
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

Conceptualization And Implementation Of A

Constraint-Modeling-Language

verfasst von / submitted by

Christoph Puhr

angestrebter akademischer Grad / in partial fulfillment of the requirements
for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2016 / Vienna 2016

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet: A 066 926

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet: Masterstudium Wirtschaftsinformatik

Betreut von / Supervisor: Mag. Dr. Hans-Georg Fill, Privatdoz.

ii

Acknowledgements

I would like to thank my supervisor Mag. Dr. Hans-Georg Fill, Privatdoz. for his helpful-

ness and valuable hints regarding the conceptualization of a constraint modeling language

as well as suggestions about references.

Furthermore, I would like to thank my fellow student Michael Bueltmann BSc for initial

advices concerning an AdoScript validation functionality for constraints modeled in the

constraint language.

iii

iv

Abstract (Deutsch)

Durch Beschränkungen, welche beliebige Modellierungssprachen adressieren und er-

weitern, erhalten Modellierer/-innen ein flexibles Spektrum an Konzepten und Metho-

den, um die Qualität von Modellen zu verbessern. Diese Arbeit beschreibt eine Model-

lierungssprache für Beschränkungen, welche durch OCL inspiriert sind und auf Metamodell-

Ebene zugewiesen werden. Dies ermöglicht es, sowohl einzelne spezifische Modellinstanzen,

als auch eine breite Anzahl an denkbaren Modellen zu adressieren und mit Beschränkun-

gen anzureichern. Weiters beschreibt die Arbeit, wie eine solche Sprache in der ADOxx
meta modeling platform konzeptionell umgesetzt und implementiert werden kann. Schluss-

endlich zeigt eine Funktionalität zur Validierung, dass zugewiesene Beschränkungen im

Rahmen von praktisch orientierten Szenarien auch überprüft und ausgewertet werden

können. Die Implementierung in ADOxx wurde auf einer CD, welche auf der letzten Seite

der Arbeit zu finden ist, gespeichert.

v

vi

Abstract (English)

By assigning constraints to arbitrary modeling languages, a modeller acquires a flexible

spectrum of concepts and methods for improving the quality of models. This thesis in-

troduces a Constraint-Modeling-Language which deposits OCL inspired restrictions on

meta model layer affecting particular model instances or the entire amount of potentially

instanced models. As a result, the language can administer very specific cases as well

as quantitative scenarios regarding lots of imaginable model instances. In addition, the

thesis describes how the above mentioned approach can be implemented in the ADOxx
meta modeling platform. Last but not least, a validation functionality demonstrates the

feasibility of constraint validations in practically orientated use case scenarios. The im-

plementation in ADOxx is attached as CD which can be found at the last page of the

thesis.

vii

viii

Contents

1. Introduction 1

2. Foundations 3

2.1. Modeling Method . 3

2.2. Meta Meta-Model and Meta Model . 5

2.3. ADOxx . 6

2.4. UML and UML Class Diagrams . 8

3. Overview on existing Methods to design and visualize Constraints 11

3.1. Introduction to OCL . 11

3.2. OCL Invariant Constraints . 13

3.2.1. Invariant Constraints for Attributes . 13

3.2.1.1. Invariant Constraints for Numeric Values . 13

3.2.1.2. Invariant Constraints for Strings and Enumerations 14

3.2.2. Invariant Constraints for Associations and Objects 16

3.2.3. Implications . 17

3.3. Visualization Approaches . 18

3.3.1. VOCL . 18

3.3.2. Constraint Diagrams . 22

3.4. Conclusion . 27

4. Conceptualization of the Constraint-Modeling-Language 29

4.1. Modeling Process Integration . 29

4.2. Coherence between Constraint Model and Meta Model 31

4.3. Existing Methods for Constraints in ADOxx 32

4.4. Language Scope and Specification . 32

4.5. Notation . 47

4.5.1. Constraint Visualization . 47

ix

Contents

4.5.1.1. Semantical Relationship between Compartments 48

4.5.1.2. Header Compartment . 49

4.5.1.3. Model Type, Class, and Relation Class Compartment 49

4.5.1.4. Attribute Compartment . 51

4.5.1.5. Connection Compartment . 54

4.5.2. Constraint Implications . 55

4.6. Conclusion . 57

5. Implementation of the Constraint-Modeling-Language 59

5.1. Meta Model . 59

5.1.1. Constraint Class . 60

5.1.1.1. General Attributes . 60

5.1.1.2. First Compartment Attributes . 62

5.1.1.3. Second Compartment Attributes . 63

5.1.1.4. Third Compartment Attributes . 64

5.1.1.5. Forth Compartment Attributes . 68

5.1.1.6. Attrep . 70

5.1.1.7. Graphrep . 70

5.1.2. Implies Relation Class . 71

5.2. Validation . 71

5.2.1. Validation Scope . 72

5.2.2. Validation Implementation . 72

5.3. Preparation for Use Case Scenarios . 75

5.4. Constraint-Modeling-Language Application - Use Case Scenarios 77

5.5. Conclusion . 84

6. Discussion 87

References 89

A. Attachment 93

A.1. Validation in AdoScript . 93

x

1. Introduction

By creating well-defined modeling languages it becomes necessary to think about the

whole spectrum of potential instances to ensure semantically expressive models. But

even if the range of possibilities is known, there is no guarantee for meaningful or correct

models. Consequently, constraints can help to increase the quality of models by defining a

frame of valid properties, constellations, and interactions between model elements. There-

fore, by assigning constraints to whole models or specific model elements, invalid model

conditions are going to be avoided and as a result, the original and semantical intention

of modeling languages will be assured.

This work introduces a method for enriching pre-existing modeling languages, e.g. BPMN
[14] or a modeling language for IT-architectures, with specific constraints restricting

model characteristics. The objective behind the process of applying the Constraint-Modeling-

Language to other modeling languages is the enhancement of arbitrary modeling lan-

guages and their semantical expressiveness. At this point, it is important to underline

that the original modeling language itself stays unmodified. This means that there are

no syntactical modifications necessary to make the Constraint-Modeling-Language able to

work. This facts leads to a high degree of flexibility and a broad range of applicable model-

ing languages. This approach is realized by offering a parallel constraint model connected

to models which should be enriched with constraints.

In technical context, constraints and techniques of the Constraint-Modeling-Language

in general are settled and assigned on meta model level. This basically means that the

constraint language is able to restrict syntactical elements e.g. attributes, relations, ob-

jects, and model types defined in the meta model of the assigned modeling language. The

modeling procedure is structured as follows: The Constraint-Modeling-Language connects

constraints to a meta model of a specific modeling language. A conceivable constraint

might be: There must be at least one object of the class Activity in the model type Activ-
ity Model. The logical result of this process is a constraint enriched meta model which

serves as basis for subsequent instances which are affected by previously determined

constraints.

Constraints offered by the modeling language are inspired by the Object Constraint Lan-
guage (OCL [15]). Although OCL is settled in the context of object orientated programming

languages, methods and constraint types of OCL are going to serve as reference and in-

1

1. Introduction

spiration. Therefore, the work analyses the variety of OCL constraints and the suitability

apart the UML [16] specification.

The core of the thesis deals with three essential research questions. The questions are

part of a progressive process implying that the first question discusses initial information

and theoretical aspects while the third questions presents the implementation and final

outcomes.

1. Which generic solutions regarding the implementation of constraints already
exist? Are there specific approaches of visualizing constraints?
The first research question aims at pre-existing OCL-based solutions for designing

constraints. The question also analyses existing methods for visualizing constraints.

The outcomes of this research question serve as foundation for the second question.

2. How does the conceptualization of the Constraint-Modeling-Language look like?
The second research question deals with the process of creating a Constraint-Modeling-

Language. After completing the language definition, an use case is going to test its

practicability. The use case is conceptualized to cover many various situations and

the modeling language has to deal with given scenarios. The final concept represents

the initial situation of the third question.

3. How is the Constraint-Modeling-Method implementation realized?
The last question is geared towards the implementation in ADOxx. The implementa-

tion approach aims at a straightforward and convenient way of assigning constraints

to referenced models. In addition, a validation functionality provided in ADOscript
analyses and ensures the syntactical and semantical correctness of applied models.

2

2. Foundations

Since this work describes a process of building a modeling method, it is necessary to de-

fine some relevant terms to ensure a common understanding. First, as an initial point

and the fundament for further work, it is important to define the term modeling method
itself. Second, the term meta model has to be clarified. Third, the ADOxx meta mod-
eling platform is going to be mentioned and explained. Last but not least, this chap-

ter aims at describing the UML specification and models involved by this modeling lan-

guage.

2.1. Modeling Method

According to a framework by Karagiannis and Kühn [22] (Fig. 2.1) a modeling method con-

sists of a modeling technique and mechanisms and algorithms. In addition, the modeling
technique could be further divided into a modeling language and a modeling procedure.

Whereas the modeling procedure includes steps, for executing the modeling language, and

results, the modeling language itself describes a syntax and semantics. While the syn-
tax defines the grammar of the language, the semantics assigns a meaning to syntax
elements. Consequently, the bridge between syntax and semantics is performed by a se-
mantic mapping which gets semantical allocations to syntactical elements via a semantic
schema. This schema could be described formally or informally e.g. with textual de-

scriptions. Furthermore, the notation determines the visual appearance of the modeling
language through the elements of the syntax and by assigning the specific semantics.

As a last point, mechanisms and algorithms are used for the modeling procedure and its

corresponding modeling language. They are divided into generic, specific and hybrid mech-
anisms and algorithms. The difference between the three approaches could be seen in

their specific applicability. Whereas generic mechanisms and algorithms can deal with any

kind of modeling languages, specific mechanisms and algorithms can only be applied to

particular modeling languages. The hybrid approach can handle only specific modeling
languages too, but by adapting hybrid mechanisms and algorithms, they fit for various

scenarios [8].

3

2. Foundations

Figure 2.1.: Components of modeling methods [22]

Additionally, in reference to a framework established by the Open Model Initiative Labo-

ratory1, one iteration of creating a modeling method consists of five essential phases: (1)

create, (2) design, (3) formalize, (4) develop, and (5) deploy/validate. Consequently, this

process reiterates by gradually aggregating knowledge from a specific domain which goes

hand in hand with the evolvement of modeling requirements [29]:

Figure 2.2.: Iterative process of generating a modeling method [29]

1. Creation:

The focus in this phase lies on knowledge aggregation and requirements specifica-

tion. As a result, the output of this processes is the definition of modeling language
requirements and modeling functionality requirements. Whereas modeling language

1http://www.omilab.org (accessed June 22, 2016)

4

2.2. Meta Meta-Model and Meta Model

requirements deal with concepts and relations required in a specific modeling lan-

guage, modeling functionality requirements consider competence questions which a

model should be able to answer.

2. Design:

The designing process is the phase where core meta modeling efforts are required.

In consequence, the result of this step is represented by a structured meta model

including the language grammar, recommended visualization- and functionality ap-

proaches. The Design process can be supported by existing languages commonly

used for domain modeling (e.g. class diagrams or ER diagrams).

3. Formalization:

This phase describes the output of previous phases in a non-ambiguously way. This

step is essential for preparing the method implementation. In this thesis, the im-

plementation is realized in ADOxx, which is going to be described in a following

paragraph.

4. Development:
The Development step involves the selection of a specific and concrete meta-modeling

platform to generate a modeling prototype. This process includes a compiler trans-

lating the abstract modeling language to technology-specific constructs of the chosen

meta-modeling platform.

5. Deployment/Validation:

This phase deals with user acceptance tests and actions which are required to make

such tests possible (e.g. packaging and installing the modeling prototype). The re-

ceived feedback and potentially emerged additional requirements feed into the next

iteration of the whole process.

2.2. Meta Meta-Model and Meta Model

In order to create a modeling language, it can be seen as state-of-the-art to apply meta

meta-models [22], [24]. Furthermore, as discussed in section 2.1, a modeling language

describes a syntax and semantics. The syntax can be divided into an abstract syntax
represented by the meta model and a concrete syntax represented by a model [18, 19, 28].

In addition, an abstract meta model can be described by a modeling language too - the

meta modeling language. Consequently, the meta modeling language and its syntax can

also be divided into an abstract syntax and a concrete syntax. In this scenario, the abstract
syntax embodies a meta meta-model whereas the concrete syntax represents a meta model
[24, 9].

Important characteristics of meta meta-models are inheritance and containment mecha-

nisms [28]. Inheritance refers to generalization and specialization relationships. This

basically means that connected entities of a meta model inherit means for effecting poly-

morphic behaviors at execution or interpretation time. This is important for algorithms

5

2. Foundations

applied on several, similar modeling languages because the algorithm can be bound auto-

matically to entities which are inherited from general entities. On the other hand, contain-
ment refers to a inclusion of one or more entities into another entity on the model level.

This makes it more comfortable to specify model types or aggregations involving a set of

entities [9].

Fig. 2.3 visualizes an example for the relationship of a meta meta model, its corresponding

meta model and the derived model. First, the meta meta model consists of the entities

Element and Attribute which are both connected via the relationship attached-to. Second,

on meta model layer, the entity E1 is defined as Element while the two entities A1 and A2

are described as Attribute being attached to E1. Third, finally on model level, the entities

ε1 and ε2 belong to the meta element E1 while α1 and α2 are being assigned to A1 and β1

and β2 to A2 [9].

Figure 2.3.: Example for a Meta Meta Model, a Meta Model and a Model [9]

2.3. ADOxx

The ADOxx meta modelling approach has its original roots in the development of the ADO-
NIS toolkit for business process management in 1995. Meanwhile, the ADOxx platform

has become popular in a large number of academic and commercial projects worldwide

[20, 21], [9]. Today, ADOxx is available as a commercial product or as an open use version

for academic projects which can be requested by the Austrian section of the Open Models

Initiative [8].

The ADOxx meta meta-model consists of classes, relationships, and attributes belonging

to classes and relationships or relation classes [21]. Classes are organized in an inher-
itance hierarchy (well known from object orientated approaches) which means that sub

6

2.3. ADOxx

classes inherit attributes and characteristics from their assigned super classes. Fur-

thermore, relationships are characterized by specific attributes which are named from-
class and to-class. These attributes represent specifications for valid source and target

classes. Relationships can be extended by cardinalities e.g. a specification to limit the

amount of outgoing relationships of a class. Last but not least, model types represent

a containment mechanism for classes and relationships. In addition, they are essential

for the instantiation of classes and relationships, which consequently results in a model
[9].

To make the ADOxx meta modeling approach more transparent, Fig. 2.4 visualizes the

roles and languages in the process of generating a model in ADOxx.

Figure 2.4.: Roles and languages in the modeling hierarchy of ADOxx [8]

The first level of Fig. 2.4 shows the Meta2 Model (which stands for the meta meta-model). It

is implemented in the programming language C++ and created by ADOxx Developers. The

ADOxx Meta Model, in reference to section 2.3, represents an instance of the meta meta-

model and is also generated by a ADOxx Developer. A User specific Meta Model is derived

from classes of the ADOxx Meta Model. Its description is made in the proprietary language

ALL, which stands for ADOxx Library Language. This specific language offers concepts for

describing meta models. It bases on constructs defined in the Meta2 Model. The User spe-
cific Meta Model represents the first time in the process of meta modeling in ADOxx, when

a non-developing user creates input, in this case the Meta Modeller. Last but not least, a

Model is an instance of the User specific Meta Model. It is created by a Modeller and de-

scribed in the proprietary ADOxx export format ADL or in XML [8].

7

2. Foundations

2.4. UML and UML Class Diagrams

Since OCL is going to have a significant weight for the conceptualization of a Constraint-

Modeling-Language, it is essential to briefly describe UML and its specification first, as

UML represents the environment in which OCL operates.

The Unified Modeling Language can be seen as ”de facto standard” [3] of software engi-

neering. Nevertheless, there are arguments implying that UML does not fulfill this role

because of aspects like size, complexity, semantics, consistence and model transforma-

tion (e.g. [26, 4]). In 1994, UML was initially introduced by the Object Management Group
(OMG) which also manages the standard of the UML specification. Basically, UML provides

a framework to integrate various different kinds of diagrams [27]. The OMG itself defines

UML as tool which helps to specify, visualize, and document models of software systems

including structural and design aspects. Although UML has its focus in software systems

and object orientated programming languages, it can also be used for business process

modeling and modeling of other non-software systems [17].

The latest UML milestone specification 2.0 defines thirteen types of diagrams which can

be categorized into three distinct approaches [17]:

• Structure Diagrams represent static application structure and includes the follow-

ing diagrams: Class diagrams, Object Diagrams, Component Diagrams, Composite

Structure Diagrams, Package Diagrams, and Deployment Diagrams.

• Behavior Diagrams characterize general types of behavior. Involved types of dia-

grams are: Use Case Diagrams, Activity Diagrams, and State Machine Diagrams.

• Interaction Diagrams are derived from the more general Behavior Diagrams and de-

scribe different aspects of interactions. Included diagrams are: Sequence Diagrams,

Communication Diagram, Timing Diagram, and Interaction Overview Diagram.

Although OCL can be theoretically applied to any UML model [15], the Object Constraint
Language is characterized by a strong focus on UML class diagrams. As a result, UML dia-

grams abroad the type of class diagrams are not going to be described more comprehensive

in this thesis. As mentioned before, UML class diagrams visualize static structure of sys-

tems being modeled. The focus lies on a system and its specific elements, time aspects do

not play a role. However, the static structure of a system is represented by types and their

instances in the system. In most UML diagrams types include classes, interfaces, data
types, or components. In this context, UML defines the term classifier which can describe

any of the previously mentioned types, although it is usually used to define classes [1].

The notation, which defines the visual appearance of a modeling language, represents a

class in form of a rectangle containing three compartments stacked vertically. The first

compartment on top of the rectangle displays the name of the relevant class. The existence

of the top compartment is essential for modeling a class diagram whereas the bottom two

8

2.4. UML and UML Class Diagrams

compartments are optional. Furthermore, the middle part represents a list of attributes

and corresponding data types. Also the last compartment visualizes a list, but in this case

assigned operations belonging to the class [1]. An exemplary visualization of a car class

might be:

Figure 2.5.: Class Car modeled in an UML class diagram

Class diagrams also provide a notation for relationships named associations in the UML
specification. Although class diagrams support five different types of associations, only

one of them is going to be presented here, since this section aims at providing relevant

basic techniques of modeling class diagrams for the further application of OCL constraints.

The one selected type of relationships is a bi-directional association.

Bi-directional associations represent the standard assumption for relationships because

they indicate that both classes are aware of each other and their relationship. They are

visualized as solid line between two involved classes. At the either end of the line, a role

name and multiplicities are assigned [1]. An example for a bi-directional association is

shown in Fig. 2.6.

Figure 2.6.: Bi-directional association between the classes Car and Driver

The relationship between a Car class and a Driver class as well as assigned role names

and multiplicities. Consequently, a car can have no driver or exactly one driver which is

implicated by the multiplicity 0 .. 1. On the other side, a driver can have (or better own)

9

2. Foundations

no car or any number of cars shown by the multiplicity 0 .. *.

