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1 Introduction 

Origin-destination (OD) matrices are highly valued for various research fields as traffic 

management, transportation systems operation, for purpose of transportation planning, design 

and analysis in the longer term (Nair et al., 2013). Origin destination matrix represents traffic 

demand in an area which is "essentially a table containing the number of trips from each 

origin to each destination in the area" as Abrahamsson (1998) wrote in his survey. Hongjun et 

al. (2010) define that for elaboration of traffic management schemes the OD-matrices should 

be obtained rapidly and accurately.  

According to the literature, the OD-matrix estimation models can be divided into two 

categories, namely static (time-independent) and dynamic (time-dependent) based on its 

application. The traffic flows in static models are time-independent and an average OD 

demand is assumed stationary, that is to say time-independent models describe the traffic 

situations on the average.  

Peterson states that such models demand not as much input data and exist "well-established 

analytical models". There are many methods, which solve time-independent OD-matrix 

estimation models. Whereas in the last two decades various dynamic algorithms are proposed 

which are designed for short-term strategies like traffic control on freeways, route guidance, 

intersections etc. (Bera and Rao, 2011). 

As an extension of the static models dynamic ones on the other hand can reproduce an impact 

of the special events on the traffic according to Peterson (2007). For time-dependent models, 

the input data should contain detailed information about the traffic situation. When time as a 

dimension is considered, the complexity of the estimation problem increases significantly. 

Until now most time-evolving models are based on simulation. 

Commonly, the OD data were obtained from home interviews by conducting big scale 

surveys such as roadside surveys or on-board surveys. However, the collection of this kind of 

data is expensive in terms of money and work force and at the same time, it contains 

internal errors because of "sampling processes and problems in elaboration" (Perrakis et al., 

2012). Moreover, by the time how the survey data will be definitely collected and processed, 

the obtained OD data may become quickly outdated. (Bera and Rao, 2011). 

However, there is some software that can estimate OD-matrices. Nevertheless, depends on the 

study area it is not always flexible as much as it is required in respect of the type of available 
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data. Bera and Rao (2011) confirm that research is still going on to estimate reliable OD-

matrices efficiently. 

In this thesis, we emphasize the distance measurements instead of demand flow for static 

origin-destination estimation problem, that means that the thesis focuses on the methods and 

the concepts enabled to deliver computation results within reasonable time frame and still are 

reliable and accurate. In order to define an appropriate approach we study dependence 

between an aggregative level of input data and an accuracy of the obtained results.  

Therefore, the new complex concept including several methods has been proposed and 

analyzed first on the testing benchmark, later on the real-world examples with different 

complexity. The proposed and described concept confirms his features as an efficient method 

in compassion to the available software and as a method suitable for application on the real-

world cases.  

The remainder of this master thesis has a following structure. Chapter 2 provides the reader a 

short and focused literature review on the static OD-matrix estimation problem as well as on 

basic literature sources for the dynamic version of estimation problem. Chapter 3 starts by 

defining the OD-matrix estimation problem and providing basic notations on complexity and 

further notes on the question of research. After that, the OD-matrix estimation methods 

explained in more details.  

Chapter 4 discusses the analytical framework and thereafter examines the model on the 

testing benchmark and analyzes the obtained results. The fifth chapter starts by presenting the 

case studies and then discusses the results of computational experiments. Finally, Chapter 7 

draws a conclusion and provides some ideas and comments for further research. 
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2 Literature Review 

Methods of estimating time-independent OD-matrices.  

In the past decades, the time-independent OD-matrix estimation problem has been well 

studied. In the literature, there are several surveys that review the estimation problem like 

Abrahamsson (1998), Bell and Iida (1997), Willumsen (1981) etc.  

Initially the researchers tried to relate the OD-matrix as a function of models (like the gravity 

models) with related parameters. Several researchers like Robillard (1975), Högberg (1976) 

used Gravity model based approaches and some (Tamin and Willumsen, 1989;  Tamin et al., 

2003) used Gravity-Opportunity based models for estimating OD-matrices. However, 

Willumsen (1981) notes that because the gravity model are not able to handle with accuracy 

external trips it is the main drawback of those models.  

After the Entropy concept has been introduced by Wilson (1970) Information Minimization 

(IM) and Entropy Maximization (EM) techniques are used as tools for building models in 

transportation, urban and regional planning context. Willumsen (1978) implemented EM to 

estimate OD-matrix and IM approach was used by van Zuylen (1978). Unfortunately, IM and 

EM based models do not consider the uncertainties in traffic counts that counts as their 

shortcomings.  

Among other OD estimation methods, there are several statistic approaches such as 

maximum likelihооd (ML), gеnеrаlizеd lеаst squаrеs (GLS) and Bayesian infеrеncе (BI), 

which partially based on the EM method. Bayesians inference framework method has been 

first introduced by (Maher, 1983) for the OD-matrix estimation. GLS estimator based 

approach has been studied by Cascetta (1984) and Bell (1991) etc. Bell (1983), Spiess (1987), 

Cascetta and Nguyen (1988) studied the models based on the most likelihood estimation. 

These approaches were generalized and further improved by other authors (Yang et al., 1992;  

Lo et al., 1996;  Hazelton, 2000).  

Moreover, some researchers proposed bi-level models for estimating OD-matrices. Such 

models was described in the paper of Kim et al. (2001) that also discussed the problem of 

model developed by Yang et al. (1992) and suggested an alternative model using genetic 

algorithm. Lately, Codina et al. (2006) presented two alternative algorithms solving bi-level 

problems and examined them on small networks. Recently, Lundgren and Peterson (2008) 

elaborated a heuristic for bi-level problem and tested their algorithm on a large size network 
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of Stockholm. There are some more studies (Hazelton, 2003; van Aerde et al., 2003; Li, 2012 

etc.) based on statistical approaches. 

As it was mentioned in the previous chapter, traditionally survey method was considered to be 

used for obtaining OD data by conducting large-scale surveying studies, which require 

amounts of money and time. Recently, Jin, 2016) in his paper suggested new simplified 

survey method without large-scale OD surveying studies in a small- and medium-sized 

cities. The proposed approach was tested in the small city of Chungju, South Korea, and 

obtained results outperformed exiting methods from the literature due to significant cost 

reduction as well as suitability for simplification that enable to speed up the process of 

collecting data and therefore gives an opportunity to reproduce and update the data more 

frequently.  

 

Methods of estimating time-dependent OD-matrices.  

Beside static estimations, dynamic estimations have developed gradually. Cascetta et al. 

(1993) and Sherali and Park (2001) solved the dynamic OD estimation problem using 

standard gradient methods. Considerable amount of the works in OD-matrix estimation so 

far have focused on the more complexed algorithms that improve estimation and forecasting 

of OD-matrices and at the same time requires less time for processing. To those works 

belongs the papers of Bierlaire and Crittin (2004), Kattan and Abdulhai (2006) Zhou and 

Mahmassani (2007).  

Others suggested to add available automatic identification data or data from traffic counts 

(Asakura et al., 2000; Antoniou et al., 2004; Dixon and Rilett, 2005) to name a few. 

Automatic vehicle location (AVL) data are part of automatic identification data, which can 

provide a large fragment of OD flow data. AVL data have a big potential, therefore they 

received attention from the researchers. Those data can be observed from in-vehicle traffic 

sensors like GPS or GSM. The following authors like van Aerde et al. (1993), Ashok and 

Ben-Akiva (2000), Caceres et al. (2007) used AVL data to develop various models for the 

estimation of OD flows .  

Another OD flow data source is represented by automatic vehicle identification (AVI) data 

that are also important for estimating demand flows of dynamic OD-matrices. Such kind of 

data can be observed from AVI sensors such as electronic-toll collection devices, infrared 

cameras, Bluetooth, Wi-Fi, etc. (Djukic et al., 2015). Several models that used AVI data in 



5 

order to estimate OD flows have been developed by Asakura et al. (2000), Dixon and Rilett 

(2002) and Antoniou et al. (2004). 

The data from portable gadgets such as smartphones, GPS navigational devices (Moreira-

Matias et al., 2016), Bluetooth devices (Barceló et al., 2010) are nowadays a sources of a real-

time information which provide an opportunity to improve an accuracy of OD estimation. Lou 

and Yin (2010) and Frederix et al. (2011) proposed a method, which decompose network into 

small zones in order to deal with high dimensional OD estimation problem (Djukic et al., 

2012).  

Other method that frequently used for estimating and predicting OD-matrices is the Kalman 

filter algorithm (Djukic et al., 2012). The standard linear Kalman filter theory was first time 

mentioned by Okutani (1987) who used this theory to get "optimal estimates of the state 

vector in each time interval". Ashok and Ben-Akiva (1993) proposed a Kalman filtering 

approach in order to be able to update an OD-matrix constantly. Kachroo et al. (1997) studied 

the application of Kalman filtering approaches for network OD-matrix estimation from link 

traffic counts. Sherali et al. (1997) enhanced a constrained optimization algorithm but with 

high computational cost.  

