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Introduction	

	

At	 the	 beginning	 of	 20th	 century	 two	 revolutionary	
theories	 were	 formulated,	 namely	 quantum	 mechanics	 and	
relativity,	which	 revolutionized	 the	world,	 as	we	know	 it.	 Even	
though	 we	 nowadays	 use	 devices	 that	 are	 based	 on	 quantum	
mechanics,	the	full	potential	of	the	quantum	mechanics	field	has	
not	 yet	 been	 realized	 to	 its	 most	 of	 extent.	 One	 example	 is	
quantum	 information,	 which	 finds	 applications	 not	 only	 in	
cryptography,	but	also	in	other	fields	like	chemistry	and	biology.	
Entanglement	has	been	proven	on	various	occasions	in	different	
systems	such	as	ions	[45,	46],	superconducting	qubits	[47],	cold	
atomic	ensembles	[48],	and	photons	[49].	Entanglement	is	one	of	
the	most	 groundbreaking	 discoveries	 in	 the	 realm	 of	 quantum	
physics	 and	 a	 seminal	 ingredient	 in	 quantum	 information	
science.	 However,	 the	 original	 states	 proposed	 by	 Einstein,	
Podolsky	and	Rosen,	 still	wait	 to	be	experimentally	 tested.	The	
idea	 involves	entanglement	 in	 the	external	degrees	of	 freedom,	
position	 and	momentum,	 of	massive	particles.	With	 the	 advent	
of	 Bose	 Einstein	 Condensates	 (BEC),	 which	 Bose	 and	 Einstein	
successfully	predicted	 in	1924	 (that	particles	with	 integer	 spin	
at	extremely	low	temperatures	will	tend	to	collapse	into	a	single	
quantum	 state),	 a	 new	 state	 of	 matter	 has	 been	 established.	
Laser	cooling	and	trapping	techniques	allow	the	experimenter	to	
prepare	 gaseous	 samples	 of	 atoms	 at	 very	 low	 temperatures.	
Quantum	gases	 then	are	one	of	 the	most	active	 fields	of	atomic	
physics	 nowadays.	 Moreover,	 the	 ability	 to	 implement	 single	
atom	detection	opens	the	crossroads	to	performing	matter-wave	
analogue	 experiments	 [50,	 52]	 and	 some	 of	 the	 pioneering	
photon-entanglement	 experiments	 [53,	 54].	 It	 opens	 a	 garden	
variety	 of	 opportunities	 in	 fundamental	 physics,	 many-body	
physics	etc.		

In	 this	 thesis,	 I	 present	 some	 of	 the	 advances	 we	 have	
achieved	 in	 the	 past	 3	 years	 and	 my	 contribution	 to	 that.	
Generally,	 spatial	 light	 modulators	 open	 a	 new	 door	 to	
implementing	 various	 light	 configurations	 or	 trap	 potentials	
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with	atomic	ensembles,	 as	well	 as	 imparting	quantized	angular	
momentum	on	a	BEC.	Such	trap	configurations	can	be	utilized	to	
exploit	 interesting	 experiments	 in	 Physics,	 using	 the	 SLM	 to	
create	 boxes,	 light	 sheets,	 gratings,	 arrays	 of	 traps	 and	 others.	
Our	 experiments	 in	 plan	 are	 concerned	 with	 being	 able	 to	
employ	arbitrary	light	patterns	(in	our	case	Gaussian	spots	with	
controllable	 parameters)	 and	 imprint	 them	 on	 an	 atom	
ensemble.	The	SLM	devices	have	also	been	successfully	used	 in	
quantum	 communication	 protocols	 and	 orbital	 angular	
momentum	experiments	(feats	already	achieved	by	the	Zeilinger	
group	 in	 the	 past).	 Optical	 dipole	 traps	 are	 also	 of	 great	
advantage,	 since	 they	 can	 confine	 both	 magnetically	 sensitive	
and	 insensitive	 states.	We	 have	 been	 recently	 able	 to	 produce	
optical	dipole	traps	(ODT)	with	our	setup.	Furthermore,	specific	
features	 of	 matter	 waves	 such	 as	 Fermi	 statistics	 and	 gravity	
sensitivity	 can	 extend	 the	 possibilities	 of	 experiments	 we	 can	
further	do.		
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Outline	of	this	thesis	
In	 Chapter	 1	 I	 discuss	 the	 specific	 technical	 features	 of	

spatial	 light	modulators,	 their	 application,	 specific	 functionality	
and	 ways	 of	 proper	 utilization.	 Furthermore,	 I	 discuss	 the	
problems	we	have	 come	 across	 over	 time	 in	 terms	of	 realizing	
the	 holograms	 we	 want	 to	 produce	 properly	 and	 with	 high	
quality	 according	 to	 the	 modern	 standard	 of	 realization	 in	
various	groups	around	the	world.	Some	theoretical	work	on	this	
subject	needed	to	be	performed	as	well	in	the	form	of	modeling	
and	 some	brief	 portion	of	 that	 is	 discussed	 as	well.	We	 choose	
one	particular	algorithm	(Vector	Holography)	since	 it	performs	
the	 best	 in	 terms	 of	 quality	 of	 spots.	 The	 size	 of	 the	 spots	 is	
diffraction	 limited	 though,	 but	 can	 be	 simply	 changed	 with	 an	
iris	 and	 proper	 algorithmic	 intensity	 compensation.	 The	
controllability	in	terms	of	position,	variety	of	patterns,	quality	of	
spots,	 focal	 length	 of	 each	 pattern,	 relative	 distance	 between	
patterns	 is	 controlled	with	 very	 good	 precision	 in	 the	 order	 of	
10um	(the	diameter	of	a	diffraction	limited	Gaussian	in	this	case	
limited	by	the	optimization	camera	we	use).		

In	the	second	chapter,	I	present	the	experiment	we	would	
like	 to	 perform	 realizing	 entanglement	 of	 external	 degrees	 of	
freedom.	This	experiment	was	already	presented	in	the	thesis	of	
Maximilian	 Ebner.	 Therefore,	 I	 briefly	 discuss	 the	 idea	 and	
present	the	theoretical	framework	that	was	added	to	it	in	order	
to	model	 possible	 realizations	 of	 induced	 noise	 by	 the	 SLM	 or	
non-homogeneous	 density	 of	 the	 trapped	 Bose-Einstein	
condensate.		

The	third	chapter	is	concerned	with	our	work	with	optical	
dipole	 traps.	 It	 presents	 some	 of	 the	 technical	 work	 I	 was	
involved	with	and	 the	experiment	 I	was	directly	 involved	with,	
namely	 scattering	 of	 an	 optically	 trapped	 Bose-Einstein	
condensate	on	an	optical	lattice.		

Chapter	 4	 is	 concerned	 with	 results	 from	 experimental	
realization	of	the	outcoupling	with	Raman	pulses	of	atoms	from	
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the	 Bose-Einstein	 condensate	 ensemble,	 which	 we	 have	 also	
performed	with	the	optically	trapped	Bose-Einstein	condensate.		

Chapter	 5	 is	 a	 note	 of	 the	 similarity	 between	 a	 Bose-	
Einstein	condensate	and	a	parametric-down-conversion	crystal,	
which	 I	 find	 is	 striking	 because	 of	 the	 broadened	 range	 of	
experiments	 in	Quantum	Optics	 that	 this	may	allow	us	 to	do	 in	
the	future.		

In	chapter	6	I	propose	two	types	of	experiments,	which	we	
can	 do	 in	 the	 near	 future.	 That	 is	 a	 test	 of	 Born’s	 rule,	 or	
Kolmogorov	 sum	 rule	 and	 the	 interplay	 between	 the	 exciting	
field	of	orbital	angular	momentum	photons	and	a	Bose-Einstein	
condensate.		

Chapter	7	 is	 a	brief	 summary	of	 the	message	 I	wanted	 to	
convey	with	this	thesis,	followed	by	a	brief	appendix	that	I	found	
necessary	to	the	general	reader	to	have,	and	references	I	used	in	
the	dissertation.		
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1.	Spatial	light	modulators		
1.1.	Introduction		

	
Most	 experiments	 in	 Bose-Einstein	 condensation	 are	 carried	

out	 in	 harmonic	 potentials,	 where	 considerable	 effort	 is	 usually	
engaged	 in	 controlling	 the	 laser	 frequency,	 polarization,	 intensity,	
and	alignment	of	many	laser	beams,	used	to	manipulate	and	probe	an	
atom	ensemble.	However,	 little	attempt	is	typically	made	to	sculpt	a	
laser	 beam’s	 profile	 beyond	 the	 simple	 Gaussian	 mode.	 While	 a	
parabolic	 potential	 is	 relatively	 easy	 to	 produce,	 it	 is	 not	 the	most	
revealing	 trap	 shape	 in	 which	 to	 study	 many-body	 quantum	
mechanics	and	to	combine	potentials	with	small	distance	separation	
on	 the	 order	 of	micrometers	 in	 a	 readily	 controllable	manner.	 It	 is	
known	 that	 different	 trap	 geometries	 can	 produce	 different	
dispersion	 relations,	 different	 transport	 properties	 and	 different	
three-body	loss	rates	for	instance	[1,	2,	3].		

Three-	 and	 two-body	 losses	 are	 important	 for	 the	 following	
reason:	 as	 discussed	 in	 the	 thesis	 of	 our	 former	 group	 member,	
Mateusz	Kotyrba,	a	magneto-optical	trap	(MOT)	of	metastable	helium	
is	very	peculiar	as	compared	to	the	typical	MOT	of	alkali	atoms,	used	
in	most	other	experiments	in	degenerate	quantum	gases.	The	simple	
level	 structure	 of	He	allows	 the	 experimenter	 to	 use	 a	 single	 laser	
frequency	for	the	MOT.	Also,	the	two-body	loss	rate	is	higher	than	for	
other	 species	 because	 of	 Penning	 ionization,	 leading	 to	 a	 short	
lifetime	of	 the	cloud	[55].	Penning	 ionization	 is	a	collisional	process	
de-exciting	the	metastable	helium	atom	back	to	the	ground	state	and	
ionizing	the	collisional	partner.	 [55]	We	would	therefore	have	to	be	
careful	of	the	trap	configuration,	be	it	magnetic	or	optical	dipole	trap.	
Providing	 the	 flexibility	 for	different	 trap	configurations	would	 lead	
to	 a	 different	 cloud	 density,	 exploring	 that	 process	 or	 reducing	 the	
rate	 even	 further.	 Keeping	 the	 density	 of	 atoms	 as	 low	 as	 possible	
does	 the	usual	minimization	of	 Penning	 ionization,	which	 sets	 limit	
on	the	MOT	size	and	laser	detuning	and	power	thereof,	for	example.		

It	 is	 a	 major	 experimental	 challenge	 to	 combine	 controlled	
collisions	 with	 the	 loading	 and	 addressing	 of	 individually	 trapped	
atoms	 in	 an	 optical	 dipole	 trap	 or	 a	 magnetic	 trap	 too.	 There	 are	
techniques	that	actually	exist	to	confine	single	atoms	in	micrometer-
size	or	 larger	traps	[4,5].	Our	group	has	also	recently	demonstrated	
the	ability	to	trap	atoms	in	an	optical	dipole	trap	(discussed	later	on).	
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One	can	even	design	an	array	micrometer-sized	of	optical	traps	with	
a	spatial	light	modulator	(SLM)	for	storing	a	single	atom	per	trap	and	
manipulation	of	individual	trapping	sites	[6].	That	requires	the	traps	
to	 be	 reconfigurable	 and	 addressed	 individually,	 which	 is	 readily	
done	with	holographic	techniques.	Neutral	atoms	then	are	one	of	the	
most	 promising	 candidates	 for	 storing	 and	 processing	 quantum	
information.	A	qubit	can	be	encoded	in	the	internal	or	motion	state	of	
an	 atom,	 and	 several	 qubits	 can	 be	 entangled	 using	 light-atom	
interaction	 or	 atom-atom	 interaction.	 Schemes	 for	 quantum	 gates	
even	 have	 been	 theoretically	 proposed	 that	 rely	 on	 dipole-dipole	
interactions	 [95-99]	 or	 controlled	 collisions	 [100-103].	 These	 are	
examples	of	seminal	ideas,	which	require	the	utilization	of	micro	trap	
arrays,	 which	 we	 are	 namely	 able	 to	 produce	 with	 holographic	
techniques.	 Holography	was	 first	 demonstrated	 as	 a	way	 to	 record	
both	 the	 phase	 and	 amplitude	 of	 light	 scattered	 from	 an	 object	 in	
order	to	reconstruct	the	light	field	when	the	object	was	absent.	[11]	
Nowadays	 this	 refers	 to	 the	 process	 of	 computationally	
reconstructing	a	desired	light	pattern	by	altering	light’s	phase	and/or	
amplitude	in	one	control	plane.	Such	holographic	techniques	change	
the	 phase	 of	 the	 optical	 field	 at	 each	 pixel	 without	 attenuating	 the	
amplitude.		

In	 many	 such	 applications,	 including	 ours,	 SLMs	 are	 used	 as	
phase	 modulators	 (for	 a	 brief	 idea	 of	 how	 it	 works	 see	 Figure	 1),	
since	they	preserve	the	light	intensity.	One	of	our	goals	was	to	be	able	
to	 generate	 a	 controllable	 array	 of	 Gaussian	 beams	 of	 arbitrary	
number	with	 controllable	 intensity.	 Our	 choice	 of	 top	 performance	
algorithm	is	Vector	holography,	described	later.	The	SLM	type	used	is	
the	 Hamamatsu	 X10468-03	 LCOS-SLM.	 That	 is	 a	 reflective	 type	 of	
pure	 SLM,	 based	 on	 Liquid	 Crystal	 on	 Silicon	 (LCOS)	 technology	 in	
which	the	Liquid	Crystal	(LC)	is	controlled	by	a	direct	voltage	source,	
thereby	modulating	 the	 wavefront	 of	 a	 light	 beam.	We	 control	 the	
device	through	a	standard	digital	video	interface	(DVI)	connection.	In	
principle	 it	 behaves	 almost	 like	 a	mirror	 (if	 of	 course	no	pattern	 is	
projected),	 which	 can	 be	 used	 to	 encode	 a	 two-dimensional	 phase	
pattern	 on	 the	 reflected	 beam,	 thereby	 acting	 like	 a	 phase	 grating.	
The	 amount	 of	 phase	 shift	 can	 be	 controlled	 by	 varying	 the	 optical	
path	 length,	 accomplished	 by	 the	 orientation	 of	 the	molecules	 in	 a	
layer	of	parallel-aligned	(PAL)	 liquid	crystals.	The	SLM	consists	of	a	
LC	 layer	 deposited	 on	 a	 dielectric	mirror,	 behind	which	 there	 is	 an	
amorphous	silicon	photoconductive	layer.	That	is	typically	placed	in	
between	 two	 transparent	 electrodes.	 The	 orientation	 of	 the	 LC	
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molecules	 is	 determined	 by	 the	 electric	 field,	 which	 is	 controlled	
locally	by	changing	the	impedance	of	the	layer	with	photoconductive	
crystals.	The	total	active	area	of	the	SLM	is	16	by	12	mm,	800	by	600	
pixels	 with	 a	 pixel	 fill	 factor	 of	 approximately	 95%.	 The	 typical	
efficiency	for	which	it	is	commercially	optimized	is	95%	at	1064	nm.	
Therefore	we	had	to	correct	the	response	of	the	SLM	crystals	for	use	
at	1083	nm,	the	wavelength	of	our	choice.	The	refresh	rate	of	the	SLM	
is	60	Hz,	which	is	the	standard	refresh	rate	of	a	DVI	connection.		

	

	
Figure	 1.	 An	 illustration	 of	 the	 simplest	 use	 of	 a	 Spatial	 Light	
Modulator:	 The	 incoming	 laser	 field	 is	 reflected	 on	 the	 SLM	 surface,	
picking	 up	 the	 phase	 imprinted	 on	 the	 device.	 That	 Fourier	 plane	 is	
then	imaged	on	the	focus	point	of	a	 lens	(the	 lens	does	approximately	
the	inverse	Fourier	transform	of	the	light	field	impinging	on	it).		

	
	
1.2.	Algorithms	for	hologram	generation		

1.2.1.	Gerchberg	Saxton	(GS)	algorithm		

	

The	 first-developed	 iterative	 algorithm	 to	 produce	 a	 light	
pattern	 of	 an	 arbitrary	 geometrical	 shape	 is	 the	 Gerchberg	 Saxton		
(GS)	algorithm	[7].	It	is	an	iterative	fast	Fourier	transform	algorithm,	
which	 exploits	 a	 numerical	 method	 to	 calculate	 the	 optimal	 phase	
modulation	of	the	laser	beam,	incident	on	the	SLM,	in	order	to	get	the	
desired	 intensity	 pattern	 on	 the	 image	 plane.	 It	 is	 the	most	widely	
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implemented	 and	 easiest	 algorithm	 to	 produce	 arbitrary	 light	
patterns.		