As a result and preparation for OCL, this section has given a basic overview on the pro-

cedure how classes and relationships are modeled in an UML class diagram. Although

UML and class diagrams are settled in the object orientated environment, this model-

ing language and its specific characteristics is going to serve as inspiration for the later

Constraint-Modeling-Language.

10

3. Overview on existing Methods to design
and visualize Constraints

Since OCL represents the reference language for constraints in the context of UML, the

Constraint-Modeling-Language is going to seize on concepts and methods of OCL. In

addition, the thesis presents two distinct approaches for visualizing OCL constraints.

This is going to enrich and positively influence the subsequent conceptualization of the

Constraint-Modeling-Language.

3.1. Introduction to OCL

The Object Constraint Language is a formal language to enrich UML diagrams with specific

constraints. Besides the generation of constraints, OCL functions as query language too,

which is not relevant in the context of this thesis. First, as a starting point, the term

formal language has to be clarified. Constraints are often described in natural languages
which means that they are specified in a way how people would naturally communicate

with each other. Although natural languages represent a straightforward and convenient

method for characterizing constraints, they lead to potential ambiguities. To avoid this

problem, formal languages have been developed. Consequently, by defining constraints

with traditional formal languages, ambiguities can be eliminated, but this kind of lan-

guage leads to a new disadvantage: The usability is very restricted and only people with

a strong mathematical background are able to use the language in practice. OCL was

developed to avoid this disadvantage by offering a structure which remains easy to read

and write. OCL was originally designed as a practical business modeling language at an

IBM Insurance division.

Regarding the technical background behind OCL expressions, it is essential to clarify OCLs

functionality as modeling and specification language. OCL extends linked constructs in

other programming languages. Therefore, it is not possible to write program logic or flow

control in OCL. Furthermore, OCL expressions are not by definition directly executable.

In addition, OCL constructs are without side effects which means that by evaluating OCL
expressions, they just return a simple value. As a result, OCL expressions are called

11

3. Overview on existing Methods to design and visualize Constraints

instantaneous because they can not influence the state of a system even though OCL ex-

pressions could be used to specify a state change. Last but not least, OCL could be seen

as typed language implying that each expression has a corresponding and specific type.

Building proper OCL expressions means to conform to the type conformance rules of the

OCL language e.g. Integer values and String values are not comparable [?].

Although OCL can be used for various purposes (besides its function as query language),

the thesis is going to deal only with a specific purpose of OCL, named specifying invariants
on classes and types in the class model [?] (the term invariant will be defined in a further

secion). The reason for this restriction is the object orientated environment in which OCL
is settled. For example, specifying pre- and post conditions on Operations and Methods or

target (sets) for messages and actions would make no sense for the modeling language pre-

sented in this work. Nevertheless, the partial area of OCL regarding invariants is going to

embody a solid foundation for designing constraints involved in the Constraint-Modeling-

Language.

OCL invariants are expressions which must be true for all instances (of the assigned

type) at any time. To check the correctness and validity of OCL invariants, the returned

value of invariants is of type boolean. The syntax is determined as follows:

context <classifier> inv [<constraint name>]:

<boolean expression>

An example for a simple OCL invariant constraint (with reference to Fig. 2.5) can be:

context Car inv aCarHas4Wheels:

self.numberOfWheels = 4

The context-keyword refers to the contextual instance of the OCL expression which is

part of an invariant implicated by the keyword inv. It is followed by the name of the type,

in this case Car. The keyword self stands for an instance of the type Car and represents

the beginning of an evaluation. Regarding the keyword self, it could be optionally dropped

and replaced by a different name playing the part of self. By replacing self, the previous

constraint would has the following structure:

context c:Car inv aCarHas4Wheels:

c.numberOfWheels = 4

The most important characteristic of the invariant constraint could be seen in the fact

that it holds for every instance of the type Car. The constraint restricts the attribute

numberOfWheels to a logically assumption implying that a car always has four wheels

to be a car. Attributes are written behind a dot and followed by operators and spe-

cific values. The data type of the attribute numberOfWheels, e.g. Integer, is determined

12

3.2. OCL Invariant Constraints

in the corresponding UML class diagram (Fig. 2.5) and not in the OCL expression it-

self.

3.2. OCL Invariant Constraints

This section is going to offer an overview on relevant kinds of OCL constraints. Constraints

are divided into different types in order to clarify the involved elements which are restricted

by a specific constraint. The identified types are categorized as follows:

• Invariant constraints for attributes

• Invariant constraints for associations and objects

• Implications

3.2.1. Invariant Constraints for Attributes

This type of OCL constraints deals exclusively with attributes. Furthermore, it is impor-

tant to underline that constraints for attributes do not leave the rectangle of a modeled

class in a class diagram. Basically, this means that constraints for attributes only affect

a specific class and its own attributes (and no other attributes from other classes). Al-

though section 3.1 has already shown an example for an attribute constraint aiming at

the Car class, further examples with reference to Fig. 2.7 are going to enforce a deeper

understanding.

3.2.1.1. Invariant Constraints for Numeric Values

First, we would like to say that a driver has to be at least 18 years old. The attribute age
is defined as Integer data type in the class diagram. Operators for relational comparison

and equality / inequality for Integer or other numeric data types are: < , <= , >= , > , =

, and <> . The relevant OCL constraint is:

context Driver inv aDriverMustBe18:

self.age >= 18

Furthermore, OCL provides possibilities to derive numeric values. For example, the re-

striction value 18 can also be expressed in alternative ways:

self.age >= 9 + 9

13

3. Overview on existing Methods to design and visualize Constraints

self.age >= 9 * 2

self.age >= 18 mod(19)

self.age >= 3 max(18)

self.age >= 18 max(3)

Please note: Possible operations differ between Integer and Real values. The above men-

tioned modulo operation can only be applied to Integer values whereas operations like

floor() or round() work exclusively with Real values:

self.age >= (18.8).floor()

self.age >= (17.7).round()

As each OCL expression results in a Boolean value, it is also possible to combine several

expressions with logical operators and, or, and xor. In this case, we build a frame of valid

values with the and operator:

self.age >= 18 and self.age <= 100

Additionally, OCL provides a functionality to secure non-empty attribute values. This

functionality can also be applied to String attributes or enumerations. The avoidance of

empty values for attributes can makes sense in case of important attributes which are

essential for the success of a process:

context Driver inv driverLastName:

self.lastName->notEmpty()

On the contrary, in some cases, it is also imaginable that an attribute’s value must be

empty:

self.lastName->isEmpty()

3.2.1.2. Invariant Constraints for Strings and Enumerations

In a next step, we would like to restrict the first name String attribute of the Driver class

in a way that a driver’s first name can not be Max or Tim:

context Driver inv driverFirstName:

self.firstName <> ’Max’ or self.firstName <> ’Tim’

As the first name attribute has the data type String, we are logically restricted by the

comparison operators = and <> . Additionally, OCL offers various other operators for the

14

3.2. OCL Invariant Constraints

type String. Examples are:

self.firstName.size() > 3

... implies that the length of a first name has to consist of more than three characters.

self.firstName.concat(’ ’).concat(self.lastName) <> ’Max Mueller’

... implies that the concatenation of the first name and last name attribute can not result

in Max Mueller.

Regarding constraints for enumerations, it has to be clarified that OCL per se does not

provide a specific functionality. This is the result of the fact that enumerations are al-

ready defined by a class diagram. For this reason, we adapt the attribute carType of

the class Car presented in Fig. 2.5, 2.6, and 2.7 from data type String to a special

data type CarType. Furthermore, we have to add a specification of the enumeration Car-
Type:

Figure 3.1.: Adapted class Car with new enumeration attribute CarType

Enumeration values are retrievable by a double colon. For example, we would like to

restrict the carType enumeration attribute by saying that all values except Cabrio are per-

missible:

context Car inv carTypeCantBeCabrio:

self.carType <> self.carType::Cabrio

In cases if enumerations are not defined in the class diagram, enumeration constraints

can also be created in an alternative (inconvenient) way. The previous example with no

prior defined enumeration attributes in a class diagram would look like this:

context Car inv carTypeEnumeration:

self.carType = ’Coupe’ or

self.carType = ’Limousine’ or

self.carType = ’Van’ or

15

3. Overview on existing Methods to design and visualize Constraints

self.carType = ’SUV’ or

self.carType = ’Truck’

3.2.2. Invariant Constraints for Associations and Objects

Constraints for associations allow the creation of inter-class constraints. This means that

it is possible to leave a specific class and specify constraints for relationships to other

classes. For example, we would like to specify that a car can only has a driver who is at

least 18 years old and has a driving license (Fig. 2.7):

context Car inv driverAgeAndDrivingLicense:

self.hasDriver.age >= 18 and

self.hasDriver.drivingLicense = True

In contrast to previously mentioned examples regarding constraints for attributes, we

access externally defined attributes of other classes. With the association hasDriver con-

nected to the Driver class we can apply constraints to the Driver attributes age and driv-
ingLicense by staying in the Car context.

Furthermore, OCL constraints allow restrictions for the multiplicity of associations. The

multiplicity is originally set in the class diagram (Fig. 2.7). Within an OCL expression, it

is possible to adapt the original multiplicity. For example, we would like to define that a

driver has at least two and not more than five cars (the original multiplicity was 0 ... *):

context Driver inv hasCarGreaterAndLower:

self.hasCar->size() >= 2 and

self.hasCar->size() <= 5

As a result, we have changed the multiplicity from 0 ... * to 2 ... 5. However, this sec-

tion combines constraints for associations and constraints for objects because they are

directly connected in OCL. In the previous example, the multiplicity has direct impact on

the creation of assigned objects because the OCL statement postulates minimum (set to

three) and maximum (set to five) existences for Car objects related to a Driver object. We

can also restrict multiplicities in a way, that a Driver class can not has any corresponding

Car objects:

context Driver inv noHasCar:

self.hasCar->isEmpty()

Or alternatively, that a Driver class must has at least one corresponding Car object:

16

3.2. OCL Invariant Constraints

context Driver inv hasCar:

self.hasCar->notEmpty()

There are various possibilities for constraints which affect exclusively objects (without

the way over associations). As a starting point, we would like do define a Driver object,

with an age of 52 years, which has to exist:

context Driver inv thereIsADriverWith52Years:

Driver.allInstances()->exists(d | d.age = 52)

The ->exists() expression postulates that there is at least one element that makes the

condition in the brackets true. On the contrary, the expression ->forAll() states that all

elements fulfill the condition.

If we want to quantify a specific amount of existences e.g. there must be at least three

objects of the class Driver with an age of 52, the OCL expression is defined via a selection

executed with ->select() and followed by ->size() restrictions:

context Driver inv thereAreAtLeast3DriversWith52Years:

Driver.allInstances()->size(d | d.age = 52) >= 3

3.2.3. Implications

To make OCL constraints more case-specific, implications serve as additional function-

ality to allow a broader spectrum of restrictions. First, it has to be underlined that OCL
implications represent an alternative way how constraints are going to be understood and

evaluated. Until now, each constraint was per definition active as soon as it was writ-

ten down. Henceforth, implications allow triggering mechanisms which force latent con-

straints being only activated if specific conditions arise. Generally in OCL, implications

are indicated with the keyword implies. The following OCL constraint shows an example

for an implication. Again, it is essential to note that the implication will only be activated

if the association hasCar has a size greater than zero:

17

3. Overview on existing Methods to design and visualize Constraints

context Driver inv implicationToAgeAndDrivingLicense:

Driver.hasCar->size() > 0 implies

(Driver.age >= 18 and

Driver.drivingLicense = True)

For the further work and the upcoming process of creating a Constraint-Modeling-Language,

implications are going to be divided into a left- and right-hand-side schema. The schema

follows the logic that the LHS has to be fulfilled to activate the constraint on the RHS:

LHS:
Driver.hasCar->size() > 0

IMPLICATION

RHS:
(Driver.age >= 18) AND (Driver.drivingLicense = True)

3.3. Visualization Approaches

This section provides a presentation about pre-existing approaches to visualize constraints.

The focus does not lie on well prepared implementations and their applicability in praxis,

but on theoretical concepts of constraint visualizations in the context of UML and OCL.

Basically, this section is intended to get thought-provoking impulses regarding graphical

methods of constraint modeling. With reference to [10], there are two different approaches

discussed in the work: VOCL [25] and Constraint Diagrams [23].

3.3.1. VOCL

VOCL, which strands for Visual OCL, represents a graphical solution to create OCL con-

straints. The language was developed at the University of Berlin in 2002. It is conceptually

based on the language description of Bottoni, Koch, Parisi-Presicce, and Taentzer [2]. By

using VOCL, it strikes users of the language that the graphical notation generally follows

the UML graphical representation for class diagrams. This analogy is quite intended to

create a consistent language framework [25].

In VOCL, a constraint is visualized as a rounded rectangle. Like UML class diagrams,

the rectangle is segmented into three vertically compartments: The first compartment on

top of the rectangle indicates the context and can be seen as a header. The bottom two

compartments represent the body and contain a condition [25].

18

3.3. Visualization Approaches

Figure 3.2.: Representation of a constraint in VOCL

In section 3.1, the thesis has presented the constraint aCarHas4Wheels. Instead of writing

the constraint in textual form, it can also be modeled with VOCL:

Figure 3.3.: aCarHas4Wheels
context Car inv:
self.numberOfWheels = 4

At a first glance, the VOCL visualization seems to be very similar to its OCL textual equiv-

alent. Nevertheless, there are some points in which the two approaches differ from each

other. First, as a primary distinction, the condition in VOCL is divided into two parts

whereas OCL provides only one conditioning segment:

OCL:
self.numberOfWheels = 4

VOCL:
self.numberOfWheels = x

x = 4

By separating the affected attribute (numberOfWheels) and the specific attribute’s value

(4), the diagram becomes (subjectively) better readable because the effective restriction ex-

pressed in a value is always located at the bottom of the rectangle. In cases of calculations

for the restriction value, this approach represents an advantage too because the diagram

stays quite assessable.

19

3. Overview on existing Methods to design and visualize Constraints

In addition, the syntax is not absolutely identical: In the OCL example, the keyword self is

followed by a specific attribute to be restricted. In VOCL, on the other side, self is followed

by a colon (instead of a simple point) and the context class.

Furthermore, VOCL offers a notation for logical operators indicated by a vertical bar sep-

arating at least two conditions in the second compartment. In reference to the constraint

driverFirstName (Section 3.2), the third compartment at the bottom assigns values to the

variables x and y which are logically connected via an or operator. The unequal operator

<> in OCL is visualized as 6= in VOCL.

Figure 3.4.: driverFirstName
context Driver inv:
self.firstName <> ’Max’ or
self.firstName <> ’Tim’

Associations are modeled very similar to UML class diagrams by connecting two relevant

classes with a line indicating a relationship between them. To provide an example, the

constraint hasCar (Section 3.2) can be modeled with two classes Driver and Car whereas

Car and the association hasCar has the restriction to be ->notEmpty(). This is shown with

the statement 6= Ø and a doted rectangle extending Car. On the contrary, ->Empty() would

be visualized as = Ø.

Figure 3.5.: hasCar
context Driver inv:
self.hasCar->notEmpty()

Constraints regarding the existence of objects were also previously described in Section

3.2. Please note: As far as VOCL is described in [25], the language does not provide

20

3.3. Visualization Approaches

an equivalent to OCLs ->allInstances(). As a result, we assume that the VOCL notation

includes a functionality for all instances by the keyword allInstances. On the contrary, the

->exists operation is implemented in the language. It is indicated with the mathematical

character ∃ and added in a doted rectangle to the condition. If the OCL constraint has

been ->forAll() instead of ->exists(), the VOCL notation would be ∀. First, we would like to

model the constraint thereIsADriverWith52Years:

Figure 3.6.: thereIsADriverWith52Years
context Driver inv:
Driver.allInstances()
->exists(d | d.age = 52)

Next, we would like to visualize the constraint thereAreAtLeast3DriversWith52Years :

Figure 3.7.: thereAreAtLeast3DriversWith52Years
context Driver inv:
Driver.allInstances()
->size(d | d.age = 52) >= 3

21

3. Overview on existing Methods to design and visualize Constraints

The selection in OCL is visualized with an additional doted rectangle in VOCL. The ->size()
expression is modeled as a # in combination with a variable (in this case n).

Last but not least, implications are also implemented in VOCL. They are shown as vertical

bar separating the LHS and RHS. The keyword id does not exist in the OCL specification

and is added in VOCL to graphically underline that the drivers above and below the key-

word implies are the same [25]. The constraint implicationToAgeAndDrivingLicense from

Section 3.2 in VOCL:

Figure 3.8.: implicationToAgeAndDrivingLicense
context Driver inv:
Driver.hasCar->size() > 0 implies
(Driver.age >= 18 and
Driver.drivingLicense = True)

3.3.2. Constraint Diagrams

Constraint Diagrams represent a method to replace mathematical formalizations to de-

scribe constraints in a more intuitive and practical way. The target group are software

engineers who develop software without having a strong mathematical background. Con-
straint Diagrams are inspired by Venn diagrams and informal diagrams used by mathe-

maticians for describing properties of functions and relations [23].

Constraint Diagrams are spider diagrams augmented by arrows and wildcards. While

arrows are used for determining relationships between sets, wildcards implicate universal

quantification. Arrows have a label, a source and a target. The source represents the set

or element from which the navigation begins. In Fig. 3.9 the source of the relation arrow r
is spider x whereas the target is represented by the circle B. The semantics of the diagram

is x.r = B, where x.r stands for {y:r(x, y)} [11].

22

3.3. Visualization Approaches

Figure 3.9.: Constraint Diagram with one arrow

The next example underlines the connection of Constraint Diagrams to Venn Diagrams

and Euler Circles. In Fig. 3.10 the target circle is a circle contained in B. The semantics

is A.r ⊆ B, where A.r is shorthand for applying r to each element included in A followed

by taking the union of the resulting sets. The target circle of r is a derived set and it is

defined by the arrow r [11].

Figure 3.10.: Constraint Diagram with a derived circle

Regarding quantification, wildcards serve as method for describing all elements of a spe-

cific set. As an example, Fig 3.11 visualizes a diagram where for each element x in A x.r
and x.h are disjoint. This can be formalized as: ∀ x ∈ A • x.r ∩ x.h = { } [11].

Figure 3.11.: Constraint Diagram with a derived circle

In a further step, we would like to visualize constraints which were previously modeled in

VOCL with Constraint Diagrams. As a first preparation and in reference to [10], we make

minor adaptions to the notation of Constraint Diagrams:

23

3. Overview on existing Methods to design and visualize Constraints

• In conformance with the UML notation, classes are modeled as rectangles instead of

circles.

• For aspects of clarity and exact definition, particular constraints are surrounded by

a rectangle.

At first glance, we model an initial constraint shown in Figure 3.3. OCLs keyword self
does not appear in the notation of Constraint Diagrams because it is indicated, in this

case, by element c which in turn implies for all c:Car. Besides the class Car, the attribute

numberOfWheels is modeled as rectangle too because it belongs to the class Integer for

data types.