However, Kalman filtering formulation has disadvantages because it requires sufficient data 

and intensive matrix operations. Dan et al., 2011) proposed adaptive filtering process based 

on the simplified and improved Sage-Husa filtering algorithm that increases the filter 

accuracy. 

In the literature the dynamic origin–destination estimation problem has also been solved 

applying the simultaneous perturbation stochastic approximation (SPSA) algorithm 

(Toledo and Kolechkina, 2013). Different researchers (Balakrishna and Koutsopoulos, 2008; 

Cipriani et al., 2011; Spall, 1998; Spall, 1999; Spall, 2005) have used this algorithm for the 

problem solution. Tympakianaki et al. (2015) underline the main advantage of SPSA is that it 

allows formulating the problem quite general.  

Moreover, several authors suggested meta-heuristic approaches. These methods includes 

evolutionary algorithm (EA) (Kattan and Abdulhai, 2006) and simulated annealing (SA) 

(Stathopoulos and Tsekeris, 2004). Generally meta-heuristics by definition are able to detect  

not only local optima but also global optima which is a major benefit of those methods 

However, normally they demanding a frequently evaluation of objective function that usually 
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computationally expensive in the context of time-evolving OD estimation (Toledo and 

Kolechkina, 2013).  

Later on,  Kattan and Abdulhai (2010) in their paper compared basic EA with a hybrid EA 

and parallel EA. They conclude that the parallel EA model outperforms the basic EA as well 

as hybrid EA algorithms in terms of computational time and quality of the solution. 

Nevertheless, the results of the hybrid and parallel EA runs yield savings in computation 

resources and find an improvement in the solution quality compared to the basic EA model, 

which still outperforms the local-search algorithm.  

Until now both static and dynamic OD-matrix estimation problems have been studied by 

many researchers, which developed various models using different solution algorithms. The 

researchers have mostly adopted the statistical approaches like ML, GLS or BI for solving the 

time-independent problem for instance.  

The review shows that most of the algorithms developed for static OD-matrices have its own 

advantages and drawbacks and was implemented on small networks. However, the most 

important consideration required its application for real world networks. Nevertheless, there 

are a few approaches that could be found in the literature, which focused on the application on 

the large size networks. 

The time-independent OD-matrices are easier to estimate as compared to dynamic ones 

because real-time traffic information for all the OD pairs is not always available. In spite of 

that, the OD estimation problem stays resource and CPU intensive because the above-

mentioned methods have to concern both high dimensional OD-matrices and the methods' 

complexity.  
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3 Original-Destination Matrix Model 

This chapter is organized as following. In general, in the first part the model and its 

mathematical formulation are described and the aim of the research is specified. The second 

part is devoted to approaches from the recent researches used for estimating the OD-matrices 

and overview the under study methods.  

3.1. Model description 

In this subchapter will be presented the formulation of the problem in a general way and then 

discussed the complexity of the problem itself as well as the goal of the research.  

3.1.1. General formulation 

A distance matrix to wide extend in mathematics, information science and particularly in 

graph theory, is a matrix or two-dimensional array that includes the length between each pair 

of the elements in a given set. Rows corresponds to the origins and columns to the 

destinations of the users (Guihaire and Hao, 2008). In the applications cases of the graph 

theory the elements are frequently referred to as nodes, points or vertices.  

Let us introduce some notations: let 𝑔 stays for a OD matrix and Ω indicates the set of 

feasible OD-matrices as it proposed by Peterson (2007). Capital 𝑁 represents a set of nodes 

and 𝐴 represents a set of links in the traffic network accordingly. Each link 𝑎 ∈ 𝐴 is a certain 

segment of a street or of a transit connector, e.g. a "fake" connection between a living area 

and the main streets or motorways. We assume that the network is a directed graph so the 

two-way streets are designed separately, i.e. such streets will be represented by two links in 

the opposite directions. 

In the problem of estimating OD-matrix our goal is to determine a feasible OD-matrix 𝑔 ∈ Ω, 

with 𝑔 = {𝑔𝑖}, 𝑖 ∈  I. After that, the OD-matrix assigned onto the links in the network. The 

assignment follows an assignment proportion matrix denoted by 𝑃 ∈  {𝑝𝑎𝑖}, 𝑖 ∈ 𝐼, 𝑎 ∈ 𝐴, 

where pai stays for the OD demand's proportion of 𝑔𝑖   that takes link a. Peterson (2007) in his 

work emphasized that the notation 𝑃 = 𝑃(𝑔) used because these proportions generally 

depend on the volumes of the traffic, i.e. on the OD-matrix. 

When the assignment of the OD-matrix to the network is complete, the OD-matrix induces a 

volumes of the link flow v = {va}, 𝑎 ∈ 𝐴, on the links in the network. It is assumed that 
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detected flows �̃� = {�̃�𝑎} , are accessible for the links' subset, 𝑎 ∈  �̃�  ⊆ 𝐴, and a target matrix 

�̂� ∈ Ω  also is achievable. 

The OD-matrix estimation problem proposed by (Peterson, 2007) can be formulated as 

follows: 

    min𝑔,𝑣 𝐹 (𝑔, 𝑣) =  𝛾1𝐹1(𝑔, �̂�) +  𝛾2𝐹2(𝑣, �̃�),    

𝑠. 𝑡.  ∑ 𝑝𝑎𝑖(𝑔)𝑔𝑖 = 𝑣𝑎 ,   ∀ 𝑎 ∈  �̃�,𝑖∈𝐼     (1) 

𝑔 ∈  Ω 

The function 𝐹1(𝑔, �̂�) in the (1) equality are generalized measures of the distance between the 

estimated OD-matrix 𝑔 and the target matrix �̂� . The function 𝐹2(𝑣, �̃�) also in the (1) equality 

are generalized measures among the estimated link flows 𝑣 and the detected link flows  �̃�. We 

assume that these functions are convex and they can be modeled regarding the quality 

variations of the given data. 

The non-negative parameters 𝛾1, 𝛾2 indicate the uncertainty in the information supplied by �̂� 

and  �̃�. Thus the problem thus can be interpreted as a two-objective problem, where 𝐹1 and 𝐹2 

express the objectives, and 𝛾1 and 𝛾2 correspond to the weighting factors. If an extreme case 

when 𝛾1 = 0 is considered, then the target matrix will have no impact, and on the other hand 

when 𝛾2 = 0 is under consideration, the target matrix will be copied and the link flows will 

have no impact. 

3.1.2. Complexity and question of research 

The complexity of a problem refers to the efficiency with which it can be solved. When the 

problem becomes more complex, than it is harder to exactly solve it within reasonable time. 

As Brucker et al. state, the algorithm efficiency can be estimated by calculating the running 

time needed for solving the problem with a certain input size. In this context so called "easy" 

and "hard" problems can be distinguished. An algorithm can solve "easy" problem in 

polynomial time. A "hard" problem, usually noted as "NP-hard", on the other hand describes 

problems that are generally hard to solve to optimality. 

The OD- matrix estimation problems in general are not belongs to the NP-hard problems but 

the time-dependent cases become more complex and require new faster methods that can 

reflect challenges of reality.   
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Despite the fast, that estimating the shortest distance between given pairs of nodes considered 

as an elementary operation in a broad diversity of applications, such operations should be 

solved in a few milliseconds because the applications require a quick responses on their order. 

Nowadays, algorithms which can exactly evaluate the shortest path distance (Dijkstra, 1959) 

fail on real-world networks, because of  their inability to solve the problem within a 

reasonable timeframe. Also totally precalculating the shortest paths and then saving them is 

usually infeasible by reason of lack of memory space that can store an extremely large  

matrices (Maruhashi et al., 2012). 

 Moreover, there are elements that complicate the OD-matrix problem. Namely, when the 

geographic data (geodata) are considered certain limitations should be taken into account. For 

instance, geographical elements as mountains, forests, rivers that e.g. can cross high 

populated or industrial areas are definitely restrict a possibility to determine the shortest path.  

Hence, the question of our research is to analyze a correlation between aggregation levels and 

exactness of real world distances, i.e. how an increase in aggregation level reduces a precision 

of real world distances. Under the aggregation level is to understand an input data about 

customer positioning either geodata or raster data.  

3.2. Estimation methods 

This chapter presents in the first part successful achievements of other authors that dialed with 

similar methods and in the second part explains the estimation approaches, which are 

examined and analyzed on the small instance in the third part. 

