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A CONNECTION OF SKOROKHOD EMBEDDINGS TO THE
BRASCAMP-LIEB MOMENT INEQUALITY

Abstract. We prove the Brascamp-Lieb moment inequality using the Sko-
rokhod embedding by Bass and a basic result of Stochastic Ordering of random
variables. For a special case, we provide a more direct proof of the inequality
using stochastic ordering. We also present a property of random variables, that
are log-concave with respect to a Gaussian.
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1. Introduction

1.1. Introduction. The central topic of this thesis is the Brascamp-Lieb moment
inequality. It relates the expectation of two random variables under a convex
function. It requires one random variable to be log-concave to the other.

Definition 1.1. A random variable X with distribution µ is log-concave with re-
spect to a random variable Y with distribution ν if µ is absolutely continuous with
respect to ν and the Radon-Nikódym derivative is given in the following form

µ(dx) =
1

Z
e−V (x) ν(dx),(1)

where V : R→ R is convex and Z is the normalizing constant Z =
∫
e−V (x) ν(dx).

Our main theorem is the following.

Theorem 1.2. If X and Y are random variables with values in Rn, Y a Gaussian
random variable and X log-concave with respect to Y , then the following inequality
holds for all convex functions ψ : R→ R:

E[ψ(φ · Y − E[φ · Y ])] ≥ E[ψ(φ ·X − E[φ ·X])].(2)

First proved in [1] 1976, it states that the moments (ψ was assumed to be a
power function) of a Gaussian random variable Y are bigger than the moments of
a random variable X that is log-concave relative to Y . In 2002 Caffarelli [4] used
Optimal Transport Theory, especially his results involving the Monge-Ampere
equation, to generalize the above inequation to general convex ψ. In 2014 Yuu
Hariya [3] used the Skorokhod Embedding by Bass to give a more elegant proof of
the inequality (2).

We were able to give a slightly different version of the proof, alongside the
method of Yuu Hariya, which is the substantial content of this thesis.

1.2. Terminology issues. There is some confusion regarding the name of the
inequality. As stated above, Brascamp and Lieb published the first version of
Equation 2 in [1] in 1976 in the following form

E[(φ · Y − E[φ · Y ])n] ≥ E[(φ ·X − E[φ ·X])n].(3)

Additionaly Brascamp and Lieb published another article [2], in which they proved
another inequality. Until Caffarelli, equation (2) was referred to as Brascamp-Lieb
moment inequality, and the inequality in [2] simply as Brascamp-Lieb inequality.

With the result of Caffarelli, the generalization from equation (3) to equation
(2), the extension moment was considered no longer appropriate and hence has
been neglected by Hariya. This has created a not neglicable amount of confusion
to the author of this thesis, and we therefore prefer to stick to the name Brascamp-
Lieb moment inequality.
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1.3. How to read this thesis. This thesis offers a fast and elegant proof of the
Brascamp-Lieb moment inequality (2) with the method of Yuu Hariya [3]. We
were able to further shorten the proof of the inequality by using the concept of
convex order of random variables and a direct relation between random variables
in convex order and random variables embedded in Brownian motion with ordered
stopping times S ≤ T .

In Sections 2.1 and 2.2 we review basic concepts of stochastic analysis covered
in any graduate course on the subject. In Section 2.3 we state and prove results
from potential theory, that will be used in Section 3.2 to present the Skorokhod
embedding by Chacon and Walsh. We present the embedding by Bass in Section
3.1. In Section 4.2 we present the concept of convex order and use the Chacon and
Walsh embedding to establish the above mentioned direct relation to Skrokhod
embeddings. Subsection ?? might be interesting as it gives a direct proof if V is
unbounded at plus and minus infinity.

The real essence of this thesis is to be found in Sections 5 and 6. There, we
combine the above results to our main result, the proof of the Brascamp-Lieb
moment inequality. Theorem 5.10 describes a property of log-concave functions
and is new to the author.

2. Preliminaries

For the purpose of our thesis, we need a few results from stochastic analysis.
Here we want to repeat the notion of uniform integrability and results involving
uniform integrable random variables, namely continuous martingale convergence
and optional stopping. In Subsection 2.2 we recall martingale representation the-
orems, and prove Clark’s formula. In Subsection 2.3 we present a theorem that
lists properties of potentials in one dimension.

2.1. Uniform Integrability. One, if not one of the biggest, of the recurring
problems in mathematics is the interchangability of a limit and the integral sign.
In every course on measure theory the following two very useful theorems are
proved.

Theorem 2.1 (Monotone Convergence Theorem, see [17]). Let (Ω,A, µ) be a
measure space and fn : Ω → R be a sequence of measurable functions such that
fn(ω) ≤ fn+1(ω). Let f : Ω → R be such that f(ω) = limn fn(ω) where the limit
exists and infinity otherwise. Then the limit and the integral sign commute. This
is,

lim

∫
fn dµ =

∫
lim fn dµ =

∫
f dµ.(4)
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For (Ω,A, µ) a probability space, and Xn an increasing sequence of random vari-
ables,

limE[Xn] = E[lim
n
Xn].(5)

Theorem 2.2 (Dominated Convergence Theorem, see [17]). Let (Ω,A, µ) be a
measure space, g : Ω → R an integrable function, E[|g|] < ∞, and fn : Ω → R
be a sequence of measurable functions such that fn(ω) ≤ g(ω). Let fn converge
almost surely to f : Ω → R, f(ω) = limn fn(ω). Then the limit and the integral
sign commute. This is,

lim

∫
fn dµ =

∫
lim fn dµ =

∫
f dµ.(6)

For (Ω,A, µ) a probability space and fn ≤ g,

limE[Xn] = E[lim
n
Xn].(7)

In practice, sequences of random variables at hand converge pointwise to a
limit, but sometimes neither of the two above theorems, Monotone- or Dominated
Convergence Theorem, can be applied to justify swapping the limit. We will see
in this chapter that uniform integrability is exactly the property needed.

Definition 2.3 (Uniform integrability). A family (Xi)i∈I of random variables is
uniformly integrable if

lim
M→∞

sup
i∈I

E[|Xi|1|Xi|≥M ] = 0.(8)

As starters, let us examine uniform integrability more closely. If we are looking
at one random variable only, or I = {0} in Definition 2.3, Equation 8 provides a
notion of integrability. We have

lim
M→∞

E[|X|1|X|≥M ] = 0, if and only if X ∈ L1.(9)

Indeed, if X ∈ L1, also |X| ∈ L1 and |X| can be used as a dominating function
in Theorem 2.2 because |X|1|X|≥M ≤ |X|. As M goes to infinity, |X|1|X|≥M goes to
zero and limM→∞ E[|X|1|X|≥M ] = 0. On the other hand, if limM→∞ E[|X|1|X|≥M ] =
0, there is M such that E[|X|1|X|≥M ] ≤ 1 and

E[|X|] = E[|X|1|X|≥M ] + E[|X|1|X|<M ]

≤ 1 +M.

In particular, this shows that every random variable that belongs to a family
of uniformly integrable random variables is also in L1. However, the point of
uniform integrability is of course the fact that the expected values of the truncated
random variables go to zero uniformly. There is an alternative definition of uniform
integrability that we will examine now.
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Definition 2.4. A family of random variables (Xi)i∈I is uniformly integrable if
there is a M ∈ R such that E[|Xi|] ≤M and for every ε > 0 there is a δ > 0 such
that for every measurable A, E[|Xi|1A] ≤ ε if P (A) ≤ δ .

Proposition 2.5. Definitions 2.3 and 2.4 agree.

Proof. As before, E[|X|] = E[|X|1|X|≥M ] + E[|X|1|X|<M ]. If (Xi)i is uniformly
integrable according to Definition 2.3, setting ε = 1 gives an M such that

E[|X|1|X|≥M ] ≤ ε,

and E[|X|] < M + 1. Also, set δ = ε
M

to get E[|Xi|1A] ≤MP (A) +E[|X|1X≥M ] ≤
M · ε

M
+ ε = 2ε, and (Xi)i is uniformly integrable according to Definition 2.4.

If (Xi)i is uniformly integrable according to Definition 2.4, define Aγ := {|X| ≥
γ}. The probability of Aγ decreases to zero as γ → ∞ and there is γ0 such that
P (Aγ0) ≤ δ(ε) and therefore E[|X|1|X|≥γ0 ] ≤ ε, and (Xi)i is uniformly integrable
according to Definition 2.3. �

The following lemma is another characterization of uniform integrability. A
function φ : R+ → R+ is called a test function for uniform integrability if

lim
t→∞

φ(t)

t
=∞.(10)

Lemma 2.6. Let (Xi)i∈I be a subset of L1. If

sup
i∈I

E[φ ◦ |Xi|] ≤ ∞,(11)

then (Xi)i∈I is uniformly integrable.

There is actually a converse to this lemma. If (Xi)i∈I is uniformly integrable,
then there is an increasing test function φ such that assertion (11) holds. The
corresponding theorem is called de la Vall’ee Poussin-Theorem and can be found
in [20]. Here we only prove the lemma.

Proof of Lemma 2.6. Set A := supi∈I E[φ ◦ |Xi|] ≤ ∞ and a := ε−1A. Then there

is t0 such that φ(t)
t
≥ a for t ≥ t0. Then,

E[|Xi|1|Xi|≥t0 ] = E[
φ(|Xi|)
a

1|Xi|≥t0 ]

=
ε

A
E[φ(|Xi|)1|Xi|≥t0 ]

≤ ε

A
sup
i∈I

E[φ ◦ |Xi|] ≤ ε.

This is, (Xi)i∈I is uniformly integrable according to Definition 2.4. �
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The above results hold for any class of random variables on any probability
space. In stochastic analysis one usually works on a filtred probability space that
satisfies the usual conditions. For the sake of completeness these two notions shall
be recalled. We also recall the definition of submartingales, supermartingales, and
martingales.

Definition 2.7. A collection (Ω,F , (Ft)t∈T, P ) is a filtered probability space if
(Ω,F , P ) is a probability space and (Ft)t∈T an increasing familiy of σ-algebras,
this is Fs ⊂ Ft if s < t.

Definition 2.8. A filtered probability space (Ω,F , (Ft)t∈T, P ) satisfies the usual
conditions if every Ft contains all P -nullsets and the filtration is complete, Ft =
Ft+ = ∩t′>tFt′.

Definition 2.9. Let (Ω,F , P ) be a probability space and (Ft)t≥0 a filtration. A
stochastic process (Xt)t≥0 with E[Xt] <∞ is a Ft-martingale if

E[Xt|Fs] = Xs for all t ≥ s,(12)

a Ft-submartingale if

E[Xt|Fs] ≥ Xs for all t ≥ s,(13)

and a Ft-supermartingale if

E[Xt|Fs] ≤ Xs for all t ≥ s.(14)

Martingales, alongside with sub- and supermartingales, are a very important
object in probability theory and any attempt to stress their importance would do
them unjust. Let us just mention that the central process of this thesis, Brownian
motion, is not only itself a martingale, but in the sense of the Dambis-Dubin-
Schwarz theorem the only martingale in continuous time, see Theorem 2.26.

Working on a filtred probability space that satisfies the usual conditions has
various advantages. For example, every submartingale Xt for which the function
t 7→ E[Xt] is right-continuous has a modification Y that is also a submartingale
and the trajectories of Y are right-continuous and possess limits from the left
at every point, such martingales are called càdlàg. Càdlàg is a french acronym,
continue à droite limite à gauche that translates to right-continuous and existing
limits from the left.

A martingale has the property that, when interpreting the parameter t as time
and the filtration Ft as the information at time t, when starting at time s the
expected value of the martingale at a later time t equals the value of the martingale
at time s. A submartingale on the other hand has a tendency to rise, the value
at time s falls short to the expectation of the process at a later time. So, in some
ways, submartingales are the stochastic pendant to non-decreasing sequences in R.
As bounded non-decreasing sequences in R converge, we have a similar statement
for submartingales. The following theorem can be found in [11], Theorem 2.10.
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Theorem 2.10 (Almost sure martingale convergence). Let (Xt)t be a submartin-
gale and M a uniform bound, E[Xt] ≤ M . Then Xt converges almost surely to
some random variable X <∞ a.s.

Doob’s Lp inequalities are also known from any course on stochastic analysis.
We state it without proof, the first part of the theorem with p = 1 is sometimes
just called Doob’s inequality.

