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Abstract

We present three different modelling approaches for investigating the trade-off between
gas emissions and disturbance in the context of delivering customers in urban areas. The
amount of emitted polluting gases is assumed to be dependent on travelled distance and
carried load weight. Disturbance refers in the course of this work to how much residents
are affected by traffic resulting from freight transportation. We will relate this rather
intangible value to population density when we develop a concept for generating disturb-
ance data.

In the first model only shortest distance paths between locations are considered and the
task is to solve a bi-objective Travelling Salesman Problem on a simple graph. Model
2 includes in addition to the mandatory nodes so called optional nodes that must not,
but can be visited, if beneficial in terms of disturbance. The alternative paths in the
third approach are modelled though a graph with multiple arcs, what classifies it as a
bi-objective Travelling Salesman Problem on a multi-graph.

We will show that Model 2 yields the same Pareto front as Model 3, when we transform
the optional nodes of Model 2 into multiple arcs for Model 3 by solving an all-pairs bi-
objective Shortest Path Problem with Martins’ algorithm.

Computational experiments on randomly generated instances are conducted in order to
demonstrate solution characteristics of the three approaches and to compare their per-
formance with respect to solution quality and CPU effort. The e-constraint method will be
implemented to solve the bi-objective optimisation problems to optimality. Moreover, the
computation study involves a real world case study that aims at comparing the solutions

of our problem to tours carried out in reality.
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1 Introduction

1.1 About the subject of this thesis

This thesis deals with the following problem: A set of fixed customers located in an urban
area has to be delivered from a fixed hub. Only one period is considered in the present
framework. Furthermore a single vehicle is assigned to the hub, whose capacity restriction
is assumed to be not effective. This implies that all given customers can be served within
one, single tour. The question of interest is then in which order to visit the customers such
that gas emissions and disturbance to urban neighbourhood are minimised. The amount
of emitted gases is measured over travelled distance and transported load. Disturbance
is related to how much residents are affected by noise, risk, vibration, etc., resulting from
carrying out the delivery tours. We identify population density to be a proper indicator for
disturbance. In general less disturbing ways through sparsely populated areas tend to be
longer in distance and will thus yield higher emissions. So the two objectives of emission
and disturbance minimisation are conflicting, what calls for a bi-objective formulation of

the problem.

Three different approaches for modelling the underlying problem scenario will be
presented. Each of them belongs to a different problem class of combinatorial optim-
isation. The first one is a bi-objective Travelling Salesman Problem (TSP) on a simple
graph, which means only the minimal distance path between two locations is given and all
given locations must be visited in a closed, single tour. In the second approach there are
in addition to the hub and customers (=the mandatory nodes) so called optional nodes
available. Including one or more optional nodes between two mandatory nodes may lead
to an disturbance-reducing alternative path. Since not all nodes but only the mandatory
one must be visited this approach can be classified as a bi-objective Shortest Path Prob-
lem (SPP) with mandatory nodes. Two different, valid formulations for the optional-node
approach will be presented, where the first is based on the concept of duplicating nodes
(only the optional nodes) and the latter makes use of an arc position index to guarantee
that load flow is in accordance with node sequence. Model 3 also incorporates alternative
paths, but now in form of pre-computed multiple arcs between each two mandatory nodes.

Thus the approach falls into the class of bi-objective TSP on a multigraph.

Although Mode 2 and Model 3 differ heavily in their structure and mathematical
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formulation, we will show that they yield the same result when we transform the optional
nodes of Model 2 into multiple arcs for Model 3. This is done by solving an all-pairs
bi-objective SPP with Martins’ algorithm.

While Model 1 constitutes a rather simplistic and - in terms of disturbance minimisa-
tion - restrictive approach, the other two models provide more room for optimisation. So
differences in the solutions can be expected. But more sophisticated approaches tend to
be also more complex and may consequently be harder to solve.

Hence, computational experiments are carried out in order to compare the performance of
the three modelling approaches in terms of solution quality and CPU effort. The models
will be tested on randomly generated instances as well as on real world data related to
the ’Green City Hubs’ project (which will be shortly introduced in the next section). In
the course of generating instances also a method for generating disturbance data will be

presented.

The work will be concluded by some thoughts about the practical and theoretical

relevance of the studied problem and about possible future research directions.

1.2 About the Green City Hubs project

The subject of this work was derived from a project called 'Green City Hubs’ (for more
information see [38] and [39]). The purpose of the project is to design a sustainable
logistics system for inner-city freight transportation, where sustainability comes from
various aspects: One is to establish inner-city distribution centres - the so called city hubs
- from where customer deliveries are carried out. Compared to delivering customers from
one big hub outside the city this allows for a more efficient planning of transportation and
bundling of requests what reduces system-wide delivery distances and consequently also
gas emission. A further move towards reducing emissions is made by using alternatively
fuelled vehicles, that are loaded and recharged at the city hubs. Beside taking long-
term decisions on hub locations and vehicle purchases there is the operational task of
delivering customers. Here sustainability is tackled by optimising the routes with respect
to gas emission and disturbance to urban neighbourhood. Figure depicts the just
described problem.

