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Abstract 

 

The validation of individual test scores in the Rasch model (1-PL model) is of primary 

importance, but the decision which person fit index one should choose is still not entirely clear, 

despite the rich body of literature on person fit including numerous simulation studies. In this 

work a simulation study was conducted in order to compare five well known person fit indices 

in terms of Specificity and Sensitivity, under different testing conditions. This study further 

analyzed the decrease in Specificity of the Andersen Likelihood-Ratio test, with the median of 

the raw score as an internal criterion, in case of person misfit and the positive effect of the 

removal of suspicious persons with the index C*. The three non-parametric indices Ht, C*, and 

U3 performed slightly better than the parametric indices OUTFIT and INFIT. All indices 

performed better with a higher number of persons and a higher number of items. Ht, OUFIT, 

and INFIT show huge deviations between nominal and actual Specificity levels. The results 

further showed that person misfit has a huge negative impact on the Specificity of the Andersen 

Likelihood-Ratio test. However, the removal of suspicious persons with C* worked quite good 

and the nominal Specificity can almost be respected if the Specificity level of C* was set to 

0.95. 

 

Keywords: Rasch model, Andersen’s Likelihood-Ratio test, Specificity, Sensitivity, power, 

simulation study, person fit, item response theory, aberrant responding 
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Abstract – Deutsch 

 

Die Validierung individueller Testergebnisse im Rasch-Modell (1-PL Modell) ist von großer 

Wichtigkeit. Obschon es viele wissenschaftliche Arbeiten, insbesondere Simulationsstudien, 

zu diesem Thema gibt, ist es nicht eindeutig welchen Personen-Fit Index man zur Validierung 

heranziehen soll. Aus diesem Grund wurde eine Simulationsstudie durchgeführt in der fünf 

bekannte Personen-Fit Indexe anhand ihrer Spezifizität und ihrer Sensitivität in verschiedenen 

Szenarien miteinander verglichen wurden. Außerdem wurde in dieser Studie die Verringerung 

der Spezifizität des Likelihood-Ratio-Test nach Andersen, mit dem Median des Rohwerts als 

internes Teilungskriterium, bei Vorliegen von Personen-Misfit analysiert. Zusätzlich wurde der 

positive Effekt des Entfernens von verdächtigen Personen mit dem Index C* auf die Spezifizität 

des Likelihood-Ratio-Tests nach Andersen untersucht. Die drei nicht parametrischen Indexe 

Ht, C* und U3 schnitten marginal besser ab als die parametrischen Indexe OUTFIT und INFIT. 

Alle Indexe schnitten mit einer größeren Anzahl an Personen und einer größeren Anzahl an 

Items besser ab. Personen-Misfit hatte einen starken negativen Einfluss auf die Spezifizität 

des Likelihood-Ratio-Test nach Andersen. Das Entfernen von verdächtigen Personen mit dem 

Index C* war sehr effektiv und die nominale Spezifizität konnte beinahe eingehalten werden 

wenn für die Spezifizität des Index C* 0.95 gewählt wurde. 

 

Schlüsselwörter: Rasch-Modell, Likelihood-Ratio-Test nach Andersen, Spezifizität, 

Sensitivität, Teststärke, Simulationsstudie, Personen-Fit, Probabilistische Testtheorie 
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I. Introduction 

Psychometric tests are used in a large array of fields and for various reasons, because they 

provide some sort of guidance in the assessment of certain characteristics. A test can help in 

the estimation of some person characteristic (e.g. cognitive skills) or it can support the 

estimation of the suitability for a specific task, position, job, school or university. Every 

performance test has a certain way of interpreting the answers given by a person, which always 

involves some sort of numerical quantification. The biggest class of performance test consists 

of items, which can be questions or tasks, where the response of a person on each item is 

quantified. If this quantification is dichotomous a certain response (e.g. “The correct one”) is 

quantified with 1 and all other possible responses are quantified with 0. In the case of an item 

which has eight possible answers one of which is correct and the task to select exactly one of 

these eight answers, selecting the correct item yields a 1 and selecting any of the other seven 

answers leads to a 0. In the case of a dichotomous quantification we get a response vector the 

size of the number of items for each person consisting of one´s and zero´s1. It may or may not 

be of interest which particular items are answered correctly, depending on the model frame 

work (Theoretical part). 

 

Each psychometric test claims that there is some sort of correlation between the response 

vector of a person and the person characteristic of interest. However there are always a 

multitude of variables who influence the response behavior of a test. A math test in school for 

instance is seen as a useful tool to assess the mathematical skills of the students in some 

particular subject area of mathematics. The performance of a student certainly is influenced 

by his mathematical skills, but it is also influenced by his alertness during the test, his reading 

skills in case of word problems, and his ability to perform under stress, just to name a view. 

Furthermore there are certain behaviors that systematically distort the response vector and if 

undetected lead to wrong assumptions about the characteristic of interest. These behaviors 

include cheating, guessing, and careless responding, distorting behavior, fatigue and a low 

level of motivation. We view those behaviors as different types of person misfit and we have a 

great interest in detecting them. 

 

In this work we try to model certain types of person misfit in the item response theory (latent 

trait theory) framework and compare the performance of five indices in detecting aberrant 

responding persons by conducting a simulation study. The theoretical part describes the 

                                                
1 Since it does occur that no response is given to a certain item, a third possible value beside zero and 
one, indicating a missing response, is of need (e.g. -99). 
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assumptions and properties of the item response theory framework. It further characterizes 

person misfit in more detail and explain how we can recognize it with the help of the Guttman 

scale. Lastly the five person fit indices used in the simulation study are discussed in detail. 

 

The second part of the work describes the structure of the simulation and its scenarios, and 

presents the results. The results are then analyzed and compared with other simulation studies 

in the literature. 

II. Theoretical part 

1. Glossary & Notation 

ALR test Andersen´s Likelihood Ratio test (Andersen, 1973) 

Cumulative 

distribution function 

(CDF) 

A function with values between zero and one which gives the 

probability that a random variable takes a value smaller or equal 

to the input. 

Null hypothesis (H0) 
Assumption(s) about the probabilistic distribution(s) of one or 

more random variables. 

Overfit A (unrealistic) good fit of the data to a certain model. 

P-value 
For a given test statistic, it is the probability that its value or an 

even more extreme value arises, if H0 is true. 

Rasch model 

A psychometric probabilistic model with one item parameter and 

one latent trait parameter for dichotomous data named after the 

Dane Georg Rasch 

Sensitivity The probability to reject the H0, if it is wrong (1 - Type-II-risk). 

Specificity The probability of not rejecting H0, if it is true (1 - Type-I-risk). 

Type-I-error The wrongful rejection of H0. 

Type-II-error The wrongful maintenance of H0. 

Type-I-risk The probability of wrongly rejecting H0. 

Type-II-risk The probability of failing to reject the H0, if it is wrong. 

Underfit A poor fit of the data to a certain model. 

(p – Quantile) 
The smallest value of a random variable where the CDF of that 

value is p; 0<=p<=1 
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I Number of items, {i = 1,…,I} 

N Number of persons, {n = 1,…,N} 

v Latent ability trait of person v. 

i Item difficulty parameter for item i. 

Xnj The response of person n to item i; Xni = 1 is a correct response and Xni = 0 

is an incorrect response 

Xn. The response vector of person n, {Xn1, Xn2,...,XnI} 

X.i The response vector of item i, {X1i, X2i,…,XNi} 

rn The number of correct responses of person n, the sum of the elements of 

Xn., that is. We call this value the raw score of person n. 

pi The number of persons with correct responses on item i, the sum of X.i that 

is. 

rn,m rn,m is the sum of all items where persons n & m both answered correctly. 

 

2. The Rasch model 

The Rasch model is the most prominent model in the item response theory (IRT). The basic 

assumption of IRT is that we cannot observe traits of interest directly. Therefore these traits 

are called latent. What we can do is infer from discrete responses of a person, particularly the 

answers to the items of a test, to the individual characteristic of the latent ability trait of interest 

(e.g. In IRT we cannot measure the ability to memorize visual images directly, but we can test 

how many pictures are recognized correctly and infer to the characteristic of this ability trait.)  

 

In this work we only consider dichotomous IRT models, with only two possible realizations for 

the answer to a given item, namely right or wrong. In these models, for each person the 

response to each individual item is a Bernoulli random variable (1 = correct response, 0 = 

incorrect response). The probability for these random variables is a function of the latent ability 

trait and one or more item characteristics as parameters. 
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In the case of the Rasch model, we have only one item parameter, namely the item difficulty 

parameter. Formula (1) shows the probability function for the random variables2. 

 

𝑃(𝑋𝑛𝑖 = 𝑥𝑛𝑖|𝜉𝑣, 𝜎𝑖) =  
𝑒𝑥𝑛𝑖(𝜉𝑛−𝜎𝑖)

1 + 𝑒(𝜉𝑛−𝜎𝑖)
 (1) 

 

If we want to know the probability that person n answers item i correctly, we plug in 1 for xni 

and get formula (2). We can easily see, that the probability is smaller than 0.5 if the exponent 

of the exponential function is smaller than 0. It is important to note, that a centralization of the 

parameters (i.e. A constant is added or subtracted such that the expected value of the 

parameter is 0.) leads to an easy interpretation of them. 

 

𝑃(+|𝜉𝑛, 𝜎𝑖) =  
𝑒(𝜉𝑛−𝜎𝑖)

1 + 𝑒(𝜉𝑛−𝜎𝑖)
 (2) 

 

If we want to know the probability that person n answers item i incorrectly, we plug in 0 for xni 

and get formula (3). 

 

𝑃(−|𝜉𝑛, 𝜎𝑖) =  
1

1 + 𝑒(𝜉𝑛−𝜎𝑖)
 (3) 

 

Assumptions and Properties 

The Rasch model has important assumptions. If we have a test where the Rasch model holds, 

we can view these assumptions as important properties which allow some auxiliary methods 

of comparison which wouldn’t be valid in the classical test theory. These properties are the 

reason why a tedious construction of a test, where the Rasch model holds, is often worth the 

effort. Let us now have a look at these assumptions: 

 

The Rasch model holds, if and only if all items measure the manifestation of the same latent 

trait (=person parameter) and the probability of a correct response only depends on the latent 

trait beside the item difficulty. That means, that two persons with the same latent trait have the 

                                                
2 The Rasch model can be seen as a log-linear regression for a Bernoulli distributed dependent variable 
and two metric independent variables (item difficulty, person ability). 
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same probability for a correct response on each item. This property is often called one-

dimensionality. 

Furthermore we have so called local stochastic independence for items and persons. That 

means that the answer to an item has no influence on the answering of subsequent items. 

More technical, for any person the partial correlation between the answer on item j and the 

answer on another item k with respect to the person parameter and the item difficulty is zero, 

for every j and k. This property also holds for the persons. The answers of a person k, does 

not influence the answers of another person j. So the partial correlation between the answer 

of person j and the answer of another person k for a certain item with respect to the item 

difficulty and the person parameters is zero, for every j and k. It can be shown that in case of 

local stochastic independence the raw score rn is a sufficient statistic for the person parameter3. 

We can then conclude that two persons have the same person parameter if they both 

answered k out of I items correctly, even though they answered different items correctly. This 

conclusion might be invalid if the test was developed according to the classical test theory! 

