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Abstract

Biogas fermenters harbour very complex microbial communities and the individual
members have to fulfil distinct tasks on the way from substrate degradation to the
final products methane and CO2. Only a minor proportion of the present species has
been characterized by now and their genome sequences and functional assignments
are often not available. Even if the representatives seem to be perfectly organised in
the hydrolytic breakdown of plant material, they compare unfavourably to
populations present in the digestive tracts of herbivores. Explanations for this

observation are obscure so far.

In this thesis we analysed a one-stage agricultural biogas fermenter with respect to
microbial community structure and functional genomic equipment of the
underlying taxa. Metagenomic analyses resulted in 1.16 Gb of assembled DNA and
binning of 104 high quality genome reconstructions. Our results display that
Firmicutes are far more prominent in biogas plants whereas in natural systems,
Bacteroidetes seem to be equally abundant. This observation was reflected by the
lower prevalence of glycoside hydrolase family genes in the metagenomic bins
assigned to members of Bacteroidetes. A deficiency in genes encoding presumable
GH enzymes may be associated with the limited potential of biogas fermenters
regarding hydrolysis. These findings tempt to speculate that increasing the
proportion of Bacteroidetes in agricultural biogas plants, will presumably lead to

increased hydrolysis of plant biomass.






Kurzzusammenfassung

Biogasfermenter beherbergen auBerst komplexe mikrobielle Gemeinschaften und
die einzelnen Mitglieder erfiillen ganz spezielle Aufgaben auf dem Weg vom
Substrat-Abbau zur Herstellung der Endprodukte Methan und CO2. Nur ein
winziger Anteil der tatsidchlich vorkommenden Spezies wurden bis jetzt naher
beschrieben; oftmals sind die Genomsequenzen und funktionellen Zuordnungen
nicht vorhanden. Auch wenn es so scheint als wiren die einzelnen Vertreter perfekt
organisiert im hydrolytischen Abbau von pflanzlicher Biomasse, so schneiden sie im
direkten Vergleich zu Populationen in Verdauungstrakten von Pflanzenfressern
doch wesentlich schlechter ab. Erklarungen fiir diese Feststellung liegen bis jetzt
noch im Dunkeln. In dieser Thesis haben wir einen typischen landwirtschaftlichen
Ein-Phasen Biogasfermenter in Bezug auf dessen mikrobielle Zusammensetzung
und die funktionelle Genomausstattung der zugrundeliegenden Taxa untersucht.
Metagenomische Analysen haben die Assemblierung von 1,16 Gb an DNA und die
Rekonstruktion von 104 qualitativ hochwertigen Genomrekonstruktionen
ermoglicht. Unsere Resultate zeigen, dass Firmicutes in Biogasanlagen weitaus
haufiger vorkommen wohingegen in natiirlichen Systemen, Bacteroidetes ziemlich
gleich haufig zu sein scheinen. Diese Beobachtung spiegelt sich auch im selteneren
Vorhandensein an Glycosid-Hydrolasen Genen in metagenomischen Bins wider,
welche den Bacteroidetes zugeordnet sind. Ein Defizit an Genen, fiir GH Enzyme
codierend, konnte mit dem limitierten Hydrolysepotential von Biogasfermentern
zusammenhingen. Diese Entdeckungen animieren zu Spekulationen, dass eine
Erhohung an Bacteroidetes zu einer erhéhten Hydrolyserate von Pflanzenmaterial

fithren konnte.
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1.1 Biological background and aim of the study

1. Introduction

1.1 Biological background and aim of the study

Our modern society’s global energy demand is constantly increasing and the major
part of it is covered by the use of fossil fuels. Addressing the problems of climatic
changes and greenhouse gas emissions, many European countries, in particular
Germany, Austria, Denmark and Sweden, have augmented biogas production,
because it is an environmentally friendly renewable source of energy [1]. Biogas,
which is mainly composed of methane and carbon dioxide, is produced in a process
called anaerobic digestion (AD) which is carried out by complex microbial
communities [2]-[5]. Applying this technology has several advantages as it couples
waste disposal to the production of a highly valuable renewable fuel and
additionally, nutrient recovery can replace mineral fertilizers [1]. The originating
biomethane can completely substitute fossil fuels as it can be used in the generation
of heat and electricity, as well as a vehicle fuel. The final stage of methane production
is well understood, contrary to the microbial communities involved in the other
stages of biogas production, their role and the underlying dynamics are not well
characterized so far [2]-[5]. It is known that the way from anaerobic substrate
degradation to the final products, methane and carbon dioxide, requires a close
interaction of several hundreds to several thousand phylogenetically different
microbial species [3]; [4]; [6]; [7]. The first step, being the hydrolysis of
polysaccharides, is regarded as one of the rate-limiting steps in the entire process
and therefore it is one determinant of the overall efficiency [8]. Cellulose is a rich

source of organic carbon compounds however, the actual process from cellulose
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1.1 Biological background and aim of the study

degradation to biogas production leaves room for further investigation. Bacteria
that are able to degrade cellulose are rare and the majority of them are belonging to
the bacterial phyla Firmicutes or Actinobacteria [8]. Clostridia are reported to be
the dominant class of hydrolytic Bacteria in biogas fermenters and therefore one can
assume that they play a major role in the initial step [8]. In natural digestive tracts
of studied herbivore organisms, the Clostridia appear to be less dominant and are
outcompeted by the Bacteroidetes. Different studies indicate that Bacteroidetes can
be found in all samples of digestive organs as well as feces of herbivores. In those
natural biogas producing systems, they usually represent the main bacterial group
and seem to be more dominant than Firmicutes [9]-[12]. This is one of the huge
differences in the bacterial composition of biogas fermenters and natural cellulolytic

systems.

The main aim of this thesis is to investigate the taxonomic composition of the
underlying biogas fermenter sample, as well as analysing the possible effects that
the differences, compared to microbial communities in natural digestive organs,
may have in the effective degradation of plant biomass. The use of deep DNA-
sequencing, RNA-sequencing and metagenomic analysis should enable gaining
further knowledge about the relative taxonomic community composition and the
occurrence of glycoside hydrolase (GH) enzymes. The comparison of the taxonomic
composition, as well as the abundance of GH family genes, in artificial anaerobic
digestion systems to natural cellulolytic systems may provide deeper insight for

enhancing process efficiency and final biogas yield.

14



1.2 Biogas — production, usage and advantages

1.2 Biogas — production, usage and advantages

The term “biogas” generally refers to gas produced by anaerobic digestion units [13],
is a major player in the category of renewable energies and a promising candidate
addressing the global need for energy as well as having multiple environmental
benefits [14]-[16]. Today, bioenergy production in general is estimated to be the
fourth largest source of energy in the world [17]. Table 1 gives an overview of biogas

usage, its benefits and shows a comparison to other sources of energy.

Table 1: Overview of possible biogas usage, potential substrates and overall
advantages comparing conventional energy sources. According to Mao et al.,
2015, modified.

Electricity
Green energy production Heat [16]
Vehicle fuel

Agricultural residues
Industrial wastes

Organic waste disposal Municipal solid wastes [1]
Household wastes

Organic waste mixtures

Pathogen reduction through sanitation
Less nuisance from insect flies

. . Air & water pollution reduction; eutrophication and
Environmental protection o ) [14]; [15]
acidification reduction

Forest vegetation conservation

Replacing inorganic fertilizer

GHG emission reduction Substituting conventional energy resources [14]; [18]

Biogas is a very versatile energy carrier, depending on the specific requirements of
the final processing techniques. It can be used in the generation of electricity, heat
and as vehicle fuel, after post-processing e.g. desulfurization and water removal [1].

Among various factors, the final gas yield is strongly dependent on the injected
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1.2 Biogas — production, usage and advantages

substrates. However, the range of possible fed in substrates is broad and frequently
used source materials are animal manures, industrial wastes, commercial or

municipal wastes and different grains or grasses [1]; [18].

Increasing the final yield in biogas does not solely depend on optimization of process
parameters (e.g. temperature, pH, retention time); it is even more important that
the different substrate conversion steps proceed in precise coordination. It is general
knowledge that the slowest step of a reaction determines the overall reaction speed
and performance but for being able to optimize these single parameters, all elements
of the reaction chain, as well as their output, interactions and demands have to be
known. Even if the microorganisms carrying out the conversion of plant material
and the mechanisms, that are involved on the way to methane production, are well
understood, the overall process and the microbial biogas producing community

structure needs further investigation [2]-[5].
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1.3 Anaerobic degradation process stages
1.3 Anaerobic degradation process stages

Breaking it down, anaerobic degradation is a cooperation of a very complex
microbial community but mainly three types of Bacteria work together in the most
relevant stages, being hydrolysis, acidogenesis, acetogenesis, and methanogenesis
[8]. The first step in the digestion process is the hydrolysis of complex molecules
including carbohydrates, lipids, and proteins which are depolymerized by the help
of a wide range of enzymes that are produced and secreted by hydrolytic Bacteria
together with saccharolytic Bacteria. These Bacteria are either obligate anaerobic as
Bacteroides and Clostridia, or they are facultative anaerobic, as for example

Streptococci [19].

The products of this initial step and the following acidogenesis are organic acids,
alcohols, CO- and H.. The acetogenesis, performed by acetogenic Bacteria
(syntrophic Bacteria) involves conversion of the products from the preceding steps
into acetate. Acetotrophic and hydrogenotrophic Archaea then convert the acetate,
CO: and H: to methane and CO.. This last step, and possibly also the best
understood, is the methanogenesis [7]; [8]. Representatives, which perform this
reaction are for instance Methanosarcina, Methanothrix, Methanobacterium and
Methanococcus [19]. Figure 1 gives a brief overview of the most important chemical
reactions as well as most abundant taxonomic groups. As indicated there, bacterial
representatives are the dominating ones carrying out the first three steps of the
process, the final conversion is mainly performed by hydrogenotrophic or

acetotrophic Archaea, producing CH4 and COs-.
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1.3 Anaerobic degradation process stages

The initial step in the AD process, the hydrolysis, is known to be crucial for the
overall production efficiency. Hydrolysis of the biomass is regarded as the rate
limiting step as all downstream reactions depend on the initial hydrolysis
production rate — the more substrate is used, the greater is the final methane yield
[8]. This fact is one of the main reasons why a better understanding of the

community involved during hydrolysis is crucial for improving overall process

efficiency.
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Representatives of Bacteria (in particular Firmicutes, Bacteroidetes, Actinobacteria,
Fibrobacteres/Acidobacteria group, Chloroflexi), Crenarchaeota
*: not yet detected in agricultural biogas plants

Figure 1: Major chemical reactions in the anaerobic degradation of organic compounds,
substrates and products as well as most important microbial community members
involved in the single steps. According to Lebuhn and Gronauer, 2009, modified.
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1.4 Microbial community analysis — natural vs. artificial systems

1.4 Microbial community analysis — mnatural vs.

artificial systems

The production of biogas by anaerobic degradation is not a novel technical
invention. Utilising organic material as substrate for biogas production is widely
found in nature, for instance, the intestine of plant-feeding animals or insects,
swamps or marshes, composts or debris of lake grounds are all habitats for the
microorganisms cited above [8]. Bacteroidetes are regarded to be the most
competitive microbial group, together with the Firmicutes, as multiple studies
indicate that they are present in nearly all herbivore rumen, gut and fecal samples.
This is in contrast to the technical replica like biogas fermenters; here the Clostridia
appear to be the predominant bacterial class and literature indicates that they play
a major role during hydrolysis. However, cow rumen, gut or other organs involved
in natural digestive processes of herbivorous animals are regarded as not being

dominated by clostridial organisms [8]-[12]; [20]-[23].

These publications suggest that there is a vital contrast between natural and
artificially generated microbial communities needed in the anaerobic digestion
process and gaining detailed insight into possible reasons for this observation,

might improve final product yield.
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1.5 Glycoside hydrolase families and CAZy database
1.5 Glycoside hydrolase families and CAZy database

Carbohydrate-active enzymes (CAZy) are mandatory for the breakdown of complex
carbohydrates. The CAZy enzyme database project (http://www.cazy.org/) [24] has
collected CAZy enzyme families which are involved in the synthesis, modification
and breakdown of oligo- and polysaccharides. CAZy genes are regarded to make up
around 1-5% of the coding regions of an organism. As these CAZy enzymes are vital
in the processing of cellulose, they are regarded as an essential key to success in the
production of biogas [24]. Depolymerisation of plant-derived cellulose, which is
recalcitrant to hydrolysis and is often found in crystalline form, needs key enzymes
mainly belonging to different glycoside hydrolase families. Glycoside hydrolases
break up the glycosidic bonds between carbohydrates, are capable of hydrolysing
even crystalline cellulose and evolved in many different microorganisms, mainly
filamentous Fungi and Bacteria [25]. Generally there are several types of GHs and
their coefficient action is known to be necessary for the complete hydrolysis of
cellulose to glucose [26]-[28]. The first type are endoglucanases, hydrolysing the
internal bonds in cellulose chains randomly and therefore releasing products of
variable length. Exoglucanases constitute the second type, releasing cellobiose
through action either on the reducing or the non-reducing end of the cellulose
polymer. The last type are the p-glucosidases, they affect the degradation of
cellubiose, finally yielding glucose [28]; [29]. These cellulolytic enzymes can occur
as free and independent enzymes, or they are packed together in a formation called
cellulosomes. Whereas numerous cellulolytic organisms belonging to the class of
Clostridia produce cellulosomes, Bacteria belonging to the phylum of Bacteroidetes
are considered to lack these multi-enzyme complexes. However, literature indicates

that for an efficient degradation of cellulose, they use so-called polysaccharide
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1.5 Glycoside hydrolase families and CAZy database

utilisation loci (PULSs) [30]; these sets of genes might be of importance in the
process of degrading cellulose and were recently proposed to be an alternative

approach for cellulose breakdown [31].