Taking all decisions together leads to a complex multi-objective optimisation problem
that comprises different time horizons and that accounts not only for internal monetary

costs but also for environmental and social external costs.

To reduce complexity we consider in the course of this work only the sub-problem of
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Figure 1.1: The Green City Hubs project (B. Pierkarz, i-LOG)

delivering a fixed set of customers from a fixed hub with a fixed vehicle. So the decisions
about hub locations and vehicles are not part of our optimisation problem. In Figure
[1.2] the highlighted part illustrates a possible sub-problem of the problem in Figure [1.1]
Due to the direct relationship between the problem of this work and the problem of the

w

() Empfanger
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Verlader City-HUB

City-HUB

Figure 1.2: The problem of this work

Green City Hubs project the results we obtain from our study can be interpreted and
implemented also in the context of the project framework. However the content of this

work is not bounded to it, but serves a much broader field of application.

1.3 Motivation

The two types of cost considered in our optimisation problem relate to hot issues in

nowadays society and research: environmental pollution and urbanization.
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There are many contributors to environmental pollution, but road freight transporta-
tion is definitely one of the biggest. While long-haul carriage can be done also by cargo
aircraft, ships or freight trains, there is no proper alternative for last-mile deliveries, oc-
curring in particular in urban areas.E]. Thus air pollution emerging from inner-city freight
transportation is extremely critical. In 2011 the European Commission has announced
that overall COs-pollution coming from transportation should be reduced by 2050 to
around 20 % below the 2008 level[7]. For cities they impose an even sharper target by
claiming an essentially COs-free logistics system by 2030. These goals can not be achieved
overnight. Hence it would be wise to implement emission-reducing policies gradually,

where optimising customer delivery tours with respect to emissions can contribute much.

Considering an urban context for our transportation problem is not only motivated
by environmental concerns but also by the increasing urbanization of world’s population.
According to the World Urbanization Prospects of 2014 [36] more than 80 % of the
European population is expected to live in urban areas by 2050 while this percentage was
around 73 % in 2014.

Also the trend towards online-shopping and home delivery shows a greater effect in cities,
what supports further the importance of taking into account the particularities of inner-
city freight transportation.

One of these particularities is that there are people living next to the streets who are
affected by the traffic resulting from inner-city freight transportation. Beside emitted
harmful gases there are for example also noise, risk or vibration that disturb the residents.
In the present work this problem is addressed by considering external costs in form of

urban disturbance when planning customer delivery tours.

So we see, there are many current issues and potential future developments that mo-

tivate studying the particularities and difficulties of urban freight transportation.

! Actually, Amazon recently talked about using drones for delivering their customers[40]. Anyway, heavy
and large freight has to be still transported on road.



2 Literature review

The present work contributes essentially to the following up-to-date research directions in
Logistics: Green Logistics and City Logistics. Green Logistics means that beside conven-
tional internal economic costs also external costs for harmful environmental, ecological
and social effects of transportation are included when planning logistics systems[25]. In
the field of City Logistics the difficulties and characteristics of transportation in urban
areas are taken into account with the goal of mobility, sustainability and liveability [34].
City Logistics can be thus viewed as a sub-field of Green Logistics since environmental,

ecological and social externalities are thereby also of main interest.

Concerning the problem class of this work a bi-objective TSP, once on a simple graph

and once on a multigraph, and a SPP with mandatory nodes are considered. They will
be introduced and described in the respective sections, where also related literature will
be analysed shortly.
The literature review in this chapter focuses thus on Green Logistics and City Logistics.
Since the Vehicle Routing Problem (VRP) is a generalisation of the TSP, allowing more
than one tour and more than one vehicle, the literature referring to Green VRP comprises
also the TSP.

Logistics in general is the science of planning, organizing and managing activities that
provide goods or services. This includes amongst others the processes of transportation,
warehousing, order picking and packing. However this work addresses only the transport-

ation part - in particular goods transportation.

An extensive literature review on Green Vehicle Routing Problems can be found in
Eglese and Bektag (2014) [12] and Lin et al. (2014) [25]. Green Vehicle Routing splits
up in several further areas, but for us primarily the Pollution Routing Problem (PRP)
matters, where a reduction greenhouse gas emissions emerging from transportation is
targeted. Although the purpose of PRP is of great value for society, business and en-
vironment related literature is not that exhaustive, since it is still a rather new research
direction.