 

A very important property of a test where the Rasch model holds is the so called specific 

objectivity. This property says that the ranking order of the items according to their difficulty is 

always the same, for each possible population subgroup (e.g. Item j is harder than item k for 

every person even though both are easy for someone with a high person parameter and both 

are hard for someone with a low person parameter.) Furthermore the relative difference in 

difficulty between two items is the same in each possible population subgroup. If this property 

doesn´t hold for an item, we have a so called differential item functioning (DIF), a different 

relative difficulty in two subgroups that is. If there is no DIF for the items of a test, a comparison 

of the parameter of two persons is valid, even though they solved different items or even 

worked on different items. They must not even answer the same number of items. Furthermore 

the difficulty parameters of different items can be compared, even though they were estimated 

in a different sample, with different persons answering them that is. The estimation of difficulty 

and person parameters is therefore sample-independent.  

 

A more detailed analyses and proofs of these properties can be found in Fischer´s work 

(Fischer, 1974). 

                                                
3 A statistic is sufficient in respect to a certain parameter if it contains all important information for a 
parameter estimation. E.g. If I want to estimate the probability, that a coin lands on its head I just need 
to know how often it showed tail in my sample (and of course the number of throws) and not the exact 
sequence of throws. More general: The sum of i.i.d Bernoulli distributed random variables is a sufficient 
statistic for their parameter, if you know the sample size. 
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Item fit & Andersen´s Likelihood-Ratio test 

So when does the Rasch model apply for a test with I items? It applies if the formula (1) and 

all assumptions are correct for each and every item. The goodness of fit for individual items is 

generally called “item fit”. A global test is the (Andersen, 1973). To test whether the items of a 

test conform the Rasch model or not, the Andersen Likelihood-Ratio (ALR) test for two or more 

groups is often used. The ALR test works in the following way: The sample is split into groups 

according to an external criterion (e.g. gender) or an internal criterion (e.g. the raw score of 

each person) and it is investigated how much we can enlarge the Likelihood of our data if we 

allow for different item difficulty parameters in the subgroups. If the assumption of specific 

objectivity is violated, these improvement will be higher as in the case of one or more DIF. A 

more technical and detailed description of the ALR test is omitted in this work and can for 

example be found in Andersen´s paper (Andersen, 1973). 

3. Person fit 

Another basic assumption in the Rasch model, not explicitly mentioned in the last chapter is 

that a person tries his best to solve each item. If the behavior of a person violates one or more 

assumptions of the Rasch model, we call it “person misfit”. This among others includes, 

cheating and distorting, inattentive or careless behavior. In order to quantify, specify and 

measure the type and magnitude of person misfit we have to introduce the Guttman scale 

(Mokken, 1971), which is named after the Israeli mathematician Louis Guttman.  

 

Instead of a continuous probabilistic model let us now consider a simple deterministic 

approach. A person answers an item correctly if his person parameter is higher or equal a 

certain value and answers it incorrectly if his person parameter is lower than that value. In this 

deterministic model we know that a person with a raw score of k answered the k easiest items 

correct, and the I-k hardest items wrong. Let us now without any loss of generality rank the 

items according to their difficulty parameters, with 1 being the easiest and I being the most 

difficult item. Given a raw score of k, the perfect Guttman scale then corresponds to a correct 

response to the items 1 to k and an incorrect response to the items k+1 to I. If a pool of items 

follows the perfect Guttman scale and we know that a person answered item k wrong, we can 

conclude that this person also answered the items k+1 to I wrong. 
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Let us denote the response vector of a person the Guttman vector of that person. For a four 

item test we have 2^4=16 possible response Guttman vectors: 

0 0 0 0*, 0 0 0 1°, 0 0 1 0, 0 0 1 1°, 0 1 0 0, 0 1 0 1, 0 1 1 0, 0 1 1 1°,  

1 0 0 0*, 1 0 0 1, 1 0 1 0, 1 0 1 1, 1 1 0 0*, 1 1 0 1, 1 1 1 0*, 1 1 1 1* 

Five of these 16 vectors (labeled with *) follow the perfect Guttman scale. Another three 

(labeled with °) follow the reversed Guttman scale. 

 

In the case of the probabilistic Rasch model we obviously cannot expect the response vector 

of a person to always correspond with the perfekt Guttman scale. That being sad, given a raw 

score of k, the perfect Guttman scale is the most likely Guttman vector. Let us for example 

take a Rasch conform test with 10 items and a person with a raw score of 6. Let us take a look 

at six possible Guttman vectors: 

 

V1 = 1 1 1 1 1 1 0 0 0 0* V2 = 1 1 1 1 1 0 1 0 0 0 V3 = 1 1 1 1 0 0 1 1 0 0 

V4 = 1 1 1 0 1 0 1 0 1 0 V5 = 1 0 0 1 1 1 0 0 1 1 V6 = 0 0 0 0 1 1 1 1 1 1° 

 

It is easy to verify with the help of the formulas (2), and (3) and the property of local stochastic 

independence, that: 

 

P(V1) > P(V2) > P(V3) > P (V4) > P (V5) > > P (V6)     ..…. with P standing for Probability. 

 

Without any loss of generality we can conclude that in the Rasch model, “strong” deviations 

from the perfect Guttman scale are unlikely. If we want to test if the Rasch model holds (itemfit 

as well as personfit) we can therefore look at the Guttmann vectors of the persons and 

compare them to the perfect Guttman scale. The greater the difference between the actual 

person response vectors and the perfekt Guttman scale, the less likely the results. If the actual 

values are very close to the perfect Guttman scale, we label them as an “overfit”. On the other 

hand we label strong deviations from the perfect Guttman scale as an “underfit”. If someone 

talks about person misfit he usually means a model underfit. In this work however overfit and 

underfit are both seen as a potential model misfit, and it should always be clear of we talk 

about the former or the later. The non-parametric C* and U3 presented in the next chapter 

measure the magnitude of deviation from the perfect Guttman scale on a continuous scale. 
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4. Person Fit Indices 

C* and U3 

C* and U3 (Flier, 1980 and 1982) are non-parametric person fit indices. Non-parametric means 

that no model parameters are estimated (item difficulty and person parameter in our case). C* 

was developed by Harnisch & Linn (1981) and U3 was developed by Flier (1982). They belong 

to the family of group-based Guttmann error statistics (Meijer & Sijtsma, 2001). Each index in 

this family satisfies the general equation (4), for some weight wi. As we can see in formula (5) 

C* uses the proportion of persons which gave correct answers to item i as the weight for item 

i. U3 uses a more complicated weight, which includes the natural logarithm (formula (6)).  

 

𝐺𝑛 =  
∑ 𝑤𝑖

𝑟𝑛
𝑖=1 − ∑ 𝑋𝑛,𝑖 ∗ 𝑤𝑖

𝐼
𝑖=1

∑ 𝑤𝑖
𝑟𝑛
𝑖=1 − ∑ 𝑤𝑖

𝐼
𝑖=𝐼−𝑟𝑛+1

 (4) 

 

𝐶𝑛
∗ =  

∑
𝑝𝑖

𝑁
𝑟𝑛
𝑖=1 − ∑ 𝑋𝑛,𝑖 ∗

𝑝𝑖

𝑁
𝐼
𝑖=1

∑
𝑝𝑖

𝑁
𝑟𝑛
𝑖=1 − ∑

𝑝𝑖

𝑁
𝐼
𝑖=𝐼−𝑟𝑛+1

 (5) 

 

𝑈3𝑛 =  

∑ ln (

𝑝𝑖

𝑁

1 −
𝑝𝑖

𝑁

)
𝑟𝑛
𝑖=1 − ∑ 𝑋𝑛,𝑖 ∗ ln (

𝑝𝑖

𝑁

1 −
𝑝𝑖

𝑁

)𝐼
𝑖=1

∑ ln (

𝑝𝑖

𝑁
1 −

𝑝𝑖

𝑁

)𝑟𝑛
𝑖=1 − ∑ ln (

𝑝𝑖

𝑁
1 −

𝑝𝑖

𝑁

)𝐼
𝑖=𝐼−𝑟𝑛+1

 (6) 

 

Both indices take values between 0 and 1. 0 in case of the perfect Guttman score, 1 in case 

of the reversed Guttman score. The higher the value of C* and U3, the stronger the model 

underfit. 

Ht 

Another non-parametric person fit index was proposed by Sijtsma is Ht (Sijtsma, 1986). Let us 

rank persons (increasingly) according to their total score rn, formula (7) then gives the index 

value for person n. This value is the sum of the covariances between person n and all other 

persons who processed the test, normed by the sum of the maximum of the covariances.  
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It therefore can take values between minus infinity and 1, although negative values can only 

be obtained by an absurdly high level of person underfit resulting in negative covariances. The 

higher the value of Ht the stronger the model overfit. It has been shown, that Ht can take the 

value zero even in case of a non-perfect Guttman scale vector and therefore it does not belong 

to the category of group-based Guttmann error statistics, since this statistic cannot be written 

in the form of equation (4) (Sijtsma, 1986). 

 

𝐻𝑛
𝑇 =  

∑ (
𝑟𝑛,𝑚

𝐼
−

𝑠𝑛 ∗ 𝑠𝑚 
𝐼2 )𝑛≠m

∑ (
𝑟𝑚

𝐼
−

𝑠𝑛 ∗ 𝑠𝑚 
𝐼2 )𝑛>𝑚 + ∑ (

𝑟𝑛

𝐼
−

𝑠𝑛 ∗ 𝑠𝑚 
𝐼2 )𝑛<𝑚

 (7) 

 

OUTFIT & INFIT 

OUTFIT & INFIT are parametric indices, since they involve an estimation of the item difficulty 

parameters and the person ability parameters. Both indices are based on the residuals. The 

residual for a person and an items is the difference between the observed and the expected 

response. Formula (8) shows how the standardized residual for person n and item i is 

computed. Based on these residuals Wright & Masters proposed the OUTFIT mean squared 

error (formula (9)) and the INFIT mean squared error (formula (10)) (Wright & Masters, 1990). 

The former is the average of the sum of the squared residuals (i. e. unweighted), whereas the 

latter weights the sum of the squared residuals by the variance of the response. The index 

values from the formulas (9) & (10) can be standardized with the Wilson-Hilferty transformation. 

With this transformation OUTFIT and INFIT asymptotically follow a student t distributed 

variable with infinite degrees of freedom (which is equivalent to a normal distributed variable 

with mean zero and variance one), if the Rasch model holds. A detailed description of this 

transformation as well as the computation of the expected values and the variances are given 

in Wright & Masters work (Wright & Masters, 1990).  

 

𝑧𝑛𝑖 =  
(𝑋𝑛𝑖 − Ε(𝑋𝑛𝑖))

√𝑉𝑎𝑟(𝑋𝑛𝑖)
 (8) 

 

𝑂𝑈𝑇𝐹𝐼𝑇𝑛 =  
∑ 𝑧𝑛𝑖

2𝐼
𝑖=1

𝑁
 (9) 
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𝐼𝑁𝐹𝐼𝑇𝑛 =  
∑ 𝑉𝑎𝑟(𝑋𝑛𝑖) ∗ 𝑧𝑛𝑖

2𝐼
𝑖=1

∑ 𝑉𝑎𝑟(𝑋𝑛𝑖)
𝐼
𝑖=1

 (10) 

 

High (positive) values of OUTFIT and INFIT correspond to a model underfit, low (negative) 

values correspond to a model overfit. 

