

MASTERARBEIT / MASTER'S THESIS

Titel der Masterarbeit / Title of the Master's Thesis

"Petrologie und Geochemie des lithosphärischen Erdmantels unterhalb Gobernador Gregores, Südpatagonien, Argentinien"

verfasst von / submitted by Olesya Kolosova-Satlberger, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (M.Sc.)

Wien, 2016 / Vienna 2016

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung It. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

A 066 815

Masterstudium Erdwissenschaften UG2002

Ao. Univ. Prof. Dr. Theodoros Ntaflos

INHALTSVERZEICHNIS

DANKSAGUNG	V
ABSTRACT	VII
ZUSAMMENFASSUNG	IX
1. EINFÜHRUNG	1
1.1 Der innere Aufbau der Erde im Überblick	1
1.2 Der Erdmantel	3
Mögliche Mineralparagenesen im Erdmantel	3
Der obere Erdmantel	4
1.3 Erdmantelxenolithe	6
1.4 Was ist Metasomatose?	7
1.4.1 Allgemeine Definition	7
1.4.2 Metasomatose im Erdmantel	8
Definition	8
Typen der Erdmantelmetasomatose	8
Mobilitätsmechanismen von Schmelzen/fluiden Phasen im Erdmantel	9
Modale Metasomatose. Klassifizierung	11
2. GEOGRAPHIE UND ALLGEMEINE GEOLOGIE PATAGONIENS	13
2.1 Geographie Patagoniens	13
2.2 Allgemeine Geologie Patagoniens	14
3. GEOGRAPHISCHE LAGE UND BESCHAFFENHEIT DER PROBENLOKALITÄT	20
4. ANALYTISCHE METHODEN	23
4.1 Optische Durchlichtmikroskopie	23
4.2 Elektronenstrahlmikrosonde	23
5. MODALER MINERALBESTAND	24
6. PETROGRAPHIE	35
6.1 Petrographie der primären Phasen. Strukturelle und texturelle Merkmale	
im Kontext von Deformations- und Rekristallisationsprozessen	35
6.1.1 Auswahl der Nomenklatur	35
6.1.2 Strukturelle Typen der untersuchten Gesteinsproben im Überblick	38

Protogranulare Struktur (= coarse) 2 Protogranulare Struktur mit zunehmendem Verformungsgrad 2 Porphyroklastisch-äquigranulare Struktur 2 (= porphyroclastic & mosaic-porphyroclastic) 2 Protogranulare II Struktur (= coarse II) 2 6.1.4 Petrographische Charakteristika der Harzburgite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranular	
Protogranulare Struktur mit zunehmendem Verformungsgrad 4 Porphyroklastisch-äquigranulare Struktur 4 (= porphyroclastic & mosaic-porphyroclastic) 4 Protogranulare II Struktur (= coarse II) 4 6.1.4 Petrographische Charakteristika der Harzburgite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (=	41
Porphyroklastisch-äquigranulare Struktur (= porphyroclastic & mosaic-porphyroclastic) 4 Protogranulare II Struktur (= coarse II) 4 6.1.4 Petrographische Charakteristika der Harzburgite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Orbyroklastische Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur Struktur Struktur (= coarse) 5 Protogranulare Struktur Str	14
(= porphyroclastic & mosaic-porphyroclastic) 4 Protogranulare II Struktur (= coarse II) 4 6.1.4 Petrographische Charakteristika der Harzburgite 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur Struktur (= coarse) 5 Protogranulare Struktur Struktur Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5	
Protogranulare II Struktur (= coarse II) 4 6.1.4 Petrographische Charakteristika der Harzburgite 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5	46
6.1.4 Petrographische Charakteristika der Harzburgite 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse)	48
Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse) 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5	50
Protogranular-porphyroklastische Struktur (= coarse) 5 6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5	50
6.1.5 Petrographische Charakteristika der Wehrlite 5 Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5 Example and example an	52
Protogranulare Struktur (= coarse) 5 Protogranular-porphyroklastische Struktur (= coarse) 5	54
Protogranular-porphyroklastische Struktur (= coarse)	54
	55
Porphyroklastische Struktur (= porphyroclastic) 5	56
Porphyroklastisch-äquigranulare Struktur (= porphyroclastic)	57
Äquigranulare tabulare Struktur (= granuloblastic tabular)	59
6.1.6 Petrographische Charakteristika der Dunite5	59
Protogranular-porphyroklastische Struktur (= coarse) 5	59
6.1.7 Petrographische Charakteristika der Pyroxenite in Bezug auf	
die Nomenklaturen nach Mercier & Nicolas (1975) und Harte (1977)6	50
6.2 Petrographie der sekundären Phasen 6	39
6.2.1 Petrographie der wasserhaltigen Minerale6	39
6.2.1.1 Amphibol6	59
6.2.1.2 Phlogopit 7	74
6.2.2 Petrographische Charakteristika der sekundären Phasen	
innerhalb von Adern/Gängen 8	30
6.2.2.1 Durch crack propagation gebildete Adern 8	30
6.2.2.2 Zusammengesetzte Erdmantelxenolithe (composite xenoliths) 8	34
6.3 Petrographie der tertiären Phasen. Glas und damit vergesellschaftete Minerale im Überblick	77
7 MINERAL CHEMIE	na
7.1 Mineralchamia der primären Phasen	,,, ,,,
	20
7.1.1 Olivili	19

7.1.3 Klinopyroxen	1
7.1.4 Spinell	1
7.2 Mineralchemie der sekundären Phasen	1
7.2.1 Olivin	1
7.2.2 Orthopyroxen	1
7.2.3 Klinopyroxen	1
7.2.4 Spinell	1
7.2.5 Amphibol	1
Chemismus	
Klassifikation	1
7.2.6 Phlogopit	1
7.3 Mineralchemie der tertiären Phasen. Glas und damit vergesellschaftete Minerale	1
7.3.1 Glas und tertiäre Phasen in einem Amphibol-führenden Wehrlit	
7.3.2 Glas und tertiäre Phasen in einem Amphibol-führenden Lherzolith	
7.3.3 Glas und tertiäre Phasen in einem Phlogopit-führenden Wehrlit	
7.3.4 Glas und tertiäre Phasen in einem Lherzolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 1	
7.3.4 Glas und tertiäre Phasen in einem Lherzolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 2	
7.3.5 Glas und tertiäre Phasen in einem " <i>composite</i> " Erdmantelxenolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 1	
7.3.5 Glas und tertiäre Phasen in einem " <i>composite</i> " Erdmantelxenolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 2	
8. DISKUSSION	
8.1 Modale Metasomatose in den untersuchten Erdmantelxenolithen	
Disseminierte Form	
Metasomatische Adern: Lherzite	
Metasomatische Adern: Pyroxenite	
8.2 Geothermometrie	
8.3 Gläser der untersuchten Erdmantelxenolithe	
8.3.1 Prozesse während des Erdmantelxenolith-Transports an die Erdoberfläche. Bildung von Glas	
Zerfall der wasserhaltigen Minerale	

Wechselwirkung des Peridotits mit dem Hostmagma	198
8.3.2 Klassifizierung der untersuchten Gläser	199
9. CONCLUSIO	203
10. LITERATURVERZEICHNIS	206
ANHANG:	
I. ABBILDUNGSVERZEICHNIS	213
II. TABELLENVERZEICHNIS	223
III. PETROGRAPHIE DER REPRÄSENTATIVEN PROBEN	224

DANKSAGUNG

Diese Arbeit wurde im Rahmen des Forschungsprojektes "The geochemical and petrological evolution of the lithospheric mantle beneath Patagonia, Argentina" (FWF grant P 23557) vom Österreichischen Wissenschaftsfonds gefördert.

In erster Linie möchte ich mich bei meinem Betreuer Prof. Theodoros Ntaflos für seine unermüdliche Hilfe bei der Realisierung dieser Arbeit bedanken. Die zahlreichen Diskussionen haben zum besseren fachlichen Verständnis sehr beigetragen. Für die unendliche Geduld, konstruktive Kritik und das Entgegenkommen bin ich sehr dankbar!

Ein besonderer Dank gilt Dr. Ernesto Bjerg (Instituto Geológico del Sur) für die Möglichkeit der Gesteinsprobengewinnung in Patagonien und für seine herzliche Gastfreundschaft!

Ebenfalls möchte ich mich bei Franz Kiraly (Betreuung der Elektronenstrahlmikrosonde) für seine Informationsbereitschaft bedanken.

Bei meinen Studienkollegen Martha Papadopoulou, Astrid Janisch und Peter Proßegger bedanke ich mich dafür, dass sie mir stets mit viel Hilfsbereitschaft zur Seite standen. Ein besonderer Dank gilt Andrea Mundl für ihre konstruktive Kritik und die hilfreichen Anregungen. Ich möchte mich außerdem bei meinen Korrekturlesern Angelika Kern und Wencke Wegner für die Korrektur dieser Arbeit ganz herzlich bedanken.

Mein größter Dank gilt meiner Familie. Ohne ihren starken emotionalen Rückhalt, ihre Liebe und ihr Vertrauen in mich, wäre diese Arbeit nicht möglich gewesen.

Danke!

VI

ABSTRACT

Mantle xenoliths from the locality *Estancia Lote 17*, *Santa Cruz Province*, *Argentina*, are spinel-bearing lherzolites, harzburgites and wehrlites. Composite xenoliths, consisting of pyroxenites and spinel-bearing lherzolites or harzburgites, are present as well.

The lithospheric mantle beneath this area has been affected by multiple modal metasomatic events as can be inferred from the presence of amphibole, phlogopite, pyroxene and apatite.

A first detectable modal metasomatic event is related to the introduction of disseminated up to 8 mm in diameter coarse grained pargasitic amphiboles (Mg#=81.7-91.1) and dark phlogopite plates (Mg#=88.1-91.1) in Iherzolites and wehrlites.

Amphibole- and phlogopite-rich veinlets with high TiO₂-content of up to 5.06 and 6.39 wt%, respectively, that crosscut the peridotite due to crack propagation, are present as well.

The second distinct metasomatic event is related to the composite xenoliths: unusual orthopyroxene-rich peridotites, with orthopyroxene modal proportion of up to 37 vol.-%, suggest interaction with a *silica-saturated* melt. Textural and chemical evidences indicate a replacement of olivine by orthopyroxene due to the interaction with this melt. Up to 1 mm thick veinlets consisting mainly of second generation fine grained orthopyroxene (200-700 microns in diameter) propagate intergranular along a coarse grained matrix of olivine and orthopyroxene. This can be attributed to grain-boundary infiltration. Other minerals found in the veinlets are amphibole, phlogopite and clinopyroxene. The presence of the hydrous phases suggests that the metasomatic agent was *volatile-bearing*.

The primary olivine exhibits light to moderate intracrystalline deformation, such as undulose extinction, kink bands etc. The second generation pyroxenes, on the other hand, are strain-free, indicating that the metasomatic event took place after the deformation. Furthermore, the absence of glass suggests that the metasomatic event occurred long before their entrainment into the ascending magma.

The last evident metasomatic event took place during the entrainment of the xenoliths into the ascending magma and transport to the Earth's surface, where amphibole- and phlogopite-breakdown, as well as dissolution of pyroxene by *silica-undersaturated* melt occurred.

Amphibole shows breakdown reactions and pseudomorphic replacement by glass and fine grained tertiary generation of olivine, clinopyroxene and spinel. The intensity of the breakdown reaction is variable. In most cases amphibole occurs as a relict within these pseudomorphs. Tertiary clinopyroxene in optically amphibole-free melt pockets contain amphibole remnants. This suggests that these melt pockets are the product of amphibole breakdown.

The phlogopite breakdown produces the fine grained tertiary generation of olivine and spinel as well as glass; clinopyroxene is usually absent.

VII

The instability of pyroxene is a result of the interaction with a silica-undersaturated melt, as a consequence of host magma infiltration and/or breakdown of the hydrous phases. The dissolution of the orthopyroxene led to the formation of the tertiary generation of olivine, clinopyroxene and spinel. The instability of the clinopyroxene is indicated by the formation of a "spongy" structure that consists of glass and clinopyroxene with different composition.

Since this metasomatic event affected both primary and secondary orthopyroxene as well as amphibole and phlogopite, it should be considered as the very last event that took place during the transport of the xenoliths by the basalts to the Earth's surface.

ZUSAMMENFASSUNG

Die Erdmantelxenolithe aus der Lokalität *Estancia Lote 17, Santa Cruz Provinz, Argentinien,* sind durch Spinell-führende Lherzolithe, Harzburgite und Wehrlite vertreten. Die *"composite"* Erdmantelxenolithe, die aus Pyroxeniten und Spinell-führenden Lherzolithen oder Harzburgiten zusammengesetzt sind, kommen ebenfalls vor.

Die Präsenz der Phasen Amphibol, Phlogopit, Pyroxen und Apatit im Peridotitgestein deutet darauf hin, dass der lithosphärische Mantel unterhalb dieser Region stark durch eine modale Metasomatose beeinflusst wurde. Es sind mehrere Ereignisse der Metasomatose feststellbar.

Das erste nachweisbare metasomatische Event ist auf die Zufuhr der wasserhaltigen Minerale in den Peridotit zurückzuführen: Amphibol und Phlogopit treten in einer disseminierten Form innerhalb der Lherzolithe und Wehrlite auf. Der Amphibol (Mg#=81,7-91,1), mit der Kristallgröße von bis zu 8 mm im Durchmesser, weist eine pargasitische Zusammensetzung auf. Die dunkelbraunen Phlogopitkristalle (Mg#=88,1-91,1) erreichen eine Kristallgröße von bis zu 3 mm im Durchmesser.

Die amphibol- und phlogopitreichen Adern, mit einem hohen TiO₂-Gehalt von bis zu 5,06 Gew.-% für den Amphibol und 6,39 Gew.-% für den Phlogopit, kommen ebenfalls vor. Diese Adern, die den Hostperidotit quer durchschneiden, deuten auf *crack-propagation* im Gestein hin.

Das Vorkommen der "*composite*" Erdmantelxenolithe ist auf das zweite nachweisbare metasomatische Ereignis zurückzuführen. Der modale Mineralbestand dieser Proben erreicht bis zu 37 Vol.-% für Orhopyroxen. Dies deutet auf eine Wechselwirkung des Peridotits mit einer siliziumgesättigten Schmelze hin, was zur Verdrängung des Olivins durch den Orthopyroxen führte. Das Perkolieren der Schmelze erfolgte entlang der Kristallgrenzflächen der primären Phasen des Hostperidotits durch *grain boundary infiltration*. Die Pyroxenitadern erreichen bis zu 1 mm Breite und sind zum großen Teil aus feinkörnigem, sekundär gebildetem Orthopyroxen (200-700 µm im Durchmesser) zusammengesetzt. Untergeordnet kommen Amphibol, Phlogopit und Klinopyroxen vor. Die Anwesenheit der wasserhaltigen Minerale legt nahe, dass diese metasomatische Schmelze volatile Komponenten enthielt.

Die primären Olivine des Hostperidotits zeigen eine leichte bis mittelstarke intrakristalline Deformation in Form von undulöser Auslöschung, *kink band*s etc. Die sekundären Pyroxene lassen hingegen keine Art der Verformung erkennen. Dies deutet darauf hin, dass das metasomatische Event *nach der Deformation* erfolgte. Das Fehlen der Gläser legt auf der anderen Seite nahe, dass dieses metasomatische Ereignis lange *vor dem Einzug* der Erdmantelxenolithe in das aufsteigende Hostmagma stattfand.

IX

Das letzte metasomatische Ereignis fand während des Einzugs der Erdmantelxenolithe in das aufsteigende Hostmagma und deren Transport an die Erdoberfläche statt. Es kam zum Zerfall des Amphibols und des Phlogopits, sowie zum Zerfall der Pyroxene.

Der Amphibolzerfall führte zur Bildung der Glas-Kristall-Aggregate, wobei der Kristallanteil aus dem tertiären Olivin, Klinopyroxen und Spinell besteht. Die Intensität des Zerfalls variiert beträchtlich je nach Probe. In den meisten Fällen liegt der Amphibol innerhalb solcher Glas-Kristall-Aggregate als Relikt vor. In *"melt pockets"*, wo auf den ersten Blick keinen Amphibol zu erkennen ist, enthalten die tertiären Klinopyroxene oft Amphibolrelikte in Form von Einschlüssen. Dies deutet darauf hin, dass solche *"melt pockets"* Produkte des Amphibolzerfalls darstellen.

Aufgrund des Phlogopitzerfalls wurden die tertiären Phasen Olivin, Spinell und Glas gebildet. Der Klinopyroxen fehlt in der Regel.

Eine Destabilisierung des Pyroxens wurde durch die Wechselwirkung mit den siliziumuntersättigten Schmelzen hervorgerufen. Diese Schmelzen entstammten einerseits dem Hostbasalt und wurden andererseits aufgrund des Amphibol- und Phlogopitzerfalls gebildet. Der Zerfall des Orthopyroxens führte zur Bildung von Glas und tertiären Olivin, Klinopyroxen und Spinell. Die Destabilisierung des Klinopyroxens führte zur Bildung der *"spongy"*-Strukturen. Solche Strukturen sind aus dem Glas und dem Klinopyroxen mit einem veränderten Chemismus, im Vergleich mit dem Kristallkern, zusammengesetzt.

In der relativen zeitlichen Abfolge stellt dieses metasomatische Ereignis das letzte Event da, denn die Metasomatose hat sowohl die primäre als auch die sekundäre Generation der Orthopyroxene, sowie die wasserhaltigen Minerale beeinflusst.

1. EINFÜHRUNG

1.1 Der innere Aufbau der Erde im Überblick

Forschungsergebnisse der Geophysik zeigen, dass der Planet Erde schalenförmig aufgebaut ist. Die Erkenntnisse über Aufbau des *gesamten* Erdinneren basieren auf *indirekten* Beobachtungen und werden mit Hilfe seismischer Messungen gewonnen. Die Ausbreitungsvorgänge der Erdbebenwellen im Inneren der Erde lassen sich dabei mittels Seismographen der weltweit verteilten Erdbebenstationen aufzeichnen (Okrusch & Matthes, 2009). Aufgrund der drei großen seismischen Diskontinuitäten lässt sich das Erdinnere in einzelne Schalen – Erdkruste, Erdmantel und Erdkern (der innere sowie der äußere Kern) – unterteilen:

- Die Mohorovičić-Diskontinuität (kurz: *Moho*) bestimmt die Basis der Erdkruste. Dadurch wird die Erdkruste von dem darunter liegenden Erdmantel getrennt. Die Moho liegt unter der ozeanischen Kruste ca. 5-7 km und unter der kontinentalen Kruste meist 30-40 km tief.
- Die Diskontinuität in der Tiefe von 2.900 km bestimmt die Grenze zwischen dem Erdmantel und Erdkern (Ringwood, 1979); diese Diskontinuität wird die Gutenberg-Diskontinuität, nach dem deutschen Geophysiker Beno Gutenberg, genannt.
- Die Diskontinuität in der Tiefe von 5.080 km (Ringwood, 1979) [andere Quellen:
 5.200 km (Condie, 2005); 5.150 km (Bukowinski, 1999)] bestimmt die Grenze zwischen dem inneren und dem äußeren Erdkern.

Die kleineren, jedoch wichtigen seismischen Diskontinuitäten befinden sich in einer Tiefe von 50-200 km, 410 km sowie 660 km.

Die seismischen Diskontinuitäten werden aufgrund von Änderung der Wellenausbreitung im Erdinneren, ihrer Geschwindigkeit sowie Richtung bestimmt. Die Wellenausbreitung ist von physikalischen Konstanten, welche die mechanischen Eigenschaften des Erdkörpers beschreiben – Kompressionsmodul, Scherungsmodul sowie Dichte – abhängig (Abb. 1.2). Diese drei Größen sind wiederum von Druck (demzufolge von der Tiefe), Temperatur, mineralogischer sowie chemischer Zusammensetzung und dem Grad der partiellen Aufschmelzung abhängig. Infolgedessen lassen sich die auf seismischem Wege gewonnenen Ergebnisse über Aufbau des Erdinnern petrologisch und geochemisch interpretieren. Danach ergibt sich die folgende Gliederung des Planeten Erde (Abb. 1.1):

 Die Erdkruste bildet die äußere Schale der Erde. Die Dicke der Erdkruste variiert abhängig von der geologischen Situation des Gebietes von ca. 5-7 km (ozeanische Erdkruste) bis zu ca. 50 km (kontinentale Erdkruste innerhalb der Orogenzonen). Die ozeanische Erdkruste weist eine Basalt- und Gabbrozusammensetzung auf; ihre mittlere Dichte beträgt demzufolge ca. 2,9 g/cm³. Die kontinentale Erdkruste ist aus siliziumreicheren Gesteinen wie Graniten und Gneisen zusammengesetzt und weist dementsprechend eine meistens geringere Dichte mit ca. 2,7 g/cm³ auf.

Zur *Lithosphäre* (50-300 km dick) gehören die Erdkruste sowie der oberste rigide Erdmantel.

- Der Erdmantel erstreckt sich von Moho-Diskontinuität bis zu 2.900 km Tiefe und weist
 i. Allg. eine magnesiumsilikatische Zusammensetzung auf. Eine detaillierte Beschreibung des Erdmantels ist in Abschnitt 1.2 zu finden.
- Der Erdkern wird in einen äußeren und einen inneren Kern gegliedert. Der äußere Erdkern erstreckt sich von ca. 2.900 km bis zu 5.200 km Tiefe, ist flüssig und weist eine Dichte von ca. 9,9 g/cm³ (nahe der Mantel-Kern-Grenze) bis ca. 12,2 g/cm³ (äußerer Kern-innerer Kern-Grenze). Der innere Kern (ca. 5.200-6.370 km Tiefe) befindet sich im festen Zustand und weist eine Dichte von etwa 12,6-13,0 g/cm³ auf. Die chemische Zusammensetzung des inneren Kerns besteht bis zu 80 % aus Eisen, während jene von Nickel ca. 20 % beträgt. Der äußere Kern beinhaltet außer dem metallischen Anteil auch leichtere Elemente wie Silizium, Schwefel und Sauerstoff.

Abb. 1.1: Struktur des Erdinneren. Aus: www.nature.com

Abb. 1.2:Für die Geschwindigkeit von P- und S-
Wellen geltende Gleichungen.
ν_p: P-Wellengeschwindigkeit;
ν_s: S-Wellengeschwindigkeit;
K: Kompressionsmodul (beschreibt
die relative Volumenverminderung
bzw. Dichteerhöhung bei Zunahme
des allseitigen Drucks um dP);
μ: Scherungsmodul, beschreibt den
Widerstand einer Masse gegen
elastische Formveränderungen;
p: Dichte. Aus Kertz, 1969.

1.2 Der Erdmantel

Der Erdmantel ist jener Bereich des Erdinneren der zwischen der Erdkruste und dem Erdkern liegt. Er beträgt 83 Vol.-% der gesamten Erde und 67 % der Erdmasse. Der Erdmantel wird in zwei Schalen unterteilt: der *obere* und der *untere* Erdmantel. Der obere Erdmantel erstreckt sich von der Moho-Diskontinuität (Kruste-Mantel Grenze) bis in eine Tiefe von 410 km. In der Tiefe zwischen 410 und 660 km befindet sich eine Übergangszone die den oberen von dem unteren Erdmantel trennt. Der untere Erdmantel beginnt mit der Tiefe von 660 km und reicht bis zur Gutenberg-Diskontinuität (2.900 km Tiefe), welche die Erdmantel-Erdkern Grenze definiert.

MÖGLICHE MINERALPARAGENESEN IM ERDMANTEL

Die geophysikalischen sowie die experimentellen (Pyrolit-Modelle) Daten weisen darauf hin, dass der Erdmantel i. Allg. eine *peridotitische Zusammensetzung* aufweist. Die Erdmantelxenolithfunde bestätigen diese Annahme. (Bemerkung: Pyrolit repräsentiert eine angenommene chemische Zusammensetzung des gesamten Erdmantels, die aus 3 Teilen Dunit und 1 Teil Basalt besteht (Green & Ringwood, 1963)).

Peridotit ist i. Allg. aus gesteinsbildenden Mineralen – Olivin, Orthopyroxen, Klinopyroxen sowie einer Aluminiumphase – zusammengesetzt. Die Hochdruckexperimente zeigen, dass diese Phasen eine Änderung der Mineralparagenese mit der Tiefe aufweisen, was auf einen Druckanstieg zurückzuführen ist (Ringwood, 1982; Ringwood, 1991; Akaogi et al., 1989) (Abb. 1.3).

Für den obersten Erdmantel, wo ein Druck bis zu 5-10 kbar und eine Temperatur von ca. 800-1.000 °C herrschen, ist die Mineralparagenese Olivin + Orthopyroxen + Klinopyroxen + Plagioklas als Aluminiumphase charakteristisch. Aufgrund von Druckerhöhung mit zunehmender Tiefe ist der Plagioklas nicht mehr stabil und als neue Aluminiumphase wird Spinell gebildet. Im Erdmantelbereich mit einem Druck von ca. 10-20 kbar ist die Mineralparagenese Olivin + Orthopyroxen + Klinopyroxen + Spinell stabil. Ab einem Druck von ~18 kbar und höher bildet sich ein pyropreicher Granat anstatt des Spinells, der in der Tiefe bis zu ca. 400 km stabil bleibt. In diesem Stabilitätsfeld ist demzufolge die Mineralparagenese Olivin + Orthopyroxen + Klinopyroxen + Granat zu erwarten. Man beachte, dass in den tieferen Bereichen des oberen Erdmantels der Orthopyroxen in Klinopyroxen (Klinoenstatit) übergeht, denn der Orthopyroxen ist nur bis zu einer Tiefe von 300 km (ca. 100 kbar) stabil.

Die Übergangszone zwischen 410 und 660 km ist u. a. durch eine Hochdruckphasentransformation des Olivins charakterisiert (Abb. 1.4). Dabei wandelt sich die Phase in dichtere Modifikationen mit dichter gepackten Kristallstrukturen um. Die im oberen Erdmantel stabile Olivinmodifikation (α -Phase) transformiert sich zunächst in die

3

EINFÜHRUNG

Olivin-B-Phase (ca. 410-500 km Tiefe) und dann in die Olivin-y-Phase (ca. 500-660 km Tiefe). Die β-Phase wird ebenfalls Wadsleyit genannt und weist eine spinellartige Struktur auf. Die y-Phase heißt auch Ringwoodit und hat eine echte Spinellstruktur. Der 300 km Tiefe ab ca. beginnende Abbau des Orthound Klinopyroxens zugunsten von Granat reicht bis in 460 km Tiefe. Unterhalb dieses Niveaus herrscht zunächst die Mineralparagenese Wadsleyit Granat und + dann Ringwoodit + Granat, wobei der Granat durch Majorit vertreten ist.

Majorit ist ein pyropreicher Granatmischkristall, in dem die zwei Al-Atome auf dem Oktaederplatz durch je ein zusätzliches Mg-Atom und ein (oktaedrisches) Si-Atom ersetzt sind.

Die Grenze zwischen der Übergangszone und dem

Abb. 1.3: Oben: P-I-Diagramm mit den Stabilitätsfeldern von Plagioklas-Lherzolith, Spinell-Lherzolith und Granat-Lherzolith. Subsolidus-Phasenübergänge sind als gelbe Linien angegeben. Die blauen Felder bezeichnen Phasenübergänge von Olivin zu den Mg-Si-Hochdruckphasen. Nach *Wyllie, 1981*; aus *Winter, 2001.* Unten: Schematische Reaktionsgleichungen der Subsolidus-Phasenübergänge. Nach *Wilson, 1989.*

unteren Erdmantel ist durch einen beginnenden Zerfall von Ringwoodit in eine MgSiO₃-Phase mit Perowskitstruktur + Magnesiowüstit (Mg,Fe)O markiert. Diese Reaktion braucht einen Druck von ca. 240 kbar sowie eine Temperatur von ca. 2.200°C. Der Majoritgranat wird in Magnesium- und Kalziumperowskit abgebaut. Seine Stabilität endet mit einer Tiefe von 720 km.

DER OBERE ERDMANTEL

Der oberste Teil des Erdmantels befindet sich in einem festen Zustand und bildet zusammen mit der Erdkruste die Lithosphäre. Unterhalb dieses starren Mantelteils, in Tiefen von etwa

(a) Olivin zu Ringwoodit

 $\begin{array}{cc} \alpha\text{-}(Mg,Fe)_2SiO_4 & \longrightarrow & \beta\text{-}(Mg,Fe)_2SiO_4 & \longrightarrow & \gamma\text{-}(Mg,Fe)_2SiO_4 \\ \\ Olivin & Wadsleyit & Ringwoodit \end{array}$

(b) Orthopyroxen zu Granat

 $2Mg_2Si_2O_6 = Mg_3MgSi^{(6)}(Si^{(4)}O_4)_3$ Enstatit Granat

(c) Ringwoodit zu Mg-Perowskit + Magnesiowüstit

 γ -(Mg,Fe)₂SiO₄ = MgSiO₃ + (Mg,Fe)O

Ringwoodit Mg-Perowskit Magnesiowüstit

Abb. 1.4: Oben: Phasendiagramm für den oberen Erdmantel, die Übergangszone, und den beginnenden unteren Erdmantel. Nach *T. Stachel*; aus: www.dmg-home.de/pdf/Stachel-Folien.pdf. Unten: (a) Umwandlung von Olivin in Phasen gleicher chemischer Zusammensetzung jedoch höherer Dichte; (b) Eine der möglichen Reaktionsgleichungen, die den Abbau von Orthopyroxen zugunsten von Granat beschreibt; (c) Die Reaktionsgleichung beschreibt einen Zerfall von Ringwoodit in Mg-Perowskit und Magnesiowüstit an der Grenze zwischen Übergangszone und unterem Erdmantel (660-km-Diskontinuität). Aus Okrusch & Matthes, 2009.

Ringwood, 1967c; Jaques & Green, 1980) (Abb. 1.5). Die herrschenden P (Druck)-T

60-250 km, liegt die *Low-Velocity-Zone* (LVZ) die durch eine Verringerung der P- und S-Wellen um ca. 3-6 % gekennzeichnet ist. Sie charakterisiert den Übergang der rigiden Lithosphäre zur duktilen Asthenosphäre.

Als Asthenosphäre definiert man den Bereich, in dem sich der obere Erdmantel bei vertikalen und horizontalen Bewegungen, d.h. bei Isostasie und sea-floor spreading, als relativ mobil, also fließfähig erweist (Okrusch & Matthes, 2009). Die Asthenosphäre unterscheidet sich von der Lithosphäre i. Allg. durch ihre mechanischen und nicht Eigenschaften chemischen (Winter, 2001).

Peridotitgesteine des oberen Erdmantels sind durch Lherzolithe, Harzburgite, Wehrlite sowie Dunite Ergebnisse der vertreten. experimentellen Petrologie, basierend auf Pyrolit-Modellen, liefern Hinweise. dass die basaltischen Magmen durch partielle Anatexis des oberen Erdmantels entstehen, wobei Lherzolithe, Harzburgite oder Dunite als Restgestein zurückbleiben (z.B. Green & (Temperatur) Bedingungen sowie der Anteil an volatilen Komponenten bestimmen den Grad des partiellen Aufschmelzens, den Typ der daraus entstandenen Schmelze sowie die Natur des Residuums. Die partielle Aufschmelzung eines Lherzoliths führt i. Allg. zur Bildung einer Ca-Al-reichen, basaltischen Schmelze während ein Ca-Al-armer Harzburgit oder Dunit als Residuum bleibt. Die Aufschmelzprozesse führen demzufolge zu mineralogischen und chemischen Heterogenität des oberen Erdmantels. Dabei verarmen gewisse Bereiche des Erdmantels an K, Na, Ca, Al und Si sowie an inkompatiblen Spurenelementen während Mg relativ angereichert wird (Okrusch & Matthes, 2009). Infolgedessen bestehen weite Bereiche des oberen Erdmantels nicht mehr aus primitivem, sondern aus verarmtem (depleted) Peridotit.

1.3 Erdmantelxenolithe

Wie bereits erwähnt, erlauben geophysikalische Methoden sowie experimentelle Petrologie und Geochemie Einblicke ins Erdinnere auf *indirektem* Wege. Untersuchung der Erdmantelxenolithe liefert wichtige Erkenntnisse über Aufbau des *oberen* Erdmantels auf *direktem* Wege.

Erdmantelxenolithe repräsentieren Gesteinsfragmente welche einen ultramafischen Charakter aufweisen und deren Ursprung im oberen Erdmantel liegt. Sie kommen in der Regel in Form von abgerundeten Knollen vor und erreichen einen bis zu mehreren 10-er cm Durchmesser. Solche Gesteinsfragmente des oberen Erdmantels werden durch Vulkanausbrüche an die

an Erdoberfläche gebracht. Xenolithe von Spinell-Lherzolith, Harzburgit und Dunit kommen oft in Vulkaniten der Reihe Alkali-Olivin-Basalt - Basanit -Nephelinit vor. Sie sind in der Regel in Tuffen, Schlottbrekzien oder Mandelsteinen zu finden. Erdmantelxenolithe in Alkalibasalten stammen aus einer Tiefe von 35-100 km. Xenolithe von Granat-Lherzolith sowie Granat-

Abb. 1.5: Partielle Aufschmelzung eines Lherzoliths führt zu einem harzburgitischen oder dunitischen Residuum und basaltischer Schmelze. Nach *Brown & Mussett, 1993.*

Pyroxenit und Eklogit sind oft in Kimberlitdiatremen zu finden die meist in archaischen Kontinentalschilden auftreten. Diese Gesteinsfragmente gelangen von deutlich größerer Tiefe (>100 km) an die Erdoberfläche.

Die vorliegende Arbeit beschäftigt sich mit der petrologischen und geochemischen Charakterisierung sowie metasomatischen Prozessen des subkontinentalen lithosphärischen Erdmantels unterhalb des südpatagonischen Massivs, Patagonien.

Die Mehrheit der untersuchten Gesteinsproben ist durch eine starke modale Metasomatose gekennzeichnet.

1.4 Was ist Metasomatose?

1.4.1 Allgemeine Definition

Metasomatose [griech. $\mu\epsilon\tau\alpha$ (meta = Änderung) und $\sigma\omega\mu\alpha$ (sóma = Körper)] stellt i. Allg. eine *allo*chemische Metamorphose dar, die durch eine Zufuhr und/oder Abfuhr von chemischen Komponenten eine erhebliche Veränderung im Gestein bewirkt. Dabei verbleibt das betroffene Gestein im festen Zustand.

Der Begriff *Metasomatose* wurde 1826 von dem deutschen Geologen und Klristallographen Carl Friedrich Naumann eingeführt. Die aktuelle Definition für die Metasomatose die von IUGS SSMR (The International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks) vorgeschlagen wurde, lautet folgendermaßen:

Metasomatism is a metamorphic process by which the chemical composition of a rock or rock portion is altered in a pervasive manner and which involves the introduction and/or removal of chemical components as a result of the interaction of the rock with aqueous fluids (solutions). During metasomatism the rock remains in a solid state.

Nach der vorherrschenden *Art vom Massentransport* werden zwei Haupttypen der Metasomatose unterschieden (Zharikov et al., 2007):

 Diffusions-Metasomatose – ist ein Typ der Metasomatose der durch eine Diffusion von gelöster Substanz aus einer stagnierenden Lösung erfolgt. Die Triebkraft ist der chemische Potenzialgradient in der Gesteinsporenlösung. Das metasomatisch überprägte Gestein zeigt meistens einen schmal zonierten Rand entlang der Kontaktfläche (z.B. entlang von Bruchflächen, Adern etc.). Der Profil der metasomatischen Zone zeigt eine kontinuierliche Veränderung der mineralogischen Zusammensetzung.

EINFÜHRUNG

2. Infiltrations-Metasomatose – Transport eines Materials in einer Lösung, die durch die Infiltration in das Umgebungsgestein gelangt. Die treibende Kraft ist in diesem Fall der Druck- und der Konzentrationsunterschied zwischen der infiltrierenden Lösung und der Gesteinsporenlösung. Die auf diese Weise entstandenen Metasomatite besitzen ein viel größeres Volumen als diejenigen des ersten Typs. Die mineralogische Zusammensetzung des Metasomatits bleibt konstant innerhalb von jeder metasomatischen Zone.

Eine *metasomatische Zone* wird durch eine, für diese Zone, spezifische Mineralparagenese definiert. Eine regelmäßige Abfolge der metasomatischen Zonen, die sich unter gleichen (ähnlichen) physikalisch-chemischen Bedingungen entwickelt, wird eine *metasomatische Fazies* genannt (IUGS SSMR). Unter physikalisch-chemischen Bedingungen werden die folgenden Parameter verstanden:

- Temperatur,
- Druck,
- chemische und mineralogische Zusammensetzung des Ausgangsgesteins,
- chemische Zusammensetzung der fluiden Phase/Schmelze,
- Art des metasomatischen Prozesses,
- Stadium (Phase) der Metasomatose.

1.4.2 Metasomatose im Erdmantel

DEFINITION

Erdmantelmetasomatose ist eine Änderung der chemischen Zusammensetzung im Erdmantel-Nebengestein (*mantle wall-rock*) durch die Wechselwirkung mit fluiden Phasen und/oder Schmelzen (Lloyd & Bailey, 1973).

Der "*wall-rock*" wird i. Allg. durch Peridotite – Lherzolithe, Harzburgite und Wehrlite – repäsentiert. Fluide Phasen zeigen eine große Vielfalt in ihrer chemischen Zusammensetzung: C-O-H-Fluide (vom Wasser, Kohlenstoffdioxid bis hin zum Methan), Salzlösungen, Hydro-Silikat-führende Fluide, Kohlenwasserstoff-führende Fluide etc. Die aufsteigenden Schmelzen, die ebenfalls eine Metasomatose im Erdmantel auslösen können, weisen eine silikatische (von mafisch bis hin zu ultramafisch), karbonatitische oder eine sulfidische Zusammensetzung auf.

TYPEN DER ERDMANTELMETASOMATOSE

Eine Erdmantelmetasomatose kann *mit* oder *ohne* Änderung der petrographischen Charakteristika des Gesteins verlaufen. Auf Grund dessen werden die folgenden Metasomatose-Typen unterschieden:

- Eine *kryptische* Metasomatose verursacht eine Änderung der chemischen Zusammensetzung (insbesondere des Spurenelementgehalts) von bereits vorhandenen (Haupt-) Phasen, ohne Hinzufügen von neuen Phasen (Dawson, 1984).
- Eine *modale* Metasomatose führt zur Bildung von neuen Mineralphasen im Gestein, zusätzlich zu bereits vorhandenen Hauptphasen (Harte, 1983).

Die Hauptphasen eines Peridotits sind Olivin, Orthopyroxen, Klinopyroxen und eine Aluminium-Phase (Granat, Spinell oder Plagioklas). Die durch eine modale Metasomatose entstandenen neuen Phasen sind Amphibol, Glimmer, Apatit, Karbonate, Sulfide, Titanit, Ilmenit, Rutil und/oder Zirkon.

 Eine "stealth"-Metasomatose führt ebenfalls zur Addition von sekundären Phasen. Der Unterschied zu der modalen Metasomatose liegt jedoch darin, dass die hinzugefügten Phasen zu den gesteinsbildenden Hauptphasen des Peridotits – Klinopyroxen, Granat, Spinell – gehören. Solch ein metasomatischer Vorgang verursacht im Grunde eine Refertilisation des vorher bereits verarmten Peridotits durch die Zufuhr von basaltischen Komponenten (Hauptelemente wie Ca, Al, Fe, Ti sowie Spurenelemente). Die Bezeichnung "stealth" ist auf petrographisch oft nicht unterscheidbare Mineralogie der primären und sekundären Phasen zurückzuführen (O'Reilly & Griffin, 2012).

MOBILITÄTSMECHANISMEN VON SCHMELZEN/FLUIDEN PHASEN IM ERDMANTEL

Die Bewegung der Schmelzen/fluiden Phasen innerhalb des Erdmantels erfolgt hauptsächlich auf zwei verschiedenen Arten (O'Reilly & Griffin, 2012):

- crack propagation ermöglicht eine schnelle Bewegung von großen Volumina an Schmelzen und/oder fluiden Phasen entlang von Brüchen und Spalten. Dies ist der Hauptmechanismus für einen Schmelzaufstieg und großräumige Intrusionen im Erdmantel. Eine Rissausbreitung wird durch den Überdruck der fluiden Phasen ausgelöst, wobei sich kurzlebige Sprödbrüche bilden.
- 2. grain-boundary infiltration ermöglicht sowohl die kryptische als auch eine modale Metasomatose. Diese Art vom Stofftransport ist deutlich langsamer. Außerdem kann ein großes Volumen an Schmelzen/Fluiden auf solche Weise nicht transportiert werden. Dieser Mechanismus wird durch die spezifische Grenzflächenenergie (Grenzflächenspannung) angetrieben. Dabei sind die Infiltrationsraten stark von der chemischen Zusammensetzung der Schmelze/fluiden Phase abhängig: ein Schmelztröpfchen (oder ein Tröpfchen der fluiden Phase) kann entweder isoliert auf der Tripelpunktkorngrenze stecken bleiben oder bildet einen Film auf der Korngrenze. Die Ausbildung solcher Filme kann zur weiteren Benetzung der benachbarten Korngrenzen und somit zur Ausbreitung und zur Fortbewegung der Schmelze führen.

Dabei spielt der Θ Benetzungswinkel der Fluiden/Schmelzen auf den Korngrenzen eine entscheidende Rolle (Abb. 1.6). Der Benetzungswinkel ist der Winkel zwischen der Korngrenze und der Oberfläche des Tröpfchens. Die Benetzungswinkel <60° erlauben die Ausbildung eines kontinuierlichen Schmelz- oder Fluidfilms auf den Korngrenzen und somit eine Bewegung der Schmelze/Fluide im Gestein 1990). (Watson et al., Die experimentellen Daten zeigen, dass der Benetzungwinkel (solidsolid-melt dihedral angle) zwischen Olivin-Olivin, Olivin-Orthopyroxen (solid phase contact) einerseits und Karbonat-, Basaltschmelzen (melt

Abb. 1.6: Benetzungswinkel von Schmelzen oder fluiden Phasen auf Korngrenzen. (a) Benetzungswinkel <60° erlauben eine Bildung von Schmelz-/Fluidenfilmen und somit eine Bewegung der Schmelze/Fluiden durch das Gestein; (b) Benetzungswinkel >60° bewirkt die Bildung von isolierten Schmelz-/Fluidentröpfchen auf den Korngrenzen und verhindert somit die Bewegung der Schmelze/Fluiden im Gestein (nach Beere, 1975)

composition) andererseits weniger als 60° beträgt (z.B. Waff & Bulau, 1979; Bulau, 1982; von Bargen & Waff, 1988). Dies deutet darauf hin, dass solche Schmelzen entlang der Olivin- und Orthopyroxenkontakten leichtbeweglich sein können. Dies ist von großer Bedeutung für die Erdmantelmetasomatose, denn der Olivin und der Orthopyroxen stellen die Hauptphasen eines Peridotits dar.

Reine fluide Phasen, wie z.B. H₂O-CO₂-Salz-Fluide, haben eine deutlich niedrigere Viskosität gegenüber einer Schmelze was eigentlich eine hohe Beweglichkeit im Gestein bedeuten sollte. Dies ist jedoch nicht der Fall, denn die *reinen* fluiden Phasen einen größeren Benetzungwinkel (>60°) aufweisen und können somit ein Gestein nicht verlassen. Demzufolge hat ein Silikatschmelze-Wasser-Gemisch deutlich bessere Aufstiegschancen, denn einerseits wird der Benetzungswinkel durch die Silikatschmelze verkleinert und andererseits die Viskosität durch die fluide Phase verringert (Markl, 2008).

Eine Kombination der beiden oben besprochenen Transportmechanismen kann zur Verbreitung von ausgedehnten metasomatischen Domänen im Erdmantel führen

(O'Reilly & Griffin, 2012).

MODALE METASOMATOSE. KLASSIFIZIERUNG

Die modale Metasomatose kann anhand der neu auftretenden Mineralphasen sowie deren Paragenese im Gestein klassifiziert werden. Die Haupttypen der modalen Metasomatose sind in Abb. 1.7 (aus *Harte & Hawkesworth, 1989*) zusammengefasst.

	erupting host	principal metasomatic mineral in peridotites	associated dykes and veins at depth
(1)	highly alkaline volcanics in continental rifts	clinopyroxene, biotite, amphibole titanomagnetite, sphene, apatite (calcite, feldspar)	clinopyroxenites (with apatite and titanomagnetite)
(2)	alkali basalt– basanite–nephelinite series	<i>kaersutite/pargasite, biotite,</i> apatite, ilmenite. clinopyroxene	Al-augite wehrlite-pyroxenite dykes, amphibole-mica (lherzite) veins
(3)	kimberlite	biotite, K-richterite, clinopyroxene, K-Ba-titanates, ilmenite, rutile, apatite, zircon. (Marid type)	MARID suite dykes and biotite-richterite veins
(4)	kimberlite	ilmenite, rutile, biotite, sulphides, clinopyroxene, garnet (Matsoku type)	opx- and cpx-rich dykes and veins, (with garnet and IRPS minerals)
(5)	kimberlite	edenite, biotite, clinopyroxene (Jagersfontein type)	rare zones rich in cpx and/or amphibole and/or biotite

Abb. 1.7: Haupttypen der modalen Metasomatose nach ihrer Paragenese. Die Klassifikation basiert auf der Gegenüberstellung von (A) eruptierendem Hostmagma, (B) im Peridotit auftrettenden metasomatischen Phasen sowie (C) von *dykes/veins* die mit diesen metasomatischen Mineralen assoziiert sind. Die rot markierte Gruppe entspricht i. Allg. der Art von Metasomatose die die untersuchten Mantelxenolithe aus der Lokalität *Estancia Lote 17* aufweisen. Klassifikation nach *Harte & Hawkesworth, 1989*.

Mehrere Autoren (Harte & Hawkesworth, 1989; Gurney & Harte, 1980; Harte, 1983; Wilshire, 1987) zeigen, dass:

- Sowohl die Erdmantelxenolithe, die durch eine modale Metasomatose überprägt worden sind (→ im Gestein überall vorhandene sekundäre Phasen in einer *dispersiven* Form)
- Als auch solche, die direkte Beweise f
 ür eine Bewegung der Schmelzen/fluiden Phasen im Erdmantel liefern (→ in Form von intrudierten dykes, veins)

häufig *zusammen* in einem Vorkommen zu finden sind. Daher ist es wahrscheinlich, dass zwischen diesen zwei Xenolitharten eine petrogenetische Verbindung existiert (Harte et al., 1993). Die Beweise für solch einen petrogenetischen Zusammenhang sind folgende (Harte et al., 1993):

• die gleichen sekundären Phasen, die dispersiv in manchen Xenolithen vorliegen, sind ebenfalls in *dykes/veins* der anderen Xenolithe eines Vorkommens zu finden; ihre

chemische Zusammensetzung ist entweder ähnlich oder zeigt eine kontinuierliche Änderung von *dyke/vein* in Richtung Peridotit.

- die einzelnen Xenolithe weisen die beiden Phänomene auf: die gleichen metasomatischen Phasen befinden sich sowohl fein verteilt im Gestein als auch innerhalb von Adern. Solch eine räumliche Nähe kann auf denselben petrogenetischen Ursprung der Schmelze/fluiden Phase hindeuten.
- eine Variabilität in der Verteilung der metasomatischen Phasen ist zu erkennen: von fein verteilten, überall vorkommenden sekundären Phasen im Gestein über die schmalen unregelmäßig verteilten Adern bis zu einzelnen relativ breiten *dykes/veins*. Dies ist auf ein unterschiedliches Ausmaß der Kanalisierung des Schmelzflusses zurückzuführen (Abb. 1.8).
- Die Hauptphasen des metasomatisch überprägten Peridotits zeigen eine Änderung ihrer chemischen Zusammensetzung (z.B. Fe/Mg, Al/Cr) in Richtung des *dyke/vein* Chemismus hin.

Abb. 1.8: Verschiedene Verteilung der metasomatischen Phasen in einem Peridotit aufgrund des unterschiedlichen Ausmaßes der Kanalisierung des Schmelzflusses. Die Pfeile zeigen den variablen Input der Schmelze in einen Peridotit (*wall-rock*). Das linke Bild: der Schmelzfluss ist relativ homogen \rightarrow die sekundären Phasen sind fein verteilt im Gestein; das mittlere Bild: an manchen Stellen ist der Schmelze-Input deutlich höher \rightarrow Bildung von metasomatischen Adern; das rechte Bild: eine starke Kanalisierung des Schmelzflusses \rightarrow Bildung von *dikes* (aus *Harte, 1993*).

2. GEOGRAPHIE UND ALLGEMEINE GEOLOGIE PATAGONIENS

2.1 Geographie Patagoniens

Patagonien stellt den südlichen Teil des südamerikanischen Kontinents mit einer Gesamtfläche von ca. 1.060.631 km² dar. Diese Region liegt südlich der Flüsse *Rio Colorado* (35-36°S) in Argentinien sowie *Bio Bio* (36-38°S) in Chile und erstreckt sich bis nach Cape Horn, dem südlichsten Punkt von Südamerika (56°S) (Abb. 2.1). Patagonien wird im Westen

vom Pazifischen und im Osten vom Atlantischen Ozean begrenzt. Man beachte, dass eine festgelegte genaue. geographische Abgrenzung von Patagonien nicht existiert. Patagonien wird in zwei Bereiche - Westund Ostpatagonien - unterteilt, wobei die Trennung entlang der Anden verläuft. Westpatagonien gehört überwiegend zu Chile (ca. 24,5 % der Gesamtfläche Patagoniens), während Ostpatagonien in Argentinien (75,5 % der Gesamtfläche) liegt. Der argentinische Teil Patagoniens mit seiner ca. 800.000 km² Fläche wird in fünf Provinzen unterteilt:

- Neuquén
- Rio Negro
- Chubut
- Santa Crus
- Terra del Fuego

Abb. 2.1: Geographische Karte von Patagonien. Aus: www.patagoniaworld.it

2.2 Allgemeine Geologie Patagoniens

In Bezug auf die Geologie zeigt Patagonien einen sehr komplexen Aufbau, der die Herkunft und eine lange geologische Entwicklung dieser Region widerspiegelt (Abb. 2.2).

Patagonien grenzt im Norden an den südamerikanischen Kraton wobei der Nordrand Patagoniens durch die Huincul Störung markiert wird. Im Westen der Region befindet sich der aktive Kontinentalrand, wo zwei ozeanische Platten unter die südamerikanische Platte subduziert werden. Infolge dieser Subduktion werden die Patagonischen Anden, die zwischen dem 39°S und dem 53° südlichen Breitengrad liegen, gebildet. Östlich der Patagonischen Anden befindet sich die Patagonische Plattform, die aus zwei großen Massiven zusammengesetzt ist:

- Das Nordpatagonische Massiv, wird ebenfalls Somun Cura Massiv genannt, liegt im Norden;
- Das Deseado Massiv befindet sich im Süden.

Das Somun Cura Massiv grenzt an das Neuquén Becken (NW) und das Colorado Becken (NO) im Norden sowie an das Cañadon Asfalto Becken im Süden. Durch die Neuquén

Becken und das Colorado Becken verläuft die bereits erwähnte Huincul Störung. Das Deseado Massiv wird im Norden vom San Jorge Becken und im Süden vom Austral Becken (auch Magallanes Becken genannt) begrenzt. Diese zwei Massive stellen kratonische Bereiche, die durch die mesozoischen Becken getrennt sind, dar (Leanza, 1958; Harrington, 1962).

Abb. 2.2: Topographische Hauptmerkmale Patagoniens. Aus Ramos, 2008.

Die Entstehung Patagoniens ist eng mit der Entwicklung Gondwanas verbunden, wobei die Akkretion der kratonischen Bereiche mit Hilfe von zwei verschiedenen Modellen erklärt wurde. Von Pankhurst et al. (2003, 2006) wurde ein Modell vorgeschlagen, laut dem das Nordpatagonische Massiv bereits im frühen Paläozoikum (spätestens ab Ordovizium) ein Teil Gondwanas war. Währenddessen stellte das Deseado Massiv eine allochtone Einheit dar, die im Laufe des Karbon an das Nordpatagonische Massiv angeschlossen wurde. Es wird angenommen, dass die Angliederung infolge einer nord-östlichen Subduktion des Ozeanbodens an das Nordpatagonische Massiv stattfand, wobei die Subduktionszone unterhalb der mesozoisch-känozoischen Sedimente des San Jorge Beckens liegt. Das Modell von Pankhurst et al. (2003, 2006) basiert auf den Ergebnissen die aus der U-Pb Zirkon Datierung, geochemischen sowie Isotopenanalysen der magmatischen und metamorphen Gesteine resultieren.

Laut dem Modell nach Ramos (2008) wurden die kratonischen Bereiche – das Nordpatagonische- und das Deseado Massiv – bereits vor der Angliederung an Gondwana miteinander vereint. Diese Akkretion ereignete sich im Frühpaläozoikum als Folge einer südwärtsgerichteten Subduktion. Später, während des Karbon, fand ein weiteres Akkretionsereignis statt: die bereits vereinten kratonischen Einheiten kollidierten mit dem südamerikanischen Kraton Gondwanas. Die Akkretion erfolgte entlang der Río Colorado Zone, wobei die ozeanische Platte unterhalb des Nordpatagonischen Massivs subduziert wurde.

Ramos (2008) definierte zwei verschiedene metamorph-magmatische Gürtel phanärozoischen Alters innerhalb Patagoniens: der nördliche und der westliche Gürtel (Abb. 2.3). Der nördliche metamorph-magmatische Gürtel befindet sich südlich der Neuquén- und Colorado Becken und verläuft von der Stadt Bariloche im Nordwesten bis zu dem Gebiet Sierra Grande im Nordosten (Varela et al., 1998a; Basei et al., 1999). Der westliche Gürtel verläuft von Bariloche weiter nach Südosten, über San Jorge Becken und dem nordöstlichen Teil des Deseado Massivs bis zum Atlantik.

Der nördliche metamorph-magmatische Gürtel wurde in der Zeit zwischen Kambrium und Perm geformt, wobei die Bildung der Erdkruste in vier verschiedenen Stadien erfolgte: 530-500 Ma, 485-470 Ma, ca. 300 Ma sowie 290-250 Ma (Pankhurst et al., 2006). Im östlichen Bereich des Gürtels zeigen die ordovizischen Granitoide ein Kristallisationsalter von 475 Ma (Varela et al., 1998a, 2005, 2007; Pankhurst et al., 2006). Die Wirtsgesteine der Plutonite sind durch Metamorphite der Amphibolitfazies vertreten.

Bildung des westlichen metamorph-magmatischen Gürtels erfolgte in der Zeitspanne Devon-Perm innerhalb vier Episoden: vor ca. 400 Ma, 320-310 Ma, 290-270 Ma sowie 270-250 Ma. Im nördlichen Bereich des Gürtels, nahe San Martín de los Andes, treten Tonalit-Gneise (354 \pm 4 Ma, 324 \pm 6 Ma) sowie Biotit-führende Granodiorite (376 \pm 9 Ma) zu Tage (Dalla

15

Salda et al., 1992). Metamorphite dieser Region weisen eine Amphibolitfazies mit einem spätpaläozoischen Abkühlalter (Basei et al., 1999, 2005) auf.

Weiter im Süden, im Bereich Río Chico, sind metamorphe Gesteine der Grünschiefer- bis

Abb. 2.3: Die metamorph-magmatischen Gürtel Patagoniens. Aus Ramos, 2008.

Amphibolitfazies mit foliierten Tonaliten, Granodioriten, Myloniten sowie Kataklasiten assoziiert und weisen damit auf ein kompressives Regime hin (Dalla Salda et al., 1994). Pankhurst et al. (2006) liefern ebenfalls Hinweise auf eine Kollision des Basements im mittleren Karbon die vor der Granitintrusion im Bereich Paso del Sapo und Sierra de Pichiñanes stattfand. Es handelt sich um peraluminöse Granat-führende Leukogranite die ein Kristallisationsalter von ca. 314-318 Ma zeigen.

Metamorphe sowie magmatische Gesteine des westlichen Gürtels im Bereich von San Jorge Becken werden von kretazischen Sedimenten überlagert. Südlich des Beckens, im nordöstlichen Teil des Deseado Massivs, tritt das kristalline Gestein des westlichen Gürtels, in Form von Granitoiden und Metamorphiten, wieder zu Tage.

Die letzten Erkenntnisse zeigen, dass Patagonien aus mehreren kontinentalen Fragmenten zusammengesetzt ist, wobei das Entstehungsalter der einzelnen Teile von Paläo- bis Neoproterozoikum reicht (Mundl et al., 2015). Demzufolge besteht Nordpatagonien aus mindestens zwei kontinentalen Fragmenten die ein Entstehungsalter von 1,0-1,3 respektive 1,7 Ga aufweisen. Währenddessen ist der südliche Teil Patagoniens aus mindestens drei Teilen aufgebaut, wobei Pali Aike das älteste Fragment mit einem Entstehungsalter von 2,5 Ga darstellt. Der lithosphärische Erdmantel unterhalb der Tres Lagos Region weist ein Stabilisierungsalter von 1,9 Ga auf, während der Erdmantel unterhalb des Deseado Massivs ein relativ jüngeres Stabilisierungsalter von 1,3 Ga zeigt.

KÄNOZOISCHER VULKANISMUS

Wie bereits erwähnt, stellt die westliche Grenze Patagoniens einen aktiven Kontinentalrand dar. Zwei ozeanischen Platten – die Nazca und die Antarktische Platte – werden unter die Südamerikanische Platte im Bereich Patagoniens subduziert was eine vulkanische Aktivität in diesem Bereich der Platte hervorruft und die Entstehung der Patagonischen Anden zur Folge hat (Abb. 2.4). Die vulkanische Aktivität begann in der Kreide mit dem Zerfall Gondwanas und der Bewegung der Südamerikanischen Platte nach Westen.

In Bezug auf den Vulkanismus lässt sich diese Region in drei Bereiche unterteilen: die Südliche Vulkanische Zone (SVZ), die Austral-Vulkanische Zone (AVZ) und der Volcanic Activity Gap (VAG).

Durch die Subduktion der Nazca Platte wird die Südliche Vulkanische Zone (SVZ), die zwischen dem 39° und 46° südlichen Breitengrad liegt, gebildet. Aufgrund der relativ hohen Konvergenzraten von ca. 8 cm/Jahr (De Mets et al., 1994) und einem Subduktionswinkel von ca. 25° (Cahill & Isacks, 1992; Bohm et al., 2002) ist dieser Bereich durch eine starke vulkanische Aktivität gekennzeichnet. Im zentralen und südlichen Abschnitt der SVZ sind mehr als 34 Vulkanzentren aktiv (Corbella & Lara, 2008). Vulkanite weisen dabei eine basaltische, basaltisch-andesitische, andesitische, dazitische oder rhyolitische Zusammensetzung auf.

17

ALLGEMEINE GEOLOGIE PATAGONIENS

Durch die Subduktion der Antarktischen Platte entsteht die Austral-Vulkanische Zone (AVZ), die sich zwischen dem 49° und 53° südlichen Breitengrad befindet. Die Subduktion der Antarktischen Platte erfolgt mit relativ niedrigeren Konvergenzraten von ca. 2 cm/Jahr (Tebbens & Cande, 1997; Lagabrielle et al., 2004). Innerhalb dieser Zone sind nur 6 quartäre Vulkane bekannt. Sie werden von adakitischen Hornblende-führenden Andesiten und Daziten aufgebaut. Es wird angenommen, dass Vulkanite dieser Art durch partielles Aufschmelzen einer subduzierten jungen ozeanischen Platte, gemischt mit variablen Anteilen an Erdmantel nahe der *Triple Junction* erzeugt wurden (Kay, 1978; Defant & Drummond, 1990).

Zwischen der Südlichen Vulkanischen und der Austral-Vulkanischen Zonen, d.h. zwischen dem 46° und 49° südlichen Breitengrad, befindet sich die s.g. Volcanic Activity Gap (VAG). Diese resultiert aus der Kollision zwischen dem Chile Rücken und dem Chile-Peru-Graben.

Chile Rücken unter die Südamerikanische Platte subduziert was eine Bildung von slab window zur Folge hat (Dickinson & Snyder, 1979; Forsythe & 1985: Nelson, Thorkelson & Taylor, 1989). Aufgrund dessen ist in dieser Region (VAG) keine vulkanische Aktivität zu beobachten. Die initiale Kollision zwischen dem Chile Rücken und dem Chile-Peru-Graben fand vor ca. 14-15 Ma westlich von Tierra del Fuego statt. Seitdem migriert die Kollisionszone, und die mit ihr verbundene Chile Triple Junction, in

Infolgedessen wird der

Abb. 2.4: Geologie Patagoniens in Bezug auf die Subduktion der Nazca und der Antarktischen Platte unter die Südamerikanische Platte und die daraus resultierende känozoische vulkanische Aktivität. Aus *Corbella & Lara, 2008*.

Richtung Norden. Die *Chile Triple Junction* repräsentiert die Stelle des Zusammentreffens dreier Platten: der Südamerikanischen, der Nazca und der Antarktischen Platte. Diese Stelle befindet sich heutzutage auf der Höhe von 46°S, nahe der Taitao Halbinsel.

Östlich der Patagonischen Anden befindet sich die Patagonische Plattform, die in Bezug auf die westliche Subduktionszone eine *back-arc* Region darstellt. In diesem Bereich liegt eine der größten Basaltprovinzen der Welt die ca. 120.000 km² Oberfläche bedeckt. *Plateau*-Basalte überlagern mesozoische Vulkanite und Sedimente.

Die *back-arc* Region östlich von Volcanic Activity Gap (zwischen 46°30'S und 49°S) weist eine vulkanische Aktivität aus dem Neogen-Holozän auf. Dieser mafische Vulkanismus wird aufgrund von geochemischen Signaturen, sowie der zeitlichen und räumlichen Verteilung der Vulkanite, in Verbindung mit der Entstehung von *slab windows* gebracht (Johnson & O'Neil, 1984; Forsythe & Nelson, 1985; Gorring et al., 1997; Hole et al., 1991; Gorring & Kay, 2001). Die neogenen *plateau*-Basalte dieser Region können in zwei Sequenzen unterteilt werden (Gorring et al., 1997; Gorring & Kay, 2001):

- Ausgedehnte main-plateau-Basalte die sich während der Zeitspanne von Spät-Miozän bis Früh-Pliozän bildeten. Diese Basalte weisen meistens eine toleiitische Zusammensetzung auf, mit 48-55 Gew.-% SiO₂ und 4-5 Gew.-% Na₂O + K₂O.
- Weniger voluminöse *post-plateau*-Basalte deren Extrusion während des obersten Miozän – Plio-Pleistozän stattfand. Diese gehören zu alkali-Serien, mit 43-49 Gew.-% SiO₂ und 5-8 Gew.-% Na₂O + K₂O. Die *post-plateau*-Basalte durchdringen oft die *main-plateau*-Basalte. Sie kommen in Form von kleinen Aschenkegel, oder als pyroklastische Ströme, die oberhalb der *main-plateau*-Basalte liegen, vor. Die Alkalibasalte, im Gegensatz zu *main-plateau*-Basalten, weisen oft Erdmantelxenolithe auf, deren Größe bis zu 60 cm Durchmesser erreicht.

Gorring und Kay (2001) erklären die Bildung der *plateau*-Basalte in dieser Region durch ein Drei-Stufen-Model:

- 1. Dekompressionsschmelzen der *subslab*-Asthenosphäre (*OIB-Signatur*) und ihre Kontamination durch das Aufschmelzen der Rückflanke (*trailing edge*) der subduzierten Nazca Platte;
- Geringe Kontamination der *slab window* Schmelzen im Erdmantelkeil durch Komponenten die (a) von der subduzierten Nazca Platte sowie (b) von der Basis der kontinentalen Lithosphäre stammen;
- 3. Weitere Modifizierungen der Schmelze durch Kontamination der krustalen Komponenten während des Magmaaufstiegs.

3. GEOGRAPHISCHE LAGE UND BESCHAFFENHEIT DER PROBENLOKALITÄT

Abb. 3.1: Satellitenbild der Provinz Santa Crus, Argentinien. Aus: *GoogleTM Earth*.

Die Untersuchung des lithosphärischen Erdmantels erfolgte anhand der Proben die in *Estancia Lote 17* eingesammelt wurden.

Das Untersuchungsgebiet Estancia Lote 17 (48°34'S, 70°10'W) befindet sich nördlich von Gobernador Gregores, in der Provinz Santa Cruz, Argentinien. Diese Lokalität liegt in Meceta Central, am Rande des Deseado Massivs wo die oben besprochenen main-

plateau- sowie *post-plateau*-Basalte zu Tage treten. Die Letzteren beinhalten oft Erdmantelxenolithe. Vulkanische Aktivität in dieser Region, die Erdmantelxenolithe an die Erdoberfläche förderte, erfolgte i. Allg. während des Plio-Pleistozän.

Die Probenlokalität stellt einen tief erodierten Aschenkegel mit einem Durchmesser von 2,5

km dar und ist aufgrund ihres reichen Erdmantelxenolith-

vorkommens gut bekannt. Die aktuellen K/Ar-Datierungen der Basaltstücke, die in Pyroklastika zu finden sind, ergeben das Alter von 4,2 ± 0,3 Ma (Ernesto Bjerg, persönliche Kommunikation).

Die Erdmantelxenolithe, die bis zu 60 cm Durchmesser erreichen, sind in den pyroklastischen Formationen eingebettet.

Abb. 3.2: Geologische Karte des Deseado Massivs. Bemerkung: Gobernador Gregores (auf der Karte: *Gdor. Gregores*) liegt am Rande des Deseado Massivs. Aus *Guido et al., 2004*.

Abb. 3.3: Pyroklastische Sequenz weist eine Schichtung auf. Erdmantelxenolithe liegen in Form von runden Knollen, eingebettet in Pyroklastika, vor. Der weiß gefärbte Bereich in der Bildmitte lässt die Anwesenheit von Karbonaten erkennen. Lokalität *Estancia Lote 17*.

Abb. 3.4: Erdmantelxenolith in Pyroklastika, Detailaufnahme. Lokalität Estancia Lote 17.

Abb. 3.5: Erdmantelxenolith innerhalb vom Tuffstein. Lokalität *Estancia Lote* 17.

Abb. 3.6: Erdmantelxenolithe als Einschlüsse im Basalt (linke Bildseite) und in Form von gerundeten Knollen (rechte Bildseite). Lokalität *Estancia Lote* 17.

Abb. 3.7: Erdmantelxenolith im Basalt. Lokalität *Estancia Lote 17*.

Kleinere Xenolithe, bis zu 5 cm im Durchmesser, sind ebenfalls in Alkalibasalten zu finden. Die Erdmantelxenolithe sind relativ grobkörnig und weisen meistens keine Verwitterung auf. Das Gestein ist i. Allg. durch Spinell-führenden Peridotit und, seltener, durch Pyroxenit vertreten. Ein reiches Vorkommen der sekundären Phasen – Amphibol, Phlogopit sowie Apatit – deutet auf eine modale Metasomatose im Gestein hin. Ein reiches Glasvorkommen innerhalb der s.g. *"melt pockets"* (Schmelztaschen) sowie in den Adern stellt eine weitere Besonderheit der Erdmantelxenolithe dieser Lokalität dar. Die Schmelztaschen können dabei bis zu 2 cm Durchmesser erreichen.

4. ANALYTISCHE METHODEN

Die Untersuchung der ausgewählten Erdmantelxenolithe der Loklität *Estancia Lota 17* wurde mit Hilfe von optischen Durchlichtmikroskopie sowie Elektronenstrahlmikrosonde durchgeführt.

4.1 Optische Durchlichtmikroskopie

Für eine petrographische Untersuchung wurden 91 Proben ausgewählt und anschließend aus diesem Material Dünnschliffe hergestellt. Die Analyse erfolgte unter dem *Leica DM4500P* Polarisationsmikroskop wobei die Abbildungen mit Hilfe der digitalen Farbkamera *Leica DFC420* (Software *Leica Application Suite V 3.2.0*) gemacht wurden. Dies ermöglichte strukturelle und texturelle Charakteristika des Gesteins, besondere Eigenschaften wie z.B. Zonierung oder Verzwilligung der Minerale, sowie Art der Metasomatose im Gestein zu erfassen.

Bestimmung des modalen Mineralbestandes der Gesteine wurde durch das Punktzählverfahren unter dem Mikroskop mittels eines Pointcounter durchgeführt. Dabei wurden die Phasenanteile in mittelkörnigen und grobkörnigen Proben mit 1500 Punkten pro Dünnschliff ermittelt; die feinkörnigen Proben mit 2000 Punkten pro Dünnschliff.

4.2 Elektronenstrahlmikrosonde

Chemische Zusammensetzung (Haupt- sowie Nebenelemente) aller im Gestein vorhandenen Phasen wurde mit Hilfe der Elektronenstrahlmikrosonde (EMS) festgestellt. Ausserdem wurde mittels EMS eine Identifizierung der Phasen im Mikrobereich sowie deren räumliche Beziehung zu umliegenden Strukturen ermöglicht.

Die Analysen wurden mit einer *Cameca SX100* am Department für Lithosphärenforschung der Universtität Wien durchgeführt. Die EMS ist mit vier WDS (wellenlängendispersives

System) sowie mit einem EDS (energiedispersives System) ausgestattet. Analyse der Mineralphasen erfolgte mit einer Beschleunigungsspannung von 15 kV und einem Strahlstrom von 20 nA; der Elektronenstrahldurchmesser betrug 1 µm. Die Messzeit pro Element betrug 20 sec an der Peakposition und jeweils 10 sec am linken und rechten Untergrund. Bei Messung der Gläser, um eine Migration der Alkali zu reduzieren, wurde mit einem defokussiertem Elektronenstrahl gemessen, wobei die Beschleunigungsspannung 15 kV, der Strahlstrom 20 nA und der Elektronenstrahldurchmesser 5 µm betrugen. Dadurch wurde ein Verlust der Alkalielementen Natrium und Kalium minimiert. Für die Analysen wurden die Kristalle TAP (Thalliumphtalat), LIF (Lithiumfluorid) und PET (Pentaerythrol) verwendet.

Die Messungen wurden auf polierten, mit Kohlenstoff bedampften Dünnschliffen durchgeführt. Die Bedampfung dient einer besseren Leitfähigkeit der Probe und verhindert somit ein elektrostatisches Aufladen der Dünnschliffoberfläche durch den Elektronenstrahl.

5. MODALER MINERALBESTAND

Die Bestimmung des modalen Mineralbestandes wurde durch das Punktzählverfahren unter dem Mikroskop mittels eines Pointcounter durchgeführt. Dabei wurden die Phasenanteile in mittel- und grobkörnigen Proben mit 1500 Punkten und in feinkörnigen Proben mit 2000 Punkten pro Dünnschliff ermittelt.

Die 91 Proben zeigen folgende Aufteilung (siehe Abb. 5.1): Der Anteil der Lherzolithe beträgt etwa die Hälfte aller Proben (54,9 %); Harzburgite bilden die zweitgrößte Gruppe mit 19,8 %; Wehrlite sind mit 18,7 % vertreten. Andere Gesteinstypen machen 6,6 % aller Proben aus, und werden durch einen Spinell-führenden Dunit, einen Spinell-führenden Olivin-Klinopyroxenit, einen Spinell-führenden Olivin-Websterit, einen Olivin-Websterit und drei zusammengesetzten ("*composite*") Xenolithe vertreten (siehe Tab. 5.1, Tab. 6.1). Die "*composite*" Xenolithe beinhalten sowohl Peridotit- als auch Pyroxenitbereiche.

Der Spinellanteil liegt deutlich unter 5 Vol.-% des Modalbestandes (siehe Tab. 5.1). Infolgedessen werden die Peridotite sowie die Pyroxenite als Spinell-führend bezeichnet (nach *Le Maitre et al., 2002*).

Die modale Mantelmetasomatose (Tab. 5.1) ist durch die wasserhaltigen Minerale – Amphibol und Phlogopit, sowie Apatit, Ortho- und Klinopyroxen vertreten. Während die Harzburgit-Gruppe den geringsten Anteil der Proben mit wasserhaltigen Mineralen aufweist, sind *alle* Proben der Wehrlit-Gruppe durch die Präsenz von Amphibol und/oder Phlogopit gekennzeichnet (siehe Abb. 5.2).

Der Modalbestand der untersuchten **Lherzolithe** variiert zwischen 39,3-84,8 Vol.-% für Olivin, 7,1-38,3 Vol.-% für Orthopyroxen und 4,8-37,1 Vol.-% für Klinopyroxen. Der

24
Modalgehalt des Spinells ist <3,6 Vol.-%, des Amphibols <10,8 Vol.-% und des Phlogopits <1,1 Vol.-%.

Die *"melt pockets"* (Schmelztaschen) bestehen aus Glas, Gasblasen, feinkörnigen Kristallaggregaten, sowie Amphibol- und/oder Phlogopitrelikten. Der Kristallanteil solcher Aggregate ist i. Allg. durch die sekundär gebildeten Phasen Olivin, Klinopyroxen und/oder Spinell vertreten. Die mineralogische Zusammensetzung der *"melt pockets"* jeder untersuchten Probe wird in den Kommentaren der Tab. 6.1 vermittelt.

Das Volumen der "*melt pockets*" in Lherzolithen erreicht bis zu 13,9 Vol.-%. Das Glasvolumen der interstitiell verlaufenden Glasadern, die in der Regel frei von sekundären Kristallaggregaten sind, liegt bei bis zu 6,1 Vol.-%.

Die chemische Zusammensetzung der *"melt pockets"* sowie der Glasadern werden in Kapitel 7 detailliert erläutert. (Bemerkung: Der Modalgehalt der Mineralphasen unterhalb 0,01 Vol.-% wird in Tab. 5.1 vernachlässigt. Diese Phasen werden jedoch qualitativ in Tab. 6.1 behandelt).

Der modale Mineralbestand der untersuchten **Harzburgite** variiert zwischen 42,0 und 80,5 Vol.-% für Olivin, 10,1-46,9 Vol.-% für Orthopyroxen und bis zu 4,5 Vol.-% für Klinopyroxen. Der Modalgehalt der Nebengemengteile beträgt bis zu 2,7 Vol.-% für Spinell, bis zu 8,2 Vol.-% für Amphibol, bis zu 5,7 Vol.-% für *"melt pockets"* und bis zu 4,4 Vol.-% für Glas (in Glasadern). Bemerkenswert ist, dass der Phlogopit in den untersuchten Harzburgiten entweder völlig fehlt, oder nicht mit Hilfe eines konventionellen Mikroskopes nachweisbar ist. Nur mit Hilfe einer Elektronenstrahlmikrosonde lassen sich die einzelnen winzigen Verwachsungen mit Amphibol feststellen.