The first relevant traces in this context can be found in Pronello and André (2000) [31].
They analyse the problem of combing emission and transportation models, since both are
usually designed for different purposes that do not necessarily cover the interdependencies
between them. As a consequence they suggest that several factors as for example traffic

conditions, travel distance, travel time, vehicle speed and load have to be integrated into



CHAPTER 2. LITERATURE REVIEW 6

a sophisticated and reliable pollution routing problem.

The PhD dissertation of Palmer (2007) [30] explores the relationship between vehicle
speed and the amount of emitted gases along a transportation route. However speed is
not up to optimisation in his model but taken as fixed input parameter. His findings
show that CO4 emission can be reduced by about 5 % in comparison to time-minimising
routes. The effect of vehicle load is not considered explicitly in the approach of Palmer’s
dissertation.

Kara et al.(2007)[22] bring the load dependant part of emission into play, by introducing
an objective function that identifies the cost of traversing an arc as a multiple of arc-length
and the corresponding total carried load on this arc. The authors compare the solutions
of this load-based approach to those when just distance is to be minimised.

Suzuki (2011)[32] tackles emission minimisation by studying two models that aim at fuel
consumption minimisation, where one measures fuel consumption over vehicle speed and
the measures it other over truck load. Regarding the load-based model it turned out that
fuel consumption can be reduced significantly when heavy goods are delivered rather at
the beginning of a tour.

Maden et al. (2010) [26] study a vehicle routing and scheduling problem where total
travel time is to be minimised under the assumption of varying travel times - depending
on the time of the day and influencing vehicle speed and in turn also gas emissions. They
carried out a case study based on this approach and showed that it can lead to around 7
% less CO9 emissions.

Bektag and Laporte (2011)[3] present a PRP with a broad objective function that ac-
counts beside travel distance also for the external cost of emission and operational costs
of drivers and fuel consumption. This cost function is assumed to depend on load, speed,
acceleration and other parameters. They model the framework once with time windows
and once without time windows. Computational experiments are conducted to analyse
the trade-off between and impact of the various parameters.

Demir et al. (2014) [9] formulate a bi-objective PRP where the two conflicting objectives
of fuel consumption minimisation and driving time minimisation are considered. Three
exact solution methods (the weighted-sum method, the weighted-sum method with norm-
alisation and the e-constraint method) and one heuristic approach (a new Hybrid Method)
are tested and compared with each other.

Faulin et al. (2011) [14] develop an algorithm for solving a capacitated VRP that con-
siders traditional transportation costs and external environmental costs, but now not only
related to pollutant emissions but also to noise, congestion and wear and tear on infra-
structure. For these externalities they use cost estimations derived from surveys about
road transportation in rural areas (where nature is rather sensitive to traffic). A case
study reveals that taking into account the costs for pollution and noise raises economic

costs by around 28 %. Thus, the authors suggest that public policies are required in order
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to make environmental friendly transportation strategies attractive for companies.

So the work of Faulin et al. (2011) actually addresses the aspect of disturbance by con-
sidering the noise impact of road transportation. However, their problem and results
apply rather to a rural framework due to the rural evaluation basis of the external cost
estimations. Moreover all these externalities are considered to be environmental and not
conflicting, whereas the idea of the present work is to treat minimisation of gas emissions
and minimisation of noise and congestion impact as two conflicting objectives, where the

first one is assumed to be environmental and the second is assumed to be social.

Air pollution and other environmental issues are also critical in urban areas, due to the
high traffic volume resulting from providing goods and services to the residents. Basically
most of the work on PRPs applies also to the urban framework. Especially the time-
dependent models are of interest since urban traffic is more concerned with congestions.
However, when designing a sustainable city logistics system in addition to environmental
issues also social issues must be taken into account, since people living in the affected
areas may suffer from harmful impacts of traffic. Anand et al. (2012) [2], Bozzo et al.
(2014) [5] and Taniguchi et al. (2014) [34], for example, provide a review of literature
on modelling urban freight transportation. Anand et al. (2012) analyse in particular the
stakeholder’s involvement, the objectives and the defining criteria of the reviewed urban
logistic models. It shows up that efficiency in terms of internal costs is still a major
objective but also minimising environmental impact is heavily studied. Social objectives
are mostly only just mentioned, but formal and concrete approaches towards minimising
social externalities are rare. In case they are tackled it is in form of reducing congestion
what reduces in turn the risk of accidents. The approach in Holguin-Veras (2008) [21]
addresses this by moving urban freight deliveries to off-hours, where usually traffic is not
that dense. However this may increase disturbance to residents since traffic during night,
for example, is in general perceived as more disturbing than traffic during day. So this is

not of same meaning as the approach in the present work.

