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1 INTRODUCTION

1 Introduction

Perovskite solar cells have become very famous in the recent years within the photo
voltaic community. The main reason for this are the high efficiencies that can be reached
with those cells, the low costs and the ease in production. There exist publications
reporting perovskite cells with efficiencies of 15 % [7]. Moreover, Nam-Gyu reported in
April 2013 that it will be possible to drive the efficiency of those cells even further and
reach values of about 20 % [38]. Approximately one year later there were research groups
that were able to build perovskite cells with efficiencies of 19.6 % and wrote that it will
be possible to improve these materials even further [45]. These few examples indicate the
fast development of the perovskite solar cell field.
But this is not the only reason why perovskite solar cells receive so much attention.
Another reason is that they are very easy to produce for example by coating TiO2 or

Al2O3 with very thin perovskite layers [18]. Furthermore they posses a very high light

absorption coefficient [18][38] whereby the maximum of the absorption coefficient is at
about 410 nm [39].
But there are also some negative properties which can be associated with the perovskite
solar cell. The most harmful is maybe that a main component of the cell is lead which
is very toxic. This may cause troubles during the fabrication, during application or after
the disposal of these cells[18].
Nevertheless, these solar cells are very promising and one should try to understand the
mechanisms behind them, which cause the high efficiencies. Maybe then it would also be
possible to replace the harmful lead by other metals.
This work will deal in a completely theoretical way with the behaviour of the hybrid-halide
organo metal perovskite solar cells. In the beginning, the results gained from foregoing
works, (mainly theoretical in nature) will be summarized. This illustrates the starting
point for this work. Afterwards, the methods that were used and their suitability for
the considered problem will be discussed. First we used an ab initio molecular dynamics
approach and second a Monte Carlo approach which we then compare to.
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2 BACKGROUND

2 Background

2.1 Halide- Perovskite Structure

First, the structure of the system that will be considered in this work should be described.
The common chemical formula expressing halide perovskites reads as ABX3. Where X
is a monovalent anion, which can be one of the halogenides. In this work we will only
consider iodine. Then B can be any bivalent metallic cation, for which we will take lead in
the present thesis. Then last A describes a monovalent cation. This can be either organic
or inorganic in nature. For the monovalent cation, we considered methyl ammonium,
which possesses a permanent dipole moment. The chemical formula for the considered
system reads as CH3NH3PbI3. Such a structure can be seen in figure 2.1. Every lead

atom (with an ionic radius of RB = 0.119 nm) is surrounded by six iodine atoms (ionic
radius of RX = 0.220 nm) [18]. These iodine atoms form a octahedron with the lead atom
in its center. The bonds between the iodine atoms and the lead atoms are heteropolar.
This means that they are mixed out of ionic and covalent bonds [3]. The valence band
is mainly formed by the p orbitals of the iodine atoms with a little admixture of the s
orbitals of the lead atoms. The energetically higher lying conduction band is made up of
the p orbitals of the lead atoms [3].
The organic cations are locked inside the cages. These are built up of the quadratic
bipyramides of the lead and iodine atoms. Methyl ammonium is an organic cation with
a ionic radius of RA = 0.18 nm [34]. Also other organic cations have been considered in
previous studies like ethyl ammonium or formamidinium. The methyl ammonium cation
possesses a permanent dipole moment, which reads for the neutral species as 2.29 D [16].
For the spacing between the dipole molecules values between 6.00 Å[3] and 6.29 Å[17]
have been published.
The system is able to posses several crystallographic structures: orthorhombic, tetragonal,
and cubic. The orthorhombic structure is stable beneath 160 K and undergoes a phase
transition to the tetragonal symmetry at approximately this temperature [16]. There is
another transition to the high temperature phase which is cubic at 330 K [46] and which
we will consider in the recent work.

2.2 Important Interactions

Because the methyl ammonium cation is positively charged and the PbI3 is a negatively
charged framework surrounding the organic molecule, the main interaction between the
two species should be electrostatic in nature. It is assumed that there exists a strong
electrostatic potential which hinders the dipoles in their rotation. The rotation barrier
energies for different ions have been reported. For example the rotation barrier for NH4

+

is estimated to be 0.3 kJ/mol, for CH3NH3
+ 1.3 kJ/mol and for NH2CHNH2

+ 13.9

kJ/mol [16]. One can see the rotational barrier increases with the size of the ion. The next
important contribution should be the dipole charge interaction which also arises between
the molecule and the framework. For sure this interaction has to be dependent on the
orientation of the considered dipole [3]. An ab- initio molecular dynamics simulation
suggests that also hydrogen bonding should have a significant influence on the interaction
of the dipoles with the framework and the behaviour of the perovskite system [8]. This
interaction arises between the hydrogens located on the nitrogen atoms of the, for example,
methyl ammonium cation and the partly negatively charged iodine atoms of the cage. All
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2.3 Foregoing Ab Initio Molecular Dynamics Simulations 2 BACKGROUND

Figure 2.1: Organohalide perovskite structure at 300 K

of these interactions are electrostatic in nature and thus it should be very difficult to
distinguish between them [3]. The next contribution that should have an influence on the
behaviour of the considered system are dipole-dipole interactions between the molecules.
Their contribution should have less influence on the system because it may be shielded by
the PbI3 framework which is located between the interacting dipoles. A measure for the
extend of the shielding may be the dielectric constant of the framework where published
values are around ε0 = 24.1 and ε∞ = 4.5 [17]. The dielectric constant can be written
as a sum of different contributions ε0 = ε∞ + εionic + εother. In this sum, ε∞ denotes the
electronic contribution to the relative epsilon, and εionic the contribution which arises due
to the present ions which are moving in an oscillating field. The εother contribution arises
for example due to molecules with a permanent dipole moment present in the system as
is the case for CH3NH3

– [16].
Moreover Egger and Kronik reported that it should also be very important to include
VdW interactions when performing an ab initio- molecular dynamics simulation. In their
paper, they report that the cell volume would slightly decrease if one includes VdW
interactions resulting in better agreement with experiments [15]. So in this work we will
try two different approaches for small 2 × 2 × 2 cells to see how the choice of the DFT
functional- with and without VdW interactions- will influence the results and especially
the dynamical behaviour of the system. The 2 × 2 × 2 cells denote systems that have
a cubic symmetry and consisting of 8 dipoles ( methyl- ammonium cations) and 8 PbI3
units in total.

2.3 Foregoing Ab Initio Molecular Dynamics Simulations

In this section the results of two foregoing molecular dynamics simulations are discussed.
One of them was performed by Quarti et al. and another by Carignano et al. First of
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3 METHODS

all one has to be careful to take a sufficiently long equilibration time for the considered
system. For a 3 × 3 × 3 super cell one should take at least a minimum of 5 ps for the
initial equilibration of the considered system [8]. This equilibration time is expected to
increase with growing system size which was reported by Carigano et. al. by comparison
of a 2 × 2 × 2 and a 3 × 3 × 3 super cell [8]. The starting geometry of the considered
system should be chosen very carefully. For example Quarti et al. tested three tetragonal
structures with various initial orientations of the the methyl ammonium molecules. They
tested a system which they called MA β1 which has an isotropic (random) orientation
of the dipoles in the ab plane and an anisotropic behaviour in the c direction. This is
because the angle between the dipoles and the ab plane is written as ≈ 30◦. As a result
this structure shows polarization along the c axis.
This structure was compared to two systems they denoted as MAβ2 and MAβ3 which
posses an isotropic behaviour (random orientation) in both the ab plane and the c axis
and therefore they are para electric. The MAβ2 structure possesses a symmetry plane
at half of the c axis which is not present in the MAβ3 structure. So MAβ2 has two
oppositely polarized domains. For these structures they calculated the radial distribution
functions of the framework (the PbI3 cages) which differ in the broadening and height
of the corresponding peaks. From this behaviour they concluded that the dynamics of
the inorganic framework are not decoupled from the organic compounds locked inside the
cages. The larger broadening was found due to a diminished long range order. This long
range order decreases from the MAβ1 to the MAβ2 and MAβ3 [44].
Moreover, Carigano et. al. reported that the crystalline structure of the system is sta-
ble during the whole simulation when using a DFT approach for the electronic structure
and Langevin dynamics for the proagation of the ions. Out of this they concluded that
this will be an adequate approach for systems of this kind [8]. As mentioned in section
2.2, hydrogen bonds must play an important role when considering the interactions of
the halide perovskite cages and the organic cations. However, the structures reported by
Quarti et al. show a decreasing number of hydrogen bonds from MAβ1 to MAβ3. That
may also be why they report that the MAβ1 structure is the most stable one.
Another very interesting fact is that the nitrogen atoms are oriented towards the face cen-
tres of their cubic cages which is a sterically unfavourable orientation because the most
space would be available for the molecules, if they are arranged along the room diagonal
but this might also arise due to the presence of hydrogen bonding [8].

3 Methods

3.1 Density functional theory

3.1.1 Hohenberg- Kohn approach

To determine the electronic structure of the systems we used the well known Density
Functional Theory method. The DFT method was proposed by Hohenberg and Kohn
[24] and further developed by Kohn and Sham [51]. The main difference of DFT to other
methods for the determination of electronic structures is, that the energy is expressed in
terms of the electronic density and not in terms of the wavefunction like for example in
the Hartree Fock method.
First of all, one has to define a Hamiltonian which specifies the the corresponding problem
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3.1 Density functional theory 3 METHODS

completely. In the case of an electronic structure problem it can be written in the form

H = Te + TN + Vee + VeN + VNN . (3.1)

Te denotes the kinetic energy related to the electrons which are moving in the ionic
potential. TN denotes the kinetic energy related to the movement of the nuclei. The
potential Vee and VNN denotes the repulsive electrostatic interaction between electrons
and the nuclei respectively. The last term VeN describes the attractive interaction between
electrons and nuclei. The operators for those terms can be written like shown in equation
(3.2) if one uses atomic units:

Ĥ =
1

2

N∑

i

4i +
1

2

M∑

n

4n +
1

2

∑

i 6=j

1

|ri − rj|
+

1

2

∑

i,n

Z

ri −Rn

. (3.2)

In this equation, 4i denotes the Laplacian (second derivative) with respect to the elec-
tronic coordinates and 4n with respect to nuclear coordinates. Now one is able to apply
the Born Oppenheimer approximation. This allows us to uncouple the movement of the
electrons from those of the nuclei. This seems to be a good approximation because the
electrons tend to move much faster than the nuclei and therefore the nuclei can be re-
garded as stationary while the electrons propagate fast in time. The Schrödinger equation
can be seen in 3.3 for the coupled case. After application of the Born Oppenheimer ap-
proximation [6] and choosing a product ansatz for the wavefunction Ψ (x,X) = ϕ (x) θ (X)
one is able to write the Schrödinger equation like

ĤΨ(x,X) = EΨ(x,X), (3.3)

Ĥϕ(x)θ(X) = Eϕ(x)θ(X). (3.4)

In these formulas the coordinates x and X denote the coordinates of all the electrons
and all the nuclei present in the considered system respectively. The last equation can be
separated in a way that the equation is only dependent on electronic contributions and
therefore one obtains the electronic Schrödinger equation.

(T̂e + V̂ee + V̂eN)ϕ(x) = εϕ(x). (3.5)

Now we have an equation that will give us the electronic energy in the mean field of
stationary nuclei which will be in general a good approximation for describing molecules
or solids.
As already mentioned, the DFT method deals with electron densities. But the equations
we have seen till now only deal with wavefunctions so we have to introduce the electron
density in terms of the wavefunction:

n(r) = 〈ϕ|r〉 〈r|ϕ〉 (3.6)

Now one is able to rewrite Schrödiger’ s equation in terms of the electron density and
transform it in a way that we get a functional expression for the ground state energy.
This was done by Hohenberg and Kohn:

E[n(r)] =

∫
v(r)n(r)dr + 〈Ψ|T̂ + Û |Ψ〉 . (3.7)

7



3.1 Density functional theory 3 METHODS

Hohenberg and Kohn [24] postulated that the potential v(r) is a unique functional of the
electronic ground state density n(r). This can be proven by reductio absurdum. Assume
we have two potentials v(r) with ground state wavefunction Ψ0 (energy E0) and a second
potential v

′
(r) with a wavefunction Ψ

′
which gives the same electron density n(r). For

sure the ground state wavefunction is the state with the lowest energy for the considered
system and all the others must have higher energies which is in accordance with the
variational principle.

E
′
= 〈Ψ′|Ĥ ′|Ψ′〉 < 〈Ψ|Ĥ ′ |Ψ〉 = 〈Ψ|Ĥ + V̂

′ − V̂ |Ψ〉 (3.8)

This results in

E
′
< E +

∫
[v(r)− v′(r)]n(r)dr (3.9)

Now one is able to interchange primed and unprimed terms and add these two equations
which yields (3.11). This inequality can not be true and therefore v(r) has to be a unique
functional of n(r).

E < E
′
+

∫
[v
′
(r)− v(r)]n(r)dr (3.10)

E + E
′
< E

′
+ E (3.11)

The only exception to this situation would be if v(r) − v′(r) = const. This implies that
the potentials can only be determined up to an additive constant. The wavefunction can
be determined uniquely out of the electron density too. This will be clear if one takes the
Schrödinger equation and inserts the uniquely defined external potential belonging to the
ground state electron density. Now if one solves this differential equations one will obtain
the wavefunctions associated with the ground state electron density. Therefore one can
write the energy associated with the kinetic energy and the interaction of the elctrons as
follows:

F [n(r)] = 〈Ψ [n] |T̂ + Û |Ψ [n]〉 . (3.12)

The total energy functional used in DFT has to be a unique functional of n(r) too which
follows from the fact that all the contributions are unique. For the proof assume that one
has a specific electron density n(1)(r) which corresponds to a certain external potential
v1(r) and with a many body wavefunction Ψ(1). Now the energy can be expressed as
shown:

E1 = EHK
[
n(1)
]

= 〈Ψ(1)|Ĥ|Ψ(1)〉 . (3.13)

Now assume you have another wavefunction which will be denoted by Ψ(2) which corre-
sponds to an other electron density n(r). Now inserting this equation into the energy
functional yields:

E(1) = 〈Ψ(1)|Ĥ|Ψ(1)〉 < 〈Ψ(2)|Ĥ|Ψ(2)〉 = E(2) (3.14)

It follows the ground state wavefunction is uniquely defined and hence the ground state
electron density too. Now the functional for the total energy can be rewritten as follows:
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3.1 Density functional theory 3 METHODS

E[n] =

∫
v(r)n(r)dr + F [n]. (3.15)

The Ritz-Rayleigh [4] variational principle states that the exact ground state energy has
to be the minimum of this energy functional. This can be done by choosing a first trial
density ñ(r) which is in principle done by taking a first approximation of Ψ̃ and out of it
one calculates the electron density. Now one has to minimize equation (3.15) with respect
to the electron density. An important boundary condition to the problem is that the
integral over the electron density has to yield the number of electrons N =

∫
n(r)dr.

Now one is able to rewrite the functional F [n (r)] shown in equation (3.12) as a sum of a
kinetic energy term, a classical Couloumb energy term and last one adds the contributions
due to quantum mechanical effects like correlation and exchange of the electrons. This
results in this equation

F [n(r)] = Ts[n] +
1

2

∫
n(r)n(r

′
)

|r− r′ | drdr
′
+ EXC [n], (3.16)

where the effects of exchange and correlation are summarized in one single term (EXC [n (r)])
called the exchange correlation functional [51].

3.1.2 Kohn- Sham self consistent field equations

In 1965 Hartree published his self consistent field equations in which one has to solve a
set of single particle Schrödinger equations [50] [22]. Every electron moves in a potential
arises from the nuclei and all the other electrons:

V (r) = − Z|r| +

∫
n(r

′
)

|r− r′|dr
′
. (3.17)

One then has to solve the single particle Schrödinger equations in the Hartree approxi-
mation that is given by

[
−1

2
4+V (r)

]
ϕj(r) = εjϕj(r), (3.18)

where the ϕj(r denote the single electron wavefunctions and the εj the corresponding
energies. Kohn and Sham now used this Hartree approach for the derivation of a set
of self consistent equations which are known as the Kohn-Sham equations. Therefore
they used the Hartree system were no exchange correlation energies are included as a
non interacting reference system and took the Hamiltonian out of equation (3.17) as the
auxiliary Hamiltonian. Moreover the spin contributions which are very important for
fermions are taken into account. One has to rewrite the electron density in terms of a
density for the spin up particles and the spin down particles

n(r, σ) = n(r, ↑) + n(r, ↓) =
∑

σ

Nσ∑

i=1

|ϕσi (r)|2 . (3.19)

This spin contributions also have to be taken into account for the auxiliary system Hamil-
tonian which looks like

Ĥσ
aux = −1

2
4+V σ(r) (3.20)
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3.1 Density functional theory 3 METHODS

Now we will write down the kinetic energy of this auxiliary system:

Ts = −1

2

∑

σ

Nσ∑

i=1

∫
|5ϕσi (r)|2 dr (3.21)

Lets us also define the Hartree energy,

EHartree[n] =
1

2

∫
n(r)n(r

′
)

|r− r′ | drdr
′

(3.22)

We are now able to define the Kohn Sham functional for the electronic system in the
ground state.

EKS[n] = Ts[n] +

∫
Vext(r)n(r)dr + EHartree[n] + EII + EXC[n] (3.23)

In equation 3.23 Ts[n] denotes the kinetic energy of the non interacting electron gas.
Vext(r) denotes the potential which arises due to the electron- nuclei attraction. EHartree is
the Hartree energy of equation (3.22) and EII denotes the contribution of the interaction
between the nuclei. By comparing the Kohn- Sham equation (3.23) and the Hohenberg-
Kohn equation one can write the exchange- correlation functional in terms of equation
(3.16):

EXC[n] = FHK[n]− (TS[n] + EHartree[n]) . (3.24)

One can see that this is just the difference in energy between the auxiliary system where
only classical Coulomb interactions are present and the interacting electronic system. In
other words, the exchange correlation energy takes into account all the exchange and
correlation effects which are present in a many body system which were neglected in the
system of the non interacting electrons [33].
The next step is to find the stationary condition of the the Kohn Sham equation which can
be done by minimizing the functional with respect to the electronic density, i.e. finding
the first deviation with respect to the density and setting this to zero. There is just one
problem; the kinetic energy of TS of the non interacting electron gas is defined in terms of
the orbitals and not the electronic density. But this can be solved by taking the derivative
of the functional with respect to the orbitals ϕσi and applying the chain rule. The result
can be seen in the next equation

∂EKS
∂ϕσ∗i (r)

=
∂TS

∂ϕσ∗i (r)
+

[
∂Eext
∂n(r, σ)

+
∂EHartree
∂n(r, σ)

+
∂EXC
∂n(r, σ)

]
∂n(r, σ)

∂ϕσ∗i (r)
= 0 (3.25)

The derivation of the kinetic energy term yields:

∂TS
∂ϕσ∗i (r)

= −1

2
4 ϕσi (r) (3.26)

And the derivation of the density with respect to the wavefunction results in:

∂n(r, σ)

∂ϕσ∗i (r)
= ϕσi (r) (3.27)

First one introduces now the constraints which read as 〈ϕσi |ϕσ
′

j 〉 = δi,jδσ,σ′ . This is nothing
than the ortho-normalization principle well known for one electron wavefunctions.
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Finally, one can write down a Schrödinger like equation which is known as the Kohn-
Sham variational equation where εσi denotes the Lagrange multiplier which takes into
account the normalization constraint.