Theorem 2.11 (Doob’s Lp-inequality, see [11]). Let X be a right-continuous mar-
tingale or a non-negative sub-martingale. Then for p ≥ 1

λp · P [sup
u≤t
|Xu| ≥ λ] ≤ sup

u≤t
E[|(Xu)|p], for every λ > 0,(15)

and for p > 1

E[(sup
u≤t
|Xu|)p]

1
p ≤ p

p− 1
sup
u≤t

E[|Xt|p]
1
p , for p ∈ (1,∞).(16)

Let us focus on convergence of random variables and the role of uniform in-
tegrability. First, we will see that uniform integrability behaves well with linear
combinations.

Lemma 2.12. If (Xi)i∈I and (Yj)j∈J are uniform integrable families of random
variables, α and β real numbers, then the familiy (αXi + βYj)i∈I,j∈J is also uni-
formly integrable.

Proof. It is easily seen that α(Xi)i is uniformly integrable, because

E[α|X|1α|X|≥αM ] = αE[|X|1|X|≥M ],

the latter expression goes to zero as M → ∞ and trivially αM goes to infinity
when M does. The following pointwise inequality is true

|Xi + Yj|1|Xi+Yj |≥2M ≤ 2|Xi|1|Xi|≥M + 2|Yj|1|Yj |≥M .
Taking the expectation, sup over i ∈ I and j ∈ J , and the limit we find

lim
M→∞

sup
i∈I,j∈J

E[|Xi + Yj|1|X+Y |≥M ] = 0.

�

This particularly implies the following useful corollary.

Corollary 2.13. If (Xi)i is uniformly integrable and X ∈ L1, then (Xi −X)i is
also uniformly integrable.

Using this corollary we can relate uniform integrability to L1-convergence.

Proposition 2.14. Xt → X almost surely and (Xt)t is uniformly integrable, if
and only if Xt → X in L1.



2 PRELIMINARIES 7

Proof. (⇒) Using Fatou’s Lemma we show for X

E[|X|] = E[| limXt|]
= lim inf E[|Xt|]
≤ supE[|Xt|] <∞.

Therefore, X is integrable, and from Corollary 2.13 (Xt − X)t is uniformly inte-
grable. Consider,

E[|Xt −X|] = E[|Xt −X|1|Xt−X|≥M ] + E[|Xt −X|1|Xt−X|<M ].

As Xt − X is uniformly integrable, with choosing M we can make the first term
arbitrarily small. We claim the second term to be zero. Indeed, as t goes to
infinity, we can apply the Dominated Convergence Theorem to the second term
with dominating function Y ≡M , and the term goes to zero.

(⇐) Xt −X is uniformly integrable, because

E[|Xt −X|1|Xt−X|≥M ] ≤ E[|Xt −X|]

and the second term goes to zero by assumption. As Xt goes to X in L1, all
Xt and X are in L1. By Corollary 2.13 (Xt − X + X)t = (Xt)t is uniformly
integrable. Xt → X almost surely, because L1-convergence implies almost sure
convergence. �

We are ready to state our main theorem on martingale convergence.

Theorem 2.15 (Martingale Convergence Theorem). For a cádlàg martingale
(Xt)t∈R+, the following three conditions are equivalent,

(1) Xt converges in L1,
(2) there exists a random variable X∞ ∈ L1 such that Xt = E[X∞|Ft],
(3) the family (Xt)t∈R+ is uniformly integrable.

If these conditions hold, then X∞ is also the pointwise limit of Xt, limXt = X
a.s.

Moreover, if for some p > 1 the martingale is bounded in Lp, then the equivalent
conditions above are satisfied and the convergence holds in Lp-sense.

Proof. (3) ⇒ (1) : If (Xt)t is uniformly integrable, also supt E[Xt] < ∞ and by
Theorem 2.10 Xt converges to a random variable X almost surely. Finally, Propo-
sition 2.14 ensures L1-convergence.

(1)⇒ (2) : Xt is a martingale by assumption, so we have

Xt = E[Xt+h|Ft].

L1-convergence of Xt → X implies limE[Xt] = E[X]. The same is true for the
conditional expectation, because conditional expectation as an operator from L0
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to L0 is a contraction (see [18]). Let X∞ be the L1-limit of Xt. Then

Xt = limE[Xt+h|Ft] = E[X∞|Ft].

(2) ⇒ (3) : We have to show that E[|E[X∞|Ft]|1E[X∞|Ft]≥M ] goes to zero as M
goes to infinity. Due to the general fact |E[X|F ]| ≤ E[|X| |F ] and the averaging
property of conditional expectation

E[|E[X∞|Ft]|1E[X∞|Ft]≥M ] ≤ E[E[|X∞||Ft]1E[X∞|Ft]≥M ]

= E[|X∞|1E[X∞|Ft]≥M ]

≤ E[|X∞|] · P (E[|X∞||F∞] ≥M).

The first factor is bounded, because X∞ is in L1. For the second term we use the
Markov inequality that states if Z is a non-negative integrable random variable
that the probability of Z being large can be bound with its expectation in the
following way,

P (Z ≥M) ≤ E[Z]

M
.

Therefore

E[|E[X∞|Ft]|1E[X∞|Ft]≥M ] ≤ E[|X∞|]2

M
.

This is, the truncated expectations decay uniformly to zero as M goes to infinity.

Finally, if supt E[|Xt|p] < ∞, by Doob’s Lp-inequality Theorem 2.11, supt |Xt|
is in Lp and the family (Xt)

p
t is uniformly integrable. �

The above theorem shows again the importance of uniform integrability in L1-
convergence. Another important concept that is used throughout this thesis is
optional stopping. One can find more than one version of the optional stopping
theorem in the literature, but all express the same idea. We state and prove the
version as in [11], Theorem 3.2. For a uniformly integrable martingale Xt and a
stopping time S that is inifinte, we define on S =∞ XS = X∞.

Theorem 2.16 (Optional Stopping Theorem, cf. [11], Theorem II 3.2). On a
filtred probability space (Ω,F ,Ft, P ) let X be a uniformly integrable cádlàg mar-
tingale, the family {XS : S is a stopping time} is uniformly integrable and if S ≤ T

XS = E[XT |FS] = E[X∞|FS].(17)

For the proof we use a more elementary version of the optional stopping theorem,
that is where the stopping times S and T are bounded by some real number M .

Theorem 2.17 (Optional Stopping for bounded stopping times, cf. [11] Propo-
sition II 1.4). Let X be a submartingale, and S and T be stopping times such
that

S ≤ T ≤M <∞.(18)
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Then,

E[XT |FS] ≥ XS.

Furthermore, X is a martingale, if and only if E[XT ] = E[XS] for every two
stopping times S ≤ T ≤M <∞.

Proof of Theorem 2.17. Define the stochastic process H := 1S≤t≤T . Then,∫ t

0

H(s) dXs = XT −XS, for all t ≥M.

The integral of a bounded process with respect to a martingale is again a martin-
gale and hence,

E[XT ] = E[XS].(19)

We use that T is bounded by a nonrandom time M with the following. Define,

SB = S1B +M1Bc

TB = T1B +M1Bc .

SB and TB are stopping times, and if B ∈ FS ⊂ FT ,

E[XT1B +XM1Bc ] = E[XS1B +XM1Bc ].

And therefore

E[XT1B] = E[XS1B] for all B ∈ FS,

and this is E[XT |FS] = XS.

IfX is a stochastic process with E[X0] ≤ ∞ and Equation (19) holds for bounded
stopping times S and T , we can deduce that the stochastic process X is a martin-
gale by setting T = t1A +M1Ac and S = s1A +M1Ac .

The formulae for submartingales follow by taking Yt = max(a,Xt), which is
a integrable process and by the same reasonings as above. Sending a → −∞
completes the proof. �

Proof of Theorem 2.16. First, we show that the family U := {E[X∞|G] : G ⊂
F ,G is a σ− algebra} is uniformly integrable. Due to Jensen inequality and aver-
aging property of conditional expectation we have

E[|E[X∞|G]|1|E[X∞|G]|≥M ] ≤ E[E[|X∞||G]1|E[X∞|G]|≥M ]

≤ E[|X∞|1|E[X∞|G]|≥M ]

≤ E[|X∞|] · P (|E[X∞|G]| ≥M).
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As above we can use Markov inequality to bound the probability

P (|E[X∞|G]| ≥M) ≤ E[E[X∞|G]|]
M

=
E[X∞]

M
.

Hence, the expectation of the truncated random variables decays to zero uniformly.

We claim that the closure in L1 of U is also uniformly integrable. Indeed, if
X ∈ Ū there must be Xn ∈ U such that Xn → X in L1. Then

E[|X|1|X|≥M ] ≤ E[|Xn|1|Xn|≥M ] + E
[
|X|1|X|≥M − |Xn|1|Xn|≥M

]
.

The first term on the right-hand side is bounded by ε with choosing M big enough.
The second term can be controlled by looking at the three cases M < |Xn| ∧ |X|,
|Xn| > M , and |X| > M . This yields the bound

E
[
||Xn| − |X||1|Xn|∧|X|>M

]
+ E[|Xn|1|Xn|≥M ] + E[|X|1|X|≥M ].

The first term goes to zero as n goes to infinity. The second term is less than ε
for M big enough, as is the third term, because X ∈ L1. Note, that we can use
the same M for the third term as we do for the second. This uniform choice of M
ensures that the L1-closure of U is also uniform integrable.

Now, for any stopping time S there are stopping times Sk eventually decay to
S, such that

Sk =

nk∑
i=1

yki 1Ai +∞ · 1Ac ,

for sets Ai and A = ∪Ai. Then,

E[X∞|Fs] = E[X∞1Ac +X∞1A|Fs]
= XSk1Ac +XSk1A

= XSk .

Since Sk eventually go to S from above and X is càdlàg, XSk → XS almost surely.
But XSk is also uniformly integrable, so XSk → XS also in L1.

Finally, let C ∈ FS ⊂ FSk , then

E[1CX∞] = E[1AXSk ]→ E[1AXS].

This is, E[X∞|FS] = XS. �

We have seen that uniform integrability is exactly the property needed to ensure
L1-conergence of a stochastic processes that is known to converge almost surely.
This result is especially useful for martingales since uniform integrability implies
uniform boundedness of the martingale, and due to Theorem 2.10 the almost sure
limit exists.
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One way to interpret Brownian motion is to view it as a collection of normal
random variables. Particularly, Brownian motion (Bt)t≥0 stopped at a non-random
time T is just a normal random variable with the following two properties

E[BT ] = 0,(20)

E[B2
T ] = E[T ].(21)

The above two identities are called Wald’s identities.

Let us examine what happens when we stop Brownian motion at a random time
T . We would expect the same equations to hold, due to the martingale property
of Brownian motion. However, this is not quite true. Consider

T a = inf{t ≥ 0 : Xt = a}.

Brownian motion hits every point almost surely so that E[XTa ] = E[a] = a and
Equation (20) is not satisfied. But it also takes Brownian motion in expectation
infinitely long to hit a point, hence E[Ta] =∞. However, if we impose restriction
on T , Equations (20) and (21) will hold.

For a stopping time T and a stochastic process (Xt)t≥0 define the stopped process

(XT
t )t = (Xt∧T )t.(22)

The stopped process XT is a martingale if X is a martingale, because XT
t =∫

H dX, for H = 1T≥t and a stochastic integral with respect to a martingale is
still a martingale.

Let T be a stopping time, such that T is almost surely bounded by N ∈ R,
T ≤ N a.s. Then the process XT is a uniformly integrable martingale. Indeed,
XT is a martingale, therefore using Jensen’s inequality on taking absolute value,
E[|MT

t ||Fs] ≥ |E[MT
t |Fs]| = |MT

s |, yields that |Mt| is a submartingale. Hence,

E[|MT
t |] ≤ E[|MT |] = E[|MT

N |] <∞,

because MT is a martingale. The same reasoning can be applied to the process
(MT )2, because x 7→ x2 is convex. Therefore, we can use Optional Stopping
Theorem 2.16 on XT and (XT

t )2 − (t ∧ T ) to establish both of Wald’s identities,
equations (20) and (21).

We can even let T be integrable, allowing arbitrarily large values of T .

Proposition 2.18 (cf. [16]). Let T be an integrable stopping time, E[T ] < ∞.
Then both of Wald’s identities hold,

E[BT ] = 0,(23)

E[B2
T ] = E[T ],(24)

and (BT
t )t and

(
(BT

t )2 − (T ∧ t)
)
t

are uniformly integrable.
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Proof. We first show that BT has a majorizing function. To this end define

Mk := sup
t∈[0,1]

|B(k + t)−B(k)]

M :=

dT e∑
k=1

Mk

Observe that each BT
t is bounded by M

|BT
t | = |

dT e∑
(B(k + 1)−B(k)) +B(T )−B(k)|

≤
dT e∑
|B(k + 1)−B(k)|+ |B(T )−B(k)|

≤M.

