduction of 4.53% (POSTGRESQL 9.3.9; documentation).

Even though this is only described now in the thesis, all previous chapters created tables, graphics

and maps use the htmlunique table and not the html table. The reason for not doing this right

after the import was that it is faster to create a set of unique files from 268,338 files than from 8.4

Million.

88

Address Classification

12.1.2. Creating the HTML documents Vector Space

045 def Delete_stopwords(Tokens):
046 return [token for token in Tokens if not token in

nltk.corpus.stopwords.words('german')]
047
048 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
049 tokenizer = RegexpTokenizer(r'\w+')
050 token_dict = {}
051 HTMLIDS = get_html_ids()
052
053 lower = 0
054 upper = lower + 1000
055 Starttime = time.time()
056 parsedhtmls = 0
057
058 while lower <= len(HTMLIDS):
059
060 Starttime2 = time.time()
061 stripped_htmls_list = stripped_htmls(HTMLIDS[lower:upper])
062 for html in stripped_htmls_list:
063 parsedhtmls += 1
064
065 time_tokenize = time.time()
066 tokens = tokenizer.tokenize(html)
067 tokens = Delete_stopwords(tokens)
068 token_dict_file = {}
069
070 for token in tokens:
071
072 stemmedtoken = GermanStemmer.stem(token)
073
074 if stemmedtoken in token_dict_file:
075 token_dict_file[stemmedtoken] += 1
076 else:
077 token_dict_file[stemmedtoken] = 1
078
079 for key in token_dict_file:
080 if key in token_dict:
081 doc_count = token_dict[key][0] + 1
082 occurrence_count = token_dict[key][1] + token_dict_file[key]
083 token_dict[key] = (doc_count, occurrence_count)
084 else:
085 token_dict[key] = (1, token_dict_file[key])
086
087 print('Number of tokens in dict: %s' % len(token_dict))
088 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
089 delta_time = time.time() - Starttime
090 print "time till now %.2f Minutes"%(delta_time / 60)
091 print "time till end %.2f Minutes"%(((delta_time/60)/(upper))*(len(HTMLIDS)-

(upper)))
092
093 lower += 1000
094 upper = lower + 1000
095
096 with io.open('./Vector/HTMLVectorSpace.pickle', 'wb') as fout:
097 pickle.dump(token_dict, fout)

Figure 12.1 HTML Document vector space code

The first vector space created is the one derived from the HTML documents. To accomplish this, the

code shown in Figure 12.1 first fetches a batch of the HTML files that were stripped of their HTML

89

Address Classification

tags (line 61) as described in Chapter 6.2. The code then iterates through them starting in line 58.

First, they get tokenized, split into word tokens, in line 66 with the help of the

tokenizer.tokenize() function defined in line 49. This function returns the document as a list of

tokens. From this list, with the help of the Delete_stopwords() method displayed in line 45 and 46,

all German stop words that are defined in the Natural Language Tool Kit (NLTK) are deleted from the

list (NLTK 3.0 LIBRARY; tokenize).

Then, the code iterates through all remaining tokens in the document starting in line 70. A token is

then stemmed in line 72 with the NLTK snowball stemmer defined in line 48. It is then tested to see

if the token already exists as a key in the token dictionary of this file token_dict_file. If so, plus

one is added to the counter of the token. If not, the token is added as a new key in line 77 with a

counter of 1. The dictionary is reset for every document, see line 64 (NLTK 3.0 LIBRARY; tokenize),

(NLTK 3.0 LIBRARY; stem).

The keys and counters of token_dict_file are then fed into the token_dict, see lines 79 to 84. It is

the same principal as used before with the token_dict_file. If a token already exists as a key in

token_dict, the document frequency is increased by one. The counter for corpus frequency is

increased by the counter value that the token_dict_file holds. The first count is the document

frequency and the other one the collection frequency. Both are described in detail in Chapter 9.2.

The document frequency can later be used to calculate the tf-idf vector of documents. When the

code has parsed all HTML documents and added all individual tokens to the token_dict, the

dictionary is serialized with pickle and saved to the drive in lines 96 and 97 (PYTHON 2.7.10 LIBRARY;

I/O)(PYTHON 2.7.10 LIBRARY; pickle).

12.1.3. Creating the Wikipedia Vector Space

Because the co-occurrence groups for the query expansion are derived from a different corpus, a

vector space for the Wikipedia corpus also needs to be created. The two vector spaces will then later

be combined into one vector space. As can be seen in Figure 12.2, the Wikipedia vector space is

similarly created to the previously described HTML documents vector space.

90

Address Classification

011 def Vector_Calculator():
012 Starttime3 = time.time()
013 i = 1
014 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
015 token_dict_file = {}
016 p = re.compile(ur'^[a-zA-ZäöüßÄÖÜ]{2,}$', re.UNICODE)
017
018 Files = [x[2] for x in os.walk('./wikicorpuspickeld_2/')]
019 for file in Files[0]:
020 with io.open('./wikicorpuspickeld_2/'+file, 'rb') as fin:
021 loaded_corpus = pickle.load(fin)
022
023 for sentence in loaded_corpus:
024 for (index, tagtuple) in enumerate(sentence):
025 (token, tag) = tagtuple
026 token = token.lower()
027 if token not in stopword_list:
028 if p.match(token):
029 stemmedtoken = GermanStemmer.stem(token)
030
031 if stemmedtoken in token_dict_file:
032 token_dict_file[stemmedtoken] += 1
033 else:
034 token_dict_file[stemmedtoken] = 1
035
036 delta_time = time.time() - Starttime3
037 print "time till end %.2f Minutes" % (((delta_time/60)/i)*(len(Files[0])-

i))
038 i += 1
039
040 return token_dict_file
041
042 stopword_list = []
043 for word in stopwords.words('german'):
044 stopword_list.append(unicode(word.decode('latin-1')))
045
046 Starttime = time.time()
047 Vectorraum = Vector_Calculator()
048
049 with io.open('./Vector/WikiVectorSpace2.pickle', 'wb') as fout:
050 pickle.dump(Vectorraum, fout)
051 print('Operation took %.2f Minutes' % ((time.time() - Starttime) / 60))

Figure 12.2 Wikipedia vector space code

But unlike with HTML documents, vector space it is not necessary to record the document frequency

for different tokens. The reason behind this is that the Wikipedia corpus is not the corpus that

information retrieval algorithms are used on.

The POS tagged Wikipedia corpus is loaded into the code file by file in line 20 and 21. Because this

corpus is structured as a list of sentences that contain a list of words and POS tag tuples, the tokens

needs to be unpacked. This is done in lines 23 to 25. The resulting token variable then contains a

string. This string is changed to all lowercase characters and checked against the stop word list. The

next step in line 28 is to test if token passes the defined regular expression criteria: to only consist of

letters and be at least 2 letters long. It is then stemmed in line 29. The token is then either newly

added as a key with the value 1 to the token_dict_file in line 34 or, if it already exists, plus one is

91

Address Classification

added to the counter. This process is repeated until all Wikipedia corpus files are processed (PYTHON

2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; pickle), (PYTHON 2.7.10 LIBRARY; regular expression

operations), (NLTK 3.0 LIBRARY; stem).

12.1.4. Combined Vector Space

Now to combine both vectors spaces, the code in Figure 12.3 is used.

004 with io.open('./Vector/WikiVectorSpace.pickle', 'rb') as fin:
005 WikiVectorSpace = pickle.load(fin)
006
007 with io.open('./Vector/HTMLVectorSpace.pickle', 'rb') as fin:
008 HTMLVectorSpace = pickle.load(fin)
009
010 CombinedVectorSpace = {}
011
012 for key in WikiVectorSpace:
013 if key in HTMLVectorSpace:
014 CombinedVectorSpace[key] = HTMLVectorSpace[key]
015
016 with io.open('./Vector/CombinedVectorSpace.pickle', 'wb') as fout:
017 pickle.dump(CombinedVectorSpace, fout)

Figure 12.3 Combine Wikipedia and HTML File vector space

Both vector space dictionaries are deserialized in lines 04, 05 and lines 7, 8. Thereby, the

CombinedVectorSpace dictionary that will contain the new vector space is created. The code then

iterates through the keys found in WikiVectorSpace. As described in the previous chapters, the keys

represent the individual tokens found in the respective corpora. In line 13, the code checks if the key

is also present in HTMLVectorSpace. If this is true, the key is added as a key to the

CombinedVectorSpace with the document frequency counter and the collection frequency counter

stored in the HTMLVectorSpace as a value. The CombinedVectorSpace is then serialized in line 16

and 17 (PYTHON 2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; pickle).

To combine the two vector spaces with an intersection instead of a union has two main advantages.

First, it filters out garbage tokens. Because the HTML documents are raw documents from the

Internet, they contain nonsensical string combinations (xsdf, ddjdj, lkhj) even after the filtering.

These should not or to a much lesser degree exist in the Wikipedia corpus. The second advantage is

that, to a certain degree, foreign languages are filtered. Again the same reason as before the HTML

documents could possibly contain all sorts of none German languages and up until now none

German languages have not been filtered out.

92

Address Classification

As described later in this chapter, when the document vectors for the HTML documents are created,

these now no longer existing tokens are simply ignored, like stop words. They have no influence on

the resulting document vector. The combined vector space consists of 610753 tokens.

12.2. Calculating the idf-tf vectors

With the vector space created, the idf-tf vectors for HTML documents and co-occurrence groups for

the query expansion can be produced. For this, first the inverse document frequency for every token

is calculated. Then, the idf-tf vectors for the HTML documents and the co-occurrence groups are

calculated.

12.2.1. Calculating Inverse Document Frequency per Term

The Inverse document frequency (idf) for every term is calculated with the code in Figure 12.4.

024 with io.open('./Vector/CombinedVectorSpace.pickle', 'rb') as fin:
025 CombinedVectorSpace = pickle.load(fin)
026
027 CombinedVectorSpaceIDFT = {}
028 DocumentCount = countrows()
029
030 for key in CombinedVectorSpace:
031 idft = numpy.log(numpy.divide(float(DocumentCount),

float((1+CombinedVectorSpace[key][0]))))
032
033 CombinedVectorSpaceIDFT[key] = CombinedVectorSpace[key][0],

CombinedVectorSpace[key][1], idft
034
035 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'wb') as fout:
036 pickle.dump(CombinedVectorSpaceIDFT, fout)
037
038 CombinedVectorSpaceIDFTKeyList = []
039
040 for key in CombinedVectorSpaceIDFT:
041 CombinedVectorSpaceIDFTKeyList.append(key)
042
043 CombinedVectorSpaceIDFTKeyList.sort()
044
045 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'wb') as fout:
046 pickle.dump(CombinedVectorSpaceIDFTKeyList, fout)

Figure 12.4 Code for inverse document frequency calculation

The vector space created in the last subchapter is loaded into the script as CombinedVectorSpace. A

new dictionary CombinedVectorSpaceIDFT that will, at the end of the script, contain all tokens with

their respective idf weight is created in line 27. Line 28 calls a function that returns the absolute

93

Address Classification

document count of all unique and geocoded html documents. As described in chapter 9.2., the

absolute document count is one of the variables used in the idf formula (PYTHON 2.7.10 LIBRARY; I/O),

(PYTHON 2.7.10 LIBRARY; pickle), (SALTON; 1991; pp. 976).

The formula is:

𝑖𝑖𝑑𝑑𝑖𝑖𝑡𝑡 = log
𝑁𝑁
𝑑𝑑𝑖𝑖𝑡𝑡

idft (inverse document frequency of the term), N(total number of documents), dft(document

frequency of the term)

The next step is iterating through all tokens in the vector space dictionary. Every token in the the idf

is calculated utilizing the formula. This happens in line 31 and the NumPy library is used for this. The

reason for using this specialized library is that floating point calculations are problematic for

computers and NumPy takes care of these problems.

The calculate idf stored in the variable idft is then added together with document frequency value

and the collection frequency value to the new dictionary CombinedVectorSpaceIDFT with the token

again serving as the key (NumPy 1.8.1 library;).

CombinedVectorSpaceIDFT is serialized and saved to the drive in lines 35 and 36. There is another

step to creating the vector space. Because keys in python dictionaries are not always in the same

order, a vehicle to preserve order needs to be created. This is done by adding all keys to a list in lines

40 and 41. A list can be sorted, resulting always in the same order. This is important because as soon

as the vector space is presented mathematically in an array, every token has to always refer to the

same dimensional position in the array. After the list is sorted, it is also serialized and saved to the

drive in lines 35 and 36.

12.2.2. Calculating the Term Frequency-Inverse Document Frequency Vector for HTML

Files

Now with the idf calculated for every token, the vectors for the documents can be calculated. First,

all HTML documents have to be tokenized and the occurrence of the tokens within the documents

have to be counted. This is done by the code in Figure 12.5.

94

Address Classification

061 createColumn()
062
063 offset = 0
064 htmls = ReadFromHTML(offset)
065 tokenizer = RegexpTokenizer(r'\w+')
066 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
067 Starttime = time.time()
068 Length = countrows()
069
070 while htmls:
071 print len(htmls)
072 Starttime2 = time.time()
073 for html in htmls:
074 HTMLdict = {}
075 id, HTMLtext = html
076 tokens = tokenizer.tokenize(HTMLtext)
077
078 for token in tokens:
079 stemmedtoken = GermanStemmer.stem(token)
080 if stemmedtoken in CombinedVectorSpace:
081 if stemmedtoken in HTMLdict:
082 HTMLdict[stemmedtoken] += 1
083 else:
084 HTMLdict[stemmedtoken] = 1
085
086 htmlDictpickeld = pickle.dumps(HTMLdict)
087 UpdateHtmlUniquewithDict(htmlDictpickeld,id)
088
089 offset += 1000
090 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
091 delta_time = time.time() - Starttime
092 print "time till now %.2f Minutes"%(delta_time / 60)
093 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(Length-offset))
094 htmls = ReadFromHTML(offset)

Figure 12.5 HTML document tokenization

In line 61, a function is called to create a new column VectorDICT in the htmlunique table that

will contain an HTML file-specific dictionary of tokens and their number occurrences in the file. The

column is of the type bytea, a column type that PostgreSQL offers to store binary data. With that, it

is possible to store pickled objects in the database (POSTGRESQL 9.3.9; documentation).

The tag stripped HTML documents are fetched from the database and the tokenization is started. It

works analogously to the HTML vector space creation (see chapter 12.1.2.). The HTMLtext is split

into tokens with the NLTK RegexpTokenizer() in line 76. The code then iterates through the tokens

and stems them. Stop words and similar noise are not dismissed, but because they are not part of

the vector space (see chapter 12.1.), they cannot be mapped to the final document vector. The

stemmed tokens are added to the HTML document-specific dictionary as keys. If they already exist in

the dictionary, plus one is added to the token counter. The dictionary is then serialized in line 86 and

saved to the VectorDICT column of the corresponding html document (PYTHON 2.7.10 LIBRARY;

pickle), (NLTK 3.0 LIBRARY; tokenize), (NLTK 3.0 LIBRARY; stem).

95

Address Classification

With the HTML files tokenized and the term frequency (tf) for the tokens set, the last step is to

create the normalized tf-idf document vector.

049 offset = 0
050 length = countrows()
051 Starttime = time.time()
052 createColumn()
053
054 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin:
055 CombinedVectorSpaceIDFT = pickle.load(fin)
056
057 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin:
058 CombinedVectorSpaceIDFTKeyList = pickle.load(fin)
059
060 while offset <= length:
061 dicts = VectorDICTReader(offset)
062 Starttime2 = time.time()
063 arraylist = []
064 for tuple in dicts:
065 array = []
066 id = tuple[0]
067 dictionary = pickle.loads(str(tuple[1]))
068
069 for key in CombinedVectorSpaceIDFTKeyList:
070
071 if key in dictionary:
072 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2],

dictionary[key]))
073 else:
074 array.append(0)
075 array = numpy.array(array)
076 array = numpy.divide(array,numpy.linalg.norm(array))
077 array = pickle.dumps(array)
078 array = zlib.compress(array)
079 arraylist.append((psycopg2.Binary(array),id,))
080
081 UpdateHtmlUniquewithTFIDFlist(arraylist)
082 offset += 100
083 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
084 delta_time = time.time() - Starttime
085 print "time till now %.2f Minutes"%(delta_time / 60)
086 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset))

Figure 12.6 tf-idf vector for documents

The code in Figure 12.6 creates another bytea column with the name TFIDFVector in the table

htmlunique. Also loaded into the script is the combined vector space in lines 54 and 55 and the key

list for the vector space in lines 57 and 58. The key list makes sure that the tokens are always called

in the same order and therefore always related to the same dimension in the array created with this

script. The dictionaries containing the tokens and their respective term frequency are loaded from

the database in line 61. arraylist is created in line 63 and then the code begins to iterate through

the fetched dictionary. For every dictionary, a new empty array is generated in line 65. The

dictionary is deserialized in line 67 and then the code iterates through the

CombinedVectorSpaceIDFTKeyList. If a key on the list is found in the dictionary belonging to the

96

Address Classification

html file, the term frequency is multiplied by the inverse document frequency and added to array.

The .append() method makes sure that the product is added to the end of array and, because zero

is added to array in line 74 in case the key is not found in the HTML file dictionary, the same token is

always represented by the same position in array (PYTHON 2.7.10 LIBRARY; pickle), (PSYCOPG 2.5.3

LIBARY), (PYTHON 2.7.10 LIBRARY; I/O).

The list array is then transformed into a NumPy array with numpy.array() in line 75. This makes it

possible to use the NumPy library on the array. This library is then used in the next step to normalize

the vector in line 76. Line 77 serializes the vector and, because a vector consisting of 610,753

dimensions takes up a lot of space, the serialized object is compressed with zlib.compress() in line

78. In line 79, array is made into a PostgreSQL binary data object and added together with the id to

arraylist. arraylist is then passed to the UpdateHtmlUniquewithTFIDFlist() to write the

normalized tf-idf vectors to the Database (NUMPY 1.8.1 LIBRARY;), (PSYCOPG 2.5.3 LIBARY), (PYTHON

2.7.10 LIBRARY; zlib).

12.2.3. Calculating the tf-idf Vector for Wikipedia Co-Occurrences groups and search

terms

Like with the HTML documents, the vector also has to be calculated for co-occurrence groups and

search terms as well. This is the objective of the code in Figure 12.7.