(Ĥσ
KS − εσi )Ψσ

i (r) = 0 (3.28)

The operator Ĥσ
KS of equation (3.28) can be written in the following form:

Hσ
KS(r) = −1

2
4+Vext(r) + VHartree(r) + V σ

XC(r) (3.29)

With this equation one is able to calculate the ground state of the considered electronic
system with a self consistent field approach. It is important to mention that one has
to solve a set of single particle equations one for every ϕσi (r) and εσi . Now one is able
to calculate the total energy of the system by the use of equation (3.23) and inserting
the terms for the electron density (3.19), the expression for the kinetic energy given by
(3.21) and the Hartree energy term (3.22). Here it is important to note that the Lagrange
multipliers do not resemble the orbital energies of the considered system. Only the the
multiplier with the highest energy reflects in “exact” DFT the negative ionization energy
of the system. Nevertheless the remaining multipliers can be used to make perturbation
approaches for the calculation of excitation energies. The ground state could be calcu-
lated, in principle, with arbitrary precision if the exchange correlation potential would
be known exactly and therefore the Kohn Sham theory is an exact approach. But it has
to be solved using an approximate exchange correlation potential. Some approaches for
the determination of the exchange correlation energy will be discussed in the following
chapters. There the LDA and the GGA method will be presented.

3.2 Local- density approximation

The easiest of the practical used exchange correlation functionals is maybe the LDA
approach. This energy functional may in general be written in the following form [50]:

ELDA
XC [n(r)] =

∫
eXC(r; [n(r̃)])n(r)dr (3.30)

In this equation eXC(r; [n(r̃)]) represents an exchange correlation energy density which
has the units energy per particle and is dependent on the density distribution n(r̃) around
r. As a cut off radius one uses the so called Fermi wavelength which is defined as λF =
[3π2n(r)]−

1
3 [50]. An evaluation of the functional for exchange only was given in the paper

of Kohn Sham [51] where they started with the Hartree-Fock exchange operator which
can be seen in equation (3.31). This operator can be regarded as the potential on the kth
orbital.

vxk(r) = −
N∑

k′=1

∫
Ψ∗k(r)Ψ∗

k′
(r
′
)Ψk′ (r)Ψk(r

′
)

|r− r′ |Ψ∗k(r)Ψk(r)
(3.31)

If the orbitals are now considered as plane waves (e±ikr) one is able to evaluate the integral
of equation (3.31) as:

vxk = −kF (r)

π

[
1 +

k2F (r)− k2
2kkF (r)

ln

∣∣∣∣
k + kF (r)

k − kF (r)

∣∣∣∣
]

(3.32)
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Now one is able to plug in the magnitude of the Fermi wave vector which is defined as
kF = [3π2n(r)]

1
3 . By combining this with equation (3.32) one gets the Slater exchange

correlation functional (3.33) and by setting kF equal to k one gets the exchange potential
which was derived by Kohn- Sham [51].

vxk(r) = −(3/2π)[3π2n(r)]
1
3 (3.33)

µx(r) = −(1/π)[3π2n(r)]
1
3 (3.34)

So equation (3.34) represents only the exchange correction to the potential but Slaters
expression resembles both the exchange and the correlation contribution to the potential.
Note these two potentials differ only by a factor of 3/2. The exchange correlation energy
can also be written as a sum of the individual contributions ELDA

XC = ELDA
X +ELDA

C . The
exchange part was formulated by Kohn-Sham [51] and the correlation functional was first
estimated by Paul Wigner in 1938 [50][55][54]:

εx(n) =
0.458

rs
, (3.35)

εc(n) =
0.44

rs + 7.8
. (3.36)

Here rs denotes the Wigner Seitz radius which is defined as rs =
(

3
4πρ

)1/3
and therefore

depending on the electron density. The Wigner Seitz radius is the radius of a sphere
which conatins one electron in the homogenous electron gas [33]. The LDA potential
gives normally very good results for the determination of the bond lengths, but has some
difficulties when calculating excitation or ionization energies [50]. The local spin density
approximation (LSDA) can now be extended in a way that also spin contributions will
be taken into account. The functional is now dependent on two different densities one for
spin up and the other with spin down. The two different spin densities give in sum the
total electronic density. Now one is able to rewrite the local density approximation in a
form such that the spin densities are also taken into account

(3.37)
ELSDA
XC [n↑, n↓] =

∫
n (r) εhomXC (n↑ (r) , n↓ (r)) dr

=

∫
n (r)

[
εhomX (n↑ (r) , n↓ (r)) + εhomC (n↑ (r) , n↓ (r))

]
dr.

The term εhomX (n↑ (r) , n↓ (r)) which describes the exchange energy per particle of the
homogenous electron gas can be written as a sum of the exchange energy per electron
arising due to the spin densities n↑ (r) and n↓ (r) which is written as [33]

εhomX (n↑ (r) , n↓ (r)) = εhomX (n↑ (r)) + εhomX (n↓ (r)) . (3.38)

Now one defines the spin polarization [33] as

ξ(r) =
n↑(r)− n↓(r)

n(r)
. (3.39)

Out of equation (3.38) and (3.39) one is able to formulate the exchange energy density in
the LSDA approximation like it is shown in equation (3.40) and (3.41). This was carried
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out first by Barth et. al. [49]. If the densities for the individual spin states are equal then
equation (3.40) reduces to the exchange energy per electron for the spin unpolarized case
which was already mentioned in equation (3.35).

εX [n, ξ] = εX(n, 0) + [εX(n, 1)− εX(n, 0)]f(ξ) (3.40)

f(ξ) =
1

2

(1 + ξ)
4
3 + (1− ξ) 4

3 − 2

2
1
3 − 1

(3.41)

The correlation energy is much more complicated to determine. One is also able to take
the correlation energy of equation (3.36) like it was proposed by Wigner [55][54] and make
the same ansatz like in the case of the exchange energy. This can be seen in the next
equation:

εC [n, ξ] = εC(n, 0) + [εC(n, 1)− εC(n, 0)]f(ξ). (3.42)

An other much more accurate approach for the correlation energy was made by Ceperley
and Alder. They performed a Monte Carlo approach to treat the correlation of the many
body system [10]. The local density approximation and the local spin density approxi-
mation were developed for homogeneous electron systems and therefore they yield quite
good results for slowly varying eclectron densities [50] like it would be expected for a local
exchange and correlation ansatz. But one also has to consider systems which are not as
homogeneous in a way that they could be treated with these local approximations are the
reason why scientists developed the so called generalized gradient approximations which
will be discussed in the next sections.

3.3 Generalized gradient approximation- PBE exchange corre-
lation

Further development of LDA and LSD has lead to the formulation of generalized gradient
approximations. When using GGA exchange correlation potentials one does not only deal
with the different spin densities but also with the derivatives. This section will mainly
be based on the paper of Perdew et.al. [40] and should show the principle in which
they derived their exchange correlation potential. One can see the GGA functional as a
generalization of the local spin density approximation and the functional can in general
be written in the following form [40]:

EGGA
XC [n↑, n↓] =

∫
f(n↑(r), n↓(r),5n↑(r),5n↓(r)) (3.43)

One starts derivating the correlation part of the GGA with the correlation energy density
of the homogenous electron gas n[εhomC (rs, ξ) like it was shown for the LSDA. But now
one introduces a correction term H(rs, ξ, t) to the functional which is written as:

EGGA
C [n↑, n↓] =

∫
drn[εhomC (rs, ξ) +H(rs, ξ, t)]. (3.44)

In this equation t denotes a dimensionless density gradient which can be written as t =
|5n| /(2ϕksn(r)). Therefore the exchange correlation functional of (3.44) contains the
changing in the electron density too. ϕ in turn describes a spin scaling factor which is
defined in the following equation:
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ϕ(ξ) = [1 + ξ]
2
3 +

[1− ξ] 2
3

2
(3.45)

ks is the well known Fermi screening wavenumber which is a measure for the electrostatic
screening like it was derived in the Thomas-Fermi model. This wavenumber can be
written as ks =

√
(4kF/πa0). Perdew et. al. derived the correction function H from

three different limiting cases [40].
The first one is the case in which the electron density is very slowly varying and therefore
t will approach zero. In this case H can be written in terms of its second order expansion
[40] and reads as follows:

H → (e2/a0)βϕ
3t2 (3.46)

In equation (3.46) β was determined as a numerical and dimensionless parameter which
should read as 0.066725. The next limiting case which was considered is the very rapidly
varying electron density which means that the dimensionless gradient tends to infinity
(t → ∞) . In this case H tends to be just the negative of the correlation energy of
the homogeneous electron gas H → −εhomC . This means that the electron correlation
vanishes, which can be seen if one considers equation (3.44). The third considered case
was a high density limit for which the Wigner-Seitz radius tends to zero rS → 0. In this
limit εhomC (rs, ξ) → (e2/a0)ϕ

3[γln(rs) − ω0] where γ and ω are functions which in this
limiting case can be written as γ = (1− ln(2))/π2 and ω = 0.046644 [40]. So in this case
they wrote H → (e2/a0)γϕ

3ln(t2) which is very similar to the first case (3.46). Now they
had to find a simple ansatz which satisfies all these conditions yielding equations (3.47)
and (3.48).

H =
(
e2/a0

)
ln

{
β

γ
t2

1 + At2

1 + At2 + A2t4

}
(3.47)

A =
β

γ

[
e
−εhomC
γϕ3e2/a0 − 1

]−1
. (3.48)

This equation starts at e2/a0 (which is the ratio of the quadratic elementary charge and
the Bohr radius) for t = 0 and grows monotonically to −εhomC the correlation energy of
the homogeneous electron gas. Another approach for the correlation effects would be a
Quantum Monte Carlo method like in the case of the correlation energy in the local spin
density approximation. Then one fits an analytic function to the statistical results of the
Monte Carlo approach [33].

Now one is able to derive the exchange energy in a similar manner by considering
equation (3.49) and also dealing with some limiting cases. In the limit of the uniform
electron gas FX(0) has to equal 1 to recover the correct results of the Thomas Fermi
model. Like we have already seen there should be a linear response in the limit of the
LSD approximation and so as s → 0 the enhancement factor should tend to Fx(s) →
1 + 0.21951s2:

EGGA
X =

∫
drn(r)εhomX (n(r), FX(s)). (3.49)

As another boundary Perdew et. al. chose the Lieb-Oxford lower limit boundary [29] for
the exchange potential [40] which can be seen in equation (3.50).
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3.4 Perdew-Burke-Ernzerhof revised for solids 3 METHODS

EX [n↑, n↓] ≥ −1.679e2
∫
drn

4
3 . (3.50)

Now one is able to write an enhancement factor which satisfies both conditions and reads
as (3.51) where κ = 0.804 and µ = β(π2/3):

FX(s) = 1 + κ− κ

1 + µs2/κ
. (3.51)

The GGA potentials improve, for example, the atomization energies, structural energy
differences, they expand (soften) bonds and they also improve the total energies. This
potential should also improve the results for inhomogeneities compared with the local
density approximation, because it takes the gradients of the electronic densities into ac-
count [40]. In the next and last section about the exchange and correlation potentials,
I want to discuss the principles of the PBEsol potential which is an improvement of the
here mentioned potential for solids.

3.4 Perdew-Burke-Ernzerhof revised for solids

This functional was used for the calculation of the dipole moments of the considered
organic molecules which were considered in our simulations. Moreover this functional
was also used in our ab- initio molecular dynamics simulations which will be described in
the next section. Like we have seen in the last section (3.3) of the GGA potential there
were made a lot of approximations and a big contribution of non empirical functional
development [42].
In this section I want to show an alternative GGA potential which was especially developed
for solids by Oerdew et.al. [42]. First of all, one has too look closely what are the
advantages and the disadvantages of the PBE method of the foregoing section. One
well known problem of the PBE method is the overestimation of the lattice constants
by about 1% and therefore also those properties which are strongly dependent on the
lattice constants like the bulk moduli, phonon frequencies, magnetism and ferro electricity
are therefore underestimated [42]. Another problem is the determination of the surface
energies which are already very low in LSDA, but even lower in the PBE approach[42].
It would be advantagous to find an approach that gets rid of these deficiencies. However,
one problem when improving the GGA approximation. If one increases the dependency
of the functional on the gradient then one improves atomization energies and also total
energies, but lattice parameters worsen. On the other hand, if one decreases the gradient
dependence of the functional then one improves the lattice constants and surface energies
but this will worsen atomization energies and total energies [56][23][42].
Therefore, Pedrew et. al. took the well known exchange energy of the PBE approach
which can be seen in equation (3.52) in a general form. Then they started their approach
by adjusting two parameters µ and s which can be seen in equation (3.54) which is known
as the enhancement factor of the exchange energy [42]. This enhancement factor is written
as a potential series were the first two terms are shown below:

EGGA
X [n] =

∫
dreunifX (n(r))FX(s(r)) (3.52)

FX(s) = 1 + µs2 + ... (s→ 0). (3.53)
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Now one has to discuss the different parameters. n(r) denotes the electron density and
eunifX denotes the exchange energy density of the jellium reference system. The parameter
s is called the reduced density gradient which is dimensionless and should be adjusted in
this method [42] to yield better results for solids like it was already mentioned. This pa-
rameter s can be written as |5n/(2kFn)| where kF denotes the Fermi wave vector which
is well known and was already mentioned.
Now Perdew et. al. tried to find an appropriate value µ which describes the exchange
energy in solids in a satisfactory manner. They started from the exchange energies
of neutral atoms which should be described very well by the asymptotic behavior of
EX = −0.2208Z

5
3 − 0.196Z + .. where the first term was determined by LSDA and the

second by the GGA method [42]. Thus the requirement for µ to describe the exchange
energy of neutral atoms reads as µ ≈ 2µGE. But as a consequence one has to contravene
the gradient expansion [42] as it was reported in [41]. Now one has the following prob-
lem, if the gradient expansion for the exchange energy is written in the form µ = 2µGE
it violates the condition of the slowly varying electron density, although this improves
atomization energies. So one can see that the gradient expansion is not perfect and is
able to describe either one or the other case but not both at the same time [42]. But
nevertheless the gradient expansion is very important for solids, and one has to find a
value for µ which is suitable for the considered problem.
Now the correlation energy can be written as (3.54) where εhomC (n) denotes the correla-
tion energy of the homogeneous electron gas and β is a numerical coefficient. t denotes
again a dimensionless density gradient which can be written as |5n| /[2kTFn] and where
kTF is the Thomas-Fermi screening wave vector which can be written as kTF =

√
4kF/π.

Equation (3.54) is also expressed as a power series and would be continued by a numeri-
cal factor and the third power of the dimensionless density gradient. For slowly varying
electron gases β can be written as βGE = 0.0667 which was proposed by [31][42]. There
is also an equation which relates µ and β and reads as µ = π2β/3 [40].

EC [n] =

∫
drn(r)

[
εhomC n (r) βt2(r) + ...

]
(3.54)

But one is also able to consider neutral jellium clusters which are described in [5] and
extract correlation energies for them. For these clusters the correlation energy can be
written as EXC = ehomXC V + esurfXC A+ ... where esurfXC denotes the exchange- correlation en-
ergy of the jellium surface and V and A denote the volume and the surface of the cluster,
respectively. Now Pedrew at. al. [42] tried to adapt the εsurfXC energy to their correlation
functional. The problem was that the jellium surface energy is not known exactly and
so they tested different methods relative to LSDA. The lower bound was made by PBE
[12][13], then TPSS [47] and finally RPA+ [47]. The upper bound was made by the RPA
like Pitarke Perdew potential [43]. Now they fitted the PBEsol potential to the curve
of the TPSS [47] functional which seemed to satisfy the conditions of the jellium surface
best [42].
Out of this calculations they choose the values for β = 0.046 and µ = µGE = 10/81 =
0.1235 which is in violation with equation µ = βπ2/3.
Nevertheless, this exchange correlation functional should improve now surface effects com-
pared to LSDA and GGA [42]. Moreover, if the considered solid will be compressed very
strongly then this functional should become exact because their surfaces are slowly vary-
ing and the exchange then contribution dominates the correlation energy [42]. Last, one
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is able to define FXC(rS, s(r)) by equation (3.55) where the high density limit is denoted
by rS → 0 and then the functional is determined by the exchange contribution [42]:

EPBEsol
XC [n] =

∫
drehomX FXC(rS, s(r)). (3.55)

Finally, one is able to say that PBEsol will worsen atomization energies and total energies.
However, it will be more appropriate for surface energies and also lattice constants will be
determined in a satisfactory way. Because we want to use the ab initio molecular dynamics
for the parametrization of the Monte Carlo code mentioned in section 4.3 we chose this
method because we are interested in the lattice constants but also the correlation of
dipoles with the cages and dipole- dipole correlations.

3.5 Generalized gradient approximation with included disper-
sion interactions

We would like to compare two different DFT approaches for the calculation of the per-
ovskite system. One with and one without the inclusion of Van der Waals interactions.
This section should give a principle overview of how such interactions will be included in
a DFT approach. If one wants to include dispersion interactions one chooses a certain
exchange correlation functional as a starting point which can in principle be any suitable
LDA or GGA. In the current thesis this was the PBE method which was already described
in section 3.3. We can rewrite the total energy of the system in the following way:

EDFT-D = EDFT + ED. (3.56)

Moreover, EDFT denotes the energy which was calculated by the usual Kohn-Sham ap-
proach and ED describes the interaction which arises due to the dispersion forces. The
dispersion force is also known as London force and the energy which arises due to it be-
haves like R−6 where R is the distance between any two atoms. Now Grimme wrote the
dispersion energy as follows [20]:

ED = −s6
Nat−1∑

i=1

Nat∑

j=i+1

Cij
6

R6
ij

fdmp (Rij) , (3.57)

where Nat denotes the number of atoms of the considered entity and Cij is a coefficient
which has to be determined for every atom pair. This coefficient can for example be
calculated out of the polarizabilities of the considered atoms that form the interaction
pairs. s6 is a scaling factor which has to be determined according to the density functional
one uses [20] and fdmp (Rij) is the so called damping function. This function is very
important because it determines the behavior of the dispersion correction in the near
surroundings of certain atomic positions [21]. There exist different ways to express this
damping function. Here the one which was introduced by Grimme [20] is shown:

fdamp(RAB) =
1

1 + e
−γ

(
RAB

sr,nRAB0

−1
) (3.58)

Here RAB
0 can be considered as a cut off radius for a certain atom pair. This cut off

can be different for different atom pairs. sr,n again is a scaling factor which depends
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on the used energy functional. And last γ describes the steepness of the change of the
damping function for small radii RAB [21]. One has to calculate a Ci

6 value for every atom
independently an then combining them with the formula for the geometric mean:

Cij
6 =

√
Ci

6C
j
6 . (3.59)

The individual Ca
6 are calculated out of the ionization potentials Ip and dipole polariz-

abilities α which can be seen in the following relation [20]:

Ca
6 = 0.05NIaPα

a. (3.60)

N is an integer number and can take the values 2, 10, 18, 36, and 54 which is valid for
atoms of the first five rows of the periodic table [20]. One can improve equation (3.57) by
adding another term which can be written as follows:

ED = −s6
Nat−1∑

i=1

Nat∑

j=i+1

Cij
6

R6
ij

fdmp (Rij) +
Cij

8

R8
ij

fdmp (Rij) . (3.61)

The additive R8
ij term in equation (3.61) is used to improve the corrections to the energy

due to dispersion interactions. The parameter Cij
8 is related to the other polarization

constant Cij
6 via the cut off radius of a certain atom pair (Cij

8 =
(
RAB

0

)2
Cij

6 ). Moreover

in the DFT-D3 method the coefficients Cij
6 is made geometry dependent. Therefore they

have to be recalculated for every minimization step. This should improve the results
because now the dispersion interaction is determined by the geometry of the system and
not only out of a standard reference system (usually an isolated atom).