Differences in the abundance of potential GH genes between natural digestive
systems as well as anaerobic degradation systems, established for biogas
production, can undergird the findings of a vital underrepresentation of typical
rumen or gut bacteria as well as provide more details about the mechanisms

involved in the initial biomass hydrolysis.



1.6 Methodical background

1.6 Methodical background

Synergistic reactions of microorganisms are crucial for bioenergy production, in
both natural or artificially created cellulose degrading systems. Whole genome
shotgun sequencing, which is based on the invention of various next-generation
sequencing (NGS) technologies, has dramatically improved our understanding of
community structures and dynamics in the most diverse environments. In
metagenomic community analysis, culturing of microorganisms for successful
investigation is not necessary anymore. Even if the cultivation-based approaches
have helped to gain important elementary knowledge about many key
microorganisms, for which cultivation was possible, for the majority of them, found
in more complex environments, cultivation has not been possible yet because their
essential requirements are unknown. Aside from that, each of the organisms studied
individually and isolated might exhibit different characteristics than when the whole
complex microbial network is examined [32]-[34]. Due to the application of culture-
independent techniques, a prior hardly conceivable diversity was observed,
phylogenetically as well as metabolically [3]; [4]; [6]; [7]; [35]; [36]. Additionally,
understanding community composition, interactions and reactions has helped to
improve reactor set-ups and therefore positively influenced efficiency and stability
[13]; [37]. Metagenomic shotgun sequencing refers to the random sequencing of all
DNA material and accessing the genetic content of entire communities in a certain
environment. It provides information about the gene composition of the underlying
communities and therefore gives a more exact description than phylogenetic
analysis solely. The application of various bioinformatic software tools can reveal
potentially novel enzymes, information about genomic linkages between function

and phylogeny and also create evolutionary profiles [38].

N
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1.7 Typical metagenomic workflow

The ultimate goal in metagenomics is the reconstruction of all genomes found in a
specific environment but due to several problems, e.g. lack in sequencing coverage
or difficulties in assembly, this is hardly ever possible. Still, there are two different
approaches that are applied instead and therefore getting at least an approximation
to entire reconstructions; the first one is a read-based analysis of the taxonomic as
well as functional components of the metagenomes, the other is the assembly of
reads into longer, continuous stretches of genomic sequences, referred to as contigs,
prior to taxonomic classifications and functional assignments [39]. Each of these
strategies has several inherent limitations; especially the assembly of single
sequencing reads into contigs can cause inconvenience. Algorithms that were
created specifically for short-read assembly are computationally demanding in
terms of memory costs, due to the high numbers of genomes found in these
communities. Though, not only the number of genomes is challenging, also the wide
range of abundance for each single genome in a sample is very complicated and
sometimes it is not possible at all to assembly genomes with low abundance.
Chimeric assemblies may result from the assembly of very closely related lineages
similar to heterogeneity within certain lineages, which can lead to fragmented
sequences. Even the analysis on single reads has several bottlenecks, because the
multitudinous number of reads that have to be analysed cause long runtimes and
the short reads that are produced in NGS experiments can lead to high error rates.
Figure 2 gives an overview about the single steps and processes that are generally

executed in metagenomic analyses.
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Figure 2: Overview of the procedures in typical metagenomic experiments.
According to Thomas et al. 2012 and Kim et al. 2013, modified.
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It is not invariably the case that each of these single steps is absolutely necessary
and the leading question of the actual project will determine the exact procedure
and the required tasks. More precise description of the single processes and software

used in this thesis, including possible alternatives, is given below.

1.8 Sequencing and data preprocessing

After sample taking and DNA-extraction, the genomic material has to be sequenced.
In the last decade, metagenomic sequencing has gradually evolved from classical
Sanger sequencing to next-generation sequencing (NGS). Sanger sequencing has for
long been the method of choice due to lacking alternatives but the very time
consuming cloning processes and the resulting high cost per gigabase has led to the
application of NGS [38]-[41]. Clearly, there is no “holy grail” among them and each
of them has pros and cons that have to be balanced to choose the suitable one.
Sequencing always results in the acquisition of short nucleotide sequences, referred

to as reads, which represent the amplified copies of the same genomic fragment that
24



1.8 Sequencing and data preprocessing

has been randomly sheared into small pieces beforehand. This process is called
shotgun sequencing [41]. In the last years, metagenomic analyses have mainly
applied 454/Roche pyrosequencing or Illumina sequencing-by-synthesis approach.
Advantages of the 454/Roche sequencing is that it produces reads about 600-800
bp in length, and therefore the greatest length of all second generation NGS
technologies and substitution errors are very unlikely. Due to the inherent features
of this technology, homopolymer stretches are prone to insertion/deletion errors,
the yield of a single run is only about 500 Mbp and it is very costly compared to
Illumina sequencing. Therefore, Illumina sequencing technologies are the ones
most frequently used. The major disadvantage is the read length, only reaching up
to 150 bp for now. The advantages are not only the lower costs, but also the higher
accuracy compared to 454/Roche and the higher yield of about 60 Gbp in a single
run [38]; [41]-[43]. In the present study an Illumina HiSeq 2500 instrument was
used in paired-end mode with read lengths of 2 x 101 bp. The output of these
experiments consist of a text file, containing millions of such reads in FASTA or
FASTQ format which are then analysed. One important step in the avoidance of
biased data is the preprocessing. Tools have been implemented which are measuring
the probabilities of wrong base calls and based on that, provide quality scores for
the overall sequencing procedure [41]; [44]-[46]. They are used for filtering,
trimming and reformatting as well. PRINSEQ-lite [47] was the method of choice in
this project, other possibilities would have been for example FastQC [48] and

Trimmomatic [49].

N
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1.9 Assembly and mapping

1.9 Assembly and mapping

The next step in a typical metagenomic workflow is the assembly of reads into either
contigs (longer, contiguous sequence) or scaffolds (multiple contigs and gaps
together representing a longer stretch of the genomic sequence) for obtaining larger
coherent genomic sequences. Figure 3 is an illustration of these two basic constructs

originating from the assembly process.

Scaffold
T,
Contig 1 Contig 2

- - ———d—
i 4=

#—+  Fragment
= Raadl (known sequence)
—  Roughly known length but not known sequence

Figure 3: Basic illustration for the two possible
products of the assembly of short reads.
From http://genome.jgi.doe.gov.

As already discussed, this process is the bottleneck in terms of computational
memory load of metagenomic analyses so far. A lot of algorithms have been
developed in the last years that are addressing this problem. They can be basically
divided into two categories, the de novo assemblers and the mapping assemblers. A
template comprised of known reference genomes are needed for the assembly by
mapping approach [40]; [50]. The results are rather reasonable as sequence repeats,
short read lengths and low coverages are not that much of an issue compared to de
novo approaches. Contrary, the de novo assembly method is one of the

computationally
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1.9 Assembly and mapping

most expensive tasks in metagenomic analyses [41]. The assemblers fulfilling this
task are divided into three classes, all relying on graph reduction algorithms [51].
The first one is the overlay-layout-consensus (OLC) method, which basically
searches for path overlaps in three steps and is used for very long reads [52]; [53].
Examples are the Celera assembler [54], Arachne [55] or Newbler [56]. Another
possibility are the de Bruijn graph (DBG) assemblers which use short k-mer
subgraphs for memory reduction [57]. Examples would be Velvet [58], IDBA [59] or
Ray [52]. The last class are the greedy algorithms which are the most intuitive form.
They search for the best overlaps and then continue growing contigs iteratively. For
example, SSAKE [60], VCAKE [61] and SHARCGS [62] are using this approach.
Some assemblers have been designed especially for metagenomic experiments as
those reads are more complex, due to the number of different species, strain
heterogeneity and the uneven coverage across the genome or between different
genomes. These algorithms have to adapt their reconstruction method, based on
graphs, to handle variabilities in genome copy numbers and sequences that are
conserved across several genomes [63]. As the genomic diversity in metagenomic
analyses is known to be immense and reference genomes are lacking, the de-novo
assembly is the method of choice, at least until knowledge about the underlying
community members exists. In the assembly step of this project, two of those
metagenomic short-read assemblers were applied, Ray Meta [64] and IDBA-UD

[65].

Determination of the contig coverages is the next step in many metagenomic
analyses, as this knowledge is required for many tasks in downstream analysis. For
this purpose, short-read alignment algorithms exist for mapping the reads against
the previously assembled contigs. These aligners are based on different algorithms

for indexing the reads as well as the references.
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The best known strategies are the Burrows-Wheeler transformation or the Smith-
Waterman algorithm, but also short k-mers are used in the indexing process.
Famous short-read aligners are for example BBMap [66], Bowtie2 [67] and BWA

[68], all of them were used at different stages in this study.

1.10 Taxonomic community analysis

“Who are they?” - this is one of the two fundamental questions in metagenomics and
asks for a taxonomic analysis of all community members. There are basically two
different approaches how the taxonomic composition can be analysed in NGS
experiments. The first approach does not need any assembly or alignment before as
it directly analyses the sequencing reads after trimming and filtering. The reads are
used in similarity searches against databases that contain reference sequences of
interest. Depending on the database used, protein or nucleotide searches are carried
out. BLAST [69] is the most famous algorithm for detecting sequence similarities to
known reference sequences and several variants exists that can browse various
databases. However, BLAST is known to be limited in terms of computational speed,
so many other tools were specifically designed to speed up the process as the amount
of data that has to be handled in metagenomic projects is huge and runtimes have
to be considered clearly beforehand. Rapsearch2 [70] was used here for taxonomic
classification of single-reads, as it achieves a fast protein similarity search with only
minimal loss in accuracy compared to BLAST. Afterwards search results have then
to be analysed for their taxonomic composition. MEGAN5 [71] is a software tool
capable of taxonomically placing reads based on their homology to a given taxon. A
characteristic feature of this tool is that it places reads on the lowest common

ancestor (LCA) of all organisms that contain the gene present in the read as well,
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1.11 Taxonomic analysis based on rRNA gene search

therefore it is a more conservative approach and minimizes the chance for false-

positive assignments.

The other possible method for taxonomic community profiling is the analysis of
assembled contigs; assigning contigs to different taxa can be done by searching for
conserved marker gene sequences that have to be universally distributed across
Bacteria or Archaea and are only present in a single copy in all genomes. AMPHORA
[72] is a program that works by identifying 31 distinct bacterial marker genes from
the input sequences for phylotyping (i.e. assigning sequences to taxa). AMPHORA2
[73] has been used in the present study for phylogenetic marker analysis, as it is also
capable of identifying marker genes in archaeal sequences. The underlying idea is
the assumption that, if the marker is part of a larger assembled contig, then this

contig can be classified into a specific taxonomic level.

1.11 Taxonomic analysis based on rRNA gene search

As each method has certain drawbacks and limitations, it is advisable to verify the
results by the application of other approaches. In the present study, taxonomic
community analysis results were matched with an analysis of sequencing reads that
contain ribosomal RNA (rRNA) gene fragments. 16S rRNA gene profiling has been
the method of choice for phylogenetic investigation and diversity analysis for the
last 20 years now and marks one of the first steps in many metagenomic projects
[74]. If 16S rRNA genes are used as phylogenetic marker genes in metagenomic
shotgun experiments, then reads containing putative rRNA genes have to be sorted
out and classified by similarity searches against specialised databases. Several
public available databases exist that contain well-curated rRNA gene sequences,

such as SILVA [75], RDP (ribosomal database project) [76] and Greengenes [77].
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There are several tools for filtering rRNA gene containing reads out of NGS data
such as SortMeRNA [78]. The underlying algorithm works with a seeding strategy
which is based on the search for many short similarity regions between the read and
a respective TRNA sequence database. Another option is a nucleotide BLAST
(BLASTn) similarity search against one of the databases mentioned above.
Advantages of specialized tools as SortMeRNA are a great speed-up of the process
as well as increased sensitivity and selectivity compared to BLASTn analyses [78].
In the present study, both approaches have been applied to the underlying dataset

for maximising the number of detected and classified 16S rRNA reads.

1.12 OTU clustering in metagenomic experiments

Operational taxonomic unit (OTU) is a term in microbial analysis, referring to the
clustering of sequences with a varying amount of sequence-identity that they have
to share at least [79]. It is used in metagenomic analyses for the sorting of microbial
sequences according to their sequence similarity. Many metagenomic studies are
using clustering approaches for sequence variants of the small subunit (SSU) rRNA
marker gene, as it is highly conserved among bacterial and archaeal species.
Clustering these variants according to a chosen percentage of similarity threshold
can be indicative of the underlying population richness. Nevertheless, the 16S rRNA
approach is limited in the resolution at species-level, as differences are often not
sufficient for distinguishing at this taxonomic rank. Another problem is that genes
might be similar on the nucleotide level, even when they belong to evolutionary
distant species [72]; [80]. In general, deriving phylogenetic classification based on
a single gene is always risky and has to be corroborated by the use of other markers.