97

Address Classification

008 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin:
009 CombinedVectorSpaceIDFT = pickle.load(fin)
010
011 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin:
012 CombinedVectorSpaceIDFTKeyList = pickle.load(fin)
013
014 with io.open('./Co-Occurrence.pickle', 'rb') as fin:
015 CoOc = pickle.load(fin)
016
017 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
018
019
020 TFIDF_CoOc = {}
021 for searchterm in CoOc:
022 TFIDF_CoOc[searchterm] = {}
023 TFIDF_CoOc[searchterm]['Stemmed'] = {}
024 for token, counter in CoOc[searchterm]:
025 token = GermanStemmer.stem(token)
026 if token in TFIDF_CoOc[searchterm]:
027 TFIDF_CoOc[searchterm]['Stemmed'][token] =

TFIDF_CoOc[searchterm]['Stemmed'][token]+counter
028 else:
029 TFIDF_CoOc[searchterm]['Stemmed'][token] = counter
030
031
032 for searchterm in TFIDF_CoOc:
033 array = []
034 dictionary = TFIDF_CoOc[searchterm]['Stemmed']
035 for key in CombinedVectorSpaceIDFTKeyList:
036 if key in dictionary:
037 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2],

dictionary[key]))
038 else:
039 array.append(0)
040 array = numpy.array(array)
041 array = numpy.divide(array,numpy.linalg.norm(array))
042 array = pickle.dumps(array)
043 array = zlib.compress(array)
044 TFIDF_CoOc[searchterm]['TFIDF_CoOc'] = array
045
046
047 STarray = []
048 searchtermstemmed = GermanStemmer.stem(searchterm)
049 for key in CombinedVectorSpaceIDFTKeyList:
050 if key is searchtermstemmed:
051 STarray.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2], 1))
052 else:
053 STarray.append(0)
054
055 STarray = numpy.array(STarray)
056 STarray = numpy.divide(STarray,numpy.linalg.norm(STarray))
057 STarray = pickle.dumps(STarray)
058 STarray = zlib.compress(STarray)
059 TFIDF_CoOc[searchterm]['TFIDF_ST'] = STarray
060
061 with io.open('./Vector/TFIDF_CoOc.pickle', 'wb') as fout:
062 pickle.dump(TFIDF_CoOc, fout)

Figure 12.7 Normalized tf-idf vector for co-occurrence groups and search terms

Lines 8 to 15 load the combined vector space, the key list for the combined vector space and the co-

occurrence groups, the creation of which Chapter 11.5. describes. A new dictionary TFIDF_CoOc that

will contain the vector arrays is created in line 20. The code then iterates through the keys of the

98

Address Classification

CoOc dictionary beginning in line 21. For every key or searchterm, a new sub dictionary is created

within TFIDF_CoOc. In every sub dictionary, another sub dictionary is created in line 35 behind the

key 'Stemmed' that will contain the stemmed tokens and their counts. The next step is to stem the

tokens, combine possible duplicates and save the results to the new TFIDF_CoOc in lines 24 to 29.

The approach is similar to the work earlier described in this chapter (PYTHON 2.7.10 LIBRARY; I/O),

(PYTHON 2.7.10 LIBRARY; pickle).

In comparison to Table 11.3, now Table 12.1 contains the cleaned up and tokenized versions of the

co-occurrence groups.

Search Term
hotel restaurant

(578)
the
(603)

heut
(876)

grand
(1004)

wurd
(1378)

hotel
(25707)

gaststätte befindet
(103)

wohnhaus
(120)

strass
(134)

gebaud
(145)

heut
(286)

wurd
(359)

arbeiten jahr
(1300)

 wurd
(2109)

began
(2687)

rechtsanwalt
(3105)

beruf
(4172)

arbeit
(80323)

bildung wurd
(1283)

bundeszentral
(1786)

wissenschaft
(2059)

forschung
(2074)

kultur
(2334)

bildung
(47332)

wohnen einwohn
(255)

haus
(270)

arbeit
(272)

mensch
(434)

bau
(447)

wohn
(8240)

dienstgebäude hannov
(14)

beflagg
(14)

munch
(17)

heut
(19)

berlin
(26)

wurd
(29)

kreditinstitut vereinigt
(73)

osterreich
(77)

bank
(81)

schweiz
(146)

Deutschland
(360)

kreditinstitut
(1703)

einkaufen geld
(20)

kund
(23)

konnt
(29)

geht
(46)

geh
(74)

einkauf
(1118)

kultur gesellschaft
(2618)

wissenschaft
(2737)

kunst
(5180)

geschicht
(5544)

sehenswurd
(14092)

kultur
(80743)

Table 12.1 Tokenized co-occurrence groups with top 5 terms and the number of their occurrences

Some predictions and observations can be made about Table 12.1. An interesting irregularity is the

token “rechtsanwalt” (attorney) in the class “arbeiten” (working). This will make classification in this

class interesting, because it might classify addresses that have an attorney’s office incorrectly.

With the term frequency and stemmed tokens available, the actual vector can be created. In this,

the co-occurrence frequency will be used as the term frequency, thus making the co-occurrence

groups a kind of pseudo-document on the topic of the search term used to create them. As

described with the vector creation of the HTML documents, it is important that the sequence of the

tokens is preserved. That is why the code iterates through the CombinedVectorSpaceIDFTKeyList

in line 35. If a token on the list is also found in the dictionary containing the tokens of the co-

occurrence group, then the frequency of the co-occurrence is multiplied with the inverse document

frequency of this token and appended to array in line 37. If the token is not part of the co-

99

Address Classification

occurrence group, then zero is added to array in line 39. array is then made into a NumPy array,

normalized, serialized and compressed in the lines 40 to 43. Finally, it is added to the sub dictionary

corresponding to the searchterm with the key 'TFIDF_CoOc' in line 44.

The whole process is repeated for the search terms as well. Because, as described in Chapter 9.1.,

they are to be used as classifiers as well. The search term is stemmed and an array with just the

search term in it is created. Again, this array is made into a NumPy array, normalized, serialized,

compressed and added to the sub dictionary with the key 'TFIDF_ST' (NumPy 1.8.1 library;),

(Python 2.7.10 library; pickle), (Python 2.7.10 library; zlib).

As soon as this process is repeated for all keys in the TFIDF_CoOc dictionary, it is serialized and saved

to the drive in line 61 and 62 (Python 2.7.10 library; I/O), (Python 2.7.10 library; pickle).

It is now possible to create similarity matrixes, shown in Tables 12.2 and 12.3, respectively.

However, there is not really a point in creating the matrix between the different search terms

because their vectors represent just one word. The comparison to the co-occurrence groups is

interesting. It becomes clear that the co-occurrence groups are sometimes similar to each and

therefore will create more noise but, on the other hand, the recall of each group is broadened (see

chapter 11.5.).

Also similarities between co-occurrence that could have been suspected with the help of Table 12.1

now become clear. There seems to be some similarity between “gaststätte” (restaurant) and “hotel”

(hotel), as well as between “bildung” (education) and “kultur” (culture). Both don’t intuitively seem

too surprising. But the similarity between “dienstgebäude” (government building) and “gaststätte”

(restaurant) is. Intuitively, there seems to be no connection between them. Some same strange

similarities also exist between the groups “hotel”, “dienstgebäude” and “wohnen”, “dienstgebäude”.

 hotel gaststätte arbeiten bildung wohnen dienstgebäude kreditinstitut einkaufen kultur
hotel 1.00 0.17 0.01 0.00 0.02 0.06 0.00 0.00 0.00
gaststätte 0.17 1.00 0.04 0.02 0.06 0.35 0.01 0.02 0.02
arbeiten 0.01 0.04 1.00 0.01 0.04 0.03 0.00 0.01 0.01
bildung 0.00 0.02 0.01 1.00 0.01 0.02 0.00 0.00 0.07
wohnen 0.02 0.06 0.04 0.01 1.00 0.11 0.00 0.02 0.01
dienstgebäude 0.06 0.35 0.03 0.02 0.11 1.00 0.01 0.02 0.02
kreditinstitut 0.00 0.01 0.00 0.00 0.00 0.01 1.00 0.00 0.00
einkaufen 0.00 0.02 0.01 0.00 0.02 0.02 0.00 1.00 0.00
kultur 0.00 0.02 0.01 0.07 0.01 0.02 0.00 0.00 1.00

Table 12.2 Similarity matrix co-occurrence groups

100

Address Classification

Table 12.3 Similarity matrix search terms

12.2.4. Cosine Similarity Calculations

To bring this chapter to a close the Cosine Similarity can now be calculated between HTML

documents, co-occurrence groups and search terms. The code shown in Figure 12.8 is utilized for

this calculation.

 hotel gaststätte arbeiten bildung wohnen dienstgebäude kreditinstitut einkaufen kultur
hotel 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gaststätte 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
arbeiten 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.05 0.00
bildung 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
wohnen 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
dienstgebäude 0.00 0.00 0.00 0.00 0.00 1.00 0.06 0.02 0.00
kreditinstitut 0.00 0.00 0.00 0.00 0.00 0.06 1.00 0.00 0.01
einkaufen 0.00 0.00 0.05 0.00 0.00 0.02 0.00 1.00 0.00
kultur 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.00

101

Address Classification

065 with io.open('./Vector/TFIDF_CoOc.pickle', 'rb') as fin:
066 TFIDF_CoOc = pickle.load(fin)
067
068 Columnlist = []
069 SearchTermList = []
070 TFIDFworkingdict = {}
071
072 for searchterm in TFIDF_CoOc:
073 SearchTermList.append(searchterm)
074 Columnlist.append(TFIDF_CoOc[searchterm]+'_CoOc')
075 Columnlist.append(TFIDF_CoOc[searchterm]+'_ST')
076
077 for searchterm in SearchTermList:
078 TFIDFworkingdict[searchterm] =

pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_CoOc'])),\
079 pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_ST']))
080
081 for searchterm in Columnlist:
082 createColumn(searchterm)
083
084 sqlstring = Sqlstringconstructor(Columnlist)
085
086 offset = 0
087 range = 1000
088 length = countrows()
089
090 vectors = VectorDICTReader(range,offset)
091
092 Starttime = time.time()
093 while vectors:
094 Starttime2 = time.time()
095 updatelist = []
096 for vectortup in vectors:
097 cosinelist = []
098 id, vector = vectortup[0], pickle.loads(zlib.decompress(vectortup[1]))
099 for searchterm in SearchTermList:
100 cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][0],

vector),8)
101 cosinelist.append(cosine)
102 cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][1],

vector),8)
103 cosinelist.append(cosine)
104
105 cosinelist.append(id)
106 updatelist.append(cosinelist)
107 UpdateHtmlUniquewithCosinelist(sqlstring,updatelist)
108 offset += range
109 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
110 delta_time = time.time() - Starttime
111 print "time till now %.2f Minutes"%(delta_time / 60)
112 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset))
113
114 vectors = VectorDICTReader(range,offset)

Figure 12.8 Cosine similarity calculation

The first thing is to load the pickled dictionary containing the vectors of the co-occurrence groups

and search terms in lines 65 and 66. To keep everything in sync, two new lists are needed

Columnlist and SearchTermList. As described before, those two lists make sure that the iteration

process stays synchronized. Both lists are filled with items lines 72 to 75. The SearchTermList

contains the dictionary keys and the Columnlist contains the list columns where the corresponding

102

Address Classification

Euclidean dot product of the cosine similarity calculation is stored. In the database, there will be two

columns for every search term, one for the co-occurrence groups ending in “_CoOc” and one only for

the search term ending in “_ST”. All columns are created with lines 81 and 82. The third important

variable is TFIDFworkingdict, a dictionary that will contain the uncompressed vectors for both

search terms and co-occurrence groups, after the lines 77 to 79 have been executed. The reason to

offload the vectors is to not have to uncompress them every time. The function

Sqlstringconstructor() that is called in line 84 creates an SQL string that contains value place

holders in the exact order in which the cosine similarity is later calculated in the code. Lastly, the first

batch HTML document vectors is fetched from the database and stored in the variable vectors

(PYTHON 2.7.10 LIBRARY; I/O), (PYTHON 2.7.10 LIBRARY; pickle), (PYTHON 2.7.10 LIBRARY; zlib).

The code then iterates through the HTML document vectors and creates cosine similarity products

for every search term and co-occurrence group. For this, the individual vector is decompressed in

line 98 and then the code iterates through the search term list, calling the respective vectors from

the TFIDFworkingdict dictionary. For the calculation of the cosine, the cosine_similarity()

function from the scikit-learn library is used. The results are added to the temporary cosinelist,

which in turn is combined with the HTML document ID to the updatelist. All this happens in lines

99 to 106 and then the updatelist is passed on, together with the blueprint SQL statement, to the

UpdateHtmlUniquewithCosinelist() function that adds the cosine similarity results to the

respective columns of the HTML documents table (PYTHON 2.7.10 LIBRARY; pickle), (PYTHON 2.7.10

LIBRARY; zlib), (SCIKIT LEARN 0.14.1 LIBRARY; Pairwise metrics, Affinities and Kernels).

12.3. Address Classification

Classification happens in two steps because there are two problems to overcome. The first problem

is how to best summarize the values for every class at every address. The second is to decide to

which classes the address belongs according to the values. To illustrate the first problem further,

there is Table 12.4 with some example values.

103

Address Classification

 Class 1 Class 2 class 3

Website 1 8 0 1

Website 2 7 1 0

Website 3 9 0 2

Website 4 6 0 1

Website 5 5 10 2

Website 6 3 10 3

Website 7 5 9 0

Website 8 10 0 0

Website 9 9 0 0

Website 10 7 2 2

Mean 6.9 3.2 1.1

Proposal 8.3 9.6 2.25

Table 12.4 Classification problem number one

Table 12.4 is a fictional example of Websites 1 to 10 that are all associated with the same address.

There are 3 classes and the websites are rated between highly associated with the class (10) and not

associated with the class (0). Now, the classes that the address is associated with need to be

selected. The first approach would be to create the mean value for every class leading to an

unsatisfactory result for class 2. The data shows that there are 3 websites that suggest a strong

association with class 2, but because the other websites show no association, the mean value is

relatively low. This can be a problem with the real data as well. It is possible that an address is

associated with 60 websites, 50 point towards the restaurant class and 10 towards a shopping class.

Maybe there are just more websites describing the restaurant than the store. But dismissing the

shopping class would probably be an error because there are 10 other websites indicating this class.

To overcome this problem, the code in Figure 12.9 is used implementing a simplified clustering

algorithm.

104

Address Classification

062 def Breaks(valuelist, index):
063 firstrun = True
064 highlist = []
065 lowlist = []
066 newlist = []
067
068 for item in valuelist:
069 newlist.append(item[index])
070
071 while newlist:
072
073 high = max(newlist)
074 low = min(newlist)
075
076 if firstrun and len(newlist) == 1:
077 highlist.append(high)
078 newlist.remove(high)
079 lowlist.append(low)
080 firstrun = False
081
082 elif firstrun:
083 highlist.append(high)
084 newlist.remove(high)
085 lowlist.append(low)
086 newlist.remove(low)
087 firstrun = False
088
089 elif high == low:
090 if numpy.absolute(high-numpy.mean(highlist)) < numpy.absolute(high-

numpy.mean(lowlist)):
091 highlist.append(high)
092 newlist.remove(high)
093 else:
094 lowlist.append(high)
095 newlist.remove(high)
096 else:
097 if numpy.absolute(high-numpy.mean(highlist)) < numpy.absolute(high-

numpy.mean(lowlist)):
098 highlist.append(high)
099 newlist.remove(high)
100 else:
101 lowlist.append(high)
102 newlist.remove(high)
103
104 if numpy.absolute(low-numpy.mean(lowlist)) < numpy.absolute(low-

numpy.mean(highlist)):
105 lowlist.append(low)
106 newlist.remove(low)
107 else:
108 highlist.append(low)
109 newlist.remove(low)
110
111 return numpy.mean(highlist)

Figure 12.9 Breaks code example

The implementation is loosely based on clustering values that are clumped together by similarity.

The advantage of one-dimensional data is that minimum and maximum are known. And that is

where the algorithm starts. After presorting the list in lines 68 and 69, which has to do with the

format returned from the database, minimum and maximum are fetched from newlist in line 73

and 74 and saved to the variables high and low. If firstrun is True and newlist is only 1 long (i.e.

105

Address Classification

only one website is associated with the address), the special case in line 76 to 80 is invoked. This

essentially does nothing but return the one value back in line 111. If newlist is longer though, then

highlist and lowlist are appended with their first values high and low, lines 82 to 87, respectively.

After this, firstrun is set to False. Both high and low are removed from newlist and the iteration

begins again in lines 73 and 74 getting a new high and low, now the new highest and lowest value in

the newlist. Both high and low have now been tested, whose mean value of highlist and lowlist is

closer to their own value. They are then appended to the list that is more similar (closer) to them

and removed from newlist. This process is repeated until no values are left in newlist. All of this

happens in lines 96 to 109. One special case that can happen when, for example, only one value left

in newlist is handled by the code in lines 89 to 95. In the end, the function returns the mean value

of highlist (BAHRENBERG ET AL.; 2008; pp. 259 - 262), (NUMPY 1.8.1 LIBRARY).

The code clusters the data series in two parts: one containing the low values and one containing the

high values and in the end dismissing the low values and just returning the mean of the high values.

The results when used with the data in Table 12.4 can be seen in the “proposal” row. Now the

address gets high values in both class 1 and 2. A class that only contains low values will still return a

low value as seen with class 3. But like in the example of class 2, if there are a few high values, a high

overall class value is calculated (BAHRENBERG ET AL.; 2008; pp. 259 - 262), (NUMPY 1.8.1 LIBRARY).

The resulting value distribution of those calculations for every class in Table 10.1 are shown in Figure

12.10 a) - i). Every value distribution features the values of the co-Occurrence groups and the search

term vectors.

a)

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000

Hotel (hotel)

Search Term

CoOc Group

106

Address Classification

b)

c)

d)

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000

Gaststätte (restaurant)

Search Term

CoOc Group

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000

Arbeiten (working)

Search Term

CoOc Group

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Bildung (education)

Search Term

CoOc Group

107

Address Classification

e)

f)

g)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Wohnen (live)

Search Term

CoOc Group

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Dienstgebäude (goverment building)

Search Term

CoOc Group

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Kreditinstitut (credit institution)

Search Term

CoOc Group

108

Address Classification

h)

i)

Figure 12.10 a)-i) Value distribution for all classes at the addresses for co-occurrence groups and

search terms (N= 6284)

As can be seen in Figure 12.10 and was to be expected, all the co-occurrence groups deliver higher

values over just the search terms. Now for these value distributions a threshold needs to be

determined

to decide at which value an address belongs to the class. Again, the same method as depicted in

Figure 12.9 is used to cluster the data into two sets. But this time, not the mean but the lowest value

of the highlist is of interest, as it should constitute said threshold. Afterwards, every address

possessing a value in this class above the threshold is set in the database as belonging to the class.