3.6 Molecular Dynamics

So in the foregoing sections a description of the Born- Oppenheimer approximation [6]
the DFT method [24][51] and also the used PBEsol [42] potential was shown. We now
have all ingredients needed for doing ab- initio molecular dynamics simulations except for
the propagation algorithm for the nuclei which will be described in this section. For the
propagation of the ions we need the force acting on this certain ion. Therefore, one has
to write down the energy contributions which are important. The next equation shows
the contribution to the total energy which arises due to the electrons within the Born
Oppenheimer approximation i.e with the nclei held at fixed positions:

[
T̂e + V̂ee + V̂eN

]
Ψ (x,X) = ε (X) Ψ (x,X) . (3.62)

The coordinates x denote all the electronic coordinates (x ≡ r1, r2, r3, . . . rNe) and X
denotes all the nuclear coordinates (X ≡ R1,R2,33, . . .RNN

) Next one introduces the
total energy which is just the sum of the electronic energy and the nuclear repulsion.
This can be seen in the following equation:

Etot = ε (X) + VNN (X) . (3.63)

The calculation of the force acting on a certain nuclei is described as follows:

Fi = −5i Etot = −5i [ε (X) + VNN (X)] (3.64)
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The symbol5i denotes that the operator is only acting on the coordinates of the ith nuclei
(Ri). For the calculation of the derivative with respect to electronic energy contribution
one is able to use the Hellmann-Feynmann theorem which is written as [33]:

5iε (X) = 〈Ψ
∣∣∣5iĤ (X)

∣∣∣Ψ〉 (3.65)

This is true for any hermitian operator acting on an ortho-normalized wavefunction.
To maintain the temperature at a constant value we use the Langevin thermostat [36]
where additional forces are added to those caused by the internal potential shown in
equation (3.64). The net force acting on a certain nuclei is shown in the next equation
[36]:

ṗi = Fi + γipi + fi. (3.66)

In that equation ṗ denotes the derivative of momentum with respect to time, γi denotes
the friction coefficient of atomic species i and fi is an additional random force which is
added to maintain the temperature within the threshold values. The friction coefficient
and the variance of the random force are related by the following equation:

σ2
i =

2miγikbT

∆t
. (3.67)

∆t denotes the time step of the molecular dynamics simulation, kb Boltzmann’s constant,
mi is the mass of the considered ion and σ2

i is the variance of the random force distribution.
Note, with increasing temperature the distribution of the random force which is centered
around 0 gets broader and therefore forces with higher magnitude are permitted. On the
other hand with increasing time step the distribution gets narrower and therefore smaller
random forces are applied beacause otherwise the jumps of the ions will be too big.
Last we need an appropriate integration algorithm like Verlet or a Runge-Kutta method.
The ab-inito molecular dynamics simulations in this thesis were carried out with the
Verlet algorithm [48][25]. The Verlet algorithm is dervied by describing the position of
the foregoing n − 1 and the following time step n + 1 as a Taylor expansion. Then
taking the sum of the two series and doing little algebra yields a stable algorithm for the
propagation of the ions which is shown in this equation:

Rn+1
i =

(
2Rn

i −Rn-1
i

)
+ R̈n

i ∆t2. (3.68)

The superscripts in this equation denote the time steps and the subscripts denote the prop-
agated ion. Note that the acceleration of the considered ion is calculated out of equation
(3.66) as R̈n

i = ṗi/mi. With equation (3.68) one has now a very suitable algorithm for
ab initio molecular dynamics. This technique was used in this thesis to determine the
dynamics of the atoms.

3.7 Monte Carlo Metropolis-Rosenbluth algorithm

For our Monte Carlo approach we used the Metropolis-Rosenbluth algorithm which was
invented in 1953 [37][35]. In this algorithms one chooses a starting configuration and out
of this one determines new configuration under the use of a transition probability [35].
The probability of the nth configuration is given by:

Pn =
e
− En
kbT

Z
. (3.69)
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In this equation En denotes the energy of the nth configuration, kb is Boltzmann’s constant,
T is the absolute temperature and Z is the partition function which is usually unknown.
Therefore the probability of a certain state is unknown too. Like already mentioned one
always generates the new state out of the foregoing state which can be considered as a
Markov chain [35]. Now one is able to calculate a transition porbability for the transition
from the state n to state m by dividing the probabilities of the corresponding states. This
can be seen in the next realtion,

Pm

Pn

= e
−En−Em
kBT = e

− ∆E
kBT . (3.70)

En and Em describe the energies of the considered states and ∆E = En−Em. So one is able
to calculate the transition probability from configuration n to m. If the change in energy
is negative the new configuration is accepted automatically. If the step is endothermic
i.e. the difference in energy is positive then one chooses a random number. This random
number has to be within the interval [0, 1]. It is very important that the random numbers
are uncorrelated [37][35]. The condition for an endothermic step to be accepted is shown
in the following relation:

r < e
− ∆E
kBT . (3.71)

r denotes the uniformly chosen random number. The sheme below shows the here pre-
sented Monte Carlo procedure.

1. Choose initial configuration (can be a random configuration)

2. Calculate energy of this configuration

3. Choose a site of the lattice

4. Calculate the energy of the configuration with the changed chosen site

5. Calculate Boltzmann factor shown in equation (3.71)

6. Accept new configuration if step is exothermic otherwise use relation (3.71) to test
if structure new configuration is taken

7. Begin procedure at step 3

The Metropolis-Rosenbluth algorithm can now be used for minization problems like the
geometry optimization of a physical system.

4 Computational Details

4.1 Considered Organo-Halide Perovskite Systems

The system which will be considered in this thesis is the methylammonium lead iodide
system. The structure is built up of lead and iodine atoms which form the perovskite
structure. In the cubic cavities of this perovskite structure methylammonium ions are in-
serted. This is sechematically represented in figure 4.1. The methylammonium molecules
deliver one electron the perovskite framework and therefore the cage is negatively charged
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Figure 4.1: Schematic representation of 4 × 4 × 4 organo-halide perovskite system (lead atoms grey,
iodine atoms purple)

and the methylammonium exists in it’s cationic state. Therefore the cage is in total neg-
atively charged. Next the methylammonium ion possesses a permanent dipole molecule
which arises due to the different electro-negativities of the carbon and the nitrogen atoms.
According to the Pauling electronegativity, carbon possesses a electro-negativity of 2.55
and nitrogen of 3.04. It follows, the electron cloud will be shifted to the nitrogen atom
which results in a permanent dipole moment. The dipole vector of this species is directing
from the carbon atom to the nitrogen atom. This is the reason why the organic molecules
are represented as arrows (figure 4.1) which represent the dipole vectors of the molecules.
The inorganic framework too consists of atoms with different electro-negativities which
also causes a net dipole moment. The electronegativity of lead reads as 1.87 and the one
of iodine is written as 2.66 according to Pauling’s scale too and hence the dipole vector
will be oriented from the lead atom towards the iodine atom. For an ideal cubic struc-
ture the net dipole moment which is the sum of the single dipole vectors of the whole
system cancel which is a reason of the cubic symmetry. Because the charge is not equally
distributed over the iodine and lead atoms we will consider the lead atoms as positively
charged and the iodine atoms as negatively charged. This is the reason for the plus and
minus signs on top of the lead and iodine atoms in figure 4.1. The forces which bind the
lead and iodine atoms are represented by springs. The reason for this is the inorganic
framework spanned by the iodine and lead atoms is in principle rigid. There exists only
thermal motion which causes the atoms of the perovskite framework to fluctuate around
their equilibrium positions. This thermal vibrations can be approximated as harmonic
oscillators which is the reason for using springs as a representation for the binding forces
between the iodine and lead atoms. The lattice parameters for the ab-initio simulations
shown in the next chapters are gained from X-ray diffraction experiments carried out by
Stoumpos et. al. The parameters read as a = b = 6.3115Åand c = 6.3161Å. Therefore,
the cubic symmetry is distorted and hence if one looks closely the system will be tetrag-
onal. Because the deviation from the cubic symmetry is very low we will consider the
system as cubic during this thesis.
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4.2 Ab-initio Molecular Dynamics Simulation

To execute the ab-initio molecular dynamics simulation we used Langevin dynamics which
were already described in section 3.6. To do this one has to set the MDALGO tag to 3
(MDALGO=3) in the VASP INCAR file. For the friction coefficient which occurs in the
Langevin dynamics (see equations (3.66) and (3.67)) [36] we used a value of 60 which
is defined by the LANGEVIN GAMMA tag in vasp. The ionic positions were updated
under the use of a Verlet algorithm which is done by setting the IBRION tag to zero. The
temperature of the ab-initio molecular dynamics simulation is defined by the tags TEBEG
and TEEND which define the upper and the lower temperature bound respectively. Both
values were set to 300K. The last parameter which is very important for the molecular
dynamics simulation is the used time step which will be defined by the POTIM tag. For
the time step we used 3fs for the bigger 6 × 6 × 6 simulation and 2fs for both 4 × 4 × 4
simulations. The bigger time step in the 6× 6× 6 simulation originates from the heavier
hydrogen masses which were used. The hydrogen masses were set to 4a.u. in the case
of the 4 × 4 × 4 simulations and to 6a.u. for the 6 × 6 × 6 simulations. The different
hydrogen masses will not influence the results presented in this thesis which will be shown
in section 5.2.8 in detail.
Next one has to define how VASP minimizes the electronic structure for every molecular
dynamics time step. Therefore one first chooses an appropriate potential for the exchange
correlation contribution where we used the PBEsol potential which was described in sec-
tion 3.4. Now one defines an energy cut off which defines the number of plane waves
which are taken for the plane wave basis of VASP. This is done with the ENMAX tag
which was adjusted to 250meV. In a solid the different states are occupied according to
the Fermi-Dirac distribution which would be a step function. If one would take this step
function the states would not be variational and therefore one would get no forces. This
is the reason why one uses Gaussian smearing which is done by setting the ISMEAR tag
to zero. The SIGMA tag now defines the width of the Gaussian function and was set to
0.05. For the stopping criterion of the electronic minimization we used an energy differ-
ence of 0.001meV which is done by the EDIFF tag. To give VASP a minimum number of
electronic minimization steps which will be carried out for every molecular dynamics step
one is able to use the NELMIN tag which was adjusted to 5 in the here shown simulations.
Last it should be mentioned the calculations were performed with the Γ point only version
of VASP which means there was only a single k point used, namely the Γ point. This is
acceptable since large supercells were used.

4.3 Monte Carlo approach

To study the behaviour of the organic molecules which are located in the cubic cages
of the PbI3 framework we used a Monte Carlo Metropolis approach [37]. Especially we
were interested in the relative orientation of molecules. Because out of this one is able
to determine if the organo-halide perovskite has ferroelectric or anti-ferroelectric domains
(or any other ordering structure) or if there is no ordering at least and the properties of
the system are at least determined by the inorganic framework. By the parametrization
of the Monte Carlo approach one is able to determine the importance of the different
interactions. But this will be discussed later in more detail. Moreover, with the Monte
Carlo approach one is bale to calculate very big systems and hence one is able to exclude
size effects on the ordering behaviour of the considered molecules.
Before starting we made some assumptions to make the calculations as easy and fast as
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possible. The organic molecules which are taken for organo-halide perovskite systems
possess a permanent dipole moment and therefore we included dipole-dipole interactions
in the model Hamiltonian. The dipole-dipole interactions were described as point dipole
interactions. This approximation is shown in figures 4.2 and 4.3. Like one is able to see
the electrostatic fields of the point dipole and the dipole differ if one is very close to them
but at larger distances the two fields become the same and therefore their interaction
energies.

Figure 4.2: Electrical field of a point dipole
[1] Figure 4.3: ~E field of a physical dipole [1]

The organic molecules transfer one electron to the inorganic framework and therefore they
are positively charged. It follows, there is electrostatic repulsion between neighbouring
molecules. This contribution is neglected in the Hamiltonian because this would only in-
fluence the distance between the organic molecules and not their relative orientations. The
molecules are locked inside the inorganic framework formed by the PbI3 units and there-
fore they are not able to move expect of fluctuations around their equilibrium position.
This results in our next approximation, we kept the positions of the dipoles fixed in the
Monte Carlo approach and therefore neglected the fluctuations in position because they
will not influence the relative orientations of the dipoles. The next assumption we needed
was the mean field approach. Therefore the energy of a certain molecule is determined
by its orientation and the electrostatic field which arises due to the neighbouring dipoles.
Last we have to take into account the interactions of the dipoles with the inorganic frame-
work which we will do implicitly by adding interaction terms to the Hamiltonian. These
terms will be gained out of ab-initio molecular dynamics simulations. As a result starting
Hamiltonian which was chosen can be written as:

Ĥ =
N∑

i,E−field
(pi · E0) +

N,M∑

i,j

(
pi · pj
r3

− (n̂ · pi)(n̂ · pj)
r3

)
+ cage interactions. (4.1)

In this equation E0 denotes an apllied electric field, p denote the dipole vectors, n describes
a unit vector which connects the considered dipole pair and r is the distance between the
considered dipole pair. The first term describes the interaction energy of a certain dipole
with an applied electric field. The second term describes the point dipole point dipole
interaction [19] energy and last we have to include the dipole interaction energy with the
atoms of the inorganic framework. This will be shown in section 5.4. Moreover, from
this equation it can be seen the nature of the organic molecule or more clearly the dipole
species in this formulae is just determined by the dipole vector. Therefore the choice of
the dipole vector determines which organic molecule is located inside the PbI3 framework.
Frost et. al. used a very similar Hamiltonian for their Monte Carlo approach which is
shown in the following equation [28]:

Ĥ =
N∑

i,E−field
(pi · E0) +

N,M∑

i,j

(
pi · pj
r3

− (n̂ · pi)(n̂ · pj)
r3

)
+

N∑

i,strain

K(p̂i · p̂j). (4.2)
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Like one can see they describe the interaction with the electric field and the dipole-dipole
interaction in an ordinary way. But Frost et. al. added a third linear term which should
describe the interactions of two dipoles locked in neighbouring cages.
If one has the correct terms for the cage interactions for the Hamiltonian shown in equation
(4.1) one is able to find the minimum configuration of the considered system by the use
of the Metropolis-Rosenbluth algorithm shown in section 3.7.
Now we had to write a Monte Carlo code for which we determine the cage interaction terms
like shown in the schematic Hamiltonian (4.1) by comparing the results of this code with
ab-initio molecular dynamics simulations. The used code was written in FORTRAN90.
The next lines should show the main parts of this code and how it works in principal.
First the code generate a desired number of grid points and on every grid point there
will be a randomly oriented dipole. Then the code determines a list which contains the
interaction partners for every dipole and simultanously a distance list is calculated. Like
already mentioned the positions of the dipoles will be kept fixed and therefore also the
distances. So this distance list has the same shape as the interaction partner list but
contains the distances between the two interaction partners. Then the energy of the
initial configuration is calculated which is done in accordance with equation (4.1). The
next step is a simulated annealing procedure. Therefore one starts at a higher temperature
as the one for which one is looking for the minimum configuration. So in the beginning
of the minimization there are a lot of accessible structures because the temperature is
high. Then one cooles the system slowly to the desired temperature to find the global
minimum. This procedure is a trick not to get trapped in local minima so easily. The
shape of the temperature curve does not effect the results in general [27][9].
Last the program contains a very special energy calculation for each minimization step.
Beacuse in every single minimization step only one dipole changes its orienation it is
sufficient to only update the energy terms where this dipole is involved. The energy field
was build in a way that it has two entries for the interaction energy of every dipole pair.
One entry belongs to the interaction a-b and one to the interaction energy of b-a. For
this we determined a list which contains the positions of the energy field that have to
be updated if the orientation of a certain dipole was changed. The loop which does this
energy calculation was finally parallelized with OPENMP to make the code even faster.
The result of this was a Monte Carlo code which relaxes the orientation of dipoles on a
fixed grid with a model Hamiltonian which only contained the dipole-dipole interactions
and the dipole interaction with an applied electric field. The next step is now to determine
the terms which will describe the interactions of the dipoles with the inorganic framework.

5 Results

5.1 Dipole moments of organic molecules

The intrinsic dipole moments of the organic CH3NH3 molecules were to our knowledge al-
ways taken as those from the neutral organic species. But in the perovskite cells one deals
with the organic cation and therefore one should take into account the dipole moment
of the cation. We calculated the dipole moments of two species. The methylammonium
molecule like it was used in our simulation and the formamidine molecule. For the calcu-
lation we compared two approaches for the neutral species. One time, we applied a dipole
layer with the LDIPOL tag, and in the other case, we performed the calculation without
this dipole layer. This layer is applied to avoid self-interaction energies. The dipoles were
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positioned in the cell to have the net dipole moment only in one special direction of space.
From this it follows we only had to calculate the dipole moment in this certain direction
which was carried out by the IDIPOL tag. The next important thing to consider was the
system size and hence we performed several calculations with increasing cell sizes. Finally
we extrapolated the dipole moments to infinitely large cells because in this case we will not
have any self interactions of the dipoles with their periodic images left. The extrapolated
values were the same for the calculations with and without the applied dipole correction
layer. The results are summarized in table 1. The values for the neutral molecules from
table 1 coincide very well with those published by Frost et. al. They reported a value of
2.29D for the methyl- ammonium and 0.21D for the formamidinium.

