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Foreword 

Seismology is one of the cornerstones of the modern Earth sciences that deals with the 

generation, propagation and recording of elastic waves in the Earth, which are both natural 

and human-made. Its major goal is to study earthquakes and the phenomena associated with 

them, such as propagation of elastic waves through the Earth. Seismic waves are the primary 

means by which scientists learn about Earth’s deep interior, where direct observations are 

impossible. However, the main task of modern seismology is directly concerned with seeking 

ways to reduce their destructive impacts on humanity and predict their behavior at a site of 

interest. 

In the last year of my Master’s degree studies I was given a great opportunity to not only 

to continue my studies at Comenius University in Bratislava but also to become student of 

Vienna University and finish my major in Physics of the Earth at both universities. I do not 

regret this choice even though the study has become more difficult and more time-consuming 

than ever. I had a chance to hear the lectures from top scientist in their field of research, to 

learn from my peers and colleagues and to see the applications of geosciences not only in 

research but also in industry.  

Throughout the last two years my passion for poroelasticity have not faded out despite of 

its complexity. Wave propagation in poroelastic material is of great importance in various 

diversified areas of science and engineering such as soil mechanics, seismology, acoustics, 

earthquake engineering and geophysics. In order to quantify effect of fluid-saturated porous 

media on ground motion, we need to consider poroelastic sedimentary structures. This 

complication introduced by complex structures leads to use of powerful computer to simulate 

ground motion more realistic, since analytical methods are precluded. 
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Introduction 

Wave simulation is a theoretical field of research that began nearly three decades ago. Right 

from its early beginnings it has been in close relationship with the development of computer 

technology and numerical algorithms, which are mainly used for solving complex problems 

of mathematical analysis. In the field of computational physics, algorithms for solving 

problems using computers, represent useful tools that provide insight into wave propagation 

for variety of applications.  

The primary application and the objective of this thesis is specially the wave simulation 

in poroelastic medium. Poroelastic theory is a useful model in many geological and even 

biological materials because almost all of these materials have an interstitial fluid in their 

pores. The fluid movement in rocks and soils has many features of importance to human 

populations and their settlings. Water supply, gas and oil removing belong to the most 

important. High water content can make soil masses unstable and previously stable slopes 

may fell over human developments. Another danger pose earthquakes that can cause fluid-

saturated soil to liquefy and the building located upon them to sink into the soil mass. It is 

more than apparent from these examples that theory of poroelasticity requires our attention. 

Dynamic porous media behavior is described by Biot's fundamental equations of 

poroelasticity. Biot's theory has been utilized for purposes of petroleum industry, in order to 

perform seismic surveys and determine the physical properties of rocks inside the reservoirs. 

Biot found that there are two dilatational waves and one rotational wave in a saturated porous 

medium. It has been observed that the dilatational wave of the second kind, also known as 

slow P-wave, is highly attenuated and is associated with a diffusion process. For this reason, 

the slow P-wave is significant only very close to the source or near material heterogeneities. 

However this only true for source frequencies that are much smaller than Biot's characteristic 

frequency 
B

ω  , which strongly depends on friction of liquid inside the pores. As the source 

frequency increases or the friction is sufficiently decreased, the slow P-wave is activated. In 

process of simulation of wave propagation in poroelastic medium above the Biot's 

characteristic frequency the existence of viscous boundary layer at the pore walls must be 

taken into account. In this case the fluid flow is no longer laminar, the fluid velocity 

distribution within the pores is more complex, and the effects of viscosity are felt only in the 

thin boundary layer. The inertial effects are predominant and the slow wave becomes 

propagative. However, we have not allowed for the creation of viscous boundary layers in our 

modeling since the focus is strictly on the seismic band of frequencies. 

At seismic frequencies, the mesoscopic loss mechanism seems to be the most important. 

For instance, mesoscopic-scale inhomogeneities (larger than the pore size but smaller than the 
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wavelength) such as mesoscopic patches of gas in a water-saturated sandstone are responsible 

of diffusion of pore fluid in and out between different patches, while dissipating energy 

through conversion of energy to the diffusive slow mode. Mesoscopic-losses are incorporated 

in White’s model, which is based on approximations in the framework of Biot's theory. 

In our master’s thesis we only deal with the simplified model of poroelastic medium, 

namely isotropic homogeneous inviscid poroelastic half-space. We have applied numerical 

method, specifically finite-difference method to find approximated solution of poroelastic 

equations and to verify the method against the exact analytical solution. 

The first chapter in our master’s thesis is devoted to the current state-of-the-art in 

research and development of numerical techniques used for simulation of wave propagation in 

poroelastic materials. We briefly discuss the importance of modeling of the local Earth 

interior as two phase porous material, while referring to the different geometrical and 

rheological wavefield-porous-medium configurations elaborated by other authors. 

In the second chapter we present objectives of this master’s thesis. 

The third chapter serves as an introduction to fundamental equations of poroelasticity-

Biot’s equations, summarizing equations of motion and constitutive equations, together with 

assumptions that were used during their derivation. The characteristic parameters of 

poroelastic materials are also presented here, but for more information, the reader is advised 

on author’s bachelor thesis or on specific literature. 

The primary goal of the fourth chapter is to provide basics of the finite-difference method 

and its application to the numerical modeling of seismic wave propagation in poroelastic 

media. We also make here detailed explanation of free surface condition, perfectly matched 

layers and line source implementation in case of 2D poroelastic wave simulation. 

In the fifth chapter we present results. The chapter is followed by conclusions. 
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1 Numerical Modelling of Seismic-wave Propagation in 

Poroelastic Media: State-of-the-art 

Numerical modeling of seismic wave propagation and earthquake motion in realistic media is 

an important tool used in seismology. During the past fifteen years, numerical simulation of 

wave propagation in fluid saturated poroelastic media has received more attention as its 

importance in geophysical exploration and reservoir characterization is now recognized, e.g., 

Carcione et al. (2010), Pride et al. (2004), Carcione et al. (2003).  Although the soil can be 

approximated as a single phase elastic material, it is more accurate to treat soil as two phase 

composite material consisting of solid matrix and pore fluid. Moreover, many sedimentary 

and igneous rocks, and certain man-made materials (e.g., concrete) consist of solid framework 

surrounding a microscopic pore or fracture system saturated with fluids.  