III. Simulation study 

1. Aim of the study 

Which index do I take, if I want to analyze potential person misfit. The answer is not entirely 

clear if we look at past studies in this field. The two main issues regarding past research are 

the method of comparison between different indices and the way person misfit was 

operationalized. This study has the purpose to shed (some more) light on the detection skills 

of certain indices for person misfit in the Rasch model. It also takes a close look at the influence 

of certain parameters (e.g. number of items, number of persons4). It further analyses the need 

for good indices in a specific problem and the support they can offer in this case.  

2. Design 

General style of programming 

As a programming language R was chosen (R Development Core Team, 2008). It is the most 

used language in the scientific community when it comes to statistics and psychometrics and 

it is completely open source, so everyone can use it for free and therefore reproduce results 

rather easily. Furthermore there exist already written functions (in the form of packages) 

regarding person fit and the Rasch model which can be used and extended for our purpose. 

 

The complete R code including all non-basic functions, the simulation design, the code for the 

analysis (tables and graphs) and the exact execution of the simulation are available from the 

                                                
4 In the following chapter real life concepts like objects and phenomena (e.g. person, test, item, cheating) 
are used as a placeholder for the underlying statistical and mathematical operationalization of the certain 
real life concept which ultimately is just a certain sequence of binary code. The context should always 
make it clear if a word is used in the common sense or in the specific meaning it has in this simulation 
study. 
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author upon request. Furthermore exact reproducibility is established since binary matrices 

are generated and stored in a first step, loaded and analyzed later on. 

Distribution of model parameters 

The item difficulty parameters were chosen nonrandom and equally spaced over the interval  

[-2.5, 2.5]. For 25 Items we therefore get the following difficulties (rounded to three digits): 

[-2.500, -2.292, -2.083, -1.875, -1.667, -1.458, -1.250, -1.042, -0.083, -0.625, -0.417, -0.208, 

0, 0.208, 0.417, 0.625, 0.083, 1.042, 1.250, 1.458, 1.667, 1.875, 2.083, 2.292, 2.500]. With 

this sequence of item difficulty parameters a non-adaptive performance test with increasing 

item difficulty is modeled later on. 

 

The latent ability of persons was chosen randomly according to a truncated normal distribution 

over the interval [-3, 3] with a mean of 0 and a standard deviation of 1.5. 

3. Scenarios 

Four parameters were varied to produce different scenarios. The number of items was either 

25 or 50, the number of persons was either 100 or 500 and the percentage of persons who 

responded aberrantly was either 5% or 30%. Furthermore eight different types of aberrant 

response behaviors were generated. The primary focus in developing those types of person 

misfit was to model real-life misfit as realistically as possible. Guessing, Cheating 1, Cheating 

2, Careless produce a model underfit. Distorting 1 and Distorting 2 produce a model overfit. 

Fatigue 1 and Fatigue 2 produce small model deviations which are neither exclusively an 

overfit nor an underfit. Therefore they cannot be detected with Gutmann error sensitive indices.  

 

Aberrant response scenarios where generated in the following way. In a first step for each 

person and each item the probability of a correct response was computed according to the 

Rasch model and the corresponding person ability and item difficulty. In a second step persons 

were chosen randomly (not necessarily with equal probability) and the respective probability 

of a correct response to a certain item was altered according to certain rules described by the 

type of aberrant response. More precisely, the selection procedure followed a random sample 

without replacement with the size as a product of the number of persons and the portion of 

aberrant response (e.g. 500*0.3=150) and certain ability depending weights for the persons. 

In the final step response vectors where generated with the realization of (number of items) 

independent Bernoulli distributed random variables with the probability of a person giving a 

correct response generated in the first two steps. 
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Guessing 

There is no reason to suspect that the ability of a person has a high impact on whether he 

guesses if he doesn´t know the answer to an item or not. Therefore persons where chosen 

randomly with equal probability. The probabilities for responding correctly were altered in a 

way which models a multiple choice test which has exactly five wrong and one right answer to 

each item, namely each probability less than 1/6 was replaced by 1/6. Therefore even persons 

with a low ability parameter had a one in six chance to answer the most difficult items right. 

Cheating 1 

If a person has a low ability he/she has in general more to gain from cheating as someone with 

a higher ability. Therefore in this scenario, the lower the ability of a person the higher the 

probability of getting chosen as a cheater. More specifically, the probability of getting chosen 

decreased in a linear fashion from the person with the lowest ability to the person with the 

highest ability. In the case of 100 persons that means that the person with the lowest ability is 

twice as likely as the person with the second lowest, three times as likely as the person with 

the third lowest and 100 times as likely as the person with the highest ability to get chosen as 

a cheater.  

 

In past studies cheating behavior was often modeled by a deterministic imputation of correct 

responses to some items (e.g. Karabatsos, 2003). Since the act of cheating (e.g. looking stuff 

up in the internet, copying from the seatmate) seldom guarantees to produce the right answer 

to an item a probabilistic model was chosen. For each cheating person and each item 

probabilities where generated according to a truncated normal distribution on the interval [0.6, 

1] with a mean of 0.8 and a standard deviation of 0.1. Whenever these probabilities were 

greater than their respective probabilities computed according to the Rasch model, the latter 

were replaced by the former. This procedure of choosing the maximum of those two 

probabilities is necessary to realistically model real life cheating behavior since, we can 

assume that no one cheats on items where he/she knows the answer. 

Cheating 2 

This scenario differs from Cheating 1 only in the parameters of the truncated normal 

distribution. The interval now was [0.8, 1], the mean 0.9 and the standard deviation 0.1. The 

act of cheating therefore increases the probability of a correct response even stronger as in 

Cheating 1.  
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Careless 

Just like in Guessing there is good reason to assume that carless behavior is fairly independent 

of the latent ability5. Therefore persons where chosen randomly with equal probability. The 

Rasch model has the underlying assumption that a person tries his best to perform as good as 

possible on the test. Sloppy calculations on a power achievement test for math skills for 

instance lead to an underestimation of the latent math trait of interest. In this scenario the 

probabilities for correctly responding to the items were reduced by 20% (i.e. each probability 

was multiplied by 0.8). 

Distorting 1 

If someone actively tries to distort the estimation of the latent ability downward without drawing 

suspicions he most likely gives correct answers to the easiest items and intentional wrong 

answers to items with medium difficulty. Here difficulty is meant as a subjective measure for 

that particular person. Mathematically this subjective estimation of an items difficulty is the 

difference between the latent trait of the person and the item difficulty parameter.  

 

Since persons with a high ability have more room to distort the estimation of their ability 

downward the probability of getting chosen was modeled in an increasing linear fashion from 

the person with the lowest ability to the person with the highest ability. That means for example, 

that the person with the lowest ability has half the chance of getting chosen as the one with 

the second lowest and a third of the chance as the one with the third lowest ability. 

 

For each distorting person the probability of a correct response to an item was changed to 0, 

if the difference of the person’s ability and the item difficulty was lower than 1.16. This models 

a person who actively answers all items wrong, where his/her probability of correctly 

responding is lower than 75%. The response vectors of those persons tend towards the perfect 

Gutmann score since the easiest items are answered correctly with a high probability, medium 

and hard items are answered wrong with (almost) certainty (Remark: In case of a multiple 

choice test a person may not be able to answer a difficult item wrong with certainty if he/she 

does not know the answer to it.). In any case it is safe to assume that the probability of a correct 

response is lower than predicted according to the Rasch model if the person tries to answer 

the item wrong. This aberrant response behavior therefore produces a model overfit. 

                                                
5 If the latent ability trait of interest happens to be “accuracy”, “preciseness”, “exactness” or of that sort 
this assumption is obviously violated.  

6 
𝑒1.1

1+𝑒1.1
= ~0.7503  
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Distorting 2 

The only difference to Distorting 1 is that the cut off value for the difference of the person’s 

ability and the item difficulty is changed to 1.747. This mimics a person who actively answers 

all items wrong, where his probability of correctly responding is lower as 85%. The magnitude 

of distortion is therefore stronger as in Distorting 1. 

Fatigue 1 

Everyone can experience fatigue and no relation between ability and the probability and 

magnitude of fatigue is assumed in this scenario. Every person therefore had the same 

probability to get chosen as someone experiencing fatigue. For each of those aberrant 

respondents it was randomly chosen at which item fatigue set in. The start of the fatigue was 

not before 50% and not after 80% of the items were completed. All items which fulfilled these 

requirement had equal probabilities of getting selected as the starting point of fatigue (e.g. For 

25 items that means that the items 12, 13, 14, 15, 16, 17, 18, 19, 20 all had a 1/9 probability 

of getting selected as the starting point).  

 

Fatigue 1 is modeled as a sudden performance loss due to fatigue. The magnitude of 

performance loss stays the same from the starting point to the end of the test. The magnitude 

of the performance loss was a 30% decrease of the probability of a correct response. That 

means that the solving probabilities computed under the Rasch model were multiplied by 0.7. 

Fatigue 2 

The selection of persons experiencing fatigue and the starting point of the fatigue were chosen 

in exactly the same way as in Fatigue 1. The difference lies in the effect of fatigue on the 

performance. Instead of a sudden strong performance loss of 30% which stayed constant until 

the end of the test a smooth decrease of performance was modeled. The progression of fatigue 

was modeled in a linear fashion. At the starting item the performance loss was 10% and at the 

last item it was 50%. For 25 items that means that the decrease of the probability of solving 

items 12, 13, 14, 15, 16, 17, 18, 19, 20 was 10, 15, 20, 25, 30, 35, 40, 45, 50 percent 

respectively. 

 

                                                

7 
𝑒1.74

1+𝑒1.74
= ~0.8501 
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4. Methods of comparisons 

Which test is better (in a statistical sense)? This question is in general not trivial to answer. 

The classical Neyman-Pearson test concept searches for the most powerful test for a chosen 

Specificity.  

 

Example 1: If test A detects on average 87% of the cases where H0 is wrong (Sensitivity = 

0.95), test B only 82% (Sensitivity = 0.82), and if both tests rightfully maintain the H0 on 

average in 95% of the cases where the H0 is right, than it certainly is better to use test A, if we 

allow our probability of wrongly rejecting H0 to be 0.05. The question whether test A or test B 

is “better”, gets tricky if we further assume that test A has a Sensitivity of 0.71, test B a 

Sensitivity of 0.76, if we set the Specificity to 0.99. If you only want to reject the H0 wrongly 

with a probability of 1%, you now should use Test B, since it is better at detecting cases in 

which the H1 applies.  

 

Example 2: Let us now assume that test A always has a higher Sensitivity than test B if they 

have the same Specificity. In this case the receiver operator characteristic (ROC) curve of test 

A always lies above the ROC curve of test B. The ROC curve is a simple two dimensional plot 

with the probability of wrongly rejecting H0 on the abscissa and the Sensitivity on the ordinate. 

The ROC curve is a non-decreasing function and it always lies above the 45 degree line 

(otherwise the test is weaker as random guessing!). As an illustration three ROC curve were 

made up (graph 1). Test 1 has a higher Sensitivity than Test 2 and Test 3 for any given 

Specificity since the green line always lies above the red and the blue line. The comparison of 

different tests gets trickier if they have intersecting ROC curves as seen in Example 1. 
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Graph 1: The ROC curves of three made up tests 

 

Is it now fair to conclude that test A is better than test B since its ROC lies completely above 

the ROC curve of B, if we further assume that both test are equally hard to conduct? Sadly no, 

because one additional property of test A is needed, namely the knowledge of the 

corresponding critical values for each value of Specificity. If it is unknown which critical value 

leads to which Specificity and which Sensitivity the test is hard to implement, since it is tough 

to classify results obtained with a certain critical value. Specificity and Sensitivity are always 

invers correlated and depending on the situation there importance varies. 