Die **Wehrlit**-Gruppe zeigt die geringste Schwankung im Olivin-Modalgehalt (64,7-86,1 Vol.-%) innerhalb der drei Gesteinshauptgruppen und ist relativ olivinreich (siehe Tab. 5.1, Abb. 5.3). Der modale Mineralbestand für Ortopyroxen variiert ebenfalls relativ gering mit maximal 2,0 Vol.-%. Der Klinopyroxen ist mit 11,9-25,9 Vol.-% vertreten. Der Modalgehalt der Phasen Amphibol und Phlogopit ist deutlich höher in der Wehrlit-Gruppe und reicht bis zu 18,8 Vol.-% für Amphibol sowie maximal 4,9 Vol.-% für Phlogopit. Das Volumen der *"melt pockets"* beträgt bis zu 11,9 Vol.-% und das Glas innerhalb von Glasadern erreicht maximal 4,4 Vol.-%.

Der (bis jetzt) einzig gefundene **Dunit**, mit dem Modalgehalt von 88,6 Vol.-% für Olivin, 8,2 Vol.-% für Orthopyroxen und 0,9 Vol.-% für Klinopyroxen, weist einen geringeren Einfluss der modalen Mantelmetasomatose auf: Der Modalgehalt von Amphibol und Phlogopit beträgt jeweils 0,1 Vol.-%.

Der modale Mineralbestand der Pyroxenit-Gruppe erreicht bis zu 13,9 Vol.-% für Olivin, 2,1-37,2 Vol.-% für Orthopyroxen, 33,2-78,3 Vol.-% für Klinopyroxen und 0,5-1,5 Vol.-% für Spinell. Amphibol ist mit maximal 18,9 Vol.-% und Phlogopit mit maximal 0,2 Vol.-%

25

vertreten. Die Pyroxenit-Gruppe wird in Kapiteln 6 und 7 ausführlicher behandelt.

Die Gesteinsklassifizierung erfolgt gemäß der IUGS-Klassifikation für ultramafische Plutonite (Streckeisen, 1974), wobei ein Dreiecksdiagramm verwendet wird. Die Verteilung der drei Hauptkomponenten – Olivin, Orthopyroxen und Klinopyroxen – werden im Diagramm dargestellt, während die Nebengemengteile – Spinell, Amphibol, Phlogopit etc. –

Abb. 5.2: Vorkommen der wasserhaltigen Minerale – Amphibol und Phlogopit – innerhalb der drei Gesteinshauptgruppen. Anteil der Proben, die die genannten Phasen enthalten, ist mit *"vorhanden"* markiert; Proben, die keine solchen Minerale aufweisen, – mit *"nicht vorhanden"* bezeichnet.

vernachlässigt werden. Demzufolge wird die Summe der drei Hauptkomponenten (OI + Cpx + Opx = 100) auf 100% normiert.

Der Modalbestand *aller* untersuchten Proben ist in Abb. 5.3 dargestellt. Die Lherzolith-Gruppe ist in Abb. 5.4.a-f detaillierter dargestellt; Die Harzburgit-Gruppe – in Abb. 5.5.a-d; Die Wehrlit-Gruppe – in Abb. 5.6.a-e; Der Dunit – in Abb. 5.7; Die Pyroxenit-Gruppe – in Abb. 5.8.

Abb. 5.3: Modaler Mineralbestand aller untersuchten Erdmantelxenolithe im Überblick (nach Streckeisen, 1974).

Abb. 5.7: Modaler Mineralbestand des untersuchten Dunits (nach *Streckeisen, 1974*).

Abb. 5.8: Modaler Mineralbestand der untersuchten Pyroxenite (nach Streckeisen, 1974).

MODALER MINERALBESTAND

		Modaler Mineralbestand [Vol%]							
Probe	Gesteinstyp	IC	xdC	Cpx	Spl	Amph	ЧC	np/Aggr.	Ū.
DUB 1G	Spl-führender I herzolith	63.2	25.4	8.2	1.4	0.0	0.0	0.0	1.8
DUB 4G	Spl-führender I herzolith	72.2	15.7	7.1	1.6	0.3	0.0	0.0	3.0
DUB 5	Spl-führender Lherzolith	49,9	38,3	8,1	0,6	2,3	0,1	0,0	0,7
 DUB 10	Spl-führender Lherzolith	52,7	28,2	6,0	0,2	0,0	0,0	12,0	1,0
 DUB_13	Spl-führender Lherzolith	60,3	19,6	18,7	0,7	0,0	0,0	0,0	0,7
DUB_17	Spl-führender Lherzolith	68,1	24,9	5,9	1,1	0,0	0,0	0,0	0,0
DUB_23	Spl-führender Lherzolith	73,2	20,7	6,0	0,1	0,0	0,0	0,0	0,0
DUB_26b	"composite" Xenolith. Teil:	53,3	33,3	13,1	0,4	0,0	0,0	0,0	0,0
	Spl-führender Lherzolith								
DUB_28	"composite" Xenolith. Teil:	56,0	33,2	10,0	0,4	0,4	0,0	0,0	0,0
	Spl-führender Lherzolith								
DUB_29	Lherzolith	42,6	31,1	26,0	0,0	0,0	0,1	0,3	0,0
DUB_30	Spl-führender Lherzolith	57,5	33,8	7,3	1,4	0,0	0,0	0,0	0,0
DUB_31	Spl-führender Lherzolith	61,1	24,4	7,7	0,8	0,1	1,1	4,8	0,0
DUB_34	Spl-führender Lherzolith	52,5	38,2	7,0	1,0	0,0	0,0	0,0	1,3
DUB_39	Spl-führender Lherzolith	68,2	15,0	15,4	1,3	0,1	0,0	0,0	0,0
DUB_40	Spl-führender Lherzolith	59,0	20,4	4,8	0,7	1,1	0,0	13,9	0,0
DUB_69	Spl-führender Lherzolith	67,1	23,1	8,9	0,9	0,0	0,0	0,0	0,0
DUB_78	Spl-führender Lherzolith	71,9	19,8	6,5	1,5	0,1	0,0	0,0	0,0
DUB_80	Lherzolith	79,6	9,7	5,2	0,0	1,4	0,0	4,0	0,0
DUB_81	Spl-führender Lherzolith	65,7	14,9	9,2	0,1	2,7	0,0	7,4	0,0
DUB_83	Lherzolith	59,0	17,0	9,4	0,0	0,7	0,0	13,8	0,0
DUB_110	Lherzolith	60,4	7,1	17,7	0,0	3,9	0,0	10,9	0,0
DUB_118	Lherzolith	67,1	16,9	5,2	0,0	1,8	0,0	9,1	0,0
DUB_121	Lherzolith	66,6	18,8	5,2	0,0	1,7	0,0	7,6	0,0
DUB_131	Spl-führender Lherzolith	72,5	15,5	9,1	2,6	0,0	0,0	0,0	0,3
DUB_133	Spl-führender Lherzolith	62,5	26,4	8,5	1,9	0,7	0,0	0,0	0,0
DUB_135	Spl-führender Lherzolith	66,6	25,7	6,2	1,2	0,3	0,0	0,0	0,0
DUB_144	Spl-führender Lherzolith	57,6	33,4	8,7	0,3	0,0	0,0	0,0	0,0
DUB_145	Spl-führender Lherzolith	69,1	20,6	6,6	2,3	0,0	0,0	0,0	1,4
DUB_151	Spl-führender Lherzolith	73,9	17,5	7,5	1,2	0,0	0,0	0,0	0,0
DUB_160	Spl-führender Lherzolith	68,8	22,8	5,3	0,6	0,0	0,0	0,0	2,6
DUB_162	Spl-führender Lherzolith	74,5	17,2	6,0	1,4	0,6	0,2	0,0	0,1
DUB_165	Spl-führender Lherzolith	64,4	27,7	6,5	0,2	1,1	0,1	0,0	0,0
DUB_169	Spl-führender Lherzolith	69,6	19,4	7,2	0,8	0,0	0,0	0,0	3,1
DUB_170	Spl-führender Lherzolith	65,2	21,1	11,1	2,7	0,0	0,0	0,0	0,0
DUB_175	Spl-tührender Lherzolith	59,1	25,1	14,8	0,6	0,0	0,0	0,0	0,4
DUB_180a	Lherzolith	66,7	19,9	10,7	0,0	1,5	0,0	0,9	0,1
DUB_180b	Spl-tührender Lherzolith	52,7	28,2	15,4	1,3	0,6	0,0	1,8	0,0
DUB_185	Spi-tuhrender Lherzolith	62,6	25,4	9,3	2,7	0,0	0,0	0,0	0,0
DUB_186	Spl-tührender Lherzolith	61,2	30,1	6,7	1,1	0,6	0,2	0,0	0,0
DUB_195	Spl-führender Lherzolith	64,5	19,2	5,1	0,3	10,8	0,0	0,0	0,0

Tab. 5.1: Modaler Mineralbestand. Lherzolithe

				Modaler	Mineralb	estand [\	/ol%]		
Probe	Gesteinstyp	IO	Opx	Cpx	Spl	Amph	PhI	mp/Aggr.	ß
DUB_275	Spl-führender Lherzolith	39,3	18,1	37,1	3,6	0,9	0,0	0,0	0,9
DUB_279	Spl-führender Lherzolith	67,4	18,1	6,4	0,6	0,3	0,0	5,7	1,6
DUB_301	Spl-führender Lherzolith	56,7	32,8	9,0	1,0	0,0	0,0	0,0	0,5
DUB_302	Spl-führender Lherzolith	66,6	11,7	14,4	0,2	0,7	0,3	0,0	6,1
DUB_303	Spl-führender Lherzolith	58,4	32,5	7,4	1,2	0,0	0,0	0,0	0,4
DUB_304	Spl-führender Lherzolith	84,8	8,5	6,0	0,1	0,0	0,0	0,0	0,5
DUB_311	Spl-führender Lherzolith	64,2	22,7	10,9	2,1	0,0	0,0	0,0	0,0
DUB_312	Spl-führender Lherzolith	62,7	21,9	13,5	1,8	0,1	0,0	0,0	0,0
DUB_313	Spl-führender Lherzolith	62,3	31,9	5,6	0,3	0,0	0,0	0,0	0,0
DUB_314	Spl-führender Lherzolith	76,7	13,1	9,2	0,9	0,2	0,0	0,0	0,0
DUB_316	Spl-führender Lherzolith	70,3	20,7	7,9	1,2	0,0	0,0	0,0	0,0
DUB_317	Spl-führender Lherzolith	53,0	33,6	11,6	1,7	0,0	0,0	0,0	0,0
DUB_319	Spl-führender Lherzolith	59,6	22,1	13,4	2,3	1,9	0,7	0,0	0,0

Tab. 5.1: Modaler Mineralbestand. Lherzolithe (Fortsetzung)

Tab. 5.1: Modaler Mineralbestand. Harzburgite

		Modaler Mineralbestand [Vol%]							
Probe	Gesteinstyp	ō	Opx	Cpx	Spl	Amph	Phi	mp/Aggr.	Ū
DUB_14	Spl-führender Harzburgit	74,8	22,6	0,0	2,7	0,0	0,0	0,0	0,0
DUB_21	Spl-führender Harzburgit	74,6	22,1	2,2	1,1	0,0	0,0	0,0	0,0
DUB_24	Spl-führender Harzburgit	71,8	27,0	1,1	0,1	0,0	0,0	0,0	0,0
DUB_33	Spl-führender Harzburgit	75,1	22,1	2,3	0,3	0,2	0,0	0,0	0,0
DUB_36	Spl-führender Harzburgit	60,2	38,0	1,4	0,4	0,0	0,0	0,0	0,0
DUB_37	Spl-führender Harzburgit	76,6	18,5	4,2	0,7	0,0	0,0	0,0	0,0
DUB_48	Harzburgit	80,0	10,1	4,0	0,0	0,0	0,0	5,7	0,2
DUB_60	Spl-führender Harzburgit	69,9	24,3	4,5	1,3	0,0	0,0	0,0	0,0
DUB_62	Spl-führender Harzburgit	79,1	18,2	0,8	1,8	0,0	0,0	0,0	0,1
DUB_64	Harzburgit	42,0	46,9	1,9	0,0	8,2	0,0	0,6	0,3
DUB_65	Spl-führender Harzburgit	79,8	14,7	3,3	2,1	0,1	0,0	0,0	0,0
DUB_70	Spl-führender Harzburgit	73,3	21,7	4,0	1,0	0,0	0,0	0,0	0,0
DUB_114	"composite" Xenolith. Teil:	55,8	37,1	2,0	0,6	0,1	0,0	0,1	4,4
	Spl-führender Harzburgit								
DUB_130	Spl-führender Harzburgit	67,7	27,2	3,2	1,9	0,0	0,0	0,0	0,0
DUB_159	Spl-führender Harzburgit	74,9	21,2	3,7	0,2	0,0	0,0	0,0	0,0
DUB_164	Spl-führender Harzburgit	74,4	21,8	2,4	1,4	0,0	0,0	0,0	0,0
DUB_184	Spl-führender Harzburgit	78,0	19,0	1,9	1,2	0,0	0,0	0,0	0,0
DUB_300	Spl-führender Harzburgit	68,0	28,1	3,7	0,2	0,0	0,0	0,0	0,0
DUB_315	Spl-führender Harzburgit	80,5	18,6	0,6	0,1	0,1	0,0	0,0	0,0

MODALER MINERALBESTAND

		Modaler Mineralbestand [Vol%]							
Probe	Gesteinstyp	Ō	Opx	Cpx	Spl	Amph	РЫ	mp/Aggr.	ß
DUB_3GA	Wehrlit	75,7	0,7	12,0	0,0	0,0	0,7	9,1	1,7
DUB_11	Spl-führender Wehrlit	68,5	0,0	17,1	0,1	0,7	0,0	11,9	1,6
DUB_18	Wehrlit	73,9	0,0	18,8	0,0	0,0	0,5	6,8	0,0
DUB_25	Wehrlit	77,4	0,0	16,3	0,0	2,0	0,0	0,0	4,4
DUB_27	Wehrlit	78,2	0,6	18,8	0,0	0,1	0,1	2,3	0,0
DUB_35	Spl-führender Wehrlit	64,9	0,0	25,9	0,5	0,3	2,7	5,6	0,0
DUB_56	Wehrlit	83,9	0,0	11,9	0,0	1,4	0,0	2,8	0,0
DUB_126	Wehrlit	81,4	0,0	14,8	0,0	1,0	0,2	2,6	0,0
DUB_128	Spl-führender Wehrlit	74,7	2,0	22,6	0,2	0,0	0,4	0,0	0,1
DUB_148	Spl-führender Wehrlit	73,8	0,9	17,1	0,4	2,2	0,0	5,4	0,2
DUB_192	Wehrlit	77,2	0,0	18,5	0,0	0,6	0,0	3,8	0,0
DUB_209	Wehrlit	64,7	0,1	16,3	0,0	18,8	0,0	0,0	0,0
DUB_256	Wehrlit	75,5	0,0	15,7	0,0	5,9	0,0	2,9	0,0
DUB_306	Wehrlit	72,5	0,0	21,0	0,0	0,0	4,9	0,0	1,6
DUB_308	Wehrlit	68,9	0,0	24,7	0,0	0,0	4,2	0,0	2,3
DUB_309	Spl-führender Wehrlit	86,1	0,0	12,3	0,3	0,0	1,3	0,0	0,0
DUB_310	Spl-führender Wehrlit	81,3	0,1	14,8	0,1	0,0	3,6	0,0	0,0

Tab. 5.1: Modaler Mineralbestand. Wehrlite

Tab. 5.1: Modaler Mineralbestand. Andere Gesteinstype

		Modaler Mineralbestand [Vol%]							
Probe	Gesteinstyp	OI	Орх	Cpx	Spl	Amph	Ы	mp/Aggr.	ß
DUB_93	Spl-führender Dunit	88,6	8,2	0,9	1,2	0,0	0,1	0,0	1,0
DUB_15	Spl-führender Ol-Klinopyroxenit	12,9	4,1	78,3	0,9	1,9	0,2	0,0	1,6
DUB_12	Spl-führender Ol-Websterit	13,9	20,8	54,0	0,8	6,1	0,0	0,0	4,5
DUB_26c	Spl-führender Websterit	0,4	21,2	77,0	0,5	0,0	0,0	0,0	0,9
DUB_26a	"composite" Xenolith: Teil Spl-führender Websterit	0,2	37,2	61,1	1,5	0,0	0,0	0,0	0,0
DUB_28	"composite" Xenolith: Spl-führender Klinopyroxenit	0,0	2,1	33,2	1,2	18,9	0,0	0,0	44,6

Legende zu Tab. 5.1

OI	Olivin
Орх	Ortopyroxen
Срх	Klinopyroxen
Spl	Spinell
Amph	Amphibol
Phl	Phlogopit
mp	"melt pockets"
Aggr.	Glas-Kristall-Aggregate
GI	Glas

Wie bereits erwähnt, wurden 91 Erdmantelxenolithe petrographisch untersucht, um eventuelle Zusammenhänge zwischen einem Gesteinstyp (Kapitel 5), seiner strukturellen und texturellen Charakteristika, sowie der Art und dem Grad der Metasomatose festzustellen. Die petrographische Untersuchung der relativ großen Anzahl der Gesteinsproben war notwendig, um die zusammenwirkenden Prozesse der Deformation, Rekristallisation und Metasomatose besser zu verstehen, die einzelnen Events zu gruppieren und, anschließend, eine gezielte geochemische Analyse zu ermöglichen. Die Verhältnisse zwischen einem Gesteinstyp, seiner Struktur, der Korngröße und dem Vorhandensein/Fehlen der modalen Metasomatose *aller* untersuchten Proben sind in einem Überblick in Tabelle 6.1 dargestellt. Weiters wurden 44 Proben als repräsentative Beispiele in der Tabelle "Petrographie der repräsentativen Proben" (siehe Anhang) detaillierter behandelt.

6.1 Petrographie der primären Phasen. Strukturelle und texturelle Merkmale im Kontext von Deformations- und Rekristallisationsprozessen

6.1.1 Auswahl der Nomenklatur

Deformation-Strukturelle und texturelle Eigenschaften, die auf und Rekristallisationsprozesse zurückführen, wurden anhand der Nomenklatur nach Mercier & Nicolas, 1975 und der Nomenklatur nach Harte, 1977 beschrieben. Der Grundgedanke, diese beiden Nomenklaturen einzubeziehen, ist folgender: Ein Teil der Xenolithe aus der Lokalität Estancia Lote 17 weist strukturelle Merkmale auf, die auf eine plastische Deformation zurückzuführen sind. Beide Nomeklaturen betrachten strukturelle Variationen in ultramafischen Xenolithen als chronologische Sequenzen einer plastischen Verformung im oberen Erdmantel. Eine chronologische Abfolge der einzelnen Sequenzen spiegelt eine Zunahme der Verformung und Rekristallisation mit der Zeit wider. Demzufolge unterscheiden Mercier & Nicolas drei strukturelle Hauptgruppen: protogranular (nicht oder kaum verformt) porphyroklastisch (verformter Zustand) – äquigranular (völlige Rekristallisation). Alle möglichen Übergangsstadien, von protogranular zu porphyroklastisch und von porphyroklastisch zu äguigranular, wurden nachgewiesen. Es wurde, naturgemäß, kein direkter Übergang von protogranular zu äquigranular dokumentiert (Mercier & Nicolas, 1975), da solche Umwandlung immer über porphyroklastischen Stadium abläuft.

Die Klassifizierung nach Mercier & Nicolas basiert nicht nur auf strukturellen und texturellen Merkmalen eines Gesteins, sondern es werden auch bestimmte paragenetische Verhältnisse einbezogen. So wird zum Beispiel die protogranulare Struktur u. a. dadurch charakterisiert,

35

dass deutlich kleinere Klinopyroxen- und Spinellkristalle immer in direktem Kontakt zu großen Orthopyroxenkristallen stehen. Dabei werden die Klinopyroxen- und Spinellphasen als Entmischungen von Al-Ca-reichen Enstatit interpretiert (Mercier & Nicolas, 1975). Die Deformationsprozesse bewirken eine mechanische Zerstreuung der Klinopyroxene und Spinelle im Gestein. Infolgedessen verlieren diese zwei Phasen den direkten Kontakt zum porphyroklastische Struktur ist Orthopyroxen kontinuierlich. Die dadurch u. a. gekennzeichnet, dass die rekristallisierte Spinellphase eine "holly-leaf" Form aufweist und sich zwischen Olivinkristallen befindet. Falls Rekristallisationsprozesse darauf folgen, führt es zur Ausbildung einer äquigranularen Struktur. Während einer Rekristallisation wachsen die Mineralphasen um den Spinell herum. Demzufolge kommt Spinell in Form von kleinen Kristallen in Tripelpunkten der Korngrenzen oder als gerundete Körner innerhalb verschiedener Mineralphasen vor (Mercier & Nicolas, 1975).

Die oben beschriebenen paragenetischen Verhältnisse vervollständigen strukturelle Beobachtungen und machen das System nach Mercier & Nicolas ausführlicher. Dennoch liegt genau darin der Nachteil dieser Nomenklatur (Anm. d. Verf.). Diese Klassifikation beschränkt sich, streng genommen, auf den Gesteinstyp Lherzolith (Mercier & Nicolas, 1975), die vorherrschende Gesteinsart des Erdmantels. Infolgedessen werden die paragenetischen Verhältnisse bei der Klassifizierung der Dunite, Harzburgite, Wehrlite und besonders Pyroxenite teilweise oder völlig vernachlässigt.

Die Nomenklatur nach Ben Harte (Harte, 1977) scheint dagegen weniger komplex und daher universell zu sein (Anm. d. Verf.). Seine Terminologie basiert rein auf strukturellen und texturellen Merkmalen eines Gesteins und ist, im Gegensatz zu Mercier & Nicolas' Nomenklatur, deutlich unabhängiger von der Hauptphase Olivin.

Seine Klassifikation findet Anwendung sowohl bei Peridotiten als auch bei Pyroxeniten (Harte, 1977). Sie berücksichtigt jedoch keine strukturellen Merkmale, die sich aus Entmischungsprozessen, partieller Anatexis oder Metasomatose ergeben (Harte, 1977). Harte unterscheidet in seiner Klassifikation vier strukturellen Gruppen: *coarse – porphyroclastic – mosaic-porphyroclastic – granuloblastic*. Die chronologische Abfolge widerspiegelt den Grad der Verformung und der Rekristallisation in gleicher Weise wie in Mercier & Nicolas' Nomenklatur. Die Klassifikation definiert jedoch scharfe Grenzen zwischen einzelnen Gruppen. Infolgedessen fehlen die Übergangsstadien oder, genauer gesagt, sie werden in die Definition einer oder anderer Gruppe einbezogen. Solche Betrachtungsweise kann von Vorteil sein, wenn es um die Eindeutigkeit der Definition einer Struktur geht (Anm. d. Verf.). So geht die *coarse* Struktur in die *porphyroclastic* an dem Punkt über, wenn alle Porphyroklasten vollständig von Neoblasten umgeben sind (Harte, 1977). Die Grenze zwischen der *porphyroklasten* zu Neoblasten des Olivins definiert. So weist

36

die porphyroklastische Struktur mehr als 10 % Porphyroklasten; die Mosaikporphyroklastische dagegen weniger als 10 %. Granuloblastische Struktur tritt ab dem Punkt auf, wenn es im Gestein weniger als 5 % Olivinporphyroklasten vorkommen (Abb. 6.1). Sowohl Mercier & Nicolas als auch Harte unterscheiden zwei Zyklen der Deformation und Rekristallisation: *primärer* und *sekundärer* Zyklus. Auf diese Weise lässt sich z.B. eine erneute Entwicklung der protogranularen (*coarse*) Struktur aus einem stark verformten und rekristallisierten Strukturtyp erklären. Mercier & Nicolas behaupten, dass die Strukturen der primären und der sekundären Zyklen sich kaum unterscheiden. Auf Grund dessen ist eine Anwendung der strukturellen Eigenschaften von Spinell mehr als sinnvoll (Abb. 6.2, Abb. 6.3): Gesteine des sekundären Zyklus weisen in der Regel kugelförmige Spinelleinschlüsse innerhalb der Olivinkristalle auf (Mercier & Nicolas, 1975).

Harte berücksichtigt ebenfalls die Beobachtungen von Mercier & Nicolas (1975), Boullier & Nicolas (1975) und Boullier (1975) in seinem System. Diese Autoren betonen die Nützlichkeit der feinverteilten Spinell-, Diopsid- und/oder Granateinschlüsse innerhalb der Olivinphase (Harte, 1977).

Aufgrund der Paragenese und/oder Kombination der gefundenen Xenolitharten kommen Mercier & Nicolas zu der Schlussfolgerung, dass die von ihnen untersuchten Xenolithproben mit sekundären Strukturen aus seichten Zonen des oberen Erdmantels stammen sollten. Die Seltenheit der sekundären Strukturtypen bekräftigt die Annahme, dass das Vorkommen der Mantelxenolithe, die von mehr als zwei Deformations- und Rekristallisationsevents betroffen sind, unwahrscheinlich ist (Mercier & Nicolas, 1975).

Die Unterscheidung zwischen den primären und sekundären strukturellen Typen ist

SUMMARY OF ROCK CLASSIFICATION								
Rock Type	Forphyroclasts	Grain Size	Grain Boundaries	Subtyr	bes and Illustrations in Literature			
Coarse	Absent	Average grain size greater than 2.0 mm	Variable. Often largely straight or smoothly curving but may be less regular	Equant	Boullier and Nicolas, 1973, Plates 19A, 19B Boullier and Nicolas, 1975, Fig. 1A Cox et al. 1973, Plates 26A, 26B Harte et al. 1975, Figs. 1, 2 Mercier and Nicolas, 1975, Figs. 1, 14A, 14B. Boullier and Nicolas, 1973, Plate 20A Boullier and Nicolas, 1975, Fig. 1B			
Porphyrodastic	Present. More than 10% of olivine occurs as porphyroclasts	Two major populations: one represented by porphyroclasts, the other by finer-grained matrix	Irregular in porphyroclasts, straight in neoblasts	(Neither disrupted nor laminated) Disrupted Fluidal Laminated and disrupted	Boullier and Nicolas, 1973, Plate 20B Boullier and Nicolas, 1975, Figs. 1C, 2A Mercier and Nicolas, 1975, Fig. 4 Cox et al. 1973, Plate 27A Harte et al. 1975, Figs. 5, 6 Boullier (pers. comm.) Dawson (pers. comm.), Fig. 1A, this paper			
Mosaic-porphyroclastic	Present. Less than 10% of olivine occurs as pophyroclasts	Two major populations: one represented by porphyroclasts, the other by finer-grained matrix	Irregular in porphyroclasts, straight in neoblasts	(Neither disrupted nor laminated) Fluidal Laminated and disrupted	Boullier and Nicolas, 1973, Plate 21A Boullier and Nicolas, 1975, Fig. 2B Poirier and Nicolas, 1975, Fig. 13 Boullier and Nicolas, 1973, Plate 21B Boullier and Nicolas, 1975, Figs. 2C, 3A Dawson et al. 1975, Fig. 1B, this paper.			
Granuloblastic	Absent or rare for all mineral species	Small size range for each mineral species (excepting rare porphyro- clasts). Grain size generally less than 2.0 mm	Straight or smoothly curving, bounding grains of polygonal or polygonal tabular shape	Equant	Cox et al. 1973, Plate 27B Harte et al. 1975, Fig. 9 Mercier and Nicolas, 1975, Fig. 5B Harte et al. 1975, Fig. 8 Mercier and Nicolas, 1975, Fig. 8A			

Abb. 6.1: Strukturelle Gesteinstypen der Olivin-führenden Mantelxenolithe, aus *Harte, 1977*. Die Tabelle enthält sowohl Definitionen des Autors als auch die entsprechenden Äquivalente in Nomenklaturen anderer Autoren.

relevant, da sie zum besseren Verständnis der in dem Erdmantel ablaufenden Prozesse, wie z.B. Recycling des Mantelmaterials, führen kann (Harte, 1977).

 Olivine boundaries
 Curvilinear
 Ragged+polygonal
 Only polygonal

 No spinel inclusions
 PROTOGRANULAR I
 PORPHYROCLASTIC I
 EQUIGRANULAR I

 spinel inclusions in
 PROTOGRANULAR II
 PORPHYROCLASTIC II
 EQUIGRANULAR II

 spinel inclusions in
 PROTOGRANULAR II
 PORPHYROCLASTIC II
 EQUIGRANULAR II

 remnant)
 porphyroclasts
 EQUIGRANULAR II
 EQUIGRANULAR II

Abb. 6.3: Strukturelle Gesteinstypen in einem primären und sekundären Zyklus, aus *Mercier & Nicolas* (1975). Beobachtungen basieren auf strukturellen Charakteristika der Phasen Olivin und Spinell.

6.1.2 Strukturelle Typen der untersuchten Gesteinsproben im Überblick

Aufgrund der allgemeinen strukturellen Merkmale lassen sich die untersuchten Gesteinsproben folgendermaßen einteilen (siehe Abb. 6.4, Abb 6.5, Tab. 6.1):

1. nach Mercier & Nicolas, 1975:

In allen drei Gesteinshauptgruppen – Lherzolithen, Harzburgiten, Wehrliten – ist die protogranulare Struktur am häufigsten vertreten.

Die Verteilung der einzelnen Strukturklassen innerhalb einer Gesteinsgruppe ist jedoch ziemlich unterschiedlich:

Harzburgite sind mittel- bis grobkörnig, wobei die Grobkörnigkeit dominiert. Die Harzburgit-Gruppe ist mit zwei Strukturen vertreten: *protogranular (I,II)* \rightarrow *protogranular-porphyroklastisch*. Diese Gesteinsgruppe weist, mit 89,5 %, den höchsten prozentuellen Anteil der Proben mit einer protogranularen Struktur auf; protogranular-porphyroklastische Struktur macht 10,5 % der Gruppe aus. Sphärische Spinelleinschlüsse innerhalb des Olivins sind in drei Proben zu finden, was auf die *protogranulare* Struktur des *sekundären Zyklus* hindeuten kann (Abb. 6.3).

Wehlite sind meistens mittelkörnig. Diese Gesteinsgruppe wird von 5 Strukturklassen repräsentiert: *protogranular* \rightarrow *protogranular-porphyroklastisch* \rightarrow *porphyroklastisch* \rightarrow *porphyroklastisch-äquigranular* \rightarrow *äquigranular*. Wehrlite zeigen, mit 58,8 %, den niedrigsten prozentuellen Anteil der Proben mit einer protogranularen Struktur. Dementsprechend sind die Anteile der anderen Strukturklassen deutlich größer: protogranular-porphyroklastische, porphyroklastische, sowie äquigranulare Strukturklassen sind mit jeweils 11,8 % vertreten; porphyroklastisch-äquigranulare Struktur macht 5,9 % der Wehrlite aus.

Lherzolithe zeigen drei Strukturklassen: protogranular (I und II) → protogranularporphyroklastisch; porphyroklastisch-äquigranular. (Das fehlende Glied – porphyroklastisch – ist eventuell aufgrund der limitierten Anzahl an analysierten Proben zu erklären). Die protogranulare Struktur des sekundären Zyklus (protogranular II) ist mit zwei (eventuell drei) Lherzolith-Proben vertreten.

2. nach Harte, 1977:

Die strukturelle Aufteilung der Proben innerhalb der drei Gesteinshauptgruppen nach Harte's System zeigt eine weitgehende Übereinstimmung mit der Nomenklatur nach Mercier & Nicolas, was selbstverständlich keine Überraschung ist. Die dominierende Struktur aller drei Gesteinsgruppen ist die *coarse* Struktur, die i. Allg. der protogranularen Struktur (nach Mercier & Nicolas) entspricht. Dabei wurden die Subtypen *equant coarse* und *tabular coarse* zusammengerechnet.

Proben mit einer protogranular-porphyroklastischen Struktur (nach *Mercier & Nicolas*) fallen ebenfalls in *coarse* Strukturklasse (nach *Harte*). Infolgedessen sind die prozentuellen Anteile der coarse Struktur höher als die der protogranularen.

Harzburgite sind nur mit einer Strukturklasse – *coarse* – vertreten. Wehrlite weisen dagegen drei Strukturklassen auf: *coarse* \rightarrow *porphyroclastic* \rightarrow *granuloblastic*. Lherzolithe sind ebenfalls mit drei Strukturklassen vertreten: coarse \rightarrow *porphyroclastic* \rightarrow *mosaic-porphyroclastic* (Abb. 6.5).

39

6.1.3 Petrographische Charakteristika der Lherzolithe

PROTOGRANULARE STRUKTUR (= COARSE)

Die untersuchten Lherzolithe mit einer typischen protogranularen Struktur sind mittel- bis grobkörnig. Die Bestimmung der Korngröße basiert auf der Korngrößeneinteilung für magmatische und metamorphe Gesteine (Okrusch & Matthes, 2009):

- grobkörnig >5 mm mittlerer Korndurchmesser,
- *mittelkörnig* 5-1 mm,
- feinkörnig 1-0,1 mm,
- *dicht* <0,1 mm.

Die Olivin- und Orthopyroxenkristalle sind i. Allg. deutlich grobkörniger als die Klinopyroxene oder Spinelle. Die absolute Korngröße der Olivinkristalle variiert zwischen 1,0 und 10,0 mm im Durchmesser, wobei die mittlere Korngröße bei 4-6 mm liegt (siehe Tabelle "Petrographie der repräsentativen Proben" im Anhang). Die meisten Proben weisen eine *unimodale*

Abb. 6.6.a-b: Lherzolith mit einer typischen protogranularen Struktur. Probe DUB_13. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.7.a-b: Protogranulare Struktur mit einem lokalen texturellen Gleichgewicht: idiomorphe bis hypidiomorphe Olivinkristalle zeigen annähernd gerade Korngrenzen mit einem Tripelpunkt, wobei die Korngrenzwinkel ca. 120° betragen. Lherzolith. Probe DUB_151. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Korngrößenverteilung des Olivins auf.

In manchen Bereichen sind Polygonisierung und Rekristallisation der einst größeren Kristalle zu erkennen. In solch einem Fall sind die Kristallansammlungen am Rand der großen Olivinkristalle zu sehen. Derartige Gruppen bestehen aus wenigen Olivinkörnern mit annähernd gleicher Kristallorientierung. Die absolute Korngröße der Orthopyroxenkristalle liegt zwischen 0,5 und 11,0 mm, mit einem Durchschnitt von ca. 5-7 mm.

Olivin- und Orthopyroxenkörner sind i. Allg. annähernd isometrisch und haben eine hypidiomorphe bis xenomorphe Korngestalt. Die meisten Olivin- und Orthopyroxenkristalle einer typischen protogranularen Struktur weisen gekrümmte, aber "glatte", d.h. nicht suturierte, Korngrenzen auf. Gerade Korngrenzen kommen ebenfalls vor, sind jedoch deutlich seltener zu finden. Solch eine Art von Korngrenzen ist an manchen Kontakten zwischen:

- grobkörnigen Olivine,
- grobkörnigen Orthopyroxene,
- einem großen Olivinkristall und kleineren Olivinkristallen nach der Polygonisierung und Rekristallisation oder
- einem Orthopyroxen- und Olivinkristall (viel seltener) zu erkennen.

Klinopyroxen und Spinell weisen in der Regel keine geradlinigen, sondern stets gekrümmte Korngrenzen auf.

Die Ausbildung der geradlinigen Mineralkontakte führt zu der Formierung von Tripelpunkten zwischen drei Mineralkörnern, welche, im idealen Fall, einen Winkel von jeweils 120° einschließen. Das Auftreten eines derartigen Phänomens deutet auf ein lokales texturelles Gleichgewicht hin und ist in der Regel zwischen drei benachbarten Olivine oder, seltener, Orthopyroxene zu finden.

Abb. 6.8: Xenomorpher vermikularer Spinell innerhalb des Orthopyroxens. Lherzolith. Probe DUB_34. Dünnschliffbild: ungekreuzte Polarisatoren.

Abb. 6.9: Protogranulare Struktur: kleine hypidiomorphe Klinopyroxene und xenomorphe Spinelle liegen am Rand der großen Orthopyroxenkristalle. Lherzolith. Probe DUB_34. Dünnschliffbild: ungekreuzte Polarisatoren.

Die Klinopyroxene und Spinelle sind deutlich feinkörniger als die Olivin- oder Orthopyroxenkristalle. Die absolute Korngröße der Klinopyroxene variiert zwischen 0,5 und 5,0 mm mit einer durchschnittlichen Größe von ca. 2 mm. Die Klinopyroxene sind hypidiomorph bis xenomorph ausgebildet. Spinell hat stets eine xenomorphe Korngestalt mit einer durchschnittlichen Korngöße von 0,3-0,7 mm. Manche Proben weisen jedoch größere Spinellkristalle auf, mit einer Korngröße von 2-3 mm. Sowohl der Klinopyroxen als auch der Spinell einer typischen protogranularen Struktur sind durch einen direkten Kontakt zum Orthopyroxen gekennzeichnet (Abb. 6.9). Sie kommen in der Peripherie und/oder innerhalb eines großen Orthopyroxenkristalls vor. Im ersten Fall erscheint der Klinopyroxen in Form von feinen Entmischungen (xenomorphe Kristalle) oder, nach einer Rekristallisation, als hypidiomirphe Klinopyroxenkristalle. Spinell, sowohl im Inneren des Orthopyroxenkristalls als auch an seinem Rand, besitzt meistens eine xenomorphe, oft vermikulare Struktur (Abb. 6.8).

Lherzolithe mit einer protogranularen Struktur weisen weder eine Foliation noch eine

Abb. 6.10: Der große Olivinkristall in der Mitte zeigt Abb. 6.11: Deformationszwilling (= mechanischer Zwilling) subgrain boundaries, während die kleineren Olivinkristalle vereinzelt kink bands aufweisen. Lherzolith. Probe DUB_80. Dünnschliffbild: gekreuzte Polarisatoren.

im Olivinkristall (Bildmitte) weist eine konische Form auf und spitzt sich Richtung Kristallzentrum zu. Lherzolith. Probe DUB_80. Dünnschliffbild: gekreuzte Polarisatoren.

Probe DUB 80. Dünnschliffbild: gekreuzte Polarisatoren.

Abb. 6.12: Olivinkristalle zeigen kink bands. Lherzolith. Abb. 6.13: Olivinkristall weist kink bands auf. Lherzolith. Probe DUB 279. Dünnschliffbild: gekreuzte Polarisatoren.

Lineation auf. Die Kristalle zeigen i. Allg. wenig Verformung, die vereinzelt in Form von undulöser Auslöschung, *subgrain boundaries*, Deformationszwillingen oder *kink bands* vorkommt. Davon lässt sich auf einsetzende Dislokationen im Kristallgitter schließen. Die Verformung beschränkt sich auf die Olivinphase.

PROTOGRANULARE STRUKTUR MIT ZUNEHMENDEM VERFORMUNGSGRAD

Die protogranulare Struktur zeigt einen kontinuierlich zunehmenden Verformungsgrad, wobei der Olivin meistens die einzige Phase ist, die Verformung aufweist.

Die Olivinkörner zeigen eine zunehmende Elongation. Die Korngrenzen zwischen Olivinkristallen sind immer noch gekrümmt, jedoch nicht mehr glatt, sondern weisen eine Suturierung auf (Abb. 6.15-6.17). Mit zunehmender Suturierung der Olivine treten ebenfalls einzelne Olivinneoblaste an den Kristallgrenzen auf, was auf eine dynamische Rekristallisation im Gestein hindeutet (Abb. 6.18). Undulöse Auslöschung kommt untergeordnet vor. Ein starkes Auftreten der *subgrain boundaries* ist deutlich zu erkennen. Die einzelnen Kristalle zeigen einen erkennbaren Zusammenhang zwischen einer Elongation, *subgrain boundaries* und/oder *kink bands*, die senkrecht auf die Elongation stehen, und den suturierten Korngrenzen, was auf ein intrakristallines Gleiten zurückzuführen ist (Abb. 6.14).

Die Orthopyroxene weisen keine Art der Verformung auf, die Kristalle zeigen stets eine homogene Auslöschung. Die Grenzflächen sind meistens gekrümmt und glatt.

Die strukturellen Charakteristika des Klinopyroxens sowie des Spinells bleiben unverändert (d.h. sind ähnlich dem Klinopyroxen und Spinell der protogranularen Struktur).

Abb. 6.14: Olivinkristall (die Längsachse des Olivinkorns verläuft diagonal im Bild: von links (obere Ecke) nach rechts (untere Ecke)) zeigt *subgrain boundaries* die senkrecht auf die Elongation stehen. Die Korngrenzen weisen eine Suturierung auf. Lherzolith. Probe DUB_175. Dünnschliffbild: gekreuzte Polarisatoren.

Abb. 6.15: Zunehmende Deformation im Gestein bewirkt eine Suturierung an Olivinkorngrenzen. An manchen Kristallgrenzen ist ebenfalls eine Nukleation zu erkennen. Mehrere Olivine weisen undulöse Auslöschung, subgrain boundaries oder Deformationsbänder auf. Lherzolith. Probe DUB_131. Dünnschliffbild: gekreuzte Polarisatoren.

Abb. 6.16: Olivinkristalle weisen suturierte Korngrenzen sowie subgrains auf. Lherzolith. Probe DUB_131. Dünnschliffbild: gekreuzte Polarisatoren.

Abb. 6.17: Olivinkristalle zeigen suturierte Korngrenzen und Deformationsbänder. Lherzolith. Probe DUB_175. Dünnschliffbild: gekreuzte Polarisatoren.

Abb. 6.18: Suturierung und Rekristallisation im Olivin Abb. 6.19: "chessboard"-subgrains im Olivin. Lherzolith. infolge der strain-induced grain-boundary migration (bulging). Lherzolith. Probe DUB_175. Dünnschliffbild: gekreuzte Polarisatoren.

Probe DUB_131. Dünnschliffbild: gekreuzte Polarisatoren.

PORPHYROKLASTISCH-ÄQUIGRANULARE STRUKTUR

(= PORPHYROCLASTIC & MOSAIC-PORPHYROCLASTIC)

Diese Übergangsstruktur weist einen kontinuierlich zunehmenden Rekristallisationsgrad auf. Die Olivinphase zeigt eine charakteristische *bimodale* Korngrößenverteilung. Große Olivinporphyroklaste (bis zu 3 x 7 mm) weisen *subgrain boundaries* oder *kink bands* auf, die senkrecht (oder annähernd senkrecht) auf die Kristallelongation stehen. Undulöse Auslöschung und vereinzelte Deformationszwillinge treten ebenfalls, jedoch untergeordnet, auf. An manchen Stellen sind noch suturierte Korngrenzen zu erkennen. Die *"core-andmantle"*-Struktur ist in manchen Bereichen häufig zu sehen. Zahlreiche Olivinneoblasten befinden sich am Rand und/oder innerhalb der Olivinporphyroklasten. Kleine Bereiche, die nur aus Neoblasten bestehen kommen ebenfalls vor. Die Korngröße der Neoblasten liegt meistens unter 0,5 mm im Durchmesser und sie sind i. Allg. größer als die Neoblasten einer porphyroklastischen Struktur. Die Neoblasten haben weitgehend eine idiomorphe Korngestalt, sie weisen gerade, sehr gut ausgebildete Korngrenzen auf.

Abb. 6.20.a-d: Lherzolith mit einer porphyroklastisch-äquigranularen Struktur. Abbildungen zeigen zwei verschiedene Bereiche eines Dünnschliffes. Der Bereich (a-b) enthält deutlich mehr Porphyroklasten; die Neoblasten sind vorwiegend isometrisch und feinkörnig. Der Bereich (c-d) weist weniger Porphyroklasten auf; die Neoblasten kommen zahlreicher vor, sind deutlich größer und haben meistens eine anisometrische Form. Bemerkung zu (a) und (c): das schwarze Gebilde im Bild besteht aus tertiären Glas-Kristall-Aggregaten. Probe DUB_302. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

Abb. 6.21.a-b: Lherzolith mit einer porphyroklastisch-äquigranularen Struktur. Probe DUB_39. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.22.a-b: Lherzolith mit einer <u>porphyroklastisch</u>-äquigranularen Struktur. Der gezeigte Bereich weist einen porphyroklastischen Charakter auf. Die Probe ist jedoch als porphyroklastisch-äquigranular zu bezeichnen, da die anderen Bereiche der Probe bereits eine ausgeprägte äquigranulare Struktur zeigen. Probe DUB_195. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.23: *"core-and-mantle"*-Struktur: verformter Olivinkristall (zeigt kink bands) ist komplett von Rekristallisaten (neu gebildete isometrische Kristalle) umgeben. Lherzolith. Probe DUB_195. Dünnschliffbild: ungekreuzte Polarisatoren.

Ungleichmäßige wellige Grenzflächen kommen seltener vor. Beide Neoblastenkornformen – isometrische und anisometrische – sind vertreten. Lherzolithe mit einer dominierenden *isometrischen* Neoblastenkornform werden als porphyroklastisch-*mosaik* äquigranular bezeichnet. Eine dominierende *anisometrische* Kornform der Neoblasten macht die porphyroklastisch-*tabular* äquigranulare Struktur aus. In jenen Fällen, wo beide Kornformen in einer Probe gleichermaßen vertreten sind, wird die Struktur i. Allg. als porphyroklastisch-äquigranular bezeichnet (siehe Tab. 6.1). Die Neoblasten zeigen keine Art der Verformung. Orthopyroxene und Klinopyroxene zeigen, abhängig von der Probe, einen verschiedenen Deformationsgrad. Probe DUB_39 beinhaltet relativ unverformte Pyroxenkristalle: teilweise undulöse Auslöschung oder *subgrain boundaries* sind an manchen Stellen zu erkennen. Proben DUB_195 und DUB_302 zeigen eine Rekristallisation am Kristallrand. Die Pyroxenneoblasten sind meistens kleiner als die Olivinneoblasten der selben Probe.

PROTOGRANULARE II STRUKTUR (= COARSE II)

Mindestens zwei Lherzolithe liefern Hinweise für eine protogranulare Struktur des *sekundären* Zyklus: Runde Spinelleinschlüsse sind im Inneren der Olivinkristalle deutlich zu erkennen (Abb. 6.25.a-f). Proben mit zwei oder mehr Spinellkristallen innerhalb der Olivinphase (pro Dünnschliff) werden als *protogranular II* (in Tab. 6.1: Pro II) eingestuft. Proben, die weniger als zwei Spinelle innerhalb der Olivinkristalle aufweisen, oder deren Spinelle am Rand zwischen zwei benachbarten Olivinkristallen liegen, werden mit Vorsicht als *eventuell protogranular II* (evtl. Pro II) klassifiziert.

Abb. 6.24.a-b: Lherzolith mit einer protogranularen Struktur des zweiten Zyklus: man beachte runde Spinelleinschlüsse innerhalb eines intrakristallin verformten Olivinkristalls (der obere rechte Quadrant). Xenomorpher Spinell am Rand des Orthopyroxenkristalls (der obere linke Quadrant) als Charakteristikum einer protogranularen (I) Struktur ist ebenfalls zu sehen. Probe DUB_301. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.25.a-f

(a-b): Lherzolith mit einer typischen protogranularen Struktur beinhaltet Hinweise auf einen sekundären Zyklus: braune, meistens gerundete Spinelleinschlüsse sind vollkommen vom Olivin umschlossen. Man beachte ebenfalls einen Klinopyroxeneinschluss im Olivinkristall (im unteren linken Quadrant); (c-f): Detailaufnahmen mit Spinelleinschlüssen. Probe DUB_314. Dünnschliffbild: ungekreuzte (a, c, e) und gekreuzte (b, d, f) Polarisatoren.

6.1.4 Petrographische Charakteristika der Harzburgite

PROTOGRANULARE STRUKTUR (= COARSE)

Harzburgite mit einer protogranularen Struktur sind mittel- bis grobkörnig, wobei die Grobkörnigkeit dominiert.

Die absolute Größe der Olivinkristalle variiert zwischen 1 x 2 mm und 6 x 9 mm, mit einem Mittelwert von 5 x 7 mm (Bemerkung: Olivinkristalle der Probe DUB_114 erreichen die Korngröße von 8 x 12 mm). Die absolute Korngröße der Orthopyroxenkristalle liegt zwischen 0,7 und 9,0 mm, mit einem Mittelwert von ca. 5-6 mm im Durchmesser. Die Kornform der Olivine und Orthopyroxene ist vorwiegend isometrisch; Proben mit anisometrischen Kristallen sind eher selten (bilden eine *"coarse tabular"* Struktur, nach *Harte*). Die Korngrenzen der beiden Phasen sind gekrümmt und glatt; Tripelkorngrenzen kommen zwischen den Olivinkristallen untergeordnet vor.

Harzburgite mit einer protogranularen Struktur weisen i. Allg. ähnliche petrographische

Abb. 6.26.a-b: Harzburgit mit einer typischen protogranularen Struktur. Probe DUB_33. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.27.a-b: Harzburgit mit einer typischen protogranularen Struktur. Man beachte die Spinell- und Klinopyroxenkristalle mit einer xenomorphen Korngestalt, die sich am Rand des großen Orthopyroxenkristalls befinden (der linke untere Quadrant). Manche große Olivinkristalle zeigen vereinzelt *kink bands*. Probe DUB_184. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Charakteristika auf, wie die oben beschriebenen protogranularen Lherzolithe. Der wichtige Unterschied liegt jedoch darin, dass die Klinopyroxenphase teilweise oder völlig fehlt.

Demzufolge werden die paragenetischen Verhältnisse zwischen Klinopyroxen und Orthopyroxen teilweise oder komplett vernachlässigt.

Die i. Allg. seltenen Klinopyroxenkristalle erreichen 1 bis 2 mm Korngröße im Durchmesser. Sie weisen eine xenomorphe Korngestalt auf und liegen meistens in der Peripherie der Orthopyroxenkristalle.

Spinell-führende Harzburgite zeigen weiterhin xenomorphe, vermikular ausgebildete Spinelle innerhalb und/oder an der Peripherie des Orthopyroxenkristalls.

Der Deformationsgrad ist sehr gering. Die Verformung beschränkt sich auf den Olivin: große Kristalle zeigen gelegentlich eine undulöse Auslöschung, *subgrain boundaries* oder *kink bands.*

Abb. 6.28.a-b: Protogranulare Struktur mit einem lokalen texturellen Gleichgewicht: Olivine zeigen annähernd gerade Korngrenzen mit einem Tripelpunkt zwischen den drei benachbarten Kristallen, wobei der Korngrenzwinkel ca. 120° beträgt. Manche Olivinkristalle zeigen vereinzelt *kink bands*. Harzburgit. Probe DUB_33. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.29.a-b: Harzburgit mit einer *coarse tabular*-Struktur (nach *Harte*): Olivinkristalle weisen eine anisometrische Kornform auf. Probe DUB_315. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

PROTOGRANULAR-PORPHYROKLASTISCHE STRUKTUR (= COARSE)

Die bis zu 6 mm große Olivinkristalle zeigen eine stark ausgeprägte undulöse Auslöschung sowie *subgrain boundaries*. Deformationslamellen, mechanische Zwillinge und *kink bands* kommen ebenfalls vor. Die Orthopyroxenkristalle sind bis zu 4-5 mm groß und zeigen gelegentlich eine undulöse Auslöschung. Sowohl Olivine als auch Orthopyroxene zeigen eine ausgeprägte Suturierung an ihren Korngrenzen und, an manchen Stellen, eine beginnende Nukleation, was auf eine dynamische Rekristallisation hindeutet. Die einzelnen Neoblasten und/oder Neoblastengruppen sind gelegentlich im Inneren der Kristalle zu finden. Die selten vorkommenden Klinopyroxene erreichen 1-2 mm Korngröße. Sie zeigen überwiegend eine homogene Auslöschung und befinden sich stets in direktem Kontakt zum Orthopyroxen.

Abb. 6.30.a-b: Harzburgit mit einer protogranular-porphyroklastischen Struktur: Olivinkristalle weisen eine intrakristalline Verformung in Form von Deformationsbändern und *kink bands* auf. Suturierung und Nukleation an Olivinkristallgrenzen, infolge der *strain-induced grain-boundary migration (bulging)*, ist ebenfalls zu erkennen. Probe DUB_64. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.31

Abb. 6.32

Abb. 6.31, 6.32: Olivinphase zeigt eine intrakristalline Verformung in Form von *subgrain boundaries*, suturierten Kristallgrenzen und Nukleation. Orthopyroxen bleibt vorwiegend unverformt. Harzburgit. Probe DUB_64. Dünnschliffbild: gekreuzte Polarisatoren.

Probe DUB_24 weist ebenfalls eine intrakristalline Deformation auf (Abb. 6.33.a-b, 6.34.a-b). Die meisten Olivinkristalle zeigen ausgeprägte *subgrain boundaries*; Orthopyroxene – eine undulöse Auslöschung, *subgrain boundaries* und, vereinzelt, *kink bands*. Die suturierten Korngrenzen kommen untergeordnet vor; eine ausgeprägte Nukleation ist überall vorhanden, zahlreiche Neoblastenschwärme sind an Korngrenzen sowie im Inneren der Kristalle zu finden. Die Struktur ist als protogranular-porphyroklastisch und nicht porphyroklastisch zu klassifizieren, weil die großen Kristalle meistens nicht elongiert sind und der Neoblastenanteil deutlich unter 50 % liegt (nach Mercier & Nicolas, 1975). Nach Harte ist die Struktur noch als *coarse* zu bezeichnen, da die Kristalle nicht elongiert sind und sie sind nicht vollständig von Neoblasten umgeben (Harte, 1977).

Abb. 6.33.a-b: Harzburgit mit einer protogranular-porphyroklastischen Struktur: Olivinkristalle weisen eine intrakristalline Verformung, in Form von Deformationsbändern und *kink bands*, auf. Suturierung und Nukleation *(bulging)* sind ebenfalls zu erkennen. Probe DUB_24. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.34.a-b: Harzburgit mit einer protogranular-porphyroklastischen Struktur: Orthopyroxen zeigt *subgrain boundaries*, die senkrecht auf Kristallelongation stehen. Rekristallisation an Korngrenzen *(bulging)* ist ebenfalls zu erkennen. Probe DUB_24. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

6.1.5 Petrographische Charakteristika der Wehrlite

PROTOGRANULARE STRUKTUR (= COARSE)

Wehrlite mit einer protogranularen Struktur sind meistens mittelkörnig. Ihre strukturellen Merkmale sind ähnlich denjenigen der protogranularen Lherzolithe. Aufgrund des Mangels oder des völligen Fehlens vom Orthopyroxen, sind die meisten Klinopyroxene von Olivin umgeben. Manche Proben zeigen zudem rundliche Klinopyroxeneinschlüsse innerhalb der Olivinkristalle. In jenen Fällen, wo Orthopyroxen mit einigen Vol.-% vertreten ist, erscheinen diese seltenen Orthopyroxenkristalle stets in direktem Kontakt zum Klinopyroxen (Abb. 6.35.a-b, 6.36.a-b).

Abb. 6.35.a-b: Wehrlit mit einer protogranularen Struktur: Olivin zeigt lokal eine Polygonisierung und Rekristallisation der einst größeren Kristalle. Probe DUB_308. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.36.a-b: Protogranulare Struktur mit einem lokalen texturellen Gleichgewicht: Olivinkristalle zeigen annähernd gerade Korngrenzen mit einem Tripelpunkt, wobei die Korngrenzwinkel ca. 120° betragen. Wehrlit. Probe DUB_309. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

PROTOGRANULAR-PORPHYROKLASTISCHE STRUKTUR (= COARSE)

Der Olivin zeigt eine undulöse Auslöschung und subgrain boundaries. Vereinzelt kommen

Abb. 6.37.a-b: Protogranular-porphyroklastische Struktur. Olivinkristalle zeigen suturierte Korngrenzen. An manchen Kristallgrenzen ist ebenfalls eine Nukleation zu erkennen (der untere linke Quadrant). Einige Olivine weisen Deformationsbänder auf. Wehrlit. Probe DUB_128. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.38.a-b: Protogranular-porphyroklastische Struktur. Olivinkristalle zeigen suturierte Korngrenzen und Nukleation als Folge der *strain-induced grain-boundary migration (bulging)*. Einige Olivine weisen eine undulöse Auslöschung und Deformationsbänder auf. Wehrlit. Probe DUB_128. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.39.a-b: Protogranular-porphyroklastische Struktur. Wehrlit. Probe DUB_148. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

kink bands und Deformationszwillinge vor. Manche Kristalle sind eindeutig elongiert, wobei *subgrain boundaries* und *kink bands* senkrecht auf die Elongation stehen (Abb. 6.40.a-b). Die Olivinkorngrenzen zeigen eine Suturierung und gelegentlich eine beginnende Nukleation. Klino- und Orthopyroxene zeigen eine homogene Auslöschung und meistens gekrümmte, glatte Korngrenzen.

Abb. 6.40.a-b: Protogranular-porphyroklastische Struktur: elongierter Olivinkristall (mitte) zeigt suturierte Korngrenzen und *kink bands*. Die *kink bands* stehen senkrecht auf die Elongation. Wehrlit. Probe DUB_148. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

PORPHYROKLASTISCHE STRUKTUR (= PORPHYROCLASTIC)

Wehrlite mit einer porphyroklastischen Struktur weisen eine charakteristische *bimodale* Korngrößenverteilung des Olivins auf.

Die absolute Korngröße der Olivinporphyroklasten variiert zwischen 2 und 6 mm im Durchmesser. Die meisten Olivinporphyroklasten zeigen eine starke intrakristalline Verformung in Form von *subgrain boundaries* und zahlreichen *kink bands*. An manchen Stellen sind noch suturierte Korngrenzen zu finden, sie sind jedoch selten.

Abb. 6.41.a-b: Wehrlit mit einer porphyroklastischen Struktur. Probe DUB_35. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Eine fortschreitende Nukleation an den Kristallrändern führt zur Ausbildung einer charakteristischen "*core-and-mantle*"-Struktur. Olivinneoblasten sind ebenfalls innerhalb der Porphyroklasten zu finden. Die Neoblasten zeigen eine einheitliche Auslöschung. Die Korngröße der Neoblasten kann von Probe zu Probe variabel sein. Kleine Neoblasten sind eher isometrisch und hypidiomorph. Größere Neoblasten sind oft anisometrisch und idiomorph. Der Neoblastenanteil beträgt über 50 %.

Die absolute Korngröße der Klinopyroxenkristalle liegt zwischen 0,5-2 mm im Durchmesser. Klinopyroxene scheinen kaum verformt zu sein. Meistens ist eine homogene Auslöschung zu beobachten; undulöse Auslöschung kommt eher selten vor.

Abb. 6.42.a-b: Wehrlit mit einer porphyroklastischen Struktur: intrakristalline Verformung im Olivin in Form von Deformationsbändern. Rekristallisation am Olivinkornrand. Probe DUB_192. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

PORPHYROKLASTISCH-ÄQUIGRANULARE STRUKTUR (= PORPHYROCLASTIC)

Probe DUB_56 weist eine *bimodale* Korngrößenverteilung des Olivins auf. Die Olivinporphyroklasten sind 1,5 bis 3 mm groß. Die meisten Olivinporphyroklasten zeigen

Abb. 6.43.a-b: Wehrlit mit einer porphyroklastisch-äquigranularen Struktur: Olivinporphyroklast (mitte) weist eine undulöse Auslöschung auf. Olivinneoblasten zeigen sich innerhalb des Porphyroklasts und an dessen Rand. Probe DUB_56. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

subgrain boundaries oder vereinzelte kink bands; untergeordnet kommt eine undulöse Auslöschung vor. Suturierung der Korngrenzen kommt selten vor. Die meisten Korngrenzen sind von Olivinneoblasten umgeben und bilden damit geradlinige Korngrenzabschnitte. Olivinneoblasten variieren in ihrer Korngröße und Kornform, wobei die anisometrischen (tafeligen) Kristalle dominieren. Sie erreichen 1 x 1,5 mm Korngröße und liegen meistens richtungslos am Kristallrand und/oder innerhalb der Porphyroklasten. Die meisten Neoblasten lassen keine Art der Verformung erkennen. Die Bereiche, die nur Neoblasten beinhalten, kommen gelegentlich vor.

Der Verformungsgrad der Klinopyroxene ist variabel: Manche Kristalle zeigen eine homogene Auslöschung, andere Körner weisen hingegen *subgrain boundaries* oder, vereinzelt, *kink bands* auf. Die Korngröße der Klinopyroxenkristalle variiert zwischen 1 und 4 mm im Durchmesser.

Nach Harte ist die Struktur noch als *porphyroclastic* (und nicht als *mosaic-porphyroclastic*) zu bezeichnen, weil der Anteil der Olivinporphyroklasten deutlich mehr als 10 % ausmacht (Harte, 1977).

Abb. 6.44.a-b: Wehrlit mit einer äquigranularen tabularen Struktur: Olivine haben eine ausgeprägte anisometrische Kristallform und liegen subparallel zueinander. Probe DUB_126. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.45.a-b: Wehrlit mit einer äquigranularen tabularen Struktur: Olivine haben eine meistens anisometrische Kristallform und liegen subparallel zueinander. Probe DUB_310. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

ÄQUIGRANULARE TABULARE STRUKTUR (= GRANULOBLASTIC TABULAR)

Die Korngrößenverteilung des Olivins ist eindeutig unimodal.

Die Olivinporphyroklasten kommen selten vor: der Anteil beträgt weniger als 5 %. Die Korngröße der Porphyroklasten erreicht 2 x 5 mm. Die Kristalle zeigen eine intrakristalline Verformung, meistens in Form von *kink bands*, seltener in Form von *subgrain boundaries*. Die Korngrenzen der Porphyroklasten sind unregelmäßig, aber glatt, nicht suturiert.

Olivinneoblasten sind meistens anisometrisch und haben eine ausgeprägte tafelige Form (Abb. 6.44.a-b, 6.45.a-b). Die mittlere Korngröße der Neoblasten liegt zwischen 1 x 1,5 und 2 x 4 mm. Sie haben eine hypidiomorphe bis idiomorphe Korngestalt und sind von Verformung meistens frei (manche Neoblasten zeigen *kink bands*).

Die Kristalle liegen parallel/subparallel zueinander, wodurch eine deutlich bevorzugte Orientierung der Minerale im Gestein zu erkennen ist (\rightarrow Textur).

Klinopyroxene erreichen 0,5 bis 2 mm Korngröße und zeigen meistens keine Art der Verformung.

6.1.6 Petrographische Charakteristika der Dunite

PROTOGRANULAR-PORPHYROKLASTISCHE STRUKTUR (= COARSE)

Probe DUB_93 weist eine protogranular-porphyroklastische Struktur. Große Olivinkristalle messen ca. 5-6 mm im Durchmesser. Sie weisen meistens eine intrakristalline Deformation in Form von *subgrain boundaries*, Deformationsbändern oder *kink bands* auf. Die Korngrenzen sind gekrümmt und deutlich suturiert. An manchen Stellen ist außerdem eine Bildung von Rekristallisaten zu erkennen: kleine, relativ seltene Olivinneoblasten an suturierten Korngrenzen. Andere Dünnschliffabschnitte zeigen eine fortschreitende, dynamische Rekristallisation in Form von zahlreichen, relativ großen Olivinneoblasten. Sie befinden sich am Kornrand und/oder innerhalb der großen Olivinkristalle. Die Neoblasten zeigen eine hypidiomorphe bis idiomorphe Korngestalt und sind vorwiegend anisometrisch ausgebildet. Große Neoblastenansammlungen kommen ebenfalls vor, der prozentuelle Anteil liegt jedoch deutlich unter 50 %, daher wird diese Struktur als protogranular-porphyroklastisch und nicht porphyroklastisch klassifiziert (nach *Mercier & Nicolas*).

Orthopyroxenkristalle erreichen bis zu 5 mm Durchmesser. Manche Kristalle weisen eine undulöse Auslöschung oder *subgrain boundaries* auf. In manchen Kristallbereichen ist eine Rekristallisation zu erkennen. Die Korngrenzen sind meistens gekrümmt und oft buchtig. Eine gewisse Instabilität am Kristallrand, insbesondere in Anwesenheit von Spinell, ist gelegentlich zu sehen: In Einbuchtungen sind Glas und feinste Kristallaggregate zu finden (detaillierte Erläuterung solcher Strukturen siehe in Abschnitt 6.3).

Der Spinell kommt in Form von ockerbraunen, oft gerundeten Kristallen vor. Die Kristallgröße variiert zwischen 0,5 x 0,5 und 0,7 x 2,5 mm. Manche Spinellkristalle sind schwarz und opak, was durch eine Oxidation erklärt werden kann. Spinellkristalle zeigen oft Einbuchtungen und sind stets von tertiär gebildeten Glas-Kristall-Aggregaten umgeben.

Kleine, seltene Phlogopitkristalle kommen interstitiell vor, meistens innerhalb der Glasadern. Manche Kristalle weisen *kink bands* auf (petrographische Beschreibung der wasserhaltigen Minerale ist in Abschnitt 6.2 zu finden).

Abb. 6.46.a-d: Dunit mit einer protogranular-porphyroklastischen Struktur. Abbildungen zeigen zwei verschiedene Bereiche des Dünnschliffes. Bereich (a-b) hat Merkmale einer vorwiegend protogranular-porphyroklastischen Struktur: Große Olivinkristalle zeigen *subgrain boundaries*, Deformationsbänder, *kink bands* und suturierte Kristallgrenzen. Nukleation ist im Anfangsstadium. Solche Struktur ist im Dünnschliff dominierend. Bereich (c-d) hat einen vorwiegend porphyroklastischen Charakter: Olivinrekristallisation ist deutlich zu erkennen. Solche Struktur ist nur lokal zu finden. Probe DUB_93. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

6.1.7 Petrographische Charakteristika der Pyroxenite in Bezug auf die Nomenklaturen nach Mercier & Nicolas (1975) und Harte (1977)

Strukturelle Merkmale der untersuchten Pyroxenite zeigen eine beachtliche Abweichung der Strukturen der Lherzolithe, Harzburgite oder Wehrlite. Streng genommen entsprechen die meisten untersuchten Pyroxenite keinem beschriebenen Strukturtyp, weder nach der Nomenklatur von Mercier & Nicolas (1975) noch nach der Klassifikation von Harte (1977)
(Anm. d. Verf.). Von dem Standpunkt der Nomenklatur nach Mercier & Nicolas (1975) fehlen die typischen paragenetischen Verhältnisse der Phasen Olivin, Orthopyroxen, Klinopyroxen und Spinell größtenteils oder vollständig.

Der Versuch, nach dem Grad der Verformung vorzugehen, ergibt hauptsächlich zwei verschiedene Muster:

- Große Orthopyroxen-, Klinopyroxenkristalle und selten vorkommende Olivine zeigen eine undulöse Auslöschung, *subgrains* oder *kink bands*. Selten sind auch *bulging*oder Rekristallisations-Prozesse zu erkennen. Eine einheitliche Auslöschung kommt untergeordnet vor. Strukturen derartiger Xenolithe oder, öfter, Teile davon ähneln dem *protogranular-porphyroklastischen* Strukturtyp.
- Zahlreiche Aggregate, die hauptsächlich aus den Phasen Ortho- und Klinopyroxen bestehen, zeigen meistens keine Art der Verformung. Gegen eine protogranulare Struktur spricht jedoch nicht nur das Fehlen jeglicher typischer paragenetischer Verhältnisse der Phasen, sondern auch die Korngröße: Die Kristalle sind kleiner als 0,5 mm im Durchmesser. Die Aggregate weisen keine homogene Verteilung auf, sondern ziehen meistens in Schlieren durch das Gestein.

Eine einzige, bis jetzt untersuchte, Pyroxenitprobe (DUB_12), deren Kristalle keine Verformung aufweisen und eine durchschnittliche Korngröße von 2 bis 5 mm erreichen, kann der *protogranularen* Struktur zugeordnet werden.

Der nächste wichtige Aspekt, die Gestalt der Korngrenzen, zeigt ebenfalls eine Abweichung von einer protogranularen Struktur. Gerade oder gekrümmte glatte Korngrenzen kommen i. Allg. selten vor. Die kleinen Kristalle in Aggregaten weisen meistens unregelmäßige wellige Korngrenzen auf. Dennoch kann der *"bulging recrystallisation"*-Prozess in diesem Fall ausgeschlossen werden, da die Kristalle eine völlig homogene Auslöschung zeigen.

Unter Berücksichtigung der Nomenklatur nach Harte (1977) kann nur eine Pyroxenitprobe (DUB_12) der *coarse* Struktur zugeordnet werden. Per Definition ist die *coarse* Struktur durch:

- das Fehlen von Porphyroklasten,
- die Korngröße von mindestens 2 mm im Durchmesser und
- die geraden, leicht gekrümmten oder weniger regelmäßigen Korngrenzen charakterisiert (Harte, 1977).

Die Harte's Nomenklatur ist gut geeignet für Pyroxenite i. Allg., kann jedoch in gegebenem Fall kaum angewendet werden. Sie berücksichtigt keine strukturellen oder texturellen Merkmale, die sich aus metasomatischen Prozessen ergeben (Harte, 1977), wie es hier offensichtlich der Fall ist. Weitere Charakteristika der Pyroxenit-Gruppe werden im Abschnitt 6.2.2, im Zusammenhang mit metasomatischen Prozessen, erläutert.