Figure 3.12.: aCarHas4Wheels
context Car inv:
self.numberOfWheels = 4

In Fig. 3.4, the thesis has shown the VOCL visualization for a constraint restricting the

firstName attribute of the class Driver. Compared to VOCL, the same constraint can be

modeled with Constraint Diagrams.

Figure 3.13.: driverFirstName
context Driver inv:
self.firstNamer <> ’Max’ or
self.firstNamer <> ’Tim’

24

3.3. Visualization Approaches

Fig. 3.13 underlines the fundamental distinction between the approaches of VOCL and

Constraint Diagrams: While the notation of VOCL appears like a graphical list of con-

ditions, Constraint Diagrams pursues a mathematical approach inspired by Venn dia-

grams and Euler Circles. As a result, Constraint Diagrams distinguish conditions in a

way how they visualization is specifically done. In Fig. 3.13, the class String contains

elements with the manifestation Max or Tim, but the relevant element z is located out-

side the circles of x and y which implies that the firstName attribute can not be Max or

Tim.

In a next step, we deal with UML associations and how OCL constraints for associations

can be modeled with Constraint Diagrams. As a reference, we select Fig. 3.5 and the

corresponding OCL constraint. In contrast to UML or VOCL, associations can be drawn

as circle indicating elements with a specific association e.g. hasCar. The next diagram

describes the condition that a driver must has an association to a car. This is done by

placing wildcard d in the intersection between hasCar and Car.

Figure 3.14.: hasCar
context Driver inv:
self.hasCar->notEmpty()

The next diagram is very similar to Fig. 3.12. However, by replacing the wildcard * to a

black dot, we change the semantics from all elements of a set to a specific element of a set.

This procedure meets OCLs expression ->exists. Furthermore, there is no need for OCLs

expression allInstances() because the dot implies both ->exists and allInstances() which

means ∃ d ∈ Driver.

25

3. Overview on existing Methods to design and visualize Constraints

Figure 3.15.: thereIsADriverWitrh52Years
context Driver inv:
Driver.allInstances()
->exists(d | d.age = 52)

The next example, in reference to Fig. 3.7, deals with OCLs expression ->size() in order

to describe a restriction that there must be at least three drivers with an age of 52 years.

This constraint can be modeled with Constraint Diagrams by using three dots d, e, and f
where {d, e, f} ∈ Driver. Please note: The proper meaning of the constraint describing a

->size >= 3 can not be modeled exactly with Constraint Diagrams. As a result, we have to

adapt the operator >= to =.

Figure 3.16.: thereAreAtLeast3DriverWitrh52Years
context Driver inv:
Driver.allInstances()
->size(d | d.age = 52) >= 3

Last but not least, we attend to the example from Fig. 3.8 which is about an implication

between the size of the association hasCar and the driver’s age as well as the drivingLi-
cense attribute. While modeling Fig. 3.16, we have experienced that we can not visualize

26

3.4. Conclusion

->size() with relational operators <, <=, >, >=. This issue is relevant for the next example

too because Fig. 3.8 states that the size of the association hasCar must be at least three.

Consequently, we have to adapt the ->size() from > 0 to = 1.

Figure 3.17.: implicationToAgeAndDrivingLicense
context Driver inv:
Driver.hasCar->size() = 1 implies
(Driver.age >= 18 and
Driver.drivingLicense = True)

3.4. Conclusion

The first research question acts as fundamental basis for a further process of designing

a Constraint-Modeling-Language and implementing a modeling method. The first essen-

tial point was identifying the spectrum of OCL constraints. Further on, we have made

distinctions between various kinds of OCL constraints: Constraints affecting attributes,

constraints for associations and constraints regarding objects. In addition, we have shown

that OCL constraints are able to leave a statical environment and have dynamical charac-

27

3. Overview on existing Methods to design and visualize Constraints

teristics by triggering conditions via implications. By separating implications to a LHS and

RHS, we have laid the foundation for processing implicated constraints in the Constraint-

Modeling-Language.

Next, we have introduced two distinct visualizing approaches for OCL constraints: VOCL
and Constraint Diagrams. While VOCL represents a notation inspired by UML class dia-

grams, Constraint Diagrams and their notation are settled within an obvious mathematical

environment including Venn Diagrams, Euler Circles and the visualization of set theory.

Besides the fact that both approaches are very different, both of them are an inspiration

for the generation of an own modeling language for constraints. Nevertheless, we were

confronted with some aspects of VOCL and Constraint Diagrams which have restricted

the applicability for arbitrary OCL expressions. On the one hand, regarding VOCL, we

have made assumptions how to model OCLs allInstances. On the other hand, Class Dia-
grams were not able to model OCLs ->size() expression combined with operators <, <=, >,

>=.

28

4. Conceptualization of the
Constraint-Modeling-Language

The following two chapters are closely related to each other in regards to Figure 2.2 and

the process of generating a modeling method. This means that both, the conceptualization

and implementation, are part of an iterating process for modeling method evolution. While

this chapter deals with the theoretical concept of the Constraint-Modeling-Language, the

third research question is going to simultaneously evaluate the feasibility of the theory.

This procedure serves the purpose of avoiding cases in which the concept is not able to be

implemented in ADOxx.

4.1. Modeling Process Integration

At first glance, it has to be defined in which step of a modeling process the Constraint-

Modeling-Language steps in. For this approach, Figure 2.4 serves as foundation as it

defines four layers of modeling in ADOxx:

1. The ADOxx Meta2 Model-Layer

2. The ADOxx Meta Model-Layer

3. The User Specific Meta Model-Layer

4. The Model-Layer

Since the first and second layers are created by ADOxx Developers, these layers are not

relevant for the concept of the modeling language. Moreover, the Constraint-Modeling-

Language is intended to extend an User Specific Meta Model on meta model level. This

extension is going to be realized with a specific Constraint Model. As a result, the Model
can be validated against the Constraint Model to check if all defined constraints are ful-

filled.

29

4. Conceptualization of the Constraint-Modeling-Language

The previously mentioned approach of extending a meta model with a constraint model

leads to the following procedure of modeling:

1. Definition of a meta model

2. Definition of a constraint model

3. Creation of a specific model

In addition, this procedure implies that also the Constraint Model is created by a Meta
Modeller (in contrast to the Model which is created by a Modeller). As a consequence,

the definition of the Constraint Model is made before a specific model is generated. This

means that the Meta Modeller must has knowledge about useful constraints as the Meta
Modeller does not know the specific model generated by the Modeller.

Figure 4.1.: Constraint model extension of the figure in [8]

30

4.2. Coherence between Constraint Model and Meta Model

4.2. Coherence between Constraint Model and Meta
Model

For the further work, it is essential to describe a constraint meta model and interactions

between constraint models and common meta models. As already mentioned in Fig 4.1,

a Constraint Model extends an User specific Meta Model while it can be validated against

a simple Model. But how is the meta constraint model organized? And furthermore, how

does a constraint model assigns constraints to models? To provide a fundamental answer

to these questions, a schematic visualization of the constraint assignment process is going

to be used. It is exemplary described in context of a Car Meta Model.

Figure 4.2.: Coherence between Constraint Meta Model, Constraint Model, Meta Model,
and Model

The Constraint Meta Model consists of a Constraint Class which includes one or more re-
strictions of special type Restriction. The explanation of this special type is extensively

done in section 4.4 - in simplified terms a restriction embodies a constraint for a broad

spectrum of application scenarios e.g. a restriction for a class, a model type, an at-

tribute value etcetera. The instance of a Constraint Meta Model is represented by a Con-

31

4. Conceptualization of the Constraint-Modeling-Language

straint Model defining explicit restrictions in a corresponding Meta Model implicated by

<<assignConstraintsTo>>. As a result, the Meta Model is enriched with constraints by

the Constraint Model. By creating instances from the Meta Model e.g. a Car Model, the

constraints are going to be inherited by the Model.

4.3. Existing Methods for Constraints in ADOxx

For the sake of completeness, it has to be mentioned that ADOxx already provides func-

tionalities to implement rudimentary constraints and restrictions. These constraints are

based on commands of the class attribute Class cardinality. This attribute contains a

cardinality definition of a selected class and describes (1) the minimal/maximal number

of objects of this class per model and (2) the minimal/maximal number of relations of a

specific type, incoming or outgoing from an object [13].

For example, we can describe the following case with the Class cardinality attribute in

ADOxx:

There has to be at least one object of the class Car up to a maximum of five
objects. Furthermore, there has to be at least one outgoing relation of relation
class hasDriver from objects of class Car. In addition, there can not be an incoming
relation of class hasDriver to objects of the class Car.

In the class Car, the following statement has to be entered:

CARDINALITIES min-objects:1 max-objects:5

RELATION hasDriver min-outgoing:1 max-incoming:0

As a result, we have seen that basic constraints can already be generated in ADOxx with

the Class cardinality attribute. The Constraint-Modeling-Language is going to cover a

much broader spectrum of possible constraints to enforce a profound definition of re-

strictions for arbitrary models. Moreover, it is going to skip the functionality of Class
cardinality because it will offer an equivalent in order to represent a holistic modeling lan-

guage for constraints. Consequently, it can also be implemented in alternative modeling

platforms.

4.4. Language Scope and Specification

The Constraint-Modeling-Language is designed to assign constraints to model types, classes,

relation classes and combinations of these. Furthermore, there are various kinds of dif-

32

4.4. Language Scope and Specification

ferent restriction which can be applied. This chapter is going to describe the complete

scope of the language sorted by particular restriction types. The combination of multiple

restrictions to one single constraint will be textually and visually discussed in the next

section.

As Fig. 4.2 has shown, a Constraint class includes one ore more restrictions which can be

divided into four meta restriction types:

Figure 4.3.: Meta restriction types defined in a constraint

Furthermore, the four meta restriction types can be partitioned into concrete restriction

types:

• General Existence Restriction:
– Instance Existence / Non-Existence

– Cardinality Existence / Non-Existence

– Attribute Existence / Non-Existence

• Attribute Value Restriction:
– Attribute Value Existence / Non-Existence

• Attribute Value Range Restriction:
– Attribute Value Range Existence / Non-Existence

• Connection Restriction:
– Connection Existence / Non-Existence

In order to give a specific description of each concrete restriction type, OCL equivalents

are used. These OCL statements enforce a quick understanding implicated by the fact

that OCL by itself is very self-explanatory. In addition, the exemplary OCL equivalents

are, in some cases, not conform with the OCL specification but serve as basis for expla-

nation.

1. Instance Existence: This type postulates the existence of a determined instance. On

the one hand, in cases of model types, an instance is represented by a model. On

the other hand, instances of classes and relation classes appear as objects. The con-

33

4. Conceptualization of the Constraint-Modeling-Language

straint semantically expresses a condition in which a least one instance of a model

type, class or relation class has to exist. As a result, the lower bound of quantitative

instances is > 0 while the constraint does not care about the upper bound.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

allInstances() ->exists()

Example: There must be at least one instance of the model type Car Model.

2. Instance Non-Existence: This type postulates the non-existence of a specific in-

stance. In contrast to Instance Existence, this constraint represents the opposite. In

particular, it implies that a defined instance of a model type, class or relation class

can not exist. Consequently, the amount of existing instances must be < 1.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

allInstances() ->isEmpty()

Example: Objects of the class Car can not exist.

3. Cardinality Existence / Non-Existence: This type describes the existence or non-

existence of specific instances in a range of values. The constraint can be seen as

extension and combination of the previous two mentioned types. It is possible to

fully cover the semantics of Instance Existence and Instance Non-Existence but it of-

fers additional functionality. When explicitly compared to Instance Existence, it offers

the possibility to set an upper bound for the amount of instances e.g. the amount of

modeled instances must be > 0 and < 10. Moreover, the restriction <10 is towards In-
stance Non-Existence as it states a valid upper bound for the appearance of instances.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

allInstances() ->size() <numeric operator><integer>

[

AND inv:

allInstances() ->size() <numeric operator><integer>

]

Explantation:

- <numeric operator> refers to operators <, <=, >=, >, =, and <>

- Square brackets [] indicate an additional and optional statement

34

4.4. Language Scope and Specification

- Cardinality existence provides an AND logic operator to connect

statements

Example: There must exist at least three to a maximum of five objects of the class

Car.

4. Attribute Existence: This type postulates the existence of a specific attribute. It can

be seen as predecessor of the following constraint types which restrict particular at-

tribute values. In contrast to them, this type only states the existence of an attribute

which means that a defined attribute has to appear in a model type, class or rela-

tion class. Furthermore, it has to be clarified that if constraint types for particular

attribute values are used, this constraint type is obsolet because a specification of an

attribute value implies the existence of the correlative attribute.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<attribute> ->exists()

Example: Objects of the class Car must have the attribute numberOfWheels.

5. Attribute Non-Existence: This type postulates the non-existence of a specific at-

tribute. Again, the constraint implies the opposite of the Attribute Existence type. In

consequence, it states that a defined attribute can not be part of a model type, class

or relation class.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<attribute> ->isEmpty()

Example: Objects of the class Car can not have the attribute First Name.

6. Attribute Value Existence: This constraint type implies the existence of a specific

attribute value. It could be seen as abstract super class of constraint types regarding

attribute values. As a result, it can not be practically applied because there are

multiple different attribute types in ADOxx which must be individually handled and

specified.

6.1. Integer Value Existence: This type postulates the existence of a particular value

for an Integer attribute. In ADOxx Integers are defined as an integer from -

1,999,999,999 to 1,999,999,999. The amount of digits is limited to 10 plus an

optional + or − sign. The standard value is 0 or an alternatively determined value

35

4. Conceptualization of the Constraint-Modeling-Language

[12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Integer Attribute> = <Integer>

Example: The attribute numberOfWheels of objects from class Car must be 4.

6.2. Double Value Existence: This type postulates the existence of a defined value for

a Double attribute. In ADOxx, a Double attribute is defined for a float within +/-

999,999,999,999,999 for an integer or +/-999,999,999.999999 for figures with 6

decimals. The standard value for Double is 0.000000. It should not exceed 15

significant digits with at last 6 decimal digits [12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Double Attribute> = <Double>

Example: The attribute 0to100 of objects from class Sports Car must be 7.567.

6.3. String Value Existence: This type postulates the existence of a specific value

for a String attribute. Attributes of type String are defined for texts up to 3.700

characters of any type. For the String attribute name, the maximum amount of

characters is reduced by 250.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<String Attribute> = <String>

Example: The attribute firstName of objects from class Driver must be Mueller.

6.4. Longstring Value Existence: This type implies the existence of a specific value

for a Longstring attribute. In contrast to String attributes, which are generally

limited by 3.700 characters, Longstring Attributes can cover texts up to 32.000

characters [12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Longstring Attribute> = <Longstring>

36

4.4. Language Scope and Specification

Example: The attribute carDetails of objects from class Car must be <here stands
long text>.

6.5. Time Value Existence: This type postulates the existence of a determined value

for a Time attribute. In ADOxx, the Time format is defined as YY:MM:DDD:HH:MM:SS

[12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Time Attribute> = <Time>

Example: The attribute dateBuilt time of objects from class Car must be 02:001:00:00:01.

6.6. Date Value Existence: This type postulates the existence of a specific value for a

Date attribute. The Date format is described in the form YYYY:MM:DD [12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Date Attribute> = <Date>

Example: The attribute dateBuilt date of objects from class Car must be 2002:01:01.

6.7. Datetime Value Existence: This type implies the existence of a specific value for

a Datetime attribute. In ADOxx, the Datetime format is has the form YYYY:MM:DD

HH:MM:SS [12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Datetime Attribute> = <Datetime>

Example: The attribute dateBuilt datetime of objects from class Car must be

2002:01:01 00:00:01.

6.8. Enumeration Value Existence: This type postulates the existence of a spe-

cific selected value for an Enumeration attribute. In ADOxx, an Enumeration

attribute is characterized by a set of values. An Enumeration attribute has ex-

actly one value of this set [12]. In the meta model, Enumeration values are de-

fined in the EnumerationDomain which can be found in the Facets chapter of

the Enumeration attribute. The method of defining enumerations includes writ-

37

4. Conceptualization of the Constraint-Modeling-Language

ing multiple selection values separated by a @ e.g. with reference to Fig. 3.1:

Cabrio@Coupe@Limousine@Van@SUV@Truck.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Enumeration Attribute> = <Enumeration>

Example: The attribute carType of objects from class Car must be Coupe.

6.9. Enumerationlist Value Existence: This type implies the existence of one or more

specifically selected values for an Enumerationlist attribute. In contrast to Enu-

meration attributes, an Enumerationlist attribute can have more than one se-

lected value of a defined set [12]. The way of describing an Enumeration list in

the meta model is the same as for Enumeration attributes.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Enumerationlist Attribute> = <Enumerationlist>

Example: The attribute carFeatures of objects from class Car must be Xenon.

6.10. Programmcall Value Existence: This type implies the existence of specific val-

ues (items and parameters) for a Programmcall attribute. Items are related to

AdoScripts which can be called and executed over the user interface [12].

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Programmcall Attribute> = <Programmcall>

Example: The attribute callProgramm of objects from class Car must have the

Program arguments ”C:\Programme\Test\test.exe”.

6.11. Expression Value Existence: This type postulates the existence of a specific

value for an Expression attribute. Expressions are formulas which can not be

longer than 3.600 characters [12]. For example, they are used to calculate results

of attribute values.

Applicable to: model types, classes, relation classes

OCL equivalent: context <MT | Class | Relation Class> inv:

38

4.4. Language Scope and Specification

self.<Expression Attribute> = <Expression>

Example: The attribute deriveCarAge of objects from class Car must have the

expression <expression>.

6.12. Interref Value Existence: This type describes the existence of a intermodel ref-

erence. The restriction refers to the Refdomain which can include references to

Model Types and Model Types plus appearing Objects.

Applicable to: model types, classes

OCL equivalent: context <MT | Class> inv:

self.<Interref Attribute>.<Refdomain> = <Modref | Objref>

Example: Objects from the class Car must have an Interref attribute pointing

at Model Type Garage Model.

6.13. Record Value Existence: This type postulates the existence of a specific row in a

table. The table columns are built with attributes assigned in the table class.

Applicable to: model types, classes

OCL equivalent: context <MT | Class> inv:

self.<Record Class>.<Record Attribute1> = <value>

AND

self.<Record Class>.<Record Attribute2> = <value>

Example: The table Car Table must include a row with attributes a1 = 3 and

a2 = 10.

7. Attribute Value Non-Existence: This constraint type implies the non-existence of a

specific attribute value. As it follows the same logic and procedure as in 6.1 till 6.13,

a further explanation is going to be left out, since there is practically only the operator

changing from = to <>. Regarding semantics, this constraint type states conditions

to exclude particular defined values for attributes.

