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Abstract 

 

Biogas fermenters harbour very complex microbial communities and the individual 

members have to fulfil distinct tasks on the way from substrate degradation to the 

final products methane and CO2. Only a minor proportion of the present species has 

been characterized by now and their genome sequences and functional assignments 

are often not available. Even if the representatives seem to be perfectly organised in 

the hydrolytic breakdown of plant material, they compare unfavourably to 

populations present in the digestive tracts of herbivores. Explanations for this 

observation are obscure so far.  

In this thesis we analysed a one-stage agricultural biogas fermenter with respect to 

microbial community structure and functional genomic equipment of the 

underlying taxa. Metagenomic analyses resulted in 1.16 Gb of assembled DNA and 

binning of 104 high quality genome reconstructions.  Our results display that 

Firmicutes are far more prominent in biogas plants whereas in natural systems, 

Bacteroidetes seem to be equally abundant. This observation was reflected by the 

lower prevalence of glycoside hydrolase family genes in the metagenomic bins 

assigned to members of Bacteroidetes. A deficiency in genes encoding presumable 

GH enzymes may be associated with the limited potential of biogas fermenters 

regarding hydrolysis. These findings tempt to speculate that increasing the 

proportion of Bacteroidetes in agricultural biogas plants, will presumably lead to 

increased hydrolysis of plant biomass.  
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Kurzzusammenfassung 

 

Biogasfermenter beherbergen äußerst komplexe mikrobielle Gemeinschaften und 

die einzelnen Mitglieder erfüllen ganz spezielle Aufgaben auf dem Weg vom 

Substrat-Abbau zur Herstellung der Endprodukte Methan und CO2. Nur ein 

winziger Anteil der tatsächlich vorkommenden Spezies wurden bis jetzt näher 

beschrieben; oftmals sind die Genomsequenzen und funktionellen Zuordnungen 

nicht vorhanden. Auch wenn es so scheint als wären die einzelnen Vertreter perfekt 

organisiert im hydrolytischen Abbau von pflanzlicher Biomasse, so schneiden sie im 

direkten Vergleich zu Populationen in Verdauungstrakten von Pflanzenfressern 

doch wesentlich schlechter ab. Erklärungen für diese Feststellung liegen bis jetzt 

noch im Dunkeln. In dieser Thesis haben wir einen typischen landwirtschaftlichen 

Ein-Phasen Biogasfermenter in Bezug auf dessen mikrobielle Zusammensetzung 

und die funktionelle Genomausstattung der zugrundeliegenden Taxa untersucht. 

Metagenomische Analysen haben die Assemblierung von 1,16 Gb an DNA und die 

Rekonstruktion von 104 qualitativ hochwertigen Genomrekonstruktionen 

ermöglicht. Unsere Resultate zeigen, dass Firmicutes in Biogasanlagen weitaus 

häufiger vorkommen wohingegen in natürlichen Systemen, Bacteroidetes ziemlich 

gleich häufig zu sein scheinen. Diese Beobachtung spiegelt sich auch im selteneren 

Vorhandensein an Glycosid-Hydrolasen Genen in metagenomischen Bins wider, 

welche den Bacteroidetes zugeordnet sind. Ein Defizit an Genen, für GH Enzyme 

codierend, könnte mit dem limitierten Hydrolysepotential von Biogasfermentern 

zusammenhängen. Diese Entdeckungen animieren zu Spekulationen, dass eine 

Erhöhung an Bacteroidetes zu einer erhöhten Hydrolyserate von Pflanzenmaterial 

führen könnte. 
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Abbreviations  

 

AD   anaerobic digestion/degradation 

BLASTn  nucleotide BLAST 

bp   base-pairs 

CAZy   carbohydrate-active enzymes 

CDS   coding sequences  

CE   carbohydrate esterase 

COG   cluster of orthologous groups 

DBG   de Bruijn graph 

Gbp   Giga base-pairs 

GH   glycoside hydrolase  

GT   glycosyl transferase 

KEGG   Kyoto Encyclopaedia of Genes and Genomes 

LCA   lowest common ancestor 

Mbp   Mega base-pairs 

nc-RNA  non-coding RNA 

NGS   next-generation sequencing 

OTU   operational taxonomic unit 

RDP   ribosomal database project 

rRNA   ribosomal RNA 

SSU   small subunit 

SVM   support vector machine 

tRNA   transfer RNA 
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1. Introduction 

 

1.1 Biological background and aim of the study 

Our modern society’s global energy demand is constantly increasing and the major 

part of it is covered by the use of fossil fuels. Addressing the problems of climatic 

changes and greenhouse gas emissions, many European countries, in particular 

Germany, Austria, Denmark and Sweden, have augmented biogas production, 

because it is an environmentally friendly renewable source of energy [1]. Biogas, 

which is mainly composed of methane and carbon dioxide, is produced in a process 

called anaerobic digestion (AD) which is carried out by complex microbial 

communities [2]-[5]. Applying this technology has several advantages as it couples 

waste disposal to the production of a highly valuable renewable fuel and 

additionally, nutrient recovery can replace mineral fertilizers [1]. The originating 

biomethane can completely substitute fossil fuels as it can be used in the generation 

of heat and electricity, as well as a vehicle fuel. The final stage of methane production 

is well understood, contrary to the microbial communities involved in the other 

stages of biogas production, their role and the underlying dynamics are not well 

characterized so far [2]-[5]. It is known that the way from anaerobic substrate 

degradation to the final products, methane and carbon dioxide, requires a close 

interaction of several hundreds to several thousand phylogenetically different 

microbial species [3]; [4]; [6]; [7]. The first step, being the hydrolysis of 

polysaccharides, is regarded as one of the rate-limiting steps in the entire process 

and therefore it is one determinant of the overall efficiency [8]. Cellulose is a rich 

source of organic carbon compounds however, the actual process from cellulose 
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degradation to biogas production leaves room for further investigation. Bacteria 

that are able to degrade cellulose are rare and the majority of them are belonging to 

the bacterial phyla Firmicutes or Actinobacteria [8]. Clostridia are reported to be 

the dominant class of hydrolytic Bacteria in biogas fermenters and therefore one can 

assume that they play a major role in the initial step [8]. In natural digestive tracts 

of studied herbivore organisms, the Clostridia appear to be less dominant and are 

outcompeted by the Bacteroidetes. Different studies indicate that Bacteroidetes can 

be found in all samples of digestive organs as well as feces of herbivores. In those 

natural biogas producing systems, they usually represent the main bacterial group 

and seem to be more dominant than Firmicutes [9]-[12]. This is one of the huge 

differences in the bacterial composition of biogas fermenters and natural cellulolytic 

systems.  

The main aim of this thesis is to investigate the taxonomic composition of the 

underlying biogas fermenter sample, as well as analysing the possible effects that 

the differences, compared to microbial communities in natural digestive organs, 

may have in the effective degradation of plant biomass. The use of deep DNA-

sequencing, RNA-sequencing and metagenomic analysis should enable gaining 

further knowledge about the relative taxonomic community composition and the 

occurrence of glycoside hydrolase (GH) enzymes. The comparison of the taxonomic 

composition, as well as the abundance of GH family genes, in artificial anaerobic 

digestion systems to natural cellulolytic systems may provide deeper insight for 

enhancing process efficiency and final biogas yield. 



1.2 Biogas – production, usage and advantages 

 

15 

 

1.2 Biogas – production, usage and advantages 

The term “biogas” generally refers to gas produced by anaerobic digestion units [13], 

is a major player in the category of renewable energies and a promising candidate 

addressing the global need for energy as well as having multiple environmental 

benefits [14]-[16]. Today, bioenergy production in general is estimated to be the 

fourth largest source of energy in the world [17]. Table 1 gives an overview of biogas 

usage, its benefits and shows a comparison to other sources of energy. 

 

 

 

 

 

 

 

 

 

 

 

Biogas is a very versatile energy carrier, depending on the specific requirements of 

the final processing techniques. It can be used in the generation of electricity, heat 

and as vehicle fuel, after post-processing e.g. desulfurization and water removal [1]. 

Among various factors, the final gas yield is strongly dependent on the injected 

Table 1: Overview of possible biogas usage, potential substrates and overall 
advantages comparing conventional energy sources. According to Mao et al., 
2015, modified. 

Advantages of biogas usage References 

Green energy production 

Electricity 

Heat 

Vehicle fuel 

[16] 

Organic waste disposal 

Agricultural residues 

Industrial wastes 

Municipal solid wastes 

Household wastes 

Organic waste mixtures 

[1] 

Environmental protection 

Pathogen reduction through sanitation 

Less nuisance from insect flies 

Air & water pollution reduction; eutrophication and 

acidification reduction 

Forest vegetation conservation 

Replacing inorganic fertilizer 

[14]; [15] 

GHG emission reduction Substituting conventional energy resources [14]; [18] 



1.2 Biogas – production, usage and advantages 

 
 

16 

 

substrates. However, the range of possible fed in substrates is broad and frequently 

used source materials are animal manures, industrial wastes, commercial or 

municipal wastes and different grains or grasses [1]; [18].  

Increasing the final yield in biogas does not solely depend on optimization of process 

parameters (e.g. temperature, pH, retention time); it is even more important that 

the different substrate conversion steps proceed in precise coordination. It is general 

knowledge that the slowest step of a reaction determines the overall reaction speed 

and performance but for being able to optimize these single parameters, all elements 

of the reaction chain, as well as their output, interactions and demands have to be 

known. Even if the microorganisms carrying out the conversion of plant material 

and the mechanisms, that are involved on the way to methane production, are well 

understood, the overall process and the microbial biogas producing community 

structure needs further investigation [2]-[5]. 
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1.3 Anaerobic degradation process stages  

Breaking it down, anaerobic degradation is a cooperation of a very complex 

microbial community but mainly three types of Bacteria work together in the most 

relevant stages, being hydrolysis, acidogenesis, acetogenesis, and methanogenesis 

[8]. The first step in the digestion process is the hydrolysis of complex molecules 

including carbohydrates, lipids, and proteins which are depolymerized by the help 

of a wide range of enzymes that are produced and secreted by hydrolytic Bacteria 

together with saccharolytic Bacteria. These Bacteria are either obligate anaerobic as 

Bacteroides and Clostridia, or they are facultative anaerobic, as for example 

Streptococci [19].  

The products of this initial step and the following acidogenesis are organic acids, 

alcohols, CO2 and H2. The acetogenesis, performed by acetogenic Bacteria 

(syntrophic Bacteria) involves conversion of the products from the preceding steps 

into acetate. Acetotrophic and hydrogenotrophic Archaea then convert the acetate, 

CO2 and H2 to methane and CO2. This last step, and possibly also the best 

understood, is the methanogenesis [7]; [8]. Representatives, which perform this 

reaction are for instance Methanosarcina, Methanothrix, Methanobacterium and 

Methanococcus [19]. Figure 1 gives a brief overview of the most important chemical 

reactions as well as most abundant taxonomic groups. As indicated there, bacterial 

representatives are the dominating ones carrying out the first three steps of the 

process, the final conversion is mainly performed by hydrogenotrophic or 

acetotrophic Archaea, producing CH4 and CO2.  
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The initial step in the AD process, the hydrolysis, is known to be crucial for the 

overall production efficiency. Hydrolysis of the biomass is regarded as the rate 

limiting step as all downstream reactions depend on the initial hydrolysis 

production rate – the more substrate is used, the greater is the final methane yield 

[8]. This fact is one of the main reasons why a better understanding of the 

community involved during hydrolysis is crucial for improving overall process 

efficiency.  

 

 

 

 

 

 

 

Figure 1: Major chemical reactions in the anaerobic degradation of organic compounds, 
substrates and products as well as most important microbial community members 
involved in the single steps. According to Lebuhn and Gronauer, 2009, modified. 
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1.4 Microbial community analysis – natural vs. 

artificial systems 

The production of biogas by anaerobic degradation is not a novel technical 

invention. Utilising organic material as substrate for biogas production is widely 

found in nature, for instance, the intestine of plant-feeding animals or insects, 

swamps or marshes, composts or debris of lake grounds are all habitats for the 

microorganisms cited above [8]. Bacteroidetes are regarded to be the most 

competitive microbial group, together with the Firmicutes, as multiple studies 

indicate that they are present in nearly all herbivore rumen, gut and fecal samples. 

This is in contrast to the technical replica like biogas fermenters; here the Clostridia 

appear to be the predominant bacterial class and literature indicates that they play 

a major role during hydrolysis. However, cow rumen, gut or other organs involved 

in natural digestive processes of herbivorous animals are regarded as not being 

dominated by clostridial organisms [8]-[12]; [20]-[23].  

These publications suggest that there is a vital contrast between natural and 

artificially generated microbial communities needed in the anaerobic digestion 

process and gaining detailed insight into possible reasons for this observation, 

might improve final product yield.  
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1.5 Glycoside hydrolase families and CAZy database 

Carbohydrate-active enzymes (CAZy) are mandatory for the breakdown of complex 

carbohydrates. The CAZy enzyme database project (http://www.cazy.org/) [24] has 

collected CAZy enzyme families which are involved in the synthesis, modification 

and breakdown of oligo- and polysaccharides. CAZy genes are regarded to make up 

around 1-5% of the coding regions of an organism. As these CAZy enzymes are vital 

in the processing of cellulose, they are regarded as an essential key to success in the 

production of biogas [24]. Depolymerisation of plant-derived cellulose, which is 

recalcitrant to hydrolysis and is often found in crystalline form, needs key enzymes 

mainly belonging to different glycoside hydrolase families. Glycoside hydrolases 

break up the glycosidic bonds between carbohydrates, are capable of hydrolysing 

even crystalline cellulose and evolved in many different microorganisms, mainly 

filamentous Fungi and Bacteria [25]. Generally there are several types of GHs and 

their coefficient action is known to be necessary for the complete hydrolysis of 

cellulose to glucose [26]-[28]. The first type are endoglucanases, hydrolysing the 

internal bonds in cellulose chains randomly and therefore releasing products of 

variable length. Exoglucanases constitute the second type, releasing cellobiose 

through action either on the reducing or the non-reducing end of the cellulose 

polymer. The last type are the β-glucosidases, they affect the degradation of 

cellubiose, finally yielding glucose [28]; [29]. These cellulolytic enzymes can occur 

as free and independent enzymes, or they are packed together in a formation called 

cellulosomes. Whereas numerous cellulolytic organisms belonging to the class of 

Clostridia produce cellulosomes, Bacteria belonging to the phylum of Bacteroidetes 

are considered to lack these multi-enzyme complexes. However, literature indicates 

that for an efficient degradation of cellulose, they use so-called polysaccharide 
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utilisation loci (PULs) [30]; these sets of genes might be of importance in the 

process of degrading cellulose and were recently proposed to be an alternative 

approach for cellulose breakdown [31].  