PETROGRAPHIE

Tab. 6.1: Petrographische Charakteristika im Überblick. Lherzolithe

		Struktur			modale Metasomatose	
Probe	Gesteinstyp	Nomenklatur nach	Nomenklatur	Korngrösse	vorhanden (+)	Phasen der
		Mercier & Nicolas,	nach Harte,	, , , , , , , , , , , , , , , , , , ,	nicht	modalen Metasomatose
		1975	1977		vorhanden (-)	
DUB_1G	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	-	
DUB_4G	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	+	Amph
DUB_5	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Phl
DUB_10	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	+	mp
DUB_13	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	-	
DUB_17	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	-	
DUB_23	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	+	Phl
DUB_26b	"composite" Xenolith. Teil:	Po - Äq (tab)	ро	mittelkörnig	-	
	Spl-führender Lherzolith					
DUB_28	"composite" Xenolith. Teil:	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph
	Spl-führender Lherzolith					
DUB_29	Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Phl
DUB_30	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	-	
DUB_31	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Phl, Aggr.
DUB_34	Spl-führender Lherzolith	Pro I	coarse eq	grobkörnig	-	
DUB_39	Spl-führender Lherzolith	Po - Äq	mos-po	mittelkörnig	+	Amph
DUB_40	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Ap, mp, Aggr.
DUB_69	Spl-führender Lherzolith	Pro I	coarse tab	fein- bis mittelkörnig	+	Phl
DUB_78	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph
DUB_80	Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_81	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	+	Amph, Aggr.
DUB_83	Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_110	Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, mp, Aggr.
DUB_118	Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_121	Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_131	Spl-führender Lherzolith	Pro - Po	coarse eq	mittelkörnig	-	
DUB_133	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Phl
DUB_135	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph
DUB_144	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Phl
DUB_145	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_151	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_160	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_162	Spl-führender Lherzolith	Pro I (evtl. Pro II)	coarse eq	mittel- bis grobkörnig	+	Amph, Phl
DUB_165	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Phl
DUB_169	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	-	
DUB_170	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_175	Spl-führender Lherzolith	Pro - Po	coarse eq	mittel- bis grobkörnig	-	Aggr.
DUB_180a	Lherzolith	Pro I	coarse eq	mittelkörnig	+	Amph, Aggr.
DUB_180b	Spl-führender Lherzolith	Pro I	coarse tab	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_185	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	-	
DUB_186	Spl-führender Lherzolith	Pro I	coarse tab	mittel- bis grobkörnig	+	Amph, Phl
DUB_195	Spl-führender Lherzolith	Po - Äq (mos)	ро	mittel- bis grobkörnig	+	Amph
DUB_275	Spl-führender Lherzolith	Pro - Po	coarse eq	fein- bis mittelkörnig	+	Amph, Phl

Tab	C 1.	Detrographicabo	Charaktariatika im	I lb orblight	I harzalitha
1 80.	0.1	Petrooraonische	Unaraktenstika im	UDEIDIICK.	Lnerzonne
	· · · ·		•••••••••••••••••••••••••••••••••••••••		

Probe	Kommentar				
DUB_1G					
DUB_4G	Gl: gelblich, sehr reich an Gas-Bläschen				
DUB_5	Opx: Instabilität am Kristallrand				
DUB_10	Cpx: "spongy"-Saum; Opx: Instabilität am Kristallrand; mp: GI+Spl2+Ol2+Cpx2				
DUB_13	Cpx: "spongy"-Saum, hohe Dichte an EL/Einschlüsse; Opx: Instabilität am Kristallrand, besonders ausgeprägt in Anwesenheit von Spl				
DUB_17	Cpx: "spongy"-Saum, zahlreiche EL; Opx: Instabilität am Kristallrand				
DUB_23	Phl: Vorkommen äußerst gering; als Einschlüsse in Opx				
DUB_26b	Opx: oft feinkörnige Kristalle, interstitiell zw. größeren Ol-Kristallen				
DUB_28	Opx: oft feinkörnige Kristalle, interstitiell zw. größeren Ol-Kristallen				
DUB_29	Amph: als einzelne winzige Einschlüsse in Cpx, Vorkommen äußerst gering; Phl: in Adern				
DUB_30	deutlich ausgebildete Tripelpunktkorngrenzen				
DUB_31	Cpx: "spongy"-Saum, zahlreiche EL/Einschlüsse; Opx: Instabilität am Kristallrand; GI+Ol2+Spl2±Cpx2-Aggr.;Tripelkorngrenzen zw. Ol				
DUB_34	GI: in Adern; fortschreitende Reaktionsfront am Kontakt zw. GI und Opx \rightarrow Bildung von Neurekristallisaten				
DUB_39	Amph: als Einschlüsse in Cpx; alte idiomorphe Spl-Kristalle innerhalb von neugebildeten hypidiomorphen Spl-Kristallen				
DUB_40	Cpx: "spongy"-Saum; mp: GI+Spl2+Ol2+Cpx2; GI+Spl2+Ol2+Cpx2-Aggr. ±Amph-Relikte; Ap: einige relativ große Kristalle, interstitiell				
DUB_69	Phl: Vorkommen äußerst gering; Opx: geringe Instabilität am Kristallrand				
DUB_78	GI: gelb bis braun, enthält Kalzit und Xenolithbruchstücke in ehemaligen Gasblasen, befindet sich in direktem Kontakt zum Hostbasalt				
DUB_80	Cpx: "spongy"-Saum; GI+Spl2+Ol2+Cpx2-Aggr. ±Amph-Relikte;				
DUB_81	Cpx: "spongy"-Saum; GI+Ol2+Spl2+Cpx2-Aggr. ±Amph-Relikte;				
DUB_83	Cpx: "spongy"-Saum; GI+OI2+SpI2+Cpx2-Aggr. ±Amph-Relikte;				
DUB_110	Cpx: "spongy"-Saum; mp: GI+OI2+SpI2+Cpx2; GI+OI2+SpI2+Cpx2-Aggr. ±Amph-Relikte;				
DUB_118	Cpx: "spongy"-Saum; GI+OI2+SpI2+Cpx2-Aggr. ±Amph-Relikte;				
DUB_121	Cpx: "spongy"-Saum; GI+OI2+SpI2+Cpx2-Aggr. ±Amph-Relikte; Opx: lokale Instabilität innerhalb des Kristalls und am Rand				
DUB_131	GI: gelblich, in schmalen Adern, interstitiell; Cpx: "spongy"-Saum;				
DUB_133	Phl: Vorkommen äußerst gering; befindet sich in Glasadern				
DUB_135	Cpx: "spongy"-Saum; Opx: Instabilität am Kristallrand, besonders ausgeprägt in Anwesenheit von Spl				
DUB_144	Phl: Vorkommen ist äußerst gering				
DUB_145	Cpx, Opx: zahlreiche EL/Einschlüsse; Opx: Instabilität, besonders nahe zu Spl; Bildung von GI+OI2+Spl2-Aggr. in Kristalleinbuchtungen				
DUB_151	oft gut ausgebildete Tripelpunktkorngrenzen zw. Ol-Kristallen				
DUB_160	Opx: Instabilitat, besonders nane an SpI → Bildung von Gi+Ol2+Spl2-Aggr. in Kristalleinbuchtungen; SpI-Oxidation; sehr viel Clc im Gi				
DUB_162	Amph- und SpI-Einschlüsse in Cpx; PhI: befindet sich in Glasadern; Opx, Cpx: Instabilität am Kristallrand				
DUB_165	Opx: Instabilitat am Kristalirand				
DUB_169	mehrere Glasadern mit ausgesprochen großen Cic-Kristallen innerhalb von ehemaligen Gasblasen				
DUB_170	Gi: gelb; in Adern; interstitiell oder entlang der Bruchtlachen im Kristall; zeigt am Kontakt zu Opx eine Reaktionstront im Antangsstadium				
	Cpx: spongy -Saum, Opx: Instabilitatiam Kristalirano, besonders nane zu Spi → Bildung von Gi+Ol2+Spi2-Aggr.; Spi-Oxidation				
DUB_180a	Cpx: "spongy"-Saum; GI+OI2+SpI2+Cpx2-Aggr. ±Amph-Relikte; Opx: Instabilitat am Kristallrand, besonders am Kontakt zu Amph-Relikten				
DUB_180b	Upx: spongy -Saum; GI+OI2+Spi2+Upx2-Aggr. ±Ampn-Relikte; Upx: Instabilitat am Kristallrand, besonders am Kontakt zu Amph-Relikten				
DUB_185					
	GI. geid dis drauminich, Opx: Instabiliat am Kontakt zum Glas; Amph-Opx-Spi(Idiomorph)-Verwachsungen; Phi-Opx-Spi(Idiomorph)-Verwachsungen				
DUB_195	 Annak Cau Califidiananaki Masunaka (Cau Tail dan Dhaga liant in feinkeistellinge Frenz von Kotenstiinellingen der in der inder der ist.				
DOR_512	Amph-Cpx-Spi(louomorph)-verwachs.; Opx: Teil der Phase liegt in teinkristalliner Form vor (interstitieil oder innerhalb der UI-Kristalle)				

PETROGRAPHIE

Tab. 6.1: Petrographische Charakteristika im Überblick. Lherzolithe (Fortsetzung)

		Struktur		modale	Metasomatose	
Probe	Gesteinstyp	Nomenklatur nach	Nomenklatur	Korngrösse	vorhanden (+)	Phasen der
		Mercier & Nicolas,	nach Harte,		nicht	modalen Metasomatose
		1975	1977		vorhanden (-)	
DUB_279	Spl-führender Lherzolith	Pro I	coarse tab	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_301	Spl-führender Lherzolith	Pro II	coarse eq II	mittelkörnig	-	
DUB_302	Spl-führender Lherzolith	Po - Äq	mos-po	mittelkörnig	+	Amph, Phl
DUB_303	Spl-führender Lherzolith	Pro - Po	coarse tab	mittel- bis grobkörnig	+	Phl
DUB_304	Spl-führender Lherzolith	Pro - Po	coarse eq	mittelkörnig	-	
DUB_311	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	-	
DUB_312	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	+	Amph
DUB_313	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	-	
DUB_314	Spl-führender Lherzolith	Pro II	coarse eq II	mittel- bis grobkörnig	+	Amph
DUB_316	Spl-führender Lherzolith	Pro I	coarse eq	mittelkörnig	-	
DUB_317	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_319	Spl-führender Lherzolith	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Phl

Tab. 6.1: Petrographische Charakteristika im Überblick. Harzburgite

		Struktur		modale	Metasomatose	
Probe	Gesteinstyp	Nomenklatur nach	Nomenklatur	Korngrösse	vorhanden (+)	Phasen der
		Mercier & Nicolas,	nach Harte,		nicht	modalen Metasomatose
		1975	1977		vorhanden (-)	
DUB_14	Spl-führender Harzburgit	Pro I	coarse eq	grobkörnig	-	
DUB_21	Spl-führender Harzburgit	Pro I	coarse eq	grobkörnig	-	
DUB_24	Spl-führender Harzburgit	Pro - Po	coarse eq	grobkörnig	-	
DUB_33	Spl-führender Harzburgit	Pro I	coarse eq	grobkörnig	+	Amph, Aggr.
DUB_36	Spl-führender Harzburgit	Pro I	coarse eq	grobkörnig	-	
DUB_37	Spl-führender Harzburgit	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_48	Harzburgit	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_60	Spl-führender Harzburgit	Pro I	coarse eq	grobkörnig	-	
DUB_62	Spl-führender Harzburgit	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_64	Harzburgit	Pro - Po	coarse eq	mittel- bis grobkörnig	+	Amph, Aggr.
DUB_65	Spl-führender Harzburgit	Pro I	coarse eq	mittel- bis grobkörnig	+	Amph
DUB_70	Spl-führender Harzburgit	Pro I	coarse eq	grobkörnig	-	
DUB_114	"composite" Xenolith. Teil:	Pro I	coarse eq	grobkörnig	+	Amph, Phl, Ap
	Spl-führender Harzburgit					
DUB_130	Spl-führender Harzburgit	Pro II	coarse eq	mittel- bis grobkörnig	-	
DUB_159	Spl-führender Harzburgit	Pro I	coarse eq	mittelkörnig	-	
DUB_164	Spl-führender Harzburgit	Pro I (evtl. Pro II)	coarse eq	grobkörnig	-	
DUB_184	Spl-führender Harzburgit	Pro I	coarse eq	mittel- bis grobkörnig	-	
DUB_300	Spl-führender Harzburgit	Pro II	coarse eq	mittel- bis grobkörnig	-	
DUB_315	Spl-führender Harzburgit	Pro I	coarse tab	mittelkörnig	+	Amph

Tab. 6.1: Petrographische Charakteristika im Überblick. Lherzolithe (Fortsetzung)

Probe	Kommentar				
DUB_279	Cpx: "spongy"-Saum; GI+OI2+SpI2+Cpx2-Aggr. ±Amph-Relikte; Opx: Instabilität am Kristallrand, besonders am Kontakt zu Amph-Relikten				
DUB_301	Opx: Instabilität am Kristallrand → Bildung von GI+OI2+SpI2-Aggr.; kugelförmige SpI-Einschlüsse im OI deuten auf Protogranular II-Struktur				
DUB_302	GI+OI2+SpI2±Cpx2±Amph±PhI-Aggr.				
DUB_303	Phl: Vorkommen äußerst gering, interstitiell; Lherzolith hat direkten Kontakt zum Pyroxenit				
DUB_304	Cpx: "spongy"-Saum; Clc-Kristalle: teilweise radialstrahlig innerhalb von Gl-Kristall-Aggr.; Opx: Instabilität am Kristallrand; Gl+Spl2±Ol2±Cpx2-Aggr.				
DUB_311	Cpx: "spongy"-Saum; kugelförmige SpI-Kristalle innerhalb von Opx; Opx: Instabilität am Kristallrand nahe zu SpI				
DUB_312	Cpx: "spongy"-Saum; Opx: Instabilität am Kristallrand, besonders ausgeprägt in Anwesenheit von Spl				
DUB_313					
DUB_314	kugelförmige Spl-Einschlüsse in OI (→ Protogranular II); Cpx: "spongy"-Saum; Opx: Instabilität am Kristallrand nahe zu Spl				
DUB_316	Cpx: "spongy"-Saum				
DUB_317	Cpx: "spongy"-Saum, zahlreiche EL; Opx: Instabilität am Kristallrand, besonders ausgeprägt in Anwesenheit von Spl				
DUB_319	Amph- und Phl-Vorkommen innerhalb von Adern, stets begleitend von Opx				

Tab. 6.1: Petrographische Charakteristika im Überblick. Harzburgite

Probe	Kommentar
DUB_14	GI: gelblich, in schmalen Adern, interstitiell und entlang der spröden Kristallbruchflächen; Reaktion zw. Gl und anderen Phasen kaum erkennbar
DUB_21	
DUB_24	Opx: Instabilität der Phase, Bildung von GI+Spl2±Cpx2-Aggr. innerhalb der Kristalleinbuchtungen
DUB_33	GI: gelb, in schmalen Adern, interstitiell; Reaktion zw. GI und anderen Phasen nicht erkennbar; Amph: Vorkommen sehr gering; Tripelpunktkorngren.
DUB_36	Gl: gelblich, in schmalen Adern, interstitiell; Opx: Instabilität am Kristallrand; Opx, Cpx: hohe Dichte an EL
DUB_37	Opx, Cpx: Instabilität an Korngrenzen besonders in Anwesenheit von Spl, Bildung von GI+Spl2±Ol2±Cpx2-Aggr; sehr hohe Dichte an EL
DUB_48	GI+OI2+SpI2+Cpx2-Aggr.; Adern mit GI, Clc, Xenolithbruchstücke; Amph: als Einschluss in Cpx, gering; Cpx: "spongy"-Saum; Opx: Instabilität
DUB_60	GI: gelblich, in schmalen Adern, interstitiell; Instabiliät von Opx in Anwesenheit vom GI (in Anfangsstadium)
DUB_62	Opx: Instabilität, besonders ausgeprägt in Anwesenheit von Spl; Spl: oxidiert, Bildung von GI+Ol2+Spl2-Aggr. in zahlreichen Einbuchtungen
DUB_64	Amph-Cpx-Spl(idiomorph)-Verwachs.; Amph, Opx: Instabilität; GI+OI2+Spl2+Cpx2-Aggr., gering; breite Adern gefüllt mit Karbonaten
DUB_65	Amph: Vorkommen gering, zeigt Instabilität an den Korngrenzen; Opx: Instabilität der Phase an manchen Stellen erkennbar
DUB_70	Spl: meistens vermikular und hellbraun; zwei rundliche schwarze Einschlüsse innerhalb des Opx-Kristalls
DUB_114	Pyroxenit-Adern entlang der meisten primären OI-Kristallgrenzen, sowie innerhalb deren Kristallbruchflächen; Pyroxenit ist ebenfalls in OI-
	Kristalleinbuchtungen zu finden. Pyroxenit-Adern bestehen bis zu 90 Vol% aus Opx und enthalten ebenfalls Amph, Phl, Ap.
DUB_130	Spl: meistens vermikular; zwei runde Einschlüsse innerhalb der Ol-Kristalle
DUB_159	
DUB_164	GI: braun, in feinen Adern; Instabilität vom Opx in Anwesenheit vom GI (Anfangsstadium); SpI: ein rundlicher schwarzer Einschluss innerhalb von OI
DUB_184	Gl: braun, in feinstenen Adern, entlang der Kristallgrenzen; zahlreiche Ol-Tripelpunktkorngrenzen
DUB_300	runde Einschlüsse innerhalb der OI- und Opx-Kristalle
DUB_315	Amph: Vorkommen sehr gering, zeigt Instabilität an den Korngrenzen; Opx: lokal eine geringe Instabilität der Phase

PETROGRAPHIE

Tab.	6.1:	Petrographische	Charakteristika in	n Uberblick.	Wehrlite

		Struktur			modale Metasomatose		
Probe	Gesteinstyp	Nomenklatur nach	Nomenklatur	Korngrösse	vorhanden (+)	Phasen der	
		Mercier & Nicolas,	nach Harte,		nicht	modalen Metasomatose	
		1975	1977		vorhanden (-)		
DUB_3GA	Wehrlit	Pro I	coarse eq	mittelkörnig	+	Amph, Phl, mp	
DUB_11	Spl-führender Wehrlit	Pro I	coarse tab	mittelkörnig	+	Amph, Aggr.	
DUB_18	Wehrlit	Pro I	coarse	mittelkörnig	+	Phl, Aggr.	
DUB_25	Wehrlit	Pro I	coarse tab	mittel- bis grobkörnig	+	Amph, Phl, Aggr.	
DUB_27	Wehrlit	Pro I	coarse	mittelkörnig	+	Amph, Phl, mp, Aggr.	
DUB_35	Spl-führender Wehrlit	Po	ро	mittelkörnig	+	Amph, Phl, Aggr.	
DUB_56	Wehrlit	Po - Äq (tab)	ро	fein- bis mittelkörnig	+	Amph, Aggr.	
DUB_126	Wehrlit	Äq (tab)	granul tab	mittelkörnig	+	Amph, Phl, Aggr.	
DUB_128	Spl-führender Wehrlit	Pro - Po	coarse tab	mittelkörnig	+	Phl	
DUB_148	Spl-führender Wehrlit	Pro - Po	coarse tab	mittelkörnig	+	Amph, Aggr.	
DUB_192	Wehrlit	Po	ро	mittelkörnig	+	Amph, mp, Aggr.	
DUB_209	Wehrlit	Pro I	coarse eq	grobkörnig	+	Amph, Aggr.	
DUB_256	Wehrlit	Pro I	coarse eq	mittelkörnig	+	Amph, Aggr.	
DUB_306	Wehrlit	Pro I	coarse eq	mittelkörnig	+	Phl, Aggr.	
DUB_308	Wehrlit	Pro I	coarse eq	mittelkörnig	+	Phl, Aggr.	
DUB_309	Spl-führender Wehrlit	Pro I	coarse tab	mittelkörnig	+	Phl, Aggr.	
DUB_310	Spl-führender Wehrlit	Äq (tab)	granul tab	fein- bis mittelkörnig	+	Phl	

Tab. 6.1: Petrographische Charakteristika im Uberblick. Andere Gesteinstype						••		
	Tab.	6.1:	Petrographische	Charakteristika	im	Überblick.	Andere	Gesteinstype

		Stru	ıktur		modale	Metasomatose
Probe	Gesteinstyp	Nomenklatur nach	Nomenklatur	Korngrösse	vorhanden (+)	Phasen der
		Mercier & Nicolas,	nach Harte,		nicht	modalen Metasomatose
		1975	1977		vorhanden (-)	
DUB_93	Spl-führender Dunit	Pro - Po	coarse eq	mittelkörnig	+	Phl
DUB_12	Spl-führender Ol-Websterit	Pro I	coarse eq	mittelkörnig	+	Amph, Ap
DUB_15	Spl-führender Ol-Klinopyroxenit			fein- bis grobkörnig	+	Amph, Phl
DUB_26c	Spl-führender Websterit			fein- bis mittelkörnig	+	Pyroxenite
DUB_26a	"composite" Xenolith. Teil:			fein- bis mittelkörnig	+	Pyroxenite
	Spl-führender Websterit					
DUB_28	"composite" Xenolith. Teil:			feinkörnig	+	Pyroxenite; Amph, Ap
	Spl-führender Klinopyroxenit					
DUB_114	"composite" Xenolith. Teil:			feinkörnig	+	Pyroxenite; Amph, Ap
	Klinopyroxenit					

PETROGRAPHIE

Probe	Kommentar					
DUB_3GA	GI: gelb bis braun, in Adern entlang der Korngrenzen/in mp; mp: GI+Spl2±Cpx2±Ol2; Cpx: "spongy"-Saum; Amph: als Einschl. in Cpx, gering					
DUB_11	GI: gelb, in Adern/innerhalb der mp; GI+Cpx2+SpI2+OI2-Aggr. ±Amph-Relikte; Cpx: "spongy"-Saum; OI-Bruchstücke eingebetet in Kalzit-Kristalle					
DUB_18	GI: gelb, in Adern/innerhalb der Aggr.; GI+Spl2+Ol2-Aggr. ±PhI-Relikte; Cpx: "spongy"-Saum; Kalzit-Kristalle innerhalb von Adern und Aggr.					
DUB_25	Gl: gelb; Cpx: "spongy"-Saum; Phl: Vorkommen sehr gering					
DUB_27	Cpx: "spongy"-Saum; mp: GI+Cpx2+Spl2+Ol2; GI+Cpx2+Spl2+Ol2-Aggr. ± Amph-Relikte; GI: gelb, in Adern/mp/Aggr.					
DUB_35	Cpx: "spongy"-Saum;					
DUB_56	Cpx: "spongy"-Saum; GI+Cpx2+SpI2+OI2-Aggr. ± Amph-relikte; Amph: als Einschluss im Cpx					
DUB_126	GI: gelb bis braun, in Adern/Aggr.; Cpx: "spongy"-Saum; GI+Spl2+Ol2±Cpx2-Aggr. ± Amph ± PhI-Relikte;					
DUB_128	GI: gelb; Cpx: "spongy"-Saum; Amph-Einschluss im Cpx; sehr viel Kalzit in Adern; GI+Spl2+Ol2-Aggr. ± Phl-Relikte±Kalzit;					
DUB_148	Cpx: "spongy"-Saum; GI+Spl2±Ol2±Cpx2-Aggr. ±Amph-Relikte±Kalzit					
DUB_192	Cpx: "spongy"-Saum; mp: GI+Spl2±Ol2±Cpx2; GI+Spl2±Ol2±Cpx2-Aggr. ±Amph-Relikte					
DUB_209	Cpx: "spongy"-Saum; Amph: große Kristalle, am Rand und innerhalb des Kristalls bilden sich GI+Spl2±Ol2±Cpx2-Aggr.					
DUB_256	Cpx: "spongy"-Saum; GI+Spl2±Ol2±Cpx2-Aggr. ± Amph-Relikte ±Kalzit					
DUB_306	Gl: gelb bis braun, in Adern; Cpx: "spongy"-Saum; viel Kalzit in Adern; GI+Spl2±Ol2-Aggr. um Phl-Kristalle					
DUB_308	Cpx: "spongy"-Saum; viel Kalzit in Adern; GI+Spl2±Ol2-Aggr. um Phl-Kristalle					
DUB_309	Cpx: "spongy"-Saum; GI+Spl2+Ol2-Aggr. am Rand und in Einbuchtungen von PhI-Kristallen					
DUB_310	Cpx: "spongy"-Saum; Kalzit-Ader;					

Tab. 6.1: Petrographische Charakteristika im Überblick. Wehrlite

Tab. 6.1: Petrographische Charakteristika im Überblick. Andere Gesteinstype

Probe	Kommentar			
DUB_93	Opx: Instabilität am Kristallrand, besonders nahe zu Spl; Spl: teilweise oxidiert, stets von GI+Spl2+OI2±Cpx2-Aggr.umgeben; Phl: selten			
DUB_12				
DUB_15	Amph und Phl als Einschlüsse oder Verwachsungen in/mit Cpx			
DUB_26c	lagig: feinkörnige Lagen (Opx-reich)/mittelkörnige Lagen (Cpx-reich); GI+Spl2±Ol2±Cpx2-Aggr.			
DUB_26a	Opx: Teil der Phase liegt in feinkristalliner Form vor: interstitiell oder innerhalb der Ol-Kristalle oder bildet größere Pyroxenit-Bereiche			
DUB_28	Pyroxenit-Ader in Form eines Keils, innerhalb eines Lherzoliths			
DUB_114	Feinkörniger Pyroxenit-Bereich besteht hauptsächlich aus Cpx; untergeordnet kommt Opx vor. Akzessorisch: Ap, Sulfide Die meisten Cpx weisen "spongy"-Strukturen auf			

Kommentare zu Tabelle 6.1

Alle Gesteinsproben, die in dieser Arbeit petrographisch untersucht worden sind, sind in der Tabelle (Tab. 6.1) kurz zusammengefasst (detaillierte Beschreibung ausgewählter Proben siehe im Anhang). Wie bereits in den letzten Kapiteln besprochen:

- 1. Die Bestimmung der Korngröße basiert auf der Korngrößeneinteilung für magmatische und metamorphe Gesteine (Okrusch & Matthes, 2009):
 - grobkörnig >5 mm mittlerer Korndurchmesser,
 - mittelkörnig 5-1 mm,
 - feinkörnig 1-0,1 mm,
 - *dicht* <0,1 mm.

 Als "melt pockets" (mp) werden in der vorliegenden Arbeit i. Allg. die tertiär gebildeten Glas-Kristall (Ol2±Cpx2±Spl2)-Aggregate ohne Amphibol- oder Phlogopitrelikte benannt; Als Aggr. werden i. Allg. Glas-Kristall (Ol2±Cpx2±Spl2)-Aggregate, die Amphibol- oder Phlogopitrelikte beinhalten, benannt.

3. Phasenanteil des Spinells liegt deutlich unter 5 Vol.-% (bis zu 3,6 Vol.-%). Demzufolge werden die Proben, die Spinell enthalten, als Spinell-führend bezeichnet (nach Klassifikation von *Le Maitre et al.*, *2002*).

Pro I	protogranular (1. Zyklus)	Aggr.	Glas-Kristall-Aggregate
Pro II	protogranular (2. Zyklus)	Amph	Amphibol
Pro - Po	protogranular-porphyroklastisch	Ар	Apatit
Po	porphyroklastisch	Clc	Kalzit
Po - Äq (tab)	porphyroklastisch-tabular äquigranular	Срх	Klinopyroxen
Po - Äq (mos)	porphyroklastisch-mosaik äquigranular	EL	Entmischungslamelle(n)
Äq (tab)	tabular äquigranular	Gl	Glas
coarse eq	coarse equant	mp	"melt pocket"
coarse tab	coarse tabular	01	Olivin
ро	porphyroclastic	Орх	Orthopyroxen
mos-po	mosaic-porphyroclastic	Phl	Phlogopit
granul tab	granuloblastic tabular	Spl	Spinell

Legende zu Tab. 6.1

6.2 Petrographie der sekundären Phasen

6.2.1 Petrographie der wasserhaltigen Minerale

6.2.1.1 Amphibol

Amphibole können aufgrund ihrer strukturellen Beziehungen zu den primären Mineralen des Peridotites, sowie anhand der Paragenese innerhalb der Adern, die das Erdmantelgestein durchziehen, in folgende Gruppen unterteilt werden:

Typ I: das Auftreten in einer *disseminierten* Form. Amphibol liegt in verteilter Form im Gestein, in direktem Kontakt zu den primären Mineralen vor, wobei die Phase in folgenden Formen vorkommt:

- als relativ große Einzelkristalle (Abb. 6.47.a-b);
- in Form von Kristallaggregaten, die aus wenigen großen Einzelkristallen zusammengesetzt sind (Abb. 6.47.c);
- als relativ kleine Kristalle (0,5-2 mm im Durchmesser) die stets im Kontakt zum Klinopyroxen liegen und oft Verwachsungen mit dieser Phase bilden.

Die Kristallgröße der Amphibole variiert zwischen 0,5 und 8 mm im Durchmesser. Amphibol weist eine olivgrüne bis gelblichbraune oder rötlichbraune Farbe, mit deutlichem Pleochroismus, auf. Die Einzelkristalle sowie die Kristallaggregate des Amphibols liegen in direktem Kontakt zu großen Olivin-, Klinopyroxen- und/oder Orthopyroxenkristallen.

Die Korngrenzen des Amphibols weisen eine gekrümmte, glatte oder wellige Form auf. Deren ursprüngliche Form ist jedoch oft schwierig zu erkennen: zahlreiche Glas-Kristall-Aggregate befinden sich an den Amphibolkristallrändern (Abb. 6.48.a-b, 6.50.a). Solche Aggregate sind ebenfalls häufig im Inneren des Amphibolkristalls zu erkennen. Die Glas-Kristall-Aggregate bestehen aus feinkörnigen hypidiomorphen bis idiomorphen Olivinen, Klinopyroxenen und Spinellen die stets vom Glas umgeben sind (Abb. 6.50.b). Das Volumen solcher Aggregate, in Anwesenheit von Amphibol, variiert stark von Probe zu Probe, wobei mit der Zunahme des Glas-Kristall-Anteils eine Abnahme der Amphibolgröße festzustellen ist. Amphibol liegt oft innerhalb von Glas-Kristall-"*Taschen*" in Form von kleinen Relikten vor. Manche Proben zeigen wiederum Glas-Kristall-"*Taschen*" (auch "*melt pockets*" genannt) die von Amphibolrelikten völlig frei sind; solche "*pockets*" zeigen manchmal jedoch eine rhombische Form was eventuell auf eine Pseudomorphose nach Amphibol hindeutet.

Die beschriebenen Charakteristika weisen demzufolge auf einen Amphibolzerfall sowie eine Bildung der neuen Phasen – Olivin, Klinopyroxen und Spinell – hin.

Amphibol zeigt i. Allg. wenig bis keine Verformung. Kristalle, die jedoch eine intrakristalline Deformation aufweisen, sind in Peridotiten mit einer porphyroklastisch-äquigranularen

Abb. 6.47.a-c: Amphibol *Typ I*: Kristalle liegen in disseminierter Form in einem (a) Harzburgit, Probe DUB_64; (b) Lherzolith, Probe DUB_195; (c) Wehrlit, Probe DUB_209. Dünnschliffscan.

Abb. 6.48.a-b: Amphibol in Form von Einzelkristallen in einem Wehrlit. Der Kristall liegt in direktem Kontakt zum Olivin und Klinopyroxen. Amphibol enthält, sowohl im Inneren des Kristalls als auch an seinen Rändern zahlreiche feinkörnige Glas-Kristall-Aggregate. Man beachte, dass der Amphibol eine homogene Auslöschung aufweist, während die benachbarten Olivine eine intrakristalline Verformung erkennen lassen. Probe DUB_256. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.49.a-b: Amphibol zeigt eine intrakristalline Verformung in Form von undulöser Auslöschung. Die beginnende Rekristallisierung ist in Form von *bulging* sowie Neoblastenbildung an der Verzwilligungsfläche zu erkennen. Eine Verformung zeigt ebenfalls der ellongierte Olivin (der linke obere Bildquadrant). Lherzolith mit einer porphyroklastischäquigranularen Struktur. Probe DUB_195. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Abb. 6.50.a-b: Amphibol weist eine olivgrüne bis rötlichbraune Eigenfarbe, mit deutlichem Pleochroismus, auf. Am Amphibolkristallrand, sowie in seinem Inneren, ist die Bildung von feinen Glas-Kristall-Aggregaten, die zu tertiären Phasen gehören, deutlich zu erkennen: hypidiomorphe bis idiomorphe Olivin-, Klinopyroxen- und Spinellkristalle sind im gelblichen Glas eingebettet. *Bemerkung*: hier, sowie auf den folgenden Abbildungen dieser Arbeit, werden die *tertiären* Phasen als *Ol2* für Olivin, *Cpx2* für Klinopyroxen und *Spl2* für Spinell bezeichnet. Wehrlit. Probe DUB_25. Dünnschliffbild: ungekreuzte Polarisatoren; Übersichtsaufnahme (a) und Detailaufnahme (b) von Glas-Kristall-Aggregaten.

Abb. 6.51.a: Amphibol *Typ II*: Diese Phase kommt innerhalb von Adern, die auf *crack-propagation* zurückzuführen sind, vor. Lherzolith. Probe DUB_302. Dünnschliffscan.

Abb. 6.51.b: Amphibol *Typ III*: Diese Phase kommt innerhalb von pyroxenitischen Adern vor. Zusammengesetzter Erdmantelxenolith. Probe DUB_28. Dünnschliffscan.

Struktur zu finden. In solchen Fällen sind eine undulöse Auslöschung, *bulging* sowie eine Neoblastenbildung zu erkennen (Abb. 6.49.a-b).

Typ II: das Auftreten innerhalb von Adern/dykes, welches anscheinend auf crackpropagation zurückzuführen ist. Das Vorkommen der sekundären Phasen beschränkt sich in

(a-b) Poikilitische Struktur: Amphibol schließt kleine Klinopyroxenkristalle ein. Detailaufnahme der keilförmigen Ader (siehe Abb. 6.51.b). Zusammengesetzter Erdmantelxenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren; (c-d) kleine xenomorphe Amphibole in Form von Verwachsungen mit anderen Phasen innerhalb von schmalen pyroxenitischen Adern. Zusammengesetzter Erdmantelxenolith. Probe DUB_114. BSE-Aufnahme.

diesem Fall auf spröde Brüche und Spalten, die den Hostperidotit quer durchschneiden (Abb. 6.51.a). Amphibole innerhalb von solchen Adern sind i. Allg. feinkörniger als diejenigen des *Typ I*. Sie zeigen meistens eine gelblichbraune Farbe und deutlichen Pleochroismus. Kristalle weisen eine xenomorphe Gestalt auf und bilden Verwachsungen mit anderen sekundären Phasen – Phlogopit, Klinopyroxen und/oder Orthopyroxen. Eine detaillierte Darstellung solcher Adern ist in Abschnitt 6.2.2 zu finden.

Typ III: das Vorkommen innerhalb der pyroxenitischen Adern (Abb. 6.51.b). In einem solchen Fall sind die feinen Adern entlang der Kristallgrenzen der primären Minerale des Peridotites zu sehen. Die sekundären Phasen liegen infolgedessen interstitiell, also zwischen den primären Mineralen die zum Peridotit gehören, vor. Der Amphibol hat in der Regel eine xenomorphe Korngestalt und bildet meistens Verwachsungen mit anderen sekundären Phasen – Klinopyroxen, Orthopyroxen und/oder Phlogopit (Abb. 6.52.a-d). Die Kristallgröße der Amphibole variiert sehr stark: von sehr kleinen Kristallen die, innerhalb der *feinen* Adern, winzige Verwachsungen mit Klinopyroxen oder Phlogopit bilden, bis zu großen Kristallen die

sich, innerhalb der *großen* Adern, mit dem Klinopyroxen zu einer poikilitischen Struktur formen, wobei der Amphibol einen Wirtskristall repräsentiert. Eine Beschreibung der Pyroxenitadern ist in Abschnitt 6.2.2 zu finden.

6.2.1.2 Phlogopit

Wie bereits in Kapitel 5 erläutert wurde, enthalten alle untersuchten Wehrlite wasserhaltige Minerale, wobei in manchen Proben beide Phasen – Amphibol und Phlogopit – präsent sind. Phlogopit kommt in der Regel seltener als Amphibol vor und ist am häufigsten in Wehrliten zu finden. Die Harzburgite sind meistens phlogopitfrei. Der Modalbestand des Phlogopits in den Lherzolithen ist deutlich geringer als der in den Wehrliten, jedoch höher als der in den Harzburgiten (Abb. 5.2, Tab. 5.1, Tab. 6.1). Der Phlogopit tritt in folgenden Formen im Peridotit auf:

Typ IA: als relativ große Einzelkristalle die im Peridotit, der eine protogranulare Struktur aufweist, unregelmäßig verteilt sind (Abb. 6.53.a, 6.54.a). Die Phlogopitkristalle, mit einem Durchmesser von bis zu 3 mm, haben eine blättrige bis leistenförmige Form und meistens eine hypidiomorphe Korngestalt. Phlogopit zeigt eine blassgelbe bis rötlichbraune Farbe, je nach Schnittlage, und starken Pleochroismus. Diese Phase liegt in direktem Kontakt zum Olivin, Klinopyroxen und/oder zum Amphibol.

Typ IB: als *leistenförmige* Kristalle, die parallel-subparallel zur Foliation im Gestein liegen, wobei die Foliation hier durch eine bevorzugte Orientierung der gestreckten Kristalle charakterisiert ist. Der Peridotit weist in solch einem Fall eine *äquigranulare* Struktur auf (Abb. 6.44.a-b, 6.45.a-b, 6.53.b, 6.54.b).

Typ II: interstitiell als kleine tafelige Einzelkristalle oder als blättrige Kristallaggregate, die in Form von Rosetten angeordnet sind oder in Schwärmen vorkommen (Abb. 6.55.a-b, 6.56.a-d).

Typ III: innerhalb von Adern/*dykes*, die eventuell auf *crack-propagation* Prozesse im Gestein zurückzuführen sind. Das Vorkommen der sekundären Phasen beschränkt sich in diesem Fall auf spröde Brüche und Spalten, die den *Hostperidotit* quer durchschneiden (Abb. 6.51.a). Phlogopit weist eine hypidiomorphe bis xenomorphe Korngestalt auf, und zeigt die gleiche blassgelbe bis rötlichbraune Farbe und starken Pleochroismus wie die Phlogopite des *Typ I.* Phlogopit des *Typ III* bildet Verwachsungen mit Amphibol und, gelegentlich, mit anderen sekundären Phasen wie Klino- und Orthopyroxen innerhalb der Adern. Eine detaillierte Darstellung solcher Adern ist im Abschnitt 6.2.2 zu finden.

Abb. 6.53.a-b: Phlogopit Typ I.

(a) *Typ IA*: Phlogopit in disseminierter Form: Kristalle liegen unregelmäßig verteilt in einem *protogranularen* Wehrlit. Phlogopit zeigt eine blättrige bis leistenförmige Kristallform und eine hypidiomorphe Korngestalt. Probe DUB_306; (b) *Typ IB*: Enge Verwachsung zwischen Klinopyroxen und Phlogopit in einem foliierten Wehrlit. Probe DUB_310. Dünnschliffscan.

Abb. 6.54.a-b: Phlogopit in einem Wehrlit.

(a) *Typ IA*. Phlogopit in disseminierter Form: Kristalle liegen unregelmäßig verteilt in einem *protogranularen* Wehrlit. Phlogopit zeigt eine blättrige bis leistenförmige Kristallform und eine hypidiomorphe bis xenomorphe Korngestalt. Klinopyroxen zeigt eine *"spongy"*-Struktur (auf dem Bild: dunkler Saum um den Kristall). Probe DUB_306. Dünnschliffbild: ungekreuzte Polarisatoren; (b) *Typ IB*. Phlogopit beschränkt sich auf eine Lage im *äquigranularen* Wehrlit. Die Phlogopitkristalle haben meistens eine leistenförmige Kristallform und liegen parallel-subparallel zueinander, sowie zu anisometrisch ausgebildeten Olivinen. Probe DUB_310. Dünnschliffbild: ungekreuzte Polarisatoren.

Typ IV: innerhalb von Pyroxenitadern, die anscheinend durch *grain-boundary infiltration* gebildet wurden (Abb. 6.51.b). Die sekundären Phasen befinden sich meistens interstitiell, zwischen den primären Mineralen des Peridotits. Der Phlogopit kommt in solchen Adern als feinkörniges xenomorphes Akzessorium vor, das oft mit Amphibol Verwachsungen bildet. Die Adern bestehen aus Klino- und/oder Orthopyroxen und relativ wenig Amphibol, sie sind in der Regel phlogopitfrei.

An den Korngrenzen des Phlogopits sind gewöhnlich Glas-Kristall-Aggregate zu erkennen. Der Kristallanteil solcher Aggregate ist durch Olivin und Spinell vertreten; währenddessen ist der Klinopyroxen nicht präsent (Abb. 6.57.a-d). Das Auftreten solcher Glas-Kristall-Aggregate ist für alle oben besprochenen Typen gleichermaßen charakteristisch.

Das seltene Auftreten des feinkörnigen hypidiomorphen Klinopyroxens in solchen Aggregaten beschränkt sich nur auf Kontakte zwischen dem Phlogopit und dem primären Klinopyroxen, der stets an solchen Stellen einen "*spongy*"-Saum aufweist. Der Phlogopit zeigt an solchen Kontakten unregelmäßige Kristallgrenzen mit Einbuchtungen, wo sich die genannten Glas-Kristall-Aggregate befinden. Dies deutet darauf hin, dass die Neubildung des Klinopyroxens allein auf Kosten vom destabilisierten *primären* Klinopyroxen, und nicht aufgrund des Phlogopitzerfalls, stattfindet.

Abb. 6.55.a-b: Phlogopit *Typ II*: Phase in einem *porphyroklastischen* Wehrlit. Phlogopit kommt in Form von blättrigen Kristallaggregaten vor, die in Schwärmen das Wirtgestein durchziehen. Die dunklen länglichen Gebilde sind in der Regel nahe dem Phlogopit oder unmittelbar an seinen buchtigen Kristallgrenzen zu finden. Sie sind aus Glas-Kristall-Aggregaten zusammengesetzt, wobei der Kristallanteil durch Olivin und Spinell gebildet wird. Solche Gebilde sind jedoch von dunklen *rundlichen* Strukturen zu unterscheiden. Die Letzten sind ebenfalls aus Glas-Kristall-Aggregaten zusammengesetzt; der Kristallanteil besteht jedoch aus Olivin, Spinell *und* Klinopyroxen. Außerdem enthalten die rundlichen Strukturen oft Amphibolrelikte. Probe DUB_35. Dünnschliffscan.

Abb. 6.56.a-f: Phlogopit Typ II.

(a-d) Phlogopit in einem *porphyroklastischen* Wehrlit. Die Phase kommt in Form von blättrigen Kristallaggregaten vor, die in Schwärmen das Wirtgestein durchziehen. (a) Man beachte ebenfalls, dass der Klinopyroxen einen *"spongy"-Saum* aufweist. (b) Ein Olivinporphyroklast ist unter gekreuzten Polarisatoren besonders gut zu erkennen. (c-d) Phlogopitkristalle weisen Knickbänder auf; rund um Phlogopit sind zahlreiche Glas-Kristall-Aggregate sowie Kalzit zu sehen. Probe DUB_35. (e-f) Phlogopit in einem *porphyroklastisch-äquigranularen* Lherzolith. (e) Phlogopit liegt interstitiell als kleiner Einzelkristall vor; (f) Glas zeigt eine gelblichbraune Farbe; die zahlreichen gerundeten Strukturen innerhalb des Glases, sind mit Kalzit gefüllt. Probe DUB_302. Dünnschliffbild: ungekreuzte (a, c, e, f) und gekreuzte (b, d) Polarisatoren.

Abb. 6.57.a-d: Phlogopitzerfall in einem Wehrlit.

Phlogopitkristalle liegen in direktem Kontakt zu Olivin und Klinopyroxen. Phlogopite weisen unregelmäßige Kristallgrenzen mit Einbuchtungen auf und sind von zahlreichen Glas-Kristall-Aggregaten umgeben. Solche Aggregate bestehen aus Olivin und Spinell, die vom gelblichen Glas umschlossen sind. (a) Die ursprüngliche leistenförmige Kristallform des Phlogopits ist noch deutlich zu erkennen. Der Olivinkristallrand weist eine Bildung von feinkörnigen hypidiomorphen Spinellen am Kontakt zum Phlogopit auf. Klinopyroxen zeigt eine durchgreifende "spongy"-Struktur. Probe DUB_18. Dünnschliffbild: ungekreuzte Polarisatoren; (b) Klinopyroxen zeigt einen "spongy rim" (untere Bildhälfte) sowie eine durchgreifende "spongy"-Struktur (der obere rechte Bildquadrant) am Kontakt zum destabilisierten Phlogopit. Probe DUB_309. Dünnschliffbild: ungekreuzte Polarisatoren; (c-d) Klinopyroxen zeigt einen "spongy rim" (der obere linke Bildquadrant) sowie eine durchgreifende "spongy"-Struktur (der obere rechte Bildquadrant) am Kontakt zum destabilisierten Phlogopit. Probe DUB_309: (c) Übersichtsaufnahme, (d) Detailaufnahme. Dünnschliffbild: ungekreuzte Polarisatoren.

6.2.2 Petrographische Charakteristika der sekundären Phasen innerhalb von Adern/Gängen

Die Paragenese innerhalb der Adern/Gängen ist i. Allg. durch die folgenden Mineralphasen charakterisiert:

- Orthopyroxen
- Klinopyroxen
- Amphibol
- Phlogopit
- Apatit
- Sulfide
- Titan-Oxide
- Rhönit

6.2.2.1 Durch crack propagation gebildete Adern

Wie bereits in Abschnitt 6.2.1 erwähnt, kommen die sekundären Phasen – Amphibol und Phlogopit – nicht nur in disseminierter Form vor, sondern sind ebenfalls innerhalb der Adern/Gängen zu finden. Diese wasserhaltigen Minerale sind in der Regel mit Ortho- und Klinopyroxen vergesellschaftet.

Probe DUB_319 repräsentiert einen mittel- bis grobkörnigen Lherzolith, der eine protogranulare Struktur aufweist. Das Vorkommen der sekundären Phasen beschränkt sich ausschließlich auf die Adern, die den Hostperidotit quer durchschneiden (Abb. 6.58). Die wasserhaltigen Minerale – Amphibol und Phlogopit – stellen die Hauptphasen der Ader dar, wobei das Volumen einer Phase im Verhältnis zum Volumen der anderen Phase etwa die Hälfte beträgt.

Phlogopit hat eine hypidiomorphe bis xenomorphe Korngestalt und weist gelegentlich *kink bands* auf. Diese Phase bildet oft Verwachsungen mit Amphibol, sowie mit dem Ortho- und Klinopyroxen, die ebenfalls innerhalb der Ader vorkommen (Abb. 6.59.a-d, 6.60.a-j).

Orthopyroxen begleitet die Ader von ihren beiden Flanken mit einer gewissen Kontinuität. Solch eine Form lässt eine Reaktionsfront zwischen dem Peridotit und der, sich im Gestein fortpflanzenden Schmelze, vermuten. Klinopyroxen kommt untergeordnet vor, hat meistens eine xenomorphe Korngestalt und bildet oft Verwachsungen mit Amphibol (Abb. 6.60.a).

Amphibol zeigt eine gelblichbraune Farbe und deutlichen Pleochroismus; die Korngestalt ist in der Regel xenomorph. Diese Phase kommt in Form von relativ großen Kristallen (bis zu 1 mm im Durchmesser) vor, die etwa in der Mitte der Ader liegen (Abb. 6.60.a), oder als kleine Kristalle (100-150 µm), die sich am Phlogopitkristallrand befinden (Abb. 6.59.a, 6.60.c-i).

Abb. 6.58: Ader innerhalb des Hostperidotites beinhaltet wasserhaltige Minerale – Amphibol und Phlogopit, sowie Klinound Orthopyroxen. Man beachte, dass die wasserhaltigen Minerale sich ausschließlich auf die Ader beschränken. Probe DUB_319. Dünnschliffscan.

Abb. 6.59.a-d: Phlogopit innerhalb der Ader. (a-b) Phlogopit zeigt unterschiedliche Kristallorientierungen sowie gekrümmte, glatte Kornkontakte zum Orthopyroxen. Orthopyroxen bildet sich am Rand der Ader und zeigt ebenfalls gekrümmte, glatte Kristallkontakte zum Phlogopit sowie zum primären Olivin, der zum Wirtperidotit gehört. Bemerkenswert ist, dass der Amphibol einen intakten glatten Kristallrand zum Orthopyroxen, *in Abwesenheit vom Glas*, aufweist. (c-d) der hypidiomorphe Phlogopit weist einen leicht ausgefransten, hell gefärbten Kristallrand am Kontakt zum Glas auf; einen Ilmenitkristall ist an diesem Kontakt zu erkennen. (c) Übersichtsaufnahme; (d) Detailaufnahme. Lherzolith. Probe DUB_319. BSE-Aufnahme.

Im letzten Fall liegt der Amphibol meistens zwischen den Phasen Phlogopit und Orthopyroxen und weist in der Regel gekrümmte *glatte* Kontakte zu den beiden Phasen auf. An solchen Kontakten ist kein Glas zu finden.

Glas kommt an den unregelmäßigen, ausgefransten oder buchtigen Kristallgrenzen des Amphibols, Phlogopits und/oder Orthopyroxens vor. Das Glas ist in der Regel mit feinkörnigen, hypidiomorph bis idiomorph ausgebildeten Mineralen – Olivin, Klinopyroxen, Spinell und/oder Ilmenit, vergesellschaftet (Abb. 6.60.a-j). Diese Phasen werden in der vorliegenden Arbeit als tertiäre Phasen bezeichnet (Anm. d. Verf.) und sind in den Abschnitten 6.3 & 7.3 detailliert beschrieben.

Innerhalb des Glases ist ebenfalls Amphibol zu finden. Die Kristalle sind völlig xenomorph, weisen unregelmäßige Kristallgrenzen auf und liegen oft inselförmig im Glas. Solch ein Auftreten der Phase deutet darauf hin, dass es sich um Amphibol*relikte* handelt.

(a) Amphibol, als relativ großer Kristall, liegt in der Mitte von Ader und bildet Verwachsungen mit Klinopyroxen. (b) hell gefärbte Kristallränder des Phlogopits auf dem BSE-Bild deuten auf eine Änderung der chemischen Zusammensetzung im Kristall in Richtung Kristallrand hin. (c) Amphibol-*"breakdown"* mit Glasbildung an den Kontakten zum Phlogopit und teilweise zum Orthopyroxen. Die Kristallgrenzen zum Glas sind unregelmäßig, oft mit Einbuchtungen und weisen einen helleren Rand nahe dem ausgefransten Phlogopit auf. (d) Phlogopit bildet Verwachsungen mit Orthopyroxen. Kornkontakte dieser zwei Phasen, in Abwesenheit vom Glas, scheinen völlig intakt zu sein. Das intergranulare Glas beinhaltet zahlreiche feinkörnige Kristallaggregate aus Olivin, Spinell und Klinopyroxen. Lherzolith. Probe DUB_319. BSE-Aufnahme.

Abb. 6.60.e-j: Mineralparagenese innerhalb einer Ader (Fortsetzung). (e-h) Amphibolrelikte im Glas zeigen einen hell gefärbten Saum an den, dem Phlogopit zugewandten, Kristallseiten; (g) der große Phlogopitkristall zeigt *kink bands*; (i) am Phlogopitkristallrand wächst ein tertiärer Olivin (mit dem roten Pfeil markiert); tertiäre Phasen – Olivin, Spinell, Klinopyroxen und Ilmenit – liegen im Glas zwischen Orthopyroxen, Phlogopit und Amphibol. Übersichtsaufnahme; (j) Detailaufnahme der Glas-Kristall-Aggregate die sich zwischen Orthopyroxen, Phlogopit und Amphibol befinden. Lherzolith. Probe DUB_319. BSE-Aufnahme.

Die BSE-Bilder zeigen, dass der Amphibol und Phlogopit oft einen helleren Saum am Kontakt zum Glas aufweisen. Dies deutet auf eine Änderung der chemischen Zusammensetzung in Richtung Kristallrand hin. Bemerkenswert ist, dass die Amphibolrelikte solch einen Saum auf den, dem Phlogopit zugewandten, Seiten aufweisen, während die abgewandten Seiten meistens keine helleren Kristallbereiche zeigen (chemische Zusammensetzung der sekundären Phasen wird in Abschnitt 7.2 besprochen).

Wie oben bereits erwähnt, zeigt der Orthopyroxen am Kontakt zum Glas einen unregelmäßigen Kornrand mit Einbuchtungen wo sich die tertiären Phasen – Olivin, Spinell und Klinopyroxen befinden. Es ist zu betonen, dass der tertiäre Klinopyroxen in solchen Bereichen untergeordnet vorkommt.

Kleine Ilmenitkristalle sind oft im Glas nahe dem ausgefransten Phlogopitrand zu finden (Abb. 6.59.c-d, 6.60.e, j).

6.2.2.2 Zusammengesetzte Erdmantelxenolithe (composite xenoliths)

Neben den drei Gesteinshaupttypen – Lherzolithen, Harzburgiten und Wehrliten, sind Pyroxenite sowie "zusammengesetzte" Xenolithe in der Lokalität *Estancia Lote 17* zu finden. Die "zusammengesetzten" Xenolithe (s.g. *composite xenoliths*) beinhalten i. Allg. Peridotitund Pyroxenitbereiche.

Der Erdmantelxenolith der Probe DUB_28 weist eine keilförmige Ader auf, von der eine Ausbreitung der feinen Pyroxenitadern in Richtung Peridotit zu erkennen ist (Abb. 6.61.a).

Die keilförmige Ader erreicht ca. 2 cm an ihrer breitesten Stelle und verengt sich danach kontinuierlich auf 0,2 cm Breite. Die Hauptphasen innerhalb der Ader sind Klinopyroxen und Amphibol. Untergeordnet kommen ebenfalls Olivin, Orthopyroxen, Spinell, Rhönit und Ilmenit vor.

Die Verteilung der Phasen Amphibol und Klinopyroxen folgt einer gewissen Regelmäßigkeit: Der Klinopyroxen tritt öfter in Richtung Aderrand auf, wobei die Kristalle dicht nebeneinander liegen (Abb. 6.61.a-c, 6.65.a-c), während der Amphibol in der Adermitte deutlich häufiger vorkommt.

An den Stellen wo die *beiden* Phasen vorkommen, liegen die Kristalle in einer *poikilitischen* Struktur vor: Amphibol kommt in Form von relativ großen Wirtskristallen vor, die zahlreiche kleine Klinopyroxenkristalle einschließen (Abb. 6.64.a-d). Die Klinopyroxeneinschlüsse weisen meistens eine gleichmäßige Verteilung innerhalb des Wirtskristalls auf, haben eine idiomorphe-hypidiomorphe Korngestalt und unterschiedliche Kristallorientierungen.

Die poikilitische Struktur wird, in einem solchen Fall, als Gang-Kumulat (*dyke cumulates*) bezeichnet, wobei der Klinopyroxen als *cumulus*-Phase und Amphibol als interstitielle Phase (*interkumulus*) vorliegen (Harte, 1993). Klinopyroxene enthalten oft Spinell und/oder Sulfide, die als rundliche isotrope Einschlüsse innerhalb der Kristalle vorliegen (Abb. 6.65.a-c). Rhönit kommt in Form von relativ kleinen Kristallen, an unregelmäßigen buchtigen Amphibolrändern, vor (Abb. 6.66.e). Ilmenit weist eine xenomorphe Korngestalt auf und kommt innerhalb der keilförmigen Ader vor (Abb. 6.66.e).

Olivin ist meistens in Form von Relikten in dem *"Keil"* sowie an dessen Flanken zu finden. Solche Relikte liegen stets innerhalb von Orthopyroxenkristallen. Die Größe der Relikte sowie der Orthopyroxene, die sie umschließen, variiert beträchtlich. Relativ große (bis zu 10 mm) Orthopyroxene sind weniger gut ausgebildet und schließen Olivine verschiedener Größe (bis zu 5 mm) und Form ein. Kleine Orthopyroxene weisen hingegen idiomorphe geradlinige Korngrenzen, oft mit Tripelpunkten zwischen drei benachbarten Kristalle, auf; die Olivineinschlüsse sind in solchen Orthopyroxenen stets klein (20-250 µm) und rundlich. Beim Drehen des Mikroskoptisches unter gekreuzten Polarisatoren weisen die Olivineinschlüsse die gleiche Kristallorientierung auf (die gleiche Auslöschungswinkel sowie die gleichen Interferenzfarben).

Die keilförmige Ader weist an ihren äußeren Rändern eine Art von Saum auf, der hauptsächlich aus relativ feinkörnigem Orthopyroxen besteht (Abb. 6.61.a-c; 6.62.a-b; 6.66.a-b, h).

Die feinen Adern, die sich vom *"Keil"* in den Lherzolith ausbreiten, sind entlang der Kristallgrenzen sowie der Brüche von primären Phasen des Peridotits zu erkennen (Abb. 6.62.a-d). Sie sind zum großen Teil aus Orthopyroxen zusammengesetzt. Die Orthopyroxenitadern enthalten ebenfalls untergeordnet Klinopyroxen und Amphibol (Abb. 6.66.g). Phlogopit kommt in der Regel nicht vor. Es ist zu betonen, dass der Kontakt zwischen dem Orthopyroxen (Bestandteil der Ader) und dem Olivin, der zum Hostperidotit

Abb. 6.61.a: Der zusammengesetzte Erdmantelxenolith weist eine keilförmige Ader auf (Bildmitte); mehrere feine Adern breiten sich vom *"Keil"* in Richtung Peridotit aus. Weitere Erläuterung ist im Text zu finden. Probe DUB_28. Dünnschliffscan.

Abb. 6.61.b: Der zusammengesetzte Erdmantelxenolith. Die mit Ziffern markierten Bereiche zeigen die Stellen, wo die nachstehenden Abbildungen gemacht wurden. Der Farbunterschied der Markierungen hat keine besondere Symbolik, sondern dient der besseren Orientierung. "composite" Xenolith. Probe DUB_28. Dünnschliffscan.

Abb. 6.61.c: Schematische Darstellung der keilförmigen Ader innerhalb des Peridotits (siehe auch Abb. 6.61.a). Die Zonierung innerhalb der Ader basiert auf den Unterschieden in der mineralogischen Zusammensetzung. *Zone 1*: Peridotit (Lherzolith); *Zone 2*: Orthopyroxen; *Zone 3*: Klinopyroxen + Amphibol (untergeordnet); *Zone 4*: Amphibol + Klinopyroxen (untergeordnet); *Zone 5*: ein starker Zerfall der Phasen Amphibol, Klinopyroxen + Bildung vom Glas. Bemerkung: der schmale blaue Bereich zwischen dem Peridotit und Orthopyroxen stellt den Apatit dar. "composite" Xenolith. Probe DUB_28.

Abb. 6.62.a-d: Ausbreitung der Orthopyroxenitadern im Hostperidotit. (a-b) das Propagieren der Orthopyroxenitadern vom *"Keil"* in Richtung Hostperidotit, entlang der Bruchflächen im Olivin. Man beachte die Front (den Saum) zwischen der keilförmigen Ader und dem Hostperidotit, die aus Orthopyroxen besteht (siehe Abb. 6.61.b: markierter *Bereich 8*); (c-d) die Fortpflanzung der Orthopyroxenitadern vom *"Keil"* entlang der Olivinkorngrenzen in Richtung des Tripelpunktes von drei benachbarten Olivinkristallen (Abb. 6.61.b: *Bereich 1*). *"composite"* Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

gehört, gekrümmt oder gerade aber *stets glatt* verläuft (Abb. 6.62.a, 6.66.h). An solchen Kontakten ist Glas abwesend.

An manchen Stellen, innerhalb der keilförmigen Ader, weisen Amphibol und Pyroxen unregelmäßige buchtige Korngrenzen auf; der Klinopyroxen zeigt eine "*spongy*"-Struktur. Der seltene Orthopyroxen weist Glas-Kristall-Aggregate an seinen buchtigen Korngrenzen auf. Der Kristallanteil solcher Aggregate besteht hauptsächlich aus Klinopyroxen. Olivin und Spinell kommen untergeordnet vor (Abb. 6.66.a, i-j). Bemerkenswert ist, dass die beschriebenen petrographischen Strukturen im dunkelblauen Sektor des Bereichs 5 (Abb. 6.61.c) häufiger als in den anderen Bereichen zu beobachtet sind. In dem Sektor zeigt der Klinopyroxen eine Volumenzunahme der "*spongy*"-Bereiche innerhalb des Kristalls.

Die feinkörnigen Orthopyroxenitadern, die sich im Hostperidotit ausbreiten, beinhalten ebenfalls Glas. An den Stellen wo sich der Orthopyroxen im Kontakt zum Glas befindet, sind die Grenzen, wie bereits beschrieben, unregelmäßig und haben Einbuchtungen wo sich Glas-Kristall-Aggregate bilden. Der Klinopyroxen (Cpx) zeigt im Kontakt zum Glas einen

Abb. 6.63.a-d: Orthopyroxen, der innerhalb des Wirtperidotits liegt, ist vom Amphibol umschlossen. Amphibol enthält zahlreiche hypidiomorphe braune Spinelle (siehe Abb. 6.61.b: markierter *Bereich 3*); (a-b) Übersichtsaufnahme; (c-d) Detailaufnahme. *"composite"* Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

Anwachssaum (Cpx2) der im BSE-Bild durch einen helleren Farbton zu erkennen ist (Abb. 6.66.g). Klinopyroxene, die innerhalb von feinen Adern liegen, weisen in der Regel keinen *"spongy"*-Saum auf.

Bemerkenswert sind die Ansammlungen von feinkörnigem hypidiomorphem Spinell der mit Amphibol und sekundärem Klinopyroxen vergesellschaftet ist, oder er liegt in Form von Einschlüssen im Orthopyroxen vor (Abb. 6.63.c). Diese Art von Spinell weist eine braune Farbe (mit einem grünlichen Stich) auf, im Gegensatz zu den primären Spinellen des Peridotites. Die letzten haben eine schwarze Farbe, sind deutlich größer und haben eine xenomorphe Korngestalt. Bei größerer Vergrößerung der braunen Spinelle unter dem Durchlichtmikroskop werden die runden Gasblasen, die in Spinell eingeschlossen sind, sichtbar.

Abb. 6.64.a-f: Petrographische Charakteristika der Phasen innerhalb der keilförmigen Ader. (a-d) Poikilitische Struktur: relativ große Amphibolkristalle schließen zahlreiche kleine Klinopyroxenkristalle ein. Die Wirtskristalle zeigen grüne (b) und rosa (d) Interferenzfarben. Die Klinopyroxene sind i. Allg. gleichmäßig innerhalb vom *oikocryst* verteilt, sind isometrisch ausgebildet und weisen meistens verschiedene Kristallorientierung auf. (a-b) der *oikocryst* liegt im *Bereich 9* im Dünnschliff (Abb. 6.61.b); (c-d) der *oicokryst* befindet sich im *Bereich 2*. Man beachte die dunkelbraun bis schwarz gefärbten Bereiche, die unter dem Durchlichtmikroskop opak erscheinen. (e-f) Detailaufnahme zeigt einen relativ großen Klinopyroxen (blaue Interferenzfarbe) innerhalb des Amphibolwirtskristalls (rosa Interferenzfarbe). Der Klinopyroxen weist unregelmäßige buchtige Kristallgrenzen, sowie *"spongy"*-Struktur im Inneren des Kristalls, auf. Der dunkle Bereich, links vom Kristall besteht hauptsächlich aus den Relikten der beiden Phasen – Amphibol und Klinopyroxen sowie dem Glas (Abb. 6.61.b: *Bereich 2*). *"composite"* Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a, c, e) und gekreuzte (b, d, f) Polarisatoren.

Abb. 6.65.a-c: Petrographische Charakteristika der Phasen innerhalb der keilförmigen Ader.
(a) Augitkristalle liegen dicht nebeneinander. Amphibol kommt in diesem Bereich deutlich seltener vor. Mehrere Klinopyroxene zeigen eine Verzwilligung. Die meisten Kristallgrenzen weisen eine Instabilität, in Anwesenheit von zirkulierendem Fluid/Schmelze, auf. (b-c) Detaillierte Aufnahme: Augit zeigt eine einfache Verzwilligung nach {100} sowie eine gute Spaltbarkeit nach {110}. Die zwei schwarzen rundlichen Kristalle sind Spinelle. Entlang der Kristallgrenzen ist eine zirkulierende Schmelze/Fluid zu erkennen. Bemerkenswert ist, dass die Kristallgrenzen in Abwesenheit von fluider Phase gut erhaltene, geradlinige Kontakte aufweisen. (Abb. 6.61.b: Bereich 4). "composite" Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (b) und gekreuzte (a, c) Polarisatoren.

Abb. 6.66.a-f: Petrographische Charakteristika der sekundären Phasen.

(a) Die Abbildung zeigt den Kontaktbereich zwischen der keilförmigen Ader und dem Peridotit. Die Ader weist den Orthopyroxen an ihrem äußeren Rand, sowie zahlreiche Verwachsungen der Phasen Klinopyroxen, Amphibol, Orthopyroxen und Spinell im inneren Bereich, auf. Der Peridotit ist durch primären Olivin vertreten (der untere rechte Quadrant). Am Kontakt zwischen dem Orthopyroxen und Olivin sind die feinkörnigen Glas-Kristall-Aggregate, die zu tertiären Phasen gehören, zu erkennen (siehe Abb. 6.61.b: *Bereich 4*). (b) Der Randbereich der keilförmigen Ader: Orthopyroxen bildet Verwachsungen mit anderen Phasen die innerhalb von Ader liegen (Abb. 6.61.b: *Bereich 5*). (c, d, e) Phasen innerhalb von Ader: Amphibol, Klinopyroxen, Orthopyroxen, Spinell; (c) Verzwilligung des Klinopyroxens (der rote Pfeil zeigt die Zwillingsfläche an) (Abb. 6.61.b: *Bereich 4*); (d) Amphibol zeigt eine gute Spaltbarkeit nach {110} (Abb. 6.61.b: *Bereich 7*); (e) Ein kleiner Rhönitkristall ist zwischen einem xenomorphen Ilmenit und einem Kaersutit, der unregelmäßige buchtige Kristallgrenzen aufweist, zu sehen (Abb. 6.61.b: *Bereich 6*); (f) Verwachsungen innerhalb des Peridotits bestehen i. Allg. aus Klinopyroxen, Amphibol und braunem Spinell. Solche Strukturen sind an einigen Stellen im Wirtsperidotit zu erkennen (Abb. 6.61.b: *Bereich 6*; ähnliche Strukturen sind ebenfalls in Abb. 6.63.a-d abgebildet). "composite" Xenolith. Probe DUB_28. BSE-Aufnahme.

Abb. 6.66.g-j: Petrographische Charakteristika der sekundären Phasen (Fortsetzung).

(g) sekundärer Klinopyroxen mit augitischer Zusammensetzung bildet sich am Kontakt zwischen zwei großen Olivinkristallen des Peridotits und weist Orthopyroxen- sowie Amphibol (*Kaersutit*)-Einschlüsse auf. Der Kristallrand des Klinopyroxens zeigt einen Saum am Kontakt zum Glas, der im BSE-Bild durch einen helleren Farbton gekennzeichnet ist. Dies deutet auf eine Änderung der chemischen Zusammensetzung in Richtung Kristallrand hin (Abb. 6.61.b: *Bereich 1*). (h) Kontaktbereich zwischen der keilförmigen Ader und dem Peridotit. Der Orthopyroxen weist einen glatten, leicht gekrümmten Kornkontakt zum primären Olivin, der zum Hostperidotit gehört, auf. Währenddessen sind die Kornkontakte des Orthopyroxens zu sekundären Phasen – Klinopyroxen und Amphibol, die innerhalb der Ader liegen, unregelmäßig wellig (mit Verwachsungen) ausgebildet (Abb. 6.61.b: *Bereich 8*). (i-j) Orthopyroxen, der zur Orthopyroxenitader gehört, weist unregelmäßige buchtige Korngrenzen zum Glas auf; an seinem Kristallrand ist ein Wachstum von tertiären hypidiomorphen Klinopyroxenen zu sehen. Man beachte, dass die tertiären Klinopyroxene eine Inhomogenität der chemischen Zusammensetzung aufweisen (Abb. 6.61.b: *Bereich 3*). (i) Übersichtsaufnahme, (j) Detailaufnahme. "*composite"* Xenolith. Probe DUB_28. BSE-Aufnahme.

Probe DUB_26 stellt einen *"composite"* Xenolth dar, der aus Pyroxenit- und Peridotitbereichen zusammengesetzt ist (Abb. 6.67.a-b).

Wie die Abb. 6.67 zeigt, besteht der Pyroxenitteil aus Klino- und Orthopyroxen; untergeordnet kommt ebenfalls Olivin, meistens mit abgerundeten Kristallkanten, vor.

Abb. 6.67.a-b: *"composite"* Xenolith ist aus Pyroxenitbereichen (a) und Lherzolithbereichen (b) zusammengesetzt. (a) Pyroxenit besteht hauptsächlich aus Klino- und Orthopyroxen; untergeordnet kommt ebenfalls Olivin vor. Die Kristallkorngröße nimmt innerhalb des Pyroxenits von rechts nach links ab. (b) Peridotitlinse innerhalb von Pyroxenit. Die markierten Bereiche 1 & 2 sind in Abb. 6.70.a-e detailliert dargestellt. Sowohl der Pyroxenit als auch der Peridotit werden von schmalen Adern durchzogen, die Glas und/oder Kalzit enthalten. Probe DUB_26. Dünnschliffscan.

Abb. 6.68.a-f: Änderung der Korngröße innerhalb des Pyroxenites. (a-b) rechter Bereich des Dünnschliffs (siehe Abb. 6.67.a) enthält Kristalle von bis zu 3 mm Durchmesser; in dieser Lage ist der Orthopyroxen die vorherrschende Phase; (c-d) der mittlere Bereich des Dünnschliffs: Pyroxene weisen die

ist der Orthopyroxen die vorherrschende Phase; (c-d) der mittlere Bereich des Dünnschliffs: Pyroxene weisen die Kristallgröße von 0,5-1,5 mm auf; (e-f) der linke Bereich des Dünnschliffs enthält feinkörnige Pyroxenitlagen: Kristalle erreichen die Korngröße von 0,1-0,5 mm. Die Korngrenzen der Pyroxene in *allen* Bereichen sind meistens unregelmäßig, wellig ausgebildet. *"composite"* Xenolith. Probe DUB_26. Dünnschliffbild: ungekreuzte (a, c, e) und gekreuzte (b, d, f) Polarisatoren.

Innerhalb des Pyroxenits ist eine kontinuierliche Änderung der Kristallgröße zu erkennen: von ca. 3 mm Korndurchmesser in relativ grobkörnigen Bereichen bis auf 0,1 mm in den feinkörnigen Bereichen (Abb. 6.68.a-f). Manche Bereiche weisen ein Vorherrschen von Klino- oder Orthopyroxen auf. Dies ist besonders deutlich im grobkörnigen Bereich zu sehen.

Abb. 6.69.a-d: Pyroxenitbereich. Detailaufnahmen. Pyroxene weisen meistens unregelmäßige, wellige Kristallgrenzen, sowie zahlreiche Entmischungsstrukturen auf. (a-b) Die Klinopyroxene zeigen blaue bis lila Interferenzfarben erster Ordnung und enthalten Entmischungen in Form von Lamellen, Spindeln und Tröpfchen. Zwei Augitkristalle (im Bild oben) weisen tröpfchenförmige ("blebby") Verwachsungen mit Orthopyroxen auf. Die Verteilung der Entmischungen, sowie derer Form, ist von Kristall zu Kristall verschieden. (c-d) Der Klinopyroxen in der Bildmitte rechts weist eine Verzwilligung auf. Die Entmischungsstrukturen befinden sich meistens im Inneren des Kristalls, während die Kristallränder frei von Entmischungen sind. "composite" Xenolith. Probe DUB_26. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

Pyroxene zeigen meist unregelmäßige, wellige Kristallgrenzen sowie zahlreiche Entmischungsstrukturen. Die Häufigkeit, die Verteilung sowie die Form der Entmischungslamellen sind von Kristall zu Kristall verschieden (Abb. 6.69.a-d). Der Peridotit liegt in Form von Linsen innerhalb des Pyroxenites vor (Abb. 6.67.b). An der Kontaktfläche dieser zwei Gesteinstypen ist das Eindringen des Pyroxenites in den Peridotit an mehreren Stellen zu erkennen. Die großen Olivinkristalle des Peridotites sind an solchen Stellen vom Pyroxenit teilweise oder völlig umschlossen, wobei der Pyroxenit bis zu 100 % orthopyroxenitische Zusammensetzung aufweist. Im Pyroxenitbereich, nahe des Kontakts, sind mehrere große Olivine zu sehen, die inselförmig innerhalb des Pyroxenites liegen.

Die Abbildungen 6.70.a-b zeigen einen Olivin, der eine intrakristalline Verformung (*kink bands* im Inneren des Kristalls), sowie dynamische Rekristallisation (Bildung von Neoblasten im rechten oberen Bildquadrant) aufweist (siehe auch Abb. 6.67.b: Lage des Kristalls im Dünnschliff ist als *Bereich 1* markiert). Seine Kristallgrenzen zu Olivinneoblasten sind

Abb. 6.70.a-e: Kontakt zwischen den Pyroxenit- und Peridotitbereichen im zusammengesetzten Xenolith (siehe auch Abb. 6.67.b): (a-b) Darstellung des *Bereich 1*; (c-e) *Bereich 2*: (c-d) Übersichtsaufnahmen, (e) Detailaufnahme. Weitere Erläuterung ist im Text zu finden. Probe DUB_26. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d, e) Polarisatoren.

⁽a) Orthopyroxenitader innerhalb des Olivinkristalls; (b) Orthopyroxen weist große xenomorphe sowie kleine hypidiomorphe Kristalle auf. Große Orthopyroxene enthalten zahlreiche Klinopyroxen- und Amphibolentmischungen. Währenddessen sind die kleinen Orthopyroxene meistens von Entmischungen frei, enthalten jedoch rundliche Olivineinschlüsse. (c) Klinopyroxen breitet sich im großen Spinellkristall randlich sowie entlang der Kristallbruchflächen, aus (unten links). Klinopyroxen weist Verwachsungen mit Orthopyroxen auf. Am Klinopyroxenrand, zwischen den Phasen Olivin und Klinopyroxen, ist ein schmaler Orthopyroxensaum zu erkennen. (d) Detailaufnahme des Orthopyroxensaumes. "composite" Xenolith. Probe DUB_26. BSE-Aufnahme.

meistens geradlinig ausgebildet. Die Kornkontakte zum Orthopyroxen weisen hingegen eine Unregelmäßigkeit und zahlreiche Einbuchtungen auf. An der linken Seite des Olivins ist das Fortpflanzen des Orthopyroxens in den Kristall hinein deutlich zu erkennen. Orthopyroxene zeigen eine Kristallgröße von 0,1-1 mm, meistens eine homogene Auslöschung, sowie unregelmäßige, wellige Korngrenzen. Auf den Abbildungen 6.70.c-e ist ein großer Olivin zu sehen, der ebenfalls eine undulöse Auslöschung, sowie die Bildung von Olivinneoblasten, im Inneren des Kristalls und an seinen Rändern, aufweist (Abb. 6.67.b: markierter *Bereich 2*). Die Olivinneoblasten sind durch unterschiedliche Kristallorientierung und hypidiomorphe Korngestalt gekennzeichnet. Die Orthopyroxenkristalle zeigen ebenfalls geradlinige Kornkontakte, oft mit Tripelkorngrenzen, und eine hypidiomorphe Korngestalt. Manche Orthopyroxene enthalten im Kristallkern kleine rundliche Olivine die beim Drehen des Mikroskoptisches unter gekreuzten Polarisatoren den gleichen Auslöschungswinkel sowie die gleichen Interferenzfarben, wie der große Olivinkristall, aufweisen. Am Olivinkristallrand zeigen einige kleine Orthopyroxenkristalle tiefe Einbuchtungen in Richtung Olivin mit einer Art von Ausläufern in den Olivin hinein.

Die beschriebenen strukturellen Charakteristika deuten auf eine Verdrängung des primären Olivins durch den sekundären Orthopyroxen hin, wobei der Prozess nicht abgeschlossen zu sein scheint. Dies liefert Hinweise auf eine Destabilisierung des Olivins in Anwesenheit von siliziumgesättigter Schmelze im Peridotit.

Die Ansammlungen von feinkörnigen, hypidiomorphen, braunen Spinellen, die mit Klinopyroxen und, untergeordnet, auch mit Orthopyroxen vergesellschaftet sind, kommen in manchen Bereichen vor (Abb. 6.67.b: der obere linke Quadrant). Die Pyroxene sind feinkörnig, haben wellige oder gerade Korngrenzen und weisen oft Entmischungen auf. Solche Strukturen sind ähnlich denjenigen, die bereits bei Beschreibung der Probe DUB_28 erwähnt wurden. Bemerkenswert ist jedoch, dass der Amphibol in den Vergesellschaftungen dieser Probe (DUB_26) nicht vorkommt. Außerdem ist das Vorkommen der Gasblasen innerhalb der braunen Spinelle deutlich geringer als in Probe DUB_26. Sowohl den Pyroxenit- als auch den Peridotitbereich durchziehen schmale Adern, die Glas und/oder Kalzit enthalten.

Der Spinell-führende Lherzolith der Probe DUB_303 weist sowohl einen Kontakt zum Pyroxenit als auch zum Hostbasalt auf (Abb. 6.72).

Die linke Peridotitflanke im Dünnschliff zeigt einen schmalen Orthopyroxenitsaum, der in Abb. 6.73.a-d detailliert dargestellt ist. Der Olivin zeigt eine intrakristalline Verformung in Form von *kink bands* (Abb. 6.73.a-b). Am Olivinkristallrand sind zahlreiche feinkörnige Orthopyroxenaggregate zu erkennen. Die Orthopyroxene scheinen mit ihrer Längsachse senkrecht auf den Olivinkristallrand zu stehen und zeigen Einbuchtungen in Richtung Olivin mit Ausläufern in den Olivin hinein. Deren gegenüberliegenden Kristallflächen zeigen ebenfalls Einbuchtungen, jedoch einer anderen Art. In diesen Einbuchtungen breiten sich zahlreiche strahlig ausgebildete feinkörnige Kristallaggregate, die meistens aus Olivin und Klinopyroxen bestehen, aus. An der Basis der Aggregate ist ein bräunliches Glas bemerkbar. Die strahligen Kristallaggregate verlaufen parallel zu den Orthopyroxenaggregaten und sind als dunkler Saum im Dünnschliff zu erkennen. Die Ausbreitung der strahligen Kristallaggregate sowie das bräunliche Glas deuten auf die Anwesenheit von Hostbasalt, und somit auf die Destabilisierung von sekundärem Orthopyroxen in diesem Bereich, hin.

Der Pyroxenitbereich rechts des Lherzoliths ist i. Allg. aus feinkörnigem Orthopyroxen und Klinopyroxen zusammengesetzt. Die relativ großen Kristalle innerhalb dieser feinkörnigen Matrix sind Olivine, Orthopyroxene und Klinopyroxene, die meistens abgerundeten Kanten und die gleichen Eigenfarben, wie die entsprechenden Phasen im Lherzolithbereich, aufweisen.

98

Abb. 6.72: Spinell-führender Lherzolith im Kontaktbereich mit einem Pyroxenit (siehe Erklärung im Text). Der rot markierte Bereich zeigt einen schmalen Orthopyroxenitsaum, der in Abb. 6.73.a-d detailliert dargestellt ist. Probe DUB_303. Dünnschliffscan.

Abb. 6.73.a-d: Olivinkristall weist einen Orthopyroxenitsaum auf. (a-b) Olivin zeigt eine intrakristalline Verformung in Form von *kink bands*. Am Olivinkristallrand sind zahlreiche, relativ kleine Orthopyroxenkristalle zu erkennen. (c-d) Detailaufnahme des Orthopyroxensaumes (weitere Erläuterung ist im Text zu finden). Lherzolith. Probe DUB_303. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

Probe DUB_114 beinhaltet Pyroxenit- und Peridotitbereiche und gehört somit zu "*composite*" Xenolithen (Abb. 6.74.a).