8. Attribute Value Range Existence / Non-Existence: The following constraint types

restrict attribute values with a frame of valid properties. E.g. for numeric values,

operators = and <> get extended by <, <=, >=, and >. In addition, logical operators

AND as well as OR are added to formulate more expressive restrictions. Please note:
In the context of the Constraint-Modeling-Language, the proper meaning of the OR
operator corresponds to XOR. As a result, OR means that only one condition of a set

of various conditions can appear (which is strictly spoken the meaning of XOR).

39

4. Conceptualization of the Constraint-Modeling-Language

8.1. Integer Value Range Existence / Non-Existence: This type postulates a frame

of valid values for an Integer attribute. It is an extension of a basic Integer value

Existence or Non-Existence constraint. The frame is built with numeric operators

and logic operators AND as well as OR.

Applicable to: model types, classes, relation classes

Numeric operators: <, <=, >=, >, =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Integer Attribute><numeric operator><Integer>

[

<AND | OR>

self.<Integer Attribute><numeric operator><Integer>

]

Example: The attribute numberOfSeats of objects from class Car must be greater

than 0 and less than 10.

8.2. Double Value Range Existence / Non-Existence: This type postulates a frame

of valid values for a Double attribute. The frame follows the same logic as Integer
Value Range Existence / Non-Existence constraints.

Applicable to: model types, classes, relation classes

Numeric operators: <, <=, >=, >, =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Double Attribute><numeric operator><Double>

[

<AND | OR>

self.<Double Attribute><numeric operator><Double>

]

Example: The attribute 0to100 of objects from class Sports Car must be greater

than 3.5 and less than 9.5.

8.3. String Value Range Existence / Non-Existence: This type postulates a frame of

valid values for a String attribute. In contrast to the previous mentioned two con-

40

4.4. Language Scope and Specification

straint types which are dealing with a frame for numeric values, this constraint

type is about a frame for String values. As a result, comparison operators are set

to String operators which offer =, and <>. Regarding logic operators, only OR is

applicable.

Applicable to: model types, classes, relation classes

String operators: =, and <>

Logic operators: OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<String Attribute><string operator><String>

[

OR

self.<String Attribute><string operator><String>

]

Example: The attribute First Name of objects from class Driver must be Mueller
or Mustermann.

8.4. Longstring Value Range Existence / Non-Existence: This type postulates a

frame of valid values for a Longstring attribute. It follows the same logic as the

String Value Range Existence / Non-Existence constraint.

Applicable to: model types, classes, relation classes

String operators: =, and <>

Logic operators: OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Longstring Attribute><string operator><Longstring>

[

OR

self.<Longstring Attribute><string operator><Longstring>

]

Example: The attribute carDetails of objects from class Car can not be <here
stands long text> or <here stands alternative long text>.

8.5. Time Value Range Existence / Non-Existence: This type postulates a frame of

valid values for a Time attribute. As it is about the restriction of numeric values,

41

4. Conceptualization of the Constraint-Modeling-Language

numeric operators are used and the full spectrum of logic operators is available.

Applicable to: model types, classes, relation classes

Numeric operators: <, <=, >=, >, =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Time Attribute><numeric operator><Time>

[

<AND | OR >

self.<Time Attribute><numeric operator><Time>

]

Example: The attribute dateBuilt time of objects from class Car must be between

02:001:00:00:01 and 16:001:00:00:01.

8.6. Date Value Range Existence / Non-Existence: This type postulates a frame of

valid values for a Date attribute. Again, Date attributes are of type numerical.

Applicable to: model types, classes, relation classes

Numeric operators: <, <=, >=, >, =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Date Attribute><numeric operator><Date>

[

<AND | OR >

self.<Date Attribute><numeric operator><Date>

]

Example: The attribute dateBuilt date of objects from class Car must be greater

than 2002:01:01 and less than 2016:01:01 .

8.7. Datetime Value Range Existence / Non-Existence: This type postulates a frame

of valid values for a Datetime attribute with a potential restriction stated by nu-

meric operators.

Applicable to: model types, classes, relation classes

42

4.4. Language Scope and Specification

Numeric operators: <, <=, >=, >, =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Datetime Attribute><numeric operator><Datetime>

[

<AND |OR >

self.<Datetime Attribute><numeric operator><Datetime>

]

Example: The attribute dateBuilt datetime of objects from class Car must be be-

tween 2002:01:01 00:00:01 and 2016:01:01 00:00:01.

8.8. Enumeration Value Range Existence / Non-Existence: This type deals with a

frame of valid values for an Enumeration attribute. As it was mentioned in Enu-
meration Value Existence, this kind of attribute allows only a single value selection

made by the modeler. In order to adapt a value range for this attributes, an OR
logic operator can be used.

Applicable to: model types, classes, relation classes

String operators: =, and <>

Logic operators: OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Enumeration Attribute><string operator>

<Value of enumeration>

[

OR

self.<Enumeration Attribute><string operator>

<Value of enumeration>

]

Example: The attribute carType of objects from class Car must be Coupe or SUV.

8.9. Enumerationlist Value Range Existence / Non-Existence: This type defines a

frame of valid values for an Enumerationlist attribute. In contrast to Enumer-

ation attributes, a range of possible values can be additionally realized with an

AND logic operator.

Applicable to: model types, classes, relation classes

43

4. Conceptualization of the Constraint-Modeling-Language

String operators: =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Enumerationlist Attribute><string operator>

<Value of enumeration>

[

<AND | OR>

self.<Enumerationlist Attribute><string operator>

<Value of enumeration>

]

Example: The attribute carFeatures of objects from class Car must be Xenon
and Navigation Sytem.

8.10. Programmcall Value Range Existence / Non-Existence: This type postulates a

frame of valid values for a Programmcall attribute. This type is quite similar to the

type of Enumeration attributes since it exclusively permits a value range created

with OR logic operators.

Applicable to: model types, classes, relation classes

String operators: =, and <>

Logic operators: OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Programmcall Attribute><string operator>

<Programmcall>

[

OR

self.<Programmcall Attribute><string operator>

<Programmcall>

]

Example: The attribute callProgramm of objects from class Car must have the Pro-
gram arguments ”C:\Programme\Test\test.exe” or ”C:\Programme\Test\test2.exe”.

8.11. Expression Value Range Existence / Non-Existence: This type states a frame

of valid values for an Expression attribute. It follows the same logic as the type

for Programmcall attributes.

44

4.4. Language Scope and Specification

Applicable to: model types, classes, relation classes

String operators: =, and <>

Logic operators: OR

OCL equivalent: context <MT | Class | Relation Class> inv:

self.<Expression Attribute><string operator>

<Expression>

[

OR

self.<Expression Attribute><string operator>

<Expression>

]

Example: The attribute deriveCarAge of objects from class Car must have the

expression <expression1> or <expression2>.

8.12. Interref Value Range Existence / Non-Existence: This type deals with a frame

of valid values for an Interref attribute. Again, multiple different values can be

logically connected via OR.

Applicable to: model types, classes

String operators: =, and <>

Logic operators: OR

OCL equivalent: context <MT | Class> inv:

self.<Interref Attribute><Refdomain><string operator>

<Modref | Objref>

[

OR

self.<Interref Attribute><Refdomain><string operator>

<Modref | Objref>

]

Example: Objects from the class Car must have an Interref attribute pointing

at Model Type Garage Model or Driver Model.

8.13. Record Value Range Existence / Non-Existence: This type postulates a frame

of valid rows in a table. As a result, an AND logic operator has to be available to

45

4. Conceptualization of the Constraint-Modeling-Language

enable multiple simultaneously existing rows.

Applicable to: model types, classes

String operators: =, and <>

Logic operators: AND, OR

OCL equivalent: context <MT | Class> inv:

(

self.<Record Class><Record Attribute1><string operator>

<value>

AND

self.<Record Class><Record Attribute2><string operator>

<value>

)

<AND | OR>

(

self.<Record Class><Record Attribute1><string operator>

<value>

AND

self.<Record Class><Record Attribute2><string operator>

<value>

)

Example: The table Car Table must include a row with a1 = 3 and a2 = 10
Furthermore, there has to be a row with a1 = 12 and a2 = 0.

9. Connection Existence: This constraint type states the existence of a relationship

between objects of two classes. This allows the modeler the creation of predefined

patterns e.g. objects of class Car must always have a relationship to objects of class

Driver. Furthermore, it will be possible to set constraints regarding attributes for this

previously mentioned and specific relationship.

Applicable to: Classes

OCL equivalent: context <Class> inv:

self.<relation to other class> ->exists()

[

AND context <Relation Class> inv:

self.<attribute><operator><value>

]

46

4.5. Notation

10. Connection Non-Existence: This constraint type postulates the non-existence of a

relationship between objects of two classes. As a result, it represents the opposite of

the type Connection Existence. Moreover, in contrast to Connection Existence, con-

straints about the specific relationship are not possible because there can not be a

relationship.

Applicable to: Classes

OCL equivalent: context <Class> inv:

self.<relation to other class> ->isEmpty()

Example: Objects of class Car can not be connected with objects of class Insurance
personnel.

4.5. Notation

Although the notation determines the visual appearance of a modeling language, this

section is additionally dealing with an explanation how to connect multiple particular

types of constraints to a discrete and single one. The visual appearance is inspired by

VOCL and UML class diagrams. This implies the assumption of a rectangle partitioned in

several compartments.

4.5.1. Constraint Visualization

In consequence, each compartment provides defined functionalities. Furthermore, the

lanes which seperate the third and forth compartment indicate an AND statement to con-

nect expressive conditions with the second compartment. The content inserted in each

compartment is very similar to OCL, although there are some distinctions compared to

the original OCL specification. Generally spoken, the notation bases on an extension of

OCL to make OCL constraints meaningfully applicable in the context of ADOxx and the

ADOxx modeling platform.

47

4. Conceptualization of the Constraint-Modeling-Language

Figure 4.4.: Basic notation concept for the Constraint-Modeling-Language

4.5.1.1. Semantical Relationship between Compartments

Before we can continue with a description of the four compartments, it is essential to

clarify their semantical relationship to each other first. Fig. 4.5 visualizes three different

kinds of compartment dependencies: (1) Selection Dependency, (2) Attribute Dependency,

and (3) Connection Dependency. The first one is quite straight-forward and implies a

dependency between the top two compartments. It states that the selection made in the

header field has to be continued in the same context in the second compartment e.g. the

header defines a context for class Car. Consequently, the second compartment has to deal

with objects of class Car too.

The next dependency regarding attributes states that a condition made in the second

compartment influences the third compartment e.g. the second compartment defines a

restriction for objects of class Car, e.g. there has to at least one object of class Car in the

model. In addition, the following third compartment implies attribute restrictions for the

condition built in compartment two. E.g. There has to be at least one object of class Car
with the attribute carFeatures = ”Xenon”.

Last but not least, the third kind of dependencies regarding connections has its depen-

dency origin in the second compartment too. It implies restrictions for the connection of

class objects (defined in the second compartment) to other class objects. E.g. there has

to be at least one object of class Car connected with one object of class Driver via the

relationship hasDriver.

48

4.5. Notation

Figure 4.5.: Dependencies of compartments

4.5.1.2. Header Compartment

The Header compartment represents first and general information regarding affected mod-

eling elements (model types, classes, or relation classes), their names, and a constraint

name to foster an easy understanding and differentiation from other constraints. The first

keyword in the header line is context followed by Model Type, Class, or Relation Class. For

the completion of a context specification, a name of the model type, class, or relation class

has to be stated. The next line in the header considers the keyword inv and a following

constraint name. Except for the declaration of the modeling element, this is pretty much

related to the OCL procedure of constraint definitions.

Figure 4.6.: Header for a class Car

4.5.1.3. Model Type, Class, and Relation Class Compartment

The second compartment specifies conditions for model types, classes, and relation classes.

There are four different types of restrictions which can be entered in this section:

1. ∃ instance of <Model Type | Class | Relation Class>: This type is related to the

49

4. Conceptualization of the Constraint-Modeling-Language

constraint type 1. Instance Existence in section 4.4. It postulates that there must be

at least one instance of a specific modeling element.

Figure 4.7.: Instance existence

2. @ instance of <Model Type | Class | Relation Class>: This type refers to the con-

straint type 2. Instance Non-Existence. It states that there can not be at least one

instance of a modeling element.

Figure 4.8.: Instance non-existence

3. ∀ instances of <Model Type | Class | Relation Class>: This statement is not de-

scribed in the chapter before as it does not represent a restriction. It embodies the

standard selection and is used if no specific restriction about the existence of in-

stances is favored.

Figure 4.9.: Statement for all instances

4. Card existence <Restriction> instances of <Model Type | Class | Relation Class>:
The last option in the second compartment is related to the constraint type 3. Cardi-
nality Existence / Non-Existence. It describes quantitative existences of instances with

numeric operators <, <=, >=, >, =, and <> and logic operators AND respectively OR.

Figure 4.10.: Card existence statement

50

4.5. Notation

4.5.1.4. Attribute Compartment

In contrast to the other compartments, the spectrum of potential conditions and restric-

tions made in the attribute section is much broader. First, before dealing with con-

crete attribute values, we would like to visualize constraint types regarding the general

existence or non-existence of attributes as described in 4. Attribute Existence and 5.
Attribute Non-Existence in section 4.4. Similar to OCL, attribute conditions are impli-

cated by the keyword self. Besides self, there are additional keywords added in the

Constraint-Modeling-Language. In case of constraints for general attribute existence or

non-existence, the keyword Attribute followed by a concrete attribute’s name is added

after self :

Figure 4.11.: Constraint stating the existence of the attribute numberOfWheels

Figure 4.12.: Constraint stating the non-existence of the attribute numberOfWheels

For attribute values, the keyword Value is added after the keyword Attribute. There are

also functionalities to add AND respectively OR logic operators according to the attribute’s

type. By building several restriction constructs, each construct gets a frame to enforce a

sophisticated overview.

Important: As described before, a frame represents a constraint construct. Constructs

can always (independent from the attribute types) be connected with logic operators AND,

alternatively OR. In case of more than two constructs linked with different logic op-
erators, AND operators are having priority against OR operators which means that
AND binds stronger than OR (e.g. Fig. 4.13)

Please note: A constraint regarding the value of an attribute simultaneously implies the

existence of the attribute. As a result, there is no additional need to state the existence of

an attribute first.

For a clear visualization and presentation of the different attribute constraints, we will

summarize various attribute data types into three categories (1) Numeric Category, (2)

String Category, and (3) Specific Category.

51

4. Conceptualization of the Constraint-Modeling-Language

1. Numeric Category: Covered constraint data types are Integer, Double, Time, Date,

and Datetime. Attributes of this category can be compared with numeric operators

and supplemented with logic operators AND, alternatively OR.

Figure 4.13.: Restriction for different numeric attributes and values

2. String Category: Involved data types are String, Longstring, Enumeration and Enu-
merationlist types. Attributes of the String Category can be compared with String

operators and supplemented within the frame with logic operator OR. Nevertheless

Enumerationlist represents a special case and supports additionally AND logic opera-

tors.

Figure 4.14.: Restriction for different String attributes and values

52

4.5. Notation

Figure 4.15.: Restriction for Enumeration attribute and values

Figure 4.16.: Restriction for Enumerationlist attribute and values

3. Specific category: The notation of specific data types can not be summarized that

clear as it was possible for numeric and String categories. This is a result of the

occurring heterogeneity requiring an isolated visualization for each data type. Special

data types are: Programmcall, Expression, Interref, and Record -types.

3.1. Programmcall type: Constraints for attributes with type Programmcall are in-

troduced by the keyword Prcall after the keyword Attribute. In contrast to the

previously mentioned attribute types, restriction values for Programmcalls are

not explicitly visualized. To check the concrete constraint, the ADOxx notebook

has to be opened. This is going to be shown in chapter 6.

Figure 4.17.: Restriction for Programmcall attribute. The concrete restriction is shown in
the ADOxx notebook.

3.2. Expression type: The keyword for constraints about expressions is Expr. Apart

from that, it follows the same procedure as Programmcall.

53

4. Conceptualization of the Constraint-Modeling-Language

Figure 4.18.: Restriction for Expression attribute. The concrete restriction is shown in the
ADOxx notebook.

3.3. Interref type: Conditions for Interref attributes are visualized in the notation

of the Constraint-Modeling-Language. The relevant references pointing at model

types or concrete objects are shown in an additional row. The keyword implying

constraints for Interref types is simply Interref. Furthermore, a reference to model

types or model types and concrete objects is visualized.

Figure 4.19.: Restriction for Interref attribute

3.4. Record type: As well as Programmcall and Expression types, the Record data

type is also not concretely visualized in the notation. By accessing the ADOxx
notebook, the various constraints for Record attributes can be set. The keyword

is Record.

Figure 4.20.: Restriction for Record attribute

4.5.1.5. Connection Compartment

The last compartment at the bottom of the rectangle is exclusively reserved for class ob-

jects. It deals with constraints for the connection to other class objects. In addition, at-

tributes regarding this specific relationship can be restricted too. Keywords for Connection
Existence and Connection Non-Existence are mustBeConnectedWith and canNotBeConnect-
edWith. An optional row can state a constraint for the relationship e.g. Objects of class Car
have to be connected with objects of class Driver with the relationship hasDriver while the

54

4.5. Notation

relationship hasDriver has a defined attribute with a particular value. In addition, it also

possible to assign a name of the object which has to be connected.

Figure 4.21.: Connection constraint

Figure 4.22.: Connection constraint specifying the relationship

Figure 4.23.: Connection constraint specifying the name of the connected object

Figure 4.24.: Connection constraint specifying the relationship and a relationship at-
tribute

4.5.2. Constraint Implications

First, it is essential to describe the semantical mechanics of constraint implications. If a

specific condition implies another condition, this situation states that the first condition

is not valid in general but rather in just a particular case. Section 3.2.3 has already

provided a short implication example, and for the further work, we would like to visualize

this constraint.

On the one hand, the LHS is given as Driver.hasCar->size () > 0 which can be mod-

eled as following:

55

4. Conceptualization of the Constraint-Modeling-Language

Figure 4.25.: LHS of the implication shown in Section 3.2.3

On the other hand, the RHS is: (Driver.age >= 18) AND (Driver.drivingLicense =

True):

Figure 4.26.: RHS of the implication shown in Section 3.2.3

Considered as isolated and independent constraints, both of them have an general and

invariant meaning. As a result, they are valid at each point of time in the modeling

process. By adding an implication relationship visualized as directed vector, we can

56

4.6. Conclusion

postulate an implicational constraint which will be only triggered if the LHS was acti-

vated:

Figure 4.27.: Combining LHS and RHS to an implication

4.6. Conclusion

By recalling the outcomes of the first research question, the second one specifies various

essential points of the Constraint-Modeling-Language. First, it is important to mention

and structure the modeling process including the definition of a constraint model before

the actual modeler creates final models.

Moreover, it could be seen as fundamental to understand how constraint meta models,

constraint models, meta models and models are connected together. At this point, the

thesis has outlined that a constraint object includes one or more restrictions which ad-

dress entire corresponding meta models.

Pre-existing methods for constraints in ADOxx are described as they represent a subset

of the constraint language scope. Furthermore, the definition and formalization of lan-

guage constructs is necessary to specify the exact scope of the language. Formalizations

are done with OCL statements to create a common understanding of constraint seman-

tics.