3.2.1. Previous accomplishments 

In the literature the OD-matrix estimation problem are very common but the problem of 

distance measurements was not stressed enough. Unfortunately, we could not find enough 

works that use similar concept for the OD-matrix problem. However from recent researches 

the most similarly principle are met in the book "Effiziente Entfernungsberechnung durch 

Graphenreduktion bei Transportplanungen" written by Prestifilippo (2003).  

The author studies various graph reduction approaches that are able to efficiency estimate 

distances by transportation planning, i.e. the methods, which lead to speed up processing of 

optimal routes. Because presently an available digital data about the structure of the 

transportation system are anomaly high and very detailed, such approaches aim to reduce data 

in order to evaluate an optimal route without loss of relevant information.  
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Prestifilippo analyzed european transportation network as well as the transportation system of 

the european states. He concluded that an existing simple selection method is not able to 

deliver an optimal solution within reasonable timeframes. In addition, profitability of the 

procedure is generally an exception than a rule and frequently an implementation leads to the 

boundaries of memory resources.  

Therefore Prestifilippo proposed new methods that are independent but at the same time 

compatible. The efficiency of those approaches is demonstrated on the cases and on the 

specific practical examples for various logistic concepts. Interested reader refer to the origin 

book of  Prestifilippo, 2003). 

The first method called Bubble is an intelligent data selection procedure. The core idea 

includes a construction of prior defined bubbles around each node, a sorting nodes and edges 

in hierarchical order within a subset and a selection of relevant nodes and edges from the top 

level. Irrelevant data are excluded from further consideration. The method by the way is 

highly influenced by an input amount of nodes and a size of the bubbles that are varied. 

Other methods proposed by Prestifilippo are variations of graph reduction, which eliminate an 

irrelevant nodes and edges that lead to distance stretching. The approaches denoted as 

Sackgasseneliminierung (blind alleys elimination), Streckendesegmentierung (distance 

desegmentation) and Teilgrapheneliminierung (subgraphs elimination). All those methods 

compare to the Bubble approach are lossless regarding information. 

Finally, the author examines method that combined Bubble and graph reduction approaches. 

Such a method uses advantages of both approaches that improve processing time as well as 

computation results. Prestifilippo concludes that proposed him methods could be applied 

either separately as a distance measurements procedure for various cases or can be integrated 

through sequential inclusion in a process. The construction of the reduction process allows 

combining them in any way.  

3.2.2. Raster concept 

Before we start to explain the raster concept and its main features, a couple of questions 

should be answered, e.g. what is the raster in itself and what is its background? 

In a spoken language, words as grid, framework, matrix or network are used as a synonym for 

raster. Collins Dictionary defines a word grid as "something, which is in a pattern of straight 

lines that cross over each other, forming squares". Oxford Dictionaries by the way describes 
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grid such "a network of lines that cross each other to form a series of squares or rectangles". 

Generally, the grids are used on maps to find a particular location. 

Thus, raster data or as it is normally called gridded data are nothing but geodata. In this 

master thesis the raster data were received from Statistic Austria. Due to statistical 

requirements, Statistic Austria produces new geodata and updates older ones on an ongoing 

basis.  

The results are available either for download free of charge or for a fee on the website. In this 

thesis, various grid sizes are explored such as 250m, 500m and 1000m. The provided data 

were later reworked and reduced in such a manner that the points are only distributed over 

observed area excluding uninhabited places or places without any industrial activities. 

For better understanding, we will briefly discuss a concept of raster points which was applied 

for solving OD-matrix problem. The core idea of a concept is to divide explored space into a 

matrix of equally sized cells and afterwards replace customer locations by raster points. 

Obviously, the idea has its advantages and drawbacks.  

As pro arguments can be mentioned an ability to simplify the model and to speed up 

processing time. On the other hand, the main disadvantage of the grid is generalization and 

loss of uniqueness. Therefore, some trade-off has to be determined. The presented below Fig. 

1 shows visually a part of grid data with grid size 250m. As it mentioned in Chapter 2, there 

are no grids in the forest areas or for instance in the Danube. 

 

Figure 1. Distribution of raster points with size 250m 



12 

 

On the Fig. 2 can be seen the simplified scheme of the concept. Green spots 1-8 here mean 

raster points and orange triangles C1, C2, C3 and C4 – customers. Orange dotted curves 

between C1 and C2, C3 and C4 are feasible direct routes. Green curves that connect 

customers C1 and C2 and customers C3 and C4 via raster points 2 and 8 are feasible 

alternative routes.  

The main principle is to determine the nearest raster point for each customer using NN 

algorithm and build so-called three-parts-route between chosen points. Length of latter will be 

then compared with length of the direct route and if a deviation is less than preselected 

threshold, then an origin route can be replaced by three-parts-route. 

The reasons that motivated us to introduce a raster concept were several. Firstly, currently 

software detecting direct optimal routes is time consuming and fails for large instances. 

Secondly, raster matrix enables to calculate all distances between existing raster points during 

a pre-processing stage.  

Consequently, we will always have an access to the obtained results and despite of 

requirement of sufficient memory resources, an increase in processing time during an 

evaluation procedure for further individual distance matrices is significant. In other words, 

introduced grids permit to avoid each time path calculations from the street graph because the 

data will be read off the pre-computing results data. 

 

 

Figure 2. Scheme of raster point concept 

Thus, our goal is to determine method to estimate distance between raster corner points and 

customers locations in such a manner that deviation from original route is kept within 

reasonable bounds.  
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3.2.1. Study methods  

Current subchapter will focus on and describe in more details methods as well as software 

that are implemented and analyzed in the Chapter 6. Please note that all approaches are 

examined on randomly chosen customers and distances expressed in kilometers.  

The distance measurements methods are based on the well-known categories such as Shortest 

Path, Euclidean distance, Manhattan distance etc. We allow ourselves to remind the main 

features of the above-mentioned terms. An interested reader are referred to the paper of Ahuja 

et al. (1990) and the book of Deza and Deza (2009). Here is only briefly overview provided. 

The Shortest path problem is the problem in the graph theory, which determines a path 

between two nodes in a graph. Ahuja et al. in their paper discuss the fastest algorithm that 

solves the shortest path problem efficiency. Among that the most important and reliable 

algorithms to solve the problem are considered Dijkstra (Dijkstra, 1959) and Bellman-Ford 

(Cormen et al., 2001) algorithms.  

Euclidean and Manhattan distances in mathematics are measures of distance between two 

points in a metric space. Euclidean distance is ordinary called straight line and can be 

calculated using general formula if x and y are coordinates of two points (Deza and Deza, 

2009):  

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1      (2) 

Manhattan distance is "the distance between two points in a grid based on a strictly horizontal 

and/or vertical path that is along the grid lines" (Wikipedia). The formula that is used for 

computation are the following but only valid if x and y are coordinates of two points (Deza 

and Deza, 2009): 

𝑑(𝑥 , 𝑦) =  ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1      (3) 

Now we will discuss the approaches and supported software. As a supporting tool in this 

thesis Microsoft tool MapPoint Europe 2013 are applied. The tool was implemented in order 

to calculate real distance between two objects. The derived results used as a standard measure.  

Available software is able to evaluate the shortest path that minimized total travel distance 

and the shortest path where objective is to minimized total travel time. Due to avoid likely 

common misunderstanding between those two terms the second one that minimized time will 

be further preferred as the fastest path.  
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Figure 3. An example of the shortest path between two points 

 

Figure 4. An example of the fastest path between two points 

Fig. 3 and Fig. 4 demonstrate the shortest and the fastest route between two randomly chosen 

locations with total distance 2,2km and 3,5km and total travel time 14 minutes and 11 minutes 

respectively. Apparently, that the shortest route is preferable over the fastest because this 

thesis stress on the static model and time minimization objective is less important for the aims 

of the current research.  
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Raster - Raster method 

The next approach is a part of the raster point concept described above in 4.2.2. The Raster-

Raster method evaluates only the length between grid's corner points as the shortest path. 

Figure 5 provides the result of implementation the NN algorithm for raster size 250m. Yellow 

dots on the Fig. 5 are raster units, green dots are the nearest points and blue points represent 

positioning of customers.  

It is important to notice that Raster-Raster method has some limitations. Firstly, despite the 

fact that the NN algorithm are very quickly method and yields a near optimal solution, the 

selected points could lead however to the significant tour stretching due to "greedy" nature of 

the algorithm. Secondly, there is likelihood that not between all pairs of raster points is a 

connection because raster data are aggregated data.  

 

Figure 5. Illustration of the nearest to the customers 250m raster units 

Fig. 6 represents visually the shortest route between raster points. In order to ensure that 

chosen raster unit size is the most suitable for a current problem, several experiments with 

different raster size, namely 500m and 1000m, will be run and the results presented in the 

Chapter 5. 
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Figure 6. The shortest route between selected raster points 

 

C-C Euclid, C-C Manhattan. 