So despite the importance of making large cities also liveable, there has not been done
much research on VRPs that take amongst others care of the harmful social impacts of
freight transportation. In particular we could not find anything similar to the criteria
of urban disturbance as we interpret it, namely relating it to population density and
indicating thus how much or how many people are affected by traffic. Moreover we
oppose the minimisation of this urban disturbance to with the conflicting objective of

minimising gas emission, what makes our problem additionally innovative.



3 Bi-objective optimisation

The three modelling approaches developed and evaluated in the course of this work deal
all with the same problem, namely optimising customer delivery with respect to the
two conflicting objectives of emission and disturbance minimisation. To capture this
conflicting situation we need a bi-objective problem formulation.

Bi-objective optimisation is a special case of multi-objective optimisation. In the following
a brief overview of the theory of multi-objective optimisation and two possible solution
methods is given, where the so called e-constraint method will be explained in more detail
since it is implemented for later computational experiments. Those who are not familiar
with multi-objective optimisation and the e-constraint method are recommended to go
through this chapter in order to understand later parts of the work. Those who feel

confident about it could see it as a review or skip it and continue with chapter [

3.1 General case: Multi-objective optimisation

A multi-objective optimisation problem arises when two or more separated but intercon-
nected objectives have to be optimised simultaneously. This would involve also the case
where the objectives are not conflicting at all, which means that optimising one objective
yields also the optimal solution for all other objectives. However, we are interested here
in non-trivial multi-objective optimisation problems, so the objectives are assumed to be
at least partly conflicting. Moreover we assume that all objective functions are to be
minimised, since this is the situation we have to deal with in our problem.

A multi-objective optimisation problem can be then mathematically described in the fol-

lowing way (according to [6]):

"min” f(z) = (fi(z), fo(x), ..., fe(z)) (3.1.1)
subject to x € S. (3.1.2)

S C R™ is the set of feasible solutions, also called decision space, that is defined by the
constraints of the optimisation problem. The function f(z) maps a solution vector z € S
onto the objective space R¥. So for a multi-objective optimisation the objective value
corresponding to a certain solution is not just a real-valued number but a k-dimensional
vector of real-valued numbers. The "min” in front of f(x) is quoted because it is not

possible to minimise f(z) as a whole due to the conflicting component functions f; :
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R™ — R.

When we ask now for solving the problem .1)—2) we have to clarify first what
is meant by an optimal solution in the context of multi-objective optimisation.
In a single-objective optimisation problem the optimal solution is the decision vector
that minimises the given single objective function subject to the constraints. But is it
also possible to find a single solution for the multi-objective optimisation problem that
minimises all objectives simultaneously? In the assumed case of at least partly conflicting
objective functions the answer is no. A solution that minimises one of the objectives can
not minimise at the same time all other objectives in a feasible way. Instead there will be
a trade-off between the objective values: Improving one of the objectives can only happen
through degrading at least one other objective. This behaviour leads to the concept of

Pareto optimality:

e A solution z* € S is called Pareto optimal, non-dominated or Pareto efficient if
there does not exist any other solution x € S that is at least as good as x* in all
objectives, i.e. fi(z) < fi(2*) for all i € {1,...,k}, and strictly better than x* in at
least one objective, i.e. f;(z) < f;(z*) for at least one j € {1,...,k}. []

e The set of all Pareto optimal solution vectors to a given multi-objective optimisation

problem is called Pareto set.

e If x* is a Pareto optimal solution the corresponding objective vector
f(x*) = (fi(z*), fa(z), ..., fe(z*)) is referred to as non-dominated point.

e All non-dominated points together form the so called Pareto front. In the case of
a bi-objective problem the Pareto front can be visualised in the two-dimensional

objective space what is then referred to as trade-off curve.

Figure [3.1] illustrates the just introduced definitions for an arbitrary bi-objective optim-
isation problem, where both functions f; and f5 have to be minimised. The green crosses
represent the Pareto front or trade-off curve. For a pure minimisation problem the Pareto
front will always go from top left to bottom right. The steepness of the curve expresses
the trade-off between the two objective functions, i.e. how much an improvement in on
objective costs in terms of the other objective. If we take for example the two middle

crosses 2 and 3 (assuming we go from left to right) we see that the decline is flatter than

IThe just described concept is actually that of strict Pareto optimality. Beside that there exists also the
definition of weak Pareto optimality that says that a solution z* € S is weakly Pareto optimal if there
does not exist any other solution z € S that is strictly better in all objectives, i.e. f;(x) < f;(x*) for
alli e {1,...,k}.