Der Pyroxenitbereich besteht hauptsächlich aus Klinopyroxen; Orthopyroxen kommt untergeordnet vor; gelegentlich sind Spinell, Apatit, Plagioklas, Sulfide und Glas zu finden. Amphibol ist meistens nicht vorhanden. Die selten vorkommenden, stets xenomorphen Olivine zeigen unregelmäßige, abgerundete Kanten, sowie eine intrakristalline Verformung. Pyroxene weisen unregelmäßige, wellige Kristallgrenzen auf. Klinopyroxene zeigen blaue, purpurne oder orange Interferenzfarben, sowie die gleichen Verwachsungstrukturen und Verzwilligung wie die Klinopyroxene der Probe DUB_28 (innerhalb der keilförmigen Ader). Die meisten Klinopyroxene weisen "spongy"-Strukturen auf, die aus Klinopyroxen und Glas bestehen, wobei die Verteilung solcher Strukturen innerhalb des Kristalls sehr variabel sein kann. Viele Klinopyroxene zeigen keine Regelmäßigkeit bei der Bildung von "spongy"-Strukturen; so kann z.B. nur eine Kristallseite betroffen sein. Manche Klinopyroxene zeigen einen schwammartigen Kern, dessen Kristallränder jedoch glasfrei (d.h. "spongy"-frei) sind. An anderen Stellen im Dünnschliff weisen die Klinopyroxene einen glasarmen Kern auf. Um diesen Kristallkern bildet sich ein "spongy"-Saum, wohingegen der Kristallrand wiederum ",spongy"-frei und sehr gut ausgebildet ist. Solche geradlinigen idiomorphen Kristallgrenzen liegen stets im Kontakt mit dem bräunlichen/braungelblichen Glas. Der relativ seltene Plagioklas ist stets zwischen Klinopyroxen und Glas zu finden. Die Leisten haben mindestens eine gemeinsame Kristallgrenze mit dem Klinopyroxen und stehen Klinopyroxenkristallrand. senkrecht/annähernd senkrecht auf den Die anderen Plagioklaskristallgrenzen sind von Glas umgeben. Dies lässt eine Nukleation am Klinopyroxenkristallrand und ein weiteres Wachstum in Richtung Schmelze vermuten.

Der Kontakt zwischen dem Pyroxenit und Peridotit ist durch Folgendes gekennzeichnet:

- Der primäre Olivin, der auf der Peridotitseite liegt, hat stets einen Kontakt zum Orthopyroxen auf der Pyroxenitseite. Der Orthopyroxen ist in solch einem Fall feinkörnig ausgebildet, die Kristalle stehen mit ihrer Längsachse senkrecht zum Olivinkristallrand. Solche palisadenartigen Strukturen zwischen dem primären Olivin des Peridotites und dem Pyroxenit wurden bereits bei der Beschreibung der Proben DUB_28, DUB_303 erwähnt.
- Die großen Orthopyroxenkristalle, auf der Peridotitseite, zeigen consertale Verwachsungen (MacKenzie et al., 1998) mit dem feinkörnigen Klinopyroxen, auf der Pyroxenitseite. Die Grenzflächen zwischen dem Ortho- und Klinopyroxen weisen dabei Verzahnungen vielfältiger Art auf. Die großen Orthopyroxene beinhalten oft xenomorphe, abgerundete Olivine, die eine intrakristalline Verformung aufweisen.

Abb. 6.74.a: Peridotit (rechts) im Kontakt zum Pyroxenit (links). Der Peridotit beinhaltet große Olivinkristalle (z.B. idiomorpher Kristall oben in der Mitte). Die Tripelkorngrenzen zwischen den benachbarten Olivine sind an manchen Stellen deutlich zu sehen. Entlang der meisten Olivinkorngrenzen, und manchmal innerhalb deren Kristallbruchflächen, sind pyroxenitische Adern zu erkennen. "composite" Xenolith. Probe DUB_114. Dünnschliffscan.

Abb. 6.74.b: Peridotit im Kontakt zum Pyroxenit. Die mit Ziffern markierten Bereiche zeigen die Stellen an, wo die nachstehenden Abbildungen gemacht wurden. Der Farbunterschied von Markierungen hat keine besondere Symbolik, sondern dient der besseren Orientierung. "composite" Xenolith. Probe DUB_114. Dünnschliffscan.

(a-d) Ein großer Olivinkristall mit blauen Interferenzfarben erster Ordnung weist eine leichte intrakristalline Verformung in Form von Deformationsbändern auf. Entlang seiner Kristallgrenzen pflanzt sich eine pyroxenitische Ader fort, die zu 90 Vol.-% aus Orthopyroxen besteht. Die feineren Pyroxenitadern schneiden ebenfalls quer durch den Kristall (linke Bildhälfte). Im oberen rechten Quadrant ist eine tiefe Einbuchtung in dem Olivinkristall, die mit Orthopyroxen verfüllt ist, zu erkennen (siehe auch Abb. 6.74.b: markierter *Bereich 4*). (c-d) Detailaufnahme der Pyroxenitader. Der Orthopyroxen, als Hauptphase der Ader, bildet feinkörnige, isometrische Kristalle, deren Grenzen meistens unregelmäßig und wellig, aber glatt verlaufen. An solchen Kontakten ist kein Glas zu finden. An manchen Stellen sind Kristalleinbuchtungen mit kleinen Ausläufern in Richtung Olivinkristall zu erkennen. Orthopyroxene zeigen in der Regel Entmischungsstrukturen und keine Art der Verformung. Innerhalb der Ader ist die Bildung von Glas-Kristall-Aggregaten (*Aggr.*) zu erkennen. Diese bestehen aus Olivin, Klinopyroxen und Spinell und haben stets einen direkten Kontakt mit dem Glas. "*composite"* Xenolith. Probe DUB_114. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

Der Peridotitbereich beinhaltet ausgesprochen große Olivine, deren Kristallgröße bis zu 8 x 12 mm erreicht. Manche Kristalle zeigen eine hypidiomorphe oder sogar idiomorphe Korngestalt, wobei die Tripelkorngrenzen zwischen den benachbarten Olivinen oft deutlich zu erkennen sind (Abb. 6.74.a). Die Olivine weisen eine plastische Verformung in Form von undulöser Auslöschung, Deformationslamellen und Knickbändern auf; auch mechanische Verzwilligung kommt vereinzelt vor. Die Olivine zeigen ebenfalls "bulging" und Bildung von Neoblasten. Entlang der meisten Olivinkorngrenzen, sowie innerhalb deren Kristallbruchflächen, sind pyroxenitische Adern deutlich zu erkennen (Abb. 6.75.a-d; 6.76.ad). Ein seitliches Eindringen des Pyroxenites in den Olivinkristall ist ebenfalls gelegentlich zu sehen.

(a-b) Der große Olivinkristall in der Mitte weist eine intrakristalline Verformung in Form von Deformationslamellen auf; die Bildung von Neoblasten am Olivinkristallrand ist ebenfalls zu erkennen. Eine pyroxenitische Ader durchtrennt den Olivinkristall (der rechte obere Quadrant) (Abb. 6.74.b: markierter *Bereich 2*). (c-d) Detailaufnahme der Orthopyroxenitader. Die Orthopyroxene innerhalb der Ader beinhalten kleine, abgerundete Olivine die auf dem Bild als kleine, gelbe Flecken erscheinen. *"composite"* Xenolith. Probe DUB_114. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

Die pyroxenitischen Adern bestehen bis zu 90 Vol.-% aus feinkörnigem Orthopyroxen. Neben dem Orthopyroxen kommen – wenn auch seltener – Klinopyroxen, Spinell, Amphibol und Phlogopit vor, meistens in Form von Einschlüssen oder Verwachsungen mit der Hauptphase und/oder miteinander (Abb. 6.77.a-d). Die Orthopyroxene weisen in der Regel eine isometrische Kristallform auf; deren Kristallgrenzen sind vorwiegend unregelmäßig, wellig ausgebildet. In direktem Kontakt mit primärem Olivin zeigen manche Orthopyroxenkristalle Einbuchtungen in Richtung Olivin mit Ausläufern in den Olivinkristall hinein (vgl. Proben DUB_26, DUB_303). Es ist wichtig zu betonen, dass die Phasen innerhalb der Adern keine Verformung aufweisen.

Abb. 6.77.a-f: Verwachsungsform der sekundären Phasen.

(a-b) Pyroxenitader. Orthopyroxen innerhalb der Ader weist zahlreiche Entmischungsstrukturen auf, wobei die entmischten Phasen Klinopyroxen und Amphibol sind. Die Orthopyroxenkristalle sind isometrisch ausgebildet und zeigen in der Regel unregelmäßige, wellige Kristallgrenzen. Man beachte jedoch, dass einen lokalen, texturellen Gleichgewicht an manchen Stellen zu erkennen ist: Kristalle zeigen geradlinige oder leicht gekrümmte Grenzen mit Tripelpunkten zwischen drei benachbarten Orthopyroxenkristallen (Abb. a, der untere rechte Quadrant). Der Kontakt zwischen dem Orthopyroxen der Ader und dem primären Olivin zeigt eine unregelmäßige, wellige Form mit Einbuchtungen. Es ist jedoch zu bemerken, dass die Grenzflächen glatt und nicht gezackt sind. Glas kommt an den Kontakten gelegentlich vor. Das Glas sowie mit diesem Glas assoziierte tertiäre Kristallaggregate werden im Abschnitt 6.3 & 7.3 detailliert behandelt (siehe auch Abb. 6.74.b: markierter *Bereich 4*). (c-d) Amphibol und Phlogopit innerhalb von großen Orthopyroxenkristallen kommen sowohl in Form von Verwachsungen miteinander als auch mit Klino- und Orthopyroxen vor. Phlogopit ist deutlich seltener als Amphibol zu finden (Abb. 6.74.b: markierter *Bereich 5*). (e-f) ein relativ großer Klinopyroxen weist unregelmäßige Kristallgrenzen zum großen Orthopyroxen, sowie Entmischungsstrukturen und Einschlüsse, auf (Abb. 6.74.b: markierter *Bereich 3*). "composite" Xenolith. Probe DUB_114. BSE-Aufnahme.

Abb. 6.78.a-d: Kontakt zwischen dem Peridotit und Pyroxenit.

⁽a-b) Orthopyroxen (graue Interferenzfarben) umschließt zwei xenomorphe, relativ große Olivin- und Spinellkristalle. Der mit Ol markierte Olivin zeigt eine intrakristalline Verformung (Deformationsbänder) und die gleichen Interferenzfarben (gelb, blau) wie die umliegenden Olivine (im Bild: links und unten). Dies deutet darauf hin, dass es sich um ein Olivinrelikt handelt. Spinell ist an mehreren Stellen von pyroxenitischen Adern durchtrennt. Der Pyroxenitbereich besteht hauptsächlich aus Klinopyroxen (orange, purpurne oder graue Intarferenzfarben). Die Klinopyroxenkristalle sind ca. 1 mm im Durchmesser, zeigen zahlreiche Verwachsungsstrukturen, sowie *"spongy"*-Strukturen. Apatit und braunes Glas sind ebenfalls innerhalb des Pyroxenitbereiches zu sehen. Der Kontakt zwischen den Phasen Ortho- und Klinopyroxen zeigt eine mehrfache Verzahnung, die als *consertale* Verwachsungen charakterisiert werden kann (Abb. 6.74.b: markierter *Bereich 1*). (c-d) Detailaufnahme des Kontaktes zwischen dem Ortho- und Klinopyroxen. *"composite"* Xenolith. Probe DUB_114. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren.

6.3 Petrographie der tertiären Phasen.

Glas und damit vergesellschaftete Minerale im Überblick

In den untersuchten Erdmantelxenolithen tritt auffallend viel Glas auf. Das Glas kommt *intra*sowie *inter*granular vor, in Form von Einschlüssen, Adern und/oder "*pools*" (auch "*pockets*" genannt).

Glas ohne Kristalleinschlüsse ist hauptsächlich in den Adern zu finden. Solche Adern bilden scharfe Kontakte zu den Wirtmineralen. Das Glas weist eine blassgelbe bis dunkelbraune Farbe auf.

Gläser kommen ebenfalls in Vergesellschaftungen mit neugebildeten tertiären Phasen (s.g. Glas-Kristall-Aggregate) vor, wobei der Kristallanteil i. Allg. folgende mineralogische Zusammensetzung aufweist: Olivin ± Klinopyroxen ± Spinell. Die Glasfarbe variiert in diesem Fall von farblos bis blassgelb. Solche Glas-Kristall-Aggregate befinden sich in der Regel in direktem Kontakt zu primären und/oder sekundären Phasen – *rund um* die Olivin-, Klinopyroxen-, Orthopyroxen-, Spinell-, Amphibol-, sowie Phlogopitkristalle und/oder *innerhalb* dieser Phasen. Minerale der primären/sekundären Generation weisen in solch einem Fall unregelmäßige Kristallgrenzen, im Kontakt mit dem Glas, auf. Manche Kristalle liegen aufgrund von zahlreichen Einbuchtungen nur noch als Relikte vor.

Die tertiären Phasen weisen eine deutlich geringere Korngröße (einige µm bis 200 µm im Durchmesser) im Vergleich zu primären/sekundären Phasen auf. Die neugebildeten Kristalle haben außerdem eine hypidiomorphe bis idiomorphe Korngestalt, weisen oft Glaseinschlüsse auf und sind meistens im Glas eingebettet. Auf den BSE-Bildern zeigen die neu gebildeten Kristalle oft ein "fleckiges" Aussehen, was auf eine heterogene chemische Zusammensetzung innerhalb des Kristalls hindeutet. Ein regelmäßiger, (chemisch) symmetrischer Zonarbau des tertiären Klinopyroxens sowie Spinells ist ebenfalls zu finden. Die mineralogische Zusammensetzung der Glas-Kristall-Aggregate ist von, im Kontakt mit

Abb. 6.80: Amphibol zeigt unregelmäßige Kristallgrenzen mit zahlreichen Einbuchtungen. Die Produkte des Amphibolzerfalls sind tertiäre Phasen: Klinopyroxen (Cpx2), Olivin (Ol2), Spinell (Spl2) und Glas. Die neugebildeten Kristalle sind deutlich feinkörniger und meistens hypidiomorph ausgebildet. Direkt am Amphibolrand ist das Wachstum von Klinopyroxen und Olivin zu sehen. Lherzolith. Probe DUB_83. BSE-Aufnahme.

PETROGRAPHIE

Glas liegenden, primären/sekundären Phasen abhängig. Der primäre/sekundäre Orthopyroxen, sowie der Amphibol (Abb. 6.80) weisen innerhalb ihrer Kristalleinbuchtungen Glas-Kristall-Aggregate, die aus Olivin, Klinopyroxen, Spinell und Glas bestehen, auf. Der sekundäre Phlogopit zeigt hingegen an seinen Kristallgrenzen Glas-Kristall-Aggregate die aus Olivin, Spinell und Glas bestehen, wobei der Klinopyroxen in der Regel fehlt. Bemerkenswert ist ebenfalls, dass das Volumen der Glas-Kristall-Aggregate nahe des Amphibols deutlich größer ist als jenes am Phlogopitkristallrand.

Der primäre/sekundäre Olivin zeigt, unabhängig von der mineralogischen Zusammensetzung der Glas-Kristall-Aggregate, einen, auf den BSE-Bildern, dunkel erscheinenden neu gebildeten Kristallrand. Der Kristallrand beinhaltet in der Regel feinkörnige, hypidiomorphe, tertiäre Spinelle.

Der primäre/sekundäre Klinopyroxen weist im Kontakt mit dem Glas einen "*spongy*"-Saum auf, der zahlreiche Glaseinschlüsse beinhaltet.

Änderung der mineralogischen Zusammensetzung sowie des Volumens der Glas-Kristall-Aggregate in Abhängigkeit von primären/sekundären Phasen, die sich in direktem Kontakt mit dem Glas befinden, deuten auf die vorliegenden Reaktionszonen zwischen diesen Phasen und einer Schmelze hin.

Solch eine Änderung der Zusammensetzung, der Korngröße und der Korngestalt der Glas-Kristall-Aggregate innerhalb von Reaktionszonen ist vom Chemismus der, an der Reaktion beteiligten, Komponenten abhängig und wird daher zusammen mit mineralchemischen Eigenschaften in Abschnitt 7.3 diskutiert.

7. MINERALCHEMIE

Die chemische Zusammensetzung der primären, sekundären sowie tertiären Phasen wurde mit Hilfe der Elektronenstrahlmikrosonde bestimmt. Ergebnisse dieser Untersuchung werden im vorliegenden Kapitel dargestellt.

7.1 Mineralchemie der primären Phasen

7.1.1 Olivin

Die chemische Zusammensetzung der primären Olivine aller untersuchten Proben ist in Tabelle 7.1 zusammengefasst.

Die primäre Phase weist i. Allg. eine Schwankung des Forsteritgehaltes zwischen 88,1 und 91,7 in allen untersuchten Peridotiten auf, wobei die höheren Werte auf eine Verarmung des Gesteins an ihrer basaltischen Komponente hinweisen (Abb. 7.1.a-d).

Der im Kristallkern gemessene Forsteritgehalt der Lherzolithe variiert zwischen 88,9 und 91,6, wobei MgO-Gehalt 48,49-50,00 Gew.-%, sowie FeO-Gehalt 8,14-10,91 Gew.-% betragen.

Der primäre Olivin des untersuchten Harzburgits weist den Forsteritgehalt von 90,4 im Kristallkern auf, wobei MgO=48,86 Gew.-% und FeO=9,24 Gew.-% betragen.

Wehrlite zeigen primäre Olivine mit einem Forsteritgehalt von 88,2-90,9 im Kristallkern wobei MgO=47,39-49,53 Gew.-% sowie FeO=8,85-11,27 Gew.-% betragen.

Der primäre Olivin der zusammengesetzten Erdmantelxenolithe ("*composite*" Xenolithe) zeigt Fo-Werte von 89,2-89,7, wobei MgO=48,09-48,41 Gew.-%, FeO=9,88-10,35 Gew.-% betragen.

Der NiO-Gehalt im Olivinkristallkern der Lherzolithe variiert zwischen 0,33 und 0,40 Gew.-%; jener, der Harzburgite beträgt 0,33 Gew.-%; der, der Wehrlite beträgt 0,35-0,37 Gew.-%; und der, der *"composite"* Xenolithe – 0,37-0,39 Gew.-%.

Der CaO-Gehalt im Olivinkristallkern der Lherzolithe variiert zwischen 0,04 und 0,09 Gew.-%; der der Harzburgite beträgt 0,11 Gew.-%; in den Wehrliten beträgt er 0,06-0,12 Gew.-% und jener der "*composite*" Xenolithe – 0,06-0,07 Gew.-%.

Mit wenigen Ausnahmen sind die Olivine homogen. Die Unterschiede zwischen dem Kern und dem Rand sind minimal und innerhalb der analytischen Schwankungen.

Die Proben DUB_10, DUB_18, DUB_35 sowie DUB_83 stellen die Ausnahmen dar. Der primäre Olivin dieser Proben weist einen höheren Fo-Gehalt am Kristallrand im Vergleich zum Kristallkern auf: Probe DUB_10 (Kristallkern: Fo=90,0; Kristallrand: Fo=91,4), DUB_18 (Kern: 90,3; Rand: 91,3), DUB_35 (Kern: 88,7; Rand: 89,7), DUB_83 (Kern: 90,4; Rand: 91,1).

7.1.2 Orthopyroxen

Die Haupt- und Nebenelementenzusammensetzung aller untersuchten primären Orthopyroxene ist in Tabelle 7.2 dargestellt.

Alle primären Orthopyroxene liegen im Enstatitbereich der Enstatit-Ferrosilit-Mischreihe. Der Enstatitanteil im Kristallkern beträgt i. Allg. 87,8-91,1 %, wobei die Mg# zwischen 89,1 und 92,1 variiert (Abb. 7.4.a-f).

Die Mg# vom Orthopyroxen der Lherzolithe (Kristallkern) liegt zwischen 89,1 und 92,1; der untersuchte Harzburgit weist eine Mg# von 90,9 auf; der primäre Orthopyroxen der zusammengesetzten Erdmantelxenolithe (im Peridotitteil) weist eine Mg# von 89,5-90,4 im Kristallkern auf.

Der Al₂O₃-Gehalt der primären Orthopyroxene variiert im Kristallkern relativ stark zwischen 1,22-5,21 Gew.-% innerhalb der Lherzolith-Gruppe. Der Orthopyroxen des Harzburgits weist den Al₂O₃-Gehalt von 2,77 Gew.-% auf; jener, der zusammengesetzten Erdmantelxenolithe beträgt 3,81-4,41 Gew.-%.

Der CaO-Gehalt vom Orthopyroxen der Lherzolithe beträgt 0,26-0,86 Gew.-%; jener des Harzburgits – 0,76 Gew.-%; in den zusammengesetzten Erdmantelxenolithen beträgt er – 0,67-0,72 Gew.-%.

Der primäre Orthopyroxen ist in seinem Zusammensetzung sehr homogen. Die Unterschiede zwischen dem Kern und dem Rand sind minimal und innerhalb der analytischen Schwankungen.

7.1.3 Klinopyroxen

Die chemische Zusammensetzung der primären Klinopyroxene aller untersuchten Proben ist in Tabelle 7.3 zusammengefasst.

Alle primären Klinopyroxene gehören zu Chrom-Diopsid, wobei die Zusammensetzung im Kristallkern von $En_{47-51}Wo_{44-50}Fs_{3-6}$ für Lherzolithe, $En_{50}Wo_{45}Fs_6$ für Harzburgit, $En_{50-51}Wo_{44-45}Fs_{5-6}$ für Wehrlite, sowie $En_{49-51}Wo_{44-47}Fs_5$ für zusammengesetzte Erdmantelxenolithe beträgt (Abb. 7.6.a-h). Der Kristallrand zeigt eine geringe Abweichung der Werte von jenen des Kristallkerns.

Die Mg# vom Klinopyroxen der Lherzolithe (Kristallkern) liegt zwischen 89,9 und 94,3; jene des Harzburgits beträgt 89,8; die der Wehrlite – 90,0-90,8 und der primäre Klinopyroxen der zusammengesetzten Erdmantelxenolithe (im Peridotitteil) weist eine Mg# von 90,1-90,8 im Kristallkern auf.

Der Al₂O₃-Gehalt im Klinopyroxenkristallkern beträgt 1,64-6,31 Gew.-% für Lherzolithe, 5,24 Gew.-% für Harzburgit, 4,33-5,01 Gew.-% für Wehrlite, sowie 5,26-6,34 Gew.-% für die

zusammengesetzten Erdmantelxenolithe (im Peridotitteil). Der Kristallrand zeigt eine geringe Abweichung der Werte gegenüber jenen des Kristallkerns.

Der TiO₂-Gehalt im Klinopyroxenkristallkern beträgt 0,07-0,29 Gew.-% für Lherzolithe, 0,33 Gew.-% für Harzburgit, 0,09-0,33 Gew.-% für Wehrlite, sowie 0,26-1,28 Gew.-% für zusammengesetzte Erdmantelxenolithe (im Peridotitteil). Der Kristallrand zeigt eine geringe Abweichung der Werte von jenen, die der Kristallkern aufweist.

7.1.4 Spinell

Die chemische Zusammensetzung der primären Spinelle aller untersuchten Proben ist in Tabelle 7.4 zusammengefasst.

Die untersuchten primären Spinelle weisen eine beträchtliche Heterogenität ihrer chemischen Zusammensetzung auf, wobei die Zusammensetzung von chromarmen Spinellen bis zu Chrom-Spinellen variiert (Abb. 7.2). Die chromreichen Vertreter weisen auf eine Verarmung des Gesteins an seiner basaltischen Komponente hin.

Die Cr# des primären Spinells innerhalb der Lherzolith-Gruppe zeigt Schwankungen von 9,2 bis 48,0 im Kristallkern. Spinell im Olivin-Websterit weist die Cr# von 9,1 auf; der primäre Spinell des gemessenen Spinell-führenden Wehrlites zeigt die Cr# von 38,6. Die zusammengesetzten Erdmantelxenolithe (im Peridotitteil) enthalten primäre Spinelle mit Cr# von 13,0-27,5.

7.2 Mineralchemie der sekundären Phasen

7.2.1 Olivin

Olivin als sekundäre Phase ist stets an die Präsenz von Pyroxenit gebunden, wobei der Olivin sich immer in direktem Kontakt zum Orthopyroxen befindet. Die petrographischen Charakteristika von sekundärem Olivin wurden in Abschnitt 6.2 behandelt. Die chemische Zusammensetzung dieser sekundären Phase ist in Tabelle 7.5 zusammengefasst.

Der Forsteritgehalt des sekundären Olivins ist deutlich geringer als der des primären Olivins (Abb. 7.1.a-d). Er beträgt 83,8-87,6 im Kristallkern, sowie 84,0-86,5 am Kristallrand. Dies ergibt sich aus einem höheren FeO-Gehalt (11,84-15,19 Gew.-% im Kristallkern; 12,88-14,96 Gew.-% am Kristallrand), sowie einem niedrigeren MgO-Gehalt (44,07-46,82 Gew.-% im Kristallkern; 43,99-46,44 Gew.-% am Kristallrand) im Vergleich zur primären Phase.

So zeigen z.B. die primären Olivine des Lherzoliths der Probe DUB_28, die keinen Kontakt mit dem Pyroxenit aufweisen, einen Forsteritgehalt von ca. 90. Die sekundären Olivine, die im Kontaktbereich mit den Orthopyroxenitadern liegen, zeigen einen deutlich niedrigeren Forsteritgehalt (Fo=85-87). Die sekundäre Phase wurde anscheinend durch Diffusions-

Abb. 7.1.a-d: Variationsdiagramme Cr₂O₃, MnO, NiO und CaO vs. Forsteritgehalt des primären sowie sekundären Olivins. *Ol1_Kern*: primärer Olivin, Messung im Kristallkern; *Ol1_Rand*: primärer Olivin, Messung am Kristallrand; *Ol1_Kern_metasomat*.: sekundärer Olivin, Messung im Kristallkern; *Ol1_Rand_metasomat*.: sekundärer Olivin, Messung am Kristallrand. Man beachte, dass der sekundär gebildete Olivin einen niedrigeren Forsteritgehalt als die primäre Phase aufweist. Weitere Erläuterung ist im Text sowie in Tabellen 7.1 & 7.5 zu finden.

Abb. 7.2: Variationsdiagramm TiO_2 vs. Cr# des primären sowie sekundären Spinells. [Cr# = (Cr/(Cr+Al)]. Spl1_Kern: primärer Spinell, Messung im Kristallkern; Spl1_Rand: primärer Spinell, Messung am Kristallrand; Spl_Kern_metasomat.: sekundärer Spinell, Messung im Kristallkern; Spl_Rand_metasomat.: sekundärer Spinell, Messung am Kristallrand. Man beachte, dass der sekundäre Spinell einen höheren TiO_2 -Gehalt als die primäre Phase aufweist. Weitere Erläuterung ist im Text, sowie in Tabellen 7.4 & 7.8 zu finden.

prozesse zwischen dem primären Olivin des Hostperidotits und einer, in das Gestein intrudierten, siliziumreichen Schmelze gebildet.

Abb. 7.3: Verhältnis zwischen Cr# des Spinells und Forsteritgehalt des koexistierenden Olivins der untersuchten Spinell-führenden Peridotite. Cr# = (Cr/(Cr+AI); Fo = (MgO/MgO+FeO)x100 in Mol. Man beachte, dass die meisten untersuchten Proben innerhalb des OSMA-Bereichs liegen. Proben, die sich außerhalb des OSMA-Bereichs befinden, weisen sekundär gebildeten Phasen – Olivin und Spinell – auf (der graue Pfeil zeigt eine Verschiebung des Fo-Gehalts in den metasomatisch überprägten Proben). *Bemerkung*: Probe DUB_26 stellt einen zusammengesetzten Erdmantelxenolith dar, wobei DUB_26a den Pyroxenitteil und DUB_26b den Peridotitteil repräsentiert. Der OSMA Plot (Olivine-Spinel-Mantle-Array) (nach *Arai, 1994*).

7.2.2 Orthopyroxen

Der sekundär gebildete Orthopyroxen ist ebenfalls an Pyroxenitlagen gebunden. Er ist meistens im Kontaktbereich zwischen Pyroxenit und dem Olivin des Peridotites zu finden. Die petrographischen Charakteristika des sekundären Orthopyroxens wurden in Abschnitt 6.2 behandelt. Die chemische Zusammensetzung dieser sekundären Phase ist in Tabelle 7.6 zusammengefasst.

Alle sekundär gebildeten Orthopyroxene liegen im Enstatitbereich der Enstatit-Ferrosilit-Mischreihe. Es ist jedoch ein Trend in Richtung Ferrosilit bemerkbar, was auf eine FeO-Zunahme (6,55-9,46 Gew.-% im Kristallkern; 6,55-9,68 Gew.-% am Kristallrand), sowie eine MgO-Abnahme (30,01-32,38 Gew.-% im Kristallkern; 30,02-32,61 Gew.-% am Kristallrand) zurückzuführen ist (Abb. 7.4.a-f). Die Mg# liegt demzufolge niedriger, mit 85,1-89,8 für Kristallkern, sowie 84,6-89,8 für Kristallrand, im Vergleich zur primären Phase. Bemerkenswert ist ebenfalls eine leichte Zunahme des CaO- und Al₂O₃-Gehalts, sowie eine Abnahme des SiO₂-Gehalts des sekundären Orthopyroxens relativ zu der primären Phase. Probe DUB_319, deren petrographischen Charakteristika in Abschnitt 6.2.2.1 bereits beschrieben wurden, stellt einen Lherzolith da. Der Peridotit beinhaltet mehrere Adern, die hauptsächlich aus Phlogopit und Amphibol bestehen. Orthopyroxen begleitet solche Adern an ihren beiden Flanken mit einer gewissen Kontinuität, was eine Reaktionsfront zwischen dem Hostperidotit und einer Schmelze vermuten lässt. Demzufolge deuten die mikroskopischen Beobachtungen eventuell darauf hin, dass diese Art von (Ortho-)Pyroxen durch eine Interaktion zwischen einer siliziumgesättigten Schmelze und dem Olivin des Hostperidotits gebildet wurde. Die chemische Zusammensetzung des Orthopyroxens bekräftigt diese Annahme. Der im Kern gemessene Orthopyroxen des Hostperidotits weist die Mg# von 91 auf, wobei Al₂O₃=4,99 Gew.-%, Cr₂O₃=0,35 Gew.-%, CaO=0,77 Gew.-%, TiO₂=0,15 Gew.-% betragen. Die Orthopyroxene am Aderrand zeigen eine niedrigere Mg# zwischen 89 und 90. Der Cr₂O₃-Gehalt sinkt auf 0,19 Gew.-%, während der Gehalt an Aluminium, Kalzium und Titan steigt: Al₂O₃=5,05-5,84 Gew.-%, CaO=0,78-1,11 Gew.-%, TiO₂=0,16-0,49 Gew.-%.

Die petrographischen Charakteristika der Probe DUB_28 wurde bereits in Abschnitt 6.2.2.2 beschrieben. Diese Probe repräsentiert einen Lherzolith, der eine keilförmige Ader aufweist. Von diesem "*Keil*" breiten sich feine Pyroxenitadern in den Peridotit aus. Zwei wichtige Beobachtungen sind festzustellen:

- Die chemische Zusammensetzung der primären und sekundären Orthopyroxene zeigt einen beträchtlichen Unterschied. Der primäre Orthopyroxen des Hostperidotits weist einen SiO₂-Gehalt von 54,6-55,1 Gew.-% auf, während der sekundär gebildete Orthopyroxen einen niedrigeren SiO₂-Gehalt von 52,2-54,5 Gew.-% zeigt. Die sekundäre Phase zeigt ebenfalls einen niedrigeren Cr₂O₃- sowie MgO-Gehalt, während die TiO₂-, Al₂O₃-, FeO-, CaO- sowie Na₂O-Werte steigen (vgl. Tab. 7.2 und Tab. 7.6).
- Der sekundäre Orthopyroxen zeigt eine Änderung der chemischen Zusammensetzung in Abhängigkeit mit der Entfernung zum "*Keil*". Von der keilförmigen Ader in Richtung Peridotitbereich (d.h. mit der Entfernung vom "*Keil*") ist eine kontinuierliche Erhöhung der Mg#, sowie eine Abnahme von Al₂O₃ und TiO₂ zu erkennen (Abb. 7.5).

Die Orthopyroxene aller untersuchten zusammengesetzten Erdmantelxenolithe, die aus Peridotit- sowie Pyroxenitteilen zusammengesetzt sind, zeigen die gleichen, oben besprochenen, chemischen Charakteristika.

Abb. 7.4.a-f: Chemische Zusammensetzung der primären sowie sekundären Orthopyroxene. (a) Nomenklatur von Ca-Mg-Fe-Orthopyroxenen nach *Morimoto et al., 1989*; (b-f) Variationsdiagramme Cr₂O₃, CaO, Al₂O₃, SiO₂ und Na₂O vs. Mg#. *Opx1_Kern*: primärer Orthopyroxen, Messung im Kristallkern; *Opx1_Rand*: primärer Orthopyroxen, Messung am Kristallrand; *Opx_Kern_metasomat.*: sekundärer Orthopyroxen, Messung im Kristallkern; *Opx_Rand_metasomat.*: sekundärer Orthopyroxen, Messung am Kristallrand. Man beachte, dass der sekundär gebildete Orthopyroxen meistens eine niedrigere Mg#, relativ zur primären Phase, aufweist. Weitere Erläuterung ist im Text sowie in Tabellen 7.2 & 7.6 zu finden.

7.2.3 Klinopyroxen

Der sekundäre Klinopyroxen kommt in disseminierter Form innerhalb des Peridotits vor, oder ist im Pyroxenitbereich der zusammengesetzten Erdmantelxenolithe zu finden. Die petrographischen Charakteristika der sekundären Klinopyroxene ist in Abschnitt 6.2 bereits besprochen worden. Die chemische Zusammensetzung dieser sekundären Phase ist in Tabelle 7.7 zusammengefasst.

Während die primären Klinopyroxene innerhalb des Diopsid-Feldes der Diopsid-Hedenbergit-Mischreihe liegen und zu Chrom-Diopsiden gehören, weisen die meisten sekundären Klinopyroxene eine augitische Zusammensetzung auf (Abb. 7.6.a-h).

Der sekundäre Klinopyroxen (Kristallkern) innerhalb der Lherzolith-Gruppe weist niedrigere SiO₂- und MgO-Gehalte auf, während der TiO₂- und Al₂O₃-Gehalt meistens höher als jene der primären Phase, liegen. Die Mg# der sekundären Phase beträgt 82,8-88,8, während der primäre Klinopyroxen eine Mg# von 89,9-94,3 aufweist.

Die sekundären Klinopyroxene (Kristallkern) in Wehrliten zeigen einen relativ höheren TiO₂-, FeO-, sowie MnO-Gehalt im Vergleich mit der primären Phase. Die Mg# der sekundären Phase in Wehrliten beträgt 88,3-89,3, während der primäre Klinopyroxen eine Mg# von 90,0-90,8 aufweist.

Der primäre Klinopyroxen innerhalb von zusammengesetzten Erdmantelxenolithen ist im Peridotitteil zu finden, während die sekundär gebildete Phase sich im Pyroxenitteil befindet. Eine chemische Überprägung der primären Phase nahe des Pyroxenitbereichs ist ebenfalls festzustellen. Der primäre Klinopyroxen im Inneren des Peridotites, der keinen Kontakt zum Pyroxenit aufweist, zeigt relativ höhere SiO₂-, Cr₂O₃-, MgO, sowie CaO-Gehalte und einen niedrigeren Al₂O₃- und FeO-Gehalt als der sekundäre Klinopyroxen. Die Mg# der sekundären Phase beträgt 82,1-87,4, während der primäre Klinopyroxen eine Mg# von 90,1-90,8 aufweist.

7.2.4 Spinell

Die chemische Zusammensetzung der sekundären Spinelle ist in Tabelle 7.8 zusammengefasst. Die sekundär gebildeten Spinelle zeigen einen deutlich höheren TiO_{2} -Gehalt (0,90-1,58 Gew.-%) im Vergleich zur primären Phase (Abb. 7.2). Die Cr# der sekundären Spinelle variiert geringer, zwischen 34,6 und 56,7 (im Kristallkern) als jene der primären Phase.

Abb. 7.6.a-h: Chemische Zusammensetzung der primären sowie sekundären Klinopyroxene. (a) Nomenklatur von Ca-Mg-Fe-Klinopyroxenen nach *Morimoto et al., 1989*; (b-h) Variationsdiagramme TiO₂, CaO, Al₂O₃, Cr₂O₃, MnO, SiO₂ und Na₂O vs. Mg#. *Cpx1_Kern*: primärer Klinopyroxen, Messung im Kristallkern; *Cpx1_Rand*: primärer Klinopyroxen, Messung am Kristallrand; *Cpx_Kern_metasomat.*: sekundärer Klinopyroxen, Messung im Kristallkern; *Cpx_Rand_metasomat.*: sekundärer Klinopyroxen, Messung am Kristallrand. Man beachte, dass der sekundär gebildete Klinopyroxen eine niedrigere Mg#, relativ zur primären Phase, aufweist. Weitere Erläuterung ist im Text sowie in Tabellen 7.3 & 7.7 zu finden.

7.2.5 Amphibol

CHEMISMUS

Die chemische Zusammensetzung der untersuchten Amphibole ist in Tabelle 7.9 zusammengefasst.

Amphibol zeigt relativ geringe Schwankungen der Messwerte zwischen dem Kristallkern und Kristallrand für SiO₂ (Kern: 41,50-45,37 Gew.-%; Rand: 41,03-45,54 Gew.-%), Cr_2O_3 (Kern: 0,39-2,88 Gew.-%; Rand: 0,48-2,92 Gew.-%), MnO (Kern: 0,04-0,1 Gew.-%; Rand: 0,03-0,09 Gew.-%), CaO (Kern: 9,31-10,77 Gew.-%; Rand: 9,42-11,15 Gew.-%), NiO (Kern: 0,08-0,14 Gew.-%; Rand: 0,08-0,12 Gew.-%), Na₂O (Kern: 2,65-4,46 Gew.-%; Rand: 2,32-4,56 Gew.-%) und K₂O (Kern: 0,62-1,94 Gew.-%; Rand: 0,62-1,84 Gew.-%).

Der Al₂O₃-Gehalt beträgt 11,16-16,21 Gew.-% für den Kristallkern und 11,20-14,57 Gew.-% für den Kristallrand.

Fe₂O₃ beträgt im Kristallkern 0,90-3,76 Gew.-% und am Kristallrand 1,42-3,88 Gew.-%, während FeO im Kristallkern zwischen 0,06-5,19 Gew.-% und am Kristallrand zwischen 0,03-4,52 Gew.-% variiert. Der MgO-Gehalt beträgt 12,47-18,33 Gew.-% für den Kristallkern und 15,65-18,18 Gew.-% für den Kristallrand. Demzufolge beträgt die Mg# 76,7-91,0 für den Kristallkern, sowie 81,8-91,1 für den Kristallrand.

Der TiO₂-Gehalt zeigt Schwankungen zwischen 0,35 und 5,06 Gew.-% für den Kristallkern, sowie 0,39-5,59 Gew.-% für den Kristallrand. Hohe TiO₂-Gehalte haben Amphibole in Adern, die durch *crack-propagation* entstanden sind (Probe DUB_319), sowie in Pyroxenitbereichen der *"composite"* Xenolithe (Proben DUB_28, DUB_114). Es ist bemerkenswert, dass sich im Glas befindenden Amphibolrelikte der Probe DUB_319 eine starke Titananreicherung am destabilisierten Kristallrand aufweisen. Dabei erhöht sich der TiO₂-Gehalt von 4,1 (Kern) auf max. 8,8 Gew.-% (Rand). Solche titanreichen Kristallränder sind als hell gefärbte Bereiche auf den BSE-Bildern zu erkennen (Abb. 6.60.e-i).

KLASSIFIKATION

Die Klassifikation des Amphibols (IMA 86, Leake et al., 1997) basiert auf der chemischen Zusammensetzung der Standardformel für Amphibole $A_{0-1}B_2C_5^{VI}T_8^{IV}O_{22}(OH)_2$. Die einzelnen Positionen in der Struktur können dabei durch folgende Kationen eingenommen werden:

A-Position: Na⁺, K⁺, oder bleibt als Leerstelle unbesetzt

B-Position: Na⁺, Ca²⁺, Mg²⁺, Fe²⁺, Mn²⁺

C-Position: Mg^{2+} , Mn^{2+} , Fe^{2+} , Fe^{3+} , $Al^{3+(VI)}$, Ti^{4+} und relativ seltene lone wie Mn^{3+} , Cr^{3+} etc. *T*-Position: Si^{4+} , $Al^{3+(IV)}$, Ti^{4+}

OH⁻-Platz kann durch F⁻, Cl⁻ oder O²⁻ eingenommen werden.

Abb. 7.7: Darstellung der Amphibole (nach Leake et al., 1997). Alle untersuchten Amphibole gehören zu der Kalzium-Gruppe. Die mehrheit der Amphibole sind Pargasite, einige gehören jedoch zu Kaersutiten. In Abhängigkeit der Kationen-Besetzung der *B*-Position werden vier Amphibol-Hauptgruppen unterschieden: Mg-Fe-Mn-Li-Gruppe, Ca-Gruppe, Na-Ca-Gruppe und Na-Gruppe. Innerhalb jeder Hauptgruppe erfolgt eine weitere Aufteilung der Amphibole durch eine Gegenüberstellung des Silizium (p.F.E., d.h. Anzahl der Atome pro Formeleinheit) und Mg/(Mg+Fe²⁺)-Verhältnis.

Die kristallochemischen Strukturformeln der Amphibole sind in Tabelle 7.9 ermittelt. Die Berechnung der Strukturformeln erfolgte auf 15 Kationen (und 23 Anionen: 23 O). (Bemerkung zu Tabelle 7.9: Proben mit sehr feinkörnigen Amphibolen (im µm Bereich) wurden nur im Kern gemessen).

Laut der Klassifikation gehören die untersuchten Amphibole zu der *Kalzium-Gruppe (calcic group)* (Abb. 7.7). Diese Hauptgruppe beinhaltet Amphibole mit monokliner Symmetrie, die folgende Bedingungen erfüllen: $(Ca+Na)_B \ge 1,00$; $Na_B < 0,50$ (Anzahl der Ca-, Na-Atome auf *B*-Position pro Formeleinheit) und $(Na+K)_A \ge 0,50$ (Summe der Na- und K-Atome auf *A*-Position pro Formeleinheit). Der Amphibol zeigt oft $Ca_B > 1,50$; manche Proben weisen jedoch eine Abweichung auf, mit $Ca_B < 1,50$ (1,44-1,50 p.F.E). Silizium variiert zwischen 5,90 und 6,47 p.F.E., wobei das Verhältnis Mg/(Mg+Fe²⁺) 0,84-1,00 beträgt. Titan liegt meistens unterhalb von 0,50 p.F.E. Die meisten der untersuchten Amphibole weisen demzufolge eine *pargasitische* Zusammensetzung (Al^{3+ (VI)} > Fe³⁺) auf. Ihre allgemeine chemische Formel lautet: NaCa₂(Mg₄Al)Si₆Al₂O₂₂(OH)₂. Zwei der Proben (DUB_319, DUB_28) weisen jedoch Amphibole mit Ti $\ge 0,50$ p.F.E. auf. Solche Amphibole gehören zu Kaersutiten mit der allgemeinen chemischen Formel NaCa₂(Mg₄Ti)Si₆Al₂O₂₃(OH).

7.2.6 Phlogopit

Die chemische Zusammensetzung der untersuchten Phlogopite ist in Tabelle 7.10 zusammengefasst.

Phlogopit weist eine sehr geringe Schwankung der Messwerte zwischen Kristallkern und Kristallrand für die meisten Oxide auf. Der Phlogopitkristallkern zeigt einen SiO₂-Gehalt von 36,08-38,85 Gew.-%, $Al_2O_3=15,49-16,45$ Gew.-%, $FeO_{Total}=3,98-4,93$ Gew.-%, MnO=0,01-0,04 Gew.-%, MgO=19,64-22,73 Gew.-%, $Na_2O=0,55-1,08$ Gew.-%, $K_2O=8,18-9,66$ Gew.-%. Der Cr_2O_3 -Gehalt variiert von 0,62 Gew.-% bis 1,93 Gew.-% im Kern, sowie von 1,06 Gew.-% bis 1,96 Gew.-% am Kristallrand. Der CaO-Gehalt variiert relativ stark zwischen 0,02 Gew.-% und 0,13 Gew.-% im Kern, sowie von 0,03 Gew.-% bis 0,11 Gew.-% am Kristallrand. Die Mg# beträgt 87,8-91,0 im Kristallkern bzw. 87,9-91,9 am Kristallrand.

Bemerkenswert sind die Schwankungen des TiO_2 -Gehaltes im Kristallkern (0,93-6,39 Gew.-%), sowie am Kristallrand (0,95-9,55 Gew.-%).

Die hohen TiO₂-Gehalte sind, wie im Falle des Amphibols, in Adern, die durch *crack-propagation* entstanden sind (Probe DUB_319), sowie in manchen Pyroxenitbereichen der *"composite"* Xenolithe, (z.B. Probe DUB_114) zu finden.

Phlogopit der Probe DUB_319 weist eine besonders starke Titananreicherung am destabilisierten Kristallrand auf, wobei der TiO₂-Gehalt von 6,3 Gew.-% (Kern) auf max. 11,8 Gew.-% (Rand) steigt. Solche titanreichen Kristallbereiche sind durch ihre helle Färbung in den BSE-Bildern zu erkennen (Abb. 6.60.b-c, e-i).

7.3 Mineralchemie der tertiären Phasen. Glas und damit vergesellschaftete Minerale

Die chemische Zusammensetzung der Gläser zeigt beträchtliche Variationen, sowohl innerhalb einzelner Proben als auch bei den unterschiedlichen Proben: Der SiO₂-Gehalt variiert zwischen 47 und 69 Gew.-%, wobei der Gehalt an Na₂O+K₂O 2-15 Gew.-% beträgt (Abb. 7.8). Solche Schwankungen im Chemismus sind offensichtlich auf komplexe Reaktionsabläufe zurückzuführen.

7.3.1 Glas und tertiäre Phasen in einem Amphibol-führenden Wehrlit

Probe DUB_25 repräsentiert einen Amphibol-führenden Wehrlit. Amphibol zeigt unregelmäßige Kristallgrenzen mit zahlreichen Einbuchtungen, in denen sich Glas-Kristall-Aggregate befinden. Der Kristallanteil besteht aus den tertiären Phasen Olivin, Klinopyroxen und Spinell. Das Glas in unmittelbarer Nähe der Amphibolrelikte weist eine phonotephritische Zusammensetzung auf (Abb. 7.10.a-i). Der primäre Klinopyroxen zeigt im Kontaktbereich mit dem Glas einen "*spongy*"-Saum (Abb. 7.9.a-b), wobei sich die Glaszusammensetzung von phonotephritisch in Richtung trachyandesitisch ändert. Mit Zunahme des SiO₂-Gehalts im Glas sind eine Abnahme des MgO-, TiO₂- und CaO-Gehalts, sowie eine Zunahme des Al₂O₃-Gehalts ersichtlich. Dies deutet auf eine Reaktion zwischen der Schmelze und dem primären Klinopyroxen hin.

Eine andesitische (bis ins dazitisch reichende) Glaszusammensetzung kommt untergeordnet vor. Solch ein Glas tritt gelegentlich in den Reaktionszonen zwischen dem Amphibol und Klinopyroxen, sowie in Klinopyroxen-"*spongy*"-Bereichen, auf. Die Anwesenheit von tertiärem Olivin an solchen Stellen könnte durch eine lokale Siliziumanreicherung in der Schmelze erklärt werden (Abb. 7.12.a). Der Klinopyroxen-"*spongy*"-Rand weist einen niedrigeren Na₂O-Gehalt (0,5-1,2 Gew.-%) im Vergleich zum Kristallkern (2,0-2,5 Gew.-%) auf. Dies ist aufgrund des Natrium-Verteilungskoeffizienten D zwischen Klinopyroxen und Schmelze, welcher <1 beträgt, erklärbar (https://earthref.org/KDD/e:11/).

Abb. 7.9.a: Amphibol-führender Wehrlit. Schwarz gefärbte Bereiche rund um Amphibol bestehen aus Glas, sowie den tertiären Phasen Klinopyroxen, Olivin und Spinell. Probe DUB_25. Dünnschliffbild: ungekreuzte Polarisatoren.

Abb. 7.9.b: Klinopyroxen zeigt eine "spongy"-Struktur im Kontaktbereich mit dem Glas. *Cpx a*: Klinopyroxen ohne eine "spongy"-Struktur, zeigt jedoch eine Abweichung im Chemismus relativ zu primärem Klinopyroxen und wurde demzufolge metasomatisch überprägt (siehe ebenfalls Abb. 7.13.a-f: *Cpx1_Rand zu "spongy"-Bereich)*; *Cpx b*: Klinopyroxen mit *"spongy"-*Struktur; *Cpx c*: Klinopyroxen am Kontakt zum Glas, hypidiomorph, anscheinend neu gebildet; *Ol*: Der große Olivin zeigt einen dunklen Kristallrand im Kontaktbereich mit dem Glas und enthält tertiäre Spinelle; Probe DUB_25. BSE-Aufnahme.

Kalium kann nicht im Klinopyroxen eingebaut werden und wird infolgedessen im Glas (1,7 Gew.-%) angereichert.

Der primäre Olivin zeigt eine geringe Schwankung des Forsteritgehalts zwischen Kern (Fo=89,6) und Rand (Fo=89,9). Im Kontaktbereich mit dem Glas weist der Olivin jedoch eine

Abb. 7.11.a-d: Variationsdiagramme: NiO, TiO₂, CaO und SiO₂ vs. Forsteritgehalt des Olivins. Probe DUB_25: Amphibolführender Wehrlit. *Ol1_Kern*: primärer Olivin, Messung im Kristallkern; *Ol1_Rand*: primärer Olivin, Messung am Kristallrand; *Ol1_Rand zu Glas_dunkel*: Olivinkristallrand zum Glas weist eine Zunahme des Forsteritgehalts auf, im BSE-Bild zeigt eine dunkle Verfärbung; *Ol2*: tertiärer Olivin.

Abb. 7.12.a-b: (a) Reaktionszone zwischen den Phasen Amphibol und Klinopyroxen. In der Reaktionszone werden die tertiären Phasen Olivin (*Ol2*), Spinell (*Spl2*) und Klinopyroxen mit *"spongy"-*Struktur gebildet. *Gl*: Glas hier mit andesitischer Zusammensetzung. (b) Klinopyroxen zeigt im Inneren eine *"spongy"-*Struktur; Kristallrand ist hypidiomorph ausgebildet, enthält kein Glas und weist dunkle und helle Zonen auf. Solch ein *"fleckiges" Aussehen lässt auf eine Heterogenität im Chemismus und eventuell auf ein schnelles Wachstum des Kristalls rückschließen. Probe DUB_25. BSE-Aufnahme.*

deutliche Zunahme des Forsteritgehalts (Fo=92) auf. Dieser Wert stimmt mit dem Forsteritgehalt der tertiären, idiomorphen Olivine im Glas überein. Dies deutet auf das weitere Kristallwachstum des primären Olivins im Kontakt mit der Schmelze hin (Abb. 7.11.ad). Solch ein Kristallrand enthält oft tertiäre, idiomorphe Spinellkristalle und zeigt eine dunkle Farbe auf dem BSE-Bild (Abb. 7.9).

Der im Kristallkern gemessene, primäre Klinopyroxen zeigt meistens eine einheitliche chemische Zusammensetzung (Abb. 7.13.a-f). Die Bereiche, die sich in unmittelbarer Nähe zu den *"spongy"*-Strukturen befinden, zeigen eine Abnahme von MgO, SiO₂ und CaO, während FeO, Al₂O₃, Na₂O und TiO₂ zunehmen. Die chemische Zusammensetzung der *"spongy"*-Bereiche und der tertiären Klinopyroxene variiert sehr stark, sowohl je nach Probe

Abb. 7.13.a-f: Variationsdiagramme: SiO₂, Al₂O₃, FeO, CaO, TiO₂ und Na₂O vs. MgO des Klinopyroxens. Probe DUB_25: Amphibol-führender Wehrlit. *Cpx1_Kern*: primärer Klinopyroxen, Messung im Kristallkern; *Cpx1_Rand zu "spongy"-Bereich*: Klinopyroxen wurde nahe dem *"spongy"-Bereich* gemessen; *Cpx_"spongy"-Bereich*: Klinopyroxen mit *"spongy"-*Struktur, meistens am Kristallrand und in direktem Kontakt mit dem Glas; *Cpx2*: tertiärer Klinopyroxen.

als auch innerhalb eines Kristalls. Im BSE-Bild zeigen sich solche Kristallbereiche oft "fleckig", mit helleren und dunkleren Zonen, was auf eine Heterogenität im Chemismus zurückschließen lässt (Abb. 7.12.b). Im Allgemeinen ist jedoch eine Abnahme des SiO₂- und Na₂O-Gehalts, sowie eine Zunahme von TiO₂ und CaO in solchen Bereichen festzustellen. Die tertiären Spinelle mit einer hypidiomorphen/idiomorphen Korngestalt befinden sich:

- in "spongy"-Strukturen der großen Klinopyroxene,
- am Olivinkristallrand, der sich in direktem Kontakt mit dem Glas befindet und/oder
- ins Glas eingebettet und bilden oft Verwachsungen mit tertiärem Klinopyroxen und Olivin. Die Cr# der tertiären Spinelle variiert zw. 0,3 und 0,5.

7.3.2 Glas und tertiäre Phasen in einem Amphibol-führenden Lherzolith

Probe DUB_40 repräsentiert einen Amphibol-Spinell-führenden Lherzolith.

Die petrographischen Merkmale des primären/sekundären Olivins und Klinopyroxens, sowie des sekundären Amphibols im Kontakt mit Glas-Kristall-Aggregaten entsprechen denjenigen die für Amphibol-führenden Wehrlite charakteristisch sind und wurden bereits im Abschnitt 7.3.1 beschrieben. Zusätzlich zu diesen Merkmalen kommt es zu einer Instabilität des primären *Orthopyroxens* im Kontakt mit "*melt pockets*" sowie Glas-Kristall-Aggregaten im Lherzolith. Dadurch wird der Chemismus des Glases sowie jener der tertiären Phasen eindeutig beeinflusst.

Die chemische Zusammensetzung des Glases ist in Abb. 7.14.a-i dargestellt. Die Glas-"*pools*" enthalten die tertiär gebildeten Phasen Olivin, Klinopyroxen und Spinell, die in einem Glas eingebettet sind (Abb. 7.16.a-b). Die Amphibolrelikte sind gelegentlich in Glas-Kristall-Aggregaten zu finden. Das gemessene Glas (Abb. 7.14.a-i: *Glas in "melt pockets"/Aggr.*) zeigt einen SiO₂-Gehalt zwischen 49 und 58 Gew.-%, wobei FeO=2,2-3,4 Gew.-%, MgO=3,4-4,8 Gew.-%, Al₂O₃=20,6-22,9 Gew.-%, CaO=5,8-9,4 Gew.-%, Na₂O=6,7-7,8 Gew.-%, K₂O=1,0-1,3 Gew.-%, P₂O₅=0,2-1,5 Gew.-% betragen.

Die Glasadern, die sich entlang und/oder innerhalb der Olivinkristalle fortpflanzen (*Glas in Adern am Kontakt zu Ol*), zeigen i. Allg. eine ähnliche chemische Zusammensetzung wie das Glas in den "*melt pockets*"/Aggr. (Abb. 7.18.a-c). Der SiO₂-Gehalt ist jedoch niedriger (48,0-53,2 Gew.-%) und der P₂O₅-Gehalt liegt deutlich höher (0,9-2,6 Gew.-%).

Die Orthopyroxene zeigen unregelmäßige Kristallgrenzen mit Einbuchtungen im direkten Kontakt zu Glas-Kristall-Aggregaten sowie zu "*melt pockets*" (Abb. 7.16.a-b). An solchen Rändern ist das Wachstum der tertiären Phasen – Olivin, Klinopyroxen und Spinell – festzustellen, wobei eine Änderung der Korngröße, der Korngestalt und der Mineralogie dieser Phasen innerhalb der Reaktionszonen deutlich zu erkennen ist. Nahe dem Orthopyroxenrand werden meist kleine, xenomorphe Olivin- und Klinopyroxenkristalle

gebildet, die miteinander verwachsen sind. In Richtung Glas-"*pool*" nimmt die Olivin- und Klinopyroxenkorngröße zu; die dritte tertiäre Phase – Spinell – bildet sich etwa ab der Mitte der Reaktionszone bis zum äußeren Rand. Vom Rand zum Glas-"*pool*" zeigen die Kristalle meistens eine hypidiomorphe Korngestalt. Das Glas in unmittelbarer Nähe zum destabilisierten Orthopyroxen (*Glas in "melt pockets"/Aggr. am Kontakt zu Opx*) zeigt eine trachydazitische Zusammensetzung (SiO₂=62-65 Gew.-%), wobei die Siliziumzunahme im Glas anscheinend auf die Auflösung des Orthopyroxens zurückzuführen ist.

Abb. 7.15.a-b: (a) Die Abbildung zeigt eine Glasader, die interstitiell, zwischen den primären Olivin und Orthopyroxen, liegt. Orthopyroxen zeigt unregelmäßige Kristallgrenzen mit Einbuchtungen, sowie die Bildung der tertiären Phasen (Olivin, Klinopyroxen ± Spinell) im Kontakt mit der Glasader. Dies deutet auf eine Instabilität und Zerfall des Orthopyroxens in Anwesenheit der Schmelze hin. Das Glas im Kontaktbereich mit dem Orthopyroxen weist eine trachydazitische-dazitische Zusammensetzung auf. Der primäre Olivin weist ein Wachstum in Richtung Glasader auf: Der dunkel gefärbter Kristallrand deutet auf eine Zunahme des Forsteritgehalts in diesem Bereich hin. (b) Detaillierte Aufnahme des Reaktionssaums im Kontaktbereich mit dem Orthopyroxen. Probe DUB_40. BSE-Aufnahme.

Abb. 7.16.a-b: (a) Der primäre Orthopyroxen in direktem Kontakt mit den Glas-Kristall-Aggregaten zeigt eine Reaktionsfront, die aus den tertiären Phasen Olivin, Klinopyroxen und Spinell besteht. Das Glas in unmittelbarer Nähe des Orthopyroxenrands hat eine trachydazitische Zusammensetzung. Innerhalb der Glas-Kristall-Aggregate sind die neu gebildeten, tertiären Phasen Olivin, Klinopyroxen und Spinell, sowie die Amphibolrelikte zu erkennen. Das Glas in Aggr. weist eine phonotephritische Zusammensetzung auf. (b) Der primäre Olivin in direktem Kontakt mit den Glas-Kristall-Aggregaten zeigt einen neu gewachsenen Kristallrand. Die dunkle Farbe des Randes auf dem BSE-Bild ist auf die Zunahme des Forsteritgehalts zurückzuführen. Der Kristallrand enthält zahlreiche tertiäre, hypidiomorphe Spinelle. Probe DUB_40. BSE-Aufnahme.

Die Glasadern, die sich entlang der Orthopyroxenkristalle fortpflanzen, zeigen ebenfalls Reaktionszonen zwischen der ehemaligen Schmelze und dem Orthopyroxen (Abb. 7.15.a-b). Die Reaktionszonen sind ähnlich ausgebildet wie die Reaktionszonen zwischen dem Orthopyroxen und Glas-"*pool*". Das Glas (*Glas in Adern am Kontakt zu Opx*) in solchen Adern zeigt jedoch eine weitere Zunahme des SiO₂-Gehaltes (64,5-67 Gew.-%) und somit eine trachydazitische-dazitische Zusammensetzung.

Das Glas in Kinopyroxen-"*spongy*"-Bereich (*Glas in Cpx-"spongy"-Bereich*) weist eine trachyandesitische Zusammensetzung auf (Abb. 7.17.a).

Zusammengefasst lässt sich feststellen, dass das Glas in Probe DUB_40 einen SiO₂-Gehalt zwischen 48,0 und 67,0 Gew.-% aufweist, und somit phonotephritische bis dazitische Zusammensetzung zeigt. Mit der SiO₂-Zunahme (von *Glas in Adern am Kontakt zu Ol* in Richtung *Glas in Adern am Kontakt zu Opx*) ist eine Abnahme an Al₂O₃, FeO, MgO, TiO₂, Na₂O, K₂O und P₂O₅, sowie eine CaO-Zunahme festzustellen.

Eine der wahrscheinlichsten Quellen für das Element Kalium ist der destabilisierte Amphibol. Eine Kaliumzufuhr ist ebenfalls durch eine Schmelze des Hostbasalts möglich. Auf solch eine, im Xenolith perkolierende, Schmelze deutet ein erhöhter P₂O₅-Gehalt hin.

Es ist festzustellen, dass das Glas in unmittelbarer Nähe von Amphibolrelikten K₂O-ärmer ist, als Glas nahe des destabilisierten Orthopyroxens. Solch eine Beobachtung könnte folgendermaßen erklärt werden: Die, aufgrund von Amphibol-"*breakdown*" gebildete, Schmelze reagierte mit dem benachbarten Orthopyroxen, wobei neue Phasen Olivin, Klinopyroxen und Spinell gebildet wurden. Da der Kalium-Verteilungskoeffizient D von Olivin-Schmelze, Klinopyroxen-Schmelze sowie Spinell-Schmelze deutlich <1 beträgt (https://earthref.org/KDD/e:19/), bleibt Kalium in der Schmelze zurück und wird am stärksten nahe des Orthopyroxens, dort wo sich die tertiären Phasen aus der Schmelze bilden,

Abb. 7.17.a-b: (a) Der primäre Klinopyroxen zeigt *"spongy"*-Bereiche, die ungleichmäßig durch den Kristall verlaufen. Seine Grenze zum Orthopyroxen (linke Kristallseite im Bild) scheint noch intakt zu sein. Dies deutet eventuell auf eine bestimmte räumliche Fortpflanzung der Schmelze (von rechts nach links im Bild) entlang der Schwachstellen im Kristall hin. (b) Der tertiäre, hypidiomorph ausgebildete Spinell weist eine starke Zonierung auf. Der Spinell liegt innerhalb von *"melt pocket"* und ist im Glas eingebettet. Probe DUB_40. BSE-Aufnahme.

angereichert. Außerdem führt ein Zerfall des Orthopyroxens zur Bildung einer siliziumreichen Zone um den Orthopyroxenkristall. Kalium bevorzugt eine siliziumreiche polymerisierte Schmelze der siliziumarmen depolymerisierten Schmelze (Shaw et al., 1998). Infolgedessen kann es zu Kaliumanreicherung in siliziumreichen Bereichen, also im Kontaktbereich mit dem Orthopyroxen, kommen.

Die Abbildung 7.18.a-c zeigt eine Fortpflanzung der Schmelze in der Probe (DUB_40, Spinell-führender Lherzolith). Die Schmelze bewegt sich entlang der Kristallgrenzen und/oder durchschneidet die Kristalle. Das Glas als Produkt des Interagierens der Schmelze mit dem Lherzolith zeigt eine Änderung der chemischen Zusammensetzung (Abb. 7.19) entlang dieses Pfades. Die Abbildung 7.18.c zeigt eine detaillierte Aufnahme eines Bereiches, wo zwei Gläser mit verschiedener chemischen Zusammensetzung (Abb. 7.19: Points 1-5) direkt nebeneinander liegen. Auf dem BSE-Bild ist deutlich ein dunkleres Glas (Points 1 & 2) und ein helleres Glas (Points 3-5) zu erkennen. Das dunkle Glas weist einen niedrigeren Gehalt an FeO, MgO, Al₂O₃, CaO, Na₂O, TiO₂ und P₂O₅ auf, relativ zum helleren Glas, während sein K₂O- und SiO₂-Gehalt deutlich höher ist. Die Anreicherung vom SiO₂ (65 Gew.-%) im dunklen Glas lässt sich eventuell auf den Zerfall des Orthopyroxens in diesem Bereich zurückführen (siehe Abbildung). Das dunkle Glas zeigt demnach eine trachydazitische-dazitische Zusammensetzug und entspricht dem Glas in Adern am Kontakt zu Opx auf den Variationsdiagrammen (Abb. 7.14.a-i). Das helle Glas weist mit SiO₂=49,0-50,2 Gew.-% eine phonotephritische Zusammensetzung auf und entspricht dem Glas in Adern am Kontakt zu Ol. Die Fortpflanzung der Schmelze (und damit ist das helle Glas gemeint) erfolgte höchstwahrscheinlich von rechts nach links (im Bild), in Richtung "melt pocket⁴. Diese Annahme basiert auf der Beobachtung, dass zwischen der Glasmessungen in Point 15 und Point 16 eine rapide Abnahme des P₂O₅-Gehalts stattfindet, wobei sich in diesem Aderabschnitt ein Apatit (Hydroxilapatit) bildete.

Das Verhalten des Olivins in dieser Probe (DUB_40, Amphibol-Spinell-führender *Lherzolith*) ist ähnlich dem Verhalten des Olivins in Probe DUB_25 (*Wehrlit*), das bereits in Abschnitt 7.3.1 besprochen wurde. Im Kontaktbereich mit dem Glas zeigt der Olivin ein Wachstum (Abb. 7.15.a, 7.16.b, 7.18.a-c, 7.21). Dieser neu gebildete Saum besteht aus Olivin und Spinell, wobei der tertiäre Olivin einen höheren Forsteritgehalt (Fo=94), im Vergleich zum primären Olivinkern (Fo=91,5), aufweist. Die chemische Zusammensetzung des neu gebildeten Olivinrands ist gleich der Zusammensetzung von tertiären, hypidiomorphen Olivinen die in *"melt pockets"*, Glas-Kristall-Aggregaten oder in den Glasadern liegen (Abb. 7.20.a-d).

Abbildung 7.21 zeigt einen primären Olivin (runder Kristall mit einem Durchmesser von ca. 700 μm), der von Glas-Kristall-Aggregaten umgeben ist. Das Amphibolrelikt zeigt unregelmäßige Kristallränder. Das Glas mit neu gebildeten, tertiären Phasen ist innerhalb

Abb. 7.20.a-d: Variationsdiagramme: NiO, TiO₂, CaO und SiO₂ vs. Forsteritgehalt des Olivins. Probe DUB_40: Amphibol-Spinell-führender Lherzolith. *Ol1_Kern*: primärer Olivin, Messung im Kristallkern; *Ol1_Rand*: primärer Olivin, Messung am Kristallrand; *Ol1_Rand zu Glas_dunkel*: Olivinkristallrand zum Glas weist eine Zunahme des Forsteritgehalts auf, im BSE-Bild sichtbar durch eine dunkle Verfärbung; *Ol2*: tertiärer Olivin.

des Amphibols sowie an seinen Rändern zu erkennen. Die tertiären Phasen sind hypidiomorphe Olivin, Klinopyroxen und Spinell. Der primäre Olivin zeigt einen neu gewachsenen Kristallrand, der zahlreiche hypidiomorphe Spinelle enthält, wobei neben dem Kristallwachstum auch Diffusionsprozesse zu vermuten sind. Die Elementverteilung entlang eines Profils, welches den Rand des primären und des neu gebildeten Olivins beinhaltet, zeigt deutlich die unterschiedliche Zusammensetzung (Abb. 7.21, 7.22). Der MgO-Gehalt steigt von 49,5 Gew.-% auf 52,1 Gew.-%, während der FeO-Gehalt von 8,0 Gew.-% auf 5,1 Gew.-% sinkt; der NiO-Gehalt sinkt von 0,38 Gew.-% auf 0,33 Gew.-%. Während der CaO-Gehalt des primären Olivins relativ konstant bleibt und bei 0,06 Gew.-% liegt, steigt der des Anwachsaums von 0,06 auf 0,32 Gew.-% zum Rand des Korns hin.

Die Quelle für Kalziumzufuhr ist anscheinend der destabilisierte Amphibol. Kalzium hat einen hohen Diffusionskoeffizient im Vergleich zu anderen Elementen (Kil & Wendlandt, 2004). Der Anstieg des CaO-Gehalts am Olivinkristallrand hängt eventuell mit einem Temperaturanstieg zusammen, denn eine Temperaturerhöhung führt zur Steigerung der Diffusionsgeschwindigkeit. Solche Temperaturerhöhung im Erdmantelxenolith kann durch Wärmezufuhr aus dem Hostmagma, während des Xenolithtransports, verursacht werden (Köhler & Brey, 1990). Die Dauer des Aufheizereignisses, und damit die Transportszeit des Xenoliths im Hostmagma, lässt sich mit Hilfe des eindimensionalen Diffusionsmodells

Abb. 7.21: Glas-Kristall-Aggregate beinhalten Amphibolrelikt, die tertiär gebildeten Phasen Olivin, Klinopyroxen und Spinell, sowie einen primären Olivin (runder Kristall), die alle vom Glas umgeben sind (weitere Erläuterung im Text). Probe DUB_40. BSE-Aufnahme.

Abb. 7.22.a-b: Das Profil durch den Olivinkristallrand (siehe Abb. 7.21) beträgt 50 µm und zeigt eine Änderung der chemischen Zusammensetzung. *Distance [µm]*: Abstand vom Kristallrand in Mikrometern (weitere Erläuterung im Text). Probe DUB_40: Amphibol-Spinellführender Lherzolith.

(Lasaga, 1998) berechnen:

$$T_{1/2} = (X_{1/2})^2 / 2D,$$

wobei $T_{1/2}$... Zeit die gebraucht wird, um die halbe Gleichgewichtskonzentration zu erreichen, $X_{1/2}$... Distanz vom Rand [cm],

D ... Diffusionskoeffizient für Kalzium im Olivin = $3,18 \times 10^{-12}$ cm²/s, bei $f(O_2)=10^{-8}$ bar und T=1.200°C (Jurewicz & Watson, 1988; Köhler & Brey, 1990).

Das Diffusionsmodell ergibt, dass der Xenolithtransport im Hostmagma ca. 127,8 Stunden (5,3 d) dauerte. Dies ist nur als ein Näherungswert zu verstehen, denn der Diffusionskoeffizient ist stark abhängig von der Temperatur und der Sauerstofffugazität.

Der CaO-Gehalt steigt nicht kontinuierlich, sondern stufenartig: Auf dem Diagramm sind einige *Plateau*-Abschnitte und *Anstieg*-Abschnitte zu erkennen. Dies deutet eventuell auf zwei Phasen des Temperaturanstiegs hin.

Der primäre Klinopyroxen zeigt meistens eine homogene chemische Zusammensetzung (Abb. 7.23.a-f). Der Klinopyroxen zeigt im *"spongy*"-Bereich (Abb. 7.17.a) eine Zunahme des MgO- und CaO-Gehalts, sowie eine Abnahme des Al₂O₃- und Na₂O-Gehalts. Nach seinem Chemismus liegt der *"spongy*"-Klinopyroxen in jenem Bereich des Diagramms, in dem auch der feinkörnige tertiäre Klinopyroxen geplottet wird. Diese feinkörnigen, tertiären, hypidiomorph-idiomorphen Klinopyroxene sind in *"melt pockets*" (Abb. 7.16.a-b), Glas-Kristall-Aggregaten, sowie in Glasadern (meistens in Kontakt mit dem Orthopyroxen) (Abb. 7.15.a-b) zu finden. Die Mg# der tertiären Klinopyroxene variiert zwischen 92,0 und 95,0, während der Al₂O₃-Gehalt 0,78-8,88 Gew.-% beträgt. Der CaO-Gehalt liegt zwischen 17,93 und 23,52 Gew.-%, wobei die höheren Kalziumgehalte (über 23 Gew.-% und höher) anscheinend auf niedrigere Bildungstemperaturen hindeuten. Der Na₂O-Gehalt des tertiären Klinopyroxens liegt zwischen 0,55 und 1,30 Gew.-% und ist somit geringer als der des primären Klinopyroxens.

Der relativ hohe MgO- und SiO₂-Gehalt (MgO=18,23-21,09 Gew.-%, SiO₂=53,76-55,16 Gew.-%), sowie der niedrige Al₂O₃-Gehalt (0,78-2,82 Gew.-%) der tertiären Klinopyroxene ist mit dem Zerfall von Orthopyroxen assoziiert. Solche Klinopyroxene sind immer in unmittelbarer Nähe vom instabilen Orthopyroxen zu finden.

Die tertiären Klinopyroxene, die einen relativ niedrigen MgO- und SiO₂-Gehalt (MgO=13,43-16,49 Gew.-%, SiO₂=47,12-51,93 Gew.-%), sowie einen höheren Al₂O₃-Gehalt (4,33-8,88 Gew.-%) aufweisen, sind in *"melt pockets"* sowie in Glas-Kristall-Aggregaten, die Amphibolrelikte beinhalten, zu finden. Die Variationsdiagramme weisen ein ähnliches Muster wie Variationsdiagramme für Klinopyroxen in einem *Wehrlit* auf, sie zeigen jedoch teilweise höhere MgO- und SiO₂-Gehalte und niedrigeren TiO₂-Gehalt (vgl. Abb. 7.23.a-f, 7.13.a-f). Die tertiären Spinelle weisen oft eine Zonierung auf (Abb. 7.17.b) und zeigen eine Anreicherung an TiO_2 (bis zu 0,28 Gew.-%) und MgO (bis zu 22,5 Gew.-%) gegenüber dem primären Spinell. Die Cr# der tertiären Spinelle variiert zw. 0,23 und 0,41, der NiO-Gehalt zw. 0,12 und 0,46 Gew.-%.

Abb. 7.23.a-f: Variationsdiagramme: SiO₂, Al₂O₃, FeO, CaO, TiO₂ und Na₂O vs. MgO des Klinopyroxens. Probe DUB_40: Amphibol-Spinell-führender Lherzolith. *Cpx1_Kern*: primärer Klinopyroxen, Messung im Kristallkern; *Cpx1_Rand zu "spongy"-Bereich*: Klinopyroxen wurde nahe dem *"spongy"-Bereich* gemessen; *Cpx_"spongy"-Bereich*: Klinopyroxen mit *"spongy"-Struktur, meistens am Kristallrand und in direktem Kontakt mit dem Glas; Cpx2*: tertiärer Klinopyroxen.

7.3.3 Glas und tertiäre Phasen in einem Phlogopit-führenden Wehrlit

Das Phlogopitvorkommen im Gestein, in einer *disseminierten* Form, beschränkt sich größtenteils auf den Gesteinstyp *Wehrlit* (seltener kommen ebenfalls Amphibol und Phlogopit zusammen innerhalb von Adern, die einen Spinell-führenden Lherzolith durchziehen vor, wie in Probe DUB_319).

Wie bereits im Abschnitt 6.3 erwähnt, zeigt der Phlogopit eine Instabilität im Kontakt mit dem Glas in Form von unregelmäßigen, ausgefransten Kristallgrenzen. Innerhalb von Kristalleinbuchtungen und im Inneren des Kristalls sind Glas-Kristall-Aggregate zu finden. Der Kristall-Anteil dieser Aggregate besteht aus den tertiären Phasen Olivin und Spinell. Der tertiäre Klinopyroxen kommt meistens nicht vor. Sein Vorkommen ist auf jene Glasbereiche beschränkt, die im Kontaktbereich mit den großen primären/sekundären Klinopyroxenen mit *"spongy"*-Struktur liegen. Das Volumen der Glas-Kristall-Aggregate im Kontaktbereich mit dem Phlogopit ist deutlich geringer als jenes, das sich im Kontakt mit dem Amphibol befindet. Viele Phlogopitkristalle scheinen noch vorwiegend intakt zu sein und zeigen in Abwesenheit von Glas oft gut ausgebildete Kristallgrenzen.