This is why microbial research has shifted the focus more towards the use of protein-
30



1.12 OTU clustering in metagenomic experiments

coding genes for phylogenetic analysis [72]. As protein-coding sequences are
conserved at the amino acid level, the results are less biased by nucleotide
composition [72]; [81]. As indicated before, AMPHORA2 uses universally
conserved, single-copy marker genes for bacterial and archaeal taxonomic
classification. In this study, these markers are identified by AMPHORA2 analysis
and the results can then be clustered via CD-HIT [82], according to different levels
of minimal sequence similarity. CD-HIT in general is used for a so-called clustering
analysis, a method for searching for specific sequences and grouping them according
to their similarity [83]. There are many other possible clustering programs available
that are used for the grouping of protein sequences, for example ProtoMap [84],
ProClust [85], Blastclust [86] and UniqueProt [87]. The drawback of these methods
is that the underlying algorithm performs all-against-all comparisons and therefore
CD-HIT was used, an algorithm that circumvents this problem, leading to a great
acceleration [83]. CD-HIT uses a greedy algorithm as the first step is an ordering of
sequences by decreasing length and the longest serves as seed for the first cluster.
All sequences that are remaining are then compared to the existing seeds in a cluster.
If the similarity threshold to a certain seed is met, then the sequence is grouped into
the respective cluster [83]. Calculating the average number of markers present at a
certain similarity threshold gives an indication of the number of OTUs in the

underlying community.
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1.13 Binning of metagenomic contigs

Binning refers to the process where single genomic fragments that have been shot-
gun sequenced and assembled, are clustered together into so-called bins, to ideally
reproduce entire genomes. Even if the advances in NGS technologies today are able
to provide sufficient sequencing depth for assemblers especially designed for
metagenomic experiments, the binning of assembled contigs into clusters on strain-
or species-level is still a tough challenge [88]. In principle, there are two different
approaches that have been implemented to overcome this obstacle; the first one uses
distinct genomic signatures, e.g. k-mer frequencies, as those are characteristic to
each genome [89]-[91]. It has been shown that the frequency of oligonucleotide
occurrence is conserved over the genome within a certain species, whereas
noticeable differences exist between distinct species [92]-[94]. This approach has
limitations as in very complex communities, not all organisms exhibit genomes with
extreme base compositions needed for separation of related microorganisms whose

tetranucleotide frequencies are very similar [95].

On the other hand, the second method deals with the creation of coverage profiles
and comparing them across multiple samples [95]-[97]. The idea behind these
techniques is that contigs with similar coverage profiles, are likely to be derived from
the same organismal population [96]. Some attempts also use a combination of the
two approaches [98]-[100]. In this study CONCOCT [98] is used, an algorithm
which uses a combination of sequence-composition- and coverage-dependent
analysis for the automatic binning of contigs or scaffolds into distinct species-level
clusters. CONCOCT is useful as the analysis of coverage values does not have to be

executed manually, ensuring better reproducibility between different studies.
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However, CONCOCT also has the same inherent limitations as all of these
techniques, being dependent on a high-quality assembly. If the number of contigs
that are restricted to a certain species is low, then the software will not form a

distinct cluster out of them.

1.14 Annotation of metagenomic bins

“What are they doing?” - this is the second fundamental question in metagenomics
that aims to gain insights into the community’s physiology by determining the
collective functions encoded in all genomes in a community. Annotating functions
to metagenomic sequences can be a quantitative measurement of the functional

diversity of a community [101].

Generally, a functional annotation of metagenomes involves two distinct steps, the
gene prediction and the functional annotation of the predicted gene [38]; [101].

Figure 4 illustrates a typical functional annotation workflow in a metagenomic

study.
Protein Classified and
Families Annotated
Proteins
i F—— —_— IARERRRIN
e__ —I—r— = Community Functional
e — LR — / Diversity Profile
— —- —
Metagenome Gene Prediction Functional Annotation

Figure 4: Typical steps involved in a metagenomic functional annotation analysis. According to
Sharpton, 2014, modified.
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Gene prediction refers to the process of identifying non-coding and coding
sequences (CDS) within a read. These predictions do not need assembled reads as
the prediction is also possible on unassembled metagenomic sequencing reads.
Prediction on unassembled or poorly assembled reads is mainly a more challenging
attempt as the read lengths are rather short in NGS experiments and therefore it
involves the finding of partial coding sequences too [101]. Gene prediction is
important in the functional annotation of metagenomic sequences, but it is truly

crucial in identifying completely novel genes.

In general, there are three different approaches for gene prediction prior to
functional annotation. The first one uses databases of known genetic sequences and
maps metagenomic reads or contigs to the database entries. This method is often
referred to “fragment recruitment” in literature. If the gene-entry in the database
possesses a functional annotation, then this can be used to functionally label the
metagenomic sequence of interest. The problem of this attempt is that it is not
possible to identify novel genes or more diverse homologs of a known gene [101].
The second approach is similar to the first, but it additionally includes the
translation of each read into all six protein-coding frames. The resulting peptides
are then aligned to a database containing sequences of known proteins. As this
method relies on database comparison too, novel genes are not identifiable as well.
Still, it is possible to identify more diverged homologs of known protein sequences
[101]. The third approach is referred to as “de novo” or “ab initio” gene prediction
and the algorithms tracing this strategy use gene prediction models which are
trained by distinct features of microbial genes. These properties are for example
gene length, the codon usage or a GC-bias. There are numerous of those software
tools using this approach, for example MetaGeneMark [102], Orphelia [103],

Glimmer-MG [104], GeneScan [105], Prodigal [106] and MetaGeneAnnotator
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[107]. They differ in the quality of the used training sets and their capability of
handling short or error-prone sequences. The key advantage of software tools that
rely on this idea is that it is completely independent of sequence similarity to certain
reference databases and therefore this technique is the only one capable of

identifying completely novel genes [101].

When the CDS in a metagenomic read or contig has been predicted it can be
functionally annotated. Annotation of a genomic sequence is not done de novo as it
comprises mapping of the CDS of interest to gene or protein databases of known
sequences [38]. This is why the annotation of metagenomic sequences is a
computationally very intense task. Commonly used reference libraries include the
Kyoto Encyclopaedia of Genes and Genomes (KEGG) [108] which contains
metabolic pathway modules; the SEED [109] system, which links functions to
higher-level functional subsystems; COG [110] and EggNOG [111], databases of
orthologous protein groups; MetaCyc [112], contains metabolic pathways and HMM
databases like Pfam [113], which comprises models for protein domains [38]; [40];

[101].

CDS-prediction is not sufficient for annotation of metagenomic sequences. Other
elements that have to be identified include CRISPR elements and non-coding RNAs
(ncRNAs) like tRNAs or rRNAs. Complete frameworks have been developed that
include all of the steps introduced above, CDS prediction as well as CRISPR element
and ncRNA identification. In this study, the metagenomic bins were annotated by
the use of ConsPred [114], a fully automatic, integrative and comprehensive

annotation-framework for prokaryotic genomes.
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1.15 Phenotype prediction in metagenomic bins

The persistent progress in NGS technologies led to a rapid increase in protein
sequences and their respective databases. Assigning functions to these sequences is
challenging and therefore many of them still remain unclassified. Computational
studies have shown that prokaryotic proteins are highly conserved to a great extent.
This fact is very important in the analysis of poorly investigated microorganisms as
it enables functional deductions from well characterized homologous proteins. For
deriving reasonable assertions for the function of two related proteins, their
respective genes have to meet the criterion of orthology [110]. Orthologous genes
have originated from a common ancestor gene, through a speciation event, and they
perform either the same or very similar function in the two descending species. The
protein Clusters of Orthologous Groups (COGs) database has evolved through the
classification of proteins, based on the concepts of orthology in entirely sequenced
genomes [115]. The concept of COGs is especially useful in functional or evolutionary
genome studies as the information acquired of a single member can be transferred
to the entire COG as orthology implicates functional similarity. A phenotype is a
distinct trait of an organism that is noticeable when a certain genotype is expressed
depending on the environment and conditions [116]. Those phenotypic traits can be
highly versatile in microorganisms. Literature indicates that one of the basic
methods for phenotype prediction in microbial genomes are computational
methods which are based on databases for COGs [117]. As the expression of specific
traits can be dependent of multiple genes and their specific combinations, the
analysis of single marker genes is not sufficient for the prediction of many
phenotypes. The phenotype prediction in the metagenomic bins generated in this

study was performed by the use of the extended PICA framework implemented by
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Feldbauer et al. [117]. They have investigated a method for prokaryotic phenotype
prediction that is completely support vector machine (SVM) based [117]. Their work
is based on the initial software framework PICA, developed by MacDonald and
Beiko, which is designed to compare different phenotype prediction approaches
[118]. Feldbauer et al. edited parts of the SVM plug-in of PICA to allow its
application also for novel and incomplete genomes, which is a prerequisite in
metagenomic experiments. The limiting factor of predictive power for phenotypes
in metagenomes is genome completeness but they have shown that trait prediction

is also possible for incomplete genomes to a great extent.
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2. Material and Methods

2.1 Obtaining the data

The agricultural biogas fermenter samples were taken from a biogas plant which is
located near Cologne (Germany) in March and May 2013. The studied biogas
fermenter was running under steady conditions at the time of sampling, with
fermentation conditions of 40°C and pH-value of 8. At this time, it produced 536
kW output. The biogas reactor was fed mostly with maize silage (69%), but also cow
manure (19%) and chicken manure (12%). Total DNA was then isolated, sheared and
libraries were generated for Illumina® sequencing as recommended by the
manufacturer. The diluted libraries were then multiplex-sequenced on an
Illumina® HiSeq 2500 instrument. At first, only one lane was sequenced for each
of the DNA isolations in a paired-end mode (2 x 101 bases). But then, two additional
lanes (lanes 7 and 8) were sequenced for the second DNA isolation. These steps were
done by our cooperation partners at the University of Hamburg. The number of

generated reads is indicated in the Results section.
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2.2 Metagenome sequencing, de novo assembly and
mapping

The first step was to look for possible remaining sequencing adapters and removing
them. This was done with a Python script generated in our department, the adapter

sequences which were checked for, are given in Supplementary Material section.

The raw samples were then quality checked with PRINSEQ-lite [47] version 0.20.4.
Our input data, different lanes of Illumina® HiSeq with paired-end reads, were in
FASTQ format. The sequences were trimmed with a threshold of 30 from the 3’ end
and sequences below quality score mean of 30 and sequences that were shorter than
70, were filtered out. The polyA/T-tail was trimmed with a minimum length of 6 at
the 3’ and the 5’end. Quality was checked again after performing quality

adjustments.

Different assemblies of the quality checked sequencing reads were created using
either Ray Meta [64] version 2.3.1 or IDBA-UD [65] version 1.1.1. This was done in
different sets for all sequencing samples, sample 1 was the first DNA isolation,
sample 2 the second and also a combination of both was created for the assembly
process. Ray Meta was run in parallel on 24 nodes, with a maximum k-mer number
of 31 and each of the paired-end reads was provided for the assembly process.
Quality statistics were checked for both assemblies with PRINSEQ-lite “stats_all”
command and comparison is given in the Results section. As there were significantly
better results for the Ray Meta assembly, it was the method of choice and the

according results were used for all further steps.

There were also data available for a DNA sequencing of two additional lanes (7 and

8) of sample 2 which was included in the assembly process and all following steps
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were conducted with these data. As quality characteristics of contigs and scaffolds
were very similar, contigs were used in all further steps. Determination of contig
coverage was conducted by using the short-read mapper BBMap [119] version
34.86, by mapping reads to generated contigs. Prior to the actual mapping step, it
was necessary to split up the sequence read files into chunks with a maximum size
of 2 million. Then the Ray Meta assembled contigs of sample 1, sample 2 and the
combined sample 12 were indexed by BBmap. The actual mapping step was
submitted to the grid engine system of our department giving the chunks in a paired-
end mode. The SAM files of all three samples were converted, sorted and merged by
using Samtools [120]. The average contig-wise coverage was calculated by BEDtools
[121] version 2.20.1. The number, respectively percentage of reads in the assembly
and mean coverage of contigs was calculated by an in-house script (given in

Supplementary Material) as control. Data are given in the Results section.

As it has been shown that low-coverage and short contigs are error-prone [122],
contigs that were less than 1 kb and had an average coverage below 3 were discarded
from the assembly. This was done with a custom written Python script, given in
Supplementary Material. Bowtie2 [67] was used for assessing contig coverage,
prior to the actual binning step. The “bowtie2-build” tool was used for creating
Bowtie2 indices. Mapping the reads of each sample back to the assembly was done
with the “map-bowtie2-markduplicates.sh” script contained in CONCOCT [98]
version 0.4.0 software package. Parameters used here were “-c” for computing
coverage histogram with genomeCoverageBed, “-t” for the number of threads (here

8), “-p” for extra parameters given to Bowtie2 (here —q).
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2.3 Taxonomic community profiling

Taxonomic read profiling was conducted by a sequence similarity search of the raw
samples using Rapsearch2 [70] version 2.23, against an in-house generated
database of universally conserved proteins. This database contains universally
conserved sequences from the NCBI non-redundant database, occurring in 98% of
all eukaryotes, bacteria and archaea and it was clustered to a level of 97% sequence

similarity with the purpose of removing redundancy.

