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Kurzfassung

Die Arbeit widmet sich dem Studium des makroskopischen Grenzwert verschiedener
kinetischer Gleichungen mit langsam abklingenden Gleichgewichtsverteilungen. Im klas-
sischen Fall ist die Gleichgewichtsverteilung eine Maxwell-Verteilung. Für diesen Fall
besagt ein bekanntes Resultat aus der Theorie der kinetischen Gleichungen, dass das
asymptotische Verhalten einer linearen kinetischen Transportgleichung mit parabolischer
Skalierung durch eine Wärmeleitungsgleichung beschrieben wird. Wird die Maxwell-
Verteilung jedoch durch eine langsam abklingende Gleichgewichtsverteilung ersetzt, han-
delt es sich beim makroskopischen Limes um eine fraktionale Wärmeleitungsgleichung,
Die Arbeit besteht aus vier voneinander unabhängigen Teilen, welche für eine Publika-
tion eingereicht bzw. bereits akzeptiert wurden.

Im ersten Teil dieser Arbeit wird eine gestörte lineare kinetische Transportgleichung
betrachtet, wobei eine ausgezeichnete Richtung im Konvektionsterm eingeführt wird.
Eine mögliche Interpretation dieses Modells ist die Modellierung von Bakterien, welche
unter Einfluss von Chemotaxis, in Regionen mit einer höheren Wirkstoffkonzentration
gelockt werden. Dabei ist die Wirkstoffkonzentration orts- und zeitabhängig. Betrachtet
man daher im Rahmen dieses Modells die Gleichgewichtsverteilung des gesamten Streu-
operators, so besteht zusätzlich zur Geschwindigkeitsabhängigkeit eine Abhängigkeit von
Ort und Zeit. Trotz dieser Schwierigkeiten sind wir in der Lage A-Priori-Abschätzungen
herzuleiten, die es erlauben zum Grenzwert überzugehen und eine fraktionale Drift-
Diffusions-Gleichung auf rigorose Weise abzuleiten.

Im zweiten Teil betrachten wir den Fall einer linearen Vlasov-Boltzmann Gleichung
mit langsam abklingender Gleichgewichtsverteilung auf dem Ganzraum sowie einer orts-
und zeitabhängigen äußeren Kraft. Es ist bekannt, dass der lineare Boltzmann-Streu-
operator eine ‘spectral gap’ besitzt. Jedoch erhalten wir ebenfalls einen koerzitiven Op-
erator, wenn wir eine externe Kraft hinzufügen. Dieses Ergebnis liefert uns geeignete A-
priori-Abschätzungen, welche es ermöglichen, den makroskoptischen Limes auf rigorose
Weise herzuleiten. Die Gleichung, die den Grenzwert beschreibt, ist eine fraktionale
Wärmeleitungsgleichung mit einem advektiven Term. Für ein bestimmtes Abklingver-
halten der Gleichgewichtsverteilung betrachten wir auch den Grenzwert im Fall starker
Felder welcher als mikroskopischer Grenzwert eine Drift-Gleichung liefert.

Der dritte Teil behandelt die Berechnung des makroskopischen Limes einer linearen
fraktionalen Vlasov-Fokker-Planck-Gleichung. Dabei ist die externe Kraft nicht mit
einer Poisson-Gleichung gekoppelt. Vielmehr handelt es sich um eine gegebene orts- und
zeitabhängige Funktion. Es ist eine wohlbekannte Tatsache, dass der Fokker-Planck-
Operator koerzitiv ist. Allerdings können wir mit Hilfe der fraktionalem-Poincaré-
Ungleichung auch die Koerzitivität für den fraktionalen Fokker-Planck-Operator nach-
weisen. Zusätzlich können wir die Koerzitivität auch für einen Operator zeigen, der sich
aus dem fraktionalen Fokker-Planck-Operator und der externen Kraft zusammensetzt.
Diese Eigenschaft sowie der Einsatz quadratischer Entropien erlaubt es, A-Priori-Abs-
chätzungen herzuleiten. Mit diesen sowie einer geeignet gewählten Testfunktion gelingt
es uns schließlich, den makroskopischen Limes rigoros zu bestimmen.

Im letzten Teil der Arbeit wird eine lineare kinetische Transportgleichung mit langsam
abklingender Gleichgewichtsverteilung in einem glatt-berandeten Gebiet mit ‘zero inflow’-
Randbedingungen betrachtet. Zunächst werden A-Priori-Abschätzungen mit Hilfe qua-
dratischer Entropien, welche aus der Koerzitivität des Streuoperators folgen, abgeleitet.
Mit Hilfe einer Technik, die auch als Methode der Momente bezeichnet wird, kann
schließlich der makroskopische Limes bestimmt werden. Dabei wird diese Methode so
angepasst, dass auch die Randbedingungen berücksichtigt werden können. Insbeson-
dere müssen die Testfunktion in der Nähe des Randes quadratisch abfallen. Im Falle



eines beschränkten konvexen Gebiets erinnert der makroskopische Grenzwert an eine
fraktionale Wärmeleitungsgleichung mit einem eingeschränkten fraktionalen Laplace-
Operator. Für nicht-konvexe Gebiete liefert der makroskopische Limes jedoch überraschen-
derweise einen vollkommen anderen Operator.



Abstract

This thesis is devoted to the study of macroscopic limits of various kinetic equations
featuring a heavy tailed equilibrium distribution. In the classical case in which the
equilibrium distribution is a Maxwellian it is a well-known result in kinetic theory that
the asymptotic behavior of a linear kinetic equation with a parabolic scaling is governed
by a heat equation. However, if the Maxwellian is replaced by an equilibrium distribution
having a heavy tail then the macroscopic limit is a fractional heat equation.

This thesis consists of four independent works which have been submitted or ac-
cepted for publication. The first part of this work consist in the study of a perturbed
linear kinetic transport equation in which a preferred direction is introduced into the
perturbation term. One possible interpretation of this model is the modeling of bac-
teria which under chemotaxis choose to go to regions of higher chemo-attractant. The
chemo-attractant concentration is space and time dependent. Therefore if we consider
the equilibrium distribution of the whole scattering operator we shall have a space and
time dependent equilibrium distribution in addition to the velocity dependence. How-
ever, we can overcome this difficulty and obtain a priori estimates which are used to
pass to the limit and obtain a fractional-drift-diffusion equation in a rigorous manner.

In the second part we consider the case of a linear Vlasov-Boltzmann equation with a
heavy tailed equilibrium distribution in the whole domain and with a given external force
depending in space and time. It is a well-known fact that the linear kinetic scattering
operator has a spectral gap, however, we also obtain a coercive operator if we add the
external force term. This result give us appropriate a priori estimates which enable us to
obtain the macroscopic limit in a rigorous manner. The limiting equation is a fractional
heat equation with an advective term. In addition, under certain decay behavior of the
equilibrium distribution we also consider the high-field limit obtaining as a macroscopic
limit a drift equation.

The third part is concerned with obtaining the macroscopic limit of a linear Vlasov-
fractional-Fokker-Planck equation where the external force is not coupled to a Poisson
equation but it is given and it is space and time dependent. It is well-known that the
Fokker-Planck operator is coercive, however, thanks to a fractional Poincaré inequality
we also prove that the fractional-Fokker-Planck operator is coercive. In addition, we
prove that if we introduce an operator consisting of the fractional-Fokker-Planck op-
erator together with the external force term the coercivity property also holds. This
property allow us to obtain a priori estimates using quadratic entropies. Using these a
priori estimates and an auxiliary test function method permit us to obtain the macro-
scopic limit rigorously.

Finally, the fourth part consists in the study of a linear kinetic transport equation
with heavy tailed equilibrium distribution in a smooth bounded domain with zero inflow
boundary conditions. We obtain a priori estimates thanks to quadratic entropies de-
rived from the coercivity property of the scattering operator. The macroscopic limit is
established using a technique known as the moments method. This method is adapted
in order to take into account the boundary conditions. In particular, the test functions
considered have a quadratic decay at the boundary. The macroscopic limit is reminiscent
of a fractional heat equation with a restricted fractional Laplace operator in a bounded
convex domain. However, in a non-convex domain we unexpectedly obtain a completely
different operator.
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Introduction

“When nothing seems to help, I go
and look at a stonecutter hammering
away at his rock, perhaps a hundred
times without as much as a crack
showing in it. Yet at the hundred
and first blow it will split in two, and
I know it was not that last blow that
did it, but all that had gone before”

Jacob A. Riis

In recent years the concept of anomalous diffusion has become a topic of intense
study since it has been used as a tool for the description of many phenomena. Ad-
vances in tracking mechanisms have shed light in the way animals, bacteria, charged
particles in plasmas, among many other phenomena move (see [49, 35, 34] and the refer-
ences therein). In this thesis our main goal is in obtaining in a rigorous manner evolution
equations with nonlocal operators as hydrodynamic limits of kinetic transport equations
with heavy tailed equilibrium distributions. More precisely, when a suitable rescaling of
a linear kinetic equation with heavy tailed equilibrium distribution is performed we are
able to obtain an evolution equation for the macroscopic density in which a fractional
Laplacian appears. The underlying stochastic phenomena of this nonlocal partial differ-
ential equations is connected with Lévy flights.

One way to describe the evolution of a large number of interacting particles is through
Newton’s law of motion. This is the so-called microscopic description of the system.
Another possibility for the description of such a system is via the so-called macroscopic
description in which the evolution of the density of the system is described (among
other quantities such as the momentum and temperature). Yet another approach is a
statistical description or also known as mesoscopic description. This approach was first
introduced by J. C. Maxwell in [39] and L. Boltzmann [13] in their study of, respectively,
the rings of Jupiter and the dynamic of gases, where a large system of interacting
particles is involved. The idea consists in introducing a density function f = f(x, v, t)
(or probability density function) which gives the density of particles at time t ≥ 0 and
position x ∈ Ω (where Ω is a smooth bounded domain of Rd or the whole space Rd) with
a velocity v ∈ Rd; the quantity f(x, v, t) dxdv represents the number of particles in the
volume element dxdv with center (x, v) ∈ Ω × Rd. Then the evolution of the density
function f is described by the Boltzmann equation

∂tf + v · ∇xf = Q(f)

where the operator Q accounts for the interaction between the particles in a rarefied
gas or as the scaterring by a background material (see e.g. [51, 42]). The need for this
approach comes from the fact that the microscopic description has a high dimensional-
ity. For instance, if we are interested in the description of the air in a room with typical
room temperature we will have to describe the evolution of around 1020 molecules per
1cm3 and therefore it is intractable from a numerical point of view even for the highly
efficient supercomputers of our modern era.

There are several phenomena in which the mesoscopic description has been applied
with great success. For instance in the environment of space shuttles reentering earth
the air is rarefied and therefore the Knudsen number is not small; thus the Navier-Stokes
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equations do not apply. However, kinetic transport equations have played an important
role in the modeling of this phenomena (see [16]). Another example coming from biology
is the study of bacterial movement in tubes filled with nutrients. In [47], the authors
based on experimental data were able to identify the characteristic paramenters and
proposed a kinetic equation that describes in a very accurate way not only the shape of
the traveling waves observed in the experiments but the velocity of them as well. Many
other applications as well as an up-to-date account on kinetic theory can be found in
[51], [42], [29], [45] and the references therein.

Let us consider the following simple linear Boltzmann transport equation

∂tf + v · ∇xf =

∫
Rd
M(v)f(v′)−M(v′)f(v) dv′

= Q(f) (0.1)

where the function M is a Maxwellian, namely, M(v) = Ce−|v|
2

and C > 0 is a normal-
ization constant. To the best of our knowledge the first works dealing with hydrodynamic
limits of (0.1) are [37], [30], [8] and [52]. These papers treat different aspects and gener-
alizations of (0.1) and, in particular, they proved that under a parabolic scaling, namely,
(x, t) 7→ (x/ε, t/ε2), (0.1) takes the form

ε2∂tfε + εv · ∇xfε =

∫
Rd
M(v)fε(v

′)−M(v′)fε(v) dv′ (0.2)

and when ε → 0 the distribution function fε converges to ρM , in some sense, where ρ
solves the heat equation

∂tρ = ∆ρ.

This limit can be performed in a rigorous way using a Hilbert’s expansion, see for
instance [24]. A key ingredient for obtaining in the limit the heat equation is the fact
that

∫
|v|2M(v) dv < +∞ since the equilibrium distribution is a Maxwellian. However,

in the case in which the second moment of the equilibrium distribution of the collision
operator in (0.2) is not finite we can still recover a limit if we look at a different time-
scale. This was done for the first time simultanously in [41] using analytic techniques
and in [32] via a stochastic analysis approach. The technique introduced in [41] consists
in taking the Fourier transform in the space variable and Laplace transform in the time
variable. More precisely, in [41] it is assumed that the equilibrium distribution function
M(v) of (0.1) is such that

M(v) = M(−v), M(v) > 0,

∫
M dv = 1, for all v ∈ Rd, (0.3)

M(v) ∼ κ

|v|d+α
, as |v| → ∞, (0.4)

where α ∈ (0, 2) and κ is a positive constant. Then the second moment is not finite and
the parabolic scaling does not give a meaningful limit. However, it was proven in [41]
that if instead we rescale as (x, t) 7→ (x/ε, t/εα) then (0.1) takes the form

εα∂tfε + εv · ∇xfε =

∫
Rd
M(v)fε(v

′)−M(v′)fε(v) dv′ (0.5)

and we can identify the limit of fε, when ε → 0, as ρ(x, t)M(v) where ρ solves in the
distributional sense

∂tρ = −(−∆)α/2ρ.
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The fractional Laplacian (−∆)α/2 is defined as

(−∆)α/2ρ(x) = cd,αP.V.

∫
Rd

ρ(x)− ρ(y)

|x− y|d+α
dy.

Therefore on the limit we obtain a nonlocal partial differential equation. The method
used in [41] has the drawback of not being able to handle kinetic equations in which
the cross-section is space or time dependent. In order to overcome this difficulty, in [5]
a Hilbert expansion approach was introduced and in [40] a moments type method was
used. The latter showed to be a very powerful tool in the study of hydrodynamic limits
and it will be one of the essential techniques used in this thesis.

Another way to obtain a fractional heat equation as a macroscopic limit is by con-
sidering linear Boltzmann equations in which the collision frequency is degenerate. This
was explored in [6] where a fractional heat equation is obtained after an appropriate
rescaling in space and time. On the other hand, there have also been recent develop-
ments in the numerical solution of the rescaled linear Boltzmann equation (0.5). In [21]
and [22] asymptotic preserving schemes were introduced.

Nonlocal operators have been recently the object of intense study due to its applica-
tions in areas such as Financial Mathematics [23], dislocation dynamics [14], spreading
of tracers in water currents [7], criminology [20], among many others. Another reason
why they have become popular is due to the fact that they offer new interesting mathe-
matical problems which have deep connections with stochastic analysis. The difference
between a nonlocal partial differential equation and a local one strives in the fact that
for the local one only values in an arbitrarily small neighborhood need to be computed
in contrast with a nonlocal one where points far out of the point of computation play a
role. In this thesis we derive nonlocal evolution equations of drift-diffusion type where
the diffusion is given by a fractional Laplacian. This type of equations play an important
role for example in the study of conservation equations with fractional diffusion of the
form

∂tu+Dxf(u) + (−∆)α/2u = 0

since in order to get a better understanding of the solutions its linearized version needs
to be analyzed.

This thesis is divided into five Chapters, each one from the second to the fifth one
consist of a publication or a submitted preprint. Therefore the notation is only consistent
within each Chapter. Chapter 2 is a collaboration with Prof. C. Schmeiser in which
we study a perturbation of a linear transport equation with the aid of two techniques:
The Fourier-Laplace transform method introduced in [41] and the moments method
introduced in [40]. More precisely, we consider the equation

εα ∂tfε + εv · ∇xfε = Q0(fε) + εα−1Q1(fε)

=: Qε(fε) (0.6)

where

Q0(f) :=

∫
Rd
Mf ′ −M ′f dv′

and

Q1(f) :=

∫
Rd

[Φ(v, v′, c)Mf ′ − Φ(v′, v, c)M ′f ] dv′.
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We assume on M the following:

M > 0, M is rotationally symmetric,

∫
RN

M(v)dv = 1,

M(v) =
γ

|v|N+α
, for |v| ≥ 1, 1 < α < 2, γ > 0. (0.7)

On the other hand, we assume that c ∈
(
W 1,∞(Rd × [0,∞))

)d
and on Φ we make

several assumptions depending on the method used, see Theorem 1.1 of Chapter 3. For
instance, for the moments method we assume that (1 + |v| + |v′|)Φ is bounded and
Lipschitz continuous with respect to c. A possible motivation for the collision kernel of
the linear transport equation (0.6) could be the modeling via kinetic transport equations
of the chemotactic motility of microorganisms driven by gradients of chemo-attractors.
The modeling of the movement of microorganisms through kinetic equations was started
by the pioneering works [2] and [44]. For a recent account of different approaches in the
modeling of microorganisms consult [38]. One of the most well studied microorganisms is
the bacterium Escherichia coli, whose swimming pattern can be described as a run-and-
tumble process [9, 10]. This processes are characterized by periods of straight running
alternated with periods of instantaneous reorientation (or tumbling). In the presence of a
spatial chemo-attractant gradient, this stochastic process is biased upwards the gradient,
albeit E. coli is too small it is believed that it measures gradients in time along its
path and increases its tumbling frequency if it experiences decreasing chemo-attractant
concentrations. This mechanism is believed to cause the desired drift. In recent years,
the progress in the mechanisms for tracking particle trajectories [4, 33, 3] suggests that
certain microorganisms behave following a so-called Lévy flight. In particular, there is
evidence that the bacteria E. coli adopts a Lévy flight type movement when there is
scarcity of food resources [53]. The Lévy flight type movement is encoded in the kinetic
equation through the heavy tailed function M , whereas the drift caused by the chemo-
attractant gradient is described by the function Φ(v, v′, c), depending on the velocities
v′ and v before and, respectively, after the jump, and on the gradient c.

In order to find the appropriate a priori estimates needed to pass to the limit in (0.6)
we use the coercivity of the collision operator −Qε defined in (0.6). This property of the
operator −Qε is proven following a similar line of arguments as in [26]. Let us note that
in contrast to [19] where only the coercivity of the operator −Q0 is enough to obtain a
priori estimates, in Chapter 3 we need to use the coercivity of the operator Qε.

Since we assume that the gradient c is space and time dependent the equilibrium
distribution function denoted as Fε is also expected to be space and time dependent
in addition to the v dependence. The existence and uniqueness of the equilibrium
distribution function Fε such that

∫
Fε dv = 1 and Fε > 0 is proven using either a

fix point argument or the Krein-Rutman Theorem. Multiplying (0.6) by fε/Fε and
integrating by parts we obtain

εα

2

d

dt
‖fε‖2L2(dv dx/Fε)

= −ε
α

2

∫ ∫
∂tFε
Fε

f2
ε

Fε
dv dx+

ε

2

∫ ∫
v · ∇xFε
Fε

f2
ε

Fε
dv dx

+

∫ ∫
Qε(fε)

fε
Fε

dv dx.

Using the coercivity of the collision operator −Qε together with the bounds∥∥∥∥∂tFεFε

∥∥∥∥
∞
,

∥∥∥∥v · ∇xFεFε

∥∥∥∥
∞
≤ εα−1λ,

where λ > 0 and independent of ε, imply uniform bounds on the quadratic entropy:
supt∈[0,T ] ‖fε(·, ·, t)‖L2( dv dx/Fε) ≤ C(T ) <∞ for every T > 0 arbitrarily big but finite.
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However, the norm is ε dependent through the equilibrium distribution Fε, thus noting
that there exists µ1, µ2 > 0 such that µ1M ≤ Fε ≤ µ2M , uniformly in x, v and t, we
obtain the a priori estimates with the ε independent norm ‖ · ‖L2

M−1 (R2d). On the other

hand, thanks to the coercivity of −Qε and the estimate |Fε −M | ≤ εα−1CM , where
C > 0, we obtain a priori estimates also on (rε := ε1−α(fε − ρεM)). From the a priori
estimate on (fε) we can easily derive a priori estimates for (ρε) and using the moments
method of [40] we pass to the limit and prove that fε ⇀

? ρ(x, t)M(v), as ε → 0 in
L∞(0, T ;L2

M−1(R2d)) where ρ solves in the distributional sense

∂tρ+∇x · (ρu(c)) +A(−∆)α/2ρ = 0,
ρ(x, 0) = ρin(x) :=

∫
Rd f

in(x, v) dv,
(0.8)

with

A = γ

∫
Rd

w2
1|w|−d−α

1 + w2
1

dw, u(c) =

∫
Q1(M)v dv,

and γ is defined in (0.7). Let us note that in contrast to (0.11) the drift term in (0.8) is
due to the bias of the vector field c which appers inside the cross-section of the scattering
operator Qε.

The third Chapter consist of the preprint [1] and is a joint work with Prof. Antoine
Mellet. We deal with the question of obtaining the macroscopic limit of a rescaled
Vlasov-Boltzmann equation. More precisely, let us consider the following rescaled kinetic
transport equation

εα∂tfε+εv·∇xfε+εα−1E ·∇vfε =

∫
Rd
σ(v, v′)M(v)fε(v

′)−σ(v′, v)M(v′)fε(v) dv′ (0.9)

where 1 ≤ α < 2, the cross-section σ is such that

0 < σ1 ≤ σ(v, v′) = σ(v′, v) ≤ σ2,

the equilibrium distribution M satisfies (0.3)-(0.4) and the external force E belongs to
the space [W 1,∞([0,∞)×Rd)]d. In [40] the problem of studying the asymptotic behavior
of the solution fε was posed and left open; in [1] we solved this problem. One of the key
ingredients is to introduce the operator

Tε(f) = −Q(f) + εα−1E · ∇vf. (0.10)

It is a well known fact that the operator Q is a coercive operator with a spectral gap
in the space L2

M−1 (see [26]). Moreover, we proved that the operator Tε is also coercive
and has a spectral gap in the space L2

F−1
ε

(Rd) where Fε > 0, has mass one and spans

the kernel of the operator Tε. Using this property of the operator Tε we are able
to obtain appropriate a priori estimates on the quadratic entropy of the solution fε.
More precisely, we obtain that (fε) is uniformly bounded in ε in L∞((0, T );L2

F−1
ε

(R2d))

for finite but arbitrarily big T > 0. Another key observation is to note that Fε is
bounded above and below by a constant times M and therefore the uniform estimate
also holds in the space L∞((0, T );L2

M−1(R2d)). Then up to a subsequence we show that
fε ⇀

? ρ(x, t)M(v) for the noncritical case 1 < α < 2, whereas for the critical case α = 1
we get that fε ⇀

? ρ(x, t)F (v − E(x, t)) in L∞(0, T ;L2
M−1(R2d)). On the other hand,

for the case α = 2 it turns out that the correct scaling is

ε2 ln(ε−1)∂tfε + εv · ∇vfε + εα−1 ln(ε−1)E · ∇vfε = Q(fε).
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Then the asymptotic behavior of fε gives on the limit the following drift-diffusion equa-
tion for the macroscopic density ρ:

∂tρ+∇x(Eρ)−∆ρ = 0. (0.11)

Finally another result in Chapter 3 is that if we choose α ∈ (1, 2) to be the asymptotic
behavior of M as given in (0.4) then we study the high field asymptotic regime:

∂tfε + v · ∇xfε +
1

ε
E · ∇vfε =

1

ε
Q(fε).

In this case we obtain that fε ⇀
? ρ(x, t)F (v−E(x, t)) where ρ solves in the distributional

sense
∂tρ+ div (Eρ) = 0.

On Chapter 4 we deal with the macroscopic limit of the Vlasov-fractional-Fokker-
Planck equation

∂tf + v · ∇xf + E · ∇vf = −(−∆)α/2(f) +∇v(vf) (0.12)

where E ∈ (W 1,∞([0,∞) × Rd))d and α ∈ [1, 2]. Let us note that the case α = 2
corresponds to the case of the Vlasov-Fokker-Planck equation where the external force
is a given function. We adapt the techniques introduced in [15] and [25] to prove that

there exists a unique solution f of (0.12) in L2((0, T )×Rd;Hα/2
v (Rd)) for any finite but

arbitrarily big T > 0. One of the main difficulties in comparison to the works [15, 25] is
due to the nonlocal character of the fractional Laplacian.

