

DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

„Language-Oriented Modeling Method Engineering“

verfasst von / submitted by

Nikša Višić

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2016 / Vienna 2016

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on the student
record sheet:

A 786 880

Dissertationsgebiet lt. Studienblatt /
field of study as it appears on the student record sheet:

Informatik

Betreut von / Supervisor:

o. Univ.-Prof. Dr. Dimitris Karagiannis

Abstract 3

Abstract

This dissertation tackles the scientific issues concentrated on the realization of model-

ing methods and their industrial applications. It extends upon a well-established meta-

modeling approach and the technology that supports it – metamodeling platforms. The

main focus of the work at hand is on a discipline called “Modeling Method Engineering”

and its final product: modeling tools.

The technology utilized to produce a modeling tool has a big influence in forming a

modeling and metamodeling community. Thus, there are several communities that

have been formed around particular metamodeling software. However, on a closer in-

spection, it can be recognized that a majority of available metamodeling platforms are

built upon very similar meta2models. They differentiate in naming of the concepts which

have the same underlying semantics, and in technical description of concepts, which

means that the semantically same concepts have a different syntactical representation.

To leverage this similarity, a language (MM-DSL) that includes all the relevant meta-

modeling concepts has been designed. In the requirements engineering phase, two

design approaches have been used: top-down and bottom-up. In top-down approach

several modeling methods have been analyzed. The purpose was to determine the

most commonly used concepts and to establish their appropriate abstractions. The

bottom-up approach gave insight on how are metamodeling technologies applied for

realization of modeling methods.

MM-DSL on its own would not be of much use in the real world. Therefore, an IDE in

which one can code modeling methods and a connector (a translator) to the metamod-

eling platforms have been developed. MM-DSL together with its supporting technology

enables language-oriented modeling method engineering, where one writes a program

that describes a modeling method and translates it to a modeling tool by utilizing the

already existing functionality of a metamodeling platform. A side effect of this approach

is that the development of modeling tools does not depend on a particular technology,

because MM-DSL programs can be executed on several different metamodeling plat-

forms.

The language-oriented modeling method approach utilizing MM-DSL has been evalu-

ated by the metamodeling community through two different evaluation studies. One

study focused on the understandability and expressivity of MM-DSL itself, while the

other was used to evaluate the MM-DSL IDE and its usability.

Zusammenfassung 4

Zusammenfassung

Diese Dissertation behandelt die wissenschaftlichen Fragen, die sich mit der Realisie-

rung von Modellierungsmethoden und ihren industriellen Anwendungen befassen. Sie

stützt sich auf und erweitert gleichzeitig einen gut etablierten Metamodellierungsansatz

und die Technologie, die diesen Ansatz unterstützt: Metamodellierungsplattformen. Der

Schwerpunkt der vorliegenden Arbeit liegt auf einer Disziplin namens „Modellierungs-

methoden-Engineering“ und deren Endprodukt: Modellierungswerkzeugen.

Die Technologie, die verwendet wird um ein Modellierungswerkzeug zu produzieren,

hat großen Einfluss bei der Bildung einer Modellierungs- und Metamodellierungsge-

meinschaft. Somit gibt es mehrere Gemeinschaften, die um bestimmte Metamodellie-

rungssoftware gebildet wurden. Jedoch kann bei einer näheren Inspektion erkannt

werden, dass die Mehrheit der verfügbaren Metamodellierungsplattformen auf sehr

ähnliche Meta2Modelle gebaut werden. Die Meta2Modelle unterscheiden sich in der

Benennung von Konzepten, die die gleiche zugrundeliegende Semantik haben, und in

der technischen Beschreibung von Konzepten, was bedeutet, dass semantisch gleiche

Konzepte eine andere syntaktische Repräsentation haben.

Um diese Ähnlichkeit auszunutzen, wurde eine Sprache (MM-DSL) entwickelt, die alle

relevanten Metamodellierungskonzepte beinhaltet. In der Anforderungsanalyse wurden

zwei Gestaltungsansätze verwendet: Top-Down und Bottom-Up. Im Top-Down Ansatz

wurden verschiedene Modellierungsmethoden analysiert. Das Ziel war es, die am häu-

figsten verwendeten Begriffe zu ermitteln und deren entsprechende Abstraktionen zu

etablieren. Der Bottom-Up Ansatz ermöglichte den Einblick in die Anwendung von Me-

tamodellierungstechnologien für die Realisierung von Modellierungsmethoden.

MM-DSL allein würde nicht von großem Nutzen in der realen Welt sein. Daher sind

eine integrierte Entwicklungsumgebung (IDE), in der man Modellierungsmethoden co-

diert, und ein Verbinder (Übersetzer) für die Metamodellierungsplattformen, entwickelt

worden. MM-DSL, zusammen mit den Technologien die es unterstützen, ermöglicht

spracheorientiertes Modellierungsmethoden-Engineering, wo man ein Programm

schreibt, das eine Modellierungsmethode beschreibt, und es durch die Nutzung der

bestehenden Funktionalität einer Metamodellierungsplattform in ein Modellierungs-

werkzeug übersetzt. Ein Nebeneffekt dieses Ansatzes ist die Entwicklung von Modellie-

rungswerkzeugen, die nicht von einer bestimmten Technologie abhängen, weil ein MM-

DSL Programm auf verschiedenen Metamodellierungsplattformen ausgeführt werden

kann.

Der Ansatz des spracheorientierten Modellierungsmethoden-Engineering, der MM-DSL

verwendet, ist von der Metamodellierungsgemeinschaft durch zwei verschiedene Eva-

luationsstudien bewertet. Eine Studie konzentrierte sich auf die Verständlichkeit und

Expressivität von MM-DSL selbst, während in der anderen die MM-DSL IDE und ihre

Verwendbarkeit bewertet wurde.

Acknowledgment 5

Acknowledgment

This research project would have not been possible without continuous inspiration,

support and assistance from my supervisor. It has been my privilege to work closely

with Univ.-Prof. Dr. Dimitris Karagiannis. I have enjoyed the opportunity to observe and

learn from his knowledge and experience. His insights and patience with me will always

be appreciated.

I would like to thank my colleagues and modeling and metamodeling community mem-

bers that were a great help during my research. I am very thankful for all the conversa-

tions and discussions we had.

I wish to thank my parents who were a constant source of encouragement during my

whole life, without whose love and understanding I would not have completed this

work.

Copyright Notice 6

Copyright Notice

I have tried my best to find all copyright owners of images and to collect their agree-

ments to use the content in this thesis. Should there be a copyright infringement,

please inform me about it.

Table of Contents 7

Table of Contents

Abstract ... 3

Zusammenfassung ... 4

Acknowledgment .. 5

Copyright Notice ... 6

Table of Contents .. 7

List of Figures ... 12

List of Tables ... 14

List of Abbreviations .. 15

Foreword .. 17

1 Introduction .. 19

1.1 Computer Languages .. 19

1.2 The Term “DSL” ... 20

1.3 The Term “Modeling Method” .. 22

1.4 Motivation ... 23

1.5 Research Goals ... 25

1.6 Main Results .. 25

1.7 Summary .. 26

2 Background .. 28

2.1 Metamodeling Taxonomy ... 28

2.1.1 Modeling Method ... 28

2.1.2 Modeling Language ... 28

2.1.3 Modeling Procedure ... 28

2.1.4 Modeling Algorithm .. 29

2.1.5 Modeling Mechanism ... 29

2.1.6 Software Engineering ... 29

2.1.7 Modeling Method Engineering ... 29

2.1.8 Meta- .. 30

2.1.9 Metalanguage .. 30

2.1.10 Model and Metamodel ... 30

2.1.11 Metamodeling .. 31

2.1.12 Metamodeling Platform .. 31

2.1.13 Domain-Specific Language .. 31

2.1.14 Translator and Compiler .. 31

Table of Contents 8

2.2 Types of Computer Languages .. 32

2.2.1 Textual vs. Graphical .. 33

2.2.2 General-Purpose vs. Domain-Specific ... 34

2.2.3 Programming vs. Specification Language .. 36

2.2.4 Graphical Modeling Languages .. 36

2.3 Language Specification Techniques .. 41

2.3.1 Formal Language Theory ... 42

2.3.2 Metamodeling Approach .. 50

3 State of the Art and Related Research ... 56

3.1 Language-Oriented Engineering .. 56

3.2 Related Concepts ... 58

3.3 Existing Tool Support ... 59

3.3.1 Textual Language Realization Tools .. 59

3.3.2 Graphical Language Realization Tools .. 63

3.4 Challenges ... 68

4 Research Problem .. 69

4.1 Environment ... 69

4.1.1 Study 1: Metamodeling Tools ... 70

4.1.2 Study 2: Domain-Specific Languages .. 73

4.2 Problem Definition .. 74

5 Research Methodology .. 75

5.1 Choice and Description of Methodology ... 75

5.2 Application of the Methodology in this Research ... 79

6 Metamodeling Platforms .. 81

6.1 Introduction ... 81

6.2 Requirements ... 81

6.2.1 Seven Key Functional Requirements ... 81

6.2.2 Important Non-functional Requirements ... 85

7 Metamodeling Platform Applications ... 87

7.1 Very Lightweight Modeling Language (VLML): A Metamodel-based
Implementation ... 87

7.1.1 Introduction ... 87

7.1.2 Conceptualization ... 88

7.1.3 Metamodels Design .. 89

7.1.4 Tool Implementation ... 92

7.1.5 Conclusion .. 94

8 MM-DSL ... 95

8.1 Introduction ... 95

8.2 Related Work .. 96

Table of Contents 9

8.3 Applied Concepts and Technologies ... 98

8.4 Clarifying Design Decisions ... 100

8.5 Language Design Best Practices and Guidelines .. 102

8.5.1 Desirable Language Features .. 102

8.5.2 Undesirables Language Features .. 103

9 MM-DSL Specification ... 105

9.1 How to read the Grammar ... 105

9.2 Global Statements ... 107

9.2.1 Root Statement .. 107

9.2.2 Method Name .. 107

9.2.3 Include ... 108

9.2.4 Embed .. 109

9.2.5 Insert .. 110

9.2.6 Method ... 111

9.2.7 Enumeration ... 111

9.3 Structure Statements ... 112

9.3.1 Metamodel ... 112

9.3.2 Class .. 113

9.3.3 Relation .. 114

9.3.4 Attribute .. 115

9.3.5 Reference .. 117

9.3.6 Model Type .. 118

9.4 Visualization Statements .. 119

9.4.1 Class Symbol ... 119

9.4.2 Relation Symbol ... 120

9.4.3 SVG Command .. 121

9.4.4 Rectangle ... 122

9.4.5 Circle .. 123

9.4.6 Ellipse .. 123

9.4.7 Line .. 124

9.4.8 Polyline .. 124

9.4.9 Polygon .. 125

9.4.10 Text .. 126

9.4.11 Path .. 127

9.4.12 Symbol Style .. 133

9.5 Operations Statements .. 134

9.5.1 Algorithm .. 134

9.5.2 Selection Statement ... 136

9.5.3 Loop Statement .. 137

9.5.4 Variable Statement .. 139

9.5.5 Expressions ... 140

9.5.6 Operators ... 143

9.5.7 Algorithm Operation ... 145

Table of Contents 10

9.5.8 File Operation ... 146

9.5.9 Directory Operation .. 149

9.5.10 Simple User Interface ... 150

9.5.11 Item Operation .. 153

9.5.12 Model Operation ... 155

9.5.13 Instance Operation ... 157

9.5.14 Attribute Operation ... 161

9.5.15 Event .. 162

9.5.16 Terminals .. 163

9.6 Programming Concepts .. 165

9.6.1 Smallest Working Program ... 166

9.6.2 Inheritance .. 166

9.6.3 Referencing .. 167

9.6.4 Embedding ... 168

9.6.5 Auto-generation .. 169

10 MM-DSL IDE .. 170

10.1 Introduction ... 170

10.2 Architecture .. 170

10.3 Implementation ... 172

10.4 User Guide ... 175

10.4.1 Development Environment ... 175

10.4.2 Program Translation ... 177

10.4.3 Modeling Tool Generation .. 178

11 MM-DSL Applications .. 179

11.1 Running Example: A Pseudo Modeling Method ... 179

11.1.1 Developing with the ADOxx Metamodeling Platform .. 180

11.1.2 Developing with the MM-DSL ... 183

11.2 Conclusion .. 186

12 Evaluation ... 188

12.1 The Language: MM-DSL .. 188

12.1.1 External Evaluation Criteria .. 188

12.1.2 Internal Evaluation Criteria ... 190

12.1.3 Evaluation Scenario ... 192

12.1.4 Evaluation Results .. 192

12.2 The Environment: MM-DSL IDE ... 194

12.2.1 Evaluation Scenario ... 194

12.2.2 System Usability Scale ... 195

12.2.3 Evaluation Results .. 196

13 Summary and Outlook ... 202

13.1 MM-DSL as an XML-Based Language ... 203

13.2 Reverse Engineering: From Modeling Tools to Code 203

Table of Contents 11

13.3 Additional Compilers .. 203

13.4 Towards Standardization ... 204

Appendix A: MM-DSL Specification in EBNF ... 206

Appendix B: MM-DSL – Xtext Language Description .. 211

Appendix C: MetaDSL – Irony Language Description ... 224

Appendix D: Exercise Used to Evaluate MM-DSL .. 229

Task Summary .. 229

Submission ... 229

Task Details .. 229

Helpful Hints .. 230

Solution ... 230

Appendix E: Exercise Used to Evaluate MM-DSL IDE ... 233

Next Generation Enterprise Modeling: A Case Study ... 233

Business View ... 233

Conceptualization ... 233

Exercise Overview .. 234

Exercise Details: Part I – Iterative Metamodeling ... 237

Appendix F: Standard SUS Questionnaire ... 244

Appendix G: MM-DSL IDE Evaluation Results Overview 245

Bibliography .. 246

Index of Terms .. 252

List of Figures 12

List of Figures

Figure 1: Modeling Method Framework (adapted from [10]) ... 22

Figure 2: Classification of Computer Languages... 32

Figure 3: UML Diagram Hierarchy (adapted from [16] and [17]) 37

Figure 4: Propagation of Synthesized Attributes through the Parse Tree 49

Figure 5: Propagation of Inherited Attributes through the Parse Tree 49

Figure 6: Four Layered Metamodel Architecture (adapted from [10]) 51

Figure 7: Metamodel of a Building ... 53

Figure 8: Model of a Room with Furniture (adapted from [41]) 54

Figure 9: Notation of Modeling Elements (adapted from [41]) 55

Figure 10: Eclipse Plugin for the ANTLR v4 (taken from [46]) 60

Figure 11: Xtext Framework for Eclipse .. 61

Figure 12: mbeddr IDE and Projectional Editor (taken from [50]) 62

Figure 13: ADOxx - Creating a Metamodel ... 64

Figure 14: ADOxx Editors - 1. GraphRep, 2. AttRep and 3. ADOScript 65

Figure 15: MetaEdit+ User Interface (taken from [52]) .. 66

Figure 16: Metamodeling with GME (taken from [55]) ... 67

Figure 17: Metamodeling Tools' Feature Matrix .. 71

Figure 18: Information Systems Development Framework (adapted from [61]) 78

Figure 19: OMiLAB Modeling Method Statistics (Graph) ... 82

Figure 20: OMiLAB Modeling Method Statistics (Table) .. 82

Figure 21: Metamodeling Platform Modules .. 85

Figure 22: VLML Conceptual Metamodel .. 90

Figure 23: VLML Implementation Metamodel.. 91

Figure 24: VLML Implementation View.. 92

Figure 25: VLML Tool In Use .. 93

Figure 26: Meta2model Comparison (adapted from [81]) .. 101

Figure 27: Abstract Structure of a MM-DSL Program .. 165

Figure 28: The MM-DSL IDE Architecute .. 171

Figure 29: Creating a new MM-DSL Project .. 175

Figure 30: Creating a new MML File ... 176

Figure 31: MM-DSL IDE Overview .. 176

Figure 32: MM-DSL IDE ALL to ABL Translation .. 177

Figure 33: Using MM-DSL to Develop Modeling Tools ... 178

Figure 34: The Car Park Modeling Method Requirements .. 180

Figure 35: Different Implementations of the Concept Car ... 180

Figure 36: Developing a Modeling Tool Using ADOxx .. 182

Figure 37: Developing a Modeling Tool Using MM-DSL ... 185

Figure 38: Resulting Modeling Tool ... 186

Figure 39: Average SUS Score for Each Question ... 197

Figure 40: SUS Scores for Each Participant ... 197

Figure 41: SUS Question 1 ... 198

List of Figures 13

Figure 42: SUS Question 2 ... 198

Figure 43: SUS Question 3 ... 198

Figure 44: SUS Question 4 ... 199

Figure 45: SUS Question 5 ... 199

Figure 46: SUS Question 6 ... 199

Figure 47: SUS Question 7 ... 200

Figure 48: SUS Question 8 ... 200

Figure 49: SUS Question 9 ... 200

Figure 50: SUS Question 10 ... 201

Figure 51: Concrete and Abstract Syntax of a Car Parking Modeling Method 230

Figure 52: Sequence of Actions to Fulfill the Exercise .. 235

Figure 53: Metamodel for ParkingMap Model Type .. 237

Figure 54: Extended Metamodel Containing the new Model Type CourierTask 240

Figure 55: Extended Metamodel Containing a new URI attribute in the Root Class ... 241

List of Tables 14

List of Tables

Table I: Concepts and Technologies Influencing the Development of MM-DSL 99

Table II: EBNF Meta-Symbols ... 106

Table III: EBNF Meta-Symbols Application ... 106

Table IV: SVG Path Statement Commands (adapted from [101]) 131

Table V: Operators - Precedence and Meaning .. 145

Table VI: File Operation Statement Functions... 148

Table VII: Directory Operation Statement Functions ... 150

Table VIII: Simple User Interface Statement Functions ... 152

Table IX: Item Operation Statement Functions ... 154

Table X: Model Operation Statement Functions.. 156

Table XI: Instance Operation Statement Functions ... 159

Table XII: Attribute Operation Statement Functions .. 162

Table XIII: External Evaluation Criteria Overview.. 188

Table XIV: Internal Evaluation Criteria Overview .. 190

Table XV: Language Evaluation Grading and Description .. 192

Table XVI: Fulfilment of External Evaluation Criteria ... 193

Table XVII: Fulfilment of Internal Evaluation Criteria ... 194

Table XVIII: Descriptive Statistics of SUS Scores for Adjective Ratings (adapted
from [105]) ... 195

Table XIX: Code Extensions for Phase II .. 240

Table XX: Code Extensions for Phase III .. 242

List of Abbreviations 15

List of Abbreviations

DSL Domain-specific language

DSPL Domain-specific programming language

DSM Domain-specific modeling

DSML Domain-specific modeling language

GPL General-purpose language

GPPL General-purpose programming language

GPMaL General-purpose markup language

GPMoL General-purpose modeling language

IDE Integrated development environment

MM-DSL Modeling Method Domain-Specific Language

MME Modeling method engineering

EBNF Extended Backus-Naur Form

UML Unified Modeling Language

SysML Systems Modeling Language

XML Extensible Markup Language

HTML HyperText Markup Language

SGML Standard Generalized Markup Language

RDF Resource Description Framework

OMG Object Management Group

MOF Meta-Object Facility

EMF Eclipse Modeling Framework

ISO International Organization for Standardization

CASE Computer-aided software engineering

SDK Software development kit

SUS Subject under study

W3C World Wide Web Consortium

LHS Left-hand side

RHS Right-hand side

OMiLAB Open Models Initiative Laboratory

List of Abbreviations 16

KE Knowledge engineering

SVG Scalable Vector Graphics

API Application programming interface

RDBMS Relational database management system

JVM Java Virtual Machine

AST Abstract syntax tree

Foreword 17

Foreword

As a computer scientist, there are fewer experiences that are more satisfying than de-

veloping new concepts and seeing those concepts help people realize their ideas.

These concepts can take many forms. For example, a new software development

methodology, different ways of defining system or software architecture, a computer

language, or an innovative software application.

Concepts are developed to solve existing and future problems. In my case, the problem

was in the particular notion present in modeling research communities: it is assumed

that modeling tools are available. This assumption entails another assumption, which is

that someone created those modeling tools. Therefore, someone used a tool for creat-

ing modeling tools. The alternative is far more difficult: from scratch implementation

with a chosen programming language. So, my assumption in the time I started working

on this dissertation project was that the majority of modeling tools is created using

metamodeling technology. This has proven to be true, because without the use of met-

amodeling platforms, or frameworks, it would be very difficult to develop modeling tools

within a feasible time frame.

Providing metamodeling tools that satisfy the needs of a modeling community is an

important metamodeling research activity. I wanted to provide a solution that can be

easily used by domain experts, but at the same time avoid creating another click-based

metamodeling platform. I chose to provide a programming-based solution, because

programming as a discipline has become incredibly pervasive nowadays and it will con-

tinue to be so in the future. Trends indicate that every future discipline may have some-

thing to do with writing code. For example, there are many domain experts outside

computer science that use programming languages in their everyday work: chemists,

biologists, physicists, economists, mathematicians, etc. These languages are specifi-

cally designed for solving one or several connected problems in a chosen domain.

This observation has motivated the development of a domain-specific programming

language called MM-DSL (Modeling Method Domain-Specific Language). It is meant to

be a straightforward, easy to learn language for coding modeling methods. The code

written with MM-DSL is on an abstract level, therefore technology independent – it can

be compiled and executed on different execution environments, typically metamodeling

platforms.

In this work I present the research that has been done in order to create MM-DSL,

which includes creation of the unified taxonomy used in metamodeling research, de-

tailed background research in various metamodeling technologies, as well as language

design concepts and best practices, specification details, usage scenarios, and several

different evaluations.

Foreword 18

I believe that MM-DSL provides several advantages to the modeling tool engineering.

The most prominent ones are: technology (platform) independency, fast prototyping

and reusability. Some of the evaluation results indicate these advantages as well. MM-

DSL may not be perfect, but it is a step in the right direction. Hopefully, it will continue

to be developed further as a joint effort of modeling and metamodeling communities,

because it can only help improve metamodeling concepts and technology.

1 Introduction 19

1 Introduction

1.1 Computer Languages

Computer languages are one of the core tools computer scientists have in their arse-

nal. They offer various means of communication between software (system) develop-

ers, and can be considered as one of the greatest achievements in the software engi-

neering domain. Nowadays they are the most prevalent way for telling computers what

to do. The word “telling” is intentionally used instead of the word “programming”. Apply-

ing the modern languages, especially the domain-specific ones, is more like a commu-

nication between a developer and a machine, and it doesn’t resemble the old ways

from a couple of decades ago. That is because, as everything on this Earth, languages

evolve as well. It is a fact that can be tracked all the way from 1950’s – the time of

FORTRAN – until present day – time of C#, Java, and a huge palette of all kinds of

domain-specific languages (DSLs) [1]. Evolution, in this context, does not only mean

that one language has changed over a period of time. It also means that new lan-

guages have been created using some of the concepts from older, already existing,

languages. Good examples are C++ and C#. Both of them have taken something from

C and improved on it. C# has also, among improving C, as well as C++, taken some

concepts from Java. PHP has a C-like syntax; JavaScript has some of the concepts

used in Java, etc. New languages are designed together with emergence of new tech-

nology, with a purpose to control and manipulate it as easier as possible. This is espe-

cially true, if existing languages feel clumsy, and not as productive as they should be.

Designing a computer language has become much easier than it was in the time of

FORTRAN. Nowadays, a considerable amount of new languages are designed by a

single person or a small team [1]. This is one of the reasons DSLs are becoming in-

creasingly popular. Among other reasons are: affordable investments, standardization

is not as necessity as it used to be in the past, out-of-the-box tools for development of

any kind of languages, either textual or graphical, and the Internet as a medium for

distribution and user feedback and requests.

Although, it is much easier to design and develop DSLs than it was before, one should

not discard an already existing language and start creating another language from

scratch as soon as technology changes. Naturally, a lot of concepts from the previous

language can be used, but one still needs to define the syntax and semantics, develop

tool support (e.g., an editor or integrated development environment), write documenta-

tion, and prepare training materials. All of this can be avoided if the DSL has been de-

signed to follow the progress of technology it depends upon, and predict the future

changes in the domain it describes. For example, C++, Java and C# are very good at

adapting to the technology changes. Since their creation (C++ in 1983, Java in 1995,

and C# in 2000) these languages have evolved drastically. This has been possible be-

1 Introduction 20

cause a lot of work has been invested in making these languages modifiable (addition

of new features, replacement or removal of old features without much effort). They

adapt and evolve as people use them. Only through usage some of the design flaws

surface, or a need for a specific feature arises. One of the modern language design

philosophies is explained in a paper describing the history of Lua [2], which is not as

popular as Java or C++, but it has been around since 1993 and has grown into one of

the most known scripting languages. The authors indicate that most successful lan-

guages are raised rather than designed, which means that they start as a small lan-

guage, with modest goals, and evolve through their usage.

Concerning the DSL created during this dissertation project, one should consider the

following: (1) the future development of metamodeling platforms, and (2) the possible

changes in the application domain, which can come from various sources: new found-

ing in the academia or industry, or insights during the use of a DSL.

To be able to cope with the upcoming issues, the DSL should be able to evolve through

modifications, particularly through extension. However, one always needs to keep in

mind that usability and expressiveness must not be lowered with introduction of new

concepts. It is very important to keep the equilibrium between the following three key

properties of a language: usability, expressiveness, and extensibility.

Usability means that a language must be fit for its purpose. Defining a new domain-

specific language doesn’t make much sense if it is not fit to describe a problem at hand

much better than other available general-purpose languages (GPLs). It should support

the developer in capturing features of the application without placing unnecessary bar-

riers in the way of development [3].

DSLs should always be more expressive than any GPLs in the domain that they de-

scribe, because they always provide high-level features which make a language easier

to use and contribute to the readability of the code. Even a domain expert without any

programming experience can easily learn and apply a DSL.

Extensibility is very important, not just for DSLs, but for every computer language. If the

language possesses the right means for extension, it is easier to introduce new con-

cepts to all aspects of a language, from the syntax to the compiler. This entails that the

complete architecture of a language needs to be available to the developer.

1.2 The Term “DSL”

Although, it is assumed that the reader of this work is familiar with the meaning of the

term domain-specific language or DSL, it somehow always has a slightly different meaning

to different individuals (we are talking only about DSLs in computer science). There-

fore, DSL as a term nowadays has very blurred boundaries. Some things are clearly

DSLs, but others can be argued one way or the other. The term has also been around

for a while now and, like most things in software engineering, has never had a very firm

1 Introduction 21

definition. This fuzziness of terms is an issue that is making confusion between various

scientific communities.

Let us take a look at the following “definitions” of a DSL:

“… a computer programming language of limited expressiveness focused on a particu-

lar domain.” [4]

“A DSL is a language designed to be useful for a limited set of tasks, in contrast to gen-

eral-purpose languages that are supposed to be useful for much more generic tasks,

crossing multiple application domains… There are strong relations between DSLs and

models … A DSL is a set of coordinated models.” [5]

“DSLs suggest an appealing escape route from the restriction of programming lan-

guages, enticing us with the idea of languages whose syntax and semantics can be cus-

tomized to our purpose… they are customized languages which allow classes of related

problems to be more quickly and precisely realized than with traditional techniques.”

[6]

“DSLs abstract from the domain entities and operations to represent domain

knowledge in the form of an executable language.” [7]

“… is a programming language or executable specification language that offers trough

appropriate notations and abstractions, expressive power focused on, and usually re-

stricted to, a particular problem domain.” [8]

“Domain-specific languages (DSLs) are languages tailored to a specific application do-

main. They offer substantial gain in expressiveness and ease of use compared with

general-purpose programming languages in their domain of application.” [9]

As one can see in previous statements, there are general traits of a DSL that almost all

acknowledge. Most important ones are domain specificity and higher abstraction level.

Confusing are the traits that are opposed. Some of them are: expressiveness (which is

characterized as “limited” by one author and “enhanced” by the other) and executability

(Do DSLs need to be executable or not?). DSLs are also classified as programming

languages by some authors, immediately throwing most of specification languages and

non-executable languages out of this category.

Varieties of DSL definitions bring more confusion than clarity into this topic. Therefore,

for the purpose of this work, the following definition is used:

A domain-specific language (DSL) is a computer language particularly targeting a spe-

cific application domain, and is very good at expressing solutions to problems in that

specific domain. Its concrete syntax can be either textual, or graphical or both. It can be

executable, but it doesn’t have to! It can be Turing complete, but it doesn’t have to (and

typically it is not)! It can be independent or embedded into a host language. Therefore,

if languages like markup language, modeling language, specification language, script-

1 Introduction 22

ing language, or programming language contain the above mentioned properties, they

are considered domain-specific.

1.3 The Term “Modeling Method”

As the title of this work states, the main goal of this research is to introduce domain-

specific languages into the process of modeling method engineering. There are dozens

of reasons why this is beneficial, and it will be explained in detail in the following chap-

ters. To be able to perceive the purpose of this DSL, it is important to understand the

term modeling method, and the difference between a modeling language and a model-

ing method.

A modeling method [10] consists of two components: (1) a modeling technique, which

is divided in a modeling language and a modeling procedure, and (2) mechanisms &

algorithms working on the models described by a modeling language (see Figure 1).

The modeling language contains the elements with which a model can be described.

The modeling procedure describes the steps applying the modeling language to create

results, i.e., models. Algorithms and mechanisms provide “functionality to use and evalu-

ate” models described by a modeling language. Combining these functionalities ena-

bles the structural analysis, as well as simulation of models.

Figure 1: Modeling Method Framework (adapted from [10])

Usually, the graphical modeling language is the primary building block of a modeling

method. It is divided in three parts: syntax (also known as abstract syntax), semantics,

and notation (also known as concrete syntax). Syntax is the grammar of the language,

with a set of predefined rules that need to be obeyed unconditionally. Semantics give

meaning to the syntax of a language, defining how the set of constructs (language sen-

tences) is used by the machine (and human). Notation defines the graphical represen-

tation of a modeling language. Take note that not all of the constructs introduced in the

syntax of a modeling language need to have a graphical representation – these con-

1 Introduction 23

structs are typically addressed as abstract and therefore cannot be instantiated in a

modeling space.

Secondary building blocks are modeling algorithms, modeling mechanisms, and model-

ing procedures.

While a modeling language defines a structure of a modeling method, modeling algo-

rithms define functionality that can be applied to models. Common tasks for which algo-

rithms are constructed are analysis and simulation.

Mechanisms are typically intertwined with specific metamodeling platform functionality,

therefore hard to separate and isolate. Simple example of a mechanism is automated

model publishing which is essentially a part of the metamodeling platform functionality,

but it can be configured to support any modeling method hosted by the platform.

Procedures are typically informal guidelines and steps that need to be taken when de-

veloping models with a specific modeling method. For example, in the domain of infor-

mation security a modeling method can constrain the user by requiring that physical

security (e.g., servers containing sensitive data locked in a secure room) is modeled

before virtual security (e.g., users’ authorization & authentication, firewall, etc.)

1.4 Motivation

While performing a comprehensive research on the existing metamodeling technolo-

gies, particularly on the tools used for implementing graphical modeling editors which

support concepts like modeling languages and modeling methods, it has been noted

that in some cases these tools have been performing insufficiently. In general, under-

standing how a particular metamodeling technology functions requires considerable

time investments. There is no common ground regarding file formats or application

programming interfaces (APIs). An exception to this statement, are the tools built upon

the Eclipse IDE. However, their functionality is lacking advanced features and most of

them require the use of pure Java to implement more demanding concepts.

Once you choose an appropriate tool and start implementing your solution on it, you

are typically stuck with that tool until the end. There is no easy way to reuse what has

already been implemented in one platform on the other platform. In other words, the

development is locked-in to one platform only. This is a major issue, because even

after reading through the manuals and looking at the examples, one cannot be certain

if the tools under consideration will be sufficient to implement concepts exactly how

they were specified, or how long the implementation will take.

However, the real issue is not in the difficulty to learn or in not being platform inde-

pendent, but in the concepts the platform provides to the developer, which aren’t do-

main-specific at all. The meaning of concepts differs among different metamodeling

technologies. Something called “class” in one platform can have a different meaning in

another platform. Sometimes the difference is not only syntactic (e.g., attribute versus

property), but also semantic. For example, concept of a relation can be defined as a

1 Introduction 24

special class containing the information about related objects, but it can also be defined

as a part of a class that points to another class. These two concepts have entirely dif-

ferent meanings. First relation (class relation) is a stand-alone object. It can exist even

without related classes. Second relation (reference relation) cannot exist without its

containing class. The meaning of the underlying concepts influences the creation of

metamodels on a particular platform. It also locks us into a way of thinking a metamod-

eling platform supports.

It is important to understand that by implementing a modeling tool one transfers the

concepts of a modeling method from a conceptual space (e.g., design document) to the

technical space (e.g., metamodeling platform). We want to make this process as seam-

less as possible by introducing a language that possesses the concepts familiar to the

domain expert, and allows the transfer of the specification of a modeling method to a

modeling tool which conforms to the specification.

Nowadays, most of the metamodeling technology, although packed with a lot of func-

tionality, is limited to a set of features connected with the meta-metamodel (me-

ta2model) they provide. Every concept of a modeling language is inferred from that me-

ta2model. Many of these meta2models are specific to the platform and come equipped

with different concepts. Modeling method engineers are forced to work with concepts

like: atom, paradigm, port, role, graph, attribute, property, stencil, element, set, object,

class, etc. Most of them have similar semantics, like property and attribute, or atom and

class, but one can never be sure without trying them out first.

Mentioned concepts lack domain-specificity. For example, by looking at the modeling

method framework (Figure 1), one can see that every graphical modeling language has

a concept called notation. Notation itself is composed of two concepts: graphical repre-

sentation and user interaction. Graphical representation defines how a modeling ele-

ment will be visualized in a model realized by a modeling tool. User interaction defines

what properties of modeling elements will be exposed to the user, which ones can be

modified, which ones are hidden, and how are they represented in the modeling tool.

Both of these concepts cannot be directly found in typical metamodeling technologies,

like metamodeling platforms. In most cases, graphical representation is described in a

dedicated container somewhere in the tool, or in worst cases, there is only a possibility

to associate an image with a modeling element. User interaction is, as well, described

in a dedicated container, or it cannot be described at all. The way how notation is ex-

pressed in a metamodeling technology is not domain-specific. It is closer to the “how

computers see it”, rather than “how humans see it”. With a DSL one can abstract from the

implementation specific details, and express the concepts in a domain-specific way.

As mentioned in the previous paragraphs, platform dependency, difficulty to learn, lack

of reusability and lack of domain-specificity are the four main motivating factors for this

research.

1 Introduction 25

1.5 Research Goals

The overall goal of this dissertation project was to fortify the realization of modeling

methods. It emanates from the notion that models created by using modeling tools con-

tain additional value which is greater than only representing knowledge in an accepta-

ble form. They can, as well, help us understand the problem better, or even to analyze

and simulate it. Models can be utilized in many different scenarios, from documentation

purposes to direct execution.

However, to create good models, one needs great modeling tools, and to implement

great modeling tools, one needs appropriate metamodeling technology. After analyzing

the state of the art, it has become obvious that metamodeling tools are still not suffi-

ciently efficient in terms of expressivity, understandability, applicability and usability.

There is plenty of room for improvement.

The primary focus was on improving metamodeling platforms. They were the most ad-

vanced metamodeling technology at the time this research was conducted. The disclo-

sure of fundamental inconveniences, particularly platform dependency, difficulty to

learn, lack of reusability and lack of domain-specificity made us consider an alternate

idea that has precisely the inverse: it is platform independent, simple to learn, inherent-

ly reusable and domain-specific. This is how a domain-specific language called MM-

DSL came to existence.

MM-DSL was envisaged as a bridge between modeling method experts (domain ex-

perts) and metamodeling platforms. It augments the modeling tool development pro-

cess with the domain-specific language concepts. Thus, one should have the entire

feature packed functionality of a metamodeling platform combined with all the remark-

able features of DSLs.

1.6 Main Results

The main contribution of this research is manifold: (1) a review of the different meta-

modeling technologies, (2) the MM-DSL specification including the grammar, semantics

and exemplary utilization of language constructs, (3) a prototype of an integrated-

development environment (IDE), (4) a framework for future MM-DSL extensions, and

(5) the MM-DSL translator (compiler) targeting a particular metamodeling platform.

In the review of metamodeling technologies, the most known and utilized ones (accord-

ing to the number of scientific publications and Internet search results) have been

picked. Their meta2models have been analyzed, as well as the provided features, with

the purpose to discover similarities, differences, strengths and weaknesses. The sec-

ondary objective was to establish how easy was to realize a modeling tool by using a

simple representative modeling method specifically designed for testing the expressivi-

ty and usability of metamodeling tools.

The MM-DSL specification followed after the metamodeling tools have been tested.

The results gained by realizing modeling tools on various technologies have influenced

1 Introduction 26

MM-DSL syntax and semantics. MM-DSL is a textual DSL which syntax is formally

specified using the Extended Backus-Naur Form (EBNF) notation. Semantics are de-

scribed in textual form.

IDE prototype has been implemented on top of the Eclipse IDE, which allows for reuse

of common features, like auto complete, syntax coloring, code templates, etc. The im-

plementation is done in such a way, so that it is easy to extend it with additional func-

tionality. This is also true for the contained MM-DSL translator.

To be able to evaluate the usability of MM-DSL in real-world scenarios, the MM-DSL

translator has been adapted for a particular metamodeling platform. The whole system,

including the language, the IDE, and the translator, has been evaluated through sever-

al controlled evaluation scenarios with positive results.

Generally speaking, the fundamental results give an alternative method for developing

modeling tools. If utilizing a DSL in modeling method engineering is a better way than

directly using a metamodeling platform could not be objectively evaluated, because of

reliability upon user’s preference and level of expertise. With a DSL, developers write

code – they program. With a metamodeling platform, developers use the provided func-

tionality – they customize. A user with background in programming will find it simpler

and much faster to use a DSL. A user without any programming knowledge (or aver-

sion to programming) might find it difficult at first. Therefore, he might want to custom-

ize and use a metamodeling platform, instead of a DSL. The broader conclusion is that

both of these approaches take time to get used to. However, evaluation results indicate

that learning MM-DSL takes considerably less time than learning to correctly utilize a

metamodeling platform, taking into account that the user is familiar with the basic met-

amodeling concepts.

1.7 Summary

This dissertation is structured in multiple connected parts. It is following a certain flow,

starting with the basics, such as the introduction to the concepts that are important for

understanding the state of the art, the taxonomy used throughout this document, and

an overview of computer languages and language design principles. The rest of the

document is dedicated to MM-DSL, including its relationship with metamodeling plat-

forms, its formal specification, utilization and evaluation.

In this chapter (Chapter 1) some of the fundamental concepts have been introduced

already, such as domain-specific language and modeling method. These concepts

have also been briefly defined. More elaborated definitions can be found in the section

dedicated to the taxonomy used in metamodeling research.

Chapter 2 is dedicated to the background relevant to this dissertation project. It in-

cludes the description of terminology used in metamodeling research, classification of

computer languages (e.g., programming languages, specification languages, etc.) and

1 Introduction 27

presents some of the language specification techniques such as the ones from formal

language theory and the ones using a metamodeling approach.

Chapter 3 covers the state of the art and related research, including related concepts

and technology. It additionally denotes the current challenges in metamodeling and

modeling tool development.

Chapter 4 elaborates the research problem and goals by setting up the research envi-

ronment and concisely defining the research questions.

Chapter 5 elaborates on the typical system development research methodology. It also

describes in detail how is the chosen research methodology utilized.

Chapter 6 is dedicated to metamodeling platforms, and to the functional and non-

functional requirements they should fulfill. These requirements played a significant role

in the specification of MM-DSL.

Chapter 7 presents a case study where a metamodeling platform has been used for

realization of a real-world modeling method. It later serves as a comparison to the

modeling tool development approach where MM-DSL is used.

Chapter 8 is dedicated to MM-DSL. It describes the language creation process in de-

tail, including the overall concept, domain analysis, syntax and semantics of a lan-

guage. The description on how can MM-DSL augment metamodeling platforms is pro-

vided as well.

Chapter 9 gives a complete specification of the language. MM-DSL formal syntax, se-

mantics, utilization examples, and programming concepts are discussed.

Chapter 10 describes the design, architecture and implementation of the MM-DSL IDE,

its usability, as well as how can one generate platform-specific code from the code writ-

ten in MM-DSL.

Chapter 11 is a follow-up on the work presented in Chapter 7. In Chapter 7 one can

see how to use metamodeling platforms to develop modeling tools. Chapter 11 demon-

strates on a representative example how one can use MM-DSL to develop modeling

tools.

Chapter 12 presents several evaluation scenarios and detailed evaluation results. MM-

DSL is evaluated as a language and as a development environment.

Chapter 13 is the closing chapter of this dissertation. It is composed of the summary

containing the most important conclusions, as well as current limitation to this approach

for the development of modeling tools. Some of the open issues and future improve-

ments are discussed as well.

2 Background 28

2 Background

2.1 Metamodeling Taxonomy

The terminology in the field of applied metamodeling, particularly modeling method

engineering (MME), is currently in an unsatisfactory state. Use of homonyms and syn-

onyms is causing confusion among researchers. For example, the term modeling lan-

guage is very often used instead of the term modeling method. The term modeling proce-

dure is often misunderstood. The difference between modeling algorithms and model-

ing mechanisms is not clearly stated. There are several synonyms for the technology

utilized in MME, such as metamodeling platform, language workbench, metamodeling

framework, or metamodeling toolkit).

This section explicitly defines the meaning of terms used in this dissertation, which also

includes some of the terms used in the field of software engineering. It does not pro-

vide comprehensive explanation for every term. These will be provided in dedicated

sections of this work.

2.1.1 Modeling Method

By including functionality in a form of modeling procedures, modeling algorithms and

modeling mechanism to the modeling language, modeling methods are created. Be-

cause of this supplemental functionality, modeling methods need to be realized as

modeling tools. Otherwise, their utilization would be limited.

2.1.2 Modeling Language

A modeling language is the essential part of each modeling method. It is defined by its

notation, syntax and semantics. The language’s notation (or concrete syntax) can be

either textual, graphical or both. The (abstract) syntax is defined by a set of rules that

need to be followed unconditionally. Semantics can be defined formally, semi-formally,

or informally depending on the modeling language’s application area. Formal seman-

tics are helpful for execution languages, because program execution entails compila-

tion, and writing a compiler is much easier if one understands unambiguously the

meaning of language constructs. In case of modeling languages which purpose is lim-

ited to expressing information and sharing knowledge, semantics can be given in pure

textual descriptive form.

2.1.3 Modeling Procedure

Modeling procedure is an important part of a modeling method. It provides steps re-

quired to be taken to achieve predefined results. For example, it recommends modeling

2 Background 29

of diagram A before diagram B. By doings so, a modeling tool that realizes a modeling

method can generate diagram B automatically, which would not be the case if we creat-

ed diagram B first. Creating diagram B first is still a perfectly valid utilization of a model-

ing method. However, it is not a recommended way of doing things.

2.1.4 Modeling Algorithm

In mathematics, as well as in computer science, an algorithm is a set of rules for solv-

ing a problem in finite number of steps. It is a step-by-step procedure with results that

need to be precise. A modeling algorithm conforms to the definition of an algorithm,

with an addition – it is designed to solve problems in a specific domain. Most of the

modeling algorithms can be grouped into two broad categories: analysis and simula-

tion. Additionally, there are modeling algorithms responsible for the placement of ob-

jects on the modeling canvas, which are particularly important for graphical modeling

languages. The rest of modeling algorithms can be placed into the custom algorithm

category. Examples of custom algorithms include automatic object generation and on

demand notation change.

2.1.5 Modeling Mechanism

A mechanism is a relaxed algorithm. It possesses most of the properties an algorithm

has, except it does not have to solve a problem in finite number of steps and the result

does not have to be precise. It can be viewed as an imperfect algorithm or even as a

simplified algorithm template. The transition from mechanism to algorithm may happen

if all exceptions a mechanism possesses are eliminated. A mechanism may be com-

posed of several elements, typically other mechanisms or algorithms and its main pur-

pose is to achieve an intended result. An example of a modeling mechanism is an ex-

port feature that is intended to produce bitmap images from models. The duration of

the process is not specified and may vary. The same is true for the result, which will be

an image, but it may be a slightly different image each time the export feature is utilized

on the same model.

2.1.6 Software Engineering

For the purpose of this work the IEEE definition for software engineering is used [11]:

“[Software Engineering is] the systematic application of scientific and technological

knowledge, methods, and experience to the design, implementation, testing, and doc-

umentation of software”

2.1.7 Modeling Method Engineering

Modeling method engineering (MME) is an engineering discipline that applies software

engineering and metamodeling techniques on the development of modeling methods

and realization of tools supporting them. It can be roughly divided into two parts: (1)

2 Background 30

conceptualization of modeling methods, and (2) realization of modeling tools. The first

part can be considered as a design process, where one specifies a modeling method

according to the requirements gathered from an application domain. The second part is

concentrated on the tooling of a modeling method where engineers employ metamod-

eling technology to achieve appropriate results. The final product is software which

supports the conceptualized modeling method.

2.1.8 Meta-

In the metamodeling research once can notice the rich usage of the prefix meta-.

Sometimes even two or three times in a sequence: meta-meta-, meta-meta-meta-. Mul-

tiple occurrences of meta- can be abbreviated as follows: meta-meta- as meta2, meta-

meta-meta- as meta3, etc. Using this rule, instead of writing meta-meta-model, one can

write meta2model. The satisfactory definition for meta- taken from [11] is:

“[meta- is] a prefix to a concept to imply definition information about the concept.”

2.1.9 Metalanguage

The concept metalanguage is very important for this work. It’s meaning is [11]:

“a language used to specify some or all aspects of a language”

In this work we use Extended Backus-Naur Form (EBNF) to specify a DSL. Later on

that DSL is used to specify a modeling method. From the modeling method point of

view, the DSL is a metalanguage, and EBNF is a meta2language. From the DSL point

of view, EBNF is a metalanguage.

2.1.10 Model and Metamodel

According to [5] models are the unifying concept in IT engineering and can come in

various flavors: an UML model, a Java or C# program (practically any kind of program

written in any kind of programming language), an XML or RDF document, etc. In [5]

and [12] they are formally defined using the graph and set theory as a labeled directed

multigraph with special properties. This work does not focus on issues of formal model

and metamodel definition. Thus, it is enough to understand that [12]:

“A model is an abstraction of a (real or language based) system allowing prediction or

inference to be made”

A metamodel can be defined as a model of models, meaning that a model is an in-

stance of a metamodel. OMG in their MOF specification define a metamodel as [13]:

“… a model used to model modeling itself”

For example, Java specification (at least the Java grammar) is a metamodel of a Java

program, XML schema is a metamodel of an XML document, and UML (the language)

2 Background 31

is a metamodel of an UML model. EBNF is then a meta2model of a Java program, and

MOF is the meta2model of an UML model.

2.1.11 Metamodeling

Metamodeling, particularly in software and system engineering, as well as in modeling

method engineering, is the analysis, construction and development of the modeling

languages and modeling methods we use to model with. It is a layered approach to the

design process, where one has at least two layers. The maximum number of layers is

unlimited, but in practice it is typically not bigger than four [13]. Two layers are manda-

tory, because we want to represent and navigate from meta-concept (class) to its con-

cept (instance) and vice versa. The metamodeling approach is used to design model-

ing methods and realize modeling tools supporting them.

2.1.12 Metamodeling Platform

Metamodeling platform is a technology that supports a metamodeling approach. The

central part of a metamodeling platform is an underlying meta2model. The platform’s

functionality is built around it. Various modeling method development tools, like (ab-

stract) syntax designer, notation (concrete syntax) designer, and additional API librar-

ies are all a part of the platform’s functionality. There exist many variations on the met-

amodeling platform concept: language workbench, metamodeling toolkit, metamodeling

framework, etc. Typically, these are only synonyms for the same technology. In this

work this kind of metamodeling technology is addressed simply as metamodeling plat-

form.

2.1.13 Domain-Specific Language

A domain-specific language (DSL) is a computer language particularly targeting a spe-

cific application domain. It is very good at expressing solutions to problems in that spe-

cific domain. Its concrete syntax can be either textual, or graphical or both. It can be

executable, but it doesn’t have to! It can be Turing complete, but it doesn’t have to (and

typically it is not)! It can be independent (standalone language) or embedded into a

host language. The size of a language does not define its domain specificity. For ex-

ample, SQL is a huge DSL, with over 800 reserved words. Inside the scope of this dis-

sertation, if languages like markup language, modeling language, specification lan-

guage, scripting language, or programming language contain the above mentioned

properties, we consider them to be domain-specific.

2.1.14 Translator and Compiler

A term translator is used to describe “a computer program that transforms a sequence

of statements expressed in one language into an equivalent sequence of statements

expressed in another language” [11]. It is not specified if the translation is made from a

2 Background 32

higher-order language to a lower-order language (e.g., from C++ to assembler). Both

source and destination language may be of the same order.

A compiler is a special instance of a translator. It translates programs (models) ex-

pressed in a high-order language into their machine language equivalents [11].

2.2 Types of Computer Languages

In computer science one distinguishes many classifications of computer languages.

Generally, the term computer language and programming language are used as syno-

nyms. Thus, it is common to classify computer languages into low level, high level and

everything in between. Machine language, which is a pure binary code, and assembly

language, which uses mnemonics to substitute binary code, are considered low level

computer languages. Examples of high level languages are C++ and Prolog. In this

classification a concept of generation is used. It indicates how close the computer lan-

guage is to the natural language. Currently, there are four generations, machine lan-

guage being first, assembly language second, C++ (and equivalent) being third, and

SQL (and other domain-specific languages) being fourth.

Level- and generation-based classification can be applied on programming languages,

but not on all kinds of existing computer languages. In this work the term programming

language is not the same as the term computer language. Computer language is “a

language designed to enable humans to communicate with computers” [11]. Program-

ming language is then only one of computer language subcategories, as well as speci-

fication language, modeling language, etc. Therefore, a different classification is used –

the one that distinguishes between language’s notation, purpose and generality. A lan-

guage can belong to multiple categories at the same time. For example, a domain-

specific graphical modeling language, would be a DSL with graphical notation as well

as a modeling language. See Figure 2 for other possible combinations.

Figure 2: Classification of Computer Languages

2 Background 33

The most interesting categories in the context of this work are: (1) textual, (2) graphical,

(3) general-purpose, (4) domain-specific, (5) programing, (6) specification, and (7)

modeling languages.

2.2.1 Textual vs. Graphical

According to the notation a computer language possesses, it can be classified either as

textual, or as graphical. In case the language uses both textual and graphical notation,

it can be classified as a language with a hybrid notation.

Computer languages with a textual notation, or shortly textual languages, are the most

common class of computer languages. Describing programs (or models) is done by

chaining characters into strings, and strings into statements. Keywords – reserved

words with a special meaning – are the core part of textual language’s notation. Every

textual language has keywords.

Most of programming languages fall into this category: C, C++, C#, Java, Prolog,

COBOL, Pascal, Python, etc. Textual specification languages are not known as widely

as textual programming languages, but they do exist. For example, CASL, VDM, Z no-

tation, Spec#, etc. As for textual modeling languages, there are many present in the

Eclipse community. Typically, they are constructed around EMF and influenced by the

OMG standards like MOF and UML.

Defining a textual computer language is relatively straight forward. One needs to define

the grammar of a language. Grammar represents the language’s abstract and concrete

syntax. Nowadays, EBNF is the most common way of defining the language’s context-

free grammar. A parser can be automatically generated from an EBNF-like grammar

definition using the tools such as the legendary LEX and YACC, or the modern Eclipse-

based framework Xtext. Defining semantics of a textual language can be accomplished

by using one of the mature formal methods, like operational semantics, denotational

semantics, and axiomatic semantics, or by utilizing plain text (prose) to describe the

meaning of language’s constructs. Using one approach does not exclude the other. If a

language is meant to be executable, its syntax and semantics should be formally ex-

pressed. Without formal syntax it is not possible to correctly parse programs. If seman-

tics are not defined in detail, it may happen that the translators, particularly compilers

developed for the language in question are not fully conform to the language’s specifi-

cation.

Graphical computer languages contain a graphical notation. Their concrete syntax is

not build from keywords and special characters. It is represented by various graphical

symbols. Programs in graphical languages are represented as graphs, typically as la-

beled attributed multigraphs.

Main representatives of graphical computer languages are graphical specification lan-

guages and graphical modeling languages. Visual programming languages are also a

subcategory of graphical languages. Every programming language that lets users cre-

2 Background 34

ate programs by manipulating program elements graphically, rather than by specifying

them textually, is considered to be a visual programming language.

