
DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

Metamodel Composition in Hybrid
Modelling

- A Modular Approach

verfasst von / submitted by

Mag. Srđan Živković

angestrebter akademischer Grad / in partial fulfilment of the requirements
for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2016 / Vienna, 2016

Studienkennzahl lt. Studienblatt / A 786 175
degree programme code as it appears on
the student record sheet:
Dissertationsgebiet lt. Studienblatt / Wirtschaftsinformatik
field of study as it appears on the student
record sheet:
Betreut von / Supervisor: o. Univ.-Prof. Dr. Dimitris Karagiannis

Abstract

It has been recognised that model-based engineering (MBE) approaches are
beneficial for the engineering of increasingly complex systems and software.
MBE encourages the usage of modelling languages and methods to anal-
yse, design and develop various kinds of enterprise and software systems.
A multitude of standard and domain-specific modelling languages (DSML)
are being engineered to facilitate modelling. While focusing on a narrow
domain, DSMLs are composed into hybrid modelling languages, to benefit
from their combined use, i.e. to address the system complexity from differ-
ent perspectives holistically. Furthermore, modelling languages in general
evolve over time, requiring adaptations, extensions and customisation to
accommodate the changing requirements of a problem domain. Language
definition is a complex engineering task. Metamodelling has been recognised
as a practical yet rigorous formalism for language definition with a meta-
model being its pivotal engineering artefact. While current metamodelling
techniques provide powerful concepts for creating metamodels from scratch,
they lack concepts for more efficient metamodelling. To answer the chal-
lenges posed by an increasing need for new modelling languages in general
and by their hybrid and evolving nature in particular, this thesis introduces
an approach to modular metamodel engineering (MME). Based on the hy-
pothesis that modularisation and composition reduce effort and improve
efficiency in metamodel definition, the thesis extends existing metamod-
elling concepts towards modular definition of metamodels. In particular,
the thesis introduces concepts for defining reusable metamodel fragments
and a comprehensive set of metamodel composition operators for fragment
combination. By promoting reuse, such a modular approach allows for sys-
tematic, flexible and efficient definition and customisation of metamodels.
The introduced concepts are formalised in a language for modular meta-
model engineering (MMEL). A possible realisation of MMEL is explicated
based on the ADOxx metamodelling platform. Finally, the MME approach
and in particular the language MMEL is evaluated in two case studies of
enterprise modelling methods in the context of OMILab. On the one side,
MMEL is applied to modularise the hybrid modelling method BPMS. On
the other side, MMEL is used to design a hybrid DSML that combines a
language for network devices modelling with the ontology language OWL.

i

Zusammenfassung

Das Modell-basierte Engineering (MBE) stellt einen praktischen Ansatz
zur Entwicklung von immer komplexer werdenden Systemen und Software
dar. Im Vordergrund des MBE stehen Modellierungssprachen und Metho-
den, welche für die Analyse, Design und Entwicklung von Enterprise- und
Software-Systemen unterschiedlicher Art genutzt werden. Eine Vielzahl von
standard- sowie domänenspezifischen Modellierungssprachen werden entwi-
ckelt, um die Modellierung zu ermöglichen. Häufig werden solche Sprachen
in sogenannte hybride Modellierungsprachen zusammengelegt, um von ihren
kombinierten Nutzung zu profitieren. Ferner unterliegen Modellierungsspra-
chen kontinuierlicher Anpassung und Weiterentwicklung, um den ändernden
Anforderungen der Problemdomäne stand zu halten. Die Sprachdefinition ist
dabei im Grunde eine komplexe Aufgabe. Es ist bekannt, dass die Metamo-
dellierung einen praktischen und zugleich einen rigorosen Formalismus zur
Sprachdefinition darstellt, in welchem das Metamodell als Drehpunkt der
Spezifikation fungiert. Während die existierenden Metamodellierungsansät-
ze ausgereifte Konzepte zur Metamodelldefinition “vom Grund auf” anbie-
ten, fehlen weitere Konzepte, welche eine effizientere Metamodellierung er-
möglichen. Die vorliegende Arbeit sucht diese Lücke mit einem Ansatz zum
modularen Metamodell-Engineering (MME) zu schließen. Basierend auf der
Hypothese, dass modulare und kompositionale Ansätze den Aufwand mini-
mieren und zugleich die Effizienz und die Flexibilität der Metamodelldefini-
tion steigern, erweitert diese Arbeit bestehende Metamodellierungsansätze
mit Konzepten zur modularen Metamodelldefinition. Insbesondere werden
Konzepte zur Definition von wiederverwendbaren Metamodell-Fragmenten
sowie eine Reihe von umfassenden Operatoren zur Metamodellkomposition
eingeführt. Durch wesentlich erhöhte Wiederverwendbarkeit, ermöglicht der
modulare Ansatz eine systematische und effiziente Entwicklung und Anpas-
sung von Metamodellen. Die eingeführten Konzepte werden in einer Sprache
zum Modularen Metamodell-Engineering (MMEL) formalisiert. Die Rea-
lisierbarkeit der MMEL-Sprache wird anhand der ADOxx Metamodellie-
rungsplattform erläutert. Darüber hinaus konnte der MME-Ansatz bzw. die
MMEL-Sprache in zwei Fallstudien zur modularen Entwicklung von hybri-
den Modellierungssprachen im Kontext von OMILab positiv evaluiert wer-
den.

ii

Acknowledgements

“The Loneliness of the Long
Distance Runner”

Alan Sillitoe

Writing a dissertation is like running a long-distance run. A long-
distance run requires a lot of preparation, but most of all, it requires a
great amount of endurance, determination and patience, in order to reach
the finish line. On that path, there are many ups and downs, the moments
of flow, but also tough moments of weakness and loneliness. Luckily, one
is not completely alone on this journey. Your coach supports you in giving
you helpful advice, fellow runners share running tips that will support and
encourage you along the way, and, finally, you have the audience that some-
how always happens to be there when most needed to cheer you up to move
on. I see the coach as the thesis supervisor, the runners as your colleagues,
and the audience to be your friends and family. Herewith, I would like to
express my gratitude to all of them for helping me reaching the finish line
of my long-distance run.

First and foremost, I would like to thank my supervisor, Prof. Dr. Dim-
itris Karagiannis, for introducing me to the field of metamodelling and giving
me the opportunity to undertake a research on a very interesting and chal-
lenging topic of metamodel composition. I appreciate all the scientific advice
that helped me to streamline my research towards its successful completion.
I would like to thank Dr. Harald Kühn who gave me the opportunity to work
on the metamodelling topics in the industrial setting and who introduced
me to the practical challenges of metamodelling. His earlier scientific work
on method integration sparked my research interest for metamodel compo-
sition that has lasted for years. I thank Prof. Dr. Wilfried Grossmann and
Prof. Dr. Hans-Georg Fill, for their time and effort spent evaluating my
dissertation and their insightful comments provided.

My thanks go to my PhD colleagues Wilfrid Utz and Christoph Moser,
with whom I worked on various PhD assignments at the Department for
Knowledge Engineering, Faculty of Computer Science, University of Vienna.
I thank my colleagues from BOC Information Systems GmbH, Vienna, with

iii

ACKNOWLEDGEMENTS iv

whom I intensively worked on the ADOxx metamodelling platform all these
years. Here, I would like to mention Lukas Ramach with whom I shared
numerous discussions on ADOxx concepts. Further thanks go to my un-
dergraduate colleague and friend Marija Bjeković from LIST, and Christos
Lekaditis from BOC for their interest and time to comment and proofread
the thesis. Furthermore, I would like to thank my former colleagues from
the EU research project MOST, with whom I worked on the integrated
modelling languages and the application of (meta)modelling in software de-
velopment. I would like to mention Krzysztof Miksa from Comarch with
whom I worked on the hybrid modelling language PDDSL and Christian
Wende with whom a shared the passion for language composition and meta-
modelling tool development.

Finally, I want to thank my friends, relatives and my family for the sup-
port and understanding of the time I did not spend with them, for missed
moments and celebrations while working an extra hour on the thesis. In
particular, I want to thank my mother and my late father who taught me
to endure in order to reach the higher goals and my brother for the over-
all encouragement and support during my entire scholar path. Lastly, my
deepest gratitude goes to my wife Christiane and our daughter Helen, for
their endless patience and faithful support throughout.

Srđan Živković
Vienna, December 2015

Contents

Abstract i

Zusammenfassung ii

Acknowledgements iii

Contents v

I Overview 1

1 Introduction 2
1.1 Overview . 2
1.2 Problem Statement . 3

1.2.1 Hybrid Languages . 3
1.2.2 Evolving Languages 4
1.2.3 Metamodelling-in-the-Large vs. Metamodelling-in-the-

Small . 4
1.2.4 Research Questions . 5

1.3 Thesis Contributions . 7
1.3.1 A Concept for Modular Metamodel Engineering . . . 7
1.3.2 A Language for Modular Metamodel Engineering . . . 7
1.3.3 Realisation in Metamodelling Platforms 9
1.3.4 Evaluations . 9

1.4 Thesis Structure and Additional Information 10
1.4.1 Thesis Structure . 10
1.4.2 Scope: Additional Comment 12
1.4.3 Publications . 13

II Existing Work 16

2 Concepts for Modelling Method Engineering 17
2.1 Modelling Methods . 18

v

CONTENTS vi

2.1.1 Elements of a Method 18
2.1.2 Extended Method Framework 20
2.1.3 Modelling Technique 21
2.1.4 Mechanisms and Algorithms 23
2.1.5 Process Model . 25
2.1.6 Overview of Method Engineering Approaches 29

2.2 Method Integration for Hybrid Modelling 32
2.2.1 Hybrid Modelling Methods 32
2.2.2 Method Modularisation (Fragments and Chunks) . . . 36
2.2.3 Method Integration (Patterns, Mappings and Integra-

tion Rules) . 38
2.2.4 Life Cycle of Hybrid Modelling Methods 43

2.3 Case Studies in Hybrid Modelling Methods 45
2.3.1 Integration of BPMN and Organisational Modelling . 45
2.3.2 Model-driven Development of Interoperable, Interor-

ganisational Business Processes 46
2.3.3 Hybrid Modelling Method for Consistent Physical De-

vices Management . 48
2.4 Chapter Summary . 52

3 Concepts for Modelling Language Engineering 60
3.1 Language Engineering Layers 61
3.2 Modelling Language Anatomy 61

3.2.1 Abstract Syntax . 62
3.2.2 Concrete Syntax . 63
3.2.3 Semantics . 64
3.2.4 Interfaces . 65

3.3 Approaches for Language Definition 65
3.3.1 Abstract Syntax Specification 65
3.3.2 Concrete Syntax Specification 66
3.3.3 Semantics Specification 68

3.4 Overview of Metamodelling Languages 70
3.4.1 Metamodelling Concepts 70
3.4.2 Capabilities of Metamodelling Languages 71
3.4.3 ADOxx Meta2-Model 75
3.4.4 EMF Ecore . 76
3.4.5 GME MetaGME . 77
3.4.6 MetaEdit+ GOPPRR 79
3.4.7 OMG MOF . 80
3.4.8 GrUML . 83
3.4.9 Comparison of Metamodelling Languages 84
3.4.10 Other Approaches . 85

3.5 Chapter Summary . 89

CONTENTS vii

4 Metamodelling Environments 90
4.1 Development Environments 91

4.1.1 Programming Environments vs. (Meta-)Modelling En-
vironments . 91

4.1.2 Elements of Development Environments 92
4.1.3 Classification of Development Environments 93

4.2 Overview of Metamodelling Environments 95
4.2.1 Generic Architecture of Metamodelling Environments 95
4.2.2 Capabilities of Metamodelling Environments 96
4.2.3 ADOxx . 101
4.2.4 GME . 104
4.2.5 MetaEdit+ . 105
4.2.6 Eclipse Modelling . 107
4.2.7 Comparison of Metamodelling Environments 109

4.3 Excursion: Ontology-driven Software Development Environ-
ments . 112
4.3.1 ODSD Environments 112
4.3.2 Reference Architecture for ODSD Environments . . . 113

4.4 Chapter Summary . 117

III Focus of Work 118

5 On Metamodel Modularisation and Composition 119
5.1 Elements of Modular Systems 119

5.1.1 Modularisation Concepts 120
5.1.2 Composition Concepts 122
5.1.3 Composition Technique (Derivation of Composite Mod-

ules) . 125
5.2 Existing Metamodel Composition Operators 126

5.2.1 Inheritance . 126
5.2.2 Redefinition . 127
5.2.3 Aggregation . 127
5.2.4 Merging . 127
5.2.5 Importing . 128
5.2.6 Template Instantiation 129
5.2.7 Stereotyping . 129
5.2.8 Annotation . 130
5.2.9 Parameterisation . 131

5.3 Analysis of Related Work . 132
5.3.1 Classification Framework 132
5.3.2 Overview of Approaches 132
5.3.3 Evaluation of Approaches 139

5.4 Chapter Summary . 143

CONTENTS viii

6 A Concept for Modular Metamodel Engineering 144
6.1 Foundations of Modular Metamodel Engineering 145

6.1.1 A Holistic Modular Approach 145
6.1.2 Requirements on a Modular Approach 146

6.2 Modularisation in Metamodel Engineering 148
6.2.1 Metamodel Fragment 148
6.2.2 Explicit Interfaces (Black-Box) 149
6.2.3 Implicit Interfaces (Grey-Box) 151
6.2.4 Explicit Access Modifiers (Grey-Box, White-Box) . . . 152

6.3 Composition in Metamodel Engineering 153
6.3.1 Interface-based Black-Box Metamodel Composition . . 153
6.3.2 Extension-based Grey-Box Metamodel Composition . 155
6.3.3 Mixin-based White-Box Metamodel Composition . . . 157

6.4 A Metamodel for Modular Metamodel Engineering 159
6.5 Chapter Summary . 160

7 A Language for Modular Metamodel Engineering (MMEL)162
7.1 Preliminaries . 163

7.1.1 Note on Specification Formalism 163
7.1.2 MMEL Language Architecture 164

7.2 Core Metamodelling Language (CML) 164
7.2.1 Abstract Metamodelling Language 165
7.2.2 Concrete Metamodelling Language 169

7.3 Metamodel Modularisation Language (MML) 171
7.3.1 Metamodel Encapsulation Language 171
7.3.2 Metamodel Interfacing Language 175

7.4 Metamodel Composition Language (MCL) 179
7.4.1 Black-Box Metamodel Composition Language 180
7.4.2 Grey-Box Metamodel Composition Language 187
7.4.3 White-Box Metamodel Composition Language 192

7.5 Chapter Summary . 197

8 A Realisation of MMEL in ADOxx 199
8.1 ADOxx Metamodelling Language Implementation 200

8.1.1 Syntax of the ADOxx Meta2-Model 200
8.1.2 Semantics of the ADOxx Meta2-Model 202
8.1.3 Notation of the ADOxx Meta2-Model 204

8.2 Implementing Metamodel Modularisation in ADOxx 204
8.2.1 Extending the Syntax 205
8.2.2 Extending the Semantics 208
8.2.3 Extending the Notation 209

8.3 Implementing Metamodel Composition in ADOxx 210
8.3.1 Extending the Syntax 210
8.3.2 Extending the Semantics 212

CONTENTS ix

8.3.3 Extending the Notation 215
8.4 Applying MMEL Towards Modular Modelling Methods in

ADOxx . 215
8.4.1 Metamodel and Functionality Building Blocks (MFBs) 215
8.4.2 Realisation of MFBs in ADOxx 220

8.5 Chapter Summary . 222

IV Evaluation 223

9 Case Studies for MMEL in OMILab 224
9.1 Case Study in BP: Modular BPMS 225

9.1.1 Particularities of ADOxx Metamodels 225
9.1.2 Modularisation of the BPMS Metamodel 227
9.1.3 Composition of BPMS Fragments (A Selection) 231

9.2 Case Study in EA: Hybrid PDDSL 239
9.2.1 Revisiting the Integrated Metamodel Implementation 240
9.2.2 Modular Metamodel Definition using MMEL 241

9.3 Chapter Summary . 245

V Summary 247

10 Conclusion and Outlook 248
10.1 Conclusion . 248
10.2 Outlook . 250

Bibliography 253

List of Figures 273

List of Tables 277

Appendix 279

A Biography 279

Part I

Overview

1

Chapter 1

Introduction

“If we knew what it was we were
doing, it wouldn’t be called
’research’, would it?”

Albert Einstein

1.1 Overview
With the rise of digital computing, which has been the major vehicle of the
third industrial revolution started in the late fifties [Wikipedia, 2016], the
IT industry today has become the key provider for business growth, driving
business productivity and establishing numerous new business fields and
models [McDavid, 2004]. Today, the software industry more than ever faces
the challenges of providing quality-focused, adaptable, reliable and durable
products and services which sustainably align business and IT. Software and
system engineering methods, techniques and tools which raise development
productivity by leveraging reusability and programming abstraction level
towards automation are key factors to achieve a competitive advantage for
software providers.

Model-based approaches for system and software engineering deal with
the increased system complexity by raising the level of abstraction to mod-
els. Modelling may be used descriptively on the level of system analysis and
design to better understand the system under consideration and improve its
performance. On the other side, modelling is also used prescriptively to in-
terpret or generate executable systems, i.e. program code, with an ultimate
goal to automate the software production. Formalisation of concepts needed
to model a system under consideration on any abstraction level is always
captured in a modelling language. Up until recently, modelling language
definition has been reserved for a rather small number of language engineer-
ing experts. While the demand for new modelling languages was rather low,

2

CHAPTER 1. INTRODUCTION 3

the complexity of creating new languages was high. This state of affairs
changed significantly with the rise of domain-specific modelling languages
(DSML) and appropriate tools for language engineering. Instead of stick-
ing to a handful of general-purpose one-size-fits-all modelling languages, a
plethora of languages with precise semantics specific to a problem domain
are being designed in order to facilitate modelling, and respectively model-
based analysis and design, and development of systems and software. Lan-
guage engineering tools such as metamodelling platforms, language work-
benches, software factories provide necessary means to facilitate language
design and derivation of modelling tools. Hence, (modelling) language engi-
neering, a discipline that deals with systematic design and implementation
of languages, gained on significant importance in both research and industry
as a vehicle to advance model-based engineering of systems and software to
another level.

This thesis represents an attempt to contribute to the general field of
modelling method and language engineering, and in particular, to the field
of metamodelling (in the following, we refer to it as metamodel-based mod-
elling language engineering (MLE)). Since the central design artefact in MLE
is a metamodel, that represents the grammar/abstract syntax of a modelling
language [Selic, 2011], the thesis specifically tackles the areas of metamodel
modularisation and metamodel composition in modelling language engineer-
ing. By allowing for systematic modularisation of metamodels into reusable
constructs and their combination via composition, the approach to Mod-
ular Metamodel Engineering (MME) contributes to the increased reuse of
language design artefacts and, in general, to higher efficiency in metamod-
elling.

1.2 Problem Statement

1.2.1 Hybrid Languages

Demand for DSMLs and corresponding tools is continuously increasing, as
more stake-holders seek to leverage the power of models to abstract from
boiler plate code and excel sheets when describing and engineering complex
systems. Since DSMLs focus on and are restricted to a narrow single do-
main, the demand to use them in combination with other languages becomes
obvious. We call such combined, integrated languages hybrid languages. For
example, in various enterprise process modelling and architecture frame-
works (Zachman Framework [Zachman, 1987], TOGAF [The Open Group,
2012]) different system aspects are described using a set of interrelated con-
cepts that are combined together to provide a holistic view of the system.
In [Visser, 2008] a set of textual DSLs is built to capture different aspects of
web applications, which when combined together, represent a complete spec-
ification to generate a target web application system. Even the languages

CHAPTER 1. INTRODUCTION 4

stemming from different technical spaces may be combined, to benefit from
each others strengths. In [Zivkovic et al., 2011, Zivkovic et al., 2015] a
DSML for managing network devices is combined with ontology language
OWL to provide better specification of domain constraints. Hence, to al-
low for definition of hybrid languages, systematic modularisation concepts
for metamodels are required in order to handle DSMLs or their fragments
as reusable, recombinable language engineering units. Furthermore, com-
prehensive, flexible composition concepts are missing that would allow for
hybrid combination of such DSML metamodels.

1.2.2 Evolving Languages

Besides the hybrid characteristic, (modelling) languages, in general, undergo
changes during their life cycle, i.e. they evolve. Such evolving languages may
be adapted, customised to some problem and project-specific needs, or may
be extended and improved with additional features and constructs. Stan-
dard languages such as BPMN [OMG, 2013] for business process modelling,
ArchiMate [The Open Group, 2013] for enterprise architecture modelling,
UML [OMG, 2011a,OMG, 2011b] for software modelling, MOF [OMG, 2014]
for language modelling, OWL [Motik et al., 2009b] for formal ontology mod-
elling, or the proprietary, industry-strength languages for enterprise mod-
elling such as BPMS [BOC, 2015], have been evolving over time introducing
new versions to adopt various kinds of extensions and improvements. Fur-
thermore, released language versions are further customised to suit problem
and project-specific needs. For example, a company may adopt BPMN
2.0 [OMG, 2013] as a standard for business process modeling but requires
company-specific extensions for process-based risk management. Such cus-
tomisation may involve introduction of additional risk-related properties to
existing language entities, creation of new entities or even integration with
proprietary languages to build a custom hybrid solution. Ideally, such cus-
tom extensions should be portable to the upcoming version of the base lan-
guage. One of the challenges when developing evolving languages over time
is the ability to systematically modularise such languages and define lan-
guage core parts, extension points and extensions/customisations, to modu-
larise such language blocks to be reused over different language versions and
to allow for flexible substitution and combination of such language mod-
ules [Živković and Karagiannis, 2016].

1.2.3 Metamodelling-in-the-Large vs. Metamodelling-in-the-
Small

Metamodel-based language engineering, i.e. metamodelling faces challenges
that arise from the nature of hybrid and evolving languages. While language
definition is in its nature a complex engineering task, the demand for hy-

CHAPTER 1. INTRODUCTION 5

brid and evolving languages adds to the complexity even further. Language
definitions as complex monolithic design artefacts are hard to comprehend,
maintain, adapt and integrate. To quote Jackson [Jackson, 1990], “having
divided to conquer, we must reunite to rule”, a common way to deal with
system complexity is to break down the system into smaller, ideally, modular
pieces that can be combined together to build a complex system. Focusing
on systems built out of interacting components instead of monolithic ones,
is essential to the engineering of complex systems. The necessity of intro-
ducing component-oriented concepts in programming languages has been
nicely pointed out in [DeRemer and Kron, 1976]. They claimed that while
having programming constructs for creating small (monolithic) programs
and modules is essential (programming-in-the-small), it is equally important
to have constructs for combining single modules into an integrated whole
(programming-in-the-large) in order to build large and complex software.
If we apply the metaphor of programming-in-the-small vs. programming-
in-the-large to the field of metamodelling, it may be stated that current
metamodelling languages provide primarily concepts for “metamodelling-
in-the-small”. While the major focus is set on providing the core constructs
for metamodelling, less support is offered for the modular and compositional
engineering of metamodels [Živković and Karagiannis, 2015]. Although stan-
dard metamodelling languages such as MOF recognised these issues and in-
troduced basic modularisation concepts such as package and composition op-
erators such as package import and package merge, comprehensive concepts
for the definition of component-like metamodel modules and corresponding
flexible composition operators for language composition are still missing. It
has been recognised that modularisation and component-oriented, compo-
sitional development of software systems [Szyperski, 2002,Aßmann, 2003]
addressed the issues of programming-in-the-small and the pushed software
industry into a new era of software factories [Greenfield et al., 2004] and
component-based software assembly. Hence, approaches that would enable
component orientation in metamodelling are sought, in order to contribute
to the idea of “metamodelling in-the-large”.

1.2.4 Research Questions

The aim of the underlying work is to extend metamodelling approaches with
modular principles in order to allow for flexible and efficient construction
of complex, hybrid and evolving metamodels. Therefore, the main research
question is whether and how the metamodelling languages can be extended to
support modular, compositional engineering of metamodels? We refer to the
definition of software composition systems introduced by [Aßmann, 2003]
to postulate some concrete research questions. There, a modular, compo-
sition system is defined as a triple of a component model, a composition
language, and a composition technique. Whereas the component model de-

CHAPTER 1. INTRODUCTION 6

scribes modules that are to be composed, composition language provides
constructs to specify the composition of modules. Composition technique
deals with mechanisms needed to perform the composition, i.e. to derive
the output of the composition, a composite module. Following these tree
modularisation and composition elements, the following research questions
are postulated:

• RQ1: Which concepts are needed to introduce modularisation in meta-
model engineering and how? While current languages for metamodel
definition, i.e. metamodelling languages such as MOF [OMG, 2014],
GOPPRR [Kelly et al., 1996], ADOxx Meta2-Model [Kühn, 2010,
ADOxx, 2015], GME [Ledeczi et al., 2001a], EMF [Steinberg et al.,
2008] or GrUML [Ebert et al., 1996] provide basic constructs to define
white-box metamodel packages, advanced concepts for the definition of
black-box metamodel fragments with well-defined interfaces are miss-
ing [Živković and Karagiannis, 2015].

• RQ2: Which concepts are needed to introduce flexible composition
in metamodel engineering? Many of the current metamodelling lan-
guages introduced before support inheritance or inheritance-like com-
position operators when composing parts of metamodels. The defi-
ciencies of the inheritance (single or multiple) when used in context
of component composition such as the violation of information hid-
ing and construction of fragile, hard-wired dependencies, have been
extensively discussed in [Szyperski, 2002]. Metamodel design that re-
lies solely on complex inheritance hierarchies is fragile and suffers from
the “house-of-card architecture”1 syndrom. Besides that, although the
reuse of structural features by subclassing is one of the main advan-
tages of inheritance, it may at the same time be its major drawback,
too. Introduction of derived types (subclasses) for the purpose of
extending the base class with additional features may lead to com-
plex class hierarchies and over-engineered metamodels. Furthermore,
extending a class by subclassing may in some cases not be possible
(single inheritance restriction, or “sealed” base classes) or not desired
(the base class is already in use, i.e. instances exist that would require
tool recompilation and model migration). Furthermore, multiple in-
heritance has been discussed controversially since its introduction in
programming languages [Bracha, 1992], as well as, more recently, in
metamodelling [Selic, 2011]. Multiple inheritance is criticised for an
increased unanticipated complexity and ambiguity in class design, al-
lowing for anti-patterns such as “diamond inheritance problem” and

1According to Wikipedia [Wikipedia, 2015], the House-of-card architecture is a fragile
structure. . . a structure on a shaky foundation or one that will collapse if a necessary (but
possibly overlooked or unappreciated) element is removed.

CHAPTER 1. INTRODUCTION 7

over-generalisation. Finally, other standard operators such as aggre-
gation, import and merge exist, however, all of them operate on white-
box components, which lead to hard-wiring of metamodels. Hence, to
mitigate the above mentioned issues, composition operators that allow
for more flexible composition beyond inheritance and pure white-box
operators are needed [Živković and Karagiannis, 2016].

• RQ3: How can metamodel composition be realised within metamod-
elling platforms? Environments for metamodel-based language defi-
nition, i.e. metamodelling platforms, such as ADOxx [ADOxx, 2015],
Eclipse [Eclipse, 2013,Gronback, 2009], GME [Ledeczi et al., 2001a] or
MetaEdit+ [Kelly et al., 1996,MetaCase, 2011] provide core mecha-
nisms for metamodel and language definition. Mechanisms that allow
for metamodel composition, i.e. derivation of composite metamodels
need to be seamlessly integrated.

1.3 Thesis Contributions
The underlying thesis answers the previously formulated research questions
by introducing an approach to modular metamodel engineering (MME). The
main contribution of the thesis, the MME approach, consists of a concept,
a language and a realisation within the metamodelling platform ADOxx.

1.3.1 A Concept for Modular Metamodel Engineering

The concept for modular metamodel engineering (MME) is a continuation
of the fragment-based method integration idea proposed by Kühn [Kühn,
2004]. Focusing on the language part of the method, and in particular, on
the metamodel as a pivotal element in language definition, MME allows
for modular definition of metamodels. MME aims at extending the meta-
modelling concepts, i.e. the constructs of a metamodelling language, with
constructs for the modular metamodel definition. On the one side, it intro-
duces concepts to systematically define reusable, self-contained metamodel
fragments. On the other side, it extends metamodelling languages with a
set of composition operators to holistically support white-box, grey-box and
black-box composition. Finally, it follows the purely interpretative compos-
ite language derivation as a chosen composition technique to realise both
invasive and non-invasive metamodel composition.

1.3.2 A Language for Modular Metamodel Engineering

The concepts of MME are formalised in a language for modular metamodel
engineering (MMEL), which represents an extension of metamodelling lan-
guages towards modular orientation. It consists of two major sublanguages,

CHAPTER 1. INTRODUCTION 8

a metamodel modularisation language, and a metamodel composition lan-
guage. The metamodel modularisation language introduces concepts for en-
capsulating parts of metamodels into so called metamodel fragments with
well-defined interfaces and explicit dependencies, in order to realise the idea
of self-contained, prefabricated, black-box metamodel components. On the
other side, the metamodel composition language introduces a composition
algebra, i.e. a comprehensive set of operators for the flexible composition of
metamodel fragments. The composition language is holistic as it consists of
sublanguages for diverse composition scenarios such as black-box, grey-box,
and white-box metamodel composition. Black-box composition operators
allow for the composition of metamodel fragments on the level of explicit in-
terfaces based on the ideas of the component-oriented software development.
In addition, based on the notion of invasive software composition [Aßmann,
2003], grey-box composition operators are introduced for the composition of
metamodel fragments based on implicit interfaces. Grey-box composition
operators complement black-box operators to allow for flexible fragment
combination in the cases where explicit interfaces are not planned or do not
exist. Finally, advanced white-box composition operators are introduced to
flexibly compose internals of fragments or for composition scenarios where
other composition operators seem not to be sufficient.

Figure 1.1: Metamodel composition for modular engineering of hybrid,
evolving modelling languages

Figure 1.1 illustrates the anatomy of the approach and its main contribu-
tions. While core metamodelling refers to the basic metamodelling concepts
for constructing metamodels, i.e. for “metamodelling-in-the-small”, meta-
model modularisation contributes to that core with concepts for encapsula-
tion and information hiding in metamodelling. On top of modularisation
concepts, comprehensive metamodel composition operators for black-box,
grey-box and white-box composition allow for flexible combination of meta-

CHAPTER 1. INTRODUCTION 9

models and metamodel fragments to support the idea of “metamodelling-in-
the-large” and to allow for the construction of modular (hybrid, evolving)
modelling languages.

1.3.3 Realisation in Metamodelling Platforms

Furthermore, the introduced language for modular engineering of metamod-
els in general may only be useful if it seamlessly integrates into the exist-
ing mechanisms for metamodel definition of the metamodelling platforms.
Based on the metamodelling platform ADOxx, we explicate how a meta-
modelling platform can be extended to support metamodel modularisation
and composition natively, such that no external mechanisms nor generative
techniques are needed to derive composite metamodels. Even though we
focus only on one platform, the approach and the language itself are generic
such that the idea may be applied to other metamodelling and language
engineering environments, too.

Furthermore, we discuss how metamodel composition fills in the miss-
ing piece of the puzzle for the realisation of the more general concept of
Metamodel and Functionality Building Blocks (MFB) in ADOxx.

1.3.4 Evaluations

The applicability of the modular approach for metamodel engineering in gen-
eral and of the introduced language MMEL in particular is demonstrated in
two case studies in the context of OMILab (Open Model Initiative Labora-
tory) [OMI, 2015]. The selection of modelling languages for systematic eval-
uation in both case studies reflects the major duality of modelling concerns
(structure, behaviour) and the diversity of modelling domains in enterprise
modelling (Business Processes (BP), Enterprise Architecture (EA)).

• Evaluation I: Case Study in BP: Modular BPMS. The Business Process
Modelling Systems (BPMS) method is an integrated, hybrid modelling
method used for enterprise-wide business modelling of four core enter-
prise areas business processes, products, organisations and information
technology [Karagiannis, 1995,Bayer and Kühn, 2013,BOC, 2015]. We
demonstrate the applicability of the introduced approach by modular-
ising the BPMS. By doing so, we focus on the BPMN [OMG, 2013]
fragment of the BPMS and show how it is embedded into BPMS [Zivkovic
et al., 2007,Rausch et al., 2011], this time using the introduced mod-
ularisation and metamodel composition concepts.

• Evaluation II: Case Study in EA: Hybrid PDDSL. One of the results
of the EU research project MOST has been a technology for the inte-
gration of ontology and modelling languages. Combined with DSMLs,
ontology languages provide formal and expressive means to describe

CHAPTER 1. INTRODUCTION 10

the particularities of the problem domain [Walter and Ebert, 2009].
In one of the case studies, a concrete DSML, the PDDSL, for mod-
elling and configuration of network devices is extended by the ontol-
ogy language OWL2 [Motik et al., 2009b] to allow for and ease the
semantic constraint definition of valid device configurations [Zivkovic
et al., 2011,Miksa et al., 2013, Zivkovic et al., 2015]. We revisit this
case study and demonstrate the usefulness of the modularisation and
metamodel composition by constructing the s.c. Hybrid PDDSL in a
modular way.

1.4 Thesis Structure and Additional Information
In the following, we provide an overview of the thesis structure, together
with some advises on how to read it. Furthermore, we define what is the
scope of the underlying work and what is not. Finally, a list of publications
related to the thesis is given.

1.4.1 Thesis Structure

Following this introductory part (Part I: Overview), the thesis is divided
into three main parts (see Fig. 1.2).

Part II: Existing Work

Part II provides an overview of existing concepts that represent the back-
ground of the underlying work.

Chapter II introduces the basic concepts related to the existing work on
the engineering of modelling methods. After introducing the basic notions of
a modelling method, the focus is set on the method integration approaches
for hybrid modelling methods.

Chapter III elaborates on the modelling language definition, the formal-
ism which is, in this work, subject to extension by the modularisation and
compositional aspects. The chapter introduces the basic notions of a mod-
elling language. In doing so, it particularily positions the metamodel as a
pivotal element in language definition. After the basic notions are intro-
duced, an overview and a comparative analysis of metamodelling languages,
i.e. of languages for metamodel definition is given.

Chapter IV is devoted to metamodelling environments as a crucial real-
isation technology for modelling language definition, and in particular, for
(modular) metamodel definition. After the discussion on the particularities
of such environments, a comparative analysis of a selection of metamodelling
platforms is provided based on a classification framework.

CHAPTER 1. INTRODUCTION 11

Figure 1.2: Thesis structure

Part III: Focus of Work

Part III represents the main contribution of the thesis and is divided into
four chapters as follows.

Chapter V provides basic concepts and an overview of the existing work
on metamodel modularisation and composition in the context of metamodel-
based modelling language engineering. After the basic elements of modular
systems are covered, we elaborate on various composition operators and
their particularities, as found in the literature. Finally, based on an in-
troduced classification framework, we analyse related work on metamodel
modularisation and composition.

In Chapter VI a concept for modular metamodel engineering is intro-
duced. After the key requirements and notions of a modular approach for
metamodel definition are introduced, we elaborate on the metamodel mod-
ularisation and metamodel composition concepts, as fundamental aspects
of the approach. We introduce the notion of a metamodel fragment hav-
ing explicitly defined interfaces and explicit dependencies only, and define
metamodel composition operators that work on such fragments to allow for
their combination.

Chapter VII formalises the ideas introduced in the previous chapter in a

CHAPTER 1. INTRODUCTION 12

language for modular metamodel engineering, which represents an extension
to metamodelling languages and the cornerstone of the introduced approach.
After sketching the general architecture of the language, we specify the lan-
guage by defining its congruent elements (syntax, semantics and notation).
The language itself consists of sublanguages for metamodel modularisation
and metamodel composition.

Chapter VIII elaborates on a realisation of the language for modular
metamodel engineering as introduced in the previous chapter. The ADOxx
metamodelling platform is used as the underlying environment for realisa-
tion. In particular, it is specified how the ADOxx metamodelling language
(aka ADOxx Meta2-Model) is extended by the modularisation and compo-
sition metamodelling capabilities, in order to allow for the native, interpre-
tative derivation of composite metamodels.

Part IV: Evaluation

Part IV elaborates on the evaluation of the modular metamodel engineering
approach. Hence, in Chapter IX, we introduce two evaluation case studies
and discuss the benefits of using modular metamodel engineering.

Finally, in Chapter X (Part V: Summary) we summarise the work and
provide outlook on future work.

1.4.2 Scope: Additional Comment

In the following, additional comments on the scope of the underlying work
are given.

• Contribution to metamodelling. It is important to note that the un-
derlying work is not about a specific hybrid, composite modelling lan-
guage or metamodel. Instead, the focus of the work is on providing
concepts for defining arbitrary hybrid metamodels using systematic
modularisation and metamodel composition. That said, it represents
the extension of core metamodelling, i.e. of a metamodelling language
(language to define metamodels). Hence, the concepts introduced are
concepts on the M3 level of the four-layered architecture of model-
based approaches.

• Focus on metamodels. Although, in this work, we interchangeably
talk about modelling methods, modelling languages and metamodels,
the primary focus is on metamodel definition. However, while meta-
model represents a core, pivotal artefact in language definition and
consequently for modelling method definition, the modular concepts
of metamodels influence indirectly the modularity of modelling lan-
guages and methods. In other words, modular metamodel engineering
is a prerequisite for modular language and method engineering.

CHAPTER 1. INTRODUCTION 13

• Realisation in metamodelling platforms. While the approach, in partic-
ular, the language for modular metamodel engineering may be applied
on various metamodelling platforms, we focus in this work particularly
on the ADOxx metamodelling platform. Nevertheless, in our attempt
to define a common core metamodelling language that abstracts from
specific metamodelling implementations, and that is used as the base
for the extensions, we addressed the most common and some variable
features of those metamodelling platforms and languages, such that,
with some restrictions or extensions, the modular idea as introduced
in this work can, indeed, be instantiated within other platforms, as
well.

1.4.3 Publications

This thesis has been created based on the authors research and practice
in the field of metamodelling and metamodelling-based modelling tool de-
velopment. In the following, the authored and co-authored peer-reviewed
publications are listed related to the topics addressed in the thesis.

On modularisation and composition of metamodels:

• Živković, S., and Karagiannis, D. (2016). Mixins and Extenders for
Modular Metamodel Customisation. Accepted for ICEIS 2016, Rome,
Italy, 2016.

• Živković, S., and Karagiannis, D. (2015). Towards Metamodelling-in-
the-Large: Interface-based Composition for Modular Metamodel De-
velopment. In Enterprise, Business-Process and Information Systems
Modeling - 20th International Conference, EMMSAD 2015, Held at
CAiSE 2015, Stockholm, Sweden, June 8-9, 2015, Proceedings, (pp.
413-428), Springer International Publishing.

• Zivkovic, S., Kühn, H., and Karagiannis, D. (2007). Facilitate Mod-
elling Using Method Integration: An Approach Using Mappings and
Integration Rules. In üsterle, H., Schelp, J., and Winter, R., editors,
European Conference on Information Systems, ECIS2007. University
of St. Gallen, Switzerland.

On hybrid modelling languages:

• Zivkovic, S., Miksa, K., and Kühn, H. (2015). On Developing Hybrid
Modeling Methods using Metamodeling Platforms: A Case of Physical
Devices DSML Based on ADOxx. International Journal of Informa-
tion System Modeling and Design (IJISMD), 6(1), 47-66. IGI Global,
Hershey, PA, USA.

• Zivkovic, S., Miksa, K., and Kühn, H. (2011). A Modelling Method
for Consistent Physical Devices Management: An ADOxx Case Study.

CHAPTER 1. INTRODUCTION 14

In Salinesi, C. and Pastor, O., editors, Advanced Information Systems
Engineering Workshops - CAiSE 2011 International Workshops, Lon-
don, UK, June 20-24, 2011. Proceedings, volume 83 of Lecture Notes
in Business Information Processing, pages 104-118. Springer.

• Kühn, H., Murzek, M., Specht, G., and Zivkovic, S. (2011). Model-
driven Development of Interoperable, Inter-organisational Business Pro-
cesses. In Charalabidis, Y., editor, Interoperability in Digital Public
Services and Administration: Bridging E-Government and E- Busi-
ness, pages 119-143. Hershey, PA, USA.

On modularisation in metamodelling platforms:
• Wende, C., Aßmann, U., Zivkovic, S., and Kühn, H.(2011). Feature-

based Customisation of Tool Environments for Model-driven Software
Development. In de Almeida, E. S., Kishi, T., Schwanninger, C., John,
I., and Schmid, K., editors, Proceedings of Software Product Lines -
15th International Conference, SPLC 2011, Munich, Germany, August
22-26, 2011, pages 45-54. IEEE.

On metamodelling platforms technology:
• Zivkovic, S., Wende, C., Thomas, E., Parreiras, F., Walter, T., Miksa,

K., Kühn, H., Schwarz, H., and Pan, J. (2013). A Platform for ODSD:
The MOST Workbench. In Pan, J. Z., Staab, S., Aßmann, U., Ebert,
J., and Zhao, Y., editors, Ontology-Driven Software Development,
pages 275-292. Springer Berlin Heidelberg.

• Aßmann, U., Zivkovic, S., Miksa, K., Siegemund, K., Bartho, A., Rah-
mani, T., Thomas, E., and Pan, J. (2013). Ontology- guided Software
Engineering in the MOST Workbench. In Pan, J. Z., Staab, S., Aß-
mann, U., Ebert, J., and Zhao, Y., editors, Ontology-Driven Software
Development, pages 293-318. Springer Berlin Heidelberg.

• Ren, Y., Grüner, G., Rahmani, T., Lemcke, J., Friesen, A., Zivkovic,
S., Zhao, Y., and Pan, J. (2013). Ontology Reasoning for Process
Models. In Pan, J. Z., Staab, S., Aßmann, U., Ebert, J., and Zhao,
Y., Editors, Ontology-Driven Software Development, pages 219-252.
Springer Berlin Heidelberg.

• Bartho, A., Grüner, G., Rahmani, T., Zhao, Y., and Zivkovic, S.
(2011). Guidance in Business Process Modelling. In Service Engi-
neering: European Research Results, pages 201-231. Springer Vienna.

• Schwarz, H., Ebert, J., Lemcke, J., Rahmani, T., and Zivkovic, S.
(2010). Using Expressive Traceability Relationships for Ensuring Con-
sistent Process Model Refinement. In Engineering of Complex Com-
puter Systems (ICECCS), 2010 15th IEEE International Conference
on, pages 183-192. IEEE.

CHAPTER 1. INTRODUCTION 15

• Zivkovic, S., Kühn, H., and Murzek, M. (2009). An Architecture
of Ontology-aware Metamodelling Platforms for Advanced Enterprise
Repositories. In Proceedings of the 1st International Workshop on
Advanced Enterprise Repositories (AER 2009), Colocated with 11th
International Conference on Enterprise Information Systems (ICEIS
2009) Milano, Italy, May 6th, pages 95-104.

• Zivkovic, S., Murzek, M., and Kühn, H. (2008). Bringing Ontology
Awareness into Model-driven Engineering Platforms. In Parreiras, F.
S., Pan, J., Aßman, U., and Henriksson, J., editors, Proceedings of the
1st International Workshop on Transforming and Weaving On- tolo-
gies in Model Driven Engineering (TWOMDE 2008), Co-located with
MODELS, Tolouse, France, September 28, 2008, CEUR Workshop
Proceedings, pages 47-54. CEUR-WS.org.

Part II

Existing Work

16

Chapter 2

Concepts for Modelling
Method Engineering

“Essentially, all models are
wrong, but some are useful.”

George E. P. Box

Modelling method engineering represents the conceptual umbrella field
of the underlying work. Modelling method engineering deals with design,
construction and adaptation of modelling methods and appropriate tools for
model-based system analysis and development. Especially the engineering of
situational, hybrid and evolving modelling methods is of interest, in order
to support the more general idea of Agile Modelling Method Engineering
(AMME) [Karagiannis, 2015]. On the one side only such methods nowadays
can flexibly satisfy the increasing pace of business requirements for appro-
priate project-, situation-, domain-specific modelling methods and tools. On
the other side, engineering of such methods requires rethinking in engineer-
ing concepts, techniques and tools in terms of modular and compositional
engineering, which is the main problem area to be advanced. Although, in
this work, the special focus is on metamodels, which represent the central,
pivotal part in the definition of modelling languages and, thereby, of mod-
elling methods, in this chapter we provide a broader overview of the existing
work on modelling method engineering.

The chapter is organised as follows. In Section 2.1, we introduce the basic
concepts related to the existing work on engineering of modelling methods
in general. After that, in Section 2.2, the focus is set on the method mod-
ularisation and method integration approaches for hybrid modelling meth-
ods, a modelling approach referring to multi-perspective, coordinated use of
multiple methods. Finally, in Section 2.3 three case studies related to engi-
neering of hybrid modelling methods based on existing method integration
approaches are provided. Section 2.4 summarises the chapter.

17

CHAPTER 2. MODELLING METHOD ENGINEERING 18

2.1 Modelling Methods
A method is the way of accomplishing a goal by turning some input into
an output/result. In the field of information systems engineering, method
engineering focuses on procedures, principles, languages and tools to sup-
port the development of methods. As a broader term within the computer
science, method engineering is an engineering discipline that deals with de-
sign, construction and adaptation of methods and tools for system develop-
ment [Brinkkemper, 1996]. Situational method engineering (SME) [Harm-
sen, 1997], a special domain of method engineering, concentrates on the
engineering of situation-specific, project-specific methods. The situational
aspect advocates considering organisational, project requirements and char-
acteristics when constructing a method, instead of using a general one-size-
fits-all solution. Based on various studies in organisations on method accep-
tance and use, the phenomenon of favorising custom solutions over standards
has been described by Tolvanen as a paradox in ISD methods [Tolvanen,
1998]. In situational method engineering, the method construction process
starts by defining method requirements for a current situation, selecting
method components satisfying this situation and assembling the selected
method components. A special aspect of SME focuses on an assembly of
existing method fragments (method chunks) to create domain specific so-
lutions [Ralyté et al., 2006]. Specific to modelling method engineering,
Karagiannis introduces an approach to agile modelling method engineer-
ing (AMME) [Karagiannis, 2015]. Inspired by agile principles in software
engineering, AMME tackles the challenge of continuously changing mod-
elling requirements, and the necessity for more flexibility in engineering of
modelling methods.

2.1.1 Elements of a Method

Common Method Elements

Typically, a method consists of a product part and a process part [Rolland
et al., 1999]. According to [Mirbel and Ralyté, 2005], the product model of a
method defines a set of concepts, relationships between these concepts and
constraints for a corresponding schema construction, whereas the process
model describes how to construct the corresponding product model. The
process part prescribes the way how artefacts are used to produce specific
method outputs. A method may consists of one or more product models
and one or more process models. Figure 2.1 summarises the method defi-
nition. The process and the product part of a method can be undoubtedly
recognised in the method definition of Booch [Booch, 1991]. According to
Booch, a (modelling) method is a rigorous process allowing to generate a set
of models describing different perspectives of the system under construction
by using some well-defined notations. That said, the product part describes

CHAPTER 2. MODELLING METHOD ENGINEERING 19

artefacts used in the method. The set of models described using a dedi-
cated notation may be regarded as a product part, whereas the rigorous
process refers to the process part. Henderson-Sellers criticises the common
method definition of having process and product parts by pointing an often-
neglected third people aspect [Henderson-Sellers and Ralyté, 2010]. While a
development method consists of some development activities (process) that
are used to create some work products (product), he argues that producers
(humans or machines) are the third component that executes the process
to produce products. However, producers are often considered within the
process part as roles responsible for executing activities.

Figure 2.1: Elements of a method

Elements of Modelling Methods

Another viewpoint on method definition, which concentrates in particular
on the methods used for modelling, i.e. modelling methods, is introduced
by [Karagiannis and Kühn, 2002]. In their seminal work, Karagiannis and
Kühn argue that a modelling method consists of two main elements 1) mod-
elling technique and 2) mechanisms and algorithms. Analog to the ba-
sic program definition which consists of data structure and algorithms by
Wirth [Wirth, 1978], the modelling technique defines the structure upon
which computation may operate in terms of mechanisms and algorithms.
Modelling technique itself is further divided into a modelling language and
modelling procedure. The product part corresponds to the modelling lan-
guage, and the process part to the modelling procedure. In a nutshell,
within a method, modelling languages are used to create models according
to a defined modelling procedure, upon which algorithms and mechanisms
operate. By emphasising the importance of mechanisms and algorithms,
the approach by [Karagiannis and Kühn, 2002] focuses on modelling meth-
ods and its tool-supported operationalisation. While some organisational
methods might not have any specific mechanisms and algorithms, language-
centred modelling methods, in turn, usually do come with a set of various
tool-supported mechanisms and formal algorithms that enrich and facili-
tate the method use in reaching project-specific method goals. Mechanisms
and algorithms operate on models created using the modelling language.

CHAPTER 2. MODELLING METHOD ENGINEERING 20

Mechanisms and algorithms contribute to modelling methods by adding the
processing aspect of a method. This third aspect of modelling methods is
often partly or completely neglected in other works. However, it is regarded
as crucial, since it generates an added value beyond model-based system
capturing, especially for tool-supported modelling methods. It needs to be
mentioned that modelling methods found in literature usually do not contain
all elements of a full modelling method. Usually, modelling method term
is used to describe a modelling language (notation) such as UML, BPMN.
However, if we take the software development domain/methodology, UML
may be regarded as a modelling language, whereas parts of UP [Jacob-
son et al., 1999] that refer to modelling may be considered as a matching
modelling procedure. As for mechanisms and algorithms, an example of a
mechanism may be a code generator that transforms a UML class diagram
to a program code. An example for an algorithm may be an Hopcroft’s
optimisation algorithm [Hopcroft, 1971] for computing the minimal finite
state machine that may be applied for UML state diagram validation and
optimisation.

Figure 2.2 illustrates the framework for modelling methods. A detailed
description of this framework in its extended form is provided in the following
section.

Figure 2.2: Modelling method framework according to [Karagiannis and
Kühn, 2002]

2.1.2 Extended Method Framework

The framework by Karagiannis and Kühn focuses on modelling methods for
systematic tool-supported model-based system development (analysis, de-
sign and implementation). Its fundamental part, the modelling technique,
also viewed as a static part of the method, is enriched by mechanisms and
algorithms, referred to as a dynamic part of the method. When compared to

CHAPTER 2. MODELLING METHOD ENGINEERING 21

the broader definition of methods for situational method engineering [Rol-
land et al., 1999, Mirbel and Ralyté, 2005, Henderson-Sellers and Ralyté,
2010] introduced earlier, modelling technique, in particular, modelling lan-
guage corresponds to the method product part, whereas the modelling pro-
cedure may be considered as a process part. However, while modelling pro-
cedure provides guidelines how to create complete and correct models using
the language, it doesn’t specify the overall temporal view on the method.
By that, a kind of development methodology is meant, which specify when,
how and by whom the models i.e. method products are created. If we again
consider the UML as modelling technique, the UP may be considered as
process, that specifies the whole software development methodology. [Kühn,
2004] extends the modelling method framework introduced by [Karagiannis
and Kühn, 2002] by adding the third missing process aspect of a method.

According to it, a method is a triple of:

• a modelling technique (language),

• mechanisms and algorithms, and

• a process model.

Figure 2.3 illustrates the extended view on the modelling method frame-
work. Each of those elements are explained in detail in the following sections.

Figure 2.3: Extended modelling method framework based on [Kühn, 2004]

CHAPTER 2. MODELLING METHOD ENGINEERING 22

2.1.3 Modelling Technique

Modelling technique defines the modelling language of a method and pro-
vides guidelines and best practices for its use.

Modelling Language

Modelling language represents the structural part of a modelling method. It
defines the formalism to capture the data about the system under considera-
tion in terms of models. Modelling language is a pivotal element of a method
around which, mechanisms and algorithms are built and for which modelling
procedures are advised. According to the modelling method framework,
modelling language itself is described by syntax, semantics, and notation.
The syntax defines the grammar of the language. Semantics defines the
meaning of the language, by mapping the syntax elements to their seman-
tic counterparts in the semantic domain/schema. Semantic schema may be
formal or defined using informal language such as textual descriptions of
syntactic concepts. The notation is about the language visualisation. Each
of the syntax elements receives a visual representation symbol. In textual
modelling languages these may be single language keywords, in graphical
modelling languages these may be graphical symbols. Note that syntax may
have more than one notation. For example, a business process model may
be visualised as a graphical model but also as a textual description. The
language part of a method is of special interest of the underlying work.
Therefore, a deeper discussion about modelling languages is provided in the
Chapter 3.

Modelling Procedure

Modelling procedure advises the steps on how to correctly use the modelling
language as well as the expected results of the language use, in terms of mod-
els. Modelling procedure provides a kind of direct guidance for modelling.
According to [Kühn, 2004] a modelling technique should provide support
for the following aspects of modelling: 1) completeness, 2) correctness, 3)
adequacy, 4) complexity (reduction). While the underlying modelling lan-
guage fundamentally influences the adequacy aspect, modelling procedure in
terms of guidance can influence the completeness, correctness and complex-
ity reduction of models to a great extent. Guidelines and best practices on
how to model with decomposition in mind to reduce the complexity or rules
combined with syntax and static semantic constraints towards completeness
and correctness of models are examples of modelling procedure applications.
Also, the usage of adequate modelling constructs for a specific problem under
consideration can be captured in terms of best practices and patterns within
the modelling procedure. An attempt to automate modelling guidance in

CHAPTER 2. MODELLING METHOD ENGINEERING 23

combination with model validation in the field of model-driven software de-
velopment and process modelling has been extensively elaborated in the
work of [Aßmann et al., 2013] and [Bartho et al., 2011]. There, a semantic
technology-based process guidance engine has been developed that guides
users through the modelling tasks by pointing out errors and providing hints
on how to correct them.

2.1.4 Mechanisms and Algorithms

As an extension to the common agreement on method structure, Karagian-
nis and Kühn [Karagiannis and Kühn, 2002] propose mechanisms and al-
gorithms as a third basic element of methods. Although mechanisms and
algorithms as terms are often used together i.e. interchangeably, there is a
difference in meaning between mechanisms and algorithms worth mention-
ing. According to Wiki the term algorithm in mathematics and computer
science refers to a step-by-step procedure for calculations. Formal or in-
formal an algorithm is a specification for some kind of calculation on data.
For example, the famous Dijkstra’s algorithm ([Dijkstra, 1959]) is a graph
search algorithm that solves the single-source shortest path problem for
graph-based data structures. Mechanisms (in Greek "machine") is any kind
of system or machinery that executes some instructions (computer, human).
In relation to algorithm, mechanism is a system that is able to execute an
algorithm (e.g. a Turing machine). Mechanism is a kind of algorithm imple-
mentation/operationalisation. That said, algorithms in modelling methods
are used for calculation, processing and reasoning on model data that are run
by various mechanisms. For example business process management method
BPMS provides a simulation algorithm which is realised as a process evalu-
ation mechanism within the business process modelling tool ADONIS.

Mechanisms and algorithms may be defined using different formalisms
depending on the target purpose. These may range from informal natu-
ral languages, pseudocode, to more formal notations such as flow charts,
state charts. When it comes to their implementation for modelling tools,
machine-interpretable imperative and declarative programming and script-
ing languages are used.

Types of Mechanisms and Algorithms

There are various kinds of mechanisms and algorithms as well as different
ways how to classify them. According to [Kühn, 2004] mechanisms and algo-
rithms for modelling methods can be categorised according to the abstraction
level on which they are defined. In addition, we introduce a new category
for classifying mechanisms and algorithms based on application purpose. In
the following we discuss these two categories.

CHAPTER 2. MODELLING METHOD ENGINEERING 24

Categorisation Based on Abstraction Level

• Generic mechanisms and algorithms. Generic mechanisms and algo-
rithms are independent of the underlying modelling technique in use,
thus making them applicable for any kind of modelling technique. This
is achieved by specifying an algorithm on the level of meta-metamodels
instead of metamodels. An example of a generic mechanism is usually
an import/export mechanism for model data exchange, that doesn’t
require any modelling language specific semantics.

• Specific mechanisms and algorithms. Specific mechanisms and algo-
rithms are bound to the semantics of one modelling language. They
are thus defined on the level of metamodels for one specific modelling
language. An example of a metamodel-specific mechanism is process
simulation, which operates on models of one concrete process mod-
elling language (e.g. BPMN).

• Hybrid mechanisms and algorithms. Hybrid mechanisms and algo-
rithms are defined in a generic manner, with an option to either con-
figure them or adapt them to one or more specific modelling languages.
While Kühn [Kühn, 2004] doesn’t differentiate the hybrid category any
further, it may be noticed, that hybrid mechanisms may further be di-
vided into configurable and adaptable mechanisms.

– Configurable mechanisms. Configurable mechanisms are basically
like generic ones, but with specific configuration that is applica-
ble for any kind of modelling languages. An example of a con-
figurable mechanism may be the model transformation. While
model transformation is realised on the meta-metamodel level
(e.g. a transformation rule requires a source and a target class)
it can be configured to a specific modelling language (e.g. a class
A transforms to class B) and applied on models of that particular
language.

– Adaptable mechanisms. On the other side, adaptable mechanisms
are bound to specific semantics of a family of modelling languages
(e.g. process modelling languages). Thus, they are more restric-
tive, but still more generic than specific mechanisms, since they
may be adapted to a concrete modelling language. An example
of such mechanism may be simulation that is bounded to an ab-
stract process metamodel, that by derivation may be adapted to
a particular one. In [Prackwieser et al., 2013] a hybrid simula-
tion algorithm is proposed that, while generic, may be applied to
a chain of business process models based on multiple notations.

CHAPTER 2. MODELLING METHOD ENGINEERING 25

Categorisation Based on Application Purpose

• Analytical mechanisms and algorithms. Analytical mechanisms and
algorithms are used for model data analysis. They do not change
any model data, but just read and help to better understand com-
plex model structures. Typical examples are model querying, model
search, model comparison and model validation mechanisms and al-
gorithms. An example of a language specific validation is a process
refinement consistency checking mechanism for BPMN models ([Ren
et al., 2009]).

• Computational mechanisms and algorithms. Computational mecha-
nisms and algorithms are used for any kind of computations on model
data. The calculation is based on existing data, based on which new
aggregated model data is generated. Process model simulation is an
example of a complex computational mechanism. Another example is
the risk assessment, used in the area of enterprise risk management,
where risks are evaluated based on characteristics such as likelihood of
occurrence and magnitude of risk impact [COSO, 2013]. Such mech-
anisms are part of model-based enterprise risk management methods
(BPMS) and tools such as ADONIS.

• Generative mechanisms and algorithms. Generative mechanisms and
algorithms generate new (model)data out of models. Model trans-
formation, a key mechanism for MDE ([Kent, 2002], [Kleppe et al.,
2003]) is a generative mechanism, which transforms source models to
target models or to text based on well-defined mappings. There is
a major distinction between model-to-model and model-to-text ap-
proaches. Model-to-model transformation is a function that receives
a source model, a source metamodel, a target metamodel and a set
of transformation rules as input and produces a target model which
conforms to a target metamodel. A thorough analysis of different
approaches for model transformation is provided in [Czarnecki and
Helsen, 2006].

• Manipulative mechanisms and algorithms. Manipulative mechanisms
and algorithms manipulate i.e. change the existing model data. Var-
ious types of model editors belong to this category. Furthermore,
model merge is a manipulative model mechanism which integrates two
models into one based on merging operators [Pottinger and Bernstein,
2003], [Brunet et al., 2006].

Table 2.1 collects typical mechanisms and algorithms of modelling meth-
ods and classifies them according to the above mentioned categories.

CHAPTER 2. MODELLING METHOD ENGINEERING 26

Table 2.1: Classification of typical mechanisms and algorithms of modelling
methods

Generic Hybrid Specific
Configurable Adaptable

Analytical model com-
parison

model check-
ing (OCL),
model trace-
ability, busi-
ness impact
analysis

consistency
checking
for struc-
tural models,
consistency
checking
for process
models

consistency
checking
of BPMN
process re-
finements,
verification
of UML state
charts [David
et al., 2002]

Computational model metrics simulation of
process mod-
els

simulation of
petri nets,
risk manage-
ment assess-
ment(BPMS)

Generative model ex-
change (im-
port, export)

model trans-
formation

code genera-
tion for lang.
families

BPMN2BPEL
transforma-
tion, lang.
specific code
generation
(UML2Java,
BPMN2BPEL)

Manipulating model edi-
tors (textual,
graphical,
tabular),
object re-
placement

model merge,
object order-
ing, model
alignment,
class conver-
sion, model
versioning

optimisation
of state charts

2.1.5 Process Model

Process model prescribes steps, results and roles necessary to achieve the
goals of a modelling method by using the modelling language. Process
model represents the process part of a modelling method. For example,
as part of a holistic methodology for software development, unified process
(UP) [Jacobson et al., 1999] prescribes how software may be modelled using
the software modelling language UML [OMG, 2011b]. In particular, how dif-
ferent diagram types may be employed to model the software system from
different perspectives. While the necessity of having a process model for
small modelling languages (one diagram type) is arguable, complex mod-
elling frameworks such as TOGAF [The Open Group, 2012], BPMS [BOC,
2015], can be hardly efficiently used without a proper process model (also

CHAPTER 2. MODELLING METHOD ENGINEERING 27

known as framework or methodology).

Process Views

According to [Kühn, 2004], there are three basic views of the process model:
1) process view, 2) actor view 3) result view. The process view is concerned
with milestones, phases, tasks/activities and steps and their semi-ordered
execution. The actor view is about roles that execute processes to produce
results. Finally, the result view defines the result types, typically mod-
els, and represents the connection to the modelling language part of the
method. Similarly, [Henderson-Sellers and Gonzalez-Perez, 2005] compare
various process metamodels and identify three main aspects of software de-
velopment processes: work units, work products and producers. Essentially,
work units are performed by producers that consume (input) and produce
(output) work products. In the case of software development processes,
work units are abstractions of tasks, activities, steps but also builds, phases,
milestones, cycles, etc. Producers are often represented by the users which
may have different roles. Producers can also be other tools, that are en-
acted to perform certain work units. The work products are development
artefacts. These can be source code files, requirement documents or models.
While work units correspond to the process view, producers are described in
the actor view, and work products in the result view. Figure 2.4 illustrates
different process views by emphasising their intersections.

Figure 2.4: Process views

There is a multitude of standardised process models in different engi-
neering areas. Usually, such process frameworks are customised for specific
purposes. For example, In [Kühn et al., 2011] a development process for
a method for model-driven development of interoperable business processes
is suggested. Figure 2.5 illustrates the specification of the method process

CHAPTER 2. MODELLING METHOD ENGINEERING 28

part. Note how different views of the process model are considered and how
they correlate.

Figure 2.5: Example of a process model. Development process specification
for model-driven development of interoperable, inter-organisational business
processes [Kühn et al., 2011]

Specification of Process Models

Process models may either be specified informally using textual descriptions
(e.g. manuals) or formally using some kind of a process modelling language.
For example, in the area of software and systems process methodologies, the
standardized software and systems process engineering metamodel (SPEM
2.0, [OMG, 2008]) may be used as a formalism to specify arbitrary software
processes and best practices. SPEM is not only a formal metamodel but
also a conceptual framework which provides necessary concepts for mod-
elling, documenting, presenting, managing, interchanging, and enacting de-
velopment methods and processes. Due to its generic nature, SPEM may
be applicable as a formalism for other system development methods, too.

CHAPTER 2. MODELLING METHOD ENGINEERING 29

Figure 2.6 illustrates an expert of the the SPEM 2.0 metamodel focusing
on the process part of the process model. A central concept for defining
a process or a work breakdown structure and sequence is an activity. Ac-
tivities may be comprised out of other activities and may have connections
to other process model aspects such as the actor view and the result view.
For example, a milestone defines required results in form of work products.
On the other side, work definitions such as Activities are executed by pro-
cess performers that may have different roles and responsibilities assigned.
With SPEM 2.0 and its work breakdown-like process structure definition, it
is possible to define different types of processes such as waterfall, iterative,
incremental, etc.

Figure 2.6: Process structure part of the SPEM 2.0 Metamodel (SPEM
2.0, [OMG, 2008], p.44)

2.1.6 Overview of Method Engineering Approaches

Method engineering is about choosing an appropriate method for the prob-
lem at hand. Basically, method engineers may need to create a new method
from scratch, modify (incrementally improve, tailor or constrain) an existing
method, or reuse parts of various methods and compose them into a new
method, or any combination of the above. That said, two major approach
categories may be differentiated: 1) from scratch approaches, 2) reuse-based
approaches. In [Ralyté et al., 2003] four different method engineering ap-
proach categories have been identified:

CHAPTER 2. MODELLING METHOD ENGINEERING 30

• Ad hoc (from scratch) approaches,

• Paradigm based approaches,

• Extension-based approaches,

• Assembly-based approaches.

The ad hoc approaches start developing methods from scratch. Several
techniques exist that improve the ad hoc method construction process to-
wards higher reuse. The other three approaches rely on a certain degree of
reuse, out of which assembly-based approaches exhibit the highest level of
reuse. In the following, these four approaches are further discussed. Fig-
ure 2.7 illustrates the classification of method engineering approaches.