Das Glas in Adern sowie in Glas-Kristall-Aggregaten (die repräsentativen Proben: DUB_306, DUB_308), die nahe des destabilisierten Phlogopits liegen, zeigt eine *tephriphonolitische* Zusammensetzung (Abb. 7.26.a-i). Der "*spongy*"-Bereich der Klinopyroxene, die in unmittelbarer Nähe zum tephriphonolitischen Glas und Phlogopit liegen, enthält meistens

Abb. 7.24: Phlogopit-führender Wehrlit. Der Phlogopit zeigt unregelmäßige Kristallgrenzen im Kontakt mit den Glas-Kristall-Aggregaten (braun-schwarze Bereiche), die anscheinend aufgrund des Phlogopitzerfalls gebildet wurden. Der Klinopyroxen weist einen *"spongy"-Saum auf (schwarz gefärbter Saum)*. Probe DUB_306. Dünnschliffbild: ungekreuzte Polarisatoren.

Abb. 7.25: Bildung von Glas-Kristall-Aggregaten im Kontaktbereich zwischen sekundärem Klinopyroxen und Phlogopit. Rund um Klinopyroxen ist einen *"spongy"-Saum zu* erkennen. Solch ein Saum besteht aus Klinopyroxen, mit einer veränderten chem. Zusammensetzung, und Glas. Probe DUB_306. BSE-Aufnahme.

Glas mit einer *phonolitischen* Zusammensetzung. Die hohen K₂O-Gehalte sind eindeutig auf das *"breakdown"* des Phlogopits zurückzuführen. Das Glas in den Adern sowie in den Glas-Kristall-Aggregaten hat höhere MgO-, TiO₂- und CaO-Gehalte und einen niedrigeren SiO₂-Gehalt, als das Glas im Klinopyroxen-*"spongy"*-Bereich. Mit der Zunahme des SiO₂-Gehalts ist eine systematische Abnahme der MgO-, TiO₂- und CaO-Gehalte im Glas festzustellen. Beim Vergleich der Gläser aus den Phlogopit-führenden Wehrliten mit den Gläsern aus Amphibol-Spinell-führendem Lherzolith (Abschnitt 7.3.2) und Amphibol-führendem Wehrlit (Abschnitt 7.3.1) ist Folgendes zu erkennen:

- Gläser der Wehrlite zeigen einen SiO₂-Gehalt zw. 50-58 Gew.-%, während die Gläser im Lherzolith eine größere Schwankung im SiO₂-Gehalt, zwischen 49-67 Gew.-%, aufweisen. Der deutlich höhere SiO₂-Gehalt im Lherzolith-Glas lässt sich offensichtlich auf den Zerfall des Orthopyroxens zurückführen;
- Gläser der Phlogopit-führenden Wehrlite sind deutlich kaliumreicher, was auf den Phlogopitzerfall zurückzuführen ist.

Der primäre Olivin weist im Kern einen Forsteritgehalt von 88,0-88,2 auf (Abb. 7.27.a-d). Am

Kristallrand schwankt der Forsteritgehalt zwischen 88,1 und 88,7. Die Olivinkristallränder im Kontaktbereich mit dem Glas enthalten zahlreiche feinkörnige Spinelle und zeigen eine typische dunkle Farbe auf BSE-Bildern. Dies deutet auf eine Zunahme des Forsteritgehalts hin (Fo=88,9-89,0). Die tertiär gebildeten, feinkörnigen, hypidiomorphen Olivine liegen im Kontakt mit dem destabilisierten Phlogopit und sind stets von Glas umgeben. Sie zeigen einen höheren Forsteritgehalt (Fo=89,3-93,3), sowie eine leichte Anreicherung an CaO, TiO₂ und SiO₂ gegenüber dem primären Olivin (Abb. 7.27.a-d, Tab. 7.1, Tab 7.12).

DUB_306: Cpx1_Kern

Cpx1_Rand zu "spongy"-Bereich

Abb. 7.28.a-f: Variationsdiagramme: SiO₂, Al₂O₃, FeO, CaO, TiO₂ und Na₂O vs. MgO

des Klinopyroxens. Proben DUB_306 & DUB_308: Phlogopit-führender Wehrlit.

Cpx1_Kern: primärer Klinopyroxen, Messung im Kristallkern; Cpx1_Rand zu

Die großen Klinopyroxenkristalle weisen meistens einen "*spongy*"-Saum auf. Der "*spongy*"-Bereich ist deutlich breiter im direkten Kontakt zu Glas-Kristall-Aggregaten, die sich in unmittelbarer Nähe des destabilisierten Phlogopits befinden. In größerer Entfernung zu solchen Stellen zeigt der Klinopyroxen einen deutlich schmäleren "*spongy*"-Saum. Dies deutet auf eine Instabilität des Klinopyroxens in Anwesenheit von Schmelze hin, die aufgrund von Phlogopitzerfall gebildet wurde, sowie auf das Zirkulieren dieser Schmelze entlang der Korngrenzen. Der Klinopyroxen-"*spongy*"-Bereich weist, im Vergleich zur primären Phase, relativ große Schwankungen der chemischen Zusammensetzung auf (Abb. 7.28.a-f). Die Mg#-Werte variieren zwischen 87,7 und 92,4.

Der tertiäre Klinopyroxen kommt äußerst selten, stets in der Nähe von großen Klinopyroxenen mit "*spongy*"-Struktur, vor. Er zeigt eine Mg# mit Werten zwischen 89,2 und 91,8.

Abb. 7.29.a-b: Bildung von Glas-Kristall-Aggregaten am Kontakt zwischen primärem/sekundärem Klinopyroxen und Phlogopit. (a) Klinopyroxen weist *"spongy"*-Bereiche im Kontakt mit dem Glas auf. Solche *"spongy"*-Strukturen bestehen aus Klinopyroxen mit veränderter chem. Zusammensetzung und Glas. (b) Große Olivine zeigen dunkle Kristallränder im Kontaktbereich mit destabilisiertem Phlogopit, was auf einen höheren Forsteritgehalt in diesen Bereichen zurückzuführen ist. Die tertiären Spinelle sind an Olivinkristallrändern mit hohem Forsteritgehalt, sowie in Glas-Kristall-Aggregaten, zusammen mit dem tertiären Olivin, zu finden. Probe DUB_308. BSE-Aufnahme.

Die tertiär gebildeten, hypidiomorphen Spinelle sind an Olivinkristallrändern mit hohem Forsteritgehalt sowie in Glas-Kristall-Aggregaten, zusammen mit dem tertiären Olivin, zu finden. Die Cr# der tertiären Spinelle variiert zwischen 0,4 und 0,6.

7.3.4 Glas und tertiäre Phasen in einem Lherzolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 1

Petrographische sowie geochemische Untersuchungen stellen eine räumliche Beziehung zwischen dem Hostmagma, dem Glas innerhalb der Adern und der Reaktionsfront zwischen den Mineralen des Hostperidotites und der Schmelze, die dem Hostbasalt entstammt, fest:

- Die Glasadern weisen eine gelbe bis dunkelbraune Farbe auf, wobei das Glas in der Nähe des Kontaktes mit dem Hostmagma eine deutlich dunklere Färbung zeigt. Mit zunehmender Entfernung vom Hostbasalt ins Innere des Peridotits wird das Glas kontinuierlich blasser.
- Die Minerale des Hostperidotits zeigen die breitesten Reaktionssäume in der Nähe des Kontaktes mit dem Hostbasalt. Davon lässt sich auf die Reaktionsintensität sowie Reaktionsdauer rückschließen. Weiter in dem Xenolith hinein werden die Reaktionssäume deutlich schmäler.

Probe DUB_34 repräsentiert einen Spinell-führenden Lherzolith, der völlig frei von wasserhaltigen Phasen, wie Amphibol oder Phlogopit, ist. Der Lherzolith wird von zahlreichen Glasadern durchzogen. Die oben bereits beschriebenen räumlichen Beziehungen zwischen dem Erdmantelxenolith und Hostbasalt deuten darauf hin, dass die Glasadern vom Hostmagma stammen.

Der Orthopyroxen zeigt eine ausgeprägte Instabilität gegenüber der Schmelze: Am Kontakt zum Glas ist deutlich ein Reaktionssaum zu erkennen.

Demgegenüber bleibt der primäre Olivin im Kontaktbereich mit dem Glas stabil, zeigt jedoch eine geringe Mg#-Abnahme am Kristallrand (Mg#=90) im Vergleich zum Kern (Mg#=91). Die Schmelzadern, die durch den Olivin verlaufen, sind deutlich schmäler ausgebildet als diejenigen, die die Orthopyroxene durchschneiden. Dies deutet darauf hin, dass während der Reaktion zwischen Olivin und Schmelze, der Olivin nicht verbraucht, sondern weiter gebildet wurde. Die neu gebildeten idiomorphen/hypidiomorphen Spinelle am Olivinkristallrand sowie die tertiären, eisenreichen, hypidiomorphen Olivine bestätigen diese Annahme.

Die primären Klinopyroxene weisen eine Art von *"spongy"*-Saum im Kontaktbereich mit dem Glas auf, wobei eine Abnahme des Al₂O₃- und Na₂O-Gehaltes, sowie eine Zunahme des MgO- und FeO-Gehaltes am Kristallrand festzustellen sind.

Abb. 7.30.a-b: Zahlreiche Glasadern im Lherzolith sind auf eine, in den Peridotit infiltrierte, Schmelze zurückzuführen, die anscheinend dem Hostmagma entstammt. Probe DUB_34. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren.

Der Reaktionssaum des instabilen Orthopyroxens, der in diesem Fall stets einen Kontakt zum Glas aufweist, beinhaltet Glas-Kristall-Aggregate. Diese sind aus den tertiären Phasen Olivin \pm Klinopyroxen \pm Spinell und Glas zusammengesetzt. Die Mächtigkeit des Reaktionssaumes erreicht an manchen Stellen 200 µm, wobei der breiteste Saum an den breitesten Aderabschnitten zu finden ist. An solchen Stellen zeigt die gut ausgebildete Reaktionsfront eine deutliche Zonierung, die von Orthopyroxenkristallrand in Richtung Glas folgendermaßen verläuft (Abb. 7.33.a-c, 7.34.a-h):

- Zone 1 besteht aus folgenden tertiären Phasen: Klinopyroxen + Olivin + Glas ± Spinell. Die Korngestalt der Klinopyroxen- und Olivinkristalle ist meistens xenomorph. Glas ist oft zwischen den neu gebildeten Phasen oder in Form von Kristalleinschlüssen zu finden.
- Zone 2 setzt sich aus den Phasen Olivin + Spinell + Glas zusammen. Klinopyroxen kommt äußerst selten vor. Das Glasvolumen nimmt kontinuierlich (in Richtung Zone 3) zu. Die Olivinkristalle werden ebenfalls größer.
- Zone 3 besteht aus Olivin + Glas ± Spinell und ist völlig frei von Klinopyroxen. Die Olivinkristalle sind größer und deutlich besser ausgebildet (hypidiomorph/idiomorph).
 Das Glasvolumen ist deutlich größer als in Zonen 1 & 2.

Somit zeigt die Reaktionszone eine Änderung der Mineralzusammensetzung, der Korngestalt, sowie eine Zunahme der Kristallgröße von Orthopyroxenkristallrand in Richtung Adermitte. Darüber hinaus weisen die beteiligten tertiären Phasen eine Änderung der chemischen Zusammensetzung auf.

Der tertiäre Klinopyroxen, dessen Auftreten sich meistens auf Zone 1 beschränkt, zeigt eine Abnahme des SiO₂- und MgO-Gehaltes, sowie eine Zunahme von CaO, Al_2O_3 und TiO₂, vom

Abb. 7.31.a-b: Primäre Phasen – Olivin und Orthopyroxen – reagieren unterschiedlich auf die perkolierende Schmelze. (a): Orthopyroxen zeigt eine Instabilität gegenüber der Schmelze: Im Kontaktbereich mit dem Glas ist deutlich einen Reaktionssaum zu erkennen. Primärer Olivin bleibt stabil, zeigt jedoch eine randliche Zonierung (heller Rand). Ein weiteres Olivinwachstum ist ebenfalls zu sehen: Die neu gebildeten Spinelle am Olivinkristallrand bestätigen diese Annahme. (b) Olivin zeigt eine Zonierung in Richtung Olivin-Glas-Kontakt. Diese Zonierung ist deutlich durch eine Aufhellung des Kristallrandes zu erkennen. Probe DUB_34. BSE-Aufnahme.

Orthopyroxenrand in Richtung Adermitte (Klinopyroxen am Opx-Rand: SiO₂=54,37 Gew.-%, MgO=20,23 Gew.-%, CaO=17,77 Gew.-%, Al₂O₃=0,87 Gew.-%, TiO₂=0,37 Gew.-%; Klinopyroxen weiter in Richtung Adermitte: SiO₂=52,74 Gew.-%, MgO=17,75 Gew.-%, CaO=19,87 Gew.-%, Al₂O₃=1,77 Gew.-%, TiO₂=0,80 Gew.-%;). Der Na₂O-Gehalt des tertiären Klinopyroxens zeigt eine geringe Schwankung (0,44-0,73 Gew.-%) innerhalb der Zone 1. Solch eine Änderung im Chemismus ist folgendermaßen zu erklären: Durch den Zerfall des Orthopyroxens ist die innere Reaktionszone (am Opx-Rand) sillizium- und magnesiumreich. Kalzium, Aluminium und Titan diffundieren aus der Schmelze in Richtung Orthopyroxen, daher nimmt die Konzentration dieser Elemente in Richtung der Schmelze zu. Die Präsenz des Klinopyroxens deutet darauf hin, allgemein betrachtet, dass der Orthopyroxen mit der Schmelze nicht im chemischen Gleichgewicht steht. Hätte das System ein chemisches Gleichgewicht erreicht, hätte es zum Wiederauflösen des Klinopyroxens geführt. Experimentelle Studien von C. Shaw zeigen, dass der Klinopyroxen nur für eine bestimmte Zeit stabil bleibt. Eine fortschreitende Reaktion zwischen dem Orthopyroxen und einer basanitischen Schmelze führt zur Wiederauflösung des Klinopyroxens. Der chemische Gleichgewicht wird nicht erreicht, wenn:

- a) die Schmelze sich im Gestein weiter bewegt und/oder
- b) die Prozesse zum Erliegen kommen, bevor der Gleichgewicht erreicht wird (z.B. die Prozesse während des Transports des Xenoliths im Hostmagma, die aufgrund einer Eruption zum Stillstand kommen) (Shaw, 1999).

Die tertiären Olivine weisen die folgende Änderung der chemischen Zusammensetzung auf, von Zone 1 zu Zone 3: eine Zunahme des FeO-, CaO- und TiO₂-Gehaltes und eine Abnahme des MgO- und SiO₂-Gehaltes (Olivin am Opx-Rand: FeO=11,94 Gew.-%, MgO=47,17 Gew.-%, CaO=0,23 Gew.-%, TiO₂=0,025 Gew.-%, SiO₂=40,52 Gew.-%; Olivin in Adermitte: FeO=14,39 Gew.-%, MgO=44,66 Gew.-%, CaO=0,30 Gew.-%, TiO₂=0,062 Gew.-%, SiO₂=39,82 Gew.-%).

Die Glaszusammensetzung zeigt, von Zone 1 (Opx-Rand) zu Zone 3 (Mitte der Glasader), folgenden Trend: trachytische trachydazitische trachvandesitische den \rightarrow \rightarrow Zusammensetzung, was eine deutliche SiO₂-Abnahme bedeutet. Der MgO-Gehalt bleibt relativ konstant in allen drei Zonen, wo der tertiäre Olivin gebildet wird; am äußeren Rand der Zone 3, der einzig aus Glas besteht, nimmt der MgO-Gehalt sehr stark zu, was auf das Ausbleiben der Olivinbildung in diesem Bereich hindeutet. Eine Zunahme an FeO, CaO, TiO₂ und P₂O₅ ist ebenfalls festzustellen, was auf basaltische Komponente zurückführt. Der Al₂O₃-Gehalt ist variabel, wobei sich eine lokale Aluminiumabnahme in Bereichen der Spinellbildung erkennen lässt. Der K₂O-Gehalt sinkt von 5,4 (Opx-Rand, Zone 1) auf 4,0 (Zone 3) Gew.-%. Solch eine Kaliumabnahme in Richtung der Schmelze scheint auf den ersten Blick unlogisch zu sein, denn die einzige Kaliumguelle ist die Schmelze selbst. Shaw

Abb. 7.32.a-j: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_34: Spinell-führender Lherzolith. (a) TAS-Diagramm (nach *Le Maitre-IUGS, 1989*); (b-j) Variationsdiagramme (siehe Erläuterung im Text).

Abb. 7.34.a-h: Chemische Zusammensetzung des Glases innerhalb der Reaktionszone (siehe Abb. 7.33.a-c). Zahlen 1 – 4 zeigen die Messstellen des Glases. Symbole: grünes Dreieck – die linke Flanke; blaues Rechteck – die rechte Flanke. Probe Probe DUB_34: Spinell-führender Lherzolith. Variationsdiagramm.

Abb. 7.35.a-b: Zwei verschiedenen Abschnitte einer Glasader innerhalb eines Orthopyroxenkristalls. Die Ader repräsentiert eine infiltrierte Schmelze, die anscheinend aus dem Hostmagma stammt. Die Glasader ist deutlich schmäler und die Reaktionszone ist nur teilweise ausgebildet im Vergleich mit den breiteren Aderabschnitten (vgl. mit Abb. 7.33). Die neu gebildeten Phasen sind Olivin, Klinopyroxen und Spinell. Die Keimbildung und das Weiterwachsen der tertiären Klinopyroxenkristalle werden anscheinend an Klinopyroxenentmischungslamellen des primären Orthopyroxens begünstigt. Probe DUB_34. BSE-Aufnahme.

Abb. 7.36.a-b: Die schmalsten Aderabschnitte (ca. 25-50 μm breit) im Kontakt mit dem Orthopyroxen zeigen keine Reaktionszone. Innerhalb solcher Abschnitte findet hauptsächlich der Zerfall des Orthopyroxens statt. (a) Übersichtsaufnahme; (b) Detailaufnahme (man beachte, dass einige tertiären Spinelle bereits vorhanden sind). Die grünen Kreise zeigen die Messstellen des Glases an (siehe auch Variationsdiagramme (Abb. 7.32.b-j)). Probe DUB_34. BSE-Aufnahme.

Abb. 7.37.a-b: Kristallrand des primären Spinells zeigt eine *"spongy"*-Struktur, was auf eine Wechselwirkung zw. der perkolierten Schmelze und dem Spinell hindeutet. (a) Übersichtsaufnahme; (b) detaillierte Aufnahme der *"spongy"*-Struktur. Der blaue Kreis zeigt eine der Messstellen des Glases an (siehe auch Variationsdiagramme (Abb. 7.32.b-j)). Probe DUB_34. BSE-Aufnahme.

Abb. 7.38.a-d: Variationsdiagramme: NiO, TiO₂, CaO und SiO₂ vs. Forsteritgehalt des Olivins. Probe DUB_34: Spinellführender Lherzolith. Primärer Olivin wurde im Kristallkern (*Ol1_Kern*) und am Kristallrand (*Ol1_Rand*) gemessen. Tertiärer Olivin – *Ol2*.

et al. (1998) erwähnen ebenfalls solch ein Verhalten und begründen dies damit, dass Alkalien siliziumreiche, hochpolymerisierte Schmelze bevorzugen und daher sich am Orthopyroxenkristallrand anreichern. Die *schmalen* Glasadern und/oder Aderabschnitte zeigen keine oder nur teilweise ausgebildete Reaktionsfronten im Kontaktbereich mit dem Orthopyroxen, was offensichtlich mit der Reaktionsdauer verschiedener Aderabschnitte im Zusammenhang steht. Geochemische Untersuchung *entlang* der Glasadern, von ihren breiteren Abschnitten in Richtung ihrer Verengung, weisen folgende Trends auf:

- Tertiärer Klinopyroxen zeigt eine weitere Zunahme des CaO-, Al₂O₃- und TiO₂-Gehaltes, während SiO₂ und FeO abnehmen.
- Tertiärer Olivin zeigt eine weitere MgO- und (geringere) SiO₂-Zunahme, während FeO-, CaO- und TiO₂-Gehalte abnehmen.
- Die Glaszusammensetzung zeigt eine weitere MgO-Zunahme, während der K₂O- und TiO₂-Gehalt sinken. CaO, Na₂O und P₂O₅ nehmen i. Allg. gering zu. FeO- und Al₂O₃-Gehalte bleiben relativ konstant. Der SiO₂-Gehalt variiert zwischen 56 und 61 Gew.-%. Die chemische Zusammensetzung der Gläser variiert aufgrund einer lokalen Bildung der tertiären Phasen, oder aufgrund des Ausbleibens dieser Phasenbildung. Zum Beispiel führt der Zerfall des Orthopyroxens einerseits und das Ausbleiben der Olivinbildung andererseits zu der Magnesiumzunahme im Glas.

Abb. 7.39.a-f: Variationsdiagramme: SiO₂, Al₂O₃, FeO, CaO, TiO₂ und Na₂O vs. MgO des Klinopyroxens. Probe DUB_34: Spinell-führender Lherzolith. Primärer Klinopyroxen wurde im Kristallkern (*Cpx1_Kern*) und am Kristallrand (*Cpx1_Rand*) gemessen. *Cpx_"spongy"-Rand*: Klinopyroxenrand mit *"spongy"-*Struktur, in direktem Kontakt mit Glasadern (Abb. 7.39.a); *Cpx2*: Tertiärer Klinopyroxen innerhalb der Glasadern (Abb. 7.31, 7.33, 7.35, 7.39).

Abb. 7.40: Primärer Klinopyroxen zeigt eine Instabilität in Form eines *"spongy"*-Saumes im Kontaktbereich mit dem Glas. Probe DUB_34. BSE-Aufnahme.

Die Variationsdiagramme der Glasphase (Probe DUB_34) sind in Abbildung 7.32 dargestellt. Die blauen Kreise symbolisieren eine Glaszusammensetzung, die in der Nähe von destabilisiertem Spinell zu finden ist (siehe Abb. 7.37.a-b). Grüne Kreise repräsentieren Glas in schmalen Aderabschnitten, wo hauptsächlich die Orthopyroxenauflösung stattfand und noch keine Rekristallisate zu finden sind. Die roten Kreise zeigen Glas in breiteren Aderabschnitten an, wo sich die neuen, tertiären, Phasen Ol2 ± Cpx2 ± Spl2 bildeten.

<u>7.3.4 Glas und tertiäre Phasen in einem Lherzolith, im Zusammenhang mit der</u> Hostbasalt-Infiltration. Teil 2

Probe DUB_145 repräsentiert einen verarmten Spinell-führenden Lherzolith der von wasserhaltigen Phasen wie Amphibol oder Phlogopit völlig frei ist.

Die Gesteinsprobe zeigt eine räumliche Beziehung zwischen dem Glasvorkommen und der strukturellen Instabilität des Ortho- und Klinopyroxens sowie des Spinells: am Kontakt zum Glas weisen diese Minerale unregelmäßige Kristallgrenzen voller Einbuchtungen auf (Abb. 7.43.a-b, 7.44.a-b, 7.48.a-b). In Abwesenheit vom Glas scheinen Kristallgrenzen intakt zu sein. Die kontinuierliche Zunahme des Glasvolumens (und dementsprechend die Instabilitätszunahme der Pyroxene und der Spinelle) innerhalb eines Dünnschliffes (Länge von ca. 4 cm) ist deutlich festzustellen. Die Ortho- und Klinopyroxene enthalten zahlreiche Klinopyroxen- und Orthopyroxenentmischungslamellen sowie Olivin- und Spinelleinschlüsse, wobei deren Häufigkeit im Kristall in Anwesenheit vom Glas zunimmt.

Der primäre Olivin zeigt ein Wachstum am Kontakt zum destabilisierten Orthopyroxen und Glas. Die geochemischen Untersuchungen zeigen eine leichte Zunahme des Forsteritgehalts und CaO-Gehalts vom Kristallkern in Richtung Kristallrand der Olivine (Abb. 7.42.a-b). Die Bildung der tertiären Olivine ist ebenfalls nahe des destabilisierten Orthopyroxens und/oder Spinells zu erkennen (Abb. 7.43.a-b, 7.47.b, 7.48.a-b, 7.49.b, 7.52.a-b).

Die chemische Zusammensetzung des Glases ist in Abb. 7.41.a-j dargestellt. Der SiO₂-Gehalt variiert stark zwischen 57 und 69 Gew.-%, was eventuell auf eine Siliziumanreicherung in der Schmelze durch den Orthopyroxen-*"breakdown"* zurückzuführen ist. Das Glas ist durch einen sehr niedrigen K₂O-Gehalt gekennzeichnet: bis zu 0,08 Gew.-%. Große xenomorphe Spinelle zeigen eine strukturelle Instabilität in Anwesenheit von Glas. Solche Kristalle sind stets von tertiären Ol+Cpx+Spl+Glas-Aggregaten umgeben und weisen zahlreiche Einbuchtungen auf (Abb. 7.48.a-b). Deren Kristallrand zeigt in der Regel eine deutliche Zunahme der Cr#. An den Stellen, wo das Glasvorkommen nahe dem Spinell besonders groß ist, zeigen die Spinellkristalle zahlreiche Spalten (Abb. 7.49.a-b, 7.50.a-b). Diese sind annähernd gerade ausgebildet und verlaufen in Scharen, meistens durch den ganzen Mineralschnitt. Es handelt sich eventuell um spröde Kristallbrüche, die sich aufgrund

152

Abb. 7.41.a-j: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_145: Spinell-führender Lherzolith. (a) TAS-Diagramm (nach *Le Maitre-IUGS, 1989*); (b-j) Variationsdiagramme.

Abb. 7.42.a-b: Variationsdiagramme: NiO und CaO vs. Forsteritgehalt des Olivins. Probe DUB_145: Spinell-führender Lherzolith. Primärer Olivin wurde im Kristallkern (*Ol1_Kern*) und am Kristallrand (*Ol1_Rand*) gemessen. Tertiärer Olivin – *Ol2*. Der Olivin zeigt im Kontakt zum Glas, vom Kern in Richtung Kristallrand eine Zunahme des Fo- und CaO-Gehalts. Olivine, die nicht im Kontakt zum Glas stehen, zeigen sehr geringere Unterschiede in der chemischen Zusammensetzung zwischen dem Kristallkern und seinem Rand.

Abb. 7.43.a-b: Der primäre Orthopyroxen weist zahlreiche Spinell- und Klinopyroxenentmischungslamellen auf und zeigt eine Instabilität gegenüber der Schmelze: unregelmäßige Kristallgrenzen am Kontakt zum Glas. Der primäre Olivin weist ein Kristallwachstum am Kontakt zum Glas auf; der neu gebildete Olivinrand zeigt eine Zunahme des Fo- und CaO-Gehalts gegenüber dem Kristallkern. Die tetiären Olivine enthalten Spinellentmischungslamellen und sind meistens vom Glas umgeben. Sie zeigen einen geringeren NiO-Gehalt sowie einen höheren Fo- und CaO-Gehalt gegenüber dem primären Olivin. Man beachte, dass der Olivin- und der Orthopyroxenkristallrand, in Abwesenheit vom Glas, intakt zu sein scheinen (Abb. a, der linke untere Quadrant). Tertiärer Klinopyroxen wächst gelegentlich am Orthopyroxenkristallrand. (a) Übersichtsaufnahme; (b) detaillierte Aufnahme. Probe DUB_145. BSE-Aufnahme.

Abb. 7.44.a-b: Der primäre Klinopyroxen zeigt eine Instabilität gegenüber der Schmelze: Bildung des tertiären Klinopyroxens und Olivins. Man beachte, dass der Olivin- sowie der Orthopyroxenkristallrand, in Abwesenheit vom Glas, intakt zu sein scheinen. (a) Übersichtsaufnahme; (b) detaillierte Aufnahme. Probe DUB_145. BSE-Aufnahme.

der Wechselwirkung zwischen dem Kristall und einer Schmelze bildeten. Die Spalten verlaufen anscheinend entlang der {111} Kristallflächen und sind mit tertiärem Olivin und Glas gefüllt. Solche Spinelle zeigen eine deutlich höhere Cr# im Vergleich zu den primären Spinellen. Die tertiären Spinelle sind meistens im Glas eingebettet oder liegen als Einschlüsse im Olivin vor. Sie sind stets in der Nähe der großen xenomorphen Spinelle zu finden und weisen einen höheren TiO₂-Gehalt auf. Ihre Cr# liegt zwischen den Cr#-Werten der primären und der "gebrochenen" Spinelle.

Abb. 7.46.a-d:

(a-c): Variationsdiagramme: TiO₂, NiO und MgO vs. Cr# des Spinells; [Cr# = (Cr/(Cr+Al)]. (d): Variationsdiagramm Al_2O_3 vs. Cr_2O_3 . Probe DUB_145: Spinell-führender Lherzolith.

Spl1_Kern: primärer Spinell, Messung im Kristallkern;

Spl1_Rand: primärer Spinell, Messung am Kristallrand; *Spl1_Rand zu Glas*: primärer Spinell, Kristallrand zur Reaktionszone (zu tertiären Glas-Kristall-Aggregaten);

Spl mit Bruchflächen_Kern/Rand: Spinell enthält spröde Kristallbruchflächen entlang der Flächen {111} im Kristall. In den Spalten befinden sich Olivin und Glas (Abb. 7.49.a-b, 7.50.a-b);

Spl_stäbchenförmig: Spinell in Form von Entmischungslamellen (stäbchenförmig) liegen im Glas oder im Olivin;

Spl2: tertiärer Spinell.

Abb. 7.47.a-b: (a) Primärer Spinell in direktem Kontakt zu den primären Orthopyroxen und Olivin. Die roten Kreise zeigen die Messstellen der Phase an (siehe auch Variationsdiagramme: Abb. 7.46.a-d); (b) Primärer Orthopyroxen weist zahlreiche Klinopyroxen- und Spinellentmischungslamellen (meistens stäbchenförmig ausgebildet) auf. Die tertiären Olivine zeigen Spinellentmischungslammellen die parallel/subparallel zu Entmischungslamellen im Orthopyroxen orientiert sind. Die Quadrat-Symbole zeigen die Messstellen des Spinells an (siehe auch Variationsdiagramme: Abb. 7.46.a-d). Probe DUB_145. BSE-Aufnahme.

Abb. 7.48.a-b: Sowohl am Kristallrand als auch im Inneren des großen Spinells sind tertiäre Ol+Cpx+Spl+Glas-Aggregate zu erkennen. Dies deutet auf eine Wechselwirkung zw. einer perkolierten Schmelze und dem Spinell hin. (a) Übersichtsaufnahme; (b) detaillierte Aufnahme. Die Kreis-Symbole zeigen die Messstellen des Spinells an (siehe auch Variationsdiagramme: Abb. 7.46.a-d). Probe DUB_145. BSE-Aufnahme.

Abb. 7.49.a-b: Der Spinell ist von zahlreichen tertiären Ol+Cpx+Spl+Glas-Aggregaten umgeben. Der Kristall weist Bruchflächen auf, die durch den ganzen Kristallschnitt verlaufen. In den Spalten sind Olivin und Glas zu erkennen. (a) Übersichtsaufnahme; (b) detaillierte Aufnahme. Die Dreieck-Symbole zeigen die Messstellen des Spinells an (siehe auch Variationsdiagramme: Abb. 7.46.a-d). Probe DUB_145. BSE-Aufnahme.

Abb. 7.50.a-b: Spinelle sind von tertiären Glas-Kristall-Aggregaten umgeben und zeigen spröde Bruchflächen. In den Kristallspalten ist ein Wachstum des tertiären Spinells (nadelig) deutlich zu erkennen. (a) Übersichtsaufnahme; (b) detaillierte Aufnahme. Die Dreieck-Symbole zeigen die Messstellen des Spinells an (siehe auch Variationsdiagramme: Abb. 7.46.a-d). Probe DUB_145. BSE-Aufnahme.

Abb. 7.51.a-b: Der große Klinopyroxen weist im Inneren des Kristalls tertiär gebildete Olivine sowie Glaseinschlüsse auf. Der Klinopyroxen enthält außerdem zwei Systeme der Orthopyroxenentmischungslamellen, die senkrecht aufenander stehen, sowie ein System der Spinellentmischungslamellen. Man beachte, dass der Klinopyroxenkristallrand meistens von den Entmischungslamellen frei ist, was auf eine Rekristallisation des Kristallrandes hindeutet. Der Rand weist einen höheren MgO-Gehalt gegenüber dem Kristallkern auf (siehe Variationsdiagramme: Abb. 7.45.a-g). (a) Übersichtsaufnahme; (b) detaillierte Aufnahme. Probe DUB_145. BSE-Aufnahme.

Abb. 7.52.a-b: Das Wachstum des tertiären Klinopyroxens. (a) Bildung der hypidiomorphen Klinopyroxene zwischen zwei primären Phasen – Spinell und Orthopyroxen. (b) Klinopyroxenbildung innerhalb eines primären Orthopyroxens. Man beachte, dass der Klinopyroxen meistens mit dem Olivin und Glas vergesellschaftet ist (siehe Variationsdiagramme: Abb. 7.45.a-g). Probe DUB_145. BSE-Aufnahme.

7.3.5 Glas und tertiäre Phasen in einem "*composite*" Erdmantelxenolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 1

Die im Abschnitt 6.2.2.2 beschriebenen Proben DUB_28 und DUB_114, die zu den zusammengesetzten Erdmantelxenolithen gehören, enthalten ebenfalls Gläser sowie tertiäre Phasen.

Die Gläser der Probe DUB_28 weisen eine trachybasaltische bis andesitische Zusammensetzung auf (Tab. 7.11). Das Glas im *"Keil*"-Bereich (Abb. 7.53.a-i: *Glas im Keil-Bereich*) hat eine trachybasaltische Zusammensetzung mit einem auffallend niedrigem K₂O-Gehalt (K₂O=0,8-1,1 Gew.-%).

Mit der Entfernung von keilförmiger Pyroxenitader im Hostperidotit zeigt das Glas eine kontinuierliche Anreicherung von SiO₂. Solche Gläser zeigen den Trend: basaltische Trachyandesite/basaltische Andesite \rightarrow Andesite (Abb. 7.53.a-i: *Glas im Peridotit-Bereich*).

Demzufolge zeigen die Gläser im *"Keil*"-Bereich einen niedrigeren SiO₂-Gehalt sowie einen höheren Al₂O₃- und FeO-Gehalt. Mit der Zunahme des SiO₂-Gehalts ist eine Abnahme des Al₂O₃-, FeO- und MgO-Gehalts zu erkennen. Siliziumreiche Gläser sind in der Regel am Kontakt zu destabilisiertem Orthopyroxen zu finden. Sie sind stets mit tertiären Phasen Olivin, Klinopyroxen und, untergeordnet, Spinell vergesellschaftet. Das Glas nahe dem tertiären Olivin weist einen relativ niedrigeren MgO-Gehalt auf, wohingegen SiO₂-Gehalt steigt. Das Glas nahe dem neu gebildeten Klinopyroxen zeigt eine lokale Abnahme von Al_2O_3 - sowie CaO-Gehalt.

Gläser dieser Probe weisen einen relativ niedrigeren SiO₂-Gehalt im Vergleich zu Gläsern der beschriebenen, von wasserhaltigen Mineralen freien, Lherzolithen. Man beachte, dass die Probe sowohl primär als auch sekundär gebildeten Orthopyroxene beinhaltet, wobei die Phase der beiden Generationen einen Zerfall zeigt. Der SiO₂-Gehalt des primären Orthopyroxens variiert zwischen 54,6 und 55,1 Gew.-%, während die sekundär gebildeten Orthopyroxene in Orthopyroxenitadern einen SiO₂-Gehalt von 52,2-54,5 Gew.-% aufweisen.

Die tertiär gebildeten Olivine am Kontakt zum destabilisierten Orthopyroxen (Abb. 7.54.a-d) zeigen meistens einen höheren Fo-, CaO- und TiO₂-Gehalt, sowie einen niedrigeren NiO-Gehalt im Vergleich zu dem sekundären Olivin (Bemerkung: die Bildung der sekundären Olivine ist auf Diffusionsprozesse zwischen dem primären Olivin des Peridotits und einer siliziumgesättigten Schmelze zurückzuführen, wobei ein Fe-Mg-Austausch zu vermuten ist. Die sekundären Olivine weisen einen niedrigeren Forsteritgehalt relativ zu der primären Phase auf (Abb. 7.54.a-d)).

Der Kristallrand der primären sowie sekundären Olivine zeigt eine dunkle Farbe am Kontakt zum Glas auf BSE-Bildern (Abb. 7.54.a-d: *Ol_Rand zu Glas_dunkel*), was auf eine Zunahme des Forsteritgehalts am Kristallrand relativ zum Kristallkern zurückschließen lässt.

Abb. 7.54.a-d: Variationsdiagramme: NiO, TiO₂, CaO und SiO₂ vs. Forsteritgehalt des Olivins. Probe DUB_28: "composite" Xenolith. Ol1_Kern: primärer Olivin, Messung im Kristallkern; Ol1_Rand: primärer Olivin, Messung am Kristallrand; Ol_Kern_metasomat.: sekundärer Olivin (große Olivinkristalle des Peridotits deren chemische Zusammensetzung durch Diffusionsprozesse zwischen dem primären Olivin und einer siliziumgesättigten Schmelze bereits früher verändert wurde), Messung im Kristallkern; Ol_Rand_metasomat.: sekundärer Olivin, Messung am Kristallrand; Ol_Rand zu Glas_dunkel: Olivinkristallrand zum Glas, nahe des destabilisierten Orthopyroxenkristallrandes, weist eine Zunahme des Forsteritgehalts auf, das BSE-Bild zeigt eine dunkle Verfärbung; Ol2: tertiärer Olivin im Glas nahe des destabilisierten Orthopyroxenkristallrandes; Ol2_im Keil-Bereich: tertiärer Olivin im "Keil"-Bereich.

Abb. 7.55.a-b: (a) Orthopyroxen innerhalb einer Orthopyroxenitader zeigt eine Destabilisierung in Form von unregelmäßigen Kristallgrenzen mit Einbuchtungen, wo sich die neu gebildeten Phasen – Olivin, Klinopyroxen, Spinell und Glas – befinden. Man beachte, dass der Kornkontakt zwischen Orthopyroxen und Olivin, in Abwesenheit vom Glas, intakt zu sein scheint. (b) der relativ große Klinopyroxen innerhalb einer Orthopyroxenitader beinhaltet Orthopyroxen-sowie Amphiboleinschlüsse. An seinem Kristallrand bilden sich die tertiären hypidiomorphen Klinopyroxene (helleren Klinopyroxenbereiche auf dem BSE-Bild) sowie untergeordnet tertiärer Olivin und Spinell. (a, b) Man beachte, dass der große primäre Olivin einen dunklen Saum, mit den eingeschlossenen tertiären Spinellen und Klinopyroxenen, am Kontakt zum Glas aufweist. Probe DUB_28. BSE-Aufnahme.

Abb. 7.56.a-f: Variationsdiagramme: SiO₂, Al₂O₃, FeO, CaO, TiO₂ und Na₂O vs. MgO des Klinopyroxens. Probe DUB_28: *"composite"* Xenolith. *Cpx1_Kern*: primärer Klinopyroxen, Messung im Kristallkern; *Cpx1_Rand*: primärer Klinopyroxen, Messung am Kristallrand; *Cpx_im Keil-Bereich*: Klinopyroxen im *"Keil"*; *Cpx_in Opx-Adern*: Klinopyroxen innerhalb von Orthopyroxenitadern, die sich entlang der Kristallgrenzen der primären Minerale, innerhalb des Peridotits, fortpflanzen; *Cpx2_im Glas*: tertiärer Klinopyroxen im Glas nahe des destabilisierten Orthopyroxenkristallrandes oder als ein neu gewachsener Saum am Klinopyroxenkristallrand.

Die tertiär gebildeten Olivine im "*Keil*"-*Bereich* befinden sich anscheinend im chemischen Gleichgewicht mit dem Glas: Glas mit MgO=3,0-4,5 Gew.-%, FeO=7,9 Gew.-%; Ol2 mit Fo=84,5-87,5.

Der tertiäre Klinopyroxen weist eine *augitische* Zusammensetzung auf und kommt in Form von:

 feinkörnigen hypidiomorphen Kristallen, nahe des destabilisierten Orthopyroxens, vor (*Typ 1*). Sie liegen stets in direktem Kontakt zum Glas, oft völlig im Glas eingebettet (Abb. 7.55.a) (Mg#=87,5-88,4; SiO₂=51,80 Gew.-%; TiO₂=1,33 Gew.-%; Al₂O₃=3,25 Gew.-%; CaO=16,16 Gew.-%; Na₂O=0,41 Gew.-%). Der SiO₂-Gehalt ist höher im Verglech zum Typ 2, was auf die unmittelbare Nähe des destabilisierten Orthopyroxens zurückzuführen ist;

als Saum der größeren Klinopyroxenkristalle, ebenfalls am Kontakt zum Glas (*Typ 2*) (Abb. 7.55.b). Der SiO₂-Gehalt liegt tiefer, der TiO₂-, Al₂O₃- und CaO-Gehalt ist deutlich höher im Verglech zum Typ 1 (Abb. 7.56.a-f): Mg#=85,7; SiO₂=44,49 Gew.-%; TiO₂=4,00 Gew.-%; Al₂O₃=9,65 Gew.-%; CaO=20,78 Gew.-%; Na₂O=0,49 Gew.-%.

7.3.5 Glas und tertiäre Phasen in einem "*composite*" Erdmantelxenolith, im Zusammenhang mit der Hostbasalt-Infiltration. Teil 2

Probe DUB_114 repräsentiert einen "*composite*" Erdmantelxenolith, der aus einem Peridotitsowie einem Pyroxenitbereich zusammengesetzt ist (Abb. 7.60).

Der Peridotitteil beinhaltet sehr große Olivine. Gläser dieser zwei Bereiche unterscheiden sich aufgrund ihrer chemischen Zusammensetzung. Entlang der meisten Olivinkorngrenzen sowie innerhalb deren Kristallbruchflächen sind pyroxenitische Adern deutlich zu erkennen. Die pyroxenitischen Adern bestehen bis zu 90 Vol.-% aus feinkörnigem Orthopyroxen. Neben dem Orthopyroxen kommen – wenn auch seltener – Klinopyroxen, Spinell, Amphibol und Phlogopit vor, meistens in Form von Einschlüssen oder Verwachsungen mit der Hauptphase und/oder miteinander. *Der Pyroxenitbereich* besteht hauptsächlich aus Klinopyroxen; Orthopyroxen kommt untergeordnet vor; gelegentlich sind Spinell, Apatit, Plagioklas, Sulfide und Glas zu finden. Amphibol ist meistens nicht vorhanden. Die selten vorhandenen Olivine sind stets xenomorph und zeigen unregelmäßige abgerundete Kanten (siehe auch Kapitel 6).

Das Glas im **Klinopyroxenitbereich** kommt sowohl intergranular als auch in Form von Schmelzeinschlüssen innerhalb der Kristalle vor und weist eine gelbe bis braune Farbe auf. Die intergranularen Glas-"*pools*" sind 500-1.000 μ m breit und befinden sich meistens zwischen den Klinopyroxenkristallen (seltener zwischen den Plagioklasleisten) (Abb. 7.61.a-f). Diese Art vom Glas (Abb. 7.57.a-i: *Glas im Klinopyroxenit-Bereich*) weist eine trachybasaltische bis basaltische Zusammensetzung auf. Das Glas zeigt eine sehr niedrige Mg# (von 35 bis 50) wobei der FeO-Gehalt auffallend hoch ist. Der K₂O-Gehalt ist sehr niedrig. Die chemische Zusammensetzung des Glases: SiO₂=46,8-50,6 Gew.-%, TiO₂=1,7-3,2 Gew.-%, FeO=9,6-15,6 Gew.-%, MgO=3,4-5,5 Gew.-%, Al₂O₃=14,9-20,4 Gew.-%, CaO=5,7-7,9 Gew.-%, Na₂O=3,5-4,9 Gew.-%, K₂O=0,5-0,8 Gew.-%, P₂O₅=0,2-0,4 Gew.-%. Mit der Zunahme des SiO₂-Gehalts ist eine Zunahme des Al₂O₃-, sowie eine Abnahme des FeO-, MgO- und TiO₂-Gehalts zu erkennen.

Abb. 7.58.a-d: Variationsdiagramme: NiO, TiO₂, CaO und SiO₂ vs. Forsteritgehalt des Olivins. Probe DUB_114: "composite" Xenolith. Ol1_Kern: primärer Olivin, Messung im Kristallkern; Ol_Kern_metasomat.: sekundärer Olivin (große Olivinkristalle des Peridotits, deren chemische Zusammensetzung durch Diffusionsprozesse zwischen dem primären Olivin und einer siliziumgesättigten Schmelze bereits früher verändert wurde), Messung im Kristallkern; Ol_Rand_metasomat.: sekundärer Olivin, Messung am Kristallrand; Ol_Rand zu Glas_dunkel: Olivinkristallrand zum Glas, nahe des destabilisierten Orthopyroxenkristallrandes, weist eine Zunahme des Forsteritgehalts auf, im BSE-Bild sichtbar durch eine dunkle Verfärbung; Ol2: tertiärer Olivin im Glas, nahe des destabilisierten Orthopyroxenkristallrandes; Ol_reliktisch im Glas: gerundete Teile des primären Olivins, liegen in Form von "Inslen" innerhalb von Glasadern.

Den **Peridotitbereich** durchziehen zahlreiche Glasadern, die an manchen Stellen eine Breite von 400-500 µm erreichen. Das Glas hat einen gelblichen bis bräunlichen Stich. Die Glasadern durchschneiden sowohl die großen Olivinkristalle des Hostperidotits als auch die Orthopyroxene (Abb. 7.62.a-f, 7.63.a-f, 7.64.a-f). Die Orthopyroxene liegen in Form von relativ großen Kristallen bzw. als kleine Kristalle in Orthopyroxenitadern vor.

Die Glasadern innerhalb der Olivinkristalle sind deutlich schmaler und oft frei von Kristallneubildungen. Der Olivin am Kontakt zum Glas weist meistens einen höheren Forsteritgehalt (Abb. 7.58.a-d: OI_Rand zu Glas_dunkel) sowie, an manchen Stellen, die tertiären Olivine auf. Die neu gebildeten hypidiomorphen Olivinkristalle haben ebenfalls einen höheren Forsteritgehalt (im Vergleich zu dem primären Olivin) und enthalten oft Glaseinschlüsse die auf ein relativ schnelles Kristallwachstum aus der Schmelze hindeuten. Die chemische Zusammensetzung solcher Glaseinschlüsse stimmt mit der Glaszusammensetzung der benachbarten Glasadern überein. Manche Glasadern enthalten rundliche Olivine, die inselförmig oder halbinselförmig im Glas liegen (Abb. 7.64.f). Solche Strukturen deuten eventuell auf eine Fortpflanzung der Schmelze entlang der

Abb. 7.59.a-f: Variationsdiagramme: SiO₂, Al₂O₃, FeO, CaO, TiO₂ und Na₂O vs. MgO des Klinopyroxens. Probe DUB_114: *"composite"* Xenolith. *Cpx_im Klinopyroxenit-Bereich:* Klinopyroxen im Klinopyroxenitbereich; *Cpx_im Peridotit-Bereich_in Opx-Adern:* Klinopyroxen innerhalb von Orthopyroxenitadern, die sich entlang der Kristallgrenzen der primären Olivine, innerhalb des Peridotits, fortpflanzen; *Cpx2_im Peridotit-Bereich_im Glas:* tertiärer Klinopyroxen innerhalb von Orthopyroxenitadern, liegt in unmittelbarer Nähe von destabilisiertem Orthopyroxen, meistens im Kontakt zum Glas.

Kristallbruchflächen hin, wobei es zu einer Abschnürung der Olivinteile kam. Dies lässt eine lokale Instabilität des Olivins gegenüber der Schmelze vermuten, z.B. durch eine Siliziumanreicherung im Glas aufgrund des Orthopyroxen-"*breakdown*". Die Mikrosondenanalysen zeigen, dass die chemische Zusammensetzung solcher Olivin-"*Inseln*" mit der chemischen Zusammensetzung der primären Olivine ident ist. Es handelt sich demzufolge tatsächlich um Olivinrelikte (Abb. 7.58.a-d: *Ol_reliktisch im Glas*).

Die Glasadern innerhalb der Orthopyroxenkristalle sind deutlich breiter ausgebildet als jene, die sich innerhalb des Olivins befinden. Die Annahme, dass dieses Glas eine *Rest*schmelze

der früher gebildeten Orthopyroxenitadern repräsentiert, lässt sich eher ausschließen: Die Glasadern verlaufen unregelmäßig, oft konform mit den Orthopyroxenitadern, *beschränken sich jedoch nicht ausschließlich auf solche Adern.* Der Orthopyroxen am Kontakt zum Glas zeigt stets eine ausgeprägte Instabilität in Form von unregelmäßigen Kristallgrenzen mit zahlreichen Einbuchtungen. Innerhalb solcher Kristalleinbuchtungen sind stets die tertiär gebildeten Olivine, Klinopyroxene und Spinelle zu finden. Die neu gebildeten Kristalle sind deutlich feinkörniger, haben eine idiomorphe-hypidiomorphe Korngestalt und liegen meistens in direktem Kontakt zum Glas.

Der tertiäre Olivin kommt deutlich häufiger in den Glas-Kristall-Aggregaten (innerhalb des destabilisierten Orthopyroxens) als die anderen Phasen (Klinopyroxen oder Spinell) vor. Die Olivinkristalle enthalten oft Glaseinschlüsse die eine ähnliche chemische Zusammensetzung aufweisen wie das Glas in dem der Olivinkristall eingebettet ist (Glas: SiO₂=54,86 Gew.-%, TiO₂=3,32 Gew.-%, FeO=3,73 Gew.-%, MgO=3,92 Gew.-%, Al₂O₃=18,59 Gew.-%, CaO=9,31 Gew.-%, Na₂O=3,04 Gew.-%, K₂O=1,35 Gew.-%, P₂O₅=0,3 Gew.-%). Der tertiäre Olivin zeigt meistens einen höheren Forsteritgehalt, CaO- und TiO₂-Gehalt, sowie einen niedrigeren NiO-Gehalt (Fo=90,5-91,3; CaO=0,14-0,20 Gew.-%, TiO2=0,02-0,09 Gew.-%, NiO=0,22-0,36 Gew.-%) im Vergleich zu dem primären und zu dem sekundären Olivin (Abb. 7.58.a-d). Man beachte, dass die Diffusionsprozesse zwischen dem primären Olivin des Peridotits und einer siliziumgesättigten Schmelze zum Absenken des Forsteritgehalts der Olivine (→ Entstehung des sekundären Olivins) führten (Abb. 7.58.a-d). Der Orthopyroxenzerfall führte hingegen zur Bildung der forsteritreicheren tertiären Olivine (vgl. mit Probe DUB_28, die eine ähnliche Entwicklung aufweist).

Der tertiäre Klinopyroxen sowie Spinell kommen in Glas-Kristall-Aggregaten (innerhalb des destabilisierten Orthopyroxens) untergeordnet vor, oft als Verwachsungen mit dem tertiären Olivin. Der Klinopyroxen (Abb. 7.59.a-f: *Cpx2_im Peridotit-Bereich_im Glas*) weist eine ausgeprägte Inhomogenität der chemischen Zusammensetzung innerhalb des Kristalls auf (Abb. 7.64.b): Seine Mg# variiert zwischen 87,2 und 90,7, wobei SiO₂=44,78-52,41 Gew.-%, TiO₂=0,90-3,52 Gew.-%, Al₂O₃=3,47-10,78 Gew.-%, CaO=18,39-20,91 Gew.-%, Na₂O=0,25-1,00 Gew.-% beträgt. Mit der Zunahme des MgO-Gehalts ist eine Zunahme des SiO₂- sowie eine Abnahme des Al₂O₃- und TiO₂-Gehalts zu erkennen.

Der tertiäre Spinell weist die Cr# zwischen 0,2 und 0,4 auf; TiO₂=1,0-2,0 Gew.-%, NiO=0,2-0,4 Gew.-%, MgO=15,5-19,0 Gew.-%.

Das Glas im Peridotitbereich (Abb. 7.57.a-i: *Glas im Peridotit-Bereich*) weist eine basaltische – basalt-andesitische Zusammensetzung, sowie eine relativ hohe Mg# (von 59 bis 69), auf. Der SiO₂-Gehalt variiert zwischen 48,6 und 56,4 Gew.-%, wobei TiO₂=2,7-4,1 Gew.-%, FeO=3,1-5,3 Gew.-%, MgO=3,2-6,1 Gew.-%, Al₂O₃=16,9-19,9 Gew.-%, CaO=8,0-11,7 Gew.-%, Na₂O=2,0-3,6 Gew.-%, K₂O=0,4-2,6 Gew.-%, P₂O₅=0,2-3,7 Gew.-% betragen.

Demzufolge liegen die SiO₂-, TiO₂-, CaO-, K₂O- sowie P₂O₅-Gehalte dieser Art von Glas i. Allg. höher; der NaO- und FeO-Gehalt ist hingegen niedriger als im Glas des Pyroxenitbereiches. Der höhere SiO₂-Gehalt des Glases im Peridotitbereich ist anscheinend auf den Orthopyroxenzerfall zurückzuführen. Eine positive Korrelation zwischen Kalium und Silizium lässt den Mechanismus der Kaliumanreicherung in siliziumreichen Bereichen vermuten (Shaw et al., 1998).

Der SiO₂-Gehalt der Gläser dieser Probe ist mit 46,78-56,44 Gew.-% i. Allg. geringer als der der anderen Proben die einen destabilisierten Orthopyroxen aufweisen (vgl.: DUB_34: SiO₂=56,15-66,07 Gew.-%; DUB_40: SiO₂=64,53-67,15 Gew.-%; DUB_145: SiO₂=57,11-68,65 Gew.-%). Der sekundäre Orthopyroxen weist den SiO₂-Gehalt von 53,9-55,3 Gew.-% auf, was tiefer als bei den Proben DUB_34 (SiO₂=55,5-57,0 Gew.-%), DUB_40 (SiO₂=56,1-56,4 Gew.-%) und DUB_145 (SiO₂=56,8-58,2 Gew.-%) liegt (vgl. Abb. 7.14.a-i, 7.32.a-j, 7.41.a-j, 7.53.a-i).

Anhand vom P₂O₅-Gehalt können die Gläser im Peridotitbereich in zwei Subgruppen unterschieden werden: Phosphor-,,*reiches*" und Phosphor-,,*armes*" Glas. Solche Unterteilung ist nur unter Vorbehalt zu betrachten, da einen kontinuierlichen Übergang zwischen den beiden Subgruppen deutlich zu erkennen ist. Das phosphorreiche Glas (Abb. 7.57.a-i: *Glas im Peridotit-Bereich, P-reich*) zeigt einen relativ höheren MgO- und CaO-Gehalt sowie einen relativ niedrigeren SiO₂-, Al₂O₃- und K₂O-Gehalt. Das phosphorreiche Glas tritt lokal in schmalen Glasadern auf, die an Kristallgrenzen zwischen den Olivinen und

Abb. 7.60: Probe DUB_114: *"composite"* Xenolith. Dünnschliffscan. A: Klinopyroxenitbereich; B: Peridotitbereich.

Abb. 7.61.a-f: Probe DUB_114: "composite" Xenolith. Klinopyroxenitbereich. Das Glas kommt sowohl intergranular als auch in Form von Schmelzeinschlüssen innerhalb der Kristalle vor und weist eine gelbe bis braune Farbe auf. (a-b) Klinopyroxene weisen meistens einen glasarmen Kristallkern auf. Um den Kristallkern bildet sich ein "spongy"-Bereich, der aus Cpx+Glas besteht. Der Klinopyroxenkristallrand ist im Kontaktbereich mit dem Glas gut ausgebildet. Die strukturellen Merkmale deuten eventuell auf eine Kristallbildung (→ Cpx-Kern), spätere Instabilität der Phase (Klinopyroxen-"breakdown", möglicherweise durch Hostbasalt → Cpx+Glas-Bereich) und weitere Stabilisierung und Kristallwachstum in Anwesenheit der Schmelze hin. Apatit kommt untergeordnet vor. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren. (c-d) Klinopyroxene zeigen zahlreiche Glaseinschlüsse. Im oberen linken Quadrant weist der gerundete Klinopyroxenkristall eine Verzwilligung auf. Die Plagioklasleisten bilden sich am Kontakt zum Glas. Dünnschliffbild: ungekreuzte (c) und gekreuzte (d) Polarisatoren. (e-f) BSE-Aufnahmen des Klinopyroxenitbereichs.

Abb. 7.62.a-f: Probe DUB_114: "composite" Xenolith. Peridotitbereich. (a-b) Die Glasadern durchschneiden sowohl die großen Olivinkristalle des Peridotits als auch die Orthopyroxene. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren. (c-d) Das Glas innerhalb einer Orthopyroxenitader. Dünnschliffbild: ungekreuzte (c) und gekreuzte (d) Polarisatoren. (e-f) Das Glas innerhalb einer Orthopyroxenitader. Übersichtsaufnahmen. BSE-Aufnahmen.

Orthopyroxenitadern zu finden sind (Abb. 7.63.b-f). Gelegentlich kommt das Glas *innerhalb* der Orthopyroxenitadern vor. Die Fortpflanzung der phosphorreichen Schmelze an Kontakten zwischen den Phasen Olivin und Orthopyroxen führt zur Instabilität des Orthopyroxens. Olivinkorngrenzen bleiben intakt. Das Glas enthält gelegentlich Hydroxilapatitkristalle (Tab. 7.16).

(a-b) Detailaufnahmen der Orthopyroxenitader (siehe Abb. 7.62.f). (a) die linke Flanke und (b) die rechte Flanke. Die Orthopyroxenitader besteht hauptsächlich aus Orthopyroxen; untergeordnet kommen ebenfalls Klinopyroxen (Cpx), Amphibol (Amph) und Olivin (Ol) vor, in Form von Entmischungen, Einschlüssen bzw. größeren xenomorphen Kristallen. Der Orthopyroxen zeigt unregelmäßige Kristallgrenzen mit Einbuchtungen im Kontaktbereich mit dem Glas, was auf eine Instabilität der Phase hindeutet. Aufgrund des Orthopyroxen-*"breakdown"* bildeten sich tertiäre Phasen Olivin (Ol2), Klinopyroxen (Cpx2) und Spinell (Spl2). Sie befinden sich stets in direktem Kontakt zum Glas.

Eine phosphorreiche Schmelze zirkuliert zwischen der Orthopyroxenitader und dem Olivin des Peridotits (b-f). Innerhalb dieses Glases bilden sich gelegentlich Apatitkristalle (b,c). (c) Bildung von Apatit und tertiärem Klinopyroxen im phosphorreichen Glas. Detailaufnahme. (d-f) Das Zirkulieren der phosphorreichen Schmelze zwischen der Orthopyroxenitader und dem Olivin des Peridotits. Detailaufnahmen. Die linke Flanke (e) sowie die rechte Flanke (f) der Orthopyroxenitader zeigen eine Instabilität des Orthopyroxens in Anwesenheit vom Glas: die Schmelze pflanzt sich in den Orthopyroxen fort.

Abb. 7.64.a-f: Probe DUB_114: "composite" Xenolith. Peridotitbereich. BSE-Aufnahmen. (a-b) Das Glas innerhalb der Orthopyroxenitader. (a) Übersichtsaufnahme; (b) Detailaufnahme: der Zerfall des Orthopyroxens in Anwesenheit von Glas; Bildung der tertiären Phasen Olivin, Klinopyroxen und Spinel. Der tertiäre Klinopyroxen weist eine chemische Heterogenität auf. (c-d) Das Glas innerhalb der Orthopyroxenitader. (a) Übersichtsaufnahme; (b) Detailaufnahme. Man beachte, dass der Orthopyroxen in Abwesenheit von Glas intakt zu sein scheint. Der große Olivin des Hostperidotits weist einen dunklen Kristallrand im Kontaktbereich mit dem Glas auf, was auf eine Zunahme des Forsteritgehalts in diesem Bereich hindeutet. (e) Die Glasader innerhalb des großen Orthopyroxenkristalls ist ca. 400 µm breit. Sie weist die tertiär gebildeten Olivine (Ol2) und Spinelle (Spl2) auf. Der tertiäre Klinopyroxen kommt hier nicht vor. (f) Die Glasader innerhalb des großen Olivinkristalls ist ca. 78 µm breit. Sie enthält rundliche Olivinrelikte, die inselförmig oder halbinselförmig im Glas liegen.

Proce Due 3-3 Due 1+10* Due 1+10* <thdue 1+10*<="" th=""> <thdue 1+<="" th=""><th>Gestein</th><th>Lherzolith</th><th></th><th></th><th></th><th>Spl-führender</th><th>. Lherzolith</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Harzburgit</th><th></th></thdue></thdue>	Gestein	Lherzolith				Spl-führender	. Lherzolith							Harzburgit	
from from <th< th=""><th>Probe</th><th>DUB_83</th><th></th><th>DUB_110^e</th><th>DUB_121</th><th>DUB_10</th><th></th><th>DUB_34</th><th>DUB_40</th><th>DUB_145^e</th><th>DUB_195</th><th>DUB_302</th><th>DUB_319</th><th>DUB_64</th><th></th></th<>	Probe	DUB_83		DUB_110 ^e	DUB_121	DUB_10		DUB_34	DUB_40	DUB_145 ^e	DUB_195	DUB_302	DUB_319	DUB_64	
1 1 6 7 3 7 3 7 3 7 3 1 1 2 9 10 3 11 41.35 11.35		Kern	Rand		Kern	Kern	Rand								
10 111 0 112 0 113	n ^a	9	9	7	3	7	8	13	8	14	2	6	10	6	
TUC 000 001 001 000 001 <td>SiO₂</td> <td>41,10</td> <td>41,25</td> <td>41,11</td> <td>40,42</td> <td>40,74</td> <td>40,99</td> <td>41,13</td> <td>41,25</td> <td>41,41</td> <td>40,30</td> <td>40'01</td> <td>40,80</td> <td>41,03</td> <td></td>	SiO ₂	41,10	41,25	41,11	40,42	40,74	40,99	41,13	41,25	41,41	40,30	40'01	40,80	41,03	
HU,0 002 003 <td>TiO₂</td> <td>0,00</td> <td>0,01</td> <td>0,01</td> <td>00'0</td> <td>0,01</td> <td>0,00</td> <td>0,01</td> <td>00'0</td> <td>0,01</td> <td>0,00</td> <td>0,01</td> <td>0,02</td> <td>0,01</td> <td></td>	TiO ₂	0,00	0,01	0,01	00'0	0,01	0,00	0,01	00'0	0,01	0,00	0,01	0,02	0,01	
Circle DDB DDB<	Al ₂ O ₃	0,02	0,03	0,00	0,01	0,02	0,03	0,01	0,03	0,00	0,02	0,01	0,03	0,01	
Feo 9.28 6.64 9.56 6.86 9.60 9.24 8.74 8.40 10.91 9.30 9.32 MOO 0.16 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.05 0.0	Cr ₂ O ₃	0,02	0,08	0,03	00'00	0,02	0,04	0,03	0,03	0,02	00'0	0'03	0,02	0,04	
Mino 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 <th< td=""><td>FeO^b</td><td>9,28</td><td>8,63</td><td>9,56</td><td>8,69</td><td>9,60</td><td>8,27</td><td>9,14</td><td>8,14</td><td>8,40</td><td>10,91</td><td>6'6</td><td>9,93</td><td>9,24</td><td></td></th<>	FeO ^b	9,28	8,63	9,56	8,69	9,60	8,27	9,14	8,14	8,40	10,91	6'6	9,93	9,24	
Wig0 453H 4937 50.00 43,4 69,40 60,00 60,01 60,06 60,04 60,06 60,04 60,06 60,04 60,06 60,04 60,06 60,04 60,06 60,04 60,06 60,11 70,01 70,16 70,11 70,01 70,16 70,11 70,01 70,16 70,11 70,01 70,16 70,11 70,01 70,16 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,11 70,01 70,	MnO	0,15	0,14	0,16	0,14	0,15	0,14	0,13	0,13	0,12	0,15	0,15	0,14	0,15	
Ca0 0.06 0.12 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.01 0.06 0.01 0.06 0.01 0.06 0.01 0.01 0.02 0.03	MgO	48,94	49,30	48,87	50,00	48,49	49,40	49,24	49,76	50,00	49,20	48,64	48,60	48,86	
N(0) 0.37 0.36 0.33 0.36 <th< td=""><td>CaO</td><td>0,06</td><td>0,12</td><td>0,07</td><td>0,05</td><td>0,06</td><td>0,13</td><td>0,06</td><td>0'00</td><td>0,04</td><td>0'00</td><td>0,08</td><td>0,09</td><td>0,11</td><td></td></th<>	CaO	0,06	0,12	0,07	0,05	0,06	0,13	0,06	0'00	0,04	0'00	0,08	0,09	0,11	
Total 99.97 99.39 100.21 99.47 99.33 100.14 100.14 100.14 100.14 99.81 100.44 99.81 90.41	NiO	0,37	0,35	0,36	0,33	0,39	0,36	0,38	0,38	0,40	0,36	0,35	0,39	0,33	
Fo ⁺ 90,4 91,1 90,1 91,1 90,0 91,4 90,6 91,4 80,5 80,7 90,4 Fo ⁺ 90,6 91,1 90,0 81,1 90,6 91,1 10,2 90,3 90,4 Gestein Mennit Fand 0 11,1 10,2 90,3 90,4 Fromosein Usen Fand 0 Nem Rand 0,1 10,1 10,2 90,4 Prose D1B,16 41,05 40,56 D1B,30 D1B,35 D1B,31 Tomposite* Xenolith 10,2 10,3 90,4 Prose D1B,13 To To Nem Rand D1B,35 D1B,31 To To <t< td=""><td>Total</td><td>6,97</td><td>99,93</td><td>100,21</td><td>99,66</td><td>99,47</td><td>99,35</td><td>100,14</td><td>99,81</td><td>100,40</td><td>101,06</td><td>100,11</td><td>100,04</td><td>99,81</td><td></td></t<>	Total	6,97	99,93	100,21	99,66	99,47	99,35	100,14	99,81	100,40	101,06	100,11	100,04	99,81	
Fa ⁴ Under Seletin Under Mem Under Seletin Under Mem Under Seletin Under Mem Under Seletin Under Seletin <thu< th=""> Under Sele</thu<>	Fo ^c	90.4	01 1	00 1	01 1		01 4	906	916	014	88 0	8 08	80.7	90.4	
Gestein Mehrit Spl-fitnender Wehrit Composite' Xenolith Spl-fitnender Wehrit Composite' Xenolith Spl-fitnender Wehrit Spl-fitnender Wehrit <th< td=""><td>Fa^d</td><td>-'00 9.6</td><td>- 6.8</td><td>- 'oc' 6'6</td><td>8.9</td><td>30,0 10.0</td><td>1. 9.8</td><td>9.4</td><td>8.4</td><td>- '- °</td><td>11.1</td><td>10.2</td><td>10.3</td><td>- '00 9'6</td><td></td></th<>	Fa ^d	-'00 9.6	- 6.8	- 'oc' 6'6	8.9	30,0 10.0	1. 9.8	9.4	8.4	- '- °	11.1	10.2	10.3	- '00 9'6	
Gestein Wentity Sp-tiftender Wehrlit "composite "Xenolith Probe DIB_16 DIB_26 DIB_306 DIB_36 DIB_36 DIB_14 Probe DIB_16 T T T T T T T n^{*} From Rand DIB_36 DIB_36 DIB_36 DIB_36 DIB_36 DIB_14 n^{*} T T <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
Probe DBB_18 DUB_26 DUB_306 DUB_306 <thdub_306< th=""> <thdub_306< th=""> <thdub_< th=""><th>Gestein</th><th>Wehrlit</th><th></th><th></th><th></th><th></th><th>Spl-führender</th><th>· Wehrlit</th><th></th><th>"composite")</th><th>Kenolith</th><th></th><th></th><th></th><th></th></thdub_<></thdub_306<></thdub_306<>	Gestein	Wehrlit					Spl-führender	· Wehrlit		"composite")	Kenolith				
κ em Rand Rand Kem Fand A SiO2 40,88 41,05 40,55 40,59 40,49 40,84 40,55 40,73 40,77 TiO2 0,00 0,01 0,02 0,01 0,02 0,01 0,01 0,02 At_O5 9,01 0,01 0,02 0,01 0,01 0,01 0,01 0,01 At_O5 9,01 0,01 0,02 0,01 0,01 0,01 0,01 0,01 Cr_O3 0,02 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,13 0,14	Probe	DUB_18		DUB_25	DUB_306	DUB_308	DUB_35	_	DUB_310	DUB_28	DUB_114				
n^{a} 7 7 11 11 19 5 3 26 4 4 Sl02 40.88 41.05 40.55 40.59 40,40 40,49 40.96 40.73 40.71 Sl02 0.00 0.01 0.00 0.01 0.02		Kern	Rand				Kern	Rand							
SiO2 40,88 41,05 40,56 40,59 40,40 40,85 40,77 40,77 40,77 TiO2 0,00 0,01 0,00 0,01 0,02 0,01 0,01 0,01 AbO3 0,02 0,01 0,02 0,01 0,02 0,01 0,01 Cro3 0,02 0,01 0,02 0,01 0,02 0,01 0,01 Cro3 0,02 0,01 0,01 0,01 0,01 0,01 0,01 Cro3 0,02 0,01 0,01 0,01 0,01 0,01 0,01 Mo 0,15 0,14 0,17 10,75 9,86 8,85 9,88 10,35 Mo 0,16 0,16 0,16 0,16 0,11 0,12 0,14 0,14 Mo 0,35 0,36 0,36 0,36 0,36 0,36 0,37 0,36 Mo 0,36 0,37 0,37 0,39 0,37	n ^a	7	7	11	11	19	5	3	26	4	4				
TrO2 0,00 0,01 0,00 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 <t< td=""><td>SiO₂</td><td>40,88</td><td>41,05</td><td>40,65</td><td>40,59</td><td>40,40</td><td>40,49</td><td>40,84</td><td>40,95</td><td>40,73</td><td>40,77</td><td></td><td></td><td></td><td></td></t<>	SiO ₂	40,88	41,05	40,65	40,59	40,40	40,49	40,84	40,95	40,73	40,77				
Al_D 0.03 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 Cr_D 0.02 0.03 0.03 0.03 0.01 0.02 0.01 0.02 Feo ^b 9.38 8.40 9.91 11,26 11,27 10,75 9.86 8.85 9.88 10.35 MnO 0,15 0,14 0,17 0,19 0,16 0,14 0,14 0,13 MnO 11,26 11,27 10,75 9.86 8.85 9.88 10,35 MnO 0,15 0,16 0,16 0,14 0,14 0,14 0,14 MnO 0,36 0,36 0,36 0,37 48,41 48,09 NiO 0,36 0,36 0,36 0,37 0,37 0,37 0,36 For 1 99,66 99,72 0,37 0,39 0,37 0,37 0,37 0,37 Fo ^o 90,3 93,7 0,37	TIO ₂	00'0	0,01	0,00	0,01	0,02	0,01	0,02	0,01	0,02	0,01				
Cr ₂ O ₃ 0,02 0,03 0,03 0,01 0,02 0,02 FeO ⁵ 9,38 8,40 9,91 11,26 11,27 10,75 9,86 8,85 9,88 10,35 MnO 0,15 0,14 0,17 0,19 0,16 0,16 0,14 0,14 MnO 47,52 47,46 48,31 49,53 47,52 47,46 48,31 49,53 48,41 48,09 MnO 0,16 0,16 0,19 0,06 0,11 0,12 0,01 0,02 MnO 0,15 0,03 0,03 0,16 0,16 0,14 0,14 0,14 MnO 0,15 0,03 0,16 0,17 0,12 0,16 0,16 NiO 0,36 0,36 0,36 0,37 0,37 0,37 0,37 0,37 Fotal Rational Rationa Rational Ration Rational Rational Ration Rational Rationa Ration	AI ₂ O ₃	0,03	0,02	0,01	0,01	0,02	0,01	0,01	0,02	0,01	0,01				
Fe0 9,38 8,40 9,91 11,26 11,27 10,75 9,86 8,85 9,88 10,35 0,36 MnO 0,15 0,14 0,17 0,18 0,16 0,14 0,14 0,13 MO 49,54 48,33 47,52 47,46 48,31 49,53 48,41 48,09 MO 0,06 0,15 0,09 0,08 0,10 0,06 0,11 0,12 0,07 0,06 NiO 0,35 0,36 0,36 0,36 0,37 0,39 0,37 0,39 0,37 Fotal 99,66 99,72 99,39 99,37 0,39 0,37 0,39 0,37 Fo ⁶ 91,3 8,7 91,3 90,9 99,7 90,9 99,8 90,37 Fo ⁶ 91,3 8,7 91,3 90,9 99,7 90,9 99,8 90,37 90,3 90,37 Fo ⁶ 91,3 91,3 91,3 91,3 <td>Cr₂O₃</td> <td>0,02</td> <td>0,06</td> <td>0'03</td> <td>0,03</td> <td>0,03</td> <td>0,01</td> <td>0,03</td> <td>0,04</td> <td>0,01</td> <td>0,02</td> <td></td> <td></td> <td></td> <td></td>	Cr ₂ O ₃	0,02	0,06	0'03	0,03	0,03	0,01	0,03	0,04	0,01	0,02				
MnO 0,15 0,14 0,17 0,18 0,18 0,14 0,14 0,14 0,14 MgO 48,79 49,54 48,33 47,52 47,46 48,31 49,53 48,41 48,09 MgO 0,06 0,16 0,16 0,11 0,17 0,13 0,36 0,36 0,36 0,36 0,37 0,39 0,37 0,39 0,37 0,39 0,37 0,36 0,37 0,36 0,37 0,36 0,37 0,36 0,37 0,39 0,37 0,39 0,37 0,39 0,37 0,36 0,37 0,37 0,39 0,37 0,36 0,37 0,39 0,37 0,39 0,37 0,39 0,37 0,39 0,37 0,37 0,39 0,37 0,37 0,36 0,37 0,37 0,36 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 <th< td=""><td>FeO ^b</td><td>9,38</td><td>8,40</td><td>9,91</td><td>11,26</td><td>11,27</td><td>10,75</td><td>9,86</td><td>8,85</td><td>9,88</td><td>10,35</td><td></td><td></td><td></td><td></td></th<>	FeO ^b	9,38	8,40	9,91	11,26	11,27	10,75	9,86	8,85	9,88	10,35				
MgO 48,79 49,54 48,33 47,52 47,46 48,31 49,53 48,41 48,09 CaO 0,06 0,15 0,08 0,10 0,06 0,11 0,12 0,07 0,06 NiO 0,35 0,36 0,36 0,36 0,35 0,37 0,39 0,37 Total 99,66 99,72 99,66 99,82 99,89 99,34 99,72 100,07 99,66 99,82 Fo ⁶ 90,3 91,3 88,7 88,7 90,9 89,7 90,9 89,7 10,3 0,31 Fo ⁶ 90,3 91,3 88,7 88,7 90,9 89,7 10,3 10,3 A. Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden * <t< td=""><td>MnO</td><td>0,15</td><td>0,14</td><td>0,17</td><td>0,19</td><td>0,18</td><td>0,16</td><td>0,16</td><td>0,14</td><td>0,14</td><td>0,14</td><td></td><td></td><td></td><td></td></t<>	MnO	0,15	0,14	0,17	0,19	0,18	0,16	0,16	0,14	0,14	0,14				
CaO 0,06 0,15 0,09 0,08 0,10 0,012 0,07 0,06 NiO 0,35 0,36 0,36 0,36 0,37 0,37 0,37 Total 99,66 99,72 99,60 99,92 99,34 99,72 100,07 99,66 99,82 Fo ⁶ 91,3 89,7 88,3 88,7 89,7 90,9 89,7 89,7 Fa ^d 91,3 89,7 88,3 88,7 89,7 90,9 89,7 89,2 fa ^d 91,3 81,7 11,3 11,3 11,3 10,3 10,8 7 fa ^d 11,3 11,3 11,3 11,3 10,3 10,3 59,2 50,10,3 50,2 fa ^d 91,3 91,3 91,3 91,3 10,3 59,2 50,3 59,2 50,3 59,2 50,2 50,3 50,3 50,3 50,3 50,3 50,3 50,2 50,3 50,3 50,3<	MgO	48,79	49,54	48,33	47,39	47,52	47,46	48,31	49,53	48,41	48,09				
NiO 0,35 0,36 0,36 0,36 0,37 0,37 0,39 0,37 Total 99,66 99,72 99,60 99,92 99,72 100,07 99,66 99,82 Fo ^o 90,3 91,3 89,7 88,3 88,7 89,7 90,9 99,66 99,82 Fa ^d 91,3 89,7 10,3 11,7 11,3 10,3 91,3 89,7 * 7 8,7 89,7 90,9 89,7 89,2 89,7 89,2 * 10,3 11,3 11,3 10,3 9,1 10,3 10,8 * Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden * * *	CaO	0,06	0,15	0'0	0,08	0,10	0,06	0,11	0,12	0,07	0,06				
Total 99,66 99,72 99,60 99,82 99,66 99,82 99,66 99,82 99,66 99,82 99,66 99,82 99,66 99,82 99,66 99,82 99,67 90,92 99,66 99,82 99,72 100,07 90,93 89,7 89,7 89,7 89,7 89,7 89,7 89,7 89,7 89,2 10,3 11,7 11,3 10,3 91,1 10,3 10,3 10,8 7 89,2 70,01 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 70,1 70,3 70,3 70,1 70,3 <t< td=""><td>NiO</td><td>0,35</td><td>0,36</td><td>0,36</td><td>0,35</td><td>0,36</td><td>0,36</td><td>0,35</td><td>0,37</td><td>0,39</td><td>0,37</td><td></td><td></td><td></td><td></td></t<>	NiO	0,35	0,36	0,36	0,35	0,36	0,36	0,35	0,37	0,39	0,37				
Fo° 90,391,389,788,788,789,790,989,789,2 Fa° 9,78,710,310,311,311,310,310,8 $^{\circ}$ n. Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden $^{\circ}$ Fe total als FeO $^{\circ}$ Fe total als FeO $^{\circ}$ Second der Minerale ist jedoch mit der der Harzburgite konsister	Total	99'66	99,72	09'66	99,92	99 [,] 89	99,34	99,72	100,07	99'66	99,82				
Fa ^d 9,7 8,7 10,3 11,3 10,3 9,1 10,3 10,8 ^a n: Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden ^b Fe total als Fe.O ^c Fo Forstertigehalt = (MgO/MgO+FeO)x100 in Mol ^e Proben DUB_110, DUB_145 werden aufgrund des modalen Mineralbestandes als Lherzolithe bezeichnet. Chemische Zusammensetzung der gesteinsbildenden Minerale ist jedoch mit der der Harzburgite konsister	Fo°	90,3	91,3	89,7	. 88,2	88,3	88,7	89,7	6'06	89,7	89,2				
^a <i>n</i> : Anzahl an Messungen, die zur Ermittung der Mittelwerte herangezogen wurden ^b Fe total als FeO ^c Fo Forsteritgehalt = (MgO/MgO+FeO)x100 in Mol ^e Fo Forsteritgehalt = (MgO/MgO+FeO)x100 in Mol ^e Froben DUB_110, DUB_145 werden aufgrund des modalen Mineralbestandes als Lherzolithe bezeichnet. Chemische Zusammensetzung der gesteinsbildenden Minerale ist jedoch mit der der Harzburgite konsister	Fa ^d	9,7	8,7	10,3	11,8	11,7	11,3	10,3	9,1	10,3	10,8				
^e Proben DUB_110, DUB_145 werden aufgrund des modalen Mineralbestandes als Lherzolithe bezeichnet. Chemische Zusammensetzung der gesteinsbildenden Minerale ist jedoch mit der der Harzburgite konsister	^a <i>n:</i> Anzahl	an Messungen,	die zur Erm	ittlung der Mitt	telwerte heranç	jezogen wurde	ue		^b Fe total als	FeO		° Fo Fors	teritgehalt = (N	/gO/MgO+FeO)x100 in Mol
	^e Proben DL	JB 110, DUB 1	45 werden a	ufgrund des n	nodalen Minera	albestandes al	s Lherzolithe	bezeichnet. C	hemische Zus	sammensetzu	ng der gestein	sbildenden M	linerale ist jedo	och mit der der	Harzburgite konsister