Distinction between graphical specification languages and graphical modeling lan-

guages is vague. In practice, they are treated as synonyms. The difference, however

minor it is, does exist. It is in the formality of a language, as well as its application.

A specification language is a formal computer language. It is used during systems

analysis, requirements analysis and systems design to express desired properties

about the software to be built. The main focus on what the software should do, without

stating how to do it. An important use of specification languages is enabling the crea-

tion of proofs of program correctness. A common fundamental assumption is that pro-

grams are modelled as algebraic or model-theoretic (using mathematical structures

such as groups, fields, graphs, universes of set theory) structures. This level of ab-

straction is equal with the view that the correctness of the input/output behavior of a

program takes precedence over all its other properties. Nowadays, among other appli-

cation scenarios, they are used in model driven engineering (MDE), for example to

specify model to model transformations [14].

A typical modeling language, like UML, is semi-formal, meaning that it has a well-

defined (formal) syntax, but not unambiguous and precise semantics. The semantics of

UML are provided in prose, which is inherently ambiguous. As a result, models created

with a semi-formal modeling language can be read by a computer, but due to the lack

of formalized semantics, a computer cannot compute them in a deterministic way. UML

is only one example. In practice there are many domain-specific graphical modeling

languages, which do not have formally defined semantics. Some of them do not have

formally defined syntax as well. This can be seen in various implementations of the

same modeling language. Graphical modeling languages are commonly used to ex-

press information, knowledge, or systems by using a diagraming technique with named

symbols that represent concepts, and lines that connect the symbols and represent

relationships among concepts. Graphical notation is used to express constraints as

well.

2.2.2 General-Purpose vs. Domain-Specific

A general-purpose language (GPL) is a computer language that is broadly applicable

across multiple application domains, and lacks specialized features for a particular do-

main. We can divide them into multiple categories, such as general purpose program-

ming languages (GPPL), general purpose markup languages (GPMaL), and general

purpose modeling languages (GPMoL).

The main property of a GPPL is that it is computationally universal or Turing complete.

However, the languages that belong to the Turing tar-pit are not considered to be gen-

eral purpose languages. Turing tar-pits are characterized by having a simple abstract

machine which requires that the programmer deals with many completely unnecessary

2 Background 35

details of the solution, because only the minimum functionality necessary to classify the

language as Turing complete is provided by the language. There is a saying [15]:

“Beware of the Turing tar-pit in which everything is possible but nothing of interest is

easy.”

In other words, a language has to be useful as well.

General purpose markup language is a category of document annotation languages

that can be used in various domains. Leading example for this category is the Standard

Generalized Markup Language (SGML), which is an ISO standard based on the follow-

ing postulates: (1) it should be declarative, and (2) it should be rigorous. Declarative

means that the language should describe a document’s structure, rather than specify

the processing to be performed on it. Rigorous means that the techniques available for

processing rigorously-defined objects such as programs and databases can be used

for processing of documents as well. GPMaLs are also used as a base for implement-

ing domain-specific markup languages like HTML. The second well-known example for

GPMaL is XML, a markup language that defines a set of rules for encoding documents

in a format that is readably both by a machine and a human (although, complex XML

representations tend to become unreadable to humans). XML, just like HTML is ex-

tended from SGML, but its usage is applicable to multiple application domains.

General purpose modeling language is a category of modeling languages which are

general enough to represent various facets of an object or a system. UML, with its 13

distinct diagrams is an example of a GPMoL. Nowadays, in the programming communi-

ty, XML as a data modeling language for code modeling is also considered as GPMoL.

On the opposite side, we have domain-specific languages (DSLs), which are explicitly

designed for the use in a one well-define application domain. They are typically not

Turing complete, but they provide more expressivity in their dedicated domain. Describ-

ing and solving problems in a DSL for a particular domain is much simpler than using a

GPL. Additionally, DSLs are supported by various tools that are in most cases insepa-

rable from the DSL itself. SQL code without its relational database management sys-

tem (RDBMS) is just a structured text. But with RDBMS it becomes a powerful lan-

guage for database querying. DOT, which is a graph description language, is only use-

ful together with Graphviz – a tool for graph visualization. MATLAB is considered to be

a numerical computing environment and a DSL at the same time. These are only well-

known examples. General rule is that if a DSL is meant to be interpreted, compiled or

utilized to generate a different representation (e.g., image, sound, code, etc.) it needs

to have software support.

Analogue to GPLs, DSLs can also be categorized into different categories, such as

domain-specific programming language (DSPL), and domain-specific modeling lan-

guage (DSML). DSPLs are executable and typically have textual notation. DSMLs are

not executable, but one can generate code templates from their models. DSMLs are

graphical modeling languages.

2 Background 36

2.2.3 Programming vs. Specification Language

The major difference between programming and specification languages is in the way

how they describe computer systems.

Specification languages express desired properties about a system. They abstract from

the implementation details and describe a system at a much higher level than a pro-

gramming language. Specification languages are not directly executable. However,

there are ways to generate programming language code templates from the system’s

specification.

Programing languages express computer programs in a machine understandable way

– they communicate instructions to the machine. Therefore, they implement a system.

This involves a computer performing some kind of computation. The programming lan-

guage statements can as well be used to control all or some of the hardware compo-

nents of a computer system, such as printers, scanners, disk drives, etc.

2.2.4 Graphical Modeling Languages

Modeling languages are used to model information, knowledge or systems. They can

be textual, graphical, or both. Their usage has grown significantly in the last couple of

years, as well as their number.

Current trend of creation and utilization of modeling languages is connected with the

emerging practices in the software development, where the inclusion of a customer in

the development process has become a common practice. The customers, even the

managers, are not required to be familiar with all the details of software engineering,

like knowing the technologies and languages used in the development, or any other

aspects of computer science. Semi-formal graphical modeling languages have proven

to be very helpful to communicate ideas in a simplified form between computer engi-

neers, managers, and customers.

At the same time, the systems are becoming more complex. Modeling languages are a

mean to cope with this increasing complexity, by allowing the construction of conceptu-

al models on a higher level of abstraction. An overview of a whole system can be

shown without the unnecessary low level details. By using conceptual models to cap-

ture the fundamentals, overall understanding of a system can be increased.

Well-known languages like Entity Relationship Model (ER), Data Flow Diagram (DFD),

Structured Analysis and Design Technique (SADT), State Diagram, and Unified Model-

ing Language (UML) are all examples of graphical modeling languages. UML is a spe-

cial example, because it is a general-purpose modeling language which integrates var-

ious modeling languages as a part of its many diagrams. For example, a modified State

Diagram is an integral part of UML.

2 Background 37

2.2.4.1 UML

This section describes the fundamentals of UML according to the OMG’s UML specifi-

cation [16]. Modeling method engineering as a discipline is reusing the practices from

software engineering in the process of modeling tool development. Therefore, UML is a

valuable tool, not only in software engineering but in modeling method engineering as

well. Class diagram and its variations are commonly used to represent meta2models

and metamodels of modeling languages.

Because UML is a well-known and dominant general-purpose graphical modeling lan-

guage for modeling business and similar processes, analysis, design, and implementa-

tion of software-based systems, it is presented here as an example to illustrate the dif-

ferences between general-purpose and domain-specific graphical modeling languages.

UML is composed of multiple diagrams. Each of them graphically represents a different

view of a system’s model. In the current specification there are fourteen types of dia-

grams divided into two categories: structural diagrams and behavioral diagrams (see

Figure 3). Structural diagrams point out the things that must be present in the system

being modeled. Together they form the architecture of a system. Behavioral diagrams

represent what must happen in the system being modeled. Together they form the

functionality of a system.

Structural UML diagrams are: (1) class diagram, (2) component diagram, (3) composite

structure diagram, (4) deployment diagram, (5) object diagram, (6) package diagram,

and (7) profile diagram.

Behavioral UML diagrams are: (1) activity diagram, (2) communication diagram, (3)

interaction overview diagram, (4) sequence diagram, (5) state diagram, (6) timing dia-

gram, and (7) use case diagram.

Figure 3: UML Diagram Hierarchy (adapted from [16] and [17])

2 Background 38

According to the UML specification, communication diagram, interaction overview dia-

gram, sequence diagram, and timing diagram belong to a subset of behavior diagrams

called interaction diagrams. They emphasize the flow of control and data among the

elements in the system being modeled.

UML element types are not restricted to a certain diagram type. It is common practice

to reuse element types in multiple diagram types. Because of it, one can note similari-

ties between various structural diagrams, as well as between various behavioral dia-

grams. For additional flexibility, UML provides a possibility to extend diagram types, or

even to create new diagram types. These new additions to the UML core are ad-

dressed as UML profiles.

Class diagrams are probably the most known diagram type in UML. They show the

classes of the system, their inter-relationships, their attributes and operations (also

known as methods). Class diagrams are typically used to: (1) explore domain concepts

in the form of a domain model, (2) analyze requirements in the form of a conceptual

model, and (3) depict the detailed design of object-oriented or object-based software

[18].

Component diagrams describe how a system is split up into components and shows

dependencies among these components. They are used to illustrate the structure of a

complex system on a higher level than class diagrams.

Composite structure diagrams show the internal structure of a class and the collabora-

tions that this structure makes possible. Diagrams are composed of internal parts, ports

through which the parts interact with each other or through which instances of the class

interact with the parts and with outside world, and connectors between parts and ports.

Deployment diagrams models the physical deployment of artifacts on nodes. A single

node in the diagram may conceptually represent multiple physical nodes, like clusters

or database servers. In other words, deployment diagrams show the execution archi-

tecture of a system, including the hardware of a system, the software that is installed

on that hardware, and middleware used to connect the disparate machines to one an-

other [18].

Object diagrams depict objects and their relationships at a specific point in time. They

represent instances of a class diagram. Therefore, they are often used to provide ex-

amples or act as test cases for class diagrams. Because an object diagram is a more

concrete representation than a class diagram, it needs to include enough information

so that it is a recognizable instance [18].

Package diagrams shows how model elements are organized into packages, as well as

the dependencies between packages. Consequently, they are making UML diagrams

simpler and easier to understand. Packages group semantically related elements and

can be used on any of the UML diagrams. Typically, they are applied on use case and

class diagrams (these have the tendency to grow quite large), as a mechanism to help

keep system dependencies under control.

2 Background 39

Profile diagrams work at a metamodel level and describe a lightweight extension

mechanism to the UML by defining stereotypes (meta-classes), tagged values (meta-

attributes), and constraints [19]. This mechanism is not a first-class extension mecha-

nism. It does not allow to modify existing metamodels or to create new metamodels.

Profile only allows adaption or customization of an existing metamodel with constructs

that are specific to a particular domain, platform, or method.

Activity diagrams show flow of control or object flow with emphasis on the sequence

and conditions of the flow [19]. Because they are a graphical representation of work-

flows of stepwise activities and actions, they are typically used for business process

modeling, for modeling the logic captured by a single use case scenario, or for model-

ing the detailed logic of a business rule [18].

Communication diagrams (called collaboration diagrams in UML 1.x) shows interaction

between objects and/or parts using sequenced messages [19]. They represent a com-

bination of information taken from class, sequence and use case diagrams describing

both the static structure and dynamic behavior of a system.

Interaction overview diagrams provide overview of the flow of control where nodes of

the flow are interactions or interaction fragments. The current UML specification refers

to these diagrams as interaction diagrams in some places, while in other places inter-

action overview diagrams are referred to as specialization of activity diagrams. The

nodes within the diagrams are frames instead of the normal activities one can see on

activity diagrams.

Sequence diagrams are probably the most popular interaction diagrams. They focus on

the message interchange between lifelines. A lifeline represents an individual partici-

pant in the interaction. Sequence diagrams describe an interaction by focusing on the

sequence of messages that are exchanges, along with their corresponding occurrence

specifications in the lifelines [19].

State diagrams or state machine diagrams are an enchanted realization of the mathe-

matical concept of finite automaton in computer science applications. They show dis-

crete behavior of a part of a system through finite state transitions. This behavior is

modeled as a traversal of a graph of state nodes connected with transitions. Transi-

tions are triggered by the dispatching of series of events. During the traversal, the state

machine can also execute some activities [19].

Timing diagrams are used to express the behaviors of one or more objects throughout

a given period of time. They focus on conditions changing within and among lifelines

along a linear time axis. Such diagrams have found their use in the design of embed-

ded software systems, such as control software for fuel injection system in an automo-

bile [18].

Use case diagrams present an overview of the usage requirements for a system [18].

They are behavioral diagrams that describe a set of actions (use cases) that a system

should or can perform in collaboration with one or more external users of the system

2 Background 40

(actors). Each use case should provide some observable and valuable result to the

actors or other stakeholders of the system [19].

From this very brief summary of all currently available diagrams, it can be concluded

that UML is a huge language, with a lot of interconnected elements and various con-

straints and rules. Consequently, even the specification documents are sometimes

incomplete and/or incomprehensible (depending on the specific version, and there are

many).

It may sound strange, especially for such a large language, that one of the biggest dis-

advantages of UML is that it doesn’t cover all the aspects of system development. UML

coverage in development of software systems is limited by its object-oriented modeling

approach. A proof that UML alone cannot cover system engineering by itself is that

OMG has specified another language just for that – the System Modeling Language

(SysML). System modeling is only one example of a domain UML cannot model suc-

cessfully. There are many other domains that are difficult to model with UML as well.

Some of other disadvantages of using UML are:

- Complexity. UML is a very complex language, which makes it a hard language

to learn. Most of the developers tend to learn only the parts they need. Using

every single element of UML is very rare in typical software system designs.

- Large diagrams. Diagrams increase in size during the development and can

become overwhelming and hard to manage.

The mentioned limitations and disadvantages of UML can be solved with the introduc-

tion of domain-specific (graphical) modeling languages.

2.2.4.2 Domain-Specific Graphical Modeling Languages

Domain-specific (graphical) modeling languages, or shortly DSMLs, are an essential

part of a certain software engineering practice called domain-specific modeling (DSM),

where domain-specific languages are utilized as means to represent various facets of a

(software) system. In this discipline one creates a language specifically targeting an

aspect of a system, and afterwards uses this language to describe that aspect of a sys-

tem. There are myriads of DSMLs today. Most of them do not have a dedicated name,

making it very hard to list them as examples, even if we do know they exist. Probability

that we do not know a particular DSML exist is considerably higher than vice versa.

There are some known languages we can put into this category, like ER, which is used

for describing a database in an abstract way, or state diagrams, which is used to model

the behavior of a system. These languages have a historical value, and are very differ-

ent than today’s DSMLs. Nowadays it is common to create languages that describe

refrigerators, biological neurons, web services, graphs, document layouts, user inter-

faces, and many other domains.

One of the important ideas in DSM is the generation of executable source code directly

from the models. Consequently, DSMLs significantly increase developer productivity

2 Background 41

[20]. Generation of source code is not possible from models modeled in a general-

purpose modeling language like UML, because of its complexity and semi-formal na-

ture. However, it is possible to create code templates which must be extended with

additional code in order to become executable.

To enable the creation of DSMLs and afterwards the generation of output artifacts (it

doesn’t have to be executable source code; output can be in form of images, other lan-

guage code, tool configuration templates, etc.) one needs to have some kind of a tool

support. Building a development environment from scratch is almost never a feasible

solution, because most of domain-specific (modeling) languages have a small, typically

closed, community. The other reason is that during the system development, many

DSLs are created. Having dedicated development environments for each and every of

them is pointless and an additional work for the developers, which takes more time

than the creation of a DSL itself.

This is why domain-specific modeling language environments are created. A DSML

environment is a metamodeling tool, meaning that it is a modeling tool used to define a

modeling tool. In this dissertation, these tools are addressed as metamodeling plat-

forms. In other communities they are known as language workbenches [21] or meta-

CASE (computer-aided software engineering) tools [22]. Metamodeling platforms are

considered to be stand-alone metamodeling tools. The popularity of metamodeling ap-

proaches has led to the development and addition of DSML frameworks to very popular

IDEs as well. Eclipse IDE has EMF and GMF, and many others in development. Visual

Studio IDE has Visualization and Modeling SDK (formerly known as DSL Tools).

Today, the most know metamodeling platforms are: MetaEdit+, GME, and ADOxx.

These tools, together with the most popular frameworks will be covered in a separate

section. It is important to understand how this technology works, its advantages and

disadvantages. Metamodeling platforms and frameworks are a foundation on which this

dissertation builds upon.

2.3 Language Specification Techniques

This section is dedicated to the existing artificial language specification techniques,

which have become quite relevant for the creation of artificial languages that had origi-

nated in computer science. Some of these established techniques are used in the

specification of MM-DSL, which is a domain-specific language for describing modeling

methods. This specification is provided and thoroughly discussed in a dedicated chap-

ter.

There are two distinguishable approaches used for specification of languages. The first

one is the formal language theory, particularly a set of formalisms called formal gram-

mars, which are used to specify formal textual languages, for example textual pro-

gramming languages, textual specification languages, or textual DSLs. The other tech-

nique for the specification of languages is addressed as metamodeling approach, and it

is used for the specification of metamodels that describe a language. This approach is

2 Background 42

typically utilized to specify an abstract syntax of graphical modeling languages. How-

ever, it can also be applied to specify textual languages.

2.3.1 Formal Language Theory

Formal language in this context means a set of strings of symbols which are con-

strained by rules. Therefore, one can only describe textual languages. Graphical lan-

guages have additional elements, which cannot be described only using the formal

language theory. A formal language is often defined by means of a formal grammar,

such as regular grammar or context-free grammar. Regular grammars describe regular

languages, for example regular expressions. Context-free grammars describe the

structure of sentences and words of a formal language. It is a collection of production

rules, which are made of terminal and non-terminal symbols. Context-free grammars

which are extended with parameters or attributes are called attributed grammars. For-

mal rules on how to extend the context-free grammar are described by attribute gram-

mars. Attributes associated with the rules are usually used to express static semantics

of a language.

This section will not go into detail on all possible type of grammars. It will present a

brief summary and focus only on those important for the definition of textual languages.

Mainly context-free grammars and attributed grammars. Additional information about

artificial language linguistics, as well as on the construction of language grammars can

be found in the following works of Noam Chomsky, the “father of modern linguistics”:

[23], [24], and [25]. A brief summary can also be found in [26].

2.3.1.1 Formal Grammar

A formal grammar is a quadruple 𝐺 = (𝑇, 𝑁, 𝑆, 𝑃), where:

- 𝑃 is a finite set of production rules. Each production rule has the following form:

𝐿𝐻𝑆 𝑅𝐻𝑆, where 𝐿𝐻𝑆 indicates left-hand side and 𝑅𝐻𝑆 indicates right-hand

side of a rule. Each side consists of a sequence of nonterminal and terminal

symbols.

- 𝑁 is a finite set of nonterminal symbols. A nonterminal symbol indicates that a

production rule can be applied.

- 𝑇 is a finite set of terminal symbols. A terminal symbol indicates that no produc-

tion rule can be applied.

- 𝑆 is a distinguished start symbol. It is a special nonterminal symbol, which can

only be found on the 𝐿𝐻𝑆 of one or more production rules.

A formal grammar defines a formal language, which is usually an infinite set of finite-

length sequences of symbols. The language is constructed by applying production

rules to another set of symbols which initially contains just the start symbol. A rule may

be applied to a sequence of symbols by replacing the occurrence of the symbol on the

2 Background 43

𝐿𝐻𝑆 of the production rule with those that appear on the 𝑅𝐻𝑆. A formal language de-

fined by such a grammar consists only of terminal symbols which can be reached by a

derivation from the start symbol. A derivation is a sequence of rule applications to the

sequence of symbols.

The following is a toy example of a formal language described by its grammar.

Let 𝐺 = ({0, 1}, {𝑆, 𝑇}, 𝑆, 𝑃), where 𝑃 contains the following productions:

1. 𝑆 0𝑇

2. 𝑆 01

3. 𝑇 𝑆1

This grammar describes a language with which we can construct the strings of symbols

such as (1) 01, (2) 0011, or (3) 000111, because:

1. 𝑆 01

2. 𝑆 0𝑇 0𝑆1 0011

3. 𝑆 0𝑇 0𝑆1 00𝑇1 00𝑆11 000111

We can say that this grammar describes the set {0𝑛1𝑛|𝑛 ≥ 1}.

Let us consider one more example. This time we want to be able to describe English

sentences. The terminal symbols in this case are English words. The nonterminals cor-

respond to the structural components in an English sentence, such as <sentence>, <sub-

ject>, <predicate>, <noun>, <verb>, <article>, and so on. The start symbol is <sentence>.

Some of the production rules would look like this:

1. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > < 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 >< 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 >

2. < 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 > < 𝑛𝑜𝑢𝑛 >

3. < 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 > < 𝑣𝑒𝑟𝑏 >< 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 >< 𝑛𝑜𝑢𝑛 >

4. < 𝑛𝑜𝑢𝑛 > 𝑁𝑖𝑘𝑠𝑎

5. < 𝑛𝑜𝑢𝑛 > 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

6. < 𝑣𝑒𝑟𝑏 > 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

7. < 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 > 𝑎

The rule 1 expresses that a sentence can consist of a subject phrase and a predicate

phrase. The rule 2 expresses that a subject consists of a noun. The rule 3 expresses

that a predicate phase consists of a verb, article and a noun. The rules 4 and 5 mean

that both Niksa and language are possible nouns (they are also terminals). This ap-

proach to grammar was introduced by Chomsky in [23].

This grammar can derive sentences like Niksa created a language, or language created a

language, because:

i. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > < 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 >< 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 >

ii. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > < 𝑛𝑜𝑢𝑛 >< 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 >

iii. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > < 𝑛𝑜𝑢𝑛 >< 𝑣𝑒𝑟𝑏 >< 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 >< 𝑛𝑜𝑢𝑛 >

iv. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > 𝑁𝑖𝑘𝑠𝑎 < 𝑣𝑒𝑟𝑏 >< 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 >< 𝑛𝑜𝑢𝑛 >

2 Background 44

v. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > 𝑁𝑖𝑘𝑠𝑎 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 < 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 >< 𝑛𝑜𝑢𝑛 >

vi. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > 𝑁𝑖𝑘𝑠𝑎 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑎 < 𝑛𝑜𝑢𝑛 >

vii. < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > 𝑁𝑖𝑘𝑠𝑎 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑎 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

In the same way we can derive many sentences which conform to the grammar rules,

by introducing other nouns, verbs, and articles to the grammar.

2.3.1.2 Hierarchy of Grammars

According to Chomsky, grammars can be divided into four classes by gradually in-

creasing the restrictions on the form of the productions [25][24]. This is why this hierar-

chy is also known as Chomsky hierarchy.

Let 𝐺 = (𝑇, 𝑁, 𝑆, 𝑃) be a grammar, then [26]:

1. 𝐺 is also called a Type-0 grammar or an unrestricted grammar.

2. 𝐺 is a Type-1 or context-sensitive grammar if each production 𝐴 𝐵 in 𝑃 satis-

fies |𝐴| ≤ |𝐵|. We also allow a Type-1 grammar to have the production 𝑆 𝜀 (𝜀

denotes an empty string), provided 𝑆 does not appear on the right-hand side of

any production.

3. 𝐺 is a Type-2 or context-free grammar if each production 𝐴 𝐵 in 𝑃 satisfies

|𝐴| = 1, that is 𝐴 is a single nonterminal. 𝐵 is a string of terminals and/or non-

terminals, and it can be empty (𝜀).

4. 𝐺 is a Type-3 or regular or right-linear grammar if each production has one of the

following three forms: 𝐴 𝑐𝐵, 𝐴 𝑐, 𝐴 𝜀, where 𝐴, 𝐵 are nonterminals (with

𝐴 = 𝐵 allowed), and 𝑐 is a terminal.

The language generated by a Type-i grammar is called a Type-i language, where 𝑖 =

 0, 1, 2, 3. A Type-1 language is also called a context-sensitive language (CSL), and a

Type-2 language is also called context-free language (CFL). A Type-3 language is also

called a regular language.

The four classes of languages in the Chomsky hierarchy have also been completely

characterized in terms of Turing machines and natural restrictions on them [26].

- Type-0 languages equal the class of languages accepted by Turing machines.

- Type-1 languages equal the class of languages accepted by linear bounded au-

tomata.

- Type-2 languages equal the class of languages accepted by pushdown automa-

ta.

- Type-3 languages equal the class of languages accepted by finite automata.

2 Background 45

A linear bounded automata is a possibly-nondeterministic Turing machine that on any

input 𝑥 uses only the cells initially occupied by 𝑥, except for one visit to the blank cell

immediately to the right of 𝑥 (which is the initially-scanned cell if 𝑥 = 𝜀). Pushdown

automata may also be nondeterministic.

2.3.1.3 Context-Free Grammar

Context-free grammars are an essential formalism for describing the structure of pro-

grams in a textual language. In principle the grammar of a language describes the syn-

tactic structure only, but since the semantics of a language are defined in terms of the

syntax, the grammar is also instrumental in the definition of the semantics [27]. Parsing

of computer programs, where it is determined if a given string belongs to the language

described by the grammar, usually brings out the meaning of the string [26]. The mean-

ing is associated with how the program should be executed. In context-free grammars

derivation is represented as a parse tree or derivation tree. The start symbol is the root

of a parse tree. Every leaf corresponds to a terminal (or to 𝜀), and every internal node

corresponds to a nonterminal. For example, if 𝐴 is an internal node with children 𝐵, 𝐶,

and 𝐷, then 𝐴 𝐵𝐶𝐷 must be a production. The concatenation of all leaves from left to

right yields the string being derived [26].

It has already been mentioned that a context-free grammar rules are always in the

𝐴 𝐵 form, where 𝐴 is a single nonterminal, and 𝐵 is a string of terminals and/or non-

terminals which can also be empty. There is also a special context-free grammar form

called Chomsky normal form, in which every rule has the following structure: 𝐴 𝐵𝐶 or

𝐴 𝛼, where 𝐴, 𝐵, 𝐶 are nonterminals and 𝛼 is a terminal. 𝐵 and 𝐶 may not be the

start symbol. Additionally, if a language contains an empty string, we allow 𝑆 𝜀 where

𝑆 is the start symbol, which must never be on the right-hand side of a production. Every

context-free grammar can be transformed in the Chomsky normal form.

The following example shows the differences between context-free grammar and

Chomsky normal form. More information about the transformation between context-free

grammar to Chomsky normal form can be found in [26] and [28].

Consider the following context-free grammar:

1. 𝑆 𝐴𝑏𝐴

2. 𝐴 𝐴𝑎 | 𝜀

Chomsky normal form from this grammar is:

1. 𝑆 𝑇𝐴 | 𝐵𝐴 | 𝐴𝐵 | 𝑏

2. 𝐴 𝐴𝐶 | 𝑎

3. 𝑇 𝐴𝐵

4. 𝐵 𝑏

5. 𝐶 𝑎

Full transformation steps can be found in [29] and [30]. The “|” symbol indicates “or”

relationships, meaning that we can write 𝐴 𝐴𝐶 | 𝑎 like 𝐴 𝐴𝐶, 𝐴 𝑎.

2 Background 46

Both forms of this grammar accept the same set of strings. For example, we can prove

this on “aabaa” by deriving it from the context-free grammar:

i. 𝑆 𝐴𝑏𝐴

ii. 𝑆 𝐴𝑎𝑏𝐴

iii. 𝑆 𝐴𝑎𝑏𝐴𝑎

iv. 𝑆 𝐴𝑎𝑎𝑏𝐴𝑎

v. 𝑆 𝐴𝑎𝑎𝑏𝐴𝑎𝑎

vi. 𝑆 𝑎𝑎𝑏𝐴𝑎𝑎

vii. 𝑆 𝑎𝑎𝑏𝑎𝑎

The same string can be derived from the Chomsky normal form:

i. 𝑆 𝑇𝐴

ii. 𝑆 𝐴𝐵𝐴

iii. 𝑆 𝐴𝐶𝐵𝐴

iv. 𝑆 𝐴𝐶𝐵𝐴𝐶

v. 𝑆 𝑎𝐶𝐵𝐴𝐶

vi. 𝑆 𝑎𝑎𝐵𝐴𝐶

vii. 𝑆 𝑎𝑎𝑏𝐴𝐶

viii. 𝑆 𝑎𝑎𝑏𝑎𝐶

ix. 𝑆 𝑎𝑎𝑏𝑎𝑎

In the examples only capital letter were used to represent nonterminals, and small let-

ters to represent terminals, but in general, all kind of letters, words, or constructs can

be used to represent terminal and nonterminals. As long as they are assigned to the

set of terminals 𝑇 and to the set of nonterminals 𝑉.

2.3.1.4 Extended Backus-Naur Form

Extended Backus-Naur Form or EBNF is a syntactic metalanguage used to express

context-free grammars. First application of BNF (Backus-Naur Form) was for the defini-

tion of the programming language Algol 60 by Peter Naur in 1960 [31]. Since then BNF

has been extended or slightly altered many times. In 1996 it has become an ISO

standard and is commonly used to formally define all kinds of textual languages. The

ISO EBNF is based on the BNF and includes the most widely adopted extensions. Full

specification can be found in [32]. Slightly different EBNF specification which is also

very widely used belongs to the World Wide Web Consortium (W3C). The W3C EBNF

specification can be found in [33].

The following is a grammar of a toy language in W3C ENBF:

1. 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ∷= 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗

2. 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∷= 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑝𝑒𝑟𝑎𝑛𝑑

3. 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∷= ′ + ′ | ′ − ′ | ′ ∗ ′ | ′/′

4. 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 ∷= 𝑑𝑖𝑔𝑖𝑡

5. 𝑑𝑖𝑔𝑖𝑡 ∷= ′0′ | ′1′ | ′2′ | ′3′ | ′4′ | ′5′ | ′6′ | ′7′ | ′8′ | ′9′

2 Background 47

The terminals are indicated as symbols in single quotes, for example ‘0’ is a terminal.

Everything that is not in quotes is either a part of the EBNF metalanguage or a nonter-

minal. In this case, program, operation, operand, operator and digit are terminals, and

symbols ::= and * are EBNF operators. Meaning of all the operators and their prece-

dence can be found in [32] and [33].

A program that conforms to this grammar can look like this:

0 + 1 3 − 2 4 1⁄ 5 ∗ 9 1 − 1 4 ∗ 3

Similar notation is used in the specification of the modeling method domain-specific

language grammar later on in this dissertation.

2.3.1.5 Attributed Grammar

The restrictions on the structure of valid strings that are hard or even impossible to ex-

press using formal grammars are called static semantics. For example, checking that

every identifier is declared before it is used, or checking that every identifier is used in

the appropriate context. One way to express these rules is using attributes and the

corresponding attribute grammars. Important contributions to this approach have been

provided by Knut in [34] and [35], and by Paakki in [36]. Examples how to use attribute

grammars in the development of programming languages can be found in [37]. This

section will only cover the relevant details that are important in the context of this dis-

sertation.

First of all, note that there is a difference between attributed grammars and attribute

grammars. An attribute grammar is a formal way to define attributes for the productions

of a formal grammar. An attributed grammar is a formal grammar augmented with at-

tributes defined using an attribute grammar. In the construction of language translators,

attributes provide semantic value to the syntactic constructs.

Let 𝐺 = (𝑇, 𝑁, 𝑆, 𝑃) be a context-free grammar, where, as before, 𝑇 is a set of termi-

nals, 𝑁 is a set of nonterminals, 𝑆 is a start symbol, and 𝑃 is a set of production rules.

Let 𝑉 be the finite vocabulary of terminals and nonterminals, that is 𝑉 = 𝑇 ∪ 𝑁. Ele-

ments in 𝑉 are called grammar symbols. According to [34] and [36] semantic rules are

added to 𝐺 in the following manner:

- To each symbol 𝑋 ∈ 𝑉 we associate a finite set 𝐴(𝑋) of attributes, where 𝐴 is

partitioned into two disjoint sets: the synthesized attributes 𝐴𝑆(𝑋) and the inher-

ited attributes 𝐴𝐼(𝑋).

- The start symbols and terminals do not have inherited attributes.

- Each attribute 𝛼 in 𝐴(𝑋) has a set of possible values 𝑊𝑎, from which one value

will be selected for each appearance of 𝑋 in a derivation tree.

- A production 𝑝 ∈ 𝑃, 𝑝: 𝑋0 → 𝑋1 … 𝑋𝑛 (𝑛 ≥ 0), has an attribute occurrence 𝑋𝑖 . 𝑎,

if 𝑎 ∈ 𝐴(𝑋𝑖), 0 ≤ 𝑖 ≤ 𝑛.

2 Background 48

- A finite set of semantic rules 𝑅𝑝 is associated with the production 𝑝 with exactly

one rule for each synthesized attribute occurrence 𝑋0. 𝛼 and exactly one rule for

each inherited attribute occurrence 𝑋𝑖 . 𝑎, 0 ≤ 𝑖 ≤ 𝑛.

- 𝑅𝑝 is a collection of rules of the form 𝑋𝑖 . 𝛼 = 𝑓(𝑦1, … , 𝑦𝑘) 𝑘 ≥ 0, where

1. either 𝑖 = 0 and 𝛼 ∈ 𝐴𝑆(𝑋𝑖), or 1 ≤ 𝑖 ≤ 𝑛 and 𝛼 ∈ 𝐴𝐼(𝑋𝑖);

2. each 𝑦𝑗, 1 ≤ 𝑗 ≤ 𝑘, is an attribute occurrence in 𝑝; and

3. 𝑓 is a function, called a semantic function, that maps the values of

𝑦1, … , 𝑦𝑘 to the value of 𝑋𝑖 . 𝛼. In a rule 𝑋𝑖 . 𝑎 = 𝑓(𝑦1, … , 𝑦𝑘) the occur-

rence 𝑋𝑖 . 𝑎 depends on each occurrence 𝑦𝑗, 1 ≤ 𝑗 ≤ 𝑘.

- 𝑅 is then a finite set of all the rules, that is 𝑅 =∪ 𝑅𝑝.

Often, Attributes can be represented with an extended parse tree called attributed tree,

where each node 𝑛, labeled by 𝑋, has an attribute instance attached that corresponds

to the attributes of 𝑋. For each attribute 𝑎 ∈ 𝐴(𝑋) the corresponding instance is denot-

ed with 𝑛. 𝑎. Attribute instance values are computed by executing semantic rules. Syn-

thesized attributes pass information from the RHS (right-hand side) to the LHS (left-

hand side) symbols of productions, and inherited attributes pass information from the

LHS to the RHS symbols of productions. In other words, synthesized attributes are

those that have been computed for children nodes, and are being passed up the tree.

Typically, values of synthesized attributes are combined to produce an attribute for the

parent node. Inherited attributes are those passed from the parent down to the child.

For example, let 𝑋. 𝑎 → 𝑌1. 𝑎 … 𝑌𝑛. 𝑎 be an attributed production rule.

- 𝑋. 𝑎 is a synthesized attribute, because it is a function of 𝑌𝑖 . 𝑎

- 𝑌𝑘 . 𝑎 is an inherited attribute, because it is a function of 𝑋 and 𝑌𝑖 . 𝑎, 𝑖 ≠ 𝑘

2.3.1.5.1 Attributed Extended Backus-Naur Form

To demonstrate how to attribute EBNF grammar, let us extend the previously shown

example of a toy language in W3C EBNF, by allowing operations between numbers,

which are defined as a string of digits. The EBNF grammar is attributed by an attribute

called value which holds number and digit values (integers). Semantic rules are written

inside curly brackets:

1. 𝑑𝑖𝑔𝑖𝑡 ∷= ′0′ | ′1′ | ′2′ | ′3′ | ′4′ | ′5′ | ′6′ | ′7′ | ′8′ | ′9′ {𝑑𝑖𝑔𝑖𝑡. 𝑣𝑎𝑙𝑢𝑒 = 𝑡𝑜𝐼𝑛𝑡()}

2. 𝑛𝑢𝑚 ∷= 𝑑𝑖𝑔𝑖𝑡 {𝑛𝑢𝑚. 𝑣𝑎𝑙𝑢𝑒 = 𝑑𝑖𝑔𝑖𝑡. 𝑣𝑎𝑙𝑢𝑒}

3. 𝑛𝑢𝑚1 ∷= 𝑛𝑢𝑚2 𝑑𝑖𝑔𝑖𝑡 {𝑛𝑢𝑚1. 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑚2. 𝑣𝑎𝑙𝑢𝑒 ∗ 10 + 𝑑𝑖𝑔𝑖𝑡. 𝑣𝑎𝑙𝑢𝑒}

The following figure (Figure 4) illustrates the use of synthesized attributes. It can be

seen that the values are propagated to the parent nodes.

2 Background 49

Figure 4: Propagation of Synthesized Attributes through the Parse Tree

Another way is to use inherited attributes, where the values of attributes are propagat-

ed from parents to children nodes. Here is a toy example:

1. 𝑛𝑢𝑚1 ∷= 𝑑𝑖𝑔𝑖𝑡 𝑛𝑢𝑚2 {𝑛𝑢𝑚2. 𝑣𝑎𝑙𝑢𝑒 = (𝑛𝑢𝑚1. 𝑣𝑎𝑙𝑢𝑒 + 𝑑𝑖𝑔𝑖𝑡. 𝑣𝑎𝑙𝑢𝑒) ∗ 10}

2. 𝑛𝑢𝑚1 ∷= 𝑑𝑖𝑔𝑖𝑡 {𝑛𝑢𝑚1. 𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑢𝑚1. 𝑣𝑎𝑙𝑢𝑒 + 𝑑𝑖𝑔𝑖𝑡. 𝑣𝑎𝑙𝑢𝑒}

Figure 5 illustrates the propagation of inherited attributes on a parse tree. Here we

need to assume that initial value is 𝑛𝑢𝑚. 𝑣𝑎𝑙𝑢𝑒 = 0.

Figure 5: Propagation of Inherited Attributes through the Parse Tree

Depending which kind of attributes are used, one can separate attributed grammars

into L-attributed grammars, or S-attributed grammars. There are other classifications as

well, but they are all subcategories of these two attributed grammar types. In L-

attributed grammars all inherited attributes in a semantic rule are a function only of

2 Background 50

symbols to their left, meaning that inherited attributes can be evaluated in one left-to-

right traversal of the abstract syntax tree (top-down parsing). S-attributed grammars

contain only synthesized attributes. Any S-attributed grammar is also an L-attributed

grammar. Attribute evaluation in S-attributed grammars can be either by top-down

parsing or bottom-up parsing.

2.3.2 Metamodeling Approach

The metamodeling approaches have started to emerge as standard design tools for

entity-relationship-based modeling languages. The basic idea is to define the abstract

syntax of an entity-relationship-based modeling language with a model that is ex-

pressed either in the same language, or in a simpler, generalized, entity-relationship-

based language. We can assert that every description of a language is a metamodel,

including languages described by formal grammars or logic. However, the term meta-

model is typically used in the context of entity-relationship-based languages, which is a

category where most of the modeling languages belong, especially graphical modeling

languages.

Nowadays, UML, particularly the UML class diagram, is used to describe metamodels.

Entities are depicted as UML classes, relationships as UML relationships. There are

many instances of relationships in UML. Most commonly used in the metamodeling

approach are associations, aggregations and generalizations (or specializations, if

looked from the opposite side). To support the graphical representation of metamodels,

some researchers have gone one step further and envisaged the transformations from

formal methods, such as EBNF, to UML class diagrams [38]. On the other hand, one

can find research investigating approaches that use rigorous EBNF-based definition for

specifying the syntax of graphical modeling languages [39]. In this case, authors try to

solve the lack of expressiveness in UML-based metamodeling approaches. Alternative-

ly, some approaches use textual constraint languages (e.g., OCL) in conjunction with

UML class diagrams. Rigorous EBNF-based approaches try to avoid this.

Most known metamodeling approach is based on a multilayered metamodel architec-

ture [40]. The smallest number of layers is two, one were we define the meta-concepts,

and the other where these concepts are instantiated [13]. The most common layered

architecture is the four layered metamodel architecture that is referred to in various OMG

specifications. For example UML is specified using this kind of metamodel architecture

[16]. In theory, there can be infinite number of layers, but four is typically enough.

Figure 6 illustrates the four layered metamodel architecture. It shows that in every lay-

er, excluding the layer 0, there is a model, which is realized using a specific modeling

language.

Layer 0 represents a system under study (SUS), which is a delimited part of the world

considered as a set of elements and interactions. SUS is also referred to as real world,

reality or original.

2 Background 51

Figure 6: Four Layered Metamodel Architecture (adapted from [10])

Layer 1 is occupied by a model, a representation of a given SUS, which is defined as a

directed multigraph that consists of set of nodes, a set of edges, and a mapping func-

tion between nodes and edges. Nodes may be connected with more than one edge.

This model is such that its reference model is a metamodel.

Layer 2 is occupied by a metamodel, which is a model such that its reference model is

a meta2model. In its broadest sense, a metamodel is a model of a modeling language,

and it must capture the essential features and properties of the language that is being

modeled.

Layer 3 is occupied by a meta2model, which is a model that is its own reference model,

meaning it conforms to itself. Meta2model is the key to metamodeling as it enables all

modeling languages to be described in a unified way. That is, all metamodels are de-

scribed by a single meta2model. In case of any other n-layered metamodeling architec-

ture, for example six layered architecture, the model that is found in layer five would be

its own reference model.

Concepts mentioned in here represent different tiers of abstraction of the real world.

System under study can be viewed as the lowest or tier zero abstraction, and me-

ta2model as highest or tier three abstraction.

It is also important to note the connection between a reference model and its instance.

If a metamodel is a reference model for a model in layer 1, then it is also true that a

model from layer 1 is an instance of a metamodel from layer 2. This is true for all lay-

2 Background 52

ers, even for layer 0, where SUS is an instance of a model from layer 1. This relation-

ship is transitive. Therefore, we can assert that a model from layer 1 is an instance of a

meta2model (layer 3) as well.

2.3.2.1 Designing a Modeling Language

In the modeling language design process, one does not tackle with many metamodel

layers. The meta2model is typically given. Therefore, one needs to design a metamodel

upon the given meta2model that describes a modeling language. We realize a modeling

language by applying a metamodeling language. If it will be possible to capture, not

only the syntax, but notation and semantics of a modeling language as well, depends

on the expressivity of a metamodeling language which is described by its own model, a

meta2model.

In reality, design and realization of modeling languages heavily relies on the metamod-

eling platforms and frameworks which come equipped with predefined meta2models

and various tools for their instantiation.

Design and realization are two separate phases in modeling language development.

We can draw a parallel with software engineering. The first phase, design, is very simi-

lar to the design of a software application. We construct a metamodel using a specific

technique. This process is similar to the construction of a domain model in software

engineering. The second phase, realization, is concerned with the implementation of a

modeling tool, which is a piece of software. Therefore, it is not very different from the

implementation of any other software application. The one significant difference is the

use of metamodeling platforms and frameworks which provide the basic functionality

out-of-the-box. One can as well implement a modeling tool from scratch. However, be-

cause of the complexity that comes with this kind of software, it would take a lot of ef-

fort and considerable time investment.

The metamodeling platforms will be discussed in a dedicated chapter. Let us first focus

on the design phase of modeling languages.

Nowadays, the most prominent metamodeling technique is the OMG-UML approach

and many of its variations. This technique is considered semiformal in comparison with

the techniques coming from the formal language theory. The core OMG-UML approach

allows the definition of: (1) abstract syntax, (2) static semantics, and (3) dynamic se-

mantics. In case of a graphical modeling language, concrete syntax is typically given as

a collection of images and its mapping to the abstract syntax.

The abstract syntax is given in a (very) simplified UML class diagram, which shows the

meta-concepts of language’s elements: entities and relationships. Because of a heavy

use of class diagrams in metamodeling approaches, it is very common to use the word

class instead of entity. The expressivity of class diagrams allows enforcing some of the

well-formedness rules directly into diagrams, such as relationship multiplicity require-

ments.

2 Background 53

Figure 7: Metamodel of a Building

Figure 7 depicts an exemplary metamodel of a generic building. From it one can read

all the important relations between various entities, and what kind of attributes describe

these entities.

It is customary to provide a short informal description in prose for each element that is

provided in the metamodel. This description typically contains syntactic and semantic

explanations mixed together. For example:

A building consists of floors, which are ordered by levels. The floor with a higher level

must be on top of the floor with lower level (e.g., floor 2 is on top of floor 1). There can

be no skipping of floor levels. Each floor is composed of rooms, which may have differ-

ent functions: a bathroom, office, corridor, or a lobby. Rooms are connected with other

rooms by doors. Each room can contain furniture of various kinds, such as table, seat,

carpet, window, cupboard, etc.

The above example is a vague description of a building represented in Figure 7. In re-

ality, these informal descriptions need to be more concise and cover all the details that

are not explicitly visible on the metamodel.

Static semantics of a modeling language are defined using well-formedness rules,

which define a set of invariants of an instance of a meta-concept. The rules specify

constraints over attributes and relationships defined in the metamodel and need to be

satisfied for the meta-concepts to be meaningful. In OMG-UML approach well-

formedness rules are defined by an OCL expression together with an informal explana-

tion of the expression. More generally, rules can be defined using first-order logic. Ob-

ject Constraint Language (OCL) is nothing else but a variant of first-order logic.

Here are a couple of examples of well-formedness rules written in OCL:

 Employees must not work more than 5 hours.

invariant NoMoreThanFiveHours: self.numberOfHours > 5;

2 Background 54

 Title of a movie has to be at least 3 characters long.

invariant AtLeastThreeCharacters: self.title.size() >= 3;

 Timetable needs to have at least one session.

invariant AtLeastOneSession: self.containedSession->isEmpty() = false;

Dynamic semantics of a modeling language are defined in prose accompanied by ex-

emplary models produced with a modeling language in question. As with the abstract

syntax, the provided description mixes syntactic and semantic explanation. This time,

the syntax in question is the concrete syntax (notation). The explanation describes the

meaning of elements in a modeling language and their relationships. Dynamic seman-

tics definition in metamodeling is considered to be the least formal part of the meta-

modeling approach.

To explain these kinds of semantics one typically uses exemplary models produced by

the modeling language in question. Figure 8 depicts elements and their relationships

for the generic building modeling language. In this figure one can only see a subset of

the elements, mainly a room, and its belonging furniture. The explanation in prose

would look something like this:

This model shows a classroom layout plan. The detailed placement of furniture is

shown, including a teacher’s desk, chalkboard, student desks, windows and bookcases.

Figure 8: Model of a Room with Furniture (adapted from [41])

2 Background 55

The last part that needs to be described during the design of a graphical modeling lan-

guage is its concrete syntax (also known as notation). One does need to describe the

notation before dynamic semantics in case the designed language does not use the

standard UML symbols. Describing the notation is not a part of the OMG-UML ap-

proach. A metamodeling community has found various ways to represent graphical

symbols and its mappings to the abstract syntax. Typically, a simple quasi-tabular view

is used, that describes which symbol belongs to which concept.

Figure 9 shows how this would look for the part of the modeling language depicting a

room with furniture in Figure 8. One can see that a graphical symbol on the left side is

connected with a modeling element on the right side (which is nothing more than a text

in this case).

Figure 9: Notation of Modeling Elements (adapted from [41])

To complement the images of symbols from a tabular view, one can use technologies

such as SVG. Because SVG is an XML-based format and an open standard developed

by W3C, it provides us with means to define the concrete syntax in a formal way. This

may provide very useful in the later realization of a modeling language on a metamod-

eling platform in case the platform supports SVG or similar graphical object descrip-

tions.

3 State of the Art and Related Research 56

3 State of the Art and Related Research

3.1 Language-Oriented Engineering

This chapter is dedicated to the currently most known and utilized metamodeling tech-

niques and technologies. It gives an overview of the technical side of metamodeling

research and serves as a basis on which the tools for language-oriented modeling

method engineering have been built upon.

On a closer inspection one can become aware that various metamodeling techniques

utilized for the construction of modeling tools belong to the Language-Oriented Engineer-

ing (also known as Language-Oriented Programming) paradigm. After all, a modeling tool

is nothing else than a software developed for a specific purpose. Therefore, it is natural

to apply software engineering paradigms in its construction.

The main idea is to create domain-specific languages for the problem at hand, rather

than using existing general-purpose programming languages for solving the problem.

In current domain, the problem one tries to solve can be described as efficient model-

ing tool development. And the construct created for its solving is a metamodeling tech-

nique, which comprises one or more domain-specific languages and metamodeling

tools. These DSLs are exposed to the user (typically modeling method engineer) in

many different ways. Some metamodeling tools use configuration dialogs on top of

DSLs, while the others expose DSLs directly to the user. Most metamodeling tools mix

both approaches together, which leads to unnecessary complications in development.

For example, user is typically unaware that configuration dialogs do not expose all of

the metamodeling tool’s functionality. This issue is present in almost all metamodeling

platforms.

In general, there are three main approaches to Language-Oriented Engineering: (1) the

use of internal DSLs, (2) the use of external DSLs, and (3) the use of metamodeling

platforms (or language workbenches) [42].

Internal DSL are implemented as application libraries in a given host language. Dynam-

ic programming and scripting languages (for example Groovy) are particularly good

hosts for various DSLs. This approach may be applied in the development of simple

modeling tools with a textual notation. Internal DSLs are constrained by the possibilities

of host languages. Therefore, it is not advised to use them for development of complex

graphical modeling tools.

External DSLs are implemented as stand-alone languages and come equipped with

translators (compilers, interpreters, and generators). These DSLs are more powerful

than internal DSLs, because their syntax and semantics do not depend on the host

language. This also makes them user friendlier and easier to learn, as one does not

3 State of the Art and Related Research 57

need to be familiar with the host language, which is the case when using internal DSLs.

However, developing external DSLs is a much longer process than developing internal

DSLs, and it is very similar to developing general-purpose programming language. It is

affordable to develop such a DSL only in case if it can be reused multiple times. For

example, if the DSL can be utilized to create dozens of modeling tools than it is consid-

ered affordable to invest in its creation. Regarding external DSL expressivity, it is the

most expressive from the three mentioned approaches. It has the ability to describe all

the aspects of a modeling tool.

Metamodeling platforms are integrated development environments (IDEs) for defining

and using modeling methods (graphical modeling languages as well). They combine

graphical interfaces such as dialogs together with DSLs to provide configuration op-

tions to the user. DSLs included in the platform are limited by the platform’s functionali-

ty (similar to the internal DSLs). The greatest advantage of using a metamodeling plat-

form comes with its out-of-the box functionality, which includes an expressive me-

ta2model and algorithms that can be configured differently for each modeling method.

A fourth language-oriented engineering approach is proposed in this dissertation: aug-

menting metamodeling platforms with an external DSL. The DSL in question is called

MM-DSL. Its design, requirements, specification, utilization in modeling method engi-

neering, and evaluation is discussed in dedicated chapters. By combining the external

DSL approach with metamodeling platforms one gets the best from both words, without

introducing any noticeable disadvantages. It is also important to mention that this ap-

proach is not connected with any particular metamodeling platform. Thus, it is com-

pletely platform independent.

The technique for developing modeling tools for modeling methods proposed in this

dissertation is as follows:

1. Use a domain-specific language to describe a modeling method;

2. Translate a modeling method to the metamodeling platform of choice;

3. Apply a metamodeling platform to generate a modeling tool.

Because this technique is mainly driven by MM-DSL, a development environment sup-

porting it needs to be provided, as well as various translators that allow the translation

of modeling method code written in MM-DSL to the modeling method code (or format)

understandable by a metamodeling platform.

By augmenting modeling tool development with domain-specific concepts, we make it

more structured and more explicit, thus also more understandable. Additional value of

using a language in the development of modeling tools comes in form of the following

benefits: self-documenting code, versioning and reuse. A language able to describe

modeling method constructs is also easy to learn by modeling method engineers, be-

cause it contains the concepts already familiar to them, such as class, relation, attrib-

ute, model type, notation, etc.

3 State of the Art and Related Research 58

3.2 Related Concepts

There are three technology-based ways one can pursue when developing modeling

tools: (1) from scratch, (2) use metamodeling framework, or (3) use metamodeling plat-

form. All of them come with advantages and drawbacks.

Developing a modeling tool from scratch might be considered a big effort, but in some

cases it is the most feasible solution. For example, metamodeling platforms and

frameworks would present an obstacle in a scenario where the developer needs to be

in full control of every single implementation detail of a modeling tool. It can also hap-

pen that a modeling tool requires novel features that are not supported by any existing

platforms or frameworks. In this case, using language-oriented engineering paradigm

may prove to be beneficiary. Of course, the tool can also be directly programmed in a

general-purpose programming language.

A metamodeling framework provides some of the basic functionality needed by a mod-

eling tool. An implementation of a meta2model is always provided, as well as means to

instantiate it. The key difference between a framework and a platform is that a frame-

work needs to be attached to something, while a platform is stand-alone software.