The value ranges of “Gaststätte” co-occurrence group, “Einkaufen” co-occurrence group and

“Kultur” search term had very strong outliers. As a result, the method classified only a handful of

addresses. Therefore, the outliers in those classes have been reduced to the highest non-outlier

value. These are the changes made:

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Einkaufen (shopping)

Search Term

CoOc Group

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

Kultur (culture)

Search Term

CoOc Group

109

Address Classification

"Update Addressesunique set gaststätte_cooc = 0.186 where gaststätte_cooc >

0.186"

3 rows affected

"Update Addressesunique set einkaufen_cooc = 0.322 where einkaufen_cooc >

0.322"

7 rows affected

"Update Addressesunique set kultur_st = 0.094 where kultur_st > 0.094"

1 row affected

The results of the classification and the different categories can be seen on maps Map 12.1 a) – r)

110

Address Classification

a)

b)

111

Address Classification

c)

d)

112

Address Classification

e)

f)

113

Address Classification

g)

h)

114

Address Classification

i)

j)

115

Address Classification

k)

l)

116

Address Classification

m)

n)

117

Address Classification

o)

p)

118

Address Classification

q)

r)

Map 12.1 a) - r) Classification Results for every individual category and method

Superficially, the classification outcome of many maps doesn’t look as expected, especially maps like

e) because there are definitely not so many governmental buildings in Vienna. Another good

119

Address Classification

example of where the classification probably did not work is maps g) and h). There are most likely

more places that are shopping-related in Vienna than those shown on the maps. On the other hand,

maps like c), k) and i) could be more plausible. The comparison with the control group in the next

chapter will clarify this. Because the noisy results a comparison with Map 10.1 makes little sense.

120

Mapping

13. Mapping

The first part of this chapter is about how to select a representative random sample of addresses

and by what criteria they are mapped. The Second part compares the mapping and the machine

classification to each other and draws some first conclusions.

13.1. Selecting and Mapping a Control Group

There are now existing 18 categories for each class two categories. One classification is by search

term vector and another is by co-occurrence group vector. To represent each category adequately,

the random selection for mapping includes at least 10 addresses from each category. In practice, this

means that from the database, all addresses belonging to one category are retrieved and a subset of

10 is selected with a programming function for random selection. This is repeated for all 18

categories. With 8 double selections, this resulted in 176 unique addresses, which constitute the

control group. Map 13.1 shows the spatial distribution of those 176 addresses (BAHRENBERG ET AL.;

2010; pp. 19-23).

Map 13.1 Randomly selected control group

121

Mapping

Apart from creating a random sample, it is important to be as consistent as possible when mapping.

The orientation for mapping the addresses is to map the functions that a place fulfills for most

people, as described in the social geography. So if there is a shop, the function would be shopping

and not working, even though there are people working there. This is because the number of people

working is just a few in comparison to the amount people going there to shop. The same is true for

other places like schools. Most people going there are students who are learning and not the

teachers who are working. If there is more than one class present at an address, for example a café

and a hotel, both are mapped. Lastly, because the classes (Wohnen, Arbeiten, Bildung, …) cannot

accommodate all possibilities, the class “other” is added to the mapping catalogue. Corner buildings

are mapped according to where the entrance to the building with the door number is. To ensure an

unbiased mapping, all vector classifications from the control group were hidden during the mapping

process (BAHRENBERG ET AL.; 2010; pp. 19-23), (KRUKER AND RAUH; 2005; pp.84-90), (MAIER ET AL.; 1977;

pp. 100-157).

13.2. Comparing the Control Group to Vector Classification

With the control group mapped, it is now possible to make a comparison on the diagrams in Figure

13.1 a)-i). The figure shows 3 values for every category. The value “Mapped and Identified” is the

number of objects in the control group that were mapped as belonging to a class and identified by

vector classification as belonging to the class. Value “Mapped” is the number of objects in the

control group that, according to the mapping, belong to this class. Lastly, the Value “Identified” is

the number of addresses in the control group that the vector classification identified as belonging to

the class. There are a couple of key statics put on the figure as well. The First two precision and recall

are common to evaluate information retrieval systems. Recall measures how many of the relevant

documents were retrieved, in the case of the thesis how many of the addresses that where mapped

as X where classified as X. Precision shows how many of the retrieved documents where relevant, in

terms of the thesis this means correctly classified addresses compared to all classified addresses. The

Values correspond to the data shown on the figure (MANNING ET AL; 2009; pp. 153-157).

The formula for recall is:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑀𝑀𝑀𝑀
𝑀𝑀

MI (Mapped and Identified), M (Mapped)

122

Mapping

The formula for precision is:

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =
𝑀𝑀𝑀𝑀
𝑀𝑀

MI (Mapped and Identified), I (Identified)

(MANNING ET AL; 2009; pp. 155)

The last statistical value is the p-value. It shows how likely the null hypothesis is, i.e. that the

correctly identified elements are identified simply by chance. The markup of every category is a

finite population (N=176) with discrete values of which some belong to the class and others do not.

This resembles the urn problem. The urn problem is an urn with N marbles, of which M are black and

from it n marbles are drawn. It is then determined how likely it was that with n draws k number of

black marbles are drawn. This is solved with a hypergeometric function the formula of which is:

𝑖𝑖(𝑘𝑘) =
�𝑀𝑀𝑘𝑘 � × �𝑁𝑁 −𝑀𝑀

𝑝𝑝 − 𝑘𝑘 �

�𝑁𝑁𝑝𝑝�

N (Population Size), M (success states in population), n (size of sample), k (success states in sample)

In the context of a category, N is the size of the control group, M is the number mapped objects in

the control group, n is the number of objects identified by vector classification and k is the number

of correctly mapped and identified objects. However, this only gives the odds of exactly drawing k

elements for the p-value, although the possibility of drawing k or more elements is needed. To

achieve this, the odds for all values 0 to k-1 are calculated, summed up and subtracted from 1. The

resulting value is the p-value the probability that the correct classification was just by chance

(BAHRENBERG ET AL.; 2010; pp. 128-129).

a)

8 11 57
0

10
20
30
40
50
60
70
80
90

100

Hotel Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.73
Precision: 0.14
p-value: 0.006

8 11 38
0

10
20
30
40
50
60
70
80
90

100

Hotel Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.73
Precision: 0.21
p-value: 0.0002

123

Mapping

b)

c)

d)

8 46 30
0

10
20
30
40
50
60
70
80
90

100

Gaststätte Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.17
Precision: 0.27
p-value: 0.55

13 46 76
0

10
20
30
40
50
60
70
80
90

100

Gaststätte Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.28
Precision: 0.17
p-value : 0.99

1 2 24
0

10
20
30
40
50
60
70
80
90

100

Arbeiten Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.5
Precision: 0.04
p-value: 0.25

1 2 73
0

10
20
30
40
50
60
70
80
90

100

Arbeiten Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.5
Precision: 0.01
p-value: 0.66

9 25 48
0

10
20
30
40
50
60
70
80
90

100

Bildung Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.36
Precision: 0.19
p-value: 0.20

11 25 34
0

20

40

60

80

100

Bildung Co-
Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.44
Precision: 0.32
p-value: 0.027

124

Mapping

e)

f)

g)

9 92 14
0

10
20
30
40
50
60
70
80
90

100

Wohnen Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.1
Precision: 0.64
p-value: 0.26

12 92 21
0

10
20
30
40
50
60
70
80
90

100

Wohnen Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.13
Precision: 0.57
p-value: 0.41

7 20 16
0

10
20
30
40
50
60
70
80
90

100

Dienstgebäude Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.35
Precision: 0.44
p-value: 0.05

11 20 69
0

10
20
30
40
50
60
70
80
90

100

Dienstgebäude Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.55
Precision: 0.15
p-value: 0.099

2 11 64
0

10
20
30
40
50
60
70
80
90

100

Kreditinstitut Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.18
Precision: 0.03
p-value: 0.95

2 11 11
0

10
20
30
40
50
60
70
80
90

100

Kreditinstitut Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.18
Precision: 0.18
p-value: 0.14

125

Mapping

h)

i)

Figure 13.1 a)-i) Comparing control group to vector classification

Here two factors are striking: the recall is low and the precision aswell. The low precision was to be

expected with respect to the results displayed on Map 12.1 a)-r). Also interesting is the high

variability of the p value within a class (see d) and g)) and between classes. Even though the vector

classification does not work well enough to create a map of, for example, all hotels in Vienna, some

vector classifications show, with a p ≤ 0.1, that they picked up an underlying structure. It is clear that

there are big class to class differences on how well the vector classification works. It would also be

interesting to see if there is also a connection between how many HTML documents are associated

with an address and the classification performance. A value that should reflect the correctness is

calculated for every address. If, for example, a cultural place is mapped in the control group and

either the search term vector or the Co-occurrence Vector has also classified this place as a cultural

place, then this is counted as correct for either the co-occurrence or the search term classification.

7 49 25
0

10
20
30
40
50
60
70
80
90

100

Einkaufen Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.14
Precision: 0.28
p-value: 0.58

4 49 14
0

10
20
30
40
50
60
70
80
90

100

Einkaufen Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.08
Precision: 0.28
p-value: 0.58

7 27 31
0

10
20
30
40
50
60
70
80
90

100

Kultur Search Term

Mapped and Identified

Mapped

Identified

Recall: 0.26
Precision: 0.23
p-value: 0.17

12 27 40
0

10
20
30
40
50
60
70
80
90

100

Kultur Co-Occurrence

Mapped and Identified

Mapped

Identified

Recall: 0.44
Precision: 0.3
p-value: 0.005

126

Mapping

But if one or both of the vector classifications has not mapped this place, this is counted as incorrect

for the respective group. In the end, the correct count is divided by the sum of the correct and

incorrect counts. This yields a value between 1 and 0. 1 means all classifications are correct and 0

means none are correct. The method excludes false positives. The value is then correlated with the

original count and complete count (see chapters 7.4. and 8.2.). The result can be seen in Figure 13.2

a)-b).

a)

b)

Figure 13.2 a),b) Correlation between original count, complete count and vector classification

All four scatter plots and r2 values in Figure 13.2 clearly show that there is no correlation between

how many documents are associated with a website and how well the classification worked

(BAHRENBERG ET AL.; 2010; pp. 183-191).

y = 0.0003x + 0.1715
R² = 0.0095

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000

Co
rr

ec
t C

la
ss

ifi
ed

Original Count

Search Term vs Original Count

y = 7E-06x + 0.1721
R² = 0.0047

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10000 20000 30000

Co
rr

ec
t C

la
ss

ifi
ed

Complete Count

Search Term vs Complete Count

y = 0.0002x + 0.2263
R² = 0.0038

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000

Co
rr

ec
t C

la
ss

ifi
ed

Original Count

 Co-occurrence vs Original Count

y = 1E-05x + 0.2195
R² = 0.0087

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000

Co
rr

ec
t C

la
ss

ifi
ed

Complete Count

 Co-occurrence vs Complete
Count

127

Mapping

 Search Term

Vector

Co-Occurrence Group

Vector

Mean p 0.34 0.32

Mean Precision 0.25 0.246

Mean Recall 0.31 0.37

Addresses with at least 1 correct

Classification

50 62

Mean Correctness 0.19 0.25

Table 13.1 Search term vector co-occurrence group vector fitness comparison

A comparison between search term vectors and co-occurrence group vectors can be seen in Table

13.1. It summarizes the values of this subchapter. Overall, the co-occurrence group classification

performs better than the search term classification. Both don’t show good mean p values, but the

variability between the different classes is very high. The mean precison is slightly in favor of the

search term method, but only by 0.04. In particular, this point is interesting because the concern

with the co-occurrence groups was that they would create more noise. The co-occurrence groups

also produce more addresses with at least 1 correct classification and have a slightly higher mean

correctness.

The others category was used 92 times because something at an address could not fit within one of

the 9 classes. Mostly as predicted it was expected in Chapter 10.2. services could not be classified.

Subjectively a high proportion of tertiary and quaternary services like doctors, attorneys and,

engineers have been mapped.

Finally, a short paragraph about the quality of the address data set, even though it is no longer a

valid random sample because the addresses have been filtered by being matched to HTML

documents. Of the 176 mapped addresses, only two were wrong. One did not exist, but if it had

existed, the geo-coordinates would have been correct. The address in question is Daffingerstraße 1.

On the whole side of Daffingerstraße where number 1 would have been, there was no entrance

door. Other web map applications point to the same coordinates, so maybe it is an address that

exists on paper but not in reality. The second error was Freyung 4, an address that exists, but had

the wrong coordinates. Even with this no longer representative dataset, the quality of the address

data set seemed to be very good.

128

Conclusion

14. Conclusion

For the conclusion, the three research questions formulated in the Introduction need to be

examined.

4. How can unstructured information be retrieved and made usable?

5. How can this information be linked to places?

6. How can context be derived from this now structured and geotagged information?

This thesis shows ways and methods of how to engage and solve the first two questions. There are

extensive explanations and instructions in chapters 3, 5, and 6 about how to transfer a selective

subset of raw crawled data from an amazon s3 bucket into a database and how to processes this

data to make it suitable for analyses. Chapter 4 shows how to create an addresses data set that is

useable for geocoding and this dataset is used on the HTML document dataset in chapter 7. Finally,

the data associated with an address is expanded by also including all documents that are linked to a

document that is joined with this address in chapter 8. With this, the first two questions could

sufficiently be answered.

To derive context from this processed information, the vector space model was selected. This

method is used in the field of information retrieval for document classification and retrieval. The

concept was to create a classifier with which the addresses could be classified. The addresses should

be assigned to one or more of the classes developed in chapter 12. The classes are derived from the

“Daseinsgrundfunktionen” and other concepts related to space use, found in functional urban

geography. For each of the 9 classes, two classifiers where created- one just relying on one term for

the whole class, in the context of this work the so-called “search term classifier,” and the other

based on the query expansion method. For this, a co-occurrence group for each of the 9 classes is

created from a part of speech tagged Wikipedia and this group is used as the classifier. The

classification was conducted in chapter 12 and a control group of 176 addresses was mapped to

evaluate the machine classification.

The results of this evaluation are mixed. This was to be expected because already Map 12.1 a) - r)

did not match the subjective expectations. When viewed individually, the results from class to class

vary a lot (see Figure 13.1 a)-i)). The two worst performing classes are “Arbeiten,” “Wohnen” and

“Einkaufen”.

The class “Arbeiten” probably performed badly because it is wide term that, when stemmed, just

gets wider. In German, it can mean labor, work in physics, a school assessment, a work of art and

academic writing. Also, the co-occurrence group picked up the German term for lawyer quite a lot,

probably skewing the classification (many places with law offices where mapped). Lastly, in a west

129

Conclusion

European inner city environment, places that are devoted to production and labor, like, for example,

factories, no longer exist.

The classification for “Wohnen” mostly performed badly because a lot of buildings had the function

living, but the classification didn’t pick it up. The probable reason for not being picked up is that the

function living is not something that gets advertised on websites. The only exception for this is if the

flat or house is for rent or for sale. Except for that, “Wohnen” has the highest precision.

The class “Einkaufen” in the group of bad performing classes is a bit surprising. This is because the

subjective expectation was that there is a motivation to communicate that shopping is possible at a

place. Already in the classification process there were problems leading to the elimination of strong

outlier values. But that did not help much, still only a few places were classified as belonging to the

class “Einkaufen”.

It is likely that the wrong terms were chosen for the classes “Kreditinstitut” and “Gaststätte.” Instead

of “Kreditinstitut”, the term “Bank” could have been a better choice. Even though it overlaps in

German with a word for siting furniture, it is probably much more common. The attempt to include

bar, café, and restaurant with “Gaststätte” in one term is probably the reason why this did not work.

Instead, using just one of the three could have yielded better results.

The classes “Kultur,” “Bildung” and “Dienstgebäude” worked comparatively well, with either the

search term or the co-occurrence group classification. Noticeable about all three is that they are not

“commercial” classes within limits, entrance to a Museum or a theater is mostly not free and

education can be “bought” at some places. The classes “Kultur” and “Bildung” also span a multitude

of different places that can be assigned to either class. For both classes, also the co-occurrence

group classification worked better than the search term classification.

The distinction between the two classification methods for “Dienstgebäude” is not so clear. The class

has results that would have been naively expected for the co-occurrence group and search term

classification. The search term classification results in higher precision, but also a reduced recall.

Comparatively, the co-occurrence group classification delivers a higher recall and a lower precision.

Overall, the co-occurrence group classification as discussed at the end of chapter 13 performs

noticeably better than the search term classification. It has a higher recall. It classifies 62 of 176

addresses with at least one correct result. It has a higher mean correctness of 0.25 to 0.19 and a

nearly equal precision. Also the mean p-value is lower and, therefore, better for the co-occurrence

group classification.

A problem with the evaluation of the results has so far only been addressed within the context of

the class “Wohnen”. The problem with mapping places that have no website or other form of

Internet presence is that any classification attempt with this method is impossible.

130

Conclusion

Lastly, there is the class of “Hotel” that, by a wide margin, performs the best in the recall domain. It

is a narrow term describing a place in common language and about a class that subjectively relies on

a visible web presence. But this is also the term that most clearly shows why the 3rd research

question cannot be answered by this thesis. The recall is high but the precision is low. Since the

recall does not perfectly identify or nearly identify all mapped objects correctly, it can be assumed

that the only strategy in context of this thesis is to have higher thresholds for classification. But to

reduce the rate of false positives could also reduce the number of correctly mapped places. To

substantiate this point, Figure 14.1 shows the search term classification value and the co-occurrence

group classification value of the correctly identified addresses with the value range for both as a

backdrop. The values are distributed over the whole class range.

Figure 14.1 Correctly Classified Hotel addresses compared to classification value range

The tool developed in the second part of this thesis is too blunt for classification work. Nevertheless,

it produces interesting results because what the p-values from the classification show is that there is

a connection between the information associated with a place and what actually is at this place. The

tool works well enough to detect that, but is too blunt to generate any useable information from it.

In conclusion, this thesis creates an entry point into how to aggregate spatial information from

unordered and non-georeferenced web-based information. However, the tools to analyze this

information need more refinement.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800

Classified as Hotel Value Range

Search Term

Co-Occurrence group

Co-Occurrence group Correct

Search Term Correct

Co-occurence Threshold: 0.21
Search Term Threshold: 0.023

131

References

15. References

15.1. Scientific References

Bahrenberg, G.; Giese, E.; Mevenkamp, N.; Nipper, J. (2008): Statistische Methoden in der

Geographie. Band2: Multivariate Statistik, 3. Auflage; Gebr. Brontraeger Verlagsbuchhandlung;

Berlin, Stuttgart

Bahrenberg, G.; Giese, E.; Mevenkamp, N.; Nipper, J. (2010): Statistische Methoden in der

Geographie. Band1: Univariate und bivariate Statistik, 5. Auflage; Gebr. Brontraeger

Verlagsbuchhandlung; Berlin, Stuttgart

Bayer, R.; Unterauer, K. (1977); Prefix B-Trees; In: ACM Transactions on Database Systems, Vol. 2,

No. 1. March 1977, pp. 11-26

Berners-Lee, T.; Fielding, R.; Masinter, L. (2005); Uniform Resource Identifier (URI): Generic Syntax;

Network Working Group

Böhner, J. (1990); Statistik für Geographen oder: „Jetzt rechne ich selbst“

Bollier, D.; Firestone, C., M. (2010); The promise and peril of big data; Washington, DC, USA: Aspen

Institute, Communications and Society Program.

Bray, T.; Paoli, J.; Sperberg-McQueen, C.; Maler, E.; Yergeau, F. (2008); "Character and Entity

References"; http://www.w3.org/TR/REC-xml/#sec-references; Citied: 03.07.2015

Brill, E. (1992); A Simple Rule-Based Part of Speech Tagger; In: HLT '91 Proceedings of the workshop

on Speech and Natural Language; pp. 112-116; Association for Computational Linguistics;

Stroudsburg

Brin, S.; Page, L.(1998); The Anatomy of a Large-Scale Hypertextual Web Search Engine; Proc.