Few exact solutions to fundamental equations of poroelasticity exist, e.g., Dai et al. 

(1995), Burridge and Vargas (1979), Boutin et al. (1987), and are only for simplified media 

and source terms. Therefore, to apply poroelastic equations to more complex medium, 

numerical techniques must be used. Several different numerical techniques such as spectral-

elements by Morency and Tromp (2008), pseudo-spectral methods by Carcione (1996), 

Özdenvar and McMechan (1997), discontinuous Galerkin method by de la Puente et al. 

(2008b) and finite-element method by Roberts and Garboczi (2002), can be used to solve 

these equations, but in this thesis, we solely focus on a finite-difference solution, which was 

studied by Zhu and McMechan (1991), Zhang (1999) and Dai et al. (1995). Numerous finite-

difference techniques have been applied successfully to the wave equation in poroelastic 

medium. Staggered grids (SG), where variables and material properties are located at different 

positions on the grid cell, are the most common stable finite-difference scheme. The 

advantage of this scheme is to simulate wave propagation in heterogeneous media with a large 

variation in Poisson’s ratio, which was shown by Moczo et al. (2000). Other modifications of 

finite-difference method, such as rotated staggered grid finite-difference method (RSG) by 

O’Brien (2010), exist. RSG can achieve higher accuracy for high medium contrasts and 

highly anisotropic media.  

In earthquake ground motion research we are primary focused in near-surface local 

structures that in most cases must be modelled as a heterogeneous continuum. Sedimentary 

basins and valleys are examples of such a structures. Under specific circumstances we can 

approximate basin as a layer over homogeneous half-space. The model of poroelastic layer 

over poroelastic half-space was elaborated by various authors, e.g., Wang (2003), Dai et al. 

(1995) and Sheen et al. (2006). More complex formations were studied by Gurevich et al. 
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(1997), Shapiro and Muller (1999), Pride et al. (2002). As de la Cruz  and Spanos (2001) have 

shown, the spatially varying porosity form another complex model, representing the earth 

poroelastic material more precisely.  

As it was mentioned in introduction, the mesoscopic loss mechanism (wave-induced fluid 

flow) should be dominant at the seismic frequencies. White (1975) and White et al. (1975) 

demonstrate the mesoscopic-loss mechanism based on approximations of Biot’s theory. They 

took into consideration the gas pockets in a water-saturated porous medium and the model of 

porous layers alternately saturated with water and gas. These models were called “patchy 

saturation” models. Dutta and Ode (1979) and Dutta and Seriff (1979) solved the problem 

exactly by using Biot’s theory and confirmed the accuracy of White’s results. 
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2 Objectives of the Master’s Thesis 

• algorithmization of mathematical formulation of equations of poroelasticity 

• development of computational program 

• testing of proposed algorithm and program  

 

  



- 7 - 
 

3 Equation of Motion and Constitutive Law 

3.1 Equations for Elastic Medium 

Seismology involves analysis of the ground motion produced by source within the Earth, such 

as for example earthquake faulting or explosion. Except in the immediate vicinity of the 

source, most of the ground motion is momentary, the ground returns to its initial position after 

the motion subsided. Vibrations of this type involve small elastic deformations, or strains, in 

response to internal forces in the rock, or stresses. The mathematical relationships between 

the stresses and strains in the material is embedded in the theory of elasticity. The theory of 

elasticity is elaborated by many authors such as for instance, Lay et al. (1995). Here we show 

only brief overview of theory of elasticity required for further use in the thesis.  

Consider a perfectly elastic unbounded homogeneous continuum. The equation of motion 

(or elastodynamic equation) for such a medium has following form 

 ,i ij j i
u fρ σ= +��   (3.1.1)   

Let us restrict ourselves for an isotropic medium. Then the stress tensor is given by Hooke's 

law for the isotropic continuum denoted as  

 2ij ij k k ijσ λ δ ε µ ε= +   (3.1.2)  

where λ  and µ  are Lamé elastic coefficients and ij
ε  is the strain tensor 

 ( ), ,

1

2ij i j j iu uε = +  (3.1.3) 

Applying time derivative on equations (3.1.1)-(3.1.2) in the absence of source term 
i

f , one 

can obtain  

 
,

2

i ij j

ij ij k k ij

vρ σ

σ λ δ ε µ ε

=

= +

� �

� ��
 (3.1.4) 

After substitution of time derivative of (3.1.3) into equation (3.1.4), we obtain 

 
( )

,

, ,

i ij j

ij ij k k i j j i

v

v u u

ρ σ

σ λ δ µ

=

= + +

� �

� � � �
 (3.1.5) 

Equations (3.1.5) are written in the form of velocity 
i

v�  and stress 
ij

σ�  and can be called the 

velocity-stress formulation of the equation of motion for the perfectly elastic, unbounded 

isotropic homogeneous continuum.  
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3.2 Equations for Poroelastic Medium 

Equations of poroelastic medium (also known as Biot’s equations) describe wave propagation 

in a porous saturated medium, i.e., a medium made of a solid frame (skeleton or matrix), fully 

saturated with a fluid, and accounts for the dissipation of energy due to the viscous pore fluid. 

Biot’s theory arise from ignoring the microscopic level and assuming that continuum 

mechanics can be applied to measurable macroscopic quantities. He postulates the Lagrangian 

and uses Hamilton’s principle to derive the equations governing wave propagation. The 

complete derivation of Biot’s fundamental equations of poroelasticity can be found in our 

bachelor thesis or in pioneering work of Biot (1956). 

In this work we consider a porous elastic body subjected to the following constraints: 

• Displacements, strains and particle velocities are small. This allows to neglect the 

distinction between the Eulerian and Lagrangian formulations. The constitutive 

equations, dissipation forces, and kinetic momenta are linear.  

• The wavelength is large in comparison with the dimensions of the pores. This is a 

requirement for applying the theory of continuum mechanics, and implies that 

scattering dissipation is neglected. 

• The liquid phase is continuous, such that pores are connected and the disconnected 

pores are part of the matrix frame. 

• Permeability and the material of the frame are isotropic and the medium is fully 

saturated. 

We denote 
i

v  as the velocity of the solid frame and 
i

V  as the velocity of the fluid phase. 