Basically,	 what	 it	 tries	 to	 achieve	 is	 the	 relation	 between	 the	
intensity	 at	 the	 focal	 plane	 of	 a	 lens	 and	 the	 necessary	 phase	
modulation	at	the	input	plane	of	the	SLM	(𝐸!(𝑟)).	The	algorithm	stars	
with	an	 initial	phase	guess	𝜑!(𝑟),	which	 in	many	cases	 is	 a	 random	
phase	pattern	as	a	starting	point.	For	other	algorithms	derived	from	
it,	 it	 is	a	spherical	phase	pattern	for	example.	Imposing	either	a	free	
parameter	Gaussian	laser	modulus	or	unity	(for	uniform	illumination	
at	the	SLM,	𝐸!=1)	resulting	in	the	field	right	after	the	SLM	

	

𝐴!!(𝑟) = 𝐸!(𝑟) 𝑒! !!(!)	
	
where	“n”	signifies	the	iteration	number	in	the	loop	between	imaging	
plane	and	SLM	plane	(figure	2).	The	parameter	𝐸!(𝑟)	is	the	light	field	
impinging	 on	 the	 SLM	 initially.	 In	 order	 to	 simplify	 this	 we	 use	
uniform	illumination	(the	light	field	impinging	on	the	SLM	initially	is	
much	bigger	 than	 the	 SLM	 size,	 in	 our	 case	 a	 factor	 of	 6).	We	have	
also	 imposed	 Gaussian	 illumination,	 but	 that	 adds	 three	 extra	 free	
parameters	 (width	 and	 position),	 estimating	 where	 the	 SLM	 is	
illuminated	and	is	alignment	dependent.	One	way	to	overcome	this	is	
to	 illuminate	 the	 SLM	with	 a	 very	 large	 Gaussian	 beam	 (large	 is	 of	
course	relative,	for	our	purposes	a	beam	six	times	the	SLM	size	was	
enough),	 such	 that	 the	 illumination	 at	 the	 input	 plane	 is	 close	 to	
uniform.	 This	 was	 the	 initialization	 step.	 Now	 follow	 the	 iterative	
part.	Propagating	to	the	output	plane,	or	 focus	plane	of	the	 lens	can	
be	 done	 with	 a	 Fourier	 transform,	 which	 assumes	 the	 paraxial	
approximation	 in	 focusing	 optics	 [9].	 The	 idea	 is	 that	 the	 lens	 then	
does	the	Fourier	transform	in	real	space,	approximately.	That	results	
in	the	field	propagated	in	the	output	plane		

𝐴!!(𝑟) = 𝐹 𝐴!! 	
	

This	would	be	 in	principle	 the	patter	 that	we	obtain	after	 the	
lens.	 However,	 in	 the	 loop	 we	 then	 have	 to	 replace	 the	 resulting	
field’s	amplitude	with	a	desired	pattern	𝑃 𝑟 	and	take	the	phase	of	𝐴!!	
,	which	combined	produces	the	following		
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𝐴!!(𝑟) = 𝑃 𝑟 𝑒! !"# (!!!)	
	

That	is	a	field,	imposed	in	the	imaging	plane	at	the	focus	point	
of	the	lens.	Once	this	is	achieved,	we	have	to	propagate	the	field	back	
to	the	SLM	plane,	taking	the	inverse	Fourier	transform	producing		

𝐴!!(𝑟) = 𝐹!! 𝐴!! 	

At	 this	 point,	 we	 can	 either	 take	 the	 phase	 of	 this	 field,	 or	
arg (𝐴!!)	as	 the	produced	hologram	(also	known	as	kinoform),	 if	 the	
Fourier	 transform	of	 that	phase	 is	considerably	close	 to	 the	desired	
pattern,	for	our	estimates	the	error	boundary	is	a	deviation	of	0.1%,	
which	 turns	 out	 to	 require	 at	 least	 15	 iterations.	 If	 not	 (that	
is 𝐹 arg (𝐴!!)  ≠ 𝑃 (𝑟)),	 we	 take	arg (𝐴!!)	and	 replace	 it	 in	 the	 first	
step	 of	 the	 algorithm	 as	 a	 starting	 initial	 guess	 until	 the	 Fourier	
transform	 of	 the	 kinoform	produces	 the	 desired	 pattern	within	 the	
error	boundary.		

The	 algorithm	 can	 also	 start	 with	 the	 target	 intensity	 and	 a	
random	 phase	 pattern	 (used	 again	 crudely	 as	 a	 guess	 of	 the	 initial	
phase	 modulation).	 In	 principle,	 if	 the	 incoming	 beam	 at	 the	 SLM	
surface	is	big	enough,	this	accompanies	for	this	unity	(𝐸!)	quite	well.	
We	chose	 to	expand	 the	beam	before	 the	SLM	 in	order	 to	minimize	
the	free	parameters	estimate	in	the	algorithm	and	therefore	make	it	
faster.	Else,	we	could	use	a	Gaussian	profile	 if	 the	 incoming	beam	is	
for	 example	 as	wide	 as	 the	 SLM	 surface	 (say	 16	by	16	mm),	which	
does	 not	 provide	 any	 advantage	 in	 quality	 of	 the	 phase	 pattern	
obtained	or	intensity	profile	of	the	spots	at	the	focal	plane	of	the	lens.	
The	only	significant	difference	observed	is	the	quality	of	the	pattern	
among	algorithms,	discussed	later.		

Once	the	hologram	is	calculated,	it	can	be	modified	by	changing	
various	parameters:	modulation	area	of	 the	SLM	can	be	 reduced	or	
changed	 in	 shape,	 translated	 to	 optimize	 a	 match	 with	 the	 beam’s	
size	 and	 position,	 and	 the	modulation	 amplitude	 can	 be	 varied	 for	
optimal	 diffraction	 efficiency,	 which	 is	 a	 subject	 of	 the	 problems	
needed	to	overcome	when	using	a	Spatial	Light	Modulator,	discussed	
further.		

Our	 target	 was	 producing	 two	 Gaussian	 spots	 with	 variable	
intensity	and	relative	position	in	the	micrometer	scale,	the	produced	
pattern	 is	 (1	 pixel	 =	 4.65	 um)	 diffraction	 limited.	 It	 is,	 however	
possible	to	go	to	larger	Gaussian	beams.	The	problem	with	this	is	that	
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phase	or	optical	vortices	appear	in	the	trapping	plane	and	are	locked	
in	 the	 code	 immediately	 at	 the	 beginning	 of	 the	 execution.	 That	 is	
usually	 a	 sign	 of	 the	 finite	 size	 of	 the	 hologram	 and	 sudden,	 steep	
intensity	 variation.	 The	 MRAF	 algorithm	 and	 OMRAF	 algorithm	
further	 reduce	 the	 vortex	 count,	 but	 not	 completely	 remove	 it.	 The	
flooring	 of	 the	 number	 of	 optical	 vortices	 has	 to	 do	 with	 the	
finiteness	 of	 the	 hologram	 size,	 and	 the	 fact	 that	 the	 Fourier	
transform	is	not	taken	in	the	infinity	limit	algorithmically.	Due	to	the	
physical	limitation	of	the	finite	size	of	the	transform	and	SLM,	there	is	
no	algorithm	that	would	completely	remove	the	vortices,	but	rather	
floor	them	to	a	particular	minimal	value,	based	on	the	algorithm.	An	
illustration	of	 the	basic	 structure	of	 the	GS	algorithm	 is	available	at	
Figure	2.	On	a	further	note,	the	actual	lens	operation	and	propagation	
can	be	further	improved	with	a	Helmholtz	propagator,	which	is	done	
in	 the	 OMRAF	 algorithm,	 but	 can	 also	 be	 conceived	 as	 being	
implemented	here	instead	of	the	Fourier	transform.		

	

Figure	2.	The	basic	structure	of	the	GS	algorithm,	running	between	two	
planes	 of	 interest:	 the	 trapping	 plane	 (image	 plane)	 and	 SLM	 plane	
(pattern	projected	as	hologram).	The	efficiency	and	error	is	estimated	
algorithmically,	where	the	standard	deviation	of	the	image	expected	is	
at	 least	 0.1%,	 which	 is	 when	 the	 algorithm	 stops	 execution	 and	 the	
kinoform	is	sent	to	the	SLM	as	a	value	in	[0,	255].		
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1.2.2.	Mixed	Region	Amplitude	Freedom	(MRAF)	algorithm		

	
For	generating	more	complex	patterns	with	reduced	 intensity	

fluctuations	 one	 can	 implement	 the	 MRAF	 algorithm.	 [8]	 In	 many	
ways	the	MRAF	algorithm	is	similar	to	the	GS	algorithm	since	it	has	in	
its	 core	 the	 GS	 algorithm.	 However,	 what	 is	 central	 to	 the	 MRAF	
algorithm	 is	 the	 introduction	 of	 a	 restricted	 amplitude	 freedom	 to	
some	 region	 of	 the	 output	 plane	 and	 the	 use	 of	 one	 single	 mixing	
parameter,	𝑚.	The	primary	reason	for	the	development	of	the	MRAF	
algorithm	 at	 the	 time	 were	 the	 demand	 for	 more	 complex	 light	
patterns	and	the	elimination	of	optical	vortices,	a	problem	discussed	
later	on,	 in	order	to	generate	a	high	quality	optical	 field	at	 the	 focal	
plane	 of	 the	 lens.	 The	main	 difference	 is	 the	 definition	 of	 a	 region	
where	𝑃 𝑟 > 0together	with	some	narrow	canvas	𝐶	of	zero	intensity	
around	 this	 region.	 That	 clearly	 changes	 the	 field	 amplitude	𝐴!!	
resulting	in		

𝐴!! 𝑟 = 𝑚 𝑃 𝑟 𝑒! !"# (!!!)	

if	the	region	is	within	interest	or		

𝐴!! = (1 −𝑚)𝐴!!(𝑟)	

if	the	region	is	outside	of	the	canvas.	The	mixing	parameter	𝑚	can	be	
chosen	for	giving	some	minimum	RMS	deviation	in	terms	of	intensity	
fluctuations,	 which	 in	 our	 case	 turns	 out	 to	 be	 0.38.	 Some	
implementations	can	also	start	with	a	quadratic	phase	guess	for	the	
initial	starting	phase.	However,	optical	vortices	are	still	present	and	
can	be	even	further	minimized	by	the	offset	MRAF	algorithm	[10].		

Because	 of	 the	 canvas	 imperfections,	 the	 region	 around	 the	
spots	 looks	 significantly	 worse	 as	 compared	 to	 the	 GS,	 while	 the	
fluctuations	 within	 the	 canvas	 are	 between	 3%	 and	 5%	 of	 the	
maximum	intensity	of	the	traps.	However	the	traps	themselves	look	
significantly	 better.	 (1	 pixel	 =	 4.65	 um)	 again	 diffraction	 limited.	
Spots	larger	than	the	diffraction	size	look	significantly	better	than	the	
GS	 algorithm,	 however	 the	 region	 of	 canvas	 has	 fluctuations	 in	
intensity,	 which	 for	 our	 experiment	 would	 be	 problematic	 and	
exhibit	optical	vortices.		
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1.2.3.	Offset	MRAF	(OMRAF)	algorithm		

	

This	 algorithm	 is	 the	 present	 best	 in	 terms	 of	 very	 complex	
improved	 algorithms	 for	 design	 of	 arbitrary	 two-dimensional	
holographic	 traps	 for	 ultracold	 atoms.	 It	 builds	 on	 the	 MRAF	
algorithm.		

OMRAF	modifies	 the	MRAF	algorithm	by	a	 few	changes.	First,	
the	 canvas	 is	 expanded,	 such	 that	 the	 trapping	 region	 covers	 the	
maximum	theoretical	size,	which	is	set	by	Nyquist’s	criterion	(25%	of	
the	trapping	plane).	The	diffraction	limited	spot	size	is	of	size	1	pixel	
again.	In	order	to	reduce	the	minimum	pixel	size	by	50%,	we	would	
have	to	increase	the	area	of	the	SLM	twice,	which	means	that	25%	of	
the	 simulated	 “SLM	plane”	 is	 in	 fact	 covered	by	 the	physical	 size	of	
the	 SLM	 and	 therefore	 we	 can	 only	 control	 25%	 of	 the	 “trapping	
plane”,	as	discussed	in	detail	in	[10]).		

Furthermore,	we	can	provide	an	offset	to	the	desired	trapping	
region,	 where	 its	 zero	 reference	 is	 slightly	 shifted,	 which	 does	 not	
change	 the	 physics	 of	 the	 trap	 itself,	 but	 it	 reduces	 the	 number	 of	
optical	 vortices	 upon	 increase	 of	 trap	 size	 algorithmically.	 The	
vortices	 are	 again	 not	 completely	 removed,	 but	 rather	 floored	 to	 a	
minimal	value.		

Perhaps	the	best	 improvement	to	MRAF	is	the	 introduction	of	
an	 efficient	 Helmholtz	 solver,	 solving	 the	 propagation	 and	 lens	
approximation	 to	 different	 than	 the	 Fourier	 transform	 [10].	 The	
Helmholtz	equation	for	light	propagation	in	free	space	gives	that	the	
Fourier	 transform	of	a	 light	 field	 is	modified	by	a	phase	 factor.	One	
way	to	include	this	in	the	computational	portion	of	the	algorithm	is	to	
decompose	that	into	3	stages:	first,	propagation	from	the	SLM	to	the	
imaging	 lens	 and	 adding	 that	 particular	 computational	 phase	
estimate.	 Then	 applying	 a	 lens	 in	 Fourier	 space	 and	 finally	
propagating	 to	 the	 trapping	 plane.	 The	 resulting	 is	 a	 transform,	
which	describes	 the	behavior	of	 the	 light	 field	much	better	 for	 light	
propagating	from	the	SLM	to	the	lens	and	trapping	plane	and	back.		

The	results	are	striking	because	the	Helmholtz	estimate	gives	a	
3%	reduction	of	the	RMS	intensity	fluctuations	error	across	the	trap,	
which	 totals	 about	 20%	 reduction	 compared	 to	 MRAF	 [10]	 within	
perfect	alignment.		
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One	 example	 of	 realization	 of	 the	 OMRAF	 for	 a	 complex	
trapping	potential	is	(1	pixel	=	4.65	um)	shown	in	Figure	3.	

	

Figure	 3.	 A	 complex	 potential	 implementation	 with	 the	 OMRAF	
algorithm,	 also	 known	 as	 the	 transistor	 potential:	 it	 was	 not	
implemented	 with	 the	 atoms;	 wavefront	 corrections	 were	 not	
implemented	at	 this	 stage.	 It	 is	however,	 close	 to	what	 the	authors	of	
[10]	obtain.		

	

We	have	performed	a	test	of	adding	the	Helmholtz	solver	to	the	
GS	algorithm	and	using	the	GS	on	the	fly.	However,	the	results	do	not	
lead	 to	 a	huge	 improvement	 in	 the	 spot	quality.	The	algorithm	 that	
produces	the	top	quality	spots	(as	 long	as	they	don’t	overlap,	which	
for	our	experiments	considered	is	not	important)	is	discussed	in	the	
next	section.		

	

1.2.4	“Vector”	holography	algorithm	as	the	algorithm	of	choice	
and	comparison		

	

For	 our	 applications,	 this	 is	 algorithm	 of	 choice	 not	 only	
because	of	its	simplicity	and	fastest	execution	time,	but	also	because	
of	 the	 unbeatable	 quality	 of	 the	 traps	 produced.	 The	 only	
disadvantage	is	that	it	breaks	down	if	the	analytical	patterns	overlap.	
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A	crude	experimental	comparison	is	shown	in	Figure	4.	

	

Figure	 4.	 The	 MRAF	 algorithm	 shows	 better	 quality	 of	 the	 spots,	
compared	 to	 the	 GS.	 However,	 the	 canvas	 region	 shows	 relative	
fluctuations	on	the	order	of	5%	of	the	intensity	of	the	spots.	The	vector	
holography	 idea	 shows	much	better	 spots,	 as	 seen	at	 the	 bottom	and	
unbeatable	 quality	 of	 the	 spots,	 as	 long	 as	 they	 do	 not	 overlap.	 The	
problem	of	“ghost	traps”	is	still	present,	which	for	our	purposes	is	not	a	
big	concern,	as	 long	as	 the	 spots	are	projected	at	 the	 two	ends	of	 the	
condensate.		

	

Vector	 holography	 is	 very	 similar	 to	 how	 a	 standard	
computer’s	 graphic	 processing	 unit	 in	 2016	 functions:	 it	 has	 a	
toolbox	 of	 comparatively	 simple	 shapes	 and	 a	method	 of	 arranging	
them	on	some	arbitrary	real	space	canvas.	These	particular	shapes	in	
our	 case	 are	 any	 set	 of	 so	 called	 primitive	 shapes	 that	 can	 be	
mathematically	 produced,	 or	 analytical	 holograms	 of	 some	 sort.	 As	
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long	 as	 we	 can	 describe	 a	 real	 space	 object	 analytically,	 we	 can	
arrange	 it	 on	 the	 canvas,	 which	 widens	 our	 perspective	 of	
possibilities	 to	 a	 variety	 of	 patterns,	 namely	 LG	 beams,	 Gaussians,	
lines,	 circles	 and	 others.	 Arranging	 them	with	 the	 SLM	on	 different	
positions	in	space	provides	flexibility	of	arranging	them	even	further	
with	optical	elements.	This	 is	a	huge	advantage	to	alignment,	where	
alignment	 of	 the	 beams	 can	 be	 done	 with	 the	 click	 of	 a	 button	
(restricted	within	a	 region	of	 course).	 Such	examples	are	 (𝑓	 here	 is	
the	 focus	 length	of	 the	 imaging	 lens,	 used	 to	project	 the	pattern	on	
the	condensate):		

	
1. 	Gaussian	spot	of	waist	𝑤!,	𝜑! = 0.	

2. 	Line	 of	 width	𝑤! and	 height	
!!!!

!!"!
,𝜑! = − !!!