From the theoretical point of view, distance could be measured as a Euclidean or Manhattan 

distances and known as beelines. The distance measured between two customers using 

Euclidean methods is denoted as C-C Euclid and using Manhattan method – C-C Manhattan. 

Beelines in our case are likely to be not applicable for every cases due to the reason that 

existing transportation network in the most cases is not able to offer such connections. 

However, both approaches are examined for the comparison reasons. On the Fig. 7 the results 

of the both approaches are presented. Grey and purple lines draw beelines computed 

following either Euclidean or Manhattan methods respectively. Obviously that the distance 

measured by the Manhattan distance method will be longer, than the Euclidean by definition 

but in real-world cases the latter could better reflect the reality. 
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Figure 7. Example of the C-C Euclid and C-C Manhattan approaches 

 

Euclid-Real-Euclid, Manhattan-Real-Manhattan 

As it was explained in the previous subchapter, the raster concept builds a so-called "three-

parts-tour". Interested reader referred again to the Chapter 4.2.1. Therefore to be able to apply 

those concept and increase it accuracy different distance measurements methods such as 

either Euclidean or Manhattan distances have been applied to estimate the length between 

customer position and grid's corner points. Consequently Euclid-Real-Euclid as well as 

Manhattan-Real-Manhattan approaches denote the routes consisting of three parts in such a 

manner that the length between customers and corner points are evaluated using the formulas 

either for Euclidean or for Manhattan distances respectively. Schematic the "three-parts-

routes" are presented on the Fig. 8 and 9.  

All the method mentioned in the current chapter will be implemented on the practical example 

and the analysis is provided below in the subchapter 5.2 
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Figure 8. Example of Euclid-Real-Euclid method 

 

Figure 9. Example of Manhattan-Real-Manhattan method 

.  
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4 Model Analysis 

In order to evaluate estimation methods that are interest of our study and presented in the last 

section, this chapter is dedicated to the preliminary implementation. For a better 

understanding of the process, the first part will be discussing the analytical framework of the 

analysis, including the computational characteristics as well as the statistical indicators. The 

second part will present the results of implementation on a real instance and discuss their 

meaning. 

4.1. Analytical framework 

This subchapter provides a briefly review of the indicators and indexes that are used in 

analysis of the method's outcomes.  

4.1.1. Computational time (CPU) 

There are many different definitions of CPU but here will be provided only one of them. 

"CPU time is the amount of time for which a central processing unit (CPU) was used for 

processing instructions of a computer program or operating system." (Wikipedia) In other 

words, it is the measurement of the length of time that is used as an indicator of how much 

processing is required for a process.  

Normally programs and applications do not use the processor 100% of the time that they are 

running. The CPU time is actual time when the program uses the CPU to perform tasks such 

as mathematic or statistic operations. It is also known as processing time or computational 

time. Todd as well as some authors calls it running time. 

The computational time is commonly "measured in clock ticks or seconds". (Technopedia) In 

the current work seconds is used as a unit of measure. All in all the processing time is an 

important indicator for estimation a performance speed of the methods that allows to conclude 

if testing algorithms are enough efficient. 

4.1.2. Quartile 

Quantile is statistic and a general way of describing a point in a set of numbers where a 

certain proportion of numbers is less than that reference point. It is simply the value that 

corresponds to a specified proportion of a sample. Quartiles gives us an information about 

how the data are spread between the breaking points also called quarters (Laerd Statistics). 
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The second quartile is also named the median (Wikibooks). Summary statistics such as the 

median, first quartile and third quartile are measurements of position, i.e. these numbers 

indicate where a specified proportion of the distribution of data lies. For instance, the median 

is the middle position of the data under study, i.e. 50% of the data have values less than the 

median. Similarly, 25% of the data have values less than the 1
st
  quartile and ¾  of the data 

have values less than the third quartile (About education). Although not universally accepted, 

but there is also exist the fourth quartile that is the maximum value of the set (Wikibooks). In 

statistics, median is regarded as a better measure of centrality and spread versus average. 

4.1.3. Standard deviation 

Bland and Altman (1996) defined the standard as "a measure that is used to quantify the 

amount of variation or dispersion of a set of data values". Standard deviation, be referred to as 

SD, also denoted by the Greek letter sigma σ or s in the literature. There is definitely more 

definitions of standard deviation. For instance, it can be defined as "a measure of the spread 

of scores within a set of data" (Laerd Statistics). A measure of spread, sometimes also called a 

measure of dispersion, which is used to describe the variability in a sample.  

For better understanding, the stаndаrd dеviаtion is a stаtistic thаt tеlls how tightly аll thе 

vаrious еxаmples аre clustеrеd аround thе meаn in a sеt of dаtа. In case whеn the exаmples 

аre tightly bunchеd togеthеr, the standard dеviation is smаll. When the exаmples are sprеаd 

аpаrt, it tеlls thаt stаndаrd deviаtion is a relаtively lаrgе (Robert Niles). 

Calculation of standard deviation is important for correctly interpretation the data and it is 

frequently applied for comparing a model with real-world data. Its main advantage is that it 

has the units of the original data. In our analysis of computational results the standards 

deviation shows an average deviation from the mean value.  

4.1.4. Extremum points 

Extremum (pl. extrema) are in mathematical analysis the maximum (pl. maxima) and 

minimum (pl. minima) points of a function, i.e. the largest and smallest values which the 

function reaches within a given range. For the set of data the maximum and minimum of a set 

indicate  the greatest and the least values in a set, respectively (Wikipedia). Extremum is the 

simplest order statistic and by computing the difference between maximum and minimum 

values, the spread of the data can be estimated (Siddharth Kalla).  
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In our thesis we consider absolute values of maximum or minimum. In other word, for 

instance, the obtained maximum value means that this value of the function is larger than any 

other values in the interval of interest or in the data set. The extrema points of our 

computational results enable us to estimate the performance of the provided methods as well 

as to value the worth cases in comparison to the results of other methods from the literature.   

4.2. Preliminary test  

In order to be able to demonstrate all abovementioned methods, a benchmark (testing set) of 

ten customers that are located in Vienna has been generated.  

Numbering of testing sets has to follow some rules. The first number (before slash) means 

number of customers that are included in the benchmark and second number (after slash) 

means raster size, for instance 10/250 means that the set consists of 10 customers and uses 

raster size 250m. Here is the map illustrating customer locations.  

 

Figure 10. Positioning of ten customers from testing set 10/250 

At the first step, the real distances for a generated set are evaluated by using Microsoft 

software MapPoint. Please note that distances as well as further deviations measured in 

kilometers. These distances were measured as Shortest Path and as Fastest Path. The resulted 

distance matrices can be found in Appendix as Table 16 and Table 17. As can be seen the 

both matrices are asymmetric due to the structure of current transportation system, i.e. the 
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measured distance is highly depended on the direction and the transportation network, for 

instance, existence of one-way streets, blind alleys etc.  

At the next step, the available data have been analyzed and the results are summarized in 

Table 1.  

Table 1. Computational results of real distance for case 10/250. 

Table 1 sums up the results of comparison the shortest path with the fastest path and vise 

verse. Obviously, the shortest path method determines the routes more efficient. The third 

quantile shows that 75% of the determined routes are shorter and the forth quantile also 

proofs that the routes are no longer as the fastest paths. The deviation between fastest and 

shortest paths confirms the same. All values are positive that means that distance matrix 

determined with the fastest path method finds slightly longer connections. Therefore, the 

shortest path method is preferable because it delivers better results within the same time. 

Thus, all further results of above-mentioned methods will be compared with the results of the 

shortest path method.  

Table 2. Results of the comparison for the case 10/250. 

 

Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

Shortest path 0:32 -2,28 -0,59 -0,25 -0,05 0,00 0,46 

Fastest path 0:32 0,00 0,05 0,25 0,59 2,28 0,46 

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

10/250 C-C 

Euclid 

0:45 -2,15 -0,94 -0,34 -0,06 0,95 0,59 

10/250 C-C 

Manhattan 

0:45 -1,49 -0,27 0,0 0,5 2,4 0,69 

10/250 Raster-

Raster  

0:44 -1,49 -0,59 -0,17 0,0 0,39 0,41 

10/250 Euclid-

Real-

Euclid 

0:45 -1,27 -0,38 0,0 0,19 0,6 0,41 

10/250 Manhattan

-Real-

Manhattan 

0:45 -1,2 -0,31 0,0 0,22 0,7 0,41 
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All the methods mentioned in the Chapter 4 were examined on the generated testing set of 10 

customers. Than the results have been compared with the results of the shortest path method 

and finally sum up in Table 2. However, Table 2 includes exclusively the raster system with 

raster unit 250m and as we can see, has some negative values. These values can be interpreted 

as following: the methods considered in the table are able to determine the more efficient 

routes. For instance 50% of all routes generated by the each method from the table are shorter 

approximately 0,5km or as long as origin ones. 