The lanes of sample 2 were converted from FASTQ to FASTA format and split into
chunks of length 500,000. Rapsearch2 analysis was run with the database of
universally conserved protein sequences mentioned before. Results of chunks for
the certain lanes were merged afterwards. Taxonomic assignment of the Rapsearch2
results was conducted by using MEGAN5 [71]. To speed up the analysing process
and reducing the amount of data loaded into MEGAN5, Rapsearch2 results were
pre-filtered to a minimal bitscore of 60. This was done with a custom made Python
script which is given in Supplementary Material. MEGAN5 was run for each lane
separately and results were combined later. MEGAN5 outputs were graphically

viewed with KRONA [123] version 2.5.

Taxonomic profiling of assembled contigs was done by the use of AMPHORAZ2 [73]
and the set of 31 universal marker genes. Identification of bacterial and archaeal
marker sequences was done with the “MarkerScanner.pl” script of the AMPHORA2
software package. This program identifies the marker sequences in the input
sequences and generates a protein FASTA file for each marker gene in the working
directory. Parameters used were “-DNA”, as input sequences are DNA sequences.
Next, the “MarkerAlignTrim.pl” script was run for aligning, masking and trimming

of the marker protein sequences. Options given here were “~-WithReference”, for
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keeping reference sequences in the alignment and as outputformat “phylip” was
chosen. AMPHORAZ2 results were filtered for a minimum length of 1 kb and a
minimum coverage of 3. The NCBI taxonomy IDs were mapped to phylogenetic

lineages given by AMPHORA2.

Comparison of read-based and assembly-based taxonomic community profiling was
done for verifying if there is compliance between the plain sequencing reads in the
sample and the assembly data. KRONA charts were compiled for visual comparison,

as for taxonomic read-analysis, and are given in Results section.

2.4 Filtering and taxonomic profiling of rRNA

sequencing reads

SortMeRNA [78], a local sequence alignment tool capable of filtering, mapping as
well as OTU-picking, was used to filter out rRNA fragments from the metagenomic
sequencing reads. For this purpose, the FASTQ files of the sequenced reads were
split up into chunks with a size of 1 million. SortMeRNA version 2.0 was then used
to merge paired-end reads, as the sequencing data were in two separate files, one for
the forward and one for the reverse paired-end reads, and the software only accepts
one input file. This was done with the script “merge-paired-reads.sh”, included in
the software package. The desired rRNA sequences were filtered out against the 8
indexed and prepacked databases, provided by the software. The chunks, that had
been merged in the previous step, were given as input files. As output, it was defined
to just report the first alignment per read reaching the E-value, in SAM alignment
format for the aligned sequences. The rejected sequences were chosen to be reported

in FASTQ/FASTA format.
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Furthermore, overall statistics were chosen to be reported and the verbose function
was used. The reads were loaded into memory by the use of one thread and a

maximum of 5000 Mb. All results of the chunks were merged again afterwards.

The orphan reads, which are paired-end sequences where only one of them had
mapped to the reference databases, were afterwards used for a sequence homology
search against the SILVA database [75], release number 119. For reducing the
amount of data, prior of running a BLAST job, the sequence files were split up into
length of 1,000. These chunk files were used for running a BLASTn [69] homology
search with default parameters. As stated above, the SILVA database number 119
was used as BLAST database. Taxonomic assignment of the BLASTn results was
conducted by using MEGAN35 [71]. Again, to speed up the analysing process and
reducing the amount of data loaded into MEGANS5, results were pre-filtered to a
minimal bitscore of 60. MEGAN5 was run for each lane separately and results were
combined later. MEGAN5 outputs were graphically viewed with KRONA [123]

version 2.5
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2.5 CD-HIT OTU assessment

CD-HIT [82] was used for assessing knowledge about the number of underlying
OTUs (operational taxonomic units). For this purpose, the previously generated
AMPHORA2 marker files, in PEP format, were used as input and the threshold of
clustering identity was varied from 90%-98% in even steps and additionally one run
with 99% identity was performed. For every run the word size was set to “5”, the
sequence name in the FASTA-header was used until first white space and 8GBs of

RAM and 4 threads were used.

The number of clusters for each marker was used for calculating an average
distribution of OTUs over the different clustering identity values and was
graphically illustrated in a boxplot. As there were huge differences in the average
number of OTUs between Bacteria and Archaea, the respective evaluations have

been done separately.

2.6 Binning of metagenomic contigs based on

composition and differential coverage data

The visualisation tool Elviz [124] was used for a graphic illustration of contig
coverage, length, GC content, taxonomy and in general for determination of possible
binning strategies. Binning was performed with the software CONCOCT [98]
version 0.4.0, which is using the composition and differential coverage data of
contigs. CONCOCT was run with default parameters as suggested in the detailed
CONCOCT tutorial. As described there, long contigs were cut up to a final length of
10 kb and previously generated contig coverage information was used here. Then

the “gen_input_table.py” and the “bam_to_linkage.py” scripts, both part of
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CONCOCT software, were used for generating a coverage and a linkage table. This
was done exactly like explained in CONCOCT tutorial. The input table was parsed to
just contain mean coverage for each contig in each sample. CONCOCT binning was
run with standard settings and with the “-¢” parameter, the maximal number of
clusters was set to 400. As CONCOCT gave some strange bugs, format of the contig
names of all needed samples had to be adjusted first. CheckM [125] version 1.0.3
was used for assessing completeness and contamination of the bins and also for
creating plots as a graphical representation. The CheckM documentation suggests
the lineage specific workflow for determining completeness and contamination of
genome bins, which uses lineage-specific marker sets. The workflow generally
consists of four steps that are mandatory and one step that is recommended and can
be executed in one single run with the “checkm lineage wf” command, which was
used here with 8 threads. For creating plots that are depicting genome bin quality,
the “bin_gqa_plot” command of CheckM was used. This plot gives a visual
illustration of completeness, contamination and strain heterogeneity within each

of the genome bins.
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2.7 Refinement of the binning process and second

round of CONCOCT binning

Bins that showed a high degree of contamination were inspected by VizBin [91]. This
allowed a further separation of bins, which seemed to form two or more distinct
clusters. Contrary, bins that showed a very low degree of contamination but were
incomplete to a certain extent were used for merging via the “checkm merge”
function. For this purpose, the taxonomic-specific workflow of CheckM was used as
suggested in the manual. This workflow analyses all genome bins with the same
marker set and consists of three steps that are mandatory and one recommended
step. The “checkm taxon__list” command produces a table that indicates all taxa for
which custom marker sets can be created. The “checkm taxon_set” command was
used for creating a marker set for the domain of Bacteria and one for the archaeal
domain. The markers in the genome bins were analyses with the “checkm analyse”
command and a use of 4 threads. Quality was checked afterwards with the “checkm
ga” command, by the use of 4 threads. Genome bins were merged with the “checkm

merge” command, for each of the two domains separately, and the use of 4 threads.

After merging of genome bins, the quality statistics were checked and the resulting
bins were analysed in coverage plots for checking quality improvements. These plots
were created by the use of some custom written Python scripts and R script. Some

of them are given in Supplementary Material.

After all refinement steps, bins that showed completeness higher than 80%,
contamination lower than 10% and a heterogeneity value higher than 50%, were
filtered out of the resulting bins. These bins were considered as “high quality bins”
and their underlying contigs were filtered out of the assembly file. This was done by

putting all contigs of the high quality bins into one file that served as a “blacklist”.
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The actual filtering step was carried out with the command line tool “grep”, giving
the assembly file and the blacklist file as input as well as the “w”, “F” and “f”

options.

The CONCOCT coverage table was also filtered for contigs belonging to the high
quality bins. The remaining contigs, that belong to bins with lower quality, were also
cut up to a final length of 10 kb and another round of CONCOCT binning was
performed exactly as described above. This procedure had the underlying idea, that
binning could be refined by filtering out the good bins, which could hinder further
binning of lower quality bins. Quality criteria as completeness, contamination and
heterogeneity of bins were assessed and quality plots created by CheckM version
1.0.3, exactly as described above. All final bins were categorized into four different
quality classes based on completeness, contamination and heterogeneity values.
Values are given in Results section. Only bins that were grouped into these four

classes were used for all further steps.

Taxonomy of the bins resulting from the second CONCOCT binning was assessed by
determining consensus lineage of all bin-specific marker genes employing

AMPHORAZ2. The cut-off confident scores were higher than 0.8.
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2.8 Genome bin annotation

Annotation of genome bins was done with the annotation framework ConsPred
[114] version 1.21. It was run exactly as described in the documentation. The
“conspred_input_specification.txt” file was modified in a way that the parameters
“taxon exclude”, “minimal number rrna” and “minimal number trna” were all set
to “0”. Since metagenomic bins are no representation of complete genomes, there
cannot be made any solid estimations about the minimal RNA numbers and

therefore these parameters are set to zero, because otherwise the annotation process

would stop.

As part of the ConsPred workflow, a sequence similarity search of protein coding
genes against the KEGG database [108], version of March 2014, was performed. This

information was needed later on for the prediction of cellulose processing enzymes.
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2.9 Phenotype prediction in metagenomic bins

Phenotype prediction was based on the PICA framework [118], which was extended
with various machine learning techniques for a reliable prediction of phenotypic
traits based on comparative genomics and was performed as described in Feldbauer
et al. [117]. The first step was the assignment of COGs to the metagenomic bins. This
was done by PRODIGAL [106] v2.60 gene calling procedure, using the default
translation table. NCBI cognitor [110] software was used to map these genes to an
in-department generated reference of sequences which represents all eggNOG [111]
version 4.0 COG proteins. These jobs are carried out by PSI-BLAST [86]
computations. The COG profile was finally created by combining all resulting
genotype files to a single file. Testing for and prediction of the desired phenotypes,
given in Table 2, was done by the extended PICA framework, as described above,

using models and scripts written in our department.

Table 2: Phenotypic models used for trait prediction.

aerobe bacterial ammonium oxidizers
anaerobe thermophilic

fakultative anaerobic methanotrophs
gram-negative nitrite oxidizers

halophilic nitrifiers

motile intracellular microorganisms
phototroph obligate intracellular
ammonium oxidizers facultative intracellular

archaeal ammonium oxidizers



2.10 CAZy database and prediction of carbohydrate active enzymes

2.10 CAZy database and prediction of carbohydrate

active enzymes

Annotation of genes that encode presumable carbohydrate active enzymes was
conducted via a sequence similarity search against sequences contained in CAZy
database [24], version of May 2015. For this purpose, the whole database was
downloaded via a custom written Python script. Getorf, part of the EMBOSS suite
[126], was used for extracting the open reading frames out of the assembly of sample
2 with a minimal size of 75. Then a BLASTp [69] search was run with the ORFs
against the downloaded database. For the BLASTp search, the ORF files that were
created via Getorf, were split up into chunks of size 2,000 and the BLAST jobs were
submitted to the grid engine system with default parameters. The results of the
chunks were combined again afterwards and filtered for a minimum bitscore value
of 1e20. For the enzyme family profiling, only the best matching BLASTp hit was
used and queries were assigned to CAZy families. The taxonomic assignment of
carbohydrate-active gene candidates was created by a Rapsearch2 [70] similarity
search against the NCBI non-redundant [127] database of universally conserved
proteins occurring in 98% of Eukaryotes, Bacteria and Archaea and clustered to a
level of 97% sequence similarity for removing redundancy. The maximal number of
target sequences was set to 20 and an e-value cutoff of 1e2 was utilized for this
search. The results were filtered for a minimal bitscore of 50, for decreasing the
amount of data prior to loading into MEGAN5. With the LCA algorithm and default

settings, the sequences were classified phylogenetically and exported manually.
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2.11 RNA-Seq mapping and expression of CAZy enzymes in the metagenomic bins

MEGANS5 exports were loaded into KRONA version 2.5, for creating a graphic
representation of the taxonomic assignment by AMPHORA2 and heatmaps were
compiled in R. This was done by the heatmap.2 function of the gplots package

[128].

2.11 RNA-Seq mapping and expression of CAZy

enzymes in the metagenomic bins

In March 2015, a sample for extraction and sequencing of RNA, was taken at the
same biogas fermenter. The sample was processed, RNA extracted and sequenced

by our cooperation partners at the University of Hamburg, Germany.

Illumina raw sequence reads of two lanes were quality checked via FastQC [48]
version 0.11.4. PRINSEQ-lite [47] version 0.20.4 was used to trim and filter the
sequencing reads, for a quality improvement. For this purpose, 10 bases were
trimmed starting from the 5’ end, bases that had a quality score < 5 were trimmed
at the 3’ end and sequences that had a mean quality below 20, or were less than 70
bp in length, were discarded. The RNA sequencing read files were split up into
chunks of size 2 million for handling the huge amount of data. With the use of
Bowtie2 [67] version 2.2.6, the RNA sequencing reads were mapped to the
assembled contigs of sample 2. The “very sensitive” pre-set of Bowtie was used here.
SAM records for unaligned reads, discordant alignments for paired reads as well as
unpaired alignments for paired reads were all suppressed. The resulting alignment
files were converted with the “view” command of Samtools [120] software package,
version 1.3, in BAM format. Samtools “sort” and “index” functions were used and

results of the chunks were merged again afterwards.
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2.11 RNA-Seq mapping and expression of CAZy enzymes in the metagenomic bins

Determination of the transcriptional activity within a certain bin was conducted by
evaluating marker gene expression, identified by AMPHORA2 [73]. The function
“multicov” of Bedtools [121] version 2.24.0 was used for obtaining coverage values

of potential CAZy glycoside hydrolase genes, as described above.