!!
where	 𝑦	 is	 the	

vertical	 direction	 defined	 on	 the	 shorter	 side	 of	 the	 SLM.	 (F	
here	denotes	the	focal	point	of	the	pattern	on	the	image	plane,	f	
is	the	frequency	of	the	light	used.)	

3.	Circle	of	radius	𝑅,	𝜑! = − !"
!
𝑟,	where	r	is	the	radial	coordinate.		

	
In	our	application,	we	are	concerned	with	the	first	and	simplest	

way,	 the	 Gaussian	 trap.	 Moreover,	 the	 speed	 of	 this	 algorithmic	
process	 is	 unmatched	 to	 other	 algorithms,	 in	 reference	 to	 the	
purposes	 of	 implementation	 of	 interest.	 In	 order	 to	 create	 two	 of	
them,	we	had	 to	 shift	 the	position	of	 the	 second	 spot,	which	 in	 this	
case	is	simply	an	offset	to	a	plane.		

Adding	 a	 phase	 gradient	 on	 the	 SLM	 plane	 will	 shift	 the	
position	of	the	diffracted	pattern	in	the	trapping	plane.	Gratings	and	
lenses	 in	 general	 are	 often	 used	 to	 steer	 the	 light	 patterns	 on	 the	
image	plane	three-dimensionally.	Altering	the	grading	period	leads	to	
a	 lateral	 shift	 of	 the	 pattern,	 while	 changing	 the	 focal	 length	 of	
Fresnel	 lens	 causes	 axial	 shifts.	 The	 interesting	 thing	 about	 this	 is	
that	 this	 focus	 shift	 can	be	 applied	 to	 any	 algorithm	of	 any	 sort	 for	
producing	any	pattern	on	any	SLM	within	unprecedented	precision.		

In	order	to	composite	the	shapes	together,	we	use	the	concept	
of	 phase	dominance	 in	 the	Fourier	 transform,	 described	 in	 [12-15].	
Phase	 dominance	 generally	 refers	 to	 the	 loss	 of	 spectral	 phase	
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information	 of	 an	 image	 that	 leads	 to	 a	 less	 recognizable	 image	
compared	 to	 the	 loss	 of	 amplitude	 information.	 The	 implication	 is	
that	 the	 spectral	 phase	 carries	 more	 information	 than	 does	 the	
spectral	amplitude,	just	like	in	graphics	processing.	That	can	be	easily	
seen	when	replacing	the	Fourier	amplitude	or	phase	with	that	 from	
another	image.		

Here	 is	a	clear	example.	 If	we	 take	 the	 following	 images	 (let’s	
call	them	𝐴	and	𝐵)		

	

	
	

And	 then	 take	 the	 Fourier	 transform	 of	 both	 and	 create	 an	
image	by	 the	 inverse	Fourier	 transform	(what	 could	have	appeared	
in	 the	 trapping	 plane	 namely)	 from	 the	 phase	 of	 the	 transform	 of	
image	A	and	the	amplitude	of	the	transform	of	image	B,	and	then	take	
the	 inverse	 Fourier	 transform’s	 amplitude,	 the	 following	 image	 is	
obtained:	

	

That	resembles	more	the	original	image	A,	than	B.	And	even	the	
images	 overlap!	 Therefore,	 the	 amplitude	 of	 the	 inverse	 Fourier	
transform	closely	resembles	the	one,	 from	which	we	took	the	phase	
information.	 This	 phenomenon	 has	 counter	 examples	 (mostly	
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processing	unit	color-based	implementations),	but	it	is	very	useful	in	
almost	all	experimental	cases	in	optics.	Another	explanation	for	this	
phenomenon	 is	 to	 compute	 the	 mean	 square	 error	 difference	
compared	to	the	original	image,	described	in	detail	in	[15].		

For	 any	 individual	 SLM	 hologram	𝜑!the	 light	 field	 at	 the	 SLM	 is	
𝐺𝑒!!! ,	where	𝐺	is	the	incident	Gaussian	light	beam.	A	light	field	then	
of	 shape	 𝐺 𝑒!!! will	 produce	 the	 desired	 shape	 of	 combined	
patterns,	but	since	the	phase-only	Hamamatsu	SLM	cannot	modulate	
the	 amplitude,	 the	 sum	 does	 not	 equal	 unity.	 (There	 are	 ideas	 to	
modulate	both	phase	and	amplitude	[28],	but	the	Vector	holography	
idea	 performs	 better	 in	 terms	 of	 RMS	 error	 for	 our	 particular	
implementation	 demand.)	 Instead,	 to	 composite	 the	 𝑛	 different	
shapes	we	simply	apply	the	phase		

	

𝛼 = 𝑎𝑟𝑔 𝐴!𝑒!!!!!!!
!

!!!

+ 2𝜋𝑣 ∙ 𝑟 −
𝑘𝑟!

2𝐹!
	

Here	 the	 set	 of	 𝐴! parameters	 controls	 the	 tunable	 relative	
intensity	between	individual	shaped	and	the	set	of	 𝜃! 	can	be	used	
to	 reduce	 the	 crosstalk	 between	 different	 shapes.	 There	 have	 been	
problems	 with	 the	 !!

!

!!!

	
notion,	 since	 the	 shift	 focus	 is	 strongly	

dependent	on	the	 individual	setup,	discussed	 later.	However,	 that	 is	
the	basic	idea	of	how	the	algorithm	operates.		
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1.2.5.	What	do	we	actually	send	to	the	SLM?		

	

𝜑!"#$% = 	

𝑢𝑖𝑛𝑡8 𝑀𝑜𝑑 𝑎𝑟𝑔 𝐴!𝑒!!!!!!!
!

!!!

+ 2𝜋𝑣 ∙ 𝑟 −
𝑘𝑟!

2𝐹!
+ 𝑋 ∗ 𝑘! + 𝑌

∗ 𝑘! + Exp −𝑖𝜋 
(𝑋 −𝑚!)! + (𝑌 −𝑚!)!

𝜆𝑓
∗𝑀𝐴𝑆𝐾

+ 𝐹𝐴𝐶𝑇𝑂𝑅𝑌 𝐶𝑂𝑅𝑅.+𝑀𝑂𝐷𝑈𝐿𝐴𝑇𝐸𝐷 𝑊𝐴𝑉𝐸𝐹𝑅𝑂𝑁𝑇 𝐶𝑂𝑅𝑅. , 2𝜋 , [0, 255] 	

	
That	is	what	the	kinoform	sent	to	the	SLM	looks	like.	We	apply	

a	 grating	 offset	 𝑋 ∗ 𝑘! + 𝑌 ∗ 𝑘!) ,	 needed	 to	 easily	 distinguish	
between	the	0th	and	1st	order	diffraction	of	the	SLM.	Note	that	this	
shifts	 the	whole	pattern	with	 respect	 to	 the	diffraction	order	of	 the	
SLM.	The	shift	2𝜋𝑣 ∙ 𝑟	is	a	shift	related	to	the	relative	spacing	among	
patterns.	The	0th	order	has	some	additional	unwanted	phase	offset,	
while	the	first	diffraction	order	is	where	the	target	pattern	is.	Then	a	
lens	(as	 in	Fourier	optics	phase	offset)	 is	applied.	Typically	gratings	
lead	 to	 beam	 deviations	 and	 lenses	 control	 the	 beam	 convergence.	
Both	 are	 used	 to	 steer	 the	 trap	 three	 dimensionally.	 All	 of	 that	 is	
modulated	by	a	mask	setting,	essentially	the	pattern	is	only	displayed	
within	 a	 circle,	 since	 the	 incoming	 Gaussian	 beam	 is	 also	 such.	We	
have	 noticed	 that	 improves	 the	 noise	 on	 the	 target	 pattern.	 The	
factory	correction	to	correct	for	the	surface	roughness	is	applied	and	
so	 is	 some	 wavefront	 correction	 (alignment	 based)	 since	 the	
wavefront	 hitting	 the	 SLM	 is	 not	 flat	 and	 there	 are	 also	 distortions	
due	 to	 the	 optics	 after	 the	 SLM.	 A	 wavefront	 distortion	 can	 be	
detected	 in	 a	 setup,	 where	 a	 test	 vacuum	window	 is	 used	 and	 the	
only	distortions	that	can	happen	will	be	anything	within	the	vacuum	
chamber.	The	pattern	 is	modulated	 finally	 as	 an	8-bit	 integer,	 since	
the	 SLM	 is	 a	 digital	 device,	 acting	 approximately	 as	 an	 external	
monitor.		

There	is	a	significant	difference	between	what	we	obtain	with	
the	 GS	 algorithm	 as	 a	 kinoform	 and	 with	 vector	 holography,	
described	in	Figure	5.		
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Figure	5.	Top:	Part	of	a	kinoform	from	GS	algorithm,	Bottom:	Kinoform	
from	vector	holography.	The	GS	algorithm	hologram	looks	very	rough,	
where	 the	 vector	 holography	 idea	 looks	 much	 cleaner	 and	 leads	 to	
higher	quality	Gaussian	spots.		
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1.2.6.	Can	the	GS	algorithm	be	reversely	engineered	for	a	pattern	
of	2	Gaussian	beams?		

	

We	 have	 also	 explored	 the	 idea	 of	 improving	 the	 hologram	
from	the	GS	algorithm	by	fitting	sine	functions	and	offsets	to	it,	in	the	
idea	 of	 reverse-engineering	 the	 analytic	 description	 to	 figure	 out	 if	
we	can	 improve	by	 tweaking	 the	kinoform	 in	 the	GS	algorithm.	The	
improvement	is	not	better	than	the	vector	holography	idea,	Figure	6	
and	 7.	 So	 the	 short	 answer	 is	 yes,	 but	 that	 does	 not	 provide	 us	 an	
advantage	over	vector	holography.		
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(b)	
	

Figure	 6.	 (a):	 A	 fit	 from	 sawtooth	 and	 sine	 functions	 to	 the	 kinoform	
obtained	 from	 the	 GS	 algorithm.	 (b):The	 reproduced	 smoothed	
kinoform.		

	
We	have	also	tried	to	vary	different	parameters	related	to	that	

fit	in	order	to	see	any	experimental	difference	in	the	quality	of	spots.	
No	improvement	has	been	observed	as	seen	on	Figure	7.		
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	 25	

	

	

	

	
	

Figure	 7.	 Varying	 a	 number	 of	 parameters	 to	 obtain	 a	 different	
kinoform	 similar	 to	 the	 GS	 hologram	 fit	 and	 the	 results	 seen.	 The	
conclusion	 is	 that	 the	 outcome	 is	 not	 better	 quality	 than	 the	 spots	
obtained	with	 the	vector	holography	 idea.	The	Gaussian	beams	 in	 the	
trapping	plane	actually	looked	worse	than	what	was	initially	achieved	
with	the	GS	algorithm.		
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1.3.	 Arising	 problems	when	 composing	patterns	 on	 any	 Spatial	
Light	Modulator		

	

1.3.1.	Ghost	traps		

	

These	are	spurious	shapes	 that	 resemble	 the	desired	 trap	but	
are	 severely	 distorted	 and	 placed	 somewhere	 else	 on	 the	 canvas	
(aliased),	 the	 magnitude	 of	 which	 increases	 with	 increasing	
symmetry	 of	 the	 kinoform.	 That	 is	 typically	 less	 than	 2%	 of	 the	
intensity	of	the	desired	trap.	That	is	a	side	effect	of	disregarding	the	
amplitude	 in	 the	 computations	 and	 also	 the	 Fourier	 components	 of	
the	discrete	square	pixels	on	the	SLM,	diverting	light	away	from	the	
desired	 potential.	 That	 reason	 is	 that	 the	 sum	 of	 exponential	
functions	will	 have	 non-uniform	 amplitude.	 One	way	 to	 reduce	 the	
amplitude	of	 “ghost”	 traps	 is	 to	multiply	 each	 grating	 term	with	 an	
arbitrary	 amplitude	 pattern.	 Another	 method	 [29]	 is	 spatial	
multiplexing,	where	every	hologram	is	displayed	on	a	portion	of	the	
available	 pixels.	 Each	 fraction	 of	 pixels	 is	 then	 spread	 on	 the	 SLM	
randomly.	 However,	 with	 this	 method	 the	 diffraction	 efficiency	
decreases	 faster	 with	 increasing	 number	 of	 spots,	 as	 compared	 to	
vector	holography	or	GS.	

	

Figure	 8.	 “Ghost”	 traps,	 as	 seen	 from	 the	 GS	 algorithm	 for	 producing	
two	Gaussian	beams.	Ghost	traps	appear	in	every	algorithm.	

450 500 550 600 650 700 750 800 850

200

250

300

350

400

450

500 550 600 650 700 750 800

250

300

350

400

450

		



	 27	

	

1.3.2.	Surface	roughness		

	

The	 low	diffraction	efficiency	of	 the	SLM	 (around	33%	 in	our	
case)	causes	two	problems:	a	decrease	in	light	intensity	of	the	target	
intensity	 pattern	 and	 a	 disturbance,	 because	 the	 residual,	 non-	
diffracted	light	could	superpose	the	so-called	“productive”	part	of	the	
light	 [30].	 In	 order	 to	 avoid	 this,	we	 superposed	 the	 original	 phase	
pattern	with	a	blazed	grating,	which	causes	spatial	separation	of	the	
first	diffraction	order	from	residual	light.	In	order	to	separate	the	two	
orders	before	the	chamber,	we	use	a	magnifying	telescope	before	the	
imagining	 lens	 at	 the	 vacuum	 chamber.	 The	 liquid	 crystal	 layer	
absorbs	 some	 part	 of	 the	 incident	 light,	 which	 also	 defines	 a	
maximum	 illumination	 power	 (in	 our	 case	 (Hamamatsu	 PAL-SLM)	
between	3	 and	5	Watts).	 Conditional	 to	 the	manufacturing	process,	
SLMs	may	 show	 a	 slightly	 curved	 surface,	which	mainly	 introduces	
astigmatism	 to	 a	 beam	 reflected	 from	 the	 panel	 [16].	 We	 are	
therefore	 utilizing	 a	 correction	 pattern	 to	 compensate	 for	 the	
roughness,	shown	in	Figure	9.	

	

Figure	9.	Factory	compensation	for	surface	roughness,	the	correction	is	
in	fact	only	applicable	for	laser	light	with	wavelength	of	1083nm		
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1.3.3.	Relative	phase	fluctuations	between	Gaussian	traps	on	the	
image	plane		

	

Also,	the	light	diffracted	from	the	phase	patterns	displayed	on	
LC	SLMs	tends	to	show	an	oscillation	in	amplitude	and	phase,	which	
may	originate	from	relaxation	movements	of	the	LC	crystals.	We	have	
examined	what	 the	 dynamical	 phase	 oscillations	 for	 our	 needs	 are,	
that	is	when	projecting	a	target	pattern	of	two	Gaussian	traps.	Then,	
by	moving	the	lens	out	of	focus	and	letting	the	spots	interfere	on	the	
camera	 objective,	 we	 looked	 for	 slow	 movements	 of	 the	 fringe	
pattern	 and	 reduced	 visibility	 (Figure	 10).	 The	 visibility	 result	
obtained	 for	 48	 hour	measurements	 on	 average	was	 between	 0.86	
and	0.91	(Figure	11),	which	would	translate	 to	a	dynamical	relative	
phase	noise	between	the	spots	of	around	2π/45	(assuming	uniform	
distribution	 of	 the	 relative	 phase	 fluctuations	 between	 0	 and	 the	
value	 obtained	 (2π/45).	 The	 way	 we	 calculated	 that	 is	 looking	 at	
what	 effect	 does	 a	 relative	 phase	 noise	 between	 the	 sources	 does	
have	on	the	fringe	visibility	of	a	double	slit	interference	experiment).		

	

	

Figure	 10.	 Setup	 used	 to	 obtain	 a	 dynamical	 phase	 instability	
measurement.	 The	 camera	 is	 moved	 off	 focus,	 such	 that	 the	 two	
Gaussian	spots	are	allowed	to	interfere.	PBS	is	polarizing	beam	splitter.	
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Figure	11.	Visibility	 of	 the	 fringe	pattern	measured	 for	 48	hours.	 The	
average	is	0.86.		

	

One	method	 to	 analyze	 this	 is	 to	 look	 at	 the	 standard	 double	
slit	interference	experiment,	which	describes	what	is	occurring	(two	
Gaussian	modes	 propagating	 in	 free	 space	 from	 two	 sources).	 Such	
situation	is	thoroughly	described	in	[17].		

The	case	to	consider	is	interference	with	quasi-monochromatic	
light.	 The	 intensity	 of	 a	 point	 on	 the	 screen	 in	 the	 interference	
pattern	can	be	written	as		

𝐼 𝑟 = 𝐼! 𝑟 + 𝐼! 𝑟 + 2 𝐼!(𝑟) 𝐼!(𝑟) 𝛾!"(𝜏) 𝐶𝑜𝑠[𝛼!" 𝜏 − 𝛿]	

	
where 𝜏 = !!!!!

!
	and	𝛿 = !!