Table 1: Dipole moments

species dipole vector p in [e*Å] |p| in [e*Å] |p| in [D]
CH3NH2 [−0.110530, 0.439401, 0.107614] 0.465694 2.236821

HNCHNH2 [−0.015979, 0.007990, 0.033563] 0.038022 0.182629

We also tried calculating the dipole moment of the ions but this turned out to be
a very complicated procedure. The reason for this is the resulting dipole moment of
the charged species depends on the choice of the origin of the taken super cell. We
think this has something to do with the applied background charge which VASP adds
to the considered super cell. We were not able to deal with this problem and this is the
reason for the following calculations to be performed with the neutral molecule’ s dipole
moment. Figure 5.1 shows the inhomogeneous electron distribution of methyl-ammonium
ion. Like one can see the colour changes from blue, green over yellow to red which is
associated with an increase in the electron density. The carbon atom is located at the
green ellipse at the left part of the figure and the nitrogen is situated at the red spot in
the figure. Therefore the charge density is higher around the nitrogen atom than it is
around the carbon atom. The origin for this behaviour is the higher electro-negativity of
the nitrogen atom compared to the carbon atom. This behaviour will have an influence
on the interaction of the negatively charged framework which possesses a dipole moment
too and the organic cations which are locked inside it. The dipole moment of the PbI3
framework also arises due to the different electro-negativities of the involved atoms. The
lead atoms are more electro-positive than the iodine atoms and as a result the electrons
will be more likely located around the iodine atoms. This results in a permanent dipole
moment. The dipole-dipole interactions should play a significant role in this system and
the resulting effects will be discussed in more detail in section 5.2.3
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Figure 5.1: Electron charge density of a methyl- ammonium cation (nitrogen on right side)

5.2 Molecular Dynamics

5.2.1 Heat capacity from of ab-initio molecular dynamics simulations

We have calculated the heat capacities out of the variance of the energy fluctuations. The
heat capacity is defined as:

cV =
δE2

kBT 2
, (5.1)

where δE2 denotes the variance of the energy in time, kB the Boltzmann constant and
T is the absolute temperature. The subscript V in cV denotes that this value describes
the heat capacity at constant volume. This originates from our simulation conditions
which were done in the canonical ensemble and therefore the volume was kept constant.
To calculate the heat capacity with equation 5.1 we first determined the variation of our
energy curve. Next the variance of the energy was normalized to a single unit cell by
division through the number of cells present in the simulated system. Next we specified
the number of mols present in a single unit cell which reads as 1.6605e−24 mol

unit cell
. From

this we determined the heat capacity per mole for the considered perovskite system, as
presented in table 2.
The heat capacities in table 2 are all around 300 J

mol*K
except of the 2 × 2 × 2 system

which was calculated with the PBEsol potential and included dispersion interaction. For
comparison the heat capacity of a monoatomic classical gas reads as 12.5 J

mol*K
according

to the equipartition theorem for the heat capacity shown in the next equation:

CV,mol =
f

2
∗R, (5.2)

where R denotes the ideal gas constant and f are the degrees of freedom which enter
quadratically into the Hamilton function. As argued before the additional dispersion in-
teraction will apply an extra constraint to the motion of the dipole. Therefore the rotation
barrier of the dipole is higher from which follows the organic molecule will be confined
longer to certain regions during the simulation. While locked to a certain orientation the
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CH3NH3
+ ion will wobble around this position and as a result some of the degrees of

freedom of the molecule will be frozen during this process. The difference in the number
of degrees of freedom can be estimated accroding to the following relation:

fCV,mol,perovskite

CV,mol,classical-gas

= N, (5.3)

whereN denotes the number of degrees of freedom in the perovskite system, CV,mol,perovskite

which is the molar heat capacity at constant volume for the perovskite, CV,mol,classical-gas

is the molar heat capacity at constant volume of a monoatomic classical ideal gas and f
denotes the number of degrees of freedom of the classical gas which can be written as 3.
With equation (5.3) one is able to determine the number of degrees of freedom for the

considered perovskite system. The ratios
CV,mol,perovskite

CV,mol,classical-gas
can be seen in table 2 in the last

coloumn. If one follows this procedure one gains approximately N = 73 for the 2× 2× 2
system calculated with the PBEsol potential and roughly N = 59 for the simulation with
included dispersion interactions. It follows there are around 13 degrees of freedom frozen
when comparing the PBEsol potential with the PBEsol potential with included dispersion
interaction. Nevertheless the dipole is able to overcome this rotational barriers and will
be able to even make full rotations in the cell. However in sum, the variance in the energy
will be lower and it follows the heat capacity will also be less than in the case of the
PBEsol potential were the rotational barrier is lower and the organic molecule is more
flexible. The heat capacity of the 6×6×6 structure shows a slightly higher heat capacity.
This is a result of the much fewer steps which are available for this structure (2440).
On the one hand, one has to use a satisfactory large time interval for calculating an
appropriate variance of the energy vs time curve and on the other hand, one has to chose
a preferably long equibrilation time intervall. This was hard to realize for this simulation
and therefore it follows the variance of the energy vs time curve depends stronger on the
starting step from where one begins with the sampling procedure. The more data points
the more independent the variance will be on the starting step. The starting step was
chosen for all simulations in a way that there is enough time for energy equilibration of
the considered system. Cause of division by the before mentioned number of mols which
are contained in a single unit cell small deviations in the variance will result in variations
of the heat capacity like they can be seen in table 2. There is no special reason why the
value of the 6×6×6 cell should be slightly higher than the other values besides insufficient
equibrilation time and bad statistics.
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Table 2: Heat capacities

system name system size heat capacity
[

J
molK

] CV,mol,perovskite

CV,mol,classical-gas

1x1x1 1 303.2 24.3
2x2x2 PBEsol 8 301.3 24.2

2x2x2 PBEsol+dispersion interaction 8 245.4 19.7
4x4x4- alligned 64 304.9 24.4
4x4x4- random 64 303.6 24.3

6x6x6 216 312.4 25.1

5.2.2 Autocorrelation functions of ab-initio molecular dynamics

In this section, we will show how the system size correlates with the relaxation time
and also how the two different potentials will affect this behaviour. The autocorrelation
function will be a measure of how much a certain structure (or geometry of a certain
time step) will differ from the initial geometry. It is also possible to not choose the
initial geometry for comparison but any other reference structure of the simulation at any
chosen time step. If one chooses the initial structure to compare with, the autocorrelation
function will have its maximum at the beginning and the more the geometry will differ
from the initial the lower the autocorrelation function will become. The autocorrelation
functions show a exponentially decaying behaviour as will be shown later on. In this
thesis we used the following autocorrelation function:

r(t) = 〈p̂ (0) • p̂ (t)〉, (5.4)

where the vectors p̂ (0) and p̂ (t) denote the dipole vectors at t = 0 and at time step t.
Therefore, the autocorrelation functions will be calculated by comparing the dot product
of the initial structure with a structure at time step t. This can be seen in equation 5.4
and the brackets denote a mean over all dipoles. If the actual structure matches the initial
one perfectly this results in a value of one. The more the two structures differ from each
other the more the dot product will approach zero. For the smaller systems this curves
were very jagged and therefore we determined the following autocorrelation function to
improve statistics:

r(τ) = 〈p̂ (τ) • p̂ (τ, t)〉. (5.5)

Here p̂ (τ) denotes the initially chosen geometry and p̂ (τ, t)〉 denotes the values of the
time signal following after the delay time τ . Therefore, equation (5.5) represents the
correlation of the time signal lagged by a time of τ with itself. Hence τ denotes the time
which has elapsed from the beginning of the simulation to the time step for which one
starts to calculate the autocorrelation functions. In formula (5.5) the brackets denote
the average over the dipoles of the whole cell but also an averaging over all the different
time steps t following after the delay time τ . For this curve the same is true as for the
autocorrelation function of equation (5.4). But with relation (5.5) one not only calculates
the mean over the dipoles in the considered system but also a mean over all the different
delay times what improves statistics and therefore results in smoother autocorrelation
functions. Values equal one denote perfect agreement with the initial structure and the
smaller the value the bigger the deviation from the starting structure. These functions
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are therefore a measure for the relaxation of the system and by fitting an exponential
function to the autocorrelation function one is able to determine the characteristic time
of the exponential decay. The characteristic time of an exponential is the time at which the
function decayed to a value of e−1. To determine this time one has to gain the coefficient
T in the function e−

t
T which denotes the characteristic time. The characteristic times for

different system sizes and starting structures are shown in table 3 and the corresponding
autocorrelation functions are given in figure 5.2.

Figure 5.2: Autocorrelation functions of different systems sizes and starting structures

Table 3: Relaxation times

system size T in [ps]
2x2x2 random PBEsol 6.9

2x2x2 random PBEsol + dispersion interaction 22.1
4x4x4 aligned PBEsol 8.7
4x4x4 random PBEsol 6.8
6x6x6 random PBEsol 4.5

But when considering these values one should mention the exponential function de-
scribes the behaviour of the self correlation functions only rather approximately, if a single
coefficient is used. Either one is able to fit the behaviour in the beginning with a satisfac-
tory precision or at the end of the function. But one is in principle not able to describe the
whole relaxation with a single exponential function in a satisfactory range. Nevertheless
we fitted the exponential functions to the whole curve to gain a mean characteristic time
since our present calculations are too short to deduce the long time behaviour accurately.
In figure 5.3 one is able to see the exponential function is not able to describe the decay for
the curve with included dispersion interactions. But in this figure it looks like the expo-
nential function would describe the autocorrelation function for the simulations without
included dispersion interactions in a satisfactory way. But this is only coincidence for the
2× 2× 2 structure calculated with the PBEsol potential. We examined the accordance of
the exponential function and the gained autocorrelation functions for the larger systems
too, where the exponential approach is not able to give satisfactory results. But never-
theless, the characteristic time of the fitted exponentials is nice to get a feeling how the
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different systems relax. Now looking at the characteristic times for the 4× 4× 4 systems.
We see T is nearly the same for the random and the alligned starting structure. They
differ only by 1.9ps which is very little because we used a single parameter exponential
function for the curve fitting and therefore by reasons of statistics these two values can
be regarded as the same. Nevertheless if one considers the two curves for the 4 × 4 × 4
geometries they start differing at about 5ps. So the long range correlation is smaller in
the case with the alligned starting structure. So the random starting structure will be
a better guess for the initial geometry. Next if one compares the characteristic times of
the different systems sizes but only those calculated with the PBEsol potential one can
see the alligned starting structure of the 4× 4× 4 systems has the highest value T. This
again indicates that the random starting structures will be a better starting point. The
systems with random starting structures show a slight decrease of T from 2 × 2 × 2 to
6× 6× 6. The deviation of those values is again very low and is therefore not considered
as insignificant. If one looks at the red curve in figure 5.2 which indicates the 2 × 2 × 2
system one is able to see this graph reaches a plateau value at around 12ps where the
autocorrelation remains at a certain value. This is interpreted as there is self correlation
troughout the whole simulation, with the initial structure. For the simulations of the
larger systems it can not yet be seen if there exists such a plateu value too because the
simulation times are too short until now. The 2×2×2 unit cell which was calculated with
included dispersion interactions relaxes the slowest which is denoted by the high value
of τ shown in table 3. Figure 5.3 shows exponential functions which were fitted to the
data of 2 × 2 × 2 which were calculated with two different potentials. The vertical lines
in the plot denote the characteristic times of the exponential functions. These times are
very often used as a measure for the relaxation of a system. But this has to be done very
carefully because one is able to see the system is still correlated with the initial structures
at these times (figure 5.3).
Now we want to compare the autocorrelation functions of the PBEsol potential and the
Grimme potential. This is done for the 2× 2× 2 cells. From the results for the character-
istic times one would expect the autocorrelation function should decay slower in the case
of the Grimme potential because the dipole should not be as flexible as for the PBEsol
potential. As it is shown in figure 5.3 the structure with included dispersion interactions
relaxes slower than the one which is calculated with the PBEsol functional. The slower
relaxation of the system is understandable if one thinks of the dispersion interaction as an
additional contribution which hinders the dipoles at leaving their positions. This caused
by the attractive nature of this additional interaction contribution which cause the dipoles
stick to their inorganic framework. These dispersion interactions are additional to the in-
teractions described by the PBEsol functional. The inorganic framework is negatively
charged it carries an additional electron which will be confined less to a certain region
because it is shielded by the other electrons present on the Pb and I atoms. As a result
this, electron should be highly polarizable. Next one has the positive charged organic ion
in the center of the PbI3 cages which will influence the inorganic framework by polarizing
it. Therefore the dispersion interaction should play an important role when considering
organohalide perovskite systems. But one has to be very careful to find an appropriate
description of the VdW interaction to describe the behaviour of the cell correctly. This
will be discussed in section 5.2.5. Moreover the self- correlation function of the simulation
with the included dispersion interaction decays with a certain rate in the beginning but
with increasing simulation time the curve gets essentially constant. The 2× 2× 2 system
simulated without dispersion interactions shows a similar behaviour although it is not so
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pronounced. As a result it is very difficult to get structures which won’ t correlate with
the initial one any more.

Figure 5.3: Comparing self- correlation of 2x2x2 PBEsol with 2x2x2 PBEsol+dispersion interaction
and the corresponding exponential fit functions

5.2.3 Comparing CH3NH
+
3 orientations for different starting structures and

system sizes

In this section the orientation of dipoles will be discussed. We choose a spherical coordi-
nate system like it can be seen in figure 5.4. In this figure the convention for of the angles
as used in all the following polar plots is shown. ϕ is the angle in the xy plane and is
called the azimuthal angle. The interval for the azimuthal angle [0, 2π], corresponds to a
complete rotation in the xy plane. It is defined in a way that ϕ = 0 denote the direction
of the positive x- axis. ϕ = π

4
denotes the alignment to the positive y- axis, ϕ = π

2
the

negative x- axis, and ϕ = 3π
4

the negative y- axis respectively. θ is the angle between the
z axes and the considered vector. This angle is also called the polar angle of the spherical
coordinate system. θ was chosen in a way that it spans [0, π]. The 0 angle denotes perfect
alignment with the z axes and π describes antialignment with the z axes and hence an
angle θ of π

2
describes a vector in the xy plane. The distance of the vector from the origin

is denoted by r. Because we are not interested in the distance of the organic molecules
from the origin but only in their orientations we are able to neglect this coordinate in
the following plots. As a results we are able to map a three dimensional problem into a
two dimensional map. This is how all the following polar plots are built up. All angles
which will be mentioned in the following sections will be based on this description and
on figure 5.4. It is very important to mention that all the plots which will be shown in
this work have a sinus correction in the spherical angle θ included to conserve the area of
the individual bins. This behaviour can be derived very easily by derivating the surface
of a sphere in spherical coordinates where one gets a sinusiodal dependence of the area
element on the spherical angle θ.

First we will show the polar plots of the starting configurations to discuss which
effects could be a bias of the initial structure and which effects really originate from the
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Figure 5.4: Angles how they are chosen for polar plots [53]

CH3NH3
+−CH3NH3

+ interactions or the CH3NH3
+−PbI3 interactions.

In figure 5.5 the starting structure of a 4 × 4 × 4 super cell is shown. Like one can see
all the spots of the plot are located at the bottom left or at the bottom right of the plot.
This denotes all the dipoles where initially chosen with perfect alignment to the z axes.
This structure was pre- equilibrated and taken as the starting structure for one of our ab-
initio molecular dynamics simulations.

Figure 5.5: Aligned starting orientations of the CH3NH3 molecules in a 4× 4× 4 super cell

For the second considered cell which is also a 4× 4× 4 super cell we used a randomly
chosen initial structure of the CH3NH3

+ molecules which can be seen in figure 5.6. Like
one can see, the spots that denote the orientations of the organic molecules are now
distributed over the entire region of the area.

The third cell was chosen now as a 6 × 6 × 6 super cell which contained 378 or-
ganic molecules. This system again shows a random starting distribution of the organic
molecules and once more the dipoles or more clearly their orientations are distributed
over the whole range of the θ and ϕ area.
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Figure 5.6: Random starting orientations of the CH3NH3 molecules in a 4× 4× 4 super cell

Figure 5.7: Random starting orientations of the CH3NH3 molecules in a 6× 6× 6 super cell

Figure 5.8: Average orientation of organic molecules during the simulation from 160ps − 320ps of a
4× 4× 4 super cell with an aligned starting structure

Comparing the initial structures with the structures gained from the molecular dy-
namics there are some properties that are the same in all systems. With a close look one
is able to see four denser stripes along ϕ in the polar plots ( 5.8 to 5.10). The first stripe
is located around ϕ = 0, the second at ϕ = π

4
, the third about ϕ = π and the last in the

area of ϕ = 3π
2

.
A similar behaviour is observed along θ in figures 5.9 and 5.10. Here there are three
maxima, the first at π

8
, the second around π

2
and the last about 7π

8
. In the case of the

aligned structure ( figure 5.8), this behaviour is only present in the lower part of the plot.
This is obviously caused by the chosen starting structure. Comparing figure 5.5 and 5.8,
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Figure 5.9: Average orientation of organic molecules during the simulation from 80ps − 160ps of a
4× 4× 4 super cell with a random starting structure

Figure 5.10: Average orientation of organic molecules during the simulation from 3000fs− 7323fs of a
6× 6× 6 super cell with a random starting structure at 300K

the main maxima of both structures are located in the lower left and lower right region
of the plots. It seems like the orientations of the organic molecules would still smear out
from their initial orientations. Nevertheless one can see the arising maxima around π

2
.

The influence of the number of samples which are taken to describe a polar plot also
influences the results. We compared polar plots which were calculated out of a different
number of geometries. The behaviour which we observed can be described as follows, the
plots show a mean value gained out of the number of different time steps considered and
the number of dipoles present in the cell and a mean value will be more representative
the more samples one has. Therefore the more samples one has the more the mean values
will be pronounced because this is the most probable orientation for an organic molecule
during a simulation. In the case of the polar plot for the 4× 4× 4 with aligned starting
structure we used 512000 samples, for the random 4× 4× 4 we took 256000 and for the
random 6×6×6 structure we had 311040 samples at our disposal. This is the reason why,
when comparing the figures 5.9 and 5.10 the maxima and minima are less pronounced in
the case of the 4×4×4 structure. But this does not mean they show a different behaviour
they show the same behaviour but the 6× 6× 6 structure is made out of twice as many
points.
Next figure 5.11 and 5.12 show histograms for θ for the 4×4×4 with the random starting
structure and the 6× 6× 6 as well with the random starting structure. These plots show
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the relative frequencies of the various θ angles. This is in principle a one dimensional
version of the polar plots. One does not consider the angle ϕ but is only interested in
the relative orientations of the organic molecules along the spherical angle. These plots
should make it more easy to see the minima and maxima which were discussed before
according to the polar plots. If one inspects figures 5.11 and 5.12, one is able to see very
clearly the three maxima which were mentioned above. It is also interesting to mention
the 6× 6× 6 super cell shows this three periodic maxima and a slight linear increase with
increasing angle θ. The histogram for the 4× 4× 4 random starting structure too shows
the periodic maxima and a slight linear growth. But in this case the linear growth is
pointing in the opposite direction (from π to 0). The slopes which increasing in direction
θ = π or θ = 0 should be equivalently because we consider a cubic cell and therefore
it should not matter whether the organic molecules are oriented more likely along the
positive z or the negative z axis, because these directions are equal by the symmetry of
the cell. The histograms for the starting configurations which are not shown here would
even suggest the opposite behaviour. Note that this effect is very small but there is still a
slight preference for the CH3NH3

+ cation to align into a particular direction as a whole.