Then we study the asymptotic behavior as ε→ 0 of the solution fε of

εα ∂tfε + εv · ∇xfε + εα−1E · ∇vfε = −(−∆)α/2(fε) +∇v(vfε). (0.13)

Let us note that the collision operator defined as

Lα(f) := −(−∆)α/2(fε) +∇v(vfε) (0.14)

has an equilibrium distribution that we denote by Gα, see [11]. Moreover, the operator
−Lα has a spectral gap thanks to the fractional Poincaré inequality (or also known as
Φ-entropy inequality, see [28])

−
∫
Rd
Lα(f)

f

Gα
dv ≥ C

∫
Rd

(f − ρfGα)
dv

Gα
. (0.15)

Introducing the operator

Bε(f) := −Lα(f) + εα−1E · ∇vf

we prove that there exists a unique function Fε > 0 such that

Bε(Fε) = 0,

∫
Rd
Fε dv = 1,

and Fε(x, v, t) = Gα(v − εα−1E(x, t)). Moreover, the operator Bε also has a spectral
gap: ∫

Rd
Bε(f)

f

Fε
dv ≥ C

∫
Rd

(f − ρfFε)2 dv

Fε
.
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One of the main difficulties in comparison to [18] is that the equilibrium distribution of
Bε depends on x, v and t, and therefore, we need to estimate ∂tFε and ∇xFε in order
to get a priori estimates. These estimates strive on the fact that the density function
Gα is the probability density function of an α-stable process and using results of [12] we
can control Fε in terms of Gα and the terms ∂tFε, ∇vFε and ∇xFε can be estimated by
∇vGv. Thus multiplying (0.13) by f/Fε, using the coercivity and spectral gap property
of the operator Bε we obtain thanks to Gronwall’s inequality the necessary a priori
estimates which imply that fε ⇀

? ρ(x, t)Gα(v) in L∞(0, T ;L2
G−1
α

(R2d)) where ρ is the

weak-? limit of a subsequence of (ρε) in L∞(0, T ;L2(Rd)) for α ∈ (1, 2]. Moreover, we
also obtain that (rε := ε−α/2[fε − ρεFε]) is uniformly bounded with respect to ε in
L2
G−1
α

((0, T ) × R2d). Next we use the auxiliary test function method introduced in [18]

consisting in considering the auxiliary equation

εv · ∇xψε − v · ∇vψε = 0 in Rd × Rd × R+,
ψ(x, v, 0) = ϕ(x, t) in Rd × R+,

(0.16)

where ϕ ∈ C∞c (Rd × [0,∞)), which can be readily integrated via the method of char-
acteristics yielding ψε(x, v, t) = ϕ(x + εv, t). Multiplying (0.13) by ψε and using the a
priori estimates obtained for (fε), (ρε) and the residue (rε) we obtain that ρ satisfies in
the distributional sense

∂tρ+∇x · (Eρ) + (−∆)α/2ρ = 0 in Rd × R+,
ρ(x, 0) = ρin(x) in Rd. (0.17)

On the other hand, for the case α = 1 we obtain that fε ⇀
? ρ(x, t)G1(v − E(x, t)) in

L∞(0, T ;L2
G−1

1

(R2d)) and the limiting equation satisfied by the density function ρ in the

sense of distributions is

∂tρ+∇x(Eρ) + (−∆)1/2ρ = 0 in Rd × R+,
ρ(x, 0) = ρin(x) in Rd. (0.18)

Finally, in Chapter 5 we consider the derivation of a fractional heat equation from a
linear transport equation, both equations posed spatially in a smooth bounded domain
with zero inflow boundary conditions on the kinetic equation. There are several equiv-
alent definitions of the fractional Laplacian in the whole domain (see for instance [36]
where ten equivalent definitions are given). However, in a bounded domain there are
several possibilities. Each definition is linked with a stochastic process. For instance,
let us consider the so-called restricted fractional Laplacian denoted as (−∆ |Ω)α/2 and
defined as

(−∆ |Ω)α/2f(x) := cd,αP.V.

∫
Rd

f(x)− f(y)

|x− y|d+α
dy

where cd,α > 0, f ∈ C∞c (Ω) and f ≡ 0 in Rd \Ω where Ω is a smooth bounded subset of
Rd . For an up-to-date account of fractional Laplacian operators see [43]. For the op-
erator (−∆ |Ω)α/2 the stochastic process underlying it is an α-stable stochastic process
taking place inside Ω and killed upon leaving Ω. Another possibility is the so-called spec-
tral fractional Laplacian, see for instance [54] for its definition and [50] for the stochastic
process connected with it. In [48] it was proven that this two definitions are different
since, for instance, the eigenfunctions of the restricted fractional Laplacian are no better
than Hölder continuous up to the boundary whereas for the spectral fractional Laplacian
the eigenfunctions are smooth up to the boundary. This result is of paramount impor-
tance since in many articles both definitions were used interchangeably leading to false
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results. In Chapter 5 we introduce a new definition of fractional Laplacian in a bounded
domain. This definitions arises naturally as the macroscopic limit of a kinetic equation
posed in a bounded domain with zero inflow boundary conditions and it coincides with
restricted fractional Laplacian in bounded convex domains. The method to obtain the
macroscopic limits relies in the moments method introduced in [40] with a particular
choice of the test functions and a priori estimates based on quadratic entropies. We
conclude with a discussion relating our result with [27] were the behavior of the solution
of the fractional heat equation with restricted fractional Laplacian is discussed. Finally,
let us mention that along the lines of this work the only other work that we are aware
of, to the best of our knowledge, is [17] where a fractional heat equation is obtained
as a macroscopic limit of a kinetic fractional-Fokker-Planck equation in a circle with
specular and absorption boundary conditions. The macroscopic limit for the absorption
case corresponds to the restricted fractional Laplacian and thus is different from the
macroscopic limit obtained by us.
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Abstract

A fractional diffusion equation with advection term is rigorously derived from a
kinetic transport model with a linear turning operator, featuring a fat-tailed equi-
librium distribution and a small directional bias due to a given vector field. The
analysis is based on bounds derived by relative entropy inequalities and on two
recently developed approaches for the macroscopic limit: a Fourier-Laplace trans-
form method for spatially homogeneous data and the so called moment method,
based on a modified test function.

1 Introduction

The goal of this paper is to study the limit as ε→ 0 of the distribution function fε(x, v, t)
(depending on position x ∈ RN , velocity v ∈ RN , and time t ≥ 0), solving the kinetic
Cauchy problem

εα∂tfε + εv · ∇xfε = Qε(fε) in RN × RN × R+ ,
fε(t = 0) = f in in RN × RN , (1.1)

where the linear collision operator is given by

Qε(f) =

∫
RN

(Tε(v
′ → v, x, t)f ′ − Tε(v → v′, x, t)f)dv′ , (1.2)

with Tε(v
′ → v, x, t) =

(
1 + εα−1Φ(v, v′, c(x, t))

)
M(v) ,

with the prescribed vector field c(x, t) ∈ RN , and with the equilibrium distribution M(v)
with the properties

M > 0 , M is rotationally symmetric,

∫
RN

M(v)dv = 1 ,

M(v) =
γ

|v|N+α
, for |v| ≥ 1 , 1 < α < 2 , γ > 0 . (1.3)

The decay property is responsible for the choice of the scaling in (1.1), which will turn
out to be significant in the following. Note that M has finite first order but not second
order moments. As usual in kinetic theory, f ′ denotes evaluation at v′.

The collision operator can be written as Qε = Q0 + εα−1Q1 with the dominating,
directionally unbiased relaxation operator

Q0(f) = ρfM − f , ρf :=

∫
f dv ,

and the turning operator

Q1(f) =

∫
[Φ(v, v′, c)Mf ′ − Φ(v′, v, c)M ′f ]dv′ ,



2 P. Aceves-Sánchez and C. Schmeiser

supposed to bias velocity changes towards the direction given by c. Here and in the
following, dv, dv′, and dx denote the Lebesgue measure on RN and dt the Lebesgue
measure on R+, which always have to be understood as the integration domains, except
stated otherwise. In the scaling process, the ratio of characteristic times between the
biased and unbiased velocity jump mechanisms has been denoted by εα−1, and then
macroscopic length and time scales have been introduced.

A possible motivation for the model (1.1) is the description of ensembles of motile
microorganisms, subject to a chemical signal encoded in the vector field c, which might
be interpreted as the spatial gradient of a chemo-attractant. One of the best studied
microorganisms is the bacterium Escherichia coli, whose swimming pattern can be de-
scribed as a run-and-tumble process [5, 6], characterized by periods of straight running
alternated with (much shorter) periods of reorientation (or tumbling). Under the ideal-
izing assumption of instantaneous velocity jumps, this can be described stochastically by
kinetic transport equations, which have been introduced as models for microorganisms
in the pioneering works [1] and [18]. In the presence of a chemo-attractant gradient, the
velocity jump process is biased, which is described by the function Φ(v, v′, c), depending
on the velocities v′ and v before and, respectively, after the jump, and on the gradient
c.

From a macroscopic point of view (where length and time scales are large compared to
individual runs), a standard description of the resulting motility is by Brownian motion
with a drift. On the other hand, the recent progress in tracking individual trajectories
[2, 3, 9, 12, 16] allowed to show that the movement of certain microorganisms is better
described by a so-called Lévy flight. In particular, there is evidence that E. coli adopts a
Lévy flight type movement when there is scarcity of food resources [23]. Macroscopically,
Lévy flights show a scaling behavior different from Brownian motion, where the average
displacement scales with the square root of time, a behavior called fractional Brownian
motion. In the model considered here, this kind of behavior is described by a high
probability of larger velocities encoded in the fat tail (1.3) of the equilibrium distribution
M .

For an equilibrium distribution M with finite second order moments, the scaling with
α = 2 would be appropriate, and the macroscopic limit ε→ 0 would lead to a convection
diffusion equation for the limit of the macroscopic density ρf (see, e.g., [7]). On the other
hand it has been shown in [4, 14, 15] that with the assumption (1.3) and with Q1 = 0
the macroscopic limit leads to a fractional diffusion equation; see also [11], where this
has been carried out via a probabilistic approach. Fractional diffusion equations with
advection have been the object of intense study in recent years. Issues such as regularity
have been addressed by many authors, most notably by Silvestre and co-workers [20, 21].
The problem of a rigorous derivation of a fractional diffusion equation with convection
from kinetic models has been posed, but left open in [14]. This is the purpose of the
present work.

Two different methods will be used, leading to results with slightly different assump-
tions on the data. The Laplace-Fourier transform approach of [15] can only be used in
the case of constant c. On the other hand, it requires milder assumptions on the turning
rate Φ than the moment method of [14]. In these works, the coercivity properties of the
leading order collision operator Q0 are the essential ingredient for obtaining estimates
uniform with respect to ε. The important contribution of the present work is to employ
the equilibrium distribution of the full collision operator Qε and a corresponding entropy
dissipation property. The latter holds although detailed balance is not required, as has
first been shown in [8] and actually is known now as a general result for generators of
Markov processes [10], like Qε, which is obviously preserving positivity and conserving
mass: ∫

Qε(f) dv = 0 .
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Fractional diffusion is generated by a fractional power of the Laplacian (fractional Lapla-
cian), which can be defined via the Fourier transform F as a multiplication operator in
Fourier coordinates,

F((−∆)α/2ρ)(k) := |k|αF(ρ)(k) , (1.4)

or as a singular integral,

(−∆)α/2ρ(x) = cN,α P.V.

∫
RN

ρ(x)− ρ(y)

|x− y|N+α
dy , (1.5)

where P.V. denotes the Cauchy principal value, and

cN,α = Γ(α+ 1)

(∫
RN

w2
1|w|−N−α

1 + w2
1

dw

)−1

,

with the Gamma function Γ. The value of cN,α will be verified by our results below.
Note that for α > 1 a principal value can be avoided by the equivalent representation

(−∆)α/2ρ(x) = cN,α

∫
RN

ρ(x)− ρ(y)− (x− y) · ∇xρ(x)

|x− y|N+α
dy .

For a detailed discussion of the properties of the fractional Laplacian consult [13, 17, 22].
We only note that it is formally self-adjoint, which is a straightforward consequence of
both representations (1.4) and (1.5).

The main result of this work is the rigorous validity of the macroscopic limit ε→ 0:

Theorem 1.1. Let f in ∈ L2( dv dx/M), (1 + |v|)f in ∈ L1
+( dv dx), and either

Assumption A: c = const ∈ RN , (1 + |v|+ |v′|)Φ is bounded, or

Assumption B: c = const ∈ RN , Φ is bounded,

∫
Φ(v′, v, c)M ′dv′ = 0 , or

Assumption C: c ∈W 1,∞( dx dt)N , (1 + |v|+ |v′|)Φ is bounded

and Lipschitz continuous with respect to c ,

Then there exists ρ ∈ L∞loc( dt;L2( dx)), such that the solution fε of (1.1) converges, as
ε→ 0, to ρM in L∞loc( dt;L2(dv dx/M)) weak*, and ρ solves in the distributional sense
the Cauchy problem

∂tρ+∇x · (ρu(c)) +A(−∆)α/2ρ = 0 ,
ρ(t = 0) = ρin :=

∫
f indv .

(1.6)

with

A = γ

∫
RN

w2
1|w|−N−α

1 + w2
1

dw , u(c) =

∫
Q1(M)v dv .

The main parts of the proof will be given in Sections 4 (Assumptions A and B) and
5 (Assumption C), after presentation of the formal macroscopic limit for a simple model
problem in Section 2, and the derivation of several uniform (in the small parameter ε)
bounds on the solution of (1.1) in Section 3.

2 Formal asymptotics of a simple model

In this section the Cauchy problem (1.1), (1.2) is considered with constant c ∈ RN and
with the turning kernel

Φ(v, v′, c) = c · v
|v|

. (2.7)
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This means that the turning rate is independent of the incoming velocity v′ and prefers
outgoing velocities v in the direction of c. The Fourier-Laplace approach to the macro-
scopic limit will be carried out formally, deferring a rigorous justification for the general
form of the turning kernel satisfying Assumption A or B of Theorem 1.1 to Section 6.
Note that (2.7) does not satisfy Assumption A, but Assumption B by its oddness with
respect to the first variable.

We introduce the Fourier transformation F with respect to x and the Laplace trans-
formation L with respect to t,

(Ff)(k) :=

∫
e−ik·xf(x) dx , (Lf)(p) :=

∫ ∞
0

e−ptf(t) dt , p > 0 , k ∈ RN ,

and define the Fourier-Laplace transform

f̂ε := LFfε .

Taking the Fourier-Laplace transform of (1.1) with the turning kernel (2.7) yields

εαpf̂ε − εαFf in + εiv · kf̂ε = M
(
1 + εα−1c · v/|v|

)
ρ̂ε − f̂ε , (2.8)

with ρε := ρfε , where the evenness of M has been used. This can be rewritten as

f̂ε =
εαFf in

1 + εαp+ εiv · k
+
M
(
1 + εα−1c · v/|v|

)
ρ̂ε

1 + εαp+ εiv · k
. (2.9)

Integration with respect to v leads to a closed equation for ρ̂ε (a consequence of the
simple form of the model problem), which can be written in the form(∫

εαp+ ε2αp2 + ε2(v · k)2 + εiv · k
(1 + εαp)2 + ε2(v · k)2

M dv

−
∫
εα−1c · v/|v|(1 + εαp− εiv · k)

(1 + εαp)2 + ε2(v · k)2
M dv

)
ρ̂ε =

∫
εαFf in

1 + εαp+ εiv · k
dv

Again by the evenness of M , the imaginary part of the first integral and the real part
of the second integral on the left hand side vanish. Therefore, division by εα gives(∫

p+ εαp2 + ε2−α(v · k)2

(1 + εαp)2 + ε2(v · k)2
M dv + i

∫
c · v/|v|(v · k)

(1 + εαp)2 + ε2(v · k)2
M dv

)
ρ̂ε

=

∫
Ff in

1 + εαp+ εiv · k
dv (2.10)

Now we are prepared for formally passing to the limit, which is easy for all terms except
one (because of the nonexistence of second order moments of M):∫

ε2−α(v · k)2

(1 + εαp)2 + ε2(v · k)2
M dv = O(ε2−α) + ε2−αγ

∫
|v|>1

(v · k)2|v|−N−α

(1 + εαp)2 + ε2(v · k)2
dv

With the coordinate transformation v = (w1k/|k| + w⊥)/(ε|k|) (a stretching and a
rotation), it becomes clear that the right hand side converges as ε→ 0 to

A|k|α , with A = γ

∫
RN

w2
1|w|−N−α

1 + w2
1

dw > 0 .
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For the computation of the limit of the imaginary term in (2.10), the rotational symmetry
of M is used. For the formal limit ρ of ρε we obtain

(p+A|k|α + iBc · k) ρ̂ = Fρin =

∫
Ff in dv , with B =

1

N

∫
|v|M(v) dv > 0 .

This is the Fourier-Laplace transformed version of the Cauchy problem

∂tρ+∇x · (ρBc) +A(−∆)α/2ρ = 0 , ρ(t = 0) = ρin ,

i.e. (0.8) with

u(c) = Bc =

∫
Q1(M)v dv , Q1(M) = c · v

|v|
M .

3 Uniform bounds

The derivation of bounds uniform in the small parameter ε is based on the equilibrium
distribution Fε(v;x, t) of the full collision operatorQε = Q0+εα−1Q1, defined as solution
of the problem

Qε(Fε) = 0 ,

∫
Fε dv = 1 . (3.11)

In this problem, x and t play the role of parameters, present through the dependence of
Q1 on the vector field c(x, t).

Lemma 3.1. Let the assumptions of Theorem 1.1 hold. Then, for ε > 0 small enough,
the problem (3.11) has a unique solution Fε satisfying

1− εα−1Φ

1 + εα−1Φ
≤ Fε
M
≤ 1 + εα−1Φ

1− εα−1Φ
, (3.12)

where Φ is an upper bound for the modulus |Φ| of the turning kernel. Furthermore,∣∣∣∣∂tFεFε

∣∣∣∣ , ∣∣∣∣v · ∇xFεFε

∣∣∣∣ ≤ εα−1λ , (3.13)

with the constant λ independent of ε, and λ = 0 under Assumptions A and B.

Proof. The existence and uniqueness result follows from the appendix of [8] or from [19],
but it can also be easily derived by contraction, using the fixed point formulation for
Gε = Fε

M ∈ L
∞( dv).

Gε(v) =
1 + εα−1

∫
Φ(v, v′, c)M ′G′ε dv′

1 + εα−1
∫

Φ(v′, v, c)M ′ dv′
= εα−1F [Gε](v) +

1

1 + εα−1
∫

Φ(v′, v, c)M ′ dv′
,

which implies the estimates (3.12) in a straightforward way (using the normalization of
M and Fε).

For the time derivative, we get

∂tGε = εα−1

(
F [∂tGε] +

(
Gε
∫
∇cΦ(v′, v, c)M ′ dv′ +

∫
∇cΦ(v, v′, c)M ′G′ε dv′

)
· ∂tc

1 + εα−1
∫

Φ(v′, v, c)M ′ dv′

)
,

which is of course only relevant in the case of Assumption C in Theorem 1.1. As a
consequence of this assumption (boundedness of ∇cΦ and of ∂tc) and of the uniform
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L∞ bound (3.12) for Gε, the inhomogeneity is O(εα−1), uniformly in (x, t, v). This
implies, again by contraction, a uniform L∞ bound of O(εα−1) for ∂tGε, giving the
bound on ∂tFε/Fε in (3.13), again as a consequence of (3.12).

Analogously, the components of ∇xGε are shown to be O(εα−1). Finally, multipli-
cation of the equation for ∇xGε by v and using the boundedness of (|v| + |v′|)Φ and
(|v|+ |v′|)∇cΦ leads to an O(εα−1) bound on v ·∇xGε and therefore also for v ·∇xFε/Fε.
�

Remark 3.2. As consequences of (3.12),

(a) µ1M ≤ Fε ≤ µ2M ,

(b) |Fε −M | ≤ εα−1µ3M ,

hold with ε-independent constants µ1, µ2, µ3, which has already been used in the above
proof and will be used in the following.

Entropy decay properties for collision operators with detailed balance have been a
classical tool in kinetic theory. The detailed balance assumption has been dispensed
with in [8] (see also [10]), where a proof of the following result can be found.

Lemma 3.3. Let the assumptions of Theorem 1.1 hold and let ε be small enough such
that 1 + εα−1Φ ≥ νµ2 > 0. Then the collision operator Qε satisfies the coercivity
inequality

−
∫
Qε(f)

f

Fε
dv ≥ ν‖f − ρfFε‖2L2( dv/Fε)

for all f ∈ L2( dv/Fε) . (3.14)

The existence and uniqueness of a nonnegative solution fε of (1.1) for small enough
ε is a classical result of kinetic theory and will be assumed here. The coercivity result
Lemma 3.3 will be used for the derivation of bounds for the solution. The dependence
of the equilibrium distribution Fε on x and t destroys entropy decay, but fortunately
uniform bounds on finite time intervals will still be possible.

Lemma 3.3 suggests the use of L2-norms with weight 1/Fε:

εα

2

d

dt
‖fε‖2L2(dv dx/Fε)

= −ε
α

2

∫ ∫
∂tFε
Fε

f2
ε

Fε
dv dx+

ε

2

∫ ∫
v · ∇xFε
Fε

f2
ε

Fε
dv dx

+

∫ ∫
Qε(fε)

fε
Fε

dv dx ,

where the second term on the right hand side is the result of an integration by parts.
Now we use (3.13) and (3.14):

εα

2

d

dt
‖fε‖2L2( dv dx/Fε)

≤ εαλ‖fε‖2L2( dv dx/Fε)
− ν‖fε − ρεFε‖2L2( dv dx/Fε)

, (3.15)

Theorem 3.4. Let the assumptions of Theorem 1.1 hold. Then for small enough ε > 0

(i) fε is uniformly (with respect to ε) bounded in L∞
(

dt;L1( dv dx)
)

and in

L∞
(
e−λt dt;L2( dv dx/M)

)
with λ from (3.15), vanishing under Assumptions A

and B,

(ii) ρε is uniformly bounded in L∞
(
e−λt dt;L2( dx)

)
and in L∞

(
dt;L1( dx)

)
,

(iii) rε := ε1−α(fε − ρεM) is uniformly bounded in L2
(
e−2λt dt;L2( dv dx/M)

)
.

Remark 3.5. By uniform boundedness of fε in L∞
(
e−λt dt;L2( dv dx/M)

)
, we mean

that e−λt‖fε‖L2( dv dx/M) is bounded uniformly in ε and in t ∈ R+.
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Proof. The first result (i) is a consequence of the Gronwall lemma, after neglecting the
last term in (3.15) and of the conservation of total mass. Note that by Remark 1 (a)
the weights 1/M and 1/Fε are equivalent. Then (ii) follows from the inequality

ρε ≤ ‖fε‖L2(dv/M) ,

derived from the Cauchy-Schwarz inequality and the normalization of M . Finally, (iii)
is a consequence of (3.15) after integration with respect to t, using

|fε − ρεM | ≤ |fε − ρεFε|+ ρε|Fε −M | ≤ |fε − ρεFε|+ εα−1µ3ρεM ,

by Remark 1 (b). Note that εα/2 < εα−1. �

Since M has moments of any order smaller than α, existence of these moments is
propagated by the kinetic equation. We shall need the first order moment:

Lemma 3.6. Let the assumptions of Theorem 1.1 and Proposition 1 be satisfied and let
ε be small enough. Then

∫ ∫
|v|fε dv dx is bounded uniformly with respect to t and ε.

Proof. Since for ε small enough, 1 + εα−1Φ is uniformly bounded from above and away
from zero, after multiplication of (1.1) by |v| and integration with respect to x and v,
we estimate

εα
d

dt

∫ ∫
|v|fε dv dx ≤ C1 − C2

∫ ∫
|v|fε dv dx ,

implying ∫ ∫
|v|fε dv dx ≤ max

{
C1

C2
,

∫ ∫
|v|f in dv dx

}
.

�

4 Rigorous asymptotics for constant c

In this section, we shall prove Theorem 1.1 under Assumption A or B, following the
strategy of [15]. Analogously to the derivation of (2.10) in Section 2, Fourier-Laplace
transformation of (1.1) yields

ρ̂ε

∫
p+ εαp2 + ε2−α(v · k)2

(1 + εαp)2 + ε2(v · k)2
M dv −

∫
Ff in

1 + εαp+ εiv · k
dv

=
1

ε

∫ Q1

(
f̂ε

)
1 + εαp+ εiv · k

dv . (4.16)

The rigorous passage to the limit in the left hand side of this equation has already
been carried out in [15]. For completeness, we repeat the essential arguments and start
with the second term, whose convergence as ε→ 0 to Fρin follows from the dominated
convergence theorem, noting |1 + εαp+ εiv · k| ≥ 1 and

|Ff in| ≤
∫
f in dx ∈ L1( dv) .

The dominated convergence theorem also implies

lim
ε→0

∫
p+ εαp2

(1 + εαp)2 + ε2(v · k)2
M dv = p , ∀ p > 0 , k ∈ RN .
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Furthermore we have∫
|v|<1

ε2−α(v · k)2

(1 + εαp)2 + ε2(v · k)2
M dv ≤ ε2−α|k|2 → 0 as ε→ 0 .

In the integral over |v| > 1 we use (1.3) and carry out the coordinate transformation
v = (w1k/|k|+ w⊥)/(ε|k|) (a stretching and a rotation):∫

|v|>1

ε2−α(v · k)2

(1 + εαp)2 + ε2(v · k)2
M dv = γ|k|α

∫
|w|>ε|k|

w2
1|w|−N−α

(1 + εαp)2 + w2
1

dw

Again by dominated convergence, the right hand side converges as ε → 0 for all p > 0,
k ∈ RN , to

A|k|α , with A = γ

∫
RN

w2
1|w|−N−α

1 + w2
1

dw > 0 .