Frameworks are typically additions to the popular Integrated Development Environ-

ments (IDE), such as Eclipse and Visual Studio. Therefore, they lack in the area of

modeling tool interface development and customization. This functionality is limited by

the host IDE. The usability of frameworks starts to decrease with the increased com-

plexity of a modeling tool. More complex modeling tools have a higher chance of re-

quiring functionality a framework does not provide. The only solution for this issue is to

use a general-purpose programming language and develop additional functionality,

which is actually reverting us to the “from scratch” approach.

Metamodeling platforms offer the most features compared to the other two approaches,

including some of the advanced features, such as predefined model analysis and simu-

lation algorithms, and model repositories. Same as frameworks, platforms are

equipped with a predefined meta2model. They are stand-alone and customizable. With

metamodeling platforms, it is possible to realize some of the most complex modeling

languages and modeling methods. The drawback, however, is that they require con-

siderable time investments in order to get to know all the provided features, as well as

learning how to apply them correctly. Similar to the metamodeling frameworks, meta-

modeling platforms also have boundaries on their functionality. However, it is difficult to

extend them using a general-purpose programming language. In some cases, these

kinds of extensions are not even possible, because of license restrictions (e.g., proprie-

tary software or closed source). Because of it, metamodeling platforms are typically

equipped with an internal DSL or scripting language through which platform APIs are

exposed. In case that the required functionality cannot be achieved, one either needs

to find another metamodeling platform, or revert to the “from scratch” approach as it is

already suggested in case of metamodeling frameworks. Nevertheless, it has been

noticed that the general behavior in this particular case is to continue developing the

3 State of the Art and Related Research 59

modeling tool on the same metamodeling platform, but without that particular function-

ality. This happens, because it is almost impossible to transfer the work that has al-

ready been done on one platform to the other. Reimplementing everything on another

metamodeling platform would be a considerable time investment. Thus, it is very costly.

3.3 Existing Tool Support

This section serves as an overview of different metamodeling tools. The focus is put

primarily on well-known metamodeling platforms and frameworks. Some of the tools

mentioned in here may be used to describe and implement any kind of textual and

graphical languages, not only modeling languages or modeling methods.

There exist two types of tools one can use to realize languages: (1) textual language

realization tools, and (2) graphical language realization tools. These types of tools im-

plement different language specification techniques. The tools from the first category

implement approaches from the formal language theory, such as formal grammars, and

are used for the realization of textual languages, particularly textual domain-specific

languages. The tools belonging to the second category implement a metamodeling

approach. These tools are used to realize domain-specific graphical modeling lan-

guages and modeling methods.

3.3.1 Textual Language Realization Tools

Textual language realization tools are the product of the extensive research in pro-

gramming languages and compiler design. Pioneers in this area are two famous pro-

grams: Lex (A Lexical Analyzer Generator), which was written by Michael Lesk and

Eric Schmidt [43], and Yacc (Yet Another Compiler-Compiler), which was written by

Stephen C. Johnson [44]. Both of them were developed in the early 1970s as part of

the projects taking place at Bell Laboratories. Newer tools inherited the same concepts

and extended upon Lex and Yacc. Nowadays, the most know representatives in this

category of language development tools are ANTLR and Xtext. There exist several

other similar tools, such as MPS and Irony. However, these are not very well known by

the language development practitioners.

3.3.1.1 ANTLR

ANTLR [45] (Another Tool for Language Recognition) is a powerful language develop-

ment tool that provides a framework for constructing recognizers (e.g., lexers or

parsers), compilers, and other translators from grammatical descriptions in a variety of

target languages including Ado, ActionScript, C++, C#, JavaScript, Python, Ruby and

several others. ANTLR automates the construction of language recognizers. From an

input similar to formal grammar, ANTLR generates a program that determines whether

statements conform to that language. In other words, ANTLR is a program that writes

other programs. By adding code snippets to the grammar, the recognizer becomes a

compiler or interpreter. ANTLR provides excellent support for parse tree construction,

3 State of the Art and Related Research 60

parse tree walking, and translation. It provides sophisticated automatic error recovery

and reporting. Language grammars are defined in either ANTLR syntax (which is Yacc

and EBNF like) or a special AST (Abstract Syntax Tree) syntax. Currently, ANTLR is

the most recognized parser generator and it is widely utilized both in academia and

industry to build all sorts of languages, tools and frameworks.

As most of the language realization tools, ANTLR also comes with several IDE imple-

mentations: ANTLRWorks (stand-alone), Eclipse IDE plugin and IntelliJ IDEA plugin

[46]. Figure 10 shows Eclipse IDE with the ANTLR v4 plugin installed. The central part

of the IDE is the grammar editor. One can see that the grammar utilized in ANTLR is

very similar to the EBNF notation. At the bottom of the IDE is the syntax diagram (also

known as the railroad diagram), which is automatically generated from the inputted

grammar. The advantage of syntax diagrams is in the ease of navigation through the

grammar. They present a better overview of the grammar as well. On the left side is the

project overview, and on the right side is the outline currently showing the names of all

the grammar rules.

Figure 10: Eclipse Plugin for the ANTLR v4 (taken from [46])

3.3.1.2 Xtext

Xtext [47] is an open source framework for developing textual computer languages,

particularly domain-specific languages, but it can also be used to develop general-

purpose programming languages. Xtext is shipped as a set of plugins for the popular

Eclipse IDE and it integrates seamlessly with other eclipse-based (modeling) technolo-

gies such as EMF, GMF, M2T, and parts of EMFT. It provides a specialized editor for

describing a grammar of a language. From the grammar it generates APIs for pro-

grammatically manipulating instances, parsers, and formatters for reading and writing

instances, and a rich user interface to support end-users, including a feature-rich editor

3 State of the Art and Related Research 61

that is specific to the defined language. The generated editor includes features such as

syntax coloring, code completion, and validation.

Additional semantic aspects of the language can be programmed in Java or Xtend.

Xtend is a Java dialect with several useful features (such as support for code tem-

plates) for writing translators. Xtext uses code generation to create a parser from the

language’s grammar. Xtend uses the generated parser as a starting point to produce

various translators (e.g., compilers, interpreters).

In comparison to ANTLR, Xtext’s greatest advantage is the generation of IDE artifacts

which support the parser and seamlessly integrate into the Eclipse IDE. Regarding

actual parser generation, Xtext utilizes ANTLR, thus the quality of the generated

parsers is identical.

Figure 11 shows the Eclipse environment running the Xtext framework. It looks very

similar to the eclipse ANTLR plugin: center is occupied by the grammar editor, on the

left side one can find the projects overview, and on the right side there is an outline

showing all the defined grammar rules. The screenshot, in addition to the Xtext frame-

work, shows a small excerpt of the MM-DSL grammar and accompanying MM-DSL

projects.

Currently, Xtext framework is mostly use to developing DSLs that compile to Java or

JVM languages. It is also very popular in the Eclipse community. On the dedicated

Xtext community page it is mentioned that Xtext has been used more than 40 commer-

cial and non-commercial projects [48]. However, ANTLR is a more reliable tool when it

comes to the development of cross-platform general-purpose programming languages.

Figure 11: Xtext Framework for Eclipse

3 State of the Art and Related Research 62

3.3.1.3 MPS

Meta Programming System (MPS) is an open source language realization tool based

on the language-oriented programming. The creators address it as a language work-

bench. Thus, it is not a framework or a plugin, but a stand-alone IDE for creating and

using the created languages. It uses a projectional editor that renders the abstract syn-

tax tree in a notation that looks and feels textual while the user directly edits the tree.

What this means is that writing a keyword (e.g., while), which is a part of the expression

(e.g., while <condition> do <something>) will also add the rest of the expression to the

program, with placeholders (in our example the words started with < and ending with >)

which need to be filled with values (terminal symbols or other expressions). This also

means that programs can include syntactic forms other than text, such as tables or

mathematical symbols [49].

Defining a language begins with defining the abstract syntax. The editor (projection

rules) is defined in a second step. The third step is defining a generator which provides

semantics by mapping defined language constructs to one of the several existing lan-

guages. MPS currently supports mapping to C, Java, XML, or plain text.

The most successful application of MPS nowadays is the mbeddr language, which is

based on the extensible version of C programming language used in the embedded

software engineering. Figure 12 shows how the mbeddr projectional editor based on

MPS represents text and tables in programs. What we actually see is the editing of

abstract syntax tree, where it is only possible to insert expressions in a valid form. The

editor warns us about wrongly imputed parameters (the value parts of the expressions).

Figure 12: mbeddr IDE and Projectional Editor (taken from [50])

3 State of the Art and Related Research 63

3.3.1.4 Irony

Irony is an open-source development kit for implementing languages on .NET platform.

Unlike most existing Yacc/Lex-style solutions Irony does not utilize any scanner or par-

ser code generation from grammar specifications written in a specialized meta-

language. In Irony the target language grammar is coded directly in C# programming

language using operator overloading to express grammar constructs. Irony’s scanner

and parser modules use the grammar encoded as C# class to control the parsing pro-

cess [51].

The language grammar definition is very similar to EBNF notation. Lexical and parser

specification are combined in one C# file. Since the file is already in C#, no code gen-

eration takes place. This creates a solution that is easier to debug and maintain. Irony

comes equipped with an explorer tool for viewing and debugging the defined lan-

guages, and with multiple sample grammars for languages like GW Basic, Java, C#,

Scheme, SQL, JSON and more.

Because Irony is not a standalone solution, Visual Studio IDE is a prerequisite, which

can also be used as a rich-featured IDE by integrating the defined language via Visual

Studio language service. A language service provides language-specific support in-

cluding syntax coloring and highlighting, statement completion, validation, brace match-

ing, parameter information tooltips, etc. It is only possible to integrate a new language

service with commercial versions of Visual Studio, thus making Irony not affordable to

the developers and organizations that do not have access to these versions of Visual

Studio. Although Irony itself is free, commercial versions of Visual Studio are fairly ex-

pensive.

The first MM-DSL concept and its parser have been implemented in Irony. During that

time the language has been known as MetaDSL and it was not as expressive as MM-

DSL. The full code listing can be found in Appendix B.

3.3.2 Graphical Language Realization Tools

By applying the concepts of metamodeling approaches to the technical space meta-

modeling platforms are developed, such as ADOxx, MetaEdit+, Generic Modeling Envi-

ronment (GME), and modeling frameworks like Eclipse Modeling Framework (EMF)

and Graphical Modeling Framework (GMF).

3.3.2.1 ADOxx

ADOxx is a mature metamodeling platforms used for the realization of modeling lan-

guages and modeling methods. It is based upon an expressive meta2model which of-

fers basic concepts such as class, relation class, attribute, model type, mode, and oth-

ers. ADOxx comes equipped with advanced tooling features as well: (1) a scripting lan-

guage called ADOscript used to add additional functionality to modeling languages, thus

3 State of the Art and Related Research 64

extending them to modeling methods, (2) a graphical notation language called

GraphRep used for creating the concrete graphical syntax, and (3) a language for ex-

posing functionality to the user through the user interface called AttrRep. Realized

modeling languages or modeling methods and their accompanying metamodels, as

well as models created with them are saved in a repository.

Figure 13: ADOxx - Creating a Metamodel

Figure 13 show a typical ADOxx user interface for interacting with its meta2model. On

the left side of the screenshot one can see the ADOxx application libraries, which are

containers for all the elements of a modeling method. On the right side of the screen-

shot is an editor called the class hierarchy tree. This editor is used to instantiate a met-

amodel from the provided meta2model by defining new classes, relation classes and its

accompanying attributes.

Figure 14 shows three important ADOxx editors: (1) GraphRep, (2) AttRep, and (3)

ADOScript editor. GraphRep editor is where graphical representation is created. AttRep

editor is a place where one defines which attributes will be exposed to the user of a

modeling tool. ADOScript editor provides basic functionality for writing modeling algo-

rithms in the ADOxx scripting language. In each of the screenshots in Figure 14 one

can also see a small implementation excerpt for the three key modeling method ele-

ments in the corresponding ADOxx languages.

3 State of the Art and Related Research 65

Figure 14: ADOxx Editors - 1. GraphRep, 2. AttRep and 3. ADOScript

3.3.2.2 MetaEdit+

MetaEdit+ is a completely integrated environment for building and using individual do-

main-specific modeling (DSM) solution applied in several industry projects. The me-

ta2model called GOPPRR offers the following basic concepts: graph, object, property,

port, relationship and role. A diagram editor, object & graph browsers, and property

dialogs support the definition of a new modeling language without manual coding.

MetaEdit+ is very successful in providing supports for full code generation directly from

the models.

Figure 15 is a screenshot of the MetaEdit+ user interface. Only the main modeling in-

terface is shown. The majority of the screen is occupied by a modeling canvas. One

can see the modeling toolbox in the top left corner. The instantiated objects can be

seen in the tree list to the left, as well as the properties of a selected object. The basic

GOPPRR concepts are also depicted. Only port is missing, because it is an optional

concept. In the example depicted by the screenshot, role is directly connected to the

object.

Similar to the ADOxx, MetaEdit+ also has several metamodeling editors and tools: (1)

one tool for each GOPPRR concept (graph tool, object tool, property tool, port tool,

relationship tool, and role tool), (2) graphical representation editors (symbol, icon and

dialog editor, (3) code generation tools (generator editor, MERL language, generator

debugger), and (4) modeling language management tools (metamodel browser, type

manager, and info tool). For more information about these tools, which include full de-

scriptions and screenshots see the MetaEdit+ manual [52]. An insight and description

of the GOPPRR concepts can be found there as well.

3 State of the Art and Related Research 66

Figure 15: MetaEdit+ User Interface (taken from [52])

3.3.2.3 GME

The GME (Generic Modeling Environment) is a configurable toolkit for creating domain-

specific modeling and program synthesis environments. The configuration is accom-

plished through metamodels specifying the modeling language of the application do-

main. The metamodeling language is based on the UML class diagram notation and

OCL constraints. The metamodels specifying the modeling language are used to auto-

matically generate the target domain-specific environment. The generated domain-

specific environment is then used to build domain models that are stored in a model

database or in XML format. GME has a modular, extensible architecture that uses MS

COM for integration. GME is easily extensible; external components can be written in

any language that supports COM (C++, Visual Basic, C#, Python etc.) [53].

GME has been designed to support the MIC (Model Integrated Computing) methodolo-

gy which is utilized in building embedded software systems. MIC is a way to develop

systems while addressing problems of system integration and evolution [54].

To describe metamodels GME uses its own meta2model called MetaGME. The follow-

ing concepts are defined in MetaGME: atom, model, reference, set and connection. These

are also called first class objects (or FCOs). Additional concept used by GME is called the

aspect, which is a collection (subset) of elements that are shown to the modeler at

once. It is also addressed as the model’s viewpoint [54].

Creating metamodels is a little different in GME than in the previously described meta-

modeling platforms. GME uses a drawing approach, where one instantiates MetaGME

elements on the canvas in a way very similar to creating UML class diagrams. Figure

16 shows the typical GME metamodeling user interface. One can see that the defined

3 State of the Art and Related Research 67

metamodel utilizes the UML stereotype notation to distinguish which elements are in-

stantiated from which MetaGME concept. The newly created elements are shown in-

side the GME Browser on the right side of the screen. Left side of the screen is occu-

pied by the GME Part Browser which contains all the elements that can be currently

dragged and dropped on the drawing canvas in the middle of the screen.

Figure 16: Metamodeling with GME (taken from [55])

More detail about the GME concepts, environment and its utilization, including the step

by step explanations and screenshots can be found in [55].

3.3.2.4 Eclipse IDE with Modeling Frameworks

OMG’s Meta-Object Facility (MOF), the open source Eclipse Modeling Framework

(EMF), the Graphical Editing Framework (GEF) and the Graphical Modeling Frame-

work (GMF) are no metamodeling platforms themselves. With MOF the OMG created a

meta2model standard, which provides a basis for defining modeling frameworks. UML

is an example of instantiated metamodel of the MOF. The EMF which was influenced

by MOF is an open source Java based modeling framework and code generation facili-

ty for building tools and other applications based on a structured data model [56]. The

GEF provides technology for creating rich graphical editors and views [57]. The GMF

provides generative components and a runtime infrastructure for developing graphical

editors based on EMF and GEF [58]. It acts as a bridge between EMF and GEF. To-

gether, these frameworks provide a possibility to create modeling tools.

3 State of the Art and Related Research 68

3.4 Challenges

While researching the existing metamodeling environments (platforms and frameworks)

some of the serious drawbacks have been revealed. These tools provide excellent

support for development of modeling tools, but they are primarily designed to be used

by an experienced developer. Only the basic features are sometimes usable and un-

derstandable by the application domain experts. The advanced features tend to get to

programming intensive and require the knowledge most of the domain experts do not

possess, thus need to acquire before they can implement their own modeling tools.

Here are some of the drawbacks that might prevent a domain expert from using these

metamodeling tools for realization of complex modeling languages and modeling meth-

ods:

- Considerable time investments before choosing the right metamodeling

tool for the job, because not all of them come with the same or even similar ad-

vanced features. For example, if analysis or simulation of models is per design

an integral part of a modeling tool, a list of metamodeling platforms one can

choose from shortens drastically. Even then, to pick the right one, it is neces-

sary to learn how to utilize their functionality and invest time in testing them.

- Lack of domain specificity, because some of these tools are built for pro-

grammers and software engineers, and not for domain experts. This can be no-

ticed especially in application of metamodeling frameworks. Some of the more

specialized tools, like ADOxx and MetaEdit+, have made considerable invest-

ments to be more domain expert friendly, by allowing a “no coding” approach.

However, these are currently only an exception to the general rule.

- Platform lock-in is unavoidable, meaning that when development has

been started on one metamodeling platform, it is very hard to transfer what has

been done to the new metamodeling platform. Complete reimplementation is

necessary. OMG has made steps in the right direction by specifying the XML

Metadata Interchange (XMI) format. However, only a part of a modeling lan-

guage can be stored this way. Mainly, its abstract syntax.

The main challenge is to remove as many drawbacks from the currently used tech-

niques for realization of modeling languages and modeling methods. This dissertation

tries to do so by introducing a domain-specific language in the modeling tool develop-

ment process – not as a replacement, but as an augmentation to the well-known met-

amodeling techniques.

4 Research Problem 69

4 Research Problem

The research on the modeling tool realization process has provided some insights into

the issues of the current metamodeling techniques. However, to reach a more informed

conclusion, the state of the art needed to be evaluated by an unbiased group of domain

experts which are not familiar with the metamodeling techniques. For this purpose, a

task has been designed and given to the group of Business Informatics Master’s stu-

dents to solve. The purpose was to search for additional challenges that could not be

identified as part of the investigation of related work. In this case, students had the role

of domain experts and were using various metamodeling technologies to implement

their own modeling tools. Afterwards, students were given a second task, in which they

had to evaluate various domain-specific languages and identify the key features which

argue for and against the utilization of DSLs in a development process. The first study

provided clear results and a good identification of problems present in current meta-

modeling tools. The other study helped to enforce the decision to introduce DSLs as a

part of the modeling tools development process.

The research environment and its limitations will be described in the next section. The

results from both of the studies, which ultimately helped in shaping the research prob-

lem definition and the research methodology, are presented as well.

4.1 Environment

The research at hand has taken place at the University of Vienna, Faculty of Computer

Science, in the Knowledge Engineering (KE) research group. The aim of the group is,

and has been for many years, to research, develop and use metamodeling techniques

and tools. The group has initiated an initiative called Open Model Initiative (OMI) in

2008. A couple of years later, in 2012, a laboratory for realization of modeling methods

has been established – the OMiLAB, which has a physical presence located at the

Faculty of Computer Science in Vienna. Large portion of the groups research, theoreti-

cal and practical, is based on the ADOxx metamodeling platform, which has been used

to realize around thirty modeling methods in the last couple of years. These tools have

found their use in academia, as well as a part of industry projects. Most of the pro-

duced modeling tools are hosted on the OMiLAB website.

KE research group has a major role in organizing and holding courses that tackle with

the issues of knowledge engineering and metamodeling. Thus, both of the previously

mentioned studies have been conducted as a part of the Master’s degree course titled

“Metamodeling”. The studies have been mandatory and graded according to the pro-

vided results. Twenty-nine students participated in these studies. They were organized

in eleven teams composed of two or three participants.

4 Research Problem 70

4.1.1 Study 1: Metamodeling Tools

This study was focused on discovering and comparing various features of metamodel-

ing tools. The features have been extracted by using various metamodeling tools to

implement fully working modeling tools which realize a representative modeling method

(meaning the one that contains all the important artifacts).

The task for the study was formulated as following:

“Find one metamodeling tool, describe it shortly and present its features. Demonstrate

how one can implement a simple modeling method or a modeling language utilizing

the chosen tool. Based on your experience gained by implementing this simple exam-

ple, what are the advantages and the disadvantages of using the tool you picked for

the task?”

The students were given a list of important features with a short description they could

use for the evaluation of a metamodeling tool:

- Metamodel definition. Ways of defining a metamodel, for example a class dia-

gram, table, matrix, tree, or code.

- Constraint definition. Ways of defining various constraints on the metamodel,

such as constraint language like OCL, configuration dialogs, or code.

- Notation definition. What kind of notation does a tool support: graphical, tex-

tual, or both? What mechanisms can be used to define it: a DSL like SVG, inte-

grated drawing editors, or importing of pictures in a specific format.

- Attribute representation. Ways of interacting with the values of the attributes

and controlling their representation in the modeling editor.

- Modeling editor creation. Ways of creating a modeling editor, such as inter-

pretation, or generation.

- Reusability. Support for reusing objects created by the tool, like notations,

parts of a metamodel, or algorithms.

- License. Under what circumstances can a tool be used and what permissions

are needed to use it. For example, open source tool, open use tool, or commer-

cial tool.

Every team had to pick a different tool. Students had to search for the tools them-

selves. This helped to determine the availability of metamodeling tools, as well as what

is considered a metamodeling tool by a novice. The key terms used in search were:

modeling platform, metamodeling platform, modeling framework, metamodeling frame-

work, language workbench, and meta-programming.

The following eleven tools were selected by the students:

4 Research Problem 71

- GME: Generic Modeling Environment

- EMF: Eclipse Modeling Framework

- VSVM SDK: Microsoft Visual Studio Visualization & Modeling SDK

- ConceptBase

- Poseidon for DSLs

- Xtext

- Spoofax

- MPS: Meta Programming System

- MetaEdit+

- Obeo Designer

- KM3: Kernel Meta Meta Model

The list is a mix of metamodeling platforms, metamodeling frameworks, and domain-

specific language frameworks. It serves to demonstrate what is considered to be a

metamodeling tool. Students could not choose the ADOxx metamodeling platform, be-

cause they were already familiar with it, as it was used to present and learn various

metamodeling concepts during the “Metamodeling” course.

Using the research results provided by this study a matrix has been constructed (see

Figure 17). In this matrix several important metamodeling tools’ features are shown.

Take note that this is not a full list of feature, but a compilation of the most important

ones which are concerned with the realization of modeling methods.

Figure 17: Metamodeling Tools' Feature Matrix

4 Research Problem 72

One can see what kind of different techniques are used to cover the specific parts of

the modeling method definition, such as its structure, operations, notations and attrib-

utes. The symbols [T] or [G] in the matrix serve to express if an approach is textual,

which is indicated by [T], or graphical, which is indicated by [G]. The dominant way to

define the structure seems to be in form of a class diagram. For the notation, two tech-

niques prevail: a graphical editor, and a domain specific language for graphical objects

(typically similar to SVG). Attributes are generally defined in so called attribute or prop-

erty windows which look similar as property windows of the well-known IDEs, such as

Eclipse or Visual Studio. There is no common way of defining operations on a modeling

method’s metamodel. Every tool possesses different techniques to define operations.

These techniques come in form of various domain specific languages, or scripting lan-

guages.

Additionally, these tools have different approaches when it comes to modeling editor

creation. Most common ones are interpretation of configuration files and code genera-

tion. In case of interpretation, metamodeling tools serve as a host to the modeling tool,

while code generation approach creates new standalone artifacts which can be in-

stalled as add-ons. The latter approach is generally used by metamodeling frameworks

(such as Eclipse-based frameworks), because they do not contain all the necessary

artifacts to create stand-alone modeling tools, but are dependent on the particular IDE.

There are three more properties of metamodeling tools that are worth mentioning: re-

pository support, integration with other IDEs and reusability. Repository is used as a

mean to structurally save modeling method definitions, as well as models created with

them. IDE integration is a helpful feature that allows us to extend the functionality of a

metamodeling tool or to utilize it from external sources (API calls). Reusability plays

important role in the development of modeling methods, because the implementation

effort decreases with time, as the number of already available modeling method arti-

facts increases. It is relevant to notice that metamodeling platforms (such as ADOxx

and MetaEdit+) are lacking in the area of artifact reusability when compared to meta-

modeling frameworks.

The general conclusion that can be made from this brief study is that most of the met-

amodeling technologies implement the same metamodeling concepts, but the imple-

mentation itself varies from technology to technology. Therefore, the creation and ma-

nipulation of metamodeling concepts is done differently on almost every metamodeling

tool. This also encourages forming of communities around a particular metamodeling

technology, which is not a bad thing by itself. But in a long run, simple metamodeling

concepts like metamodel, class, attribute, model type, or view gain a specific meaning in

the specific community. This meaning is influenced by the metamodeling technology

members of a community use to realize modeling languages and modeling methods.

For example, the same concept is addressed as class in one community, and as atom,

or object in another. The naming of concepts would not present an issue if the mem-

bers of a larger metamodeling community, where all of the technology communities

belong, are aware that the semantics are the same.

4 Research Problem 73

The present situation is making it harder to switch metamodeling tools and reimplement

modeling tools on a different metamodeling technology, even if the new technology is

providing exactly the functionality we need in our modeling tool. On the road to the so-

lution to this problem, one needs to solve the challenge of platform dependency almost

every metamodeling technology has. One way is to introduce a concept that is by defi-

nition platform independent – a computer language, particularly a domain-specific lan-

guage. In an ideal situation, realization of a modeling language or a modeling method

in a DSL can be translated to the metamodeling technology of our choice, which can

then create a modeling tool. In case one wants to switch metamodeling tools, there is

no need for reimplementation, just translation of DSL code to the new metamodeling

tool.

4.1.2 Study 2: Domain-Specific Languages

For the purpose of testing the expressivity and usability of domain-specific languages

as a concept, the following task has been given to the students:

“Describe a DSL of your choice, including its general syntax and semantics. Use this DSL

to create a small example which illustrates DSLs main features and usability.”

Students have chosen to describe the following DSLs:

- SQL (Structured Query Language)

- DSD 2.0 (Document Structure Description)

- VHDL (VHSIC Hardware Description Language, where VHSIC stands for very

high speed integrated circuits)

- Groovy

- HTML (HyperText Markup Language)

- MediaWiki

- POV-Ray (Persistence of Vision Raytracer)

Some of the students did not participate in this task, so the number of teams has been

lowered from eleven that were present in the first study, to seven. Therefore, the seven

selected DSLs.

The list of selected DSLs contains several very well-known DSLs, like SQL, VHDL and

HTML. One can also note that the majority of the DSLs on this short list are some form

of text markup languages, such as DSD 2.0 (based on XML), HTML, and MediaWiki,

then we have a ray tracing program, POV-Ray, that includes a Turing complete scene

description language (SDL), and Groovy, which is considered to be a dynamic scripting

language for the Java platform. Groovy itself, because of its support for meta-

programming, is used to create internal or embedded DSLs.

4 Research Problem 74

It can be observed that a DSL always comes with some sort of an execution engine – a

computer program capable of running programs described by a DSL. Because of it, a

DSL is sometimes identified with its execution engine. POV-Ray, MATLAB, Mathemati-

ca, and MediaWiki are all examples of computer programs which are considered to be

DSLs, or they include a DSL which is then named after them.

In conclusion, for a DSL to be useful, it is not sufficient to design it, which means only

to specify its syntax and semantics. A DSL needs to be implemented as well. It needs

to come with a development environment to be useful to the end user. Thus, an envi-

ronment supporting the development of desired artifacts by using a DSL is also a part

of our research problem definition. Secondary, it will provide the possibility to evaluate

the solution through prototyping and test cases.

4.2 Problem Definition

The studies conducted with the students helped us in identifying currently problematic

and to-be-improved areas in the metamodeling research. Therefore, the research prob-

lem tackled in this dissertation was stated as:

The aim is to research, design, develop and evaluate tools that improve the usabil-

ity of metamodeling techniques and the productivity of modeling tool engineers by

providing the following advantages:

- Domain-specific features

- Platform independence

- Reduced complexity

- Shorter learning curve

- Self-documenting code

Shortly, the problem can be defined as “enable language-oriented modeling method

engineering” and its solution lies in the accomplishment of the following objectives:

1. Design a domain-specific language for describing modeling languages and

modeling methods

2. Provide an integrated development environment supporting the designed lan-

guage

3. Implement a translator (e.g., compiler) for a specific metamodeling technology

(e.g., platform, framework, …)

4. Evaluate the domain-specific language, as well as its integrated development

environment on test cases and controlled usability experiments

5 Research Methodology 75

5 Research Methodology

Having identified the research problem and described the environment in which the

research takes place, one can select a research methodology that will best direct and

describe the way the defined research problems are addressed. There are many exist-

ing frameworks and guidelines on how to tackle with information systems research and

development. Some of these frameworks have been evolving for more than 30 years,

but are very similar to each other and contain variations on the following core process-

es:

1. Conceptualization: create constructs which constitute the vocabulary which is

used to describe problems and specify solutions within the domain.

2. Implementation: build the system based on the conceptualized constructs.

3. Evaluation: determine the system’s performance and usability.

In this dissertation a variation of the methodology applied in the research work preced-

ing the development of one of the most established metamodeling tools, MetaEdit+,

was utilized [59]. In time when MetaEdit+ was in development, agile and iterative ap-

proaches were not mature enough. Therefore, the waterfall-based process was used,

where one does not go back to the previous step once it has been completed. Thus,

some modifications to the methodology were needed to make it agile and iterative, as

this was required for the current research project.

5.1 Choice and Description of Methodology

The research in this dissertation belongs in the following two areas: information system

development and computer (programming) language theory. The project as a whole

can be viewed as an information system development project. However, the domain-

specific language developed within the project applies the programming language theo-

ry best practices. Thus, one research area is encapsulated inside the other. Therefore,

a specific research methodology is needed.

Wynekoop and Russo have done an extensive research on system development

methodologies, with the purpose to provide information needed for evaluation, selec-

tion and development of methodologies in a changing environment [60]. The framework

they developed is based on these two dimensions: research purpose and research

methods. Research purpose is divided into categories: (1) use, (2) selection, develop-

ment and adaptation, and (3) evaluation. Research methods are classified in nine cat-

egories: (1) normative writings, (2) laboratory research, (3) surveys, (4) field inquiries,

(5) case studies, (6) action research, (7) interpretative research, (8) descriptive re-

search, and (9) practice descriptions. All of the mentioned methods are a part of the

scientific method, which cannot entirely be used in this research. It is lacking guidelines

5 Research Methodology 76

on how to proceed with the construction of a prototype and its evaluation. The research

method needs to possess means to guide us through the creativity-based engineering

process. At some point the research findings need to be applied to extend, or to make

a new generation of metamodeling tools. Wynekoop’s and Russo’s study provides us

with significant amount of information about various scientific methods, but none of

them align with the needs of this research project – to conceptualize, implement and

evaluate an information system.

On the other hand, the framework developed by Nunamaker and Chen is particularly

designed for research involving system development and construction [61]. Thus, its

modified version has been applied throughout this research project.

This section is mostly taken from the paper Nunamaker and Chen have published

about system development in information systems research [61]. The findings present-

ed in this paper were later elaborated in [62], and [63]. According to their framework, a

system building process consists of the following stages:

1. Construct a conceptual framework. This process consists of four tasks that

should be carried out: (1) state a meaningful research question, (2) investigate

the systems functionalities and requirements, (3) understand the systems build-

ing blocks, and (4) study the relevant disciplines for new approaches and ideas.

Every research project should start with a meaningful research question (or

questions) that describe the research problem. When the proposed solution to

the research problem cannot be fully validated mathematically or tested empiri-

cally, or if it proposes a new approach, it is mandatory to find different means to

confirm its validity. One way of doing this is by constructing a conceptual

framework based on the new methods, techniques, or design. During this pro-

cess, the research problem will become more concise and coherent and sys-

tem’s functionalities and requirements will be revealed.

2. Develop the system architecture. This consists of following tasks: (1) develop

a unique architecture design, and (2) define functionalities of systems compo-

nents and interrelationships among them.

Based on the conceptual framework constructed in the previous phase, an ac-

ceptable system architecture, which provides a road map for the system’s build-

ing process, needs to be established. It puts the system components into the

correct perspective, specifies the system functionalities, and defines the struc-

tural relationships and dynamic interactions among them. The constraints given

by the environment must be identified. The objectives of the development ef-

forts must be clear. The functionalities of the resulting system need to achieve

the stated objectives. The requirements revealed in the previous phase need to

be clearly defined in a way that they are measurable and, thus, can be validated

at the system’s evaluation stage.

5 Research Methodology 77

3. Analyze and design the system. The following tasks should be carried out: (1)

design the processes that execute systems functions, and (2) develop alterna-

tive solutions and choose one appropriate (currently the best) solution.

Design is the arguably most important part of a system development process.

Design involves the understanding of the studied utilization domain, the applica-

tion of relevant scientific and technical knowledge, the creation of various alter-

natives, and the synthesis and evaluation of proposed alternative solutions. De-

sign specifications will be used as a blueprint for the implementation of the sys-

tem. For a software development project, design of data structures, databases,

or knowledge bases, are determined in this phase. For a computer language

development project, syntax and semantics of a language needs to be formally

defined. The system modules and functions also should be specified at this time

after alternatives have been proposed and explored and final design decisions

have been made.

4. Build the (prototype) system. By doing this one should (1) learn about the

concepts, frameworks, and design through the systems building process, and

(2) gain insights about the problems and complexity of the system.

Implementation of a system is used to demonstrate the feasibility of the design

and the usability of the functionalities of a system. Typically, the prototype’s

functionalities are limited to the most important ones, but the system has to run

and has to be testable. The process of implementing a working system can pro-

vide insights into the advantages and disadvantages of the concepts, the

frameworks, and the chosen design alternatives. The accumulated experience

and knowledge will be helpful in case the system has to be redesigned. Building

a prototype is a crucial stage in the information system development. Without a

prototype, empirical studies of the functionalities and the usability could not be

performed, because these are only executable on a running system.

5. Observe and evaluate the system. The following step consists of: (1) obser-

vation of the utilization of the system by case study or field study, (2) evaluation

of the system by laboratory or field experiment, (3) development of new theories

based on the observation and evaluation of the system’s usage, and (4) consol-

idation of the learned experiences.

Once the system is build, researchers can test its performance and usability as

stated in the requirements definition phase, as well as observe its impacts on

individuals, groups, or organizations. The test results should be interpreted and

evaluated based on the conceptual framework and the requirements of the sys-

tem defined at the earlier stages. These results can indicate if the system is re-

ally solving the research problem it was built to solve, and at what efficiency.

Development of a system is an iterative and evolutionary process. Experiences

gained from development of the system usually will lead to the further develop-

5 Research Methodology 78

ment of the system or even the discovery of a new theory to explain observed

new phenomena.

Figure 18: Information Systems Development Framework (adapted from [61])

Figure 18 shows the information systems development framework and all of its phases.

The figure illustrates a closed circle, which indicates that all of the phases can be iter-

ated through and the development of the system is not done when the fifth phase (ob-

serve and evaluate the system) is complete, but one can use the output of that phase

to change the initial conceptual framework, the architecture, the design and the proto-

type as well, and then re-evaluate the system.

The use of system development as a research methodology in information systems

should conform to the following five criteria [59]:

- The purpose is to study an important phenomenon in areas of information sys-

tems and provide solutions through system building.

- The results have significant contribution to the domain and can be utilized in

academia, as well as in industry.

- The system is testable against all the stated objectives and requirements.

- The new system can provide better solutions to certain problems than existing

systems.

- Experiences and design expertise learned from building the system can be

generalized so that they can be used in other situations.

In every phase of the system development process, researchers gain insights about a

domain that will lead to changing some decisions made in previous phases. When the

developed system is a software system, software engineering methods and techniques

5 Research Methodology 79

should be used to improve the quality of both the development process and the re-

search results.

The Nunamaker and Chens information systems research framework is well suited for

the research this dissertation is conducting, because:

- It conforms to the research problem and objectives.

- In its steps the three core system development processes are covered: concep-

tualization, implementation, and evaluation.

- The research fulfills the five criteria mentioned in the framework.

- The research aims to produce a software product.

Therefore, the described system development research methodology is a good choice

for this research project.

5.2 Application of the Methodology in this Research

Before utilizing the system development methodology from Nunamaker and Chen, a

general research problem has already been stated and an overview in related and

competitive research has already been conducted.

To construct a conceptual framework, an analysis of existing metamodeling technolo-

gies has been conducted. This analysis particularly targeted metamodeling platforms,

such as ADOxx, MetaEdit+, and GME, and metamodeling frameworks such as Visual

Studio Visualization and Modeling SDK, and Eclipse EMF. Advantages and disad-

vantages of metamodeling platforms provided the details used in specifying the re-

search problem in a concise and precise manner. Additionally, metamodeling platforms

as software systems themselves gave an insight on how these systems are built, and

more importantly, how they can be extended. The concepts extracted during the met-

amodeling platform analysis served as a backbone for the conceptual framework by

providing key requirements metamodeling technology should satisfy.

The development of a system’s architecture was guided by the idea about augmenting

the existing metamodeling platforms with domain-specific concepts. Therefore, it was

important to bring together a metamodeling platform and a domain-specific language.

The key concern was the possibility of writing code which could be run on multiple plat-

forms.

The first step taken in designing the system was the specification of a domain-specific

language. The syntax and semantics of a language have been defined. Afterwards, a

way of communication between the most important two system components – meta-

modeling platform and domain-specific language – has been specified.

The specifications produced in the design phase are implemented as a prototype sys-

tem. There were a couple of iterations between this phase and the design phase, each

5 Research Methodology 80

time when new insights have arisen. Additionally, an integrated development environ-

ment had to be developed to support the designed domain-specific language.

After the prototype system has been built, it has been observed and evaluated. Multiple

test cases were used to test the system’s behavior and usability. The conducted evalu-

ation scenarios are described late on in a dedicated chapter. The iterations between

this phase and the previous phase – the build phase – were common. The reasons

behind it were various bug fixes and introduction of functionalities that were shown to

be lacking while conducting some of the tests.

6 Metamodeling Platforms 81

6 Metamodeling Platforms

6.1 Introduction

A metamodeling platform, as a pinnacle of metamodeling technology, is an important

part of the research at hand. In this chapter the main focus is on a generic metamodel-

ing platform. The existing platforms are mentioned only as an example. It is important,

because the conceptual framework depends on the concepts metamodeling platforms

implement, such as a meta2model, means of defining abstract and concrete syntax of a

modeling language, means of implementing modeling algorithms, and model reposito-

ries.

To be able to augment the development process with domain-specific concepts using a

domain-specific language, one needs to understands how is a metamodeling platform

built, and how is it utilized to develop modeling tools, as well as what are the ad-

vantages the platform provides. The disadvantages that come with the use of a meta-

modeling platform are crucial in proposing and providing a better metamodeling solu-

tion.

6.2 Requirements

After the research conducted on several metamodeling platforms, some of the most

important requirements have been elicited. These requirements have been divided into

functional and non-functional requirements. The ones mentioned here are only the

most important ones which should be fulfilled by every metamodeling platform.

The requirements extraction was a multi-step process that was repeated for every met-

amodeling platform under test. The process started by reading the available documen-

tation and user manuals, followed by learning the platform’s functionality and trying to

implement a simple pseudo modeling language (by following a provided tutorial if appli-

cable).

6.2.1 Seven Key Functional Requirements

In the field of software engineering, a functional requirement defines a function of a

software system or its component [64]. Functional requirements may be various calcu-

lations, technical details, data manipulation and processing, and other specific func-

tionalities that define what a system must accomplish. A metamodeling platform is a

complex software system; therefore, its functionality needs to be defined as detailed as

possible.

To expose the most important metamodeling platform functional requirements related

to the proposed DSL design, several metamodel-based implementations of modeling

6 Metamodeling Platforms 82

methods were thoroughly analyzed. All of these implementations are hosted on the

OMiLAB website [65]. Here is the full list: BEN, BIM, CIDOC, eduWeaver, EKD, Horus,

IMP 2.0, i*, OMi*T, InSeMeMo, MeLCa, OKM, Secure Tropos, UML, PetriNets, Mo-

SeS4eGov, PROMOTE, SeMFIS, and VLML. Figure 19 contains a graph showing the

complexity of the modeling methods expressed through the number of their basic ele-

ments, mainly classes, relationships and model types. Figure 20 contains numerical

values of the previously mentioned graph (for the orientation purpose). As an output of

this analysis several key metamodeling platform requirements were extracted.

Figure 19: OMiLAB Modeling Method Statistics (Graph)

Figure 20: OMiLAB Modeling Method Statistics (Table)

6 Metamodeling Platforms 83

The seven key groups of functional requirements have been divided as follows: (1)

meta2model, (2) abstract syntax designer, (3) dynamic notation mapper, (4) dynamic

notation designer, (5) modeling procedure designer, (6) open APIs and algorithm librar-

ies, and (7) model repository requirements. These requirements can be implemented

as metamodeling platform software modules.

6.2.1.1 Meta2model

As the name indicates, metamodeling platforms utilize the metamodeling approach for

development of graphical modeling languages and modeling methods. They are typi-

cally based on a complex meta2model which contains the core concepts and functional-

ity. By instantiating the meta2model with the domain-concepts, a metamodel is defined,

which specifies the modeling language’s abstract syntax, and semantics. The first func-

tional requirement for a metamodeling platform is to have a meta2model that is generic

enough to be able to instantiate concepts from a wide range of domains, but at the

same time to be sufficiently rich with meta-concepts, enabling detailed modeling lan-

guage specification. After more than dozen modeling method implementations, it has

been noted that a simple meta2model containing only the basic abstractions (class,

relationship, and attribute) is not powerful enough for expressing some of the real world

modeling languages and modeling methods.

6.2.1.2 Abstract Syntax Designer

A sophisticated control mechanism enabling structured abstract syntax and semantics

definition and manipulation for the concepts instantiated from the meta2model is the

second functional requirement. Its importance comes to play together with the rising

complexity of large metamodels. Smaller ones could be managed with a simpler control

mechanism, but managing abstract syntax and semantics of large complex metamod-

els would be near to impossible.

6.2.1.3 Dynamic Notation Mapper

The development of graphical modeling languages is more complex than the develop-

ment of textual languages. Textual languages (e.g., textual programming languages,

textual specification languages) can have their syntax specified in a textual form (e.g.,

EBNF), where, most of the times, abstract and concrete syntax are joined together and

defined at the same place. In case of graphical modeling languages, it is common to

have multiple notations associated with one modeling element, meaning that abstract

syntax can have multiple concrete syntax representations. The third functional re-

quirement is to provide a mapping mechanism between the abstract syntax and their

graphical representation. The importance of this requirement is even more elevated, if

one takes under consideration the possibility of modeling elements having multiple

graphical representations at the same time (dynamic notation).

6 Metamodeling Platforms 84

6.2.1.4 Dynamic Notation Designer

In modern modeling methods and modeling languages, graphical modeling elements

are not only nice figures on the modeling canvas. Together with the graphical represen-

tation and underlying syntax and semantics, they also provide a complex interface be-

tween the user and the model, enabling predefined functionality (e.g., jump to other

parts of a model, input values into variables, change graphical representation, start

analysis or simulation, etc.). Being able to design appropriate graphical representations

including the user interface embedded into modeling elements is the fourth functional

requirement.

6.2.1.5 Modeling Procedure Designer

Modeling methods, in addition to the concepts contained in a modeling language, in-

clude several functional extensions: modeling procedures, modeling algorithms and

mechanisms. A metamodeling platform needs to provide generic functionality for sup-

porting these extensions by enabling out-of-the-box use or adaption of existing features

according to the user needs.

Modeling procedures enforce the order in which modeling elements need to be used. In

most cases this is not necessary, because one wants to give more freedom to the

modeler (human doing the modeling). However, there exist modeling methods which

strictly define the order one can use the modeling elements. For example, if one wants

to model information security, one should provide physical (e.g., server locked in a

room which provides optimal working environment and protection from natural disas-

ters) before virtual security (e.g., firewall, access control, etc.). The enforcement of

modeling procedures is the fifth metamodeling platform functional requirement.

6.2.1.6 Open APIs and Algorithm Libraries

Algorithms are the means which are used to define and implement additional function-

ality of a modeling method. To be able to use and reuse already present platform func-

tionality for defining various algorithms and mechanism, one needs an interface to this

functionality, typically realized as a well-documented and interoperable set of APIs.

Sixth functional requirement is that the platform provides open means of interfacing

with its functionality, and allowing the utilization of these means for implementing addi-

tional, user defined functions.

6.2.1.7 Model Repository

All of the previous requirements were connected with implementation of modeling

methods. However, there is still one not directly connected with implementation, but

with storing of data. A metamodeling platform needs a dedicated repository for storing

a modeling method definition, and a second one for storing models defined by a model-

ing method. Repositories provide the possibility to reuse already defined modeling el-

ements, track changes for both development of modeling methods and models, and

propagate changes done on the modeling method layer to the model layer. Reposito-

6 Metamodeling Platforms 85

ries are an essential part of a powerful metamodeling platform, and therefore, the sev-

enth functional requirement.

Figure 21: Metamodeling Platform Modules

Figure 21 shows a simplified implementation of a modeling platform according to the

functional requirements. Each functional requirement is represented by a dedicated

software module, seven in total (leafs in the diagram). Software modules are grouped

corresponding to their functionality: structure, notation or operation. Model repositories

do not have a dedicated group.

6.2.2 Important Non-functional Requirements

Along the several important functional requirements, there are still a couple of non-

functional requirements every metamodeling platform should fulfill.

From many non-functional requirements [66], including accessibility, availability, com-

pliance, reliability, security, usability, backup, documentation and others, there exist

three very important for the metamodeling platforms: extensibility, interoperability, and

scalability.

6.2.2.1 Extensibility

Extensibility [67] takes under consideration future growth. It is a measure of the ability

to extend a system and the level of effort required to implement the extension. Exten-

sions can be through addition of new functionality or through modification of existing

functionality. It is of high importance for the current and future metamodeling platforms

to provide mechanisms for change, while minimizing impact to existing functions. As a

complex software system, metamodeling platforms should have a public application

programming interface (API) that allows extension and modification of platform’s be-

havior by developers who do not have access to the original source code.

6.2.2.2 Interoperability

Interoperability [68] is the ability of diverse systems to work together by exchanging

information and using the information that has been exchanged. One of the means

allowing metamodeling platforms to communicate between each other is in specifica-

6 Metamodeling Platforms 86

tion of open standards. The products implementing the common protocols defined in

the standard are thus interoperable by design. By providing users with a freedom to

start their implementation of a modeling method on one platform, continue it on the

second, and finish it on the third is a tangible benefit where one can choose a meta-

modeling platform, and have no fear that his implementation will not work on another

platform. Currently, none of the existing metamodeling platforms fulfill this requirement.

6.2.2.3 Scalability

In today’s world, demand for something can escalate very quickly from a very small to

very large in a brief period of time. Scalability [69] allows handling a growing amount of

work in a capable manner. This issue can be illustrated on an example where one pro-

vides an implemented modeling method as a service that runs in the cloud. At first, the

metamodeling platform together with the underlying IT infrastructure needs to serve a

dozens of concurrent users. However, in only a matter of days, number of users using

a modeling method can rise exponentially. The platform needs to accommodate ad-hoc

to support a larger number of users by providing higher throughput and be prepared to

serve a higher number of concurrent users at the same time. Scalability is becoming

increasingly important in today’s delivery of software, as users require services that can

be used immediately, without installing them locally on local machines.

7 Metamodeling Platform Applications 87

7 Metamodeling Platform Applications

This chapter is dedicated to the established modeling method engineering practices

where one utilizes metamodeling platforms to implement modeling tools. This approach

has been used in most of the modeling tool projects that have been realized within the

OMiLAB [65]. The study “Very Lightweight Modeling Language (VLML): A Metamodel-based

Implementation” is a representative example on how is this approach applied in prac-

tice. Its focus is on the conceptualization of a modeling language from the given re-

quirements and subsequent implementation of a modeling tool using the ADOxx met-

amodeling platform. The study was published in [70]. The following is an extended ver-

sion.

7.1 Very Lightweight Modeling Language (VLML): A

Metamodel-based Implementation

Very Lightweight Modeling Language (VLML) is designed as a semiformal and easily

integrable with natural languages, by proposing modeling elements like: structure, rela-

tionship, influence, and flow. Its semiformal nature caused several issues during the

metamodel design, making the implementation of the VLML-tool more challenging. In

order to overcome these issues, new functional requirements have been defined for the

ADOxx metamodeling platform. The VLML tool is an early prototype. Thus, it is fully

functional and supports many of its envisioned concepts.

7.1.1 Introduction

Despite the efforts that went into development of requirements modeling languages,

the vast majority of requirements specifications created today are still written in natural

language, augmented with tables, pictures, and, increasingly, some model diagrams

[71]. However, this is not an indication that currently commonly used modeling lan-

guages like UML [72] or ADORA [73] are unable to express complex requirements, but

that they are very scarcely used in the early stages of requirements engineering [39].

This is the case, because requirements at an early stage are by their nature narrative

and pictorial. Therefore, natural language augmented with pictures is the primary tool

used to capture them [71]. Very Lightweight Modeling Language’s (VLML) primary goal

is to make early stage requirements specifications, not only analyzable by careful read-

ing (current situation in the industrial early stage requirements engineering), but ana-

lyzable, editable, navigable, and traceable by providing a powerful tool support. Suffice

to say, the modeling languages have a big advantage over textual languages, because

of their ability to define models whose properties can be processed.

VLML is semiformal and easily integrable with natural languages. It contains modeling

constructs for things that are hard to express textually: structure, relationship, influence

7 Metamodeling Platform Applications 88

and flow. The most important VLML elements according to [74] are: objects, relation-

ships, modifiers, context, missing/hidden information and enrichments. Objects are

specialized into technical items, living items, connectors and pictures; relationships into

static relationships, influences, flows and hierarchical structures; modifiers into exter-

nal, fuzzy, multiple and boundary; enrichments into and-connector and or-connector.

The auxiliary goal of this study is to apply a modeling method conceptualization ap-

proach [75] in the presence of a language with vague, implicitly stated properties.

VLML is an appropriate choice because it (1) contains relatively few modeling elements

(see Figure 19), and (2) has a semiformal and partially unfinished specification [74].

The study continues with a brief introduction to the conceptualization, as a first phase

in modeling method engineering. It is followed by a VLML metamodel design process,

together with the challenges introduced in the conceptualization phase. In section “Tool

Implementation” a short introduction to the ADOxx metamodeling platform (from an im-

plementation point of view) is given (see [76] for more details), followed by a couple of

examples produced by the implemented VLML tool. This study concludes with possible

future work and reflections on the work that has been done so far.

7.1.2 Conceptualization

Before one can start with the actual modeling tool implementation, the modeling meth-

od, in this case VLML, is usually written in some form of a document (e.g., book, scien-

tific publication, etc.), which demands further analysis. The concepts need to be ex-

tracted and transformed into a concrete, unambiguous, representation. This is done in

the, so called, conceptualization phase, which precedes the implementation phase in

the modeling method engineering process. Extraction of requirements and their shap-

ing into a conceptual metamodel that contains the modeling method concepts is a cru-

cial task method engineers need to accomplish. Insightful and careful mapping of con-

cepts to a metamodel will, consequently, save us from a lot of trouble in the succeeding

implementation phase, which is, thus, more predictable, easier and faster [77]. It is

common that a metamodel goes through several iterations, until all the concepts are

captured by it. After completion, conceptual model should be general enough for the

implementation on a non-specific metamodeling platform. However, transforming it to

an implementation-specific metamodel allows us to take advantage of the generic and

advanced functionalities of a specific metamodeling platform. This also entails, that the

implementation metamodel needs to be instantiated from the meta2model of that par-

ticular platform.

The process covering the road from the modeling method general description to the

tool implementation can be explained with a simple book-to-movie metaphor. At first we

only have a book, collection of written thoughts meant to be consumed by the reader.

The book alone is not enough to guide the movie production process. That is where

four movie production stages come into play: (1) development, (2) pre-production, (3)

production, and (4) post-production [9].

7 Metamodeling Platform Applications 89

In development stage a story is selected, which may come from a book, another movie,

real world event, etc. The first step is to organize a story into a structure of scenes and

prepare a synopsis describing its mood and characters. Next, a screenwriter writes a

screenplay, which broadens the synopsis with additional details, including the dialogue

and stage direction [78]. It is common to rewrite the screenplay several times to im-

prove dramatization, clarity, structure, characters, dialogue, and overall style. The

screenplay can be viewed as equivalent to the conceptual metamodel, and the rewrit-

ing process is similar to the iteration process in our domain.