Seventh World Wide Web Conf. (WWW7); International World Wide Web Conference Committee

(IW3C2), 1998, pp. 107-117

132

References

Crampton, J. W.; Graham, M.; Poorthuis, A.; Shelton, T.; Stephens, M.; Wilson, M. W.; Zook, M.

(2012); Beyond the Geotag. Deconstructing Big Data and Leveraging the Potential of the Geoweb;

Lexington, KY: Department of Geography, University of Kentucky.

Cooley, R; Mobasher, B.; Srivastava, J. (1997); Web mining: Information and pattern discovery on the

world wide web; In: Tools with Artificial Intelligence, 1997. Proceedings., Ninth IEEE International

Conference on, pp. 558-567; IEEE.

Fassman, H.; Hatz, G. (2002); Wien Stadtgeographische Exkursion; im Autrag des Ortsausschusses

des 28. Deutschen Schulgeographentages (Wien 2002); Ed. Hölzel GmbH; Wien

Haklay, M. (2010); How good is volunteered geographical information? A comparative study of

OpenStreetMap and Ordnance Survey datasets; In: Environment and planning B: Planning & design,

vol. 37, pp. 682-703

Heineberg, H.; Kraas, F.; Krajewski, C. (2014); Stadtgeographie 4. Auflage; Ferdinand Schöningh, UTB

Ito, M.; Nakayama, K.; Hara, T.; Nishio, S. (2008); Association thesaurus construction methods based

on link co-occurrence analysis for wikipedia. In: Proceedings of the 17th ACM conference on

Information and knowledge management, pp. 817-826; ACM

Kazuhiro, M.; El-Sayed, A.; Masao F.; Kazuhiko, T.; Masaki O.; Jun-ichi A. (2003); Word classification

and hierarchy using co-occurrence word information; In: Information Processing & Management,

2003, Vol. 40, Issue 6, pp. 957-972

Kruker, V., M.; Rauh, J. (2005); Arbeitsmethoden der Humangeographie; Wiss. Buchges.; Darmstadt

Lund, K.; Burgess, C. (1996); Producing high-dimensional semantic spaces from lexical co-occurrence;

In: Behavior Research Methods, Instruments, & Computers, Vol. 28, Issue 2, pp. 203-208

Maier, J.; Paesler, R.; Ruppert, K.; Schaffer, F. (1977); Sozialgeographie; Das Geographische Seminar ;

Westermann; Braunschweig

133

References

Manning, C., D.; Schütze, H. (1999); Foundations of Statistical Natural Language Processing; The MIT

Press, Massachusettes, London, England

Manning, C., D.; Raghavan, P.; Schütze, H. (2009); An Introduction to Information Retrieval;

Cambridge; Cambridge University Press

Nayak, R.; Witt, R.; Tonev, A. (2002); Data Mining and XML documents; In: Proceedings International

Conference on Internet Computing, IC'2002 3, pp. 660-666; Las Vegas, Nevada

Neis, P.; Zipf, A. (2012) Analyzing the Contributor Activity of a Volunteered Geographic Information

Project — The Case of OpenStreetMap In: ISPRS International Journal of Geo-Information, vol. 1, pp.

146-165

Pataki, M.; Vajna, M.; Marosi, A. (2012); Wikipedia as Text; In: Ercim News - Special theme: Big Data.

2012, Vols. 89; pp. 48-49

Pladino, S.; Bojic I.; Sobolevsky, S.; Ratti, C.; González, M. C. (2015); Urban magnetism through the

lens of geo-tagged photography; In: EPJ Data Science 4(1), pp. 1-17

Luo, Q.; Chen, E.; Xiong, H. (2011); A semantic term weighting scheme for text categorization; In:

Expert Systems with Applications, vol. 38, issue 10, pp. 12708-12716

Robertson, S. (2013); Common Crawl URL Index; https://github.com/trivio/common_crawl_index

Citied: 01.07.2015

Ruppert, .K; Schaffer, F. (1969) Zur Konzeption der Sozialgeographie; In: Geographische Rundschau,

vol. 21, Issue 6, pp. 205-214.

Russel, A., R. (2014): Mining the Social Web (second edition); O’Reilly Media Inc.; Beijing, Cambridge,

Farnham, Köln, Sebastopol, Tokyo

Salton, G.; Wong, A.; Yang, C., S. (1975) A Vector Space Model for Automatic Indexing; In:

Communications of the ACM, Vol. 18, Issue 11, pp. 613-620

134

References

Salton, G. (1991) Developments in Automatic Text Retrieval; In: Science, Vol. 253, pp 974-980

Santorini, B. (1990); Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd Revision,

2nd printing);

Schneider, G.; Volk, M. (1998); Adding manual constraints and lexical look-up to a brill-tagger for

German; Zurich Open Repository and Archive; University of Zurich; Zurich

Shelton, T.; Poorthuis, A.; Zook, M. (2015); Social media and the city: Rethinking urban socio-spatial

inequality using user-generated geographic information; Landscape and Urban Planning

Spiegler, S. (2013); Statistics of the Common Crawl Corpus 2012

Tan, A., H. (1999); Text mining: The state of the art and the challenges; In: Proceedings of the PAKDD

1999 Workshop on Knowledge Disocovery from Advanced Databases , vol. 8, pp. 65-71

Teske, D. (2014); Geocoder Accuracy Ranking; In: Process Design for Natural Scientists, CCIS 500, pp.

161-174; Springer-Verlag; Berlin, Heidelberg

Wang, P.; Domeniconi, C. (2008); Building semantic kernels for text classification using Wikipedia; In:

Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data

mining pp. 713-721; ACM

Weichert, P. (2008); Enticklungslinien der Sozialgeographie von Hans Bobek bis Benno Werlen; Franz

Steiner Verlag, Stuttgart

Zaki, M., J.; Meira Jr, W. (2014); Data mining and analysis: fundamental concepts and algorithms.

Cambridge University Press.

15.2. Programming Library References and Technical Documentations

Beautiful Soup 4.3.2 libary; http://www.crummy.com/software/BeautifulSoup/bs4/doc/

135

References

NLTK 3.0 library;

stem; http://www.nltk.org/api/nltk.stem.html#module-nltk.stem

tokenize; http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize

NumPy 1.8.1 library; http://docs.scipy.org/doc/numpy-1.8.1/reference/

Pattern library; pattern.de; http://www.clips.ua.ac.be/pages/pattern-de

PostGIS 2.1.3; documentation; http://postgis.net/docs/manual-2.1/

PostgreSQL 9.3.9; documentation; http://www.postgresql.org/docs/9.3/static/

Psycopg 2.5.3 libary; http://initd.org/psycopg/docs/

Python 2.7.10 library;

 Built-in types; https://docs.python.org/2/library/stdtypes.html

 I/O; https://docs.python.org/2/library/io.html

gzip; https://docs.python.org/2/library/gzip.html

 multiprocessing; https://docs.python.org/2/library/multiprocessing.html

operating system; https://docs.python.org/2/library/os.html

pickle; https://docs.python.org/2/library/pickle.html

regular expression operations; https://docs.python.org/2/library/re.html

xml.sax; https://docs.python.org/2/library/xml.sax.html

string; https://docs.python.org/2/library/string.html

threading; https://docs.python.org/2/library/threading.html

Unicode; https://docs.python.org/2/howto/unicode.html

urlparse; https://docs.python.org/2/library/urlparse.html

zlib; https://docs.python.org/2/library/zlib.html

Scikit learn 0.14.1 library; Pairwise metrics, Affinities and Kernels;

http://scikit-learn.org/stable/modules/metrics.html

Unicode 7.0.0; http://www.unicode.org/versions/Unicode7.0.0/

136

References

15.3. Websites

Archive.org; https://archive.org/web/researcher/ArcFileFormat.php; Cited: 15.06.2015

Cloudmade; http://downloads.cloudmade.com; Data Downloaded 01.06.2014

Common Crawl; http://commoncrawl.org/the-data/get-started/ Cited: 15.6.02015

Common Crawl atlassian;

https://commoncrawl.atlassian.net/wiki/display/CRWL/About+the+Data+Set Cited: 15.06.2015

Common Crawl Blog; http://blog.commoncrawl.org;

Community questions; http://blog.commoncrawl.org/2011/11/answers-to-recent-

community-questions/; Cited: 15.06.2015

Crawl data; http://blog.commoncrawl.org/2012/07/2012-crawl-data-now-available/; Cited:

15.06.2015

URL Index; http://blog.commoncrawl.org/2013/01/common-crawl-url-index/; Cited:

15.06.2015

Dudenkorpus;

http://www.duden.de/sprachwissen/sprachratgeber/die-laengsten-woerter-im-dudenkorpus; Citied:

03.07.2015

nic.at; https://www.nict.at;

.at Report 2012

https://www.nic.at/fileadmin/www.nic.at/documents/at-report/at-report_2012-

1_EN.pdf; Cited: 16.06.2015

Registration Guidelines

https://www.nic.at/en/service/legal-information/registration-guidelines/#c4341 Cited:

16.06.2015

Openstreetmap.org; https://www.openstreetmap.org; Cited 25.06.2015

137

References

OpenStreetMap Wiki; https://wiki.openstreetmap.org/wiki/Main_Page;

 OSM XML https://wiki.openstreetmap.org/wiki/OSM_XML Cited 25.06.2015

 Addresses https://wiki.openstreetmap.org/wiki/Addresses

W3Techs; http://w3techs.com/technologies/history_overview/top_level_domain/ms/y Cited:

15.6.2015

Ich habe mich bemüht, sämtliche Inhaber der Bildrechte ausfindig zu machen und ihre Zustimmung

zur Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheberrechtsverletzung

bekannt werden, ersuche ich um Meldung bei mir.

138

Annex

Annex

Source Code

Threading Example

001 import remote_copy_external,
002 import threading
003 import time
004 import pickle
005 import os
006
007
008 class myThread (threading.Thread):
009 def __init__(self, urlstump, threadid):
010 threading.Thread.__init__(self)
011 self.urlstump = urlstump
012 self.id = threadid
013 def run(self):
014 threadLimiter.acquire()
015 print 'checking for ' + str(self.urlstump)
016 current_urllist.append(self.urlstump)
017 remote_copy_external.external('AWS-PUBLIC-KEY',
018 'AWS-PRIVATE-KEY','tldat','Data2//'+str(self.urlstump),
019 self.urlstump,parallelconnections,True)
020
021 print "Exit Thread: %d of %d" %(self.id, NummberIDs)
022 urllist.remove(self.urlstump)
023 current_urllist.remove(self.urlstump)
024 threadLimiter.release()
025
026 def iterate_ipickle(ipickle):
027 if ipickle < 10:
028 return ipickle +1
029 else:
030 return 0
031
032 duds = len(threading.enumerate())
033 threadnumber = 20
034 parallelconnections = 50
035 threadLimiter = threading.BoundedSemaphore(threadnumber)
036 print 'starting threads %s'%(duds)
037
038 current_urllist = []
039 running = True
040
041 NummberIDs = len(urllist)
042 ID = 1
043 Passnumber = 1
044 threadlist = list(urllist)
045 ipickle = 0
046
047 while running:
048 print ''
049 print 'running threads %s'%(len(threading.enumerate()))
050 urllist_pickle = list(urllist)
051 ipickle = iterate_ipickle(ipickle)
052 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
053
054 if duds+threadnumber > len(threading.enumerate()):
055 if threadlist:
056 element = threadlist[0]
057 threadlist.remove(element)
058 myThread(element,ID).start()
059 ID += 1
060 continue
061 if not threadlist:
062 pass
063

xiii

Annex

064 elif threadlist:
065 ipickle = iterate_ipickle(ipickle)
066 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
067 time.sleep(1)
068 print current_urllist
069 continue
070
071 elif not threadlist:
072 ipickle = iterate_ipickle(ipickle)
073 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
074 pass
075
076 while duds < len(threading.enumerate()):
077 time.sleep(10)
078
079 print ''
080 print 'Current Passnumber: %d'%(Passnumber)
081 print current_urllist
082 urllist_pickle = list(urllist)
083 ipickle = iterate_ipickle(ipickle)
084 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
085 pass
086
087 if not urllist:
088 running = False
089 print ''
090 print 'Script did run Passnumber %d'%(Passnumber)
091 pass
092 else:
093 threadlist = list(urllist)
094 urllist_pickle = list(urllist)
095 ipickle = iterate_ipickle(ipickle)
096 picklelist(urllist_pickle, 'obj_%s.pickle'%(ipickle))
097 print ''
098 print 'Script did run Passnumber %d'%(Passnumber)
099 Passnumber =+ 1

DBconnector

001 import psycopg2
002
003
004 def DBConnect():
005
006 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres
password=########")
007 cur = conn.cursor()
008 return conn,cur
009
010
011 def CreateTable():
012
013 conn,cur = DBConnect()
014 cur.execute("CREATE TABLE IF NOT EXISTS Addresses (id serial PRIMARY KEY,geom
geometry,street text, Street_number text, pcode integer);")
015 conn.commit()
016 conn.close()
017
018
019 def WriteToTableMany(Values):
020
021 conn,cur = DBConnect()
022 cur.executemany("INSERT INTO Addresses (geom, street, Street_number, pcode, AddDate)
VALUES (%s, %s, %s, %s, 24022015)",(Values))
023 conn.commit()
024 conn.close()
025
026 def addcolumn():
027 conn,cur = DBConnect()
028
029 cur.execute("""
030 DO $$

xiv

Annex

031 BEGIN
032 BEGIN
033 ALTER TABLE Addresses ADD COLUMN AddDate INT;
034 EXCEPTION
035 WHEN duplicate_column THEN RAISE NOTICE 'column Addresses
already exists in AddDate.';
036 END;
037 END;
038 $$
039 """
040)
041 conn.commit()
042 conn.close()
043
044 def finddoubles(addresslist):
045 newlist = []
046 conn, cur = DBConnect()
047 for address in addresslist:
048 cur.execute('SELECT ID FROM Addresses where street = %s and Street_number = %s and
pcode = %s',(address[1],address[2],address[3],))
049 data = cur.fetchall()
050 if not data:
051 newlist.append(address)
052
053 WriteToTableMany(newlist)
054 return newlist
055
056 def ReadFromTable():
057
058 conn,cur = DBConnect()
059 cur.execute("SELECT * FROM Addresses;")
060 data = list(cur.fetchall())
061 conn.close()
062
063 return data
064
065 def DeleteFromTable():
066
067 conn,cur = DBConnect()
068 cur.execute("DELETE * FROM Addresses;")
069 conn.commit()
070 conn.close()
071
072
073 def DropTable():
074 conn,cur = DBConnect()
075 cur.execute("DROP TABLE Addresses")
076 conn.commit()
077 conn.close()

OSM Parser

001 # -*- coding: utf-8 -*-
002 import sys, numpy, DBconnector
003 from xml.sax import make_parser, handler
004
005 endaddress = '0'
006 startaddress = '0'
007 start = '0'
008 end = '0'
009 addresslist = []
010
011 class startendfinder(handler.ContentHandler):
012 def __init__(self):
013 self.address = ['lat_lon', 'pcode', 'street', 'number']
014
015 self.plz = False
016 self.street = False
017 self.number = False
018 self.nodemode = False
019 self.waymode = False
020 self.relationmode = False

xv

Annex

021 self.nodedict = {}
022 self.wayid = False
023 self.relationid = False
024 self.relationdict = {}
025 self.waydict = {}
026 self.ndlist = []
027 self.memberlist = []
028 self.latlist = []
029 self.lonlist = []
030
031 def startElement(self, name, attrs):
032 if name in ('node'):
033 self.address[0] = 'POINT(%s %s)' % (attrs.get('lon'), attrs.get('lat'))
034 self.nodedict[int(attrs.get('id'))] = (float(attrs.get('lat')),
float(attrs.get('lon')))
035
036 self.nodemode = True
037
038 elif name in ('way'):
039 self.wayid = int(attrs.get('id'))
040 self.waymode = True
041
042 elif name in ('relation'):
043 self.relationid = int(attrs.get('id'))
044 self.relationmode = True
045
046 if self.relationmode == True:
047 if name == 'member':
048 self.memberlist.append((int(attrs.get('ref')),attrs.get('type')))
049 if name == 'tag':
050 k, v = (attrs.get('k'), attrs.get('v'))
051
052 if k == 'addr:street':
053 self.address[1] = unicode(v)
054 self.street = True
055
056 if k == 'addr:housenumber':
057 self.address[2] = unicode(v)
058 self.number = True
059
060 if k == 'addr:postcode':
061 try:
062 if int(v) <= 1099:
063 self.address[3] = int(v)
064 self.plz = True
065 elif int(v) >= 1200 and int(v) <= 1209:
066 self.address[3] = int(v)
067 self.plz = True
068 except:
069 pass
070
071 if self.waymode == True:
072 if name == 'nd':
073 self.ndlist.append(int(attrs.get('ref')))
074 if name == 'tag':
075 k, v = (attrs.get('k'), attrs.get('v'))
076
077 if k == 'addr:street':
078 self.address[1] = unicode(v)
079 self.street = True
080
081 if k == 'addr:housenumber':
082 self.address[2] = unicode(v)
083 self.number = True
084
085 if k == 'addr:postcode':
086 try:
087 if int(v) <= 1099:
088 self.address[3] = int(v)
089 self.plz = True
090 elif int(v) >= 1200 and int(v) <= 1209:
091 self.address[3] = int(v)
092 self.plz = True
093 except:
094 pass
095

xvi

Annex

096 if self.nodemode == True:
097 if name == 'tag':
098 k, v = (attrs.get('k'), attrs.get('v'))
099
100 if k == 'addr:street':
101 self.address[1] = unicode(v)
102 self.street = True
103
104 if k == 'addr:housenumber':
105 self.address[2] = unicode(v)
106 self.number = True
107
108 if k == 'addr:postcode':
109 try:
110 if int(v) <= 1099:
111 self.address[3] = int(v)
112 self.plz = True
113 elif int(v) >= 1200 and int(v) <= 1209:
114 self.address[3] = int(v)
115 self.plz = True
116 except:
117 pass
118
119 def endElement(self, name):
120 if name in ('node'):
121 if self.plz is True and self.street is True and self.number is True:
122 addresslist.append(tuple(self.address))
123
124 self.nodemode = False
125 self.plz = False
126 self.street = False
127 self.number = False
128 self.address = ['lat_lon', 'pcode', 'street', 'number']
129
130 if name in ('way'):
131 for nd in self.ndlist:
132 self.latlon = self.nodedict[nd]
133 self.latlist.append(self.latlon[0])
134 self.lonlist.append(self.latlon[1])
135
136 self.waydict[self.wayid] = (numpy.mean(self.latlist)),
numpy.mean(self.lonlist))
137
138 if self.plz is True and self.street is True and self.number is True:
139 self.address[0] = 'POINT(%s %s)' %
(numpy.mean(self.lonlist),numpy.mean(self.latlist))
140 addresslist.append(tuple(self.address))
141
142 self.latlist = []
143 self.lonlist = []
144 self.waymode = False
145 self.plz = False
146 self.street = False
147 self.number = False
148 self.address = ['lat_lon', 'pcode', 'street', 'number']
149 self.ndlist = []
150
151 if name in ('relation'):
152 for member in self.memberlist:
153
154 if member[1] == 'node':
155 self.latlist.append(self.nodedict[member[0]][0])
156 self.lonlist.append(self.nodedict[member[0]][1])
157 elif member[1] == 'way':
158 self.latlist.append(self.waydict[member[0]][0])
159 self.lonlist.append(self.waydict[member[0]][1])
160 elif member[1] == 'relation':
161 self.latlist.append(self.relationdict[member[0]][0])
162 self.lonlist.append(self.relationdict[member[0]][1])
163
164 self.relationdict[self.relationid] = (numpy.mean(self.latlist),
numpy.mean(self.lonlist))
165
166 if self.plz is True and self.street is True and self.number is True:
167 self.address[0] = 'POINT(%s %s)' % (numpy.mean(self.lonlist),
numpy.mean(self.latlist))

xvii

Annex

168 addresslist.append(tuple(self.address))
169
170 self.latlist = []
171 self.lonlist = []
172 self.waymode = False
173 self.plz = False
174 self.street = False
175 self.number = False
176 self.address = ['lat_lon', 'pcode', 'street', 'number']
177 self.memberlist = []
178
179
180 if __name__ == '__main__':
181 parser = make_parser()
182 parser.setContentHandler(startendfinder())
183 parser.parse('./vienna.osm')
184
185
186 DBconnector.CreateTable()
187 DBconnector.WriteToTableMany(addresslist)
188