In order to visualize the language constructs of the Constraint-Modeling-Language, the

notation defines the visual appearance in reference to UML class diagrams and the VOCL

57

4. Conceptualization of the Constraint-Modeling-Language

approach. The understanding of dependencies between the various compartments is ex-

plained as it embodies an essential help to be able to relate to the semantics of a constraint

object.

58

5. Implementation of the
Constraint-Modeling-Language

The modeling language is implemented in the meta modeling platform ADOxx v1.51, a

product of the BOC group2. Although ADOxx offers the possibility to create entirely new

modeling libraries, the Constraint-Modeling-Language will be attached to a pre-existing

modeling library named SeMFIS Library 0.42 for ADOxx 1.3 and 1.53 [5, 7, 6]. SeMFIS is

originally designed for engineering semantic annotations of conceptual models but never-

theless, it provides multiple modelling languages to implement various different models

(e.g. BPMN models). As a result, SeMFIS models are going to be used as foundation

enriched by constraints provided in the Constraint-Modeling-Language. The implemen-

tation documented in the further work is exemplary for an implementation approach in

order to show that the implementation is realizable with methods provided in ADOxx. As a

result, the implementation does not cover the whole spectrum of the Constraint-Modeling-

Language.

5.1. Meta Model

The meta model defined in ADOxx is quite simplistic since the language is designed to con-

sist of only one object class (Constraint) and one relation class (implies). First, a superclass

ConstraintLanguage was defined under the top node D-construct which represents

the highest superclass in the meta class hierarchy. The creation of ConstraintLanguage
was done in order to generate a distinct isolation of the constraint language from con-

structs of the SeMFIS approach. Under the node of ConstraintLanguage , the class

Constraint is placed which finally generates Constraint objects in a constraint model. In

consequence, the meta model hierarchy is: D-construct → ConstraintLanguage →
Constraint. The relation class implies, on the other hand, is settled under the folder Rela-

tion classes.

Although the approach of having only one distinct class seems to be quite uncommon

1https://www.adoxx.org/live/download-15 (accessed June 22, 2016)
2https://at.boc-group.com (accessed June 22, 2016)
3http://www.omilab.org/web/semfis/ (accessed July 4, 2016)

59

5. Implementation of the Constraint-Modeling-Language

prima facie, it offers three advantages for the concept of the constraint language:

• The validation of constraints against other models is going to be better realizable

without unnecessary overhead. This overhead will certainly occur by using multiple

classes and relation classes. This circumstance is a result of a more complicated

validation because information from many class objects and relation class objects

would have to be aggregated first. Moreover, there would be a need for the validation

to consider a broad spectrum of potential constellations of class objects which makes

it more difficult to extract the meaning of a modeled constraint.

• The concept of the Constraint-Modeling-Language is inspired by UML class diagrams

which are explicitly known by a huge amount of people. This fact leads to comfortable

first steps into this approach and the meaning of a constraint can be understood quite

fast.

• The constraint language aims at providing a simple and straightforward method for

assigning constraints to models. The readability and the understanding of a con-

straint visualized as a table, which has to be read top-down, follows an approach

which is similar to the standard procedure of reading text in books for example.

5.1.1. Constraint Class

Because of the fact the modeling language uses only one particular class object, there are

many attributes stored in the Constraint class. As a result, requirements regarding the

creation of a clear overview about the attribute distribution to the four compartments have

to be fulfilled.

5.1.1.1. General Attributes

General attributes do not belong to any compartments and are used for a necessary initial

specification of a constraint. This specification describes the extend of applying a specific

constraint.

• Layer: This attribute defines the layer on which constraints are settled. There are two

options: (1) Object Layer, which implies that the constraint is going to restrict par-

ticular objects and (2) Model Layer which defines restrictions on an upper hierarchy

affecting whole models.

• Constraint Application: This offers a selection if the constraint has to be applied on

(1) All models of model type or on a (2) Model with specific model name of model type.

This attribute is important to enable model specific restrictions with constraints e.g.

Model 1 has to be restricted by Constraint 1 but Model 2 has to be independent from

Constraint 1.

60

5.1. Meta Model

• Model Type Name: A definition of the model type affected by constraints. The enu-

meration is filled with model types belonging to the SeMFIS library: Company map,

Business process model, Business process diagram (BPMN 2.0), Service pool, Docu-
ment pool, Frames Ontology Model, Ontology Model, Term Model, Semantic Annotation
Model, Class / Object Diagram and Application Architecture (Diagram) which will be

added in the thesis to show various use cases in an IT-architecture environment.

• Model Name: This attribute is activated if Constraint Application = Model with specific
name of model type. It defines the name of the model which is exclusively restricted.

Finally, the general attributes are structured in the ADOxx Notebook defined in the at-

tribute Attrep. This generates an user interface where the attributes are shown and at-

tribute values can be modified by the user.

Figure 5.1.: General attributes shown in the ADOxx Notebook

Fig. 5.2 visualizes how these attributes address a SeMFIS meta model. The arrow

Assign Constraints to which stops at the border of the SeMFIS meta model means that the

whole meta model is affected and Layer is set to Model Layer. The other arrow stopping at

a class (or relation class) implicates that the Layer is set to Object Layer.

61

5. Implementation of the Constraint-Modeling-Language

Figure 5.2.: General attributes in a constraint meta model and how they affect a SeMFIS
meta model

5.1.1.2. First Compartment Attributes

Attributes belonging to the first compartment specify the header characteristics.

• Constraint Name: This attribute defines an arbitrary constraint name to distinguish

the constraint from others. An expressive constraint name does also imply the mean-

ing of the constraint.

• Context Selection: If the Layer attribute = Object Layer, Context Selection can spec-

ify whether the constraint deals with classes or relation classes.

• Context Name: A specification of the previously selection made in Context Selection.

As a result, the name of the class or relation class is defined here.

In case of an Object Layer selection, the header refers to a particular class name or relation

class name in a SeMFIS meta model:

62

5.1. Meta Model

Figure 5.3.: First compartment attributes in a constraint meta model and how they affect
a SeMFIS meta model

5.1.1.3. Second Compartment Attributes

As already described, the second compartment provides options regarding existence re-

strictions.

• Instance Existence: This is the main attribute in the notebook chapter of the second

compartment as it determines the existence of instances. The enumeration attribute

offers the following selection: (1) Instance Existence, (2) Instance Non-Existence, (3)

Cardinality Existence, and (4) No Restriction which implies a ∀ statement.

• Cardinality Quantification: A specification which must be made if Instance Existence
= Cardinality Existence. This attribute determines lower- and upper bounds for in-

stance existences e.g. there must be > 3 and < 9 instances of a class or it defines a

particular value for instance existences e.g. there must be exactly four instances of a

class.

• Existence Lower Bound: An Integer value which defines the lower bound for in-

stance existences. The attribute is activated if Cardinality Quantification = Lower-
/Upper-Bounds for Existence.

• Existence Upper Bound: Integer value determining an upper bound for instance

existences. The activation of this attribute follows the same procedure as the lower

bound attribute.

• Existence Equal: Integer value implying the specific amount of instances which have

to exist. It is activated if Cardinality Quantification = Existence equal Value.

63

5. Implementation of the Constraint-Modeling-Language

Second compartment attributes affect the instance existences of entire SeMFIS meta mod-

els or the instance existences of particular classes / relation classes.

Figure 5.4.: Second compartment attributes in a constraint meta model and how they
affect a SeMFIS meta model

5.1.1.4. Third Compartment Attributes

The description of third compartment attributes is a way more complex than the previ-

ously mentioned procedure for attributes shown in the notebook. This is a result of the

fact that attributes are divided into numeric, string and specific categories. Each cate-

gory requires individual attributes in order to create adequate attribute restrictions. For

the visualization in the Notebook, numeric and string attributes are combined together

to a standard attribute category. Specific attributes are treated isolated by a separated

Notebook chapters.

Standard attributes: The implementation provides functionalities to restrict a maximum

amount of two standard attributes. Attributes for attribute restrictions follow a particular

pattern regarding attribute names: The actually attribute name comes after an integer im-

plying the attribute chronology e.g. Attribute Name requires 1 Attribute Name to underine

that it is the name of the first restricted attribute.

• Attribute Restriction Activate: This attribute activates the restriction for an at-

tribute. If it is set to Disabled, all other attributes in this chapter are inactive.

• Attribute General Restriction: With the help of this attribute, the user is able to set

a restriction for an attribute existence or an attribute value.

• Attribute Name: The name of the attribute which should be restricted.

• Attribute Data Type: The data type of the chosen attribute. As we deal with stan-

64

5.1. Meta Model

dard attributes in this section, the enumeration contains the following options: INTE-

GER, DOUBLE, STRING, LONGSTRING, TIME, DATE, DATETIME, ENUMERATION,

ENUMERATIONLIST.

• Attribute Existence: This attribute specifies the existence of an attribute. It offers

the options (1) must exist or (2) Can not exist. The attribute in general is activated if

Attribute General Restriction = Restrict Attribute Existence.

The following attributes are related to a restriction for attribute values:

• Attribute Restriction Type: Defines a constraint for a particular attribute value or

an attribute value range.

• Attribute Numeric Operator: This attribute provides numeric operators for attributes

belonging to data types INTEGER, DOUBLE, TIME, DATE, or DATETIME.

• Attribute String Operator: String operators for attributes assigned to data type

STRING, LONGSTRING, ENUMERATION, or ENUMERATIONLIST.

• Attribute Value: The final attribute value which has to be restricted by a constraint.

The now following attributes extend the previously ones by stating restrictions for an

attribute value range:

• Attribute Value Range Logic Operator AND OR: Provides an AND respectively an

OR logic operator to connect two numeric conditions e.g. integer attribute execu-
tion time > 50 AND < 100. In addition to numeric attributes, ENUMERATIONLIST

attributes can also be restricted by this attribute.

• Attribute Value Range Logic Operator OR: This attribute addresses a value range

for string attributes by offering an OR logic operator e.g. string attribute name =

Mueller OR Mustermann.

• Attribute Second Numeric Operator: Same attribute as Attribute Numeric Operator
but it restricts the second attribute value of the range.

• Attribute Second String Operator: This attribute follows the same procedure as At-
tribute Second Numeric Operator.

• Attribute Second Value: The second attribute value of the range.

To logically connect restrictions for multiple attributes, the attribute

Logic Operator Between First And Second Attribute is used. It provides an AND re-

spectively an OR operator. Third compartment attributes restrict particular attribute char-

acteristics of a class / relation class or attribute characteristics of a meta model.

65

5. Implementation of the Constraint-Modeling-Language

Figure 5.5.: Third compartment attributes for restricting a standard attribute in a SeMFIS
meta model

Specific attributes: In contrast to the amount of restrict-able standard attributes, the

implementation only supports the generation of a constraint for one specific attribute:

INTERREF attributes. Apart from that, the attribute structure broadly follows the same

principle as for standard attributes.

• Specific Attribute Restriction Activate: Attribute for the activation of an attribute

constraint (same principle as for standard attributes).

• Logic Operator To First Attribute: This attribute logically connects a first standard

attribute to a first specific attribute. The attribute is activated if the second standard

attribute is disabled.

• Logic Operator To Second Attribute: This attribute logically connects a second stan-

dard attribute to a first specific attribute. As described before, the logical con-

nection between the first and second standard attribute is already processed with

Logic Operator Between First And Second Attribute.

• Specific Attribute General Restriction: Same principle as for standard attributes.

• Specific Attribute Name: Same principle as for standard attributes.

• Specific Attribute Data Type: Data types for specific attributes are: PROGRAMM-

CALL, EXPRESSION, INTERREF, RECORD.

66

5.1. Meta Model

• Specific Attribute Existence: Same principle as for standard attributes.

• Specific Attribute Restriction Type: Same principle as for standard attributes.

The next group in the Notebook deals with INTERREF specific attributes for restric-

tion:

• Specific Attribute Interref Restriction: A definition of the restrict-able Refdomain

explained in chapter 4.4 section 8.13. The enumeration offers the options (1) Restrict
reference to model type or (2) Restrict reference to object.

• Specific Attribute Interref Operator: A string operator reserved for interref attributes.

• Specific Attribute Interref Model Type Reference: The model type which has to be

inserted in a restricted interref attribute.

• Specific Attribute Interref Object Reference: The particular object which has to be

part of the Refdomain. This attribute is activated if Specific Attribute Interref Restriction
= Restrict reference to object.

• Specific Attribute Value Range Interref Logic Operator OR: An OR operator which

is activated if Specific Attribute Restriction Type = Restrict Attribute Value Range.

• Specific Attribute Second Interref Operator: A string operator reserved for a sec-

ond value of a value range regarding interref attributes.

• Specific Attribute Second Interref Model Type Reference: An alternative model type

which has to be inserted in a restricted interref attribute.

• Specific Attribute Second Interref Object Reference: An alternative particular ob-

ject which has to be part of the Refdomain.

67

5. Implementation of the Constraint-Modeling-Language

Figure 5.6.: Third compartment attributes for restricting a specific attribute in a SeMFIS
meta model

5.1.1.5. Forth Compartment Attributes

Finally, the last compartment sets restrictions for relationships of class objects. In addi-

tion, the implementation includes the opportunity to assign a constraint to one standard

attribute belonging to a specified relationship. Because of the fact that the constraint lan-

guage provides support for multiple relationship constraints, the nomenclature is related

to the third compartment. That means that attributes for restriction begin with an integer

value implying the chronology. In the further work, a constraint regarding the relationship

of class objects will be named connection statement.

• Connection Statement Activate: This attribute initially activates a constraint for a

relationship.

• Connection Statement Kind Of Restriction: This attribute offers the enumeration

(1) Must be connected with and (2) Can not be connected with.

• Connection Statement To Object Of Class: A definition of the class name to which

a relationship has to exist or can not exist.

• Connection Statement With Object Name: A definition of the object name to which

68

5.1. Meta Model

a relationship has to exist or can not exist. This attribute represents a more precise

specification and bases on the value entered in the previously described attribute. If

the value of this attribute is empty, there will be no restriction regarding the object

name.

• Connection Statement With Relationship: A specification of the relationship name

which must be used to connect two class objects. If the value of the attribute is empty,

all kinds of relationships are valid.

• Connection Statement Relationship Attribute Restriction Activate: This attribute

enables a restriction for an attribute of the previously defined relationship.

The following attributes refer to an attribute restriction of defined relationships which are

specified before. At this point, the implementation is stripped-down in context of the spec-

trum how attribute value restrictions can be described. As a result, the implementation

only provides the functionality to assign constraints to attribute values (and not attribute

existences or value ranges).

• Relationship Attribute Name: The name of the attribute which appears in the rela-

tionship.

• Relationship Attribute Data Type: In this case, the implementation supports only

standard attribute data types.

• Relationship Attribute Numeric Operator: A numeric operator which is activated if

the data type is numeric.

• Relationship Attribute String Operator: A string operator which is activated if the

data type is string.

• Relationship Attribute Value: The final value of the attribute restricted by a con-

straint.

As Fig. 5.7 visualizes, forth compartment attributes address exclusively classes in a SeM-
FIS meta model and optionally corresponding standard class attributes in relationship

classes.

69

5. Implementation of the Constraint-Modeling-Language

Figure 5.7.: Forth compartment attributes for restricting a connection statement and a
relationship attribute in a SeMFIS meta model

5.1.1.6. Attrep

The ADOxx Notebook is defined in an attribute named Attrep in the constraint class. The

complete Attrep code can be found on a CD attached to the thesis.

5.1.1.7. Graphrep

To define the notation of constraint objects, ADOxx offers the attribute Graphrep in the

constraint class. In analogy to Attrep, the Graphrep code is located on the attached CD

too.

70

5.2. Validation

Figure 5.8.: Standard notation by initially creating a constraint object

5.1.2. Implies Relation Class

There is only one relation class in the meta model: implies. In contrast to constraint

objects, the relation class has a very simple structure. Due to the fact that implies does

not support any relevant attributes which can be set in the Notebook, there is no Attrep
defined in the meta model. The notation determined in Graphrep is straight forward as it

is simply visualized as black arrow.

Figure 5.9.: Notation of relation class implies

5.2. Validation

As it was shown in the previous sections and chapters, the Constraint-Modeling-Language

is designed to connect at least two different models: On the one hand, a distinct productive

model which is used to visualize an IT-architecture or a business process for example,

and on the other hand, a constraint model which creates place for defining constraints in

reference with the productive model. In consequence, a validation functionality is needed

to merge these models to ensure that the productive model semantically corresponds to

constraints defined in a constraint model.

71

5. Implementation of the Constraint-Modeling-Language

5.2.1. Validation Scope

Because of the fact that an entire implementation of a validation functionality would be

disproportionate work in programming for this thesis, it offers few implemented seg-

ments of a holistic validation method. The implemented validation covers the following

parts:

• Model Layer:
– Second Compartment (isolated):

∗ Instance Existence: A check if at least one model of a defined model type does

exist.

∗ Instance Non-Existence: Validation if there are no models of a defined model

type.

∗ Cardinality Existence: A verification if the number of model existences is in a

given spectrum or is equal a particular value.

• Object Layer:
– Second Compartment (isolated):

∗ Instance Existence: A functionality which verifies if at least one instance of a

class exists in a specific model or in all models of a model type. If all models

of a model type are selected, the validation will stop if one instance was found

in an arbitrary model.

∗ Instance Non-Existence: A validation which checks if there is no instance of a

class in a particular model or in all models of a model type.

∗ Cardinality Existence: This verifies if the amount of instances corresponds to

a defined range or to a single value. Again, the validation is possible for all

models of a model type or a specific model.

– Second Compartment + Third Compartment:

∗ Instance Existence + Value Restriction for a Standard Attribute: A check if

there is an instance of a class having a specific attribute value in all models

or a particular model.

∗ For all Instances + Existence of a Standard Attribute: Verification which checks

if all instances of a class are having a specific attribute.

∗ For all Instances + Value Restriction for a Standard Attribute: A check if all

instances of a class are having a particular attribute value.

5.2.2. Validation Implementation

The validation is implemented in AdoScript4, a scripting language provided in ADOxx. The

code for the functionality could be found in an external file named validation.asc, which

will be loaded and executed in a constraint model if the modeller clicks on Validation

4https://www.adoxx.org/live/adoscript-language-constructs/ (accessed June 29, 2016)

72

5.2. Validation

→ Execute Validation. Generally, the validation script bases on constraint models and

concrete constraints which are modeled in these models. The script is not capable of

validating more than one constraint model at the same time. In contrast to the meta

model / model visualizations in section 5.1, the validation operates exclusively on model

layer:

Figure 5.10.: The validation accesses restrictions made in constraint model and validates
restrictions against a SeMFIS model

In further consequence, this means that the validation checks particular constraints

which are settled on meta model layer but can only be evaluated on instances of the

corresponding meta model, which refers to the model layer.