The experiments continue with the raster system with raster units 500m and 1km. Due to 

extension of the raster sizes, firstly from 250m to 500m and secondly from 500m to 1000m, 

the results tables differ from the previous one. Table 3 and Table 4 that present the results for 

further cases 10/500 as well as 10/1000 for instance in comparison with Table 2 contain 

slightly less negative values.  

Table 3. Results of the comparison for the case 10/500. 

These can be explained that by implementing wider raster matrix corner points are definitely 

farther from the customer that leads to increasing the total route length. However, the 

extension of the raster units diminishes an amount of raster points in the raster system in size. 

In addition, such reduction can speed up the computation process that can be seen in the 

column CPU of the Table 3 as well as Table 4. For the provided case the reduction is couple 

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

10/500 C-C 

Euclid 

0:44 -2,15 -0,94 -0,34 -0,06 0,95 0,59 

10/500 C-C 

Manhattan 

0:44 -1,49 -0,27 0,0 0,5 2,4 0,69 

10/500 Raster-

Raster  

0:44 -1,53 -0,56 -0,16 0,0 1,16 0,45 

10/500 Euclid-

Real-

Euclid 

0:43 -1,27 -0,08 0,13 0,35 1,69 0,45 

10/500 Manhattan

-Real-

Manhattan 

0:43 -1,2 0,0 0,29 0,57 1,84 0,47 
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of seconds that likely insignificant for such a small case but can has a crucial effect by 

examine on the large benchmarks.  

Table 4. Results of the comparison for the case 10/1000. 

Besides that, C-C Euclid and C-C Manhattan methods demonstrate absolutely the same 

performance due to the fact that grids are not involved in computation process. Therefore, we 

will run those approaches only ones for the new amount of customers but not repeat for 

different raster sizes.  

Moreover, last two methods listed in the Tables 3 and 4 demonstrate appropriate performance. 

For instance for case 10/250 the third quantile shows that 75% of the "three-parts-routes" are 

around 200m longer than the shortest paths. Obviously, by increasing raster size the deviation 

also increase but if raster size double the deviation rise by ca. 70%. We assess such 

performance very high. 

In conclusion, it can be added that the results of the methods described in the Chapter 4 on the 

randomly generated testing set of 10 customers, proof that raster size directly relates to the 

tour length. Moreover, the analyzed deviation lies under the reasonable threshold which 

denotes that the raster concept enable to evaluate OD distance matrix without losing accuracy 

of the real distances.  

 

  

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

10/1000 C-C 

Euclid 

0:43 -2,15 -0,94 -0,34 -0,06 0,95 0,59 

10/1000 C-C 

Manhattan 

0:43 -1,49 -0,27 0,0 0,5 2,4 0,69 

10/1000 Raster-

Raster  

0:43 -2,03 -0,96 -0,47 0,0 1,03 0,65 

10/1000 Euclid-

Real-

Euclid 

0:44 -1,2 -0,14 0,1 0,73 2,27 0,64 

10/1000 Manhattan

-Real-

Manhattan 

0:44 -1,02 0,0 0,36 0,91 2,5 0,66 



25 

5 Computational Analysis 

This chapter is dedicated to the actual implementation of the methods mentioned in the 

Chapter 3. For a better understanding of the process, the chapter is starting by presenting 

predefined parameter. Here is given an overview of the input data, then the characteristics of 

computer, where all tests as well as computational analysis performed, are provided and after 

that the thresholds are discussed that enable us to estimate the performance of the proposed 

concepts on the various cases. The second part presents the computation results on the various 

cases, which summed up in the tables and graphically illustrated on the boxplots.  

5.1. Parameter setting 

This thesis is focused on the different distance measurements for OD-matrix problem. The 

problem is to be solved in urban area of Austria, namely in Vienna and in Lower Austria. The 

input data were provided by the end supplier of foodstuffs. Name of the company will be 

keeping a secret. Figure 11 depicts the area under the study. Obviously, clients of the 

company are not equally distributed over the region. However, it can be noted that they are 

concentrated in Vienna and spread over the cities in Lower Austria. 

 

Figure 11. Overview of all customers' locations 



26 

The testing was performed on an SONY Vaio® Notebook PC with a 2.67 GHz processor and 

4 GB RAM, running on Windows 7. The models were coded in Python 3.5 using the Eclipse 

as an integrated development environment. For each case we define some thresholds in a way 

that a threshold is doubled grid size, e.g. for grid size 250m the threshold is 500m. According 

to those thresholds, the obtained results are analyzed and consequentially the qualities of the 

concepts are estimated.  

5.2. Results analysis 

In following subchapter the various cases are generated and developed code is run with case 

specific modifications. Here is presented five cases numbered in increase order. First four 

cases (Case 1 – Case 4) contain 100 customers each, however, the customer's positioning 

vary. The cases from one to three include only clients within Vienna and Case 4 considers 

also customers in Lower Austria. Last but not least, case number five combines the customers 

from Vienna and Lower Austria in a ratio of 1:1 that is why the total number of the clients 

under consideration is 200.  

5.2.1. Case 1 – Vienna inner city 

As it was already mentioned, the case includes 100 customers within Vienna. The Case 1, 

shortly C1, considers especially the customers in the city center and in the 3
rd

 district. Fig. 12 

shows how the customers distributed in the chosen districts.    

 

Figure 12. Overview of customer's locations for Case 1 
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Due to closeness location of the customers, it was decided to examine the Case 1 only on the 

grid size of 250m. Table 5 summarizes the comparison results for the current case using raster 

matrix of size 250m.  

Table 5. Results of the comparison for the Case 1 

It is evident that the best performance demonstrates the Euclidean distance method, denoted 

as C-C Euclid in the Table 5, however, the measured distance is nothing but beeline. In other 

words, it is simply a linear distance that unfortunately could not be reliable in areas with 

geographical elements. In the current case there is no geographical elements like mountains or 

rivers but the under study area is a part of the city with high concentrated transportation 

network.  

The C-C Euclid method determined better results than the shortest path method in 75% of 

outcomes. In addition, even 100% of all results are under predefined threshold of 500m. Thus, 

we can conclude that this approach can be implemented in areas with high concentration of 

the customers and it is very important to note that the under study area should be small and 

urban one.  

The C-C Manhattan method is on the opposite not suitable for this case because its 

performance the worst one compare to the others listed methods in the Table 5. Therefore, for 

cases where nodes (customers) locate very close we do not advice to choose Manhattan 

distance as a distance measure.  

 

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C1/250 C-C 

Euclid 

1:10 -4,17 -0,96 -0,55 -0,23 0,49 0,59 

C1/250 C-C 

Manhattan 

0:52 -4,09 -0,47 -0,03 0,32 1,73 0,7 

C1/250 Raster-

Raster  

0:52 -4,12 -0,59 -0,21 0,01 1,25 0,57 

C1/250 Euclid-

Real-

Euclid 

1:10 -3,86 -0,37 0,0 0,24 1,53 0,58 

C1/250 Manhattan

-Real-

Manhattan 

0:52 -3,75 -0,32 0,06 0,3 1,62 0,59 
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The second best outcome from the Table 5 delivers the Raster-Raster method that is more 

realistic because the distance between the points of the grids is measured as the shortest path. 

Despite that, the Raster-Raster method is incomplete in the sense of measured distance, i.e. 

this method estimates simply the length between chose points of the raster matrix and not the 

whole length between customers.   

The last two approaches, the Euclid-Real-Euclid and the Manhattan-Real-Manhattan methods 

are of most interest because their complex approach to estimate the length is closer to reality. 

As it was explained in Chapter 3, the route consists of three parts that enable to evaluate the 

distance more precisely. The numbers from the Table 5 confirm that less than 75% of the total 

numbers of routes obtained by the Euclid-Real-Euclid or the Manhattan-Real-Manhattan 

methods lie under the threshold respectively. We briefly reminder that the threshold for the 

raster size 250m is determined as a doubled value of the size, namely 250m *2 = 500m. 