Figure 5.11: Histogram of angle θ for 4× 4× 4 random
starting structure

Figure 5.12: Histogram of angle θ for 6× 6× 6 random
starting structure

The histograms of the polar angle ϕ for the 4× 4× 4 and 6× 6× 6 simulations with
random starting structures shown in figures 5.13 and 5.14. They are calculated in the
same way as the histograms for the spherical angle. First consider the plot for the 4×4×4
structure. Like mentioned above there should be at least 4 maxima but they are not easy
to discern. The maxima at π

2
and π are overlapping. The maximum at 0 or π which is the

same is slightly higher than the other maxima. The histogram for the 6× 6× 6 structure
shows a very similar behaviour. But there is a difference, like in the case of the angle θ
the two histograms for ϕ are somehow mirrored. In this case the maxima of the π and 3π

2

are connected. There is again a peak which is slightly higher than the others. Again the
different directions 0 or 2π, π

2
, π and last 3π

2
are the same for symmetry. But again for

both simulations there is a certain angle that is a little bit more pronounced compared
to the other maxima. We also calculated the mean polarization for the two systems
with random starting structure to compare if there are any differences in the ferroelectric
ordering. It should be noted the mean value is taken over all the time steps and all the
organic molecules present in the cell. The mean polarization for the 4× 4× 4 simulation
reads as (0.09, 0.09, 0.05)ᵀ and (0.03, 0.02,−0.05)ᵀ for the 6× 6× 6 simulation. One can
see the polarizations in the z direction is directly opposed in the two simulations. This
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behaviour is also reflected by figures 5.11 and 5.12 where the histograms show an linear
increase of the peak heights in opposed directions. The direction of this linear increase
coincides with the values of the mean polarization. The x and y components are less in
the case of the 6× 6× 6 simulation which can be seen out of the histograms for ϕ if one
compares the height and the width of the peaks in the x, y and z direction. In the case of
the 6× 6× 6 simulation the area under the peaks is nearly equal for the −x, x directions
and the −y, y direction. In the case of the 4× 4× 4 simulations the difference between
the positive and the negative direction is more pronounced and therefore this results in a
higher mean polarization in x and y than in the case of the 6× 6× 6 simulation.

Figure 5.13: Histogram of angle ϕ 4 × 4 × 4 random
starting structure

Figure 5.14: Histogram of angle ϕ 6 × 6 × 6 random
starting structure

Next we downfolded the map plots (figures 5.8 to 5.10) to an area which extends from
0 to π

2
in the azimuthal angle θ and the polar angle ϕ. These plots can be seen for the

6× 6× 6 and the 4× 4× 4 simulations, both with a random starting structure in figures
5.15 and 5.16. At a first glance these plots look very different but this is caused by the
number of samples taken for each plot. The downfolding of the plots was done to improve
statistics under the use of the symmetry elements of the cubic system. Therefore we used
the facts that the directions x and −x are the same which is also true for the y and z
directions. Like one can see there is a blueish elliptical space in both plots. It should be
mentioned the orientations of the major axes enclose an angle of about π

2
. Nevertheless

the preferred orientations of the two simulation are the same which can be seen much
better in these condensed plots compared to the map plots which show the whole range.
Now if one looks carefully one is able to see there is a more favourable triangle at the
lower left hand side of the ellipse in figure 5.15 and on the other hand if one looks at figure
5.16 there is also a more pronounced triangle but this time it located on the opposite side
of the ellipse. Therefore these two plots are related to each other by mirroring the figure
under the use of a mirror plane perpendicular to the page and located at ϕ = π

4
. The

same was observed in the cases for the histograms for θ and ϕ.
Next unit cells for the most likely orientations of the organic ions should be shown.

These structures were extracted from the ab-initio molecular dynamics simulation of the
6 × 6 × 6 system. Figure 5.17 and 5.18 show the orientation of the dipoles along the
principal axis y. Through symmetry it is equally likely to find the organic molecule
oriented along any other of the principal axes. The location of the organic molecule is
chosen in a way that it is surrounded by four iodine atoms. This is very favourable because
the methyl-ammonium molecule is positively charged and the iodine atoms are negatively
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Figure 5.15: Condensed map plot of the 4× 4 × 4 sim-
ulation with random starting structure

Figure 5.16: Condensed map plot of the 6× 6 × 6 sim-
ulation with random starting structure

charged. The distance to the lead atoms is maximal in this arrangement which is also very
favourable because the lead atoms are positively charged and so are the organic molecules
and therefore they try to diminish the electrostatic repulsion between them. Therefore
it looks like the organic molecule attempts to compensate its positive charge trough the
iodine atoms.

Figure 5.17: CH3NH3
+ oriented along the y axis ( view

along y )

Figure 5.18: CH3NH3
+ oriented along the y axis ( view

along z )

The next very favourable structure which was extracted from the molecular dynamics
simulations was the orientation of the dipole along the face diagonals of the cubic unit
cell. This behaviour is shown in figures 5.19 and 5.20. The methyl-ammonium cations
are not aligned perfectly along the phase diagonals but are slightly tilted towards the
xy plane. This can be seen best in the condensed map plot of the 6 × 6 × 6 simulation
(figure 5.16 ) where slightly brighter spots arise where the dipoles are shifted from the face
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diagonal by 10◦ towards the xy plane or the z axis. In these figures the organic molecules
are again located such that they are surrounded by four iodine atoms in the centre of the
cage. This time the dipole points towards iodine atoms located on top and bottom of the
cage which can best be seen in figure 5.20. Hence also in this configuration the dipole
tries to avoid the partially positively charged lead atoms. Again it is very important
to mention orientations which are related to the here shown by symmetry are equally
likely. Therefore not only the tilting from the face diagonal of the yz plane but also the
configurations belonging to the face diagonals of the xy and xz are of great importance.

Figure 5.19: CH3NH3
+ oriented along the diagonal of

yz area but tilted about 10◦ towards the y axis ( view
along x )

Figure 5.20: CH3NH3
+ oriented along the diagonal of

yz area but tilted about 10◦ towards the y axis ( view
along c )

5.2.4 Behaviour of the inorganic framework

Figures 5.21 to 5.23 show polar plots of the vectors defined by a certain lead atom and a
single iodine atom covalently bonded to it. To get the bonding vectors from lead to iodine,
first of all one has to determine the iodine atoms which are next to the considered lead
atom. Next we determined which vectors are directed along the positive principal axes
x,y and z. Afterwards this bonding vectors were transformed to spherical coordinates
again and the distribution of the corresponding angles is shown in the following plots.
The first plot (figure 5.21) for example shows the binding vector between lead and iodine
atoms (in spherical coordinates) in the positive x direction, the second plot is the same for
the y direction and so on. The cages are defined in a way that the lead iodine bonds always
align with certain Cartesian coordinate axes. The interesting point to mention is that
there are no equilibration steps before we started the recording of this plots. Nevertheless
the bonds are very rigid and only fluctuate around their equilibrium positions. In the case
of the lead iodine bond in z direction this is true too. The smearing of this bond along
the whole range ϕ is caused by the use of spherical coordinates in this plots. If θ equals
zero the bond (or the vector) is pointing towards the pole of the sphere. What one can
see here is also just a fluctuation around an equilibrium position but it is smeared over
the whole range of ϕ caused by using spherical coordinates.
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Figure 5.21: PbI bond pointing in x direction

Figure 5.22: PbI bond pointing in y direction

Figure 5.23: PbI bond pointing in z direction

As a result one is able to consider the motions of the lead and iodine atoms as negligible
small for the parametrization of the Monte Carlo code. In other words, one is now able
to model the potential energy which arises due to the cage as approximately independent
of the orientations of the surrounding dipoles.
Like mentioned before we will use fixed positions for the dipoles in the Monte Carlo
model. It was important to know how well this approximation is observed in molecular
dynamics simulations. Therefore we monitored the center of mass positions of every single
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organic molecule during the whole simulation. From this we calculated the meansqure
displacement which reads as:

var(x) = E [X − E [X]] =
1

N

N∑

i=1

(xi − x̄)2, (5.6)

where N denotes the number of time steps, xi denotes the actual position and x̄ the
mean position during the whole simulation. The mean square displacement for a single

organic molecule fluctuated between values of about 0.05Å
2

to 0.26Å
2
. Out of this one

was able to calculate a mean variance were all organic molecules were considered, which

resulted in a value of 0.14Å
2
. For comparison the diameter of a unit cell is about 6.35Å.

As a result it will be a good approximation to consider the positions of the methyl-
ammonium molecules as fixed in the Monte Carlo approximation which sounds also very
reasonable if one thinks of them as dipoles which are locked in cages build by the lead
and iodine atoms.

5.2.5 Comparing ab- initio molecular dynamics of two different exchange
correlation potentials

Now we compare two 2× 2× 2 simulations but carried out with different exchange corre-
lation potentials and determine their influence on the behaviour of the organic molecules
in the cells. The first one was calculated with the standard PBEsol potential. The second
one was calculated with PBEsol but we also included dispersion interactions as described
in section 3.5. Figure 5.24 shows the polar plot for the structures which were propagated
with the PBEsol potential without dispersion interactions. There are two maxima at
0 and 2π in ϕ which should be considered as one single maxima because these two angles
denote the same directions (positive x direction). Another small reddish spot can be
seen at θ = 3π

2
and ϕ = π but the remaining area of the plot is nearly homogeneously

populated expect some black spots. This is in agreement with the report of Wasylishen
[52] who stated free rotations of the methyl- ammonium ions above 175K which is the
transition temperature to the high temperature phase. On the other hand if one considers
the 2× 2× 2 cell which was calculated with the dispersion correction, see figure 5.25, the
orientation of the dipole is more confined to particular regions of the plot. This is caused
by the additional stabilization of the molecular orientation through the dispersion inter-
actions. The bonds of the cages Pb−I were again oriented along the cartesian coordinate
axes. The dipoles will align with the bonds of the inorganic framework. Like it is also the
case for the 4× 4× 4 and 6× 6× 6 cell which were shown in section 5.2.3. The 8 minima
which were present in the bigger cell don’ t arise in the small ones because one does not
have 6 different nearest neighbours but only 3, the remaining 3 are only periodic images
of the others. As a result the dipole correlation is different in this small cells which causes
a different pattern for the polar plot. From this it follows that dipole-dipole correlations
are present in the small system and that this influences the structural behaviour.
The alignment of the dipoles with the inorganic framework is also present in the case of
the PBEsol potential calculated without dispersion interaction (figure 5.24), but not so
pronounced. If one takes into account the experimental data where it was shown that the
methyl- ammonium ions are able to freely rotate within 15ps it seems more reasonable to
use the PBEsol potential which resembles this behaviour in a more satisfactory manner.
Because here the methyl- ammonium ions are more able to rotate freely and they should
show a rotational behaviour when considering the duration of 56ps of our simulations.
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Figure 5.24: Polar plot of 2x2x2 structure calculated with PBEsol

Figure 5.25: Polar plot of 2x2x2 structure calculated with PBEsol and included dispersion interactions

5.2.6 Considering different coordination spheres

This section will consider the relative orientation of the organic molecules in the first
three coordination spheres to each other. Therefore one has to determine the organic
molecules which are in the different coordination spheres relative to a chosen dipole. This
is graphically depicted in figure 5.26 for two dimensions. If one is interested in the different
coordination spheres of the green molecule (in figure 5.26) the nearest neighbours (first
coordination sphere) are depicted in blue and the next-next nearest neighbours (second
coordination sphere) are shown in red. If one remembers that we are dealing with a cubic
system then the first coordination sphere is represented by the vectors [±a, 0, 0], [0,±a, 0]
and [0, 0,±a] which are the nearest neighbours along the principal axes. The symbol a
denotes the lattice parameter of a cubic system. By building all the combinations of plus
and minus signs of the before mentioned vector one finds six organic molecules in the first
coordination sphere. The second coordination sphere in a cubic system is represented
by the vectors [±a,±a, 0], [±a, 0,±a] and [0,±a,±a] which are the interaction partners
along the face diagonals. From this it follows, there 12 organic molecules in the second
coordination sphere. The third coordination sphere for which there exists no satisfactory
two dimensional analogue is represented by the vectors [±a,±a,±a]. Hence these organic
molecules are located along the face diagonals and one has 8 molecules in this coordination
sphere. The distances between the organic molecules in the different coordination spheres
and the central organic molecule (green sphere in figure 5.26) are a,

√
2a and

√
3 for the
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first, second and third coordination sphere respectively.

Figure 5.26: Schematic representation of first two coordination spheres in two dimensions, first coordi-
nation sphere shown in blue and the second in red

,

Now that we have defined the molecules which are located in the different coordination
spheres we are interested in their relative orientations which will be described by the dot
product:

pipj = |pi| |pj| cos(α), (5.7)

where pi describes the orientation of the central organic molecule, pj the orientation of
the molecules located in one of the coordination spheres and cos(α) is cosine of the angle
between the two dipole vectors. By rearranging this equation one gets an expression for
the relative orientation of the organic molecules:

cos(α) =
pipj
|pi| |pj|

. (5.8)

This equation was now taken to represent the relative orientations of the organic
molecules by calculating the the cos(α) and assigning the calculated values to the bins of
the histograms shown in figures 5.27 to 5.29. From this it follows a value of minus one
denotes anti-alignment relative orientation of the considered organic molecules. A value
cos(α) = 0 describes an orthogonal orientation of the considered molecule pair and last a
value of one results in perfect alignment of the molecules. It should be noted every one of
the shown histograms is normalized to one and are therefore independent of the number
of dipoles in a certain coordination sphere. The relative orientations were considered for
the 4 × 4 × 4 simulation with aligned starting structure, the 4 × 4 × 4 simulation with
random starting structure and last the 6× 6× 6 with a random starting structure too.
First figure 5.27 shows the mean relative orientation of certain central organic molecules
relative to the first coordination sphere. Like one can see the curves for the 4 × 4 × 4
random starting structure and the 6× 6× 6 simulation show a very similar result. They
have a local maximum around 0.4 which belongs to an angle between the dipoles of
about 66◦ and both show a preference for an anti-aligned configuration. In the case of
the 4 × 4 × 4 simulation with aligned starting structure the histogram shows a global
maximum at 66◦ and only a very small peak for the anti-aligned configuration. If one
thinks of the aligned starting configuration this could be interpreted as that the system
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is still equilibrating and therefore the pronounced orientations are shifted towards more
aligned configurations. This explains why the peak at 66◦ is more pronounced and the
peak for the anti-aligned configuration is underestimated. If one would run the 4× 4× 4
simulation for the aligned starting structure longer the histogram would transform to a
shape like shown by the remaining simulations.

Figure 5.27: Relative dipole orientation of nearest neighbours of three different simulations. 4× 4× 4
with aligned starting structure ( ), 4×4×4 with random starting structure ( ),6×6×6 with random
starting structure ( )

,

Figure 5.28 shows the histogram for the second coordination sphere. In this case all
three simulations coincide very well although also here the 4×4×4 simulation with aligned
starting structure shows a slightly more pronounced peak for the aligned configuration.
for the second coordination sphere all simulations show a local maximum at −0.4 which
belongs to a relative angle between the molecules of 113◦. For this coordination sphere
the molecules show a preference for the aligned configuration which is the opposite of the
first coordination sphere. If one compares the histograms of the 6× 6× 6 simulations the
histogram of the second coordination sphere is the mirror image of the histogram of the
first coordination sphere. This can be visualized by thinking of a mirror plane orthogonal
to the paper plane located at value of zero at the x-axis. The 4 × 4 × 4 simulation too
shows this image-mirror-image behaviour.

Last, figure 5.29 again looks very similar to the histograms of the first coordination
spheres. The 4 × 4 × 4 and 6 × 6 × 6 simulations both with random starting structure
again show a local maximum around 62◦ and a preferred anti-aligned orientation. For the
4 × 4 × 4 simulation the third coordination sphere too shows the bias arising from the
aligned starting configuration and therefore the right peak is over estimated and therefore
the anti-aligned configuration is underestimated. Again it is very interesting to note if
one mirrors the histograms of the second coordination sphere with the before mentioned
mirror plane located at 0 one will get the histogram of the third coordination sphere.

From this it follows the organic molecules posses an alternating relative orientation to
each other with respect to the different coordination spheres. To summarize the first co-
ordination sphere shows a preference to the anti-aligned configuration, the second prefers
the aligned configuration and the third coordination sphere shows a preference for the

43



5.2 Molecular Dynamics 5 RESULTS

Figure 5.28: Relative dipole orientation of next- nearest neighbours of three different simulations.
4× 4× 4 with aligned starting structure ( ), 4× 4× 4 with random starting structure ( ),6× 6× 6
with random starting structure ( )

Figure 5.29: Relative dipole orientation of third-nearest neighbours of three different simulations.
4× 4× 4 with aligned starting structure ( ), 4× 4× 4 with random starting structure ( ),6× 6× 6
with random starting structure ( )

anti-aligned configuration. Additionally every coordination sphere possesses a local max-
imum at about 60◦ for the odd coordination spheres and 113◦ for the even coordination
spheres. Moreover it is interesting to look at the differences of the peak heights for the
simulations with random starting structures and to compare them for the first and third
coordination sphere. The difference of the peak height is nearly the same for both simu-
lations and therefore the preference for the certain configurations should be equally likely
for both coordination spheres. In general one would have to use the areas under the peaks
for comparison but because the shapes of the curves are so similar one is also able to use
the peak heights as a first approximation.
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5.2.7 Correlation of CH3NH3−CH3NH3 and PbI3−CH3NH3 movement

Now we will considere how the rotation of the molecules will be influenced by each other
and how the thermal fluctuations of the cage will influence the motion of the organic
molecules. For the analysis of the correlated motion of the individual parts of the system
the product- moment correlation coefficient was used which is either known as the Pearson
or Bravais coefficient. This coefficient can be written as follows:

r(x, y) =
1

f

n∑

i=1

(xi − x̄) (yi − ȳ)

σxσy
. (5.9)

xi and yi are the different datasets respectively, x̄ and ȳ denote the mean value of the re-
spective dataset. The terms σx and σy describe the variance of the two different datasets.
f denotes the number of values which were considered and therefore it constitutes a nor-
malization constant. The datasets will be the calculated spherical angles of the molecules
vs time. For example if one desires to calculate the correlation between two neighbouring
dipoles one takes the angle θ or ϕ from one molecule for the values xi, and for the yi one
takes the corresponding angles of the second molecule. The sum in equation (5.9) runs
over all the time steps available for the dataset. This measure of correlation is dimension-
less, normalized and independent of the dataset [14]. The factor results in a value of +1 if
there is positive total correlation, a value -1 for total anti correlation and a value of zero if
there is no correlation between the two datasets. The coefficient was calculated with the
scypy library of python [26]. This coefficient is a measure for the linear dependence of two
individual datasets. In the corresponding case of the methyl- ammonium ions in the PbI3
cages this will not be an exact linear dependence, because the net effect is a superposition
of thermal motion, the jiggling and wiggling of the cages and the rotational motion of the
organic dipoles. Additionally the temperature of the considered system is very high and
fluctuates around 300K during the simulation so the thermal motion should have a strong
influence on the collective behaviour of the system. But as a first approximation it should
be okay to deal with this coefficient to see if there is any correlated movement present.
To gain the datasets for the dipole-dipole correlation, we calculated the angles θ and ϕ
vs time for every dipole present in the considered cell. For every organic molecule we
determined its nearest neighbour in the positive x, y and z direction. Next we calculated
the correlation coefficient according to equation (5.9) for all the gained dipole pairs. This
resulted in a Pearson coefficient for θ and ϕ, for the three considered directions for every
dipole pair. Next we took the values which belonged to the same angle (θ or ϕ) and to
the same direction and calculated a mean of all dipole-dipole pairs. This procedure gave
the values listed in table 4. At a first glance these values seem to be very low but if one
considers published rotational barriers for methyl- ammonium which are 1.3kJ/mol [16]
it is very reasonable that there is a big thermal influence present at 300K. It should be
mentioned that the corresponding p− values which are a measure for the statistical sig-
nificance of a hypothesis were lower than 0.00001 for a significance level of 0.01. Although
these values seem to be very low they also mean that there is guaranteed correlated move-
ment between the individual parts of the cell but it is small because it is overlapped by
thermal fluctuations of the atoms. The values were examined to determine whether there
is any dependence on distance present but this was not the case. But this was only tested
for the first three coordination spheres which are depicted here. For higher coordination
spheres the procedure was not possible. It follows that there exists correlated movement
between neighbouring dipoles. This behaviour could have be seen in section 5.2.6 when
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considering the relative orientations between the different coordination spheres, which
showed an ordering behaviour for the first three nearest neighbour spheres. The values
of table 4 correspond to the simulation of the 6 × 6 × 6 super cell. This analysis was
also carried out for the 4 × 4 × 4 systems with random and aligned structures yielding
comparable values.