It remains to check that M is integrable,

E [|M |] = E

[
∞∑
k=0

1T>kMk

]
.

By Beppo-Levi, an immediate consequence of the monotone convergence theorem,

E

[
∞∑
k=0

1T>kMk

]
≤

∞∑
k=0

E [Mk1T>k] .

We use the Markov Property of Brownian motion on E[Mk]1T>k]. Using the aver-
aging property of conditional expectation, the facts that 1T>k ∈ Fk and E[Mk|Fk]
is independent of Fk and equals M0, we compute

E[Mk1T>k] = E[E[Mk1T>k|Fk]]
= E[1T>kE[Mk|Fk]]
= E[1T>kE[M0]]

= P (T > k) · E[M0].

Hence,

E[|M |] = E[ sup
0≤s≤1

|Bs|] · E[T ].

The second term is finite by assumption. For the first term we use Doob’s Lp-
inequality for p = 2, to get P (sup0≤s≤1 |Bs| ≥ α) ≤ E[|B1|2

α2 .And consequently,

E[ sup
0≤s≤1

|Bs|] ≤ E[|B1|2] ·
(

1
1

12
+ 1

1

22
+ 1

1

32
+ . . .

)
≤ 1 · const .
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Hence, BT is uniformly integrable and we can use optimal stopping, note that
BT
∞ = BT , to establish the first Wald’s identity.

If we also show that
(
BT
t )2 − (T ∧ t)

)
t

is uniformly integrable, we are done by
Optimal-Stopping-Theorem.

Fix t, then we can use Doob’s Lp-inequalities with p = 2 to show

E
[
(sup
s≤t

BT
t )2

]
≤ 4E[(BT

t )2] = 4E[T ∧ t],(25)

where the last equality follows because (BT
t )2 − (T ∧ t) is a martingale, since T is

a stopping time and B2
t − t is a martingale. The running maximum sups≤tBs of

any process is monotone in t, and hence the left-hand side converges by Monotone
Convergence Theorem to E[(sups≤T Bs)

2]. The right-hand side, also by Monotone
Convergence Theorem, converges to 4E[T ]. This yields

E[|(BT
t )2 − (T ∧ t)|] ≤ 4E[T ] + E[T ] = 5E[T ] <∞.

�

2.2. Martingale Representation and Clark’s formula. Richard F. Bass 1983
in [13] employed stochastic integrals to construct a solution to the Skorokhod
Embedding Problem. In [13] he uses a special type of Martingale Representation,
and we shall take this opportunity to review general Martingale Representation
and introduce Clark’s formula, the specific type used by Bass.

In general, Martingale Representation Theorems assert that a martingale can
be represented as a stochastic integral of a suitable random variable with respect
to Brownian motion. The discrete time analouge of continuous time Brownian
motion is a symmetric random walk. A discrete stochastic integral with respect to
a symmetric random walk is a summation over suitable random variables γi times
Bernoullie (1/2, 1/2) random variables βi.

Let Ω = {−1, 1}N the space of infinicte sequences of ones and zeros. Let πi(ω) =
ωi be the natural projections, F = σ(πi, i ∈ N) and Ft = σ(πi, i = 1, .., t). Let P
be the unique probability on (Ω,F) such that P (πi = 1) = P (πi = −1) = 1/2 for
all i ∈ N. Recall that a process γt is predictable with respect to Ft if γt is Ft−1

measurable. Then the discrete version of the martingale representation theorem
reads as follows.

Theorem 2.19 (Discrete Time Martingale Representation). Let (Xn)n be a Ft-
martingale on (Ω,F , P ), then for every simple random walk Yk =

∑k
i=1 βi there is

a predicatable process (γn)n such that Xn = X0 +
∑n

i=1 βiγi = X0 +
∫ n
i=1

γ dY .

In the discrete time case we had to impose only one restriction on the martingale.
This was to be defined on (Ω,F , (Ft)Nt=1), that is the natural measurable space for
a random walk. This ensures that the given martingale X inherits at most as much
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randomness as the simple random walk, a crucial fact necessary for the theorem
to hold. If the martingale depends on something the simple random walk does
not, the random walk is too poor to imitate the martingale. This observation
is also crucial in the continuous time case. Due to increased complexities - one
might say technicalities - further restrictions on the regularity of the martingale
are necessary.

Theorem 2.20 (Continuous Time Martingale Representation). Let B be a Brow-
nian motion on (Ω,F , P ) and let Ft be natural the filtration generated by B. Then,
for any square-integrable (continuous) martingale Mt with M0 = 0, there is a pro-

gressively measurable process ψ such that E[
∫ T

0
ψ2
t dt] <∞, and

Mt =

∫ t

0

ψs dBs, 0 ≤ t <∞.

We will work on the canonical space for Brownian motion (C,F∞,Ft,W ) with
C = C([0,∞),R) the continuous functions from the positive reals into the re-
als, F∞ the sigma algebra generated by cylinders, Ft their restrictions to [0, t],
and W the Wiener measure. A Brownian Functional F is a random variable on
(C,F∞,W ). F is square-integrable if E[F 2] < ∞. For such functionals we have
the following theorem:

Theorem 2.21 (Brownian Functionals as Stochastic Integrals). Let F be a F∞-
measurable square-integrable Brownian Functional, then there is a progressively

measurable ψ with
∫ T

0
ψ2
t dt <∞ such that

F − E[F ] =

∫ ∞
0

ψt dBt.(26)

In various applications (such as hedging in mathematical finance) it has proven
useful to know the above process ψ explicitly. An explicit expression is also of
vital importance in the embedding by Bass, and we will be using Clark’s formula
for the specific functional F (ω) = g(B1).

Now, we are ready to state Clark’s formula for simple functionals, originally
proven in [14]. A general version of Clark’s formula holds for any square-integrable
functional.

Theorem 2.22 (Clark’s formula for simple functionals). Let g ∈ C2, Bt = ω(t) be
the canonical coordinates, and F = g(B1) a square-integrable functional. Then ψ
in (26) is the conditional expectation of g′(B1). This is,

g(B1)− E[g(B1)] =

∫ ∞
0

E[g′(B1)|Ft] dBt.(27)

The following is taken from [12], reproducing an approach by Bismut.
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Definition 2.23. In addition to square-integrability, we will require two more
properties:

• We say that a Brownian functional F is quasi-continuous, if there is a
non-negative and square-integrable Brownian functional h and a function

k : [0,∞)→ [0,∞) with lim supε→0
k(ε)
ε
<∞, such that ∀(ω, ϕ) ∈ Ω2 :

|F (ω + ϕ)− F (ω)| ≤ h(ω) k(‖ϕ‖∞).(28)

• We say that a Brownian functional F is quasi-differentiable, if there is a
measurable mapping ω 7→ ∂F (ω; ·) : (Ω,FT ) → (M ,M), where M is the
set of finite Borel measures on B([0, T ]) and M is the σ-algebra generated
by the topology of weak convergence on M , such that ∀ϕ ∈ C1([0, T ]) :

lim
ε→0

1

ε
[F (ω + εϕ)− F (ω)] =

∫ T

0

ϕ(t) ∂F (ω; dt), for P -a.e. ω.

Quasi-continuity and quasi-differentiability describe similar properties as their
well-known counterparts in standard analysis. We note that for g ∈ C2, F (ω) =
g(B1) is both quasi-continuous and quasi-differentiable. For the first, choose h ≡ 2
and k(x) = x. For the latter, choose ∂F (ω, ·) = g′(B1)δ1.

Theorem 2.24 (Clark’s formula for general functionals). Let F be a square-
integrable, quasi-continuous, and -differentiable Brownian functional. ψ in (26)
is the predictable projection of the (not necessarily adapted) process ∂F (B; (t, T ]).
This is, for Lebesgue-almost-every t ∈ [0, T ], we have

ψt = E [∂F (B; (t, T ])|Ft] P-a.s.(29)

Proof. The theorem will be shown with showing

E
[∫ T

0

Xtψt dt

]
= E

[∫ T

0

Xt∂F (B; (t, T ]) dt

]
(30)

for every bounded, continuous, and adapted process X. For this end, let ϕt =∫ t
0
Xsds and define the following exponential martingales and probability measures:

Zε = exp

{
ε

∫ t

0

Xs dBs −
ε2

2

∫ t

0

X2
s ds

}
P ε(A) = E [Zε1A] , for A ∈ F∞

The Girsanov theorem (as presented e.g. in [10] 3.5) gives that (Bt − εϕt) is a
P ε-Brownian motion and thus,

E[F (B)] = Eε[F (B − εϕ)] = E[ZεF (B − εϕ)](31)

Using (31):

E[F (B)− F (B − εϕ)] + E[(Zε − 1)(−F (B − εϕ))] = 0
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And thus, adding one term and dividing by ε,

1

ε
E [F (B)− F (B − εϕ)] + E

[
Zε − 1

ε
(F (B)− F (B − εϕ))

]
= E

[
F (B)

Zε − 1

ε

]
.

(32)

The exponential martingales Zε solve the SDE dZε = εX dB with initial condition
Z0 = 1, and so Zt can be written as

Zε
t = 1 +

∫ t

0

εZε
sXs dBs.

Using this expression, one can deduce the following two

lim
ε→0

E
[∫ T

0

(Zε
s − 1)2 ds

]
= 0(33)

Zε
t − 1

ε
L2

−→

∫ t

0

Xs dBs.(34)

We send ε → 0 in (32), differentiating F along ϕ, and control the three terms
individually:

Using quasi-continuity of F , the first term on the left 1
ε

(F (B)− F (B − εϕ)) is

bounded, and using quasi-differentiability its limit is equal to
∫ T

0
ϕ(t)∂F (B; dt).

Using quasi-continuity, the second term is bounded by E
[
|Zε−1

ε
|h(B)

]
k(ε‖ϕ‖). By

Cauchy-Schwarz the expected value goes to zero, as does k(ε‖ϕ‖). The right hand

side goes to E
[
F (B)

∫ T
0
Xs dBs

]
, because of (34).

So, (32) goes in L2 to

E
[∫ T

0

ϕ(t)∂F (B; dt)

]
= E

[
F (B)

∫ T

0

Xs dBs

]
.(35)

Using the definition of ϕ and Fubini, the left hand side is:

E
[∫ T

0

∫ T

0

10≤t<s≤TXt dt∂F (B; dt)

]
= E

[∫ T

0

Xt∂F (B; (t, T ]) dt

]
.(36)

Using Theorem 2.21 and properties of L2-martingales, the right hand side equals

E
[{

E[F ] +

∫ T

0

ψs dBs

}∫ T

0

Xs dBs

]
= E [Xtψt dt] .(37)

We have shown (30), and with that the theorem. �

Remark 2.25. According to [12] equation (31) can be taken as a starting point
for a stochastic calculus of variations, known as Malliavin calculus.



2 PRELIMINARIES 17

Another type of martingale representation is the above mentioned Dambis,
Dubin-Schwarz Theorem. It states that if we index a continuous time martin-
gale with its quadratic variation, it is a martingale. In this sense, the quadratic
variation process can be seen as the natural clock of a martingale and continuous
time martingales are all the same, they just differ in terms of the velocity with
which they evolve. We state without proof.

Theorem 2.26 (Dambis, Dubin-Schwarz, see [11], Theorem 1.6). Let (Mt)t≥0 be
a continuous local martingale with M0 = 0 and almost sure unbounded quadratic
variation process, 〈M〉∞ =∞. Then the process

Bt := MTt ,

whith Tt := inf{s ≥ 0 : 〈M〉s > t} is a Brownian motion.

2.3. Potential Theory. On the real line, the potential Uµ of a measure µ is
defined as Uµ(x) =

∫
R |x− t| µ(dt). In the probabilistic context we can define the

potential of a random variable X as

UX(x) = E[|X − x|].(38)

The potential U can be seen as an operator from L1 → C(R,R−). This op-
erator possesses some surprising features which we will use in the Chacon-Walsh
embedding. Let L1µ be the space of integrable random variables with mean µ.