For our purposes we stick with strict Pareto optimality, so when talking about Pareto optimality we
actually mean strict Pareto optimality.
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Figure 3.1: The concept of Pareto optimality

from 1 to 2 or 3 to 4. This means that improving f, from 2 to 3 causes a larger deterior-
ation in f; than between the other points.

To better understand what distinguishes the non-dominated points from all other points
in the objective space we have a look at the rest of the given points. In fact all points
above and right to the non-dominated points are dominated, what means that there is
a solution that is better in at least one objective. The solution corresponding to the
first triangle (assuming again we go from left to right) is dominated in the sense of strict
Pareto optimality. If we supposed weak Pareto optimality it would be non-dominated
because none of the (strict) Pareto optimal solutions is better in both objectives. The
third triangle represents a special point called Nadir point, whose components are the
worst objective values of the solutions of the entire Pareto set [§].

Solutions corresponding to points below and left to the non-dominated points would be
better in at least one objective, but they are ruled out by the constraint set, i.e. they are
infeasible. The rhombus at bottom left shows the ideal point whose components are the
objective values when minimising each of the two functions individually.

The Nadir point and ideal point give upper and lower bounds for the Pareto front as
illustrated by the dotted lines in Figure 3.1} So in general computing the two points may
be of interest when solving a multi-objective optimisation problem. However we do not

make use of them in the course of this work.

3.2 Exact methods for solving multi-objective optim-
isation problems

So we know now that solving a multi-objective optimisation problem means basically

creating the Pareto front. Therefore several methods exist, that differ in solution quality
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and performance. Some yield only parts of the Pareto front or approximations to it.
However, we are here interested in finding the whole and exact Pareto front, what will
bring us in the end to the e-constraint method. But before we will present another idea

for solving multi-objective optimisation problems.

3.2.1 Weighted-sum method

One can argue that there is a way around solving a multi-objective optimisation problem
by combining the objective functions linearly to one objective function such that it can
be solved as a single objective optimisation problem.Doing so implies putting a weight on
each of the objective functions and only the solution corresponding to this specific weight
combination is obtained. We would be able to do this if we had extra information on the
decision maker’s preferences who is the one interested in the solutions of the problem and
finally deciding which ones are implemented based on his/her preferences. In the context
of the present problem the decision maker could attach more importance to either emission
or disturbance or prefer a rather balanced solution. If his/her preferences were known a
priori we would be able to attach the corresponding weights to the objective functions
and solve it as a single-objective optimisation problem. However, this extra information
is rarely available in practice. Mostly decision makers are not willing or able to formulate
their preferences in advance. Furthermore preferences can change very quickly, which
means a solution that was appropriate last week may not be useful any more today.
Hence they usually prefer to see first all potential solutions and the trade-off between the

objective functions before evaluating which solution fits best.

One can further argue that the weights of the objective functions could be changed
gradually in order to get several different or even all points on the Pareto front. But there

remain some drawbacks that prevent us from using it:

e Each time a weight factor is changed a new single objective optimisation problem
has to be solved what could result in high computational burden. Moreover it can
happen that a change in the weight vector does not even yield a new Pareto optimal

solution.

e The relation between the weight factors and the objective values is not consistent.
For example in a bi-objective optimisation problem: When we double the weight
for the first objective function and half the weight for the second objective function
this does not necessarily imply that the objective values change accordingly. Thus
it is difficult to anticipate which weight factor leads to which trade-off between the

objectives.
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e The weighted-sum method cannot find Pareto optimal solutions that lie in non-
convex regions of the objective space what makes the approach inadequate for our
purposes because we want to find the whole Pareto front. The picture below shows
a situation where the weighted-sum method would fail in finding the Pareto optimal
solution off the dashed line (that indicates the boundary of the convex region). More
on the weighted-sum method can be found in Marler et al. (2010) [2§].

A
f2

3.2.2 e-constraint method

The so called e-constraint method [23] is another exact solution method for multi-objective
optimisation problems that does not require any weighting and combining of the objective
functions and finds even solutions in the non-convex region of the objective spaceE]. The
basic idea behind it is to choose only one of the objective functions to be optimised and
convert the remaining ones into constraints by imposing an upper bound on their objective

values. In mathematical terms this writes as follows:

min f;(z)
st fi(x) <0y, Vje{l,... k}\{}
xes

In the case of a bi-objective optimisation problem, as we face it in this work, this formu-

lation reduces to

min fi(x) (3.2.1)
s.t. fa(r) < © (3.2.2)
z€eS. (3.2.3)

2There are of course many further methods for solving multi-objective optimisation problem, either
exactly or heuristically. Marler and Arora (2004) [27] give some insight in this context.
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So only one of the the two objectives is chosen to be minimised .1) under the original
constraint set .3) plus the upper bound constraint on the other objective .2).
When solving this 'new’ optimisation problem with an appropriate value for ©, one Pareto
optimal solution to the original bi-objective problem can be identified. To get the whole
Pareto front the single-objective optimisation problem as formulated in .1)—3) has

to be solved several times for variations of ©.