Figure 2.7: Topology of method engineering approaches (adapted from [Ra-
lyté et al., 2004]

Ad hoc Approaches (From Scratch)

Ad hoc approaches start building methods from scratch. While this kind of
method construction has the biggest adaptation freedom (100%), it also has,
due to zero reuse potential, the highest development efforts (while building
from scratch). Nevertheless, developing methods from scratch is a valid
approach when creating methods for new domains, for which no existing
methods or reuse elements exist yet.

Paradigm-based Approaches

Paradigm-based approaches rely on explicated knowledge reuse. According
to [Ralyté et al., 2004], a paradigm may be a model, a meta-model as baseline
As-Is model which is then instantiated, abstracted, or adapted to create a
To-be model, the basis of the method. A paradigm may be referred to as a
kind of pattern or a reference model for a certain domain. The authors also
point out the difference in abstraction level of As-Is and To-Be models. In
the case of adaptation, the As-Is and To-Be models are on the same level
of abstraction, whereas in the cases of instantiation and abstraction, the
abstraction level of As-Is and To-Be models is different. In [Becker et al.,
2009], an example of a method construction by adaptation is given, in which

CHAPTER 2. MODELLING METHOD ENGINEERING 31

a business process modelling language is adapted specifically for the needs
of banks based on the process patterns for the analysis of processes in the
banking sector. An example of an As-Is paradigm may be Petri nets, based
on which, various modelling methods and notations have been constructed
such as UML activity diagrams [OMG, 2011b], BPMN [OMG, 2013] and
EPCs [Keller et al., 1992].

Extension-based Approaches

Extension-based approaches adapt methods based on extensions. Extension
mechanism for tailoring is recognised as a viable approach to method engi-
neering. There is a number of modelling and software development methods
that favour extension-based tailoring such as RUP [Kruchten, 2004]. The
prerequisite for tailoring/extension-based approach is an already existing
method that is then adapted to the problem/situation at hand. Such base
method should be generic enough to be applicable for number of problems
through customisation. Usually, such methods are kind of generic frame-
works such as UP [Jacobson et al., 1999], or TOGAF ADM [The Open
Group, 2012]. The more abstract the method is, the more customisation
freedom is given with the price of more customisation effort. On the other
side, the more specific the base method is, the less freedom for customis-
ing exists, and the less customising effort is required. Another example
for an extension-based method construction may be found in the domain
of formal process modelling. Interestingly, besides paradigm-based method
construction, petri nets have been used also for extension-based method
construction. While petri nets represent a highly generic formalism with
very broad application fields, several extensions have been proposed, such
as coloured, hierarchical and timed petri nets. Furthermore, UML ([OMG,
2011a], [OMG, 2011b] which may be extended via the profile mechanism fea-
turing stereotypes [Fuentes-Fernández and Vallecillo-Moreno, 2004], belongs
to the family of extension-based approaches.

Assembly-based Approaches

In assembly-based approaches, methods are constructed on-the-fly, in order
to match as much as possible to the situation of the project at hand, based
on existing method components. SME introduces the concept of method
fragments/chunks. There are three important aspects of SME with MEs.
1) method fragment definition 2) storage, retrieval, repository of method
fragments 3) assembly techniques. Assembly-based approaches foster reuse
and thus reduce the effort in designing and maintaining methods, while
keeping the adaptation freedom at the higher level. The idea of develop-
ing (modelling) methods, as broader concept, by combining the existing
method parts/fragments has been proposed by Brinkkemper [Brinkkemper

CHAPTER 2. MODELLING METHOD ENGINEERING 32

et al., 1999] to build tailored situational methods. Here, not only meta-
models are combined (method product part), but also process models as
method process parts. Following this idea, Ralyte [Ralyté, 1999,Mirbel and
Ralyté, 2005] introduces method chunks, reusable method building blocks.
Having fragments and chunks for method modularisation, techniques for
their combination are equally important. Two basic assembly strategies
have been identified, association-based and integration-based [Ralyté and
Rolland, 2001,Mirbel and Ralyté, 2005]. Assembly-based association tech-
niques as defined in [Brinkkemper et al., 1999] are applied in cases when
method fragments are complementary. Method fragments are associated by
defining links between their concepts. On the other side, assembly-based
integration techniques [Ralyté et al., 2004] are applicable in cases where
method fragments are overlapping. In such cases, chunks are merged into a
new richer chunk. Abstracting from a specific approach, Kühn [Kühn et al.,
2003,Kühn, 2004] identifies the most common method integration techniques
as conceptual patterns and proposes a pattern system for method integra-
tion. In [Zivkovic et al., 2007] another assembly-based approach is proposed
that offers an integration algebra in terms of mappings and integration rules
for integrating method product parts (metamodels).

The Method Engineering Continuum

When observing the evolution of different method engineering approaches, it
becomes clear that two main principles drive the advancement in the field of
method engineering, the principle of reuse and the principle of adaptation
(to satisfy user requirements). The principle of reuse leverages increased
quality and productivity while reducing engineering efforts. The principle
of adaptation allows for problem-specific method tailoring.

Figure 2.8 illustrates using a portfolio chart the comparison of the pre-
viously introduced approach categories with regard to reuse, adaptation
freedom and engineering efforts. While ad-hoc approaches exhibit the high-
est level of adaptation freedom, they do not support reuse. Consequently
engineering effort is very high. Paradigm-based approaches reuse a certain
paradigm to start the construction (e.g. via metamodel or pattern instan-
tiation, model abstraction or reference models), which leads to lower engi-
neering effort. By doing this, the adaptation freedom decreases slightly, but
remains on the high level, since reused concepts may be adapted. Extension-
based approaches rely on the reuse of complete base methods or method
frameworks, thus significantly reducing the engineering effort. On the other
side, the adaptation freedom is considerably constrained by the given frame-
work. Finally, the assembly-based approaches combine reusable components
for method construction, showing the highest level of reuse with the lowest
engineering effort in comparison to the previous approaches. It is worth
noticing that for assembly-based approaches the adaptation freedom curve

CHAPTER 2. MODELLING METHOD ENGINEERING 33

Figure 2.8: The method engineering continuum

again raises. This phenomenon may be attributed to the flexible selection of
existing reuse components. Although standard methods are not the focus of
situational method engineering due to the one-size-does-not-fit-all syndrome,
it is worth including this approach as well for the comparison. This reveals,
under the assumption that a standard method does perfectly match require-
ments of the problem at hand (a perfect method), that standard methods
have the absolute reuse level (reused as whole) with no (additional) engi-
neering efforts, however offering no space for adaptation.

2.2 Method Integration for Hybrid Modelling
In this section, we introduce the notion of hybrid, integrated modelling meth-
ods. By doing so, we introduce different categories of hybrid modelling meth-
ods, provide an overview of some existing methods and discuss the role of
modelling frameworks for hybrid methods. As mentioned before, assembly-
based techniques focus on the integration of existing method fragments to
build new hybrid methods. Therefore, we discuss method (fragment) mod-
ularisation as an important aspect in developing hybrid methods. Having
modularised method fragments, new hybrid methods may be created by
fragment integration. Hence, we provide an overview of method (fragment)
integration i.e. assembly approaches such as pattern-based, mapping-based
and change-centric based integration. We finalise the section by discussing
the overall life cycle of hybrid modelling methods.

CHAPTER 2. MODELLING METHOD ENGINEERING 34

2.2.1 Hybrid Modelling Methods

Similar to the various architectural views of the physical building, a com-
plex business or software system is viewed and analysed from different view-
points/perspectives to better understand and specify its structure and be-
haviour. Multi-perspective coordinated use of multiple modelling methods
is regarded as a holistic, systematic approach to model-based system speci-
fication, known as hybrid modelling.

Classification of Hybrid Modelling Methods

Modelling methods may vary based on the system aspect they are describing
or based on the granularity/abstraction level at which they describe certain
aspect. Method or method components describing different system aspects
are orthogonal, complementary to each other, also horizontal. On the other
side, method or method components describing the same system aspect but
at different levels of abstraction are said to be vertical, refinement methods.

The integration of modelling methods into hybrid approaches may con-
sider composition of method components from different aspects and/or ab-
straction levels or any kind of combination of those dimensions. Based on
the specific combination of method components, three basic integration ap-
proaches may be distinguished (see also [Kühn et al., 2003]). We add an
additional composite category which consists of combinations of basic inte-
gration approaches.

• Horizontal integration. The horizontal integration integrates orthogo-
nal languages that reside on the same abstraction level. This is usually
the case for hybrid languages that need to support more than one sys-
tem aspect. This approach may be called method broadening, since
the method is extended. An example of a horizontal integration is
the extension of the BPMN with organisational data modelling. Ac-
cording to the literature research (see subsequent section), this kind
of hybrid languages is the most common one. There is one additional
scenario where two languages are not complementary but overlapping.
However, this kind of horizontal integration is not further discussed
due to its questionable usefulness.

• Vertical integration. The vertical integration combines languages that
describe the same system aspect/domain but at different levels of ab-
straction. This kind of hybrid languages is typical for methods that fol-
low step-wise refinement modelling procedures. For example, BPMN
modelling language is used to model detailed business processes on
the technical level. These process descriptions may be rewritten and
refined on the execution level using workflow languages such as BPEL.
The vertical integration is known as refinement if done in top-down

CHAPTER 2. MODELLING METHOD ENGINEERING 35

manner, or generalisation in case of bottom-up, reverse engineering
approaches.

• Cross-wise integration1. The cross-wise integration combines the hori-
zontal and vertical integration approaches. Languages describe differ-
ent system aspects but at different levels of abstraction. This kind of
hybrid languages may occur when for example only one kind of aggre-
gated language is used on the higher abstraction level, which is refined
to various system aspect languages on the lower abstraction level. For
example, a business process modelling language may connect to lower
level languages to acquire run-time data for process simulation.

• Multi-dimensional integration. Multi-dimensional integration is a com-
posite integration approach in which several methods are integrated
combining vertical, horizontal and/or cross-wise integration dimen-
sions. This is a typical case for modelling frameworks.

Figure 2.9 illustrates the framework for hybrid languages according to
integration dimensions.

Figure 2.9: Framework for hybrid languages and integration dimensions

Modelling Frameworks

Modelling frameworks provide an architectural basis, a frame to develop sys-
tematic, holistic, hybrid languages. Usually, a framework suggests a concrete
development process and a language framework with or without a specific set

1In [Kühn et al., 2003], Kühn et al. use the term “hybrid” to depict this kind of
integration approaches. However, since this term has been coined to describe any kind of
combined, integrated approaches, an alternative term has been introduced.

CHAPTER 2. MODELLING METHOD ENGINEERING 36

of modelling languages. Ideally, the language framework is “filled” by con-
crete languages according to the organisational, problem and project specific
needs. Two areas of modelling frameworks emerged over time in the field of
information system development 1) frameworks for modelling enterprise ar-
chitectures (Zachman [Zachman, 1987], ARIS [Scheer, 1992], GERAM [IFIP-
IPAC Task Force, 1999], E-BPMS [Kühn et al., 2001], MEMO [Frank, 2002],
CIMOSA [Vernadat, 2006], TOGAF [The Open Group, 2012] with Archi-
Mate [The Open Group, 2013]), BPMS [BOC, 2015] and 2) frameworks for
software modelling (UP [Jacobson et al., 1999] with UML [OMG, 2011b]).

In the context of hybrid modelling methods, modelling frameworks are
useful as they may provide a reference or a starting point to decide which
aspects, concerns and levels of abstraction should be covered by a modelling
method. For the realisation of a hybrid method, usually all kinds of inte-
gration approaches are pursued: horizontal integration, vertical integration
and cross-wise integration.

Overview of Hybrid Modelling Methods

Nowdays, a multitude of hybrid modelling methods in research and practice
exist. The approaches range from integrating “only” the product part of a
method, i.e. the modelling technique, to those that integrate process part
as well. In the following, some examples of hybrid modelling methods found
in literature are briefly introduced.

• In [Shen et al., 2004] a hybrid modelling method for enterprise informa-
tion system analysis and user requirements gathering is proposed. The
proposed hybrid method integrates three modelling methods. Whereas
IDEF0 is used to create functional models, IDEF3 captures process de-
scriptions. Finally, DFD focuses on information/data flow between
process activities. The authors also propose an integrated/hybrid
modelling procedure on how to use the composite method.

• In [de Kinderen et al., 2012], the ArchiMate modelling language for
enterprise architectures is integrated with the value modelling lan-
guage e3value. For integrating the metamodels the authors used the
metamodel integration approach proposed by [Zivkovic et al., 2007].

• In [Morin et al., 2009] a hybrid modelling method approach is sug-
gested, that integrates variability aspect into arbitrary domain-specific
modelling languages (DSML) that are based on Eclipse based meta-
metamodel Ecore/EMOF. The application domain is a hybrid mod-
elling of software using a domain-specific language and feature dia-
grams to facilitate product-line based software development.

• In [Xu et al., 2010], [Tan and Liu, 2012] a hybrid modelling method
Active i* is proposed that combines the i* method with UML activ-

CHAPTER 2. MODELLING METHOD ENGINEERING 37

ity diagrams. An agent-oriented requirement modelling language, i*,
is adopted to illustrate the high-level business objectives of organisa-
tional units, while UML activity diagrams are used to represent the
business activities in the production process.

• In [Rausch et al., 2011] the standard business process modelling no-
tation BPMN has been extended with business relevant concepts to
support systematic business analysis. By doing this, the BPMN no-
tation is combined with the ADONIS Business Process Management
Systems Method (BPMS, [BOC, 2015]) to support modelling of mul-
tiple business aspects such as processes, organisation, products and
services and IT. For metamodel integration, the authors follow the
metamodel integration approach proposed by [Zivkovic et al., 2007].

• In [Schroth et al., 2007], a hybrid modelling method for business infor-
mation modelling is proposed that enhance business process modelling
with data modelling based on CCTS standard. For business processes
on business level ADONIS BPMS is used, whereas BPMN is used
to describe the technical process workflows. For the data model de-
scription the CCTS standard (developed by UN/CEFACT) has been
integrated, which provides enhanced data modelling capabilities such
as contexts for electronic business documents.

• In [Zivkovic et al., 2007], a case study on a hybrid modelling method for
business process modelling based on extended BPMN is provided. The
BPMN is horizontally extended by organisational modelling concepts
from the ADONIS BPMS method. The integration is based on the
metamodel-based integration approach.

• In [Gérard et al., 2011], an integrated language for real-time and em-
bedded systems, MARTE, is introduced. The MARTE language is
implemented as a UML profile, enables precise modelling of phenom-
ena such as time, concurrency, software and hardware platforms, as
well as their quantitative characteristics.

• In [Zivkovic et al., 2011, Zivkovic et al., 2015] a hybrid modelling
method is proposed which combines a DSL for managing network de-
vices with the ontology language OWL to provide better specification
of domain constraints. The hybrid modelling approach bridges two
technical spaces, that of semantic technology and software develop-
ment, enabling the realisation of various algorithms and mechanisms
for software modelling based on application of semantic reasoning. For
integrating the metamodels the authors used the metamodel integra-
tion approach proposed by [Zivkovic et al., 2007].

CHAPTER 2. MODELLING METHOD ENGINEERING 38

• In [Kühn et al., 2011] a methodology for model-driven process and
a modelling framework for interoperable, inter-organisational business
processes is proposed which relies on the integrated modelling language
approach ([Zivkovic et al., 2007]) to combine multiple languages on
different levels of the modelling framework.

Table 2.2 classifies the aforementioned approaches based on the integra-
tion dimensions of hybrid modelling methods.

Table 2.2: Classification of hybrid modelling methods

Integration di-
mension

Hybrid modelling method

Horizontal [Shen et al., 2004]: Integration of complementary languages
for system decomposition(IDEF0), data(IDEF3) and process
flows(DFDs).

[de Kinderen et al., 2012]: Extension of ArchiMate with
value modelling aspect using e3value.

[Morin et al., 2009]: Extension of domain specific models
with feature modelling.

[Schroth et al., 2007]: Extension of BPMS with CCTS
standard for data modelling.

[Zivkovic et al., 2007]: Extension of the BPMN with an
organisational aspect.

Vertical

Cross-wise [Xu et al., 2010]: Integration of i* method for high-level
requirements engineering with low-level technical UML activity
diagrams.

[Zivkovic et al., 2015]: Integration of low level ontology
language OWL for modelling constraints with domain specific
language for network device management.

Multi-
dimensional
(Frameworks)

[Rausch et al., 2011]: Extension of the BPMN with the BPMS
method framework. Vertical integration of BPMS business
process models used as business level process descriptions
with BPMN for detailed technical descriptions. Horizontal
integration of BPMN with risks and controls aspects.

[Gérard et al., 2011]: MARTE language provides language parts
for both vertical refinement of the real-time and embedded
systems, as well as for the horizontal partitioning/aspects, such
as time, concurrency, software and hardware platforms.

CHAPTER 2. MODELLING METHOD ENGINEERING 39

2.2.2 Method Modularisation (Fragments and Chunks)

Following the assembly-based approach for method construction, methods
are assembled and integrated out of existing methods components. Method
components are basic building blocks, which allow to construct a method in
a modular way.

Method Fragments, Method Chunks

Surveying the literature, numerous terms are in use referring to the notion of
a reusable method component, out of which the following two are the most
prominent: method fragment [Brinkkemper, 1996], [Kühn, 2004], method
chunk [Rolland et al., 1999], [Ralyté and Rolland, 2001], [Ralyté, 2004],
[Mirbel and Ralyté, 2005]). The term method fragment was made popular
by [Brinkkemper, 1996]). Method fragment can be regarded as an atomic
element of a method, by analogy with the notion of a software component.
According to [Mirbel and Ralyté, 2005] a method chunk is an autonomous
and coherent part of a method supporting the realisation of some specific ISD
activities. As a part, one chunk is always specified by a descriptor, interface
(described as pair of situation and intention) and a body containing the
process part and the product part. As pointed out by [Henderson-Sellers
et al., 2008], in contrast to fragments being fine-grained atomic method
elements, method chunks are more coarse, being a combination of product
fragments and process fragments. Hence, method chunk may be built of
two or more method fragments. Figure 2.10 summarises the discussion about
method components, chunks and fragments by pointing out the relationships
and cardinality between the introduced concepts using a metamodel view.

Figure 2.10: Method component metamodel according to Henderson-Sellers
et al. [Henderson-Sellers et al., 2008]

CHAPTER 2. MODELLING METHOD ENGINEERING 40

Method Fragment Structure

In [Kühn, 2004], the notion of a method fragment is introduced to support
the construction of integrated methods based on existing method fragments.
A method fragment consists of a package and an interface.

Package A package is a body of the fragment, containing the constructs of
the fragment used to describe one or more method elements (language, mech-
anisms, process). A package can be atomic or composite. An atomic pack-
age represents a single, self-contained set of constructs of a single method
element type. The package may contain structural elements (first order ele-
ments of a method element, which may be exposed via adapters) and content
elements (properties of structural elements, not exposable via adapters). A
composite package contains other atomic and composite packages. Hence,
composite package may include subpackages of different method element
types (language, mechanisms, process).

Interface An interface of a fragment exposes the package content. An
interface consists of a fragment specification and adapters. Fragment speci-
fication is an informal description of a fragment according to the properties
such as name, description, application field, context, classification, change
history. An adapter is used to expose the inner element of a fragment for
integration. One adapter corresponds to exactly one structural element of
the package.

Finally, fragments as reusable method assets are stored in the fragment
catalogue, categorised according to their characteristics described in the
fragment specification. Figure 2.11 illustrates the metamodel of the method
fragment. For detailed description as well as usage examples refer to [Kühn,
2004].

Figure 2.11: Method fragment according to Kühn [Kühn, 2004]

CHAPTER 2. MODELLING METHOD ENGINEERING 41

Comparing the notion of the method fragment by Kühn [Kühn, 2004]
with other approaches, the following correlations may be drawn. A frag-
ment with atomic content matches to the method fragment definition by
Brinkkemper [Brinkkemper, 1996]. A fragment with composite content con-
taining exactly one package describing the method element language and one
package describing the process corresponds to the method chunk definition
by Ralyté and Rolland [Ralyté and Rolland, 2001].

2.2.3 Method Integration (Patterns, Mappings and Integra-
tion Rules)

In the previous section, an overview of existing concepts for method mod-
ularisation has been provided. Once method modules exist, their recom-
bination is needed to construct new combined, hybrid methods. In the
domain of method engineering only few approaches exist which deal with
integration mechanisms for method integration. In [Kühn, 2004] integration
patterns are proposed for recurring integration problems. In [Ralyté et al.,
2004], high-level generic operators for method engineering have been sug-
gested. In [Zivkovic et al., 2007] a metamodel-based integration approach
using mappings and integration rules is suggested. While this may not be a
definite list, these three approaches are described in the following.

Patterns-based Approach

In [Kühn, 2004] integration patterns for method integration are proposed
based on recurring integration problems. Patterns explicate knowledge about
problems and solutions for typical integration problems on a high conceptual
level. Kühn proposes a system of interrelated patterns which may be used to
guide the method integration decisions. Patterns may be categorised accord-
ing to the method element they refer to (language, mechanisms, process),
integration approach (horizontal, vertical, hybrid/cross-wise) and level-of-
coupling (low, intermediate, strong) being the most important criteria. Typ-
ical integration pattern for modelling technique is the merge pattern. Fig-
ure 2.12 illustrates the merge pattern, as a high level knowledge on merge
mechanism for integration. Other typical patterns applicable for modelling
language integration exist such as Transformation, Extension, Reference.
Some patterns for mechanisms and process integration are Delegation Pat-
tern and Responsibility Pattern, respectively. Detailed descriptions of inte-
gration patterns are outlined in [Kühn et al., 2003] and [Kühn, 2004].

Mapping-based Approach

In [Zivkovic et al., 2007] a metamodel-based integration approach using map-
pings and integration rules for assembly-based method construction has been
proposed. The approach extends the enterprise model integration (EMI),

CHAPTER 2. MODELLING METHOD ENGINEERING 42

Figure 2.12: Merge Pattern according to [Kühn et al., 2003]

an approach based on metamodel integration patterns [Kühn et al., 2003],
by introducing the notion of mappings and integration rules. The approach
suggests a mapping-based metamodel integration method (a meta-method)
consisting of a metamodel mapping language, integration rules as mecha-
nisms, and a model-based, step-wise integration procedure. Based on the
metamodel heterogeneity problems, the authors identify the set of corre-
sponding mappings as problem solutions, which are used to describe which
metamodel elements should be integrated and how. The integration rules
represent a dynamic part of the method, which for given source metamodels
produce a new target hybrid metamodel based on mappings. Furthermore,
a generic set of integration rules applicable for various mapping types is
suggested. The approach relies on the integration principles in terms of in-
tegration patterns such as Transformation, Merge, Reference advised in the
EMI approach. In the following, some details of this approach are provided.

Metamodel Heterogeneity Heterogeneity problems may arise when in-
tegrating vertically and/or horizontally different metamodels. Due to the
fact that metamodels represent structural data information, for the cate-
gorisation of heterogeneity problems, the authors refer to the fundamental
information heterogeneity known from the field of database schema integra-
tion ([Batini et al., 1986], [Ouksel and Sheth, 1999]). Hence, no matter
what kind of integration orientation is considered, syntactical, structural
and semantic metamodel heterogeneity may occur.

• Syntactical metamodel heterogeneity. Syntactical heterogeneity de-
scribes the difference in formats, in which metamodels are serialised.
Metamodelling platforms may serialise metamodels based on differ-
ent formats (database or file based, different proprietary schemes etc).
One approach to deal with syntactical (serialisation) heterogeneity is
to agree on exchange based on standard paradigms and formats (e.g
XMI).

CHAPTER 2. MODELLING METHOD ENGINEERING 43

• Structural metamodel heterogeneity. Structural heterogeneity can be
devided in representational and schematic heterogeneity. Represen-
tational heterogeneity is about differences in meta-metamodels used,
that influences the availability of metamodelling primitives (classes,
attributes, supported relationship types, single and multiple inheri-
tance, etc.). Schematic heterogeneity occurs when the same semantic
concepts are described in metamodels in a different way using differ-
ent metamodelling constructs. For example, a concept in a metamodel
may be defined using a single class (Student) or as a hierarchy of classes
(Student, Person).

• Semantic metamodel heterogeneity. Finally, differences in the intended
meaning of metamodel elements are subsumed by the semantic het-
erogeneity. Applying the categorisation of ontology-level mismatches
[Klein, 2001,Noy, 2004] for metamodels, elements in metamodels may
be equivalent, related or non-related (orthogonal).

The nature of metamodel heterogeneity implies a step-wise solution ap-
proach. First, syntactical conflicts, in terms of different serialisation formats,
need to be solved. This level of heterogeneity occurs when integrating meta-
models between different tools/paradigms. Once there is a consensus about
the common serialisation format, structural heterogeneity may be tackled.
At this level, representational conflicts in terms of different meta-formalisms
must be aligned first before dealing with structural integration problems.
Assuming that syntactical and structural representation heterogeneity is-
sues have been resolved, under the premise of having one meta-metamodel,
the focus of the approach is on solving conceptual conflicts between meta-
models, i.e. schematic and semantic heterogeneity.

Metamodel Mappings The cornerstone of the metamodel integration
approach is the mapping formalism. The basic notation of the mapping
language is a metamodel mapping. According to [Zivkovic et al., 2007], a
metamodel mapping is used to capture both the structural and the seman-
tic relation between concepts of two metamodels. Based on the structural
and semantic relations between elements, mappings such as equivalence, re-
lation, non-relation may be differentiated. Equivalence mapping states the
semantic equality of the elements. Related mapping may represent generali-
sation, aggregation, composition, association or classification of metamodel
elements. Non-relation mapping denotes simply orthogonal metamodel el-
ements. Mappings may be further classified based on their structural di-
mension: 1) mapping type - concerns the type of metamodel elements on
both sides of the mapping (A-attribute, R-relation, C-class, e.g. A2C, C2C,
etc.). 2) mapping cardinality - the number of connected elements. For exam-
ple, the attribute Performers may be mapped to the class Processor using

CHAPTER 2. MODELLING METHOD ENGINEERING 44

the related mapping variant attribute-2-class (A2C) having cardinality 1-1.
Figure 2.13 illustrates the metamodel of metamodel mappings.

Figure 2.13: Metamodel of metamodel mappings according to [Zivkovic
et al., 2007]

Integration Rules While the mappings represent the structural/static
part, integration rules are considered as a dynamic part of the metamodel
integration method. Hence, the integration rules represent a set of algo-
rithms for metamodel integration. A rule takes as an input a specific map-
ping, a set of metamodel elements the mapping connects, and produces as
an output, a target metamodel element. Based on the specific metamodel
mapping variant, a rule provides an integration execution algorithm. In the
previous example of the related mapping, we may want to apply an inte-
gration rule which creates a relationship between the container class of the
attribute Performers and the class Processor called RPerformers. Based on
a defined set of mapping types, one may also identify a set of generic integra-
tion rules, which apply for specific mapping types, such as mergeC2C rule,
generalizeC2C rule etc. Table 2.3 illustrates an integration rule specification
for the rule MergeC2C. The MergeC2C rule specifies how two metamodel
elements of type class (C2C) are to be integrated. A more detailed list of
rules is given in [Zivkovic et al., 2007].

The distinction of different mapping types as well as of typical integra-
tion rules is useful, since it allows their generic implementation within the
metamodelling platform, as a set of routines one can choose from for specific
integration scenario. Table 2.4 gives an overview of integration rules cate-
gorised according to the mapping variability criteria (semantic relations and
structural variations). Note that not all possible combinations are listed.
For a detailed list of integration rules refer to [Zivkovic, 2006].

CHAPTER 2. MODELLING METHOD ENGINEERING 45

Table 2.3: Specification of the integration rule MergeC2C [Zivkovic et al.,
2007]

Rule name: Merge C2C

Description: Elements are semantically equivalent. To avoid
redudancy of concepts in the integrated meta-
model, the equivalent elements are merged into
one element in the target metamodel.

Mapping details (Rule condition): Rule action:

Semantics Equivalence 1. One of the affected classes is
declared as primary.
2. The primary class is a leading
element in the merging algorithm.
3. All attributes and relationships
are transfered from the overlapping
classes to the primary class.

Structure C2C
Meta-metamodel constraints n/a
Left/Right A*, [C] / B,

[D], [E]
Target Concepts A, [C], [D], [E]

Source metamodel fragments (rule input): *primary concept, [] connected concept

Integrated target model fragment (rule result):

Change-centric Approach (Generic Operators)

In [Ralyté et al., 2004], Ralyté et al. introduce a topology of high-level
generic operators for change-centric method engineering. The operators are
generic in a way that they may be instantiated for any of the method en-
gineering approaches (ad-hoc, paradigm-based, extension-based assembly-
based, refer to Section 2.1.6). While providing a metamodel of a method,
they identify the basic elements of methods for which generic operators may
be defined. Furthermore, the specialisation of operators is done for the prod-
uct part and for the process part, based on their metamodels. For example, a
typical operator for the integration-based assembly of product models would
be ConnectViaMergeClass, whereas for process models ConnectVieMergeAc-

CHAPTER 2. MODELLING METHOD ENGINEERING 46

Table 2.4: Classification of mappings and integration rules based
on [Zivkovic et al., 2007]

Equivalence Related
Generalisation Aggregation Association

C2C merge() map()
abstract()

generalize() aggregate() associate()

A2A map()
A2C merge() map() generalize() aggregate() associate()
R2R merge() map()
R2C merge() map() aggregate()
A2R merge() aggregate()

C - class, A - attribute, R - relation

tivities. The authors also classify operators according to the type of changes
they generate: naming changes, element changes (changing element proper-
ties) and structural changes. The latter category is important, since it refers
to the changes on a set of model elements. These can be further divided
into inner changes (within one model) and inter-model changes. Figure 2.14
provides the list of generic operators according to [Ralyté et al., 2004].

2.2.4 Life Cycle of Hybrid Modelling Methods

Hybrid modelling methods are created based on existing method fragments
amalgamating different modelling approaches into one, new hybrid mod-
elling approach. Similar to other products in engineering, methods do have
a life cycle in which they are created, used and finally retired. For example,
in software engineering, according to UP [Jacobson et al., 1999], software
products and projects undergo four main phases in their life cycle such as
inception, elaboration, construction and transition. In [Kühn, 2004], Kühn
devides the life cycle of a method into four main phases: 1) conception, 2)
implementation 3) introduction 4) operation. Each phase consists of spe-
cific tasks, roles and actors. The method life cycle is characterised by an
iterative-incremental execution of its phases, thus enabling early feedback
loops and parallel execution of its activities. Figure 2.15 illustrates the life
cycle. In the following, an overview of the phases is given. A detailed de-
scription of each of the phases and their activities is given in the mentioned
literature reference.

Conception

The conception phase starts with the method goal definition. Typical deci-
sions that are made here are regarding the application scenarios and type
of users of the method, the expected results of the method as well as the

CHAPTER 2. MODELLING METHOD ENGINEERING 47

Figure 2.14: Method engineering generic operators according to [Ralyté
et al., 2004]

chosen methodology for method use. Clearly defined and structured goals
become input for the requirements specification. In this step, key elements
of the method are analysed regarding needed features. For the modelling
language part, it is important to define which aspects/views should the lan-
guage support, and based on it, which classes, relations and attributes are
part of those aspects. Similarly, it must be specified which algorithms and
mechanisms are required and which life cycle model will be used. Consolida-
tion has the purpose to evaluate and prioritise specified requirements with
respect to the achievement of previously defined goals. Finally, in the spec-
ification the method is conceptualised according to the consolidated set of
requirements. The conceptualisation is done in detail, such that represents
a valid input for the implementation phase.

Implementation

The implementation phase starts with the selection of the corresponding
existing method fragments. This is done according to the previously de-
fined goals, requirements and method specification. Method fragments are
stored in a method fragment repository. The result of the selection is the

CHAPTER 2. MODELLING METHOD ENGINEERING 48

Figure 2.15: Life cycle of hybrid modelling methods (adapted based on
[Kühn, 2004] and [Kühn et al., 2011]

set of target fragment candidates to be integrated into a hybrid method.
The next step in the implementation phase is the creation of the method
fragments. In this step, the creation of the new fragments and/or adapta-
tion of the existing fragments are performed. Once all needed fragments are
selected, created and/or adapted according to the specification, the method
integration may be performed. Here, different types of fragments such as
language, algorithms and mechanisms and process parts are integrated to
build a hybrid method which is then operationalised in a specific method
engineering environment such as a metamodelling platform. In the last step
of the implementation phase, the documentation of the new hybrid method
is created.

Introduction

The introduction phase of a modelling method deals with an initial deploy-
ment and usage of the method within a company. Introduction starts with
a organisation step, in which organisational aspects such as change manage-
ment, involvement of key persons, etc., as well as technical measures such
as hardware and software infrastructure, etc., for a successful installation
of the method within a company are done. Training is another important
step in the introduction, in which, involved persons are trained to use the
method as well as the corresponding modelling tool. The key task within the
introduction is the piloting phase. During method piloting, the introduced
method is used under real-world conditions within a company, however, for

CHAPTER 2. MODELLING METHOD ENGINEERING 49

a limited group of dedicated problem domains. The purpose of piloting is
to evaluate the modelling solution under realistic conditions. The results
of piloting are considered in the assessment phase. Here, the method it-
self as well as the modelling tool is given a valuable feedback regarding the
suitability for the problem-domain.

Operation

The operation phase takes place after successful introduction, in which the
method is used company-wide for all relevant problem domains. From the
life cycle perspective of the method this is a very valuable phase where the
method is extensively used and valuable feedback and ideas for further ad-
vancements are gathered. Parallel to method usage phase, support activities
take place. Support can either be domain-related or of a technical nature.
In the maintenance, feedback gathered during piloting and usage is evalu-
ated and based on it, the method is extended or adapted to problem-specific
needs. These are usually small adaptations in comparison to the new version
of the method which triggers the whole new life cycle of the method. The
retirement of a method takes place if a method doesn’t satisfy the require-
ments of the problem domain anymore. In that case, a method is completely
removed or replaced by a new method version. In the retirement, it is im-
portant to collect the feedback and analyse the causes for the abandonment,
in order to take improvement measures for the next method version.

2.3 Case Studies in Hybrid Modelling Methods
In the previous sections, the concept of hybrid modelling languages and in-
tegrated methods as well as the various approaches to integrate methods
and particular languages have been introduced. In the following, three case
studies from research and industry are outlined in order to exemplify the ne-
cessity and practicability of hybrid methods and modelling. The case studies
feature in particular the mapping-based integration approach to metamodel
integration introduced in previous section.

2.3.1 Integration of BPMN and Organisational Modelling

The underlying case study of the integration of the Business Process Model
and Notation (BPMN) [OMG, 2013] and ADONIS Business Process Man-
agement Systems (BPMS) method [BOC, 2015] has been initially used to
validate the mapping-based metamodel integration approach described in
[Zivkovic et al., 2007]. This hybrid modelling method has meanwhile be-
come a standard method of the business process management tool ADONIS
and is used widely in industry [Murzek et al., 2013].

CHAPTER 2. MODELLING METHOD ENGINEERING 50

In the last decade, BPMN gained significant attention in business process
management community, both in industry and research, and became a de
facto standard for business process modelling on both business and IT level.
However, BPMN lacks advanced concepts for the modelling of organisational
aspects of processes. For example, capacity-based process model simulation
for resource planning is possible only if appropriate organisational concepts
(roles, workers, organisational units and alike) are available.

According to [Zivkovic et al., 2007], a metamodel integration project
begins by selecting source metamodels to integrate, which is followed by
the identification of mappings and selection of appropriate integration rules.
Stereotyped UML class diagrams are used to represent source metamod-
els, in order to distinguish types of metamodel elements such as classes,
relationships and attributes. Mappings are captured using a specific map-
ping notation. Source metamodels annotated with mappings represent the
mapping model. Figure 2.16 illustrates mapped metamodels with identified
integration points.

Figure 2.16: a) Source metamodels annotated with mappings and integra-
tion points, b) Revisited mappings [Zivkovic et al., 2007]

In the presented example, several integration points (IP1, IP2, IP3) and
mappings (CM1, CM2, CM3) have been identified. Accordingly, for each
mapping, an appropriate integration rule is applied.

• IP1/CM1. The rule GeneralizeA2C transforms attribute Performer
in a super class of classes Organisation unit, Actor and Role.

• IP2/CM2. The rule MergeC2C integrates equivalent classes Role from
both source metamodels.

• IP3/CM3. The rule MergeC2C merges classes Entity and Organisa-
tion unit, where the latter is chosen as the primary class.

During the integration step, the rules are applied and the concepts
mapped are transformed into a new integrated metamodel. The remain-
ing unmapped concepts are copied to the integrated metamodel. Since the
result of initial integration may result in a metamodel that doesn’t conform

CHAPTER 2. MODELLING METHOD ENGINEERING 51

to the meta-metamodel, the integration step is repeated until all conflicts
are resolved. In the introduced example, with the new super class Per-
former, the classes Organisation unit and Role now have two parent classes,
which implies multiple inheritance. Given the fact that the underlying meta-
metamodel does not support multiple inheritance, this inconsistency must
be resolved. Hence, we return to the mapping phase and define two new
mappings CM4 and CM5 based on integration points IP4 and IP5. Fig-
ure 2.16 b) illustrates an excerpt of the the intermediate integrated meta-
model. Based on the CM4 mapping, the class Participant becomes a child
of the class Performer, and consequently a parent of the classes Role and
Organisation unit. These two classes are at the same time children of the
Performer class, such that this class structure implies the use of the complex
EmbedC2C rule [Zivkovic, 2006]. This way, the class Participant is embed
between Performer and its children classes. The MergeA2C rule is selected
and applied for the mapping CM5, having the class Performer marked as
primary. In doing so, an aggregation relationship performers from the class
UserTask to the class Performer is created, in order to retain the semantics
of the former attribute Performers. Figure 2.17 illustrates the final state of
the new integrated metamodel.

Figure 2.17: Integrated metamodel that extends BPMN organisation mod-
elling concepts [Zivkovic et al., 2007]

The benefit of the new hybrid language as an extension of the BPMN is
twofold. It now supports modelling of BPMN pools and connecting those
pools with organisational participants which may be either organisational
units or roles. Furthermore, it allows for assigning performers, which may
be actors, units or roles, directly from the organisational structure to user
tasks in business process models.

2.3.2 Model-driven Development of Interoperable, Interor-
ganisational Business Processes

The following case study of method integration considers cross-wise integra-
tion approach to build up a holistic modelling framework and a development

CHAPTER 2. MODELLING METHOD ENGINEERING 52

process for model-driven development of interoperable, inter-organisational
business processes according to [Kühn et al., 2011]. The core of the frame-
work builds up a common modelling language that integrates all participat-
ing metamodels into one hybrid metamodel used by all involved actors. The
metamodel integration has been conducted again based on the mapping-
based approach described in [Zivkovic et al., 2007].

Table 2.5: Variety of languages in the modelling framework for interopera-
ble, inter-organisational business processes according to [Kühn et al., 2011]

Phase Step/Objective Actor Language Result

Development Transform busi-
ness process
models to BPMN
models
Refine BPMN
models
Workflow and
document de-
scription

IT architects
Application
developers

BPMN
Business
information
model
CCTS
ER
XPDL

BPMN models
Document de-
scription
Integrated pro-
cess and data
models

Execution Transform
BPMN models to
BPEL/WSDL
Enrich, test, de-
ploy, and execute
business process

Application
developers
IT operators

BPEL
WSDL
XPDL
XML
XSD

Executable
business pro-
cess definitions
(BPEL)
Executable
business docu-
ments

According to [Kühn et al., 2011], in order to achieve interoperable busi-
ness processes, different organisational levels, such as strategic, operational,
development and execution level are to be considered during the analysis of
the business processes and of the subsequent development steps related to
the implementation of the supporting information systems. On a strategic
level, interoperability has to consider governance as well as issues of strategic
alignment. To achieve interoperability on operational level, the business pro-
cesses of the two organisations have to be aligned. This includes agreement
on the properties of exchanged products and the quality levels of exchanged
services. Additionally, the interaction points of the business processes, the
related business rules and the exchanged business documents have to be
specified. On a development level, business processes are implemented ei-
ther using organisational techniques or using software technology. On this
level, business processes are enriched with either organisational and/or tech-
nical data. Execution level considers the actual execution of processes. On
each of those levels different modelling languages or data formats are used
within the particular development phase to capture various kinds of data.
This includes business processes, their interactions, the exchanged business

CHAPTER 2. MODELLING METHOD ENGINEERING 53

documents and business information, the requirements for the underlying in-
formation systems, the design of the business data, the design of executable
workflows, and necessary aspects of the underlying technical infrastructure.
To illustrate the variety of languages on different interoperability levels and
for different development phases, Table 2.5 lists steps, actors, languages and
results on the development and operational level. A complete overview may
be found in [Kühn et al., 2011].

The metamodel integration process can be used to create either com-
mon metamodels or to map existing metamodels to be used in conjunction
within the metamodel framework. These metamodels are used as a com-
mon schema to share all necessary information from strategic information
down to information relevant for the process execution. Metamodels are
integrated horizontally, i.e. different aspects are merged. For example, in
the development phase, BPMN process models need to be interlinked with
the data models, in order to capture the input and output documents of
certain process tasks. Furthermore, metamodels are mapped vertically be-
tween levels, to enable seamless transformation (e.g. from operational to
development level).

Figure 2.18: Overview of the integrated metamodel (Modelling framework
for interoperable, inter-organisational business processes [Kühn et al., 2011]

Particularly, considering the project specific requirements for the mod-
elling language from the case study, the resulted modelling language repre-
sents a set of metamodels which are distributed on different layers according
to phases of the model-driven development approach. Figure 2.18 depicts
the simplified integrated metamodel. In particular, the illustration outlines
the integration of the languages BPMN and CCTS-based Business Informa-

CHAPTER 2. MODELLING METHOD ENGINEERING 54

tion Model (BIM) on the development level. Using the integration approach
with mappings and integration rules, an associative metamodel mapping
of type C2C and cardinality 1-1 between the BPMN metamodel element
DataObject and the BIM metamodel element Business Information Entity
(BIE) has been identified. Consequently, the integration rule associateC2C
has been applied which resulted in the creation of the relationship references
between the DataObject and BIE. The benefit of the integrated language is
the ability to model BPMN processes and anotate them with data objects
which are described in detail using the CCTS-based BIM standard.

2.3.3 Hybrid Modelling Method for Consistent Physical De-
vices Management

As part of the case study within the project MOST2, a hybrid modelling
method for the modelling of physical devices has been designed. The goal
of the case study was to explore the application of semantic technologies in
software and system modelling.

The PDDSL method introduces a hybrid modelling approach. A domain-
specific modelling language is used to capture the structure of physical de-
vices. On the other side, the ontology language OWL2 is applied to specify
semantic constraints on top of physical device models. Furthermore, PDDSL
mechanisms provide consistency checking of physical device models whereas
PDDSL modelling procedure guides users through the network configuration
process.

In [Zivkovic et al., 2011,Zivkovic et al., 2015] the design and implemen-
tation decisions for all parts of the method have been described in detail. In
the following, after the case study is motivated, the focus is set on the design
of the modelling language part of the hybrid method and, in particular, on
the metamodel integration decisions.

Case Study

According to [Zivkovic et al., 2015], one of the challenges in the management
of physical device equipment is its consistent configuration. Maintaining
large number of devices of various types may be a complex, error-prone
and cost-intensive endeviour if it is done without an adequate tool support.
Most of the state-of-the-art tools in this sector fail at providing a consistent
support when it comes to guiding the users in complex device configuration
scenarios.

2MOST was an EU research project that pursued the goal of marrying ontology and
software technology. In particular, the focus was set on the integration of ontology lan-
guages and reasoning technology and modelling languages. By the time of the project
end, MOST offered, to project members best knowledge, the first systematic approach of
bridging the model and ontology technical spaces [Staab et al., 2010], [Pan et al., 2013].

CHAPTER 2. MODELLING METHOD ENGINEERING 55

It is acknowledged that modelling methods allow for systematic captur-
ing of relevant domain knowledge in terms of models. Hence, the complexity
of network device configurations may be significantly reduced by capturing
the semantics of device types and their configurations in domain-specific
models and using domain-specific modelling tools. It is known that formal
ontology languages such as OWL2 allow for defining precise constraints of
models through formal semantics. Domain-specific models of physical de-
vices that are annotated with semantic constraints may be transformed to
an ontology, in order to enable the application of standard reasoning mech-
anisms such as consistency checking, subsumption checking, classification,
explanation and justification.

When modelling physical devices, two aspects appear to be relevant.
On the one side, modelling of physical device types defines the structure
of single physical devices (product name, cards, slots, number and type of
slots, etc.). This structure may also introduce certain constraints on valid
configurations of that particular device. On the other side, modelling of
physical device configurations/instances is another aspect, in which specific
configuration of a network device is captured. To illustrate the modelling
scenario, Figure 2.19 displays the structure of the device type Cisco 7603
(on the left) and its specific configuration (on the right).

Figure 2.19: Specification and sample configuration of network device Cisco
7603

Language Design

Capturing of physical devices in terms of models as introduced in the case
study implies the availability of two major concepts in the language design
1) support for both linguistic and ontological instantiation 2) support for
semantically-rich constraints definition. Concerning the first concept, both
network device types and concrete device instances have to be modelled at
the same modelling level. Hence, PDDSL is designed according to the two-
dimensional metamodelling architecture [Atkinson and Kühne, 2003]. The

CHAPTER 2. MODELLING METHOD ENGINEERING 56

second language concept refers to the fact that the language has to support
capturing of complex constraints on device type structures, which, in turn,
are validated against concrete device instantiations. Therefore, PDDSL is
integrated with OWL2 [Motik et al., 2009b]. The abstract syntax of the hy-
brid language consists of metamodels of PDDSL and OWL2, both integrated
using well-defined integration points. Figure 2.20 provides an overview of
the particular metamodel fragments as well as of their integration points.

Figure 2.20: Overview of the metamodel parts and integration
points [Zivkovic et al., 2011]

The PDDSL Metamodel

The PDDSL metamodel part consists of constructs for the modelling of de-
vice types and device instances. In order to enable ontological instantiation,
the relationship hasType connects the classArtefact and the classArtefactType,
with instantiation semantics, such that artefact instances are based on their
artefact types. For example, the card supervisor2 is an inventory instance
of the card type Supervisor Engine 2, both defined on the same linguistic
level.

CHAPTER 2. MODELLING METHOD ENGINEERING 57

The OWL2 Metamodel

The OWL2 metamodel is constructed based on abstract syntax elements
defined in OWL2 Manchester Syntax [Horridge and Patel-Schneider, 2009].
The syntax is object-centred and frame-based, unlike other OWL2 syntaxes
which are axiom-based. The upper part of the Figure 2.20 illustrates a
small, but relevant subset of a rather complex OWL2 metamodel. Classes
and Individuals are defined as ontology Frames. Details of classes are de-
fined using Descriptions. Descriptions allow for simple or complex class
expressions based logical operators, or existential and universal quantifica-
tion operators. In OWL, such class descriptions can be used as instance
types through types reference.

Metamodel Integration

Metamodel integration is a complex language engineering task. The com-
plexity arises from the fact that the integration should ideally produce a
hybrid metamodel which preserves both syntax and semantics of the single
metamodels. The preservation of syntax and semantics is of crucial impor-
tance, in order to retain the compatibility with mechanisms already built
for single languages. For example, a hybrid language that integrates OWL2
must not change semantics of OWL2 during integration, due to the fact that
any change may cause reasoning mechanisms not to work anymore. There-
fore, metamodel integration subsumes deep understanding of syntax and
semantics of the integrating metamodels, in order to identify non-invasive
or at least semi-invasive metamodel integration points. We refer to the map-
pings for bridging structural languages and ontology languages [Walter and
Ebert, 2009] when integrating PDDSL and OWL2 metamodels. In doing
so, we apply metamodel integration rules defined in [Zivkovic et al., 2007].
Although the integration appears to be trivial, it is at the same time power-
ful, considering the outcome. The PDDSL metamodel element ArtefactType
is said to be the subclass of OWL2 Class, thus inheriting the rich OWL2
class expressiveness. Similar is done between Artefact and Individual. This
way, PDDSL artefact types and artefacts can take part in OWL-based con-
straint definitions, which was our major goal for the integration. Obviously,
the integration is semi-invasive (invasive from the viewpoint of PDDSL and
non-invasive from the viewpoint of OWL). Being subtype of OWL classes,
PDDSL classes inherit new attributes of its supertypes. However, since the
nature of the conducted changes is extensional (new attributes added), the
changes haven’t influenced the PDDSL semantics. In addition, the syntax
and semantics of OWL2 remained intact in the hybrid language, allowing
the application of reasoning mechanisms.

CHAPTER 2. MODELLING METHOD ENGINEERING 58

Language Semantics

The semantics of the hybrid PDDSL language consists of several parts.
Given the fact that PDDSL constructs inherit from OWL constructs, the
PDDSL core semantics and the connection to OWL2 are explicitly defined
using OWL2 and transitively using Description Logics (DL) (OWL2 is for-
mally defined using DL [Motik et al., 2009a]). The operational semantics
are implemented as model transformations that translate hybrid PDDSL
models to pure OWL2 ontologies, considering the open-world (OWA) and
close-world assumptions (CWA) for proper reasoning [Miksa et al., 2010].

Benefits of Hybrid Modelling

Instead of defining a single, monolithic language from scratch, we were able
to combine two domain specific languages for modelling device types and
device instances and one state-of-the-art ontology language for modelling
semantic constraints, and profit from the mechanisms built on top of those
languages. Furthermore, hybrid languages facilitate clear separation of con-
cerns in the modelling solution with clearly defined integration points, both
on the language engineering level as well as on the modelling level. In
the latter case, our hybrid language thus clearly differentiates between two
modelling roles: Device experts and Device users. Device experts devise the
device type ontology, specific device types and their semantic constraints.
Device users have the role to configure device instances following the se-
mantic constraints defined by device experts. The hybrid concrete syntax
visualisation contributes to better user experience by providing role-specific
model perspectives.

2.4 Chapter Summary
In this chapter, we introduced the basic concepts related to the existing work
on the engineering of modelling methods in general and of hybrid modelling
methods in particular. Special focus was set on the modularisation and
integration approaches. In Section 2.1 we introduced the basic notions of
a modelling method and elaborated in detail on the extended modelling
method framework and its elements. In doing so, we also contributed with
the additional categorisation of modelling method hybrid mechanisms into
configurable and adaptable in Section 2.1.4. In the same section, an addi-
tional classification of modelling method mechanisms based on application
purpose has been suggested. In Section 2.2, we elaborated on method in-
tegration approaches for hybrid modelling methods. We first revised the
integration dimensions and added a fourth composite, multi-dimensional
category (see Section 2.2.1). After that, an overview of existing conceptual
approaches for method modularisation and integration has been provided.

CHAPTER 2. MODELLING METHOD ENGINEERING 59

Finally, in Section 2.3 we underpinned the introduced concepts by a selection
of case studies in hybrid modelling method engineering.

The introduced approaches for assembly-based modelling method inte-
gration contribute with high-level conceptual solutions for designing hybrid
modelling methods. However, a sound formalism for modular modelling
method engineering, and in particular, for modular metamodel engineering
on the technical level hasn’t been addressed. Closing this gap is the focus
of the underlying work.

Chapter 3

Concepts for Modelling
Language Engineering

“Anything you can do, I can do
Meta.”

Daniel Dennett

From the method engineering point of view, modelling language engi-
neering is a special discipline of method engineering, which concentrates on
product part of the method, the modelling language. Language engineering
in general is a special field of software development that focuses on creation
of any kind of software languages (programming, domain-specific, textual,
visual, etc.). In its simplest form, a common sense on the language anatomy
is that a language usually consists of the syntax (abstract syntax), semantics
and notation (concrete syntax). There are various approaches to define core
language elements such as graph-based or metamodel-based approaches. It
has been recognised that metamodelling, a formalism based on metamodels,
is the most practical choice to specify languages, i.e. their abstract syn-
tax. In the underlying work, the focus is set on modelling languages, and
in particular, on their metamodel-based definition. Nevertheless, the goal
of this chapter is to provide a broader overview of the language engineering
field in general, with the special focus on analysing the existing work on
metamodel-based modelling language definition.

The chapter is structured as follows. In Section 3.1 we explain the
engineering phenomenon of language layers, a technique to structure the
language and model1 concepts and data, common to different language en-
gineering approaches. In Section 3.2, we elaborate on modelling language
anatomy, i.e. on the basic language elements. In Section 3.3 a thorough

1Model is simply a product of using a language, may be a text, a graphical model, a
program code, etc.

60

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 61

overview of approaches for language definition is provided. Here, approaches
for the definition of abstract syntax, concrete syntax and semantics are sep-
arately introduced. Finally, in Section 3.4, we discuss existing approaches to
metamodel-based language definition. In doing so, we first define the capa-
bilities of metamodelling languages, which serve as an evaluation framework
to analyse and compare existing metamodelling languages. Section 3.5 sum-
marises the chapter.

3.1 Language Engineering Layers
In the field of language engineering (modelling and programming languages),
the information about systems described in terms of models or code is struc-
tured into several layers. The lowest layer is on the level of the universe of
discourse (system, real-world data), layer (L0). On top of it, models are
used to represent the system (L1). This layer is usually called the applica-
tion layer or the model level. Models and code are described using languages,
which reside on the next layer (L2). This layer is usually called tool level
or the language level. Similarly, the next level consists of a meta-language
for describing languages (L3). Usually, the meta-language itself is described
on the same level, by self-definition (or bootstrapping), since it already con-
tains very basic constructs which do not require any further levelling. This
kind of levelling is called linguistic instantiation2, and is widely adopted
architecture in the conventional programming language design [Aho et al.,
1986], information systems development (IRDS, ANSI-X3.138-1988 [Parker,
1992]), CASE tool design (CDIF, [Chen, 1993]), graph technology [Ebert
and Franzke, 1995] modelling and method engineering community ([Kara-
giannis and Kühn, 2002], [Frank, 2002]) and most-recently in the field of
model-driven engineering (MDA, [Mukerji and Miller, 2003], [Kleppe et al.,
2003]). However, this kind of levelling is merely a practical agreement. Other
approaches such as the ontological instantiation allow for having instances
and types on the same linguistic level [Atkinson and Kühne, 2003]. In the
field of knowledge representation and semantic technologies, ontologies are
structured in two levels, the type level, s.c. ontology Tbox and the instance
level, s.c. ontology Abox. Table 3.1 summarises the terminology used in mul-
tiple computer science fields that follow the layered approach to structure
information.

2The term instantiation is however not precise, since the system is represented by
models, and models, languages conform to languages, meta-languages. This kind of level-
ling/layering is thoroughly discussed in the field of MDE in [Bézivin and Gerbé, 2001]

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 62

Table 3.1: Terminology of language layers in different computer science
fields

Layer 3 Layer 2 Layer 1 Layer 0

Programming
language de-
sign

metasyntax,
meta-
language

grammar, lan-
guage

program
code

run-time data

Model-based
and model
driven devel-
opment

meta-
metamodel,
metamod-
elling lan-
guage

metamodel,
modelling
language

model run-time
data, system,
universe of
discourse

Graph theory metaschema schema graph run-time
data, system,
universe of
discourse

Knowledge
representation

Ontology
Tbox

Ontology
Abox/Ontol-
ogy Tbox

Ontology
Abox

universe of dis-
course

3.2 Modelling Language Anatomy
There are different works discussing the anatomy of modelling languages.
According to [Karagiannis and Kühn, 2002] a modelling language consists
of a syntax, semantics, notation. Syntax, also known as abstract syntax,
describes the structure of the language, whereas, the semantics provide a
meaning to the abstract syntax elements. Notation, also referred to as con-
crete syntax, defines the representation of the abstract syntax elements (e.g.
graphical symbols, text). In addition to the core elements of the language,
Greenfield [Greenfield et al., 2004] introduces another form of syntax, the
serialisation syntax. While concrete syntax is human-readable, serialisation
syntax may not be human-usable and is used to persist and interchange
language expressions in a serialised form. Kleppe [Kleppe, 2009] generalises
the serialisation syntax as being a form of a concrete syntax. Hence, ac-
cording to Kleppe, modelling language has one abstract syntax and one or
more concrete syntaxes. Selic [Selic, 2011] also points out that the abstract
syntax is a pivotal element, for which multiple concrete syntaxes may exist,
and on the other side, exactly one semantics. A new aspect being brought
by Kleppe to the language concepts, and which has been underlined by Selic
is the optional existence of language interfaces, as an ability of languages to
interwork with other languages.

Figure 3.1 illustrates the anatomy of modelling languages. Single ele-
ments of the modelling language are discussed in the subsequent subsections.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 63

Figure 3.1: Modelling language anatomy

3.2.1 Abstract Syntax

Abstract syntax defines the main concepts of the language and relation-
ships between them. Abstract syntax3 is regarded as a fundamental, piv-
otal element of the modelling language [Greenfield et al., 2004], [Kleppe,
2009], [Selic, 2011]. It is a central element connecting together multiple con-
crete syntaxes as well as the language semantics4. As pointed out in [Selic,
2007], besides main abstract syntax concepts, the abstract syntax also con-
sists of composition rules that represent a kind of algebra on how to combine
the concepts to produce valid models. Composition rules take form of con-
straints and well-formedness rules. In [Harel and Rumpe, 2000] these are
called context conditions, which further restrict the abstract syntax5.

3As Kleppe notices, the term “abstract syntax” comes from natural-language research,
where it means the hidden underlying, unifying structure of a number of sentences (
[Kleppe, 2009], p.75)

4Traditional approaches for textual language design - compiler technology - centred
the focus of the language on the human-oriented concrete syntax and the machine-
interpretable abstract syntax tree, thus ending up with having a single concrete syntax
representing the language. Recognising the changing nature of software languages [Kleppe,
2009], modern language theory shifts the focus on the abstract syntax, thus allowing the
language to have multiple i.e. arbitrary concrete syntaxes all of them mapped to one
common representation, the abstract syntax.

5Some consider constraints as part of semantics. As stated in [Harel and Rumpe,
2004]. . . in compiler theory, constraints on the fourth layer are often called semantic con-
ditions because semantic considerations trigger them. However, the constraints affect only
the syntax; they do not contribute to the actual definition of semantics.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 64

3.2.2 Concrete Syntax

Concrete syntax is concerned with the form of the language [Harel and
Rumpe, 2000]. The concrete syntax specifies how abstract concepts are
realised in a concrete notation. A language may have multiple concrete syn-
taxes. Common types of concrete syntaxes are textual, tabular and graphi-
cal. The textual syntax represents a linear sequence of symbols (e.g. program
code). The tabular syntax provides a two-dimensional matrix-like view on
models (e.g. spreadsheets). Besides x, y dimensions, the graphical syntax
adds a third dimension z, that enables overlapping ordering of objects. In
addition, the other two dimensions are more flexible than tabular (freedom
of choosing coordinates, size and colour of objects, etc.). As for the graphical
concrete syntax, it may be defined in a static and/or in a dynamic way. The
static syntax may be specified using pictorial or vector-based representa-
tions. The dynamic graphical syntax may change the visual representation
based on the state of the underlying object it represents. A part of the con-
crete syntax is also a mapping to abstract syntax elements. Each concrete
syntax needs to specify how each of the language constructs is represented
in that particular notation. As noticed by [Selic, 2007], a mapping must not
always represent a direct one-to-one relationship between the concrete and
abstract syntax elements. An abstract syntax element may have more than
one representational element within a given concrete syntax, or contrary, a
single notation element may represent multiple language concepts.

3.2.3 Semantics

The semantics defines unambiguously the meaning of the abstract syntax
elements. The semantics is specified by relating abstract syntax elements to
concepts of domain whose semantics are already known6. Hence, the lan-
guage semantics consists of a semantic domain and semantic mappings [Harel
and Rumpe, 2000], [Karagiannis and Kühn, 2002]. A semantic domain de-
scribes a specific shared knowledge domain (real-world or computational
concepts and phenomena), the language is referring to. The semantic do-
main may further be divided into static semantics (the what) and dynamic
semantics (the how). A static semantics describes the meaning of the sin-
gle concepts and their relationships (semantic schema), i.e. the data that
is being processed (by humans or machines). A dynamic semantics de-
scribes the behavioural part of the language, that is how products of the
language (models), behave in “run-time”, i.e. the processes handling the
data (humans or machines). Dynamic semantics represents a model of com-
putation [Selic, 2007]. According to Selic, a computational model describes

6For example, an semi-formal semantic definition of a concept Class may be that it
represents a set of objects that share common characteristics. A set is a well-known
concept from the set theory of the semantic domain of mathematics.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 65

how the actual computation really occurs. Different computational models
exist, including algorithmic models, event-driven models, flow-based models,
logic programming models, etc. Note that not all languages have both static
and dynamic semantics. Descriptive structure-oriented modelling languages
usually do have only static semantics (e.g. ER), whereas process-oriented
modelling languages such as petri nets also provide dynamic semantics. A
semantic mapping defines how elements from the abstract syntax map to the
semantic elements. Having the semantic mapping as a first-class language
element makes it possible that semantic domains may exist independently
of the abstract syntaxes. Hence, semantic domains may be shared by differ-
ent languages. How semantics are defined depends on the target audience,
which may be either human-oriented or machine-oriented. Hence, seman-
tics may be informal (natural language descriptions) or formal (based on
mathematics or a machine-interpretable executable formalism).

3.2.4 Interfaces

Languages tend to be less monolithic specifications and more a hybrid set of
inter-related languages. Considering this compositional aspect of languages,
an additional (optional) element of a language is the notion of a language in-
terface. A language interface specifies how a language interworks with other
languages. According to Kleppe [Kleppe, 2009] a language may have an
optional set of required and offered interfaces. A required interface specifies
external language concepts needed for a language to work. An offered in-
terface exposes a subset of its concepts to be referenced by other languages.
The suggested aspect is undoubtedly new, however of fundamental relevance
for the underlying work, as it confirms the requirement for having explicit
constructs meant for metamodel composition.

3.3 Approaches for Language Definition
In the following, an overview of approaches for language definition is pro-
vided structured according to language elements: abstract syntax, concrete
syntax, semantics.

3.3.1 Abstract Syntax Specification

Historically, abstract syntax has not been treated separately from the con-
crete syntax. Abstract syntax was merely an abstract structure to store the
result of code (textual concrete syntax) parsing, called abstract syntax tree.
Although a tree is a kind of graph, this kind of formalism was not used to ex-
plicitly specify the abstract syntax. Therefore, the grammar-based approach
is categorised under the concrete syntax specification. The explicit separa-
tion of the abstract syntax from the concrete syntax specification gained

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 66

attention with an emergence of the model-based approaches to software and
system development. Nevertheless, graphs as a formalism to define abstract
syntax have been used in the area of visual languages. The common to all
approaches is that they treat the abstract syntax (metamodel, graph) as
a pivotal element in the language specification. Two major approaches to
abstract syntax specification may be identified:

• Graph-based approaches. Graphs grammars are rigour formalism to
define the abstract syntax of a language. In particular, attributed,
directed, typed graphs are suitable for it. Such kind of graph con-
sists of a set of vertices connected with edges, which both may be
given a certain type and a set of attributes of some data type. Graph
path expressions and queries may be used to specify static constraints
and well-formedness rules. The use of graph-based metamodelling has
been suggested by Ebert [Ebert and Franzke, 1995]. A visual pro-
gramming language and environment PROGRES has been developed
based on graph grammars [Schurr et al., 1995]. A metamodelling and
graph grammar based tool Atom3 [De Lara and Vangheluwe, 2002]
follows the graph-based approach for storing abstract syntax models
of languages and the usage of graph grammars for graph manipula-
tions [de Lara Jaramillo et al., 2003].

• Metamodel-based approaches. Metamodels, as models of modelling lan-
guages, have been recognised as a practical, yet rigour, formalism to
define the abstract syntax of a language. Metamodels gained a signifi-
cant importance in the field of conceptual modelling as well as with the
rise of object-oriented design and programming languages, CASE and
metaCASE tools and model-driven techniques. A metamodel consists
of classes and relationships between classes. Attributes of some data
type may be assigned to both classes and relationships. A language
to define metamodels is called a metamodelling language, whereas its
model a meta-metamodel. Unlike graphs, metamodels, in general, do
not provide means for explicitly defining complex constraints and well-
formedness rules. Usually, a separate declarative (e.g. OCL [OMG,
2012]) or imperative constraint language is used for that purpose.
A multitude of standard and proprietary object-oriented metamod-
elling languages exist OMG MOF [OMG, 2014], EMF Ecore [Stein-
berg et al., 2008], CoCoA [Grundy and Venable, 1996], MetaEdit+
GOPPRR [Kelly et al., 1996], ADOxx Meta2-Model [Junginger et al.,
2000], GME MetaGME [Lédeczi et al., 2001], JetBrains MPS Enti-
ties DSL [JetBrains, 2013], KM3 DSL [Jouault and Bézivin, 2006]. In
Section 3.4 an overview of metamodelling languages is provided.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 67

3.3.2 Concrete Syntax Specification

Approaches to concrete syntax specification may be divided mainly into
approaches related to textual and graphical syntax.