As a consequence of Theorem 3.4, there exists ρ ∈ L∞
(

dt;L2(dx)
)
∩ L∞

(
dt;L1(dx)

)
,

such that
ρε ⇀ ρ in L∞

(
dt;L2(dx)

)
weak*.

Since

|ρ̂ε(k, p)| ≤
1

p
‖ρε‖L∞( dt;L1(dx)) ,

ρ̂ε is uniformly bounded in L∞
(
(a,∞)× RN

)
for a > 0, implying

ρ̂ε ⇀ ρ̂ in L∞
(
(a,∞)× RN

)
weak*. (4.17)

Our results so far imply distributional convergence of the left hand side of (4.16) to

(p+A|k|α)ρ̂−Fρin .

Now we turn to the right hand side and observe that due to mass conservation(∫
Q1(f) dv = 0

)
and with the notation of Theorem 3.4 (iii)

1

ε

∫ Q1

(
f̂ε

)
1 + εαp+ εiv · k

dv = − ik

1 + εαp
·
∫ vQ1

(
f̂ε

)
1 + εαp+ εiv · k

dv

= − ik

1 + εαp
·
(
ρ̂ε

∫
vQ1(M)

1 + εαp+ εiv · k
dv

+ εα−1

∫
vQ1 (r̂ε)

1 + εαp+ εiv · k
dv

)
(4.18)

holds. With Φ := supv,v′,c Φ, it is straightforward to show |Q1(M)| ≤ ΦM . Since the
first order moments of M are finite, the dominated convergence theorem implies

lim
ε→0

∫
vQ1(M)

1 + εαp+ εiv · k
dv =

∫
vQ1(M) dv = u(c) .

For the last integral in (4.18), we start with the case of Assumption B (satisfied by the
example treated in Section 2), whence Q1(f) = M

∫
Φ(v, v′, c)f ′ dv′. This implies

|Q1(r̂ε)| ≤ ΦM

∫
|r̂ε′|dv′ ≤ ΦM‖r̂ε‖L2( dv/M) (4.19)

such that ∣∣∣∣∫ vQ1 (r̂ε)

1 + εαp+ εiv · k
dv

∣∣∣∣ ≤ Φ

∫
|v|M dv ‖r̂ε‖L2( dv/M)
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is, by Theorem 3.4, uniformly bounded in L∞((a,∞);L2( dk)) by the estimate (using
the Cauchy-Schwarz inequality and the Plancherel identity)

‖r̂ε‖2L∞((a,∞);L2( dk dv/M)) = sup
p≥a

∫ ∫ ∣∣∣∣ ∫ ∞
0

e−ptFrε dt

∣∣∣∣2 dk dv

M

≤ sup
p≥a

∫ ∫ (∫ ∞
0

e−2pt dt

)(∫ ∞
0

|Frε|2 dt

)
dk dv

M

=
1

2a
‖Frε‖2L2( dt dk dv/M) = C‖rε‖2L2( dt dx dv/M) . (4.20)

In the case of Assumption A, i.e. supv,v′,c(|v|+ |v′|)Φ(v, v′, c) =: Φ1 <∞, we estimate

|vQ1(r̂ε)| ≤ Φ1

(
M

∫
|r̂ε′|dv′ + |r̂ε|

)
which, by (4.20) and by an estimate like in (4.19), is uniformly bounded in L∞((a,∞);
L2( dk dv/M)). Thus, under both Assumptions A and B, the last term in (4.18) is
O(εα−1) in L∞((a,∞);L2( dk dv/M)).

Finally, using again (4.17), we can pass to the limit also in the right hand side of
(4.16) and obtain

(p+ ik · u(c) +A|k|α)ρ̂ = Fρin ,

the Fourier-Laplace transform of (1.6), concluding the proof.

5 Rigorous asymptotics for non-constant c

In this section we use a completely different approach, introduced by Mellet [14] and
called the moment method. For a test function ϕ(x, t) ∈ C∞0 (RN × [0,∞)), we denote
by χε(x, v, t) the unique bounded solution of the auxiliary equation

χε − εv · ∇xχε = ϕ , (5.21)

which can be computed explicitly via the method of characteristics:

χε(x, v, t) =

∫ ∞
0

e−zϕ(x+ εvz, t) dz . (5.22)

The operator on the left hand side of (5.21) is the adjoint of a part of the operator
appearing in (1.1), consisting only of the transport operator and of the loss term of the
leading order collision operator Q0. Some properties of χε are collected in the following
lemma, mostly proven already in [14].

Lemma 5.1. Let ϕ ∈ D(RN × [0,∞)), and let χε be defined by (5.22). Then χε,
∂tχε, and ∇xχε are bounded in L∞( dv dxdt) and in L2(M dv dxdt) uniformly in ε.
Furthermore∫

M |χε − ϕ|dv ,
∫
M |∂tχε − ∂tϕ|dv ,

∫
M |∇xχε −∇xϕ|dv = O(ε) ,

uniformly in x and t.

Proof. The boundedness statements in L∞ are a straightforward consequence of the
boundedness of ϕ and of its derivatives. Because of

∫∞
0
e−z dz = 1,

χε(x, v, t)
2 ≤

∫ ∞
0

e−zϕ(x+ εvz, t)2 dz
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holds, and therefore

‖χε‖2L2(M dv dx dt) ≤
∫ ∞

0

∫ ∫ ∫ ∞
0

M(v)e−zϕ(x+ εvz, t)2 dz dv dxdt = ‖ϕ‖2L2( dx dt) ,

and the same argument for the derivatives.
On the other hand, with the Lipschitz constant L of ϕ,∫

M |χε − ϕ|dv =

∫
M

∣∣∣∣∫ ∞
0

e−z(ϕ(x+ εvz, t)− ϕ(x, t)) dz

∣∣∣∣ dv

≤ εL

∫
|v|M dv

∫ ∞
0

ze−z dz , (5.23)

implying the desired result by the finiteness of the first order moments of M . The proof
of the remaining two statements is analogous. �

Multiplication of the kinetic equation (1.1) by χε, integration with respect to x, v,
and t, and using (5.21), gives∫ ∞

0

∫ ∫
fε∂tχε dv dxdt+

∫ ∫
f inχε(t = 0) dv dx+ ε−α

∫ ∞
0

∫ ∫
ρεM(χε − ϕ) dv dx dt

= −1

ε

∫ ∞
0

∫ ∫
Q1(fε)χε dv dx dt (5.24)

The rest of the proof is concerned with the passage to the limit ε → 0 in each of the
terms of (5.24). Similarly to the preceding section, we outline the arguments for the
terms on the left hand side, which have already been treated in [14].

Rewriting the first term on the left hand side leads to∫ ∞
0

∫ ∫
fε∂tϕdv dx dt+

∫ ∞
0

∫ ∫
fε(∂tχε − ∂tϕ) dv dxdt→

∫ ∞
0

∫
ρ ∂tϕdx dt ,

as ε → 0, where fε → ρM in the sense of distibutions as a consequence of Theorem
3.4. The second term above vanishes in the limit by an argument analogously to (5.23),
since, by Lemma 3.6, fε has first order moments in v, integrable with respect to x and
bounded in t. In the same way

lim
ε→0

∫ ∫
f inχε(t = 0) dv dx =

∫
ρinϕ(t = 0) dx

is proven, using the integrability with respect to x of the first v-moments of f in, as
assumed in Theorem 1.1.

The third term in (5.24) leads to the fractional diffusion operator. By the rotational
symmetry of M , we have

ε−α
∫
M(χε − ϕ) dv = ε−α

∫ ∫ ∞
0

Me−z(ϕ(x+ εvz)− ϕ(x)− εvz · ∇xϕ(x)) dz dv .

This implies∣∣∣∣∣ε−α
∫
|v|<1

M(χε − ϕ) dv

∣∣∣∣∣ ≤ ε2−αC

∫
|v|<1

|v|2M dv

∫ ∞
0

z2e−z dz .

In the integral over |v| > 1, we introduce the coordinate transformation v ↔ w = εvz
to obtain

ε−α
∫
|v|>1

M(χε − ϕ) dv = γ

∫ ∞
0

∫
|w|>εz

zαe−z
ϕ(x+ w)− ϕ(x)− w · ∇xϕ(x)

|w|N+α
dw dz

→ −A(−∆)α/2ϕ .
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The limit is uniform in x and t, due to the estimate∣∣∣∣∣
∫ ∞

0

∫
|w|<εz

zαe−z
ϕ(x+ w)− ϕ(x)− w · ∇xϕ(x)

|w|N+α
dw dz

∣∣∣∣∣
≤ C

∫ ∞
0

∫
|w|<εz

zαe−z|w|2−N−α dw dz ≤ ε2−αC

∫ ∞
0

z2e−z dz .

As a consequence, uniform integrability and weak convergence of ρε are sufficient for
passing to the limit in the third term of (5.24). Collecting our results so far, the left
hand side of (5.24) converges to∫ ∞

0

∫
ρ
(
∂tϕ− (−∆)α/2ϕ

)
dxdt+

∫
ρinϕ(t = 0) dx .

Finally we consider the right hand side of (5.24), and use the mass conservation property
of Q1, the properties of χε, and the macro-micro decomposition of fε:

1

ε

∫
Q1(fε)χε dv =

∫
Q1(fε)v · ∇xχε dv

= ρεu(c) · ∇xϕ+ ρε

∫
Q1(M)v · (∇xχε −∇xϕ) dv

+ εα−1

∫
Q1(rε)v · ∇xχε dv (5.25)

After integration with respect to x and t, we can pass to the limit in the first term on
the right hand side by the weak convergence of ρε. By Assumption C we can use again
supv,v′,c(|v|+ |v′|)Φ(v, v′, c) = Φ1 <∞ to obtain

|Q1(f)v| ≤ Φ1

(
M

∫
|f ′|dv′ + |f |

)
. (5.26)

In particular, the consequence |Q1(M)v| ≤ 2Φ1M implies by Lemma 5.1 that the integral
in the second term on the right hand side of (5.25) is O(ε) uniformly in x and t. For
the last term in (5.25) we have, after integration with respect to x and t, by (5.26), by
the Cauchy-Schwarz inequality, and by Lemma 5.1∣∣∣∣∫ ∞

0

∫ ∫
Q1(rε)v · ∇xχε dv dx dt

∣∣∣∣
≤ C

(∥∥∥∥M ∫
|r′ε|dv′

∥∥∥∥
L2((0,T );L2( dv dx/M))

+ ‖rε‖L2((0,T );L2( dv dx/M))

)
≤ 2C‖rε‖L2((0,T );L2( dv dx/M)) ,

where T <∞ denotes an upper bound for t in the support of ϕ. The right hand side is
uniformly bounded by Theorem 3.4. Combining our results, the limit of (5.24) as ε→ 0
reads ∫ ∞

0

∫
ρ
(
∂tϕ+ u(c) · ∇xϕ− (−∆)α/2ϕ

)
dx dt+

∫
ρinϕ(t = 0) dx = 0 ,

which is the distributional formulation of (1.6).
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Abstract

This paper is devoted to the approximation of the linear Boltzmann equation by
fractional diffusion equations. Most existing results address this question when
there is no external acceleration field. The goal of this paper is to investigate the
case where a given acceleration field is present. The main result of this paper
shows that for an appropriate scaling of the acceleration field, the usual fractional
diffusion equation is supplemented by an advection term. Both the critical and
supercritical case are considered.

1 Introduction

1.1 Introduction

The goal of this paper is to study the asymptotic behavior of the solution of the following
equation as ε tends to zero:{

εα−1∂tfε + v · ∇xfε +
1

ε2−αE · ∇vfε =
1

ε
Q(fε) in (0,∞)× Rd × Rd,

fε(·, ·, 0) = f in in Rd × Rd,
(1.1)

where E ∈
[
W 1,∞(Rd × [0,∞))

]d
is a given acceleration field and Q is the linear Boltz-

mann operator defined as

Q(f) :=

∫
σ(v, v′)M(v)f(v′)− σ(v′, v)M(v′)f(v) dv′. (1.2)

Typically, fε(x, v, t) denotes the distribution function of some particles in a dilute
gas, subject to an external acceleration field E(x, t). The small parameter ε can be
interpreted as the Knudsen number, which measures the relative importance of the
scattering phenomenon (described here by the collision operator Q) compared to the
transport of particles (ε is often introduced in the literature as the ratio of the mean
free path over some typical macroscopic length, such as the length of the device being
studied). The coefficient α determines the relative order of the various terms in (1.1) and
it will be fixed by the properties of the thermodynamical equilibrium M(v) appearing
in the operator Q. One possible definition for α is

α = sup

{
β ≤ 2 ;

∫
Rd
|v|βM(v) dv <∞

}
. (1.3)

However, we will make stronger assumptions on the behavior of M for large |v| which
will make the definition of α simpler. Concerning the particular choice of scaling in (1.1),
we note that the εα−1 in front of the time derivative corresponds to a particular choice
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of a time scale at which we know that diffusion will be observed ([16, 15]), while the
1

ε2−α in front of the force term correspond to a strong field assumption (we will always
have α < 2 and so 1

ε2−α � 1). Obviously other choices of scaling for this force term are
possible (see Remark 1.3), but this particular scaling is exactly the one for which the
diffusion process (due to the scattering phenomenon of Q) and the advection process
(due to the acceleration term E) are of the same order in the limit (see equations (1.15)
and (1.19)).

When M(v) is a Maxwellian distribution function, or more generally when M(v)
satisfies ∫

Rd
|v|2M(v) dv <∞,

then (1.3) gives α = 2 and, we recognize in (1.1) the classical drift-diffusion scaling. If
we assume further that E = 0, then such limits were first investigated in the pioneering
works [11], [5], [25] and [14]. In all these papers, it is assumed that M is a Maxwellian
distribution function; In [9], Degond-Goudon-Poupaud extended these results to a more
general distribution M , but always under the assumption of finite second moment. The
case E 6= 0 is addressed for example by Poupaud in [18] when M is a Maxwellian. It
is shown in particular that the addition of the force field E leads to a drift term in the
limiting equation for the density of particles.

The object of this paper is to investigate what happens when M(v) has a so-called
heavy tail distribution function with α < 2. To be more precise, we will assume that

M(v) ∼ γ

|v|d+α
as |v| → ∞

for some α < 2. The α describing the large velocity behavior of M(v) is then the same
as the α appearing in (1.1) (this is consistent with (1.3)). When E = 0, such limits
have been the object of several recent works (see for example [16], [15], and [4]), and
it has been shown that the limiting behavior of fε is described by a fractional diffusion
equation.

The main contribution of the paper is thus to consider the case E 6= 0. In view of
the scaling in equation (1.1), we immediately note that the cases α ∈ (1, 2), α = 1 and
α ∈ (0, 1) are radically different. Indeed, when α ∈ (1, 2), all the terms in the left hand
side of (1.1) are smaller than ε−1 when ε� 1. So, assuming that fε converges to f (for
instance in D′), we immediately get Q(f) = 0, that is

lim
ε→0

fε(x, v, t) = ρ(x, t)M(v).

By contrast, when α = 1, the force term is of the same order as the collision term, and
we will get instead

lim
ε→0

fε(x, v, t) = ρ(x, t)F (x, v, t)

where F is the unique solution of

Q(F )− E · ∇vF = 0,

∫
Rd
F dv = 1, (1.4)

(see Proposition 2.5 below for the existence of F ). Equation (1.4) classically appears in
the high field asymptotic limit which has been studied for various operators Q [2, 19, 3]
(see also Remark 1.3 below). Finally, when α ∈ (0, 1), the force term in the left hand
side of (1.1) is more singular than the collision term, and the limit f(x, v, t) of fε(x, v, t)
satisfies

E · ∇vf = 0.
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It is not clear to us what one could expect to prove in this last case. In fact, we will see
that we are not able to obtain a priori estimates on fε to successfully investigate such a
limit (note however that fε is always bounded in L∞(0,∞;L1(Rd ×Rd)), so some limit
always exists). In this paper, we thus focus our attention on the two cases α ∈ (1, 2)
and α = 1. One of the key observations that allowed us to obtain the hydrodynamic
limit in a rigorous manner is to note that not only the operator Q appearing in (1.1) is
coercive but also the operator

T (f) := −Q(f) + E · ∇vf

is coercive in a suitable space (see Proposition 2.9). Our proof is based on analytic
methods.

We will show that the limit f of fε is of the form ρ(x, t)M(v) (or ρ(x, t)F (x, v, t)
when α = 1) where ρ solves a fractional diffusion equation of order α with a drift term.
In that spirit, the first derivation of a fractional diffusion equation with an advection
term starting from a kinetic model was first obtained in [1] as a macroscopic limit of an
equation featuring a collision operator with a biased velocity. Note that evolution equa-
tions involving a fractional-diffusion term appear in many equations of mathematical
physics (consult [24] and [20], and the references therein), for instance in fluid dynamics
with the so-called quasi-geostrophic flow model (see [7]) (in that case the equation is
non linear since the drift depends on the solution). The study of fractional-diffusion
advection equations has been a very active field of research recently, and questions such
as the regularity of the solutions have been addressed, see for instance [21] and [22]. It
is a classical fact that the case of the half Laplacian (α = 1 with our notations) plays a
critical role in that case since the diffusion operator has the same order as the advection
term. In that sense, it is not surprising that the case α = 1 plays a critical role in our
study as well.

1.2 Assumptions

We now list our main assumptions. As noted above, the acceleration field E(x, t) is
assumed to be given (as opposed to, say, solution of Poisson equation), and satisfies

E ∈
[
W 1,∞ (Rd × (0,∞)

)]d
. (1.5)

Next, we assume that M satisfies:

M > 0, M(v) = M(−v) for all v ∈ Rd,
∫
Rd
M(v) dv = 1, (1.6)

|v|d+αM(v) −→ γ > 0 , as |v| → ∞, where 1 ≤ α < 2, (1.7)

as well as the following regularity assumptions:

|DvM(v)| ≤ C M(v)

1 + |v|
, |D2

vM(v)| ≤ CM(v). (1.8)

We note that these assumptions are compatible with the asymptotic behavior of M
given by (1.7). They are in particular satisfied by the function

M(v) =

(
1

1 + |v|2

) d+α
2

and by the probability density function of the so-called α-stable stochastic processes
[12].
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The cross section σ(v, v′) appearing in the operator Q will be assumed to satisfy

σ(v, v′) = σ(v′, v), ν1 ≤ σ(v, v′) ≤ ν2, for all v, v′ ∈ Rd (1.9)

|∇vσ(v′, v)| ≤ C

1 + |v|
, (1.10)

where C, ν1 and ν2 are positive constants. Let us note that the symmetry condition
(1.9) on σ guarantees that Q(M) = 0. If we define the collision frequency ν(v) by

ν(v) =

∫
σ(v′, v)M(v′) dv′

then conditions (1.9) and (1.10) imply

ν1 ≤ ν(v) ≤ ν2, |∇vν(v)| ≤ C

1 + |v|
for all v ∈ Rd. (1.11)

In addition, we assume that the collision frequency ν is even, namely,

ν(v) = ν(−v) for all v ∈ Rd. (1.12)

Finally, we need σ and ν to have a nice behavior as v → ∞. More precisely, we
assume:

|σ(v, v′)− ν0| ≤
C

1 + |v|
for all v, v′ ∈ R2d , (1.13)

for some ν0, which implies in particular

ν(v)→ ν0, as |v| → ∞. (1.14)

1.3 Main results

Under assumptions (1.5) and (1.9), the existence and uniqueness of a solution fε ∈
C0([0,∞);L1(Rd × Rd)) to (1.1) can be proved via a semigroup argument. We do not
discuss this issue here and refer instead the interested reader to [18] or [8] for the
existence of a mild solution and to the Appendix of [10] where the equivalence between
the mild solution and a solution in the sense of distributions is shown.

In this paper we investigate the asymptotic behavior of fε as ε→ 0. Our first result
concerns the case α ∈ (1, 2):

Theorem 1.1. Assume α ∈ (1, 2) and let fε(x, v, t) be the solution of (1.1) with initial
condition f in ≥ 0 satisfying

f in ∈ L2
M−1(Rd × Rd) ∩ L1(Rd × Rd).

Under Assumptions (1.5)-(1.13) listed above, the function fε(x, v, t) converges weakly in
?-L∞(0, T ;L2

M−1(Rd × Rd)) to the function ρ(x, t)M(v) where ρ solves{
∂tρ+ κ(−∆)α/2ρ+∇x · (DEρ) = 0 in (0,∞)× Rd,

ρ(·, 0) = ρin in Rd, (1.15)

with ρin(x) =
∫
f in(x, v) dv and with the coefficient κ and matrix D defined by

κ =
γν2

0

cd,α

∫ ∞
0

zαe−ν0z dz, (1.16)

and

D =

∫
λ(v)⊗ v dv, Q(λ) = ∇vM(v). (1.17)
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Note that the constant cd,α appearing in (1.16) is defined in (1.24) and that the
existence of the function λ(v) appearing in (1.17) will be proved in Lemma 2.11. When
σ(v, v′) = 1, we can take λ(v) = −∇vM(v), and we can check that D is the identity
matrix.

Next, we consider the critical case α = 1. In that case, Equation (1.1) reads{
∂tfε + v · ∇xfε + 1

εE · ∇vfε = 1
εQ(fε) in (0,∞)× Rd × Rd,

fε(·, ·, 0) = f in in Rd × Rd,

and we recognize the so-called high field asymptotic for the Boltzmann equation. Such
asymptotics were first studied by Arlotti and Frosali [2] and Poupaud [19] for the linear
Boltzmann operator with Maxwellian equilibrium (see also Ben Aballah-Chaker [3] for
a non-linear collision operator). The main difference in this case is that the weak limit
of fε will be the solution F of (1.4) (which depends on E) rather than M(v). The
existence and properties of F will be the object of Theorem 2.2 below. In particular,
we will prove that there exists a function F (v,E) defined for (v,E) ∈ Rd×Rd such that
for all E ∈ Rd, v 7→ F (v,E) solves

Q(F )− E · ∇vF = 0,

∫
Rd
F (v,E) dv = 1. (1.18)

We then have:

Theorem 1.2. Assume α = 1 and let fε(x, v, t) be the solution of (1.1) with initial
condition f in ≥ 0 satisfying

f in ∈ L2
M−1(Rd × Rd) ∩ L1(Rd × Rd).

Under Assumptions (1.5)-(1.13) listed above, the solution fε(x, v, t) of (1.1) converges
weakly in ?-L∞(0, T ;L2

M−1(Rd × Rd)) to the function ρ(x, t)F (v,E(x, t)) where ρ(x, t)
solves {

∂tρ+ κ(−∆)1/2ρ+ divx(µ(E)ρ) = 0 in (0,∞)× Rd × Rd,
ρ(·, 0) = ρin in Rd, (1.19)

where ρin(x) =
∫
f in(x, v) dv,

µ(E) :=

∫
v (F (v,E)−M(v)) dv, (1.20)

and

κ =
γν2

0

cd,1

∫ ∞
0

ze−ν0z dz.

This result should be compared to the classical high-field limit ([2, 19]), which leads
to a transport equation. Here the (fractional) diffusion takes place at the same time
scale as the transport and thus appears in the limiting equation.

Note that the fact that µ(E) is well defined by formula (1.20) is not completely
obvious since vM(v) is not integrable when α = 1. However, we will see in Lemma 5.1
that F (v,E)−M(v) decays faster than M and that µ(E) is indeed well defined.

When σ is constant, we can get explicit formulas for F (v,E) and E. Indeed, if σ = 1
then the operator Q reads

Q(f)(v) =

∫
Rd
f(v′) dv′M(v)− f(v)
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and equation (1.4) can be recast as

F + E · ∇vF = M

which can be explicitly integrated along the characteristics yielding the following for-
mula:

F (v,E) =

∫ ∞
0

e−zM(v − Ez) dz. (1.21)

We can also use the equation above to compute

µ(E) = −
∫
vE · ∇vF dv = E for all E ∈ Rd

(using an integration by part and the fact that
∫
F (v) dv = 1).

Remark 1.3. When M satisfies (1.7) with α ∈ (1, 2), we can also consider the high field
asymptotic regime as in [2, 19]. It corresponds to the following scaling of the equation:{

∂tfε + v · ∇xfε + 1
εE · ∇vfε = 1

εQ(fε) in (0,∞)× Rd × Rd,
fε(·, ·, 0) = f in in Rd × Rd,

In that case, it is relatively easy to show that fε converges to ρ(x, t)F (v,E(x, t)) where
F is given by (1.18) and ρ solves the transport equation

∂tρ+ divx(ρE) = 0.

Remark 1.4. The case α = 2 is also interesting. In this case the scaling in equation
(1.1) becomes the usual diffusion scaling, however, the second moment

∫
|v|2M(v) dv

(and thus the diffusion coefficient) is infinite. This critical case was studied in [16], and
it was shown that the time scale must be modified by a logarithmic factor, leading to
the following equation:

ε ln(ε−1)∂tfε + v · ∇xfε + ln(ε−1)E · ∇vfε =
1

ε
Q(fε).