Theorem 2.27. Let µ ∈ R and X ∈ L1µ. Then

(1) UX is concave and finite
(2) UX(x) ≤ Uδ(µ)(x) = −|x− µ|
(3) X1, X2 ∈ L1µ, lim|x|→∞ |UX1(x)− UX2(x)| = 0

(4) E [(X − µ)2] =
∫
R

∣∣|x|+ UX(x+ µ)
∣∣ dx

(5) Xi → X in distribution, if and only if UXi(x)→ UX(x) for all x ∈ R
(6) Let (Bt)t∈R+ be a martingale and Ta,b the hitting time of (a, b)c. Then

UBT = UB0 on (a, b)c and UBT is linear on [a, b].

Proof. we can assume without loss of generality, µ = 0:

for (1): UX(x) <∞, because E|X−x| ≤ E|X|+E|x| <∞+ |x|. UX is concave,
because E|X − (αx+ βy)| ≤ E|αX − αx|+ E|βX − βy| = αUX(x) + βUX(y).

for (2): for x ≤ 0: −E|X − x| ≤ −E(X − x) = x = −|x|. Likewise for x ≥ 0.

for (3): observe that EX1 = EX2 implies E[(X1 − x) − (X2 − x)] = 0. For
x→ +∞ one computes

UX1(x)− UX2(x) = E [|X1 − x| − |X2 − x|]
= E [|X1 − x|+ (X1 − x)− (X2 − x) + |X2 − x|]
= E [2(X1 − x) 1X1≥x] + E [2(X2 − x) 1X2≥x]
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As E|X1| < ∞, both expressions go to zero when x goes to +∞. For X → −∞
similarly.

for (4): observe that

−|y| − UX(y) =

{
2E[X − y;X ≥ y], y ≥ 0

2E[y −X;X < y] y < 0.

Using that X is centred, E[X;X < y] = −E[X;X ≥ y] and trivially P (X ≥
y) = 1− P (X < y). Using these one proves for y > 0 :

−y+E[|X − y|] = −y + E[X − y;X ≥ y] + E[y −X;X < y]

= E[X;X ≥ y]− E[X;X < y] + y
(
− 1− P (X ≥ y) + P (X < y)

)
= 2 E[X;X ≥ y]− 2 E[−y;X ≥ y]

Similarly, for y < 0. Then, using the above (4) is proven with the following
computation:

1
2

∫ ∞
−∞
−|y| − UX(y) dy

=

∫ 0

−∞
E [y −X;X < y] dy +

∫ ∞
0

E [X − y;X ≥ y] dy

= E
[∫ 0

X

y −X dy;X < 0

]
+ E

[∫ X

0

X − y dy;X ≥ 0

]
= E

[∫ 0

X

y dy −X
∫ 0

X

1 dy;X < 0

]
+ E

[
X

∫ X

0

1 dy −
∫ X

0

y dy;X ≥ 0

]
= E

[
−X2

2
+X2;X < 0

]
+ E

[
X2 − X2

2
;X ≥ 0

]
= E

[
X2
]

1
2
.

for (6): Define I1 = 1B0≤a, I2 = 1a<B0<b, I3 = 1b≤B0 and Bi = B ∗ Ii, i = 1, 2, 3,
so that Bt = B1

t +B2
t +B3

t . Define V i
X(x) = −E|Ii(X − x)|, then UB0 =

∑
i V

i
Bi0
Ii,

and BT =
∑

i VBiT Ii. We check that UB0 = UBT for every Bi separately. Observe

that T ∗ I1 = T ∗ I3 = 0, so the potentials of B1 and B3 agree for all x. For B2, if
x ≤ a, E|B2

0 − x| = EB2
0 − x = EB2

T − x = E|B2
T − x|. For x ≥ b similarly. This

is, UB0 = UBT for x ∈ (a, b)c.

To prove the linearity of UBT for x ∈ [a, b], check that

Ii ∗ V i
XT

=


I1 ∗ (x− EB1

0 ), if i = 1

I2 ∗
(
b−EB2

0

b−a (x− a) +
EB2

0−a
b−a (b− x)

)
if i = 2

I3 ∗ (EB3
0 − x) if i = 3.
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Observe that each of the three functions is linear in x and that UBT (x) is the
sum of these three linear functions. �

3. Skorokhod embedding

We first present the original version of the Skorokhod embedding problem as
proposed by Skorokhod. Suppose T is an integrable stopping time and B is a
Brownian motion. If we stop B at the stopping time T , the resulting random
variable BT has mean zero and second moment equal to E[T ] as assured by Wald’s
identities, Proposition 2.18.

Skorokhod proposed 1965 the reversed question: given a distribution µ with
mean zero and finite second moment, find a stopping time T such that BT ∼ µ!

A first answer to this question may be a bit disappointing as it somehow cheat-
ing. Let Fµ be the distribution function of µ, F−1

µ its right-continuous inverse and
Φ the distribution function of a standard normal random variable. Observe that
(F−1

µ ◦Φ)(B1) ∼ µ and that therefore T = inf{t ≥ 1|Bt = (F−1
µ ◦Φ)(B1)} embeds

µ in Brownian motion. T is almost surely finite, but unless Fµ = Φ, ET =∞, be-
cause hitting times of single points of Brownian motion are infinite in expectation.

Of vital importance in the construction of the above stopping time was that g :=
(F−1

µ ◦Φ)(B1) ∼ µ. Let ν be the distribution of a standard normal random variable,
then one says g transports ν to µ. A relatively modern brand of mathematics,
called optimal transport theory, is examining transport problems of this form. The
interested reader may be directed to the standard opus on optimal transportation
by Cédric Villani [7]. Whilst most of present-day research takes place in more
complicated spaces than the real line, the latter is much easier to handle and it is
well known that g is the optimal transportation plan in a broad spectrum of cases
of cost functions.

The above construction works for any probability µ not necessarily centred or of
finite second moment. It is therefore clear that we should impose some restrictions
on T . Skorokhod required µ to have finite second moment σ2 and T be integrable.
Due to Wald’s identities, Proposition 2.18, this readily implied for a stopping T
embedding µ, BT ∼ µ, that the expectation of T to be equal the second moment
of µ, E[T ] = σ2. Problem 3.1 is the original form of the problem as proposed by
Skorokhod.

Problem 3.1 (Original Skorokhod Embedding Problem). For a given centred
probability measure µ on R with finite second moment, find a integrable stopping
time T such that BT ∼ µ.

Ob lój [6], finds that BT
t is uniformly integrable is a more natural restriction.

Below we state the modern version Skorokhod embedding problem formally and
according to [6]:
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Problem 3.2 (Modern Version of Skorokhod Embedding Problem). For a given
centred probability measure µ on R with finite first moment, find a stopping time
T such that BT ∼ µ and (Bt∧T : t ≥ 0) is uniformly integrable.

Since the proposition of the problem in 1961 many different solutions have been
developed using different tools from different areas in mathematics. The first
solution, presented by Skorokhod required external randomization (the stopping
time T was allowed to depend on a bigger filtration than the natural filtration
of the Brownian motion). Other authors managed to find results which did not
require external randomization and featured different properties. For example,
Root’s embedding allows for a visualisation, or Bass’ solution gives an easy-to-
handle expression for calculations, which we will exploit in proving the Brascamp-
Lieb moment inequality. In this document we will present two solutions. The
embedding by Bass, that uses martingale methods, and the embedding by Chacon
and Walsh, which relies on potential theory.

3.1. Embedding by Bass. Given a centred probability measure µ on R with
finite first moment. Our aim is to find a stopping time T such that BT ∼ µ and
{Bt∧T |t ≥ 0} is uniformly integrable.

For any distribution µ, let Fµ(t) = µ ((−∞, t]) be the cumulative distribution
function of a random variable with distribution µ. Let F−1

µ be the generalized

inverse of Fµ, this is F−1
µ (x) = inf{t ∈ R|Fµ(t) ≥ x}. Let Φ denote the cumulative

distribution function of a standard normal variable. Then define

g(x) = (F−1
µ ◦ Φ)(x).(39)

This function g transportsN (0, 1) to µ in the sense of B1 ∼ N (0, 1) and g(B1) ∼
µ.

The idea of the Bass embedding is the following: if g is smooth and squared-
integrable, using Clark’s formula (Theorem 2.24) we can write:

g(B1)− E[g(B1)] =

∫ 1

0

E[g′(B1)|Fs]dBs =

∫ 1

0

a(s, Bs)dBs,(40)

for a(s, y) = E[g′(B1)|Bs = y]. Also define a martingale

Mt =

∫ t

0

a(s, Bs) dBs,

with M1 ∼ g(B1) − E[g(B1)]. Then, using Dambis-Dubins-Schwarz, we get a
Brownian motion X with Xt = Mτ(t), where τ(t) denotes the time until which M
has acquired t quadratic variation,∫ τ(t)

0

a2(s, Bs) ds = t.
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Then for

T =

∫ 1

0

a2(s, Bs) ds,

the stopped Brownian motion X has distribution equal to g(B1) − E[g(B1)] and
for g as in (39) equal to µ. This is,

XT ∼ µ.

In order to justify the above, the following steps are to be done:

(1) identify functions g to which this procedure can be generalized
(2) show that Mt is a martingale
(3) show that T is a stopping time with respect to the natural filtration of X
(4) for an arbitrary Brownian motion Wt find a stopping time S such that

WS ∼ µ

Let us examine the term E[g′(B1)|Ft] in Clark’s formula more closly. Observe,
due to the Markov property of Brownian motion E[g′(B1)|Ft] = EXt [g′(B1−t)].
Then the function a : [0, 1]×R→ R, (t, y) 7→ E[g′(B1−t+y)] satisfies the following

E [g′(B1)|Fs] = a(s, Bs)

a(s, y) =

∫
g′(z)p1−s(z − y) dz,

where ps(t) is the density function of a centred Gaussian random variable with
variance s.

The function a can be computed explicitly

a(s, y) =

∫
R
g′(z) p1−s(z − y) dz

= −
∫
R
g(z) q1−s(z − y) dz

=

∫
R
g(z) q1−s(y − z) dz,

using an integration by parts, qs = p′s and q(t) = −q(−t).
Similarly, due to the Markov property of Brownian motion

E[g(B1)|Ft] = EBt [g(B1−t)],

and the function b : [0, 1]× R→ R, (t, y) 7→ E[g(X1−t + y)] satisfies the following,

E[g(B1)|Ft] = b(s, Bt)

b(s, y) =

∫
R
p1−s(z − y) g(z) dz.
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Trivially conditional expectations of a integrable random variable is a martin-
gale. Consider Yt = E[Z|Ft], since the conditional expectation of a conditional
expectation is equals the condtional expectation with respect to the smaller σ-
algebra, for s ≤ t we have: E[Yt|Fs] = E[E[Z|Ft]|Fs] = E[Z|Fs] = Ys. Hence,
Mt = E[g(B1)|Ft] is a martingale. Applying Ito’s formula (see e.g. [10] or any
book on stochastic calculus) to b(t, Bt) the dt-terms cancel, because b(t, Bt) is a
martingale, and hence

b(t, Bt)− b(0, B0) =

∫ t

0

b′(s, Bs) dBs,(41)

where b′(s, Bs) = ∂
∂t
b(t, Bt) is the partial derivative of b with respect to its first

coordinate. Replacing b(t, Bt) with E[g(B1)|Ft] and b(0, B0) with E[g(B1)|F0] =
E[g(B1)] we can write

E[g(B1)|Ft]− E[g(B1)] =

∫ t

0

b′(s, Bs) dBs.(42)

In order to link b′(s, Bs) to the equation in Clark’s formula we compute

b(t, y) = E[g(B1−t + y)]

=

∫
R
g(x+ y)p1−t(x) dx

=

∫
R
g(x)p1−t(x− y) dx

=:

∫
R
k(x, y, t) dx,

where the function k of course equals k(x, y, t) = g(x)p1−t(x− y). We employ the
following lemma.

Theorem 3.3 (Differentiation lemma, cf. Lemma 16.2 in [19]). Let I be a non-
empty open interval. The function f : I × Ω→ R be such that

(1) x 7→ f(t, x) is integrable for every t,
(2) t 7→ f(t, x) is differentiable for all x with derivative ∂f

∂t
, and

(3) there is a Lebesgue integrable function h ≥ 0 : R→ R, such that |∂f
∂t

(t, x)| ≤
h(x).