Textual Syntax Specification

The approaches for textual syntax specification have a long history due to its
importance for programming languages. Here, context-free grammars is the
well-known and widely used approach. Usually, a Backus-Naur Form (BNF)
or some derivation of it, is used as a meta-language to specify the textual
concrete syntax of a language. At the same time, the grammar represents
a mapping to the abstract syntax, since it is parsed to an abstract syntax
graph. Another, more recent approach to create a textual concrete syntax
is to generate it out of the abstract syntax, i.e. metamodel, based on model
transformation [Kleppe, 2007]. This approach has the advantage, since it
allows having one abstract syntax specification (metamodel) and multiple
textual and graphical syntaxes. The model transformation represents the
mapping between the concrete and abstract syntax elements. Besides gener-
ating default concrete syntaxes based on metamodels, approaches in model-
driven engineering such as EMFText [Heidenreich et al., 2013] allow for
the definition of arbitrary concrete syntaxes using an EBNF-like grammar,
where each concrete syntax element refers to an element from a metamodel.

Graphical Syntax Specification

In the field of graphical notations, there is no common understanding on
how to specify graphical syntax, nor there are widely-used standards as it
is the case for the abstract syntax or textual concrete syntax. Historically,
the following four approaches are known:

• Grammar-based approaches. Grammar-based approaches have been
studies in the area of visual languages ([Golin and Reiss, 1990], [Helm
and Marriott, 1991], [Wittenburg et al., 1991], [Marriott et al., 1998]).
A concrete syntax is specified as a grammar containing a sequence
of graphical symbols (bounding box, border, text field, etc.). Using
attributed grammars, such symbols may be enriched by structural con-
cepts (abstract syntax elements), giving the “semantics” to the sym-
bols. The symbols are connected using spatial relations to determine
positioning (contains, overlaps, left to, right to, etc.).

• Graph-based approaches. Graph-based approaches, or more precisely,
graph grammar-based approaches are formal techniques to specify
graphical syntaxes and have been extensively studied in the area of vi-
sual programming languages (VPLs) [Bardohl et al., 1999]. In essence,

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 68

it mimics the approach to textual concrete syntaxes by parsing the
visual representation of a diagram, which is a directed graph, into
an abstract syntax graph and by performing analysis on it. Graph-
rewriting techniques are used to analyse graphs. In [Rekers, 1995],
a layered graph-grammar based approach is described that separates
the graphical representation graphs from the language abstract syn-
tax graphs. Pictorial symbols are assigned to edges and nodes. The
spatial relations such as contains, connects, touch, above are defined
in the spatial relations graph. The abstract syntax graph is derived
by parsing the spatial relation graph.

• DSL-based approaches. DSL approaches provide a kind of domain-
specific language (DSL) for specifying the graphical representation of
a language in an imperative way. The graphical DSL utilises vector-
based and pixel-based libraries for drawing. The advantage of this
approach is a high degree of freedom regarding the notation specifi-
cation. In addition, both parts of graphical notation, the static and
dynamic part may be easily described using imperative languages. The
graphical syntax code may be written manually or using visual tools
and code generation techniques. Within these approaches, the con-
crete syntax is usually defined on top of the abstract syntax without
explicit abstract to concrete syntax mapping as found in metaCASE
tools and metamodelling platforms such as ADOxx [Junginger et al.,
2000], MetaEdit+ [Kelly et al., 1996], GME [Lédeczi et al., 2001].

• Metamodel-based approaches. Metamodel-based approaches are the
most recent group of graphical syntax specification techniques that
rely on metamodels as formalism for graphical representation. Similar
to graph-based approaches, a separate metamodel is used to specify
graphical properties of abstract syntax elements. Hence, a separa-
tion of structural and representational concerns exists with an explicit
mapping in between. For example, the graphical modelling framework
(GMF) for Eclipse implements this approach [Gronback, 2009]. A
graphical definition model (representing the graphical concrete syntax
formalism) provides concepts such as canvas, rectangle, label, poly-
line, etc. A mapping model specifies the relation between abstract
syntax elements (in this case EMF Ecore model) and graphical nota-
tion. Using model transformation and code generation techniques, a
graphical modelling tool may be generated. In [Kolovos et al., 2010],
a modification of the GMF approach is provided, where a high-level
language for direct annotation of the metamodel (abstract syntax) is
suggested, to automate the creation of abstract to concrete syntax
mapping creation.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 69

Finally, visual, graphical notations must be easily understandable not
only by machines (formal aspect) but also by users (cognitive aspect). The
ignorance of the representational issues of the graphical syntax has been
pointed out in the work of Moody [Moody, 2009]. Moody introduces a
systematic, scientific basis for constructing the notation of visual, graphical
modelling languages.

3.3.3 Semantics Specification

Specification of semantics is an important part of language design. It is
about communicating the meaning of the language to language users (people
or machines). The practical purpose of it is manifold. Most obviously,
learning about the language and how to use it. On the other side, formal
approaches to semantics allow for the formal verification of correctness of the
language specification and of the underlying models. Moreover, semantics
may be used for automatic generation of interpreters, compilers, tools and
mechanisms for the language.

Historically, three most important approaches to formal specification of
language semantics exist: denotational, operational, axiomatic [Winskel,
1993]. One additional approach seems to be very practical for domain-
specific languages (that rely on code generation) is translational approach
[Greenfield et al., 2004], [Kleppe, 2009].

• Denotational semantics. Denotation is the term borrowed from semi-
otics and it means assigning the meaning to signs. In denotational se-
mantics (also known as Scott-Strachey semantics, by the authors [Scott
and Strachey, 1971]), syntactic symbols/expressions are assigned math-
ematical objects. Thus, an abstract syntax of the language is trans-
lated into mathematical domain, a semantic domain with well-known
meaning.

• Operational semantics. Firstly introduced by Plotkin [Plotkin, 1981],
operational semantics describes the semantics of the language in that
it describes how a valid program is interpreted as sequences of compu-
tational steps. Each sequence defines a meaning of the syntactic ex-
pressions. Using the inductional techniques, the operational semantics
of the language can be checked for correctness. Operational semantics
is widely used to specify the dynamic part of semantics. It is a formal
specification to assist or generate implementations of compilers and/or
interpreters.

• Axiomatic semantics. Axiomatic semantics specifies the language se-
mantics by stating assertions about language outcome (models, pro-
gram) and is used to verify its correctness. It consists of a language
able to state assertions (e.g. first-order logic, temporal logic, etc.),

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 70

and rules of inference for establishing the truth about assertions. Ax-
iomatic approach for defining semantics of programs was firstly intro-
duced by Floyd [Floyd, 1967]7 and applied for flow chart diagrams.
Axiomatic semantics is useful for the verification of correctness for
algorithms, by asserting the system state before and after the algo-
rithm executions. This has an interesting effect that two different
algorithms will be semantically equivalent provided the same initial
and final assertions. Obviously, properties such as efficiency in this
case are ignored.

• Translational semantics. Translational semantics is more practical and
a less formal approach that specifies language semantics by translating
a language under study into another language with well-defined known
semantics. This approach is particularly useful in the field of domain-
specific languages supporting code generation [Greenfield et al., 2004].
A typical example may be a DSL which transforms to a GLP such
as Java which again translates to the bytecode, whose semantics are
defined by the Java virtual machine8. In MDE, the translational ap-
proach is usually implemented by defining language mappings and
using model transformation approaches [Czarnecki and Helsen, 2006]
and code generators.

Another approach for semantics definition is action semantics proposed
by Mosses [Mosses, 1996] that combines denotational and operational ap-
proaches in a pragmatic way, by reducing the mathematical complexity with-
out sacrificing its rigour.

Finally, it must be noticed that the distinction between different ap-
proaches is not always clear. Usually a combination of approaches is used to
define complete language semantics. However, it may be observed that de-
notational and translational semantics are usually used for describing static
semantics. Operational semantics and translational semantics are used for
dynamic aspects of language semantics.

7Describing the type of proofs one can do with axioms Floyd mentions [Floyd,
1967],p.19:

By this means, we may prove properties of the program. . . of the form: “If the
initial values of the program variables satisfy the relation R1, the final values
on completion will satisfy the relation R2”.

8One may question when this chain of language translations stops? What defines the
semantics of the Java virtual machine? It may be again implemented in C++ whose
semantics is then translated to assembly, etc. Like in syntax definition, this may end up
in bootstrapping, i.e. self-definition. However, as Greenfield [Greenfield et al., 2004] noted,
the translation usually stops when there is an agreement of a particular language, that its
semantics can be understood by a large enough community that can agree. Therefore, in
formal approaches, the language of mathematics is used.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 71

3.4 Overview of Metamodelling Languages
Metamodelling languages are used to describe modelling languages. The
process of modelling the modelling language based on metamodels is usually
called metamodelling. There is a multitude of metamodelling languages
provided, either as standard specifications, or as a core formalism of open
source and proprietary metamodelling tools9.

In this section, an overview of metamodelling concepts is provided. After
that, a categorisation framework of metamodelling capabilities is introduced.
This is followed by a comparative overview of five metamodelling languages,
i.e. meta-metamodels.

3.4.1 Metamodelling Concepts

Metamodel is a fundamental concept of metamodelling. A metamodel is
model of a modelling language. A metamodel is a result of metamodelling.
Hence, metamodelling is a process and technique of abstraction, classifica-
tion, and generalisation on the problem domain for which a modelling lan-
guage or kind of grammar should be defined. Metamodelling is the act and
science of engineering metamodels [Gonzalez-Perez and Henderson-Sellers,
2008].

Metamodelling may be organised according to different layered architec-
tures. We adopt the three-layer architecture as described in Section 3.1. The
level of models (M1) is used for domain modelling. The level of metamodels
(M2) is used for the modelling of languages, i.e. metamodelling. The level
of meta-metamodels (M3) specifies the basic constructs for metamodelling
and is by definition self-descriptive level. A model is an abstracted descrip-
tion of the universe of discourse (real-world phenomenon, logical, physical
system, etc.) conforming to the particular metamodel. A metamodel is
a (abstract syntax) model of a modelling language, conforming to the re-
spective meta-metamodel. A meta-metamodel is model of a metamodelling
language. Following this linguistic instantiation, in general, a model that
resides on the level Mn must conform to the particular (meta-)model on the
level above it Mn+1. A model that conforms to its metamodel is said to
be a syntactically valid and well-formed model. A model consists of model
elements. A model element of a model on the level Mn is an instance of a
model element on the level Mn+1, forming an instance-type relation (clas-
sification abstraction). Note that a model element may be an instance of
another model element on the same model level. This type of instantiation
is called ontological instantiation.

9Different terms are used to describe software tools that enable metamodel-based mod-
elling tool development, such as metamodelling tool, metamodelling platform, metaCASE
tools, language workbench.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 72

3.4.2 Capabilities of Metamodelling Languages

A meta-metamodel is an abstraction of a problem domain of modelling lan-
guage definitions, in particular abstract syntax definitions. This problem
domain is based on object-oriented paradigm for modelling data structures
comparable with entity relationship (ER) models. Hence, there is a con-
sensus about the fundamental set of concepts one metamodelling language
should have such as model, class, relation, attribute10. While this set of
necessary concepts is required core for any meta-metamodel, additional el-
ements may contribute to the overall expressive power of that particular
metamodelling language in different ways. Metamodelling language con-
structs contribute to different language capabilities. A capability may con-
sist of a small language feature such as identification, which allows unique
identification of metamodel elements, or may be a complex set of features
such as modularisation capability. Basically, one may distinguish language
capabilities to those contributing to the core modelling expressiveness and
to those enriching the language with productivity constructs. One my refer
to the first as a Meta-language effectiveness and to the other as a Meta-
language efficiency. A simple example for a capability of language effec-
tiveness is ability to specify attributes for classes. An example for language
efficiency would be the inheritance capability which facilitates the reuse of
attributes in class hierarchies, thus boosting up the metamodelling process.
Meta-language effectiveness has an impact on the end users of the language,
since the constructs decide about the core modelling capabilities. On the
other side, the meta-language efficiency does not impact the end user of
the language, but the language designer. While a language without meta-
language efficiency concepts may have the same impact on the end user,
the meta-language efficiency decides about how efficiently the language has
been engineered. These concepts help in reducing complexity and facilita-
tion of reuse in language engineering, which is one of the major concerns of
the underlying work. Figure 3.2 illustrates a possible categorisation of var-
ious metamodelling capabilities. Note that this is not finite categorisation.
There may exist other core and supporting capabilities not covered by this
framework. For example, meta-language capabilities to describe metalevels
and type-instance relationships in multi-level (meta-)modelling [Clark et al.,
2014] are not addressed here.

Meta-Language Effectiveness (Core) Capabilities

Metamodelling language effectiveness represents the core group of metamod-
elling capabilities. It entails basic constructs for object-oriented, structural
class modelling. These basic constructs may be extended by role constructs

10Not surprisingly, since model as a data structure is a graph, the core concepts match
to the fundamental concepts of attributed typed graphs: graph, vertex, edge, attribute.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 73

Figure 3.2: Categorisation of metamodelling language capabilities

to support more flexible metamodelling of relations with participating roles.
Furthermore integration constructs may contribute to hybrid language char-
acteristics, by allowing to create cross-model relations.

• Basic constructs. Basic constructs such as class, attribute, relation,
model type may be found in all metamodelling languages. A class
represents a set of objects that share same characteristics such as at-
tributes and relations. It is a type whose instances are metamodel
classes on the M2 level, that usually represent entities from a problem
domain of a modelling language. An attribute describes a property of a
metamodel element. An attribute is always of some data type (simple
of complex), and has some default value assigned. A simple attribute
type is some of the primitive data types such as integer, string, double,
boolean, etc. A complex type (also known as a composite type) is a
combination of types (simple and complex) that forms a new complex
structure. An attribute may describe properties of classes, but also
of other basic constructs such as relations and model types. A rela-
tion describes how classes are related to each other. Relations have
arity defining how many classes may participate in a relation, ranging
from pairs to n-tuples. Another relation property is multiplicity which
describes how many objects may be connected to one object on the
opposite side of the relation. If a relation is directed, then connected
classes may be grouped to source classes and target classes. A model

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 74

type describes a set of models with same characteristics. It is a type
whose instances are models. A model type groups classes and rela-
tions to a logical set of concepts usually describing some aspect of the
modelling language.

• Role constructs. Role constructs enhance the core construct relation
by providing support to more flexibly specify how classes participate
in the relation. It introduces the concept of a relation end, also known
as endpoint, role, or association end. A relation end is an explicit
first class element that specifies which classes may be connected to a
relation, thus adding an additional level of indirection in specifying re-
lations between classes. A relation may have two or more relation ends
depending on its arity. A relation end may also have multiplicities.

• Integration constructs. Integration constructs contribute to the inte-
gration aspects of modelling languages, to allow inter-connected mod-
elling crossing the model border. Usually, a kind of inter-reference
concept is used to connect classes directly with model types or classes
in different model types or even model types between each other. An
inter-reference may be realised as a special type of an attribute or as
a special kind of a relation concept.

Meta-Language Efficiency (Supporting) Capabilities

Meta-language efficiency subsumes supporting metamodelling capabilities
that enhance core capabilities with constructs for more efficient metamod-
elling. Supporting capabilities contribute to an enhanced reuse of metamod-
elling artefacts through modularisation and composition.

• Modularisation constructs. Modularisation constructs allow for sys-
tematic decomposition of complex metamodels into smaller reusable
self-contained modules to manage complexity and facilitate reuse. In
most of the current approaches, the metaclass model type is (mis)used
as a modularisation construct to group classes and relations. However,
a dedicated module construct is needed for the encapsulation of arbi-
trary metamodel elements. In MOF, the concept of package is used
for this purpose. Another sub-capability of modularisation is informa-
tion hiding. Information hiding allows a module to hide its internal
implementation from its interface specification to other modules. For
example, elements within modules may be hidden using access modi-
fiers such as public, private or protected, or using explicit interfaces.
Information hiding is currently not supported by none of the meta-
modelling languages analysed.

• Composition constructs. Composition constructs allow for the combi-
nation of metamodel elements. Composition constructs provide a kind

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 75

of algebra operators for composition. One may differentiate between
element-level composition operators and module-level operators.

– Element-level composition constructs. Widely used element-level
composition operators that promote element reuse are inheri-
tance and aggregation. In a nutshell, the intention of inheri-
tance is to reuse the structural features of metamodel elements
such as properties and references by creating parent-child ele-
ment hierarchies. A subelement inherits all features of either one
superelement (single inheritance) or of more than one superele-
ment (multiple inheritance). Aggregation is another form of reuse
found in metamodelling approaches. Unlike inheritance, aggre-
gation explicitly establishes a containment relationship between
parent and child elements. For example, a class may aggregate
a globally defined attribute. As defined in meta-languages such
as ADOxx and GOPPRR, aggregation is a Cartesian product
function, such that any allowed child element may be aggregated
by any allowed parent element. For example, a class or rela-
tion may be aggregated and thus reused by multiple model types
using a kind of weak parent-child relationship. This feature in-
creases element-level reuse considerably. Further, the restriction
is another form of composition in which one element restricts the
other one. As defined in MOF, restriction can be used only based
on inheritance. For example, a relation end might disallow cer-
tain metaclass as a connection target of a relation end defined at
the super relation end. Similarly, the redefinition allows for over-
riding i.e. redefinition of metamodel element features. This may
also be done in combination with metamodel element inheritance.
A child element that inherits features from a superelement may
also redefine some of its properties. For example, an inherited at-
tribute may have another default value. Finally, the annotation
is another extensional composition construct which may be used
to extend existing meta elements with additional information.

– Module-level composition constructs. Module-level composition
constructs operate on the level of metamodel modules. An exam-
ple of a module-level composition construct is amerging operator,
which merges elements of two modules according to defined rules
and constraints. Similarly, an import operator imports elements
of one module to the other. Unlike merging, import operator
shouldn’t cause any structural changes to elements. Importing is
comparable to aggregation, but on the level of modules.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 76

3.4.3 ADOxx Meta2-Model

ADOxx Meta2-Model is the meta-metamodel of ADOxx, repository-based,
multi-language, configurable, metamodelling platform for building domain-
specific modelling tools [Kühn, 2010, ADOxx, 2015]11. ADOxx introduces
core metamodelling constructs such as class, relation, attribute and model
type. Figure 3.3 illustrates the ADOxx Meta2-Model. In ADOxx, all meta-
model elements are part of a library. A Library is a container of all constructs
of a metamodel, i.e. of a modelling language. In order to represent different
language aspects, library consists of model types (diagram types). A Model
Type groups classes and relations into aspects and defines a type to which
models need to conform to. A model type may have modes. A Mode is a
model type filtering construct that defines a subset of metamodel elements
available in a model type. It is primarily used to reduce the amount of
available modelling constructs in a model. A Class Definition is an abstract
metaclass, that can hold attributes, can be contained by model types, and
can participate in relations. A Class is a specialisation of the class definition
used to define core domain entities in a metamodel. Likewise, a Relation
Class is a specialisation of the class definition, used to define connections
between meta elements. A relation class is a binary relation always having
exactly two endpoints. An Endpoint specifies which elements may partici-
pate in the relation and how (multiplicity). An endpoint allows classes and
model types to be target types of a relation and may connect multiple el-
ements, however always of at least one type (either class or model type).
Having endpoint metaclass as a metamodelling construct, ADOxx supports
the role capability. An Attribute represents a property of meta elements, that
may have some default value, set of constraints and may be of some specific
simple or complex attribute type. All meta elements can have attributes,
except attributes themselves. Further, ADOxx supports integration con-
structs such as InterRef, which acts as an inter-reference to either models
or objects in other models. InterRef construct is based on the relation class
construct. This is an evolution from the earlier versions of ADOxx, in which,
InterRef was represented by a kind of pointer attribute. An interref may
exist between classes from different model types, between model types, or
as a relation between classes and model types. Any combination is allowed.
ADOxx supports reuse by single inheritance for classes. Furthermore, reuse
by aggregation promotes intra-level reuse for all meta elements, according
to Cartesian product aggregation function. For example, any attribute de-
fined in the metamodel may be reused by any meta element and vice versa.

11ADOxx has been built by the BOC Group. An academic version is available for open
use as a metamodelling development and configuration platform for implementing mod-
elling methods. ADOxx has been successfully used to develop wide range of commercial
modelling tools such as ADONIS [Junginger et al., 2000] which supports standard BPM
methods such as BPMN [OMG, 2013], as well as open-source modelling methods and tools
in the context of OMILab [Fill and Karagiannis, 2013,OMI, 2015].

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 77

Similarly, classes and relation classes may be reused by model types and
modes, endpoints by relation classes, etc. That said, any aggregation rela-
tion between meta elements represents a loosely-coupled containment. Reuse
of attributes by aggregation may be considered as a lightweight alternative
to multiple inheritance. ADOxx supports basic modularisation in terms of
model types and basic composition in terms of inheritance and aggregation.
If a single metamodel is represented by a model type, then elements between
model types may be reused and extended using inheritance or by aggregating
other elements.

Figure 3.3: Conceptual view of the ADOxx Meta-metamodel: ADOxx-
Meta2-Model

3.4.4 EMF Ecore

EMF Ecore is the meta-metamodel of the Eclipse Modelling Framework
(EMF) [Steinberg et al., 2008]. Ecore is a concrete implementation of the
OMG EMOF, which represents the essential set of constructs of the MOF
meta-metamodel [OMG, 2014] (see subsequent sections). In Ecore, a meta-
model consists of a set of modules called EPackage. A package consists
of classes (EClass). A class may have properties which are either ref-
erences (EReference) or attributes (EAttribute) of some simple data type
(EDatatype). Classes may form a class hierarchy using the multiple in-
heritance relation eSuperTypes. References are used to associate classes as
binary relations without an explicit role capability (relation end construct).
References as well as attributes are owned by classes and cannot exist stand-
alone. Since owned by a class, a reference refers only to a target element
type. References may be bi-directional by matching the other reference of

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 78

a connected class using the opposite property. Also, a reference may be
a containment, a container (opposite of containment) or a cross-reference.
Thus, a cross-reference contributes to the integration capability. Regarding
composition concepts, references and attributes may be reused over inher-
itance only. The basic modularisation is supported through the EPackage
construct. EPackage may contain other classes, and implicitly attributes
and references as well as other nested packages. Figure 3.4 illustrates the
conceptual view of the Ecore meta-metamodel.

Figure 3.4: Conceptual view of the EMF Ecore meta-metamodel based
on [Steinberg et al., 2008]

3.4.5 GME MetaGME

GME MetaGME is the meta-metamodel of the Generic Modelling Envi-
ronment (GME) [Ledeczi et al., 2001a], a configurable toolkit for creating
graphical domain-specific modelling and program synthesis environments
developed at the Vanderbilt University, USA. In MetaGME, a metamodel
is a paradigm organised as a project with folders. Nestable folders contain
models. A model is a compound, container metamodel element containing
other metamodel elements over roles. A role is an additional level of indirec-
tion, holding the information on how a metamodel element participates in a
model. In addition, a model consists of aspects. An aspect contains a subset
of metamodel elements called parts. An aspect is a view that contributes to
metamodel partitioning based on viewpoints. An atom is a primitive meta-
model element representing entities (classes) in the problem domain. A
connection represents a directed or undirected binary relationship between
metamodel elements. A connection contains exactly two connection roles/-
points (source, target). However, a connection role is restricted to specify

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 79

exactly one metamodel element as a possible target. Connection role thus
supports the role capability, however in a restricted form (binary connec-
tion, only one allowed target per role). If more than one element should be
connected, this may be done using sets. A set owns one or more elements
of the same model. Atoms and connections may have attributes, which are
of some data type, which is either simple or an ordered type (enumeration).
Connection can be created only between elements that belong to the same
parent (model). Cross-model connections are realised using references. A
reference is a kind of a pointer that can connect to an element in another
model or to another model, thus supporting the integration capability. Mod-
els, atoms, connections, references and sets represent s.c. first class objects
(FCOs). As for modularisation, aspects and roles may be regarded as basic-
level encapsulation constructs. MetaGME supports the reuse of attributes
using the multiple inheritance on atoms, connections and models. The mul-
tiple inheritance on the class level allows for the class equivalence operator,
a union relation, which may connect two source classes and a target class
representing the composite of the other two [Ledeczi et al., 2001b], [Karsai
et al., 2004]. Unlike other approaches, the inheritance is a connection kind.
MetaGME supports two types of inheritance relations, interface and imple-
mentation inheritance. In addition, the composition capability by aggrega-
tion is supported by FCOs through the containment relationship between
aspects and parts and through roles. On the inter-language level, MetaGME
introduces the concept of a proxy. Basically, a proxy references an element
(atom, connection) from another metamodel. This proxy reference is a kind
of weak-aggregation construct. Figure 3.5 illustrates the MetaGME meta-
metamodel.

Figure 3.5: Conceptual view of the GMEMetaGMEmeta-metamodel based
on [Ledeczi et al., 2001a]

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 80

3.4.6 MetaEdit+ GOPPRR

GOPPRR is the meta-metamodel of MetaEdit+. MetaEdit+ is an inte-
grated, repository-based tool set for creating and using modelling languages
and code generators developed by MetaCase [Kelly et al., 1996, Tolvanen,
1998, Kelly and Tolvanen, 2008]. The name GOPPRR is an acronym for
the first class metatypes of the meta-metamodel, Graph, Object, Property,
Port, Relationship and Role. A graph type corresponds to a model type
whose instances are models. A graph type is a container of other meta-
model elements. An object type is used to model entities i.e. classes in
the problem domain of the modelling language, whose instances are model
objects. Object types may be connected via role types and indirectly via
relationship types. A role type specifies how one or more object types partic-
ipate in the relationship type via connection. A relationship type is related
with at least two role types using the connection construct. A port type
defines the possible additional semantics in form of constraints of how the
role type may connect to the object type. A relationship type together
with composed role types and participating object types forms a binding.
Hence, a relationship type in GOPPRR is n-ary supporting the role capa-
bility. All metamodel elements except bindings may have properties of some
data type. A property type may be a string, text, number, boolean, collec-
tion, or a link to a metamodel element. Collection type is used to define
complex data types. Cross-model relationships for integrated modelling are
supported in GOPPRR using explosion and decomposition [Tolvanen and
Kelly, 2010]. An explosion links an object in one graph with another graph
type (usually different graph type than the container graph of the source
object). A decomposition is structurally the same as the explosion. Seman-
tically, an object is linked to a graph type, which has the same type as the
container graph of the source object. GOPPRR supports reuse by single
inheritance for all meta types excluding properties themselves. In addition,
reuse by aggregation on the intra-level is also supported. For example, a
property may be reused by arbitrary meta types, and a meta type may con-
tain many properties. Similarly, multiple bindings may bind same elements.
Furthermore, inter-level reuse is supported using the inclusion. An inclu-
sion can be defined as an aggregation which can exist only between a graph
and its meta elements. Hence, metamodel elements may be reused between
multiple graphs. GOPPRR supports only basic modularisation in the sense
of graph types and atomic meta elements. The concept of a reusable mod-
ule with visibility and interfaces is not supported. Figure 3.6 illustrates the
GOPPRR meta-metamodel.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 81

Figure 3.6: Conceptual view of the MetaEdit+ GOPPRR meta-metamodel
reconstructed based on [Tolvanen, 1998,Kelly et al., 1996,Kelly and Tolva-
nen, 2008]

3.4.7 OMG MOF

Meta Object Facility (MOF) is an industry and tool independent stan-
dard meta-metamodel defined and managed by the Object Management
Group (OMG) [OMG, 2014]. MOF has been used to define UML and other
standard modelling languages of the OMG. MOF is divided into the Es-
sential MOF (EMOF) and Complete MOF (CMOF). The EMOF contains
only the essential constructs for class-based metamodelling, allowing MOF
to describe itself. A concrete EMOF implementation is EMF Ecore. In
comparison to EMOF, CMOF contributes with advanced metamodelling
concepts for example for reuse and modularisation and definition of meta-
models. MOF reuses core constructs of UML2 to define basic metamod-
elling capabilities for basic class modelling, but also for modularisation via
packages. EMOF reuses the core::basic package of the UML infrastructure
library [OMG, 2011a], including the constructs from the types diagram,
classes diagram, data types diagram and package diagram. Description of
these elements is comparable to those from Ecore. In addition, EMOF in-
troduces features for metamodelling constructs such as unique identification
(by URI), reflection, extension. A reflection adds a link from an element to
its metaclass, such that an instance can reflect about itself. An extension
tag may be associated to one or more metamodel elements and is used to
extend the metamodel with small extensions without heavy-weight changes.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 82

CMOF extends the EMOF with the core::constructs package of the
UML2 infrastructure library. Regarding the core constructs, CMOF thus
resembles semantics for class-based metamodelling from UML2 class dia-
grams with some constraints. In particular, it redefines the reference to the
UML2 navigable association, such that a property participates in the as-
sociation as an association (member) end. CMOF constraints the arity of
the UML association to be binary. Each association member end property
must have at most one type as target and this must be a class. Hence, with
classes, properties, associations and packages, CMOF supports core meta-
modelling capabilities. The role capability is supported via dual semantics
of the property as an association end. The reuse of properties (in general
structural features) is possible via multiple inheritance for classes and asso-
ciations. Reuse of properties by aggregation is not possible since properties
are owned members by its owners. Reuse by aggregation is however pos-
sible via packaging. Finally, Figure 3.7 illustrates the core capabilities for
class-based metamodelling of the MOF meta-metamodel.

Figure 3.7: Core class-based metamodelling capabilities of the MOF meta-
metamodel according to [OMG, 2014,OMG, 2011a]

A package represents a modularisation concept that is used to group
packageable elements in order to manage complexity and facilitate reuse. A

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 83

packageable element that can be an atomic metamodel element or another
package is owned by the package using the packagedElement association.
The nestedPackage subsets packagedElement only for packages. A package
may import either single elements from other packages as references via el-
ementImport or all members of another package via packageImport. This
feature is derived from the package superclass namespace. Unlike UML2,
CMOF does not support visibility of elements within packages. The concept
of an interface is not supported. Regarding the composition capability, be-
sides package import, CMOF provides a merge mechanism on the package
level that is used to facilitate package reuse. Package merge, specified using
packageMerge association, combines features of a merged package with the
merging package to define new integrated language constructs. This way
metamodel elements can be extended, instead of using e.g inheritance. El-
ements in the merging package contain all the features of the same named
classes in the merged package. Figure 3.8 illustrates the modularisation
capabilities of the MOF meta-metamodel. Further, CMOF includes the re-
definition feature of the UML2 to support restriction and redefinition of
metamodelling capabilities. Redefinition works in the context of the gener-
alisation. That is, a specialised element may redefine, constrain or subset
specific properties (features) of a general element. Redefinition is spec-
ified using the redefinedElement association between properties. Finally,
the aforementioned MOF extension construct tag represents a name value
pair that can be associated with various elements to annotate them in a
lightweight manner. A meta element may be associated with many tags,
and the same tag may annotate many elements. A MOF 2.0 in its full
version (EMOF and CMOF) has been implemented by the metaCASE tool
MOFLON [Weisemöller et al., 2011].

Figure 3.8: Modularisation capabilities of the MOF meta-metamodel ac-
cording to [OMG, 2014,OMG, 2011a]

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 84

3.4.8 GrUML

Graph Unified Modelling Language (GrUML) is a sublanguage of UML and
represents a metamodelling language for graph-based modelling [Ebert et al.,
1996], [Walter and Ebert, 2011]. GrUML reuses concepts of UML to rep-
resent basic graph notions of the TGraph approach [Ebert et al., 1996],
that are part of the graph meta-schema such as node, edge, attribute, etc.
TGraphs are a general kind of directed graphs whose vertices and edges are
typed, attributed and ordered, thus providing sufficient notions to represent
metamodels and models. A GraphSchema and UML Package correspond to
a model type i.e. metamodel, that are used to group metamodel elements.
GrUML uses a VertexClass as a subclass of a UML class to represent graph
nodes, i.e. classes, and an EdgeClass as a subclass of UML association to
represent graph edges i.e. relations. An EdgeCLass is a binary relationship
and it connects exactly two relation ends that are represented by the class
IncidenceClass. An incidence class thus implements the concept of a role
by holding the information how a specific class participates in the relation.
Incidence class contains information about the aggregation kind, cardinal-
ity, direction, etc. VertexClass elements as well as EdgeClass elements may
be attributed. An Attribute has an attribute value and is of a specific do-
main/data type. GrUML supports multiple inheritance of both classes via
SpecialisesVertexClass relationship, and relations via SpecialisesEdgeClass
relationship. Inheritance of edges/relations is a feature that distinguishes
GrUML from another formalism such as Ecore where references are repre-
sented by class attributes, thus not being able to support neither attributes
themselves nor support the relation inheritance. Inheritance of relations
is also an additional feature that meta-metamodels such as ADOxx Meta-
Model do not support. Reuse by aggregation is not supported by GrUML.
Similar to MOF, a Package represents a modularisation concept that is
used to group packageable elements in order to manage complexity and
facilitate reuse. A package may contain subpackages and GraphElement-
Classes, whose specialisations are NodeClasses and EdgeClasses. Figure 3.9
illustrates the GrUML meta-metamodel.

3.4.9 Comparison of Metamodelling Languages

In the previous sections, various metamodelling language approaches have
been analysed according to the metamodelling language capability categories
introduced earlier. Although the approaches differ from each other in termi-
nology used, they all are based on object-oriented principles for metamod-
elling.

• Core capabilities. The core capabilities are covered by all approaches.
Usually, differences may be observed in the way how relations are
modelled considering the ownership, the arity and the role capability.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 85

Figure 3.9: Simplified view of the GrUML Meta-metamodel based on [Wal-
ter and Ebert, 2011]

• Integration capabilities. Integration i.e. cross-referencing capability
has been found in all approaches either supported by a special kind of
attribute that acts like a pointer to elements in other models, or as a
fully-fledged cross-model relation.

• Modularisation capabilities. Modularisation capability in terms of ba-
sic encapsulation is supported by MOF, MOF-like meta-languages
such as Ecore and GrUML. However, information hiding capability
is missing. This circumstance may be explained by the fact that the
original focus of metamodelling languages was purely on supporting
core capabilities.

• Composition capabilities. All approaches support the basic composi-
tion on the element level via inheritance or aggregation. In addition,
MOF as a standard contributes to module-level composition with its
package merge and import mechanism. Restriction i.e. property re-
definition, and extension tags are also specifics of MOF only.

Finally, Table 3.2 and Table 3.3 provide an overview of the comparison
of meta-metamodels with respect to the core and supporting capabilities,
respectively.

3.4.10 Other Approaches

There is a multitude of other metamodelling languages, i.e. meta-metamodels
emerged over the years in the field of MetaCASE tools, model-driven and

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 86

model-based engineering platforms. In the following, acknowledging the fact
that this may not be the definite list, some additional metamodelling lan-
guages such CoCoA, KM3, MOFLON, Kermeta and Microsoft DSL Tools
are briefly summarised.

Complex Covering Aggregation (CoCoA)

CoCoA has been developed in the beginning of nineties as a meta-metamodel
for MetaCASE tools for method engineering also known as Integrated Infor-
mation Systems Engineering Environments (IISEE) [Venable, 1994], [Grundy
and Venable, 1996]. The CoCoA metamodelling language is based on the ex-
tended ER metamodel. It further extends the ER by the use of collections in
roles. A relationship role in CoCoA allowed a role to have more than one pos-
sible entity type (endpoint target). CoCoA derives its name from additional
ER data modelling concept called Complex Covering Aggregation. Complex
covering aggregation represents a composite entity grouping other entities
and relationship types, comparable to the notion of model type. With the
introduction of entity aliases, entities may be reused between complex cov-
ering aggregations thus supporting the language and model integration.

Kernel Metametamodel (KM3)

KM3 is a lightweight textual DSL for metamodel definition [Jouault and
Bézivin, 2006]. It has been developed as a practical implementation alter-
native to MOF meta-metamodel and has been used extensively by the Atlas
Model Management Platform to develop multitude of metamodels. By its
structure it is very similar to Ecore meta-metamodel. Various M3 level
mappings from KM3 to other meta-metamodels have been defined, allowing
KM3 to be a bridging structure between different meta-metamodels such as
EMF Ecore or Microsoft DSL tools [Bézivin et al., 2005].

MOFLON

MOFLON, a meta-metamodel and a metamodelling tool, is a concrete imple-
mentation of the MOF 2.0 used primarily for metamodel-based tool integra-
tion [Amelunxen et al., 2006]. While EMF Ecore implements the essential
MOF features of EMOF, MOFLON focuses on the complete MOF speci-
fication CMOF. Hence, it provides modularisation and extension features
of MOF such as package merge, package and element import, as well as
property redefinition.

Kermeta

Kermeta is a meta-metamodel and a workbench for metamodel engineer-
ing [Drey et al., 2010]. Kermeta meta-metamodel has textual concrete syn-

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 87

tax and is built as a compatible extension to EMOF. One of the important
extensions to EMOF is the imperative action language, which supports the
specification of behavioural semantics of MOF models. Furthermore, Ker-
meta is aspect-oriented, allowing for simple metamodel extensions using
weaving. The weaving technique is mostly used to weave in the behavioural
semantics to structural metamodels. Basically, a class can be declared as
an aspect that may contribute features (attributes, references, properties,
operations, constraints) to other classes. The weaving is based on name
matching which is comparable to the package merge in CMOF. By weaving
aspects one can redefine class features.

Microsoft DSL Tools Meta-Metamodel

As a part of the Visual Studio 2012 IDE [MSDN, 2012], Microsoft provides
a set of tools, known as DSL Tools, for the definition of domain-specific
languages [Cook et al., 2007]. This tool suite is a realisation of a larger
vision of software factories [Greenfield et al., 2004]. The meta-metamodel
of DSL Tools supports core metamodelling capabilities. In the MS DSL
tools dialect, a domain model, a metamodel, consists of domain classes,
that may have domain properties. A domain relationship is a specialisation
of the domain class, which entails exactly two roles. A role specifies how a
domain class participates in the relationship. A role may as target also have
a domain relationship. A domain relationship may be either an embedded
relationship (containment) or a reference relationship (association). Classes
and relationships support single inheritance. Regarding the modularisation,
it is possible to define a set of abstract domain elements and package them
into a s.c. DSL library. Other DSLs can then import DSL libraries. No
explicit composition operators have been found.

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 88

T
ab

le
3.
2:

C
om

pa
ris

on
of

m
et
a-
m
et
am

od
el
s
ac
co
rd
in
g
to

co
re

m
et
am

od
el
lin

g
la
ng

ua
ge

ca
pa

bi
lit
ie
s

C
ap

ab
ili
ty

A
D
O
xx

M
et
a2
-M

od
el

E
M
F
E
co
re

G
M
E

M
et
aG

M
E

M
et
aE

di
t+

G
O
P
P
R
R

O
M
G

M
O
F

G
rU

M
L

C
or
e
ca
pa

bi
lit
ie
s

C
or
e
co
ns
tr
uc
ts

C
la
ss

C
la
ss

E
C
la
ss

A
to
m

O
bj
ec
t
ty
pe

C
la
ss

Ve
rt
ex
C
la
ss

A
ttr

ib
ut
e

A
tt
rib

ut
e

E
P
ro
pe

rt
y

A
tt
rib

ut
e

P
ro
pe

rt
y

P
ro
pe

rt
y

A
tt
rib

ut
e

R
el
at
io
n

R
el
at
io
n
cl
as
s

E
R
ef
er
en

ce
C
on

ne
ct
io
n

R
el
at
io
ns
hi
p

A
ss
oc
ia
tio

n
E
dg

eC
la
ss

R
el
at
io
n
ar
ity

bi
na

ry
bi
na

ry
bi
na

ry
n-
ar
y

bi
na

ry
bi
na

ry
M
od
el

ty
pe

M
od

el
ty
pe

,
M
od

e
E
Pa

ck
ag
e

M
od

el
,
A
sp
ec
t,

R
ol
e

G
ra
ph

ty
pe

Pa
ck
ag
e

Pa
ck
ag
e

R
ol
e
co
ns
tr
uc
ts

E
nd

po
in
t

E
nd

po
in
t

-
C
on

ne
ct
io
n

ro
le

R
ol
e,

Po
rt

P
ro
pe

rt
y

In
ci
de

nc
eC

la
ss

E
nd

po
in
t
ta
rg
et

m
ul
tip

le
-

si
ng

le
m
ul
tip

le
si
ng

le
si
ng

le
In
te
gr
at
io
n
co
ns
tr
uc
ts

In
te
r-
re
fe
re
nc
e

In
te
rr
ef

E
R
ef
er
en

ce
R
ef
er
en

ce
E
xp

lo
si
on

,
D
e-

co
m
po

si
tio

n
R
ef
er
en

ce
-

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 89

T
ab

le
3.
3:

C
om

pa
ris

on
of

m
et
a-
m
et
am

od
el
s
ac
co
rd
in
g
to

su
pp

or
tin

g
m
et
am

od
el
lin

g
la
ng

ua
ge

ca
pa

bi
lit
ie
s

C
ap

ab
ili
ty

A
D
O
xx

M
et
a2
-M

od
el

E
M
F
E
co
re

G
M
E

M
et
aG

M
E

M
et
aE

di
t+

G
O
P
P
R
R

O
M
G

M
O
F

G
rU

M
L

Su
pp

or
ti
ng

ca
pa

bi
lit
ie
s

M
od

ul
ar
is
at
io
n
co
ns
tr
uc
ts

E
nc
ap

su
la
tio

n/
M
od
ul
e

-
E
Pa

ck
ag
e

-
-

Pa
ck
ag
e

Pa
ck
ag
e

In
fo
.
hi
di
ng

-
-

-
-

-
-

C
om

po
si
ti
on

co
ns
tr
uc
ts

E
le
m
en

t-
le
ve
l

In
he

rit
an

ce
(s
in
gl
e;

cl
as
s)

A
gg
re
ga
tio

n
(a
ll

m
et
a-

cl
as
se
s)

In
he

rit
an

ce
(s
in
gl
e,

m
ul
ti-

pl
e;

cl
as
s)

In
he

rit
an

ce
(s
in
-

gl
e,

m
ul
tip

le
;

at
om

,
co
nn

ec
-

tio
n,

m
od

el
),

A
gg
re
ga
tio

n
(a
to
m
)

In
he

rit
an

ce
(s
in
gl
e;

al
l

m
et
ac
la
ss
es
),

A
gg
re
ga
tio

n
(a
ll

m
et
a-

cl
as
se
s)

In
he

rit
an

ce
(s
in
gl
e,

m
ul
-

tip
le
;

cl
as
s,

as
so
ci
at
io
n)
,

R
ed

efi
ni
tio

n
(p
ro
pe

rt
y)
,

A
nn

ot
at
io
n

(t
ag
)

In
he

rit
an

ce
(s
in
gl
e,

m
ul
-

tip
le
;

Ve
r-

te
xC

la
ss
,

E
dg

eC
la
ss
)

M
od
ul
e-
le
ve
l

-
-

-
-

M
er
gi
ng

(p
ac
k-

ag
eM

er
ge
),

Im
po

rt
in
g

(e
l-

em
en
tI
m
po

rt
,

pa
ck
ag
eI
m
-

po
rt
)

-

CHAPTER 3. MODELLING LANGUAGE ENGINEERING 90

3.5 Chapter Summary
In this chapter, we elaborated on the existing work on modelling language
engineering in general, and on metamodelling languages in particular. We
introduced the basic elements of a modelling language in Section 3.2. In
doing so, besides the core elements such as syntax, semantics and nota-
tion, we considered the language interface as an element increasingly im-
portant for defining hybrid languages. Further, in Section 3.3 we elabo-
rated on approaches for language definition, for each of the core language
elements. We concluded that the earlier approaches to language defini-
tion were mainly concrete syntax-driven and have not distinguished the
abstract syntax from the concrete syntax. The contemporary approaches
on the other side target the abstract syntax separately from the concrete
syntax and are mainly abstract syntax-driven. We concluded that out of
latter approaches, metamodel-based language definition approaches are the
most practical. While focusing on metamodel-based language definition ap-
proaches, in Section 3.4, we provided an overview of existing metamodelling
languages. We contributed with a categorisation framework of metamod-
elling language capabilities (see Section 3.4.2) and, based on it, provided
a comparative analysis of a selected set of metamodelling languages (see
Section 3.4.9).

Chapter 4

Metamodelling
Environments

“A fool with a tool is still a fool.”

Grady Booch

Similar to other engineering domains, engineering of modelling methods
and languages requires a dedicated tool set. Although a language may be de-
veloped from scratch by programming (hardcoding) it in a software program
(e.g. in a dedicated CASE tool), specialised tools exist for language engi-
neering and language use in general. Such environments are known under
different names such as metaCASE tools [Alderson, 1991], Computer-Aided
Method Engineering (CAME) tools [Kelly et al., 1996], metamodelling plat-
forms [Karagiannis and Kühn, 2002], software factories [Greenfield et al.,
2004], language workbenches [Fowler, 2005], modelling frameworks [Stein-
berg et al., 2008].

In this chapter, we focus on such tools, we commonly call metamodelling
environments. Metamodelling environments are tools for metamodel-based
modelling language engineering and modelling tool derivation. Section 4.1
discusses basic notions of development environments in general. By identi-
fying the commonality of programming, modelling and metamodelling envi-
ronments, a generic architecture of development environments is provided.
Furthermore, a classification of development environments is given based on
the their adaptability level. In Section 4.2 we elaborate on metamodelling
environments. After the generic architecture of such environments is intro-
duced, we discuss their basic capabilities. The architecture and the capabil-
ity classification are then used as a framework to evaluate a selected set of
such environments. Section 4.3 makes an excursion and reports on ontology-
driven software development environments, metamodelling environments en-
riched by ontology technology. Section 4.4 summarises the chapter.

91

CHAPTER 4. METAMODELLING ENVIRONMENTS 92

4.1 Development Environments
Development environments have been recognised as means to improve the
productivity and quality in software development [Isazadeh and Lamb, 1997],
[Bruckhaus et al., 1996]. As noted by [Isazadeh and Lamb, 1997], according
to [Charette, 1986], software development environments provide combined
support for software process, method and task automation. Whereas the
process defines the main phases and steps in the development to follow,
the method defines a paradigm, a language or a set of languages that are
used to create development artefacts. The automation is about tools and
mechanisms that operate on methods/languages to support the development
process1. Software development environments, also known as integrated de-
velopment environments (IDE), are regarded as indispensable sets of de-
velopment tools, supporting software engineers in their daily work during
the complete life cycle of the software development. IDEs consist of a set
of tools which provide means for writing, compiling, analysing, refactor-
ing, optimizing, debugging, executing, maintaining, testing and deploying
programs written in one or more programming languages2. Likewise, mod-
elling environments allow for modelling, analysing, simulating, transforming
and compiling, interpreting and executing models defined using one or more
modelling languages. Behind both programming and modelling tool sets,
modern development environments provide meta environments for defining
and extending the programming languages and modelling languages and
corresponding environments themselves.

4.1.1 Programming Environments vs. (Meta-)Modelling En-
vironments

Independently of the paradigm pursued, development environments follow
the same basic set of principles. Usually, such environments are built for
a specific paradigm such as programming, modelling or metamodelling.
Within a single paradigm, typically, one or more languages may be sup-
ported in terms of programming languages, modelling languages. In case
of metamodelling, usually, only one metamodelling language is supported.
Based on the formalism/language used, the basic unit of processing is a
program/source code, a model or a metamodel. The units of processing are
compiled to some kind of executable that represents the target outcome of
the development process. In programming, a programming language com-
piler generates machine code for a specific virtual machine. For example,

1This definition may be compared to the definition by [Karagiannis and Kühn, 2002] of
a modelling method which is a triple of language, mechanisms and process (see Section 2.1)

2As noted by [Isazadeh and Lamb, 1997] one of the earliest and simplest attempts to
automate certain aspects of the software process in a tool environment was the famous
UNIX Make utility [Feldman, 1979]

CHAPTER 4. METAMODELLING ENVIRONMENTS 93

Java compiler generates byte code that can be interpreted by the Java Vir-
tual Machine (JVM) [Oracle, 2013]. In modelling, a model is compiled i.e.
transformed, for example, to programming code via code generators, or to
a formatted text via model-to-text model transformation [Czarnecki and
Helsen, 2006]. In metamodelling, a metamodel is compiled to code [Stein-
berg et al., 2008] or to configuration files, which both serve to instantiate a
language-specific modelling tool. Table 4.1 summarises this comparison.

Table 4.1: Programming vs. modelling vs. metamodelling

Paradigm Programming Modelling Metamodelling

Domain Application De-
velopment

Analysis and De-
sign

Modelling Tool
Development

Formalism Programming
Language

Modelling Lan-
guage

Metamodelling
Language

Unit of Pro-
cessing

Program source
code

Model Metamodel

Environment IDE Modelling Tool,
CASE Tool

Metamodelling
Platform, Meta-
CASE

Compiler Lang-specific Pro-
gram Compiler

Model Trans-
former

Metamodel Com-
piler/Interpreter

Target Out-
come

Application Generated Code,
Documents, etc.

Modelling Tool

4.1.2 Elements of Development Environments

Due to the common set of principles as discussed before, and regardless
of the paradigm applied, it is possible to identify a common set of ele-
ments (a generic architecture) of development environments. Figure 4.1
illustrates such a generic architecture which may be instantiated for (meta-
)programming, modelling and metamodelling environments.

It consists of the following basic components:

• Editors. Editors provide means for editing work products such as
language specifications (abstract and concrete syntaxes, etc.), models,
code, configurations, etc. Editors may be either text-based, tree-based,
graphical, tabular, form-based, etc.

• Transformers. Transformers subsume any kind of transformation tools
such as compilers, code generators, model and metamodel transforma-
tions, in general tools that allow translation of work products from one
formalism into another. For example, a model may be transformed to
a text or to a model based on another modelling language.

CHAPTER 4. METAMODELLING ENVIRONMENTS 94

Figure 4.1: Generic architecture of development environments

• Interpreters. Interpreters interpret language specifications or models
according to defined semantics. Tools like debuggers, simulators, run-
time engines and test units are some examples of interpreters. The
simulation of business process models is an example of a modelling
language specific model interpreter.

• Analysers. Analysers help to investigate development artefacts such
as code, metamodels, models, etc. Such tools perform different types
of static analyses according to a defined set of constraints, such as
consistency checking. Metamodel and model querying and tracing,
syntax and static semantics validation of models and metamodels may
be performed with analysing mechanisms.

• Repository. Repository tools store and manage development artefacts
such as code, models, metamodels and tool configurations. They ab-
stract from a specific data storage such as a file system or a database.
They offer business logic level services to manage development arte-
facts such as code, models and metamodels.

• Process Guidance Tools. Process guidance tools guide engineers ac-
cording to a defined development process. In collaboration with other
tools mentioned before, guidance tools offer help in terms of tasks,
check lists, tips and hints on how to proceed in a pursued develop-
ment process.

• Process Support Tools. Process support tools (or utility tools) are
vertical tools offering general support services such as collaborative
work, versioning, user and security management, etc.

4.1.3 Classification of Development Environments

Development environments in general are built around one special develop-
ment paradigm, in terms of a programming/modelling language, or a set of

CHAPTER 4. METAMODELLING ENVIRONMENTS 95

it. Such an environment provides a set of tools to create, edit, analyse and
use the artefacts defined by the supported language.

The success of a tool adoption by users depends on how good it serves
to solving the problem at hand. The more flexible and adaptable the tool is,
considering the problem and context of application, the better its adoption.
In particular, the adaptability of the underlying formalism (language) has
been the major driver in the evolution of development environments. Ac-
cording to it, three major categories of tool environments may be identified:

• Language-specific Development Environments (LSDE). A LSDE sup-
ports only one language or a fixed set of languages. In programming,
IDEs for C++ or Java programming languages are examples of LS-
DEs. In modelling, CASE tools have been built for a single specific
modelling method or language, notation or a set of notations such as
UML, IDEF, SSA, etc. As noted by [Martin, 1994], CASE tools didn’t
succeed, among others, because of their inflexible capabilities. Users
wanted extensions, customisation of their methods, CASE tools could
not deliver it due to their hard-wired language support. CASE tools
were obviously too rigid, large, complex, and not least, very expensive
to produce and customise.

• Extensible Language-specific Development Environments (ELSDE). An
ELSDE supports a family of similar languages by mapping them to
a generic, common language around which the whole toolset is built.
Instead of a fixed concrete formalism/language, an ELSDE overcomes
the limitation of LSDE by supporting a generic language, which may
be specialised by a family of concrete languages. An example of such
development environment is Microsoft Visual Studio [Microsoft, 2014b]
with its .NET framework [Microsoft, 2014a]. The framework intro-
duces the Common Intermediate Language (CIL) on top of which
the basic execution environment, called Common Language Runtime
(CLR) is built [Microsoft, 2013]. Arbitrary languages may be mapped
to CIL by which interoperability between languages is ensured.

• Language-independent Development Environments (LIDE). A LIDE
is not bound to any specific formalism, i.e. it supports arbitrary lan-
guages. Also known as metamodelling platforms [Karagiannis and
Kühn, 2002], software factories [Greenfield et al., 2004], language work-
benches [Fowler, 2005], modelling frameworks [Steinberg et al., 2008],
LIDEs overcome the deficits of LSDEs by adding a meta-language
layer to support the configuration of arbitrary languages. Instead of
hard-coding the tools for a specific language, LIDEs provide a tool
set for both language design (a meta environment) itself and generic
language use. Language definitions are used as specifications to gener-

CHAPTER 4. METAMODELLING ENVIRONMENTS 96

ate a concrete LSDE either by code generation or by interpretation3.
MetaCASE tools are LIDEs that are used to generate CASE tools
for methodologies/methods based on method and tool specifications.
MetaCASE tools solve two most important deficiencies of CASE tools
1) adaptability of language definitions 2) cost of development [Mar-
tin, 1994]. Through metamodelling, an arbitrary method/language
may be supported. Through automatic tool generation, the cost of
development is dramatically reduced. With the emergence of model-
driven and model-based approaches to software and system develop-
ment, and with it, language-oriented development, LIDEs, which pro-
vide both language design and use environments, regained a crucial
importance for development productivity paired with high flexibility
towards changing requirements.

4.2 Overview of Metamodelling Environments
Metamodelling environments belong to the category of LIDEs for modelling
language engineering and modelling tool development. The main advan-
tage of such environments compared to the traditional programming or
CASE tools is the ability to define an arbitrary modelling language and
derive the corresponding modelling tool for a particular modelling prob-
lem. Nowadays, a multitude of metamodelling environments for modelling
language engineering already exist. Some are focused on textual languages
such as domain-specific languages (DSLs) the others on graphical, visual
languages for system and business design and analysis. On the other side,
some are based on EBNF-like or graph-based paradigms, the others are
metamodelling-based. Our focus lies on metamodel-based metamodelling
environments such as MetaEdit+ [Kelly et al., 1996], GME [Lédeczi et al.,
2001], or the ADOxx metamodelling platform [Kühn, 2004]. In the following,
the generic architecture and capabilities of such environments are discussed.
Based on thorough capability classification, a selected set of metamodelling
environments is evaluated.

4.2.1 Generic Architecture of Metamodelling Environments

Metamodelling environments provide an IDE for both language definition
and for modelling. The output of the language definition environment is
used as input for the modelling environment, i.e. the modelling environment
is derived out of language specification. Both IDEs implement the generic
architecture of development environments adapted for metamodelling and

3The idea has been initially used to build s.c. compiler-compilers such as YACC [John-
son, 1975]. In a nutshell, a meta-language is used to define the syntax of the target
language. The definition of the language is used to configure the generic compiler which
results in a generated language-specific compiler

CHAPTER 4. METAMODELLING ENVIRONMENTS 97

modelling. Hence, such an environment consists of components and tools
such as metamodel and model repositories, tools for analysing, transform-
ing and interpreting models and metamodels, various kinds of model and
metamodel editors and viewers, as well as a set of guidance and utility tools
[Karagiannis and Kühn, 2002, Zivkovic et al., 2009a,Wende et al., 2011].
Figure 4.2 shows a generic architecture of the metamodelling environments
based on the corresponding generic architecture of general IDEs. In the fol-
lowing, the single building blocks of this architecture are used as a framework
to discuss the capabilities of metamodelling environments.

Figure 4.2: Generic architecture of metamodelling environments (capability
view)

4.2.2 Capabilities of Metamodelling Environments

Metamodelling environments allow for deriving modelling tools out of the
language specification. Besides this basic capability, metamodelling environ-
ments provide a set of other capabilities which may be categorised according
to the metamodelling levels on which they are defined and applied, such as
meta-meta level capabilities, metamodel level capabilities, and model level
capabilities. In particular, on the metamodel level and model level, meta
environment and modelling environment capabilities may be distinguished
based on the generic development environment architecture components in-
troduced in the previous section. There are other infrastructure-specific,
deployment-specific, implementation-specific components, which are not di-
rectly related to the metamodelling capabilities of metamodelling environ-
ments, but are rather general to all software systems. For example, a meta-
modelling environment may be web-based, support cloud-based deployment
or just be a desktop application. Although crucial from the implementation
point of view, such capabilities will not be considered any further, since this
goes beyond the focus of this work.

CHAPTER 4. METAMODELLING ENVIRONMENTS 98

Figure 4.3 summarises the introduced capabilities of metamodelling en-
vironments in a feature tree, as a simplified form of a feature diagram. In
the following, capabilities of metamodelling environments are discussed in
detail.

Figure 4.3: Capabilities of metamodelling environments

Modelling Tool Derivation Capability

Derivation of a modelling tool out of language specification is the very basic
capability of a metamodelling environment. Modelling tool derivation out of

CHAPTER 4. METAMODELLING ENVIRONMENTS 99

language specification may be done either by compilation/code generation
or interpretation4.

• Compiler-based tool generators. Compiler/Transformation based tool
generators generate target code out of language specification usually
extending one or more generic underlying frameworks for model-based
data storage, graphical or textual editors, etc. Typical example is
Eclipse [Steinberg et al., 2008]. The modelling tool must be recompiled
upon changes in the language specification.

• Interpretation-based tool generators. Interpretation-based tool gener-
ators use language specification such as a metamodel as a configura-
tion input for generic tool components. Such environments usually
consist of a set of generic components for model-based data storage
(repository), generic model editors, query languages which are then
“instantiated” for a specific language. Typical examples are ADOxx,
GME, MetaEdit+. Usually, the metamodel and model information is
stored in the same data source, allowing for a kind of a live bridge
between the two levels. Due to its “on the fly” execution, changes
done on the metamodel level are immediately available on the model
level without a recompilation step, thus allowing for more interaction
during language development.

Meta-metamodel Level Capabilities

Meta-metamodel level features are related to the basic underlying paradigm
and formalism an environment implements in its kernel, i.e. the meta-
metamodel. Here, it is sensible to distinguish between language definition
features and features related to the language instantiation architecture.

• Language definition. Language definition features reflect single lan-
guage elements as described in Section 3.2, such as abstract syntax,
concrete syntax, semantics and their sub-features.

• Language instantiation. Language instantiation is another fundamen-
tal property of metamodelling environments as it defines the under-
lying metamodelling levels and architecture of the tool. Language

4The distinction between the compiler-based vs. interpreter-based derivation is not
new. In programming languages, program code may either be compiled to a kind of a vir-
tual machine code, or interpreted by a interpreter which then calls the virtual machine-level
routines. Traditionally, compiled code promises to be more efficient, since the program
is executed directly using the byte-code. Interpreters offer more interaction during the
development phase, since the time-consuming compilation step is not needed. However,
this difference nowadays diminishes, as both compilers and interpreters integrate features
of the other one. For example, compilers may be run in a development mode, in which, the
compilation step is greatly reduced and automated without performing long-running code
optimisation. Interpreters, on the other side, do a kind of pre-compilation and cashing
steps, such that code is not interpreted from scratch every time it is executed.

CHAPTER 4. METAMODELLING ENVIRONMENTS 100

instantiation differentiates between linguistic and ontological instan-
tiation [Atkinson and Kühne, 2003] as discussed in Section 3.1. On-
tological instantiation complements the linguistic one, as the type-
instance relation between elements may be supported on each linguis-
tic level. From the implementation point of view, concepts on the
meta-metamodel level would need to be added to address this feature.
Linguistic type is a common instantiation type for almost all meta-
modelling environments. Ontological instantiation is rarely supported
by today’s tools, although case studies justify its need [Zivkovic et al.,
2011,Zivkovic et al., 2015].

Metamodel Level Capabilities

Metamodelling environments provide a dedicated tool set for language de-
velopment. Single features on the metamodel level may be identified by the
instantiation of the generic tool architecture on the metalevel.

• Metamodel editors, viewers. Language, i.e. metamodel, notation and
semantics editors and viewers, such as graphical, form-based, textual,
tabular and tree-based, exist to create and edit language development
artefacts.

• Metamodel transformers. Transformation features allow for the com-
pilation of metamodelling artefacts into the same or different other for-
mats for the purpose of serialisation, tool derivation, or for a language
evolution. A metamodel transformation may thus be categorised in
metamodel-to-text and metamodel-to-metamodel transformation ap-
proaches.

• Metamodel interpreters. Metamodel-based interpreters process lan-
guage definition for the purpose of language debugging or visual nota-
tion rendering.

• Metamodel analysers. Analysis tools play an important role in lan-
guage development. Metamodel validation checks metamodels against
syntax and semantics rules and guidelines. An ontology-based meta-
model validation has been elaborated in [Lekaditis, 2014]. Another
metamodel analysis approach based on Prolog has been advised in [Hes-
sellund et al., 2007]. Querying the language definitions using a dedi-
cated query language is especially important when dealing with large
projects and multi-metamodel repositories. Metamodel comparison
helps finding differences and commonalities in different versions or in
completely orthogonal metamodels.

• Metamodel repository. Language definition artefacts are stored and
managed in a data repository. Some tools rely on saving develop-
ment artefacts in a file system as source code files (e.g. XML-based),

CHAPTER 4. METAMODELLING ENVIRONMENTS 101

other use databases to persist metamodels and related data. Inde-
pendently of the persistence strategy, repository management layer
offers metamodel management capabilities while abstracting from the
specific data layer. Some tools such as ADOxx, MetaEdit+ offer both
metamodel and metamodel element repositories for an increased reuse.

• Metamodelling process guidance. Metamodelling process guidance helps
language developers through the language definition process.

• Metamodelling support tools. Finally, process support tools enable user
and rights management, multi-user access and team collaboration fea-
tures.

Model Level Capabilities

Toolset for model engineering is language-specific and is derived out of the
language definition. Similar to the metalevel, single features on the model
level may be identified by the instantiation of the generic tool architecture.
In fact, in some of the tools these features are implemented by the same
components applying the bootstrapping techniques. Hence, on model-level,
similar feature set may be identified.

• Model editors, viewers. Model editors and viewers play a crucial role
for creating, editing and consuming the model information. Ideally, a
modelling tool is not restricted to only one type of the editor, but sup-
ports various editors such as graphical, textual, tabular, form-based
or matrix-based. Viewers may filter and display model information
to a problem domain-specific needs. An extensive overview of meta-
modelling tool capabilities for developing graphical model editors is
described in [Dietrich et al., 2013].

• Model transformers. Transformation of model information is the cor-
nerstone of model-driven software development [Czarnecki and Helsen,
2006]. Model-to-text transformations are used as code generators or
model compilers. Furthermore, they can be used to serialise models to
various data formats for the sake of tool interoperability or to format-
ted, rich texts for publishing and model-based documentation. Model-
to-model transformations find usage in model migration scenarios, be-
tween different modelling language versions or in model interchange
scenarios, between different, but compatible modelling languages.

• Model interpreters. Model interpreters execute specific logic on model
data based on well-defined algorithms. Most typical example of model
interpreters are process-based model simulators. Model debuggers are
important for model-based code generation and execution, where each
step of the running application can be traced back to the underlying

CHAPTER 4. METAMODELLING ENVIRONMENTS 102

model. Model interpreters may also be any other mechanisms that
compute and derive new data based on model information.

• Model repository. Model data is stored in a repository. Similar to
metamodel-level repositories, data may be persisted in a file-based or
db-based storage. Repositories store and manage models, but may also
manage model objects in an object repository, which is then available
for reuse.

• Model analysers. Analysers analyse model information found in model
repository for different purposes. Model validation checks models
against language-specific modelling rules such as syntax, static and dy-
namic semantics and modelling guidelines. In [Lemcke et al., 2010,Ren
et al., 2013] semantic business process model validation is proposed
based on the semantic technology. In [Schwarz et al., 2010] business
process models are validated based on expressive traceability technol-
ogy. Given a dedicated query language, model querying feature may
be used internally to implement other transformation mechanisms, in-
terpreters and analysers, and externally by the end users to browse and
navigate the models. Similar to metamodel-level, model comparison
help finding the differences and commonalities between models. The
information is usually displayed graphically, textually, or as a tabular
view.

• Modelling support tools. Support tools add vertical services to the
modelling environment such as user and rights management, multi-
user access, team collaboration, etc.

• Modelling process guidance. Process guidance aims at guiding the
user through the language-specific modelling tasks. There has been
an extensive work done on how the process guidance can be realised
and integrated into modelling environments based on ontologies and
semantic reasoning [Zivkovic et al., 2009b,Aßmann et al., 2013].