!
(𝑠! − 𝑠!),	 and	 the	 “s”	 parameters	 signify	

the	distance	from	source	to	screen.	𝛾!" 𝜏 	is	the	degree	of	coherence.	
The	intensity	minima	and	maxima	to	a	good	approximation	obey	
	
	

𝐼!"# = 𝐼! 𝑟 + 𝐼! 𝑟 + 2 𝐼!(𝑟) 𝐼!(𝑟) 𝛾!"(𝜏) 	
𝐼!"# = 𝐼! 𝑟 + 𝐼! 𝑟 − 2 𝐼!(𝑟) 𝐼!(𝑟) 𝛾!"(𝜏) 	

	
One	can	therefore	rewrite	the	fringe	visibility	as		
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𝑉 𝑟 =
2 𝐼!(𝑟) 𝐼!(𝑟)
𝐼! 𝑟 + 𝐼! 𝑟

𝛾!"(𝜏)  	

	
Upon	equal	intensities,	the	visibility	of	the	fringes	is	then	equal	

to	the	degree	of	coherence.	The	degree	of	coherence	has	a	relation	to	
the	mutual	coherence	function	in	the	following	way	
	

𝛾!" =
Γ!"
𝐼! 𝐼!

=
𝑉!𝑉!
𝐼! 𝐼!

	

	
where	the	field	description	for	“V”	is	used.	
	

One	can	therefore	think	of	the	simple	case	where	we	have	two	
fields		
	

𝑉! = 𝑉	
𝑉! = 𝑉𝑒!!" 	

	
where	 the	 fields	 have	 the	 sample	 amplitude	 but	 a	 relative	 phase	
difference	𝛿.	

In	order	to	take	the	time	average	of	this,	we	need	to	be	aware	
of	the	phase	difference	distribution.	That	would	lead	to	an	interesting	
result	 giving	 the	 visibility	 of	 the	 pattern	 introducing	 phase	
fluctuations	up	to	some	value	for	the	phase	difference.	
	

𝑉𝑖𝑠.= 𝛾!"(𝜏) = 𝑒!!"Pr (𝛿)𝑑(𝛿)
!

!

= 𝑒!!"𝑑(𝛿)
!

! !"# !"#$%&' !"#$%.!"#$ ! !" !
	

	
By	 solving	 this	 for	 the	 visibility	 average	 obtained	 for	 the	 48-

hour	measurement,	we	see	that	the	visibility	fluctuations	correlate	to	
a	uniformly	distributed	phase	difference	of	2π/45.	
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1.3.4.	Pupil	conjugation		

	

When	 projecting	 the	 pattern	 into	 the	 vacuum	 chamber	while	
generating	off-axis	traps,	the	beam	diffracted	by	the	SLM	impinges	on	
the	 lens	 off	 center,	 giving	 rise	 to	 clipping	 and	 field	 aberrations.	We	
circumvent	 this	 problem	 using	 pupil	 conjugation	 (using	 the	 same	
telescope	used	to	separate	the	first	and	zeorth	diffraction	order).	The	
idea	is	described	in	figure	12.		

	

Figure	12.	a)	without	the	telescope,	for	a	given	field	the	beam	is	clipped	
and	not	centered	on	the	imaging	lens.	b)	the	implemented	in	the	setup	
telescope	 adjusts	 the	 size	 of	 the	 beam	 to	 the	 size	 of	 the	 pupil	 of	 the	
imaging	 lens	 by	 conjugating	 the	 SLM	aperture	 to	 the	 entrance	 pupil,	
whatever	 the	 field.	 It	 is	 also	 used	 for	 removing	 the	 zeroth	 diffraction	
order	by	placing	a	knife-edge	at	the	focus	point	of	the	telescope.		

	

1.3.5.	Wavefront	estimation	and	correction		

	

The	wavefront	impinging	on	the	SLM	and	after	the	SLM	on	the	
atoms	 is	 not	 flat.	 The	 absolute	 and	 relative	 trap	 depth	 is	 then	
decreased	 [18]	 whatever	 the	 algorithm.	 The	 quality	 of	 the	 spots	 is	
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also	 significantly	 reduced	 if	 no	wavefront	 correction	 is	 applied.	We	
can	however	correct	for	the	relative	trap	depth	algorithmically,	but	in	
order	 to	 correct	 for	 the	 absolute	 trap	 depth	 imperfection,	 we	may	
need	 to	 buy	 a	 wavefront	 sensor	 provided	 we	 have	 some	 form	 of	
closed	 loop	 feedback	 that	 measures	 the	 wavefront	 on	 the	 fly.	 The	
relative	 trap	 depth	 imperfections	 would	 arise	 from	 a	 distorted	
wavefront	 impinging	on	 the	 atoms.	Measuring	 the	wavefront	 of	 the	
beams	at	 the	position	of	 the	 atoms	 is	 a	 cumbersome	 task,	 since	we	
don’t	have	the	option	to	place	a	sensor	at	that	position.	However,	we	
can	 place	 one	 immediately	 before	 the	 entrance	 window	 of	 the	
chamber	and	correct	the	distortions	up	to	that	point.	The	correction	
patterns	we	utilize	are	based	on	measuring	the	wavefront	after	a	test	
vacuum	chamber	window.		

In	general,	 the	wavefront	distortions	 can	be	decomposed	 into	
Zernike	 distortions,	 Zernike	 polynomials,	 which	 span	 the	 space	 of	
distortions	over	a	circular	region.	By	introducing	the	negative	of	the	
normalized	 estimate	 of	 polynomials	 on	 the	 phase	 space,	 one	 can	
control	 the	wavefront	within	 the	 limitations	of	 the	sensor.	We	have	
several	 methods	 to	 achieve	 this.	 One,	 we	 have	 built	 our	 own	
Wavefront	sensor	(30x30	microlenses),	which	operates	like	all	other	
wavefront	sensors	and	developed	an	algorithm	to	compute	the	initial	
distorted	wavefront	and	afterwards	apply	a	 correction.	These	 types	
of	 sensors	 need	 great	 precision	when	 assembled,	which	 is	why	we	
also	tested	several	other	sensors,	which	have	much	better	resolution.	

The	basic	idea	is	to	measure	the	spots	displacements	from	the	
lenslet	 array,	 once	we	 calibrated	 it	with	 a	 relatively	 large	 Gaussian	
beam	(6	times	the	size	of	 the	SLM),	approximating	a	 flat	wavefront,	
and	 intensities,	 which	 then	 algorithmically	 we	 can	 decompose	 into	
Zernike	moments	in	order	to	describe	the	wavefront	distortions.		
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Figure	 13.	 The	 basic	 structure	 of	 a	 wavefront	 sensor,	 composed	 of	 a	
lenslet	array	and	a	CCD	camera		

	

The	 selected	 sensors	 are	 of	 Shack-Hartmann	 type.	 That	
consists	typically	of	a	lenslet	array	and	a	camera.	When	a	wavefront	
hits	 the	 lenslet	 array,	 a	 spot	 field	 is	 created	on	 the	 camera	 surface,	
where	each	spot	 is	analyzed	in	terms	of	 location	and	intensity.	That	
can	 be	 also	 dynamically	 measured	 providing	 the	 technology	 for	
adaptive-optics	techniques	based	on	the	refresh	rate	of	the	camera	in	
place.	The	 sensors	must	be	 calibrated	with	 a	beam	of	 an	 extremely	
flat	wavefront	 in	order	 to	 record	 the	original	positions	of	 the	 spots	
produced	by	the	lenslet	array	within	high	precision.		

We	were	able	to	build	our	own	wavefront	sensor	and	estimate	
the	 wavefront	 of	 the	 beam	 reflected	 off	 the	 SLM	 by	 finding	 the	
locations	 of	 the	 focal	 spots,	 produced	 by	 a	 lens	 array	
programmatically	(Figure	14	and	15).	We	were	then	able	to	produce	
a	 correction	 pattern,	 taking	 the	 inverse	 of	 the	 wavefront	 and	
compare	 the	quality	of	 light	pattern	on	 the	 image	plane	of	 the	 SLM	
with	 some	 commercial	wavefront	 sensors.	 The	 commercial	 sensors	
showed	larger	improvement	of	the	quality	of	light	patterns	compared	
to	our	home-built	sensor.	Then	I	show	what	results	can	be	obtained	
with	 a	 single	 iteration	 feedback	 loop	 of	 wavefront	 correction	 of	
various	commercial	sensors.	In	the	end,	we	apply	two	feedback	loops	
to	get	the	best	quality	of	wavefront	improvement.		
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a 	
	

b	 	
	

c	 	
Figure	14.	a)	the	spots	obtained	from	a	Gaussian	beam	6	times	the	size	
of	 the	 SLM.	 b)	 the	 spots	 obtained	 from	 the	 SLM	 beam	 c)	 the	 relative	
dislocations	of	the	focal	spots	produced	by	the	lens	array	with	respect	
to	the	large	Gaussian	reference	beam	are	found	algorithmically		
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Figure	 15.	 Top:	Measured	wavefront	with	 home-built	 sensor.	 Bottom:	
Zernike	decomposition	of	that	wavefront		
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For	the	purpose	of	improving	the	quality	of	correction,	we	also	
tested	 the	 ability	 to	 correct	 the	 wavefront	 with	 three	 types	 of	
commercially	 available	 sensors:	 SHSLab	 HR-150-GE-PRO	 (55x44	
microlenses	 and	 8.98x6.71	 mm	 sq.	 detection	 area)	 available	 from	
Optocraft,	HASO	3	128	GE2	(4.9x6.1	mm	sq.	detection	area	and	32	x	
49	 microlenses)	 and	 HASO128	 GE2	 (128	 x	 128	 microlenses	 and	
15x15	mm	sq.	detection	area)	available	from	Acal	Bfi.	Our	conclusion	
is	that	the	Optocraft	sensor	behaves	most	appropriately	at	the	given	
price	and	would	be	our	wavefront	sensor	of	choice.		

The	 results	 after	 correcting	 for	 the	 wavefront	 with	 those	
devices	can	be	summarized	as	follows:		

Optocraft	

	
Measured	Wavefront	(left),	Corrected	wavefront	after	a	single	feedback	

loop	(right)	
	
HASO	32	

	
Measured	Wavefront	(left),	Corrected	wavefront	after	single	feedback	

loop	(right)	
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Looking	at	wavefront	with	the	HASO	32	with	the	Optocraft	correction	

applied	
	

	
HASO	128	

	
Measured	Wavefront	(left),	Corrected	wavefront	after	single	feedback	

loop	(right)	
Figure	 16.	 Measured	 wavefront	 with	 commercial	 sensors	 and	
measurement	after	a	correction	is	applied.		

	

In	 conclusion,	 we	 can	 control	 the	 wavefront	 to	 0.5%	 of	 the	
wavelength	 (1083	nm	 in	 this	 case)	 in	units	of	wavelength	with	 two	
feedback	 correction	 loops.	 That	 improved	 on	 the	 quality,	 obtained	
from	 applying	 a	 single	 feedback	 iteration	 loop.	 In	 order	 to	 achieve	



	 38	

such	a	good	quality,	we	take	another	measurement	of	the	wavefront	
after	 a	 single	 feedback	 is	 applied	 and	 apply	 a	 new	 correction.	 That	
showed	 improvement	 in	 the	 wavefront,	 making	 the	 standard	
deviation	from	5.1%	down	to	0.5%	in	units	of	wavelength.	

	

1.3.6.	Controlling	the	focal	length	of	individual	spots	or	patterns		

	

Controlling	 the	 focal	 length	 of	 independent	 patterns	 on	 the	
image	 plane	 is	 not	 trivial.	 That	 depends	 on	 the	 present	 SLM	 setup,	
where	each	optical	element	contributes	to	some	aberration.	We	have,	
however,	 devised	 an	 algorithm	 to	 accompany	 that	 and	 control	 the	
focus	point	of	each	spot	with	great	precision	(a	tenth	of	a	millimeter	
resolution	measured	via	a	translation	stage).		

One	 can	 see	 how	 this	 is	 done	 with	 ABCD	 matrices	 (or	 Ray-	
transfer	matrix	methodology).	Applying	a	lens	operation	on	the	SLM	
is	similar	to	adding	a	lens	on	the	surface	of	the	SLM.	Simply	put,	the	
setup	after	 the	SLM	would	have	 the	 following	configuration	 (Figure	
17).		

	

	

Figure	 17.	 The	 setup	 of	 lenses	 after	 the	 SLM.	 Focal	 lengths	 are	 in	
meters.	
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Essentially	 an	 optical	 element	 can	 be	 described	 as	 matrix	

operation	acting	on	the	 incoming	 field	 to	produce	an	outgoing	 field.	
This	 is	 a	 standard	approach	of	 ray	 transfer	matrices.	Where	 the	y-s	
signifiy	distance	 from	the	optical	axis	and	thetas	 the	angle	 from	the	
optical	axis.	
	

𝑦!"#
𝜃!"# =

𝐴 𝐶
𝐵 𝐷  

𝑦!"
𝜃!" = 𝑀  

𝑦!"
𝜃!"	

Where	in	this	case		
	

𝑀 =	

1 𝑑!
0 1

 
1 0

−
1
𝑓!

1  1 𝑑!
0 1  

1 0

−
1
𝑓!

1  1 𝑑!
0 1  

1 0

−
1
𝑓!

1   

1 𝑑!
0 1

 1 0
−1/𝑥 1 	

	
𝑓! = 0.150𝑚, 𝑓! = 0.075𝑚,𝑑! = 0.225𝑚	

	
The	 boundary	 conditions	 would	 have	 to	 be	 set	 such	 that	

𝑦!"# = 0 = 𝐴𝑦!" + 𝐶𝜃!" ,	 the	 spots	 are	 on	 focus.	𝜃!"	can	 be	 set	 to	 a	
small	value	close	to	0,	while	𝜃!"# 	can	have	a	small	value	close	to	zero,	
due	to	alignment	imperfections	for	example.	
	

For	the	parameters	for	lenses	and	vacuum	window	used	(index	
of	 refraction	 of	 the	 window	 is	 1.51	 from	 datasheet)	 we	 obtain	 the	
following	model:	
	

𝑑! = −
0.00175

0.0386 − 0.571𝑥[𝑚]
 [𝑚]	

	
where	“x”	is	the	focus	length	of	the	lens	that	is	imprinted	on	the	SLM.	
This	 is	 a	 very	nice	model,	 because	upon	 every	 change	 in	 the	 actual	
setup,	we	 can	 feed	 in	 the	new	parameters	 and	obtain	 a	new	model	
that	will	describe	the	situation	correctly.	
	

The	 data	 measured	 for	 the	 focus	 point	 change	 looks	 like	 the	
following	
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Figure	18.	The	distance	𝑑!	to	the	focal	plane	of	the	imaging	lens	versus	
the	 focal	 length	 of	 the	 lens	 coded	 on	 the	 SLM	 and	 corresponding	
equation.		
	
	

There	 is	another	problem	related	to	this	section.	 If	we	change	
the	 focus	point	of	 the	 trapping	plane,	 the	 relative	distance	between	
the	 traps	 also	 changes.	 We	 can	 overcome	 this	 problem	 again	 with	
ABCD	matrices.	
	
	
1.3.7.	 Controlling	 the	 relative	 distance	 between	 spots	 on	 a	
different	focal	plane	
	
	

That	 is	 related	 to	 the	 change	of	 the	 final	 angle	𝜃!"# .	However,	
this	 has	 to	be	normalized	with	 respect	 to	 the	 angle,	when	 the	 focal	
length	 of	 the	 lens	 imposed	 on	 the	 SLM	 is	 infinity.	 Clearly	𝜃!"# =
𝐵𝑦!" + 𝐷𝜃!" .	Therefore,	 for	 the	parameters	 that	we	have,	 the	model	
obtained	is	
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𝜃!"#
𝜃!"#,   !→!

~ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 

= −𝐶𝑜𝑛𝑠𝑡 ∗
0.0571𝑥

0.0386 − 0.571𝑥[𝑚]
 [𝜇𝑚]	

	
	

The	final	angle	change	is	proportional	to	the	change	in	relative	
distance	between	the	traps.	That	agrees	very	well	with	the	data	(we	
measured	 the	dataset	by	 fitting	 two	Gaussians	 to	 the	data	obtained	
with	 the	 camera	 and	 calculating	 the	 relative	 distance	 between	 the	
fits,	 and	 obtained	 the	 constant	 of	 proportionality	 is	 100	 from	 a	 fit)	
(Figure	19).	
	

	
Figure	 19.	 The	 relative	 distance	 between	 Gaussian	 spots	 in	 um	 with	
respect	 to	 the	 focal	 length	 of	 the	 lens,	 encoded	 on	 the	 SLM.	 The	
corresponding	equation	and	data	agree	very	well	within	2	um.	
	
	
	

Therefore,	 we	 can	 control	 very	 well	 the	 focal	 point	 of	 each	
individual	 pattern	 and	 relative	 distance	 between	 patterns	within	 2	
micrometers;	 project	 analytic	 patterns	 on	 the	 trapping	 plane	 and	
shuffle	 them	around	 easily.	 The	way	 that	we	measured	 the	 relative	
distance	 is	 by	 taking	 the	 data	 of	 the	 two	 spots	 and	 fitting	 two	
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Gaussian	functions	on	a	cross	section	at	the	middle	of	the	spots	and	
taking	the	distance	between	the	centers	of	the	Gaussians.	