Then for all x in R the following holds,

d

dt

∫
R
f(x, t) dx =

∫
R

∂

∂t
f(x, t) dx.(43)
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Proof. Let F (t, x) :=
∫
f(t, x) dx. Then

lim
h

F (t+ h, x)− F (t, x)

h
= lim

h

∫
f(t+ h, x)− f(t, x)

h
dx

= lim
h

∫
f ′(ξ(t, h, x), x) dx,

and ξ ∈ (t, t + h). Due to assumption 3, f ′ ≤ h and we can use Dominated
Convergence Theorem,

lim
h

∫
f ′(ξ(t, h, x), x) dx =

∫
lim
h
f ′(ξ, x) dx

=

∫
f ′(t, x) dx.

The above expressions are well-defined due to assumptions 1 and 2. �

The Gaussian density ps(t) is smooth, so is its derivative q. Hence, the function
k and its partial derivative in t are continuous if g is continuous. For assumption
3 in Theorem 3.3, observe that there is Z0 and γ such that for k ≥ 0, t ≤ γ < 1,

and z ≥ Z0 we have |z − y|k exp{ (z−y)2

2t
} ≤ exp{− z2

2
}. And hence on intervals J

bounded away from zero f ′(t, x) ≤ h(x) = 1|x|<Z0 sup f ′ + 1|x|≥Z0 exp{− z2

2
}. This

justifies differentiating under the integral sign for all t < 1.

Therefore, using Equation (42), and the above Theorem 3.3 on d
dt

∫
k(x, y, t) dx

so that

b′(t, y) =

∫
∂

∂t
k(x, y, t) dx

=

∫
g(x)q1−t(x− y) dx

= a(t, y),

we have shown the following:

Theorem 3.4. Let the function g : R → R be continuous and such that g(B1) is
integrable. Then

Mt = E[g(B1)|Ft]− E[g(B1)]

is a martingale and the following holds.

E[g(B1)|Ft]− E[g(B1)] =

∫ t

0

ā(s, Bs) dBs,(44)

where ā =
∫
R g(z) q1−s(y − z) dz. Additionally, if g is C1, ā = a and we recover

Equation (40)

g(B1)− E[g(B1)] =

∫ 1

0

E[g′(B1)|Fs]dBs =

∫ 1

0

a(s, Bs)dBs.(45)
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We particularly have established the following corollary.

Corollary 3.5. If E[g(B1)] = 0, such as for centred µ in (39),

Mt = E[g(B1)|Ft] =

∫ 1

0

a(s, Bs) dBs,(46)

and Mt :=
∫ t

0
a(s, Bs) dBs is a martingale.

Next, we want to transform the martingale to a Brownian motion and establish
that the transformed stopping time 1 is a stopping time in the natural filtration of
the Brownian motion. To this end, let µ be a centred probability measure on R.

Note that there are stopping times Tn such that MTn is a squared-integrable
local martingale. Therefore, the quadratic variation process exists for all (Mt)t≥0

and let it be denoted by 〈 〉. Then, we define the stochastic processes η and τ

η(t) = 〈M〉t =

∫ t

0

a2(s, Bs) ds,

τ(t) = inf{r| η(r) ≥ t}.

Let

Nt := Mτ(t).

Nt has quadratic variation of t and Dambis-Dubin-Schwarz Theorem 2.26 ensures
that Nt is a Brownian motion. Observe, that

Nη(1) = M1 ∼ µ.

With proving the following theorem, we will have established that η(1) is a
stopping time in the right-continuous completion of the natural filtration of the
Brownian motion Nt, t ≥ 0.

Theorem 3.6. Let Fu = σ(Nt |t ≤ u). {η(1) ≥ u} is in the right continuous
completion F+

u :=
⋂
ε>0Fu+ε.

Corollary 3.7. η(1) is a F+
t -stopping time.

Proof. We have to show that {η(1) ≤ u} is in the right continuous completion
F+
u =

⋂
ε>0Fu+ε. Given ε̄, {T ≤ u} =

⋂
0<δ<ε̄/2{T < u + δ}. But for every δ, due

to the above Theorem 3.6, {T < u+δ} = {T ≥ u+δ} is in F+
u+δ and since δ < ε̄/2

in Fu+2δ ⊂ Fu+ε̄. �

In order to proof the theorem we need a technical lemma from [13] on the
regularity of the functions a(s, y), b(s, y) and the inverse of b(s, ·). Indeed, b can
be seen as a function from the possible states of the Brownian motion at time s to
the expectation of the random variable g(B1). The lemma states that the inverse
exists and is regular.
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Lemma 3.8 (cf. [13], Lemma 2). Let g be a non-decreasing function g : R → R
and not identically constant. Then

(1) On compact subsets of [0, 1) × R, a(s, y) is bounded above, bounded below
away from 0, and uniformly Lipschitz in s and y.

(2) For each s < 1, b(s, y) is continuous and strictly increasing as a function
of y

(3) For each s < 1, let b−1(s, ·) be the inverse of b(s, ·). Then on compact
subsets of its domain, b−1(s, y) is uniformly Lipschitz in s and jointly con-
tinuous in s and y.

We continue with the proof of the above theorem.

Proof of Theorem 3.6. Bass uses a differential equation argument from Yershov
[15]. Due to the lemma η(1) < ∞, also observe that a2(s, Bs) is continuous for
almost every ω. Therefore, one can use standard integration theory and Monotone
Convergence Theorem to write:

η(1) =

∫ 1

0

a2(s, Bs) ds = lim
t→1

∫ t

0

a2(s, Bs) ds = lim
t→1

η(t).

Therefore, it suffices to consider only {η(t) ≥ u} for s < 1 due to the following

{η(1) ≥ u} =
⋃
n∈N

{η(1− 1
n
) ≥ u}.

Note, that η is continuously differentiable for almost every ω, and the following
equation holds pathwise,

dη(t) = a2(t, Bt) dt.

Due to Lemma 3.8 a(s, y) is bounded away from zero, therefore η is strictly in-
creasing and C1. Therefore, τ is its true inverse and one computes

dτ(t)

dt
=

1

dη(τ(t))/dt
=

1

a2
(
τ(t), Bτ(t)

) .
Using the inverse of the function b(s, y), Bτ(t) can be written as

Bτ(t) = b−1(τ(t),Mτ(t)) = b−1(τ(t), Nt),

and thus, for every ω, τ(t) satisfies the ordinary differential equation

dτ(t)

dt
=

1

a2 (τ(t), b−1(τ(t), Nt))
.(47)

Consider the set G := {(τ(t), Nt) | τ(t) ≤ u}. This set is contained in the rectangle
R := [0, u] × [Nmin, Nmax], with min and max denoting points in [0, u] where Nt

attains its maximum and minimum. They exist because Nt is continuous.
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G therefore is contained in a compact subset of the domain of b−1. This, the reg-
ularity of coefficients in equation (47) by Lemma 3.8, and a theorem on uniqueness
of solutions of differential equations show that there is a unique solution to (47)
up to some t0 such that τ(t0) = u. Furthermore, the solution can be constructed
with Picard iteration.

This means, if u ≤ t0, τ can be constructed from Nt, 0 ≤ t ≤ u to find τ(u) ≤ s.
If u > t0, τ can be constructed from Nt, 0 ≤ t ≤ t0 to find τ(t0) = s and conclude
τ(u) > τ(t0) = s. This is, {τ(u) ≤ s} is in Fs. �

We have proven the following theorem:

Theorem 3.9 (Bass embedding for a given Brownian motion). If µ is a square-
integrable probability distribution on R, there is a Brownian motion {Nt, t ≥ 0}
and a stopping time η(1) such that the stopped Brownian motion has distribution
µ, that is Nη(1) ∼ µ.

We do not know yet that the stopping time η(1) is integrable. Let us give a
formal proof.

Theorem 3.10. If µ is square integrable,
∫
x2µ(dx), then the stopping time

T =

∫ 1

0

a2(s, Bs) ds

is integrable and

E[T ] =

∫
x2µ(dx).

We will need the Burkholder-Davis-Gundy Inequalities. We state without proof.

Theorem 3.11 (Burkholder-Davis-Gundy, see [11], Theorem 4.1). Let 〈 〉 denote
the quadrativ variation process and p ∈ (0,∞). There are constants cp and Cp
such that for all continuous local martingales M with M0 = 0,

cpE[〈M〉
p
2∞] ≤ E[(M∗

∞)p] ≤ CpE[〈M〉
p
2∞].

Proof of Theorem 3.10 cf. [13], page 5. We use Doob’s Lp inequality for p = 2 to
get

E[sup
s≤1

M2
s ] ≤ sup

s≤1
E[M2

s ] = E[M2
1 ].

For the non-random stopping time 1 the stopped process is M1 and M1
∞ = M1 ∼ µ.

Theorem 3.11 gives a constant c2 <∞ such that

c2E[〈M1
∞〉] = cpE[〈M1〉] ≤ E[sup

t≤1
M2

t ] ≤ E[M2
1 ] <∞.

Since E[〈M1
∞〉] =

∫ 1

0
a2(s, Bs) = T the proof is complete. �
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But we want more. We only have found a stopping time for a specific Brown-
ian motion, that was constructed from the martingale Mt. We are interested in
stopping times for an arbitrary Brownian motion.

Theorem 3.12 (Bass embedding for an arbitrary Brownian motion). Let µ be a
square-integrable probability distribution on R and {Xt, t ≥ 0} a Brownian motion.
Then there is a integrable stopping time T such that the stopped Brownian motion
has distribution µ, this is XT ∼ µ and T is a solution to the original Skorokhod
embedding problem.

Proof. We use an argument based on the differential equation considerations above.

For every ω, let τ̄(t) = τ̄(t)(ω) be the unique solution to

dτ̄(t)

dt
=

1

a2 (τ̄(t), b−1 (τ̄(t), Xt))
.(48)

Let η̄ be the inverse to τ̄ , η̄(t) := τ̄−1(t) for t < 1 and let T = limt→1 η̄(t). Then
note that the law of (X,T ) is the same as the law of (N, η(1)), implying XT ∼
Nη(1) ∼ µ. �

3.2. Embedding Chacon-Walsh. The Chacon-Walsh embedding is one repre-
sentative of the family of embeddings that use potential theory.

Using potential theory - and in particular the results of theorem (2.27) - Chacon
and Walsh constructed a solution to the Skorokhod embedding problem. Let T(ai,bi)

be the hitting time of (a, b)c and θ the standard shift operator on C([0,∞),R), θs ◦
ω(t) = ω(t+ s).

Theorem 3.13 (Embedding by Chacon and Walsh, cf. [8]). Let µ be a square-
integrable measure on R and X a random variable with distribution µ, let

U0(t) := Uδo(t) = −|t|,
and let an, bn be points such that the line segment connecting (an, Un(an)) and
(bn, Un(bn)) is above UX and for n ≥ 1, let Un be such that Un+1 = Un outside
[an, bn] and linear in between.

Then for Ti = T(ai,bi) ◦ θTi−1
+ Ti−1, the stopping time

T := lim
i→∞

Ti,

is well defined, integrable and XT ∼ µ. This is, T is a solution to the original
Skorokhod embedding problem (3.2).

Proof. We reproduce a proof similar and in the same spirit as in [8], using the
Figures 1a to 1d to explain the main idea:

And the following words explain the Figures 1a to 1d... Due to theorem (2.27)-1
Uδ0 ≥ UX . Therefore, we can find a line above UX intersecting Uδ0 at two points a1
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Uδ0
UX

(a) potentials of δ0 and X ∼ µ

a1

b1

(b) choosing the first line

U1

(c) potential of BT1

a2

b2U2

(d) potential of BT2

Figure 1

and b1. We then define a new function U1 equal to U0 = Uδ0 and linear in between.
Due to theorem (2.27)-6 U1 is the potential of BT1 . We continue in this manner
and choose lines above UX , and define Un = Un−1 outside (an, bn) and linear in
between.

It is natural to choose tangent lines to UX as indicated in the pictures, but, in
fact, it is sufficient to choose lines above UX (and therefore ai and bi) such that
UTi(x) → UX(x) for every x ∈ R. This is also possible because UX is concave,
and concave functions can be written as a supremum over a countable number
of affine linear functions. Using theorem (2.27)-3 we get that BTi convergence in
distribution to a µ-distributed random variable, and because Brownian motion has
continuous paths and T = limTi this random variable must be BT . Particularly,
BT ∼ µ.

It remains to show that T is integrable. We compute the area between the
potential Uδ0(x) = −|x| and UX . Since µ is squared-integrable and centred we
have ∫

xµ(dx) = 0,∫
x2µ(dx) <∞,∫
|x|µ(dx) <∞.