The question is now how © should be chosen and varied such that in the end the whole
Pareto front is obtained. The e-constraint method described in Algorithm 1 (based on

[35]) uses a complying variation scheme.

Algorithm 1 e-constraint method

Require: Increment ¢ € R,
Ensure: Set of Pareto optimal solutions
1: A0
e-constraint < fy < 0o
add e-constraint to MIP
repeat
x < Min(f)
localObjective Bound <+ f1 = f1(x)
add localOjbective Bound to MIP
x <+ Min(fs)
A~ AUz
remove localObjective Bound from MIP
11: update e-constraint: e-constraint <— fo < fo(z) — ¢
12: until MIP cannot be solved

,_.
e

The algorithm in words

The result set A is used to store the Pareto optimal solutions. Line 1 says that it is
initialized with the empty set. In the beginning the upper bound © on f5 is chosen to
be infinity (line 2) | what implies that there is in fact no upper bound on f, in the first
optimisation step. Consequently the first point on the Pareto front we get is the one
corresponding to the optimal solution to f; when minimising it in complete absence of
fa. Throughout the algorithm the upper bound on f5 will be gradually decreased by the
increment ¢ what justifies the notation ’e-constraint’. To allow for these later updates
on the upper bound we have to add the e-constraint to the MIP before the first iteration
although it is not yet restrictive (line 3).

In each iteration of the e-constraint-method the underlying MIP is solved a first time by
minimising f; subject to the original constraint set plus the e-constraint (line 5). The
resulting objective value fi(x) serves then as an equality constraint on f; when solving

the MIP a second time, now with minimising fs (line 6-8). Doing so yields a new Pareto

3 Actually the component of the Nadir point belonging to f» could be taken as an initial upper bound
but doing so requires an extra optimisation step, what we want to avoid.
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optimal solution that is added to the solution set A (line 9). The reason for naming the
objective bound on f; 'local’ is that it is only valid for the current iteration because the
objective value of f; changes in each iteration (it increases). Thus the local objective
bound constraint has to be removed at the end of the current iteration (line 10) and
added anew in the subsequent iteration in order make it possible that new solutions can
be found.

Beside that, the e-constraint has to be updated in order to generate a new solution in the
next step (line 11). This happens through gradually decreasing the right hand-side of the
upper bound constraint by the increment value ¢.

The iteration procedure is repeated until no more feasible solution can be found. The last
possible Pareto optimal solution is the one that corresponds to minimising f5 individually.
We can see that the upper-bound variation scheme of the e-constraint method is designed
such that f; is gradually deteriorated and f; is gradually improved with every iteration.
In Figure [3.2] you can see an illustration of the algorithm by means of an example with

three non-dominated points.

fz A f2 A f2 A

2nd jteration 3rd jteration

15t iteration

Figure 3.2: e-constraint method

The horizontal, continuous line with the subjacent diagonal lines represents the e-

constraint and vertical line represents the local objective bound.

The increment parameter € should be chosen carefully because it has an influence on
the performance of the algorithm. If € was chosen too large, some solutions may be left
out. On the other hand, if ¢ was too small, there may run many iterations without finding
any new Pareto optimal solution. A good benchmark for the value of € can be obtained
by evaluating the differences between the objective values of f; and f, along the Pareto
front. So maybe it is necessary to execute several runs of the algorithm before a proper
value for ¢ is found.

Furthermore it has to be decided which of the two objective is taken as f; and which one
as fo. Concerning the Pareto front it does not matter because with an appropriate choice
of € both versions yield theoretically the same result. But it could matter with regard to

CPU effort. So one version may be faster in finding the Pareto front than the other one.
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We will have a closer look on this when we come to the computational study in chapter

Bl



4 Mathematical problem formulation

The underlying problem scenario of this work has been already briefly described in chapter
and we also know it requires dealing with a bi-objective optimisation problem due to
the conflicting objectives. In this chapter things become now more precise in terms of
formulation. Three different bi-objective modelling approaches are going to be presented
where each of them relies on specific assumptions that totally change the structure of the
formulation. However, there are some features that can be generalized across all three

models.

4.1 Features valid for all three approaches

4.1.1 Data
Information on locations, vehicle and demand

The task is to deliver a given set of customers C' within a single tour. This tour is as-
sumed to start and end at an a-priori fixed hub. So no decisions concerning hubs have
to be made in our optimisation problem. The fixed hub acts as depot for the goods as
well as recharge station for the alternatively fuelled vehicles. The problem with electric
or hybrid vehicles is that recharging stations are not yet very frequent. So running out
of energy during a tour should be avoided what could be modelled through imposing an
upper bound on the duration of the tour. But we ignore this in our framework.