	
	
1.3.8.	The	problem	of	optical	vortices		

	

Optical	 vortices	 are	 topological	 features	 of	 the	 light	 field	 that	
are	related	to	a	phase	winding	around	a	point	of	zero	intensity.	Also	
known	 as	 phase	 singularities	 or	 branch	 points	 [19].	 Unwinding	 a	
vortex	would	require	global	change	of	the	hologram,	which	is	difficult	
to	 achieve	 in	 the	 later	 stages	 of	 any	 algorithm.	 The	 reason	 for	 the	
imperfections	 in	 the	 MRAF	 algorithm	 for	 example	 in	 the	 extended	
canvas	 regime	 is	 the	 formation	 of	 large	 populations	 of	 vortices	
during	the	early	iterations	of	the	algorithm.		

Once	the	hologram	becomes	more	complicated,	 it	 is	no	 longer	
analytical.	The	problem	then	arises	from	a	steep	change	in	the	phase	
from	 0	 to	 close	 to	 2𝜋,	 which	 is	 why	 the	 offset	 was	 added	 in	 the	
OMRAF	 algorithm.	 That	 however,	 does	 not	 remove	 the	 vortices	
completely	 [10].	 The	 vortices	 occur	 mainly	 because	 the	 hologram	
that	 we	 are	 projecting	 on	 the	 SLM	 with	 the	 OMRAF,	 MRAF	 or	 GS	
algorithms	 becomes	 non-analytical.	 With	 the	 “vector”	 holography	
algorithm,	we	only	control	 the	diffraction-limited	position	and	 focal	
length	of	 the	holograms	but	not	 their	size.	Another	method	one	can	
exploit	 is	 to	 design	 an	 Adaptive	 Optics	 system,	 featuring	 a	 Shack-
Hartmann	 sensor	 to	 inverse	 the	 phase	 of	 the	measured	 beam	 onto	
the	SLM	in	order	to	correct	for	distortions.	
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Figure	 20.	 An	 example	 of	 optical	 vortices	 by	 attempting	 to	 obtain	 a	
large	 Gaussian	 spot	 (500	 times	 the	 diffraction	 limit)	 with	 the	 GS	
algorithm		

	

1.3.9.	Polarization	fluctuation	in	the	setup		

	

We	 measured	 the	 varying	 power	 of	 a	 single	 Gaussian	 beam,	
created	with	the	SLM	right	after	a	polarizing	beam	splitter.	The	result	
(shows	a	standard	deviation	of	about	6.2uW	or	0.31%	fluctuation	of	
the	power	after	the	polarizer	over	a	6-hour	measurement.	Therefore,	
any	 polarization	 fluctuations	 induced	 by	 the	 SLM	 are	 insignificant	
(Figure	21).		
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Figure	 21.	 Power	 measured	 after	 the	 SLM	 and	 a	 polarizing	 beam	
splitter.		

	

2.	The	experiment	devised	to	demonstrate	
momentum	entanglement		

	

2.1.	Discussion	of	the	experiment		

Interference	 plays	 a	 significant	 role	 in	 fundamental	 physics.	 At	 the	
quantum	 level,	 interference	 is	 a	witness	 of	 quantum	 superposition.	
Interference	of	entangled	particles	is	of	main	significance	to	the	study	
of	 nonlocal	 correlations	 of	 spatially	 separated	 entangled	 particles	
[21].	 Quantum	 interference	 of	 momentum-entangled	 photons	 has	
been	studied	 in	various	experiments	such	as	double	double	slit	and	
ghost	 interference	experiments	 [22-24].	Via	a	 light	pulse	atoms	can	
be	 given	 precise	 momentum	 recoil	 and	 can	 also	 be	 put	 in	 a	
superposition	of	opposite	momenta.	Additionally,	the	recoiled	atoms	
can	 be	 simultaneously	 out-coupled	 from	 the	 trap	 to	 a	magnetically	
insensitive	 state.	 The	 atoms	 having	 opposite	momenta	 collide	with	
each	 other	 and	 are	 scattered	 spherically.	 Moreover,	 we	 can	 detect	
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entangled	atom	pairs	 in	a	 four-quadrant	delay	 line	detector	 (micro-
channel	 plate	 type)	with	 the	 four	quadrants	 running	 independently	
with	high	 time	 resolution.	 In	 the	detection	 scheme,	 a	 fixed	detector	
can	 detect	 one	 atom	 from	 a	 pair	 and	 the	 probability	 of	 finding	 the	
other	 one	 measured	 at	 different	 locations	 corresponds	 to	 a	
conditional	interference	pattern	only	if	there	are	multiple	sources	of	
origin.		

Consider	a	BEC	trapped	in	a	double	well	potential	(Figure	22)	with	a	
well	separation	𝑑.	Bragg	diffraction	 is	realized	with	two	𝜎	polarized	
laser	 beams	 propagating	 in	 the	 opposite	 direction	 along	 the	 𝑥-axis	
and	 a	𝜋	 polarized	 beam	 propagating	 on	 the	𝑦	 axis	 [25].	 There	 is	 a	
finite	 probability	 that	 the	 atoms	 will	 collide	 with	 opposite	
momentum	 along	 the	 𝑥	 −	 direction,	 scattering	 thereafter	 in	 all	
directions	 isotropically.	 After	 that,	 a	 detector	𝐷! 	at	𝑃! 	detects	 one	
atom.	The	second	atom	of	 the	same	pair	 is	detected	by	the	detector	
𝐷!.	For	a	momentum	entangled	pair	the	joint	probability	of	detecting	
the	 first	 atom	 and	 the	 second	 atom	 exhibits	 a	 conditional	
interference	pattern.		

	

Figure	22.	A	BEC	trapped	in	a	double	well	potential	

The	pair	creation	rate	should	be	small	enough	such	that	there	
is	 one	 pair	 in	 the	 detection	 window	 and	 the	 BEC	 is	 dilute	 enough	
such	 that	no	multiple	 collisions	of	 individual	atoms	would	occur.	 In	
order	 to	 find	out	 the	probability	amplitude	of	 finding	 two	scattered	
atoms	 in	 space,	each	point	 in	 the	BEC	can	be	 treated	as	a	 source	of	
two	 spherical	 waves	 (for	 each	 particle	 from	 the	 pair).	 Similar	
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FIG. 1: Schematic showing a BEC trapped in a double well potential. The single atom detector D1

is located at P1(θ1,φ1) and D2 is located at P2(θ2,φ2). Atoms in the BEC are recoiled to induce

collisions by applying a Bragg pulse along the x-direction (see text). After the collisions atom

pairs are scattered in all directions and if the first atom from a pair is detected at P1 with D1

the conditional detection probability of the second atom from the same pair exhibits a conditional

interference.

over the condensate wavefunction and the Bragg pulse is applied at time t = 0 for a very

short time but long enough to have only a small energy uncertainty of the recoiled atoms.

The Bragg pulse produces the wavefunction of an outcoupled atom in quantum superpo-

sition of recoil momentum along x-direction (in the centre of mass frame). We assume

that that the trapped BEC is dilute, we ignore atomic mean-field interactions. Consider

each well as a three dimensional harmonic potential near its center with well separation

d, therefore, the component of the wave function of an outcoupled atom moving along

the positive x-axis and just after outcoupling from double well is written as ψ1(x, y, z, t) =

e−(x−vrt)
2/2σ2

xe−y2/2σ2
y

π3/4(2σxσyσz)1/2(1+e−d2/4σ2
z )1/2
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2 )

2/2σ2
z+e−(z− d

2 )
2/2σ2

z )e−i(kx−!k2t/2m). For a short time of flight

we can ignore free fall and the wavepacket expansion and the higher order phase variation

due to expansion. Where σ2
i = !/mωi, m is mass of atom and ωi is angular trap frequency

along the ith direction, i ∈ {x, y, z}, vr is the recoil velocity along the x-direction. Similarly

the component of the wavefunction of another atom moving along the negative x-direction

is ψ2(x, y, z, t) =
e−(x+vrt)
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probability amplitude of a collision to happen is proportional to the amplitude to find two
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approach	has	been	done	in	[26].	There,	the	authors	showed	that	for	a	
SPDC	source	the	correlations	in	forward	direction	could	be	obtained	
by	integrating	over	the	source	region	with	spherical	waves	as	Green’s	
functions.	 The	BEC	 coherence	makes	 it	 possible	 to	 follow	 the	 same	
approach	for	the	case	of	four-wave	mixing,	where	just	the	scattering	
is	discussed	and	not	the	dynamics.	

	
Weighted	 by	 the	 density	 of	 the	 single	 particle	 wave	 function	

𝜙(𝑟!),	the	wave	function	in	the	far	field	can	be	written	as		
	

𝜓 𝑅!,𝑅! = 𝜙(𝑟!) !
𝑒!!!!!
𝑅!

𝑒!!!!!
𝑅!

𝑑𝑥!𝑑𝑦!𝑑𝑧!	

	
where	𝑅! = 𝑟! − 𝑟! 	and	𝑟! ≫ 𝑟!	in	the	far	field	
	
The	Fourier	transform	of	the	density	profile	would	then	be		
	

𝜓 𝑘! , 𝑘! =
1

(2𝜋)!/!
𝜙(𝑟!) !𝑒!!(!!!!!)!! 𝑑𝑥!𝑑𝑦!𝑑𝑧!	

	
Similar	approach	can	be	found	in	the	results	in	[27].		

So,	using	the	spherical	wave	approximation	(SWA)	can	be	used	
to	calculate	the	correlations	of	two	particles	scattered	from	the	BEC	
into	an	entangled	state	of	 two	counter-propagating	waves.	One	way	
to	achieve	multiple	collision	zones	 is	having	 the	 “slits”	as	source	by	
splitting	the	BEC	into	two	parts.	The	Raman	laser	beam	propagating	
in	the	vertical	direction	can	be	shaped	with	the	SLM	as	a	double	well.		

The	SLM	imprints	a	pattern	of	two	“slits”	with	Gaussian	shape	
in	 a	 distance	𝑑	 onto	 the	 BEC	 (Figure	 23).	 The	 source	 size	 in	 the	 𝑧-
direction	 is	 given	 by	 the	 Thomas-Fermi	 radius	 of	 the	 BEC	 and	 for	
reasons	of	simplicity,	the	integration	of	the	distribution	is	calculated	
as	a	Gaussian	distribution	in	the	other	two	directions.		
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Figure	 23.	 An	 illustration	 of	 two	 Gaussian	 beams	 imprinted	 on	 the	
BEC	with	the	help	of	the	SLM		

	

That	 would	 lead	 to,	 as	 discussed	 in	 the	 Thesis	 of	 Maximilian	
Ebner	(past	member	of	our	group)	the	following	result	for	𝜙(𝑟!),	

	
	

 𝜙!(𝑥!) =
1
2𝜋𝑠!

𝐸𝑥𝑝 −
𝑥!!

2𝑠!!
	

𝜙!(𝑧!) =
1
2𝜋𝑠!

𝐸𝑥𝑝 −
𝑧!!

2𝑠!!
	

𝜙!(𝑦!) =
1
8𝜋 𝑠!

𝐸𝑥𝑝 −
(𝑦! + 𝑑 2)

!

2 𝑠!! 
+ 𝐸𝑥𝑝 −

(𝑦! − 𝑑 2)
!

2 𝑠!! 
	

	
	

Further	 calculations	 on	 obtaining	 the	 EPR-like	 entanglement	
fringes	 with	 those	 density	 profiles	 are	 discussed	 more	 in	 Ebner’s	
thesis.	I	am	making	use	of	𝜙!(𝑦!)	in	the	next	chapter.	
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2.2.	Monte	Carlo	simulation	for	varying	the	amplitude	of	one	of	
the	spots	for	outcoupling		

	

	 Here,	 this	 integration	 region	 is	 redefined,	 such	 as	 to	
incorporate	 different	 densities	 of	 atoms	 in	 the	 two	 regions	 where	
atoms	are	outcoupled,	namely	different	densities	in	between	sources.		

	

  𝜙!(𝑦!) ! =
𝐴
8𝜋 𝑠!

𝑋 𝐸𝑥𝑝 −
𝑦! + 𝑑 2

!

2 𝑠!! 

+ 1 − 𝑋 𝐸𝑥𝑝 −
𝑦! − 𝑑 2

!

2 𝑠!! 
	

	

The	 only	 difference	 is	 adding	 a	 relative	 density	 profile	 with	
proper	 normalization	 constant	 A.	 Here	 is	 an	 example	 of	 the	 result	
obtained	from	a	Monte	Carlo	simulation	where	the	amplitude	of	the	
density	 of	 one	 of	 the	 spots	 in	 y	 direction	 is	 varying	 as	 a	 Normal	
distribution	of	values	with	mean	of	0.5	and	standard	deviation	of	!.!

!
.		

Performing	the	calculation	over	1000	runs	leads	to	interesting	
results.	Figure	24	shows	what	 is	 fed	 for	 the	amplitude	of	one	of	 the	
Gaussian	 spots	 density,	 a	 Gaussian	 distribution	 varying	 between	 0	
and	1.		
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Figure	24.	Amplitude	of	the	density	of	one	of	the	spots	for	outcoupling,	
at	 the	 midpoint	 that	 corresponds	 to	 a	 relative	 density	 profile	 of	 the	
same	bin	size.	Mean	=	0.5,	Standard	Deviation	=	0.17	

	

That	 would	mean	 the	 amplitude	 of	 the	 density	 of	 one	 of	 the	
spots	 could	 be	 varying	 in	 a	 Gaussian	 across	 all	 region	 [0,1]	 to	
accompany	standard	noise	characteristics.		

Such	 varying	 density	 profile	 can	 be	 attributed	 to	 relative	
intensity	or	relative	phase	fluctuations	of	the	beam	hitting	the	atoms,	
or	density	 instabilities	 in	the	condensate.	Either	way,	this	can	easily	
accompany	all	noise	factors	that	would	lead	to	a	worst-case	scenario	
relative	 outcoupling.	 That	 approach	 does	 not	 take	 detector	
imperfections	in	to	account,	the	assumption	is	perfect	detected	pairs	
and	no	false	counts.		

The	 fringe	 visibility	 is	 thereby	 affected	 and	 has	 an	 expected	
value	that	can	be	calculated	(Figure	26).	 	Here	even	the	worst	cases	
are	 taken	 into	 account,	 for	 example	 when	 the	 relative	 density	
difference	 between	 sources	 is	 99%,	 corresponding	 to	 a	 very	 low	
value	 in	 the	 fringe	 visibility.	 The	 numerical	 simulation	 takes	 into	
account	 the	 density	 fluctuations	 between	 sources	 varying	 as	 a	
Gaussian	distribution	centered	at	50%	with	a	 standard	deviation	of	
17%.	

	

X 

Number	of	runs 



	 50	

	

Figure	25.	Fringe	visibility	estimate	as	a	function	of	the	runs	

	

	

Figure	26.	The	fringe	visibility	plotted	also	as	a	distribution		

	

Fringe	visibility 

Number	of	runs 
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To	 conclude	we	 could	 expect	 a	 visibility	 (not	 taking	 detector	
imperfections	into	account)	of	0.868	±	0.149.		

It	is	also	interesting	to	note	that	this	result	is	in	fact	similar	to	a	
previous	 calculation,	 essentially	 found	 in	 Wolf’s	 book	 on	 different	
intensities	 per	 slit	 on	 a	 double	 slit	 from	 a	 coherent	 source.	 The	
visibility	 there	 is	 defined	 in	 terms	 of	 the	 correlation	 function	
(Gamma)	and	a	factor		

	

𝑉 =
2 𝐼! 𝐼!
𝐼! + 𝐼!

𝐺𝑎𝑚𝑚𝑎 	

	

It	is	interesting	to	compare	this	equation	to	the	results	for	the	
Fringe	 visibility	 taking	 different	 source	 densities	 into	 account.	 For	
making	use	of	the	idea,	we	can	define	the	intensities	in	a	double	slit	
scenario	as	the	densities	of	the	sources	here.	It	works	comparatively	
well	 down	 to	 a	 ratio	 of	 the	 densities	 of	 95	 to	 5,	where	 larger	 ratio	
leads	to	a	Gaussian	in	the	conditional	interference	pattern,	no	fringes	
visible	(Figure	27).	

	

Figure	 27.	 Comparison	 of	 different	 intensities	 on	 a	 double	 slit	 and	
Monte	 Carlo	 result;	 (At	 the	 ratio	 of	 around	 (0.95,	 0.05)	 of	 relative	
density	 amplitudes,	 there	 are	 no	 fringes,	 only	 a	 Gaussian	 seen	 at	 the	
detector	and	I	define	the	visibility	as	0.)		
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An	 example	 of	 what	 the	 pattern	 could	 look	 like	 is	 the	 following	 in	
Figure	28.		

	
Figure	28.	Left:	Relative	density	amplitudes	of	(0.5,	0.5).	Right:	Relative	
density	amplitudes	of	(0.8,	0.2).	The	 idea	here	 is	 to	show	that	with	an	
imbalance	at	the	source	densities,	the	fringe	visibility	suffers.		

	

This	 approach	 shows	 a	 worse	 case	 scenario,	 when	 the	 relative	
density	 between	 sources	 fluctuates	 in	 a	 Gaussian	way,	 but	 still	 the	
fringe	visibility	is	high	enough.	