^d *Fa* ... Fayalitgehalt ÷

Tab. 7.2	2: chemis	sche Zus	ammens	etzung d	es primä	ren Orth	opyroxer	ns in Gev	v%					
Gestein	Lherzolith			Spl-führende	r Lherzolith						Harzburgit	"composite" X	enolith	
Probe	DUB_83	DUB_110	DUB_121	DUB_10	DUB_34	DUB_40	DUB_145	DUB_195	DUB_302	DUB_319	DUB_64	DUB_26	_	DUB_28
												Kem	Rand	Kern
n ^a	3	3 7	2 6	11	14	7	16	^N	2 3	8	9	1	1	9
SiO ₂	56,97	56,23	3 56,06	55,64	56,02	56,31	57,62	55,51	56,08	54,60	56,14	55,01	54,67	54,96
TiO ₂	0,05	5 0,04	4 0,02	0,02	0,06	0,02	0,03	0,15	5 0,17	0,20	0'0	0,09	0,23	0,18
AI_2O_3	1,70	3,16	3 2,73	3,41	3,37	3,31	1,22	2,94	1 2,74	5,21	2,77	3,81	4,18	4,41
Cr ₂ O ₃	0,62	2 0,55	5 0,58	0,59	0,55	0,61	0,36	0,52	2 0,53	0,35	0,57	0,63	0,53	0,42
FeO ^b	5,84	1 6,00	5,82	6,14	5,85	5,17	5,73	7,20	6,47	6,46	5,96	6,91	7,71	6,19
MnO	0,16	0,17	7 0,15	0,15	0,14	0,13	0,15	0,17	7 0,14	0,14	0,16	0,13	0,17	0,15
MgO	33,64	1 33,15	5 34,14	32,80	33,80	33,62	34,99	33,08	33,12	32,35	33,44	32,92	32,11	32,79
CaO	0,71	1 0,75	0,69	0,70	0,40	0,66	0,26	0,80	0,78	0,86	0,76	0,67	0,85	0,72
NiO	0,10	0'00	9 0,08	0,11	0,09	0'0	0,08	0'06	9 0,10	0,11	0'0	0,07	0,11	0,09
Na_2O	0,16	3 0,20	0,17	0,13	0,04	0,26	0,01	0,14	1 0,14	0,13	0,12	0,16	0,12	0,09
Total	66'66	100,35	100,44	99,71	100,32	100,18	100,46	100,58	100,26	100,40	100,09	100,40	100,67	100,01
s#6w	91,1	90,6	3 91,3	90,5	91,1	92,1	91,6	89,1	90,1	89,9	90'9	89,5	88,1	90,4
En ^d	89,5	9,68	5 90,1	89,3	90,4	6'06	91,1	87,6	88,8	88,4	89,6	88,3	86,7	89,2
Fs	8,8	9,1	1 8,6	9,4	8,8	7,8	8,4	10,7	7,6	9,9	9'0	10,4	11,7	9,4
Wo	1,4	1,5	5 1,3	1,4	0,8	1,3	0,5	1,5	1,5	1,7	1,5	1,3	1,6	1,4
^a <i>n:</i> Anzahl	an Messunge	n, die zur Erm	nittlung der Mit	telwerte heran	gezogen wurd	ten		ر Mg# = (Mg	(Oaf+FeO)	x100 in Mol				
^b Fe total alt	; FeO							^d En:Ensta	tit; Fs: Ferrosi	lit; Wo : Wollas	stonit			

<u> </u>	
0	
~	
No.	
ŝ	
0	
.⊆	
S	
Θ	
ô	
1	
0	
0	
구	
5	
0	
e.	
:0	
З	
÷Ξ	
Q	
S	
Ð	
0	
g	
N	
et	
õ	
C,	
Jen	
men	
mmen	
ammen	
Isammen	
Zusammen	
e Zusammen	
he Zusammen	
sche Zusammen	
iische Zusammen	
mische Zusammen	
iemische Zusammen	
chemische Zusammen	
: chemische Zusammen	
.2: chemische Zusammen	

									0/,							
Gestein	Lherzolith			Spl-führender	r Lherzolith				Harzburgit	Wehrlit	Spl-führender	- Wehrlit	"composite" >	(enolith		
Probe	DUB_83	DUB_110	DUB_121	DUB_10	DUB_34	DUB_40	DUB_145	DUB_302	DUB_64	DUB_18	DUB_35	DUB_310	DUB_26	DUB_28	DUB_114	
															Kern	Rand
n ^a	8	9	13	2	9	9	11	-	9	9	2	10	1	8	2	-
SiO ₂	53,82	53,46	53,39	53,08	52,66	53,47	54,08	53,82	53,18	53,70	53,60	52,74	52,84	51,71	51,40	51,40
TIO ₂	0,19	0,15	0,08	0,12	0,21	0,07	0,11	0,29	0,33	0,09	0,32	0,33	0,26	0,73	1,28	1,11
AI_2O_3	4,15	5,94	5,17	6,31	5,14	5,70	1,64	4,18	5,24	4,70	4,33	5,01	5,30	6,34	5,26	6,02
Cr ₂ O ₃	2,71	1,65	1,90	1,58	1,29	1,69	0,76	2,39	1,68	1,83	1,80	1,60	1,42	0,88	1,32	1,17
FeO ^b	2,82	2,91	2,77	2,90	2,10	2,28	1,90	2,75	3,13	2,87	3,10	2,89	2,95	2,81	3,04	3,22
MnO	0,10	0,10	0'0	0,07	0,07	0,08	0,06	0,09	0,10	0,09	0,11	0'0	0,11	0,08	0,09	0,10
MgO	15,04	14,93	15,57	14,54	15,19	15,10	17,70	15,39	15,43	15,23	15,62	15,99	15,81	15,50	15,49	15,08
CaO	18,12	18,19	18,98	18,18	22,26	19,19	23,65	18,77	19,19	18,65	19,37	19,51	19,17	20,65	20,46	19,85
NiO	0,04	0,05	0,04	0,03	0,05	0,04	0,05	0,04	0,04	0,04	0,04	0,04	0,06	0,05	0,05	0,06
Na ₂ O	2,60	2,61	2,32	2,61	1,37	2,38	0,40	2,25	2,14	2,29	2,05	1,75	2,07	1,49	1,50	1,66
Total	99,58	66'66	100,30	99,44	100,34	66'66	100,34	99,98	100,47	99,51	100,34	99,95	66'66	100,23	06'66	99,67
s#۵w	90'2	90,1	6'06	89,9	92,8	92,2	94,3	6'06	89,8	90,4	90'0	90'8	90,5	90,8	90,1	89,3
En ^d	50,7	50,4	50,6	49,7	46,9	50,1	49,5	50,6	49,8	50,4	49,9	50'2	50,6	48,6	48,6	48,4
Fs	5,3	5,5	5,1	5,6	3,6	4,2	3,0	5,1	5,7	5,3	5,6	5,1	5,3	4,9	5,3	5,8
Wo	43,9	44,1	44,3	44,7	49,4	45,7	47,5	44,4	44,5	44,3	44,5	44,3	44,1	46,5	46,1	45,8
a n: Anzahl	an Messunge	η, die zur Erm	ittlung der Mitt	telwerte heran	gezogen wurd	en		-	° Mg# = (MgC	(O94+FeO)	<100 in Mol					
^b Fe total als	s FeO							-	^d En: Enstatit	t; Fs : Ferrosil	it; Wo : Wollas	stonit				

ensetzung des primären Klinopvroxens in Gew.-% Tah 7.3° chemische Zusa

175

MINERALCHEMIE

Tab. 7.	4 chemis(che Zusa	mmense	stzung d€	ss primär	en Spine	lls in Ge	w%								
Gestein	Lherzolith		Spl-führender	r Lherzolith										Spl-führ. Ol-W	(ebsterit	
Probe	DUB_121		DUB_10	DUB_34	1	DUB_40	1	DUB_145	D	UB_275 [JUB_279	1	OUB_319	DUB_12		
	Kern	Rand	Kern	Kern	Rand	Kern	Rand	Kern	Rand		Kern	Rand		Kern	Rand	
n ^a	1	1	1	3	3	3	3	2	2	3	4	4	7	1	1	
SiO ₂	0,05	0,04	0,04	0,03	0,03	0,06	0,08	0,03	0,03	0,10	0,07	0,07	0,10	0,04	0,07	
TIO ₂	0,06	0,10	0,09	0,05	0,05	0,03	0,03	0,12	0,13	0,54	0,20	0,20	0,35	0,24	0,23	
Al ₂ O ₃	32,80	33,32	41,41	48,45	48,43	40,06	40,36	26,99	25,30	50,71	38,41	39,87	56,75	56,08	55,75	
Cr ₂ O ₃	34,81	35,02	25,40	19,50	19,13	28,73	28,58	37,10	39,31	13,00	22,38	21,03	8,54	8,37	8,57	
Fe ₂ O ₃	3,59	3,52	4,04	1,64	2,38	2,55	2,74	5,97	5,99	5,27	8,39	8,31	3,68	4,81	3,70	
FeO	12,01	10,67	10,43	10,43	9,66	9,44	8,41	15,30	14,07	11,70	15,15	14,81	8,82	9,85	8,77	
MnO	0,08	0,08	0,10	0,10	0,10	0,11	0,08	0,20	0,16	0,12	0,15	0,12	0,10	0,11	0,14	
MgO	16,36	17,38	18,16	18,67	19,18	18,66	19,43	13,29	13,93	18,62	14,69	15,11	20,85	20,03	19,94	
CaO	00'0	0,03	0,01	0,01	0,02	00'0	0,03	0,01	0,07	0,06	0,00	0,04	0,01	0,00	0,03	
NiO	0,19	0,18	0,27	0,31	0,29	0,23	0,23	0,16	0,17	0,34	0,29	0,30	0,42	0,37	0,34	
ZnO	n.a. ^b	n.a.	0,12	0,18	0,20	0,15	0,11	0,22	0,22	0,16	0,19	0,19	0,07	0,16	0,14	
Total	99,94	100,33	101,09	99,37	99,48	100,02	100,09	99,37	99,38	100,63	99,91	100,04	99 [,] 69	100,07	<u>99</u> ,60	
s#6w	65,1	68,6	69,1	73,4	74,0	73,5	75,6	52,7	55,3	66,2	52,7	53,8	74,8	70,9	74,9	
Cr# ^d	41,6	41,4	29,2	21,3	21,0	32,5	32,2	48,0	51,3	14,8	28,1	26,1	9,2	9,10	9,35	
Gestein	Spl-führender	· Wehrlit	"composite" X	(enolith												
Probe	DUB_310		DUB_26		DUB_28											
	Kem	Rand	Kern	Rand	Kern											
n ^a	1	1	3	3	3											
SiO ₂	0,06	0,09	0,08	0'0	0,08											
TiO_2	0,37	0,41	0,89	0,80	0,75											
Al ₂ O ₃	34,73	35,01	39,37	42,24	50,42											
Cr ₂ O ₃	32,50	31,86	22,25	19,36	11,22											
Fe ₂ O ₃	3,73	3,98	7,51	7,22	7,21											
FeO	11,20	11,09	13,95	13,28	12,15											
MnO	0,14	0,12	0,13	0,13	0,10											
MgO	17,19	17,36	16,23	16,84	18,41											
CaO	00'0	0,03	0,01	0,06	n.a.											
NiO	0,27	0,23	0,30	0,28	0,42											
ZnO	0,10	0,10	0,16	0,14	0,15											
Total	100,27	100,27	100,88	100,45	100,91											
a#gm د	67,2	67,3	57,4	59,4	62,9	в	<i>n:</i> Anzahl ar	n Messungen,	die zur Ermittl	lung der Mitte	lwerte herang	ezogen wurde	ue	0	، Mg# = (MgO/	MgO+FeO)x100 in Mol
Cr# ^d	38,6	37,9	27,5	23,5	13,0	þ	n.a.: nicht ar	ıalysiert						0	¹ Cr# = (Cr ₂ O ₃	Cr ₂ O ₃ +Al ₂ O ₃)x100 in Mol

n: Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden
 ^b Fe total als FeO
 Fo ... Forsteritgehalt = (MgOMgO+FeO)x100 in Mol
 fa ... Fayalitgehalt

 $^{\rm a}\,$ n: Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden ^b Fe total als FeO ^c Mg# = (MgO/MgO+FeO)x100 in Mol ^d En : Enstatit, Fs : Ferrosilit, W : Wollastonit

Tab. 7.6	3: chemis	che Zusa	ammense	∋tzung d€	es sekun	dären Or	thopyrox	ens in Ge	эw%
Gestein	Spl-führender	r Lherzolith		Spl-führ. Ol-Weh	"composite" >	(enolith			
Probe	DUB_275	DUB_279	DUB_319	DUB_12	DUB_26	DUB_28	DUB_114		
							Kern	Rand	
n ^a	60	10	16	9	6	10	17	52	
SiO ₂	52,65	54,52	54,60	54,43	53,16	53,53	55,26	53,91	
TiO ₂	0,43	0,04	0,25	0,22	0,24	0,34	0,36	0,34	
AI ₂ O ₃	6,55	3,77	5,16	4,62	5,28	5,37	3,54	5,42	
Cr_2O_3	0,34	0,54	0,27	0,27	0,37	0,25	0,52	0,24	
FeO ^b	8,28	9,44	6,57	7,63	9,51	8,78	6,55	7,32	
MnO	0,16	0,17	0,14	0,18	0,17	0,16	0,14	0,15	
MgO	30,29	30,14	32,25	31,64	30,23	30,48	32,61	31,44	
CaO	1,21	0,82	0,94	0,77	0,91	0,85	0,75	0,80	
NiO	0'0	0,10	0,11	0,09	0,10	0,10	0,10	0,10	
Na ₂ O	0,21	0,31	0,14	0,11	0,11	0,13	0,14	0,16	
Total	100,21	99,84	100,44	99,94	100,08	96'66	99,95	99,89	
s #6w	86,7	85,1	89,7	88,1	84,9	86,1	89,8	88,4	
En ^d	84,6	83,7	88,1	86,8	83,5	84,6	88,6	87,0	
Fs	13,0	14,7	10,1	11,7	14,7	13,7	10,0	11,4	
Wo	2,4	1,6	1,8	1,5	1,8	1,7	1,5	1,6	

Tab. 7.7	7: chemis	sche Zusé	ammens	etzung d	es sekui	ndären k	(linopyrox	(ens in C	3ew%						
Gestein	Spl-führende	r Lherzolith					Wehrlit				Spl-f. Ol-	"composite" X	enolith		
	-	-	-	•		-		-	-	-	Websterit		-		
Probe	DUB_195	DUB_275		DUB_279	DUB_302	DUB_319	DUB_25		DUB_306	DUB_308	DUB_12	DUB_26		DUB_28	DUB_114
		Kern	Rand				Kern	Rand				Kern	Rand		
n ^a	12	2	4	2	5	11	2	3	6	6	2	3	2	6	23
SiO ₂	52,44	51,65	50,91	52,02	52,62	51,09	52,83	52,33	53,33	53,37	50,77	51,38	51,07	49,65	50,53
TiO ₂	0,57	0,66	1,07	0,21	0,71	0,97	0,49	0,56	0,34	0,34	0,94	0,61	0,67	1,56	1,20
AI_2O_3	5,17	6,89	7,73	6,79	5,43	7,43	4,84	5,56	4,32	4,36	6,51	6,73	6,14	8,43	7,04
Cr_2O_3	1,37	1,20	0,94	1,39	1,83	0,63	1,74	1,65	1,66	1,64	0,54	1,21	1,33	0,33	0,63
FeO ^b	3,78	3,93	4,34	5,12	3,40	3,63	3,29	3,56	3,60	3,64	3,49	3,90	4,92	5,34	4,11
MnO	0,11	0,12	0,12	0,12	0,10	0,10	0,11	0,12	0,12	0,11	0,12	0,10	0,11	0,11	0,11
MgO	15,55	14,96	14,58	13,86	15,13	15,37	15,36	15,16	15,34	15,36	15,16	15,10	15,04	13,74	14,81
CaO	18,96	18,36	18,20	17,11	18,25	19,04	18,71	18,03	18,73	18,72	20,89	18,70	18,83	18,48	19,72
NiO	0,03	0,04	0,03	0,04	0,04	0,05	0,04	0,04	0,04	0,05	0,05	0,06	0,05	0,04	0,05
Na ₂ O	1,95	2,15	2,10	2,80	2,35	1,73	2,16	2,32	2,19	2,31	1,23	1,97	1,80	2,05	1,57
Total	99,94	96'66	100,02	99,48	99,88	100,04	99,56	99,33	69'66	99,91	69'66	99,75	99,95	99,73	99,76
۳g# °	88,0	87,2	85,7	82,8	88,8	88,3	89,3	88,4	88,4	88,3	88,6	87,4	84,5	82,1	86,6
En ^d	49,7	49,3	48,5	47,8	50,2	49,4	50,1	50,3	49,8	49,8	47,2	49,1	48,0	45,8	47,3
Fs	6,8	7,3	8,1	6'6	6,3	6,6	6,0	6,6	6,6	6,6	6,1	7,1	8,8	10,0	7,4
Wo	43,5	43,5	43,5	42,3	43,5	44,0	43,9	43,0	43,7	43,6	46,7	43,7	43,2	44,2	45,3
^a n: Anzahl	an Messunger	n, die zur Ermit	ttlung der Mitt-	elwerte heranç	gezogen wurd	den			с Мg# = (Mg	O/MgO+FeO)	x100 in Mol				
^b Fe total alt	s FeO								^d En:Enstat	it; Fs : Ferrosil	lit; Wo : Wolla:	stonit			

•	0	
9	2	
	2	
	ş	
	Ψ	
(ני	
	_	
•		
	S	
	Q	
	Ä.	
	2	
	≥	
	0	
	2	
	\leq	
2		-
	<u> </u>	Í
	Ψ.	
:	ສ	
	Õ	
	\square	
	Ξ.	
	풌	
	š	
	~	
	~	
	cD.	
	g	
	ge	
	ng de	
-	ung de	
	zung de	
	etzung de	
	setzung de	
	nsetzung de	
-	ensetzung de	
-	mensetzung de	
	nmensetzung de	
	ammensetzung de	
	sammensetzung de	
	usammensetzung de	
	Zusammensetzung de	
	e Zusammensetzung de	
	ne ∠usammensetzung de	
-	che Zusammensetzung de	
-	ische Zusammensetzung de	
-	nische Zusammensetzung de	
-	emische Zusammensetzung de	
-	nemische Zusammensetzung de	
-	chemische Zusammensetzung de	
- -	: chemische Zusammensetzung de	
-	./: chemische Zusammensetzung de	
	/./: chemische Zusammensetzung de	

Tab. 7.8	8 chemisc	che Zusa	mmense	tzung d€	es sekun	dären Sj	oinells in	Gew%
Gestein	Spl-führender	- Lherzolith			Wehrlit		"composite" X	(enolith
Probe	DUB_195		DUB_302		DUB_25		DUB_114	
	Kern	Rand	Kern	Rand	Kern	Rand	Kern	Rand
n ^a	1		L I	•	1	1	11	3
SiO_2	0,05	0,08	0,01	0,05	20'0	0,10	0,07	0,07
TIO_2	1,15	1,14	1,00	0,99	06'0	1,58	1,19	0,99
AI_2O_3	27,03	28,36	21,65	26,15	30,37	34,39	35,32	38,33
Cr_2O_3	33,99	32,53	42,30	37,52	33,37	28,00	27,76	25,31
Fe_2O_3	7,54	7,49	5,65	6,17	9,23	7,14	5,40	5,03
FeO	15,41	15,35	14,65	13,77	6,74	8,69	14,08	12,51
MnO	0,06	0,13	0,15	0,18	0,16	0,11	0,13	0,11
MgO	14,05	14,21	13,77	14,93	18,10	19,41	15,80	16,93
CaO	00'00	0,08	0,00	0,05	0,22	0,34	0,01	0,05
NiO	0,18	0,18	0,18	0,21	0,25	0,33	0,27	0,29
ZnO	n.a. ^b	n.a.	0,11	0,09	0,11	0,06	0,13	0,15
Total	99,47	99,54	99,47	100,09	98,82	100,13	100,16	99,77
s#6w	52,2	52,6	54,7	57,2	66,89	68,6	59,1	63,2
Cr# d	45,8	43,5	56,7	49,0	42,4	35,3	34,6	30,8
^a <i>n:</i> Anzahl	an Messungen	ı, die zur Ermi	ttlung der Mitte	elwerte heranı	gezogen wurd	en		

^b n.a.: nicht analysiert ^c Mg# = (MgO/MgO+FeO)x100 in Mol ^d Cr# = $(C_{2}O_{3}/C_{2}O_{3}+A_{2}O_{3})x100$ in Mol

MINERALCHEMIE

Gestein		Lherzo	olith											Spl-füh	render	Lherzo	olith				
Probe		DUB_8	83			DUB_1	110			DUB_	121			DUB_4	0			DUB_1	195		
Name ^a		Pargas	sit			Pargas	sit			Pargas	sit			Pargasi	it			Pargas	sit		
		Ke	ern	Ra	nd	Ke	rn	Ra	ind	Ke	ern	Ra	and	Ker	'n	Ra	nd	Ke	ern	Ran	nd
n ^b			4		4		3		3		3		2		4		4		3		1
SiO ₂			45,37		45,54		44,22		44,42		43,63		43,71	4	44,09		44,07		42,83	4	42,60
TiO ₂			1,17		1,18		0,91		0,93		0,44		0,45		0,35		0,39		2,98		2,93
Al ₂ O ₃			11,19		11,20		13,84		13,78		13,74		13,78		14,36		14,35		13,16		13,16
Cr_2O_3			2,88		2,92		2,04		2,04		2,43		2,45		2,29		2,29		1,60		1,76
FeO°			3,60		3,58		3,82		3,77		3,44		3,52		3,16		3,15		4,76		4,44
MnO MrO			0,06		0,05		0,07		0,06		0,04		0,05		0,06		0,05		0,07		0,03
MgO			18,13		18,10		17,68		17,79		18,33		18,18		17,99		18,04		17,35		17,41
			9,47		9,42		9,78		9,76		9,83		9,92		9,93		9,94		10,26		10,40
NIU Na-O			0,09		0,00		n.a. 3.56		n.a. 3.60		0,14		0,00		0,10 3.97		0,10		0,00		0,1Z 3.05
K.O			1 30		1 27		1 26		1 27		1 05		1.03		0.62		0.62		1 53		1 56
11/20			1,50		1,21		1,20		1,21		1,00		1,00		0,02		0,02		1,00		1,00
Total			97,13		97,17		97,26		97,50		97,53		97,72	9	96,97		97,01		97,73	ę	97,45
Mg# ^d			89,96		90,00		89,18		89,38		90,47		90,21	9	91,04		91,07		86,67	8	87,48
Srtukturfor	mel (basiert	auf 23	0)											1						-	
	Si		6,469		6,485		6,285		6,295		6,180		6,180		6,262		6,257		6,110	6	6,095
_	Al'		1,531		1,515		1,715		1,705		1,820		1,820		1,738		1,743		1,890	,	1,905
sum T		8,000		8,000		8,000		8,000		8,000		8,000		8,000		8,000		8,000		8,000	
	۸V		0.240		0.004		0 000		0 507		0 474		0 470		0.000		0.050		0 000	,	0.044
	AI		0,349		0,364		0,603		0,597		0,474		0,476		0,666		0,658		0,322	(0,314
	11 Ee ³⁺		0,125		0,120		0,097		0,099		0,047		0,040		0,037		0,042		0,320	(0,315
	re Cr		0,214		0,212		0,220		0,222		0,400		0,413		0,107		0,100		0,202		0,204
	Ma		3 854		3 842		3 7/6		3 750		3 807		3 700		3 800		3,818		3 600	(0,199 3 713
	Fe ²⁺		0 134		0 126		0.099		0.094		0,007		0,000		0,000 0 044		0.038		0,000	(0,7 10 N 195
	Mn		0,104		0,120		0,000		0,004		0,000		0,000		0,044		0,000		0,200	(0,100
sum C		5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000	5.000	0,000
		-,		-,		-,		-,		-,		-,		-,		-,		-,		-,	
	Mq		0,000		0.000		0.000		0.000		0.063		0,042		0.000		0.000		0.000	(0.000
	Fe ²⁺		0,082		0,088		0,129		0,130		0,007		0,003		, 0,144		0,150		0,080	(0,072
	Mn		0,007		0,006		0,008		0,007		0,005		0,006		0,007		0,006		0,008	(0,004
	Ca		1,447		1,437		1,489		1,482		1,492		1,503		1,511		1,512		1,568		1,594
	Na		0,464		0,469		0,373		0,380		0,433		0,446		0,337		0,332		0,344	(0,330
sum B		2,000		2,000		2,000		2,000		2,000		2,000		2,000		2,000		2,000		2,000	
	Na		0,600		0,577		0,608		0,609		0,792		0,804	(0,756		0,755		0,513	(0,516
	К		0,236		0,231		0,228		0,230		0,190		0,186		0,112		0,112		0,278	(0,285
sum A		0,837		0,808		0,836		0,839		0,982		0,990		0,868		0,867		0,792		0,801	
	Total		15,837	1	5,808	1	5,836	· · · ·	15,839	1	15,982	1	15,990	1:	5,868	1	5,867	1	5,792	15	5,801
Fe ₂ O ₃			1.99		1.98		2.11		2.08		3.76		3.88		1,75		1,74		2,63		2.45
FeO			1,81		1,80		1,92		1,89		0,06		0,03		1,59		1,58		2,39		2,23

Tab. 7.9: Amphibol. Chemische Zusammensetzung in Gew.-%, kristallchemische Strukturformeln

^a Name des Amphibols nach der Klassifikation vom Leake et al., 1997

^b n: Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden

 $^{\rm c}\,$ Fe total als FeO

^d Mg# = (MgO/MgO+FeO)x100 in Mol

^e n.a.: nicht analysiert

Gestein		Spl-führende	r Lherzolith						Harzburgit	
Probe		DUB_275	DUB_279		DUB_302		DUB_319		DUB_64	
Name ^a		Pargasit	Pargasit		Pargasit		Kaersutit	-	Pargasit	-
		Kern	Kern	Rand	Kern	Rand	Kern	Rand	Kern	Rand
n ^b		3	4	3	2	4	2	15	3	5
SiO ₂		44,62	43,09	43,09	43,93	43,65	41,60	41,03	44,14	43,87
TiO ₂		3,42	0,97	1,02	3,17	3,10	5,06	5,59	1,66	1,76
Al ₂ O ₃		16,21	14,00	14,03	12,23	12,32	14,14	14,29	13,08	13,29
Cr ₂ O ₃		0,51	1,75	1,78	1,93	2,02	0,66	0,90	2,17	2,20
FeO ^c		5,75	6,44	6,42	4,47	4,44	4,79	4,39	4,05	4,08
MnO		0,09	0,08	0,08	0,06	0,06	0,08	0,06	0,07	0,06
MgO		12,47	16,15	16,17	17,07	16,84	16,01	16,03	17,80	17,79
CaO		9,31	9,51	9,42	9,80	9,96	10,41	11,15	9,95	10,06
NiO		n.a. ^e	0,10	0,11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Na ₂ O		3,37	3,53	3,64	3,41	3,35	2,65	2,32	3,69	3,58
K ₂ O		1,70	1,41	1,38	1,46	1,48	1,94	1,84	0,85	0,88
Total		97,48	97,05	97,15	97,52	97,21	97,33	97,60	97,54	97,64
Mg# ^d		76,70	81,72	81,79	87,18	87,11	85,64	86,69	88,68	88,59
Srtukturform	el (basiert	auf 23 O)								
	Si	6,002	6,197	6,191	6,268	6,259	5,986	5,903	6,264	6,223
	Al	1,998	1,803	1,809	1,732	1,741	2,014	2,097	1,736	1,777
sum T		8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	AIVI	0 482	0.570	0 566	0 325	0 3/1	0 384	0 326	0.451	0.445
	Ai Ti	0,402	0,570	0,500	0,325	0,341	0,504	0,520	0,451	0,445
	Fe ³⁺	0,433	0,103	0,110	0,540	0,354	0,040	0,003	0,177	0,100
	Cr	0,170	0,304	0,302	0,133	0,100	0,030	0,024	0,233	0,241
	Ma	3 368	3 /63	3.463	3 631	3 600	3 / 35	3/138	3 766	3 762
	Fe ²⁺	0,000	0,400	0.276	0,001	0,000	0,460	0,400	0,700	0 117
	Mn	0,400	0,273	0,270	0,200	0,040	0,400	0,000	0,120	0,117
sum C	IVIT	0,000 5.000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
Sum O		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	Fe ²⁺	0,038	0,111	0,113	0,048	0,036	0,018	0,000	0,118	0,126
	Mn	0,011	0,010	0,010	0,007	0,007	0,010	0,007	0,008	0,007
	Ca	1,576	1,465	1,450	1,498	1,530	1,605	1,719	1,513	1,529
	Na	0,375	0,413	0,427	0,447	0,426	0,367	0,275	0,361	0,338
sum B		2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
	Na	0,434	0,571	0,587	0,497	0,505	0,372	0,373	0,655	0,647
	К	0,320	0,259	0,253	0,266	0,271	0,356	0,338	0,154	0,159
sum A		0,755	0,830	0,840	0,762	0,776	0,728	0,710	0,809	0,806
	Total	15 765	15 920	15 9/0	15 760	15 776	15 700	15 710	15 900	15 906
	TUI	10,700	10,030	10,040	10,702	10,770	13,720	15,710	10,009	10,000
Fe ₂ O ₃		1,58	3,55	3,54	1,79	1,42	0,90	0,22	2,24	2,26
FeO		4,09	3,25	3,24	2,86	3,16	3,98	4,19	2,04	2,05

Tab. 7.9: Amphibol. Chemische Zusammensetzung in Gew.-%, kristallchemische Strukturformeln (Fortsetzung)

^a Name des Amphibols nach der Klassifikation vom *Leake et al.,* 1997

^b n: Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden

 $^{\rm c}\,$ Fe total als FeO

^d Mg# = (MgO/MgO+FeO)x100 in Mol

^e n.a.: nicht analysiert

MINERALCHEMIE

Gestein		Wehrlit					Spl-füh	nrende	r Wehrlit	37	Spl-füh	nr. Ol-V	Vebsterit	"com	posite" 2	Xenolith	1		
Probe		DUB_25	5			DUB_308	DUB_3	35			DUB_1	12		DUB	_28			DUB_114	
Name ^a		Pargasit	t			Pargasit	Pargas	sit			Pargas	sit		Kaer	sutit			Pargasit	
		Ken	n	Rand		Kern	Ke	rn	Rand	1	Ke	rn	Rand	ŀ	Kern	Ra	ind	Kern	
n ^b			5		7	1		2		4		7		6	9		3		16
SiO ₂		4	12,76	42	90	44,60		43,85	43	3,94		42,11	42,7	0	41,50		41,49	42,	27
TiO ₂			3,40	2	96	1,85		2,38	2	2,23		2,94	2,8	0	4,71		4,55	3,	74
Al ₂ O ₃		1	13,23	13	05	11,66		12,47	12	2,28		14,45	14,5	7	14,24		14,43	14,	17
Cr ₂ O ₃			1,88	1	90	1,95		1,98	2	2,04		0,71	0,7	5	0,39		0,48	0,	59
FeO ^c			4,42	4	39	4,77		4,66	4	1,64		5,25	5,2	6	6,79		6,00	4,	65
MnO			0,07	0	07	0,10		0,06	0	0,08		0,08	0,0	9	0,07		0,06	0,	07
MgO		1	16,54	16	75	17,57		17,20	17	7,41		16,22	16,2	6	15,24		15,65	16,	59
CaO			9,79	9	93	9,53		10,22	10	0,05		10,62	10,6	1	10,18		10,39	10,	77
NiO			0,10	0	09	n.a. ^e		n.a.		n.a.		0,10	0,0	9	0,09		0,10	0,	11
Na ₂ O			3,13	3	19	3,57		3,17	3	3,29		2,99	2,9	2	3,22		3,18	2,	96
K ₂ O			1,69	1	59	1,37		1,56	1	1,47		1,37	1,4	1	1,22		1,20	1,	37
Total		g	97,04	96	85	96,97		97,61	97	7,47		96,97	96,9	4	97,65		97,54	97,	31
Mg# ^d		8	36,94	87	17	86,78		86,80	87	7,00		84,62	84,6	5	80,03		82,31	86,	42
Srtukturfor	rmel (basiert	auf 23 O))		_								1					1	
	Si	6	6,144	6,1	73	6,383		6,262	6,	273		6,068	6,06	1	5,976		5,965	6,0	58
	Al	1	1,856	1,8	27	1,617		1,738	1,	727		1,932	1,93	9	2,024		2,035	1,9	42
sum T		8,000		8,000		8,000	8,000		8,000		8,000		8,000	8,000)	8,000		8,000	
	AI ^{VI}	0) 384	0.3	86	0 350		0 360	0	339		0 522	0.53	3	0 392		0 4 1 0	04	51
	Ti	0).367	0.3	20	0.199		0.256	0.	239		0.319	0.30	3	0.510		0.492	0.4	.03
	Fe ³⁺	0).208	0.2	18	0.284		0.226	0.	271		0.208	0.23	3	0.193		0.178	0.1	52
	Cr	0).214	0.2	16	0.221		0.224	0.	230		0.081	0.08	5	0.044		0.055	0.0	67
	Ma	3	3.543	3.5	93	3,749		3.661	3.	705		3.484	3.49	0	3.271		3.354	3.5	44
	Fe ²⁺	0).283	0.2	68	0.198		0.274	0.	215		0.387	0.3	5	0.589		0.511	0.3	83
	Mn	0	0.000	0.0	00	0.000		0.000	0.	000		0.000	0.00	0	0.000		0.000	0.0	00
sum C		5,000	.,	5,000		5,000	5,000	.,	5,000		5,000	-,	5,000	5,000)	5,000	-,	5,000	
	Mg	0	0,000	0,0	00	0,000		0,000	0,	000		0,000	0,00	0	0,000		0,000	0,0	00
	Fe ²⁺	0),039	0,0	43	0,089		0,057	0,	068		0,038	0,04	5	0,036		0,032	0,0	22
	Mn	0),009	0,0	09	0,012		0,007	0,	010		0,010	0,01	1	0,009		0,007	0,0	08
	Ca	1	1,507	1,5	31	1,461		1,564	1,	537		1,640	1,63	7	1,571		1,600	1,6	54
	Na	0),445	0,4	18	0,438		0,372	0,	385		0,313	0,30	7	0,385		0,360	0,3	16
sum B		2,000		2,000		2,000	2,000		2,000		2,000		2,000	2,000)	2,000		2,000	
																			-
	Na	0),427	0,4	72	0,553		0,506	0,	525		0,523	0,50	8	0,514		0,526	0,5	07
A	ĸ	0 727),310	0,2	92	0,250	0 700	0,284	0,702	268	0 774	0,252	0,25	9	0,224	0 740	0,220	0,2	.50
sum A		0,737		0,704		0,803	0,790		0,793		0,774		0,707	0,730	5	0,740		0,757	
	Total	15	5,737	15.7	64	15,803	1	5,790	15.	793	1	5,774	15,76	7	15,738		15,746	15,7	57
F • O				-				0.40					_						
re ₂ O ₃			1,93	2	U1	2,63		2,10	2	2,52		1,92	2,1	5	1,78		1,65	1,	41
FeO			2,69	2	58	2,40		2,77	2	2,37		3,53	3,3	2	5,19		4,52	3,	38

Tab. 7.9: Amphibol. Chemische Zusammensetzung in Gew.-%, kristallchemische Strukturformeln (Fortsetzung)

^a Name des Amphibols nach der Klassifikation vom Leake et al., 1997

^b n: Anzahl an Messungen, die zur Ermittlung der Mittelwerte herangezogen wurden

 $^{\rm c}\,$ Fe total als FeO

^d Mg# = (MgO/MgO+FeO)x100 in Mol

^e n.a.: nicht analysiert

Tab. 7.	10: chem	ische Zu	sammens	setzung c	des Phloc	gopits in	Gew%							
Gestein	Spl-führende	er Lherzolith			Wehrlit						Spl-führende	er Wehrlit		"composite" Xenolith
Probe	DUB_195	DUB_302	DUB_319		DUB_18		DUB_306		DUB_308		DUB_35	DUB_310		DUB_114
	Kern	Kern	Kern	Rand	Kem	Rand	Kem	Rand	Kern	Rand	Kem	Kem	Rand	Kern
n ^a		2	2	6	9	6	13	25	32	44	6	7	2	2
SiO ₂	37,93	38,18	37,47	36,22	38,85	38,88	38,63	38,71	38,48	38,41	38,03	38,32	38,21	36,08
TiO ₂	4,74	4,73	6,39	9,55	0,93	0,95	2,80	2,75	2,73	2,72	4,08	3,28	3,25	5,53
AI_2O_3	16,45	15,65	16,42	16,22	16,32	16,26	15,56	16,54	15,49	15,59	15,79	16,01	16,09	16,25
Cr_2O_3	1,23	1,66	0,63	1,06	1,74	1,75	1,46	1,45	1,43	1,42	1,33	1,93	1,96	0,62
FeO ^b	4,57	4,64	4,87	4,41	4,00	3,97	4,85	4,93	4,88	4,92	4,93	3,98	4,02	4,18
MnO	0,04	. 0,01	0,03	0,02	0,02	0,03	0,02	0,03	0,03	0,03	0,03	0,02	0,03	0,02
MgO	21,27	20,74	19,64	18,02	22,73	22,71	21,51	21,52	21,53	21,43	20,50	21,37	21,38	20,52
CaO	0,13	0,02	0,03	0,11	0,03	0,03	0,03	0,06	0,05	0,11	0,09	0,06	0,10	0,08
Na_2O	0,80	0,97	0,69	0,70	1,03	1,06	0,96	0,96	0,97	0,98	0,79	0,55	0,58	1,08
K ₂ O	8,18	9,03	9,27	8,90	8,87	8,89	8,88	8,89	8,83	8,80	8,88	9,66	9,55	8,73
Total	95,55	95,63	95,45	95,21	94,51	94,54	94,70	94,84	94,42	94,42	94,43	95,19	95,17	95,36
a #gM	89,25	88,85	87,78	87,92	91,01	91,06	88,77	88,61	88,71	88,58	88,11	90,53	90,46	89,75
a n hand	an Meess	on die mir F.	Ch a she should be	to hord of other		200								

183

m ... Anzahl an Messungen, die zur Ermittung der Mittelwerte herangezogen wurden
 ^b Fe total als FeO
 ^c Mg# = (MgO/MgO+FeO)x100 in Mol

MINERALCHEMIE

Tab. 7	11: cher	nische	Zusam	mense	etzuna (der unt	ersucht	en Glä	Ser in G	ew%												
Gestein	Lherzolith						spl-führende	r Lherzolit	F													
Probe	DUB_83	_	JUB_110		JUB_121		0UB_10		0UB_34		DUB_40		JUB_145		DUB_195		0UB_279		DUB_302	_	JUB_319	
Gew%	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]
SiO ₂	53,53	63,47	49,90	66,22	50,49	66,85	51,42	65,29	56,15	66,07	48,01	67,15	47,53	68,65	51,54	58,50	42,96	65,11	52,36	57,34	52,85	60,92
TiO ₂	0,36	1,93	0,21	1,32	0,42	0,71	0,21	1,09	0,08	2,98	0,08	0,59	0,14	0,69	1,23	3,34	0,25	1,39	0,95	3,75	1,98	4,82
AI_2O_3	19,41	22,61	17,20	23,02	17,15	23,85	17,00	22,81	16,07	19,53	14,40	24,91	9,66	25,98	16,37	20,46	14,35	22,03	19,43	24,88	17,14	19,43
Cr_2O_3	n.a. ^a	n.a.	00'0	0,11	00'0	0,10	n.a.	n.a.	00'00	0,21	n.a.	n.a.	00'0	1,39	0,00	0,05	0,01	2,08	0,01	0,10	00'0	0,06
FeO ^b	2,07	3,36	1,82	3,23	1,67	3,28	1,86	3,26	1,40	4,63	1,64	3,45	0,69	4,58	2,96	4,02	2,98	6,76	2,55	3,50	2,16	4,29
MnO	0,00	0,09	n.a.	n.a.	0,04	0,08	0,01	0,07	n.a.	n.a.	n.a.	n.a.	0,02	0,06	0,06	0,07	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
MgO	0,46	3,52	1,13	4,32	1,76	4,23	1,61	3,76	0,94	3,93	1,38	5,21	0,08	20,04	2,33	4,52	1,43	16,18	0,98	3,01	1,87	3,96
CaO	0,29	8,13	1,56	9,00	3,09	9,48	2,18	8,58	0,97	7,95	1,13	11,43	1,98	12,49	3,88	7,46	1,69	9,52	1,27	6,44	3,71	8,56
NiO	n.a.	n.a.	n.a.	n.a.	0,00	0,05	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	00'0	0,01	00'0	0,15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Na ₂ O	2,74	7,98	0,63	7,79	2,12	8,16	5,69	7,33	3,51	5,09	4,91	8,01	2,23	6,45	4,16	5,88	2,18	7,17	4,33	7,17	2,48	3,96
K ₂ O	2,29	3,60	1,71	3,21	1,34	2,00	1,57	2,65	2,04	5,43	0,71	1,88	00'0	0,08	2,26	3,01	1,39	4,29	1,94	3,96	2,36	5,61
P_2O_5	0,11	0,19	0,06	0,73	00'0	0,00	0,03	0,24	00'0	1,18	0,00	2,60	00'0	0,04	00'0	0,00	0,03	0,83	0,18	0,47	0,04	1,25
Total	93,50	100,31	96,83	100,09	95,51	101,07	96,47	99,92	93,57	100,29	94,86	100,60	92,95	100,74	93,39	97,85	96,59	99,40	88,11	99,83	96,43	<u>99</u> ,39
۵#۵ م#۵	24,3	69,0	52,6	72,1	63,2	71,8	51,6	68,9	41,7	70,3	52,9	80,3	17,5	92,2	57,2	6,69	42,5	81,0	40,3	62,2	54,3	67,2
Gestein	Harzburgit		Vehrlit							0,	Spl-führende	r Wehrlit		0,	spl-führende		composite"	Xenolith				
														0	DI-Websterit							
Probe	DUB_64	-	DUB_18		DUB_25	1	OUB_306		0UB_308		OUB_35		JUB_310		0UB_12	1	0UB_28		DUB_114			
Gew%	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]	[min]	[max]		
SiO ₂	51,46	65,88	50,85	59,80	49,04	60,29	52,05	57,14	49,94	55,58	48,50	58,31	48,16	56,88	48,65	50,75	48,18	59,39	46,78	56,44		
TiO ₂	0,51	2,44	0,18	1,14	1,17	3,77	0,53	2,76	0,65	3,21	0,70	3,84	0,48	4,04	2,50	2,86	1,52	4,45	1,71	4,07		
AI_2O_3	17,28	22,89	19,80	22,63	19,78	22,58	19,26	22,54	20,73	23,32	19,48	22,39	16,51	21,86	19,77	20,28	16,67	20,80	14,87	20,44		
Cr ₂ O ₃	0,00	0,16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0,01	0,09	00'0	0,09	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		
FeO ^b	1,71	3,56	2,44	3,85	2,27	5,09	2,89	3,79	2,43	3,89	2,67	4,24	2,29	8,79	4,09	5,19	3,77	8,74	3,14	15,59		
MnO	n.a. ^a	n.a.	0,02	0,10	n.a.	n.a.	0,03	0,08	0,04	0,09	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0,05	0,14	0,06	0,12		
MgO	1,64	4,30	2,14	4,11	0,68	3,79	0,63	2,57	1,27	3,02	1,31	2,98	1,82	4,06	4,08	4,40	2,31	4,65	3,20	6,11		
CaO	3,12	8,48	1,64	7,87	1,38	8,19	0,66	4,94	0,94	7,04	0,83	11,02	2,00	7,97	8,20	9,80	6,11	9,16	5,66	11,73		
NiO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		
Na ₂ O	1,30	5,52	6,75	8,61	0,65	6,93	4,37	7,89	5,78	8,05	3,60	5,46	3,85	6,40	4,55	5,07	3,11	5,09	1,98	4,87		
K ₂ 0	1,27	2,11	2,28	5,10	1,04	4,91	4,86	7,53	5,12	7,53	4,50	7,75	3,71	7,83	2,32	2,63	0,81	1,61	0,44	2,63		
P_2O_5	0,03	0,35	0,03	0,15	0,13	0,34	0,07	0,16	0,02	0,13	0,05	0,13	0,19	1,44	0,60	1,04	0,38	1,97	0,19	3,71		
Total	94,29	99,45	95,76	100,30	96,63	99,59	96,11	100,04	97,43	100,32	96,51	99,70	94,94	100,08	97,95	98,98	98,39	99,46	96,58	99,42		
s#bM	55,5	70,3	53,8	71,8	28,9	65,8	24,0	60,8	39,8	61,8	42,6	61,2	40,4	69,7	58,8	64,5	39,9	62,4	35,4	68,9		
^a n.a.: nic	ht analysiert				Fe total al	s FeO		0	Mg# = (Mg	3+OgM/C	eO)x100 in 1	Mol										

Tab. 7	.12: che	mische	Zusam	imensei	tzung d	es tertià	aren Oli	vins in (3ew%												
Gestein	Lherzolith			Spl-führend	ler Lherzolit.	ء					<u> </u>	Harzb.	Wehrlit				Spl-führend	ler	Spl-f.	"composite"	
																	Wehrlit		OI-Web.	Xenolith	
Probe	DUB_83	DUB_110	DUB_121	DUB_10	DUB_34	DUB_40	DUB_145	DUB_195	DUB_279 [DUB_302 [OUB_319 [DUB_64	DUB_18	DUB_25	DUB_306	DUB_308	DUB_35	DUB_310	DUB_12	DUB_28 [DUB_114
nª	8	7	5	11	11	23	6	1	18	2	5	4	9	5	9	15	5	5	6	4	19
SiO ₂	41,48	41,52	40,61	41,48	40,17	41,62	41,25	40,51	40,51	39,62	41,06	41,21	41,41	40,98	40,95	41,03	41,14	41,05	41,00	40,25	40,89
TiO ₂	0,02	0,01	0,01	0,01	0,03	0,01	0,01	0,09	0,02	0,04	0,09	0,03	0,01	0,04	0,04	0,05	0,04	0,03	0,04	0,06	0,05
AI_2O_3	0,04	0,03	0,08	0,04	00'00	0,06	0,01	0,07	0,05	0,03	0,03	0,03	0,04	0,03	0,03	0,06	0,03	0,02	0,03	0,03	0,05
Cr_2O_3	0,12	0,11	0,18	0,10	0,08	0,10	0,06	0,11	0,09	0,11	0,07	0,13	0,11	0,11	0,14	0,13	0,10	0,09	0,07	0,07	0,08
FeO ^b	6,69	6,83	6,60	6,28	12,69	5,99	8,13	9,11	11,05	8,13	8,45	7,55	6,60	7,78	8,65	7,87	7,79	8,38	8,57	11,53	8,80
MnO	0,11	0,12	0,12	0,12	0,22	0,12	0,13	0,13	0,15	0,19	0,12	0,14	0,11	0,17	0,16	0,15	0,15	0,15	0,13	0,14	0,12
MgO	50,85	50,91	51,40	51,03	46,28	51,29	49,88	50,39	47,15	49,88	49,75	50,13	50,92	49,92	49,22	49,83	49,80	49,76	49,40	46,78	49,35
CaO	0,23	0,18	0,20	0,25	0,24	0,20	0,15	0,43	0,26	0,36	0,16	0,37	0,25	0,29	0,29	0,35	0,33	0,22	0,31	0,22	0,18
NiO	0,36	0,32	0,35	0,35	0,14	0,25	0,30	0,31	0,30	0,28	0,29	0,28	0,39	0,31	0,36	0,37	0,36	0,37	0,31	0,33	0,29
Total	99,91	100,06	99,57	99,65	99,97	99,71	99,94	101,21	99,65	98,67	100,05	99,91	99,85	99,64	99,84	99,84	99,76	100,12	99,89	99,42	99,83
Fod	93,1	93,0	93,3	93,5	86,7	93,9	91,6	90,8	88,4	91,6	91,3	92,2	93,2	92,0	91,0	91,9	91,9	91,4	91,1	87,9	90,9
Fa ^e	6,9	7,0	6,7	6,5	13,4	6,2	8,4	9,2	11,6	8,4	8,7	7,8	6,8	8,0	9,0	8,1	8,1	8,6	8,9	12,2	9,1
Tab. 7	13 cher	nische 2	Zusami	menset	zung de	es tertiä	ren Spi	nells in	Gew%												
Gestein	Lherzolith			Spl-führend	ler Lherzolit.	ء					<u> </u>	Harzb.	Wehrlit			Spl-führend	er	Spl-f.	"composite"		
					•	-		•	•				•			Wehrlit		OI-Web.	Xenolith		
Probe	DUB_83	DUB_110	DUB_121	DUB_10	DUB_34	DUB_40	DUB_145	DUB_195	DUB_279 [DUB_302 [C	OUB_319 [DUB_64	DUB_18	DUB_25	DUB_308	DUB_35	DUB_310	DUB_12	DUB_28	DUB_114	
nª	5	10	3	7	2	12	4	1	13	4	3	6	11	7	4	5	9	1	1	5	
SiO_2	0,08	0,16	0,09	0,17	0,17	0,11	0,11	0,24	0,11	0,19	0,17	0,63	0,14	0,10	0,16	0,11	0,16	0,12	1,13	0,69	
TiO ₂	1,38	0,43	0,23	0,40	4,73	0,18	0,52	2,36	0,43	2,44	1,53	0,74	0,61	1,30	1,86	2,46	2,12	0,82	3,81	1,52	
AI_2O_3	19,47	43,43	40,78	37,59	12,74	40,75	17,37	20,77	41,79	24,91	49,04	34,65	46,65	32,50	22,04	23,59	25,68	51,02	25,77	39,79	
Cr_2O_3	45,23	23,01	27,82	27,17	38,53	27,77	46,74	39,75	19,14	35,23	15,44	29,74	19,41	30,45	38,45	34,14	36,53	14,08	30,31	23,41	
Fe_2O_3	4,88	3,39	1,93	6,34	9,51	3,38	6,48	6,12	8,16	5,70	2,60	3,36	4,49	6,09	7,53	8,69	4,98	4,06	4,32	2,80	
FeO	11,52	7,78	8,64	8,12	19,10	5,75	11,96	12,97	12,35	13,08	8,88	11,07	6,73	10,55	12,70	12,80	11,96	7,24	17,43	11,83	
MnO	0,17	0,10	0,07	0,14	0,27	0,07	0,17	0,11	0,11	0,15	0,08	0,16	0,06	0,15	0,20	0,19	0,15	0,07	0,16	0,12	
MgO	15,75	20,18	19,32	19,51	11,73	21,24	14,69	15,55	17,07	15,78	20,68	17,60	21,50	17,76	15,53	15,76	16,51	21,59	14,69	18,25	
CaO	n.a. ^g	0,14	0,03	0,09	0,11	0,05	0,10	0,32	0,09	0,29	0,10	0,23	0,02	0,16	0,20	0,33	0,44	0,04	n.a.	0,15	
NiO	0,21	0,32	0,25	0,29	0,11	0,28	0,14	0,21	0,33	0,26	0,38	0,23	0,40	0,27	0,25	0,29	0,27	0,42	0,22	0,28	
Total	98,69	98,94	99,16	99,82	97,00	99,59	98,28	98,40	99,58	98,03	98,90	98,41	100,01	99,33	98,92	98,36	98,80	99,47	97,83	98,84	
a#bw	63,1	76,3	76,5	70,6	42,2	80,6	58,7	59,2	59,7	60,0	76,2	68,5	77,4	65,5	57,8	56,7	63,5	77,3	54,6	69,0	
Cr# ^f	61,4	26,3	31,5	32,7	67,7	31,6	64,4	56,2	23,8	49,4	17,8	36,6	22,0	38,8	54,3	49,6	49,0	15,6	44,1	28,6	
a <i>n:</i> Anze	thl an Messur	ngen, die zur	- Ermittlung	der Mittelwe	erte herange	szogen wurc	len		0	¹ Fo Fors	teritgehalt =	= (MgO/Mg(D+FeO)x10(0 in Mol				^g n.a.: nicht	t analysiert		
^b Fe total	als FeO								Ψ.	° Fa Faya	alitgehalt										
ر) = #gM °	MgO/MgO+Fé	∋O)x100 in N	Vol						Ŧ	Cr# = (Cr ₂ C	0 ₃ /Cr ₂ O ₃ +Al ₂	₂ O ₃)x100 in	Mol								

Tab. 7	.14 chei	mische	Zusam	mense	tzung d€	es tertiäi	ren Klir	opyrox	ens_"sp	-"Vgno	Sereich								
Gestein	Lherzolith			Spl-führen	der Lherzolit	Ч						Harzb.	Wehrlit				Spl-führend	er	Spl-f.
																-	Wehrlit		JI-Web.
Probe	DUB_83	DUB_110	DUB_121	DUB_10	DUB_34	DUB_40	DUB_145	DUB_195	DUB_279	DUB_302	DUB_319	DUB_64	DUB_18	DUB_25	JUB_306 [OUB_308	DUB_35	DUB_310 1	DUB_12
n ^a	5	2	-	2	-	2	-	1	1	5	1	3	8	6	13	6	4	9	2
SiO ₂	53,08	52,60	52,69	52,32	53,13	52,69	52,83	52,02	51,49	51,02	51,50	51,63	52,94	50,90	52,40	52,19	51,89	51,72	51,77
TiO ₂	0,21	0,18	0,11	0,13	0,62	0,07	0,29	0,63	0,20	1,17	0,83	0,64	0,09	1,10	0,48	0,53	0,77	0,70	0,55
AI_2O_3	2,32	4,34	2,55	3,72	2,22	3,30	3,52	2,74	3,72	3,97	5,16	4,07	2,33	4,52	3,01	2,85	3,31	3,71	3,56
Cr_2O_3	2,99	1,91	1,88	1,87	1,25	2,05	1,47	0,40	1,76	2,09	0,75	1,88	2,10	1,84	1,93	1,78	1,58	1,85	0,48
FeO ^b	2,62	3,03	2,66	3,24	2,56	2,27	2,79	3,48	4,92	3,08	3,72	2,67	2,79	3,01	3,30	3,13	3,04	2,90	3,52
MnO	0,10	0,09	0,12	0'0	0,11	0,07	0'0	0,10	0,11	0,08	0,12	0,08	0,10	0,09	0,11	0,10	0,09	0,08	0,11
MgO	16,79	16,37	17,79	16,65	17,71	16,92	17,83	18,10	15,77	16,00	17,22	16,41	16,65	16,01	16,21	16,45	16,44	16,49	16,46
CaO	20,44	19,83	21,19	20,44	22,04	21,76	20,93	21,23	21,02	21,87	20,62	22,13	21,56	20,98	21,23	21,96	22,56	21,79	22,79
NiO	0,05	0,03	00'0	0,06	0,03	0,04	0,05	0,03	0,06	0,04	0,02	0,06	0,04	0,04	0,05	0,05	0,06	0,04	0,05
Na ₂ O	1,16	1,34	06'0	0,82	0,47	0,76	0,64	0,57	0,83	0,74	0,55	0,70	0,82	0,98	1,00	0,80	0,60	0,72	0,42
Total	99,76	99,71	99,88	99,34	100,12	99,93	100,42	99,30	99,89	100,05	100,49	100,27	99,45	99,47	99,73	99,84	100,34	100,00	99,71
s#۵w	91,9	9'06	92,3	90,1	92,5	93,0	91,9	90,3	85,1	90,3	89,2	91,6	91,4	90,4	89,7	90,4	90,6	91,0	89,3
En ^d	50,9	50,6	51,4	50,1	50,5	50,0	51,7	51,2	46,8	47,8	50,4	48,5	49,3	48,8	48,6	48,3	47,8	48,8	47,2
Fs	4,6	5,4	4,5	5,6	4,3	3,9	4,7	5,7	8,4	5,3	6,3	4,6	4,8	5,3	5,7	5,3	5,1	4,9	5,8
Wo	44,5	44,0	44,0	44,2	45,2	46,2	43,6	43,1	44,8	46,9	43,3	47,0	45,9	45,9	45,7	46,4	47,1	46,3	47,0
^a <i>n:</i> Anza	hl an Messui	ngen, die zu	ır Ermittlung	g der Mittelw	rerte herange	szogen wurd	en												

^b F e total als FeO
 ^c Mg# = (MgO/MgO+FeO)x100 in Mol
 ^d En : Enstatit, Fs : Ferrosilit, Wo : Wollastonit

Tab. 7	.15 chei	mische	Zusam	menset	zung de	ss tertiä	ren Klin	opyrox	ens (hyp	oidiomo	rph im	Glas)					
Gestein	Lherzolith			Spl-führend	er Lherzoliti	۔ د					Harzb.	Wehrlit				Spl-führ.	Spl-f.
			_													Wehrlit	Ol-Web.
Probe	DUB_83	DUB_110	DUB_121	DUB_10	DUB_34	DUB_40	DUB_145	DUB_195	DUB_279 1	DUB_302	DUB_64	DUB_18	DUB_25	DUB_306	DUB_308	DUB_35	DUB_12
n ^a	10	8	4	12	5	23	9	1	18	4	5	3	7	1	9	9	1
SiO ₂	50,96	50,79	48,05	49,77	53,33	52,15	51,83	46,14	50,44	47,28	48,91	48,76	49,36	49,27	49,98	49,23	47,98
TiO ₂	1,14	0,69	0,54	0,66	0,70	0,27	0,40	3,23	0,79	2,96	1,81	0,89	1,82	1,56	1,41	1,83	2,30
Al ₂ O ₃	4,05	6,16	6,63	5,72	1,44	4,04	4,93	7,07	4,88	6,60	6,33	6,66	4,88	4,77	4,86	5,35	6,79
Cr ₂ O ₃	2,42	2,45	3,24	2,20	1,24	2,24	1,73	3,14	1,50	2,54	2,23	2,29	1,81	2,19	2,07	1,93	1,20
FeO ^b	2,18	2,55	2,20	2,74	4,31	2,17	2,96	3,12	4,32	3,02	2,55	2,55	2,74	2,51	2,90	3,07	3,33
MnO	0,05	0,07	0,06	0,06	0,14	0,07	0,08	0,05	0,08	0,06	0,06	0,03	0,07	0,05	0,07	0'0	0,07
MgO	16,21	16,72	15,14	15,72	18,62	17,10	16,83	14,71	15,90	14,28	15,49	14,43	15,45	15,01	15,38	15,47	15,16
CaO	21,89	19,45	22,03	21,73	19,65	21,11	20,73	20,92	21,13	22,12	21,94	23,24	21,56	23,33	22,00	22,59	22,40
NiO	0,05	0,06	0,04	0,05	0,02	0,04	0,07	0,05	0,05	0,05	0,05	0,05	0,05	0,04	0,06	0'02	0,08
Na ₂ O	0,78	1,08	0,76	0,60	0,56	0,78	0,74	0,85	0,68	0,82	0,65	0,63	0,66	0,65	0,84	0,59	0,44
Total	99,74	100,00	98,69	99,27	100,02	99'96	100,31	99,31	99,77	99,73	100,02	99'26	98,39	99,38	99,58	100,18	99,76
s#6M	92,9	92,1	92,5	91,1	88,5	93,3	91,0	89,4	86,7	89,4	91,5	91,0	6'06	91,4	90,4	89,9	89,0
En ^d	48,8	52,0	47,0	47,8	52,8	51,0	50,3	46,7	47,4	44,8	47,3	44,3	47,5	45,2	46,8	46,2	45,7
Fs	3,8	4,6	3,9	4,8	7,1	3,7	5,1	5,6	7,4	5,4	4,5	4,4	4,8	4,3	5,1	5,2	5,8
Wo	47,4	43,5	49,1	47,5	40,1	45,2	44,6	47,7	45,3	49,8	48,2	51,3	47,6	50,5	48,1	48,5	48,5
Tab. 7	.16: che	mische	Zusam	nmenset	zung de	es Apat	its in G	ew%									
Droha	DI IR 114				2	-											
n ^a	411-000																
SiO ₂	0,27																
Al ₂ O ₃	<0,02																
FeO ^b	0,65																
MnO	<0,02																
MgO	<0,02																
CaO	53,07																
SrO	0,27																
Na ₂ O	0,42																
K₂O	<0,02																
P_2O_5	40,26																
ш	1,09																
ū	0,66																
La203	0,06																
Ce203	60'0		^а п Апz	zahl an Messi	ungen, die z	zur Ermittlun	ng der Mittelv	werte heranı	gezogen wui	rden			ر Mg# = (N	IgO/MgO+Fe	eO)x100 in I	Mol	
Total	96,85		^b Fe total ٤	als FeO									^d En: Enst	atit; <i>F</i> s : Fen	rosilit; Wo : \	Wollastonit	

MINERALCHEMIE

8. DISKUSSION

8.1 Modale Metasomatose in den untersuchten Erdmantelxenolithen

Die Mehrheit der untersuchten Gesteinsproben ist durch eine starke modale Metasomatose gekennzeichnet. Durch diese modale Metasomatose wurden die sekundären Phasen Klinopyroxen, Orthopyroxen, Amphibol, Phlogopit und Apatit gebildet; Sulfide, Ilmenit und Rhönit kommen akzessorisch vor.

Die Präsenz von Amphibol und insbesondere von Phlogopit im Erdmantelgestein legt nahe, dass die ursprünglichen fluiden Phasen und/oder Schmelzen ausreichend Wasser und Kalium enthielten.

DISSEMINIERTE FORM

Das Auftreten von Amphibol sowie von Phlogopit in ihrer *disseminierten* Form deutet auf einen relativ *homogenen* Schmelz-/Fluid*fluss* durch den Hostperidotit hin (Abb. 1.8: links), wobei die metasomatische Schmelze anscheinend aus einem relativ niedrigen Schmelzanteil und einem hohen Anteil an volatilen Komponenten bestand. Eine niedrige Viskosität der Schmelze machte sie leicht beweglich und ermöglichte somit eine weit reichende Metasomatose im Erdmantelgestein (Kelemen et al., 1995).

METASOMATISCHE ADERN: LHERZITE

Das Auftreten der wasserhaltigen Minerale innerhalb der Adern, die den Hostperidotit quer durchschneiden, ist auf crack propagation zurückzuführen: Es handelt sich dabei um eine Bewegung der Schmelzen und/oder fluiden Phasen entlang von kurzlebigen spröden Brüchen und Spalten im Erdmantel. Die Rissausbreitung (crack propagation) wird in der Regel durch den Überdruck der fluiden Phasen ausgelöst. Solche Adern bestehen zum größten Teil aus Amphibol und Phlogopit, was ebenfalls auf einen hohen Anteil an volatilen Komponenten in der Schmelze hindeutet. Das Auftreten sekundären Pyroxens in diesen Adern stellt einen weniger volatilen Teil der Schmelze dar. Der sekundäre Klinopyroxen zeigt, Gegensatz zur chrom-diopsidischen Zusammensetzung des primären im Klinopyroxens des Hostperidotits, eine augitische Zusammensetzung und bildet Verwachsungen mit Amphibol. Der sekundäre Orthopyroxen begleitet die Adern mit einer gewissen Kontinuität entlang ihrer Flanken. Diese Phase zeigt eine geringere Mg# und einen geringeren Cr₂O₃-Gehalt, sowie einen höheren Al₂O₃-, CaO- und TiO₂-Gehalt als der primäre Orthopyroxen des Hostperidotits. Die sekundären Orthopyroxene weisen oft rundliche Olivineinschlüsse auf. Die petrographischen und geochemischen Charakteristika deuten

demzufolge auf eine Wechselwirkung zwischen einer, sich entlang der spröden Brüchen und Spalten fortpflanzenden, Schmelze und dem Hostperidotit hin. Der sekundäre Orthopyroxen stellt anscheinend eines der Reaktionsprodukte dar. Dies deutet darauf hin, dass die Schmelze ausreichend Silizium zur Verfügung stellen konnte, um, durch die Reaktion mit dem primären Olivin des Hostperidotits, einen Orthopyroxen zu bilden.

Die sekundär gebildeten Phasen haben eine xenomorphe Korngestalt. Die Kornkontakte zwischen den sekundären Phasen der Ader und den primären Phasen des Hostperidotits sind in der Regel gekrümmt, aber scharf und glatt. Dies deutet darauf hin, dass

- 1. die Schmelze für eine vollständige Kristallisation genug Zeit hatte;
- für eine Rekristallisation (→ grain boundary area reduction) der sekundären Phasen jedoch die Zeit und/oder die dafür geeigneten P-T-Bedingungen fehlten. Demzufolge wurde das texturelle Gleichgewicht nicht erreicht.

Glas kommt gelegentlich innerhalb der Adern, sowie am Kontakt zwischen Adern und Hostperidotit vor; sein Auftreten ist jedoch nicht zwangsläufig an solche Adern gebunden. Überall, wo Glas vorkommt, ist Zerfall von Amphibol, Phlogopit, sowie Orthopyroxen erkennbar. Das Glas ist stets mit den feinkörnigen tertiären Phasen vergesellschaftet.

Die petrographischen und geochemischen Charakteristika deuten darauf hin, dass das Glas keine Restschmelze der ursprünglichen metasomatischen Schmelze darstellt, sondern ein Produkt des späteren Zerfalls der wasserhaltigen Minerale, sowie des Orthopyroxens ist.

Eine andere Besonderheit solcher metasomatischer Adern liegt in einem relativ hohen TiO₂-Gehalt der wasserhaltigen Minerale, was darauf hindeutet, dass diese Schmelze ursprünglich titanreich war. Amphibol weist eine kaersutitische Zusammensetzung innerhalb solcher Adern auf, und liegt oft in Form von Relikten im Glas vor. Sein Zerfall scheint deutlich fortgeschrittener als der des Phlogopits zu sein, was auf eine höhere Instabilität des Amphibols gegenüber dem Phlogopit hindeutet. Der Phlogopit bleibt in Abwesenheit vom Amphibol meistens stabil. An den Stellen, wo Amphibol auftritt und einen Zerfall aufweist,

Abb. 8.1.a-b: Die Titananreicherung an instabilen Phlogopit- und Amphibolkristallrändern ist als heller Saum auf BSE-Bildern erkennbar. Lherzitader in einem Lherzolith. Probe DUB_319. BSE-Aufnahme.

bildet der Phlogopit hingegen einen unregelmäßigen Kristallrand mit Einbuchtungen zum Glas. Solche Merkmale deuten darauf hin, dass der "breakdown" des Amphibols den Phlogopitzerfall beschleunigt. Bemerkenswert ist die Titananreicherung an den instabilen Kristallrändern der beiden Minerale. Dabei erhöht sich der TiO₂-Gehalt von 4,1 (Kern) auf 8,8 Gew.-% (Rand) bei Amphibol und von 6,3 (Kern) auf 11,8 Gew.-% (Rand) bei Phlogopit. Dies deutet darauf hin, dass sich Titan während des Mineralzerfalls zum großen Teil kompatibel verhalten hat (d.h. der Verteilungskoeffizient zwischen dem Mineral und der Schmelze >1 betragen sollte). Dessen ungeachtet ist das Glas an solchen Stellen titanreicher (TiO₂=4,2-4,8 Gew.-%). Die Annahme, dass das Titan eventuell aus einer anderen, externen, Quelle stammt (eine neue Zufuhr der titanreichen Schmelze) ist weniger wahrscheinlich, da in einem solchen Fall eine gleichmäßige Titananreicherung an allen Kristallrändern zu erwarten wäre. Die Analysen zeigen jedoch, dass die Titananreicherung an den, dem Phlogopit zugewandten, Seiten zu finden ist, während die abgewandten Seiten meistens keine Anreicherung aufweisen (Abb. 8.1.a-b). Dies kann darauf hindeuten, dass das, in den Amphibolkristallrand eingebaute, Titan wenigstens teilweise aus dem zerfallenden Phlogopit stammt.

METASOMATISCHE ADERN: PYROXENITE

Die zusammengesetzten Erdmantelxenolithe (engl. *composite xenoliths*) sind ebenfalls die Produkte einer modalen Metasomatose. Solche Xenolithe sind i. Allg. aus Peridotit- und Pyroxenitbereichen zusammengesetzt.

Pyroxenite sind mafische Gesteine, die erstarrte basaltische Magmen, Kumulate und/oder fraktionierte Schmelzen darstellen. Sie intrudieren meistens in relativ jüngere (phanerozoische) Bereiche des Erdmantels (Griffin & O'Reilly, 2012).

Die Erdmantelxenolithe dieser Art liefern demzufolge Hinweise dafür, dass Schmelzen in den untersuchten Hostperidotit (*wall-rock*) intrudierten, wobei die starke Kanalisierung des Schmelzflusses eine Bildung von breiten Adern/*dikes* zur Folge hatte (Abb. 1.8: rechts). Der Haupttransportmechanismus der metasomatischen Schmelze ist in solch einem Fall *grain boundary infiltration*; *crack propagation* kommt untergeordnet vor.