In pre-production, every step of actually creating the movie is carefully designed and

planned [78]. Taking the screenplay as a starting point, concept artists and illustrators

draw a storyboard. There are many responsibilities, e.g. the casting director finds ac-

tors; the location director finds and manages locations; the composer creates music;

the costume designer creates clothing for the characters. Comparing the pre-

production with the design of the implementation-specific metamodel, the storyboard

itself would represent the metamodel. Music, costumes, scenery, actors, etc. would be

the additional functionality supported by the specific metamodeling platform. Accom-

modating the conceptual metamodel for the specific platform enables the use of al-

ready present functionalities.

In the production phase the movie is shot and created. In post-production movie is as-

sembled by the video editor. This is the final stage, after which the film is released to

the public. Production is equivalent to the implementation phase, where modeling

method is being implemented on a metamodeling platform, and post-production is

equivalent to the deployment and distribution of a modeling tool.

The processes of realization of the VLML conceptual metamodel, as well as the imple-

mentation metamodel, are described in the following section.

7.1.3 Metamodels Design

Informal and semiformal modeling method specification has a general disposition to

introduce new challenges into the conceptualization process. In these cases, one

should take care to capture all that is possible and fill in the gaps with concepts that are

only implicitly stated or even non-existent.

The following is a brief summary of issues that arose during the VLML conceptualiza-

tion process together with the proposed solution given as an extracted conceptual and,

later on, also as an implementation-specific metamodel.

The design requirements mentioned in [74] have been used as an input into the con-

ceptualization process, and as an output a metamodel for the VLML has been de-

signed. The main issues during this process were: (1) incompleteness of language

specification, (2) no decomposition guidelines (possibility of models getting too big and

cluttered with meaningless details), and (3) preparation of the metamodel for the im-

plementation on the metamodeling platform.

7 Metamodeling Platform Applications 90

One of the main challenges was to make the metamodel of the VLML as complete as

needed for the upcoming implementation of the modeling tool. The issue of incom-

pleteness comes from the fact that VLML is in an evolutionary stage, as is described in

[74]:

“The specification in the appendix gives an impression of the look and feel of the lan-

guage. This is not meant to be a complete and polished language design. Our intention

is to make our vision of ULM more concrete, tangible and criticizable.”

Ultralightweight Modeling Language or ULM (not to be confused with UML; it is not a

typo!) was the name VLML had in its early drafts that were produced during 2010. It

was later renamed to Very Lightweight Modeling Language (VLML) in its subsequent

publications [71].

The second issue was with VLML specification not defining any kind of model types –

all modeling elements were grouped into one single representation. This kind of view

on specification requirements modeled in VLML is very well suited for the ones that are

viewing and analyzing the models. However, it is fairly difficult to work with for the ones

producing the models. Taking the latter into consideration, refactoring of concepts was

performed by dividing this single bunched up “model type” into two separate (but inter-

referenced) model types: one containing the basic concepts, without all the details

connected with them, and the other specifying the details lacking in the first one. That

way a modeler can concentrate on a specific part of the requirements specification

without all the clutter occupying his computer screen.

The third issue is not connected with VLML itself, but with the tooling process itself,

meaning that the definition of a modeling language (design of a metamodel) had to be

slightly modified to suit a specific meta2model [10]. In our case, the VLML metamodel

was modified for the implementation on the ADOxx meta2model.

Figure 22: VLML Conceptual Metamodel

Figure 22 shows the VLML metamodel extracted from the preliminary language specifi-

cation taken from [74]. Simplified UML class diagram notation is used to show various

VLML elements and their relationships.

7 Metamodeling Platform Applications 91

Figure 23: VLML Implementation Metamodel

Figure 23 shows the VLML metamodel produced in the conceptualization phase and

modified for implementing a tool based on the ADOxx metamodeling platform. By com-

paring these metamodels, one can see the introduced changes and additions that were

necessary for the viable tool implementation.

The most important changes to the original specification, when considering the model-

ing elements, are: (1) grouping into two model types (Global, and Detailed), (2) addition

of elements (abstract elements: Item, Aggregation, and Model Type; concrete ele-

ments: Static Aggregation, Global Hierarchical Structure, and Initial Context), (3) re-

moval of elements (Enrichment, Textual Element, Name – name is an integral part of

every class, therefore it is not necessary to express it explicitly, and Reference), and

(4) type change (AND-Connector, and OR-Connector are no longer a specialization of

Enrichment, but specialization of Connector; Hierarchical Structure is no longer special-

ization of Relation, but specialization of Aggregation; Living Item and Technical Item

are now specialization of Item, which is a specialization of Object).

New relationships between the modeling elements are introduced: (1) vague associa-

tions replaced with compositions (Hidden Information, Context and Modifier are now a

part of Item; Relation Annotation is a part of Relation), (2) aggregations (used to ag-

gregate modeling elements into model types), and (3) missing associations (between

Item and Static, Item and Influence, Object and Flow, and Hierarchical Structure and

Static Aggregation).

7 Metamodeling Platform Applications 92

It can be noted both in Figure 22 and Figure 23 that relationships are depicted as rela-

tion classes (e.g., Static, Flow, etc.) that are connected with object classes (e.g., Item,

Picture, etc.) only through associations. This representation is aligned to the ADOxx

meta2model, where both of these concepts are specialization of a class. The key differ-

ence between a class and a relation class in the ADOxx meta2model is in two charac-

teristics specific to a relation class: (1) it cannot be inherited, and (2) it contains two

additional properties – from and to, which define the beginning (from) and the ending

(to) part of the relation. There is also no multiplicity indicated on the associations, be-

cause none is specified in the language design. Therefore, it is taken for granted, for

the purpose of the VLML prototype implementation, that every association has many-

to-many relationship.

7.1.4 Tool Implementation

The VLML tool implementation is based on the ADOxx metamodeling platform and is

one of the more than twenty modeling tool realizations which are utilizing the men-

tioned modeling method conceptualization process.

Figure 24: VLML Implementation View

7 Metamodeling Platform Applications 93

ADOxx is a mature and extensible, repository-based metamodeling platform, which has

been applied in various academic and industrial projects. It supports: (1) modeling lan-

guages by inheriting modeling concepts from a meta2model to define syntax, semantics

and notation, (2) modeling mechanisms and algorithms by providing generic platform

functionality that can be used or adapted by employing scripting possibilities, integra-

tion and interaction with third party add-ons, and (3) modeling procedures suggesting

modeling steps related to the modeler's goals [76].

Figure 24 shows the implemented VLML metamodel inside the ADOxx (screenshot

labeled with 1). One can see the hierarchical structure of metamodel elements, which

have been instantiated from the ADOxx meta2model. FigureX also shows the

GraphRep definition of one of the modeling elements (screenshot labeled with 2) and

the definition of the two model types (screenshot labeled with 3). This is a brief over-

view of the ADOxx modeling tool implementation environment. There exist other editors

and functionalities, but are not relevant to the example under consideration.

To preview the VLML modeling tool, parts of the short requirements engineering sce-

nario taken from [76][7] (also used as a case study in [74]) are modeled (see Figure

25).

Figure 25 shows a couple of screenshots from the VLML modeling tool. In the top left

corner one can see the use of Connectors, Technical Items and Hierarchical Struc-

tures, in the top right corner the use of the Global model type which aggregates all of

the Detailed model types (the symbol […] denotes that the object can be expanded to

show additional information, in this case the whole diagrams), in the bottom left corner

the combined use of Technical Items and Living Items together with the appropriate

Modifiers, and in the bottom right corner the use of Technical Items together with Modi-

fiers and Influence relationships among them.

Figure 25: VLML Tool In Use

7 Metamodeling Platform Applications 94

The tool also inherently supports all functionality provided by the ADOxx metamodeling

platform, including: model explorer and navigator, different modeling views (e.g., dia-

gram, table), a pane containing modeling components designed to make modeling

easy and user friendly.

7.1.5 Conclusion

The first prototype of the VLML tool offers the full functionality of the described model-

ing language and is being developed throughout multiple iterations, each time updating

the implementation metamodel. There are still open questions regarding the VLML lan-

guage specification and some ideas under consideration regarding the extension and

customization of the ADOxx platform to better suit the concept of VLML, not only as a

language, but as a tool as well.

The most relevant open questions are directed toward the missing details in the lan-

guage specification. Some of them have been partially answered for the purpose of

making the implementation possible, but there are still some ambiguities that need ad-

ditional explaining. For example, one cannot, using only the information contained in

the language specification, entail: (1) what kind of relations (e.g., Static, Influence,

Flow) does every object (e.g., Technical Item, Living Item, Picture) support, (2) possibil-

ity of objects to contain other objects (issue coming from the specification of the hierar-

chical structure in VLML), (3) do all objects support modifiers (e.g., Fuzzy, External,

Boundary), and (4) which modifiers can be used in a combination. In future releases

number of ambiguities will be lowered by providing a more explicit language specifica-

tion. On the tool implementation side, algorithms for on-screen objects manipulation

and positioning, annotation, and searching are needed to improve the overall user ex-

perience. One of the future considerations in this area is on how to make model type

switching (from Global to Detailed, and vice versa) and inter-referencing as seamless

as possible.

Implementing VLML on the ADOxx metamodeling platform has brought attention to the

few insightful facts about the utilized modeling method conceptualization process. It is

informal, time consuming, error prone and lacking documentation. There is also no tool

support, other than paper & pencil, PowerPoint and Word. These are some of the rea-

sons that gradually guided us into a decision to design a domain-specific language

(DSL) which could solve some of the mentioned issues (informality and error prone-

ness at least) and introduce new features like change tracking and version control. The

proposed DSL will provide higher structured capabilities to the conceptualization pro-

cess, and consequently, make the implementation of modeling methods more formal,

powerful and easier to use.

Detailed information about the mentioned DSL and its development (including its con-

ceptualization, implementation and evaluation) can be found in the following chapters.

8 MM-DSL 95

8 MM-DSL

There are multiple ways one can pursue when developing modeling tools. The most

common are the ones where modeling tool engineers implement by using multiple

graphical editors and various programming languages to realize the requirements of a

modeling method. Several approaches have already been discussed in previous chap-

ters (see chapters 3, 6 and 7). In the state of the art, implementing artifacts such as

abstract and concrete syntax or algorithms is linked to a specific technological platform.

This motivated the development of a DSL, which entails its conceptualization (design

and specification), implementation and evaluation. The proposed domain-specific lan-

guage (MM-DSL) is based on a metamodeling approach, and it gives us the ability to

be technology independent. With MM-DSL a specification for a modeling tool is pro-

grammed on an abstract level. The code can be compiled and executed on different

metamodeling platforms.

This chapter holds a very detailed description of MM-DSL (Modeling Method Domain-

Specific Language). The paper “Developing Conceptual Modeling Tools Using a DSL” gives

a condensed overview of the work that will be presented in here. It has been published

in [79].

8.1 Introduction

After thorough research in metamodeling technologies present in industry and academ-

ia, it was found out that many of them are built on the same concepts. One would think

that this may allow seamless exchange of information between them. However, that is

not the case. Competition, as well as an unsatisfactory state of terminology, has led to

platforms that are typically stand-alone software which is locking-in the development. It

is very hard, or even impossible, to migrate what has been done so far on one platform

to the other. Because of the different terminology and approaches utilized by different

metamodeling platform vendors, it is also a considerable time investment to learn, un-

derstand and use an alternative platform. The reasons for this kind of state of the art

are not covered by this research work. If that were so, this would be a study in sociolo-

gy and marketing. As computer engineers and computer scientists, it is not our job to

change how people thing about the word. It is to propose and provide solutions to prob-

lems. The proposed solution to this particular problem is provided as a computer lan-

guage – Modeling Method Domain-Specific Language or MM-DSL. The language that

is designed to bridge the differences between various metamodeling technologies, and

can be used as a common ground for implementation of modeling tools, regardless on

which metamodeling platform will those modeling tools run on.

A brief scenario about how one utilizes MM-DSL in the development of modeling tools

is the following:

8 MM-DSL 96

1. Describe modeling method components using MM-DSL (this includes modeling

language’s abstract and concrete syntax, and, in case of modeling methods, it

includes description of algorithms).

2. Translate MM-DSL code to the representation understandable by a metamodel-

ing platform of choice.

3. Use the metamodeling platform to add functionality that is not possible to code

with MM-DSL.

4. Generate a modeling tool using a metamodeling platform.

Using MM-DSL allows that everything that has been coded in it can be translated (e.g.

compiled) to various metamodeling platforms. If additional functionality is added by

using a metamodeling platform after the compilation has took place, it is not possible to

convert it back to the MM-DSL code. However, it is possible to extend MM-DSL with

additional features that will support the needed functionality.

As it can be seen from this brief MM-DSL utilization overview, MM-DSL is designed to

augment metamodeling platforms, and not to replace them, in the process of modeling

tool development. Later on in this chapter the use of MM-DSL will be illustrated on a

representative example.

Additional benefit of using MM-DSL is in faster prototyping of modeling tools, because

MM-DSL requires less information to describe a modeling method than a metamodel-

ing platform. For example, if one wants to develop a modeling method and test its be-

havior as soon as possible, specifying the concrete syntax or graphical representation

is not necessary. MM-DSL will use predefined graphical objects. This way, only a met-

amodel of a language needs to be specified in MM-DSL. This kind of development is

typically not possible with metamodeling platforms – graphical representation needs to

be specified for every modeling element.

The rest of the benefits come from a fact that MM-DSL is a domain-specific language.

As such, it is supported by its own IDE (Integrated Development Environment) which

comes with various helpful features that make coding easier, for example: syntax high-

lighting, auto complete, code templates, and compile time error checking. The architec-

ture and utilization of the MM-DSL IDE is covered in its dedicated chapter.

8.2 Related Work

During the last couple of decades of applied research in metamodeling approaches

and technologies many meta-metamodels (meta2models) have emerged, some of them

very complex, the others very simple and easy to use, but typically created for the

same purpose: to capture the requirements imposed on them by the modeling domain.

Initially, most of the meta2models have been designed to be instantiated in a single

8 MM-DSL 97

domain. For example, EMF Ecore is mostly used in the development of Eclipse appli-

cations, GME primarily in the area of electrical engineering, ConceptBase [80] for con-

ceptual modeling and metamodeling in software engineering, and ADONIS was de-

signed for describing and simulating business processes. However, over time it has

been discovered that they are also applicable in similar domains. A good example is

the extension of the ADONIS meta2model, which later became the ADOxx meta2model.

The ADOxx meta2model and the ADOxx metamodeling platform have until today been

used for the realization of a myriad of domain-specific modeling methods. A couple of

dozen of implemented modeling tools can be found on the OMiLAB web site [65]. An-

other very successful example is the GOPPRR meta2model employed by the

MetaEdit+ language workbench, which has been used in many industrial projects dur-

ing the last decade [22].

Meta2models are typically joined together with a metamodeling tool (Ecore comes with

EMF and Eclipse IDE, ADOxx comes with its own metamodeling platform, MetaEdit+,

ConceptBase, and GME as well), which makes them available for use out-of-the-box. A

brief comparison of meta2models and their accompanying tools is compiled in [81].

As we can see, metamodeling approaches have been applied in many real world sce-

narios, like functional and non-functional requirements definition in software engineer-

ing, social modeling for requirements engineering [82], as well as modeling tool devel-

opment, where metamodeling platforms have become a very popular go-to software.

The answer behind the metamodeling platform attractiveness lies within the fact that

one gets the meta2model and the tools that work with it for free. What is left for devel-

opers to do is: (1) instantiate the meta2model and (2) apply the platform’s functionality

to bring a modeling method to life. This process is explained in more detail in [70] and

[75].

A notable difference between MM-DSL and metamodeling platforms is in their way of

tackling with the development of conceptual modeling tools. MM-DSL provides domain-

specific functionality which is not linked to a specific technological platform. Developing

by using only a metamodeling platform is very technology-specific. One has the entire

platform’s functionality out-of-the-box and the possibility to reuse and extend it. How-

ever, this comes with a drawback of locking in the future development only to one plat-

form. There is, in most cases, no way of reusing any developed artifacts (e.g., code,

files, etc.) on another metamodeling platform. This is one of the primary issues MM-

DSL tries to address.

There are dozens of DSLs designed to describe a metamodel of a modeling language,

the most significant being KM3 [5], HUTN [83], and Emfatic [84]. KM3 is designed par-

ticularly for specifying the abstract syntax. HUTN (Human Usable Textual Notation) is

an OMG standard for specifying a default textual notation for each metamodel, devel-

oped with a purpose of solving the problem of the XMI/XML (XML Metadata Inter-

change) format, which is intended to be processed by the machine, therefore it is nei-

ther succinct, nor easily readable or writable. Emfatic is a language used to represent

EMF Ecore models in a textual form. There exist even more DSLs that specialize in

8 MM-DSL 98

model processing, most of them connected with the Eclipse community and EMF. Epsi-

lon [85], for example, is a family of languages and tools for code generation, model-to-

model transformation, model validation, comparison, migration and refactoring that

works out-of-the box with EMF and other types of models. FunnyQT [86] is a querying

and transformation DSL embedded in JVM-based Lisp dialect Clojure. FunnyQT pri-

marily targets the modeling frameworks JGraLab and EMF. GReTL [87] is an extensi-

ble, operational, graph-based transformation language, which allows specifications of

transformations in plain Java using the GReTL API.

Among all of these different languages and frameworks, there are two similar to our

approach: Graphiti [88] and XMF (Xmodeler) [89]. Graphiti is an Eclipse-based

graphics framework that allows the development of graphical editors from domain

models typically specified with EMF. It is a significant productivity improvement when

compared to Eclipse GMF. XMF is a meta-programming language with an OCL-like

syntax that allows construction of an arbitrary number of classification levels. Xmodeler

is a metamodeling platform developed around XMF. Both of these technologies try to

improve the productivity of modeling tool development, and both of them suffer from

the same issues: platform independency and complexity. Graphiti currently only sup-

ports Eclipse. XMF only supports Xmodeler and it is relatively hard to learn for domain

experts with limited programming knowledge. The mentioned technologies are special-

ized in realizing modeling languages as modeling tools, but none of them fully covers

the realization of modeling methods (e.g., possibility to implement all the essential

parts: abstract syntax, concrete syntax, and algorithms that can be executed on mod-

els).

8.3 Applied Concepts and Technologies

In addition to the related research, the work at hand is mostly influenced by the follow-

ing concepts and technologies: Language Oriented Programming [90], Language Driv-

en Design [91], Model Driven Architecture [92], Software Factories [93], Language

Workbenches [4], and Metamodeling Platforms [10]. All of them are used to ease the

development of various kinds of software (e.g., systems, applications, tools) by provid-

ing the means to define custom programming or modeling artifacts and code genera-

tion facilities.

Language Oriented Programming [90] is a novel way of organizing the development of

a large software system. The approach starts by developing a formally specified, do-

main-oriented, high-level language which is designed to be well-suited to develop a

software system under consideration. After the system has been implemented in the

before developed language, it is translated using a compiler or an interpreter to the

existing technology. Among claimed advantages for domain analysis, rapid prototyping,

maintenance, portability, and reuse of development work, LOP provides higher devel-

opment productivity and faster time to market.

8 MM-DSL 99

Table I: Concepts and Technologies Influencing the Development of MM-DSL

Concept / Technology MM-DSL

Language Oriented Programming Out-of-the box DSL which can be extended to bet-

ter suit the domain of a modeling tool under devel-

opment

Language Driven Development Integration of different DSLs into a single DSL

(e.g., a DSL for defining the concrete syntax is

integrated with the DSL for defining the abstract

syntax of a modeling language)

Model Driven Architecture Generation (compilation) of platform-specific code

from the DSL code; multiple code generations may

occur during that process

Software Factories The DSL IDE is created upon the Eclipse IDE

Language Workbench Xtext is used for the implementation of the DSL

grammar and various compilers

Metamodeling Platform Common execution environment for the code writ-

ten in DSL (ADOxx is used as a proof of concept

for the DSL approach and metamodeling platform

synergy)

Language Driven Development [91] is a software development method which involves

the use of multiple DSLs at various points in the development life-cycle. It is fundamen-

tally based on the ability to rapidly design new languages and tools in a unified and

interoperable manner. By allowing engineers and domain expert to express their de-

signs in the language that they are most comfortable with and that will give them most

expressive power, productivity can be increased. The LDD vision relies heavily on the

language integration. It is claimed that languages should be weaved together to form a

unified view of the software system.

Model Driven Architecture [92] is a term commonly used to mean the generation of

program code from (semi-)formal models (e.g., UML, UML profiles, various DSLs). Sys-

tem functionality is defined using a platform-independent model (PIM) which is de-

scribed in an appropriate DSL. The PIM is then translated to one or more platform-

specific models (PSM) that computers can run. The transformation process is generally

automated and performed by tools [94].

Software Factories [93] is a term used to describe a collection of software used to cre-

ate specific types of software. They help structure the development process and are

used for developing languages that support the construction of software components. A

software factory may include processes, templates, integrated development environ-

8 MM-DSL 100

ment (IDE) configurations and views. The type of software a factory may produce is

defined when the factory is created.

Language Workbench is a term proposed by Martin Fowler to mean the IDE support for

development of domain-specific languages [21], [4]. There are many examples of such

IDEs, some of them specifically designed for development of textual languages (e.g.,

Xtext [95], Irony [51]), and some for development of graphical languages (e.g., VS Vis-

ualization & Modeling Tools [96], MetaEdit+ [22]).

Metamodeling Platform [10] is a term used to describe an environment specifically tar-

geting the development of graphical modeling languages and modeling methods using

a metamodeling approach – a layered approach (see OMG’s MOF [40]) where one

describes a modeling language, as well as a modeling method, by instantiating already

existing meta2model provided by the platform. Because of this approach, a platform

can provide support to the modeling language being developed through already exist-

ing features and functionality (e.g., algorithms and mechanism for model analysis and

simulation) [77].

How every of the mentioned concepts have influenced the MM-DSL development is

aggregated in Table I. All the software being used is either open-source (e.g., Xtext,

Eclipse IDE) or open-use (e.g., ADOxx) software.

8.4 Clarifying Design Decisions

The requirements for MM-DSL have been gathered using a top-down and bottom-up

approach. In top-down approach several modeling methods have been analyzed. The

inspected modeling methods are compiled in [97]. Structural complexity of the analyzed

modeling methods can be seen in Figure 19. These are the same methods that have

been used to define the key functional requirements of a metamodeling platform. This

time, the purpose was to determine the most commonly used concepts and to establish

their appropriate abstractions (e.g., “class” is an appropriate abstraction for concept

“actor”, “relation” is an appropriate abstraction of the concept “uses”, etc.).

The bottom-up approach gave insight on how are metamodeling technologies applied

for realization of modeling methods. Several meta2models have been carefully exam-

ined to determine their building blocks. Abstractions of concepts extracted with top-

down approach have been matched with meta2model concepts. In this process the

backbone for abstract and concrete syntax of the MM-DSL has been formed, as well as

mechanisms that allow compilation to different metamodeling technologies. The MM-

DSL abstract syntax is conforming to the already established modeling method generic

framework [10]. The chosen concrete syntax (e.g., language keywords) was adopted

from the modeling community our research group belongs to (see the ADOxx me-

ta2model depicted in Figure 26).

The similarity between meta2models is what MM-DSL translators (e.g., compilers) take

advantage of. By leveraging this property new compilers do not need to be implement-

8 MM-DSL 101

ed from scratch, but configured from the same template. Figure 26 shows similarities

between meta2models. The concept of an “attribute” is highlighted with a rectangle, the

concept of a “class” with an ellipsis, and the concept of a “model type” with a round-

rectangle. These highlighted concepts are all singletons (consist only of one element).

However, there exist concepts that are represented with multiple elements, such as

“relation”. Relation in ADOxx is represented through Relation Class and its two End

Points. In GOPPRR it is represented with elements: Relationship, Binding and Connection.

In Ecore and GME relation is a single element: EReference, respectively Reference. From

this observation, it is clear that most of the concepts described with different me-

ta2models are semantically identical (or at least very similar).

Figure 26: Meta2model Comparison (adapted from [81])

Additionally, the overall design of the language was driven by the idea of minimizing

lines of code, in other words: to reduce the programming effort and raise productivity.

This is the reason it has been decided to introduce concepts such as inheritance

(transmission of characteristics from parent object to child object) and referencing (re-

using previously defined objects by passing their identifier to other objects). How these

concepts work in practice is demonstrated in the chapter dedicated to the utilization of

MM-DSL in the modeling tool development. For the complete overview of the support-

ed MM-DSL concepts, including the formal language’s syntax, semantics and usage

examples, see the chapter dedicated to the specification of the language.

8 MM-DSL 102

8.5 Language Design Best Practices and Guidelines

Before the actual language design phase it helps to be familiar with the typical desira-

ble and undesirable language features. By default, learning to program is difficult and

takes a lot of time and effort. Designers need to avoid the common undesirable fea-

tures that make the learning and using of the language harder than it should be. Sub-

stantial part of this difficulty arises from the structure, syntax and semantics of a lan-

guage.

Language designers are highly intelligent experts in the field of programming, and are

consequently far removed both temporally and cognitively from the difficulties experi-

enced by the novice programmers. In our case these would be domain experts, which

are typically not familiar with programming techniques. This mostly results in languages

which are either too restrictive or too powerful (or sometimes, paradoxically, both) [98].

To avoid falling into a trap of designing a language only highly trained experts are able

to use efficiently, a collection of desirable language features, as well as undesirable

ones, which should be avoided if possible, has been established. The features com-

piled in here can be applied on any computer language.

8.5.1 Desirable Language Features

Taken from the experience of lecturers teaching various programming languages to

students, there are generally good language features that make the language easier to

learn. According to [98] most notable ones are:

- User expectation conformity. Languages should be designed so that rea-

sonable assumptions based on prior non-programing-based knowledge (e.g.,

domain expert knowledge) remain reasonable assumptions in the programming

domain, meaning that the constructs of a language should not violate user ex-

pectations.

- Readable and consistent syntax. By choosing the constructs with which

the recipient is already familiar (e.g. if rather than cond, head/tail rather than

car/cdr) syntactic noise can be minimized; on one hand, reducing syntactic

noise might involve minimizing the overall syntax; alternatively, it may be better

to increase the complexity of the syntax in order to reduce homonyms which

blur the signal.

- Small and orthogonal set of features. A small non-overlapping set of lan-

guage features with distinct and mnemonic syntactic representations and with

semantics which mirror as closely as possible the real-world concepts; features

that are not necessary should not be included in the language.

- Error diagnosis. Without good error detection and debugging support users

can spent hours studying the code (which is fairly difficult for novice program-

mers) trying to decipher why isn’t the program doing what it is intended; on the

8 MM-DSL 103

other hand, error messages should be meaningful and without unnecessary

technical jargon.

Generally, a language designer should follow commons sense and try to put himself in

the skin of a novice language user – not an easy task to do for an expert. It also helps if

the designer is knowledgeable in the domain for which the language is being devel-

oped, because of the greater awareness of the real-world concepts that need to be

included into the language and the ways these concepts are expressed. A priori

knowledge of the application domain can save the time needed to make a thorough

domain analysis, which is a time consuming and complicated task.

8.5.2 Undesirables Language Features

Every language designer starts with good intentions, but during the design process one

needs to take care and keep in mind which features make the language harder to learn

and use. Some of the most undesirable features from the language user’s perspective,

according to [98], are:

- Paradigmatic purity. Strict adherence to a single functional, logical or object

oriented paradigm can make for a certain conceptual simplicity and elegance,

but in practice it can also lead to extremely obscure and unreadable code; in

some cases, relatively simple programs must be substantially restructured to

achieve even basic effects such as input and output.

- Language bloat. Extreme complexity and a huge palette of features might

seem as a good idea at first, but they come together with a substantial cost:

steeper learning curve, higher level of confusion, difficulties of adequate error

detection, very complex syntax and semantics.

- Syntactic synonyms. Two or more syntaxes are available to specify a single

construct; common example is dynamic array access in C, where the second

element of an array may be accessed by any of the following syntaxes, some of

which are legal only in certain contexts: array[1], *(array+1), 1[array], *++array; in

Prolog [1, 2, 3] is equivalent to .(1, .(2, .(3, []))).

- Syntactic homonyms. Constructs which are syntactically the same, but

which have two or more different semantics depending on the context are per-

haps a more serious flaw in a language then syntactic synonyms; an extreme

example may be seen in Turing, in which the construct A(B) has five distinct

meanings, but not as extreme as LISP and its variants, which can be viewed as

one massive homonym.

- Hardware dependency. There seems to be no convincing reason why the

user, already struggling to master syntax and semantics of various constructs,

should also be forced to deal with details of representational precision, varying

8 MM-DSL 104

machine word sizes, or awkward memory models; the data types are particular-

ly problematic in C as they are generally not portable, for example, the standard

int type varies from 16-bit to 32-bit representations depending on the machine

and the implementation; this can lead to strange and unexpected errors when

overflow occurs.

- Backward compatibility. This property is surely useful from the experienced

programmer’s point of view, as it promotes reuse of both code and program-

ming skills, but one needs to be careful, because it constraints the design of a

new language; even the father of C++ B. Stroustrup [99] acknowledged this

problem [100]: “Over the years, C++’s greatest strength and its greatest weakness has

been its C compatibility. This came as no surprise.”

Avoiding these undesirable features will produce a language with a cleaner syntax and

semantics, more readable code, and that is easier to maintain, as opposed to lan-

guages that incorporate some or all of the mentioned characteristics. In the long run

some of these features are very hard to avoid, especially if there was no plan for lan-

guage evolution in the design phase. Taking a systematic approach and considering

future needs of language users plays a significant role in the further development of a

language.

The importance of the continuous language development (language evolution) has

already been discussed as a part of the introduction in this research project (see sec-

tion 1.1.). The most important part that is directly connected with the design process of

the MM-DSL is summed in the following couple of sentences.

While creating MM-DSL, one should consider the following: (1) the future development

of metamodeling platforms, and (2) the possible changes in the application domain,

which can come from various sources: new founding in the academia or industry, and

insights during the language utilization.

To be able to cope with the upcoming issues, MM-DSL should be able to evolve

through modifications, particularly through extension. However, one always needs to

keep in mind that usability and expressiveness must not be lowered with introduction of

new concepts into a language. It is very important to keep the equilibrium between the

following three key properties of a language: usability, expressiveness, and extensibil-

ity.

By using the mentioned best practices, including the desired language features and

considering future language evolution, the MM-DSL formal specification has been cre-

ated.

9 MM-DSL Specification 105

9 MM-DSL Specification

This chapter describes the MM-DSL language in detail through its syntax, semantics

and examples. MM-DSL is specified using EBNF, which is presented in text form, as

well as in a form of syntax (railroad) diagrams.

The specification is separated in four parts. Each part is dedicated to a group of lan-

guage statements. These are: (1) global statements, (2) structure statements, (3) visu-

alization statements, and (4) operations statements.

Global statements are used to specify the name of a modeling method, embed and

cross-reference embedded code throughout the entire program. Some of the state-

ments belonging to this group are pervasive and can be used in other parts of MM-DSL

as well (e.g., insert statement).

Structure statements are used to define typical structures of a modeling method, such

as classes, relations, attributes and model types, which are also the names of most

important statements that belong to this group of statements.

Visualization statements are used to define graphical notation of modeling elements

predefined with structure statements, mainly classes and relations. The main state-

ments, also called the symbol statements, may contain multiple SVG-like sub-

statements. These statements define graphical objects such as rectangles, circle, poly-

gons, and others.

Operations statements are used to define algorithms that can be applied on modeling

method artifacts, as well as generic algorithms a modeling editor should poses. Opera-

tions statements group also includes the statements responsible for triggering various

actions when an event occurs (event statements).

9.1 How to read the Grammar

Throughout the whole specification the MM-DSL grammar is presented utilizing the

same formatting rules and guidelines. First the formal syntax is given using the EBNF

and syntax diagrams. Afterwards, the semantics are described. Each grammar part

finishes with a representative utilization example.

The grammar is given in form of production rules:

rule ::= expression

Within the expression on the right-hand side of a rule, the following meta-symbols are

used: (), ?, |, + and *. See Table II for description. Table III illustrates the use of these

symbols.

9 MM-DSL Specification 106

Table II: EBNF Meta-Symbols

Symbol Name Description

() group Used to group expressions which belong together.

? optional Represents an option, which means that expression may be

taken or not.

| or Means that either the expression before the vertical bar or the

expression after the vertical bar may be taken.

+ one or

more

Means that the expression can appear one or more times in a

row

* zero or

more

Means that the expression may appear several times in a row,

but it does not need to appear at all.

Table III: EBNF Meta-Symbols Application

Example Produced the following words

x? (empty), x

x | y x, y

x+ x, xx, xxx, xxxx, …

x* (empty), x, xx, xxx, xxxx, …

(x | y) z xz, yz

(x | y)? z z, xz, yz

(x | y)+ z xz, yz, xxz, yyz, xyz, yxz, …

(x | y)* z z, xz, yz, xxz, yyz, xyz, yxz, …

Every terminal (keyword which has to be taken literally) is surrounded by single quotes,

e.g., ‘method’. MM-DSL is case sensitive, which means that the keywords (terminals)

have to be written as it is specified in the rules.

MM-DSL uses cross-referencing by identifier. In the grammar rules an identifier can be

recognized as a non-terminal symbol name (if it is not explicitly mentioned that some-

thing else is an identifier). Cross-references are represented in the following form:

name-rule

where rule is the name of a production rule. In the following example name-x is the ref-

erence of x:

x ::= ‘keyword’ name

y ::= ‘otherkeyword’ name-x

9 MM-DSL Specification 107

9.2 Global Statements

9.2.1 Root Statement

Syntax

root

root ::=

 methodname

 (includelibrarytype | embedplatformtype | embedcodetype)*

 includelibrary* embedcode* method

Semantics

A MM-DSL program starts with a method name, followed by multiple occurrences of

include or embed statements, which are also optional. This is called the program head-

er. Program body is defined inside the method block, which is a mandatory part of eve-

ry MM-DSL program.

Example

There are no concrete examples for this statement, because it shows the general struc-

ture of a MM-DSL program and does not contain any terminal elements.

9.2.2 Method Name

Syntax

methodname

methodname ::=

 'method' name

9 MM-DSL Specification 108

Semantics

Every modeling method specified by a MM-DSL program has a name which is also a

valid identifier. There can only be one method name statement per MM-DSL program.

Example

// CarParkModeling is the method name (identifier)
method CarParkModeling

9.2.3 Include

Syntax

includelibrary

includelibrarytype

includelibrary ::=

 'include' '<' name (':' name-includelybrarytype)? '>'

includelibrarytype ::=

 'def' 'IncludeLibraryType' name

Semantics

Include statement includes foreign program code defined in an external library file. Be-

fore using the include statement, the library type needs to be defined using the include

library type statements which starts with a keyword def followed by IncludeLibraryType

and a name (identifier). Include statements starts with the keyword include followed by

a name and a library type, which are both located inside the angled brackets (<, >).

Example

// ADOxx is the included library type
// MyMetaModel is the name of the library
def IncludeLibraryType ADOxx
include <MyMetaModel:ADOxx>

9 MM-DSL Specification 109

9.2.4 Embed

Syntax

embedcode

embedplatformtype

embedcodetype

embedcode ::=

 'embed' name '<' name-embedplatformtype (':' name-embedcodetype)? '>'

 '{' embeddedcodegoeshere '}'

embedplatformtype ::=

 'def' 'EmbedPlatformType' name

embedcodetype ::=

 'def' 'EmbedCodeType' name

Semantics

Embed code statements always start with the keyword embed followed by an identifier

called name. The identifier is important because it is a means to reference the code

included between start and end tags (curly brackets: {, }) anywhere inside a program

where insert statement may be used. Between the angled brackets (<, >) one can

specify from which source does the code come from, and optionally, the type of code

as an additional identifier. This structured information can be used by a translator to

correctly include the embedded code into a compiled file.

Embedded code type and platform type must be defined prior they can be referenced

in embed code statements. Same as embed code statements, these are also identified

by their name.

Example

// def defines the platform type - ADOxx
// and code type - ADOscript
def EmbedPlatformType ADOxx
def EmbedCodeType ADOscript

// ADOitem holds the string between start and end tags
embed ADOitem <ADOxx:ADOscript>

9 MM-DSL Specification 110

{
 "ITEM \"MyAlg\" modeling:\"MyMenu\""
}

// AdoScript command for creating an menu item
embed URIImportItem <ADOxx:AdoScript> {
"ITEM \\\"URI import\\\" modeling:\\\"~AdoScripts\\\" pos2:1"
}

// optional extension for displaying object names
embed ShowNameGraph <ADOxx:Notebook> {
"ATTR \\\"Name\\\" x:0pt y:9pt w:c"
}

9.2.5 Insert

Syntax

insertembedcode

insertembedcode ::=

 'insert' name-embedcode

Semantics

Insert statement is used as a sub-statement in several other statements. It references

the embed code statement by its defined name and during the translation of a program

inserts the code found between start and end tags (or between curly brackets {, }) in the

exact place where insert statement was used.

Example

def EmbedPlatformType ADOxx
def EmbedCodeType ADOscript

// code to be embedded
embed ADOitem <ADOxx:ADOscript>
{
 "ITEM \"MyAlg\" modeling:\"MyMenu\""
}

algorithm MyAlgorithm {
 // inserting ADOscript code inside the definition of an algorithm
 insert ADOitem

 // alternatively we can use the native MM-DSL code
 ui.item.menu.insert MyAlg to MyMenu
}

9 MM-DSL Specification 111

9.2.6 Method

Syntax

method

method ::=

 enumeration* symbolstyle* symbolclass* symbolrelation* metamodel

 algorithm* event*

Semantics

Method statement is composed of code blocks that define enumerations, visualization

(e.g., graphical symbols), structure (metamodel), and operations (algorithms and

events). Only the metamodel part is the mandatory part of every method statement.

The order of the code blocks needs to be respected. Enumerations need to be defined

first, followed by symbol styles, then graphical symbols for classes and relations, then

metamodel, and at the end algorithms and events. The order is important, because

enumerations need to be defined before they can be used as data types in metamodel

statements. Styles need to be defined if we want to reference them in symbol state-

ments. Graphical symbols need to be defined if we want to reference them in meta-

model statements. Algorithms need objects defined within metamodel statements, and

events reference algorithms in order to trigger them.

Example

There are no concrete examples for this statement. It shows the general structure of a

part of the MM-DSL program that holds the definition of a modeling method.

9.2.7 Enumeration

Syntax

enumeration

9 MM-DSL Specification 112

enumeration ::=

 'enum' name '{' enumvalues+ '}'

Semantics

Enumeration is an ordered collection of strings, which can be of arbitrary length. Even

numeric values need to be defined as strings (invalid: {1, 2, 3}, valid: {“1”, “2,”, “3,”}).

Valid enumeration holds at least one element. Every enumeration is identified through

its name, which is used to reference them by other statements. The default value is

always set on the first element of an enumeration. For example, if we query for the de-

fault value of an enumeration with the following elements {“blue”, “red”, “yellow”}, “blue”

will be the answer.

Enumerations are currently the only supported user defined data type in MM-DSL.

Example

// simple enumerations
enum EnumParkType { "car" "truck" "motorcycle" "bicycle" }
enum EnumPayment { "ticket machine" "mobile phone" "cash" }
enum EnumNumbers { "1" "2" "3" }
enum EnumCO2Emmision {"low" "medium" "high"}

// using enumeration in a class
class Car extends Vehicle symbol CarGraph {
 attribute co2emmision:enum EnumCO2Emmision
}

9.3 Structure Statements

9.3.1 Metamodel

Syntax

metamodel

metamodel ::=

 class+ relation* attribute* modeltype+

9 MM-DSL Specification 113

Semantics

The metamodel statement is composed of several code blocks: class, relation, attrib-

ute, and model type. Each of these code blocks is described by the appropriate state-

ments. For example, class code block can only contain class statements and its sub-

statements. The same is true for relation, attribute and model type blocks. However,

insert statement from the global statements group can be used as well.

The only mandatory parts of a metamodel statement are the class statements and the

model type statements. There can only be one metamodel statement per modeling

method.

Example

There are no concrete examples for this statement. It shows the general structure of a

part of a MM-DSL program that holds the definition of a modeling method structure

(metamodel).

9.3.2 Class

Syntax

class

class ::=

 'class' name ('extends' name-class)? ('symbol' symbolclass)?

 '{' (classattribute | attribute | reference | insertembedcode)* '}'

Semantics

Class statement describes the class concept, which is a container that can hold attrib-

utes, can be related to other classes or self-related, can be inherited, and can be rep-

resented graphically through related symbol statements. It starts with the keyword class,

followed by an identifier (name). Optionally, a class can be extended from another class

by using the keyword extends followed by a reference to another class (name). Every

9 MM-DSL Specification 114

class can be associated with a symbol by using the keyword symbol and a reference to

a class symbol statement. Extended class only inherits properties found between curly

brackets ({, }). Symbol is not inherited. Class statement allows the following sub-

statements: (class) attribute statements, reference statements and insert statements.

Example

class Vehicle {
 attribute color:string access:write
 attribute lenght:int access:write
 attribute width:int access:write
 attribute height:int access:write
 attribute weight:int access:write
}

// extends Vehicle class and has a symbol CarGraph
class Car extends Vehicle symbol CarGraph {
 attribute doors:int access:write
 attribute co2emmision:enum EnumCO2Emmision

}

9.3.3 Relation

Syntax

relation

relation ::=

 'relation' name ('extends' name-relation)? ('symbol' name-symbolrelation)?

 'from' name-class 'to' name-class '{' (attribute | insertembedcode)* '}'

Semantics

Relation statement describes a concept of a relationship. Relation can be observed as

a special class that can contain attributes only. A relation statement starts with a key-

word relation followed by an identifier (name). Optionally, it can extend another relation,

and can be associated with one relation symbol. Relation statement must define two

end points: from and to. From, respectively, to are followed by a class identifier (name).

Insert sub-statement may also be used. Extended relation inherits only properties be-

tween curly brackets ({, }). Symbol and end points are not inherited.

9 MM-DSL Specification 115

Example

// this relations has a symbol IsParkedGraph
// it is going from class Vehicle to class Park
relation isParked symbol IsParkedGraph from Vehicle to Park {}

// this relation has a default symbol (plain black line)
// it contains attributes
relation belongsTo from Park to City {
 attribute description:string
 attribute notes:string
}

// extending belongsTo relation with additional attributes
// embedding code by using insert statement
relation belongsToDetailed extends belongsTo from Park to City {
 attribute details:string
 attribute usage:string
 insert SomeEmbeddedCode
}

9.3.4 Attribute

Syntax

attribute

type

simpletype

enumtype

accesstype

9 MM-DSL Specification 116

attribute ::=

 'attribute' name ':' type ('access' ':' acesstype)?

type ::=

 simpletype | enumtype

simpletype ::=

 'string' | 'int' | 'double'

enumtype ::=

 'enum' name-enumeration

accesstype ::=

 'write' | 'read' | 'internal'

Semantics

Attribute statement describes a concept of an attribute, which is a property associated

with an object. Attribute is identified by its name, and it must have a data type (indicated

by type sub-statement). A data type can be either a simple type or an enumeration

type. Supported simple types are string, integer and double. Enumeration type begins

with a keyword enum followed by an enumeration identifier. Only attributes can have

data types assigned.

Optionally, an access type can be assigned to the attribute definition: write, read, or

internal. Write indicates that a user of a modeling tool can edit the value of an attribute.

Read indicates that the value is read-only. Internal indicates that the attribute will not

be visible and directly modifiable by the user; only attributes and events can modify its

value. Internal attributes are typically used to store intermediate results of algorithms.

Default access type is set to write.

Example

// we use a class as a container for attributes
class ShowAttrDef {
 // basic attribute definitions
 // if access is not specified, it defaults to write
 attribute attr1:int
 attribute attr2:string
 attribute attr3:double
 attribute attr4: enum Colors

 // extended attribute definitions
 attribute attr5:int access:internal
 attribute attr6:string access:read
 attribute attr7:string access:write
}

9 MM-DSL Specification 117

9.3.5 Reference

Syntax

reference

reference ::=

 'reference' name '->' name-modeltype name-class?

Semantics

Reference statement defines the internal association between two types of object:

classes and model types. Semantically, it means that an object containing the refer-

ence is associated with the object being referred to.

Currently only classes may contain the reference sub-statement. Statement starts with

the keyword reference followed by an identifier (name). The symbol -> means “refers to”.

After it a name (identifier) of a model type needs to be given, and optionally a class

name contained inside the given model type. If only a model type name is given, the

class will reference that model type. In case a class name that belongs to the refer-

enced model type is given as well, the class containing the reference will directly refer-

ence that class.

Example

class City {
 // the city can be associated with multiple car parks
 // the reference identifier is carParksInCity
 reference carParksInCity -> modeltype CarPark
 attribute latitude:int
 attribute longitude:int
}

// referenced model type containing several classes, relation and 2 modes
modeltype CarPark {
 classes Car Truck Motorcycle Bicycle ParkingLot ParkingGarage
 relations isParked
 modes
 // show multiple vehicles that can be parked
 mode ShowMultiple include
 classes Car Truck Motorcycle Bicycle ParkingLot ParkingGarage
 relations isParked
 // show only cars (and car parks)
 mode OnlyCars include
 classes Car ParkingLot ParkingGarage
 relations isParked
}

9 MM-DSL Specification 118

9.3.6 Model Type

Syntax

modeltype

mode

modeltype ::=

 'modeltype' name '{' 'classes' name-class+

 'relations' ('none' | name-relation+) 'modes' ('none' | name-mode+) '}'

mode ::=

 'mode' name 'include' 'classes' name-class+

 'relations' ('none' | name-relation+)

Semantics

Model type statement defines an aggregator of predefined objects (classes and rela-

tions). Model type as a concept is a blueprint of a modeling diagram. The statement

starts with a keyword modeltype followed by an identifier (name).

Between the curly brackets ({, }) there are three sections. First one (starts with a key-

word classes) references classes, the second one (starts with a keyword relations) refer-

ences relations, and the third one (starts with a keyword modes) defines modes.

Modes are different views of a model type and can contain a subset of already refer-

enced classes and relations. A model type contains a default mode if no modes are

defined (if a mode keyword is followed by keyword none).

Example

// the simplest model type contains only one class
modeltype ModelTypeA
{
 classes Abc
 relations none

9 MM-DSL Specification 119

 modes none
}

// simple model type without modes
modeltype ParkingMap {
 classes City ParkingArea Car Truck Motorcycle Bicycle
 relations acceptsVehiclesOfType contains
 modes none
}

// a model type containing several classes, relation and 2 modes
modeltype CarPark {
 classes Car Truck Motorcycle Bicycle ParkingLot ParkingGarage
 relations isParked
 modes
 // show multiple vehicles that can be parked
 mode ShowMultiple include
 classes Car Truck Motorcycle Bicycle ParkingLot ParkingGarage
 relations isParked
 // show only cars (and car parks)
 mode OnlyCars include
 classes Car ParkingLot ParkingGarage
 relations isParked
}

9.4 Visualization Statements

9.4.1 Class Symbol

Syntax

symbolclass

symbolclass ::=

 'classgraph' name ('style' name-symbolstyle)?

 '{' (svgcommand | insertembedcode)* '}'

Semantics

Class symbol statement defines class-specific graphical symbols. It starts with the

keyword classgraph followed by an identifier (name). Optionally, the class symbol state-

ment can reference a style. Between the curly brackets ({, }) one can use SVG com-

mand sub-statements, as well as insert statements.

9 MM-DSL Specification 120

Example

// optional extension for displaying object names
// only use if you defining graphs yourself
embed ShowNameGraph <ADOxx:Notebook> {
"ATTR \\\"Name\\\" x:0pt y:9pt w:c"
}

// simple class symbol with a global style Green and an insert statement
classgraph BicylceGraph style Green {
 circle cx=-5 cy=0 r=10
 circle cx=5 cy=0 r=10
 insert ShowNameGraph
}

// more complex class symbol
// each SVG command has a style assigned
classgraph ParkingLotGraph {
 rectangle x=-20 y=-20 w=40 h=40
 style Orange {fill:orange stroke:black stroke-width:1}
 polygon points=-20,20 0,20 -20,0
 style Red {fill:red stroke:black stroke-width:1}
 polygon points=0,-20 20,-20 20,0
 style Red {fill:red stroke:black stroke-width:1}
 // text uses default style
 text "L" x=-2 y=-2
}

9.4.2 Relation Symbol

Syntax

symbolrelation

symbolrelation ::=

 'relationgraph' name ('style' name-symbolstyle)?

 '{' 'from' (svgcommand | insertembedcode)* 'middle'

 (svgcommand | insertembedcode)* 'to' (svgcommand | insertembedcode)* '}'

Semantics

Relation symbol statement defines relation-specific graphical symbols. It starts with the

keyword relationgraph followed by an identifier (name). Optionally, the relation symbol

9 MM-DSL Specification 121

statement can reference a predefined style. Between the curly brackets ({, }) one can

use SVG command sub-statements, as well as insert statements. However, there is a

difference between relation symbol and class symbol statements. Relation symbol

statement contains three sets of SVG commands. Every set starts with a keyword:

from, middle, or to. From part defines the graphical representation connected with the

starting point of a relation. Middle part defines, as the name indicates, the graphical

representation of a middle part (the line). To part defines the graphical representation

connected with the end point of a relation. Every part can use all the available SVG

command statements.

Example

// simple relation symbol which uses the global style Black
relationgraph IsParkedGraph style Black {
 // from part of a symbol
 from
 rectangle x=-2 y=-2 w=4 h=4
 // middle or line part of a symbol
 middle
 text "is parked in" x=0 y=0
 // to part of a symbol
 to
 polygon points=-2,2 2,0 -2,-2
}

9.4.3 SVG Command

Syntax

svgcommand

svgcommand ::=

 (rectangle | circle | ellipse | line | polyline | polygon | path | text)

 symbolstyle

9 MM-DSL Specification 122

Semantics

SVG command statement is a collection of all the available graphical object state-

ments, such as rectangle, circle, line, polygon, text, etc. Every SVG command starts

with one of the graphical object statements and, optionally, is followed by a style sub-

statement. All graphical object statements use points (1 pt ≈ 0.3527 mm) as a meas-

urement value.

Example

There is no concrete example for this statement. It shows the general structure of every

SVG command statement and contains no terminals. SVG command statements can

only be used inside the class and relation symbol statement.

9.4.4 Rectangle

Syntax

rectangle

rectangle ::=

 'rectangle' 'x' '=' REALNUMBER 'y' '=' REALNUMBER

 'w' '=' NUMBER 'h' '=' NUMBER

Semantics

Rectangle statement defines a rectangle with the given parameters. It starts with the

keyword rectangle followed by parameters: x, y, w, and h. X and y stand for coordinates

of the top-left corner of a rectangle. W stands for width, and h stands for height.

Example

classgraph RectangleGraph style Blue {

 // simple rectangle statement using the global style Blue
 rectangle x=-10 y=-10 w=20 h=20

 // simple rectangle statement using the local style Orange
 rectangle x=-20 y=-20 w=40 h=40
 style Orange {fill:orange stroke:black stroke-width:1}
}

9 MM-DSL Specification 123

9.4.5 Circle

Syntax

circle

circle ::=

 'circle' 'cx' '=' REALNUMBER 'cy' '=' REALNUMBER 'r' '=' NUMBER

Semantics

Circle statement defines a circle with the given parameters. It starts with the keyword

circle followed by parameters: cx, cy, and r. Cx and cy are the coordinates of a center

point, and r is the radius of a circle.

Example

classgraph CircleGraph style Blue {

 // simple circle statements using the global style Blue
 circle cx=0 cy=0 r=20
 circle cx=-5 cy=0 r=10
 circle cx=5 cy=0 r=10
}

9.4.6 Ellipse

Syntax

ellipse

ellipse ::=

 'ellipse' 'cx' '=' REALNUMBER 'cy' '=' REALNUMBER

 'rx' '=' REALNUMBER 'ry' '=' REALNUMBER

Semantics

Ellipse statement defines an ellipse with the given parameters. It starts with the key-

word ellipse followed by parameters: cx, cy, rx, and ry. Cx and cy are the coordinate of a

center point, rx and ry are distances from the two fixed points. Sum of rx and ry is equal

to the major ellipse axis’s length.