Relative velocity 
i

q  is defined as ( )i iV vφ − , where porosity φ  is the volume fraction of the 

pore space. Using tensor notation and neglecting source terms, Biot’s equations for an 

isotropic fluid-saturated porous medium are given by 

 
,

,

i j j i f i

i f i i i

v q

p v m q b q

σ ρ ρ

ρ

= +

− = + +

� �

� �
 (3.2.1) 

Together with constitutive equations for total stress 
i jσ  and pore pressure p    

 
( ), , ,

, ,

ij ij k k i j j i ij

k k k k

v v v p

p M v Mq

σ λ δ µ α δ

α

= + + −

= − −

� �

�

 (3.2.2)  

form fundamental equations of poroelasticity.  

The physical constants in equations describing the poroelastic medium along with some 

of their interdependencies are listed in Table 1. 
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 Name Units Relation 

fρ  density of fluid phase 3/kg m  ─────── 

sρ   density of solid phase 3/kg m  ─────── 

φ   porosity ─ ─────── 

ρ  total density 3/kg m  ( )1 s fφ ρ φ ρ− +  

η   dynamic viscosity of fluid Pa s   ─────── 

κ   permeability 2
m   ─────── 

T   tortuosity ─ ─────── 

m   mass coupling coefficient 3/kg m   f

T
ρ

φ
 

b resistive damping(friction) 2/Pa s m   
η

κ
 

s
K   bulk modulus of solid phase Pa ─────── 

f
K   bulk modulus of fluid phase Pa ─────── 

d
K   

drained bulk modulus 

(bulk modulus of matrix) 
Pa ─────── 

M   Biot's modulus Pa 
1

s

d s s f

K

K K K Kφ φ− − +
 

α   Biot-Willis stress coefficient ─ 1 d

s

K

K
−  

µ   shear modulus of solid phase Pa ─────── 

cλ  undrained Lame's coefficient Pa 22

3dK Mµ α− +  

Table 1 

Other interdependencies between parameters listed in Table 1 can be found in our bachelor 

thesis. 

In order to study Biot’s equations and constitutive equations using finite difference 

method, the equations must be rewritten in following velocity-stress (resp. velocity-stress-

pressure) formulation 

 

( )
( )

( ) ( )

2
, ,

2
, ,

, , , ,

, ,

f i i j j f i f i

f i f i j j i i

ij i j j i ij c k k k k

k k k k

m v m b q p

m q b q p

v v v M q

p M v M q

ρ ρ σ ρ ρ

ρ ρ ρ σ ρ ρ

σ µ δ λ α

α

− = + +

− = − − −

= + + +

= − −

�

�

�

�

  (3.2.3) 
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For a 2-D case, the equations (3.2.3) can be expanded into following form  

 

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )

, , ,2

, , ,2

, , ,2

, , ,2

, , , ,

, ,

1

1

1

1

2

x xx x xz z f x f x

f

z xz x zz z f z f z

f

x f xx x f xz z x x

f

z f xz x f zz z z z

f

xx c x x c z z x x z z

xz x z z x

zz

v m m b q p
m

v m m b q p
m

q b q p
m

q b q p
m

v v M q M q

v v

σ σ ρ ρ
ρ ρ

σ σ ρ ρ
ρ ρ

ρ σ ρ σ ρ ρ
ρ ρ

ρ σ ρ σ ρ ρ
ρ ρ

σ µ λ λ α α

σ µ

σ

= + + +
−

= + + +
−

= − + + +
−

= − + + +
−

= + + + +

= +

�

�

�

�

�

�

� ( )

( ) ( )
, , , ,

, , , ,

2
c x x c z z x x z z

x x z z x x z z

v v M q M q

p M v v M q q

λ µ λ α α

α

= + + + +

= − + − +�

  (3.2.4)  

Last four equations in relation (3.2.4) can be expressed by means of time derivative of solid 

matrix strain tensor ( )1

2
m

i j j iij v x v xε = ∂ ∂ + ∂ ∂�  and time derivative of variation of 

fluid content i iqς = − ∂�  which then gives 

 

( )

( )

( )

2

2

2

m m

xx c x x c z z

m

xz x z

m m

zz c x x c z z

m m

x x z z

M

M

p M M

σ µ λ ε λ ε α ς

σ µ ε

σ λ ε µ λ ε α ς

α ε ε ς

= + + −

=

= + + −

= − + +

� � ��

��

� � ��

� � ��

  (3.2.5) 

The formulation of equations of poroelasticity (3.2.5) is especially advantageous in case of 

PML incorporation, as we will see in subsequent chapter.  

In order to distinguish the low-frequency regime from high-frequency regime we have to 

define Biot’s characteristic frequency 
B

ω  in the following form 

 2
B

f
T

η φ
ω π

κ ρ
=   (3.2.6) 

In the present thesis, “high” and “low” frequencies will be referred to exclusively in terms of 

being above or below Biot’s characteristic frequency (de la Puente et al. (2008a)). At low 

frequencies, the fluid flow in pores in laminar, on the other hand at high frequencies, the fluid 

flow is turbulent and change in this flow regime must be accommodated using frequency-

dependent correction factor in the term involving resistive damping b . In the special case 
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when 0η = , resulting in zero value of b , the frequency regime is also considered to be 

“low”. 

 

4 Finite-difference Modelling 

4.1 Introduction 

In this part we present a numerical method to solve Biot's equations in 2D homogeneous, 

fluid saturated poroelastic media based on a first order hyperbolic formulation whose 

unknowns consist of solid phase velocity, velocity of fluid phase relative to that of solid 

phase, solid stress, and fluid pressure.  

We have developed algorithm for calculation of above-mentioned unknowns using finite-

difference method as a common numerical technique for solving differential equations. In the 

finite-difference method variables and constants in the differential equation are discretized 

onto regular or irregular grid and the spatial and temporal derivatives are replaced by finite-

difference operators acting on variables at specific locations. We have implemented this 

algorithm into computational program 2DFD_DVS, which is closely described in book 

Moczo et al. (2014). The employed finite-difference scheme has the properties of fourth order 

accuracy in space and second order in time. The corresponding scheme is said to be staggered, 

which means that different material properties and variables are defined at different locations 

on the grid. Moreover the scheme is explicit. 

The method, we are adapting was elaborated by professor Moczo and associate professor 

Kristek in Moczo et al. (2000, 2002, 2004, 2007a, 2011, 2014), Kristek et al. (2002, 2009, 

2010), Kristek and Moczo (2003), Moczo and Kristek (2005). 