4 SKOROKHOD EMBEDDING 29

Therefore, for y < 0,

−|y| − Uµ(y) = −|y| −
∫
R
|y − x| µ(dx)

= −
∫ y

−∞
−y − (y − x) µ(dx)−

∫ ∞
y

−y + (y − x) µ(dx)

=

∫ y

−∞
2y − x µ(dx) +

∫ ∞
y

xµ(dx)

=

∫ y

−∞
2y − x µ(dx)−

∫ y

−∞
xµ(dx)

= 2

∫ y

−∞
y − x µ(dx).

Similarly for y ≥ 0,

−|y| − Uµ(y) = 2

∫ ∞
y

(x− y) µ(dx).

Using these two formulas and a change in order of integration we can compute the
area between the two potentials,∫ ∞

−∞
− |y| − Uµ(y) dy

= 2

∫ 0

−∞

∫ y

−∞
(y − x) µ(dx) dy + 2

∫ ∞
0

∫ ∞
y

(x− y) µ(dx) dy

= 2

∫ 0

−∞

∫ 0

x

(y − x) dy µ(dx) + 2

∫ ∞
0

∫ y

0

(x− y) dy µ(dx)

= 2

∫ 0

−∞

x2

2
µ(dx) + 2

∫ ∞
0

x2

2
µ(dx)

=

∫ ∞
−∞

x2 µ(dx).

Observe that Bt∧Tn is bounded and hence B2
t∧Tn− (t∧Tn) is a uniformly integrable

martingale, letting t go to infinity, we have

E[Tn] = E[B2
Tn ].

From the above computation we know E[B2
Tn

] is the area between Uδ0 and Un, and
it is clear that this area is bounded by E[B2

T ]. Hence,

E[T ] = lim
n

E[Tn] ≤
∫
x2 µ(dx).

Due to Proposition 2.18 there also equality in the limit. �
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4. Order of Random Variables

4.1. Stochastic Order. There are different approaches to the ordering of random
variables. The standard stochastic order compares the distribution functions of
them. Let X, Y be two random variables and FX(a) = P (X ≤ a), FY = P (Y ≤ a).
The assertion

FX(a) ≥ FY (a), for all a ∈ R(49)

means that Y is less likely than X to be smaller than a given number a. If this is
true for all a ∈ R, X is said to be smaller in stochastic order than Y .

For the stochastic ordering we have the following lemma:

Lemma 4.1. Let X and Y be random variables, U the class of all non-decreasing
functions on R. X is smaller than Y in the stochastic order, if and only if,

E[u(X)] ≤ E[u(Y )], for all u ∈ U.(50)

Proof. Let X be smaller than Y in stochastic order. As non-decreasing functions
are measurable, we can approximate any u with un(x) =

∑n
i=0 u(tni ) ∗ 1(tni ,t

n
i+1](x)

with choosing (tni )Kni=0 as a refining sequence, such as tni = u−1((i − n2n)2−n) [i =
0, .., 2n2n]. We show that (50) is true for such un by induction over i. The result
then follows my monotone convergence.

u(t0)P (X ≤ t1) + u(t1)P (X > t1) ≤ u(t0)P (y ≤ t1) + u(t1)P (Y > t1) because u
non-decreasing, and P (X ≤ t1) ≥ P (Y ≤ t1). For the induction step N → N + 1
observe the following:

ΘN
Y := u(tN)P (Y > tN) + u(tN−1)P (tN−1 < Y ≤ tN)− u(tN−1)P (Y > tN−1)

= (u(tN)− u(tN−1)) P (Y > tN)

≥ (u(tN)− u(tN−1)) P (X > tN)

= u(tN)P (X > tN) + u(tN−1)P (tN−1 < X ≤ tN)− u(tN−1)P (X > tN−1)

=: ΘN
X

Let ΦN
X denote the sum corresponding to X until the nth summand,

ΦN
X =

N−1∑
i=0

u(ti)P (Xi < X ≤ ti+1) + u(tN) P (tN < X).

Let ΦN
Y be the same for Y . Then

ΦN
Y = ΦN−1

Y + ΘN
Y ≥ ΦN−1

X + ΘN
X = ΦN

X .

This proves one way. The other way follows with choosing u as u(x) = 1(−∞,a](x).
�
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4.2. Convex Order. We have seen that the stochastic order can also be defined
through comparing the expected values of images of X and Y under the class of
non-decreasing functions. Similarly one can introduce the concept of a different
ordering of random variables, which will prove more useful to us.

Definition 4.2. Let X and Y be random variables and Φ be the class of all convex
functions Φ = {f : R→ R|f is convex}. We say that X is smaller than Y in the
convex order if

E[ψ(X)] ≤ E[ψ(Y )] for all φ ∈ Φ.(51)

If so, we write X ≺cx Y .

Another way to state the Brascamp-Lieb moment inequality (2) (in one dimen-
sion) is:

Theorem 4.3. If X is log-concave to Y , then X − EX ≺cx Y − EY .

Following the book of Shaked and Shantikumar on Stochastic Orders [9] we
examine the convex order. Let X ≺cx Y , first note that x 7→ x and x 7→ −x are
convex. Therefore EX ≤ EY ≤ EX, and EX = EY . Furthermore, x 7→ x2 is
convex, and VarX ≤ VarY .

It is obvious that the function φa(x) = (x − a)+ = max(x − a, 0) is convex.
Therefore, X ≺cx Y implies that E(X − a)+ ≤ E(Y − a)+. It is also known that
any convex function can be approximated with an increasing sequence of functions
Kn(x) = λ0x+

∑Ln
i=1 λiφai(x), meaning φ(x) = limnKn(x) ∀x. This and monotone

convergence theorem prove the other direction of Lemma 4.4.

Lemma 4.4. Let X and Y be such that EX = EY .

X ≺cx Y if, and only if E(X − a)+ ≤ E(Y − a)+ ∀a ∈ R.(52)

Let us recall how handy the decomposition in positive and negative part of an
expression can be. Observe,

|X − a| = (X − a)+ + (X − a)− and (X − a) = (X − a)+ − (X − a)−,

which yields

E|X − a| = E(X + a)− + E(X − a)+ = 2E(X − a)+ + EX − a,
and therefore

E(X − a)+ ≤ E(Y − a)+, if and only if E|X − a| ≤ E|Y − a|.
Furthermore, a direct computation shows

E[|X − a|] = a+ 2

∫ ∞
a

(1− F (u) du

= −a+ 2

∫ a

−∞
F (u) du.
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Recalling the definition of the potential of a random variable, we achieved the
following theorem:

Theorem 4.5. Let X and Y be such that EX = EY , FX and FY the distribu-
tion functions of X and Y , respectively.Also let UX(x) denote the potential of the
random variable X as defined in (38). Then,

X ≺cx Y, if and only if UX(x) ≥ UY (x), for allx ∈ R(53)

if and only if

∫ x

FX(u) du ≤
∫ x

FY (u) du, for allx ∈ R.(54)

Ultimately, we exploit a connection between Brownian motion and convex or-
dering that is our main result of this section.

Theorem 4.6. Let X and Y be centred random variables. X ≺cx Y , if and only if
there exist two stopping times T1, T2 such that T1 ≤ T2 a.s. and X ∼ BT1 , Y ∼ BT2.

Proof. Suppose X ∼ BT1 , Y ∼ BT2 and T1 ≤ T2. Observe that |BT2
t − x| is a sub-

martingale with final element |BT2|, because T2 <∞ a.s. Optional Stopping Theo-
rem 2.16 applied to the submartingale (BT2

t )t yields E
[
|BT2

T2
− x|

∣∣FT1] ≥ |BT1−x|.
Applying expectation on both sides yields that UX ≥ UY , that is X ≺cx Y .

On the other hand, assume that UX ≥ UY . As X is a centred random variable,
due to the Skorokhod embedding by Chacon Walsh there is a stopping time T1

such that BT1 ∼ X.

UX

UY

(a) potentials of X and Y with UX ≥ UY

a1

b1

(b) choosing the first line

Figure 2

Because UX ≥ UY , we can employ the same arguments as in the proof of the
embedding of Chacon-Walsh to find a stopping time S such that BT1+S = BT2 ∼
Y . �

4.3. A first proof of the Brascamp-Lieb moment inequality for special V .
It is also the book of Shaked and Shantikumar [9] where the content of this section
was found. Here we give a first proof of the Brascamp-Lieb moment inequality,
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based on stochastic ordering, that is however only valid for convex functions V in
(1) with limx→∞ V (x) =∞ and limx→−∞ V (x) =∞.

We first state sufficient conditions for the convex order. Let S−(h) denote the
number of sign changes of the function h : R→ R,

S−(h) := sup{n ∈ N : h(x1), h(x2), ..., h(xn), xi < xi+1, h(xi)h(xi+1) < 0} − 1.

Lemma 4.7 (cf. [9], Theorem 3.A.44). Let X and Y be one dimensional random
variables on R with equal means, with densities f and g, distribution functions F
and G, respectively. Then X is smaller than Y in convex order if any of the two
conditions below holds:

i. S−(g − f) = 2, with sign sequence+,−,+,
ii. S−(G− F ) = 1, with sign sequence+,−.

Proof. Assume (i) S−(g − f) = 2 with sign sequence +,−,+. Let I1 = (−∞, a]
and I3 = (b,∞) be the intervals where g − f ≥ 0 and I2 = (a, b] be the interval
where g − f ≤ 0. Then (G − F )(x) is increasing on I1 and I3, decreasing on I2.
Furthermore, note that

lim
x→∞

F (x) = lim
x→∞

G(x) = 1,

lim
x→−∞F (x)

= lim
x→−∞

G(x) = 0.

Hence,

lim
x→±∞

(F −G)(x) = 0.

Because X and Y have the same mean, F > G everywhere is impossible. Hence,
(ii) follows. If (ii) holds, then there are intervals J1 = (−∞, c] and J2 = (c,∞),
such that G− F ≥ 0 on J1, and G− F ≤ 0 on J2. Then∫ x

(G− F )(u) du ≥ 0.(55)

Indeed, x ≤ c, (55) holds because of monotonicity of the intergral if. If on the
other hand, x ≥ c, we know that E[X] = E[Y ] implies∫ ∞

−∞
G− F du = 0.

Hence, ∫ x

−∞
(G− F )(u) du = −

∫ ∞
x

(G− F )(u) du ≥ 0,

because of monotonicity of the integral and G− F ≤ 0 on J2. �

The following theorem is a direct consequence of V convex in (1).
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Theorem 4.8 (cf. [9], Theorem 3.A.54). Let X, Y, f, g, be as in Lemma 4.7 and
S−(g − f) = 2. If X is log-concave with respect to Y , the corresponding sequence
to S(g − f) is +,−,+ and

X ≺cx Y.

And this readily imp lies the following.

Corollary 4.9 (Brascamp-Lieb moment inequality in dimension one for V un-
bounded at ±∞). If X, Y are one-dimensional random variables, X log-concave
with respect to Y and V goes to infinity for x→ −∞ and x→∞, then S−(g−f) =
2 and particularly Inequation (2) holds in the one-dimensional sense, that is, for
all ψ : R→ R convex,

E[ψ(X − E[X])] ≤ E[ψ(Y − E[Y ])].

We note three things in the above corollary. Firstly, the random variable Y does
not need to be Gaussian. It can be anything, as long as X is log-concave with
respect to it. Secondly, if Y however is Gaussian, the inequation can be extented
to random variables in Rn with a later Theorem (5.4). Thirdly, this is a special
case of general convex V . Indeed, V can be either non-decreasing, non-increasing,
or unbounded at ±∞.

(a) V non-decreasing (b) V unbounded at ±∞ (c) V non-increasing

Figure 3

5. The Brascamp-Lieb moment inequality and proof

The Brascamp-Lieb moment inequality relates the expectation of two random
variables under a convex function. The two random variables are related in the
following sense.
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Definition 5.1. Let X and Y be two random variables on a probability space
(Ω,A, P ), µ be the distribution of X, ν the distribution of Y . We say X is log-
concave with respect to Y if the Radon-Nikodým derivative exists and it is given
by

µ(dx) =
1

Z
e−V (x)ν(dx),(56)

where Z =
∫

Ω
e−V (x) ν(dx) is a normalization constant and V : Rd → R convex.

X is called log-concave to Y , because the logarithm of the density of X with
respect to Y is concave.