 

Because of this possible scenario, the method of comparison of the five indices was twofold: 

 The main criterion was the area under the ROC curve (a value between 0.5 and 1).  

 Additionally the Specificity and Sensitivity for critical values obtained in a pre-simulation 

with no aberrant responses satisfying a Specificity of 0.95 and 0.99 were computed. 

This enables us to estimate how good we can estimate critical values for our tests 

which satisfy the chosen Specificity regardless of the magnitude and frequency of 

deviations of H0. 
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5. What exactly was simulated? 

To answer the questions of interest regarding the performance of five person fit indices and 

the influence of person misfit on a global model test a sequential simulation design was 

implemented. That means that results obtained in a simulation affect or determine the setup 

of subsequent simulations. The complete analysis breaks down into three different simulations 

(Table 1, Table 2 and Table 3). In simulation A the 0.01, 0.05, 0.95, and 0.99 quantiles where 

estimated for each test and for each combination of the number of items and the number of 

persons. These estimations were used as critical values in simulation B. For Ht, C* and U3 the 

theoretical distribution of the index under the null hypotheses (namely: The Rasch model is 

correct for each person and each item) is not known and therefore the estimation of critical 

values with simulation A (Table 1) a necessity. For OUTFIT and INFIT it is claimed that the 

distribution under the null hypothesis is asymptotically student t distributed with infinite degrees 

of freedom. Since the sample sizes (100 and 500 persons) are far from infinite using asymptotic 

quantiles can lead to strong deviations from the expected Specificity. Therefore empirically 

derived critical values were used for OUTFIT and INFIT too. This way of computing 

Specificities and Sensitivities is what Rupp calls “best method with highest precision” in his 

review paper (Rupp, 2013) 

 

 

 Persons 100 500 

Items 50 25 50 25 

Test 

Ht 

 1000 iterations 

 At each iteration the empirical quantiles (0.01, 

0.05, 0.95, and 0.99) are taken. 

 Afterwards those values are averaged over the 

1000 iterations and to be used as critical values 

in the second simulation. 

C* 

U3 

OUTFIT 

INFIT 

   Table 1: Simulation A - Computation of critical values for the five person fit indices. 
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In simulation B (Table 2) for each scenario and each test the following was computed: 

 The area under the ROC curve  

 The Sensitivity and Specificity for the respective critical values which should 

correspond to a Specificity of 0.05 obtained via Simulation A. 

 The Sensitivity and Specificity for the respective critical values which should 

correspond to a Specificity of 0.01 obtained via Simulation A. 

 Critical values (once again the empirical quantiles are taken) and the Sensitivity which 

correspond to a Specificity of 0.05 in the Simulation B. 

 Critical values (once again the empirical quantiles are taken) and the Sensitivity which 

correspond to a Specificity of 0.01 in the Simulation B. 

 

In the case of Distorting 1 and Distorting 2 the direction of the five (one-sided) tests was 

reversed since they tend to produce a model overfit instead of a model underfit. Therefore not 

the same critical values from simulation A were used (e.g. The higher the value of C*, the 

stronger the underfit of that person. To obtain a Specificity of 0.95 we therefore take the 0.95 

quantile as the critical value in case of an aberrant response that produces underfit and the 

0.05 quantile in case of an aberrant response that produces overfit. In the case of underfit we 

reject the null hypothesis if the C* value of a person is higher than the respective critical value, 

and in the case of overfit we reject the null hypothesis if the C* value of a person is lower than 

the respective critical value.) 
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For four scenarios (Careless, Cheating 1, Cheating 2, Guessing all with 25 items, 500 persons 

and 30% aberrant responses) additionally an ALR test was computed. For the ALR test each 

sample was divided in two groups according to a median (the 50% quantile) split of the raw 

score, and the computed p-value was stored.  

 

In simulation C (table 3) the Specificity of the ALR test (criterion: median split of raw score) 

before and after the removal of suspicious respondents was investigated in eight scenarios, 

namely Careless, Cheating 1, Cheating 2, Guessing for 500 persons, 25 items, with 5% or 

30% aberrant response. We will see in the result section why C* was the index of choice in 

this simulation. Additionally the influence on the Specificity of the ALR test of the two non-

detectable scenarios Fatigue 1 and Fatigue 2 with 500 persons, 25 items and 30% aberrant 

response was investigated.  

 

 

 

 

Persons 100 500 

Items 50 25 50 25 

Deviation 5% 30% 5% 30% 5% 30% 5% 30% 

Type 

 of  

misfit 

Careless 
 2000 iterations 

 Estimation of the area under the ROC 

curve for each test (Ht, C*, U3, OUTFIT, 

INFIT). 

 Computation of Specificity and Sensitivity 

for the respective critical values obtained 

in the first simulation for each test. 

 Computation of the Sensitivity and critical 

values for two levels of Specificity (0.95 

and 0.99) for each test. 

The same 

procedure as in 

the framed box. 

Additionally the 

p-value of the 

ALR test with a 

median split of 

the raw score 

was computed.   

Cheating 1 

Cheating 2 

Guessing 

Distorting 1 The same procedure as in the framed box, although this time the 

direction of the five one-sided tests is reversed and the respective 

critical values from the first simulation are used. 
Distorting 2 

Table 2: Simulation B - Computation of the area under the ROC curve, Specificities, Sensitivities, critical values, 
and the ALR test in some cases. 
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 Persons 500 

Items 25 

Deviation 5% 30% 

Type 

of 

misfit 

Careless 
 2000 iterations 

 Step 1: The p-value of the ALR test with two groups 

generated by the median split of the raw score is 

computed. Thereby all 500 persons are used. 

 Step 2: Computation of the C* index for each person 

and removal of suspicious persons (Specificity = 

0.95). The number of removed persons gets saved. 

 Step 3: Step 1 is repeated for all persons who were 

not removed in Step 2. 

Cheating 1 

Cheating 2 

Guessing 

Fatigue 1 
 800 iterations 

 The p-value of the ALR test with two groups 

generated by the median split of the raw score is 

computed. Thereby all 500 persons are used. 
Fatigue 2 

    Table 3: Simulation C - Specificity of the ALR test before and after the removal of suspicious respondents. 

 

6. Results 

Simulation A – Critical values 

The estimated quantiles in each cell (table 4), are the unweighted average, the so called 

sample mean, of 1000 empirical quantiles for the respective test and scenario. These averages 

were rounded to three digits. We can see that, the estimations of C* and U3 differ in the third 

comma digit at max. A result that was to be expected, since we saw how closely they are 

related to each other in the theoretical part. The differences between quantiles for OUTFIT and 

INFIT on the other hand, differ quite strong from each other. Furthermore they are far from 

symmetric, as they would be if they follow a symmetric distribution (student t distribution in this 

case). For instance, the 1% quantile for OUTFIT (100 persons, 25 items) is -1.833, the 99% 

quantile is 2.529.) This gives an absolute difference of 0.696, which indicates a strong deviation 

from the postulated asymptotic distribution (the limit distribution should be a standard normal 

distribution). The precision of these estimates will be discussed in a later chapter (Accuracy of 

the results). These estimates were taken as the critical values for the respective scenarios und 

Specificities in Simulation B. 
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  Test.quantile 
100 persons, 

25 items 
100 persons, 

50 items 
500 persons,  

25 items 
500 persons,  

50 items 

1 Ht.99 0.723 0.651 0.702 0.631 

2 Ht.95 0.648 0.577 0.643 0.572 

3 Ht.05 0.236 0.287 0.244 0.292 

4 Ht.01 0.042 0.179 0.109 0.213 

5 C*.99 0.458 0.359 0.419 0.340 

6 C*.95 0.319 0.277 0.319 0.278 

7 C*.05 0.028 0.069 0.032 0.073 

8 C*.01 0.003 0.034 0.002 0.041 

9 U3.99 0.454 0.358 0.419 0.342 

10 U3.95 0.318 0.276 0.319 0.278 

11 U3.05 0.029 0.070 0.034 0.074 

12 U3.01 0.003 0.036 0.002 0.044 

13 OUTFIT.99 2.529 2.520 2.338 2.315 

14 OUTFIT.95 1.601 1.627 1.579 1.586 

15 OUTFIT.05 -1.317 -1.391 -1.323 -1.392 

16 OUTFIT.01 -1.833 -2.034 -1.826 -1.963 

17 INFIT.99 2.217 2.237 2.075 2.095 

18 INFIT.95 1.442 1.453 1.416 1.428 

19 INFIT.05 -1.690 -1.627 -1.654 -1.591 

20 INFIT.01 -2.382 -2.426 -2.305 -2.276 

Table 4: Estimated quantiles (0.01, 0.05, 0.95 and 0.99) for the five indices in four different scenarios. 

Simulation B - Area under the ROC curve 

Let us now have a look at the results of our main criterion of comparison, the area under the 

ROC curve. Graph 2 shows that Ht has the highest area under the ROC curve and INFIT the 

lowest in case of underfit. Their estimated difference is quite small (0.03), and the overall 

performance of these five indices in case of underfit very much alike. In the case of overfit the 

estimated area of OUTFIT is 0.049 lower as the area of the second worst index INFIT and 

0.075 behind the best index U3. C* and Ht are better than OUTFIT and INFIT in the case of 

underfit as well as in the case of overfit. The ability to detect aberrant responding persons 

varies less in the case of overfit., since the 99% confidence intervals for the area under the 

ROC curve are smaller in the case of overfit, even though the underfit estimates come from 64 

000 and the overfit estimates from 32 000 iterations.  
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Graph 2: A comparison of five person-fit indices, in their ability to detect aberrant responding examines in case of 
underfit and overfit, by using the area under the ROC curve as the criterion. 

 

The following graphs show a more detailed analysis for the performance of our five indices. 

We can see that Guessing and Careless are the hardest to detect (Graph 3). For a clearer 

picture of the relative performance of our indices we therefore put them in one graph (Graph 

4), and Cheating 1, Cheating 2, Distorting 1, Distorting 2 in another on (Graph 5). 

 

Graph 3: A comparison of five person-fit indices, in their ability to detect careless, cheating, distorting and guessing 
persons. 
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The differences in performance are small in the case of Careless and Cheating (Graph 4). 

Their estimated area under the ROC curve only varies by 0.014 in the case of Careless and 

0.021 in the case of Guessing. 

 

 

Graph 4: A comparison of five indices, in their ability to detect careless and guessing persons. 

 

 

Graph 5: A comparison of five indices, in their ability to detect two types of cheating and two types of distorting 
persons. 
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Ht performs best in case of Cheating 1 & 2, second best in case of Distorting 1 and third best 

in case of Distorting 2. OUTFIT performs mediocre in case of Cheating 1 & 2, and worst in 

case of Distorting 1 & 2 by substantial margins. INFIT in contrast performs mediocre in case 

of Distorting 1 & 2, and worst in case of Distorting 1 & 2, with a substantial margin in case of 

Cheating 2. C* performs slightly better than U3 in case of Cheating 1 & 2, equally good in case 

of Distorting 1, and slightly worse in case of Distorting 2. 