Disassemble HTML

001 import psycopg2
002 import gzip
003 from bs4 import UnicodeDammit
004 import os
005 import time
006
007
008
009
010
011
012 def DBConnect():
013 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=########")
014 cur = conn.cursor()
015 return conn, cur
016
017
018 def CreateTable():
019 conn, cur = DBConnect()
020 cur.execute("CREATE TABLE IF NOT EXISTS html (id serial PRIMARY KEY, url TEXT,
html_file text);")
021 conn.commit()
022 conn.close()
023
024
025 def WriteManyToTable(Values):
026 conn, cur = DBConnect()
027 args_str = ','.join(cur.mogrify("(%s,%s)", x) for x in Values)
028 cur.execute("INSERT INTO html (url, html_file) VALUES " + args_str)
029 conn.commit()
030 conn.close()
031
032
033 def ReadFromTable():
034 conn, cur = DBConnect()
035 cur.execute("SELECT * FROM html;")
036 lines = cur.fetchall()
037 conn.close()
038 return lines
039
040
041 def Database_export(file):
042 start1 = time.time()
043 i = ''
044 tup_i = ()
045 url = ''
046 html_written = 0
047 mode = False
048 for line in file.readlines():

xviii

Annex

049 splitline = line.split(' ')
050 try:
051 if splitline[0][:7] == 'http://' and splitline[3] == 'text/html' and
len(splitline) == 5:
052
053 if len(i) > 0:
054 tup_i = tup_i + ((url, i),)
055 url = ''
056 i = ''
057
058 url = splitline[0]
059 mode = True
060
061 if len(tup_i) >= 100:
062 print('empty tup_i')
063 try:
064 WriteManyToTable(tup_i)
065 except:
066 pass
067 tup_i = ()
068 print ("html files written to DB %s" % html_written)
069
070 html_written += 1
071
072 elif splitline[0][:7] == 'http://' and splitline[3] != 'text/html' and
len(splitline) == 5:
073
074 if len(i) > 0:
075 tup_i = tup_i + ((url, i),)
076 url = ''
077 i = ''
078
079 mode = False
080
081 if len(tup_i) >= 100:
082 print('empty tup_i')
083 try:
084 WriteManyToTable(tup_i)
085 except:
086 pass
087 tup_i = ()
088 print ("html files written to DB %s" % html_written)
089 except:
090 pass
091
092 if mode == True:
093 try:
094 i += unicode(line, "utf-8")
095 except:
096 #i += UnicodeDammit(line).unicode_markup # Benoetigt Extrem Viele
resourcen
097 pass
098
099 if len(i) > 0:
100 tup_i = tup_i + ((url, i),)
101
102 try:
103 WriteManyToTable(tup_i)
104 except:
105 pass
106 html_written += len(tup_i)
107 print('parsing %s took %s Minutes \n' % (file, (time.time() - start1) / 60))
108 start = time.time()
109
110
111
112 print ("html files written to DB %s" % html_written)
113 print('export to database took %s Minutes' % ((time.time() - start) / 60))
114 print('complete Operation took %s Minutes' % ((time.time() - start1) / 60))
115 print('####################\n')
116
117
118 def open_Paths(PATH):
119 for path, dirs, files in os.walk(PATH):
120 for filename in files:
121 try:

xix

Annex

122 fullpath = os.path.join(path, filename)
123 print ('####################')
124 print('%s Size: %s MB' % (fullpath, os.path.getsize(fullpath) / 1048576))
125 file = gzip.open(fullpath, 'rb')
126 Database_export(file)
127 file.close()
128 except:
129 pass
130
131
132 def current_database():
133 conn,cur = DBConnect()
134 cur.execute('SELECT current_database()')
135 DB_name = cur.fetchone()
136 print('#######################')
137 print('Connecting to %s' % DB_name)
138 print('#######################')
139
140 if __name__ == '__main__':
141 current_database()
142 raw_input('Please Press the anykey')
143
144 CreateTable()
145 startall = time.time()
146
147 PATH = 'E:\Data'
148 open_Paths(PATH)
149
150 print('+++++########+++++')
151 print('complete Operation took %s Minutes' % ((time.time() - startall) / 60))
152 print('+++++########+++++')
153
154 lines = ReadFromTable()
155 print(len(lines))
156 for line in lines:
157 print (line[2])
158 raw_input('Please Press the anykey')

SetVienna

001 import psycopg2
002 import gzip
003 from bs4 import UnicodeDammit
004 import os
005 import time
006
007
008
009
010
011
012 def DBConnect():
013 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=########")
014 cur = conn.cursor()
015 return conn, cur
016
017
018 def CreateTable():
019 conn, cur = DBConnect()
020 cur.execute("CREATE TABLE IF NOT EXISTS html (id serial PRIMARY KEY, url TEXT,
html_file text);")
021 conn.commit()
022 conn.close()
023
024
025 def WriteManyToTable(Values):
026 conn, cur = DBConnect()
027 args_str = ','.join(cur.mogrify("(%s,%s)", x) for x in Values)
028 cur.execute("INSERT INTO html (url, html_file) VALUES " + args_str)
029 conn.commit()
030 conn.close()
031

xx

Annex

032
033 def ReadFromTable():
034 conn, cur = DBConnect()
035 cur.execute("SELECT * FROM html;")
036 lines = cur.fetchall()
037 conn.close()
038 return lines
039
040
041 def Database_export(file):
042 start1 = time.time()
043 i = ''
044 tup_i = ()
045 url = ''
046 html_written = 0
047 mode = False
048 for line in file.readlines():
049 splitline = line.split(' ')
050 try:
051 if splitline[0][:7] == 'http://' and splitline[3] == 'text/html' and
len(splitline) == 5:
052
053 if len(i) > 0:
054 tup_i = tup_i + ((url, i),)
055 url = ''
056 i = ''
057
058 url = splitline[0]
059 mode = True
060
061 if len(tup_i) >= 100:
062 print('empty tup_i')
063 try:
064 WriteManyToTable(tup_i)
065 except:
066 pass
067 tup_i = ()
068 print ("html files written to DB %s" % html_written)
069
070 html_written += 1
071
072 elif splitline[0][:7] == 'http://' and splitline[3] != 'text/html' and
len(splitline) == 5:
073
074 if len(i) > 0:
075 tup_i = tup_i + ((url, i),)
076 url = ''
077 i = ''
078
079 mode = False
080
081 if len(tup_i) >= 100:
082 print('empty tup_i')
083 try:
084 WriteManyToTable(tup_i)
085 except:
086 pass
087 tup_i = ()
088 print ("html files written to DB %s" % html_written)
089 except:
090 pass
091
092 if mode == True:
093 try:
094 i += unicode(line, "utf-8")
095 except:
096 #i += UnicodeDammit(line).unicode_markup # Benoetigt Extrem Viele
resourcen
097 pass
098
099 if len(i) > 0:
100 tup_i = tup_i + ((url, i),)
101
102 try:
103 WriteManyToTable(tup_i)
104 except:

xxi

Annex

105 pass
106 html_written += len(tup_i)
107 print('parsing %s took %s Minutes \n' % (file, (time.time() - start1) / 60))
108 start = time.time()
109
110
111
112 print ("html files written to DB %s" % html_written)
113 print('export to database took %s Minutes' % ((time.time() - start) / 60))
114 print('complete Operation took %s Minutes' % ((time.time() - start1) / 60))
115 print('####################\n')
116
117
118 def open_Paths(PATH):
119 for path, dirs, files in os.walk(PATH):
120 for filename in files:
121 try:
122 fullpath = os.path.join(path, filename)
123 print ('####################')
124 print('%s Size: %s MB' % (fullpath, os.path.getsize(fullpath) / 1048576))
125 file = gzip.open(fullpath, 'rb')
126 Database_export(file)
127 file.close()
128 except:
129 pass
130
131
132 def current_database():
133 conn,cur = DBConnect()
134 cur.execute('SELECT current_database()')
135 DB_name = cur.fetchone()
136 print('#######################')
137 print('Connecting to %s' % DB_name)
138 print('#######################')
139
140 if __name__ == '__main__':
141 current_database()
142 raw_input('Please Press the anykey')
143
144 CreateTable()
145 startall = time.time()
146
147 PATH = './Data'
148 open_Paths(PATH)
149
150 print('+++++########+++++')
151 print('complete Operation took %s Minutes' % ((time.time() - startall) / 60))
152 print('+++++########+++++')
153
154 lines = ReadFromTable()
155 print(len(lines))
156 for line in lines:
157 print (line[2])
158 raw_input('Please Press the anykey')

Tag Stripper

001 # -*- coding: UTF-8 -*-
002 import psycopg2
003 import time
004 from HTMLParser import HTMLParser
005 import re
006
007
008 def DBConnect():
009 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=########")
010 cur = conn.cursor()
011 return conn, cur
012
013
014 def ReadFromHTML(offset):
015 conn, cur = DBConnect()

xxii

Annex

016 cur.execute("SELECT id,html_file FROM html WHERE vienna = TRUE ORDER BY id limit 1000
offset %s ;" % offset)
017 data = cur.fetchall()
018 cur.close()
019 conn.close()
020
021 return data
022
023
024 def UpdateHTMLwithStrippedHTML(Values):
025 conn, cur = DBConnect()
026 cur.executemany("UPDATE html SET stripped_html = %s WHERE vienna = TRUE AND id in
(%s)", Values)
027 conn.commit()
028 cur.close()
029 conn.close()
030
031
032 def createColumn():
033 conn, cur = DBConnect()
034 cur.execute("ALTER TABLE html DROP COLUMN IF EXISTS stripped_html;")
035 conn.commit()
036 cur.execute("ALTER TABLE html ADD COLUMN stripped_html TEXT;")
037 conn.commit()
038 cur.close()
039 conn.close()
040
041
042 def remove_tags(text):
043 text = TAG_RE.sub('', text)
044 text = Short.sub('', text)
045 text = eszt.sub('ß', text)
046 text = ae.sub('ä', text)
047 text = AE.sub('Ä', text)
048 text = oe.sub('ö', text)
049 text = OE.sub('Ö', text)
050 text = ue.sub('ü', text)
051 text = UE.sub('Ü', text)
052 return text
053
054
055
056
057 TAG_RE = re.compile(r'<[^>]+>')
058 Short = re.compile(r'\S{68,}')
059 eszt = re.compile(r'ß')
060 ae = re.compile(r'ä')
061 AE = re.compile(r'Ä')
062 oe = re.compile(r'ö')
063 OE = re.compile(r'Ö')
064 ue = re.compile(r'ü')
065 UE = re.compile(r'Ü')
066
067
068
069 createColumn()
070 Starttime = time.time()
071 strippedlist = []
072 offset = 0
073 Starttime2 = time.time()
074 htmls = ReadFromHTML(offset)
075 Numberofrows = 8406507
076
077
078
079 while htmls:
080
081 timeregex = time.time()
082 print("starting Regex")
083 for row in htmls:
084 id = row[0]
085 stripped_html = remove_tags(row[1])
086 strippedlist.append((stripped_html, id))
087 print('Regex took %.2f Minutes' % ((time.time() - timeregex) / 60))
088
089 print("Starting DB Update")

xxiii

Annex

090 timeDBupdate = time.time()
091 UpdateHTMLwithStrippedHTML(strippedlist)
092 print('DB Update took %.2f Minutes' % ((time.time() - timeDBupdate) / 60))
093
094 print offset
095 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
096 delta_time = time.time() - Starttime
097 print "time till now %.2f Minutes"%(delta_time / 60)
098 print "time till end %.2f Minutes"%(((delta_time/60)/(offset+1000))*(Numberofrows-
(offset+1000)))
099
100
101 Starttime2 = time.time()
102 strippedlist = []
103 offset += 1000
104 htmls = ReadFromHTML(offset)
105
106
107
108 # for row in ReadFromHTML():
109 # print row[0]
110 # print row[1]
111 # print row[2]
112
113
114 print('+++++########+++++')
115 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60))
116 print('+++++########+++++')

Geo Tagging

001 # -*- coding: utf-8 -*-
002 import psycopg2
003 import time
004 import re
005
006 def DBConnect():
007 conn = psycopg2.connect("dbname=TEST_DB user=postgres
password=############")#Master_DB_spatial2
008 cur = conn.cursor()
009 return conn, cur
010
011
012 def CreateTables():
013 conn, cur = DBConnect()
014 cur.execute("CREATE TABLE IF NOT EXISTS AddressesUnique (id serial PRIMARY KEY,geom
geometry, street text, street_number text, pcode integer);")
015 cur.execute("CREATE TABLE IF NOT EXISTS AddressesUniqueJoinedWithURL (id serial
PRIMARY KEY, AddressesUniqueID INTEGER, HTMLID INTEGER, Original BOOLEAN);")
016 conn.commit()
017 conn.close()
018
019 def addcolumn():
020 conn,cur = DBConnect()
021
022 cur.execute("""
023 DO $$
024 BEGIN
025 BEGIN
026 ALTER TABLE AddressesUnique ADD COLUMN AddDate INT;
027 EXCEPTION
028 WHEN duplicate_column THEN RAISE NOTICE 'column
AddressesUnique already exists in AddDate.';
029 END;
030 END;
031 $$
032 """
033)
034 conn.commit()
035
036 cur.execute("""
037 DO $$

xxiv

Annex

038 BEGIN
039 BEGIN
040 ALTER TABLE AddressesUniqueJoinedWithURL ADD COLUMN AddDate INT;
041 EXCEPTION
042 WHEN duplicate_column THEN RAISE NOTICE 'column
AddressesUniqueJoinedWithURL already exists in AddDate.';
043 END;
044 END;
045 $$
046 """
047)
048 conn.commit()
049
050
051 conn.close()
052
053
054 def MakeAddressesUnique():
055 conn, cur = DBConnect()
056
057 conn.commit()
058 cur.execute("INSERT INTO AddressesUnique(geom,street,street_number,pcode,AddDate)"
059 "SELECT DISTINCT ON (street,street_number)
geom,street,street_number,pcode,AddDate FROM Addresses")
060 conn.commit()
061 return
062
063
064 def ReadFromTableAddressesUnique():
065 conn, cur = DBConnect()
066 cur.execute("SELECT street,street_number,id FROM AddressesUnique;")
067 return cur.fetchall()
068
069
070 def FindVienna():
071 conn, cur = DBConnect()
072 cur.execute("""UPDATE html SET Vienna = TRUE WHERE html_file LIKE '%%' || ' %s ' ||
'%%';""" % 'Wien')
073 conn.commit()
074 conn.close()
075
076
077 def ConstructSQLStatmentSearchAddresses(Values):
078 SQLStatmentdict = {}
079 conn, cur = DBConnect()
080
081 for line in Values:
082
083 if line[0][-6:] == 'traße':
#Berücksichtigt mögliche groß und klein schreibung von Straße
084 SQLStatmentdict[line[2]] = cur.mogrify(
085 "Select ID FROM HTML WHERE "
086 "Vienna = TRUE AND "
087 "(textsearchable_index_col @@
to_tsquery('german','"+line[3]+' & '+line[4]+"') AND "
088 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')"
089 "OR"
090 "(textsearchable_index_col @@
to_tsquery('german','"+line[3]+' & '+line[4]+"/:*') AND " # für address format 18/9
091 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')"
092 "OR"
093 "(textsearchable_index_col @@
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"') AND "
094 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')"
095 "OR"
096 "(textsearchable_index_col @@
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"/:*') AND " # für address format 18/9
097 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')"
098 ";")
099
100 elif line[0][-4:] == 'asse':
#Berücksichtigt mögliche groß und klein schreibung von Gasse
101 SQLStatmentdict[line[2]] = cur.mogrify(
102 "Select ID FROM HTML WHERE "
103 "Vienna = TRUE AND "

xxv

Annex

104 "(textsearchable_index_col @@
to_tsquery('german','"+line[3]+' & '+line[4]+"') AND "
105 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %')"
106 "OR"
107 "(textsearchable_index_col @@
to_tsquery('german','"+line[3]+' & '+line[4]+"/:*') AND " # für address format 18/9
108 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%')"
109 "OR"
110 "(textsearchable_index_col @@
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"') AND "
111 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+" %')"
112 "OR"
113 "(textsearchable_index_col @@
to_tsquery('german','"+line[3][:-4]+'. & '+line[4]+"/:*') AND " # für address format 18/9
114 "stripped_html ILIKE '% "+line[0][:-4]+'. '+line[1]+"/%')"
115 ";")
116
117
118 else:
Nimmt den Rest auf
119 SQLStatmentdict[line[2]] = cur.mogrify(
120 "Select ID FROM HTML WHERE "
121 "Vienna = TRUE AND "
122 "textsearchable_index_col @@
to_tsquery('german','"+line[3]+' & '+line[4]+"') AND "
123 "stripped_html ILIKE '% "+line[0]+' '+line[1]+" %'"
124 "OR "
125 "textsearchable_index_col @@
to_tsquery('german','"+line[3]+' & '+line[4]+"/:*') AND " # für address format 18/9
126 "stripped_html ILIKE '% "+line[0]+' '+line[1]+"/%'"
127 ";")
128
129
130 return SQLStatmentdict
131
132
133 def JoinAddressesUniqueWithURL(SQLStatmentdict):
134 conn, cur = DBConnect()
135 i = 1
136 Starttime = time.time()
137 Starttime2 = time.time()
138 Numberofrows = len(SQLStatmentdict)
139 cur.execute("TRUNCATE AddressesUniqueJoinedWithURL RESTART IDENTITY;")
140 for ID in SQLStatmentdict:
141 cur.execute(SQLStatmentdict[ID])
142 values = cur.fetchall()
143 if values:
144 args_str = ','.join(cur.mogrify("(%s,%s,TRUE)", (ID,x[0])) for x in values)
145 cur.execute("INSERT INTO AddressesUniqueJoinedWithURL (AddressesUniqueID,
HTMLID, Original) VALUES " + args_str)
146 conn.commit()
147
148 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
149 delta_time = time.time() - Starttime
150 print "time till now %.2f Minutes"%(delta_time/60)
151 print "time till end %.2f Minutes"%(((delta_time/60)/i)*(Numberofrows-i))
152 i += 1
153 Starttime2 = time.time()
154 conn.close()
155 return
156
157 def CleanStrings(lines):
158 for row in lines:
159 StreetName = row[0]
160 StreetNumber = row[1]
161 ID = row[2]
162 p = re.compile(r' ')
163 q = re.compile(r'[^-/a-zA-Z0-9_]')
164 r = re.compile(r'[0-9a-zA-Z] [-/] [0-9a-zA-Z]')
165 s = re.compile(r"'")
166
167 if r.match(StreetNumber): # Match adress nummer die so aussehen
"8 - 9" "4a - g" und "7 / 8" angepasst durch fehlern die ausgeworfen wurden
168 StreetNumber = p.sub('', StreetNumber) # ersetzt die leer zeichen mit
nichts
169 StreetNumber = q.sub('', StreetNumber) # Klammer in der Nummer