In brief, the gene coordinates of all putative CAZy enzymes were evaluated via a
Blastp sequence similarity search against the CAZy database that had been

downloaded before.

By the use of a custom-written Python script, RPKM values were calculated out of
the coverage data. Figure 5 illustrates the formula for calculation of RPKM values;
these are marker-specific and the average of two lanes. Respective square roots of
RPKM values were plotted against the bin taxonomy. This was done by the

heatmap.2 function of the gplots package [128] in R.

RPKM = reads per kilobase transcript per million reads

RPEM(xX) = 12 XC
N XL
C ... number of mappable reads that fell onto the genes exons

N ... total number of mappable reads in the experiment

L ... sum of the exons in base-pairs

Figure 5: RPKM value calculation, needed for assessing transcription rates of CAZy enzyme clusters.
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3.1 Conditions and parameters of the agricultural biogas plant

3. Results

3.1 Conditions and parameters of the agricultural
biogas plant

Biogas fermenters constitute a complex habitat of various microbial communities
which are crucial for the different steps in the production of hydrogen and methane.
It has been shown that the final yield in biogas, which is limited, depends on the
initial hydrolysis step of the plant biomass that is fed in [2]; [8]; [129]. A key in
optimising the overall biogas production is the identification of limitations that each
single process is facing on the way to the final products hydrogen and methane. For
this purpose, we took samples of a biogas plant located near Cologne (Germany) and
analysed the underlying phylogenetic community structure and their genome
contents. This typical one-stage agricultural biogas fermenter was kept under steady
fermentation conditions with a temperature of 40°C and a pH-value of 8. The
produced output was 536 kW for this 2,800 m3 plant. Main source materials that
were fed in, were maize silage (69%), cow manure (19%) and chicken manure (12%).

A brief overview of the process conditions and parameters is given in Table 3.

Table 3: General parameters and fermenter conditions characterising the
agricultural biogas plant, running under steady conditions.

Location Near Cologne (Germany)
Volume 2,800 m3
Temperature 40°C
pH-value 8
Produced output 536 kW

Maize silage (69%)
Source material Cow manure (19%)

Chicken manure (12%)

DNA sequencing platform Illumina® HiSeq 2500
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3.2 DNA sequencing and metagenomic assembly

3.2 DNA sequencing and metagenomic assembly

Two different samples for DNA extraction were taken in March (sample 1) and May
(sample 2) 2013, as well as another sample in May 2015 for RNA extraction,
described in detail in the Material and Methods section. Additional lanes 7 and 8
were taken for the May sample. These samples were multiplex-sequenced on an
Illumina® HiSeq 2500 sequencer, generating a large metagenomic dataset, with a
total of 897 million reads that were used in two different assembly methods. As
indicated in Table 4, the additionally sequenced lanes of sample 2 increased the

amount of generated reads nearly two-fold.

Table 4: Number of sequencing reads after filtering and
trimming of low quality reads. Note that the read number of
the combined sample 1 + 2 only slightly increased compared
to sample 2 solely.

sample 1 159,458,382
sample 2w/o L7 + 8 421,986,642
sample1+2w/oL7+ 8 581,445,024
sample 2 737,631,618
sample 1 + 2 897,090,000

Different metagenomic assemblies were generated using either IDBA-UD or Ray
Meta. This was done for all samples indicated in Table 5. The assemblies generated
using Ray Meta showed a more than two-fold increase in generated contigs, note
that the additional lanes of sample 2 are not included in this analysis. Hence, the

Ray Meta assembled contigs were used for all subsequent steps in analysis.
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3.2 DNA sequencing and metagenomic assembly

Table 5: Comparison of the different assembly methods. The
number of contigs assembled by Ray Meta is more than twice the
number of contigs created by IDBA-UD.

Total Ne of contigs

sample N2 IDBA-UD Ray Meta
sample 1 556,160 1,201,371

sample2w/oL7+ 8 947,772 2,003,618
sample1+2w/oL7+ 8 1,142,608 2,319,807

For comparison purposes, all common quality criteria were calculated and are

indicated in Table 6. As there was only a slight quantitative increase in the combined

sample 1 + 2, but a decrease in the N50-value, only reads and assembly data

belonging to sample 2 were used for subsequent analysis. The 737 million already

filtered and trimmed reads of sample 2 resulted in generating 123,435 contigs > 1

kb.

Table 6: Quality characteristics for the assembly created by Ray Meta. Note that the number of
contigs and Mb in contigs for the combined sample 1 + 2 only slightly increases, compared to
sample 2. However, the N50 value is higher for sample 2.

Ray Meta assembly
sample No No (')f No of contigs Mb in contigs N50 for contigs Mb total
contigs > 1000 > 1000 > 1000
sample 1 1,201,371 57,009 209.68 7,183.0 486.0
sample 2 w/o L7+8 2,003,618 94,702 425.90 11,536.0 876.6
sample 2 2,593,366 123,435 581.31 12,418.0 1,161.7
sample 1 + 2 w/o L7+8 2,319,807 112,571 512.03 10,871.0 1,035.8
sample 1 + 2 2,826,937 140,535 653.73 11,784.0 1,292.2
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3.2 DNA sequencing and metagenomic assembly

By comparing number of contigs and scaffolds, and their corresponding Mb
content, decision was made for continuing work with contig data as there were no

striking quantitative differences, numbers are given in Table 7.

Table 7: Comparison of quality characteristics for
contigs and scaffolds in the assembly of sample 2.
There is no notable difference regarding their
absolute quantity.

N© of contigs 2,593,366
Ne of scaffolds 2,568,676
Mb in contigs 1161.7
Mb in scaffolds 1166.9
Ne of contigs = 500 293,792
No of scaffolds = 500 269,102

Determination of contig coverage, via the short-read mapper BBMap, revealed 324
million mapped reads in total, indicated in Table 8. The additionally sequenced
lanes were not solely very important for the assembly process, but they also
contributed greatly to the mapping procedure, as lanes 7 and 8 were the ones

providing the highest amount of reads in this step.

Table 8: Number of reads mapped to contigs
by BBMap, only different lanes of sample 2

are given.

Lane 1 46,502,117
Lane 2 47,118,419
Lane 3 47,648,665
Lane 4 47,344,343
Lane 7 68,667,968
Lane 8 67,419,711
Total 324,701,223
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3.3 Taxonomic community profiling

3.3 Taxonomic community profiling

3.3.1 Taxonomic read profiling

Taxonomic read profiling, performing a Rapsearch2 analysis against the NCBI non-
redundant database, revealed a total of 7.9 million classified sequencing reads. As
there were no obvious differences in relative species classification amongst the

different lanes, Figure 6 shows sequencing lane 8 as representative.

Sequences were classified as Bacteria in 89% of all cases and only 4% were

categorised as Archaea. MEGAN5 placed 5% of all reads as unassigned reads.

idatus Cloacimonas

Figure 6: KRONA chart of the taxonomic read profiling for sequencing lane 8.
Percentages refer to the relative number of reads assigned to a certain taxonomic level

in proportion to the root.
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3.3 Taxonomic community profiling

The most prominent phylum within Bacteria was Firmicutes with 36%, followed by
Bacteroidetes (18%), Cloacimonetes (6%), Actinobacteria (6%), Proteobacteria
(2%) and other less abundant phyla. The major amount of reads that belong to
Firmicutes were subdivided into the class of Clostridia (52%) and only small
sections belonged to Bacilli (7%) and Erysipelotrichia (3%). The distribution among
Bacteroidetes was dominated by Bacteroidia (62%), and only minor parts were

classified as Flavobacteria (1%), Cytophagia (0.9%) and Sphingobacteria (0.7%).

The Firmicutes/Bacteroidetes ratio was 2:1 for the single read profiling. A detailed

overview of the bacterial classification is given in Table 9.

Within the Archaea, nearly all reads (99%) were identified as Euryarchaeota,
among this phylum, 90% were classified as Methanomicrobia and only minor parts

were assigned to Methanobacteria (6%) and Thermoplasmata (2%).
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3.3 Taxonomic community profiling

Table 9: Detailed overview of the bacterial
taxonomic read classification, evaluated by
Rapsearch2 search against NCBI non-
redundant database.

36% Firmicutes 52% Clostridia
7% Bacilli
3% Erysipelotrichia
1% Negativicutes
37% unassigned Firmicutes
18% Bacteroidetes 62% Bacteroidia
1% Flavobacteria
0.9% Cytophagia
0.7% Sphingobacteria
35% unassigned Bacteroidetes
6% Cloacimonetes 96% Candidatus Cloacimonas
4% unassigned Cloacimonetes
6% Actinobacteria 98% Actinobacteria
2% Cariobacteriia
2% Proteobacteria = 41% Alphaproteobacteria
20% delta/epsilon subdivisions
18% Gammaproteobacteria
11% Betaproteobacteria
10% unassigned Proteobacteria
2% Mollicutes
2% Synerigista

0.9% Spirochaetia

3.3.2 Taxonomic profiling of assembled contigs

Taxonomic community characterisation of assembled contigs by AMPHORAZ2,
revealed a total of 21,602 contigs that were sorted into different taxonomic levels.
Figure 7 shows the relative taxonomic community profiling for the assembly of
sample 2. AMPHORAZ2 analysed contigs were categorised as Bacteria in 89% of all
assembled sequences and only 10% were grouped as Archaea. 0.3% could not be

assigned to a specific taxon which corresponds to a total of 10 contigs.
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3.3 Taxonomic community profiling

:

Figure 7: KRONA chart illustrating the taxonomic community characterisation
of assembled contigs. Note that percentages refer to the different taxonomic
levels in proportion to all assembled contigs that were classified by AMPHORA2
in the taxonomic analysis.

Firmicutes was the most occurring phylum with 52% of all bacterial sequences,
followed by Bacteroidetes (14%), Actinobacteria (6%), Mollicutes (3%) and many
other less abundant phyla. 14% were unassigned bacterial contigs. Fimicutes were
subdivided into Clostridia (86%) and only minor amounts of contigs were grouped
as Erysipelotrichia (4%) and Bacilli (1%). However, 6% of all assembled sequences

were categorised as unassigned.

The dominating class within Bacteroidetes was Bacteroidia (78%) and only tiny
fractions belonged to Sphingobacteriia (2%) and Flavobacteriia (2%). The

proportion of unassigned reads was higher and added up to 16%.
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3.3 Taxonomic community profiling

A detailed overview of the bacterial classification is given in Table 10. The

Firmicutes/Bacteroidetes ratio for the analysis on assembled contigs was 3.7:1.

Table 10: Detailed overview of the taxonomic composition of
assembled contigs belonging to sample 2, evaluated by
AMPHORA2. Only bacterial contigs are depicted.

52% Firmicutes 86% Clostridia
4% Erysipelotrichales
3% Bacilli
6% unassigned Firmicutes
14% Bacteroidetes 78% Bacteroidia
2% Flavobacteriia
2% Sphingobacteriia
16% unassigned Bacteroidetes
6% Actinobacteria
3% Mollicutes
3% Spirochaetia
2% Proteobacteria
1% Fibrobacteres/Acidobacteria group
0.9% Synergistales
0.8% Planctomycetales
0.7% Chloroflexi
0.4% Verrucomicrobia
0.3% Thermotogae
0.2% Fusobacteriales

0.2% Deinococci

Archaeal contigs were classified in 77% of all cases as Euryarchaeota, 4% as
Thermoprotei and 2% were classified belonging to the species of Nanoarchaeum
equitans. AMPHORA2 also classified 16% as unassigned Archaea. The phylum
Euryarchaeota was dominated by 64% Methanomicrobia and only smaller
fractions accounted for Methanobacteriales (11%), Thermoplasmatales (2%),

Aciduliprofundum boonei (2%) and Methanococcales (2%).
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3.4 Filtering of rRNA sequencing reads and determination of their taxonomic origin

3.4 Filtering of rRNA sequencing reads and

determination of their taxonomic origin

Corroborating the taxonomic community profiling of the analysed biogas plant,
another attempt was made targeting sequencing reads containing ribosomal RNA
genes. Analysis of the filtered ribosomal RNA fragments and their taxonomic origin
in the sequenced biogas fermenter sample revealed that, according to the initial
expectations, only about 1.6 million rRNA reads were successfully screened and
taxonomically assigned. Figure 8 illustrates a KRONA chart for the taxonomic rRNA
profiling for sequencing lane 1 of sample 2, obtained by scouring the SILVA

database.