 

The influence of the number of items, the number of persons and the percentage of aberrant 

responding persons on the ability to detect person misfit can be seen in the following two 

graphs. We can detect person misfit better if the test has 50 instead of 25 items, since triangles 

always lie above same colored circles for 100 and 500 persons (Graph 6). The ability to detect 

person misfit also increases with the number of persons per test, since each unique point given 

by shape and color is higher for 500 persons than 100 persons. Furthermore there seems to 

be no interaction between the influence of the number of items and the number of person. The 

effect of the number of items is quite large (about 5-7% increase in area), the effect of the 

number of persons quite small (less than 1% increase in area). The influence of the number of 

items and the number of persons is pretty much the same for all five tests. 

 

 

Graph 6: A comparison of five indices, in their ability to detect aberrant responding persons in four conditions given 
by the number of persons and the number of items. 
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The influence of the percentage of aberrant responding persons on the other hand seems to 

depend on the index (Graph 7). The performance increases with the percentage of aberrant 

responding persons for INFIT and Ht, decreases for U3, and stays pretty much the same for 

OUTFIT and C*. 

 

Graph 7: A comparison of five indices, in their ability to detect aberrant responding persons in two conditions given 
by the percentage of aberrant responding persons. 

Simulation B - Specificity of the indices 

Now that we analyzed our main criterion, the area under the ROC curve, we take a look at the 

adherence of the two chosen Specificity levels 0.95 and 0.99 for each index. Table 5 shows 

the actual Specificity for each scenario and each index, if the respective critical values for a 

Specificity of 0.95 from Simulation A are taken. The values for C* and U3 lie close to 0.95 in 

each and every of the 48 scenarios. The values for Ht, OUTFIT and INFIT on the other hand 

strongly deviate from 0.95 in many scenarios. Medium sized deviations are marked yellow, 

strong deviations are marked red8. Ht tends to produce more type-I-errors, since it´s Specificity 

values are mainly smaller as 0.95. This increased risk of type-I-errors is particularly strong in 

the case of 30% aberrant responding persons. It is strongest in the scenarios Cheating 1 & 2 

and Distorting 1 & 2. Some deviations are shockingly high with Specificities as low as 74.81% 

in the case of Cheating 1 with 500 persons, 50 items and 30% aberrant responding persons.  

                                                
8 The magnitude of deviation is measured in the relative deviation from the probability for a type-I-error 
(0.05 in this case). Specificity values of 0.9 and 0.975 are therefore consider equally strong deviations 
since the former corresponds to a 100% increase, and the later to a 100% decrease of the probability 
for a type-I-error. 
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In contrast to Ht, OUTFIT and INFIT produce less type-I-errors, since it´s Specificity values are 

always higher as 0.95. The Sensitivity values of these two indices are therefore decreased. 

Just like in the case of Ht, the deviations are strongest in the scenarios Cheating 1 & 2 and 

Distorting 1 & 2, and in case of 30% aberrant responding persons. Specificity levels in these 

case are mostly higher as 0.98 and sometimes even higher as 0.995. 

 

Specificity 
should be 
close to 0.95 

Scenario: 
Type of misfit.  
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

Ht C* U3 OUTFIT INFIT 

1 Guessing.100.25.0.05 0.9530 0.9547 0.9553 0.9563 0.9563 

2 Cheating1.100.25.0.05 0.9483 0.9551 0.9554 0.9645 0.9669 

3 Cheating2.100.25.0.05 0.9512 0.9554 0.9555 0.9608 0.9616 

4 Careless.100.25.0.05 0.9516 0.9548 0.9550 0.9572 0.9585 

5 Guessing.500.25.0.05 0.9499 0.9512 0.9512 0.9534 0.9541 

6 Cheating1.500.25.0.05 0.9452 0.9510 0.9509 0.9622 0.9641 

7 Cheating2.500.25.0.05 0.9475 0.9511 0.9511 0.9584 0.9600 

8 Careless.500.25.0.05 0.9493 0.9513 0.9515 0.9547 0.9561 

9 Guessing.100.50.0.05 0.9504 0.9548 0.9551 0.9577 0.9571 

10 Cheating1.100.50.0.05 0.9418 0.9551 0.9554 0.9679 0.9695 

11 Cheating2.100.50.0.05 0.9468 0.9550 0.9552 0.9639 0.9647 

12 Careless.100.50.0.05 0.9500 0.9550 0.9557 0.9603 0.9602 

13 Guessing.500.50.0.05 0.9486 0.9509 0.9508 0.9541 0.9547 

14 Cheating1.500.50.0.05 0.9395 0.9510 0.9509 0.9663 0.9683 

15 Cheating2.500.50.0.05 0.9438 0.9509 0.9509 0.9612 0.9624 

16 Careless.500.50.0.05 0.9473 0.9511 0.9512 0.9564 0.9576 

17 Guessing.100.25.0.3 0.9477 0.9549 0.9555 0.9665 0.9683 

18 Cheating1.100.25.0.3 0.8817 0.9530 0.9557 0.9915 0.9946 

19 Cheating2.100.25.0.3 0.9112 0.9530 0.9569 0.9854 0.9888 

20 Careless.100.25.0.3 0.9410 0.9539 0.9535 0.9731 0.9762 

21 Guessing.500.25.0.3 0.9450 0.9516 0.9514 0.9646 0.9665 

22 Cheating1.500.25.0.3 0.8749 0.9489 0.9518 0.9924 0.9945 

23 Cheating2.500.25.0.3 0.9067 0.9482 0.9524 0.9860 0.9888 

24 Careless.500.25.0.3 0.9384 0.9508 0.9503 0.9718 0.9745 

25 Guessing.100.50.0.3 0.9392 0.9539 0.9542 0.9696 0.9720 

26 Cheating1.100.50.0.3 0.7609 0.9526 0.9558 0.9955 0.9978 

27 Cheating2.100.50.0.3 0.8498 0.9525 0.9567 0.9908 0.9935 

28 Careless.100.50.0.3 0.9274 0.9549 0.9545 0.9793 0.9807 

29 Guessing.500.50.0.3 0.9376 0.9507 0.9505 0.9688 0.9705 

30 Cheating1.500.50.0.3 0.7481 0.9486 0.9520 0.9965 0.9976 

31 Cheating2.500.50.0.3 0.8443 0.9470 0.9523 0.9916 0.9933 

32 Careless.500.50.0.3 0.9245 0.9510 0.9499 0.9775 0.9797 

33 Distorting1.100.25.0.05 0.9348 0.9533 0.9530 0.9626 0.9595 

34 Distorting2.100.25.0.05 0.9353 0.9531 0.9531 0.9626 0.9594 

35 Distorting1.500.25.0.05 0.9333 0.9503 0.9499 0.9584 0.9557 
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Specificity 
should be 
close to 0.95 

Scenario: 
Type of misfit.  
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

Ht C* U3 OUTFIT INFIT 

36 Distorting2.500.25.0.05 0.9350 0.9509 0.9500 0.9577 0.9550 

37 Distorting1.100.50.0.05 0.9355 0.9521 0.9524 0.9644 0.9623 

38 Distorting2.100.50.0.05 0.9355 0.9514 0.9518 0.9644 0.9616 

39 Distorting1.500.50.0.05 0.9336 0.9490 0.9515 0.9618 0.9592 

40 Distorting2.500.50.0.05 0.9346 0.9489 0.9508 0.9610 0.9584 

41 Distorting1.100.25.0.3 0.8290 0.9497 0.9521 0.9892 0.9764 

42 Distorting2.100.25.0.3 0.8298 0.9483 0.9514 0.9885 0.9749 

43 Distorting1.500.25.0.3 0.8240 0.9482 0.9500 0.9867 0.9753 

44 Distorting2.500.25.0.3 0.8258 0.9472 0.9506 0.9864 0.9741 

45 Distorting1.100.50.0.3 0.8115 0.9479 0.9505 0.9927 0.9873 

46 Distorting2.100.50.0.3 0.8143 0.9432 0.9498 0.9921 0.9853 

47 Distorting1.500.50.0.3 0.8044 0.9458 0.9512 0.9916 0.9860 

48 Distorting2.500.50.0.3 0.8063 0.9410 0.9517 0.9911 0.9848 

Table 5: Actual Specificity values for each test and each scenario, if the respective critical values from simulation 
A, that correspond to a Specificity of 0.95, are used. 

 

Table 6 shows the actual Specificity for each scenario and each index, if the respective critical 

values for a Specificity of 0.99 from Simulation A are taken. The values for C* and U3 lie close 

to 0.99, although the precision is somewhat lower as in table 5. They are a little bit too high in 

scenarios with 100 persons. These small deviations may be linked to the precision of the critical 

values estimated in Simulation A (See chapter Accuracy of the results for a closer look). The 

type of aberrant response and the percentage of person misfit do not seem to influence the 

accuracy of the Specificity values. 

 

The values for Ht, OUTFIT and INFIT strongly deviate from the specified Specificity of 0.99 in 

many scenarios. Just as in the case of a Specificity value of 0.95, Ht tends to produce more 

type-I-errors, and the this deviation is particularly strong in the case of 30% aberrant 

responding persons, and in the scenarios Cheating 1 & 2 and Distorting 1 & 2. Some deviations 

are once again shockingly high with Specificities as low 92.96% in the case of Distorting 1 with 

500 persons, 25 items and 30% aberrant responding persons. OUTFIT and INFIT produce 

less type-I-errors, since it´s Specificity values are always higher as 0.99. Just like in the case 

of Ht, the deviations are strongest in the scenarios Cheating 1 & 2 and Distorting 1 & 2, and in 

case of 30% aberrant responding persons. Specificity levels in these case are mostly higher 

as 0.997 and sometimes even higher as 0.999. 
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Specificity 
should be 
close to 
0.99 

Scenario: 
Type of misfit. 
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