Table 4: Pearson- correlation coefficient of dipoles in the first three coordination spheres at 300K

neighbour direction r(θdipole, θdipole) r(ϕdipole, ϕdipole)
x -0.041 0.016
y -0.045 -0.008
z 0.021 -0.019

xy -0.006 -0.014
xz 0.026 -0.030
yz -0.008 0.023
xyz 0.006 -0.063

Next we determined the correlation coefficients between the movement of PbI bonds
forming the cage and the organic molecules which are locked inside them. For this, we
took a certain dipole and again calculated its spherical angles with respect to time. Next
we determined the lead atom which was next to this dipole and determined the vectors
which connect this lead atom with the iodine atoms in the positive x, y and z direction.
For these vectors the spherical angles were calculated with respect to time. Having the
datasets that are needed for equation (5.9), we calculated the correlation between the
dipoles and the cage atoms that are next to them. The resulting values are listed in table
5. In this case, we also calculated the influence whether the PbI bond is moving in the
xy plane on the motion of the methyl- ammonium ion along θ (angle with respect to the
xy plane). This is shown in the fourth column of table 5. This was also done for the
opposite behaviour if the dipole moving in the xy plane and the PbI bond oscillating
along the polar angle θ. It is remarkable that the magnitudes of values which describe the
dipole-dipole correlation or the cage-dipole correlation are of the same size. This means
that the motion of a certain dipole is influenced equally by the surrounding cage atoms
(lead and iodine) and the dipoles that are located in the first three coordination spheres.
This can related to a medium range order which is present in the considered system which
is also suggested by the histograms for the relative orientation of the dipoles shown in
section 5.2.6.

Table 5: Pearson- correlation coefficient of dipole cage interaction at 300K

PbI- bond direction r(θdipole, θcage) r(ϕdipole, ϕcage) r(θdipole, ϕcage) r(ϕdipole, θcage)
x 0.054 0.025 0.017 0.027
y 0.011 0.019 0.024 0.022
z 0.006 0.016 0.007 0.001

What one can deduce from these values is that the correlation between the dipoles
and the cage atoms is slightly higher than the correlation between neighbouring dipoles.
Confirmation can be gained by comparing the values of table 4 and 5. From this analysis
we are able to say that the cage will play a very important role
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5.2.8 Comparing two simulations with different hydrogen masses

In the ab-initio simulations we adjusted the hydrogen mass to be 4 a.u. because this
allowed us to use a larger time step and the energy difference for the stopping criterion
has not to be chosen that small. Therefore we were able to perform simulations for a
longer simulation time with the same computational cost. We calculated the moment of
inertia by equation (5.10) for both the organic molecule with a hydrogen mass of 1a.u.
and for the second species with a hydrogen mass of 4 a.u.. It should be mentioned for the
simulations with the lighter hydrogen atoms we are not able to choose the time step bigger
than 0.7 fs because otherwise the hydrogen atoms would fly away from the molecule to
which they should be confined. In the case of the higher mass hydrogen atoms we were
able to choose time steps up 2.0fs without observing any problems during the simulations.
This was used for the simulations of the 4× 4× 4 simulations. In the case of the 6× 6× 6
simulations we even used hydrogen masses of 6a.u. and hence we were able to use a time
step of 3fs. This is caused by the fact that the maximum time step of a simulation is

proportional to
√

1
m

. In the following equation ri denotes the coordinates of a certain

atom and mi is its associated mass.

I =
N∑

i=1

mir
2
i (5.10)

The moment of inertia (I) for the organic molecule with hydrogen masses of 1a.u. reads

as 23.99 a.u.Å
2

and for the species with the heavier hydrogen masses as 36.97 a.u.Å
2

an
increase of 35.1%. Therefore the moment of inertia is much higher in the case of the higher
hydrogen mass. It follows the dynamics of the two systems will be different but this does
not matter for analysis because we are only interested in the spatial distributions of the
dipoles which will not be affected by the a change in the atomic masses. This can be
shown under the use of the partition function which reads as follows:

(5.11)

Z =
N∑

i=1

e−βH(pi,xi)

=
N∑

i=1

e
−β

(
p2
i

2mi
+V (xi)

)

=
N∑

i=1

e
−β p2

i
2mi e−βV (xi)

In this equation β denotes the inverse temperature kbT , H (pi,xi) denotes the energy
depending on the momentum of particle i, pi and its potential V (xi), N is the total
number of particles in the system, mi are the masses of the considered particles and last
xi denotes the position of the particle. Like one can see the partition function which
contains all information about a certain system can be split into a part depending on
momentum and a part coupled to space. During this thesis we will consider only spatial
distributions of the organic molecules and therefore this will not be affected by a change
in mass. The reason for this is the the spatial part of the partition function is independent
of the atomic masses and so will be our results.
Now to be completely sure we compared two simulations were the simulation parameters
were the same expect of the hydrogen masses. Like already mentioned the first simulation
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was carried out with hydrogen masses of 1 a.u. and the second with hydrogen masses of
4 a.u.. To keep computational costs as low as possible for this simulations we considered
single unit cells. The time step of both simulations were taken as 0.7fs and we performed
600000 steps corresponding to a total simulation time of 42 ps. Figure 5.30 shows the
distributions for the azimuthal angles ϕ. At the top one is able to see the simulation with
1 a.u. and at the bottom one is able to see the simulation carried out with a hydrogen
mass of 4 a.u.. Like one can see both simulations show peaks at the same positions. The
peaks only differ slightly in height and width. If one remembers that we are considering
cubic cells the x, y and z directions are equivalent. And because the peaks are arising
on the angles varphi which belong to the same direction in Cartesian coordinates the
simulations with different hydrogen masses show a very similar result.

Figure 5.30: ϕ histogram for CH3NH3. top: hydrogen masses of 1 a.u.; bottom: hydrogen masses of
4 a.u.

Next figure 5.31 shows the probability distributions for the polar angles θ of the two
simulations. There is a small peak located at π

2
which looks different in the two simulations

at a first glance. But if one compares the values written on the y axis the difference is
very small and therefore again the graphs can be considered as the same within the range
of statistical uncertainty. It follows if we consider the spatial distributions of the dipoles
it does not matter which hydrogen masses are used.

For completeness also the dynamical behaviour of the two systems was considered.
Figure 5.32 shows the absolute deviation of the angle ϕ from the mean value at any time
step t. The mean value corresponds to the mean value over all the time steps. Like
one is able to see at a first glance the upper curve representing the simulation with an
hydrogen mass of 1 a.u. shows a much more diffuse behaviour than it is the case in the
simulation with higher hydrogen mass. The same is true for the polar angle θ shown in
figure 5.33. This is the result which we expected because a lighter atom should show a
more pronounced dynamical behaviour. The results were additionally checked by Fourier
transforming the results of figures 5.32 and 5.33 which clearly showed that the simulations
with lighter hydrogen atoms had higher frequency contributions than in the case with
higher hydrogen masses.
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Figure 5.31: θ histogram for CH3NH3. top: hydrogen masses of 1 a.u.; bottom: hydrogen masses of
4 a.u.

Figure 5.32: time dependence of ϕ for CH3NH3. top: hydrogen masses of 1 a.u.; bottom: hydrogen
masses of 4 a.u.

From this it follows with increasing the hydrogen masses we will change the dynamical
behaviour of our methyl-ammonium molecules. On the other hand as long as we are only
interested in properties which correspond to the spatial part of the partition function we
are able to increase the hydrogen masses and save computational costs.
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Figure 5.33: time dependence of θ for CH3NH3. top: hydrogen masses of 1 a.u.; bottom: hydrogen
masses of 4 a.u.

5.3 Comparing Polarization of different simulations

Next we calculated the normalized mean polarization of our ab- initio molecular dynamics
simulations by the use of the following equation

P (t) =

∣∣∣∣∣
1

N

N∑

i=1

p̂i (t)

∣∣∣∣∣ , (5.12)

where P (t) denotes the normalized mean polarisation for every time step, |p̂i (t)| denotes
the L-2 norm of a single normalized dipole vector and N denotes the number of dipoles
present in the cell. In this way the total polarisation is approximated by the sum of only
the molecular dipoles. This will give data which is comparable to the one of the Monte
Carlo approach. The value P (t) lies in the interval from 0 to 1, where 1 denotes a maxi-
mal polarized system or in other words, all dipoles are aligned. The zero value reflects a
system where all the different dipole contributions cancel each other and as a result there
remains no net polarization.
Figure 5.34 shows the normalized mean polarisation functions for two different 2× 2× 2
systems one calculated with the PBEsol potential (blue) and one for the PBEsol poten-
tial with included dispersion interaction (pink). For both simulations the same random
starting structure was taken which can be seen by comparing the origins of the two curves
which are the same. In table 6, the time mean values of the normalized mean polarisations
and their corresponding variances are listed. Those values differ slightly for the two differ-
ent potentials, where the value for the case of the PBEsol potential is slightly higher. The
fluctuations of the net normalized mean polarization fluctuates slightly stronger in the
case of the included dispersion interaction. If one remembers the comparison of the two
potentials it is interesting that the rotational barrier is higher in the case of the included
dispersion interaction but nevertheless the polarization varies more in this case. For both
systems we took 15000fs before we took the samples for calculating the time mean value
and the variance. Nevertheless, although both systems are still equilibrating and the
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one with included dispersion interactions is farer away from its equilibrium structure and
therefore there are stronger fluctuations in the normalized mean polarisation. Now if
one compares the two curves of figure 5.34 one is able to see that the mean normalized
polarisation raises at the beginning while leaving the random starting orientation and
afterwards starts fluctuating between values of about 0.6 and 0.1 for the calculation with
included dispersion interactions and between 0.05 and 0.7 for the PBEsol calculation.

Figure 5.34: Normalized mean polarisation as a function of time for 2 × 2 × 2 cells with different
potentials

Next we will compare the two 4× 4× 4 simulations with random and aligned starting
structure which can be seen in figure 5.35. The aligned starting structure has a mean
normalized polarization of about one. 1 As can be seen in the figure the starting mean
normalized polarizations differ very strongly in their initial values. The aligned starting
structure shows an exponential decay in the beginning and merges into a region where the
polarization is fluctuating around a certain value which can be seen in table 6. The 4×4×4
random structure has a much lower initial value. The mean normalized polarization raises
slightly and after some equilibration it is fluctuating around a certain value. The values
of the random and aligned starting structure are approaching each other with increasing
simulation time. It should also be noted that the variances of the mean normalized
polarization of the two systems, which can again be seen in table 6, are nearly equal and
both are small compared to the 2× 2× 2 systems.

Figure 5.35: Normalized mean polarisation as a function of time for 4×4×4 cells with different starting
structures

1The deviation from the exact value of one results form the fact that we made some pre-equilibration
for this system which is not shown in those plots.
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Now we consider the mean normalized polarization of the 6 × 6 × 6 structure which
can be seen in figure 5.36. If one compares the initial value to the one of the 4 × 4 × 4
random starting structure one is able to see they are roughly equal. But contrary to the
4 × 4 × 4 random structure, the polarization first decreases to a small plateau around
1000 fs. Afterwards the mean polarization is oscillating between values of about 0.1 and
0.03. The mean value for this simulation can again be seen in table 6. It is interesting
to mention that the values for the mean normalized polarization decrease with increasing
system size. This means that there is no net polarization for very big systems because
if we would increase the system size further we would end at some point with a zero net
polarization. We still are not hundred percent sure why the polarization decreases with
increasing systems size. But a reason for this may be the formation of small ferroelectric
domains in the for example xy plane. For bigger systems the small domains in the planes
will cancel each other which is not possible for the 2 × 2 × 2 systems because there are
not enough dipoles present. But this assumptions has to be proven first or, corrected by
a better idea.

Figure 5.36: Normalized mean polarisation as a function of time for a 6× 6× 6 cell

Table 6: Mean value and variance of normalized mean polarisation

Considered system Mean value variance
2x2x2 PBEsol 0.404 0.0110

2x2x2 PBEsol+ dispersion interaction 0.310 0.0259
4x4x4 random 0.154 0.0012
4x4x4 aligned 0.265 0.0021
6x6x6 random 0.069 0.0005

5.4 Parametrization of Monte Carlo Approach

To build our model Hamiltonian we started with an equation including only dipole-dipole
interactions and dipole-external electric field interactions. This equation writes as:

Ĥ =
n∑

i,E−field
(pi · E0) +

n,m∑

i,j

(
pi · pj
r3

− (n̂ · pi)(n̂ · pj)
r3

)
, (5.13)

where pi describe the dipole vectors, E0 the electric field applied, n̂ is a unit vector which
points in direction of the connection vector of a certain interaction pair and r is the norm
of the distance vector between the considered interaction pair. The first term describes
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the interaction energy of a dipole with an external electric field, the second term describes
the interaction energy of two point dipoles a distance r apart [19]. The next step is now to
describe the interactions between the inorganic framework and the dipoles in a way that
the cubic symmetry is not broken. To describe the cubic symmetry there exist spherical
harmonics which were adapted to describe ferromagnetic effects in cubic systems [2][32].
This function can be written as follows:

EDC = C1

(
α2
1α

2
2 + α2

2α
2
3 + α2

1α
2
3

)
+ C2α

2
1α

2
2α

2
3 (5.14)

where EDC describes the cage dipoles interaction, C1 and C2 are proportionality con-
stants which have to be determined by parametrization and last the αi describe the dot
product of the dipole vector with a certain principal axis. For example α1 describes the
dot product of the unit dipole vector with the unit vector in x direction. Therefore it
is the cosine of the angle between the dipole vector and the x axis. α2 is the same but
for the y direction and last α3 for the z direction. Next figures 5.37 and 5.38 show the
interaction terms of equation 5.14. The bright spots show regions where the function
value is high and in black regions the the function value is zero. By comparing figure 5.37
and figure 5.10 one can see the spots where the spherical harmonics have their maxima
the map plot gained from the molecular dynamics has its minima. This is true for both
terms C1 and C2 of equation (5.14).

Figure 5.37: Polarplot of the C1 term of equation (5.14)

Figure 5.38: Polarplot of the C2 term of equation (5.14 )

To find appropriate values for the constants in front of each term we used the so called
Boltzmann inversion. Therefore one starts with the equation for the probability of a given
state which reads as:
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ρi =
e−βEi∑N

i=1 e
−βH(pi,xi)

=
e−βEi

Z
, (5.15)

here ρi denotes the probability that the system is in state i, Z again denotes the partition
function and Ei is the energy for a given state. By taking the logarithm of this equation
one is able to calculate the energy surface out of the polar plots shown earlier. It is
important to have good statistics of the data if one likes to invert them and hence we
used the condensed polar plots. The inversion can be written as follows:

lnρi = −lnZ − kbTEi, (5.16)

Ei = −βlnρi − lnZ. (5.17)

From this it follows, the in this way calculated energy surface is determined accurate
to a constant lnZ. The condensed energy surface for the 6× 6× 6 ab-initio simulation is
shown in figure 5.39. It does not matter if one knows this constant because one is able to
use differences of energy values to determine the constants in equation 5.38.

Figure 5.39: Condensed energy surface E (ϕ, θ) of 6× 6× 6 simulation in [eV]

For the evaluation of the constants we picked certain orientations for the dipole vectors
and assigned the corresponding energy of the energy surface to these orientations (figure
5.39 ). Next we made an Ansatz that this energy is equal to the energy calculated by
equation (5.14), if the constants C1 and C2 would be known. Thereby we got an equation
with two unknowns for every point. To overcome the fact that we do not know the additive
constant lnZ we always took the energy difference between two points. This was done
by setting up the equations for two points and then subtracting them. This resulted in
a value of −45 meV for the C1 term and a value of 1096 meV for the C2 constant. With
this parametrization we are able to describe the cubic symmetry which arises due to the
inorganic framework dipole interactions.
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What we are not able to model with this parametrization is the behaviour of the dipole-
dipole arrangement for the nearest neighbours. So we had to find some term which will
describe this interaction. This interaction can be considered as a mixture of dipole-
dipole and cage dipole interactions. Because if a dipole rotates in his cage then this
will influence the inorganic framework and therefore the dipoles which are near by. We
considered the histograms for the nearest neighbours which are shown in figure 5.27. It is
important to find a function that reproduces the behaviour of the 6× 6× 6 and 4× 4× 4
random starting structure simulations. Here we just want to consider the histograms for
the nearest neighbours because these are the closest interaction partners and therefore
dominate the interaction. We tried to find a function that can be seen in figure 5.40. This
can be written as uij = 1

2
sin (π · p̂i · p̂j)− p̂i · p̂j.