The density of X with respect to Y is invariant under adding the same constant
to X and Y . Hence, X log-concave to Y is equivalent to X − EY log-concave to
Y −EY . Furthermore, for α ∈ R let µα be the distribution of X −α and let Y be
centred. Then X − α with distribution µα is log-concave with respect to Y with
distribution ν. For the one-dimensional case,

µα(dx) = µ(d(x+ α))

= e−V (x+α) ν(d(x+ α))

= e−V (x+α)(2πσ)
−1
2 e

−(x+α)2

2 d(x+ α)

= e−V (x+α)−αx−α
2

2 ν(dx) = e−V
′(x)ν(dx).

This also gives X + β is log-concave to Y + γ, because if α = β − γ the assertion
follows from adding γ to X + α log-concave with resepect to Y . We have shown
the following:

Lemma 5.2. X is log-concave to Y , if and only if X−β is log-concave to Y −γ for
any choice of α and β. This particularly implies that the centred random variables
are also log-concave if one the above holds.

Let us recall the Brascamp-Lieb moment inequality:

Theorem 5.3. Let X and Y be random variables in Rn such that X is log-concave
to Y and Y is Gaussian. Then the following inequality holds

E[ψ(φ · Y − E[φ · Y ])] ≥ E[ψ(φ ·X − E[φ ·X])](57)

for all ψ : R→ R convex and every φ ∈ R.

5.1. Proof of the Brascamp-Lieb moment inequality. Using Theorem 5.4
to justify proving the theorem only in one dimension and Caffarelli’s Theorem 5.6
to bound the derivative of the transport function, the proof of the Brascamp-Lieb
moment inequality is readily obtained.
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Theorem 5.4 (Reduction to dimension one). If X and Y are random variables
in Rn and X is log-concave with respect to Y and Y is Gaussian, then the one-
dimensional marginals maintain the log-concave property and the marginal of Y is
still Gaussian. This is, for every φ ∈ R

• φ ·X is log-concave with resepect to φ · Y , and
• φ · Y is Gaussian.

This particularly implies, that it is enough to show Theorem 5.3 for random vari-
ables X and Y in R.

We utilize the following lemma.

Lemma 5.5 (from [1], Corollary 3.5). Let F : Rn × Rm → R, (x, y) 7→ F (x, y) be
log-concave. Then the function G : Rn → R defined as

G(x) :=

∫
Rm

F (x, y) dy,(58)

is log-concave.

Proof of Theorem 5.4. Let µ̂ be the distribution of φ · X. Let K = K(t) be the

pre-image of t under the linear transformation φ̂ : Rn toR, z 7→ φ · z. Then

µ̂(dt) =

∫
K

1 dµ

=

∫
K

1

Z
e−V dν.

Rn can be decomposed in the span of φ and kernel(φ) and K = kernel(φ) +
t
‖φ‖2

. Choose an orthonormal basis (e1, e2, . . . , en) such that e1 ∈ span(φ) and

(e2, . . . , en) ∈ kernel(φ). Without loss of generality we can assume ‖φ‖2 = 1.
Since Y is Gaussian, for (t, y) ∈ span(φ)×kernel(φ) the density of ν is ν(d(t, y)) =

const exp{−Ψ(t, y)}, with Ψ(t, y) = 〈(t, y), Q(t, y)〉 , Q =

(
A B
B′ C

)
, and 〈 , 〉 the

standard inner product. Then, the above becomes

µ̂(dt) =

∫
kernel(φ)

const

Z
e−V (t,y) exp−Ψ(t,y) dy.
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Let D = A − BC−1B′ and ȳ = y + C−1B′t. Then the variables in Ψ(t, y) can
be seperated. Indeed,

〈t,Dt〉+ 〈ȳ, Cȳ〉
= 〈t, At〉+ 〈t, BC−1B′t〉+

〈y, Cy〉+ 〈y,B′t〉+ 〈B′t, y〉+ 〈BC−1B′t, t〉
= 〈t, At〉+ 〈y, Cy〉+ 〈y,B′t〉+ 〈t, By〉
= Ψ(t, y).

Consequently,

µ̂(dt) = exp{−〈t,Dt〉}
∫

const

Z
exp{−〈ȳ, Cȳ〉} exp{−V (t, ȳ)} dȳ

= exp{− t
2

2d
}
∫

const

Z
exp{−〈y, Cy〉} exp{−V (t, y)} dy,

for d = 1
2D

. We know that C is positive definite, because Y is Gaussian. Hence,
the integrand is log-concave and Lemma 5.5 applies and

µ̂(dt) = log-concave function · exp{−〈t,Dt〉}.

Hence, φ ·X is log-concave with respect to a Gaussian random variable with mean
zero and variance d2.

The above computation for V ≡ 0 and Z = 1 shows that φ · Y is Gaussian with
mean zero and variance d2, hence, φ ·X is log-concave with respect to φ · Y .

It is clear that φ · Y is Gaussian, because Y is Gaussian. �

The essential ingredient for the proof of the Brascamp-Lieb moment inequality
now is the following theorem. It bounds the derivative of the transport function
from N (0, 1) to µ to the variance of Y . The impact of Y is hidden in the fact that
µ is log-concave with respect to Y .

Theorem 5.6 (Caffarelli). Let X and Y be one-dimensional random variable with
distributions µ and ν respectively and Y Gaussian. The transport function g de-
fined as

g(x) = (F−1
µ ◦ Φ)(x),(59)

with Fµ the distribution function of X, F−1
µ its true inverse, and Φ the cumulative

distribution function of a standard-normal Gaussian random variable. Let a =
V ar(Y ). Then the following holds true:

g′(x) ≤
√
a.(60)

The actual proof of the Brascamp-Lieb moment inequality is now very short.
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Proof of Brascamp-Lieb moment inequality. Theorem 5.4 allows us to reduce the
proof to one dimension.

Let Y be a one-dimensional normal random variable, andX be a one-dimensional
random variable that is log-concave with respect to Y . We know that X is in L2.
We can use Bass’ embedding for X, or its law µ.

In Bass’ embedding we had for a Brownian motion (Bt)t≥0 and the function g
as defined in Equation (59),

g(B1)− E[g(B1)] =

∫ 1

0

E[g′(B1)|Fs] dBs =

∫ 1

0

a(s, Bs) dBs.

It also gives that Mt = E[g(B1)|Ft] =
∫ t

0
a(s, Bs) dBs is a martingale. From here

we constructed a stopping time

T =< M >1=

∫ 1

0

(E[g′(B1)|Fs])2 ds,

such that X ∼ BT . According to Theorem 5.6, g′ ≤
√
a and hence

T ≤
∫ 1

0

√
a

2
ds ≤ a.

Since a = Var(Y ) and Y is a normal random variable, a embeds some N (0, a)
random variable Ȳ ∼ Y . Theorem 4.6 gives

XT ≺cx Ȳ ⇔ XT ≺cx Y.
XT ≺cx Y is the Brascamp-Lieb-inequality. �

5.2. Proof of Caffarelli’s theorem. We have defined the transport function
from Φ to X to be g(x) = (F−1

µ ◦Φ)(x). The assertion of Lemma 5.6 is the special
case of the n-dimensional Theorem 11 in [4] for one dimension.

A classical optimal transport problem is the following.

Example 5.7 (A glimpse at Optimal Transport). Let µ and ν be probabilites on
(R,B(R)). Let us call the function c : R × R → R the cost function. Find a
function T such that ν is the push-forward measure of µ, ν = T#µ and minimizes
the following expression

inf
ν=S#µ

∫
c(t, S(t)) dt.

This is, the transport function T is the cheapest way to transport µ to ν.

It seems natural to recquire the costs c(x, y) to be dependent on the distance
between x and y. For example, c(x, y) = |x − y|p. If p > 1 the cost function is
convex and Caffarelli has contributed greatly (see [4] or [7]) to the development of
a regularity theory for convex cost functions in Rn. For very general contextes (cf.
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as stated in Theorems 1 and 2 in [4]), it has been shown that the optimal transport
function is the gradient of a convex potential ϕ. Particularly, this asserts that the
derivative of the transport function, the second derivative of the convex potential,
is positive. For the specific case of measures with densities f(x) = exp{−Q(x)}
and g(x) = exp{−(Q(x) + F (x))}, with Q a nonnegative quadratic form and F
convex, Caffarelli could show more. The density f corresponds (up to a constant)
to the density of a Gaussian random variable Y and g is a density of a random
variable that is log-concave with respect to Y . He showed the multidimensional
version of Theorem 5.6, this is

0 ≤ ϕxixi ≤ 1.

Let us leave this very small excursion to optimal transport, and return to the proof
of Caffarelli’s Theorem in dimension one.

The careful reader might have questioned the form of g as a transport from a
standard-normal random variable to the random variable X, that is log-concave to
a normal random variable Y , that is not necessarily standard-normal. The deeper
reason for this is that in the above proof of the Brascamp-Lieb moment inequality
we needed it in the form of (59) and that expectation and variance of Y do not
matter as in the following sense:

Lemma 5.8. Let X, Y, a, and g be as above. Define Ȳ the centred version of Y ,
that is Ȳ = Y − E[X] and Ŷ the standardized version of Y, that is Ŷ = Ȳ /

√
a.

Also, define

g̃(x) = (F−1
µ ◦ FY )(x)

ḡ(x) = (F−1
µ ◦ FȲ )(x)

ĝ(x) = (F−1
µ ◦ FŶ )(x),

the functions that transport Y, Ȳ , and Ŷ to X. Observe Φ = FŶ and g(x) =
ĝ(x) = (F−1

µ ◦ FŶ )(x). Then

g′ ≤
√
a if, and only if g̃′ ≤ 1.

Heuristically, it is clear that the two distributions that play a role in the inequal-
ity should also be the crucial ingredients for the Theorem 5.6 that now essentially
proves the Brascamp-Lieb moment inequality. In inequality (60) this is not appar-
ent in a clear way. Lemma 5.8 gives a clearer view on these matters. It says that
the slope of the transport from N (0, 1) to µ is less than

√
Var(Y ), if and only if

the slope of the transport from N (0, a) to µ is less than one. We prefer the second
interpretation since µ and N (0, 1) are the distributions the random variables in
the Brascamp-Lieb moment inequality.
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Remark 5.9 (A more natural proof of the Brascamp-Lieb moment inequality).
In Bass’ embedding, µ was centred, and we could have also used the function

g̃ = ḡ := Fµ ◦ Φa,

where Φa is the cumulative distribution function of a centred Gaussian random
variable with variance a. Then g(Ba) ∼ µ and similarly as in Theorem 3.4 and
Equation (45) and (46),

M̃t = E[g̃(Ba)|Ft] =

∫ t

0

a(s, Bs) dBs,

and

g̃(Ba) =

∫ a

0

E[g̃′(Ba)|Ft] dBt.

Then for the stopping time

T :=

∫ a

0

E[g̃′(Ba)|Ft]2 dt,

the assertion from Caffarelli’s Theorem 5.6 and Lemma 5.8

g̃ ≤ 1,

and

T ≤ a,

follows. Hence, we can embed µ with a stopping time T that is strictly smaller than
the stopping time a, and Theorem 4.6 yields the Brascamp-Lieb moment inequality.

Consider the following picture. It shows the cumulative distribution function
of a Gaussian random variable on the left, and a random variable Y that is log-
concave with respect to the Gaussian on the right.

Φ Fµ

t t′ = g(t)

Figure 4

The dashed path from t to g(t) indicates the action of g. The line segment
from t to Φ(t) can be interpreted as the question, how much mass of N (0, 1) is
located on the left of t? The line segment from Φ(t) over Fµ(g(t)) to g(t) can be
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interpreted as the question, where is the point t′ so that as much µ-mass is on its
left as there is N (0, 1)-mass on the left of t? This point is g(t). The assertion

g′ ≤ 1

now states that when increasing/decreasing t by δ, g(t) will increase/decrease by
at most δ.

Due to Lemma 5.2 we can add a constant to X so that the median is at zero.
Then Fµ(0) = Φ(0) = 1

2
. Observe that Fµ ◦ g(t) = Φ(t). Therefore, if we compare

Φ(g(t)) to Fµ(g(t)) we see that Fµ(g(t)) ≥ Φ(g(t)) for g(t) ≥ 0, because Φ is
monotone. Similarly, the other inequality. Hence,

for t ≥ 0, Fµ(t) ≥ Φ(t),

and for t ≤ 0, Fµ(t) ≤ Φ(t).

Observe, that this is also true for our examples above in Figure 4 as indicated
in Figure 5.

ΦFµ

Figure 5

The above construction works not only for the 1
2
-quantil. The following corollary

is valid by shifting X and Y by their α-quantils (using Lemma ??) :so that α-
quantil is at zero. With this we have proven the following theorem.