Ht C* U3 OUTFIT INFIT 

1 Guessing.100.25.0.05 0.9957 0.9956 0.9955 0.9942 0.9947 

2 Cheating1.100.25.0.05 0.9953 0.9954 0.9952 0.9960 0.9961 

3 Cheating2.100.25.0.05 0.9956 0.9956 0.9954 0.9954 0.9954 

4 Careless.100.25.0.05 0.9955 0.9953 0.9951 0.9944 0.9949 

5 Guessing.500.25.0.05 0.9912 0.9912 0.9911 0.9917 0.9916 

6 Cheating1.500.25.0.05 0.9908 0.9912 0.9911 0.9941 0.9939 

7 Cheating2.500.25.0.05 0.9908 0.9912 0.9910 0.9934 0.9930 

8 Careless.500.25.0.05 0.9912 0.9913 0.9912 0.9922 0.9921 

9 Guessing.100.50.0.05 0.9948 0.9950 0.9947 0.9940 0.9945 

10 Cheating1.100.50.0.05 0.9943 0.9952 0.9950 0.9965 0.9966 

11 Cheating2.100.50.0.05 0.9949 0.9954 0.9950 0.9957 0.9960 

12 Careless.100.50.0.05 0.9948 0.9951 0.9950 0.9950 0.9952 

13 Guessing.500.50.0.05 0.9905 0.9911 0.9911 0.9919 0.9917 

14 Cheating1.500.50.0.05 0.9892 0.9911 0.9912 0.9948 0.9949 

15 Cheating2.500.50.0.05 0.9899 0.9912 0.9913 0.9938 0.9936 

16 Careless.500.50.0.05 0.9905 0.9911 0.9913 0.9925 0.9923 

17 Guessing.100.25.0.3 0.9957 0.9957 0.9955 0.9966 0.9968 

18 Cheating1.100.25.0.3 0.9944 0.9953 0.9953 0.9995 0.9997 

19 Cheating2.100.25.0.3 0.9947 0.9952 0.9955 0.9988 0.9993 

20 Careless.100.25.0.3 0.9956 0.9956 0.9953 0.9974 0.9979 

21 Guessing.500.25.0.3 0.9908 0.9913 0.9911 0.9948 0.9946 

22 Cheating1.500.25.0.3 0.9853 0.9906 0.9910 0.9995 0.9995 

23 Cheating2.500.25.0.3 0.9869 0.9902 0.9911 0.9987 0.9987 

24 Careless.500.25.0.3 0.9903 0.9911 0.9908 0.9963 0.9963 

25 Guessing.100.50.0.3 0.9942 0.9951 0.9948 0.9965 0.9969 

26 Cheating1.100.50.0.3 0.9776 0.9944 0.9947 0.9997 0.9999 

27 Cheating2.100.50.0.3 0.9848 0.9944 0.9947 0.9991 0.9996 

28 Careless.100.50.0.3 0.9935 0.9952 0.9947 0.9980 0.9983 

29 Guessing.500.50.0.3 0.9889 0.9909 0.9908 0.9955 0.9954 

30 Cheating1.500.50.0.3 0.9522 0.9900 0.9910 0.9998 0.9998 

31 Cheating2.500.50.0.3 0.9699 0.9897 0.9910 0.9993 0.9993 

32 Careless.500.50.0.3 0.9872 0.9910 0.9908 0.9972 0.9972 

33 Distorting1.100.25.0.05 0.9891 0.9856 0.9857 0.9947 0.9941 

34 Distorting2.100.25.0.05 0.9895 0.9859 0.9860 0.9945 0.9939 

35 Distorting1.500.25.0.05 0.9863 0.9879 0.9880 0.9927 0.9916 

36 Distorting2.500.25.0.05 0.9867 0.9879 0.9880 0.9928 0.9914 

37 Distorting1.100.50.0.05 0.9907 0.9933 0.9940 0.9959 0.9955 

38 Distorting2.100.50.0.05 0.9906 0.9930 0.9935 0.9955 0.9951 

39 Distorting1.500.50.0.05 0.9865 0.9903 0.9907 0.9931 0.9925 

40 Distorting2.500.50.0.05 0.9867 0.9903 0.9906 0.9931 0.9924 

41 Distorting1.100.25.0.3 0.9494 0.9854 0.9855 0.9994 0.9971 

42 Distorting2.100.25.0.3 0.9504 0.9849 0.9851 0.9994 0.9969 
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Specificity 
should be 
close to 
0.99 

Scenario: 
Type of misfit. 
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

Ht C* U3 OUTFIT INFIT 

43 Distorting1.500.25.0.3 0.9296 0.9879 0.9880 0.9991 0.9956 

44 Distorting2.500.25.0.3 0.9322 0.9878 0.9879 0.9991 0.9955 

45 Distorting1.100.50.0.3 0.9520 0.9916 0.9933 0.9995 0.9987 

46 Distorting2.100.50.0.3 0.9531 0.9908 0.9934 0.9996 0.9986 

47 Distorting1.500.50.0.3 0.9334 0.9884 0.9905 0.9990 0.9979 

48 Distorting2.500.50.0.3 0.9343 0.9875 0.9907 0.9990 0.9977 

Table 6: Actual Specificity values for each test and each scenario, if the respective critical values from simulation 
A, that correspond to a Specificity of 0.99, are used. 

 

Tables 5 and 6 show a clear influence of the type of aberrant response and the percentage of 

average responding persons on the deviation of the chosen Specificity level for Ht, OUFIT and 

INFIT. Specificity values for C* and U3 on the other seem to be independent of the type and 

the amount of aberrant response. 

Simulation B – Critical values in case of aberrant response 

We just saw, that the actual Specificity (and of course the inverse correlated Sensitivity) from 

Ht, OUTFIT and INFIT deviate from the specified level, and in some scenarios the magnitude 

of deviation is huge. We now take a look at the critical values (arithmetic mean of the 95% 

quantiles for each of the 2000 iterations) for each underfit scenario and compare them to the 

estimated values in Simulation A (Table 7). Each of the same colored columns should contain 

(almost) the same values. If we look at Ht we can see this is clearly not the case. The critical 

values for certain scenarios are always smaller as the respective estimation from Simulation 

A. This makes perfect sense, since we reject the null hypotheses for small values of Ht, and 

we saw in Table 5, that the actual Specificity levels for Ht are too low. Moreover we can 

recognize certain patterns. We can see, that the critical values are always smaller in case of 

30% as in 5% aberrant response for a given number of persons and items. We also recognize 

that values for Cheating 1 are smaller than Cheating 2, which again are smaller than values 

for Guessing and Careless, for a given number of persons and items. This is of course the 

explanation, for the size of the deviations in Specificity levels and their relation with the type of 

underfit and percentage of aberrant responding persons that we have seen in Table 5. 
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Critical 
values for a 
Specificity 
of 0.95 

  

Scenario: 
Type of misfit.  
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

Ht C* U3 OUTFIT INFIT 

1 Simulation A (100, 25) 0.2360 0.3190 0.3180 1.6010 1.4420 

2 Guessing.100.25.0.05 0.2342 0.3192 0.3176 1.5791 1.4282 

3 Guessing.100.25.0.3 0.2241 0.3211 0.3199 1.4631 1.3078 

4 Cheating1.100.25.0.05 0.2273 0.3188 0.3175 1.4699 1.3111 

5 Cheating1.100.25.0.3 0.1717 0.3244 0.3199 0.9051 0.7219 

6 Cheating2.100.25.0.05 0.2314 0.3185 0.3171 1.5242 1.3677 

7 Cheating2.100.25.0.3 0.1876 0.3241 0.3180 1.1004 0.9239 

8 Careless.100.25.0.05 0.2329 0.3190 0.3181 1.5703 1.4082 

9 Careless.100.25.0.3 0.2147 0.3230 0.3221 1.3618 1.2036 
  

10 Simulation A (500, 25) 0.2440 0.3190 0.3190 1.5790 1.4160 

11 Guessing.500.25.0.05 0.2427 0.3187 0.3186 1.5487 1.3864 

12 Guessing.500.25.0.3 0.2355 0.3187 0.3186 1.4163 1.2529 

13 Cheating1.500.25.0.05 0.2360 0.3189 0.3187 1.4444 1.2802 

14 Cheating1.500.25.0.3 0.1823 0.3216 0.3183 0.8314 0.6593 

15 Cheating2.500.25.0.05 0.2391 0.3188 0.3188 1.4918 1.3255 

16 Cheating2.500.25.0.3 0.1986 0.3226 0.3177 1.0361 0.8618 

17 Careless.500.25.0.05 0.2419 0.3185 0.3183 1.5353 1.3671 

18 Careless.500.25.0.3 0.2269 0.3198 0.3203 1.3126 1.1465 
  

19 Simulation A (100, 50) 0.2870 0.2770 0.2760 1.6270 1.4530 

20 Guessing.100.50.0.05 0.2845 0.2769 0.2756 1.5911 1.4341 

21 Guessing.100.50.0.3 0.2726 0.2792 0.2784 1.4443 1.2725 

22 Cheating1.100.50.0.05 0.2765 0.2767 0.2756 1.4539 1.2833 

23 Cheating1.100.50.0.3 0.2072 0.2805 0.2769 0.7050 0.5211 

24 Cheating2.100.50.0.05 0.2808 0.2766 0.2758 1.5192 1.3453 

25 Cheating2.100.50.0.3 0.2280 0.2808 0.2762 0.9675 0.7798 

26 Careless.100.50.0.05 0.2834 0.2766 0.2756 1.5606 1.3969 

27 Careless.100.50.0.3 0.2650 0.2787 0.2784 1.2910 1.1301 
  

28 Simulation A (500, 50) 0.2920 0.2780 0.2780 1.5860 1.4280 

29 Guessing.500.50.0.05 0.2900 0.2781 0.2781 1.5525 1.3915 

30 Guessing.500.50.0.3 0.2805 0.2783 0.2785 1.3752 1.2138 

31 Cheating1.500.50.0.05 0.2823 0.2779 0.2781 1.4090 1.2456 

32 Cheating1.500.50.0.3 0.2144 0.2800 0.2774 0.6164 0.4486 

33 Cheating2.500.50.0.05 0.2858 0.2780 0.2780 1.4719 1.3129 

34 Cheating2.500.50.0.3 0.2350 0.2814 0.2772 0.8828 0.7051 

35 Careless.500.50.0.05 0.2888 0.2780 0.2779 1.5272 1.3630 

36 Careless.500.50.0.3 0.2718 0.2783 0.2790 1.2381 1.0701 

Table 7: Comparison of the critical values for each of the five indices and each underfit scenario, which lead to a 
Specificity of 0.95, with the respective critical values from Simulation A. 
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In case of OUTFIT and INFIT, we reject the null hypotheses for high index values. The actual 

critical values in each scenario are always lower than their respective values from Simulation 

A and therefore explain that the actual Specificity levels for OUTFIT and INFIT are too low 

(Table 5). Just as in the case of Ht, we can clearly recognize the systematic influence of the 

type of response and the number of aberrant responding persons on the size of the critical 

value for a given number of persons and items.  

 

If we take a close look at C* and U3, we can see that the critical values are smaller (always in 

case of C*, almost always in the case of U3) in case of 30% as in 5% aberrant response for a 

given number of persons and items. We also see that critical values for Cheating 1 & 2 are a 

little bit higher as the critical values for Guessing and Careless, for a given number of persons 

and items. A small influence of the type and the percentage of aberrant responding persons 

on the critical values seems to be the case even for C* and U3, although the magnitude does 

not raise concern as we have seen in table 5. 

 

Table 8 shows the estimated critical values for each overfit scenario. Once again we can spot 

patterns for Ht, OUTFIT and INFIT which show a clear relatedness between the size of the 

deviation and the type of aberrant behavior as well as the percentage of aberrant responding 

persons. 
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Critical 
values for a 
Specificity 
of 0.95 

 

Scenario: 
Type of misfit.  
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

Ht C* U3 OUTFIT INFIT 

1 Simulation A (100, 25) 0.6480 0.0280 0.0290 -1.3170 -1.6900 

2 Distorting1.100.25.0.05 0.6603 0.0281 0.0289 -1.2502 -1.6392 

3 Distorting1.100.25.0.3 0.7254 0.0259 0.0276 -0.9012 -1.3942 

4 Distorting2.100.25.0.05 0.6605 0.0282 0.0290 -1.2480 -1.6402 

5 Distorting2.100.25.0.3 0.7243 0.0252 0.0272 -0.9149 -1.4151 
       

6 Simulation A (500, 25) 0.6430 0.0320 0.0340 -1.3230 -1.6540 

7 Distorting1.500.25.0.05 0.6557 0.0318 0.0336 -1.2632 -1.6059 

8 Distorting1.500.25.0.3 0.7188 0.0307 0.0335 -0.8993 -1.3271 

9 Distorting2.500.25.0.05 0.6547 0.0321 0.0336 -1.2678 -1.6118 

10 Distorting2.500.25.0.3 0.7164 0.0304 0.0339 -0.9181 -1.3486 
       

11 Simulation A (100, 50) 0.5770 0.0690 0.0700 -1.3910 -1.6270 

12 Distorting1.100.50.0.05 0.5890 0.0684 0.0696 -1.3005 -1.5412 

13 Distorting1.100.50.0.3 0.6529 0.0656 0.0681 -0.8315 -1.1020 

14 Distorting2.100.50.0.05 0.5893 0.0680 0.0692 -1.3021 -1.5513 

15 Distorting2.100.50.0.3 0.6512 0.0633 0.0678 -0.8520 -1.1427 
       

16 Simulation A (500, 50) 0.5720 0.0730 0.0740 -1.3920 -1.5910 

17 Distorting1.500.50.0.05 0.5838 0.0722 0.0744 -1.2981 -1.5046 

18 Distorting1.500.50.0.3 0.6451 0.0705 0.0741 -0.8122 -1.0317 

19 Distorting2.500.50.0.05 0.5831 0.0722 0.0741 -1.3051 -1.5121 

20 Distorting2.500.50.0.3 0.6441 0.0683 0.0743 -0.8313 -1.0640 

Table 8: Comparison of the critical values for each of the five indices and each overfit scenario, which lead to a 
Specificity of 0.95, with the respective critical values from Simulation A. 