The limiting equation, on the other hand, will now involve the regular Laplace operator.

1.4 Notations and organization of the paper

We recall that the fractional Laplacian appearing in (1.15) and (1.19) can be defined
via the Fourier transform as

F
(
(−∆)α/2f

)
(k) := |k|αF(f)(k), (1.22)

where F(f) denotes the Fourier transform of f and is defined as

F(f) :=

∫
e−ik·xf(x) dx, (1.23)

or as a singular integral as

(−∆)α/2f(x) = cd,α P.V.

∫
Rd

f(x)− f(y)

|x− y|d+α
dy, (1.24)

where P.V. denotes the Cauchy principal value and

cd,α =
α2α−1Γ (α+N

2 )

πN/2Γ ( 2−α
2 )

,
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where Γ (x) is the Gamma function. When α > 1, the principal value can be avoided by
using the following formula:

(−∆)α/2f(x) = cd,α

∫
Rd

f(x)− f(y)−∇xf(x)(x− y)

|x− y|d+α
dy .

For a detailed discussion on the properties of the fractional Laplacian consult [13], [23],
or [17].

We denote by dx, dv and dv′ the Lebesgue measure on Rd and by dt the Lebesgue
measure on [0,∞), where Rd and [0,∞) will be the integration domains, respectively,
unless stated otherwise. We will denote by L2

M−1(Rd) (respectively L2
F−1
ε

(Rd)) the space

of square integrable function with weight M−1 (respectively F−1
ε ) equipped with the

norm

‖f‖L2
M−1 (Rd) =

(∫
Rd
|f(v)|2 dv

M(v)

)1/2

.

Finally, given a function f ∈ L1
(
Rd
)

we define the mass density ρf of f as

ρf :=

∫
f dv. (1.25)

The rest of the paper is organized as follows: In the next section, we prove the
existence of F , solution of (1.18), and we investigate its properties. In Section 3, we
will derive the a priori estimates on fε solution of (1.1) which will be necessary for the
proofs of our main results. Finally, Theorem 1.1 is proved in Section 4, while Theorem
1.2 is proved in Section 5.

2 The modified equilibrium function F

Classically, a priori estimates for the solutions of (1.1) are obtained as consequence of
the following coercivity property of the Boltzmann collision operator:

Lemma 2.1. Under assumption (1.9), the operator Q is a bounded operator in L2
M−1(Rd)

which satisfies the following coercivity estimate:

−
∫
Rd
Q(f)f

dv

M(v)
≥ ν1

∫
Rd
|f − ρfM |2

dv

M(v)
,

for all f ∈ L2
M−1(Rd) and with ρf given by (1.25).

When E = 0, this very classical lemma immediately implies that the solution of (1.1)
satisfies

fε(x, v, t) = ρε(x, t)M(v) + εα/2rε(x, v, t)

where the remainder term rε is bounded in some appropriate functional space (such a
bound is obtained by multiplying (1.1) by fε/M and integrating). Such estimates can
be generalized to include the case E 6= 0 and α = 2. Unfortunately, these computations
do not seem to be useful in the case α < 2 which we are considering here.

In the next section, we will see that we can instead obtain the following expansion
for fε:

fε(x, v, t) = ρε(x, t)Fε(x, v, t) + εα/2rε(x, v, t)
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where Fε is the normalized equilibrium function solution of

εα−1E · ∇vFε −Q(Fε) = 0 ,

∫
Fε dv = 1. (2.26)

Our goal in this section is to prove the existence and uniqueness of Fε and study its
properties.

But first we note that we can write

Fε(x, v, t) = F (v, εα−1E(x, t))

where the function v 7→ F (v,E) solves (for all E ∈ Rd):

E · ∇vF −Q(F ) = 0,

∫
Rd
F (v,E) dv = 1. (2.27)

This equation plays a central role in the study of the high field asymptotics for Boltz-
mann type equations, and has been studied for various operators Q. However, it does
not seem that it has been studied under our assumptions on the function M(v) (prop-
erty (2.28) below, in particular, is very specific to our framework). We will thus study
(2.27) in detail in this section. More precisely, gathering all the key results that we will
prove in this section, we have the following:

Theorem 2.2.

(i) For all E ∈ Rd, the exists a unique function v 7→ F (v,E) solution of (2.27).

(ii) There exist two positive constants C(R) and c(R) such that if |E| ≤ R then

c(R)M(v) ≤ F (v,E) ≤ C(R)M(v) for all v ∈ Rd.

(iii) The function E 7→ F (v,E) is C1 and for all R > 0 there exists C(R) such that

|∂EF (v,E)| ≤ C(R)
F (v,E)

1 + |v|
for all v ∈ Rd and |E| ≤ R. (2.28)

Since we are assuming α ≥ 1, assumption (1.5) implies that |εα−1E(x, t)| is bounded
uniformly in ε, x and t, and so the results of this theorem will apply to the function
Fε(x, v, t) = F (v, εα−1E(x, t)) (see Propositions 3.1 and 3.2). When α > 1, the behavior
of F (v,E) for |E| � 1 will play an important role. We will thus prove the following
result:

Proposition 2.3. The following expansion holds:

F (v,E) = M(v) + E · λ(v) +G(v,E) (2.29)

where λ(v) is such that

Q(λ)(v) = ∇vM(v),

∫
Rd
λ(v) dv = 0,

and G satisfies:

‖G(·, E)‖L2
M−1 (Rd) ≤ C|E|2 for all |E| ≤ 1 (2.30)

and

|G(·, E)| ≤ C|E|2M(v) for all v ∈ Rd, |E| ≤ 1. (2.31)
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2.1 Existence of F (v, E)

In this Section, we prove the existence of a unique solution to (2.27) (Theorem 2.2 (i)).
The proof follows closely the arguments of Poupaud in [19]. We recall it here for the sake
of completeness. Throughout this section, we fix E ∈ Rd and we define the operator

T (f) := −Q(f) + E · ∇vf. (2.32)

We also define the operators A and K by

A(f) := E · ∇vf + νf, K(f) :=

∫
σ(v, v′)f(v′) dv′M(v)

so that T = A−K. We note that K is a positive compact operator in L2
M−1

(
Rd
)

(it is
a Hilbert-Schmidt operator), while A is an unbounded operator with domain

D(A) :=
{
f ∈ L2

M−1

(
Rd
)
|E · ∇vf ∈ L2

M−1

(
Rd
)}
. (2.33)

Furthermore, we can define the inverse operator A−1 as follows:

A−1(h) :=

∫ ∞
0

e−
∫ s
0
ν(v−Eτ) dτh(v − Es) ds. (2.34)

Indeed, we have:

Lemma 2.4. The operator A−1 defined by (2.34) is a bounded operator in L2
M−1 (with

a norm depending on |E|) which satisfies

(A ◦ A−1)(f) = f for all f ∈ L2
M−1

(
Rd
)
,

and
(A−1 ◦ A)(f) = f for all f ∈ D(A).

Postponing the proof of this Lemma to the end of this section, we first show that it
implies the main result of this section:

Proposition 2.5. For all E ∈ Rd, there exists a unique positive solution v 7→ F (v,E)
of (2.27) in L2

M−1(Rd).

Proof of Proposition 2.5. We can rewrite (2.27) as

AF = K(F ),

∫
F dv = 1. (2.35)

Formula (2.34) shows that A−1 is a nonnegative operator (if h ≥ 0 then A−1(h) ≥ 0).
It follows that the operator K ◦ A−1 is a positive compact operator in L2

M−1(Rd) and
so we can apply Krein-Rutman’s Theorem (see [12]) to deduce the existence of a unique
simple positive eigenvalue λ with associated positive eigenfunction W satisfying(

K ◦ A−1
)
W = λW.

We now define F := A−1W and note that thanks to Lemma 2.4 it satisfies

K(F ) = λAF.
Integrating this relation with respect to v and using the definition of ν, we find∫

ν(v)F (v) dv = λ

∫
ν(v)F (v) dv,

from which it follows that λ = 1. After normalizing F the proposition follows. �
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We complete this section with a proof of Lemma 2.4:

Proof of Lemma 2.4. The fact that (A◦A−1)(f) = f for all f ∈ L2
M−1

(
Rd
)
, and (A−1 ◦

A)(f) = f for all f ∈ D(A) can be proved as the Proposition 1 in [19].
To show that A−1 is a bounded operator, we first note (using (1.11)) that

|A−1(h)| ≤
∫ ∞

0

e−ν1sh(v − Es) ds.

We thus have∫
Rd
|A−1(h)|2 dv

M(v)
≤ 1

ν1

∫
Rd

∫ ∞
0

e−ν1s
|h(v − Es)|2

M(v)
ds dv

≤ 1

ν1

∫
Rd

∫ ∞
0

e−ν1s
|h(v)|2

M(v + Es)
ds dv

≤ 1

ν1

∫
Rd

(∫ ∞
0

e−ν1s
M(v)

M(v + Es)
ds

)
|h(v)|2

M(v)
dv,

and we conclude thanks to the following claim: There exists a C > 0 such that(∫ ∞
0

e−ν1s
M(v)

M(v + Es)
ds

)
≤ C(1 + |E|d+α)) for all v ∈ Rd.

This last bound is proved by first noticing that (1.7) implies, in particular, the existence
of µ1, µ2 > 0 such that

µ1

1 + |v|d+α
≤M(v) ≤ µ2

1 + |v|d+α
for all v ∈ Rd. (2.36)

Therefore, using the elementary inequality |a+ b|p ≤ C (|a|p + |b|p), valid for p ≥ 1, we
obtain the following estimate:∫ ∞

0

e−ν1s
M(v)

M(v + Es)
ds ≤ µ2

µ1

∫ ∞
0

e−ν1s
1 + |v + Es|d+α

1 + |v|d+α
ds

≤ Cµ2

µ1

∫ ∞
0

e−ν1s(1 + |Es|d+α) ds

≤ C(1 + |E|d+α).

�

2.2 Properties of F (v, E): Theorem 2.2 (ii)

As noted in the Introduction, in the simpler case where the cross section satisfies

σ(v, v′) = 1 for all v, v′ ∈ Rd,

the equation for F reduces to

F + E · ∇vF = M(v),

and we get the following explicit formula for F :

F (v,E) = A−1M(v) =

∫ ∞
0

e−zM(v − Ez) dz. (2.37)
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In the general case, it does not seem possible to get such an explicit formula. How-
ever, Assumption (1.9) and the normalization of F imply

ν1M(v) ≤ K(F ) ≤ ν2M(v).

In particular, F satisfies

ν1M(v) ≤ νF + E · ∇vF ≤ ν2M(v). (2.38)

As a consequence, we can prove the following proposition (see Theorem 2.2 (ii)):

Proposition 2.6. There exist constants C(R) and c(R) such that if |E| ≤ R then

c(R)M(v) ≤ F (v,E) ≤ C(R)M(v) for all v ∈ Rd. (2.39)

This proposition follows immediately from (2.38) and the following lemma (which
will be used several times in this paper):

Lemma 2.7. There exist two constants C(R) > 0 and c(R) > 0 such that if |E| ≤ R
then the following holds:

(i) If f satisfies
νf + E · ∇vf ≤ βM (2.40)

for some β > 0, then

f ≤ CβM.

(ii) If f satisfies
νf + E · ∇vf ≥ βM (2.41)

for some β > 0, then
f ≥ cβM.

Remark 2.8. A similar result holds if we replace M by M(v)/(1+|v|) in both inequalities.

Proof of Lemma 2.7. Integrating (2.40) (see the definition of A−1 given by (2.34)), we
obtain

f(v) ≤ β
∫ ∞

0

e−
∫ z
0
ν(v−Eτ) dτM(v − Ez) dz

≤ β
∫ ∞

0

e−ν1zM(v − Ez) dz,

and the first part of the lemma follows from the following claim: There exists C(R) > 0
such that∫ ∞

0

e−ν1zM(v − Ez) dz ≤ C(R)M(v) for all v ∈ Rd, and all |E| ≤ R. (2.42)

In order to prove (2.42), we first write∫ ∞
0

e−ν1z
M(v − Ez)
M(v)

dz =

∫ η

0

e−ν1z
M(v − Ez)
M(v)

dz +

∫ ∞
η

e−ν1z
M(v − Ez)
M(v)

dz

= I1 + I2,

where η = |v|/(2|E|). The triangle inequality gives ||v|− |E|z| ≤ |v−Ez|, which implies∣∣∣∣v2
∣∣∣∣d+α

≤
∣∣∣|v| − |E|z∣∣∣d+α

≤ |v − Ez|d+α , for 0 ≤ z ≤ η.
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Hence, using (2.36) yields

M(v − Ez)
M(v)

≤ µ2

µ1

1 + |v|d+α

1 + |v − Ez|d+α
≤ µ2

µ1

1 + |v|d+α

1 + |v/2|d+α
for 0 ≤ z ≤ η.

Therefore we deduce

I1 =

∫ η

0

e−ν1z
M(v − Ez)
M(v)

dz ≤ µ2

µ1

∫ η

0

e−ν1z
1 + |v|d+α

1 + |v/2|d+α
dz

≤ µ2

µ1ν1

1 + |v|d+α

1 + |v/2|d+α

≤ C1,

where C1 > 0 does not depend on v. Next, using (2.36) again, we get

I2 =

∫ ∞
η

e−ν1z
M(v − Ez)
M(v)

dz ≤ µ2

µ1ν1
(1 + |v|d+α)e−ν1|v|/(2|E|)

≤ µ2

µ1ν1
(1 + |v|d+α)e−ν1|v|/(2R)

≤ C2,

where C2 > 0 does not depend on v (but depends on R). We thus obtain∫ ∞
0

e−ν1z
M(v − Ez)
M(v)

dz ≤ C1 + C2

which gives (2.42) and completes the proof of the first part of the lemma.

The second part of the lemma is somewhat easier to show. Indeed, proceeding as
above, we check that (2.41) implies

f(v) ≥ β
∫ ∞

0

e−
∫ s
0
ν(v−Eτ) dτM(v − Es) ds

≥ β
∫ 1

0

e−ν2sM(v − Es) ds.

Furthermore, it is readily seen that there is a constant c(R) such that

M(v − w) ≥ cM(v) for all v, w ∈ Rd, |w| ≤ R.

We deduce

f(v) ≥ cβ
∫ 1

0

e−ν2sM(v) ds

≥ cβM(v),

and the result follows. �

2.3 Coercivity of the operator T
As a consequence of the results of the previous sections, we can now establish the
following coercivity property of T , which will play a crucial role in this paper:
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Proposition 2.9. For all E ∈ Rd, the operator T defined by (2.32) satisfies∫
T (f)(v)

f(v)

F (v,E)
dv ≥ 0.

Furthermore, for all R > 0 there exists a constant ϑ(R) > 0 such that for all |E| ≤ R,
there holds∫

T (f)(v)
f(v)

F (v,E)
dv ≥ ϑ(R)‖f − ρfF‖2L2

F−1 (Rd), for all f ∈ L2
F−1(Rd) . (2.43)

Proof. Throughout this proof, we use the notation f for f(v) and f ′ for f(v′) (and
similar notations for F and M).

Let us start by noting the following∫
T (f)

f

F
dv =

∫
E · ∇vf

f

F
dv +

∫
ν
f2

F
dv −

∫ ∫
σ(v, v′)Mf ′

f

F
dv dv′

=

∫
1

2
E · ∇vf

2

F
dv +

∫
ν
f2

F
dv −

∫ ∫
σ(v, v′)MF ′

f ′

F ′
f

F
dv dv′ .

Integrating by parts and using the identity E · ∇vF = K(F )− νF we see that

1

2

∫
E · ∇vf

2

F
dv = −1

2

∫
f2E · ∇v

( 1

F

)
=

1

2

∫
f2

F 2
(K(F )− νF ) dv .

Using the fact that M and F are normalized functions and that σ is symmetric, we
deduce the following:∫

T (f)
f

F
dv =

1

2

∫
ν
f2

F
dv +

1

2

∫ ∫
σ(v, v′)MF ′

f2

F 2
dv dv′ (2.44)

−
∫ ∫

σ(v, v′)MF ′
f ′

F ′
f

F
dv dv′

=
1

2

∫ ∫
σ(v′, v)M ′F

f2

F 2
dv dv′ +

1

2

∫ ∫
σ(v, v′)MF ′

f2

F 2
dv dv′ (2.45)

−
∫ ∫

σ(v, v′)MF ′
f ′

F ′
f

F
dv dv′

=
1

2

∫ ∫
σ(v, v′)

(
MF ′

(
f ′

F ′

)2

+MF ′
f2

F 2
− 2MF ′

f ′

F ′
f

F

)
dv dv′

=
1

2

∫ ∫
σ(v, v′)MF ′

(
f

F
− f ′

F ′

)2

dv′ dv.

Since the right hand side is clearly non-negative, this gives the first inequality in the
proposition.

If we further assume that |E| ≤ R, then we can use (2.39) and together with as-
sumption (1.9) it yields:∫

T (f)
f

F
dv ≥ ν1

2C(R)

∫ ∫
FF ′

(
f

F
− f ′

F ′

)2

dv′ dv.
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Finally, using the decomposition f = ρfF + g and the fact
∫
Rd g dv = 0 we obtain∫

T (f)
f

F
dv ≥ ν1

2C(R)

∫ ∫
FF ′

(
g

F
− g′

F ′

)2

dv′ dv

=
ν1

2C(R)

∫ ∫
F
g′2

F ′
− 2gg′ +

g2

F
F ′ dv dv′

=
ν1

C(R)

∫
g2

F
dv.

This completes the proof. �

2.4 Properties of F (v, E): Theorem 2.2 (iii)

This Section is devoted to the proof of the estimate on the derivative of F with respect
to E (Theorem 2.2-(iii)).

First, we prove the following result.

Lemma 2.10. For all R > 0 there exists C(R) such that the function F (v,E) solution
of (2.27) satisfies

|∇vF (v,E)| ≤ C(R)
M(v)

1 + |v|
, for all v ∈ Rd, |E| ≤ R. (2.46)

Proof. Differentiating (2.27), with respect to vi, we obtain:

E · ∇v (∂viF ) + ν (∂viF ) =

∫
σ(v, v′)F (v′) dv′ ∂viM(v)

+

∫
∂viσ(v, v′)F (v′) dv′M(v)− (∂viν)F. (2.47)

The first term in the right hand side of (2.47) can be bounded by CM(v)/(1 + |v|),
thanks to (1.9) and assumption (1.8). The second term in (2.47) can also be bounded by
CM(v)/(1 + |v|) thanks to the assumption (1.10) and the normalization of F . Finally,
using (1.10) and (2.39), the third term in the right hand side of (2.47) can also be
bounded by CM(v)/(1 + |v|). We thus have

∣∣E · ∇v (∂viF ) + ν (∂viF )
∣∣ ≤ C M(v)

1 + |v|

and we conclude the proof using Lemma 2.7 and Remark 2.8. �

We can now complete the proof of Theorem 2.2:

Proof of Theorem 2.2-(iii). We first prove that ∂EF is uniformly bounded in L2
F−1 for

|E| ≤ R: Differentiating (2.27) with respect to Ei yields:

T (∂EiF ) = −∂viF. (2.48)

Thus multiplying by ∂EiF/F and using the coercivity inequality (2.43) (assuming |E| ≤
R) we obtain

ϑ‖∂EiF‖2L2
F−1
≤ −

∫
∂viF

∂EiF

F
dv,
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where we have used the fact that ∂Ei
∫
F dv = 0. The right hand side can be estimated

using (2.46) and (2.39):∣∣∣∣∫ ∂viF
∂EiF

F
dv

∣∣∣∣ ≤ C ∫ |∂EiF |dv ≤ C (∫ |∂EiF |2F
dv

)1/2

.

We deduce

ϑ‖∂EiF‖L2
F−1
≤ C

which implies in particular∫
|∂EiF |dv ≤

(∫
|∂EiF |2

F
dv

)1/2

≤ C. (2.49)

Finally, in order to obtain (2.28) we rewrite (2.48) as

E · ∇v∂EiF + ν∂EiF = K(∂EiF )− ∂viF
=: H(v,E)

and, using the fact that
∫
∂EiF dv = 0, we note that

H(v,E) =

∫
[σ(v, v′)− ν0]∂EiF (v′, E) dv′M(v)− ∂viF

So using (1.13), (2.46) and (2.49), we deduce

|H(v,E)| ≤
∫
|∂EiF (v′, E)|dv′ M(v)

1 + |v|
+ C

M(v)

1 + |v|

≤ C M(v)

1 + |v|
.

We can then conclude the proof using Lemma 2.7 (see Remark 2.8) and (2.39). �

2.5 Properties of F (v, E): Proposition 2.3

When σ = 1, we see, using (2.37) that

F (v,E) ∼M(v)− E · ∇vM(v) as |E| → 0. (2.50)

In the general case, we do not have an explicit formula for F which would give us such
an expansion. Our goal in this section is thus to prove Proposition 2.3 which gives the
require asymptotic behavior of F as E goes to zero.

But first, we need to prove the existence of the auxiliary function λ(v) appearing in
(1.17) and (2.29):

Lemma 2.11. Assume (1.6)-(1.10). Then there exists a unique function λ ∈ (L2
M−1(Rd))d

satisfying

Q(λ)(v) = ∇vM(v),

∫
Rd
λ(v) dv = 0. (2.51)

Furthermore, it satisfies

|λ(v)| ≤ CM(v), |∂viλj(v)| ≤ CM(v) for all 1 ≤ i, j ≤ d. (2.52)

We will first prove Proposition 2.3 and then go back to Lemma 2.11.
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Proof of Proposition 2.3. We define

G(v,E) := F (v,E)−M(v)− E · λ(v).

It solves

T (G) = 0− T (M)− E · T (λ)

= −E · ∇vM − E · (−Q(λ) + E · ∇vλ)

= −E · (E · ∇vλ), (2.53)

and thus we obtain in particular

‖ T (G)‖L2
F−1
≤ |E|2‖Dvλ‖L2

F−1
.

If |E| ≤ 1, then inequalities (2.39) and (2.52) give

‖Dvλ‖2L2
F−1
≤ C

∫
M(v)2

F (v,E)
dv ≤ C

c

∫
M(v) dv ≤ C

and so
‖ T (G)‖L2

F−1
≤ C|E|2.

Using the coercivity inequality (2.43) (recall that |E| ≤ 1), and the fact that
∫
Rd Gdv =

0, we deduce

‖G‖2L2
F−1

=

∫
|G|2

F
dv ≤ 1

ϑ

∫
T (G)

G

F
dv

≤ 1

ϑ
‖ T (G)‖L2

F−1
‖G‖L2

F−1

and so

‖G‖L2
F−1
≤ 1

ϑ
‖ T (G)‖L2

F−1
≤ C

ϑ
|E|2,

which gives (2.30).
Finally, using (2.53) and the definition of T , we write

νG+ E · ∇vG = K(G)− E · (E · ∇vλ).

Thanks to (2.30) we obtain

|K(G)| ≤ ‖G‖L2
F−1

M(v) ≤ C|E|2M(v),

which implies, using (2.52), the following estimate:

|νG+ E · ∇vG| ≤ C|E|2M(v).

We conclude the proof by applying Lemma 2.7. �

Finally, we end this section with a proof of Lemma 2.11 which states the existence
of the function λ(v):

Proof of Lemma 2.11. The existence and uniqueness of λ follows from the coercivity of
the operator Q (see Lemma 2.1) and the fact that∫

Rd
∇vM(v) dv = 0.
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Using Lemma 2.1 together with (1.8) we obtain

‖λ‖L2
M−1

≤ 1

ν1
‖∇M‖L2

M−1
≤ C

ν1
. (2.54)

Next, we rewrite (2.51) as

λ(v) =
1

ν(v)
(K(λ)(v)−∇vM(v))

=
1

ν(v)

(∫
σ(v, v′)λ(v′) dv′M(v)−∇vM(v)

)
, (2.55)

and use (2.54) together with (1.8) to deduce the first inequality in (2.52).
Finally, differentiating (2.55) with respect to v and using (1.10) and (1.8), we easily

deduce the second inequality in (2.52). �

3 A priori estimates

In this section we derive the a priori estimates on fε solution of (1.1) which will be
necessary for the proofs of Theorems 1.1 and 1.2.

First, we introduce the operator

Tε(f) := −Q(f) + εα−1E · ∇vf, (3.56)

and we recall that Fε(x, v, t) denotes the solution of

Tε(Fε) = 0

∫
Rd
Fε(x, v, t) dv = 1.

In view of Theorem 2.2 (i), such a function exists and can be written as

Fε(x, v, t) = F (v, εα−1E(x, t)).

When α ≥ 1 and E satisfies (1.5), Theorem 2.2 (ii) implies:

Proposition 3.1. Assume that α ≥ 1. Then there exists two positive constants γ1 and
γ2 such that for all 0 < ε ≤ 1, the following holds:

γ1M(v) ≤ Fε(x, v, t) ≤ γ2M(v).