A further crucial assumption concerning the vehicle is that the capacity restriction is not
effective and we do not need to go back to the hub in between for reloading goods.

The absence of restrictions on capacity and tour duration in the optimisation problem
requires that the a-priori, fixed set of locations is such that demand pattern and time
reachability respect the implicitly given limits. Otherwise it is not guaranteed that the
resulting solutions are feasible with respect to capacity and duration.

Concerning demand we assume that each customer ¢ € C' has strictly positive and de-
terministic demand ¢;. Strictly positive demand implies that customers must be visited
during the delivery tour. Deterministic demand means that we know already at the time
of planning how much must be delivered to each customer.

The time horizon of our optimisation problem is assumed to comprise only one period,

e.g. one day, thus demand data refers to this specific day.

16
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Distance and disturbance data

Going from a location ¢ to another location j is assumed to be associated with covering
a distance d;; and producing disturbance g;; to urban neighbourhood. All formulations
presented in the next sections will be asymmetric, i.e. the distance and disturbance when
going from 7 to j can be different to the distance and disturbance when going from j to <.
This should model the situation in real life where asymmetries in the road network occur,
for example, through one ways.

Distance data is assumed to fulfil the triangle inequality, so when going from one location

to another the way over a third location must be at least as long as the direct way.

A very crucial assumption is that triangle inequality must not hold for disturbance
data. So the way over a third location could be less disturbing than the direct one.
Actually this assumption makes the idea of including optional nodes in Model 2 meaningful
at all.

Quantifying and measuring distance is rather straightforward. Quantifying disturb-
ance, however, is more challenging, since it is a rather intangible value. The lack of related
research aggravates the situation. We mentioned already that disturbance should relate
in our context to how much people are affected by noise, risk or vibration caused through
traffic in the residential areas. When generating disturbance data for the purpose of this
work, we measured it in relation to population density. More on this can be found in the
computational study part. For formulating the models the most important thing is to

have in mind that disturbance data does not fulfil the triangle inequality.
Emission parameters

For calculating the total disturbance of a route only disturbance data is needed. For
calculating total emission we need in addition to distance data also information on how
much pollutant gases the vehicle produces. Therefore we have a parameter e that gives
the gas emission when travelling one unit of distance while the vehicle is empty and a
second parameter f that gives gas emission per unit of load weight when travelling one
unit of distance. Both parameters are constant but depend on the type of vehicle. We do
not care about how to come up with these values but just take them as given from the
data.

4.1.2 Graphical representation

Each of the modelling approaches induces a different type of graph, but the following

features hold true for all three approaches:
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The locations are represented by the graph’s node set V' and ways between them by the
corresponding arc set A. The hub will always be node 0. In Model 1 and 3 the customer
nodes account for the rest of the node set. For Model 2 the node set V' also contains so
called optional nodes that must not but can be visited if beneficial in terms of disturbance.
We assume that the underlying graph is always complete, which means there is an arc
(1,7) for each node i € V' to each other node j € V| with i # j since loops are forbidden.
The special feature of Model 3 is that the graph can contain more than one arc between
each pair of nodes. Such a graph is referred to as multi-graph in graph theory.

Each arc is associated with an arc-weight-vector (d,;, g;;), where the first component refers
to the distance from node 7 to j and the second to its disturbance. As already mentioned,
all three modelling approaches are formulated asymmetrically, what implicates considering
a directed graph, where the arc-weight-vector for arc (i, j) is not necessarily equal to the

arc-weight-vector for the opposite-directed arc (j, i) ][

@ @
O
e o OA‘. e O

(a) Model 1 (b) Model 2 (c) Model 3

Figure 4.1: Example graphs for the three modelling approaches

Figure 4.1 shows the graphs induced from the three different modelling approaches,
illustrated for an example instance with two customers. For Model 2 an additional optional
node is available and for Model 3 there are two arcs between the two customers.

Arc weights are not displayed in any of the three graphs, but would be available from
data.

4.1.3 Decision variables

For each arc there is a binary decision variable z;; that is either 1 when the arc is used
in the solution or 0 when not. Using an arc (7, j) means that location j is visited directly
after location ¢. All non-zero z;; together define then the sequence of nodes, i.e. the
solution route. Moreover there is for each arc a continuous and non-negative decision

variable u;; that gives the total load weight carried in the vehicle when traversing arc

! Actually a complete digraph would mean that there are two arcs for each pair of nodes, one in each
direction. For reasons of simplicity we assume here that the two directions are represented by only
one arc. Moreover in graphical illustrations the arcs are displayed without arrows although there is
formally a bi-directed arc behind it. If an arc is provided with an arrow it indicates the direction of
a route/path as a result of any of the considered optimisation problems.
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(i,7). For modelling approach 3 the decision variables are of course available for each of
the multiple arcs what requires an additional index but more on this will be given in the

respective section.