	

3.	Optical	dipole	trap		

	
3.1.	Basic	idea	of	dipole	traps		

	
Methods	to	trap	charged	and	neutral	particles	have	very	often	

served	 as	 the	 experimental	 ingredient	 for	 great	 scientific	 advances,	
covering	a	wide	range	of	physics	in	ultracold	atomic	quantum	matter	
and	 even	 elementary	 particles.	 The	 ultralow-energy	 region	
developments	became	accessible	 in	 the	 field	as	a	 result	of	dramatic	
improvements	 in	the	field	of	 laser	cooling	and	trapping,	which	have	
taken	place	over	the	last	three	decades	[72-78].		
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Historically,	 the	 optical	 dipole	 force,	 acting	 as	 confining	
mechanism	 in	 a	 dipole	 trap,	 was	 considered	 the	 first	 time	 from	
Askar’yan	 [79]	 in	 connection	with	 plasmas	 and	 neutral	 atoms.	 The	
possibility	 of	 trapping	 atoms	 with	 this	 force	 was	 considered	 by	
Letokhov	 [80].	 Ashkin	 [81]	 demonstrated	 trapping	 of	 micron-sized	
particles	 in	 laser	 light	 based	 on	 the	 combined	 action	 of	 the	 dipole	
force	 and	 radiation	 pressure	 for	 the	 first	 time.	 The	 dipole	 force	 on	
neutral	atoms	was	first	demonstrated	by	Bjorkholm	[82].	As	a	great	
breakthrough	the	group	of	Chu	exploited	this	force	to	realize	the	first	
optical	 dipole	 trap	 for	 neutral	 atoms	 [83].	 After	 the	 enormous	
progress	 in	 laser	 cooling	 and	 trapping	 much	 colder	 and	 denser	
atomic	 samples	 were	 made	 in	 a	 different	 variety	 of	 trap	
configurations.	 Even	 the	 SLM	 was	 included	 in	 an	 experiment	 to	
produce	 the	 first	 box	 potential	 that	 could	 successfully	 trap	 atoms	
[84].	 This	 three	 dimensional	 optical	 box	 is	 simply	 one	 of	 the	many	
advantages	 the	 SLM	 offers	 to	 produce	 interesting	 experimental	
phenomena	in	relation	to	the	Bose-Einstein	condensate.	It	opens	new	
possibilities	for	fundamental	and	many-	body	physics.		

When	 atoms	 are	 placed	 in	 an	 oscillating	 electric	 field,	 they	
obtain	 an	 induced	 electric	 dipole	 moment	 that	 oscillates	 with	 the	
driving	frequency	of	the	field.	The	optical	dipole	force	arises	from	the	
dispersive	 interaction	 between	 the	 induced	 atomic	 dipole	 moment	
with	the	intensity	gradient	of	the	light	field	[31-33].	Since	the	force	is	
conservative,	it	can	be	derived	from	a	potential,	the	minima	of	which	
can	 be	 used	 for	 trapping	 of	 atoms.	 The	 absorptive	 portion	 of	 the	
dipole	 interaction	 in	 far-detuned	 light	 leads	 to	 residual	 photon	
scattering,	 setting	 limits	 on	 dipole	 traps.	 The	 ratio	 between	 the	
magnitude	 of	 the	 electric	 field	 and	 the	 amplitude	 of	 the	 induced	
dipole	moment	 is	given	by	the	complex	polarizability	[34].	 	Here	𝑤!	
signifies	 the	 eigenfrequency	 of	 an	 electron	 bound	 elastically	 to	 the	
core	of	an	atom	and	𝑤	the	driving	frequency	of	the	electric	field.	

	

𝛼 = 6𝜋𝜖!𝑐!
Γ
𝑤!!

𝑤!! − 𝑤! − 𝑖 𝑤!

𝑤!!
Γ
	

	

The	potential	energy	 is	 related	 to	 the	 induced	dipole	moment	
by	 the	 real,	 dispersive	 part	 of	 the	 complex	 polarizability,	 which	
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describes	 the	 magnitude	 of	 the	 in-phase	 oscillation	 of	 the	 dipole	
moment	and	the	magnitude	of	the	out-of-phase	oscillation	is	related	
to	the	imaginary	part	of	the	polarizability,	associated	with	the	rate	at	
which	photons	are	absorbed	and	spontaneously	re-emitted:		

	

𝑈!"# 𝑟 = −
1

2𝜖!𝑐
𝑅𝑒 𝛼 𝐼 𝑟  

Γ!" 𝑟 = −
1

ℏ𝜖!𝑐
𝐼𝑚 𝛼 𝐼(𝑟)	

	
In	the	far-off	resonant	regime,	when	the	detuning	is	 large,	 the	

evaluation	 of	 these	 relations	 result	 in	 the	 following	 expressions	 for	
the	 dipole	 potential	 and	 the	 scattering	 rate	 [35],	 where	Γ	is	 the	
damping	rate	

	

𝑈!"# 𝑟 = −
3𝜋𝑐!

𝑤!! 𝑤!! − 𝑤! Γ 𝐼 𝑟  

Γ!" 𝑟 =
6𝜋𝑐!𝑤!

ℏ
Γ

𝑤!! 𝑤!! − 𝑤!

!

𝐼(𝑟)	

	
In	 the	 case	 of	 red	 detuning,	 irradiating	 the	 atoms,	 the	 dipole	

potential	has	a	minimum	value	when	the	intensity	is	at	a	maximum,	
thereby	 producing	 a	 trapping	 potential	 for	 the	 atom.	 In	 the	 case	 of	
blue	 detuning,	 the	 real	 part	 of	 the	 polarizablity	 is	 negative	 (the	
induced	 dipole	 moment	 is	 lagging	 behind	 the	 electric	 field)	 –	 the	
dipole	minimum	is	when	the	light	intensity	is	at	a	minimum.		

In	this	case	of	red	detuning,	the	equations	further	simplify	to	(∆	
here	is	the	detuning)	

𝑈!"# 𝑟 = −
3𝜋𝑐!

2𝑤!!
Γ
∆

 𝐼 𝑟 ∝
Γ
∆
	

 

Γ!" 𝑟 =
3𝜋𝑐!

ℏ2𝑤!!
Γ
∆

!

𝐼(𝑟) ∝
Γ
∆

!

	

	



	 55	

These	 are	 the	 key	 equations	 at	 interest.	 Therefore,	 optical	
dipole	traps	usually	use	large	detunings	and	high	intensities	to	keep	
the	scattering	rate	as	low	as	possible	at	a	certain	potential	depth.		

	

3.2	Our	first	dipole	traps		

	

3.2.1.	One	beam	trap		

	

Optical	 dipole	 traps	 allow	 experimenters	 to	 employ	 a	 wide	
range	of	geometries.	The	first	configuration	is	the	single	focused,	red	
detuned,	 Gaussian	 beam.	 The	 potential	 is	 given	 by	 (propagating	 in	
the	“z”	axis)		

𝑈!"# 𝑟, 𝑧 = −𝑈!
𝑤!
𝑤 𝑧

!
𝐸𝑥𝑝

−2𝑟!

𝑤 𝑧 ! 	

	



	 56	

	

Figure	 29.	 Absorption	 image	 of	 helium	 atoms	 in	 a	 one-beam	 optical	
dipole	trap		

	

where	𝑧! 	is	the	Rayleigh	range	and	𝑤!the	beam	waist		

𝑤 𝑧 = 𝑤! 1 + 𝑧 𝑧!
!

 

𝑧! =
𝜋𝑤!!

𝜆	
	

The	 radial	 confinement	 is	 stronger	 than	 the	 axial	 one	 by	 a	

factor	 of	 2𝜋𝑤!!
𝜆 ,	 with	 a	 beam	 waist	 of	 about	 115	 um	 and	

wavelength	of	1.557	um.	
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3.2.2.	Crossed	beam	trap		

	

In	 order	 to	 increase	 the	 strength	 of	 the	 axial	 confinement,	 a	
crossed	beam	trap	is	realized.	The	way	it	 is	done	is	by	crossing	two	
single-beam	 dipole	 traps	 (ideally	 of	 equal	 intensity,	 we	 are	 retro-	
reflecting	 the	1D	 trapping	beam	 to	 obtain	 the	 cross	 trap)	 such	 that	
the	 foci	match	at	some	angle.	Where	the	 foci	meet	and	the	trapping	
beams	 intersect,	 the	 AC	 Stark	 shift	 doubles	 and	 a	 dipole	 potential	
arises.	 The	 trapping	 frequency	 in	 the	 direction	 orthogonal	 to	 the	
plane	of	the	two	beams	is		

𝜔! = 4𝑈! 𝑚𝑤!!	
	
And	
	

𝜔! = 𝑤! cos
𝜃
2
	

𝜔! = 𝑤! sin
𝜃
2
	

	
Consider	 the	 situation	 where	 we	 have	 initial	 power	 Pin,	 and	

powers	 P1	 and	 P3	 hit	 the	 atoms.	 T	 here	 is	 the	 transmission	
coefficient	of	a	vacuum	window	

	
	

	
	

𝑃1 = 𝑇 𝑃𝑖𝑛,𝑃3 = 𝑇 𝑃2 =  𝑇! 𝑃𝑖𝑛,𝑃 𝑎𝑡𝑜𝑚𝑠 = 𝑃1 + 𝑃3
= 𝑃𝑖𝑛 𝑇 (1 + 𝑇!)	

	
The	efficiency	of	the	AOM	(with	which	we	control	the	power	of	

the	beam	being	sent	to	the	atoms)	is	43%,	so	with	10W	output	from	
the	fiber	amplifier	there	will	be	4.5W-5W	available	as	Pin.	That	leads	
to	6.5W	power	that	the	atoms	would	receive	at	the	crossed	trap.		
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There	will	 be	 additional	 loss	 due	 to	 efficiency	 of	mirrors	 and	
lenses,	where	for	silver	mirror	the	loss	could	reach	2.5%	and	1%	for	
a	lens.	For	that	particular	setup	used	the	total	losses	are	about	18%,	
which	leaves	the	atoms	with	about	5.3W	of	power	P1+P3.		

Since	we	were	going	to	update	the	setup	shortly	within	a	month,	no	
trap	 frequencies	were	measured.	The	way	 it	 is	normally	done	 is	by	
exciting	 atoms	 into	 a	 dipole	 oscillation	 mode	 in	 one	 direction	 by	
applying	 a	 magnetic	 field	 gradient	 in	 the	 corresponding	 direction.	
Then,	 the	atoms	are	held	 for	 a	variable	 amount	of	 time	after	which	
the	 trap	 is	 switched	 off.	 After	 a	 short	 TOF,	 absorption	 imaging	 is	
performed	 and	 the	 position	 measured.	 Fitting	 sine	 functions	 to	
position	 with	 respect	 to	 holding	 time	 reveals	 the	 desired	 trap	
frequency	measurements.	However,	we	could	clearly	observe	a	BEC	
and	perform	a	short	set	of	experiments	on	that.		

	

Figure	30.	Absorption	image	of	helium	atoms	in	a	crossed	beam	optical	
dipole	trap		

	

At	full	power,	we	measure	a	lifetime	of	in	between	670ms	and	
930ms,	when	the	two	beams	P1	and	P3	had	orthogonal	polarizations	
and	 when	 they	 both	 the	 recycled	 and	 initial	 beams	 had	 horizontal	
polarizations,	we	measured	a	lifetime	of	about	1.64s	at	full	power.		

	



	 59	

	

Figure	31.	A	time	of	flight	measurement	with	the	crossed	beam	trapped	
BEC.	The	inversion	of	cloud	dimensions	is	consistent	with	the	presence	
of	a	BEC		

	

Figure	 32.	 Normalized	 density	 of	 a	 partly	 condensed	 atomic	 cloud	
versus	 cloud	 extension	 as	 measured	 from	 the	 ODT	 BEC	 after	 TOF	 of	
35.5ms.	 The	 black	 solid	 line	 represents	 the	 fit	 of	 the	 bimodal	
distribution	and	the	dashed	line	the	thermal	component		
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3.3.	Evaporation	trajectory		

	

Far-off	 resonance	 optical	 dipole	 traps	 are	 well	 known	 to	
provide	 nearly	 state-independent	 potentials	 to	 confine	 atoms	 [36].	
The	way	 evaporative	 cooling	 in	 an	optical	 dipole	 trap	 is	 done	 is	 by	
lowering	the	trapping	depth,	producing	a	BEC	in	a	few	seconds.	It	is	
known	that	the	evaporation	rate	of	a	gas	from	an	optical	trap	of	fixed	
depth	stagnates	as	the	temperature	decreases	[38].		

The	 typical	 idea	 of	 evaporative	 cooling	 is	 to	 increase	 the	
number	of	atoms	that	reach	a	quantum	degeneracy	level.	Atom	losses	
via	 three-body	 recombination	 and	 background	 collisions	 limit	 the	
attainable	 efficiency	 for	 most	 experimental	 efforts	 in	 evaporative	
cooling	 techniques.	 In	 principle,	 if	 the	 evaporation	 proceeds	 too	
slowly,	two-body	losses	become	the	major	loss	mechanism	and	limit	
the	efficiency	and	if	it	is	too	fast,	three-body	losses	become	dominant	
affecting	 the	 efficiency	 [95].	 In	 the	 experiments	 that	 led	 to	 the	
creation	 of	 quantum	 degenerate	 gases	 the	 trap	 depth	was	 lowered	
using	 a	 series	 of	 linear	 ramps	 of	 various	 duration.	 We	 have	 also	
employed	 such	 a	 tactic	 in	 order	 to	 achieve	 evaporation	 from	 the	
optical	 dipole	 trap.	 However,	 since	 the	 evaporation	 trajectory	 we	
were	 employing	was	 inefficient,	 some	 changes	 had	 to	 be	made.	We	
can	optimize	the	evaporation	with	a	total	evaporation	time	of	about	
at	least	0.6s.	In	order	to	overcome	the	effect	of	gravitational	sagging,	
which	 compromises	 the	 confinement,	 another	 tool	 to	 control	 the	
direction	of	the	magnetic	offset	coils	was	further	developed.		

The	relation	between	expected	particle	number	at	various	trap	
depths	forms	a	scaling	law	[36]	(particle	number	N	and	trap	depth	U)		

𝑁
𝑁!
=

𝑈
𝑈!

!
! !!!!

	

	

where	𝜂! = 𝜂 + !!!
!!!

	and	𝜂	is	 the	 ratio	 of	 the	 trap	 depth	𝑈	to	 thermal	
energy	𝑘!𝑇	
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Figure	33.	Particle	number	as	a	function	of	crossed	optical	dipole	trap	
power	 (i.e.,	 trap	 depth).	 The	 typical	 efficient	 evaporative	 cooling	
techniques	 in	 optical	 dipole	 traps	 employ	 a	 𝜂=10.	 The	 measurement	
provides	 a	𝜂=4.8,	 so	 further	work	 needed	 to	 be	 done	 to	 optimize	 the	
evaporative	cooling	technique	at	use.	N0	here	signifies	the	initial	atom	
number	in	the	trap	before	evaporation	

	

In	 order	 to	 improve	 on	 the	 evaporation	 efficiency,	 a	 program	
was	written	using	linear	spline	interpolation	in	order	to	find	the	best	
(minimum	 average	 offset	 error)	 linear	 splines	 to	 a	 particular	
exponential	model,	which	we	want	to	follow	up	with	a	ramp	as	close	
as	possible.	We	could	go	even	lower	than	1s	or	even	a	bit	lower	based	
on	 the	atom	number	 in	 the	BEC	and	 lifetime	 tradeoff	we	wanted	 to	
achieve.	The	code	has	a	GUI	and	it	computes	the	interpolation	within	
at	most	 125ms	 computational	 time.	 Settings	 are	 also	printed	 in	 the	
GUI.	One	can	then	get	 the	output	(provided	 input	 that	characterizes	
the	 ideal	 exponential	 evaporation)	 and	 log	 it	 directly	 into	 LabView.	
The	GUI	looks	like	the	following:	
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Figure	 34.	 The	 evaporation	 trajectory	 GUI	 that	 can	 be	 used	 for	
estimating	 the	 spline	 interpolation	 needed	 to	 do	 efficient	 ODT	
evaporation		

	

3.4.	Intensity	lock	for	the	ODT	laser		

	

In	 order	 to	 make	 the	 ramps	 proper	 without	 any	 fluctuations,	 an	
intensity	 lock	 for	 the	 dipole	 trap	 is	 desirable.	 Such	way,	 an	 analog	
signal	 is	sent	and	the	PID	 follows	the	ramps,	rather	 than	the	power	
values	for	the	trap	bottom	changing	suddenly.		