Simulation B - Specificity of the ALR test in case of underfit 

Graph 8 shows the distribution of p-values for the ALR test with two groups generated by a 

median split of the raw score. The test is often used to decide whether the Rasch model holds 

or does not. Since we generated our data in a way which models a test with 25 items where 

the Rasch model holds, but with 30% aberrant responding persons, we do not want to reject 

the H0. Ideally the p-values of the ALR test would be equally distributed over the interval [0, 1] 

as in the case of Rasch model conform data without aberrant response (For a detailed analysis 

of the Specificity of the ALR test have a look at the diploma thesis of Futschek, 2014). The 

stronger the deviation of the actual p-value distribution from the uniform distribution on the 

interval [0, 1], the stronger the influence of the aberrant responding persons. Graph 8 shows 

the distribution of p-values in case of Guessing, Cheating 1, Cheating 2 and Careless. They 

are extremely right skewed in the case of Guessing and Careless, and essentially zero in the 

case of Cheating 1 and Cheating 2.  
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These are unpleasant results, since we clearly cannot decide whether items are Rasch model 

conform in the case of aberrant responding persons (producing an underfit). If we allow the 

probability of the type-I-error of the ALR test to be 0.05, the actual Specificity values (Number 

of p-values greater than 0.05 divided by number of all p-values) are only 51.4%, 0%, 0% and 

84.05% for Guessing, Cheating 1, Cheating 2 and Careless.  

 

 

Graph 8: P-value distribution for the ALR test with a median split of the raw score as a criterion in case of underfit. 

  

As we have seen in Simulation A, those four types of aberrant responses can be detected fairly 

well with the index C*. In Simulation C we therefore analyze the potential support of C*, if we 

are testing for Rasch model conformity of the items with the ALR test in the case of aberrant 

responding persons. Suspicious persons (Specificity of C* set to 0.95) will be removed and the 

ALR test will be computed for the remaining persons. Since the influence of the aberrant 

responses on the distribution of the p-values of the ALR test was so strong, Simulation C will 

also analyze Guessing, Cheating 1, Cheating 2 and Careless in the case of 5% aberrant 

response. 
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Simulation C - Specificity of the ALR test before and after removal of 
flagged persons in case of underfit 

The results for the probability of rejecting the null hypotheses with the ALR test can be seen in 

Table 9. If we compare the values in case of 30% aberrant responding persons with the results 

from Simulation B, we see that they are essentially equal (The difference is 0.003 for Guessing, 

0 for Cheating 1 & 2 and 0.0025 for Careless). We further see that even in the case of 5% 

aberrant responding persons, the probability for a type-I-error is strongly elevated in the case 

of Cheating 1 & 2. The removal of suspicious persons with the index C* works fairly well, since 

the probability of a type-I-error is reduced in each and every scenario. One important thing to 

note is that the ALR values after the removal of suspicious persons are closest to 0.05 for 

Cheating 1 & 2 in case of 30% aberrant responding persons, even though these scenarios are 

the most problematic if we use all 500 persons. This makes perfect sense, since the area under 

the ROC curve is the highest in case of Cheating 1 & 2 as we have seen in Simulation B.  

 

As we saw in Simulation B, Guessing is the hardest to detect (Graph 3) and therefore fewer 

persons as in Cheating 1 & 2 and Careless were removed. In the case of 30% persons with 

Guessing behavior we still have a 166% (0.133/0.05=2.66) increased probability of a type-I-

error after the removal of suspicious persons. In order to obtain a 0.05 probability of a            

type-I-error the Specificity level of C* has to be lowered. The downside of this lowering will be 

addressed in the Discussion section. 

 

The average number of removed persons are a product of the actual Specificity for a chosen 

level of Specificity and the associated Sensitivity for a certain scenario. For instance the 

Sensitivity for C* in case of Cheating 1 with 30% aberrant responding persons is 0.7967, the 

actual Specificity (Table 5) 0.9489 for the critical value from Simulation A related to a Specificity 

of 0.95. We therefore expect 0.7967*500*0.3 + (1-0.9489)*500*0.7 =137.39 persons to be 

removed, which is not far from the actual value 136.411. 
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Probability for the 
type-I-error should 
be close to 0.05 

Scenario: 
Type of misfit.  
Proportion of aberrant 
responding persons  
for 500 people and 25 items 

ALR test with 
all persons 

ALR test 
without 

suspicious 
persons 

Average 
number of 
persons 
removed 

1 Guessing.0.05 0.062 0.052 26.674 

2 Cheating1.0.05 0.300 0.058 42.962 

3 Cheating2.0.05 0.128 0.053 40.819 

4 Careless.0.05 0.062 0.054 28.242 

5 Guessing.0.3 0.489 0.133 39.102 

6 Cheating1.0.3 1.000 0.050 136.411 

7 Cheating2.0.3 1.000 0.040 125.632 

8 Careless.0.3 0.162 0.081 46.838 

Table 9: Elevated risk of the type-I-error in case of aberrant response before and after the removal of suspicious 
persons. 

Simulation C - Specificity of the ALR test in case of fatigue 1 and 2. 

If people experience fatigue at some point in the test the estimation of their latent ability trait 

will certainly be too low. The estimation of the Rasch model conformity of the items on the 

other hand, seems to be unaffected of persons experiencing fatigue as we can see in Graph 

9. The distribution of p-values seem to be uniform distributed over the interval [0, 1]. Even in 

the two cases of 30% aberrant response, no deviation from uniformity can be spotted. If we 

allow the probability of the type-I-error of the ALR test to be 0.05, the actual Specificity values 

(Number of p-values greater than 0.05 divided by number of all p-values) are 94.88%, 96.5%, 

94.88% and 94.38% for Fatigue 1 (5%), Fatigue 2 (5%), Fatigue 1 (30%) and Fatigue 2 (30%). 

We can therefore conclude, that the probability of a type-I-error is unaffected of this sort of 

aberrant response. 
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Graph 9: P-value distribution for the ALR test with a median split of the raw score as a criterion in case of fatigue. 

Accuracy of the results 

In Simulation A we estimated the 0.01, 0.05, 0.95 and 0.99 quantiles for the five indices in four 

scenarios depending on the number of items and the number of persons. The graphs 10-14 

show the progress of the estimation for the 0.95 quantile. The first thing we note, is that the 

confidence intervals (95%) for the estimations are smaller in case of 500 person for each index. 

This was to be expected, since one additional iteration with 500 persons is not so different from 

five additional iterations with 100 persons each. The precision for 25 and 50 items on the other 

hand, is about equal. In all cases we can see that the scattering gets less as the number of 

iterations grow, a clear sign of convergence to the true value. In the case of 100 persons we 

note it takes about 400-700 iterations for the curve to vary only slightly around the estimated 

mean. After 800 iterations no substantial shift happens in any of those 20 estimations. If we 

take another at Table 7, we see that in the case of OUTFIT, INFIT, and Ht most critical values 

lie way outside the 95% confidence interval.  
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Graph 10: The progress of the estimation of the 95% quantile for the index OUTFIT and the respective number of 
items and persons is shown. 

 

Graph 11: The progress of the estimation of the 95% quantile for the index INFIT and the respective number of 
items and persons is shown. 
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Graph 12: The progress of the estimation of the 95% quantile for the index Ht and the respective number of items 
and persons is shown. 

In the case of C* the estimations are essentially the same in case of 100 or 500 persons, but 

they clearly differ in case of 25 or 50 items (Graph 13). If the true 95% quantiles of C* and U3 

depend ever so slightly on the number of persons, or not at all, cannot be answered with these 

estimations, but we can say that it isn´t of any practical importance.  

 

 

Graph 13: The progress of the estimation of the 95% quantile for the index C* and the respective number of items 
and persons is shown. 
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Graph 14: The progress of the estimation of the 95% quantile for the index U3 and the respective number of items 
and persons is shown. 

 

Although the actual Specificity values for C* and U3 where close to the chosen nominal values, 

they were a bit too high in the case of underfit, 100 persons and a nominal value of 0.99 

(chapter: Simulation B - Specificity of the indices). Could this come from the fact that our 

estimations for the 99% quantile were to high (Remark: For C* and U3 we reject the null 

hypotheses if the value is bigger as the critical value, if we test for underfit.) In Graph 15, we 

see that the estimations for the 99% quantile, have wider confidence intervals as the 

estimations for the 95% quantile (Graphs 13 and 14). We also can also see that the variation 

of the cumulative arithmetic mean clearly gets smaller with an increasing number of iterations. 
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Graph 15: The progress of the estimation of the 99% quantile for the indices C* and U3 with 100 persons and the 
respective number of items is shown. 

 

Table 10 shows the estimated critical values for U3 and C* in case of 100 persons. Those 

values that lie outside of the respective confidence interval (Graph 15) are marked red. Every 

single value, that is marked red lies above the respective confidence interval. Since the four 

plots in Graph 15, do not show patterns which could be seen as signs of overestimations, 

person misfit (underfit) probably influences the right tail of the distribution of index values of 

U3 and C* in case of 100 persons. What also speaks for this theory, is the fact that the 

estimated values are lower (and therefore further away from the estimations in Simulation A) 

in case of 30% aberrant responding persons as in case of 5% for all scenarios (Table 10). 
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Specificity 
= 0.99 

Scenario: 
Type of misfit.  
Number of persons. 
Number of items. 
Proportion of aberrant 
responding persons 

U3 C* 

1 Guessing.100.25.0.05 0.4437 0.4486 

2 Cheating1.100.25.0.05 0.4464 0.4504 

3 Cheating2.100.25.0.05 0.4459 0.4492 

4 Careless.100.25.0.05 0.4484 0.4525 

5 Guessing.100.50.0.05 0.3566 0.3566 

6 Cheating1.100.50.0.05 0.3539 0.3535 

7 Cheating2.100.50.0.05 0.3544 0.3539 

8 Careless.100.50.0.05 0.3538 0.3540 

9 Guessing.100.25.0.3 0.4263 0.4283 

10 Cheating1.100.25.0.3 0.4236 0.4300 

11 Guessing.100.25.0.05 0.4271 0.4354 

12 Cheating1.100.25.0.05 0.4437 0.4486 

13 Cheating2.100.25.0.05 0.4464 0.4504 

14 Careless.100.25.0.05 0.4459 0.4492 

15 Guessing.100.50.0.05 0.4484 0.4525 

16 Cheating1.100.50.0.05 0.3566 0.3566 

Table 10: Critical values for C* and U3 indices and each underfit scenario with 100 persons, which lead to a   
Specificity of 0.99. 