Differences in the abundance of potential GH genes between natural digestive 

systems as well as anaerobic degradation systems, established for biogas 

production, can undergird the findings of a vital underrepresentation of typical 

rumen or gut bacteria as well as provide more details about the mechanisms 

involved in the initial biomass hydrolysis. 
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1.6 Methodical background  

Synergistic reactions of microorganisms are crucial for bioenergy production, in 

both natural or artificially created cellulose degrading systems. Whole genome 

shotgun sequencing, which is based on the invention of various next-generation 

sequencing (NGS) technologies, has dramatically improved our understanding of 

community structures and dynamics in the most diverse environments. In 

metagenomic community analysis, culturing of microorganisms for successful 

investigation is not necessary anymore. Even if the cultivation-based approaches 

have helped to gain important elementary knowledge about many key 

microorganisms, for which cultivation was possible, for the majority of them, found 

in more complex environments, cultivation has not been possible yet because their 

essential requirements are unknown. Aside from that, each of the organisms studied 

individually and isolated might exhibit different characteristics than when the whole 

complex microbial network is examined [32]-[34]. Due to the application of culture-

independent techniques, a prior hardly conceivable diversity was observed, 

phylogenetically as well as metabolically [3]; [4]; [6]; [7]; [35]; [36]. Additionally, 

understanding community composition, interactions and reactions has helped to 

improve reactor set-ups and therefore positively influenced efficiency and stability 

[13]; [37]. Metagenomic shotgun sequencing refers to the random sequencing of all 

DNA material and accessing the genetic content of entire communities in a certain 

environment. It provides information about the gene composition of the underlying 

communities and therefore gives a more exact description than phylogenetic 

analysis solely. The application of various bioinformatic software tools can reveal 

potentially novel enzymes, information about genomic linkages between function 

and phylogeny and also create evolutionary profiles [38].
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1.7 Typical metagenomic workflow 

The ultimate goal in metagenomics is the reconstruction of all genomes found in a 

specific environment but due to several problems, e.g. lack in sequencing coverage 

or difficulties in assembly, this is hardly ever possible. Still, there are two different 

approaches that are applied instead and therefore getting at least an approximation 

to entire reconstructions; the first one is a read-based analysis of the taxonomic as 

well as functional components of the metagenomes, the other is the assembly of 

reads into longer, continuous stretches of genomic sequences, referred to as contigs, 

prior to taxonomic classifications and functional assignments [39]. Each of these 

strategies has several inherent limitations; especially the assembly of single 

sequencing reads into contigs can cause inconvenience. Algorithms that were 

created specifically for short-read assembly are computationally demanding in 

terms of memory costs, due to the high numbers of genomes found in these 

communities. Though, not only the number of genomes is challenging, also the wide 

range of abundance for each single genome in a sample is very complicated and 

sometimes it is not possible at all to assembly genomes with low abundance. 

Chimeric assemblies may result from the assembly of very closely related lineages 

similar to heterogeneity within certain lineages, which can lead to fragmented 

sequences. Even the analysis on single reads has several bottlenecks, because the 

multitudinous number of reads that have to be analysed cause long runtimes and 

the short reads that are produced in NGS experiments can lead to high error rates. 

Figure 2 gives an overview about the single steps and processes that are generally 

executed in metagenomic analyses.  

 

 



1.8 Sequencing and data preprocessing 

24 

 

 

 

 

 

 

 

 

 

It is not invariably the case that each of these single steps is absolutely necessary 

and the leading question of the actual project will determine the exact procedure 

and the required tasks. More precise description of the single processes and software 

used in this thesis, including possible alternatives, is given below.

 

1.8 Sequencing and data preprocessing 

After sample taking and DNA-extraction, the genomic material has to be sequenced. 

In the last decade, metagenomic sequencing has gradually evolved from classical 

Sanger sequencing to next-generation sequencing (NGS). Sanger sequencing has for 

long been the method of choice due to lacking alternatives but the very time 

consuming cloning processes and the resulting high cost per gigabase has led to the 

application of NGS [38]-[41]. Clearly, there is no “holy grail” among them and each 

of them has pros and cons that have to be balanced to choose the suitable one. 

Sequencing always results in the acquisition of short nucleotide sequences, referred 

to as reads, which represent the amplified copies of the same genomic fragment that 

Figure 2: Overview of the procedures in typical metagenomic experiments. 
According to Thomas et al. 2012 and Kim et al. 2013, modified.  
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has been randomly sheared into small pieces beforehand. This process is called 

shotgun sequencing [41]. In the last years, metagenomic analyses have mainly 

applied 454/Roche pyrosequencing or Illumina sequencing-by-synthesis approach. 

Advantages of the 454/Roche sequencing is that it produces reads about 600-800 

bp in length, and therefore the greatest length of all second generation NGS 

technologies and substitution errors are very unlikely. Due to the inherent features 

of this technology, homopolymer stretches are prone to insertion/deletion errors, 

the yield of a single run is only about 500 Mbp and it is very costly compared to 

Illumina sequencing. Therefore, Illumina sequencing technologies are the ones 

most frequently used. The major disadvantage is the read length, only reaching up 

to 150 bp for now. The advantages are not only the lower costs, but also the higher 

accuracy compared to 454/Roche and the higher yield of about 60 Gbp in a single 

run [38]; [41]-[43]. In the present study an Illumina HiSeq 2500 instrument was 

used in paired-end mode with read lengths of 2 x 101 bp. The output of these 

experiments consist of a text file, containing millions of such reads in FASTA or 

FASTQ format which are then analysed. One important step in the avoidance of 

biased data is the preprocessing. Tools have been implemented which are measuring 

the probabilities of wrong base calls and based on that, provide quality scores for 

the overall sequencing procedure [41]; [44]-[46]. They are used for filtering, 

trimming and reformatting as well. PRINSEQ-lite [47] was the method of choice in 

this project, other possibilities would have been for example FastQC [48] and 

Trimmomatic [49].  
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1.9 Assembly and mapping 

The next step in a typical metagenomic workflow is the assembly of reads into either 

contigs (longer, contiguous sequence) or scaffolds (multiple contigs and gaps 

together representing a longer stretch of the genomic sequence) for obtaining larger 

coherent genomic sequences. Figure 3 is an illustration of these two basic constructs 

originating from the assembly process.  

 

 

 

 

 

 

 

As already discussed, this process is the bottleneck in terms of computational 

memory load of metagenomic analyses so far. A lot of algorithms have been 

developed in the last years that are addressing this problem. They can be basically 

divided into two categories, the de novo assemblers and the mapping assemblers. A 

template comprised of known reference genomes are needed for the assembly by 

mapping approach [40]; [50]. The results are rather reasonable as sequence repeats, 

short read lengths and low coverages are not that much of an issue compared to de 

novo approaches. Contrary, the de novo assembly method is one of the 

computationally 

Figure 3: Basic illustration for the two possible 
products of the assembly of short reads.                             
From http://genome.jgi.doe.gov. 
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most expensive tasks in metagenomic analyses [41]. The assemblers fulfilling this 

task are divided into three classes, all relying on graph reduction algorithms [51]. 

The first one is the overlay-layout-consensus (OLC) method, which basically 

searches for path overlaps in three steps and is used for very long reads [52]; [53]. 

Examples are the Celera assembler [54], Arachne [55] or Newbler [56].  Another 

possibility are the de Bruijn graph (DBG) assemblers which use short k-mer 

subgraphs for memory reduction [57]. Examples would be Velvet [58], IDBA [59] or 

Ray [52]. The last class are the greedy algorithms which are the most intuitive form. 

They search for the best overlaps and then continue growing contigs iteratively. For 

example, SSAKE [60], VCAKE [61] and SHARCGS [62] are using this approach. 

Some assemblers have been designed especially for metagenomic experiments as 

those reads are more complex, due to the number of different species, strain 

heterogeneity and the uneven coverage across the genome or between different 

genomes. These algorithms have to adapt their reconstruction method, based on 

graphs, to handle variabilities in genome copy numbers and sequences that are 

conserved across several genomes [63]. As the genomic diversity in metagenomic 

analyses is known to be immense and reference genomes are lacking, the de-novo 

assembly is the method of choice, at least until knowledge about the underlying 

community members exists. In the assembly step of this project, two of those 

metagenomic short-read assemblers were applied, Ray Meta [64] and IDBA-UD 

[65].  

Determination of the contig coverages is the next step in many metagenomic 

analyses, as this knowledge is required for many tasks in downstream analysis. For 

this purpose, short-read alignment algorithms exist for mapping the reads against 

the previously assembled contigs. These aligners are based on different algorithms 

for indexing the reads as well as the references. 
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The best known strategies are the Burrows-Wheeler transformation or the Smith-

Waterman algorithm, but also short k-mers are used in the indexing process. 

Famous short-read aligners are for example BBMap [66], Bowtie2 [67] and BWA 

[68], all of them were used at different stages in this study. 

 

1.10 Taxonomic community analysis 

“Who are they?” - this is one of the two fundamental questions in metagenomics and 

asks for a taxonomic analysis of all community members. There are basically two 

different approaches how the taxonomic composition can be analysed in NGS 

experiments. The first approach does not need any assembly or alignment before as 

it directly analyses the sequencing reads after trimming and filtering. The reads are 

used in similarity searches against databases that contain reference sequences of 

interest. Depending on the database used, protein or nucleotide searches are carried 

out. BLAST [69] is the most famous algorithm for detecting sequence similarities to 

known reference sequences and several variants exists that can browse various 

databases. However, BLAST is known to be limited in terms of computational speed, 

so many other tools were specifically designed to speed up the process as the amount 

of data that has to be handled in metagenomic projects is huge and runtimes have 

to be considered clearly beforehand. Rapsearch2 [70] was used here for taxonomic 

classification of single-reads, as it achieves a fast protein similarity search with only 

minimal loss in accuracy compared to BLAST. Afterwards search results have then 

to be analysed for their taxonomic composition. MEGAN5 [71] is a software tool 

capable of taxonomically placing reads based on their homology to a given taxon. A 

characteristic feature of this tool is that it places reads on the lowest common 

ancestor (LCA) of all organisms that contain the gene present in the read as well, 
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therefore it is a more conservative approach and minimizes the chance for false-

positive assignments.  

The other possible method for taxonomic community profiling is the analysis of 

assembled contigs; assigning contigs to different taxa can be done by searching for 

conserved marker gene sequences that have to be universally distributed across 

Bacteria or Archaea and are only present in a single copy in all genomes. AMPHORA 

[72] is a program that works by identifying 31 distinct bacterial marker genes from 

the input sequences for phylotyping (i.e. assigning sequences to taxa). AMPHORA2 

[73] has been used in the present study for phylogenetic marker analysis, as it is also 

capable of identifying marker genes in archaeal sequences. The underlying idea is 

the assumption that, if the marker is part of a larger assembled contig, then this 

contig can be classified into a specific taxonomic level. 

 

1.11 Taxonomic analysis based on rRNA gene search 

As each method has certain drawbacks and limitations, it is advisable to verify the 

results by the application of other approaches. In the present study, taxonomic 

community analysis results were matched with an analysis of sequencing reads that 

contain ribosomal RNA (rRNA) gene fragments. 16S rRNA gene profiling has been 

the method of choice for phylogenetic investigation and diversity analysis for the 

last 20 years now and marks one of the first steps in many metagenomic projects 

[74]. If 16S rRNA genes are used as phylogenetic marker genes in metagenomic 

shotgun experiments, then reads containing putative rRNA genes have to be sorted 

out and classified by similarity searches against specialised databases. Several 

public available databases exist that contain well-curated rRNA gene sequences, 

such as SILVA [75], RDP (ribosomal database project) [76] and Greengenes [77]. 
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There are several tools for filtering rRNA gene containing reads out of NGS data 

such as SortMeRNA [78]. The underlying algorithm works with a seeding strategy 

which is based on the search for many short similarity regions between the read and 

a respective rRNA sequence database. Another option is a nucleotide BLAST 

(BLASTn) similarity search against one of the databases mentioned above. 

Advantages of specialized tools as SortMeRNA are a great speed-up of the process 

as well as increased sensitivity and selectivity compared to BLASTn analyses [78]. 

In the present study, both approaches have been applied to the underlying dataset 

for maximising the number of detected and classified 16S rRNA reads. 

 

1.12 OTU clustering in metagenomic experiments 

Operational taxonomic unit (OTU) is a term in microbial analysis, referring to the 

clustering of sequences with a varying amount of sequence-identity that they have 

to share at least [79]. It is used in metagenomic analyses for the sorting of microbial 

sequences according to their sequence similarity. Many metagenomic studies are 

using clustering approaches for sequence variants of the small subunit (SSU) rRNA 

marker gene, as it is highly conserved among bacterial and archaeal species. 

Clustering these variants according to a chosen percentage of similarity threshold 

can be indicative of the underlying population richness. Nevertheless, the 16S rRNA 

approach is limited in the resolution at species-level, as differences are often not 

sufficient for distinguishing at this taxonomic rank. Another problem is that genes 

might be similar on the nucleotide level, even when they belong to evolutionary 

distant species [72]; [80]. In general, deriving phylogenetic classification based on 

a single gene is always risky and has to be corroborated by the use of other markers. 