 

Figure 13. Boxplots of the three-parts-route for Case 1 

Figure 13 graphically represents the last two methods from the Table 5. It could be seen that 

the results derived by the Euclid-Real-Euclid and the Manhattan-Real-Manhattan methods 

look very similar, they are more or less ident. Such situation can be explained by near 

positioning of the customers. As it was already said, the Case 1 includes the clients situated in 

the city center. Thus, it can be concluded, that for the cases where nodes concentrate in one 

area, either the Euclid-Real-Euclid or the Manhattan-Real-Manhattan methods could be 

implemented for the evaluating complete distance between end nodes.   
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5.2.2. Case 2 – Vienna split 

The analysis of the Case 2, refers as C2, has absolutely the same structure as the analysis of 

previous case. At the beginning, Figure 14 depicts the positioning of the customers. Note that 

second case like the Case 1 also includes 100 customers within Vienna. However, the Case 2 

considers the customers in the city center and in the districts on the other side of the Danube, 

i.e. the set looks as if it is split up two parts. Figure 14 shows the distribution of the customers 

in the chosen districts.    

 

Figure 14. Overview of customer's locations for Case 2 

The Case 2 as well as the Case 1 was tested only on the grid size of 250m because despite the 

fact that customers are situated on the opposite sides of the Danube, they still lie within 

Vienna and easily accessible due to developed transportation network. Table 6 sums up the 

comparison results for the current case using raster matrix of size 250m.  

Again, the smallest deviation in length can be observed in the results of the C-C Euclid 

method. However, the results of the Euclidean distance mislead because in the current case 

there is geographical elements, namely the Danube, that disturbs the evaluation process and 

limits the options for connections. The complexity of the case is that that an influence of the 

geographical object is difficult to evaluate.  

 

 



30 

The C-C Manhattan method one more time demonstrates that Manhattan distance is not 

suitable for measuring direct distance between end nodes. The quality of the computational 

results is low, namely the standard deviation 1,76km is the highest value compare to the C-C 

Euclid method 1,14km for instance. Therefore, the C-C Manhattan method is also not 

appropriate approach for the cases with any geographical obstacles.  

As it was mentioned in analysis of the Case 1, the Raster-Raster method is incomplete 

therefore we will not take into consideration the driven results, which will be mostly used for 

comparison purpose.   

Although, the Euclid-Real-Euclid and the Manhattan-Real-Manhattan methods obtained 

slightly worse results that in the Case 1, the most of routes are within the predefined threshold 

that is 500m. For instance the standard deviation in the Case 1 is ca. 0,58km and in the Case 2 

– 0,71km. Or in the Case 1 deviation of the results in 75% of events is less than 300m and in 

the Case 2 in less than 75% of events– under 600m. All those allow us to conclude that the 

proposed methods are robust.   

Table 6. Results of the comparison for the Case 2 

 

 

 

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C2/250 C-C 

Euclid 

1:45 -5,69 -1,9 -0,8 -0,23 1,53 1,14 

C2/250 C-C 

Manhattan 

1:38 -4,79 -0,29 0,45 1,94 6,97 1,76 

C2/250 Raster-

Raster  

1:38 -2,89 -0,24 0,02 0,33 5,41 0,71 

C2/250 Euclid-

Real-

Euclid 

1:45 -2,47 -0,05 0,21 0,53 5,61 0,71 

C2/250 Manhattan

-Real-

Manhattan 

1:38 -2,4 0,0 0,27 0,6 5,64 0,71 
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Figure 15 graphically represents the last two methods from the Table 6. Obviously, the 

Euclid-Real-Euclid and the Manhattan-Real-Manhattan methods deliver slightly differ from 

each other and significantly deviate from the outcomes of the Case 1. As it reflected on the 

Fig. 15 the maximum deviation in the Case 2 is around 5,6km and in the Case 1 on the other 

hand is an only ca. 1,6km. Cause of such a huge gap, which comes in a quarter of the results, 

could be the positioning of the nodes in the second case.  

 

Figure 15. Boxplots of the three-parts-route for Case 2 

Despite of all those deviations from the Case 1, the Euclid-Real-Euclid method as well as the 

Manhattan-Real-Manhattan method demonstrates an appropriate performance in the Case 2. 

Thus, we come to conclusion that for the cases where data are split to subgroups the both 

methods reflected on the Figure 15 could be implemented for the estimation OD-matrix.  
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5.2.3. Case 3 – Vienna total  

The Case 3, shortly C3, will be analyzed following the similarly structure of analyses as the 

both previous case. Note that the Case 3 like the Case 1 and the Case 2 also contains 100 

customers within Vienna. However, the Case 3 includes the customers from all districts of 

Vienna, i.e. on the both sides of the Danube. During the generation procedure, the customers 

were selected in a way that the Case 3 contains from four to five clients in each district. So the 

positions are distributed more or less uniform. Figure 16 reflects the customers' positions 

within Vienna's districts.    

 

Figure 16. Overview of customer's locations for Case 3 

It should be noted that the Case 3 as well as the following Cases 4 and 5 will be tested on the 

various grid sizes, namely 250m, 500m, and 1km due to increase distance between each pair 

of nodes. Table 7 presents the computational results of the comparison the obtained length 

with the shortest path for the raster size 250m and Figure 17 shows graphically the deviation 

of the three-parts-routes evaluated using the Euclid-Real-Euclid or the Manhattan-Real-

Manhattan methods respectively. 
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 Table 7. Results of the comparison for the Case 3/250 

As like in the previous cases the C-C Euclid method demonstrate the best performance also in 

the Case 3, however it becomes less reliable, and the customers more distant from each other. 

It is obvious from the Table 7 that the Euclid-Real-Euclid approach slightly outperforms 

similar approach based on the Manhattan distance. In whole, the raster concept delivers a 

reliable outcome, e.g. ¾ of all the results lies under the upper bound of 500m.  

 
 

Figure 17. Boxplots of the three-parts-route for Case 3/250 
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C3/250 C-C 

Euclid 

1:53 -6,39 -1,29 -0,58 0,0 3,34 1,08 

C3/250 C-C 

Manhattan 

1:43 -6,39 -0,09 0,68 1,64 7,89 1,61 

C3/250 Raster-

Raster  

1:43 -2,91 -0,34 -0,08 0,17 6,07 0,66 

C3/250 Euclid-

Real-

Euclid 

1:53 -2,71 -0,13 0,12 0,39 6,31 0,66 

C3/250 Manhattan

-Real-

Manhattan 

1:43 -2,64 -0,06 0,2 0,46 6,4 0,66 
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Table 8 presents the computational results for the wider raster size, namely 500m. Here the 

upper threshold determined as 1000m. We would like to notice that the results from the 

methods C-C Euclid as well as C-C Manhattan stay the same because those approaches are 

independent form the proposed raster concept.  

Table 8. Results of the comparison for the Case 3/500 

On the contrast the Raster-Raster, the Euclid-Real-Euclid and the Manhattan-Real-Manhattan 

methods are correlate with the raster size, i.e. incrementing the grid size leads to increase of 

deviation. Again, we would like to notice that the constructed three-parts-route methods 

deliver high quality results. For example the standard deviation by the Manhattan-Real-

Manhattan method growths from 0,66km to 0,7km. 

Figure 18 shows that the differences in performance of the last two methods listed in the 

Table 8 are clearer. For instance, the level of median is higher by the Manhattan-Real-

Manhattan method than by the Euclid-Real-Euclid method. The boxplot represented the 

Manhattan-Real-Manhattan method shifted a bit up.  

 

 

 

 

 

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C3/500 C-C 

Euclid 

1:32 -6,39 -1,29 -0,58 0,0 3,34 1,08 

C3/500 C-C 

Manhattan 

1:07 -6,39 -0,09 0,68 1,64 7,89 1,61 

C3/500 Raster-

Raster  

1:07 -2,65 -0,43 -0,11 0,18 5,83 0,67 

C3/500 Euclid-

Real-

Euclid 

1:32 -2,04 0,0 0,31 0,64 6,26 0,68 

C3/500 Manhattan

-Real-

Manhattan 

1:07 -1,82 0,11 0,45 0,81 6,38 0,7 
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Figure 18. Boxplots of the three-parts-route for Case 3/500 

Last test run on the most wide grid size in our study 1 km. Table 9 and Figure 19 present the 

performance results. Similar observations mentioned by the analysis of the results for the 

250m grid size as well as for the 500m raster matrix are valid for the wider grid size. The 

wider raster distance or grid size, the higher the maximum deviation as well as the standard 

deviation from the shortest path routes for the Euclid-Real-Euclid and the Manhattan-Real-

Manhattan. 

Table 9. Results of the comparison for the Case 3/1000 
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C3/1000 C-C 

Euclid 

1:55 -6,39 -1,29 -0,58 0,0 3,34 1,08 

C3/1000 C-C 

Manhattan 

1:36 -6,39 -0,09 0,68 1,64 7,89 1,61 

C3/1000 Raster-

Raster  

1:36 -4,75 -0,56 -0,05 0,42 6,41 0,86 

C3/1000 Euclid-

Real-

Euclid 

1:55 -3,44 0,31 0,82 1,38 7,15 0,89 

C3/1000 Manhattan

-Real-

Manhattan 

1:36 -2,98 0,53 1,06 1,67 7,45 0,93 
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Figure 19. Boxplots of the three-parts-route for Case 3/1000 

The difference between the Manhattan-Real-Manhattan method and the Euclid-Real-Euclid 

method that are of interest in our study is even clearer (see Figure 19). 