Under the same conditions, Theorem 2.2 (iii) and the chain rule imply:

Proposition 3.2. Assume that α ≥ 1. Then for all ε ≤ 1, the function Fε satisfies:

(i)

∥∥∥∥∂tFεFε

∥∥∥∥
L∞(R2d×[0,∞))

≤ Cεα−1,

(ii)

∥∥∥∥v · ∇xFεFε

∥∥∥∥
L∞(R2d×[0,∞))

≤ Cεα−1,

where C is a positive constant depending on ‖E‖W 1,∞ but not on ε.

Proof. We only prove the second inequality (the first one is easier): We have

v · ∇xFε = ∂EF (v, εα−1E(x, t))εα−1v · ∇xE

and so (2.28) and the fact that α ≥ 1 implies

|v · ∇xFε| ≤ CFε
εα−1v · ∇xE

1 + |v|
≤ Cεα−1‖∇E‖L∞Fε,

which proves (ii). �
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Finally, Proposition 2.9 implies

Proposition 3.3. Assume that α ≥ 1. Then for all ε ≤ 1 there holds∫
Tε(f)(v)

f(v)

Fε
dv ≥ ϑ(R)‖f − ρfFε‖2L2

F
−1
ε

(Rd), for all f ∈ L2
F−1
ε

(Rd) . (3.57)

We can now prove the main result of this section:

Proposition 3.4. Assume that α ∈ [1, 2) and that (1.5)-(1.10) hold. Let fε be the
solution of (1.1) and let ρε(x, t) =

∫
Rd fε(x, v, t) dv. Then:

(i) The sequence (fε) is bounded uniformly with respect to ε in L∞
(
(0,∞) ;L1

(
Rd × Rd

))
and (ρε) is bounded uniformly with respect to ε in L∞

(
(0,∞) ;L1

(
Rd
))

.

(ii) For all T > 0, (fε) is bounded uniformly with respect to ε in L∞
(
(0, T );L2

M−1

(
R2d

))
,

and (ρε) is bounded uniformly with respect to ε in L∞
(
(0, T );L2

(
Rd
))

.

(iii) The function fε can be decomposed as fε = ρεFε + gε where gε satisfies

‖gε‖L2((0,T ),L2
M−1 (R2d)) ≤ C(T )εα/2. (3.58)

Proof. Integrating (1.1) with respect to x and v and thanks to the conservation of mass
property of the operatorQ we obtain that (fε) is uniformly bounded in L∞((0,∞) ;L1(R2d)).
Next using (3.56), we recast (1.1) as

εα∂tfε + εv · ∇xfε + Tε(fε) = 0.

Multiplying this equation by fε/Fε and integrating with respect to x and v we get:

εα

2

d

dt
‖fε‖2L2

F
−1
ε

(R2d) = −ε
α

2

∫ ∫
∂tFε
Fε

f2
ε

Fε
dv dx+

ε

2

∫ ∫
v · ∇xFε
Fε

f2
ε

Fε
dv dx

+

∫ ∫
Tε(fε)

fε
Fε

dv dx.

Using (3.57) and Proposition 3.2, we deduce

εα

2

d

dt
‖fε‖2L2

F
−1
ε

(R2d)+ϑ‖fε − ρεFε‖
2
L2

F
−1
ε

(R2d)≤ ε
αC‖fε‖2L2

F
−1
ε

(R2d). (3.59)

In particular this yields

d

dt
‖fε‖2L2( dv dx/Fε)

≤ 2C‖fε‖2L2( dv dx/Fε)
,

and Gronwall’s Lemma implies that (fε) is uniformly bounded in L∞
(

(0, T );L2
F−1
ε

(R2d)
)

for any T > 0 and thus in L∞
(
(0, T );L2

M−1(R2d)
)

thanks to Proposition 3.1. We also
deduce that ∫

ρ2
ε dx =

∫ (∫
fε dv

)2

dx ≤
∫ ∫

f2
ε

Fε
dv dx ≤ C.

Finally, integrating (3.59) with respect to t and using Proposition 3.1, we obtain (3.58).
�
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4 Proof of Theorem 1.1

The proof of our main result relies on the test function method first introduced in [15].
The starting point of the method is the introduction of the following auxiliary test
function: Given ϕ(x, t) ∈ D(RN × [0,∞)), we denote by χε(x, v, t) the unique bounded
solution of the auxiliary problem

ν(v)χε − εv · ∇xχε = ν(v)ϕ , (4.60)

which (integrating (4.60) along the characteristics) yields:

χε(x, v, t) =

∫ ∞
0

e−ν(v)zν(v)ϕ(x+ εvz, t) dz . (4.61)

We then have:

Lemma 4.1. Let fε be a weak solution of (1.1) and let χε be given by (4.61). Then the
following weak formulation holds:∫ ∫ ∫

fε ∂tχε dv dxdt+

∫ ∫
f inχε|t=0 dv dx+ ε−α

∫ ∫ ∫
ρενFε(χε − ϕ) dv dxdt

= −ε−1

∫ ∫ ∫
gε(E · ∇vχε) dv dx dt− ε−α

∫ ∫ ∫
K(gε)(χε − ϕ) dv dxdt,

(4.62)

with

gε = fε − ρεFε, ρε =

∫
Rd
fε dv. (4.63)

Proof. Taking χε as a test function in (1.1) and using (4.60), we get

−
∫ ∫ ∫

fε ∂tχε dv dxdt−
∫ ∫

f inχε|t=0 dv dx

= ε−1

∫ ∫ ∫
fεE · ∇vχε dv dxdt+ ε−α

∫ ∫ ∫
K(fε)χε − νfεϕdv dxdt

= ε−1

∫ ∫ ∫
fεE · ∇vχε dv dxdt+ ε−α

∫ ∫ ∫
K(fε)(χε − ϕ) dv dx dt,

where we used the fact that
∫
K(f) dv =

∫
νf dv for all f . Using (4.63), we deduce:

−
∫ ∫ ∫

fε ∂tχε dv dxdt−
∫ ∫

f inχε|t=0 dv dx

= ε−1

∫ ∫ ∫
ρεFεE · ∇vχε dv dxdt+ ε−α

∫ ∫ ∫
ρεK(Fε)(χε − ϕ) dv dx dt

+ ε−1

∫ ∫ ∫
gεE · ∇vχε dv dx dt+ ε−α

∫ ∫ ∫
K(gε)(χε − ϕ) dv dxdt.

Finally, using the definition of Fε and the fact that
∫
K(F ) dv =

∫
νF dv, we find

ε−1

∫
FεE · ∇vχε dv + ε−α

∫
K(Fε)(χε − ϕ) dv

= −ε−1

∫
(E · ∇vFε)χε dv + ε−α

∫
K(Fε)(χε − ϕ) dv

= −ε−α
∫

(K(Fε)− νFε)χε dv + ε−α
∫
K(Fε)χε − νFεϕdv

= ε−α
∫
νFε(χε − ϕ) dv

which concludes the proof. �
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In order to prove Theorem 1.1 we need to show that the right hand side of (4.62)
goes to zero, and to identify the limit of the left hand side. The first point follows from
the following result.

Proposition 4.2. For any test function ϕ ∈ D(RN×[0,∞)), let χε be defined by (4.61).
Then

lim
ε→0

ε−α
∫ ∫ ∫

K(gε)(χε − ϕ) dx dv dt = 0,

and

lim
ε→0

ε−1

∫ ∫ ∫
gεE · ∇vχε dv dx dt = 0.

We will give a proof of this proposition which holds for any α ∈ (0, 2) (and not just
α > 1), since we will use the result for α = 1 in the next section.

Proof. To prove the first convergence, we note that

|K(gε)(x, t)| =
∣∣∣∣∫ σ(v, v′)gε(x, v

′, t) dv′
∣∣∣∣M(v)

≤ ν2

(∫
gε(x, v

′, t)2

M(v′)
dv′
)1/2

M(v).

Therefore∣∣∣∣ε−α ∫ ∫ ∫ K(gε)(χε − ϕ) dx dv dt

∣∣∣∣ ≤ ε−αν2

∫ ∫
‖gε(x, ·, t)‖L2

M−1

∫
Rd
M(v)|χε − ϕ| dv dx dt

≤ ε−αν2‖gε‖L2
M−1

(∫ ∫ (∫
Rd
M(v)|χε − ϕ| dv

)2

dx dt

)1/2

,

(4.64)

and we conclude thanks to the following result:

Lemma 4.3. For all ϕ ∈ D(Rd) and all η < α, there exists a constant C depending on
η such that (∫ (∫

Rd
M(v)|χε − ϕ| dv

)2

dx

)1/2

≤ C‖ϕ(·, t)‖H1(Rd)ε
η.

Postponing the proof of this lemma to the end of this proof, we deduce (using (3.58)
and the fact that ϕ(x, t) = 0 is compactly supported in t):∣∣∣∣ε−α ∫ ∫ ∫ K(gε)(χε − ϕ) dx dv dt

∣∣∣∣ ≤ Cεη−α‖gε‖L2
M−1 (R2d×(0,T ))‖ϕ‖L2(0,∞;H1(Rd))

≤ C‖ϕ‖L2(0,∞;H1(Rd))ε
η−α/2,

and the result follows by choosing any η ∈ (α/2, α).

To prove the second limit, we first rewrite (4.61) as

χε(x, v, t) =

∫ ∞
0

e−sϕ

(
x+ ε

v

ν(v)
z, t

)
ds

and observe that

1

ε
∂viχε =

∫ ∞
0

se−s∂xjϕ

(
x+ ε

v

ν(v)
z, t

)
∂vi

(
vj
ν(v)

)
dz. (4.65)
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Next let us note that thanks to (1.11) we obtain∣∣∣∣∂vi ( vj
ν(v)

)∣∣∣∣ ≤ 1

ν(v)
+
|v| |∇vν(v)|

ν(v)2
≤ C,

for all 1 ≤ i, j ≤ d. Using Jensen’s inequality, we deduce:∫ ∫ ∣∣∣∣1ε ∇vχε
∣∣∣∣2M(v) dv dx ≤ C

∫ ∫ ∫ ∞
0

se−s
∣∣∣∣∇xϕ(x+ ε

v

ν(v)
z, t

)∣∣∣∣2 dzM(v) dv dx

≤ C‖∇xϕ(·, t)‖L2(Rd).

Therefore, by Cauchy-Schwarz∣∣∣∣ε−1

∫ ∫ ∫
gε(E · ∇vχε) dv dx dt

∣∣∣∣ ≤ ‖gε‖L2
M−1
‖E‖L∞‖∇xϕ‖L2(Rd×(0,∞)),

which completes the proof thanks to (3.58). �

Proof of Lemma 4.3. For any δ > 0 we can write:(∫
Rd
M(v)|χε − ϕ| dv

)2

≤ C
(∫

Rd

1

(1 + |v|)d+α
|χε − ϕ| dv

)2

≤ C
(∫

Rd

1

(1 + |v|)d+δ
dv

)(∫
Rd

1

(1 + |v|)d+2α−δ |χε − ϕ|
2 dv

)
≤ Cδ

∫
Rd

1

(1 + |v|)d+2α−δ |χε − ϕ|
2 dv.

Furthermore, we have

|χε − ϕ| =
∣∣∣∣∫ ∞

0

e−ν(v)zν(v)[ϕ(x+ εvz)− ϕ(x)] dz

∣∣∣∣
≤
(∫ ∞

0

e−ν(v)zν(v)[ϕ(x+ εvz)− ϕ(x)]2 dz

)1/2

and so ∫
Rd
|χε − ϕ|2 dx ≤

∫ ∞
0

e−ν(v)zν(v)

∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx dz.

Finally, using the inequalities∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx ≤ 2‖ϕ(·, t)‖2L2(Rd)

and ∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx ≤ ‖∇xϕ(·, t)‖2L2(Rd)|εvz|
2

we note that for any η ∈ (0, 1) there exists a constant C such that∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx ≤ C‖ϕ(·, t)‖2H1(Rd)(ε|v|z)
2η.

We deduce∫ (∫
Rd
M(v)|χε − ϕ| dv

)2

dx ≤ Cε2η‖ϕ(·, t)‖2H1(Rd)

∫
Rd

∫ ∞
0

e−ν(v)zν(v)
(|v|z)2η

(1 + |v|)d+2α−δ dz dv

where the last integral is finite provided we choose η < α and then δ < 2(α− η). �
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Having proved that the two terms in the right hand side of (4.62) go to zero as ε→ 0,
we now prove the following result, which shows how the asymptotic equation appears
when passing to the limit in (4.62):

Proposition 4.4. Let Lε be the operator defined by

Lε(ϕ)(x, t) := ε−α
∫
νFε(χε − ϕ) dv

for all ϕ ∈ D(Rd × (0,∞)), where χε is defined by (4.61). Then

Lε(ϕ) −→ L(ϕ) := −κ(−∆)α/2(ϕ)− (DE) · ∇xϕ as ε→ 0

uniformly and in L2. The matrix D is defined by (1.17) and κ is given by (1.16).

The key to the proof of this proposition is the following immediate consequence of
Proposition 2.3:

Proposition 4.5. When α > 1, the function Fε satisfies

Fε(x, v, t) = M(v) + εα−1E(x, t) · λ(v) +Gε(x, v, t) (4.66)

where λ(v) is given by (2.51) and Gε satisfies:

|Gε(x, v, t)| ≤ Cε2(α−1)|E(x, t)|2M(v) for all (x, v, t). (4.67)

Proof of Proposition 4.4. Using Proposition 4.5 above, we write

Lε(ϕ) = Lε1 + Lε2 + Lε3 (4.68)

where

Lε1 = ε−α
∫
νM(v)(χε − ϕ) dv

Lε2 = ε−1

∫
νE(x, t) · λ(v)(χε − ϕ) dv

Lε3 = ε−α
∫
νGε(χε − ϕ) dv.

The first term converges to −κ(−∆)α/2(ϕ) uniformly and in L2, as was proved, for
instance in [15].

For the second term, we note that

Lε2 = E(x, t) ·
(
ε−1

∫
νλ(v)(χε − ϕ) dv

)
and we conclude thanks to the following lemma (which is proved below):

Lemma 4.6. For any test function ϕ, we have

lim
ε→0

ε−1

∫
Rd
νλ(v)(χε − ϕ) d v =

∫
Rd
λ(v)(v · ∇xϕ(x, t)) d v = DT∇xϕ

where the limit holds uniformly and in L2.
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Finally, for the last term in (4.68), we write

χε − ϕ =

∫ ∞
0

e−ν(v)zν(v)[ϕ(x+ εvz, t)− ϕ(x, t)] dz

=

∫ ∞
0

e−ν(v)zν(v)

∫ z

0

εv · ∇xϕ(x+ εvs, t) dsdz, (4.69)

which gives:

Lε3 = ε−α
∫
Rd
νGε(χε − ϕ) dv

= ε1−α
∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2Gεv · ∇xϕ(x+ εvs, t) dsdz dv.

Using (4.67), we deduce

|Lε3| ≤ Cεα−1|E(x, t)|2
∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2M(v)v · ∇xϕ(x+ εvs, t) dsdz dv.

Next, thanks to the fact that
∫
Rd |v|M(v) dv is finite (since α > 1) we obtain

‖Lε3‖L∞(Rd×(0,∞)) ≤ Cεα−1|E(x, t)|2‖∇xϕ‖L∞ ,

and applying Jensen’s inequality we get

|Lε3|2 ≤ C(εα−1|E(x, t)|2)2

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2M(v)|v||∇xϕ(x+ εvs, t)|2 dsdz dv,

hence

‖Lε3‖L2(Rd×(0,T )) ≤ Cεα−1‖E(x, t)‖2L∞‖∇xϕ‖L2(Rd×(0,T )),

which completes the proof. �

Proof of Lemma 4.6. First, using (4.69) we obtain

ε−1

∫
Rd
νλi(v)(χε − ϕ) dv =

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λi(v)v · ∇xϕ(x+ εvs, t) dsdz dv.

(4.70)
Next, we note that for any δ ∈ (0, 1), we have

|∇xϕ(x+ εvs, t)−∇xϕ(x, t)| ≤ C|εvs|δ,

and ∫ ∞
0

∫ z

0

e−ν(v)zν(v)2 dsdz = 1

where the first inequality follows from the two inequalities |∇xϕ(x+ y)−∇xϕ(x)| ≤ C
(for |y| ≥ 1) and |∇xϕ(x + y) −∇xϕ(x)| ≤ C|y| (for |y| ≤ 1). Hence, thanks to (2.52)
we deduce∣∣∣∣ε−1

∫
Rd
νλi(v)(χε − ϕ) dv −

∫
Rd
λi(v)v dv · ∇xϕ(x, t)

∣∣∣∣
≤ C

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λ(v)|v||εvs|δ dsdz dv

≤ Cεδ
∫
Rd
M(v)|v|1+δ dv.
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The uniform convergence follows by choosing δ such that 0 < δ < α− 1.

Finally, going back to (4.70), we also deduce∫ ∞
0

∫
Rd

∣∣∣∣ε−1

∫
Rd
νλ(v)(χε − ϕ) dv

∣∣∣∣ dx dt
≤
∫ ∞

0

∫
Rd

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λ(v)|v||∇xϕ(x+ εvs, t)|dsdz dv dx dt

≤ ‖∇xϕ‖L1(Rd×(0,T ))

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λ(v)|v|dsdz dv

≤ C‖∇xϕ‖L1(Rd×(0,T )).

So by a simple interpolation, we see that since the quantity under consideration is
bounded in L1 and converges uniformly, it also converges in L2. �

Gathering the results above, we can now complete the proof of Theorem 1.1:

Proof of Theorem 1.1. In view of Proposition 3.4 and using a diagonal extraction argu-
ment, we can assume (up to a subsequence) that there exist two functions f(x, v, t) and
ρ(x, t) such that

fε ⇀ f in L∞((0, T );L2
M−1(R2d))-weak ?

and
ρε ⇀ ρ in L∞((0, T );L2(Rd))-weak ?

for all T > 0. Furthermore, Proposition 3.4 (iii), together with Proposition 4.5 implies

‖fε − ρεM‖L2(0,T ;L2
M−1 (R2d)) ≤ C(T )εα−1

and so
f(x, v, t) = ρ(x, t)M(v).

Next, we recall that Lemma 4.3 gives:∫
M [χε − ϕ] dv −→ 0 in L2(Rd × (0,∞)),

and we can prove similarly that∫
M [∂tχε − ∂tϕ] dv −→ 0 in L2(Rd × (0,∞)).

Using these facts, it is easy to show that

lim
ε→0

(∫ ∞
0

∫ ∫
fε ∂tχε dv dxdt+

∫ ∫
f inχε|t=0 dv dx

)
=

∫ ∞
0

∫
ρ ∂tϕdxdt+

∫ ∫
ρinϕ|t=0 dx.

Finally combining this limit with Propositions 4.2 and 4.4, we can now pass to the
limit in (4.62) to deduce:∫ ∞

0

∫
ρ ∂tϕdx dt+

∫ ∫
ρinϕ|t=0 dx+

∫ ∞
0

∫
ρ
[
−κ(−∆)α/2(ϕ)− (DE) · ∇xϕ

]
dxdt = 0

which is the weak formulation of (1.15). �
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5 Proof of Theorem 1.2

Before proving Theorem 1.2, we need to show that µ(E) defined by (1.20) is well defined:

Lemma 5.1. The function R(v,E) = F (v,E)−M(v) satisfies

|R(v,E)| ≤ C|E| M(v)

1 + |v|
,

For some constant C > 0. In particular, the quantity µ(E) defined by (1.20) is well
defined for all E ∈ Rd and satisfies |µ(E)| ≤ C|E|.

Postponing the proof of this lemma to the end of this section, we turn to the proof
of Theorem 1.2:

Proof of Theorem 1.2. When α = 1, Fε(x, v, t) = F (v,E(x, t) is independent of ε (we
thus drop the ε subscript below) and the weak formulation (4.62) takes the form∫ ∫ ∫

fε ∂tχε dv dxdt+

∫ ∫
f inχε|t=0 dv dx+

1

ε

∫ ∫ ∫
ρενF (χε − ϕ) dv dx dt

= −1

ε

∫ ∫ ∫
gε(E · ∇vχε) dv dx dt− 1

ε

∫ ∫ ∫
K(gε)(χε − ϕ) dv dxdt. (5.71)

Proceeding as in the proof of Theorem 1.1, we have (see Proposition 3.4):

fε ⇀ f in L∞((0, T );L2
M−1(R2d))-weak ?

and
ρε ⇀ ρ in L∞((0, T );L2(Rd))-weak ?

for all T > 0 and we can write
fε = ρεF + gε

where gε satisfies
‖gε‖L2((0,T ),L2

M−1 (R2d)) ≤ C(T )ε1/2. (5.72)

This implies in particular that

f(x, v, t) = ρ(x, t)F (x, v, t).

In order to complete the proof of Theorem 1.2, we need to pass to the limit in the
weak formulation (4.62). First, we note that thanks to Proposition 4.2 (which we proved
without restriction on α), the right hand side in (5.71) vanishes in the limit. Now let us
define the operator Lε(ϕ) as

Lε(ϕ) =
1

ε

∫
Rd
ν(v)F (v,E)(χε − ϕ) dv

=
1

ε

∫
Rd
ν(v)F (v, 0)(χε − ϕ) dv

+
1

ε

∫
Rd
ν(v)

(
F (v,E)− F (v, 0)

)
(χε − ϕ) dv

= Lε1(ϕ) + Lε2(ϕ), (5.73)

where F (v, 0) = M(v) thanks to the definition of F given in (2.27).
Proposition 4.4 in [15] gives

Lε1(ϕ)→ κ(−∆)1/2ϕ in L2-strong.
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Furthermore, using formula (4.61) for χε, we can recast Lε2(ϕ) as follows:

Lε2(ϕ) =
1

ε

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
(
F (v,E)−M

)
(ϕ(x+ εvz)− ϕ(x)) dz dv (5.74)

=

(∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
(
F (v,E)−M

)
vz dz dv

)
· ∇xϕ(x, t)

+
1

ε

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
(
F (v,E)−M

)
(ϕ(x+ εvz)− ϕ(x)− εvz · ∇ϕ(x)) dz dv,

= µ(E) · ∇xϕ(x, t) +Rε

and we can now show that Rε → 0 uniformly in x and t: Indeed, Lemma 5.1 implies

|Rε| ≤ C
1

ε

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
M(v)

1 + |v|
(ϕ(x+ εvz)− ϕ(x)− εvz · ∇ϕ(x)) dz dv

and for any η ∈ [1, 2], we have

|ϕ(x+ εvz)− ϕ(x)− εvz · ∇ϕ(x)| ≤ Cη(ε|v|z)η.

We deduce

|Rε| ≤ Cηεη−1

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
M(v)

1 + |v|
(|v|z)η dz dv

The integral in the right hand side is finite as long as η < 2 so we can take η = 3/2 and
deduce

‖Rε‖L∞ → 0 as ε→ 0

We have thus shown that

Lε2(ϕ)→ µ(E) · ∇xϕ(x, t)

uniformly in x and t as ε→ 0, which implies that Lε(ϕ) converges uniformly to

−κ(−∆)1/2(ϕ)(x, t) + µ(E) · ∇xϕ(x, t).

Passing to the limit in (5.71) (the first two terms are handled exactly as in the proof of
Theorem 1.1), we deduce∫ ∞

0

∫
ρ ∂tϕdx dt+

∫
ρinϕ|t=0 dx+

∫ ∞
0

∫
ρ
[
−κ(−∆)α/2(ϕ)− µ(E) · ∇xϕ

]
dxdt = 0

which is the weak formulation of (1.19).
�

Proof of Lemma 5.1. First, we note that for any E ∈ Rd, the function v 7→ R(v,E)
solves

T (R) = −E · ∇vM.

Using the coercivity property of T (2.43) and the fact that
∫
Rd R(v,E) dv = 0, we

deduce (∫
R2

F
dv

)1/2

≤ C|E|
(∫

|∇M |2

F
dv

)1/2

≤ C|E|.

Next, we rewrite the equation for R as

νR− E · ∇vR = K(R)− E · ∇vM. (5.75)
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Using the fact that
∫
Rd R(v,E) dv = 0, we can write

K(R)(v) =

∫
Rd

(σ(v, v′)− ν0)R(v′) dv′,

and so using (1.13), we obtain

|K(R)| ≤
∫
|σ − ν0||R(v′, E)|dv′M(v)

≤ CM(v)

1 + |v|

∫
|R(v′, E)|dv′

≤ CM(v)

1 + |v|

(∫
|R(v′, E)|2 dv′

F (v′, E)

)1/2

≤ C|E| M(v)

1 + |v|
. (5.76)

Finally, assumptions (1.8) yields

|E · ∇vM(v)| ≤ C|E| M(v)

1 + |v|
.