Figure 8: KRONA chart illustrating the taxonomic origin of
filtered TRNA sequences. Note that given percentages are
relative to the root.
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3.4 Filtering of rRNA sequencing reads and determination of their taxonomic origin

97% of the encountered ribosomal RNA sequences were of bacterial origin and only
1% were assigned to the archaeal domain. Elaborating on bacterial rRNA sequences,
46% of them were assigned to the Firmicutes phylum and only 11% were classified
as Bacteroidetes. This resulted in a calculated Firmicutes/Bacteroidetes ratio of
4.2:1, being in accordance with the taxonomic profiling on assembled contigs.
Notably, 31% of all detected rRNA reads were classified as unassigned Bacteria.
Table 11 is a brief summary of the relative taxonomic assignment and observed
bacterial diversity for all reads that obtained a ribosomal RNA tag during

SortMeRNA analysis

Table 11: Overview of the taxonomic assignment achieved by
SortMeRNA filtering of rRNA sequences and BLASTn homology
search against the SILVA ribosomal database.

46% Firmicutes 65% Clostridia
4% Bacilli
2% Erysipelotrichales
24% unassigned Firmicutes
11% Bacteroidetes 53% Bacteroidia
4% Flavobacteriia
4% Sphingobacteriia
39% unassigned Bacteroidetes
31% unassigned Bacteria
4% Mollicutes
2% Actinobacteria
2% Spirochaetia
2% Proteobacteria
0.6% Synergistales
0.3% Fibrobacteres/Acidobacteria group
0.2% Chlamydiae/Verrucomicrobia group

0.1% Atribacteria
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3.5 CD-HIT OTU assessment

3.5 CD-HIT OTU assessment

The OTU evaluation, for the AMPHORA2 marker protein search on assembled
contigs, conducted by CD-HIT, revealed huge differences in the number of bacterial
and archaeal marker protein clusters. This goes in line with our expectations, as
there are known to be considerably less different archaeal phyla in agricultural
biogas fermenters comparing bacterial ones. Hence, they were evaluated separately
with the intention not to bias the statistical evaluation. On average 195 distinct
bacterial OTUs were present in the fermenter sample, depending on the clustering
threshold, exact numbers are given in Table 12.
Table 12: Overview of the quantitative

bacterial OTU distribution at wvarying
percentages of shared identity.

90% 180
92% 187
94% 194
96% 199
98% 203
99% 204
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3.5 CD-HIT OTU assessment

Figure g illustrates a boxplot compiled of all obtained bacterial OTU numbers at the
different percentages of shared identity in the CD-HIT grouping. The archaeal

analysis yielded on average only 6 distinct OTUs.

CD-HIT clustering - bacterial OTUs

350

300

= | -

150

100
50
0
90 92 94 96 98 99
cluster threshold

Figure 9: Boxplot figuring the OTU evaluation conducted by a CD-HIT clustering of the
AMPHORA2 bacterial marker protein search. Cluster threshold corresponds to the
percentage of shared identity for the CD-HIT grouping.
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3.6 CONCOCT binning and manual refinement

3.6 CONCOCT binning and manual refinement

The first round of CONCOCT binning, without any manual modifications, resulted
in the grouping of 251 distinct bins with varying quality characteristics, as observed
via CheckM analysis. Some of the low quality bins were then checked via VizBin for
possible separation. This attempt resulted in the generation of 15 additional bins.
However, CheckM was not solely used for assessing bin quality, but also for possible
merging of high quality bins that showed a lower degree of completeness. CheckM
default merging function automatically suggested 14 bins for uniting. After checking
these bins manually, by compiling coverage plots, 3 of them were free to merge and
for all others, the decision was against fusion. Figure 10 (A-C) illustrates two bins,
for which the default merging by CheckM was approved after checking their
corresponding coverage plots. Whereas Figure 11 (A-C) highlights one case were

merging was not accepted after verification.

As the merging process did not eventuate in significant qualitative improvements,
the regarding bins could not be included into the final set of high quality

metagenomic bins, as none of them fulfilled the stringent quality criteria.
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3.6 CONCOCT binning and manual refinement
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Figure 10: Coverage plots illustrating approved fusion candidates. Bins
prior (A,B) and post (C) default CheckM merging.
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Figure 11: Coverage plots illustrating disapproved fusion candidates. Bins
prior (A,B) and post (C) default CheckM merging.
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3.6 CONCOCT binning and manual refinement

Filtering out all high quality bins and performing a second round of CONCOCT
binning resulted in a total of 104 bins that meet very high quality criteria. These bins
were sorted in different categories according to the filtering criteria indicated in

Table 13. They represent the final set that was used in all further analyses.

Table 13: Classes of different quality criteria for the 104 high quality bins.

. >95% compl., <5% cont., or
good bins 20
>95% compl., <10% cont., >90% het.

nearly complete genome drafts >90% compl., <5% cont. 20
nearly complete pangenome drafts >90% compl., >5% cont. 37
incomplete genome drafts 60-90% compl., <7% cont. 27

The “good bins” category refers to bins, which fulfil the most stringent quality
criteria. These bins are nearly complete (95%) and have a very low amount of
contamination, 5-10% depending on the level of heterogeneity. Heterogeneity in this
context indicates if the present contamination traces back to a closely or distantly
related species. The “nearly complete genome drafts” show a little lower
completeness and the difference to the “nearly complete pangenome drafts” is that
the pangenome drafts have a higher level of contamination. The terminus
pangenome in this context signifies that these bins consist of a mixture of very
closely related species. “Incomplete genome drafts” are low in contamination but
only show 60-90% of completeness, however these bins are also important for
further analyses. As valid for all metagenomic experiments, the amount of
information that can be derived from the analyses, are always strongly dependent

on the missing parts of the recovered metagenomes.
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3.6 CONCOCT binning and manual refinement

Figure 12 illustrates the quality fulfilment of the different members of the “good
bins” class. Green bars indicate that a certain marker gene is solely present as a
single copy. Bars in different shades of blue display that the marker is present more
than once, but the contamination comes from a closely related species. Whereas
different shades ranging from yellow to red show that the underlying multi-copy
markers are deriving from distant species. Figure 13 gives a brief qualitative

overview about the three other bin categories.
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Figure 12: CheckM quality plot illustrating all bins within the “good bins” category.
AMPHORAZ2 taxonomy (consensus score > 0.8) is given for each bin on the right.

71



3.6 CONCOCT binning and manual refinement
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3.7 Taxonomic profiling of metagenomic bins

3.7 Taxonomic profiling of metagenomic bins

In terms of taxonomic community profiling, the metagenomic binning goes in line
with the single read and assembly analyses. 57 of the 104 high quality bins were
assigned to Firmicutes and the major amount within was attributed to the class of
Clostridia (51). Whereas 21 of the bins were marked as Bacteroidetes, and the main
class within was Bacteroidia with 16 representatives. Therefore, a
Firmicutes/Bacteroidetes ratio of 2,7:1 was observed amongst the different
metagenomic bins. A table with a detailed overview of the taxonomic classification,
the estimated completeness and contamination rates, as well as the size of each of

the high quality bins is given in Supplementary Material.

The other prominent phyla were Spirochaetes (4), Fibrobacteres (3),
Euryarchaeota (3), Verrumicrobia (2) and Actinobacteria (2). For some other
phyla, only one representative bin was accordingly classified, for example
Tenericutes, Proteobacteria and Planctomycetes. Some of the bins were
taxonomically classified at species level with high confidence scores by
AMPHORAZ2, and therefore their genomes could be reconstructed at a very high
level of completeness. Confidence threshold for AMPHORA2 taxonomy
classification was set to 0.8. In the phylum Firmicutes some bins could be
taxonomically assigned down to species level, for example Lachnoclostridium
phytofermentans (binlDs pb35-2, pb186-2, pb35-1 and pb235-1) as well as
Ruminiclostridium thermocellum (binID 96), Mageeibacillus indolicus (binIDs 18,
104, pb185 and pb233-3), Oceanobacillus iheyensis (binID pb84) and

Pelotomaculum thermopropionicum (binID 165).
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3.7 Taxonomic profiling of metagenomic bins

In the Bacteroidetes phylum, the species Paludibacter propionicigenes (binIDs 145
and 201), Alkaliphilus oremlandii (binID pb70), Erysipelothrix rhusiopathiae

(binID109), showed the deepest taxonomic classification.

Nine of the 104 bins were only classified as Bacteria where no further assignment
was possible (8%). As expected, only a small fraction of all assigned bins were
classified as Archaea. All of them belong to the phylum Euryarchaeota and it was
possible to assign one of them to the species Methanosarcina barkeri (binID pb85),
a methanogenic archaeon. Table 14 gives a brief overview of the taxonomic
assignment, the number as well as N50 values of contigs for all bins belonging to

the “good bins” category.

Table 14: Overview of the taxonomic classification by AMPHORA2 (consensus score > 0.8),
the corresponding binIDs, the number of contigs belonging to each bin as well as their N50
values.

pb121 | Bacteria|Fibrobacteres|Fibrobacter succinogenes 217 19,300
pbi122  Bacteria|Fibrobacteres|Fibrobacter succinogenes 259 11,855
pb172  Bacteria|Bacteroidetes|Bacteroidetes 233 19,077
pb190  Bacteria|Firmicutes|Clostridia 234 16,089
pb192-1  Bacteria|Firmicutes|Clostridia 36 129,429
pb212  Bacteria 210 22,750
pb215  Bacteria|Firmicutes|Clostridia| Ruminiclostridium 144 45,291
pb31 Bacteria|Spirochaetes|Treponema 213 16,062
pb35-2 | Bacteria|Firmicutes|Clostridia| Lachnoclostridium phytofermentans 143 28,325
pb3 Bacteria|Firmicutes|Clostridia 139 33,655
pbgo Bacteria|Firmicutes|Clostridia 160 12,735
pb6-1 Bacteria 37 105,819
pb6s Bacteria|Firmicutes|Clostridia|Clostridiales 77 66,410
pb69 Bacteria|Bacteroidetes|Porphyromonadaceae 181 17,355
pb76-1 | Bacteria|Firmicutes|Clostridia| Ruminococcaceae 134 21,374
pb8o Bacteria|Firmicutes 95 77,072
pb8s5 Archaea|Euryarchaeota|Methanomicrobia|Methanosarcina barkert 111 70,311
pb88 Bacteria|Bacteroidetes|Bacteroidales 336 17,475
pbogo Bacteria|Spirochaetes|Treponema 215 22,018
pbo7 Bacteria|Firmicutes|Clostridia| Ruminococcaceae 91 36,708

74



3.8 Phenotype predictions in metagenomic bins

3.8 Phenotype predictions in metagenomic bins

Prediction of 17 selected phenotypic traits was conducted by the use of an extended
PICA framework, as described in the Material and Methods section. Table 15 gives
a detailed overview of the characteristics chosen for investigation. The majority of
bins (88%) were predicted to be anaerobic and only one of them was classified as
aerobic. Considering the fact that biogas production is an anaerobic process, this
result seems to be rather plausible. Oxygen inflow during sample taking might be
responsible for the detection of one aerobic organism. 39% of the analysed bins were
predicted to be gram-negative, 53% were treated as motile organisms, only 2% were
categorised as halophilic, 19% were labelled as thermophilic and none of the 104
bins was classified as a phototrophic prokaryote. These findings do not contradict
with the initial expectations. Notably, a quite high number of bins were predicted to
have intracellular traits. This was rather unexpected for a community present in a
biogas plant. Though, intracellularity is a trait which is predicted by the lack of
certain genes. This is problematic in metagenomic experiments as most of the
reconstructed genomes are not complete and that might influence prediction.
Nevertheless, if those bins are complete to a high extent, then further analyses with
novel prediction models would be interesting to clarify if those bins are truly
symbiotic organisms. No bins were labelled as ammonium oxidizers, nitrite
oxidizers, nitrifiers and methanotrophs. Methanotrophic organisms are very
important in this context because of the fact that these species could affect the

energy gain of the agricultural biogas plant.
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3.8 Phenotype predictions in metagenomic bins

Table 15: List of 17 phenotypic traits that were searched for in all 104 metagenomic bins, which
of them were predicted and how often.

Ne of Ne of
Phenotype Phenotype

bins bins

aerobe 1/104 bacterial ammonium oxidizers 0/104
anaerobe 91/104  thermophilic 20/104
facultative anaerobe 1/104 methanotrophs 0/104
gram-negative 41/104  nitrite oxidizers 0/104
halophilic 2/104 nitrifiers 0/104
motile 55/104  intracellular 17/104
phototrophs 0/104  obligate intracellular 18/104
ammonium oxidizers 0/104 facultative intracellular 0/104
archaeal ammonium oxidizers 0/104

A table containing all trait predictions for each bin can be found in Supplementary
Material section. However, all the assertions made above are only predictions and
should be clearly treated as such. These results should give a first impression about

the underlying community, but they cannot be taken as concrete evidence.
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3.9 RNA-Seq mapping and evaluation of CAZy

enzymes expression

The CAZy database is a collection of enzyme families that modify, create or degrade
glycosidic bonds for example glycoside hydrolases (GHs), carbohydrate esterases
(CEs), glycosyl transferases (GTs) and others. Mapping of the processed and filtered
RNA sequencing reads to the assembled contigs of sample 2 and the subsequent
coverage value evaluation of potential GH families identified in the metagenomic
bins was conducted as described in the Material and Methods section. This
exploration resulted in a visual representation of all 104 high quality bins and their
respective taxonomic classification plotted against the calculated expression values
of the most important glycoside hydrolase enzyme clusters. Those 15 highest
expressed glycoside hydrolase families in the biogas plant samples were GH1, GH3,
GHj5,GH6, GH8, GH9, GH12, GH14, GH30, GH44, GH45, GH48, GH51, GH74 and
GH94. All these enzyme families cluster together different enzymes that are needed
in the hydrolytic breakdown of carbohydrates via cleavage of glycosidic bonds. The

corresponding heatmap is illustrated in Figure 14.
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Figure 14: Heatmap illustrates the transcriptional activity of GH families and their
expression levels in all of the 104 clustered bins. Expression values are represented
as the square root of RPKM values and taxonomic assignment was made by
AMPHORA2 with a consensus score > 0.8. Yellow highlighted bins were assigned
to Firmicutes and light blue ones to Bacteroidetes.
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3.10 Prediction and taxonomic assignment of

carbohydrate-active gene candidates

The taxonomic investigation of CAZy gene candidates, present in the assembly of
sample 2, revealed the same trend towards a greater proportion of Firmicutes versus
Bacteriodetes. Regarding the origin of carbohydrate-active gene candidates, the

Firmicutes/Bacteroidetes ratio calculated to 2.1:1.