73

5. Implementation of the Constraint-Modeling-Language

The AdoScript validation can be simplified modeled as an iterative process in a SeMFIS
activity diagram:

Figure 5.11.: Process of validation

The process is structured as follows:

1. The script collects all constraint objects in a currently opened constraint model.

2. For each constraint object, the script extracts attribute values which are set by default

or modified by the modeller. The attributes which get read by the script are exactly

the attributes which were characterized in section 5.1.1.

74

5.3. Preparation for Use Case Scenarios

3. In a next step, the script checks the value of attribute Constraint Application. De-

pending on the value, the script executes a specific AQL5 query to get the object IDs

of all models of a particular model type or only a specific model of a model type. AQL
was chosen in this context, because the evaluation with the query is a quite more

comfortable than with the AdoScript equivalents.

4. The further sections in the code deal with various scenarios and constellations of

second and third compartment attributes. The validation of these scenarios takes

place in multiple nested IF clauses.

5. In case of Instance Existence was chosen in the second compartment, the validation

stops if a condition was found that meets the constraint requirements (instead of

iterating over the whole number of referenced models and objects). This is because

Instance Existence implies that there is at least one object fulfilling a constraint.

6. Successful validations are displayed as viewboxes with a short explanation of the

validation.

7. Non-successful validations are shown as warningboxes with a short description too.

5.3. Preparation for Use Case Scenarios

Before the thesis finally shows the outcomes of the implementation and the practical ap-

plication of the Constraint-Modeling-Language, we add a Application Architecture meta

model to the SeMFIS library. As a result, this enables the modeling of some use cases

settled in an IT-architecture environment with ADOit6 inspired models. The spectrum

of added classes, relation classes as well as corresponding attributes is intensively re-

duced as the model is used to show the fundamental functionality of the constraint lan-

guage.

In order to create a sample model for an application architecture, we have to define the

meta model first. The meta model consists of the classes Application Component and

Interface. Relation classes are implemented as Used Interfaces, Provided Interfaces, and

Replaced Application Components. To describe the meta model, Application Component
and Interface can be expressed as class diagram:

5https://www.adoxx.org/live/adoxx-query-language-aql/ (accessed June 28, 2016)
6https://de.boc-group.com/adoit/ (accessed June 22, 2016)

75

5. Implementation of the Constraint-Modeling-Language

Figure 5.12.: Meta model for the classes Application Component and Interfaces

Relation classes, on the other hand, do not contain any attributes which are relevant for

the use cases:

Figure 5.13.: Meta model for relation classes Used Interfaces, Provided Interfaces, and Re-
placed Application Components

After defining the notation for classes and relation classes as well as aggregating them to

the model type Application Architecture (Diagram), we can generate an application archi-

tecture model named Use Case Application Architecture Model. This model is inspired by a

sample model included in the ADOit platform.

76

5.4. Constraint-Modeling-Language Application - Use Case Scenarios

Figure 5.14.: Use Case Application Architecture Model modeled within the SeMFIS library

5.4. Constraint-Modeling-Language Application - Use Case
Scenarios

In a first attempt, the thesis deals with two scenarios affecting the model layer (in contrast

to the object layer). First, we would like to state, that there has to exist at least one up to a

maximum of three models of model type Application Architecture (Diagram):

77

5. Implementation of the Constraint-Modeling-Language

Figure 5.15.: Cardinality existence constraint for models of model type Application Archi-
tecture (Diagram)

The validation is successful, since we have exclusively created the model Use Case Appli-
cation Architecture Model. As a result, the constraint stating a cardinality existence of >=

1 and <= 3 is fulfilled because there is exactly one model of this model type. In conse-

quence, the script displays a successful validation message:

Validation for Cardinality existence for Application

Architecture models successful!

There are >=1 and <=3 models of type Application Architecture

(Diagram).

In a reverse case, a constraint stating the non-existence of instances of model type Appli-
cation Architecture (Diagram) would not validate successfully:

Figure 5.16.: Non-existence constraint for models of model type Application Architecture
(Diagram)

78

5.4. Constraint-Modeling-Language Application - Use Case Scenarios

The validation is coherently not successful, since there exists a model of model type Ap-
plication Architecture (Diagram):

Validation for Cardinality existence for Application

Architecture models not successful!

In further steps, we would like to deal with constraints on object layer. An initial constraint

could be for example: There must exist at least four objects of class Application Component
up to a maximum of twenty. Furthermore, there has to be at least one object of class

Interface.

Figure 5.17.: Existence constraints for classes Application Component and Interface

By validating the two constraints against the Use Case Application Architecture Model, both

constraints can be validated with success. On the one hand, the constraint Cardinality
existence for Application Components is fulfilled because there are seven Application Com-
ponent objects in the model. As the lower bound is four and the upper bound twenty, the

validation of this constraint is positive. On the other hand, constraint Interface must exist
is fulfilled too, since there are four Interface objects in the relevant model. Consequently,

this validation is also successful.

Validation for Cardinality existence for Application

Components in Use Case Application Architecture Model

successful!

There are >= 4 and <= 20 objects of class Application

Component.

Validation for Interface must exist successful!

There is at least one object of class Interface in a

model of model type Application Architecture (Diagram).

To assign and validate constraints for attributes, we have to add attribute values for some

sample objects in the Use Case Application Architecture Model first. Paradigmatically, we

79

5. Implementation of the Constraint-Modeling-Language

have chosen two objects which are going to be validated: Cash System (CAS) of class Appli-
cation Component and PAS Read IF of class Interface. In succession, we attach meaningful

attribute values to both objects.

Figure 5.18.: Objects Cash System (CAS) and PAS Read IF in the Use Case Application
Architecture Model

An initial basic constraint might be: There must be an object with name Cash System
(CAS) in the Use Case Application Architecture Model:

Figure 5.19.: Existence constraints for object Cash System (CAS)

80

5.4. Constraint-Modeling-Language Application - Use Case Scenarios

The validation delivers a positive answer since there is an object in the Use Case Applica-
tion Architecture Model having an attribute Name with value Cash System (CAS).

Validation for Existence Constraint for Cash System

(CAS) successful!

There is at least one object of class Application

Component with an attribute Name = Cash System (CAS)

of type STRING found in a model Use Case Application

Architecture Model.

As it is shown in script notification above, the validation process for attributes evaluates

additionally attribute data types to increase the validation scope.

To successfully evaluate further attributes for objects named Cash System (CAS) and

PAS Read IF, we have to shorten the extent of the original Use Case Application Archi-
tecture Model. This is necessary because the validation script only includes the func-

tionality to exclusively validate a value for one attribute and the name of an attribute

already fills this role. As a result, we can not evaluate a constraint exemplary shown in

Fig. 5.20 addressing two attribute values to restrict the ID value for object Cash System
(CAS).

Figure 5.20.: Existence constraints for object Cash System (CAS) addressing two attribute
values

In order to demonstrate that a validation for attributes of objects Cash System (CAS) and

PAS Read IF is possible, we modify the Use Case Application Architecture Model in a way,

81

5. Implementation of the Constraint-Modeling-Language

that it only consists of the two objects. In consequence, it is clear that the script addresses

only the two given specific objects. We model a new application architecture model named

Shortened Use Case Application Architecture Diagram:

Figure 5.21.: Shortened Use Case Application Architecture Model modeled within the SeM-
FIS library

First, we would like to verify two initial constraints for the objects Cash System (CAS)
and PAS Read IF : (1) For the cash system, the INTEGER attribute Operating Costs must

be lower than 100.000. (2) The attribute value of ENUMERATION attribute Availability

findable in object PAS Read IF can not be No Entry:

82

5.4. Constraint-Modeling-Language Application - Use Case Scenarios

Figure 5.22.: First attribute constraints for objects Cash System (CAS) and PAS Read IF

By validating these two constraints against attribute values shown in Fig. 5.18, both vali-

dations deliver a positive notification:

Validation for Attribute Constraint for Cash System

(CAS) successful!

Object 59227 appearing in Shortened Use Case

Application Architecture Model has an attribute

Operating Costs < 100000 of data type INTEGER.

Validation for Attribute Constraint for PAS Read IF

successful!

Object 59000 appearing in Shortened Use Case

Application Architecture Model has an attribute

Availability != No Entry of data type ENUMERATION.

In a next step, we would like to validate the following constraints: (1) The attribute Decom-
mission Date of data type INTEGER must exist and (2) the attribute Description of object

PAS Read IF can not be empty:

83

5. Implementation of the Constraint-Modeling-Language

Figure 5.23.: Second attribute constraints for objects Cash System (CAS) and PAS Read IF

In a last step, the validation displays the following positive results, since the constraints

are both fulfilled:

Validation for Attribute Constraint for Cash System

(CAS) successful!

All objects of class Application Component have

an attribute named Decommission Date of

data type DATE.

Validation for Attribute Constraint for PAS Read IF

successful!

Object 59000 appearing in Shortened Use Case

Application Architecture Model has an attribute

Description != "" of data type LONGSTRING.

5.5. Conclusion

The third research question combines the theory aggregated in the first research question

and methods of the second research question to create a implementation prototype of the

Constraint-Modeling-Language.

84

5.5. Conclusion

The most complex work in this chapter was of unanticipated theoretical nature as it is

represented by the definition and conceptualization of the meta model. Although the

meta model consists of only one class and one relation class, the attribute hierarchy of

a constraint object is many-layered and it was not that easy to specify it in a way that a

visualization in Graphrep and a validation in AdoScript can follow it.

In the beginning, the implementation of the validation itself was quite complex, due to

the high amount of attributes which trigger distinct validation scenarios. Especially in

this case, it was essential to get a clear overview on the multiple scenarios and attribute

constellations. In addition, it has to be mentioned that due to the simple concept of having

only one class for objects, the implementation of the validation was obviously easier than

it would have been by having various classes and relation classes.

Recapitulatory, the result of the implementation approach is a running prototype which

shows that the Constraint-Modeling-Language can be implemented in ADOxx and offers

interactive functionalities to verify and instantiate concepts of the second research ques-

tion.

85

86

6. Discussion

The last chapter of the master thesis deals with two questions: (1) How far is the goal of
the thesis described in the introduction reached? and (2) What is the primary benefit of the
Constraint-Modeling-Language in comparison to the ADOxx query language AQL?

Regarding the first question and the aim of enhancing the semantical expressiveness of ar-

bitrary modeling languages, we can assert that the Constraint-Modeling-Language shown

in this thesis fulfills this goal. By restricting existence characteristics, attribute values

or relationship constellations, the language is able to improve pre-existing modeling lan-

guages and their expressiveness. This happens, for example, by excluding particular

values for attributes which make no sense in the context a model is settled. In addition,

it should be also mentioned that the language does not include the entire spectrum of

imaginable constraints as there are quite countless possibilities of restricting model char-

acteristics. But in fact, the language offers a tradeoff of feasible constraints which appear

to be useful in common modeling processes.

The answer to the second question is quite more complex: As already mentioned dur-

ing the implementation of the validation functionality, ADOxx provides a query language

named AQL. With the help of this language information about particular models, model

content and dependencies of models can be extracted. Consequently, the question which

appears now in this context is: How far does the Constraint-Modeling-Language offer ad-

ditional benefits against basically using AQL for checking model characteristics? As a

result, the advantages of the constraint language against AQL can me summarized as

follows:

• Usability: The constraint language provides a graphical notation for constraints. The

visualization follows a simple logical schema and users of the Constraint-Modeling-

Language can understand the semantical meaning of a visualized constraint quite

fast.

• Scalability: In cases of many different constraints for various models, the execution

of AQL queries implies a lot of code and obviously time exposure. On the contrary, the

Constraint-Modeling-Language can be divided and structured into multiple constraint

models enabling a good overview and a swift assignment of constraints.

• Extensibility: In contrast to AQL, the constraint language allows additional func-

tionality triggered by particular conditions in constraint models e.g. if the attribute

87

6. Discussion

Execution Time exceeds the value 90, the script has to send an e-mail notification to

the process responsible.

88

Bibliography

[1] Donald Bell. UML Basics: The class diagram. IBM.[Online] IBM, 15(09),

2004. http://www.softwareresearch.net/fileadmin/src/docs/teaching/

WS13/SE/UML_basics-_The_class_diagram.pdf [Online, accessed June 22, 2016].

[2] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. UML
2001 — The Unified Modeling Language. Modeling Languages, Concepts, and Tools:
4th International Conference Toronto, Canada, October 1–5, 2001 Proceedings, chap-

ter A Visualization of OCL Using Collaborations, pages 257–271. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2001.

[3] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Pretorius. Empirical

evidence about the UML: a systematic literature review. Software: Practice and
Experience, 41(4):363–392, 2011. https://www.researchgate.net/publication/

220280714_Empirical_evidence_about_the_UML_a_systematic_literature_

review [Online, accessed June 22, 2016].

[4] Dov Dori. Why Significant UML Change is Unlikely. Commun. ACM, 45(11):82–85,

November 2002. https://www.researchgate.net/publication/27292971_Why_

significant_UML_change_is_unlikely [Online, accessed June 21, 2016].

[5] Hans-Georg Fill. SeMFIS: A Tool for Managing Semantic Conceptual Models. In

Workshop on Graphical Modeling Language Development, Lyngby, Denmark, July

2012. http://homepage.dke.univie.ac.at/fill/papers/Fill_SeMFIS_GMLD_

Workshop.pdf [Online, accessed July 2, 2016].

[6] Hans-Georg Fill. Semantic-based Modeling for Information Systems using the SeM-

FIS Platform. Tutorial for Informatik’2016, 2016. http://www.informatik2016.de/

1187.html [Online, accessed July 2, 2016].

[7] Hans-Georg Fill. SeMFIS: A Flexible Engineering Platform

for Semantic Annotations of Conceptual Models. Semantic
Web(SWJ), 2016. http://www.semantic-web-journal.net/content/

semfis-flexible-engineering-platform-semantic-annotations-conceptual-models-0

[Online, accessed July 2, 2016].

89

Bibliography

[8] Hans-Georg Fill and Dimitris Karagiannis. On the conceptualisation of modelling

methods using the ADOxx meta modelling platform. Enterprise Modelling and In-
formation Systems Architectures-An International Journal, 8(1), 2013. eprints.

cs.univie.ac.at/3657/1/Fill_Karagiannis_EMISA_2013.pdf [Online, accessed

June 22, 2016].

[9] Hans-Georg Fill, Timothy Redmond, and Dimitris Karagiannis. Formalizing Meta

Models with FDMM: The ADOxx Case. In J. Cordeiro, L. Maciaszek, and J. Filipe,

editors, Enterprise Information Systems - 14th International Conference, ICEIS 2012,
Wroclaw, Poland, June 28 - July 1, 2012, Revised Selected Papers, volume 141 of

LNBIP. Springer, 2013. http://homepage.dke.univie.ac.at/fill/papers/Fill_

etal_FDMM_ADOxx_2013.pdf [Online, accessed June 21, 2016].

[10] Andrew Fish, John Howse, Gabriele Taentzer, and Jessica Winkelmann. Two Visual-

izations of OCL: A comparison. 2005. http://www.mathematik.uni-marburg.de/

˜swt/Publikationen_Taentzer/VOCLTR.pdf [Online, accessed June 22, 2016].

[11] Joseph Yossi Gil, John Howse, and Stuart Kent. Constraint diagrams: a step be-

yond uml. In tools, page 453. IEEE, 1999. https://kar.kent.ac.uk/21740/1/

constraint_diagrams_a_step_gil.pdf [Online, accessed June 22, 2016].

[12] BOC group. ADOxx Documentation - class Attribute and Attribute Types. https://

www.adoxx.org/live/class-attribute-and-attribute-types [Online, accessed

June 22, 2016].

[13] BOC group. ADOxx Documentation - Class Cardinality. https://www.adoxx.org/

live/class-cardinalities [Online, accessed June 22, 2016].

[14] Object Management Group. Business Process Model and Notation. Version 2.0.2,

http://www.omg.org/spec/BPMN/2.0.2/ [Online, accessed June 21, 2016].

[15] Object Management Group. Object Constraint Language. Version 2.4, http://www.

omg.org/spec/OCL/2.4 [Online, accessed June 22, 2016].

[16] Object Management Group. Unified Modeling Language. Version 2.5, http://www.

omg.org/spec/UML/2.5/ [Online, accessed June 22, 2016].

[17] Object Management Group. Introduction to OMG’s Unified Modeling Language (UML),

June 2005. http://www.omg.org/gettingstarted/what_is_uml.htm [Online, ac-

cessed June 21, 2016].

[18] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and All That Stuff,

90

Bibliography

Part I: The Basic Stuff. Technical report, Jerusalem, Israel, Israel, 2000. http:

//www4.in.tum.de/publ/papers/HR00.pdf [Online, accessed June 22, 2016].

[19] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics

of ”Semantics”? Computer, 37(10):64–72, October 2004. http://www.wisdom.

weizmann.ac.il/˜harel/papers/ModSemantics.pdf [Online, accessed June 22,

2016].

[20] Paul Harmon. The BPTrends 2010 BPM Software Tools Report on BOC’s Adonis

Version 4.0, 2015. http://www.bptrends.com/publicationfiles/2010\%20BPM\

%20Tools\%20Report-BOCph.pdf [Online, accessed June 23, 2016].

[21] S. Junginger, H. Kuehn, R. Strobl, and D. Karagiannis. ADONIS: A next generation

business process management tool - Concepts and Applications. Wirtschaftsinfor-
matik, 42(5):292–401, 2010.

[22] Dimitris Karagiannis and Harald Kühn. Metamodelling platforms. In EC-Web, volume

2455, page 182, 2002. http://www.openmodels.at/c/document_library/get_

file?uuid=08ab1053-ebfc-4c65-9120-3eb419ea5090&groupId=268312, [Online,

accessed June 22, 2016].

[23] Stuart Kent. Constraint Diagrams: Visualizing Invariants in Object-oriented Models.

SIGPLAN Not., 32(10):327–341, October 1997. https://kar.kent.ac.uk/21444/

1/Visualizing_Invariants_in_Object-Oriented_Models.pdf [Online, accessed

June 24, 2016].

[24] Heiko Kern, Axel Hummel, and Stefan Kühne. Towards a Comparative Analysis of

Meta-metamodels. In Proceedings of the Compilation of the Co-located Workshops on
DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Work-

shops, pages 7–12, New York, NY, USA, 2011. ACM. http://www.dsmforum.org/

events/dsm11/papers/kern.pdf [Online, accessed June 22, 2016].

[25] Christiane Kiesner, Gabriele Taentzer, and Jessica Winkelmann. Visual OCL: A Vi-

sual Notation of the Object Constraint Language. Technische Universitaet Berlin,

2002. http://www.user.tu-berlin.de/o.runge/tfs/projekte/vocl/gKTW02.

pdf [Online, accessed June 24, 2016].

[26] Cris Kobryn. Will UML 2.0 Be Agile or Awkward? Commun. ACM, 45(1):107–

110, January 2002. http://www.itu.int/itudoc/itu-t/workshop/framewrk/

004/78054.pdf [Online, accessed June 22, 2016].