xxvi

Annex

170 StreetName = s.sub("''", StreetName) # fügt einen weiteren qoute ' hinzu um denn
ersten im to_tsquery und ilike zu escapen
171 row3 = p.sub(' & ', StreetName) # ersetzt Leer zeichen im straßen nahmen mit ' & '
sonst gehen sie nicht durch to_tsquery
172 row4 = p.sub(' & ', StreetNumber) # ersetzt Leer zeichen im Straßen Nummern namen
mit ' & ' bsp.: "Objekt 11" wird zu "Objekt & 11" sonst gehen sie nicht durch to_tsquery
173
174 lines.remove(row)
175 lines.insert(0,(StreetName,StreetNumber,ID,row3,row4))
176
177 return lines
178
179
180 def CreateIndex():
181 conn, cur = DBConnect()
182
183 cur.execute("ALTER TABLE html ADD COLUMN textsearchable_index_col tsvector;")
184 conn.commit()
185 cur.execute("UPDATE html SET textsearchable_index_col = to_tsvector('german',
stripped_html) WHERE Vienna = True;")
186 conn.commit()
187 cur.execute("CREATE INDEX textsearch_idx ON html USING
gin(textsearchable_index_col);")
188 conn.commit()
189 cur.close()
190 conn.close()
191
192
193
194 Starttime = time.time()
195 CreateTables()
196 addcolumn()
197 print("creating Index")
198 CreateIndex()
199 print("Make Addresses Unique")
200 MakeAddressesUnique()
201 lines = ReadFromTableAddressesUnique()
202 print lines
203
204 lines = CleanStrings(lines)
205 print lines
206 print len(lines)
207 SQLStatmentdict = ConstructSQLStatmentSearchAddresses(lines)
208 print SQLStatmentdict
209 JoinAddressesUniqueWithURL(SQLStatmentdict)
210
211
212
213 print('+++++########+++++')
214 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60))
215 print('+++++########+++++')

Find Links

001 # -*- coding: utf-8 -*-
002 import psycopg2
003 import time
004 import re
005 import urlparse
006
007
008 def DBConnect():
009 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres
password=###########")
010 cur = conn.cursor()
011 return conn, cur
012
013 def GetGeocodedHTMLIDs(conn, cur):
014
015 cur.execute("SELECT HTMLID, AddressesUniqueID FROM AddressesUniqueJoinedWithURL WHERE
Original = TRUE")
016 data = cur.fetchall()

xxvii

Annex

017
018 datadict = {}
019 for row in data:
020 if row[0] in datadict:
021 datadict[row[0]].append(row[1])
022 else:
023 datadict[row[0]] =[row[1],]
024
025 return datadict
026
027 def FindLinksInHtml(conn, cur, offset):
028 NoWhiteSpace = re.compile(r' ')
029 loadingtime = time.time()
030 cur.execute("SELECT id,url,html_file FROM html WHERE id > %s AND id <= %s ORDER BY
id;",(offset, offset+limit))
031 data = cur.fetchall()
032 print('Loading took %.2f Minutes' % ((time.time() - loadingtime) / 60))
033 regextime = time.time()
034 passeslist = []
035 linklist=[]
036 for row in data:
037 links = re.findall(r'href=[\'"]?([^\'" >]+)', row[2])
038 for link in links:
039 try:
040 linklist.append((row[0],NoWhiteSpace.sub('%20', urlparse.urljoin(row[1],
link)))) #makes the links absolut and removes Whitespaces
041 except:
042 passeslist.append((row[1], link))
043 print('Regex took %.2f Minutes found links %s' % (((time.time() - regextime) / 60),
len(linklist)))
044 return linklist, passeslist
045
046
047 def URLsWithID(conn, cur):
048 cur.execute("SELECT URL,ID FROM html;")
049 data = cur.fetchall()
050 dictonary = dict(data)
051 return dictonary
052
053 def WritetoAddressesUniqueJoinedWithURL(List):
054 conn, cur = DBConnect()
055 args_str = ','.join(cur.mogrify("(%s,%s,FALSE)", x) for x in List)
056 try:
057 cur.execute("INSERT INTO AddressesUniqueJoinedWithURL (HTMLID, AddressesUniqueID,
Original)VALUES " + args_str)
058 conn.commit()
059 except:
060 print "Error Inserting Joins"
061 cur.close()
062 conn.close()
063
064 return
065
066
067 def get_html_ids():
068 conn, cur = DBConnect()
069 cur.execute("SELECT id FROM html")
070 data = cur.fetchall()
071
072 cur.close()
073 conn.close()
074
075 return data
076
077
078
079
080 conn, cur = DBConnect()
081 Starttime = time.time()
082
083
084 print('getting URLDictonary and URLIDWITHAddressIDDictonary')
085 URLDictonary = URLsWithID(conn, cur)
086 URLIDWITHAddressIDDictonary = GetGeocodedHTMLIDs(conn, cur)
087
088 limit = 1000

xxviii

Annex

089 offset = 0
090 passeslist = []
091
092 Numberofrows = 8406507
093
094 r = 0
095 while offset <= Numberofrows:
096 Starttime2 = time.time()
097 print offset
098 linklist,passes = FindLinksInHtml(conn, cur, offset)
099
100 passeslist += passes
101 URLIDStoLinkIDS = []
102 for row in linklist:
103 if row[1] in URLDictonary:
104 URLIDStoLinkIDS.append((row[0],URLDictonary[row[1]]))
105
106 Newlist = []
107 for row in URLIDStoLinkIDS:
108 if row[1] in URLIDWITHAddressIDDictonary:
109 for rowx in URLIDWITHAddressIDDictonary[row[1]]:
110 Newlist.append((row[0],rowx))
111
112
113
114 r += len(Newlist)
115 WritetoAddressesUniqueJoinedWithURL(Newlist)
116
117 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
118 delta_time = time.time() - Starttime
119 print('time till now %.2f Minutes'%(delta_time / 60))
120 print('time till end %.2f Minutes'%(((delta_time/60)/(offset+1000))*(Numberofrows-
(offset+1000))))
121
122 offset += limit
123
124 cur.close()
125 conn.close()
126 print('Passes %s' % len(passeslist))
127 print passeslist
128 print r
129 print('+++++########+++++')
130 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60))
131 print('+++++########+++++')

Wikipedia POS Tagging

001 # -*- coding: utf-8 -*-
002 import time
003 from pattern.de import parse
004 import os
005 import io
006 import cPickle as pickle
007 from multiprocessing import Pool as ThreadPool
008 from threading import current_thread
009
010
011 def POStag(filepath):
012
013 global i
014 global len_filelist
015 i += 1
016 newcorpustagged = []
017 Starttime2 = time.time()
018
019 with io.open(filepath, 'r', encoding='utf-8') as mfile:
020 data = mfile.read()
021 data = data.splitlines()
022
023
024 for section in data:
025 section = parse(section)

xxix

Annex

026 section = section.split()
027
028 for sentence in section:
029 sent = []
030 for token in sentence:
031 sent.append((token[0], token[1]))
032 newcorpustagged.append(sent)
033
034
035 with io.open('./wikicorpuspickeld_2/%s_%s.pos' % (current_thread().ident, i,), 'wb')
as fout:
036 pickle.dump(newcorpustagged, fout)
037
038
039 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
040 delta_time = time.time() - Starttime
041 print "time till now %.2f Minutes" % (delta_time/60)
042 print "time till end %.2f Minutes" % (((delta_time/60)/(i*4))*(len_filelist-(i*4)))
043
044
045 def createfilepathlist():
046 pathlist = []
047 subfolders = [x[0] for x in os.walk('./WikiText/')]
048 for subfolder in subfolders[1:]:
049 for filename in os.listdir(subfolder):
050 pathlist.append(subfolder+'/'+filename)
051
052 return pathlist
053
054
055 i = 0
056 filepathlist = createfilepathlist()
057 len_filelist = len(filepathlist)
058 Starttime = time.time()
059
060 if __name__ == '__main__':
061
062 print('Tagging new corpus')
063 pool = ThreadPool(4)
064 pool.map(POStag, filepathlist)
065 pool.close()
066 pool.join()
067
068 print('+++++########+++++')
069 print('complete Operation took %s Minutes' % ((time.time() - Starttime) / 60))
070 print('+++++########+++++')

Co-occurrence Group Generation

001 # -*- coding: utf-8 -*-
002 import time
003 from nltk.corpus import stopwords
004 import os
005 import io
006 import cPickle as pickle
007
008
009 def NounVerb(tag):
010 noun_verb_list = [u'nn', u'nns', u'nnp', u'nnps', u'vb', u'vbz', u'vbp', u'vbd',
u'vbn', u'vbg']
011
012 if tag.lower() in noun_verb_list:
013 return True
014
015 return False
016
017
018 def stopwords_list():
019 new_list = []
020 for word in stopwords.words('german'):
021 new_list.append(unicode(word.decode('latin-1')))
022 return new_list

xxx

Annex

023
024
025 def CoOccurrence(groups):
026 Starttime3 = time.time()
027 Fenster = 10
028 i = 1
029 S_list = stopwords_list()
030 word_dict = {}
031
032 Files = [x[2] for x in os.walk('./wikicorpuspickeld_2/')]
033 for file in Files[0]:
034
035 with io.open('./wikicorpuspickeld_2/'+file, 'rb') as fin:
036 loaded_corpus = pickle.load(fin)
037
038
039 for sentence in loaded_corpus:
040 for (index, tokentag) in enumerate(sentence):
041 (token, tag) = tokentag
042 token = token.lower()
043
044 if token in groups:
045 term = sentence[index-Fenster:index+Fenster]
046 for(term_token, term_tag) in term:
047
048 term_token = term_token.lower()
049 if term_token not in S_list and NounVerb(term_tag):
050
051 if token not in word_dict:
052 word_dict[token] = {}
053 if term_token in word_dict[token]:
054 word_dict[token][term_token] += 1
055 else:
056 word_dict[token][term_token] = 1
057
058 print i
059
060 delta_time = time.time() - Starttime3
061 print "time till end %.2f Minutes" % (((delta_time/60)/i)*(len(Files[0])-i))
062 i += 1
063
064 return word_dict
065
066 groups = [u'wohnen', u'arbeiten', u'bildung', u'einkaufen', u'gaststätte', u'hotel',
u'kreditinstitut', u'kultur', u'dienstgebäude',]
067
068 Starttime2 = time.time()
069 CoOccurrenceGroups = CoOccurrence(groups)
070
071
072 directory = './topics/'
073 if not os.path.exists(directory):
074 os.makedirs(directory)
075
076 with io.open(directory+'CoOccurrenceGroups.pickle', 'wb') as fout:
077 pickle.dump(CoOccurrenceGroups, fout)
078
079 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
080 delta_time = time.time() - Starttime

Inverse Document Frequency

001 import cPickle as pickle
002 import io
003 import psycopg2
004 import numpy
005 import random
006 import sys
007
008
009 def DBConnect():

xxxi

Annex

010 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres
password=#####")#Master_DB_spatial2
011 cur = conn.cursor()
012 return conn, cur
013
014
015 def countrows():
016 conn, cur = DBConnect()
017 cur.execute("SELECT count(*) FROM HtmlUnique;")
018 data = cur.fetchone()
019 cur.close()
020 conn.close()
021 return data[0]
022
023
024 with io.open('./Vector/CombinedVectorSpace.pickle', 'rb') as fin:
025 CombinedVectorSpace = pickle.load(fin)
026
027 CombinedVectorSpaceIDFT = {}
028 DocumentCount = countrows()
029
030 for key in CombinedVectorSpace:
031 idft = numpy.log(numpy.divide(float(DocumentCount),
float((1+CombinedVectorSpace[key][0]))))
032
033 CombinedVectorSpaceIDFT[key] = CombinedVectorSpace[key][0],
CombinedVectorSpace[key][1], idft
034
035 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'wb') as fout:
036 pickle.dump(CombinedVectorSpaceIDFT, fout)
037
038 CombinedVectorSpaceIDFTKeyList = []
039
040 for key in CombinedVectorSpaceIDFT:
041 CombinedVectorSpaceIDFTKeyList.append(key)
042
043 CombinedVectorSpaceIDFTKeyList.sort()
044
045 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'wb') as fout:
046 pickle.dump(CombinedVectorSpaceIDFTKeyList, fout)

Wikipedia Vector Space

001 # -*- coding: utf-8 -*-
002 import time
003 from nltk.corpus import stopwords
004 import nltk
005 import re
006 import os
007 import io
008 import cPickle as pickle
009
010
011 def Vector_Calculator():
012 Starttime3 = time.time()
013 i = 1
014 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
015 token_dict_file = {}
016 p = re.compile(ur'^[a-zA-Z��}[◌֜2,}$', re.UNICODE)
017
018 Files = [x[2] for x in os.walk('E:/Tools/Topic Generation/wikicorpuspickeld_2/')]
019 for file in Files[0]:
020 with io.open('E:/Tools/Topic Generation/wikicorpuspickeld_2/'+file, 'rb') as fin:
021 loaded_corpus = pickle.load(fin)
022
023 for sentence in loaded_corpus:
024 for (index, tagtuple) in enumerate(sentence):
025 (token, tag) = tagtuple
026 token = token.lower()
027 if token not in stopword_list:
028 if p.match(token):
029 stemmedtoken = GermanStemmer.stem(token)

xxxii

Annex

030
031 if stemmedtoken in token_dict_file:
032 token_dict_file[stemmedtoken] += 1
033 else:
034 token_dict_file[stemmedtoken] = 1
035
036 delta_time = time.time() - Starttime3
037 print "time till end %.2f Minutes" % (((delta_time/60)/i)*(len(Files[0])-i))
038 i += 1
039
040 return token_dict_file
041
042 stopword_list = []
043 for word in stopwords.words('german'):
044 stopword_list.append(unicode(word.decode('latin-1')))
045
046 Starttime = time.time()
047 Vectorraum = Vector_Calculator()
048
049 with io.open('./Vector/WikiVectorSpace2.pickle', 'wb') as fout:
050 pickle.dump(Vectorraum, fout)
051 print('Operation took %.2f Minutes' % ((time.time() - Starttime) / 60))

HTML Vector Space

001 # -*- coding: UTF-8 -*-
002 import nltk
003 from nltk.tokenize import RegexpTokenizer
004 import psycopg2
005 import time
006 import cPickle as pickle
007 import io
008 import re
009
010
011 def DBConnect():
012 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres
password=##########")#Master_DB_spatial2
013 cur = conn.cursor()
014 return conn, cur
015
016
017 def stripped_htmls(ID_list):
018 conn, cur = DBConnect()
019 data = []
020 for ID in ID_list:
021 cur.execute("SELECT stripped_html FROM HtmlUnique WHERE ID = %s ",ID)
022 html = cur.fetchone()
023 if html:
024 data.append(html)
025 else:
026 error += 1
027 print "Number of Errors %s" % error
028 cur.close()
029 conn.close()
030
031 return data
032
033
034 def get_html_ids():
035 conn, cur = DBConnect()
036 cur.execute("select DISTINCT HTMLID FROM AddressesUniqueJoinedWithURL ORDER BY
HTMLID")
037 data = cur.fetchall()
038
039 cur.close()
040 conn.close()
041
042 return data
043
044
045 def Delete_stopwords(Tokens):

xxxiii

Annex

046 return [token for token in Tokens if not token in
nltk.corpus.stopwords.words('german')]
047
048 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
049 tokenizer = RegexpTokenizer(r'\w+')
050 token_dict = {}
051 HTMLIDS = get_html_ids()
052
053 lower = 0
054 upper = lower + 1000
055 Starttime = time.time()
056 parsedhtmls = 0
057
058 while lower <= len(HTMLIDS):
059
060 Starttime2 = time.time()
061 stripped_htmls_list = stripped_htmls(HTMLIDS[lower:upper])
062 for html in stripped_htmls_list:
063 parsedhtmls += 1
064
065 time_tokenize = time.time()
066 tokens = tokenizer.tokenize(html)
067 tokens = Delete_stopwords(tokens)
068 token_dict_file = {}
069
070 for token in tokens:
071
072 stemmedtoken = GermanStemmer.stem(token)
073
074 if stemmedtoken in token_dict_file:
075 token_dict_file[stemmedtoken] += 1
076 else:
077 token_dict_file[stemmedtoken] = 1
078
079 for key in token_dict_file:
080 if key in token_dict:
081 doc_count = token_dict[key][0] + 1
082 occurrence_count = token_dict[key][1] + token_dict_file[key]
083 token_dict[key] = (doc_count, occurrence_count)
084 else:
085 token_dict[key] = (1, token_dict_file[key])
086
087 print('Number of tokens in dict: %s' % len(token_dict))
088 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
089 delta_time = time.time() - Starttime
090 print "time till now %.2f Minutes"%(delta_time / 60)
091 print "time till end %.2f Minutes"%(((delta_time/60)/(upper))*(len(HTMLIDS)-(upper)))
092
093 lower += 1000
094 upper = lower + 1000
095
096 with io.open('./Vector/HTMLVectorSpace.pickle', 'wb') as fout:
097 pickle.dump(token_dict, fout)
098
099 print 'parsed HTML Files %s' % parsedhtmls