Figure 15 gives an overview about the general taxonomic origin of the CAZy family
enzymes in the generated assembly of sample 2. 95% of detected CAZy enzyme
sequences were of bacterial origin and only 5% were assigned to Archaea. Nearly all
of the archaeal sequences (4%) were further assigned to the class of
Methanomicrobia. The major part of enzyme hits that were classified as Bacteria,
were further divided into the phylum Firmicutes (53%), most of them subdivided
into the class Clostridia. The Bacteroidetes phylum accounted for 25% of all
bacterial sequences and only minor parts were assigned to the phyla of

Fibrobacteres (8%), Actinobacteres (3%), Cloacimonetes (2%) and others.
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Figure 15: KRONA chart representing the taxonomic origin of all CAZy enzyme gene
candidates present in the assembly of sample 2. Note that the percentages refer to the
proportion of sequences relative to the root.

The class of Clostridia showed the most hits for gene sequences that are classified
into these enzyme families. However, also the Bacteroidetes phylum seems to
contribute greatly to the overall abundance of these GH groups. Representatives of
the class Bacilli or phyla Fibrobacteres and Actinobacteria seem to play a role in the
hydrolytic breakdown of plant biomass as well, although the examined GH families
are predicted to be less common in those taxonomic groups. Figure 16 illustrates a
heatmap plotting the taxonomic origin versus the number of identified potential

glycoside hydrolase family hits in the assembly of sample 2.
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3.10 Prediction and taxonomic assignment of carbohydrate-active gene candidates

As stated above, GH enzyme families are one of the main players in the breakdown
of plant material. Their value of occurrence was computed via a Blastp similarity
search against the NCBI non-redundant database combined with the LCA algorithm
of MEGANS5 for taxonomic assignment. The most predominant glycoside hydrolase
families in both, the Firmicutes as well as Bacteroidetes phyla, seem to be GH3 and
GHs. Notably, the clusters of GH51, GH12 and GH14 seem to be more common

within the Bacteroidetes compared to Firmicutes phyla.
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Figure 16: Heatmap representing the potential level of occurrence of different GH family genes
in the most represented taxonomic taxa of the assembled sequences of sample 2. Plotted values
are actual counts for enzyme-encoding sequences belonging to the respective GH classes.
Taxonomic assignment is based on the NCBI non-redundant database.
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CAZy enzyme-predictions were also coupled with the sequences clustered into the
104 high quality metagenomic bins. Figure 17 illustrates a heatmap indicating the
predictions of the most important glycoside hydrolase families and the taxonomic
assignment for the respective bin. A table containing the actual hits for each GH
family found in the 104 high quality metagenomic bins is given in Supplementary

Material section.
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Figure 17: GH family predictions in the 104 high quality bins. AMPHORA2 taxonomic classification
is given on the right (consensus score > 0.8). Red highlighted taxa belong to the Firmicutes phylum,
whereas a green highlight indicates that these bins were assigned to the Bacteroidetes phylum.
Values are actual counts for GH family sequences in the respective bins.

82



4. Discussion

4. Discussion

Biogas fermenters comprise a habitat for microbial communities with highly
complex population structures. The members act together in concerted action to
conduct the reactions involved in the process of degrading the initial substrate,
yielding the final products methane and carbon dioxide. The general procedure and
main reactions, being hydrolysis, acidogenesis, acetogenesis and methanogenesis,
have extensively been studied in the past. Past research focussed predominantly on
the methanogenesis because this step results in the generation of the end-products.
In contrast, knowledge about the initial hydrolysis, which is the rate limiting
reaction of the entire process, is rather limited and needs better understanding for
affecting the final yield positively. Therefore, the main aim of this thesis was the
better characterization of the taxonomic community composition concentrating on

the key players in cellulose degradation and the responsible enzymes.

Sequencing of our biogas plant sample generated nearly 900 million sequencing
reads which were assembled into 123,435 contigs (> 1000 bp) and constitute about
1.16 Gb of assembled DNA. These benchmark data are the reason why it belongs to
the biggest assembled data sets currently published. This substantial metagenomic
assembly was used for the taxonomic and phylogenetic examination of the
underlying community composition. Similarity search of single reads against the
NCBI non-redundant database and phylogenetic placement via MEGAN35 resulted
in the classification of nearly eight million sequencing reads. About 5% of them were
placed as unassigned reads and those reads might represent sequences that are not
included in the database or comprise sequences of completely novel species. The

NCBI non-redundant database represents a vast collection of various reference
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sequences and this is the reason for the considerably low proportion of unclassified
sequencing reads. Coupling the analysis with the lowest common ancestor (LCA)
approach of MEGAN5 makes the evaluation more conservative but also prevents
false-positive assignments. Taxonomic characterisation of assembled contigs by
AMPHORA2 marker-protein search enabled the classification of about 21,600
contigs. The reliance on marker-protein sequences limits assignment capacity
because only contigs which contain those gene sequences can be classified
accordingly. The very low proportion of unassigned contigs (0.3%) results partially
from the assembly process as short and qualitatively poor reads are sorted out before
and long continuous stretches increase the chance for obtaining full-length gene
sequences. Informative content of a rRNA sequence analysis in metagenomic
shotgun sequencing experiments is constrained as only a small fraction of all
obtained reads contain fragments of ribosomal RNA genes by chance. Therefore,
similarity search against the ribosomal RNA database of SortMeRNA resulted in
dedication of roughly 1.6 million reads and about 2% of them remained unclassified.
This percentage may refer to novel sequences that are not represented in the
database so far. The rRNA-dependent approach was mainly a verification for the
other two assignment methods. In general, the taxonomic composition analysis
revealed that on average, the community consists of about 89% bacterial and only
4-10% archaeal members, depending on the approach used. For the rRNA marker-
gene containing reads the percentage of classified bacterial sequences was even
higher and added up to 97% and only 1% were classified as Archaea. Nevertheless,
this results could emerge to some extent from the overrepresentation of bacterial
reference sequences in databases as many of them originate from cultivation-based
experiments and culture conditions are even more complex for Archaea, or in
general because of a lack of endeavour for examination.
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However, the severe underrepresentation of Archaea in this artificially generated
environment was expected and goes in line with published literature [3]; [130];
[131]. By comparing different studies of other investigated biogas plants, the
taxonomic structure appeared to be rather consistent and the composition of this
sample confirms the impression, as no obvious differences were observed.
Firmicutes and Bacteroidetes are bacterial phyla that comprise various species that
were reported to be involved in the breakdown of cellulose and proteins, the
acidogenesis and homoacetogenesis [3]; [132]. Firmicutes is the dominant bacterial
phylum in manure-based systems, far more prevalent than Bacteroidetes [5]; [7];
[36]; [131]; [133];. Regardless of how the taxonomic community structure of our
sample was investigated, on average a Firmicutes/Bacteroidetes ratio of 3.3:1 was
observed. Similar values were calculated for the samples of searched published

literature.

CD-HIT clustering of the AMPHORA2 marker-protein search on assembled contigs
resulted in a distinct grouping of 195 bacterial and 5 archaeal OTUs on average, this
is a major step forwards compared to previously published studies based on
clustering of 16S rDNA sequencing [132]; [134]. However, the CD-HIT grouping
solely outlines the number of different taxa present in the sample, but is not an
indicator of quality or quantity for the comprised sequences. The composition and
coverage based metagenomic binning of our biogas plant sample allowed the
generation of 251 distinct bins with varying quality characteristics. 104 of them were
extracted as high quality genome reconstructions where most of the bins are more
than 90% complete, according to CheckM analysis. Some of the bins where
taxonomically assigned down to species level with high confidence scores. This

result is highly satisfactory as, to my knowledge, there is no other published study



4. Discussion

available so far that showed this high degree of deep reconstruction potential for the

microbial community in biogas fermenters.

The taxonomic assignment of these metagenomic bins basically reflects the
impression of a considerable overrepresentation of Firmicutes, reasoned by a
Firmicutes/Bacteroidetes ratio of 2.7:1. These observations led to a search for
published literature about metagenomic studies dealing with bacterial composition
in the guts of herbivores, which represent natural cellulose degrading systems. By
calculating an average ratio of abundance for Firmicutes and Bacteroidetes in those
studies, we observed that in digestion systems of herbivores the mean
Firmicutes/Bacteroidetes ratio is almost 1:1 [9]; [11]; [12]; [21]; [22]; [135]. As most
agricultural biogas plants are run with animal manures, it was expected that the
Bacteroidetes are highly abundant in our sample because it was mainly fed with cow
and chicken manure, besides maize-silage. It is possible that various species
belonging to the phylum of Bacteroidetes are present in biogas fermenters at high
levels initially but they may be outcompeted over time due to the operating
conditions or a lack in essential factors that are usually present in their natural
habitats. Summarising these discoveries, it is likely that in agricultural biogas
fermenters, representatives belonging to the phylum of Bacteroidetes are not that
abundant and do not compete equally as in their natural habitats or compared to

Firmicutes.

To determine the transcription of distinct cellulolytic glycoside hydrolase families
in the high quality bins, which represent individual organisms in the sampled biogas
fermenter, RNA-Seq reads were mapped on binned contigs. The most observed GH
families in the metagenomic bins can be subdivided into those with known main
cellulolytic activity (GH1, GH3, GH5, GH6, GH8, GH9, GH12, GH45, GH48, GH51

and GH74) and those with mainly hemicelluolytic activity (GH30) [136]. Across
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genome bins, the GHs that showed the highest expression values belong to the
groups of GH3, GH5 and GHs51. All GH families seem to be higher expressed in
Firmicutes compared to Bacteroidetes, except the cluster of GH51 shows higher
transcription in species belonging to Bacteroidetes. The taxonomic assignment of
glycoside hydrolase families in the individual genome bins confirms the trend
towards a greater proportion of Firmicutes compared to Bacteroidetes; the ratio of
selected GHs derived from Firmicutes/Bacteroidetes was 2.1:1. Furthermore,
representatives of Bacilli, Fibrobacteres and Actinobacteria seem to contribute
greatly to the overall abundance of selected GH groups. This investigation provides
insight into the expression of glycoside hydrolase genes of distinct members in a
biogas producing community and confirms the predominance of various Firmicutes
in cellulolytic breakdown. As it was expected, different species belonging to the class

of Clostridia showed the highest transcriptional levels of GHs.

This study provides evidence for the dominance of Firmicutes in agricultural biogas
plants compared to various samples of guts or feces of herbivores where the
Bacteroidetes seem to be equally abundant. Observation is corroborated by the
finding that selected GH families are twice as often affiliated with Firmicutes than
with Bacteroidetes. That indicates that Firmicutes, and especially Clostridia, are the
ones mainly responsible for the initial degradation of plant biomass in agricultural
biogas plants. Therefore, one can speculate that a shift in population from
dominating abundance of Firmicutes to Bacteroidetes might increase the overall
hydrolytic performance of biogas fermenters. This would require altered process
parameters and conditions which favour the growth or survival of Bacteroidetes.
For this, further research is needed to get a better understanding about the specific
requirements of this phylum on its environment or surrounding community for

efficient adjustment of running parameters in agricultural biogas fermenters.
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4. Discussion

Additionally, the reconstruction of the 104 high quality genomes will provide new
possibilities for studying functional diversity and capacities in agricultural one-stage
biogas fermenters. As knowledge about individual genomes participating in the
degradation of cellulose and other plant material is rather limited so far, this data

will provide a good starting point for future projects.
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Table S5: Phenotype predictions for bins 1 — 26.
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Table S6: Phenotype predictions for bins 27 — 52.

121
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Table S7: Phenotype predictions for bins 53 — 78.
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Table S8: Phenotype predictions for bins 79 - 104.
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Table S9: Taxonomic assignment and predicted number of occurrence for the 15
most important GH enzyme families in bins 1 — 52.
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Table S10: Taxonomic assignment and predicted number of occurrence for the 15 most
important GH enzyme families in bins 53 — 104.