9 MM-DSL Specification 124

Example

classgraph EllipseGraph style Blue {

 // simple ellipse statement using the global style Blue
 ellipse cx=0 cy=0 rx=20 ry=30
}

9.4.7 Line

Syntax

line

line ::=

 'line' 'x1' '=' REALNUMBER 'y1' '=' REALNUMBER

 'x2' '=' REALNUMBER 'y2' '=' REALNUMBER

Semantics

Line statement defines a straight line. It starts with the keyword line followed by param-

eters: x1, y1, x2, y2. X1 and y1 are the coordinated of a starting point. X2 and y2 are the

coordinates of an end point.

Example

classgraph LineGraph style Blue {

 // simple line statement using the global style Blue
 line x1=0 y1=0 x2=20 y2=10
}

9.4.8 Polyline

Syntax

polyline

points

9 MM-DSL Specification 125

polyline ::=

 'polyline' 'points' '=' points+

points ::=

 x ',' y

Semantics

Polyline statement defines a set of connected straight lines. It starts with the keyword

polyline followed by the keyword points and collections of parameter sets. Each parame-

ter set is in the following form: “x, y”. Parameter sets are divided by an empty space (it

can be more than one empty space in between, even a new line), e.g., 12, 3 4, 12 15,

20.

Example

classgraph PolylineGraph style Blue {

 // simple polyline statement using the global style Blue
 polyline points=0,0 30,30 20,30 30,20

 // simple polyline statement, parameters separated by a new line
 polyline points=
 0,0
 30,30
 20,30
 30,20
}

9.4.9 Polygon

Syntax

polygon

points

polygon ::=

 'polygon' 'points' '=' points+

points ::=

 x ',' y

9 MM-DSL Specification 126

Semantics

Polygon statement defines a graphical object that is bounded by a finite chain of

straight line segments. It starts with the keyword polygon, followed by the keyword

points and a collection of parameter sets. The format of parameter sets is the same as

for polyline statement: x1, y1 x2, y2 x3, y3 …

Example

classgraph PolygonGraph style Blue {

 // simple polygon statement using the global style Blue
 polygon points=0,-20 20,-20 20,0

 // simple polygon statement, parameters separated by a new line
 polygon points=
 0,-20
 20,-20
 20,0
}

// simple relation symbol which uses the global style Black
relationgraph IsParkedGraph style Black {
 // from part of a symbol
 from
 rectangle x=-2 y=-2 w=4 h=4
 // middle or line part of a symbol
 middle
 text "is parked in" x=0 y=0
 // to part of a symbol
 to
 // polygon definition inside the to part of a relation symbol statement
 polygon points=-2,2 2,0 -2,-2
}

9.4.10 Text

Syntax

text

fontfamily

9 MM-DSL Specification 127

fontsize

text ::=

 'text' value 'x' '=' REALNUMBER 'y' '=' REALNUMBER

 ('font-family' '=' fontfamily)? ('font-size' '=' fontsize)?

 ('fill' '=' fillcolor)?

fontfamily ::=

 STRING | font

fontsize ::=

 NUMBER

Semantics

Text statement defines the chain of characters that can be represented as a graphical

object. It starts with the keyword text, followed by a string of characters inside quotation

marks (“this is a text”). X and y parameters indicate the position of the first character.

Optionally, text statement can include the definition of a font family (keyword font-

family), font size (keyword font-size) and character color (keyword fill). MM-DSL con-

tains a predefined collection of font families (e.g., Georgia, Arial, etc.) and standard set

of HTML colors (e.g., aliceblue in the example).

Example

classgraph TextGraph style Blue {

 // simple text statement using the global style Blue
 // it also uses optional arguments for font-family, font-size and fill
 text "This is a text" x=0 y=0
 font-family=Georgia font-size=12 fill=aliceblue
}

9.4.11 Path

Syntax

path

9 MM-DSL Specification 128

pathdata

moveto

lineto

horizontallineto

verticallineto

curveto

9 MM-DSL Specification 129

smoothcurveto

quadraticbeziercurveto

smoothquadraticbeziercurveto

ellipticalarc

closepath

pathparametersMLT

pathparametersHV

pathparametersS

pathparametersQ

pathparametersC

9 MM-DSL Specification 130

pathparametersA

path ::=

 'path' 'd' '=' pathdata+

pathdata ::=

 moveto | lineto | horizontallineto | verticallineto | curveto |

 smoothcurveto | quadraticbeziercurve | smoothquadraticbetiercurveto |

 ellipticalarc | closepath

moveto ::=

 ('M' | 'm') pathparametersMLT+

lineto ::=

 ('L' | 'l') pathparametersMLT+

horizontallineto ::=

 ('H' | 'h') pathparametersHV+

verticallineto ::=

 ('V'| 'v') pathparametersHV+

curveto ::=

 ('C' | 'c') PathParametersC+

smoothcurveto ::=

 ('S' | 's') pathparametersS+

quadraticbeziercurveto ::=

 ('Q' | 'q') pathparametersQ+

smoothquadraticbeziercurveto ::=

 ('T' | 't') pathparametersMLT+

ellipticalarc ::=

 ('A' | 'a') pathparametersA+

closepath ::=

 ('Z' | 'z')

pathparametersHV ::=

 x

pathparametersMLT ::=

 x ',' y

pathparametersS ::=

 x2 y2 x y

pathparametersQ ::=

 x1 y1 x y

pathparametersC ::=

 x1 y1 x2 y2 x y

pathparametersA ::=

 rx ',' ry xaxisrot largearcflag sweepflag x y

9 MM-DSL Specification 131

Semantics

Path statement is used to define a path, and it is one of the most complex SVG com-

mand statements. It starts with the keyword path, followed by the letter d (which stands

for data or path data). There are several commands available for path data. Each of

them has its own set of parameters. The commands are expressed as letters followed

by various parameter sets. Capital letters mean absolutely positioned, and lower case

letters mean relatively positioned. See Table IV for all the available command and their

description.

Table IV: SVG Path Statement Commands (adapted from [101])

Com. Param. Name Description

M x,y moveto Move pen to specified point x,y without

drawing.

m x,y moveto Move pen to specified point x,y relative to

current pen location, without drawing.

L x,y lineto Draws a line from current pen location to

specified point x,y .

l x,y lineto Draws a line from current pen location to

specified point x,y relative to current pen

location.

H x horizontal lineto Draws a horizontal line to the point defined

by (specified x, pens current y).

h x horizontal lineto Draws a horizontal line to the point defined

by

(pens current x + specified x, pens current

y). The x is relative to the current pens x

position.

V y vertical lineto Draws a vertical line to the point defined by

(pens current x, specified y).

v y vertical lineto Draws a vertical line to the point defined by

(pens current x, pens current y + specified

y). The y is relative to the pens current y-

position.

C x1,y1 x2,y2

x,y

curveto Draws a cubic Bezier curve from current

pen point to x,y. x1,y1 and x2,y2 are start

and end control points of the curve, control-

9 MM-DSL Specification 132

ling how it bends.

c x1,y1 x2,y2,

x,y

curveto Same as C, but interprets coordinates rela-

tive to current pen point.

S x2,y2 x,y smooth curveto Draws a cubic Bezier curve from current

pen point to x,y. x2,y2 is the end control

point. The start control point is is assumed

to be the same as the end control point of

the previous curve.

s x2,y2 x,y smooth curveto Same as S, but interprets coordinates rela-

tive to current pen point.

Q x1,y1 x,y quadratic Bezier

curveto

Draws a quadratic Bezier curve from cur-

rent pen point to x,y. x1,y1 is the control

point controlling how the curve bends.

q x1,y1 x,y quadratic Bezier

curveto

Same as Q, but interprets coordinates rela-

tive to current pen point.

T x,y smooth quadrat-

ic Bezier curveto

Draws a quadratic Bezier curve from cur-

rent pen point to x,y. The control point is

assumed to be the same as the last control

point used.

t x,y smooth quadrat-

ic Bezier curveto

Same as T, but interprets coordinates rela-

tive to current pen point.

A rx,ry xaxisrot

largearcflag

sweepflag x,y

elliptical arc Draws an elliptical arc from the current

point to the point x,y. rx and ry are the ellip-

tical radius in x and y direction. The x-

rotation determines how much the arc is to

be rotated around the x-axis. It only seems

to have an effect when rx and ry have dif-

ferent values.

The large-arc-flag doesn't seem to be used

(can be either 0 or 1). Neither value (0 or 1)

changes the arc.

The sweep-flag determines the direction to

draw the arc in.

a rx,ry xaxisrot

largearcflag

sweepflag x,y

elliptical arc Same as A, but interprets coordinates rela-

tive to current pen point.

Z - closepath Closes the path by drawing a line from cur-

rent point to first point.

9 MM-DSL Specification 133

z - closepath Closes the path by drawing a line from cur-

rent point to first point.

Example

classgraph PathGraph style Blue {

 // simple path statement using the global style Blue
 // it uses all the commands with absolute coordinates (capital letter)
 path d=
 M 10,10 // moveto
 L 10,20 20,30 // lineto
 H 40 // horizontal lineto
 V 0 // vertical lineto
 C 10 10 30 30 15 15 // curveto
 Q 10 10 0 0 // quadratic Bezier curveto
 T 20,0 0,20 // smooth qzadratic Bezier curveto
 A 0,0 45 10 10 50 50 // elliptic arc
 Z // closepath
}

9.4.12 Symbol Style

Syntax

symbolstyle

fillcolor

symbolstyle ::=

 'style' name '{' 'fill' ':' ('none' | fillcolor) 'stroke' ':' strokecolor

 'stroke-width' ':' strokewidth ('font-family' ':' fontfamily)?

 ('font-size' ':' fontsize)? '}'

fillcolor ::=

 color | HEXCOLOR

Semantics

Symbol style statement defines a graphical style the class and relation symbols can

use. The statement starts with the keyword style followed by an identifier (name). Be-

9 MM-DSL Specification 134

tween curly brackets ({, }) one can define parameters: fill, stroke, stroke-width, and op-

tionally font-family and font-size. Color used for fill parameter can be given as name

(e.g., blue, yellow, red, etc.) from a predefined set of colors, or as a hexadecimal code

(e.g., #ffff00, #7F7E00, …). If no style is assigned to any of the SVG commands, all

black style will be used as a default.

Example

// some of style definitions
style Blue {fill:blue stroke:black stroke-width:1}
style Green {fill:green stroke:black stroke-width:1}
style Black {fill:black stroke:black stroke-width:1}
style Orange {fill:orange stroke:black stroke-width:1}
style Red {fill:red stroke:black stroke-width:1}

// using style Blue in a class symbol statement
classgraph CarGraph style Blue {
 rectangle x=-10 y=-10 w=20 h=20
}

// each SVG command has a style assigned (local style)
classgraph ParkingLotGraph {

 rectangle x=-20 y=-20 w=40 h=40
 style Orange {fill:orange stroke:black stroke-width:1}

 polygon points=-20,20 0,20 -20,0
 style Red {fill:red stroke:black stroke-width:1}

 polygon points=0,-20 20,-20 20,0
 style Red {fill:red stroke:black stroke-width:1}

 // text uses default style (black)
 text "L" x=-2 y=-2
}

9.5 Operations Statements

9.5.1 Algorithm

Syntax

algorithm

9 MM-DSL Specification 135

statement

algorithm ::=

 'algorithm' name '{' (statement)* '}'

Semantics

Algorithm statement defines an algorithm that can be executed inside a modeling tool.

It starts with a keyword algorithm, followed by an identifier (name). Algorithms consist of

algorithm statements: selection, loop, variable, and operation statements. All of the

statements, except operation statements are the typical program flow statements.

Selection statements define which of the code blocks will be picked for execution. Loop

statements loop through code until a condition has been fulfilled. Variable statements

are used to declare and initialize variables.

Operation statements are specific to the development of modeling tools and its struc-

ture is different that the rest of the algorithm sub-statements.

By using the insert keyword one can also include foreign code found inside the embed

statements to the algorithm statement.

Example

// inserting ADOscript code inside the definition of an algorithm
algorithm MyAlgorithm {
 // ADOitem is defined with embed statement before this code
 insert ADOitem

 // creating a simple infobox
 ui.infobox title "MM-DSL Info-Box" text "Embedded from ADOxx"
}

// same algorithm with a native MM-DSL code
algorithm MyOtherAlgorithm {

 // creating a simple menu item
 ui.item.menu.insert MyOtherAlg to MyOtherMenu
}

algorithm MyAlgorithmTwo {

 // creating a simple warningbox

9 MM-DSL Specification 136

 ui.warningbox title "MM-DSL Warning-Box"
 text "Generated Warning with MM-DSL" button def-ok
}

// algorithm with inserted foreigh code that is defined in embed statements
algorithm URIImport {

 // embed the AdoScript code
 insert URIImportItem
 insert URIImportAlgorithm
}

9.5.2 Selection Statement

Syntax

selectionstatement

selectionstatement ::=

 ('if' '(' expression ')' '{' statement* '}') (('elseif' '(' expression ')'

 '{' statement* '}')* 'else' '{' statement* '}')?

Semantics

Selection statement is used to select one of multiple code blocks and execute it if a

condition is satisfied. Each selection statement is divided into three parts: if part (starts

with a keyword if and it is mandatory), elseif part (starts with a keyword elseif) and else

part (starts with a keyword else). If elseif part is used, it is also mandatory to use else

part. However, else part can be used without the presence of elseif part. This behavior

is well known from the typical programming languages such as C, C++ or Java.

If part and else part need to contain an expression defining a condition. This expres-

sion is put in the brackets following the keyword (see the example below).

Example

// simple selection statement inside an algorithm
algorithm IfElseAlgorithm {
 var someVariable = 1

 if(someVariable == 1)
 {

9 MM-DSL Specification 137

 ui.infobox title "If-Else Test" text "Variable is equal 1"
 }
 elseif(someVariable != 1)
 {
 ui.infobox title "If-Else Test" text "Variable is not equal 1"
 }
 else
 {
 ui.infobox title "If-Else Test" text "Variable value is unknown"
 }
}

9.5.3 Loop Statement

Syntax

loopstatement

whileloop

forloop

loopstatement ::=

 whileloop | forloop

whileloop ::=

 'while' '(' expression ')' '{' (statement | ('break' | 'continue'))* '}'

forloop ::=

 'for' '(' start ';' stop ';' interval ')'

 '{' (statement | ('break' | 'continue'))* '}'

9 MM-DSL Specification 138

Semantics

Loop statement contains two statements that loop through the corresponding code

block: while and for statement.

While statement starts with the keyword while, followed by an expression defining the

condition. If the condition is fulfilled the code inside the curly brackets ({. }) will be exe-

cuted. After the code is executed, the condition is re-evaluated. The execution of the

code block will continue until the condition is no longer true.

For statement starts with the keyword for, followed by an expression defining the start

and stop conditions, as well as the interval that will be applied on the start condition

after each iteration. Loop stops when the stop condition is reached.

Both of these statements are very similar to the typical for and while statements found

in the programming languages such as C, C++ and Java. For the simple utilization

scenarios see the examples below.

Example

// simple while and for statements
algorithm WhileAndForAlgorithm
{
 var someVariable = 1

 // repeat while someVariable is equal to 1
 while(someVariable == 1)
 {
 ui.item.context.insert DoSomething to Modeling
 }

 // repeat always
 while (true)
 {
 ui.errorbox title "Error" text "Infinite loop!" button def-ok
 }

 // repeat 10 times
 for(0;10;1)
 {
 ui.infobox title "Info" text "This is an info"
 }
}

9 MM-DSL Specification 139

9.5.4 Variable Statement

Syntax

variable

varstatement

variable ::=

 ('var' name (operatorassign varstatement)?) |

 (name-variable operatorassign varstatement)

varstatement ::=

 expression | algorithmoperation | ('class' name-class) |

 ('attribute' name-attribute) | ('reference' name-reference) |

 ('symbolclass' name-symbolclass) | ('symbolrelation' name-symbolrelation) |

 ('symbolstyle' name-symbolstyle) | ('embedded' name-embedcode) |

 ('modeltype' name-modeltype)

Semantics

Variable statement is used to declare and assign variables. Variable declaration starts

with the keyword var following a unique identifier (name).

A value that a variable hold is determined through the variable assignment. The value

can be a simple data type, value of an attribute, class, relation, reference, model type,

even algorithm operation or a complex expression.

9 MM-DSL Specification 140

Variables declared and initialized in one algorithm can be used, by invoking them

through the fully qualified name, in another algorithm. See the examples for more de-

tail.

Example

// simple variable statements
algorithm VariableStatements
{
 // simple data type assignment
 var simpleVariable1 = 1 + 2
 var simpleVariable2 = simpleVariable2 - 5

 // using variable from another algorithm as assignment
 var otherAlgVariable = WhileAndForAlgorithm.someVariable

 // assigning attribute value
 var attributeVariable1 = attribute Vehicle.Color

 // assigning class value
 var classVaraible = class Vehicle

 // assigning reference value
 var referenceVaraible = reference City.carParksInCity

 // assigning model type value
 var modeltypeVaraible = modeltype ParkingMap

 // assigning embedded code
 var embeddedVaraible = embedded ADOitem

 // assigning algorithm operations
 var operationVaraible = ui.infobox title "Variable Info" text "Assigned"
}

9.5.5 Expressions

Syntax

expression

orexpression

andexpression

9 MM-DSL Specification 141

equalexpression

compareexpression

additionexpression

multiplicationexpression

unaryexpression

primaryexpression

atomicexpression

expression ::=

 orexpression

orexpression ::=

 andexpression (operatoror andexpression)*

andexpression ::=

 equalexpression (operatorand equalexpression)*

9 MM-DSL Specification 142

equalexpression ::=

 compareexpression (operatorequal compareexpression)*

compareexpression ::=

 additionexpression (operatorcompare additionexpression)*

additionexpression ::=

 multiplicationexpression (operatoradd multiplicationexpression)*

multiplicationexpression ::=

 unaryexpression (operatormultiply unaryexpression)*

unaryexpression ::=

 operatorunary? primaryexpression

primaryexpression ::=

 atomicexpression | ('(' orexpression ')')

atomicexpression ::=

 'true' | 'false' | name-variable | STRING | RealNumber

Semantics

Expression statements are used in combination with other algorithm statements to ex-

press various conditions and conduct specified operations. How and in which order will

these operations be executed depends on the operators’ precedence. See Table V for

the detailed overview.

The definition of expressions and operators is divided in this language specification

because of easier readability. In reality, these two grammar parts are bound with each

other. Without expressions, operators would not make much sense.

MM-DSL defines the following expressions: atomic, primary, unary, multiplication, addi-

tion, comparison, equality, and, and or expression. Only expression that contains the

terminal symbols is the atomic expression. Every other expression is a complex ex-

pression which is utilizing the atomic expression directly or transitively.

Example

// simple expression statements
algorithm ExpressionAlgorithm
{
 // addition and multiplication expressions
 var expr1 = (1+2) * 3

 // and expression
 var expr2 = expr1 || true
 var expr3 = expr2 && false

 // comparison expression
 if(expr1 > 0)
 {
 // do something
 }

9 MM-DSL Specification 143

 // equality expression
 while(expr2 != true)
 {
 // do something
 }

 // assignment expressions
 var expr4 = 2
 expr4 += expr1

 // unary (negation) expression
 if(!(expr2 != expr3))
 {
 // do something
 }

 // using attribute values in expressions
 var vehicleColor = attribute Vehicle.Color

 if(vehicleColor == "blue")
 {
 ui.infobox title "Vehicle Color" text "Vehicle is blue"
 }
}

// more expressions
algorithm MyAlgorithmCounter {

 ui.infobox title "Info" text "Hello"

 var counter = 0

 while(counter < 0){
 ui.infobox title "InWhile" text "While"
 counter -= 1
 }

 var abcd = 4 * 3 + 1 / 53
 abcd += (3 + 3 + 3) / 3
}

9.5.6 Operators

Syntax

operatorassign

operatorunary

operatoradd

operatorand

9 MM-DSL Specification 144

operatorequal

operatorcompare

operatoror

operatormultiply

operatorassign ::=

 '=' | '+=' | '-=' | '*=' | '/='

operatorunary ::=

 '!'

operatormultiply ::=

 '*' | '/' | '%'

operatoradd ::=

 '+' | '-'

operatorcompare ::=

 '>=' | '<=' | '>' | '<'

operatorequal ::=

 '==' | '!='

operatorand ::=

 '&&'

operatoror ::=

 '||'

Semantics

Operators defined in here are used inside expressions. The ones that are grouped be-

hind the same name (e.g., operatorassign) have the same precedence and will be

evaluated from left to right. Take note that the terminal symbols assigned to each oper-

ator can be seamlessly changed. The ones that are used right now are conform to the

symbols used in well-known programming languages.

Meaning of the operators and their precedence can be found in Table V. The operators

are ordered from higher to lower precedence. The operator group in the first row has

the highest precedence.

9 MM-DSL Specification 145

Table V: Operators - Precedence and Meaning

Operator Group Operators Meaning

Unary ! Negating the expression on the right, if expres-

sion is true, returns false, and vice versa.

Multiplication *, /, % Multiplies, divides or modulo left expression with

the right expression, returns the operation result.

Addition +, - Adds or subtracts left expression with the right

expression, returns the operation result.

Comparison >=, <=, >, < Compares the objects on the left side to the one

on the right side, returns true or false.

Equality ==, != Checks if the expression on the left is equal to

the expression on the right.

And && logical and between expression on the left and

right side, returns true or false

Or || Logical or between the expressions on the left

and right side, returns true or false.

Assignment =, +=, -=, *=, /= Assigns the right expression to the left expres-

sion; in case of multi assign, returns the operation

result and assigns it to the left expression.

Example

The examples on how to use the operators can be found in the part where expressions

are explained. Their usage is very similar to the nowadays general programming prac-

tices.

9.5.7 Algorithm Operation

The following functionality is included to cover the most basic model manipulation func-

tions of a metamodeling platform. It is best to view this group of statements as an ex-

tension on the basic MM-DSL. Thus, the following statements are most prone to

change when aligning the MM-DSL translator (e.g., compiler) to a particular platform.

The ones described in here have been designed to work seamlessly with the API avail-

able in the ADOxx metamodeling platform.

9 MM-DSL Specification 146

Syntax

algorithmoperation

algorithmoperation ::=

 fileoperation | diroperation | simpleui | modeloperation |

 instanceoperation | attributeoperation

Semantics

Algorithm operation statement defines operations that can be carried out inside a mod-

eling tool. These are operations on: files and directories, models, object instances, and

attributes. Basic user interface functions are also included.

The algorithm operation statements can be utilized together with other operations

statements to describe the dynamic logic of a modeling tool.

Example

It is not possible to give an example for this statement because it only shows all the

possible algorithm operation statements and contains no terminals. The examples will

be given as a part of the algorithm operation sub-statements descriptions.

9.5.8 File Operation

Syntax

fileoperation

9 MM-DSL Specification 147

filecopy

filedelete

filecreate

fileread

filewrite

fileoperation ::=

 'file' '.' (filecopy | filedelete | filecreate | fileread | filewrite)

filecopy ::=

 'copy' 'source' src 'destination' dest

filedelete ::=

 'delete' filename

filecreate ::=

 'create' filename

fileread ::=

 'read' filename

filewrite ::=

 'write' filename 'text' text ('append')?

Semantics

File operation statement provides a set of functions that work with files. These func-

tions are: copy, delete, create, read and write. This statements starts with a keyword

file followed by a dot (.) and the name (which is also a keyword) of a function we want

to utilize. Parameters that follow the function depend on the function in use. Copy re-

quires the source and destination locations (file paths). Delete, create, read and write

require the file name (file path). Additionally, write has an option to append data at the

end of a file. See Table VI for a detailed description of all available functions.

9 MM-DSL Specification 148

Table VI: File Operation Statement Functions

Function Parameters Description

copy src, dest Copies the file which location is given in src to the

location given in dest. If the destination file exists, it

will be overwritten.

delete filename Deletes the file which location is given in filename.

create filename Creates a new file at the location given in filename.

read filename Reads the file which location is given with filename.

The function returns the content of file.

write filename, text,

(append)

Write the content found in text to the file which is

specified in filename. Optionally, append indicates that

the content in text will be appended at the end of a

file. Without append option, the content of a file will be

deleted before the new content is written.

Example

// examples for file operation statement
algorithm FileOperations
{
 // copy file
 file.copy source "C:\\Temp\\SourceFile.mml"
 destination "C:\\Temp\\DestFile.mml"

 // delete file
 file.delete "C:\\Temp\\SourceFile.mml"

 // create file
 file.create "C:\\Temp\\SourceFile.mml"

 // read file
 var fileContent = file.read "C:\\Temp\\SourceFile.mml"

 // write file
 file.write "C:\\Temp\\SourceFile.mml"
 text "This is the content" append
}

9 MM-DSL Specification 149

9.5.9 Directory Operation

Syntax

diroperation

dirsetworking

dircreate

dirdelete

dirlist

diroperation ::=

 'dir' '.' (dirsetworking | dircreate | dirdelete | dircreate | dirlist)

dirsetworking ::=

 'set' dirname

dircreate ::=

 'create' dirname

dirdelete ::=

 'delete' dirname

dirlist ::=

 'list' dirname

Semantics

Directory operation statement provides a set of functions that work with directories.

These functions are: set, create, delete and list. Every directory operation statement

starts with the keyword dir followed by a dot (.) and the name of a function (which is

also a keyword) we want to use. All the functions require the directory name parameter

(directory path). See Table VII for a detailed description of all available functions.

9 MM-DSL Specification 150

Table VII: Directory Operation Statement Functions

Function Parameters Description

set dirname Set the directory given in dirname as a working directory.

create dirname Crete a directory at the location given with dirname.

delete dirname Delete the directory at the location given with dirname.

list dirname List all the sub-directories of a working directory. Default

working directory is set to the current MM-DSL file direc-

tory.

Example

// examples for directory operation statement
algorithm DirOperations
{
 // set working directory
 dir.set "C:\\Temp"

 // create directory
 dir.create "C:\\Temp"

 // delete directory
 dir.delete "C:\\Temp"

 // list files and direcotries in a directory
 // directory list is saved in a variable
 var dirContent = dir.list "C:\\Temp"
}

9.5.10 Simple User Interface

Syntax

simpleui

editbox

9 MM-DSL Specification 151

infobox

errorbox

warningbox

viewbox

buttontype

simpleui ::=

 'ui' '.' (editbox | infobox | errorbox | warningbox |

 viewbox | itemoperation)

editbox ::=

 'editbox' 'title' title 'text' text ('button' okbuttontext)?

infobox ::=

 'infobox' 'title' title 'text' text

errorbox ::=

 'errorbox' 'title' title 'text' text 'button' buttontype

warningbox ::=

 'warningbox' 'title' title 'text' text 'button' buttontype

viewbox ::=

 'viewbox' 'title' title 'text' text

9 MM-DSL Specification 152

buttontype ::=

 'ok' | 'ok-cancel' | 'yes-no' | 'yes-no-cancel' | 'retry-cancel' |

 'def-ok' | 'def-cancel' | 'def-yes' | 'def-no' | 'def-retry'

Semantics

Simple user interface (or simple UI) statement provides functions for construction of

basic user interface objects. Currently, the following functions are supported: editbox,

infobox, errorbox, warningbox, and viewbox. Every simple UI statement begins with the

keyword ui, followed by a dot (.) and a function name (which is also a keyword). Each

function has a set of parameters. See Table VIII for details. The realization of UI ob-

jects strongly depends on the execution platform possibilities. For example, infobox

function may produce different results depending on the destination platform.

Table VIII: Simple User Interface Statement Functions

Function Parameters Description

editbox title, text,

(okbuttontext)

Creates an edit box with a title and text indicated in the

parameters; optionally, text on the “ok” button can be

specified.

infobox title, text Creates an info box with a title and text indicated in the

parameters.

errorbox title, text,

buttontype

Creates an error box with a title and text indicated in

the parameters; optionally, different button constella-

tions can be specified.

warningbox title, text,

buttontype

Creates a warning box with a title and text indicated in

the parameters; optionally, different button constella-

tions can be specified.

viewbox title, text Creates a view box with a title and text indicated in the

parameters.

Example

// examples for simple UI statement
algorithm SimpleUI
{
 // edit box with a custom button
 ui.editbox title "Edit" text "Cool Message" button "Press Me"

 // info box
 ui.infobox title "Info" text "Info Message"

 // error box with ok and cancel buttons
 ui.errorbox title "Error" text "This is an error" button ok-cancel

9 MM-DSL Specification 153

 // warning box with ok button
 ui.warningbox title "Warning" text "This is a warning" button ok
}

9.5.11 Item Operation

Syntax

itemoperation

menuitem

insertmenuitem

removemenuitem

contextitem

insertcontextitem

removecontextitem

itemoperation ::=

 'item' '.' (menuitem | contextitem)

menuitem ::=

 'menu' '.' (insertmenuitem | removemenuitem)

insertmenuitem ::=

 'insert' name 'to' menu

removemenuitem ::=

 'remove' name-menuitem

contextitem ::=

 'context' '.' (insertcontextitem | removecontextitem)

9 MM-DSL Specification 154

insertcontextitem ::=

 'insert' name 'to' context

removecontextitem ::=

 'remove' name-contextitem

Semantics

Item operation statement is a simple UI sub-statement. It creates the user interface

menu items: normal menu items or context menu items. Both types of items have the

following two functions: insert and remove. See Table IX for the detailed description.

Item operation statement begins with the keyword item followed by a dot (.) and the

type of an item: menu or context. A menu item is a graphical object that can be typically

found at the top-left corner of an application window. A context item is a graphical ele-

ment that is located inside a menu which is accessed by right clicking inside an appli-

cation window. Name of an item, and the menu parameter are unique identifiers.

Table IX: Item Operation Statement Functions

Function Parameters Description

menu.insert name, menu Inserts a menu item in the menu indicated with

the menu parameter. If a menu does not exist,

it will be created.

menu.remove name-menuitem Delete the menu item with a given name.

context.insert name, context Inserts a context item in the context menu

indicated with the menu parameter. If a con-

text menu does not exist, it will be created.

context.remove name-contextitem Delete the context item with a given name.

Example

// examples for simple UI menu and context item operation statement
algorithm ItemOperations
{
 var menuItemName = "Cool Menu Item"
 var menuName = "Modeling"
 var contextMenuName = "Context Modeling"

 // insert menu item inside a menu
 ui.item.menu.insert menuItemName to menuName

 // remove menu item
 ui.item.menu.remove menuItemName

 // insert context item
 ui.item.context.insert menuItemName to contextMenuName

9 MM-DSL Specification 155

 // remove context item
 ui.item.context.remove menuItemName
}

9.5.12 Model Operation

Syntax

modeloperation

modelcreate

modeldelete

modeldiscard

modelsave

modelload

modelisloaded

modeloperation ::=

 'model' '.' (modelcreate | modeldelete | modeldiscard | modelsave |

 modelload | modelisloaded)

modelcreate ::=

 'create' name name-modeltype

9 MM-DSL Specification 156

modeldelete ::=

 'delete' name-model

modeldiscard ::=

 'discard' name-model

modelsave ::=

 'save' name-model

modelload ::=

 'load' name-model

modelisloaded ::=

 'isloaded' name-model

Semantics

Model operation statement provides a set of functions that work with models. These

functions are: create, delete, discard, save, load and isloaded. Each of these functions

requires some parameters. For a detailed description of functions see Table X.

Table X: Model Operation Statement Functions

Function Parameters Description

create name, name-modeltype Create a model with the given name from

the indicated model type. (Instantiates a

model type.)

delete name-model Delete a model with the given name. Model

will be deleted from the repository.

discard name-model Discard a model with the given name. Mod-

el will be removed from the memory. It will

still be present in the repository.

save name-model Save a model with the given name to the

repository.

load name-model Load a model with the given name to the

memory.

isloaded name-model Check if the indicated model is currently

loaded in the memory.

Example

// examples for the model operations
algorithm ModelOperations
{
 // create a model from a model type ParkingMap
 model.create MyModel ParkingMap

 // alternatively we can use variable

9 MM-DSL Specification 157

 var myModel = "Super Parking Garage"
 model.create myModel ParkingMap

 // delete model
 model.delete MyModel

 // delete model inside another algorithm
 model.delete MyAlgorithm.MyModel

 // discard model
 model.discard MyModel

 // save model
 model.save MyModel

 // load model
 model.load MyModel

 // check if model is loaded
 var isLodaed = model.isloaded MyModel
}

9.5.13 Instance Operation

Syntax

instanceoperation

classinstance

classinstancecreate

classinstancedelete

classinstanceget

9 MM-DSL Specification 158

classinstanceset

classinstancegetall

relationinstance

relationinstancecreate

relationinstancedelete

relationinstanceget

relationinstanceset

relationinstancegetall

instanceoperation ::=

 'instance' '.' (classinstance | relationinstance)

classinstance ::=

 'class' '.' (classinstancecreate | classinstancedelete |

 classinstanceget | classinstanceset | classinstancegetall)

classinstancecreate ::=

 'create' name name-class

classinstancedelete ::=

 'delete' name-classinstance

classinstanceget ::=

 'get' name-classinstance

classinstanceset ::=

 'set' name-classinstance

9 MM-DSL Specification 159

classinstancegetall ::=

 'getall' name-class

relationinstance ::=

 'relation' '.' (relationinstancecreate | relationinstancedelete |

 relationinstanceget | relationinstanceset | relationinstancegetall)

relationinstancecreate ::=

 'create' name 'from' name-classinstancefrom 'to' name-classinstanceto

relationinstancedelete ::=

 'delete' name-relationinstance

relationinstanceget ::=

 'get' name-relationinstance

relationinstanceset ::=

 'set' name-relationinstance

relationinstancegetall ::=

 'getall' name-relation

Semantics

Instance operation statement provides a set of functions that work with instances. In-

stance is a specific realization of an object. An object can be a class or a relation. In-

stance operation statement starts with the keyword instance followed by a dot (.), type

of the instance (either class or relation) and a function name. This statement is used to

create and delete instances. It can also be used to get instance-specific information.

For a detailed overview of all the supported functions see Table XI. Note that, although

class and relation use the same functions, the parameters are different.

Table XI: Instance Operation Statement Functions

Function Parameters Description

class.create name, name-class Create a class instance from the class

given through parameter name-class.

class.delete name-classinstance Delete the class instance given as the

parameter.

class.get name-classinstance Get the class instance given as the pa-

rameter.

class.set name-classinstance Set the class instance given as the pa-

rameter.

class.getall name-class Get all instances of a class given by the

parameter.

relation.create name, name-relation,

name-classinstancefrom,

name-classinstanceto

Create a relation instance from the rela-

tion given through parameter parameter

name-relation; associated from and and

9 MM-DSL Specification 160

class instances are also given.

relation.delete name-relationinstance Delete the relation instance given as the

parameter.

relation.get name-relationinstance Get the relation instance given as the

parameter.

relation.set name-relationinstance Set the relation instance given as the

parameter.

relation.getall name-relation Get all instances of a given relation giv-

en by the parameter.

Example

// examples for the instance operations
algorithm InstanceOperations
{
 var classInstanceName = "Turbo 56"
 var secondClassInstanceName = "Mazda 626"
 var relationInstanceName = "Associated with Turbo 56"

 // create a class instance
 instance.class.create classInstanceName Vehicle
 instance.class.create secondClassInstanceName Vehicle

 // delete class instance
 instance.class.delete classInstanceName

 // get class instance
 var classInstance = instance.class.get secondClassInstanceName

 // get all instances of a class
 var allInstancesOfVehicles = instance.class.getall Vehicle

 // create a relation instance
 instance.relation.create relationInstanceName IsParked
 from classInstanceName to secondClassInstanceName

 // delete relation instance
 instance.relation.delete relationInstanceName

 // get relation instance
 var relationInstance = instance.relation.get relationInstanceName

 // get all instances of a relation
 var allInstancesOfIsParked = instance.relation.getall IsParked
}

9 MM-DSL Specification 161

9.5.14 Attribute Operation

Syntax

attributeoperation

attributeget

attributeset

attributegetparams

attributesetparams

attributeoperation ::=

 name-attribute '.' (attributeget | attributeset)

attributeget ::=

 'get' '.' attributegetparams

attributegetparams ::=

 ('type' | 'value' | 'name')

attributeset ::=

 'set' '.' attributesetparams (STRING | REALNUMBER | name-variable)

attributesetparams ::=

 'value'

Semantics

Attribute operation statement manipulates with the properties of an attribute, particular-

ly its values. It starts with a fully qualified name of an already defined attribute, followed

by a dot (.) and a function name. Currently there are only two functions: get and set.

See Table XII for the function description. The set function initializes the attribute val-

9 MM-DSL Specification 162

ues which can be used during the instantiation of an object (e.g., class or relation). Set

and get currently do not work on instances.

Table XII: Attribute Operation Statement Functions

Function Parameters Description

set value Sets the value of an attribute.

get type, value, or name Gets either a type, value or a name of an

attribute.

Example

// examples for the attribute operations
algorithm AttributeOperations
{
 // set attribute value through a variable
 var colorBlue = "blue"
 Vehicle.Color.set.value colorBlue

 // set attribute value directly
 Vehicle.Color.set.value "violet"

 // get attribute value
 var attributeValue = Vehicle.Color.get.value

 // get attribute name
 var attributeName = Vehicle.Color.get.name
}

9.5.15 Event

Syntax

event

event ::=

 'event' eventname '.' 'execute' '.' name-algorithm

Semantics

Event statement defines events that trigger algorithms. An event is an occurrence in-

side a modeling tool. When a change is detected, certain events are triggered. For ex-

ample, opening a new model or instantiating a certain object may trigger an event. The

statement starts with the keyword event, followed by a predefined event name, an ac-

9 MM-DSL Specification 163

tion that will be taken (currently only execute), and with a name of an algorithm that will

be triggered.

Some of the supported and already recognized events in MM-DSL are the following:

CreateInstance, CreateModel, CreateRelationInstance, DeleteInstance, DeleteModel,

DeleteRelationInstance, OpenModel, SetAttributeValue, ToolInitialized, and so on. If an

even is supported depends on the provided metamodeling platform functionality.

Example

algorithm MyAlgorithmTwo {
 ui.warningbox title "MM-DSL Warning-Box"
 text "Generated Warning with MM-DSL" button def-ok
}
// execute this event when any instance is deleted (e.g., class, relation)
event.DeleteInstance.execute.MyAlgorithmTwo

9.5.16 Terminals

Syntax

name

ID

REALNUMBER

NUMBER

9 MM-DSL Specification 164

HEX

INT

DECIMAL

HEXCOLOR

name ::=

 ID

ID ::=

 '^'?('a..z'|'A..Z'|'_') ('a..z'|'A..Z'|'_'|'0..9')*

REALNUMBER ::=

 ('-')? Number

NUMBER ::=

 (HEX | (INT | DECIMAL) ('.' (INT | DECIMAL))?)

HEX ::=

 ('0x'|'0X') ('0..9'|'a..f'|'A..F'|'_')+

INT ::=

 '0..9' ('0..9'|'_')*

DECIMAL ::=

 INT (('e'|'E') ('+'|'-')? INT)?

HEXCOLOR ::=

 '#' ('a..f'|'A..F'|'0..9') ('a..f'|'A..F'|'0..9')

 ('a..f'|'A..F'|'0..9') ('a..f'|'A..F'|'0..9')

9 MM-DSL Specification 165

Semantics

Terminals are the symbols that, together with the language’s keywords, build the actual

program code. Some of the terminal symbols have already been presented through

many of the grammar rules. The ones mentioned here are the ones constructing the

basic data types of a MM-DSL program.

Example

Examples for the terminals can be found throughout this specification, particularly in

the part that describes operations statements (see expression examples).

9.6 Programming Concepts

Upon closer inspection of the MM-DSL specification it can be seen that the MM-DSL

program has a specific flow, where some concepts need to be defined before the oth-

ers. General rule is that a concept needs to be defined before it can be used. To make

translation (e.g., compilation) faster, the concepts that are used by other concepts need

to be present in the code before they can be referred to. Figure 27 shows the abstract

structure of a MM-DSL program, including all of its concepts.

Figure 27: Abstract Structure of a MM-DSL Program

MM-DSL program is divided into several code blocks. Some of the code blocks are

optional, while the others are mandatory. It begins with a statement that defines the

modeling method name, continues through the entire relevant statements, and ends

with the event statements. All of these statements and their utilization have been de-

scribed in detail in the previous sections. This section will give focus to the most im-

portant programming concepts used when writing a MM-DSL modeling method de-

scription.

9 MM-DSL Specification 166

9.6.1 Smallest Working Program

As every other computer language, MM-DSL also has the smallest working program. It

is a program that is fully functional, valid, and can be translated into a modeling tool. It

consists of a modeling method name, a single class and a model type.

// the smallest describable method possible
method SmallestInstantiable

// empty class definition
class Abc {}

// the simplest model type contains only one class
modeltype ModelTypeA
{
 classes Abc
 relations none
 modes none
}

9.6.2 Inheritance

The concept of inheritance is often used while defining the structure of a modeling

method. Thus, structure statements, such as class and relation statement are utilizing

it.

// small method with inheritance and modes
method Minimalistic

// ClassB inherits from ClassA
class ClassA {}
class ClassB extends ClassA {}

// RelationB inherits from RelationA
relation RelationA from ClassA to ClassB {}
relation RelationB extends RelationA from ClassA to ClassB {}

modeltype NiceModel
{
 classes ClassA ClassB
 relations RelationA RelationB

 modes
 mode ModeA include
 classes ClassA
 relations RelationA
 mode ModeB include
 classes ClassB
 relations RelationB
}

9 MM-DSL Specification 167

9.6.3 Referencing

Referencing by an identifier is a concept used throughout the whole MM-DSL program.

Almost each defined concept that has an identifier associated with it can be referenced.

// using referencing by identifier to reduce lines of code
method AlgMethod
def IncludeLibraryType ADOxxMetamodel
def EmbedPlatformType ADOxx
def EmbedCodeType GraphRep
def EmbedCodeType ADOscript

include <MyAwesomeLibrary:ADOxxMetamodel>

embed ADODrawRoundRectangle <ADOxx:GraphRep>
{
"embedded code goes here"
}

enum OneZero { "One" "Zero" }

// referencing a style
classgraph RoundRect style IsParkedGraph.Black
{
 circle cx=0 cy=0 r=20
 circle cx=0 cy=0 r=30

 // referencing the embedded code
 insert ADODrawRoundRectangle
}

class ClassF
{
 attribute alive : string
 attribute color : int

 // referencing an enumeration
 attribute available : enum OneZero
}

modeltype MyModelTyp
{
 // referencing a class
 classes ClassF
 relations none
 modes none
}

algorithm MyAlgorithm
{
 // create and discard a model from a referenced model type MyModelType
 model.create MyModel MyModelTyp

 //referencing a model
 model.discard MyModel
}

// referencing an algorithm inside an event
event.AfterCreateModelingConnector.execute.MyAlgorithm

9 MM-DSL Specification 168

9.6.4 Embedding

Code embedding is a powerful concept that allows for code segments that have been

written in another language. The primary use is to include the code that has already

been written in a format that a metamodeling platform understands. During the transla-

tion of a MM-DSL program the embedded code will be copied as verbatim in the speci-

fied places.

// an algorithm written in AdoScript
embed URIImportItem <ADOxx:AdoScript> {
"ITEM \\\"URI import\\\" modeling:\\\"~AdoScripts\\\" pos2:1"
}
embed URIImportAlgorithm <ADOxx:AdoScript> {
// always put \\\ before special characters and quotations (e.g. \\\\n, \\\")
"
SETL cls_name:(\\\"ParkingArea\\\")
SETL mod_type_name:(\\\"ParkingMap\\\")
SETL attr_uri_name:(\\\"URI\\\")
SETL obj_cnt:(0)

CC \\\"Modeling\\\" GET_ACT_MODEL
SETL pm_id:(modelid)
IF (pm_id = -1) {
 CC \\\"AdoScript\\\" ERRORBOX (\\\"The selected model could not be deter-
mined.\\\\nMake sure a model of type \\\" + mod_type_name + \\\" is opened
and selected.\\\")
 EXIT
}

CC \\\"Core\\\" GET_MODEL_MODELTYPE modelid:(pm_id)
IF (modeltype != mod_type_name) {
 CC \\\"AdoScript\\\" ERRORBOX (\\\"The selected model is of the wrong
type.\\\\nMake sure a model of type \\\" + mod_type_name + \\\" is opened and
selected.\\\")
 EXIT
}

CC \\\"AdoScript\\\" EDITBOX text:(\\\"\\\") title:(\\\"Enter URIs\\\") ok-
text:(\\\"Create\\\")
IF (endbutton != \\\"ok\\\") {
 EXIT
}
SETL uris:(text)

CC \\\"Core\\\" GET_CLASS_ID classname:(cls_name)
SETL cls_id:(classid)

CC \\\"Core\\\" GET_ATTR_ID classid:(cls_id) attrname:(attr_uri_name)
SETL attr_uri_id:(attrid)

FOR uri in:(uris) sep:(\\\"\\\\n\\\") {
 IF (LEN uri > 1) {
 CC \\\"Core\\\" CREATE_OBJ modelid:(pm_id) classid:(cls_id) ob-
jname:(cls_name + \\\"-\\\" + STR obj_cnt)
 SETL obj_id:(objid)
 CC \\\"Core\\\" SET_ATTR_VAL objid:(obj_id) attrid:(attr_uri_id)
val:(uri)

9 MM-DSL Specification 169

 CC \\\"Modeling\\\" SET_OBJ_POS objid:(obj_id) x:(2cm) y:(1cm+CM (1.5 *
obj_cnt))
 SETL obj_cnt:(obj_cnt + 1)
 }
}
"
}

// AdoScript algorithm embedded inside the MM-DSL code
algorithm URIImport {
 // embed the AdoScript code
 insert URIImportItem
 insert URIImportAlgorithm
}

9.6.5 Auto-generation

MM-DSL does not require the full specification of every modeling method element.

Thus, the ones that are not explicitly defined in the program will be automatically gen-

erated. This concept is important for fast prototyping and testing of modeling method

implementations on a particular metamodeling platform. Most of the platforms require

that all the elements are present before modeling tool can be created.

The graphical elements that have not been explicitly defined will be generated during

the translation of the program. The following code segment shows an implementation

of a modeling method, where only the structure has been defined. This program will be

fully runnable on a metamodeling platform that requires graphical definitions of ele-

ments, because of the automatic generation of graphical symbols.

// small method with inheritance and modes
method Minimalistic
// if a class symbols is not specified it will be generated
class ClassA {}
class ClassB extends ClassA {}

// if a relation symbols is not specified it will be generated
relation RelationA from ClassA to ClassB {}
relation RelationB extends RelationA from ClassA to ClassB {}

modeltype NiceModel
{
 classes ClassA ClassB
 relations RelationA RelationB

 modes
 mode ModeA include
 classes ClassA
 relations RelationA
 mode ModeB include
 classes ClassB
 relations RelationB
}

10 MM-DSL IDE 170

10 MM-DSL IDE

This chapter is dedicated to the MM-DSL integrated development environment (IDE)

and its role in the process of modeling method engineering. In here reader will find im-

portant information about MM-DSL IDE architecture, as well as how the IDE communi-

cates with the rest of the system, mainly with the language – MM-DSL, various code

translators and metamodeling platforms. The chapter concludes with a short guide on

how to use the IDE to create a new project and start implementing a modeling method

in MM-DSL.

10.1 Introduction

The MM-DSL integrated development environment allows developers to utilize MM-

DSL for describing modeling methods and creating modeling tools. Thus, the IDE is

also responsible for generating metamodeling platform-specific format from the code

written in MM-DSL. From a practical perspective it makes MM-DSL more users friendly

by providing typical features of well-known and established IDEs (e.g., Eclipse, Visual

Studio), such as code highlighting, suggestions and auto completion, compile time er-

ror checking, and code templates which can be extended.

10.2 Architecture

The three major components of MM-DSL metamodeling system are: (1) MM-DSL (the

language), (2) MM-DSL IDE (the development environment), and (3) MM-DSL execu-

tion environment (the metamodeling platform). The language has been described in

detail in previous chapters (see chapters MM-DSL and MM-DSL Specification). This

section focuses on the MM-DSL IDE and its architecture.

MM-DSL IDE (referred to as just IDE in the following text) is separated into multiple

components: translator framework, translator, user interface, language framework, and

language(s). Multiple translators are based and inherited from one translator frame-

work. The same is true for the language framework, which can support multiple differ-

ent languages. In our case there is only one language, the MM-DSL.

The translator framework is utilized for defining and integrating various translators with-

in the IDE. Its main duty is to link the abstract syntax of a language to the metamodel-

ing platform’s meta2model, and, additionally, to the platform’s APIs. Thus, the transla-

tors can use the code written in MM-DSL as an input, and give platform-specific code

(or format) as an output. The translator framework has a well-defined association with

the syntax and semantics of a language, which exposes the MM-DSL artifacts to the

translator under development. However, it is up to the developer to link these artifacts

10 MM-DSL IDE 171

with particular metamodeling platform artifacts. This mapping decides what kind of plat-

form-specific artifacts will be generated from the MM-DSL code.

The language framework is utilized for customizing MM-DSL by adding, as well as re-

moving (deactivating) provided language artifacts. It is a tool mostly used for adapting

MM-DSL’s concrete and abstract syntax (the grammar of the language), or adding fea-

tures that are not a part of the base language. Using the framework allows customiza-

tion of MM-DSL in many different ways. One can, for example, change the whole con-

crete syntax by modifying the terminal symbols. This also includes changing the key-

words (e.g., changing ‘method’ into ‘modeling method’, ‘algorithm’ into ‘operation’, etc.). If

abstract syntax needs to be changed, caution should be exercises, as these kinds of

changes may break the association between the language framework and translator

framework. Thus, the translator framework would need to be adapted as well.

User interface (UI) is a central point of interaction between the IDE and the MM-DSL

users. It exposes MM-DSL to the modeling method developers, similarly as almost any

other modern IDE, giving them an environment which hides unnecessary complexities

and helps with the focus on defining solutions. IDE is taking care of all the small details

regarding the written code, and suggests quick fixes in the following situations: mis-

spelling of keywords, using wrong program statements, helping with code visibility,

providing code templates, etc.

Figure 28: The MM-DSL IDE Architecute

Figure 28 shows an abstract view on the MM-DSL IDE architecture. One can see the

parts already discussed in this section, such as user interface, language framework

and translator framework, and their relationships. This kind of modular architecture,

where systems are composed of separate components that can be connected together,

allows the addition, replacement, or removal of a component without affecting the rest

of the system.

10 MM-DSL IDE 172

10.3 Implementation

Two distinguished and competitive technologies have been considered for the imple-

mentation of an IDE prototype. On one side there is Visual Studio IDE and .NET

framework together with all the accompanying programming languages (mostly C#)

and formats. On the other side we have Eclipse IDE and Java-based technologies.

After summarizing advantages and disadvantages of both technologies, it has been

decided to use Eclipse.

The most important criterion that leaned the decision toward Eclipse is that Eclipse-

based technologies are open source software. Secondary, Xtext framework, which is

currently only available for Eclipse does not have a mature competition based on Visu-

al Studio and .NET framework. There is a similar framework called Irony, but it is still in

alpha phase, therefore not as stable as we wanted it to be.

Xtext was essential to the development of the prototype, because it provided several

functionalities out-of-the-box. This allowed focusing the efforts on the implementation of

the MM-DSL (the language) according to the specification, rather than investing time in

reinventing new compiler-compilers and code generators. The grammar language of

Xtext was used to implement the language, and Xtend was used to implement the

translator.

The following is the definition of a class concept in Xtext. For the definition of all the

MM-DSL concepts see the Appendix B: MM-DSL – Xtext Language Description.

Class:
 'class' name=ValidID ('extends' parentclassname=[Class|QualifiedName])?
 ('symbol' symbolclass=[SymbolClass|QualifiedName])?
 '{' (classattribute += ClassAttribute | attribute += Attribute |
 insertembedcode += InsertEmbedCode | reference += Reference)* '}'
;

The following code excerpt written in Xtend shows how one can map MM-DSL class

defined above to the metamodeling platform meta2model. In this example, metamodel-

ing platform is ADOxx, and the output format is ADOxx-specific.