4.2.3 ADOxx

ADOxx is an extensible, repository-based metamodelling platform that en-
ables development of modelling tools for a specific modelling method and
application domain [Kühn, 2010, ADOxx, 2015]5. ADOxx is designed ac-
cording to the principles of product line development, which allows for ef-

5ADOxx has been built by the BOC Group. An academic version is available for open
use as a metamodelling development and configuration platform for implementing mod-
elling methods. ADOxx has been successfully used to develop wide range of commercial
modelling tools such as ADONIS [Junginger et al., 2000] which supports standard BPM
methods such as BPMN [OMG, 2013], as well as open-source modelling methods and tools
in the context of OMILab [Fill and Karagiannis, 2013,OMI, 2015].

CHAPTER 4. METAMODELLING ENVIRONMENTS 103

ficient instantiation of new modelling products based on common platform
assets. In the following, ADOxx is described considering the metamodelling
environment capabilities introduced in the previous section.

Meta-Metamodel Level

ADOxx relies on the three-layer metamodelling architecture, thus the in-
stantiation paradigm is linguistic instantiation without explicit ontological
instantiation. For the language definition, ADOxx implements the meta-
metamodel called Meta2-Model introduced in Section 3.4, which defines the
basic abstract syntax constructs and a set of static semantic rules. ADOxx
provides built-in extensions of the abstract syntax for the definition of var-
ious cardinality constraints, attribute domain value constraints, etc. In ad-
dition, complex constraints and validations can be written in a scripting
language and triggered upon certain modelling events. The concrete syntax
of a modelling language in ADOxx is defined using the concept of a graph-
ical representation (GraphRep). A GraphRep is a graphical symbol that
can be assigned to a visible abstract syntax element (visible abstract syntax
elements in ADOxx are classes, relation classes and endpoints). GraphRep
can be specified textually via the textual GraphRep DSL by utilising the
GraphRep drawing library of ADOxx. The GraphRep drawing library con-
tains a comprehensive set of primitives both for drawing symbols and for
displaying abstract syntax element properties (attribute values and incom-
ing/outgoing relations). It allows not only for specifying static elements of
a symbol (shapes, curves, lines, etc.), but it also enables adding dynamical
aspects of concrete syntax e.g. by considering the state changes in object
property values (a symbol may change its characteristics based on partic-
ular object state such as attribute values). In ADOxx, for one particular
abstract syntax definition, one concrete syntax definition may be assigned.
The semantics of a modelling language in ADOxx is defined mainly in an
imperative way. Besides declarative cardinality constraints, static semantics
and operational semantics can be defined using a scripting language or by
plugging in external components.

Metamodel Level

ADOxx provides dedicated editors for metamodelling. The abstract syntax
is edited in a tree-based and form-based editor, while the concrete syntax
is edited in textual editor. Concrete syntax (GraphRep) interpreter is pro-
vided. Metamodel interpreter, i.e. the execution engine for a metamodel is a
generic modelling environment itself, which consists of various components
such as repository, model editor, analysis and simulation component, pub-
lishing, import/export, etc. A file-based metamodel comparison is possible.
In addition, metamodel querying is available via public metamodel APIs,

CHAPTER 4. METAMODELLING ENVIRONMENTS 104

that can be accessed through scripting. ADOxx supports language evolu-
tion via transformation, by providing a possibility to update the productive
metamodel with a new version. Language evolution in terms of a metamodel
update is possible for all extensive metamodel changes. Changes that may
lead to information loss in the repository are not allowed. ADOxx serialises
metamodels into a proprietary XML format. Other serialisation formats
are available as plug-ins. ADOxx supports db-based metamodel repository.
Metamodels are packaged into libraries within which metamodel elements
are stored in single repositories for intra-metamodel reuse.

Model Level

Modelling tools based on ADOxx are derived based on the configuration and
extension of generic modelling components. In the tool derivation process,
generic components are configured and/or extended for specific modelling
method via metamodel and a set of configuration files. For model creation,
editing and viewing, graphical, tabular and matrix model editors exist, as
well as tree-based model and object browsers. In addition, a set of charting
views such as gantt, portfolio, radar, dependency analysis view are available
to visualise model information graphically. Transformation of models in
ADOxx is supported and is used for model serialisation (e.g. XML), model
migration and model publishing. Model publishing relies on model-to-text
transformation which generates formatted text. Since model interpretation
is always bound to a particular language context (basically operational se-
mantics of the language), ADOxx provides an integrated scripting language
with a rich set of metamodel and model APIs to implement language-specific
interpreters such as process model simulation. Models in ADOxx are stored
and managed in a db-based metamodel-specific model and object repos-
itories. Model repository offers, in addition, features such as model and
object time filter, model versioning, multi-lingual model content support,
etc. ADOxx supports form-based model querying, that is executed by a
graph-based query engine. It is also possible to write queries based on a
proprietary JavaScript-based Query DSL. For model validation, structural
syntax correctness is ensured by the editors, since they allow only valid
constructs (compared with textual editors which basically allow free text
input). Additional cardinality and constraint checkers exist, whereas fur-
ther may be added using extensibility mechanisms. A tabular and graphical
model comparison may be used to pinpoint differences in models. ADOxx
supports a wide range of support tools, such as multi-user access, user and
rights management, team collaboration, etc. For modelling method specific
process guidance, ADOxx provides a generic, configurable and extensible
model state transition and versioning mechanism, which allows for mod-
elling method specific configuration. Connected to task management and
model validation services, it offers a stream-lined process guidance for mod-

CHAPTER 4. METAMODELLING ENVIRONMENTS 105

elling. Due to its open architecture, ADOxx may be easily extended with
additional model-level, generic and modelling method specific features.

4.2.4 GME

The Generic Modeling Environment [Ledeczi et al., 2001a] is a metamod-
elling tool developed at the Institute for Software Integrated Systems at
Vanderbilt University. GME allows for creating domain-specific modelling
and program synthesis environments. In GME, a metamodel is a central
configuration construct that defines the modelling language of the given
application domain.

Meta-Metamodel Level

GME implements the three-layered metamodelling architecture. For the
language definition, GME introduces its own proprietary metamodelling lan-
guage MetaGME with an extended UML class diagram notation. The basic
constructs for the abstract syntax definition have been described in Sec-
tion 3.4. The additional syntax constraints or static semantics of the mod-
elling language may be defined using the constraint language OCL [OMG,
2012], which is integrated into the platform. OCL constraints are auto-
matically enforced in the target GME instance. Complex and reusable con-
straints may be defined in constraint functions that may be called from other
constraints or other functions, allowing for recursive calls. Function param-
eters enable the constraint developer to formalise reoccurring definitions in
a generic form. The concrete syntax is specified via extensions of the UML,
mainly in the form of predefined object attributes for constructs such as icon
file names, colors or line types. Since there is a one-to-one mapping between
the abstract syntax and the concrete syntax, there is no explicit mapping
definition between the two. The instantiation paradigm is strictly linguistic.

Metamodel Level

GME reuses its generic modelling environment to instantiate the metamod-
elling environment via bootstraping. Thus, environments on meta and model
level share a great deal of features. For language definition, GME offers a
graphical metamodel editor. However, graphics and symbols for the notation
must be created in external tools. Furthermore, a metamodel browser and
a constraint definition tool are available for language design. A metamodel-
to-text transformation takes place to serialise the metamodel to an XML
file, which represents a paradigm description, an input for the derivation of
the paradigm-specific modelling environment. The XMP file has to be then
registered in the GME registry before any models of that paradigm can be
built. The interpretation of the MetaGME metamodel is performed by the
built-in MetaGME metamodel interpreter. Furthermore, basic metamodel

CHAPTER 4. METAMODELLING ENVIRONMENTS 106

evolution is supported. It is possible to refine the metamodel and propagate
changes on the models. There are built-in model migration operators for
a limited number of metamodel changes. Metamodel analysis is restricted
to the syntax checks and constraint checks. There is no dedicated query
language for metamodels. Metamodel comparison may be realised via the
integrated graph-based model transformation engine. GME stores and man-
ages metamodel data primarily in a file-based repository. Metamodels may
be packaged to libraries and exchanged between metamodel projects to fa-
cilitate the reuse and composition. However, intra-level reuse of metamodel
elements is not given.

Model Level

GME provides a set of generic modelling components that are instantiated
for a specific modelling language (paradigm). For model editing, there is an
out-of-the-box graphical model editor available as well as a tree-based model
browser. No dedicated model views have been found. For model transfor-
mation, a GReAT tool suite [Agrawal, 2003] is fully integrated into GME. It
allows for various kinds of model transformations. GReAT builds upon the
formalism of graph grammars by considering model transformations as graph
transformations. Taking metamodels as specification for defining transfor-
mation rules, it transforms the input model as the source graph into the
output model or text as the target graph. Model interpreters of GME trans-
late model data into various forms such as data streams for simulation and
analysis tools. GME uses the graph transformation and rewriting techniques
of GReAT to implement domain-specific model interpreters [Karsai et al.,
2003]. Further interpreters that are domain-independent may be integrated
as event-driven add-ons or plugins. Models are stored and managed in a
model repository either in a file system or in a database. GME does not
contain a separate object repository to facilitate reuse of objects between
models. However, models can packaged into model libraries and exchanged
between different modelling projects, providing that the projects rely on the
same paradigm. Model validation checks for the correct syntax considering
the given OCL model constraints. Model comparison may be derived based
on the GReAT tool. Querying of models is done using a regular expres-
sion supported search engine. However, OCL in version 2.0 may be used
for model querying, too. GME support tools include multi-user access and
versioning of modelling projects.

4.2.5 MetaEdit+

MetaEdit+ is a commercial repository-based, integrated metamodelling and
modelling workbench for creating and using domain specific modelling lan-
guages and code generators [Kelly et al., 1996, Tolvanen, 1998, Kelly and

CHAPTER 4. METAMODELLING ENVIRONMENTS 107

Tolvanen, 2008]. MetaEdit+ was initially developed as a prototype of a
metaCASE tool at the University of Jyväskylä, followed by a commercial
version developed by MetaCase [Tolvanen et al., 2007].

Meta-Metamodel Level

MetaEdit+ implements in its kernel the three-layered metamodelling archi-
tecture. On the meta-metamodel level, the metamodelling language GOP-
PRR is provided for the modelling language definition. The abstract syntax
constructs of GOPPRR have been described in Section 3.4. It is possible
to define further constraints for abstract syntax elements that apply on the
modelling level during modelling. There is a limited number of constraint
rule forms and templates which can be filled for specific metamodel elements.
There is no formal constraint language available for this purpose. The con-
crete syntax can be defined for objects, relationships and roles. Symbols
are assigned to respective abstract syntax. Symbols are defined using vector
graphics or by importing SVG graphics. There is no explicit language for
concrete syntax definition. Also, there is no explicit mapping which assigns
one or more concrete syntaxes to an abstract syntax. Definition of a seman-
tic domain for abstract syntax elements and the corresponding semantics-
to-syntax mapping are not supported. MetaEdit+ supports explicitly the
linguistic language instantiation paradigm.

Metamodel Level

MetaEdit+ differentiates between the language design and language use en-
vironments. Thus, a dedicated metamodelling environment exists featuring
a form-based metamodel editor. Form-based metamodel editor consists of a
set of so called tools (dialogs) for each of the metamodel concepts. There is
an Object Tool, a Property Tool, a Relationship Tool, a Role Tool, a Port
Tool and a Graph Tool. For the concrete syntax definition, a symbol editor
exists, allowing for both static and dynamic notation definition. In addi-
tion to the form-based editor, MetaEdit+ offers a graphical editor offering
a proprietary graphical concrete syntax, the GOPPRR notation [MetaCase,
2011], which is similar to the extended ER notation. The graphical meta-
model editor is bootstraped out of the modelling environment and integrated
on the metamodel level. Graphical editor in metamodelling is used mostly
for the early stages of the language development to define the basic struc-
ture of the language, due to its limited expressiveness. Form-based editing
allow for more complex and detailed metamodelling. Metamodel compi-
lation for tool derivation is needed for graphical metamodels. MetaEdit+
compiles the metamodel to the XML document called MXT which contains
the input information for the configuration of the repository-based mod-
elling tool. This XML document is parsed and transformed into modelling

CHAPTER 4. METAMODELLING ENVIRONMENTS 108

language definition in the repository. If a form-based metamodel editor is
used instead, this step is not needed, since both the metamodel editor and
the modelling tool are based on the same data source. Thus, MetaEdit+
supports configuration-based tool derivation. Metamodels may be serialised
to XML. Metamodel evolution is supported, in a way, that changes in newer
metamodel versions do not lead to incompatibilities of models. However,
model migration is then a separate required step. Metamodel interpreter is
the modelling environment itself with its components. There is a concrete
syntax renderer available. MetaEdit+ provides neither an explicit meta-
model query language nor a metamodel comparison option. Metamodel
data is stored and managed in an object-oriented repository, where single
metamodel elements may be reused. MetaEdit+ supports shared multiple
user access to metamodel data. Explicit metamodelling process guidance is
not given.

Model Level

MetaEdit+ provides a generic modelling environment which is configured by
the metamodel and code generator definitions. Models can be accessed and
modified by using different model editor types, such as graphical editors,
matrix editors, tabular editors and tree views. For model transformation,
MetaEdit+ provides model-to-text transformation for model reporting and
code generation. Modelling language-specific code generators are configured
using the generator definition environment on the metamodel level. There is
a scripting language for the definition of transformation rules called MERL,
from which the source metamodel elements can be referred. Code gener-
ators are run on the model level to transform model to code. A model
interpreter in MetaEdit+ is realised by the integration with a target pro-
gram execution environment. By executing the generated code, single code
lines may be traced back to models and thus models may be animated/sim-
ulated. Other interpreters may be integrated using a rich set of metamodel
and model APIs. Model checking is provided and is restricted to syntax and
constraints checks. Neither an explicit model querying language has been
found nor a model comparison tool. Models and model objects are stored in
an object-oriented db-based repository. Repository data may be serialised to
XML. Also on model level, MetaEdit+ supports multi-user access to model
repository. Modelling-method specific process guidance has not been found.

4.2.6 Eclipse Modelling

Eclipse provides a set of tools to support model-driven engineering. A num-
ber of open source projects that contribute to the features of modelling
language engineering environments is bundled under the umbrella project
called Eclipse Modelling [Eclipse, 2013,Gronback, 2009]. Eclipse Modelling

CHAPTER 4. METAMODELLING ENVIRONMENTS 109

builds on top of the basic Eclipse programming environment to enrich Eclipse
with metamodelling and modelling capabilities. It provides a unified set
of modelling frameworks, tooling and standards implementations. Eclipse
Modelling as a LIDE follows the compilation-based approach to modelling
tool derivation. Modelling language specification is used as an input for di-
verse generative tools, i.e. code generators which extend underlying generic
frameworks with modelling language specific code set.

Meta-Metamodel Level

Eclipse Modelling implements a three-layered metamodelling architecture.
The language definition is built around the Eclipse Modelling Framework
(EMF) [Steinberg et al., 2008]. EMF is a framework for abstract syn-
tax development providing an object graph for serialising and deserialis-
ing and managing metamodels and models. EMF defines Ecore, the meta-
metamodel of the Eclipse Modelling, which has been already described in
Section 3.4. OCL [OMG, 2012] language and engine is given to define ab-
stract syntax constraints, i.e. static semantics. As a part of the Graphical
Modelling Project [Eclipse, 2014d], The Graphical Editor Framework (GEF)
and the Graphical Model Framework (GMF) are used to define graphical
concrete syntax, whereas for the textual concrete syntax the Textual Mod-
elling Framework [Eclipse, 2014f] featuring XText is available. Since differ-
ent frameworks exist for abstract and concrete syntax development, Eclipse
Modelling supports more than one concrete syntax to be assigned to the
abstract syntax via mappings that are part of concrete syntax frameworks.
No corresponding frameworks for semantic domain and semantic mappings
definition have been found. Eclipse Modelling with its EMF follows the lin-
guistic instantiation as an instantiation paradigm. Language evolution is
not supported.

Metamodel Level

Eclipse Modelling reuses the modelling environment to provide metamod-
elling environment via bootstraping. Thus, tree-based, textual and graphical
editors exist to define the abstract and concrete syntax of the language.
There are no dedicated metamodel interpreters defined. On the other side,
a rich set of metamodel transformers exist, that translate the language spec-
ification to other formats needed for generative tool derivation. There is no
built-in tool for metamodel evolution, however an approach for automatic
metamodel adaptation and model co-evolution for MOF-conformant meta-
models such as EMF has been proposed in [Wachsmuth, 2007]. Metamodel
checking and querying are supported by OCL. Metamodel comparison can
be performed using the EMF Compare tool [Eclipse, 2014c]. Eclipse-based
metamodels are stored by default as EMF XML serialisation in a file-based

CHAPTER 4. METAMODELLING ENVIRONMENTS 110

metamodel repository. There is no concept of a metamodel element reposi-
tory available for reuse.

Model Level

An EMF-based generated modelling environment provides by default a tree-
based model editor. Depending on the specific concrete syntax framework,
graphical or textual model editors are part of the generated modelling tool.
Additional views may be implemented based on GEF. Model transforma-
tion is the heart and soul of model-driven development, for which extensive
support exists. Model-to-model and model-to-text transformation Eclipse
projects offer such tools. For example, the Atlas Tranformation Language
(ATL) [Eclipse, 2014b] and the corresponding toolkit may be used for model-
to-model transformations, whereas Acceleo [Eclipse, 2014a] may be used
for the code generation. Eclipse Modelling does not provide out-of-the-box
model interpreters. However, there is a proposal for a Model Execution
Framework [Eclipse, 2014e] based on EMF, that should support develop-
ment, execution and debugging of models with operational semantics. In
the same way as on the meta level, model checking and querying are sup-
ported by OCL, whereas model comparison and model merge by EMF Com-
pare project. Model data in Eclipse Modelling is persisted by default in
a file-based repository. However, the CDO [Eclipse, 2014g] toolkit may be
integrated as a db-based model repository and persistence and distribution
framework. With CDO, support tools such as multi-user distributed access
and collaboration are possible. There is no particular plugin that supports
modelling language-specific process guidance.

4.2.7 Comparison of Metamodelling Environments

After evaluating the metamodelling environments based on the capability
classification framework, it may be noted that all of the environments sup-
port the minimum set of necessary features for language definition on meta-
metamodel and metamodel level. It may be observed, that on the model
level, the amount and focus of the features of the evaluated environments
is influenced by the primary environment orientation. While environments
such as ADOxx focus on business analysis modelling tools where such tools
already represent end-user applications, other evaluated environments set
the focus on creation of modelling tools for model-driven development based
on code generation where the end-user application is generated out of mod-
els and runs outside of the base environment, i.e. in a target run-time
environment. A detailed summary on all levels of metamodelling architec-
ture is given in the following. Furthermore, Table 4.2 and Table 4.3 give
an overview of the comparison of previously elaborated metamodelling en-
vironments considering the feature categorisation framework introduced in

CHAPTER 4. METAMODELLING ENVIRONMENTS 111

the previous section.

Comparison at the Meta-Metamodel Level

The instantiation paradigm that all environments support by default is lin-
guistic instantiation. Interestingly, none of them does support the ontolog-
ical instantiation, explicitly. As a core feature of an MMLE the necessary
constructs for language definition such as abstract syntax and concrete syn-
tax definition are extensively provided. Constraints definition seems not to
be widely fully supported in a form of a dedicated constraints definition lan-
guage. As most of the tools focus on one graphical concrete syntax, there is
no explicit mapping specification language between the abstract syntax and
the concrete syntax which would allow for the assignment of multiple con-
crete syntaxes of the same or different type to one abstract syntax. Explicit
support for the specification of semantics has not been found in any of the
tools.

Comparison at the Metamodel Level

Features on the metamodel level formetamodel editing are widely supported.
GME and Eclipse reuse the modelling framework to support metamodel edit-
ing, too. Contrary, ADOxx and MetaEdit+ provide a dedicated language
design environment. Naturally, a graphical editor for metamodelling is sup-
ported by those tools that bootstrap its environment, whereas the others
provide form-based editors with a rich set of configuration options. Tabular
editors for metamodelling are not a common feature. On the other side,
only Eclipse Modelling provides an optional textual editor for metamod-
elling. Metamodel transformation serves different purposes on the meta-
model level. The metamodel-based tool derivation based on code generation
is a basic paradigm of Eclipse Modelling. All other evaluated tools such as
ADOxx and MetaEdit+ rely on configuration-based tool derivation. Meta-
model evolution, as an occurrence of the metamodel-to-metamodel transfor-
mation is supported by all configuration-based environments. Serialisation
of metamodels to text, i.e. to a certain XML format for tool interoperability,
has been found in all environments. Further, metamodel interpretation for
an increased language design support, apart from concrete syntax render-
ing, is lacking. However, since the modelling toolset of configuration-based
metamodelling environments interprets the metamodel i.e. the language
specification, the results of the language design are immediately testable
by starting the modelling tool. Code generation tools needs a compilation
step in between. Under the category, metamodel analysis, metamodel vali-
dation with respect to the well-formedness of the abstract concrete syntax is
provided by all tools. Querying on metamodel level is not extensively sup-
ported in a form of a dedicated metamodel query language apart from GME

CHAPTER 4. METAMODELLING ENVIRONMENTS 112

and Eclipse Modelling which use the query part of the OCL for metamodel
querying. Metamodel compare is either natively supported or it is file-based.
The metamodel repository in all environments may be file-based or db-based,
although some are focused on db-based data persistence such as ADOxx,
GME and MetaEdit+, while providing file-based persistence as an optional
feature. In this regard, Eclipse Modelling does the opposite. Driven by
the meta-metamodel capabilities, management of metamodel data is sup-
ported for all tools on the metamodel granularity level, whereas ADOxx and
MetaEdit+ go one step further and provide repositories on the metamodel
element level, as well.

Comparison at the Model Level

On the model level, model editing represents the central feature for all anal-
ysed metamodelling environments. While all of the tools provide a variety
of model editors, ADOxx and MetaEdit+ seem to have the most complete
list of model editors. This may be attributed to the fact, that both tools
are primarily used for commercial purposes. In addition, ADOxx provides
a set of model viewers, not found in other tools. On the other side, Eclipse
Modelling is the only environment providing textual syntax and textual
model editors with syntax checks, syntax colouring, pretty printing, etc.
This can be explained by the application focus of Eclipse in software engi-
neering. Model transformation is widely used in all environments. Whereas
only Eclipse Modelling provides generic model-to-model and model-to-text
transformation, other tools have dedicated languages and engines for spe-
cific transformation needs such as model migration, model publishing, code
generation and model serialisation. Since the model interpreting is by na-
ture language and domain-specific, none of the tools provide out-of-the-box
model interpreters. Instead, either configurable generic mechanisms may be
customised or new ones may be built by using built-in scripting languages
and environment APIs. In the category model analysis, model validation in
terms of syntax checks and additional constraint rules is supported by all
environments. Further, proprietary or standard model query languages such
as OCL are also given. Model comparison could not be found in MetaEdit+.
When comparing model repository features, the similar conclusion as on the
meta level may be drawn. All tools provide both file-based as well as db-based
data serialisation, where each of the environments supports one of the data
sources as primary, and the other as a possible option. Managing models
in a repository is a standard feature, for all tools, whereas MetaEdit+ and
ADOxx, in addition, provide an object repository, allowing for object reuse
between models. On the other side, only ADOxx provides features such
as the multi-lingual content and the model time filter. Modelling support
features are part of all environments. However, in the same way as for db-
based model repository, Eclipse Modelling supports it as an optional feature.

CHAPTER 4. METAMODELLING ENVIRONMENTS 113

User and rights management could be found only in commercial tools such
as ADOxx and MetaEdit+. Modelling process guidance is not supported
by any of the modelling environments except in ADOxx. To support this
feature, ADOxx features a state-based model workflow engine as well as a
basic task management for ad-hoc tasks.

4.3 Excursion: Ontology-driven Software Devel-
opment Environments

Ontology-driven software development (ODSD) has been an attempt to im-
prove existing model-driven software development (MDSD) by transparently
integrating the semantic technology based on ontologies [Pan et al., 2013].
Ontology-driven sofware development environments (ODSDE) extend cur-
rent MDSD environments (MDSDE) with services based on ontology reason-
ing. Some of the use cases on applying ontology technology in metamodelling
platforms have been discussed in [Živković et al., 2008]. The challenge of
building such ontology-enabled MDSDEs is raised by the technological clash
between conventional MDSD technology and reasoning technology [Zivkovic
et al., 2013]. In the following, it is discussed how ODSDE can address
requirements on modern MDSD. After that, a reference architecture for
ODSDE is proposed.

4.3.1 ODSD Environments

Ontology-based MDSD aims to adapt scalable ontology technology [Calero
et al., 2006] to address current challenges of MDSD [Wende et al., 2009].
Sharing the abstraction level of MDSD metamodelling languages [Happel
and Seedorf, 2006], ontologies can be easily integrated and composed with
existing metamodelling approaches [Walter and Ebert, 2009]. The integra-
tion on the meta-metalevel between the technical spaces is crucial, in order
to transform and exchange languages and models between technical spaces.
Sharing the common integration infrastructure, the benefits of semantic
technology can enhance MDSD environments in several aspects [Aßmann
et al., 2013]:

• Ontology-based software process support. An ontological conceptual-
isation of the dependencies, requirements, and results of individual
software process steps can be used to formally define MDSD develop-
ment processes. Having formally defined software process definitions,
a reasoning-enhanced software process guidance engine may guide soft-
ware engineers throughout the development process.

• Ontology-based development method support. Not only software pro-
cesses may be supported via ontology technology, but also development

CHAPTER 4. METAMODELLING ENVIRONMENTS 114

paradigms. Metamodelling languages enhanced with ontology defini-
tions allow for the definition of metamodel static semantics using log-
ical axioms. Consequently, the semantics of a modelling language is
more precise and rigorous, resulting in an increased quality of artefacts
specified with such development methods [Walter and Ebert, 2009].

• Ontology-based repetitive tasks automation. Services of semantic rea-
soners such as classification, subsumption checking, and querying may
be beneficial in the automation and for the better precision of software
artefact validation tools such as model checking, static code analysis
and alike.

4.3.2 Reference Architecture for ODSD Environments

The challenge of building ODSD tool environments results from the tech-
nological clash between conventional MDSD technology and reasoning tech-
nology. To address this challenge ontology-enabled tool environments have
to provide the bridging technology that can reconcile two different technical
spaces. Figure 4.4 proposes a generic architecture for ODSD tool environ-
ments that integrates such bridging. This blueprint architecture conforms
and extends the generic architecture of metamodelling environments intro-
duced earlier in Section 4.2.1.

Figure 4.4: The generic architecture for ontology-based MDSD environ-
ments

The central building block of the system is the Bridging Infrastruc-
ture that makes the marriage between the Modelling Infrastructure typically
found in MDSD tools and the Ontology Infrastructure possible. The bridging
infrastructure addresses the technical problems of clashing technical spaces,
by providing a set of dedicated transformation services. Ontology-based ser-
vices such as Guidance, Validation, Explanation, Querying and others are,

CHAPTER 4. METAMODELLING ENVIRONMENTS 115

therefore, located on top of the Bridging Infrastructure. The topmost layer
bundles various kinds of Editors for creating and editing of model-based
system specifications. Besides editors, different Views are available that
display detailed properties of software development artefacts and results of
various analysis tools. Editors and viewers expose services such as guidance,
validation, explanation and querying to the developers. The specifics of the
ontology technology are transparent to the upper-level components and con-
sequently to the end users. Such abstraction enables seamless application of
ontology technology within the technological space of MDSD. In addition,
the generic architecture contains Vertical Services such as user and rights
management or versioning and Persistency Services. For further elaboration
on single architecture components of ODSD environments, in particular of
ontology-based and ontology-enabling services and the bridging infrastruc-
ture, the interested reader is referred to [Zivkovic et al., 2009a, Zivkovic
et al., 2013,Pan et al., 2013].

CHAPTER 4. METAMODELLING ENVIRONMENTS 116

Table 4.2: Feature comparison of metamodelling environments - Derivation,
Meta-meta and metamodel level

Feature ADOxx GME MetaEdit+ Eclipse
Modelling

Modelling Tool derivation

Code gen.-based n.a n.a n.a +
Config.-based + + + n.a

Meta-metamodel level

Instantiation paradigm
Ontological - - - -
Linguistic + + + +

Language definition
Abstract syntax
Schema + + + +
Constraints +- + +- +
Concrete syntax
Notation spec. + + + +
Notation mapping - - - +-
Semantics
Semantic domain - - - -
Semantic mapping - - - -

Metamodel level

Metamodel editing
Graphical - + + +
Form-based + - + +
Tree-based + + + +
Tabular - - - -
Textual - - - +

Metamodel transformation
Metamodel-to-metamodel
Evolution + + + -
Metamodel-to-text
Serialisation + + + +

Metamodel interpretation
Concrete syntax
rendering

+ - + -

Metamodel de-
bugging -

- - - -

Metamodel analysis
Validation + + + +
Querying +- +- - +
Comparison +- +- +- +

Metamodel repository
Data persistence
File-based +- + + +
DB-based + + + +-
Management
Metamodel level + + + +
Element level + +- + -

CHAPTER 4. METAMODELLING ENVIRONMENTS 117

Table 4.3: Feature comparison of metamodelling environments - Model level

Feature ADOxx GME MetaEdit+ Eclipse
Modelling

Model level

Model editing
Graphical + + + +
Form-based + + + +
Tree-based + + + +
Tabular + - + -
Textual - - - +
Matrix + - + -

Model viewing
Charting + - - -
Dependency view + - - -

Model transformation
Model-to-model
Generic - - - +
Model migration + + + -
Model-to-text
Generic - - - +
Model publishing + + + -
Code generation + + + -
Serialisation + + + -

Model interpretation
Model debugging +- +- + +-
Model simulation +- +- +- +-

Model analysis
Validation + + + +
Querying + + - +
Comparison + +- - +

Model repository
Data persistence
File-based - + - +
DB-based + + + +-
Management
Model level + + + +
Object level + - - -
Versioning + - - +
Multi-lingual con-
tent

+ - - -

Time filter + - - -

Support features
Multi-user access + + + +-
User and rights + - + -

Modelling process guidance
Model workflow + - - -
Task management + - - +

CHAPTER 4. METAMODELLING ENVIRONMENTS 118

4.4 Chapter Summary
In this chapter, we elaborated on metamodelling environments which rep-
resent indispensable means for efficient metamodelling, i.e. modelling lan-
guage development and the modelling tool derivation. In Section 4.1, we
provided a general overview of IDEs, and, in doing so, categorised meta-
modelling environments as flexible language-independent development envi-
ronments. Due to their dual nature, such environments provide support for
both metamodelling and modelling. While the meta environment is usually
bound to a specific metamodelling language, the modelling environment is
flexibly derived out of the modelling language definition. These character-
istics, the architecture and the capabilities of metamodelling environments
have been subject to discussion in Section 4.2. We also provided a compar-
ative analysis of the selected set of state-of-the-art metamodelling environ-
ments. Finally, in Section 4.3, as an excursion from the general topic, we
discussed how metamodelling environments may be extended by semantic
technologies to realise the vision of ontology-driven software development.

Part III

Focus of Work

119

Chapter 5

On Metamodel
Modularisation and
Composition

“Having divided to conquer, we
must reunite to rule.”

M. A. Jackson

The goal of this chapter is to provide an overview of basic concepts
for metamodel modularisation and composition in the context of modelling
language engineering and to review the existing related work. In Chapter 3,
as we introduced the basic notions of modelling language engineering, we
agreed that a metamodel represents the pivotal element in the modelling
language definition. A metamodel may be developed from scratch as a
monolithic artefact or it may be systematically engineered by combining
prefabricated metamodel modules that form a new composite metamodel.
Modularisation and composition concepts, techniques and tools represent
the basis for such modular, compositional metamodel engineering.

We start the chapter by introducing the basic elements of modular, com-
positional systems (Section 5.1). In Section 5.2, we elaborate on various
existing metamodel composition operators. In Section 5.3, we provide a
systematic overview of the related work on metamodel modularisation and
composition. Section 5.4 summarises the chapter.

5.1 Elements of Modular Systems
According to Aßmann [Aßmann, 2003], a modular, compositional system
is a triple consisting of a component model, a composition language and
a composition technique. The component model refers to modularisation

120

CHAPTER 5. MODULARISATION AND COMPOSITION 121

concepts that are required to describe modules that are to be composed.
Under the composition language we subsume composition concepts that are
needed to specify the composition of modules, i.e. to specify how modules
are to be combined to build a composite system. Finally, a composition
technique deals with mechanisms needed to perform the composition.

5.1.1 Modularisation Concepts

Modularisation as a system engineering technique refers to the possibility
to specify specific parts of a system as independent, interchangeable and
reusable modules. Modules and modularisation contribute to the separa-
tion of concerns by allowing a module to represent only a certain aspect of
a system independently from others. Modularisation contributes to reuse
and thus to the engineering efficiency, since independent modules may be
reused as prefabricated parts for creating new systems. Independency of
modules means that, apart from desired and planned, explicit dependen-
cies, a module doesn’t interweave with other modules. Modularisation is
about encapsulation and information hiding. In [Booch, 1991], Booch de-
fines encapsulation “. . . as the process of compartmentalising the elements
of an abstraction . . . , the encapsulation serves to separate the contractual
interface of an abstraction and its implementation.”. In our terminology,
the first part of the Booch definition refers to encapsulation, whereas the
second part implies information hiding.

• Encapsulation. Encapsulation refers to the compartmentalisation of el-
ements into reusable modules. Usually a kind of a package notion exists
that explicitly owns its member elements and may refer to elements
from other modules. To refer to the elements from other modules, ex-
plicit module dependencies are required. A module that is not depen-
dent on any other module by design is an independent, self-contained
module. A module that imports elements of other modules by design
is called a dependent module as it creates an explicit dependency on
that module. A dependent module creates explicit dependencies to
other modules for the purpose of reuse. A module may be reused by
arbitrary modules. Reuse of modules may be by copy/value or by ref-
erence. Reuse-by-copy takes one module and copies it at the place of
reuse. The copy of the module is decoupled from its original and it
may be changed independently. While this is the biggest advantage
of reuse by copy, this independency disallows the exchangeability of
modules by new versions, as compatibility may not be guaranteed.
Reuse-by-reference does not create a copy of the module, but creates
a reference to the original module. This form of reuse allows for easier
maintenance of modules, since the module has to be exchanged only
at one place.

CHAPTER 5. MODULARISATION AND COMPOSITION 122

• Information hiding. To paraphrase Booch [Booch, 1991], encapsula-
tion serves to decouple the contractual interface of a module from
its internal implementation. By introducing an additional indirection
level for modules, that of contractual interfaces, a module may hide
its internal implementation and expose a subset of its elements only
via interfaces. Modules that communicate over stable interfaces are
said to be weakly coupled, since their internal implementation is hid-
den behind interfaces and thus no dependencies exist. There are two
types of explicit interfaces, the required and provided interfaces. Re-
quired interfaces are needed for a module to be completed, a provided
interface makes the inner elements visible and usable to the outside.
A module that relies only on explicit required and provided interfaces
is usually called a black-box module. A black-box module hides all
implementation details of the module and is accessible only via prede-
fined connection points, i.e explicit interfaces. An explicit interface is
defined on purpose during the design of a module. Another level of in-
formation hiding is a so called grey-box. The term has been introduced
by Aßmann to describe program fragments as part of the invasive soft-
ware composition [Aßmann, 2003]. According to it, grey-box modules
define as black-box modules explicit interfaces to the outside, but, in
addition, they also introduce implicit interfaces. Implicit interfaces are
not explicitly defined, but exist based on the known extension points of
the underlying language in which the program is written. For example,
a java module consisting of one class element, has as implicit interfaces
class member sets such as a method set or an attribute set. Thus, with-
out specifying it, during composition, one could add a new method or
an attribute to that particular class, without changing any existing
semantics of that class1. Hence, availability and type of implicit in-
terfaces may vary for different underlying languages. Another form of
information hiding may be achieved through access modifiers. Access
modifiers in programming languages define if and which elements of a
module are visible to the outside. This way, a module may control the
access to its elements from the outside clients and contribute to the
module encapsulation. Visibility properties (aka modifiers) of modules
known from general programming languages such as Java or C# may
be private, public, protected, final or sealed. Modules that have explic-
itly defined visibilities via access modifiers may be called controlled
white-boxes. Finally, modules that neither restrict access nor expose
any kind of interfaces are called white-boxes.

1However, one might argue, that if some other client code uses metaprogramming
techniques to access the meta-information of the program code and rely somehow on the
amount of class members of that class, such change might lead to an undefined behaviour
on the client side.

CHAPTER 5. MODULARISATION AND COMPOSITION 123

5.1.2 Composition Concepts

Composition contributes with concepts to allow for the composition of mod-
ules. A composition specification defines how modules are to be combined
to build a composite system. Composition operators as composition spec-
ification constructs are the cornerstone of any composition approach. We
can distinguish between invasive and non-invasive composition approaches,
depending on the way how composition operators affect the modules to be
combined.

Composition Operators

Composition can be regarded as a relation between two elements. A com-
position operator is a function that creates a composition relation between
elements to be combined. It takes as an input two elements and relates them
to denote their compositional structure. The composition relation is direc-
tional. Hence, one of the participating elements always plays the role of a
base element that is combined by the s.c. composer element based on partic-
ular composition semantics. Composer element is also an element that holds
the semantics of the composition. Thus, the base element is said to be reused
by the composer, which is the purpose of modularisation and composition.
In metamodel composition, composition operators operate on the level of
metamodel elements or on the level of metamodel modules. Furthermore,
composition operators can be internal or external. An internal composition
operator is part of the underlying formalism (e.g. a programming language
or a metamodelling language). On the other side, a composition operator
is external if it is part of a dedicated, but external composition language
not part of the corresponding formalism (in our case, of a metamodelling
language). External composition operators require a separate compiler/in-
terpreter that implements its semantics. For internal/native composition
operators, no additional derivation machinery is required. Finally, compo-
sition operators may differ in the coverage of metaclasses they support. In
the case of metamodelling languages, some approaches focus only on the
composition of classes, others may allow relations, etc. Ideally, a composi-
tion language should support operators for all core metamodelling language
elements, as defined in Chapter 3, such as class, attribute, relation, role and
model type.

A detailed overview of existing composition operators is provided in the
next section.

Non-invasive vs. Invasive Composition

We defined the composition operation as a function that creates a compo-
sition relation from a composer element to a base element. The composer
element (module or a single element) is, thus, the holder of the composition

CHAPTER 5. MODULARISATION AND COMPOSITION 124

semantics and is adapted to accustom the composition. In derivative tech-
niques, the adaptation of the composer element is done by generating a new
adapted copy of the composer element. In interpretative techniques, a new
version of the composer element is created to accommodate such change.

The invasiveness in composition determines whether the base element
that is being combined needs to be modified in order for the composition
to take place. Invasive software composition is the term coined by Aß-
mann [Aßmann, 2003] to describe a software composition approach that
treats reusable program code fragments as grey-box modules and combine
them using composition operations such as adaptation and extension. In-
vasive software composition adapts and extends components at predefined
explicit and implicit hooks by code injection.

Hence, we can distinguish between non-invasive and invasive composi-
tion operations. Figure 5.1 illustrates the difference between non-invasive
and invasive composition.

Figure 5.1: Non-invasive vs. invasive composition

• Non-invasive composition. In the non-invasive composition, the com-
poser combines i.e. reuses the base element without modifying it. In
doing so, the composer element incorporates the semantics of the com-
position. This is the most common approach for composition. Typical
non-invasive composition operators are inheritance, aggregation, im-
porting, etc.

• Invasive composition. Invasive composition not only requires changes
in the composer element, but it also modifies the base element, the el-
ement that is reused, in order to perform the composition. In this kind
of composition, the base element to be combined must be a white-box
or a grey-box as the composer needs to know the internals of the ele-
ment (explicit or implicit hooks). We differentiate between static and

CHAPTER 5. MODULARISATION AND COMPOSITION 125

dynamic invasive composition. Static invasive composition imposes
alteration of the base element, such that a new version of the base
element must be created. It is often applied on the deep copies of ele-
ments using the transformational derivation, which then become part
of the new composite element. Invasive metamodel merge, as defined
in [Zivkovic et al., 2007] creates a new merged metamodel based on
existing metamodel parts and may require changes in both metamod-
els to perform the merge. Alternatively, dynamic invasive composition
relies on the idea of injecting extensions without explicit modifications
of the base element. This technique comes in handy when extending
existing metamodel modules and elements. The annotation of meta-
model elements as defined in MOF [OMG, 2014] may be considered
as a very basic dynamic invasive composition. Tagged values are de-
fined in the composer element. While annotating the base element,
the composer element adds tags to the base elements. Semantically,
tagged values become part of the annotated elements without explicit
base element modification.

It is important to note that both non-invasive and invasive composition
operators may be consistency-preserving or consistency-breaking. For non-
invasive operators this applies for the adaptation of the composer element,
whereas for the invasive both composer and base elements.

• Consistency-preserving. Consistency-preserving composition opera-
tors alter the metamodel elements of a module only in an extensional
way, thus retaining the semantic compatibility with the original meta-
model element. For example, a composer class was extended by a new
reference to the element of a base module.

• Consistency-breaking. On the other side, consistency-breaking opera-
tors apply changes on metamodel elements after which, an underlying
instance does not conform to it anymore, i.e. it leads to informa-
tion loss. An example of such operator may be a class from which
an attribute is removed, and instead an outgoing reference is added.
These operators deal with compositions of elements of different types
(e.g., an attribute should become a reference to class). GeneralizeA2C
(attribute-to-class) Operator defined in [Zivkovic et al., 2007] is an ex-
ample of such invasive operator. In cases where consistency-breaking
invasive composition cannot be avoided and a new combined language
has to be created or the existing needs to be altered, language projec-
tion mechanisms are required to allow for seamless language evolution
i.e. migration of underlying models. Projection is a mechanism that
establishes mappings between the elements of the source metamodel
and the target metamodel, based on which, a model transformation
may be applied. Projection is out of the scope of the underlying work.

CHAPTER 5. MODULARISATION AND COMPOSITION 126

5.1.3 Composition Technique (Derivation of Composite Mod-
ules)

Composition technique, as a third element of a modular, composition sys-
tem, deals with mechanisms needed to derive composite systems out of com-
ponents and composition specifications. Based on the analysis of the existing
approaches, two main derivation directions may be distinguished, generative
derivation and interpretative derivation.

• Generative derivation Generative derivation uses model-driven tech-
niques to produce the composite system. It is based on (meta-)model
transformation and code generation techniques. This kind of a trans-
formative approach usually subsumes a dedicated, external composi-
tion language according to which a composition specification, repre-
senting the composition glue logic, is created. Taking source modules
and the composition specification as input, the generative composi-
tion technique generates a new composed module. Each composition
directive/operator specifies how it translates to the constructs that
conform to the underlying language of a module. For example, an
inheritance-like operator will generate a generalisation relationship be-
tween a subelement and a superelement in a new module. Some known
approaches in metamodel composition that follow this derivation strat-
egy are [Zivkovic et al., 2007], [Weisemöller and Schürr, 2008], [Wende
et al., 2010]. A generative composition approach does not create ex-
plicit dependencies between source modules, since the composition
specification is defined externally, and the composition itself, is per-
formed on the deep copies of source modules.

• Interpretative derivation Interpretative derivation interprets composi-
tion operators as being part of the underlying formalism (metamod-
elling language). Unlike generative, transformational approaches, the
composition language is natively integrated into the metamodelling
language or it may extend it. The metamodelling environment un-
derstands composition operators as being part of the language defini-
tion itself. Thus, the glue logic is always part either of the extending
language or of a new composite language. Due to this fact, neither
transformation nor code generation need to take place. For example,
the inheritance operator is interpreted with semantics of deriving the
properties of a superelement to a derived subelement. For example,
the approach realised in the GME tool [Lédeczi et al., 2001] follows
the interpretative derivation strategy. Interpretative derivation creates
explicit dependencies between modules.

The advantage of the generative approach is that the composition system
is decoupled from the underlying formalism. The changes in the composition

CHAPTER 5. MODULARISATION AND COMPOSITION 127

language do not need to trigger changes in the metamodelling language,
thus, the composition language may be developed independently. However,
since it is a two-step process, the results of the composition are visible only
after the compilation. Complex compositions may lead to conflicts which
sometimes need to be resolved manually as reported in [Wende et al., 2010].
On the other side, the biggest advantage of an interpretative approach is
that such inherent composition conflicts may not occur, as the composition
directives are interpreted as native language definition constructs. This way,
only syntactically valid compositions are allowed, shifting the resolution of
conflicting compositions to the design phase.

5.2 Existing Metamodel Composition Operators
In the following, we introduce major types of composition operators as found
in the surveyed literature. Besides composition constructs found in main-
stream metamodelling languages as introduced in Chapter 3, we also refer
to other relevant metamodel composition approaches to broaden the survey.
The composition operators are categorised either as non-invasive or as in-
vasive. In addition, we also mention whether the operator is applied on the
level of metamodel elements or metamodel modules.

5.2.1 Inheritance

Inheritance is one of the most commonly used element-level composition
operators. As known in class-based programming languages and modelling
languages, inheritance takes as input two elements and creates a relationship
in which one element acts as a superelement, and the other one as a derived,
subelement, inheriting the structural features from the superelement. The
superelement is the base element of the composition, the subelement is the
composer. Inheritance is a non-invasive operation as only the subelement
has to be modified to accommodate the semantics of the composition. Inher-
itance is used as a basic composition operator in all language composition
approaches, due to the fact that it is natively supported by all metamod-
elling languages such as ADOxx Meta2-Model, EMF, GOPPRR, GrUML,
MetaGME, MOF, etc. Figure 5.2 illustrates the inheritance composition
operation.

5.2.2 Redefinition

Redefinition is a special case of the inheritance composition operator. Ac-
tually, it is used in the combination with it as defined in MOF. Redefinition
extends inheritance in the sense that allows not only to extend the semantics
of an element, but also to redefine, constrain or subset specific properties
(features) of a superelement [OMG, 2014].

CHAPTER 5. MODULARISATION AND COMPOSITION 128

Figure 5.2: Inheritance composition operation: Mc and Mb are source meta-
model modules, where ec, eb are their respective elements. Mcb is a resulting
new composite module (a new version of M’c), in which a new element e’c,
a modified version of ec (subelement), is created and that inherits features
from eb (superelement) which has been reused.

5.2.3 Aggregation

Aggregation is a non-invasive composition operation. It takes as input two
elements, parent and child, and extends the parent element by the child
element by means of part-of aggregation. The parent element is a composer
and the child element is the base element to be combined and reused. The
parent element is modified by including the aggregated element, whereas
the aggregated element remains unchanged. In ADOxx and GOPPRR, this
kind of element composition is used for intra-language reuse. For example,
an attribute as a first-class element may be aggregated by an arbitrary
number of classes. In the same way, a class may be aggregated by multiple
model types. Figure 5.3 illustrates the aggregation composition operation.

Figure 5.3: Aggregation composition operation: Mc and Mb are source
metamodel modules, where ec, eb are their respective elements. Mcb is a
resulting new composite module (new version of composer module Mc), in
which a new element e’c (parent), a modified version of ec, is created and
which aggregates eb (child) which has been reused.

5.2.4 Merging

Merging takes two elements as a source and combines them together to form
a new element as a duplicate-free union of the previous two. Merging is a
module-level, invasive operator. The merge operator may have consistency-
preserving character if the changes are of extensional nature. However,
merge may be consistency-breaking, if any kind of conflicts between element
features occurs and needs to be resolved by removing or exchanging elements.
The merge operator is used in [Pottinger and Bernstein, 2003] and [Kolovos
et al., 2006] to semi-automatically merge models. In MOF [OMG, 2014],
the package merge is an operator that works on the module/package level
and uses name-based matching to merge overlapping elements. The merging
(composer) package is extended by the immutable merged (base) package,

CHAPTER 5. MODULARISATION AND COMPOSITION 129

leading to a new version of the merging package. Merging is invasive opera-
tion. Although the merged package is deep-copied into the merging package
thus leaving the source package syntactically unchanged, the operation is in-
vasive semantically, since the merged element now contains extensions from
the merging element. In particular, the MOF version of the package merge
is used in this way to refine metamodel elements [Selic, 2011]. In [Zivkovic
et al., 2007], the Merge rule is applied on metamodel elements to achieve
both consistency-preserving and consistency-breaking invasive metamodel
integration. Figure 5.4 illustrates the merging composition operator.

Figure 5.4: Merging composition operation: Mc and Mb are source meta-
model modules, where ec, eb1 and eb2 are their respective elements. Mcb is
a new composite module containing the new element e’c after applying the
merge operation on ec and eb1, and the merged element eb2.

5.2.5 Importing

Importing is a non-invasive composition operator that combines contents
between modules based on duplicate-free union semantics. The import op-
erator is a module-level operator that takes as an input a set of elements from
one module and makes them available in another module by reference. The
importing module is a composer, the imported module is the base module.
In MOF, the packageImport and the elementImport composition operators
are used to import/assign classes and relations of one package into another
package. The major difference between the merge operator and the import
operator is the reuse mechanism. Merge is based on reuse by copy, import is
based on reuse by reference. Furthermore, unlike merge, the import operator
does not modify any elements neither of a composer nor of a base module.
If the imported elements overlap with existing elements, the import cannot
be applied. Figure 5.5 illustrates the importing composition operation.

Figure 5.5: Import composition operation: Mc and Mb are source meta-
model modules, where ec, eb are their respective elements. Mcb is the result-
ing new composite module (new version of composer Mc), which imports the
element eb of Mb using reuse-by-reference. Note, that the composite module
contains unchanged elements of source modules.

CHAPTER 5. MODULARISATION AND COMPOSITION 130

5.2.6 Template Instantiation

Templating, or template instantiation is a non-invasive composition oper-
ator. It takes as an input a base element which represents the template
module and a composer which represents the target module and instanti-
ates elements of a template into a target module based on reuse by copy.
Basically, template instantiation is a special case of the merge operator as
defined in MOF. Instead of importing an existing metamodel part, the meta-
model is instantiated according to a given template/pattern [Emerson and
Sztipanovits, 2006]. The instantiation process may be done on an existing
metamodel element thus forcing the modification of the composer element,
or a new element is created. Templating does not create dependencies be-
tween metamodel elements to be composed, since it simply generates new
elements or adapts existing elements in another metamodel module based on
a defined template. In [Weisemöller and Schürr, 2008], templating is used to
instantiate parameterisable metamodel components. Template instantiation
is done on the module-level, but may also be possible on the element-level.
Figure 5.6 illustrates the template instantiation composition operation.

Figure 5.6: Template instantiation composition operation: Mc and Mb are
source metamodel modules, where ec, eb are their respective elements. Mcb

is a resulting new composite module (new version of composer module Mc),
in which the element eb (template) has been instantiated to extend the ec

resulting in a e’c.

5.2.7 Stereotyping

Stereotyping is a non-invasive, element-level composition operator, that al-
lows extensions of base elements. It takes as an input a base element and
a composer element which represents the stereotype, and extends the base
element by applying the stereotype. In doing so, the composer element, the
stereotype, extends the base element with additional structural features, but
without inheriting the features of the base element. In earlier versions of
UML, stereotyping has been used to apply UML profiles [Fuentes-Fernández
and Vallecillo-Moreno, 2004]. Initially, stereotyping was part of the UML
language and was referred to as a lightweight metamodelling feature [Selic,
2011] for creating new domain-specific languages based on UML. Since the
mechanism was part of the language and not of the meta-language, it was
considered as kind of language embedding2 [Vallecillo, 2010]. However, as of

2Language embedding is a special case of language composition, where a new (guest)
language is defined using, immutably, the concepts of another (host) language. The

CHAPTER 5. MODULARISATION AND COMPOSITION 131

UML 2.4.1 [OMG, 2011a], stereotypes and profiles are part of MOF as well,
as they share the same UML infrastructure, which makes the operator ap-
plicable for arbitrary languages. In [Langer et al., 2012], the idea of profiles
and stereotyping is applied on Ecore, however not on the meta-metamodel
level but on the metamodel level through metalevel lifting. The so-called
EMF Profiles help to customise arbitrary DSMLs that are based on EMF’s
Ecore.

Figure 5.7 illustrates the stereotyping composition operation.

Figure 5.7: Stereotyping composition operation: Mc and Mb are source
metamodel modules, where ec, eb are their respective elements. Mcb is a
resulting new composite module (new version of Mc), in which the element
e’c is a composite result of applying a stereotype ec on eb.

5.2.8 Annotation

Annotation is an element-level, dynamic, invasive composition operator. A
base module is extended by a composer by adding annotation elements to
the base module elements. Unlike the inheritance, the idea of annotation
is not to introduce a new subelement, but to attach additional informa-
tion to an existing element without modifying it. In MOF [OMG, 2014],
the notion of a Tag is introduced, that represents a name-value pair that
can be associated with many metamodel elements. Annotation operation
requires modifications on the side of a Tag element, as it holds the infor-
mation which elements are annotated. Tags have been included to MOF
for small, dynamic extensions to reduce the need to redefine the base meta-
model. However, since tags are simple string properties, the applicability of
this operator is rather limited. Language annotation has been also proposed
in [Voelter and Solomatov, 2010] to extend elements by additional properties
non-invasively and is implemented in the language workbench MPS [Voelter,
2013]. There, the annotation element is represented by a metaclass Anno-
tationNode which is a built-in construct available in any language module

motivation behind embedding is usually the simplification or a customisation of the
more general-purpose host language by introducing one or more derived, more expres-
sive domain-specific languages. That way, one may customise a general-purpose language
to the domain terminology, restrict the number of language elements used or add some
constraints or syntactic sugar to them while respecting the semantics of the host. Em-
bedding is an old and frequently used technique in the textual DSL engineering, where
a small DSL covering specific domain is defined within a general purpose programming
language fitting to the syntax of the host [Hudak, 1998]. Embedding facilitates the reuse
of the syntax, semantics and tools built on top of a host language and acts as a syntactic
sugar of the host language.

CHAPTER 5. MODULARISATION AND COMPOSITION 132

that may be extended to define a specific annotation. Figure 5.8 illustrates
the annotation composition operation.

Figure 5.8: Annotation composition operation: Mc and Mb are source meta-
model modules, where eb, ec are their respective elements. Mcb is a resulting
new composite module (new version of Mc), in which the element eb (anno-
tated element) is annotated by ec (tag element) resulting in a e’c, since the
tag element holds the information about the annotated elements.

5.2.9 Parameterisation

Parameterisation is a transformative composition operator based on sub-
titutional semantics. It takes two elements, a place-holder element (in a
composer module) and a provider element (of a base module) and substi-
tutes the place-holder by the provider element following the compatibility
rules. The place-holder element represents a variable point of the param-
eterisation function. The provider element is an effective element that pa-
rameterises the parameterisation function. Parameterisation is non-invasive
composition operation since only the place-holder element gets substituted
and redefined by the provider/based element. A metamodel module may
have predefined subtitutible elements that may be substituted by compatible
metamodel elements from another language module. In [Pedro et al., 2008]
parameterisation is used to instantiate and combine new domain-specific
languages based on existing parameterisable modules using transformative
composition techniques. While the provider module may be reused by ref-
erence, the place-holder module is reused by copy and adapted to substitute
the place-holder elements. In [Weisemöller and Schürr, 2008], a parame-
terisational approach is used to implement a so called interface binding in
transformative way. Here, place-holders are s.c. import interfaces that are
substituted by the providers, i.e. export interfaces in a resulting compos-
ite module. However, the underlying implementation classes are composed
invasively. In [Wende et al., 2010], the role-based approach is introduced
based on the role-binding composition operator based on parameterisation
semantics. A role represents a place-holder element that may be played by
other provider/base elements. Figure 5.9 illustrates the parameterisation
composition operation.

CHAPTER 5. MODULARISATION AND COMPOSITION 133

Figure 5.9: Parameterisation composition operation: Mc and Mb are source
language modules, where ec, eb are their respective elements. Mcb is a re-
sulting new composite module (new version of Mc), in which the element eb

(provider element) parameterises ec (place-holder element) resulting in a e’c.

5.3 Analysis of Related Work
In the following, an analysis of related work on metamodel modularisation
and composition approaches is given. For the evaluation of approaches, we
introduce a dedicated metamodel modularisation and composition classifi-
cation framework.

5.3.1 Classification Framework

The classification framework used for the evaluation of metamodel modu-
larisation and composition approaches should reflect on the basic elements
of modular systems as well as to contain all common and variable features
found in evaluated approaches. We refer to the elements of modular, compo-
sitional systems as introduced in Section 5.1. Therefore, three fundamental
elements, themodularisation, the composition and the composition technique
represent major feature categories for the evaluation. Each of the main fea-
tures introduces its own compulsory and optional sub-features a composition
system may have.

Figure 5.10 depicts the introduced classification framework as a feature
tree, where each feature represents a particular classification category.

5.3.2 Overview of Approaches

Metamodel Modularisation and Composition by Ledeczi et al.

The work on metamodel modularisation and composition found in [Ledeczi
et al., 2001b,Karsai et al., 2004,Emerson and Sztipanovits, 2006] describes
composition concepts and capabilities of the metamodelling environment
GME [Ledeczi et al., 2001a] (see also Chapter 4). The composition technique
introduced in GME is interpretative, and the constructs of the composition
language are part of the class-based metamodelling language MetaGME (see
also Chapter 3). To support modularisation, MetaGME introduces aspects
on the intra-language level and projects on the inter-language level. There
are no concepts for defining visibility of modules, all modules are white
boxes. To allow for composition, MetaGME introduces the concept of a
proxy. Basically, a proxy references an element (atom or connection) from

CHAPTER 5. MODULARISATION AND COMPOSITION 134

Figure 5.10: Classification framework for the evaluation of metamodel mod-
ularisation and composition approaches

another metamodel. The proxy reference introduces explicit dependency be-
tween meta-models and may be regarded as a manifestation of the importing
composition operator. Further, MetaGME reuses existing UML-based con-
structs such class inheritance, but also introduces special types of inheritance
relationships such as implementation inheritance and interface inheritance
to support non-invasive composition. In addition to standard composition
operators, a dedicated class equivalence operator is introduced. The class
equivalence operator connects two base classes and a target composer class
representing the composite of the other two. This kind of equivalence opera-
tor with union semantics is achieved using the multiple inheritance between
the two source classes as superclasses and the composite class as a subclass
which inherits all properties of two source classes. Template instantiation is
another composition operator supported [Emerson and Sztipanovits, 2006].
Instead of importing an existing metamodel part, a metamodel is instan-
tiated according to a given template. Other known composition operators
such as merging, redefinition, aggregation, stereotyping, annotation and pa-

CHAPTER 5. MODULARISATION AND COMPOSITION 135

rameterisation are not supported.

Metamodel Modularisation and Composition in MOF and UML

Meta-metamodel standard MOF [OMG, 2014] introduces a basic set of con-
cepts for metamodel modularisation and composition. To support modular-
isation, MOF features the notion of a nestable package. However, elements
in metamodel packages may only be defined as public, white boxes. Besides
inheritance, MOF supports the importing operator via packageImport and
elementImport. Furthermore, packageMerge follows the reuse-by-copy to
implement the merge operation. Package merge as defined in MOF is very
similar to the semantics of generalisation and inheritance. Merging extends
the source element with structural properties of the target element such that
the source element contains the properties of both. As noted by Selic [Selic,
2011], package merge allows for refinement, because one can define an el-
ement with the same name, add some properties and merge them back to
the package where the element to be extended resides. The restriction is
that it works based on name matching and may be applied only on the
package level. The package merge operations in UML2 have been analysed
and formalized in Alloy [Zito and Dingel, 2006,Dingel et al., 2008]. Further,
MOF supports stereotyping with UML Profiles which are part of the UML
Infrastructure specification [OMG, 2011a] that is shared by MOF and UML.
Another composition capability supported by MOF is annotation. The an-
notation operator in MOF is represented by the Extension, a lightweight
approach to annotate existing metamodel elements with Tags that solely
represent simple name-value pairs. Aggregation and parameterisation com-
position operations are not part of MOF.

Metamodel Components in MOF 2.0 by Weisemöller and Schürr

In [Weisemöller and Schürr, 2008] an extension for the MOF 2.0 is pro-
posed, suggesting concepts for the specification of metamodel components
beyond packages and for the binding-based metamodel composition based
on parameterisation operator. Weisemöller and Schürr propose the notion
of a metamodel component which may have internal and external inter-
faces, thus supporting black-box encapsulation. The notion of visibility is
not given. If a metamodel component has import interfaces, that means
that within that component there should already be placeholders where a
provided interface from other component should be bound to. The bind-
ing of provided and required interfaces is done using an additional interface
binding metamodel composition operator based on parameterisation. The
approach deals only with the composition of class elements on the level of
names. The derivation has transformational, generative character.

CHAPTER 5. MODULARISATION AND COMPOSITION 136

Metamodel Modularisation and Composition in GOPPRR

The metamodelling capabilities of the metamodelling language GOPPRR
[Tolvanen, 1998,Kelly and Tolvanen, 2008] have been discussed in Chapter 3.
Here, compositional aspects are summarised. As for the modularisation, the
concept of graph types may be regarded as a kind of a basic modularisation
concept in GOPPRR. Core reusable elements such as object types and re-
lationship types may be grouped inside of a graph type, in order to define
elements of a metamodel. However, the concept of a reusable module/pack-
age with visibilities and interfaces for richer encapsulation is not supported.
As mentioned, an inclusion can be defined as a kind of importing composi-
tion operation which can exist only between a graph type and meta elements.
Hence, metamodel elements may be reused between multiple graphs from
the global pool of meta elements. Other supported composition operations
are inheritance and aggregation. The language derivation is purely interpre-
tative, since composition constructs are part of the metamodelling language.

Metamodel Modularisation and Composition in ADOxx Meta2-
Model

The metamodelling capabilities of the ADOxx metamodelling language have
been discussed in Chapter 3. Here, modular and compositional aspects are
shortly given. ADOxx provides basic modularisation within a metamod-
elling project (library). Metamodel elements are grouped into model types
defining the aspects of an integrated modelling language. Metamodels are
therefore white-boxes. As for the composition, elements may be composed
using inheritance and aggregation. Similar to GOPPRR, ADOxx supports
reuse of classes, attributes, relations and roles by aggregation, as a powerful
but lightweight alternative composition construct to multiple inheritance.
The basic language derivation strategy is interpretative.

Metamodel Modularisation and Composition in EMF Ecore

As an implementation of the MOF essential constructs, EMF Ecore sup-
ports only a subset of constructs for modularisation and composition (see
Chapter 3). The basic modularisation is supported through the package
construct. A package may contain other classes, attributes and references
as well as other nested packages as white-boxes without information hiding.
Concerning the composition, basic composition operations between packages
such as inheritance are possible. The basic importing composition operation
is however available on the Ecore project level by importing the ecore model
(metamodel) as a so called resource. That way, the whole metamodel with
its packages can be reused by another metamodel for extensional composi-
tion. The language derivation strategy is interpretative.

CHAPTER 5. MODULARISATION AND COMPOSITION 137

Metamodel Parameterisation by Pedro et al.

In [Pedro et al., 2008] the idea of parameterisable metamodel fragments is
introduced for the purpose of DSML prototyping. In this approach, a meta-
model is called parametric if it has “holes”/parameters (required interfaces).
Contrary, a metamodel is called effective if it “fills the holes” of the paramet-
ric metamodel. The supported composition operation is parameterisation,
which is based on the compatible substitution operation that replaces an
existing element in the metamodel by another compatible one according to
the provided element binding. The approach, however, combines the pa-
rameterisation with other methods such as association and merge. Ecore is
used as the underlying metamodelling formalism. Hence, the basic modu-
larisation concept is a white-box Ecore package. The derivation technique
is transformational. Metamodel modules are seen as templates out of which
prototypical domain specific languages are composed.

Role-based Language Composition by Wende et al.

In [Wende et al., 2010], the idea of roles is used to leverage language engi-
neering towards modularisation and composition. Complementing existing
class types, the role construct is introduced as a kind of “place-holder” for
other class types that may play a specific role. Thus, a role is treated as a
kind of required interface of a language component. The composition oper-
ator is used to compose language components, which connects a role with a
role player (class type) based on the semantics of subtyping. The approach
extends the EMF and suggests subtyping semantics for implementing the
composition operator, since it allows for information hiding between com-
ponents. Unlike subclassing which is widely used for metamodel extensions,
subtyping doesn’t propagate class attributes and relationships to its sub-
type, but only expresses that objects of a subtype can be used wherever
their supertype is expected (substitution semantics). The semantics of the
composition (the glue logic) is defined in an external composition model.
The target composite module is generated out of the composition model
and the source modules using generative derivation by translating the com-
position operations to constructs known to EMF metamodelling language.
Each composition model connects exactly two language components, one
generic and one extended. A composition may consist of several role bind-
ings (mappings), where each role binding maps a role to its role-playing
class. Having the concept of role as a place-holder and the subtyping rela-
tionship for composition, this approach uses parameterisation to realise the
composition. However, on the implementation level, the subtyping operator
is realised using class inheritance.

CHAPTER 5. MODULARISATION AND COMPOSITION 138

Metamodel Mappings and Rules by Zivkovic et al.