After the analysis of all performed tests, we come to the conclusion that, firstly, the complex 

methods we focused on, namely the Manhattan-Real-Manhattan and the Euclid-Real-Euclid, 

prove their robustness and reliability. Secondly, for the case where vertices situated in one 

particular area the wide raster matrix is not needed because doubling raster size does not lead 

to an equivalent increase in the remaining figures such as a value of standard deviation. For 

instance if we track the standard deviation for the Case 3 it can be seen that it raises form 

0,66km to 0,68km and finally rich 0,89km when the grid size doubled from 250m to 500m 

and then from 500m to 1000m. 
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5.2.4. Case 4 – Lower Austria 

The test runs for the Case 4 will follow absolutely the same structure that the analysis of the 

Case 3. Note that Case 4 includes also 100 customers and will be performed using three 

different raster sizes. In the tables provided computational results Case 4 refers as C4 and 

after slash placed the raster size.  

Case 4 is another case and differs from the abovementioned benchmarks in a way that it 

considers the customers in Lower Austria and not within Vienna. As it depicted on  the  

Figure 20, the customers spread over the region of Lower Austria. As it could be seen that the 

distances between customers are larger that can influence the results of deviation.  

 

Figure 20. Overview of customer's locations for Case 4 

Table 10 demonstrates computational results for the Case 4 with the smallest raster size. The 

figures are varying unexpected. For instance, the standard deviation is four times higher as in 

the case where the customers located within urban area, e.g. 0,66km for the Euclid-Real-

Euclid method in the Case 3 versus 4,96km for the equivalent method in the Case 4.  
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Table 10. Results of the comparison for the Case 4/250 

 

Figure 21. Boxplots of the three-parts-route for Case 4/250 

Figure 21 proves the worst performance of the Euclid-Real-Euclid and the Manhattan-Real-

Manhattan approaches on the generated Case 4, e.g. the deviation exceed predefined 

threshold. Even the first quarter of deviation the Raster-Raster, the Euclid-Real-Euclid and the 

Manhattan-Real-Manhattan methods from the shortest path does not satisfied the upper bound 

for the 250m raster size that is 500m.  
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C4/250 C-C 

Euclid 

1:51 -34,48 -9,58 -3,82 0,06 13,43 6,98 

C4/250 C-C 

Manhattan 

1:38 -30,86 -2,89 2,42 8,54 29,18 9,54 

C4/250 Raster-

Raster  

1:38 -11,38 0,86 3,21 6,89 29,41 5,27 

C4/250 Euclid-

Real-

Euclid 

1:51 -1,52 1,45 3,88 7,42 29,7 4,96 

C4/250 Manhattan

-Real-

Manhattan 

1:38 -1,22 1,51 3,98 7,53 29,79 4,98 
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Table 11 shows how the performance of the proposed methods changes with changing grid 

size. The Euclid-Real-Euclid and the Manhattan-Real-Manhattan have insignificantly 

changed their performance while customer-customer methods remain the same that because 

that latter methods are not influenced by the grid data at all. Still the methods that are of the 

most interest in our study deliver infeasible solution. Figure 22 clearly illustrates the huge 

deviation of the three-parts-routes from the shortest paths.  

Table 11. Results of the comparison for the Case 4/500 

 

Figure 22. Boxplots of the three-parts-route for Case 4/500 
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C4/500 C-C 

Euclid 

1:43 -34,48 -9,58 -3,82 0,06 13,43 6,98 

C4/500 C-C 

Manhattan 

1:37 -30,86 -2,89 2,42 8,54 29,18 9,54 

C4/500 Raster-

Raster  

1:37 -13,26 0,78 3,21 6,94 29,72 5,29 

C4/500 Euclid-

Real-

Euclid 

1:43 -2,57 1,72 4,21 7,79 30,25 5,0 

C4/500 Manhattan

-Real-

Manhattan 

1:37 -1,96 1,81 4,28 7,93 31,53 5,03 
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Further increase of the raster size from 500 m to 1km is only slightly changing the results. For 

instance, the size was doubled when the standard deviation for the Manhattan-Real-Manhattan 

method is increased from 5,03km to 5,27km. The deviation for the Manhattan-Real-

Manhattan method is generally higher that proves also the boxplot that is shifted up in 

comparison to the boxplot of another method represented on the Figure 23. Thus, the 

proposed method is inapplicable for the Case 4 due to high amount of unfeasible routes. 

Table 12. Results of the comparison for the Case 4/1000 

 

Figure 23. Boxplots of the three-parts-route for Case 4/1000 
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C4/1000 C-C 

Euclid 

1:43 -34,48 -9,58 -3,82 0,06 13,43 6,98 

C4/1000 C-C 

Manhattan 

1:52 -30,86 -2,89 2,42 8,54 29,18 9,54 

C4/1000 Raster-

Raster  

1:43 -13,6 0,89 3,36 6,93 28,14 5,21 

C4/1000 Euclid-

Real-

Euclid 

1:43 -2,39 2,41 4,98 8,37 28,66 5,02 

C4/1000 Manhattan

-Real-

Manhattan 

1:52 -1,41 2,8 5,43 9,31 33,53 5,27 
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5.2.5. Case 5 – Vienna and Lower Austria 

Finally, we will have a look at the last Case 5 that contains all customers selected for the 

testing purpose. In comparison with the all cases mentioned above this particular case is a 

combination of the customers from Vienna and Lower Austria in ratio one to one. Thus, the 

Case 5, shortly C5, includes doubled amount of the customers that is 200, i.e. the customers' 

proportion is equal 100 clients placed within Vienna and 100 - within Lower Austria.  Figure 

24 reflect the location positioning.  

 

Figure 24. Overview of customer's locations for Case 5 

Moreover, we continue to test the provided case on the various raster sizes. The obtained 

results are of interest for research purpose due to higher complexity of the chosen case. 

Firstly, the Case 5 is two times bigger than the cases tested before. Secondly, it covers areas 

with difference transportation structures and population concentration. Thirdly, the distances 

between customers within the benchmark vary very high.  

Case 5 are the mix case so to say, it is includes urban as well as rural areas, geographical 

elements, areas with high concentration of the customers and part of the region with low 

concentration. Therefore, computational results are very complex and mixed.  
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Table 13. Results of the comparison for the Case 5/250 

Table 13 presents the results for the smallest raster size. If we look at the standard deviation, 

the new proposed complex method demonstrates an effective performance. However, Figure 

25 obviously depicts very high level of the maximum deviation due to present of the 

customers from rural areas. Nevertheless, 25% of the results satisfied the predefined threshold 

compare to the results for the Case 4. 

 

Figure 25. Boxplots of the three-parts-route for Case 5/250 
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C5/250 C-C 

Euclid 

2:06 -34,48 -5,17 -1,97 -0,09 13,43 4,73 

C5/250 C-C 

Manhattan 

2:02 -30,86 -0,38 1,82 5,76 29,18 6,53 

C5/250 Raster-

Raster  

2:02 -11,38 0,0 0,89 3,2 29,41 3,73 

C5/250 Euclid-

Real-

Euclid 

2:06 -2,71 0,28 1,29 3,61 29,7 3,57 

C5/250 Manhattan

-Real-

Manhattan 

2:02 -2,64 0,34 1,35 3,7 29,79 3,58 
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Actually, from the Table 14 and the Figure 26 can be noted that the same trend is kept, 

deviation increases with spreading raster size. The standard deviation is insignificant 

increased but the value of the fourth quartile is also increased. Figure 26 proves that statement 

as well. 

Table 14. Results of the comparison for the Case 5/500 

 

 

Figure 26. Boxplots of the three-parts-route for Case 5/500 
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Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C5/500 C-C 

Euclid 

1:59 -34,48 -5,17 -1,97 -0,09 13,43 4,73 

C5/500 C-C 

Manhattan 

2:02 -30,86 -0,38 1,82 5,76 29,18 6,53 

C5/500 Raster-

Raster  

1:59 -13,26 -0,03 0,89 3,2 29,72 3,76 

C5/500 Euclid-

Real-

Euclid 

1:59 -2,57 0,49 1,57 3,91 30,25 3,61 

C5/500 Manhattan

-Real-

Manhattan 

2:02 -1,96 0,62 1,69 3,99 31,53 3,62 
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The last test run on the 1000m raster matrix, the results are summarized in the Table 15, and 

the deviation of the Manhattan-Real-Manhattan method as well as the Euclid-Real-Euclid 

method is depicted on the Figure 27. It can be seen that the wider raster size brings no 

improvement in the obtained results. 