This is why microbial research has shifted the focus more towards the use of protein-
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coding genes for phylogenetic analysis [72]. As protein-coding sequences are 

conserved at the amino acid level, the results are less biased by nucleotide 

composition [72]; [81]. As indicated before, AMPHORA2 uses universally 

conserved, single-copy marker genes for bacterial and archaeal taxonomic 

classification. In this study, these markers are identified by AMPHORA2 analysis 

and the results can then be clustered via CD-HIT [82], according to different levels 

of minimal sequence similarity. CD-HIT in general is used for a so-called clustering 

analysis, a method for searching for specific sequences and grouping them according 

to their similarity [83]. There are many other possible clustering programs available 

that are used for the grouping of protein sequences, for example ProtoMap [84], 

ProClust [85], Blastclust [86] and UniqueProt [87]. The drawback of these methods 

is that the underlying algorithm performs all-against-all comparisons and therefore 

CD-HIT was used, an algorithm that circumvents this problem, leading to a great 

acceleration [83]. CD-HIT uses a greedy algorithm as the first step is an ordering of 

sequences by decreasing length and the longest serves as seed for the first cluster. 

All sequences that are remaining are then compared to the existing seeds in a cluster. 

If the similarity threshold to a certain seed is met, then the sequence is grouped into 

the respective cluster [83]. Calculating the average number of markers present at a 

certain similarity threshold gives an indication of the number of OTUs in the 

underlying community. 
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1.13 Binning of metagenomic contigs 

Binning refers to the process where single genomic fragments that have been shot-

gun sequenced and assembled, are clustered together into so-called bins, to ideally 

reproduce entire genomes. Even if the advances in NGS technologies today are able 

to provide sufficient sequencing depth for assemblers especially designed for 

metagenomic experiments, the binning of assembled contigs into clusters on strain- 

or species-level is still a tough challenge [88]. In principle, there are two different 

approaches that have been implemented to overcome this obstacle; the first one uses 

distinct genomic signatures, e.g. k-mer frequencies, as those are characteristic to 

each genome [89]-[91]. It has been shown that the frequency of oligonucleotide 

occurrence is conserved over the genome within a certain species, whereas 

noticeable differences exist between distinct species [92]-[94]. This approach has 

limitations as in very complex communities, not all organisms exhibit genomes with 

extreme base compositions needed for separation of related microorganisms whose 

tetranucleotide frequencies are very similar [95].   

 On the other hand, the second method deals with the creation of coverage profiles 

and comparing them across multiple samples [95]-[97]. The idea behind these 

techniques is that contigs with similar coverage profiles, are likely to be derived from 

the same organismal population [96].  Some attempts also use a combination of the 

two approaches [98]-[100]. In this study CONCOCT [98] is used, an algorithm 

which uses a combination of sequence-composition- and coverage-dependent 

analysis for the automatic binning of contigs or scaffolds into distinct species-level 

clusters. CONCOCT is useful as the analysis of coverage values does not have to be 

executed manually, ensuring better reproducibility between different studies.  
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However, CONCOCT also has the same inherent limitations as all of these 

techniques, being dependent on a high-quality assembly. If the number of contigs 

that are restricted to a certain species is low, then the software will not form a 

distinct cluster out of them. 

 

1.14 Annotation of metagenomic bins  

“What are they doing?” - this is the second fundamental question in metagenomics 

that aims to gain insights into the community’s physiology by determining the 

collective functions encoded in all genomes in a community. Annotating functions 

to metagenomic sequences can be a quantitative measurement of the functional 

diversity of a community [101].  

Generally, a functional annotation of metagenomes involves two distinct steps, the 

gene prediction and the functional annotation of the predicted gene [38]; [101]. 

Figure 4 illustrates a typical functional annotation workflow in a metagenomic 

study.  

 

 

Figure 4: Typical steps involved in a metagenomic functional annotation analysis. According to 
Sharpton, 2014, modified.  
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Gene prediction refers to the process of identifying non-coding and coding 

sequences (CDS) within a read. These predictions do not need assembled reads as 

the prediction is also possible on unassembled metagenomic sequencing reads. 

Prediction on unassembled or poorly assembled reads is mainly a more challenging 

attempt as the read lengths are rather short in NGS experiments and therefore it 

involves the finding of partial coding sequences too [101]. Gene prediction is 

important in the functional annotation of metagenomic sequences, but it is truly 

crucial in identifying completely novel genes.  

In general, there are three different approaches for gene prediction prior to 

functional annotation. The first one uses databases of known genetic sequences and 

maps metagenomic reads or contigs to the database entries. This method is often 

referred to “fragment recruitment” in literature. If the gene-entry in the database 

possesses a functional annotation, then this can be used to functionally label the 

metagenomic sequence of interest. The problem of this attempt is that it is not 

possible to identify novel genes or more diverse homologs of a known gene [101]. 

The second approach is similar to the first, but it additionally includes the 

translation of each read into all six protein-coding frames. The resulting peptides 

are then aligned to a database containing sequences of known proteins. As this 

method relies on database comparison too, novel genes are not identifiable as well. 

Still, it is possible to identify more diverged homologs of known protein sequences 

[101]. The third approach is referred to as “de novo” or “ab initio” gene prediction 

and the algorithms tracing this strategy use gene prediction models which are 

trained by distinct features of microbial genes. These properties are for example 

gene length, the codon usage or a GC-bias. There are numerous of those software 

tools using this approach, for example MetaGeneMark [102], Orphelia [103], 

Glimmer-MG [104], GeneScan [105], Prodigal [106] and MetaGeneAnnotator 
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[107]. They differ in the quality of the used training sets and their capability of 

handling short or error-prone sequences. The key advantage of software tools that 

rely on this idea is that it is completely independent of sequence similarity to certain 

reference databases and therefore this technique is the only one capable of 

identifying completely novel genes [101].  

When the CDS in a metagenomic read or contig has been predicted it can be 

functionally annotated. Annotation of a genomic sequence is not done de novo as it 

comprises mapping of the CDS of interest to gene or protein databases of known 

sequences [38]. This is why the annotation of metagenomic sequences is a 

computationally very intense task. Commonly used reference libraries include the 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) [108] which contains 

metabolic pathway modules; the SEED [109] system, which links functions to 

higher-level functional subsystems; COG [110] and EggNOG [111], databases of 

orthologous protein groups; MetaCyc [112], contains metabolic pathways and HMM 

databases like Pfam [113], which comprises models for protein domains [38]; [40]; 

[101].  

CDS-prediction is not sufficient for annotation of metagenomic sequences. Other 

elements that have to be identified include CRISPR elements and non-coding RNAs 

(ncRNAs) like tRNAs or rRNAs. Complete frameworks have been developed that 

include all of the steps introduced above, CDS prediction as well as CRISPR element 

and ncRNA identification. In this study, the metagenomic bins were annotated by 

the use of ConsPred [114], a fully automatic, integrative and comprehensive 

annotation-framework for prokaryotic genomes.
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1.15 Phenotype prediction in metagenomic bins 

The persistent progress in NGS technologies led to a rapid increase in protein 

sequences and their respective databases. Assigning functions to these sequences is 

challenging and therefore many of them still remain unclassified. Computational 

studies have shown that prokaryotic proteins are highly conserved to a great extent. 

This fact is very important in the analysis of poorly investigated microorganisms as 

it enables functional deductions from well characterized homologous proteins. For 

deriving reasonable assertions for the function of two related proteins, their 

respective genes have to meet the criterion of orthology [110]. Orthologous genes 

have originated from a common ancestor gene, through a speciation event, and they 

perform either the same or very similar function in the two descending species. The 

protein Clusters of Orthologous Groups (COGs) database has evolved through the 

classification of proteins, based on the concepts of orthology in entirely sequenced 

genomes [115]. The concept of COGs is especially useful in functional or evolutionary 

genome studies as the information acquired of a single member can be transferred 

to the entire COG as orthology implicates functional similarity. A phenotype is a 

distinct trait of an organism that is noticeable when a certain genotype is expressed 

depending on the environment and conditions [116]. Those phenotypic traits can be 

highly versatile in microorganisms. Literature indicates that one of the basic 

methods for phenotype prediction in microbial genomes are computational 

methods which are based on databases for COGs [117]. As the expression of specific 

traits can be dependent of multiple genes and their specific combinations, the 

analysis of single marker genes is not sufficient for the prediction of many 

phenotypes. The phenotype prediction in the metagenomic bins generated in this 

study was performed by the use of the extended PICA framework implemented by 
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Feldbauer et al. [117]. They have investigated a method for prokaryotic phenotype 

prediction that is completely support vector machine (SVM) based [117]. Their work 

is based on the initial software framework PICA, developed by MacDonald and 

Beiko, which is designed to compare different phenotype prediction approaches 

[118]. Feldbauer et al. edited parts of the SVM plug-in of PICA to allow its 

application also for novel and incomplete genomes, which is a prerequisite in 

metagenomic experiments. The limiting factor of predictive power for phenotypes 

in metagenomes is genome completeness but they have shown that trait prediction 

is also possible for incomplete genomes to a great extent. 
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2. Material and Methods 

 

2.1 Obtaining the data 

The agricultural biogas fermenter samples were taken from a biogas plant which is 

located near Cologne (Germany) in March and May 2013. The studied biogas 

fermenter was running under steady conditions at the time of sampling, with 

fermentation conditions of 40°C and pH-value of 8. At this time, it produced 536 

kW output. The biogas reactor was fed mostly with maize silage (69%), but also cow 

manure (19%) and chicken manure (12%). Total DNA was then isolated, sheared and 

libraries were generated for Illumina® sequencing as recommended by the 

manufacturer. The diluted libraries were then multiplex-sequenced on an 

Illumina® HiSeq 2500 instrument. At first, only one lane was sequenced for each 

of the DNA isolations in a paired-end mode (2 x 101 bases). But then, two additional 

lanes (lanes 7 and 8) were sequenced for the second DNA isolation. These steps were 

done by our cooperation partners at the University of Hamburg. The number of 

generated reads is indicated in the Results section.
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2.2 Metagenome sequencing, de novo assembly and 

mapping 

The first step was to look for possible remaining sequencing adapters and removing 

them. This was done with a Python script generated in our department, the adapter 

sequences which were checked for, are given in Supplementary Material section. 

The raw samples were then quality checked with PRINSEQ-lite [47] version 0.20.4. 

Our input data, different lanes of Illumina® HiSeq with paired-end reads, were in 

FASTQ format. The sequences were trimmed with a threshold of 30 from the 3’ end 

and sequences below quality score mean of 30 and sequences that were shorter than 

70, were filtered out. The polyA/T-tail was trimmed with a minimum length of 6 at 

the 3’ and the 5’end. Quality was checked again after performing quality 

adjustments. 

Different assemblies of the quality checked sequencing reads were created using 

either Ray Meta [64] version 2.3.1 or IDBA-UD [65] version 1.1.1. This was done in 

different sets for all sequencing samples, sample 1 was the first DNA isolation, 

sample 2 the second and also a combination of both was created for the assembly 

process. Ray Meta was run in parallel on 24 nodes, with a maximum k-mer number 

of 31 and each of the paired-end reads was provided for the assembly process. 

Quality statistics were checked for both assemblies with PRINSEQ-lite “stats_all” 

command and comparison is given in the Results section. As there were significantly 

better results for the Ray Meta assembly, it was the method of choice and the 

according results were used for all further steps. 

There were also data available for a DNA sequencing of two additional lanes (7 and 

8) of sample 2 which was included in the assembly process and all following steps 
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were conducted with these data. As quality characteristics of contigs and scaffolds 

were very similar, contigs were used in all further steps. Determination of contig 

coverage was conducted by using the short-read mapper BBMap [119] version 

34.86, by mapping reads to generated contigs. Prior to the actual mapping step, it 

was necessary to split up the sequence read files into chunks with a maximum size 

of 2 million. Then the Ray Meta assembled contigs of sample 1, sample 2 and the 

combined sample 12 were indexed by BBmap. The actual mapping step was 

submitted to the grid engine system of our department giving the chunks in a paired-

end mode. The SAM files of all three samples were converted, sorted and merged by 

using Samtools [120]. The average contig-wise coverage was calculated by BEDtools 

[121] version 2.20.1. The number, respectively percentage of reads in the assembly 

and mean coverage of contigs was calculated by an in-house script (given in 

Supplementary Material) as control. Data are given in the Results section. 

As it has been shown that low-coverage and short contigs are error-prone [122], 

contigs that were less than 1 kb and had an average coverage below 3 were discarded 

from the assembly. This was done with a custom written Python script, given in 

Supplementary Material. Bowtie2 [67] was used for assessing contig coverage, 

prior to the actual binning step. The “bowtie2-build” tool was used for creating 

Bowtie2 indices. Mapping the reads of each sample back to the assembly was done 

with the “map-bowtie2-markduplicates.sh” script contained in CONCOCT [98] 

version 0.4.0 software package. Parameters used here were “-c” for computing 

coverage histogram with genomeCoverageBed, “-t” for the number of threads (here 

8), “-p” for extra parameters given to Bowtie2 (here –q).
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2.3 Taxonomic community profiling 

Taxonomic read profiling was conducted by a sequence similarity search of the raw 

samples using Rapsearch2 [70] version 2.23, against an in-house generated 

database of universally conserved proteins. This database contains universally 

conserved sequences from the NCBI non-redundant database, occurring in 98% of 

all eukaryotes, bacteria and archaea and it was clustered to a level of 97% sequence 

similarity with the purpose of removing redundancy. 

The lanes of sample 2 were converted from FASTQ to FASTA format and split into 

chunks of length 500,000. Rapsearch2 analysis was run with the database of 

universally conserved protein sequences mentioned before. Results of chunks for 

the certain lanes were merged afterwards. Taxonomic assignment of the Rapsearch2 

results was conducted by using MEGAN5 [71]. To speed up the analysing process 

and reducing the amount of data loaded into MEGAN5, Rapsearch2 results were 

pre-filtered to a minimal bitscore of 60. This was done with a custom made Python 

script which is given in Supplementary Material. MEGAN5 was run for each lane 

separately and results were combined later. MEGAN5 outputs were graphically 

viewed with KRONA [123] version 2.5.  