In [Zivkovic et al., 2007] (see also Section 2.2), a two-step metamodel in-
tegration approach based on metamodel mappings and integration rules is
proposed which integrates two metamodels into a new combined one. Se-
mantically rich mappings are used to define structural and semantic corre-
spondences between metamodel elements such as equivalence, containment,
generalisation, etc. The semantics of the mappings are operationalised in
a set of well-defined invasive and non-invasive integration rules which cap-
ture recurring composition operations. Since the mapping information is
stored externally, it may be used to implement transformation rules for
model migration, in case of consistency-breaking metamodel composition
operations. Having an explicit external mapping language for composition,
this approach is suitable for generative, transformational derivation to com-
pose languages. There are no explicit constructs to support modularisation.
Metamodels are treated as white-boxes. Supported non-invasive composi-
tion operators are inheritance and aggregation. An invasive merge operator
is provided as well. Specific to this approach are metamodel mappings that
may be defined even between structurally non-compatible elements. For
example, if there is a semantic correlation between a concept modelled as
an attribute and the other one as a class, an appropriate mapping may be
defined between these two. A corresponding integration/composition rule
will resolve the conflict invasively during the composition. Although such
operations invasively modify the structure of the source metamodels usually
breaking the consistency, such composition operations are useful to facilitate
prototypical development of new hybrid metamodels.

Partial Domain Specific Models by Warmer and Kleppe

In [Warmer and Kleppe, 2006] metamodel element name-based references
are proposed to combine partial textual DSLs. The approach introduces a
meta type reference to model element which can be subclassed for a partic-
ular metamodel element which needs to be referenced. Instead of creating
a hard-wired association to an element from another metamodel, a meta-
model element from another metamodel is represented as reference to which
source metamodel elements can refer to. The gluing is based on lightweight
name-based matching. This composition operation may be categorised as
a lightweight name-based importing operation. In addition, an inter-DSM
validation check is provided, which checks whether the references between
modules exist. This approach was introduced to support partial, modular
development of domain-specific models and as an extension of Microsoft
DSL Tools.

CHAPTER 5. MODULARISATION AND COMPOSITION 139

Viewpoint Unification by Vallecillo

In [Vallecillo, 2010] a s.c. view-point unification approach for combining
domain specific languages is envisioned. Given the set of metamodels (view-
points) to be combined and the set of correspondences between them, a
new combined language is a unification of the single viewpoints with a set
of functions (projections) that respect the constraints of correspondences.
Projections are directed relations from the unified metamodel to single meta-
models. As the author suggests, this approach proposal seems to be an um-
brella approach for various different approaches as mappings between the
languages may represent various composition operations such as inheritance,
template instantiation, merge, etc. The actual derivation of the combined
language seems to be transformational. However, it is not clear whether this
is an automatic or a manual process of defining a new combined metamodel
and how the projections to source metamodels are created. Furthermore,
the approach doesn’t address the modularisation aspect.

Integration of DSLs Using Ontological Foundations by Bräuer and
Lochmann

In [Bräuer and Lochmann, 2007,Lochmann and Hessellund, 2009], an ontology-
based approach is used to combine DSLs. While languages to be combined
are lifted/mapped to a so called pivot ontology (semantic connector) that
conforms to a dedicated upper ontology, the connections between language
elements are specified using ontology object properties representing seman-
tic mappings such as part-of, dependency, represents, etc. Similar to the
approach by Vallecillo [Vallecillo, 2010], each participating DSL as an on-
tology must provide mappings/projections to the joined ontology. The use
of semantic technology leverages the language integration by providing au-
tomatic reasoning and consistency checking of the unified ontology, that
represents a unified view on all languages that are used in combination.
This approach thus relies on a kind of mapping-based composition based on
external links. However, the languages are used in coordination interchange-
ably, there is no composite language derived out of the combination. Since
semantic links are external, they cannot be interpreted by the metamod-
elling tools. Additional tools must be provided and integrated to make use
of the ontologies. The approach is suitable for coordinating existing mod-
elling languages non-invasively, thus it doesn’t focus on providing support
for creating new metamodels and languages by modularisation and compo-
sition.

Model Weaving with Eclipse by Del Fabro et al.

Although not directly meant for language composition, in [Del Fabro et al.,
2006], the authors propose to use generic model weaving to define corre-

CHAPTER 5. MODULARISATION AND COMPOSITION 140

spondences between models in general and metamodels in particular. The
authors introduce a kind of an explicit, external model weaving language to
model correspondences between (meta)model elements. The weaving meta-
model introduces the concept of a weaving link (WLink), which enables
the definition of links between model elements with simple link semantics.
Moreover, the WLink can be extended (by inheritance), to be able to ex-
press different link types with specific and richer semantics. The set of
defined links represents a weaving model. The links in a weaving model are
non-invasive with respect to the referenced metamodels, as they just refer
to the elements by relying on the name-based association. With respect to
language composition, the authors, however, do not consider how a target
combined metamodel may be produced based on the weaving model. Al-
though meant to be a generic mapping information, the weaving model may
be used also as an external glue logic for the composition. Since the map-
ping model is external (not part of the metamodelling language), it would
be natural that a generative, transformational derivation could be applied,
in order to generate a composite language. The authors do not cover the
modularisation aspect of language composition neither. The model weaving
approach has been combined with megamodelling3 to solve the problem of
the inter-DSL coordination considering inter-model traceability and naviga-
bility in model-driven engineering [Jouault et al., 2010].

Metamodel Templating by De Lara and Guerra

Apart from the mainstream metamodelling approaches, in [de Lara and
Guerra, 2013], generic programming techniques such as concepts, templates
and mixin layers are applied for metamodelling in order to increase the sup-
port for abstraction, modularity, reusability and extensibility of (meta)models
and corresponding model management operations. Focusing on the usage
of mixins, mixin layers rely on templating technique that allows for defin-
ing templated metamodel extensions (mixin layers), that can be applied on
metamodels that conform to template parameters. The basic idea is to use
the parameterised inheritance to realise a generic metamodel mixin. The
“instantiation” of the template binds the mixin layer to a concrete meta-
model that is the subject to extension and that conforms to the structure
defined by the parameter type (concept). This kind of template instantiation
may be categorised as dynamic invasive composition.

5.3.3 Evaluation of Approaches

A comparative evaluation of different approaches for metamodel modulari-
sation and composition considering the classification framework introduced

3Megamodelling refers to the creation of s.c. mega-models [Bézivin et al., 2004], global
models that assist in managing large collections of models.

CHAPTER 5. MODULARISATION AND COMPOSITION 141

before is illustrated in the Table 5.1. Each of the mentioned approaches has
been evaluated according to the relevant modularisation and composition
capabilities grouped into three main categories: metamodel modularisation,
metamodel composition and composition technique.

• Metamodel modularisation. The majority of the approaches support
some kind of white-box packaging of metamodels. The possibility to
constrain access to metamodel elements by setting visibility modifiers,
in order to achieve controlled white-boxes, was not found in any of
the mentioned approaches. The package construct in MOF allows for
flexible module structuring with module nesting possibilites, however
without supporting the definition of explicit interfaces. On the other
side, similar concepts such as the aspect in GME, the graphType in
GOPPRR and the model type in ADOxx offer basic partitioning of
metamodels into aspects. However, these concepts are primarily used
as meta elements for defining various diagram types and less for lan-
guage modularisation, thus without advanced concepts such as nesting
and inter-metamodel reuse options. For example, one may not define
a reusable module containing two diagram types that could be reused
as a standalone module between arbitrary metamodels. Nevertheless,
these concepts have been included into the evaluation as a limited form
of modularisation. Furthermore, none of the approaches mentions the
notion of grey-boxes. Finally, only two approaches suggest black-box
encapsulation such as in [Weisemöller and Schürr, 2008] and in [Wende
et al., 2010]. Both of them support the notion of explicit interfaces,
however only on the level of classes.

• Metamodel composition. The compositional aspect has been evaluated
according to the composition language characteristics such as nature,
coverage and supported composition operators. Internal, native com-
position languages are part of the metamodelling language or serve as
an extension of it, such as it is the case in MetaGME, MOF, GOPPRR
and ADOxx. Other approaches propose explicit metamodel composi-
tion languages that finally transform composition directives to the na-
tively supported constructs of the metamodelling language. Regarding
the coverage, all approaches support usually the white-box composi-
tion of classes at some level. Some restrict descriptions of the approach
solely to the concept of a class with a name, neglecting the inherent
composition issues that arise when composing their structural features
such as attributes and references. Each of the approaches supports a
small subset of composition operators, having MOF as a metamod-
elling standard supporting the most among them. Inheritance is sup-
ported by all approaches. Importing operation is supported by the
approaches that also support some kind of modular packages, as im-
porting is a basic mechanism for reuse-by-reference between language

CHAPTER 5. MODULARISATION AND COMPOSITION 142

modules. Aggregation is supported inherently only by GOPPRR and
ADOxx as these metamodelling languages allow for the reuse on the el-
ement atomic level. Template instantiation as a kind of reuse-by-copy
operation is used in combination with parameterisation to instantiate
elements into a new composite language. Stereotyping is used only in
UML2. Annotation as defined in MOF for lightweight extensions is
not used elsewhere. In addition to the standard composition operators,
some approaches such as [Del Fabro et al., 2006] introduce the mapping
operator as a part of an external mapping language, which requires ap-
plication of external tools in order to be used for composition. Usually,
such approaches use mappings for the s.c. coordination between exist-
ing metamodels and languages by allowing for model transformations
and traceability between different languages. Furthermore, none of the
approaches explicitly supports grey-box-based invasive composition,
although, the approach proposed in [de Lara and Guerra, 2013] realises
the idea of dynamic invasive composition. Finally, regarding the black-
box composition, approaches such as [Weisemöller and Schürr, 2008]
and [Wende et al., 2010] suggest external black-box parameterisation-
based composition operators on the class level relying on the generative
composition technique.

• Composition technique. It may be observed that both generative and
interpretative approaches are equally present to derive new compos-
ite metamodels. However, a strong correlation exists between explicit
composition languages and generative metamodel derivation, as one
implies the other one. Furthermore, due to its transformational char-
acter, it becomes clear that the generative derivation is especially use-
ful for the realisation of independent metamodel modules. The com-
posite module is generated based on the copies of the source modules,
which allows to define such modules as independent reuse blocks with-
out planned, explicit dependencies to other modules. On the other
side, the interpretative technique with explicit dependencies between
modules requires rigorous design and planning of the modules. Fur-
thermore, approaches which support importing operations based on
reuse-by-reference are rather interpretative. On the other side, tem-
plate instantiation and parameterisation are usually implemented us-
ing generative derivation as this implies reuse-by-copy of metamodel
elements.

CHAPTER 5. MODULARISATION AND COMPOSITION 143

Table 5.1: Evaluation of metamodel modularisation and composition ap-
proaches

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Modularisation

Encapsulation

Packaging + + + - - + + + - - - - - -
Dependency + + + - - + - - - - - - - -
Reuse by ref-
erence

+ + - + + + - - - + + + + +

Reuse by copy + + + - - - + + + - - - - -

Information hiding

White-box + + - + + + - - + + + + + +
Grey-box - - - - - - - - - - - - - -
Black-box - - + - - - - + - - - - - -

Composition

Nature

Internal + + + + + + - - - + - - - +
External - - - - - - + + + - + + + -

Coverage

Class + + + + + + + + + + + + + +
Attribute - - - + + - - - + - - - - +
Relation - + - + + - - - + - - - - +
Role - - - + + - - - - - - - - -
Model type - + - - - - - - + - - - - -

Composition operators

Inheritance + + - + + + + + + + - - - +
Redefinition - + - - - - - - - - - - - -
Aggregation - - - + + - - - + - - - - -
Merging - + - - - - + - + - + - - -
Importing + + - + - + - - - - - - + -
Templating + - + - - - + - - - - - - +
Stereotyping - + - - - - - - - - + - - -
Annotation - + - - - - - - - - - - - -
Parameterisation - - + - - - + + - - - - - -

Composition technique

Generative - - + - - - + + + - - n/a + -
Interpretative + + - + + + - - - + + n/a - +

[1] - Metamodel Modularisation and Composition by Ledeczi et al., [2] - Metamodel
Modularisation and Composition in MOF and UML, [3] - Metamodel Components and
Composition in MOF 2.0 by Weisemöller and Shürr, [4] - Metamodel Modularisation
and Composition in GOPPRR, [5] - Metamodel Modularisation and Composition in
ADOxx Meta2-Model, [6] - Metamodel Modularisation and Composition in EMF Ecore,
[7] - Metamodel Parameterisation by Pedro et al., [8] - Role-based Language Compo-
sition by Wende et al., [9] - Metamodel Mappings and Rules by Zivkovic et al., [10] -
Partial Domain Specific Models by Warmer and Kleppe, [11] - Viewpoint Unification
by Vallecillo, [12] - Integration of DSLs Using Ontological Foundations by Bräuer and
Lochmann, [13] - Model Weaving with Eclipse by Del Fabro et al., [14] - Metamodel
Templating by De Lara and Guerra

CHAPTER 5. MODULARISATION AND COMPOSITION 144

5.4 Chapter Summary
In this chapter, we provided basic concepts and an overview of the exist-
ing work on metamodel modularisation and composition in the context of
metamodel-based modelling language engineering. In the first part, we in-
troduced the basic notions of modular systems in general, and of metamodel
composition in particular. Three major elements are important for modular,
compositional metamodel definition: 1) modularised metamodels in terms of
metamodel modules, 2) metamodel composition concepts in terms of flex-
ible, comprehensive composition operators, and 3) adequate composition
technique being either generative or interpretative. In the second part, we
provided a systematic and extensive survey of the related work on meta-
model modularisation and composition. For that purpose, a classification
framework has been defined. Regarding the metamodel modularisation, we
concluded that, although concepts for the encapsulation of metamodels into
packages i.e. metamodel modules exist, extensive concepts for information
hiding in terms of explicit interfaces that would support definition of not
only white-boxes but also of grey-box and black-box metamodel modules
are missing. In terms of metamodel composition, we distinguished between
internal and external operators and between invasive and non-invasive op-
erators that may operate on white-box, grey-box and black-box elements.
White-box non-invasive composition operators are well supported. Inter-
nal, native, non-invasive black-box composition operators do not exist. On
the other side, although external black-box composition operators have been
suggested, the coverage of such composition operators is restricted to named
classes without attributes. Finally, it could be observed that invasive grey-
box composition operators as known from the invasive software composition
are rarely addressed in existing approaches. The only exceptions are the
annotation operator in MOF, however with very limited application and the
template mechanism by De Lara and Guerra. In summary, based on the
identified deficiencies, we may conclude that further concepts in metamodel
modularisation and composition are required, in order to support the vision
of systematic, modular definition of metamodels.

Chapter 6

A Concept for Modular
Metamodel Engineering

“From a purely formal point of
view, there is nothing that could
be done with components that
could not be done without them.”

Clemens Szyperski

In this chapter, a concept for modular metamodel engineering (MME) is
introduced as part of the main contribution of the underlying work. The
concept may be seen as a continuation of the fragment-based method in-
tegration idea proposed by Kühn [Kühn, 2004]. Focusing on the language
part of the method, and in particular, on the metamodel as a pivotal ele-
ment in language definition, MME provides a systematic formalism for the
realisation of modular metamodels within metamodelling platforms. MME
aims at extending the metamodelling concepts, i.e. the concepts of a meta-
modelling language, in order to allow for the modular metamodel definition.
On the one side, it introduces concepts to systematically define reusable,
self-contained metamodel fragments. On the other side, it extends meta-
modelling languages with a set of composition operators to holistically sup-
port white-box, grey-box and black-box composition. Finally, it follows the
purely interpretative composite language derivation as a chosen composition
technique to realise both invasive and non-invasive metamodel composition.

After introducing the key requirements and notions of modular meta-
model definition in Section 6.1, we elaborate on the metamodel modular-
isation in Section 6.2 and on the metamodel composition in Section 6.3,
as fundamental aspects of MME. We introduce the notion of a metamodel
fragment having explicitly defined interfaces and explicit dependencies only,
and define metamodel composition operators that work on such fragments to
allow for their combination. Since this chapter introduces metamodel mod-

145

CHAPTER 6. MODULAR METAMODEL ENGINEERING 146

ularisation and metamodel composition concepts on the conceptual level, in
Section 6.4 we provide a formalisation of the introduced concepts by defining
the metamodel for MME. Section 6.5 summarises this chapter.

6.1 Foundations of Modular Metamodel Engineer-
ing

In this section, the fundamentals of MME are provided. First, the basic idea
of a holistic modular approach for metamodel engineering is introduced. Af-
terwards, the requirements on modular metamodel definition are discussed.
Requirements are derived based on the fundamental elements of composi-
tion systems and by reflecting on deficiencies of the existing approaches for
metamodel composition as elaborated in Chapter 5.

6.1.1 A Holistic Modular Approach

Based on the commonalities and variabilities of various approaches to lan-
guage composition in Chapter 5, we have seen that only few if any of the
approaches deal with a holistic view on metamodel composition. While some
of them put emphasis on particular types of modularisation, the others fo-
cus on a specific composition operator(s). Instead, a holistic approach to
modular metamodel definition should provide a solid ground for a multitude
of modularisation and composition techniques, that arise from the combi-
nation of a variability of fragment types and composition operators. Here,
we particularly mean that although the black-box metamodel composition
may, by far, be the most flexible approach to define, manage and combine
metamodel fragments, allowing for white-box and grey-box composition may
equally be important in metamodel engineering projects. Having metamodel
fragments only as black-boxes could easily lead to over-engineering or over-
componentisation of metamodelling solutions, that could affect both the
overall productivity of metamodel engineers and the performance of the
underlying system. On the other side, white-box composition may comple-
ment the black-box composition in terms of fine-grained composition op-
erators that contribute to reuse during the implementation of fragments.
Finally, grey-box composition may allow for controlled, invasive modifica-
tion of existing fragments where explicit extension points are not sufficient
or the explicit modification, customisation or replacement of a metamodel
fragment is not possible. Figure 6.1 illustrates the idea of extending the
core metamodelling capabilities towards more holistic support for modular
metamodel definition.

Each of the building blocks that extends metamodelling in order to en-
able MME is subject to detailed discussion in the subsequent sections.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 147

Figure 6.1: Extension of metamodelling towards modular metamodel engi-
neering

6.1.2 Requirements on a Modular Approach

In the following, we postulate the requirements on modular metamodel def-
inition. The requirements cover three major elements of metamodel compo-
sition as introduced in Chapter 5, such as the modularisation language, the
composition language and the composition technique.

Modularisation of Metamodels

Modularisation is about encapsulation and information hiding. In meta-
model engineering, modularisation is a process of encapsulating metamodel
elements into reusable blocks called fragments, in a way that allows for in-
formation hiding. Therefore, two basic modularisation requirements (RMs)
may be derived:

• RM1 (Encapsulation). It should be possible to package fragments of
metamodels, i.e. a bundle of metamodel elements into self-contained,
reusable metamodel fragments with clear fragment ownerships and de-
pendencies. Such fragments should allow for packaging of core meta-
modelling constructs on both atomic and compound level.

• RM2 (Information hiding). It should be possible to explicitly hide
the internals of a metamodel fragment from the view outside of the
fragment by means of explicit and implicit interfaces and declared vis-
ibilities. Therefore, it should be possible to define different types of
fragments such as black-boxes, grey-boxes and white-boxes.

Composition of Metamodels

Metamodel composition is about combining metamodel elements into com-
posite metamodel structures. Having metamodel elements contained in dif-
ferent fragments, metamodel composition allows for metamodel fragment
combination. Following requirements (RCs) on metamodel composition may
be defined:

CHAPTER 6. MODULAR METAMODEL ENGINEERING 148

• RC1 (Extensive coverage). Metamodel composition must deal not only
with trivial attributeless classes, but must also cover other core meta-
classes of a metamodelling language such as classes, relations, end-
points, attributes and model types.

• RC2 (White-box, grey-box and black-box composition). On the level of
fragments, metamodel composition should provide composition oper-
ators that may flexibly combine different types of fragments such as
white-boxes, grey-boxes and black-boxes.

• RC3 (Non-invasive and invasive composition). Metamodel composi-
tion operators must allow for the flexible non-invasive composition of
black-box fragments based on explicit interfaces, but also for the inva-
sive composition of grey-box and white-box components. It should be
possible to compose base fragments at their interfaces and extension
points without a need to syntactically modify them.

Metamodel Composition Technique

The composition technique describes how the metamodel composition sys-
tem is realised. Here, we focus on two aspects, the realisation of composition
language and the derivation technique. The following requirements (RTs)
can be identified:

• RT1 (Internal, native language support). Both the language constructs
for specifying metamodel fragments and for the composition defini-
tion should be natively supported by the metamodelling language, i.e.
the composition language nature should be internal. This requirement
should allow language engineers to seamlessly adopt the modular meta-
model definition without a need to learn completely new languages.

• RT2 (Interpretative composition derivation). While having a native,
internal language support for composition, the composition system
should derive new composite structures by interpretation instead of
transformation. The composite fragments must be conflict-free, syn-
tactically well-formed design artefacts.

• RT3 (Compatibility with model-level mechanisms). The compatibility
with model-level mechanisms must be ensured. Metamodel defini-
tions constructed in a modular way shouldn’t be different to those de-
signed using conventional techniques. This requirement is a linguistic
problem, which should prove the assumption that modularisation and
composition aspects contribute solely to the supporting capabilities of
metamodelling languages (see discussion in Section 4.2.2).

CHAPTER 6. MODULAR METAMODEL ENGINEERING 149

6.2 Modularisation in Metamodel Engineering
To paraphrase Szyperski [Szyperski, 2002], there is nothing that can be done
with components, that cannot be done without them. Clearly, components
do not influence result of the end product, but the way how we develop
the end product. While some metamodel may be a huge monolithic, com-
plex, incomprehensible design artefact, the same result may be achieved,
in a more productive and flexible way, through the composition of clearly
separated, self-contained, metamodel fragments. Thus, the ability to de-
fine metamodel fragments is a basic requirement for modular definition of
metamodels. According to Szyperski [Szyperski, 2002]1, in component-based
software engineering, a software component is defined as follows:

“A software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third parties.”

This definition introduces important properties of components. An explicit
interface is a provided interface of a component, whereas explicit context de-
pendencies are required interfaces of other components (dependencies, since
the interfaces are imported from other components). Another key char-
acteristic is the independent deployment of components. A component is
self-contained, and does not have any dependencies other than those ex-
plicitly declared. Finally, as a unit of composition, a component is used
by other components over interfaces. In the following, those and other key
characteristics of components in the context of metamodel fragments are
introduced.

6.2.1 Metamodel Fragment

Derived from the definition of a software component, a metamodel fragment
is defined as follows [Živković and Karagiannis, 2015]:

“A metamodel fragment is a unit of composition with contractu-
ally specified provided interfaces and required interfaces only. A
metamodel fragment can be deployed independently and is sub-
ject to composition by third parties.”

A metamodel fragment is a packaging construct that combines a set of
metamodel elements into a bundle. The fragment elements represents either
fragment implementation or fragment interface definition. The implemen-
tation of the fragment defines the internals of the fragment, i.e. what the

1In the same book, several other definitions of a software component by various other
authors are listed and comparatively analysed.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 150

fragment does, whereas the interfaces define how a fragment may be used,
without knowing its inner structure, i.e. how the fragment is implemented.
This way, a fragment supports both encapsulation and information hiding.

• Fragment implementation. The internal structure of a fragment (frag-
ment implementation) consists of core metamodel elements such as
model types, classes, attributes, relations, etc. In order to modularise
and organise internal structure of a fragment, a fragment may nest
other fragments and build nested hierarchies. Elements of a nested
fragment are implicitly and transitively owned by a nesting fragment.
An atomic fragment is a fragment that doesn’t contain any nested
fragments but only atomic elements. A composite fragment consists of
at least one other nested fragment. Direct fragment elements may be
available to the outside via interfaces or by controlling their visibility
using access modifiers. Access modifiers such as public, private, pro-
tected, etc, may be used to explicitly declare accessibility of a fragment
element. Note, for a pure black-box fragment, elements are accessible
only via explicit interfaces.

• Fragment interfaces. An interface defines a contract between a frag-
ment that provides a certain structure and a fragment that uses that
structure. A metamodel fragment interface describes a subset of a
metamodel structure that is available for the use by other fragments
(provided). A metamodel fragment may also explicitly list the inter-
faces it depends on (required interfaces). We further explain interfaces
in the next section.

• Explicit dependencies. A fragment may depend on other fragments.
Explicit dependencies allow for further accessibility and reuse of any
kind of elements (interface or accessible inner element) of another frag-
ment and is a prerequisite for building composite fragments in the
course of metamodel composition.

Figure 6.2 illustrates the notion of a metamodel fragment.

6.2.2 Explicit Interfaces (Black-Box)

A fragment may expose a set of interfaces, in order to hide its internal
implementation [Živković and Karagiannis, 2015]. The interface concept,
which enables information hiding, is the cornerstone of a black-box meta-
model composition. A metamodel fragment that exposes explicit interfaces
is a black-box composition unit that can be combined by other fragments
in various contexts. The interface concept allows for the loose coupling of
fragments, which, in turn, promotes replacement or internal modifications

CHAPTER 6. MODULAR METAMODEL ENGINEERING 151

Figure 6.2: The notion of a metamodel fragment

while keeping interfaces stable. Interfaces may either be owned by a frag-
ment or imported from another fragment. A metamodel fragment may have
provided and required interfaces.

• Provided interface. A provided interface of a fragment exposes a sub-
set of the internal metamodel implementation to other fragments. A
provided interface is an interface that a metamodel fragment imple-
ments/realises. Figure 6.3 illustrates the notion of the provided inter-
face. For example, the metamodel fragment Process Model Metamodel
exposes the interface ITask, which is implemented by the internal class
element Activity. In turn, another fragment that implements a lan-
guage for creating business models, the Business Model Metamodel
imports and uses this interface to state that the Business Actor is re-
sponsible for a certain task. The main advantage of having an explicit
provided interface for the fragment Business Process Metamodel is its
independent deployment and flexibility of change. Without knowing
who and how will use it, the fragment may be independently reused
and deployed as a unit of composition. Any internal change on the
Activity class will not influence other fragments, as long the Activity
class conforms to its interface.

• Required interface. A required interface of a metamodel fragment spec-
ifies explicit context dependencies to other fragments. A required in-
terface is, therefore, always realised outside of a fragment, by a third
fragment. The fact that a required interface is owned but not imple-
mented by an owning fragment promotes the definition of predefined
and explicit fragment extension points. A required interface that is
owned specifies a contract to other fragments that may provide reali-

CHAPTER 6. MODULAR METAMODEL ENGINEERING 152

sations of that interface. An abstract fragment is a fragment owning
at least one required interface. In Figure 6.3, the fragment Business
Process Metamodel defines an extension point, the required interface
IPerformer for the concept of a task performer. Any fragment may
thus implement this interface to represent an actual performer of a
task. In our case, this is the class Role from the fragment Organisa-
tion Metamodel.

Figure 6.3: Provided and required interfaces. The example prototypically
modularises the otherwise monolithic E-BPMS-Framework metamodel as de-
fined in [Kühn et al., 2001]. The UML2 lollipop and socket notation is used
to depict provided and required interfaces, respectively. A dashed line rep-
resents an imported interface, a full line is an owned interface.

6.2.3 Implicit Interfaces (Grey-Box)

The idea of implicit interfaces to realise grey-box metamodel composition
is based on the notions of invasive software composition for program code
as introduced in [Aßmann, 2003]. The basic idea behind invasive software
composition relies on having code fragments such as fields and methods that
may be injected into an existing program code such as class definitions based
on implicit extension points23. The concept of implicit interfaces may be

2The notion of independent code fragments that describe state (fields) and behaviour
(methods) called subjects, which may be integrated into classes representing objects is
the cornerstone of the subject-oriented programming and has been initially introduced
by [Harrison and Ossher, 1993]

3A similar idea to extend existing types is realised in C#, in which so-called Extension
Methods allow for injecting methods to an existing base type without creating a new
derived type, recompiling, or otherwise modifying the base type [MSDN, 2015].

CHAPTER 6. MODULAR METAMODEL ENGINEERING 153

applied on metamodels, in order to gain additional variation points where
metamodel fragments may be extended [Živković and Karagiannis, 2016].
According to [Živković and Karagiannis, 2016], an implicit interface repre-
sents an extension point of a metamodel element, which is implicitly defined
by the inherent semantics of the underlying metamodelling language. Each
metaclass of a metamodelling language may have different implicit inter-
faces. For example, as depicted in Figure 6.4, a meta element Class may
have as an implicit interface an extensible set of member attributes. An-
other implicit interface may also be a set of explicit interfaces, that class
implements. Using appropriate composition operators, another fragment
may access implicit interface and extend that particular class by injecting
additional member attributes, or further supported interfaces. Implicit in-
terfaces are crucial in metamodel composition scenarios, where extensional
composition should take place on previously not explicitly defined extension
points, or on non-modifiable elements.

Figure 6.4: The notion of an implicit interface based on the metamodel
element type Class

6.2.4 Explicit Access Modifiers (Grey-Box, White-Box)

In contrast to the idea of explicit interfaces and black-box encapsulation of
metamodel fragments, explicit access modifiers are used to declare directly
the accessibility of metamodel elements. By default, all elements are public,
i.e. all are accessible for composition. However, some elements in metamodel
fragments may be declared private to that fragment. In Figure 6.2 some
elements of a metamodel fragment are declared as private, the others as
public. Explicit access modifiers contribute to both grey-box and white-
box metamodel composition, by allowing for a certain level of information
hiding. Access modifiers are known language constructs in GPLs such as
C++, Java or C#. Access modifiers differ in their accessibility level and
domain.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 154

• Accessibility levels. Metamodel elements may have different acces-
sibility levels from the least to the most restrictive ones. Common
modifiers for all GPLs are public, protected and private. A public
element is globally accessible within and outside of its container. A
protected element is accessible for its direct container and its derived
elements. Protected is applicable for members of hierarchical elements
such as attribute accessibility within classes. A private element is vis-
ible only within its container element. Different metaclasses may have
different default accessibility levels for their members. For example,
in a black-box fragment, default access to concrete elements may be
private, whereas for interfaces it is always public.

• Accessibility domain. Accessibility domain of a metamodel element is
defined by accessibility level and domain of a metamodel element in
which that element is directly contained. The accessibility domain of a
contained element can never exceed that of its container domain. For
example, if a private class C1 in a metamodel M1 contains a public
attribute a, that attribute will not be accessible from within another
metamodel M2, even though the attribute accessibility level is public.

6.3 Composition in Metamodel Engineering
Modular metamodel definition is about the composition of metamodel frag-
ments. Based on the modularisation type (black-box, grey-box, or white-
box) of metamodel fragments to be combined, three different types of meta-
model composition may be distinguished. Composition of black-box meta-
model fragments with explicit interfaces implies black-box metamodel compo-
sition. Combining metamodel fragments based on implicit interfaces is what
is called a grey-box metamodel composition. Likewise, white-box metamodel
composition is applicable on accessible elements of white-box fragments.
Figure 6.5 illustrates next to each other these three composition approaches
to explicate the variability which arises based on the “shades of grey" of the
metamodel modularisation. For each of the composition approaches, appro-
priate metamodel composition operators are needed. In the following, these
three metamodel composition types are subject to detailed discussion.

6.3.1 Interface-based Black-Box Metamodel Composition

The black-box metamodel composition combines black-box fragments based
on explicitly defined interfaces. The actual composition, however, requires
the existence of appropriate, flexible composition operators. For the pur-
pose of black-box composition, we introduce two new interface-based meta-
model composition operators: interface realisation and interface subtyp-
ing [Živković and Karagiannis, 2015].

CHAPTER 6. MODULAR METAMODEL ENGINEERING 155

Figure 6.5: White-box vs. grey-box vs. black-box metamodel composition

• Interface realisation. Interface realisation binds one internal, concrete
metamodel element to an interface element, thereby capturing the re-
alisation of an interface by a concrete element. The realisation is valid
only if an element conforms to that interface by contract. A concrete
metamodel element may provide realisations to an arbitrary number
of interfaces. Likewise, a single interface may have realisations from an
arbitrary number of concrete elements. Interface realisation is a fun-
damental concept of a black-box metamodel definition. It promotes an
explicit and controlled exposure of metamodel elements via provided
interfaces and the realisation of required interfaces of a fragment. The
operator is non-invasive as only the composer element, i.e. the concrete
metamodel element is modified whereas the base element, i.e. the in-
terface, remains unchanged. Figure 6.6 illustrates an example of usage
of the interface realisation composition operator. Given the interface
ISimulatableTask, that requires that each implementing element con-
tains two attributes needed for the simulation of activities Time and
Costs, the class Task is said to realise the interface ISimulatableTask
by providing the required attributes Time and Costs. Interface re-
alisation combines these two elements in a way that the class Task
represents a valid implementation of the interface ISimulatableTask.

• Interface subtyping. Interface subtyping allows for extensions of inter-
face definitions. It is a reliation between a base interface and a derived
sub-interface with substitutability semantics. A subtype interface ex-
tends a base interface by providing additional members. The sub-
typing relation cardinality is unconstrained on both sides, such that
an interface may extend and be extended by many other interfaces.
The interface subtyping operator is non-invasive, since the subtype
interface acts as a composer, whereas the base subtype remains un-
modified. This is similar to the inheritance, as well as the fact that
subtyping allows the reuse of structural features of interfaces along the

CHAPTER 6. MODULAR METAMODEL ENGINEERING 156

interface hierarchy. Due to its extensional and substitutability seman-
tics, interface subtyping contributes significantly to the flexibility of
metamodel composition scenarios. Figure 6.7 illustrates a concrete ex-
ample of the subtyping usage. Let us suppose we define a metamodel
fragment that contains some basic abstract metamodel concepts such
the interface INamedElement, which in turn requires that each realis-
ing element must contain the attribute Name in its definition. Such
fragment can be reused by many other fragments in their interface
definitions, whenever the attribute Name is required. For example,
the interface ITask subtypes the interface INamedElement in order to
inherit the supertype interface specification.

Figure 6.6: The notion of the interface realisation composition operator

Figure 6.7: The notion of the interface subtyping composition operator

6.3.2 Extension-based Grey-Box Metamodel Composition

The grey-box metamodel composition relies on the notion of implicit inter-
faces to combine metamodel fragments into new composites. To compose
fragments, we introduce the extension composition operator that allows to
add features to an existing element without a need to modify it [Živković
and Karagiannis, 2016]. The extension mitigates the deficiencies of the in-
heritance in that it doesn’t require the introduction of a new derived type
in order to extend the base type. Introduction of the derived type may in
some composition and customisation scenarios be undesirable or not possi-
ble (the base class is already in use, i.e. instances exist that would require
tool recompilation and model migration). Instead, the extension operator
injects the extensions into the base type without modifying it. To combine

CHAPTER 6. MODULAR METAMODEL ENGINEERING 157

elements based on extension, a base element, an extender element and an
extension composition operator are required.

• Base element with implicit interfaces. A base element may be any
compound metamodel element, for which at least one implicit interface
exists. Furthermore, a base element may be any metamodel element
that is not atomic. For example, it doesn’t make sense to extend ele-
ments such as attribute types that do not aggregate other elements and
features. Element types such as classes, relations or model types are
adequate extensional elements, since they contain implicit interfaces
or extension points, given by the inherent semantics of the underlying
metamodelling language. For example, as previously mentioned, a set
of attributes is a natural extension point of any attributable element
type.

• Extender element. Extender element is a kind of a wrapper, that de-
fines the concrete extensions that should be injected to the base el-
ement. Since it is a pure utility construct, it is a non-instantiable,
abstract element. In addition, the extender element must be of the
same meta type as the base element. This is required to implicitly
constrain only extensions that are possible for that specific element
type.

• Extension composition operator. Extension operator is a relation that
takes a base element and an extender element as input and extends
the base element by injecting extensions based on well-defined implicit
interfaces. For example, a class C1 with an attribute a1 may be ex-
tended by an attribute a2 of an abstract class C2 by declaring that
the abstract class C2 extends the class C1. Like in inheritance, but
inversely, the features of the extender element are propagated to the
base element without any syntactic modification of the base element.
An extender element may extend many base elements. In turn, a base
element may be extended by arbitrary extender elements. The ex-
tension composition operator is invasive as the composer dynamically
modifies the base element. One can think of the extension composi-
tion operator as a kind of a reverse-inheritance mechanism, where a
derived element has a knowledge, i.e. ’decides’ which base classes it
extends. Figure 6.8 illustrates a concrete example. The class Task
represents the base class that should be extended with two attributes
Time and Costs however without any syntactic modification of that
class. On the composer side, the class SimulationActivityExtender rep-
resents the extender element which contains those two attributes. By
applying the extension operator from the extender class on the base
class, the class Task dynamically receives all structural features of the
class SimulationActivityExtender, i.e. the attributes Time and Costs.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 158

Figure 6.8: The notion of the extension composition operator

6.3.3 Mixin-based White-Box Metamodel Composition

The white-box metamodel composition combines accessible metamodel ele-
ments of metamodel fragments based on appropriate composition operators.
White-box fragments expose metamodel elements directly without using in-
terfaces, thus allowing for creating explicit dependencies of elements between
fragments. However, if done in a systematic way, white-box composition con-
tributes to the systematic decomposition of metamodels into modularised
implementation fragments. For example, a black-box metamodel fragment
that exposes interfaces, may include several nested white-box fragments that
contribute to the implementation of the provided interfaces. By recombin-
ing those implementation fragments, new composite implementations may
be developed in a productive modular way fostering reuse. Since the com-
position takes place on concrete metamodel elements, standard composi-
tion operators such as merge, inheritance, aggregation, etc. may be used
as defined in Section 5.2. In addition to the standard operators such as
inheritance, further composition operators are sought that allow for an in-
creased reuse of metamodel fragments. Such composition operators should
overcome issues that arise from the use of inheritance and should be used
as alternative approaches to multiple inheritance. One such composition
operator is introduced that is based on the idea of class mixins. Adopt-
ing the general idea of mixin-based inheritance [Bracha and Cook, 1990]
in programming languages4 in the context of metamodelling languages and
metamodel composition, mixins are said to allow for the definition of inde-
pendent metamodel element parts (Mixins) that may be reused, i.e. mixed

4In the area of programming languages, the idea of mixins has been around for years.
The term was coined in the language Flavors [Moon, 1986], however, mixins have been
initially defined as a formal language construct for language CLOS [Bracha and Cook,
1990]. Mixins found usage in OOPLs such as Smalltalk [Bracha and Griswold, 1996], and
Scala [Odersky et al., 2004]. GPLs such as C++, that do not support mixins natively, aim
at emulating the behaviour of mixins based on parameterised inheritance and template
classes [Smaragdakis and Batory, 2001]. Similarly, in [Ancona et al., 2000] an extension
for Java has been proposed called Jam, to allow for mixin-based class composition.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 159

by other elements5 [Živković and Karagiannis, 2016]. Mixins usually bundle
some common set of features that may be shared among other metamodel el-
ements. To allow for mixin-based metamodel composition, a parent element,
a mixin metamodel element and a mixin inclusion composition operator are
needed.

• Parent element. A parent element in the mixin-based composition
may be any element of a compound type (compound metaclass), i.e.
an element that contains other elements. For instance, a class is a
compound element that may contain elements such as properties and
references.

• Mixin element. A mixin element (a flavour) is a compound element
type that contains other elements to be shared among other elements.
It must be a non-instantiable, abstract element to denote its partial
implementation and its single purpose of being a wrapper of structural
features. The mixin element must be of the same type as the parent el-
ement. For example, an abstract element of type Class may be defined
that contains a set of common structural features (attributes and/or
references) that may be shared between various other classes.

• Mixin inclusion. Mixin inclusion composition operator takes a parent
element and a mixin element as an input, and includes (“mixes-in”) the
features of the mixin element to the parent element. Mixin inclusion
is non-invasive, since the parent element acts as a composer, whereas
the mixin remains unmodified as the base element of the composition
function. Figure 6.9 illustrates the application of the mixin inclusion
operator. The abstract mixin class VersionableMixin is defined that
contains the string attribute Version and the enumeration attribute
State. The parent class Document owns two attributes Name and
Type but in addition it declares to mixin the class VersionableMixin
in order to allow for document versioning and state-based workflow.
By applying the mixin inclusion from the class Document to the class
VersionableMixin, the class Document receives all structural features
of the mixin class, in our case, the attributes Version and State. Note
that the type restriction applies. Both elements are of the same meta-
class type.

In what it does, mixin inclusion is similar to the aggregation. However,
it doesn’t aggregate single elements as structural features but a predefined
set of elements bundled in a mixin element. In fact, mixin inclusion operator
has semantics much closer to the inheritance, when it comes to the reuse of
structural features of the base class. That said, mixin inclusion complements

5The term mixin is inspired by the s.c. ice cream Mix-In, an extra ice cream flavour
that may be combined on top of a base ice cream.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 160

Figure 6.9: The notion of the mixin inclusion composition operator

single inheritance in cases where the reuse of structural features from multi-
ple elements is desired, but due to the inheritance singleness is not possible.
Even when multiple inheritance is allowed, the mixin inclusion has a clear
advantage over multiple inheritance as being a lightweight operator. Since
it restricts mixin elements to be abstract elements only (partial elements),
the mixin operator avoids the creation of complex inheritance hierarchies,
while still allowing for multiple inclusion of bundles of structural features
defined at mixin elements.

6.4 A Metamodel for Modular Metamodel Engi-
neering

In the previous sections we introduced the main concepts of modular meta-
model engineering. In the following, we summarise these concepts in a meta-
model for modular metamodel engineering. The metamodel represents a con-
ceptual framework for MME. The central concept is a metamodel fragment.
A fragment may nest other fragments. A fragment is a composite fragment if
it nests other fragments, otherwise it is atomic. In addition, fragments may
declare dependencies between each other. A fragment may existentially own
metamodel elements or may import elements from other dependent frag-
ments. In turn, a metamodel element may be owned only by one fragment,
but may be imported i.e. reused by arbitrary number of other fragments.
A metamodel element in a fragment may be a class, a model type, an at-
tribute, a relation, etc. Furthermore, a metamodel element may represent a
concrete element or be an interface element. A concrete element may realise
many interfaces. In turn, an interface may be realised by arbitrary num-
ber of concrete elements. Thus, a fragment may contain internal concrete
elements and a set of provided and required interfaces that are exposed ex-
ternally to other fragments for black-box composition. Other fragments may
import provided interfaces and use them or import required interfaces and
provide an appropriate realisation. Besides the interface realisation com-
position operation, numerous other composition operators exist. Interfaces
support subtyping such that interface specification may easily be extended.

CHAPTER 6. MODULAR METAMODEL ENGINEERING 161

To allow for the grey-box composition, the extension composition operator
is applied. Concrete elements that extend other elements are called exten-
der elements. A fundamental operation for white-box composition such as
aggregation is applicable on both concrete elements and interface elements.
On the other side, the inheritance, and the mixin inclusion operator are
applicable on concrete elements, only. Concrete elements that are included,
mixed in by other elements are called mixin elements.

Figure 6.10: A metamodel for modular metamodel engineering

6.5 Chapter Summary
In this chapter, we introduced the main concept for modular definition of
metamodels, as part of the general MME approach. MME extends existing
metamodelling concepts in two ways. It contributes with concepts for the
modularisation of metamodels into reusable, self-contained metamodel frag-
ments with explicitly defined interfaces. On the other side, it offers a rich
set of composition operators to flexibly combine such metamodel fragments.
MME is holistic as it provides concepts not only for the black-box compo-
sition, but also for the grey-box and the advanced white-box metamodel
composition. While black-box operators operate on the level of fragment
interfaces, i.e. on explicit extension points of fragments, the grey-box com-
position allows for extending the fragments based on implicit interfaces.
The grey-box composition complements the black-box composition in cases
when explicit interfaces of fragments do not exist. The white-box composi-
tion operators contribute with advanced concepts to implement the internals
of black-box fragments in a modular way, i.e. to combine implementation

CHAPTER 6. MODULAR METAMODEL ENGINEERING 162

fragments by fostering reuse. This chapter provided a conceptual overview
of the MME approach, which serves as a conceptual framework for the spec-
ification of a language for modular metamodel definition and its realisation
in metamodelling platforms. The formal specification and the realisation of
the approach are the topics of the two subsequent chapters.

Chapter 7

A Language for Modular
Metamodel Engineering
(MMEL)

“The limits of my language are
the limits of my mind. All I
know is what I have words for.”

Ludwig Wittgenstein

This chapter contributes with the formalisation of the concepts of the
general MME approach introduced in the previous chapter by defining a
language for modular metamodel engineering (MMEL). This meta-language
represents an extension of the existing metamodelling languages. It extends
core metamodelling concepts with concepts for metamodel modularisation
and metamodel composition. The MMEL consists of three basic modules.
The core metamodelling language represents an abstract representation of
the metamodelling concepts which are then extended by two other modules,
the modularisation language and the composition language. The MMEL
itself is formalised using the metamodelling techniques and corresponding
means for syntax, semantics and notation definition.

The chapter is organised as follows. To begin with in Section 7.1, we
first report on language specification formalisms used in the remainder of the
chapter and introduce the basic language architecture. The upcoming sec-
tions are dedicated to three language modules. In Section 7.2 we specify the
core abstract metamodelling language. Section 7.3 formalises the concepts
of the metamodel modularisation language. In Section 7.4 the metamodel
composition language is specified. Section 7.5 concludes the chapter.

163

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 164

7.1 Preliminaries
In this section, we shortly summarise the formalisms used to specify MMEL.
Furthermore, we explain how the language is structured by introducing the
general language architecture.

7.1.1 Note on Specification Formalism

In the following we report on formalisms used to define the syntax, semantics
and notation of the MMEL.

Definition of the Syntax

For the definition of the language, and in particular, of the abstract syntax,
we use metamodelling, i.e. a metamodel-based approach as a practical yet
rigorous formalism to define the abstract syntax of a language1 (see Sec-
tion 3.3 for discussion on various approaches for language definition). In
particular, we use the simplified UML class diagram notation based on the
semantics of MOF [OMG, 2014] i.e. UML Infrastructure [OMG, 2011a], to
define the elements of the abstract syntax, i.e. the syntax schema of the
meta-language. We enrich the syntax schema definition by specifying the
constraints using the natural language descriptions and by referring to the
abstract syntax elements.

Definition of the Semantics

In order to specify the semantics of the introduced abstract syntax concepts,
we use a mixture of a formal and informal semantics specification. We follow
a kind of an axiomatic approach to define the static semantics of abstract
syntax elements using precise natural language descriptions. The semantic
axioms defined may however be expressed using, for example, first-order
logic based languages for knowledge description such as OWL2 [Motik et al.,
2009b]. Likewise, we identify and specify the dynamic semantics where
appropriate by describing the behaviour of the system using the precise
natural language. In addition, in the subsequent chapter that introduces
language implementation, some of the semantic definitions will additionally
be specified using operational language such as Java.

Definition of the Notation

Although the notation of MMEL is of less importance as different tools
may have different concrete syntaxes for metamodelling, for documentation
and visualisation purposes, we choose to specify the graphical syntax as

1Note that we actually use a metamodelling formalism to define the metamodelling
language itself, i.e. to extend it.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 165

one possible concrete syntax definition. Where possible, the introduced
graphical syntax is based on the graphical UML notation. Where this was
not possible, additional graphical notation elements have been defined (as
stereotypes).

7.1.2 MMEL Language Architecture

MMEL has been architected based on well-established language design prin-
ciples such as modularity, extensibility, layering, and reuse2.

• Modularity. Modularity has been applied to decompose the language
into meaningful self-contained logical units, i.e. packages, based on
the principles such as separation of concerns, strong cohesion and loose
coupling.

• Layering. Layering has been applied to separate concepts based on
the abstraction level, such that higher-level abstract concepts can be
used by the lower-level concrete concepts.

• Extensibility. Since the language is modular it is also open to exten-
sions. The extensibility is systematically applied to flexibly extend the
core metamodelling with modules for modularisation and composition.
However, the language allows for adding other composition modules
in the future.

• Reuse. Due to high modularity and layering, the core abstract concepts
are reused to define the concrete core metamodelling concepts as well
as to define modularisation concepts.

Figure 7.1 introduces the package structure of the MMEL. On the top
level, the language consists of three main packages such as the core meta-
modelling language (CML), the metamodel modularisation language (MML),
the metamodel composition language (MCL). The CML consists of two pack-
ages that encapsulate abstract and concrete metamodelling constructs. The
MML extends the core metamodelling concepts from CML with two pack-
ages regarding encapsulation and interfacing constructs. The MCL depends
on both CML and MML, and contributes with constructs for black-box,
grey-box and white-box composition. In the subsequent sections, these lan-
guage packages are subject to detailed elaboration.

7.2 Core Metamodelling Language (CML)
Metamodelling languages provide basic constructs for metamodel and lan-
guage definition. In Chapter 3 a thorough overview of metamodelling lan-

2The same set of principles is used to define the UML language (compare [OMG, 2011a],
p.11).

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 166

Figure 7.1: The package structure of MMEL

guage concepts as well as a comparative overview of existing metamodelling
languages have been given. Based on this analysis, in this section a kind
of common core metamodelling language is introduced, that abstracts from
specific metamodelling implementations. Note that it is not our intent to
define a new metamodelling formalism, but solely to have a common core
meta-metamodel that provides basic constructs to define the “content” of
the metamodel fragments. Such meta-metamodel is also not complete. How-
ever, it supports core capabilities such as basic and role constructs, as well
as the basic intra-language reuse by inheritance and aggregation. All of
these constructs cover the basic scenarios for defining internal elements of
metamodel fragments.

We divide the core metamodelling language into the abstract part and
the concrete part. The reason for such design is of the generalisation and
the extensional nature. While the abstract language solely defines the basic
abstract concepts and relations between those concepts without any concrete
instantiable elements, the concrete language inherits the abstract structure
and provides a concrete “implementation” of the metamodelling language.
As we will see, the interface language is another language that will inherit
the abstract structure of the core concepts, in order to allow for the seamless
integration of the interface concepts.

7.2.1 Abstract Metamodelling Language

The abstract metamodelling language defines the structure of the common,
core metamodelling language. We define the language by discussing its
syntax and semantics. Since the language is abstract, the notation is not

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 167

given.

Syntax

Recalling the definition of the core and supporting capabilities of meta-
modelling languages (see Chapter 3), the common abstract metamodelling
language should support all core capabilities, as well as the basic supporting
capabilities for intra-language reuse such as aggregation and inheritance. In
the following, the syntax schema and the constraints are subject to detailed
discussion.

Syntax Schema The syntax of the core abstract metamodelling language
consists of the following constructs that match the core metamodelling capa-
bilities: AbstractClass, AbstractAttribute, AbstractModelType, AbstractRela-
tion, AbstractRelationEnd. We explicitly prefix the element names with the
Abstract keyword to denote their abstract, non-instantiable nature. Fig-
ure 7.2 illustrates the abstract syntax of the abstract metamodelling lan-
guage.

Figure 7.2: Metamodel of the abstract core metamodelling language

• MetamodelElement. A metamodel element represents the root element
of the metamodelling language. It doesn’t have any special semantics
besides being the supertype of other metaclasses.

• AttributableElement. An attributable metamodel element is an ab-
stract, non-instantiable construct representing a supertype of all meta-
classes that may contain attributes. The metaclass AttributableEle-

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 168

ment supports single inheritance in order to enable reuse of attributes
along the same type metamodel element hierarchy.

• AbstractAttribute. An abstract attribute represents a structural fea-
ture of a metamodel element and is of some attribute type, such as
string, integer, double, bool, date, etc. Note, for the sake of simplicity,
we do not consider attribute types any further.

• AbstractClass. An abstract class is a central metamodelling construct
that is used to specify entities (classes) of a modelling language. Com-
mon to all approaches, a class may contain attributes and define class
hierarchies using the inheritance. Hence, we specify that the metaclass
AbstractClass inherits indirectly from the metaclass AttributableEle-
ment in order to support inheritance and attribute containment.

• AbstractModelType. An abstract model type is another attributable
element and a metaclass used to typify models (diagram types). This
construct is necessary to support hybrid modelling as it may be used
to represent a conceptual boundary of one language concern. A model
type is attributable and may support inheritance to reuse attributes.
In addition, a model type contains classes and relations. Hence, we
define first the metaclass AbstractModelType as an indirect subclass
of the metaclass AttributableElement. Then, we define classes and re-
lations to be two additional structural features of a model type by
adding two aggregation relationships classes and relations that con-
nect the metaclass AbstractModelType with metaclasses AbstractClass,
AbstractRelation, respectively.

• AbstractRelation. An abstract relation defines relations between classes
and/or model types. A relation is attributable and supports the inher-
itance of attributes. Relation does not connect to its targets directly,
but over relation ends. The relation arity is determined by the num-
ber of relation ends. The arity should at least be binary, such that
relation consists of exactly one Source(From) relation end and one Tar-
get(To) relation end. Nevertheless, to be generic, we leave the option
to define n-ary relations. Thus, the metaclass AbstractRelation inher-
its from the metaclass AttributableElement. Furthermore, we define
one aggregation relationship relationEnds to state that the metaclass
AbstractRelationEnd is an additional structural feature of relations.

• AbstractRelationEnd. An abstract relation end specifies how a target
of a relation end participates in a relation in terms of multiplicity and
allowed target types. A relation end may directly support several tar-
get types by virtue of aggregation, or indirectly over the inheritance
hierarchy of direct target types. Hence, the multiplicity for allowed
targets is left unconstrained. Finally, a relation end is an attributable

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 169

element. Thus, the metaclass AbstractRelationEnd inherits from the
metaclass AttributableElement. Furthermore, we define one aggrega-
tion relationship targets to state that the metaclass AbstractRelatio-
nEnd contains an additional structural feature, that of connectable
elements.

• ConnectableElement. A connectable element represents an abstract
generalisation construct of classes and model types with semantics of
a targetable constructs of relation ends. Hence, we define the metaclass
ConnectableElement as an abstract metaclass that is a superclass of
metaclasses AbstractClass and AbstractModelType, and as a subclass
of the AttributableElement.

It is worth considering that containment relationships between elements
have the semantics of weak aggregation. Weak aggregation allows that el-
ements may exist as standalone reuse artefacts. For example, classes may
be contained by many model types based on the relationship classes that
connects the metaclasses AbtractClass and AbstractModelType. The same is
true for relationships attributes, relations, relationEnds and targets.

Constraints There are few additional constraints that further restrict the
syntax of the abstract metamodelling language. Table 7.1 lists those con-
straints.

Table 7.1: Abstract syntax constraints of the core metamodelling language

Constraint Description
C1 Compatibility

of inheritance
It is not possible to define inheritance between differ-
ent metaclasses. For example, a class cannot inherit
from a model type, but only from another class.

C2 Cyclic inher-
itance depen-
dency

An attributable element cannot inherit from itself,
neither directly, nor indirectly.

C3 Relation
direction

A relation must have at least one relation end of type
From and one of type To.

Semantics

In the following, we specify the static and dynamic semantics of the abstract
metamodelling language.

Static Semantics

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 170

Definition 1 (Inheritance) Given the attributable elements AE1 and
AE2 with corresponding sets of attributes Sa1, Sa2, AE1 inherits from AE2
only if for each of the attributes in Sa1 the same attribute in Sa2 exists.

Definition 2 (Transitiveness of Inheritance) Inheritance is a tran-
sitive relationship. Given the attributable elements AE1, AE2 and AE3, if
attributable element AE1 inherits from AE2 and AE2 inherits from AE3,
then AE1 inherits from AE3.

Definition 3 (Reflexiveness of Inheritance) Inheritance is reflex-
ive relationship. For any attributable element AE1, AE1 inherits from AE1.

Definition 4 (Derived Relation End Targets) By virtue of inher-
itance, subelements of connectable elements that are relation end targets are
also valid targets. Given the connectable elements CE1 and CE2, where
CE1 inherits from CE2, and relation end RE1, if CE2 is a target of RE1
then CE1 is also a valid target of RE1.

Dynamic Semantics

Definition 5 (Inheritance of Attributes) Given the attributable el-
ements AE1 and AE2 with corresponding sets of attributes Sa1, Sa2, and the
inheritance relationship R such that AE1 inherits from AE2, AE1 aggregates
all attributes from Sa2 into Sa1.

Notation

Due to its abstract nature, the abstract metamodelling language does not
feature any concrete notation.

7.2.2 Concrete Metamodelling Language

The concrete metamodelling language depends on the abstract language.
It provides the “implementation” of the abstract constructs defined in the
previous section. In the following, the syntax, semantics and notation are
discussed.

Syntax

The concrete language introduces instantiable constructs for each core con-
struct from the abstract language without adding any additional constraints.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 171

Syntax Schema The syntax of the concrete metamodelling language con-
sists of the following constructs, each of which inheriting from the corre-
sponding metaclasses of the abstract metamodelling language: Class, At-
tribute, ModelType, Relation, RelationEnd. By virtue of class inheritance,
each metaclass inherits structural features of its super metaclass. For ex-
ample, the metaclass ModelType as a subclass of the metaclass Abstract-
ModelType becomes automatically an attributable element and a container
of classes and relations. Figure 7.3 illustrates the syntax schema of the
concrete metamodelling language. No further constraints are added.

Figure 7.3: Metamodel of the concrete core metamodelling language. It
extends the abstract counterpart.

Restrictions No additional restrictions are defined. Restrictions from the
abstract language are inherited.

Semantics

The concrete language semantics is inherited from the abstract language.
The only difference is that the concrete metaclasses are instantiable instead
of being abstract.

Static Semantics No additional static semantic rules are defined. The
static semantics of the abstract language apply.

Dynamic Semantics No additional dynamic semantic rules are defined.
The dynamic semantics of the abstract language apply.

Notation

The concrete syntax of the core metamodelling language may be based on
the existing UML class diagram notation [OMG, 2011b]. To differentiate
between different metaclasses such as model type and class, the class symbol
may be stereotyped. Figure 7.4 illustrates a simplified specification of a
possible notation for the core metamodelling language. For each of the
types, a class symbol with an according letter in the upper right corner
is defined. Similarly, the core aggregation relationships are based on the

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 172

UML aggregation notation with an according letter to differentiate between
different relationship types. In case of binary relations, having exactly one
from and one to relation end and only one allowed target per relation end,
an alternative convenient “syntactic sugar” is provided based on the UML
association (including variants for composition, aggregation, navigable end,
etc.). If any of the core types is abstract, this is annotated by the cursive
font.

Figure 7.4: A concrete syntax of the core metamodelling language (Simpli-
fied specification)

7.3 Metamodel Modularisation Language (MML)
In this section, a metamodel modularisation language is introduced. It is
defined as an extension of the core metamodelling language by adding con-
structs necessary to support modularisation of metamodels. In Chapter 6 we
discussed the basic requirements and notions of metamodel modularisation.
Based on it, the introduced language should provide appropriate concepts
for both metamodel encapsulation (RM1) and information hiding (RM2)
in form of black-box, grey-box and white-box metamodel fragments. For
each of the modularisation aspects appropriate constructs are introduced
packaged into sublanguages, the metamodel encapsulation language and the
metamodel interface definition language, respectively.

7.3.1 Metamodel Encapsulation Language

The metamodel encapsulation language deals with the packaging of meta-
model elements into reusable, modular units. It introduces metamodelling
constructs such as a fragment and a containable element. In the following,
the language definition is given divided into the syntax, the semantics and
the notational part.

Syntax

We define the syntax of the metamodel encapsulation language by introduc-
ing the core syntax schema followed by a range of syntax constraints on top

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 173

of it.

Syntax Schema The encapsulation language introduces two basic con-
structs for decomposing the metamodels into reusable, modular fragments
such as a fragment and a metamodel element.

• Fragment. A fragment is a fundamental modularisation construct. It
allows for encapsulation of parts of metamodels as reusable modules. A
fragment consists of metamodel elements, whereas a contained element
in a fragment is either owned or imported. Elements that are owned by
a fragment can only exist as parts of their owning fragments. Hence,
there is an existential dependency between a fragment and an owned
element. Imported elements are those referenced from other fragments.
Imported elements realise the inter-fragment reuse of elements and
provide the basis for many composition operators. Hence, we define
the metaclass Fragment having two types of structural features, owned
and imported metamodel elements. This is defined using relationships
ownedElements and importedElements, respectively. Furthermore, as
a prerequisite to import elements from other fragments, an explicit
dependency to that fragment must be established. This is defined
using the relationship dependentFragments. In addition, fragments
may participate in nested structures, i.e. a fragment may contain other
fragments, as its internal packages. We specify this feature using the
relationship nestedFragment.

• MetamodelElement. The metaclass MetamodelElement is an abstract
element imported from the abstract metamodelling language. From
the point of view of encapsulation, it has semantics of a containable
element. We will see that a containable element may be either an
interface or a concrete implementation element, which is according to
the idea of a fragment having internal implementation elements and
explicit interface elements.

Figure 7.5 illustrates the modularisation extension of the core meta-
metamodel that addresses the encapsulation constructs.

Constraints In Table 7.2, a list of additional constraints on syntax ele-
ments of the encapsulation metamodel is provided.

Semantics

The static semantics of the encapsulation language introduces precise seman-
tics of abstract syntax elements. By doing so, some additional definitions
of derived constructs are introduced such as top fragment, nested fragment,
dependent fragment, that are not explicitly expressed through the abstract

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 174

Figure 7.5: Metamodel of the metamodel modularisation language - En-
capsulation module

Table 7.2: Abstract syntax constraints of the encapsulation part of the
modularisation language

Constraint Description
C4 Acyclic frag-

ment depen-
dency

A fragment cannot be dependent on itself, neither
directly nor indirectly over other fragments.

C5 Acyclic frag-
ment nesting

Likewise, a fragment cannot nest itself.

C6 Fragment
nesting

Nested fragments may not be dependent fragments.

C7 Fragment de-
pendency

Only top-level fragments, i.e. not nested fragments
may form dependencies between each other.

C8 Imported ele-
ments

Only accessible elements of explicitly dependent frag-
ments may be imported elements. This should also
constrain that an owned element is also imported by
the same fragment.

C9 Recursive im-
ports

An already imported element cannot be subject to
further imports.

C10Containment
of member
elements

If a compound element is contained in a fragment, all
of its member elements must be contained as well.

syntax. Dynamic semantics contributes to the behavioral meaning of the
abstract syntax elements.

Static semantics

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 175

Definition 6 (Nested Fragment) A nested fragment is a fragment
that is nested by another fragment. Given the fragment F1, its set of nested
fragments Sn1, and fragment F2, F2 is a nested fragment, if it is contained
the set Sn1.

Definition 7 (Top Fragment) A top fragment is a fragment that is
not nested by any other fragment. Given the fragment F1, its set of nested
fragments Sn1, and fragment F2, F2 is a top fragment, if it is not contained
in the set Sn1.

Definition 8 (Atomic Fragment) An atomic fragment is a fragment
that doesn’t nest any other fragments. Given the fragment F1, its set of
nested fragments Sn1, F1 is an atomic fragment, if its set Sn1 is empty.

Definition 9 (Compound Fragment) A compound fragment is a
fragment that nests at least one other fragment. Given the fragment F1, its
set of nested fragments Sn1, F1 is an atomic fragment, if its set Sn1 is not
empty.

Definition 10 (Dependent Fragment) A dependent fragment is a
fragment that contains at least one dependency to other fragments. Given the
fragment F1, its set of dependent fragments Sd1, F1 is a dependent fragment,
if its set Sd1 is not empty.

Definition 11 (Independent Fragment) An independent fragment
is a fragment that doesn’t contain any dependencies to other fragments.
Given the fragment F1, its set of dependent fragments Sd1, F1 is an in-
dependent fragment, if its set Sd1 is empty.

Definition 12 (Owner Fragment) An owner fragment is a fragment
that owns at least one metamodel element. Given the fragment F1, its set of
owned metamodel elements So1, F1 is an owner fragment, if its set So1 is
not empty.

Definition 13 (Owned Element) An owned element is an element
that is owned by an owner fragment. Given the fragment F1, its set of owned
metamodel elements So1, and metamodel element ME1, ME1 is an owned
element, if it is contained in the set So1.

Definition 14 (Imported Element) An imported element is an el-
ement that is owned element of one fragment that is imported by another
fragment. Given the fragment F1, its set of dependent fragments Sd1, its set
of owned metamodel elements So1, its set of imported metamodel elements

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 176

Si1, fragment F2, its set of owned metamodel elements So2, and metamodel
element ME1, where ME1 is contained in So2, not contained in So1 and
F2 is contained in Sd1, ME1 is an imported element of F1 if it is contained
in Si1.

Definition 15 (Nesting Transitivity) Nesting of fragments is tran-
sitive. Given the three metamodel fragments F1, F2 and F3, if F1 nests F2,
and F2 nests F3, F1 also nests F3.

Definition 16 (Nesting Reflexivity) Nesting of fragments is re-
flexive. For any metamodel fragment F, F is implicitly a nested element of
F.

Definition 17 (Dependency Transitivity) Fragment dependency
is transitive. Given the three metamodel fragments F1, F2 and F3, if F1 is
dependent on F2, and F2 is dependent on F3, F1 is also dependent on F3.