//--- Class <__LibraryMetaData__> - default values---------------------------

 ATTRIBUTE <Position>
 VALUE ""

 ATTRIBUTE <External tool coupling>
 VALUE ""

«FOR Class c: root.method.metamodel.class_»
//===
CLASS <«c.name»> : <«IF c.parentclassname !=
null»«c.parentclassname.name»«ELSE»__D-construct__«ENDIF»>
//===

10 MM-DSL IDE 173

//--- Class <«c.name»> - Class attributes------------------------------------
 «FOR ClassAttribute ca: c.classattribute»
 CLASSATTRIBUTE <«ca.name»>
 «IF ca.type.simpletype == SimpleType::INT &&
 ca.type.enumtype == null»
 «toTypeInt»
 «ELSEIF ca.type.simpletype == SimpleType::STRING &&
 ca.type.enumtype == null»
 «toTypeString»
 «ELSEIF ca.type.simpletype == SimpleType::DOUBLE &&
 ca.type.enumtype == null»
 «toTypeDouble»
 «ELSE»
 «toTypeEnum(ca)»
 «ENDIF»

 «ENDFOR»

 CLASSATTRIBUTE <ClassAbstract>
 VALUE 0

 CLASSATTRIBUTE <ClassVisible>
 VALUE 1

 CLASSATTRIBUTE <GraphRep>
 VALUE "GRAPHREP
 «IF c.symbolclass == null»
 «GenerateRandomClassSymbol»
 «ELSE»
 «c.generateCSymbol»
 «ENDIF»
 "

 CLASSATTRIBUTE <VisibleAttrs>
 VALUE ""

 CLASSATTRIBUTE <AttrRep>
 VALUE "NOTEBOOK
 CHAPTER \"Attributes\"
 ATTR \"Name\"
 «c.toNotebook»
 «IF c.parentclassname != null»«c.parentclassname.toNotebook»«ENDIF»
 "

 CLASSATTRIBUTE <WF_Trans>
 VALUE ""

 CLASSATTRIBUTE <AnimRep>
 VALUE ""

 CLASSATTRIBUTE <HlpTxt>
 VALUE ""

 CLASSATTRIBUTE <Model pointer>
 VALUE ""

10 MM-DSL IDE 174

 CLASSATTRIBUTE <Class cardinality>
 VALUE ""

//--- Class <«c.name»> - Instance attributes---------------------------------

 «FOR Attribute a: c.attribute»
 ATTRIBUTE <«a.name»>
 «IF a.type.simpletype == SimpleType::INT &&
 a.type.enumtype == null»
 «toTypeInt»
 «ELSEIF a.type.simpletype == SimpleType::STRING &&
 a.type.enumtype == null»
 «toTypeString»
 «ELSEIF a.type.simpletype == SimpleType::DOUBLE &&
 a.type.enumtype == null»
 «toTypeDouble»
 «ELSE»
 «toTypeEnum(a)»
 «ENDIF»
 «ENDFOR»
 «FOR Reference ref: c.reference»
 «ref.toReference»

 «ENDFOR»
 //--- Class <«c.name»> - default values-----------------------------------

 ATTRIBUTE <Position>
 VALUE ""

 ATTRIBUTE <External tool coupling>
 VALUE ""

«ENDFOR»

One can note that the code is creating an output from the given template. Xtend is

used to describe the dynamic parts of the template, which are filled by values provided

by the MM-DSL program. The blue and all capital text is the original ADOxx format

(e.g., “ATTRIBUTE <Position>”). The mapping we see here is only the mapping to the

meta2model. However, the class concept also has a corresponding symbol and style.

These are also mapped to the ADOxx class (this is not shown in the code excerpt

above). Thus, MM-DSL artifacts are typically mapped to more metamodeling platform

concepts (1 to n mapping), and vice versa, more MM-DSL artifacts can be mapped to

one metamodeling platform concept (n to 1 mapping). In general, several MM-DSL arti-

facts may be mapped to several metamodeling platform concepts (n to m mapping).

As it can be seen from this small code excerpt, writing a translator is something one

needs to get used to. It requires the knowledge of the MM-DSL language framework,

but as well the knowledge about the platform-specific format. The translator code, as

well as the other implemented MM-DSL artifacts can be found in [102].

10 MM-DSL IDE 175

10.4 User Guide

This section will briefly explain how to use MM-DSL IDE for development of modeling

tools. All the steps will be covered, starting from setting up the environment, writing

code, compiling to platform-specific format, and finishing with the modeling tool genera-

tion.

10.4.1 Development Environment

Users that are familiar with typical integrated development environments, such as

Eclipse or Visual Studio, will have no difficulties with MM-DSL IDE. After all, it is built

around Eclipse. It can also be considered as an Eclipse plug-in.

Figure 29: Creating a new MM-DSL Project

The development starts with the creation of a new project (see Figure 29). It is a folder

where all of MM-DSL files will be placed, such as files containing MM-DSL source

code, intermediate files, and files containing the code in a platform-specific format. All

of these files have different file extensions. MM-DSL source code files are recognized

by “mml” at the end. The files containing the platform-specific code may have an arbi-

trary extension. This depends on a translator used to create those files. Because

ADOxx has been utilized as an execution platform for the MM-DSL programs, the com-

piled files have an extension “abl”. Everything necessary to generate a modeling tool

with ADOxx is contained inside the application library files (ABL).

10 MM-DSL IDE 176

Figure 30 shows how to create and add a new MM-DSL (MML) file to the project. One

project can have multiple MML files. The concepts created in one MML file can be ref-

erenced inside another MML files.

Figure 30: Creating a new MML File

MM-DSL IDE supports the same features as Eclipse IDE, including code highlighting,

autocomplete, and templates. The available language keywords and statements can be

accessed by holding CTRL and SPACE at the same time. The list that is shown is popu-

lated with currently available constructs that respect the overall syntax of the language.

This is why the list changes according to the current cursor position in the code. At the

bottom of the environment one can see the current problems in the MM-DSL program,

and fix them correspondingly to the provided description. See Figure 31 for details.

Figure 31: MM-DSL IDE Overview

10 MM-DSL IDE 177

10.4.2 Program Translation

Current prototype translates the MM-DSL program to the platform-specific code when

the file is saved. The translation is automatic. During the development of the ADOxx

translator, we wanted to include an option that allows users to edit platform-specific

code (the files ending with “all”). Thus, the translation has two parts. First, the MML file

is translated to ALL file, which is still a textual representation of a platform-specific

code. Therefore, it can still be edited inside the MM-DSL IDE. The changes made to

the ALL file will not be propagated to the MML file, and if MML file is translated again,

all the changes made to the ALL file will be lost. Once the ALL file is translated to ABL

file, which is a binary representation that can be imported into the platform, there is no

way to edit it with MM-DSL IDE. However, it can still be modified using the destination

platform. Translation from ALL to ABL is not automatic. User needs to click on the

specified button to trigger it (see Figure 32).

Figure 32: MM-DSL IDE ALL to ABL Translation

In general, to be able to translate the MM-DSL code to the representation a platform

understands, one needs to construct a translator exactly for that purpose. As discussed

before, the difficulty of translator construction depends on the destination platform, be-

cause the translator maps MM-DSL artifacts to the destination platform concepts. The

translator framework provides a template for construction of various translators. In this

template the MM-DSL artifacts are already exposed (as can be seen in the code ex-

cerpts in the previous section). What needs to be done is to specify what kind of desti-

nation platform concepts will be generated for every MM-DSL artifact.

10 MM-DSL IDE 178

10.4.3 Modeling Tool Generation

The final step in the language-oriented modeling tool development process is the gen-

eration of a modeling tool. This responsibility is passed on to the destination platform.

There are two possibilities: (1) seamless integration of MM-DSL IDE with the platform,

or (2) manual import of a file describing a modeling tool into the platform. With seam-

less integration the modeling tool is generated without any additional inputs from the

user. If manual import is used, user still has the possibility to continue implementing the

modeling tool using the destination platform. This is sometimes addressed as imple-

menting (or including) additional functionality (the one that was not covered by MM-

DSL program). Regardless of which of the possibilities has been chosen, the final

product is always a fully functional modeling tool. Figure 33 shows the whole process

of modeling tool development by utilizing MM-DSL.

Figure 33: Using MM-DSL to Develop Modeling Tools

It is important to note that there is currently no reverse way, where we can generate

MM-DSL code from a modeling tool. This kind of functionality may come in handy for

extracting the implementation details from one platform and importing them into the

other platform.

More about the underlying issues and possibilities of MM-DSL, as well as MM-DSL IDE

can be found in the last chapter of this dissertation that gives focus on the future work

that extends MM-DSL and accompanying tools with a purpose to increase the usability

and include additional features.

11 MM-DSL Applications 179

11 MM-DSL Applications

This chapter illustrates a typical MM-DSL modeling tool development scenario. The

same representative example is used to present how the modeling tool development

process looks like when using only a metamodeling platform, and how it looks like

when MM-DSL is included in it. Advantages and disadvantages of utilizing both of

these techniques are clarified as well. A short version of this research has been pub-

lished in [79].

11.1 Running Example: A Pseudo Modeling Method

To better grasp the differences and synergies between the development scenarios, a

simple representative modeling method has been designed, and realized as a model-

ing tool using a state of the art metamodeling approach – the one employing only a

metamodeling platform, as well as the one proposed in this research project – the one

augmenting metamodeling platforms with MM-DSL. The pseudo modeling method,

named “Car Park”, is used to explain both approaches. It is a simple, yet representative

example, which comprises of the most important modeling method building blocks.

The Car Park modeling method models car parks in a specific city and provides in-

sights about: (1) the number of car parks in a city, (2) the type (parking lot or parking

garage), (3) the size, and (4) used spaces in a car park, (5) different vehicle types

which are allowed to park in the current car park (car, truck, motorcycle, or bicycle),

and (6) the available payment options in a car park. The details about the requirements

of this modeling method are depicted in Figure 34.

The elements with the graphical representation are: Car, Truck, Motorcycle, Bicycle, Park-

ing Lot, Parking Garage, and is parked. These are the ones we can model with. The rest

of the elements are either abstract (e.g., Vehicle and Park) or do not have any kind of

graphical representation (e.g., City, and belongs to). Together they form the metamodel

of the Car Park modeling method. The UML Class Diagram notation has been used to

specify the metamodel. The metamodel on the right side of Figure 34 shows the rela-

tions between various modeling method elements: Vehicle is associated with Park with a

relationship is parked; Park is associated with City with a relationship belongs to; Parking

Lot and Parking Garage are specializations of Park; Car, Truck, Motorcycle and Bicycle are

specializations of Vehicle.

In the following sections we will see how successful can each of the development sce-

narios translate this pseudo modeling method into a modeling tool. Both of the devel-

opment processes produce the same result at the end. Thus, the priority is set on the

development process, and the steps that need to be taken to implement a modeling

tool.

11 MM-DSL Applications 180

Figure 34: The Car Park Modeling Method Requirements

11.1.1 Developing with the ADOxx Metamodeling Platform

Before one can start to realize a modeling tool on a metamodeling platform, a meta-

model of a modeling method needs to be designed, as well as specified in detail, and if

necessary accommodated in a way so that it can be instantiated from the provided plat-

form’s meta2model (see chapter 7).

The graphical representation of the modeling method elements (concrete syntax) de-

pends on the functionality provided by the platform. Some of the platforms can only

work with images (e.g. bitmaps), while the others have the mechanisms for drawing

vector objects.

Figure 35: Different Implementations of the Concept Car

11 MM-DSL Applications 181

It is important to understand that by implementing a modeling tool one transfers the

concepts of a modeling method from a conceptual space (e.g., design document) to the

technical space (e.g., metamodeling platform). For example, the concept Car (see Fig-

ure 35) is described by its many facets: inherits from the concept Vehicle, has attributes

(name, color, length, width, height, and weight), relates to the concept Park, has graph-

ical representation, and belongs to the Car Park model type.

The implementation will be more successful if the technology applied provides similar

concepts to the ones defined in the design documentation. Upon taking a closer look at

Figure 35, one can see, in the middle, the illustration of a concept Car. On the left side

are screenshots taken during the implementation of a modeling tool on the ADOxx plat-

form. Note that the tree view at the upper left corner contains many attributes that have

nothing to do with the attributes belonging to the Car. Nevertheless, a developer needs

to be familiar with most of them, especially AttrRep and GraphRep. AttrRep is used to

describe which attributes will be visible to the user of a modeling tool, and GraphRep is

used to define the graphical representation of a modeling element. Model types are

defined in a completely different part of the platform, which can sometime be an incon-

venience during the prototyping phase, because of constant closing and opening of

different windows, which may lead to inconsistencies and errors that cannot be quickly

detected.

Every technology has its disadvantages, and ways how to deal with them. However,

the real issue at hand is the lack of domain-specificity, which many metamodeling plat-

forms share. In case of ADOxx, there are no concepts like “attribute visibility” or “graph-

ical representation”, or any difference between a class and a relationship when defining

a model type. For the platform everything is either a class, or a relation class, or an

attribute. This is an issue that has been addressed with MM-DSL. On the right side of

Figure 35, one can see the same concepts implemented in MM-DSL. Everything is in

one place, in one file. Each artifact has its own syntax and semantics. Thus, the differ-

ence between them is immediately noticeable. How to use MM-DSL to augment the

development of modeling tools is discussed in more detail later in this chapter.

The development scenario which uses only a metamodeling platform is structured in

the following important steps: (1) adapt the provided metamodel if necessary, (2) in-

stantiate the meta2model with the (adapted) metamodel of a modeling method, (3) real-

ize the graphical representation using the tools provided by the platform, (4) implement

additional functionality (algorithms and mechanisms) described by the modeling meth-

od specification document by reusing or extending the platform’s functionality, (5) com-

pile a modeling tool, (6) debug the tool and fix bugs as soon they are found, (7) deploy

and publish the modeling tool. This typical use of a metamodeling platform is illustrated

in Figure 4 where ADOxx is employed to develop a modeling tool for the Car Park

modeling method.

11 MM-DSL Applications 182

Figure 36: Developing a Modeling Tool Using ADOxx

The process starts with the creation of an empty modeling method library which will

hold the modeling method elements (classes, relationships and their attributes), as well

as their graphical representations, and additional functionality (algorithms, mechanism,

and procedures). After the modeling elements have been created, they are assigned to

one or more model types. Model types in ADOxx are essentially containers that contain

parts of a metamodel, and can be instantiated as a diagram in a modeling tool. The

implementation is continued by assigning platform functionality to the modeling ele-

ments, which is done using the ADOscript language. For the Car Par modeling method,

one can define queries that return number of empty car park spaces for every car park,

or dynamically change the graphical representation of modeling elements according to

predefined conditions (e.g., car park full, price range, etc.).

As an interesting fact, it is worth to mention that it has taken around an hour to realize

the Car Park modeling method on the ADOxx metamodeling platform and instantiate

the modeling tool. This time excludes the implementation of any additional functionality

(algorithms and mechanism) upon the basic modeling method. It also needs to be men-

tioned that an experienced ADOxx user has been conducting the mentioned implemen-

tation. Thus, the time investment for a novice user would be considerably higher.

The key advantages of using a metamodeling platform to transfer a modeling method

specification into a modeling tool are the following: (1) provided meta2model and addi-

tional functionality out-of-the-box, (2) click-based development with (almost) no pro-

11 MM-DSL Applications 183

gramming involved, and (3) most platforms typically come equipped with a model re-

pository for storing and versioning of models and their artifacts.

11.1.2 Developing with the MM-DSL

In this section we will see how successfully MM-DSL can be applied in the develop-

ment of modeling tools. The same pseudo modeling method used to illustrate the de-

velopment with ADOxx is used to illustrate the development process with MM-DSL.

This approach extends on the language oriented programming (LOP) paradigm, in

which, rather than solving problems in general purpose programming languages, the

programmer creates one or more DSLs for the problem at hand, and then solves the

problem in those languages. The details about LOP can be found in [90]. However, it is

not necessary to begin designing a DSL for the domain one intends to model from the

scratch. Therefore, MM-DSL has been created with that idea in mind. Most of the basic

notions of the metamodeling approaches which have been established during the last

couple of decades are already included in the language and can be used out-of-the

box. In case that the already provided concepts are not adequate for realizing the en-

visaged modeling method, one can always introduce new concepts to the MM-DSL.

Thus, allowing greater flexibility than the one that can be achieved with a fixed me-

ta2model. By using and extending MM-DSL in a way discussed in here, the modeling

tool will have a greater conformity to the initial modeling method specification.

The necessary knowledge requirements have been taken under consideration and it

has been made sure that MM-DSL in its basic state comes equipped with everything

necessary for the development of modeling tools: (1) its own integrated development

environment, (2) a framework for the development of translators for typical execution

environments (e.g., metamodeling platforms, frameworks), and (3) with the implemen-

tation of a translator for the ADOxx metamodeling platform, which serves as a template

for future translator implementations, and as proof of the concept.

Augmenting a metamodeling platform with MM-DSL allows one to deploy a prototype of

a modeling tool very quickly. Because, the MM-DSL code is self-documenting, no pre-

vious modeling method specification is necessary. One codes and specifies the model-

ing method at the same time. The code is directly compiled into the platform-specific

format and can be immediately executed, producing the modeling tool.

MM-DSL is also very useful in case one wants to implement a modeling method only

once and deploy it to multiple execution environments. Under assumption that MM-DSL

comes equipped with multiple translators, one for each metamodeling platform, it is

very much possible to write code once, and execute it on multiple platforms at the

same time.

It is not assumed that all the functionality one metamodeling platform provides can be

coded with MM-DSL, as well as that not every platform possesses the same function-

ality, therefore the resulting modeling tools might be more complete (when compared to

the modeling method specification) when using one, and less complete when using

11 MM-DSL Applications 184

another metamodeling platform as an execution platform for the MM-DSL programs.

Nevertheless, it is possible to make finishing touches to the modeling tool utilizing the

metamodeling platform itself.

The modeling tool development using MM-DSL (see Figure 33) is structured in the fol-

lowing steps: (1) code a modeling method, (2) compile the code to one or more execu-

tion environments (typically metamodeling platforms), (3) continue adding finishing

touches using the functionality provided by execution environments, and (4) generate a

modeling tool. Step (3) is optional. Continuing the development on the execution plat-

form is only necessary if one requires features that are not covered with MM-DSL. In

step (1) one works with MM-DSL IDE. The IDE discovers bugs and code errors before

compilation. After the code has been compiled to the specific execution environment,

future modifications inside the execution environment can no longer be debugged with

the support of MM-DSL IDE. However, most of the metamodeling platforms provide the

debugging support by themselves, which can be used in step (3).

There is no particular order in coding the modeling method with MM-DSL. One can

start by defining a metamodel (abstract syntax), then structuring it in model types. Af-

terwards, graphical representation (concrete syntax) can be defined. Or vice versa,

start with graphical representation, and then code the metamodel part. Nonetheless,

some of the elements of a modeling method (e.g., classes, relations, attributes) need to

be already present in the code before algorithms can be realized, as most of the algo-

rithms require some sort of input. Inputs to algorithms can be any modeling elements

and their values (attribute values, class or relation instances).

Looking at the code shown in Figure 37, it can be noted that enumerations have been

defined first, followed by definition of styles. These artifacts need to be defined before

they can be referenced. For example, IsParkedGraph is referencing Black style, and

class Park contains attributes that are of type EnumParkType and EnumPayment. We can

define styles inside class symbol and relation symbol statements as well. For example,

style Orange is defined inside class style ParkingLotGraph. Symbols also need to be

defined before they can be referenced by classes or relations. Concept of inheritance is

used in definition of classes Car, Truck, Motorcycle and Bicycle. In the current version of

MM-DSL inheritance only works for the structure. For example, attributes defined in the

class Vehicle will be inherited by the class Car. However, if Vehicle had a symbol associ-

ated with it, it would not be inherited by the class Car. This was a design decision which

helps in differentiating abstract and concrete classes (concrete classes always have a

symbol assigned to them). There is one more relevant concept that needs addressing –

model types. They are used to aggregate modeling elements into a diagram used in-

side a modeling tool. These elements are also visible inside a modeling tool tool-box

(see Figure 38). For example, model type CarPark contains several classes, one rela-

tion, and only a default sub-view (indicated by modes none command). Modes or sub-

views allow selecting which from the existing modeling elements in a diagram we want

to show. There can be multiple modes in one model type.

11 MM-DSL Applications 185

Figure 37: Developing a Modeling Tool Using MM-DSL

The complete implementation of the Car Park modeling method has only 89 lines of

code. The same implementation on the ADOxx platform has 1349 line of code, 15 lines

for each line in MM-DSL program. The reduction of programming effort is considerable.

As an interesting fact, it is worth to mention that the implementation took less than 30

minutes – almost half the time of the ADOxx implementation. However, the implemen-

tation has been done by the MM-DSL creator, so this should also be factored in the

calculation. Very similar example has been given to evaluators to implement. The time

effort was around an hour.

The key advantages of using MM-DSL to code a modeling method and compile it into a

modeling tool are the following: (1) MM-DSL is independent from the execution plat-

form, (2) modeling method concepts coded in MM-DSL can always be reused with or

without modifications, and (4) a short learning curve, because all the concepts are doc-

umented and exposed through the MM-DSL IDE.

Both of the development approaches have produced a modeling tool that looks and

behaves very similarly. A screenshot of the Car Park modeling tool can be seen in Fig-

ure 38. At the top of the figure is a sketch of an expected model produced during the

requirements specification for the Car Park modeling method. One can see that the

modeling tool produces models conform to the given specification.

11 MM-DSL Applications 186

Figure 38: Resulting Modeling Tool

11.2 Conclusion

It is hard to argue which of the presented development scenarios is generally more

viable. Both of them have advantages and disadvantages. At the end it all comes down

to the user’s preferences (although the author of this text firmly believes that MM-DSL

increases effectiveness of modeling tool development in many areas). A user with the

previous programming knowledge and experience will find working with MM-DSL famil-

iar, intuitive and fast. The approach that directly uses a metamodeling platform for

modeling tool realization is more attractive to users that are not familiar with program-

ming (or do not want to program).

The biggest difference between MM-DSL and the metamodeling platform is in their

level of abstraction. MM-DSL abstracts from the execution environments (e.g., meta-

modeling platforms) by providing the domain-specific functionality which is not con-

nected with the technical space of an execution environment, making it a platform in-

dependent approach. The realized modeling tool quality does not only rely on the code

written in the MM-DSL, but as well on the underlying translator which maps the lan-

guage concepts to the execution environment concepts. The development scenario

using only a metamodeling platform is typically very specific to the platform used. In

this scenario one has the entire platform’s functionality out-of-the-box and the possibil-

ity to reuse and extend it. However, this comes with a drawback of locking the future

11 MM-DSL Applications 187

development only to one platform. There is, in most cases, no way of reusing any de-

veloped artifacts (e.g., code, files, etc.) on a different metamodeling platform.

There are three main concerns one needs to tackle with when implementing modeling

tools for modeling methods: abstract syntax, concrete syntax, and algorithms. Here is a

brief overview on how a metamodeling platform handles these issues, and how are

those issues handled with MM-DSL:

- Before one can start with the development of a modeling tool, a metamodel of a

modeling method needs to be designed. This is what represents the abstract

syntax of a modeling method. How will this abstract syntax be implemented on

a metamodeling platform depends on the underlying meta2model. Because MM-

DSL is a language and can be freely extended, there is no dependency on a

particular meta2model.

- Secondly, graphical representation or concrete syntax needs to be specified.

The realization of graphical representation depends on the functionality provid-

ed by the platform. As already mentioned, some of the platforms can only work

with images (e.g. bitmaps), while the others have mechanisms for drawing vec-

tor objects. MM-DSL has SVG-like commands, which is a familiar (SVG is an

open standard developed by W3C) and expressive approach for creating graph-

ical objects.

- Thirdly, algorithms working on modeling elements need to be specified. Most of

the metamodeling platforms use general purpose programming languages (e.g.,

Java, C++) to tackle with this issue. The minority has dedicated DSLs. MM-DSL

includes concepts specialized for development of modeling algorithms, as well

as commands for model manipulation.

Because this is a research work, and one does not want to base the research results

solely on the problems envisaged and solved by the language’s creator, MM-DSL usa-

bility and expressivity testing has also been conducted in the two different studies. In

the first study participants had the opportunity to describe a modeling method with MM-

DSL by using the provided language specification and modeling method requirements.

No IDE has been provided, because the goal was to test understandability and learna-

bility of the language. The IDE’s usability has been tested in an exercise-like environ-

ment, where testers had to extend the given MM-DSL code and compile it to a model-

ing tool. Further details about these studies and their results are discussed in the next

chapter.

12 Evaluation 188

12 Evaluation

This chapter is dedicated to the evaluation of two interconnected artifacts. The first one

is the language – MM-DSL, and the second one is the environment – MM-DSL IDE.

These two artifacts are a part of an approach this dissertation is focused on – the lan-

guage-oriented modeling method engineering. The system as a whole is an environ-

ment where MM-DSL programs can be executed. Thus, it also includes a metamodel-

ing platform for which a translator has been implemented.

12.1 The Language: MM-DSL

To evaluate a computer language external and internal evaluation criteria are used

[103]. External evaluation criteria aggregate various aspects that answer the question

whether a given language meets the needs of a given user community. These are: rap-

id development, easy maintenance, reliability and safety, portability, efficiency, learna-

bility, reusability, and pedagogical value. Internal evaluation criteria are independent of

the demands of its users and represent the good qualities of a language. These are:

readability, writability, simplicity, orthogonality, consistency, expressiveness, and ab-

straction.

12.1.1 External Evaluation Criteria

The external evaluation criteria and how to evaluate them is summed up in Table XIII.

Detail definition of each criterion can be found in dedicated sections afterwards.

Table XIII: External Evaluation Criteria Overview

Criterion How to Evaluate

Rapid development Compare duration of the implementaion to the representative

technology.

Easy maintenance Effort required to maintain the written code.

Reliablity and safety The language includes fault tolerance and fault avoidance

concepts.

Portability Runnability of a written code on several different platforms.

Efficiency Time required to translate (e.g., compile) the code.

Learnability Effort required to invest in learning the language.

Reusability Compare reusability of written code with the representative

technology.

Pedagogical value Ability to use the language to teach concepts it enforces.

12 Evaluation 189

12.1.1.1 Rapid Development

This requirement expresses the productivity of a programmer. In order for the language

to be successful in real life scenarios, a programmer should be able to develop artifacts

with it faster than with previously used technology (e.g., metamodeling platform or

framework, or even another programming language). It is also not possible to evaluate

the productivity of a programmer without considering both the language and its envi-

ronment (IDE).

12.1.1.2 Easy Maintenance

Ability to maintain the code written with a computer language is very important in a long

run. Therefore, code maintenance is always a hot topic, and it is also very subjective.

What one programmer considers a maintainable code, another may consider very con-

fusing and unreadable. Thus, bigger programming languages that support multiple

ways of defining the same artifacts need to have their code formatted according to

rules enforced by a group of programmers that are working together on a project or by

an organization. Smaller languages, like DSLs, which typically provide only one way of

defining a particular artifact, are easier to maintain.

12.1.1.3 Reliability and Safety

A programming language can greatly influence the reliability and safety of a software

system. This is why proven languages, such as C/C++ are used for writing military

grade software. For the most safety critical and long lived systems, the assembly lan-

guages are used. To achieve reliability and safety in a software system we need to

write code in such a way that it doesn’t contain faults (fault avoidance), which is a diffi-

cult task to do. Fault detection mechanisms in the development process helps in pre-

venting the delivery of the faulty software to the customer. In case both fault avoidance

and fault detection fail, software needs to be designed so that faults in it do not result in

complete system failure.

12.1.1.4 Portability

Portability is the ability to run a program on many different platforms, with minimal or no

code rewriting. This property of a language is connected with the availability of different

translators (e.g., compilers, interpreters, code generators). A C++ program can run on

a Windows, as well as on a Linux machine, because there are compilers for both of

those platforms. In case of managed languages, such as Java or C#, a virtual machine

is responsible for interpreting the intermediate binary code format to a native platform

understandable format. The same principle applies to any executable programming

language.

12.1.1.5 Efficiency

Efficiency is a measure that indicates how fast can a translator (e.g., compiler, inter-

preter) build the program from the given source code. The language design has a big

12 Evaluation 190

influence on translator’s complexity and its speed. Simpler languages typically have

faster translators.

12.1.1.6 Learnability

Short training time is one of the factors that make a computer language more attractive.

It also makes it more affordable, because the costs of learning a computer language

are typically high.

12.1.1.7 Reusability

This is one of the properties that increase productivity of software engineers manifold.

It is always beneficial to write a part of the code once and reuse it many times. There-

fore, a language should possess concepts that reduce writing of the same code to the

absolute minimum.

12.1.1.8 Pedagogical Value

Computer languages should support and enforce concepts that are being thought. In

case of C++ some of those concepts would be pointers, arrays, constructors or de-

structors. MM-DSL, for example, enforces metamodeling concepts, such as class, rela-

tion, attribute or model type. Pedagogical value of a language increases if it can be

seamlessly used as an education tool. A typical example is PROLOG, which is very

often used to demonstrate the applications of first-order logic in real world scenarios.

12.1.2 Internal Evaluation Criteria

The internal evaluation criteria and how to evaluate them is summed up in Table XIV.

Detail definition of each criterion can be found in dedicated sections afterwards.

Table XIV: Internal Evaluation Criteria Overview

Criterion How to Evaluate

Readability Effort required to understand the meaning of the written code.

Writability Express the meaning of code as concise and unambiguous as

possible.

Simplicity Measures the number of primitive concepts a language has.

Orthogonality Expresses how primitive concepts are combined together.

Consistency Measures consistency of languages syntax and semantics.

Expressiveness Compare expressiveness of the language with the representative

technology.

Abstraction Measures the ability of a language to hide unessential properties

and concentrate on the essential ones.

12 Evaluation 191

12.1.2.1 Readability

Readability is a feature that measures the understandability of computer programs.

When developing a language, one of the aims is to make it easily interpretable by its

users. Following the general trends is one way to accomplish this. For example, if a

language needs to have selection statements, much better approach would be to reuse

the syntax and semantics of already established statements such as if-else or switch

statements than to introduce different selection statements without a good reason. An-

other way is to syntactically and semantically adapt the language’s statements so that

they are identical or very similar to the vocabulary already used by the domain experts

(e.g., a class as a concept has a universal meaning in the metamodeling community).

That way, the language constructs will be familiar to the users that do not have a lot of

experience writing programs in it.

12.1.2.2 Writability

The ability to say what you mean without excessive verbosity is another feature one

needs to consider when developing new computer languages. Writability of a language

manifests itself through the ability to write concise statements that are rid of any ambi-

guities. It also manifests itself through the ease to modify the already written code, ei-

ther by adding, deleting or changing something in it.

12.1.2.3 Simplicity

The feature of simplicity is one that measures the number of features a computer lan-

guage possesses and compares it to the number of features the language should have,

which is always the minimal number of features. For example, the language such as

MM-DSL does not need a concept of a memory pointer, because there is no use for it

in the metamodeling domain. However, C++ that is applied in the development of em-

bedded systems does need pointers, because programmers need a way to tackle with

memory issues.

12.1.2.4 Orthogonality

In computer programming, orthogonality is an important concept that addresses how a

relatively small number of concepts can be combined in a relative small number of

ways to get the desired results. It is strongly connected with simplicity – the more or-

thogonal the design, the fewer exceptions. This makes it easier to learn, read and write

programs as well.

12.1.2.5 Consistency

A computer language should be consistent in its syntax and semantics. There shouldn’t

be any inconsistencies without a valid reason. For example, an assignment operator

should be consistent throughout the language. The same goes for any kind of language

concept.

12 Evaluation 192

12.1.2.6 Expressiveness

The programmer will be more productive if he is able to express the concepts naturally.

This can be general concepts, such as algorithms, or very domain-specific concepts,

such as model type. Typically, DSLs do a better job expressing a limited amount of

domain-specific concepts, but fail to express anything unrelated with the particular do-

main they are developed for. GPLs are better at expressing generic concepts, which

spread across multiple domains, but require a lot of boilerplate code to be able to ex-

press domain-specific concepts.

12.1.2.7 Abstraction

The ability of a computer language to remove (or hide) characteristics from something

in order to reduce it to a set of essential characteristics is called abstraction, and it is

one of the central principles in computer science. Using a language that supports ab-

straction, a programmer is able to hide all but the relevant data about an object in order

to reduce complexity and increase efficiency. This is done by separation of concerns.

In a typical programming language, most general example could be the separation of

user interfaces, business logic and data models. MM-DSL also separates concerns, for

example visualization is separated from abstract syntax definitions.

12.1.3 Evaluation Scenario

To evaluate the mentioned language properties, an exercise has been developed. In

this exercise, the participants had to write code for a simple modeling method. The only

help they were provided was the language specification document. No software sup-

port was given, except a plain text editor. The participants had the opportunity to study

the specification document for one day, so they get familiar with the language’s syntax

and semantics. The actual implementation using MM-DSL was limited to 60 minutes.

Full description of the exercise is given in Appendix D: Exercise Used to Evaluate MM-

DSL.

12.1.4 Evaluation Results

Exercise results were graded between 0 and 5, where 0 represents that no MM-DSL

code has been written, and 5 represents that the MM-DSL code describes the given

modeling method perfectly, and that it can be compiled without any modification. See

Table XV for the description of all the grades.

Table XV: Language Evaluation Grading and Description

Grade Description

0 No code was submitted

1 Code describes the modeling method very poorly and it cannot be com-

12 Evaluation 193

piled without severe rewrite

2 Code describes the modeling method sufficiently, but major modifications

are needed to be able to compile the code

3 Code describes the modeling method sufficiently; minor modifications are

needed to be able to compile the code

4 Code describes the modeling method very well; minor modifications are

needed to be able to compile the code

5 Code describes the modeling method perfectly and can be compiled with-

out any modifications

The number of participants was twenty-two. From these twenty-two participants, eight

have scored the best grade (5), twelve have scored 4, and two have scored 3. No par-

ticipant has scored lower than 3. The average grade was 4.27. These results indicate

that most of the participants have understood the language concepts and were able to

describe the given modeling method very well. However, some of the MM-DSL code

had to be slightly modified before it could be compiled.

Table XVI and Table XVII show in what extend does MM-DSL satisfy the given lan-

guage evaluation criteria. These results were extracted from the feedback that was

collected from the participants after the exercise finished.

Table XVI: Fulfilment of External Evaluation Criteria

Criterion Fulfillment Comment

Rapid Development high Even without the IDE support, it was possible

to describe a simple modeling method within

one hour.

Easy Maintenance medium The code is easy to maintain in case there is

no external (embedded) code included. Em-

bedded code increased maintenance efforts.

Reliability and Safety low Because MM-DSL is not developed with safety

critical systems in mind, it does not support

such features.

Portability high It is possible to run MM-DSL programs on mul-

tiple metamodeling platforms.

Efficiency high There is no preprocessing and translation of

code is relatively fast.

Learnability high It is possible to learn and understand the lan-

guage in a less than a day time just by study-

ing the specification.

Reusability high Most of the concepts defined in MM-DSL can

be reused.

12 Evaluation 194

Pedagogical Value high MM-DSL contains all the essential metamodel-

ing concepts and it is a good language for nov-

ices in this domain.

Table XVII: Fulfilment of Internal Evaluation Criteria

Criterion Fulfillment Comment

Readability high The concepts included in MM-DSL are identical

or very similar to the concepts used by domain

experts.

Writability high It is possible to write concise statements. The

code is easily modifiable.

Simplicity high Only the essential features are included in the

language. If more are required, the language is

easily extendable.

Orthogonality medium It is easy to combine concepts to define other

concepts. How one can combine these concepts

is limited to avoid unnecessary complexity.

Consistency medium In the evaluated version, there were some incon-

sistencies between various commands.

Expressiveness high MM-DSL is very expressive in a metamodeling

domain.

Abstraction medium MM-DSL separates concerns by providing spe-

cialized sections for e.g. visualization or abstract

syntax. However, all concerns are typically locat-

ed in one file (which is actually not required).

12.2 The Environment: MM-DSL IDE

MM-DSL IDE is a software system. Therefore, a different approach is used to evaluate

it. The key criterion here is the usability. For this purpose, evaluators had to work with

the system to accomplish tasks. For this purpose, a prototype implementation has been

developed. This prototype has been tested by participants of the “Next Generation Enter-

prise Modeling” summer school that took place in Klagenfurt from July 6th to July 19th,

2014.

12.2.1 Evaluation Scenario

The task at hand was to extend the given MM-DSL program with additional code seg-

ments and compile it. During this process MM-DSL IDE has been used. The testers

had to repeat this extension and compilation process several times. Afterwards, the

12 Evaluation 195

participants had to fill out the standard System Usability Scale (SUS) questionnaire.

The SUS [104], as a tool for assessing the usability of MM-DSL IDE has been choses

for its simplicity, effectiveness and large database of SUS scores (it is in use since

1986). It is also free.

Full description of the given exercise can be found in Appendix E: Exercise Used to

Evaluate MM-DSL IDE.

12.2.2 System Usability Scale

The SUS is composed of ten statements, each having a five-point scale that ranges

from Strongly Disagree to Strongly Agree. See Appendix F: Standard SUS Questionnaire

for more detailed insight into the SUS questionnaire structure. Among these ten state-

ments, five are positive statements and five are negative statements. The negative and

positive statements alternate: 1, 3, 5, 7, and 9 are positive statements, and 2, 4, 6, 8,

and 10 are negative statements. Each statement contributes to the SUS score in the

following way [104]:

- Each statement’s score contributes with range from 0 to 4;

- For items 1, 3, 5, 7, and 9 the score contribution is the scale position (1 – 5) mi-

nus 1;

- For item 2, 4, 6, 8, and 10 the score contribution is 5 minus the scale position (1

– 5);

- Multiply the sum of the scores by 2.5 to obtain the overall value of SUS score.

SUS as a usability evaluation tool provides an easy-to-understand score from 0 (nega-

tive) to 100 (positive). In this evaluation an adjective rate suggested in [105] is used to

interpret the meaning of SUS scores. While a 100-point scale allows for relative judg-

ments between systems, an adjective rate scale translates numeric scores into an ab-

solute judgment. Table XVIII shows the mapping between the numeric score and the

adjective rate scale. The empirical studies suggest that the SUS score below 50 indi-

cated that the system needs usability improvements, and a score of 70 is generally a

passing grade or system with above average usability.

Table XVIII: Descriptive Statistics of SUS Scores for Adjective Ratings (adapted from

[105])

Adjective Average SUS Score Standard Deviation

Worst Imaginable 12,5 13,1

Awful 20,3 11,3

Poor 35,7 12,6

12 Evaluation 196

OK (Fair) 50,9 13,8

Good 71,4 11,6

Excellent 85,5 10,4

Best Imaginable 90,9 13,4

The following questions are typically found on the standard SUS questionnaire:

1. I think that I would like to use this system frequently.

2. I found the system unnecessary complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

These questions, without modification, have been used in the MM-DSL IDE evaluation.

In the following section the results and meaning of scores each question has received

are discussed.

12.2.3 Evaluation Results

Thirty-one participants have contributed to the evaluation results that will be presented

and discussed here. Figure 39 shows the average results for each question. For ques-

tion 1, 3, 5, 7 and 9 higher result is the better result. For question 2, 4, 6, 8 and 10,

lower result is the better result. What the results on this graph show is that the group of

testers had approximately the same amount of participants that have found the MM-

DSL IDE very usable, and the ones that found it borderline usable. This may be noticed

in average score of opposing questions. In SUS questionnaires there are two questions

that represent the same facet of the system, but from opposite viewpoints. The ques-

tions are grouped in pairs: 1 and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, where first

question is in a positive form and second one in a negative form. For example, if we

look the average score of questions 9 and 10, which is 3.226, respectively 2.968, we

can see that the results do not differ significantly. High score for question 9 indicates

that the tester has found MM-DSL very comfortable to work with. We can assume that

12 Evaluation 197

the tester has a good background in metamodeling and didn’t have to learn a lot of new

things before he could efficiently use the system. High score for question 10 indicates

the lack of previous metamodeling knowledge. The group of people that has participat-

ed in testing the MM-DSL IDE has divergent backgrounds. Some of them are computer

science students, while the others are business students. Some of them have worked

with metamodeling techniques before, while the others have never used such tech-

niques in the past. This is why some of the opposing questions have similar scores.

Figure 39: Average SUS Score for Each Question

Figure 40 shows the calculated SUS scores for each of the thirty-one participants. The

highest SUS score is 95, and the lowest one is 20. The average SUS score is 58,

which indicates average or fair usability. However, as mentioned before, not all partici-

pants had the same knowledge about metamodeling techniques. This also needs to be

taken under consideration when interpreting the SUS score. It is also important to note

that twenty from thirty-one (64.5 %) participant have a score higher than 50, three ex-

actly 50, and the rest below 50 (25.8 %). Test results show the correlation between a

high score on question 10 and the overall SUS score on the questionnaire. The partici-

pants that have scored lower than 50 all had very high scores on question 10.

Figure 40: SUS Scores for Each Participant

3.322580645

2.838709677
3.064516129

2.709677419

3.580645161

1.903225806

3.129032258
2.838709677

3.225806452
2.967741935

1 2 3 4 5 6 7 8 9 10

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

12 Evaluation 198

Figure 41, 42, 43, 44, 45, 46, 47, 48, 49, and 50 show scores from a single question

from every participant. That is, Figure 41 shows all the scores for question 1, Figure 42

shows all the scores for question 2, etc.

Figure 41: SUS Question 1

Figure 42: SUS Question 2

Figure 43: SUS Question 3

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Quesion 1. I think that I would like to use this system frequently

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 2. I found the system unnecessarily complex

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 3. I thought the system was easy to use

12 Evaluation 199

Figure 44: SUS Question 4

Figure 45: SUS Question 5

Figure 46: SUS Question 6

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 4. I think that I would need the support of a technical
person to be able to use this system

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 5. I found the various functions in this system were well
integrated

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 6. I though there was too much inconsistency in this
system

12 Evaluation 200

Figure 47: SUS Question 7

Figure 48: SUS Question 8

Figure 49: SUS Question 9

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 7. I would imagine that most people would learn to use
this system very quickly

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 8. I found the system very cumbersome to use

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 9. I felt very confident using the system

12 Evaluation 201

Figure 50: SUS Question 10

Overall evaluation score is acceptable, but additional usability improvements need to

be considered in the next version of the MM-DSL IDE. For the overview of all the eval-

uation results see Appendix G: MM-DSL IDE Evaluation Results Overview.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Question 10. I needed to learn a lot of things before I could get
going with this system

13 Summary and Outlook 202

13 Summary and Outlook

This dissertation project has been focused on improving the state of the art of the met-

amodeling research and its application in the development of a very specific kind of

software – modeling tools. Although, concepts presented in this dissertation cover the

realization of any graphical modeling language, the primary focus is set on modeling

methods. The language-oriented approach used in this research envelopes all of the

facets of a modeling method: abstract and concrete syntax, semantics, algorithms,

mechanism and procedures.

MM-DSL, which is a technical implementation of the proposed language-oriented mod-

eling method engineering approach, can be used to describe all of the modeling meth-

od facets. Modeling methods coded with MM-DSL can be executed on a metamodeling

platform, creating a modeling tool. As a concept, MM-DSL is independent from its exe-

cution environment (which is mainly a metamodeling platform).

The similarity between meta2models, which lie at the root of every metamodeling tech-

nology, is the secret ingredient that allows MM-DSL to be platform independent and at

the same time very expressive in describing modeling methods. Considerable effort

has been invested to discover the hidden links between various meta2models. Because

of the different syntax that describes the structure of meta2model elements, it was not

easy to find similarities between concepts in some of the meta2models. Most important

fact that has been discovered is that this different syntax maps to the same semantics.

For example, a concept of a relation in one meta2model is a single element, (e.g., a

class in UML class diagram notation). In another meta2model it is composed of several

UML classes and relationships. But it is still a concept of a relation on an abstract level,

therefore, semantically identical. MM-DSL translators (compilers, interpreters or code

generators, depending on the execution platform) leverage the similarity of me-

ta2models to map the language concepts to the execution platform meta2model. Adapt-

ing an already developed translator to the new platform is a straight forward process

where one maps language concepts to the platform’s meta2model concepts. In this

case, MM-DSL’s concept of a class will be mapped to the platform’s representation of a

class. The same goes for every other MM-DSL concept. If there are MM-DSL concepts

that are not supported by the execution platform, they will not be mapped. This means

that the language itself still supports them, but the platform doesn’t know what to do

with them and will ignore them. If there are platform concepts that are not included in

MM-DSL, one can include them as extensions. Careful consideration is advised when

extending the language, because one does not want to: (1) invalidate the previously

written code, and (2) make the language platform-specific.

Although, a lot of effort has been invested in finding the right concepts that are current-

ly included in MM-DSL, there are most certainly some that have been missed or will

13 Summary and Outlook 203

need to be included in the future. That is fine, and it is also expected, because every

live language evolves over time.

The following are some of the suggested improvements which have been gathered

from the community’s feedback and throughout the evaluation process.

13.1 MM-DSL as an XML-Based Language

In some scenarios, there may be a necessity to change the concrete syntax of MM-

DSL. Because XML-based languages are essentially very simple, they are wide spread

and utilized by more people than programming languages. Although, MM-DSL is, from

a perspective of a computer scientist and an experienced programmer, very easy to

learn and apply, there are metamodeling experts that want to have an alternative way

of describing domain concepts. This is why metamodeling community has expressed

the need to encapsulate MM-DSL concepts in an XML format.

Additionally, transferring XML-based format messages over the computer network is a

standardized procedure, which opens a possibility to provide MM-DSL and its transla-

tors as a service over the Internet.

13.2 Reverse Engineering: From Modeling Tools to Code

Currently, there is no support to automatically reverse engineer a modeling tool back to

its MM-DSL program. MM-DSL translators only work in one direction: from MM-DSL

code to execution platform format.

In a scenario, when one wants to migrate an already realized modeling method to an-

other metamodeling platform, it would be useful to be able to translate the platform

format to MM-DSL code. This is considered as reverse engineering. Reduction in effort

and time needed to manually perform such an activity is very noticeable. Days or even

months of hard work may be accomplished in minutes.

Reverse engineering itself is a very complex process. Therefore, the mapping of plat-

form-specific code to MM-DSL may not produce a code that can be executed without

adaption. Such activity would still require some basic knowledge of MM-DSL.

Finally, to produce another modeling tool, MM-DSL code is executed on another met-

amodeling platform. This entails that a translator for that particular platform already

exists.

13.3 Additional Compilers

It has already been mentioned that a translator is required for each metamodeling plat-

form where one wants to execute MM-DSL code. Precisely, a translator needs to be

adapted to the underlying meta2model. Basically, platforms that are based around the

same meta2model can in theory use identical translators. In most cases, provided

13 Summary and Outlook 204

translator needs to be changed according to the format that execution platform under-

stands.

There is also a possibility to use the already present framework to generate a different

output. For example, one can use MM-DSL to describe a metamodel and then write a

compiler that produces validation rules, which can be in form of first-order logic, de-

scriptive logic, or any other format understandable by the rule system that will be used

afterwards. These kind of special purpose compilers open several new MM-DSL appli-

cation scenarios. We can describe modeling methods, and analyze them in several

different ways at the same time. Verification is only one example. A compiler can also

generate graphical artifacts, for example graphs where nodes represent classes and

edges represent relations for the described metamodel. These graphs can also be at-

tributed, which gives means to indicate if an element of a metamodel has attributes,

including the type of these attributes, as well as if it has a graphical representation.

13.4 Towards Standardization

Nowadays, modeling and metamodeling communities depend upon a myriad of differ-

ent tools and languages. There is no real medium for communication which is under-

stood by everyone. There is no standard. There is no consensus on the terminology,

except for the very basic terms such as class, relation or attribute. Prominent examples

are the terms modeling method and modeling language. There are communities that do

not acknowledge the existence of a modeling method as is described in this work. For

these communities, what we consider a modeling method is a modeling language.

What we consider a model type is a metamodel, and what we consider a metamodel is

an integrated metamodel. There is no right or wrong in any of the terms mentioned

here. However, communication is sometimes difficult, especially if the researches from

different communities meet for the first time.

Eclipse community, as one of the largest modeling communities that produces meta-

modeling and modeling tools, has been very influential in the last couple of years,

mostly because the tools are simple to use and provided as open source. Almost all of

the modeling tools are based on Ecore meta2model which has become de facto a

standard. The conceptual roots of Ecore come from OMG and its MOF, precisely

EMOF or Essential MOF. MOF is also the source of modeling and metamodeling ter-

minology for several communities. However, there exist some issues with Ecore: (1)

Eclipse dependent implementation, and (2) it is not a language, but a meta2model,

thus, it only contains the concepts for defining abstract syntax and semantics. Other-

wise, it is a solid candidate for standardization.

MM-DSL itself was not developed with the standardization in mind. Nevertheless, it

may serve as a communication medium between modeling method engineers until a

more suitable language emerges. What makes this possible is the fact that MM-DSL

contains all the needed concepts for modeling method description. Its specification is

open and accessible, which makes understanding the syntax and semantics of the lan-

13 Summary and Outlook 205

guage much easier. And last, but not the least, it is a community effort and communi-

ty’s feedback is reflected in the language itself and it is guiding its evolution. The ver-

sion of MM-DSL described in this dissertation is not the initial version. There have been

three previous versions and an additional IDE prototype. It is also very possible that the

currently available version is not the one described in here, because the language itself

is constantly changing and growing, as well as its IDE and other tools that support it.

Appendix A: MM-DSL Specification in EBNF 206

Appendix A: MM-DSL Specification in EBNF

root ::=

 methodname (includelibrarytype | embedplatformtype | embedcodetype)* includelibrary* embedcode* method

methodname ::=

 'method' name

includelibrary ::=

 'include' '<' name (':' name-includelybrarytype)? '>'

includelibrarytype ::=

 'def' 'IncludeLibraryType' name

embedcode ::=

 'embed' name '<' name-embedplatformtype (':' name-embedcodetype)? '>' 'start' embeddedcodegoeshere 'end'

embedplatformtype ::=

 'def' 'EmbedPlatformType' name

embedcodetype ::=

 'def' 'EmbedCodeType' name

insertembedcode ::=

 'insert' name-embedcode

method ::=

 enumeration* symbolstyle* symbolclass* symbolrelation* metamodel algorithm* event*

enumeration ::=

 'enum' name '{' enumvalues+ '}'

metamodel ::=

 class+ relation* attribute* modeltype+

class ::=

 'class' name ('extends' name-class)? ('symbol' name-symbolclass)?

 '{' (classattribute | attribute | reference | insertembedcode)* '}'

relation ::=

 'relation' name ('extends' name-relation)? ('symbol' name-symbolrelation)?

 'from' name-class 'to' name-class '{' (attribute | insertembedcode)* '}'

attribute ::=

 'attribute' name ':' type ('acccess' ':' acesstype)?

accesstype ::=

 'write' | 'read' | 'internal'

reference ::=

 'reference' name '->' name-modeltype name-class?

classattribute ::=

 'classattribute' name ':' type

type ::=

 simpletype | enumtype

simpletype ::=

 'string' | 'int' | 'double'

enumtype ::=

 'enum' name-enumeration

modeltype ::=

 'modeltype' name '{' 'classes' name-class+ 'relations' ('none' | name-relation+)

 'modes' ('none' | name-mode+) '}'

mode ::=

 'mode' name 'include' 'classes' name-class+ 'relations' ('none' | name-relation+)

symbolclass ::=

 'classgraph' name ('style' name-symbolstyle)? '{' (svgcommand | insertembedcode)* '}'

symbolrelation ::=

 'relationgraph' name ('style' name-symbolstyle)? '{' 'from' (svgcommand | insertembedcode)*

 'middle' (svgcommand | insertembedcode)* 'to' (svgcommand | insertembedcode)* '}'

svgcommand ::=

 (rectangle | circle | ellipse | line | polyline | poligon | path | text) symbolstyle

rectangle ::=

 'rectangle' 'x' '=' REALNUMBER 'y' '=' REALNUMBER 'w' '=' NUMBER 'h' '=' NUMBER

circle ::=

 'circle' 'cx' '=' REALNUMBER 'cy' '=' REALNUMBER 'r' '=' NUMBER

Appendix A: MM-DSL Specification in EBNF 207

ellipse ::=

 'ellipse' 'cx' '=' REALNUMBER 'cy' '=' REALNUMBER 'rx' '=' REALNUMBER 'ry' '=' REALNUMBER

line ::=

 'line' 'x1' '=' REALNUMBER 'y1' '=' REALNUMBER 'x2' '=' REALNUMBER 'y2' '=' REALNUMBER

polyline ::=

 'polyline' 'points' '=' points+

polygon ::=

 'polygon' 'points' '=' points+

path ::=

 'path' 'd' '=' pathdata+

text ::=

 'text' value 'x' '=' REALNUMBER 'y' '=' REALNUMBER ('font-family' '=' fontfamily)?