In following subchapters we will describe this method for 2D poroelastic wave propagation. 

4.2 Computational domain and space-time grid 

The most natural choice of the finite-difference grid for velocity-stress formulation is the 

staggered grid, in which each particle-velocity component and each shear stress-tensor 

component has its own grid position. The only exception is the same grid position for the 

diagonal stress-tensor components. Two-dimensional computational domain consists of 

rectangle in Cartesian coordinate system with the x -axis horizontal and positive to the right, 

and the y -axis negative downward. The horizontal top side of the rectangle represents planar 

free surface. Two vertical and one bottom side represent nonreflecting boundaries. 

Computational domain is covered by uniform space-time grid with grid spacing h. 
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4.3 Velocity-stress FD scheme 

The eight coupled partial differential equations are numerically solved with an explicit, time-

domain, FD method. Dependent variables are stored on uniformly-spaced, staggered, spatial 

grid. Figure 1 depicts the distribution of the variables over elementary rectangular cell of the 

2D grid. Velocity components are stored on the top-right and bottom-left edges of the cell, 

while compressional stresses (resp. pressures) and shear stresses are on bottom-right and top-

left edges, respectively. The corresponding poroelastic constants are also redistributed on 

elementary rectangular cell. 

 
Figure 1 Grid cell of the staggered grid. 

Using finite-difference method, equations (3.2.4) can be written in discretized form for FD 

method as 



- 13 - 
 

 

( )
{ ( )

( )

( ) ( )

( )

1/2 1/2
, 1/2 , 1/2

, 1/2 1/2, 1/2 1/2, 1/22

, 1/2

3/2, 1/2 3/2, 1/2

, 1 , , 2 , 1

1/2
, 1/2, 1/2

1 9

8

1

24
9 1

8 24

2

m m

I L I L

m m

I L I L I L

f I L

m m

I L I L

m m m m

I L I L I L I L

m

f I LI L

VX VX

m TXX TXX
hm

TXX TXX

TZX TZX TZX TZX

h
b QX

ρ ρ

ρ

+ −
+ +

+ + + − +

+

+ + − +

+ + −

+
++

= +

∆ 
+ −− 

− −


+ − − − 

+ +( )

( ) ( ) ( )

1/2
, 1/2

1/2, 1/2 1/2, 1/2 3/2, 1/2 3/2, 1/2, 1/2

9 1

8 24

m

I L

m m m m

f I L I L I L I LI L

QX

P P P Pρ

−
+

+ + − + + + − ++

 
  

 
+ − − −   

  (4.3.1) 

 

( )
{ ( )

( )

( ) ( )

( )

1/2 1/2
1/2, 1 1/2, 1

1/2, 1 1, 1 , 12

1/2, 1

2, 1 1, 1

1/2, 3/2 1/2, 1/2 1/2, 5/2 1/2, 1/2

1/2,

1 9

8

1

24
9 1

8 24

m m

I L I L

m m

I L I L I L

f I L

m m

I L I L

m m m m

I L I L I L I L

f I L

VZ VZ

m TXZ TXZ
hm

TXZ TXZ

TZZ TZZ TZZ TZZ

b

ρ ρ

ρ

+ −
+ + + +

+ + + + +

+ +

+ + − +

+ + + + + + + −

+ +

= +

∆ 
+ −− 

− −


+ − − − 

+ ( )

( ) ( ) ( )

1/2 1/2
1/2, 1 1/2, 11

1/2, 3/2 1/2, 1/2 1/2, 5/2 1/2, 1/21/2, 1

2

9 1

8 24

m m

I L I L

m m m m

f I L I L I L I LI L

h
QZ QZ

P P P Pρ

+ −
+ + + +

+ + + + + + + −+ +

 
+  

 
+ − − −   

 (4.3.2) 

 

( ){ ( )

( )

( )

2

1/2 1/2
, 1/2 , 1/2

2

, 1/2

1/2, 1/2 1/2, 1/2, 1/2
2

, 1/2

3/2, 1/2 3/2, 1/2

, 1 ,

2

2

1 9

8
2

1

24
9 1

8 2

f
m m

I L I L

f
I L

m m

f I L I LI L

f

I L

m m

I L I L

m m

I L I L

b
m

QX QX
b

m

TXX TXX
b h

m

TXX TXX

TZX TZX

ρ
ρ ρ

ρ
ρ ρ

ρ
ρ

ρ ρ

+ −
+ +

+

+ + − ++

+

+ + − +

+

 
− − ∆ 

= − 
 − + ∆
 

∆ 
− −  − + ∆ 
 

− −

+ − − ( )

( ) ( ) ( )

, 2 , 1

1/2, 1/2 1/2, 1/2 3/2, 1/2 3/2, 1/2, 1/2

4

9 1

8 24

m m

I L I L

m m m m

I L I L I L I LI L

TZX TZX

P P P Pρ

+ −

+ + − + + + − ++


− 

 
+ − − −   

  (4.3.3) 



- 14 - 
 

 

( ){ ( )

( )

2

1/2 1/2
1/2, 1 1/2, 1

2

, 1/2

1, 1 , 11/2, 1
2

1/2, 1

2, 1 1, 1

1/2, 3/2 1/2, 1/2

2

2

1 9

8
2

1

24
9

8

f
m m

I L I L

f
I L

m m

f I L I LI L

f

I L

m m

I L I L

m

I L I L

b
m

QZ QZ
b

m

TXZ TXZ
b h

m

TXZ TXZ

TZZ TZZ

ρ
ρ ρ

ρ
ρ ρ

ρ
ρ

ρ ρ

+ −
+ + + +

+

+ + ++ +

+ +

+ + − +

+ + + +

 
− − ∆ 

= − 
 − + ∆
 

∆ 
− −  − + ∆ 
 

− −

+ −( ) ( )

( ) ( ) ( )

1/2, 5/2 1/2, 1/2

1/2, 3/2 1/2, 1/2 1/2, 5/2 1/2, 1/21/2, 1

1

24

9 1

8 24

m m m

I L I L

m m m m

I L I L I L I LI L

TZZ TZZ

P P P Pρ

+ + + −

+ + + + + + + −+ +


− − 

 
+ − − −   

  (4.3.4) 

 

 

( ){ ( ) ( )

( ) ( )