The precision of Simulation B is very high, since we had 2000 iterations for each scenario and 

each test. We had a total of 240 (5 indices x 48 scenarios) different computations for the actual 

Specificities, Sensitivities, critical values and the area under the ROC curve. To highlight the 

precision of these estimates, 99% confidence intervals where computed for the actual 

Specificities (for the nominal values 0.95 and 0.99) and the area under the ROC curve. The 

longest of these 2000 confidence intervals was 0.008175 for the area under the ROC curve, 

0.004313 for the Specificity at a nominal value of 0.95 and 0.001961 for the Specificity at a 

nominal value of 0.99. The confidence intervals were computed is if the estimations are student 

t distributed, since we averaged 2000 independent and identical distributed random variables9. 

In order to assess how good these approximations are, confidence intervals were computed 

via bootstrap for some cases. The results turned out to be equal in the first five decimal placed. 

 

The precision of the estimation of the Specificity of the ALR test in Simulation C for underfit 

and 30% aberrant responding persons is very high (We already saw that the estimations in 

Simulation B are essentially equal to the estimations in Simulation C; see chapter: Simulation 

C - Specificity of the ALR test before and after removal of flagged persons in case of underfit). 

In case of 5 % aberrant responding persons we have wider confidence intervals for the 

estimations. The width of the 95% confidence interval for Guessing, Cheating 1, Cheating 2 

                                                
9 We make use of the so called central limit theorem. 
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and Careless are 0.0254, 0.0208, 0.0246, and 0.0255 respectively. This precision is not 

sufficient, if we want to tell whether the ALR test is 20 % robust in case of Guessing and 

Careless behavior, since the both got an actual Specificity estimation of 0.938 (chapter: 

Simulation C - Specificity of the ALR test before and after removal of flagged persons in case 

of underfit)10. 

7. Discussion 

Types of person misfit 

The simulated scenarios in this study have a high degree of “realism” and closely model real 

life phenomena (e.g. cheating). Guessing was treated as a person misfit since there is only 

one item parameter, namely the item difficulty. In a three-parameter logistic model (3-PL), 

which includes a guessing parameter, guessing behavior would not be seen as a person misfit. 

The way Guessing und Careless were modeled in this simulation is similar to most simulation 

studies. Rupp (2013) wrote a review paper about person fit in which he summarized all 

simulation studies in this regard. Rupp also categorizes the types of misfit that were modeled 

in the past. Rupp further says: “However, despite the relatively large array of labels for aberrant 

responding, there are really only two types of statistical score effects that are effectively 

created, which are (1) spuriously low scores (i.e. when persons provide a lower score than 

would be expected based on the chosen model) and (2) spuriously high scores (i.e. when 

persons provide a higher score than would be expected based on the chosen model).” 

Although one can easily think of a behavior where the probability for a correct answer rises for 

some items and decreases for some other items in such a way that the expected number of 

correct responses corresponds to the expected number given the latent person parameter and 

the item difficulties, this categorization seems to be a good way not to confuse a certain 

modeled behavior with his real life counterpart.  

 

Cheating 1 & 2 was modeled somewhat different from other simulation studies, but the biggest 

difference can be found in Distorting 1 & 2, which obviously fall in the category (1) spuriously 

low scores. Karabatsos (2003) modeled “creative examines”, by choosing the person 

parameter from a uniform distribution over the interval [0.5, 2] and imputing incorrect responses 

for the 18% easiest items. The author of this work wonders why such a behavior should occur 

in real life. Tendeiro and Meijer (2014) modeled (1) spuriously low scores by choosing persons 

                                                
10 A test is a % robust if the actual type-I-risk does not divert more than a % from the nominal type-I-risk. 
In case of a = 0.2, and a nominal Specificity of 0.95, the actual Specificity has to be between 0.94 and 
0.96. For more details take a look at Rasch & Guiard (2004). 
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with a person parameter higher than 0.5 and enough correct answers and changing a certain 

number of randomly chosen correct responses with a probability of 80% into incorrect ones. 

Once again it is hard to imagine how such a behavior should arise in real life. If someone wants 

to distort the estimation of his person parameter downwards in a smart way, he will most likely 

answer medium (relative to his parameter) difficult items wrong and easy items correct in order 

to avoid suspicion. Maybe such a behavior was not modeled in the past since it produces a 

model overfit instead of an underfit. 

Deviations from the nominal Specificity 

Since OUTFIT and INFIT performed slightly worse than our three non-parametric indices in 

our main criterion there is no need to further analyze the differences between the actual       

type-I-risks and the chosen ones (see chapter: Simulation B - Area under the ROC curve). Ht 

on the other hand, performed slightly better than C* and U3 in our main criterion. In this 

simulation the actual type-I-risk was found to be shockingly high in case of 30% aberrant 

responding persons and the scenarios Cheating 1 & 2 and Distorting 1 & 2. The next paragraph 

compares the results of this work and other simulation studies which use the index Ht.  

 

Karabatsos (2003) and Zhang & Walker (2008) compared the area under the ROC curve of 

different indices but they did not analyze the dependence of the critical values on the type 

misfit and the percentage of aberrant responding persons. Dimitrov and Smith (2006), clearly 

influenced by the work of Karabatsos (2003), also compared Ht with some parametric person 

fit indices by estimating the area under the ROC curve. They list the critical values of Ht in 

different scenarios (number of items, type of aberrant response) corresponding to Specificity 

values of 0.95 and 0.99 in the tables 3 & 4 of their work. However, they do not discuss the fact 

that these values vary quite strong. One can only wonder if they view their tables as a useful 

tool to choose the right critical value for a chosen nominal Specificity. It is not possible to know 

how many people in a sample show aberrant response as well as the type of misfit and 

therefore such a table cannot be used in practice. St-Onge and colleagues (2011) compared 

the Sensitivities of two parametric person fit indices with U3, and Ht for certain Specificity 

values, namely 0.9, 0.95, and 0.99. They used 100 repetitions for each scenario (depending 

among others on the number of items and the type of response). In each scenario 1000 

persons were simulated, and for Ht the cut off values were the respective (1%, 5%, and 10% 

empirical quantiles) of all persons who did not respond aberrantly. Once again, the 

dependence of the empirical quantiles on the type of misfit and the number of persons who 

respond aberrant was not examined and discussed. One work that compared nominal and 

empirical type-I-error rates for Ht was the simulation study from Tendeiro & Meijer (2014). They 
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report that the actual type-I-error for Ht, averaged across all experimental conditions was 0.94 

for a nominal value of 0.95 which is nowhere near the magnitude of elevated type-I-risk found 

in this simulation. They derived the critical values for the nominal Specificity 0.95 by simulating 

scores of 10000 persons without aberrant behavior. This may be problematic, since they 

simulated 100 datasets with 1000 persons (some of them responding aberrant) for each 

scenario in order to compare the Sensitivities of the indices. Taking a quantile in a dataset with 

10000 persons is not the same as averaging the quantiles of 100 datasets containing 1000 

persons (Remark: In this simulation we saw that Sensitivities were higher for 500 persons than 

100.)  

Andersen Likelihood-Ratio test 

In Simulation C, suspicious persons were removed with the index C* and the respective critical 

values for a Specificity of 0.95. This removal led to a strong increase of the actual Specificity 

of the ALR test, particularly in the case of Cheating 1 & 2. With a lower Specificity level for C* 

the improvement would be even better, since additional people with a response vector 

containing Guttman errors will be removed and the remaining persons will behave on average 

even more Rasch model conform (Remark: If the deviation from the perfect Guttman scale 

comes from the aberrant response behavior or from chance does not matter for the ALR test!). 

If we want to test whether the Rasch model holds for a test we obviously worry about             

type-II-errors as well. If we want to detect items with a DIF we need a high Sensitivity of the 

ALR test. If we remove persons with C* at a low nominal Specificity we increase the Specificity 

but decrease the Sensitivity of the ALR test. This simulation study clearly shows the need to 

remove persons with suspicious behavior from the sample and it recommends the use of the 

index C*. In order to answer the question of the “optimal” Specificity level for C* further 

research, investigating both types of errors for the ALR test, is of need. 

Accuracy of the results 

This work contains a rather large section which deals with the accuracy of the results. The 

author of this work thinks that this is a prerequisite of every quality simulation study. In his 

review paper Rupp (2014) says that: “The numbers of replications for simulation studies in 

statistics often seem to be chosen rather arbitrarily, either because the number appears 

“appealingly simply” (e.g. 100, 250, 500, 1000), or because time constraints prevent authors 

from running more replications.” Some just choose a number of replications and report the 

confidence intervals of the estimations (e.g. Karabatsos (2003) simulated only one dataset 

containing 500 persons for 60 different scenarios and reported 95% confidence intervals for 

the area under the ROC curve in different scenario compositions for each test.)  
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The accuracy of estimations for a given number of iterations depends on the variation (Remark: 

The variation is mostly measured in the form of the second centralized moment the so called 

variance.) and simple rules of thumb like: “Use 1000 iterations and your estimations will be 

fairly accurate” can never work for all kinds of research questions and all kinds of variables.  

8. Summary 

In this simulation study the performance of three non-parametric (Ht, U3, and C*) and two 

parametric (OUTFIT and INFIT) person fit indices was analyzed. The detection ability 

(measured via the area under the ROC curve) of the indices was best in case of strong underfit 

(Cheating 1 & 2) and strong overfit (Distorting 1 & 2) and detection rates increased with the 

number of persons and the number of items. 

 

In the case of Ht, OUTFIT, and INFIT the distribution of index values strongly depends on the 

type of aberrant response and the number of aberrant responding persons. Because of this 

fact, we cannot know the actual Specificity and Sensitivity for a certain critical value and 

therefore these three indices are of no practical use. U3 and C* seem to satisfy a nominal 

Specificity value fairly well and their overall performance in this study is almost as good as the 

performance of Ht and even slightly better than the performance of OUFIT and INFIT. C* 

performed a little bit better than U3 in case of underfit and equally good in case of overfit. 

Therefore C* can be suggested as the person fit index of choice if real life data is to be 

analyzed. The detection ability of C* was equally good in case of 5% and 30% aberrant 

responding persons. 

 

In simulation C a practical application of person fit analysis was investigated. Namely, the 

reduction of the type-I-risk for the ALR test with the median split of the raw score as an internal 

criterion. If aberrant responding persons (producing a model underfit) are not removed, the 

actual type-I-risk of the ALR test is strongly elevated (e.g. 100% for Cheating 1 & 2 in case of 

30% aberrant responding persons). This elevated type-I-risk can be (almost) brought back to 

normal if we remove persons with C* such that persons with no aberrant response behavior 

are only removed with a probability of 95%. The improvement in the type-I-risk of the ALR test 

works particularly well in the case of Cheating 1 & 2, which are easier to detect than Guessing 

and Careless. 
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The scenarios Fatigue 1 & 2 do influence the response behavior in a way which can neither 

be label as overfit or underfit. This kind of aberrant response seems to have no impact on the 

ALR test. 
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