Figure 5.40: Function to describe histogram of cos(α) (angle between dipoles)

Next one has to choose the appropriate dipole moment which we just took from the
calculations which were presented in chapter 5.1. By changing the dipole moment in the
Monte Carlo code one is able to model different organic ions or molecules, by just plug-
ging in the desired value. For the relative epsilon εr we took an experimental value of 6.5
which was gained from optical measurements [30].
For the cell parameters, we relied on experimental values which were published by Stoumpos
et. al. They performed single crystal X-ray analysis and determined the lattice param-
eters for several different organo halide perovskites [46]. The values that they reported
and that are used in the Monte Carlo simulations can be seen in table 7. It should be
noted, these lattice parameters were also taken for the geometry in the ab-initio molecular
dynamics. We kept these parameters fixed during the all simulations. Now we are able
to write our model Hamiltonian as follows:

(5.18)

Ĥ =
n∑

i,E−field
(pi · E0) +

1

4πεr

n,m∑

i,j

[
pi · pj
r3

− (n̂ · pi)(n̂ · pj)
r3

]

+
n∑

i

[
C1

(
α2
1,iα

2
2,i + α2

2,iα
2
3,i + α2

1,iα
2
3,i

)
+ C2α

2
1,iα

2
2,iα

2
3,i

]

+ C3

[
n,nn∑

i,j

1

2
sin (π · p̂i · p̂j)− p̂i · p̂j

]
,

where p̂i,p̂j denote the normalized dipole vectors, the sum over i runs over all the
dipoles present in the cell. The sum over j in the second term runs over all the dipoles
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within the cut off radius of dipole i. In the last term the sum over j only runs over the
nearest neighbours which is denoted as nn in the superscript of the sum.
Now we have all terms which are necessary to describe the considered system. Next one
has to determine the constant C3 in front of the third term. This constant was determined
by a trial and error procedure. For example one tested a few different values for C3 and
considered which one satisfied the results of the molecular dynamics best. This was done
by comparing the histogram of the relative dipole orientation and trying values from 0 to
−50 for the constant C3. Then we used a least square routine to determine the deviation
of the molecular dynamics and the Monte Carlo histogram. Next we took the the constant
where the results agreed best with the molecular dynamics simulation. Out of this we
gained the results which are summarized in table 7.

Table 7: Constants for the parametrization of the dipole code

parameter numerical value
C1 −45meV
C2 1096meV
C3 −9meV
εr 6.5
p 2.23D
lattice parameters
a 6.3115(2)Å
b 6.3115(2)Å
c 6.3161(2)Å

The lattice parameters can be varied if desired but in this thesis all the minimizations
which were performed with the Monte Carlo approach were done with the lattice param-
eters of table 7. With this set of parameters one is able to describe the organo halide
perovskite system at 300K in a satisfactory way. It should be noted the parametrization
which is shown in table 7 is based solely on the 6× 6× 6 ab-initio simulation. This was
done like that beacuse the 6× 6× 6 simulation shows the best statistics when considering
the polarplot which is the basis for the Boltzmann inversion.

5.5 Monte Carlo model

5.5.1 Single Layer Simulations

In first tests of our Monte Carlo code we tried to reproduce the results from Frost et al
[17]. They made a two dimensional Monte Carlo approach and calculated 10 × 10 × 1
grids at temperatures of: 0K, 100K, 300K, 1000K. We tried to take a three dimensional
Monte Carlo approach, with a single layer and check if the results differ from an approach
that is purely two dimensional. The dipoles in our simulation will be able to rotate out
of this plane, although our grid is two dimensional and we check how this influences the
results. For this simulation we only took pure dipole-dipole interactions into account.
This means all the cage interaction parameters were set to zero and therefore in the used
Hamiltonian only the second sum of equation 5.18 was used.
First figure 5.41 shows a 10 × 10 × 1 layer at 0K. One can see that at 0K ferroelectric
stripes form. Neighbouring stripes are always oriented anti-aligned because in this way
every positive charge is surrounded directly only by negative charges and every negative
charge is enclosed only by positive atoms. This behaviour is called anti-ferroelectric

56



5.5 Monte Carlo model 5 RESULTS

ordering. It follows, this is the same result which one would expect for a two dimensional
dipole grid at 0K.

Figure 5.41: Single 10× 10× 1 dipole layer at 0K

Next in figure 5.42 the same grid but now at 300K is shown. As one can see the dipoles
will not point only in the xy plane but in z direction as well. If the thermal energy is
sufficient, the dipoles will not only orient parallel to the layer but they will rotate in the
three dimensional space. This will be considered in more detail by the histograms for the
spherical angles of the dipoles.

Figures 5.43 and 5.44 show the relative distribution of the angles in the considered
systems. The distribution of angle ϕ shows the mean rotation of the dipoles in the xy
plane. Next figure 5.44 shows the distribution of the angle with respect to the z axes. As
one can see in the plot for the azimuthal angle ϕ the peaks at 0 and π represent alignment
( 0) or anti- alignment ( π) with the x axes. One is able to observe that at 0K layer a two
dimensional approach is a very good approximation. The most favourable orientation for
the dipoles is in the plane which is spanned by the x and y lattice vectors.

Next we will investigate the 100K structure shown in figures 5.45 and 5.46. We observe
already at 100K, the dipoles will not take the structure of aligned and anti-aligned stripes
in the xy plane. This is the case even if the thermal energy is still lower than the dipole-
dipole interaction energy. The distribution of the azimuthal angle in figure 5.45 shows
an equally likely probability for every orientation of the organic dipole in the xy plane.
Next considering the histogram θ which determines if the dipoles are located in the xy
plane or if they are more likely oriented along the z axes. Like shown in figure 5.46 there
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Figure 5.42: Single 10× 10× 1 dipole layer at 300K

Figure 5.43: ϕ histogram for a single layer 0K
structure

Figure 5.44: θ histogram for a single layer 0K
structure

is no preferred orientation for the dipole in this direction too. Therefore the thermal
energy is already at 100K sufficiently large to overcome the arrangement of the dipoles
in the plane. We conclude, the two dimensional approach yields only reasonable results
for temperatures of 0K and very slightly above, even if there are no interaction partners
in the z direction; a two dimensional approach is not able to represent the behaviour of
three dimensional dipole grids even if one considers a single layer.

By increasing the temperature further to 300K the distribution of both the azimuthal
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Figure 5.45: ϕ histogram for a single layer
100K structure

Figure 5.46: θ histogram for a single layer
100K structure

and the polar angle get flat too, as can be seen in figures 5.47 and 5.48. At 300K the
interaction energy between the dipoles and the thermal energy are equal [17]. This means
that all the different orientations are now accessible for the dipoles because the rotational
barrier is now dominated by thermal energy. The same is true for the spherical angle θ.
Again we conclude if the temperature is sufficiently high the dipole-dipole interaction will
play a minor role for the system. One is able to say that already at very small temperatures
of around 100K the thermal energy fluctuations (entropy) will be very important.

Figure 5.47: ϕ histogram for a single layer
300K structure

Figure 5.48: θ histogram for a single layer
300K structure

5.5.2 Comparing ab- initio molecular dynamics results with Monte Carlo
results

For the comparison of the Monte Carlo code with the ab- initio molecular dynamics
simulation, we equilibrated a 40× 40× 40 cell with parameters from table 7. The system’
s temperature was set to 300K and the cut off radius was chosen in a way to only take
into account the nearest neighbours.
Figure 5.49 shows the histogram for the results from the Monte Carlo approach (blue line)
and for the ab-initio molecular dynamics (red line) in one plot. The curves do not coincide
in a perfect way but the Monte Carlo code reproduces the periodicity in the direction of
the spherical angle θ well. We did not try to model the linear slope because it has no
physical origin. This slope is an artefact of the small cell and insufficient equilibration.
Figure 5.50 shows the histograms for the azimuthal angle ϕ including the Monte Carlo
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approach ( blue line) and the molecular dynamics ( red line) in one single plot. One
is able to see that the peaks at 0 and 2π are very similar and recall that this is the
same peak because 0 and 2π denote the same angle (alignment with the positive x axis).
Moreover the peaks at 3π

2
coincide very well too. But the two remaining peaks at π

2
and π

describe the behaviour of the ab- initio molecular dynamics simulation not so well. The
peak at the right hand side is larger in the case of the Monte Carlo approach and for the
left peak the behaviour is vice versa. We expect that this is caused by additional cage
dipole interactions which are not yet taken into account. It follows, with the cage-dipole
interaction terms we are able to reproduce the symmetry of the considered perovskite
system.

Figure 5.49: θ histogram for a 40×40×40 cell
and ab initio- molecular dynamics ( 6 × 6 × 6)
at 300K

Figure 5.50: ϕ histogram for a 40×40×40 cell
and ab initio- molecular dynamics ( 6 × 6 × 6)
at 300K

Next we want to show the agreement of the relative orientations of the dipoles with re-
spect to their nearest neighbours. In figure 5.51 we see a histogram for the dot product
of a certain dipole with its nearest neighbours as they were shown before. One is able
to see that the two curves coincide very well. There is only a slight overestimation by
the Monte Carlo approach for the anti aligned configuration of the nearest neighbours
and on the other hand the Monte Carlo approach underestimates the region around 0.3
slightly which corresponds to an angle between the considered dipoles of approximately π

2
.

These shortcomings will also be caused by cage-dipole interactions which were neglected
in the foregoing terms. The coordination spheres of higher order were also considered like
described in section 5.2.6. Although if the first coordination sphere looks very similar
to the one of the molecular dynamics simulation the second and the third coordination
spheres show a largely random distribution. From this it follows we are able to regain the
effects caused by the nearest neighbours but with the applied terms we are not yet able
to describe the long range order of the perovskite system.

Last we want to show the collective behaviour of all these terms at 300K by presenting
the polar plot of the considered 40 × 40 × 40 system which can be seen in figure 5.52.
At a first glance this plot seems to be different compared to the polar plots gained out
from the molecular dynamics discussed before. But if one looks carefully one is able to
see that we are able to reproduce the 8 minima in the area of the graph. From this it
follows that we are able to reproduce the periodic interactions between the dipoles but
also the interaction among an organic cation and the inorganic framework surrounding it
in the spherical directions θ and ϕ reasonably well.
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Figure 5.51: Histogram for the dot product of dipole vectors for a 40× 40× 40 and ab initio- molecular
dynamics ( 6× 6× 6) at 300K

Figure 5.52: Polar plot of the orientation of the dipoles in the 40×40×40 system in spherical coordinates
at 300K using the full model Hamiltonian

Last we briefly show the result that one would get if there were no additional strains
applied on the CH3NH3 molecules by the cage. The corresponding results are shown in
figure 5.53. Here only the dipole-dipole interactions are considered. Some contributions
of the cages are included implicitly by the dielectric constant though. As one can see, one
obtains a homogeneous distribution of the orientations of the dipoles. This is caused by
the very high temperature of 300K which dominates over the dipole- dipole interactions.
This is the reason why this plot is smeared out over the entire layer. But out of this
it follows that the interplay of the inorganic framework will be very important for the
structural properties of the considered system. The inorganic framework will be essential
to determine how the dipoles orient during the simulation.
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Figure 5.53: Polar plot of the orientation of the dipoles in the 40×40×40 system in spherical coordinates
without applied cage interactions

5.5.3 Comparing two 0K structures

In this section we are going to consider two 10×10×10 simulations which were equilibrated
at 0K. The first simulation shows a structure with included dipole-dipole and cage-dipole
interactions, the second simulation only takes dipole-dipole interactions into account. The
parameters for both simulations were adjusted to the values shown in section 5.4. Figures
5.54 and 5.55 show the results of the simulation with included cage-dipole interactions.
In the polar plot there are two spots, the first at ϕ = π

2
and θ = π

4
which belongs to the

face diagonal of the yz plane. This spot therefore represents dipoles which are pointing
in-between the positive y and positive z direction. Next there is a second spot at ϕ = 3π

2

and θ = 3π
4

. This spot represents dipoles which are too oriented in the yz plane but
pointing in the opposite direction. Therefore the dipoles which are causing this spot
point in-between the negative y and negative z axes. Because we are using a cubic cell
there are several symmetry equivalent configurations which belong to the remaining face
diagonals. Figure 5.55 shows the relative orientations of the dipoles with their nearest
neighbours. There exists only one peak at −1 which belong to an angle of π between
the dipoles. Therefore every molecule is surrounded only by dipoles which are oriented in
the opposite direction. Hence one gets an anti ferroelectric structure. This behaviour is
schematically represented in figure 5.56. It should be noted that in this figure the dipoles
are not oriented along the face diagonals but along the principal axes, because only a
dipole surrounded by oppositely oriented nearest neighbours should be shown.

It should be noted the z is slightly longer than the x or the y axes which was shown
in table 7. Therefore those face diagonals which include a z component are energetically
slightly favoured compared to, for example a system where the dipoles would be oriented
along the face diagonals of the xy plane. Table 8 summarizes energies of 4 × 4 × 4 cells
where the dipoles align and anti-align to the direction which is shown in the left hand
side column of the table. This simulations where also carried out with the parameter set
of table 7 but in the perfect cubic case the z axes was adjusted to the length of the x and
y axes. Now considering the second column it makes no difference if the dipoles align
and anti-align along the x, y or the z axes. The same is true for the face diagonals. It
follows, in the perfect cubic case the dipoles will always orient along any face diagonal
and form an anti ferroelectric pattern. In the pseudo cubic case the degeneracy of the
x, y and z directions breaks because now the z axes is slightly longer. As a result, the
molecules will more likely align or anti align to one of the face diagonals which contain the
z axes. This behaviour is shown in table 8 in the third column, where the face diagonals

62



5.5 Monte Carlo model 5 RESULTS

Figure 5.54: Polarplot of a 10× 10× 10 structure at 0K, with included cage-dipole interactions

Figure 5.55: Relative orientations of organic molecules in a 10 × 10 × 10 cell at 0K, with included
cage-dipole interactions

that include the z direction are lowered in energy about a value of 0.15meV. As a result
the configurations with the lowest energies for this parametrization are point dipole grids
where the organic molecules are oriented either along xz and −x− z, x− z and −xz,yz
and −y − z or y − z and −yz.
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Figure 5.56: Dipole surrounded by anti- aligned nearest neighbours like it is the case in the 0K structure
of the Monte Carlo model

Table 8: Energies of systems with different dipole orientations (cage-dipole interactions included)

orientation perfect cubic [meV] pseudo-cubic [meV]
x -750.035 -749.937
y -750.035 -749.937
z -750.035 -749.838

xy -2088.000 -2087.901
xz -2088.000 -2088.049
yz -2088.000 -2088.049
xyz 182.519 182.519

Next figures 5.57 and 5.58 show the results from the simulation where the cage-dipole
interactions were not included. The polarplot shows two spots, one at ϕ = π

2
and θ = π

2

which denotes the y direction in Cartesian coordinates and the other at, ϕ = 3π
2

and θ = π
2

which denotes the −y direction. Therefore the dipoles align and anti align according to
one of the principal axes in the minimum energy structure at 0K. This arrangement results
in relative dipole orientations like they are shown in the histogram of figure 5.58. There
are two peaks one at −1 and the other at 1. This belongs to relative angles between the
dipoles of either π (anti aligned) or 0 (aligned). This behaviour was already shown for
single layers in figure 5.5.1. Therefore a certain dipole is surrounded by four anti aligned
nearest neighbours and two nearest neighbours which align with the dipole. This is a
result of the anti ferroelectric stripes which form in a point dipole grid at 0K.

Last we also considered the difference of a perfectly cubic system and a pseudo-cubic
system. The results of this analysis are shown in table 9. Like one can see in the perfectly
cubic case it does not matter along which axes the stripe formation occurs. Without the
parametrization the face diagonals are higher in energy than the principal axes. In this
case also the room diagonal shows the same energy as the face diagonals which was not
the case when considering the results with included cage-dipole interactions. Next we also
calculated the results for the case when the z axes is slightly longer than the x or y. In
this case the configurations where the stripes form along the principal axes are also the
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Figure 5.57: Polarplot of a 10× 10× 10 structure at 0K, only dipole-dipole interactions included

Figure 5.58: Relative orientations of organic molecules in a 10× 10× 10 cell at 0K, only dipole-dipole
interactions included

energetically most favourable. But now the configuration where the stripes form along
the z axes is slightly higher in energy. Therefore the most favourable structures are those
where the dipoles are oriented in the xy plane along the x and −x or the y and −y

Table 9: Energies of systems with different dipole orientations (only dipole-dipole interactions included)

orientation perfect cubic [meV] pseudo-cubic [meV]
x -174.035 -173.937
y -174.035 -173.937
z -174.035 -173.838

xy 0.000 0.098
xz 0.000 -0.049
yz 0.000 -0.049
xyz 0.000 -0.980
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As a result the interactions of the cage atoms with the organic cations dominate the
arrangement of the dipoles within the perovskite cell and the dipole-dipole interactions
will only play a subordinated role.

5.5.4 Calculating hysteresis of polarization when applying an electric field

The simulation described in this section was done using the cage dipole interaction param-
eters like they were discussed in section 5.4. The size of the cell was taken as 35 dipoles
in every direction and therefore a total number of 42875 dipoles. The temperature of the
system was adjusted to 300K. First we relaxed a structure without applying any field to
gain an appropriate starting structure. With this relaxed structure we applied an electric
field stepwise in the negative x direction until we reached the first turning point which
is the maximal field applied in negative x direction. At this point two sweeps over any
dipole in the supercell were performed. Then the field was diminished until one reaches
zero again. From this we invested now a field in the direction of the positive x axes until
we reached the turning point on the other side where we performed two sweeps over any
dipole again. Next the field was diminished again until one reaches zero. These cycles
were performed 20 times. The results can be seen in figures 5.59 to 5.62. The polarization
which is shown in these figures is calculated according to equation (5.12). The figures
show a decreasing width of the hysteresis curve which is caused by the number of min-
imization steps performed for every field strength. The first figure shows a curve where
every dipole was flipped once per minimization step, the second figure shows a graph
where every dipole was sweeped twice, the third figure shows a simulation where every
dipole was able to change its orientation three times and in the last figure every dipole
was allowed to flip four times. The first three hysteresis cycles are not included in the
figures because they were not properly relaxed. It is interesting the hysteresis diminishes
to nearly one single line already at 4 steps per dipole.

The upper part of the curve belongs to the part of the simulation when the field is
decreased from the maximum electric field applied in negative x direction. And the lower
part of the curve is if one goes from the maximum applied field in positive x direction
towards the negative maximum field. The field strengths which are shown in these plots
are very huge and do not correspond to the usual field strengths when operating perovskite
systems. We also tried to obtain such curves for lower or moderate field strengths but then
we did not obtain hysteresis curves. If the fields are that small the curve when increasing
the field strength in the positive direction overlaps with the part of the curve when stepwise
applying the filed in the negative direction. The hysteresis of a material is very strongly
influenced by the relaxation time at every step of the cycle. The longer the relaxation
time for every step the smaller the distance between the two parts of the hysteresis curve.
This is also true for the number of relaxation steps performed during the simulation for
every field strength. If all the dipoles would be perfectly aligned the mean normalized
polarization would result in a value of one which is not the case in any of the shown figures.
To archive this perfectly aligned structures one would have to perform more minimization
steps at the turning points of the hysteresis curve. Therefore in the case of the simulation
where 4 Monte Carlo steps per dipoles per field strength were performed, every dipole has
only 4 times the chance to reach the anti- aligned configuration with respect to the applied
field. To obtain values comparable with experiment one has to multiply by the number of
dipoles, multiply by the dipole moment of the considered species and last divide by the
volume of the cell which reads as 9879273663Å3 ( 9.889 ∗ 1021m3). Out of the hysteresis
curve we are able to calculate the remanent polarisation which can be seen in table 10.