We thus have

|νR− E · ∇vR| ≤ C|E|
M(v)

1 + |v|
,

which implies (using Remark 2.8)

|R(v,E)| ≤ C|E| M(v)

1 + |v|
for all v ∈ Rd, E ∈ Rd

and the lemma follows. �
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Abstract

This paper is devoted to the rigorous derivation of the macroscopic limit of a
Vlasov-Fokker-Planck equation in which the Laplacian is replaced by a fractional
Laplacian. The evolution of the density is governed by a fractional heat equation
with the addition of a convective term coming from the external force. The analysis
is performed by a modified test function method and by obtaining a priori estimates
from quadratic entropy bounds. In addition, we give the proof of existence and
uniqueness of solutions to the Vlasov-fractional-Fokker-Planck equation.

1 Introduction

1.1 The Vlasov-Lévy-Fokker-Planck equation

In this paper we investigate the long-time/small mean-free-path asymptotic behavior in
the low-field case of the solution of the Vlasov-Lévy-Fokker-Planck (VLFP) equation

∂tf + v · ∇xf + E · ∇vf = ∇v · (vf)−
(
−∆v

)α/2
f in (0,∞)× Rd × Rd, (1.1a)

f(0, x, v) = f in(x, v) in Rd × Rd, (1.1b)

where α ∈ (1, 2). This equation describes the evolution of the density of an ensemble of
particles denoted as f(t, x, v) in phase space, where t ≥ 0, x ∈ Rd and v ∈ Rd stand for,
respectively, time, position and velocity. The operator (−∆)α/2 denotes the fractional
Laplacian and is defined by (1.5). Let us recall that, at a microscopic level, equation
(1.1a)-(1.1b) is related to the Langevin equation

dx(t) = v(t) dt,

dv(t) = −v(t) dt+ E dt+ dLαt , (1.2)

where Lαt is a Markov process with generator −(−∆)α/2 and (x(t), v(t)) describe the
position and velocity of a single particle (see [15] and [20]). Therefore, this models
describes the position and velocity of a particle that is affected by three mechanisms: a
dragging force, an acceleration and a pure jump process.

In the particular case when α = 2 the fractional operator (−∆)α/2 takes the form
of a Laplace operator ∆ and (1.1a)-(1.1b) reduces to the usual Vlasov-Fokker-Planck
equation. In this case the Fokker-Planck operator is known to have an equilibrium
distribution function given by a Maxwellian M(v) = C exp

(
−|v|2

)
where C > 0 is

a normalization constant. The Vlasov-Fokker-Planck equation has been used in the
modeling of many physical phenomena, in particular, for the description of the evolution
of plasmas [20]. However, there are some settings in which particles may have long jumps
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and an α-stable distribution process is more suitable to describe the phenomenon, see
for instance [21].

The case in which α = 2 reduces to the classical Vlasov-Fokker-Planck equation for
a given external field. This equation is related to the Vlasov-Poisson-Fokker-Planck
system (VPFP) in the case in which the electric field is self-consistent. Questions such
as existence of solutions, hydrodynamic limits and long time behaviour for the VPFP
system has been extensively studied by many authors, see for instance [6], [19], and
[14]. In particular, in [13] the low field limit is studied for the VPFP system and a
Drift-Diffusion-Poisson system is obtained in a rigorous manner.

Let us note that, although it is classical in the framework of kinetic theory to consider
a self-consistence electric fields that expresses how particles repulse one another, one can
also, in the VPFP system, consider the case in which particles are attracted by each
other and this model is used in the description of galactic dynamics.

In the rest of the paper we shall need the following notation: The fractional (or
Lévy) Fokker-Planck operator denoted by Lα/2 and defined as

Lα/2f = ∇v ·
(
vf
)
−
(
−∆v

)α/2
f. (1.3)

In order to investigate the asymptotic behaviour of the system, we introduce the
Knudsen number ε which represent the ratio between the mean-free-path and the ob-
servation length scale. In the case when E = 0 it was observed in [9] that the time
rescaling t′ → εα−1t and introducing a factor 1/ε in front of Lα/2 is the appropriate
scaling at which diffusion will be observed in the limit as ε goes to zero. Moreover,
we introduce the factor 1/ε2−α in front of the force field term E corresponding to a
low-field limit scaling since we shall consider the case 1 ≤ α ≤ 2 and thus the scaling of
the collision operator 1/ε is much greater than the scaling of the electric field 1/ε2−α.
Thus we shall study in this paper the asymptotic behaviour as ε tends to zero of the
solutions of following rescaled VLFP equation

εα−1∂tf
ε + v · ∇xfε + εα−2E(t, x) · ∇vfε =

1

ε

(
∇v · (vf)−

(
−∆v

)α/2
f
)
. (1.4)

1.2 Preliminaries on the Fractional Fokker-Planck operator

In this paper we denote by f̂ or F(f) the Fourier transform of f and define it as

f̂(k) =

∫
Rd

e−ik·xf(x) dx.

There are several equivalent definitions of the fractional Laplacian in the whole domain
(see [16] or [18]). It can be defined via a Fourier multiplier as

F
(

(−∆)α/2(f)
)

(k) = |k|αF(f)(k).

On the other hand, assuming that f is a rapidly decaying function we can define the
fractional Laplacian in terms of a hypersingular integral as

(
−∆v

)α/2
(f)(v) = cd,α P.V.

∫
Rd

f(v)− f(w)

|v − w|d+α
dw (1.5)

where P.V. denotes the Cauchy principal value and the constant cd,α is given by
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cd,α =
2αΓ

(
d+α

2

)
2πd/2|Γ

(
−α2
)
|
, (1.6)

and Γ(·) denotes the Gamma function. In [18] it is proven that for any d > 1, cd,α → 0
as α → 2. Thus (1.5) does not make sense if we take α = 2. However, we have the
following result.

Proposition 1.1. Let d > 1. Then for any f ∈ C∞0 (Rd) we have

lim
α→2

(−∆)α/2f = −∆f.

For an account of the properties of the fractional Laplacian consult [18], [25], [24] or [17].
Let us note that due to its dependence on the whole domain, the fractional Laplacian is a

nonlocal operator and it has the scaling property
(
−∆v

)α/2
(fλ)(v) = λα

(
−∆v

)α/2
f(λv),

for any λ > 0 where fλ(v) = f(λv). Since it will be useful later on in our analysis, we
also mention that since the fractional Laplacian is an integro-differential operator it
satisfies: ∫

(−∆)α/2f dv = 0.

In [3] it is proved that the Lévy-Fokker-Planck operator Lα/2 defined by (1.3) has a
unique normalized equilibrium distribution that we shall denote by Gα. Therefore, the
Fourier transformation of Gα denoted as Ĝα and defined as

Ĝα(ξ) :=

∫
Rd

e−iξ·vGα(v) dv,

satisfies

ξ · ∇ξĜα + |ξ|αĜα = 0.

Thus yielding

Ĝα(ξ) = e−|ξ|
α/α. (1.7)

In the jargon of stochastic analysis, random variables having a characteristic function
of the form (1.7) are called symmetric α-stable random variables, consult [2]. Using the
notation of [4] let us note that setting t = 1/α, x = v, and y = 0, we obtain the identity
Gα(v) = p(1/α, v, 0). Thus Lemma 3 of [4] states that there exists C1 = C1(d, α) > 0
such that

C−1
1

(
1

α|v|d+α
∧ 1

αd/α

)
≤ Gα(v) ≤ C1

(
1

α|v|d+α
∧ 1

αd/α

)
, (1.8)

for all v ∈ Rd, where a ∧ b denotes the minimum between a and b. On the other hand,
Lemma 5 of [4] states the existence of a positive constant C2 = C2(d, α) such that

|v|
C2

(
1

α|v|d+2+α
∧ α(d+2)/2

)
≤ ∇v Gα(v) ≤ C2|v|

(
1

α|v|d+2+α
∧ α(d+2)/2

)
. (1.9)
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1.3 Main results

As usually in the framework of fractional Vlasov-Fokker-Planck equations, we use the
following definition of weak solutions:

Definition 1.2. Consider f in in L2(Rd × Rd) and E ∈
(
W 1,∞([0, T )× Rd)

)d
. We say

that f is a weak solution of (1.1a)-(1.1b) if, for any ϕ ∈ C∞c ([0, T )× Rd × Rd)∫∫∫
QT

f
(
∂tϕ+ v · ∇xϕ+

(
E(t, x)− v

)
· ∇vϕ− (−∆)α/2ϕ

)
dtdx dv

+

∫∫
Rd×Rd

f in(x, v)ϕ(0, x, v) dxdv = 0.

(1.10)

Section 2 of this paper is devoted to a well-posedness result for the fractional Vlasov-
Fokker-Planck with an external electric field E in the following sense.

Theorem 1.3. For f in in L2(Rd × Rd) and E ∈
(
W 1,∞([0, T ) × Rd)

)d
there exists a

unique weak solution f of (1.1a)-(1.1b) in the sense of Definition 1.2 and it satisfies

f(t, x, v) ≥ 0 on QT , (1.11a)

f ∈ X :=

{
f ∈ L2(QT ) :

|f(t, x, v)− f(t, x, w)|
|v − w| d+α

2

∈ L2(QT × Rd)
}
. (1.11b)

Remark 1.4. The assumption E ∈
(
W 1,∞([0, T )×Rd)

)d
in Theorem 1.3 is not optimal

in the sense that we could replace it by E ∈
(
L∞([0, T ) × Rd)

)d
or maybe it could be

replaced by even weaker assumptions on E, however, finding the optimal regularity of
E is out of the scope of this paper.

The proof of this existence result relies on using the Lax-Milgram theorem for a well
chosen associated problem, in the spirit of the proof in [10] and in [7] for the existence
of weak solutions of the Vlasov-Fokker-Planck equation. The proof of positivity (1.11a)
is given in details as it involves the non-local nature of the fractional operator and, as
such, differs from the classical proof.
In Section 3, we consider the electric field as a perturbation of the fractional Fokker-
Planck operator and as such we introduce Tε:

Tε(f) := ∇v ·
[(
v − εα−1E(t, x)

)
f
]
−
(
−∆v

)α/2
f.

We prove existence and uniqueness of a normalized equilibrium Fε for this perturbed
operator in Proposition 3.1. Then, we follow the strategy introduced in [1]; we investigate
the decay properties of this equilibrium and its convergence to the equilibrium of the
unperturbed operator, Gα, as ε goes to 0 in Proposition 3.2. Finally, we prove that Tε
is dissipative with regards to the quadratic entropy, Proposition 3.3, which allows us
to establish uniform boundedness results for fε, the solution of the rescaled equation
(1.4)-(1.1b), as well as its macroscopic density ρε =

∫
fε dv and its distance to the kernel

of Tε we which write rε defined by the expansion fε = ρεFε + εα/2rε.
In the last section, we turn to the proof of our main result which is the anomalous

advection-diffusion limit of our kinetic model. We follow the method introduced in [9]
which consist in choosing a test function ψε(t, x, v) which is solution, for some ϕ ∈
C∞c ([0, T )× Rd) of the auxiliary problem:

εv · ∇xψε − v · ∇vψε = 0 in [0,∞)× Rd × Rd,
ψ(t, x, 0) = ϕ(t, x) in [0,∞)× Rd,
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and show that the weak formulation of our problem, (2.14), with such test functions
converges to the weak formulation of the advection fractional diffusion equation. We
first prove this convergence in the non-critical case, i.e. when 1 < α < 2 and then we
turn to the critical cases α = 1 and α = 2. The outline of the proof remains the same in
both critical cases but a few differences appear, for α = 2 the only difference is technical
one in the study of the dissipative property of the perturbed operator whereas, in the
case α = 1, we show that the equilibrium of the perturbed operator is independent of ε
and as such it stays perturbed by the electric field E(t, x) even in the macroscopic limit.
In all cases, our main result reads:

Theorem 1.5. Let α be in (1, 2] and fε be the weak solution of (1.4)-(1.1b) in the sense
of Definition 1.2 on [0, T )×Rd×Rd for some T > 0 and with f in ∈ L2

G−1
α (v)

(Rd×Rd)∩
L1

+(Rd×Rd). Then, fε converges weak-∗ to ρ(t, x)Gα(v) in L∞(0, T ;L2
G−1
α (v)

(Rd×Rd)),
where ρ is the solution in the distributional sense of

∂tρ+ div (Eρ) + (−∆)α/2ρ = 0 in [0, T )× Rd,
ρ(0, x) = ρin(x) in Rd, (1.12)

where ρin =
∫
f in dv. In the case α = 1 the same anomalous diffusion limit holds but

instead of Gα(v) the equilibrium distribution of velocity becomes

Gα,E(t, x, v) = Gα
(
v − E(t, x)

)
(1.13)

The advection fractional-diffusion equation (1.12) describes the evolution of the
macroscopic density ρ under the effect of a drift, consequence of the kinetic electric
field, and a fractional diffusion phenomenon. The regularity of the solutions of this type
of equations has been studied for instance in [22], [23], and [11]. We refer the interested
reader to those articles and references within for more details on this macroscopic model.

2 Existence of solution

Throughout this paper, for any T > 0 we write QT = [0, T )×Rd×Rd and C∞c (QT ) the
set of smooth function compactly supported in QT . This section is devoted to the proof
of the following result of existence and regularity of weak solutions:

Theorem 2.1. Consider f in in L2(Rd ×Rd). There exists a unique weak solution f of
(1.1a) on QT in the sense that for any ϕ ∈ C∞c (QT ):∫∫∫

QT

f
(
∂tϕ+ v · ∇xϕ+

(
E(t, x)− v

)
· ∇vϕ− (−∆)α/2ϕ

)
dtdxdv

+

∫∫
Rd×Rd

f in(x, v)ϕ(0, x, v) dxdv = 0

(2.14)

and this solution satisfies:

f(t, x, v) ≥ 0 on QT ,

f ∈ X :=

{
f ∈ L2(QT ) :

|f(t, x, v)− f(t, x, w)|
|v − w| d+α

2

∈ L2(QT × Rd)
}
. (2.15)

Remark 2.2. Let us note that the space X is equal to L2((0, T )× Rd;Hα/2(Rd)).
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Proof. We follow the method in [10] and in [7] for the proof of existence and uniqueness
of solutions to the linear Vlasov-Fokker-Planck equation. The first part of the proof
consists in solving our linear problem in a variational setting, applying a well-known
Lax-Milgram theorem of functional analysis. We consider the Hilbert space X provided
with the norm

||f ||X =

(
||f ||2L2(QT ) + 2c−1

d,α||(−∆)
α
4 f ||2L2(QT )

) 1
2

(2.16)

where cd,s is defined in (1.6). We refer the reader to [18] for properties of this functional
space. Let us denote T the transport operator, given by

T f = ∂tf + v · ∇xf −
(
v − E(t, x)

)
· ∇vf.

We define the Hilbert space Y as:

Y =

{
f ∈ X : T f ∈ X ′

}
(2.17)

where X ′ is the dual of X . (·, ·)X ,X ′ stands for the dual relation between X and its dual.
Y is provided with the norm:

||f ||2Y = ||f ||2X + ||T f ||2X ′ . (2.18)

In order to apply the Lax-Milgram Theorem we consider the associated problem

∂tf + e−tv · ∇xf + etE(t, x) · ∇vf + eαt(−∆)α/2f + λf = 0 (t, x, v) ∈ QT

f(0, x, v) = f
in

(x, v) (x, v) ∈ Rd × Rd
(2.19)

which comes formally by deriving (1.1a) for f = e−(λ+d)tf
(
t, x, e−tv

)
and f

in
(x, v) =

f in(x, e−tv) for some λ ≥ 0. A weak solution of (2.19) is a function f ∈ X such that
for any ϕ in C∞c (QT ):∫∫∫

QT

(
− f∂tϕ− e−tfv · ∇xϕ− etfE(t, x) · ∇vϕ+ eαtf(−∆)α/2ϕ+ λfϕ

)
dtdx dv

−
∫∫

Rd×Rd

f
in
ϕ(0, x, v) dxdv = 0.

(2.20)
We first prove existence of a solution in X of equation (2.19) and we will prove afterwards
how this implies existence of a solution of the fractional Vlasov-Fokker-Planck equation
with the electric field E.
We know that C∞c (QT ) is a subspace of X with a continuous injection (see, e.g. [18])
and we define the prehilbertian norm:

|ϕ|2C∞c (QT ) = ||ϕ||2X +
1

2
||ϕ(0, ·, ·)||2L2(Ω×Rd).

Now, we can introduce the bilinear form a : X × C∞c (QT )→ R as:

a(f, ϕ) =

∫∫∫
QT

(
−f∂tϕ−e−tfv ·∇xϕ−etfE(t, x)·∇vϕ+eαtf(−∆)α/2ϕ+λfϕ

)
dtdxdv

and the continuous bounded linear operator L on C∞c (QT ) given by:

L(ϕ) = −
∫∫

Rd×Rd

f in(x, v)ϕ(0, x, v) dxdv.
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To find a solution f in X of equation (2.20) is equivalent to finding a solution f in X
of a(f, ϕ) = L(ϕ) for any ϕ ∈ C∞c (QT ). Since f belongs to X it is easy to check that
a(·, ϕ) is continuous. To verify the coercivity of a we write:

−
∫∫∫
QT

(
ϕ∂tϕ+ e−tϕv · ∇xϕ− etϕE(t, x) · ∇vϕ

)
dtdxdv =

1

2

∫∫
Rd×Rd

|ϕ(0, x, v)|2 dx dv

and also: ∫∫∫
QT

eαtϕ(−∆)α/2ϕdtdx dv =

∫∫∫
QT

eαt|(−∆)
α
4 ϕ|2 dtdx dv.

Hence, we see that

a(ϕ,ϕ) =

∫∫∫
QT

(
λϕ2 + eαt|(−∆)

α
4 ϕ|2

)
dtdxdv +

1

2

∫∫
Ω×Rd

|ϕ(0, x, v)|2 dtdxdv

which can be bounded from below as a(ϕ,ϕ) ≥ min(1, λ)|ϕ|2C∞c (QT ). Thus, the Lax-

Milgram theorem implies the existence of f in X satisfying (2.20). Now, we want to
show that this yields existence of a solution of (2.14). To that end, we first consider
ϕ̃ in C∞c (QT ) such that ϕ(t, x, v) = eλtϕ̃(t, x, e−tv). Equation (2.20) becomes (writing
ϕ̃(e−tv) instead of ϕ̃(t, x, e−tv))∫∫∫
QT

eλt
(
− f∂tϕ̃(e−tv)− fe−tv · ∇xϕ̃(e−tv) + fe−tv · ∇vϕ̃(e−tv)− fE(t, x) · ∇vϕ̃(e−tv)

+ f(−∆)α/2ϕ̃(e−tv)
)

dtdxdv −
∫∫

Rd×Rd

finϕ̃(0, x, v) dxdv = 0.

Hence, if we define f(t, x, v) = e(λ+d)tf(t, x, etv) and change the variable v → e−tv, we
recover equation (2.14). It is straightforward to check that f is in X and it satisfies
(2.14) for any ϕ̃ in C∞c (QT ). Moreover, since f 7→ df − (−∆)α/2f is a linear bounded
operator from X to X ′, the transport term T f is in X ′, hence f ∈ Y and (2.14) is
verified in X ′.

Since the VLFP equation is linear, to show uniqueness it is enough to show that the
unique solution with zero initial data is the null function f ≡ 0. Let f be a solution
of this problem on Y. As before, we define f = e−(λ+d)tf(t, x, e−tv), which satisfies
equation (2.19) with f in null. Since f ∈ Y, we know that f belongs to X and, moreover,

that if we define T̃ as

T̃ f = ∂tf + e−tv · ∇xf + etE(t, x) · ∇vf (2.21)

then T̃ f belongs to X ′. Through integration by parts we have

2
(
T̃ f, f

)
X ′,X =

∫∫
Rd×Rd

(
f
)2

(T, x, v) dx dv ≥ 0.

On the other hand, since f satisfies (2.19), T̃ f = −λf − (−∆)α/2f in the sense of
distributions which yields(

T̃ f, f
)
X ′,X = −

∫∫∫
QT

(
λf

2
+ eαt

∣∣(−∆)
α
4 f
∣∣2)dtdxdv ≤ 0. (2.22)



52 P. Aceves-Sánchez and Ludovic Cesbron

Hence both expression are null, in particular this means that the integral λf
2

is null,
hence f = f ≡ 0 a.e. on QT : the solution is unique. In order to prove the positivity
of the solution consider once again the associated problem (2.19) and its solution f for

some f
in ∈ L2(Rd × Rd) with f

in ≥ 0. Next, we define f+ and f− the positive and

negative parts of f given by:

f+(t, x, v) = max(f(t, x, v), 0); f−(t, x, v) = max(−f(t, x, v), 0)

so that f = f+ − f− and we denote by A+ and A− the respective supports of f+ and

f−. Using T̃ defined in (2.21) we have through integration by parts(
T̃ f, f−

)
=

∫∫∫
QT

(
f−∂t

(
f+ − f−

)
+ e−tf−v · ∇x

(
f+ − f−

)
+ etf−E(t, x) · ∇v

(
f+ − f−

))
dtdxdv

= −1

2

∫∫
Rd×Rd

(
f

2

−(T, x, v)− f2

−(0, x, v)
)

dx dv

+

∫∫∫
QT

(
f−∂tf+ + e−tf−v · ∇xf+ + etf−E(t, x) · ∇vf+

)
dtdxdv.

By definition of f+ and f− we know that A+ ∩A− = ∅, hence wherever f− is not zero,

both ∂tf+, ∇xf+ and ∇vf+ are naught, and vice-versa. Moreover, we assume f
in ≥ 0

which means f−(0, x, v) = 0 so that(
T̃ f, f−

)
= −1

2

∫∫
Rd×Rd

f
2

−(T, x, v) dxdv ≤ 0.

Since f is solution of (2.19) we know that T̃ f = −λf − (−∆)α/2f in the sense of
distributions which yields(

T̃ f, f−
)

=

∫∫∫
QT

(
− λf−

(
f+ − f−

)
− f−(−∆)α/2

(
f+ − f−

))
dtdx dv

where ∫
Rd

f−(−∆)α/2(f+)∇v =

∫
Rd

f−(v) cd,α P.V.

∫
Rd

f+(v)− f+(w)

|v − w|d+α
dw dv

=

∫
A−

f−(v) cd,α P.V.

∫
A+

f+(v)− f+(w)

|v − w|d+α
dw dv

= −cd,α
∫
A−

P.V.

∫
A+

f−(v)f+(w)

|v − w|d+α
dw dv ≤ 0.

Note that this integral is well defined because f ∈ X . Hence, we have:(
T̃ f, f−

)
=

∫∫∫
QT

(
λf

2

− − f−(−∆)α/2f+ +
∣∣(−∆)α/4f−

∣∣2)dtdxdv ≥ 0.

This proves that
(
T̃ f, f−

)
= 0 which, in particular, means λf

2

− = 0 and concludes the
proof of positivity, and consequently the proof of Theorem 2.1. �
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3 A priori estimates

Let us consider the operator Tε a perturbation of the fractional Fokker-Planck operator

with an electric field E(t, x) ∈
(
W 1,∞([0, T )× Rd)

)d
defined as

Tε(fε) = ∇v ·
[(
v − εα−1E(t, x)

)
fε

]
−
(
−∆v

)α/2
fε. (3.23)

We will prove the following:

Proposition 3.1. For any ε > 0 fixed, there exists a unique positive equilibrium distri-
bution Fε solution of:

Tε(Fε) = ∇v ·
[(
v − εα−1E(t, x)

)
Fε

]
−
(
−∆v

)α/2
Fε = 0,

∫
Rd
Fε dv = 1. (3.24)

Proof. The Fourier transform in velocity of the equilibrium equation (3.24) reads

ξ · ∇ξF̂ε = −
(
iξ · εα−1E(t, x) + |ξ|α

)
F̂ε,

for which we can compute the explicit solution:

F̂ε(t, x, ξ) = κe−iε
α−1ξ·E(t,x)−|ξ|α/α, (3.25)

where κ is a positive constant which ensures the normalisation of the equilibrium. Now,
although the inverse Fourier transform F−1

(
F̂ε
)
(t, x, v) is not explicit let us note that

Fε can be expressed as a translation of the equilibrium distribution Gα of the fractional
Fokker-Planck operator:

Fε(t, x, v) = Gα
(
v − εα−1E(t, x)

)
. (3.26)

Hence, the positivity and normalization of Fε follows from the properties of Gα. �

Proposition 3.2. Let Fε be the unique normalized equilibrium distribution of (3.23).
Then there exist positive constants µ, c1, c2 and c3 such that:

(i) c1Gα ≤ Fε ≤ c2Gα,

(ii)

∥∥∥∥∂tFεFε

∥∥∥∥
L∞( dv dx dt)

,

∥∥∥∥v · ∇xFεFε

∥∥∥∥
L∞( dv dx dt)

≤ εα−1µ,

(iii) |Fε −Gα| ≤ εα−1c3Gα.

for ε > 0 small enough.