[27] Marian Petre. UML in Practice. In Proceedings of the 2013 International Confer-
ence on Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013.

91

Bibliography

IEEE Press. http://oro.open.ac.uk/35805/8/UML\%20in\%20practice\%208.

pdf [Online, accessed June 22, 2016].

[28] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Meta-

modelling: State of the Art and Research Challenges. CoRR, abs/1409.2359, 2014.

http://arxiv.org/pdf/1409.2359.pdf [Online, accessed June 22, 2016].

[29] Niksa Visic, Hans-Georg Fill, Robert Andrei Buchmann, and Dimitris Karagiannis.

A Domain-specific Language for Modeling Method Definition: from Requirements to

Grammar. In IEEE Ninth International Conference on Research Challenges in Informa-
tion Science 2015, May 2015. http://homepage.dke.univie.ac.at/fill/papers/

Visic_etal_2015_RCIS_Online_Accepted_Version.pdf [Online, accessed June

22, 2016].

92

A. Attachment

A.1. Validation in AdoScript

1 CC ”Modeling” GET_ACT_MODEL

2

3 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME modelid : (modelid) classname : ”Constraint”

4 SETL bModelName:1

5 SETL lConstraints : (objids)

6 SETL triggeredModelExistence:0

7 SETL triggeredObjectExistence:0

8

9 #Get all relevant attribute values for all constraint objs

10 FOR sObj in : (lConstraints)

11 {
12 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Constraint_Name”

13 SETL sConstraint_Name : (val)

14

15 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Model_Type_Name”

16 SETL sModelType : (val)

17

18 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Model_Name”

19 SETL sModelName : (val)

20

21 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Constraint_Application”

22 SETL sCon_App : (val)

23

24 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Context_Selection”

25 SETL sContext_Selection : (val)

26

27 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Context_Name”

28 SETL sContext_Name : (val)

29

30 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Instance_Existence”

31 SETL sInstance_Existence : (val)

32

33 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Layer”

93

A. Attachment

34 SETL sLayer : (val)

35

36 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Existence_Lower_Bound”

37 SETL nExistenceLowerBound : (val)

38

39 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Existence_Upper_Bound”

40 SETL nExistenceUpperBound : (val)

41

42 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Existence_Equal”

43 SETL nExistenceEqual : (val)

44

45 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”Cardinality_Quantification”

46 SETL sCardinalityQuantification : (val)

47

48 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Restriction_Activate”

49 SETL sFirstAttributeRestrictionActivate : (val)

50

51 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_General_Restriction”

52 SETL sFirstAttributeGeneralRestriction : (val)

53

54 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Name”

55 SETL sFirstAttributeName : (val)

56

57 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Data_Type”

58 SETL sFirstAttributeDataType : (val)

59

60 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Existence”

61 SETL sFirstAttributeExistence : (val)

62

63 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Restriction_Type”

64 SETL sFirstAttributeRestrictionType : (val)

65

66 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Numeric_Operator”

67 SETL sFirstAttributeNumericOperator : (val)

68

69 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_String_Operator”

70 SETL sFirstAttributeStringOperator : (val)

71

72 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : ”1_Attribute_Value”

73 SETL sFirstAttributeValue : (val)

74

75

76 IF (sCon_App = ”All models of model type ”)

77 {
78 CC ”AQL” EVAL_AQL_EXPRESSION expr : (” <\””+sModelType+”\”>”) modelscope

79 }
80 ELSE

94

A.1. Validation in AdoScript

81 {
82 CC ”AQL” EVAL_AQL_EXPRESSION expr : (” <\””+sModelType+”\”>[?\”Name\” =

83 \””+sModelName+ ” \ ”] ”) modelscope

84 }
85

86 SETL noModels:0

87

88

89 IF (tokcnt (objids) = 0)

90 {
91 SETL noModels:1

92 }
93

94 SETL triggeredModelNonExistence:0

95

96 IF (sLayer = ”Model Layer” AND noModels = 1 AND sInstance_Existence

97 = ”Instance Non−Existence ”)

98 {
99 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

100 \nThere are no models of type ” + sModelType + ” . ”) title : (” Validation ”)

101 }
102 ELSIF (sLayer = ”Model Layer” AND noModels = 0 AND sInstance_Existence

103 = ”Instance Non−Existence ”)

104 {
105 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name +

106 ” not successful ! ”)

107 SETL triggeredModelNonExistence:1

108 }
109 ELSIF (sLayer = ”Model Layer” AND noModels = 1 AND sInstance_Existence

110 = ”Instance Existence ”)

111 {
112 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name

113 + ” not successful ! ”)

114 }
115 ELSIF (sLayer = ”Model Layer” AND noModels = 1 AND sInstance_Existence

116 = ”Cardinality Existence” AND

117 sCardinalityQuantification = ”Lower−/Upper−Bounds for Existence”

118 AND nExistenceLowerBound > 0)

119 {
120 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name

121 + ” not successful ! ”)

122 }
123 ELSIF (sLayer = ”Model Layer” AND noModels = 1 AND sInstance_Existence

124 = ”Cardinality Existence” AND

125 sCardinalityQuantification = ”Existence equal Value” AND nExistenceEqual > 0)

126 {
127 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name

95

A. Attachment

128 + ” not successful ! ”)

129 }
130

131 FOR sModel in : (objids)

132 {
133 SETL nModelID : (VAL sModel)

134

135 CC ”Core” IS_MODEL_LOADED modelid : (nModelID) # check if model is loaded

136 IF (ecode)

137 {
138 SET nEcode : (ecode) SET sErrText : (errtext)

139 EXIT

140 }
141

142 IF (NOT isloaded)

143 {
144 CC ”Core” LOAD_MODEL modelid : (nModelID)

145 SETL bDiscardModell : (1)

146 }
147

148

149 IF (sLayer = ”Model Layer” AND triggeredModelNonExistence = 0

150 AND triggeredModelExistence = 0)

151

152 {
153 CHECK_MODEL_EXISTENCE sModelType : (sModelType)

154 sReturn :sReturn

155

156 IF (tokcnt (sReturn) > 0 AND sInstance_Existence = ”Instance Existence ”)

157 {
158 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

159 \nThere is at least one model of type ” + sModelType + ” . ”) title : (” Validation ”)

160 SETL triggeredModelExistence:1

161 }
162 ELSIF (tokcnt (sReturn) >= nExistenceLowerBound AND tokcnt (sReturn)

163 <= nExistenceUpperBound AND sInstance_Existence = ”Cardinality Existence” AND

164 sCardinalityQuantification = ”Lower−/Upper−Bounds for Existence ”) title : (” Validation ”)

165 {
166 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name +

167 ” successful !\nThere are >= ”

168 + STR nExistenceLowerBound + ” and <= ” + STR nExistenceUpperBound +

169 ” models of type ” + sModelType + ” . ”) title : (” Validation ”)

170 SETL triggeredModelExistence:1

171 }
172 ELSIF (tokcnt (sReturn) = nExistenceEqual AND sInstance_Existence

173 = ”Cardinality Existence” AND sCardinalityQuantification =

174 ”Existence equal Value ”) title : (” Validation ”)

96

A.1. Validation in AdoScript

175 {
176 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

177 \nThere are ” + STR nExistenceEqual + ” models of type ” + sModelType + ” . ”)

178 title : (” Validation ”)

179 SETL triggeredModelExistence:1

180 }
181 ELSE

182 {
183 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name

184 + ” not successful ! ”)

185 }
186 }
187

188 IF (sContext_Selection = ”Class” AND sLayer = ”Object Layer ”)

189 {
190 CHECK_CLASS_EXISTENCE nModelID : (nModelID)

191 sContext_Name : (sContext_Name)

192 sContext_Selection : (sContext_Selection)

193 sReturn :sReturn

194

195 #Instance existence w/o attribute

196 IF (tokcnt (sReturn) > 0 AND sInstance_Existence = ”Instance Existence” AND

197 sFirstAttributeRestrictionActivate = ”Disabled” AND triggeredObjectExistence = 0)

198 {
199 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

200 \nThere is at least one object of class ” + sContext_Name

201 + ” in a model of model type ” + sModelType + ” . ”) title : (” Validation ”)

202 SETL triggeredObjectExistence:1

203 }
204

205 #instance existence with attribute

206 IF (tokcnt (sReturn) > 0 AND sInstance_Existence = ”Instance Existence”

207 AND sFirstAttributeRestrictionActivate = ”Enabled ”)

208 {
209 #First Attribute Value Restriction String

210 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Value”

211 AND (sFirstAttributeDataType != ”INTEGER” AND sFirstAttributeDataType != ”DOUBLE”

212 AND sFirstAttributeDataType != ”TIME” AND sFirstAttributeDataType != ”DATE” AND

213 sFirstAttributeDataType != ”DATETIME ”))

214 {
215 SETL checked:0

216

217 IF (sCon_App = ”All models of model type ”)

218 {
219

220 CC ”Core” GET_ALL_MODEL_VERSIONS modeltype : (sModelType)

221 SETL lVersionIds : (modelversionids)

97

A. Attachment

222

223 FOR sModel in : (lVersionIds)

224 {
225 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

226 CC ”Core” GET_MODEL_BASENAME modelid : (VAL sModel)

227 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

228 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

229 CC ”Core” GET_ALL_OBJS_WITH_ATTR_VAL modelid : (VAL sModel) classid : (classid)

230 attrid : (attrid) val : (sFirstAttributeValue)

231

232 #CC ”AdoScript” INFOBOX (objids)

233 IF (tokcnt (objids) > 0 AND attrtype = sFirstAttributeDataType AND

234 sFirstAttributeStringOperator = ”=”)

235 {
236 SETL checked:1

237 SETL sBaseName : (basename)

238 }
239 ELSIF (tokcnt (objids) = 0 AND attrtype = sFirstAttributeDataType AND

240 sFirstAttributeStringOperator = ” ! = ”)

241 {
242 SETL checked:1

243 SETL sBaseName : (basename)

244 }
245 }
246

247 IF (checked = 1)

248 {
249 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

250 \nThere is at least one object of class ” + sContext_Name +

251 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeStringOperator

252 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

253 + ” found in model ” + sBaseName

254 + ” . ”) title : (” Validation ”)

255 SETL checked:0

256 }
257 ELSE

258 {
259 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! ”)

260 }
261

262 }
263 IF (sCon_App != ”All models of model type ”)

264 {
265 CC ”Core” GET_MODEL_ID modelname : (sModelName) modeltype : (sModelType)

266 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

267 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

268 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

98

A.1. Validation in AdoScript

269 CC ”Core” GET_ALL_OBJS_WITH_ATTR_VAL modelid : (modelid) classid : (classid)

270 attrid : (attrid) val : (sFirstAttributeValue)

271

272 IF (tokcnt (objids) > 0 AND attrtype = sFirstAttributeDataType AND

273 sFirstAttributeStringOperator = ”=”)

274 {
275 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

276 \nThere is at least one object of class ” + sContext_Name +

277 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeStringOperator

278 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

279 + ” found in model ” + sModelName

280 + ” . ”) title : (” Validation ”)

281 }
282 ELSIF (tokcnt (objids) = 0 AND attrtype = sFirstAttributeDataType AND

283 sFirstAttributeStringOperator = ” ! = ”)

284 {
285 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

286 \nThere is at least one object of class ” + sContext_Name +

287 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeStringOperator

288 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

289 + ” found in model ” + sModelName

290 + ” . ”) title : (” Validation ”)

291 }
292 ELSE

293 {
294 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! ”)

295 }
296 }
297 }
298

299

300 #First Attribute Value Restriction Numeric

301 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Value”

302 AND (sFirstAttributeDataType = ”INTEGER” OR sFirstAttributeDataType = ”DOUBLE” OR

303 sFirstAttributeDataType = ”TIME” OR sFirstAttributeDataType = ”DATE”

304 OR sFirstAttributeDataType = ”DATETIME ”))

305 {
306 SETL checked:0

307

308 IF (sCon_App = ”All models of model type ”)

309 {
310

311 CC ”Core” GET_ALL_MODEL_VERSIONS modeltype : (sModelType)

312 SETL lVersionIds : (modelversionids)

313

314 FOR sModel in : (lVersionIds)

315 {

99

A. Attachment

316 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

317 CC ”Core” GET_MODEL_BASENAME modelid : (VAL sModel)

318 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

319 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

320 CC ”Core” GET_ALL_OBJS_WITH_ATTR_VAL modelid : (VAL sModel) classid : (classid)

321 attrid : (attrid) val : (sFirstAttributeValue)

322

323 #CC ”AdoScript” INFOBOX (objids)

324 IF (tokcnt (objids) > 0 AND attrtype = sFirstAttributeDataType

325 AND sFirstAttributeNumericOperator = ”=”)

326 {
327 SETL checked:1

328 SETL sBaseName : (basename)

329 }
330 ELSIF (tokcnt (objids) = 0 AND attrtype = sFirstAttributeDataType

331 AND sFirstAttributeNumericOperator = ” ! = ”)

332 {
333 SETL checked:1

334 SETL sBaseName : (basename)

335 }
336 ELSIF ((sFirstAttributeNumericOperator != ”=” OR

337 sFirstAttributeNumericOperator != ” ! = ”) AND attrtype = sFirstAttributeDataType)

338 {
339 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME classname : (sContext_Name) modelid : (VAL sModel)

340

341 #CC ”AdoScript” INFOBOX (objids)

342

343 FOR sObj in : (objids)

344 {
345 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrid : (attrid)

346

347 IF (val < VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”<”)

348 {
349 SETL checked:1

350 SETL sBaseName : (basename)

351 }
352 ELSIF (val <= VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”<=”)

353 {
354 SETL checked:1

355 SETL sBaseName : (basename)

356 }
357 ELSIF (val > VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”>”)

358 {
359 SETL checked:1

360 SETL sBaseName : (basename)

361 }
362 ELSIF (val >= VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”>=”)

100

A.1. Validation in AdoScript

363 {
364 SETL checked:1

365 SETL sBaseName : (basename)

366 }
367 }
368 }
369 }
370 IF (checked = 1)

371 {
372 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

373 \nThere is at least one object of class ” + sContext_Name +

374 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeNumericOperator

375 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

376 + ” found in model ” + sBaseName

377 + ” . ”) title : (” Validation ”)

378 SETL checked:0

379 }
380 ELSE

381 {
382 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! ”)

383 }
384

385 }
386 IF (sCon_App != ”All models of model type ”)

387 {
388 CC ”Core” GET_MODEL_ID modelname : (sModelName) modeltype : (sModelType)

389 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

390 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

391 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

392 CC ”Core” GET_ALL_OBJS_WITH_ATTR_VAL modelid : (modelid) classid : (classid)

393 attrid : (attrid) val : (sFirstAttributeValue)

394

395 IF (tokcnt (objids) > 0 AND attrtype = sFirstAttributeDataType

396 AND sFirstAttributeStringOperator = ”=”)

397 {
398 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

399 \nThere is at least one object of class ” + sContext_Name +

400 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeStringOperator

401 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

402 + ” found in model ” + sModelName

403 + ” . ”) title : (” Validation ”)

404 }
405 ELSIF (tokcnt (objids) = 0 AND attrtype = sFirstAttributeDataType

406 AND sFirstAttributeStringOperator = ” ! = ”)

407 {
408 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

409 \nThere is at least one object of class ” + sContext_Name +

101

A. Attachment

410 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeNumericOperator

411 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

412 + ” found in model ” + sModelName

413 + ” . ”) title : (” Validation ”)

414 }
415 ELSIF ((sFirstAttributeNumericOperator != ”=” OR

416 sFirstAttributeNumericOperator != ” ! = ”) AND attrtype = sFirstAttributeDataType)

417 {
418 SETL checked:0

419 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME classname : (sContext_Name) modelid : (modelid)

420

421 #CC ”AdoScript” INFOBOX (objids)

422

423 FOR sObj in : (objids)

424 {
425 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrid : (attrid)

426

427 IF (val < VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”<”)

428 {
429 SETL checked:1

430 }
431 ELSIF (val <= VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”<=”)

432 {
433 SETL checked:1

434 }
435 ELSIF (val > VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”>”)

436 {
437 SETL checked:1

438 }
439 ELSIF (val >= VAL sFirstAttributeValue AND sFirstAttributeNumericOperator = ”>=”)

440 {
441 SETL checked:1

442 }
443

444 }
445 IF (checked = 1)

446 {
447 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

448 \nThere is at least one object of class ” + sContext_Name +

449 ” with an attribute ” + sFirstAttributeName + ” ” + sFirstAttributeNumericOperator

450 + ” ” + sFirstAttributeValue + ” of type ” + sFirstAttributeDataType

451 + ” found in model ” + sModelName

452 + ” . ”) title : (” Validation ”)

453 SETL checked:0

454 }
455 }
456 ELSE

102

A.1. Validation in AdoScript

457 {
458 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! ”)

459 }
460 }
461 }
462 }
463 #Instance non−existence
464 ELSIF (sInstance_Existence = ”Instance Non−Existence” AND

465 triggeredObjectExistence = 0)

466 {
467 CC ”Core” GET_MODEL_BASENAME modelid : (nModelID)

468 #CC ”AdoScript” INFOBOX (basename)

469 IF (tokcnt (sReturn) = 0)

470 {
471 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” in ” +

472 basename + ” successful !\nThere are no objects of class ” + sContext_Name + ” . ”)

473 title : (” Validation ”)

474 SETL triggeredObjectExistence:1

475 }
476 ELSE

477 {
478 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” in ”

479 + basename + ” not successfull ! ”)

480 }
481 }
482

483 #Cardinality bounds

484 ELSIF (sInstance_Existence = ”Cardinality Existence” AND sCardinalityQuantification

485 = ”Lower−/Upper−Bounds for Existence ”)

486 {
487 CC ”Core” GET_MODEL_BASENAME modelid : (nModelID)

488 IF (tokcnt (sReturn) >= nExistenceLowerBound AND tokcnt (sReturn)

489 <= nExistenceUpperBound)

490 {
491 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” in ”

492 + basename + ” successful !\nThere are >= ” + STR nExistenceLowerBound + ” and <= ”

493 + STR nExistenceUpperBound

494 + ” objects of class ”

495 + sContext_Name + ” . ”) title : (” Validation ”)

496 }
497 ELSE

498 {
499 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” in ”

500 + basename + ” not successfull ! ”)

501 }
502 }
503

103

A. Attachment

504

505 #Cardinality equal

506 ELSIF (sInstance_Existence = ”Cardinality Existence” AND

507 sCardinalityQuantification = ”Existence equal Value ”)

508 {
509 CC ”Core” GET_MODEL_BASENAME modelid : (nModelID)

510 IF (tokcnt (sReturn) = nExistenceEqual)

511 {
512 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” in ”

513 + basename + ” successful !\nThere are ” + STR nExistenceEqual

514 +” objects of class ” + sContext_Name

515 + ” . ”) title : (” Validation ”)

516 }
517 ELSE

518 {
519 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name

520 + ” in ” + basename + ” not successfull ! ”)

521 }
522 }
523

524 #For All

525 ELSIF (sInstance_Existence = ”No Restriction ”)

526 {
527 #First Attribute Restriction enabled

528 IF (sFirstAttributeRestrictionActivate = ”Enabled ”)

529 {
530 #First Attribute Existence

531 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Existence ”)

532 {
533 IF (sFirstAttributeExistence = ”Must exist ”)

534 {
535 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

536 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

537 IF (ecode = 0)

538 {
539 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

540 IF (attrtype = sFirstAttributeDataType)

541 {
542 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name

543 + ” successful !\nAll objects of class ” + sContext_Name

544 + ” have an attribute named ” +

545 sFirstAttributeName + ” of data type ” + attrtype + ” . ”) title : (” Validation ”)

546 }
547 ELSE

548 {
549 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” not successful ! ”)

550 }

104

A.1. Validation in AdoScript

551 }
552 ELSE

553 {
554 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” not successful ! ”)

555 }
556 }
557 ELSE #Can not exist

558 {
559 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

560 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

561 IF (ecode != 0)

562 {
563 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” successful !