Taxonomic profiling of assembled contigs was done by the use of AMPHORA2 [73] 

and the set of 31 universal marker genes. Identification of bacterial and archaeal 

marker sequences was done with the “MarkerScanner.pl” script of the AMPHORA2 

software package. This program identifies the marker sequences in the input 

sequences and generates a protein FASTA file for each marker gene in the working 

directory. Parameters used were “-DNA”, as input sequences are DNA sequences. 

Next, the “MarkerAlignTrim.pl” script was run for aligning, masking and trimming 

of the marker protein sequences. Options given here were “-WithReference”, for 



2.4 Filtering and taxonomic profiling of rRNA sequencing reads 

43 
 

keeping reference sequences in the alignment and as outputformat “phylip” was 

chosen. AMPHORA2 results were filtered for a minimum length of 1 kb and a 

minimum coverage of 3. The NCBI taxonomy IDs were mapped to phylogenetic 

lineages given by AMPHORA2.  

Comparison of read-based and assembly-based taxonomic community profiling was 

done for verifying if there is compliance between the plain sequencing reads in the 

sample and the assembly data. KRONA charts were compiled for visual comparison, 

as for taxonomic read-analysis, and are given in Results section.

 

2.4 Filtering and taxonomic profiling of rRNA 

sequencing reads 

SortMeRNA [78], a local sequence alignment tool capable of filtering, mapping as 

well as OTU-picking, was used to filter out rRNA fragments from the metagenomic 

sequencing reads. For this purpose, the FASTQ files of the sequenced reads were 

split up into chunks with a size of 1 million. SortMeRNA version 2.0 was then used 

to merge paired-end reads, as the sequencing data were in two separate files, one for 

the forward and one for the reverse paired-end reads, and the software only accepts 

one input file. This was done with the script “merge-paired-reads.sh”, included in 

the software package. The desired rRNA sequences were filtered out against the 8 

indexed and prepacked databases, provided by the software. The chunks, that had 

been merged in the previous step, were given as input files. As output, it was defined 

to just report the first alignment per read reaching the E-value, in SAM alignment 

format for the aligned sequences. The rejected sequences were chosen to be reported 

in FASTQ/FASTA format. 
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 Furthermore, overall statistics were chosen to be reported and the verbose function 

was used. The reads were loaded into memory by the use of one thread and a 

maximum of 5000 Mb. All results of the chunks were merged again afterwards.  

The orphan reads, which are paired-end sequences where only one of them had 

mapped to the reference databases, were afterwards used for a sequence homology 

search against the SILVA database [75], release number 119. For reducing the 

amount of data, prior of running a BLAST job, the sequence files were split up into 

length of 1,000. These chunk files were used for running a BLASTn [69] homology 

search with default parameters. As stated above, the SILVA database number 119 

was used as BLAST database. Taxonomic assignment of the BLASTn results was 

conducted by using MEGAN5 [71]. Again, to speed up the analysing process and 

reducing the amount of data loaded into MEGAN5, results were pre-filtered to a 

minimal bitscore of 60.  MEGAN5 was run for each lane separately and results were 

combined later. MEGAN5 outputs were graphically viewed with KRONA [123] 

version 2.5
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2.5 CD-HIT OTU assessment 

CD-HIT [82] was used for assessing knowledge about the number of underlying 

OTUs (operational taxonomic units). For this purpose, the previously generated 

AMPHORA2 marker files, in PEP format, were used as input and the threshold of 

clustering identity was varied from 90%-98% in even steps and additionally one run 

with 99% identity was performed. For every run the word size was set to “5”, the 

sequence name in the FASTA-header was used until first white space and 8GBs of 

RAM and 4 threads were used.  

The number of clusters for each marker was used for calculating an average 

distribution of OTUs over the different clustering identity values and was 

graphically illustrated in a boxplot. As there were huge differences in the average 

number of OTUs between Bacteria and Archaea, the respective evaluations have 

been done separately.

 

2.6 Binning of metagenomic contigs based on 

composition and differential coverage data 

The visualisation tool Elviz [124] was used for a graphic illustration of contig 

coverage, length, GC content, taxonomy and in general for determination of possible 

binning strategies. Binning was performed with the software CONCOCT [98] 

version 0.4.0, which is using the composition and differential coverage data of 

contigs. CONCOCT was run with default parameters as suggested in the detailed 

CONCOCT tutorial. As described there, long contigs were cut up to a final length of 

10 kb and previously generated contig coverage information was used here. Then 

the “gen_input_table.py” and the “bam_to_linkage.py” scripts, both part of 
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CONCOCT software, were used for generating a coverage and a linkage table. This 

was done exactly like explained in CONCOCT tutorial. The input table was parsed to 

just contain mean coverage for each contig in each sample. CONCOCT binning was 

run with standard settings and with the “-c” parameter, the maximal number of 

clusters was set to 400. As CONCOCT gave some strange bugs, format of the contig 

names of all needed samples had to be adjusted first. CheckM [125] version 1.0.3 

was used for assessing completeness and contamination of the bins and also for 

creating plots as a graphical representation. The CheckM documentation suggests 

the lineage specific workflow for determining completeness and contamination of 

genome bins, which uses lineage-specific marker sets. The workflow generally 

consists of four steps that are mandatory and one step that is recommended and can 

be executed in one single run with the “checkm lineage_wf” command, which was 

used here with 8 threads. For creating plots that are depicting genome bin quality, 

the “bin_qa_plot” command of CheckM was used. This plot gives a visual 

illustration of completeness, contamination and strain heterogeneity within each 

of the genome bins. 
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2.7 Refinement of the binning process and second 

round of CONCOCT binning 

Bins that showed a high degree of contamination were inspected by VizBin [91]. This 

allowed a further separation of bins, which seemed to form two or more distinct 

clusters. Contrary, bins that showed a very low degree of contamination but were 

incomplete to a certain extent were used for merging via the “checkm merge” 

function. For this purpose, the taxonomic-specific workflow of CheckM was used as 

suggested in the manual. This workflow analyses all genome bins with the same 

marker set and consists of three steps that are mandatory and one recommended 

step. The “checkm taxon_list” command produces a table that indicates all taxa for 

which custom marker sets can be created. The “checkm taxon_set” command was 

used for creating a marker set for the domain of Bacteria and one for the archaeal 

domain. The markers in the genome bins were analyses with the “checkm analyse” 

command and a use of 4 threads. Quality was checked afterwards with the “checkm 

qa” command, by the use of 4 threads. Genome bins were merged with the “checkm 

merge” command, for each of the two domains separately, and the use of 4 threads.  

After merging of genome bins, the quality statistics were checked and the resulting 

bins were analysed in coverage plots for checking quality improvements. These plots 

were created by the use of some custom written Python scripts and R script. Some 

of them are given in Supplementary Material.    

After all refinement steps, bins that showed completeness higher than 80%, 

contamination lower than 10% and a heterogeneity value higher than 50%, were 

filtered out of the resulting bins. These bins were considered as “high quality bins” 

and their underlying contigs were filtered out of the assembly file. This was done by 

putting all contigs of the high quality bins into one file that served as a “blacklist”. 
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The actual filtering step was carried out with the command line tool “grep”, giving 

the assembly file and the blacklist file as input as well as the “-w”, “-F” and “-f” 

options.    

The CONCOCT coverage table was also filtered for contigs belonging to the high 

quality bins. The remaining contigs, that belong to bins with lower quality, were also 

cut up to a final length of 10 kb and another round of CONCOCT binning was 

performed exactly as described above. This procedure had the underlying idea, that 

binning could be refined by filtering out the good bins, which could hinder further 

binning of lower quality bins. Quality criteria as completeness, contamination and 

heterogeneity of bins were assessed and quality plots created by CheckM version 

1.0.3, exactly as described above. All final bins were categorized into four different 

quality classes based on completeness, contamination and heterogeneity values. 

Values are given in Results section. Only bins that were grouped into these four 

classes were used for all further steps.  

Taxonomy of the bins resulting from the second CONCOCT binning was assessed by 

determining consensus lineage of all bin-specific marker genes employing 

AMPHORA2. The cut-off confident scores were higher than 0.8. 
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2.8 Genome bin annotation 

 Annotation of genome bins was done with the annotation framework ConsPred 

[114] version 1.21. It was run exactly as described in the documentation. The 

“conspred_input_specification.txt” file was modified in a way that the parameters 

“taxon exclude”, “minimal number rrna” and “minimal number trna” were all set 

to “0”. Since metagenomic bins are no representation of complete genomes, there 

cannot be made any solid estimations about the minimal RNA numbers and 

therefore these parameters are set to zero, because otherwise the annotation process 

would stop.  

As part of the ConsPred workflow, a sequence similarity search of protein coding 

genes against the KEGG database [108], version of March 2014, was performed. This 

information was needed later on for the prediction of cellulose processing enzymes.  
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2.9 Phenotype prediction in metagenomic bins 

Phenotype prediction was based on the PICA framework [118], which was extended 

with various machine learning techniques for a reliable prediction of phenotypic 

traits based on comparative genomics and was performed as described in Feldbauer 

et al. [117]. The first step was the assignment of COGs to the metagenomic bins. This 

was done by PRODIGAL [106] v2.60 gene calling procedure, using the default 

translation table. NCBI cognitor [110] software was used to map these genes to an 

in-department generated reference of sequences which represents all eggNOG [111] 

version 4.0 COG proteins. These jobs are carried out by PSI-BLAST [86] 

computations. The COG profile was finally created by combining all resulting 

genotype files to a single file. Testing for and prediction of the desired phenotypes, 

given in Table 2, was done by the extended PICA framework, as described above, 

using models and scripts written in our department.   

 

aerobe bacterial ammonium oxidizers 

anaerobe thermophilic 

fakultative anaerobic methanotrophs 

gram-negative nitrite oxidizers 

halophilic nitrifiers 

motile intracellular microorganisms 

phototroph obligate intracellular 

ammonium oxidizers facultative intracellular 

archaeal ammonium oxidizers  

 

Table 2: Phenotypic models used for trait prediction. 
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2.10 CAZy database and prediction of carbohydrate 

active enzymes 

Annotation of genes that encode presumable carbohydrate active enzymes was 

conducted via a sequence similarity search against sequences contained in CAZy 

database [24], version of May 2015. For this purpose, the whole database was 

downloaded via a custom written Python script. Getorf, part of the EMBOSS suite 

[126], was used for extracting the open reading frames out of the assembly of sample 

2 with a minimal size of 75. Then a BLASTp [69] search was run with the ORFs 

against the downloaded database. For the BLASTp search, the ORF files that were 

created via Getorf, were split up into chunks of size 2,000 and the BLAST jobs were 

submitted to the grid engine system with default parameters. The results of the 

chunks were combined again afterwards and filtered for a minimum bitscore value 

of 1e-20. For the enzyme family profiling, only the best matching BLASTp hit was 

used and queries were assigned to CAZy families. The taxonomic assignment of 

carbohydrate-active gene candidates was created by a Rapsearch2 [70] similarity 

search against the NCBI non-redundant [127] database of universally conserved 

proteins occurring in 98% of Eukaryotes, Bacteria and Archaea and clustered to a 

level of 97% sequence similarity for removing redundancy. The maximal number of 

target sequences was set to 20 and an e-value cutoff of 1e-2 was utilized for this 

search. The results were filtered for a minimal bitscore of 50, for decreasing the 

amount of data prior to loading into MEGAN5. With the LCA algorithm and default 

settings, the sequences were classified phylogenetically and exported manually.  
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MEGAN5 exports were loaded into KRONA version 2.5, for creating a graphic 

representation of the taxonomic assignment by AMPHORA2 and heatmaps were 

compiled in R. This was done by the heatmap.2 function of the gplots package 

[128].

 

2.11 RNA-Seq mapping and expression of CAZy 

enzymes in the metagenomic bins 

In March 2015, a sample for extraction and sequencing of RNA, was taken at the 

same biogas fermenter. The sample was processed, RNA extracted and sequenced 

by our cooperation partners at the University of Hamburg, Germany.  

Illumina raw sequence reads of two lanes were quality checked via FastQC [48] 

version 0.11.4. PRINSEQ-lite [47] version 0.20.4 was used to trim and filter the 

sequencing reads, for a quality improvement. For this purpose, 10 bases were 

trimmed starting from the 5’ end, bases that had a quality score < 5 were trimmed 

at the 3’ end and sequences that had a mean quality below 20, or were less than 70 

bp in length, were discarded. The RNA sequencing read files were split up into 

chunks of size 2 million for handling the huge amount of data. With the use of 

Bowtie2 [67] version 2.2.6, the RNA sequencing reads were mapped to the 

assembled contigs of sample 2. The “very sensitive” pre-set of Bowtie was used here. 

SAM records for unaligned reads, discordant alignments for paired reads as well as 

unpaired alignments for paired reads were all suppressed. The resulting alignment 

files were converted with the “view” command of Samtools [120] software package, 

version 1.3, in BAM format. Samtools “sort” and “index” functions were used and 

results of the chunks were merged again afterwards.  
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Determination of the transcriptional activity within a certain bin was conducted by 

evaluating marker gene expression, identified by AMPHORA2 [73]. The function 

“multicov” of Bedtools [121] version 2.24.0 was used for obtaining coverage values 

of potential CAZy glycoside hydrolase genes, as described above.  

In brief, the gene coordinates of all putative CAZy enzymes were evaluated via a 

Blastp sequence similarity search against the CAZy database that had been 

downloaded before.  

By the use of a custom-written Python script, RPKM values were calculated out of 

the coverage data. Figure 5 illustrates the formula for calculation of RPKM values; 

these are marker-specific and the average of two lanes. Respective square roots of 

RPKM values were plotted against the bin taxonomy. This was done by the 

heatmap.2 function of the gplots package [128] in R.  

 

 

RPKM = reads per kilobase transcript per million reads 

𝑹𝑷𝑲𝑴(𝑿) =
𝟏𝟎𝟗  × 𝑪

𝑵 × 𝑳
 

C … number of mappable reads that fell onto the genes exons 

N … total number of mappable reads in the experiment 

L … sum of the exons in base-pairs  

 

Figure 5: RPKM value calculation, needed for assessing transcription rates of CAZy enzyme clusters.  
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3. Results 

 

3.1 Conditions and parameters of the agricultural 

biogas plant 

Biogas fermenters constitute a complex habitat of various microbial communities 

which are crucial for the different steps in the production of hydrogen and methane. 