66



5.5 Monte Carlo model 5 RESULTS

Figure 5.59: Mean normalized polarization of
a 35 × 35 × 35 cell vs applied electric field (1
minimization step per dipole)

Figure 5.60: Mean normalized polarization of
a 35 × 35 × 35 cell vs applied electric field (2
minimization steps per dipole)

Figure 5.61: Mean normalized polarization of
a 35 × 35 × 35 cell vs applied electric field (3
minimization steps per dipole)

Figure 5.62: Mean normalized polarization of
a 35 × 35 × 35 cell vs applied electric field (4
minimization steps per dipole)

The values are decreasing with an increasing number of minimization steps per cycle and
they are converging to a threshold value.

Table 10: Remanent polarization for different number of minimizations steps
number of minimization steps per dipole remanent polarization [Cm−2]

1 1.978 ∗ 10−09

2 4.301 ∗ 10−10

3 1.787 ∗ 10−10

4 9.035 ∗ 10−11

5 5.398 ∗ 10−11

6 5.850 ∗ 10−11

Next we calculated the polarizability of the considered perovskite system which is
determined by the slope of the hysteresis loops. This slope was the same for all of the
simulated hysteresis curves expect for insignificant decimal places. The polarizability can
be written as 6.232 ∗ 10−12[Cm−2]. Till now there were no experimental papers that are
comparable with the values gained here. There exists a paper by Coll et.al. [11] where they
determined hysteresis loops experimentally for methyl- ammonium lead iodine perovskite
materials but unfortunately they only reported the applied voltage and no thickness of
the sample and so one is not able to determine the electric field which was applied to the
sample. However the hysteresis loops in the experimental paper look very similar to our
shape.
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5.5.5 Local Polarisation which arises due to the dipole contribution

To consider the local mean normalized polarization of the considered perovskite system
a 30 × 30 × 30 structure was equilibrated at 300K. To do this the cell was divided into
subsystems and for each the mean normalised polarisation was calculated according to
equation 5.12. The parameters for applying the cage interaction were taken as determined
before. Then an algorithm was used to divide the system in any desired number of smaller
subsystems. In this case the subsystems where chosen each with 25 organic molecules in-
side. The subsystems can be considered as cubic boxes with 5 dipoles in every space
direction. Next the mean normalized polarization like it was shown in equation 5.12 was
calculated for every subsystem. The large 30 × 30 × 30 cell is therefore divided into 216
subsystems. Next we have cut this big 30× 30× 30 cell in slices for example along the x
axis and these slices are also 5 dipoles thick and one will obtain 6 slices along the whole
cell. Every slice is now composed of 36 of the before mentioned sub cells and this can
be done for every direction of space. The results are shown in figure 5.65 to figure 5.67
where the colour represents the net mean normalized polarization of the considered sub
cell and the little white vectors on top of every sub cell show the associated polarization
vector where the component orthogonal to the considered plane is neglected.
Out of these plots one is able to see that there are a lot of small polarized domains present
in the perovskite system. Again we mention here that only the contributions due to the
organic molecules are considered. The smallest of these domains are at least only one sub
cell big. But there are also agglomerates of such sub cells present. The biggest of those
accumulated polarization areas are at least 14 sub cells big. Remarkably, it seems like
the domains with lower mean normalized polarization (those with a purple colour scale)
accumulate more often than those with higher polarization. Therefore these are the sub
cells with very low to nearly no net polarization.

Figure 5.63: Histogram of dot product of a
certain mean normalized polarization vector of
a certain sub cell with the vectors of the adjoin-
ing sub cells

Figure 5.64: Histogram for the mean normal-
ized polarization of all sub cells present in the
considered system

To find some kind of dependence of the polarization vector of a certain sub cell on its
neighbouring sub cells we calculated the dot product of the mean normalized polarization
vector of a certain sub cell with polarization vectors of the nearest neighbour sub cells.
Therefore every cell has 6 nearest neighbours because the sub cells were chosen cubic. As
one can see in the graphic there is no favoured orientation between adjacent polarization
vectors. The only exception would be the peak for the aligned vectors but it is too small
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Figure 5.65: Colormap of mean normalized polarisation in the yz plane of a 30 × 30 × 30 system
which was cut in slices along x, the arrows denote the 2D polarization vectors where the x component is
neglected

to be really taken into account. The reason for this is the high temperature of 300K at
which this system has been considered because the thermal energy makes all rotational
states of the organic molecules accessible. The last figure (5.64) of this chapter shows
whether there is some kind of preferred polarization state of the considered sub systems.
This was calculated by taking the mean normalized polarization vectors of the subsystems
and counting them by binning. One is able to see the distribution peaks around 0.02.
As mentioned before, if the mean normalized polarization vector has a value of one, the
system is totally polarized and a value of zero suggests there is no net polarization present.
It should also be mentioned that this peak is very narrow compared to the accessible values
between zero and one the polarization could in principle take. So all the subsystems lie in

69



5.5 Monte Carlo model 5 RESULTS

Figure 5.66: Colormap of mean normalized polarisation in the xz plane of a 30 × 30 × 30 system
which was cut in slices along y, the arrows denote the 2D polarization vectors where the y component is
neglected

this certain range. This also explains why it seems that the purple areas would accumulate
more often than others, but the reason is just they occur more often.
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Figure 5.67: Colormap of mean normalized polarisation in the xy plane of a 30 × 30 × 30 system
which was cut in slices along z, the arrows denote the 2D polarization vectors where the z component is
neglected

5.5.6 Temperature dependence of Polarization

The influence of the temperature on the mean normalized polarization was investigated
by equilibrating 10× 10× 10 once with the parameters to resemble the cage interactions
and the other time without applying any cage interactions. For low temperatures up to
about 50K it was no problem to calculate the mean normalized polarization. But for
higher temperatures the values had a remarkably spread. To get appropriate mean values
1000 independent calculations were taken to calculate the mean normalized polarization
for a certain temperature. This resulted in values which one is able to reproduce within
a variance of 2 ∗ 10−6. The variance is dimensionless because we calculated the mean
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normalized polarization which is dimensionless (see equation (5.12)). The results of these
calculations are summarized in figure 5.68. The temperature steps were 25K between 0K
and 300K. The blue curve denotes the simulation with dipole-dipole interactions only and
the green graph takes into account the cage-dipole interactions as well. First considering
the graph where only dipole-dipole interactions where included. There is no net polariza-
tion at 0K because of the formation of the anti ferroelectric stripes which were shown in
sections 5.5.1. By raising the temperature the dipoles gain thermal energy sufficient to
leave the 0K minimum structure and posses configurations which show a net polarization
as well. By considering figure 5.68 the mean normalized polarization slightly increases
at the beginning (when leaving the anti ferroelectric minimum structure) and then starts
fluctuating around a mean value of 0.0014 with a variance of 3.697 ∗ 10−07. Therefore
one is able to say the polarization of a dipole grid only shows temperature dependence at
very low temperatures and afterwards by raising the temperature further the polarization
starts fluctuating around a certain value.

Figure 5.68: polarization vs temperature calculated by Monte Carlo approach ( ) dipole-dipole
interactions only and ( ) cage-dipole interactions included as well

Next we are going to consider the dependence of the mean polarized polarisation on
temperature for a simulation where the cage-dipole interactions are included as well. At
0K the 0K structure also possesses no net polarization because of the anti ferroelectric
ordering which was shown in section 5.5.3. Again by raising the temperature the organic
molecules will possess thermal energy and start to leave their global minimum at 0K which
can be seen in figure 5.69. In this figure the dipoles are still in their minimum configuration
but the thermal energy is already sufficient to smear the spot for the perfect orientation.
This is the reason for the increasing mean normalized polarization at the beginning of the
temperature curve shown in figure 5.68. At about 75K the curve shows a kink and the
mean normalized polarization shows a stronger dependence on temperature. The reason
for this stronger temperature dependence is because now the thermal energy is sufficient,
so that the organic molecules are able to posses several of the minimum structures like
they were shown in table 8. This means for example one has a certain cell where a certain
part of the cell is in a configuration where the dipoles are oriented along the face diagonals
y − z and −yz and another part of the cell is in the configuration where the dipoles are
oriented along x− z and −xz. Afterwards the the slope of the graph gets lower again
which is caused by the fact that the thermal energy is now sufficient that the dipoles
are able to smear out over the whole drawing layer expect for the area around the room
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diagonals which are very unfavourable for the organic molecules. This behaviour of the
organo-halide perovskite system is depicted by figure 5.70.

Figure 5.69: Polarplot of 10× 10× 10 simulation with included cage-dipole interactions at 50K

Figure 5.70: Polarplot of 10× 10× 10 simulation with included cage-dipole interactions at 100K
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6 Conclusion

The ab- initio molecular dynamics gave a direct insight on the dynamical behaviour of
the considered organo- halide perovskite systems. One was able to see that the inorganic
framework is very rigid during the whole simulation even at 300K. It is only fluctuating
around its equilibrium positions. On the other hand the dipoles are very flexible at 300K
and nearly do not feel any rotational barrier because of the high thermal energy. Next we
were able to see there exist special orientations which the dipoles will prefer compared to
others. These orientations are chosen such that the positive charge of the organic cations
is surrounded by the most accessible negatively charged iodine atoms. The orientation of
the dipoles is therefore most likely chosen in a way that they are oriented along any of
the face diagonals.
Next we tried to work out a model which is able to reproduce the mean results of the
molecular dynamics simulations. This worked very nice and gave some insight in the
structural behaviour of the dipoles. A very interesting feature of the perovskite solar cells
which was shown by the Monte Carlo approach are the polarized domains which arise
only due to the arrangement of the dipoles.
The problem with the Monte Carlo model is the inorganic framework which is only taken
into account implicitly and therefore considered as completely rigid. This is a good ap-
proximation but the small fluctuations of the inorganic framework could influence the rota-
tional state of the dipoles very strongly. The structures of the considered perovskites have
some special properties: for example the ordering of the different coordination spheres
which were discussed during this thesis. It is very important to consider the organo- halide
perovskite system as a whole when considering its electronic behaviour. Because of the
very special interplay between the cage atoms and the light organic molecules (cations).
This special interaction of the framework with its locked dipoles has to be the reason for
the special properties of the perovskite system. The next important thing is people are
mostly interested in the high absorption efficiencies which may be described in terms of
electronic structure which is not possible to describe by such a simple classical approach
like the Monte Carlo ansatz shown here. Therefore the key to understand perovskite solar
cells will be ab-initio calculations. The problem with those is that they are computation-
ally very expensive and therefore it will be hard to calculate much bigger cells like than
were already done. But it should be mentioned the properties of the system depend for
small geometries very strong on the system size but if one reaches a certain volume of at
least 4 × 4 × 4 unit cells the properties do not change any more when going further to
bigger systems which was seen in this thesis by comparing a 4 × 4 × 4 and a 6 × 6 × 6
super cell. Therefore it should be sufficient to deal with super cells in this size range.
Last the dependence of the mean normalized polarization on temperature gave also some
interesting insight in the structural behaviour of the perovskite solar cells. This simula-
tion suggested that there should be several different phases present in the cell at higher
temperatures.
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7 Outlook

There is still a lot of work to do in the field of the perovskite solar cells because the
mechanism how the cell works exactly and why it absorbs light so effective is still not
completely clear. It would also be very interesting to improve the Monte Carlo approxi-
mation further and determine temperature dependent parameters if necessary. This would
give a fundamental insight in the ordering behaviour of the organic molecules at different
temperatures. Further one would be able to develop more appropriate parameters for the
interaction of the dipoles with their inorganic framework, maybe to model them in a way
that thermal fluctuations of the cage atoms could be taken into account as well. This
could maybe be implemented by applying parameters which fluctuate slightly by the use
of random numbers. Finally it would be interesting to determine parameters which take
into account the ordering behaviour of the second and third coordination spheres which
could be carried out by using interaction terms which are only valid in a certain distance
range from a certain dipole. Last it should be mentioned, it would be interesting to di-
vide a huge system equilibrated under the use of the Monte Carlo ansatz at a moderate
temperature in several subsystems and check if those subsystem possess their individual
minimum configuration.
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8.1 Abstract

Perovskite solar cells have become very famous in the recent years within the photo
voltaic community. The main reason for this is the high efficiencys that can be reached
with those cells, the low costs and the ease in production. We investigated the behaviour
of the organic cation to get a deeper understanding of those cells. Therefore we performed
several ab-initio molecular dynamics simulations with varying cell sizes and two different
exchange-correlation potentials. The used potentials were both PBEsol potentials one
time with included dispersion interactions and the other without dispersion interactions.
Out of these simulations the preferred mean orientations of the organic cations locked
in the perovskite cages were extracted. From this one is able to see that the organic
cations try to avoid the room diagonals within the perovskite cages. Next we determined
a minimum cell size, which our analysis showed, should at least be 4× 4× 4. This means
that there should be 4 perovskite unit cells in every direction of space. In a smaller cell
the characteristic pattern for the orientational distribution of the organic cations does
not form. From this it follows the minimum cell size should at least contain 64 unit cells
and hence 64 organic molecules. We considered autocorrelation functions for different cell
sizes and different starting geometries. From this we concluded that random starting con-
figurations equilibrate faster than aligned starting configurations. Additionally we also
determined that the autocorrelation decreases slower for the potential with dispersion in-
teractions included, because these increase the rotational barriers for the organic cations.
Next we considered relative orientations of neighbouring organic molecules in different
coordination spheres within the ab-initio molecular dynamics simulations. From this it
follows that there exists a defined pattern for the dipoles relative to each other in the
different coordination spheres. From this we deduce that there exists long range order in
the considered halide organometal perovskite.
The second part of the ab-initio molecular dynamics simulations considered the behaviour
of the inorganic framework during the simulations. Out of this we were able to conclude
that the inorganic framework stays nearly rigid throughout the whole simulations. The
only motion carried out by the inorganic framework are fluctuations around the equilib-
rium positions of the atoms. This behaviour is independent of the considered cell sizes
and the considered potentials.
Out of these conclusions we tried to build up a Monte-Carlo model which should only
take into account the organic cations. The parametrization for the energy calculation
was carried out according to the Boltzmann inversion and the results obtained by the
ab-initio molecular dynamics simulations. With this Monte-Carlo code we were able to
simulate huge system sizes. With the Monte-Carlo approach we calculated local polar-
ization effects, which showed small polarized domains in the system are present but the
polarization of these domains is very small. Next we considered the dependence of the
total polarization on temperature. Out of this we were able to see that there is a slight
increase in the total polarization with increasing temperature.
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8.2 Zusammenfassung

In den letzten Jahren ist das Interesse an Perowskit Solarzellen maßgeblich gestiegen. Die
niedrigen Fabrikationskosten, die hohe Effizienz und die Leichtigkeit der Herstellung habe
dazu wohl maßgeblich beigetragen. Daher haben wir in dieser Arbeit versucht das Verhal-
ten der organischen Kationen aufzuklren. Dazu wurden ab-initio molekular Dynamik Sim-
ulationen mit variierender Systemgrößen und unterschiedlichen Austausch-Korrelations-
Potentialen durchgeführt. Aus diesen Simulationen konnten wir die bevorzugten mit-
tleren Orientierungen der organischen Kationen, welche in den Perowskit Käfigen sitzen
bestimmen. Daraus wird ersichtlich, dass die organischen Kationen die Raumdiagonalen
der Perowskit Käfige vermeiden. Als nächstes haben wir versucht eine minimale Sys-
temgröße festzulegen welche für die Simulationen benötigt wird. Die resultierende mini-
male Zellgröße sollte mindestens 4 Perowskit Einheitszellen in jede Raumrichtung enthal-
ten und daher auch 4 organische Kationen. Ist dieser Sachverhalt nicht gegeben kann sich
das Charakteristische Muster für die Räumliche Verteilung der organischen Kationen nicht
ausbilden. Daraus folgt, dass die minimale Zelle mindestens 64 Einheitszellen und daher
auch 64 organische Kationen enthalten muss. Als Ma fr die Äquilibration wurden Autoko-
rrelationsfunktionen der Simulationen mit verschiedenen Anfangsgeometrien, Zellgrößen
und Potentialen herangezogen. Daraus wurde ersichtlich, dass Geometrien mit zufällig
gewählten anfangs Orientierungen schneller äquilibrieren als jene Systeme wo zu Beginn
alle Kationen in eine definierte Richtung zeigen. Bei dieser Analyse hat sich außerdem
gezeigt, dass jene Simulationen mit berücksichtigten dispersions Interaktionen langsamer
äquilibrieren als jene wo Wechselwirkungen dieser Art nicht berücksichtigt werden, was
auf einen Anstieg der Rotationsbarrieren zurückzuführen ist.
Als nächstes haben wir die relative Orientierung der organischen Kationen in den ver-
schieden koordinations Ebenen zu einander untersucht. Diese Untersuchung hat gezeigt,
dass es ein wohldefiniertes Muster für die relative Orientierung der organischen Kationen
zu einander gibt welches sich durch die verschiedenen Ebenen abwechselt. Aus dieser
Beobachtung konnte des Weiteren gefolgert werden, dass es eine Fernordnung innerhalb
der beobachteten Perowskit Systeme gibt.
Im zweiten Teil der ab-initio molekular Dynamik Simulationen haben wir die Eigen-
schaften des anorganischen Gitters untersucht. Hier wurde ersichtlich, dass sich die Blei
und Jod Atome nur um ihre Gleichgewichtspositionen bewegen. Des weiteren unterschei-
det sich das Verhalten der anorganischen Bausteine in den verschiedenen Zellgrößen nicht
und wird auch nicht durch die Wahl des Potentials beeinflusst.
Aus diesen Ergebnissen wurde nun versucht ein geeignetes Monte-Carlo Modell zu er-
stellen welches nur die organischen Kationen berücksichtigt. Die Parametrisierung für die
Energie Berechnung wurde mit der sogenannten Boltzmann Inversion und den Ergebnis-
sen aus den ab-initio Simulationen durchgeführt. Mit diesem Monte-Carlo Code besitzt
man nun die Möglichkeit sehr große Systeme zu berechnen. Mit diesem Code haben wir
die lokalen Polarisationseigenschaften, welche durch die organischen Kationen herrühren,
beobachtet. Diese Untersuchung hat gezeigt, dass sich kleine polarisierte Domänen inner-
halb des Systems ausbilden, wobei die individuelle Polarisation der jeweiligen Domänen
aber äußerst klein ist. Zum Abschluss haben wir noch den Zusammenhang der totalen
Polarisation und der Temperatur betrachtet. Dabei hat sich gezeigt, dass die totale Po-
larisation der Zelle mit der Temperatur leicht ansteigt.
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