1
1/2, 1/2 1/2, 1/2

1/2 1/2 1/2 1/2
1, 1/2 , 1/2 2, 1/2 1, 1/21/2, 1/2

1/2 1/2 1/2
1/2, 1 1/2, 1/2, 21/2, 1/2

9 1
2

8 24

9 1

8 24

m m

I L I L

m m m m

c I L I L I L I LI L

m m m

c I L I L I L II L

TXX TXX

VX VX VX VX
h

VZ VZ VZ VZ

λ µ

λ

−
+ + + +

− − − −
+ + + + + − ++ +

− − −
+ + + + + ++ +

=

∆  
+ + − − −  

+ − − −( )

( ) ( ) ( )

( ) ( ) ( )

1/2
1/2, 1

1/2 1/2 1/2 1/2
1, 1/2 , 1/2 2, 1/2 1, 1/21/2, 1/2

1/2 1/2 1/2 1/2
1/2, 1 1/2, 1/2, 2 1/2, 11/2, 1/2

9 1

8 24

9 1

8 24

m

L

m m m m

I L I L I L I LI L

m m m m

I L I L I L I LI L

M QX QX QX QX

M QZ QZ QZ QZ

α

α

−
−

− − − −
+ + + + + − ++ +

− − − −
+ + + + + + −+ +

 
  

 
+ − − −  

 
+ − − −  

 

 (4.3.5) 

 ( ) ( )

( ) ( )

1
, 1 , 1

1/2 1/2 1/2 1/2
, 1 , 3/2 , 1/2 , 5/2 , 1/2

1/2 1/2 1/2 1/2
, 1 1/2, 1 1/2, 1 3/2, 1 3/2, 1

9 1

8 24

9 1

8 24

m m

I L I L

m m m m

I L I L I L I L I L

m m m m

I L I L I L I L I L

TXZ TXZ

VX VX VX VX
h

VZ VZ VZ VZ

µ

µ

−
+ +

− − − −
+ + + + −

− − − −
+ + + − + + + − +

=

∆   
+ − − −   

 
+ − − −   

  (4.3.6) 



- 15 - 
 

 

( ){ ( ) ( )

( ) ( )

1
1/2, 1/2 1/2, 1/2

1/2 1/2 1/2 1/2
1, 1/2 , 1/2 2, 1/2 1, 1/21/2, 1/2

1/2 1/2 1/2
1/2, 1 1/2, 1/2, 21/2, 1/2

9 1

8 24

9 1
2

8 24

m m

I L I L

m m m m

c I L I L I L I LI L

m m m

c I L I L I L II L

TZZ TZZ

VX VX VX VX
h

VZ VZ VZ VZ

λ

λ µ

−
+ + + +

− − − −
+ + + + + − ++ +

− − −
+ + + + + ++ +

=

∆  
+ − − −  

+ + − − −( )

( ) ( ) ( )

( ) ( ) ( )

1/2
1/2, 1

1/2 1/2 1/2 1/2
1, 1/2 , 1/2 2, 1/2 1, 1/21/2, 1/2

1/2 1/2 1/2 1/2
1/2, 1 1/2, 1/2, 2 1/2, 11/2, 1/2

9 1

8 24

9 1

8 24

m

L

m m m m

I L I L I L I LI L

m m m m

I L I L I L I LI L

M QX QX QX QX

M QZ QZ QZ QZ

α

α

−
−

− − − −
+ + + + + − ++ +

− − − −
+ + + + + + −+ +

 
  

 
+ − − −  

 
+ − − −  

 (4.3.7) 

 

( ){ ( ) ( )

( ) ( )

1
1/2, 1/2 1/2, 1/2

1/2 1/2 1/2 1/2
1, 1/2 , 1/2 2, 1/2 1, 1/21/2, 1/2

1/2 1/2 1/2
1/2, 1 1/2, 1/2, 2 1/2, 11/2, 1/2

9 1

8 24

9 1

8 24

m m

I L I L

m m m m

I L I L I L I LI L

m m m

I L I L I L I LI L

P P

M VX VX VX VX
h

M VZ VZ VZ VZ

α

α

−
+ + + +

− − − −
+ + + + + − ++ +

− − −
+ + + + + + −+ +

=

∆  
− − − −  

+ − − −( )

( ) ( ) ( )

( ) ( ) ( )

1/2

1/2 1/2 1/2 1/2
1, 1/2 , 1/2 2, 1/2 1, 1/21/2, 1/2

1/2 1/2 1/2 1/2
1/2, 1 1/2, 1/2, 2 1/2, 11/2, 1/2

9 1

8 24

9 1

8 24

m

m m m m

I L I L I L I LI L

m m m m

I L I L I L I LI L

M QX QX QX QX

M QZ QZ QZ QZ

−

− − − −
+ + + + + − ++ +

− − − −
+ + + + + + −+ +

 
  

 
+ − − −  

 
+ − − −  

  (4.3.8) 

Symbols ∆  and h  represent time step and grid spacing, respectively. In equation (4.3.1)-

(4.3.8) we approximate velocity 
x

q  and 
z

q  by time average in following manner 
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  (4.3.9) 

The equations (4.3.1)-(4.3.8) can be further simplified using following substitution for 

poroelastic constants 
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 (4.3.10) 

Note that all constants from 
x

A  to 
z

F  in equations (4.3.10) have same unit as one over 

density, that is 1 3kg m− . This is advantageous in case of simulating wave propagation in 

multiple layer system with material discontinuities. Moczo et al. (2002) proposed finite-

difference scheme based on a heterogeneous formulation of equation of motion for modeling 

seismic wave propagation in elastic media. They explicitly constructed heterogeneous 

displacement-stress finite-difference scheme with the volume harmonic averaging of the shear 

modulus and the bulk modulus, and volume arithmetic averaging of the density which is 

based on simplified boundary conditions inside heterogeneous media and which allows for 

arbitrary position of the material discontinuity in the spatial grid. This approach could be used 

also for poroelastic media. 
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4.4 Free surface 

The free surface boundary condition aims at representing the contact of poroelastic material 

with vacuum. At this boundary, both the stresses and fluid pressure vanish. If surface S  is 

planar and perpendicular to the z -axis, this implies 

 { }0, 0; ,i z p i x zσ = = ∈   (4.4.1) 

After following restrictions (4.4.1) last three equations (3.2.4)  become 

 

( )2 0
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0

0

x xz z
c c

xz

x xz z

xz

v qv q
M

z x x z

vv

x z

v qv q

x z x z

qq

x z

µ λ λ α

α

 ∂ ∂∂ ∂
+ + + + = 

∂ ∂ ∂ ∂ 

∂∂
+ =

∂ ∂

 ∂ ∂∂ ∂
+ + + = 

∂ ∂ ∂ ∂ 

 ∂∂
+ = 

∂ ∂ 

  (4.4.2) 

Note that the last relation in (4.4.2) does not follow from restriction (4.4.1). This last equation 

of equations (4.4.2) is due to the fact that on the free surface, shear stress vanishes for both 

the solid and the fluid phases. Thus we have four equations to solve for four unknowns 

, ,
x z x

v v q  and 
z

q . 