	 63	

	

Figure	35.	We	take	off	some	light	from	the	1st	diffraction	order	of	the	
1550	 laser,	used	 for	 the	ODT.	After	providing	an	external	set	point	by	
an	analog	output	from	the	LabView	control,	we	are	able	to	change	the	
amplitude	of	 the	voltage	signal	 that	goes	 into	 the	AOM,	 such	 that	 the	
power	level	of	the	laser	at	the	1st	diffraction	order	is	adjusted.	This	way	
we	can	vary	the	power	level	of	the	trap	bottom	to	high	precision.	Some	
additional	 electronics	 and	 attenuators	 were	 needed	 to	 adjust	 the	
proper	 clipping	of	 signals	and	power	values	needed	 for	 the	DAC	 from	
LabView,	providing	the	set	point	and	the	voltage	controlled	attenuator	
(VCA)	with	which	we	control	the	amplitude	of	the	power	signal.		
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Figure	36.	The	pulse	behavior	of	the	PID		

	
An	 example	 from	 evaporation	 follows	 (note:	 PID	 parameters	

were	 not	 perfectly	 optimized	 for	 this	 measurement,	 which	 is	 why	
there	is	a	lag	in	the	output.	The	point	I	am	making	is	that	the	signals	
follow	 ramps	 from	 one	 value	 to	 the	 next,	 rather	 than	 sudden	
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switching)	

	

Figure	 37.	 An	 example	 of	 evaporation	 sequence	 and	 corresponding	
signals	from	the	PID	error	and	PID	output	signals.	The	point	to	make	is	
that	 the	 signals	 follow	 each	 other	 and	with	 proper	 fine-tuning	 of	 the	
PID	 parameters	 even	 better	 results	 and	 error	 minimization	 can	 be	
obtained.	 	 The	 point	 here	 is	 that	 the	 PID	 is	 able	 to	 follow	a	 ramping	
sequence,	since	the	sampling	rate	is	5us.	

The	advantage	of	using	the	PID	instead	of	applying	a	ramp	to	the	VCA	
directly	is	improved	stability	of	the	intensity	signal	coming	out	of	the	
AOM	used	for	the	dipole	trap.	The	ramp	could	have	also	been	applied	
to	the	VCA	directly	equally	well;	the	only	difference	is	when	the	VCA	
has	single	set	value	the	intensity	signal	right	after	the	AOM	used	for	
the	ODT	is	more	stable.	Initially,	the	fluctuations	were	on	the	order	of	
30%.	 The	 PID	 feedback	 loop	 reduced	 the	 long-term	 stability	
fluctuations.	 The	 bandwidth	 of	 the	 used	 control	 circuit	 allows	 the	
damping	of	noise	up	to	approximately	120kHz.	
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3.5.	Current	switching	circuit	used	to	adjust	MOT	position		

	

Fine	 adjustments	 of	 the	MOT	position	 to	 optimize	 its	 overlap	
with	 the	 CODT	 are	 essential	 for	 efficient	 transfer	 of	 atoms	 to	 the	
dipole	 trap	and	are	done	by	adding	a	 small	homogeneous	magnetic	
field	that	shifts	the	magnetic	quadrupole	center.	In	order	to	do	that,	
we	needed	to	be	able	to	reverse	the	direction	of	current	and	control	
it	 with	 an	 IGBT,	 insulated	 gate	 bipolar	 transistor	 circuit	 (which	 is	
used	primarily	because	it	is	more	convenient	than	switching	cables).	
The	current	control	of	coils	was	already	in	place,	but	the	reversibility	
needed	to	be	extra	implemented.		

	 The	way	to	do	this	is	the	same	way	current	is	reversed	in	cars,	
since	we	are	dealing	with	high	currents	on	the	order	of	10A.	We	can	
use	an	H-bridge	modulated	circuit	to	do	so.	The	H-bridge	is	a	circuit	
containing	a	 switching	element	with	 the	 load	at	 the	 center	 in	an	H-
like	configuration	(Figure	38).		

	

	

Figure	38.	This	 is	an	example	H	bridge	configuration	with	the	coils	 in	
place	of	the	motor		
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Figure	 39.	 Possible	 useful	 configurations	 of	 the	 bridge;	 proper	
rerouting	is	needed	in	order	to	achieves	these	in	order	that	the	bridge	
does	not	burn	out		

	

Two	configurations	possible	(Figure	39):	If	Q1	and	Q4	are	on,	the	left	
lead	of	the	coils	will	be	connected	to	the	power	supply	and	the	right	
lead	to	ground.	If	Q3	and	Q2	are	on,	the	right	lead	will	be	connected	
to	the	power	supply	and	the	left	lead	to	the	ground.	However,	Q1	and	
Q2	or	Q3	and	Q4	should	never	be	turned	on	simultaneously,	because	
the	H-bridge	would	burn.	Therefore,	those	are	the	only	two	possibly	
useful	 configurations	allowed.	So,	 in	order	 to	overcome	 the	 issue	of	
making	sure	we	do	not	burn	the	materials,	we	connected	an	inverter	
to	allow	only	those	two	possible	configurations	(schematic	on	Figure	
40).		
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Figure	40a.	A	schematic	of	the	circuit	implemented		

	

	
	

Figure	40b.	The	actual	look	of	the	current	inverter.	Note	the	heat	sink	
hast	to	be	big,	in	order	to	handle	up	to	20A	of	current.		

	

The	 H-bridge	 used	 is	 the	 APTGF50H60T3G.	We	 had	 to	 use	 a	
heat	sink	as	well;	the	maximum	power	dissipation	of	the	part	itself	is	
250W	at	25	degrees	Celsius.	A	logical	one	(5V)	is	enough	to	turn	on	a	
particular	 IGBT	on	 in	 that	 configuration.	 It	 successfully	 changes	 the	
direction	of	current	in	a	set	of	coils,	which	in	this	case	includes	also	
the	current	control	IGBT.		
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3.6.	Diffracting	atoms	on	a	lattice		

	

The	lattice	in	consideration	was	the	dipole	trap	itself.	What	we	
did	then	is	to	keep	the	atoms	in	the	optical	dipole	trap	for	a	while	and	
then	 turn	 it	 off,	 after	 which	 we	 pulsed	 it.	 The	 lifetime	 of	 the	 BEC,	
when	running	this	experiment	was	about	5s.	And	the	dipole	trap	is	in	
fact	an	optical	 lattice	because	the	beams	cross	at	about	172	degrees	
angle	 and	 have	 the	 same	 horizontal	 polarization.	 Therefore,	 the	
atoms	feel	a	lattice	potential	with	a	periodicity	of	about	780nm.		

When	 after	 500ms	 hold	 time	 for	 the	 ODT,	 the	 lattice	 was	
turned	off	 for	20us	 and	 then	 turned	on	 for	25us,	we	 could	observe	
diffraction	of	matter	waves	on	an	optical	grating.	More	 importantly,	
the	diffracted	orders	collide	and	we	can	see	scattering	waves.	Now,	
this	 is	nothing	new	here,	 experiments	diffracting	atoms	on	a	 lattice	
have	 been	 performed	 earlier	 [for	 example	 56].	 However,	 the	
advantage	we	 have	 here	 is	 that	we	 can	 observe	 that	with	 the	MCP	
detector	 and	 look	 precisely	 at	 the	 scattering	 halos	 in	 3D.	 More	
importantly,	 diffracted	 orders	 collide	 and	 one	 can	 see	 scattering	
halos.	The	 shells	one	 can	 see	have	a	diameter	 corresponding	 to	 the	
relative	momentum	 of	 the	 colliding	 diffraction	 orders,	 so	we	 could	
expect	to	see	shells	with	radii	of	approximately		

ℏ𝐾! , 2ℏ𝐾! , 3ℏ𝐾! , 4ℏ𝐾! 	

where	𝐾! 	is	the	wave	vector	of	the	optical	grating		

𝐾! =
2𝜋
𝜆!

= 1.99𝐾! 	

	and	𝐾! 	is	 the	wave	vector	of	 the	 laser	 forming	 the	grating.	One	can	
clearly	 see	 scattered	 atoms	 due	 to	 collisions	 of	 atoms	 in	 different	
momentum	 states	 and	 the	 scattered	 atoms	 are	 due	 to	 collisions	
between	 atoms	 diffracted	 on	 the	 optical	 lattice.	 However,	 these	
spheres	 were	 in	 a	 magnetically	 sensitive	 state	 therefore	 what	 was	
detected	was	strongly	distorted.		

In	 Figure	 41a	 one	 can	 notice	 the	 result	 after	 the	 following	
procedure.	A	half	wave	plate	was	put	in	the	path	of	one	of	the	beams.	
The	BEC	 is	not	very	well	visible	on	absorption	 imaging,	but	 it	 looks	
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relatively	 fine	 on	 the	 micro	 channel	 plate	 detector	 (exactly	 like	
Figure	41a).	Evaporation	followed	by	turn	off	and	then	turn	on	of	the	
dipole	trap	(basically	the	sequence	as	it	was	performed	to	obtain	the	
scattering	halos)	and	when	the	atoms	are	released	after	500ms	hold	
time	 following	 the	 evaporation	without	 any	 pulsing	 sequence	 yield	
the	 same	 result	 (41a1	 for	 the	 dipole	 trap	 just	 released	 after	 the	
evaporation	 without	 the	 diffraction	 sequence	 and	 41a2	 with	 the	
diffraction	sequence).	As	expected,	 in	both	cases,	 there	 is	no	visible	
influence	on	the	atoms	because	with	the	wave	plate	there	should	be	
no	lattice	(the	polarizations	are	namely	orthogonal).		

Figure	 42	 represents	 the	 observation	 of	 the	 scattering	 halos	
with	 the	 micro	 channel	 plate	 detector	 and	 equivalently	 3D	
reconstruction.	The	atoms	are	held	 in	 the	optical	dipole	 trap,	which	
was	pulsed	for	25us.	It	is	key	to	note	here	that	our	dipole	trap	itself	
was	a	lattice	during	the	tests	of	Figure	42	and	43.	

	
Figure	41a1.	When	we	release	the	BEC	from	the	dipole	trap	right	after	
evaporation	 and	 there	 is	 no	 lattice	 involved,	 the	 3D	 reconstruction	
looks	like	the	following.	(Here	no	diffraction	sequence	is	performed,	just	
releasing	the	BEC	onto	the	detector).	
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Figure	41a2.	We	release	the	BEC	from	the	optical	dipole	trap	with	an	
evaporation	 sequence.	 Diffraction	 halos	 are	 not	 expected	 because	we	
put	a	half	wave	plate	in	place	of	one	of	the	beams.		
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Figure	 41b.	 After	 holding	 the	 BEC	 in	 the	 optical	 lattice	 at	 the	 lowest	
power	 for	 500ms	 and	 releasing	 the	 BEC,	 the	 3D	 reconstruction	 looks	
like	the	following.	Half	wave	plate	was	removed.		The	BEC	is	therefore	
falling	from	an	optical	dipole	trap,	which	was	in	fact	a	lattice.	
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Figure	42.	 3D	 reconstruction	with	 the	MCP	detector	 of	 the	 scattering	
spheres	 at	 different	 angles;	 note	 the	 diffraction	 orders	 can	 be	 easily	
recognized.	There	is	no	half	wave	plate	involved	here.		
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Figure	 43.	 Diffracting	 atoms	 on	 the	 optical	 lattice	 used	 for	 trapping.	
Atoms	diffracted	on	the	optical	lattice	and	then	colliding.	Each	picture	
is	 average	 of	 20	 images.	 Top:	 one	 pulse	 after	 the	 hold	 time.	 Bottom:	
Two	pulses	after	the	hold	time.		
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4.	Outcoupling	atoms	with	Raman	pulses		
	

To	 obtain	 the	 statistics	 due	 to	 entanglement	 in	 the	 external	
degree	 of	 freedom	of	matter	waves	well	 above	 the	 statistics	within	
the	coherent	state	of	the	BEC,	the	atoms	need	to	be	outcoupled	from	
the	 group	 of	 atoms	 in	 the	 BEC.	 In	 order	 to	 obtain	 correlated	 atom	
pairs,	as	in	the	proposed	experiment,	we	use	a	scheme	analogous	to	
the	 setup	 presented	 at	 [39].	 Three	 laser	 beams	 of	 wavelength	
1083nm	induce	two	stimulated	Raman	transitions	in	the	BEC.	These	
transitions	 in	 particular	 transfer	 atoms	 in	 the	 BEC	 from	 a	
magnetically	 sensitive	 to	 the	magnetically	 insensitive	 state	 creating	
two	 condensates	with	 different	momenta	 (since	 the	 beams	 are	 two	
from	the	side	and	one	from	the	top	and	each	side	beam	with	the	top	
one	 is	 producing	 a	 momentum	 kick).	 This	 outlook	 has	 been	 well	
described	in	detail	in	the	thesis	of	Maximilian	Ebner,	former	member	
of	our	group.	We	just	recently	managed	to	realize	this	scheme	in	our	
laboratory	managing	 to	outcouple	up	 to	about	10%	of	 the	atoms	 in	
our	 BEC	 into	 counter-propagating	 condensates.	 The	 anisotropic	
expansion	can	be	seen,	only	to	be	able	to	be	verified	with	the	single	
atom	 detector.	 However,	 one	 can	 observe	 from	 absorption	 imaging	
that	the	clouds	being	outcoupled	are	indeed	BECs	as	well.		

		

	 	 	
	
Figure	 44.	 First	 results	 of	 outcoupling	 of	 atoms	 from	 the	 BEC	 with	
Raman	pulses;	The	two	outcoupled	condensates	can	be	seen	falling	and	
expanding	 under	 gravity	 while	 the	 main	 condensate	 is	 kept	 in	 place	
and	only	undergoes	fixed	time	of	flight	from	switching	off	the	magnetic	
trap	until	absorption	imaging	of	all	three	clouds.		

	

We	could	also	observe	this	phenomena	with	the	BEC	trapped	in	the	
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optical	dipole	 trap	and	equivalently	 the	3D	reconstruction	 from	 the	
micro	channel	plate	detector	(Figure	45).		

	

	
Figure	45.	3D	reconstruction	of	the	Raman	scattering	sphere	observed	
with	the	micro	channel	plate	detector.		
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5.	Further	experiments	we	can	do		
5.1.	Born’s	rule	test		

	

Quantum	mechanics	computes	probabilities	 from	the	absolute	
squares	 of	 complex	 amplitudes,	 and	 resulting	 interference	 violates	
the	(Kolmogorov)	sum	rule	expressing	the	additivity	of	probabilities	
of	 mutually	 exclusive	 events.	 Born’s	 rule	 predicts	 that	 quantum	
interference,	as	shown	by	a	double-slit	diffraction	experiment,	occurs	
from	pairs	of	paths.	Deviation	from	the	rule	would	allow	for	higher-	
order	(multipath)	interference	and	would	require	modification	of	the	
Schrödinger’s	 equation	 e.g.	 in	 the	 form	 of	 nonlinear	 extension	 to	
quantum	mechanics	[42],	[43].		

Following	the	approach	demonstrated	for	photons	by	Sinha	et	
al.	 [41]	 we	 can	 use	 Bose-condensed	 metastable	 helium	 atoms	 and	
outcouple	them	from	the	magnetic	trap	or	the	optical	dipole	trap	in	a	
configuration	 corresponding	 to	 three	 slits	 created	 by	 light	 beams.	
The	slits	can	be	created	with	a	spatial	 light	modulator	 (SLM)	which	
will	 allow	 for	 their	 independent	 control,	 both	 in	 terms	 of	 their	
separation	 (slit	 distance)	 and	 their	 size	 (slit	 width	 via	 an	 iris	 and	
proper	 algorithmic	 compensation	 for	 the	 power	 degradation),	 with	
restrictions	 imposed	 by	 the	 focusing	 optics	 and	 the	 size	 of	 the	
condensate	(~300	micrometers	along	weak	axis).		

One	possible	 realization	of	 the	experiment	 is	 shown	 in	Figure	
46.	Here,	 the	atoms	are	outcoupled	 from	 the	 condensate	by	driving	
Raman	transitions	between	mF	=	1	and	mF	=	0	Zeeman	sublevels	in	
the	 23S1	 manifold	 via	 an	 intermediate	 level	 23P0.	 The	 beam	 L2	
produced	 by	 the	 spatial	 light	 modulator	 can	 be	 linearly	 polarized	
along	the	magnetic	field	B	driving	π-transitions.	The	beam	L1	is	also	
linearly	polarized	but	with	the	polarization	oriented	perpendicular	to	
the	magnetic	field	such	that,	effectively,	it	can	drive	σ-	transitions.	In	
such	 an	 arrangement	 there	 is	 no	 net	 momentum	 transfer	 to	 the	
atoms,	but	since	the	internal	state	is	changed	to	mF	=	0	(which	is	not	
trappable)	 the	 atoms	 leave	 the	 trap	 under	 the	 influence	 of	 gravity.	
Outcoupled	clouds	expand	as	they	fall	and	they	overlap	producing	an	
interference	pattern	on	the	single	atom	detector	located	at	about	80	
cm	below	the	cloud.		
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Figure	 46.	 (left)	 proposed	 scheme	 to	 outcouple	 atoms	 from	 the	Bose-	
Einstein	condensate	using	Raman	transitions.	The	slits	are	created	by	
shaping	 one	 of	 the	 Raman	 beams	 with	 a	 spatial	 light	 modulator,	
providing	well-defined	regions	where	the	Raman	transitions	can	occur.	
Here,	 the	gravity	 is	pointing	down	and	 the	quantization	axis	 is	 set	by	
the	bias	 field	of	 the	magnetic	 trap;	 (right)	atomic	 levels	used	to	drive	
Raman	 transitions.	 The	 beams	 can	 blue	 detuned	 from	 the	 23P0	
transition	by	about	400MHz.		

	

The	validity	of	the	Born’s	rule	can	be	tested	by	measuring	the	
difference	 of	 interference	 patterns	 produced	 by	 three,	 two	 and	 a	
single	slit:		

𝐼!"# = 𝑃!"# − 𝑃!" − 𝑃!" − 𝑃!" + 𝑃! + 𝑃! + 𝑃! − 𝑃!	