Combined Vector Space

001 import io
002 import cPickle as pickle
003
004 with io.open('./Vector/WikiVectorSpace.pickle', 'rb') as fin:
005 WikiVectorSpace = pickle.load(fin)
006
007 with io.open('./Vector/HTMLVectorSpace.pickle', 'rb') as fin:
008 HTMLVectorSpace = pickle.load(fin)
009
010 CombinedVectorSpace = {}
011
012 for key in WikiVectorSpace:
013 if key in HTMLVectorSpace:
014 CombinedVectorSpace[key] = HTMLVectorSpace[key]

xxxiv

Annex

015
016 with io.open('./Vector/CombinedVectorSpace.pickle', 'wb') as fout:
017 pickle.dump(CombinedVectorSpace, fout)

HTML Tokenization

001 import nltk
002 from nltk.tokenize import RegexpTokenizer
003 import psycopg2
004 import time
005 import cPickle as pickle
006 import io
007 import re
008
009
010 def DBConnect():
011 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres
password=#######")#Master_DB_spatial2
012 cur = conn.cursor()
013 return conn, cur
014
015
016 def createColumn():
017 conn, cur = DBConnect()
018 cur.execute("ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS VectorDICT;")
019 conn.commit()
020 cur.execute("ALTER TABLE HtmlUnique ADD COLUMN VectorDICT bytea;")
021 conn.commit()
022 cur.close()
023 conn.close()
024
025
026 def ReadFromHTML(offset):
027 conn, cur = DBConnect()
028 cur.execute("SELECT id,stripped_html FROM ORDER BY id limit 1000 offset %s ;",
(offset,))
029 data = cur.fetchall()
030 cur.close()
031 conn.close()
032
033 return data
034
035
036 def Delete_stopwords(Tokens):
037 return [token for token in Tokens if not token in
nltk.corpus.stopwords.words('german')]
038
039
040 def UpdateHtmlUniquewithDict(Dict,ID):
041 conn, cur = DBConnect()
042 cur.execute("UPDATE HtmlUnique SET VectorDICT = %s WHERE id = %s",
(psycopg2.Binary(Dict), ID,))
043 conn.commit()
044 cur.close()
045 conn.close()
046
047
048 def countrows():
049 conn, cur = DBConnect()
050 cur.execute("select count(id) from HtmlUnique;")
051 data = cur.fetchone()
052 cur.close()
053 conn.close()
054 return data[0]
055
056
057 with io.open('.\Vector\CombinedVectorSpace.pickle', 'rb') as fin:
058 CombinedVectorSpace = pickle.load(fin)
059
060
061 createColumn()
062

xxxv

Annex

063 offset = 0
064 htmls = ReadFromHTML(offset)
065 tokenizer = RegexpTokenizer(r'\w+')
066 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
067 Starttime = time.time()
068 Length = countrows()
069
070 while htmls:
071 print len(htmls)
072 Starttime2 = time.time()
073 for html in htmls:
074 HTMLdict = {}
075 id, HTMLtext = html
076 tokens = tokenizer.tokenize(HTMLtext)
077
078 for token in tokens:
079 stemmedtoken = GermanStemmer.stem(token)
080 if stemmedtoken in CombinedVectorSpace:
081 if stemmedtoken in HTMLdict:
082 HTMLdict[stemmedtoken] += 1
083 else:
084 HTMLdict[stemmedtoken] = 1
085
086 htmlDictpickeld = pickle.dumps(HTMLdict)
087 UpdateHtmlUniquewithDict(htmlDictpickeld,id)
088
089 offset += 1000
090 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
091 delta_time = time.time() - Starttime
092 print "time till now %.2f Minutes"%(delta_time / 60)
093 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(Length-offset))
094 htmls = ReadFromHTML(offset)

TFIDF Vector HTML Documents

001 import cPickle as pickle
002 import io
003 import psycopg2
004 import numpy
005 import time
006 import zlib
007
008 def DBConnect():
009 conn = psycopg2.connect("dbname=TEST_DB user=postgres password=######")
010 cur = conn.cursor()
011 return conn, cur
012
013
014 def countrows():
015 conn, cur = DBConnect()
016 cur.execute("SELECT count(*) FROM HtmlUnique;")
017 data = cur.fetchone()
018 cur.close()
019 conn.close()
020 return data[0]
021
022 def VectorDICTReader(offset):
023 conn, cur = DBConnect()
024 cur.execute("SELECT id,VectorDICT FROM HtmlUnique order by id limit 100 offset %s
;",(offset,))
025 data = cur.fetchall()
026 cur.close()
027 conn.close()
028 return data
029
030
031 def UpdateHtmlUniquewithTFIDFlist(Values):
032 conn, cur = DBConnect()
033 cur.executemany("UPDATE HtmlUnique SET TFIDFVector = %s WHERE id = %s", Values)
034 conn.commit()
035 cur.close()
036 conn.close()

xxxvi

Annex

037
038
039 def createColumn():
040 conn, cur = DBConnect()
041 cur.execute("ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS TFIDFVector;")
042 conn.commit()
043 cur.execute("ALTER TABLE HtmlUnique ADD COLUMN TFIDFVector bytea;")
044 conn.commit()
045 cur.close()
046 conn.close()
047
048
049 offset = 0
050 length = countrows()
051 Starttime = time.time()
052 createColumn()
053
054 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin:
055 CombinedVectorSpaceIDFT = pickle.load(fin)
056
057 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin:
058 CombinedVectorSpaceIDFTKeyList = pickle.load(fin)
059
060 while offset <= length:
061 dicts = VectorDICTReader(offset)
062 Starttime2 = time.time()
063 arraylist = []
064 for tuple in dicts:
065 array = []
066 id = tuple[0]
067 dictionary = pickle.loads(str(tuple[1]))
068
069 for key in CombinedVectorSpaceIDFTKeyList:
070
071 if key in dictionary:
072 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2],
dictionary[key]))
073 else:
074 array.append(0)
075 array = numpy.array(array)
076 array = numpy.divide(array,numpy.linalg.norm(array))
077 array = pickle.dumps(array)
078 array = zlib.compress(array)
079 arraylist.append((psycopg2.Binary(array),id,))
080
081 UpdateHtmlUniquewithTFIDFlist(arraylist)
082 offset += 100
083 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
084 delta_time = time.time() - Starttime
085 print "time till now %.2f Minutes"%(delta_time / 60)
086 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset))

TFIDF Vector for Search Term and Co-ccurence Groups

001 import cPickle as pickle
002 import io
003 import nltk
004 import numpy
005 import zlib
006
007
008 with io.open('./Vector/CombinedVectorSpaceIDFT.pickle', 'rb') as fin:
009 CombinedVectorSpaceIDFT = pickle.load(fin)
010
011 with io.open('./Vector/CombinedVectorSpaceIDFTKeyList.pickle', 'rb') as fin:
012 CombinedVectorSpaceIDFTKeyList = pickle.load(fin)
013
014 with io.open('./Co-Occurrence.pickle', 'rb') as fin:
015 CoOc = pickle.load(fin)
016
017 GermanStemmer = nltk.stem.SnowballStemmer('german', ignore_stopwords=True)
018

xxxvii

Annex

019
020 TFIDF_CoOc = {}
021 for searchterm in CoOc:
022 TFIDF_CoOc[searchterm] = {}
023 TFIDF_CoOc[searchterm]['Stemmed'] = {}
024 for token, counter in CoOc[searchterm]:
025 token = GermanStemmer.stem(token)
026 if token in TFIDF_CoOc[searchterm]:
027 TFIDF_CoOc[searchterm]['Stemmed'][token] =
TFIDF_CoOc[searchterm]['Stemmed'][token]+tuple[1]
028 else:
029 TFIDF_CoOc[searchterm]['Stemmed'][token] = tuple[1]
030
031
032 for searchterm in TFIDF_CoOc:
033 array = []
034 dictionary = TFIDF_CoOc[searchterm]['Stemmed']
035 for key in CombinedVectorSpaceIDFTKeyList:
036 if key in dictionary:
037 array.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2],
dictionary[key]))
038 else:
039 array.append(0)
040 array = numpy.array(array)
041 array = numpy.divide(array,numpy.linalg.norm(array))
042 array = pickle.dumps(array)
043 array = zlib.compress(array)
044 TFIDF_CoOc[searchterm]['TFIDF_CoOc'] = array
045
046
047 STarray = []
048 searchtermstemmed = GermanStemmer.stem(searchterm)
049 for key in CombinedVectorSpaceIDFTKeyList:
050 if key in searchtermstemmed:
051 STarray.append(numpy.multiply(CombinedVectorSpaceIDFT[key][2], 1))
052 else:
053 STarray.append(0)
054
055 STarray = numpy.array(STarray)
056 STarray = numpy.divide(STarray,numpy.linalg.norm(STarray))
057 STarray = pickle.dumps(STarray)
058 STarray = zlib.compress(STarray)
059 TFIDF_CoOc[searchterm]['TFIDF_ST'] = STarray
060
061 with io.open('./Vector/TFIDF_CoOc.pickle', 'wb') as fout:
062 pickle.dump(TFIDF_CoOc, fout)

Cosine Similarity

001 import cPickle as pickle
002 import io
003 import psycopg2
004 import time
005 import zlib
006 from sklearn.metrics.pairwise import cosine_similarity
007
008
009 def DBConnect():
010 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=######")
011 cur = conn.cursor()
012 return conn, cur
013
014
015 def VectorDICTReader(range,offset):
016 conn, cur = DBConnect()
017 cur.execute("SELECT id,TFIDFVector FROM HtmlUnique order by id limit %s offset %s
;",(range,offset,))
018 data = cur.fetchall()
019 cur.close()
020 conn.close()
021 return data
022

xxxviii

Annex

023
024 def createColumn(column):
025 conn, cur = DBConnect()
026 sqlstring = "ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS %s;" % column
027 cur.execute(sqlstring)
028 conn.commit()
029 sqlstring = "ALTER TABLE HtmlUnique ADD COLUMN %s FLOAT;" % column
030 cur.execute(sqlstring)
031 conn.commit()
032 cur.close()
033 conn.close()
034
035
036 def Sqlstringconstructor(Columnlist):
037
038 sqlstring = "UPDATE HtmlUnique SET "
039 for key in Columnlist[:-1]:
040 sqlstring += key+' = %s, '
041 sqlstring += Columnlist[-1]+' = %s'
042 sqlstring += ' WHERE id = %s'
043 print sqlstring
044 return sqlstring
045
046
047 def UpdateHtmlUniquewithCosinelist(sqlstring,Values):
048 conn, cur = DBConnect()
049 cur.executemany(sqlstring, Values)
050 conn.commit()
051 cur.close()
052 conn.close()
053
054
055 def countrows():
056 conn, cur = DBConnect()
057 cur.execute("SELECT count(*) FROM HtmlUnique;")
058 data = cur.fetchone()
059 cur.close()
060 conn.close()
061 return data[0]
062
063 ##
064
065 with io.open('./Vector/TFIDF_CoOc.pickle', 'rb') as fin:
066 TFIDF_CoOc = pickle.load(fin)
067
068 Columnlist = []
069 SearchTermList = []
070 TFIDFworkingdict = {}
071
072 for searchterm in TFIDF_CoOc:
073 SearchTermList.append(searchterm)
074 Columnlist.append(TFIDF_CoOc[searchterm]+'_CoOc')
075 Columnlist.append(TFIDF_CoOc[searchterm]+'_ST')
076
077 for searchterm in SearchTermList:
078 TFIDFworkingdict[searchterm] =
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_CoOc'])),\
079
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_ST']))
080
081 for searchterm in Columnlist:
082 createColumn(searchterm)
083
084 sqlstring = Sqlstringconstructor(Columnlist)
085
086 offset = 0
087 range = 1000
088 length = countrows()
089
090 vectors = VectorDICTReader(range,offset)
091
092 Starttime = time.time()
093 while vectors:
094 Starttime2 = time.time()
095 updatelist = []
096 for vectortup in vectors:

xxxix

Annex

097 cosinelist = []
098 id, vector = vectortup[0], pickle.loads(zlib.decompress(vectortup[1]))
099 for searchterm in SearchTermList:
100 cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][0], vector),8)
101 cosinelist.append(cosine)
102 cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][1], vector),8)
103 cosinelist.append(cosine)
104
105 cosinelist.append(id)
106 updatelist.append(cosinelist)
107 UpdateHtmlUniquewithCosinelist(sqlstring,updatelist)
108 offset += range
109 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
110 delta_time = time.time() - Starttime
111 print "time till now %.2f Minutes"%(delta_time / 60)
112 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset))
113
114 vectors = VectorDICTReader(range,offset)

Address Classification

001 import cPickle as pickle
002 import io
003 import psycopg2
004 import time
005 import zlib
006 from sklearn.metrics.pairwise import cosine_similarity
007
008
009 def DBConnect():
010 conn = psycopg2.connect("dbname=Master_DB_spatial2 user=postgres password=######")
011 cur = conn.cursor()
012 return conn, cur
013
014
015 def VectorDICTReader(range,offset):
016 conn, cur = DBConnect()
017 cur.execute("SELECT id,TFIDFVector FROM HtmlUnique order by id limit %s offset %s
;",(range,offset,))
018 data = cur.fetchall()
019 cur.close()
020 conn.close()
021 return data
022
023
024 def createColumn(column):
025 conn, cur = DBConnect()
026 sqlstring = "ALTER TABLE HtmlUnique DROP COLUMN IF EXISTS %s;" % column
027 cur.execute(sqlstring)
028 conn.commit()
029 sqlstring = "ALTER TABLE HtmlUnique ADD COLUMN %s FLOAT;" % column
030 cur.execute(sqlstring)
031 conn.commit()
032 cur.close()
033 conn.close()
034
035
036 def Sqlstringconstructor(Columnlist):
037
038 sqlstring = "UPDATE HtmlUnique SET "
039 for key in Columnlist[:-1]:
040 sqlstring += key+' = %s, '
041 sqlstring += Columnlist[-1]+' = %s'
042 sqlstring += ' WHERE id = %s'
043 print sqlstring
044 return sqlstring
045
046
047 def UpdateHtmlUniquewithCosinelist(sqlstring,Values):
048 conn, cur = DBConnect()
049 cur.executemany(sqlstring, Values)
050 conn.commit()

xl

Annex

051 cur.close()
052 conn.close()
053
054
055 def countrows():
056 conn, cur = DBConnect()
057 cur.execute("SELECT count(*) FROM HtmlUnique;")
058 data = cur.fetchone()
059 cur.close()
060 conn.close()
061 return data[0]
062
063 ##
064
065 with io.open('./Vector/TFIDF_CoOc.pickle', 'rb') as fin:
066 TFIDF_CoOc = pickle.load(fin)
067
068 Columnlist = []
069 SearchTermList = []
070 TFIDFworkingdict = {}
071
072 for searchterm in TFIDF_CoOc:
073 SearchTermList.append(searchterm)
074 Columnlist.append(TFIDF_CoOc[searchterm]+'_CoOc')
075 Columnlist.append(TFIDF_CoOc[searchterm]+'_ST')
076
077 for searchterm in SearchTermList:
078 TFIDFworkingdict[searchterm] =
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_CoOc'])),\
079
pickle.loads(zlib.decompress(TFIDF_CoOc[searchterm]['TFIDF_ST']))
080
081 for searchterm in Columnlist:
082 createColumn(searchterm)
083
084 sqlstring = Sqlstringconstructor(Columnlist)
085
086 offset = 0
087 range = 1000
088 length = countrows()
089
090 vectors = VectorDICTReader(range,offset)
091
092 Starttime = time.time()
093 while vectors:
094 Starttime2 = time.time()
095 updatelist = []
096 for vectortup in vectors:
097 cosinelist = []
098 id, vector = vectortup[0], pickle.loads(zlib.decompress(vectortup[1]))
099 for searchterm in SearchTermList:
100 cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][0], vector),8)
101 cosinelist.append(cosine)
102 cosine = round(cosine_similarity(TFIDFworkingdict[searchterm][1], vector),8)
103 cosinelist.append(cosine)
104
105 cosinelist.append(id)
106 updatelist.append(cosinelist)
107 UpdateHtmlUniquewithCosinelist(sqlstring,updatelist)
108 offset += range
109 print('Operation took %.2f Minutes' % ((time.time() - Starttime2) / 60))
110 delta_time = time.time() - Starttime
111 print "time till now %.2f Minutes"%(delta_time / 60)
112 print "time till end %.2f Minutes"%(((delta_time/60)/offset)*(length-offset))
113
114 vectors = VectorDICTReader(range,offset)

xli

Annex

Database Schema

xlii

Annex

Mapping Results
ID Street street_n

umber
post
code

hotel gaststätte arbeiten bildung wohnen dienstgebäude kreditinstitut einkaufen kultur other Notes

87 Aegidigasse 7-11 1060 t

143 Albertgasse 1a 1080 t Rechtsanwalt, Immobilien,
PR-Agentur, edv, Ärzte
Flugambulanz

329 Alser Straße 71 1080 t Pensionistenclub

440 Am Hof 13 1010 t t Gewürz geschafft,
Kosmetikgeschäft,
Consulting,
Medienproduktion,

707 Argentinierstraß
e

14 1040 t Griechische Botschaft

724 Argentinierstraß
e

30 1040 t Funkhaus

725 Argentinierstraß
e

30A 1040 t t Funkhaus, kaffee

732 Argentinierstraß
e

39 1040 t t Rumänisches
Kulturinstitut,
Ingenieurbüro

834 Augasse 11 1090 t Supermarkt

849 Augustinerstraße 1 1010 t t t Museum, restaurant,
museum geschäft

918 Bacherplatz 11 1050 t Film und Design verleih

933 Bäckerstraße 10 1010 t t Schmuckgeschäft

1245 Baumgasse 83 1030 t Hotel

1297 Bechardgasse 18 1030 t

1372 Bennogasse 1 1080 t t Bank, post

1373 Bennogasse 10 1080 t t Arzt, edv

1440 Berggasse 32 1090 t t Schuhservice, Vorbeugung
von sexuellem Missbrauch
von Kindern

1952 Bräuhausgasse 37 1050 t t Ingenieurbüro,
Steuerberatung,
Kindergarten,

xliii

Annex

Investmentberatung

2084 Brigittaplatz 18 1200 t t t Aquarien Fachgeschäft,
Elektrik fachgeschäft,
psychotherapie,
Heilpraktiker

2091 Brigittaplatz 9 1200 t t Küchenmöbel

2262 Burggasse 28-32 1070 t t Werbeagentur, Fotografie,
film, Kommunikation

2288 Burggasse 56 1070 t Fotografie

2312 Burggasse 81 1070 t t t Hochzeitsgeschäft,
Schneiderei, Bäcker,
Gemüse Händler, Café

2576 Daffingerstraße 1 1030 Nichts

2677 Dannebergplatz 12 1030 t

2816 Diehlgasse 28 1050 t

3009 Dorotheergasse 2 1010 t t t Restaurant, architekt,

3036 Dr.-Karl-Renner-
Ring

3 1010 t Parlament

3114 Dresdner Straße 68 1200 t Baugesellschaft, Pipelines,
EDV, arzt, telefon,
ingenieur, Reisebüro

3131 Dresdner Straße 87 1200 t t t t MA 42, österreichische
Patentamt, hotel
management, trafik

3195 Ebendorferstraß
e

7 1010 t t Österreichischer
Austauschdienst,
wohnraumverwaltung
GmbH

3227 Einsiedlergasse 19 1050 t Appartementhaus

3296 Elisabethstraße 13 1010 t t Arzt, physiotherapie,
rechtsanwalt, Fischerei
Gesellschaft, Model
Management, Immobilien,
Kunden Forschung,
marketing