Die Probe DUB_28 stellt einen solchen, zusammengesetzten Erdmantelxenolith dar. Die Ausbreitung der keilförmigen Ader im Hostperidotit ist eventuell ursprünglich auf *crack propagation* zurückzuführen, während sich das weitere Fortpflanzen der feinen Adern vom *"Keil"* in den Lherzolith hinein hauptsächlich durch *grain boundary infiltration* ereignete. Die keilförmige Ader zeigt eine annähernd symmetrische mineralogische Zonierung relativ zu ihrer Längsachse: Die gleiche mineralogische Sequenzabfolge ist in den beiden Flanken der Ader deutlich erkennbar (Abb. 8.2.a-b). Die petrographischen und geochemischen Charakteristika deuten darauf hin, dass die, in den Peridotit intrudierte, metasomatische

Schmelze siliziumgesättigt war und mit dem Olivin des Hostperidotits reagierte. Der sekundäre Orthopyroxen stellt das Produkt dieser Reaktion dar. Diese Phase tritt stets am äußeren Rand des *"Keils"* auf und enthält zahlreiche Olivinrelikte (Abb. 8.2.b: *Zone 2*). Der sekundär gebildete Orthopyroxen zeigt einen geringeren SiO₂-, Cr₂O₃- und MgO-Gehalt, sowie einen höheren TiO₂-, Al₂O₃-, FeO-, CaO- und Na₂O-Gehalt im Vergleich zu der primären Phase des Hostperidotits.

Innerhalb der keilförmigen Ader sind hauptsächlich zwei Phasen - Klinopyroxen und Amphibol – zu finden (Abb. 8.2.b: Zonen 3 & 4). Phlogopit kommt nicht vor. Die Verteilung der Phasen Amphibol und Klinopyroxen folgt einer gewissen Regelmäßigkeit: Der Klinopyroxen tritt öfter in Richtung Aderrand auf, wobei die Kristalle dicht nebeneinander liegen, während der Amphibol in der Adermitte deutlich häufiger vorkommt. An Stellen wo beide Phasen vorkommen, liegen die Kristalle in einer poikilitischen Struktur vor: Der Amphibol stellt einen Wirtskristall dar, während der Klinopyroxen in Form von zahlreichen Kristalleinschlüssen innerhalb dieses Kristalls vorliegt. Die poikilitische Struktur stellt dementsprechend ein Gang-Kumulat (dyke cumulates) dar, wobei der Klinopyroxen als cumulus-Phase und Amphibol als interstitielle Phase (interkumulus) vorliegen (Harte, 1993). Die im "Keil" eingefangene metasomatische Schmelze erfuhr demzufolge eine differenzierte Kristallisation, wobei sich der Klinopyroxen als die frühere Phase und der Amphibol als die relativ spätere Phase bildeten. Die volatilen Komponenten blieben anscheinend, infolge ihrer geringeren Kompatibilität mit dem Klinopyroxen, in der Schmelze zurück. Sie wanderten zusammen mit dieser Schmelze in die inneren Bereiche des "Keils" und wurden dort, in den späteren Stadien der Kristallisation, in den Amphibol eingebaut.

Währenddessen infiltrierte ein Teil der metasomatischen Schmelze aus dem "*Keil*" in den Lherzolith hinein. Das Perkolieren erfolgte entlang der Kristallgrenzflächen (*grain boundary infiltration*), sowie entlang der Kristallbruchflächen (*crack propagation*) der primären Phasen des Peridotits. Die Schmelze reagierte mit dem primären Olivin und als Produkt dieser Reaktion wurde der sekundäre Orthopyroxen gebildet. Infolgedessen sind diese feinen metasomatischen Adern aus bis zu ca. 90 Vol.-% Orthopyroxen zusammengesetzt. Sekundärer Orthopyroxen beinhaltet, anscheinend abhängig von der lokalen chemischen Zusammensetzung der Schmelze, Klinopyroxen- und/oder Amphiboleinschlüsse. Amphibol tritt deutlich seltener als Klinopyroxen in solchen Adern auf. Dies deutet darauf hin, dass der größte Teil der volatilen Komponenten im "*Keil*" zurückblieb. Aufgrund der Wechselwirkung zwischen der perkolierenden Schmelze und dem primären Olivin des Hostperidotits wurde nicht nur der sekundäre Orthopyroxen gebildet, sondern auch der Chemismus des Olivins verändert. Der Olivin in direktem Kontakt zu den metasomatischen Adern zeigt stets einen Forsteritgehalt von 85-87, während der Olivin der Keinen Kontakt zu der Schmelze hatte einen Forsteritgehalt von 90 aufweist. Die Verringerung des Forsteritgehalts des Olivins

191

Abb. 8.2.a: Der "composite" Erdmantelxenolith weist eine keilförmige Ader auf (Bildmitte); mehrere feine Adern breiten sich vom "Keil" in Richtung Peridotit aus. Probe DUB_28. Dünnschliffscan.

Abb. 8.2.b: Die schematische Darstellung der keilförmigen Ader innerhalb des Peridotits. Die Zonierung innerhalb der Ader basiert auf den Unterschieden in der mineralogischen Zusammensetzung. *Zone 1*: Peridotit (Lherzolith); *Zone 2*: Orthopyroxen; *Zone 3*: Klinopyroxen + Amphibol (untergeordnet); *Zone 4*: Amphibol + Klinopyroxen (untergeordnet); *Zone 5*: ein starker Zerfall der Phasen Amphibol und Klinopyroxen, sowie eine Bildung von Glas, aufgrund der Hostbasalt-Injektion. Bemerkung: der schmale blaue Bereich zwischen dem Peridotit und Orthopyroxen stellt den Apatit dar.

erfolgte anscheinend nicht nur durch den Verlust des MgO, sondern auch durch die Eisenzufuhr aus der Schmelze: Der primäre Olivin zeigt einen MgO-Gehalt von 48,38-48,58 Gew.-% und einen FeO-Gehalt von 9,61-10,13 Gew.-%; im Gegensatz dazu zeigt der veränderte (sekundäre) Olivin einen MgO-Gehalt von 44,96-46,66 Gew.-% und einen FeO-Gehalt von 12,13-14,24 Gew.-%. Dies deutet auf Diffusionsprozesse, bei denen ein Fe-Mg-Austausch zwischen der metasomatischen Schmelze und dem primären Olivin stattfand, hin. Der sekundäre Olivin zeigt jedoch keine Zonierung und weist in der Regel vom Kristallkern zum Kristallrand eine Homogenität in der chemischen Zusammensetzung auf. Dies deutet auf eine Reequilibrierung des Olivins hin.

Der sekundäre Orthopyroxen zeigt eine Änderung der chemischen Zusammensetzung in Abhängigkeit mit der Entfernung zum *"Keil"*. Von der keilförmigen Ader in Richtung Peridotitbereich (d.h. mit der Entfernung vom *"Keil"*) ist eine kontinuierliche Erhöhung der Mg#, sowie eine Abnahme des Al₂O₃- und TiO₂-Gehaltes zu erkennen. Solch eine negative Korrelation ist folgendermaßen zu erklären: Je weiter die metasomatische Schmelze in den Hostperidotit eindringt, desto weniger bleibt die basaltische Komponente erhalten. Infolgedessen sinken der FeO-, Al₂O₃- und TiO₂-Gehalt der Schmelze. Durch den Zerfall des primären Olivins wird die Schmelze an MgO reicher.

Während des darauf folgenden Transports des Erdmantelxenoliths an die Erdoberfläche im Hostmagma wurde die Schmelze, die aus dem Hostmagma stammt, in den metasomatischen "*Keil*" injiziert. Dies verursachte eine Destabilisierung und den Zerfall des Amphibols und Klinopyroxens (Abb. 8.2.b: *Zone 5*). Die Schmelze des Hostbasalts perkolierte ebenfalls im Peridotitteil. Dies führte zu einer Wechselwirkung mit dem Orthopyroxen, sowohl der primären als auch der sekundären Phase und, infolgedessen, zur Bildung der tertiären Olivin, Klinopyroxen und Spinell.

Zusammengefasst, weisen alle untersuchten "*composite*" Xenolithe die gleichen petrographischen und geochemischen Charakteristika der oben beschriebenen modale Metasomatose auf. Diese Merkmale deuten auf Folgendes hin:

1. Eine siliziumgesättigte Schmelze perkolierte in den Hostperidotit und verursachte eine Destabilisierung des primären Olivins. Durch die Wechselwirkung zwischen dieser metasomatischen Schmelze und dem primären Olivin wurde der sekundäre Orthopyroxen gebildet. Der Prozess der Verdrängung des Olivins durch den sekundären Orthopyroxen wurde nicht abgeschlossen: An vielen Stellen ist eine Abschnürung der Olivinteile durch den sekundären Orthopyroxen noch zu erkennen. Der sekundäre Ortho- sowie Klinopyroxen ist in der Regel feinkörnig und weist meistens unregelmäßige, wellige Kristallgrenzen auf. Dies deutet darauf hin, dass nach der Kristallisation der metasomatischen Schmelze keine Rekristallisation der Phasen, somit keine Reduktion der Korngrenzenflächen und demzufolge keine Verringerung der inneren freien Energie, stattfand. Für die Rekristallisation fehlte entweder die Zeit und/oder die herrschenden Temperaturen waren nicht hoch genug. Demzufolge wurde das texturelle Gleichgewicht in der Regel nicht erreicht. Wenige Stellen in den Proben zeigen seltene Ausnahmen, wo der sekundäre Orthopyroxen idiomorphe Kristalle mit Tripelpunktgrenzen zu benachbarten Orthopyroxenkristallen aufweist. Bemerkenswert ist ebenfalls, dass die Olivine des Hostperidotits eine intrakristalline Deformation zeigen, während die sekundären Pyroxene in der Regel keine Art der Verformung erkennen lassen. Dies deutet darauf hin, dass dieses metasomatische Event *nach* der Deformation erfolgte.

- Durch Diffusionsprozesse (Fe-Mg-Austausch), die zwischen der Schmelze und dem primären Olivin stattfanden, wurde der Chemismus des Olivins verändert (→ Entstehung des sekundären Olivins) (Abb. 8.3).
- 3. Die Wechselwirkung zwischen der metasomatischen Schmelze und dem Olivin führte, mit steigender Entfernung zur Schmelzquelle, ebenfalls zur kontinuierlichen Veränderung der chemischen Zusammensetzung dieser Schmelze: Je weiter die metasomatische Schmelze in den Hostperidotit hinein perkolierte, desto weniger blieb die basaltische Komponente erhalten. Infolgedessen sanken der FeO-, Al₂O₃- und TiO₂-Gehalt der Schmelze. Durch den Zerfall des primären Olivins wurde die Schmelze an MgO reicher (Abb. 8.4).

4. Die Pyroxenitbereiche sind aus Klinopyroxen ± Orthopyroxen ± Spinell ± Amphibol ± Phlogopit zusammengesetzt. Der Klinopyroxen stellt oft die Hauptphase dar. Die pyroxenitischen Adern im Peridotitbereich sind bis zu ca. 90 Vol.-% aus Orthopyroxen zusammengesetzt; untergeordnet kommt Klinopyroxen vor. Der sekundäre Orthopyroxen beinhaltet Spinell-, Klinopyroxen-, Amphibol- und/oder Phlogopiteinschlüsse, sowie Spinell- und Klinopyroxenentmischungslamellen. Die Häufigkeit der Einschlüsse/Entmischungslamellen, sowie deren Mineralogie und Chemismus ist anscheinend von der lokalen chemischen Zusammensetzung der metasomatischen, i. Allg. inhomogenen, Schmelze abhängig.

Das Phlogopitvorkommen ist deutlich geringer als das der anderen Phasen, sowohl innerhalb der Pyroxenitbereiche, als auch in den orthopyroxenitischen Adern. Diese Phase ist in der Regel mit dem Amphibol vergesellschaftet. Dabei ist eine Tendenz erkennbar: Mit Abnahme des Amphibolanteils, strebt die Wahrscheinlichkeit, Phlogopit zu finden, gegen null, während der Pyroxenanteil steigt. Dies reflektiert anscheinend den lokalen Anteil der volatilen Komponenten in der Schmelze. Die Schwankungen in der Mineralogie und Geochemie innerhalb der Pyroxenitbereiche, sowie in den pyroxenitischen Adern innerhalb des Peridotits gehen offensichtlich nicht auf verschiedene metasomatische Schmelzen zurück, sondern spiegeln die Inhomogenität ein und derselben metasomatischen Schmelze wider. Die *"composite"* Xenolithe reflektieren somit ein und dasselbe metasomatische Event.

5. Das Fehlen der Gläser im Zusammenhang mit dieser Art der modalen Metasomatose lässt vermuten, dass das Event lange vor dem Transport der Erdmantelxenolthe an die Erdoberfläche stattfand.

Abb. 8.3: Verhältnis zwischen Cr# des Spinells und Forsteritgehalt des koexistierenden Olivins der untersuchten Spinell-führenden Peridotite. Cr# = (Cr/(Cr+Al); Fo = (MgO/MgO+FeO)x100 in Mol. Die Proben, die innerhalb des OSMA-Bereichs liegen, weisen i. Allg. keine metasomatischen Prozesse auf. Die Proben die sich außerhalb des OSMA-Bereichs befinden, zeigen eine metasomatische Überprägung: Der Olivin dieser Proben hat einen geringeren Forsteritgehalt. Dies ist auf eine Wechselwirkung zwischen dem primären Olivin und einer metasomatischen Schmelze zurückzuführen, wobei ein Fe-Mg-Austausch zwischen dem Olivin und der Schmelze stattfand. Der graue Pfeil zeigt demzufolge die Verschiebung des Forsteritgehalts in den metasomatisch überprägten Proben. *Bemerkung*: Probe DUB_26 stellt einen zusammengesetzten Erdmantelxenolith dar, wobei DUB_26a den Pyroxenitteil und DUB_26b den Peridotitteil repräsentiert. OSMA-Plot (Olivine-Spinel-Mantle-Array) (nach *Arai, 1994*).

der Mg#, sowie eine Abnahme von Aluminium und Titan zu erkennen.

8.2 Geothermometrie

Die geothermometrischen Berechnungen wurden anhand des Fe- und Mg-Austausches zwischen zwei koexistierenden Mineralphasen, Orthopyroxen und Klinopyroxen, nach Brey und Köhler (1990) durchgeführt. Die Berechnungen ergeben Equilibrierungstemperaturen für Spinell-führenden Lherzolithe von 767-1170 °C bei einem angenommenem Druck von 1,5 GPa. Es lassen sich dabei zwei Lherzolith-Gruppen erkennen:

- Die erste Gruppe weist relativ niedrigere Equilibrierungstemperaturen auf, wobei die Temperatur 768-798 °C f
 ür den Kristallkern und 767-815 °C f
 ür den Kristallrand betr
 ägt.
- Die zweite Gruppe zeigt relativ hohe Equilibrierungstemperaturen mit 1023-1150 °C für den Kristallkern und 1044-1170 °C für den Kristallrand.

Dies lässt vermuten, dass die Lherzolithe aus mindestens zwei verschiedenen Tiefenbereichen im Erdmantel stammen.

Die Temperaturunterschiede zwischen dem Kristallkern und dem Kristallrand, innerhalb einer Probe der beiden Gruppen, sind minimal (sie liegen meistens im Bereich von 10-30 °C) und innerhalb des Fehlers der Thermometerkalibrierung. Dies deutet auf Gleichgewichtsbedingungen in den Lherzolithen hin.

Im Gegensatz dazu zeigen die Pyroxene der *"composite"* Erdmantelxenolithe erhebliche Temperaturschwankungen zwischen dem Kristallkern und dem Kristallrand: z.B. Pyroxene der Probe DUB_28 zeigen Temperaturen von 960 °C für den Kristallkern und 1040 °C für den Kristallrand. Das geothermische Ungleichgewicht ist anscheinend auf eine externe Wärmezufuhr durch in den Peridotit eingedrungene Schmelze zurückzuführen.

8.3 Gläser der untersuchten Erdmantelxenolithe

8.3.1 Prozesse während des Erdmantelxenolith-Transports an die Erdoberfläche. Bildung von Glas

Die untersuchten Erdmantelxenolithe beinhalten auffallend viel Glas, das sowohl intra- als auch intergranular, in Form von Einschlüssen in Mineralen, Glasadern, Glas-Kristall-Aggregaten und/oder *"melt pockets"* vorkommt. Die chemische Zusammensetzung (der Alkaligehalt vs. SiO₂-Gehalt) aller untersuchten Gläser ist in Abb. 8.6 zu sehen. Die petrographischen und geochemischen Untersuchungen legen nahe, dass die Gläser i. Allg.

- ein Zerfallsprodukt der Minerale Amphibol, Phlogopit, Klinopyroxen oder Orthopyroxen sind und/oder
- ein Produkt einer Wechselwirkung zwischen verschiedenen Schmelzen und Phasen der Erdmantelxenolithe repräsentieren.

Die Tatsache, dass die Gläser überhaupt erhalten geblieben sind, deutet darauf hin, dass diese Prozesse relativ kurz vor der Vulkaneruption stattfanden. Anderenfalls führte das weitere Verweilen im Erdmantel (und/oder in der Erdkruste) zu einem texturellen und chemischen Gleichgewicht und daher zu einer völligen Rekristallisation solch einer metastabilen Phase wie Glas. Somit ist es hochwahrscheinlich, dass sich diese Prozesse während des Transports der Xenolithe an die Erdoberfläche und/oder kurz davor abgespielt haben. Das berechnete Diffusionsmodell ergibt, dass der Erdmantelxenolithtransport im Hostmagma ca. 5 Tage dauerte.

ZERFALL DER WASSERHALTIGEN MINERALE

Aufgrund der Wärmezufuhr durch das Hostmagma kam es zur Instabilität der wasserhaltigen Minerale, Amphibol und Phlogopit. Die Druckentlastung sowie die Wechselwirkung mit dem Hostmagma sollten ebenfalls eine wichtige Rolle spielen.

Amphibol-"*breakdown*" führte zur Bildung einer Schmelze, aus der sich die tertiären Phasen Olivin, Klinopyroxen und Spinell bildeten, wobei das Glas eine Restschmelze darstellt. Der Phlogopitzerfall führte ebenfalls zur Bildung einer Schmelze. Aus dieser Schmelze bildeten sich die tertiären Olivin und Spinell; der tertiäre Klinopyroxen hingegen fehlt. Bemerkenswert ist das Volumen der gebildeten Schmelze: Die Menge der durch den Phlogopitzerfall entstandenen Schmelze ist deutlich geringer als das Schmelzenvolumen, das durch den Amphibolzerfall produziert wurde. Viele Phlogopitkristalle scheinen noch vorwiegend intakt zu sein und zeigen nur eine geringere Instabilität. Dies ist auf eine höhere Stabilität des Phlogopits im Vergleich zum Amphibol zurückzuführen.

Die durch den Amphibol- und/oder Phlogopitzerfall erzeugten Schmelzen zeigen eine Wechselwirkung mit dem primären und sekundären Pyroxen. Der Klinopyroxen zeigt in solch einem Fall einen "*spongy*"-Saum, der aus Glas und dem Klinopyroxen mit einem veränderten Chemismus, im Vergleich mit dem Kristallkern, zusammengesetzt ist. Der Orthopyroxen zeigt einen Reaktionssaum im Kontakt mit dem Glas, wobei die Reaktionsprodukte die tertiär gebildeten Olivin, Klinopyroxen und Spinell sind.

WECHSELWIRKUNG DES PERIDOTITS MIT DEM HOSTMAGMA

Ein großer Teil der untersuchten Erdmantelxenolithe zeigt eine Wechselwirkung zwischen dem Hostmagma und dem Peridotit. Die Peridotite, die frei von wasserhaltigen Phasen sind, weisen einen bis drei verschiedenen Reaktionstypen, abhängig von der mineralogischen Zusammensetzung, auf:

- 1. Reaktion zwischen der infiltrierenden *Schmelze* und dem *Orthopyroxen*. Es bilden sich tertiärer Olivin, Klinopyroxen und Spinell, wobei das Glas eine Restschmelze darstellt.
- 2. Reaktion zwischen der infiltrierenden Schmelze und dem Klinopyroxen. Der Klinopyroxen zeigt in solch einem Fall einen "spongy"-Saum.
- 3. Reaktion zwischen der infiltrierenden Schmelze und dem Spinell. Der Spinell weist einen Zerfall, sowie eine Oxidation (z.B.: DUB_34. Kern: Fe₂O₃=1,64Gew.-%, FeO=10,43 Gew.-%; Rand: Fe₂O₃=2,38 Gew.-%, FeO=9,66 Gew.-%) auf. Als Reaktionsprodukte treten tertiärer Olivin, Spinell und/oder Klinopyroxen auf. Welches Reaktionsprodukt entsteht, ist abhängig von den, am Kontakt vorkommenden, anderen reaktionsfähigen Phasen wie Ortho- und Klinopyroxen oder Olivin. Das gebildete Glas ist in der Regel chromreich.

8.3.2 Klassifizierung der untersuchten Gläser

Aufgrund der petrographischen und geochemischen Charakteristika lassen sich die untersuchten Gläser allgemein in 6 Endglieder unterteilen (Abb. 8.7):

- *Typ 1* wurde aufgrund des Phlogopit-*"breakdown"* gebildet. Dieses Glas weist einen relativ hohen Kaliumgehalt (4,8-7,5 Gew.-%) auf.
- *Typ 2* wurde aufgrund des Amphibol-"*breakdown*" gebildet.
- *Typ 3* Glas wurde aufgrund des Klinopyroxen-"*breakdown*" gebildet. Zur Instabilität des Klinopyroxens kann eine Druckentlastung sowie eine Wechselwirkung mit einer Schmelze führen, wobei die Schmelze entweder
 - a. von zerfallendem Phlogopit und/oder
 - b. von zerfallendem Amphibol und/oder
 - c. aus dem Hostmagma stammt.

Alle drei Quellen der Schmelze, sowie deren Wechselwirkung mit dem Klinopyroxen, sind sowohl petrographisch als auch geochemisch erkennbar. Je nach der Klinopyroxen-Schmelze-Zusammensetzung variieren Alkali- sowie Siliziumgehalte innerhalb dieser Glasgruppe.

- *Typ 4* Glas wurde durch eine Wechselwirkung zwischen dem primären Orthopyroxen und der siliziumuntersättigten Schmelze, die aus dem Hostmagma stammt, erzeugt. Der SiO₂-Gehalt dieses Glases ist dementsprechend höher.
- Typ 5 Glas repräsentiert ein Produkt des inkongruenten Schmelzens des primären Orthopyroxens (Abb. 8.5). Diese Annahme basiert sowohl auf den strukturellen Charakteristika als auch auf den Abschätzungen durch Massenbilanzberechnungen. Die einzige tertiär gebildete Phase ist meistens Olivin. Der Klinopyroxen kommt

deutlich seltener vor. Das Bemerkenswerte dieses Glastypes ist sein äußerst niedriger K₂O-Gehalt (bis max. 0,08 Gew.-%). Der Na₂O-Gehalt liegt bei 2,2-4,5 Gew.-% und der SiO₂-Gehalt bei 57,1-68,7 Gew-%.

Typ 6. Die sekundären Orthopyroxene (innerhalb der Orthopyroxenitadern), die durch die früheren metasomatischen Prozesse gebildet wurden, wurden später ebenfalls vom Hostmagma (siliziumuntersättigte Schmelze) angegriffen. Die Reaktion zwischen dem sekundären Orthopyroxen und dieser Schmelze erzeugt den Glastyp 6. Der SiO₂-Gehalt dieser Orthopyroxene ist niedriger, als jener der primären Orthopyroxene. Das erzeugte Glas ist dementsprechend siliziumärmer.

Abb. 8.5: Das inkongruente Schmelzen des primären Orthopyroxens führt zur Bildung des tertiären Olivins, sowie der Na₂O- und SiO₂reichen Schmelze (\rightarrow Glas); untergeordnet wird tertiärer Klinopyroxen und Spinell gebildet. Splführender Lherzolith. Probe DUB_145. BSE-Aufnahme.

Abb. 8.6: Der Alkali- vs. SiO₂-Gehalt aller untersuchten Gläser im Überblick. TAS-Diagramm (nach Le Maitre-IUGS, 1989).

Zwischen den sechs beschriebenen Glasendgliedern existieren verschiedene Übergänge, abhängig von der mineralogischen Zusammensetzung des Peridotits, der chemischen Zusammensetzung der einzelnen Phasen, den Aufstiegsraten und der Zeit der Einwirkung des Hostbasalts auf den Erdmantelxenolith. Demzufolge sind die folgenden Trends der Glasbildung zu erkennen (Abb. 8.8):

- *Trend 1*: Die Erdmantelxenolithe, die sowohl Amphibol als auch Phlogopit enthalten, weisen ein Glas mit "gemischter" Zusammensetzung auf. Solch ein Glas liegt zwischen dem 1. und 2. Glastypen im TAS-Diagramm.
- Trend 2: Die Schmelzen, die vom Amphibol- und/oder Phlogopitzerfall stammen, reagieren mit dem Orthopyroxen. Dieser Trend zeigt eine Alkalianreicherung durch den Amphibol- und/oder Phlogopitzerfall einerseits, sowie eine Siliziumanreicherung durch den Orthopyroxenzerfall andererseits. Solch ein Trend ist für die Lherzolithe, die wasserhaltigen Minerale enthalten, charakteristisch.
- Trend 3: Die Schmelzen, die vom Amphibol- und/oder Phlogopitzerfall stammen, reagieren ebenfalls mit dem Klinopyroxen. Dieser Trend zeigt im gleichen Maße eine Alkalianreicherung durch den Amphibol- und/oder Phlogopitzerfall wie die Trends 1 & 2. Die Siliziumanreicherung ist jedoch deutlich geringer als diejenige durch einen Orthopyroxenzerfall. Solch ein Trend ist für die Wehrlite, die wasserhaltigen Minerale enthalten, signifikant.
- *Trend 4*: Der Klinopyroxen wird durch die siliziumuntersättigte Schmelze, die aus dem Hostmagma stammt, instabil. Das gebildete Glas (in Klinopyroxen-"*spongy*"-Bereich sowie nahe dem Klinopyroxenkristall) weist eine leichte Siliziumanreicherung auf. Der Alkaligehalt ist jedoch nie so hoch wie in Trend 3. Solch ein Glas ist oft in Wehrliten (sowie in den Lherzolithen nahe dem Klinopyroxen) zu finden.
- Trend 5: Die Wechselwirkung zwischen der siliziumuntersättigten Schmelze, die aus dem Hostmagma stammt, und dem primären Orthopyroxen ergibt den Trend der Siliziumanreicherung im Glas, wobei der SiO₂-Gehalt deutlich höher liegt als bei Trend 4. Man beachte, dass der Spinell ebenfalls mit der Schmelze reagiert, was zu einer lokalen Anreicherung von Chrom und Aluminium im Glas führt. Solch ein Trend ist für die Lherzolithe, sowie für die Harzburgite charakteristisch.
- *Trend 6*: Dieser Trend ergibt sich aus dem inkongruenten Schmelzen des primären Orthopyroxens und in weiterer Folge aus der Wechselwirkung der gebildeten Schmelze mit dem primären Klinopyroxen und Spinell.
- Trend 7: Dieser Trend ergibt sich aus der Destabilisierung der Orthopyroxenitadern durch die siliziumuntersättigte Schmelze, die aus dem Hostmagma stammt. Das Glas zeigt i. Allg. einen niedrigeren SiO₂- und Alkaligehalt im Vergleich zu anderen Trends. Dieser Trend ist für die "*composite*" Erdmantelxenolithe typisch.

Abb. 8.7: Klassifizierung der untersuchten Gläser nach ihrer Paragenese. Die Glastype 1 bis 6 repräsentieren schematisch die Glasentglieder (siehe die Erläuterung im Text). TAS-Diagramm (nach *Le Maitre-IUGS, 1989*).

Abb. 8.8: Die möglichen Trends der Glasbildung sind im TAS-Diagramm dargestellt.

Trend 1 zeigt die Schwankungen der Glaszusammensetzung innerhalb einer Probe, die auf den Amphibol- und Phlogopitzerfall zurückzuführen sind. Trend 2: die Wechselwirkung der, durch den Zerfall der wasserhaltigen Minerale gebildeten, Schmelze mit dem primären Orthopyroxen. Trend 3: die Wechselwirkung der, durch den Zerfall der wasserhaltigen Minerale gebildeten, Schmelze mit dem Klinopyroxen. Trend 4: Die Wechselwirkung des Hostmagmas mit dem Klinopyroxen. Trend 5: Die Wechselwirkung des Hostmagmas mit dem primären Orthopyroxen. Trend 6: Das inkongruente Schmelzen des primären Orthopyroxens. Trend 7: Die Wechselwirkung des Hosmagmas mit dem sekundären Orthopyroxen (in Adern/dykes). TAS-Diagramm (nach Le Maitre-IUGS, 1989).

9. CONCLUSIO

Die untersuchten Erdmantelxenolithe aus der Lokalität *Estancia Lote 17, Santa Cruz Provinz, Argentinien*, sind zum großen Teil durch Spinell-führende Lherzolithe, Spinell-führende Harzburgite und Wehrlite vertreten. Untergeordnet kommen Dunite, Pyroxenite sowie *"composite"* Erdmantelxenolithe vor. Lherzolithe weisen protogranulare, protogranularporphyroklastische, sowie porphyroklastisch-äquigranulare Strukturen auf. Harzburgite zeigen nur die protogranularen und die protogranular-porphyroklastischen strukturellen Merkmale, was entweder auf einen geringeren Deformationsgrad oder auf eine nachfolgende statische Rekristallisation hindeutet. Wehrlite weisen protogranulare, protogranularporphyroklastische, porphyroklastische, porphyroklastisch-äquigranulare, sowie äquigranulare Strukturen auf, und scheinen infolgedessen deutlich mehr von einem Deformation-dynamischen Rekristallisation-Zyklus erfasst worden zu sein.

Der Forsteritgehalt des primären Olivins beträgt 88,1-91,7, wobei die höheren Werte auf eine Verarmung des Gesteins an basaltischen Komponenten hinweisen. Der NiO-Gehalt beträgt 0,33-0,40 Gew.-%, während der CaO-Gehalt zwischen 0,04 und 0,12 Gew.-% variiert. Der primäre Orthopyroxen liegt im Enstatitbereich der Enstatit-Ferrosilit-Mischreihe (nach *Morimoto, 1989*). Der Enstatitanteil beträgt 87,8-91,1 %, wobei die Mg# zwischen 89,1 und 92,1 variiert. Seine chemische Zusammensetzung ist weitgehend homogen. Der primäre Klinopyroxen ist Chrom-Diopsid (nach *Morimoto, 1989*). Seine Mg# beträgt 89,8-94,3; der Al₂O₃-Gehalt beträgt 1,64-6,34 Gew.-%; der TiO₂-Gehalt variiert zwischen 0,07 und 1,28 Gew.-%. Der primäre Spinell weist eine sehr variable chemische Zusammensetzung auf, mit der Cr# von 9,2-48,0.

Die Equilibrierungstemperaturen für die Spinell-führenden Lherzolithe liegen zwischen 767 °C und 1170 °C, bei einem angenommenen Druck von 1,5 GPa.

Die Mehrheit der untersuchten Gesteinsproben ist durch eine starke modale Metasomatose gekennzeichnet. Amphibol und/oder Phlogopit treten in einer disseminierten Form oder innerhalb der metasomatischen Adern/Gänge im Peridotit, sowie in Pyroxenitbereichen der *"composite"* Erdmantelxenolithe, auf. Ein homogener Schmelz-/Fluidfluss durch den Hostperidotit führte anscheinend zu einer gleichmäßigen Verteilung der wasserhaltigen Minerale, während deren Auftreten innerhalb der Adern oder pyroxenitischen Gänge auf eine Kanalisierung der metasomatischen Schmelze hindeutet.

Die metasomatischen Adern sowie Gänge beinhalten außerdem Klino- und Orthopyroxen; Apatit, Sulfide, Ilmenit und Rhönit kommen akzessorisch vor. Bemerkenswert ist die kontinuierliche Variation des modalen Mineralbestandes innerhalb der Adern/Gänge: Mit der Zunahme des Anteils an wasserhaltigen Mineralen sinkt der Pyroxenitanteil und umgekehrt. Außerdem strebt die Wahrscheinlichkeit, den Phlogopit zu finden, mit Abnahme des

203

Amphibolanteils gegen null. Die Schwankungen in der Mineralogie und Mineralchemie gehen offensichtlich nicht auf die verschiedenen metasomatischen Schmelzen zurück, sondern spiegeln die Inhomogenität und Differentiationsprozesse ein und derselben metasomatischen Schmelze wider, und reflektieren somit ein und dasselbe metasomatische Event.

Die metasomatische Schmelze hatte anscheinend ausreichend Silizium, um den primären Olivin destabilisieren zu können. Durch die Wechselwirkung zwischen der Schmelze und dem primären Olivin wurde demzufolge der sekundäre Orthopyroxen gebildet. Das Propagieren der Schmelze in den Hostperidotit und ihre Wechselwirkung mit dem Olivin führte zur kontinuierlichen Veränderung der chemischen Zusammensetzung dieser Schmelze, wobei der FeO-, Al₂O₃- und TiO₂-Gehalt sank, während der MgO-Gehalt, aufgrund des Olivinzerfalls, anstieg.

Die Olivine des Hostperidotits zeigen eine intrakristalline Deformation, während die sekundären Pyroxene in der Regel keine Art der Verformung erkennen lassen. Dies deutet darauf hin, dass das metasomatische Event *nach* der Deformation erfolgte.

Das letzte metasomatische Ereignis fand während des Einzugs der Erdmantelxenolithe in das aufsteigende Hostmagma und deren Transport an die Erdoberfläche statt. Währenddessen erfolgte ein Zusammenbruch des Amphibols und des Phlogopits, der durch die Wärmezufuhr aus dem Hostmagma verursacht wurden. Die Druckentlastung sowie die Wechselwirkung mit dem Hostmagma spielten dabei ebenfalls eine wichtige Rolle.

Der Zerfall des Amphibols führte zur Bildung einer Schmelze, aus der sich die tertiären Phasen Olivin, Klinopyroxen und Spinell, sowie Glas bildeten, wobei das Glas eine Restschmelze darstellt. Durch den Zusammenbruch des Phlogopits wurden Olivin und Spinell gebildet; das Glas weist in diesem Fall einen relativ hohen K₂O-Gehalt von bis zu 7,5 Gew.-% auf. Die durch den Amphibol- und/oder Phlogopitzerfall erzeugten Schmelzen zeigen eine Wechselwirkung mit dem primären und sekundären Pyroxen. Der Klinopyroxen zeigt in solch einem Fall einen "*spongy*"-Saum, während der Orthopyroxen einen Zerfall, sowie die dadurch bedingte Neubildung des tertiären Olivins, Klinopyroxens und Spinells an seinen Kristallrändern, aufweist.

Die meisten untersuchten Erdmantelxenolithe zeigen die Wechselwirkung des Hostmagmas mit dem Pyroxen, sowie mit dem Spinell. Diese Wechselwirkung führt des Weiteren zur Bildung eines "spongy"-Saums im Klinopyroxen, ebenso wie zum Orthopyroxenzerfall. Die Wechselwirkung des Hostmagmas mit dem *primären* Orthopyroxen führt zur Bildung der siliziumreicheren Gläser, während die Reaktion mit dem *sekundären* Orthopyroxen stets die Bildung der siliziumärmeren Gläser zur Folge hat. Diese Beobachtung ist damit verknüpft, dass die primären Orthopyroxene, im Vergleich zu den sekundären Orthopyroxenen, einen höheren SiO₂-Gehalt haben. Der Spinell zeigt ebenfalls eine Destabilisierung und den Zerfall

204
aufgrund der Wechselwirkung mit dem Hostmagma.

In wenigen Proben ist ein inkongruentes Schmelzen des primären Orthopyroxens zu erkennen, wobei sich in der Regel nur Olivin bildete. Das Glas weist einen äußerst niedrigen K₂O-Gehalt mit bis zu 0,08 Gew.-%, sowie einen hohen SiO₂-Gehalt mit bis zu 68,7 Gew-% auf. Die gebildete Schmelze reagierte des Weiteren mit dem primären Klinopyroxen, sowie mit dem Spinell.

Demzufolge ist der lithosphärische Erdmantel unterhalb der Lokalität *Estancia Lote 17* stark von modaler Metasomatose überprägt. Folgende metasomatischen Ereignisse wurden erkannt und charakterisiert:

- Modale Metasomatose im Erdmantel:
 - 1. Bildung des Amphibols und des Phlogopits durch eine Zufuhr der fluiden Phasen in den Peridotit.
 - 2. Neubildung des Orthopyroxens durch die Reaktion zwischen einer siliziumgesättigten Schmelze und dem primären Olivin des Hostperidotits.
 - 3. Bildung des Klinopyroxens direkt aus der siliziumgesättigten, metasomatischen Schmelze.
- Prozesse während des Einzugs der Erdmantelxenolithe in das aufsteigende Hostmagma und deren Transport an die Erdoberfläche:
 - Zerfall des Amphibols und des Phlogopits, aufgrund der Wärmezufuhr aus dem Hostmagma und der darauf folgenden Druckentlastung, sowie der Wechselwirkung mit dem Hostmagma → Bildung von Olivin, Klinopyroxen, Spinell, Glas.
 - Wechselwirkung der durch den Zerfall der wasserhaltigen Minerale gebildeten Schmelze mit dem Pyroxen des Peridotits:
 - a. Zerfall des Orthopyroxens → Bildung von Olivin, Klinopyroxen, Spinell, Glas;
 - b. Destabilisierung des Klinopyroxens → Bildung der "spongy"-Strukturen im Klinopyroxen.
 - 3. Wechselwirkung zwischen Hostmagma und Erdmantelxenolith:
 - a. Zerfall des Orthopyroxens → Bildung von Olivin, Klinopyroxen, Spinell, Glas;
 - b. Destabilisierung des Klinopyroxens → Bildung der "spongy"-Strukturen im Klinopyroxen;
 - c. Destabilisierung des Spinells \rightarrow Oxidation und Zerfall \rightarrow Bildung von Olivin, Spinell, Glas.

10. LITERATURVERZEICHNIS

Akaogi, M., Ito, E., Navrotsky, A. (1989). Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculations, and geophysical application. *J. Geophys. Res.* 94, 15771-15685.

Aliani, P., Ntaflos, T., Bjerg, E. (2009). Origin of melt pockets in mantle xenoliths from southern Patagonia, Argentina. *Journal of South American Earth Sciences* 28, 419-428.

Arai, S. (1994). Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. *Chemical Geology* 113, 191-204.

Basei, M. A. S., Brito Neves, B. B., Varela, R., Teixeira, W., Siga, Jr. G., Sato, A. M., Cingolani, C. A. (1999). Isotopic dating on the crystalline basement rocks of the Bariloche Region, Río Negro, Argentina. 2° *Simposio sudamericano de geología isotópica (Carlos Paz), Servicio Geológico Minero Argentino, Anales*, 34, 15-18.

Basei, M. A. S., Varela, R., Passarelli, C., Siga, Jr. O., Cingolani, C. A., Sato, A. M., Gonzales, P. D. (2005). The crystalline basement in the north of Patagonia: isotopic ages and regional characteristics. In: Pankhurst, R., Veiga, G. (Eds.), *Gondwana 12: Geological and Biological Heritage of Gondwana, Abstracts, Academia Nacional de Ciencias, Córdoba.*

Beere, W. (1975). A unifying theory of the stability of penetrating liquid phases and sintering pores. *Acta metal.* 23, 131-138.

Bohm, M., Lüth, S., Echtler, H., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A., Wigger, P. (2002). The Southern Andes between 36° S and 40° S latitude: seismicity and average velocities. *Tectonophysics* 356, 275-289.

Brey, G. P., Koehler, T. (1990). Geothermobarometry in four-phase Iherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. *Journal of Petrology* 31(6), 1353–1378.

Brown, G. C., Mussett, A. E. (1993). *The inaccessible earth*, 2nd ed. Chapman & Hall, London.

Bukowinski, M. S. T. (1999). Taking the core temperature. *Nature* 401, 432-433.

Bulau, J. R. (1982). Intergranular fluid distribution in olivine-liquid basalt systems. Ph.D.dissertation, Yale University, U.S.A.

Cahill, T., Isacks, B. (1992). Seismicity and shape of the subducted Nazca plate. *Journal of Geophysical Research* 97, B12, 17503-17529.

Condie, K. C. (2005). Earth as an Evolving Planetary System. Elsevier Academic Press.

Corbella, H., Lara, L. E. (2008). Late Cenozoic Quaternary Volcanism in Patagonia and Tierra del Fuego. In: J. Rabassa (Ed.), *The Late Cenozoic of Patagonia and Tierra del Fuego* 11, 95-119. Amsterdam: Elsevier.

Dalla Salda, L. H., Varela, R., Cingolani, C. A. (1992). Los granitoides de Chasicó Mencué, Macizo Nordpatagónico, Río Negro, Su importancia geotectónica. *Revista de la Asociación Geológica Argentina* 46 (1-4), 189-200.

Dalla Salda, L. H., Varela, R., Cingolani, C. A., Aragón, E. (1994). The Río Chico Paleozoic crystalline complex and the evolution of Northern Patagonia. *Journal South American Earth Sciences* 7 (3-4), 377-386.

Dawson, J. B. (1984). Contrasting types of upper mantle metasomatism. In: Kornprobst, J. (Ed.), *Kimberlites II: the mantle and crust-mantle relationships*. Elsevier, Amsterdam.

Defant, M. J., Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. *Nature* 347, 662-665.

De Mets, C., Gordon, R., Argus, D., Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. *Geophysical Research Letters* 21, 2191-2194.

Dickinson, W. R., Snyder, W. S. (1979). Geometry of subducted slabs related to San Andreas transform. *The Journal of Geology* 87, 609-627.

Forsythe, R., Nelson, E. (1985). Geological manifestations of ridge collision: Evidence from the Golfo de Penas-Taitao Basin, southern Chile. *Tectonics* 4(5), 477-495.

Gorring, M. L., Kay, S. M., Zeitler, P. K., Ramos, V. A., Rubiolo, D., Fernandez, M. I., Panza, J. L. (1997). Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. *Tectonics* 16(1), 1-17.

Gorring, M. L., Kay, S. M. (2001). Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina. *Journal of Petrology* 42(6), 1067-1094.

Green, D. H., Ringwood, A. E. (1967c). The genesis of basaltic magmas. *Contrib. Mineral. Petrol.* 15, 103-190.

Guido, D. M., Escayola, M. P., Schalamuk, I. B. (2004). The basement of the Deseado Massif at Bahía Laura, Patagonia, Argentina: a proposal for its evolution. *Journal of South American Earth Sciences* 16(7), 567-577.

Gurney, J. J., Harte, B. (1980). Chemical variations in upper mantle nodules from southern African kimberlites. *Philos. Trans. R. Soc. Lond.* A 297, 273-293.

Harrington, H. J. (1962). Paleogeographic development of South America. *American Association of Petroleum Geologists*, Bulletin 46 (10), 1773-1814.

Harte, B. (1977). Rock nomenclature with particular relation to deformation and recrystallization textures in olivine-bearing xenoliths. *Journal of Geology* 85, 279-288.

Harte, B. (1983). Mantle peridotites and processes: the kimberlite sample. In: Hawkesworth, C. J., Norry, M. J. (Eds.), *Continental basalts and their xenoliths*. Shiva, Nantwich.

Harte, B., Hawkesworth, C. J. (1989). Mantle domains and mantle xenoliths. In: *Kimberlites and related rocks* 2, 649-686 (Special Publication no. 14). *Geological Society of Australia*.

Harte, B., Hunter, R. H., Kinny, P. D. (1993). Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. *Philos. Trans. R. Soc. Lond.* A 342, 1-21.

Hole, M. J., Rogers, G., Saunders, A. D., Storey, M. (1991). Relation between alkalic volcanism and slab-window formation. *Geology* 19(6), 657-660.

Jaques, A. L., Green, D. H. (1980). Anhydrous melting of peridotite at 0-16 Kb pressure and genesis of tholeiitic basalts. *Contrib. Mineral. Petrol.* 73, 287-310.

Johnson, C. M., O'Neil, J. R. (1984). Triple junction magmatism: a geochemical study of Neogene volcanic rocks in western California. *Earth Planetary Science Letter* 71, 241-262.

Jurewicz, A. J. G., Watson, E. B. (1988). Cations in olivine, Part 2: diffusion in olivine xenocrysts, with applications to petrology and mineral physics. *Contrib Mineral Petrol* 99, 186-201.

Kay, R. W. (1978). Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. *Journal of Volcanology and Geothermal Research* 4, 117-132.

Kelemen, P. B., Whitehead, J. A., Aharonov, E., Jordahl, K. A. (1995). Experiments on flow focusing in soluble porous media, with application to melt extraction from the mantle. *Journal of Geophysical Research* 100, 475-496.

Kertz, W. (1969). Einführung in die Geophysik I. Spektrum Akademischer Verlag, Heidelberg.

Köhler, T. P., Brey, G. P. (1990). Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. *Geochim Cosmochim Acta* 54, 2375-2388.

Lagabrielle, Y., Suárez, M., Rossello, E. A., Hérail, G., Martinod, J., Régnier, M., de la Cruz, R. (2004). Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. *Tectonophysics* 385(1), 211-241.

Lasaga, A. C. (1998). *Kinetic theory in the earth sciences*. Princeton University Press, S. 728.

Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., Youzhi, G. (1997). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. *Mineralogical magazine* 66, 295-321.

Leanza, A. F. (1958). Geologia Regional. In: *La Argentina, Suma de Geografia*, Editorial Peuser 1 (3), 217-349. Buenos Aires.

Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P. (2002). *Igneous Rocks: A Classification and Glossary of Terms: Recommendation of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks*. Cambridge University Press.

Lloyd, F. E., Bailey, D. K. (1973). Light element metasomatism of the continental mantle: the evidence and the consequences. *Phys Chem Earth* 9, 389-416.

MacKenzie, W.S., Donaldson, C. H., Guilford, C. (1989). *Atlas der magmatischen Gesteine in Dünnschliffen*. Ferdinand Enke Verlag, Stuttgart.

Markl, G. (2008). *Minerale und Gesteine*. 2. Aufl. Spektrum Akademischer Verlag Heidelberg.

Mercier, J.-C., Nicolas, A. (1975). Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. *Journal of Petrology* 16, 454-487.

Mohorovičić, A. (1910). Das Beben vom 8. X. 1909. Jahrb. meteorol. Observ. Zagreb für 1909 9, 1-63.

Morimoto, N. (1989). Nomenclature of pyroxenes. Canadian Mineralogist 27, 143-156.

Mundl, A., Ntaflos, T., Ackerman, L., Bizimis, M., Bjerg, E. A., Hauzenberger, C. A. (2015). Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: Isotopic evidence for its connection to Africa and Antarctica. *Geology* 43, 39-42.

Mundl, A., Ntaflos, T., Ackerman, L., Bizimis, M., Bjerg, E. A., Wegner, W., Hauzenberger, C. A. (2015). Geochemical and Os-Hf-Nd-Sr isotopic characterisation of north Patagonian mantle xenoliths:

Implications for extensive melt extraction and percolation processes. *Journal of Petrology, Thematic issue* -6^{th} *Orogenic Lherzolite Conference 2014.*

Naumann C. F. (1826). Lehrbuch der Mineralogie. Engelman, Leipzig, S. 209.

Okrusch, M., Matthes, S. (2009). *Mineralogie*. 8. Aufl. Springer Verlag, Berlin Heidelberg New York.

O'Reilly, S. Y., Griffin, W. L. (2012). Mantle Metasomatism. In: Harlov, D. E., Austrheim, H. (Eds.), *Metasomatism and the Chemical Transformation of Rock. Part of the series Lecture Notes in Earth System Sciences*, Springer Verlag Berlin Heidelberg, S. 471-533.

Pankhurst, R. J., Rapela, C. W., Loske, W. P., Márquez, M., Fanning, C. M. (2003). Chronological study of the pre-Permian basement rocks of southern Patagonia. *Journal of South American Earth Sciences* 16, 27-44.

Pankhurst, R. J., Rapela, C. W., Fanning, C. M., Márquez, M. (2006). Gondwanide continental collision and the origin of Patagonia. *Earth-Science Reviews* 76, 235-257.

Passchier, C. W., Trouw, R. A. J. (2005). *Microtectonics*. Springer Verlag, Berlin Heidelberg.

Ramos, V. A. (2008). Patagonia: A paleozoic continent adrif? *Journal of South American Earth Sciences* 26, 235-251.

Rieder, M., Cavazzini, G., D'yakonov, Yu. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval, P. V., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z., Wones, D. R. (1999). Nomenclature of the micas. *Mineralogical Magazine* 63(2), 267-279.

Ringwood, A. E. (1979). Origin of the Earth and Moon. Springer, New York.

Ringwood, A. E. (1982). Phase transformation and differentiation of subducted lithosphere: Implication for mantle dynamics, basalt petrogenesis and crustal evolution. *J. Geol.* 90, 611-643.

Ringwood, A. E. (1991). Phase transformations and their bearing on the constitution and dynamics of the mantle. *Geochim. Cosmochim. Acta* 55, 2083-2110.

Shaw, C. S. J., Thibault, Y., Edgar, A. D., Lloyd, F. E. (1998). Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. *Contrib Mineral Petrol* 132, 354-370.

Shaw, C. S. J. (1999). Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 Gpa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. *Contrib Mineral Petrol* 135, 114-132.

Shaw, C. S. J., Heidelbach, F., Dingwell, D. B. (2006). The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for "metasomatism" by the host lava. *Contrib Mineral Petrol* 151, 681-697.

Shaw, C. S. J., Dingwell, D. B. (2008). Experimental peridotite-melt reaction at one atmosphere: a textural and chemical study. *Contrib Mineral Petrol* 155, 199-214.

Shaw, C. S. J. (2009). Textural development of amphibole during breakdown reactions in a synthetic peridotite. *Lithos* 110, 215-228.

Skemer, P., Warren, J. M., Kelemen, P. B., Hirth, G. (2010). Microstructural and rheological evolution of a mantle shear zone. *Journal of Petrology* 51, 43-53.

Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. *Geologische Rundschau* 63, 773-786.

Tebbens, S. F., Cande, S. C. (1997). Southeast Pacific tectonic evolution from early Oligocene to present. *Journal of Geophysical Research: Solid Earth*, 102 (B6), 12061-12084.

Thorkelson, D. J., Taylor, R. P. (1989). Cordilleran slab windows. *Geology* 17(9), 833-836.

Varela, R., Basei, M., Sato, A., Siga, Jr. O., Cingolani, C. A., Sato, K. (1998a). Edades isotópicas Rb/Sr y U/P ben rocas de Mina Gonzalito y Arroyo Salado. Macizo Norpatagónico Atlántico, Río Negro, Argentina.

Varela, R., Basei, M., Cingolani, C. A., Siga, Jr. O., Passarelli, C. R. (2005). El basamento cristalino de los Andes nonpatagónicos en Argentina: geochronología e interpretación tectónica. *Revista geológica de Chile* 32 (2), 167-187.

Varela, R., Sato, K., González, P. D., Sato, A., Basei, M. (2007). Descifrando la edad y significado del plutonismo Paleozoico en Sierra Grande, Noreste Patagónico, Argentina. *5° Congreso Uruguayo de Geología, Resúmenes, 132*.

Vernon, R. H. (2004). A practical guide to rock microstructure. Cambridge University Press.

Von Bargen, N., Waff, H. S. (1988). Wetting von enstatite by basaltic melt at 1350 °C and 1.0-2.5 Gpa pressure. *J. geophys. Res.* 93, 1153-1158.

Waff, H. S., Bulau, J. R. (1979). Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. *J. geophys. Res.* 84, 6109-6114.

Watson, E. B., Brenan, J. M., Baker, D. R. (1990). Distribution of fluids in the mantle. In: Menzies, M. A. (Ed), *Continental mantle*. Clarendon, Oxford, UK.

Wilshire, H. G. (1987). A model of mantle metasomatism. Geol. Soc. Am. Spec. 215, 47-60.

Wilson, M. (1989). Igneous petrogenesis. London, Boston, Sydney, Wellington: Unwin Hyman.

Winter, J. D. (2001). *An introduction to igneous and metamorphic petrology*. Prentice Hall, Upper Saddle River, New Jersey, USA.

Wyllie, P. J. (1981). Plate tectonics and magma genesis. *Geologische Rundschau* 70, 128-153.

ELEKTRONISCHE MEDIEN

Earth's layers lithosphere asthenosphere. Zugriff am 22.04.2016. Verfügbar unter <u>http://www.geologues-prospecteurs.fr/documents/terre/index-en.php</u>

GERM Partition Coefficient (Kd) Database. Zugriff am 22.04.2016. Verfügbar unter <u>https://earthref.org/KDD/</u>

National Geographic Society (2004). Patagonia map. Zugriff am 22.04.2016. Verfügbar unter http://ngm.nationalgeographic.com/ngm/0401/feature3/map.html

Stachel, T. Der Erdmantel und die Entstehung von Diamanten. Zugriff am 22.04.2016. Verfügbar unter http://www.dmg-home.de/lehrmaterialien.html

Zharikov, V. A., Pertsev, N. N., Rusinov, V. L., Callegary, E., Fettes, D. J. (2007). Metasomatism and metasomatic rocks. Recommendations of the IUGS Subcommission on the Systematics of Metamorphic Rocks. Zugriff am 22.04.2016. Verfügbar unter https://www.bgs.ac.uk/scmr/docs/.../paper_9.pdf

ABBILDUNGSVERZEICHNIS

Abb. 1.1: Struktur des Erdinneren	2
Abb. 1.2: Für die Geschwindigkeit von P- und S-Wellen geltende Gleichungen	2
Abb. 1.3: P-T-Diagramm mit den Stabilitätsfeldern von Plagioklas-Lherzolith, Spinell-Lherzolith und Granat-Lherzolith; Schematische Reaktionsgleichungen der Subsolidus- Phasenübergänge	4
Abb. 1.4: Phasendiagramm für den oberen Erdmantel, die Übergangszone, und den beginnender unteren Erdmantel	າ 5
Abb. 1.5: Partielle Aufschmelzung eines Lherzoliths führt zu einem harzburgitischen oder dunitischen Residuum und basaltischer Schmelze	6
Abb. 1.6: Benetzungswinkel von Schmelzen oder fluiden Phasen auf Korngrenzen (nach Beere, 1975)	10
Abb. 1.7: Haupttypen der modalen Metasomatose nach ihrer Paragenese (nach Harte & Hawkesworth, 1989)	_ 11
Abb. 1.8: Verschiedene Verteilung der metasomatischen Phasen in einem Peridotit aufgrund des unterschiedlichen Ausmaßes der Kanalisierung des Schmelzflusses	_ 12
Abb. 2.1: Geographische Karte von Patagonien	_ 13
Abb. 2.2: Topographische Hauptmerkmale Patagoniens	14
Abb. 2.3: Die metamorph-magmatischen Gürtel Patagoniens	16
Abb. 2.4: Geologie Patagoniens in Bezug auf die Subduktion der Nazca und der Antarktischen Platte unter die Südamerikanische Platte und die daraus resultierende känozoische vulkanische Aktivität	18
Abb. 3.1: Satellitenbild der Provinz Santa Crus, Argentinien	_ 20
Abb. 3.2: Geologische Karte des Deseado Massivs	_ 20
Abb. 3.3: Pyroklastische Sequenz. Lokalität Estancia Lote 17	_ 21
Abb. 3.4: Erdmantelxenolith in Pyroklastika. Lokalität Estancia Lote 17	_ 21
Abb. 3.5: Erdmantelxenolith innerhalb vom Tuffstein. Lokalität Estancia Lote 17	_ 22
Abb. 3.6: Erdmantelxenolithe als Einschlüsse im Basalt und in Form von gerundeten Knollen. Lokalität <i>Estancia Lote 17</i>	_ 22
Abb. 3.7: Erdmantelxenolith im Basalt. Lokalität Estancia Lote 17	_ 22
Abb. 5.1: Gesteinsgruppenverteilung aller untersuchten Erdmantelxenolithe	_ 26
Abb. 5.2: Vorkommen der wasserhaltigen Minerale – Amphibol und Phlogopit – innerhalb der drei Gesteinshauptgruppen	_ 26

Abb. 5.3: Modaler Mineralbestand der untersuchten Erdmantelxenolithe im Überblick	27
Abb. 5.4: Modaler Mineralbestand der untersuchten Lherzolithe	28
Abb. 5.5: Modaler Mineralbestand der untersuchten Harzburgite	29
Abb. 5.6: Modaler Mineralbestand der untersuchten Wehrlite	30
Abb. 5.7: Modaler Mineralbestand des untersuchten Dunits	31
Abb. 5.8: Modaler Mineralbestand der untersuchten Pyroxenite	31
Abb. 6.1: Strukturelle Gesteinstypen der Olivin-führenden Mantelxenolithe	37
Abb. 6.2: Strukturelle Gesteinstypen und ihre Beziehungen zueinander in einem primären und sekundären Deformation-Rekristallisation-Zyklus	38
Abb. 6.3: Strukturelle Gesteinstypen in einem primären und sekundären Zyklus	38
Abb. 6.4: Strukturelle Klassen der untersuchten Erdmantelxenolithe (nach Mercier & Nicolas, 1975)	40
Abb. 6.5: Strukturelle Klassen der untersuchten Erdmantelxenolithe (nach Harte, 1977)	40
Abb. 6.6.a-b: Lherzolith mit einer typischen protogranularen Struktur. Probe DUB_13. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	41
Abb. 6.7.a-b: Protogranulare Struktur mit einem lokalen texturellen Gleichgewicht. Lherzolith. Probe DUB_151. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	41
Abb. 6.8: Xenomorpher vermikularer Spinell innerhalb des Orthopyroxens. Lherzolith. Probe DUB_34. Dünnschliffbild: ungekreuzte Polarisatoren	42
Abb. 6.9: Protogranulare Struktur. Lherzolith. Probe DUB_34. Dünnschliffbild: ungekreuzte Polarisatoren	42
Abb. 6.10: Der große Olivinkristall zeigt <i>subgrain boundaries…</i> Lherzolith. Probe DUB_80. Dünnschliffbild: gekreuzte Polarisatoren	43
Abb. 6.11: Deformationszwilling (= mechanischer Zwilling) im Olivinkristall. Lherzolith. Probe DUB_80. Dünnschliffbild: gekreuzte Polarisatoren	43
Abb. 6.12: Olivinkristalle zeigen <i>kink bands</i> . Lherzolith. Probe DUB_80. Dünnschliffbild: gekreuzte Polarisatoren	43
Abb. 6.13: Olivinkristall weist <i>kink bands</i> auf. Lherzolith. Probe DUB_279. Dünnschliffbild: gekreuzte Polarisatoren	43
Abb. 6.14: Olivinkristall zeigt <i>subgrain boundaries</i> Lherzolith. Probe DUB_175. Dünnschliffbild: gekreuzte Polarisatoren	44
Abb. 6.15: Zunehmende Deformation im Gestein bewirkt eine Suturierung an Olivinkorngrenzen Lherzolith. Probe DUB_131. Dünnschliffbild: gekreuzte Polarisatoren	45

Abb. 6.16: Olivinkristalle weisen suturierte Korngrenzen sowie <i>subgrains</i> auf. Lherzolith. Probe DUB_131. Dünnschliffbild: gekreuzte Polarisatoren	45
Abb. 6.17: Olivinkristalle zeigen suturierte Korngrenzen und Deformationsbänder. Lherzolith. Probe DUB_175. Dünnschliffbild: gekreuzte Polarisatoren	45
Abb. 6.18: Suturierung und Rekristallisation im Olivin infolge der strain-induced grain-boundary migration (bulging). Lherzolith. Probe DUB_175. Dünnschliffbild: gekreuzte Polarisatoren	45
Abb. 6.19: <i>"chessboard</i> "- <i>subgrains</i> im Olivin. Lherzolith. Probe DUB_131. Dünnschliffbild: gekreuzte Polarisatoren	45
Abb. 6.20.a-d: Lherzolith mit einer porphyroklastisch-äquigranularen Struktur. Probe DUB_302. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	46
Abb. 6.21.a-b: Lherzolith mit einer porphyroklastisch-äquigranularen Struktur. Probe DUB_39. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	47
Abb. 6.22.a-b: Lherzolith mit einer porphyroklastisch-äquigranularen Struktur. Probe DUB_195. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	47
Abb. 6.23: " <i>core-and-mantle</i> "-Struktur. Lherzolith. Probe DUB_195. Dünnschliffbild: ungekreuzte Polarisatoren	47
Abb. 6.24.a-b: Lherzolith mit einer protogranularen Struktur des zweiten Zyklus. Probe DUB_301. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	48
Abb. 6.25.a-f: Lherzolith mit einer protogranularen Struktur beinhaltet Hinweise auf einen sekundären Zyklus. Probe DUB_314. Dünnschliffbild: ungekreuzte (a, c, e) und gekreuzte (b, d, f) Polarisatoren	49
Abb. 6.26.a-b: Harzburgit mit einer typischen protogranularen Struktur. Probe DUB_33. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	50
Abb. 6.27.a-b: Harzburgit mit einer typischen protogranularen Struktur. Probe DUB_184. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	50
Abb. 6.28.a-b: Protogranulare Struktur mit einem lokalen texturellen Gleichgewicht. Harzburgit. Probe DUB_33. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	51
Abb. 6.29.a-b: Harzburgit mit einer <i>coarse tabular</i> -Struktur (nach <i>Harte</i>). Probe DUB_315. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	51
Abb. 6.30.a-b: Harzburgit mit einer protogranular-porphyroklastischen Struktur. Probe DUB_64. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	52
Abb. 6.31: Olivin zeigt eine intrakristalline Verformung in Form von <i>subgrain boundaries</i> . Harzburgit. Probe DUB_64. Dünnschliffbild: gekreuzte Polarisatoren	52
Abb. 6.32: Olivin zeigt eine intrakristalline Verformung in Form von <i>subgrain boundaries</i> . Harzburgit. Probe DUB_64. Dünnschliffbild: gekreuzte Polarisatoren	52

Abb. 6.33.a-b: Harzburgit mit einer protogranular-porphyroklastischen Struktur. Probe DUB_24. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	53
Abb. 6.34.a-b: Harzburgit mit einer protogranular-porphyroklastischen Struktur. Probe DUB_24. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	53
Abb. 6.35.a-b: Wehrlit mit einer protogranularen Struktur. Probe DUB_308. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	54
Abb. 6.36.a-b: Protogranulare Struktur mit einem lokalen texturellen Gleichgewicht. Wehrlit. Probe DUB_309. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	54
Abb. 6.37.a-b: Protogranular-porphyroklastische Struktur. Wehrlit. Probe DUB_128. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	55
Abb. 6.38.a-b: Protogranular-porphyroklastische Struktur. Wehrlit. Probe DUB_128. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	55
Abb. 6.39.a-b: Protogranular-porphyroklastische Struktur. Wehrlit. Probe DUB_148. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	55
Abb. 6.40.a-b: Protogranular-porphyroklastische Struktur. Wehrlit. Probe DUB_148. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	56
Abb. 6.41.a-b: Wehrlit mit einer porphyroklastischen Struktur. Probe DUB_35. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	56
Abb. 6.42.a-b: Wehrlit mit einer porphyroklastischen Struktur. Probe DUB_192. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	57
Abb. 6.43.a-b: Wehrlit mit einer porphyroklastisch-äquigranularen Struktur. Probe DUB_56. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	57
Abb. 6.44.a-b: Wehrlit mit einer äquigranularen tabularen Struktur. Probe DUB_126. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	58
Abb. 6.45.a-b: Wehrlit mit einer äquigranularen tabularen Struktur. Probe DUB_310. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	58
Abb. 6.46.a-d: Dunit mit einer protogranular-porphyroklastischen Struktur. Probe DUB_93. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	60
Abb. 6.47. a-c: Amphibol <i>Typ I</i> . (a) Harzburgit, Probe DUB_64; (b) Lherzolith, Probe DUB_195; (c) Wehrlit, Probe DUB_209. Dünnschliffscan	70
Abb. 6.48.a-b: Amphibol in Form von Einzelkristallen in einem Wehrlit. Probe DUB_256. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	71
Abb. 6.49.a-b: Amphibol zeigt eine intrakristalline Verformung Lherzolith. Probe DUB_195. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	71
Abb. 6.50.a-b: Amphibol weist eine olivgrüne bis rötlichbraune Eigenfarbe, mit deutlichem Pleochroismus, auf Wehrlit. Probe DUB_25. Dünnschliffbild: ungekreuzte Polarisatoren	71

Abb. 6.51.a: Amphibol Typ II. Lherzolith. Probe DUB_302. Dünnschliffscan	72
Abb. 6.51.b: Amphibol <i>Typ III</i> . Zusammengesetzter Erdmantelxenolith. Probe DUB_28. Dünnschliffscan	72
Abb. 6.52.a-d: Amphibol <i>Typ III</i> . (a-b) Zusammengesetzter Erdmantelxenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren; (c-d) Zusammengesetzter Erdmantelxenolith. Probe DUB_114. BSE-Aufnahme	73
Abb. 6.53.a-b: Phlogopit <i>Typ I</i> . (a) <i>Typ IA</i> . Wehrlit. Probe DUB_306; (b) <i>Typ IB</i> . Wehrlit. Probe DUB_310. Dünnschliffscan	75
Abb. 6.54.a-b: Phlogopit in einem Wehrlit. (a) <i>Typ IA</i> . Wehrlit. Probe DUB_306. Dünnschliffbild: ungekreuzte Polarisatoren; (b) <i>Typ IB</i> . Wehrlit. Probe DUB_310. Dünnschliffbild: ungekreuzte Polarisatoren	76
Abb. 6.55.a-b: Phlogopit <i>Typ II</i> : Phase in einem <i>porphyroklastischen</i> Wehrlit. Probe DUB_35. Dünnschliffscan	77
Abb. 6.56.a-f: Phlogopit <i>Typ II</i> . (a-d) Phlogopit in einem <i>porphyroklastischen</i> Wehrlit. Probe DUB_35; (e-f) Phlogopit in einem <i>porphyroklastisch-äquigranularen</i> Lherzolith. Probe DUB_302. Dünnschliffbild: ungekreuzte (a, c, e, f) und gekreuzte (b, d) Polarisatoren	78
Abb. 6.57.a-d: Phlogopitzerfall in einem Wehrlit. (a) Probe DUB_18; (b-d) Probe DUB_309. Dünnschliffbild: ungekreuzte Polarisatoren	79
Abb. 6.58: Ader innerhalb des Hostperidotites. Probe DUB_319. Dünnschliffscan	81
Abb. 6.59.a-d: Phlogopit innerhalb der Ader. Lherzolith. Probe DUB_319. BSE-Aufnahme	81
Abb. 6.60.a-j: Mineralparagenese innerhalb einer Ader. Lherzolith. Probe DUB_319. BSE-Aufnahme	82
Abb. 6.61.a: Der zusammengesetzte Erdmantelxenolith. Probe DUB_28. Dünnschliffscan	85
Abb. 6.61.b: Der zusammengesetzte Erdmantelxenolith. Probe DUB_28. Dünnschliffscan	86
Abb. 6.61.c: Schematische Darstellung der keilförmigen Ader innerhalb des Peridotits. Probe DUB_28	86
Abb. 6.62.a-d: Ausbreitung der Orthopyroxenitadern im Hostperidotit. "composite" Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	87
Abb. 6.63.a-d: Orthopyroxen innerhalb des Wirtperidotits " <i>composite</i> " Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	88
Abb. 6.64.a-f: Petrographische Charakteristika der Phasen innerhalb der keilförmigen Ader. " <i>composite</i> " Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (a, c, e) und gekreuzte (b, d, f) Polarisatoren	89

Abb. 6.65.a-c: Petrographische Charakteristika der Phasen innerhalb der keilförmigen Ader. " <i>composite</i> " Xenolith. Probe DUB_28. Dünnschliffbild: ungekreuzte (b) und gekreuzte (a, c) Polarisatoren	90
Abb. 6.66.a-j: Petrographische Charakteristika der sekundären Phasen. " <i>composite</i> " Xenolith. Probe DUB_28. BSE-Aufnahme	91
Abb. 6.67.a-b: " <i>composite</i> " Xenolith. (a) Pyroxenitbereich; (b) Lherzolithbereich. Probe DUB_26. Dünnschliffscan	93
Abb. 6.68.a-f: Änderung der Korngröße innerhalb des Pyroxenites. " <i>composite</i> " Xenolith. Probe DUB_26. Dünnschliffbild: ungekreuzte (a, c, e) und gekreuzte (b, d, f) Polarisatoren	94
Abb. 6.69.a-d: Pyroxenitbereich. Detailaufnahmen. " <i>composite</i> " Xenolith. Probe DUB_26. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	95
Abb. 6.70.a-e: Kontakt zwischen den Pyroxenit- und Peridotitbereichen im zusammengesetzten Xenolith. Probe DUB_26. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d, e) Polarisatoren	96
Abb. 6.71.a-d: Pyroxene als sekundäre Phasen. " <i>composite</i> " Xenolith. Probe DUB_26. BSE-Aufnahme	97
Abb. 6.72: Spinell-führender Lherzolith im Kontaktbereich mit einem Pyroxenit. Probe DUB_303. Dünnschliffscan	99
Abb. 6.73.a-d: Olivinkristall weist einen Orthopyroxenitsaum auf Lherzolith. Probe DUB_303. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	99
Abb. 6.74.a-b: Peridotit im Kontakt zum Pyroxenit. " <i>composite</i> " Xenolith. Probe DUB_114. Dünnschliffscan	_ 101
Abb. 6.75.a-d: Pyroxenitader entlang der Olivinkorngrenzen. " <i>composite</i> " Xenolith. Probe DUB_114. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d). Polarisatoren	_ 102
Abb. 6.76.a-d: Pyroxenitader innerhalb des Olivinkristalls. " <i>composite</i> " Xenolith. Probe DUB_114. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	_ 103
Abb. 6.77.a-f: Verwachsungsform der sekundären Phasen. " <i>composite</i> " Xenolith. Probe DUB_114. BSE-Aufnahme	_ 104
Abb. 6.78.a-d: Kontakt zwischen dem Peridotit und Pyroxenit. " <i>composite</i> " Xenolith. Probe DUB_114. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren	_ 105
Abb. 6.79.a-e: Kontakt zwischen Peridotit und Pyroxenit. " <i>composite</i> " Xenolith. Probe DUB_114. BSE-Aufnahme	_ 106
Abb. 6.80: Amphibol zeigt unregelmäßige Kristallgrenzen mit zahlreichen Einbuchtungen Lherzolith. Probe DUB_83. BSE-Aufnahme	_ 107
Abb. 7.1.a-d: Variationsdiagramme Cr ₂ O ₃ , MnO, NiO und CaO vs. Forsteritgehalt des primären und sekundären Olivins	_ 112

Abb. 7.2: Variationsdiagramm TiO ₂ vs. Cr# des primären und sekundären Spinells	_ 112
Abb. 7.3: Verhältnis zwischen Cr# des Spinells und Forsteritgehalt des koexistierenden Olivins der untersuchten Spinell-führenden Peridotite. OSMA Plot (nach Arai, 1994)	_ 113
 Abb. 7.4.a-f: Chemische Zusammensetzung der primären und sekundären Orthopyroxene. (a) Nomenklatur von Ca-Mg-Fe-Orthopyroxenen (nach <i>Morimoto et al.</i>, <i>1989</i>); (b-f) Variationsdiagramme Cr₂O₃, CaO, Al₂O₃, SiO₂ und Na₂O vs. Mg# 	_ 115
Abb. 7.5.a-b: Variationsdiagramme TiO ₂ , Al ₂ O ₃ vs. Mg# von Orthopyroxen der untersuchten zusammengesetzten Erdmantelxenolithe	_ 116
 Abb. 7.6.a-h: Chemische Zusammensetzung der primären und sekundären Klinopyroxene. (a) Nomenklatur von Ca-Mg-Fe-Klinopyroxenen (nach <i>Morimoto et al.</i>, <i>1989</i>); (b-h) Variationsdiagramme TiO₂, CaO, Al₂O₃, Cr₂O₃, MnO, SiO₂ und Na₂O vs. Mg# 	_ 118
Abb. 7.7: Darstellung der Amphibole (nach Leake et al., 1997)	_ 120
Abb. 7.8: Chemische Zusammensetzung der Gläser der untersuchten Erdmantelxenolithe. Überblick. TAS-Diagramm (nach Le Maitre-IUGS, 1989)	_ 122
Abb. 7.9.a: Amphibol-führender Wehrlit. Probe DUB_25. Dünnschliffbild: ungekreuzte Polarisatoren	_ 123
Abb. 7.9.b: Klinopyroxen zeigt eine " <i>spongy</i> "-Struktur im Kontaktbereich mit dem Glas. Probe DUB_25. BSE-Aufnahme	_ 123
Abb. 7.10.a-i: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_25: Amphibol-führender Wehrlit. (a) TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>); (b-i) Variationsdiagramme	_ 124
Abb. 7.11.a-d: Variationsdiagramme: NiO, TiO ₂ , CaO und SiO ₂ vs. Forsteritgehalt des Olivins. Probe DUB_25: Amphibol-führender Wehrlit	_ 125
Abb. 7.12.a-b: (a) Reaktionszone zwischen den Phasen Amphibol und Klinopyroxen; (b) Klinopyroxen zeigt im Inneren eine " <i>spongy</i> "-Struktur. Probe DUB_25. BSE-Aufnahme	_ 125
Abb. 7.13.a-f: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ und Na ₂ O vs. MgO des Klinopyroxens. Probe DUB_25: Amphibol-führender Wehrlit	_ 126
Abb. 7.14.a-i: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_40: Amphibol-Spinell-führender Lherzolith. (a) TAS-Diagramm (nach Le Maitre-IUGS, 1989); (b-i) Variationsdiagramme	_ 128
Abb. 7.15.a-b: (a) Die Abbildung zeigt eine Glasader, die interstitiell, zwischen den primären Olivin und Orthopyroxen, liegt; (b) Detaillierte Aufnahme des Reaktionssaums Probe DUB_40. BSE-Aufnahme	_ 129
Abb. 7.16.a-b: (a) Der primäre Orthopyroxen in direktem Kontakt mit den Glas-Kristall- Aggregaten; (b) Der primäre Olivin in direktem Kontakt mit den Glas-Kristall- Aggregaten Probe DUB_40. BSE-Aufnahme	_ 129
Abb. 7.17.a-b: (a) Der primäre Klinopyroxen zeigt " <i>spongy</i> "-Bereiche…; (b) Der tertiäre Spinell weist eine starke Zonierung auf Probe DUB_40. BSE-Aufnahme	_ 130