 ('font-size' '=' fontsize)? ('fill' '=' fillcolor)?

pathdata ::=

 moveto | lineto | horizontallineto | verticallineto | curveto | smoothcurveto |

 quadraticbeziercurveto | smoothquadraticbetiercurveto | ellipticalarc | closepath

moveto ::=

 ('M' | 'm') pathparametersMLT+

lineto ::=

 ('L' | 'l') pathparametersMLT+

horizontallineto ::=

 ('H' | 'h') pathparametersHV+

verticallineto ::=

 ('V'| 'v') pathparametersHV+

curveto ::=

 ('C' | 'c') PathParametersC+

smoothcurveto ::=

 ('S' | 's') pathparametersS+

quadraticbeziercurveto ::=

 ('Q' | 'q') pathparametersQ+

smoothquadraticbeziercurveto ::=

 ('T' | 't') pathparametersMLT+

ellipticalarc ::=

 ('A' | 'a') pathparametersA+

closepath ::=

 ('Z' | 'z')

points ::=

 x ',' y

pathparametersHV ::=

 x

pathparametersMLT ::=

 x ',' y

pathparametersS ::=

 x2 y2 x y

pathparametersQ ::=

 x1 y1 x y

pathparametersC ::=

 x1 y1 x2 y2 x y

pathparametersA ::=

 rx ',' ry xaxisrot largearcflag sweepflag x y

symbolstyle ::=

 'style' name '{' 'fill' ':' ('none' | fillcolor) 'stroke' ':' strokecolor 'stroke-width' ':' strokewidth

 ('font-family' ':' fontfamily)? ('font-size' ':' fontsize)? '}'

fillcolor ::=

 color | HEXCOLOR

color ::=

 standardHTMLcolors

fontfamily ::=

 STRING | font

font ::=

 standardWindowsFonts

fontsize ::=

 NUMBER

algorithm ::=

 'algorithm' name '{' statement* '}'

Appendix A: MM-DSL Specification in EBNF 208

statement ::=

 selectionstatement | loopstatement | variable | algorithmoperation | insertembedcode

selectionstatement ::=

 ('if' '(' expression ')' '{' statement* '}') (('elseif' '(' expression ')' '{' statement* '}')*

 'else' '{' statement* '}')?

loopstatement ::=

 whileloop | forloop

whileloop ::=

 'while' '(' expression ')' '{' (statement | ('break' | 'continue'))* '}'

forloop ::=

 'for' '(' start ';' stop ';' interval ')' '{' (statement | ('break' | 'continue'))* '}'

variable ::=

 ('var' name (operatorassign varstatement)?) | (name-variable operatorassign varstatement)

varstatement ::=

 expression | algorithmoperation | ('class' name-class) | ('attribute' name-attribute) |

 ('reference' name-reference) | ('symbolclass' name-symbolclass) | ('symbolrelation' name-symbolrelation) |

 ('symbolstyle' name-symbolstyle) | ('embedded' name-embedcode) | ('modeltype' name-modeltype)

operatorassign ::=

 '=' | '+=' | '-=' | '*=' | '/='

operatorunary ::=

 '!'

operatormultiply ::=

 '*' | '/' | '%'

operatoradd ::=

 '+' | '-'

operatorcompare ::=

 '>=' | '<=' | '>' | '<'

operatorequal ::=

 '==' | '!='

operatorand ::=

 '&&'

operatoror ::=

 '||'

expression ::=

 orexpression

orexpression ::=

 andexpression (operatoror andexpression)*

andexpression ::=

 equalexpression (operatorand equalexpression)*

equalexpression ::=

 compareexpression (operatorequal compareexpression)*

compareexpression ::=

 additionexpression (operatorcompare additionexpression)*

additionexpression ::=

 multiplicationexpression (operatoradd multiplicationexpression)*

multiplicationexpression ::=

 unaryexpression (operatormultiply unaryexpression)*

unaryexpression ::=

 operatorunary? primaryexpression

primaryexpression ::=

 atomicexpression | ('(' orexpression ')')

atomicexpression ::=

 'true' | 'false' | name-variable | STRING | RealNumber

algorithmoperation ::=

 fileoperation | diroperation | simpleui | modeloperation | instanceoperation | attributeoperation

fileoperation ::=

 'file' '.' (filecopy | filedelete | filecreate | fileread | filewrite)

filecopy ::=

 'copy' 'source' src 'destination' dest

filedelete ::=

 'delete' filename

filecreate ::=

 'create' filename

fileread ::=

 'read' filename

Appendix A: MM-DSL Specification in EBNF 209

filewrite ::=

 'write' filename ('append')?

diroperation ::=

 'dir' '.' (dirsetworking | dircreate | dirdelete | dircreate | dirlist)

dirsetworking ::=

 'set' dirname

dircreate ::=

 'create' dirname

dirdelete ::=

 'delete' dirname

dirlist ::=

 'list' dirname

simpleui ::=

 'ui' '.' (editbox | infobox | errorbox | warningbox | viewbox | itemoperation)

editbox ::=

 'editbox' title text ('button' okbuttontext)?

infobox ::=

 'infobox' title text

errorbox ::=

 'errorbox' title text 'button' buttontype

warningbox ::=

 'warningbox' title text 'button' buttontype

buttontype ::=

 'ok' | 'ok-cancel' | 'yes-no' | 'yes-no-cancel' | 'retry-cancel' | 'def-ok' | 'def-cancel' |

 'def-yes' | 'def-no' | 'def-retry'

viewbox ::=

 'viewbox' title text

itemoperation ::=

 'item' '.' (menuitem | contextitem)

menuitem ::=

 'menu' '.' (insertmenuitem | removemenuitem)

insertmenuitem ::=

 'insert' name 'to' menu

removemenuitem ::=

 'remove' name-menuitem

contextitem ::=

 'context' '.' (insertcontextitem | removecontextitem)

insertcontextitem ::=

 'insert' name 'to' context

removecontextitem ::=

 'remove' name-contextitem

modeloperation ::=

 'model' '.' (modelcreate | modeldelete | modeldiscard | modelsave | modelload | modelisloaded)

modelcreate ::=

 'create' name name-modeltype

modeldelete ::=

 'delete' name-model

modeldiscard ::=

 'discard' name-model

modelsave ::=

 'save' name-model

modelload ::=

 'load' name-model

modelisloaded ::=

 'isloaded' name-model

instanceoperation ::=

 'instance' '.' (classinstance | relationinstance)

classinstance ::=

 'class' '.'

 (classinstancecreate | classinstancedelete | classinstanceget | classinstanceset | classinstancegetall)

classinstancecreate ::=

 'create' name name-class

classinstancedelete ::=

 'delete' name-classinstance

classinstanceget ::=

Appendix A: MM-DSL Specification in EBNF 210

 'get' name-classinstance

classinstanceset ::=

 'set' name-classinstance

classinstancegetall ::=

 'getall' name-class

relationinstance ::=

 'relation' '.'

 (relationinstancecreate | relationinstancedelete | relationinstanceget |

 relationinstanceset | relationinstancegetall)

relationinstancecreate ::=

 'create' name 'from' name-classinstancefrom 'to' name-classinstanceto

relationinstancedelete ::=

 'delete' name-relationinstance

relationinstanceget ::=

 'get' name-relationinstance

relationinstanceset ::=

 'set' name-relationinstance

relationinstancegetall ::=

 'getall' name-relation

attributeoperation ::=

 'attribute' '.' (attributeget | attributeset)

attributeget ::=

 'get' '.' attributegetparams

attributegetparams ::=

 ('type' | 'value' | 'name')

attributeset ::=

 'set' '.' attributesetparams

attributesetparams ::=

 'value'

event ::=

 'event' eventname '.' 'execute' '.' name-algorithm

eventname ::=

 'BeforeCreateModel' | 'BeforeCreateRelationInstance' | 'BeforeDeleteInstance' | 'BeforeDeleteModel' |

 'BeforeDiscardModel' | 'BeforeSaveModel' | 'CreateInstance' | 'CreateModel' | 'CreateRelationInstance' |

 'DeleteInstance' | 'DeleteModel' | 'DeleteRelationInstance' | 'DiscardInstance' | 'DiscardModel' |

 'OpenModel' | 'RenameInstance' | 'SaveModel' | 'SetAttributeValue' | 'AfterCreateModelingConnector' |

 'AfterCreateModelingNode' | 'AfterEditAttributeValue' | 'ToolInitialized'

name ::=

 ID

ID ::=

 '^'?('a..z'|'A..Z'|'_') ('a..z'|'A..Z'|'_'|'0..9')*

REALNUMBER ::=

 ('-')? Number

NUMBER ::=

 (HEX | (INT | DECIMAL) ('.' (INT | DECIMAL))?)

HEX ::=

 ('0x'|'0X') ('0..9'|'a..f'|'A..F'|'_')+

INT ::=

 '0..9' ('0..9'|'_')*

DECIMAL ::=

 INT (('e'|'E') ('+'|'-')? INT)?

HEXCOLOR ::=

 '#' ('a..f'|'A..F'|'0..9') ('a..f'|'A..F'|'0..9') ('a..f'|'A..F'|'0..9') ('a..f'|'A..F'|'0..9')

Appendix B: MM-DSL – Xtext Language Description 211

Appendix B: MM-DSL – Xtext Language Description

/***
 * Copyright (c) 2015 Niksa Visic.
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/epl-v10.html
 ***/

//grammar org.xtext.nv.dsl.MMDSL
//grammar org.xtext.nv.dsl.MMDSL with org.eclipse.xtext.common.Terminals
//grammar org.xtext.nv.dsl.MMDSL with org.eclipse.xtext.xbase.Xtype

grammar org.xtext.nv.dsl.MMDSL with org.eclipse.xtext.xbase.Xbase

import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.eclipse.org/xtext/common/JavaVMTypes" as types
import "http://www.eclipse.org/xtext/xbase/Xbase"

generate mMDSL 'http://www.xtext.org/nv/dsl/MMDSL'

// AST Root
Root:
 methodname=MethodName
 (includelibrarytype += IncludeLibraryType | embedplatformtype += EmbedPlatformType | embedcodetype +=
EmbedCodeType)*
 (includelibrary += IncludeLibrary)*
 (embedcode += EmbedCode)*
 method=Method
;

// used to generate the ADOxx library name
MethodName:
 'method' name=ValidID
;

// standard library defined for specific metamodeling platform, like ADOxx, Eclipse EMP, ...
// eg., include <adoxx:graphrep>

IncludeLibrary:
 'include' '<' name=ValidID (':' includelibrarytype=[IncludeLibraryType|QualifiedName])? '>'
;

IncludeLibraryType:
 'def' 'IncludeLibraryType' name=ValidID
;

EmbedCode:
 'embed' name=ValidID '<' embedplatformtype=[EmbedPlatformType|QualifiedName] (':' embedcode-
type=[EmbedCodeType|QualifiedName])? '>'
 '{' embeddedcode=STRING '}'
;

EmbedPlatformType:
 'def' 'EmbedPlatformType' name=ValidID
;

EmbedCodeType:
 'def' 'EmbedCodeType' name=ValidID
;

InsertEmbedCode:
 'insert' codesnippetname=[EmbedCode|QualifiedName]
;

// modeling method contains one modeling language aka. metamodel,
// zero or more algorithms,
// zero or more mechanisms,
// zero or more procedures.
Method:
 (enumeration += Enumeration)*
 (symbolstyle += SymbolStyle)*
 (symbolclass += SymbolClass)*
 (symbolrelation += SymbolRelation)*
 metamodel=Metamodel
 (algorithm += Algorithm)*
 (event += Event)*
;

Appendix B: MM-DSL – Xtext Language Description 212

// enumerations are defined inside method scope and can be used as an attribute type
Enumeration:
 'enum' name=ValidID '{' (enumvalues += STRING)+ '}'
;

 /*

 * Metamodel Grammar

 */

// a metamodel is a construct containing:
// 1) at least one class
// 2) zero or more relations
// 3) zero or more attributes
// 4) at least one modeltype
Metamodel:
 (class += Class)+
 (relation += Relation)*
 (attribute += Attribute)*
 (modeltype += ModelType)+
;

// a class is a constructs that:
// 1) can extend other class
// 2) can contain zero or more attributes
Class:
 'class' name=ValidID ('extends' parentclassname=[Class|QualifiedName])? ('symbol' sym-
bolclass=[SymbolClass|QualifiedName])?
 '{' (classattribute += ClassAttribute | attribute += Attribute | insertembedcode += InsertEmbedCode |
reference += Reference)* '}'
;

// a relation is a constructs that:
// 1) can extend other relation (only attributes are inherited from the parent relation)
// 2) can contain zero or more attributes
Relation:
 'relation' name=ValidID ('extends' parentrelationname=[Relation|QualifiedName])? ('symbol' symbolrela-
tion=[SymbolRelation|QualifiedName])?
 'from' fromclassname=[Class|QualifiedName] 'to' toclassname=[Class|QualifiedName]
 '{' (attribute += Attribute | insertembedcode += InsertEmbedCode)* '}'
;

Attribute:
 'attribute' name=ValidID ':' type=Type ('access' ':' access=AccessType)?
;

// specifies if the attribute is visible and modifiable by the user
// default is internal (if access is not specified)
enum AccessType:
 write = 'write' | read = "read" | internal = 'internal'
;

ClassAttribute:
 'classattribute' name=ValidID ':' type=Type
;

// references modeling object
Reference:
 'reference' name=ValidID '->' refname=RefName
;

// modeling objects that can be referenced
RefName:
 ('modeltype' modeltypename=[ModelType|QualifiedName]) ('class' classname=[Class|QualifiedName])?
;

Type:
 simpletype=SimpleType | enumtype=EnumType
;

enum SimpleType:
 String='string' | Int='int' | Double='double' // double produces a translation error
;

EnumType:
 'enum' name=[Enumeration|QualifiedName]
;

// a modeltype contains the collection of classes and relations
// it must contain at least one class
ModelType:
 'modeltype' name=ValidID '{'
 'classes' (classname += [Class|QualifiedName])+
 'relations' ('none' | (relationname += [Relation|QualifiedName])+)
 'modes' ('none' | (modename += Mode)+)

Appendix B: MM-DSL – Xtext Language Description 213

 '}'
;

// a modeltype can contain zero or more modes aka. views in modeling canvas
Mode:
 'mode' name=ValidID 'include' ('classes' (classname += [Class|QualifiedName])+ 'relations' ('none' |
relationname += [Relation|QualifiedName])+)
;

 /*

 * Graphical Representation Grammar

 */

// 1) classes (SymbolClass) and relations (SymbolRelation) can be visualized
SymbolClass:
 'classgraph' name=ValidID ('style' globalstyle=[SymbolStyle|QualifiedName])? '{' (svgcommand += SVGCom-
mand)* '}'
;

SymbolRelation:
 'relationgraph' name=ValidID ('style' globalstyle=[SymbolStyle|QualifiedName])? '{'
 'from' (svgcommandsfrom += SVGCommand)*
 'middle' (svgcommandsmiddle += SVGCommand)*
 'to' (svgcommandsto += SVGCommand)*
 '}'
;

// SVG coordinate system starts with (0,0) in the top left corner
// it is calculated in pixels (px)
/*
 * (0,0)---(x, 0)
 * |
 * |
 * (0, y)
 */
SVGCommand:
/*
 * basic symbol shapes
 * based on SVG notation
 * Rectangle <rect>
 * Circle <circle>
 * Ellipse <ellipse>
 * Line <line>
 * Polyline <polyline>
 * Polygon <polygon>
 * Path <path>
 * Text <text>
 */
 (insertembedcode = InsertEmbedCode) |
 (
 (rectangle=Rectangle |
 circle=Circle |
 ellipse=Ellipse |
 line=Line |
 polyline=Polyline |
 polygon=Polygon |
 path=Path |
 text=Text)
 (symbolstyle=SymbolStyle | ('style' symbolstyleref=[SymbolStyle|QualifiedName]))?
)
;

Rectangle:
 'rectangle' 'x' '=' x=RealNumber 'y' '=' y=RealNumber 'w' '=' width=Number 'h' '=' height=Number
;

Circle:
 'circle' 'cx' '=' cx=RealNumber 'cy' '=' cy=RealNumber 'r' '=' r=Number
;

Ellipse:
 'ellipse' 'cx' '=' cx=RealNumber 'cy' '=' cy=RealNumber 'rx' '=' rx=RealNumber 'ry' '=' ry=RealNumber
;

Line:
 'line' 'x1' '=' x1=RealNumber 'y1' '=' y1=RealNumber 'x2' '=' x2=RealNumber 'y2' '=' y2=RealNumber
;

Polyline:
 'polyline' 'points' '=' (points += Points)+ // format x1,y1 x2,y2 ... xn,yn
;

Polygon:
 'polygon' 'points' '=' (points += Points)+ // format x1,y1 x2,y2 ... xn,yn

Appendix B: MM-DSL – Xtext Language Description 214

;

Path:
 'path' 'd' '=' (pathdata += PathData)+
;

Text:
 'text' value=STRING 'x' '=' x=RealNumber 'y' '=' y=RealNumber
 ('font-family' '=' fontfamily=FontFamily)?
 ('font-size' '=' fontsize=FontSize)?
 ('fill' '=' fillcolor=FillColor)?
;

PathData:
 /*
 M=moveto
 L=lineto
 H=horizontal lineto
 V=vertical lineto
 C=curveto
 S=smooth curveto
 Q=quadratic Bézier curve
 T=smooth quadratic Bézier curveto
 A=elliptical Arc
 Z=closepath
*/
// All of the commands above can also be expressed with lower letters.
// Capital letters means absolutely positioned, lower cases means relatively positioned.

 moveto=MoveTo |
 lineto=LineTo |
 horizontallineto=HorizontalLineTo |
 verticallineto=VerticalLineTo |
 curveto=CurveTo |
 smoothcurveto=SmoothCurveTo |
 quadraticbeziercurve=QuadraticBezierCurve |
 smoothquadraticbeziercurveto=SmoothQuadraticBezierCurveTo |
 ellipticalarc=EllipticalArc |
 closepath=ClosePath
;

MoveTo:
 ('M' | 'm') (parameters += PathParametersMLT)+
;

LineTo:
 ('L' | 'l') (parameters += PathParametersMLT)+
;

HorizontalLineTo:
 ('H' | 'h') (parameters += PathParametersHV)+
;

VerticalLineTo:
 ('V'| 'v') (parameters += PathParametersHV)+
;

CurveTo:
 ('C' | 'c') (parameters += PathParametersC)+
;

SmoothCurveTo:
 ('S' | 's') (parameters += PathParametersS)+
;

QuadraticBezierCurve:
 ('Q' | 'q') (parameters += PathParametersQ)+
;

SmoothQuadraticBezierCurveTo:
 ('T' | 't') (parameters += PathParametersMLT)+
;

EllipticalArc:
 ('A' | 'a') (parameters += PathParametersA)+
;

ClosePath:
 ('Z' | 'z')
;

Points:
 x=RealNumber ',' y=RealNumber
;

// 1 parameter - H, V
PathParametersHV:

Appendix B: MM-DSL – Xtext Language Description 215

 x=RealNumber
;

// 2 parameters - M, L, T
PathParametersMLT:
 x=RealNumber ',' y=RealNumber
;

// 4 parameters - S
PathParametersS:
 x2=RealNumber y2=RealNumber x=RealNumber y=RealNumber
;

// 4 parameters - Q
PathParametersQ:
 x1=RealNumber y1=RealNumber x=RealNumber y=RealNumber
;

// 6 parameters - C
PathParametersC:
 x1=RealNumber y1=RealNumber x2=RealNumber y2=RealNumber x=RealNumber y=RealNumber
;

// 7 parameters - A
PathParametersA:
 rx=RealNumber ',' ry=RealNumber xaxisrot=RealNumber largearcflag=Number sweepflag=Number x=RealNumber
y=RealNumber
;

SymbolStyle:
 'style' name=ValidID '{'
 'fill' ':' ('none' | fillcolor=FillColor)
 'stroke' ':' strokecolor=StrokeColor
 'stroke-width' ':' strokewidth=StrokeWidth
 ('font-family' ':' fontfamily=FontFamily)?
 ('font-size' ':' fontsize=FontSize)?
 (insertembedcode += InsertEmbedCode)*
 '}'
;

FillColor:
 {FillColor}
 color=Color | hexcolor=HEXCOLOR
;

StrokeColor:
 {StrokeColor}
 color=Color | hexcolor=HEXCOLOR
;

StrokeWidth:
 Number
;

FontFamily:
 {FontFamily}
 fontstr=STRING | font=Font
;

FontSize:
 Number
;

// standard Windows Fonts
enum Font:
 arial='Arial' |
 arialblack='Arial_Black' |
 comicsansms='Comic_Sans_MS' |
 couriernew='Courier_New' |
 georgia='Georgia' |
 impact='Impact' |
 lucidaconsole='Lucida_Console' |
 lucidasansunicode='Lucida_Sans_Unicode' |
 palatinolinotype='Palatino_Linotype' |
 tahoma='Tahoma' |
 timesnewroman='Times_New_Roman' |
 trebuchetms='Trebuchet_MS' |
 verdana='Verdana' |
 symbol='Symbol' |
 webdings='Webdings' |
 windings='Wingdings' |
 mssansserif='MS_Sans_Serif' |
 msserif='MS_Serif'
;

// standard HTML Colors
enum Color:

Appendix B: MM-DSL – Xtext Language Description 216

 aliceblue='aliceblue' |
 antiquewhite='antiquewhite' |
 aqua='aqua' |
 aquamarine='aquamarine' |
 azure='azure' |
 beige='beige' |
 bisque='bisque' |
 black='black' |
 blanchedalmond='blanchedalmond' |
 blue='blue' |
 blueviolet='blueviolet' |
 brown='brown' |
 burlywood='burlywood' |
 cadetblue='cadetblue' |
 chartreuse='chartreuse' |
 chocolate='chocolate' |
 coral='coral' |
 cornflowerblue='cornflowerblue' |
 cornsilk='cornsilk' |
 crimson='crimson' |
 cyan='cyan' |
 darkblue ='darkblue' |
 darkcyan='darkcyan' |
 darkgoldenrod='darkgoldenrod' |
 darkgray='darkgray' |
 darkgreen='darkgreen' |
 darkkhaki='darkkhaki' |
 darkmagenta='darkmagenta' |
 darkolivegreen='darkolivegreen' |
 darkorange='darkorange' |
 darkorchid='darkorchid' |
 darkred='darkred' |
 darksalmon='darksalmon' |
 darkseagreen='darkseagreen' |
 darkslateblue='darkslateblue' |
 darkslategray='darkslategray' |
 darkturquoise='darkturquoise' |
 darkviolet='darkviolet' |
 deeppink='deeppink' |
 deepskyblue='deepskyblue' |
 dimgray='dimgray' |
 dodgerblue='dodgerblue' |
 firebrick='firebrick' |
 floralwhite='floralwhite' |
 forestgreen='forestgreen' |
 fuchsia='fuchsia' |
 gainsboro='gainsboro' |
 ghostwhite='ghostwhite' |
 gold='gold' |
 goldenrod='goldenrod' |
 gray='gray' |
 green='green' |
 greenyellow='greenyellow' |
 honeydew='honeydew' |
 hotpink='hotpink' |
 indianred='indianred' |
 indigo='indigo' |
 ivory='ivory' |
 khaki='khaki' |
 lavender='lavender' |
 lavenderblush='lavenderblush' |
 lawngreen='lawngreen' |
 lemonchiffon='lemonchiffon' |
 lightblue='lightblue' |
 lightcoral='lightcoral' |
 lightcyan='lightcyan' |
 lightgoldenrodyellow='lightgoldenrodyellow' |
 lightgreen='lightgreen' |
 lightgray='lightgray' |
 lightmagenta='lightmagenta' |
 lightpink='lightpink' |
 lightsalmon='lightsalmon' |
 lightseagreen='lightseagreen' |
 lightskyblue='lightskyblue' |
 lightslategray='lightslategray' |
 lightsteelblue='lightsteelblue' |
 lightyellow='lightyellow' |
 lime='lime' |
 limegreen='limegreen' |
 linen='linen' |
 magenta='magenta' |
 maroon='maroon' |
 mediumaquamarine='mediumaquamarine' |
 mediumblue='mediumblue' |
 mediumorchid='mediumorchid' |
 mediumpurple='mediumpurple' |
 mediumseagreen='mediumseagreen' |

Appendix B: MM-DSL – Xtext Language Description 217

 mediumslateblue='mediumslateblue' |
 mediumspringgreen='mediumspringgreen' |
 mediumturquoise='mediumturquoise' |
 mediumvioletred='mediumvioletred' |
 midnightblue='midnightblue' |
 mintcream='mintcream' |
 mistyrose='mistyrose' |
 moccasin='moccasin' |
 navajowhite='navajowhite' |
 navy='navy' |
 oldlace='oldlace' |
 olive='olive' |
 olivedrab='olivedrab' |
 orange='orange' |
 orangered='orangered' |
 orchid='orchid' |
 palegoldenrod='palegoldenrod' |
 palegreen='palegreen' |
 paleturquoise='paleturquoise' |
 palevioletred='palevioletred' |
 papayawhip='papayawhip' |
 peachpuff='peachpuff' |
 peru='peru' |
 pink='pink' |
 plum='plum' |
 powderblue='powderblue' |
 purple='purple' |
 red='red' |
 rosybrown='rosybrown' |
 royalblue='royalblue' |
 saddlebrown='saddlebrown' |
 salmon='salmon' |
 sandybrown='sandybrown' |
 seagreen='seagreen' |
 seashell='seashell' |
 sienna='sienna' |
 silver='silver' |
 skyblue='skyblue' |
 slateblue='slateblue' |
 slategray='slategray' |
 snow='snow' |
 springgreen='springgreen' |
 steelblue='steelblue' |
 tan='tan' |
 teal='teal' |
 thistle='thistle' |
 tomato='tomato' |
 turquoise='turquoise' |
 violet='violet' |
 wheat='wheat' |
 white='white' |
 whitesmoke='whitesmoke' |
 yellow='yellow' |
 yellowgreen = 'yellowgreen'
;

 /*

 * Algorithm Grammar

 */

Algorithm:
 'algorithm' name=ValidID '{' stmnt += Statement* '}'
;

// all possible statements for algorithm implementation
Statement:
 selection=SelectionStatement |
 loop=LoopStatement |
 variable=Variable |
 algorithmoperation = AlgorithmOperation |
 insertembedcode = InsertEmbedCode
;

// selection: if-elseif-else
SelectionStatement:
 ('if' '(' ifcondition=Expr ')' '{' ifblock+=Statement* '}')
 (('elseif''(' elseifcondition+=Expr ')' '{' elseifblock+=Statement* '}')* 'else' '{'
elseblock+=Statement* '}')?
;

// loops
LoopStatement:
 whiletloop=WhileLoop | forloop=ForLoop
;

Appendix B: MM-DSL – Xtext Language Description 218

WhileLoop:
 'while' '(' condition=Expr ')' '{' (whileblock+=Statement | breakcontinue+=BreakContinue)* '}'
;

ForLoop:
 'for' '(' start=INT ';' stop=INT ';' interval=INT ')' '{' (forblock+=Statement | breakcontin-
ue+=BreakContinue)* '}'
;

BreakContinue:
 break='break' | continue='continue'
;

// variable declaration and initialization
Variable:
 ('var' name=ValidID (opassing=OperatorAssign varstatement=VarStatement)?) |
 (variable=[Variable|QualifiedName] opassing=OperatorAssign varstatement=VarStatement)
;

// list of statements that can be used as variable assignments
VarStatement:
 expression=Expr |
 algorithmoperation = AlgorithmOperation |
 ('class' class=[Class|QualifiedName]) |
 ('attribute' attribute=[Attribute|QualifiedName]) |
 ('reference' reference=[Reference|QualifiedName]) |
 ('symbolclass' symbolclass=[SymbolClass|QualifiedName]) |
 ('symbolrelation' symbolrelation=[SymbolRelation|QualifiedName]) |
 ('symbolstyle' symbolstyle=[SymbolStyle|QualifiedName]) |
 ('embedded' embeddedcode=[EmbedCode|QualifiedName]) |
 ('modeltype' modeltype=[ModelType|QualifiedName])
;

// precednece - last
OperatorAssign:
 assign='=' | multyassign=OperatorMultyAssign
;

OperatorMultyAssign:
 addassign='+=' | subassign='-=' | multiassign='*=' | divassign='/='
;

// precednece 1
OperatorUnary:
 not='!'
;

// precednece 2
OperatorMultiply:
 multiply='*' | divide='/' | modulo = '%'
;

// precednece 3
OperatorAdd:
 add='+' | subtract='-'
;

// precednece 4
OperatorCompare:
 greaterequal='>=' | lesserequal='<=' | greater='>' | lesser='<'
;

// precednece 5
OperatorEqual:
 equal='==' | notequal='!='
;

// precednece 6
OperatorAnd:
 and='&&'
;

// precednece 7
OperatorOr:
 or='||'
;

// lowest precedence operation
Expr:
 expr=OrExpression
;

// 7
OrExpression returns Expression:
 AndExpression (=>({OrExpression.left=current} op=OperatorOr) right=AndExpression)*
;

Appendix B: MM-DSL – Xtext Language Description 219

// 6
AndExpression returns Expression:
 EqualExpression (=>({AndExpression.left=current} op=OperatorAnd) right=EqualExpression)*
;

// 5
EqualExpression returns Expression:
 CompareExpression (=>({EqualExpression.left=current} op=OperatorEqual) right=CompareExpression)*
;

// 4
CompareExpression returns Expression:
 AdditionExpression(=>({CompareExpression.left=current} op=OperatorCompare) right=AdditionExpression)*
;

// 3
AdditionExpression returns Expression:
 MultiplicationExpression (=>({AdditionExpression.left=current} op=OperatorAdd)
right=MultiplicationExpression)*
;

// 2
MultiplicationExpression returns Expression:
 UnaryExpression (=>({MultiplicationExpression.left=current} op=OperatorMultiply) right=UnaryExpression)*
;

// 1
UnaryExpression returns Expression:
 (op=OperatorUnary)? operand=PrimaryExpression
;

PrimaryExpression returns Expression:
 atomic=AtomicExpression | ('(' expression=OrExpression ')')
;

AtomicExpression returns Expression:
 true='true' | false='false' | variable=[Variable|QualifiedName] |
 valueString=STRING | valueRealNumber=RealNumber
;

 /*

 * Algorithm Operations - ADOscript

 */

AlgorithmOperation:
 fileoperation=FileOperation |
 diroperation=DirOperation |
 simpleui=SimpleUI |
 modeloperation=ModelOperation |
 instanceoperation=InstanceOperation |
 attributeoperation=AttributeOperation
;

// file
FileOperation:
 'file' '.' (filecopy = FileCopy | filedelete = FileDelete | filecreate = FileCreate | fileread = FileRead
| filewrite = FileWrite)
;

FileCopy:
 'copy' 'source' src=STRING 'destination' dest=STRING
;

FileDelete:
 'delete' filename=STRING
;

FileCreate:
 'create' filename=STRING
;

FileRead:
 'read' filename=STRING
;

FileWrite:
 'write' filename=STRING 'text' text=STRING (append='append')?
;

// directory
DirOperation:
 'dir' '.' (dirsetworking=DirSetWorking | dirgetworking=DirGetWorking | dircreate=DirCreate |
dirdelete=DirDelete | dirlist=DirList)

Appendix B: MM-DSL – Xtext Language Description 220

;

DirSetWorking:
 'set' dirname=STRING
;

DirGetWorking:
 {DirGetWorking}
 'get'
;

DirCreate:
 'create' dirname=STRING
;

DirDelete:
 'delete' dirname=STRING
;

DirList:
 'list' dirname=STRING
;

// simple UI
SimpleUI:
 'ui' '.' (editbox=EditBox | infobox=InfoBox | errorbox=ErrorBox | warningbox=WarningBox | viewbox=ViewBox
| itemoperation=ItemOperation)
;

EditBox:
 'editbox' 'title' title=STRING 'text' text=STRING ('button' okbuttontext=STRING)?
;

InfoBox:
 'infobox' 'title' title=STRING 'text' text=STRING
;

ErrorBox:
 'errorbox' 'title' title=STRING 'text' text=STRING 'button' buttontype=ButtonType
;

WarningBox:
 'warningbox' 'title' title=STRING 'text' text=STRING 'button' buttontype=ButtonType
;

enum ButtonType:
 ok='ok' | okcancel='ok-cancel' | yesno='yes-no' | yesnocancel='yes-no-cancel' | retrycancel='retry-
cancel' |
 defok='def-ok' | defcancel='def-cancel' | defyes='def-yes' | defno='def-no' | defretry='def-retry'
;

ViewBox:
 'viewbox' 'title' title=STRING 'text' text=STRING
;

// menu item manipulation (application) - is a part of SimpleUI
ItemOperation:
 'item' '.' (menuitem=MenuItem | contextitem=ContextItem)
;

MenuItem:
 'menu' '.' (insertmenuitem=InsertMenuItem | removemenuitem=RemoveMenuItem)
;

InsertMenuItem:
 'insert' name=ValidID 'to' menu=ValidID
;

RemoveMenuItem:
 'remove' menuitemname=[InsertMenuItem|QualifiedName]
;

ContextItem:
 'context' '.' (insertcontextitem=InsertContextItem | removecontextitem=RemoveContextItem)
;

InsertContextItem:
 'insert' name=ValidID 'to' context=ValidID
;

RemoveContextItem:
 'remove' contextitem=[InsertContextItem|QualifiedName]
;

// model manipulation (core)
ModelOperation:
 'model' '.' (modelcreate=ModelCreate | modeldelete=ModelDelete | modeldiscard=ModelDiscard |

Appendix B: MM-DSL – Xtext Language Description 221

 modelsave=ModelSave | modelload=ModelLoad | modelisloaded=ModelIsLoaded)
;

ModelCreate:
 'create' name=ValidID modeltype=[ModelType]
;

ModelDelete:
 'delete' modelname=[ModelCreate|QualifiedName]
;

ModelDiscard:
 'discard' modelname=[ModelCreate|QualifiedName]
;

ModelSave:
 'save' modelname=[ModelCreate|QualifiedName]
;

ModelLoad:
 'load' modelname=[ModelCreate|QualifiedName]
;

ModelIsLoaded:
 'isloaded' modelname=[ModelCreate|QualifiedName]
;

// instance manipulation (core)
InstanceOperation:
 'instance' '.' (classinstance=ClassInstance | relationinstance=RelationInstance)
;

ClassInstance:
 'class' '.' (classinstancecreate=ClassInstanceCreate | classinstancedelete=ClassInstanceDelete |
classinstanceget=ClassInstanceGet | classinstanceset=ClassInstanceSet | classinstancege-
tall=ClassInstanceGetAll)
;

ClassInstanceCreate:
 'create' name=ValidID nameofclass=[Class|QualifiedName]
;

ClassInstanceDelete:
 'delete' nameofclassinstance=[ClassInstanceCreate|QualifiedName]
;

ClassInstanceGet:
 'get' nameofclassinstance=[ClassInstanceCreate|QualifiedName]
;

ClassInstanceGetAll:
 'getall' nameofclass=[Class|QualifiedName]
;

ClassInstanceSet:
 'set' nameofclassinstance=[ClassInstanceCreate|QualifiedName]
;

RelationInstance:
 'relation' '.' (relationinstancecreate=RelationInstanceCreate | relationinstancede-
lete=RelationInstanceDelete | relationinstanceget=RelationInstanceGet | relationinstance-
set=RelationInstanceSet | relationinstancegetall=RelationInstanceGetAll)
;

RelationInstanceCreate:
 'create' name=ValidID nameofrelation=[Relation|QualifiedName] 'from' classinstance-
from=[ClassInstanceCreate|QualifiedName] 'to' classinstanceto=[ClassInstanceCreate|QualifiedName]
;

RelationInstanceDelete:
 'delete' nameofrelationinstance=[RelationInstanceCreate|QualifiedName]
;

RelationInstanceGet:
 'get' nameofrelationinstance=[RelationInstanceCreate|QualifiedName]
;

RelationInstanceGetAll:
 'getall' nameofrelation=[Relation|QualifiedName]
;

RelationInstanceSet:
 'set' nameofrelationinstance=[RelationInstanceCreate|QualifiedName]
;

Appendix B: MM-DSL – Xtext Language Description 222

// attribute manipulation (core)
AttributeOperation:
 attributename=[Attribute|QualifiedName] '.' (attributeget=AttributeGet | attributeset=AttributeSet)
;

AttributeGet:
 'get' '.' attrgetparams=AttrGetParams
;

enum AttrGetParams:
 type='type' |
 value='value' |
 name='name'
;

AttributeSet:
 'set' '.' attrsetparams=AttrSetParams (valueString=STRING | valueRealNumber=RealNumber | valueVaria-
ble=[Variable|QualifiedName])
;

enum AttrSetParams:
 value='value'
;

 /*

 * Events - ADOscript

 */

Event:
 'event' '.' name=EventName '.' 'execute' '.' algorithmname=[Algorithm|QualifiedName]
;

enum EventName:
 beforecreatemodel='BeforeCreateModel' |
 beforecreaterelationinstance='BeforeCreateRelationInstance' |
 beforedeleteinstance='BeforeDeleteInstance' |
 beforedeletemodel='BeforeDeleteModel' |
 beforediscardmodel='BeforeDiscardModel' |
 beforesavemodel='BeforeSaveModel' |
 createinstance='CreateInstance' |
 createmodel='CreateModel' |
 createrelationinstance='CreateRelationInstance' |
 deleteinstance='DeleteInstance' |
 deletemodel='DeleteModel' |
 deleterelationinstance='DeleteRelationInstance' |
 discardinstance='DiscardInstance' |
 discardmodel='DiscardModel' |
 openmodel='OpenModel' |
 renameinstance='RenameInstance' |
 savemodel='SaveModel' |
 setattributevalue='SetAttributeValue' |
 aftercreatemodelingconnector='AfterCreateModelingConnector' |
 aftercreatemodelingnode='AfterCreateModelingNode' |
 aftereditattributevalue='AfterEditAttributeValue' |
 toolinitialized='ToolInitialized'
;

 /*

 * Expressions and Operators Grammar (Xbase)

 */

//
https://github.com/eclipse/xtext/blob/master/plugins/org.eclipse.xtext.xbase/src/org/eclipse/xtext/xbase/Xbase
.xtext

 /*

 * Terminals

 */

//terminal ID :
// '^'?('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
// ;
//
//terminal STRING :
// '"' ('\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|'"'))* '"' |
// "'" ('\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|"'"))* "'"
//;
//
//terminal ML_COMMENT : '/*' -> '*/';
//terminal SL_COMMENT : '//' !('\n'|'\r')* ('\r'? '\n')?;

Appendix B: MM-DSL – Xtext Language Description 223

//
//terminal WS : (' '|'\t'|'\r'|'\n')+;
//
//terminal ANY_OTHER: .;

// int with negative values
//terminal INT returns ecore::EInt:
// ('-')? ('0'..'9')+
//;

RealNumber:
 ('-')? Number
;

// hex color representation: #123456
terminal HEXCOLOR:
 '#'
 ('a'..'f'|'A'..'F'|'0'..'9')
 ('a'..'f'|'A'..'F'|'0'..'9')
 ('a'..'f'|'A'..'F'|'0'..'9')
 ('a'..'f'|'A'..'F'|'0'..'9')
 ('a'..'f'|'A'..'F'|'0'..'9')
 ('a'..'f'|'A'..'F'|'0'..'9')

;

Appendix C: MetaDSL – Irony Language Description 224

Appendix C: MetaDSL – Irony Language Description

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Irony.Parsing;

namespace Irony.Samples.MetaDSL {
 // Loosely based on Metamodeling concepts - research project.

 [Language("MetaDSL", "0.1", "MetaDSL grammar")]
 public class MetaDSLGrammar : Grammar {
 public MetaDSLGrammar()
 : base(true) { //MetaDSL is case insensitive

 //TERMINALS
 var comment = new CommentTerminal("comment", "/*", "*/");
 var lineComment = new CommentTerminal("line_comment", "//", "\n", "\r\n");
 NonGrammarTerminals.Add(comment);
 NonGrammarTerminals.Add(lineComment);
 var number = new NumberLiteral("number");
 var string_literal = new StringLiteral("string", "'", StringOptions.AllowsDoubledQuote);
 var identifier = new IdentifierTerminal("identifier");

 var COMMA = ToTerm(",");
 var DOT = ToTerm(".");
 var SEMICOLON = ToTerm(";");
 var COLON = ToTerm(":");
 var LBR1 = ToTerm("{");
 var RBR1 = ToTerm("}");
 var LBR2 = ToTerm("(");
 var RBR2 = ToTerm(")");
 var LBR3 = ToTerm("[");
 var RBR3 = ToTerm("]");

 var METHOD = ToTerm("method");

 var PACKAGE = ToTerm("package");
 var MODELTYPE = ToTerm("modeltype");
 var EVENT = ToTerm("event");
 var ENUM = ToTerm("enum");

 var ABSTRACT = ToTerm("abstract");
 var CLASS = ToTerm("class");
 var RELATION = ToTerm("relation");

 var NULL = ToTerm("null");
 var NOT = ToTerm("not");
 var CONSTRAINT = ToTerm("constraint");
 var FROM = ToTerm("from");
 var TO = ToTerm("to");
 var DATATYPE = ToTerm("datatype");

 var ATTRIBUTE = ToTerm("attribute");
 var OPERATION = ToTerm("operation");
 var REFERENCE = ToTerm("reference");
 var CONTAINER = ToTerm("container");
 var NOTATION = ToTerm("notation");

 var RECTANGLE = ToTerm("rectangle");
 var ELLIPSE = ToTerm("ellipse");
 var POLYGON = ToTerm("polygon");

 var STRING = ToTerm("string");
 var INT = ToTerm("int");
 var FLOAT = ToTerm("float");
 var DOUBLE = ToTerm("double");
 var BOOL = ToTerm("bool");

 var FOR = ToTerm("for");
 var FOREACH = ToTerm("foreach");
 var WHILE = ToTerm("while");
 var SWITCH = ToTerm("switch");

 var SET = ToTerm("set");
 var GET = ToTerm("get");
 var USE = ToTerm("use");
 var ADD = ToTerm("add");

Appendix C: MetaDSL – Irony Language Description 225

 var IF = ToTerm("if");
 var ELSEIF = ToTerm("elseif");
 var ELSE = ToTerm("else");
 var RETURN = ToTerm("return");
 var VAR = ToTerm("var");
 var THROW = ToTerm("throw");

 //include concepts
 var INCLUDE = ToTerm("include");

 //embed concepts
 var EMBED = ToTerm("embed");

 //CONSTANTS:
 var constants = new ConstantsTable();
 constants.Add("pi", Math.PI);
 constants.Add("true", true);
 constants.Add("false", false);

 //Non-terminals:
 //method
 var method = new NonTerminal("method");
 var methodDeclaration = new NonTerminal("methodDeclaration");
 var methodBody = new NonTerminal("methodBody");
 var methodStatement = new NonTerminal("methodStatement");

 //package
 var packages = new NonTerminal("packages");
 var package = new NonTerminal("package");
 var packageDeclaration = new NonTerminal("packageDeclaration");
 var packageBody = new NonTerminal("packageBody");

 //modeltype
 var modeltypes = new NonTerminal("modeltypes");
 var modeltype = new NonTerminal("modeltype");
 var modeltypeDeclaration = new NonTerminal("modeltypeDeclaration");
 var modeltypeBody = new NonTerminal("modeltypeBody");

 //statement
 var statements = new NonTerminal("statements");
 var statement = new NonTerminal("statement");
 var statementList = new NonTerminal("statementList");
 var block = new NonTerminal("block");

 //abstract
 var abstractStatement = new NonTerminal("abstractStatement");
 var abstractDeclaration = new NonTerminal("abstractDeclaration");
 var abstractBody = new NonTerminal("abstractBody");

 //class
 var classStatement = new NonTerminal("classStatement");
 var classDeclaration = new NonTerminal("classDeclaration");
 var classBody = new NonTerminal("classBody");
 var classNoParent = new NonTerminal("classNoParent");
 var classExtends = new NonTerminal("classExtends");

 //relation
 var relationStatement = new NonTerminal("relationStatement");
 var relationDeclaration = new NonTerminal("relationDeclaration");
 var relationBody = new NonTerminal("relationBody");
 var relationFrom = new NonTerminal("relationFrom");
 var relationTo = new NonTerminal("relationTo");
 var relationNoParent = new NonTerminal("relationNoParent");
 var relationExtends = new NonTerminal("relationExtends");

 //acrStatement - used in abstract, class and relation
 var acrStatements = new NonTerminal("acrStatements");
 var acrStatement = new NonTerminal("acrStatement");

 //listOfIdentifiers - separated by comma
 var identifiers = new NonTerminal("identifiers");

 //listOfNumbers - separated by comma
 var numbers = new NonTerminal("numbers");

 //attributes
 var attributeStatement = new NonTerminal("attributeStatement");
 var attributeDeclaration = new NonTerminal("attributeDeclaration");
 var attributeBody = new NonTerminal("attributeBody");

 //operation
 var operationStatement = new NonTerminal("operationStatement");
 var operationDeclaration = new NonTerminal("operationDeclaration");
 var operationBody = new NonTerminal("operationBody");

 //notation

Appendix C: MetaDSL – Irony Language Description 226

 var notationStatement = new NonTerminal("notationStatement");
 var notationDeclaration = new NonTerminal("notationDeclaration");
 var notationBody = new NonTerminal("notationBody");
 var notationType = new NonTerminal("notationType");

 //notatyon types
 //rectangle
 var rectangleStatement = new NonTerminal("rectangleStatement");
 var rectangleParam = new NonTerminal("rectangleParam");
 //ellipse
 var ellipseStatement = new NonTerminal("ellipseStatement");
 var ellipseParam = new NonTerminal("ellipseParam");
 //polygon
 var polygonStatement = new NonTerminal("polygonStatement");
 var polygonParam = new NonTerminal("polygonParam");

 //type
 var typeDeclaration = new NonTerminal("typeDeclaration");
 var builtInType = new NonTerminal("builtInType");
 var enumType = new NonTerminal("enumType");

 //enumeration
 var enumStatements = new NonTerminal("enumStatements");
 var enumStatement = new NonTerminal("enumStatement");
 var enumDeclaration = new NonTerminal("enumDeclaration");
 var enumBody = new NonTerminal("enumBody");
 var enumParameter = new NonTerminal("enumParameter");

 //include
 var includeStatements = new NonTerminal("includeStatements");
 var includeStatement = new NonTerminal("includeStatement");
 var includeDeclaration = new NonTerminal("includeDeclaration");
 var includeBody = new NonTerminal("includeBody");

 //embed
 var embedStatements = new NonTerminal("embedStatements");
 var embedStatement = new NonTerminal("embedStatement");
 var embedDeclaration = new NonTerminal("embedDeclaration");
 var embedBody = new NonTerminal("embedBody");

 //BNF Rules:

 //symbols
 var commaOpt = new NonTerminal("commaOpt", Empty | COMMA);
 var commasOpt = new NonTerminal("commasOpt");
 commasOpt.Rule = MakeStarRule(commasOpt, null, COMMA);

 //Number comma separated list
 numbers.Rule = MakePlusRule(numbers, COMMA, number);

 //Identifier comma separated list
 identifiers.Rule = MakePlusRule(identifiers, COMMA, identifier);

 //program root element
 this.Root = method;

 //Method
 method.Rule = methodDeclaration;
 methodDeclaration.Rule = METHOD + identifier + LBR1 + methodBody + RBR1;
 methodBody.Rule = methodStatement;
 methodStatement.Rule = includeStatements + packages + modeltypes + enumStatements + embedStatements;
 includeStatements.Rule = MakeStarRule(includeStatements, includeStatement);
 packages.Rule = MakePlusRule(packages,package);
 modeltypes.Rule = MakePlusRule(modeltypes, modeltype);
 enumStatements.Rule = MakeStarRule(enumStatements, enumStatement);
 embedStatements.Rule = MakeStarRule(embedStatements, embedStatement);

 //Include
 includeStatement.Rule = includeDeclaration + includeBody + SEMICOLON;
 includeDeclaration.Rule = INCLUDE;
 includeBody.Rule = identifiers;

 //Package
 package.Rule = packageDeclaration + LBR1 + packageBody + RBR1;
 packageDeclaration.Rule = PACKAGE + identifier;
 packageBody.Rule = statements;
 statements.Rule = MakePlusRule(statements, statement);
 statement.Rule = abstractStatement | classStatement | relationStatement;

 //ModelType
 modeltype.Rule = modeltypeDeclaration + LBR1 + modeltypeBody + RBR1;
 modeltypeDeclaration.Rule = MODELTYPE + identifier;
 modeltypeBody.Rule = identifiers;

 //Abstract
 abstractStatement.Rule = abstractDeclaration + LBR1 + abstractBody + RBR1;
 abstractDeclaration.Rule = ABSTRACT + identifier;

Appendix C: MetaDSL – Irony Language Description 227

 abstractBody.Rule = acrStatements;

 //Class
 classStatement.Rule = classDeclaration + LBR1 + classBody + RBR1;
 classDeclaration.Rule = classNoParent | classExtends;
 classNoParent.Rule = CLASS + identifier;
 classExtends.Rule = classNoParent + COLON + identifier;
 classBody.Rule = notationStatement + acrStatements;

 //Relation
 relationStatement.Rule = relationDeclaration + LBR1 + relationBody + RBR1;
 relationDeclaration.Rule = relationNoParent | relationExtends;
 relationNoParent.Rule = RELATION + identifier;
 relationExtends.Rule = relationNoParent + COLON + identifier;
 relationBody.Rule = relationFrom + relationTo + notationStatement + acrStatements;
 relationFrom.Rule = FROM + COLON + identifiers + SEMICOLON;
 relationTo.Rule = TO + COLON + identifiers + SEMICOLON;

 //Attributes
 attributeStatement.Rule = ATTRIBUTE + identifier + COLON + typeDeclaration;

 //Operations
 operationStatement.Rule = OPERATION + identifier + LBR2 + identifiers + RBR2 + COLON + typeDeclaration;

 //Notations
 notationStatement.Rule = notationDeclaration + notationBody + SEMICOLON;
 notationDeclaration.Rule = NOTATION + COLON;
 notationBody.Rule = notationType;
 notationType.Rule = rectangleStatement | ellipseStatement | polygonStatement;

 //Notation Types
 rectangleStatement.Rule = RECTANGLE + rectangleParam;
 rectangleParam.Rule = LBR2 + numbers + RBR2;
 ellipseStatement.Rule = ELLIPSE + ellipseParam;
 ellipseParam.Rule = LBR2 + numbers + RBR2;
 polygonStatement.Rule = POLYGON + polygonParam;
 polygonParam.Rule = LBR2 + numbers + RBR2;

 //ACR Statement
 acrStatements.Rule = MakeStarRule(acrStatements, acrStatement);
 acrStatement.Rule = attributeStatement + SEMICOLON | operationStatement + SEMICOLON;

 //Types
 builtInType.Rule = INT | FLOAT | DOUBLE | BOOL | STRING;
 enumType.Rule = identifier;
 typeDeclaration.Rule = builtInType | enumType;

 //Enumeration
 enumStatement.Rule = enumDeclaration + LBR1 + enumBody + RBR1;
 enumDeclaration.Rule = ENUM + identifier;
 enumBody.Rule = identifiers;

 //Embedded
 embedStatement.Rule = embedDeclaration + embedBody + embedDeclaration + SEMICOLON;
 embedDeclaration.Rule = EMBED;
 embedBody.Rule = string_literal;

 //Operators
 RegisterOperators(1, "||");
 RegisterOperators(2, "&&");
 RegisterOperators(3, "|");
 RegisterOperators(4, "^");
 RegisterOperators(5, "&");
 RegisterOperators(6, "==", "!=");
 RegisterOperators(7, "<", ">", "<=", ">=", "is", "as");
 RegisterOperators(8, "<<", ">>");
 RegisterOperators(9, "+", "-");
 RegisterOperators(10, "*", "/", "%");
 RegisterOperators(11, ".");

 RegisterOperators(-3, "=", "+=", "-=", "*=", "/=", "%=", "&=", "|=", "^=", "<<=", ">>=");
 RegisterOperators(-2, "?");
 RegisterOperators(-1, "??");

 this.Delimiters = "{}[](),:;+-*/%&|^!~<>=";
 this.MarkPunctuation(";", ",", "(", ")", "{", "}", "[", "]", ":");

 //Whitespace and NewLine characters
 //TODO:
 // 1. In addition to "normal" whitespace chars, the spec mentions "any char of unicode class Z" -
 // need to create special comment-based terminal that simply eats these
 // category-based whitechars and produces comment token.
 // 2. Add support for multiple line terminators to LineComment

 //CR, linefeed, nextLine, LineSeparator, paragraphSeparator
 this.LineTerminators = "\r\n\u2085\u2028\u2029";
 //add extra line terminators

Appendix C: MetaDSL – Irony Language Description 228

 this.WhitespaceChars = " \t\r\n\v\u2085\u2028\u2029";

 }//constructor

 }//class
}//namespace

Appendix D: Exercise Used to Evaluate MM-DSL 229

Appendix D: Exercise Used to Evaluate MM-DSL

The following is the exercise used in the evaluation of usability and understandability of

MM-DSL. It has been performed by twenty-two students within the Metamodeling

course in summer semester of 2014.

Task Summary

Describe the Car Parking modeling method with MM-DSL. You have 60 minutes to

complete the exercise. It is allowed to use any standard text editor like Notepad++ to

write your code.