In order to simulate planar free surface in the 2D th4 -order staggered-grid finite-

difference scheme, we use stress-imaging technique proposed by Levander (1988). Other 

methods might be used, such as adjusted finite-difference approximation developed by 

Kristek et al. (2002) and Moczo et al. (2004). 

Stress imaging in the (2,4) VS SG scheme 

In the staggered grid there are two options for localizing the planar free surface. In the first 

approach, the free surface is placed at the horizontal grid plane going through the positions of 

the horizontal velocity components v , ,
x x

q  stress-tensor components ,
x x z z

σ σ  and fluid 

pressure p . We indicate this formulation by letter H. In the second approach, the planar free 

surface coincides with the horizontal grid plane going through the positions of v , ,
z z z x

q σ . We 

indicate this formulation by letter W. In our program we use only W formulation of stress 

imaging. Therefore, we present here only this formulation. 
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The W formulation: The position of the free surface and quantities above the free surface is 

shown in Figure 2. The formulation can be summarized as follows: 

(0) 0

( / 2) ( / 2)

P( / 2) ( / 2)

( ) ( )

( 3 / 2) (3 / 2)

P( 3 / 2) (3 / 2)

TZX

TZZ h TZZ h

h P h

TZX h TZX h

TZZ h TZZ h

h P h

=

− = −

− = −

− = −

− = −

− = −

  

(0)VZ  and (0)QZ  are obtained from th4 -order approximation to the equation of motion in 

which z z

z

σ∂

∂
 is obtained also using imaged 

z z
σ  values. 

( / 2)VX h−  is obtained from th4 -order approximation of the second equation of (4.4.2) 

( / 2)QX h−  is obtained from th4 -order approximation of the fourth equation of (4.4.2)  

( )VZ h−  and ( )QZ h−  are obtained from th4 -order approximation of the first and third 

equations of (4.4.2) 

Other quantities are treated according to scheme (4.3.1)-(4.3.8). 

 
Figure 2 Grid cells in vicinity of free surface. 
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4.5 Perfectly matched layers 

In this chapter we are primary following work of Kristek et al. (2009) and Komatitsch and 

Martin (2008). The perfectly matched layers are used at the computational edge to absorb the 

outgoing waves. Here we present unsplit formulation of PML. 

We replace spatial differentiation operator /
i

x∂ ∂  in equations (3.2.3) by the 

differentiation operator 

 
1

i i
x s x

∂ ∂
=

∂ ∂�
  (4.5.1) 

where s is stretching factor 

 
i

s γ
α ω

Ω
= +

+
  (4.5.2) 

and ,γ Ω  and α  being, in general, function of 
i

x  . 

For special case with 1γ =  and 0α =  equation (4.5.2) yields 

 1
i

s
ω

Ω
= +   (4.5.3) 

In our simations we have considered this very case above. 

Using expression (4.5.2), equations (3.2.3) together with relations for solid matrix strain 

and fluid content variation defined in Chapter 3.2 can be modified using Fourier transform 

into this particular form 
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  (4.5.4) 

In order to simplify the PML equations, the field variables are split as follows 
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Equations (4.5.4), using (4.5.5), can be according to Zeng and Liu (2001 b) written as 
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  (4.5.6) 

By rewriting 1/ s  in following form 

 
1

i

b

aγ ω
−

+
  (4.5.7) 

where 

 2
,a bα

γ γ

Ω Ω
= − + =   (4.5.8) 

and defining memory variables , , , , ,i i i i i i

j i j i j i
θ ψ ϑ φ ζ ξ  for , ; , ;i x z j x z= = satisfying 

following ordinary differential equations 
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  (4.5.9) 

one can obtain ,after applying Inverse Fourier Transform, the modification of equations 

(4.5.6) in following form 
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 (4.5.10) 
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Equations (4.5.10) represent final form of PML formulation of poroelastic equations. 

4.6 Source Implementation 

The poroelastic formulation involves two distinct phases present within a porous medium, 

while forces might be applied on both of them. A body-force source acting on the solid frame 

is available as well as pressure sources acting on the bulk material, the pore fluid, or a 

combination of both. Generally, the application of the source considers four cases. 

In the first case is energy partitioned between the two phases by multiplying fluid phase 

source-time function 
f

s  and solid phase source-time function 
s

s  with factor ϑ . Then the 

resulting source terms 
s

f  and 
f

f  acquire following form 

 ( ) ( ) ( ) ( ) ( )1 ,s s f sf t s t f t s tϑ ϑ= − =   (4.6.1) 

where ϑ  is usually equal to porosity φ . 

Second case and third case of source partitioning consist in applying force purely on solid 

phase, while ϑ  in equations (4.6.1) is equal to zero or in applying force purely on fluid, 

while setting ϑ  in the same equations to one, respectively. 

In the last case, the force is applied to both the solid and the fluid phase with the same 

amplitude (one), so both factors ( )1 ϑ−  and ϑ  are equal to one. 

In this thesis we solely used as source-time function the Gaussian function 

 
( )( )

2
0 0

2 2
0

1
( )

2
f t t

s t e
f

π

π

− −
=   (4.6.2) 

where 0t  is the time delay and 0f  is the dominant frequency. Source terms can be added to 

equations (3.2.3) depending on the specific source implementation that is to be simulated. In 

our tests we have considered explosive line source as a stress increment for both the diagonal 

stresses and pore pressure. 
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5 Results 

In this section we demonstrate our results for a line source in an unbounded homogeneous 

poroelastic medium. As we have stated in Chapter 4.4, the free surface condition is 

implemented in our computational program, but for purpose of numerical solution against 

analytical, we have situated source and receivers in such depth and taken such time window 

that reflected waves from free surface are not present on synthetic seismograms. Therefore for 

this special case, we can consider our model as an unbounded poroelastic medium. 