Theorem 5.10 (A property of X log-concave with respect to a Gaussian Y ).
Let α ∈ (0, 1), X and Y be random variables in R with distributions µ and ν
respectively, and qµ and qν the α-quantiles. If X is log-concave with respect to Y ,

and Y is Gaussian, then if F̂µ and F̂ν denote the cumulative distribution functions
of X − qµ and Y − qν respectively,

F̂µ ≥ F̂ν , on {t ≥ 0}, and(61)

F̂µ ≤ F̂ν , on {t < 0}.(62)

This means that X − qµ is concentrated more around zero than Y − qν. Therefore,
for δ−, δ+ > 0,

P (qx − δ− ≤ X ≤ qx + δ+) ≥ P (qy − δ− ≤ Y ≤ qy + δ+).

Remark 5.11. A corresponding version of the above theorem also holds in n di-
mensions with using Theorem 2 and Theorem 11 in [4].
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Proof of Lemma 5.8, cf. [3]. First, without loss of generality we can assume Y =
Ȳ , because ḡ(x− E[Y ]) = (F−1

µ ◦ FȲ )(x− E[Y ]) = (F−1
µ ◦ FY )(x) = g̃(x).

Recall g(x) = (F−1
µ ◦ FŶ )(x) and therefore g′(x) = (F−1

µ )′(FŶ (x)) · (FŶ )′(x).

Similarly, ḡ′(x) = (F−1
µ )′(FȲ (x)) · (FȲ )′(x). We want to compare g′ at x/

√
a to ḡ′

at x. To this end, observe that (F ′
Ŷ

)(x) = 1√
2π
e
x2

2 and (F ′
Ȳ

)(x) = 1√
2π

1√
a
e
x2

2a , and

therefore

(F ′
Ŷ

)(x/
√
a) =

1√
2π
e
x2

2a

=
√
a(F ′Ȳ )(x).

Furthermore, via a change of coordinates y =
√
a t,

FȲ (x) =

∫ x 1√
2π

1√
a
e
y2

2a dy

=

∫ x√
a 1√

2π

1√
a
e
t2

2
√
a dt

=

∫ x√
a 1√

2π
e
t2

2 dt

= FŶ (
x√
a

).

Using the above

g′(
x√
a

) = (F−1
µ )′(FŶ (

x√
a

)) · (FŶ )′(
x√
a

)

= (F−1
µ )′(FȲ (x)) · (F ′Ȳ )(x) ·

√
a

=
√
a · ḡ′(x).

Particularly, g′(x) ≤
√
a if, and only if ḡ′(x) = g̃′(x) ≤ 1. �

In order to prove Theorem 5.6 we employ yet another lemma.

Lemma 5.12 (cf. [3]). For every x ∈ R the following assertion holds,

F ′µ ≥ Φ′(x+ V ′−(x)).

Proof. µ is log-concave to ν, therefore from (1)

F ′µ(x) =
1

Z
e−V (x) ν(dx)

=
1

Z

1√
2π
e−V (x)e

x2

2 dx

=
1∫

e−
y2

2
−V (y) dy

· e−V (x)−x
2

2 .
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Taking the reciprocal, and using V (y)− V (x) ≥ V ′−(x)(y − x)

1

F ′µ(x)
=

∫
e−

y2

2
−V (y) dy · e−V (x)−x

2

2

= e
x2

2

∫
e−

y2

2
+V (x)−V (y) dy

≤ e
x2

2

∫
e−

y2

2
−V ′−(x)(y−x) dy

= e
x2

2
+V ′−(x)(x) ·

∫
e−

y2

2
−V ′−(x)y−V ′−(x)2+V ′−(x)2 dy

= e
x2

2
+V ′−(x)(x)+V ′−(x)2 ·

∫
e−

y2

2
−V ′−(x)y−V ′−(x)2 dy

= e
1
2

(x+V ′−(x))2 ·
∫
e−

1
2

(y+V ′−(x))2 dy

= e
1
2

(x+V ′−(x))2 ·
√

2π =
1

Φ′(x+ V ′−(x))
.

�

We now are ready to prove Theorem 5.6.

Proof of Theorem 5.6, cf. [3]. Using the chain rule and derivative of inverse func-
tions g′(x) can be written as

g′(x) =
Φ′(x)

F ′µ ◦ F−1
µ (Φ(x))

.

Due to Lemma 5.8 it is enough to show g′(x) ≤ 1, and this is equivalent to

G(ξ) := F ′µ ◦ F−1
µ (ξ)− Φ′ ◦ Φ−1(ξ) ≥ 0, for all ξ ∈ (0, 1).(63)

We will show that G is never negative by showing that the limits at ξ = 0
and ξ = 1 are zero and that every local minimum is greater or equal zero. First,
we see that Φ−1 goes to minus infinity when ξ goes to zero and that Φ′(x) goes
to zero when x goes to minus infinity. But, since −V (x) is concave we have for

some a and b in R e−V (x) ≤ eax+b, and then also F ′µ(x) = const ·e−V (x)e−(
F−1(x)

2
)2 ≤

const ·eax+b−x2/2 goes to zero as x goes to minus infinty. As ξ goes to zero, F−1
µ (ξ)

goes to minus infinity, and F ′µ ◦ F−1
µ goes to zero as ξ goes to zero. Therefore,

limξ→oG(ξ) = 0. Similarly, limξ→1G(ξ) = 0.

G is both left- and rightdifferentiable because F−1
µ is and because F−1

µ is mono-

tone. Observe, Φ′′ = ( 1√
2π
e−

x2

2 )′ = 1
2π
e−

x2

2 · −2x
2

= −x · Φ′. For F ′µ(x) =
1

Z
√

2π
e−V (x)−x2/2, (F ′µ(x))′± = 1

Z
√

2π
e−V (x)−x2/2 ·−(x+V ′±(x)) = F ′µ(x)·−(x+V ′±(x)).
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Thefore we compute,

G′±(ξ) = (F ′µ)′± ◦ F−1
µ (ξ) · (F−1

µ )′±(ξ)− (Φ′)′± ◦ Φ−1(ξ) · (Φ−1)′(ξ)

=
(F ′µ)′±
F ′µ

◦ F−1
µ (ξ) +

(Φ′)′±
Φ′
◦ Φ−1(ξ)

= −(x+ V ′±(x))|x=F−1
µ (ξ) + Φ−1(ξ).

This and the fact that for every local minimum at ξ0 we must have G′−(ξ0) ≤ 0
and G′+(ξ0) ≥ 0 shows

(x+ V ′+(x))|x=F−1
µ (ξ) ≤ Φ−1(ξ0) ≤ (x+ V ′−(x))|x=F−1

µ (ξ).

Since V is convex we have V ′−(x) ≤ V ′+(x), and thus

Φ−1(ξ0) = (x+ V ′−(x))|x=F−1
µ (ξ).

Finally for every local minimum at ξ0,

G(ξ0) =
(
F ′µ(x)− Φ′(x+ V ′−(x))

)
|x=F−1

µ (ξ0) ≥ 0,

by Lemma 5.12. �

6. Similar results with µ not necessarily log-concave

According to [3] the Brascamp-Lieb moment inequality (2) has been used in the
setting of gradient interface models. It is also used to derive the tightness of finite-
volume Gibbs measures, that describe the static interface, or strict convexity of the
associated surface tension. The potential of a gradient interface model corresponds
to the convex function V in Equation (1). Recently, gradient interface models with
nonconvex potentials have been studied with great interest. The approach to the
proof of the Brascamp-Lieb moment inequality described in this thesis allows for
a generalization to nonconvex potentials of gradient interface models. In this
section we consider cases with V not necessarily convex, and derive similar results
as Equation (2).

For simplicity, we only consider one-dimensional random variables. Let X be a
one-dimensional centred random variable with distribution µ such that

µ(dx) =
1

Z
e−U(x) dx.(64)

We call the function U in (64) the potential of µ. If we choose the potential U
to be of the following form

U(x) =
1

2
|k(x)|2 − log k′(x), for all x ∈ R,(65)
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the distribution function Fµ of µ takes on a convenient form. If k ∈ C1,

Fµ(x) =

∫ x

−∞

1√
2π
k′(y) exp{−1

2
|k(y)|2} dy

= Φ ◦ k(x).

Therefore, the function g defined as

g(x) := F−1
µ ◦ Φ(x),

equals the inverse of k, k−1, and hence

g′(x) =
1

k′(g(y))
.

Exactly as in the proof of the Brascamp-Lieb moment inequality we use the
Bass embedding on µ to obtain an explicit expression for a stopping time T with

T =

∫ 1

0

E2[g(B1)|Ft] dt.(66)

We, again, use Theorem 4.6 to put the stopping time T in convex order with
trivial, that is, non-random stopping times. If we find

√
α such that

k′ ≥
√
α,(67)

then

g′ ≤ 1√
α
.(68)

For a centred Gaussian random variable Yα with variance 1
α

Theorem 4.6 then
gives

X ≺cx Y
or equivalently for all ψ : R→ R convex,

E[ψ(X)] ≤ E[ψ(Yα)].

The above formalism can further be used to find a lower bound for the random
variable X. Similarly, for k such that

k′ ≤
√
β,(69)

we have as before with ≥ instead of ≤,

g′ ≥ 1√
β
,(70)

and consequently for a centred Gaussian random variable Yβ with variance 1
β

Yβ ≺cx X
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or equivalently for all ψ : R→ R convex,

E[ψ(Yβ)] ≤ E[ψ(X)].

If inequalities (67) and (69) both hold, equations (68) and (70) both hold, and
consequently for all ψ : R→ R convex,

E[ψ(Yβ)] ≤ E[ψ(X)] ≤ E[ψ(Yα)].(71)

Example 6.1 (cf. [3], Example A.3). Set k(x) = x+ x3, then k(x) ≥ 1 =: α and

U(x) =
1

2
x2 + x4 +

1

2
x6 − log(1 + 3x2).

(a) this potential has a double-well near
the origin

Example 6.2. Set k(x) = x
σ

. Then α = β = 1/
√
σ and U(x) = 1

2σ2x2
− log(1/σ).

For µ we have

µ(dx) =
1√
2πσ

exp

{
− x2

2σ2

}
,

and µ is the distribution of a standard normal random variable and not suprisingly,

N (0, σ2) ≺cx N (0, σ2) ≺cx N (0, σ2).

Appendix A. Zusammenfassung auf Deutsch

In der vorliegenden Masterarbeit verwenden wir Resultate aus Stochastischer
Analysis, speziell aus der Theorie der Konvexen Ordnung von Zufallsvariablen,
Skorokhod-Einbettungen, und Optimaler Transport, um die Brascamp-Lieb Mo-
mente Ungleichung zu beweisen. Unser Beweis basiert auf einem Ansatz von Yuu
Hariya [3], den wir durch Anwendung der konvexen Ordnung weiters verḱ’urzen
konnten.

Die Arbeit bietet einen klareren Blick auf die Mechanismen hinter dem Beweis
und Theorem 5.10 zeigt eine Verbindung von Zufallsvariablen, die log-konkaven zu
einer Gauß’schen Zufallsvariable stehen. Zuś’atzlich zeigen wir, dass die Brascamp-
Lieb Momente Ungleichung f́’ur konvexe Funktionen, die auf beiden Seiten unbe-
grenzt sind, direkt aus der Theorie der Ordnung von Zufallsvariablen folgt.
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[6] J. Ob lój, The Skorokhod embedding problem and its offspring, Probab. Surv. 1, 321392 (2004)
[7] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics Volume 58,

American Mathematical Society, 2003
[8] R. V. Chacon and J. B. Walsh. One-dimensional potential embedding. In Seminaire de Prob-

abilités X, pages 1923. Lecture Notes in Math., Vol. 511. Springer, Berlin, 1976. MR445598
[9] M. Shaked and J.G. Shantikumar, Stochastic Orders, Springer Series in Statistics, 2007
[10] I. Karatzas and S.E. Shreves, Brownian Motion and Stochastic Calculus, Graduate Texts in

Mathematics, Springer, 1991
[11] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren der

Mathematischen Wissenschaften 2932, Springer-Verlag Berlin Heidelberg, 1991
[12] I. Karatzas and S.E. Shreves, Methods of Mathematical Finance, Graduate Texts in Math-

ematics, Springer, 1998
[13] R.F. Bass, Skorokhod Imbedding via Stochastic Integrals, in Séminaire de Probabilités,
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