Abb. 7.18.a-c: Die Fortpflanzung der Schmelze in einem Lherzolith. Probe DUB_40. BSE-Aufnahme	132
Abb. 7.19: Chemische Zusammensetzung des Glases in der Glasader, die in Abb. 7.18.a-c dargestellt ist. Probe DUB_40: Amphibol-Spinell-führender Lherzolith	133
Abb. 7.20.a-d: Variationsdiagramme: NiO, TiO ₂ , CaO und SiO ₂ vs. Forsteritgehalt des Olivins. Probe DUB_40: Amphibol-Spinell-führender Lherzolith	134
Abb. 7.21: Glas-Kristall-Aggregate beinhalten Amphibolrelikt Probe DUB_40. BSE-Aufnahme	135
Abb. 7.22.a-b: Das Profil durch den Olivinkristallrand. Probe DUB_40: Amphibol-Spinell- führender Lherzolith	135
Abb. 7.23.a-f: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ und Na ₂ O vs. MgO des Klinopyroxens. Probe DUB_40: Amphibol-Spinell-führender Lherzolith	137
Abb. 7.24: Phlogopit-führender Wehrlit. Probe DUB_306. Dünnschliffbild: ungekreuzte Polarisatoren	138
Abb. 7.25: Bildung von Glas-Kristall-Aggregaten im Kontaktbereich zwischen sekundärem Klinopyroxen und Phlogopit. Probe DUB_306. BSE-Aufnahme	138
Abb. 7.26.a-i: Chemische Zusammensetzung des Glases im Überblick. Proben DUB_306 & DUB_308: Phlogopit-führender Wehrlit. (a) TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>); (b-i) Variationsdiagramme	139
Abb. 7.27.a-d: Variationsdiagramme: NiO, TiO ₂ , CaO und SiO ₂ vs. Forsteritgehalt des Olivins. Proben DUB_306 & DUB_308: Phlogopit-führender Wehrlit	140
Abb. 7.28.a-f: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ und Na ₂ O vs. MgO des Klinopyroxens. Proben DUB_306 & DUB_308: Phlogopit-führender Wehrlit	141
Abb. 7.29.a-b: Bildung von Glas-Kristall-Aggregaten am Kontakt zwischen primärem/ sekundärem Klinopyroxen und Phlogopit. Probe DUB_308. BSE-Aufnahme	142
Abb. 7.30.a-b: Glasadern im Lherzolith Probe DUB_34. Dünnschliffbild: ungekreuzte (a) und gekreuzte (b) Polarisatoren	143
Abb. 7.31.a-b: Primäre Phasen – Olivin und Orthopyroxen – reagieren unterschiedlich auf die perkolierende Schmelze Probe DUB_34. BSE-Aufnahme	144
Abb. 7.32.a-j: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_34: Spinell-führender Lherzolith. (a) TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>); (b-j) Variationsdiagramme	146
Abb. 7.33.a-c: Die Reaktionsfront zw. siliziumuntersättigter Schmelze und dem Orthopyroxen Probe DUB_34. BSE-Aufnahme	147
Abb. 7.34.a-h: Chemische Zusammensetzung des Glases innerhalb der Reaktionszone. Probe DUB_34: Spinell-führender Lherzolith. Variationsdiagramm	148
Abb. 7.35.a-b: Zwei Abschnitte einer Glasader innerhalb eines Orthopyroxenkristalls. Probe DUB_34. BSE-Aufnahme	149
Abb. 7.36.a-b: Die schmalsten Aderabschnitte im Kontakt mit dem Orthopyroxen Probe DUB 34. BSE-Aufnahme	149

Abb. 7.37.a-b: Kristallrand des primären Spinells zeigt eine " <i>spongy</i> "-Struktur Probe DUB_34. BSE-Aufnahme	149
Abb. 7.38.a-d: Variationsdiagramme: NiO, TiO ₂ , CaO und SiO ₂ vs. Forsteritgehalt des Olivins. Probe DUB_34: Spinell-führender Lherzolith	150
Abb. 7.39.a-f: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ und Na ₂ O vs. MgO des Klinopyroxens. Probe DUB_34: Spinell-führender Lherzolith	151
Abb. 7.40: Primärer Klinopyroxen zeigt eine Instabilität in Form eines " <i>spongy</i> "-Saumes Probe DUB_34. BSE-Aufnahme	151
Abb. 7.41.a-j: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_145: Spinell-führender Lherzolith. (a) TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>); (b-j) Variationsdiagramme	153
Abb. 7.42.a-b: Variationsdiagramme: NiO und CaO vs. Forsteritgehalt des Olivins. Probe DUB_145: Spinell-führender Lherzolith	154
Abb. 7.43.a-b: Der primäre Orthopyroxen weist zahlreiche Spinell- und Klinopyroxenentmischungslamellen auf Probe DUB_145. BSE-Aufnahme	154
Abb. 7.44.a-b: Der primäre Klinopyroxen zeigt eine Instabilität gegenüber der Schmelze Probe DUB_145. BSE-Aufnahme	154
Abb. 7.45.a-g: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ , Na ₂ O und Cr ₂ O ₃ vs. MgO-Gehalt des Klinopyroxens. Probe DUB_145: Spinell-führender Lherzolith	155
 Abb. 7.46.a-d: (a-c) Variationsdiagramme: TiO₂, NiO und MgO vs. Cr# des Spinells; (d) Variationsdiagramm Al₂O₃ vs. Cr₂O₃. Probe DUB_145: Spinell-führender Lherzolith 	156
Abb. 7.47.a-b: (a) Primärer Spinell in direktem Kontakt zu den primären Orthopyroxen und Olivin. Probe DUB_145. BSE-Aufnahme	157
Abb. 7.48.a-b: tertiäre OI+Cpx+SpI+Glas-Aggregate. Probe DUB_145. BSE-Aufnahme	157
Abb. 7.49.a-b: Der Spinell ist von tertiären Ol+Cpx+Spl+Glas-Aggregaten umgeben Probe DUB_145. BSE-Aufnahme	157
Abb. 7.50.a-b: Spinelle sind von tertiären Glas-Kristall-Aggregaten umgeben Probe DUB_145. BSE-Aufnahme	158
Abb. 7.51.a-b: Der große Klinopyroxen weist im Inneren des Kristalls tertiär gebildete Olivine sowie Glaseinschlüsse auf Probe DUB_145. BSE-Aufnahme	158
Abb. 7.52.a-b: Das Wachstum des tertiären Klinopyroxens Probe DUB_145. BSE-Aufnahme	158
Abb. 7.53.a-i: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_28: " <i>composite</i> " Xenolith. (a) TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>); (b-i) Variationsdiagramme	160
Abb. 7.54.a-d: Variationsdiagramme: NiO, TiO ₂ , CaO und SiO ₂ vs. Forsteritgehalt des Olivins. Probe DUB_28: <i>"composite</i> " Xenolith	161

Abb.	7.55.a-b: (a) Orthopyroxen innerhalb einer OrthopyroxenitaderProbe DUB_28. BSE-Aufnahme	161
Abb.	7.56.a-f: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ und Na ₂ O vs. MgO des Klinopyroxens. Probe DUB_28: <i>"composite</i> " Xenolith	162
Abb.	7.57.a-i: Chemische Zusammensetzung des Glases im Überblick. Probe DUB_114: " <i>composite</i> " Xenolith. (a) TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>); (b-i) Variationsdiagramme	164
Abb.	7.58.a-d: Variationsdiagramme: NiO, TiO ₂ , CaO und SiO ₂ vs. Forsteritgehalt des Olivins. Probe DUB_114: " <i>composite</i> " Xenolith	165
Abb.	7.59.a-f: Variationsdiagramme: SiO ₂ , Al ₂ O ₃ , FeO, CaO, TiO ₂ und Na ₂ O vs. MgO des Klinopyroxens. Probe DUB_114: <i>"composite</i> " Xenolith	166
Abb.	7.60: Probe DUB_114: "composite" Xenolith. Dünnschliffscan	168
Abb.	7.61.a-f: Probe DUB_114: " <i>composite</i> " Xenolith. Klinopyroxenitbereich. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren; (e-f) BSE-Aufnahmen	169
Abb.	7.62.a-f: Probe DUB_114: " <i>composite</i> " Xenolith. Peridotitbereich. Dünnschliffbild: ungekreuzte (a, c) und gekreuzte (b, d) Polarisatoren; (e-f) BSE-Aufnahmen	170
Abb.	7.63.a-f: Probe DUB_114: "composite" Xenolith. Peridotitbereich. BSE-Aufnahmen	171
Abb.	7.64.a-f: Probe DUB_114: "composite" Xenolith. Peridotitbereich. BSE-Aufnahmen	172
Abb.	8.1.a-b: Titananreicherung an instabilen Phlogopit- und Amphibolkristallrändern. Lherzitader in einem Lherzolith. Probe DUB_319. BSE-Aufnahme	189
Abb.	8.2.a: Der " <i>composite</i> " Erdmantelxenolith weist eine keilförmige Ader auf Probe DUB_28. Dünnschliffscan	192
Abb.	8.2.b: Schematische Darstellung der keilförmigen Ader	192
Abb.	8.3: Verhältnis zwischen Cr# des Spinells und Forsteritgehalt des koexistierenden Olivins der untersuchten Spinell-führenden Peridotite. OSMA-Plot (Olivine-Spinel-Mantle-Array) (nach Arai, 1994)	195
Abb.	 8.4: (a-b) Variationsdiagramme TiO₂, Al₂O₃ vs. Mg# von Orthopyroxen der untersuchten zusammengesetzten Erdmantelxenolithe: Proben DUB_26, DUB_28, DUB_114 	196
Abb.	8.5: Das inkongruente Schmelzen des primären Orthopyroxens. Spl-führender Lherzolith. Probe DUB_145. BSE-Aufnahme	200
Abb.	8.6: Der Alkali- vs. SiO ₂ -Gehalt aller untersuchten Gläser im Überblick. TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>)	200
Abb.	8.7: Klassifizierung der untersuchten Gläser nach ihrer Paragenese. TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>)	202
Abb.	8.8: Die möglichen Trends der Glasbildung. TAS-Diagramm (nach <i>Le Maitre-IUGS, 1989</i>)	202

TABELLENVERZEICHNIS

Tab. 5.1: Modaler Mineralbestand. Lherzolithe	32
Modaler Mineralbestand. Harzburgite	32
Modaler Mineralbestand. Wehrlite	34
Modaler Mineralbestand. Andere Gesteinstype	34
Tab. 6.1: Petrographische Charakteristika im Überblick. Lherzolithe	62
Petrographische Charakteristika im Überblick. Harzburgite	64
Petrographische Charakteristika im Überblick. Wehrlite	66
Petrographische Charakteristika im Überblick. Andere Gesteinstype	66
Tab. 7.1: chemische Zusammensetzung des primären Olivins in Gew%	173
Tab. 7.2: chemische Zusammensetzung des primären Orthopyroxens in Gew%	174
Tab. 7.3: chemische Zusammensetzung des primären Klinopyroxens in Gew%	175
Tab. 7.4: chemische Zusammensetzung des primären Spinells in Gew%	176
Tab. 7.5: chemische Zusammensetzung des sekundären Olivins in Gew%	177
Tab. 7.6: chemische Zusammensetzung des sekundären Orthopyroxens in Gew%	177
Tab. 7.7: chemische Zusammensetzung des sekundären Klinopyroxens in Gew%	178
Tab. 7.8: chemische Zusammensetzung des sekundären Spinells in Gew%	179
Tab. 7.9: Amphibol. Chemische Zusammensetzung in Gew%, kristallchemische Strukturformeln	180
Tab. 7.10: chemische Zusammensetzung des Phlogopits in Gew%	183
Tab. 7.11: chemische Zusammensetzung der untersuchten Gläser in Gew%	184
Tab. 7.12: chemische Zusammensetzung des tertiären Olivins in Gew%	185
Tab. 7.13: chemische Zusammensetzung des tertiären Spinells in Gew%	185
Tab. 7.14: chemische Zusammensetzung des tertiären Klinopyroxens "spongy"-Bereich	186
Tab. 7.15: chemische Zusammensetzung des tertiären Klinopyroxens (hypidiomorph im Glas)	187
Tab. 7.16: chemische Zusammensetzung des Apatits in Gew%	187

	n modaler Metasomatose & Glas	de Einschlüsse in Cpx; e Häufigkeit; öße: 0,5 x 1 mm² bis 1 x 1,5 mm²; von GI+Spl2+Ol2-Aggregaten umgeben; in Anricaten sind nadeline Kristalla zu	en, die rosettenförmig angeordnet sind; ahlreiche Einbuchtungen; eelt kink bands;	5 x 10 mm ² ; mensetzung: GI+Spl2±Cpx2±Ol2;	ich in mp; ich bis bräunlich-gelb in Adern entlang der grenzen;	5 x 5 mm²; ch; mensetzung: GI+Spl2+Ol2+Cpx2;			
	Phas	als rui gerinç Korng stets	erken zeigt ; vereir	Größe Zusar	● gelt For Kor	Größe zahlre Zusar			
e		Amph Phl		du	ত	dm			
Besondere Merkm	Hauptphasen	 Korngröße: 1 x 1 mm² bis 3 x 5 mm²; gekrümmte, glatte Komgrenzen; Kristallorientierung willkürlich; Elongation nicht vorhanden; große Kristalle weisen <i>kink bands</i> auf, untergeordnet – subgrain boundaries; Polvoonisierung an manchen Stellen erkennhar. 	Dpx ca. 0,5 bis 1 mit Cpx- Apply ca. 0,5 bis 1 mit Cpx- Kristallen vor; Vorkommen ist selten; Vorkommen ist selten; Vorkommen ist selten; Vorkommen ist selten;	<pre>:px Korngröße: 0,5 x 1 mm² bis 2 x 2 mm²;</pre>		01 Korngröße: bis zu 10 x 10 mm²; gekrümmte Korngrenzen; vereinzelt <i>kink bands</i> ;	px grobkörnig (10 x 10 mm²); Cpx-Entmischungslamellen im Kristall; gekrümmte Korngrenzen im Kontakt zu Ol; Korngrenzen im Kontakt zu mp sind unregelmässig, mit Einbuchtungen;	<pre>;px feinkörnig (0,5-1 mm);</pre>	pl Spl1: feinkörnig (0,3-0,5 mm), xenomorph, oft vermicular; liegt in Kontakt zu Opx oder in mp vor; Spl2: sehr feinkörnig, idiomorph, stets in mp/Glas;
	Korngröße					<u> </u>			
h Mercier: אחרכופר	Struktur (nad & Nicolas. 19	protogranular mittelkörnig				opkörnig granular	protog		
styp	niəteəĐ	tihdeW				nerzolith	l-führender Ll	qS	
Ð	Prob	DUB_3GA				01_8UC]		

 h Korngröße: 1 x 2 bis 2 x 2,5 mm²; reliktisch: xenomorph, mit zahlreichen Einbuchtungen; befinden sich innerhalb von Glas-Kristall-Aggr.; r. Größe: bis zu 6 x 9 mm²; Zusammensetzung: Gl+Cpx2+Spl2+Ol2 ± Amph- 	Relikte; gelb; in Adern und innerhalb der Aggr.;	h 1-2 mm große Kristalle; zahlreich, interstitiell oder in Form von Einschlüssen im Pyroxen;	innerhalb von Adern, interstitiell;	im µm Bereich	
Amp Agg	Ū	Amp	ठ	Ap	
Korngröße: bis zu 4 x 6 mm ² ; Hinweise auf ursprünglich größere Kristalle; Korngrenzen sind gekrümmt; an manchen Stellen auch suturiert (beginnender " <i>bulging</i> "- Prozess); <i>subgrain boundaries</i> , vereinzelt <i>kink bands</i> ; undulöse Auslöschung; Polygonisierung; an manchen Stellen: OI-Bruchstücke eingebettet in Kalzit-Kristalle;	Korngröße: 1 x 1,5 mm² bis 3 x 4 mm²; "spongy"-Saum;	Korngröße: 1-4 mm; gekrümmte, oft unregelmäßige Korngrenzen; homogene oder undulöse Auslöschung, <i>subgrain boundaries</i> , vereinzelt schwach ausgebildete <i>kink bands</i> ;	Durchmesser: 2-5 mm; einheitliche Auslöschung; Korngrenzen gerade oder gekrümmt; glatte Korngrenzen kommen untergeordnet vor (am Kontakt zu OI); die Korngrenzen zu Opx und Cpx meistens gezahnt, unregelmässig; Entmischungslamellen: spindel- bis leistenförmig; eine gewisse Instabilität der Kristallgrenzen am Kontakt zu Glass erkennbar;	Durchmesser: 2-5 mm; "spongy"-Saum; einheitliche Auslöschung; Korngrenzen gerade oder gekrümmt; glatte Korngrenzen kommen untergeordnet vor (am Kontakt zu OI); die Korngrenzen zu Opx und Cpx meistens gezahnt, unregelmässig; Entmischungslamellen: spindel- bis leistenförmig;	0,5 mm große Kristalle; xenomorph, stets am Kontakt zu Amph;
ō	Cpx	ō	Opx	CDX	Spl
protogranular pittelkörnig		protogranular mittelkörnig			
führender Wehrlit	lq2	r Ol-Websterit	Spl-führende		
ri_a∪a		DUB_12			

nicht vorhanden			Durchmesser: 1 mm; hypidiomorph bis xenomorph, oft mit Einbuchtungen; stets von Gl umgeben;	Durchmesser: ca. 3 mm; Zusammensetzung: GI+Spl2+Ol2 ± PhI- Relikte;	gelb; interstitioll in Adem oder innerhalb von Annr -	größere Mengen am Kontakt zum Phl;		
			РИ	Aggr.	ত			
Durchmesser: 1-3 mm; gekrümmte, glatte Komgrenzen; <i>subgrain boundaries, kink bands;</i> Durchmesser: 2-5 mm; gekrümmte, glatte Komgrenzen; Cpx-Entmischungsamellen: entlang der Spaltbarkeit; äußerst dichte Anordnung; kommen nicht in allen Kristallen vor; Kristallrand ist immer frei von Entmischungslamellen und scheint homogen zu sein; gewisse Instabilität an Korngrenzen, besonders in Anwesenheit der Spl- Phase; Durchmesser: 1-2 mm;	"spongy" -Saum; stets in direktem Kontakt mit Opx, oft an der Peripherie der Opx-Kristalle; Opx-Entmischungslamellen: leistenförmig, parallel zu beiden Spaltbarkeitsrichtungen {110}; sehr dichte Anordnung; den ganzen Kristall durchziehend; Einschlüsse: xenomorph, flecken-/tröpfchenförmig ausgebildet; regellose, sehr dichte Anordnung;	Durchmesser: 0,5-1 mm; xenomorph, oft vermikular; stets am Rand von Opx-Kristallen;	Korngröße: ca. 2 x 4 mm ² bis 3 x 5 mm ² ; gekrümmte, glatte Korngrenzen; subgrain boundaries, kink bands, seltener auch undulöse Auslöschung; Polygonisierung deutlich erkennbar: 0,1-0,5 mm Kristalle zeigen eine	einheitliche Auslöschung; sowohl isometrische als auch anisometrische Kristalle sind vorhanden; gerade Kornkontakte, deutlich ausgebildete	Tripelpunktkorngrenzen; Durchmoscor: 0.5.1 mm:	Duicininessei. 0,5-1 mini, xenomorph; " <i>spongy"</i> -Saum, oft durchgreifend;	idiomorph; befindet sich ausnahmslos in Aggr.;	bis 0,7 mm breite Adern, interstitiell;
C DX ODX		Spl	D		2 C	сhx	Spl	ပို
Spi-iunrender Lherzolith protogranular mittelkörnig			vvennig otogranular mittelkörnig	bu				
DUB_13								

					-			
Durchmesser: ca. 2 mm; xenomorph, zahlreiche Einbuchtungen, manchmal auch skelettförmig; stets im Kontakt zu Cpx; äußerst geringe Häufigkeit	gelb; interstitiell oder in Ol2+Spl2±Cpx2+Gl-Aggregaten; im Glas (sowohl interstitiell als auch in Aggregaten)	sind nadelige Kristalle zu erkennen, die rosettenförmig angeordnet sind;		Größe: 0,5 x 1,5 mm²; befindet sich in Aggr.; xenomorph, zahlreiche Einbuchtungen;	Größe: 0,2 x 2 mm²;	AggrZusammensetzung: Gl+Spl2+Ol2±Cpx2-Aggr. ± Amph- Relikte; Größe: 3 x 4 mm²; mp-Zusammensetzung: Gl+Spl2+Ol2±Cpx2; Größe:	1 x 1,5 mm ² ;	gelb; relativ geringe Häufigkeit; interstitiell oder in mp/Aggr.;
Amph Phl	Ū			Amph	ΡhΙ	mp/ Aggr.		ō
bis zu 3 x 6 mm ² große Kristalle sind ursprünglich deutlich größer gewesen (anhand der Orientierung der Kristalle festzustellen); gekrümmte, glatte Komgrenzen; oft homogene Auslöschung, untergeordnet auch undulöse Auslöschung, vereinzelt <i>kink bands</i> oder <i>subgrain boundaries</i> ; Polvaonisieruna deutlich zu erkennen: neu gebildete Kristalle sind ca. 0.5	mm im Durchmesser; gerade Kornkontakte, deutlich ausgebildete Tripelpunktkorngrenzen;	Durchmesser: 1 bis 5 mm; manche Korngrenzen sind völlig frei von " <i>spongy"</i> -Saum; die anderen weisen deutlichen " <i>spongy"</i> -saum auf; besonders mächtiger " <i>spongy"</i> -Saum an Kontakt zu Amph;	idiomorph; in Form von Einschlüssen in Amph oder in Aggr.;	Korngröße: bis zu 4 x 6 mm²; gekrümmte, glatte Komgrenzen; undulöse Auslöschung, s <i>ubgrain boundari</i> es, Deformationsbänder, <i>kink</i>	bands; Polygonisierung an manchen Stellen erkennbar:	ca. 0,5-1 mm Ol-Neoblasten zeigen eine einheitliche Auslöschung und gerade Korngrenzen; Tripelpunktkorngrenzen deutlich erkennbar;	Durchmesser: 0,5-1 mm; Vorkommen selten;	Durchmesser: 0,3-1,5 mm; " <i>spongy</i> "-Saum;
ō		Cpx	Spl	ō			Орх	Cpx
protogranular protogranular	mittelkörn			granular Bikörnig	protog tim			
tihnəW				tihnaW				
D∩B_25				72_8UC]			

als Einschlüsse in Cpx; Vorkommen gering;	in Form von dünnen Leisten, innerhalb der Adern; vereinzelt;	Korngröße: ca. 0,5 mm; Vorkommen: als Einzelkristall, oder in Gruppen; innerhalb oder an der Peripherie von Opx-Kristallen und in Aggr.; Größe: 2 x 3 mm ² bis 2 x 6 mm ² ; Zusammensetzung: GI+Ol2+Spl2±Cpx2 ± große xenomorphe Spl-Kristalle; in diesen Aggregaten sind ebenfalls nadelige Kristalle zu erkennen, die rosettenförmig angeordnet sind;
Amph	Ч	PhI Aggr.
Korngröße: 2 x 2 mm² bis 3 x 6 mm²; Korngrenzen meistens gekrümmt, glatt; an manchen Stellen Tripelpunktkorngrenzen erkennbar; oft homogene Auslöschung; seltener <i>subgrain boundaries</i> , Deformationsbänder oder <i>kink bands</i> ; manche Kristalle weisen eine gewisse Instabilität (→ Reaktionsfront) auf: Bänder mit feinsten, neu gebildeten Kristallen (µm-Bereich) ziehen entlang ihrer Korngrenzen und/oder durch manche Ol-Kristalle hindurch; diese Neoblasten weisen gezahnte Korngrenzen auf;	Korngröße: 1 x 1 mm² bis 5 x 6 mm², wobei die großen Kristalle dominieren; Korngrenzen sind gekrümmt und meistens glatt; vorwiegend homogene Auslöschung, <i>kink bands</i> sehr selten; manche Kristalle weisen eine gewisse Instabilität (→ Reaktionsfront) auf: Bänder mit feinsten, neu gebildeten Kristallen (µm-Bereich) ziehen entlang ihrer Korngrenzen und/oder durch manche Opx-Kristalle hindurch; diese Neoblasten weisen gezahnte Konrgrenzen auf; Korngröße: 1 x 2 mm² bis 3 x 3 mm²; Korngröße: 1 x 2 mm² bis 3 x 3 mm²; manche Kristalle weisen eine gewisse Instabilität (→ Reaktionsfront) auf: Bänder mit feinsten, neu gebildeten Kristallen (µm-Bereich) ziehen entlang ihrer Korngrenzen und/oder durch manche Cpx-Kristalle hindurch; diese Neoblasten weisen gezahnte Korngrenzen auf,	Korngröße: 1,5 x 1,5 mm² bis 4 x 5 mm²; gekrümmte, glatte Komgrenzen; oft homogene Auslöschung, vereinzelt <i>kink band</i> s; ausgeprägte Polygonisierung mit gut ausgebildeten geraden Korngrenzen und Tripelpunkten; Bänder mit feinsten Rekristallisaten durchziehen manche Kristalle (ähnlich der Probe DUB_29) Korngröße: 1 x 1 mm² bis 7 x 11 mm²; leistenförmige Cpx-Entmischungslamellen, besonders gut ausgebildet in großen Kristallen; scheint am Kontakt zum Glas instabil zu sein: feinste Rekristallisate in zahlreichen Einbuchtungen;
ō	Opx Cpx	IO XdO
Lherzolith protogranular bing bis grobkörnig		Spl-führender Lherzolith protogranular mittelkörnig bis grobkörnig
DNB_29		DUB_31

O Spi

								t xenomorph;	stets als Relikte in Aggr.;	als einzelne Kristalle oder als Ansammlumgen;	innerhalb und/oder zwischen Ol-Neoblasten, in Glas-	Kristall-Aggr. und in Glas-Adern;	hypidiomorph bis xenomorph;	Durchmesser: 1-4mm:	enthalten teilweise Amph und/oder PhI;	in Aggr., interstitiell oder entlang der Ol-	Kristallbruchflächen;		-	gelblich; kommt zusammen mit feinsten Bekristallisaten vor	interstitiell oder durchzieht manche Kristalle;										
								Ampl		Phl				Aaar		G			ē	Ū						-					
ausgprägte Instabilität am Kontakt zum Glas: Bildung von Rekristallisaten: Ol2±Cpx2±Spl2	Korngröße: ca.1 x 2 mm²; meistens in direktem Kontakt zu Onx-Kristallen:	leisten- und spindelförmige Entmischungslamellen zweier verschiedener	Arten erkennbar: Spl-Lamellen bilden einen Winkel zu Opx-Lamellen;	Kornrand oft frei von Entmischungslamellen;	Korngröße: 1 x 1 mm²;	xenomorph, vermikular;	stets in direktem Kontakt zum Opx;	charakteristische bimodale Korngrößenverteilung:	 Porphyroklasten (Korngröße bis zu 6 x 6 mm²) zeigen undulöse 	Auslöschung, subgrain boundaries, Deformationsbänder, kink bands;	"core-and-mantle"-Struktur;	 OI-Neoblasten: bis zu 2 mm im Durchmesser; zwei Arten unterscheidbar: 	hypidiomorphe isometrische Neoblasten sind deutlich feinkörniger als	idiomorphe anisometrische Kristalle; geradlinige Korngrenzen mit	Tripelpunkten oft zu sehen;	Korndurchmesser: 0,5-2 mm;	<i>"spongy"</i> -Saum, oft sehr breit ausgebildet;	idiomorph in Aggr.;		Korngrolse: 1 x 2 mm² bis 5 x / mm²; cekriimmte_clatte Komorenzen:	homogene Auslöschung; untergeordnet subgrain boundaries,	Deformationsbänder; vereinzelt kink bands;	Rekristallisation an manchen Stellen erkennbar;	gewisse Instabilität an Korngrenzen und auch innerhalb der Kristalle: feinste	Rekristallisate durchziehen manche Kristalle:	Korngröße: 1 x 1 mm ² bis 5 x 9 mm ² ;	gekrümmte, glatte Komgrenzen;	homogene Auslöschung; vereinzelt kink bands;	gewisse Instabilität an Korngrenzen und auch innerhalb der Kristalle: feinste	Rekristallisate;	feinste Cpx-Entmischungslamellen in sehr hoher Dichte;
	Срх				Spl			Ы								Cpx		Spl	į	5						0px					
								tin La	iehi eits nrö:	r W klas telk	əbn yrol tim	грћ	od	Ids						ırgit ular rnig	itzbi	вН otog gro	bud	uə.	Jun	t-Iqë	5				
								92 92	, . В_С					. 0					╉	96_	800]	1.		1						

		Amph als Einschlüsse innerhalb der Cpx-Kristalle; Vorkommen ist relativ selten;				
Korngröße: ca. 0,5 x 1 mm ² ; kommt bevorzugt an der Peripherie von Opx-Kristallen vor; Vorkommen ist generell selten; zwei Systeme von spindelförmigen Entmischungslamellen bilden einen Winkel zueinander; gewisse Instabilität an Korngrenzen;	xonigrouse: ca. 1 x 1 mint- min Duicriscimmu, xenomorph, manchmal vermikular; stets an der Peripherie von Opx-Kristallen;	 bimodale Korngrößenverteilung: Porphyroklasten: bis zu 3 x 7 mm²; manche Korngrenzen zeigen eine Suturierung; die anderen – sind von Neoblasten umsäumt; subgrain boundaries, Deformationsbänder, kink bands (stehen senkrecht auf die Elongation des Porphyroklasten); Neoblasten: anisometrische Kristallform dominiert; Kristalle liegen oft 	subparallel zu elongierten Porphyroklasten; zeigen meistens homogene Auslöschung;	Korngrenzen gekrümmt und meistens unregelmälsig, wellig; meistens homogene Auslöschung; seltener <i>subgrain boundari</i> es;	die größeren Kristalle meistens Spl-frei, liegen oft am Kontakt zum Opx; die Korngrenzen gekrümmt, glatt; kleinere Kristalle bilden Cpx-"Felder", sind stets mit Spl vergesellschaftet; die Korngrenzen eher unregelmäßig;	vergesellschaftet mit Cpx; braun mit grünem Stich; hypidiomorph bis idiomorph; im Inneren dieser SpI-Kristalle befinden sich kleinere idiomorphe SpI- Kristalle und ca. 10-20 µm große Blasen (eventuell Gas-Blasen);
C C C	īdo	ō	(хdО	Срх	Spl
		DUB_39 hrender Lherzolith bular äquigranular mittelkörnig	lüî-lq2 lst-dosites	οιbμλιοκ	d	

 xenomorph, reliktisch; befindet sich in Aggr.; 	Größe: 1,5 x 4 mm² bis 5x9 mm²; AggrZusammensetzung: GI+Spl2+Ol2+Cpx2 ± Amph- Relikte; mp-Zusammensetzung: GI+Spl2+Ol2+Cpx2;	einige Kristalle interstitiell zu finden;			I reliktisch in Aggr.: zahlreiche Einbuchtungen, oft	skelettformg; Korngröße: ca. 1 x 1,5 mm²; zahlreich;	kleine Amph-Einschlüsse in Cpx-Kristallen;					interstitiell;						
Ampł	mp/ Aggr.	Ap			Ampł							Ū						
Korngröße: 3 x 5 mm² bis 5 x 5 mm²; gekrümmte, glatte Komgrenzen; gerade Korngrenzen mit Tripelpunkt selten; homogene Auslöschung; <i>kink bands</i> , seltener Deformationszwillinge;	Korngröße: 5 x 8 mm²; gekrümmte, glatte Korngrenzen; Korngrenzen zu mp/Aggr. zeigen zahlreiche Einbuchtungen → Instabilität; vereinzelt <i>kink bands</i> ; sonst einheitliche Auslöschung;	Cpx-Entmischungslamellen;		Durchmesser: 0,3 bis 1 mm; xenomorph; befindet sich in mp/Aggr.;	bimodale Korngrößenverteilung:	 Porphyroklasten (Korngröße 1,5 x 3 mm²) zeigen subgrain boundaries oder vereinzelt kink bands; undulöse Auslöschung kommt untergeordnet 	vor; Suturierung der Korngrenzen kommt untergeordnet vor; die meisten Korngrenzen sind von Olivin-Neoblasten umgeben und bilden mit ihnen	geradlinige Korngrenzenabschnitte;	 Neoblasten: anisometrische, idiomorphe Kristalle dominieren; homogene Auslöschung; 	Korngröße: 1 x 2 mm² bis 2 x 4 mm²; sponor/*_Saum:	homogene Auslöschung, subgrain boundaries, vereinzelt kink bands;	Korngröße: 2 x 3 mm ² bis 5 x 9 mm ² , wobei große Kristalle dominieren;	gekrümmte, glatte Korngrenzen; Tripelpunktkorngrenzen zwischen Ol- Kristallen:	oft homogene Auslöschung; undulöse Auslöschung und leichte kink bands	kommen ebenfalls vor;	Korngröße: 0,7 x 1 mm ² bis 2 x 3 mm ² ;	Korngrenzen gekrummt; weisen eine Instabilität auf (besonders ausgeprägt	in Anwesenneit von spi): blidung von teinkornigen Kekristallisaten (GI+OI2+SpI2-Aggr.) innerhalb von zahlreichen Einbuchtungen:
ō	Opx	, C	х Л	Spl	ō					Cpx		ō				Орх		
granular granular	proto körnig bis gro	Iettim			ווּם: פר; פר-	:elkörn granul elkörn	ristisch iupä tiim ei	slyo okls	inkörr	oq əî		is is	pranuls brnig b bkörn	aro elkö otog	nt pr	1		
dfilozıər	-führender Ll	lq2			tihr	ЧэW						tig	Sundzi	вНг	ıəpı	nen	lüt-l	qS
00B_40]				99	DUB_						25	9_8U0]				

		N Korngröße: 1 x 1 mm² bis 1 x 3 mm²; zahlreich; xenomorph, zahlreiche Einbuchtungen; an Korngrenzen und innerhalb der Kristalle GI+OI2+Cpx2+Spl2-Aggr. erkennbar;	Zusammensetzung: GI+OI2+Spl2+Cpx2., geringeres Volumen;	entlang der Amph-Korngrenzen (→ Amph-Zerfall im Anfangsstadium);	
		Amph	Aggr.		
Korngröße: ca. 0,5 x 1 mm²; kommen als kleine Kristalle vor, meistens an der Peripherie der deutlich größeren Opx-Kristalle; "spongy"-Saum;	Korngröße: 0,5 x 0,5 mm² bis 1 x 1,5 mm²; xenomorph; rötlich-braun mit schwarzem, opakem Rand; kleinere Kristalle durchgehend schwarz (→ Oxidierung); Kristalle sind stets von GI+Ol2+Spl2-Aggregaten umgeben; manche Kristalle zeigen Einbuchtungen, in denen sich GI und idiomorphe OI-Kristalle befinden; an manchen Stellen ist Kristallbruch zu erkennen. Zwischen solchen Bruchflächen befinden sich GI+Spl2±Ol2-Aggregate; Wachstum der neuen idiomorphen Spl-Kristalle an der Kristalloberfläche der alten Spl-Kristalle;	Korngröße: 1,5 x 3 mm² bis zu 5 x 6 mm²; ursprünglich größere Kristalle; stark ausgeprägte undulöse Auslöschung, Deformationslamellen, mechanische Zwillinge, zahlreiche scharfe <i>kink bands</i> ; Korngrenzen gekrümmt, vorwiegend suturiert. An mehreren Stellen Nukleation erkennbar: sowohl an Korngrenzen, als auch intrakristallin; Neoblasten: sowohl isometrisch, als auch anisometrisch; einheitliche	Auslöschung, gerade Korngrenzen;	Korngröße: ca. 4 mm im Durchmesser; gekrümmte Korngrenzen; teilweise undulöse Auslöschung, <i>subgrain boundaries</i> ; Instabilität der Korngrenzen am Kontakt zum Glas;	Korngröße: 1-2 mm; stets in direktem Kontakt zum Opx; "spongy"-Saum;
CD	р <mark>п</mark>	ō		Opx	Cpx
		Harzburgit porphyroklastisch pin grobkörnig	anular- anular- nittelkör	າງດາດ ກ	
		±9_8∪0			

Amph Korngröße: ca. 0,7 x 1 mm ² ; in direktem Kontakt zu Cpx oder Opx; innerhalb des Kristalls und entlang der Korngrenzen bilden sich feinste GI-Kristall-Aggregate; Vorkommen selten;	GI entlang der Korngrenzen und Kristallbruchflächen;			Amph Korngröße: 0,5 x 1 mm² bis 1 x 1,5 mm²; xenomorph; oft am Rand der Opx-Kristalle; oft im Kontakt zum Spl;	GI gelb bis braun; – entlang der Korngrenzen oder Kristallbruchflächen;	enthält Kalzit und Xenolithbruchstücke in ehemaligen
strigrolse: 2 x 3 mm ² bis 3 x 5 mm ² ;	krümmte, glatte Komgrenzen; mogene Auslöschung; nste Cpx-Entmischungslamellen (schiefe Auslöschung) in manchen istallen; stabilität am Kontakt zu GI → Reaktionsfront (der Prozess im ifangsstadium); Der breiteste Reaktionssaum an direktem Kontakt zum ostbasalt;	orngröße: 1 x 1,2 mm² bis 1,5 x 3,5 mm²; indelförmige Spl-Entmischungen; Spl-Einschlüsse;	rıngröße: 0,7 x 1 mm² bis 2 x 3 mm²; nomorph, manchmal vermikular; dich-braun; eistens an direktem Kontakt zu Opx-, seltener zu Cpx-Kristallen; mmt relativ häufig vor; J-Oxidierung am Kontakt zum Hostbasalt deutlich erkennbar; Spl-Kristalle Inneren des Xenoliths bleiben nahezu unverändert: nur in Anwesenheit n Gl zeigen sie einen dünnen schwarzen Kristallrand. Bruchflächen in istallen sind ebenfalls schwarz → Der Prozess im Anfangsstadium;	orngröße: 2 x 2 mm² bis 4 x 5 mm²; krümmte, glatte Komgrenzen; ok bands, untergeordnet s <i>ubgrain boundari</i> es, seltener auch	manchen Stellen Rekristallisierung erkennbar; srngröße: 3 x 4 mm² bis 5 x 8 mm²; kriimmte_rlatte Kommenzen:	numme, yaue Nomyenzen, itmischungslamellen selten und nur im Kern;
: ۲۵۹۵ ۲	Pox H An Frei Poge H	Spx Kc sp	ğı Kari Kari Kari	De Kc De Kj	an Dpx Ko	л Г С
ງ bis ິດເວຊເອແລນ ກາວເວີຍເອກາງ	mittelkörnig		•	otogranular elkörnig bis grobkörnig	nq ttim	
o_aoa mder Harzburg	Iəndü7-lq2			۲ Lherzolith http://doc	-führende	lq2

Hostbasalt;						 Korngröße: 0,5 x 1 mm² bis 1 x 2 mm²; reliktisch: xenomorph, zahlreiche Einbuchtungen, ist stets von Glas-Kristall-Aggr. umgeben; 	 oder als runde Einschlüsse in Cpx und Opx; 	Größe: 1 x 5 mm² bis 3 x 10 mm²; Anor -71sammensetzunor GI+OI2+SnI2+Cnx2 +	Amph-Relikte;	mp- Zusammensetzung: GI+OI2+Spl2+Cpx2;					kleine Kristalle interstitiell, in Gl-Adern;		manche Kristalle weisen kink bans auf;							
						Amph		mp/ Aggr							Phl									
meistens homogene Auslöschung, untergeordnet auch <i>subgrain boundaries, kink bands</i> ;	Korngröße: 1 x 1 mm² bis 2 x 5 mm²; 	Korngröße: 0,5 x 0,8 mm² bis 1 x 2 mm²;	xenomorph, oft vermikular;	 innerhalb der Opx-Kristalle oder 	 an der Peripherie der Opx-Kristalle, oft im Kontakt zu Cpx; 	Korngröße: 1-4 mm; große Kristalle weisen gekrümmte, glatte Korngrenzen auf; <i>kink bands</i> , Deformationszwillinge;	Rekristallisation der großen Kristalle ist erkennbar: neu gebildeten Kristalle	sind deutlich kleiner, deren Korngrenzen sind geradlinig mit Tripelpunktkorngrenzen; meistens homogene Auslöschung;	Korngröße: bis zu 5 x 7 mm²;	gekrümmte, glatte Komgrenzen;	Entrinschungslämeilen seiten, Kristalirand erscheint nomogen;	Korngröße: 1-2 mm;	"spongy"-Saum;	keine Entimischungslähnellen; oft an der Peripherie von Opx-Kristallen zu finden;	Korngröße: bis zu 5 x 7 mm ² ;	gekrummte suturierte Korngrenzen; an manchen stellen Ivukleation	erkennbar (→ bulging); subgrain boundaries, Deformationsbander, kink	Dands; Nocklastas: servicesed existingth hunidisenseth his idianamh	Neoplasteri. Voiwiegeria arrisorrietriscri, riypiarorriorpri pis iarorriorpri auscabildat aribatticha Austiscobunot	aasgeeneet, emitemene zueroorieng, Kornaröße: bis zi 14 x 5 mm²:	Korngrenzen sind gekrümmt, oft wellig;	teilweise undulöse Auslöschung, subgrain boundaries; manche Kristalle	weisen eine Rekristallisation auf;	Instabilitat am Kristalirand, besonders in Anwesenheit von Spi;
	Срх	Spl				Ю			Орх			Срх			ō					Onx	<u>,</u>			
						ορκοιυία διαυηαι	oto oto	ıd sid Bir	lkön	ləttin	u				bin dəð	stis kör	kla ttel	οιγι im	orpl	ar-p	Inu	odus	prot	1
						- htiloznər	17								tinı	םי	der	ren	ЧÜÌ-	lqS				
						58_8UC]								63	B	DC							

	Korngröße: 1 x 1 mm ² bis 5 x 8 mm ² ; reliktisch: xenomorph, zahlreiche Einbuchtungen, auch skelettförmig; an Korngrenzen und innerhalb der Kristalle bilden sich Aggregate aus GI+OI2+SpI2+Cpx2; an manchen Stellen, innerhalb der reliktischen Amph, sind schöne Anordnungen der hypidiomorphen bis	idiomorphen Cpx2-Kristalle erkennbar;	Größe: 0,5 bis 1,5 mm im Durchmesser;	∠usammensetzung: Gi+Ol2+Spl2+Cpx2. ± Ampn- Relikte;	im µm-Bereich; in Form von Einschlüssen in Opx;	im µm-Bereich; in Form von Einschlüssen in Opx;	im µm-Bereich; hypidiomorph bis xenomorph; befindet sich in Glas-Adem oder innerhalb des Pyroxenit-Bereichs;		
	Amph		Aggr.		Amph	PhI	Ap		
Korngröße: 0,5 x 0,5 mm² bis 0,7 x 2,5 mm²; dunkel ockerbraun, meistens gerundet; manche Spl-Kristalle sind völlig schwarz (→ Oxidation); zeigt Einbuchtungen; stets von Gl+Spl2+Ol2±Cpx2-Aggr.umgeben;	Korngröße: 1 x 1 mm ² bis 3 x 6 mm ² ; große Kristalle weisen gekrümmte, glatte Korngrenzen auf, subgrain boundaries, kink bands, seltener auch Deformationszwillinge; Rekristallisation an manchen Stellen erkennbar: relativ kleine Kristalle zeigen gekrümmte glatte oder, seltener, gerade Korngrenzen mit Tripelpunkt, meistens einheitliche Auslöschung, richtungslose Verzahnung;	Korngröße: ca. 5 x 6 mm²; gekrümmte, glatte Komgrenzen;	Entmischungslamellen selten;	Korngröße: 1 x 1 mm² bis 1 x 2 mm²; " <i>spongy"</i> -Saum; oft an der Peripherie von Opx-Kristallen;	ausgesprochen große Ol-Kristalle: bis zu 8 x 12 mm ² ; undulöse Auslöschung, Deformationslamellen, <i>subgrain boundaries</i> ,	Deformationszwillinge, <i>kink bands</i> ; Polygonisierung kommt vor, ist jedoch selten;	 Große Kristalle erreichen 3 x 4 mm² bis 5 x 6 mm²; gekrümmte Korngrenzen, oft wellig; zahlreiche Einschlüsse; teilweise undulöse Auslöschung; 	 entlang der Ol-Korngrenzen befinden sich Ansammlungen von kleinen Opx-Kristallen; 	deren Korngrenzen sind meistens wellig; gerade Korngrenzen mit Tripelpunkten kommen seltener vor; einheitliche Auslöschung einzelner Kristalle, keine Elongation;
Spl	ō	Opx		Cpx	ō		Opx		
	Lnerzolith protogranular الاقتيناي bis grobkörnig	əttim			örnigi örnig	дгорк ргогодга			
					711¢				

		 Korngröße: 1 x 2 mm² bis 2 x 4 mm²; reliktisch: xenomorph, zahlreiche Einbuchtungen; sind stets von Glas-Kristall-Aggr. umgeben; 	Größe: ca. 2 x 5 mm²; Zusammensetzung: GI+Ol2+Spl2+Cpx2 ± Amph- Relikte;	 Korngröße: 0,5 x 0,5 mm² bis 4 x 5 mm²; reliktisch: xenomorph, zahlreiche Einbuchtungen, manchmal auch skelettförmig; ist von Glas-Kristall- Aggr. umgeben; oder als runde Einschlüsse in Cpx; 	Größe: 1 x 2 mm² bis 3 x 4 mm²; Zusammensetzung: GI+Ol2+Spl2+Cpx2 ± Amph- Relikte;
		Amph	Aggr.	Amph	Aggr.
in der Regel relativ kleine Kristalle (ca. 1 mm im Durchmesser), kommen als Verwachsungen mit Opx vor;	xenomorph; stets in direktem Kontakt zum Opx; gerundet: im µm-Bereich; länglich, vermikular: 0,1 x 2 mm² bis 1 x 2 mm²;	Korngröße: 1 x 1 mm² bis 3 x 5 mm²; gekrümmte, glatte Komgrenzen; oft homogene Auslöschung oder <i>kink band</i> s; untergeordnet s <i>ubgrain boundaries</i> ; an manchen Stellen Rekristallisation erkennbar; Korngröße: 1 x 1 mm² bis 6 x 6 mm²;	gekrümmte, glatte Komgrenzen; keine Cpx-Entmischungslamellen; Korngröße: 1 x 2 mm² bis 2 x 4 mm²; " <i>spongy</i> "-Saum; sind oft an der Peripherie der Opx-Kristalle zu finden (Verwachsungen Cpx- Opx);	Korngröße: 1 x 1 mm² bis 3 x 6 mm²; meistens gekrümmte, glatte Korngrenzen; Deformationzwillinge, <i>kink bands</i> ; zahlreiche spröde Brüche; Korngröße: 2 x 3 mm² bis 6 x 7 mm²;	meistens gekrümmte, glatte Korngrenzen; teilweise undulöse Auslöschung; Cpx-Entmischungslamellen selten und nur im Kristallkern; an manchen Stellen Instabilität der Phase: Bildung von Rekristallisaten innerhalb der Kristalleinbuchtungen; zahlreiche spröde Brüche; Korngröße: 1 x 1 mm² bis 2 x 3 mm²; <i>spongy</i> "-Saum; zahlreiche spröde Brüche; xenomorph, innerhalb von destabilisiertem Amph oder idiomorph im Glas, innerhalb der Aggr.;
Cpx	Spi	lo xq0	Cpx	IO XdO	Spl Spl
		protogranular protogranular pis grobkörnig	nöäləttim	birobkörnig	ginnöalettim
		DUB_118			

AmphKorngröße: 0,5 x 0,5 mm² bis 4 x 5 mm²; reliktisch: xenomorph, zahlreiche Einbuchtungen, manchmal auch skelettförmig; ist stets von Glas- Kristall-Aggr. umgeben;PhIKorngröße: 0,2 x 1 mm²; kleine einzelhe Leisten; interstitiell, zw. Ol-Kristallen; Vorkommen ist selten;Aggr.Größe: 2-3 mm im Durchmesser;	Zusammensetzung: GI+Spl2+Ol2±Cpx2 ± Amph ± PhI-Relikte; GI gelb bis braun; in Adern und/oder innerhalb der Aggr.;	GI interstitiell;
 meistens unimodale Korngrößenverteilung; die seltenen Ol-Porphyroklasten: ca. 2 x 5 mm² groß; zahlreiche scharfe <i>kink bands</i>; gekrümmte, unregelmässige Korngrenzen, oft mit Einbuchtungen; liegen meistens parallel zueinander; Porphyroklastenanteil liegt unter 5 Vol%; Ol-Neoblasten: anisometrische Kristalle mit durchschnittlicher Korngröße von ca. 1 x 1,5 mm²; zeigen vorwiegend eine homogene Auslöschung; gerade Korngrenzen mit Tripelpunkten; Kristalle liegen parallel zueinander; 	Korngröße: 0,5 x 1 mm² bis 1 x 2 mm²; zeigen keine intrakristalline Verformung; "spongy"-Saum;	 Korngröße: 1 x 1 mm² bis 5 x 7 mm²; große Kristalle: meistens gekrümmte, glatte Korngrenzen; untergeordnet gerade Korngrenzen mit Tripelpunkten; oft homogene Auslöschung; Deformationsbänder, <i>kink bands</i>; kleinere Kristalle: glatte, gekrümmte oder gerade Korngrenzen mit Tripelpunkt, einheitliche Auslöschung, richtungslose Verzahnung; Korngröße: 2 x 2 mm² bis 4 x 6 mm²; meistens gekrümmte, glatte Korngrenzen; Instabilität am Kristallrand, besonders in Anwesenheit vom Spl: feinste Rekristalle weisen Einschlüsse und Entmischungslamellen auf: instabilität am Kristalle von zahlreichen Einbuchtungen; alle Kristalle weisen Einschlüsse und Entmischungslamellen auf: wikroskopisch sind mindesten zwei Systeme festzustellen; sehr dichte Lamellenanordnung; Korngröße: 0,5 bis 1,5 mm; Vorkommen selten; alle Kristalle weisen Einschlüsse und Entmischungslamellen auf: korngröße: 0,5 bis 1,5 mm; Vorkommen selten; alle Kristalle weisen Einschlüsse und Entmischungslamellen auf: korngröße: 0,5 bis 1,5 mm; Vorkommen selten; alle Kristalle weisen Einschlüsse und Entmischungslamellen auf: korngröße: 0,5 bis 1,5 mm; Vorkommen selten; alle Kristalle weisen Einschlüsse und Entmischungslamellen auf: korngröße: 0,5 bis 1,5 mm; Vorkommen selten; alle Kristalle weisen Einschlüsse und Entmischungslamellen auf: zenomorph; meistens längliche Kristalle mit Einbuchtungen; ca. 70% der Kristalle sind teilweise oder komplett von GI+Ol2+Spl2-Agareaaten umgeben; zahlreich;
ō	Cpx	spi Cpx Opx O
tabular äquigranular mittelkörnig		protogranular protogranular mittelkörnig bis grobkörnig
jihdəW		Afl-führender Lherzolith
DUB_126		DUB_145

gelblich weiss; kommt meistens in GI+Ol2+Spl2±Cpx2-Aggregaten vor;	
ច	
Korngröße: ca. 2 × 3 mm²; Korngrenzen gekrümmt und meistens suturiert (<i>→bulging</i>); Nukleation ist eher selten; zahlreiche s <i>ubgrain boundari</i> es, Deformationslamellen und <i>kink bands</i> ; seltener Deformationszwillinge;	Komgröße: 2 x 3 mm² bis 4,5 x 9 mm²; unregelmässige, wellige Komgrenzen (sowohl am Kontakt zum Opx als auch zum Ol); teilweise undulöse Auslöschung; vereinzelte <i>kink bands</i> ; Instabilität am Kristallrand, besonders in Anwesenheit von Spi: feinste Rekristallisate (GI+Ol2+Spl2-Aggregate) im Glas innerhalb von Kristall- Einbuchtungen; gelegentlich auch innerhalb der Kristalle Bildung von feinkörnigen Aggregaten; keine Entmischungslamellen; Komgröße: 0,5 x 1 mm² bis 3 x 3 mm²; teilweise undulöse Auslöschung; stäbchenförmige SpI-Einschlüsse; in manchen Kristalle – Opx-Entmischungslamellen; stäbchenförmige SpI-Einschlüsse; in manchen Kristalle. weisen stens am Kontakt zum Cpx- und/oder Opx zu finden; meistens von gelblichem Gl ungeben; unregelmässige Kongrenzen mit zahlreichen Einbuchtungen, mehrere rundliche Cpx- und/oder Opx zu finden; meistens von gelblichem Gl ungeben; unregelmässige Kongrenzen mit zahlreichen Einbuchtungen, mehrere rundliche Cpx- und/oder Opx zu finden; meistens von gelblichem Gl ungeben; unregelmässige Kongrenzen mit zahlreichen Einbuchtungen, mehrere rundliche Kristalle sind deutlich kleiner und äußerst selten; weisen spröde Brüche auf; feinste idiomorphe SpI-Kristalle wachsen auf dem großen; zenonorphen Kristall auf; weisen spröde Brüche auf; feinste idiomorphe SpI-Kristalle vor Spricht für protogranulare Struktur des sekundären Deformations- Rekristallisations-Zyklus (Pr II); Anzahl der Einschlüsse ist jedoch sehr gering;
ō	Opx Spl
render Lherzolith oorphyroklastisch ig bis grobkörnig	Spl-füh protogranular – protogranular – protogranular
971_8UQ	

ŀ										
	r Lherzolith	grobkörnig	ō	Korngröße: 1 x 1,5 mm² bis 4 x 5 mm²; gekrümmte, glatte Komgrenzen; oft <i>kink bands</i> ; an manchen Stellen Rekristallisation;	Amph	Korngröße: 0,5 x 1 mm² bis 1 x 1,5 mm²; xenomorph: unregelmässige Korngrenzen, oft mit Einbuchtungen; stets von gelblichem Gl und feinen Kristallen				
	iebnerr Dia	sid bin	Opx	Korngröße: 1 x 1 mm ² bis 6 x 10 mm ² ; meistens homogene Auslöschung; vereinzelt – <i>kink bands</i> ;		(GI+OI2+CpxZ+Spl2-Aggregate) umgeben; stets im Kontakt zu Cpx/Opx;				
	1üî-lq2	nökletti		gekrümmte, seltener gerade, stets glatte Korngrenzen; scheint am Kontakt zu Amph+Gl instabil zu sein: unregelmässige	Aggr.	Zusammensetzung: GI+OI2+Spl2+Cpx2 ± Amph- Relikte				
		ш		Korngrenzen, zahlreiche Einbuchtungen + Bildung der feinsten Rekristallisate;		Vorkommen ist relativ gering;				
				manche großen Kristalle weisen Cpx-Entmischungslamellen auf;						
			CpX	Korngröße: ca. 1 x 1,5 mm²; " <i>spongy</i> "-Saum;						
			Spl	Korngröße: 0,5 x 1 mm² bis 1 x 1,2 mm²; xenomorph:						
				stets in direktem Kontakt zu Cpx/Opx;						
				gelblich-braun;						
001-00	nerzolith granular	opkörnig Brandiar	ō	Korngröße: 1 x 1 mm² bis 4 x 8 mm²; Kristalle weisen gekrümmte, meistens glatte Korngrenzen auf; seltener sind suturierte Korngrenzen zu finden; Nukleation nicht vorhanden;	Amph	Korngröße: ca.0,2 x 0,3 mm² bis 0,5 x 3 mm²; stets innerhalb und/oder am Kristallrand der Cpx- Kristalle;				
a	nder Ll	bio ord		undulöse Auslöschung, subgrain boundaries, Deformationszwillinge, kink bands;		reliktisch: xenomorph, zahlreiche Einbuchtungen, oft auch skelettförmig;				
	ərdüt-lq	elkörnig		in manchen Bereichen Rekristallisation erkennbar: Kristalle zeigen gekrümmte, oft unregelmäßige Korngrenzen auf; Tripelkorngrenzen selten; meistens hvnidiomornh ausgehilder teilweise undulöse Auslöschung oder	PhI	enthält zahlreiche idiomorphe SpI-Einschlüsse; reliktisch: xenomorph, zahlreiche Einbuchtungen; geninge Häufickeit:				
	S	ttim		kink bands;		geninge i laungvert, vergesellschaftet mit Amph;				
			Opx	Korngröße: 1 x 1 mm² bis 3 x 5 mm²; gekrümmte, meistens glatte Korngrenzen;	GI	gelb bis bräunlich; bildet ca. 1 mm breite Adern;				
				keine Entmischungslameilen; Instabilität am Kontakt zum Glas;		blidet Reaktionstront am Kontakt zu Opx und Opx, kommt relativ selten vor;				
			Срх	Korngröße: 0,8 x 1 mm² bis 1,5 x 2 mm²; stets direkter Kontakt zum Opx (oft an der Peripherie der Opx-Kristalle); " <i>spongy</i> "-Saum nur teilweise ausgebildet, in der Nähe von Amph-Relikten;						
	Korngröße: 1 x 2 mm ² ; reliktisch: xenomorph, zahlreiche Einbuchtungen; ist stets von Glas-Kristall-Aggr. umgeben;	Größe: 1 x 1,5 mm² bis 2 x 3 mm²; AggrZusammensetzung: GI+Spl2±Ol2±Cpx2 ± Amph-Relikte; mp-Zusammensetzung: GI+Spl2±Ol2±Cpx2;		große Kristalle mit Korngröße: 1 x 1 mm² bis 3 x 5 mm²;	in großen Kristallen sind gelegentlich Amph- Neoblasten zu erkennen; vergesellschaftet mit Cpx; enthält Einschlüsse anderer Phasen;	gelb bis braun;				
---	---	--	--	---	--	---	--	--	--	---
	Amph	mp/ Aggr.		Amph		Ū				
Korngröße: 0,5 – 1,5 mm im Durchschnitt; xenomorph, manchmal auch vermikular; meistens direkter Kontakt zu Opx und/oder Cpx; idiomorphe Spinelle sind innerhalb der Amph-Relikten und/oder Cpx- Kristallen zu finden;	bimodale Korngrößenverteilung: • Porphyroklasen: Korngröße bis 2 x 3 mm²; deformiert: undulöse Auslöschung, s <i>ubgrain boundaries</i> ,	 Deformationszwillinge, Deformationsbänder, kink bands senkrecht auf Elongation; stark suturierte Korngrenzen (→ bulging und Nukleation); "core-and-mantle"-Struktur; Neoblasten: machen ca. 50% der Ol-Kristalle aus; Korngröße ist variabel; Korngestalt ist hypidiomorph bis idiomorph; sowohl isometrisch als auch anisometrisch; homogene Auslöschung; 	Korngröße: 0,5 x 1 mm² bis 1 x 1,5 mm²; meistens homogene Auslöschung, seltener – undulöse Auslöschung; "spongy"-Saum;	bimodale Korngrößenverteilung: • Porphyroklasten: ca. 2 x 3 mm²;	undulöse Auslöschung, <i>subgrain boundaries</i> , Deformationslamellen; einige Deformationsbänder sind leicht gekrümmt; <i>kink bands</i> senkrecht auf Elongation;	Korngrenzen sind von zahlreichen Neoblasten umgeben →	 Neoblasten: ca. 50 Vol% aller Ol-Kristalle; befinden sich am Kornrand der Ol-Porphyroklasten oder bilden Gruppen 	innerhalb des Kristalls; vorwiegend isometrisch, idiomorph; homogene Auslöschung;	Felder von Rekristallisaten sind auch vorhanden: 90 Vol% Neoblasten + 10 Vol% Porphyroklasten.	 Große Kristalle: 2 x 3 mm² bis 4 x 7 mm²; meistens homogene Auslöschung, untergeordnet undulöse Auslöschung; Korngrenzen gekrümmt, unregelmässig; an manchen Korngrenzen deutliche Nukleation
Spl	ō		Cpx	ō						Opx
	Wehnlit porphyroklastisch mittelkörnig		örnig örnigr	rber Lherz k äquigra	führer mosai «örnig	-Iq2 – tisch Ilettim	roklas	borphyı		
	DUB_192									

			Korn: 2 x 2 mm ² bis 5 x 6 mm ² , wobei große Kristalle dominieren; xenomorph; zahlreiche Einbuchtungen an Kristallgrenzen; an Korngrenzen und innerhalb der Kristalle bilden	sich GI+SpI2±OI2±Cpx2-Aggregate; Amph-Kristalle stehen meistens in direktem Kontakt zum Cpx;	kleine xenomorphe bis idiomorphe Kristalle; dunkel ockerbraun; ist mit Amph und Cpx vergesellschaftet;	Korngröße: 1 x 1,5 mm² bis 4 x 6 mm²; an Korngrenzen und innerhalb der Kristalle bilden sich GI+Spl2±Ol2±Cpx2-Aggregate;	Zusammensetzung: GI+Spl2±Ol2±Cpx2 ± Amph-	Neinne E Nalzit,	
			Amph		Spl	Amph	Aggr.		
 erkennbar; Entmischungslamellen leistenförmig, Vorkommen relativ selten; Neoblasten klein, isometrisch; Vorkommen gering; relativ kleine Kristalle sammeln sich in Gruppen; Korngrenzen unregelmäßig, ausgeprägt wellig; meistens homogene Auslöschung; oft vergesellschaftet mit Amph; 	Korngröße: ca. 1-2 mm im Durchmesser; meistens homogene Auslöschung, untergeordnet undulöse Auslöschung; Korngrenzen gekrümmt, unregelmässig, manchmal wellig; Nukleation selten; keine Entmischungslamellen;	Korngröße: bis zu 0,1 mm; hypidiomorph bis idiomorph; innerhalb der Ol-Kristalle oder ist mit Amph-Cpx vergesellschaftet;	Korngröße: 2 x 2 mm² bis 4 x 6 mm², wobei große Kristalle dominieren; Gekrümmte, glatte, untergeordnet suturierte Korngrenzen; gelegentlich Tripelpunktkorngrenzen; undulöse Auslöschung, <i>subgrain boundari</i> es, Deformationslamellen, <i>kink bands</i> ;	Polygonisierung teilweise vorhanden;	Korngröße: 1 x 1 mm² bis 3 x 4 mm²; meistens homogene Auslöschung; "spongy"-Saum;	Korngröße: 2 x 2 mm² bis 4 x 7 mm², wobei große Kristalle dominieren; Gekrümmte, glatte Korngrenzen; subgrain boundaries, kink bands; in monobon Borriobon Dolyconicion Visioon Kristollor, golznimmto odor	gerade Kongrenzen mit Tripelpunktkorngrenzen, einheitliche Auslöschung;	Korngröße: 0,5 x 1 mm² bis 2 x 3 mm²;	"spongy -saum; runde Cpx-Einschlüsse in OI-Phase sind ebenfalls vorhanden;
	Cpx	Spl	ō		Срх	ō		Срх	
			Wehrlit protogranular grobkörnig			Wehrlit ogranular ittelkörnig	torq m		
			DUB_209			DNB_256			

Korngröße: 0,4 x 0,5 mm ² ; stets in direktem Kontakt zu Cpx/Opx; Korngröße: 100-200 µm; interstitiell; xenomorph; am Rand der Cpx-/Opx-Kristalle; bräunlich gelb; interstitiell;	in zahlreichen Adern;	Korngröße: bis 0,5 x 1 mm²; reliktisch: xenomorph, zahlreiche Einbuchtungen; ist stets von Glas-Kristall-Aggr. umgeben; auch in Form von Einschlüssen im Opx;	Größe: 1 x 1,5 mm² bis 2 x 4 mm²; Zusammensetzung: GI+OI2+Spl2+Cpx2 ± Amph-
Amph Phl Gl	S	Amph	Aggr.
Korngröße: 1,5 x 2 mm ² ; undulöse Auslöschung, <i>subgrain boundaries</i> , Deformationslamellen; vereinzelt – Deformationszwillinge, <i>kink bands</i> ; zeigen gekrümmte, glatte, manchmal auch gerade Korngrenzen zu großen Cpx-/Opx-Kristallen; unregelmäßige, wellige (<i>lobate</i>) Korngrenzen zu kleinen Cpx-/Opx-Kristallen, die meistens in Gruppen erscheinen; gekrümmte, meistens suturierte Korngrenzen zu anderen Ol-Kristallen mit beginnender Nukleation;	Korngröße: ca. 0,5 x 0,5 mm ² ; Opx-Kristalle sind deutlich kleiner als Klinopyroxene; erscheinen in Gruppen am Rand der größeren Ol-/Cpx-Kristalle oder bilden größere Bereiche zusammen mit Cpx; meistens isometrisch; vorwiegend xenomorph, hypidiomorphe Kristalle sind selten; Korngrenzen unregelmäßig, ausgeprägt wellig (<i>lobate</i>); meistens homogene Auslöschung; zahlreiche Entmischungslamellen und Einschlüsse; vergesellschaftet mit Amph-Cpx-Spl; Korngröße: 1 x 1,5 mm ² bis 2 x 3 mm ² ; undulöse Auslöschung, <i>subgrain boundaries</i> ; enthalten oft Entmischungslamellen und Einschlüsse; gekrümmte, oft unregelmäßige Korngrenzen; enthalten zahlreiche idiomorphe-hypidiomorphe Spl-Kristalle; kleine idiomorph-hypidiomorphe Kristalle; st mit Pyroxenen vergesellschaftet; ist mit Pyroxenen vergesellschaftet;	Korngröße: 1 x 2 mm ² bis 6 x 8 mm ² ; gekrümmte, meistens glatte Korngrenzen; Suturierung der Korngrenzen und Nukleation kommen untergeordnet vor; undulöse Auslöschung, <i>subgrain boundaries, kink bands</i> ,	Deformationszwillinge; Auftreten von Polygonisierung: Kristalle mit gut ausgebildeten Tripelpunktkorngrenzen; homogene Auslöschung oder <i>kink</i> bands;
ō	Opx Spl	ō	
ogranular-porphyroklastisch feinkörnig bis mittelkörnig	otogranular elkörnig bis	nq Jtim	
Spl-führender Lherzolith	hr. Lherzolit	lüî-lq2	
DUB_275	018 ⁻ 279		

Relikte ± große xenomorphe Spl;			mph Korngröße: 0,25 x 0,6 mm² bis 0,5 x 0,6 mm²; reliktisch: xenomorph, zahlreiche Einbuchtungen; ist mit GI+Spl und/oder Cpx vergesellschaftet; enthält manchmal PhI; als kleine Einschlüsse innerhalb der OI-Kristalle;	hl Korngröße: ca. 0,1 x 0,2 mm²; hypidiomorph; intergranular, zusammen mit Gl, oder am Kontak! zum Amoh:
		•	マ	
Korngröße: 1 x 1 mm² bis 4 x 6 mm²; gekrümmte Korngrenzen; teilweise unregellmäßig, wellig; undulöse Auslöschung; Entmischungslamellen sind relativ selten; Am Kontakt zum Glas instabil: Bildung feinster Rekristallisate; an manch Stellen innerhalb der Kristalle, ist ebenfalls die Bildung von feinkörnige Aggregaten zu erkennen;	Korngröße: 0,5 x 1 mm² bis 2 x 3 mm²; meistens homogene Auslöschung; " <i>spongy</i> "-Saum;	Korngröße: 0,5 x 0,5 mm² bis 0,5 x 2 mm²; xenomorph, oft vermikular in direktem Kontakt zum Opx; xenomorph, gerundet als Einschlüsse in OI oder an deren Grenzen (- eventueller Hinweis auf protogranulare Struktur, sekundärer Zyklus)	 bimodale Korngrößenverteilung: Porphyroklasten: Korngröße beträgt 2 x 2 mm² bis 2,5 x 4 mm²; sir komplett mit Neoblasten umgeben → <i>"core-and-mantle</i>"-Struktur; undulöse Auslöschung, Deformationslamellen, Deformationsbänder, <i>kli bands</i>; Neoblasten unterscheiden sich sowohl nach Korngröße, als auch nac Kornform. Im DS sind einzelne Lagen von Neoblasten verschiedener A deutlich erkennbar. Isometrische Kristalle sind meistens feinkörniger (0, 0,5 mm im Durchmesser) als anisometrische (0,7 x 1,5 mm² bis 1 x mm²). Isometrische Kristalle bilden somit Bereiche der äquigranulare Mosaikstruktur. Anisometrische Kristalle bilden somit Bereiche der äquigranulare tabularer, äquigranularer Struktur, wobei die Kristalle subparall zueinander liegen. Alle Neoblasten zeigen eine einheitliche Auslöschun meistens gerade Korngrenzen mit Tripelpunkt. 	Korngröße: 0,1 x 0,1 mm ² bis 0,6 x1 mm ² ; meistens isometrische, rundliche Kristalle; gekrümmte, unregelmäßige Korngrenzen; homogene Auslöschung; Vorkommen ist nicht aleichmässig. sondern auf bestimmte Lage
xdO	Cpx	Spl	ō	Opx
			DUB_302 Spl-führender Lherzolith porphyroklastisch – äquigranular (lagig) mittelkörnig	

				beschränkt. Diese Lagen beinhalten weniger OI (meistens äquidimensionale Kristalle) und mehr GI, Cpx und SpI.		Vorkommen relativ selten;
			Cpx	Korngröße: 0,25 x 0,25 mm² bis 1 x 2 mm²; " <i>spongy"</i> -Saum;	Ū	gelb-bräunlich; Intergranular; durchzieht den Xenolith, oft subparallel zu Lagen;
			Spl	Korngröße: 0,3 x 0,3 mm² bis 0,5 x 2 mm²; xenomorph; liegt ausnahmslos innerhalb von GI+OI2+Cpx2+Spl2±Amph- Aggregaten; idiomorphe, sehr kleine Kristalle liegen innerhalb des OI;		-
DUB_306	jihdəW	protogranular protogranular	ō	Korngröße: 1 x 2 mm² bis 3 x 5 mm²; gekrümmte, glatte Korngrenzen; vereinzelt auch gerade Korngrenzen mit Tripelpunkt; homogene Auslöschung; undulöse Auslöschung, <i>kink bands</i> kommen untergeordnet vor; stellenweise ist Polygonisierung zu erkennen;	Phl	Korngröße: 0,5 x 0,7 mm² bis 2 x 2,5 mm²; hypidiomorph bis xenomorph; leistenförmig bis blättrig; xenomorphe Korngrenzen (zahlreiche Einbuchtungen) sind oft von GI+Spl2±Ol2- Aggregaten umgeben; zahlreiches Vorkommen;
			Cpx	Korngröße: 0,5 x 0,5 mm² bis 2 x 4 mm²; meistens homogene Auslöschung;	GIC CIC	gelb bis braun; intergranular in Adern; viel Kalzit innerhalb der Adern;
DUB_308	jihdəW	protogranular mittelkörnig	C C D	 <i>"spongy -saun,</i> Korngröße: 1 x 1 mm² bis 2 x 3 mm²; Korngröße: 1 x 1 mm² bis 2 x 3 mm²; gekrümmte, glatte Korngrenzen; vereinzelt auch gerade Korngrenzen mit Tripelpunkt; undulöse Auslöschung, <i>kink bands</i>, vereinzelt auch Deformationszwillinge; stellenweise ist Polygonisierung zu erkennen; Korngröße: 0,5 x 1 mm² bis 3 x 4 mm²; Korngröße: 0,5 x 1 mm² bis 3 x 4 mm²; alle Kristalle weisen einen "spongy"-Saum auf, wobei der Saum viel breiter an Kristallstellen ist, die sich im Kontakt zum destabilisierten Phl befinden; 	CI PH	Korngröße: 0,1 x 2 mm² bis 1 x 2 mm² (leistenförmig); 1 x 1 mm² bis 1,5 x 2 mm² (blättrig); zahlreich; kommt oft interstitiell vor, zw. Ol-Kristallen; hypidiomorph bis xenomorph; xenomorphe Kristalle weisen zahlreiche Einbuchtungen an den Korngrenzen auf, und sind von Gl+Spl2±Ol2-Aggregaten umgeben; gelblich; intergranular in Adern;
					Clc	viel Kalzit innerhalb der Adern;

Korngröße: 0,5 x 1,5 mm² bis 1,5 x 2 mm²; hypidiomorph bis xenomorph; leistenförmig bis blättrig; xenomorphe Kristalle weisen zahlreiche Einbuchtungen an den Korngrenzen auf; sind von GI+Spl2±Ol2-Aggregaten umgeben; stets in direktem Kontakt zum Cpx; Deformationszwillinge, <i>kink bands</i> ;	Korngröße: ca. 0,1 – 0,5 mm; leistenförmig bis blättrig; Vorkommen beschränkt sich auf eine Lage, die parallel zu tabularer Struktur verläuft;	 Korngröße: ca. 1 x 2 mm²; Vorkommen beschränkt sich auf einige Adem, die die Probe durchziehen; Amph und Phl sind in diesen Adern vergesellschaftet; Korngröße: ca. 0,7 x 2 mm²; Vorkommen beschränkt sich auf einige Adem, die die Probe durchziehen; Phl und Amph sind in diesen Adern vergesellschaftet; 		
Ч	Ч	Phl Phl		
Korngröße: isometrische Kristalle: ca. 3 x 3 mm ² ; ovale Kristalle: 2 x 3 mm ² bis 3 x 5 mm ² ; prismatisch: 1 x 4 mm ² bis 1 x 5 mm ² ; gekrümmte, glatte Korngrenzen; homogene oder undulöse Auslöschung; <i>subgrain boundaries</i> , vereinzelt <i>kink bands</i> , Deformationszwillinge; an mehreren Stellen ist Rekristallisation erkennbar: Kristalle sind ca. 0,3 x 0,5 mm ² bis 0,7 x 1 mm ² groß; Korngrenzen sind gekrümmt oder gerade; zahlreiche Tripelpunktkorngrenzen; homogene Auslöschung, vereinzelt <i>subgrain boundaries</i> , Deformationslamellen; Korngröße: 0,5 x 1 mm ² bis 1,5 x 3,5 mm ² ; gelegentlich <i>"spongy"-Saum</i> ; Korngröße: ca. 0,5 x 0,7 mm ² ; schwarz; xenomorph; stets in direktem Kontakt zum Cpx;	 Korngröße: 0,5 x 0,5 mm² bis 2 x 4 mm²; unimodale Korngrößenverteilung; meistens anisometrische Kristalle, die parallel zueinander liegen; untergeordnet einige Bereiche mit isometrischen Kristallen; vereinzelt Porphyroklasten (Volumen beträgt jedoch weniger als 5%); Korngestalt: hypidiomorph – idiomorph; gerade Korngrenzen mit Tripelpunkten kommen oft vor; meistens homogene Auslöschung; anisometrische Kristalle weisen manchmal <i>kink bands</i> auf. Korngröße: 0,5 x 0,5 mm² bis 1 x 1 mm²; "spongy"-Saum; Durchmesser: ca. 0,3 mm; Vorkommen relativ selten; • runde Kristalle im Ol; 	 Korngröße: 2 x 2 mm² bis 4 x 6 mm², wobei die großen Kristalle dominieren; gekrümmte, glatte Komgrenzen; oft homogene Auslöschung, vereinzelt <i>kink bands</i>; Korngröße: 1 x 1 mm² bis 3 x 4 mm², wobei die große Kristalle dominieren; gekrümmte, glatte Korngrenzen; meistens homogene Auslöschung, <i>kink bands</i> selten; keine Entmischungslamellen; Korngröße: 1 x 1 mm² bis 1 x 2 mm²; <i>"spongy"-Saum</i>; keine Entmischungslam.; Korngröße: 0,5 bis 1,5 mm im Durchmesser; meistens xenomorph; dunkel braun mit grau grünlichem Stich; in direktem Kontakt zum Opx; 		
Spl Cpx	Spl Cpx	O Opx Spi		
protogranular mittelkörnig	tabular äquigranular feinkörnig bir sid girnö	protogranular protogranular		
Spl-führender Wehnit	Spl-führender Wehrlit	Spl-führender Lherzolith		
DUB_309		DUB_319		