It has been shown that the final yield in biogas, which is limited, depends on the 

initial hydrolysis step of the plant biomass that is fed in [2]; [8]; [129]. A key in 

optimising the overall biogas production is the identification of limitations that each 

single process is facing on the way to the final products hydrogen and methane. For 

this purpose, we took samples of a biogas plant located near Cologne (Germany) and 

analysed the underlying phylogenetic community structure and their genome 

contents. This typical one-stage agricultural biogas fermenter was kept under steady 

fermentation conditions with a temperature of 40°C and a pH-value of 8. The 

produced output was 536 kW for this 2,800 m3 plant. Main source materials that 

were fed in, were maize silage (69%), cow manure (19%) and chicken manure (12%).  

A brief overview of the process conditions and parameters is given in Table 3. 

Fermenter characteristics 

Location Near Cologne (Germany) 

Volume 2,800 m3 

Temperature 40°C 

pH-value 8 

Produced output 536 kW 

Source material 

Maize silage (69%) 

Cow manure (19%) 

Chicken manure (12%) 

DNA sequencing platform Illumina® HiSeq 2500 

Table 3: General parameters and fermenter conditions characterising the 
agricultural biogas plant, running under steady conditions. 
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3.2 DNA sequencing and metagenomic assembly  

Two different samples for DNA extraction were taken in March (sample 1) and May 

(sample 2) 2013, as well as another sample in May 2015 for RNA extraction, 

described in detail in the Material and Methods section. Additional lanes 7 and 8 

were taken for the May sample. These samples were multiplex-sequenced on an 

Illumina® HiSeq 2500 sequencer, generating a large metagenomic dataset, with a 

total of 897 million reads that were used in two different assembly methods. As 

indicated in Table 4, the additionally sequenced lanes of sample 2 increased the 

amount of generated reads nearly two-fold. 

 

sample № № of reads (101 bp) used for assembly 

sample 1 159,458,382 

sample 2 w/o L7 + 8 421,986,642 

sample 1 + 2 w/o L 7 + 8 581,445,024 

sample 2 737,631,618 

sample 1 + 2 897,090,000 

 

 

Different metagenomic assemblies were generated using either IDBA-UD or Ray 

Meta. This was done for all samples indicated in Table 5. The assemblies generated 

using Ray Meta showed a more than two-fold increase in generated contigs, note 

that the additional lanes of sample 2 are not included in this analysis. Hence, the 

Ray Meta assembled contigs were used for all subsequent steps in analysis. 

 

 

Table 4: Number of sequencing reads after filtering and 
trimming of low quality reads. Note that the read number of 
the combined sample 1 + 2 only slightly increased compared 
to sample 2 solely. 
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For comparison purposes, all common quality criteria were calculated and are 

indicated in Table 6. As there was only a slight quantitative increase in the combined 

sample 1 + 2, but a decrease in the N50-value, only reads and assembly data 

belonging to sample 2 were used for subsequent analysis. The 737 million already 

filtered and trimmed reads of sample 2 resulted in generating 123,435 contigs > 1 

kb. 

 

 

 

 Total № of contigs 

sample № IDBA-UD Ray Meta 

sample 1 556,160 1,201,371 

sample 2 w/o L 7 + 8 947,772 2,003,618 

sample 1 + 2 w/o L 7 + 8 1,142,608 2,319,807 

Table 5: Comparison of the different assembly methods. The 
number of contigs assembled by Ray Meta is more than twice the 
number of contigs created by IDBA-UD. 

Table 6: Quality characteristics for the assembly created by Ray Meta. Note that the number of 
contigs and Mb in contigs for the combined sample 1 + 2 only slightly increases, compared to 
sample 2. However, the N50 value is higher for sample 2. 

Ray Meta assembly 

sample № 
№ of 

contigs 

№ of contigs 

> 1000 

Mb in contigs 

> 1000 

N50 for contigs 

> 1000 

Mb total 

sample 1 1,201,371 57,009 209.68 7,183.0 486.0 

sample 2 w/o L7+8 2,003,618 94,702 425.90 11,536.0 876.6 

sample 2 2,593,366 123,435 581.31 12,418.0 1,161.7 

sample 1 + 2 w/o L7+8 2,319,807 112,571 512.03 10,871.0 1,035.8 

sample 1 + 2 

 

2,826,937 140,535 653.73 11,784.0 1,292.2 



3.2 DNA sequencing and metagenomic assembly 

 

58 
 

 By comparing number of contigs and scaffolds, and their corresponding Mb 

content, decision was made for continuing work with contig data as there were no 

striking quantitative differences, numbers are given in Table 7.   

 

 

 

 

 

 

 

 

 

Determination of contig coverage, via the short-read mapper BBMap, revealed 324 

million mapped reads in total, indicated in Table 8. The additionally sequenced 

lanes were not solely very important for the assembly process, but they also 

contributed greatly to the mapping procedure, as lanes 7 and 8 were the ones 

providing the highest amount of reads in this step. 

 

Mapping sample 2 

Sequencing lane № mapped reads 

Lane 1 46,502,117 

Lane 2 47,118,419 

Lane 3 47,648,665 

Lane 4 47,344,343 

Lane 7 68,667,968 

Lane 8 67,419,711 

Total 324,701,223 

  

Table 7: Comparison of quality characteristics for 
contigs and scaffolds in the assembly of sample 2. 
There is no notable difference regarding their 
absolute quantity. 

Ray Meta assembly - contigs vs. scaffolds 

№ of contigs 2,593,366 

№ of scaffolds 2,568,676 

Mb in contigs 1161.7 

Mb in scaffolds 1166.9 

№ of contigs ≥ 500 293,792 

№ of scaffolds ≥ 500 269,102 

Table 8: Number of reads mapped to contigs 
by BBMap, only different lanes of sample 2 
are given. 
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3.3 Taxonomic community profiling 

3.3.1 Taxonomic read profiling 

Taxonomic read profiling, performing a Rapsearch2 analysis against the NCBI non-

redundant database, revealed a total of 7.9 million classified sequencing reads. As 

there were no obvious differences in relative species classification amongst the 

different lanes, Figure 6 shows sequencing lane 8 as representative.  

Sequences were classified as Bacteria in 89% of all cases and only 4% were 

categorised as Archaea. MEGAN5 placed 5% of all reads as unassigned reads. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: KRONA chart of the taxonomic read profiling for sequencing lane 8. 
Percentages refer to the relative number of reads assigned to a certain taxonomic level 
in proportion to the root. 
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The most prominent phylum within Bacteria was Firmicutes with 36%, followed by 

Bacteroidetes (18%), Cloacimonetes (6%), Actinobacteria (6%), Proteobacteria 

(2%) and other less abundant phyla. The major amount of reads that belong to 

Firmicutes were subdivided into the class of Clostridia (52%) and only small 

sections belonged to Bacilli (7%) and Erysipelotrichia (3%). The distribution among 

Bacteroidetes was dominated by Bacteroidia (62%), and only minor parts were 

classified as Flavobacteria (1%), Cytophagia (0.9%) and Sphingobacteria (0.7%).  

The Firmicutes/Bacteroidetes ratio was 2:1 for the single read profiling. A detailed 

overview of the bacterial classification is given in Table 9.  

Within the Archaea, nearly all reads (99%) were identified as Euryarchaeota, 

among this phylum, 90% were classified as Methanomicrobia and only minor parts 

were assigned to Methanobacteria (6%) and Thermoplasmata (2%). 
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3.3.2 Taxonomic profiling of assembled contigs 

Taxonomic community characterisation of assembled contigs by AMPHORA2, 

revealed a total of 21,602 contigs that were sorted into different taxonomic levels. 

Figure 7 shows the relative taxonomic community profiling for the assembly of 

sample 2. AMPHORA2 analysed contigs were categorised as Bacteria in 89% of all 

assembled sequences and only 10% were grouped as Archaea. 0.3% could not be 

assigned to a specific taxon which corresponds to a total of 10 contigs. 

 

Table 9: Detailed overview of the bacterial 
taxonomic read classification, evaluated by 
Rapsearch2 search against NCBI non-
redundant database. 

 
Single read taxonomy profiling – Bacteria 

phylum class 

36% Firmicutes 52% Clostridia 

 7% Bacilli 

 3% Erysipelotrichia 

 1% Negativicutes 

 37% unassigned Firmicutes 

18% Bacteroidetes 62% Bacteroidia 

 1% Flavobacteria 

 0.9% Cytophagia 

 0.7% Sphingobacteria 

 35% unassigned Bacteroidetes 

6% Cloacimonetes 96% Candidatus Cloacimonas 

 4% unassigned Cloacimonetes 

6% Actinobacteria 98% Actinobacteria 

 2% Cariobacteriia 

2% Proteobacteria 41% Alphaproteobacteria 

 20% delta/epsilon subdivisions 

 18% Gammaproteobacteria 

 11% Betaproteobacteria 

 10% unassigned Proteobacteria 

2% Mollicutes  

2% Synerigista  

0.9% Spirochaetia  
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Firmicutes was the most occurring phylum with 52% of all bacterial sequences, 

followed by Bacteroidetes (14%), Actinobacteria (6%), Mollicutes (3%) and many 

other less abundant phyla. 14% were unassigned bacterial contigs. Fimicutes were 

subdivided into Clostridia (86%) and only minor amounts of contigs were grouped 

as Erysipelotrichia (4%) and Bacilli (1%). However, 6% of all assembled sequences 

were categorised as unassigned.  

The dominating class within Bacteroidetes was Bacteroidia (78%) and only tiny 

fractions belonged to Sphingobacteriia (2%) and Flavobacteriia (2%). The 

proportion of unassigned reads was higher and added up to 16%.  

Figure 7: KRONA chart illustrating the taxonomic community characterisation 
of assembled contigs. Note that percentages refer to the different taxonomic 
levels in proportion to all assembled contigs that were classified by AMPHORA2 
in the taxonomic analysis. 
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A detailed overview of the bacterial classification is given in Table 10. The 

Firmicutes/Bacteroidetes ratio for the analysis on assembled contigs was 3.7:1. 

AMPHORA2 taxonomy profiling of assembled contigs - Bacteria 

phylum class 

52% Firmicutes 86% Clostridia 

 4% Erysipelotrichales 

 3% Bacilli 

 6% unassigned Firmicutes 

14% Bacteroidetes 78% Bacteroidia 

 2% Flavobacteriia 

 2% Sphingobacteriia 

 16% unassigned Bacteroidetes 

6% Actinobacteria  

3% Mollicutes  

3% Spirochaetia  

2% Proteobacteria  

1% Fibrobacteres/Acidobacteria group  

0.9% Synergistales  

0.8% Planctomycetales  

0.7% Chloroflexi  

0.4% Verrucomicrobia  

0.3% Thermotogae  

0.2% Fusobacteriales  

0.2% Deinococci  

 

Archaeal contigs were classified in 77% of all cases as Euryarchaeota, 4% as 

Thermoprotei and 2% were classified belonging to the species of Nanoarchaeum 

equitans. AMPHORA2 also classified 16% as unassigned Archaea. The phylum 

Euryarchaeota was dominated by 64% Methanomicrobia and only smaller 

fractions accounted for Methanobacteriales (11%), Thermoplasmatales (2%), 

Aciduliprofundum boonei (2%) and Methanococcales (2%). 

Table 10: Detailed overview of the taxonomic composition of 
assembled contigs belonging to sample 2, evaluated by 
AMPHORA2. Only bacterial contigs are depicted. 



3.4 Filtering of rRNA sequencing reads and determination of their taxonomic origin 

 

64 
 

3.4 Filtering of rRNA sequencing reads and 

determination of their taxonomic origin 

Corroborating the taxonomic community profiling of the analysed biogas plant, 

another attempt was made targeting sequencing reads containing ribosomal RNA 

genes. Analysis of the filtered ribosomal RNA fragments and their taxonomic origin 

in the sequenced biogas fermenter sample revealed that, according to the initial 

expectations, only about 1.6 million rRNA reads were successfully screened and 

taxonomically assigned. Figure 8 illustrates a KRONA chart for the taxonomic rRNA 

profiling for sequencing lane 1 of sample 2, obtained by scouring the SILVA 

database.   

 

 

 

 

 

 

 

 

 

Figure 8: KRONA chart illustrating the taxonomic origin of 
filtered rRNA sequences. Note that given percentages are 
relative to the root.  
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97% of the encountered ribosomal RNA sequences were of bacterial origin and only 

1% were assigned to the archaeal domain. Elaborating on bacterial rRNA sequences, 

46% of them were assigned to the Firmicutes phylum and only 11% were classified 

as Bacteroidetes. This resulted in a calculated Firmicutes/Bacteroidetes ratio of 

4.2:1, being in accordance with the taxonomic profiling on assembled contigs. 

Notably, 31% of all detected rRNA reads were classified as unassigned Bacteria. 

Table 11 is a brief summary of the relative taxonomic assignment and observed 

bacterial diversity for all reads that obtained a ribosomal RNA tag during 

SortMeRNA analysis

 

 

 

 

 

 

 

 

 

 

Table 11: Overview of the taxonomic assignment achieved by 
SortMeRNA filtering of rRNA sequences and BLASTn homology 
search against the SILVA ribosomal database. 

SILVA rRNA taxonomy profiling of rRNA sequences - Bacteria 

phylum class 

46% Firmicutes 65% Clostridia 

 4% Bacilli 

 2% Erysipelotrichales 

 24% unassigned Firmicutes 

11% Bacteroidetes 53% Bacteroidia 

 4% Flavobacteriia 

 4% Sphingobacteriia 

 39% unassigned Bacteroidetes 

31% unassigned Bacteria  

4% Mollicutes  

2% Actinobacteria  

2% Spirochaetia  

2% Proteobacteria  

0.6% Synergistales  

0.3% Fibrobacteres/Acidobacteria group  

0.2% Chlamydiae/Verrucomicrobia group  

0.1% Atribacteria  
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3.5 CD-HIT OTU assessment  

The OTU evaluation, for the AMPHORA2 marker protein search on assembled 

contigs, conducted by CD-HIT, revealed huge differences in the number of bacterial 

and archaeal marker protein clusters. This goes in line with our expectations, as 

there are known to be considerably less different archaeal phyla in agricultural 

biogas fermenters comparing bacterial ones. Hence, they were evaluated separately 

with the intention not to bias the statistical evaluation. On average 195 distinct 

bacterial OTUs were present in the fermenter sample, depending on the clustering 

threshold, exact numbers are given in Table 12.  