Proof. We shall start by proving part (i). Let us assume that L is an arbitrary vector in
Rd such that |L| ≤ 1, then is easy to see that there exists R1 > 0 big enough such that

1

2
1

d+α

≤
∣∣∣∣1− |L||v|

∣∣∣∣ ≤ ∣∣∣∣ v|v| − L

|v|

∣∣∣∣,
for all |v| > R1. Hence, it follows that

1

|v − L|d+α
≤ 2

|v|d+α
,
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for all |v| > R1. Thus, using (1.8) we obtain that there exists C̃ > 0 and R > 0 big
enough such that

Gα(v − L) ≤ C̃Gα(v),

for all |v| > R and all L ∈ Rd with L ≤ 1. Now, let C2 > 0 such that

C2

(
min

v∈B(0,R)
Gα(v)

)
≥ ‖Gα‖∞,

where B(0, R) ⊂ Rd, is the ball of radius R centered at the origin. Let us note that the

minimum exists since Gα is continuous. Thus choosing µ2 = C̃∨C2, where a∨b denotes
the maximum between a and b, we obtain

Gα(v − L) ≤ µ2Gα(v).

Next, writing w = v + L where L ∈ Rd with |L| ≤ 1 we obtain

Gα(w) ≤ µ1Gα(w − L),

Thus, taking µ1 = 1/µ2 we obtain

µ1Gα(v) ≤ Gα(v − L),

for all v ∈ Rd and |L| ≤ 1.
On the other hand, for part (ii), let us start by noting that thanks to (3.26), Fε

satisfies the following identities:

∂tFε
Fε

= −εα−1∂tE(t, x) ·
∇v Gα

(
v − εα−1E(t, x)

)
Gα
(
v − εα−1E(t, x)

) ,

and

v · ∇xFε
Fε

= −εα−1∇xE(t, x)
v · ∇v Gα

(
v − εα−1E(t, x)

)
Gα
(
v − εα−1E(t, x)

) .

Hence, thanks to the assumption E ∈
(
W 1,∞([0, T )× Rd

)d
we only need to prove that

there exists a C > 0 such that

|v · ∇v Gα(v − L)| ≤ CGα(v − L), (3.27)

for all v ∈ Rd, and all L ∈ Rd with |L| ≤ 1. This follows via a similar line of reasoning
as in the proof of part (i) around the control (1.9).

Finally we prove part (iii). Since Gα is smooth by the mean value theorem we obtain

|Fε(v)−Gα(v)| = |Gα(v − εα−1E)−Gα(v)|
= εα−1|E||∇v Gα(v − ϑ εα−1E)|,

where ϑ ∈ (0, 1). Thus, the result follows thanks to (3.27) and since E ∈
(
W 1,∞([0, T )×

Rd
)d

.
�
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The key ingredient in order to obtain the a priori estimates needed to pass to the
limit in (1.4) is the positivity of the dissipation which we state in the following result.

Proposition 3.3. Let us consider the operator Tε defined by (3.23). The associated
dissipation, defined bellow, satisfies

Dε(f) := −
∫∫

Tε(f)
f

Fε
dv dx =

∫∫∫ (
f(v)

Fε(v)
− f(w)

Fε(w)

)2
Fε(v)

|v − w|d+α
dw dv dx, (3.28)

and if we write ρ(t, x) =
∫
f(t, x, v) dv, then for all f ∈ L2

F−1
ε

(Rd × Rd) we have

Dε(f) ≥
∫

(f − ρFε)2 dxdv

Fε(v)
. (3.29)

Proof. The Poincaré type inequality (3.29) is a particular case of the so-called Φ-entropy
inequalites introduced in [12]. For the sake of completeness we shall give a sketch of the
proof adapted to the case that we need.

We shall first start proving (3.28). Writing Φε = v− εα−1E(t, x) and g = f/Fε, and
since Fε satisfies (3.24) we have:

Dε(f) = −
∫∫ (

∇v · (ΦεgFε) g −
(
−∆v

)α/2
(gFε) g

)
dv dx

= −
∫∫ (

ΦεFε
1

2
∇v(g2) +∇v · (ΦεFε)g2 −

(
−∆v

)α/2
(g)gFε

)
dv dx

=

∫∫ (1

2
g2
(
−∆v

)α/2
(Fε)− g2

(
−∆v

)α/2
(Fε) + g

(
−∆v

)α/2
(g)Fε

)
dv dx

=

∫∫ (
g
(
−∆v

)α/2
(g)− 1

2

(
−∆v

)α/2
(g2)

)
Fε dv dx.

Hence, using (1.5) we see that:∫∫ (
g
(
−∆v

)α/2
(g)− 1

2

(
−∆v

)α/2
(g2)

)
Fε dv dx

=

∫∫∫ (
g(v)

(
g(v)− g(w)

)
|v − w|d+α

− 1

2

g2(v)− g2(w)

|v − w|d+α

)
Fε(t, x, v) dw dv dx

=
1

2

∫∫∫ (
g(v)− g(w)

)2
|v − w|d+α

Fε(t, x, v) dw dv dx.

Recall that Fε(t, x, v) = Gα
(
v − εα−1E(t, x)

)
, therefore through a simple change of

variable, if we call h(t, x, v) = g
(
v − εα−1E(t, x)

)
we have:

Dε(f) =
1

2

∫∫∫ (
h(t, x, v)− h(t, x, w)

)2
|v − w|d+α

Gα(v) dw dv dx.

In order to prove the control (3.29) we consider the semigroup associated with (−∆)α/2

d

dt
Pt(h)(v) = −(−∆)α/2

(
Pt(h)

)
(v) (3.30)

with P0(h)(v) = h(v) and we see, using (3.25), that if we introduce the kernel

Kt(v) = F−1
(
κe−t|ξ|

α/α
)

(v)
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where κ is a constant normalizing K1, then we have explicitly Pt(h) = Kt ∗ h. For
s ∈ [0, t] we consider

ψ(s) = Ps(H
2)(v) (3.31)

with H = Pt−s(h). We then have for s ∈ [0, t]:

ψ′(s) =
d

ds

[
Ks ∗

(
Kt−s ∗ h

)2
]

=
( d

ds
Ks

)
∗
(
Kt−s ∗ h

)2

+Ks ∗
d

ds

[(
Kt−s ∗ h

)2]
= Ps

(
− (−∆)α/2H2

)
+ 2Ps

(
H(−∆)α/2H

)
= Ps

(∫ (
H(v)−H(w)

)2
|v − w|d+α

dw

)
Using the integral expression of the convolution and Jensen’s inequality it is straight-

forward to see that
(
Pt−s(h)(v)−Pt−s(h)(w)

)2 ≤ Pt−s(h(v)−h(w)
)2

. Therefore, using
Fubini’s theorem, we have:

ψ′(s)(v) ≤ Ps
(
Pt−s

(∫ (
h(v)− h(w)

)2
|v − w|d+α

dw

))
= Pt

(∫ (
h(v)− h(w)

)2
|v − w|d+α

dw

)
.

Integrating over s ∈ [0, t] one gets

Pt
(
h2
)
(v)−

(
Pt(h)(v)

)2

≤ tPt
(∫ (

h(v)− h(w)
)2

|v − w|d+α
dw

)
.

Finally, taking t = 1 and evaluating at v = 0 we get:∫
h2(w)Gα(w) dw−

(∫
h(w)Gα(w) dw

)2

≤
∫∫ (

h(v)− h(w)
)2

|v − w|d+α
Gα(v) dv dw. (3.32)

Through a simple change of variables, inverse of the one we did earlier, we obtain∫
g2(w)Fε(w) dw −

(∫
g(w)Fε(w) dw

)2

≤
∫∫ (

g(v)− g(w)
)2

|v − w|d+α
Fε(v) dv dw. (3.33)

Finally, replacing g by f/Fε, since Fε is normalized, we recover (3.29).
�

Since the operator Tε is negative semidefinite in L2
F−1
ε

(Rd) it is natural to look for

bounds of the quadratic entropy associated to solutions fε of (1.4). We gather the
appropriate a priori estimates that we shall need to pass to the limit in (1.4) in the
following result.

Proposition 3.4. Let the assumptions of Theorem 1.5 be satisfied and let fε be the
solution of (1.4). We introduce the residue rε through the macro-micro decomposition
fε = ρεFε + εα/2rε. Then, uniformly in ε ∈ (0, 1), we have:

(i) (fε) is bounded in L∞([0, T );L2
G−1
α (v)

(Rd × Rd)) and in L∞([0, T );L1(Rd × Rd)),

(ii) (ρε) is bounded in L∞([0, T );L2(Rd)),

(iii) (rε) is bounded in L2([0, T );L2
G−1
α (v)

(Rd × Rd)).
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Proof. Multiplying (1.4) by fε/Fε, integrations by parts yield

εα−1

2

d

dt

∫∫
Rd×Rd

f2
ε

Fε
dv dx+

εα−1

2

∫∫
Rd×Rd

f2
ε

Fε

∂tFε
Fε

dv dx− 1

2

∫∫
Rd×Rd

f2
ε

Fε

v · ∇xFε
F 2
ε

dv dx+
1

ε
Dε(fε) = 0.

Thus, thanks to Proposition 3.2, part (i) and (ii), and (3.29) we obtain

εα

2

d

dt

∫∫
Rd×Rd

f2
ε

Fε
dv dx+

∫∫
Rd×Rd

(fε − ρεFε)2

Fε
dv dx ≤ εαµ

∫∫
Rd×Rd

f2
ε

Fε
dv dx. (3.34)

Whence, part (i) follows by Gronwall’s lemma and the fact that the weights 1/Gα and
1/Fε are equivalent uniformly in ε which follows from Proposition 3.2, part (i). On the
other hand, part (ii) follows thanks to the inequality

ρε ≤
(∫

f2
ε

Fε
dv

)1/2

,

which is an immediate consequence of Cauchy-Schwarz and the fact
∫
Fε dv = 1. Finally,

part (iii) follows from (4.48) after integrating with respect to t over (0, T ) and thanks
to Proposition 3.2 part (ii).

�

4 Proof of Theorem 1.5

We shall follow the method introduced in [9]. Let us start by introducing the following
auxiliary problem: for ϕ ∈ C∞c ([0, T )× Rd), define ψε the unique solution of

εv · ∇xψε − v · ∇vψε = 0 in [0,∞)× Rd × Rd,
ψ(t, x, 0) = ϕ(t, x) in [0,∞)× Rd (4.35)

The function ψε can be obtained readily via the method of characteristics and can be
expressed in an explicit manner as follows:

ψε(t, x, v) = ϕ(t, x+ εv). (4.36)

Next, multiplying (1.4) by ψε and through integrations by parts we obtain

∫∫∫
QT

fε

(
εα−1 ∂tψε + v · ∇xψε −

1

ε
(v − εα−1E) · ∇vψε −

1

ε
(−∆)α/2ψε

)
dv dxdt

+ εα−1

∫∫
Rd×Rd

f in(x, v)ψε(0, x, v) dv dx = 0 . (4.37)

Let us note the following

(−∆v)
α/2ψε(t, x, v) = εα(−∆v)

α/2ϕ(t, x+ εv), (4.38)

∇vψε(t, x, v) = ε∇ϕ(t, x+ εv), (4.39)
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which follows after a simple computation using the definition (1.5) of the fractional
Laplacian. Thus using the auxiliary equation (4.35) and plugging (4.38) into (4.37)
yields∫ ∞

0

∫∫
fε

(
∂tϕ(t, x+ εv) + E · ∇xϕ(t, x+ εv)− (−∆v)

α/2ϕ(t, x+ εv)
)

dv dx dt

+

∫∫
f in(x, v)ϕ(0, x+ εv) dv dx = 0 .

(4.40)

4.1 The non-critical case: 1 < α < 2

In order to pass to the limit in this weak formulation, we introduce the following two
results.

Lemma 4.1. Let (fε) be the sequence of solutions of (1.4), and ρ be the limit of (ρε)
which exists thanks to Proposition 3.4 part (ii), then

fε(t, x, v) ⇀ ρ(t, x)Gα(v) weakly in L∞([0, T );L2
G−1
α (v)

(Rd × Rd))

Proof. This lemma follows directly from Proposition 3.4. Since fε is uniformly bounded,
it converges weakly in L∞([0, T );L2

G−1
α (v)

(Rd × Rd)). From the bounds on Fε estab-

lished in Proposition 3.2 and the boundedness of ρε in L∞([0, T );L2(Rd)) we see that
ρε(t, x)Fε(v) converges to ρ(t, x)Gα(v) weakly in L∞([0, T );L2

G−1
α (v)

(Rd × Rd)) where

ρ is the weak limit of ρε. Finally, since the residue rε is bounded, it follows from the
micro-macro decomposition fε = ρεFε + εα/2rε that the limit of fε is the same as the
limit of ρεFε. �

Lemma 4.2. For all test functions ψ in C∞c ([0,∞)× Rd) we have:

lim
ε→0

∫∫∫
QT

fε(t, x, v)ψ(t, x+ εv) dtdxdv =

∫∫
[0,T )×Rd

ρ(t, x)ψ(t, x) dxdt. (4.41)

Moreover, if E(t, x) ∈ W 1,∞([0, T ) × Rd)d then for all Ψ ∈ C∞c ([0,∞) × Rd;Rd) the
following convergence holds:

lim
ε→0

∫∫∫
QT

fε(t, x, v)E(t, x) ·Ψ(t, x+ εv) dtdxdv =

∫∫
[0,T )×Rd

ρ(t, x)E(t, x) ·Ψ(t, x) dxdt.

(4.42)

Proof. We will give a detailed proof of the convergence in (4.42), the convergence in
(4.41) follows as a consequence of (4.42) by taking ψ(t, x + εv) = E(t, x) · Ψ(t, x + εv)
with a smooth E and Lemma 4.1. For (4.42), we write:

∫∫∫
QT

fεE(t, x) ·Ψ(t, x+ εv) dv dxdt =

∫∫
[0,T )×Rd

ρ(t, x)E(t, x) ·Ψ(t, x) dxdt

+

∫∫∫
QT

(
fε − ρ(t, x)Gα(v)

)
E(t, x) ·Ψ(t, x) dv dxdt

+

∫∫∫
QT

fεE(t, x) ·
(

Ψ(t, x+ εv)−Ψ(t, x)
)

dv dx dt.

(4.43)
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The second term in the right hand side of (4.43) converges to zero since fε converges to
ρGα weakly in L∞([0, T );L2

G−1
α (v)

(Rd × Rd)) thanks to Lemma 4.1. For the third term

on the right hand side of (4.43) thanks to Cauchy-Schwarz and Hölder we obtain∣∣∣∣∫∫∫
QT

fεE(t, x) · (Ψ(t, x+ εv)−Ψ(t, x)) dv dxdt

∣∣∣∣
≤
∫ T

0

( ∫∫
Rd×Rd

f2
ε

Gα
dv dx

)1/2( ∫∫
Rd×Rd

[
E(t, x) · (Ψ(t, x+ εv)−Ψ(t, x))

]2
Gα dv dx

)1/2

dt

≤ ‖fε‖L∞([0,T );L2

G
−1
α (v)

(Rd×Rd))

×
∫ T

0

( ∫∫
Rd×Rd

[E(t, x) · (Ψ(t, x+ εv)−Ψ(t, x))]2Gα dv dx

)1/2

dt. (4.44)

Next, let R be an arbitrary positive real number and let us consider the following
splitting∫∫

Rd×Rd

[
E · (Ψ(t, x+ εv)−Ψ(t, x))

]2
Gα(v) dv dx

=

∫
Rd

∫
|v|≤R

[
E · (Ψ(t, x+ εv)−Ψ(t, x))

]2
Gα(v) dv dx

+

∫
Rd

∫
|v|>R

[
E · (Ψ(t, x+ εv)−Ψ(t, x))

]2
Gα(v) dv dx.

(4.45)

We will use the regularity of Ψ to bound the integral on |v| < R. To that end, let us
consider the εR neighborhood of the support of Ψ denoted as Ω(εR) which consists of
the union of all the balls of radius εR having as center a point in supp Ψ. Next, let Λ
denote the diameter of supp Ψ defined as the maximum over all the distances between
two points in supp Ψ. Then it is clear that Ω(εR) ⊆ B(x0;Λ+ εR) where B(x0;Λ+ εR)
denotes the ball with center at x0 and radius Λ + εR and x0 is any arbitrary fix point
in supp Ψ. Then for the integral over |v| < R we have the following∫
Rd

∫
|v|≤R

[E · (Ψ(t, x+ εv)−Ψ(t, x))]2Gα(v) dv dx

≤ ‖Gα‖L∞(Rd)

∫
Rd

∫
|v|≤R

( d∑
j=1

|Ej |
∣∣εv · ∇xΨj(t, x+ ϑjεv)

∣∣)2

dv dx

≤ 2ε2‖Gα‖L∞(Rd)

∫
Rd

∫
|v|≤R

|v|2
( d∑
j=1

|Ej |2
∣∣∇xΨj(t, x+ ϑjεv)

∣∣2)dv dx

≤ 2ε2‖Gα‖L∞(Rd)‖E‖2W 1,∞([0,T )×Rd)‖∇xΨ‖L∞(Rd)

∫
|v|≤R

∫
B(x0,δ+εR)

|v|2 dxdv

≤ ε2C2(Λ+ εR)dRd+2, (4.46)

where C2 is a constant depending on ‖E‖2W 1,∞([0,T )×Rd), ‖Gα‖L∞(Rd) and ‖D2
xϕ‖L∞(Rd)

but not on ε, and ϑj ∈ (0, 1) for j = 1, . . . , d is such that Ψj(t, x + εv) − Ψj(t, x) =
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εv · ∇xΨj(t, x+ ϑjεv). For the integral on |v| > R we use the decay of the equilibrium
Gα(v) to derive the following upper bound:∫
Rd

∫
|v|>R

[
E · (Ψ(t, x+ εv)−Ψ(t, x))

]2
Gα(v) dv dx

≤ ‖E‖2W 1,∞([0,T )×Rd)

∫
|v|>R

(∫
Rd

(
2|Ψ(t, x+ εv)|2 + 2|Ψ(t, x)|2

)
dx

)
Gα(v) dv

≤ 4‖E‖2W 1,∞([0,T )×Rd)

∫
Rd

|Ψ(t, x)|2 dx

∫
|v|>R

Gα(v) dv

≤ C
∫
|v|>R

Gα(v) dv.

Thanks to Proposition 3.1, for any η > 0 we can choose R > 0 big enough such that∣∣∣∣Gα(v)− ϑ

|v|d+α

∣∣∣∣ ≤ η

|v|d+α
, for all |v| ≥ R.

Thus choosing η = ϑ we have the following estimate:∫
|v|>R

Gα(v) dv ≤
∫
|v|>R

∣∣∣∣Gα(v)− ϑ

|v|d+α

∣∣∣∣ dv +

∫
|v|>R

ϑ

|v|d+α
dv

≤ 2

∫
|v|>R

ϑ

|v|d+α
dv

≤ C

Rα
.

From which we conclude∫
Rd

∫
|v|>R

[
E · (Ψ(t, x+ εv)−Ψ(t, x))

]2
Gα(v) dv dx ≤ C2

Rα
. (4.47)

Next let us note that for any δ > 0 we can choose R̃ > 0 such that C2/R
α < δ/2 for all

R > R̃ and then choose ε > 0 so that ε2C1(Λ+ εR)dRd+2 < δ/2. And thus deduce that
for ε small enough we have

ε2C1(Λ+ εR)dRd+2 +
C2

Rα
< δ.

Therefore, plugging (4.46) and (4.47) into (4.44) and using Proposition 3.4, part (i), we
obtain that there exists a fixed C > 0 such that∣∣∣∣∫∫∫

QT

fεE · (Ψ(t, x+ εv)−Ψ(t, x)) dv dxdt

∣∣∣∣
≤ C

(
ε2C1(Λ+ εR)dRd+2 +

C2

Rα

)
≤ Cδ,

for any δ > 0, hence concluding that the third term on the right hand side of (4.43)
goes to zero as ε→ 0. �
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Using Lemma 4.2 we can now take the limit in (4.40) and conclude that ρ satisfies

∫∫
[0,T )×Rd

ρ
(
∂tϕ+ E · ∇xϕ−

(
−∆x

)α/2
ϕ
)

dxdt+

∫
Rd

ρin(x)ϕ(0, x) dx = 0,

for all ϕ ∈ C∞c ([0, T )× Rd). Thus concluding the proof of Theorem 1.5.

4.2 The critical cases α = 1 and α = 2

In the critical case α = 2 we recover the classical Fokker-Planck operator which means,
in particular, as mentioned in the Introduction, that its equilibrium is a Maxwellian
M(v) = C exp

(
−|v|2

)
instead of the heavy-tail distribution Gα. We can still consider

the perturbed operator Tε of Proposition 3.1 and its equilibrium will also be a translation
of the unperturbed one:

Fε(t, x, v) = Ce−|v−εE(t,x)|2

and since the decay of the Maxwellian is much faster than the decay of the heavy-tail
distributions, Proposition 3.2 holds. The dissipative properties of the Fokker-Planck
operator are well known, see e.g. [8] [14] or [5], and it is straightforward to check the
boundedness results of Proposition 3.4. Hence, Lemma 4.1 holds and we can take the
limit in the weak formulation (4.40) to prove that Theorem 1.5 holds in the case α = 2.

In the critical case α = 1, the perturbed operator Tε of (3.23) and its equilibrium
Fε (3.26) lose their dependence with respect to ε:

Tε(fε) = TE(fε) = ∇v ·
[(
v − E(t, x)

)
fε

]
−
(
−∆v

)α/2
fε,

Fε(t, x, v) = G1,E(t, x, v) = G1

(
v − E(t, x)

)
.

In particular, the equilibrium G1,E will remain unchanged in the limit as ε goes to 0
and Proposition 3.2 will hold with α = 1 which, in particular, means that the bounds
in (ii) and (iii) do not go to zero. The operator is still dissipative since the dependence
on ε does not matter in the proof of Proposition 3.3, hence we still have (3.33) and
multiplying (1.4) by fε/G1,E and integrating by parts yields:

ε

2

d

dt

∫∫
Rd×Rd

f2
ε

G1,E
dv dx+

∫∫
Rd×Rd

(fε − ρεG1,E)2

G1,E
dv dx ≤ εµ

∫∫
Rd×Rd

f2
ε

G1,E
dv dx. (4.48)

Since E is in
(
W 1,∞([0, T )× Rd)

)d
, if fε(t, ·, ·) is in L2

G1,E(t,x,v)(R
d × Rd) and bounded

independently of time, then it is also in L2
G1(v)(R

d × Rd). As a consequence, from

(4.48) we still have the uniform in ε boundedness of fε, ρε =
∫
fε∇v and the residue

rε in L∞([0, T );L2
G1(v)(R

d×Rd)) as stated in Proposition 3.4. This yields the following
modified version of Lemma 1:

Lemma 4.3. Let α = 1, (fε) be the sequence of solutions of (1.4), and ρ be the limit
of (ρε) which exists thanks to Proposition 3.4 part (ii), then

fε(t, x, v) ⇀? ρ(t, x)G1,E(t, x, v) in L∞([0, T );L2
G−1

1 (v)
(Rd × Rd)).



62 P. Aceves-Sánchez and Ludovic Cesbron

Finally, for the proof of convergence of the weak formulation (4.40), i.e. the proof of
Lemma 4.2, we proceed essentially the same way. The only slight difference is that in
order to control the third term of (4.43) we will use Cauchy-Schwarz as in (4.44) but we
multiplying and divide by G1(v)1/2 instead of the natural equilibrium G1,E . The rest
of the proof remains the same and we can then take the limit in the weak formulation,
which concludes the proof of Theorem 1.5 with α = 1.
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Abstract

A version of fractional diffusion on bounded domains, subject to ’homogeneous
Dirichlet boundary conditions’ is derived from a kinetic transport model with ho-
mogeneous inflow boundary conditions. For nonconvex domains, the result differs
from standard formulations. It can be interpreted as the forward Kolmogorow
equation of a stochastic process with jumps along straight lines, remaining inside
the domain.

1 Introduction

This work is an extension to bounded domains of earlier efforts [4, 19, 20] to derive
fractional diffusion equations from kinetic transport models. This raises the issue of the
inclusion of boundary effects, which can, however, not be reduced to boundary conditions
since fractional diffusion is a nonlocal process. Our main result is the derivation of a
new way of realizing ’homogeneous Dirichlet boundary conditions’, coinciding on convex
domains with an already established model, see e.g. [14].