4.1.4 Objective functions

We know already that the two conflicting objective functions of our optimisation problem
are that of total emission and total disturbance, where both are to be minimised. Although
they are embedded into three different models the structure of their formulation remains
essentially the same across all three models. That is why we set them up in a basic form
already here, using the information about data and decision variables we have so far. The

model-specific adaptations can be then easily taken later.

i€V jev

i€V jev

Function (4.1.1]) measures total emission and (4.1.2)) total disturbance of a tour. We will

analyse them now in more detail:

Gas emissions

There are many different factors playing together when total emission for a certain route
should be measured. It would be too complex to incorporate all of them into a math-
ematical, abstract model. Thus we ignore for example vehicle speed and acceleration in
our optimisation problem and assume that solely the amount of pollutant gases produced
during a delivery-tour depends on the technical features of the used vehicle, the length
of the tour and the carried load weight. The type of vehicle is crucial, because when
driving a route with an alternatively fuelled vehicle total emission will be lower than
driving the same route with, for example, a diesel-powered vehicle. Since our optimisa-
tion problem does not contain any decisions on vehicle type this component of emission
is fixed and covered by constant input parameters e and f. However tour length and
load weight are assumed to be controllable and thus decided from within the optimisation
problem. Both factors are interdependent, because load weight values differently depend-
ing on over which distance you carry it. So a fully loaded vehicle should preferably go
shorter ways than an empty vehicle. However, also an empty vehicle causes pollutant
gases. Therefore we make a basic distinction between two different types of controllable
emission: the load-independent emission, emerging from just driving the vehicle, and the

load-dependent emission, emerging from carrying weight over the travelled distance. The
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first part of the sum in objective function (4.1.1)) refers to the first type and the second
part to the latter. Load-dependent emission is measured over driven vehicle-kilometres,
that become effective through binary decision variables z;;, times the emission parameter
e. Load-dependent emission is measured also over driven vehicle kilometres, but now they
are not just counted or not, but are additionally weighted through load decision variables
u;;. Emission parameter f is needed to count for emission per unit of distance and per
unit of load weight. e and f serve moreover as kind of weighting factors between the two
types of emission. So depending on how they are chosen more importance is given to

load-independent or load-dependent emission or a balance between them is achieved.ﬂ

Disturbance

Disturbance data is as well as distance data arc-dependent. So the total disturbance of a
route is computed by summing up the used arcs expressed by the binary decision variables
x;; and the corresponding disturbance value. We assume that load has no influence on
disturbance. So function is actually just a linear cost function where cost arise is

in form of disturbance.

The way the two objective functions are designed links them via the binary decision
variable x;;. The consequence of this is that we have to deal with a bi-objective optim-

isation problem, whose particularities were already described in chapter

4.1.5 Constraints

To complete a mathematical formulation of our optimisation problem also a set of con-
straints is needed that makes sure the solutions respect all assumptions and requirements,
like having a closed, single tour or that load variables are in accordance with the route.
However the formulation of the constraint set differs heavily across the three approaches.
Hence it does not make sense to state anything general already here. The only thing
we can already anticipate is that the set of constraints will always comprise only linear

inequalities and equations.

2Since the parameters e and f are arc-independent and always multiplied linearly to the distance values
d;; we could multiply them ex ante, giving then data e;; and f;;. Objective function (1) would read as
min) . > ; cv (€ij@i; + fijuiz). But doing so would make the formulation less transparent - it would
hide the fact that emission is proportional to distance. Moreover it would require extra pre-processing
of data, because we get distance data and emission parameters separately.
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4.1.6 Mixed Integer Programming

Due to the fact that our optimisation problem contains integer - actually binary - and real
valued, continuous decision variables, a linear set of constraints (except for the integer
constraint on the binary variable) and linear objective functions we can classify it as a
Mixed Integer Program (MIP) [37].

Hence, all model formulations of this work are in fact bi-objective MIPs.

4.2 Model 1

Model 1 can be seen as a kind of basic model because on the one hand it is rather simplistic
and on the other hand it serves as a starting point for setting up the other two, more

sophisticated models.

4.2.1 Classification: Bi-objective Travelling Salesman Problem

Model 1 falls into the class of bi-objective Travelling Salesman Problem (bi-objective
TSP). The bi-objective TSP is an extension 