564 \nAll objects of class ” + sContext_Name + ” have no attribute named ” +

565 sFirstAttributeName + ” . ”) title : (” Validation ”)

566 }
567 ELSE

568 {
569 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” not successful ! ”)

570 }
571 }
572 }
573 #First Attribute Value Restriction String for all models

574 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Value”

575 AND (sFirstAttributeDataType != ”INTEGER” AND sFirstAttributeDataType != ”DOUBLE”

576 AND sFirstAttributeDataType != ”TIME” AND sFirstAttributeDataType != ”DATE”

577 AND sFirstAttributeDataType != ”DATETIME ”) AND sCon_App = ”All models of model type ”)

578 {
579 CC ”Core” GET_ALL_MODEL_VERSIONS modeltype : (sModelType)

580 SETL lVersionIds : (modelversionids)

581

582 FOR sModel in : (lVersionIds)

583 {
584 CC ”Core” GET_MODEL_BASENAME modelid : (VAL sModel)

585 SETL sModelBaseName : (basename)

586

587 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME modelid : (VAL sModel) classname : (sContext_Name)

588

589 #CC ”Core” ECODE_TO_ERRTEXT ecode : (ecode)

590 #CC ”AdoScript” INFOBOX (errtext)

591

592 SETL lContextObjs : (objids)

593

594 FOR sObj in : (lContextObjs)

595 {
596 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

597 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

105

A. Attachment

598 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

599 SETL sFirstAttributeType : (attrtype)

600

601 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : (sFirstAttributeName)

602 SETL sFirstAttributeModelValue : (val)

603

604 #CC ”AdoScript” INFOBOX (sFirstAttributeType + ” ” + sFirstAttributeDataType)

605

606 IF (ecode != 0 OR sFirstAttributeType != sFirstAttributeDataType)

607 {
608 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! There is no attribute ”

609 + sFirstAttributeName + ” of data type ” + sFirstAttributeDataType + ” . ”)

610 title : (” Validation ”)

611 }
612 ELSIF (sFirstAttributeValue = sFirstAttributeModelValue AND

613 sFirstAttributeStringOperator = ”=”)

614 {
615 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

616 \nObject ” + sObj + ” appearing in ” + sModelBaseName+ ” has an attribute ”

617 + sFirstAttributeName + ” = ” + sFirstAttributeValue + ” of data type ”

618 + sFirstAttributeType + ” . ”) title : (” Validation ”)

619 }
620 ELSIF (sFirstAttributeValue != sFirstAttributeModelValue AND

621 sFirstAttributeStringOperator = ” ! = ”)

622 {
623 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

624 \nObject ” + sObj + ” appearing in ” + sModelBaseName + ” has an attribute ”

625 +

626 sFirstAttributeName + ” != ” + sFirstAttributeValue + ” of data type ”

627 + sFirstAttributeType + ” . ”) title : (” Validation ”)

628 }
629 ELSE

630 {
631 CC ”AdoScript” WARNINGBOX (”Validation for ” + sModelBaseName + ” not successful ! ”)

632 }
633 }
634 }
635 }
636 #First Attribute Value Restriction String for a specific model

637 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Value”

638 AND (sFirstAttributeDataType != ”INTEGER” AND sFirstAttributeDataType != ”DOUBLE”

639 AND sFirstAttributeDataType != ”TIME” AND sFirstAttributeDataType != ”DATE”

640 AND sFirstAttributeDataType != ”DATETIME ”) AND sCon_App

641 != ”All models of model type ”)

642 {
643 CC ”Core” GET_MODEL_ID modelname : (sModelName) modeltype : (sModelType)

644

106

A.1. Validation in AdoScript

645 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME modelid : (modelid) classname : (sContext_Name)

646

647 SETL lContextObjs : (objids)

648

649 FOR sObj in : (lContextObjs)

650 {
651 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

652 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

653 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

654 SETL sFirstAttributeType : (attrtype)

655

656 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : (sFirstAttributeName)

657 SETL sFirstAttributeModelValue : (val)

658

659 #CC ”AdoScript” INFOBOX (sFirstAttributeType + ” ” + sFirstAttributeDataType)

660

661 IF (ecode != 0 OR sFirstAttributeType != sFirstAttributeDataType)

662 {
663 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! There is no attribute ”

664 + sFirstAttributeName + ” of data type ” + sFirstAttributeDataType + ” . ”)

665 title : (” Validation ”)

666 }
667 ELSIF (sFirstAttributeValue = sFirstAttributeModelValue AND

668 sFirstAttributeStringOperator = ”=”)

669 {
670 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name +

671 ” sucessfull !\nObject ” + sObj + ” appearing in ” + sModelName+ ” has an attribute ”

672 +

673 sFirstAttributeName + ” = ” + sFirstAttributeValue + ” of data type ”

674 + sFirstAttributeType + ” . ”) title : (” Validation ”)

675 }
676 ELSIF (sFirstAttributeValue != sFirstAttributeModelValue AND

677 sFirstAttributeStringOperator = ” ! = ”)

678 {
679 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name

680 + ” sucessfull !\nObject ” + sObj + ” appearing in ” + sModelName

681 + ” has an attribute ”

682 +

683 sFirstAttributeName + ” != ” + sFirstAttributeValue + ” of data type ”

684 + sFirstAttributeType + ” . ”) title : (” Validation ”)

685 }
686 ELSE

687 {
688 CC ”AdoScript” WARNINGBOX (”Validation for ” + sModelName + ” not successful ! ”)

689 }
690 }
691

107

A. Attachment

692 }
693 #First Attribute Value Restriction Numeric for all models

694 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Value”

695 AND (sFirstAttributeDataType = ”INTEGER” OR sFirstAttributeDataType = ”DOUBLE” OR

696 sFirstAttributeDataType = ”TIME” OR sFirstAttributeDataType = ”DATE”

697 OR sFirstAttributeDataType = ”DATETIME ”) AND sCon_App = ”All models of model type ”)

698 {
699 CC ”Core” GET_ALL_MODEL_VERSIONS modeltype : (sModelType)

700 SETL lVersionIds : (modelversionids)

701

702 FOR sModel in : (lVersionIds)

703 {
704 CC ”Core” GET_MODEL_BASENAME modelid : (VAL sModel)

705 SETL sModelBaseName : (basename)

706

707 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME modelid : (VAL sModel) classname : (sContext_Name)

708

709 #CC ”Core” ECODE_TO_ERRTEXT ecode : (ecode)

710 #CC ”AdoScript” INFOBOX (errtext)

711

712 SETL lContextObjs : (objids)

713

714 FOR sObj in : (lContextObjs)

715 {
716 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

717 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

718 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

719 SETL sFirstAttributeType : (attrtype)

720

721 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : (sFirstAttributeName)

722 SETL sFirstAttributeModelValue : (val)

723

724 IF (ecode != 0 OR sFirstAttributeType != sFirstAttributeDataType)

725 {
726 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! There is no attribute ”

727 + sFirstAttributeName + ” of data type ” + sFirstAttributeDataType

728 + ” . ”) title : (” Validation ”)

729 }
730 ELSIF (VAL sFirstAttributeValue = sFirstAttributeModelValue

731 AND sFirstAttributeNumericOperator = ”=”)

732 {
733 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

734 \nObject ” + sObj + ” appearing in ” + sModelBaseName+ ” has an attribute ”

735 + sFirstAttributeName + ” = ” + sFirstAttributeValue + ” of data type ”

736 + sFirstAttributeType + ” . ”) title : (” Validation ”)

737 }
738 ELSIF (VAL sFirstAttributeValue != sFirstAttributeModelValue

108

A.1. Validation in AdoScript

739 AND sFirstAttributeNumericOperator = ” ! = ”)

740 {
741 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name

742 + ” sucessfull !\nObject ” + sObj + ” appearing in ” + sModelBaseName

743 + ” has an attribute ”

744 + sFirstAttributeName + ” != ” + sFirstAttributeValue + ” of data type ”

745 + sFirstAttributeType + ” . ”) title : (” Validation ”)

746 }
747 ELSIF (VAL sFirstAttributeValue > sFirstAttributeModelValue

748 AND sFirstAttributeNumericOperator = ”<”)

749 {
750 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name

751 + ” sucessfull !\nObject ” + sObj + ” appearing in ” + sModelBaseName

752 + ” has an attribute ”

753 + sFirstAttributeName + ” < ” + sFirstAttributeValue + ” of data type ”

754 + sFirstAttributeType + ” . ”) title : (” Validation ”)

755 }
756 ELSIF (VAL sFirstAttributeValue >= sFirstAttributeModelValue AND

757 sFirstAttributeNumericOperator = ”<=”)

758 {
759 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

760 \nObject ” + sObj + ” appearing in ” + sModelBaseName + ” has an attribute ”

761 + sFirstAttributeName + ” <= ” + sFirstAttributeValue + ” of data type ”

762 + sFirstAttributeType + ” . ”) title : (” Validation ”)

763 }
764 ELSIF (VAL sFirstAttributeValue < sFirstAttributeModelValue

765 AND sFirstAttributeNumericOperator = ”>”)

766 {
767 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name

768 + ” sucessfull !\nObject ” + sObj + ” appearing in ” + sModelBaseName

769 + ” has an attribute ”

770 + sFirstAttributeName + ” > ” + sFirstAttributeValue + ” of data type ”

771 + sFirstAttributeType + ” . ”) title : (” Validation ”)

772 }
773 ELSIF (VAL sFirstAttributeValue <= sFirstAttributeModelValue

774 AND sFirstAttributeNumericOperator = ”>=”)

775 {
776 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name

777 + ” sucessfull !\nObject ” + sObj + ” appearing in ” + sModelBaseName

778 + ” has an attribute ”

779 + sFirstAttributeName + ” >= ” + sFirstAttributeValue + ” of data type ”

780 + sFirstAttributeType + ” . ”) title : (” Validation ”)

781 }
782 ELSE

783 {
784 CC ”AdoScript” WARNINGBOX (”Validation for ” + sModelBaseName + ” not successful ! ”)

785 }

109

A. Attachment

786 }
787 }
788

789 }
790 #First Attribute Value Restriction Numeric for a specific model

791 IF (sFirstAttributeGeneralRestriction = ”Restrict Attribute Value” AND

792 (sFirstAttributeDataType = ”INTEGER” OR sFirstAttributeDataType = ”DOUBLE” OR

793 sFirstAttributeDataType = ”TIME” OR sFirstAttributeDataType = ”DATE”

794 OR sFirstAttributeDataType = ”DATETIME ”) AND sCon_App != ”All models of model type ”)

795 {
796 CC ”Core” GET_MODEL_ID modelname : (sModelName) modeltype : (sModelType)

797

798 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME modelid : (modelid) classname : (sContext_Name)

799

800 SETL lContextObjs : (objids)

801

802 FOR sObj in : (lContextObjs)

803 {
804 CC ”Core” GET_CLASS_ID classname : (sContext_Name)

805 CC ”Core” GET_ATTR_ID classid : (classid) attrname : (sFirstAttributeName)

806 CC ”Core” GET_ATTR_TYPE attrid : (attrid)

807 SETL sFirstAttributeType : (attrtype)

808

809 CC ”Core” GET_ATTR_VAL objid : (VAL sObj) attrname : (sFirstAttributeName)

810 SETL sFirstAttributeModelValue : (val)

811

812 IF (ecode != 0 OR sFirstAttributeType != sFirstAttributeDataType)

813 {
814 CC ”AdoScript” WARNINGBOX (”Validation not successfull ! There is no attribute ”

815 + sFirstAttributeName + ” of data type ” + sFirstAttributeDataType

816 + ” . ”) title : (” Validation ”)

817 }
818 ELSIF (VAL sFirstAttributeValue = sFirstAttributeModelValue AND

819 sFirstAttributeNumericOperator = ”=”)

820 {
821 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

822 \nObject ” + sObj + ” appearing in ” + sModelName+ ” has an attribute ”

823 + sFirstAttributeName + ” = ” + sFirstAttributeValue + ” of data type ” +

824 sFirstAttributeType + ” . ”) title : (” Validation ”)

825 }
826 ELSIF (VAL sFirstAttributeValue != sFirstAttributeModelValue AND

827 sFirstAttributeNumericOperator = ” ! = ”)

828 {
829 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

830 \nObject ” + sObj + ” appearing in ” + sModelName + ” has an attribute ”

831 + sFirstAttributeName + ” != ” + sFirstAttributeValue + ” of data type ” +

832 sFirstAttributeType + ” . ”) title : (” Validation ”)

110

A.1. Validation in AdoScript

833 }
834 ELSIF (VAL sFirstAttributeValue > sFirstAttributeModelValue AND

835 sFirstAttributeNumericOperator = ”<”)

836 {
837 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

838 \nObject ” + sObj + ” appearing in ” + sModelName + ” has an attribute ”

839 + sFirstAttributeName + ” < ” + sFirstAttributeValue + ” of data type ”

840 + sFirstAttributeType + ” . ”) title : (” Validation ”)

841 }
842 ELSIF (VAL sFirstAttributeValue >= sFirstAttributeModelValue AND

843 sFirstAttributeNumericOperator = ”<=”)

844 {
845 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

846 \nObject ” + sObj + ” appearing in ” + sModelName + ” has an attribute ”

847 + sFirstAttributeName + ” <= ” + sFirstAttributeValue + ” of data type ”

848 + sFirstAttributeType + ” . ”) title : (” Validation ”)

849 }
850 ELSIF (VAL sFirstAttributeValue < sFirstAttributeModelValue AND

851 sFirstAttributeNumericOperator = ”>”)

852 {
853 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ” sucessfull !

854 \nObject ” + sObj + ” appearing in ” + sModelName + ” has an attribute ”

855 + sFirstAttributeName + ” > ” + sFirstAttributeValue + ” of data type ”

856 + sFirstAttributeType + ” . ”) title : (” Validation ”)

857 }
858 ELSIF (VAL sFirstAttributeValue <= sFirstAttributeModelValue AND

859 sFirstAttributeNumericOperator = ”>=”)

860 {
861 CC ”AdoScript” VIEWBOX text : (” Validation for ” + sConstraint_Name + ”

862 sucessfull !\nObject ” + sObj + ” appearing in ” + sModelName + ” has an attribute ”

863 + sFirstAttributeName + ” >= ” + sFirstAttributeValue + ” of data type ” +

864 sFirstAttributeType + ” . ”) title : (” Validation ”)

865 }
866 ELSE

867 {
868 CC ”AdoScript” WARNINGBOX (”Validation for ” + sModelName + ” not successful ! ”)

869 }
870 }
871 }
872 }
873 ELSE

874 {
875 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” not successful ! ”)

876 }
877 }
878

879

111

A. Attachment

880 #relation class was chosen as constraint reference

881 IF (sContext_Selection = ”Relation Class” AND sLayer = ”Object Layer ”)

882 {
883 CHECK_RELATIONCLASS_EXISTENCE nModelID : (nModelID)

884 sContext_Name : (sContext_Name)

885 sContext_Selection : (sContext_Selection)

886 sReturn :sReturn

887

888 IF (tokcnt (sReturn) > 0 AND sInstance_Existence = ”Instance Existence ”)

889 {
890 CC ”AdoScript” INFOBOX (”Validation for ” + sConstraint_Name + ” successful !

891 \nThere are objects of relation class ”+sContext_Name)

892 }
893 ELSIF (tokcnt (sReturn) = 0 AND sInstance_Existence = ”Instance Non−Existence ”)

894 {
895 CC ”AdoScript” INFOBOX (”Validation for ” + sConstraint_Name + ” successful !

896 \nThere are no objects of relation class”+sContext_Name)

897 }
898 ELSIF (tokcnt (sReturn) >= nExistenceLowerBound AND tokcnt (sReturn) <=

899 nExistenceUpperBound AND sInstance_Existence = ”Cardinality Existence” AND

900 sCardinalityQuantification = ”Lower−/Upper−Bounds for Existence ”)

901 {
902 CC ”AdoScript” INFOBOX (”Validation for ” + sConstraint_Name + ” successful ! ”)

903 }
904 ELSIF (tokcnt (sReturn) = nExistenceEqual AND sInstance_Existence

905 = ”Cardinality Existence” AND sCardinalityQuantification

906 = ”Existence equal Value ”)

907 {
908 CC ”AdoScript” INFOBOX (”Validation for ” + sConstraint_Name + ” successful ! ”)

909 }
910 ELSE

911 {
912 CC ”AdoScript” WARNINGBOX (”Validation for ” + sConstraint_Name + ” not successful ! ”)

913 }
914 }
915 IF (bDiscardModell) # discard when it was loaded

916 {
917 CC ”Core” DISCARD_MODEL modelid : (nModelID)

918 }
919 }
920 }
921 }
922

923 PROCEDURE global CHECK_MODEL_EXISTENCE sModelType :string

924 sReturn :reference

925 {
926 CC ”Core” GET_ALL_MODEL_VERSIONS modeltype : (sModelType)

112

A.1. Validation in AdoScript

927 SETL sReturn : (modelversionids)

928 }
929

930 PROCEDURE global CHECK_CLASS_EXISTENCE nModelID :integer

931 sContext_Name :string

932 sContext_Selection :string

933 sReturn :reference

934 {
935 CC ”Core” GET_ALL_OBJS_OF_CLASSNAME modelid : (nModelID) classname : (sContext_Name)

936 SETL sReturn : (objids)

937 }
938

939 PROCEDURE global CHECK_RELATIONCLASS_EXISTENCE nModelID :integer

940 sContext_Name :string

941 sContext_Selection :string

942 sReturn :reference

943 {
944 SETL sReturn : ” ”

945 CC ”Core” GET_ALL_CONNECTORS modelid : (nModelID)

946 FOR sCon in : (objids)

947 {
948 CC ”Core” GET_CLASS_ID objid : (VAL sCon)

949 CC ”Core” GET_CLASS_NAME classid : (classid)

950

951 IF (classname = sContext_Name)

952 {
953 SETL sReturn : (tokcat (sReturn ,sCon))

954 }
955 }
956 }

113