 

 

 

 

 

 

 

 

 

 

 

cluster threshold average № of OTUs 

90% 180 

92% 187 

94% 194 

96% 199 

98% 203 

99% 204 

Table 12: Overview of the quantitative 
bacterial OTU distribution at varying 
percentages of shared identity. 
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Figure 9 illustrates a boxplot compiled of all obtained bacterial OTU numbers at the 

different percentages of shared identity in the CD-HIT grouping.  The archaeal 

analysis yielded on average only 6 distinct OTUs. 

 

 

0

50

100

150

200

250

300

350

90 92 94 96 98 99

cluster threshold

CD-HIT clustering - bacterial OTUs

Figure 9: Boxplot figuring the OTU evaluation conducted by a CD-HIT clustering of the 
AMPHORA2 bacterial marker protein search. Cluster threshold corresponds to the 
percentage of shared identity for the CD-HIT grouping. 
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3.6 CONCOCT binning and manual refinement  

The first round of CONCOCT binning, without any manual modifications, resulted 

in the grouping of 251 distinct bins with varying quality characteristics, as observed 

via CheckM analysis. Some of the low quality bins were then checked via VizBin for 

possible separation. This attempt resulted in the generation of 15 additional bins. 

However, CheckM was not solely used for assessing bin quality, but also for possible 

merging of high quality bins that showed a lower degree of completeness. CheckM 

default merging function automatically suggested 14 bins for uniting. After checking 

these bins manually, by compiling coverage plots, 3 of them were free to merge and 

for all others, the decision was against fusion. Figure 10 (A-C) illustrates two bins, 

for which the default merging by CheckM was approved after checking their 

corresponding coverage plots. Whereas Figure 11 (A-C) highlights one case were 

merging was not accepted after verification. 

As the merging process did not eventuate in significant qualitative improvements, 

the regarding bins could not be included into the final set of high quality 

metagenomic bins, as none of them fulfilled the stringent quality criteria. 
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Figure 10: Coverage plots illustrating approved fusion candidates. Bins 
prior (A,B) and post (C) default CheckM merging. 

Figure 11: Coverage plots illustrating disapproved fusion candidates. Bins 
prior (A,B) and post (C) default CheckM merging.  
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Filtering out all high quality bins and performing a second round of CONCOCT 

binning resulted in a total of 104 bins that meet very high quality criteria. These bins 

were sorted in different categories according to the filtering criteria indicated in 

Table 13. They represent the final set that was used in all further analyses.  

 

Category name 
%age of completeness, 

contamination and heterogeneity 

№ of bins in 

category 

good bins 
>95% compl., <5% cont., or 

>95% compl., <10% cont., >90% het. 
20 

nearly complete genome drafts >90% compl., <5% cont. 20 

nearly complete pangenome drafts >90% compl., >5% cont. 37 

incomplete genome drafts 60-90% compl., <7% cont. 27 

 

 

The “good bins” category refers to bins, which fulfil the most stringent quality 

criteria. These bins are nearly complete (95%) and have a very low amount of 

contamination, 5-10% depending on the level of heterogeneity. Heterogeneity in this 

context indicates if the present contamination traces back to a closely or distantly 

related species. The “nearly complete genome drafts” show a little lower 

completeness and the difference to the “nearly complete pangenome drafts” is that 

the pangenome drafts have a higher level of contamination. The terminus 

pangenome in this context signifies that these bins consist of a mixture of very 

closely related species.  “Incomplete genome drafts” are low in contamination but 

only show 60-90% of completeness, however these bins are also important for 

further analyses. As valid for all metagenomic experiments, the amount of 

information that can be derived from the analyses, are always strongly dependent 

on the missing parts of the recovered metagenomes. 

Table 13: Classes of different quality criteria for the 104 high quality bins. 
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Figure 12 illustrates the quality fulfilment of the different members of the “good 

bins” class. Green bars indicate that a certain marker gene is solely present as a 

single copy. Bars in different shades of blue display that the marker is present more 

than once, but the contamination comes from a closely related species. Whereas 

different shades ranging from yellow to red show that the underlying multi-copy 

markers are deriving from distant species. Figure 13 gives a brief qualitative 

overview about the three other bin categories.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: CheckM quality plot illustrating all bins within the “good bins” category. 
AMPHORA2 taxonomy (consensus score > 0.8) is given for each bin on the right.  
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3.7 Taxonomic profiling of metagenomic bins 

In terms of taxonomic community profiling, the metagenomic binning goes in line 

with the single read and assembly analyses. 57 of the 104 high quality bins were 

assigned to Firmicutes and the major amount within was attributed to the class of 

Clostridia (51). Whereas 21 of the bins were marked as Bacteroidetes, and the main 

class within was Bacteroidia with 16 representatives. Therefore, a 

Firmicutes/Bacteroidetes ratio of 2,7:1 was observed amongst the different 

metagenomic bins. A table with a detailed overview of the taxonomic classification, 

the estimated completeness and contamination rates, as well as the size of each of 

the high quality bins is given in Supplementary Material.  

The other prominent phyla were Spirochaetes (4), Fibrobacteres (3), 

Euryarchaeota (3), Verrumicrobia (2) and Actinobacteria (2). For some other 

phyla, only one representative bin was accordingly classified, for example 

Tenericutes, Proteobacteria and Planctomycetes. Some of the bins were 

taxonomically classified at species level with high confidence scores by 

AMPHORA2, and therefore their genomes could be reconstructed at a very high 

level of completeness. Confidence threshold for AMPHORA2 taxonomy 

classification was set to 0.8. In the phylum Firmicutes some bins could be 

taxonomically assigned down to species level, for example Lachnoclostridium 

phytofermentans (binIDs pb35-2, pb186-2, pb35-1 and pb235-1) as well as 

Ruminiclostridium thermocellum (binID 96), Mageeibacillus indolicus (binIDs 18, 

104, pb185 and pb233-3), Oceanobacillus iheyensis (binID pb84) and 

Pelotomaculum thermopropionicum (binID 165).  
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In the Bacteroidetes phylum, the species Paludibacter propionicigenes (binIDs 145 

and 201), Alkaliphilus oremlandii (binID pb70), Erysipelothrix rhusiopathiae 

(binID109), showed the deepest taxonomic classification.    

Nine of the 104 bins were only classified as Bacteria where no further assignment 

was possible (8%). As expected, only a small fraction of all assigned bins were 

classified as Archaea. All of them belong to the phylum Euryarchaeota and it was 

possible to assign one of them to the species Methanosarcina barkeri (binID pb85), 

a methanogenic archaeon. Table 14 gives a brief overview of the taxonomic 

assignment, the number as well as N50 values of contigs for all bins belonging to 

the “good bins” category.  

 

 Table 14: Overview of the taxonomic classification by AMPHORA2 (consensus score > 0.8), 
the corresponding binIDs, the number of contigs belonging to each bin as well as their N50 
values.  

Good Bins 

binID Taxonomy  № contigs N50 contigs 

pb121 Bacteria|Fibrobacteres|Fibrobacter succinogenes 217 19,300 

pb122 Bacteria|Fibrobacteres|Fibrobacter succinogenes 259 11,855 

pb172 Bacteria|Bacteroidetes|Bacteroidetes 233 19,077 

pb190 Bacteria|Firmicutes|Clostridia 234 16,089 

pb192-1 Bacteria|Firmicutes|Clostridia 36 129,429 

pb212 Bacteria 210 22,750 

pb215 Bacteria|Firmicutes|Clostridia|Ruminiclostridium 144 45,291 

pb31 Bacteria|Spirochaetes|Treponema 213 16,062 

pb35-2 Bacteria|Firmicutes|Clostridia|Lachnoclostridium phytofermentans 143 28,325 

pb3 Bacteria|Firmicutes|Clostridia 139 33,655 

pb40 Bacteria|Firmicutes|Clostridia 160 12,735 

pb6-1 Bacteria 37 105,819 

pb65 Bacteria|Firmicutes|Clostridia|Clostridiales 77 66,410 

pb69 Bacteria|Bacteroidetes|Porphyromonadaceae 181 17,355 

pb76-1 Bacteria|Firmicutes|Clostridia|Ruminococcaceae 134 21,374 

pb80 Bacteria|Firmicutes 95 77,072 

pb85 Archaea|Euryarchaeota|Methanomicrobia|Methanosarcina barkeri 111 70,311 

pb88 Bacteria|Bacteroidetes|Bacteroidales 336 17,475 

pb90 Bacteria|Spirochaetes|Treponema 215 22,018 

pb97 Bacteria|Firmicutes|Clostridia|Ruminococcaceae 91 36,708 
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3.8 Phenotype predictions in metagenomic bins 

Prediction of 17 selected phenotypic traits was conducted by the use of an extended 

PICA framework, as described in the Material and Methods section. Table 15 gives 

a detailed overview of the characteristics chosen for investigation. The majority of 

bins (88%) were predicted to be anaerobic and only one of them was classified as 

aerobic. Considering the fact that biogas production is an anaerobic process, this 

result seems to be rather plausible. Oxygen inflow during sample taking might be 

responsible for the detection of one aerobic organism. 39% of the analysed bins were 

predicted to be gram-negative, 53% were treated as motile organisms, only 2% were 

categorised as halophilic, 19% were labelled as thermophilic and none of the 104 

bins was classified as a phototrophic prokaryote. These findings do not contradict 

with the initial expectations. Notably, a quite high number of bins were predicted to 

have intracellular traits. This was rather unexpected for a community present in a 

biogas plant. Though, intracellularity is a trait which is predicted by the lack of 

certain genes. This is problematic in metagenomic experiments as most of the 

reconstructed genomes are not complete and that might influence prediction. 

Nevertheless, if those bins are complete to a high extent, then further analyses with 

novel prediction models would be interesting to clarify if those bins are truly 

symbiotic organisms. No bins were labelled as ammonium oxidizers, nitrite 

oxidizers, nitrifiers and methanotrophs. Methanotrophic organisms are very 

important in this context because of the fact that these species could affect the 

energy gain of the agricultural biogas plant.  
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A table containing all trait predictions for each bin can be found in Supplementary 

Material section. However, all the assertions made above are only predictions and 

should be clearly treated as such. These results should give a first impression about 

the underlying community, but they cannot be taken as concrete evidence.

Phenotype 
№ of 

bins 
Phenotype 

№ of 

bins 

aerobe 1/104 bacterial ammonium oxidizers 0/104 

anaerobe 91/104 thermophilic 20/104 

facultative anaerobe 1/104 methanotrophs 0/104 

gram-negative 41/104 nitrite oxidizers 0/104 

halophilic 2/104 nitrifiers 0/104 

motile 55/104 intracellular 17/104 

phototrophs 0/104 obligate intracellular 18/104 

ammonium oxidizers 0/104 facultative intracellular 0/104 

archaeal ammonium oxidizers 0/104   

Table 15: List of 17 phenotypic traits that were searched for in all 104 metagenomic bins, which 
of them were predicted and how often. 
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3.9 RNA-Seq mapping and evaluation of CAZy 

enzymes expression  

The CAZy database is a collection of enzyme families that modify, create or degrade 

glycosidic bonds for example glycoside hydrolases (GHs), carbohydrate esterases 

(CEs), glycosyl transferases (GTs) and others. Mapping of the processed and filtered 

RNA sequencing reads to the assembled contigs of sample 2 and the subsequent 

coverage value evaluation of potential GH families identified in the metagenomic 

bins was conducted as described in the Material and Methods section. This 

exploration resulted in a visual representation of all 104 high quality bins and their 

respective taxonomic classification plotted against the calculated expression values 

of the most important glycoside hydrolase enzyme clusters. Those 15 highest 

expressed glycoside hydrolase families in the biogas plant samples were GH1, GH3, 

GH5, GH6, GH8, GH9, GH12, GH14, GH30, GH44, GH45, GH48, GH51, GH74 and 

GH94. All these enzyme families cluster together different enzymes that are needed 

in the hydrolytic breakdown of carbohydrates via cleavage of glycosidic bonds. The 

corresponding heatmap is illustrated in Figure 14.  
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Figure 14: Heatmap illustrates the transcriptional activity of GH families and their 
expression levels in all of the 104 clustered bins. Expression values are represented 
as the square root of RPKM values and taxonomic assignment was made by 
AMPHORA2 with a consensus score > 0.8. Yellow highlighted bins were assigned 
to Firmicutes and light blue ones to Bacteroidetes. 
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3.10 Prediction and taxonomic assignment of 

carbohydrate-active gene candidates 

The taxonomic investigation of CAZy gene candidates, present in the assembly of 

sample 2, revealed the same trend towards a greater proportion of Firmicutes versus 

Bacteriodetes. Regarding the origin of carbohydrate-active gene candidates, the 

Firmicutes/Bacteroidetes ratio calculated to 2.1:1.  

Figure 15 gives an overview about the general taxonomic origin of the CAZy family 

enzymes in the generated assembly of sample 2. 95% of detected CAZy enzyme 

sequences were of bacterial origin and only 5% were assigned to Archaea. Nearly all 

of the archaeal sequences (4%) were further assigned to the class of 

Methanomicrobia. The major part of enzyme hits that were classified as Bacteria, 

were further divided into the phylum Firmicutes (53%), most of them subdivided 

into the class Clostridia. The Bacteroidetes phylum accounted for 25% of all 

bacterial sequences and only minor parts were assigned to the phyla of 

Fibrobacteres (8%), Actinobacteres (3%), Cloacimonetes (2%) and others.  
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The class of Clostridia showed the most hits for gene sequences that are classified 

into these enzyme families. However, also the Bacteroidetes phylum seems to 

contribute greatly to the overall abundance of these GH groups. Representatives of 

the class Bacilli or phyla Fibrobacteres and Actinobacteria seem to play a role in the 

hydrolytic breakdown of plant biomass as well, although the examined GH families 

are predicted to be less common in those taxonomic groups. Figure 16 illustrates a 

heatmap plotting the taxonomic origin versus the number of identified potential 

glycoside hydrolase family hits in the assembly of sample 2. 