Dynamic Semantics

Definition 18 (Deletion of Nested Fragments) If a compound
fragment is deleted, all nested elements must also be deleted.

Definition 19 (Deletion of Owned Elements) If a fragment is
deleted, all owned elements must also be deleted.

Notation

The concrete syntax of the encapsulation aspect of the metamodel modular-
isation language may be based the graphical syntax of the UML2 package
diagram as defined in [OMG, 2011b]. Figure 7.6 illustrates a possible con-
crete syntax. A metamodel fragment may be represented by a UML element
package. Basically, the content of the fragment, nested fragments, owned
and imported elements, may be displayed inside of the fragment symbol
or alternatively using the relationships between packages and elements. Im-
ported elements are represented with dashed symbol lines, in order to denote
the difference to owned elements.

7.3.2 Metamodel Interfacing Language

In this section, we cover the interface definition part of the metamodel mod-
ularisation language. Clearly, a fragment that doesn’t have explicit inter-
faces may not be regarded as a black-box fragment. Therefore, the inter-
face definition language introduces constructs for the interfacing of concrete
reusable metaclasses, in order to support the information hiding, i.e. the

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 177

Figure 7.6: A concrete syntax of the metamodel encapsulation language
(simplified specification)

idea of black-box fragments. In the following, we elaborate on the syntax,
the semantics and the notation of the interfacing language.

Syntax

As we now it from programming languages, an interface exists only for
classes and its main purpose is to expose or to define properties and methods
an implementing class should support. Applied on metamodelling languages,
the concept of interface is applicable for all main constructs, since all of
them have structural features. In the core meta-metamodel, all metaclasses
have attributes as their structural features. Moreover, another compound
metaclass such as a model type contains additional structural features such
as classes and relations, for which it would also be desirable that they are
exposable via interfaces. Thus, all concrete elements that are reusable within
the fragment may also be accessible for inter-fragment reuse via explicit
interfaces. For example, it is desirable to expose an interface of a model type
UseCaseDiagram, which other fragments may use as a connection point to
support the modelling of Use Cases. In the following, the syntax schema
and additional constraints are discussed.

Syntax Schema The requirement that each concrete metamodel element
should be exposable via interface influences the syntax of the modularisation
extension considerably. Basically, for each concrete metaclass, an appropri-
ate interface metaclass must exist. Hence, the interfacing extension basically
mimics the syntax structure of the core part to allow for interfacing of el-
ements. Thus, we extend the abstract core metamodelling language with
appropriate interface types. Basically, each abstract metamodelling concept
is specialised by an adequate interface type counterpart. Figure 7.7 illus-
trates the extension of the core meta-metamodel that addresses the interface
part of the modularisation.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 178

Figure 7.7: Metamodel of the metamodel modularisation language - Inter-
face module

• AttributeInterface. An attribute interface is an interface of an at-
tribute. Unlike a member attribute in GPLs, which doesn’t have an
interface counterpart, here, an attribute has an explicit interface. In
particular, an attribute interface as a contract specifies the data type
the implementing attribute has to support. Furthermore, by virtue of
having an attribute interface as an explicit metamodel element, we can
avoid name-based matching of member attributes of other compound
interface realisations. We define the metaclass AttributeInterface as a
subclass of the corresponding metaclass AbstractAttribute.

• ClassInterface. A class interface specifies exposable structural features
of a class. In particular, a class interface specifies which attribute in-
terfaces a concrete class has to support. To support this, we define the
metaclass ClassInterface as a subclass of the corresponding metaclass
AbstractClass.

• ModelTypeInterface. A model type interface specifies which attribute
interfaces, as well as which class and relation interfaces, a concrete
model type must implement in order to realise that interface. Hence,
we define the metaclass ModelTypeInterface as a subclass of the meta-
class AbstractModelType, in order to inherit all of the structural feature
definitions.

• RelationInterface. A relation interface specifies which attribute inter-
faces and relation end interfaces must be supported by a concrete rela-
tion metamodel element, in order to be a compatible implementation
of that interface. Accordingly, we define the metaclass RelationInter-
face as a subclass of the corresponding metaclass AbstractRelation.

• RelationEndInterface. A relation end interface prescribes attribute
interfaces and target interfaces that must be implemented by a con-
crete relation end when realising that interface. Finaly, we define
the metaclass RelationEndInterface as a subclass of the corresponding
metaclass AbstractRelationEnd.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 179

Constraints In Table 7.3 a list of constraints for the syntax schema of the
metamodel interface definition language is provided which adds to the well-
formedness of modular metamodel definitions. In particular, we define some
constraints that further restrict the abstract core metamodelling language.
Those constraints address mainly the relationships defined in the abstract
metamodelling language which arise from the fact that both concrete and
interface metaclasses are subclasses of abstract construct metaclasses leading
to some not allowed combinations.

Table 7.3: Abstract syntax constraints of the interfaces part of the modu-
larisation language

Constraint Description
C14Attribute

interface
aggregation

Any attributable interface element such as class inter-
face and alike can only aggregate attribute interfaces
as members using the attributes relationship.

C15Class inter-
face aggrega-
tion

A model type interface element can only aggregate
class interfaces as members using the classes rela-
tionship.

C16Relation
interface
aggregation

A model type interface element can only aggregate
relation interfaces as members using the relations re-
lationship.

C17Relation end
interface
aggregation

A relation interface element can only aggregate re-
lation end interfaces as members using the relatio-
nEnds relationship.

C18Relation
end target
interface
aggregation

A relation end interface can only aggregate target
interfaces as members using the targets relationship.

C19Attribute
inheritance

The inheritance is not allowed relationship between
interface elements.

Semantics

The concrete language semantics is, where not constrained, inherited from
the abstract core metamodelling language.

Static Semantics No additional static semantic rules are defined. The
static semantics of the abstract language apply.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 180

Dynamic Semantics No additional dynamic semantic rules are defined.
The dynamic semantics of the abstract language apply.

Notation

The concrete syntax of the interface part of the metamodel modularisation
language may be based on the subset of the graphical syntax of the UML2
class diagrams as defined in [OMG, 2011b] as depicted in Figure 7.8. The
interface circle symbol is extended with stereotypes to differentiate between
different interface-like metaclasses. Alternatively, class symbols may be used
for interfaces with an appropriate stereotype denoting the interface type. In
addition, the “ball and socket” notation of UML2 may be used to visualise
provided and required interfaces, respectively. Note, we adopt the notion of a
port (small white-box) of UML composite structures to be part of required
and provided interface when used to depict fragment-level interfaces. As
port represents a kind of a connection point, it is convenient to connect inner
elements of a fragment to the port of the interface to visualise the interface
usage or realisation. Obviously, only one interface per port is allowed.

Figure 7.8: A concrete syntax of the metamodel interfacing language includ-
ing the component-based notation of fragments with provided and required
interfaces (simplified specification)

7.4 Metamodel Composition Language (MCL)
In this section the metamodel composition language is introduced. It is
an extension of the core metamodelling language related to compositional
aspects of modular metamodel engineering. The language is dependent on
both the core metamodelling language and the modularisation language. Re-
ferring to the requirements on metamodel composition postulated in Chap-
ter 6, the goal of the composition language is to provide a set of composi-
tion operators to support different types of metamodel elements (RC1) and
different composition types (RC2) such as the black-box composition, the

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 181

grey-box composition and the white-box composition. Also, not only non-
invasive composition should be supported, but also the invasive composition,
in particular, when composing grey-boxes and white-boxes (RC3). We di-
vide the language accordingly into sublanguages covering different types of
metamodel composition approaches.

7.4.1 Black-Box Metamodel Composition Language

Composition of metamodels as black-boxes requires the existence of well-
defined metamodel fragments with explicit interfaces. Hence, the language
for black-box composition is dependent on both the metamodel encapsula-
tion and the metamodel interfacing language. In the following, we introduce
this language by discussing its syntax, semantics and notation.

Syntax

As elaborated in the previous chapter, there are two composition operators
for black-box composition - interface realisation and interface subtyping. To
recall, the interface realisation is a composition operation that binds an
interface to its implementation. As defined before, an interface prescribes
the members a concrete element must implement in order to realise that
interface. Hence, the interface realisation has the semantics of ensuring the
fulfillment of that interface contract. Considering the compositional struc-
ture of elements and interfaces, a concrete element realises an interface only
if it realises all member interfaces. Furthermore, a concrete element may
realise an arbitrary number of interfaces. This an important property of
interface realisation as it allows for interface segregation, as one of the basic
principles of interface design. In turn, an interface may be realised by an ar-
bitrary number of implementation elements. This kind of multiple interface
implementation contributes to more flexibility in metamodel composition.
On the other side, interface subtyping relation with its substitutional and
extensional semantics contributes further to the flexibility of interface re-
alisation. An element that realises an interface, transitively represents the
realisation of all of the interface supertypes. In the following, we discuss
these two composition operators in terms of syntax and constraints.

Syntax Schema For each of the black-box composition operators an ap-
propriate syntactic relation function with dedicated semantics is introduced.
Since different concrete element and interface types have specific semantics
with respect to composition, we define composition operators for interface
realisation and interface subtyping as relationships for each core construct
(class, attribute, model type, relation, relation end)3. The syntax schema

3One could have generalised these operators and defined them on the top of the element
hierarchy, i.e. on the abstract metamodel element construct, however such generalisation

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 182

imports metaclasses from the concrete metamodelling language and from the
interfacing language that represent implementation elements and their in-
terface counterparts, respectively. As mentioned, for each concrete element-
interface pair an appropriate interface realisation relationship is defined. In
addition, for each metaclass representing an interface, an adequate, reflexive
interface subtyping relationship is added. Figure 7.9 illustrates the syntax
schema.

Figure 7.9: Metamodel of the black-box composition operators

We define the interface realisation relationships as follows:

• attributeInterfaceRealisation. An attribute interface realisation con-
nects a concrete attribute with an attribute interface to denote the
attribute interface realisation. The implementing attribute must have
the attribute type that is compatible with that defined in the inter-
face it realises. While equal type matching is trivial, compatibility of
types must also hold such that the implementation type can never be
more restrictive than the interface type. For example, an attribute
A1 of type integer is compatible to the attribute interface AI1 of type
unsigned integer. In addition, a concrete attribute must adhere to
any additional properties of the attribute element defined in the inter-
face4. Hence, we define the relationship attributeInterfaceRealisation

would lead to an extensive set of constraints and complex semantics, in order to capture
the particularity of each core metaclass.

4For example, in the ADOxx Meta2-Model, the attribute concept has the property
language invariant which specifies whether the value of that attribute should support
multi-lingual values.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 183

as a directed relationship from the metaclass Attribute to the metaclass
AttributeInterface.

• classInterfaceRealisation. A class interface realisation connects a con-
crete class element with a class interface to express the implementation
of the class interface. In order to support the interface, the implement-
ing class must implement all attribute interfaces prescribed by that
interface. For example, a class C1 with an attribute A1 realises a class
interface CI1, only if its attribute also realises the attribute interface
AI1. Similar to the attribute interface, all properties of an abstract
class element defined at the interface must also be supported by the
implementing class (refer to the class property repository class men-
tioned earlier). We define the relationship classInterfaceRealisation
as a directed relationship from the metaclass Class to the metaclass
ClassInterface.

• modelTypeInterfaceRealisation. A model type interface realisation con-
nects a concrete model type with a model type interface to express
the interface implementation. This composition operation is rather
complex as it subsumes the realisation of all structural features (mem-
ber interfaces) of the model type interface. First, all attribute inter-
faces must be supported by the implementing model type. Second,
all class and relation interfaces must be supported, too. Finally, the
implementing model type must adhere to any properties defined at the
model type interface. Accordingly, we define the relationship model-
TypeInterfaceRealisation as a directed relationship from the metaclass
ModelType to the metaclass ModelTypeInterface.

• relationInterfaceRealisation. A relation interface realisation declares
the implementation of a relation interface by a concrete relation. Like
all attributable elements, the implementing relation must support all
attribute interfaces defined at the relation interface. In addition, the
relation ends have to support corresponding interface counterparts as
well. Likewise, property matching must hold. The relationship rela-
tionInterfaceRealisation as a directed relationship from the metaclass
Relation to the metaclass RelationInterface.

• relationEndInterfaceRealisation. Finally, a relation end interface es-
tablishes the realisation relationship between a concrete relation end
and its interface equivalent. The realisation refers to the attribute in-
terfaces and the target interfaces (classes or model types) prescribed
at the relation end interface. Likewise, property matching must hold.
Finally, the relationship relationEndInterfaceRealisation is a directed
relationship from the metaclass RelationEnd to the metaclass Relatio-
nEndInterface.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 184

We define the interface subtyping relationships as follows:

• attributeInterfaceSubtyping. An attribute interface subtyping expresses
the compatibility, i.e. the substitutability of a supertype by its subtype
interface. Clearly, the compatibility of the associated attribute types
must hold. Since attribute doesn’t have any additional member ele-
ments, there is no inheritance semantics that apply. The relationship
attributeInterfaceSubtyping is a directed, reflexive relationship from
and to the metaclass AttributeInterface.

• classInterfaceSubtyping. A class interface subtyping combines two
class interfaces into subtype-supertype relationship with known sub-
stitutional semantics. In addition, a subtype interface inherits all at-
tribute interfaces as structural features and may add additional ones.
The relationship classInterfaceSubtyping is a directed, reflexive rela-
tionship from and to the metaclass ClassInterface.

• modelTypeInterfaceSubtyping. A model type interface subtyping de-
clares one interface to be the subtype of the other model type inter-
face. In doing so, it inherits all attribute interfaces, but also all class
and relation interfaces. The relationship modelTypeInterfaceSubtyping
is a directed, reflexive relationship from and to the metaclass Model-
TypeInterface.

• relationInterfaceSubtyping. By subtyping the relation interface, a sub-
type interface inherits all attribute interfaces and relation end inter-
faces of the supertype. The relationship relationInterfaceSubtyping is
a directed, reflexive relationship from and to the metaclass Relation-
Interface.

• relationEndInterfaceSubtyping. A relation end interface subtyping de-
clares the subtype interface to be compatible to the supertype in-
terface by inheriting all of its attribute interfaces, as well as target
interfaces (class or model type interfaces). The relationship relatio-
nEndInterfaceSubtyping is a directed, reflexive relationship from and
to the metaclass RelationEndInterface.

Constraints Table 7.4 lists the abstract syntax constraints that further
restrict the syntax schema.

Semantics

The semantics of the interface realisation and interface subtyping composi-
tion operators complement the definitions provided in the abstract syntax.

Static semantics

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 185

Table 7.4: Abstract syntax constraints of the black-box composition part
of the composition language

Constraint Description
C13Acyclic sub-

typing depen-
dencies

For all subtyping relationships, an element interface
cannot be its own direct supertype nor form indirect,
transitive cyclic dependencies.

Definition 20 (Attribute Interface Realisation) Given the at-
tribute A, its data type T1, the attribute interface AI and its data type T2,
A realises AI only if T1 is a compatible type to T2.

Definition 21 (Class Interface Realisation) Given the class C,
with the set of attributes Sa and the class interface CI with the set of at-
tribute interfaces Sai, C realises CI only if for each of the attribute inter-
faces in Sai a matching realisation attribute in Sa exists.

Definition 22 (Model Type Interface Realisation) Given the
model type MT , with a set of attributes Sa, the set of classes Sc, the set of
relations Sr, the model type interface MTI with a set of attribute interfaces
Sai, the set of class interfaces Sci and the set of relation interfaces Sri, MT
realises MTI only if each of the attribute interfaces in Sai has a realisation
attribute in Sa, for each class interface in Sci there is a realisation class in
Sc and for each relation interface in Sri there is a realisation relation in
Sr.

Definition 23 (Relation Interface Realisation) Given the relation
R, with a set of attributes Sa, the set of relation ends Sre, the relation
interface RI with a set of attribute interfaces Sai, the set of relation end
interfaces Srei, R realises RI only if each of the attribute interfaces in Sai
has a realisation attribute in Sa and for each relation end interface in Srei
there is a realisation relation end in Sre.

Definition 24 (Relation End Interface Realisation) Given the
relation end RE, with a set of attributes Sa, the set of targets St, the relation
end interface REI with a set of attribute interfaces Sai, and the set of target
interfaces Sti, RE realises REI only if each of the attribute interfaces in
Sai has a realisation attribute in Sa and a for each target interface in Sti
there is a realisation target in St.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 186

Definition 25 (Interface Subtyping Transitiveness) Interface sub-
typing is transitive relation (applicable for all interface subtyping relations).
Given the interfaces I1, I2 and I3, if an interface I1 is subtype of I2 and I2
is subtype of I3, then I1 is subtype of I3.

Definition 26 (Interface Subtyping Reflexiveness) Interface sub-
typing is reflexive relation. Given the interface I, I is subtype of I.

Definition 27 (Attribute Interface Subtyping) Given the attribute
interface AI1, its data type T1, the attribute interface AI2 and its data type
T2, AI1 is a valid subtype of AI2 only if T1 is a compatible type to T2.

Definition 28 (Class Interface Subtyping) Given the class inter-
faces CI1 and CI2 with corresponding sets of attribute interfaces Sai1 and
Sai2, CI1 is a subtype of CI2 only if for each of the attribute interfaces in
Sai2 the same or valid subtype attribute interface in Sa1 exists.

Definition 29 (Model Type Interface Subtyping) Given the model
type interface MTI1, with a set of attribute interfaces Sai1, the set of class
interfaces Sci1, the set of relation interfaces Sri1, the model type interface
MTI2 with a set of attribute interfaces Sai2, the set of class interfaces Sci2
and the set of relation interfaces Sri2, MTI1 is a subtype of MTI2 only
if for each of the attribute interfaces in Sai2 the same or valid subtype at-
tribute interface in Sa1 exists, for each class interface in Sci2 the same or
valid subtype class interface in Sci1 exists and for each relation interface in
Sri2 the same or valid subtype relation interface in Sri1 exists.

Definition 30 (Relation Interface Subtyping) Given the relation
interface RI1, with a set of attribute interfaces Sai1, the set of relation end
interfaces Srei1, the relation interface RI2 with a set of attribute interfaces
Sai2, the set of relation end interfaces Srei2, RI1 is a subtype of RI2 only if
for each of the attribute interfaces in Sai2 the same or valid subtype attribute
interface in Sa1 exists and for each relation end interface in Srei2 the same
or valid subtype relation end interface in Srei1 exists.

Definition 31 (Relation End Interface Subtyping) Given the re-
lation end interface REI1, with a set of attribute interfaces Sai1, the set of
target interfaces Sti1, the relation end interface REI2 with a set of attribute
interfaces Sai2, and the set of target interfaces Sti2, REI1 is a subtype of
REI2 only if for each of the attribute interfaces in Sai2 the same or valid
subtype attribute interface in Sa1 exists and for each target interface in Sti2
the same or valid subtype target interface in Sti1 exists.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 187

Definition 32 (Derived Relation End Interface Targets) If a
class interface or a model type interface is a target of some relation end
interface, then all its subtypes are allowed target interfaces for that relation
end interface.

Definition 33 (Derived Relation End Targets) If a class interface
or a model type interface is a target of some concrete relation end, then all
its concrete realisations are valid targets of that relation end.

Dynamic semantics

Definition 34 (Derivation of Attribute Interfaces) Given the at-
tributable element interfaces AEI1 and AEI2 with corresponding sets of at-
tribute interfaces Sai1, Sai2, and the interface subtyping relation Rs such
that AEI1 is subtype of AEI2, then AEI1 aggregates all attribute interfaces
from Sai2 into Sai1.

Definition 35 (Derivation of Class and Relation Interfaces) Given
the model type interfaces MTI1 and MTI2 with corresponding sets of class
interfaces Sci1, Sci2 and relation interfaces Sri1, Sri2, and the interface
subtyping relation Rs such that MTI1 is subtype of MTI2, then MTI1 ag-
gregates all class interfaces from Sci2 into Sci1, and all relation interfaces
from Sri2 into Sri1.

Definition 36 (Derivation of Relation End Interfaces) Given
the relation interfaces RI1 and RI2 with corresponding sets of relation end
interfaces Srei1, Srei2, and the interface subtyping relation Rs such that
RI1 is subtype of RI2, then RI1 aggregates all relation end interfaces from
Srei2 into Srei1.

Definition 37 (Derivation of Model Type and Class Interfaces)
Given the relation end interfaces REI1 and REI2 with corresponding sets
of model type interfaces Smti1, Smti2, and class interfaces Sci1, Sci2, and
the interface subtyping relation Rs such that REI1 is subtype of REI2, then
REI1 aggregates all model type interfaces from Smti2 into Smti1, and all
class interfaces Sci2 into Sci1.

Notation

A possible notation of the black-box metamodel composition language may
be based on the UML2 class diagram graphical syntax. In particular the
UML symbols for the interface realisation and for the generalisation rela-
tionship may be used to depict the two composition operators as illustrated

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 188

in Figure 7.10. The notational differentiation of various special types of the
composition operators is not needed as this is always given by the target
types of those relationships. Furthermore, when a fragment is visualised as
a component with exposed required and provided interfaces, the relation-
ships to interfaces, such as interface realisation, are drawn from an inner
element to the port of an interface.

Figure 7.10: A concrete syntax of the black-box composition language
including the component-based notation (simplified specification)

7.4.2 Grey-Box Metamodel Composition Language

The grey-box metamodel composition composes metamodels based on im-
plicit interfaces. It introduces a new composition operator that is able to
compose metamodel elements by injecting extensions into implicitly avail-
able extension points. The grey-box metamodel composition language de-
pends on the extended concrete core metamodelling language. In the follow-
ing, we discuss the syntax, the semantics and the notation of this language.
For the easier definition of operators, we assume that metamodel elements
in fragments by default are all public.

Syntax

To recall, the extension composition operator takes as input a base element
and an extender (composer) element and injects structural features of the
extender into the base element. The base element can be any existing com-
pound element (that has structural features). The operator relies on the
notion of dynamic invasive composition.

Syntax Schema Since each of the core metaclasses contains implicit ex-
tension points unique to that particular metaclass, it would be cumbersome
to define a generic extender element which has knowledge about all possi-
ble implicit extension points of all core metaclasses. One solution would be
to introduce a dedicated extender metaclass by inheriting from each of the
core metaclasses, as this way, we inherit the intrinsic knowledge about their
extension points. However, since the only semantic difference of the exten-
der metaclass is that it must be an abstract, non-instantiable element, we

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 189

decide to reuse the core metaclasses to represent extender elements, them-
selves. Thus, to enable extension-based composition, we introduce five ex-
plicit extension composition operators as reflexive relationships for each of
the core metaclasses such as Class, Attribute, ModelType, Relation and Re-
lationEnd. We define that an extender element (must be abstract) may
extend many base elements of the same metaclass. Contrary, a base ele-
ment may be extended by many extender elements (of the same metaclass).
Unlike the inheritance, the semantics of the extension relationship is that
it adds member elements from an extender directly to the base element by
virtue of aggregation (inverse inheritance). Figure 7.11 illustrates the syn-
tax schema. Note that this language extension is invasive for the concrete
core metamodelling language as we add new relations to each of the core
metaclasses.

Figure 7.11: Metamodel of the grey-box composition operators

Basically, implicit extension points of core metaclasses are structural
feature sets, as they represent parts of element definitions that have an
extensive character. For example, the metaclass Class has as an extension
point the set of contained attributes, which an extender element may extend.
In the following, we define the implicit extension points of each of the core
metamodelling constructs:

• Class extension points. A class is a container of attributes and sup-
ported class interfaces. Thus, the extension points are: attribute set,
class interface set.

• Model type extension points. A model type is a container of attributes,
classes, relations and model type interfaces. The implicit interfaces
are: attribute set, class set, relation set, model type interface set.

• Relation extension points. A relation is a container of attributes, rela-
tion ends and relation interfaces, with corresponding extension points
being: attribute set, relation end set, relation interface set.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 190

• Relation end extension points. Like other attributable and interfacable
elements relation end allows for attribute extensions and relation end
interface extensions. In addition, the relation end has the allowed
target set as unique implicit interface for this type.

The corresponding five extension composition operators are defined as
follows:

• attributeExtension. An attribute extension extends a base attribute
by an attribute extender at the attribute interfaces extension point.
We define the relationship attributeExtension as a directed, reflexive
relationship from and to the metaclass Attribute.

• classExtension. A class extension extends a base class element by a
class extender by adding new attributes and supported class interfaces.
The relationship classExtension is a directed, reflexive relationship
from and to the metaclass Class.

• modelTypeExtension. A model type extension operator extends a base
model type element by its extender counter part by injecting allowed
structural features such as attributes, classes, relations and model type
interfaces. The relationship modelTypeExtension is a directed reflex-
ive, relationship from and to the metaclass ModelType.

• relationExtension. A relation extension may inject attributes, relation
ends and relation interfaces from an extender relation to the base re-
lation. Accordingly, the relationship relationExtension is a directed,
reflexive relationship from and to the metaclass ModelType.

• relationEndExtension. A relation end extension operator extends rela-
tion ends for attributes, targets and relation end interfaces. Likewise,
the relationship relationEndExtension is a directed reflexive, relation-
ship from and to the metaclass RelationEnd.

Constraints Table 7.5 lists the abstract syntax constraints that further
restrict the syntax schema of the grey-box composition constructs. The
constraints arise from the reflexive nature of the extension relation and the
fact that the core element types play the role of a base element and an
extender. In addition, the combined use of inheritance and extension implies
certain restrictions.

Semantics

The semantics of the grey-box composition operators is mainly of the dy-
namic nature. It defines how the elements defined at the extender part are
injected to the corresponding base elements based on the inherent extension
points of metaclasses.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 191

Table 7.5: Abstract syntax constraints of the grey-box composition part of
the composition language

Constraint Description
C60Acyclic extension

dependency
For all extension relationships applies, an exten-
der cannot extends itself, neither directly nor in-
directly.

C61Abstract extender
element

For all metaclasses for which extension relation-
ship exists, a metamodel element can be an ex-
tender element only if it is declared as abstract.

C62Acyclic
extension-
inheritance
dependency

For all metaclasses for which extension and inher-
itance relationships exist, an extender metamodel
element cannot extend a base element, if it at the
same time inherits from it, neither directly nor
indirectly.

Static semantics Besides the intrinsic semantics of the core elements, we
define the semantics of the extension relationships.

Definition 38 (Attribute Extension) Given the attributes A1 and
A2 with corresponding sets of attribute interfaces Sai1, Sai2, A1 extends
A2 only if for each of the attribute interfaces in Sai1 the same attribute
interface in Sai2 exists.

Definition 39 (Class Extension) Given the classes C1 and C2 with
corresponding sets of attributes Sa1, Sa2, and with corresponding sets of
class interfaces Sci1, Sci2, C1 extends C2 only if for each of the attributes
in Sa1 the same attribute in Sa2 exists, and for each of the class interfaces
in Sci1 the same class interface in Sci2 exists.

Definition 40 (Model Type Extension) Given the model types
MT1 and MT2 with corresponding sets of attributes Sa1, Sa2, with cor-
responding sets of classes Sc1, Sc2, with corresponding sets of relations Sr1,
Sr2, and with corresponding sets of model type interfaces Smti1, Smti2,
MT1 extends MT2 only if for each of the attributes in Sa1 the same at-
tribute in Sa2 exists, for each of the classes in Sc1 the same class in Sc2
exists, for each of the relations in Sr1 the same relation in Sr2 exists, and
for each of the model type interfaces in Smti1 the same model type interface
in Smti2 exists.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 192

Definition 41 (Relation Extension) Given the relations R1 and R2
with corresponding sets of attributes Sa1, Sa2, with corresponding sets of
relation ends Sre1, Sre2, and with corresponding sets of relation interfaces
Sri1, Sri2, R1 extends R2 only if for each of the attributes in Sa1 the same
attribute in Sa2 exists, for each of the relation ends in Sre1 the same relation
end in Sre2 exists, and for each of the relation interfaces in Sri1 the same
relation interface in Sri2 exists.

Definition 42 (Relation End Extension) Given the relation ends
RE1 and RE2 with corresponding sets of attributes Sa1, Sa2, with corre-
sponding sets of targets St1, St2, and with corresponding sets of relation
end interfaces Srei1, Srei2, RE1 extends RE2 only if for each of the at-
tributes in Sa1 the same attribute in Sa2 exists, for each of the targets in
St1 the same target in St2 exists, and for each of the relation end interfaces
in Srei1 the same relation end interface in Srei2 exists.

Definition 43 (Transitiveness of Extension) For all extension re-
lations applies, given the metamodel elements E1, E2 and E3, if an Element
E1 extends E2 and E2 extends E3, then E1 extends E3.

Definition 44 (Reflexiveness of Extension) Extension is reflexive
relation. For any metamodel element E1, E1 extends E1.

Definition 45 (Derived Relation End Targets) By virtue of exten-
sion, if an extender class or model type is a target of some relation end, the
extended elements of the extender elements are valid targets of that relation
end. Given the relation end RE1 and the set of targets St1, the extender
element (class or model type) E1, and the element E2, such that E1 is a
valid target of RE1 (exists in St1), if E1 extends E2, then E2 is also a valid
target of RE1.

Dynamic semantics

Definition 46 (Injection of Attributes) Given the attributable el-
ements AE1 and AE2 with corresponding sets of attributes Sa1, Sa2, and
the extension relation Re such that AE1 extends AE2, then AE2 aggregates
all attributes from Sa1 into Sa2.

Definition 47 (Injection of Classes and Relations) Given the
model types MT1 and MT2 with corresponding sets of classes Sc1, Sc2 and
relations Sr1, Sr2, and the extension relation Re such that MT1 extends
MT2, then MTI2 aggregates all classes from Sc1 into Sci2, and all relations
from Sr1 into Sr2.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 193

Definition 48 (Injection of Relation Ends) Given the relations R1
and R2 with corresponding sets of relation ends Sre1, Sre2, and the exten-
sion relation Re such that R1 extends R2, then R2 aggregates all relation
ends from Sre1 into Sre2.

Definition 49 (Injection of Model Types and Classes) Given the
relation ends RE1 and RE2 with corresponding sets of model types Smt1,
Smt2, and classes Sc1, Sc2, and the extension relation Re such that RE1
extends RE2, then RE2 aggregates all model types from Smt1 into Smt2,
and all classes from Sc1 into Sc2.

Definition 50 (Injection of Interfaces) For every interfaceable con-
crete element type and its corresponding interface type applies, given the el-
ements E1 and E2 with corresponding sets of interfaces Si1, Si2, and the
extension relation Re such that E1 extends E2, then E2 aggregates all inter-
faces from Si1 into Si2.

Notation

A possible notation of the grey-box metamodel composition language may
be based on the UML class diagram graphical notation. The extension
operators are directed association symbols annotated with an appropriate
stereotype “extends”. No additional differentiation for different types of
extensions is necessary (classExtension, attributeExtension etc.), as this is
implicitly derivable from the connecting elements. Figure 7.13 illustrates
the extension relationship notation.

7.4.3 White-Box Metamodel Composition Language

The white-box metamodel composition operates on the exposed concrete
metamodel elements of metamodel fragments. Standard white-box compo-
sition operations that are already part of the core metamodelling language
are inheritance and aggregation. To complement these operators, we intro-
duce the mixin inclusion composition operator which is the main contribu-
tion of our white-box metamodel composition language. In the following, we
discuss the syntax, the semantics and the notation of such white-box meta-
model composition language. For the easier definition of the new operator,
we assume that metamodel elements in fragments by default are all public.

Syntax

Syntax Schema The mixin inclusion composition operator combines white-
box concrete metamodel elements. Hence, metaclasses that represent core
concrete elements from the core language are taken as elements on which

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 194

the composition takes place. The operator is defined reflexively on the level
of a metamodel element. By doing so, this extension module itself invasively
modifies each of the concrete elements of the core metamodelling language by
adding the corresponding mixin inclusion operator relationships. Figure 7.12
illustrates the syntax schema of the white-box composition language.

Figure 7.12: Metamodel of the white-box composition operators

Basically, the mixin operator includes (or “mixes in”) structural features
of a mixin element into a base element. A mixin element must be declared as
non-instantiable abstract metamodel element. A base element may mix in
many mixins. Likewise, a mixin element may be mixed in by different base
elements. As for including the elements, the mixin inclusion operator re-
lies on the aggregation composition operator applied on the set of elements.
Which structural features are mixed in is defined by the corresponding con-
crete composition operator.

The mixin inclusion relationships are defined as follows:

• attributeMixinInclusion. An attribute mixin inclusion includes at-
tribute interfaces of a mixin attribute into a base attribute. We define
the relationship attributeMixinInclusion as a directed, reflexive rela-
tionship from and to the metaclass Attribute.

• classMixinInclusion. A class mixin inclusion mixes in structural fea-
tures of a class such as attribute and class interface of a mixin class
into a base class. The relationship classMixinInclusion is a directed,
reflexive relationship from and to the metaclass Class.

• modelTypeMixinInclusion. A model type mixin inclusion allows a base
model type to mix in attributes, classes, relations and model type
interfaces of a mixin model type. The relationship modelTypeMixinIn-
clusion is a directed, reflexive relationship from and to the metaclass
ModelType.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 195

• relationMixinInclusion. A relation mixin inclusion mixes in attributes,
relation ends and relation interfaces of a mixin relation into a base re-
lation. The relationship relationMixinInclusion is a directed, reflexive
relationship from and to the metaclass Relation.

• relationEndMixinInclusion. A relation end mixin inclusion allows a
base relation end to include attributes, connectable targets and rela-
tion end interfaces of a mixin relation end. Likewise, the relationship
relationEndMixinInclusion is a directed, reflexive relationship from
and to the metaclass RelationEnd.

Since we define the mixin inclusion operator for each metaclass, the same
type restriction is inherently given. For example, one cannot use the rela-
tionship classMixinInclusion from a model type to mix in classes. However,
in some meta-languages, mixin inclusion may require that some additional
metaclass properties have to match between the mixin element and the par-
ent element5. However we do not specify which specific metaclass properties
must be compatible as the list of properties for each core element may vary
between different metamodelling languages.

Constraints Table 7.6 lists the abstract syntax constraints that further
restrict the syntax schema of the white-box composition constructs.

Semantics

The semantics of the white-box composition operator extends the semantics
of the concrete metamodelling language and is defined as follows.

Static semantics The static semantics as defined in Definitions 51-58
introduces basic semantic characteristics of the mixin inclusion operator.

Definition 51 (Attribute Mixin Inclusion) Given the attributes
A1 and A2 with corresponding sets of attribute interfaces Sai1, Sai2, A1
mixes in A2 only if for each of the attribute interfaces in Sai2 the same
attribute interface in Sai1 exists.

Definition 52 (Class Mixin Inclusion) Given the classes C1 and
C2 with corresponding sets of attributes Sa1, Sa2, and with corresponding
sets of class interfaces Sci1, Sci2, C1 mixes in C2 only if for each of the
attributes in Sa2 the same attribute in Sa1 exists, and for each of the class
interfaces in Sci2 the same class interface in Sci1 exists.

5For example, ADOxx introduces the property “repository class” of the metaclass Class,
which further specifies that type. See Chapter 8 for further details.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 196

Table 7.6: Abstract syntax constraints of the white-box composition part
of the composition language

Constraint Description
C80Acyclic mixin

inclusion de-
pendency

For all mixin inclusion relationships applies, a base
element cannot mix in itself, neither directly nor in-
directly.

C81Abstract mixin
element

For all mixin metaclasses, a metamodel element can
be a mixin only if it is declared as abstract.

C82Acyclic
inclusion-
inheritance
dependency

For all mixin metaclasses for which mixin inclusion
and inheritance relationships exist, a base element
cannot mix in a mixin element, if a mixin element
inherits from a base element, neither directly nor in-
directly.

C83Acyclic
inclusion-
extension
dependency

For all mixin metaclasses for which mixin inclusion
and extension relationships exist, a base element can-
not mix in a mixin element, if it at the same time
extends it, neither directly nor indirectly.

Definition 53 (Model Type Mixin Inclusion) Given the model
types MT1 and MT2 with corresponding sets of attributes Sa1, Sa2, with
corresponding sets of classes Sc1, Sc2, with corresponding sets of relations
Sr1, Sr2, and with corresponding sets of model type interfaces Smti1, Smti2,
MT1 mixes in MT2 only if for each of the attributes in Sa2 the same attribute
in Sa1 exists, for each of the classes in Sc2 the same class in Sc1 exists, for
each of the relations in Sr2 the same relation in Sr1 exists, and for each of
the model type interfaces in Smti2 the same model type interface in Smti1
exists.

Definition 54 (Relation Mixin Inclusion) Given the relations R1
and R2 with corresponding sets of attributes Sa1, Sa2, with corresponding
sets of relation ends Sre1, Sre2, and with corresponding sets of relation
interfaces Sri1, Sri2, R1 mixes in R2 only if for each of the attributes in
Sa2 the same attribute in Sa1 exists, for each of the relation ends in Sre2
the same relation end in Sre1 exists, and for each of the relation interfaces
in Sri2 the same relation interface in Sri1 exists.

Definition 55 (Relation End Mixin Inclusion) Given the relation
ends RE1 and RE2 with corresponding sets of attributes Sa1, Sa2, with cor-
responding sets of targets St1, St2, and with corresponding sets of relation

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 197

end interfaces Srei1, Srei2, RE1 mixes in RE2 only if for each of the at-
tributes in Sa2 the same attribute in Sa1 exists, for each of the targets in
St2 the same target in St1 exists, and for each of the relation end interfaces
in Srei2 the same relation end interface in Srei1 exists.

Definition 56 (Transitiveness of Mixin Inclusion) For all mixin
inclusion relations applies, given the metamodel elements E1, E2 and E3, if
an Element E1 mixes in E2 and E2 mixes in E3, then E1 mixes in E3.

Definition 57 (Reflexiveness of Mixin Inclusion) Mixin inclusion
is a reflexive relation. For any metamodel element E1, E1 mixes in E1.

Definition 58 (Derived Relation End Targets) By virtue of mixin
inclusion relation, if a mixin class or model type is a target of some relation
end, then elements that include a mixin element are valid targets of that
relation end. Given the relation end RE1 and the set of targets St1, the
mixin element (class or model type) E1, and the element E2, such that E1
is a valid target of RE1 (exists in St1), if E2 mixes in E1, then E2 is also
a valid target of RE1.

Dynamic Semantics The dynamic semantics of the mixin inclusion op-
erator as defined in Definitions 59-63 describe how the mixin inclusion op-
erator is applied on metamodel elements.

Definition 59 (Inclusion of Attributes) Given the attributable el-
ements AE1 and AE2 with corresponding sets of attributes Sa1, Sa2, and
the mixin inclusion relation Rm such that AE1 mixes in AE2, then AE1
aggregates all attributes from Sa2 into Sa1.

Definition 60 (Inclusion of Classes and Relations) Given the
model types MT1 and MT2 with corresponding sets of classes Sc1, Sc2 and
relations Sr1, Sr2, and the mixin inclusion relation Rm such that MT1
mixes in MT2, then MTI1 aggregates all classes from Sc2 into Sci1, and all
relations from Sr2 into Sr1.

Definition 61 (Inclusion of Relation Ends) Given the relations
R1 and R2 with corresponding sets of relation ends Sre1, Sre2, and the
mixin inclusion relation Rm such that R1 mixes in R2, then R1 aggregates
all relation ends from Sre2 into Sre1.

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 198

Definition 62 (Inclusion of Model Types and Classes) Given the
relation ends RE1 and RE2 with corresponding sets of model types Smt1,
Smt2, and classes Sc1, Sc2, and the mixin inclusion relation Rm such that
RE1 mixes in RE2, then RE1 aggregates all model types from Smt2 into
Smt1, and all classes from Sc2 into Sc1.

Definition 63 (Inclusion of Interfaces) For every interfaceable con-
crete element type and its corresponding interface type applies, given the el-
ements E1 and E2 with corresponding sets of interfaces Si1, Si2, and the
mixin inclusion relation Rm such that E1 mixes in E2, then E1 aggregates
all interfaces from Si2 into Si1.

Notation

Similar to the previous notation proposals, the white-box metamodel compo-
sition language may be based on the UML2 class diagram graphical syntax.
The mixin inclusion operator is a directed relationship symbol annotated
with the stereotype “includes”. Likewise, no additional symbols for different
types of mixin inclusion relationships are needed (classMixin, modelType-
Mixin, etc.), as this is derivable from the type of the connecting elements.
Figure 7.13 illustrates the notation of the mixin inclusion relationship.

Figure 7.13: A concrete syntax of the grey-box and white-box composition
operators

7.5 Chapter Summary
In this chapter, we introduced MMEL, a language for modular metamodel
definition, which represents an extension to the existing metamodelling lan-
guage constructs that allows for modular definition of metamodels. The
MMEL itself is designed in a modular way and it consists of three basic
modules for each of which a separate section has been dedicated. In Sec-
tion 7.2, we introduced the core metamodelling language, which represents
a common implementation of existing metamodelling constructs. The core
module itself consists of an abstract and a concrete language module. This
separation was important, in order to inherit certain concepts from an ab-
stract module by other modules we introduced later. In Section 7.3 we
specified the metamodel modularisation language, which itself consists of a

CHAPTER 7. A LANGUAGE FOR MME (MMEL) 199

module for metamodel encapsulation and a module for metamodel interfac-
ing. The encapsulation module allows for the packaging of metamodels into
self-contained metamodel modules, whereas interfacing brings concepts for
information hiding. Finally, in Section 7.4 the metamodel composition lan-
guage has been defined featuring composition operators for interface-based
black-box composition, extension-based grey-box composition and mixin-
based white-box metamodel composition.

Since the architecture of MMEL is itself modular, it allows for a step-
wise adoption and realisation in metamodelling platforms. For example, it
is sensible to adopt the encapsulation module in the very first step, as is
represents the basis for modular metamodel definition. Afterwards, mod-
ules for grey-box and white-box composition may be independently realised.
In case of the black-box composition module, the interfacing module is re-
quired. Even on the level of metaclasses, the step-wise adoption may be
suggested. For example, composition operators such as interface realisation,
extension and mixin inclusion may initially be introduced only for class con-
structs followed by other metaclasses in subsequent steps. A possible partial
realisation of the MMEL is elaborated in the next chapter.

Chapter 8

A Realisation of MMEL in
ADOxx

“I do not think there is any
thrill that can go through the
human heart like that felt by the
inventor as he sees some
creation of the brain unfolding to
success. . . Such emotions make a
man forget food, sleep, friends,
love, everything.”

Nikola Tesla

A possible implementation of MMEL as introduced in the previous chap-
ter is subject to discussion of this chapter. The ADOxx metamodelling
platform (see Chapter 4) is used as the underlying metamodelling environ-
ment for the language application. In particular, the ADOxx metamod-
elling language (aka ADOxx-Meta2-Model) is extended by the modulari-
sation and composition metamodelling capabilities. Recalling the require-
ments for MME introduced in Chapter 6 in Section 6.1, and in particular,
the requirements related to the metamodel composition technique, ADOxx
is extended to natively support MME (RT1), using interpretative deriva-
tion of composite fragments (RT2) and without influencing the model-level
mechanisms, i.e. the operational semantics of the existing metamodelling
concepts (RT3).

The chapter is structured as follows. In Section 8.1, we introduce first
the core metamodelling capabilities of ADOxx on the implementation level.
Afterwards, in Section 8.2 and Section 8.3, we elaborate on how ADOxx
metamodelling language is extended considering requirements RT1, RT2 and
RT3, to support metamodel modularisation and composition capabilities in
order to allow for modular metamodel engineering. Section 8.4 explains
the applicability of the MME concepts in the context of MFBs, a broader

200

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 201

approach to modular modelling method engineering in ADOxx. Section 8.5
concludes the chapter.

8.1 ADOxx Metamodelling Language Implemen-
tation

We introduced the ADOxx metamodelling platform in Chapter 4 as one of
the metamodel-based, interpretative metamodelling environments. ADOxx
supports configuration-based tool derivation, i.e. it uses metamodels as
pivotal language definition constructs to configure and instantiate the un-
derlying model-level infrastructure. To define metamodels, ADOxx offers a
metamodelling language, i.e. a meta-metamodel known as ADOxx Meta2-
Model. We discussed the metamodelling capabilities of the ADOxx Meta2-
Model on the conceptual level thoroughly in Chapter 3. In this section,
we concentrate on the implementation level of the ADOxx Meta2-Model by
elaborating on how the syntax, semantics and notation of the meta-language
are realised. This lays down the foundation for the extension of the language
in the subsequent sections.

8.1.1 Syntax of the ADOxx Meta2-Model

Residing on the top of the metamodelling hierarchy, the meta-metamodel
of ADOxx, the ADOxx Meta2-Model, represents the conceptual core of the
ADOxx metamodelling platform, also called the library kernel. The core
syntax schema and syntax constraints are implemented in C++ based on
object-oriented and component-oriented design principles. All of the core
constructs are exposed via the Interface Definition Language (IDL) through
ADOxx APIs, that makes them available for the integration and use by
other components and in other GPLs. In the course of the approach realisa-
tion, ADOxx Meta2-Model is considered as the core metamodelling language
module of the language for MME as defined in the previous chapter.

Syntax Schema

The core part of the library kernel, the syntax schema introduces basic
metamodelling constructs such as library, model type, class, relation class,
endpoint, attribute and attribute type1. Unlike the conceptual view intro-
duced in Section 3.4, Figure 8.1 illustrates an excerpt of the implementation
view of the ADOxx meta-metamodel, that reveals how single concepts are
ordered hierarchically and which key member properties they feature. In
ADOxx, any metamodel element construct is a subtype of the core object

1For the sake of simplicity, we will not consider other advanced metamodelling con-
structs of ADOxx such as modes, contexts, context parameters, etc.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 202

(IAdoCoreObject), which guarantees that every construct has an appropri-
ate ID for unique identification within the metamodel. Furthermore, all
constructs that may have names are subtypes of the named object (IAdo-
CoreNamedObject).

Figure 8.1: An excerpt of the implementation view of the ADOxx Meta2-
Model

While single concrete constructs have been described, here we concen-
trate on how ADOxx constructs are mapped to the abstract metamodelling
language constructs of our approach. Table 8.1 introduces the mapping.
It can be noted that all basic/core metamodelling constructs are covered,
with some minor exceptions with regard to the inheritance of attributes, ar-
ity of relations and the availability of the abstract property of metaclasses.
The current version of ADOxx supports inheritance of attributes for classes,
binary relations and abstract property for classes.

Syntax Constraints

The syntax constraints further restrict the abstract syntax schema. In
ADOxx, the syntax constraints of the ADOxx Meta2-Model itself are part
of the library kernel and are implemented as a dedicated metamodel check
module (aka library checks module). Due to its component-based architec-
ture, ADOxx allows for adding additional constraints beyond those natively
supported by the metamodel kernel. An example of a typical metamodelling

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 203

Table 8.1: Mapping of abstract core metamodelling language concepts to
ADOxx Meta2-Model

Abstract Core
MM-Language

ADOxx Meta2-Model

Attribute IAdoCoreAttributeDefinition

Class IAdoCoreClass (inheritance, can be abstract)

Model type IAdoCoreModelType

Relation IAdoCoreRelationClass (binary)

Relation end IAdoCoreEndpointDefinition

language syntax constraint is the cyclic inheritance check (See constraint C2
in Chapter 7), which prevents creating cyclic dependencies using the inheri-
tance relationship. Listing 8.1 shows the basic implementation of the cyclic
inheritance check syntax constraint.

1 boolean ha sCyc l i c Inhe r i t anc e (IAdoCoreClass aClass)
{

3 IAdoCoreClass aSuper = aClass . getSuperType () ;
whi l e (aSuper)

5 {
i f (aClass == aSuper)

7 {
return true ;

9 }
aSuper = aSuper . getSuperType () ;

11 }
return f a l s e ;

13 }

Listing 8.1: An example of syntax constraint of the ADOxx
metamodelling language: Cyclic inheritance check

8.1.2 Semantics of the ADOxx Meta2-Model

The semantics of the ADOxx metamodelling language is imperatively de-
fined, i.e. it is programmed using a GPL and represents the inherent be-
haviour of the metamodelling tool. While some parts of the semantics of
the metamodelling language specify the meaning and the behaviour of the
metamodelling constructs on the metamodel-level (aka metamodel-level se-
mantics), other parts of the semantics have affect on the model level (aka
model-level semantics). For example, the metamodelling construct inheri-
tance, if seen as a pure reuse construct in metamodelling, has its semantics
defined only on the metamodel level. However, if we add the polymor-
phism, the behaviour of objects to be instances of several classes as long

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 204

as those classes form an inheritance hierarchy, its semantics is specified on
the model level. Similarly, the behavioural meaning of an abstract class
(as metamodel element) can only be defined in the model-level mechanisms
(e.g. model repository, model editor, etc. see Section 4.2), which interpret
such classes as being non-instantiable. In the following, we concentrate on
the semantics of the metamodelling constructs that are defined only on the
metamodel-level.

Static Semantics

To exemplify the implementation of the static semantics of the ADOxx meta-
modelling language, we refer to the transitiveness property of the attribute
inheritance as defined in Section 7.2 (Definition 2). Basically, the transi-
tiveness allows for a class to be not only a subclass of its direct parent class,
but recursively of all parents of the parents. While the class inheritance re-
lationship is, clearly, an intrinsic property (outgoing relationship) of a class,
the transitiveness may be realised as a service/method of a IAdoCoreClass,
which retrieves all direct and indirect parent classes of a given class. List-
ing 8.2 shows a simplified implementation of the inheritance transitiveness
in ADOxx.

1 Set<IAdoCoreClass> getA l lSupe rC la s s e s ()
{

3 Set<IAdoCoreClass> aSuperSet = new HashSet<IAdoCoreClass >()
;

IAdoCoreClass aSuperClass = th i s . getSuperClass () ;
5 i f (aSuperClass)

{
7 aSuperSet . add (aSuperClass) ;

// r e c u r s i v e l y c o l l e c t a l l d i r e c t and i n d i r e c t
s up e r c l a s s e s

9 aSuperSet . addAll (aSuperClass . g e tA l lSupe rC la s s e s ()) ;
}

11 re turn aSuperSet ;
}

Listing 8.2: An example of the implementation of the static
semantics of the ADOxx metamodelling language: Transitiveness of class
inheritance

Dynamic Semantics

Likewise, we refer to the inheritance of attributes as dynamic semantics
example of the ADOxx metamodelling language (Definition 5). Basically,
if a class is declared to be the subclass of another class, it inherits all of its
attributes. This behaviour in ADOxx is realised by getting all attributes of
the superclass and aggregating them to the subclass. Listing 8.3 shows a
simplified algorithm for inheriting the attributes of the superclass.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 205

void i n h e r i tA t t r i b u t e s (IAdoCoreClass superCLass)
2 {

I t e r a t o r <IAdoCoreAttr ibuteDef in i t ion> aAtt r ibute s =
superClas s . g e tAt t r i bu t e s () ;

4 whi le (aAtt r ibute s . hasNext ())
{

6 IAdoCoreAttr ibuteDef in i t i on aAttr = aAtt r ibute s . next () ;
t h i s . attrDefMap . add (aAttr) ;

8 }
}

Listing 8.3: An example of the implementation of the dynamic
semantics of the ADOxx metamodelling language: Inheriting attributes
of superclass

8.1.3 Notation of the ADOxx Meta2-Model

As discussed in Chapter 4.2, ADOxx provides dedicated editors for language
definition. In particular, the abstract syntax of a modelling language based
on ADOxx Meta2-Model may be edited using tree-based and form-based
editors. Tree-based editors are used to visualise and edit the containment
structures of a metamodel definition (a library contains model types, model
types contain classes, etc.) and to visualise and edit the class hierarchy.
Form-based editors are used to specify properties of metamodel elements.
For each of the metamodelling constructs (class, model type, attribute, etc.),
a form-based editor exists. Figure 8.2 shows a screenshot of tree-based edi-
tors and a form-based editor for the metamodel element class. Note that, by
definition, ADOxx Meta2-Model may be defined using the textual notation
by utilising ADOxx APIs for metamodelling in some of the supported GPLs
such as Java, C++ or in the scripting languages such as JavaScript.

8.2 Implementing Metamodel Modularisation in
ADOxx

In Chapter 7, we introduced the metamodel modularisation language as
part of the MMEL. This section elaborates on the implementation of the
metamodel modularisation language as an extension of the ADOxx meta-
modelling language. In doing so, both sublanguages of the modularisation
language are considered, the encapsulation and the interfacing language. We
discussed in Chapter 3 the core and supporting capabilities of the ADOxx
Meta2-Model and came to the conclusion that ADOxx provides powerful
concepts for core metamodelling. In the following, we show how the syn-
tax, the semantics and the notation of the ADOxx Meta2-Model may be
extended to allow for metamodel modularisation regarding both encapsula-
tion and interfacing concepts.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 206

Figure 8.2: A screenshot of the tree-based and form-based notation of the
ADOxx Meta2-Model

8.2.1 Extending the Syntax

The fundamental syntactic notions of the modularisation language are the
metamodel fragment to support encapsulation and the notion of interface to
support interfacing. A metamodel fragment is simply a package construct
that may contain metamodel elements and/or other fragments and may im-
port and use elements from other fragments based on explicit dependencies.
On the other side, an interface is a construct which introduces the level
of indirection when composing metamodel elements to support information
hiding and flexible composition. Note that, for the sake of simplicity, we
explicate how the interface concept is realised in ADOxx only for the meta-
classes class and attribute, both being pivotal concepts in metamodelling.
Similar realisation is deducible for other metaclasses of a metamodelling lan-
guage. In the following, we discuss how these concepts may be included into
the existing syntax of ADOxx Meta2-Model.

Syntax Schema

Encapsulation Like other main constructs, a fragment may uniquely be
identified by an UUID and may have a name. Hence, we define fragment
(IAdoCoreFragment) as a subtype of the named object(IAdoCoreNamedObject).
Furthermore, a fragment may contain other metamodel elements. Since all
core metamodel elements in the ADOxx syntax schema are subtypes of
the named object, being their generalised construct, this element becomes

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 207

also the perfect candidate for the role of a containable metamodel element.
Thus, we specify that a fragment is a named object that may contain other
named objects. As specified in the modularisation language, a fragment
may contain owned elements and imported elements from other fragments.
Therefore, we add two new relationships from a fragment to the named ob-
ject, namely, ownedElements and importedElements. Furthermore, a frag-
ment may nest other fragments and depend on other fragments. These two
relations, nestedFragments and dependentFragments are added as reflexive
relationships on the fragment element directly. One may argue that the
nesting and dependency may be also expressed via owned and imported el-
ement relationships, respectively, in case the target element is a fragment.
While this is true, we keep having dedicated containment and import rela-
tionships on the fragment level and on the element level separated for the
sake of precise semantics.

Figure 8.3: Extending the ADOxx Meta2-Model for metamodel modulari-
sation

Interfacing The inclusion of the interface concepts into the existing syn-
tax structure raises two important restrictions to be considered. First, the
interface concept should be injected into the existing syntax such that it
can reuse the existing structural relationships of concepts (a class contains
attributes, etc.). Second, extensions in the syntax must not introduce any
incompatibilities with existing model-level mechanisms (changes in syntax
and semantics) such as model repository. Analysing the existing syntax

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 208

schema it becomes clear that ADOxx doesn’t have the abstract core con-
cepts for each concrete core construct that would represent abstract super-
types of concrete elements and their interface counterparts as defined in
Section 7.3. Therefore, we introduce two new constructs for each interface-
able element, the abstract concept and the interface concept. In particular,
the abstract class IAdoCoreAbstractClass is an abstract non-instantiable el-
ement introduced as a superelement of the existing core class. Now, the
class interface (IAdoCoreClassInterface) is defined as a subtype of the ab-
stract class. Note that this change in the syntax schema doesn’t introduce
any semantic changes, as we simply introduced another abstract level in the
class hierarchy. The same is done for the attribute concept. The abstract
attribute (IAdoCoreAbstractAttribute) becomes the supertype of the exist-
ing concrete attribute (IAdoCoreAttributeDefinition) and the new attribute
interface (IAdoCoreAttributeInterface).

Figure 8.3 shows how the modularisation constructs extend the syntax
schema of the Meta2-Model.

Syntax Constraints

The syntax constraints as defined in the specification of the modularisa-
tion language for both encapsulation and interfacing concepts apply when
realising this extension based on ADOxx. Listing 8.4 introduces the imple-
mentation of the cyclic fragment nestings constraint check (C5). The check
ensures that a fragment cannot directly or indirectly nest itself. Basically,
this check makes sure that the graph represented by the fragments as nodes
and nested relation as edges is a directed, acyclic graph (DAG).

1 boolean hasCyc l i cNes t ings (IAdoCoreFragment aRoot ,
IAdoCoreFragment aFragment)

{
3 I t e r a t o r <IAdoCoreFragment> aNestedFragments = aFragment .

getNestedFragments () ;
whi l e (aNestedFragments . hasNext ())

5 {
IAdoCoreFragment aNested = aNestedFragments . next () ;

7 i f (aRoot == aNested | | ha sCyc l i cNes t ings (aRoot , aNested
))
{

9 re turn true ;
}

11 }
return f a l s e ;

13 }

Listing 8.4: An example of syntax constraint of the ADOxx metamodel
modularisation language: Cyclic nestings check

On the other side, Listing 8.5 shows a representative constraint check
for the interfacing constructs. The check restricts illegal assignment of con-

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 209

crete attribute elements to an attribute interface construct (C14). Clearly,
although allowed given the syntax schema, an interface concept, in partic-
ular the class interface, cannot contain member implementations but only
interfaces, in our case, attribute interfaces.

1 boolean hasAttr ibuteCheck (IAdoCoreClas s Inte r face aCInte r face
)

{
3 I t e r a t o r <IAdoCoreAbstractAttr ibute> aMembers = aCInte r face .

getAttrDefs () ;
whi l e (aMembers . hasNext ())

5 {
IAdoCoreAbstractAttr ibute aMember = aMembers . next () ;

7 // check the type o f the member : a t t r i b u t e or i n t e r f a c e
i f (aMember . type == IAdoCoreAbstractAttr ibute .

TYPE_ATTRIBUTE)
9 {

return true ;
11 }

}
13 re turn f a l s e ;

}

Listing 8.5: An example of syntax constraint of the ADOxx metamodel
modularisation language: Attribute interface aggregation check

8.2.2 Extending the Semantics

Being a supporting construct that helps organising metamodel parts into
reusable units, neither fragment nor interface constructs have instance coun-
terpart concepts on the model level, as this is usual for core metamodelling
constructs. Hence, model-level semantics is neither affected nor extended.
On the other side, the modularisation language brings new semantics on the
metamodel level as we specified in the previous chapter.

Static Semantics

The language for metamodel modularisation introduce a number of static
semantics definitions as specified previously. Listing 8.6 exemplifies the im-
plementation of the few of those definitions as an extension of ADOxx. The
first function declares the top fragment to be a fragment that doesn’t have
an owner fragment (Definition 7). An ownerFragment is an inverse prop-
erty on the element side of the relation nestedElements. The second method
(Line 6) defines an independent fragment to be a fragment that doesn’t con-
tain any dependent fragments by querying the amount of dependent objects
following the relation dependentFragments (Definition 11).

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 210

boolean isTopFragment (IAdoCoreFragment aFragment)
2 {

return (aFragment . ownerFragment == nu l l) ;
4 }

6 boolean isIndependentFragment (IAdoCoreFragment aFragment)
{

8 re turn (aFragment . dependentFragments . count () == 0) ;
}

Listing 8.6: Examples of static semantics implementation of
the ADOxx metamodel modularisation language: TopFragment and
IndependentFragment

Dynamic Semantics

The dynamic semantics of the modularisation constructs and its realisation
in ADOxx may be explicated on the example of the dynamic semantics rule
for the deletion of nested fragments (Definition 18). Basically, if a compound
fragment is deleted, all nested elements must also be deleted. Listing 8.7
illustrates the implementation of this rule. On deleting a fragment, the
function will iterate on nested fragments and recursively delete all nested
occurrences (Line 9).

1 void deleteFragment ()
{

3 I t e r a t o r <IAdoCoreFragment> aNestedFragments = th i s .
getNestedFragments () ;

whi l e (aNestedFragments . hasNext ())
5 {

IAdoCoreFragment aNested = aNestedFragments . next () ;
7

// r e c u r s i v e l y t r i g g e r d e l e t i o n o f nested fragments
9 aNested . deleteFragment () ;

t h i s . nestedFragments . remove (aNested . ID) ;
11 }

}

Listing 8.7: Example of dynamic semantics implementation of
the ADOxx metamodel modularisation language: Deletion of nested
fragments

8.2.3 Extending the Notation

The notation of the metamodel modularisation language extends the ADOxx
tree-based and form-based notation for visualising and editing the constructs
such as fragment, class interface and attribute interface. Hence, for each
concrete metamodel element introduced a form-based syntax is introduced
to provide the possibility to edit their respective properties. In addition, a

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 211

tree-based syntax is desirable for visualising the fragment nesting hierarchy
and fragment dependencies.

8.3 Implementing Metamodel Composition in ADOxx
This section deals with the implementation of the metamodel composition
language in ADOxx. As defined in Chapter 7, the metamodel composition
language contributes to MMEL by providing a rich set of well-defined com-
position operators for black-box, grey-box and white-box metamodel com-
position. Recalling the supporting metamodelling capabilities of the ADOxx
metamodelling language as discussed in Chapter 5, ADOxx supports white-
box composition operators such as class inheritance and aggregation. In the
following, we show how the syntax, the semantics and the notation of the
ADOxx Meta2-Model may be extended to allow for advanced metamodel
composition.

8.3.1 Extending the Syntax

The metamodel composition language introduces several important compo-
sition operators on top of the standard operators already existing in ADOxx.
The composition extension builds on top of both the core metamodelling
constructs of ADOxx and the modularisation constructs introduced earlier.
Similar to the implementation of the modularisation extension, for the sake
of simplicity, we restrict the implementation of composition operators in
this work to those dealing with class constructs and attribute constructs,
and advise the realisation of the operators for other metaclasses to be done
in similar fashion.

Syntax Schema

Black-Box Composition The key operators of the black-box metamodel
composition are interface realisation and interface subtyping. In general, in-
terface realisation operator binds the provided and required interfaces of
metamodel fragments. In particular, it specifies how a concrete element re-
alises a required interface. The ADOxx syntax schema is extended by the
interface realisation on the class interface level (classInterfaceRealisation)
and on the attribute interface level (attributeInterfaceRealisation), by stat-
ing that the core class realises its interface counterpart, so as the attribute
its attribute interface, respectively (see Figure 8.4). A core class may realise
many class interfaces, and vice versa, an interface may be realised by many
classes. The same applies for attributes. Further, interface subtyping allows
for creating type hierarchies, which implies compatibility and extension on
the interface level. We extend the ADOxx syntax schema by adding the

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 212

interface subtyping for both class interfaces (classInterfaceSubtyping) and
attribute interfaces (attributeInterfaceSubtyping).

Figure 8.4: Extending the ADOxx Meta2-Model for metamodel composi-
tion

Grey-Box Composition Grey-box composition introduces a novel com-
position operator for injective element extension based on elements implicit
interfaces. For the extension operator to work, a base element, a extender
element and the extends relation are needed. Hence, we extend the ADOxx
syntax schema by adding the corresponding extension relation for classes
(classExtension) and attributes (attributeExtension) (see Figure 8.4). For
an element to play the role of an extender, it must be declared as abstract.
In ADOxx, the property abstract is available for classes, but it is missing for
attributes. Thus, we add this property as well with the same semantics that
an abstract attribute cannot be instantiated. Having an extender element
for classes means that extension points are the attribute and the class in-
terface sets. For an attribute, this is the attribute interface set. Finally, the
class extender, as a type, is an abstract metaclass, not having an instance
counterpart on the model level. It is solely used for composition purposes
on the metamodel level.

White-Box Composition White-box composition extends the standard
white-box composition operators of ADOxx with the new operator formixin-
based composition. Mixins overcome the problem of multiple class inher-

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 213

itance allowing to mixin classes orthogonal to the inheritance hierarchy.
Therefore, we extend the ADOxx syntax schema by adding a new mixin
inclusion relation on the class level (classMixinInclusion) (see Figure 8.4).
Mixin operator states that a core class may mixin other classes (which are de-
clared abstract) and include their structural features (attributes) in its def-
inition. While the same metaclass restriction automatically applies (mixin
inclusion only between classes), ADOxx introduces an extension to this re-
striction on the metaclass property level. For the class mixins, the parent
class must adhere to the mixin class with regard to the metaclass property
“repository class”2. For example, the class VersionableMixin has a meta-
class property to be a repository class. In that case, the class Document
can only mix in the class VersionableMixin, if it is a repository-based class,
too. Finally, note that for the sake of simplicity, we do not define the mixin
inclusion feature for attributes.