As we have already mentioned earlier, the existence of a slow compressional wave is 

indication that the medium is a porous. Therefore the homogeneous poroelastic half-space is 

not only defined by the P-wave speed fVP  and S-wave speed VS , but also by the slow P-

wave speed sVP . Values of wave speeds can be calculated theoretically (Carcione 1996b). 

Values of wave speeds together with material parameters introduced in Chapter 3.2 are listed 

in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material parameters 

( )1
fVP m s−  2639  

( )1
sVP m s−  960  

( )1VS m s−  1449  

( )3
s

kg mρ −  2650  

( )3
f

kg mρ −  880  

( )3kg mρ −  2473  

( )sK G Pa  12.2 

( )fK G Pa  1.985 

( )dK G Pa  9.6 

( )G Paµ  5.1 

φ   0.1 

( )Pa sη  0 

Table 2 

 Model 1 Model 2 Model 3 

Source parameters  

min ( )f Hz    0.2   

max ( )f Hz    120   

( )0f Hz    30  

( )0t s   0.04  

Parameters of 

numerical simulation 
 

( )t s�   max0.1 t∆   

( )h m  5 3 1.5 

( )max mλ   13195  

( )min mλ   8  

Table 3 
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The wavefield is generated by an explosive dilatational line source partitioned between two 

phases according to the forth case, mentioned in Source Implementation Chapter. Its time 

function is given by Gaussian function ( )( )
2

0 0 2 2
0( ) / 2

f t t
s t e f

π
π

− −
=  with dominant frequency 

0f  and time shift 0t  listed in Table 3. 

Source-time function is pictured in Figure 3, together with its spectrum. 

 

Figure 3 Source-time function. 

The simulations are performed in frequency band from 0.2 Hz  up to 80 Hz . The upper bound 

of frequency band corresponds to decrease of spectral amplitude by approximately three 

orders.  

For simulation purposes, we have considered 3 models, while each of them has different 

value of grid spacing. The different grid spacing values hwere picked, in order to demonstrate 

accuracy of solution and undesirable grid dispersion. The parameters of numerical simulations 

for different Models are listed in Table 3. 

The expression for maximal time step maxt∆  for two-dimensional case was derived by 

following work of O’Brien (2010). The following relation represents maximal time step 

 
2

2 2 1 3
max

3

4h 6

72

s s s s
t

s

− −
∆ =   (5.1.1) 

where 

 ( )

2
1

2

2 2
3

2 2

2

f

c f

c

s m

s m M M

s M M M

ρ ρ

λ µ ρ α ρ

λ µ α

= −

= + + −

= + −

  (5.1.2) 

The source-receiver configuration is depicted in Figure 4 with positive x -axis going from 

left to right and negative z -axis going from up to down, while the origin of coordinate system 

is in left-top corner. 
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Figure 4 Source-receiver configuration. 

The source-receiver configuration at Figure 4 is the same for each of the models with different 

size of the grid spacing. Receivers lie on the circle of the radius of 100 m that is centered at 

source location [ ]6750, 6750− . The PML, with width of thirty times the grid spacing h , is 

applied at all boundaries except the top one, where free surface condition is satisfied. 

The FD method for different grid spacing h  was tested against an analytical solution for 

wave propagation in a porous medium. The analytical solution is given by Dai et al. (1995) 

for a homogenous porous medium with explosive dilatational line source. Material 

parameters, together with source parameters for numerical simulations in the Table 2 and 3 

are the same as for analytical. The analytical solution used has 0η = , hence there is no 

damping included. Although 0η =  represents an inviscid fluid in a porous media, it allows 

us to verify the method against the exact analytical solution. 

In order to reach better accuracy and to prevent the effect of interpolation of velocities 

from neighboring grid cells at the grid cell corresponding to specific receiver location, we 

could not fulfill the same source-receiver distance condition of 100 m  for every proposed 

model. Therefore the abovementioned distance is different for different grid spacing, but very 

close to the value of 100 m . This not even provide better precision, but also preserve 

symmetry of receivers from opposite points around the circle that is centered at the source. 
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Corresponding analytical solutions are naturally also calculated with respect to source-

receiver distance in numerical solution.  

Numerical solutions for three different grid spacing and analytical solutions are compared 

in Figures 5–16. To clearly see all plotted waveforms, the analytical and numerical solutions 

have been normalized to one, using their maximum amplitude. Each figure contains 

horizontal and vertical components of solid phase velocity 
i

v  and 
i

q  velocity of fluid phase 

relative to that of solid phase for two different source-receiver positions. The position of 

receiver with respect to receiver is illustrated by little circle situated in 
x

q  component plot. 

As expected, the slow compressional wave is present at all components, since the 

viscosity is equal to zero and receivers are close to the source. From observation of synthetic 

seismograms, we can see that slow P-wave propagates with smaller speed than fast P-wave. 

This is in agreement with theoretical calculations of wave speeds. We also observe that the 

amplitude of the slow P-wave is stronger at 
i

q  component, whereas its amplitude at 
i

v  

component is much weaker compared to the amplitude of fast P-wave.  

Comparison of numerical and analytical solution for grid spacing h 5 m=  shows 

oscillatory tails present at this large grid spacing caused by numerical dispersion. However, 

for grid spacing h 3 m=  and h 1.5 m= , the visual inspection clearly shows that the 

numerical and analytical solutions match extremely well with no or very small visible 

difference.  

In order to quantify the comparison between the analytical and numerical signals, we 

have used misfit criteria, following the work of Kristeková et al. (2006). The misfit criteria 

are based on the time-frequency representation of the seismograms obtained as the continuous 

wavelet transform with the analyzing Morlet wavelet. The misfit criteria include time-

frequency envelope (TFEM) and phase misfits (TFPM), time-dependent envelope (TEM) and 

phase misfits (TPM), frequency-dependent envelope (FEM) and phase misfits (FPM), and 

single-valued envelope (EM) and phase misfits (PM). For brevity, we only calculated misfits 

for receiver one and two located at the positions, which are illustrated in Figure 4. The misfits 

for receiver one are depicted in Figures 17-19 and for two in Figure 20-22. Each of these 

figures contains TFEM, TFPM, TPM, FEM and FPM of  ,x zv v  and ,x zq q  components. 
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The misfits for both the solid and fluid velocities in Figures 17-19  and Figures 20-22 show 

that the numerical methods give a very good fit with the analytical solution as grid spacing is 

decreasing. 