96 _ Ruminiclostridium 4 9 46 7 7 2 0 19 o} a) 3
pb108-3_Clostridia 3 3 o o o 0o o O 0o O o 0 0 0 o
pbiz2i_Fibrobacter 5 6 33 6 4 7 2 o0 15 6 3 2 11 2 1
pbi22_Fibrobacter 4 5 13 3 4 7 1 0o 3 8 1 2 6 1 1
pbis-1_Bacteria 2 5 3 0O O 0O 0O 0O 0o 0 0 o0 o0 0o 2
pbi162_Clostridiales 2 9 5 0 O 0 0O O 1 0 o0 1 1 1 0
pb166-2_Bacteroidetes 3 2 1 o 1 o0 0o 0O 0o O O 0 0 4 o0
pbi72_Bacteroidetes 4 5 2 o0 2 2 1 0 0 0O O 0 0O 0 0
pbi173_Bacteria 2 0o 0o 0o O 0O O O O 0O O 0O 0 0 o0
pbi177_Clostridia 1 11 2 © 2 0 0o ©0 2 o0 0 0o o0 3 o0
pb185 Mageeibacillus 2 | 1 1 o o o o 1 o o o0 0 o0 o0 4
pbi186-2_Lachnoclostridium 5 3 7 1 o 0o o 0o o 1 O 1 =2 3 2
pbi1go_Clostridia 55|15 o| 2|2 |1 |0|4|1 0|4]|2|2| 2
pb192-1_Clostridia 3 7 4 o o 0o 0o 0O 0O 0 O 1 13 0 1
pb199_Bacteria 5 7 26 3 12 10 1 1 11 12 3 6 14 3 3
pb2o;_Clostridiales 4 6 o o 1 o o o 3 o o0 0o 1 2 1
pb206-2_Bacteroidales 4 9 o 0O 4 2 0 0 0 O 4 7 2 0
pbz2o7_Bacteroidales 3 15 7 1 0 4 1 4 1 3 o0 =2 =2 2 1
pb212_Bacteria 3 1. o o o o O O 1 o0 0O 0 1 0 1
pb215_Ruminiclostridium 3 10 42 8 7 27 3 0 20 23 0 20 4 11 3
pb233-1__Ruminococcaceae i 6 2 ©0o o 0 0o 0 0 0 0 0 4 o0 1
pb233-3_Mageeibacillus 1 1 o o o o o 0O 0o o o 0 o0 o 1
pb235-1_Lachnoclostridium 4|11 9 2 1|5 1 0|2 |3 0|49 3 3
pb235-2_Clostridiales 2 4 1 ©0o O 0o o o 1 0 o0 o0 1 2 o
pb237 Clostridiales @ 1 o o 2 0o 0 0O 0o 0O o0 0 o0 o0 2
pb243_Sphaerochaeta 2 3 o 0o 0O 0O 0O O 0o ©0 0O 0 1 0 o0
pb246_Ruminococcaceae 2 1 0o 0o 0o 0o O O o 0o O 0 0o o0 3
pb2_Bacteroidales 6 6 5 O 1 2 0o 0 2 3 o0 1 5 o 1
pb3o_Planctomycetaceae i1 5 5 © 0 0 0 0 2 o0 0 0 4 0 o0
pb3i_Treponema 3 3 1 1 o 0o 1 ©0O 0o O O 0 1 0 2
pb35-1_Lachnoclostridium 3/ 7 19 3 2 8 2 o0 4 6 o0 11 4 5 5
pb35-2_Lachnoclostridium 4 4 9 0o 0 0O 0O 0O 0O 2 0 0 10 4 2
pb38-1_Acholeplasmataceae 2 4 0o 0O O 0O O O o 0o o0 0 0 0 1
pb3 Clostridia 2 5 6 ©o 5 0 0O 0 5 O 0 0 0 5 O
pbgo_Clostrdia 1 1 O 0O O 0 0 o o o0 o 0 o o 1
pbg7_Verrucomicrobia 3 1 1 0o o 0o 0O 1 0o 0 0O 0 1 0 o0
pb6-1_Bacteria 2 6 3 o o 1 o0 o0 1 0o 0 0 0 0 1
pb6-2_Bacteria 1 6 1 o o 0o o ©0o 1 o 0 0o o 1 5§
pb60-2_Firmicutes 8 12 14 o 2 o 0o O 1 6 o0 5 15 1 1
pb6i1-1_Ruminococcaceae 2 3 o O O 0o 0 0O o 0O o0 0 0 0 o
pbo;_Clostridiales 2 2 o © 0o 0 0O 0O 0 o0 O 0o o o o
pb69_Porphyromonadaceae 3 4 2 0o 0o 1 1 0 0o 0 O 0 0 0 o0
pbro_Alkaliphilus 1 4 6 0 4 O 0O O 5 O 0 0 o0 7 1
pb76-1_Ruminococcaceae 2 2 1 © 1, 0 0O ©0 2 o0 0O 0o o0 3 =2
pb78-1_Firmicutes 3 5 10 o 1 O 0o O 0o o o 6 6 1 o
pb8o_Firmicutes 1 5 1. 0 0O 0O O O 0o 0 0O 0 0 0 o0
pb84_Oceanobacillus 4 2 5 o 1 1 0o 1 o o0 o 3 6 1 o0
pb85_Methanosarcina 1 1 1 1 o o O O 1 o 0 0 0 0 o0
pb88 Bacteroidales 4 4 o0 o 1 0o 1 O ©0o 0 0 0 o0 o0 o
pb9o_Treponema 2 7 8 3 [o] 2 4 o] 1 2 [o] 1 3 1 5
pbo3-2_Syntrophomonadaceae 1 1 9 o 1 0o o 0o 1 ©0O O 0 0 4 1
pb9o7_Ruminococcaceae 3 4 2 ©0 2 0o o 0o 1 O o0 o0 1 0o 1
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Script 1: Removing adapter sequnces from fastq file

#!/usr/bin/python

import sys, gzip
import collections

from Bio.SeqgIO.QualityIO import FastgGenerallterator
if len(sys.argv) != 3:
print >> sys.stderr, "script <adapters.fa> <sequences.fa>"

sys.exit (1)

infilel = sys.argv[1l]

infile2 sys.argv[2]

from Bio import SegIO

adapters = collections.OrderedDict ()

for seq record in SeqIO.parse (infilel, "fasta"):

adapters[seq record] = 0

myseqgs = ()
counter = 0
for title, seqg, qual in FastgGenerallterator (gzip.open(infile2)):

counter += 1

if counter == 500000: break

for adapter in adapters:

if str (adapter.seq) in seq:
adapters[adapter] += 1

o)

#print >> sys.stdout, "%$s\n%s" % (myseq.id, myseq.seq)

for key, item in adapters.items():

Q

print >> sys.stderr, "%s: %s" % (key.id, item)
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Adapter sequences checked

>Universal
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
>FirstPartOfIndexed

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

>Indexedl
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG
>Indexed?
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG
>Indexed3
GATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTG
>Indexed4
GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG
>Indexedb
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG
>Indexedb
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTG
>Indexed?7
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTG
>Indexed8
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG
>Indexed9
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTG
>IndexedlO
GATCGGAAGAGCACACGTCTGAACTCCAGTCACTAGCTTATCTCGTATGCCGTCTTCTGCTTG
>Indexedll
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGCCGTCTTCTGCTTG
>Indexedl?2
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTG
>FirstPartOfUniversalR

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

>UniversalR
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT
>FirstPartOfReverseIndexed

CAAGCAGAAGACGGCATACGAGAT

>IndexedlR

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
100
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>Indexed2R
CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed3R
CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed4R
CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed5R
CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed6R
CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed’R
CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed8R
CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexed9R
CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>IndexedlOR
CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>IndexedllR
CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC
>Indexedl2R

CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC

Script 2: Calculating mean coverage by contig

#!/usr/bin/env python

import sys

sum_by contig={}

num by contig={}

for line in sys.stdin:
parts=line.strip().split ("\t")

contig = parts[0]

cov int (parts[1])
num = int (parts[2])

#print contig, cov, num; sys.exit (1)
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if not sum by contig.has key(contig):
sum by contig[contig]=0

num by contigl[contig]=0

sum_by contig[contig]=sum by contig[contig]+num*cov

num by contig[contig]=num by contig[contig]+num

contignames=sum by contig.keys ()

contignames.sort ()

for contig in contignames:
if contig == "genome":

continue

5.Supplementary Material

average cov=float (sum by contig[contig])/float (num by contiglcontig])

sys.stdout.write ("$s\t%1.1f\n" % (contig,

Script 3: Filter single assembly

#!/usr/bin/env python

import sys

from Bio import SeqgIO

assemblyfilename=sys.argv[1l]
coveragefilename=sys.argv[2]
minlength=int (sys.argv[3])
mincoverage=float (sys.argv[4])
assemblyoutfilename=sys.argv[5]

coverageoutfilename=sys.argv[6]

coverage={}
with open(coveragefilename) as infile:
for line in infile:
parts = line[:-1].split("\t")
name = parts[0].split() [0]

c = float(parts[l])
102
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if ¢ >= mincoverage:

coverage [name]=c

lengths=[]
entries={}
with open (assemblyfilename) as infile:
for entry in SegIO.parse(infile, "fasta"):
#import pdb; pdb.set trace()
if coverage.has key(entry.id):
if len(entry.seq) >=minlength:
entries[entry.id]=entry

lengths.append((len(entry.seq), entry.id))

lengths.sort ()

lengths.reverse()

1d=0
with open (assemblyoutfilename, "w") as seqoutfile:

with open (coverageoutfilename, "w") as coutfile:

5.Supplementary Material

coutfile.write ('"Name", "Average coverage","Reference length"\n')

for (length, name) in lengths:

print >> sys.stdout, name

id += 1

entry=entries[name]

c=coverage [name]

entry.id = str(id)

SeqIO.write (entry, seqoutfile, "fasta")

coutfile.write (""%i","$1.1£","%i"\n"' % (id, c,
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Script 4: Filter Combined Assembly

#!/usr/bin/env python

import sys

from Bio import SeqIO

assemblyfilename=sys.argv[1l]
coveragelfilename=sys.argv[2]
coverage2filename=sys.argv|[3]
minlength=int (sys.argv[4])
mincoverage=float (sys.argv[5])
assemblyoutfilename=sys.argv|[6]
coverageloutfilename=sys.argv[7]

coverage2outfilename=sys.argv[8]

coveragel={}

with open(coveragelfilename) as infile:

for line in infile:
parts = line[:-1].split ("\t")
name = parts[0].split () [0]
coverage = float(parts[1l])

#if coverage >= mincoverage:

coveragel [name]=coverage

coveragez2={}

with open(coverage2filename) as infile:

for line in infile:
parts = line[:-1].split ("\t")

name = parts[0].split() [0]

coverage float (parts[1l])
#if coveragel.has key(name) :
#if coverage >= mincoverage:

coverage? [name]=coverage

lengths=[]
entries={}

with open(assemblyfilename) as infile:
104
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for entry in SeqgIO.parse(infile, "fasta"):
#1f coveragel.has key(entry.id) or coverage2.has key(entry.id):
try:
coveragel [entry.id]
except KeyError:
coveragel [entry.id] = 0
try:
coverage?[entry.id]
except KeyError:
coverage2[entry.id] = 0

if len(entry.seq) >=minlength and (coveragel[entry.id] >= mincoverage
or coverage2[entry.id] >= mincoverage)

entries[entry.id]=entry

lengths.append((len(entry.seq), entry.id))

lengths.sort ()

lengths.reverse()

id=0
with open(assemblyoutfilename, "w") as seqgoutfile:
with open (coverageloutfilename, "w") as cloutfile:
with open (coveragez2outfilename, "w") as c2outfile:
cloutfile.write ('"Name", "Average coverage","Reference length"\n')

c2outfile.write ('"Name", "Average coverage","Reference length"\n')

for (length, name) in lengths:

print >> sys.stdout, name

id += 1

entry=entries[name]

cl=coveragel [name]

c2=coverage?2 [name]

entry.id = str(id)

SeqIO.write (entry, seqoutfile, "fasta")
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cloutfile.write ("'"%i","%1.1£f","%i"\n' % (4id,
c2outfile.write (""%i","%$1.1£f","%i"\n' % (4id,

Script 5: Filter Blast results to minimal bitscore

#! /usr/bin/python

import sys, os, argparse

minscore = float(sys.argv[1l])

mydict = {}

previous = None

for line in sys.stdin:
elements = line.strip() .split('\t")
assert len(elements) == 12

bitscore = float (elements([11])

if bitscore >= minscore:

sys.stdout.write(line)

Script 6: Contig2Bin

#!/usr/bin/python

import sys, os

from Bio import SeqIO

fastafiles = sys.argv[l:]

for fastafile in fastafiles:

bin = fastafile.split('/")[-1].split('.") [0]

for seg in SeqglIO.parse (fastafile, "fasta"):

id = seqg.description.split() [1]
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print >> sys.stdout, '$s\t

Script 7: Combine Tables

#!/usr/bin/python
import sys, os
contig2taxon = {}

with open(sys.argv[l]) as fin:

for line in fin:

$s' % (id, bin)

contig, taxon = line.strip().split('\t")
contig2taxon[contig] = taxon
with open(sys.argv[2]) as fin:

for i, line in enumerate(fin):

if 1 ==

print >> sys.stdout, line.strip()

continue

els = line.strip() .split ()

try: taxon = contig2taxon[els[0]]

except KeyError: taxon = '

els[-2] = taxon

1

print >> sys.stdout, '\t'.join(els)
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