Figure 15: KRONA chart representing the taxonomic origin of all CAZy enzyme gene 
candidates present in the assembly of sample 2. Note that the percentages refer to the 
proportion of sequences relative to the root. 
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As stated above, GH enzyme families are one of the main players in the breakdown 

of plant material.  Their value of occurrence was computed via a Blastp similarity 

search against the NCBI non-redundant database combined with the LCA algorithm 

of MEGAN5 for taxonomic assignment. The most predominant glycoside hydrolase 

families in both, the Firmicutes as well as Bacteroidetes phyla, seem to be GH3 and 

GH5. Notably, the clusters of GH51, GH12 and GH14 seem to be more common 

within the Bacteroidetes compared to Firmicutes phyla.  

 

Figure 16: Heatmap representing the potential level of occurrence of different GH family genes 
in the most represented taxonomic taxa of the assembled sequences of sample 2. Plotted values 
are actual counts for enzyme-encoding sequences belonging to the respective GH classes. 
Taxonomic assignment is based on the NCBI non-redundant database.  
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CAZy enzyme-predictions were also coupled with the sequences clustered into the 

104 high quality metagenomic bins. Figure 17 illustrates a heatmap indicating the 

predictions of the most important glycoside hydrolase families and the taxonomic 

assignment for the respective bin. A table containing the actual hits for each GH 

family found in the 104 high quality metagenomic bins is given in Supplementary 

Material section.  

 

Figure 17: GH family predictions in the 104 high quality bins. AMPHORA2 taxonomic classification 
is given on the right (consensus score > 0.8). Red highlighted taxa belong to the Firmicutes phylum, 
whereas a green highlight indicates that these bins were assigned to the Bacteroidetes phylum. 
Values are actual counts for GH family sequences in the respective bins.  
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4. Discussion 

 

Biogas fermenters comprise a habitat for microbial communities with highly 

complex population structures. The members act together in concerted action to 

conduct the reactions involved in the process of degrading the initial substrate, 

yielding the final products methane and carbon dioxide. The general procedure and 

main reactions, being hydrolysis, acidogenesis, acetogenesis and methanogenesis, 

have extensively been studied in the past. Past research focussed predominantly on 

the methanogenesis because this step results in the generation of the end-products. 

In contrast, knowledge about the initial hydrolysis, which is the rate limiting 

reaction of the entire process, is rather limited and needs better understanding for 

affecting the final yield positively. Therefore, the main aim of this thesis was the 

better characterization of the taxonomic community composition concentrating on 

the key players in cellulose degradation and the responsible enzymes.  

Sequencing of our biogas plant sample generated nearly 900 million sequencing 

reads which were assembled into 123,435 contigs (> 1000 bp) and constitute about 

1.16 Gb of assembled DNA. These benchmark data are the reason why it belongs to 

the biggest assembled data sets currently published. This substantial metagenomic 

assembly was used for the taxonomic and phylogenetic examination of the 

underlying community composition. Similarity search of single reads against the 

NCBI non-redundant database and phylogenetic placement via MEGAN5 resulted 

in the classification of nearly eight million sequencing reads. About 5% of them were 

placed as unassigned reads and those reads might represent sequences that are not 

included in the database or comprise sequences of completely novel species. The 

NCBI non-redundant database represents a vast collection of various reference 
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sequences and this is the reason for the considerably low proportion of unclassified 

sequencing reads. Coupling the analysis with the lowest common ancestor (LCA) 

approach of MEGAN5 makes the evaluation more conservative but also prevents 

false-positive assignments. Taxonomic characterisation of assembled contigs by 

AMPHORA2 marker-protein search enabled the classification of about 21,600 

contigs. The reliance on marker-protein sequences limits assignment capacity 

because only contigs which contain those gene sequences can be classified 

accordingly. The very low proportion of unassigned contigs (0.3%) results partially 

from the assembly process as short and qualitatively poor reads are sorted out before 

and long continuous stretches increase the chance for obtaining full-length gene 

sequences. Informative content of a rRNA sequence analysis in metagenomic 

shotgun sequencing experiments is constrained as only a small fraction of all 

obtained reads contain fragments of ribosomal RNA genes by chance. Therefore, 

similarity search against the ribosomal RNA database of SortMeRNA resulted in 

dedication of roughly 1.6 million reads and about 2% of them remained unclassified. 

This percentage may refer to novel sequences that are not represented in the 

database so far. The rRNA-dependent approach was mainly a verification for the 

other two assignment methods. In general, the taxonomic composition analysis 

revealed that on average, the community consists of about 89% bacterial and only 

4-10% archaeal members, depending on the approach used. For the rRNA marker-

gene containing reads the percentage of classified bacterial sequences was even 

higher and added up to 97% and only 1% were classified as Archaea. Nevertheless, 

this results could emerge to some extent from the overrepresentation of bacterial 

reference sequences in databases as many of them originate from cultivation-based 

experiments and culture conditions are even more complex for Archaea, or in 

general because of a lack of endeavour for examination.  
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However, the severe underrepresentation of Archaea in this artificially generated 

environment was expected and goes in line with published literature [3]; [130]; 

[131]. By comparing different studies of other investigated biogas plants, the 

taxonomic structure appeared to be rather consistent and the composition of this 

sample confirms the impression, as no obvious differences were observed.  

Firmicutes and Bacteroidetes are bacterial phyla that comprise various species that 

were reported to be involved in the breakdown of cellulose and proteins, the 

acidogenesis and homoacetogenesis [3]; [132]. Firmicutes is the dominant bacterial 

phylum in manure-based systems, far more prevalent than Bacteroidetes [5]; [7]; 

[36]; [131]; [133];. Regardless of how the taxonomic community structure of our 

sample was investigated, on average a Firmicutes/Bacteroidetes ratio of 3.3:1 was 

observed. Similar values were calculated for the samples of searched published 

literature. 

CD-HIT clustering of the AMPHORA2 marker-protein search on assembled contigs 

resulted in a distinct grouping of 195 bacterial and 5 archaeal OTUs on average, this 

is a major step forwards compared to previously published studies based on 

clustering of 16S rDNA sequencing [132]; [134]. However, the CD-HIT grouping 

solely outlines the number of different taxa present in the sample, but is not an 

indicator of quality or quantity for the comprised sequences. The composition and 

coverage based metagenomic binning of our biogas plant sample allowed the 

generation of 251 distinct bins with varying quality characteristics. 104 of them were 

extracted as high quality genome reconstructions where most of the bins are more 

than 90% complete, according to CheckM analysis. Some of the bins where 

taxonomically assigned down to species level with high confidence scores. This 

result is highly satisfactory as, to my knowledge, there is no other published study 
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available so far that showed this high degree of deep reconstruction potential for the 

microbial community in biogas fermenters.  

The taxonomic assignment of these metagenomic bins basically reflects the 

impression of a considerable overrepresentation of Firmicutes, reasoned by a 

Firmicutes/Bacteroidetes ratio of 2.7:1. These observations led to a search for 

published literature about metagenomic studies dealing with bacterial composition 

in the guts of herbivores, which represent natural cellulose degrading systems. By 

calculating an average ratio of abundance for Firmicutes and Bacteroidetes in those 

studies, we observed that in digestion systems of herbivores the mean 

Firmicutes/Bacteroidetes ratio is almost 1:1 [9]; [11]; [12]; [21]; [22]; [135]. As most 

agricultural biogas plants are run with animal manures, it was expected that the 

Bacteroidetes are highly abundant in our sample because it was mainly fed with cow 

and chicken manure, besides maize-silage. It is possible that various species 

belonging to the phylum of Bacteroidetes are present in biogas fermenters at high 

levels initially but they may be outcompeted over time due to the operating 

conditions or a lack in essential factors that are usually present in their natural 

habitats. Summarising these discoveries, it is likely that in agricultural biogas 

fermenters, representatives belonging to the phylum of Bacteroidetes are not that 

abundant and do not compete equally as in their natural habitats or compared to 

Firmicutes.  

To determine the transcription of distinct cellulolytic glycoside hydrolase families 

in the high quality bins, which represent individual organisms in the sampled biogas 

fermenter, RNA-Seq reads were mapped on binned contigs. The most observed GH 

families in the metagenomic bins can be subdivided into those with known main 

cellulolytic activity (GH1, GH3, GH5, GH6, GH8, GH9, GH12, GH45, GH48, GH51 

and GH74) and those with mainly hemicelluolytic activity (GH30) [136]. Across 
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genome bins, the GHs that showed the highest expression values belong to the 

groups of GH3, GH5 and GH51. All GH families seem to be higher expressed in 

Firmicutes compared to Bacteroidetes, except the cluster of GH51 shows higher 

transcription in species belonging to Bacteroidetes. The taxonomic assignment of 

glycoside hydrolase families in the individual genome bins confirms the trend 

towards a greater proportion of Firmicutes compared to Bacteroidetes; the ratio of 

selected GHs derived from Firmicutes/Bacteroidetes was 2.1:1. Furthermore, 

representatives of Bacilli, Fibrobacteres and Actinobacteria seem to contribute 

greatly to the overall abundance of selected GH groups. This investigation provides 

insight into the expression of glycoside hydrolase genes of distinct members in a 

biogas producing community and confirms the predominance of various Firmicutes 

in cellulolytic breakdown. As it was expected, different species belonging to the class 

of Clostridia showed the highest transcriptional levels of GHs.  

This study provides evidence for the dominance of Firmicutes in agricultural biogas 

plants compared to various samples of guts or feces of herbivores where the 

Bacteroidetes seem to be equally abundant. Observation is corroborated by the 

finding that selected GH families are twice as often affiliated with Firmicutes than 

with Bacteroidetes. That indicates that Firmicutes, and especially Clostridia, are the 

ones mainly responsible for the initial degradation of plant biomass in agricultural 

biogas plants. Therefore, one can speculate that a shift in population from 

dominating abundance of Firmicutes to Bacteroidetes might increase the overall 

hydrolytic performance of biogas fermenters. This would require altered process 

parameters and conditions which favour the growth or survival of Bacteroidetes. 

For this, further research is needed to get a better understanding about the specific 

requirements of this phylum on its environment or surrounding community for 

efficient adjustment of running parameters in agricultural biogas fermenters. 
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Additionally, the reconstruction of the 104 high quality genomes will provide new 

possibilities for studying functional diversity and capacities in agricultural one-stage 

biogas fermenters. As knowledge about individual genomes participating in the 

degradation of cellulose and other plant material is rather limited so far, this data 

will provide a good starting point for future projects. 
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1 Clostridiales - + - - - - - - - - - - - - - - - 

2 Ruminococcaceae - + - - - - - - - - - - - - - - - 

3 Clostridiales - + - - - - - - + - + - - - - - - 

5 Ruminococcaceae - + - - - + - - - - - - - - - - - 

16 Clostridia - + - - - + - + - - - - - - - - - 

17 Bacteroidales - + - + - - - - - - - - - - - - - 

18 
Mageeibacillus 
indolicus 

- + - - - - - - - - - - - - - - - 

20 Ruminococcaceae - + - - - - - - - - - - - - - - - 

23 Bacteria - + - + - - - - - - - - - - - - - 

33 Euryarchaeota - + - + + + - - - - - - - - - - - 

36 Bacteroidales - + - + - + - - - - - - - - - - - 

41 Bacteria - - - - - - - - + - + - - - - - - 

43 Clostridiales - + - - - + - - - - - - - - - - - 

45 Bacteroidetes - + - + - + - - - - - - - - - - - 

48 Methanobacterium - + - + - + - - + - + - - - - - - 

49 Halanaerobiaceae - + - - - + - - - - - - - - - - - 

72 Acidobacteria - + - + - - - - - - - - - - - - - 

75 Clostridia - + - - - - - - - - - - - - - - - 

82 Clostridiales - + - - - + - + - - - - - - - - - 

90 Ruminococcaceae - + - - - - - - - - - - - - - - - 

96 
Ruminiclostridium 
thermocellum 

- + - - - + - + - - - - - - - - - 

107 Clostridiales - + - - - - - - - - - - - - - - - 

109 
Erysipelothrix 
rhusiopathiae 

- - - - - - - - + - + - - - - - - 

114 Clostridia - + - - - + - + - - - - - - - - - 

118 Bacteroidetes - + - + - - - - + - + - - - - - - 

120 Bacteroidales - + - + - - - - - - - - - - - - - 

  

Table S5: Phenotype predictions for bins 1 – 26. 
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121 Clostridia - + - - - + - + - - - - - - - - - 

122 Firmicutes - + - - - + - + - - - - - - - - - 

125 Bacteroidetes - + - + - + - - - - - - - - - - - 

128 Clostridiales - + - - - - - - - - - - - - - - - 

131 Clostridiales - + - - - + - - - - - - - - - - - 

135 Bacteroidales - + - + - + - - - - - - - - - - - 

137 Ruminococcaceae - + - - - + - - - - - - - - - - - 

138 Bacteroidales - + - + - - - - - - - - - - - - - 

141 Deltaproteobacteria - + - + - + - - - - - - - - - - - 

142 Bacteroidales - + - + - - - - - - - - - - - - - 

145 
Paludibacter 
propionicigenes 

- + - + - - - - - - - - - - - - - 

147 Clostridia - + - - - + - - - - - - - - - - - 

149 Bacteroidales - + - + - - - - - - - - - - - - - 

159 Clostridiales - + - - - + - - - - - - - - - - - 

162 Clostridia - + - - - + - + - - - - - - - - - 

165 
Pelotomaculum 
thermopropionicum 

- + - - - + - + - - - - - - - - - 

167 Clostridiales - + - - - + - - - - - - - - - - - 

172 Clostridiales - + - - - + - - - - - - - - - - - 

175 Sphaerochaeta - - - + - + - - + - + - - - - - - 

178 Bacteroidales - + - + - - - - - - + - - - - - - 

179 Micrococcales + - - - - - - - - - - - - - - - - 

180 Bacteria - - - - - - - - + - + - - - - - - 

184 Verrucomicrobia - + - + - + - - - - - - - - - - - 

188 Bacteroidales - + - + - - - - - - - - - - - - - 

200 Corynebacterium - - + - - - - - - - - - - - - - - 

201 
Paludibacter 
propionicigenes 

- + - + - - - - - - - - - - - - - 

  