As we can see, the TFEM, TFPM, TPM, FEM and FPM for 1. receiver take bigger values 

than for 2. receiver. This is due to the fact, that grid dispersion is strongest for wave 

propagating along a coordinate axis (1. receiver case) and weaker for a wave propagating 

along plane diagonal (2. receiver case).  This was demonstrated by Moczo et al. (2000). 

By comparison of misfits corresponding to solid velocity and misfits corresponding to 

velocity of fluid phase relative to that of solid phase, one can observe that values of different 

misfit functions are in general smaller for solid phase. This is specially visible in time-

frequency envelope plot. We know that to avoid the effect of numerical grid dispersion, we 

have to sampled the minimal wavelength (in our case is the wavelength corresponding to slow 

P-wave) by certain number of samples. This was clearly violated for model with grid spacing 

h 5 m=  and therefore in this case fast wave with bigger wavelength fit analytical solution 

better than undersampled wavelength of slow wave. If we now restrict ourselves on part of 

seismograms where slow wave is present, and if we realize that the TFEM is more sensitive 

on bigger wave amplitudes, we come to the conclusion that even if the matching of analytical 

and numerical are the same in the region of slow wave presence for both the 
i

v  and 
i

q  

component, the amplitude difference between mentioned components affect the TFEM the 

most. 

In order to verify the spatial convergence of our scheme, we have also computed single-

valued envelope (EM) and single-valued phase (PM) misfits for every model. For brevity, we 

only show here single-valued misfits for 1. receiver in Figure 23. As we can see, the single-

valued misfits fit 4th -order curve (denoted by purple line) very well. 

 
Figure 23. Single-valued envelope and single-valued phase misfits for receiver 1. 
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6 Conclusions 

In this master's thesis we have: 

• presented an overview of equations of poroelasticity relevant for seismic wave 

propagation in poroelastic medium 

• developed a numerical scheme using two-dimensional, staggered, nd2 -order accurate 

in time and th4 -order accurate in space, finite-difference method on a uniform 

rectangular grid 

• developed a computational algorithm for simulating wave propagation in the 

poroelastic medium 

• encoded computational algorithm in a FORTRAN 95 program 

• implemented AFDA for simulating a planar free surface, PML for simulating 

absorbing boundaries, excitation of wavefield by line source 

• numerically tested the developed algorithm and computer code for model of an 

unbounded homogeneous poroelastic medium 

• demonstrated an optional level of agreement of our numerical solution with an 

analytical solution 

The developed algorithm provides a basis for further methodological development. That will 

be aimed in incorporation realistic attenuation in the computational model. 
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Abstract  

Numerical simulations have been more widely used in recent years as the speed of computers 

has increased. Such computer simulations have been proven to be particularly useful in 

relation of ground motion modeling in and around sedimentary basins from large earthquake. 

The approach of numerical modelling has been motivated by need of earthquake ground 

motion prediction at locations with no or insufficient earthquake recordings. The distribution 

and strength of ground motion can be affected by many geophysical and geological factors. 

For example, complex local structure not only changes the arrival times and amplitudes of 

individual seismic phases, it can also drastically alter local amplitude of surface ground 

motion. For more realistic ground motion prediction at local water-saturated sedimentary 

structures we need to incorporate poroelasticity in our computational model. Contrary to 

single-phase continuum (viscoelastic or viscoplastoelastic) it is necessary to consider presence 

of fluid-filled pores in media. In this master's thesis we have developed computational 

algorithm and computational code for numerical modelling of seismic wave propagation in a 

poroelastic medium based on the finite-difference method. We have verified the proper 

implementation of equations of poroelasticity in framework of the finite-difference method 

using extensive numerical tests and comparisons of the finite-difference simulations with 

exact solutions in the homogeneous unbounded poroelastic medium.  

 

Key words: poroelastic media, wave propagation, seismic motion, finite-difference method 
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Zusammenfassung 

 

Mit der zunehmenden Geschwindigkeit der Computer wurden numerische Simulationen in 

den letzten Jahren immer weiter verbreitet. Solche Computersimulationen haben sich 

besonders im Zusammenhang mit der Bodenbewegungsmodellierung nach großen Erdbeben 

in und um Sedimentbecken als nützlich erwiesen. Der Ansatz der numerischen Modellierung 

wurde motiviert durch die Notwendigkeit der Vorhersage der Erdbebenbodenbewegung an 

Standorten mit keinen oder nur unzureichenden Erdbebenaufnahmen. Die Verteilung und 

Stärke der Bodenbewegung kann durch viele geophysikalische und geologische Faktoren 

beeinflußt werden. Komplexe lokale Struktur, zum Beispiel, verändert nicht nur die 

Ankunftszeiten und die Amplituden der einzelnen seismischen Phasen; es kann auch die 

lokale Amplitude der Oberflächenbewegung drastisch verändern. Für eine realistischere 

Bodenbewegungsvorhersage auf lokalen wassergesättigten Sedimentstrukturen müssen wir 

die Poroelastizität in unser Berechnungsmodell integrieren. Im Gegensatz zum 

(viskoelastischen oder viskoplastoelastischen) Ein-Phasen-Kontinuum ist es notwendig, das 

Vorhandensein von flüssigkeitsgefüllten Poren in den Medien in Betracht zu ziehen. In dieser 

Masterarbeit haben wir Computeralgorithmen und -codes zur numerischen Modellierung 

seismischer Wellenausbreitung in einem poroelastichen Medium erstellt, auf der Grundlage 

der Finite-Differenzen-Methode. Wir haben dabei die ordnungsgemäße Umsetzung der 

Gleichungen der Poroelastizität im Rahmen der Finite-Differenzen-Methode überprüft, mit 

umfangreichen numerischen Tests und Vergleichen der Finite-Differenzen-Simulationen mit 

den exakten Lösungen im homogenen unbegrenzten poroelastischen Medium. 

 

Schlüsselwörter: poroelastische Medien, Wellenausbreitung, seismische Bewegungen, Finite-

Differenzen-Methode 
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