Let Ω ⊂ Rd denote a bounded domain with smooth boundary. We shall study the
asymptotic behavior as ε > 0 tends to zero of the kinetic relaxation model

εα∂tfε + εv · ∇xfε = Q(fε) :=

∫
Rd
Mf ′ε −M ′fε dv′ , (1.1)

with fε = fε(x, v, t), (x, v, t) ∈ Ω×Rd×[0,∞) (where the superscript ′ denotes evaluation
at v′), subject to zero inflow boundary conditions and well prepared initial data:

fε(x, v, t) = 0 for (x, v) ∈ Γ− , t > 0 , (1.2)

fε(x, v, 0) = f in(x, v) := ρin(x)M(v) for (x, v) ∈ Ω , (1.3)

with Γ± = {(x, v)| x ∈ ∂Ω, sign(v · ν(x)) = ±1}, where ν denotes the unit outward
normal along ∂Ω. We assume a ’fat-tailed’ equilibrium distribution M , satisfying

M(v) = 1/|v|d+α for |v| ≥ 1 , with 0 < α < 2 , (1.4)

M(v) > 0, M(v) = M(−v) for all v ∈ Rd , (1.5)

M ∈ L∞(Rd) , and

∫
Rd
M(v) dv = 1 . (1.6)

Note that these assumptions imply that M does not have finite second order moments.
The translation of homogeneous Dirichlet boundary conditions to fractional diffusion

induce a certain behaviour of solutions close to the boundary. The domain of the
fractional diffusion operator, we shall derive, contains test functions in

DΩ := {ϕ ∈ C∞0 (Ω× [0,∞)) : δ(x)−2ϕ(x, t) bounded} , (1.7)
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where δ(x) := dist(x, ∂Ω) denotes the distance of a point x ∈ Ω to the boundary.
A convenient functional analytic setting for the main result of this paper is the

L2-space L2
M−1(Ω× Rd) of functions of (x, v) with weight 1/M(v).

Theorem 1.1. Let ρin ∈ L2(Ω), and let fε be the solution of (1.1)–(1.3). Then, for any
T > 0, there exists ρ ∈ L∞(0, T ;L2(Ω)) such that fε(x, v, t)→ ρ(x, t)M(v) as ε→ 0, in
L∞(0, T ;L2

M−1(Ω× Rd)) weak-?, and ρ satisfies∫
Ω

ρinϕ(t = 0)dx+

∫ ∞
0

∫
Ω

ρ ∂tϕdx dt =

∫ ∞
0

∫
Ω

ρ(hαϕ− Lα(ϕ))dx dt, (1.8)

for all ϕ ∈ DΩ, with

Lα(ϕ)(x, t) = Γ(α+ 1)P.V.

∫
{w∈Rd:[x,x+w]⊂Ω}

ϕ(x+ w, t)− ϕ(x, t)

|w|d+α
dw,

and

hα(x) =

∫
Rd

1

|w|d+α
e−
|x−x0(x,w)|

|w| dw , (1.9)

where [x, y], x, y ∈ Rd, denotes the straight line segment connecting x and y, and x0(x,w)
is the point closest to x in the intersection of ∂Ω with the ray starting at x in the direction
w.

The function hα is well defined by (1.9) and converges to ∞ when x → ∂Ω, see
Proposition 4.1 in Section 4.

Remark 1.2. Theorem 1.1 remains true with slightly modified proofs for generalized
versions of the model. For example, (1.4) may be replaced by the more general condition

M(v) ∼ 1/|v|d+α as |v| → ∞. (1.10)

An example coming from stochastic analysis is the probability density function of an
α-stable process, see [6].

Remark 1.3. Another possible generalization is to permit a more general collision oper-
ator, satisfying the micro-reversibility principle:

Q(f) =

∫
Rd

[σ(v, v′)M(v)f(v′)− σ(v′, v)M(v′)f(v)] dv′

where the cross-section σ is symmetric, i.e. σ(v, v′) = σ(v′, v), v, v′ in Rd, and bounded
from above and away from zero:

0 < ν1 ≤ σ(v, v′) ≤ ν2 <∞ .

The derivation of macroscopic limits from kinetic equations when the collision kernel
has a Maxwellian as an equilibrium distribution is a classical problem studied in the
pioneering works [25], [15], and [18]. Here the essential properties of the equilibrium
distribution are vanishing mean velocity and finite second order moments. In the case
where the equilibrium distribution is heavy-tailed, the problem was first studied for
relaxation type collision operators in [20], [19] and [4], from an analytical point of view
and in [16] with a probabilistic approach, obtaining as a macroscopic limit a fractional
heat equation. These are results on whole space, and they have recently been extended to
collision operators of fractional Fokker-Planck type [8] and to the derivation of fractional
diffusion with drift [1, 2, 3]. The proofs of most of these results are based on the moment
method introduced in [19], which will also be used here.
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To find an appropriate definition of fractional diffusion in a bounded domain is not
obvious since it describes the probability distribution of a jump process. The formu-
lation of appropriate models as macroscopic limits of kinetic equations is the subject
of this work and of the very recent contribution [7], where the problem of deriving a
fractional heat equation from a kinetic fractional-Fokker-Planck equation is tackled with
zero inflow and specular reflection boundary conditions, where the spatial domain is a
circle. The main differences between this work and [7] are that we use a relaxation type
collision operator, we only consider inflow boundary conditions, but we permit general,
in particular nonconvex, position domains.

There are several equivalent definitions of the fractional Laplacian in the whole do-
main (see [17]), however, for bounded domains there are different definitions, depend-
ing on the details of the underlying stochastic process. For instance, if we consider
the stochastic process consisting of a fractional Brownian motion with an α/2−stable
subordinator and killed upon leaving the domain it has as infinitesimal generator the
restricted fractional Laplacian (see [14])

− (−∆|Ω)α/2ϕ(x) := cd,α P.V.

∫
Rd

ϕ(y)1Ω(y)− ϕ(x)

|x− y|d+α
dy , cd,α > 0 . (1.11)

This operator has also been derived in [7] as macroscopic limit of a kinetic equation
in a circle, subject to zero inflow boundary conditions. The macroscopic operator of
Theorem 1.1 can be written in the similar form,

− hαϕ+ Lα(ϕ) = Γ(α+ 1) P.V.

∫
Rd

ϕ(y)1SΩ(x)(y)− ϕ(x)

|x− y|d+α
dy , (1.12)

where SΩ(x) denotes the biggest star-shaped subdomain of Ω with center in x. Obvi-
ously, (1.11) and (1.12) coincide for convex Ω (the situation of [7]). The difference in
the stochastic process interpretations of (1.11) and (1.12) is that in the latter jumps are
only permitted along straight lines, which do not leave the domain.

For completeness we also mention the spectral fractional Laplacian defined as fol-
lows: The operator −∆ subject to homogeneous Dirichlet boundary conditions along ∂Ω
has positive eigenvalues 0 < λ1 ≤ λ2 . . . with corresponding normalized eigenfunctions
{ek}k≥1. The spectral fractional Laplacian (subject to homogeneous Dirichlet boundary
conditions) is defined by

(−∆Ω)α/2ϕ(x) :=

∞∑
i=1

λ
α/2
i ei(x)

∫
Ω

ei(y)ϕ(y)dy . (1.13)

It can also be interpreted as generating a stochastic process (see [9]). A representation
formula similar to (1.11) and (1.12) has been derived in [23]:

(−∆Ω)α/2ϕ(x) = cd,α P.V.

∫
Ω

[ϕ(x)− ϕ(y)]J(x, y) dy + cd,α κ(x)ϕ(x), for x ∈ Ω

where the functions J and κ and the constant cd,α satisfy (with positive constants C1,
C2 and C3)

C1δ(x)δ(y) ≤ J(x, y) ≤ C2 min

(
1

|x− y|d+α
,

δ(x)δ(y)

|x− y|d+2+α

)
,

and

C−1
3 δ−α(x) ≤ κ(x) ≤ C3δ

−α(x).
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In [22] it is proven that the two operators (−∆Ω)α/2 and (−∆|Ω)α/2 are different since,
for instance, the eigenfunctions of the former are smooth up to the boundary whereas
the eigenfunctions of the latter are no better than Hölder continuous up to the boundary.
In recent years fractional Laplace operators have been extensively used since they seem
to be more suitable for the description of phenomena such as contaminants propagating
in water [5], plasma physics [12], among many others (see [24] and [21]). However, there
is some literature where for the fractional Laplacian on bounded domains the definitions
(1.11) and (1.13) are used interchangeably, thus leading to false results.

2 Uniform estimates and modified test functions

It is a standard result of kinetic theory that the initial-boundary value problem (1.1)–
(1.3) with an equilibrium distribution M satisfying (1.4)–(1.6) and an initial position
density ρin ∈ L1(dx) has a unique solution, which is nonnegative, if the same holds for
ρin (see, e.g. [10], Chapter XXI). This will be assumed in the following, where we always
denote by dx, dv, and dt the Lebesgue measures on Ω, Rd, and, respectively, (0,∞). We
start with standard estimates:

Lemma 2.1. Let ρin ∈ L2
+(dx). Then the solution fε of (1.1)–(1.3) satisfies

fε ∈ L∞(dt, L2
+(dx dv/M)) uniformly as ε→ 0 ,

and, with ρε := ρfε ,

fε − ρεM = O(εα/2) in L2(dx dv dt/M) , as ε→ 0 .

Proof. Multiplication of (1.1) by fε/M , integration with respect to x and v, the diver-
gence theorem, and the boundary condition (1.2) yield

εα

2

d

dt

∫
Ω

∫
Rd

f2
ε

M
dv dx+ ε

∫
Γ+

v · ν f
2
ε

2M
dv dx =

∫
Ω

∫
Rd
Q(fε)

fε
M
dv dx

= −‖fε − ρεM‖2L2(dx dv/M) , (2.14)

where the second equality is a well known fact and the result of a straightforward
computation (see, e.g. [11]). The nonnegativity of the second term and an integration
with respect to t over (0, T ) give

εα

2
‖fε(·, ·, T )‖2L2(dx dv/M) +

∫ T

0

‖fε − ρεM‖2L2(dx dv/M)dt ≤
εα

2
‖ρin‖2L2(dx) ,

completing the proof. �

For the proof of Theorem 1.1 we employ the moment method introduced in [19],
which relies on test functions solving a suitably chosen adjoint problem. For given
ϕ ∈ DΩ the function χε(x, v, t) is the solution of the stationary kinetic equation

χε − εv · ∇xχε = ϕ , (2.15)

subject to the inflow boundary condition

χε = 0 on Γ+ . (2.16)

Note that the left hand side of (2.15) is an adjoint version of a part of (1.1), where only
the loss term of the collision operator and the transport operator have been kept.
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We can readily solve (2.15), (2.16) via the method of characteristics, obtaining

χε(x, v, t) =

∫ r(x,v)/ε

0

e−sϕ(x+ εsv, t)ds , where r(x, v) =
|x− x0(x, v)|

|v|
, (2.17)

and x0(x, v) is the point closest to x in the intersection of ∂Ω and the ray starting at x
with direction v. In the following a different representation will be convenient:

χε(x, v, t) = ϕ(x, t)
(

1− e−r(x,v)/ε
)

+

∫ r(x,v)/ε

0

e−s[ϕ(x+ εsv, t)− ϕ(x, t)]ds . (2.18)

This already shows the main difference to the whole space situation [19], which is the
boundary layer correction in the parenthesis on the right hand side of (2.18).

In the following we shall need a uniform boundedness result.

Lemma 2.2. Let ϕ ∈ DΩ and let χε be given by (2.17). Then

‖χε‖L2(M dxdv dt) ≤ ‖ϕ‖L2(dx dt) , ‖∂tχε‖L2(M dxdv dt) ≤ ‖∂tϕ‖L2(dx dt) .

Proof. Multiplication of (2.15) by Mχε and integration with respect to v gives

‖χε‖2L2(M dv) −
ε

2
∇x ·

∫
Rd
vMχ2

εdv = ϕ

∫
Rd
Mχεdv ≤ |ϕ| ‖χε‖L2(M dv) ,

where the Cauchy-Schwarz inequality and the normalization of M has been used. In-
tegration with respect to x and t, the divergence theorem, and the boundary condition
(2.16) for χε lead to

‖χε‖2L2(M dxdv dt) −
ε

2

∫ ∞
0

∫
Γ−

ν · vMχ2
εdv dσ dt ≤ ‖ϕ‖L2(dx dt)‖χε‖L2(M dxdv dt) ,

completing the proof of the first inequality. The proof of the second is analogous after
differentiation of (2.15) with respect to t. �

3 Proof of Theorem 1.1

With ϕ ∈ DΩ and χε defined by (2.17), multiplication of (1.1) by χε and integration
with respect to x, v and t gives

−
∫ ∞

0

∫
Rd

∫
Ω

fε∂tχεdx dv dt−
∫
Rd

∫
Ω

ρinMχε(t = 0)dx dv

= ε−α
∫ ∞

0

∫
Rd

∫
Ω

(ρεMχε − fεχε + fεεv · ∇xχε)dx dv dt

=

∫ ∞
0

∫
Ω

ρε

(
ε−α

∫
Rd
M(χε − ϕ)dv

)
dx dt . (3.19)

In the sequel we shall need the following notation: For x, y ∈ Rd we denote by [x, y]
the line segment connecting x and y. Furthermore, we denote by SΩ(x) the largest star
shaped subdomain of Ω with center x, i.e.

SΩ(x) := {y ∈ Ω : [x, y] ⊂ Ω}

The heart of our analysis is the asymptotics for the term in parantheses on the right
hand side of (3.19).
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Lemma 3.1. Let ϕ ∈ DΩ and let χε be given by (2.17). Then

lim
ε→0

ε−α
∫
Rd
M(χε − ϕ)dv = −hαϕ+ Lα(ϕ) (3.20)

locally uniformly in x and t, where

hα(x) =

∫
Rd

1

|v|d+α
e−
|x−x0(x,v)|

|v| dv ,

Lα(ϕ)(x, t) = Γ(α+ 1) P.V.

∫
SΩ(x)

ϕ(y, t)− ϕ(x, t)

|y − x|d+α
dy .

Proof. The representation (2.18) of χε induces the splitting

ε−α
∫
Rd
M(χε − ϕ)dv = −hεαϕ+ Lεα(ϕ) ,

with

hεα(x) = −ε−α
∫
Rd
M(v)e−r(x,v)/εdv ,

Lεα(ϕ)(x, t) = ε−α
∫
Rd

∫ r(x,v)/ε

0

M(v)e−s[ϕ(x+ εsv, t)− ϕ(x, t)]ds dv .

We shall consider these parts separately. In both cases we shall start by proving that
the small velocities do not contribute to the limit. This splits the rest of the proof into
4 steps.

Step 1: We consider the contribution to hεα coming from the small velocities. For |v| ≤ 1
we have r(x, v) ≥ δ(x). Therefore

ε−α
∫
|v|≤1

M(v)e−r(x,v)/εdv ≤ ε−αe−δ(x)/ε ≤ c ε
2−α

δ(x)2
,

since the map z 7→ z2e−z, z ≥ 0, is bounded.

Step 2: The previous step implies that hεα is asymptotically equivalent to

ε−α
∫
|v|>1

|v|−d−αe−r(x,v)/εdv . (3.21)

In this integral we make the coordinate transformation w = εv. Observing that

r(x,w/ε)

ε
=
|x− x0(x,w/ε)|

|w|
= r(x,w) ,

since x0(x,w/ε) = x0(x,w), the expression in (3.21) is equal to∫
|w|>ε

|w|−d−αe−r(x,w)dw .

For proving that this converges to hα(x), we need to estimate∫
|w|≤ε

|w|−d−αe−r(x,w)dw ≤
∫
|w|≤ε

|w|−d−αe−δ(x)/|w|dw = |Sd|δ(x)−α
∫ ∞
δ(x)/ε

sα−1e−sds

≤ |Sd| ε
2−α

δ(x)2
sup
γ≥0

(
γ2−α

∫ ∞
γ

sα−1e−sds

)
.
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The supremum is finite since the integrand is bounded and decays exponentially as
s→∞.

Combining this result with Step 1 shows that

|hεα(x)− hα(x)| ≤ c ε
2−α

δ(x)2
,

implying pointwise convergence of hεα to hα in Ω. Since |ϕ(x, t)| ≤ c δ(x)2, the conver-
gence of hεαϕ to hαϕ is uniform in (x, t).

Step 3: We analyze the contributions from the small velocities to Lεα(ϕ). For the test
function difference, we apply the Taylor expansion:∣∣∣∣∣ε−α

∫
|v|≤1

∫ r(x,v)/ε

0

M(v)e−s
(
εsv · ∇xϕ(x, t) +

ε2s2

2
vtr∇2

xϕ(x̂, t)v

)
ds dv

∣∣∣∣∣
≤

∣∣∣∣∣ε1−α∇xϕ(x, t) ·
∫
|v|≤1

vM(v)

∫ r(x,v)/ε

0

se−sds dv

∣∣∣∣∣
+ε2−αc

∫
|v|≤1

|v|2M(v)dv

∫ ∞
0

s2e−sds .

In the first term on the right hand side we change the order of integration:∫
|v|≤1

vM(v)

∫ r(x,v)/ε

0

se−sds dv =

∫ ∞
0

se−s
∫
|v|≤1, εs≤r(x,v)

vM(v)dv ds

=

∫ δ(x)/ε

0

se−s
∫
|v|≤1

vM(v)dv ds+

∫ ∞
δ(x)/ε

se−s
∫
|v|≤1, εs≤r(x,v)

vM(v)dv ds

In the first term on the right hand side, the restriction εs ≤ r(x, v) can be omitted,
since it is automatically satisfied for εs ≤ δ(x) ≤ r(x, v). As a consequence this term
vanishes by M being even. The last term can be estimated by∫ ∞

δ(x)/ε

se−sds

∫
|v|≤1

|v|M(v)dv ≤ c ε

δ(x)
sup
γ≥0

(
γ

∫ ∞
γ

se−sds

)
.

Since ϕ ∈ DΩ implies |∇xϕ(x, t)| ≤ cδ(x), we have the result

ε−α
∫
|v|≤1

∫ r(x,v)/ε

0

M(v)e−s[ϕ(x+ εsv, t)− ϕ(x, t)]ds dv = O(ε2−α) ,

uniformly in (x, t).

Step 4: It remains to consider

ε−α
∫
|v|>1

∫ r(x,v)/ε

0

|v|−d−αe−s[ϕ(x+ εsv, t)− ϕ(x, t)]ds dv

=

∫
|w|>ε

∫ r(x,w)

0

|w|−d−αe−s[ϕ(x+ sw, t)− ϕ(x, t)]ds dw

=

∫ ∞
0

sd+αe−s
∫
|w|>ε, s<r(x,w)

ϕ(x+ sw, t)− ϕ(x, t)

|sw|d+α
dw ds (3.22)

By the coordinate transformation x + sw = y the condition s < r(x,w) becomes s-
independent:

|x− y| < |x− x0(x, y − x)| ⇐⇒ y ∈ SΩ(x) .
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Therefore (3.22) is equal to∫ ∞
0

sαe−s
∫
SΩ(x)\Bεs(x)

ϕ(y, t)− ϕ(x, t)

|y − x|d+α
dy ds ,

where Br(x) denotes the ball with center x and radius r. In order to prove that this
converges to Lα(ϕ), we need to show that∫ ∞

0

sαe−s
∫
SΩ(x)∩Bεs(x)

(y − x) · ∇xϕ(x, t) + (y − x)tr∇2
xϕ(x̂, t)(y − x)/2

|y − x|d+α
dy ds

tends to zero. The second term involving the Hessian of the test function can be esti-
mated by

c

∫ ∞
0

sαe−s
∫
Bεs(x)

|y − x|2−d−αdy ds = c ε2−α
∫ ∞

0

s2e−sds .

The estimation of the first term is more subtle. Actually, the integral with respect to y
has to be understood as a principal value for α ≥ 1. Since

P.V.

∫
Br(x)

y − x
|y − x|d+α

dy = 0 , for r > 0 ,

and Bεs(x) ⊂ SΩ(x) for εs < δ(x), we have∫ ∞
0

sαe−sP.V.

∫
SΩ(x)∩Bεs(x)

(y − x) · ∇xϕ(x, t)

|y − x|d+α
dy ds (3.23)

=

∫ ∞
δ(x)/ε

sαe−s
∫

(SΩ(x)∩Bεs(x))\Bδ(x)

(y − x) · ∇xϕ(x, t)

|y − x|d+α
dy ds ,

which can be estimated by

cδ(x)

∫ ∞
δ(x)/ε

sαe−s
∫
Bεs(x)\Bδ(x)

|y − x|1−d−αdy ds = cδ(x)

∫ ∞
δ(x)/ε

sαe−s
∫ εs

δ(x)

r−αdr ds .

With ∫ εs

δ(x)

r−αdr ≤

 c(εs)1−α , α < 1 ,
log(εs/δ(x)) , α = 1 ,
cδ(x)1−α , α > 1 ,

it is straightforward to obtain that (3.23) is O(ε2−α) for α 6= 1 and O(ε log(1/ε)) for
α = 1, uniformly in (x, t). This completes the proof of the uniform convergence of Lεα(ϕ)
to Lα(ϕ). �

Corollary 3.2. Let ϕ ∈ DΩ and let χε be defined by (2.17). Then

lim
ε→0

∫
Rd
M(v)[χε(x, v, t)− ϕ(x, t)]dv = lim

ε→0

∫
Rd
M(v)[∂tχε(x, v, t)− ∂tϕ(x, t)]dv = 0,

(3.24)
uniformly with respect to (x, t) ∈ supp(ϕ).

Proof. The first statement is an immediate consequence of Lemma 3.1. The second
statement follows, since ϕ ∈ DΩ implies ∂tϕ ∈ DΩ and since the map ∂tϕ 7→ ∂tχε is the
same as ϕ 7→ χε. �
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The remaining steps in the proof of Theorem 1.1 are rather standard. As a conse-
quence of Lemma 2.1 and of the estimate

|ρε| ≤ ‖fε‖L2(dv/M) =⇒ ‖ρε‖L2(dx) ≤ ‖fε‖L2(dx dv/M) ,

we obtain

ρε
∗
⇀ ρ in L∞(dt; L2(dx)) , fε

∗
⇀ ρM in L∞(dt; L2(dx dv/M)) ,

when restricting to subsequences. Now we are ready for passing to the limit in (3.19).
We decompose the first term by using∫

Rd
fε∂tχεdv =

∫
Rd

(fε − ρεM)∂tχεdv + ρε

∫
Rd
M∂tχεdv .

The first term on the right hand side tends to zero by∣∣∣∣∫
Rd

(fε − ρεM)∂tχεdv

∣∣∣∣ ≤ ‖fε − ρεM‖L2(dv/M)‖∂tχε‖L2(M dv) ,

Lemma 2.1, and Lemma 2.2. In the second term we may pass to the limit ρ ∂tϕ by
the weak∗ convergence of ρε and the strong convergence of

∫
RdM∂tχεdv (Corollary

3.2). The limit in the second term of (3.19) is a consequence of Corollary 3.2. Finally,
passing to the limit in the right hand side of (3.19) is justified by the weak? convergence
of ρε and by Lemma 3.1. This completes the proof of Theorem 1.1.

4 Discussion

In this section we discuss properties of the fractional diffusion operator. First we show
that the function hα defined in (1.9) is well defined and tends to infinity at the boundary
of Ω.

Proposition 4.1. Let hα be defined by (1.9), then there exists C > 0 such that

0 < hα(x) ≤ Cδ(x)−α , x ∈ Ω . (4.25)

Proof. In order to prove (4.25) let us chose x ∈ Ω and note that |x − x0(x,w)| ≥ δ(x).
Next, let us introduce a polar coordinates change of variables in the integral (1.9), and
note the following:

hα(x) =

∫ 2π

0

∫ ∞
0

1

ηd+α
e−|x−x0(x,σ)|/ηηd−1 dη dσ

where η denotes the radial variable. Now, introducing the change of variables r = δ(x)η
we obtain

hα(x) ≤
∫ 2π

0

∫ ∞
0

1

rd+α
e−δ(x)/rrd−1 dr dσ

≤
∫ 2π

0

∫ ∞
0

1

(δ(x)η)1+α
e−1/ηδ(x) dη dσ

=
1

δα(x)

∫ 2π

0

∫ ∞
0

1

η1+α
e−1/η dη dσ,

from which (4.25) follows. In addition, we obtain that hα(x) is finite for every x ∈ Ω. �
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In [13] it has been shown that the fractional heat equation

∂tu(x, t) = −cd,α P.V.

∫
Rd

u(x, t)− u(y, t)

|x− y|d+α
dy in Ω, t > 0,

u(x, t) = 0 in Rd \ Ω,

u(x, 0) = uin(x) in Ω,

has a unique solution such that for any fixed t0 > 0 the following estimate holds

sup
t≥t0

∥∥∥∥ u(·, t)
δα/2(·)

∥∥∥∥
Cα(Ω)

≤ C(t0)‖uin‖L2(Ω).

Therefore, for any fixed time t > 0, u(x, t) behaves like δα/2(x) when x→ ∂Ω.
In this work we neither prove the uniqueness of weak solutions nor any Hölder reg-

ularity results, however, formally using ϕ(x, t) = ρ(x, t)1[0,T ](t) in (1.8) yields

1

2
‖ρ(·, T )‖2L2(Ω) +

∫ T

0

∫
Ω

hαρ
2dx dt

+ Γ(α+ 1)

∫ T

0

∫
x,y: [x,y]⊂Ω

(ϕ(x)− ϕ(y))2

|x− y|d+α
dx dy dt =

1

2
‖ρin‖2L2(Ω).

This implies uniqueness at least formally. Also the boundedness of the second integral
together with Proposition 4.1 induces results on the behaviour of ρ close to the boundary.
In particular for α > 1, as a consequence of Proposition 4.1, hα is not integrable,
implying some decay of ρ(x, t) as δ(x)→ 0.
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