Table S6: Phenotype predictions for bins 27 – 52. 
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204 
Mageeibacillus 
indolicus 

- + - - - - - - - - - - - - - - - 

pb108-3 Clostridia - + - - - + - + - - - - - - - - - 

pb121 
Fibrobacter 
succinogenes 

- - - + - + - - + - + - - - - - - 

pb122 
Fibrobacter 
succinogenes 

- + - + - - - - - - - - - - - - - 

pb15-1 Bacteria - + - + - + - + - - - - - - - - - 
pb162 Clostridiales - + - - - + - - - - - - - - - - - 
pb166-2 Bacteroidetes - + - + - - - - - - - - - - - - - 
pb172 Bacteroidetes - + - + - + - - + - + - - - - - - 
pb173 Bacteria - - - + - - - - + - + - - - - - - 
pb177 Clostridia - + - - - + - + - - - - - - - - - 

pb185 
Mageeibacillus 
indolicus 

- + - - - - - - - - - - - - - - - 

pb186-2 
Lachnoclostridium 
phytofermentans 

- + - - - + - - - - - - - - - - - 

pb190 Clostridia - + - + - + - + - - - - - - - - - 
pb192-1 Clostridia - + - - - + - + - - - - - - - - - 
pb199 Bacteria - + - + - + - - - - - - - - - - - 
pb2 Bacteroidales - + - + - - - - - - - - - - - - - 
pb205 Clostridiales - + - - - + - - - - - - - - - - - 
pb206-2 Bacteroidales - + - + - - - - - - - - - - - - - 
pb207 Bacteroidales - + - + - - - - - - - - - - - - - 
pb212 Bacteria - + - + - + - + - - - - - - - - - 
pb215 Ruminiclostridium - + - - - + - + - - - - - - - - - 
pb233-1 Ruminococcaceae - + - - - + - - - - - - - - - - - 

pb233-3 
Mageeibacillus 
indolicus 

- + - - - - - - + - + - - - - - - 

pb235-1 
Lachnoclostridium 
phytofermentans 

- + - - - + - - - - - - - - - - - 

pb235-2 Clostridiales - + - - - + - - - - - - - - - - - 
pb237 Clostridiales - + - - - - - - - - - - - - - - - 

  

Table S7: Phenotype predictions for bins 53 – 78. 
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pb243 
Sphaerochaeta 
globosa 

- + - + - - - - - - - - - - - - - 

pb246 Ruminococcaceae - + - - - + - - - - - - - - - - - 

pb3 Clostridia - + - - - + - + - - - - - - - - - 

pb30 Planctomycetaceae - + - + - + - - - - - - - - - - - 

pb31 Treponema - + - + - + - - - - - - - - - - - 

pb35-1 
Lachnoclostridium 
phytofermentans 

- + - - - + - - - - - - - - - - - 

pb35-2 
Lachnoclostridium 
phytofermentans 

- + - - - + - - + - + - - - - - - 

pb38-1 Acholeplasmataceae - - - - - - - - + - + - - - - - - 

pb40 Clostridia - + - - - - - - + - + - - - - - - 

pb47 Verrucomicrobia - - - + - - - - - - - - - - - - - 

pb60-
2 

Firmicutes - + - - - + - + - - - - - - - - - 

pb6-1 Bacteria - - - - - - - - + - + - - - - - - 

pb61-1 Ruminococcaceae - + - - - - - - - - - - - - - - - 

pb6-2 Bacteria - - - - - - - - + - + - - - - - - 

pb65 Clostridiales - + - - - - - - + - + - - - - - - 

pb69 
Porphyromonadace
ae 

- + - + - - - - - - - - - - - - - 

pb70 
Alkaliphilus 
oremlandii 

- + - - - - - + - - - - - - - - - 

pb76-1 Ruminococcaceae - + - - - + - - - - - - - - - - - 

pb78-1 Bacteria|Firmicutes - + - - - + - - - - - - - - - - - 

pb80 Firmicutes - + - - - + - + - - - - - - - - - 

pb84 
Oceanobacillus 
iheyensis 

- - - - - + - - - - - - - - - - - 

pb85 
Methanosarcina 
barkeri 

- + - + + - - - - - - - - - - - - 

pb88 Bacteroidales - + - + - - - - - - - - - - - - - 

pb90 Treponema - + - + - + - - - - - - - - - - - 

pb93-
2 

Syntrophomonadac
eae 

- + - - - + - + - - - - - - - - - 

pb97 Ruminococcaceae - + - - - - - - - - - - - - - - - 

  

Table S8: Phenotype predictions for bins 79 - 104. 
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Table S9: Taxonomic assignment and predicted number of occurrence for the 15 
most important GH enzyme families in bins 1 – 52. 
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Table S10: Taxonomic assignment and predicted number of occurrence for the 15 most 
important GH enzyme families in bins 53 – 104. 
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Script 1: Removing adapter sequnces from fastq file 

#!/usr/bin/python 

 

import sys, gzip 

import collections 

from Bio.SeqIO.QualityIO import FastqGeneralIterator 

 

if len(sys.argv) != 3: 

  print >> sys.stderr, "script <adapters.fa> <sequences.fa>" 

  sys.exit(1) 

 

infile1 = sys.argv[1] 

infile2 = sys.argv[2] 

 

from Bio import SeqIO 

adapters = collections.OrderedDict() 

for seq_record in SeqIO.parse(infile1, "fasta"): 

  adapters[seq_record] = 0 

 

myseqs = () 

counter = 0 

for title, seq, qual in FastqGeneralIterator(gzip.open(infile2)): 

  counter += 1 

  if counter == 500000: break 

  for adapter in adapters: 

    if str(adapter.seq) in seq: 

      adapters[adapter] += 1 

      #print >> sys.stdout, "%s\n%s" % (myseq.id, myseq.seq) 

 

for key, item in adapters.items(): 

  print >> sys.stderr, "%s: %s" % (key.id, item) 
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Adapter sequences checked 

>Universal 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

>FirstPartOfIndexed 

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC 

>Indexed1 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG 

>Indexed2 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG 

>Indexed3 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTG 

>Indexed4 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG 

>Indexed5 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG 

>Indexed6 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTG 

>Indexed7 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTG 

>Indexed8 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG 

>Indexed9 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTG 

>Indexed10 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTGCTTG 

>Indexed11 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCCGTCTTCTGCTTG 

>Indexed12 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTG 

>FirstPartOfUniversalR 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

>UniversalR 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

>FirstPartOfReverseIndexed 

CAAGCAGAAGACGGCATACGAGAT 

>Indexed1R 

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 
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>Indexed2R 

CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed3R 

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed4R 

CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed5R 

CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed6R 

CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed7R 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed8R 

CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed9R 

CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed10R 

CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed11R 

CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

>Indexed12R 

CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

 

Script 2: Calculating mean coverage by contig 

#!/usr/bin/env python 

 

import sys 

 

sum_by_contig={} 

num_by_contig={} 

 

for line in sys.stdin: 

  parts=line.strip().split("\t") 

  contig = parts[0] 

  cov = int(parts[1]) 

  num = int(parts[2]) 

  #print contig, cov, num; sys.exit(1) 
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  if not sum_by_contig.has_key(contig): 

    sum_by_contig[contig]=0 

    num_by_contig[contig]=0 

 

  sum_by_contig[contig]=sum_by_contig[contig]+num*cov 

  num_by_contig[contig]=num_by_contig[contig]+num 

 

contignames=sum_by_contig.keys() 

contignames.sort() 

 

for contig in contignames: 

  if contig == "genome": 

    continue 

 

  average_cov=float(sum_by_contig[contig])/float(num_by_contig[contig]) 

  sys.stdout.write("%s\t%1.1f\n" % (contig, average_cov)) 

 

Script 3: Filter single assembly  

#!/usr/bin/env python 

 

import sys 

from Bio import SeqIO 

 

assemblyfilename=sys.argv[1] 

coveragefilename=sys.argv[2] 

minlength=int(sys.argv[3]) 

mincoverage=float(sys.argv[4]) 

assemblyoutfilename=sys.argv[5] 

coverageoutfilename=sys.argv[6] 

 

coverage={} 

with open(coveragefilename) as infile: 

  for line in infile: 

    parts = line[:-1].split("\t") 

    name = parts[0].split()[0] 

    c = float(parts[1]) 
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    if c >= mincoverage: 

      coverage[name]=c 

 

lengths=[] 

entries={} 

with open(assemblyfilename) as infile: 

  for entry in SeqIO.parse(infile, "fasta"): 

    #import pdb; pdb.set_trace()  

    if coverage.has_key(entry.id): 

      if len(entry.seq) >=minlength: 

        entries[entry.id]=entry 

        lengths.append((len(entry.seq), entry.id)) 

 

lengths.sort() 

lengths.reverse() 

 

id=0 

with open(assemblyoutfilename, "w") as seqoutfile: 

  with open(coverageoutfilename, "w") as coutfile: 

      coutfile.write('"Name","Average coverage","Reference length"\n') 

 

      for (length, name) in lengths: 

 

        print >> sys.stdout, name 

 

        id += 1 

  entry=entries[name] 

        c=coverage[name] 

 

        entry.id = str(id) 

        SeqIO.write(entry, seqoutfile, "fasta") 

 

        coutfile.write('"%i","%1.1f","%i"\n' % (id, c, length)) 
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Script 4: Filter Combined Assembly 

#!/usr/bin/env python 

 

import sys 

from Bio import SeqIO 

 

assemblyfilename=sys.argv[1] 

coverage1filename=sys.argv[2] 

coverage2filename=sys.argv[3] 

minlength=int(sys.argv[4]) 

mincoverage=float(sys.argv[5]) 

assemblyoutfilename=sys.argv[6] 

coverage1outfilename=sys.argv[7] 

coverage2outfilename=sys.argv[8] 

 

coverage1={} 

with open(coverage1filename) as infile: 

  for line in infile: 

    parts = line[:-1].split("\t") 

    name = parts[0].split()[0] 

    coverage = float(parts[1]) 

    #if coverage >= mincoverage: 

    coverage1[name]=coverage 

 

coverage2={} 

with open(coverage2filename) as infile: 

  for line in infile: 

    parts = line[:-1].split("\t") 

    name = parts[0].split()[0] 

    coverage = float(parts[1]) 

    #if coverage1.has_key(name): 

    #if coverage >= mincoverage: 

    coverage2[name]=coverage 

 

lengths=[] 

entries={} 

with open(assemblyfilename) as infile: 
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  for entry in SeqIO.parse(infile, "fasta"): 

    #if coverage1.has_key(entry.id) or coverage2.has_key(entry.id): 

    try: 

      coverage1[entry.id] 

    except KeyError: 

      coverage1[entry.id] = 0 

    try: 

      coverage2[entry.id] 

    except KeyError: 

      coverage2[entry.id] = 0 

    if len(entry.seq) >=minlength and (coverage1[entry.id] >= mincoverage 

or coverage2[entry.id] >= mincoverage) : 

      entries[entry.id]=entry 

      lengths.append((len(entry.seq), entry.id)) 

 

lengths.sort() 

lengths.reverse() 

 

id=0 

with open(assemblyoutfilename, "w") as seqoutfile: 

  with open(coverage1outfilename, "w") as c1outfile: 

    with open(coverage2outfilename, "w") as c2outfile: 

      c1outfile.write('"Name","Average coverage","Reference length"\n') 

      c2outfile.write('"Name","Average coverage","Reference length"\n') 

 

      for (length, name) in lengths: 

 

        print >> sys.stdout, name 

 

        id += 1 

 

        entry=entries[name] 

   c1=coverage1[name] 

        c2=coverage2[name] 

 

        entry.id = str(id) 

        SeqIO.write(entry, seqoutfile, "fasta") 
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        c1outfile.write('"%i","%1.1f","%i"\n' % (id, c1, length)) 

        c2outfile.write('"%i","%1.1f","%i"\n' % (id, c2, length)) 

 

Script 5: Filter Blast results to minimal bitscore  

#! /usr/bin/python 

 

import sys, os, argparse 

 

minscore = float(sys.argv[1]) 

 

mydict = {} 

previous = None 

 

for line in sys.stdin: 

 

  elements = line.strip().split('\t') 

  assert len(elements) == 12 

  bitscore = float(elements[11]) 

 

  if bitscore >= minscore: 

    sys.stdout.write(line) 

 

Script 6: Contig2Bin 

#!/usr/bin/python 

 

import sys, os 

from Bio import SeqIO 

 

fastafiles = sys.argv[1:] 

 

for fastafile in fastafiles: 

  bin = fastafile.split('/')[-1].split('.')[0] 

 

  for seq in SeqIO.parse(fastafile, "fasta"): 

    id = seq.description.split()[1] 
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    print >> sys.stdout, '%s\t%s' % (id, bin) 

 

Script 7: Combine Tables 

#!/usr/bin/python 

 

import sys, os 

 

contig2taxon = {} 

with open(sys.argv[1]) as fin: 

  for line in fin: 

    contig, taxon = line.strip().split('\t') 

    contig2taxon[contig] = taxon 

 

with open(sys.argv[2]) as fin: 

  for i, line in enumerate(fin): 

    if i == 0: 

      print >> sys.stdout, line.strip() 

      continue 

    els = line.strip().split() 

    try: taxon = contig2taxon[els[0]] 

    except KeyError: taxon = '-' 

    els[-2] = taxon 

    print >> sys.stdout, '\t'.join(els)
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