Table 15. Results of the comparison for the Case 5/1000 

Despite of that the C-C Euclid method deliver the results that are under upper bound, we 

assume that they are mostly infeasible because the beelines are definitely inapplicable in the 

mixed and complex case like the Case 5. The C-C Manhattan method shows the worst 

performance in every case from the easiest Case 1 to the complicated Case 5. Therefore, 

implementation of the Manhattan distance as a distance measure is not advisable for the OD-

matrix estimation. 

Moreover, the final test with 1km raster matrix shows that the Euclid-Real-Euclid method and 

the Manhattan-Real-Manhattan method are inapplicable for such kind of mixed cases because 

only one quarter of routes obtained by those methods lies under the threshold of 2 km. 

Nevertheless, it should be noticed that the performance of the mentioned methods is efficient 

in terms of computational time, e.g. Case 5 needs ca.2min for the processing 200 customers 

on the smallest grid size, and the wider the raster size the less time needed for the processing. 

Case Method CPU Min. 1.Quartile 2.Quartile

/ Median 

3.Quartile 4.Quartile

/ Max. 

SD 

C5/1000 C-C 

Euclid 

1:58 -34,48 -5,17 -1,97 -0,09 13,43 4,73 

C5/1000 C-C 

Manhattan 

1:55 -30,86 -0,38 1,82 5,76 29,18 6,53 

C5/1000 Raster-

Raster  

1:55 -13,6 -0,0 1,05 3,34 28,14 3,77 

C5/1000 Euclid-

Real-

Euclid 

1:58 -3,44 0,99 2,23 4,72 28,66 3,72 

C5/1000 Manhattan

-Real-

Manhattan 

1:55 -2,98 1,24 2,57 5,21 33,53 3,95 
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Figure 27. Boxplots of the three-parts-route for Case 5/1000 

 

Thus, we come to the conclusion that proposed raster concept and the methods based on that 

concept demonstrate an appropriate performance on the cases where the urban areas are under 

study like in the Case 1, Case 2 and Case 3. In addition, a Euclidean distance is the proper 

distance measurement than the Manhattan distance. Also the tests with various grid sizes 

show that the wider grid size is not required for the urban areas.  
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6 Conclusion 

Origin-destination (OD) matrices are one of the key elements for the traffic management 

development and organization. In the world with fast technical progress, the requirements for 

the evaluation time are increased significantly. For new gadgets that uses origin-destination 

matrix as an input data, the computational time should take less than milliseconds. Therefore 

the methods for the fast obtainment of the OD-matrices are discussed by the researchers 

constantly. 

This thesis is focused on the static model of the OD estimation problem. It discusses the 

problem of different distance measurements methods. One new concept is proposed and 

examined on the various cases. For the preliminary test one artificial benchmark is generated 

and for the further examinations several realistic cases are chosen. The cases is designed in 

such a way that they cover different areas or combine various types of areas in one case like it 

was done in the Case 5. The results demonstrate that new suggested method based on the grid 

data is rapid for the OD-matrix estimation and reliable at the same time.   

The findings of the computational analysis is that the complex method using raster concept 

and Euclidean distance approach works in the urban areas very successfully as it can be seen 

for instance in the Case 1 with the customers positioning in the city center of Vienna. And on 

the other hand, the method fails in the rural areas or in the cases including rural areas as it was 

presented in the Case 4 where only rural area of Lower Austria studied and in the Case 5 

which combined rural areas of Lower Austria with urban area of Vienna.  

Moreover, the geographical elements could also lead to a strong deviation like in the Case 2 

where under study area includes the Danube. The implementation results confirm that rural 

area is not suitable for the developed concept and methods. Thus, the concept is more suitable 

and robust for the application in the urban areas.  

In addition, the grid size of 250m demonstrates the best behavior in comparison to the other 

sizes. The increase of the grid size does not lead to any improvement except the decrease in 

processing time. Consequently, the wider raster sizes like the suggested in this thesis 500m as 

well as 1km are not necessary if the urban areas are considered. 
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Abstract 

In the field of transportation system management and similar fields of research an estimation 

of the origin-destination matrices are one of the important task that should be solved promptly 

and accuracy. Moreover, the OD-matrices are used as input data in a wide variety of 

applications. This thesis concerns the estimation of the OD-matrices for the static cases where 

time is neglected.    

The goal of this thesis is to examine well-known distance measurements methods and 

designing new methods for the time-independent OD-matrix. The proposed methods 

aggregate the data and use new raster concept in order to evaluate the OD distance matrix. By 

doing this we analyze the dependency between the aggregation level and the accuracy of the 

results. All the methods are tested on the artificial instance as well as on the real-world cases 

with different level of complexity. The outcomes demonstrate an efficient performance.  

 

 

  



56 

Zusammenfassung 

In den Anwendungs- und Forschungsgebieten von Transportmanagement sowie 

Transportoptimierungssystemen ist die möglichste exakte Abschätzung der Origin-

Destination Matrizen eine der wichtigsten Aufgaben, die einerseits schnell und andererseits 

möglichst exakt gelöst werden sollen. Darüber hinaus werden die Daten der OD-Matrizen als 

Inputdaten in einer Vielzahl von Anwendungen eingesetzt. Diese Master Arbeit versucht 

durch Aggregation der Daten eine möglichst exakte Annährung der OD-Matrizen durch einen 

Rasterdatenansatz zu erzielen und erforscht den Tradeoff zwischen Genauigkeit und 

Rechenzeit. 

Das Ziel dieser Arbeit ist es bekannte Abstandsmessungen und Methoden zu untersuchen und 

neue Methoden für das zeitunabhängige OD-Matrix Problem zu entwerfen. Die 

vorgeschlagenen Verfahren aggregieren die Daten und verwenden neue Raster Konzepte, um 

die OD-Distanzmatrix zu bewerten. Auf diese Weise analysieren wir die Abhängigkeit 

zwischen der Aggregationsebene und die Genauigkeit der Ergebnisse. Alle Methoden sind auf 

dem künstlichen Beispiel getestet, sowie auf realen Anwendungsfälle mit unterschiedlichen 

Komplexitätsgrad angewendet worden.  
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Appendix 

 278365 401211 402973 407563 407642 410850 411266 411961 416078 428386 

278365 0,00 4,19 1,72 3,23 2,64 3,55 1,48 3,85 3,85 2,21 

401211 4,27 0,00 3,61 1,54 5,23 1,34 4,60 3,50 4,46 2,60 

402973 1,84 3,79 0,00 2,56 3,74 2,88 2,58 3,88 2,92 1,54 

407563 2,82 2,02 2,16 0,00 4,33 1,53 3,29 4,21 2,92 1,17 

407642 2,17 4,10 3,67 4,88 0,00 4,94 1,48 1,37 5,55 3,60 

410850 3,46 1,72 2,80 0,64 4,97 0,00 3,93 4,85 3,56 1,81 

411266 0,96 4,04 2,53 3,99 1,16 4,05 0,00 2,37 4,66 2,71 

411961 3,30 3,51 4,04 4,51 2,34 4,46 2,65 0,00 5,92 3,97 

416078 4,02 4,76 2,58 3,17 5,61 4,09 4,56 5,60 0,00 3,08 

428386 2,00 2,45 1,36 2,06 3,51 1,54 2,47 3,39 3,24 0,00 

Table 16. Shortest path distance matrix for the case 10/250 

 

Table 17. Fastest path distance matrix for the case 10/250 

 

 278365 401211 402973 407563 407642 410850 411266 411961 416078 428386 

278365 0, 4,2 2,53 3,74 2,9 4,66 1,48 4,1 4,3 2,58 

401211 4,89 0, 4,16 1,91 6,77 1,34 5,29 4,24 4,92 3,17 

402973 2,44 4,06 0, 2,56 4,33 3,48 2,85 4,09 3,32 1,55 

407563 2,89 4,3 2,16 0, 4,77 1,53 3,29 4,43 2,92 1,17 

407642 3,53 4,47 4,7 5,46 0, 5,55 2,83 1,37 6,72 4,75 

410850 3,62 3,64 2,89 0,64 5,5 0, 4,02 5,16 3,65 1,9 

411266 0,96 4,45 2,78 3,99 1,42 4,91 0, 3,47 4,8 2,83 

411961 3,52 3,57 4,05 4,56 3,17 4,65 3,77 0, 6,07 4,1 

416078 4,16 5,78 2,58 3,17 6,05 4,09 4,57 5,81 0, 3,27 

428386 2,09 3,5 1,36 2,23 3,97 1,54 2,49 3,63 3,38 0, 
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