Here	PABC	is	the	interference	pattern	when	three	slits	are	open,	
𝑃!" 	–	when	pairs	(i,	j)	are	open	and	𝑃! 	–	when	a	only	a	slit	i	is	open.	𝑃!	
accounts	for	the	detector	and	background	noise	when	all	slits	are	off.	
A	 non-zero	 value	 of	 the	 above	 sum	would	 indicate	 the	 presence	 of	
higher-order	interference.		

	
The	Born’s	rule	test	would	require	high	shot-to-shot	stability	of	

producing	 BECs	 over	 many	 thousands	 experimental	 to	 get	 enough	
counts.		

	
The	experiment	would	serve	as	a	tabletop	demonstration	of	the	

complete	 scope	 of	 the	 Feynman	 path	 integral	 formalism	where	 not	
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only	straight-line	paths	are	important	but	also	looped	paths	that	can	
make	 sizeable	 contribution	 [44].	 Those	 effects	 could	 be	 used	 to	
model	 nonclassical	 paths	 and	 decoherence	 mechanisms	 in	
interferometer-based	quantum	computing	applications.		

The	proposed	experiment	would	be	interesting	in	fundamental	
physics	applications	as	this	would	be	the	first	test	of	Born’s	rule	with	
massive	particles	(as	opposed	to	photons)	and	influence	of	gravity	on	
quantum	paths	might	play	a	role	here.		

	

5.2.	Vortices	and	angular	momentum		

	

As	 a	 consequence	 of	 superfluidity	 of	 Bose	 Einstein	
condensates,	adding	angular	momentum	to	a	BEC	(e.g.	by	‘stirring’	it	
with	a	laser	beam)	leads	to	the	creation	of	vortices.	[66]	It	has	been	
shown	that	vortices	in	a	BEC	can	be	created	in	a	2-photon	stimulated	
Raman	process	where	one	of	the	Raman	beams	poses	orbital	angular	
momentum,	which	can	be	then	transferred	to	the	atoms.	[67]		

Generally,	experiments	involving	quantized	vortices	in	a	Bose-	
Einstein	 condensate	 using	 optical	 vortices	 have	 become	 very	
important	since	the	experimental	endeavors	over	the	last	decade	[85,	
86].	 The	 coherent	 superpositions	 among	 vortices	 of	 different	
circulation	 numbers	 yield	 interesting	 experiments	 [86,	 87]	 and	
interference	effects,	which	can	find	interesting	applications	[88,	89],	
such	 as	 controlling	 the	 chirality	 of	 twisted	 metal	 nano	 structures	
[90].	One	can	use	multiple	optical	vortices	in	order	to	create	multiple	
circulations	 of	 a	 BEC	 [91-93]	 or	 even	 a	 single	 optical	 vortex	 pulse	
[69].	 The	 authors	 of	 [69]	 show	 that	 matter-wave	 vortex	
superposition	 from	 single	 optical	 vortex	 is	 possible	 for	 a	 focused	
beam,	 where	 the	 spin	 angular	 momentum	 and	 orbital	 angular	
momentum	of	light	are	coupled	[94].		

Entangled	orbital	angular	momentum	states	of	light	have	many	
quantum	 information	 and	 communication	 advantages,	 which	 have	
been	 demonstrated	 by	 the	 Zeilinger	 group.	 It	 has	 also	 been	 shown	
that	 one	 can	 construct	 a	 quantum	 memory	 for	 a	 photonic	
entanglement	 for	 realizing	 quantum	 communication	 and	 network	
[68].	 Building	 on	 the	 experience	 of	 our	 group	 with	 high	 orbital	
angular	momentum	beams	and	their	entanglement	an	attempt	can	be	
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made	 to	 generate	 lattices	 of	 1000’s	 singly	 charged	 vortices	 or	
vortices	 with	 very	 large	 charge	 for	 example.	 The	 latter	 ones	 are	
unstable	 as	 the	 energy	 of	 the	 system	with	n	vortices	 of	 charge	k	 is	
lower	 than	 that	 of	 a	 single	 vortex	 of	 charge	 n*k.	 Single	 atom	
sensitivity	 and	 superior	 temporal	 resolution	 of	 the	 delay	 line	
detector	 can	 enable	 us	 to	 take	 on	 experiments	 with	 vortices	 like	
aspects	of	their	formation	and	dynamical	behavior.		

High-dimensional	 quantum	 entanglement	 can	 be	 stored	 in	 a	
BEC	 efficiently	 with	 orbital	 angular	 momentum	 modes	 of	 light,	
resulting	 in	 a	 coherent	 superposition	 of	 vortex	 states	 [69],	 but	 this	
has	 never	 been	 looked	 at	 a	 single	 atom	 level	 as	 most	 of	 the	
experiments	relied	on	absorption	imaging.		

We	 also	 have	 the	 advantage	 of	 easily	 creating	 orbital	 angular	
momentum	 beams	 with	 a	 Spatial	 Light	 Modulator	 and	 the	 setup	
already	employs	Raman	beams	for	the	transfer	of	linear	momentum	
to	 atoms,	 used	 to	 outcouple	 atoms	 from	 the	 BEC.	 Furthermore,	 the	
SLM	 can	 generate	 a	 light	 sheet	 or	 other	 more	 complex	 optical	
potentials	such	that	the	BEC	can	be	split	into	two	(or	more)	and	the	
correlations	 between	 them	 can	 be	 examine	 with	 the	 aid	 of	 orbital	
angular	momentum	beams.		

The	 combination	 of	 high	 orbital	 angular	 momentum	 light	
beams	and	single	photons	with	a	BEC	opens	up	promising	variety	of	
experiments	 including	 entanglement	 between	 photonic	 OAM	 and	
topological	 charge	 in	 a	 BEC	 for	 example	 or	 the	 study	 of	 collisional	
entanglement	 creation	 within	 a	 BEC	 carrying	 orbital	 angular	
momentum.	Another	interesting	fact	is	that	the	intensity	distribution	
of	Laguerre-Gauss	modes	 is	proportional	 to	𝑟!  𝐸𝑥𝑝 [−𝑟!],	where	r	is	
the	radius	of	the	beam	and	l	is	the	winding	number,	which	describes	
the	helical	 structure	of	 the	wave	 front.	Therefore	with	high	enough	
orbital	 angular	 momentum	 of	 light	 one	 could	 realize	 an	 almost	
perfect	box	potential.	Entangling	photons	with	vortices	or	the	BEC	as	
a	whole	would	require	modifications	to	the	experimental	chamber	to	
facilitate	 single	 photon	 detection	 but	 this	 is	 a	 relatively	
straightforward	upgrade.		
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7.	Summary	and	outlook		
	
		 This	thesis	was	written	to	report	on	the	methods	to	derive	an	
experimental	procedure	to	obtain	a	setup	to	produce	arbitrary	 light	
potentials	 with	 the	 aid	 of	 a	 spatial	 light	 modulator.	 The	 technical	
specifications	 and	 technical	 difficulties	 to	 employ	 such	 a	 device	 in	
order	 to	 reach	our	goals	were	discussed.	The	up-to-date	algorithms	
being	 used	were	 presented,	 as	well	 as	 the	 experimental	 challenges	
we	 faced	over	 the	past	 three	years	 in	order	 to	make	 the	setup	 fully	
reliable.	 The	 algorithm	 of	 choice	 was	 the	 “vector	 holography”	
algorithm,	 since	 it	produces	 the	best	quality	 spots,	namely	with	 the	
least	 standard	 deviation	 of	 the	 intensity	 fluctuations	 in	 the	
trapping/image	plane	of	the	SLM.	For	more	complex	patterns,	other	
algorithms	 can	 be	 easily	 implemented,	 such	 as	 MRAF	 and	 GS	
algorithm.	The	analytical	functions,	which	have	to	be	fed	to	the	SLM	
via	 a	 VGA	 port,	 were	 also	 presented,	 which	 includes	 correction	
patterns,	gratings,	 lenses	etc.	The	problems	arising	the	utilization	of	
such	 a	 device	 to	 produce	 arbitrary	 controllable	 light	 patterns	were	
also	discussed.	That	includes	“ghost”	traps,	correction	for	the	surface	
roughness	of	 the	SLM,	relative	phase	 fluctuations	when	projecting	a	
pattern	of	two	Gaussian	beams	onto	the	image	plane,	the	idea	of	pupil	
conjugation,	 wavefront	 estimation	 and	 correction	 algorithms	 and	
devices	 needed	 in	 order	 to	 obtain	 such	 (we	 have	 reached	 the	
conclusion	that	our	home-built	wavefront-correction	device	does	not	
perform	as	well	as	the	commercially	available	products),	controlling	
the	 focal	 length	 and	 individual	 position	 of	 either	 or	 both	 of	 the	
patterns	projected,	controlling	the	relative	distance	between	desired	
patterns,	the	problem	of	optical	vortices,	which	arise	upon	desire	of	a	
larger	Gaussian	spot	or	more	complex	potential	on	 the	 image	plane	
and	 finally	 the	 outcome	 of	 polarization	 fluctuation	 between	
individual	patterns	on	the	image	plane	was	discussed.	Moreover,	the	
main	 experiment,	 we	 are	 interested	 in	 performing,	 was	 discussed	
form	 a	 broader	 perspective,	 as	well	 as	 a	Monte	 Carlo	 simulation	 of	
the	 effect	 on	 fringe	 visibility	 result	 of	 the	 main	 experiment	 upon	
varying	the	intensity	amplitude	of	one	of	the	desired	Gaussian	spots	
or	 different	 relative	 density	 in	 the	 outcoupling	 regions	 was	
introduced.	 Such	 amplitude	 variation	 can	 come	 from	 various	 noise	
factors,	 but	 they	 all	 lead	 to	 a	 different	 density	 in	 the	 outcoupling	
regions,	 which	 was	 the	 core	 of	 the	 Monte	 Carlo	 simulation	
implemented.	 Entanglement	 then	 would	 be	 observed	 upon	 fringe	
visibility	 on	 the	 conditional	 interference	 pattern	 higher	 than	 50%.	
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Taking	 into	 account	 a	 Gaussian	 noise	 distribution	 on	 the	 noise	
intensity	fluctuations	between	spots	upon	a	worst-case	scenario	does	
not	 inhibit	 the	 viability	 of	 observing	 entanglement	 in	 our	 main	
experiment.	 Furthermore,	 some	 experimental	 results	 of	 achieving	
our	 first	 optical	 dipole	 traps	 were	 discussed,	 as	 well	 as	 the	 main	
experiment	we	are	 looking	at	 in	relation	to	 the	utilization	of	optical	
dipole	traps	to	trap	a	Bose	Einstein	condensate	in	a	ODT	rather	than	
a	magnetic	trap.	We	have	achieved	a	single	beam	optical	dipole	trap,	
as	well	as	a	crossed	beam	and	provided	proof	we	have	a	BEC	in	the	
crossed	 trap.	 Experimental	 verification	 of	 the	 trapping	 frequencies	
would	 be	 our	 next	 step.	 The	 wavelength	 used	 for	 the	 ODT	 was	
1550nm.	Outcoupling	of	atoms	from	the	BEC	with	Raman	beams	was	
also	achieved	and	the	experimental	results	presented,	as	atom	clouds	
were	outcoupling	from	the	BEC	trapped	in	the	ODT.	Furthermore,	we	
have	also	looked	at	diffracting	atoms	on	an	optical	lattice	with	the	3D	
delay	 line	 detector,	where	 one	 can	 easily	 distinguish	 the	 scattering	
spheres.	 Plus,	 the	 further	 work	 on	modification	 of	 the	 evaporation	
trajectory	 in	 ODT	 was	 presented,	 increasing	 the	 control	 over	
evaporation	of	a	BEC	from	an	ODT	and	decreasing	the	time	needed	to	
do	so.	Time	 is	not	 the	only	 factor	we	were	 interested	 in	 improving.	
Also,	 via	 the	 linear	 spline	 interpolation	 functions	 we	 were	 able	 to	
provide	 flexibility	 to	 achieve	 a	 fast	 evaporation	 sequence	 at	 any	
trapping	 power	 and	 time	 constant.	 Further	 experiments	 that	 we	
could	do	are	presented	at	the	end,	as	two	suggestions	of	what	we	can	
achieve	 with	 this	 setup	 in	 the	 next	 few	 years.	 Those	 experiments	
include	a	Born’s	rule	test	by	implementing	a	third	slit	into	the	setup,	
which	 can	 be	 easily	 achieved	 programmatically	 and	 no	 further	
alignment	 procedure	 would	 be	 needed	 once	 we	 have	 the	 main	
experiment	 running.	 The	 steps	 to	 transition	 to	 such	 an	 experiment	
are	 comparatively	 easy	 therefore.	 Another	 interesting	 direction	we	
could	seek	is	the	interplay	between	vortices	and	angular	momentum	
in	 relation	 to	 the	 BEC.	 It	 is	 known	 that	 angular	momentum	 beams	
induce	quantized	vortices	 in	a	BEC,	and	hence	we	could	 look	at	 the	
condensate	 in	 relation	 to	 entangled	 orbital	 angular	 momentum	
beams.	
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Appendix		
	

Appendix	1			

A	small	note	on	the	micro	channel	plate	detector		

 

This	 is	 a	 delay-line	 type	 detector	 (DLD)	 that	 consists	 of	 four	
quadrants	 with	 independent	 delay	 lines	 and	 read-out	 electronics.	
Some	 of	 the	 potentiometers	 responsible	 for	 the	 sensitivity	 of	 each	
line	may	have	to	be	adjusted	for	top	performance	(in	our	case	we	had	
to	 do	 that	 due	 to	 a	 need	 of	 repair)	 with	 a	 stable	 source	 of	 atoms	
across	all	quadrants,	such	as	the	magneto	optical	trap.	When	an	atom	
hits	 the	 detector,	 it	 creates	 an	 electron	 avalanche	 that	 propagates	
across	the	wires	and	is	amplified.	The	pulse	is	then	discriminated	in	
time	 via	 time-to-digital	 conversion	 electronics	 (TDC),	 the	 arrival	
times	are	recorded	and	the	3D	information	calculated.	Each	sector	of	
the	 four	 quadrants	 has	 2	 wires	 that	 send	 4	 signals	 to	 detect	 the	
position	 of	 one	 atom.	 However,	 because	 of	 how	 it	 is	 constructed,	
there	 is	 a	 region	 of	 about	 5mm	 in	 between	 the	 quadrants	 that	 is	
practically	not	usable.		

	

 

Appendix	2	

A	note	on	the	lifetime	of	the	condensate		

 

It	is	important	to	have	a	lifetime	of	the	condensate	significantly	
longer	 than	 the	 time	 needed	 to	 run	 an	 experiment.	 The	
measurements	were	 performed	 by	 holding	 the	 atomic	 cloud	 in	 the	
trap	with	the	evaporation	sequence	turn	on	at	the	final	evaporation	
power	of	the	trapping	laser	until	the	trap	was	switched	off,	basically	
a	similar	procedure	followed	the	lifetime	measurements	described	in	
the	thesis	of	Mateusz	Kotyrba.	Then,	an	absorption	image	was	taken,	
from	 which	 the	 number	 of	 condensed	 atoms	 is	 extracted.	 Fitting	
exponential	decay,	assuming	one-body	 losses	of	 the	condensate,	 the	
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lifetime	can	be	determined.	 

	

Appendix	3	

A	 further	 note	 on	 the	 similarity	 of	 the	 BEC	 to	 a	 down-conversion	
crystal		

Fundamental	 quantum	 optics	 experiments	 with	 a	 BEC	 would	
be	of	significant	interest.	It	has	been	shown	that	coherent	four-wave	
mixing	 in	 sodium-BEC	 matter	 waves	 of	 different	 momenta	 mix	 to	
produce,	 by	 means	 of	 atom-atom	 interactions,	 a	 fourth	 wave	 with	
new	momentum	[40].	Once	one	solves	the	Schrodinger	equation	for	
matter	waves,	it	is	evident	that	the	nonlinear	term	contribution	of	the	
wave	function	is	similar	to	the	third	order	term	in	the	wave	equation	
for	 electric	 field	 describing	 optical	 four	wave	mixing	 in	 a	 nonlinear	
medium.	 Therefore,	 four-wave	 mixing	 of	 coherent	 matter	 waves	 is	
analogous	to	four-wave	mixing	in	quantum	optics;	in	a	sense,	the	BEC	
acts	like	a	nonlinear	crystal.	This	property	makes	the	BEC	efficient	as	
a	 platform	 for	 fundamental	 quantum	optics	 experiments	 done	with	
atoms	similar	to	the	fundamental	quantum	optics	experiments	done	
with	light.		

Collisional	interactions	between	atoms,	however,	happen	in	the	
BEC	all	 the	 time	among	 the	millions	of	atoms.	The	 interesting	 thing	
though	is	that	since	the	total	momenta	of	the	atoms	compared	to	the	
momenta	created	by	collisions	within	the	BEC	are	on	the	same	order,	
the	 signature	 of	 entanglement	 is	 practically	 untraceable	within	 the	
BEC.	The	first	experiment	on	four-wave-mixing	of	matter	waves	was	
performed	by	the	group	of	William	Phillips	[70]	and	the	benchmark	
experiment	 for	 characterizing	 single	 atom	 correlations	 in	 the	 four-	
wave-mixing	 process	 was	 performed	 using	 metastable	 helium	 and	
the	 delay-line	 micro	 channel	 plate	 detector	 by	 the	 group	 of	 Alain	
Aspect	[71].		
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