Syntax Constraints

The syntax constraints defined in the specification of the composition lan-
guage are applicable when realising this language extension in ADOxx. Con-
straints such as avoiding acyclic interface subtyping (C13), acyclic extension
(C60) and acyclic mixin inclusion (C80) may be implemented in the similar
way as we exemplified for the acyclic inheritance constraint earlier. Never-
theless, metamodel composition syntax introduces other constraints which
implementation is worth mentioning. Listing 8.8 shows the implementation
of the constraint C61 that restricts that an extender class must be declared
abstract. The same check may be used to implement the restriction C82 for
a valid mixin class.

boolean i sVa l idClas sExtender (IAdoCoreClass aExtender)
2 {

return aExtender . i sAbs t r a c t () ;
4 }

Listing 8.8: An example of syntax constraint of the ADOxx metamodel
composition language: Valid extender class

8.3.2 Extending the Semantics

Akin to the modularisation language, the semantics of the metamodel com-
position language are realised on the metamodel level, this being the lan-
guage’s application domain. Although constructs such as interface and in-
terface realisation have indirect implications on the model level, they do

2Repository class is a special built-in feature of the ADOxx metamodelling language,
that enables instances of classes to be cross-model reusable repository objects instead of
existing only inside of a model scope.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 214

not imply any modifications in the mechanisms on the model level3. In
the following, we explicate the realisation of some of the semantic rules for
metamodel composition in ADOxx.

Static Semantics

The semantics of the black-box composition operator classInterfaceRealisa-
tion is, by far, one of the key semantic extensions for the black-box meta-
model composition. A class is valid realisation of a class interface only if it
realises all attribute interfaces of that class interface (Definition 21). List-
ing 8.9 unfolds its realisation. The method realises a query which checks, for
a given core class and a class interface, whether the class is a valid realisa-
tion of the class interface. Starting with line 4, for each attribute interface,
we check whether there is an attribute of the class, that implements that
interface (from line 10).

boolean i sR e a l i s a t i o nC l a s s (IAdoCoreClass aClass ,
IAdoCoreClass Inter face aCInte r face)

2 {
I t e r a t o r <IAdoCoreAttr ibute Inter face> aAI faces = aCInte r face
. g e tAt t r i bu t e s () ;

4 whi le (aAI faces . hasNext ())
{

6 IAdoCoreAtt r ibute Inte r face aAInte r face = aAIfaces . next () ;
boolean bHasRea l i sat ion = f a l s e ;

8

I t e r a t o r <IAdoCoreAttr ibuteDef in i t ion> aAtt r ibute s =
aClass . g e tAt t r i bu t e s () ;

10 whi le (aAtt r ibute s . hasNext () && ! bHasRea l i sat ion)
{

12 IAdoCoreAttr ibuteDef in i t i on aAttr = aAtt r ibute s . next () ;
// checks i f the a t t r i b u t e implements the i n t e r f a c e

14 bHasRea l i sat ion = aAttr . h a s I n t e r f a c e (aAInte r face) ;
}

16 i f (! bHasRea l i sat ion)
{

18 re turn f a l s e ;
}

20 }
return true ;

22 }

Listing 8.9: Example of static semantics implementation of the ADOxx
metamodel composition language: Class interface realisation

The method will return false as soon as it detects an attribute interface
3Note that this doesn’t mean that, if appropriate, one couldn’t define additional se-

mantics on the model level later on. Similar to the inheritance, which has dual semantics
as an attribute reuse mechanism on the metamodel-level and as an object polymorphism
mechanism on the model level, one could think of some advanced model-level semantics
for other compositional relations, too.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 215

which doesn’t have an appropriate implementation. Otherwise, the class is
valid realisation of the class interface.

Another very important semantic rule, which is the production rule of the
class interface realisation relation and the allowed endpoint targets relation,
is the derivation of endpoint targets (Definition 32). To recall, if a class
interface is a target of some concrete endpoint, then all realisations of that
interface are valid targets of that endpoint. This rule leverages the interface
notion to allow for flexible black-box composition, as it introduces a level
of indirection when connecting classes over endpoints. Instead of specifying
the concrete class as an allowed target of an endpoint, we place the interface
as a target, thus allowing any other class that implements that interface to
be allowed target of that endpoint. Listing 8.10 shows the realisation of this
semantic rule.

boolean isAl lowedEndpointTarget (IAdoCoreEndpointDef in it ion
aEndpoint , IAdoCoreClass aClass)

2 {
I t e r a t o r <IAdoCoreAbstractClass> aTargets = aEndpoint .
getTargets () ;

4 whi le (aTargets . hasNext ())
{

6 IAdoCoreAbstractClass aTarget = aTargets . next () ;

8 i f (aTarget == aClass | |
(aTarget i n s t an c e o f IAdoCoreClas s Inter face &&

10 aClass . h a s I n t e r f a c e (aTarget)))
{

12 re turn true ;
}

14 }
return f a l s e ;

16 }

Listing 8.10: Example of static semantics implementation of the
ADOxx metamodel composition language: Derived endpoint targets

Dynamic Semantics

The dynamic semantics of the composition operators and its realisation in
ADOxx may be explicated the best by the example of the extension operator
for grey-box composition. In particular, the classExtension relation implies
that if the class extender extends the base class, the attributes of the ex-
tender are injected/assigned to the base class (Definition 46). Listing 8.11
unfolds the implementation of the grey-box class extension in ADOxx. As
one can see in line 7, although the extension is syntactically non-invasive on
the side of the base class (the extender declares which class it extends), it is
realised invasively based on the atomic attribute aggregation relation. This
kind of element injection based on implicit extension points is the corner-
stone of the dynamic invasive grey-box composition.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 216

void extendClass (IAdoCoreClass aBase , IAdoCoreClass
aExtender)

2 {
I t e r a t o r <IAdoCoreAttr ibuteDef in i t ion> aAtt r ibute s =
aExtender . g e tAt t r i bu t e s () ;

4 whi le (aAtt r ibute s . hasNext ())
{

6 IAdoCoreAttr ibuteDef in i t i on aAttr = aAtt r ibute s . next () ;
aBase . attrDefMap . add (aAttr) ;

8 }
}

Listing 8.11: Example of dynamic semantics implementation of the
ADOxx metamodel composition language: Grey-box class extension

Regarding the mixin inclusion composition operator, the inclusion of
attribute elements of the mixin class to the base class is realised similarly
(Definition 59). Referring to the same Listing 8.11 if we replace the second
input parameter to accept the core classes (as mixins) in Line 1, then the
same method may be used to realise the mixin-based composition. Clearly,
the classMixinInclusion composition relation must exist between the two
input classes.

8.3.3 Extending the Notation

The notation of the metamodel composition language extends the ADOxx
tree-based and form-based notation for visualising and editing the compo-
sition constructs. In particular, the form-based syntax for class, class inter-
face, attribute and attribute interface can be extended to support the def-
inition of corresponding interface realisation and subtyping relations. Fur-
thermore, the form for the class definition can be extended with options to
define class extensions and mixin inclusions.

8.4 Applying MMEL Towards Modular Modelling
Methods in ADOxx

In this section we discuss how MMEL, the cornerstone of the MME ap-
proach, contributes to the realisation of metamodel and functionality build-
ing blocks (MFBs), a more general approach to modular modelling method
engineering in ADOxx. The MFB concept itself relies on the idea of method
fragments as introduced by [Kühn, 2004] (see Chapter 2).

8.4.1 Metamodel and Functionality Building Blocks (MFBs)

In Chapter 2 we discussed the basic notions of modelling methods. To
recall, a modelling method is a triple of a modelling language, mechanisms
and a process. In order to support method integration based on reusable

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 217

fragments, the notion of method fragments has been introduced [Kühn, 2004]
(see Section 2.2). Method fragments encapsulate single method elements and
allow for their composition. Metamodelling platforms such as ADOxx are
tools to realise modelling languages and methods (see Chapter 4.2). The
realisation counterpart of the method fragment concept in ADOxx is called
Metamodel and Functionality Building Block (MFB). In the following, we
introduce the notion of an MFB and discuss its particularities in the context
of the modularisation and composition.

The Notion of an MFB

An MFB is a reusable modelling method building block that encapsulates
the metamodel and/or functionality part of a modelling method. The meta-
model part called metamodel block (MB) is here used in a broader sense to
represent the static, structural part of the modelling method. The function-
ality block (FB) refers broadly to the dynamic part of the method, which
may be manifested as modelling language dynamic semantics, algorithms
and mechanisms, or even functionality referring to the process guidance.
Following the definition of a method fragment, an MFB may be atomic or
composite. A composite MFB consists of atomic and other composite MFBs.
If an MFB is atomic, it represents only one of the method elements (meta-
model or functionality). By virtue of composition, complex MFBs may be
defined. Regardless of the type, an MFB may contain a concrete implemen-
tation or an interface that exposes the implementation, or both. Figure 8.5
illustrates a high-level metamodel of the MFB concept.

Figure 8.5: The metamodel of an MFB

The compositionality of atomic MFBs into composite blocks that con-
tain both the metamodel and the corresponding functionality is one the
key characteristics of the MFB concept. This way, construction of mod-
elling methods is raised to the level of combining congruent, self-contained,
reusable method fragments.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 218

Types of MFBs

MFBs may be categorised according to the type of a method element they
represent. By combining such MFBs additional composite types arise. Fur-
thermore, MFBs may vary according to the abstraction level.

The following types may be identified based on the compositionality char-
acteristic:

• Atomic MB. An atomic MB consists solely of a metamodel building
block. Its content is represented by a set of metamodel elements defin-
ing some logically meaningful fragment of a metamodel. Such fragment
does not include/depends on any other fragments. For example, a Petri
Net MB consists of metamodel elements such as Transition, Places and
Arcs.

• Composite MB. Composite MBs combine atomic or other composite
MBs together. For example, a Coloured Petri Net may be a compos-
ite MB that combines the atomic Petri Net MB and the Petri Net
Colouring extension MB.

• Atomic FB. Likewise, an atomic FB consists solely of the functional
part. Since FBs do not require any metamodel part, the functionality
of an FB is applicable for any metamodel. That said, an FB usu-
ally implements generic algorithms and mechanisms that are based on
meta-metamodel level concepts (see Section 2.1.4 in Chapter 2). An
example of an FB may be a simple Object Counting algorithm, that
is applicable on objects of any class.

• Composite FB. Composite FBs combine atomic and other composite
FBs to create complex functionality. For example, A Model Report
FB may use the Object Counting FB to generate a report about the
number of objects per class for a given model.

• Composite MFB. Composite MFBs are composites of at least one
metamodel block and one functionality block. When used as extension
blocks, a complete MFB extends the base for both the metamodel and
functionality.

Furthermore, according to the abstraction characteristic, MFBs vary
based on the fact whether they contain only the implementation, only the
interfaces, or both. The following types exist:

• Concrete MB. A concrete MB represents an instantiable metamodel
fragment. An example of a concrete MB is a BPMN process meta-
model consisting purely of implementation elements.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 219

• Abstract MB. Abstract MBs or (M)Bs are non-instantiable metamodel
fragments. A MB is abstract, if it contains at least one abstract ele-
ment not having a concrete implementation. An example of a generic
MB is an abstract process metamodel consisting purely of interface ele-
ments for process modelling, that specify what a concrete MB needs to
provide in order to support, i.e. realise the abstract process modelling
specification.

• Concrete FB. Concrete FBs provide concrete implementation of a cer-
tain functionality. The functionality may be generic, applicable for
any MB or or specific to a certain MB.

• Abstract FB. Abstract FBs or (F)Bs are functional building blocks
without implementations. Usually they define a set of interfaces that
are implemented by concrete FBs.

• Concrete MFB. Concrete MFBs are composites of at least one concrete
metamodel block and one concrete functionality block. The functional-
ity is written usually specific to the metamodel, thus corresponding to
(metamodel-)specific algorithms and mechanisms. Usually, the func-
tional part represents the implementation of the language semantics.
An example of a complete MFB may be a combination of the Petri Net
MB and a Reachability FB that validates the reachability of states in
petri net models.

• Abstract MFB. An abstract MFB or a generic, partial MFB contains
both MB and FB, but at least of the blocks is of abstract type such as
(M)FB, M(F)B, or (MF)B. Usually, such MFB contains only generic
MB and a concrete FB that is based on it. Such MFB may be con-
sidered as a hybrid, adaptable mechanism (see Chapter 2.1.4 for def-
initions). Furthermore, partial MFBs cannot be used out-of-the-box,
since they need an adequate parameterisation of the abstract part. An
example of a partial MFB is a simulation algorithm that is based on
a generic, parameterisible process metamodel.

Composition of MFBs

When combining different types of MFBs, some basic and complex compo-
sition operations may be identified. Binding, extension and grounding are,
what we call, the basic composition operations for MFBs.

• Binding. Binding is about connecting the abstract MFB to its im-
plementation MFB of the same type. For example, a concrete MB
realises the abstract MB by binding its concrete elements to the inter-
face counterparts in the (M)B. The same applies for the functionality
blocks.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 220

• Extension. Extension is any kind of composition operation of exten-
sional character that connects two blocks of the same type. It may be
based on composition operators such as inheritance, aggregation, ex-
tension, mixin inclusion, etc. It applies to any combination of concrete
or abstract MBs or FBs.

• Grounding. Grounding is a composition operation that connects the
functionality block to the corresponding metamodel block. It applies
for any combination of concrete or abstract FBs and MBs, as long as
the source block is an FB and the target block of grounding is an MB.

Figure 8.6: Variability of MFB composition operations

Having the basic MFB composition operations, complex compositional
patterns may be applied to allow for generality, flexibility, substitutability
when creating modular modelling methods. Without extensive elaboration
on the variability of such complex combinations, we explicate the idea based
on the following patterns such as, abstract extension, abstract grounding and
indirect grounding.

• Abstract extension. Abstract extension is basically an abstract MFB
that extends another MFB. While being abstract, many different con-
crete MFBs may be concrete extensions as long as they are correctly
bound to the abstract MFB. In that case, the abstract MFB prescribes
what are the allowed extension points, which concrete MFBs can use
to extend the base MFB.

• Abstract grounding. In order to allow for a flexible functional block
applicable for a family of similar metamodels, an FB may be grounded

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 221

to an abstract metamodel block (M)B. This way, any concrete MB that
has a valid binding to the (M)B is a grounding candidate for that FB.
A simulation algorithm applicable for various process models is a good
example for abstract grounding.

• Indirect grounding. On the other side, there may be different variants
of the same functionality that should be grounded on one particular
metamodel. This can be done by binding the abstract functional block
(F)B to an MB, and by letting concrete FBs bind to the (F)B. An ex-
ample of this may be a petri net language with an abstract reachability
algorithm, having different implementations focusing on different op-
timisation techniques.

Figure 8.6 illustrates the variability of the basic and complex MFB com-
position operations.

8.4.2 Realisation of MFBs in ADOxx

Concepts for modularisation and composition of both metamodel and func-
tionality are crucial for the realisation of MFBs. Such concepts should be an
integral part of the corresponding formalisms that are available for the imple-
mentation of the metamodels and of the functionality. As discussed earlier
(see corresponding sections in Chapter 4 and Chapter 8), ADOxx provides
the ADOxx Meta2-Model, a metamodelling language for the metamodel
definition. Likewise, ADOxx provides a set of APIs that are embedded in
the scripting language such as JavaScript or in the GPLs such as Java and
C++, that are used to implement method functionality, i.e., to realise dy-
namic semantics of modelling languages and corresponding algorithms and
mechanisms of a modelling method. In the following, we discuss the mod-
ularisation and the composition concepts of those formalisms in ADOxx.
In particular, we discuss how the MME approach and the language MMEL
contribute to the modular and compositional capabilities of the metamodel
part of the MFB concept in ADOxx.

Modularisation and Composition of Functionality Blocks

Since ADOxx offers its APIs through standard scripting and programming
languages, it inherently provides adequate constructs for both modularisa-
tion and composition of the method functionality. Depending on the pro-
gramming language applied, notions such as namespaces, packages, access
modifiers and interfaces may be used to organise program code into reusable
components. In addition MFB-specific (metaprogramming) APIs are pro-
vided that allow for accessing metainformation about MFBs such as its
dependencies, properties, availability, etc. Similarly, composition concepts

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 222

may be used to compose FBs. These include both standard “push” tech-
niques via API calls between FBs, but also “pull” programming models such
as callbacks, event-based composition and messaging4. The latter two are
especially useful when composing prefabricated black-box components.

Modularisation and Composition of Metamodel Blocks based on
MMEL

The modularisation and the composition of metamodel blocks in ADOxx
is where the MME approach is applied. In particular, the ADOxx Meta2-
Model is extended for the modularisation and composition concepts of MMEL
as described in Chapter 8. In particular, the notion of an MB is realised us-
ing the metamodel modularisation language. Metamodels are encapsulated
in fragments using the constructs defined in the metamodel encapsulation
language. The interfacing language is used to define explicit interfaces of
MBs. Clearly, if an MB is a concrete MB, the metamodel fragment may con-
sists of concrete metamodel elements, but also define a set of corresponding
interfaces other MFBs may use. In case of abstract MBs, the metamodel
fragment will consist of interfaces or abstract elements that do not have
a corresponding implementation in that fragment. The notion of nesting
is used to define internal fragments of an MB, not visible to the outside.
Dependencies declare to which fragments of other MBs, a fragment of a par-
ticular MB depends on, for composition purposes. On the other side, the
metamodel composition language provides standard and advanced compo-
sition operators for black-box, grey-box and white-box composition of MBs.
The binding composition of abstract MBs and concrete MBs may be done
using the interface realisation composition operator. Furthermore, different
kinds of extensional compositions between MBs are possible using black-box
interface subtyping, grey-box extension operator, as well as using appropri-
ate white-box operators such as aggregation and mixin inclusion.

Grounding: Composition of Functionality Blocks and Metamodel
Blocks

Modularisation of MBs into self-contained fragments based on MMEL allows
for combining and deploying MBs together with a corresponding FB to form
composite reusable units available for further combination. The FB part of
such MFB grounds on the concepts from the MB to build up a particular
functionality specific to that metamodel. Since ADOxx provides dedicated
APIs to access metamodel information, and by that, also the APIs related
to the constructs of the MME language, the composition of FBs and MBs

4In the context of component composition, Szyperski [Szyperski, 2002] defines stan-
dard method calls as being traditional “pull” programming models, whereas event-based
notifications and messaging are referred to as “push” programming models.

CHAPTER 8. A REALISATION OF MMEL IN ADOXX 223

is based on the standard component API calls from the functional block to
the metamodel block. Note that the metamodel block may be concrete or
abstract, thus allowing for the realisation of abstract and indirect groundings
and other complex MFB compositions.

8.5 Chapter Summary
In this chapter we elaborated on a possible implementation of MMEL, a lan-
guage for modular metamodel definition, within the metamodelling platform
ADOxx. In particular, we demonstrated how the ADOxx metamodelling
language ADOxx Meta2-Model is extended by MMEL on all three language
aspects, the abstract syntax, the semantics and the notation, in order to
support metamodel modularisation (Section 8.2) and metamodel compo-
sition (Section 8.3). With respect to the requirements for modular meta-
model engineering, the implementation fulfilled all of them successfully. The
core metamodelling language has been natively extended by the modulari-
sation and the composition concepts (RT1). As a consequence of the native
language extension, the ADOxx metamodelling core has been extended to
support interpretative composition derivation (RT2), i.e. no transforma-
tion/code generation step is needed when combining metamodel fragments.
While core and modular constructs reside on the same abstraction level,
generative techniques become superfluous. Finally, since the introduced
modularisation and composition concepts belong solely to the supporting
capabilities of metamodelling languages, they do not influence the core con-
cepts and thus do not break compatibility with the underlying model-level
mechanisms (RT3). Instead, these concepts extend ADOxx metamodelling
language with advanced, metamodelling techniques that foster reuse and
modular definition of metamodels. In addition, in Section 8.4, we discussed
how MMEL fills in the missing piece of the puzzle for the realisation of the
more general concept of MFBs in ADOxx towards modular engineering of
modelling methods.

Part IV

Evaluation

224

Chapter 9

Case Studies for MMEL in
OMILab

“We can’t solve problems by
using the same kind of thinking
we used when we created them.”

Albert Einstein

As we introduced the general concept of MME in Chapter 6, we men-
tioned that there is nothing that can be done with metamodel fragments,
that cannot be done without them. While the end result of metamodelling
is the same, the way how metamodels are developed differs dramatically.
Instead of developing complex metamodels from scratch, MME allows for
creating metamodels by combining existing metamodel fragments. Further-
more, it allows for flexible extensions of existing metamodels by pluging in
metamodel add-ons. Systematic reuse, flexibility in adaptations, extensions
and overall increased efficiency in developing metamodels are key benefits of
MME. In this chapter, we aim at evaluating the usefulness and the applica-
bility of MME, and in particular of its language MMEL, based on two case
studies in modular construction of hybrid modelling languages in the context
of OMILab1. The selection of modelling languages for systematic evalua-
tion in both case studies reflects the major duality of modelling concerns
(structure, behaviour) and the diversity of modelling domains in enterprise
modelling (Business Processes (BP), Enterprise Architecture (EA)).

The chapter is organised as follows. In Section 9.1, we use modular-
isation and composition concepts of MME and constructs from MMEL to
design the hybrid, enterprise modelling method BPMS. In Section 9.2, in the
second case study, we demonstrate how MMEL can be applied to construct

1OMILab [OMI, 2015] is a research and experimental laboratory for the conceptuali-
sation, development and deployment of modelling methods and the models designed with
them.

225

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 226

the Hybrid PDDSL, a hybrid DSML that combines a language for network
devices modelling with the ontology language OWL2 for consistent network
device management. Section 9.3 summarises the chapter.

9.1 Case Study in BP: Modular BPMS
The Business Process Modelling Systems (BPMS) method is a modelling
method used for enterprise-wide business modelling of four core enterprise
areas business processes, products, organisations and information technol-
ogy [Bayer and Kühn, 2013]. It is part of the more general BPMS framework
for enterprise business process management [Karagiannis, 1995] and its suc-
cessor methodology PMLC [Bayer and Kühn, 2013]. The BPMS method
is the core modelling formalism used in the business process modelling tool
ADONIS [Junginger et al., 2000,BOC, 2015] based on ADOxx.

In this section, we discuss a possible realisation of the metamodel part of
the BPMS method using the modularisation and composition concepts and
constructs of MMEL. To do that, we first need to introduce particularities
of ADOxx metamodels in general before we continue with BPMS-specific
application of MME.

9.1.1 Particularities of ADOxx Metamodels

A metamodel in ADOxx is a pivotal element for the definition of a mod-
elling language and indirectly of a modelling method. Besides its core pur-
pose of defining the abstract syntax of a modelling language, the ADOxx
metamodel also integrates the definition of notation for the abstract syntax
constructs. Furthermore, it represents the common data structure of the
various system-specific and metamodel-specific algorithms and mechanisms
being part of a modelling method. That said, such metamodel may grow big.
Real-world, industry-relevant modelling methods contain metamodels hav-
ing several thousands of metamodel elements2, which make them complex,
monolithic design and implementation artefacts that are hard to comprehend
and maintain. Metamodel modularisation and composition techniques can
help to tackle this complexity by dividing complex metamodels into smaller,
self-contained, reusable fragments that can then be developed independently
and flexibly recombined to create composite metamodels.

In order to be able to introduce modularisation of ADOxx metamod-
els, we need to understand what their basic constituents are. Basically,
the content of an ADOxx metamodel is driven by the requirements from
two sides, the domain of a modelling language, the functionalities applied.

2The metamodel size statistics stem from ADOxx-based projects at BOC. For example
the standard BPMS method used for ADONIS tool has around 1300 defined metamodel
elements, whereas the EAM metamodel of ADOit contains 900 metamodel elements.

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 227

That said, an ADOxx metamodel consists of domain-driven elements, and
functionality-driven elements. Figure 9.1 illustrates the anatomy of ADOxx
metamodels.

Figure 9.1: Anatomy of ADOxx metamodels

Domain-driven Elements

The metamodel elements required by the domain represent core constructs
of a modelling language. Domain-driven, or domain elements are usually
separated into different domain aspects, that represent single viewpoints of
the system under consideration. For example, a class element Task is a
domain element used to represent steps within a process. A Task may have
some domain attributes such as Type and is related to other class elements
such as events. Note, by defining such an element, we don’t specify whether
such element can be modelled in a graphical model editor or not.

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 228

Functionality-driven Elements

Functionality in a modelling method is applied on the model data, i.e. it
requires certain data structures that are represented in the metamodel. Do-
main elements provide such structure, however additional elements may be
needed, which we call, functionality-driven elements. There are two cate-
gories of functionality-driven elements:

• Functionality-driven domain elements. If a functionality-driven ele-
ment extends the domain knowledge, it is considered domain-specific.
For example, if a process model should support the functionality of
process cost analysis, its tasks should contain properties to store costs.
Clearly, there is no precise separation of domain-driven and functionality-
driven domain elements, as one could argue that the latter is in fact a
domain element. The difference lies in the purpose of the element, if
it is used to model the core properties of an entity or to enable some
domain-specific functionality.

• Functionality-driven system elements. On the other side, if metamodel
elements are required by some system mechanisms, they are considered
system-specific. For example, if the class Task should be modellable
in the graphical editor, it needs to contain model editor (system) at-
tributes, in order to persist two-dimensional position coordinates of
task instances in a graphical process model.

9.1.2 Modularisation of the BPMS Metamodel

In the following, we illustrate how the metamodel of the BPMS method as
a monolithic design artefact can be decomposed and then modularised into
self-contained logical units (fragments) as a first step towards its modular
design. In doing so, we apply the concepts of the metamodel modularisation
language.

The BPMS Method

The BPMS method is a hybrid modelling method covering different enter-
prise areas and offering a variety of notations for enterprise modelling. The
central part of the BPMS method is the standard language for business
process modelling BPMN 2.0 [OMG, 2013]. As a hybrid method, BPMS
extends BPMN with modelling languages for product, organisation and IT
modelling as elaborated in [Rausch et al., 2011]. Figure 9.2 illustrates the
hybrid usage of BPMN together with document models, organisation models
and risk models.

Different notations in BPMS are represented by the ADOxx model type
construct, representing a type of a diagram. The four areas of BPMS frame-
work are thus represented by one or more model types. The model types and

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 229

Figure 9.2: Hybrid usage of BPMN within the BPMS method

elements within it are interconnected to allow for hybrid, integrated mod-
elling using the ADOxx interref concept. In the following, a short overview
of the basic constructs of the BPMS method are given, to illustrate the size
and the complexity of its corresponding metamodel. For detailed descrip-
tion, the interested reader should refer to [BOC, 2015, Bayer and Kühn,
2013].

Business Processes A model of a business process is the pivotal artefact
of the BPMS method. To model process flows, BPMS method adopts the
BPMN standard represented by the model type Business Process Diagram.
A business process consists of a chain of atomic activities/tasks and subpro-
cess calls. Start and end events, flow control gateways such as paralellities
and decisions help to capture the process flow. Activities have connections
to constructs from other aspects such as input and output documents, as-
signed organisational roles, etc. The model type Process Landscape allows
for grouping and hierarchical structuring of processes as enterprise process
building blocks. The integrated BPMN notation contributes with two addi-
tional model types Conversation Diagram and Choreography Diagram that
are used to model interactions between business partners.

Products The model type Product Model allows for modelling of products
and product components an enterprise has to offer. Products are connected
to processes and organisation structures to depict which processes contribute
to the production of products and by which organisational units.

Organisation The model type Organisational Model supports the mod-
elling of organisational forms of the enterprise. Performer, Role, Organisa-
tional Unit are core constructs of this model type.

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 230

Information Technology For the modelling of the supporting IT, the
model type IT System Model is available. It offers constructs such as Ap-
plications, Interfaces and Services to capture the high-level IT landscape.
They help to document which applications and services exist in the enter-
prise, which interfaces they offer to support enterprise business processes,
by whom they are used, and who is responsible for their maintenance. In
addition, the Use Case Diagram is available (integrated from UML) to cap-
ture and identify users and their interactions with IT systems. In addition,
the model type Document Model to model information objects such docu-
ments is used. The document class is, for example, also used to realise the
document management system mechanisms. The detailed data structures
about documents may be captured using the Data Model.

Risks and Controls The model types Risk Catalogue and Control Cata-
logue allow for documenting the enterprise internal controlling system (ICS).
Risks represent events or developments that can negatively influence the ful-
fillment of enterprise goals. They may be assigned to processes and activities
to help point out process fragments that may be negatively affected by such
events. Controls may be assigned to risks to document procedures and rules
that may prevent or minimise the occurrence of identified risks. Risks and
controls may be seen as supporting constructs, i.e. add-ons for business
processes to an achieve integrated process and risk management.

Figure 9.3: Simplified conceptual view of the BPMS metamodel divided
into main model types

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 231

Figure 9.3 illustrates a significantly simplified conceptual view of the
BPMS metamodel only considering some main classes and relations. Due to
its size and complexity (approx. 1300 metamodel elements), the considera-
tion of the cross-model references, as well as of the implementation view, i.e.
of all domain and system elements of all types, i.e. incl. attributes, relation
endpoints, etc. as well as system-relevant elements has been left out.

Modular BPMS: Identification of Metamodel Fragments

There may be different ways to decompose the BPMS metamodel, i.e. to
identify self-contained metamodel modules, i.e. fragments. Considering the
particularities of ADOxx metamodels, the natural way is to start the decom-
position by dividing metamodel elements into domain relevant and system
relevant. Within the BPMS domain, a good way for the categorisation of
fragments is to follow the decomposition based on enterprise areas and single
model types. On the other side, for the system elements, fragments are de-
fined for each functional component that requires or provides corresponding
metamodel elements. Note that system elements are domain-independent,
thus they may be reused for other metamodels, too. Figure 9.4 illustrates
a possible modularisation of the BPMS using the UML package diagram
notation, including both domain-relevant and system-relevant fragments.
Concrete fragments represented by packages are nested within high level
fragments, where high level fragments serve as kind of grouping namespaces.

Since the introduction of each of the fragments would exceed the limits
of this work, we explicate the metamodel modularisation based on one of the
pivotal BPMS fragments, the Business Process Diagram fragment (BPMN
fragment). BPMN does not provide sufficient support to model organisa-
tional structures [Zivkovic et al., 2007]. Thus, the BPMS method embeds
the BPMN and extends it with languages for the comprehensive modelling of
business processes and other enterprise areas such as organisation, products
and IT [Rausch et al., 2011,Bayer and Kühn, 2013]. Modularising the core
part of the BPMN for process modelling into a fragment with well-defined
interfaces is desirable, in order to allow for its reusability via recombina-
tion within different hybrid modelling methods. BPMN constructs provide
means for modelling of business process flows. Therefore, constructs such as
the model type BPDiagram and the class Task are good candidates to ex-
pose them via interfaces such as model type interface IProcessDiagram and
class interface ITask. Not only provided interfaces of the BPMN fragment
are desirable, but also required interfaces from other fragments. Referring
to the case study of extending the BPMN with constructs for organisation
modelling from [Zivkovic et al., 2007] (see also Section 2.3), two explicit inte-
gration points seem appropriate. The class Pool may be regarded as a visual
representation of participant, which cane business entities or roles. Hence,
we introduce the class interface IParticipant, which is a required interface

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 232

Figure 9.4: A possible modularisation of the BPMS metamodel (Connec-
tions between domain fragments represent major integration points.)

the should be realised by third fragments. Looking closer into the BPMN
fragment elements, a further good candidate for a required interface is the
concept of a task performer. Since performers of tasks may be different con-
structs, we specify the concept of performer as a class interface IPerformer
and an extension point, such that third fragments can provide different im-
plementations. Another extension point to consider in the BPMN fragment
is the connection to risk management concepts, the modelling area not con-
sidered by the BPMN standard. Hence, we declare an additional required
interface IRisk that specifies required structural features of the concept of
risk. We connect the class Task to the risk interface via the relation assigned
risks. Now, different risk concept implementations may be supported. Fig-
ure 9.5 shows the glass-box3 view of the BPMN fragment.

9.1.3 Composition of BPMS Fragments (A Selection)

In the following, we demonstrate the application of the black-box, grey-
box and white-box metamodel composition operators on the selected set of
composition problems in the context of the modular BPMS.

3The glass-box view allows for the inspection of the internal elements of black-box
fragments. In contrast to the white-box, it doesn’t allow for any modifications.

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 233

Figure 9.5: An example of the BPMS modularisation: BPMN Business
Process Diagram Metamodel fragment (simplified metamodel)

Applying Black-Box Metamodel Composition

Having defined explicit black-box metamodel fragments, we can combine
them using the composition operators for interface-based metamodel com-
position. We demonstrate how black-box composition may be applied by
combining the fragment BPMN with fragments Organisation Model (OM)
and Risk Catalogue (RC). By doing so, we also explicate the modularisa-
tion of these two additional fragments. The OM fragment contributes the
constructs for the modelling of organisational units, actual actors and their
roles. We declare classes OrganisationUnit and Role to realise the interface
IParticipant that are required by the BPMN fragment. This integration
decision conforms to the integration points introduced in [Zivkovic et al.,
2007]. We do this based on the cInterfaceRealisation composition opera-
tor. In the next step, the interface IPerformer, representing task performer
role, is realised by organisational units (OrgUnit), roles (Role) and actors
(Actor). In the following, we explain the application of the interface sub-
typing. We apply class interface subtyping to state the compatibility of
the interfaces IOrgElement and IPerformer. This is motivated by the fact
that fragment OM already provides the implementation for the interface
IOrgElement based on the class OrgElement. Finally, we combine the frag-
ments BPMN and RC by specifying the interface realisation between the
class Risk and the interface IRisk. Figure 9.6 illustrates the introduced
composition using the black-box composition operators.

We revisit the introduced black-box composition of BPMS fragments, in

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 234

Figure 9.6: Applying black-box metamodel composition for BPMS: Com-
position of the BPMN fragment, OM fragment and RC fragment

order to explicate its implementation in more detail. In doing so, we use
the notation of MMEL introduced in Chapter 3. This time, we describe
the composition not only on the level of classes, but also on the level of
attributes and relations with endpoints. Figure 9.7 illustrates the revisited
fragment modularisation and composition solution. We define class Task as
the realisation of the class interface ITask. In order to fulfill the contract of
the provided interface, class Task aggregates the attribute Name, which in
turn realises the attribute interface IName. Furthermore, BPMN fragment
exposes one required interface, IRisk, without providing the realisation for
it. Note how relation class assignedRisks connects the class Task with the
interface IRisk. This is crucial for the flexibility of the solution. In doing so,
any class that implements the interface IRisk becomes a valid target of the
endpoint ToAR, i.e. of the corresponding relation class. On the other side,
the fragment RC contributes with the class Risk that realises the interface
IRisk. In order to do so, the fragment RM establishes the dependency to
the fragment BPMN and imports the interface IRisk (marked with dashed
line).

Applying Grey-Box Metamodel Composition

Grey-box metamodel composition allows for extending existing prefabri-
cated fragments with extensions based on well-defined implicit interfaces.
To demonstrate the grey-box composition, we will extend BPMS domain
fragments such as the BPMN fragment and the Process Landscape (PL)

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 235

Figure 9.7: Realisation of black-box metamodel composition for BPMS:
Detailed composition of BPMN and RC fragments

fragment with the functionality-driven, i.e. system fragment Model Work-
flow (MW). Our goal is to allow for the versioning and state-based workflows
of business process models within BPMS. Figure 9.8 illustrates the grey-box
composition scenario.

Figure 9.8: Applying grey-box metamodel composition for BPMS: Extend-
ing fragments BPMN and PL with extender fragment MF

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 236

The MW fragment is defined as an extender fragment. It contains the
extender element for model types WorkflowExtender which contains two at-
tributes relevant for the model workflow functionality such as Version and
State. The version attribute is of type double and it stores incremental ver-
sion numbers of models. The state attribute is an enumeration containing a
predefined set of possible model workflow states (e.g. draft, review, released,
rejected, archived). In addition, a predecessor relation is defined to estab-
lish predecessor-successor connections between different model versions that
build up a model version tree. The actual metamodel composition relies on
the extension composition operator. We declare that the WorkflowExtender
extends model type elements BPDiagram and ProcessLandscape from the
corresponding base fragments. This way, the model type attributes version
and state will be injected to the corresponding base model types. Further-
more, by virtue of indirect relation end targets, these concrete model types
will indirectly become targets of the predecessor relation. Figure 9.9 revisits
the extension-basd grey-box composition scenario using the MMEL syntax
and notation. Note the dependency and import directions. While extended
fragments BPMN and PL remain unmodified and independent, the extender
fragment MF encloses the semantics of the composition.

Figure 9.9: Extension-based grey-box metamodel composition for BPMS:
Detailed composition of fragments BPMN and PL with extender fragment
MF

Finally, if we think of an MFB that supports model workflows, the func-
tionality block paired with the extender fragment may be deployed as a

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 237

reusable Model Workflow MFB in ADOxx. The abstract extender class is
used as a kind of a stable interface against which the functionality may be
coded and by which concrete model types may be retrieved.

Applying White-Box Metamodel Composition

White-box metamodel composition contributes to flexible modular meta-
model definition with the mixin inclusion composition operator. We demon-
strate the usage of the mixin inclusion operator in the context of BPMS by
composing the domain fragments with system-relevant fragments in order
to extend BPMS fragments with functional add-ons. Figure 9.10 shows the
mixin-based white-box composition scenario.

Figure 9.10: Applying white-box metamodel composition for BPMS:
Mixin-based composition of the domain fragment BPMN and the system
fragment 2DGraphical

Assuming that the graphical elements from BPMN (represented by the
abstract class GraphicalObject) should be modelled using ADOxx graphi-
cal syntax in the graphical model editor, such a graphical element needs
to fulfill certain metamodel requirements. These requirements are captured
and encapsulated in the metamodel fragment 2DGraphical. This fragment
contains a mixin class GraphicalMixin which specifies that for a class to be
used for graphical objects in a model editor, it needs to contain attributes
for storing 2D coordinates of an object within a model (attributes PosX,
PosX), as well as a graphical symbol definition (attribute GraphRep). Any
class that mixes in the graphical mixin class will automatically fullfill the
requirements by the ADOxx graphical model editor. Therefore, to perform
the composition, we declare that the abstract class GraphicalObject mixes
in the GraphicalMixin class. Note, by class mixing, the GraphicalObject
class will include all structural features of the mixin class, i.e. it will also
mix in the interface IGraphicalObject, thus automatically becoming a valid

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 238

realisation of that interface. Figure 9.11 illustrates the details of the afore-
mentioned composition scenario using MMEL.

Figure 9.11: Mixin-based white-box metamodel composition for BPMS:
Detailed composition of the domain fragment BPMN and the mixin fragment
2DGraphical

Finally, note that the mixin class GraphicalMixin may be combined by
arbitrary classes. This also applies for the parent class GraphicalObject
that may include arbitrary additional mixin classes. Also, since the mixin
inclusion operator is orthogonal to the inheritance, the parent class can
independently build inheritance hierarchies, while at the same time including
mixin classes. This way, the mixin inclusion operator contributes to a more
flexible metamodel composition.

Achieving Independent Fragment Composition

In Section 5.2, we discussed the characteristics of the non-invasive and in-
vasive composition. We said that non-invasive composition does not modify
the fragment being composed, but only the composer fragment is modified
to capture the glue logic of composition. For example, while the black-box
composition allows for the composition of prefabricated black-box fragments
based on well-defined interfaces, the glue logic of the composition, i.e. the
explicit dependencies are coded in one of the participating fragments.

However, the extension composition operator is a powerful composition
construct that may be used to achieve the independent fragment composi-
tion. By introducing extender fragments that hold the glue logic of the com-
position, the extender fragment mixes in elements from one fragment and

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 239

injects them to the other fragment. Hence, the fragments to be composed
remain unmodified and independent, while being composed by a third com-
position fragment. This kind of independent composition based on extender
fragments may be applied in the context of both black-box and white-box
composition.

Figure 9.12: Achieving black-box independent composition of prefabricated
metamodel fragments using dynamic invasive grey-box composition

• Independent black-box composition. In case of black-box fragments,
the extender fragment may extend the realisation elements to declare
the interface realisation of the fragment that contains the interface
specification. In our case, the Organisational Model fragment and the
Risk Catalogue fragment import interfaces from BPMN in order to de-
clare interface realisation. We revisit the example from the black-box
composition, in order to demonstrate how the dynamic invasive grey-
box composition allows for, although semantically invasive (on the
extendee side), independent composition of prefabricated fragments.
Figure 9.12 illustrates the solution. We introduce the “glue logic” frag-
ment BPMNExtender, which extends each of the realisation classes of
the Organisational Model fragment and the Risk Catalogue fragment
with interfaces from the BPD fragment. Hence, we extracted the glue
logic out of the participating fragments to avoid their modification and
to achieve independent fragment composition.

• Independent white-box composition. In case of the white-box compo-
sition, the extender fragment may extend elements of one fragment

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 240

with mixed in elements of another fragment. If we revisit the example
of white-box composition introduced before, we adapt the solution by
introducing the extender fragment BPMNExtender that overtakes the
role of the composer fragment. Instead of the direct mixin inclusion by
the class GraphicalObject, the extender class GraphicalExtender now
includes the mixin GraphicalMixin and by virtue of extension, injects
the structural features of the GraphicalMixin into the class Graph-
icalObject of the BPMN fragment. Hence, both fragments BPMN
and 2DGraphical remain unmodified achieving the independent com-
position. Figure 9.13 illustrates the solution.

Figure 9.13: Achieving white-box independent composition of prefabricated
metamodel fragments using dynamic invasive grey-box composition

9.2 Case Study in EA: Hybrid PDDSL
In this section we discuss the Hybrid DSL approach as introduced in Sec-
tion 2.3, this time, in the context of modular metamodel engineering. To
recall, Hybrid PDDSL is a hybrid modelling (domain-specific) language and
approach for consistent modelling of network equipment. It introduces a
domain-specific language for modelling and configuration of network devices,
which is extended by the ontology language OWL2 [Motik et al., 2009b] to
allow for and ease the semantic constraint definition of valid device con-
figurations [Zivkovic et al., 2011,Miksa et al., 2013, Zivkovic et al., 2015].

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 241

We revisit the invasive metamodel integration solution proposed there, and
explicate how the same integration problem may be solved non-invasively
using modularisation and composition concepts and constructs of MMEL.

9.2.1 Revisiting the Integrated Metamodel Implementation

In Section 2.3 we provided a conceptual overview of the single metamodels of
the Hybrid PDDSL, as well as of the corresponding metamodel integration
solution, which has been invasive on the side of PDDSL. In the following, we
take a closer look at the realisation of the integration approach and related
issues.

Metamodel Composition based on Inheritance

The single metamodels and their integration relies on the instantiation of
the constructs of the ADOxx Meta2-Model (see Chapter 8). The notion of
model type has been used to separate three major language blocks: Device
types, Devices and OWL2. The model type OWL2 has been further split in
two modes: OWL2 Frames and OWL2 Descriptions. On the other side, the
notion of the Interref relation has been used to implement the ontological-
instantiation relation between model types by defining interref-relationship
hasType between Artefact and ArtefactType. Furthermore, the interref con-
cept has been applied to achieve the metamodel integration between PDDSL
and OWL2 by specifying the generalisation relationships between pdArte-
factType and owlClass, as well as between pdArtefact and pdIndividual, re-
spectively. Figure 9.14 illustrates the implementation of the metamodel
integration.

Figure 9.14: Hybrid PDDSL: Metamodel integration based on inheritance
(simplified view of the integrated metamodel focusing on the integration
points)

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 242

Issues with White-Box Composition based on Inheritance

Basically, by inheriting from OWL, the PDDSL classes, pdArtefactType and
pdArtefact can be used in context of OWL2 whenever owlClass and owlIn-
dividual are expected, respectively. Thus, the integration is non-invasive on
the side of the OWL language. However, it is clearly invasive on the side of
the PDDSL language, which might not always be a desirable implication if
there are existing mechanisms that work on the modified metamodel. We
can identify two major issues with inheritance-based solution as follows:

• Root class precondition for extender class. For pdArtefactType and
pdArtefact classes to become subclasses of owlClass and owlIndividual,
they must be root classes, i.e. do not have supertypes (restriction of
single-inheritance of the underlying metamodelling language). This
precondition can be rarely met, as metamodel element usually build
class hierarchies within their own scope. In our case, this was possible,
as we deliberately designed PDDSL for inheritance-based extension.

• Undesired attribute inheritance. If the root class precondition is met,
the subclass will inherit all structural features, in our case, attributes
from its superclass. While inheriting attributes is desirable in order to
achieve the compatibility of the subtype with its supertype, in our case,
it causes problems. In particular, the attribute iri of OWL classes is
used as a unique identifier in OWL2, whereas the attribute name has
the same role for PDDSL classes. By subclassing OWL classes with
PDDSL classes, PDDSL classes inherit the iri attribute, although the
attribute name already fulfills the role of the class identifier. Hence,
it is not possible to state that an attribute from a superclass has the
same role as the attribute in the subclass. As a consequence of this
restriction, a modification of the PDDSL metamodel was required, in
order to replace the name attribute with the attribute iri. This change,
on the other side, implied the adaptation of metamodel-specific mech-
anisms specific to the PDDSL part of the language. In other words,
the semantic compatibility was broken.

9.2.2 Modular Metamodel Definition using MMEL

In the following, we explicate how the issues of the pure white-box composi-
tion based on inheritance may be solved using the concepts and constructs
of MMEL.

Modularisation of Metamodels

Clearly, modularisation of metamodels into fragments contributes to reuse.
Packaging of OWL2 and PDDSL into black-box fragments with well defined
interfaces hides the implementation details of each of the metamodels while

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 243

exposing only relevant parts. In addition, it also allows for reuse and re-
combination in other hybrid metamodel composition scenarios. Therefore,
we first identify two reusable metamodel fragments for the OWL2 part,
owl2Frames and owl2Descriptions. The fragment owl2Frames contributes
with implementation concepts for basic modelling of class hierarchies and in-
dividuals. Therefore, we declare that it provides class interfaces IOWLClass
and IOWLIndividual. In addition, we also define one provided attribute
interface IOWLIri, which is aggregated as a member by both class inter-
faces. The owl2Descriptions fragment is a partial fragment that adds no-
tions for defining OWL2 expressions (conjuctions, disjunctions, features such
as object properties, etc.) on top of class and individual concepts. Thus,
for owl2Descriptions we define required interfaces IOWLCLass, IOWLIn-
dividual and IOWLIri to be kind of place holders for structural concepts
needed to define OWL expressions. On the PDDSL side, we define two
additional fragments pdDeviceTypes, and pdDevices. For the pdDeviceTypes
fragment, we define one provided interface IArtefactType. Accordingly, the
pdDevices fragment has one required interface IArtefactType. Figure 9.15
illustrates the introduced metamodel fragments as black-boxes, as a result
of the interface-based modularisation process. Fragments are visualised as
black-box components with interfaces based on the UML component dia-
gram visual notation. Note that attribute interfaces are reusable elements,
thus represented as first-order independent elements.

Figure 9.15: Reusable metamodel fragments as black-box components of
the Hybrid PDDSL

Interface-based Black-box Composition

Having metamodel fragments with well-defined interfaces allows us to apply
interface-based, black-box metamodel composition to create the hybrid lan-
guage. From the modelling language perspective, our goal is to extend the
PDDSL language in a way that OWL expressions are applicable for artefact
types as they are for OWL classes. First, we compose the two fragments of
the OWL language, by declaring that required interfaces from the owlDe-
scriptions fragment are provided by their counterparts in owlFrames. We do
this by using the interfaceRealisation operator, by declaring that the inter-
nal classes from owlFrames such as owlCLass, owlIndividual, owlIri realise

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 244

interfaces IOWLClass, IOWLIndividual, IOWLIri. This has an implication
that whenever those interfaces are used within owlDescriptions the corre-
sponding classes from owlFrames may be applied as compatible interface
realisations. On the other side, we bind PDDSL fragments by declaring
the realisation of the interface IArtefactType by the internal class pdArte-
factType from pdDeviceTypes. Thus, whenever this interface is used within
pdDevices fragment, the corresponding realisation class from pdDeviceTypes
will be applied. Finally, as we aim at extending the artefact type for OWL
class descriptions features, we declare that the pdArtefactType also realises
the interface IOWLClass. By doing this, the pdArtefactType will become
compatible realisation of the IOWLClass, whenever this interface is used
in OWL2 descriptions, making it possible to define OWL2 expressions for
device types. For the class interface realisation to be complete, attribute
interface realisation need to be fulfilled, too. Hence, we use attributeInter-
faceRealisation to declare that the existing attribute pdName implements
the interface IOWLIri. Since both of the attribute elements are based on
the same string type, the realisation is compatible and valid. Likewise, the
internal class pdArtefact from pdDevices realises the IOWLIndividual inter-
face. Obviously, we need to modify the PDDSL fragment, as we need to
declare and provide realisations of the interfaces from OWL. We do this by
introducing explicit dependencies from PDDSL to OWL, which is the pre-
requisite for interface element import. Figure 9.16 illustrates the metamodel
fragment composition using the UML component diagram notation.

Figure 9.16: Black-box composition of metamodel fragments for Hybrid
PDDSL

Using the black-box composition techniques, it becomes evident that we
solved the issues that arise through the inheritance-based white-box com-

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 245

position discussed previously. Since a class may implement a number of
interfaces, we resolve the issue of single inheritance, i.e. the s.c. root class
precondition problem. Hence, the artefact type may internally define its
own class hierarchy without interfering with other languages. Furthermore,
since being able to define interface realisation on the attribute level, we have
the flexibility to reuse existing implementation attributes for class interface
realisation. Instead of inheriting the attribute, we established a kind of
mapping between the required Iri attribute and the internal name attribute,
without the need to semantically change the PDDSL language regarding the
object identifier concept.

Extension-based Grey-Box Composition

In the following, we explicate how the introduced metamodel fragments may
be combined using extension-based dynamic, invasive grey-box composition,
in order to achieve independent fragment composition. This technique comes
in handy in the cases where syntactic modification of existing fragments is
not possible or not desirable. In our example before, we had to “open” the
PDDSL fragments, to declare explicit dependencies, import interfaces and
declare interface realisations. Using the grey-box composition techniques,
we can achieve independent composition of prefabricated fragments by in-
troducing a new composite extender fragment that will hold the glue logic
of the two source fragments to be combined. The only prerequisite to apply
grey-box composition is the public visibility of the elements to be extended.
In our example, we will assume that this is case for the classes pdArtefact-
Type, pdArtefact and pdName.

Figure 9.17 illustrates the solution. We introduce a new composite frag-
ment that, on the one side, imports interfaces from OWL fragments, and
on the other side injects interface realisation directives to the PDDSL frag-
ments. In particular, the new composite fragment hybPDDSL introduces
three extender elements that act as adapters between OWL2 and PDDSL el-
ements. First, class extender hybArtefactTypeExtender extends the pdArte-
factType at the extension point for interfaces by adding a new provided
interface IOWLClass. This is done by declaring that the extender class
realises the IOWLClass. By virtue of dynamic invasive extension, this in-
terface is added to the list of supported interfaces of the pdArtefactType,
without explicit need to change the pdArtefactType class definition. Since
IOWLClass realisation requires the attribute interface IOWLIri to be ac-
cordingly realised by the implementing class, we introduce another extender
for the attribute pdName, which injects the interface realisation of the inter-
face IOWLIri to the name attribute. Finally, the third extender is defined in
the same fashion, in order to inject the realisation of the interface IOWLIn-
dividual at the PDDSL class pdArtefact.

As it becomes apparent, the end result of the composition is semantically

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 246

Figure 9.17: Extension-based grey-box composition of metamodel frag-
ments for Hybrid PDDSL

equivalent to the black-box composition described previously. The difference
lies in the syntactic immutability, i.e. in the independence of the partici-
pating metamodel fragments. While in black-box composition solution, the
PDDSL fragments require modification to explicitly declare dependencies
needed for interface realisation, the grey-box composition introduces one in-
direction level “in between”. It defines a third fragment which holds the glue
logic for the composition of the source fragments. Thus, the modifications
that are needed on the PDDSL are packaged externally in the composition
fragment and applied/injected to PDDSL fragments by virtue of grey-box
invasive metamodel composition.

9.3 Chapter Summary
In this chapter, we evaluated the applicability of the MME approach in gen-
eral, and of MMEL in particular. In particular, in Section 9.1 we demon-
strated the usefulness of MME and its language MMEL on the example
of the industry-relevant metamodel of the BPMS method for business pro-
cess modelling. We have shown how such big and complex metamodel can
be decomposed into modular, reusable metamodel fragments that can be
flexibly combined to build different variants of the BPMS method, which

CHAPTER 9. CASE STUDIES FOR MMEL IN OMILAB 247

suit problem-, and project specific requirements. In particular, we demon-
strated the usage of modularisation concepts such as metamodel fragment,
metamodel element interface, as well as the usage of metamodel compo-
sition operators for black-box, grey-box and white-box metamodel com-
position. In Section 9.2 we revisited the case study of hybrid DSML in
the field of EA and demonstrated how such integration may be done using
MMEL. Here, we pointed out how deficiencies of a pure inheritance-based
white-box composition may be overcome using black-box and grey-box oper-
ators such as interface realisation and dynamic extension. In particular, we
demonstrated how metamodels can be encapsulated into reusable black-box
fragments and combined based on explicit dependencies and interface-based
composition. Furthermore, we also explicated how prefabricated metamodel
fragments may be combined without modifications and direct dependencies
on the composer side, by introducing the extender fragments based on in-
vasive metamodel composition operators. Finally, as we stated already in
[Živković and Karagiannis, 2015], it may be said that a modular approach for
metamodel definition introduces a certain level of complexity in metamodel
definition. This is mainly because additional (efficiency) constructs such as
interfaces, fragments, extensions and alike are used apart from core (effec-
tiveness) constructs when defining the modelling language. We acknowl-
edge this argument against the modular approach only within the scope of
metamodelling-in-the-small. However, the benefit of systematic modulari-
sation becomes visible in larger metamodelling projects through economies
of scale. By reusing and combining pre-fabricated fragments to build new
metamodels significantly reduces development time and increases quality in
terms of prepackaged solutions, all in the sense of metamodelling-in-the-
large.

Part V

Summary

248

Chapter 10

Conclusion and Outlook

“The scientific man does not
aim at an immediate result. He
does not expect that his advanced
ideas will be readily taken up.
His work is like that of the
planter – for the future. His
duty is to lay the foundation for
those who are to come, and
point the way.”

Nikola Tesla

In this chapter, we summarise the contributions of this work and provide
an outlook for future work.

10.1 Conclusion
Acknowledging the rigorous significance of hybrid modelling methods, the
inherent nature of modelling languages to evolve over time, the rapidly in-
creasing number of languages to develop and maintain, and the inherent
complexity of metamodel and language design, we concluded that existing
metamodelling concepts do not provide sufficient means to adequately sup-
port such challenges of metamodel engineering. We used the metaphor of
metamodelling-in-the-small to describe the current state of practice in meta-
modelling, and pointed out that concepts for metamodelling-in-the-large are
not sufficiently supported.

By analysing the existing work, the following main deficiencies have been
identified (reduced to the scope of this work):

• Within the approaches for modelling method integration, although
high-level conceptual solutions for designing hybrid modelling methods
in a modular way exist, sound formalisms for modular metamodelling
on the technical level haven’t been addressed (Chapter II).

249

CHAPTER 10. CONCLUSION AND OUTLOOK 250

• On the technical modelling language level, state-of-the-art metamod-
elling languages do not provide concepts for the modularisation of
metamodels in terms of fragments with well-defined interfaces (Chap-
ter III,V).

• Likewise, concepts for the flexible combination of metamodel frag-
ments beyond standard operators on white-box packages are missing
(Chapter III,V).

• Consequently, metamodelling platforms lack modular mechanisms for
metamodel definition (Chapter IV).

Based on deficiencies found in the existing work in the field of meta-
modelling, the aim of the underlying work was to contribute to the state-of-
the-art with a modular approach to metamodel engineering by leveraging the
concepts of metamodel modularisation and composition. The work was an
attempt to advance the state-of-the-art in metamodelling with conceptual,
technical and qualitative contributions as follows.

1. A concept for modular metamodel engineering based on modularisa-
tion and composition concepts. The concept of reusable metamodel
fragments with explicit interfaces and a set of composition operators
that allow for mixin-based white-box, extension-based grey-box and
interface-based black-box metamodel composition are the key contri-
butions of the MME approach (Chapter VI).

2. A formal specification of a language for modular metamodel engineer-
ing as a modular extension to existing metamodelling language con-
cepts (Chapter VII). The MMEL represents the cornerstone of the
MME approach.

3. A technical specification of MMEL implementation in a metamodelling
platform ADOxx (Chapter VIII), as an extension of the ADOxx meta-
metamodel, ADOxx Meta2-Model.

4. A qualitative evaluation of the applicability of MMEL based on the
case study for modularising the metamodel of the BPMS modelling
method (BP domain, primary focus on behavioural modelling concern)
and the case study for developing a hybrid language PDDSL (EA
domain, primary focus on structural modelling concern), both of them
having relevant applications in research and industry (Chapter IX).

Besides main contributions, additional contributions beyond existing
work, in the order of appereance in the chapters, are summarised as fol-
lows:

• Categorisation of modelling method hybrid mechanisms into config-
urable and adaptable (Section 2.1.4).

CHAPTER 10. CONCLUSION AND OUTLOOK 251

• Classification of modelling method mechanisms based on application
purpose into analytical, computational, generative and manipulative
(Section 2.1.4).

• Extension of the classification of hybrid modelling methods for a multi-
dimensional category (Section 2.2.1).

• Case studies on hybrid modelling methods 1) Integration of BPMN
and organisational modelling 2) multi-dimensional hybrid modelling
method for interoperable, inter-organisational business processes 3)
hybrid domain-specific modelling method for consistent physical de-
vices management (Section 2.3).

• A detailed and extended definition of a modelling language anatomy
considering the interface aspect (Section 3.2).

• A categorisation framework of metamodelling language capabilities
(Section 3.4.2) and, based on it, a comparative analysis of metamod-
elling languages (Section 3.4.9).

• General classification of development environments (Section 4.1.3) and
the generic architecture of language engineering environments, Sec-
tion 4.2.1).

• A categorisation framework of metamodelling platform capabilities
(Section 4.2.2) and, based on it, a comparative analysis of metamod-
elling platforms (Section 4.2.7).

• Classification of metamodel composition operators (Section 5.2).

• A classification framework (Section 5.1) and a comparative analysis
of the metamodel modularisation and composition approaches (Sec-
tion 5.3).

The introduced modular approach to metamodel engineering is specific
to metamodel-based modelling language engineering. In particular, we eval-
uated the approach in the field of engineering of enterprise modelling meth-
ods. However, we believe that the modular approach may be applied to
other modelling domains, too, as long as the modelling language definition
is based on metamodels. The applicability of the approach for other lan-
guage engineering formalisms (graph-based, grammar-based etc.) was not
the focus of this work.

10.2 Outlook
In this section, we discuss the possible directions for future work related
to the topic of modular metamodel and language engineering. Over the

CHAPTER 10. CONCLUSION AND OUTLOOK 252

years in research and practice in metamodelling and metamodelling tools
development and in particular while working on the approach for modular
metamodel engineering, a number of further open research questions came on
to surface that would require a dedicated future research. In the following,
some of the possible extensions to this work are sketched.

• Modular Modelling Method Engineering. As the focus of this work
was on modular metamodel definition, we believe that the modular
approach may further contribute to the overall flexibility in modelling
method definition. A metamodel with explicit interfaces is a pivotal el-
ement, not only of a modelling language, but of a modelling method as
well. This fact may be benefitial when building surrounding method
components such as notations, mechanisms, algorithms and method
procedures, that may refer to metamodel constructs via interfaces only.
In doing so, the substitutability and overall reuse of metamodels and
other method components may be significantly increased. We dis-
cussed how such an idea may be realised in ADOxx using the concept
of MFBs in Section 8.4 of Chapter 8. However, how platform inde-
pendent approaches and formalisms for modelling method engineering
(e.g. Modelling Method DSL (MM-DSL) [Visic et al., 2015]) may
be extended with modular specification of notations, mechanisms and
algorithms and procedure models that interplay with modular meta-
model definition towards modular modelling method engineering is left
for future research.

• Automation of Metamodelling-In-the-Large. One of the main contri-
butions of this work was to provide modularisation concepts for the
encapsulation of self-contained, prefabricated metamodel fragments,
and to define composition operators for flexible composition of those
fragments. While we talk about fragments, the composition occurs on
the interface, i.e. element level of fragments. The question is whether
such composition may be automated by lifting the composition prob-
lem even one abstraction level higher to the level of metamodel frag-
ments or even on the level of languages. A kind of domain-specific lan-
guage that would contain operators such as bind, extend or refine which
would automatically perform composition of fragments by compiling
it to the composition operations such as those defined in this work
would be desirable to further support the idea of the metamodelling-
in-the-large.

• Interdisciplinary Approaches for Modular Language Engineering. Con-
tinuing the idea of the further advancements of metamodelling-in-the-
large one can think of applying methodologies and approaches from
other areas, such as software product lines engineering (SPL) or se-
mantic technology, in the context of modular metamodel and language

CHAPTER 10. CONCLUSION AND OUTLOOK 253

definition. We already experimented with the idea of applying SPL
feature-based modelling for customisation of model-driven software de-
velopment environments [Wende et al., 2011]. In particular, in [Wende,
2012], feature-based approach for language family engineering has been
successful applied. It would be interesting to investigate whether there
are further fruitful integration points that could converge SPL and
modular modelling language engineering. Likewise, in the research
project MOST, the integration of metamodelling with semantic tech-
nologies has been discussed [Walter and Ebert, 2009,Aßmann et al.,
2013]. In this context, we experimented with the idea of applying
semantic reasoning for metamodel validation [Lekaditis, 2014]. As a
starting point, the semantic technologies could be used in the context
of modular metamodel engineering, for example, for the identification
of compatible metamodel fragments, automatic matching of interfaces,
etc.

• Advanced Mechanisms for Hybrid Modelling. The focus of our work
has been primarily on the metamodel level and on corresponding com-
position mechanisms to allow for the definition of hybrid modelling
languages. We introduced metamodelling capabilities of supporting
character, i.e. for efficient metamodelling in the large. Some of such
concepts, however, such as inheritance, interface realisation or inter-
face subtyping have dual semantics. Not only that they allow for
metamodel composition, they also lay foundation for the model-level
mechanisms such as polymorphism, i.e. compatibility of objects on
the model level. The question is however, whether there are addi-
tional mechanisms on the model level that would allow for advanced
hybrid modelling scenarios currently not possible.

• Collaborative Modular Metamodelling and Modelling in the Cloud. It
has been recognised that component orientation allows for distributed,
independent development of components and their flexible composition
as long as the implementation is streamlined based on agreed compo-
nent interfaces. Having modelling languages and its fragments devel-
oped as components opens new opportunities for distributed metamod-
elling in the cloud. Collaborative metamodelling in distributed teams,
management of metamodel component repositories, automatic discov-
ery and integration of language components based on their compatible
interfaces in the web as we know it from web services, provisioning of
the adequate cloud-based metamodelling environments and supporting
cloud services, and finally, application of the component orientation on
the model level, are some of the directions where component-oriented
metamodelling could advance in the upcoming years.

Bibliography

[ADOxx, 2015] ADOxx (2015). ADOxx Metamodelling Platform. http://
www.adoxx.org.

[Agrawal, 2003] Agrawal, A. (2003). Graph Rewriting and Transformation
(GReAT): A Solution for the Model Integrated Computing (MIC) Bottle-
neck. In Automated Software Engineering, 2003. Proceedings. 18th IEEE
International Conference on, pages 364–368. IEEE.

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compil-
ers, Principles, Techniques.

[Alderson, 1991] Alderson, A. (1991). Meta-CASE Technology. In En-
dres, A. and Weber, H., editors, Software Development Environments
and CASE Technology, volume 509 of Lecture Notes in Computer Sci-
ence, pages 81–91. Springer Berlin Heidelberg.

[Amelunxen et al., 2006] Amelunxen, C., Königs, A., Rötschke, T., and
Schürr, A. (2006). MOFLON: A Standard-compliant Metamodeling
Framework with Graph Transformations. In Model Driven Architecture–
Foundations and Applications, pages 361–375. Springer.

[Ancona et al., 2000] Ancona, D., Lagorio, G., and Zucca, E. (2000). Jam- a
Smooth Extension of Java with Mixins. In ECOOP 2000 - Object-Oriented
Programming, pages 154–178. Springer.

[Aßmann, 2003] Aßmann, U. (2003). Invasive Software Composition.
Springer.

[Aßmann et al., 2013] Aßmann, U., Zivkovic, S., Miksa, K., Siegemund, K.,
Bartho, A., Rahmani, T., Thomas, E., and Pan, J. (2013). Ontology-
Guided Software Engineering in the MOST Workbench. In Pan, J. Z.,
Staab, S., Aßmann, U., Ebert, J., and Zhao, Y., editors, Ontology-Driven
Software Development, pages 293–318. Springer Berlin Heidelberg.

[Atkinson and Kühne, 2003] Atkinson, C. and Kühne, T. (2003). Model-
driven Development: A Metamodeling Foundation. IEEE Software,
20(5):36–41.

254

http://www.adoxx.org
http://www.adoxx.org

BIBLIOGRAPHY 255

[Bardohl et al., 1999] Bardohl, R., Minas, M., Taentzer, G., and Schürr,
A. (1999). Application of Graph Transformation to Visual Languages.
In Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G., editors,
Handbook of graph grammars and computing by graph transformation,
pages 105–180. World Scientific Publishing Co., Inc., River Edge, NJ,
USA.