3709 Erzherzog-
Johann-Platz

1 1040 t Universität

3724 Eslarngasse 11 1030 t

xliv

Annex

3774 Esteplatz 5 1030 t t Rechtsanwalt, Kochkurse

3857 Fasangasse 35-37 1030 t t t t Gaststätte, arzt, reinigung,
bücherei, beauty

3862 Fasangasse 4 1030 t t Kloster, handelsakademie

3941 Favoritenstraße 52 1040 t Hotel

4122 Fischhof 3 1010 t t Kleidungsgeschäft,
business center

4145 Fleischmarkt 24 1010 t t Hotel, restaurant

4173 Florianigasse 16 1080 t t Rechtsanwalt, FPÖ,
Aktionsgemeinschaft
unabhängiger, architekt

4181 Florianigasse 24 1080 t t Hilfswerk, architekt,
Immobilien, ingenieur

4283 Frankenberggass
e

11 1040 t Schmuckmanufaktur

4411 Franzensgasse 4 1050 t t Esoterik

4448 Freyung 4 1010 t t t Friseur, Beauty, restaurant,
Auktionshaus, events

4451 Freyung 6a 1010 t t Kirche, kirche Museum

4468 Friedrich-Engels-
Platz

21 1200 t t t Schuhgeschäft,
schuhservice, friseur,
installateur

4490 Friedrichstraße 10 1010 t t t Immobilien, erste Stiftung,
art collection, reisebüro,
Möbel geschäft, Verlag

5115 Gonzagagasse 1 1010 t Arzt, Consulting, Logistik,
rechtsanwalt,
Eventmanagement,
Werbeagentur, Design,
wirkwaren und
Strickwaren

5169 Graben 7 1010 t Apotheke,
Kleidungsgeschäft,
Kosmetikgeschäft,

5395 Große Pfarrgasse 2 1020 t t Restaurant

5503 Große
Stadtgutgasse

31 1020 t t Hotel, restaurant

5520 Grünangergasse 6 1010 t t t Galerie, Schmuckgeschäft,

5751 Gumpendorfer 9 1060 t t t t t Restaurant, bar,institut

xlv

Annex

Straße Kultur Konzepte, Gemüse
groß Händler

5929 Hahngasse 2 1090 t Universität

6594 Herrengasse 13 1010 t t Außenministerium,
Kunstraum
Niederösterreich

6605 Herrengasse 7 1010 t Bundesinnenministerium

6731 Himmelpfortgass
e

4 1010 t t Bundeskanzleramt
Finanzen Archiv,
Bundesfinanzministerium
Bibliothek

6808 Hofenedergasse 3 1020 t t Rechtsanwalt,
sicherheitstechnik, city
wheel

6937 Hollandstraße 15 1020 t t t t Restaurant, apotheke,
Werbeagentur

6985 Hornbostelgasse 16-18 1060 t t Ingenieurbüro, grafiker

7267 Johann-Böhm-
Platz

1 1020 t t t t Österreichischer
Gewerkschaftsbund, bfi,
EDV, post, bank, Verlag

7433 Josefsplatz 5 1010 t t Antiquitäten

7502 Josefstädter
Straße

7 1080 t t Friseur, Consulting,
Kleidungsgeschäft

7573 Judenplatz 8 1010 t t t Museum, kaffee,
Bibliothek, Archiv

7649 Kaiserstraße 26 1070 t Psychotherapie, edv

7896 Karlsplatz 5 1010 t Kunst museum

7929 Kärntner Ring 42190 1010 t t t Shopping center,
Rechtsanwalt, consulting,
Steuerberater,
Versicherungen, Film
Produktion,

7947 Kärntner Straße 21-23 1010 t t t t Kaffee, Kleidungsgeschäft,
Kreditkarten firma,
Immobilienfirma,
consulting

8214 Kirchengasse 1 1070 t t t Kleidungsgeschäft, Hotel,
rechtsanwalt, Consulting

8251 Kirchengasse 44 1070 t t t Kaffee, möbelgeschäft

xlvi

Annex

8637 Kohlmarkt 11 1010 t t t t Zahnarzt, rechtsanwalt,
Atelier, Kleidungsgeschäft,
apotheke,
schmuckgeschäft,
parfümerie

8702 Kollergasse 14 1030 t Holzgroßhandel

9167 Lammgasse 8 1080 t t Universitäts Institut

9362 Landstraßer
Hauptstraße

8 1030 t t t Arzt, notar, möbelgeschäft,
elektronikgeschäft

9397 Lange Gasse 25 1080 t t t Schneiderei, restaurant

9480 Lassallestraße 7b 1020 t Edv, Consulting, und
Schinnerl buero,
marketing, M and A

9514 Laudongasse 26 1080 t t t Parkett geschäft,
physiotherapeut,
spiegelgeschäft

9564 Laudongasse 8 1080 t t Hotel, restaurant

9792 Leopold-Rister-
Gasse

5 1050 t t Beauty, Consulting, Arzt

10411 Linke Wienzeile 102 1060 t t t Restaurants,
Beratungszentrum,
Kulturzentrum

10548 Lothringerstraße 16 1030 t t Rechtsanwalt, consulting,
Finanzberatung,,

10608 Löwengasse 37 1030 t t Second hand geschäft,
Kleidungsgeschäft, bäcker,
friseur

10988 Margaretenstraß
e

33 1040 t t Möbelgeschäft

11006 Margaretenstraß
e

52 1040 t t t t Architekt, Restaurant,
Kleidungsgeschäft

11118 Mariahilfer
Straße

111 1060 t Kleidungsgeschäft

11123 Mariahilfer
Straße

117 1060 t t t Restaurant, beauty,
Kleidungsgeschäft, arzt,
psychotherapie, consulting

11146 Mariahilfer
Straße

22 1070 t t t t t Restaurant,
Kleidungsgeschäft, Technik
geschäft, Bank, militärische
schule, militärisches
Immobilien Management
Zentrum

xlvii

Annex

11160 Mariahilfer
Straße

4 1070 t t t Kleidungsgeschäft, Medien
firma, cortical.io

11165 Mariahilfer
Straße

49 1060 t Kleidungsgeschäft,
werkzeuggeschäft,,
Kosmetikgeschäft, Sex
geschäft

11193 Mariahilfer
Straße

76 1070 t t t Rechtsanwalt,
Kleidungsgeschäfte,
orthopädie

11540 Messeplatz 1 1020 t Messe Wien

11658 Minoritenplatz 3 1010 t t Bildungsministerium

11692 Mittersteig 13 1040 t Architekt, IT, Großküche,
Sachverständiger

12125 Naglergasse 25 1010 t Stahlgroßhandel,
Badutensilien geschäft,
Filmproduktion

12283 Neubaugasse 38 1070 t t Theater, Tanzstudio,
kaffeemaschinen Vertrieb

12289 Neubaugasse 43 1070 t t Fortbildung,
Finanzberatung, zeitarbeit,
Consulting, reisen, edv,
rechtsanwalt

12391 Neulinggasse 29 1030 t t Botschaft Elfenbeinküste,
Consulting, restaurant

12424 Neustiftgasse 101 1070 t t Kaffee, Reisebüro

12438 Neustiftgasse 115a 1070 t t Verlag, PR Agentur,
erneuerbare
energien,Ingenieur

12472 Neustiftgasse 23 1070 t t t Eisgeschäft,
Kleidungsgeschäft, Tier
Erziehung

12656 Nordbergstraße 6 1090 t t Physiotherapie, arzt,
restaurant

12948 Obere
Donaustraße

12 1020 t t t t Hundertwasser
Geburtstags, friseur,
gaststätte

13126 Opernring 2 1010 t t t Opa, restaurant, Bücher
und musik geschäft

13233 Paniglgasse 14 1040 t Restaurant

13247 Pannaschgasse 6 1050 t t Bibliothek

xlviii

Annex

13495 Petersplatz 7 1010 t Bank

13681 Plößlgasse 4 1040 t t Sprachreisen

13777 Postgasse 19 1010 t t Arzt, Garage

13833 Praterstraße 14 1020 t t t Kleidungsgeschäft,
Büchergeschäft,
elterntreff.

13939 Prinz-Eugen-
Straße

16 1040 t t t Botschaft San Marino,
Steuerberatung ärzte

14004 Rabengasse 3 1030 t t Theater, spö

14022 Radetzkyplatz 2 1030 t t Restaurant, Zahnarzt

14026 Radetzkystraße 1 1030 t t Berufsrettung

14037 Radetzkystraße 2 1030 t t t t Gesundheitsministerium,
am bäcker, friseur,
restaurant, kindergarten

14049 Radetzkystraße 3 1030 t t t Gaststätte, bäckerei

14247 Rathausstraße 11 1010 t t t Restaurant, Cafe,
rechtsanwalt, Consulting,
Steuerberater, edv

14526 Reisnerstraße 40 1030 t Rechtsanwälte, consulting,
sport, Inkasso, mode

14580 Rembrandtstraß
e

5 1020 t

14610 Rennweg 16 1030 t t Hotel, restaurant

14644 Rennweg 51 1030 t t Hotel, restaurant, bar

14700 Resselgasse 4 1040 t Universität

14958 Rotenkreuzgasse 11 1020 t

14977 Rotenlöwengass
e

19 1090 t t Steuerberatung,
consulting,
medizinprodukte

15129 Rudolfsplatz 2 1010 t t t Bar, sport, werbung,
Immobilien,

15275 Salmgasse 8 1030 t t Ingenieur

15575 Schiffamtsgasse 11 1020 t t t Kunstraum, beauty

15626 Schimmelgasse 42222 1030 t

15825 Schnirchgasse 14 1030 t Gesundheitsdienst stadt
wien

xlix

Annex

16040 Schönburgstraße 42285 1040 t Botschaft belgien

16045 Schönlaterngass
e

11 1010 t t t Gaststätte, bar, arzt,
Immobilien,
gebäudereinigung

16096 Schottenfeldgass
e

42096 1070 t t t Kaffee, Kleidungsgeschäft,
architekt, arzt, Consulting

16189 Schottenring 16 1010 t Business center

16190 Schottenring 17 1010 t t t t t Versicherung,
eisenwarengeschäft,
münzgeschäft, bank,
Honorarkonsulat von
rumänien, Consulting,
Finanzberatung,

16233 Schreygasse 14 1020 t

16273 Schrotzbergstraß
e

6 1020 t t Beauty, Eventmanagement

16304 Schubertring 11 1010 t t t t Hotel, Bäcker, Arzt,
Steuerberater, investment
Beratung,

16462 Schwarzenbergpl
atz

16 1010 t t t t Rechtsanwalt, französische
OSZE, französische UN,
Privat Bank, Arzt, super
markt

16508 Schwarzspanierst
raße

13 1090 t t t t Albert-schweitzer-haus

16561 Schwindgasse 14 1040 t t t Kroatischer Kulturverein,
Ingenieurbüro,
Eventmanagement

16606 Sechskrügelgasse 2 1030 t t t t Growshop,
Kleidungsgeschäft, kaffee,
sportgeschäft,
Pflanzengeschäft, Beauty,
apotheke

16687 Seidengasse 27 1070 t

16709 Seidengasse 9 1070 t Verlag, Dachverband
soziale Einrichtungen,
Consulting, Krankenhaus
bedarf, Logistik, customer
management, hotel
grosshandel, EDV

16768 Seilerstätte 11 1010 t t Aluminium Großhandel,
Verlag, arzt

l

Annex

16825 Sensengasse 3 1090 t t Ärzte Zentrum, Bibliothek

17050 Sigmundsgasse 16 1070 t t Immobilien,
Schmuckdesign

17064 Simon-Denk-
Gasse

42159 1090 t t Bibliothek

17094 Singerstraße 27 1010 t Rechtsanwalt, Beauty,
Consulting,

17193 Sonnenfelsgasse 19 1010 t t Österreichische Akademie
der Wissenschaft, Institut
für
Informationsverarbeitung,
Publikums Forschung,
Seelsorgezentrum

17952 Stubenring 1 1010 t t Bundesministerium für
Wissenschaft Forschung
und Wirtschaft,
Bundesministerium für
Land und Forstwirtschaft

18020 Stumpergasse 65 1060 t t Bank

18179 Taborstraße 81 1020 t t t Personalvermittlung

18304 Theobaldgasse 9 1060 t t t Schmuckgeschäft,
Kleidungsgeschäft, bar

18643 Türkenstraße 8 1090 t Architekt, psychologe,
Kommunikation

18959 Veithgasse 3 1030 t t Serbische orthodoxe Kirche

18961 Veithgasse 5 1030 t t Australische Botschaft

19446 Währinger
Straße

68 1090 t t t Restaurant,
elektrofachgeschäft

19478 Walfischgasse 13 1010 t t Tüv österreich

19498 Wallensteinplatz 8 1200 t t t Konzerte, bar, Bank, post

19610 Wallnerstraße 3 1010 t t Kleidungsgeschäft,
rechtsanwalt, Consulting,
Steuerberater, friseur,
vermögensberatung

19696 Wassergasse 2 1030 t t Psychotherapie

19765 Webgasse 43 1060 t t t Kaffeegeschäft, arzt,
sportstudio,
Psychotherapie

20126 Widerhofergasse 3 1090 t t Steuerberatung

li

Annex

20139 Wiedner Gürtel 16 1040 t Geschlossenes lokal

20253 Wiedner
Hauptstraße

46 1040 t Rechtsanwalt, Foto Büro

20448 Wimmergasse 7 1050 t t Hausverwaltung

20468 Windmühlgasse 15 1060 t t t Kleidungsgeschäft,
blumengeschäft,
psychotherapie

20481 Windmühlgasse 32 1060 t t t t Restaurant, bar, Ingenieur,
Künstlermanagement

20838 Ziegelofengasse 37 1050 t t Restaurant, Filmemacher,
Ausstellungs utensilien

20987 Zirkusgasse 28 1020 t t Autowerkstatt

21021 Zollergasse 13 1070 t Sport, Design, Fotografie,
neos

21049 Zollergasse 5 1070 t t t Café, Bar, Marketing

21132 Lindengasse 22 1070 t t t Geschäft,
Kleidungsgeschäft,
Finanzberatung,

21193 Schönbrunner
Straße

47 1050 t t Werbeagentur, Maler

21218 Webgasse 6 1060 t t Beauty

lii

Annex

Lebenslauf
Name:

Geburtsort:

Alexander Czech B.Sc.

Erfurt

Bildungsweg

10/2011 - 10/2015

10/2006 - 9/2011

Kartographie und Geoinformation M.Sc. Universität Wien

Geographie B.Sc. Universität Hamburg

Relevante Berufserfahrung

06/2012 -

10/2008 – 9/2011

1/2011 – 8/2011

11/2009 – 9/2010

Institut für Energiesysteme und Elektrische Antriebe, Technische

Universität Wien, Freier GIS-Analyst / Consultant

Institut für Geographie, Universität Hamburg, Tutor

Cluster of Excellence “Integrated Climate System Analysis and

Prediction, Universität Hamburg, Wissenschaftliche Hilfskraft

Institut für Biologie Universität Hamburg; Wissenschaftliche

Hilfskraft

liii

Ich versichere:

• dass ich die Masterarbeit selbstständig verfasst, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

• dass alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht

veröffentlichten Publikationen entnommen sind, als solche kenntlich gemacht sind.

• dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland (einer Beurteilerin/

einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

• dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Datum Unterschrift

	Table of Contents
	Table of Figures
	Table of Maps
	Table of Tables
	List of Abbreviations
	Abstract
	Kurzfassung
	1. Introduction
	1.1. Aim of the Thesis
	1.2. Research question
	1.3. Structure of Research design

	2. Introduction to Data Mining and Big Data
	2.1. Data Mining
	2.2. Big Data

	3. The Common Crawl Dataset
	3.1. What is Web Crawling
	3.2 The Common Crawl Dataset
	3.3. The Common Crawl Dataset Index
	3.4 Downloading the Common Crawl Dataset

	4. OpenStreetMap Geocoder
	4.1. OpenStreetMap
	4.2. Data Structure and Source
	4.3. Extracting Addresses
	4.4. Write Addresses to a Database

	5. Common Crawl Database Transfer
	5.1. Folder and file structure
	5.2. Subdivide files into individual HTML files

	6. HTML Tag Stripper
	6.1. Find Vienna
	6.2. Remove HTML Tags

	7. Geotagging
	7.1. Creating an index in PostgreSQL
	7.1.1. Converting a text to a list of stemmed tokens
	7.1.2. Creating a Token Index

	7.2. Create a unique set of Addresses and prepare them for Search Queries
	7.3. Preparing the SQL Statement for Geotagging
	7.4. Joining Addresses with HTML Documents
	7.5. Discussion

	8. Finding Links
	8.1. Preparation
	8.1. Link Extraction
	8.2. Geotagging the found linked websites
	8.3. Discussion

	9. The Vector Space Model
	9.1. The Document Vector
	9.2. Term frequency Inverse Document Frequency

	10. Categories for classification
	10.1. Daseinsgrundfunktionen
	10.2. Classes for addresses

	11. Co-occurrence Groups
	11.1. Introduction Natural Language Processing
	11.2. Part-of-speech Tagging
	11.3. POS tagging Wikipedia
	11.4. Co-occurrence
	11.5. Generating Co-occurrence query expansion groups from Wikipedia

	12. Address Classification
	12.1. Creating the Vector Space
	12.1.1. Creating a unique set of HTML documents
	12.1.2. Creating the HTML documents Vector Space
	12.1.3. Creating the Wikipedia Vector Space
	12.1.4. Combined Vector Space

	12.2. Calculating the idf-tf vectors
	12.2.1. Calculating Inverse Document Frequency per Term
	12.2.2. Calculating the Term Frequency-Inverse Document Frequency Vector for HTML Files
	12.2.3. Calculating the tf-idf Vector for Wikipedia Co-Occurrences groups and search terms
	12.2.4. Cosine Similarity Calculations

	12.3. Address Classification

	13. Mapping
	13.1. Selecting and Mapping a Control Group
	13.2. Comparing the Control Group to Vector Classification

	14. Conclusion
	15. References
	15.1. Scientific References
	15.2. Programming Library References and Technical Documentations
	15.3. Websites

	Annex
	Source Code
	Threading Example
	DBconnector
	OSM Parser
	Disassemble HTML
	SetVienna
	Tag Stripper
	Geo Tagging
	Find Links
	Wikipedia POS Tagging
	Co-occurrence Group Generation
	Inverse Document Frequency
	Wikipedia Vector Space
	HTML Vector Space
	Combined Vector Space
	HTML Tokenization
	TFIDF Vector HTML Documents
	TFIDF Vector for Search Term and Co-ccurence Groups
	Cosine Similarity
	Address Classification

	Database Schema
	Mapping Results
	Lebenslauf