Preparation:

To be adequately prepared for the exercise it is advised that you study the MM-DSL

Specification document available at http://www.omilab.org/web/guest/mm-dsl. You can

use this document as a reference while doing the exercise.

Submission

You need to turn in the file (.txt) containing the code for the given modeling method. It

should look similar to the code that can be found in the Appendix of the "MM-DSL: An

EBNF Specification".

Task Details

Figure 51 describes the abstract (metamodel) and concrete syntax (graphical objects)

of the Car Parking modeling method:

Concrete syntax assigned to modeling elements is depicted in the table on the left side.

Associations between various elements are given as an UML class diagram (right

side). Classes and relations without graphical representations are Vehicle, City, Park,

belongs to. The resulting diagram (model type) needs to contain the following classes:

Car, Truck, Motorcycle, Bicycle, Parking Lot, Parking Garage, and relation is parked. The

attributes need to have a type assigned to them, either int, string, double or enum.

Enums or enumerations can be specified for attributes such as type, payment or color.

For example, attribute type can have values: {"car" "truck" "motorcycle" "bicycle"}, at-

tribute payment can have values: {"ticket machine" "mobile phone" "cash"}.

http://www.omilab.org/web/guest/mm-dsl

Appendix D: Exercise Used to Evaluate MM-DSL 230

Figure 51: Concrete and Abstract Syntax of a Car Parking Modeling Method

Helpful Hints

The MM-DSL program has a certain structure. We begin by defining the method name,

def and embed statements, followed by user data types or enums, styles, class graphs,

relation graphs, then classes, relations, model types and at the end algorithms (and

events).

Identifiers or names of elements must not have empty spaces (valid identifier: CarPark,

Car_Park; invalid identifier: Car Park).

Graphical objects use the following coordinate system:

 (0, 0) coordinate is in the middle. Try drawing objects in

this coordinate system before writing the code for graph-

ical representation. The units for all graphical objects are

points (only integers are allowed, no decimal numbers). 1

centimeter has 28.34 points.

It is also possible to combine several SVG commands (one after another) to define

complex graphical objects.

Solution

method CarParkModelingLanguage

enum EnumParkType { "car" "truck" "motorcycle" "bicycle" }

enum EnumPayment { "ticket machine" "mobile phone" "cash" }

Appendix D: Exercise Used to Evaluate MM-DSL 231

style Blue {fill:blue stroke:black stroke-width:1}

style Green {fill:green stroke:black stroke-width:1}

style Black {fill:black stroke:black stroke-width:1}

//style Orange {fill:orange stroke:black stroke-width:1}

//style Red {fill:red stroke:black stroke-width:1}

classgraph CarGraph style Blue {

 rectangle x=-10 y=-10 w=20 h=20

}

classgraph TruckGraph style Blue {

 rectangle x=-5 y=-15 w=20 h=20

 rectangle x=-10 y=-10 w=20 h=20

}

classgraph MotorcycleGraph style Green {

 circle cx=0 cy=0 r=10

}

classgraph BicylceGraph style Green {

 circle cx=-5 cy=0 r=10

 circle cx=5 cy=0 r=10

}

classgraph ParkingLotGraph {

 rectangle x=-20 y=-20 w=40 h=40 style Orange {fill:orange stroke:black stroke-

width:1}

 polygon points=-20,20 0,20 -20,0 style Red {fill:red stroke:black stroke-width:1}

 polygon points=0,-20 20,-20 20,0 style Red {fill:red stroke:black stroke-width:1}

 text "L" x=-2 y=-2

}

classgraph ParkingGarageGraph {

 rectangle x=-20 y=-20 w=40 h=40 style Orange {fill:orange stroke:black stroke-

width:1}

 polygon points=-20,-20 0,-20 -20,0 style Red {fill:red stroke:black stroke-width:1}

 polygon points=0,20 20,20 20,0 style Red {fill:red stroke:black stroke-width:1}

 text "G" x=-2 y=-2

}

relationgraph IsParkedGraph style Black {

 from

 rectangle x=-2 y=-2 w=4 h=4

 middle

 text "is parked in" x=0 y=0

 to

 polygon points=-2,2 2,0 -2,-2

}

class Vehicle {

 attribute color:string access:write

 attribute lenght:int access:write

 attribute width:int access:write

 attribute height:int access:write

 attribute weight:int access:write

}

class Car extends Vehicle symbol CarGraph {}

class Truck extends Vehicle symbol TruckGraph {}

class Motorcycle extends Vehicle symbol MotorcycleGraph{}

class Bicycle extends Vehicle symbol BicylceGraph {}

class City {

 attribute latitude:int

 attribute longitude:int

}

Appendix D: Exercise Used to Evaluate MM-DSL 232

class Park {

 attribute address:string

 attribute city:string

 attribute size:int

 attribute parktype:enum EnumParkType

 attribute payment:enum EnumPayment

}

class ParkingLot extends Park symbol ParkingLotGraph {}

class ParkingGarage extends Park symbol ParkingGarageGraph {}

relation isParked symbol IsParkedGraph from Vehicle to Park {}

relation belongsTo from Park to City{}

modeltype CarPark {

 classes Car Truck Motorcycle Bicycle ParkingLot ParkingGarage

 relations isParked

 modes none

}

Appendix E: Exercise Used to Evaluate MM-DSL IDE 233

Appendix E: Exercise Used to Evaluate MM-DSL IDE

The following is the exercise used to test the usability of MM-DSL IDE prototype. The

participants had to use MM-DSL IDE to extend the given modeling method with addi-

tional features. The exercise included utilizing the ADOxx platform and Linked Open

Data concepts (RDF) after the artifacts have been created with MM-DSL. These addi-

tional parts are not directly relevant to the MM-DSL IDE. However, as a whole the ex-

ercise demonstrates one of many application scenarios where multiple metamodeling

technologies are chained together.

Thirty-one participants, which all had different degrees of knowledge about metamodel-

ing and computer science, have completed the exercise. Some of them had a strictly

business background, with no previous experience in programming.

Next Generation Enterprise Modeling: A Case Study

Business View

A courier company needs to keep track of available parking areas in the various geo-

graphical areas where it provides services and to provide its employees (couriers) the

possibility to quickly reserve the necessary parking spaces when a task is assigned to

them.

Its couriers have different types of tasks allocated to them, with transportation activities

assigned to different cities.

Conceptualization

Choice of technology

Because the courier company has good experience with business process modeling, it

would prefer to use modeling tools to design and communicate the tasks assigned to

its couriers;

Because parking space availability is already published for free by a third party compa-

ny that manages parking spaces, as Linked Open Data, RDF is chosen as a technolo-

gy to store and retrieve this information;

Because the courier company implements a bring-your-own-device IT policy and couri-

ers need high mobility, it would prefer to have a mobile app provided to its couriers.

Requirements for the IT support

Design-time. A task coordinator must be able to describe through models:

a) different types of tasks for its couriers;

Appendix E: Exercise Used to Evaluate MM-DSL IDE 234

b) the allocation of parking areas to the cities where it provides services;

c) a mapping of different types of tasks on the cities where they must be per-

formed;

Run-time. A courier must be able:

a) to see his list of tasks;

b) to see the cities where a task will take him, as well as the parking space availa-

bility in those cities;

c) to reserve a parking space if available.

Design decisions

The design of the IT system covers several aspects pertaining to a proposed architec-

ture:

a) An app must be designed, which should be able to query parking space availa-

bility information filtered by the current route;

b) A modeling method must be designed to enable the description of tasks and the

allocation of parking areas to relevant cities. This includes the design of a met-

amodel that enables models to capture the necessary information;

c) The RDF vocabulary of the parking managing company must be investigated to

understand what data structure is provided and how can the models be linked

with the available Linked Open Data.

d) A bridge between the model information and the available Linked Open Data

must be designed, to allow filtering legacy data by model information or vice

versa. It has been decided that this will be in the form of an RDF vocabulary

and a mechanism for serializing model information in RDF format.

Implementation decisions

Implementation will rely on the following environments:

a) ADOxx and the MM-DSL language will be used for the implementation of a

modeling tool;

b) Sesame will be used as back-end storage; this implies that RDF will be used as

a data model;

c) The bridge between the modeling environment and the Sesame storage will be

implemented as a serialization mechanism that will represent model information

in RDF format;

d) Android is the platform of choice for the mobile app and it will use SPARQL as a

query technology, to retrieve the necessary information from the back-end data

store.

Exercise Overview

Figure 52 shows the sequence of steps required to complete the exercise. The steps

which were directly related with the MM-DSL IDE evaluation are 1, 2, 3 and the loop for

method extensions.

Appendix E: Exercise Used to Evaluate MM-DSL IDE 235

Figure 52: Sequence of Actions to Fulfill the Exercise

The exercise is structured in two parts:

Part 1. Iterative metamodeling (steps 1-3 loop in Figure 52) deals with the evolution of

a modeling method due to evolving requirements. Some assumptions will be made

about evolving requirements and the method will be built in an iterative loop;

Part 2. Bridging the technology gap (steps 4-11 in Figure 52) deals with the interopera-

bility between the third party enterprise data (park spaces availability) and the model

information, to enable queries that make use of both.

Part two is irrelevant for the evaluation. Therefore, the focus is placed on part one.

Most of the details related to part two are excluded.

Part 1 – Iterative metamodeling

For the purposes of this exercise, in order to emphasize the benefits of metamodeling

for method evolution, it will be assumed that the requirements for the modeling method

evolve in three phases

Phase I – Initial requirements

The modeling method must enable users to describe the allocation of parking areas to

different cities, as well as the types of vehicles that each parking area accepts.

Phase II – Requirements for enriching the modeling method (extension 1)

The method must enable the modeling of different types of courier tasks, mapped on

geographical locations (cities). A courier task is a sequence of transportation actions,

but decisions may occur to change the sequence (therefore also the route).

Appendix E: Exercise Used to Evaluate MM-DSL IDE 236

Phase III – Requirements for linking models with enterprise data (extension 2)

A courier must be able to see the list of courier tasks, and for each of them to see the

cities involved in the task, as well as the (third party) park space availability information

(in order to reserve space in case of availability).

The steps for this part (see Figure 52) are as follows:

1. Create method definition (MM-DSL) code (*.MML file):

a) Input: the method metamodel (driven by requirements);

b) Means: Eclipse MM-DSL editor, support from MM-DSL language specifica-

tion.

2. Create ADOxx-specific method library (*.ABL file):

a) Input: the MM-DSL code;

b) Means: Eclipse MM-DSL compiler.

3. Create models:

a) Input: ADOxx library as input for modeling tool, scenarios as input for mod-

els;

b) Means: import of library in ADOxx to create modeling tool, use modeling tool

to create models.

Repeat steps 1-3 to extend the modeling method based on evolving requirements.

Part 2 – Bridging the technology gap (to third party Linked Open Data)

The steps for this part (see Figure 52) are as follows:

4. Create enterprise data sample:

a. Input: provided sample in a RDF format (TriG);

b. Means: any text editor;

5. Create model-data links:

a. Input: Global identifiers (URIs) for modeling objects;

b. Means: edit URI attributes in modeling objects (or generate modeling

objects from a list of available URIs);

6. Serialize models in XML:

a. Input: models created in modeling tool;

b. Means: XML export of models from modeling tool;

7. Serialize metamodel in XML:

a. Input: ADOxx library;

b. Means: XML export of library from ADOxx;

8. Transform metamodel in RDF format:

a. Input: XML serialization of metamodel;

b. Means: RDF Transformer (upper side of the user interface);

9. Transform models in RDF format:

a. Input: XML serialization of models, RDF representation of metamodel;

b. Means: RDF Transformer (lower side of the user interface);

10. Upload metamodel, models and enterprise data in Linked Data repository:

a. Input: RDF representation of models, metamodel and 3rd party enter-

prise data;

b. Means: Sesame user interface;

11. Query examples:

a. Means: Sesame user interface.

Appendix E: Exercise Used to Evaluate MM-DSL IDE 237

Exercise Details: Part I – Iterative Metamodeling

Phase I – Create Method Definition

The initial requirements can be fulfilled with the metamodel depicted in Figure 53. The

diagram indicates a single model type (ParkingMap) which allows modeling of Cities,

ParkingAreas and four types of Vehicles.

Cities may contain ParkingAreas, ParkingAreas may accept various Vehicle types. For

the goals of this exercise, the cardinality of relations is irrelevant and will not be con-

sidered. The method name will be CityTransport.

Figure 53: Metamodel for ParkingMap Model Type

The following MM-DSL code describes this version of the method. Comments in the

code indicate placeholders where additional code must be added later, to fulfil the re-

quirements in phase II and III of the exercise.

method CityTransport

def EmbedPlatformType ADOxx
def EmbedCodeType Notebook

// Additional Code Required for Extensions

// optional extension for displaying object names

Appendix E: Exercise Used to Evaluate MM-DSL IDE 238

// only use if you define graphs yourself
embed ShowNameGraph <ADOxx:Notebook> {
"ATTR \\\"Name\\\" x:0pt y:9pt w:c"
}

// Additional Code Required for Extensions

style Blue {fill:blue stroke:black stroke-width:1}
style Green {fill:green stroke:black stroke-width:1}
style Black {fill:black stroke:black stroke-width:1}
style Orange {fill:orange stroke:black stroke-width:1}
style Red {fill:red stroke:black stroke-width:1}

classgraph GraphCar style Blue {
 rectangle x=-10 y=-10 w=20 h=20
 insert ShowNameGraph
}

classgraph GraphTruck style Blue {
 rectangle x=-5 y=-15 w=20 h=20
 rectangle x=-10 y=-10 w=20 h=20
 insert ShowNameGraph
}

classgraph GraphMotorcycle style Green {
 circle cx=0 cy=0 r=10
 insert ShowNameGraph
}

classgraph GraphBicylce style Green {
 circle cx=-5 cy=0 r=10
 circle cx=5 cy=0 r=10
 insert ShowNameGraph
}

classgraph GraphParkingArea {
 rectangle x=-20 y=-20 w=40 h=40 style Orange
 polygon points=-20,20 0,20 -20,0 style Red
 polygon points=0,-20 20,-20 20,0 style Red
 text "P" x=-2 y=-2
 insert ShowNameGraph
}

relationgraph GraphAcceptsVehiclesOfType style Black {
 from
 rectangle x=-2 y=-2 w=4 h=4
 middle
 text "accepts vehicle of type" x=0 y=0
 to
 polygon points=-2,2 2,0 -2,-2
}

// Additional Code Required for Extensions

class Root {
 // Additional Code Required for Extensions

}

class City extends Root {

Appendix E: Exercise Used to Evaluate MM-DSL IDE 239

 attribute Country:string
}

class ParkingArea extends Root symbol GraphParkingArea {
 attribute Type:string
}

class VehicleType extends Root {
 attribute Weight:int access:write
 attribute Lenght:int access:write
 attribute Height:int access:write
}

class Car extends VehicleType symbol GraphCar {}
class Truck extends VehicleType symbol GraphTruck {}
class Motorcycle extends VehicleType symbol GraphMotorcycle {}
class Bicycle extends VehicleType symbol GraphBicylce {}

// Additional Code Required for Extensions

relation acceptsVehiclesOfType symbol GraphAcceptsVehiclesOfType from
ParkingArea to VehicleType {}
relation contains from City to ParkingArea {}

// Additional Code Required for Extensions

modeltype ParkingMap {
 classes City ParkingArea Car Truck Motorcycle Bicycle
 relations acceptsVehiclesOfType contains
 modes none
}

// Additional Code Required for Extensions

The code is syntactically and semantically correct and can be compiled to a modeling

tool. In this exercise the ADOxx platform has been used to execute MM-DSL code.

Phase II – first extension

It is assumed that the requirements evolve by adding those indicated for Phase2 (the

addition of task modeling capabilities). The extended requirements can be fulfilled by

the metamodel depicted in Figure 54. The extensions to the metamodel are as follows:

A new model type is added (CourierTask) to depict the sequence of transportation Ac-

tions necessary for a type of task. Besides actions, Decisions may also be used to split

the sequence. Next is the name of the relation which links subsequent nodes in the

task (it has a Condition attribute to describe, after a decision, what determines each

path choice). Actions can be mapped on Cities where they need to be performed (sug-

gesting that a courier would need to find parking in those cities in order to perform the

task).

Appendix E: Exercise Used to Evaluate MM-DSL IDE 240

Figure 54: Extended Metamodel Containing the new Model Type CourierTask

Table XIX indicates some code snippets that must be added in some of the placehold-

ers reserved during the first iteration. It is left as an exercise for the students to identify,

based on the language specification, where exactly should each snippet be inserted.

Table XIX: Code Extensions for Phase II

1

relationgraph GraphNext style Red {

 from

 middle

 insert DynConditionGraph

 to

 polygon points=-2,2 2,0 -2,-2

}

2

relation next symbol GraphNext from Node to Node {

 attribute Condition:string

}

3

modeltype CourierTask {

 classes Decision Action

 relations next

 modes none

}

4 embed DynConditionGraph <ADOxx:Notebook> {

Appendix E: Exercise Used to Evaluate MM-DSL IDE 241

"ATTR \\\"Condition\\\""

}

5 class Node extends Root {}

6 class Decision extends Node {}

7

class Action extends Node {

 reference requiresParkingInCity -> modeltype ParkingMap class City

}

After the code insertion is performed, the code needs to be compiled again.

Phase III – Second Extension

Now the requirements of Phase3 are added, for bridging the technological gap be-

tween the modeling environment and the third party Linked Open Data available. The

new metamodel is shown in Figure 55. Its only addition is the URI attribute to the Root

class, thus to be inherited by all modeling elements. This URI will act as a global identi-

fier, to allow the indication that a certain element of a model (e.g. a ParkingArea) is the

same thing as some third party resource (e.g. a ParkingArea record from the third party

space availability data).

Figure 55: Extended Metamodel Containing a new URI attribute in the Root Class

In addition to the metamodel change, functionality will be added in the form of embed-

ded AdoScript code. This code will facilitate the model-to-data linking by importing

Appendix E: Exercise Used to Evaluate MM-DSL IDE 242

URIs from a list given by the user (it is not mandatory to use, the URIs can also be

typed in one by one, in every model element).

Table XX indicates some code snippets that must be added in some of the placehold-

ers reserved during the first iteration. It is left as an exercise for the students to identify,

based on the language specification, where exactly should each snippet be inserted.

Table XX: Code Extensions for Phase III

8

embed URIImportItem <ADOxx:AdoScript> {

"ITEM \\\"URI import\\\" modeling:\\\"~AdoScripts\\\" pos2:1"

}

9 attribute URI:string

10 def EmbedCodeType AdoScript

11

algorithm URIImport {

 // embed the AdoScript code

 insert URIImportItem

 insert URIImportAlgorithm

}

12

embed URIImportAlgorithm <ADOxx:AdoScript> {

// always put \\\ before special characters and quotations (e.g. \\\\n,

\\\")

"

SETL cls_name:(\\\"ParkingArea\\\")

SETL mod_type_name:(\\\"ParkingMap\\\")

SETL attr_uri_name:(\\\"URI\\\")

SETL obj_cnt:(0)

CC \\\"Modeling\\\" GET_ACT_MODEL

SETL pm_id:(modelid)

IF (pm_id = -1) {

 CC \\\"AdoScript\\\" ERRORBOX (\\\"The selected model could not be de-

termined.\\\\nMake sure a model of type \\\" + mod_type_name + \\\" is

opened and selected.\\\")

 EXIT

}

CC \\\"Core\\\" GET_MODEL_MODELTYPE modelid:(pm_id)

IF (modeltype != mod_type_name) {

 CC \\\"AdoScript\\\" ERRORBOX (\\\"The selected model is of the wrong

type.\\\\nMake sure a model of type \\\" + mod_type_name + \\\" is opened

and selected.\\\")

 EXIT

}

Appendix E: Exercise Used to Evaluate MM-DSL IDE 243

CC \\\"AdoScript\\\" EDITBOX text:(\\\"\\\") title:(\\\"Enter URIs\\\")

oktext:(\\\"Create\\\")

IF (endbutton != \\\"ok\\\") {

 EXIT

}

SETL uris:(text)

CC \\\"Core\\\" GET_CLASS_ID classname:(cls_name)

SETL cls_id:(classid)

CC \\\"Core\\\" GET_ATTR_ID classid:(cls_id) attrname:(attr_uri_name)

SETL attr_uri_id:(attrid)

FOR uri in:(uris) sep:(\\\"\\\\n\\\") {

 IF (LEN uri > 1) {

 CC \\\"Core\\\" CREATE_OBJ modelid:(pm_id) classid:(cls_id) ob-

jname:(cls_name + \\\"-\\\" + STR obj_cnt)

 SETL obj_id:(objid)

 CC \\\"Core\\\" SET_ATTR_VAL objid:(obj_id) attrid:(attr_uri_id)

val:(uri)

 CC \\\"Modeling\\\" SET_OBJ_POS objid:(obj_id) x:(2cm) y:(1cm+CM (1.5

* obj_cnt))

 SETL obj_cnt:(obj_cnt + 1)

 }

}

"

}

After the code insertion is performed, the code needs to be compiled once more. This

is the final compilation for this exercise, which continues in part 2, by using the created

modeling tool, models created by it, and RDF to bridge the technological gap to third

party Linked Open Data. As already mentioned, the details of part 2 are not included

because they are not relevant to the current evaluation of MM-DSL IDE. Full exercise

can be found in [65].

Appendix F: Standard SUS Questionnaire 244

Appendix F: Standard SUS Questionnaire

Strongly Strongly

disagree agree

1. I think that I would like to use this system

frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a

technical person to be able to use this

system

5. I found the various functions in this sys-

tem were well integrated

6. I thought there was too much incon-

sistency in this system

7. I would imagine that most people would

learn to use this system very quickly

8. I found the system very cumbersome to

use

9. I felt very confident using the system

10. I needed to learn a lot of things before I

could get going with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Appendix G: MM-DSL IDE Evaluation Results Overview 245

Appendix G: MM-DSL IDE Evaluation Results Overview

 P
articip

an
t

Q
u

e
stio

n
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

1
4

5
4

3
3

3
3

2
4

4
3

3
1

3
2

4
5

4
2

3
2

4
4

2
3

4
5

3
5

3
3

2
3

5
1

2
4

2
1

3
3

3
3

2
5

2
4

2
1

5
4

3
2

3
4

3
1

3
3

1
2

4
4

3
5

5
5

4
3

4
3

2
3

3
4

3
2

3
3

3
5

1
2

3
4

4
1

1
2

3
2

5
3

2
2

4
2

1
3

2
2

4
3

3
5

4
2

2
4

2
2

1
1

3
5

3
2

4
4

3
1

2
4

1
5

2
2

5
3

5
5

3
4

4
4

2
5

4
3

4
2

3
3

4
5

4
2

3
4

5
3

3
2

3
4

4
3

4
4

6
1

1
1

1
1

2
1

2
4

2
3

3
2

2
2

2
1

1
2

3
2

2
4

3
1

2
2

2
1

2
1

7
4

5
4

4
5

2
4

3
4

2
2

5
1

3
1

5
5

1
2

2
3

4
2

2
4

4
3

4
3

2
2

8
3

1
1

2
4

3
2

3
4

3
3

3
3

2
3

3
1

2
5

3
3

3
5

4
3

3
3

2
2

3
3

9
5

4
4

4
5

3
3

1
5

4
3

3
1

2
2

4
5

2
2

3
4

5
3

1
3

3
3

4
3

3
3

10
2

3
3

4
3

2
1

3
3

5
4

3
5

1
5

4
3

4
1

3
2

5
2

2
1

3
5

1
5

2
2

SU
S Sco

re
75.00

82.50
82.50

67.50
65.00

57.50
72.50

40.00
55.00

50.00
50.00

62.50
20.00

62.50
37.50

70.00
95.00

42.50
32.50

47.50
65.00

62.50
35.00

35.00
67.50

60.00
50.00

82.50
55.00

52.50
55.00

A
ve

rage
 SU

S Sco
re

:
57.66

M
e

d
ian

 SU
S Sco

re
:

57.50
B

e
st SU

S Sco
re

:
95

W
o

rst SU
S Sco

re
:

20
Stan

d
ard

 D
e

viatio
n

:
16.7

Bibliography 246

Bibliography

[1] “Research in Programming Languages | Tagide.” [Online]. Available:
http://tagide.com/blog/2012/03/research-in-programming-languages/. [Accessed:
03-Aug-2012].

[2] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The Evolution of an Exten-
sion Language: A History of Lua,” in IN PROCEEDINGS OF V BRAZILIAN SYM-
POSIUM ON PROGRAMMING LANGUAGES, 2001, pp. 14–28.

[3] T. Clark, P. Sammut, and J. Willans, “Superlanguages: developing languages and
applications with XMF.,” 2008. [Online]. Available:
http://itcentre.tvu.ac.uk/~clark/docs/Superlanguages.pdf. [Accessed: 15-Jan-2013].

[4] M. Fowler and R. Parsons, Domain Specific Languages, 1st ed. Addison-Wesley
Longman, Amsterdam, 2010.

[5] F. Jouault and J. Bézivin, “KM3: A DSL for Metamodel Specification,” in Formal
Methods for Open Object-Based Distributed Systems, R. Gorrieri and H.
Wehrheim, Eds. Springer Berlin Heidelberg, 2006, pp. 171–185.

[6] T. Clark and L. Tratt, “Language factories,” in Proceedings of the 24th ACM SIG-
PLAN conference companion on Object oriented programming systems languages
and applications, New York, NY, USA, 2009, pp. 949–955.

[7] S. Gunther, M. Haupt, and M. Splieth, “Agile Engineering of Internal Domain-
Specific Languages with Dynamic Programming Languages,” in 2010 Fifth Interna-
tional Conference on Software Engineering Advances (ICSEA), 2010, pp. 162–168.

[8] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: an annotated
bibliography,” SIGPLAN Not, vol. 35, no. 6, pp. 26–36, Jun. 2000.

[9] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-
specific languages,” ACM Comput. Surv., vol. 37, pp. 316–344, Dec. 2005.

[10] D. Karagiannis and H. Kühn, “Metamodelling Platforms,” in E-Commerce and Web
Technologies, vol. 2455, K. Bauknecht, A. M. Tjoa, and G. Quirchmayr, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 182–182.

[11] “Systems and software engineering – Vocabulary,” ISOIECIEEE 247652010E, pp.
1–418, 2010.

[12] T. Kühne, “Matters of (Meta-) Modeling,” Softw. Syst. Model., vol. 5, no. 4, pp. 369–
385, Dec. 2006.

[13] “MOF 2.4.1.” [Online]. Available: http://www.omg.org/spec/MOF/2.4.1/. [Accessed:
05-Nov-2013].

[14] E. Guerra, J. de Lara, D. Kolovos, and R. Paige, “A Visual Specification Language
for Model-to-Model Transformations,” in 2010 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2010, pp. 119–126.

[15] A. J. Perlis, “Special Feature: Epigrams on Programming,” SIGPLAN Not, vol. 17,
no. 9, pp. 7–13, Sep. 1982.

[16] “UML 2.4.1.” [Online]. Available: http://www.omg.org/spec/UML/2.4.1/. [Accessed:
20-Nov-2013].

[17] “Unified Modeling Language,” Wikipedia, the free encyclopedia. 22-Aug-2014.

[18] “Introduction to the Diagrams of UML 2.X.” [Online]. Available:
http://www.agilemodeling.com/essays/umlDiagrams.htm. [Accessed: 20-Nov-2013].

Bibliography 247

[19] “UML graphical notation overview, UML diagram examples, tutorials and refer-
ence.” [Online]. Available: http://www.uml-diagrams.org/. [Accessed: 20-Nov-2013].

[20] S. Kelly, Domain-specific modeling: enabling full code generation. Hoboken, N.J:
Wiley-Interscience : IEEE Computer Society, 2008.

[21] M. Fowler, “Language Workbenches: The Killer-App for Domain Specific Lan-
guages?” [Online]. Available:
http://www.martinfowler.com/articles/languageWorkbench.html. [Accessed: 26-Mar-
2012].

[22] J.-P. Tolvanen and S. Kelly, “MetaEdit+: defining and using integrated domain-
specific modeling languages,” in Proceedings of the 24th ACM SIGPLAN confer-
ence companion on Object oriented programming systems languages and applica-
tions, New York, NY, USA, 2009, pp. 819–820.

[23] N. Chomsky, Syntactic structures, 2nd ed. Berlin ; New York: Mouton de Gruyter,
2002.

[24] N. Chomsky, “On certain formal properties of grammars,” Inf. Control, vol. 2, no. 2,
pp. 137–167, Jun. 1959.

[25] N. Chomsky, “Three models for the description of language,” IRE Trans. Inf. Theo-
ry, vol. 2, no. 3, pp. 113–124, 1956.

[26] T. Jiang, M. Li, B. Ravikumar, and K. W. Regan, “Algorithms and Theory of Compu-
tation Handbook,” M. J. Atallah and M. Blanton, Eds. Chapman & Hall/CRC, 2010,
pp. 20–20.

[27] D. Grune, Modern compiler design. New York: Springer, 2012.

[28] R. Cole, “Converting CFGs to CNF (Chomsky Normal Form).” [Online]. Available:
http://cs.nyu.edu/courses/fall07/V22.0453-001/cnf.pdf. [Accessed: 27-Nov-2013].

[29] W. Goddard, “Chomsky Normal Form.” [Online]. Available:
http://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/9a.pdf. [Ac-
cessed: 27-Nov-2013].

[30] W. Goddard, Introducing the theory of computation. Sudbury, Mass: Jones and
Bartlett Publishers, 2008.

[31] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rut-
ishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M.
Woodger, “Report on the Algorithmic Language ALGOL 60,” Commun ACM, vol. 3,
no. 5, pp. 299–314, May 1960.

[32] “ISO/IEC 14977:1996 - Information technology -- Syntactic metalanguage -- Ex-
tended BNF.” [Online]. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26153. [Accessed: 26-Nov-
2013].

[33] “Extensible Markup Language (XML) 1.0 (Fifth Edition).” [Online]. Available:
http://www.w3.org/TR/REC-xml/#sec-notation. [Accessed: 27-Nov-2013].

[34] D. E. Knuth, “Semantics of context-free languages,” Math. Syst. Theory, vol. 2, no.
2, pp. 127–145, Jun. 1968.

[35] D. E. Knuth, “The genesis of attribute grammars,” in Attribute Grammars and their
Applications, P. Deransart and M. Jourdan, Eds. Springer Berlin Heidelberg, 1990,
pp. 1–12.

[36] J. Paakki, “Attribute Grammar Paradigms&Mdash;a High-level Methodology in
Language Implementation,” ACM Comput Surv, vol. 27, no. 2, pp. 196–255, Jun.
1995.

Bibliography 248

[37] K. Slonneger and B. Kurtz, Formal Syntax and Semantics of Programming Lan-
guages: A Laboratory Based Approach, 1st ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[38] F. Essalmi and L. J. B. Ayed, “Graphical UML View from Extended Backus-Naur
Form Grammars,” in Sixth International Conference on Advanced Learning Tech-
nologies, 2006, 2006, pp. 544–546.

[39] Y. Xia and M. Glinz, “Rigorous EBNF-based definition for a graphic modeling lan-
guage,” in Software Engineering Conference, 2003. Tenth Asia-Pacific, 2003, pp.
186– 196.

[40] “OMG’s MetaObject Facility (MOF) Home Page.” [Online]. Available:
http://www.omg.org/mof/. [Accessed: 15-Jan-2013].

[41] “School and Training Plans Solution | ConceptDraw.com.” [Online]. Available:
http://www.conceptdraw.com/solution-park/building-school-training-plans. [Ac-
cessed: 07-Sep-2014].

[42] D. H. Lorenz and B. Rosenan, “Cedalion: A Language for Language Oriented Pro-
gramming,” in Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, New York, NY, USA,
2011, pp. 733–752.

[43] M. E. Lesk and E. Schmidt, Lex: A lexical analyzer generator. Bell Laboratories
Murray Hill, NJ, 1975.

[44] S. C. Johnson, “Yacc: Yet Another Compiler-Compiler,” 1978.

[45] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007.

[46] “ANTLR.” [Online]. Available: http://www.antlr.org/. [Accessed: 14-Sep-2014].

[47] S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,” in Workshop
on Modeling Symposium at Eclipse Summit, 2006, vol. 32, p. 118.

[48] “Xtext - Community Web Page.” [Online]. Available:
http://www.eclipse.org/Xtext/community.html. [Accessed: 27-Sep-2014].

[49] M. Voelter and V. Pech, “Language modularity with the MPS language workbench,”
in 2012 34th International Conference on Software Engineering (ICSE), 2012, pp.
1449–1450.

[50] “mbeddr - engineering the future of embedded software.” [Online]. Available:
http://mbeddr.com/index.html. [Accessed: 27-Sep-2014].

[51] “Irony - .NET Language Implementation Kit. - Home.” [Online]. Available:
http://irony.codeplex.com/. [Accessed: 15-Jan-2013].

[52] “MetaEdit+ Workbench User’s Guide.” [Online]. Available:
http://www.metacase.com/support/50/manuals/mwb/Mw.html. [Accessed: 02-Nov-
2014].

[53] “GME: Generic Modeling Environment.” [Online]. Available:
http://www.isis.vanderbilt.edu/Projects/gme/. [Accessed: 19-Aug-2013].

[54] Z. Molnár, D. Balasubramanian, and A. Lédeczi, “An Introduction to the Generic
Modeling Environment,” in TOOLS Europe 2007 Workshop on Model-Driven De-
velopment Tool Implementers Forum, Zurich, Switzerland, 2007.

[55] “GME - ISIS Forge Development Community.” [Online]. Available:
https://forge.isis.vanderbilt.edu/gme/. [Accessed: 09-Nov-2014].

[56] “Eclipse Modeling - EMF.” [Online]. Available:
http://www.eclipse.org/modeling/emf/. [Accessed: 19-Aug-2013].

Bibliography 249

[57] “Graphical Editing Framework.” [Online]. Available: http://www.eclipse.org/gef/.
[Accessed: 09-Nov-2014].

[58] “Graphical Modeling Framework.” [Online]. Available:
http://www.eclipse.org/modeling/gmp/. [Accessed: 09-Nov-2014].

[59] S. Kelly, Towards a Comprehensive MetaCASE and CAME Environment: Concep-
tual, Architectural, Functional and Usability Advances in MetaEdit+. University of
Jyvaskyla, 1997.

[60] J. L. Wynekoop and N. L. Russo, “Studying system development methodologies:
an examination of research methods,” Inf. Syst. J., vol. 7, no. 1, pp. 47–65, 1997.

[61] J. Nunamaker, J.F. and M. Chen, “Systems development in information systems
research,” in , Proceedings of the Twenty-Third Annual Hawaii International Con-
ference on System Sciences, 1990, 1990, vol. iii, pp. 631–640 vol.3.

[62] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” J. Manag. Inf. Syst., vol.
24, no. 3, pp. 45–77, 2007.

[63] A. Hevner and S. Chatterjee, Design science research in information systems.
Springer, 2010.

[64] S. Espana, N. Condori-Fernandez, A. Gonzalez, and O. Pastor, “Evaluating the
Completeness and Granularity of Functional Requirements Specifications: A Con-
trolled Experiment,” in Requirements Engineering Conference, 2009. RE ’09. 17th
IEEE International, 2009, pp. 161 –170.

[65] “OMILAB.org.” [Online]. Available: http://www.omilab.org/. [Accessed: 19-Aug-
2013].

[66] M. Glinz, “On Non-Functional Requirements,” in Requirements Engineering Con-
ference, 2007. RE ’07. 15th IEEE International, 2007, pp. 21 –26.

[67] M. Völter and E. Visser, “Language extension and composition with language
workbenches,” in Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion,
New York, NY, USA, 2010, pp. 301–304.

[68] H. Kühn and M. Murzek, “Interoperability Issues in Metamodelling Platforms,” in
Proceedings of the 1st International Conference on Interoperability of Enterprise
Software and Applications, Geneva, 2006, pp. 215–226.

[69] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-Based Approach to Software
Development and Deployment on Cloud,” in 2010 24th IEEE International Confer-
ence on Advanced Information Networking and Applications (AINA), 2010, pp.
414–421.

[70] D. Karagiannis and N. Visic, “Very Lightweight Modeling Language (VLML): A Met-
amodel-based Implementation,” in Modelling and quality in requirements engineer-
ing, N. Seyff and A. Koziolek, Eds. Münster: Monsenstein und Vannerdat, 2012.

[71] M. Glinz, “Very Lightweight Requirements Modeling,” in Requirements Engineering
Conference (RE), 2010 18th IEEE International, 2010, pp. 385–386.

[72] M. Glinz, “Problems and Deficiencies of UML as a Requirements Specification
Language,” in Proceedings of the 10th International Workshop on Software Specifi-
cation and Design, Washington, DC, USA, 2000, p. 11–.

[73] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with ADORA,” Inf Syst,
vol. 27, no. 6, pp. 425–444, Sep. 2002.

[74] M. Glinz and D. Wüest, “A Vision of an Ultralightweight Requirements Modeling
Language. TR IFI-2010.06,” University of Zurich.

Bibliography 250

[75] H.-G. Fill, “On the Conceptualization of a Modeling Language for Semantic Model
Annotations,” in Advanced Information Systems Engineering Workshops, vol. 83,
C. Salinesi and O. Pastor, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 134–148.

[76] D. Karagiannis, H.-G. Fill, S. Zivkovic, and W. Utz, “From Model Editors to Model-
ling Tools: Operationalizing Modelling Methods with ADOxx,” MODELS 2012, Inns-
bruck, Austria. [Online]. Available:
http://models2012.info/index.php?option=com_content&view=article&id=14&Itemid
=19#T2. [Accessed: 06-Nov-2012].

[77] D. Karagiannis and N. Visic, “Next Generation of Modelling Platforms,” in Perspec-
tives in Business Informatics Research, vol. 90, J. Grabis and M. Kirikova, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 19–28.

[78] J. Steiff, The Complete Idiot’s Guide To Independent Filmmaking. Alpha Books,
2005.

[79] N. Visic and D. Karagiannis, “Developing Conceptual Modeling Tools Using a
DSL,” in Knowledge Science, Engineering and Management, R. Buchmann, C. V.
Kifor, and J. Yu, Eds. Springer International Publishing, 2014, pp. 162–173.

[80] M. Jarke, R. Gallersdörfer, M. A. Jeusfeld, M. Staudt, and S. Eherer, “ConceptBase
— A deductive object base for meta data management,” J. Intell. Inf. Syst., vol. 4,
no. 2, pp. 167–192, Mar. 1995.

[81] H. Kern, A. Hummel, and S. Kühne, “Towards a comparative analysis of meta-
metamodels,” in Proceedings of the compilation of the co-located workshops on
DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11, & VMIL’11, New York,
NY, USA, 2011, pp. 7–12.

[82] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modeling for Require-
ments Engineering. The MIT Press, 2011.

[83] “HUTN.” [Online]. Available: http://www.omg.org/spec/HUTN/. [Accessed: 29-Aug-
2013].

[84] “Emfatic Language Reference.” [Online]. Available:
http://www.eclipse.org/epsilon/doc/articles/emfatic/. [Accessed: 29-Aug-2013].

[85] “Epsilon.” [Online]. Available: http://www.eclipse.org/epsilon/. [Accessed: 29-Aug-
2013].

[86] T. Horn, “Model Querying with FunnyQT,” in Theory and Practice of Model Trans-
formations, K. Duddy and G. Kappel, Eds. Springer Berlin Heidelberg, 2013, pp.
56–57.

[87] J. Ebert and T. Horn, “GReTL: an extensible, operational, graph-based transfor-
mation language,” Softw. Syst. Model., pp. 1–21.

[88] “Graphiti.” [Online]. Available: http://www.eclipse.org/graphiti/. [Accessed: 21-Mar-
2014].

[89] “XModeler.” [Online]. Available:
http://www.eis.mdx.ac.uk/staffpages/tonyclark/Software/XModeler.html. [Accessed:
21-Mar-2014].

[90] M. P. Ward, “Language Oriented Programming,” Software—Concepts Tools, vol.
15, pp. 147–161, 1995.

[91] T. Clark, P. Sammut, and J. Willans, “Applied metamodelling: a foundation for lan-
guage driven development.,” 2008. [Online]. Available:
http://eprints.mdx.ac.uk/6060/. [Accessed: 23-Sep-2011].

Bibliography 251

[92] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley, 2003.

[93] J. Greenfield and K. Short, Software factories: assembling applications with pat-
terns, models, frameworks, and tools. Wiley Pub., 2004.

[94] D. Ameller, X. Franch, and J. Cabot, “Dealing with Non-Functional Requirements in
Model-Driven Development,” in Requirements Engineering Conference (RE), 2010
18th IEEE International, 2010, pp. 189 –198.

[95] M. Eysholdt and H. Behrens, “Xtext: implement your language faster than the quick
and dirty way,” in Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion,
New York, NY, USA, 2010, pp. 307–309.

[96] “Microsoft Visual Studio 2010 Visualization & Modeling SDK,” Microsoft Download
Center. [Online]. Available: https://www.microsoft.com/en-
us/download/details.aspx?id=23025. [Accessed: 16-Jan-2013].

[97] “OMiLAB: The Modelling Methods Booklet.” [Online]. Available:
http://www.omilab.org/web/guest/booklet. [Accessed: 25-Dec-2014].

[98] L. McIver and D. Conway, “Seven deadly sins of introductory programming lan-
guage design,” in Software Engineering: Education and Practice, 1996. Proceed-
ings. International Conference, 1996, pp. 309–316.

[99] B. Stroustrup, The C++ Programming Language. 1995.

[100] B. Stroustrup, The design and evolution of C++. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1994.

[101] “The SVG path element - SVG Tutorial.” [Online]. Available:
http://tutorials.jenkov.com/svg/path-element.html. [Accessed: 07-May-2014].

[102] N. Visic, “MM-DSL Source Code Repository,” GitHub. [Online]. Available:
https://github.com/niksavis/mm-dsl. [Accessed: 13-Jan-2015].

[103] “Evaluating Programming Languages.” [Online]. Available:
http://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-
languages.html. [Accessed: 19-Mar-2014].

[104] J. Brooke, “SUS-A quick and dirty usability scale,” Usability Eval. Ind., vol. 189,
pp. 189–194, 1996.

[105] A. Bangor, P. Kortum, and J. Miller, “Determining what individual SUS scores
mean: Adding an adjective rating scale,” J. Usability Stud., vol. 4, no. 3, pp. 114–
123, 2009.

Index of Terms 252

Index of Terms

abstract syntax, 52, 83

abstraction, 192

ADOxx, 63, 93, 181

ANTLR, 59

auto-generation, 169

class diagram, 38

compiler, 32

computer language, 19, 32

conceptualization, 30, 75, 88

consistency, 191

context-free grammar, 45

development environment, 175

domain-specific graphical modeling
language, 40

domain-specific language, 20, 21, 31,
35, 73

dynamic semantics, 54

easy maintenance, 189

EBNF, 46

Ecore, 97, 101

efficiency, 189

embedding, 168

evaluation, 75, 188

expressiveness, 192

extensibility, 85

formal grammar, 42, 105

formal language, 42

general purpose markup language, 35

general purpose modeling language, 35

general-purpose language, 34

GME, 66

grammar, 22, 33, 105

graphical computer language, 33

graphical language realization tools, 63

graphical modeling language, 36

implementation, 75, 172

information system development, 75

inheritance, 166

interoperability, 85

Irony, 63

language design, 102

language driven development, 99

language framework, 171

language oriented programming, 98,
183

language workbench, 100

language-oriented engineering, 56

learnability, 190

meta-, 30

meta2model, 83

MetaEdit+, 65

metalanguage, 30

metamodel, 30, 90, 91

metamodeling, 31

metamodeling approach, 50

metamodeling framework, 58

metamodeling platform, 31, 57, 58, 81,
100

metamodeling technology, 24

MM-DSL, 17, 95, 96, 183, 202

model, 30

model driven architecture, 99

modeling algorithm, 29, 84

modeling language, 28, 34

modeling mechanism, 29

modeling method, 22, 28, 179

modeling method engineering, 29

modeling procedure, 28, 84

modeling tool development, 25, 37,
101, 184

MPS, 62

Index of Terms 253

orthogonality, 191

pedagogical value, 190

portability, 189

program translation, 177

programing language, 36

rapid development, 189

readability, 191

referencing, 167

reliability and safety, 189

reusability, 190

scalability, 86

simplicity, 191

smallest working program, 166

software engineering, 29

software factories, 99

specification language, 34, 36

static semantics, 53

SUS, 195

terminal, 106, 165

textual computer language, 33

textual language realization tools, 59

translator, 31

translator framework, 170

UML, 37

VLML, 87

writability, 191

Xtext, 60, 172

	Abstract
	Zusammenfassung
	Acknowledgment
	Copyright Notice
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Foreword
	1 Introduction
	1.1 Computer Languages
	1.2 The Term “DSL”
	1.3 The Term “Modeling Method”
	1.4 Motivation
	1.5 Research Goals
	1.6 Main Results
	1.7 Summary

	2 Background
	2.1 Metamodeling Taxonomy
	2.1.1 Modeling Method
	2.1.2 Modeling Language
	2.1.3 Modeling Procedure
	2.1.4 Modeling Algorithm
	2.1.5 Modeling Mechanism
	2.1.6 Software Engineering
	2.1.7 Modeling Method Engineering
	2.1.8 Meta-
	2.1.9 Metalanguage
	2.1.10 Model and Metamodel
	2.1.11 Metamodeling
	2.1.12 Metamodeling Platform
	2.1.13 Domain-Specific Language
	2.1.14 Translator and Compiler

	2.2 Types of Computer Languages
	2.2.1 Textual vs. Graphical
	2.2.2 General-Purpose vs. Domain-Specific
	2.2.3 Programming vs. Specification Language
	2.2.4 Graphical Modeling Languages
	2.2.4.1 UML
	2.2.4.2 Domain-Specific Graphical Modeling Languages

	2.3 Language Specification Techniques
	2.3.1 Formal Language Theory
	2.3.1.1 Formal Grammar
	2.3.1.2 Hierarchy of Grammars
	2.3.1.3 Context-Free Grammar
	2.3.1.4 Extended Backus-Naur Form
	2.3.1.5 Attributed Grammar
	2.3.1.5.1 Attributed Extended Backus-Naur Form

	2.3.2 Metamodeling Approach
	2.3.2.1 Designing a Modeling Language

	3 State of the Art and Related Research
	3.1 Language-Oriented Engineering
	3.2 Related Concepts
	3.3 Existing Tool Support
	3.3.1 Textual Language Realization Tools
	3.3.1.1 ANTLR
	3.3.1.2 Xtext
	3.3.1.3 MPS
	3.3.1.4 Irony

	3.3.2 Graphical Language Realization Tools
	3.3.2.1 ADOxx
	3.3.2.2 MetaEdit+
	3.3.2.3 GME
	3.3.2.4 Eclipse IDE with Modeling Frameworks

	3.4 Challenges

	4 Research Problem
	4.1 Environment
	4.1.1 Study 1: Metamodeling Tools
	4.1.2 Study 2: Domain-Specific Languages

	4.2 Problem Definition

	5 Research Methodology
	5.1 Choice and Description of Methodology
	5.2 Application of the Methodology in this Research

	6 Metamodeling Platforms
	6.1 Introduction
	6.2 Requirements
	6.2.1 Seven Key Functional Requirements
	6.2.1.1 Meta2model
	6.2.1.2 Abstract Syntax Designer
	6.2.1.3 Dynamic Notation Mapper
	6.2.1.4 Dynamic Notation Designer
	6.2.1.5 Modeling Procedure Designer
	6.2.1.6 Open APIs and Algorithm Libraries
	6.2.1.7 Model Repository

	6.2.2 Important Non-functional Requirements
	6.2.2.1 Extensibility
	6.2.2.2 Interoperability
	6.2.2.3 Scalability

	7 Metamodeling Platform Applications
	7.1 Very Lightweight Modeling Language (VLML): A Metamodel-based Implementation
	7.1.1 Introduction
	7.1.2 Conceptualization
	7.1.3 Metamodels Design
	7.1.4 Tool Implementation
	7.1.5 Conclusion

	8 MM-DSL
	8.1 Introduction
	8.2 Related Work
	8.3 Applied Concepts and Technologies
	8.4 Clarifying Design Decisions
	8.5 Language Design Best Practices and Guidelines
	8.5.1 Desirable Language Features
	8.5.2 Undesirables Language Features

	9 MM-DSL Specification
	9.1 How to read the Grammar
	9.2 Global Statements
	9.2.1 Root Statement
	9.2.2 Method Name
	9.2.3 Include
	9.2.4 Embed
	9.2.5 Insert
	9.2.6 Method
	9.2.7 Enumeration

	9.3 Structure Statements
	9.3.1 Metamodel
	9.3.2 Class
	9.3.3 Relation
	9.3.4 Attribute
	9.3.5 Reference
	9.3.6 Model Type

	9.4 Visualization Statements
	9.4.1 Class Symbol
	9.4.2 Relation Symbol
	9.4.3 SVG Command
	9.4.4 Rectangle
	9.4.5 Circle
	9.4.6 Ellipse
	9.4.7 Line
	9.4.8 Polyline
	9.4.9 Polygon
	9.4.10 Text
	9.4.11 Path
	9.4.12 Symbol Style

	9.5 Operations Statements
	9.5.1 Algorithm
	9.5.2 Selection Statement
	9.5.3 Loop Statement
	9.5.4 Variable Statement
	9.5.5 Expressions
	9.5.6 Operators
	9.5.7 Algorithm Operation
	9.5.8 File Operation
	9.5.9 Directory Operation
	9.5.10 Simple User Interface
	9.5.11 Item Operation
	9.5.12 Model Operation
	9.5.13 Instance Operation
	9.5.14 Attribute Operation
	9.5.15 Event
	9.5.16 Terminals

	9.6 Programming Concepts
	9.6.1 Smallest Working Program
	9.6.2 Inheritance
	9.6.3 Referencing
	9.6.4 Embedding
	9.6.5 Auto-generation

	10 MM-DSL IDE
	10.1 Introduction
	10.2 Architecture
	10.3 Implementation
	10.4 User Guide
	10.4.1 Development Environment
	10.4.2 Program Translation
	10.4.3 Modeling Tool Generation

	11 MM-DSL Applications
	11.1 Running Example: A Pseudo Modeling Method
	11.1.1 Developing with the ADOxx Metamodeling Platform
	11.1.2 Developing with the MM-DSL

	11.2 Conclusion

	12 Evaluation
	12.1 The Language: MM-DSL
	12.1.1 External Evaluation Criteria
	12.1.1.1 Rapid Development
	12.1.1.2 Easy Maintenance
	12.1.1.3 Reliability and Safety
	12.1.1.4 Portability
	12.1.1.5 Efficiency
	12.1.1.6 Learnability
	12.1.1.7 Reusability
	12.1.1.8 Pedagogical Value

	12.1.2 Internal Evaluation Criteria
	12.1.2.1 Readability
	12.1.2.2 Writability
	12.1.2.3 Simplicity
	12.1.2.4 Orthogonality
	12.1.2.5 Consistency
	12.1.2.6 Expressiveness
	12.1.2.7 Abstraction

	12.1.3 Evaluation Scenario
	12.1.4 Evaluation Results

	12.2 The Environment: MM-DSL IDE
	12.2.1 Evaluation Scenario
	12.2.2 System Usability Scale
	12.2.3 Evaluation Results

	13 Summary and Outlook
	13.1 MM-DSL as an XML-Based Language
	13.2 Reverse Engineering: From Modeling Tools to Code
	13.3 Additional Compilers
	13.4 Towards Standardization

	Appendix A: MM-DSL Specification in EBNF
	Appendix B: MM-DSL – Xtext Language Description
	Appendix C: MetaDSL – Irony Language Description
	Appendix D: Exercise Used to Evaluate MM-DSL
	Task Summary
	Submission
	Task Details
	Helpful Hints
	Solution

	Appendix E: Exercise Used to Evaluate MM-DSL IDE
	Next Generation Enterprise Modeling: A Case Study
	Business View
	Conceptualization
	Choice of technology
	Requirements for the IT support
	Design decisions
	Implementation decisions

	Exercise Overview
	Part 1 – Iterative metamodeling
	Phase I – Initial requirements
	Phase II – Requirements for enriching the modeling method (extension 1)
	Phase III – Requirements for linking models with enterprise data (extension 2)

	Part 2 – Bridging the technology gap (to third party Linked Open Data)

	Exercise Details: Part I – Iterative Metamodeling
	Phase I – Create Method Definition
	Phase II – first extension
	Phase III – Second Extension

	Appendix F: Standard SUS Questionnaire
	Appendix G: MM-DSL IDE Evaluation Results Overview
	Bibliography
	Index of Terms