[Bartho et al., 2011] Bartho, A., Gröner, G., Rahmani, T., Zhao, Y., and
Zivkovic, S. (2011). Guidance in Business Process Modelling. In Service
Engineering: European Research Results, pages 201–231. Springer Vienna.

[Batini et al., 1986] Batini, C., Lenzerini, M., and Navathe, S. B. (1986). A
Comparative Analysis of Methodologies for Database Schema Integration.
ACM computing surveys (CSUR), 18(4):323–364.

[Bayer and Kühn, 2013] Bayer, F. and Kühn, H. (2013). Prozessmanage-
ment für Experten: Impulse für aktuelle und wiederkehrende Themen.
Springer DE.

[Becker et al., 2009] Becker, J., Weiss, B., and Winkelmann, A. (2009). De-
veloping a Business Process Modeling Language for the Banking Sector-A
Design Science Approach. In AMCIS, page 709.

[Bézivin and Gerbé, 2001] Bézivin, J. and Gerbé, O. (2001). Towards a
Precise Definition of the OMG/MDA Framework. In Automated Software
Engineering, 2001.(ASE 2001). Proceedings. 16th Annual International
Conference on, pages 273–280. IEEE.

[Bézivin et al., 2005] Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., and
Piers, W. (2005). Bridging the MS/DSL Tools and the Eclipse Modeling
Framework. In Proceedings of the International Workshop on Software
Factories at OOPSLA, volume 5.

[Bézivin et al., 2004] Bézivin, J., Jouault, F., and Valduriez, P. (2004). On
the Need for Megamodels.

[BOC, 2015] BOC (2015). Standard BPMS Method. http://www.boc-group.
com/products/adonis/bpms-method-life-cycle/.

[Booch, 1991] Booch, G. (1991). Object Oriented Design with Applications.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.

[Bracha, 1992] Bracha, G. (1992). The Programming Language Jigsaw:
Mixins, Modularity and Multiple Inheritance. PhD thesis, The Univer-
sity of Utah.

[Bracha and Cook, 1990] Bracha, G. and Cook, W. (1990). Mixin-based
Inheritance. In ACM SIGPLAN Notices, volume 25, pages 303–311. ACM.

http://www.boc-group.com/products/adonis/bpms-method-life-cycle/
http://www.boc-group.com/products/adonis/bpms-method-life-cycle/

BIBLIOGRAPHY 256

[Bracha and Griswold, 1996] Bracha, G. and Griswold, D. (1996). Extend-
ing Smalltalk with Mixins. In Workshop on Extending Smalltalk.

[Bräuer and Lochmann, 2007] Bräuer, M. and Lochmann, H. (2007). To-
wards Semantic Integration of Multiple Domain-Specific Languages Us-
ing Ontological Foundations. In 4th International Workshop on (Software)
Language Engineering (ATEM’07) co-located with the 10th International
Conference on Model Driven Engineering Languages and Systems (MoD-
ELS 2007).

[Brinkkemper, 1996] Brinkkemper, S. (1996). Method engineering: engi-
neering of information systems development methods and tools. Informa-
tion and Software Technology, 38(4):275–280.

[Brinkkemper et al., 1999] Brinkkemper, S., Saeki, M., and Harmsen, F.
(1999). Meta-Modelling based Assembly Techniques for Situational
Method Engineering. Information Systems, 24(3):209–228.

[Bruckhaus et al., 1996] Bruckhaus, T., Madhavii, N., Janssen, I., and Hen-
shaw, J. (1996). The Impact of Tools on Software Productivity. Software,
IEEE, 13(5):29–38.

[Brunet et al., 2006] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S.,
Niu, N., and Sabetzadeh, M. (2006). A Manifesto for Model Merging. In
Proceedings of the 2006 international workshop on Global integrated model
management, pages 5–12. ACM.

[Calero et al., 2006] Calero, C., Ruiz, F., and Piattini, M. (2006). Ontologies
for Software Engineering and Software Technology. Springer-Verlag.

[Charette, 1986] Charette, R. N. (1986). Software Engineering Environ-
ments: Concepts and Technology. Intertext Publications, Inc.,/McGraw-
Hill, Inc.

[Chen, 1993] Chen, M. (1993). CASE Data Interchange Format (CDIF)
Standards: Introduction and Evaluation. In System Sciences, 1993, Pro-
ceeding of the Twenty-Sixth Hawaii International Conference on, volume
iii, pages 31–40 vol.3.

[Clark et al., 2014] Clark, T., Gonzalez-Perez, C., and Henderson-Sellers,
B. (2014). A foundation for Multi-level Modelling. In MULTI 2014–
Multi-Level Modelling Workshop Proceedings, page 43.

[Cook et al., 2007] Cook, S., Jones, G., Kent, S., and Wills, A. C. (2007).
Domain-specific Development with Visual Studio DSL Tools. Pearson Ed-
ucation.

BIBLIOGRAPHY 257

[COSO, 2013] COSO (2013). Enterprise Risk Management - In-
tegrated Framework. ttp://www.coso.org/documents/COSO_ERM_
ExecutiveSummary.pdf.

[Czarnecki and Helsen, 2006] Czarnecki, K. and Helsen, S. (2006). Feature-
based Survey of Model Transformation Approaches. IBM Systems Jour-
nal, 45(3):621–645.

[David et al., 2002] David, A., Möller, M. O., and Yi, W. (2002). Formal
Verification of UML Statecharts with Real-time Extensions. In Funda-
mental Approaches to Software Engineering, pages 218–232. Springer.

[de Kinderen et al., 2012] de Kinderen, S., Gaaloul, K., and Proper, H. A.
(2012). Bridging Value Modelling to ArchiMate via Transaction Mod-
elling. Software & Systems Modeling, pages 1–15.

[de Lara and Guerra, 2013] de Lara, J. and Guerra, E. (2013). From Types
to Type Requirements: Genericity for Model-Driven Engineering. Soft-
ware & Systems Modeling, 12(3):453–474.

[De Lara and Vangheluwe, 2002] De Lara, J. and Vangheluwe, H. (2002).
Using AToM as a Meta-CASE Tool. In Proceedings of the 4th International
Conference on Enterprise Information Systems (ICEIS), pages 642–649.

[de Lara Jaramillo et al., 2003] de Lara Jaramillo, J., Vangheluwe, H., and
Alfonseca Moreno, M. (2003). Using Meta-modelling and Graph Gram-
mars to Create Modelling Environments. Electronic Notes in Theoretical
Computer Science, 72(3):36–50.

[Del Fabro et al., 2006] Del Fabro, M. D., Bézivin, J., and Valduriez, P.
(2006). Weaving Models with the Eclipse AMW plugin. In In Eclipse
Modeling Symposium, Eclipse Summit Europe.

[DeRemer and Kron, 1976] DeRemer, F. L. and Kron, H. H. (1976).
Programming-in-the-Large Versus Programming-in-the-Small. In Pro-
grammiersprachen, pages 80–89. Springer.

[Dietrich et al., 2013] Dietrich, H., Breuker, D., Steinhorst, M., Delfmann,
P., and Becker, J. (2013). Developing Graphical Model Editors for Meta-
Modelling Tools–Requirements, Conceptualisation, and Implementation.
Enterprise Modelling and Information Systems Architectures, 8(2):41–77.

[Dijkstra, 1959] Dijkstra, E. (1959). A Note on Two Problems in Connexion
with Graphs. Numerische Mathematik, 1(1):269–271.

[Dingel et al., 2008] Dingel, J., Diskin, Z., and Zito, A. (2008). Understand-
ing and Improving UML Package Merge. Software and Systems Modeling,
7(4):443–467.

ttp://www.coso.org/documents/COSO_ERM_ExecutiveSummary.pdf
ttp://www.coso.org/documents/COSO_ERM_ExecutiveSummary.pdf

BIBLIOGRAPHY 258

[Drey et al., 2010] Drey, Z., Faucher, C., Fleurey, F., Vincent, M.,
and Vojtisek, D. (2010). Kermeta Language - Reference Man-
ual. http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/
build/pdf.fop/KerMeta-Manual/index.pdf.

[Ebert and Franzke, 1995] Ebert, J. and Franzke, A. (1995). A Declarative
Approach to Graph Based Modeling. In Graph-Theoretic Concepts in
Computer Science, pages 38–50. Springer.

[Ebert et al., 1996] Ebert, J., Winter, A., Dahm, P., Franzke, A., and Süt-
tenbach, R. (1996). Graph Based Modeling and Implementation with
EER/GRAL. In Thalheim, B., editor, Conceptual Modeling ER ’96, vol-
ume 1157 of Lecture Notes in Computer Science, pages 163–178. Springer
Berlin Heidelberg.

[Eclipse, 2013] Eclipse (2013). Eclipse Modelling Project. http://www.
eclipse.org/modeling/.

[Eclipse, 2014a] Eclipse (2014a). Acceleo. http://www.eclipse.org/acceleo/.

[Eclipse, 2014b] Eclipse (2014b). Atlas Transformation Language. https:
//www.eclipse.org/atl/.

[Eclipse, 2014c] Eclipse (2014c). EMF Compare. http://www.eclipse.org/
emf/compare/.

[Eclipse, 2014d] Eclipse (2014d). Graphical Modelling Project (GMP). http:
//www.eclipse.org/modeling/gmp/.

[Eclipse, 2014e] Eclipse (2014e). Model Execution Framework. https://
www.eclipse.org/proposals/mxf/.

[Eclipse, 2014f] Eclipse (2014f). Textual Modelling Framework. http://
www.eclipse.org/modeling/tmf/.

[Eclipse, 2014g] Eclipse (2014g). The CDO Model Repository. http://www.
eclipse.org/cdo/.

[Emerson and Sztipanovits, 2006] Emerson, M. and Sztipanovits, J. (2006).
Techniques for Metamodel Composition. In OOPSLA 6th Workshop on
Domain Specific Modeling, pages 123–139.

[Feldman, 1979] Feldman, S. I. (1979). Make - A Program for Maintaining
Computer Programs. Software: Practice and experience, 9(4):255–265.

[Fill and Karagiannis, 2013] Fill, H.-G. and Karagiannis, D. (2013). On
the Conceptualisation of Modelling Methods using the ADOxx Meta
Modelling Platform. Enterprise Modelling and Information Systems
Architectures-An International Journal, 8(1).

http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/pdf.fop/KerMeta-Manual/index.pdf
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/pdf.fop/KerMeta-Manual/index.pdf
http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/
http://www.eclipse.org/acceleo/
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/proposals/mxf/
https://www.eclipse.org/proposals/mxf/
http://www.eclipse.org/modeling/tmf/
http://www.eclipse.org/modeling/tmf/
http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/

BIBLIOGRAPHY 259

[Floyd, 1967] Floyd, R. W. (1967). Assigning Meanings to Programs. Math-
ematical aspects of computer science, 19(19-32):1.

[Fowler, 2005] Fowler, M. (2005). Language Workbenches: The Killer-app
for Domain Specific languages? Online Web Page.

[Frank, 2002] Frank, U. (2002). Multi-perspective Enterprise Modeling
(MEMO) - Conceptual Framework and Modeling Languages. In System
Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii Interna-
tional Conference on, pages 1258–1267. IEEE.

[Fuentes-Fernández and Vallecillo-Moreno, 2004] Fuentes-Fernández, L.
and Vallecillo-Moreno, A. (2004). An Introduction to UML Profiles.
UML and Model Engineering, 2.

[Gérard et al., 2011] Gérard, S., Espinoza, H., Terrier, F., and Selic, B.
(2011). 6 Modeling Languages for Real-Time and Embedded Systems.
In Model-Based Engineering of Embedded Real-Time Systems, pages 129–
154. Springer.

[Golin and Reiss, 1990] Golin, E. J. and Reiss, S. P. (1990). The Specifica-
tion of Visual Language Syntax. Journal of Visual Languages & Comput-
ing, 1(2):141–157.

[Gonzalez-Perez and Henderson-Sellers, 2008] Gonzalez-Perez, C. and
Henderson-Sellers, B. (2008). Metamodelling for Software Engineering.
Wiley Publishing.

[Greenfield et al., 2004] Greenfield, J., Short, K., Cook, S., Kent, S., and
Crupi, J. (2004). Software Factories: Assembling Applications with Pat-
terns, Frameworks, Models and Tools. John Wiley & Sons.

[Gronback, 2009] Gronback, R. C. (2009). Eclipse Modeling Project: A
Domain-specific Language (DSL) Toolkit. Pearson Education.

[Grundy and Venable, 1996] Grundy, J. C. and Venable, J. R. (1996). To-
wards an Integrated Environment for Method Engineering. In Method
Engineering, pages 45–62. Springer.

[Happel and Seedorf, 2006] Happel, H. and Seedorf, S. (2006). Applications
of Ontologies in Software Engineering. Workshop on Semantic-Web En-
abled Software Engineering (SWESE).

[Harel and Rumpe, 2000] Harel, D. and Rumpe, B. (2000). Modeling Lan-
guages: Syntax, Semantics and All That Stuff, Part I: The Basic Stuff.

[Harel and Rumpe, 2004] Harel, D. and Rumpe, B. (2004). Meaningful
Modeling: What’s the Semantics of. Computer, 37(10):64–72.

BIBLIOGRAPHY 260

[Harmsen, 1997] Harmsen, A. F. (1997). Situational Method Engineering.
Moret Ernst & Young Management Consultants.

[Harrison and Ossher, 1993] Harrison, W. and Ossher, H. (1993). Subject-
oriented Programming: A Critique of Pure Objects, volume 28. ACM.

[Heidenreich et al., 2013] Heidenreich, F., Johannes, J., Karol, S., Seifert,
M., and Wende, C. (2013). Model-Based Language Engineering with
EMFText. In Generative and Transformational Techniques in Software
Engineering IV, pages 322–345. Springer.

[Helm and Marriott, 1991] Helm, R. and Marriott, K. (1991). A Declara-
tive Specification and Semantics for Visual Languages. Journal of Visual
Languages & Computing, 2(4):311–331.

[Henderson-Sellers and Gonzalez-Perez, 2005] Henderson-Sellers, B. and
Gonzalez-Perez, C. (2005). A Comparison of Four Process Metamodels
and the Creation of a New Generic Standard. Information and Software
Technology, 47(1):49–65.

[Henderson-Sellers et al., 2008] Henderson-Sellers, B., Gonzalez-Perez, C.,
and Ralyté, J. (2008). Comparison of Method Chunks and Method Frag-
ments for Situational Method Engineering. In Software Engineering, 2008.
ASWEC 2008. 19th Australian Conference on, pages 479–488. IEEE.

[Henderson-Sellers and Ralyté, 2010] Henderson-Sellers, B. and Ralyté, J.
(2010). Situational method engineering: State-of-the-art review. J. UCS,
16(3):424–478.

[Hessellund et al., 2007] Hessellund, A., Czarnecki, K., and Wąsowski, A.
(2007). Guided Development with Multiple Domain-specific Languages.
In Model Driven Engineering Languages and Systems, pages 46–60.
Springer.

[Hopcroft, 1971] Hopcroft, J. E. (1971). An N log N Algorithm for Minimiz-
ing States in a Finite Automaton. Technical report, Stanford University,
Stanford, CA, USA.

[Horridge and Patel-Schneider, 2009] Horridge, M. and Patel-Schneider,
P. F. (2009). OWL 2 Web Ontology Language Manchester Syntax .
http://www.w3.org/TR/owl2-manchester-syntax/.

[Hudak, 1998] Hudak, P. (1998). Modular Domain Specific Languages and
Tools. In Proceedings: Fifth International Conference on Software Reuse,
pages 134–142. IEEE Computer Society Press.

[IFIP-IPAC Task Force, 1999] IFIP-IPAC Task Force (1999). GERAM:
Generalised Enterprise Reference Architecture and Methodology, Version

http://www.w3.org/TR/owl2-manchester-syntax/

BIBLIOGRAPHY 261

1.6.3. http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/
geram1-6-3/GERAMv1.6.3.pdf.

[Isazadeh and Lamb, 1997] Isazadeh, H. and Lamb, D. A. (1997). A Com-
parative Review of MetaCASE Tools. In Systems Development Methods
for the Next Century, pages 297–311. Springer.

[Jackson, 1990] Jackson, M. (1990). Some Complexities in Computer-based
Systems and Their Implications for System Development. In Com-
pEuro’90. Proceedings of the 1990 IEEE International Conference on
Computer Systems and Software Engineering, pages 344–351. IEEE.

[Jacobson et al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J. (1999).
The Unified Software Development Process (Paperback). Addison-Wesley
Object Technology. Pearson Education, Limited.

[JetBrains, 2013] JetBrains (2013). JetBrains, Meta Programming Sys-
tem, Documentation. http://www.jetbrains.com/mps/documentation/
index.html.

[Johnson, 1975] Johnson, S. C. (1975). Yacc: Yet Another Compiler-
Compiler, volume 32. Bell Laboratories Murray Hill, NJ.

[Jouault and Bézivin, 2006] Jouault, F. and Bézivin, J. (2006). KM3: a
DSL for Metamodel Specification. In Formal Methods for Open Object-
Based Distributed Systems, pages 171–185. Springer.

[Jouault et al., 2010] Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G.,
Berbers, Y., and Bezivin, J. (2010). Inter-DSL Coordination Support by
Combining Megamodeling and Model Weaving. In Proceedings of the 2010
ACM Symposium on Applied Computing, pages 2011–2018. ACM.

[Junginger et al., 2000] Junginger, S., Kühn, H., Strobl, R., and Karagian-
nis, D. (2000). Ein Geschäftsprozessmanagement-Werkzeug der Nächsten
Generation - ADONIS: Konzeption und Anwendungen. Wirtschaftsinfor-
matik, 42(5):392–401.

[Karagiannis, 1995] Karagiannis, D. (1995). BPMS: Business Process Man-
agement Systems. ACM SIGOIS Bulletin, 16(1):10–13.

[Karagiannis, 2015] Karagiannis, D. (2015). Agile Modeling Method Engi-
neering. In Proceedings of the 19th Panhellenic Conference on Informat-
ics, pages 5–10. ACM.

[Karagiannis and Kühn, 2002] Karagiannis, D. and Kühn, H. (2002). Meta-
modelling Platforms. Invited Paper. In Proceedings of the Third Interna-
tional Conference EC-Web 2002 - Dexa 2002. Springer-Verlag, Berlin,
Heidelberg.

http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/GERAMv1.6.3.pdf
http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/GERAMv1.6.3.pdf
http://www.jetbrains.com/mps/documentation/index.html
http://www.jetbrains.com/mps/documentation/index.html

BIBLIOGRAPHY 262

[Karsai et al., 2003] Karsai, G., Agrawal, A., Shi, F., and Sprinkle, J.
(2003). On the Use of Graph Transformation in the Formal Specifica-
tion of Model Interpreters. J. UCS, 9(11):1296–1321.

[Karsai et al., 2004] Karsai, G., Maroti, M., Lédeczi, Á., Gray, J., and Szti-
panovits, J. (2004). Composition and Cloning in Modeling and Meta-
modeling. Control Systems Technology, IEEE Transactions on, 12(2):263–
278.

[Keller et al., 1992] Keller, G., Scheer, A.-W., and Nüttgens, M. (1992).
Semantische Prozeßmodellierung auf der Grundlage "Ereignisgesteuerter
Prozeßketten (EPK)". Inst. für Wirtschaftsinformatik.

[Kelly et al., 1996] Kelly, S., Lyytinen, K., and Rossi, M. (1996). Metaedit+
A Fully Configurable Multi-user and Multi-tool CASE and CAME En-
vironment. In Advanced Information Systems Engineering, pages 1–21.
Springer.

[Kelly and Tolvanen, 2008] Kelly, S. and Tolvanen, J.-P. (2008). Domain-
specific Modeling: Enabling Full Code Generation. Wiley.

[Kent, 2002] Kent, S. (2002). Model Driven Engineering. In Integrated For-
mal Methods, pages 286–298. Springer.

[Klein, 2001] Klein, M. (2001). Combining and Relating Ontologies: An
Analysis of Problems and Solutions. In IJCAI-2001 Workshop on ontolo-
gies and information sharing, pages 53–62.

[Kleppe, 2007] Kleppe, A. (2007). Towards the Generation of a Text-
based IDE From a Language Metamodel. In Model Driven Architecture-
Foundations and Applications, pages 114–129. Springer.

[Kleppe, 2009] Kleppe, A. (2009). Software Language Engineering: Creat-
ing Domain-Specific Languages Using Metamodels. Addison-Wesley Pro-
fessional.

[Kleppe et al., 2003] Kleppe, A., Warmer, J., and Bast, W. (2003). MDA
Explained: The Model Driven Architecture: Practice and Promise.
Addison-Wesley.

[Kolovos et al., 2006] Kolovos, D., Paige, R., and Polack, F. (2006). Merging
Models with the Epsilon Merging Language (EML). In Nierstrasz, O.,
Whittle, J., Harel, D., and Reggio, G., editors, Model Driven Engineering
Languages and Systems, volume 4199, chapter 16, pages 215–229. Springer
Berlin Heidelberg, Berlin, Heidelberg.

BIBLIOGRAPHY 263

[Kolovos et al., 2010] Kolovos, D. S., Rose, L. M., Abid, S. B., Paige, R. F.,
Polack, F. A., and Botterweck, G. (2010). Taming EMF and GMF Us-
ing Model Transformation. In Model Driven Engineering Languages and
Systems, pages 211–225. Springer.

[Kruchten, 2004] Kruchten, P. (2004). The Rational Unified Process: An
Introduction. Addison-Wesley Professional.

[Kühn, 2004] Kühn, H. (2004). Method Integration in Business Engineering
(In German). PhD thesis, Faculty of Computer Science, University of
Vienna, Austria.

[Kühn, 2010] Kühn, H. (2010). The ADOxx® Metamodelling Platform. In
Workshop on Methods as Plug-Ins for Meta-Modelling, Klagenfurt, Aus-
tria.

[Kühn et al., 2003] Kühn, H., Bayer, F., Junginger, S., and Karagiannis, D.
(2003). Enterprise model integration. In EC-Web, pages 379–392.

[Kühn et al., 2001] Kühn, H., Junginger, S., Bayer, F., and Petzmann, A.
(2001). Managing Complexity in E-Business. In Proceedings of the 8th
European Concurrent Engineering Conference, pages 6–11.

[Kühn et al., 2011] Kühn, H., Murzek, M., Specht, G., and Zivkovic, S.
(2011). Model-Driven Development of Interoperable, Inter-Organisational
Business Processes. In Charalabidis, Y., editor, Interoperability in Digi-
tal Public Services and Administration: Bridging E-Government and E-
Business, pages 119–143. Hershey, PA, USA.

[Langer et al., 2012] Langer, P., Wieland, K., Wimmer, M., Cabot, J., et al.
(2012). EMF Profiles: A Lightweight Extension Approach for EMF Mod-
els. Journal of Object Technology, 11(1):1–29.

[Lédeczi et al., 2001] Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nord-
strom, G., Sprinkle, J., and Karsai, G. (2001). Composing Domain-
specific Design Environments. Computer, 34(11):44–51.

[Ledeczi et al., 2001a] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Gar-
rett, J., Thomason, C., Nordstrom, G., Sprinkle, J., and Volgyesi, P.
(2001a). The Generic Modeling Environment. In Workshop on Intelligent
Signal Processing, Budapest, Hungary, volume 17.

[Ledeczi et al., 2001b] Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P.,
and Maroti, M. (2001b). On Metamodel Composition. In Control Ap-
plications, 2001. (CCA ’01). Proceedings of the 2001 IEEE International
Conference on Control Applications, pages 756–760.

BIBLIOGRAPHY 264

[Lekaditis, 2014] Lekaditis, C. (2014). Validation of ADOxx Metamodels
based on Semantic Technologies. Master thesis, Faculty of Computer Sci-
ence, University of Vienna, Austria.

[Lemcke et al., 2010] Lemcke, J., Rahmani, T., and Friesen, A. (2010). Se-
mantic Business Process Engineering. In Reasoning Web. Semantic Tech-
nologies for Software Engineering, pages 161–181. Springer.

[Lochmann and Hessellund, 2009] Lochmann, H. and Hessellund, A. (2009).
An Integrated View on Modeling with Multiple Domain-specific Lan-
guages. In Proceedings of the IASTED International Conference Software
Engineering (SE 2009), pages 1–10.

[Marriott et al., 1998] Marriott, K., Meyer, B., and Wittenburg, K. B.
(1998). A Survey of Visual Language Specification and Recognition. In
Visual language theory, pages 5–85. Springer.

[Martin, 1994] Martin, C. (1994). MetaCASE: Dream or Reality. In Elec-
tro/94 International. Conference Proceedings. Combined Volumes., pages
195–199.

[McDavid, 2004] McDavid, D. (2004). The Business-IT Gap: A Key Chal-
lenge. http://www.almaden.ibm.com/coevolution/pdf/mcdavid.pdf.

[MetaCase, 2011] MetaCase (2011). MetaEdit+ User’s Guide, Version 4.5.
http://www.metacase.com/support/45/manuals/meplus/Mp.html.

[Microsoft, 2013] Microsoft (2013). Common Language Runtime (CLR).
http://msdn.microsoft.com/en-us/library/8bs2ecf4%28v=vs.110%29.aspx.

[Microsoft, 2014a] Microsoft (2014a). .NET Framework. http://msdn.
microsoft.com/en-us/library/w0x726c2%28v=vs.110%29.aspx.

[Microsoft, 2014b] Microsoft (2014b). Visual Studio 2013. http://msdn.
microsoft.com/en-us/library/ff361664%28v=vs.110%29.aspx.

[Miksa et al., 2013] Miksa, K., Sabina, P., Friesen, A., Rahmani, T., Lem-
cke, J., Wende, C., Zivkovic, S., Aßmann, U., and Bartho, A. (2013). Case
Studies for Marrying Ontology and Software Technologies. In Pan, J. Z.,
Staab, S., Aßmann, U., Ebert, J., and Zhao, Y., editors, Ontology-Driven
Software Development, pages 69–94. Springer Berlin Heidelberg.

[Miksa et al., 2010] Miksa, K., Sabina, P., and Kasztelnik, M. (2010). Com-
bining Ontologies with Domain Specific Languages: A Case Study from
Network Configuration Software. In Aßmann, U., Bartho, A., and Wende,
C., editors, Reasoning Web. Semantic Technologies for Software Engineer-
ing, volume 6325 of Lecture Notes in Computer Science, pages 99–118.
Springer Berlin Heidelberg.

http://www.almaden.ibm.com/coevolution/pdf/mcdavid.pdf
http://www.metacase.com/support/45/manuals/meplus/Mp.html
http://msdn.microsoft.com/en-us/library/8bs2ecf4%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ff361664%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ff361664%28v=vs.110%29.aspx

BIBLIOGRAPHY 265

[Mirbel and Ralyté, 2005] Mirbel, I. and Ralyté, J. (2005). Situational
Method Engineering: Combining Assembly-based and Roadmap-driven
Approaches. Requirements Engineering, 11:58–78.

[Moody, 2009] Moody, D. (2009). The “physics" of Notations: Toward a Sci-
entific Basis for Constructing Visual Notations in Software Engineering.
Software Engineering, IEEE Transactions on, 35(6):756–779.

[Moon, 1986] Moon, D. A. (1986). Object-oriented programming with Fla-
vors. In ACM Sigplan Notices, volume 21, pages 1–8. ACM.

[Morin et al., 2009] Morin, B., Perrouin, G., Lahire, P., Barais, O., Van-
wormhoudt, G., and Jézéquel, J.-M. (2009). Weaving Variability into Do-
main Metamodels. In Model driven engineering languages and systems,
pages 690–705. Springer.

[Mosses, 1996] Mosses, P. D. (1996). Theory and Practice of Action Seman-
tics. Springer.

[Motik et al., 2009a] Motik, B., Patel-Schneider, P. F., and Parcia, B.
(2009a). OWL 2 Web Ontology Language Direct Semantics . http:
//www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/.

[Motik et al., 2009b] Motik, B., Patel-Schneider, P. F., and Parcia, B.
(2009b). OWL 2 Web Ontology Language Structural Specifi-
cation and Functional-Style Syntax . http://www.w3.org/TR/2009/
REC-owl2-syntax-20091027/.

[MSDN, 2012] MSDN (2012). Visualization and Modeling SDK - Domain-
Specific Languages. http://msdn.microsoft.com/en-us/library/bb126259.
aspx.

[MSDN, 2015] MSDN (2015). Extension Methods (C# Programming
Guide). https://msdn.microsoft.com/en-us//library/bb383977.aspx.

[Mukerji and Miller, 2003] Mukerji, J. and Miller, J. (2003). MDA Guide
Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[Murzek et al., 2013] Murzek, M., Rausch, T., and Kühn, H. (2013). BPMN
als Bestandteil der BPMS-Modellierungsmethode. In Bayer, F. and Kühn,
H., editors, Prozessmanagement für Experten, pages 93–113. Springer
Berlin Heidelberg.

[Noy, 2004] Noy, N. F. (2004). Semantic Integration: A Survey of Ontology-
based Approaches. ACM Sigmod Record, 33(4):65–70.

[Odersky et al., 2004] Odersky, M., Altherr, P., Cremet, V., Emir, B.,
Maneth, S., Micheloud, S., Mihaylov, N., Schinz, M., Stenman, E., and

http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://msdn.microsoft.com/en-us/library/bb126259.aspx
http://msdn.microsoft.com/en-us/library/bb126259.aspx
http://www.omg.org/cgi-bin/doc?omg/03-06-01

BIBLIOGRAPHY 266

Zenger, M. (2004). An overview of the Scala programming language.
Technical report, EPFL.

[OMG, 2008] OMG (2008). Software and Systems Process Engineering
Specification (SPEM) Version 2.0 . http://www.omg.org/spec/SPEM/2.
0/PDF/.

[OMG, 2011a] OMG (2011a). UML 2.4.1 Infrastructure Specification. http:
//www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/.

[OMG, 2011b] OMG (2011b). UML 2.4.1 Superstructure Specification.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[OMG, 2012] OMG (2012). Object Constraint Language (OCL) Version
2.3.1. http://www.omg.org/spec/OCL/2.3.1/PDF.

[OMG, 2013] OMG (2013). Business Process Model and Notation (BPMN)
Version 2.0.2. http://www.omg.org/spec/BPMN/2.0.2/PDF.

[OMG, 2014] OMG (2014). Meta Object Facility (MOF) Version 2.4.2. http:
//www.omg.org/spec/MOF/2.4.2/.

[OMI, 2015] OMI (2015). Open Model Initiative Laboratory. http://www.
omilab.at.

[Oracle, 2013] Oracle (2013). Java Virtual Machine Specification. http:
//docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2.

[Ouksel and Sheth, 1999] Ouksel, A. M. and Sheth, A. (1999). Semantic
Interoperability in Global Information Systems. ACM Sigmod Record,
28(1):5–12.

[Pan et al., 2013] Pan, J. Z., Staab, S., Aßmann, U., Ebert, J., and Zhao,
Y., editors (2013). Ontology-Driven Software Development. Springer,
Berlin.

[Parker, 1992] Parker, B. (1992). Introducing ANSI-X3.138-1988: A Stan-
dard for Information Resource Dictionary System (IRDS). In Assessment
of Quality Software Development Tools, 1992., Proceedings of the Second
Symposium on, pages 90–99.

[Pedro et al., 2008] Pedro, L., Amaral, V., and Buchs, D. (2008). Founda-
tions for a Domain Specific Modeling Language Prototyping Environment:
A Compositional Approach. In Proc. 8th OOPSLA ACM-SIGPLAN
Workshop on Domain-Specific Modeling (DSM). University of Jyväskylän.

[Plotkin, 1981] Plotkin, G. D. (1981). A Structural Approach to Operational
Semantics. DAIMI Aarhus University, Denmark.

http://www.omg.org/spec/SPEM/2.0/PDF/
http://www.omg.org/spec/SPEM/2.0/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/PDF
http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/MOF/2.4.2/
http://www.omg.org/spec/MOF/2.4.2/
http://www.omilab.at
http://www.omilab.at
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2

BIBLIOGRAPHY 267

[Pottinger and Bernstein, 2003] Pottinger, R. A. and Bernstein, P. A.
(2003). Merging Models Based on Given Correspondences. In VLDB
’2003: Proceedings of the 29th international conference on very large data
bases, pages 862–873. VLDB Endowment.

[Prackwieser et al., 2013] Prackwieser, C., Buchmann, R., Grossmann, W.,
and Karagiannis, D. (2013). Towards a Generic Hybrid Simulation Al-
gorithm Based on a Semantic Mapping and Rule Evaluation Approach.
In Knowledge Science, Engineering and Management, pages 147–160.
Springer.

[Ralyté, 1999] Ralyté, J. (1999). Reusing Scenario Based Approaches in Re-
quirement Engineering Methods: CREWS Method Base. In Proceedings
of the 10th International Workshop on Database & Expert Systems Appli-
cations, DEXA ’99, pages 305–, Washington, DC, USA. IEEE Computer
Society.

[Ralyté, 2004] Ralyté, J. (2004). Towards Situational Methods for Infor-
mation Systems Development: Engineering Reusable Method Chunks. In
Procs. 13th Int. Conf. on Information Systems Development. Advances in
Theory, Practice and Education, pages 271–282.

[Ralyté et al., 2006] Ralyté, J., Backlund, P., Kühn, H., and Jeusfeld, M. A.
(2006). Method Chunks for Interoperability. In Conceptual Modeling-ER
2006, pages 339–353. Springer.

[Ralyté et al., 2003] Ralyté, J., Deneckère, R., and Rolland, C. (2003). To-
wards a Generic Model for Situational Method Engineering. In Advanced
Information Systems Engineering, pages 95–110. Springer.

[Ralyté and Rolland, 2001] Ralyté, J. and Rolland, C. (2001). An assembly
process model for method engineering. In CAiSE, pages 267–283.

[Ralyté et al., 2004] Ralyté, J., Rolland, C., and Deneckère, R. (2004). To-
wards a meta-tool for change-centric method engineering: A typology of
generic operators. In CAiSE, pages 202–218.

[Rausch et al., 2011] Rausch, T., Kuehn, H., Murzek, M., and Brennan, T.
(2011). Making BPMN 2.0 Fit for Full Business Use. Bpmn 2.0 Handbook
Second Edition, page 189.

[Rekers, 1995] Rekers, J. (1995). On the Use of Graph Grammars for Defin-
ing the Syntax of Graphical Languages. In Proc. Colloquium on Graph
Transformation and its Application in Computer Science. Technical Re-
port B-19, Universitat de les Illes Balears. Citeseer.

BIBLIOGRAPHY 268

[Ren et al., 2009] Ren, Y., Gröner, G., Lemcke, J., Rahmani, T., Friesen,
A., Zhao, Y., Pan, J. Z., and Staab, S. (2009). Validating Process Refine-
ment with Ontologies. Description Logics, 477.

[Ren et al., 2013] Ren, Y., Gröner, G., Lemcke, J., Rahmani, T., Friesen,
A., Zhao, Y., Pan, J. Z., and Staab, S. (2013). Process Refinement Val-
idation and Explanation with Ontology Reasoning. In Service-Oriented
Computing, pages 515–523. Springer.

[Rolland et al., 1999] Rolland, C., Prakash, N., and Benjamen, A. (1999).
A Multi-Model View of Process Modelling. Requirements Engineering,
4(4):169–187.

[Scheer, 1992] Scheer, A.-W. (1992). Architektur integrierter Information-
ssysteme. Berlin, Heidelberg.

[Schroth et al., 2007] Schroth, C., Pemptroad, G., and Janner, T. (2007).
CCTS-based Business Information Modelling for Increasing Cross-
Organizational Interoperability. In Enterprise Interoperability II, pages
467–478. Springer.

[Schurr et al., 1995] Schurr, A., Winter, A., and Zundorf, A. (1995). Visual
Programming with Graph Rewriting Systems. In Visual Languages, Pro-
ceedings., 11th IEEE International Symposium on, pages 326–333. IEEE.

[Schwarz et al., 2010] Schwarz, H., Ebert, J., Lemcke, J., Rahmani, T., and
Zivkovic, S. (2010). Using Expressive Traceability Relationships for En-
suring Consistent Process Model Refinement. In Engineering of Complex
Computer Systems (ICECCS), 2010 15th IEEE International Conference
on, pages 183–192. IEEE.

[Scott and Strachey, 1971] Scott, D. and Strachey, C. (1971). Toward a
Mathematical Semantics for Computer Languages, volume 1. Oxford Uni-
versity Computing Laboratory, Programming Research Group.

[Selic, 2007] Selic, B. (2007). A Systematic Approach to Domain-specific
Language Design using UML. In Object and Component-Oriented Real-
Time Distributed Computing, 2007. ISORC’07. 10th IEEE International
Symposium on, pages 2–9. IEEE.

[Selic, 2011] Selic, B. (2011). The Theory and Practice of Modeling Lan-
guage Design for Model-Based Software Engineering - A Personal Per-
spective. In Generative and Transformational Techniques in Software
Engineering III, pages 290–321. Springer.

[Shen et al., 2004] Shen, H., Wall, B., Zaremba, M., Chen, Y., and Browne,
J. (2004). Integration of Business Modelling Methods for Enterprise Infor-

BIBLIOGRAPHY 269

mation System Analysis and User Requirements Gathering. Computers
in Industry, 54(3):307–323.

[Smaragdakis and Batory, 2001] Smaragdakis, Y. and Batory, D. (2001).
Mixin-based Programming in C++. In Generative and Component-based
Software Engineering, pages 164–178. Springer.

[Staab et al., 2010] Staab, S., Walter, T., GrÃ¶ner, G., and Parreiras, F.
(2010). Model Driven Engineering with Ontology Technologies. In Aß-
mann, U., Bartho, A., and Wende, C., editors, Reasoning Web. Semantic
Technologies for Software Engineering, volume 6325 of Lecture Notes in
Computer Science, pages 62–98. Springer Berlin Heidelberg.

[Steinberg et al., 2008] Steinberg, D., Budinsky, F., Merks, E., and Pater-
nostro, M. (2008). EMF: Eclipse Modeling Framework. Pearson Educa-
tion.

[Szyperski, 2002] Szyperski, C. (2002). Component Software: Beyond
Object-Oriented Programming. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition.

[Tan and Liu, 2012] Tan, S. L. and Liu, L. (2012). Performance Analysis
of Reusable Components with Hybrid Modelling of Strategies and Pro-
cesses: A Real World Case Study. In Computer Software and Applications
Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, pages
302–309. IEEE.

[The Open Group, 2012] The Open Group (2012). TOGAF, Enterprise
Edition, Version 9.1. http://pubs.opengroup.org/architecture/togaf9-doc/
arch/index.html.

[The Open Group, 2013] The Open Group (2013). ArchiMate, Version 2.0.
http://www.opengroup.org/subjectareas/enterprise/archimate.

[Tolvanen, 1998] Tolvanen, J.-P. (1998). Incremental Method Engineering
with Modeling Tools: Theoretical Principles and Empirical Evidence. Uni-
versity of Jyväskylä.

[Tolvanen and Kelly, 2010] Tolvanen, J.-P. and Kelly, S. (2010). Integrating
Models with Domain-specific Modeling Languages. In Proceedings of the
10th Workshop on Domain-Specific Modeling, page 10. ACM.

[Tolvanen et al., 2007] Tolvanen, J.-P., Pohjonen, R., and Kelly, S. (2007).
Advanced Tooling for Domain-specific Modeling: MetaEdit+. In Sprinkle,
J., Gray, J., Rossi, M., Tolvanen, JP (eds.) The 7th OOPSLA Workshop
on Domain-Specific Modeling, Finland.

http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://www.opengroup.org/subjectareas/enterprise/archimate

BIBLIOGRAPHY 270

[Vallecillo, 2010] Vallecillo, A. (2010). On the Combination of Domain Spe-
cific Modeling Languages. In Kühne, T., Selic, B., Gervais, M.-P., and
Terrier, F., editors, Proceedings of European Conference on Modelling
Foundations and Applications, 2010. (ECMFA 2010), volume 6138 of Lec-
ture Notes in Computer Science, pages 305–320. Springer.

[Venable, 1994] Venable, J. R. (1994). CoCoA: A Conceptual Data Mod-
elling Approach for Complex Problem Domains. PhD thesis, State Uni-
versity of New York at Binghamton, Watson School of Engineering and
Applied Science.

[Vernadat, 2006] Vernadat, F. (2006). The CIMOSA Languages. In Bernus,
P., Mertins, K., and Schmidt, G., editors, Handbook on Architectures of
Information Systems, International Handbooks on Information Systems,
pages 251–272. Springer Berlin Heidelberg.

[Visic et al., 2015] Visic, N., Fill, H.-G., Buchmann, R., and Karagiannis,
D. (2015). A Domain-specific Language for Modeling Method Definition:
From Requirements to Grammar. In Research Challenges in Information
Science (RCIS), 2015 IEEE 9th International Conference on, pages 286–
297.

[Visser, 2008] Visser, E. (2008). WebDSL: A Case Study in Domain-Specific
Language Engineering. Generative and Transformational Techniques in
Software Engineering II, 5235:291–373.

[Voelter, 2013] Voelter, M. (2013). Language and IDE Modularization and
Composition with MPS. In Generative and transformational techniques
in software engineering IV, pages 383–430. Springer.

[Voelter and Solomatov, 2010] Voelter, M. and Solomatov, K. (2010). Lan-
guage Modularization and Composition with Projectional Language
Workbenches Illustrated with MPS. Software Language Engineering,
SLE.

[Wachsmuth, 2007] Wachsmuth, G. (2007). Metamodel Adaptation and
Model Co-adaptation. In ECOOP 2007–Object-Oriented Programming,
pages 600–624. Springer.

[Walter and Ebert, 2009] Walter, T. and Ebert, J. (2009). Combining DSLs
and Ontologies Using Metamodel Integration. In Proceedings of the IFIP
TC 2 Working Conference on Domain-Specific Languages, pages 148–169,
Berlin, Heidelberg. Springer-Verlag.

[Walter and Ebert, 2011] Walter, T. and Ebert, J. (2011). Foundations of
Graph-based Modeling Languages. Technical report, Technical report,
University of Koblenz-Landau, Institute for Software Technology.

BIBLIOGRAPHY 271

[Warmer and Kleppe, 2006] Warmer, J. B. and Kleppe, A. G. (2006). Build-
ing a Flexible Software Factory Using Partial Domain Specific Models. In
Sixth OOPSLA Workshop on Domain-Specific Modeling (DSM’06), Port-
land, Oregon, USA, pages 15–22. University of Jyvaskyla.

[Weisemöller et al., 2011] Weisemöller, I., Klar, F., and Schürr, A. (2011).
Development of Tool Extensions with MOFLON. In Model-Based Engi-
neering of Embedded Real-Time Systems, pages 337–343. Springer.

[Weisemöller and Schürr, 2008] Weisemöller, I. and Schürr, A. (2008). For-
mal Definition of MOF 2.0 Metamodel Components and Composition. In
MoDELS ’08: Proceedings of the 11th international conference on Model
Driven Engineering Languages and Systems, pages 386–400, Berlin, Hei-
delberg. Springer-Verlag.

[Wende, 2012] Wende, C. (2012). Language Family Engineering with Fea-
tures and Role-Based Composition. PhD thesis, Faculty of Computer
Science, Technical University of Dresden, Germany.

[Wende et al., 2011] Wende, C., Aßmann, U., Zivkovic, S., and Kühn, H.
(2011). Feature-based customisation of tool environments for model-
driven software development. In de Almeida, E. S., Kishi, T., Schwan-
ninger, C., John, I., and Schmid, K., editors, Proceedings of Software
Product Lines - 15th International Conference, SPLC 2011, Munich, Ger-
many, August 22-26, 2011, pages 45–54. IEEE.

[Wende et al., 2009] Wende, C., Bartho, Andreas Ebert, J., Jekjantuk, N.,
Gerd, G., Lemke, J., Miska, K., Rahmani, T., Sabina, P., Schwarz, H.,
Walter, T., Zhao, Y., and Zivkovic, S. (2009). D2.5 - Ontology Services
for Model-Driven Software Development. MOST Project Deliverable -
http://most-project.eu/documents.php.

[Wende et al., 2010] Wende, C., Thieme, N., and Zschaler, S. (2010).
A Role-Based Approach Towards Modular Language Engineering. In
van den Brand, M., Gaševic, D., and Gray, J., editors, Software Lan-
guage Engineering, volume 5969 of Lecture Notes in Computer Science,
pages 254–273. Springer Berlin / Heidelberg.

[Wikipedia, 2015] Wikipedia (2015). House of Cards. http://en.wikipedia.
org/wiki/House_of_cards.

[Wikipedia, 2016] Wikipedia (2016). Digital Revolution. https://en.
wikipedia.org/wiki/Digital_Revolution.

[Winskel, 1993] Winskel, G. (1993). The Formal Semantics of Programming
Languages: An Introduction. The MIT Press.

http://most-project.eu/documents.php
http://en.wikipedia.org/wiki/House_of_cards
http://en.wikipedia.org/wiki/House_of_cards
https://en.wikipedia.org/wiki/Digital_Revolution
https://en.wikipedia.org/wiki/Digital_Revolution

BIBLIOGRAPHY 272

[Wirth, 1978] Wirth, N. (1978). Algorithms + Data Structures = Programs.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

[Wittenburg et al., 1991] Wittenburg, K., Weitzman, L., and Talley, J.
(1991). Unification-based Grammars and Tabular Parsing for Graphical
Languages. Journal of Visual Languages & Computing, 2(4):347–370.

[Xu et al., 2010] Xu, T., Ma, W., Liu, L., and Karagiannis, D. (2010). Hy-
brid Modeling: Synthesizing Strategic Model and Business Processes in
Active i*. In 14th IEEE international EDOC conference, Vitoria, Brazil.
IEEE.

[Zachman, 1987] Zachman, J. A. (1987). A Framework for Information Sys-
tems Architecture. IBM Syst. J., 26:276–292.

[Zito and Dingel, 2006] Zito, A. and Dingel, J. (2006). Modeling UML2
package merge with Alloy. In First Alloy Workshop.

[Zivkovic, 2006] Zivkovic, S. (2006). Integration Rules for Metamodel In-
tegration in Business Modelling (In German). Master thesis, Faculty of
Computer Science, University of Vienna, Austria.

[Živković and Karagiannis, 2015] Živković, S. and Karagiannis, D. (2015).
Towards Metamodelling-in-the-Large: Interface-based Composition for
Modular Metamodel Development. In Enterprise, Business-Process and
Information Systems Modeling, pages 413–428. Springer.

[Živković and Karagiannis, 2016] Živković, S. and Karagiannis, D. (2016).
Mixins and Extenders for Modular Metamodel Customisation. In Accepted
for International Enterprise Information Systems Conference, ICEIS
2016.

[Zivkovic et al., 2007] Zivkovic, S., Kühn, H., and Karagiannis, D. (2007).
Facilitate Modelling using Method Integration: An Approach using Map-
pings and Integration Rules. In Österle, H., Schelp, J., and Winter, R., ed-
itors, European Conference on Information Systems, ECIS2007. Univer-
sity of St. Gallen, Switzerland. http://is2.lse.ac.uk/asp/aspecis/20070196.
pdf.

[Zivkovic et al., 2009a] Zivkovic, S., Kühn, H., and Murzek, M. (2009a). An
Architecture of Ontology-aware Metamodelling Platforms for Advanced
Enterprise Repositories. In Proceedings of the 1st International Workshop
on Advanced Enterprise Repositories (AER 2009), Colocated with 11th In-
ternational Conference on Enterprise Information Systems (ICEIS 2009)
Milano, Italy, May 6th, pages 95–104.

http://is2.lse.ac.uk/asp/aspecis/20070196.pdf
http://is2.lse.ac.uk/asp/aspecis/20070196.pdf

BIBLIOGRAPHY 273

[Zivkovic et al., 2011] Zivkovic, S., Miksa, K., and Kühn, H. (2011). A Mod-
elling Method for Consistent Physical Devices Management: An ADOxx
Case Study. In Salinesi, C. and Pastor, O., editors, Advanced Information
Systems Engineering Workshops - CAiSE 2011 International Workshops,
London, UK, June 20-24, 2011. Proceedings, volume 83 of Lecture Notes
in Business Information Processing, pages 104–118. Springer.

[Zivkovic et al., 2015] Zivkovic, S., Miksa, K., and Kühn, H. (2015). On
Developing Hybrid Modeling Methods Using Metamodeling Platforms: A
Case of Physical Devices DSML Based on ADOxx. International Journal
of Information System Modeling and Design (IJISMD), 6(1):47–66.

[Živković et al., 2008] Živković, S., Murzek, M., and Kühn, H. (2008).
Bringing Ontology Awareness into Model Driven Engineering Platforms.
In Parreiras, F. S., Pan, J., Aßman, U., and Henriksson, J., editors, Pro-
ceedings of the 1st International Workshop on Transforming and Weaving
Ontologies in Model Driven Engineering (TWOMDE 2008), Co-located
with MODELS, Tolouse, France, September 28, 2008, CEUR Workshop
Proceedings, pages 47–54. CEUR-WS.org.

[Zivkovic et al., 2009b] Zivkovic, S., Wende, C., Bartho, A., and Gregorcic,
B. (2009b). D2.3 - Initial Prototype of Ontology-driven Software Process
Guidance System. MOST Project Deliverable - http://most-project.eu/
documents.php.

[Zivkovic et al., 2013] Zivkovic, S., Wende, C., Thomas, E., Parreiras, F.,
Walter, T., Miksa, K., Kühn, H., Schwarz, H., and Pan, J. (2013). A
Platform for ODSD: The MOST Workbench. In Pan, J. Z., Staab, S.,
Aßmann, U., Ebert, J., and Zhao, Y., editors, Ontology-Driven Software
Development, pages 275–292. Springer Berlin Heidelberg.

http://most-project.eu/documents.php
http://most-project.eu/documents.php

List of Figures

1.1 Metamodel composition for modular engineering of hybrid,
evolving modelling languages 8

1.2 Thesis structure . 10

2.1 Elements of a method . 19
2.2 Modelling method framework according to [Karagiannis and

Kühn, 2002] . 20
2.3 Extended modelling method framework based on [Kühn, 2004] 21
2.4 Process views . 27
2.5 Example of a process model. Development process specifi-

cation for model-driven development of interoperable, inter-
organisational business processes [Kühn et al., 2011] 28

2.6 Process structure part of the SPEM 2.0 Metamodel (SPEM
2.0, [OMG, 2008], p.44) . 53

2.7 Topology of method engineering approaches (adapted from [Ra-
lyté et al., 2004] . 53

2.8 The method engineering continuum 54
2.9 Framework for hybrid languages and integration dimensions . 54
2.10 Method component metamodel according to Henderson-Sellers

et al. [Henderson-Sellers et al., 2008] 55
2.11 Method fragment according to Kühn [Kühn, 2004] 55
2.12 Merge Pattern according to [Kühn et al., 2003] 55
2.13 Metamodel of metamodel mappings according to [Zivkovic

et al., 2007] . 56
2.14 Method engineering generic operators according to [Ralyté

et al., 2004] . 56
2.15 Life cycle of hybrid modelling methods (adapted based on

[Kühn, 2004] and [Kühn et al., 2011] 57
2.16 a) Source metamodels annotated with mappings and integra-

tion points, b) Revisited mappings [Zivkovic et al., 2007] . . . 57
2.17 Integrated metamodel that extends BPMN organisation mod-

elling concepts [Zivkovic et al., 2007] 57

274

LIST OF FIGURES 275

2.18 Overview of the integrated metamodel (Modelling framework
for interoperable, inter-organisational business processes [Kühn
et al., 2011] . 58

2.19 Specification and sample configuration of network device Cisco
7603 . 58

2.20 Overview of the metamodel parts and integration points [Zivkovic
et al., 2011] . 59

3.1 Modelling language anatomy 63
3.2 Categorisation of metamodelling language capabilities 72
3.3 Conceptual view of the ADOxx Meta-metamodel: ADOxx-

Meta2-Model . 77
3.4 Conceptual view of the EMF Ecore meta-metamodel based

on [Steinberg et al., 2008] . 78
3.5 Conceptual view of the GME MetaGME meta-metamodel

based on [Ledeczi et al., 2001a] 79
3.6 Conceptual view of the MetaEdit+ GOPPRRmeta-metamodel

reconstructed based on [Tolvanen, 1998, Kelly et al., 1996,
Kelly and Tolvanen, 2008] . 80

3.7 Core class-based metamodelling capabilities of the MOFmeta-
metamodel according to [OMG, 2014,OMG, 2011a] 82

3.8 Modularisation capabilities of the MOF meta-metamodel ac-
cording to [OMG, 2014,OMG, 2011a] 83

3.9 Simplified view of the GrUML Meta-metamodel based on
[Walter and Ebert, 2011] . 84

4.1 Generic architecture of development environments 93
4.2 Generic architecture of metamodelling environments (capa-

bility view) . 96
4.3 Capabilities of metamodelling environments 97
4.4 The generic architecture for ontology-based MDSD environ-

ments . 113

5.1 Non-invasive vs. invasive composition 123
5.2 Inheritance composition operation: Mc and Mb 126
5.3 Aggregation composition operation: Mc and Mb 127
5.4 Merging composition operation: Mc and Mb 128
5.5 Import composition operation: Mc and Mb 128
5.6 Template instantiation composition operation: Mc and Mb . . 129
5.7 Stereotyping composition operation: L1 and L2 130
5.8 Annotation composition operation: Mc and Mb 131
5.9 Parameterisation composition operation: Mc and Mb 131
5.10 Classification framework for the evaluation of metamodel mod-

ularisation and composition approaches 133

LIST OF FIGURES 276

6.1 Extension of metamodelling towards modular metamodel en-
gineering . 146

6.2 The notion of a metamodel fragment 150
6.3 Provided and required interfaces. The example 151
6.4 The notion of an implicit interface based on the metamodel

element type Class . 152
6.5 White-box vs. grey-box vs. black-box metamodel composition 154
6.6 The notion of the interface realisation composition operator . 155
6.7 The notion of the interface subtyping composition operator . 155
6.8 The notion of the extension composition operator 157
6.9 The notion of the mixin inclusion composition operator . . . 159
6.10 A metamodel for modular metamodel engineering 160

7.1 The package structure of MMEL 165
7.2 Metamodel of the abstract core metamodelling language . . . 166
7.3 Metamodel of the concrete core metamodelling language. It

extends the abstract counterpart. 170
7.4 A concrete syntax of the core metamodelling language (Sim-

plified specification) . 171
7.5 Metamodel of the metamodel modularisation language - En-

capsulation module . 172
7.6 A concrete syntax of the metamodel encapsulation language

(simplified specification) . 176
7.7 Metamodel of the metamodel modularisation language - In-

terface module . 177
7.8 A concrete syntax of the metamodel interfacing language in-

cluding the component-based notation of fragments with pro-
vided and required interfaces (simplified specification) 179

7.9 Metamodel of the black-box composition operators 181
7.10 A concrete syntax of the black-box composition language in-

cluding the component-based notation (simplified specification)187
7.11 Metamodel of the grey-box composition operators 188
7.12 Metamodel of the white-box composition operators 193
7.13 A concrete syntax of the grey-box and white-box composition

operators . 197

8.1 An excerpt of the implementation view of the ADOxx Meta2-
Model . 201

8.2 A screenshot of the tree-based and form-based notation of the
ADOxx Meta2-Model . 205

8.3 Extending the ADOxx Meta2-Model for metamodel modular-
isation . 206

8.4 Extending the ADOxx Meta2-Model for metamodel compo-
sition . 211

LIST OF FIGURES 277

8.5 The metamodel of an MFB 216
8.6 Variability of MFB composition operations 219

9.1 Anatomy of ADOxx metamodels 226
9.2 Hybrid usage of BPMN within the BPMS method 228
9.3 Simplified conceptual view of the BPMS metamodel divided

into main model types . 229
9.4 A possible modularisation of the BPMS metamodel 231
9.5 An example of the BPMS modularisation: BPMN Business

Process Diagram Metamodel fragment (simplified metamodel) 232
9.6 Applying black-box metamodel composition for BPMS: Com-

position of the BPMN fragment, OM fragment and RC fragment233
9.7 Realisation of black-box metamodel composition for BPMS:

Detailed composition of BPMN and RC fragments 234
9.8 Applying grey-box metamodel composition for BPMS: Ex-

tending fragments BPMN and PL with extender fragment MF 234
9.9 Extension-based grey-box metamodel composition for BPMS:

Detailed composition of fragments BPMN and PL with ex-
tender fragment MF . 235

9.10 Applying white-box metamodel composition for BPMS: Mixin-
based composition of the domain fragment BPMN and the
system fragment 2DGraphical 236

9.11 Mixin-based white-box metamodel composition for BPMS:
Detailed composition of the domain fragment BPMN and the
mixin fragment 2DGraphical 237

9.12 Achieving black-box independent composition of prefabricated
metamodel fragments using dynamic invasive grey-box com-
position . 238

9.13 Achieving white-box independent composition of prefabricated
metamodel fragments using dynamic invasive grey-box com-
position . 239

9.14 Hybrid PDDSL: Metamodel integration based on inheritance
(simplified view of the integrated metamodel focusing on the
integration points) . 240

9.15 Reusable metamodel fragments as black-box components of
the Hybrid PDDSL . 242

9.16 Black-box composition of metamodel fragments for Hybrid
PDDSL . 243

9.17 Extension-based grey-box composition of metamodel fragments
for Hybrid PDDSL . 245

List of Tables

2.1 Classification of typical mechanisms and algorithms of mod-
elling methods . 26

2.2 Classification of hybrid modelling methods 36
2.3 Specification of the integration rule MergeC2C [Zivkovic et al.,

2007] . 41
2.4 Classification of mappings and integration rules based on [Zivkovic

et al., 2007] . 42
2.5 Variety of languages in the modelling framework for inter-

operable, inter-organisational business processes according to
[Kühn et al., 2011] . 47

3.1 Terminology of language layers in different computer science
fields . 62

3.2 Comparison of meta-metamodels according to core metamod-
elling language capabilities . 87

3.3 Comparison of meta-metamodels according to supporting meta-
modelling language capabilities 88

4.1 Programming vs. modelling vs. metamodelling 92
4.2 Feature comparison of metamodelling environments - Deriva-

tion, Meta-meta and metamodel level 115
4.3 Feature comparison of metamodelling environments - Model

level . 116

5.1 Evaluation of metamodel modularisation and composition ap-
proaches . 142

7.1 Abstract syntax constraints of the core metamodelling language168
7.2 Abstract syntax constraints of the encapsulation part of the

modularisation language . 173
7.3 Abstract syntax constraints of the interfaces part of the mod-

ularisation language . 178
7.4 Abstract syntax constraints of the black-box composition part

of the composition language 184

278

LIST OF TABLES 279

7.5 Abstract syntax constraints of the grey-box composition part
of the composition language 190

7.6 Abstract syntax constraints of the white-box composition part
of the composition language 195

8.1 Mapping of abstract core metamodelling language concepts
to ADOxx Meta2-Model . 202

Appendix A

Biography

Srđan Živković is senior software architect at BOC Information Technolo-
gies Consulting GmbH. Srđan has many years of experience in developing
ADOxx metamodelling platform and ADOxx-based modelling products such
as ADONIS and ADOit. His work in software industry is complemented by
the research in the areas of metamodelling, model-based approaches and
tools, in which he also regularely publishes scientific articles. From 2008
to 2011, he participated in the FP7 EU research project MOST as a re-
searcher and software architect. In addition, he was leading an industrial
research project in semantic guidance for modelling language engineering
co-sponsored by the City of Vienna (ZIT) and BOC. For several years, he’s
also been a regular adjunct lecturer in Business Informatics at the Faculty
of Computer Science, University of Vienna.

Prior to his PhD studies at the Faculty of Computer Science, University
of Vienna, Austria, Srđan Živković received a Master degree (Mag.) in
Business Informatics (Wirtschaftsinformatik) from the University of Vienna,
Austria in 2006 and a Bachelor degree (Dipl. Ing) in Information Systems
from the University of Belgrade, Serbia in 2003.

280

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	I Overview
	Introduction
	Overview
	Problem Statement
	Hybrid Languages
	Evolving Languages
	Metamodelling-in-the-Large vs. Metamodelling-in-the-Small
	Research Questions

	Thesis Contributions
	A Concept for Modular Metamodel Engineering
	A Language for Modular Metamodel Engineering
	Realisation in Metamodelling Platforms
	Evaluations

	Thesis Structure and Additional Information
	Thesis Structure
	Scope: Additional Comment
	Publications

	II Existing Work
	Concepts for Modelling Method Engineering
	Modelling Methods
	Elements of a Method
	Extended Method Framework
	Modelling Technique
	Mechanisms and Algorithms
	Process Model
	Overview of Method Engineering Approaches

	Method Integration for Hybrid Modelling
	Hybrid Modelling Methods
	Method Modularisation (Fragments and Chunks)
	Method Integration (Patterns, Mappings and Integration Rules)
	Life Cycle of Hybrid Modelling Methods

	Case Studies in Hybrid Modelling Methods
	Integration of BPMN and Organisational Modelling
	Model-driven Development of Interoperable, Interorganisational Business Processes
	Hybrid Modelling Method for Consistent Physical Devices Management

	Chapter Summary

	Concepts for Modelling Language Engineering
	Language Engineering Layers
	Modelling Language Anatomy
	Abstract Syntax
	Concrete Syntax
	Semantics
	Interfaces

	Approaches for Language Definition
	Abstract Syntax Specification
	Concrete Syntax Specification
	Semantics Specification

	Overview of Metamodelling Languages
	Metamodelling Concepts
	Capabilities of Metamodelling Languages
	ADOxx Meta2-Model
	EMF Ecore
	GME MetaGME
	MetaEdit+ GOPPRR
	OMG MOF
	GrUML
	Comparison of Metamodelling Languages
	Other Approaches

	Chapter Summary

	Metamodelling Environments
	Development Environments
	Programming Environments vs. (Meta-)Modelling Environments
	Elements of Development Environments
	Classification of Development Environments

	Overview of Metamodelling Environments
	Generic Architecture of Metamodelling Environments
	Capabilities of Metamodelling Environments
	ADOxx
	GME
	MetaEdit+
	Eclipse Modelling
	Comparison of Metamodelling Environments

	Excursion: Ontology-driven Software Development Environments
	ODSD Environments
	Reference Architecture for ODSD Environments

	Chapter Summary

	III Focus of Work
	On Metamodel Modularisation and Composition
	Elements of Modular Systems
	Modularisation Concepts
	Composition Concepts
	Composition Technique (Derivation of Composite Modules)

	Existing Metamodel Composition Operators
	Inheritance
	Redefinition
	Aggregation
	Merging
	Importing
	Template Instantiation
	Stereotyping
	Annotation
	Parameterisation

	Analysis of Related Work
	Classification Framework
	Overview of Approaches
	Evaluation of Approaches

	Chapter Summary

	A Concept for Modular Metamodel Engineering
	Foundations of Modular Metamodel Engineering
	A Holistic Modular Approach
	Requirements on a Modular Approach

	Modularisation in Metamodel Engineering
	Metamodel Fragment
	Explicit Interfaces (Black-Box)
	Implicit Interfaces (Grey-Box)
	Explicit Access Modifiers (Grey-Box, White-Box)

	Composition in Metamodel Engineering
	Interface-based Black-Box Metamodel Composition
	Extension-based Grey-Box Metamodel Composition
	Mixin-based White-Box Metamodel Composition

	A Metamodel for Modular Metamodel Engineering
	Chapter Summary

	A Language for Modular Metamodel Engineering (MMEL)
	Preliminaries
	Note on Specification Formalism
	MMEL Language Architecture

	Core Metamodelling Language (CML)
	Abstract Metamodelling Language
	Concrete Metamodelling Language

	Metamodel Modularisation Language (MML)
	Metamodel Encapsulation Language
	Metamodel Interfacing Language

	Metamodel Composition Language (MCL)
	Black-Box Metamodel Composition Language
	Grey-Box Metamodel Composition Language
	White-Box Metamodel Composition Language

	Chapter Summary

	A Realisation of MMEL in ADOxx
	ADOxx Metamodelling Language Implementation
	Syntax of the ADOxx Meta2-Model
	Semantics of the ADOxx Meta2-Model
	Notation of the ADOxx Meta2-Model

	Implementing Metamodel Modularisation in ADOxx
	Extending the Syntax
	Extending the Semantics
	Extending the Notation

	Implementing Metamodel Composition in ADOxx
	Extending the Syntax
	Extending the Semantics
	Extending the Notation

	Applying MMEL Towards Modular Modelling Methods in ADOxx
	Metamodel and Functionality Building Blocks (MFBs)
	Realisation of MFBs in ADOxx

	Chapter Summary

	IV Evaluation
	Case Studies for MMEL in OMILab
	Case Study in BP: Modular BPMS
	Particularities of ADOxx Metamodels
	Modularisation of the BPMS Metamodel
	Composition of BPMS Fragments (A Selection)

	Case Study in EA: Hybrid PDDSL
	Revisiting the Integrated Metamodel Implementation
	Modular Metamodel Definition using MMEL

	Chapter Summary

	V Summary
	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	List of Figures
	List of Tables
	Appendix
	Biography

